

What’s on the CD-ROM
The companion CD-ROM includes all of the source code
published as numbered listings in the text of the book,
plus compiled executables of many of the demos. In ad-
dition, you’ll find the following extras on the CD:

The classic Zen Timer code profiling tool, in both executable and source

code format.

a \

@
4 Exclusive! The text of Michael’s long out of print 1989 cult classic Zen of

AsS6T373ibly Language, plus scans of all 1 OOt technical figures.

ant essays from Michael’s ongoing work in game develop-

g for the first time in book form.

:nts, descriptions, copyrights, installation, limita-

‘n.

Hardware Platform: An Intel PC.
Note that some code is processor-specific.
To run all code you must have at least a
Pentium processor.

Wimiws 95 or NT. .

Black Book

Michael Abrash
Albany, NY Belmont, CA Bonn Boston Clnclnnatl Detrolt Johannesburg London

Madrld Melbourne Mexlco C I ~ New York Paris Slngapore Tokyo Toronto Washlngton

Publisher
Project Editor
Production Proiect Coordinator
Compositor
Cover Artist and Cover Design
Proofreaders
Indexer
CD-ROM Development

Keith Weiskamp
Denise Constantine
Kim Eoff
Rob Mauhar
Anthony Stock
JefKellum and Meredith Brittain
Caroline Parks
Robert Clarfield

Michael Abrashs Graphics Programming Black Book, Special Edition
1-57610-174-6
Copyright 0 1997 by The Coriolis Group, Inc.

All rights reserved. This book may not be duplicated in any way without the express written
consent of the publisher, except in the form of brief excerpts or quotations for the purposes of
review. The information contained herein is for the personal use of the reader and may not be
incorporated in any commercial programs, other books, databases, or any kind of software
without written consent of the publisher. Making copies of this book or any portion for any
purpose other than your own is a violation of United States copyright laws.

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in preparing the book and
the programs contained in it. These efforts include the development, research, and testing of
the theories and programs to determine their effectiveness. The author and publisher make no
warranty of any kind, expressed or implied, with regard to these programs or the documenta-
tion contained in this book.

The author and publisher shall not be liable in the event of incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of the programs,
associated instructions, and/or claims of productivity gains.

Tiademarks

Trademarked names appear throughout this book. Rather than list the names and entities that
own the trademarks or insert a trademark symbol with each mention of the trademarked name,
the publisher states that it is using the names for editorial purposes only and to the benefit of
the trademark owner, with no intention of infringing upon that trademark.

The Coriolis Group, Inc.
An International Thomson Publishing Company
14455 N. Hayden Road, Suite 220
Scottsdale, Arizona 85260

602/483-0192

http://www.coriolis.com
FAX 602/483-0193

Printed in the United States of America
1 0 9 8 7 6 5 4 3

Acknowledgments
Because this book was written over many years, in many different settings, an un-
usually large number of people have played a part in making this book possible.
First and foremost, thanks (yet again) to Jeff Duntemann for getting this book
started, doing the dirty work, and keeping things on track and everyone’s spirits
up. Thanks to Dan Illowsky for not only contributing ideas and encouragement,
but also getting me started writing articles long ago, when I lacked the confidence
to do it on my own-and for teaching me how to handle the business end of
things. Thanks to Will Fastie for giving me my first crack at writing for a large
audience in the long-gone but still-missed PC Tech Journal, and for showing me
how much fun it could be in his even longer-vanished but genuinely terrific col-
umn in Creative Computing (the most enjoyable single column I have ever read in a
computer magazine; I used to haunt the mailbox around the beginning of the
month just to see what Will had to say). Thanks to Robert Keller, Erin O’Connor,
Liz Oakley, Steve Baker, and the rest of the cast of thousands that made PJa uniquely
fun magazine-especially Erin, who did more than anyone to teach me the proper
use of English language. (To this day, Erin will still patiently explain to me when
one should use “that” and when one should use “which” even though eight years
of instruction on this and related topics have left no discernible imprint on my
brain.) Thanks to Jon Erickson, Tami Zemel, Monica Berg, and the rest of the DDJ
crew for excellent, professional editing, and forjust being great people. Thanks to
the Coriolis gang for their tireless hard work: Jeff Duntemann and Keith Weiskamp
on the editorial and publishing side, and Brad Grannis, Rob Mauhar, and Kim
Eoffwho handled art, design, and layout. Thanks to Jim Mischel who did a terrific
job testing code for the book and putting the code disk together. Thanks to Jack
Tseng, for teaching me a lot about graphics hardware, and even more about how
much difference hard work can make. Thanks to John Cockerham, David Stafford,
Terje Mathisen, the BitMan, Chris Hecker, Jim Mackraz, Melvin Laftte, John Navas,
Phil Coleman, Anton Truenfels, John Carmack, John Miles, John Bridges, Jim Kent,
Hal Hardenberg, Dave Miller, Steve Levy, Jack Davis, Duane Strong, Daev Rohr, Bill
Weber, Dan Gochnauer, Patrick Milligan, Tom Wilson, the people in the ibm.pc/
fast.code topic on Bix, and all the rest of you who have been so generous with your
ideas and suggestions. I’ve done my best to acknowledge contributors by name in
this book, but if your name is omitted, my apologies, and consider yourself thanked;
this book could not have happened without you. And, of course, thanks to Shay and
Emily for their generous patience with my passion for writing and computers.
And, finally, thanks to the readers of my articles and to you, the reader of this
book. You are, after all, the ultimate reason why I write, and I hope you learn as
much and have as much fun reading this book as I did writing it!
Michael Abrash (mikeab@microsoft.com)
Bellevue, Washington, 1997

To Shay

. Contents

Foreword xxxi

Introduction xxxiii

Part I 1

Chapter 1 The Best Optimizer Is between
Your Ears 3
The Human Element of Code Optimization 5
Understanding High Performance 6

Rules for Building High-Performance Code 7
When Fast Isn't Fast 6

Know Where You 're Going 8
Make a Big Map 8
Make Lots of Little Maps 8
Know the Ta'tory 12
Know When It Matters 13
Always Consider the Alternatives 14
Know How to Turn On the Juice 16

Where We've Been, What We've Seen 19
' Where We're Going 19

Chapter 2 A World Apart 21
The Unique Nature of Assembly

Language Optimization 23
Instructions: The Individual versus

the Collective 23
Assembly Is Fundamentally Different 25

Transfwmation Inefficiencies 25
Self-Rliance 27

vi i

Knowledge 2 7
The Flexible Mind 28

Where to Begm ? 30

Chapter 3 Assume Nothing 31
Understanding and Using the Zen Timer 33
The Costs of Ignorance 34
The Zen Timer 35

The Zen Timer Is a Means, Not an End 42
Starting the Zen Timer 43

Time and the PC 43
Stopping the Zen Timer 46
Reporting Timing Results 47
Notes on the Zen Timer 48
A Sample Use of the Zen Timer 49
The Long-Period Zen Timer 53

Example Use of the Long-Period Zen Timer 66
Using the Zen Timer from C 69

Stopping the Clock 54

Watch Out for Optimizing Assemblers! 71
Further Reading 72
Armed with the Zen T imq Onward and Upward 72

Chapter 4 In the Lair of the Cycle-Eaters 75
How the PC Hardware Devours

Code Performance 77
Cycle-Eaters 78
The Nature of Cycle-Eaters 78

The 8-Bit Bus Cycle-Eater 79
The 8088’s Ancestral Cycle-Eaters 79

The Impact of the 8-Bit Bus Cycle-Eater 82
What to Do about the 8-Bit Bus Cycle-Eater? 83

The Prefetch Queue Cycle-Eater 86
Official Execution Times Are Only Part of the Story 87
There Is No Such Beast as a True Instruction Execution Time 88
Approximating Overall Execution Times 93
What to Do about the Prefetch Queue Cycle-Eater? 93
Holding Up the 8088 94

Contents

Dynamic RAM Refresh: The Invisible Hand 95
How DRAM Refresh Works in the PC 95
The Impact of DRAM Refresh 97
What to Do About the DRAM Refresh Cycle-Eater? 98

Wait States 99
The Display Adapter Cycle-Eater 101

The Impact of the Display Adapter Cycle-Eater 104
What to Do about the Display Adapter Cycle-Eater? 107
Cycle-Eaters: A Summary 108
What Does It All Mean ? 108

Chapter 5 Crossing the Border 1 1 1
Searching Files with Restartable Blocks 113

Avoiding the String Trap 115
Brute-Force Techniques 115
Using memchr() 116

Interpreting Where the Cycles Go 121

Always Look Where Execution Is Going 123

Searching for Text 11 4

Making a Search Restartable 11 7

Knowing When Assembly Is Pointless 122

Chapter 6 Looking Past Face Value 125
How Machine Instructions May Do More Than

You Think 127
Memory Addressing and Arithmetic 128

Math via Memory Addressing 130

Multiplication with LEA Using Non-Powers
The Wonders of LEA on the 386 131

ofTwo 132

Chapter 7 Local Optimization 135
Optimizing Halfway between Algorithms

and Cycle Counting 137
When LOOP Is a Bad Idea 138

The Lessons of LOOP and JCXZ 139
Avoiding LOOPS of Any Stripe 140

Local Optimization 140
Unrolling Loops 143

Rotating and Shzfing with Tables 145
NOTFlips Bits-Not Flags 146
Incrementing with and without Carry 147

Chapter 8 Speedin Up C with
Assem 1 ly Language 149

Jumping Languages When You Know
It’ll Help 151
Billy, Don’t Be a Compiler 152

Don’t Call Your Functions on Me, Baby 153
Stack Frames Slow So Much 153
Torn Between Two Segments 154

Taking It to the Limit 155
A GteAssembly Case Study 156

W h y Speeding Up Is Hard to Do 154

Chapter 9 Hints My Readers Gave Me 167
Optimization Odds and Ends fiom

the Field 169
Another Look at LEA 170
The Kennedy Portfolio 171
Speeding Up Multiplication 173
Optimizing Optimized Searching 174
Shmt Sorts 180
Full 32-Bit Division 181
Sweet Spot Revisited 184
Hard-core Cycle Counting 185
Hardwired Far Jumps 186
Setting 32-Bit Registers: Time versus Space 187

Chapter 10 Patient Coding, Faster Code 189
How Working Quickly Can Bring Execution

to a Crawl 191
The Case f m Delayed Gratification 192

The Brute-Force Syndrome 193
Wasted Breakthroughs 196

Recursion 199
Patient Optimization 200

Chapter 1 1 Pushing the 286 and 386 205
New Registers, New Instructions, New Timings,

Family Matters 208
Crossing the Gulf to the 286 and the 386 208
In the Lair of the Cycle-Eaters, Part I1 209

New Complications 207

System Wait States 210
Data Alignment 213

Code Alignment 215
Alignment and the 386 21 8
Alignment and the Stuck 218
The DRAM Refresh Cycle-Eater: Still an Act of God 21 9
The Display Adapter Cycle-Eater 21 9

New Instructions and Features: The 286 221
New Instructions and Features: The 386 222

Optimization Rules: The More Things Change ... 223
Detailed Optimization 223

popf and the 286 225

Chapter 12 Pushing the 486 233
It’s Not Just a Bigger 386 235

Rules to Optimize By 236
Enter the 486 236

The Hazards of Indexed Addressing 23 7
Calculate Memory Pointers Ahead of Time 238

Caveat Programmor 241
Stack Addressing and Address Pipelining 241
Problems with Byte Regasters 242
More Fun with Byte Registers 244
Timing Your Own 486 Code 245

The Story Continues 246

Chapter 13 Aiming the 486 247
Pipelines and Other Hazards of the

High End 249

Contents

Chapter 14

Chapter 15

Chapter 16

486 Pipeline Optimization 250
BSWAP: More Useful Than You

Pushing and Popping Memory 254
Optimal 1-Bit Shifts and Rotates 255
32-Bit Addressing Modes 256

Might Think 252

Boyer-Moore String
Searching 259-

Optimizing a Pretty Optimum Search

String Searching Refresher 262
The Boyer-Moore Algorithm 263
Boyer-Moore: The Good and the Bad 266
Further Optimization of Boyer-Moore 274

Algorithm 261

Know M a t You Know 277

Linked Lists and
Unintended Challenges 279

Unfamiliar Problems with Familiar

Linked Lists 282
Dummies and Sentinels 285
Circular Lists 288
Hi/Lo in 24 Bytes 292

Data Structures 281

There Ain't No Such Thing as the
Fastest Code 295

Lessons Learned in the Pursuit of

Counting Words in a Hurry 298

Challenges and Hazards 305

the Ultimate Word Counter 297

Which Way to G o b m Here? 302

Blinding Yourself to a Better Abtmach 306

Watch Out for Luggable Assumptions! 306
The Astonishment of Right-Brain

Optimization 307
Levels of Optimization 312

Optimization Level 1: Good Code 312
Level 2: A New Perspective 315

Level 3: Breakthrough 31 6
Enough Word Counting Already! 31 9

Chapter 1 7 The Game of Life 321
The Triumph of Algorithmic Optimization

Conway’s Game 324

Where Does the Time Go? 329
The Hazards and Advantages of

Heavy-Duty C t t Optimization 336
Bringing In the Right Brain 338

in a Cellular Automata Game 323

The Rules of the Game 324

Abstraction 330

&-Examining the Task 338
Acting on What We Know 340
The Challenge That Ate My Life 346

Chapter 18 It‘s a Wonderful Life 347
Optimization beyond the Pale 349
Breaking the Rules 350
Table-Driven Magic 351
Keeping Track of Change with a

Change List 363
A Layperson S Overview of QLIFE 366

Chapter 19 Pentium: Not the
Same Old Song 369

Learning a Whole Different Set of

The Return of Optimization as Art 372
Optimization Rules 371

The Pentium: An Overview 373
Crossing Cache Lines 373
Cache Organization 374

Faster Addressing and More 375
Branch Prediction 37’7
Miscellaneous Pentium Topics 378

486 versus Pentium Optimization 378
Going Superscalar 379

Chapter 20 Pentium Rules 381
How Your Carbon-Based Optimizer Can

Put the “Super” in Superscalar 383
An Instruction in Every Pipe 384
V-Pipe-Capable Instructions 386
Lockstep Execution 390
Superscalar Notes 394

Register Starvation 395

Chapter 21 Unleashing the Pentium’s
V-pipe 397

Focusing on Keeping Both
Pentium Pipes Full 399

Address Generation Interlocks 400
Register Contention 403

Who’s in First? 405
Pentium Optimization in Action 406

Exceptions to Register Contention 404

A Quick Note on the 386 and 486 41 1

Chapter 22 Zennin
Flexib 9 e and Mind the 41 3

Taking a Spin through What

Zenning 41 5
You’ve Learned 415

Chapter 23 Bones and Sinew 423
At the Very Heart of Standard PC

The VGA 426
An Introduction to VGA Programming 427
At the Core 427

Graphics 425

Linear Planes and True VGA Modes 430
Smooth Panning 441
Color Plane Manipulation 443
Page Flipping 444

The Hazards of VGA Clones 446
Just the Beginning 447
The Macro Assembler 447

Chapter 24 Parallel Processing
with the VGA 449

Taking on Graphics Memory Four Bytes

VGA Programming: ALUs and Latches 451
Notes on the ALU/Latch Demo

at a Time 451

Program 458

Chapter 25 VGA Data Machinery 461
The Barrel Shifter, Bit Mask, and

Set/Reset Mechanisms 463
VGA Data Rotation 463
The Bit Mask 464
The VGA’s Set/Reset Circuitry 471

Setting All Planes to a Single Color 4 73
Manipulating Planes Individually 476

Notes on Set/Reset 478
A Brief Note on Word OUTS 4’79

Chapter 26 VGA Write Mode 3 481
The Write Mode That Grows on You 483
A Mode Born in Strangeness 483
A Note on Preserving Register Bits 496

Chapter 27 Yet Another VGA
Write Mode 499

Write Mode 2, Chunky Bitmaps,

Write Mode 2 and Set/Reset 501
and Text-Graphics Coexistence 501

A Byte’s Progress in Write Mode 2 502
Copying ChunkJ Bitmaps to VGA Memory Using

Drawing Color-Patterned Lines Using Write Mode 2 509
Write Mode 2 504

When to Use Write Mode 2 and When

Mode 13H--320x200 with 256 Colors 515
Flipping Pages from Text to Graphics

to Use Set/Reset 515

and Back 515

Chapter 28 Reading VGA Memory 523
Read Modes 0 and 1, and the Color Don’t

Read Mode 0 525
Read Mode 1 531
When all Planes “Don’t Care” 534

Care Register 525

Chapter 29 Saving Screens and Other
VGA Mysteries 539

Useful Nuggets from the VGA Zen File 541
Saving and Restoring EGA and

VGA Screens 541
16 Colors out of 64 548
Overscan 555

A Bonus Blanker 556
Modifying VGA Registers 558

Chapter 30 Video Est Omnis Divisa 561
The Joys and Galling Problems of Using Split

How the Split Screen Works 563
Screens on the EGA and VGA 563

The Split Screen in Action 565
VGA and EGA Split-Screen Operation Don’t Mix 572

Setting the Split-Screen-Related Registers 573
The Problem with the EGA

Split Screen and Panning 574

Notes on Setting and Reading Registers 582
Split Screens in Other Modes 584
How Safe? 585

Split Screen 573

l h e Split Screen and Horizontal Panning: An Example 5 75

Chapter 31 Higher 256-Color Resolution
on the VGA 587

When Is 320x200 Really 320~400? 589
Why 320x200? Only IBM Knows for Sure 590
320x400 256-Color Mode 590

Display Memory Organization in 320x400 Mode 591
Reading and Writing Pixels 593

Two 256-Color Pages 600
Something to Think About 605

Chapter 32 Be It Resolved: 360x480 607
Taking 256-Color Modes About as Far as the

Extended 256-Color Modes: What’s

360x480 256-Color Mode 611
How 360x480 256-Color Mode Works 619

Standard VGA Can Take Them 609

Not to Like? 610

480 Scan Lines per Screen: A Little Sloweq

360 Pixels per Scan Line: No Mean Feat 620
Accessing Display Memory in 360x480 256-Color Mode 621

But No Big Deal 61 9

Chapter 33 Yogi Bear and Eurythmics
Confront VGA Colors 623

The Basics of VGA Color Generation 625
VGA Color Basics 626

The Palette RAM 626
TheDAC 626
Color Pagmg with the Color Select Register 628
256-color Mode 629
Setting the Palette RAM 629
Setting the DAC 630

If You Can’t Call the BIOS, Who Ya

An Example of Setting the DAG 632
Gonna Call? 631

Chapter 34 Changing Colors without
Writing Pixels 637

Special Effects through Realtime Manipulation

Color Cycling 639
The Heart of the Problem 640

of DAG Colors 639

Loading the DAC via the BIOS 641
Loading the DAC Directly 642

A Test Program for Color Cycling 643
Color Cycling Approaches that Work 649
Odds and Ends 651

The DAC Mask 651
Reading the DAC 651
Cycling Down 652

Chapter 35 Bresenham Is Fast, and
Fast Is Good 653

Implementing and Optimizing Bresenham’s

The Task at Hand 656
Bresenham’s Line-Drawing Algorithm 657

An Implementation in C 661

Line-Drawing Algorithm 655

Strengths and Weaknesses 660

Looking at EVGALine 665
Drawing Each Line 668
Drawing Each Pixel 669

Comments on the C Implementation 670
Bresenham’s Algorithm in Assembly 671

Chapter 36 The Good, the Bad, and the
Run-Sliced 679

Faster Bresenham Lines with Run-Length

Run-Length Slice Fundamentals 683
Run-Length Slice Implementation 685
Run-Length Slice Details 687

Slice Line Drawing 681

Chapter 37 Dead Cats and
Lightning Lines 695

Optimizing Run-Length Slice Line Drawing

Fast Run-Length Slice Line Drawing 698
in a Major Way 697

How Fast Is Fast? 704
Further Optimizations 705

Contents

Chapter 38 The Polygon Primeval 707
Drawing Polygons Efficiently and

Filled Polygons 710

How Do You Fit Polygons Together? 712
Filling NonOverlapping Convex Polygons 713
Oddball Cases 721

Quickly 709

Which Side Is Inside? 71 0

Chapter 39 Fast Convex Polygons 723
Filling Polygons in a Hurry 725
Fast Convex Polygon Filling 726

Fast Drawing 727
Fast Edge Tracing 730

The Finishing Touch: Assembly Language 732

Faster Edge Tracing 735
Maximizing REP STOS 735

Chapter 40 Of Songs, Taxes, and the Simplicity
of Complex Polygons 739

Dealing with Irregular Polygonal Areas 741
Filling Arbitrary Polygons 742

Complex Polygon Filling: An
Active Edges 742

Implementation 750
More on Active Edges 753
Performance Considerations 753

Nonconvex Polygons '755
Details, Details 755

Chapter 41 Those Wa -Down Polygon
Nomenc r ature Blues 757

Names Do Matter when You Conceptualize

Nomenclature in Action 760
a Data Structure 759

m Contents

Chapter 42 Wu‘ed in Haste; Fried,
Stewed at Leisure 773

Fast Antialiased Lines Using Wu’s Algorithm 775
Wu Antialiasing 776
Tracing and Intensity in One 778
Sample Wu Antialiasing 782

Notes on Wu Antialiasing 791

Chapter 43 Bit-Plane Animation 793
A Simple and Extremely Fast Animation

Bit-Planes: The Basics 796

Bit-Plane Animation in Action 801
Limitations of Bit-Plane Animation 81 1
Shearing and Page Flipping 813
Beating the Odds in the Jaw-

Method for Limited Color 795

Stacking the Palette Regsters 799

Dropping Contest 814

Chapter 44 Split Screens Save the
Page Flipped Day 81 7

640x480 Page Flipped Animation in

A Plethora of Challenges 819
A Page Flipping Animation Demonstration 820

64K.. .Almost 8 19

Write Mode 3 831
Drawing Text 832
Page Flipping 833

Knowing When to Flip 835
Enter the Split Screen 836

Chapter 45 Dog Hair and Dirty
Rectangles 839

Different Angles on Animation 841
Plus Ca Change 842

Contents

Chapter 46

VGA Access Times 842
Dirty-Rectangle Animation 844

Dirty Rectangles in Action 846
Hi-Res VGA Page Flipping 851
Another Interesting Twist on Page Flipping 855

So w h y Not Use Page Flipping? 846

Who Was that Masked
Image? 859

Optimizing Dirty-Rectangle Animation 861
Dirty-Rectangle Animation, Continued 862
Masked Images 871
Internal Animation 872

Drawing Order and Visual Quality 873
Dirty-Rectangle Management 872

Chapter 47 Mode X: 256-Color
VGA Magic 875

Introducing the VGA’s Undocumented
“Animation-Optimal” Mode 877

What Makes Mode X Special? 878
Selecting 320x240 256-Color Mode 879
Designing from a Mode X Perspective 885
Hardware Assist from an Unexpected

Quarter 889

Chapter 48 Mode X Marks the Latch 895
The Internals of Animation’s Best Video

Allocating Memory in Mode X 903
Copying Pixel Blocks within Display

Display Mode 897

Memory 905
Copying to Display Memory 908

Who Was that Masked Image Copier? 91 1

Contents

Chapter 49 Mode X 256-Color
Animation 91 3

How to Make the VGA Really Get up

Masked Copying 915
and Dance 915

Faster Masked Copying 91 8
Notes on Masked Copying 923

Animation 924
Mode X Animation in Action 924
Works Fast, Looks Great 930

Chapter 50 Adding a Dimension 931
3-D Animation Using Mode X 933
References on 3-D Drawing 934
The 3-D Drawing Pipeline 935

Projection 93 7
Translation 9? 7
Rotation 9?8

A Simple 3-D Example 939

An Ongoing Journey 949
Notes on the 3-D Animation Example 948

Chapter 51 Sneakers in Space 951
Using Backface Removal to Eliminate

One-sided Polygons: Backface Removal 954

Incremental Transformation 964
A Note on Rounding Negative Numbers 966
Object Representation 96’7

Hidden Surfaces 953

Backface Removal in Action 957

Chapter 52 Fast 3-D Animation:
Meet X-Sharp 969

The First Iteration of a Generalized
3-D Animation Package 971

This Chapter’s Demo Program 972
A New Animation Framework: X-Sharp 984
Three Keys to Realtime Animation

Performance 985
Drawbacks 986
Where the Time Goes 987

Chapter 53 Raw Speed and More 989
The Naked Truth About Speed in

Raw Speed, Part 1: Assembly Language 992
Raw Speed, Part 11: Look it Up 999

3-D Animation 991

Hidden Surfaces 1000
Rounding 1002

Having a Ball 1003

Chapter 54 3-D Shading 1005
Putting Realistic Surfaces on Animated

Support for Older Processors 1007
Shading 1023

3-D Objects 1007

Ambient Shading 1023
Diffuse Shading 1023

Shading: Implementation Details 1027

Chapter 55 Color Modeling in
256-Color Mode 1031

Pondering X-Sharp’s Color Model in an

A Color Model 1034
A Bonus from the BitMan 1039

RGB State of Mind 1033

Chapter 56 Pooh and the Space
Station 1045

Contents

Using Fast Texture Mapping to Place Pooh
on a Polygon 1047

Principles of Quick-and-Dirty Texture
Mapping 1048
Mapping Textures Made Easy 1049
Notes on DDA Texture Mapping 1052

Fast Texture Mapping: An
Implementation 1053

Chapter 57 10,000 Freshly Sheared
Sheep on the Screen 1061

The Critical Role of Experience in Implement-
ing Fast, Smooth Texture Mapping 1063

Visual Quality: A Black Hole ... Er, Art 1064
Fixed-point Arithmetic, Redux 1064
Texture Mapping: Orientation

Mapping Textures across Multiple
Independence 1065

Polygons 1068
Fast Texture Mapping 1068

Chapter 58 Heinlein's Crystal Ball, Spock's
Brain, and the 9-Cycle

Dare 1077
Using the Whole-Brain Approach to

Texture Mapping Redux 1080
Accelerate Texture Mapping 10'79

Left-Brain Optimization 1081
A 90-Degree Shift in Perspective 1084

That's Nice-But it Sure as Heck
Ain't 9 Cycles 1086
Don 't Stop Thinking about Those Cycb 1091

Texture Mapping Notes 1092

Chapter 59 The Idea of BSP Trees 1095
What BSP Trees Are and How to

Walk Them 109'7

BSP Trees 1098
Visibility Determination 1099
Limitations of BSP Trees 11 00

Building a BSP Tree 1101

Inorder Walks of BSP Trees 1107
Visibility Ordm’ng 11 04

Know It Cold 1109
Measure and Learn 11 11

Surfing Amidst the Trees 11 13
Related Reading 11 14

Chapter 60 Compiling BSP Trees 1 1 15
Taking BSP Trees from Concept

Compiling BSP Trees 11 19
to Reality 11 17

Parametric Lines 11 19
Parametric Line Cliplbing 1121
The BSP Compiler 11 23

Optimizing the BSP Tree 11 28
BSP Optimization: an Undiscovered

Country 1 129

Chapter 61 Frames of Reference 1 1 31
The Fundamentals of the Math behind 3-D

Graphics 1133
3-D Math 11 34
Foundation Dejnitions 1134

The Dot Product 1135

Cross Products and the Generation of

Using the Sign of the Dot Product 1140
Using the Dot Product for Projection 1141

Dot Products of Unit Vectors 1136

Polygon Normals 1 137

Rotation by Projection 11 43

Contents

Chapter 62 One Story, Two Rules, and a
BSP Renderer 1 145

Taking a Compiled BSP Tree from Logical to

BSP-based Rendering 1148
The Rendering Pipeline 1157

Visual Reality 1147

Moving the Viewer 1157
Transformation into Viewspace 1158
Clipping 1158
Projection to Screenspace 1159
Walking the Tree, Backface Culling and Drawing 11 60

Notes on the BSP Renderer 1162

Chapter 63 Floating-Point for
Real-Time 3-D 1 163

Knowing When to Hurl Conventional Math

Not Your Father’s Floating-point 1167
Pentium Floating-point Optimization 1167

Wisdom Out the Window 1165

Pipelining, Latenq, and Throughput 11 68
FXCH 1169

The Dot Product 1170
The Cross Product 1171
Transformation 11 72
Projection 11 74
Rounding Control 11 74
A Farewell to 3-D Fixed-point 1175

Chapter 64 Quake’s Visible-Surface
Determination 1 177

The Challenge of Separating All Things Seen
from All Things Unseen 1179

Contents

VSD: The Toughest 3-D Challenge

The Structure of Quake Levels 1181
Culling and Visible Surface

ofAll 1180

De termination 1 18 1
Nodes Inside and Outside the Vim Frustum 11 83

Overdraw 1 184
The Beam Tree 1 185
3-D Engine du Jour 1186

Subdividing Raycast 11 87
Vntex-Free Surfaces 11 87
The DrawBufer 1 18 7
Span-Based Drawing 1 18 7
Portals 1188

Breakthrough! 1188
Simph.@, and Keep on Trying New Things 1189
Learn Now, Pay Forward 1190
References 1190

Chapter 65 3-D Clipping and
Other Thoughts 1 191

Determining What’s Inside Your Field

3-D Clipping Basics 1195

Polygon Clipping 1 197

of View 1193

Intersecting a Line Segment with a Plane 11 95

Clipping to the Frustum 1200
The Lessons of Listing 65.3 1206

Advantages of Viewspace Clipping 1207
Further Reading 1208

Chapter 66 Quake’s Hidden-Surface
Removal 1209

Struggling with Z-Order Solutions to the

Creative Flux and Hidden Surfaces 12 12
Hidden Surface Problem 12 1 1

Contents

Drawing Moving Objects 1212
Performance Impact 1213
Leueling and Improving Performance 1213

Sorted Spans 1214

Edge-Sorting Keys 1220
Edges versus Spans 1215

where That l / Z Equation Comes From 1221
Quake and Z-Sorting 1221
Decisions Defered 1222

Chapter 67 Sorted Spans in Action 1223
Implementing Independent Span Sorting for

Quake and Sorted Spans 1226
Types of l / z Span Sorting 1228

Rendering without Overdraw 1225

Intersecting Span Sorting 1228
Abutting Span Sorting 1229
Indqbendent Span Sorting 1230

l / z Span Sorting in Action 1230
Implementation Notes 1239

Chapter 68 Quake’s Lighting Model 1243
A Radically Different Approach to Lighting

Polygons 1245
Problems with Gouraud Shading 124 7
Perspective Correctness 1248
Decoupling Lighting from Rasten’zation 1250
Size and Speed 1251
Mipmapping To The Rescue I254
Two Final Notes on Surface Caching 1255

Chapter 69 Surface Cachin and Quake’s
Triangle Mode 9 s 1257
Letting the Graphics Card Build the Textures 1261
The Light Map as A y h a Texture 1262
Drawing Triangle Models Fast 1263
Trading Subpixel Precision for Speed 1265
A n Idea that Didn’t Work 1265

Contents

An Idea that Did Work 1266
More Ideas that Might Work 1270

Chapter 70 Quake: A Post-Mortem and a
Glimpse into the Future 1273
Lighting 1282
Dynamic Lighting 1283
BSP Models 1284
Polygon Models and ZBuffering 1285
The Subdivision Rasterizer 1286
Sprites 1287
Particles 1287

How We Spent Our Summer Vacation:
After Shipping Quake 1287
Ven'te Quake 1287
GLQuake 1288
WinQuake 1290
Quakeworld 1291
Quake 2 1293

Afterword 1297

Index 1299

Contents

Foreword

I got my start programming on Apple I1 computers at school, and almost all
of my early work was on the Apple platform. After graduating, it quickly be-
came obvious that I was going to have trouble paying my rent working in the
Apple I1 market in the late eighties, so I was forced to make a very rapid move
into the Intel PC environment.
What I was able to pick up over several years on the Apple, I needed to learn
in the space of a few months on the PC.
The biggest benefit to me of actually making money as a programmer was
the ability to buy all the books and magazines I wanted. I bought a lot. I was
in territory that I new almost nothing about, so I read everything that I could
get my hands on. Feature articles, editorials, even advertisements held infor-
mation for me to assimilate.
John Romero clued me in early to the articles by Michael Abrash. The good
stuff. Graphics hardware. Code optimization. Knowledge and wisdom for the
aspiring developer. They were even fun to read. For a long time, my personal
quest was to find a copy of Michael’s first book, Zen ofAssembly Language. I
looked in every bookstore I visited, but I never did find it. I made do with the
articles I could dig up.
I learned the dark secrets of the EGA video controller there, and developed
a few neat tricks of my own. Some of those tricks became the basis for the
Commander Keen series of games, which launched id Software.
Ayear or two later, after Wolfenstein-3D7 I bumped into Michael (in a virtual
sense) for the first time. I was looking around on M8cT Online, a BBS run by
the Dr. Dobb’s publishers before the Internet explosion, when I saw some
posts from the man himself. We traded email, and for a couple months we
played tag-team gurus on the graphics forum before Doom’s development
took over my life.
A friend of Michael’s at his newjob put us back in touch with each other after
Doom began to make its impact, and I finally got a chance to meet up with
him in person.

I talked myself hoarse that day, explaining all the ins and outs of Doom to
Michael and an interested group of his coworkers. Every few days afterwards,
I would get an email from Michael asking for an elaboration on one of my
points, or discussing an aspect of the future of graphics.
Eventually, I popped the question-I offered him a job at id. “Just think: no
reporting to anyone, an opportunity to code all day, starting with a clean
sheet of paper. A chance to do the right thingas a programmer.” It didn’t work.
I kept at it though, and about a year later I finally convinced him to come
down and take a look at id. I was working on Quake.
Going from Doom to Quake was a tremendous step. I knew where I wanted
to end up, but I wasn’t at all clear what the steps were to get there. I was trying
a huge number of approaches, and even the failures were teaching me a lot.
My enthusiasm must have been contagious, because he took the job.
Much heroic programming ensued. Several hundred thousand lines of code
were written. And rewritten. And rewritten. And rewritten.
In hindsight, I have plenty of regrets about various aspects of Quake, but it is
a rare person that doesn’t freely acknowledge the technical triumph of it. We
nailed it. Sure, a year from now I will have probably found a new perspective
that will make me cringe at the clunkiness of some part of Quake, but at the
moment it still looks pretty damn good to me.
I was very happy to have Michael describe much of the Quake technology in
his ongoing magazine articles. We learned a lot, and I hope we managed to
teach a bit.
When a non-programmer hears about Michael’s articles or the source code I
have released, I usually get a stunned “WTF would you do that for???” look.
They don’t get it.
Programming is not a zero-sum game. Teaching something to a fellow pro-
grammer doesn’t take it away from you. I’m happy to share what I can, because
I’m in it for the love of programming. The Ferraris are just gravy, honest!
This book contains many of the original articles that helped launch my pro-
gramming career. I hope my contribution to the contents of the later articles
can provide similar stepping stones for others.

-John Camnack
id Software

Foreword

Introduction

What was it like working with John Carmack on Quake? Like being strapped
onto a rocket during takeoff-in the middle of a hurricane. It seemed like
the whole world was watching, waiting to see if id Software could top Doom;
every casual e-mail tidbit or conversation with a visitor ended up posted on
the Internet within hours. And meanwhile, we were pouring everything we
had into Quake’s technology; I’d often come in in the morning to find John
still there, working on a new idea so intriguing that he couldn’t bear to sleep
until he had tried it out. Toward the end, when I spent most of my time
speeding things up, I would spend the day in a trance writing optimized as-
sembly code, stagger out of the Town East Tower into the blazing Texas heat,
and somehow drive home on LBJ Freeway without smacking into any of the
speeding pickups whizzing past me on both sides. At home, I’d fall into a
fitful sleep, then come back the next day in a daze and do it again. Every-
thing happened so fast, and under so much pressure, that sometimes I wonder
how any of us made it through that without completely burning out.
At the same time, of course, i t was tremendously exciting. John’s ideas were
endless and brilliant, and Quake ended up establishing a new standard for
Internet and first-person 3-D game technology. Happily, id has an enlight-
ened attitude about sharing information, and was willing to let me write about
the Quake technology-both how it worked and how it evolved. Over the two
years I worked at id, I wrote a number of columns about Quake in 07: Dobb’s
Sourcebook, as well as a detailed overview for the 1997 Computer Game Devel-
opers Conference. You can find these in the latter part of this book; they
represent a rare look into the development and inner workings of leading-
edge software development, and I hope you enjoy reading them as much as I
enjoyed developing the technology and writing about it.
The rest of this book is pretty much everything I’ve written over the past
decade about graphics and performance programming that’s still relevant to
programming today, and that covers a lot of ground. Most of Zen of Ch-aphics
Programming, 2nd Edition is in there (and the rest is on the CD) ; all of Zen of
Code Optimization is there too, and even my 1989 book Zen of Assembly Lan-

xxxiii

p a g e , with its long-dated 8088 cycle counts but a lot of useful perspectives, is
on the CD. Add to that the most recent 20,000 words of Quake material, and
you have most of what I’ve learned over the past decade in one neat package.
I’m delighted to have all this material in print in a single place, because over
the past ten years I’ve run into a lot of people who have found my writings
useful-and a lot more who would like to read them, but couldn’t find them.
It’s hard to keep programming material (especially stuff that started out as
columns) in print for very long, and I would like to thank The Coriolis Group,
and particularly my good friend Jeff Duntemann (without whom not only
this volume but pretty much my entire writing career wouldn’t exist), for
helping me keep this material available.
I’d also like to thank Jon Erickson, editor of 07: Dobb’s, both for encourage-
ment and general good cheer and for giving me a place to write whatever I
wanted about realtime 3-D. It still amazes me that I was able to find time to
write a column every two months during Quake’s development, and if Jon
hadn’t made it so easy and enjoyable, it could never have happened.
I’d also like to thank Chris Hecker and Jennifer Pahlka of the Computer
Game Developers Conference, without whose encouragement, nudging, and
occasional well-deserved nagging there is no chance I would ever have writ-
ten a paper for the CGDC-a paper that ended up being the most
comprehensive overview of the Quake technology that’s ever likely to be writ-
ten, and which appears in these pages.
I don’t have much else to say that hasn’t already been said elsewhere in
this book, in one of the introductions to the previous volumes or in one
of the astonishingly large number of chapters. As you’ll see as you read,
it’s been quite a decade for microcomputer programmers, and I have been
extremely fortunate to not only be a part of it, but to be able to chronicle
part of it as well.
And the next decade is shaping up to be just as exciting!

”Michael Abrash
Bellevue, Washington
May 1997

Introduction

Part 1

chapter 1

the best optimizer is between your ears

ement of Code Optimization
This book is devdted to a topic near and dear to my heart: writing software that
pushes PCs to the n-of-the-mill software, PCs run like the 97-pound-
weakling rninicompu e. Give them the proper care, however, and those
ugly boxes are capable es. The key is this: Only on microcomputers do you
have the run of the whole machine, without layers of operating systems, drivers, and
the like getting in $e way. You can do anything you want, and you can understand

ng on, if you so wish.
you should indeed so wish.

Is performance stiIl’$n issue in this era of cheap 486 computers and super-fast Pentium
computers? You bet3,How many programs that you use really run so fast that you
wouldn’t be happier 3 they ran faster? We’re so used to slow software that when a
compile-and-link sequence that took two minutes on a PC takes just ten seconds on
a 486 computer, we’re ecstatic-when in truth we should be settling for nothing less
than instantaneous response.
Impossible, you say? Not with the proper design, including incremental compilation
and linking, use of extended and/or expanded memory, and wellcrafted code. PCs can
do just about anything you can imagine (with a few obvious exceptions, such as applica-
tions involving super-computer-class number-crunching) if you believe that it can be
done, if you understand the computer inside and out, and if you’re willing to think
past the obvious solution to unconventional but potentially more fmitful approaches.

5

the human element of code optimization

My point is simply this: PCs can work wonders. It’s not easy coaxing them into doing
that, but it’s rewarding-and it’s sure as heck fun. In this book, we’re going to work
some of those wonders, starting.. .
. . .now.

Understanding High Performance
Before we can create high-performance code, we must understand what high perfor-
mance is. The objective (not always attained) in creating high-performance software
is to make the software able to carry out its appointed tasks so rapidly that it responds
instantaneously, as f i r as the user is concerned. In other words, high-performance code
should ideally run so fast that any further improvement in the code would be pointless.
Notice that the above definition most emphatically does not say anything about making
the software as fast as possible. It also does not say anything about using assembly lan-
guage, or an optimizing compiler, or, for that matter, a compiler at all. It also doesn’t say
anything about how the code was designed and written. What it does say is that high-
performance code shouldn’t get in the user’s way-and that’s all.
That’s an important distinction, because all too many programmers think that as-
sembly language, or the right compiler, or a particular high-level language, or a
certain design approach is the answer to creating high-performance code. They’re
not, any more than choosing a certain set of tools is the key to building a house. You
do indeed need tools to build a house, but any of many sets of tools will do. You also
need a blueprint, an understanding of everything that goes into a house, and the
ability to use the tools.
Likewise, high-performance programming requires a clear understanding of the
purpose of the software being built, an overall program design, algorithms for imple-
menting particular tasks, an understanding of what the computer can do and of
what all relevant software is doing-and solid programming skills, preferably using
an optimizing compiler or assembly language. The optimization at the end isjust the
finishing touch, however.

mthout good design, good algorithms, and complete understanding of the program k p operation, your carefully optimized code will amount to one of mankindb least
fruitful creations-a fast slow program.

‘What’s a fast slow program?” you ask. That’s a good question, and a brief (true)
story is perhaps the best answer.

When Fast Isn’t Fast
In the early 1970s, as the first hand-held calculators were hitting the market, I knew
a fellow named Irwin. He was a good student, and was planning to be an engineer.

6 Chapter 1

Being an engineer back then meant knowing how to use a slide rule, and Irwin could
jockey a slipstick with the best of them. In fact, he was so good that he challenged a
fellow with a calculator to a duel-and won, becoming a local legend in the process.
When you get right down to it, though, Irwin was spitting into the wind. In a few
short years his hard-earned slipstick skills would be worthless, and the entire disci-
pline would be essentially wiped from the face of the earth. What’s more, anyone
with half a brain could see that changeover coming, Irwin had basically wasted the
considerable effort and time he had spent optimizing his soon-to-be-obsolete skills.

What does all this have to do with programming? Plenty. When you spend time opti-
mizing poorlydesigned assembly code, or when you count on an optimizing compiler
to make your code fast, you’re wasting the optimization, much as Irwin did. Particu-
larly in assembly, you’ll find that without proper up-front design and everything else
that goes into high-performance design, you’ll waste considerable effort and time on
making an inherently slow program as fast as possible-which is still slow-when you
could easily have improved performance a great deal more with just a little thought. As
we’ll see, handcrafted assembly language and optimizing compilers matter, but less
than you might think, in the grand scheme of things-and they scarcely matter at all
unless they’re used in the context of a good design and a thorough understanding of
both the task at hand and the PC.

Rules for Building High-Performance Code
We’ve got the following rules for creating high-performance software:

Know where you’re going (understand the objective of the software).
Make a big map (have an overall program design firmly in mind, so the various
parts of the program and the data structures work well together).
Make lots of little maps (design an algorithm for each separate part of the over-
all design).
Know the territory (understand exactly how the computer carries out each task).
Know when it matters (identify the portions of your programs where perfor-

Always consider the alternatives (don’t get stuck on a single approach; odds are

Know how to turn on the juice (optimize the code as best you know how when it

mance matters, and don’t waste your time optimizing the rest).

there’s a better way, if you’re clever and inventive enough).

does matter).
Making rules is easy; the hard part is figuring out how to apply them in the real
world. For my money, examining some actual working code is always a good way to
get a handle on programming concepts, so let’s look at some of the performance
rules in action.

The Best Optimizer Is between Your Ears 7

Know Where You’re Going
If we’re going to create high-performance code, first we have to know what that code
is going to do. As an example, let’s write a program that generates a 16-bit checksum
of the bytes in a file. In other words, the program will add each byte in a specified file
in turn into a 16-bit value. This checksum value might be used to make sure that a
file hasn’t been corrupted, as might occur during transmission over a modem or if a
Trojan horse virus rears its ugly head. We’re not going to do anything with the
checksum value other than print it out, however; right now we’re only interested in
generating that checksum value as rapidly as possible.

Make a Big Map
How are we going to generate a checksum value for a specified file? The logical
approach is to get the file name, open the file, read the bytes out of the file, add
them together, and print the result. Most of those actions are straightforward; the
only tricky part lies in reading the bytes and adding them together.

Make Lots of Little Maps
Actually, we’re only going to make one little map, because we only have one program
section that requires much thought-the section that reads the bytes and adds them
up. What’s the best way to do this?
It would be convenient to load the entire file into memory and then sum the bytes in
one loop. Unfortunately, there’s no guarantee that any particular file will fit in the
available memory; in fact, it’s a sure thing that many files won’t fit into memory, so
that approach is out.
Well, if the whole file won’t fit into memory, one byte surely will. If we read the file one
byte at a time, adding each byte to the checksum value before reading the next byte,
we’ll minimize memory requirements and be able to handle any size file at all.
Sounds good, eh? Listing 1.1 shows an implementation of this approach. Listing 1.1
uses C’s read() function to read a single byte, adds the byte into the checksum value,
and loops back to handle the next byte until the end of the file is reached. The code
is compact, easy to write, and functions perfectly-with one slight hitch:
It’s slow.

LISTING 1.1 11-1.C
I*
* Program t o c a l c u l a t e t h e 1 6 - b i t c h e c k s u m o f a l l b y t e s i n t h e
* s p e c i f i e d f i l e . O b t a i n s t h e b y t e s one a t a t i m e v i a r e a d 0 .
* l e t t i n g DOS p e r f o r m a l l d a t a b u f f e r i n g .
*I
#i n c l ude < s t d i 0. h>
i n c l u d e < f c n t l . h >

m a i n (i n t a r g c . c h a r * a r g v []) (

8 Chapter 1

i n t Handle;
uns igned cha r By te ;
u n s i g n e d i n t Checksum:
i n t ReadLength;

i f (a r g c !- 2) {
p r i n t f (" u s a g e : c h e c k s u m f i l e n a m e \ n ") :
e x i t (1) :

1
i f ((Handle - open(argvC11. 0-RDONLY I 0-BINARY)) - -1) I

p r i n t f (" C a n ' t open f i l e : % s \ n " . a r g v C 1 1) :
e x i t (1) ;

I

/ * I n i t i a l i z e t h e checksum accumulator * /
Checksum - 0;

/ * Add e a c h b y t e i n t u r n i n t o t h e c h e c k s u m a c c u m u l a t o r * /
w h i l e ((ReadLength - r e a d (H a n d 1 e . & B y t e . s i z e o f (B y t e))) > 0) {

}
i f (ReadLength - -1) {

Checksum +- (u n s i g n e d i n t) B y t e ;

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v C 1 1) ;
e x i t (1) :

)

/ * R e p o r t t h e r e s u l t * /
p r i n t f (" T h e checksum i s : % u \ n " . Checksum);
e x i t (0) ;

)

Table 1.1 shows the time taken for Listing 1.1 to generate a checksum of the WordPerfect
version 4.2 thesaurus file, TH.WP (362,293 bytes in size), on a 10 MHz AT machine of
no special parentage. Execution times are given for Listing 1.1 compiled with Borland
and Microsoft compilers, with optimization both on and off; all four times are pretty
much the same, however, and all are much too slow to be acceptable. Listing 1.1 re-
quires over two and one-half minutes to checksum one file!

Listings 1.2 and 1.3 form the Uassembly equivalent to Listing 1.1, and Listings e 1.6 and 1.7 form the Uassembly equivalent to Listing 1.5.

These results make it clear that it's folly to rely on your compiler's optimization to
make your programs fast. Listing 1.1 is simply poorly designed, and no amount of
compiler optimization will compensate for that failing. To drive home the point, con-
sider Listings 1.2 and 1.3, which together are equivalent to Listing 1.1 except that the
entire checksum loop is written in tight assembly code. The assembly language imple-
mentation is indeed faster than any of the C versions, as shown in Table 1.1, but it's less
than 10 percent faster, and it's still unacceptably slow.

The Best Optimizer Is between Your Ears 9

LISTING 1.2 11-2.C
I*
* Program t o c a l c u l a t e t h e 1 6 - b i t c h e c k s u m o f t h e s t r e a m o f b y t e s
* f r o m t h e s p e c i f i e d f i l e . O b t a i n s t h e b y t e s o n e a t a t i m e i n
* a s s e m b l e r . v i a d i r e c t c a l l s t o 00s.
* I

i n c l u d e < s t d i o . h >
i n c l u d e < f c n t l . h >

m a i n (i n t a r g c . c h a r * a r g v [l) {
i n t Hand1 e;
u n s i g n e d c h a r B y t e :
u n s i g n e d i n t Checksum:
i n t

i f (

1
i f (

ReadLength:

a r g c !- 2) {
p r i n t f (" u s a g e : c h e c k s u m f i l e n a m e \ n ") :
e x i t (1) :

(Handle - open(argvC11. 0-RDONLY I 0-BINARY)) - -1) I
p r i n t f (" C a n ' t o p e n f i l e : % s \ n " . a r g v C 1 1) :
e x i t (1) :

1
i f (!ChecksumFile(Handle. &Checksum)) {

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v C 1 1) :
e x i t (1) :

1

I* R e p o r t t h e r e s u l t *I
p r i n t f (" T h e c h e c k s u m i s : %u\n". Checksum):
e x i t (0) ;

1

10 Chapter 1

LISTING 1.3 11 -3.ASM
; A s s e m b l e r s u b r o u t i n e t o p e r f o r m a 1 6 - b i t checksum on t h e f i l e
; opened on t h e p a s s e d - i n h a n d l e . S t o r e s t h e r e s u l t i n t h e
; p a s s e d - i n c h e c k s u m v a r i a b l e . R e t u r n s 1 f o r s u c c e s s , 0 f o r e r r o r .

; C a l l a s :
i n t ChecksumFi le(uns igned i n t Hand le , uns igned i n t *Checksum) ;

; where:
Handle - hand le # u n d e r w h i c h f i l e t o c h e c k s u m i s open
Checksum - p o i n t e r t o u n s i g n e d i n t v a r i a b l e c h e c k s u m i s
t o b e s t o r e d i n

; P a r a m e t e r s t r u c t u r e :

Parms s t r u c
dw ? ;pushed BP
dw ? ; r e t u r n a d d r e s s

Hand1 e dw ?
Checksum dw ?
Pa rms ends

TempWord 1 abe l
TempByte

- ChecksumFi le

ChecksumLoop:

E r ro rEnd :

Success :

.model smal 1

. d a t a
word
db
db

.code
pub1 i c
p r o c n e a r
push
mov
push

mov
sub

mov

mov

mov
i n t
j c
and
jz
add

jmp

sub
jmp

mov
mov
mov

? ;each by te read by DDS will b e s t o r e d h e r e
0 ; h i g h b y t e o f TempWord i s a lways 0

; f o r 1 6 - b i t adds

- ChecksumFi l e

bp
bp. sp
s i : s a v e C ' s r e g i s t e r v a r i a b l e

bx. [bp+Handle l ; g e t f i l e h a n d l e
s i , s i : ze ro t he checksum

;accumu la to r

; r e a d

;wh ich DOS s h o u l d s t o r e
: e a c h b y t e r e a d

cx.1 ; request one byte on each

d x . o f f s e t TempByte ; p o i n t DX t o t h e b y t e i n

a h , 3 f h :DOS r e a d f i l e f u n c t i o n #
21h ; r e a d t h e b y t e
E r ro rEnd :an e r r o r o c c u r r e d
ax.ax ;any by tes read?
Success ;no-end o f f i l e reached-we're done
si.[TempWord] ; a d d t h e b y t e i n t o t h e

;checksum t o t a l
ChecksumLoop

a x , a x ; e r r o r
s h o r t Done

bx.[bp+Checksuml ; p o i n t t o t h e c h e c k s u m v a r i a b l e
[b x l , s i ; save t he new checksum
ax .1 ;success

The Best Optimizer Is between Your Ears 1 1

Done:
POP s i
POP bP
r e t

end
- ChecksumFile endp

: r e s t o r e C ’ s r e g i s t e r v a r i a b l e

The lesson is clear: Optimization makes code faster, but without proper design, opti-
mization just creates fast slow code.
Well, then, how are we going to improve our design? Before we can do that, we have
to understand what’s wrong with the current design.

Know the Territory
Just why is Listing 1.1 so slow? In a word: overhead. The C library implements the
read() function by calling DOS to read the desired number of bytes. (I figured this
out by watching the code execute with a debugger, but you can buy library source
code from both Microsoft and Borland.) That means that Listing 1.1 (and Listing
1.3 as well) executes one DOS function per byte processed-and DOS functions,
especially this one, come with a lot of overhead.
For starters, DOS functions are invoked with interrupts, and interrupts are among
the slowest instructions of the x86 family CPUs. Then, DOS has to set up internally
and branch to the desired function, expending more cycles in the process. Finally,
DOS has to search its own buffers to see if the desired byte has already been read,
read it from the disk if not, store the byte in the specified location, and return. All of
that takes a long time-far, far longer than the rest of the main loop in Listing 1.1. In
short, Listing 1.1 spends virtually all of its time executing read(), and most of that
time is spent somewhere down in DOS.
You can verify this for yourself by watching the code with a debugger or using a code
profiler, but take my word for it: There’s a great deal of overhead to DOS calls, and
that’s what’s draining the life out of Listing 1.1.
How can we speed up Listing 1.1? It should be clear that we must somehow avoid
invoking DOS for every byte in the file, and that means reading more than one byte
at a time, then buffering the data and parceling it out for examination one byte at a
time. By gosh, that’s a description of C’s stream 1 / 0 feature, whereby C reads files in
chunks and buffers the bytes internally, doling them out to the application as needed
by reading them from memory rather than calling DOS. Let’s try using stream 1 / 0
and see what happens.
Listing 1.4 is similar to Listing 1 .l, but uses fopen() and getc() (rather than open()
and read()) to access the file being checksummed. The results confirm our theories
splendidly, and validate our new design. As shown in Table 1.1, Listing 1.4 runs more
than an order of magnitude faster than even the assembly version of Listing 1.1, men
though Listing 1.1 and Listing 1.4 look almost the same. To the casual observer, read()

1 2 Chapter 1

and getc() would seem slightly different but pretty much interchangeable, and yet in
this application the performance difference between the two is about the same as
that between a 4.77 MHz PC and a 16 MHz 386.

Make sure you understand what really goes on when you insert a seemingly- p innocuous function call into the time-critical portions of your code.

In this case that means knowing how DOS and the C/Ctt file-access libraries do
their work. In other words, know the territory !

LISTING 1.4 11-4.C
I*
* Program t o c a l c u l a t e t h e 1 6 - b i t checksum o f t h e s t r e a m o f b y t e s
* f r o m t h e s p e c i f i e d f i l e . O b t a i n s t h e b y t e s o n e a t a t i m e v i a
* g e t c 0 . a l l o w i n g C t o p e r f o r m d a t a b u f f e r i n g .
* /
i n c l u d e < s t d i o . h>

m a i n (i n t a r g c . c h a r * a r g v []) {
F ILE *CheckF i l e :
i n t B y t e :
u n s i g n e d i n t Checksum:

i f (a r g c != 2) {
p r i n t f (" u s a g e : c h e c k s u m f i l e n a m e \ n ") :
e x i t (1) :

I
i f ((C h e c k F i l e = f o p e n (a r g v C 1 1 . " r b ")) =- NULL) (

p r i n t f (" C a n ' t open f i l e : % s \ n " . a r g v [l]) :
e x i t (1) :

I

/* I n i t i a l i z e t h e checksum accumulator * /
Checksum = 0:

/ * Add e a c h b y t e i n t u r n i n t o t h e checksum accumulator * /
w h i l e ((B y t e = g e t c (C h e c k F i 1 e)) != EOF {

I
Checksum += (u n s i g n e d i n t) B y t e :

/ * R e p o r t t h e r e s u l t * /
p r i n t f (" T h e c h e c k s u m i s : %u\n". Checksum):
e x i t (0) :

T

Know When It Matters
The last section contained a particularly interesting phrase: the time-criticalportions of
your code. Time-critical portions of your code are those portions in which the speed
of the code makes a significant difference in the overall performance of your pro-
gram-and by "significant," I don't mean that it makes the code 100 percent faster,
or 200 percent, or any particular amount at all, but rather that it makes the program
more responsive and/or usable from the user's perspective.

The Best Optimizer Is between Your Ears 13

Don’t waste time optimizing non-time-critical code: set-up code, initialization code,
and the like. Spend your time improving the performance of the code inside heavily-
used loops and in the portions of your programs that directly affect response time.
Notice, for example, that I haven’t bothered to implement aversion of the checksum
program entirely in assembly; Listings 1.2 and 1.6 call assembly subroutines that
handle the time-critical operations, but C is still used for checking command-line
parameters, opening files, printing, and the like.

p Ifyou were to implement any of the listings in this chapter entirely in hand-opti-
mized assembly, I suppose you might get a performance improvement of a few
percent-but Irather doubtyou iiget even that much, andyou iisure as heckspend
an awful lot of time for whatever meager improvement does result. Let C do what
it does well, and use assembly only when it makes a perceptible dzfference.

Besides, we don’t want to optimize until the design is refined to our satisfaction, and
that won’t be the case until we’ve thought about other approaches.

Always Consider the Alternatives
Listing 1.4 is good, but let’s see if there are other-perhaps less obvious-ways to get
the same results faster. Let’s start by considering why Listing 1.4 is so much better
than Listing 1.1. Like read(), getc() calls DOS to read from the file; the speed im-
provement of Listing 1.4 over Listing 1.1 occurs because getc() reads many bytes at
once via DOS, then manages those bytes for us. That’s faster than reading them one
at a time using read()-but there’s no reason to think that it’s faster than having our
program read and manage blocks itself. Easier, yes, but not faster.
Consider this: Every invocation of getc() involves pushing a parameter, executing a
call to the C library function, getting the parameter (in the C library code), looking
up information about the desired stream, unbuffering the next byte from the stream,
and returning to the calling code. That takes a considerable amount of time, espe-
cially by contrast with simply maintaining a pointer to a buffer and whizzing through
the data in the buffer inside a single loop.
There are four reasons that many programmers would give for not trying to improve
on Listing 1.4:
1. The code is already fast enough.
2. The code works, and some people are content with code that works, even when it’s slow

enough to be annoying.
3. The C library is written in optimized assembly, and it’s likely to be faster than any code

that the average programmer could write to perform essentially the same function.
4. The C library conveniently handles the buffering of file data, and it would be a nui-

sance to have to implement that capability.

14 Chapter 1

I'll ignore the first reason, both because performance is no longer an issue if the
code is fast enough and because the current application does not run fast enough-
1 3 seconds is a long time. (Stop and wait for 1 3 seconds while you're doing something
intense, and you'll see just how long it is.)
The second reason is the hallmark of the mediocre programmer. Know when opti-
mization matters-and then optimize when it does!
The third reason is often fallacious. C library functions are not always written in
assembly, nor are they always particularly well-optimized. (In fact, they're often writ-
ten for portability, which has nothing to do with optimization.) What's more, they're
general-purpose functions, and often can be outperformed by well-but-not- brilliantly-
written code that is well-matched to a specific task. As an example, consider Listing
1.5, which uses internal buffering to handle blocks of bytes at a time. Table 1.1 shows
that Listing 1.5 is 2.5 to 4 times faster than Listing 1.4 (and as much as 49 times faster
than Listing 1.1 !), even though it uses no assembly at all.

Clearly, you can do well by using special-purpose C code in place of a C library p function-ifyou have a thorough understanding of how the C library function
operates and exactly what your application needs done. Otherwise, you'll end up
rewriting C library functions in C, which makes no sense at all.

LISTING 1.5 11-5.C
I*
* Program t o c a l c u l a t e t h e 1 6 - b i t checksum o f t h e s t r e a m o f b y t e s
* f r o m t h e s p e c i f i e d f i l e . B u f f e r s t h e b y t e s i n t e r n a l l y , r a t h e r
* t h a n l e t t i n g C o r DOS do t h e w o r k .
* I
#i n c l u d e < s t d i 0. h>
d i n c l u d e < f c n t l . h>
i n c l u d e < a l l o c . h > I* a l 1 o c . h f o r B o r l a n d .

r n a l 1 o c . h f o r M i c r o s o f t *I

d e f i n e BUFFER-SIZE 0x8000 I* 32Kb d a t a b u f f e r * /

m a i n (i n t a r g c . c h a r * a r g v [I) [
i n t Hand1 e ;
u n s i g n e d i n t Checksum:
uns igned cha r *Work ingBu f fe r . *Work ingP t r ;
i n t Work ingLength . Lengthcount ;

i f (a rgc != 2 1 {
p r i n t f (" u s a g e : c h e c k s u m f i l e n a r n e \ n ") :
e x i t (1) ;

I
i f ((Handle = o p e n (a r g v [l] . 0-RDONLY I 0-BINARY)) -- -1) I

p r i n t f (" C a n ' t o p e n f i l e : % s \ n " , a r g v C 1 1) :
e x i t (1) ;

I

I* Get memory i n w h i c h t o b u f f e r t h e d a t a *I
i f ((W o r k i n g B u f f e r = malloc(BUFFER-SIZE)) == NULL) {

p r i n t f (" C a n ' t g e t e n o u g h m e m o r y \ n ") :

The Best Optimizer Is between Your Ears 15

J

I* I n i t i a l i z e t h e checksum accumulator * I
Checksum = 0:

I* P r o c e s s t h e f i l e i n BUFFER-SIZE chunks * I
do {

i f ((Work ingLength = read(Hand1e. Work ingBuf fe r .

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v [l]) ;
e x i t (1) ;

BUFFER-SIZE)) == -1) {

1
I* Checksum t h i s c h u n k * I
W o r k i n g P t r - W o r k i n g B u f f e r :
Lengthcount = Work ingLength :
w h i l e (Lengthcount " 1
I* Add e a c h b y t e i n t u r n i n t o t h e checksum accumulator *I

1
Checksum += (u n s i g n e d i n t) * W o r k i n g P t r + + :

1 w h i l e (Work ingLength) ;

I* R e p o r t t h e r e s u l t * I
p r i n t f (" T h e c h e c k s u m i s : %u\n" . Checksum);
e x i t (0) ;

I

That brings us to the fourth reason: avoiding an internal-buffered implementation
like Listing 1.5 because of the difficulty of coding such an approach. True, it is easier
to let a C library function do the work, but it's not all that hard to do the buffering
internally. The key is the concept of handling data in restartable blocks; that is, reading
a chunk of data, operating on the data until it runs out, suspending the operation
while more data is read in, and then continuing as though nothing had happened.
In Listing 1.5 the restartable block implementation is pretty simple because
checksumming works with one byte at a time, forgetting about each byte immedi-
ately after adding it into the total. Listing 1.5 reads in a block of bytes from the file,
checksums the bytes in the block, and gets another block, repeating the process
until the entire file has been processed. In Chapter 5, we'll see a more complex
restartable block implementation, involving searching for text strings.
At any rate, Listing 1.5 isn't much more complicated than Listing 1.4-and it's a lot
faster. Always consider the alternatives; a bit of clever thinking and program rede-
sign can go a long way.

Know How to Turn On the Juice
I have said time and again that optimization is pointless until the design is settled.
When that time comes, however, optimization can indeed make a significant differ-
ence. Table 1.1 indicates that the optimized version of Listing 1.5 produced by
Microsoft C outperforms an unoptimized version of the same code by more than 60
percent. What's more, a mostly-assembly version of Listing 1.5, shown in Listings 1.6

16 Chapter 1

and 1.7, outperforms even the best-optimized C version of Listing 1.5 by 26 percent.
These are considerable improvements, well worth pursuing-once the design has
been maxed out.

LISTING 1.6 11-6.C
/ *
* Program t o c a l c u l a t e t h e 1 6 - b i t checksum o f t h e s t r e a m o f b y t e s
* f r o m t h e s p e c i f i e d f i l e . B u f f e r s t h e b y t e s i n t e r n a l l y , r a t h e r
* t h a n l e t t i n g C o r DOS do t h e w o r k , w i t h t h e t i m e - c r i t i c a l

* I
* p o r t i o n o f t h e c o d e w r i t t e n i n o p t i m i z e d a s s e m b l e r .

i n c l u d e < s t d i o . h >
i n c l u d e < f c n t l . h>
i n c l u d e < a l l o c . h > / * a l 1 o c . h f o r B o r l a n d .

m a l 1 o c . h f o r M i c r o s o f t * /

d e f i n e BUFFER-SIZE 0x8000 / * 32K d a t a b u f f e r * I

m a i n (i n t a r g c . c h a r * a r g v []) t
i n t Handle:
u n s i g n e d i n t Checksum:
u n s i g n e d c h a r * W o r k i n g B u f f e r :
i n t W o r k i n g L e n g t h ;

i f (a r g c != 2) I
p r i n t f (" u s a g e : c h e c k s u m f i l e n a m e \ n ") :
e x i t (1) :

I
i f ((Hand le = o p e n (a r g v [l] . 0-ROONLY I 0-BINARY)) == -1) 1

p r i n t f (" C a n ' t o p e n f i l e : % s \ n " . a r g v [l l) :
e x i t (1) ;

1

/ * Get memory i n w h i c h t o b u f f e r t h e d a t a * /
i f ((W o r k i n g B u f f e r = malloc(BUFFER-SIZE)) == NULL 1 t

p r i n t f (" C a n ' t g e t e n o u g h m e m o r y \ n ") :
e x i t (1) ;

I

/* I n i t i a l i z e t h e checksum accumulator * /
Checksum = 0 :

I* P r o c e s s t h e f i l e i n 32K chunks * /
do

i f ((Work ingLength = read(Hand1e. Work ingBuf fe r .
BUFFER-SIZE)) == -1) 1

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v C 1 1) :
e x i t (1) ;

I
/ * Checksum t h i s chunk i f t h e r e ' s a n y t h i n g i n i t * /
i f (Work ingLength)

] w h i l e (Work ingLength) :

/ * R e p o r t t h e r e s u l t * /
p r in t f ("The checksum i s : %u \n " . Checksum) :
e x i t (0) :

ChecksumChunk(WorkingBuffer. WorkingLength. &Checksum);

The Best Optimizer Is between Your Ears 17

LISTING 1.7 11 -7.ASM
; A s s e m b l e r s u b r o u t i n e t o p e r f o r m a 1 6 - b i t checksum on a b l o c k o f
; b y t e s 1 t o 64K i n s i z e . Adds checksum f o r b l o c k i n t o p a s s e d - i n
: checksum.

; C a l l a s :
; vo id ChecksumChunk(uns igned char *Buf fe r .
: u n s i g n e d i n t B u f f e r L e n g t h . u n s i g n e d i n t * C h e c k s u m) ;

; where:
; B u f f e r = p o i n t e r t o s t a r t o f b l o c k o f b y t e s t o checksum
; B u f f e r L e n g t h - # o f b y t e s t o checksum (0 means 64K. n o t 0)
; Checksum = p o i n t e r t o u n s i g n e d i n t v a r i a b l e checksum i s
; s t o r e d i n

: P a r a m e t e r s t r u c t u r e :

Parms s t r u c
dw ? ;pushed BP
dw ? : r e t u r n a d d r e s s

B u f f e r dw ?
B u f f e r L e n g t h dw ?
Checksum dw ?
Parms ends

.model smal l

.code
p u b l i c _ChecksumChunk

-ChecksumChunk p r o c n e a r
push bp
mov bp.sp
push s i ; s a v e C ' s r e g i s t e r v a r i a b l e

c l d ;make LODSB i n c r e m e n t SI
mov s i . [b p + B u f f e r l ; p o i n t t o b u f f e r
mov c x . [b p + B u f f e r L e n g t h l ; g e t b u f f e r l e n g t h
mov bx.[bp+Checksuml : p o i n t t o checksum va r iab le
mov d x , [b x l ; g e t t h e c u r r e n t c h e c k s u m
sub ah,ah ; s o A X will be a 1 6 - b i t v a l u e a f t e r LODSB

1 odsb ; g e t t h e n e x t b y t e
add dx.ax :add i t i n t o t h e checksum t o t a l
l o o p ChecksumLoop : c o n t i n u e f o r a l l b y t e s i n b l o c k
mov [b x] , dx ; s a v e t h e new checksum

pop s i ; r e s t o r e C ' s r e g i s t e r v a r i a b l e

r e t

end

ChecksumLoop:

POP bp

- ChecksumChunk endp

Note that in Table 1.1, optimization makes little difference except in the case of
Listing 1.5, where the design has been refined considerably. Execution time in the
other cases is dominated by time spent in DOS and/or the C library, so optimization
of the code you write is pretty much irrelevant. What's more, while the approxi-
mately two-times improvement we got by optimizing is not to be sneezed at, it pales
against the up-to-50-times improvement we got by redesigning.

1 8 Chapter 1

By the way, the execution times even of Listings 1.6 and 1.7 are dominated by DOS
disk access times. If a disk cache is enabled and the file to be checksummed is al-
ready in the cache, the assembly version is three times as fast as the C version. In
other words, the inherent nature of this application limits the performance improve-
ment that can be obtained via assembly. In applications that are more CPU-intensive
and less disk-bound, particularly those applications in which string instructions and/
or unrolled loops can be used effectively, assembly tends to be considerably faster
relative to C than it is in this very specific case.

Don’t get hung up on optimizing compilers or assembly language-the best 1 optimizer is between your ears.

All this is basically a way of saying: Know where you’re going, know the territory, and
know when it matters.

Where We’ve Been, What We’ve Seen
What have we learned? Don’t let other people’s code-even DOS-do the work for
you when speed matters, at least not without knowing what that code does and how
well it performs.
Optimization only matters after you’ve done your part on the program design end.
Consider the ratios on the vertical axis of Table 1.1, which show that optimization is
almost totally wasted in the checksumming application without an efficient design.
Optimization is no panacea. Table 1.1 shows a two-times improvement from optimi-
zation-and a 50-times-plus improvement from redesign. The longstanding debate
about which C compiler optimizes code best doesn’t matter quite so much in light of
Table 1 .l, does it? Your organic optimizer matters much more than your compiler’s
optimizer, and there’s always assembly for those usually small sections of code where
performance really matters.

Where We‘re Going
This chapter has presented a quick step-by-step overview of the design process. I’m
not claiming that this is the only way to create high-performance code; it’s just an
approach that works for me. Create code however you want, but never forget that
design matters more than detailed optimization. Never stop looking for inventive
ways to boost performance-and never waste time speeding up code that doesn’t
need to be sped up.
I’m going to focus on specific ways to create high-performance code from now on.
In Chapter 5, we’ll continue to look at restartable blocks and internal buffering, in
the form of a program that searches files for text strings.

The Best Optimizer Is between Your Ears 1 9

chapter 2

a world apart

9.
1:i “ n.

:I; e!:” J

Nature of Assembly Language Optimization
f ‘ As I showed in thd:previous chapter, optimization is by no means always a matter of

“dropping into asse In fact, in performance tuning high-level language code,
assembly should be us d then only after you’ve made sure a badly chosen
or clumsily implemen m isn’t eating you alive. Certainly if you use assem-
bly at all, make absoldtely sure you use it right. The potential of assembly code to run
slowly is poorly unddstood by a lot of people, but that potential is great, especially in

ation, however, happens only at the assembly level, and it happens
amics that is totally different from that governing C/C++
be speaking of assembly-level optimization time and again
0, I think it will be helpful if you have a grasp of those

assembly specific dynamics.
As usual, the best way to wade in is to present a real-world example.

Instructions: The Individual versus the Collective
Some time ago, I was asked to work over a critical assembly subroutine in order to
make it run as fast as possible. The task of the subroutine was to construct a nibble
out of four bits read from different bytes, rotating and combining the bits so that
they ultimately ended up neatly aligned in bits 3-0 of a single byte. (In case you’re
curious, the object was to construct a 16-color pixel from bits scattered over 4 bytes.)

23

the unique nature of assembly languege optimization

I examined the subroutine line by line, saving a cycle here and a cycle there, until
the code truly seemed to be optimized. When I was done, the key part of the code
looked something like this:

LoopTop:
l o d s b ; g e t t h e n e x t b y t e t o e x t r a c t a b i t f r o m
and a1 , a h ; i s o l a t e t h e b i t we want
r o l a1 . c l ; r o t a t e t h e b i t i n t o t h e d e s i r e d p o s i t i o n
o r b l . a 1 : i n s e r t t h e b i t i n t o t h e f i n a l n i b b l e
d e c c x ; t h e n e x t b i t g o e s 1 p l a c e t o t h e r i g h t
d e c d x ; c o u n t down t h e n u m b e r o f b i t s
j n z L o o p T o p : p r o c e s s t h e n e x t b i t , i f any

Now, it’s hard to write code that’s much faster than seven instructions, only one of
which accesses memory, and most programmers would have called it a day at this
point. Still, something bothered me, so I spent a bit of time going over the code
again. Suddenly, the answer struck me-the code was rotating each bit into place
separately, so that a multibit rotation was being performed every time through the
loop, for a total of four separate time-consuming multibit rotations!

While the instructions themselves were individually optimized, the overall approach p did not make the bestpossible use of the instructions.

I changed the code to the following:

LoopTop:
1 odsb
a n d a l . a h
o r b l ,a1
r o l b l $ 1
dec dx
j n z LoopTop
r o l b l . c l

; g e t t h e n e x t b y t e t o e x t r a c t a b i t f r o m
: i s o l a t e t h e b i t we want
: i n s e r t t h e b i t i n t o t h e f i n a l n i b b l e
;make room f o r t h e n e x t b i t
; coun t down t h e number o f b i t s
: p r o c e s s t h e n e x t b i t , i f any
: r o t a t e a l l f o u r b i t s i n t o t h e i r f i n a l
: p o s i t i o n s a t t h e same t i m e

This moved the costly multibit rotation out of the loop so that it was performed just
once, rather than four times. While the code may not look much different from the
original, and in fact still contains exactly the same number of instructions, the per-
formance of the entire subroutine improved by about 10 percent from just this one
change. (Incidentally, that wasn’t the end of the optimization; I eliminated the DEC
andJNZ instructions by expanding the four iterations of the loop-but that’s a tale
for another chapter.)
The point is this: To write truly superior assembly programs, you need to know what
the various instructions do and which instructions execute fastest ... and more. You
must also learn to look at your programming problems from a variety of perspectives
so that you can put those fast instructions to work in the most effective ways.

24 Chapter 2

Assembly Is Fundamentally Different
Is it really so hard as all that to write good assembly code for the PC? Yes! Thanks to
the decidedly quirky nature of the x86 family CPUs, assembly language differs fun-
damentally from other languages, and is undeniably harder to work with. On the
other hand, the potential of assembly code is much greater than that of other lan-
guages, as well.
To understand why this is so, consider how a program gets written. A programmer
examines the requirements of an application, designs a solution at some level of
abstraction, and then makes that design come alive in a code implementation. If not
handled properly, the transformation that takes place between conception and imple-
mentation can reduce performance tremendously; for example, a programmer who
implements a routine to search a list of 100,000 sorted items with a linear rather
than binary search will end up with a disappointingly slow program.

Transformation Inefficiencies
No matter how well an implementation is derived from the corresponding design,
however, high-level languages like C/C++ and Pascal inevitably introduce additional
transformation inefficiencies, as shown in Figure 2.1.
The process of turning a design into executable code by way of a high-level language
involves two transformations: one performed by the programmer to generate source
code, and another performed by the compiler to turn source code into machine

1 Created by the programmer
(Transformation # 1)

High-Level Language

Compiled to machine
language by a high-level
language compiler
(Transformation #2)

Language Code

The high-level language transformation inefficiencies.
Figure 2.1

A World Apart 25

language instructions. Consequently, the machine language code generated by com-
pilers is usually less than optimal given the requirements of the original design.
High-level languages provide artificial environments that lend themselves relatively
well to human programming skills, in order to ease the transition from design to
implementation. The price for this ease of implementation is a considerable loss of
efficiency in transforming source code into machine language. This is particularly
true given that the x86 family in real and 16-bit protected mode, with its specialized
memory-addressing instructions and segmented memory architecture, does not lend
itself particularly well to compiler design. Even the 32-bit mode of the 386 and its
successors, with their more powerful addressing modes, offer fewer registers than
compilers would like.
Assembly, on the other hand, is simply a human-oriented representation of machine
language. As a result, assembly provides a diffkult programming environment-the
bare hardware and systems software of the computer-htprqperh constructed assembly
programs suffer no transformation loss, as shown in Figure 2.2.
Only one transformation is required when creating an assembler program, and that
single transformation is completely under the programmer’s control. Assemblers
perform no transformation from source code to machine language; instead, they
merely map assembler instructions to machine language instructions on a one-to-
one basis. As a result, the programmer is able to produce machine language code
that’s precisely tailored to the needs of each task a given application requires.

1 Created by the programmer
(Transformation # 1)

Assem bler I Source Code c
1 Assembled directly to machine

language (No Transformation)

Language Code

Properly constructed assembly programs sufer no transformation loss.
Figure 2.2

26 Chapter 2

The key, of course, is the programmer, since in assembly the programmer must es-
sentially perform the transformation from the application specification to machine
language entirely on his or her own. (The assembler merely handles the direct trans-
lation from assembly to machine language.)

Self-Reliance
The first part of assembly language optimization, then, is self-reliance. An assembler
is nothing more than a tool to let you design machine-language programs without
having to think in hexadecimal codes. S o assembly language programmers-unlike
all other programmers-must take full responsibility for the quality of their code.
Since assemblers provide little help at any level higher than the generation of ma-
chine language, the assembly programmer must be capable both of coding any
programming construct directly and of controlling the PC at the lowest practical
level-the operating system, the BIOS, even the hardware where necessary. High-
level languages handle most of this transparently to the programmer, but in assembly
everything is fair-and necessary-game, which brings us to another aspect of as-
sembly optimization: knowledge.

Knowledge
In the PC world, you can never have enough knowledge, and every item you add to
your store will make your programs better. Thorough familiarity with both the oper-
ating system APIs and BIOS interfaces is important; since those interfaces are
well-documented and reasonably straightforward, my advice is to get a good book or
two and bring yourself up to speed. Similarly, familiarity with the PC hardware is
required. While that topic covers a lot of ground-display adapters, keyboards, serial
ports, printer ports, timer and DMA channels, memory organization, and more-
most of the hardware is well-documented, and articles about programming major
hardware components appear frequently in the literature, so this sort of knowledge
can be acquired readily enough.
The single most critical aspect of the hardware, and the one about which it is hardest
to learn, is the CPU. The x86 family CPUs have a complex, irregular instruction set,
and, unlike most processors, they are neither straightforward nor well-documented
regarding true code performance. What’s more, assembly is so difficult to learn that
most articles and books that present assembly code settle for code that just works,
rather than code that pushes the CPU to its limits. In fact, since most articles and
books are written for inexperienced assembly programmers, there is very little infor-
mation of any sort available about how to generate high-quality assembly code for
the x86 family CPUs. As a result, knowledge about programming them effectively is
by far the hardest knowledge to gather. A good portion of this book is devoted to
seeking out such knowledge.

A World Apart 27

P Be forewarned, though: No matter how much you learn about programming the
PC in assembly, there 5 always more to discover.

The Flexible Mind
Is the never-ending collection of information all there is to the assembly optimization,
then? Hardly. Knowledge is simply a necessary base on which to build. Let’s take a
moment to examine the objectives of good assembly programming, and the remain-
der of the forces that act on assembly optimization will fall into place.
Basically, there are only two possible objectives to high-performance assembly pro-
gramming: Given the requirements of the application, keep to a minimum either the
number of processor cycles the program takes to run, or the number of bytes in the
program, or some combination of both. We’ll look at ways to achieve both objectives,
but we’ll more often be concerned with saving cycles than saving bytes, for the PC
generally offers relatively more memory than it does processing horsepower. In fact,
we’ll find that two-to-three times performance improvements over already tight assembly
code are often possible if we’re willing to spend additional bytes in order to save cycles.
It’s not always desirable to use such techniques to speed up code, due to the heavy
memory requirements-but it is almost always possible.

You will notice that my short list of objectives for high-performance assembly pro-
gramming does not include traditional objectives such as easy maintenance and speed
of development. Those are indeed important considerations-to persons and com-
panies that develop and distribute software. People who actually buy software, on the
other hand, care only about how well that software performs, not how it was devel-
oped nor how it is maintained. These days, developers spend so much time focusing
on such admittedly important issues as code maintainability and reusability, source
code control, choice of development environment, and the like that they often for-
get rule #1: From the user’s perspective, performance is fundamental.

Comment your code, design it carefully, and write non-time-critical portions in a P high-level language, if you wish-but when you write the portions that interact
with the user and/or affect response time, performance must be your paramount
objective, and assembly is the path to that goal.

Knowledge of the sort described earlier is absolutely essential to fulfilling either of
the objectives of assembly programming. What that knowledge doesn’t do by itself is
meet the need to write code that both performs to the requirements of the applica-
tion at hand and also operates as efficiently as possible in the PC environment.
Knowledge makes that possible, but your programming instincts make it happen.
And it is that intuitive, on-the-fly integration of a program specification and a sea of
facts about the PC that is the heart of the Zen-class assembly optimization.

28 Chapter 2

As with Zen of any sort, mastering that Zen of assembly language is more a matter of
learning than of being taught. You will have to find your own path of learning, although
I will start you on your way with this book. The subtle facts and examples I provide
will help you gain the necessary experience, but you must continue the journey on
your own. Each program you create will expand your programming horizons and
increase the options available to you in meeting the next challenge. The ability of
your mind to find surprising new and better ways to craft superior code from a con-
cept-the flexible mind, if you will-is the linchpin of good assembler code, and you
will develop this skill only by doing.
Never underestimate the importance of the flexible mind. Good assembly code is bet-
ter than good compiled code. Many people would have you believe otherwise, but
they’re wrong. That doesn’t mean that high-level languages are useless; far from it.
High-level languages are the best choice for the majority of programmers, and for the
bulk of the code of most applications. When the best code-the fastest or smallest code
possible-is needed, though, assembly is the only way to go.
Simple logic dictates that no compiler can know as much about what a piece of code
needs to do or adapt as well to those needs as the person who wrote the code. Given
that superior information and adaptability, an assembly language programmer can
generate better code than a compiler, all the more so given that compilers are con-
strained by the limitations of high-level languages and by the process of transformation
from high-level to machine language. Consequently, carefully optimized assembly is
notjust the language of choice but the only choice for the lpercent to 10 percent of
code-usually consisting of small, well-defined subroutines-that determines over-
all program performance, and it is the only choice for code that must be as compact
as possible, as well. In the run-of-the-mill, non-time-critical portions of your pro-
grams, it makes no sense to waste time and effort on writing optimized assembly
code-concentrate your efforts on loops and the like instead; but in those areas
where you need the finest code quality, accept no substitutes.
Note that I said that an assembly programmer can generate better code than a com-
piler, not will generate better code. While it is true that good assembly code is better
than good compiled code, it is also true that bad assembly code is often much worse
than bad compiled code; since the assembly programmer has so much control over
the program, he or she has virtually unlimited opportunities to waste cycles and bytes.
The sword cuts both ways, and good assembly code requires more, not less, forethought
and planning than good code written in a high-level language.
The gist of all this is simply that good assembly programming is done in the context
of a solid overall framework unique to each program, and the flexible mind is the
key to creating that framework and holding it together.

A World Apart 29

Where to Begin?
To summarize, the skill of assembly language optimization is a combination of knowl-
edge, perspective, and a way of thought that makes possible the genesis of absolutely
the fastest or the smallest code. With that in mind, what should the first step be?
Development of the flexible mind is an obvious step. Still, the flexible mind is no
better than the knowledge at its disposal. The first step in the journey toward master-
ing optimization at that exalted level, then, would seem to be learning how to learn.

30 Chapter 2

chapter 3

assume nothing

It ran slower than the original version!

33

chapter 3

understanding and using the Zen timer

understanding and using the zen timer

The Costs of Ignorance
As diligent as the author had been, he had nonetheless committed a cardinal sin of
x86 assembly language programming: He had assumed that the information avail-
able to him was both correct and complete. While the execution times provided by
Intel for its processors are indeed correct, they are incomplete; the other-and of-
ten more important-part of code performance is instruction fetch time, a topic to
which I will return in later chapters.
Had the author taken the time to measure the true performance of his code, he
wouldn’t have put his reputation on the line with relatively low-performance code.
What’s more, had he actually measured the performance of his code and found it to
be unexpectedly slow, curiosity might well have led him to experiment further and
thereby add to his store of reliable information about the CPU.

There you have an important tenet of assembly language optimization: After craft- 1 ing the best code possible, check it in action to see if it j . really doing what you
think it is. r f it k not behaving as expected, that 5. all to the good, since solving
mysteries is thepath to knowledge. You’ll learn more in this way, Iassure you, than
from any manual or book on assembly language.

Assume nothing. I cannot emphasize this strongly enough-when you care about per-
formance, do your best to improve the code and then measure the improvement. If
you don’t measure performance, you’re just guessing, and if you’re guessing, you’re
not very likely to write top-notch code.
Ignorance about true performance can be costly. When I wrote video games for a
living, I spent days at a time trying to wring more performance from my graphics
drivers. I rewrote whole sections of code just to save a few cycles, juggled registers,
and relied heavily on blurry-fast register-to-register shifts and adds. As I was writing
my last game, I discovered that the program ran perceptibly faster if I used look-up
tables instead of shifts and adds for my calculations. It shouldn’t have run faster, ac-
cording to my cycle counting, but it did. In truth, instruction fetching was rearing its
head again, as it often does, and the fetching of the shifts and adds was taking as
much as four times the nominal execution time of those instructions.
Ignorance can also be responsible for considerable wasted effort. I recall a debate in
the letters column of one computer magazine about exactly how quickly text can be
drawn on a Color/Graphics Adapter (CGA) screen without causing snow. The letter-
writers counted every cycle in their timing loops, just as the author in the story that
started this chapter had. Like that author, the letter-writers had failed to take the
prefetch queue into account. In fact, they had neglected the effects of video wait
states as well, so the code they discussed was actually much slower than their esti-
mates. The proper test would, of course, have been to run the code to see if snow
resulted, since the only true measure of code performance is observing it in action.

34 Chapter 3

The Zen Timer
Clearly, one key to mastering Zen-class optimization is a tool with which to measure
code performance. The most accurate way to measure performance is with expen-
sive hardware, but reasonable measurements at no cost can be made with the PC’s
8253 timer chip, which counts at a rate of slightly over 1,000,000 times per second.
The 8253 can be started at the beginning of a block of code of interest and stopped
at the end of that code, with the resulting count indicating how long the code took
to execute with an accuracy of about 1 microsecond. (A microsecond is one millionth of
a second, and is abbreviated ps). To be precise, the 8253 counts once every 838.1
nanoseconds. (A nanosecond is one billionth of a second, and is abbreviated ns.)
Listing 3.1 shows 8253-based timer software, consisting of three subroutines:
ZTmerOn, ZTimerOff, and ZTimerReport. For the remainder of this book, 1’11 re-
fer to these routines collectively as the “Zen timer.” C-callable versions of the two
precision Zen timers are presented in Chapter K on the companion CD-ROM.

LISTING 3.1 PZTIMER.ASM
The p r e c i s i o n Zen t i m e r (PZTIMER.ASM)

Uses t h e 8253 t i m e r t o t i m e t h e p e r f o r m a n c e o f c o d e t h a t t a k e s
l e s s t h a n a b o u t 54 m i l l i s e c o n d s t o e x e c u t e , w i t h a r e s o l u t i o n
o f b e t t e r t h a n 10 microseconds.

By Michael Abrash

E x t e r n a l l y c a l l a b l e r o u t i n e s :

ZTimerOn: S t a r t s t h e Zen t i m e r , w i t h i n t e r r u p t s d i s a b l e d .

ZT imerOf f : S tops t he Zen t i m e r , s a v e s t h e t i m e r c o u n t ,
t i m e s t h e o v e r h e a d c o d e , a n d r e s t o r e s i n t e r r u p t s t o t h e
s t a t e t h e y w e r e i n when ZTimerOn was c a l l e d .

Z T i m e r R e p o r t : P r i n t s t h e n e t t i m e t h a t p a s s e d b e t w e e n s t a r t i n g
a n d s t o p p i n g t h e t i m e r .

Note: I f l o n g e r t h a n a b o u t 54 ms passes between ZTimerOn and
Z T i m e r O f f c a l l s , t h e t i m e r t u r n s o v e r a n d t h e c o u n t i s
i n a c c u r a t e . When t h i s h a p p e n s , an e r r o r message i s d i s p l a y e d
i n s t e a d o f a c o u n t . The l o n g - p e r i o d Zen t i m e r s h o u l d b e u s e d
i n such cases.

N o t e : I n t e r r u p t s *MUST* be l e f t o f f b e t w e e n c a l l s t o ZTimerOn
a n d Z T i m e r O f f f o r a c c u r a t e t i m i n g a n d f o r d e t e c t i o n o f
t i m e r o v e r f l o w .

N o t e : T h e s e r o u t i n e s c a n i n t r o d u c e s l i g h t i n a c c u r a c i e s i n t o t h e
s y s t e m c l o c k c o u n t f o r e a c h c o d e s e c t i o n t i m e d e v e n i f
t i m e r 0 d o e s n ’ t o v e r f l o w . I f t i m e r 0 d o e s o v e r f l o w , t h e
sys tem c lock can become s l o w b y v i r t u a l l y any amount o f
t i m e , s i n c e t h e s y s t e m c l o c k c a n ’ t a d v a n c e w h i l e t h e
p r e c i s o n t i m e r i s t i m i n g . C o n s e q u e n t l y , i t ’ s a good idea
t o r e b o o t a t t h e end o f e a c h t i m i n g s e s s i o n . (T h e

Assume Nothing 35

: b a t t e r y - b a c k e d c l o c k , i f any. i s n o t a f f e c t e d b y t h e Zen
: t i m e r .)

: All r e g i s t e r s , and a l l f l a g s e x c e p t t h e i n t e r r u p t f l a g , a r e
: p r e s e r v e d b y a l l r o u t i n e s . I n t e r r u p t s a r e e n a b l e d a n d t h e n d i s a b l e d
: b y Z T i m e r O n . a n d a r e r e s t o r e d b y Z T i m e r O f f t o t h e s t a t e t h e y w e r e
: i n when ZTimerOn was c a l l e d .

Code segment word pub l i c ' C O D E '
assume cs:Code. ds:nothing
p u b l i c ZTimerOn. ZTimerOff . ZTimerReport

: Base a d d r e s s o f t h e 8 2 5 3 t i m e r c h i p .

EASEL8253 equ 40h

: T h e a d d r e s s o f t h e t i m e r 0 c o u n t r e g i s t e r s i n t h e 8 2 5 3 .

TIMER-0-8253 equ BASE-8253 + 0

; T h e a d d r e s s o f t h e mode r e g i s t e r i n t h e 8253.

MODEL8253 equ EASEL8253 + 3

: The add ress o f Opera t i on Command Word 3 i n t h e 8259 Programmable
: I n t e r r u p t C o n t r o l l e r (P I C) (w r i t e o n l y , a n d w r i t a b l e o n l y when
: b i t 4 o f t h e b y t e w r i t t e n t o t h i s a d d r e s s i s 0 and b i t 3 i s 1).

OCW3 equ 20h

: T h e a d d r e s s o f t h e I n t e r r u p t R e q u e s t r e g i s t e r i n t h e 8 2 5 9 P I C
: (r e a d o n l y . a n d r e a d a b l e o n l y when b i t 1 o f OCW3 - 1 and b i t 0
: o f OCW3 - 0) .

I RR equ 20h

: Macro t o e m u l a t e a POPF i n s t r u c t i o n i n o r d e r t o f i x t h e b u g i n some
: 8 0 2 8 6 c h i p s w h i c h a l l o w s i n t e r r u p t s t o o c c u r d u r i n g a POPF even when
: i n t e r r u p t s r e m a i n d i s a b l e d .

MPOPF macro
l o c a l p l . p2
jmp sho r t p2

p l : i r e t
p2: push cs

c a l l p l
endm

: Macro t o d e l a y b r i e f l y
: between success ive 1/0

jump t o pushed address & p o p f l a g s
c o n s t r u c t f a r r e t u r n a d d r e s s t o
t h e n e x t i n s t r u c t i o n

t o e n s u r e t h a t e n o u g h t i m e h a s e l a p s e d
accesses so t h a t t h e

: can respond t o b o t h a c c e s s e s e v e n on a v e r y

DELAY macro
jmp $+2
jmp 5+2
jmp S+2
endm

d e v i c e b e i n g a c c e s s e d
f a s t PC.

36 Chapter 3

O r i g i n a l F l a g s

TimedCount

Referencecount

O v e r f l owFl ag

: S t r i n g p r i n t e d

O u t p u t S t r l a b e l
db

ASCIICountEnd
db
db

: S t r i n g p r i n t e d

O v e r f l o w S t r l a b e l

db ? :

dw ? :

dw

db ? :

s t o r a g e f o r u p p e r b y t e o f
FLAGS r e g i s t e r when
ZTimerOn c a l l e d
t i m e r 0 c o u n t when t h e t i m e r
i s s t o p p e d
number o f c o u n t s r e q u i r e d t o
execu te t imer ove rhead code
used t o i n d i c a t e w h e t h e r t h e
t i m e r o v e r f l o w e d d u r i n g t h e
t i m i n g i n t e r v a l

t o r e p o r t r e s u l t s .

b y t e
Odh. Oah. 'T imed count : ' , 5 dup (?)
l a b e l b y t e
' m i c r o s e c o n d s ' , Odh. Oah
' f '

t o r e p o r t t i m e r o v e r f l o w .

b y t e
db Odh. Oah

db Odh. Oah
db ' * The t i m e r o v e r f l o w e d , so t h e i n t e r v a l t i m e d was * '
db Odh. Oah
db ' * t o o l o n g f o r t h e p r e c i s i o n t i m e r t o m e a s u r e . * '
db Odh, Oah
db ' * P l e a s e p e r f o r m t h e t i m i n g t e s t a g a i n w i t h t h e * '
db Odh. Oah
db ' * l o n g - p e r i o d t i m e r . *.
db Odh. Oah

db Odh. Oah
db ' t '

db .

db .

.
: * R o u t i n e c a l l e d t o s t a r t t i m i n g . * .

ZTimerOn proc near

; Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

push ax
p u s h f
POP ax

mov c s : [O r i g i n a l F l a g s] . a h :

and ah.0fdh

g e t f l a g s so we can keep
i n t e r r u p t s o f f when l e a v i n g
t h i s r o u t i n e
remember t h e s t a t e o f t h e
I n t e r r u p t f l a g
s e t p u s h e d i n t e r r u p t f l a g
t o 0

push ax

: T u r n o n i n t e r r u p t s , s o t h e t i m e r i n t e r r u p t c a n o c c u r i f i t ' s
: pending.

s t i

Assume Nothing 37

S e t t i m e r 0 o f t h e 8 2 5 3 t o mode 2 (d i v i d e - b y - N) . t o cause
l i n e a r c o u n t i n g r a t h e r t h a n c o u n t - b y - t w o c o u n t i n g . A l s o
l e a v e s t h e 8 2 5 3 w a i t i n g f o r t h e i n i t i a l t i m e r 0 c o u n t t o
be loaded.

mov a l .00110100b ;mode 2
o u t MODEL8253 .a1

S e t t h e t i m e r c o u n t t o 0 . so we know we w o n ' t g e t a n o t h e r
t i m e r i n t e r r u p t r i g h t away.
N o t e : t h i s i n t r o d u c e s a n i n a c c u r a c y o f u p t o 54 ms i n t h e s y s t e m
c l o c k c o u n t e a c h t i m e i t i s executed.

DELAY
sub a1 ,a1
o u t TIMER-0-8253.al
DELAY

; l s b

o u t TIMER-0-8253.al :msb

W a i t b e f o r e c l e a r i n g i n t e r r u p t s t o a l l o w t h e i n t e r r u p t g e n e r a t e d
when s w i t c h i n g f r o m mode 3 t o mode 2 t o be recogn ized. The d e l a y
must be a t l e a s t 2 1 0 n s l o n g t o a l l o w t i m e f o r t h a t i n t e r r u p t t o
o c c u r . H e r e , 1 0 j u m p s a r e u s e d f o r t h e d e l a y t o e n s u r e t h a t t h e
d e l a y t i m e will be more than long enough even on a v e r y f a s t PC.

r e p t 1 0
jmp S+2
endm

D i s a b l e i n t e r r u p t s t o g e t an accu ra te coun t .

c l i

S e t t h e t i m e r c o u n t t o 0 a g a i n t o s t a r t t h e t i m i n g i n t e r v a l .

mov a l .00110100b
o u t MODE-8253.al
DELAY
s u b a l . a l
o u t TIMER-0-8253,al
DELAY

; l o a d c o u n t l s b

o u t TIMER-0-8253.al ; l o a d c o u n t msb

; s e t up t o l o a d i n i t i a l
; t i m e r c o u n t

; R e s t o r e t h e c o n t e x t a n d r e t u r n .

MPOPF
POP ax
r e t

; k e e p s i n t e r r u p t s o f f

ZTimerOn endp

.
;* R o u t i n e c a l l e d t o s t o p t i m i n g a n d g e t c o u n t . *
.

ZT imerOf f p roc near

38 Chapter 3

: Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

push ax
push cx
push f

: L a t c h t h e c o u n t .

mov a l ,00000000b ; l a t c h t i m e r 0
o u t MODE-8253,al

: See i f t h e t i m e r h a s o v e r f l o w e d b y c h e c k i n g t h e 8 2 5 9 f o r a pend ing
: t i m e r i n t e r r u p t .

mov a l .00001010b : OCW3. s e t up t o r e a d
o u t OCW3.al
DELAY
i n a1,IRR ; r e a d I n t e r r u p t R e q u e s t

and a l , 1 : s e t AL t o 1 i f IRQO (t h e

mov c s : [0 v e r f l o w F l a g] . a l : s t o r e t h e t i m e r o v e r f l o w

: I n t e r r u p t R e q u e s t r e g i s t e r

; r e g i s t e r

: t i m e r i n t e r r u p t) i s p e n d i n g

: s t a t u s

: A l l o w i n t e r r u p t s t o happen again.

s t i

: Read o u t t h e c o u n t we l a t c h e d e a r l i e r .

i n al.TIMER_0-8253 ; l e a s t s i g n i f i c a n t b y t e
DELAY
mov ah .a l
i n a1 .TIMER-0-8253 ; m o s t s i g n i f i c a n t b y t e
xchg ah.a l
neg ax : conver t f r om coun tdown

; r e m a i n i n g t o e l a p s e d
: c o u n t

mov cs: [T imedCount l .ax
: Time a z e r o - l e n g t h c o d e f r a g m e n t , t o g e t a r e f e r e n c e f o r how
; much o v e r h e a d t h i s r o u t i n e h a s . T i m e it 16 t imes and average i t ,
: f o r a c c u r a c y , r o u n d i n g t h e r e s u l t .

mov cs: [ReferenceCount l ,O
mov cx.16
c l i : i n t e r r u p t s o f f t o a l l o w a

: D r e c i s e r e f e r e n c e c o u n t
RefLoop:

ca l l Re fe renceZT imerDn
c a l l R e f e r e n c e Z T i m e r O f f
1 oop Ref Loop
s t i
add cs: [ReferenceCount] .8 : t o t a l + (
mov c l . 4
sh r cs : [Re fe renceCoun t] . c l : (t o t a l) /

: R e s t o r e o r i g i n a l i n t e r r u p t s t a t e .

POP ax : r e t r i e v e

0.5 * 16)

16 + 0.5

f l a g s when c a l l e d

Assume Nothing 39

mov c h . ~ s : [O r i g i n a l F l a g s 1 :

and ch.not Ofdh

and ah.0fdh

o r ah.ch

push ax

: R e s t o r e t h e c o n t e x t

MPOPF

POP c x

r e t

ZTimerOff endp

POP ax

: Ca l led by ZT imerOf f

ReferenceZTimerOnproc

: Save t h e c o n t e x t o f

push ax

g e t b a c k t h e o r i g i n a l u p p e r
b y t e o f t h e FLAGS r e g i s t e r
o n l y c a r e a b o u t o r i g i n a l
i n t e r r u p t f l a g ...
... keep all o t h e r f l a g s i n
t h e i r c u r r e n t c o n d i t i o n
make f l a g s w o r d w i t h o r i g i n a l
i n t e r r u p t f l a g
p r e p a r e f l a g s t o b e p o p p e d

o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o i t .

: r e s t o r e t h e f l a g s w i t h t h e
: o r i g i n a l i n t e r r u p t s t a t e

t o s t a r t t i m e r f o r o v e r h e a d m e a s u r e m e n t s .

nea r

t h e p r o g r a m b e i n g t i m e d

p u s h f : i n t e r r u p t s a r e a l r e a d y o f f

: S e t t i m e r 0 o f t h e 8 2 5 3 t o mode 2 (d i v i d e - b y - N) , t o c a u s e
: l i n e a r c o u n t i n g r a t h e r t h a n c o u n t - b y - t w o c o u n t i n g .

mov al .00110100b : s e t up t o l o a d
o u t MODE-8253.al : i n i t i a l t i m e r c o u n t
DELAY

: S e t t h e t i m e r c o u n t t o 0.

sub a1,a l
o u t TIMER-0-8253,al : l o a d c o u n t l s b
DELAY
out T IMER-08253,a l : l o a d c o u n t msb

: R e s t o r e t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o i t .

MPOPF
POP ax
r e t

ReferenceZTimerOnendp

: C a l l e d b y Z T i m e r O f f t o s t o p t i m e r a n d a d d r e s u l t t o R e f e r e n c e c o u n t
: fo r overhead measurements .

40 Chapter 3

ReferenceZTimerOf f

: Save t h e c o n t e x t

p r o c n e a r

o f t h e p r o g r a m b e i n g t i m e d .

push ax
push cx
push f

: L a t c h t h e c o u n t a n d r e a d

mov
o u t
DELAY

DELAY
i n

mov
i n
xchg
neg

add

a1 .00000000b
MODEU3253,al

a1 .TIMER-0_8253

ah .a l
al.TIMER-OC8253
ah .a l
ax

it.

cs : [Re fe renceCoun t l , ax

: l a t c h t i m e r 0

: l s b

: msb

: conver t f r om coun tdown
: r e m a i n i n g t o amount
: coun ted down

: R e s t o r e t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o it.

MPOPF
POP cx
POP ax
r e t

ReferenceZTimerOff endp

.
; * R o u t i n e c a l l e d t o r e p o r t t i m i n g r e s u l t s . * .

ZT imerRepor t p roc near

p u s h f
push ax
push bx
push cx
push dx
push s i
push ds

push cs : DOS f u n c t i o n s r e q u i r e t h a t DS p o i n t

assume ds :Code
POP ds : t o t e x t t o b e d i s p l a y e d on t h e s c r e e n

; Check f o r t i m e r 0 o v e r f l o w .

cmp [O v e r f l owFl a g l .O
j z Pr in tGoodCount
mov d x . o f f s e t O v e r f l o w S t r
mov ah.9
i n t 21h
jmp shor t EndZTimerRepor t

: C o n v e r t n e t c o u n t t o d e c i m a l A S C I I i n m i c r o s e c o n d s .

Assume Nothing 4 1

Pr intGoodCount :
mov ax.CTimedCount1
sub ax. [ReferenceCount]
mov s i , o f f s e t A S C I I C o u n t E n d - 1

; C o n v e r t c o u n t t o m i c r o s e c o n d s b y m u l t i p l y i n g b y . 8 3 8 1 .

mov dx.8381
mu1 dx
mov bx, 10000
d i v b x :* .8381 - * 8381 / 10000

: C o n v e r t t i m e i n m i c r o s e c o n d s t o 5 dec imal A S C I I d i g i t s

mov bx. 10
mov cx.5

sub dx.dx
d i v bx
add d1:O‘
mov [s i l . d l
dec s i
1 oop CTSLoop

CTSLoop:

; P r i n t t h e r e s u l t s .

mov ah.9
mov d x , o f f s e t O u t p u t S t r
i n t 21h

EndZTimerReport :
POP ds
pop s i
POP dx
POP c x
POP b x

MPOPF
POP ax

r e t

ZTimerReport endp

Code ends
end

The Zen Timer Is a Means, Not an End
We’re going to spend the rest of this chapter seeing what the Zen timer can do,
examining how it works, and learning how to use it. I’ll be using the Zen timer again
and again over the course of this book, so it’s essential that you learn what the Zen
timer can do and how to use it. On the other hand, it is by no means essential that
you understand exactly how the Zen timer works. (Interesting, yes; essential, no.)
In other words, the Zen timer isn’t really part of the knowledge we seek; rather, it’s
one tool with which we’ll acquire that knowledge. Consequently, you shouldn’t worry
if you don’t fully grasp the inner workings of the Zen timer. Instead, focus on learn-
ing how to use it, and you’ll be on the right road.

42 Chapter 3

Starting the Zen Timer
ZTimerOn is called at the start of a segment of code to be timed. ZTimerOn saves
the context of the calling code, disables interrupts, sets timer 0 of the 8253 to mode
2 (divide-by-N mode), sets the initial timer count to 0, restores the context of the
calling code, and returns. (I’d like to note that while Intel’s documentation for the
8253 seems to indicate that a timer won’t reset to 0 until it finishes counting down, in
actual practice, timers seem to reset to 0 as soon as they’re loaded.)
Two aspects of ZTimerOn are worth discussing further. One point of interest is that
ZTimerOn disables interrupts. (ZTimerOff later restores interrupts to the state they
were in when ZTimerOn was called.) Were interrupts not disabled by ZTimerOn,
keyboard, mouse, timer, and other interrupts could occur during the timing inter-
val, and the time required to service those interrupts would incorrectly and erratically
appear to be part of the execution time of the code being measured. As a result,
code timed with the Zen timer should not expect any hardware interrupts to occur
during the interval between any call to ZTimerOn and the corresponding call to
ZTimerOff, and should not enable interrupts during that time.

Time and the PC
A second interesting point about ZTimerOn is that it may introduce some small
inaccuracy into the system clock time whenever it is called. To understand why this is
so, we need to examine the way in which both the 8253 and the PC’s system clock
(which keeps the current time) work.
The 8253 actually contains three timers, as shown in Figure 3.1. All three timers are
driven by the system board’s 14.31818 MHz crystal, divided by 12 to yield a 1.19318
MHz clock to the timers, so the timers count once every 838.1 ns. Each of the three
timers counts down in a programmable way, generating a signal on its output pin
when it counts down to 0. Each timer is capable of being halted at any time via a 0
level on its gate input; when a timer’s gate input is 1, that timer counts constantly. All
in all, the 8253’s timers are inherently very flexible timing devices; unfortunately,
much of that flexibility depends on how the timers are connected to external cir-
cuitry, and in the PC the timers are connected with specific purposes in mind.
Timer 2 drives the speaker, although it can be used for other timing purposes
when the speaker is not in use. As shown in Figure 3.1, timer 2 is the only timer
with a programmable gate input in the PC; that is, timer 2 is the only timer that can
be started and stopped under program control in the manner specified by Intel.
On the other hand, the output of timer 2 is connected to nothing other than the
speaker. In particular, timer 2 cannot generate an interrupt to get the 8088’s attention.
Timer 1 is dedicated to providing dynamic RAM refresh, and should not be tam-
pered with lest system crashes result.

Assume Nothing 43

From bit 0
of port 61 h

+5 volts
(makes the
timers run
non-stop
in all the

modes we'll
discuss)

Timer 2
Output. b

* Gate

Timer 1

output 1 b

Gate

Timer 0
output b

Gate

8253 Timer Chip

To speaker
circuitry

DRAM refresh

To IRQO (hardware
interrupt 0, the
timer interrupt)

The configuration of the 8253 timer chip in the PC.
Figure 3.1

Finally, timer 0 is used to drive the system clock. As programmed by the BIOS at power-
up, every 65,536 (64K) counts, or 54.925 milliseconds, timer 0 generates a rising edge
on its output line. (A millisecond is one-thousandth of a second, and is abbreviated
ms.) This line is connected to the hardware interrupt 0 (IRQO) line on the system
board, so every 54.925 ms, timer 0 causes hardware interrupt 0 to occur.
The interrupt vector for IRQO is set by the BIOS at power-up time to point to a BIOS
routine, TJMER-INT, that maintains a time-ofday count. TIMER-INT keeps a 16-bit
count of IRQO interrupts in the BIOS data area at address 0000:046C (all addresses
in this book are given in segment:offset hexadecimal pairs); this count turns over
once an hour (less a few microseconds), and when it does, TIMER-INT updates a
16-bit hour count at address 0000:046E in the BIOS data area. This count is the basis
for the current time and date that DOS supports via functions 2AH (2A hexadeci-
mal) through 2DH and by way of the DATE and TIME commands.
Each timer channel of the 8253 can operate in any of six modes. Timer 0 normally
operates in mode 3: square wave mode. In square wave mode, the initial count is counted
down two at a time; when the count reaches zero, the output state is changed. The
initial count is again counted down two at a time, and the output state is toggled back
when the count reaches zero. The result is a square wave that changes state more
slowly than the input clock by a factor of the initial count. In its normal mode of

44 Chapter 3

operation, timer 0 generates an output pulse that is low for about 27.5 ms and high for
about 27.5 ms; this pulse is sent to the 8259 interrupt controller, and its rising edge
generates a timer interrupt once every 54.925 ms.
Square wave mode is not very useful for precision timing because it counts down by two
twice per timer interrupt, thereby rendering exact timings impossible. Fortunately, the
8253 offers another timer mode, mode 2 (divide-by-N mode), which is both a good
substitute for square wave mode and a perfect mode for precision timing.
Divide-by-N mode counts down by one from the initial count. When the count reaches
zero, the timer turns over and starts counting down again without stopping, and a
pulse is generated for a single clock period. While the pulse is not held for nearly as
long as in square wave mode, it doesn’t matter, since the 8259 interrupt controller is
configured in the PC to be edge-triggered and hence cares only about the existence
of a pulse from timer 0, not the duration of the pulse. As a result, timer 0 continues
to generate timer interrupts in divide-by-N mode, and the system clock continues to
maintain good time.
Why not use timer 2 instead of timer 0 for precision timing? After all, timer 2 has a
programmable gate input and isn’t used for anything but sound generation. The
problem with timer 2 is that its output can’t generate an interrupt; in fact, timer 2
can’t do anything but drive the speaker. We need the interrupt generated by the
output of timer 0 to tell us when the count has overflowed, and we will see shortly
that the timer interrupt also makes it possible to time much longer periods than the
Zen timer shown in Listing 3.1 supports.
In fact, the Zen timer shown in Listing 3.1 can only time intervals of up to about 54
ms in length, since that is the period of time that can be measured by timer 0 before
its count turns over and repeats. fifty-four ms may not seem like a very long time, but
even a CPU as slow as the 8088 can perform more than 1,000 divides in 54 ms, and
division is the single instruction that the 8088 performs most slowly. If a measured
period turns out to be longer than 54 ms (that is, if timer 0 has counted down and
turned over), the Zen timer will display a message to that effect. A long-period Zen
timer for use in such cases will be presented later in this chapter.
The Zen timer determines whether timer 0 has turned over by checking to see whether
an IRQO interrupt is pending. (Remember, interrupts are off while the Zen timer
runs, so the timer interrupt cannot be recognized until the Zen timer stops and
enables interrupts.) If an IRQO interrupt is pending, then timer 0 has turned over
and generated a timer interrupt. Recall that ZTimerOn initially sets timer 0 to 0, in
order to allow for the longest possible period-about 54 ms-before timer 0 reaches
0 and generates the timer interrupt.
Now we’re ready to look at the ways in which the Zen timer can introduce inaccuracy
into the system clock. Since timer 0 is initially set to 0 by the Zen timer, and since the
system clock ticks only when timer 0 counts off 54.925 ms and reaches 0 again, an
average inaccuracy of one-half of 54.925 ms, or about 27.5 ms, is incurred each time

Assume Nothing 45

the Zen timer is started. In addition, a timer interrupt is generated when timer 0 is
switched from mode 3 to mode 2, advancing the system clock by up to 54.925 ms,
although this only happens the first time the Zen timer is run after a warm or cold
boot. Finally, up to 54.925 ms can again be lost when ZTimerOff is called, since that
routine again sets the timer count to zero. Net result: The system clock will run up to
110 ms (about a ninth of a second) slow each time the Zen timer is used.
Potentially far greater inaccuracy can be incurred by timing code that takes longer
than about 110 ms to execute. Recall that all interrupts, including the timer inter-
rupt, are disabled while timing code with the Zen timer. The 8259 interrupt controller
is capable of remembering at most one pending timer interrupt, so all timer inter-
rupts after the first one during any given Zen timing interval are ignored.
Consequently, if a timing interval exceeds 54.9 ms, the system clock effectively stops
54.9 ms after the timing interval starts and doesn’t restart until the timing interval
ends, losing time all the while.
The effects on the system time of the Zen timer aren’t a matter for great concern, as
they are temporary, lasting only until the next warm or cold boot. Systems that have
battery-backed clocks, (AT-style machines; that is, virtually all machines in common
use) automatically reset the correct time whenever the computer is booted, and sys-
temswithout battery-backed clocks prompt for the correct date and time when booted.
Also, repeated use of the Zen timer usually makes the system clock slow by at most a
total of a few seconds, unless code that takes much longer than 54 ms to run is timed
(in which case the Zen timer will notify you that the code is too long to time).
Nonetheless, it’s a good idea to reboot your computer at the end of each session with
the Zen timer in order to make sure that the system clock is correct.

Stopping the Zen Timer
At some point after ZTimerOn is called, ZTimerOff must always be called to mark
the end of the timing interval. ZTimerOff saves the context of the calling program,
latches and reads the timer 0 count, converts that count from the countdown value
that the timer maintains to the number of counts elapsed since ZTimerOn was called,
and stores the result. Immediately after latching the timer 0 count-and before en-
abling interrupts-ZTimerOff checks the 8259 interrupt controller to see if there is
a pending timer interrupt, setting a flag to mark that the timer overflowed if there is
indeed a pending timer interrupt.
After that, ZTimerOff executes just the overhead code of ZTimerOn and ZTimerOff
16 times, and averages and saves the results in order to determine how many of the
counts in the timing result just obtained were incurred by the overhead of the Zen
timer rather than by the code being timed.
Finally, ZTimerOff restores the context of the calling program, including the state of the
interrupt flag that was in effect when ZTimerOn was called to start timing, and returns.

46 Chapter 3

One interesting aspect of ZTimerOff is the manner in which timer 0 is stopped in
order to read the timer count. We don’t actually have to stop timer 0 to read the
count; the 8253 provides a special latched read feature for the specific purpose of
reading the count while a time is running. (That’s a good thing, too; we’ve no docu-
mented way to stop timer 0 if we wanted to, since its gate input isn’t connected. Later
in this chapter, though, we’ll see that timer 0 can be stopped after all.) We simply tell
the 8253 to latch the current count, and the 8253 does so without breaking stride.

Reporting Timing Results
ZTimerReport may be called to display timing results at any time after both ZTimerOn
and ZTiierOff have been called. ZTimerReport first checks to see whether the timer
overflowed (counted down to 0 and turned over) before ZTiierOff was called; if
overflow did occur, ZTimerOff prints a message to that effect and returns. Otherwise,
ZTimerReport subtracts the reference count (representing the overhead of the Zen
timer) from the count measured between the calls to ZTimerOn and ZTimerOff, con-
verts the result from timer counts to microseconds, and prints the resulting time in
microseconds to the standard output.
Note that ZTimerReport need not be called immediately after ZTimerOff. In fact,
after a given call to ZTimerOff, ZTimerReport can be called at any time right up
until the next call to ZTimerOn.
You may want to use the Zen timer to measure several portions of a program while it
executes normally, in which case it may not be desirable to have the text printed by
ZTimerReport interfere with the program’s normal display. There are many ways to
deal with this. One approach is removal of the invocations of the DOS print string
function (INT 21H with AH equal to 9) from ZTimerReport, instead running the
program under a debugger that supports screen flipping (such as Turbo Debugger
or Codeview), placing a breakpoint at the start of ZTimerReport, and directly ob-
serving the count in microseconds as ZTimerReport calculates it.
A second approach is modification of ZTimerReport to place the result at some safe
location in memory, such as an unused portion of the BIOS data area.
A third approach is alteration of ZTimerReport to print the result over a serial port
to a terminal or to another PC acting as a terminal. Similarly, many debuggers can
be run from a remote terminal via a serial link.
Yet another approach is modification of ZTimerReport to send the result to the
printer via either DOS function 5 or BIOS interrupt 17H.
A final approach is to modify ZTimerReport to print the result to the auxiliary out-
put via DOS function 4, and to then write and load a special device driver named
AUX, to which DOS function 4 output would automatically be directed. This device
driver could send the result anywhere you might desire. The result might go to the
secondary display adapter, over a serial port, or to the printer, or could simply be

Assume Nothing 47

stored in a buffer within the driver, to be dumped at a later time. (Credit for this
final approach goes to Michael Geary, and thanks go to David Miller for passing the
idea on to me.)
You may well want to devise still other approaches better suited to your needs than
those I’ve presented. Go to it! I’ve just thrown out a few possibilities to get you started.

Notes on the Zen Timer
The Zen timer subroutines are designed to be near-called from assembly language
code running in the public segment Code. The Zen timer subroutines can, however,
be called from any assembly or high-level language code that generates OBJ files
that are compatible with the Microsoft linker, simply by modifymg the segment that
the timer code runs in to match the segment used by the code being timed, or by
changing the Zen timer routines to far procedures and making far calls to the Zen
timer code from the code being timed, as discussed at the end of this chapter. All
three subroutines preserve all registers and all flags except the interrupt flag, so calls
to these routines are transparent to the calling code.
If you do change the Zen timer routines to far procedures in order to call them from
code running in another segment, be sure to make all the Zen timer routines far,
including ReferenceZTimerOn and ReferenceZTimerOff. (You’ll have to put FAR
PTR overrides on the calls from ZTimerOff to the latter two routines if you do make
them far.) If the reference routines aren’t the same type-near or far-as the other
routines, they won’t reflect the true overhead incurred by starting and stopping the
Zen timer.
Please be aware that the inaccuracy that the Zen timer can introduce into the system
clock time does not affect the accuracy of the performance measurements reported
by the Zen timer itself. The 8253 counts once every 838 ns, giving us a count resolu-
tion of about lps, although factors such as the prefetch queue (as discussed below),
dynamic RAM refresh, and internal timing variations in the 8253 make it perhaps
more accurate to describe the Zen timer as measuring code performance with an
accuracy of better than lops. In fact, the Zen timer is actually most accurate in assess-
ing code performance when timing intervals longer than about 100 ps. At any rate,
we’re most interested in using the Zen timer to assess the relative performance of
various code sequences-that is, using it to compare and tweak code-and the timer
is more than accurate enough for that purpose.
The Zen timer works on all PGcompatible computers I’ve tested it on, including XTs,
ATs, PS/2 computers, and 386,486, and Pentium-based machines. Of course, I haven’t
been able to test it on all PC-compatibles, but I don’t expect any problems; comput-
ers on which the Zen timer doesn’t run can’t truly be called “PC-compatible.”
On the other hand, there is certainly no guarantee that code performance as mea-
sured by the Zen timer will be the same on compatible computers as on genuine

48 Chapter 3

IBM machines, or that either absolute or relative code performance will be similar
even on different IBM models; in fact, quite the opposite is true. For example, every
PS/2 computer, even the relatively slow Model 30, executes code much faster than
does a PC or XT. As another example, I set out to do the timings for my earlier book
Zen of Assembly Language on an XT-compatible computer, only to find that the com-
puter wasn't quite IBM-compatible regarding code performance. The differences
were minor, mind you, but my experience illustrates the risk of assuming that a spe-
cific make of computer will perform in a certain way without actually checking.
Not that this variation between models makes the Zen timer one whit less useful-
quite the contrary. The Zen timer is an excellent tool for evaluating code performance
over the entire spectrum of PC-compatible computers.

A Sample Use of the Zen Timer
Listing 3.2 shows a test-bed program for measuring code performance with the Zen
timer. This program sets DS equal to CS (for reasons we'll discuss shortly), includes
the code to be measured from the file TESTCODE, and calls ZTimerReport to dis-
play the timing results. Consequently, the code being measured should be in the file
TESTCODE, and should contain calls to ZTimerOn and ZTimerOff.

LISTING 3.2 PZTEST.ASM
Program t o measure performance o f c o d e t h a t t a k e s l e s s t h a n
54 ms t o e x e c u t e . (PZTEST.ASM)

L i n k w i t h PZTIMER.ASM (L i s t i n g 3 . 1) . PZTEST.BAT (L i s t i n g 3 . 4)
can be used t o assemble and l i n k b o t h f i l e s . Code t o be
measured must be i n t h e f i l e TESTCODE; L i s t i n g 3 . 3 shows
a sample TESTCODE f i l e .

By Michae l Abrash

mystack segment para s tack 'STACK'

mystack ends
db 512 dup(?)

Code

S t a r t

s e g m e n t p a r a p u b l i c ' C O D E '
assume cs:Code. ds:Code
ex t rn ZT imer0n :near . ZT imer0 f f : nea r . 2T imerRepor t :nea r
p roc nea r
push cs
pop ds ; s e t DS t o p o i n t t o t h e code segment,

; s o d a t a a s w e l l a s c o d e c a n e a s i l y
; b e i n c l u d e d i n TESTCODE

i n c l u d e TESTCODE ;code t o be measured , i nc lud ing
: c a l l s t o ZTimerOn and ZTimerOff

; D i s p l a y t h e r e s u l t s .

c a l l Z T i m e r R e p o r t

; T e r m i n a t e t h e p r o g r a m .

Assume Nothing 49

mov ah.4ch
i n t 21h

S t a r t e n d p
Code ends

e n d S t a r t

Listing 3.3 shows some sample code to be timed. This listing measures the time re-
quired to execute 1,000 loads of AL from the memory variable MemVar. Note that
Listing 3.3 calls ZTimerOn to start timing, performs 1,000 MOV instructions in a
row, and calls ZTimerOff to end timing. When Listing 3.2 is named TESTCODE and
included by Listing 3.3, Listing 3.2 calls ZTimerReport to display the execution time
after the code in Listing 3.3 has been run.

LISTING 3.3 LST3-3.ASM
: T e s t f i l e :
; Measures t he pe r fo rmance o f 1 ,000 l oads o f AL f r o m
; memory. (Use by renaming t o TESTCODE. w h i c h i s
; i n c l u d e d b y PZTEST.ASM (L i s t i n g 3.2) . PZTIME.BAT
; (L i s t i n g 3 . 4) d o e s t h i s , a l o n g w i t h a l l a s s e m b l y
; a n d l i n k i n g .)

jmp Sk ip : jump a round de f ined da ta

MemVar db ?

Sk ip :

; S t a r t t i m i n g .

c a l l ZTimerOn

r e p t 1 0 0 0
mov a1 , [MemVarl
endm

: S t o p t i m i n g .

c a l l Z T i m e r O f f

It’s worth noting that Listing 3.3 begins by jumping around the memory variable
MemVar. This approach lets us avoid reproducing Listing 3.2 in its entirety for each code
fragment we want to measure; by defining any needed data right in the code segment
and jumping around that data, each listing becomes selfcontained and can be plugged
directly into Listing 3.2 as TESTCODE. Listing 3.2 sets DS equal to CS before doing
anything else precisely so that data can be embedded in code fragments being timed.
Note that only after the initial jump is performed in Listing 3.3 is the Zen timer
started, since we don’t want to include the execution time of start-up code in the
timing interval. That’s why the calls to ZTimerOn and ZTimerOff are in TESTCODE,
not in PZTESTMM; this way, we have full control over which portion of TESTCODE
is timed, and we can keep set-up code and the like out of the timing interval.

50 Chapter 3

Listing 3.3 is used by naming it TESTCODE, assembling both Listing 3.2 (which
includes TESTCODE) and Listing 3.1 with TASM or MASM, and linking the two
resulting OBJ files together by way of the Borland or Microsoft linker. Listing 3.4
shows a batch file, PZTIME.BAT, which does all that; when run, this batch file gener-
ates and runs the executable file PZTEST.EXE. PZTIME.BAT (Listing 3.4) assumes
that the file PZTIMER.ASM contains Listing 3.1, and the file PZTEST.ASM contains
Listing 3.2. The command-line parameter to PZTIME.BAT is the name of the file to
be copied to TESTCODE and included into PZTEST.ASM. (Note that Turbo Assem-
bler can be substituted for MASM by replacing “masm” with “tasm” and “link” with
“tlink” in Listing 3.4. The same is true of Listing 3.7.)

LISTING 3.4 PZTIME.BAT
echo o f f
rem
rem *** L i s t i n g 3 . 4 ***
rem
rem .
rem * B a t c h f i l e PZTIME.BAT, w h i c h b u i l d s a n d r u n s t h e p r e c i s i o n *
rem * Zen t i m e r p r o g r a m PZTEST.EXE t o t i m e t h e c o d e named a s t h e *
rem * c o m m a n d - l i n e p a r a m e t e r . L i s t i n g 3 . 1 m u s t b e named *
rem * PZTIMER.ASM. and L i s t i n g 3 . 2 m u s t b e named PZTEST.ASM. To *
rem * t i m e t h e c o d e i n L S T 3 - 3 . y o u ’ d t y p e t h e DOS command: *
rem * *
rem * p z t i m e l s t 3 - 3 *
rem * *
rem * N o t e t h a t MASM and LINK must be i n t h e c u r r e n t d i r e c t o r y o r *
rem * on t h e c u r r e n t p a t h i n o r d e r f o r t h i s b a t c h f i l e t o w o r k . *
rem * *
rem * T h i s b a t c h f i l e c a n b e s p e e d e d u p b y a s s e m b l i n g PZTIMER.ASM *
rem * o n c e , t h e n r e m o v i n g t h e l i n e s : *
rem * *
rem * masm p z t i m e r ; *
rem * i f e r r o r l e v e l 1 g o t o e r r o r e n d *
rem * *
rem * f r o m t h i s f i l e . *
rem * *
rem * By Michae l Abrash *
rem .
rem
rem Make s u r e a f i l e t o t e s t was s p e c i f i e d .
rem
i f n o t x % l - x g o t o c k e x i s t

echo * P l e a s e s p e c i f y a f i l e t o t e s t . *

go to end
rem
rem Make s u r e t h e f i l e e x i s t s .
rem
: c k e x i s t
i f e x i s t %1 goto docopy

echo * T h e s p e c i f i e d f i l e , “%1,” d o e s n ’ t e x i s t , *

goto end

echo .

echo .

echo .

echo .

Assume Nothing 5 1

Assuming that Listing 3.3 is named LST3-3.ASM and Listing 3.4 is named
PZTIME.BAT, the code in Listing 3.3 would be timed with the command:

p z t i m e LST3-3.ASM

which performs all assembly and linking, and reports the execution time of the code
in Listing 3.3.
When the above command is executed on an original 4.77 MHz IBM PC, the time
reported by the Zen timer is 3619 ps, or about 3.62 ps per load of AL from memory.
(While the exact number is 3.619 ps per load of AL, I’m going to round off that last
digit from now on. No matter how many repetitions of a given instruction are timed,
there’s just too much noise in the timing process-between dynamic RAM refresh,
the prefetch queue, and the internal state of the processor at the start of timing-for
that last digit to have any significance.) Given the test PC’s 4.77 MHz clock, this
works out to about 17 cycles per MOV, which is actually a good bit longer than Intel’s
specified 10-cycle execution time for this instruction. (See the MASM or TASM docu-
mentation, or Intel’s processor reference manuals, for official execution times.) Fear
not, the Zen timer is right-MOV AL,[MEMVAR] really does take 1’7 cycles as used
in Listing 3.3. Exactly why that is so is just what this book is all about.
In order to perform any of the timing tests in this book, enter Listing 3.1 and name
it PZTIMERMM, enter Listing 3.2 and name it PZTESTASM, and enter Listing 3.4
and name it PZTIME.BAT. Then simply enter the listing you wish to run into the file
filename and enter the command:

p z t i m e < f i l e n a m e >

In fact, that’s exactly how I timed each of the listings in this book. Code fragments
you write yourself can be timed in just the same way. If you wish to time code directly
in place in your programs, rather than in the test-bed program of Listing 3.2, simply

52 Chapter 3

insert calls to ZTimerOn, ZTimerOff, and ZTimerReport in the appropriate places
and link PZTIMER to your program.

The Long-Period Zen Timer
With a few exceptions, the Zen timer presented above will serve us well for the remain-
der of this book since we’ll be focusing on relatively short code sequences that generally
take much less than 54 ms to execute. Occasionally, however, we will need to time
longer intervals. What’s more, it is very likely that you will want to time code sequences
longer than 54 ms at some point in your programming career. Accordingly, I’ve also
developed a Zen timer for periods longer than 54 ms. The long-period Zen timer (so
named by contrast with the precision Zen timer just presented) shown in Listing 3.5
can measure periods up to one hour in length.
The key difference between the long-period Zen timer and the precision Zen timer
is that the long-period timer leaves interrupts enabled during the timing period. As
a result, timer interrupts are recognized by the PC, allowing the BIOS to maintain an
accurate system clock time over the timing period. Theoretically, this enables mea-
surement of arbitrarily long periods. Practically speaking, however, there is no need
for a timer that can measure more than a few minutes, since the DOS time of day
and date functions (or, indeed, the DATE and TIME commands in a batch file) serve
perfectly well for longer intervals. Since very long timing intervals aren’t needed,
the long-period Zen timer uses a simplified means of calculating elapsed time that is
limited to measuring intervals of an hour or less. If a period longer than an hour is
timed, the long-period Zen timer prints a message to the effect that it is unable to
time an interval of that length.
For implementation reasons, the long-period Zen timer is also incapable of timing
code that starts before midnight and ends after midnight; if that eventuality occurs,
the long-period Zen timer reports that it was unable to time the code because mid-
night was crossed. If this happens to you, just time the code again, secure in the
knowledge that at least you won’t run into the problem again for 23-odd hours.
You should not use the long-period Zen timer to time code that requires interrupts
to be disabled for more than 54 ms at a stretch during the timing interval, since
when interrupts are disabled the long-period Zen timer is subject to the same 54 ms
maximum measurement time as the precision Zen timer.
While permitting the timer interrupt to occur allows long intervals to be timed, that
same interrupt makes the long-period Zen timer less accurate than the precision
Zen timer, since the time the BIOS spends handling timer interrupts during the
timing interval is included in the time measured by the long-period timer. Likewise,
any other interrupts that occur during the timing interval, most notably keyboard
and mouse interrupts, will increase the measured time.

Assume Nothing 53

The long-period Zen timer has some of the same effects on the system time as does
the precision Zen timer, so it’s a good idea to reboot the system after a session with
the long-period Zen timer. The long-period Zen timer does not, however, have the
same potential for introducing major inaccuracy into the system clock time during a
single timing run since it leaves interrupts enabled and therefore allows the system
clock to update normally.

Stopping the Clock
There’s a potential problem with the long-period Zen timer. The problem is this: In
order to measure times longer than 54 ms, we must maintain not one but two timing
components, the timer 0 count and the BIOS time-of-day count. The time-of-day
count measures the passage of 54.9 ms intervals, while the timer 0 count measures
time within those 54.9 ms intervals. We need to read the two time components simul-
taneously in order to get a clean reading. Otherwise, we may read the timer count
just before it turns over and generates an interrupt, then read the BIOS time-of-day
countjust after the interrupt has occurred and caused the time-of-day count to turn
over, with a resulting 54 ms measurement inaccuracy. (The opposite sequence-
reading the time-of-day count and then the timer count-can result in a 54 ms
inaccuracy in the other direction.)
The only way to avoid this problem is to stop timer 0, read both the timer and time-of-
day counts while the timer is stopped, and then restart the timer. Alas, the gate input to
timer 0 isn’t programcontrollable in the PC, so there’s no documented way to stop the
timer. (The latched read feature we used in Listing 3.1 doesn’t stop the timer; it latches
a count, but the timer keeps running.) What should we do?
As it turns out, an undocumented feature of the 8253 makes it possible to stop the
timer dead in its tracks. Setting the timer to a new mode and waiting for an initial
count to be loaded causes the timer to stop until the count is loaded. Surprisingly,
the timer count remains readable and correct while the timer is waiting for the ini-
tial load.
In my experience, this approach works beautifully with fully 8253-compatible chips.
However, there’s no guarantee that it will always work, since it programs the 8253 in
an undocumented way. What’s more, IBM chose not to implement compatibility
with this particular 8253 feature in the custom chips used in PS/2 computers. On
PS/2 computers, we have no choice but to latch the timer 0 count and then stop the
BIOS count (by disabling interrupts) as quickly as possible. We’ll just have to accept
the fact that on PS/2 computers we may occasionally get a reading that’s off by 54
ms, and leave it at that.
I’ve set up Listing 3.5 so that it can assemble to either use or not use the undocumented
timer-stopping feature, as you please. The PS2 equate selects between the two modes
of operation. If PS2 is 1 (as it is in Listing 3.5), then the latch-and-read method is used;
if PS2 is 0, then the undocumented timer-stop approach is used. The latch-and-read

54 Chapter 3

method will work on all PGcompatible computers, but may occasionally produce re-
sults that are incorrect by 54 ms. The timer-stop approach avoids synchronization
problems, but doesn't work on all computers.

LISTING 3.5 UTIMER.ASM

T h e l o n g - p e r i o d Zen t i m e r . (LZTIMER.ASM)
Uses t h e 8 2 5 3 t i m e r a n d t h e BIOS t i m e - o f - d a y c o u n t t o t i m e t h e
p e r f o r m a n c e o f c o d e t h a t t a k e s l e s s t h a n a n h o u r t o e x e c u t e .
B e c a u s e i n t e r r u p t s a r e l e f t on (i n o r d e r t o a l l o w t h e t i m e r
i n t e r r u p t t o b e r e c o g n i z e d) , t h i s i s l e s s a c c u r a t e t h a n t h e
p r e c i s i o n Zen t i m e r , s o it i s b e s t u s e d o n l y t o t i m e c o d e t h a t t a k e s
m o r e t h a n a b o u t 5 4 m i l l i s e c o n d s t o e x e c u t e (c o d e t h a t t h e p r e c i s i o n
Zen t i m e r r e p o r t s o v e r f l o w on). R e s o l u t i o n i s l i m i t e d b y t h e
o c c u r r e n c e o f t i m e r i n t e r r u p t s .

By Michael Abrash

E x t e r n a l l y c a l l a b l e r o u t i n e s :

ZTimerOn: Saves the B I O S t i m e o f d a y c o u n t a n d s t a r t s t h e
l o n g - p e r i o d Zen t i m e r .

Z T i m e r O f f : S t o p s t h e l o n g - p e r i o d Zen t i m e r a n d s a v e s t h e t i m e r
coun t and t he BIOS t i m e - o f - d a y c o u n t .

Z T i m e r R e p o r t : P r i n t s t h e t i m e t h a t p a s s e d b e t w e e n s t a r t i n g a n d
s t o p p i n g t h e t i m e r .

Note: I f e i t h e r m o r e t h a n a n h o u r p a s s e s o r m i d n i g h t f a l l s b e t w e e n
c a l l s t o ZTimerOn and ZTimerOf f , an er ror i s r e p o r t e d . F o r
t i m i n g c o d e t h a t t a k e s m o r e t h a n a f e w m i n u t e s t o e x e c u t e ,
e i t h e r t h e OOS TIME command i n a b a t c h f i l e b e f o r e and a f t e r
e x e c u t i o n o f t h e c o d e t o t i m e o r t h e u s e o f t h e DOS
t i m e - o f - d a y f u n c t i o n i n p l a c e o f t h e l o n g - p e r i o d Zen t i m e r i s
more than adequate.

Note: The P S / 2 v e r s i o n i s a s s e m b l e d b y s e t t i n g t h e s y m b o l PS2 t o 1.
PS2 m u s t b e s e t t o 1 on P S / 2 computers because the P S / Z ' s
t i m e r s a r e n o t c o m p a t i b l e w i t h an undocumented t imer -s topp ing
f e a t u r e o f t h e 8 2 5 3 : t h e a l t e r n a t i v e t i m i n g a p p r o a c h t h a t
must be used on PS/2 computers leaves a sho r t w indow
d u r i n g w h i c h t h e t i m e r 0 coun t and t he BIOS t i m e r c o u n t may
n o t b e s y n c h r o n i z e d . You s h o u l d a l s o s e t t h e PS2 symbol t o
1 i f y o u ' r e g e t t i n g e r r a t i c o r o b v i o u s l y i n c o r r e c t r e s u l t s .

Note: When PS2 i s 0. t h e c o d e r e l i e s o n an undocumented 8253
f e a t u r e t o g e t more r e l i a b l e r e a d i n g s . It i s p o s s i b l e t h a t
t h e 8 2 5 3 (o r w h a t e v e r c h i p i s e m u l a t i n g t h e 8 2 5 3) may b e p u t
i n t o an u n d e f i n e d o r i n c o r r e c t s t a t e when t h i s f e a t u r e i s
used.

.
* I f y o u r c o m p u t e r d i s p l a y s a n y h i n t o f e r r a t i c b e h a v i o r *
* a f t e r t h e l o n g - p e r i o d Zen t i m e r i s u s e d , s u c h a s t h e f l o p p y *
* d r i v e f a i l i n g t o o p e r a t e p r o p e r l y , r e b o o t t h e s y s t e m , s e t *
* PS2 t o 1 and leave i t t h a t way! *
.

Assume Nothing 55

: N o t e : E a c h b l o c k o f c o d e b e i n g t i m e d s h o u l d i d e a l l y b e r u n s e v e r a l
: t i m e s , w i t h a t l e a s t t w o s i m i l a r r e a d i n g s r e q u i r e d t o
: e s t a b l i s h a t r u e measurement, i n o r d e r t o e l i m i n a t e any
: v a r i a b i l i t y c a u s e d b y i n t e r r u p t s .

: N o t e : I n t e r r u p t s m u s t n o t b e d i s a b l e d f o r m o r e t h a n 54 ms a t a
: s t r e t c h d u r i n g t h e t i m i n g i n t e r v a l . B e c a u s e i n t e r r u p t s
: a r e e n a b l e d , k e y s , m i c e , a n d o t h e r d e v i c e s t h a t g e n e r a t e
: i n t e r r u p t s s h o u l d n o t b e u s e d d u r i n g t h e t i m i n g i n t e r v a l .

: Note: Any e x t r a c o d e r u n n i n g o f f t h e t i m e r i n t e r r u p t (s u c h a s
: some m e m o r y - r e s i d e n t u t i l i t i e s) will i n c r e a s e t h e t i m e
: measured by the Zen t i m e r .

: N o t e : T h e s e r o u t i n e s c a n i n t r o d u c e i n a c c u r a c i e s o f UD t o a few

: All

Code

t e n t h s o f a second i n t o t h e s y s t e m c l o c k c o u n t f o r e a c h
c o d e s e c t i o n t i m e d . C o n s e q u e n t l y , i t ' s a g o o d i d e a t o
r e b o o t a t t h e c o n c l u s i o n o f t i m i n g s e s s i o n s . (T h e
b a t t e r y - b a c k e d c l o c k , i f any. i s n o t a f f e c t e d b y t h e Zen
t i m e r .)

r e g i s t e r s and a l l f l a g s a r e p r e s e r v e d b y a l l r o u t i n e s .

segment word publ ic ' C O D E '
assume cs:Code. ds:nothing
p u b l i c ZTimerOn. ZTimerOff . ZTimerReport

Se t P S 2 t o 0 t o a s s e m b l e f o r u s e on a f u l l y 8 2 5 3 - c o m p a t i b l e
system: when PS2 i s 0 . t h e r e a d i n g s a r e m o r e r e l i a b l e i f t h e
c o m p u t e r s u p p o r t s t h e u n d o c u m e n t e d t i m e r - s t o p p i n g f e a t u r e ,
b u t may b e b a d l y o f f i f t h a t f e a t u r e i s n o t s u p p o r t e d . I n
f a c t , t i m e r - s t o p p i n g may i n t e r f e r e w i t h y o u r c o m p u t e r ' s
o v e r a l l o p e r a t i o n b y p u t t i n g t h e 8 2 5 3 i n t o an u n d e f i n e d o r
i n c o r r e c t s t a t e . Use w i t h c a u t i o n ! ! !

Set PS2 t o 1 t o assemble f o r u s e on non-8253-compat ib le
s y s t e m s , i n c l u d i n g P S / 2 computers: when PS2 i s 1. r e a d i n g s
may o c c a s i o n a l l y be o f f by 54 ms. b u t t h e c o d e will work
p r o p e r l y on all systems.

A s e t t i n g o f 1 i s s a f e r and will work on more systems,
w h i l e a s e t t i n g o f 0 p r o d u c e s m o r e r e l i a b l e r e s u l t s i n s y s t e m s
w h i c h s u p p o r t t h e u n d o c u m e n t e d t i m e r - s t o p p i n g f e a t u r e o f t h e
8253. The choice i s y o u r s .

PS2 equ 1

: B a s e a d d r e s s o f t h e 8 2 5 3 t i m e r c h i p .

BASE-8253 equ 40h

: T h e a d d r e s s o f t h e t i m e r 0 c o u n t r e g i s t e r s i n t h e 8 2 5 3 .

TIMER-0-8253 equ BASE-8253 + 0

: The add ress o f t he mode r e g i s t e r i n t h e 8 2 5 3 .

MODEL8253 equ BASEL8253 + 3

56 Chapter 3

; The address o f t h e B I O S t i m e r c o u n t v a r i a b l e i n t h e BIOS
: data segment .

TIMER-COUNT equ 46ch

: Macro t o e m u l a t e a POPF i n s t r u c t i o n i n o r d e r t o f i x t h e b u g i n some
; 80286 c h i p s w h i c h a l l o w s i n t e r r u p t s t o o c c u r d u r i n g a POPF even when
: i n t e r r u p t s r e m a i n d i s a b l e d .

MPOPF macro
l o c a l p l . p 2
j m p s h o r t p 2

p l : i r e t ; jump t o pushed address & p o p f l a g s
p2: push c s : c o n s t r u c t f a r r e t u r n a d d r e s s t o

c a l l p l : t h e n e x t i n s t r u c t i o n
endm

; Macro t o d e l a y b r i e f l y t o e n s u r e t h a t e n o u g h t i m e h a s e l a p s e d
: between success ive 1 / 0 accesses s o t h a t t h e d e v i c e b e i n g a c c e s s e d
; can respond t o b o t h a c c e s s e s e v e n o n a v e r y f a s t PC.

DELAY macro
jmp J+2
jmp J+2
jmp 6+2
endm

StartBIOSCountLowdw

Star tB IOSCountH igh

EndBIOSCountLow

EndBIOSCountHigh

EndTimedCount

Referencecount

: S t r i n g p r i n t e d

O u t p u t S t r l a b e l
db

TimedCountStr
db
db

dw

?

dw

dw

?

dw

dw

:BIOS c o u n t l o w w o r d a t t h e
: s t a r t o f t h e t i m i n g p e r i o d

? :BIOS c o u n t h i g h w o r d a t t h e
; s t a r t o f t h e t i m i n g p e r i o d

? ;BIOS c o u n t l o w w o r d a t t h e
: end o f t h e t i m i n g p e r i o d
:BIOS c o u n t h i g h w o r d a t t h e
; end o f t h e t i m i n g p e r i o d

? : t i m e r 0 c o u n t a t t h e e n d o f
: t h e t i m i n g p e r i o d

? ;number o f c o u n t s r e q u i r e d t o
: execu te t imer ove rhead code

t o r e p o r t r e s u l t s .

b y t e
Odh. Oah. 'T imed count : '
db 10 dup (?)
' m i c r o s e c o n d s ' , Odh. Oah
' J '

: T e m p o r a r y s t o r a g e f o r t i m e d c o u n t as i t ' s d i v i d e d down by powers
: o f t e n when c o n v e r t i n g f r o m d o u b l e w o r d b i n a r y t o A S C I I .

CurrentCountLow dw ?
Cur ren tCountH igh dw ?

: Powers o f t e n t a b l e u s e d t o p e r f o r m d i v i s i o n by 10 when d o i n g
; d o u b l e w o r d c o n v e r s i o n f r o m b i n a r y t o A S C I I .

PowersOfTen 1 abel word
dd 1
dd 1 0

Assume Nothing 57

dd 100
dd 1000
dd 10000
dd 100000
dd 1000000
dd 10000000
dd 100000000
dd 1000000000

PowersOfTenEnd l a b e l w o r d

: S t r i n g p r i n t e d t o r e p o r t t h a t t h e h i g h w o r d o f t h e B I O S c o u n t
: c h a n g e d w h i l e t i m i n g (a n h o u r e l a p s e d o r m i d n i g h t was c r o s s e d) ,
: and s o t h e c o u n t i s i n v a l i d a n d t h e t e s t n e e d s t o b e r e r u n .

T u r n O v e r S t r l a b e l b y t e
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

Odh. Oah

Odh. Oah
' * E i t h e r m i d n i g h t p a s s e d o r a n h o u r o r m o r e p a s s e d * '
Odh. Oah
' * w h i l e t i m i n g was i n p r o g r e s s . I f t h e f o r m e r was * '
Odh. Oah
'* t h e c a s e , p l e a s e r e r u n t h e t e s t : i f t h e l a t t e r * '
Odh. Oah
' * was t h e c a s e , t h e t e s t c o d e t a k e s t o o l o n g t o * '
Odh. Oah
' * r u n t o b e t i m e d b y t h e l o n g - p e r i o d Zen t i m e r . * '
Odh. Oah
' * S u g g e s t i o n s : u s e t h e DOS TIME command, t h e DOS * '
Odh. Oah
' * t i m e f u n c t i o n , o r a watch. * '
Odh. Oah

Odh. Oah
' 0 '

.

.

.
:* R o u t i n e c a l l e d t o s t a r t t i m i n g . *
.

ZTimerOn proc near

Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

push ax
push f

S e t t i m e r 0 o f t h e 8253 t o mode 2 (d i v i d e - b y - N) . t o c a u s e
l i n e a r c o u n t i n g r a t h e r t h a n c o u n t - b y - t w o c o u n t i n g . A l s o s t o p s
t i m e r 0 u n t i l t h e t i m e r c o u n t i s l o a d e d , e x c e p t on PS/2
computers.

mov a l .00110100b
o u t MODE-8253.al

:mode 2

S e t t h e t i m e r c o u n t t o 0, so we know we w o n ' t g e t a n o t h e r
t i m e r i n t e r r u p t r i g h t away.
N o t e : t h i s i n t r o d u c e s a n i n a c c u r a c y o f u p t o 54 ms i n t h e s y s t e m
c l o c k c o u n t e a c h t i m e i t i s executed.

58 Chapter 3

DELAY
sub a1 .a1
o u t TIMERPOP8253.al : l s b
DELAY
o u t TIMER-0-8253,al :msb

: I n c a s e i n t e r r u p t s a r e d i s a b l e d , e n a b l e i n t e r r u p t s b r i e f l y t o a l l o w
: t h e i n t e r r u p t g e n e r a t e d when s w i t c h i n g f r o m mode 3 t o mode 2 t o be
: r e c o g n i z e d . I n t e r r u p t s m u s t b e e n a b l e d f o r a t l e a s t 2 1 0 n s t o a l l o w
: t i m e f o r t h a t i n t e r r u p t t o o c c u r . H e r e , 10 j u m p s a r e u s e d f o r t h e
: d e l a y t o e n s u r e t h a t t h e d e l a y t i m e will be more than long enough
: even on a v e r y f a s t P C .

p u s h f
s t i
r e p t 1 0
jmp 1+2

MPOPF
endm

: S t o r e t h e t i m i n g s t a r t BIOS c o u n t .
: (S i n c e t h e t i m e r c o u n t was j u s t s e t t o 0 . t h e B I O S c o u n t will
: s t a y t h e same f o r t h e n e x t 5 4 ms. s o we d o n ' t n e e d t o d i s a b l e
: i n t e r r u p t s i n o r d e r t o a v o i d g e t t i n g a h a l f - c h a n g e d c o u n t .)

push ds
sub ax.ax

mov ax,ds:[TIMERPCOUNT+2]
mov ds.ax

mov cs:[StartBIOSCountHighl.ax
mov ax.ds:[TIMERPCOUNT]
mov cs:[StartBIOSCountLow],ax
POP ds

: S e t t h e t i m e r c o u n t t o 0 a g a i n t o s t a r t t h e t i m i n g i n t e r v a l .

mov a l . 0 0 1 1 0 1 0 0 b : s e t u p t o l o a d i n i t i a l
o u t MOOEL8253,al
DELAY
sub a1 .a1
o u t TIMER-0-8253,al
DELAY

: l o a d c o u n t l s b

o u t TIMER-0-8253.al : l o a d c o u n t msb

: t i m e r c o u n t

: R e s t o r e t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o i t .

MPOPF
POP ax
r e t

ZTimerOn endp

.
:* R o u t i n e c a l l e d t o s t o p t i m i n g a n d g e t c o u n t . *
.

ZT imerOf f p roc nea r

: Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

Assume Nothing 59

push f
push ax
push cx

: I n c a s e i n t e r r u p t s a r e d i s a b l e d , e n a b l e i n t e r r u p t s b r i e f l y t o a l l o w
: a n y p e n d i n g t i m e r i n t e r r u p t t o b e h a n d l e d . I n t e r r u p t s m u s t b e
: e n a b l e d f o r a t l e a s t 210 ns t o a l l o w t i m e f o r t h a t i n t e r r u p t t o
: o c c u r . H e r e , 1 0 j u m p s a r e u s e d f o r t h e d e l a y t o e n s u r e t h a t t h e
: d e l a y t i m e will be more than long enough even on a v e r y f a s t PC.

s t i
r e p t 1 0
jmp 9+2
endm

: L a t c h t h e t i m e r c o u n t .

i f PS2

mov a l ,00000000b
o u t MODE-8253.al : l a t c h t i m e r 0 coun t

: T h i s i s where a o n e - i n s t r u c t i o n - l o n g w i n d o w e x i s t s on t h e PS/2.
: The t i m e r c o u n t a n d t h e B I O S c o u n t c a n l o s e s y n c h r o n i z a t i o n :
: s i n c e t h e t i m e r k e e p s c o u n t i n g a f t e r i t ' s l a t c h e d , i t c a n t u r n
: o v e r r i g h t a f t e r i t ' s l a t c h e d and cause the B I O S c o u n t t o t u r n
: o v e r b e f o r e i n t e r r u p t s a r e d i s a b l e d , l e a v i n g us w i t h t h e t i m e r
: c o u n t f r o m b e f o r e t h e t i m e r t u r n e d o v e r c o u p l e d w i t h t h e B I O S
: c o u n t f r o m a f t e r t h e t i m e r t u r n e d o v e r . The r e s u l t i s a coun t
: t h a t ' s 54 ms t o o l o n g .

e l s e

: S e t t i m e r 0 t o mode 2 (d i v i d e - b y - N) , w a i t i n g f o r a 2 - b y t e c o u n t
: l o a d , w h i c h s t o p s t i m e r 0 u n t i l t h e c o u n t i s l o a d e d . (O n l y w o r k s
: on f u l l y 8 2 5 3 - c o m p a t i b l e c h i p s .)

mov a l .00110100b :mode 2
o u t MODEL8253,al
DELAY
mov a l . 0 0 0 0 0 0 0 0 b : l a t c h t i m e r 0 c o u n t
o u t MODEL8253,al

end i f

c l i ; s t o p t h e B I O S c o u n t

: Read t h e B I O S c o u n t . (S i n c e i n t e r r u p t s a r e d i s a b l e d , t h e B I O S
: count won ' t change.)

push ds
sub ax.ax
mov ds,ax
mov ax,ds:[TIMER_COUNT+2]
mov cs:[EndBIOSCountHighl,ax
mov ax,ds:[TIMERLCOUNT1

60 Chapter 3

mov cs:[EndBIOSCountLowl.ax
POP ds

; Read t h e t i m e r c o u n t a n d s a v e i t .

i n a1 .TIMERpOp8253
DELAY

: l s b

mov ah .a l
i n a1 ,TIMERp0-8253 :msb
xchg ah.a l
neg ax ;conver t f rom countdown

: r e m a i n i n g t o e l a p s e d
: count

mov cs: [EndTimedCount l .ax

: R e s t a r t t i m e r 0 . w h i c h i s s t i l l w a i t i n g f o r an i n i t i a l c o u n t
: t o be loaded.

i f e P S 2

DELAY
mov a1 .00110100b :mode 2 . w a i t i n g t o l o a d a

o u t MODEL8253,al
DELAY
sub a1 .a1
o u t TIMERpOp8253.al
DELAY

: l s b

mov a1 ,ah
o u t TIMERpOp8253.al
DELAY

:msb

: 2 - b y t e c o u n t

e n d i f

s t i ; l e t t h e B I O S c o u n t c o n t i n u e

: Time a z e r o - l e n g t h c o d e f r a g m e n t , t o g e t a r e f e r e n c e f o r how
: much o v e r h e a d t h i s r o u t i n e h a s . T i m e i t 16 t imes and average it,
: f o r a c c u r a c y , r o u n d i n g t h e r e s u l t .

mov cs : [ReferenceCount l .O
mov cx.16
c l i : i n t e r r u p t s o f f t o a l l o w a

: p r e c i s e r e f e r e n c e c o u n t
Ref Loop:

c a l l ReferenceZTimerOn
c a l l R e f e r e n c e Z T i m e r O f f
1 oop Ref Loop
s t i
add cs : [Re fe renceCoun t l . 8 : t o ta l + (0 . 5 * 1 6)
mov c l . 4
s h r c s : [R e f e r e n c e C o u n t l . c l : (t o t a l) / 16 + 0.5

; R e s t o r e t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o i t .

POP c x
POP ax
M P O P F
r e t

Assume Nothing 61

ZTimerOff endp

: C a l l e d b y Z T i m e r O f f t o s t a r t t h e t i m e r f o r o v e r h e a d m e a s u r e m e n t s .

ReferenceZTimerOnproc near

: Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

push ax
p u s h f

: S e t t i m e r 0 o f t h e 8253 t o mode 2 (d i v i d e - b y - N) . t o c a u s e
: l i n e a r c o u n t i n g r a t h e r t h a n c o u n t - b y - t w o c o u n t i n g .

: Set

mov a1 .00110100b ;mode 2
o u t MODE-8253.al

t h e t i m e r c o u n t t o 0

DELAY
sub a 1 ,a1
o u t TIMER-0-8253.al : l s b
DELAY
o u t TIMERPOP8253.al ;msb

: R e s t o r e t h e c o n t e x t

M P O P F

r e t
POP ax

ReferenceZTimerOnendp

: C a l l e d b y Z T i m e r O f f

o f t h e p r o g r a m b e i n g t i m e d a n d r e t u r n t o i t .

t o s t o p t h e t i m e r a n d a d d t h e r e s u l t t o
: Referencecount for overhead measurements. Doesn ' t need t o l o o k
: a t t h e B I O S c o u n t b e c a u s e t i m i n g a z e r o - l e n g t h c o d e f r a g m e n t
: i s n ' t g o i n g t o t a k e a n y w h e r e n e a r 5 4 ms.

Re fe renceZT imerOf f p roc nea r

: Save t h e c o n t e x t o f t h e p r o g r a m b e i n g t i m e d .

p u s h f
push ax
push cx

: M a t c h t h e i n t e r r u p t - w i n d o w d e l a y i n Z T i m e r O f f

s t i
r e p t 10
jmp $+2
endm

mov al .00000000b
o u t MODE-8253,al : l a t c h t i m e r

62 Chapter 3

: Read the coun t and save i t .

DELAY
i n a1 ,TIMER_0_8253 ; l s b

mov ah.al
i n a1 .TIMER_0_8253 ;msb
xchg ah ,a l
neg ax ;conver t f rom countdown

DELAY

; r e m a i n i n g t o e l a p s e d
: c o u n t

add cs: [ReferenceCount l ,ax

; R e s t o r e t h e c o n t e x t a n d r e t u r n .

POP c x
POP ax
MPOPF
r e t

ReferenceZTimerOf f endp

.
;* R o u t i n e c a l l e d t o r e p o r t t i m i n g r e s u l t s . *
.

ZT imerRepor t p roc near

p u s h f
push ax
push bx
push cx
push dx
push s i
p u s h d i
push ds

push c s :DOS f u n c t i o n s r e q u i r e t h a t DS p o i n t
POP ds : t o t e x t t o b e d i s p l a y e d on t h e s c r e e n
assume ds :Code

; See i f m i d n i g h t o r m o r e t h a n a n h o u r p a s s e d d u r i n g t i m i n g . I f so ,
; n o t i f y t h e u s e r .

mov ax . [S tar tB IOSCountH igh l
cmp ax. [EndBIOSCountHighl
j z Ca lcBIOSTime ;hour count d idn ' t change,

i n c a x
cmp ax. [EndBIOSCountHighl
j n z T e s t T o o L o n g : m i d n i g h t o r t w o h o u r

; s o e v e r y t h i n g ' s f i n e

: boundar ies passed, s o t h e
: r e s u l t s a r e n o g o o d

mov ax.CEndBIOSCountLowl
cmp ax . [S tar tB IOSCountLowl
j b CalcBIOSTime :a s ing le hour boundary

; p a s s e d - - t h a t ' s OK. s o l o n g a s
: t h e t o t a l t i m e w a s n ' t m o r e
; t h a n an hour

Assume Nothing 63

: O v e r a n h o u r e l a p s e d o r m i d n i g h t p a s s e d d u r i n g t i m i n g , w h i c h
: r e n d e r s t h e r e s u l t s i n v a l i d . N o t i f y t h e u s e r . T h i s m i s s e s t h e
: case where a m u l t i p l e o f 24 h o u r s h a s p a s s e d , b u t w e ' l l r e l y
: o n t h e p e r s p i c a c i t y o f t h e user t o d e t e c t t h a t c a s e .

TestTooLong:
mov ah.9
mov d x . o f f s e t T u r n O v e r S t r
i n t 21h
jmp shor t ZTimerRepor tOone

: C o n v e r t t h e BIOS t i m e t o m i c r o s e c o n d s .

CalcBIOSTime:
mov ax.CEndBIOSCountLowl
sub ax. [StartBIOSCountLow]
mov dx. 54925 :number o f m i c r o s e c o n d s e a c h

mu1 d x
mov b x . a x : s e t a s i d e BIOS c o u n t i n
mov cx .dx : microseconds

: BIOS c o u n t r e p r e s e n t s

: C o n v e r t t i m e r c o u n t t o m i c r o s e c o n d s .

mov ax, [EndTimedCount]
mov s i ,8381
mu1 s i
mov s i ,10000
d i v s i :* .E381 - * 8381 / 10000

: Add t i m e r a n d B I O S c o u n t s t o g e t h e r t o g e t a n o v e r a l l t i m e i n
: microseconds.

add bx.ax
adc cx .0

: S u b t r a c t t h e t i m e r o v e r h e a d a n d s a v e t h e r e s u l t .

mov ax. [ReferenceCount]
mov s i ,8381
mu1 s i
mov s i , 10000
d i v s i :* .E381 - * 8381 / 10000
sub bx.ax
sbb cx.0
mov [Cur ren tCountLowl .bx
mov [C u r r e n t C o u n t H i g h] . ~ ~

: c o n v e r t t h e r e f e r e n c e c o u n t
: t o m i c r o s e c o n d s

: C o n v e r t t h e r e s u l t t o an ASCII s t r i n g b y t r i a l s u b t r a c t i o n s o f
: powers o f 1 0 .

mov d i . o f f s e t PowersOfTenEnd - o f f s e t PowersOfTen - 4
mov s i . o f f s e t T i m e d C o u n t S t r

mov b l ,'O'

mov ax . [Cur ren tCountLow]
mov dx , [Cur ren tCountH igh]
sub ax.PowersOfTen[di]

CTSNextOigi t :

CTSLoop:

64 Chapter 3

s b b dx.PowersOfTenCdi+2l
j c CTSNextPowerDown
i n c b l
mov CCurrentCountLowl.ax
mov [Cur ren tCountH igh] .dx
jrnp CTSLoop

rnov [s i l . b l
i n c s i
s u b d i . 4
j n s C T S N e x t D i g i t

CTSNextPowerDown:

: P r i n t t h e r e s u l t s .

mov ah.9
rnov d x , o f f s e t O u t p u t S t r
i n t 21h

ZTirnerReportDone:
POP ds
pop d i
pop s i
POP dx
POP c x
POP bx
POP ax
MPOPF
r e t

ZTimerReport endp

Code ends
end

Moreover, because it uses an undocumented feature, the timer-stop approach could
conceivably cause erratic 8253 operation, which could in turn seriously affect your
computer’s operation until the next reboot. In non-8253-compatible systems, I’ve
observed not only wildly incorrect timing results, but also failure of a diskette drive
to operate properly after the long-period Zen timer with PS2 set to 0 has run, so be
alert for signs of trouble if you do set PS2 to 0.
Rebooting should clear up any timer-related problems of the sort described above.
(This gives us another reason to reboot at the end of each code-timing session.) You
should immediately reboot and set the PS2 equate to 1 if you get erratic or obviously
incorrect results with the long-period Zen timer when PS2 is set to 0. If you want to set
PS2 to 0, it would be a good idea to time a few of the listings in this book with PS2 set
first to 1 and then to 0, to make sure that the results match. If they’re consistently
different, you should set PS2 to 1.
While the the non-PS/2 version is more dangerous than the PS/2 version, it also
produces more accurate results when it does work. If you have a non-PS/Z PC-com-
patible computer, the choice between the two timing approaches is yours.

Assume Nothing 65

If you do leave the PS2 equate at 1 in Listing 3.5, you should repeat each code-timing
run several times before relying on the results to be accurate to more than 54 ms, since
variations may result from the possible lack of synchronization between the timer 0
count and the BIOS time-ofday count. In fact, it’s a good idea to time code more than
once no matter which version of the long-period Zen timer you’re using, since inter-
rupts, which must be enabled in order for the long-period timer to work properly, may
occur at any time and can alter execution time substantially.
Finally, please note that the precision Zen timer works perfectly well on both PS/2
and non-PS/S computers. The PS/2 and 8253 considerations we’ve just discussed
apply only to the long-period Zen timer.

Example Use of the Long-Period Zen Timer
The long-period Zen timer has exactly the same calling interface as the precision Zen
timer, and can be used in place of the precision Zen timer simply by linking it to the
code to be timed in place of linking the precision timer code. Whenever the precision
Zen timer informs you that the code being timed takes too long for the precision timer
to handle, all you have to do is link in the long-period timer instead.
Listing 3.6 shows a test-bed program for the long-period Zen timer. While this pro-
gram is similar to Listing 3.2, it’s worth noting that Listing 3.6 waits for a few seconds
before calling ZTimerOn, thereby allowing any pending keyboard interrupts to be
processed. Since interrupts must be left on in order to time periods longer than 54
ms, the interrupts generated by keystrokes (including the upstroke of the Enter key
press that starts the program)-or any other interrupts, for that matter-could in-
correctly inflate the time recorded by the long-period Zen timer. In light of this,
resist the temptation to type ahead, move the mouse, or the like while the long-
period Zen timer is timing.

LISTING 3.6 UTEST.ASM
: Program t o measure per formance o f code tha t takes longer than
: 54 ms t o e x e c u t e . (LZTEST.ASM)

: L i n k w i t h LZTIMER.ASM (L i s t i n g 3 . 5) . LZTIME.BAT (L i s t i n g 3 . 7)
: can be used t o assemble and l i n k b o t h f i l e s . Code t o b e
: measured must be i n t h e f i l e TESTCODE: L i s t i n g 3 . 8 shows
: a sample f i l e (LST3-8.ASM) which should be named TESTCODE.

: By Michael Abrash

mystack segment para stack ‘STACK’

mystack ends

Code segment para publ ic ‘CODE’

db 512 dup(?)

assume cs:Code. ds:Code
ex t rn ZT imer0n:near . ZT imer0 f f :near . ZT imerRepor t :near

push cs
S t a r t p r o c n e a r

66 Chapter 3

pop ds : p o i n t D S t o t h e code segment.
: so da ta a s w e l l as code can e a s i l y
: b e i n c l u d e d i n TESTCODE

: Delay f o r 6 - 7 s e c o n d s . t o l e t t h e E n t e r k e y s t r o k e t h a t s t a r t e d t h e
: program come back up.

mov ah,2ch
i n t 21h
mov bh.dh

mov ah.2ch
push bx
i n t 21h
POP bx
cmp dh,bh

jnb CheckDelayTime
add dh.60

Del ayLoop:

CheckDelayTime:
sub dh,bh
cmp dh.7
j b Del ayLoop

i n c l u d e TESTCODE

: D i s p l a y t h e r e s u l t s .

c a l l Z T i m e r R e p o r t

: Terminate the p rogram.

mov ah.4ch
i n t 21h

S t a r t endp
Code ends

end S t a r t

: g e t t h e c u r r e n t t i m e
: s e t t h e c u r r e n t t i m e a s i d e

; p r e s e r v e s t a r t t i m e
: g e t t i m e
: r e t r i e v e s t a r t t i m e
: i s t h e new seconds count less t h a n
: t h e s t a r t s e c o n d s c o u n t ?
:no
:yes. a m inu te mus t have t u rned ove r ,
; so add one m i n u t e

: g e t t i m e t h a t ' s p a s s e d
;has i t been more than 6 seconds ye t?
; n o t y e t

:code t o b e m e a s u r e d , i n c l u d i n g c a l l s
: t o ZTimerOn and ZTimerOff

As with the precision Zen timer, the program in Listing 3.6 is used by naming the file
containing the code to be timed TESTCODE, then assembling both Listing 3.6 and
Listing 3.5 with MASM or TASM and linking the two files together by way of the
Microsoft or Borland linker. Listing 3.7 shows a batch file, named LZTIME.BAT,
which does all of the above, generating and running the executable file LZTEST.EXE.
LZTIME.BAT assumes that the file LZTIMER.ASM contains Listing 3.5 and the file
LZTEST.ASM contains Listing 3.6.

LISTING 3.7 UTIME.BAT
echo o f f
rem
rem *** L i s t i n g 3.7 ***
rem
rem .
rem * B a t c h f i l e LZTIME.BAT, w h i c h b u i l d s a n d r u n s t h e *
rem * l o n g - p e r i o d Zen t i m e r p r o g r a m LZTEST.EXE t o t i m e t h e c o d e *

Assume Nothing 67

rem * named a s t h e c o m m a n d - l i n e p a r a m e t e r . L i s t i n g 3 . 5 m u s t b e *
rem * named LZTIMER.ASM. and L i s t i n g 3 . 6 m u s t b e named *
rem * LZTEST.ASM. T o t i m e t h e c o d e i n L S T 3 - 8 , y o u ' d t y p e t h e *
rem * DOS command: *
rem * *
rem * l z t i m e l s t 3 - 8 *
rem * *
rem * N o t e t h a t MASM and LINK must be i n t h e c u r r e n t d i r e c t o r y o r *
rem * o n t h e c u r r e n t p a t h i n o r d e r f o r t h i s b a t c h f i l e t o w o r k . *
rem * *
rem * T h i s b a t c h f i l e c a n b e s p e e d e d up by assembl ing LZTIMER.ASM *
rem * o n c e , t h e n r e m o v i n g t h e l i n e s : *
rem * *
rem * masm l z t i m e r : *
rem * i f e r r o r l e v e l 1 g o t o e r r o r e n d *
rem * *
rem * f r o m t h i s f i l e . *
rem * *
rem * By Michael Abrash *
rem .
rem
rem Make s u r e a f i l e t o t e s t was s p e c i f i e d .
rem
i f n o t x%l-x g o t o c k e x i s t

echo * P l e a s e s p e c i f y a f i l e t o t e s t . *

go to end
rem
rem Make s u r e t h e f i l e e x i s t s .
rem
: c k e x i s t
i f e x i s t %1 go to docopy

echo * T h e s p e c i f i e d f i l e , "%1." d o e s n ' t e x i s t . *
echo .
go to end
rem
r e m c o p y t h e f i l e t o m e a s u r e t o TESTCODE.
:docopy
copy %1 t e s t c o d e
masm l z t e s t ;
i f e r r o r l e v e l 1 g o t o e r r o r e n d
masm l z t i m e r :
i f e r r o r l e v e l 1 g o t o e r r o r e n d
l i n k l z t e s t + l z t i m e r :
i f e r r o r l e v e l 1 g o t o e r r o r e n d
1 z t e s t
g o t o e n d
: e r r o r e n d

echo * An e r r o r o c c u r r e d w h i l e b u i l d i n g t h e l o n g - p e r i o d Zen t i m e r . *

:end

echo .

echo .

echo .

echo .

echo .

Listing 3.8 shows sample code that can be timed with the test-bed program of Listing 3.6.
Listing 3.8 measures the time required to execute 20,000 loads of AL from memory,
a length of time too long for the precision Zen timer to handle on the 8088.

68 Chapter 3

LISTING 3.8 LST3-8.ASM

: Measures t h e p e r f o r m a n c e o f 20.000 l o a d s o f AL from
: memory. (U s e by renaming t o TESTCOOE. wh ich i s
; i n c l u d e d b y LZTEST.ASM (L i s t i n g 3 . 6) . LZTIME.BAT
: (L i s t i n g 3 . 7) does t h i s , a l o n g w i t h a l l a s s e m b l y
: a n d T i n k i n g .)

: N o t e : t a k e s a b o u t t e n m i n u t e s t o a s s e m b l e on a s low P C i f
; you a r e u s i n g MASM

jmp Sk ip : j ump a round de f i ned da ta

MemVar db ?

S k i p :

: S t a r t t i m i n g .

c a l l ZTimerOn

r e p t 20000
mov a1 , [MemVar]
endm

; S t o p t i m i n g .

c a l l Z T i m e r O f f

When LZTIME.BAT is run on a PC with the following command line (assuming the
code in Listing 3.8 is the file LST3-8.ASM)

l z t i m e l s t 3 - 8 . a s m

the result is 72,544 ps, or about 3.63 ps per load of AL from memory. This is just
slightly longer than the time per load of AL measured by the precision Zen timer, as
we would expect given that interrupts are left enabled by the long-period Zen timer.
The extra fraction of a microsecond measured per MOV reflects the time required
to execute the BIOS code that handles the 18.2 timer interrupts that occur each
second.
Note that the command can take as much as 10 minutes to finish on a slow PC if you
are using MASM, with most of that time spent assembling Listing 3.8. Why? Because
MASM is notoriously slow at assembling REPT blocks, and the block in Listing 3.8 is
repeated 20,000 times.

Using the Zen Timer from C
The Zen timer can be used to measure code performance when programming in
C-but not right out of the box. As presented earlier, the timer is designed to be
called from assembly language; some relatively minor modifications are required
before the ZTimerOn (start timer), ZTimerOff (stop timer), and ZTimerReport

Assume Nothing 69

(display timing results) routines can be called from C. There are two separate cases
to be dealt with here: small code model and large; I’ll tackle the simpler one, the
small code model, first.
Altering the Zen timer for linking to a small code model C program involves the follow-
ing steps: Change ZTimerOn to -ZTimerOn, change ZTimerOff to -ZTimerOff, change
ZTimerReport to -ZTiierReport, and change Code to -TEXT. Figure 3.2 shows the
line numbers and new states of all lines from Listing 3.1 that must be changed. These
changes convert the code to use Cstyle external label names and the small model C code
segment. (In C++, use the “C” specifier, as in

e x t e r n “ C ” ZT imerOn(vo id) ;

when declaring the timer routines extern, so that name-mangling doesn’t occur, and
the linker can find the routines’ C-style names.)
That’s all it takes; after doing this, you’ll be able to use the Zen timer from C, as, for
example, in:

ZTimerOn(:
f o r (i - 0 . x-0; i<lOO; i++)

ZTimerOf f (;
Z T i m e r R e p o r t O ;

x +- i;

(I’m talking about the precision timer here. The long-period timer-Listing 3.5-
requires the same modifications, but to different lines.)

L i n e # Nw S t a t e
-

47 - TEXT segmen t word pub l i c ‘ C O D E ’
4a assume cs:-TEXT. d s : n o t h i n g
49 p u b l i c - ZTimerOn. -2TimerOf f . -2TimerRepor t

140 ZTimerOn proc near

216 ZT imerOf f p roc nea r
296 - ZTimerOf f endp

210 ~ ZTimerOn endp

372 - ZTimerRepor t p roc near
384 assume ds:-TEXT
437 -
439 -

ZTimerReport endp
TEXT ends

These are the lines in Listing 3.1 that must be changed for use with small code
model C, and the states of the lines after the changes are made.

Changes for use with small code model C.
Figure 3.2

70 Chapter 3

Altering the Zen timer for use in C’s large code model is a tad more complex, be-
cause in addition to the above changes, all functions, including the internal reference
timing routines that are used to calculate overhead so it can be subtracted out, must
be converted to far. Figure 3.3 shows the line numbers and new states of all lines
from Listing 3.1 that must be changed in order to call the Zen timer from large code
model C. Again, the line numbers are specific to the precision timer, but the long-
period timer is very similar.
The full listings for the C-callable Zen timers are presented in Chapter K on the
companion CD-ROM.

Watch Out for Optimizing Assemblers!
One important safety tip when modifjmg the Zen timer for use with large code model
C code: Watch out for optimizing assemblers! TASM actually replaces

c a l l f a r p t r ReferenceZTimerOn

with

push cs
c a l l n e a r p t r R e f e r e n c e Z T i m e r O n

(and likewise for ReferenceZTimerOff) , which works because ReferenceZTimerOn
is in the same segment as the calling code. This is normally a great optimization,
being both smaller and faster than a far call. However, it’s not so great for the Zen

L i n e 11 New S t a t e
-

47
48
49

140
210
216
267
268
296
302
336
372
384
437
439

PZTIMER-TEXT segment word pub l i c ’ C O D E ’

p u b l i c -ZTimerOn. _ZTimerOff. -ZTimerReport
assume cs:PZTIMER-TEXT. d s : n o t h i n g

- ZT imerOn p roc f a r
-ZTimerOn endp
- Z T i m e r O f f p r o c f a r

c a l l f a r p t r ReferenceZTimerOn
c a l l f a r p t r R e f e r e n c e Z T i m e r O f f

- ZTimerOf f endp
ReferenceZTimerOn p roc fa r
R e f e r e n c e Z T i m e r O f f p r o c f a r
-ZT imerRepor t p roc f a r
assume ds:PZTIMER_TEXT

PZTIMER-TEXT ends
-ZTimerReport endp

These are the lines in Listing 3.1 that must be changed for use with large
code model C, and the states of the lines after the changes are made.

Changes for use with large code model C.
Figure 3.3

Assume Nothing 71

timer, because our purpose in calling the reference timing code is to determine
exactly how much time is taken by overhead code-including the far calls to
ZTimerOn and ZTimerOff ! By converting the far calls to push/near call pairs within
the Zen timer module, TASM makes it impossible to emulate exactly the overhead of
the Zen timer, and makes timings slightly (about 16 cycles on a 386) less accurate.
What’s the solution? Put the NOSMART directive at the start of the Zen timer code.
This directive instructs TASM to turn off all optimizations, including converting far
calls to push/near call pairs. By the way, there is, to the best of my knowledge, no
such problem with MASM up through version 5.10A.
In my mind, the whole business of optimizing assemblers is a mixed blessing. In
general, it’s nice to have the assembler shorteningjumps and selecting sign-extended
forms of instructions for you. On the other hand, the benefits of tricks like substituting
push/near call pairs for far calls are relatively small, and those tricks can get in the
way when complete control is needed. Sure, complete control is needed very rarely,
but when it is, optimizing assemblers can cause subtle problems; I discovered TASM’s
alteration of far calls only because I happened to view the code in the debugger, and
you might want to do the same if you’re using a recent version of MASM.
I’ve tested the changes shown in Figures 3.2 and 3.3 with TASM and Borland C++
4.0, and also with the latest MASM and Microsoft C/C++ compiler.

Further Reading
For those of you who wish to pursue the mechanics of code measurement further,
one good article about measuring code performance with the 8253 timer is “Pro-
gramming Insight: High-Performance Software Analysis on the IBM PC,” by Byron
Sheppard, which appeared in the January, 1987 issue of Byte. For complete if some-
what cryptic information on the 8253 timer itself, I refer you to Intel’s Microsystem
Components Handbook, which is also a useful reference for a number of other PC
components, including the 8259 Programmable Interrupt Controller and the 8237
DMA Controller. For details about the way the 8253 is used in the PC, as well as a
great deal of additional information about the PC’s hardware and BIOS resources, I
suggest you consult IBM’s series of technical reference manuals for the PC, XT, AT,
Model 30, and microchannel computers, such as the Models 50, 60, and 80.
For our purposes, however, it’s not critical that you understand exactly how the Zen
timer works. All you really need to know is what the Zen timer can do and how to use
it, and we’ve accomplished that in this chapter.

Armed with the Zen Timer, Onward and Upward
The Zen timer is not perfect. For one thing, the finest resolution to which it can
measure an interval is at best about l p , a period of time in which a 66 MHz Pentium
computer can execute as many as 132 instructions (although an 8088-based PC would

72 Chapter 3

be hard-pressed to manage two instructions in a microsecond). Another problem is
that the timing code itself interferes with the state of the prefetch queue and proces-
sor cache at the start of the code being timed, because the timing code is not
necessarily fetched and does not necessarily access memory in exactly the same time
sequence as the code immediately preceding the code under measurement normally
does. This prefetch effect can introduce as much as 3 to 4 ps of inaccuracy. Similarly,
the state of the prefetch queue at the end of the code being timed affects how long
the code that stops the timer takes to execute. Consequently, the Zen timer tends to
be more accurate for longer code sequences, since the relative magnitude of the
inaccuracy introduced by the Zen timer becomes less over longer periods.
Imperfections notwithstanding, the Zen timer is a good tool for exploring C code
and x86 family assembly language, and it’s a tool we’ll use frequently for the remain-
der of this book.

Assume Nothing 73

" " & ";n , " " ~ ')i

Hardware Devours Code Performance
' ' This chapter, ad2hed from my earlier book, Zen of Assembly Language located on the

t to the heart of my philosophy of optimization: Un-
derstand where es when your code runs. That may sound ridiculously

es clear, it turns out to be a challenging task indeed,
one that at times v magic. This chapter is a long-time favorite of mine
because it was the large extent only-work that I know of that dis-

troducing a generation of PC programmers to

on the first popular x8Gfamily processor, the 8088.
Some of the specifii?'€qatures and results that I cite in this chapter are no longer appli-
cable to modern x8Gi"amily processors such as the 486 and Pentium, as I'll point out
later on when we discuss those processors. Nonetheless, the overall theme of this chap-
ter-that understanding dimly-seen and poorly-documented code gremlins called
cycle-eaters that lurk in your system is essential to performance programming-is ev-
ery bit as valid today. Also, later chapters often refer back to the basic cycle-eaters
described in this chapter, so this chapter is the foundation for the discussions of x86
family optimization to come. What's more, the Zen timer remains an excellent tool
with which to flush out and examine cycle-eaters, as we'll see in later chapters, and this
chapter is as good an illustration of how to use the Zen timer as you're likely to find.
So, don't take either the absolute or the relative execution times presented in this
chapter as gospel for newer processors, and read on to later chapters to see how the

77

how the pc hardware devours code performance

cycle-eaters and optimization rules have changed over time, but do take the time to
at least skim through this chapter to give yourself a good start on the material in the
rest of this book.

Cycle-Eaters
Programming has many levels, ranging from the familiar (high-level languages, DOS
calls, and the like) down to the esoteric things that lie on the shadowy edge of hard-
ware-land. I call these cycle-eaters because, like the monsters in a bad 50s horror movie,
they lurk in those shadows, taking their share of your program’s performance with-
out regard to the forces of goodness or the US. Army. In this chapter, we’re going to
jump right in at the lowest level by examining the cycle-eaters that live beneath the
programming interface; that is, beneath your application, DOS, and BIOS-in fact,
beneath the instruction set itself.
Why start at the lowest level? Simply because cycle-eaters affect the performance of
all assembler code, and yet are almost unknown to most programmers. A full under-
standing of code optimization requires an understanding of cycle-eaters and their
implications. That’s no simple task, and in fact it is in precisely that area that most
books and articles about assembly programming fall short.
Nearly all literature on assembly programming discusses only the programming inter-
face: the instruction set, the registers, the flags, and the BIOS and DOS calls. Those
topics cover the functionality of assembly programs most thoroughly-but it’s perfor-
mance above all else that we’re after. No one ever tells you about the raw stuff of
performance, which lies beneath the programming interface, in the dimly-seen realm-
populated by instruction prefetching, dynamic RAM refresh, and wait states-where
software meets hardware. This area is the domain of hardware engineers, and is almost
never discussed as it relates to code performance. And yet it is only by understanding
the mechanisms operating at this level that we can fully understand and properly im-
prove the performance of our code.
Which brings us to cycle-eaters.

The Nature of Cycle-Eaters
Cycle-eaters are gremlins that live on the bus or in peripherals (and sometimes within
the CPU itself), slowing the performance of PC code so that it doesn’t execute at full
speed. Most cycle-eaters (and all of those haunting the older Intel processors) live
outside the CPU’s Execution Unit, where they can mLj affect the CPU when the CPU
performs a bus access (a memory or 1 / 0 read or write). Once your code and data
are already inside the CPU, those cycle-eaters can no longer be a problem. Only on
the 486 and Pentium CPUs will you find cycle-eaters inside the chip, as we’ll see in
later chapters.

78 Chapter 4

The nature and severity of the cycle-eaters vary enormously from processor to pro-
cessor, and (especially) from memory architecture to memory architecture. In order
to understand them all, we need first to understand the simplest among them, those
that haunted the original 8088-based IBM PC. Later on in this book, I’ll be better
able to explain the newer generation of cycle-eaters in terms of those ancestral cycle-
eaters-but we have to get the groundwork down first.

The 8088’s Ancestral Cycle-Eaters
Internally, the 8088 is a l6bit processor, capable of running at full speed at all times-
unless external data is required. External data must traverse the 8088’s external data
bus and the PC’s data bus one byte at a time to and from peripherals, with cycle-
eaters lurking along every step of the way. What’s more, external data includes not
only memory operands but also instruction bytes, so even instructions with no memory
operands can suffer from cycle-eaters. Since some of the 8088’s fastest instructions
are register-only instructions, that’s important indeed.
The major cycle-eaters are:

The 8088’s 8-bit external data bus.
The prefetch queue.
Dynamic RAM refresh.
Wait states, notably display memory wait states and in the AT and 80386 com-
puters, system memory wait states.

The locations of these cycle-eaters in the primordial 8088-based PC are shown in
Figure 4.1. We’ll cover each of the cycle-eaters in turn in this chapter. The material
won’t be easy since cycle-eaters are among the most subtle aspects of assembly pro-
gramming. By the same token, however, this will be one of the most important and
rewarding chapters in this book. Don’t worry if you don’t catch everything in this
chapter, but do read it all even if the going gets a bit tough. Cycle-eaters play a key
role in later chapters, so some familiarity with them is highly desirable.

The 8-Bit Bus Cycle-Eater
Look! Down on the motherboard! It’s a 16-bit processor! li ’s a n 8-bit processor! It S.. .
. . .an 8088!
Fans of the 8088 call it a 16-bit processor. Fans of other 16-bit processors call the
8088 an 8-bit processor. The truth of the matter is that the 8088 is a 16-bit processor
that often performs like an %bit processor.
The 8088 is internally a full 16-bit processor, equivalent to an 8086. (In fact, the 8086
is identical to the 8088, except that it has a full 16-bit bus. The 8088 is basically the
poor man’s 8086, because it allows a cheaper-albeit slower-system to be built,
thanks to the half-sized bus.) In terms of the instruction set, the 8088 is clearly a l6bit

In the Lair of the Cycle-Eaters 79

Internally, the 8088 is
a full 16-bit
processor, just like the
8086. No cycle
eaters live in here!

Cycleeater # 1
The 8088's external
data bus is only 8
bits wide, limiting the
maximum data
transfer rate to 1 /2
that of the 8086.

The 8088

Bus Interface Unit

I Prefetch Queue I
\

queue as quickly as
they can be executed
by the EU, so the EU
spends time idling
while waiting for
instructions to be
fetched.

PC Bus

Cycle-eater #2
The 8-bit bus makes it
difficult for the BIU to
fetch instruction bytes
into the prefetch

Memory (system RAM, I ROM, display memory) I
I

Cycle-eater #4
Display adapters insert many
wait states because access to
display memory must be shared
between the 8088 and the
video circuitrv.

Devices (disks, keyboard,
display adapters, timers,
speaker, DMA channels,

and so on) I
I

Cycleeater #3
Dynamic RAM refresh is carried
out by performing a DMA read
every 15 ms. This robs the
8088 of up to 6 out of every 72
cycles.

The location of the major cycle-eaters in the IBM PC.
Figure 4.1

processor, capable of performing any given 16-bit operation-addition, subtraction,
even multiplication or division-with a single instruction. Externally, however, the
8088 is unequivocally an 8-bit processor, since the external data bus is only 8 bits
wide. In other words, the programming interface is 16 bits wide, but the hardware
interface is only 8 bits wide, as shown in Figure 4.2. The result of this mismatch is
simple: Word-sized data can be transferred between the 8088 and memory or pe-
ripherals at only one-half the maximum rate of the 8086, which is to say one-half the
maximum rate for which the Execution Unit of the 8088 was designed.

80 Chapter 4

The 8088

PC Bus 1

The 8088’s internal data bus i s 16
bits wide. This is the data size seen
at the programming interface, since
operands can be either 8 or 16
bits in size.

The interface between the 8088
and the hardware (the interface
from the BIU to the 8088’s 8 data
bus pins, and from the 8088 to
memory and devices via the PC
bus) is 8 bits wide. Consequently,
1 byte is the largest (and only) data
size supported for transfers to and
from memory and other devices
external to the 8088.

Internal data bus widths of the 8088.
Figure 4.2

As shown in Figure 4.1, the 8-bit bus cycle-eater lies squarely on the 8088’s external
data bus. Technically, it might be more accurate to place this cycle-eater in the Bus
Interface Unit, which breaks 16-bit memory accesses into paired 8-bit accesses, but it is
really the limited width of the external data bus that constricts data flow into and out
of the 8088. True, the original PC’s bus is also only 8 bits wide, but that’s just to match
the 8088’s &bit bus; even if the PC’s bus were 16 bits wide, data could still pass into and
out of the 8088 chip itself only 1 byte at a time.
Each bus access by the 8088 takes 4 clock cycles, or 0.838 ps in the 4.77 MHz PC, and
transfers 1 byte. That means that the maximum rate at which data can be transferred
into and out of the 8088 is 1 byte every 0.838 ps. While 8086 bus accesses also take 4
clock cycles, each 8086 bus access can transfer either 1 byte or 1 word, for a maxi-
mum transfer rate of 1 word every 0.838 ps. Consequently, for word-sized memory
accesses, the 8086 has an effective transfer rate of 1 byte every 0.419 ps. By contrast,
every word-sized access on the 8088 requires two 4cycle-long bus accesses, one for
the high byte of the word and one for the low byte of the word. As a result, the 8088
has an effective transfer rate for word-sized memory accesses of just 1 word every
1.676 ps-and that, in a nutshell, is the 8-bit bus cycle-eater.
A related cycle-eater lurks beneath the 386SX chip, which is a 32-bit processor inter-
nally with only a 16-bit path to system memory. The numbers are different, but the

In the Lair of the Cycie-Eaters 8 1

way the cycle-eater operates is exactly the same. AT-compatible systems have 16-bit
data buses, which can access a full 16-bit word at a time. The 386SX can process 32
bits (a doubleword) at a time, however, and loses a lot of time fetching that doubleword
from memory in two halves.

The Impact of the 8-Bit Bus Cycle-Eater
One obvious effect of the 8-bit bus cycle-eater is that word-sized accesses to memory
operands on the 8088 take 4 cycles longer than byte-sized accesses. That’s why the
official instruction timings indicate that for code running on an 8088 an additional
4 cycles are required for every word-sized access to a memory operand. For instance,

mov ax,word ptr [MemVarl

takes 4 cycles longer to read the word at address MemVar than

mov al.byte ptr [MemVarl

takes to read the byte at address MemVar. (Actually, the difference between the two isn’t
very likely to be exactly 4 cycles, for reasons that will become clear once we discuss the
prefetch queue and dynamic RAM refresh cycleeaters later in this chapter.)
What’s more, in some cases one instmction can perform multiple word-sized ac-
cesses, incurring that 4cycle penalty on each access. For example, adding a value to
a word-sized memory variable requires two word-sized accesses-one to read the
destination operand from memory prior to adding to it, and one to write the result
of the addition back to the destination operand-and thus incurs not one but two 4
cycle penalties. As a result

add word ptr CMemVar1.a~

takes about 8 cycles longer to execute than:

add byte ptr CMemVar1,al

String instructions can suffer from the %bit bus cycle-eater to a greater extent than
other instructions. Believe it or not, a single REP MOVSW instruction can lose as
much as 131,070 word-sized memory accesses x 4 cycles, or 524,280 c y c b to the 8-bit
bus cycle-eater! In other words, one 8088 instruction (admittedly, an instruction that
does a great deal) can take over one-tenth of a second longer on an 8088 than on an
8086, simply because of the 8-bit bus. One-tenth of a second! That’s a phenomenally
long time in computer terms; in one-tenth of a second, the 8088 can perform more
than 50,000 additions and subtractions.
The upshot of all this is simply that the 8088 can transfer word-sized data to and from
memory at only half the speed of the 8086, which inevitably causes performance
problems when coupled with an Execution Unit that can process word-sized data

82 Chapter 4

every bit as quickly as an 8086. These problems show up with any code that uses
word-sized memory operands. More ominously, as we will see shortly, the 8-bit bus
cycle-eater can cause performance problems with other sorts of code as well.

What to Do about the 8-Bit Bus Cycle-Eater?
The obvious implication of the 8-bit bus cycle-eater is that byte-sized memory vari-
ables should be used whenever possible. After all, the 8088 performs bytesized memory
accesses just as quickly as the 8086. For instance, Listing 4.1, which uses a byte-sized
memory variable as a loop counter, runs in 10.03 ps per loop. That’s 20 percent
faster than the 12.05 ps per loop execution time of Listing 4.2, which uses a word-
sized counter. Why the difference in execution times? Simply because each word-sized
DEC performs 4 byte-sized memory accesses (two to read the word-sized operand
and two to write the result back to memory), while each byte-sized DEC performs
only 2 byte-sized memory accesses in all.

LISTING 4.1 LST4- 1 .ASM
; M e a s u r e s t h e p e r f o r m a n c e o f a l o o p w h i c h uses a
; b y t e - s i z e d memory v a r i a b l e as t h e l o o p c o u n t e r .

jmp S k i p

Coun te r db 100

S k i p :

LoopTop:
c a l l ZTimerOn

d e c [C o u n t e r]
j n z LoopTop
c a l l Z T i m e r O f f

LISTING 4.2 LST4-2.ASM
: M e a s u r e s t h e p e r f o r m a n c e o f a l o o p w h i c h u s e s a
; w o r d - s i z e d memory v a r i a b l e a s t h e l o o p c o u n t e r .

j m p S k i p

Coun te r dw 100

S k i p :

LoopTop:
c a l l ZTimerOn

dec [Counter]
j n z LoopTop
c a l l Z T i m e r O f f

I’d like to make a brief aside concerning code optimization in the listings in this book.
Throughout this book I’ve modeled the sample code after working code so that the
timing results are applicable to real-world programming. In Listings 4.1 and 4.2, for
example, I could have shown a still greater advantage for byte-sized operands simply by
performing 1,000 DEC instructions in a row, with no branching at all. However, DEC

In the Lair of the Cycle-Eaters 83

instructions don’t exist in avacuum, so in the listings I used code that both decremented
the counter and tested the result. The difference is that between decrementing a
memory location (simply an instruction) and using a loop counter (a functional in-
struction sequence). If you come across code in this book that seems less than optimal,
it’s simply due to my desire to provide code that’s relevant to real programming prob
lems. On the other hand, optimal code is an elusive thing indeed; by no means should
you assume that the code in this book is ideal! Examine it, question it, and improve
upon it, for an inquisitive, skeptical mind is an important part of the Zen of assembly
optimization.
Back to the 8-bit bus cycle-eater. As I’ve said, in 8088 work you should strive to use
byte-sized memory variables whenever possible. That does not mean that you should
use 2 byte-sized memory accesses to manipulate a word-sized memory variable in
preference to 1 word-sized memory access, as, for instance,

mov d 1 , b y t e p t r [MemVarl
mov d h . b y t e p t r [MemVar+l l

versus:

mov d x . w o r d p t r [M e m V a r l

Recall that every access to a memory byte takes at least 4 cycles; that limitation is built
right into the 8088. The 8088 is also built so that the second byte-sized memory
access to a 16-bit memory variable takes just those 4 cycles and no more. There’s no
way you can manipulate the second byte of a word-sized memory variable faster with
a second separate byte-sized instruction in less than 4 cycles. As a matter of fact,
you’re bound to access that second byte much more slowly with a separate instruc-
tion, thanks to the overhead of instruction fetching and execution, address calculation,
and the like.
For example, consider Listing 4.3, which performs 1,000 word-sized reads from
memory. This code runs in 3.77 ps per word read on a 4.77 MHz 8088. That’s 45
percent faster than the 5.49 ps per word read of Listing 4.4, which reads the same
1,000 words as Listing 4.3 but does so with 2,000 byte-sized reads. Both listings per-
form exactly the same number of memory accesses-2,000 accesses, each byte-sized,
as all 8088 memory accesses must be. (Remember that the Bus Interface Unit must
perform two byte-sized memory accesses in order to handle a word-sized memory
operand.) However, Listing 4.3 is considerably faster because it expends only 4 addi-
tional cycles to read the second byte of each word, while Listing 4.4 performs a second
LODSB, requiring 13 cycles, to read the second byte of each word.

LISTING 4.3 LST4-3.ASM
; M e a s u r e s t h e p e r f o r m a n c e o f r e a d i n g 1,000 words
; from memory w i t h 1,000 w o r d - s i z e d a c c e s s e s .

s u b s i . s i

84 Chapter 4

mov c x , 1000
c a l l ZTimerOn
r e p lodsw
c a l l Z T i m e r O f f

LISTING 4.4 LST4-4.ASM
: Measures t he pe r fo rmance o f r e a d i n g 1000 words
: f r o m memory w i t h 2,000 b y t e - s i z e d a c c e s s e s .

sub s i , s i
mov c x , 2000
c a l l ZTimerOn
r e p l o d s b
c a l l Z T i m e r O f f

In short, if you must perform a 16-bit memory access, let the 8088 break the access
into two byte-sized accesses for you. The 8088 is more efficient at that task than your
code can possibly be.
Word-sized variables should be stored in registers to the greatest feasible extent,
since registers are inside the 8088, where 16-bit operations are just as fast as 8-bit
operations because the 8-bit cycle-eater can’t get at them. In fact, it’s a good idea to
keep as many variables of all sorts in registers as you can. Instructions with register-
only operands execute very rapidly, partially because they avoid both the
time-consuming memory accesses and the lengthy address calculations associated
with memory operands.
There is yet another reason why register operands are preferable to memory oper-
ands, and it’s an unexpected effect of the %bit bus cycle-eater. Instructions with only
register operands tend to be shorter (in terms of bytes) than instructions with memory
operands, and when it comes to performance, shorter is usually better. In order to
explain why that is true and how it relates to the &bit bus cycle-eater, I must diverge
for a moment.
For the last few pages, you may well have been thinking that the %bit bus cycle-eater,
while a nuisance, doesn’t seem particularly subtle or difficult to quantify. After all,
any instruction reference tells us exactly how many cycles each instruction loses to
the 8-bit bus cycle-eater, doesn’t it?
Yes and no. It’s true that in general we know approximately how much longer a given
instruction will take to execute with a word-sized memory operand than with a byte-
sized operand, although the dynamic RAM refresh and wait state cycle-eaters (which
I’ll cover a little later) can raise the cost of the 8-bit bus cycle-eater considerably.
However, all word-sized memory accesses lose 4 cycles to the 8-bit bus cycle-eater,
and there’s one sort of word-sized memory access we haven’t discussed yet: instruc-
tion fetching. The ugliest manifestation of the %bit bus cycle-eater is in fact the
prefetch queue cycle-eater.

In the Lair of the Cycle-Eaters 85

The Prefetch Queue Cycle-Eater
In an 8088 context, here’s the prefetch queue cycle-eater in a nutshell: The 8088’s 8-bit
external data bus keeps the Bus Interface Unit from fetching instruction bytes as fast
as the 16-bit Execution Unit can execute them, so the Execution Unit often lies idle
while waiting for the next instruction byte to be fetched.
Exactly why does this happen? Recall that the 8088 is an 8086 internally, but accesses
word-sized memory data at only one-half the maximum rate of the 8086 due to the
8088’s 8-bit external data bus. Unfortunately, instructions are among the word-sized
data the 8086 fetches, meaning that the 8088 can fetch instructions at only one-half
the speed of the 8086. On the other hand, the 8086-equivalent Execution Unit of the
8088 can execute instructions every bit as fast as the 8086. The net result is that the
Execution Unit burns up instruction bytes much faster than the Bus Interface Unit
can fetch them, and ends up idling while waiting for instructions bytes to arrive.
The BIU can fetch instruction bytes at a maximum rate of one byte every 4 cycles-
and that 4-cycle per instruction byte rate is the ultimate limit on overall instruction execution
time, regardless of EU speed. While the EU may execute a given instruction that’s al-
ready in the prefetch queue in less than 4 cycles per byte, over time the EU can’t
execute instructions any faster than they can arrive-and they can’t arrive faster than
1 byte every 4 cycles.
Clearly, then, the prefetch queue cycle-eater is nothing more than one aspect of the
8-bit bus cycle-eater. 8088 code often runs at less than the Execution Unit’s maxi-
mum speed because the 8-bit data bus can’t keep up with the demand for instruction
bytes. That’s straightforward enough-so why all the fuss about the prefetch queue
cycle-eater?
What makes the prefetch queue cycle-eater tricky is that it’s undocumented and
unpredictable. That is, with a word-sized memory access, such as

mov C b x 1 . a ~

it’s well-documented that an extra 4 cycles will always be required to write the upper
byte of AX to memory. Not so with the prefetch queue cycle-eater lurking nearby.
For instance, the instructions

s h r a x . 1
s h r a x . 1
s h r a x . 1
s h r a x . 1
s h r a x . 1

should execute in 10 cycles, since each SHR takes 2 cycles to execute, according to
Intel’s specifications. Those specifications contain Intel’s official instruction execu-
tion times, but in this case-and in many others-the specifications are drastically
wrong. Why? Because they describe execution time once an instruction reaches thep-efetch

86 Chapter 4

queue. They say nothing about whether a given instruction will be in the prefetch
queue when it’s time for that instruction to run, or how long it will take that instruc-
tion to reach the prefetch queue if it’s not there already. Thanks to the low
performance of the 8088’s external data bus, that’s a glaring omission-but, alas, an
unavoidable one. Let’s look at why the official execution times are wrong, and why
that can’t be helped.

Official Execution Times Are Only Part of the Story
The sequence of 5 SHR instructions in the last example is 10 bytes long. That means
that it can never execute in less than 24 cycles even if the 4byte prefetch queue is full
when it starts, since 6 instruction bytes would still remain to be fetched, at 4 cycles
per fetch. If the prefetch queue is empty at the start, the sequence could take 40
cycles. In short, thanks to instruction fetching, the code won’t run at its documented
speed, and could take up to four times longer than it is supposed to.
W h y does Intel document Execution Unit execution time rather than overall in-
struction execution time, which includes both instruction fetch time and Execution
Unit (EU) execution time? Well, instruction fetching isn’t performed as part of in-
struction execution by the Execution Unit, but instead is carried on in parallel by
the Bus Interface Unit (BIU) whenever the external data bus isn’t in use or when-
ever the EU runs out of instruction bytes to execute. Sometimes the BIU is able to
use spare bus cycles to prefetch instruction bytes before the EU needs them, so in
those cases instruction fetching takes no time at all, practically speaking. At other
times the EU executes instructions faster than the BIU can fetch them, and instruc-
tion fetching then becomes a significant part of overall execution time. As a result,
the effective fetch time for a given instruction varies great4 depending on the code mix preceding
that instruction. Similarly, the state in which a given instruction leaves the prefetch
queue affects the overall execution time of the following instructions.

In other words, while the execution time for a given instruction is constant, the p fetch time for that instruction depends heavily on the context in which the instruc-
tion is executing-the amount of prefetching the preceding instructions
allowed-and can vary from a full 4 cycles per instruction byte to no time at all.

As we’ll see later, other cycle-eaters, such as DRAM refresh and display memory wait
states, can cause prefetching variations even during different executions of the same
code sequence. Given that, it’s meaningless to talk about the prefetch time of a given
instruction except in the context of a specific code sequence.
So now you know why the official instruction execution times are often wrong, and
why Intel can’t provide better specifications. You also know now why it is that you
must time your code if you want to know how fast it really is.

In the Lair of the Cycle-Eaters 87

There Is No Such Beast as a True Instruction Execution Time
The effect of the code preceding an instruction on the execution time of that in-
struction makes the Zen timer trickier to use than you might expect, and complicates
the interpretation of the results reported by the Zen timer. For one thing, the Zen
timer is best used to time code sequences that are more than a few instructions long;
below lops or so, prefetch queue effects and the limited resolution of the clock
driving the timer can cause problems.
Some slight prefetch queue-induced inaccuracy usually exists even when the Zen timer
is used to time longer code sequences, since the calls to the Zen timer usually alter the
code’s prefetch queue from its normal state. (Branches-jumps, calls, returns and the
like-empty the prefetch queue.) Ideally, the Zen timer is used to measure the perfor-
mance of an entire subroutine, so the prefetch queue effects of the branches at the
start and end of the subroutine are similar to the effects of the calls to the Zen timer
when you’re measuring the subroutine’s performance.
Another way in which the prefetch queue cycle-eater complicates the use of the Zen
timer involves the practice of timing the performance of a few instructions over and over.
I’ll often repeat one or two instructions 100 or 1,000 times in a row in listings in this
book in order to get timing intervals that are long enough to provide reliable mea-
surements. However, as we just learned, the actual performance of any 8088 instruction
depends on the code mix preceding any given use of that instruction, which in turn
affects the state of the prefetch queue when the instruction starts executing. Alas,
the execution time of an instruction preceded by dozens of identical instructions
reflects just one of many possible prefetch states (and not a very likely state at that),
and some of the other prefetch states may well produce distinctly different results.
For example, consider the code in Listings 4.5 and 4.6. Listing 4.5 shows our familiar
SHR case. Here, because the prefetch queue is always empty, execution time should
work out to about 4 cycles per byte, or 8 cycles per SHR, as shown in Figure 4.3.
(Figure 4.3 illustrates the relationship between instruction fetching and execution
in a simplified way, and is not intended to show the exact timings of 8088 opera-
tions.) That’s quite a contrast to the official 2-cycle execution time of SHR. In fact,
the Zen timer reports that Listing 4.5 executes in 1.81~s per byte, or slightly more than
4 cycles per byte. (The extra time is the result of the dynamic RAM refresh cycle-
eater, which we’ll discuss shortly.) Going by Listing 4.5, we would conclude that the
“true” execution time of SHR is 8.64 cycles.

LISTING 4.5 LST4-5.ASM
: Measures t he pe r fo rmance o f 1,000 SHR i n s t r u c t i o n s
: i n a row. S ince SHR e x e c u t e s i n 2 c y c l e s b u t i s
: 2 b y t e s l o n g , t h e p r e f e t c h queue i s always empty,
: a n d p r e f e t c h i n g t i m e d e t e r m i n e s t h e overall
: p e r f o r m a n c e o f t h e c o d e .

c a l l ZTimerOn
r e p t 1000

88 Chapter 4

shr ax.1
endm
c a l l ZTimerOff

LISTING 4.6 LST4-6.ASM
: Measures the performance o f 1,000 MUL/SHR i n s t r u c t i o n
; p a i r s i n a r o w . The lengthy execution t ime of MUL
: should keep the prefetch queue from ever emptying.

mov cx. 1000
sub ax.ax
c a l l ZTimerOn
rep t 1000
mu1 ax
shr ax.1
endm
c a l l ZTimerOff

Execution Unit
Activity

Execution Unit
executes shr

Execution Unit
idle

Execution Unit
executes shr

Execution Unit
idle

Execution Unit
executes shr

Execution Unit
idle

Bus Interface
Unit Activity

Bus Interface Unit
prefetches next shr

Bus Interface Unit
prefetches next shr

Bus Interface Unit
prefetches next shr

Execution and instruction prefetching sequence for Listing 4.5.
Figure 4.3

In the Lair of the Cycle-Eaters 89

Now let’s examine Listing 4.6. Here each SHR follows a MUL instruction. Since
MUL instructions take so long to execute that the prefetch queue is always full when
they finish, each SHR should be ready and waiting in the prefetch queue when the
preceding MUL ends. As a result, we’d expect that each SHR would execute in 2
cycles; together with the 118-cycle execution time of multiplying 0 times 0, the total
execution time should come to 120 cycles per SHR/MUL pair, as shown in Figure 4.4.
And, by God, when we run Listing 4.6 we get an execution time of 25.14 ps per SHR/
MUL pair, or exact4 120 cycles! According to these results, the “true” execution time
of SHR would seem to be 2 cycles, quite a change from the conclusion we drew from
Listing 4.5.
The key point is this: We’ve seen one code sequence in which SHR took 8-plus cycles
to execute, and another in which it took only 2 cycles. Are we talking about two
different forms of S H R here? Of course not-the difference is purely a reflection of
the differing states in which the preceding code left the prefetch queue. In Listing 4.5,
each SHR after the first few follows a slew of other SHR instructions which have
sucked the prefetch queue dry, so overall performance reflects instruction fetch time.
By contrast, each SHR in Listing 4.6 follows a MUL instruction which leaves the
prefetch queue full, so overall performance reflects Execution Unit execution time.
Clearly, either instruction fetch time or Execution Unit execution time-or even a
mix of the two, if an instruction is partially prefetched-can determine code perfor-
mance. Some people operate under a rule of thumb by which they assume that the
execution time of each instruction is 4 cycles times the number of bytes in the in-
struction. While that’s often true for register-only code, it frequently doesn’t hold
for code that accesses memory. For one thing, the rule should be 4 cycles times the
number of memory accesses, not instruction bytes, since all accesses take 4 cycles on
the 8088-based PC. For another, memory-accessing instructions often have slower
Execution Unit execution times than the 4 cycles per memory access rule would
dictate, because the 8088 isn’t very fast at calculating memory addresses. Also, the 4
cycles per instruction byte rule isn’t true for register-only instructions that are al-
ready in the prefetch queue when the preceding instruction ends.
The truth is that it never hurts performance to reduce either the cycle count or the
byte count of a given bit of code, but there’s no guarantee that one or the other will
improve performance either. For example, consider Listing 4.7, which consists of a
series of 4cycle, 2-byte MOV A L , O instructions, and which executes at the rate of
1.81 ps per instruction. Now consider Listing 4.8, which replaces the 4-cycle MOV
A L , O with the 3-cycle (but still 2-byte) S U B a,&. Despite its l-cycle-per-instruction
advantage, Listing 4.8 runs at exactly the same speed as Listing 4.7. The reason: Both
instructions are 2 bytes long, and in both cases it is the 8-cycle instruction fetch time,
not the 3 or 4cycle Execution Unit execution time, that limits performance.

90 Chapter 4

Execution Unit
Activity

Execution Unit
executes shr

Execution Unit
executes mu1

Execution Unit
executes shr

Execution Unit
executes mu1

,
Cvcle 0

I Cvcle 3 t Cycle 4
Cycle 5
Cycle 6
Cycle 7

Cycle 1 1

Bus Interface
Unit Activity

Bus Interface
Unit prefetches

next shr

Bus Interface
Unit prefetches

next mu1

Bus Interface
Unit idle

Bus Interface
Unit prefetches

next shr

Execution and instruction prefetching sequence for Listing 4.6.
Figure 4.4

In the Lair of the Cycle-Eaters 91

LISTING 4.7 LST4-7.ASM
: M e a s u r e s t h e p e r f o r m a n c e o f r e p e a t e d MOV A L . 0 i n s t r u c t i o n s
: w h i c h t a k e 4 c y c l e s e a c h a c c o r d i n g t o I n t e l ’ s o f f i c i a l
: s p e c i f i c a t i o n s .

sub ax,ax
c a l l ZTimerOn
r e p t 1000
mov a1 ,O
endm
c a l l Z T i m e r O f f

LISTING 4.8 LST4-8.ASM
: M e a s u r e s t h e p e r f o r m a n c e o f r e p e a t e d SUB A L . A L i n s t r u c t i o n s
: w h i c h t a k e 3 c y c l e s e a c h a c c o r d i n g t o I n t e l ’ s o f f i c i a l
: s p e c i f i c a t i o n s .

sub ax.ax
c a l l ZTimerOn
r e p t 1000
sub a1 .a1
endm
c a l l Z T i m e r O f f

As you can see, it’s easy to be drawn into thinking you’re saving cycles when you’re
not. You can only improve the performance of a specific bit of code by reducing the
factor-either instruction fetch time or execution time, or sometimes a mix of the
two-that’s limiting the performance of that code.
In case you missed it in all the excitement, the variability of prefetching means that
our method of testing performance by executing 1,000 instructions in a row by no
means produces “true” instruction execution times, any more than the official ex-
ecution times in the Intel manuals are “true” times. The fact of the matter is that a
given instruction takes at least as long to execute as the time given for it in the Intel
manuals, but may take as much as 4 cycles per byte longer, depending on the state of
the prefetch queue when the preceding instruction ends.

The only true execution time for an instruction is a time measured in a certain
context, and that time is meaningfiil only in that context.

What we Teal& want is to know how long useful working code takes to run, not how long
a single instruction takes, and the Zen timer gives us the tool we need to gather that
information. Granted, it would be easier if we could just add up neatly documented
instruction execution times-but that’s not going to happen. Without actually mea-
suring the performance of a given code sequence, you simply don’t know how fast it
is. For crying out loud, even the people who designed the 8088 at Intel couldn’t tell
you exactly how quickly a given 8088 code sequence executes on the PC just by look-
ing at it! Get used to the idea that execution times are only meaningful in context,
learn the rules of thumb in this book, and use the Zen timer to measure your code.

92 Chapter 4

Approximating Overall Execution Times
Don’t think that because overall instruction execution time is determined by both
instruction fetch time and Execution Unit execution time, the two times should be
added together when estimating performance. For example, practically speaking,
each SHR in Listing 4.5 does not take 8 cycles of instruction fetch time plus 2 cycles
of Execution Unit execution time to execute. Figure 4.3 shows that while a given
SHR is executing, the fetch of the next SHR is starting, and since the two operations
are overlapped for 2 cycles, there’s no sense in charging the time to both instruc-
tions. You could think of the extra instruction fetch time for SHR in Listing 4.5 as
being 6 cycles, which yields an overall execution time of 8 cycles when added to the
2 cycles of Execution Unit execution time.
Alternatively, you could think of each SHR in Listing 4.5 as taking 8 cycles to fetch,
and then executing in effectively 0 cycles while the next SHR is being fetched. Which-
ever perspective you prefer is fine. The important point is that the time during which
the execution of one instruction and the fetching of the next instruction overlap
should only be counted toward the overall execution time of one of the instructions.
For all intents and purposes, one of the two instructions runs at no performance cost
whatsoever while the overlap exists.
As a working definition, we’ll consider the execution time of a given instruction in a
particular context to start when the first byte of the instruction is sent to the Execution
Unit and end when the first byte of the next instruction is sent to the EU.

What to Do about the Prefetch Queue Cycle-Eater?
Reducing the impact of the prefetch queue cycle-eater is one of the overriding prin-
ciples of high-performance assembly code. How can you do this? One effective
technique is to minimize access to memory operands, since such accesses compete
with instruction fetching for precious memory accesses. You can also greatly reduce
instruction fetch time simply by your choice of instructions: Keep your instructions
short. Less time is required to fetch instructions that are 1 or 2 bytes long than in-
structions that are 5 or 6 bytes long. Reduced instruction fetching lowers minimum
execution time (minimum execution time is 4 cycles times the number of instruc-
tion bytes) and often leads to faster overall execution.
While short instructions minimize overall prefetch time, ironically they actually of-
ten suffer more from the prefetch queue bottleneck than do long instructions. Short
instructions generally have such fast execution times that they drain the prefetch
queue despite their small size. For example, consider the SHR of Listing 4.5, which
runs at only 25 percent of its Execution Unit execution time even though it’s only 2
bytes long, thanks to the prefetch queue bottleneck. Short instructions are nonethe-
less generally faster than long instructions, thanks to the combination of fewer
instruction bytes and faster Execution Unit execution times, and should be used as
much as possible-just don’t expect them to run at their “official” documented speeds.

In the Lair of the Cycle-Eaters 93

More than anything, the above rules mean using the registers as heavily as possible,
both because register-only instructions are short and because they don’t perform
memory accesses to read or write operands. However, using the registers is a rule of
thumb, not a commandment. In some circumstances, it may actually be faster to
access memory. (The look-up table technique is one such case.) What’s more, the
performance of the prefetch queue (and hence the performance of each instruc-
tion) differs from one code sequence to the next, and can even differ during different
executions of the same code sequence.
All in all, writing good assembler code is as much an art as a science. As a result, you
should follow the rules of thumb described here-and then time your code to see
how fast it really is. You should experiment freely, but always remember that actual,
measured performance is the bottom line.

Holding Up the 8088
In this chapter I’ve taken you further and further into the depths of the PC, telling
you again and again that you must understand the computer at the lowest possible
level in order to write good code. At this point, you may well wonder, “Have we
gotten low enough?”
Not quite yet. The 8-bit bus and prefetch queue cycle-eaters are low-level indeed, but
we’ve one level yet to go. Dynamic RAM refresh and wait states-our next topics-
together form the lowest level at which the hardware of the PC affects code performance.
Below this level, the PC is of interest only to hardware engineers.
Before we begin our discussion of dynamic RAM refresh, let’s step back for a mo-
ment to take an overall look at this lowest level of cycle-eaters. In truth, the distinctions
between wait states and dynamic RAM refresh don’t much matter to a programmer.
What is important is that you understand this: Under certain circumstances, devices on
the PC bus can stop the CPU for 1 or more cycles, making your code run more slowly than it
seemingly should.
Unlike all the cycle-eaters we’ve encountered so far, wait states and dynamic RAM
refresh are strictly external to the CPU, as was shown in Figure 4.1. Adapters on the
PC’s bus, such as video and memory cards, can insert wait states on any bus access,
the idea being that they won’t be able to complete the access properly unless the
access is stretched out. Likewise, the channel of the DMA controller dedicated to
dynamic RAM refresh can request control of the bus at any time, although the CPU
must relinquish the bus before the DMA controller can take over. This means that
your code can’t directly control wait states or dynamic RAM refresh. However, code
can sometimes be designed to minimize the effects of these cycle-eaters, and even
when the cycle-eaters slow your code without there being a thing in the world you
can do about it, you’re still better off understanding that you’re losing performance
and knowing why your code doesn’t run as fast as it’s supposed to than you were
programming in ignorance.

94 Chapter 4

Let’s start with DRAM refresh, which affects the performance of every program that
runs on the PC.

Dynamic RAM Refresh: The Invisible Hand
Dynamic RAM (DRAM) refresh is sort of an act of God. By that I mean that DRAM
refresh invisibly and inexorably steals a certain fraction of all available memory ac-
cess time from your programs, when they are accessing memory for code and data.
(When they are accessing cache on more recent processors, theoretically the DRAM
refresh cycle-eater doesn’t come into play, but there are other cycle-eaters waiting to
prey on cache-bound programs.) While you could stop DRAM refresh, you wouldn’t
want to since that would be a sure prescription for crashing your computer. In the
end, thanks to DRAM refresh, almost all code runs a bit slower on the PC than it
otherwise would, and that’s that.
A bit of background: A static RAM (SRAM) chip is a memory chip that retains its
contents indefinitely so long as power is maintained. By contrast, each of several blocks
of bits in a dynamic RAM (DRAM) chip retains its contents for only a short time after
it’s accessed for a read or write. In order to get a DRAM chip to store data for an
extended period, each of the blocks of bits in that chip must be accessed regularly, so
that the chip’s stored data is kept refreshed and valid. So long as this is done often
enough, a DRAM chip will retain its contents indefinitely.
All of the PC’s system memory consists of DRAM chips. Each DRAM chip in the PC
must be completely refreshed about once every four milliseconds in order to ensure
the integrity of the data it stores. Obviously, it’s highly desirable that the memory in
the PC retain the correct data indefinitely, so each DRAM chip in the PC must always
be refreshed within 4 ms of the last refresh. Since there’s no guarantee that a given
program will access each and every DRAM block once every 4 ms, the PC contains
special circuitry and programming for providing DRAM refresh.

How DRAM Refresh Works in the PC
On the original 8088-based IBM PC, timer 1 of the 8253 timer chip is programmed
at power-up to generate a signal once every 72 cycles, or once every 15.08p. That
signal goes to channel 0 of the 8237 DMA controller, which requests the bus from
the 8088 upon receiving the signal. (DMA stands for direct memory access, the ability of
a device other than the 8088 to control the bus and access memory directly, without
any help from the 8088.) As soon as the 8088 is between memory accesses, it gives
control of the bus to the 8237, which in conjunction with special circuitry on the
PC’s motherboard then performs a single 4cycle read access to 1 of 256 possible
addresses, advancing to the next address on each successive access. (The read access
is only for the purpose of refreshing the DRAM; the data that is read isn’t used.)

In the Lair of the Cycle-Eaters 95

The 256 addresses accessed by the refresh DMA accesses are arranged so that taken
together they properly refresh all the memory in the PC. By accessing one of the 256
addresses every 15.08 ps, all of the PC’s DRAM is refreshed in 256 x 15.08 ps, or 3.86
ms, which is just about the desired 4 ms time I mentioned earlier. (Only the first
640K of memory is refreshed in the PC; video adapters and other adapters above
640K containing memory that requires refreshing must provide their own DRAM
refresh in pre-AT systems.)
Don’t sweat the details here. The important point is this: For at least 4 out of every 72
cycles, the original PC’s bus is given over to DRAM refresh and is not available to the
8088, as shown in Figure 4.5. That means that as much as 5.56 percent of the PC’s
already inadequate bus capacity is lost. However, DRAM refresh doesn’t necessarily

72 cycle$

4 cycles

The PC bus dynamic RAM (DRAM) refresh.
Figure 4.5

96 Chapter 4

stop the 8088 in its tracks for 4 cycles. The Execution Unit of the 8088 can keep
processing while DRAM refresh is occurring, unless the EU needs to access memory.
Consequently, DRAM refresh can slow code performance anywhere from 0 percent
to 5.56 percent (and actually a bit more, as we’ll see shortly), depending on the
extent to which DRAM refresh occupies cycles during which the 8088 would other-
wise be accessing memory.

The impact of DRAM Refresh
Let’s look at examples from opposite ends of the spectrum in terms of the impact of
DRAM refresh on code performance. First, consider the series of MUL instructions
in Listing 4.9. Since a 16-bit MUL on the 8088 executes in between 118 and 133
cycles and is only 2 bytes long, there should be plenty of time for the prefetch queue
to fill after each instruction, even after DRAM refresh has taken its slice of memory
access time. Consequently, the prefetch queue should be able to keep the Execution
Unit well-supplied with instruction bytes at all times. Since Listing 4.9 uses no memory
operands, the Execution Unit should never have to wait for data from memory, and
DRAM refresh should have no impact on performance. (Remember that the Execu-
tion Unit can operate normally during DRAM refreshes so long as it doesn’t need to
request a memory access from the Bus Interface Unit.)

LISTING 4.9 LST4-9.ASM
: M e a s u r e s t h e p e r f o r m a n c e o f r e p e a t e d MUL i n s t r u c t i o n s ,
; w h i c h a l l o w t h e p r e f e t c h q u e u e t o be f u l l a t a l l t i m e s ,
; t o d e m o n s t r a t e a case i n w h i c h DRAM r e f r e s h h a s no i m p a c t
: on code per formance.

sub ax .ax
c a l l ZTimerOn
r e p t 1000
mu1 ax
endm
c a l l Z T i m e r O f f

Running Listing 4.9, we find that each MUL executes in 24.72 ps, or exactly 118
cycles. Since that’s the shortest time in which MUL can execute, we can see that no
performance is lost to DRAM refresh. Listing 4.9 clearly illustrates that DRAM re-
fresh only affects code performance when a DRAM refresh forces the Execution
Unit of the 8088 to wait for a memory access.
Now let’s look at the series of SHR instructions shown in Listing 4.10. Since SHR
executes in 2 cycles but is 2 bytes long, the prefetch queue should be empty while
Listing 4.10 executes, with the 8088 prefetching instruction bytes non-stop. As a re-
sult, the time per instruction of Listing 4.10 should precisely reflect the time required
to fetch the instruction bytes.

In the Lair of the Cycle-Eaters 97

LISTING 4.10 LST4- 1 O.ASM
: M e a s u r e s t h e p e r f o r m a n c e o f r e p e a t e d SHR i n s t r u c t i o n s .
: w h i c h e m p t y t h e p r e f e t c h q u e u e , t o d e m o n s t r a t e t h e
: w o r s t - c a s e i m p a c t o f DRAM r e f r e s h on code per formance.

c a l l ZTimerOn
r e p t 1000
s h r a x . 1
endm
c a l l Z T i m e r O f f

Since 4 cycles are required to read each instruction byte, we’d expect each SHR to
execute in 8 cycles, or 1.676 ps, if there were no DRAM refresh. In fact, each SHR in
Listing 4.10 executes in 1.81 ps, indicating that DRAM refresh is taking 7.4 percent
of the program’s execution time. That’s nearly 2 percent more than our worst-case
estimate of the loss to DRAM refresh overhead! In fact, the result indicates that DRAM
refresh is stealing not 4, but 5.33 cycles out of every 72 cycles. How can this be?
The answer is that a given DRAM refresh can actually hold up CPU memory accesses
for as many as 6 cycles, depending on the timing of the DRAM refresh’s DMA re-
quest relative to the 8088’s internal instruction execution state. When the code in
Listing 4.10 runs, each DRAM refresh holds up the CPU for either 5 or 6 cycles,
depending on where the 8088 is in executing the current S H R instruction when the
refresh request occurs. Now we see that things can get even worse than we thought:
DRAM reji-esh can steal as much as 8.33 percent of available memory access time-4 out of
a e r y 72 cycles-from the 8088.
Which of the two cases we’ve examined reflects reality? While either case can happen,
the latter case-significant performance reduction, ranging as high as 8.33 percent-
is far more likely to occur. This is especially true for high-performance assembly
code, which uses fast instructions that tend to cause non-stop instruction fetching.

What to Do About the DRAM Refresh Cycle-Eater?
Hmmm. When we discovered the prefetch queue cycle-eater, we learned to use short
instructions. When we discovered the 8-bit bus cycle-eater, we learned to use byte-
sized memory operands whenever possible, and to keep word-sized variables in
registers. What can we do to work around the DRAM refresh cycle-eater?
Nothing.
As I’ve said before, DRAM refresh is an act of God. DRAM refresh is a fundamental,
unchanging part of the PC’s operation, and there’s nothing you or I can do about it.
If refresh were any less frequent, the reliability of the PC would be compromised, so
tinkering with either timer 1 or DMA channel 0 to reduce DRAM refresh overhead is
out. Nor is there any way to structure code to minimize the impact of DRAM refresh.
Sure, some instructions are affected less by DRAM refresh than others, but how many
multiplies and divides in a row can you really use? I suppose that code could conceiv-
ably be structured to leave a free memory access every 72 cycles, so DRAM refresh

98 Chapter 4

wouldn’t have any effect. In the old days when code size was measured in bytes, not
K bytes, and processors were less powerful-and complex-programmers did in fact
use similar tricks to eke every last bit of performance from their code. When pro-
gramming the PC, however, the prefetch queue cycle-eater would make such careful
code synchronization a difficult task indeed, and any modest performance improve-
ment that did result could neverjustify the increase in programming complexity and
the limits on creative programming that such an approach would entail. Besides, all
that effort goes to waste on faster 8088s, 286s, and other computers with different
execution speeds and refresh characteristics. There’s no way around it: Useful code
accesses memory frequently and at irregular intervals, and over the long haul DRAM
refresh always exacts its price.
If you’re still harboring thoughts of reducing the overhead of DRAM refresh, con-
sider this. Instructions that tend not to suffer very much from DRAM refresh are
those that have a high ratio of execution time to instruction fetch time, and those
aren’t the fastest instructions of the PC. It certainly wouldn’t make sense to use slower
instructions just to reduce DRAM refresh overhead, for it’s total execution time-
DRAM refresh, instruction fetching, and all-that matters.
The important thing to understand about DRAM refresh is that it generally slows
your code down, and that the extent of that performance reduction can vary consider-
ably and unpredictably, depending on how the DRAM refreshes interactwith your code’s
pattern of memory accesses. When you use the Zen timer and get a fractional cycle
count for the execution time of an instruction, that’s often the DRAM refresh cycle-
eater at work. (The display adapter cycle-eater is another possible culprit, and, on
386s and later processors, cache misses and pipeline execution hazards produce this
sort of effect as well.) Whenever you get two timing results that differ less or more
than they seemingly should, that’s usually DRAM refresh too. Thanks to DRAM re-
fresh, variations of up to 8.33 percent in PC code performance are par for the course.

Wait States
Wait states are cycles during which a bus access by the CPU to a device on the PC’s
bus is temporarily halted by that device while the device gets ready to complete the
read or write. Wait states are well and truly the lowest level of code performance.
Everything we have discussed (and will discuss)-even DMA accesses-can be af-
fected by wait states.
Wait states exist because the CPIJ must to be able to coexist with any adapter, no mat-
ter how slow (within reason). The 8088 expects to be able to complete each bus access-a
memory or 1 / 0 read or write-in 4 cycles, but adapters can’t always respond that
quickly for a number of reasons. For example, display adapters must split access to
display memory between the CPU and the circuitry that generates the video signal
based on the contents of display memory, so they often can’t immediately fulfill a
request by the CPU for a display memory read or write. To resolve this conflict, display

In the Lair of the Cycle-Eaters 99

adapters can tell the CPU to wait during bus accesses by inserting one or more wait
states, as shown in Figure 4.6. The CPU simply sits and idles as long as wait states are
inserted, then completes the access as soon as the display adapter indicates its readi-
ness by no longer inserting wait states. The same would be true of any adapter that
couldn’t keep up with the CPU.
Mind you, this is all transparent to executing code. An instruction that encounters wait
states runs exactly as if there were no wait states, only slower. Wait states are nothing
more or less than wasted time as far as the CPU and your program are concerned.
By understanding the circumstances in which wait states can occur, you can avoid
them when possible. Even when it’s not possible to work around wait states, it’s still
to your advantage to understand how they can cause your code to run more slowly.
First, let’s learn a bit more about wait states by contrast with DRAM refresh. Unlike
DRAM refresh, wait states do not occur on any regularly scheduled basis, and are of
no particular duration. Wait states can only occur when an instruction performs a
memory or 1/0 read or write. Both the presence of wait states and the number of
wait states inserted on any given bus access are entirely controlled by the device
being accessed. When it comes to wait states, the CPU is passive, merely accepting
whatever wait states the accessed device chooses to insert during the course of the
access. All of this makes perfect sense given that the whole point of the wait state

Cycle 0
Cycle 1
Cycle 2
Cycle 3

Cycle n

Cycle n+l

Cycle n+2

Cycle n+3

The 8088 starts an access to
display memory.

The display adapter recognizes that
this access is to display memory.

The display adapter inserts n wait
states while waiting for an access
to display memory to become
available. The Bus Interface Unit of
the 8088 is idle during this time.

The 8088 continues with the access
to display memory as if the wait
states had never occurred.

Video wait states inserted by the display adapteK
Figure 4.6

100 Chapter 4

mechanism is to allow a device to stretch out any access to itself for however much
time it needs to perform the access.
As with DRAM refresh, wait states don’t stop the 8088 completely. The Execution
Unit can continue processing while wait states are inserted, so long as the EU doesn’t
need to perform a bus access. However, in the PC, wait states most often occur when
an instruction accesses a memory operand, so in fact the Execution Unit usually is
stopped by wait states. (Instruction fetches rarely wait in an 8088-based PC because
system memory is zero-wait-state. AT-class memory systems routinely insert 1 or more
wait states, however.)
As it turns out, wait states pose a serious problem in just one area in the PC. While
any adapter can insert wait states, in the PC only display adapters do so to the extent
that performance is seriously affected.

The Display Adapter Cycle-Eater
Display adapters must serve two masters, and that creates a fundamental performance
problem. Master #1 is the circuitry that drives the display screen. This circuitry must
constantly read display memory in order to obtain the information used to draw the
characters or dots displayed on the screen. Since the screen must be redrawn be-
tween 50 and 70 times per second, and since each redraw of the screen can require
as many as 36,000 reads of display memory (more in Super VGA modes), master #1
is a demanding master indeed. No matter how demanding master #1 gets, however,
its needs must always be met-otherwise the quality of the picture on the screen
would suffer.
Master #2 is the CPU, which reads from and writes to display memory in order to
manipulate the bytes that the video circuitry reads to form the picture on the screen.
Master #2 is less important than master #1, since the CPU affects display quality only
indirectly. In other words, if the video circuitry has to wait for display memory ac-
cesses, the picture will develop holes, snow, and the like, but if the CPU has to wait
for display memory accesses, the program will just run a bit slower-no big deal.
It matters a great deal which master is more important, for while both the CPU and
the video circuitry must gain access to display memory, only one of the two masters
can read or write display memory at any one time. Potential conflicts are resolved by
flat-out guaranteeing the video circuitry however many accesses to display memory it
needs, with the CPU waiting for whatever display memory accesses are left over.
It turns out that the 8088 CPU has to do a lot of waiting, for three reasons. First, the
video circuitry can take as much as about 90 percent of the available display memory
access time, as shown in Figure 4.7, leaving as little as about 10 percent of all display
memory accesses for the 8088. (These percentages vary considerably among the many
EGA and VGA clones.)

In the Lair of the Cycle-Eaters 101

50 cycles

.

n Display memory is
beina read for
vide: data and is
not available to the
8088; wait states
are inserted when
8088 accesses
occur.

Allocation of display memory access.
Figure 4.7

Second, because the displayed dots (or pixels, short for “picture elements”) must be
drawn on the screen at a constant speed, many display adapters provide memory ac-
cesses only at fixed intervals. As a result, time can be lost while the 8088 synchronizes
with the start of the next display adapter memory access, even if the video circuitry
isn’t accessing display memory at that time, as shown in Figure 4.8.
Finally, the time it takes a display adapter to complete a memory access is related to
the speed of the clock which generates pixels on the screen rather than to the memory
access speed of the 8088. Consequently, the time taken for display memory to com-
plete an 8088 read or write access is often longer than the time taken for system
memory to complete an access, even if the 8088 lucks into hitting a free display
memory access just as it becomes available, again as shown in Figure 4.8. Any or all of

102 Chapter 4

the three factors I’ve described can result in wait states, slowing the 8088 and creat-
ing the display adapter cycle-eater.
If some of this is Greek to you, don’t worry. The important point is that display memory
is not very fast compared to normal system memory. How slow is it? Incredibly slow.
Remember how slow IBM’s ill-fated PCjrwas? In case you’ve forgotten, I’ll refresh your
memory: The PCjrwas at best only half as fast as the PC. The PCjrhad an 8088 running
at 4.77 MHz, just like the PC-why do you suppose it was so much slower? I’ll tell you
why: All the memory in the Pcjr was display memory.

In the Lair of the Cycle-Eaters 103

Enough said. All the memory in the PC is not display memory, however, and unless
you’re thickheaded enough to put code in display memory, the PC isn’t going to run
as slowly as a PC& (Putting code or other non-video data in unused areas of display
memory sounds like a neat idea-until you consider the effect on instruction
prefetching of cutting the 8088’s already-poor memory access performance in half.
Running your code from display memory is sort of like running on a hypothetical
8084-an 8086 with a 4-bit bus. Not recommended!) Given that your code and data
reside in normal system memory below the 640K mark, how great an impact does
the display adapter cycle-eater have on performance?
The answer varies considerably depending on what display adapter and what display
mode we’re talking about. The display adapter cycle-eater is worst with the Enhanced
Graphics Adapter (EGA) and the original Video Graphics Array (VGA). (Many VGAs,
especially newer ones, insert many fewer wait states than IBM’s original VGA. On the
other hand, Super VGAs have more bytes of display memory to be accessed in high-
resolution mode.) While the Color/Graphics Adapter (CGA) , Monochrome Display
Adapter (MDA), and Hercules Graphics Card (HGC) all suffer from the display
adapter cycle-eater as well, they suffer to a lesser degree. Since the VGA represents
the base standard for PC graphics now and for the foreseeable future, and since it is
the hardest graphics adapter to wring performance from, we’ll restrict our discus-
sion to the VGA (and its close relative, the EGA) for the remainder of this chapter.

The Impact of the Display Adapter Cycle-Eater
Even on the EGA and VGA, the effect of the display adapter cycle-eater depends on
the display mode selected. In text mode, the display adapter cycle-eater is rarely a
major factor. It’s not that the cycle-eater isn’t present; however, a mere 4,000 bytes
control the entire text mode display, and even with the display adapter cycle-eater it
just doesn’t take that long to manipulate 4,000 bytes. Even if the display adapter cycle-
eater were to cause the 8088 to take as much as 5ps per display memory access-more
than five times normal-it would still take only 4,000~ 2x 5ps, or 40 ms, to read and
write every byte of display memory. That’s a lot of time as measured in 8088 cycles, but
it’s less than the blink of an eye in human time, and video performance only matters in
human time. After all, the whole point of drawing graphics is to convey visual informa-
tion, and if that information can be presented faster than the eye can see, that is by
definition fast enough.
That’s not to say that the display adapter cycleeater can’t matter in text mode. In Chap
ter 3, I recounted the story of a debate among letter-writers to a magazine about exactly
how quickly characters could be written to display memory without causing snow. The
writers carefully added up Intel’s instruction cycle times to see how many writes to dis-
play memory they could squeeze into a single horizontal retrace interval. (On a CGA, it’s
only during the short horizontal retrace interval and the longer vertical retrace interval
that display memory can be accessed in 80column text mode without causing snow.) Of

104 Chapter 4

course, now we know that their cardinal sin was to ignore the prefetch queue; even if
there were no wait states, their calculations would have been overly optimistic. There are
display memory wait states as well, however, so the calculations were not just optimistic
but wildly optimistic.
Text mode situations such as the above notwithstanding, where the display adapter
cycle-eater really kicks in is in graphics mode, and most especially in the high-resolu-
tion graphics modes of the EGA and VGA. The problem here is not that there are
necessarily more wait states per access in high-resolution graphics modes (that varies
from adapter to adapter and mode to mode). Rather, the problem is simply that are
many more bytes of display memory per screen in these modes than in lower-resolu-
tion graphics modes and in text modes, so many more display memory accesses-each
incurring its share of display memory wait states-are required in order to draw an
image of a given size. When accessing the many thousands of bytes used in the high-
resolution graphics modes, the cumulative effects of display memory wait states can
seriously impact code performance, even as measured in human time.
For example, if we assume the same 5 ps per display memory access for the EGA’s
high-resolution graphics mode that we assumed for text mode, it would take 26,000
X 2 X 5 ps, or 260 ms, to scroll the screen once in the EGAs high-resolution graphics
mode, mode 10H. That’s more than one-quarter of a second-noticeable by human
standards, an eternity by computer standards.
That sounds pretty serious, but we did make an unfounded assumption about memory
access speed. Let’s get some hard numbers. Listing 4.11 accesses display memory at
the 8088’s maximum speed, by way of a REP MOVSW with display memory as both
source and destination. The code in Listing 4.11 executes in 3.18 ps per access to
display memory-not as long as we had assumed, but a long time nonetheless.

LISTING 4.1 1 LST4- 1 1 .ASM
: Times speed o f memory a c c e s s t o E n h a n c e d G r a p h i c s
: A d a p t e r g r a p h i c s mode d i s p l a y memory a t A000:OOOO.

mov ax.0010h
i n t 1 0 h : s e l e c t h i - r e s EGA g r a p h i c s

: mode 10 hex (AH=O s e l e c t s
: B I O S s e t mode f u n c t i o n ,
: w i t h AL-mode t o s e l e c t)

mov ax.Oa000h
mov ds ,ax
mov es .ax :move t o & f r o m same segment
sub s i . s i :move t o & f r o m same o f f s e t
mov d i , s i
mov cx.800h :move 2 K words
c l d
c a l l ZTimerOn
r e p movsw ; s i m p l y r e a d e a c h o f t h e f i r s t

; 2K words o f t h e d e s t i n a t i o n s e g m e n t ,
: w r i t i n g e a c h b y t e i m m e d i a t e l y b a c k

In the Lair of the Cycle-Eaters 105

: t o t h e same address . No memory
: l o c a t i o n s a r e a c t u a l l y a l t e r e d : t h i s
: i s j u s t t o measure memory access
: t i m e s

c a l l Z T i m e r O f f

mov ax.0003h
i n t 10h : r e t u r n t o t e x t mode

For comparison, let’s see how long the same code takes when accessing normal system
RAM instead of display memory. The code in Listing 4.12, which performs a REP
MOVSW from the code segment to the code segment, executes in 1.39 ps per display
memory access. That means that on average, 1.79 ps (more than 8 cycles!) are lost to
the display adapter cycle-eater on each access. In other words, the display adapter
cycle-eater can rnure than doubb the execution time of 8088 code!

LISTING 4.1 2 LST4- 1 2.ASM
: Times s w e d o f memory access t o no rma l sys tem
: memory.

mov ax .ds
mov es .ax
s u b s i . s i
mov d i , s i
mov cx .800h
c l d
c a l l ZTimerOn
r e p movsw

:move t o & f r o m same segment
:move t o & f r o m same o f f s e t

:move 2K words

: s i m p l y r e a d e a c h o f t h e f i r s t
: 2K w o r d s o f t h e d e s t i n a t i o n s e g m e n t ,
: w r i t i n g e a c h b y t e i m m e d i a t e l y b a c k
: t o t h e same address . No memory
: l o c a t i o n s a r e a c t u a l l y a l t e r e d : t h i s
: i s j u s t t o measure memory access
: t i m e s

c a l l Z T i m e r O f f

Bear in mind that we’re talking about a worst case here; the impact of the display
adapter cycle-eater is proportional to the percent of time a given code sequence
spends accessing display memory.

P A line-drawing subroutine, which executes perhaps a dozen instructions for each
display memory access, generally loses less performance to the display adapter
cycle-eater than does a block-copy or scrolling subroutine that uses REP MOVS
instructions. Scaled and three-dimensional graphics, which spend a great deal of
time performing calculations (often using very slow floating-point arithmetic),
tend to suffer less.

In addition, code that accesses display memory infrequently tends to suffer only about
half of the maximum display memory wait states, because on average such code will
access display memory halfway between one available display memory access slot and

106 Chapter 4

the next. As a result, code that accesses display memory less intensively than the
code in Listing 4.1 1 will on average lose 4 or 5 rather than 8-plus cycles to the display
adapter cycle-eater on each memory access.
Nonetheless, the display adapter cycle-eater always takes its toll on graphics code.
Interestingly, that toll becomes much higher on ATs and 80386 machines because
while those computers can execute many more instructions per microsecond than
can the 8088-based PC, it takes just as long to access display memory on those com-
puters as on the 8088-based PC. Remember, the limited speed of access to a graphics
adapter is an inherent characteristic of the adapter, so the fastest computer around
can’t access display memory one iota faster than the adapter will allow.

What to Do about the Display Adapter Cycle-Eater?
What can we do about the display adapter cycle-eater? Well, we can minimize display
memory accesses whenever possible. In particular, we can try to avoid read/modify/
write display memory operations of the sort used to mask individual pixels and clip
images. Why? Because read/modify/write operations require two display memory
accesses (one read and one write) each time display memory is manipulated. In-
stead, we should try to use writes of the sort that set all the pixels in a given byte of
display memory at once, since such writes don’t require accompanying read accesses.
The key here is that only half as many display memory accesses are required to write
a byte to display memory as are required to read a byte from display memory, mask
part of it off and alter the rest, and write the byte back to display memory. Half as
many display memory accesses means half as many display memory wait states.

Moreovel; 486s and Pentiums, as well as recent Super VGAs, employ write-cach- p ing schemes that make display memory writes considerably faster than display
memory reads.

Along the same line, the display adapter cycle-eater makes the popular exclusive-OR
animation technique, which requires paired reads and writes of display memory,
less-than-ideal for the PC. Exclusive-OR animation should be avoided in favor of
simply writing images to display memory whenever possible.
Another principle for display adapter programming on the 8088 is to perform mul-
tiple accesses to display memory very rapidly, in order to make use of as many of the
scarce accesses to display memory as possible. This is especially important when many
large images need to be drawn quickly, since only by using virtually every available
display memory access can many bytes be written to display memory in a short period of
time. Repeated string instructions are ideal for making maximum use of display
memory accesses; of course, repeated string instructions can only be used on whole
bytes, so this is another point in favor of modifying display memory a byte at a time.
(On faster processors, however, display memory is so slow that it often pays to do several

In the Lair of the Cycle-Eaters 107

instructions worth of work between display memory accesses, to take advantage of
cycles that would otherwise be wasted on the wait states.)
It would be handy to explore the display adapter cycle-eater issue in depth, with lots
of example code and execution timings, but alas, I don’t have the space for that right
now. For the time being, all you really need to know about the display adapter cycleeater
is that on the 8088 you can lose more than 8 cycles of execution time on each access
to display memory. For intensive access to display memory, the loss really can be as high
as 8-plus cycles (and up to 50, 100, or even more on 486s and Pentiums paired with
slow VGAs), while for average graphics code the loss is closer to 4 cycles; in either
case, the impact on performance is significant. There is only one way to discoverjust
how significant the impact of the display adapter cycle-eater is for any particular
graphics code, and that is of course to measure the performance of that code.

Cycle-Eaters: A Summary
We’ve covered a great deal of sophisticated material in this chapter, so don’t feel bad
if you haven’t understood everything you’ve read; it will all become clear from fur-
ther reading, especially once you study, time, and tune code that you have written
yourself. What’s really important is that you come away from this chapter under-
standing that on the 8088:

The 8-bit bus cycle-eater causes each access to a word-sized operand to be 4

The prefetch queue cycle-eater can cause instruction execution times to be as

The DRAM refresh cycle-eater slows most PC code, with performance reduc-
tions ranging as high as 8.33 percent.
The display adapter cycle-eater typically doubles and can more than triple the
length of the standard 4-cycle access to display memory, with intensive display
memory access suffering most.

This basic knowledge about cycle-eaters puts you in a good position to understand
the results reported by the Zen timer, and that means that you’re well on your way to
writing high-performance assembler code.

cycles longer than an equivalent access to a byte-sized operand.

much as four times longer than the officially documented cycle times.

What Does It All Mean?
There you have it: life under the programming interface. It’s not a particularly pretty
picture for the inhabitants of that strange realm where hardware and software meet
are little-known cycle-eaters that sap the speed from your unsuspecting code. Still,
some of those cycle-eaters can be minimized by keeping instructions short, using the
registers, using byte-sized memory operands, and accessing display memory as little
as possible. None of the cycle-eaters can be eliminated, and dynamic RAM refresh
can scarcely be addressed at all; still, aren’t you better off knowing how fast your

108 Chapter 4

code real4 runs-and why-than you were reading the official execution times and
guessing? And while specific cycle-eaters vary in importance on later x86-family pro-
cessors, with some cycle-eaters vanishing altogether and new ones appearing, the
concept that understanding these obscure gremlins is a key to performance remains
unchanged, as we’ll see again and again in later chapters.

In the Lair of the Cycle-Eaters 109

ree little words should strike terror into the heart of anyone
who owns more t bag and a toothbrush. Our last move was the usual

the distance from the old house to the new was only
“everything smaller than a washing machine. We have

a sizable household , kids, computers, you name it-so the moving pro-
A large number-33, to be exact. I personally spent

riving back and forth between the two houses. The move took

things: What does this have to do with high-perfor-
mance programming, and why on earth didn’t I rent a truck and get the move over
in one or two trips, saving hours of driving? As it happens, the second question an-
swers the first. I didn’t rent a truck because it seerned easier and cheaper to use cars-no
big truck to drive, no rentals, spread the work out more manageably, and so on.
It wasn’t easier, and wasn’t even much cheaper. (It costs quite a bit to drive a car 330
miles, to say nothing of the value of 15 hours of my time.) But, at the time, it seemed
as though my approach would be easier and cheaper. In fact, I didn’t realize just how
much time I had wasted driving back and forth until I sat down to write this chapter.
In Chapter 1, I briefly discussed using restartable blocks. This, you might remember, is
the process of handling in chunks data sets too large to fit in memory so that they

113

searching files with restartable blocks

can be processed just about as fast as if they did fit in memory. The restartable block
approach is very fast but is relatively difficult to program.
At the opposite end of the spectrum lies byte-by-byte processing, whereby DOS (or,
in less extreme cases, a group of library functions) is allowed to do all the hard work,
so that you only have to deal with one byte at a time. Byte-by-byte processing is easy to
program but can be extremely slow, due to the vast overhead that results from invok-
ing DOS each time a byte must be processed.
Sound familiar? It should. I moved via the byte-by-byte approach, and the overhead
of driving back and forth made for miserable performance. Renting a truck (the
restartable block approach) would have required more effort and forethought, but
would have paid off handsomely.

The easy, familiar approach often has nothing in its favor except that it requires p less thinking; not a great virtue when writing high-performance code-or when
moving.

And with that, let’s look at a fairly complex application of restartable blocks.

Searching for Text
The application we’re going to examine searches a file for a specified string. We’ll
develop a program that will search the file specified on the command line for a
string (also specified on the command line), then report whether the string was
found or not. (Because the searched-for string is obtained via argv, it can’t contain
any whitespace characters.)
This is a very limited subset of what search utilities such as grep can do, and isn’t
really intended to be a generally useful application; the purpose is to provide insight
into restartable blocks in particular and optimization in general in the course of
developing a search engine. That search engine will, however, be easy to plug into
any program, and there’s nothing preventing you from using it in a more fruitful
context, like searching through a user-selectable file set.
The first point to address in designing our program involves the appropriate text-
search approach to use. Literally dozens of workable ways exist to search a file. We
can immediately discard all approaches that involve reading any byte of the file more
than once, because disk access time is orders of magnitude slower than any data
handling performed by our own code. Based on our experience in Chapter 1, we
can also discard all approaches that get bytes either one at a time or in small sets
from DOS. We want to read big “buffers-full” of bytes at a pop from the searched file,
and the bigger the buffer the better-in order to minimize DOS’s overhead. A good
rough cut is a buffer that will be between 16K and 64K, depending on the exact
search approach, 64Kbeing the maximum size because near pointers make for supe-
rior performance.

1 1 4 Chapter 5

So we know we want to work with a large buffer, filling it as infrequently as possible.
Now we have to figure out how to search through a file by loading it into that large
buffer in chunks. To accomplish this, we have to know how we want to do our search-
ing, and that’s not immediately obvious. Where do we begin?

Well, it might be instructive to consider how we would search if our search involved
only one buffer, already resident in memory. In other words, suppose we don’t have to
bother with file handling at all, and further suppose that we don’t have to deal with
searching through multiple blocks. After all, that’s a good description of the all-important
inner loop of our searching program, where the program will spend virtually all of its
time (aside from the unavoidable disk access overhead).

Avoiding the String Trap
The easiest approach would be to use a C/C++ library function. The closest match to
what we need is strstr(), which searches one string for the first occurrence of a second
string. However, while strstr() would work, it isn’t ideal for our purposes. The problem is
this: Where we want to search a fixed-length buffer for the first occurrence of a string,
strstr() searches a string for the first occurrence of another string.
We could put a zero byte at the end of our buffer to allow strstr() to work, but why
bother? The strstr() function must spend time either checking for the end of the
string being searched or determining the length of that string-wasted effort given
that we already know exactly how long our search buffer is. Even if a given strstr()
implementation is well-written, its performance will suffer, at least for our applica-
tion, from unnecessary overhead.

This illustrates why you shouldn ’t think ofC/C+ + libraryfunctions as black boxes;
understand what they do and try to figure out how they do it, and relate that to
their performance in the context you i-e interested in.

Brute-Force Techniques
Given that no C/Ct+ library function meets our needs precisely, an obvious alterna-
tive approach is the brute-force technique that uses memcmp() to compare every
potential matching location in the buffer to the string we’re searching for, as illus-
trated in Figure 5.1.
By the way, we could, of course, use our own code, working with pointers in a loop, to
perform the comparison in place of memcmp(). But memcmp() will almost certainly
use the very fast REPZ CMPS instruction. However, never assume! It wouldn’t hurt to
use a debugger to check out the actual machine-code implementation of memcmp()
from your compiler. If necessary, you could always write your own assembly language
implementation of memcmp().

Crossing the Border 1 15

Invoking memcmp() for each potential match location works, but entails consider-
able overhead. Each comparison requires that parameters be pushed and that a call
to and return from memcmp() be performed, along with a pass through the com-
parison loop. Surely there’s a better way!
Indeed there is. We can eliminate most calls to memcmp() by performing a simple
test on each potential match location that will reject most such locations right off the
bat. We’ll just check whether the first character of the potentially matching buffer
location matches the first character of the string we’re searching for. We could make
this check by using a pointer in a loop to scan the buffer for the next match for the
first character, stopping to check for a match with the rest of the string only when the
first character matches, as shown in Figure 5.2.

Using memchr()
There’s yet a better way to implement this approach, however. Use the memchr() func-
tion, which does nothing more or less than find the next occurrence of a specified
character in a fixed-length buffer (presumably by using the extremely efficient REPNZ
SCASB instruction, although again it wouldn’t hurt to check). By using memchr() to
scan for potential matches that can then be fully tested with memcmp(), we can build
a highly efficient search engine that takes good advantage of the information we have
about the buffer being searched and the string we’re searching for. Our engine also
relies heavily on repeated string instructions, assuming that the memchr() and
memcmp() library functions are properly coded.

1 16 Chapter 5

The brute-force searching technique.
Figure 5.1

We’re going to go with the this approach in our file-searching program; the only
trick lies in deciding how to integrate this approach with restartable blocks in order
to search through files larger than our buffer. This certainly isn’t the fastest-possible
searching algorithm; as one example, the Boyer-Moore algorithm, which cleverly
eliminates many buffer locations as potential matches in the process of checking
preceding locations, can be considerably faster. However, the Boyer-Moore algorithm
is quite complex to understand and implement, and would distract us from our main
focus, restartable blocks, so we’ll save it for a later chapter (Chapter 14, to be pre-
cise). Besides, I suspect you’ll find the approach we’ll use to be fast enough for most
purposes.
Now that we’ve selected a searching approach, let’s integrate it with file handling
and searching through multiple blocks. In other words, let’s make it restartable.

Making a Search Restartable
As it happens, there’s no great trick to putting the pieces of this search program
together. Basically, we’ll read in a buffer of data (we’ll work with 16K at a time to
avoid signed overflow problems with integers), search it for a match with the
memchr()/memcmp() engine described, and exit with a “string found” response if
the desired string is found.

Crossing the Border 1 1 7

Otherwise, we’ll load in another buffer full of data from the file, search it, and so on.
The only trick lies in handling potentially matching sequences in the file that start in
one buffer and end in the next-that is, sequences that span buffers. We’ll handle
this by copying the unchecked bytes at the end of one buffer to the start of the next
and reading that many fewer bytes the next time we fill the buffer.
The exact number of bytes to be copied from the end of one buffer to the start of the
next is the length of the searched-for string minus 1, since that’s how many bytes at
the end of the buffer can’t be checked as possible matches (because the check would
run off the end of the buffer).
That’s really all there is to it. Listing 5.1 shows the file-searching program. As you can
see, it’s not particularly complex, although a few fairly opaque lines of code are
required to handle merging the end of one block with the start of the next. The code
that searches a single block-the function SearchForString()-is simple and compact
(as it should be, given that it’s by far the most heavily-executed code in the listing).
Listing 5.1 nicely illustrates the core concept of restartable blocks: Organize your
program so that you can do your processing within each block as fast as you could if
there were only one block-which is to say at top speed-and make your blocks as
large as possible in order to minimize the overhead associated with going from one
block to the next.

LISTING 5.1 SEARCH.C
I* Program t o s e a r c h t h e f i l e s p e c i f i e d b y t h e f i r s t c o m m a n d - l i n e
* argument f o r t h e s t r i n g s p e c i f i e d b y t h e s e c o n d c o m m a n d - l i n e
* argument . Per fo rms the search by read ing and search ing b locks
* o f s i z e BLOCK-SIZE. *I

i n c l u d e < s t d i o . h >
i n c l u d e < f c n t l . h>
i n c l u d e < s t r i n g . h >
i n c l u d e < a l l o c . h > I* a l 1 o c . h f o r B o r l a n d c o m p i l e r s ,

m a l 1 o c . h f o r M i c r o s o f t c o m p i l e r s */

d e f i n e BLOCK-SIZE 0x4000 I* w e ’ l l p r o c e s s t h e f i l e i n 1 6 K b l o c k s * /

I* Searches the spec i f ied number o f sequences i n t h e s p e c i f i e d
b u f f e r f o r m a t c h e s t o S e a r c h s t r i n g o f S e a r c h S t r i n g L e n g t h . N o t e
t h a t t h e c a l l i n g code shou ld a l ready have shor tened SearchLength
i f n e c e s s a r y t o c o m p e n s a t e f o r t h e d i s t a n c e f r o m t h e e n d o f t h e
b u f f e r t o t h e l a s t p o s s i b l e s t a r t o f a matching sequence i n t h e
b u f f e r .

*I

i n t SearchForString(unsigned c h a r * B u f f e r , i n t S e a r c h L e n g t h ,

(
u n s i g n e d c h a r * S e a r c h s t r i n g . i n t S e a r c h S t r i n g L e n g t h)

uns igned cha r *Po ten t i a lMa tch :

I* Search s o l o n g as t h e r e a r e p o t e n t i a l - m a t c h l o c a t i o n s

w h i l e (SearchLength) I
r e m a i n i n g *I

I* See i f t h e f i r s t c h a r a c t e r o f S e a r c h s t r i n g c a n be found * /

1 18 Chapter 5

i f ((P o t e n t i a l M a t c h =

memchr (Buf fe r . *Searchs t r ing , SearchLength)) -- NULL) I

I
break: /* No matches i n t h i s b u f f e r */

I* The f i r s t c h a r a c t e r m a t c h e s : see i f t h e r e s t o f t h e s t r i n g

i f (SearchSt r i ngLeng th -= 1 1 {
a l s o matches * /

r e t u r n (1) : I* Tha t one m a t c h i n g c h a r a c t e r was t h e w h o l e
s e a r c h s t r i n g , s o we 've go t a match * I

1
e l s e {

/ * Check whether the remain ing charac ters match * I
i f (!memcmp(PotentialMatch + 1. S e a r c h s t r i n g + 1.

SearchSt r i ngLeng th - 1)) {
r e t u r n c l) ; / * We've g o t a match * I

1
1
I* The s t r i n g d o e s n ' t m a t c h : k e e p g o i n g b y p o i n t i n g p a s t t h e

SearchLength -- P o t e n t i a l M a t c h - B u f f e r + 1;
B u f f e r - P o t e n t i a l M a t c h + 1:

p o t e n t i a l m a t c h l o c a t i o n we j u s t r e j e c t e d * I

1

1

m a i n (i n t a r g c . c h a r * a r g v []) {

r e t u r n (0) : I* No match found * /

i n t Done: / * I n d i c a t e s
i n t Handle: / * H a n d l e o f
i n t Work ingLength; / * L e n g t h o f
i n t S e a r c h S t r i n g L e n g t h ; / * L e n g t h o f
i n t B lockSearchLength: I* Length t o
i n t Found; / * I n d i c a t e s

s t a t u s * I

whether search i s done * /
f i l e b e i n g s e a r c h e d * /
c u r r e n t b l o c k * /
s t r i n g t o s e a r c h f o r */
s e a r c h i n c u r r e n t b l o c k * /
f i n a l s e a r c h c o m o l e t i o n

i n t NextLoadCount; I * # o f b y t e s t o r e a d i n t o n e x t b l o c k ,
a c c o u n t i n g f o r b y t e s c o p i e d f r o m t h e
l a s t b l o c k * /

uns igned char *Work ingBlock; I* B l o c k s t o r a g e b u f f e r *I
u n s i g n e d c h a r * S e a r c h s t r i n g ; I* P o i n t e r t o t h e s t r i n g t o s e a r c h f o r */
uns igned char *NextLoadPt r ; / * O f f s e t a t w h i c h t o s t a r t l o a d i n g

t h e n e x t b l o c k , a c c o u n t i n g f o r
b y t e s c o p i e d f r o m t h e l a s t b l o c k * /

/ * Check f o r t h e p r o p e r number o f arguments *I
i f (a rgc !- 3 {

p r i n t f (" u s a g e : s e a r c h f i l e n a m e s e a r c h - s t r i n g \ n ") ;
e x i t (1) :

1

/ * T r y t o open t h e f i l e t o be searched * /
i f ((Handle - open(a rgv [l] . OERDONLY 1 0-BINARY)) -- -1 1 {

p r i n t f (" C a n ' t open f i l e : % s \ n " . a r g v [l l) ;
e x i t (1) :

>
I* C a l c u l a t e t h e l e n g t h o f t e x t t o s e a r c h f o r * I
S e a r c h s t r i n g - argvCE1:
SearchSt r i ngLeng th - s t r l e n (S e a r c h S t r i n g) :
I* T r y t o g e t memory i n w h i c h t o b u f f e r t h e d a t a */
i f ((Work ingBlock = malloc(BLOCK-SIZE)) -- NULL 1 I

p r i n t f (" C a n ' t g e t enough memory\n"):
e x i t (1) ;

1

Crossing the Border 1 19

I* Load t h e f i r s t b l o c k a t t h e s t a r t o f t h e b u f f e r , and t r y t o

NextLoadPtr - WorkingBlock:
NextLoadCount = BLOCK-SIZE:
Done = 0: I* Not done w i t h s e a r c h y e t *I
Found = 0: I* Assume we w o n ' t f i n d a match * I
/ * S e a r c h t h e f i l e i n BLOCK-SIZE chunks * /

fill t h e e n t i r e b u f f e r * /

do
I*

i f

1
I*

i f

1

/*

Read i n however many b y t e s a r e n e e d e d t o fill o u t t h e b l o c k
(a c c o u n t i n g f o r b y t e s c o p i e d o v e r f r o m t h e l a s t b l o c k) . o r
t h e r e s t o f t h e b y t e s i n t h e f i l e , w h i c h e v e r i s l e s s * I
((WorkingLength - read(Hand1e. NextLoadPtr .

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v C 1 1) :
e x i t (1) :

NextLoadCount)) == -1) I

I f we d i d n ' t r e a d all t h e b y t e s we requested, we're done
a f t e r t h i s b l o c k , w h e t h e r we f i n d a m a t c h o r n o t * I
(WorkingLength !- NextLoadCount {
Done - 1:

A c c o u n t f o r a n y b y t e s we cop ied f rom the end o f t h e l a s t
b l o c k i n t h e t o t a l l e n g t h o f t h i s b l o c k *I

WorkingLength +- NextLoadPtr - WorkingBlock:
/ * C a l c u l a t e t h e number o f b y t e s i n t h i s b l o c k t h a t c o u l d

p o s s i b l y be t h e s t a r t o f a m a t c h i n g s e q u e n c e t h a t l i e s
e n t i r e l y i n t h i s b l o c k (s e q u e n c e s t h a t r u n o f f t h e e n d o f
t h e b l o c k will b e t r a n s f e r r e d t o t h e n e x t b l o c k and found
when t h a t b l o c k i s s e a r c h e d)

* I
i f ((B lockSearchLength -

WorkingLength - SearchSt r ingLength + 1) <= 0 1 {
Done = 1: / * Too f e w c h a r a c t e r s i n t h i s b l o c k f o r

t h e r e t o b e any poss ib le matches , s o t h i s
i s t h e f i n a l b l o c k and we ' re done w i thout
f i n d i n g a match

*I
I
e l s e {

/ * S e a r c h t h i s b l o c k *I
i f (SearchForS t r i ng (Work ingB1ock . BlockSearchLength.

S e a r c h s t r i n g . S e a r c h S t r i n g L e n g t h)) {
Found = 1: I* We've found a match *I
Done = 1:

I
e l s e I

I*

i f

1
/*

Copy any b y t e s f r o m t h e end o f t h e b l o c k t h a t s t a r t
p o t e n t i a l l y - m a t c h i n g s e q u e n c e s t h a t w o u l d r u n o f f
t h e e n d o f t h e b l o c k o v e r t o t h e n e x t b l o c k */
(SearchSt r ingLength > 1) I
memcpy(WorkingB1ock.

WorkingBlock+BLOCK-SIZE - SearchSt r ingLength + 1.
SearchSt r ingLength - 1) :

Set up t o l o a d t h e n e x t b y t e s f r o m t h e f i l e a f t e r t h e
b y t e s c o p i e d f r o m t h e end o f t h e c u r r e n t b l o c k * I

NextLoadPtr = WorkingBlock + SearchSt r ingLength - 1:
NextLoadCount - BLOCK-SIZE - S e a r c h S t r i n g L e n g t h + 1:

1

120 Chapter 5

I
1 w h i l e (!Done) :

/* R e p o r t t h e r e s u l t s * /
i f (Found) (

1 e l s e I

I
e x i t (F o u n d) ; / * R e t u r n t h e f o u n d / n o t f o u n d s t a t u s a s t h e

p r i n t f (” S t r i n g f o u n d \ n ”) :

p r i n t f (” S t r i n g n o t f o u n d \ n ”) :

DOS e r r o r l e v e l * /
}

Interpreting Where the Cycles Go
To boost the overall performance of Listing 5.1, I would normally convert
SearchForString() to assembly language at this point. However, I’m not going to do
that, and the reason is as important a lesson as any discussion of optimized assembly
code is likely to be. Take a moment to examine some interesting performance as-
pects of the C implementation, and all should become much clearer.
As you’ll recall from Chapter 1, one of the important rules for optimization involves
knowing when optimization is worth bothering with at all. Another rule involves
understanding where most of a program’s execution time is going. That’s more true
for Listing 5.1 than you might think.
When Listing 5.1 is run on a 1 MB assembly source file, it takes about three seconds
to find the string “xxxend” (which is at the end of the file) on a 20 MHz 386 ma-
chine, with the entire file in a disk cache. If BLOCK-SIZE is trimmed from 16K to
4K, execution time does not increaseperceptibly! At 2K, the program slows slightly; it’s not
until the block size shrinks to 64 bytes that execution time becomes approximately
double that of the 16K buffer.
So the first thing we’ve discovered is that, while bigger blocks do make for the best
performance, the increment in performance may not be very large, and might not
justify the extra memory required for those larger blocks. Our next discovery is that,
even though we read the file in large chunks, most of the execution time of Listing
5.1 is nonetheless spent in executing the read() function.
When I replaced the read() function call in Listing 5.1 with code that simply fools
the program into thinking that a 1 MB file is being read, the program ran almost
instantaneously-in less than 1/2 second, even when the searched-for string wasn’t
anywhere to be found. By contrast, Listing 5.1 requires three seconds to run even
when searching for a single character that isn’t found anywhere in the file, the case
in which a single call to memchr() (and thus a single REPNZ SCASB) can eliminate
an entire block at a time.
All in all, the time required for DOS disk access calls is taking up at least 80 percent
of execution time, and search time is less than 20 percent of overall execution time.
In fact, search time is probably a good deal less than 20 percent of the total, given

Crossing the Border 1 21

that the overhead of loading the program, running through the C startup code,
opening the file, executing printf(), and exiting the program and returning to the
DOS shell are also included in my timings. Given which, it should be apparent why
converting to assembly language isn’t worth the trouble-the best we could do by
speeding up the search is a 10 percent or so improvement, and that would require
more than doubling the performance of code that already uses repeated string in-
structions to do most of the work.
Not likely.

Knowing When Assembly Is Pointless
So that’s why we’re not going to go to assembly language in this example-which is not
to say it would never be worth converting the search engine in Listing 5.1 to assembly.
If, for example, your application will typically search buffers in which the first char-
acter of the search string occurs frequently as might be the case when searching a
text buffer for a string starting with the space character an assembly implementation
might be several times faster. Why? Because assembly code can switch from REPNZ
S W B to match the first character to REPZ CMPS to check the remaining charac-
ters in just a few instructions.
In contrast, Listing 5.1 must return from memchr(), set up parameters, and call
memcmp() in order to do the same thing. Likewise, assembly can switch back to
REPNZ SCASB after a non-match much more quickly than Listing 5.1. The switch-
ing overhead is high; when searching a file completely filled with the character z for
the string “zy,” Listing 5.1 takes almost 1/2 minute, or nearly an order of magnitude
longer than when searching a file filled with normal text.
It might also be worth converting the search engine to assembly for searches performed
entirely in memory; with the overhead of file access eliminated, improvements in search-
engine performance would translate directly into significantly faster overall
performance. One such application that would have much the same structure as List-
ing 5.1 would be searching through expanded memory buffers, and another would be
searching through huge (segment-spanning) buffers.
And so we find, as we so often will, that optimization is definitely not a cut-and-dried
matter, and that there is no such thing as a single “best” approach.

You must know what your application will typically do, and you must know whether p you ’re more concerned with average or worst-case performance before you can
decide how best to speed up yourprogram-and, indeed, whether speeding it up is
worth doing at all.

By the way, don’t think that just because very large block sizes don’t much improve
performance, it wasn’t worth using restartable blocks in Listing 5.1. Listing 5.1 runs
more than three times more slowly with a block size of 32 bytes than with a block size

122 Chapter 5

of 4K, and any byte-by-byte approach would surely be slower still, due to the over-
head of repeated calls to DOS and/or the C stream I/O library.
Restartable blocks do minimize the overhead of DOS file-access calls in Listing 5.1;
it’s just that there’s no way to reduce that overhead to the point where it becomes
worth attempting to further improve the performance of our relatively efficient search
engine. Although the search engine is by no means fully optimized, it’s nonetheless
as fast as there’s any reason for it to be, given the balance of performance among the
components of this program.

Always Look Where Execution Is Going
I’ve explained two important lessons: Know when it’s worth optimizing further, and
use restartable blocks to process large data sets as a series of blocks, with each block
handled at high speed. The first lesson is less obvious than it seems.
When I set out to write this chapter, I fully intended to write an assembly language
version of Listing 5.1, and I expected the assembly version to be much faster. When
I actually looked at where execution time was going (which I did by modifylng the
program to remove the calls to the read() function, but a code profiler could be used
to do the same thing much more easily), I found that the best code in the world
wouldn’t make much difference.

When you try to speed up code, take a moment to identzfy the hot spots in your 1 program so that you know where optimization is needed and whether it will make
a significant difference before you invest your time.

As for restartable blocks: Here we tackled a considerably more complex application
of restartable blocks than we did in Chapter l-which turned out not to be so difficult
after all. Don’t let irregularities in the programming tasks you tackle, such as strings
that span blocks, fluster you into settling for easy, general-and slow-solutions.
Focus on making the inner loop-the code that handles each block-as efficient as
possible, then structure the rest of your code to support the inner loop.
Programming with restartable blocks isn’t easy, but when speed is an issue, using
restartable blocks in the right places more than pays for itself with greatly improved
performance. And when speed is not an issue, of course, or in code that’s not time-
critical, you wouldn’t dream of wasting your time on optimization.
Would you?

Crossing the Border 1 23

ne Instructions May Do More Than You Think
authors’ dinner hosted by PC Tech Jarnal at Fall

Comdex, back in own as a computer editor
o Pascal, editions 1 through 672 (or

would soon make him. I was
r table, and, not surprisingly,
uters, computer writing, and

k and enjoying it at the time, I none-
nce-fiction writer when I grew up. (I
lite company, especially in the com-
rson has told me they plan to write

science fiction “someday.” Given that probably fewer than 500-I’m guessing here-
original science fiction and fantasy short stories, and perhaps a few more novels than
that, are published each year in this country, I see a few mid-life crises coming.)
At any rate, I had accumulated a small collection of rejection slips, and fancied my-
self something of an old hand in the field. At the end of the dinner, as the other
writers complained half-seriously about how little they were paid for writing for Tech
Journal, I leaned over to Jeff and whispered, ‘You know, the pay isn’t so bad here. You
should see what they pay for science fiction-ven to the guys who win awards!”
To which Jeff replied, “I know. I’ve been nominated for two Hugos.”

127

how machine instructions may do more than you think

Oh.
Had I known I was seated next to a real, live science-fiction writer-an award-nominated
writer, by God!-I would have pumped him for all I was worth, but the possibility had
never occurred to me. I was at a dinner put on by a computer magazine, seated next
to an editor who had just finished a book about Turbo Pascal, and, gosh, it was obvi-
ous that the appropriate topic was computers.
For once, the moral is not “don’t judge a book by its cover.” Jeff is in fact what he
appeared to be at face value: a computer writer and editor. However, he is more, too;
face value wasn’t full value. You’ll similarly find that face value isn’t always full value
in computer programming, and especially so when working in assembly language,
where many instructions have talents above and beyond their obvious abilities.
On the other hand, there are also a number of instructions, such as LOOP, that are
designed to perform specific functions but aren’t always the best instructions for
those functions. So don’t judge a book by its cover, either.
Assembly language for the x86 family isn’t like any other language (for which we
should, without hesitation, offer our profuse thanks). Assembly language reflects
the design of the processor rather than the way we think, so it’s full of multiple
instructions that perform similar functions, instructions with odd and often confus-
ing side effects, and endless ways to string together different instructions to do much
the same things, often with seemingly minuscule differences that can turn out to be
surprisingly important.
To produce the best code, you must decide precisely what you need to accomplish, then
put together the sequence of instructions that accomplishes that end most efficiently,
regardless of what the instructions are usually used for. That’s why optimization for the
PC is an art, and it’s why the best assembly language for the x86 family will almost always
handily outperform compiled code. With that in mind, let’s look past face value-
and while we’re at it, I’ll toss in a few examples of not judging a book by its cover.
The point to all this: You must come to regard the x86 family instructions for what
they do, not what you’re used to thinking they do. Yes, SHL shifts a pattern left-but
a look-up table can do the same thing, and can often do it faster. ADD can indeed
add two operands, but it can’t put the result in a third register; LEA can. The instruc-
tion set is your raw material for writing high-performance code. By limiting yourself
to thinking only in certain well-established ways about the various instructions, you’re
putting yourself at a substantial disadvantage every time you sit down to program.
In short, the x86 family can do much more than you think-if you’ll use everything
it has to offer. Give it a shot!

Memory Addressing and Arithmetic
Years ago, I saw a clip on the David Letterman show in which Letterman walked into
a store by the name of “Just Lamps” and asked, “So what do you sell here?”

1 28 Chapter 6

“Lamps,” he was told. “Just lamps. Can’t you read?”
“Lamps,” he said. “I see. And what else?”
From that bit of sublime idiocy we can learn much about divining the full value of an
instruction. To wit:
Quick, what do the x86’s memory addressing modes do?
“Calculate memory addresses,” you no doubt replied. And you’re right, of course.
But what else do they do?
They perform arithmetic, that’s what they do, and that’s a distinctly different and
often useful perspective on memory address calculations.
For example, suppose you have an array base address in BX and an index into the
array in SI. You could add the two registers together to address memory, like this:

a d d b x . s i
mov a1 , [b x l

Or you could let the processor do the arithmetic for you in a single instruction:

mov a1 , [b x + s i]

The two approaches are functionally interchangeable but not equivalent from a per-
formance standpoint, and which is better depends on the particular context. If it’s a
one-shot memory access, it’s best to let the processor perform the addition; it’s gen-
erally faster at doing this than a separate ADD instruction would be. If it’s a memory
access within a loop, however, it’s advantageous on the 8088 CPU to perform the
addition outside the loop, if possible, reducing effective address calculation time
inside the loop, as in the following:

a d d b x . s i

mov a1 , [b x]
i n c b x
1 oop LoopTop

LoopTop:

Here, MOV AL,[BX] is two cycles faster than MOV AL,[BX+SI].
On a 286 or 386, however, the balance shifts. MOVAL,[BX+SI] takes no longer than
MOV AL,[BX] on these processors because effective address calculations generally
take no extra time at all. (According to the MASM manual, one extra clock is re-
quired if three memory addressing components, as in MOVAL,[BX+SI+l], are used.
I have not been able to confirm this from Intel publications, but then I haven’t looked
all that hard.) If you’re optimizing for the 286 or 386, then, you can take advantage
of the processor’s ability to perform arithmetic as part of memory address calcula-
tions without taking a performance hit.
The 486 is an odd case, in which the use of an index register or the use of a base register
that’s the destination of the previous instruction may slow things down, so it is generally but

Looking Past Face Value 129

not always better to perform the addition outside the loop on the 486. All memory ad-
dressing calculations are free on the Pentium, however. I’ll discuss 486 performance issues
in Chapters 12 and 13, and the Pentium in Chapters 19 through 21.

Math via Memory Addressing
You’re probably not particularly wowed to hear that you can use addressing modes
to perform memory addressing arithmetic that would otherwise have to be performed
with separate arithmetic instructions. You may, however, be a tad more interested to
hear that you can also use addressing modes to perform arithmetic that has nothing
to do with memory addressing, and with a couple of advantages over arithmetic in-
structions, at that.
How?
With LEA, the only instruction that performs memory addressing calculations but
doesn’t actually address memory. LEA accepts a standard memory addressing operand,
but does nothing more than store the calculated memory offset in the specified register,
which may be any general-purpose register. The operation of LEA is illustrated in
Figure 6.1, which also shows the operation of register-teregister ADD, for comparison.
What does that give us? Two things that ADD doesn’t provide: the ability to perform
addition with either two or three operands, and the ability to store the result in any
register, not just in one of the source operands.
Imagine that we want to add BX to DI, add two to the result, and store the result in
AX. The obvious solution is this:

mov a x . b x
add a x . d i
add a x . 2

(It would be more compact to increment AX twice than to add two to it, and would
probably be faster on an 8088, but that’s not what we’re after at the moment.) An
elegant alternative solution is simply:

l e a a x . [b x + d i + 2 1

Likewise, either of the following would copy SI plus two to DI

mov d i , s i
add d i . 2

or:

l e a d i , [s i + 2 l

Mind you, the only components LEA can add are BX or BP, SI or DI, and a constant
displacement, so it’s not going to replace ADD most of the time. Also, LEA is consid-
erably slower than ADD on an 8088, although it is just as fast as ADD on a 286 or 386

1 30 Chapter 6

when fewer than three memory addressing components are used. LEA is 1 cycle
slower than ADD on a 486 if the sum of two registers is used to point to memory, but
no slower than ADD on a Pentium. On both a 486 and Pentium, LEA can also be
slowed down by addressing interlocks.

The Wonders of LEA on the 386
LEA really comes into its own as a “super-ADD”instruction on the 386,486, and Pentium,
where it can take advantage of the enhanced memory addressing modes of those pro-
cessors. (The 486 and Pentium offer the same modes as the 386, so I’ll refer only to the
386 from now on.) The 386 can do two very interesting things: It can use any 32-bit
register (EAX, EBX, and so on) as the memory addressing base register and/or the
memory addressing index register, and it can multiply any 32-bit register used as an
index by two, four, or eight in the process of calculating a memory address, as shown in
Figure 6.2. Let’s see what that’s good for.
Well, the obvious advantage is that any two 32-bit registers, or any 32-bit register and
any constant, or any two 32-bit registers and any constant, can be added together,

Looking Past Face Value 1 3 1

with the result stored in any register. This makes the 32-bit LEA much more gener-
ally useful than the standard 16-bit LEA in the role of an ADD with an independent
destination.
But what else can LEA do on a 386, besides add?
It can multiply any register used as an index. LEA can multiply only by the power-of-
two values 2,4, or 8, but that’s useful more often than you might imagine, especially
when dealing with pointers into tables. Besides, multiplying by 2,4, or 8 amounts to
a left shift of 1, 2, or 3 bits, so we can now add up to two 32-bit registers and a
constant, and shift (or multiply) one of the registers to some extent-all with a single
instruction. For example,

l e a edi,TableBase[ecx+edx*4]

replaces all this

mov e d i . e d x
s h l e d i .2
a d d e d i . e c x
a d d e d i . o f f s e t T a b l e B a s e

when pointing to an entry in a doubly indexed table.

Multiplication with LEA Using Non-Powers of Two
Are you impressed yet with all that LEA can do on the 386? Believe it or not, one
more feature still awaits us. LEA can actually perform a fast multiply of a 32-bit register by

132 Chapter 6

some values other than powers of two. You see, the same 32-bit register can be both
base and index on the 386, and can be scaled as the index while being used un-
changed as the base. That means that you can, for example, multiply EBX by 5 with:

1 ea ebx . [ebx+ebx*41

Without LEA and scaling, multiplication of EBX by 5 would require either a rela-
tively slow MUL, along with a set-up instruction or two, or three separate instructions
along the lines of the following

mov e d x . e b x
s h l e b x . 2
a d d e b x , e d x

and would in either case require the destruction of the contents of another register.
Multiplying a 32-bit value by a non-power-of-two multiplier in just 2 cycles is a pretty
neat trick, even though it works only on a 386 or 486.

The full list of values that LEA can multiply a register by on a 386 or 486 is: 2, 3, p 4, 5, 8, and 9. That list doesn 't include every multiplier you might want, but it
covers some common1y used ones, and the performance is hard to beat.

I'd like to extend my thanks to Duane Strong of Metagraphics for his help in brain-
storming uses for the 386 version of LEA and for pointing out the complications of
486 instruction timings.

Looking Past Face Value 133

chapter 7

local optimization

You might not think hhbut there’s much to learn about performance programming
from the Great Buffald- .Fiasco. To wit:
The scene is Buffalo, j4ew York, in the dead of winter, with the snow piled several feet
deep. Four college &dents, living in typical student housing, are frozen to the bone.
The third floor of their house, uninsulated and so cold that it’s uninhabitable, has an
ancient bathrooW6One fabulously cold day, inspiration strikes:
“Hey-we could make that bathroom into a sauna! ”

Pandemonium ensuks. Someone rushes out and buys a gas heater, and at consider-
able risk to life and limb hooks it up to an abandoned but still live gas pipe that once
fed a stove on the third floor. Someone else gets sheets of plastic and lines the walls
of the bathroom to keep the moisture in, and yet another student gets a bucket full
of rocks. The remaining chap brings up some old wooden chairs and sets them up to
make benches along the sides of the bathroom. Voila-instant sauna!
They crank up the gas heater, put the bucket of rocks in front of it, close the door,
take off their clothes, and sit down to steam themselves. Mind you, it’s not yet 50 degrees
Fahrenheit in this room, but the gas heater is roaring. Surely warmer times await.
Indeed they do. The temperature climbs to 55 degrees, then 60, then 63, then 65,
and finally creeps up to 68 degrees.

.&“3g$$@@”q

137

optimizing halfway between algorithms and cycle countingoptimizing halfway between algorithms and cycle counting

And there it stops.
68 degrees is warm for an uninsulated third floor in Buffalo in the dead of winter.
Damn warm. It is not, however, particularly warm for a sauna. Eventually someone
acknowledges the obvious and allows that it might have been a stupid idea after all, and
everyone agrees, and they shut off the heater and leave, each no doubt offering silent
thanks that they had gotten out of this without any incidents requiring major surgery.
And so we see that the best idea in the world can fail for lack of either proper design
or adequate horsepower. The primary cause of the Great Buffalo Sauna Fiasco was a
lack of horsepower; the gas heater was flat-out undersized. This is analogous to try-
ing to write programs that incorporate features like bitmapped text and searching of
multisegment buffers without using high-performance assembly language. Any PC
language can perform just about any function you can think of-eventually. That
heater would eventually have heated the room to 110 degrees, too-along about the
first of June or so.
The Great Buffalo Sauna Fiasco also suffered from fundamental design flaws. A more
powerful heater would indeed have made the room hotter-and might well have
burned the house down in the process. Likewise, proper algorithm selection and
good design are fundamental to performance. The extra horsepower a superb as-
sembly language implementation gives a program is worth bothering with only in
the context of a good design.

P Assembly language optimization is a small but crucial corner of the PCpmgramming
world. Use it sparingly and only within the framework of a good design-but ignore it
and you mayjind various portions of your anatomy out in the cold.

So, drawing fortitude from the knowledge that our quest is a pure and worthy one,
let’s resume our exploration of assembly language instructions with hidden talents
and instructions with well-known talents that are less than they appear to be. In the
process, we’ll come to see that there is another, very important optimization level
between the algorithm/design level and the cycle-counting/individual instruction
level. I’ll call this middle level local optimization; it involves focusing on optimizing
sequences of instructions rather than individual instructions, all with an eye to imple-
menting designs as efficiently as possible given the capabilities of the x86 family
instruction set.
And yes, in case you’re wondering, the above story is indeed true. Was I there? Let
me put it this way: If I were, I’d never admit it!

When L O O P Is a Bad Idea
Let’s examine first an instruction that is less than it appears to be: LOOP. There’s no
mystery about what LOOP does; it decrements CX and branches if CX doesn’t dec-
rement to zero. It’s so beautifully suited to the task of counting down loops that any

138 Chapter 7

experienced x86 programmer instinctively stuffs the loop count in CX and reaches
for LOOP when setting up a loop. That’s fine-LOOP does, of course, work as ad-
vertised-but there is one problem:

On halfofthe processors in the x86family, LOOP is slower than DEC CXfollowed by p JNZ. (Granted, DEC CWJNZ isn ’tprecisely equivalent to LOOE because DEC al-
ters the Jags and LOOP doesn ?, but in most situations they >e comparable.)

How can this be? Don’t ask me, ask Intel. On the 8088 and 80286, LOOP is indeed
faster than DEC CX/JNZ by a cycle, and LOOP is generally a little faster still be-
cause it’s a byte shorter and so can be fetched faster. On the 386, however, things
change; LOOP is two cycles slower than DEC/JNZ, and the fetch time for one extra
byte on even an uncached 386 generally isn’t significant. (Remember that the 386
fetches four instruction bytes at a pop.) LOOP is three cycles slower than DEC/JNZ
on the 486, and the 486 executes instructions in so few cycles that those three cycles
mean that DEC/JNZ is nearly twice as fast as LOOP. Then, too, unlike LOOP, DEC
doesn’t require that CX be used, so the DEC/JNZ solution is both faster and more
flexible on the 386 and 486, and on the Pentium as well. (By the way, all this is not
just theory; I’ve timed the relative performances of LOOP and DEC CX/JNZ on a
cached 386, and LOOP really is slower.)

Things are stranger stillfor LOOPk relative JCXZ, which branches ifand only if p CX is zero. JCXZ is faster than AND CXCWJZ on the 8088 and 80286, and
equivalent on the 80386-but is about twice as slow on the 486!

By the way, don’t fall victim to the lures of JCXZ and do something like this:

and c x . o f h : I s o l a t e t h e d e s i r e d f i e l d
j c x z SkipLoop : I f f i e l d is 0, don’ t bo the r

The AND instruction has already set the Zero flag, so this

and c x . 0 f h : I s o l a t e t h e d e s i r e d f i e l d
j z SkipLoop : I f f i e l d i s 0 . don’ t bo the r

will do just fine and is faster on all processors. Use JCXZ only when the Zero flag isn’t
already set to reflect the status of CX.

The Lessons of LOOP and JCXZ
What can we learn from LOOP and JCXZ? First, that a single instruction that is
intended to do a complex task is not necessarily faster than several instructions that
together do the same thing. Second, that the relative merits of instructions and opti-
mization rules vary to a surprisingly large degree across the x86 family.

~ocal Optimization 139

In particular, if you’re going to write 386 protected mode code, which will run only
on the 386,486, and Pentium, you’d be well advised to rethink your use of the more
esoteric members of the x86 instruction set. LOOP, JCXZ, the various accumulator-
specific instructions, and even the string instructions in many circumstances no longer
offer the advantages they did on the 8088. Sometimes they’re just not any faster than
more general instructions, so they’re not worth going out of your way to use; some-
times, as with LOOP, they’re actually slower, and you’d do well to avoid them
altogether in the 386/486 world. Reviewing the instruction cycle times in the MASM
or TASM manuals, or looking over the cycle times in Intel’s literature, is a good place
to start; published cycle times are closer to actual execution times on the 386 and
486 than on the 8088, and are reasonably reliable indicators of the relative perfor-
mance levels of x86 instructions.

Avoiding LOOPS of Any Stripe
Cycle counting and directly substituting instructions (DEC CX/JNZ for LOOP, for
example) are techniques that belong at the lowest level of optimization. It’s an im-
portant level, but it’s fairly mechanical; once you’ve learned the capabilities and
relative performance levels of the various instructions, you should be able to select
the best instructions fairly easily. What’s more, this is a task at which compilers excel.
What I’m saying is that you shouldn’t get too caught up in counting cycles because
that’s a small (albeit important) part of the optimization picture, and not the area in
which your greatest advantage lies.

Local Optimization
One level at which assembly language programming pays off handsomely is that of
local optimization; that is, selecting the best sequence of instructions for a task. The key
to local optimization is viewing the 80x86 instruction set as a set of building blocks,
each with unique characteristics. Your job is to sequence those blocks so that they
perform well. It doesn’t matter what the instructions are intended to do or what
their names are; all that matters is what they do.
Our discussion of LOOP versus DEC/JNZ is an excellent example of optimization
by cycle counting. It’s worth knowing, but once you’ve learned it, you just routinely
use DEC/JNZ at the bottom of loops in 386/486specific code, and that’s that. Be-
sides, you’ll save at most a few cycles each time, and while that helps a little, it’s not
going to make all that much difference.
Now let’s step back for a moment, and with no preconceptions consider what the
x86 instruction set can do for us. The bulk of the time with both LOOP and DEC/
JNZ is taken up by branching, which just happens to be one of the slowest aspects of
every processor in the x86 family, and the rest is taken up by decrementing the count
register and checking whether it’s zero. There may be ways to perform those tasks a

1 40 Chapter 7

little faster by selecting different instructions, but they can get only so fast, and branch-
ing can't even get all that fast.

The trick, then, is not to find the fastest way to decrement a count and branch
conditionully, but rather to figure out how to accomplish the same result without
decrementing or branching as often. Remember the Kobiyashi Muru problem in
Star Trek? The same principle applies here: Redefine the problem to one that of-
fers better solutions.

Consider Listing 7.1, which searches a buffer until either the specified byte is found,
a zero byte is found, or the specified number of characters have been checked. Such
a function would be useful for scanning up to a maximum number of characters in a
zero-terminated buffer. Listing 7.1, which uses LOOP in the main loop, performs a
search of the sample string for a period ('.') in 170 ps on a 20 MHz cached 386.
When the LOOP in Listing 7.1 is replaced with DEC CX/JNZ, performance im-
proves to 168 ps, less than 2 percent faster than Listing 7.1. Actually, instruction
fetching, instruction alignment, cache characteristics, or something similar is affect-
ing these results; I'd expect a slightly larger improvement-around 7 percent-but
that's the most that counting cycles could buy us in this case. (All right, already;
LOOPNZ could be used at the bottom of the loop, and other optimizations are
surely possible, but all that won't add up to anywhere near the benefits we're about
to see from local optimization, and that's the whole point.)

LISTING 7.1 17- 1 .ASM
: Program t o i l l u s t r a t e s e a r c h i n g t h r o u g h a b u f f e r o f a s p e c i f i e d
: l e n g t h u n t i l e i t h e r a s p e c i f i e d b y t e o r a z e r o b y t e i s
: encountered.
: A s t a n d a r d l o o p t e r m i n a t e d w i t h LOOP i s used.

.model smal 1
s t a c k lOOh
.da ta

: Sample s t r i n g t o s e a r c h t h r o u g h .
S a m p l e s t r i n g l a b e l b y t e

db ' T h i s i s a sample s t r i n g o f a l ong enough l eng th '
db ' s o t h a t raw searching speed can outweigh any '
db ' e x t r a s e t - u p t i m e t h a t may b e r e q u i r e d . ' . O

SAMPLE-STRING-LENGTH equ $ -Samples t r ing

: User prompt.
Prompt db 'Enter character t o s e a r c h f o r : $ '

; R e s u l t s t a t u s messages.
ByteFoundMsg db 0dh.Oah

ZeroByteFoundMsg db 0dh.Oah

NoByteFoundMsg db 0dh.Oah

db 'Spec i f i ed by te f ound . ' ,Odh .Oah , ' $ '

db 'Zero by te encountered.'.Odh.Oah.'$'

db 'Buf fer exhausted wi th no rnatch. ' ,Odh.Oah. '$ '

Local Optimization 141

,code
S t a r t p r o c n e a r

mov ax,Bdata ;point t o s t a n d a r d d a t a segment
mov ds.ax
mov dx .o f fse t Prompt
mov ah.9 :OOS p r i n t s t r i n g f u n c t i o n
i n t 21h :prompt t h e u s e r
mov ah.1 :OOS g e t k e y f u n c t i o n
i n t 21h ;get the key t o s e a r c h f o r
mov ah,al
mov cx.SAMPLE-STRING-LENGTH :# o f b y t e s t o s e a r c h
mov s i , o f f s e t S a m p l e s t r i n g : p o i n t t o b u f f e r t o s e a r c h
c a l l SearchMaxLength :search t h e b u f f e r
mov d x , o f f s e t ByteFoundMsg
j c P r i n t s t a t u s

;assume we f o u n d t h e b y t e
:we d i d f i n d t h e b y t e
;we d i d n ' t f i n d t h e b y t e , f i g u r e o u t
:whether we found a z e r o b y t e o r
: r a n o u t o f b u f f e r

;assume we d i d n ' t f i n d a z e r o b y t e

: p u t c h a r a c t e r t o s e a r c h f o r i n AH

mov d x , o f f s e t NoByteFoundMsg

j c x z P r i n t s t a t u s ;we d i d n ' t f i n d a z e r o b y t e
mov dx,of fset ZeroByteFoundMsg :we found a z e r o b y t e

mov ah.9
i n t 21h

:DOS p r i n t s t r i n g f u n c t i o n
: r e p o r t s t a t u s

mov ah.4ch : r e t u r n t o OOS
i n t Z l h

P r i n t s t a t u s :

S t a r t endp

: F u n c t i o n t o s e a r c h a b u f f e r o f a s p e c i f i e d l e n g t h u n t i l e i t h e r a
: s p e c i f i e d b y t e o r a z e r o b y t e i s e n c o u n t e r e d .
: I n p u t :
; AH - c h a r a c t e r t o s e a r c h f o r
; C X - maximum l e n g t h t o be searched (must be > 0)
: DS:SI - p o i n t e r t o b u f f e r t o be searched

: C X - 0 i f and o n l y i f we r a n o u t o f b y t e s w i t h o u t f i n d i n g

: DS:SI - p o i n t e r t o s e a r c h e d - f o r b y t e i f found , o the rw ise by te

: o u t p u t :

e i t h e r t h e d e s i r e d b y t e o r a z e r o b y t e

a f t e r z e r o b y t e i f found. o t h e r w i s e b y t e a f t e r l a s t
byte checked i f n e i t h e r s e a r c h e d - f o r b y t e n o r z e r o
b y t e i s f o u n d

; Car ry F lag - s e t i f s e a r c h e d - f o r b y t e f o u n d , r e s e t o t h e r w i s e

SearchMaxLength proc near

SearchMaxLengthLoop:
c l d

1 odsb
cmp a l .ah
j z ByteFound
and a1 . a l
j z ByteNotFound
loop SearchMaxLengthLoop

ByteNotFound:
c l c
r e t

dec s i

s t c

ByteFound:

: g e t t h e n e x t b y t e
; i s t h i s t h e b y t e we want?
;yes. we're done w i th success
; i s t h i s t h e t e r m i n a t i n g 0 b y t e ?
; yes . we ' re done w i th f a i l u re
: i t ' s n e i t h e r , so check t he nex t
;by te , i f any

r e t u r n " n o t f o u n d " s t a t u s

p o i n t b a c k t o t h e l o c a t i o n a t w h i c h
we f o u n d t h e s e a r c h e d - f o r b y t e
r e t u r n " f o u n d " s t a t u s

142 Chapter 7

r e t
SearchMaxLength endp

end S t a r t

Unrolling Loops
Listing 7.2 takes a different tack, unrolling the loop so that four bytes are checked
for each LOOP performed. The same instructions are used inside the loop in each
listing, but Listing 7.2 is arranged so that threequarters of the LOOPS are eliminated.
Listings 7.1 and 7.2 perform exactly the same task, and they use the same instructions in
the loop-the searching algorithm hasn't changed in any way-but we have sequenced
the instructions differently in Listing 7.2, and that makes all the difference.

LISTING 7.2 17-2.ASM
; Program t o i l l u s t r a t e s e a r c h i n g t h r o u g h a b u f f e r o f a s p e c i f i e d
; l e n g t h u n t i l a s p e c i f i e d z e r o b y t e i s e n c o u n t e r e d .
: A l o o p u n r o l l e d f o u r t i m e s and t e r m i n a t e d w i t h LOOP i s used.

.model sma l l

. s t a c k lOOh

.da ta
: Sample s t r i n g t o s e a r c h t h r o u g h .
Sampl e S t r i n g 1 abe l by te

db ' T h i s i s a sample s t r i n g o f a l o n g enough l e n g t h '
db 'so t h a t raw searching speed can outweigh any '
d b ' e x t r a s e t - u p t i m e t h a t may be requ i red . ' .O

SAMPLE-STRING-LENGTH equ $ -Samp les t r i ng

Prompt db ' E n t e r c h a r a c t e r t o s e a r c h f o r : $ '
: User prompt.

: R e s u l t s t a t u s messages.
ByteFoundMsg db Odh.Oah

ZeroByteFoundMsg db 0dh.Oah

NoByteFoundMsg db 0dh.Oah

db 'Spec i f ied by te found. ' .Odh.Oah. ' l '

db ' Z e r o b y t e encountered. ' .Odh.Oah.'S'

db 'Buf fer exhausted wi th no match. ' ,Odh.Oah. 'S '

: T a b l e o f i n i t i a l , p o s s i b l y p a r t i a l l o o p e n t r y p o i n t s f o r
: SearchMaxLength.
SearchMaxLengthEntryTable label word

dw SearchMaxLengthEntry4
dw SearchMaxLengthEntryl
dw SearchMaxLengthEntry2
dw SearchMaxLengthEntry3

.code
S t a r t p r o c n e a r

mov ax ,@data : po in t t o s tandard da ta segment
mov ds.ax
mov d x . o f f s e t Prompt
mov ah.9 :DOS p r i n t s t r i n g f u n c t i o n
i n t 21h :prompt the user
mov ah.1 :DOS g e t key f u n c t i o n
i n t 21h : g e t t h e k e y t o s e a r c h f o r
mov a h . a l ; p u t c h a r a c t e r t o s e a r c h f o r i n AH

Local Optimization 143

mov cx.SAMPLELSTRING-LENGTH ;# o f b y t e s t o s e a r c h
mov s i . o f f s e t S a m p l e s t r i n g
c a l l SearchMaxLength

; p o i n t t o b u f f e r t o s e a r c h
; s e a r c h t h e b u f f e r

mov d x . o f f s e t ByteFoundMsg
j c P r i n t s t a t u s

;assume we f o u n d t h e b y t e
;we d i d f i n d t h e b y t e
;we d i d n ' t f i n d t h e b y t e , f i g u r e o u t
;whether we found a z e r o b y t e o r
; r a n o u t o f b u f f e r

;assume we d i d n ' t f i n d a z e r o b y t e
mov d x . o f f s e t NoByteFoundMsg

j c x z P r i n t s t a t u s ;we d i d n ' t f i n d a z e r o b y t e
mov d x , o f f s e t ZeroByteFoundMsg ;we found a z e r o b y t e

mov ah.9
i n t 21h

P r i n t s t a t u s :
;DOS p r i n t s t r i n g f u n c t i o n
i r e p o r t s t a t u s

mov ah.4ch
i n t 21h

Start endp

: r e t u r n t o DOS

: F u n c t i o n t o s e a r c h a b u f f e r o f a s p e c i f i e d l e n g t h u n t i l e i t h e r a
; s p e c i f i e d b y t e o r a z e r o b y t e i s e n c o u n t e r e d .
; I n p u t :
; AH - c h a r a c t e r t o s e a r c h f o r
; C X - maximum l e n g t h t o be searched (must be > 0)
: DS:SI - p o i n t e r t o b u f f e r t o be searched

; C X - 0 i f and o n l y i f we r a n o u t o f b y t e s w i t h o u t f i n d i n g

: DS:SI - p o i n t e r t o s e a r c h e d - f o r b y t e i f f o u n d , o t h e r w i s e b y t e

: o u t p u t :

e i t h e r t h e d e s i r e d b y t e o r a z e r o b y t e

a f t e r z e r o b y t e i f f o u n d , o t h e r w i s e b y t e a f t e r l a s t
byte checked i f n e i t h e r s e a r c h e d - f o r b y t e n o r z e r o
b y t e i s f o u n d

: C a r r y F l a g - s e t i f s e a r c h e d - f o r b y t e f o u n d . r e s e t o t h e r w i s e

SearchMaxLength proc near
c l d
mov bx.cx
add C X , ~ ; c a l c u l a t e t h e maximum I o f passes
s h r c x . 1 ; t h r o u g h t h e l o o p , w h i c h i s
s h r c x . 1 : u n r o l l e d 4 t imes
a n d b x . 3 ; c a l c u l a t e t h e i n d e x i n t o t h e e n t r y

; p o i n t t a b l e f o r t h e f i r s t ,
; p o s s i b l y p a r t i a l l o o p

s h l b x . 1 : p r e p a r e f o r a w o r d - s i z e d l o o k - u p
jmp SearchMaxLengthEntryTable[bxl

; b r a n c h i n t o t h e u n r o l l e d l o o p t o do
: t h e f i r s t , p o s s i b l y p a r t i a l l o o p

SearchMaxLengthLoop:
SearchMaxLengthEntry4:

1 odsb : g e t t h e n e x t b y t e
cmp a 1 ,ah ; i s t h i s t h e b y t e we want?
j z ByteFound
and a1 .a1

;yes. we're done wi th success
: i s t h i s t h e t e r m i n a t i n g 0 b y t e ?

j z By teNotFound :yes , we ' re done w i th fa i lu re
SearchMaxLengthEntry3:

1 odsb ; ge t t he nex t by te
cmp a1 ,ah ; i s t h i s t h e b y t e we want?
j z ByteFound ;yes. we're done with success
and a1 .a1 ; i s t h i s t h e t e r m i n a t i n g 0 b y t e ?
j z By teNotFound ;yes , we ' re done w i th fa i lu re

144 Chapter 7

SearchMaxLengthEntry2:
l odsb : g e t t h e n e x t b y t e
cmp a1 ,ah : i s t h i s t h e b y t e we want?
j z EyteFound :yes. we're done with success
and a1 .a1 : i s t h i s t h e t e r m i n a t i n g 0 b y t e ?
j z EyteNotFound : y e s . w e ' r e d o n e w i t h f a i l u r e

1 odsb : g e t t h e n e x t b y t e
cmp a1 ,ah ; i s t h i s t h e b y t e we want?
jz ByteFound ;yes. we're done with success
and a l . a l : i s t h i s t h e t e r m i n a t i n g 0 b y t e ?
j z ByteNotFound : y e s . w e ' r e d o n e w i t h f a i l u r e
l o o p SearchMaxLengthLoop ; i t ' s n e i t h e r . s o check the nex t

SearchMaxLengthEntryl:

; f o u r b y t e s , i f any

c l c : r e t u r n " n o t f o u n d " s t a t u s
r e t

dec s i : p o i n t b a c k t o t h e l o c a t i o n a t which

s t c : r e t u r n " f o u n d " s t a t u s

ByteNotFound:

ByteFound:

: we found the sea rched- fo r by te

r e t
SearchMaxLength endp

end S t a r t

How much difference? Listing 7.2 runs in 121 ps-40 percent faster than Listing 7.1,
even though Listing 7.2 still uses LOOP rather than DEC CX/JNZ. (The loop in
Listing 7.2 could be unrolled further, too; it's just a question of how much more
memory you want to trade for ever-decreasing performance benefits.) That's typical
of local optimization; it won't often yield the order-of-magnitude improvements that
algorithmic improvements can produce, but it can get you a critical 50 percent or
100 percent improvement when you've exhausted all other avenues.

The point is simply this: You can gain far more by stepping back a bit and thinking 1 of the fastest overall way for the CPU to perform a task than you can by saving a
cycle here or there usingdifferent instructions. T q to thinkat the level ofsequences
of instructions rather than individual instructions, and learn to treat x86 instruc-
tions as building blocks with unique characteristics rather than as instructions
dedicated to spec@ tasks.

Rotating and Shifting with Tables
As another example of local optimization, consider the matter of rotating or shifting a
mask into position. First, let's look at the simple task of setting bit N of AX to 1.
The obvious way to do this is to place N in CL, rotate the bit into position, and OR it
with AX, as follows:

M O V B X . l
SHL EX.CL
OR AX.BX

Local Optimization 145

This solution is obvious because it takes good advantage of the special ability of the
x86 family to shift or rotate by the variable number of bits specified by CL. However,
it takes an average of about 45 cycles on an 8088. It’s actually far faster to precalculate
the results, pass the bit number in BX, and look the shifted bit up, as shown in
Listing 7.3.

LISTING 7.3 17-3.ASM
SHL BX. l : p r e p a r e f o r w o r d s i z e d l o o k u p
OR AX.ShiftTableCBX1 ; l o o k u p t h e b i t and OR it i n

S h i f t T a b l e LABEL WORD
BIT-PATTERN-0001H

REPT 16
DW BIT-PATTERN

ENOM
BIT-PATTERN-BIT-PATTERN SHL 1

Even though it accesses memory, this approach takes only 20 cycles-more than
twice as fast as the variable shift. Once again, we were able to improve performance
considerably-not by knowing the fastest instructions, but by selecting the fastest
sequence of instructions.
In the particular example above, we once again run into the difficulty of optimizing
across the x86 family. The table lookup is faster on the 8088 and 286, but it’s slightly
slower on the 386 and no faster on the 486. However, 386/486specific code could
use enhanced addressing to accomplish the whole job in just one instruction, along
the lines of the code snippet in Listing 7.4.

LISTING 7.4 17-4.ASM
OR EAX,Shif tTableCEBX*4] : look up the b i t and OR i t i n

S h i f t T a b l e LABEL DWORD
BIT-PATTERN-0001H

REPT 32
DD BIT-PATTERN

ENDM
BIT-PATTERN-BIT-PATTERN SHL 1

Besides illustrating the advantages of local optimization, this example also shows p that it generally pays toprecalculate results; this is often done at or before assem-
bly time, butprecalculated tables can also be built at run time. This is merely one
aspect of a fundamental optimization rule: Move as much work as possible out of
your critical code by whatever means necessary.

NOT Flips Bits-Not Flags
The NOT instruction flips all the bits in the operand, from 0 to 1 or from 1 to 0.
That’s as simple as could be, but NOT nonetheless has a minor but interesting tal-
ent: It doesn’t affect the flags. That can be irritating; I once spent a good hour tracking

146 Chapter 7

down a bug caused by my unconscious assumption that NOT does set the flags. After
all, every other arithmetic and logical instruction sets the flags; why not NOT? Prob-
ably because NOT isn’t considered to be an arithmetic or logical instruction at all;
rather, it’s a data manipulation instruction, like MOV and the various rotates. (These
are RCR, RCL, ROR, and ROL, which affect only the Carry and Overflow flags.)
NOT is often used for tasks, such as flipping masks, where there’s no reason to test
the state of the result, and in that context it can be handy to keep the flags unmodi-
fied for later testing.

Besides, fyou want to NOT an operand and set theJags in the process, you can p just XOR it with -1. Put another way, the only functional d@rence between NOT
AX and XOR AX,OFFFF’H is that XOR modifies the Jags and NOT doesn ’t.

The x86 instruction set offers many ways to accomplish almost any task. Understand-
ing the subtle distinctions between the instructions-whether and which flags are
set, for example-can be critical when you’re trying to optimize a code sequence
and you’re running out of registers, or when you’re trying to minimize branching.

Incrementing with and without Carry
Another case in which there are two slightly different ways to perform a task involves
adding 1 to an operand. You can do this with INC, as in INC A X , or you can do it with
ADD, as in ADD AX,1. What’s the difference? The obvious difference is that INC is
usually a byte or two shorter (the exception being ADD &,I, which at two bytes is the
same length as INC A L) , and is faster on some processors. Less obvious, but no less
important, is that ADD sets the Carry flag while INC leaves the Carry flag untouched.
W h y is that important? Because it allows INC to function as a data pointer manipula-
tion instruction for multi-word arithmetic. You can use INC to advance the pointers
in code like that shown in Listing 7.5 without having to do any work to preserve the
Carry status from one addition to the next.

LISTING 7.5 17-5.ASM

LOOP-TOP:
c LC ; c l e a r t h e C a r r y f o r t h e i n i t i a l a d d i t i o n

MOV AX. [SI] ;get next source operand word
ADC COI1,AX;add w i t h C a r r y t o d e s t o p e r a n d w o r d
I N C SI ; p o i n t t o n e x t s o u r c e o p e r a n d w o r d
I N C S I
I N C D I
I N C D l
LOOP LOOP-TOP

; p o i n t t o n e x t d e s t o p e r a n d w o r d

If ADD were used, the Carry flag would have to be saved between additions, with
code along the lines shown in Listing 7.6.

Local Optimization 147

LISTING 7.6 L7-6.ASM
CLC ; c l e a r t h e c a r r y f o r t h e i n i t i a l a d d i t i o n

LOOP-TOP:
MOV A X . C S 1 1 ;get next source operand word
ADC [D I I . A X ;add w i t h c a r r y t o d e s t o p e r a n d w o r d
LAH F ; s e t a s i d e t h e c a r r y f l a g
ADD SI.2
ADD D I . 2

: p o i n t t o next source operand word

SAHF
; p o i n t t o n e x t d e s t o p e r a n d w o r d
; r e s t o r e t h e c a r r y f l a g

LOOP LOOP-TOP

It’s not that the Listing 7.6 approach is necessarily better or worse; that depends on the
processor and the situation. The Listing 7.6 approach is di&mt, and if you understand
the differences, you’ll be able to choose the best approach for whatever code you hap
pen to write. (DEC has the same property of preserving the Carry flag, by the way.)
There are a couple of interesting aspects to the last example. First, note that LOOP
doesn’t affect any flags at all; this allows the Carry flag to remain unchanged from
one addition to the next. Not altering the arithmetic flags is a common characteris-
tic of program control instructions (as opposed to arithmetic and logical instructions
like SUB and AND, which do alter the flags).

The rule is not that the arithmetic Jags change whenever the CPU performs a p calculation; rathei: theflags change whenever you execute an arithmetic, logical,
orflag control (such as CLC to clear the Carryflag) instruction.

Not only do LOOP and JCXZ not alter the flags, but REP MOVS, which counts down
CX to 0, doesn’t affect the flags either.
The other interesting point about the last example is the use of LAHF and SAHF,
which transfer the low byte of the FLAGS register to and from AH, respectively. These
instructions were created to help provide compatibility with the 8080’s (that’s 8080,
not 8088) PUSH PSW and POP PSW instructions, but turn out to be compact (one
byte) instructions for saving and restoring the arithmetic flags. A word of caution,
however: SAHF restores the Carry, Zero, Sign, Auxiliary Carry, and Parity flags-but
not the Overflow flag, which resides in the high byte of the FLAGS register. Also, be
aware that LAHF and SAHF provide a fast way to preserve the flags on an 8088 but
are relatively slow instructions on the 486 and Pentium.
There are times when it’s a clear liability that INC doesn’t set the Carry flag. For
instance

INC AX
AOC DX.0

does not increment the 32-bit value in DX:AX. To do that, you’d need the following:

ADD A X . l
ADC DX.0

As always, pay attention!

148 Chapter 7

guages When You Know It’ll Help
When I was a se high school, a pop song called “Seasons in the Sun,” sung by

up the pop charts and spent, as best I can recall, two straight
Top 40. “Seasons in the Sun” wasn’t a particularly

good song, primari ics were silly. I’ve never understood why the
pens with undistinguished but popular music by
(“Don’t Pull Your Love Out on Me Baby,” “Billy
everywhere for a month or so, then gave it not

ew of a Rhino Records collection of obscure
ng that Jeff Duntemann is an aficionado of such esoterica

m by The Peppermint Trolley Company?), I sent
the review to him. He was amused by it and, as we kicked the names of old songs
around, “Seasons in the Sun” came up. I expressed my wonderment that a song that
really wasn’t very good was such a big hit.
‘Well,” said Jeff, ‘‘I think it suffered in the translation from the French.”
Ah-ha! Mystery solved. Apparently everyone but me knew that it was translated from
French, and that novelty undoubtedly made the song a big hit. The translation was
also surely responsible for the sappy lyrics: dollars to donuts that the original French
lyrics were stronger.

151

jumping languages when you know it'll helpjumping languages when you know it'll help

Which brings us without missing a beat to this chapter’s theme, speeding up C with
assembly language. When you seek to speed up a C program by converting selected
parts of it (generally no more than a few functions) to assembly language, make sure
you end up with high-performance assembly language code, not fine-tuned C code.
Compilers like Microsoft C/C++ and Watcom C are by now pretty good at fine-tun-
ing C code, and you’re not likely to do much better by taking the compiler’s assembly
language output and tweaking it.

To make the process of translating C code to assembly language worth the trouble, 1 you must ignore what the compiler does and design your assembly language code
from apure assembly language perspective. With a merely adequate translation, you
risk laboring mightily for little or no reward.

Apropos of which, when was the last time you heard of Terry Jacks?

Billy, Don’t Be a Compiler
The key to optimizing C programs with assembly language is, as always, writing good
assembly language code, but with an added twist. Rule 1 when converting C code to
assembly is this: Don’t think like a compiler. That’s more easily said than done, espe-
cially when the C code you’re converting is readily available as a model and the
assembly code that the compiler generates is available as well. Nevertheless, the prin-
ciple of not thinking like a compiler is essential, and is, in one form or another, the
basis for all that I’ll discuss below.
Before I discuss Rule 1 further, let me mention rule number 0: Only optimize where it
matters. The bulk of execution time in any program is spent in a very small portion of
the code, and most code beyond that small portion doesn’t have any perceptible
impact on performance. Unless you’re supremely concerned with code size (an area
in which assembly-only programs can excel), I’d suggest that you write most of your
code in C and reserve assembly for the truly critical sections of your code; that’s the
formula that I find gives the most bang for the buck.
This is not to say that complete programs shouldn’t be designed with optimized as-
sembly language in mind. As you’ll see shortly, orienting your data structures towards
assembly language can be a salubrious endeavor indeed, even if most of your code is
in C. When it comes to actually optimizing code and/or converting it to assembly,
though, do it only where it matters. Get a profiler-and use it!
Also make it a point to concentrate on refining your program design and algorith-
mic approach at the conceptual and/or C levels before doing any assembly language
optimization.

152 Chapter 8

p Assembly language optimization is the final and fa r from the only step in the opti-
mization chain, and as such should be performed last; converting to assembly too
soon can lock in your code before the design is optimal. At the very least, conver-
sion to assembly tends to make future changes and debugging more dijficult, slowing
you down and limiting your options.

Don’t Call Your Functions on Me, Baby
In order to think differently from a compiler, you must understand both what com-
pilers and C programmers tend to do and how that differs from what assembly
language does well. In this pursuit, it can be useful to examine the code your com-
piler generates, either by viewing the code in a debugger or by having the compiler
generate an assembly language output file. (The latter is done with /Fa or /Fc in
Microsoft C/C++ and -S in Borland C++.)
C programmers tend to modularize their code with lots of function calls. That’s
good for readable, reliable, reusable code, and it allows the compiler to optimize
better because it can deal with fewer variables and statements in each optimization
arena-but it’s not so good when viewed from the assembly language level. Calls and
returns are slow, especially in the large code model, and the pushes required to put
parameters on the stack are expensive as well.
What this means is that when you want to speed up a portion of a C program, you
should identify the entire critical portion and move allof that critical portion into an
assembly language function. You don’t want to move a part of the inner loop into
assembly language and then call it from C every time through the loop; the function
call and return overhead would be unacceptable. Carve out the critical code en masse
and move it into assembly, and try to avoid calls and returns even in your assembly
code. True, in assembly you can pass parameters in registers, but the calls and re-
turns themselves are still slow; if the extra cycles they take don’t affect performance,
then the code they’re in probably isn’t critical, and perhaps you’ve chosen to convert
too much code to assembly, eh?

Stack Frames Slow So Much
C compilers work within the stack frame model, whereby variables reside in a block
of stack memory and are accessed via offsets from BP. Compilers may store a couple
of variables in registers and may briefly keep other variables in registers when they’re
used repeatedly, but the stack frame is the underlying architecture. It’s a nice archi-
tecture; it’s flexible, convenient, easy to program, and makes for fairly compact code.
However, stack frames have a few drawbacks. They must be constructed and destroyed,
which takes both time and code. They are so easy to use that they tend to bias the
assembly language programmer in favor of accessing memory variables more often
than might be necessary. Finally, you cannot use BP as a general-purpose register if

Speeding Up C with Assembly Language 153

you intend to access a stack frame, and having that seventh register available is some-
times useful indeed.
That doesn’t mean you shouldn’t use stack frames, which are useful and often neces-
sary. Just don’t fall victim to their undeniable charms.

Torn Between Two Segments
-

C compilers are not terrific at handling segments. Some compilers can efficiently handle
a single far pointer used in a loop by leaving ES set for the duration of the loop. But two
far pointers used in the same loop confuse every compiler I’ve seen, causing the full
segment:offset address to be reloaded each time either pointer is used.

This particularly affects performance in 286 protected mode (under OS/2 1.X or p the Rational DOS Extendel; for example) because segment loads in protected mode
take a minimum of 17 cycles, versus a mere 2 cycles in real mode.

In assembly language you have full control over segments. Use it, and, if necessary,
reorganize your code to minimize segment loading.

Why Speeding Up Is Hard to Do
You might think that the most obvious advantage assembly language has over C is
that it allows the use of all forms of instructions and all registers in all ways, whereas
C compilers tend to use a subset of registers and instructions in a limited number of
ways. Yes and no. It’s true that C compilers typically don’t generate instructions such
as XLAT, rotates, or the string instructions. On the other hand, XLAT and rotates
are useful in a limited set of circumstances, and string instructions are used in the C
library functions. In fact, C library code is likely to be carefully optimized by experts,
and may be much better than equivalent code you’d produce yourself.
Am I saying that C compilers produce better code than you do? No, I’m saying that
they can, unless you use assembly language properly. Writing code in assembly lan-
guage rather than C guarantees nothing.

You can write good assembly, bad assembly, or assembly that is virtually indistin- p guishable from compiled code; you are more likely than not to write the latter if
you think that optimization consists of tweaking compiled C code.

Sure, you can probably use the registers more efficiently and take advantage of an
instruction or two that the compiler missed, but the code isn’t going to get a whole
lot faster that way.
True optimization requires rethinking your code to take advantage of assembly lan-
guage. A C loop that searches through an integer array for matches might compile

154 Chapter 8

A. What the compiler outputs:
LoopTop:

mov a x . [b p - 8 1 : G e t t h e s e a r c h e d - f o r v a l u e
cmp [d i l . a x ; I s t h i s a match?
j z Match
add d i .2

;Yes

dec s i
;No , a d v a n c e t h e p o i n t e r
: D e c r e m e n t t h e l o o p c o u n t e r

j n z LoopTop :Cont inue i f t h e r e a r e m o r e d a t a p o i n t s

B. Removing stack frame access:
LoopTop:

1 odsw :Get t h e n e x t a r r a y v a l u e
cmp ax , bx :Does i t m a t c h t h e s e a r c h e d - f o r v a l u e ?
j z Match :Yes
l o o p LoopTop :No. c o n t i n u e i f t h e r e a r e m o r e d a t a p o i n t s

Tweaked compiler output for a loop.
Figure 8.1

to something like Figure 8.1A. You might look at that and tweak it to the code shown
in Figure 8.1B.
Congratulations! You’ve successfully eliminated all stack frame access, you’ve used
LOOP (although DEC SI/JNZ is actually faster on 386 and later machines, as I ex-
plained in the last chapter), and you’ve used a string instruction. Unfortunately, the
new code isn’t going to run very much faster. Maybe 25 percent faster, maybe a little
more. Big deal. You’ve eliminated the trappings of the compiler-the stack frame
and the restricted register usage-but you’re still thinking like the compiler. Try this:

repnz scasw
j z Match

It’s a simple example-but, I hope, a convincing one. Stretch your brain when you
optimize.

Taking It to the Limit
-

The ultimate in assembly language optimization comes when you change the rules;
that is, when you reorganize the entire program to allow the use of better assembly
language code in the small section of code that most affects overall performance.
For example, consider that the data searched in the last example is stored in an array
of structures, with each structure in the array containing other information as well.
In this situation, REP SCASW couldn’t be used because the data searched through
wouldn’t be contiguous.

Speeding Up C with Assembly Language 155

However, if the need for performance in searching the array is urgent enough, there’s
no reason why you can’t reorganize the data. This might mean removing the array
elements from the structures and storing them in their own array so that REP SCASW
could be used.

Organizing a program h data so that the performance of the critical sections can p be optimized is a key part of design, and one that’s easily shortchanged unless,
during the design stage, you thoroughly understand and work to bring together
your data needs, the critical sections of your program, and potential assembly
language optimizations.

More on this shortly.
To recap, here are some things to look for when striving to convert C code into
optimized assembly language:

Move the entire performance-critical section into a single assembly language
function.
Don’t use calls or stack frame accesses inside the critical code, if possible, and

Change segments as infrequently as possible.
Optimize in terms of what assembly does well, not in terms of fine-tuning com-

avoid unnecessary memory accesses of any kind.

piled C code.

nize data structures to allow efficient assembly language processing.
Change the rules to the benefit of assembly, if necessary; for example, reorga-

That said, let me show some of these precepts in action.

A C-to-Assembly Case Study
Listing 8.1 is the sample C application I’m going to use to examine optimization in
action. Listing 8.1 isn’t really complete-it doesn’t handle the “no-matches” case
well, and it assumes that the sum of all matches will fit into an int-but it will do just
fine as an optimization example.

LISTING 8.1 18- 1 .C
/* P r o g r a m t o s e a r c h a n a r r a y s p a n n i n g a l i n k e d l i s t o f v a r i a b l e -

s i z e d b l o c k s , f o r a l l e n t r i e s w i t h a s p e c i f i e d I D number,
a n d r e t u r n t h e a v e r a g e o f t h e v a l u e s o f a l l s u c h e n t r i e s . E a c h o f
t h e v a r i a b l e - s i z e d b l o c k s may c o n t a i n a n y n u m b e r o f d a t a e n t r i e s ,
s t o r e d a s a n a r r a y o f s t r u c t u r e s w i t h i n t h e b l o c k . * I

i n c l u d e < s t d i o . h >
i f d e f -TURBOC-
#i nc l ude <a1 1 oc. h>
e l s e
#i n c l u d e <mal 1 oc. h>
#end i f

156 Chapter 8

v o i d m a i n (v o i d) :
v o i d e x i t (i n t 1 ;
u n s i g n e d i n t F i n d I D A v e r a g e (u n s i g n e d i n t . s t r u c t B l o c k H e a d e r *) :
/ * S t r u c t u r e t h a t s t a r t s e a c h v a r i a b l e - s i z e d b l o c k * /
s t r u c t B l o c k H e a d e r {

s t r u c t B l o c k H e a d e r * N e x t B l o c k : / * P o i n t e r t o n e x t b l o c k , o r NULL
i f t h i s i s t h e l a s t b l o c k i n t h e
l i n k e d l i s t * /

i n t h i s v a r i a b l e - s i z e d b l o c k * /
u n s i g n e d i n t B l o c k C o u n t : / * The number o f D a t a E l e m e n t e n t r i e s

I :

/* S t r u c t u r e t h a t c o n t a i n s one e l e m e n t o f t h e a r r a y w e ' l l s e a r c h * /
s t r u c t D a t a E l e m e n t {

uns igned i n t I D : / * I D // f o r a r r a y e n t r y * /
uns igned i n t V a l u e : / * V a l u e o f a r r a y e n t r y * /

I :

v o i d m a i n (v o i d) {
i n t i . j :
u n s i g n e d i n t I D T o F i n d :
s t r u c t B l o c k H e a d e r *BaseAr rayB lockPo in te r . *Work ingB lockPo in te r :
s t r u c t D a t a E l e m e n t * W o r k i n g D a t a P o i n t e r :
s t r u c t B l o c k H e a d e r * * L a s t B l o c k P o i n t e r :

p r i n t f (" 1 D /I f o r w h i c h t o f i n d a v e r a g e : ") :
scan f ("%d" .& IDToF ind) :
/ * B u i l d an a r r a y a c r o s s 5 b l o c k s , f o r t e s t i n g * /
/* A n c h o r t h e l i n k e d l i s t t o B a s e A r r a y B l o c k P o i n t e r * /
L a s t B l o c k P o i n t e r - & B a s e A r r a y B l o c k P o i n t e r :
/ * C r e a t e 5 b l o c k s o f v a r y i n g s i z e s * /
f o r (i - 1: i < 6 : i++) I

/* T r y t o g e t memory f o r t h e n e x t b l o c k * /
i f ((W o r k i n g B l o c k P o i n t e r -

(s t r u c t B l o c k H e a d e r *) m a l l o c (s i z e o f (s t r u c t B l o c k H e a d e r) +
s i z e o f (s t r u c t D a t a E l e m e n t) * i * 1 0)) - NULL) {

e x i t (1) :
I
/* S e t t h e /I o f d a t a e l e m e n t s i n t h i s b l o c k */
Work ingB lockPo in te r ->B lockcoun t = i * 10:
/ * L i n k t h e new b l o c k i n t o t h e c h a i n * /
* L a s t B l o c k P o i n t e r - W o r k i n g B l o c k P o i n t e r :
/ * P o i n t t o t h e f i r s t d a t a f i e l d * /
Work ingDa taPo in te r =

(s t r u c t D a t a E l e m e n t *) ((c h a r *) W o r k i n g B l o c k P o i n t e r +
s i z e o f (s t r u c t B l o c k H e a d e r)) :

/ * Fill t h e d a t a f i e l d s w i t h I D numbers and values * /
f o r (j - 0: j < (i * 1 0) : j++, Work ingDataPo in te r++) {

W o r k i n g D a t a P o i n t e r - > I D - j :
Work ingDa taPo in te r ->Va lue - i * 1000 + j :

I
/ * Remember where t o s e t l i n k f r o m t h i s b l o c k t o t h e n e x t * /
L a s t B l o c k P o i n t e r - &Work ingB lockPo in te r ->Nex tB lock :

I
/ * S e t t h e l a s t b l o c k ' s " n e x t b l o c k " p o i n t e r t o NULL t o i n d i c a t e

t h a t t h e r e a r e no more b locks * /
Work ingB lockPo in te r ->Nex tB lock - NULL:
p r i n t f (" A v e r a g e o f a l l e l e m e n t s w i t h I D %d: %u\n".

IDToF ind , F ind IDAverage(IDToF ind , B a s e A r r a y B l o c k P o i n t e r)) :

Speeding Up C with Assembly Language 157

I* S e a r c h e s t h r o u g h t h e a r r a y o f D a t a E l e m e n t e n t r i e s s p a n n i n g t h e
l i n k e d l i s t o f v a r i a b l e - s i z e d b l o c k s , s t a r t i n g w i t h t h e b l o c k
p o i n t e d t o b y B l o c k P o i n t e r . f o r all e n t r i e s w i t h I D S m a t c h i n g
S e a r c h e d F o r I D . a n d r e t u r n s t h e a v e r a g e v a l u e o f t h o s e e n t r i e s . I f
no m a t c h e s a r e f o u n d , z e r o i s r e t u r n e d *I

u n s i g n e d i n t F i n d I D A v e r a g e (u n s i g n e d i n t S e a r c h e d F o r I D .

{
s t r u c t B l o c k H e a d e r * B l o c k P o i n t e r)

s t r u c t D a t a E l e m e n t * D a t a P o i n t e r :
u n s i g n e d i n t IDMatchSum:
u n s i g n e d i n t I D M a t c h C o u n t ;
u n s i g n e d i n t W o r k i n g B l o c k C o u n t :

IDMatchCount - IDMatchSum - 0:
I* S e a r c h t h r o u g h all t h e l i n k e d b l o c k s u n t i l t h e l a s t b l o c k

(m a r k e d w i t h a N U L L p o i n t e r t o t h e n e x t b l o c k) h a s b e e n
searched *I

I* P o i n t t o t h e f i r s t D a t a E l e m e n t e n t r y w i t h i n t h i s b l o c k *I
D a t a P o i n t e r -

do C

(s t r u c t D a t a E l e m e n t *) ((c h a r *) B l o c k P o i n t e r +
s i z e o f (s t r u c t B l o c k H e a d e r)) :

I* Search all t h e D a t a E l e m e n t e n t r i e s w i t h i n t h i s b l o c k

f o r (W o r k i n g B l o c k C o u n t - 0 ;
a n d a c c u m u l a t e d a t a f r o m a l l t h a t m a t c h t h e d e s i r e d I D *I

WorkingBlockCount<BlockPointer ->BlockCount :
W o r k i n g B l o c k C o u n t t c . D a t a P o i n t e r + +) {

I* If t h e I D matches, add i n t h e v a l u e a n d i n c r e m e n t t h e
m a t c h c o u n t e r *I

i f (D a t a P o i n t e r - > I D - SearchedFor ID) {
IDMatchCount tc :
IDMatchSum +- D a t a P o i n t e r - > V a l u e :

1
1
I* P o i n t t o t h e n e x t b l o c k , a n d c o n t i n u e as l o n g a s t h a t p o i n t e r

i s n ' t N U L L *I
1 w h i l e ((B l o c k P o i n t e r - BlockPointer->NextBlock) !- NULL):
I* C a l c u l a t e t h e a v e r a g e o f all matches *I
i f (IDMatchCount - 0)
e l s e

r e t u r n (0) : /* A v o i d d i v i s i o n b y 0 *I

re turn(1DMatchSum I IDMatchCount) ;
1

The main body of Listing 8.1 constructs a linked list of memory blocks of various
sizes and stores an array of structures across those blocks, as shown in Figure 8.2. The
function FindIDAverage in Listing 8.1 searches through that array for all matches to
a specified ID number and returns the average value of all such matches.
FindIDAverage contains two nested loops, the outer one repeating once for each
linked block and the inner one repeating once for each array element in each block.
The inner loop-the critical one-is compact, containing only four statements, and
should lend itself rather well to compiler optimization.

158 Chapter 8

BlockHeader->NextBlock
BlockHeader->BlockCount
DataElement[Ol->ID
DataElement[Ol->Value
DataElementl l I->ID
DataElementC11->Value

1 0 0 0 - - - - - -

lobi"""

Array Element 0

Array Element 1 """

Blockneader->NextBlock
Blockneader->Blockcount
DataElementCOI->ID
DataElementCOI->Value

"""

2000"""
Array Element 2

I I

4 Blockneader->NextBlock - - - - - _ N U L L - - - - -
Blockneader->Blockcount
DataElement[Ol->ID F l) Array Element 3
DataElement[Ol->Value

"""

3000"""
DataElement[l l ->ID
DataElementC11->Value 3ooi
DataElementCPI->ID
DataElement[ZI->Value 3002 - - - - - -

- - - - - Array Element 4

Array Element 5

Linked array storage format (version 1).
Figure 8.2

As it happens, Microsoft C/C++ does optimize the inner loop of FindIDAverage nicely.
Listing 8.2 shows the code Microsoft C/C++ generates for the inner loop, consisting of
a mere seven assembly language instructions inside the loop. The compiler is smart
enough to convert the loop index variable, which counts up but is used for nothing but
counting loops, into a count-down variable so that the LOOP instruction can be used.

LISTING 8.2 18-2.COD
: Code g e n e r a t e d b y M i c r o s o f t C f o r i n n e r l o o p o f F ind IDAverage .
: I * * * f o r (Work ingBlockCount -0 :
: I *** Work ingBlockCount<BlockPointer ->BlockCount :
; I *** Work ingBlockCount++. DataPointer++) {

mov WORD PTR [bp-61.0 ;Work ingBlockCount
mov bx.WORD PTR [bp+61 : B1 ockPo i n t e r
cmp WORD PTR [bx+21,0
j e I FB264
mov cx.WORD PTR [bx+21
add WORD PTR [b p - 6 l . c x : W o r k i n g B l o c k C o u n t
mov di.WORD PTR [bp-21 : IDMatchSum
mov dx.WORD PTR [bp-41 : IDMatchCount

IL20004 :
: I * * * i f (D a t a P o i n t e r - > I O - SearchedFor ID) {

mov ax.WOR0 PTR [s i]
cmp WORD PTR [bp+4 l ,ax :SearchedFor ID
j n e $ 1 2 6 5

Speeding Up C with Assembly Language 159

I ***

I

I
I
‘I

IOMatchCount++;

i n c d x

add d i .WORD PTR [s i + 2 1
IDMatchSum += D a t a P o i n t e r - > V a l u e ;

*** 1

I
265:

a d d s i . 4
1 oop tL20004
mov WORD PTR Cbp-2 l .d i : IDMatchSum
mov WORD PTR [b p - 4 l . d x : I D M a t c h C o u n t

$FB264:

It’s hard to squeeze much more performance from this code by tweaking it, as exem-
plified by Listing 8.3, a fine-tuned assembly version of FindIDAverage that was
produced by looking at the assembly output of MS C/C++ and tightening it. Listing
8.3 eliminates all stack frame access in the inner loop, but that’s about all the tight-
ening there is to do. The result, as shown in Table 8.1, is that Listing 8.3 runs a
modest 11 percent faster than Listing 8.1 on a 386. The results could vary consider-
ably, depending on the nature of the data set searched through (average block size
and frequency of matches). But, then, understanding the typical and worst case con-
ditions is part of optimization, isn’t it?

LISTING 8.3 18-3.ASM
; T y p i c a l l y o p t i m i z e d a s s e m b l y l a n g u a g e v e r s i o n o f F i n d I D A v e r a g e .
SearchedFor ID equ 4 ; P a s s e d p a r a m e t e r o f f s e t s i n t h e
B l o c k P o i n t e r e q u 6 : s t a c k f r a m e (s k i p o v e r p u s h e d BP

NextB l ock equ 0 : F i e l d o f f s e t s i n s t r u c t B l o c k H e a d e r
B1 ockCount equ 2
BLOCK-HEAOERLSIZE equ 4 :Number o f b y t e s i n s t r u c t B l o c k H e a d e r
ID equ 0 : s t r u c t D a t a E l e m e n t f i e l d o f f s e t s
Va lue equ 2
DATALELEMENT-SIZE equ 4 :Number o f b y t e s i n s t r u c t D a t a E l e m e n t

; a n d t h e r e t u r n a d d r e s s)

.model smal l

. code
p u b l i c _ F i n d I O A v e r a g e

160 Chapter 8

-F ind IDAverage p roc nea r
p u s h b p : S a v e c a l l e r ' s s t a c k f r a m e
mov b p , s p : P o i n t t o o u r s t a c k f r a m e
p u s h d i : P r e s e r v e C r e g i s t e r v a r i ab1 es
p u s h s i
sub dx.dx : IDMatchSum = 0
mov bx.dx : IDMatchCount - 0
mov s i . [b p + B l o c k P o i n t e r] ; P o i n t e r t o f i r s t b l o c k
mov ax . [bp+SearchedFor ID l : I D w e ' r e l o o k i n g f o r

; S e a r c h t h r o u g h a l l t h e l i n k e d b l o c k s u n t i l t h e l a s t b l o c k

B lockLoop:
: (m a r k e d w i t h a NULL p o i n t e r t o t h e n e x t b l o c k) h a s been searched .

: P o i n t t o t h e f i r s t D a t a E l e m e n t e n t r y w i t h i n t h i s b l o c k .

: S e a r c h t h r o u g h a l l t h e D a t a E l e m e n t e n t r i e s w i t h i n t h i s b l o c k
: a n d a c c u m u l a t e d a t a f r o m a l l t h a t m a t c h t h e d e s i r e d I D .

l e a d i .[si+BLOCKpHEADER-SIZEl

mov c x . ~ s i + B l o c k C o u n t l
j c x z D o N e x t B l o c k :No d a t a i n t h i s b l o c k

cmp [d i + I D l . a x ;Do we have an ID match?
j n z NoMatch ;No match
i n c b x :We have a match: IDMatchCount++:
add dx . [d i+Va lue] :IDMatchSum += D a t a P o i n t e r - > V a l u e :

add di.DATApELEMENT-SIZE ; p o i n t t o t h e n e x t e l e m e n t
1 oop I n t r a B l o c k L o o p

I n t r a B l o c k L o o p :

NoMatch:

: P o i n t t o t h e n e x t b l o c k a n d c o n t i n u e i f t h a t p o i n t e r i s n ' t NULL.
DoNextB lock :

mov s i . [s i + N e x t B l o c k l : G e t p o i n t e r t o t h e n e x t b l o c k
and s i . s i : I s i t a NULL p o i n t e r ?
j n z B l o c k L o o p :No. c o n t i n u e

sub ax.ax :Assume we found no matches
and bx.bx
j z Done :We d i d n ' t f i n d a n y m a t c h e s , r e t u r n 0
x c h g a x . d x : P r e p a r e f o r d i v i s i o n
d i v bx :Re tu rn IDMatchSum / IDMatchCount

Done: pop s i : R e s t o r e C r e g i s t e r v a r i a b l e s
pop d i

r e t
-F ind IDAverage ENDP

end

: C a l c u l a t e t h e a v e r a g e o f a l l m a t c h e s .

POP bP : R e s t o r e c a l l e r ' s s t a c k f r a m e

Listing 8.4 tosses some sophisticated optimization techniques into the mix. The loop
is unrolled eight times, eliminating a good deal of branching, and SCASW is used
instead of CMP [DI],AX. (Note, however, that SCASW is in fact slower than CMP
[DI],AX on the 386 and 486, and is sometimes faster on the 286 and 8088 only be-
cause it's shorter and therefore may prefetch faster.) This advanced tweaking produces
a 39 percent improvement over the original C code-substantial, but not a tremen-
dous return for the optimization effort invested.

Speeding Up C with Assembly Language 1 61

LISTING 8.4 18-4.ASM
: H e a v i l y o p t i m i z e d a s s e m b l y l a n g u a g e v e r s i o n o f F i n d I D A v e r a g e .
: F e a t u r e s a n u n r o l l e d l o o p a n d m o r e e f f i c i e n t p o i n t e r u s e .
SearchedFor ID equ 4
B l o c k P o i n t e r e q u 6

; P a s s e d p a r a m e t e r o f f s e t s i n t h e
: s t a c k f r a m e (s k i p o v e r p u s h e d BP
: a n d t h e r e t u r n a d d r e s s)

N e x t B l o c k e q u 0 ; F i e l d o f f s e t s i n s t r u c t B l o c k H e a d e r
B l o c k c o u n t
BLOCK-HEADER-SIZE equ 4

equ 2

I D
;Number o f b y t e s i n s t r u c t B l o c k H e a d e r

equ 0 ; s t r u c t D a t a E l e m e n t f i e l d o f f s e t s
Va lue equ 2
DATA-ELEMENT-SIZE equ 4 :Number o f b y t e s i n s t r u c t D a t a E l e m e n t

.model smal l

.code
p u b l i c - F i n d I D A v e r a g e

p u s h b p : S a v e c a l l e r ' s s t a c k f r a m e
mov b p . s p ; P o i n t t o o u r s t a c k f r a m e
p u s h d i : P r e s e r v e C r e g i s t e r v a r i a b l e s
p u s h s i
mov d i . d s : P r e p a r e f o r SCASW
mov e s . d i
c l d
sub dx.dx : IDMatchSum = 0
mov bx .dx : IDMatchCount - 0
mov s i . [b p + B l o c k P o i n t e r] ; P o i n t e r t o f i r s t b l o c k
mov ax . [bp+SearchedFor ID l : I D w e ' r e l o o k i n g f o r

- F i n d I D A v e r a g e p r o c n e a r

: S e a r c h t h r o u g h a l l o f t h e l i n k e d b l o c k s u n t i l t h e l a s t b l o c k
: (m a r k e d w i t h a NULL p o i n t e r t o t h e n e x t b l o c k) h a s b e e n s e a r c h e d .
B lockLoop:
: P o i n t t o t h e f i r s t D a t a E l e m e n t e n t r y w i t h i n t h i s b l o c k .

: S e a r c h t h r o u g h a l l t h e D a t a E l e m e n t e n t r i e s w i t h i n t h i s b l o c k
: a n d a c c u m u l a t e d a t a f r o m a l l t h a t m a t c h t h e d e s i r e d I D .

l e a d i , [si+BLDCK-HEADER-SIZE]

mov cx .Cs i+B lockCoun t] :Number o f e l e m e n t s i n t h i s b l o c k
j c x z D o N e x t B l o c k ; S k i p t h i s b l o c k i f i t ' s empty
mov b p . c x : * * * s t a c k f r a m e n o l o n g e r a v a i l a b l e * * *
add cx.7
s h r c x . 1 ;Number o f r e p e t i t i o n s o f t h e u n r o l l e d
s h r c x . 1 : l o o p - (B l o c k c o u n t + 7) / 8
s h r c x . 1
a n d b p . 7 : G e n e r a t e t h e e n t r y p o i n t f o r t h e
s h l b p . 1 ; f i r s t , p o s s i b l y p a r t i a l p a s s t h r o u g h
jmp cs : [LoopEn t ryTab le+bp l : t h e u n r o l l e d l o o p a n d

a l i g n 2

dw LoopEntryB.LoopEntryl,LoopEntry2~LoopEntry3
dw LoopEntry4.LoopEntry5.LoopEntry6.LoopEntry7

l o c a l N o M a t c h

scasw :Do we have an I D match?
j n z NoMatch :No match

inc bx ; IDMatchCount++;
add dx . [d i] ; IDMatchSum +- D a t a P o i n t e r - > V a l u e :

add di.DATA-ELEMENT-SIZE-2 : p o i n t t o t h e n e x t e l e m e n t

: v e c t o r t o t h a t e n t r y p o i n t

L o o p E n t r y T a b l e l a b e l w o r d

M-IBL macro P 1

LoopEn t ry&P l& :

:We have a match

NoMatch:

: (SCASW advanced 2 b y t e s a l r e a d y)

162 Chapter 8

endm
a1 i g n 2

M-IBL 8
M-IBL 7
MKIBL 6
M-IBL 5
M-IBL 4
M-IBL 3
M-IBL 2
MKIBL 1

I n t r a B l o c k L o o p :

l o o p I n t r a B l o c k L o o p
: P o i n t t o t h e n e x t b l o c k a n d c o n t i n u e i f t h a t p o i n t e r i s n ' t NULL.
DoNextB lock :

mov s i . [s i + N e x t B l o c k] : G e t p o i n t e r t o t h e n e x t b l o c k
and s i . s i : I s i t a NULL p o i n t e r ?
j n z B l o c k L o o p :No . con t i nue

sub ax.ax :Assume we found no matches
and bx.bx
j z Done :We d i d n ' t f i n d a n y m a t c h e s , r e t u r n 0
x c h g a x . d x : P r e p a r e f o r d i v i s i o n
d iv bx :Return IDMatchSum / IDMatchCount

Done: pop s i ; R e s t o r e C r e g i s t e r v a r i a b l e s
p o p d i
POP b p : R e s t o r e c a l l e r ' s s t a c k f r a m e
r e t

-F ind IDAverage ENDP
end

: C a l c u l a t e t h e a v e r a g e o f a l l m a t c h e s .

Listings 8.5 and 8.6 together go the final step and change the rules in favor of assem-
bly language. Listing 8.5 creates the same list of linked blocks as Listing 8.1. However,
instead of storing an array of structures within each block, it stores two arrays in each
block, one consisting of ID numbers and the other consisting of the corresponding
values, as shown in Figure 8.3. No information is lost; the data is merely rearranged.

LISTING 8.5 18-5.C
/* Program t o s e a r c h an a r r a y s p a n n i n g a l i n k e d l i s t o f v a r i a b l e -

s i z e d b l o c k s , f o r a l l e n t r i e s w i t h a s p e c i f i e d ID number,
a n d r e t u r n t h e a v e r a g e o f t h e v a l u e s o f a l l s u c h e n t r i e s . Each o f
t h e v a r i a b l e - s i z e d b l o c k s may c o n t a i n a n y n u m b e r o f d a t a e n t r i e s .
s t o r e d i n t h e f o r m o f t w o s e p a r a t e a r r a y s , o n e f o r I D numbers and
o n e f o r v a l u e s . * /

i n c l u d e < s t d i o . h >
B i f d e f -TURBOC-
#i ncl ude <a1 1 oc. h>
e l s e
inc lude <ma l 1 oc. h>
#end i f

v o i d m a i n (v o i d 1 :
v o i d e x i t (i n t) ;
e x t e r n u n s i g n e d i n t F i n d I D A v e r a g e Z (u n s i g n e d i n t .

s t r u c t B l o c k H e a d e r *) :

Speeding Up C with Assembly Language 163

BlockHeader->NextBlock
BlockHeader->BlockCount
IDCOl
IOCll
Val ue[Ol
ValueCll

" " " " " " " _
Array Elements

"""

BlockHeader->BlockCount
IDCOI -1) Array Element 2
ValueCOI 2000- - - - - -

BlockHeader->NextBlock
BlockHeader->Blockcount
IDCOl
IDCll
IDC21
ValueCOl
ValueCll
ValueCZl

A r r a y
3 thl

Elements
,ough 5

Linked array storage format (version 2).
Figure 8.3

/ * S t r u c t u r e t h a t s t a r t s e a c h v a r i a b l e - s i z e d b l o c k * /
s t r u c t B l o c k H e a d e r I

s t r u c t B l o c k H e a d e r * N e x t B l o c k : / * P o i n t e r t o n e x t b l o c k . or NULL
i f t h i s i s t h e l a s t b l o c k i n t h e
l i n k e d l i s t * /

i n t h i s v a r i a b l e - s i z e d b l o c k * /
u n s i g n e d i n t B l o c k C o u n t ; / * The number o f D a t a E l e m e n t e n t r i e s

1 :

v o i d m a i n (v o i d 1 {
i n t i.j:
u n s i g n e d i n t I D T o F i n d :
s t r u c t B l o c k H e a d e r *BaseAr rayB lockPo in te r , *Work ingB lockPo in te r :
i n t * W o r k i n g D a t a P o i n t e r ;
s t r u c t B l o c k H e a d e r * * L a s t B l o c k P o i n t e r :

p r i n t f (" 1 D I/ f o r w h i c h t o f i n d a v e r a g e : ' I) :

s c a n f (" % d " . & I D T o F i n d) :

/ * B u i l d an a r r a y a c r o s s 5 b l o c k s , f o r t e s t i n g */
/ * A n c h o r t h e l i n k e d l i s t t o B a s e A r r a y B l o c k P o i n t e r * /
L a s t B l o c k P o i n t e r - & B a s e A r r a y B l o c k P o i n t e r :
/ * C r e a t e 5 b l o c k s o f v a r y i n g s i z e s * /
f o r (i - 1; i < 6: i++) I

/* T r y t o g e t memory f o r t h e n e x t b l o c k * /

164 Chapter 8

i f ((W o r k i n g B l o c k P o i n t e r =

(s t r u c t B l o c k H e a d e r *) m a l l o c (s i z e o f (s t r u c t B l o c k H e a d e r) +
s i z e o f (i n t) * 2 * i * 1 0)) == NULL) {

e x i t (1) :
I
/ * S e t t h e n u m b e r o f d a t a e l e m e n t s i n t h i s b l o c k * /
Work ingB lockPo in te r ->B lockCoun t - i * 10:
/ * L i n k t h e new b l o c k i n t o t h e c h a i n * /
* L a s t B l o c k P o i n t e r = W o r k i n g B l o c k P o i n t e r ;
/ * P o i n t t o t h e f i r s t d a t a f i e l d * /
Work ingDa taPo in te r = (i n t *) ((c h a r *) W o r k i n g B l o c k P o i n t e r +

/ * F i l l t h e d a t a f i e l d s w i t h I D numbers and values * /
f o r (j - 0; j < (i * 1 0) ; j++, Work ingDataPo in te r++) (

s i z e o f (s t r u c t B l o c k H e a d e r)) :

*Work ingDa taPo in te r = j ;
* (W o r k i n g D a t a P o i n t e r + i * 1 0) = i * 1000 + j;

1
/ * Remember where t o s e t l i n k f r o m t h i s b l o c k t o t h e n e x t * /
L a s t B l o c k P o i n t e r = &WorkingBlockPointer->NextBlock;

1
/ * S e t t h e l a s t b l o c k ' s " n e x t b l o c k " p o i n t e r t o NULL t o i n d i c a t e

t h a t t h e r e a r e n o m o r e b l o c k s * /
WorkingBlockPointer->NextBlock - NULL:
p r i n t f (" A v e r a g e o f a l l e l e m e n t s w i t h I D %d : %u \n " .

e x i t (0) ;
IDToF ind . F i n d I D A v e r a g e Z (1 D T o F i n d . B a s e A r r a y B l o c k P o i n t e r)) :

LISTING 8.6 18-6.ASM
; A l t e r n a t i v e o p t i m i z e d a s s e m b l y l a n g u a g e v e r s i o n o f F i n d I D A v e r a g e
; r e q u i r e s d a t a o r g a n i z e d a s t w o a r r a y s w i t h i n e a c h b l o c k r a t h e r
; t h a n a s a n a r r a y o f t w o - v a l u e e l e m e n t s t r u c t u r e s . T h i s a l l o w s t h e
: u s e o f REP SCASW f o r I D s e a r c h i n g .

SearchedFor ID equ 4 ; P a s s e d p a r a m e t e r o f f s e t s i n t h e
B l o c k P o i n t e r equ 6 ; s t a c k f r a m e (s k i p o v e r p u s h e d BP

Next61 ock equ 0 : F i e l d o f f s e t s i n s t r u c t B l o c k H e a d e r
B lockCoun t equ 2
BLOCK-HEADER-SIZEequ 4 ;Number o f b y t e s i n s t r u c t B l o c k H e a d e r

; a n d t h e r e t u r n a d d r e s s)

.model smal l

. code
p u b l i c - F i n d I D A v e r a g e Z

p u s h b p : S a v e c a l l e r ' s s t a c k f r a m e
mov b p . s p ; P o i n t t o o u r s t a c k f r a m e
p u s h d i ; P r e s e r v e C r e g i s t e r v a r i a b l e s
p u s h s i
mov d i . d s : P r e p a r e f o r SCASW
mov e s . d i
c l d
mov s i . [b p + B l o c k P o i n t e r l : P o i n t e r t o f i r s t b l o c k
mov ax . [bp+SearchedFor ID] ; I D w e ' r e l o o k i n g f o r
sub dx.dx ; IDMatchSum - 0
mov bp,dx ; IDMatchCount - 0

-F ind IDAverageE p roc nea r

: * * * s t a c k f r a m e n o l o n g e r a v a i l a b l e * * *
; S e a r c h t h r o u g h a l l t h e l i n k e d b l o c k s u n t i l t h e l a s t b l o c k
: (m a r k e d w i t h a NULL p o i n t e r t o t h e n e x t b l o c k) h a s b e e n s e a r c h e d .

Speeding Up C with Assembly Language 165

BlockLoop:
: S e a r c h t h r o u g h a l l t h e D a t a E l e m e n t e n t r i e s w i t h i n t h i s b l o c k
: a n d a c c u m u l a t e d a t a f r o m a l l t h a t m a t c h t h e d e s i r e d I D .

mov cx ,Cs i+B lockCoun t]
j C X Z D o N e x t B l o c k ; S k i p t h i s b l o c k i f t h e r e ' s n o d a t a

: t o s e a r c h t h r o u g h
mov bx .cx
s h l b x . 1

: W e ' l l u s e BX t o p o i n t t o t h e
: c o r r e s p o n d i n g v a l u e e n t r y i n t h e
: c a s e o f a n I D match (BX i s t h e
: l e n g t h i n b y t e s o f t h e I D a r r a y)

: P o i n t t o t h e f i r s t D a t a E l e m e n t e n t r y w i t h i n t h i s b l o c k .

I n t r a B l o c k L o o p :
l e a di .Csi+BLOCK-HEADER-SIZE]

r e p n z s c a s w : S e a r c h f o r t h e I D
j n z D o N e x t B l o c k :No m a t c h , t h e b l o c k i s d o n e
i n c b p :We have a ma tch : IDMatchCoun t t t ;
add dx.Cdi+bx-Z] : IDMatchSum +- D a t a P o i n t e r - > V a l u e :

: (SCASW has advanced D I 2 b y t e s)
a n d c x . c x : I s t h e r e m o r e d a t a t o s e a r c h t h r o u g h ?
j n z I n t r a B l o c k L o o p : y e s

: P o i n t t o t h e n e x t b l o c k a n d c o n t i n u e if t h a t p o i n t e r i s n ' t NULL.
DoNextB lock :

mov s i . C s i + N e x t B l o c k l : G e t p o i n t e r t o t h e n e x t b l o c k
and s i , s i
j n z B1 ockLoop

sub ax,ax :Assume we found no matches
and bp,bp
J z Done :We d i d n ' t f i n d a n y m a t c h e s , r e t u r n 0
xchg ax.dx
d i v b p

; P r e p a r e f o r d i v i s i o n
:Return IDMatchSum / IDMatchCount

p o p d i

r e t
-F indIDAverageZ ENDP

end

: I s i t a NULL p o i n t e r ?
:No. c o n t i n u e

: C a l c u l a t e t h e a v e r a g e o f a l l m a t c h e s .

Done: pop s i : R e s t o r e C r e g i s t e r v a r i a b l e s

: R e s t o r e c a l l e r ' s s t a c k f r a m e POP bp

The whole point of this rearrangement is to allow us to use REP S W W to search
through each block, and that's exactly what FindIDAverageQ in Listing 8.6 does. The
result: Listing 8.6 calculates the average about three times as fast as the original C
implementation and more than twice as fast as Listing 8.4, heavily optimized as the
latter code is.
I trust you get the picture. The sort of instruction-by-instruction optimization that so
many of us love to do as a kind of puzzle is fun, but compilers can do it nearly as well
as you can, and in the future will surely do it better. What a compiler can't do is tie
together the needs of the program specification on the high end and the processor
on the low end, resulting in critical code that runs just about as fast as the hardware
permits. The only software that can do that is located north of your sternum and
slightly aft of your nose. Dust it off and put it to work-and your code will never
again be confused with anything by Hamilton, Joe, Frank, and Reynolds or Bo
Donaldson and the Heywoods.

166 Chapter 8

i”B
” Back in high school, I took a precalculus class from Mr. Bourgeis, whose most notable

characteristics wer6bcessant pacing and truly enormous feet. My friend Barry, who
sat in the back row, rig$$ behind me, claimed that it was because of his large feet that
Mr. Bourgeis was so resd se feet were so heavy, Barry hypothesized, that if Mr.
Bourgeis remained id any one place for too long, the floor would give way under the
strain, plunging thekmfortunate teacher deep into the mantle of the Earth and pos-
sibly all the way thr&gh to China. Many amusing cartoons were drawn to this effect.
UnfortunatelyJ3dh-y -*,e”..’:“ was too busy drawing cartoons, or, alternatively, sleeping, to
actually learn any math. In the long run, that didn’t turn out to be a handicap for
Barry, who went on’ko become vice-president of sales for a ham-packing company,
where presumably he has rarely called upon to derive the quadratic equation. Barry’s
lack of scholarship caused some problems back then, though. On one memorable
occasion, Barry was half-asleep, with his eyes open but unfocused and his chin bal-
anced on his hand in the classic “if I fall asleep my head will fall off my hand and I’ll
wake up” posture, when Mr. Bourgeis popped a killer problem:
“Barry, solve this for X, please.” On the blackboard lay the equation:

8:

x - 1 = 0

“Minus 1,” Barry said promptly.

169

optimization odds and ends from the field

Mr. Bourgeis shook his head mournfully. “Try again.” Barry thought hard. He knew
the fundamental rule that the answer to most mathematical questions is either 0, 1,
infinity, -1, or minus infinity (do not apply this rule to balancing your checkbook,
however); unfortunately, that gave him only a 25 percent chance of guessing right.
“One,” I whispered surreptitiously.
“Zero,” Barry announced. Mr. Bourgeis shook his head even more sadly.
“One,” I whispered louder. Barry looked still more thoughtful-a bad sign-so I
whispered “one” again, even louder. Barry looked so thoughtful that his eyes nearly
rolled up into his head, and I realized that he was just doing his best to convince Mr.
Bourgeis that Barry had solved this one by himself.
As Barry neared the climax of his stimng performance and opened his mouth to speak,
Mr. Bourgeis looked at him with great concern. “Barry, can you hear me all right?”
“Yes, sir,” Barry replied. ‘Why?”
‘Well, I could hear the answer all the way up here. Surely you could hear it just one
row away?”
The class went wild. They might as well have sent us home early for all we accom-
plished the rest of the day.
I like to think I know more about performance programming than Barry knew about
math. Nonetheless, I always welcome good ideas and comments, and many readers
have sent me a slew of those over the years. So in this chapter, I think I’ll return the
favor by devoting a chapter to reader feedback.

Another Look at LEA
Several people have pointed out that while LEA is great for performing certain addi-
tions (see Chapter 6), it isn’t a perfect replacement for ADD. What’s the difference?
LEA, an addressing instruction by trade, doesn’t affect the flags, while the arithmetic
ADD instruction most certainly does. This is no problem when performing additions
that involve only quantities that fit in one machine word (32 bits in 386 protected
mode, 16 bits otherwise), but it renders LEAuseless for multiword operations, which
use the Carry flag to tie together partial results. For example, these instructions

A D D E A X , EBX
A D C E D X , E C X

could not be replaced

L E A EAX.CEAX+EBXI
A D C E D X , E C X

because LEA doesn’t affect the Carry flag.

170 Chapter 9

The no-carry characteristic of LEA becomes a distinct advantage when performing
pointer arithmetic, however. For instance, the following code uses LEA to advance
the pointers while adding one 128-bit memory variable to another such variable:

MOV E C X . 4 :# o f 3 2 - b i t w o r d s t o add
c L C

:no c a r r y i n t o t h e i n i t i a l ADC
ADDLOOP:

MOV E A X . [E S I I : g e t t h e n e x t e l e m e n t o f o n e a r r a y
ADC [EDII . € A X :add i t t o t h e o t h e r a r r a y , w i t h c a r r y
L E A E S I . [€ S I + 4 1 :advance one a r r a y ’ s p o i n t e r
L E A E D I , [E D I + 4] : a d v a n c e t h e o t h e r a r r a y ’ s p o i n t e r

LOOP ADDLOOP

(Yes, I could use LODSD instead of MOV/LEA, I’m just illustrating a point here.
Besides, LODS is only 1 cycle faster than MOV/LEA on the 386, and is actually more
than twice as slow on the 486.) If we used ADD rather than LEA to advance the
pointers, the carry from one ADC to the next would have to be preserved with either
PUSHF/POPF or LAHF/SAHF. (Alternatively, we could use multiple INCs, since
INC doesn’t affect the Carry flag.)
In short, LEA is indeed different from ADD. Sometimes it’s better. Sometimes not;
that’s the nature of the various instruction substitutions and optimizations that will
occur to you over time. There’s no such thing as “best” instructions on the x86; it all
depends on what you’re trying to do.
But there sure are a lot of interesting options, aren’t there?

The Kennedy Portfolio
ReaderJohn Kennedy regularly passes along intriguing assembly programming tricks,
many of which I’ve never seen mentioned anywhere else. John likes to optimize for
size, whereas I lean more toward speed, but many of his optimizations are good for
both purposes. Here are a few of my favorites:
John’s code for setting AX to its absolute value is:

CWD
XOR AX.DX
SUB AX.DX

This does nothing when bit 15 of AX is 0 (that is, if AX is positive). When AX is
negative, the code “nots” it and adds 1, which is exactly how you perform a two’s
complement negate. For the case where AX is not negative, this trick usually beats
the stuffing out of the standard absolute value code:

A N D A X . A X : n e g a t i v e ?
JNS I s p o s i t i v e ;no
NEG AX :yes,negate i t

I s p o s i t i v e :

Hints My Readers Gave Me 171

However, John’s code is slower on a 486; as you’re no doubt coming to realize (and as
I’ll explain in Chapters 12 and 13), the 486 is an optimization world unto itself.
Here’s how John copies a block of bytes from DS:SI to ES:DI, moving as much data as
possible a word at a time:

SHR C X . l
REP MOVSW

:word count
:copy as many words as poss ib le

ADC C X , C X :CX-1 i f c o p y l e n g t h was odd,

REP MOVSB
;O e l s e
:copy any odd byte

(ADC CX,CX can be replaced with RCL CX,l; which is faster depends on the proces-
sor type.) It might be hard to believe that the above is faster than this:

SHR C X . l :word c o u n t
REP MOVSW :copy as many words as

: p o s s i b l e
JNC CopyDone ;done i f even copy length
MOVSB : c o p y t h e odd b y t e

CopyDone:

However, it generally is. Sure, if the length is odd, John’s approach incurs a penalty
approximately equal to the REP startup time for MOVSB. However, if the length is
even, John’s approach doesn’t branch, saving cycles and not emptylng the prefetch
queue. If copy lengths are evenly distributed between even and odd, John’s approach
is faster in most x86 systems. (Not on the 486, though.)
John also points out that on the 386, multiple LEAs can be combined to perform
multiplications that can’t be handled by a single L E A , much as multiple shifts and
adds can be used for multiplication, only faster. LEA can be used to multiply in a
single instruction on the 386, but only by the values 2,3,4,5,8, and 9; several LEAS
strung together can handle a much wider range of values. For example, video pro-
grammers are undoubtedly familiar with the following code to multiply AX times 80
(the width in bytes of the bitmap in most PC display modes) :

SHL A X . l :*2
SHL A X . l : *4
SHL A X . l : *8
SHL A X . l :*16
MOV B X . A X
SHL A X . l ;*32
SHL A X . l : *64
ADD A X . B X ;*EO

Using LEA on the 386, the above could be reduced to

LEA E A X . [EAX*ZI
LEA EAX.[EAX*81

: *2
;*16

LEA EAX.[EAX+EAX*41 :*EO

1 72 Chapter 9

which still isn’t as fast as using a lookup table like

M O V EAX.MultiplesOf80Table[EAX*41

but is close and takes a great deal less space.
Of course, on the 386, the shift and add version could also be reduced to this consid-
erably more efficient code:

SHL A X . 4
MOV B X . A X

; *16

SHL A X . 2 ;*64
A D D A X . B X ; *80

Speeding Up Multiplication
That brings us to multiplication, one of the slowest of x86 operations and one that
allows for considerable optimization. One way to speed up multiplication is to use shift
and add, LEA, or a lookup table to hard-code a multiplication operation for a fixed
multiplier, as shown above. Another is to take advantage of the early-out feature of the
386 (and the 486, but in the interests of brevity I’ll just say “386” from now on) by
arranging your operands so that the multiplier (always the rightmost operand follow-
ing MUL or IMUL) is no larger than the other operand.

Why? Because the 386 processes one multiplier bit per cycle and immediately P ends a multiplication when all sign@ant bits of the multiplier have been pro-
cessed, so f m e r cycles are required to multiply a large multiplicand times a small
multiplier than a small multiplicand times a large multipliel; by a factor of about
1 cycle for each significant multiplier bit eliminated.

(There’s a minimum execution time on this trick; below 3 significant multiplier bits,
no additional cycles are saved.) For example, multiplication of 32,767 times 1 is 12
cycles faster than multiplication of 1 times 32,727.
Choosing the right operand as the multiplier can work wonders. According to pub-
lished specs, the 386 takes 38 cycles to multiply by a multiplier with 32 significant bits
but only 9 cycles to multiply by a multiplier of 2, a performance improvement of
more than four times! (My tests regularly indicate that multiplication takes 3 to 4
cycles longer than the specs indicate, but the cycle-per-bit advantage of smaller mul-
tipliers holds true nonetheless.)
This highlights another interesting point: MUL and IMUL on the 386 are so fast that
alternative multiplication approaches, while generally still faster, are worthwhile only
in truly time-critical code.

On 386SXs and uncached 386s, where code size can significantly affect perfor- P mance due to instruction prefetching, the compact MUL and IMUL instructions
can approach and in some cases even outperform the “optimized ’’ alternatives.

Hints My Readers Gave Me 1 73

All in all, MUL and IMUL are reasonable performers on the 386, no longer to be
avoided in most cases-and you can help that along by arranging your code to make
the smaller operand the multiplier whenever you know which operand is smaller.
That doesn’t mean that your code should test and swap operands to make sure the
smaller one is the multiplier; that rarely pays off. I’m speaking more of the case
where you’re scaling an array up by a value that’s always in the range of, say, 2 to 10;
because the scale value will always be small and the array elements may have any
value, the scale value is the logical choice for the multiplier.

Optimizing Optimized Searching
Rob Williams writes with a wonderful optimization to the REPNZ SCASB-based opti-
mized searching routine I discussed in Chapter 5. As a quick refresher, I described
searching a buffer for a text string as follows: Scan for the first byte of the text string
with REPNZ SCASB, then use REPZ CMF’S to check for a full match whenever REPNZ

Start of - 0
buffer
being 1
searched 2

3
4
5
6
7
8
9

10
1 1
12
13
14
15

R
A
T
E

<blank>
A
N
D

c blan k>
E

Q
U
A
1

<blank>
s

The obvious
searching
approach is to
scan through the
buffer for just the

the search string,
- first character of :

, stopping when a , ;cl: , p ; match for the first j j
. : character is found; : - - - . i only when a first- I , : character

j character match is j
: found are buffer ; i bytes compared to j
;- the rest of the - - - - - a

: search string. In
: this case, 10 first-

1 ,

I D
I I comparisons are
; ; needed (requiring
: : starting REPNZ

SCASB twice),
: followed by two
I comparisons of the

- - 8 ’ rest of the string.

E
Q
U
A
L -

~ - Start of
search
string

Simple searching method for locating a text string.
Figure 9.1

1 74 Chapter 9

SCASB finds a match for the first character, as shown in Figure 9.1. The principle is
that most buffer characters won’t match the first character of any given string, so
REPNZ SCASB, by far the fastest way to search on the PC, can be used to eliminate
most potential matches; each remaining potential match can then be checked in its
entirety with REPZ CMPS.
Rob’s revelation, which he credits without explanation to Edgar Allen Poe (search
nevermore?), was that by far the slowest part of the whole deal is handling REPNZ
SCASB matches, which require checking the remainder of the string with REPZ
CMPS and restarting REPNZ SCASB if no match is found.

Rob points out that the number of REPNZ SCASB matches can easily be reduced P simply by scanning for the character in the searched-for string that appears least
often in the buffer being searched.

Imagine, if you will, that you’re searching for the string “EQUAL,.” By my approach,
you’d use REPNZ SCASB to scan for each occurrence of “E,” which crops up quite
often in normal text. Rob points out that it would make more sense to scan for ‘‘a”
then back up one character and check the whole string when a “ Q is found, as
shown in Figure 9.2. “ Q is likely to occur much less often, resulting in many fewer
whole-string checks and much faster processing.
Listing 9.1 implements the scan-on-first-character approach. Listing 9.2 scans for
whatever character the caller specifies. Listing 9.3 is a test program used to compare
the two approaches. How much difference does Rob’s revelation make? Plenty. Even
when the entire C function call to Findstring is timed-strlen calls, parameter push-
ing, calling, setup, and all-the version of Findstring in Listing 9.2, which is directed
by Listing 9.3 to scan for the infrequently-occurring ‘ Q ” is about 40 percent faster
on a 20 MHz cached 386 for the test search of Listing 9.3 than is the version of
Findstring in Listing 9.1, which always scans for the first character, in this case “E.”
However, when only the search loops (the code that actually does the searching) in
the two versions of Findstring are compared, Listing 9.2 is more than twice as fast as
Listing 9.1-a remarkable improvement over code that already uses REPNZ SCASB
and REPZ CMPS.
What I like so much about Rob’s approach is that it demonstrates that optimization
involves much more than instruction selection and cycle counting. Listings 9.1 and
9.2 use pretty much the same instructions, and even use the same approach of scan-
ning with REPNZ SCASB and using REPZ CMPS to check scanning matches.

The difference between Listings 9.1 and 9.2 (which gives you more than a dou- P bling ofperformance) is due entirely to understanding the nature of the data being
handled, and biasing the code to reject that knowledge.

Hints My Readers Gave Me 175

Start of - 0
buffer
being 1
searched 2

3
4
5
6
7
8
9

10
1 1
12
13
14
15

R
A
T
E

<blank>
A
N
D

<blank>
E
Q
U
A
L

<blank>
S -

A faster searching :"-
approach scan through is to the J ~ I - search Start Of

buffer for the least - common character ,
of the search
string, stopping , :4 ,
when a match for j j
that character is I - - -.
found; only when
such a match is j
found are buffer :
bytes compared to j

4 - the rest of the - - A

j search string. In
: this case, 10 least
j common character
: comparisons are
: needed (requiring

starting REPNZ
SCASB only once),
followed by one
comparison of the
full string.

string

"

Faster searching method for locating a text string.
Figure 9.2

LISTING 9.1 19- 1 .ASM
; Searches a t e x t b u f f e r f o r a t e x t s t r i n g . Uses REPNZ SCASB t o scan
; t h e b u f f e r f o r l o c a t i o n s t h a t m a t c h t h e f i r s t c h a r a c t e r of t h e
; searched- fo r s t r i ng , t hen uses REPZ CMPS t o check f u l l y o n l y t h o s e
; l o c a t i o n s t h a t REPNZ SCASB has i d e n t i f i e d as p o t e n t i a l matches.

; Adapted from Zen o f Assembly Language, by Michael Abrash

; C smal l mode l -ca l lab le as:
; unsigned char * FindStr ing(uns igned char * Buf fe r ,
; unsigned in t Bu f fe rLeng th . uns igned cha r * Searchst r ing.
; unsigned i n t S e a r c h S t r i n g L e n g t h) ;

: Returns a p o i n t e r t o t h e f i r s t match f o r S e a r c h s t r i n g i n B u f f e r . o r
; a NULL p o i n t e r i f no match i s f o u n d . B u f f e r s h o u l d n o t s t a r t a t
; o f f s e t 0 i n t h e d a t a segment t o a v o i d c o n f u s i n g a match a t 0 w i t h
; no match found.
Parms s t r u c

B u f f e r
Buf ferLength dw ? : l e n g t h o f b u f f e r t o s e a r c h

dw 2 dup(?) ;pushed BP/return address
dw ? ; p o i n t e r t o b u f f e r t o s e a r c h

176 Chapter 9

: p o i n t e r t o s t r i n g f o r w h i c h t o s e a r c h
: l e n g t h o f s t r i n g f o r w h i c h t o s e a r c h

S e a r c h s t r i n g dw
SearchSt r ingLength dw

?
?

Parms ends
.model smal 1
.code
p u b l i c - F i n d s t r i n g

p u s h b p ; p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p . s p ; p o i n t t o o u r s t a c k f r a m e
push s i : p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e s
push d i
c l d ;make s t r i n g i n s t r u c t i o n s i n c r e m e n t p o i n t e r s
mov s i . [b p + S e a r c h S t r i n g] ; p o i n t e r t o s t r i n g t o s e a r c h f o r
mov bx . [bp+SearchSt r i ngLeng th l : l e n g t h o f s t r i n g
and bx.bx
j z F indStr ingNotFound :no match i f s t r i n g i s 0 l e n g t h
mov d x . [b p + B u f f e r L e n g t h l : l e n g t h o f b u f f e r
sub d x . b x ; d i f f e r e n c e b e t w e e n b u f f e r and s t r i n g l e n g t h s
j c FindStr ingNotFound :no match i f s e a r c h s t r i n g i s

i n c d x : d i f f e r e n c e b e t w e e n b u f f e r a n d s e a r c h s t r i n g

- F i n d s t r i n g p r o c n e a r

; l o n g e r t h a n b u f f e r

: l e n g t h s , p l u s 1 (# o f p o s s i b l e s t r i n g s t a r t
: l o c a t i o n s t o c h e c k i n t h e b u f f e r)

mov d i .ds
mov e s . d i
mov d i , [b p + B u f f e r l : p o i n t E S : D I t o b u f f e r t o s e a r c h t h r u
1 o d s b : p u t t h e f i r s t b y t e o f t h e s e a r c h s t r i n g i n AL
mov b p . s i : s e t a s i d e p o i n t e r t o t h e s e c o n d s e a r c h b y t e
d e c b x : d o n ' t n e e d t o c o m p a r e t h e f i r s t b y t e o f t h e

: s t r i n g w i t h CMPS: w e ' l l do i t w i t h SCAS
F i n d S t r i n g L o o p :

mov c x . d x : p u t r e m a i n i n g b u f f e r s e a r c h l e n g t h i n C X
r e p n z s c a s b : s c a n f o r t h e f i r s t b y t e o f t h e s t r i n g
j n z F indSt r ingNotFound :no t found, s o t he re ' s no ma tch

: found. s o we have a p o t e n t i a l m a t c h - c h e c k t h e
; r e s t o f t h i s c a n d i d a t e l o c a t i o n

push d i :remember t h e a d d r e s s o f t h e n e x t b y t e t o s c a n
mov d x . c x ; s e t a s i d e t h e r e m a i n i n g l e n g t h t o s e a r c h i n

mov s i .bp ; p o i n t t o t h e r e s t o f t h e s e a r c h s t r i n g
mov cx.bx : s t r i n g l e n g t h (m i n u s f i r s t b y t e)
s h r c x . 1 : c o n v e r t t o w o r d f o r f a s t e r s e a r c h
j n c F i n d S t r i n g W o r d :do word search i f no odd byte
cmpsb ;compare the odd byte
j n z F i n d S t r i n g N o M a t c h ;odd by te doesn ' t ma tch , so we

: t h e b u f f e r

; h a v e n ' t f o u n d t h e s e a r c h s t r i n g h e r e
F indSt r ingWord :

j cxz F indSt r ingFound ; tes t whether we 've a l ready checked
: t h e w h o l e s t r i n g : i f s o . t h i s i s a match
: b y t e s l o n g : i f s o . we've found a match

repz cmpsw : c h e c k t h e r e s t o f t h e s t r i n g a word a t a t i m e
j z F indSt r ingFound ; i t ' s a match

pop d i ; g e t b a c k p o i n t e r t o t h e n e x t b y t e t o s c a n
and dx.dx : i s t h e r e a n y t h i n g l e f t t o c h e c k ?
j n z F i n d S t r i n g L o o p : y e s - c h e c k n e x t b y t e

sub ax.ax ; r e t u r n a NULL p o i n t e r i n d i c a t i n g t h a t t h e
jmp F indStr ingDone : s t r i n g was n o t f o u n d

F indSt r ingNoMatch :

F indSt r ingNotFound:

Hints My Readers Gave Me 177

FindSt r ingFound:
pop ax ; p o i n t t o t h e b u f f e r l o c a t i o n a t w h i c h t h e
dec ax ; s t r i n g was f o u n d (e a r l i e r we pushed the

: a d d r e s s o f t h e b y t e a f t e r t h e s t a r t o f t h e
; p o t e n t i a l m a t c h)

F indSt r ingDone:
pop d i : r e s t o r e c a l l e r ' s r e g i s t e r v a r i a b l e s
pop s i
p o p b p ; r e s t o r e c a l l e r ' s s t a c k f r a m e
r e t

- F i n d s t r i n g e n d p
end

LISTING 9.2 L9-2.ASM
; Searches a t e x t b u f f e r f o r a t e x t s t r i n g . Uses REPNZ SCASB t o scan
; t h e b u f f e r f o r l o c a t i o n s t h a t m a t c h a s p e c i f i e d c h a r a c t e r o f t h e
; s e a r c h e d - f o r s t r i n g , t h e n u s e s REPZ CMPS t o check f u l l y o n l y t h o s e
; l o c a t i o n s t h a t REPNZ SCASB has i d e n t i f i e d as p o t e n t i a l m a t c h e s .

: C s m a l l m o d e l - c a l l a b l e a s :
; uns igned cha r * F i n d S t r i n g (u n s i g n e d c h a r * B u f f e r ,
: u n s i g n e d i n t B u f f e r L e n g t h . u n s i g n e d c h a r * S e a r c h s t r i n g .
; u n s i g n e d i n t S e a r c h S t r i n g L e n g t h .
; u n s i g n e d i n t S c a n C h a r O f f s e t) ;

; Returns a p o i n t e r t o t h e f i r s t match f o r S e a r c h s t r i n g i n B u f f e r . o r
: a NULL p o i n t e r i f no match i s f o u n d . B u f f e r s h o u l d n o t s t a r t a t
: o f f s e t 0 i n t h e d a t a segment t o a v o i d c o n f u s i n g a m a t c h a t 0 w i t h
; n o match found.
Parms s t r u c

B u f f e r dw ?
B u f f e r L e n g t h
S e a r c h s t r i n g dw ? ; p o i n t e r t o s t r i n g f o r w h i c h t o s e a r c h
SearchSt r ingLength dw ?
ScanCharOf fse t dw ? ; o f f s e t i n s t r i n g o f c h a r a c t e r f o r

Parms ends

dw 2 d u p (?) ;pushed BP/return address

dw ? ; l e n g t h o f b u f f e r t o s e a r c h
; p o i n t e r t o b u f f e r t o s e a r c h

; l e n g t h o f s t r i n g f o r w h i c h t o s e a r c h

; w h i c h t o s c a n

.model smal 1

.code
p u b l i c - F i n d s t r i n g

p u s h b p : p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p . s p ; p o i n t t o o u r s t a c k f r a m e
push s i ; p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e s
push d i
c l d :make s t r i n g i n s t r u c t i o n s i n c r e m e n t p o i n t e r s
mov s i . [b p + S e a r c h S t r i n g] ; p o i n t e r t o s t r i n g t o s e a r c h f o r
mov cx.[bp+SearchStringLengthl ; l e n g t h o f s t r i n g
j cxz F indS t r i ngNo tFound ;no match i f s t r i n g i s 0 l e n g t h
mov d x . [b p + B u f f e r L e n g t h l ; l e n g t h o f b u f f e r
sub dx .cx ; d i f f e rence be tween bu f fe r and sea rch

j c F indSt r ingNotFound ;no match i f s e a r c h s t r i n g i s
; l o n g e r t h a n b u f f e r

i n c d x ; d i f f e r e n c e b e t w e e n b u f f e r a n d s e a r c h s t r i n g
; l e n g t h s , p l u s 1 (# o f p o s s i b l e s t r i n g s t a r t
; l o c a t i o n s t o c h e c k i n t h e b u f f e r)

- F i n d S t r i n g p r o c n e a r

; l e n g t h s

mov d i .ds
mov e s . d i

178 Chapter 9

mov d i , [b p + B u f f e r l : p o i n t E S : D I t o b u f f e r t o s e a r c h t h r u
mov bx. [bp+ScanCharOf fset l ; o f f s e t i n s t r i n g o f c h a r a c t e r

add d i . b x : p o i n t E S : D I t o f i r s t b u f f e r b y t e t o scan
mov a l .Cs i+bx l : p u t t h e s c a n c h a r a c t e r i n AL
i n c b x : s e t BX t o t h e o f f s e t b a c k t o t h e s t a r t o f t h e

: on which t o scan

: p o t e n t i a l f u l l m a t c h a f t e r a scan match,
: a c c o u n t i n g f o r t h e 1 - b y t e o v e r r u n o f
: REPNZ SCASB

F indS t r i ngLoop :
rnov cx .dx : p u t r e m a i n i n g b u f f e r s e a r c h l e n g t h i n CX
repnz scasb : s c a n f o r t h e s c a n b y t e
j nz F indS t r i ngNo tFound :no t f ound , s o t h e r e ' s no match

; found. s o we have a p o t e n t i a l m a t c h - c h e c k t h e
: r e s t o f t h i s c a n d i d a t e l o c a t i o n

push d i :remember t h e a d d r e s s o f t h e n e x t b y t e t o s c a n
mov d x . c x : s e t a s i d e t h e r e m a i n i n g l e n g t h t o s e a r c h i n

sub d i . b x ; p o i n t b a c k t o t h e p o t e n t i a l s t a r t o f t h e

mov s i , [b p + S e a r c h S t r i n g l : p o i n t t o t h e s t a r t o f t h e s t r i n g
mov cx.[bp+SearchStringLengthl : s t r i n g l e n g t h
s h r c x . 1 : c o n v e r t t o w o r d f o r f a s t e r s e a r c h
j n c F i n d S t r i n g W o r d :do word search i f no o d d b y t e
cmpsb ;compare t h e odd b y t e
j n z F i n d S t r i n g N o M a t c h ;odd b y t e d o e s n ' t m a t c h . so we

; t h e b u f f e r

: match i n t h e b u f f e r

; h a v e n ' t f o u n d t h e s e a r c h s t r i n g h e r e
F indS t r i ngWord :

j c x z F i n d S t r i n g F o u n d ; i f t h e s t r i n g i s o n l y 1 b y t e l o n g ,

repz cmpsw ; c h e c k t h e r e s t o f t h e s t r i n g a word a t a t i m e
j z F i n d S t r i n g F o u n d : i t ' s a match

pop d i : g e t b a c k p o i n t e r t o t h e n e x t b y t e t o s c a n
and dx.dx ; i s t h e r e a n y t h i n g l e f t t o c h e c k ?
j n z F i n d S t r i n g L o o p ; y e s - c h e c k n e x t b y t e

sub ax .ax : re tu rn a NULL p o i n t e r i n d i c a t i n g t h a t t h e
jmp F indSt r ingDone : s t r i n g was n o t f o u n d

p o p a x : p o i n t t o t h e b u f f e r l o c a t i o n a t w h i c h t h e
sub ax.bx : s t r i n g was f o u n d (e a r l i e r we pushed t h e

: we've found a match

F indStr ingNoMatch:

F indStr ingNotFound:

F indS t r i ngFound :

: a d d r e s s o f t h e b y t e a f t e r t h e s c a n m a t c h)
F i n d S t r i ngDone:

pop d i : r e s t o r e c a l l e r ' s r e g i s t e r v a r i a b l e s
pop s i
p o p b p ; r e s t o r e c a l l e r ' s s t a c k f r a m e
r e t

_ F i n d s t r i n g endp
end

LISTING 9.3 19-3.C
I* Program t o e x e r c i s e b u f f e r - s e a r c h r o u t i n e s i n L i s t i n g s 9 . 1 & 9 . 2 * /
#i n c l ude < s t d i 0. h>
i n c l u d e < s t r i n g . h >

d e f i n e DISPLAYLLENGTH 40
e x t e r n u n s i g n e d c h a r * F i n d S t r i n g (u n s i g n e d c h a r *, u n s i g n e d i n t .

v o i d m a i n (v o i d 1 :
uns igned char *, u n s i g n e d i n t . u n s i g n e d i n t) ;

Hints My Readers Gave Me 179

s t a t i c u n s i g n e d c h a r T e s t B u f f e r C] - "When, i n t h e c o u r s e o f human \
events , i t becomes n e c e s s a r y f o r o n e p e o p l e t o d i s s o l v e t h e \
p o l i t i c a l bands wh ich have connected them w i th another , and to \
assume among the powers of the earth the separate and equal s t a t i o n \
t o w h i c h t h e l a w s o f n a t u r e a n d o f n a t u r e ' s God e n t i t l e t h e m . . . " :

v o i d m a i n 0 {
s t a t i c u n s i g n e d c h a r T e s t S t r i n g L l - "equa l " ;
uns igned char TempBufferCDISPLAY-LENGTH+ll;
uns igned char *MatchPt r :

/ * S e a r c h f o r T e s t s t r i n g and r e p o r t t h e r e s u l t s * /
i f ((M a t c h P t r - F i n d S t r i n g (T e s t 6 u f f e r .

(u n s i g n e d i n t) s t r l e n (T e s t 6 u f f e r) . T e s t s t r i n g .
(u n s i g n e d i n t) s t r l e n (T e s t S t r i n g) . 1)) - NULL) {

/ * T e s t s t r i n g w a s n ' t f o u n d */
p r i n t f (" \ " % s \ " n o t f o u n d \ n " , T e s t s t r i n g) ;

/ * T e s t s t r i n g was f o u n d . Z e r o - t e r m i n a t e T e m p B u f f e r ; s t r n c p y
won' t do it i f DISPLAY-LENGTH c h a r a c t e r s a r e c o p i e d * /

TempBuffer[DISPLAYLLENGTHl - 0:
p r i n t f (" \ " % s \ " f o u n d . N e x t %d c h a r a c t e r s a t m a t c h : \ n \ " % s \ " \ n " ,

1 e l s e I

T e s t s t r i n g . DISPLAY-LENGTH.
s t rncpy(TempBuf fe r . MatchPt r , DISPLAY-LENGTH)):

I
1

You'll notice that in Listing 9.2 I didn't use a table of character frequencies in En-
glish text to determine the character for which to scan, but rather let the caller make
that choice. Each buffer of bytes has unique characteristics, and English-letter fre-
quency could well be inappropriate. What if the buffer is filled with French text?
Cyrillic? What if it isn't text that's being searched? It might be worthwhile for an
application to build a dynamic frequency table for each buffer so that the best scan
character could be chosen for each search. Or perhaps not, if the search isn't time-
critical or the buffer is small.
The point is that you can improve performance dramatically by understanding the
nature of the data with which you work. (This is equally true for high-level language
programming, by the way.) Listing 9.2 is very similar to and only slightly more com-
plex than Listing 9.1; the difference lies not in elbow grease or cycle counting but in
the organic integrating optimizer technology we all carry around in our heads.

Short Sorts
David Stafford (recently of Borland and Borland Japan) who happens to be one of
the best assembly language programmers I've ever met, has written a C-callable rou-
tine that sorts an array of integers in ascending order. That wouldn't be particularly
noteworthy, except that David's routine, shown in Listing 9.4, is exactly 25 bytes long.
Look at the code; you'll keep saying to yourself, "But this doesn't work.. .oh, yes, I
guess it does." As they say in the Prego spaghetti sauce ads, it's in thereand what a
job of packing. Anyway, David says that a 24byte sort routine eludes him, and he'd
like to know if anyone can come up with one.

180 Chapter 9

LISTING 9.4 19-4.ASM

.-""..._".."___..."""""..""....""...""..""."""...."...

: S o r t s an a r r a y o f i n t s . C c a l l a b l e (s m a l l m o d e l) . 2 5 b y t e s .
; v o i d s o r t (i n t num. i n t a [] 1:

; C o u r t e s y o f D a v i d S t a f f o r d .
.".."___..."_.""""..""...""....""..""....""".""..""..

.model m a l 1
.code

pub1 i c - s o r t

t o p : mov
xchg
xchg

cmp
j l

i nc
i nc
1 oop

-so r t : pop
POP
POP
push
dec
push
push
j g

r e t

end

dx. Cbxl :swap two ad jacent in tegers
d x , [bx+E]
dx. Cbxl

dx. Cbxl
t o p

bx
bx
t o p

dx

bx
bx

c x

cx
cx

; d i d we put them i n
:no. swaD them back

:go t o n e x t i n t e g e r

: g e t r e t u r n a d d r e s s
; g e t c o u n t
; g e t p o i n t e r
: r e s t o r e p o i n t e r
:decrement count
:save count

t h e r i g h t o r d e r ?

(e n t r y p o i n t)

d x ; r e s t o r e r e t u r n a d d r e s s
t o p : i f cx > 0

FuII 32-Bit Division
One of the most annoying limitations of the x86 is that while the dividend operand
to the DIV instruction can be 32 bits in size, both the divisor and the result must be
16 bits. That's particularly annoying in regards to the result because sometimes you
just don't know whether the ratio of the dividend to the divisor is greater than 64K-1 or
not-and if you guess wrong, you get that godawful Divide By Zero interrupt. So, what is
one to do when the result might not fit in 16 bits, or when the dividend is larger than
32 bits? Fall back to a software division approach? That will work-but oh so slowly.
There's another technique that's much faster than a pure software approach, albeit
not so flexible. This technique allows arbitrarily large dividends and results, but the
divisor is still limited to16 bits. That's not perfect, but it does solve a number of
problems, in particular eliminating the possibility of a Divide By Zero interrupt from
a too-large result.
This technique involves nothing more complicated than breaking up the division
into word-sized chunks, starting with the most significant word of the dividend. The

Hints My Readers Gave Me 1 81

Bit 47 Dividend Bit 0

The most significant word
is divided by the divisor.

I The remainder is tacked onto
the front of the next most -1
significant word, and the result And so on...
is divided by the divisor.

1
The quotient goes to the The quotient goes to the
corresponding word of corresponding word of
the full quotient. the full quotient.

Bit 47 1 1 Bit 0

Quotient

Fast multiword division on the 386.
Figure 9.3

most significant word is divided by the divisor (with no chance of overflow because
there are only 16 bits in each) ; then the remainder is prepended to the next 16 bits
of dividend, and the process is repeated, as shown in Figure 9.3. This process is
equivalent to dividing by hand, except that here we stop to carry the remainder
manually only after each word of the dividend; the hardware divide takes care of the
rest. Listing 9.5 shows a function to divide an arbitrarily large dividend by a 16-bit
divisor, and Listing 9.6 shows a sample division of a large dividend. Note that the
same principle can be applied to handling arbitrarily large dividends in 386 native
mode code, but in that case the operation can proceed a dword, rather than a word,
at a time.
As for handling signed division with arbitrarily large dividends, that can be done
easily enough by remembering the signs of the dividend and divisor, dividing the
absolute value of the dividend by the absolute value of the divisor, and applying the
stored signs to set the proper signs for the quotient and remainder. There may be
more clever ways to produce the same result, by using IDN, for example; if you know
of one, drop me a line c/o Coriolis Group Books.

LISTING 9.5 L9-5.ASM
; Div ides an a r b i t r a r i l y l o n g u n s i g n e d d i v i d e n d by a 16-b i t uns igned
: d i v i s o r . C n e a r - c a l l a b l e a s :
: unsigned i n t D i v (u n s i g n e d i n t * Div idend,

182 Chapter 9

i n t D i v i d e n d L e n g t h , u n s i g n e d i n t D i v i s o r ,
uns igned i n t * Q u o t i e n t) ;

; R e t u r n s t h e r e m a i n d e r o f t h e d i v i s i o n .

: Tes ted w i th TASM 2.

D iv idendLeng th dw ?

D i v i s o r dw ?

Q u o t i e n t dw ?

parms s t r u c

D i v i d e n d dw ? ; p o i n t e r t o v a l u e t o d i v i d e . s t o r e d i n I n t e l
; o r d e r . w i th l s b a t l o w e s t a d d r e s s , msb a t
; h ighes t . Must be composed o f an i n t e g r a l
; number o f words
;# o f b y t e s i n D i v i d e n d . Must be a mu1 t i p l e
; o f 2
: v a l u e b y w h i c h t o d i v i d e . M u s t n o t b e z e r o ,
: o r a D i v i d e By Z e r o i n t e r r u p t will occur
: p o i n t e r t o b u f f e r i n w h i c h t o s t o r e t h e
: r e s u l t o f t h e d i v i s i o n , i n I n t e l o r d e r .
: The q u o t i e n t r e t u r n e d i s o f t h e same
; l e n g t h as t h e d i v i d e n d

dw 2 dup (?) ;pushed BP & r e t u r n a d d r e s s

Darms ends

.model small

.code
p u b l i c - D i v

p u s h b p : p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p . s p ; p o i n t t o o u r s t a c k f r a m e
push s i
push d i

; p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e s

s t d ; w e ' r e w o r k i n g f r o m msb t o l s b
mov ax.ds
mov e s . a x ; f o r STOS
mov cx. [bp+Div idendLength]
sub cx.2
mov s i . [b p + D i v i d e n d l
add s i , c x ; p o i n t t o t h e l a s t w o r d o f t h e d i v i d e n d

mov d i , [bp+Ouot ient]
add d i . c x ; p o i n t t o t h e l a s t w o r d o f t h e q u o t i e n t

mov b x . [b p + D i v i s o r l
s h r c x , l
i n c c x ;# o f words t o process
sub dx.dx :convert i n i t i a l d i v i s o r word t o a 3 2 - b i t

- D i v p r o c n e a r

; (t h e m o s t s i g n i f i c a n t w o r d)

; b u f f e r (t h e most s i g n i f i c a n t w o r d)

; v a l u e f o r D I V
DivLoop:

1 odsw ; g e t n e x t m o s t s i g n i f i c a n t w o r d o f d i v i s o r
d i v b x
s t o s w ; s a v e t h i s w o r d o f t h e q u o t i e n t

:DX c o n t a i n s t h e r e m a i n d e r a t t h i s o o i n t .

1 oop D i vLoop
mov ax,dx

c l d
pop d i
pop s i
POP bP

ready t o prepend t o t h e n e x t d i v i i o r w o r d

r e t u r n t h e r e m a i n d e r

r e s t o r e d e f a u l t D i r e c t i o n f l a g s e t t i n g
r e s t o r e c a l l e r ' s r e g i s t e r v a r i a b l e s

r e s t o r e c a l l e r ' s s t a c k f r a m e

Hints My Readers Gave Me 183

r e t

end
-Div endp

LISTING 9.6 19-6.C
/* Sample use o f D i v f u n c t i o n t o p e r f o r m d i v i s i o n when t h e r e s u l t

d o e s n ' t f i t i n 16 b i t s * /

i n c l u d e < s t d i o . h >

e x t e r n u n s i g n e d i n t D i v (u n s i g n e d i n t * D i v i d e n d ,
i n t D i v i d e n d L e n g t h . u n s i g n e d i n t D i v i s o r ,
u n s i g n e d i n t * Q u o t i e n t) ;

m a i n 0 {
u n s i g n e d l o n g m, i - 0x20000001;
u n s i g n e d i n t k . j = 0x10;

k - D i v ((u n s i g n e d i n t *)&i. s i z e o f (i) . j. (u n s i g n e d i n t *) & I n) ;
p r i n t f (" % l u / %u - % l u r %u\n", i. j . m. k) ;

1

Sweet Spot Revisited
Way back in Volume 1, Number 1 of PC TECHNIQUES, (April/May 1990) I wrote the
very first of that magazine's HAX (#l), which extolled the virtues of placing your
most commonly-used automatic (stack-based) variables within the stack's "sweet spot,"
the area between +127 to -128 bytes away from BP, the stack frame pointer. The
reason was that the 8088 can store addressing displacements that fall within that
range in a single byte; larger displacements require a full word of storage, increasing
code size by a byte per instruction, and thereby slowing down performance due to
increased instruction fetching time.
This takes on new prominence in 386 native mode, where straying from the sweet
spot costs not one, but two or three bytes. Where the 8088 had two possible displace-
ment sizes, either byte or word, on the 386 there are three possible sizes: byte, word,
or dword. In native mode (32-bit protected mode), however, a prefix byte is needed
in order to use a word-sized displacement, so a variable located outside the sweet
spot requires either two extra bytes (an extra displacement byte plus a prefix byte)
or three extra bytes (a dword displacement rather than a byte displacement). Either
way, instructions grow alarmingly.
Performance may or may not suffer from missing the sweet spot, depending on the
processor, the memory architecture, and the code mix. On a 486, prefix bytes often
cost a cycle; on a 386SX, increased code size often slows performance because in-
structions must be fetched through the half-pint l6bi t bus; on a 386, the effect
depends on the instruction mix and whether there's a cache.

On balance, though, it b as important to keep your most-used variables in the stackb 1 sweet spot in 386 native mode as it was on the 8088.

184 Chapter 9

In assembly, it’s easy to control the organization of your stack frame. In C, however,
you’ll have to figure out the allocation scheme your compiler uses to allocate auto-
matic variables, and declare automatics appropriately to produce the desired effect.
It can be done: I did it in Turbo C some years back, and trimmed the size of a pro-
gram (admittedly, a large one) by several K-not bad, when you consider that the
“sweet spot” optimization is essentially free, with no code reorganization, change in
logic, or heavy thinking involved.

Hard-core Cycle Counting
Next, we come to an item that cycle counters will love, especially since it involves
apparently incorrect documentation on Intel’s part. According to Intel’s documents,
all RCR and RCL instructions, which perform rotations through the Carry flag, as
shown in Figure 9.4, take 9 cycles on the 386 when working with a register operand.
My measurements indicate that the 9-cycle execution time almost holds true for multibit
rotate-through-carries, which I’ve timed at 8 cycles apiece; for example, RCR AX,CL
takes 8 cycles on my 386, as does RCL DX,2. Contrast that with ROR and ROL, which
can rotate the contents of a register any number of bits in just 3 cycles.
However, rotating by one bit through the Carry flag does not take 9 cycles, contrary to
Intel’s 80386 Programmer’s Refwence Manual, or even 8 cycles. In fact, RCR reg,l and

I

-”+Ll”- car,,, Bit 15 AX Bit 0

RCR AX, 1

car,,, D“+- Bit 15
AX Bit 0

RCL AX, 1

AX
ROR AX, 1

car,,, cl“+ Bit 15
AX Bit 0

ROL AX, 1

Performing rotate instructions using the Carvflag.
Figure 9.4

Hints My Readers Gave Me 185

RCL reg1 take 3 cycles, just like ROR, ROL, SHR, and SHL. At least, that’s how fast
they run on my 386, and I very much doubt that you’ll find different execution times
on other 386s. (Please let me know if you do, though!)
Interestingly, according to Intel’s i486 Microprocessor Programmer’s Reference Manual,
the 486 can RCR or RCL a register by one bit in 3 cycles, but takes between 8 and 30
cycles to perform a multibit register RCR or RCL!
No great lesson here, just a caution to be leery of multibit RCR and RCL when
performance matters-and to take cycle-time documentation with a grain of salt.

Hardwired Far Jumps
Did you ever wonder how to code a far jump to an absolute address in assembly
language? Probably not, but if you ever do, you’re going to be glad for this next item,
because the obvious solution doesn’t work. You might think all it would take to jump
to, say, 1000:5 would be JMP FAR PTR 1000:5, but you’d be wrong. That won’t even
assemble. You might then think to construct in memory a far pointer containing
1000:5, as in the following:

Ptr dd ?

mov word p t r C P t r l . 5
mov word p t r CPtr+E].lDOOh
jmp CPtrl

That will work, but at a price in performance. On an 8088, JMP DWORD PTR [m m]
(an indirect far jump) takes at least 37 cycles; JMP DWORD PTR label (a direct far
jump) takes only 15 cycles (plus, almost certainly, some cycles for instruction fetch-
ing). On a 386, an indirect far jump is documented to take at least 43 cycles in real
mode (31 in protected mode); a direct far jump is documented to take at least 12
cycles, about three times faster. In truth, the difference between those two is no-
where near that big; the fastest I’ve measured for a direct far jump is 21 cycles, and
I’ve measured indirect farjumps as fast as 30 cycles, so direct is still faster, but not by
so much. (Oh, those cycle-time documentation blues!) Also, a direct far jump is
documented to take at least 27 cycles in protected mode; why the big difference in
protected mode, I have no idea.
At any rate, to return to our original problem of jumping to 1000:5: Although an
indirect far jump will work, a direct far jump is still preferable.
Listing 9.7 shows a short program that performs a direct far call to 1000:5. (Don’t
run it, unless you want to crash your system!) It does this by creating a dummy seg-
ment at 1000H, so that the label FarLabel can be created with the desired far attribute
at the proper location. (Segments created with “AT” don’t cause the generation of
any actual bytes or the allocation of any memory; they’re just templates.) It’s a little
kludgey, but at least it does work. There may be a better solution; if you have one,
pass it along.

186 Chapter 9

LISTING 9.7 19-7.ASM
: Program t o p e r f o r m a d i r e c t far jump t o address 1000:5.
: *** Do n o t r u n t h i s p r o g r a m ! I t ‘ s j u s t an example o f how ***
: *** t o b u i l d a d i r e c t f a r jump t o an abso lu te add ress ***

: T e s t e d w i t h TASM 2 and MASM 5 .

FarSeg segment a t OlOOOh

FarLabe l l abe l far
FarSeg ends

o r g 5

.model smal 1

.code

jmp FarLabel
end s t a r t

s t a r t :

By the way, if you’re wondering how I figured this out, I merely applied my good
friend Dan Illowsky’s long-standing rule for dealing with MASM:
If the obvious doesn’t work (and it usually doesn’t), just try everything you can think
of, no matter how ridiculous, until you find something that does-a rule with plenty
of history on its side.

Setting 32-Bit Registers: Time versus Space
To finish up this chapter, consider these two items. First, in 32-bit protected mode,

sub eax.eax
i n c eax

takes 4 cycles to execute, but is only 3 bytes long, while

mov eax.1

takes only 2 cycles to execute, but is 5 bytes long (because native mode constants are
dwords and the MOV instruction doesn’t sign-extend). Both code fragments are
ways to set EAX to 1 (although the first affects the flags and the second doesn’t) ; this
is a classic trade-off of speed for space. Second,

o r e b x . - 1

takes 2 cycles to execute and is 3 bytes long, while

mov ebx. -1

takes 2 cycles to execute and is 5 bytes long. Both instructions set EBX to -1; this is a
classic trade-off of-gee, it’s not a trade-off at all, is it? OR is a better way to set a 32-
bit register to all 1-bits, just as SUB or XOR is a better way to set a register to all 0-bits.
Who woulda thunk it? Just goes to show how the 32-bit displacements and constants
of 386 native mode change the familiar landscape of 80x86 optimization.

Hints My Readers Gave Me 187

Be warned, though, that I’ve found OR, AND, ADD, and the like to be a cycle slower
than MOV when working with immediate operands on the 386 under some circum-
stances, for reasons that thus far escape me. This just reinforces the first rule of
optimization: Measure your code in action, and place not your trust in documented
cycle times.

188 Chapter 9

191

how working quickly can bring execution to a crawl

It goes without saying that pattern matching is good; more than that, it’s a large part of
what we are, and, generally, the faster we are at it, the better. Not always, though.
Sometimes insufficient information really is insufficient, and, in our haste to get the
heady rush of coming up with a solution, incorrect or less-thanaptimal conclusions
are reached, as anyone who has ever done the Tims Sunday crossword will attest. Still,
my grandfather does that puzzle every Sunday in ink. What’s his secret? Patience and
discipline. He never fills a word in until he’s confirmed it in his head via intersecting
words, no matter how strong the urge may be to put something down where he can see
it and feel like he’s getting somewhere.
There’s a surprisingly close parallel to programming here. Programming is certainly
a sort of pattern matching in the sense I’ve described above, and, as with crossword
puzzles, following your programming instincts too quickly can be a liability. For many
programmers, myself included, there’s a strong urge to find a workable approach to
a particular problem and start coding it right now, what some people call “hacking” a
program. Going with the first thing your programming pattern matcher comes up
with can be a lot of fun; there’s instant gratification and a feeling of unbounded
creativity. Personally, I’ve always hungered to get results from my work as soon as
possible; I gravitated toward graphics for its instant and very visible gratification.
Over time, however, I’ve learned patience.

I t e come to spend an increasingly large portion of my time choosing algorithms,
designing, and simply giving my mind quiet time in which to work on problems and
come up with non-obvious approaches before coding; and I’ve found that the extra
time up front more than pays for itseIfin both decreased coding time and superior
programs.

In this chapter, I’m going to walk you through a simple but illustrative case history
that nicely points up the wisdom of delaying gratification when faced with program-
ming problems, so that your mind has time to chew on the problems from other
angles. The alternative solutions you find by doing this may seem obvious, once you’ve
come up with them. They may not even differ greatly from your initial solutions.
Often, however, they will be much better-and you’ll never even have the chance to
decide whether they’re better or not if you take the first thing that comes into your
head and run with it.

The Case for Delayed Gratification
Once upon a time, I set out to read AZgrnzthm, by Robert Sedgewick (Addison-Wesley) ,
which turned out to be a wonderful, stimulating, and most useful book, one that I rec-
ommend highly. My story, however, involves only what happened in the first 12 pages, for
it was in those pages that Sedgewick discussed Euclid’s algorithm.

1 92 Chapter 10

Euclid’s algorithm (discovered by Euclid, of Euclidean geometry fame, a very long
time ago, way back when computers still used core memory) is a straightforward
algorithm that solves one of the simplest problems imaginable: finding the greatest
common integer divisor (GCD) of two positive integers. Sedgewick points out that
this is useful for reducing a fraction to its lowest terms. I’m sure it’s useful for other
things, as well, although none spring to mind. (A long time ago, I wrote an article
about optimizing a bit of code that wasn’t even vaguely time-critical, and got swamped
with letters telling me so. I knew it wasn’t time-critical; it was just a good example. So
for now, close your eyes and imagine that finding the GCD is not only necessary but
must also be done as quickly as possible, because it’s perfect for the point I want to
make here and now. Okay?)
The problem at hand, then, is simply this: Find the largest integer value that evenly
divides two arbitrary positive integers. That’s all there is to it. So warm up your pat-
tern matchers.. .and go!

The Brute-Force Syndrome
I have a funny feeling that you’d already figured out how to find the GCD before I
even said “go.” That’s what I did when reading Algorithms; before I read another
word, I had to figure it out for myself. Programmers are like that; give them a prob-
lem and their eyes immediately glaze over as they try to solve it before you’ve even
shut your mouth. That sort of instant response can certainly be impressive, but it can
backfire, too, as it did in my case.
You see, I fell victim to a common programming pitfall, the “brute-force” syndrome.
The basis of this syndrome is that there are many problems that have obvious, brute-
force solutions-with one small drawback. The drawback is that if you were to try to
apply a brute-force solution by hand-that is, work a single problem out with pencil
and paper or a calculator-it would generally require that you have the patience and
discipline to work on the problem for approximately seven hundred years, not count-
ing eating and sleeping, in order to get an answer. Finding all the prime numbers
less than 1,000,000 is a good example; just divide each number up to 1,000,000 by
every lesser number, and see what’s left standing. For most of the history of human-
kind, people were forced to think of cleverer solutions, such as the Sieve of
Eratosthenes (we’d have been in big trouble if the ancient Greeks had had comput-
ers), mainly because after about five minutes of brute force-type work, people’s
attention gets diverted to other important matters, such as how far a paper airplane
will fly from a second-story window.
Not so nowadays, though. Computers love boring work; they’re very patient and
disciplined, and, besides, one human year = seven dog years = two zillion computer
years. So when we’re faced with a problem that has an obvious but exceedingly lengthy

Patient Coding, Faster Code 193

solution, we’re apt to say, “Ah, let the computer do that, it’s fast,” and go back to
making paper airplanes. Unfortunately, brute-force solutions tend to be slow even
when performed by modern-day microcomputers, which are capable of several MIPS
except when I’m late for an appointment and want to finish a compile and run just
one more test before I leave, in which case the crystal in my computer is apparently
designed to automatically revert to 1 Hz.)
The solution that I instantly came up with to finding the GCD is about as brute- force
as you can get: Divide both the larger integer (iL) and the smaller integer (is) by every
integer equal to or less than the smaller integer, until a number is found that divides
both evenly, as shown in Figure 10.1. This works, but it’s a lousy solution, requiring as
many as iS*2 divisions; uery expensive, especially for large values of is. For example,
finding the GCD of 30,001 and 30,002 would require 60,002 divisions, which alone,
disregarding tests and branches, would take about 2 seconds on an 8088, and more
than 50 milliseconds even on a 25 MHz 486-a very long time in computer years, and
not insignificant in human years either.
Listing 10.1 is an implementation of the brute-force approach to CCD calculation.
Table 10.1 shows how long it takes this approach to find the GCD for several integer
pairs. As expected, performance is extremely poor when is is large.

1 94 Chapter IO

LISTING 10.1 11 0- 1 .C
I* F i n d s a n d r e t u r n s t h e g r e a t e s t common d i v i s o r o f t w o p o s i t i v e

i n t e g e r s . Works by t r y i n g e v e r y i n t e g r a l d i v i s o r b e t w e e n t h e
s m a l l e r o f t h e t w o i n t e g e r s a n d 1. u n t i l a d i v i s o r t h a t d i v i d e s
b o t h i n t e g e r s e v e n l y i s f o u n d . A l l C c o d e t e s t e d w i t h M i c r o s o f t
a n d B o r l a n d c o m p i l e r s . * /

u n s i g n e d i n t g c d (u n s i g n e d i n t i n t l . u n s i g n e d i n t i n t 2) {
u n s i g n e d i n t t e m p . t r i a l - d i v i s o r ;
/ * Swap i f n e c e s s a r y t o make s u r e t h a t i n t l >= i n t 2 * I
i f (i n t l < i n t 2) {

temp = i n t l ;
i n t l = i n t 2 ;
i n t 2 - temp;

Patient Coding, Faster Code 195

I* Now j u s t t r y e v e r y d i v i s o r f r o m i n t 2 on down, u n t i l a common
d i v i s o r i s f o u n d . T h i s c a n n e v e r be an i n f i n i t e l o o p b e c a u s e
1 d i v i d e s e v e r y t h i n g e v e n l y *I

f o r (t r i a l - d i v i s o r - i n t 2 ; ((i n t l X t r i a l - d i v i s o r) !- 0) I I
((i n t 2 X t r i a l - d i v i s o r) !- 0); t r i a l - d i v i s o r -)

r e t u r n (t r i a 1 L d i v i s o r) ;
I

Wasted Breakthroughs
Sedgewick's first solution to the GCD problem was pretty much the one I came up
with. He then pointed out that the GCD of iL and is is the same as the GCD of iLiS
and is. This was obvious (once Sedgewick pointed it out); by the very nature of
division, any number that divides iL evenly nL times and is evenly nS times must
divide iL-iS evenly nLnS times. Given that insight, I immediately designed a new,
faster approach, shown in Listing 10.2.

LISTING 10.2 11 0-2.C
I* F i n d s a n d r e t u r n s t h e g r e a t e s t common d i v i s o r o f t w o p o s i t i v e

i n t e g e r s . Works by s u b t r a c t i n g t h e s m a l l e r i n t e g e r f r o m t h e
l a r g e r i n t e g e r u n t i l e i t h e r t h e v a l u e s m a t c h (i n w h i c h c a s e
t h a t ' s t h e g c d) , o r t h e l a r g e r i n t e g e r becomes t h e s m a l l e r o f
t h e t w o , i n w h i c h c a s e t h e t w o i n t e g e r s swap r o l e s and t h e
s u b t r a c t i o n p r o c e s s c o n t i n u e s . * /

u n s i g n e d i n t g c d (u n s i g n e d i n t i n t l . u n s i g n e d i n t i n t 2) I
u n s i g n e d i n t t e m p ;
I* I f t h e t w o i n t e g e r s a r e t h e same, t h a t ' s t h e g c d a n d w e ' r e

done *I
i f (i n t l - i n t 2) I

1
r e t u r n (i n t 1) ;

/ * Swap i f n e c e s s a r y t o make s u r e t h a t i n t l >- i n t i ! * /
i f (i n t l < i n t 2) {

temp - i n t l :
i n t l - i n t 2 ;
i n t 2 - temp;

1

I* S u b t r a c t i n t 2 f r o m i n t l u n t i l i n t l i s no l o n g e r t h e l a r g e r o f

do (

1 w h i l e (i n t l > i n t i !) :
I* Now r e c u r s i v e l y c a l l t h i s f u n c t i o n t o c o n t i n u e t h e p r o c e s s * /
r e t u r n (g c d (i n t 1 , i n t 2)) ;

t h e t w o *I

i n t l - - i n t i ? ;

}

Listing 10.2 repeatedly subtracts is from iL until iL becomes less than or equal to is.
If iL becomes equal to is, then that's the GCD; alternatively, if iL becomes less than
is, iL and is switch values, and the process is repeated, as shown in Figure 10.2. The
number of iterations this approach requires relative to Listing 10.1 depends heavily
on the values of iL and is, so it's not always faster, but, as Table 10.1 indicates, Listing
10.2 is generally much better code.

196 Chapter IO

Listing 10.2 is a far graver misstep than Listing 10.1, for all that it’s faster. Listing 10.1
is obviously a hacked-up, brute-force approach; no one could mistake it for anything
else. It could be speeded up in any of a number of ways with a little thought. (Simply
skipping testing all the divisors between is and iS/2, not inclusive, would cut the
worst-case time in half, for example; that’s not a particularly good optimization, but it
illustrates how easily Listing 10.1 can be improved.) Listing 10.1 is a hack job, crying
out for inspiration.
Listing 10.2, on the other hand, has gotten the inspiration-and largely wasted it
through haste. Had Sedgewick not told me otherwise, I might well have assumed
that Listing 10.2 was optimized, a mistake I would never have made with Listing 10.1.
I experienced a conceptual breakthrough when I understood Sedgewick’s point: A
smaller number can be subtracted from a larger number without affecting their GCD,
thereby inexpensively reducing the scale of the problem. And, in my hurry to make
this breakthrough reality, I missed its full scope. As Sedgewick says on the very next

Patient Coding, Faster Code 197

page, the number that one gets by subtracting is from iL until iL is less than is is
precisely the same as the remainder that one gets by dividing iL by i s a g a i n , this is
inherent in the nature of division-and that is the basis for Euclid’s algorithm, shown
in Figure 10.3. Listing 10.3 is an implementation of Euclid’s algorithm.

LISTING 10.3 11 0-3.C
/* F i n d s a n d r e t u r n s t h e g r e a t e s t common d i v i s o r o f t w o i n t e g e r s .

Uses E u c l i d ’ s a l g o r i t h m : d i v i d e s t h e l a r g e r i n t e g e r b y t h e
s m a l l e r ; i f t h e r e m a i n d e r i s 0. t h e s m a l l e r i n t e g e r i s t h e GCD,
o t h e r w i s e t h e s m a l l e r i n t e g e r becomes t h e l a r g e r i n t e g e r , t h e
rema inder becomes t h e s m a l l e r i n t e g e r , and t h e p r o c e s s i s
repea ted . *I

s t a t i c u n s i g n e d i n t g c d - r e c u r s (u n s i g n e d i n t . u n s i g n e d i n t) ;

u n s i g n e d i n t g c d (u n s i g n e d i n t i n t l . u n s i g n e d i n t i n t 2) {
u n s i g n e d i n t t e m p ;
/ *

i f

1
/ *
i f

1

I*

I f t h e t w o i n t e g e r s a r e t h e same, t h a t ’ s t h e GCO and we’ re
done *I
(i n t l - i n t 2) {
r e t u r n (i n t 1) ;

Swap i f n e c e s s a r y t o make s u r e t h a t i n t l >- i n t 2 * /
(i n t l < i n t 2) {
temp - i n t l ;
i n t l - i n t 2 ;
i n t 2 - temp;

Now c a l l t h e r e c u r s i v e f o r m of t h e f u n c t i o n , w h i c h assumes
t h a t t h e f i r s t D a r a m e t e r i s t h e l a r g e r o f t h e t w o *I

1

s t a t i c u n s i g n e d i n t g c d - r e c u r s (u n s i g n e d i n t l a r g e r - i n t .

I

r e t u r n (g c d - r e c u r s (; n t l . i n t 2)) ;

u n s i g n e d i n t s m a l l e r - i n t)

i n t temp;

/ * I f t h e r e m a i n d e r o f l a r g e r - i n t d i v i d e d b y s m a l l e r - i n t i s 0 .

i f ((t e m p - l a r g e r - i n t % s m a l l e r - i n t) - 0) {
1
/* Make s m a l l e r - i n t t h e l a r g e r i n t e g e r a n d t h e r e m a i n d e r t h e

s m a l l e r i n t e g e r , and c a l l t h i s f u n c t i o n r e c u r s i v e l y t o
c o n t i n u e t h e p r o c e s s *I

t h e n s m a l l e r - i n t i s t h e g c d */

r e t u r n (s m a 1 l e r - i n t) ;

1
return(gcd-recurs(smaller-int, t e m p)) ;

As you can see from Table 10.1, Euclid’s algorithm is superior, especially for large
numbers (and imagine if we were working with large longs.?.

Had I been implementing GCD determination without Sedgewicks help, I would P surely not have settledfor Listing I O . I-but I might well have ended up with Listing
10.2 in my enthusiasm over the “brilliant” discovery of subtracting the lesser

198 Chapter 10

number from the greater: In a commercial product, my lack of patience and disci-
pline could have been costly indeed.

Give your mind time and space to wander around the edges of important program-
ming problems before you settle on any one approach. I titled this book’s first chapter
“The Best Optimizer Is between Your Ears,” and that’s still true; what’s even more
true is that the optimizer between your ears does its best work not at the implemen-
tation stage, but at the very beginning, when you try to imagine how what you want
to do and what a computer is capable of doing can best be brought together.

Recursion
Euclid’s algorithm lends itself to recursion beautifully, so much so that an imple-
mentation like Listing 10.3 comes almost without thought. Again, though, take a
moment to stop and consider what’s really going on, at the assembly language level,
in Listing 10.3. There’s recursion and then there’s recursion; code recursion and
data recursion, to be exact. Listing 10.3 is code recursion-recursion through calls-

Patient Coding, Faster Code 199

the sort most often used because it is conceptually simplest. However, code recur-
sion tends to be slow because it pushes parameters and calls a subroutine for every
iteration. Listing 10.4, which uses data recursion, is much faster and no more com-
plicated than Listing 10.3. Actually, you could just say that Listing 10.4 uses a loop
and ignore any mention of recursion; conceptually, though, Listing 10.4 performs
the same recursive operations that Listing 10.3 does.

LISTING 10.4 11 0-4.C
I* F i n d s a n d r e t u r n s t h e g r e a t e s t common d i v i s o r o f t w o i n t e g e r s .

Uses E u c l i d ' s a l g o r i t h m : d i v i d e s t h e l a r g e r i n t e g e r b y t h e
s m a l l e r ; i f t h e r e m a i n d e r i s 0 . t h e s m a l l e r i n t e g e r i s t h e GCD.
o t h e r w i s e t h e s m a l l e r i n t e g e r becomes t h e l a r g e r i n t e g e r , t h e
r e m a i n d e r b e c o m e s t h e s m a l l e r i n t e g e r , a n d t h e p r o c e s s i s
r e p e a t e d . A v o i d s c o d e r e c u r s i o n . *I

u n s i g n e d i n t g c d (u n s i g n e d i n t i n t l . u n s i g n e d i n t i n t 2) I
u n s i g n e d i n t t e m p ;

I* Swap i f necessary t o make s u r e t h a t i n t l >- i n t 2 *I
i f (i n t l < i n t 2) {

temp - i n t l ;
i n t l - i n t 2 ;
i n t 2 - temp;

1
I* Now l o o p , d i v i d i n g i n t l b y i n t 2 and check ing t he rema inder ,

u n t i l t h e r e m a i n d e r i s 0. A t each s tep , i f t h e r e m a i n d e r i s n ' t
0 , a s s i g n i n t 2 t o i n t l .
r e p e a t *I

I* I f t h e r e m a i n d e r o f i

i f ((t e m p - i n t l % i n t 2)

1
I* Make i n t 2 t h e l a r g e r

s m a l l e r i n t e g e r , a n d
i n t l - i n t 2 ;
i n t 2 - temp;

f o r (: ;) {

t h e g c d *I

r e t u r n (i n t 2) ;

1
1

a n d t h e r e m a i n d e r t o i n t 2 . t h e n

n t l d i v i d e d b y i n t 2 i s 0 . t h e n i n t 2 i s

- 0) {

i n t e g e r a n d t h e r e m a i n d e r t h e
r e p e a t t h e p r o c e s s * /

Patient Optimization
At long last, we're ready to optimize GCD determination in the classic sense. Table
10.1 shows the performance of Listing 10.4 with and without Microsoft C/C++'s maxi-
mum optimization, and also shows the performance of Listing 10.5, an assembly
language version of Listing 10.4. Sure, the optimized versions are faster than the
unoptimized version of Listing 10.4-but the gains are small compared to those real-
ized from the higher-level optimizations in Listings 10.2 through 10.4.

LISTING 10.5 11 0-5.ASM
; F i n d s a n d r e t u r n s t h e g r e a t e s t common d i v i s o r o f t w o i n t e g e r s .
; Uses E u c l i d ' s a l g o r i t h m : d i v i d e s t h e l a r g e r i n t e g e r b y t h e
; s m a l l e r ; i f t h e r e m a i n d e r i s 0 . t h e s m a l l e r i n t e g e r i s t h e GCD.

200 Chapter 10

; o t h e r w i s e t h e s m a l l e r i n t e g e r becomes t h e l a r g e r i n t e g e r , t h e
: r e m a i n d e r b e c o m e s t h e s m a l l e r i n t e g e r , a n d t h e p r o c e s s i s
: repea ted . Avo ids code recu rs ion .

: C n e a r - c a l l a b l e a s :
: u n s i g n e d i n t g c d (u n s i g n e d i n t i n t l . u n s i g n e d i n t i n t 2) :

: P a r a m e t e r s t r u c t u r e :
pa rms s t ruc

dw ? :pushed B P
dw ? : p u s h e d r e t u r n a d d r e s s

i n t l dw ? : i n t e g e r s f o r w h i c h t o f i n d
i n t 2 dw ? : t h e GCD
parms ends

.model smal l

.code
pub1 i c -gcd
a l i g n 2

p u s h b p : p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p . s p ; s e t u p o u r s t a c k f r a m e
p u s h s i : p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e s
p u s h d i

_gcd p roc nea r

:Swap i f n e c e s s a r y t o make s u r e t h a t i n t l >- i n t 2
mov a x . i n t l [b p l
mov b x . i n t 2 C b p l
cmp a x . b x : i s i n t l >- i n t 2 ?
j n b I n t s S e t : y e s . s o w e ' r e a l l s e t
xchg ax.bx :no. so swap i n t l and i n t 2

I n t s S e t :

: Now l o o p , d i v i d i n g i n t l b y i n t 2 a n d c h e c k i n g t h e r e m a i n d e r , u n t i l
: t h e r e m a i n d e r i s 0 . A t each s tep , i f t h e r e m a i n d e r i s n ' t 0 . a s s i g n
: i n t 2 t o i n t l , a n d t h e r e m a i n d e r t o i n t 2 , t h e n r e p e a t .
GCDLoop:

; i f t h e r e m a i n d e r o f i n t l d i v i d e d b y
: i n t Z i s 0 . t h e n i n t 2 i s t h e g c d

sub dx.dx ; p r e p a r e i n t l i n D X : A X f o r d i v i s i o n
d i v b x ; i n t l / i n t 2 : r e m a i n d e r i s i n D X
and dx.dx : i s t h e r e m a i n d e r z e r o ?
j z Done : yes . s o i n t 2 (B X) i s t h e g c d

:no. so move i n t 2 t o i n t l and t he
; r e m a i n d e r t o i n t 2 , and r e p e a t t h e
: process

mov ax .bx : i n t l = i n t 2 :
mov bx ,dx : i n t 2 - rema inder f rom D I V

: - s t a r t o f l o o p u n r o l l i n g : t h e a b o v e i s r e p e a t e d t h r e e t i m e s -
sub dx.dx ; p r e p a r e i n t l i n D X : A X f o r d i v i s i o n
d i v b x ; i n t l / i n t 2 ; r e m a i n d e r i s i n D X
and dx.dx : i s t h e r e m a i n d e r z e r o ?
j z Done ;yes. s o i n t 2 (B X) i s t h e g c d
mov ax.bx : i n t l - i n t 2 ;
mov bx .dx : i n t 2 = rema inder f rom D I V

sub dx.dx ; p r e p a r e i n t l i n D X : A X f o r d i v i s i o n
d i v b x ; i n t l / i n t 2 ; r e m a i n d e r i s i n D X

._

Patient Coding, Faster Code 201

and dx.dx : i s t h e r e m a i n d e r z e r o ?
j z Done :yes . s o i n t 2 (B X) i s t h e gcd
mov ax.bx : i n t l = i n t 2 :
mov bx.dx : i n t 2 = rema inder f rom D I V

sub dx.dx : p r e p a r e i n t l i n D X : A X f o r d i v i s i o n
d i v b x : i n t l / i n t 2 : r e m a i n d e r i s i n DX
and dx.dx : i s t h e r e m a i n d e r z e r o ?
j z Done :yes . so i n t 2 (B X) i s t h e g c d
mov ax.bx : i n t l = i n t 2 :
mov bx,dx ; i n t 2 = rema inder f rom D I V

:-end o f l o o p u n r o l l i n g -
jmp GCDLoop

a l i g n 2

mov a x . b x : r e t u r n t h e GCD
pop d i : r e s t o r e c a l l e r ’ s r e g i s t e r v a r i a b l e s
pop s i
POP b p : r e s t o r e c a l l e r ’ s s t a c k f r a m e
r e t

end

._

Done:

_gcd endp

Assembly language optimization is pattern matching on a local scale. Frankly, it’s
also the sort of boring, brute-force work that people are lousy at; compilers could
out-optimize you at this level with one pass tied behind their back ifthey knew as
much about the code you’re writing as you do, which they don’t.

p Design optimization-conceptual breakthroughs in understanding the relationships
between the needs of an application, the nature of the data the application works
with, and what the computer can do-is global pattern matching.

Computers are much worse at that sort of pattern matching than humans; computers
have no way to integrate vast amounts of disparate information, much of it only
vaguely defined or subject to change. People, oddly enough, are betterat global opti-
mization than at local optimization. For one thing, it’s more interesting. For another,
it’s complex and imprecise enough to allow intuition and inspiration, two vastly un-
derrated programming tools, to come to the fore. And, as I pointed out earlier, people
tend to perform instantaneous solutions to even the most complex problems, while
computers bog down in geometrically or exponentially increasing execution times.
Oh, it may take days or weeks for a person to absorb enough information to be able
to reach a solution, and the solution may only be near-optimal-but the solution
itself (or, at least, each of the pieces of the solution) arrives in a flash.
Those flashes are your programming pattern matcher doing its job. Yourjob is to
give your pattern matcher the opportunity to get to know each problem and run
through it two or three times, from different angles, to see what unexpected solu-
tions it can come up with.

202 Chapter IO

Pull back the reins a little. Don’t measure progress by lines of code written today;
measure it instead by overall progress and by quality. Relax and listen to that quiet
inner voice that provides the real breakthroughs. Stop, look, listen-and think. Not
only will you find that it’s a more productive and creative way to program-but you’ll
also find that it’s more fun.
And think what you could do with all those extra computer years!

Patient Coding, Faster Code 203

4
::$ '_ .b

ers, New Instructions, New Timings,
.%

New Complications
This chapter, adapte arlier book Zen of Assembly Language (1989; now out
of print), provides an Df the 286 and 386, often contrasting those proces-
sors with the 8088. &t the time I originally wrote this, the 8088 was the king of
processors, and the $36 and 386 were the new kids on the block. Today, of course, all
three processors ar6 past their primes, but many millions of each are still in use, and
the 386 in partic@r is still well worth considering when optimizing software.
This cha des an interesting look at the evolution of the x86 architecture, to
a greater degree th$n you might expect, for the x86 family came into full maturity
with the 386; the 486hnd the Pentium are really nothing more than faster 386s, with
very little in the way of new functionality. In contrast, the 286 added a number of
instructions, respectable performance, and protected mode to the 8088's capabili-
ties, and the 386 added more instructions and a whole new set of addressing modes,
and brought the x86 family into the 32-bit world that represents the future (and,
increasingly, the present) of personal computing. This chapter also provides insight
into the effects on optimization of the variations in processors and memory architec-
tures that are common in the PC world. So, although the 286 and 386 no longer
represent the mainstream of computing, this chapter is a useful mix of history les-
son, x86 overview, and details on two workhorse processors that are still in wide use.

207

new registers, new instructions, new timings, new complications

Fa m i I y Matters
While the x86 family is a large one, only a few members of the family-which in-
cludes the 8088, 8086, 80188, 80186, 286, 386SX, 386DX, numerous permutations
of the 486, and now the Pentium-really matter.
The 8088 is now all but extinct in the PC arena. The 8086 was used fairly widely for a
while, but has now all but disappeared. The 80186 and 80188 never really caught on
for use in PC and don’t require further discussion.
That leaves us with the high-end chips: the 286, the 386SX, the 386, the 486, and the
Pentium. At this writing, the 386SX is fast going the way of the 8088; people are
realizing that its relatively small cost advantage over the 386 isn’t enough to offset its
relatively large performance disadvantage. After all, the 386SX suffers from the same
debilitating problem that looms over the 8088-a too-small bus. Internally, the 386SX
is a 32-bit processor, but externally, it’s a 16-bit processor, a non-optimal architec-
ture, especially for 32-bit code.
I’m not going to discuss the 386SX in detail. If you do find yourself programming for
the 386SX, follow the same general rules you should follow for the 8088: use short
instructions, use the registers as heavily as possible, and don’t branch. In other words,
avoid memory, since the 386SX is by definition better at processing data internally
than it is at accessing memory.
The 486 is a world unto itself for the purposes of optimization, and the Pentium is a
universe unto itself. We’ll treat them separately in later chapters.
This leaves us with just two processors: the 286 and the 386. Each was the PC standard
in its day. The 286 is no longer used in new systems, but there are millions of 286-
based systems still in daily use. The 386 is still being used in new systems, although
it’s on the downhill leg of its lifespan, and it is in even wider use than the 286. The
future clearly belongs to the 486 and Pentium, but the 286 and 386 are still very
much a part of the present-day landscape.

Crossing the Gulf to the 286 and the 386
Apart from vastly improved performance, the biggest difference between the 8088
and the 286 and 386 (as well as the later Intel CPUs) is that the 286 introduced pro-
tected mode, and the 386 greatly expanded the capabilities of protected mode. We’re
only going to talk about real-mode operation of the 286 and 386 in this book, however.
Protected mode offers a whole new memory management scheme, one that isn’t s u p
ported by the 8088. Only code specifically written for protected mode can run in that
mode; it’s an alien and hostile environment for MS-DOS programs.
In particular, segments are different creatures in protected mode. They’re selectors-“
indexes into a table of segment descriptors-rather than plain old registers, and

208 Chapter 1 1

can’t be set to arbitrary values. That means that segments can’t be used for tempo-
rary storage or as part of a fast indivisible 32-bit load from memory, as in

l e s ax.dword p t r [L o n g V a r l
mov dx .es

which loads LongVar into DX:AX faster than this:

mov a x . w o r d p t r [LongVar l
mov d x . w o r d p t r [LongVar+21

Protected mode uses those altered segment registers to offer access to a great deal
more memory than real mode: The 286 supports 16 megabytes of memory, while the
386 supports 4 gigabytes (4K megabytes) of physical memory and 64 terabytes (64K
gigabytes!) of virtual memory.
In protected mode, your programs generally run under an operating system (OS/2,
Unix, Windows NT or the like) that exerts much more control over the computer
than does MS-DOS. Protected mode operating systems can generally run multiple
programs simultaneously, and the performance of any one program may depend far
less on code quality than on how efficiently the program uses operating system ser-
vices and how often and under what circumstances the operating system preempts
the program. Protected mode programs are often mostly collections of operating
system calls, and the performance of whatever code isn’t operating-system oriented
may depend primarily on how large a time slice the operating system gives that code
to run in.
In short, taken as a whole, protected mode programming is a different kettle of fish
altogether from what I’ve been describing in this book. There’s certainly a knack to
optimizing specifically for protected mode under a given operating system.. .but it’s
not what we’ve been learning, and now is not the time to pursue it further. In gen-
eral, though, the optimization strategies discussed in this book still hold true in
protected mode; it’s just issues specific to protected mode or a particular operating
system that we won’t discuss.

In the Lair of the Cycle-Eaters, Part II
Under the programming interface, the 286 and 386 differ considerably from the 8088.
Nonetheless, with one exception and one addition, the cycle-eaters remain much the
same on computers built around the 286 and 386. Next, we’ll review each of the famil-
iar cycle-eaters I covered in Chapter 4 as they apply to the 286 and 386, and we’ll look
at the new member of the gang, the data alignment cycle-eater.
The one cycle-eater that vanishes on the 286 and 386 is the 8-bit bus cycle-eater. The
286 is a 16-bit processor both internally and externally, and the 386 is a 32-bit proces-
sor both internally and externally, so the Execution Unit/Bus Interface Unit size

Pushing the 286 and 386 209

mismatch that plagues the 8088 is eliminated. Consequently, there’s no longer any
need to use byte-sized memory variables in preference to word-sized variables, at
least so long as word-sized variables start at even addresses, as we’ll see shortly. On
the other hand, access to byte-sized variables still isn’t any slowm than access to word-
sized variables, so you can use whichever size suits a given task best.
You might think that the elimination of the 8-bit bus cycle-eater would mean that the
prefetch queue cycle-eater would also vanish, since on the 8088 the prefetch queue
cycle-eater is a side effect of the 8-bit bus. That would seem all the more likely given
that both the 286 and the 386 have larger prefetch queues than the 8088 (6 bytes for
the 286, 16 bytes for the 386) and can perform memory accesses, including instruc-
tion fetches, in far fewer cycles than the 8088.
However, the prefetch queue cycle-eater doesn’t vanish on either the 286 or the 386,
for several reasons. For one thing, branching instructions still empty the prefetch
queue, so instruction fetching still slows things down after most branches; when the
prefetch queue is empty, it doesn’t much matter how big it is. (Even apart from
emptying the prefetch queue, branches aren’t particularly fast on the 286 or the 386,
at a minimum of seven-plus cycles apiece. Avoid branching whenever possible.)
After a branch it does matter how fast the queue can refill, and there we come to the
second reason the prefetch queue cycle-eater lives on: The 286 and 386 are so fast
that sometimes the Execution Unit can execute instructions faster than they can be
fetched, even though instruction fetching is much faster on the 286 and 386 than on
the 8088.
(All other things being equal, too-slow instruction fetching is more of a problem on
the 286 than on the 386, since the 386 fetches 4 instruction bytes at a time versus the
2 instruction bytes fetched per memory access by the 286. However, the 386 also
typically runs at least twice as fast as the 286, meaning that the 386 can easily execute
instructions faster than they can be fetched unless very high-speed memory is used.)
The most significant reason that the prefetch queue cycle-eater not only survives but
prospers on the 286 and 386, however, lies in the various memory architectures used
in computers built around the 286 and 386. Due to the memory architectures, the 8-
bit bus cycle-eater is replaced by a new form of the wait state cycle-eater: wait states
on accesses to normal system memory.

System Wait States
The 286 and 386 were designed to lose relatively little performance to the prefetch
queue cycle-eater.. . when used with zero-wait-state memory: memory that can complete
memory accesses so rapidly that no wait states are needed. However, true zero-wait-
state memory is almost never used with those processors. Why? Because memory that
can keep up with a 286 is fairly expensive, and memory that can keep up with a 386
is very expensive. Instead, computer designers use alternative memory architectures

21 0 Chapter 1 1

that offer more performance for the dollar-but less performance overall-than
zero-wait-state memory. (It is possible to build zero-wait-state systems for the 286 and
386; it’s just so expensive that it’s rarely done.)
The IBM AT and true compatibles use one-wait-state memory (some AT clones use
zero-wait-state memory, but such clones are less common than one-wait-state AT
clones). The 386 systems use a wide variety of memory systems-including high-speed
caches, interleaved memory, and static-column RAM-that insert anywhere from 0 to
about 5 wait states (and many more if 8 or l6bit memory expansion cards are used) ;
the exact number of wait states inserted at any given time depends on the interac-
tion between the code being executed and the memory system it’s running on.

The performance of most 386 memory systems can vary great&,from one memory p access to anothel; depending on factors such as what data happens to be in the cache
and which interleaved bank and/or RAM column was accessed last.

The many memory systems in use make it impossible for us to optimize for 286/386
computers with the precision that’s possible on the 8088. Instead, we must write code
that runs reasonably well under the varying conditions found in the 286/386 arena.
The wait states that occur on most accesses to system memory in 286 and 386 com-
puters mean that nearly every access to system memory-memory in the DOS’s normal
640K memory area-is slowed down. (Accesses in computers with high-speed caches
may be wait-state-free if the desired data is already in the cache, but will certainly
encounter wait states if the data isn’t cached; this phenomenon produces highly
variable instruction execution times.) While this is our first encounter with system
memory wait states, we have run into a wait-state cycle-eater before: the display adapter
cycle-eater, which we discussed along with the other 8088 cycle-eaters way back in
Chapter 4. System memory generally has fewer wait states per access than display
memory. However, system memory is also accessed far more often than display
memory, so system memory wait states hurt plenty-and the place they hurt most is
instruction fetching.
Consider this: The 286 can store an immediate value to memory, as in MOV
[WordVar],O, in just 3 cycles. However, that instruction is 6 bytes long. The 286 is
capable of fetching 1 word every 2 cycles; however, the one-wait-state architecture of
the AT stretches that to 3 cycles. Consequently, nine cycles are needed to fetch the
six instruction bytes. On top of that, 3 cycles are needed to write to memory, bring-
ing the total memory access time to 1 2 cycles. On balance, memory access
time-especially instruction prefetching-greatly exceeds execution time, to the
extent that this particular instruction can take up to four times as long to run as it
does to execute in the Execution Unit.
And that, my friend, is unmistakably the prefetch queue cycle-eater. I might add that
the prefetch queue cycle-eater is in rare good form in the above example: A 440-1

Pushing the 286 and 386 21 1

ratio of instruction fetch time to execution time is in a class with the best (or worst!)
that’s found on the 8088.
Let’s check out the prefetch queue cycle-eater in action. Listing 11.1 times MOV
WordVar1,O. The Zen timer reports that on a one-wait-state 10 MHz 286-based AT
clone (the computer used for all tests in this chapter), Listing 11.1 runs in 1.27 ps
per instruction. That’s 12.7 cycles per instruction, just as we calculated. (That extra
seven-tenths of a cycle comes from DRAM refresh, which we’ll get to shortly.)

LISTING 1 1.1 11 1-1 .ASM

: *** L i s t i n g 11.1 ***

: M e a s u r e s t h e p e r f o r m a n c e o f a n i m m e d i a t e move t o
: memory. i n o r d e r t o d e m o n s t r a t e t h a t t h e p r e f e t c h
: q u e u e c y c l e - e a t e r i s a l i v e a n d w e l l on t h e AT.

j m p S k i p

even : a lways make s u r e w o r d - s i z e d memory
: v a r i a b l e s a r e w o r d - a l i g n e d !

WordVar dw 0

S k i p :
c a l l ZTimerOn
r e p t 1000
mov CWordVarl .O
endm
c a l l Z T i m e r O f f

What does this mean? It means that, practically speaking, the 286 as used in the AT
doesn’t have a 16-bit bus. From a performance perspective, the 286 in an AT has two-
thirds of a 16-bit bus (a 10.7-bit bus?), since every bus access on an AT takes 50
percent longer than it should. A 286 running at 10 MHz should be able to access
memory at a maximum rate of 1 word every 200 ns; in a 10 MHz AT, however, that
rate is reduced to 1 word every 300 ns by the one-wait-state memory.
In short, a close relative of our old friend the 8-bit bus cycleeater-the system memory
wait state cycle-eater-haunts us still on all but zero-wait-state 286 and 386 computers,
and that means that the prefetch queue cycleeater is alive and well. (The system memory
wait state cycle-eater isn’t really a new cycleeater, but rather a variant of the general
wait state cycleeater, of which the display adapter cycleeater is yet another variant.)
While the 286 in the AT can fetch instructions much faster than can the 8088 in the
PC, it can execute those instructions faster still.
The picture is less clear in the 386 world since there are so many different memory
architectures, but similar problems can occur in any computer built around a 286 or
386. The prefetch queue cycle-eater is even a factor-albeit a lesser one-on zero-
wait-state machines, both because branching empties the queue and because some
instructions can outrun even zero-wait-state instruction fetching. (Listing 11.1 would

21 2 Chapter 1 1

take at least 8 cycles per instruction on a zero-wait-state AT-5 cycles longer than the
official execution time.)
To summarize:

Memory-accessing instructions don’t run at their official speeds on non-zero-
wait-state 286/386 computers.

particularly when non-zero-wait-state memory is used.

the prefetch queue is emptied.

from one 286/386 computer to another, making precise optimization impossible.

The prefetch queue cycle-eater reduces performance on 286/386 computers,

Branches often execute at less than their rated speeds on the 286 and 386 since

The extent to which the prefetch queue and wait states affect performance varies

What’s to be learned from all this? Several things:
Keep your instructions short.
Keep it in the registers; avoid memory, since memory generally can’t keep up

Don’t jump.
with the processor.

Of course, those are exactly the rules that apply to 8088 optimization as well. Isn’t it
convenient that the same general rules apply across the board?

Data Alignment
Thanks to its l6bit bus, the 286 can access word-sized memory variables just as fast as
byte-sized variables. There’s a catch, however: That’s only true for word-sized variables
that start at even addresses. When the 286 is asked to perform a word-sized access
starting at an odd address, it actually performs two separate accesses, each of which
fetches 1 byte, just as the 8088 does for all word-sized accesses.
Figure 11.1 illustrates this phenomenon. The conversion of word-sized accesses to odd
addresses into double byte-sized accesses is transparent to memory-accessing instructions;
all any instruction knows is that the requested word has been accessed, no matter
whether 1 word-sized access or 2 byte-sized accesses were required to accomplish it.
The penalty for performing a word-sized access starting at an odd address is easy to
calculate: Two accesses take twice as long as one access.

In other words, the effective capacity of the 286 j . external data bus is halved when .p a word-sized access to an odd address is performed.

That, in a nutshell, is the data alignment cycle-eater, the one new cycle-eater of the
286 and 386. (The data alignment cycle-eater is a close relative of the 8088’s 8-bit bus
cycle-eater, but since it behaves differently-occurring only at odd addresses-and is
avoided with a different workaround, we’ll consider it to be a new cycle-eater.)

Pushing the 286 and 386 21 3

69
To

286

0
To

286

Memory -
The 80286 reads the word value
838217 at address 20000h with a 2003 2o02 w
single word-sized access since that
word value starts at an even address.

Memory -
2002

The 80286 reads the word value
8382h at address 1 FFFFh with two 2003
byte-sized accesses since that word
value starts at an odd address.

85

The data alignment cycle-eater:
Figure 1 1.1

The way to deal with the data alignment cycle-eater is straightforward: Don’t perform
word-sized accesses to odd addmses on the 284 ifyou can he& it. The easiest way to avoid the
data alignment cycleeater is to place the directive EVEN before each of your word-sized
variables. EVEN forces the offset of the next byte assembled to be even by inserting
a NOP if the current offset is odd; consequently, you can ensure that any word-sized
variable can be accessed efficiently by the 286 simply by preceding it with EVEN.
Listing 11.2, which accesses memory a word at a time with each word starting at an
odd address, runs on a 10 MHz AT clone in 1.27 ps per repetition of MOVW, or 0.64 ps
per word-sized memory access. That’s 6plus cycles per word-sized access, which breaks
down to two separate memory accesses-3 cycles to access the high byte of each
word and 3 cycles to access the low byte of each word, the inevitable result of non-
word-aligned word-sized memory accesses-plus a bit extra for DRAM refresh.

21 4 Chapter 1 1

LISTING 1 1.2 11 1 -2.ASM

; *** L i s t i n g 1 1 . 2 ***

; M e a s u r e s t h e p e r f o r m a n c e o f a c c e s s e s t o w o r d - s i z e d
; v a r i a b l e s t h a t s t a r t a t o d d a d d r e s s e s (a r e n o t
; w o r d - a l i g n e d) .

S k i p :
push
P O P
mov
mov
mov
c l d
c a l l
r e p
c a l l

ds
es
s i . l ; s o u r c e a n d d e s t i n a t i o n a r e t h e same
d i . s i ; a n d b o t h a r e n o t w o r d - a l i g n e d
cx .1000 ;move 1000 words

ZTimerOn
movsw
ZT imerOf f

On the other hand, Listing 11.3, which is exactly the same as Listing 11.2 save that
the memory accesses are word-aligned (start at even addresses), runs in 0.64 ps per
repetition of MOVSW, or 0.32 ps per word-sized memory access. That’s 3 cycles per
word-sized access-exactly twice as fast as the non-word-aligned accesses of Listing
11.2, just as we predicted.

LISTING 1 1.3 11 1 -3.ASM

; *** L i s t i n g 1 1 . 3 ***

; M e a s u r e s t h e p e r f o r m a n c e o f a c c e s s e s t o w o r d - s i z e d
; v a r i a b l e s t h a t s t a r t a t e v e n a d d r e s s e s (a r e w o r d - a l i g n e d) .

S k i p :
push ds
POP es
sub s i . s i ; s o u r c e a n d d e s t i n a t i o n a r e t h e same
mov d i . s i ; a n d b o t h a r e w o r d - a l i g n e d
mov cx .1000 :move 1000 words
cl d
c a l l ZTimerOn
r e p movsw
c a l l Z T i m e r O f f

The data alignment cycle-eater has intriguing implications for speeding up 286/386
code. The expenditure of a little care and a few bytes to make sure that word-sized
variables and memory blocks are word-aligned can literally double the performance
of certain code running on the 286. Even if it doesn’t double performance, word
alignment usually helps and never hurts.

Code Alignment
Lack of word alignment can also interfere with instruction fetching on the 286, al-
though not to the extent that it interferes with access to word-sized memoryvariables.

Pushing the 286 and 386 21 5

The 286 prefetches instructions a word at a time; even if a given instruction doesn’t
begin at an even address, the 286 simply fetches the first byte of that instruction at
the same time that it fetches the last byte of the previous instruction, as shown in
Figure 11.2, then separates the bytes internally. That means that in most cases, in-
structions run just as fast whether they’re word-aligned or not.
There is, however, a non-word-alignment penalty on branches to odd addresses. On a
branch to an odd address, the 286 is only able to fetch 1 useful byte with the first
instruction fetch following the branch, as shown in Figure 11.3. In other words, lack
of word alignment of the target instruction for any branch effectively cuts the in-
struction-fetching power of the 286 in half for the first instruction fetch after that
branch. While that may not sound like much, you’d be surprised at what it can do to
tight loops; in fact, a brief story is in order.
When I was developing the Zen timer, I used my trusty 10 MHz 286based AT clone
to verify the basic functionality of the timer by measuring the performance of simple
instruction sequences. I was cruising along with no problems until I timed the fol-
lowing code:

mov cx. 1000
c a l l ZTimerOn

1 oop LoopTop
c a l l ZTimerOff

LoopTop:

Memory

A 201 00

20101

201 02

201 03

201 04

The last byte of mov ax, 1 and the first 201 O5
byte of mov bx,2, which together
form a worduligned word, are
prefetched with a single word-sized
access; the 286 later splits the bytes
apart internally in the prefetch queue.

E 02 00

mov ax, 1

I mov bx,2

J

Word-aligned prefetching on the 286.
Figure 1 1.2

21 6 Chapter 1 1

~

Memory

20 1 00 c3
20101 68

201 02 05

201 03 00

201 04 28

On a branch to 201 01, only 201 05 D2
one useful instruction byte is
fetched by the first instruction
fetch after the branch, since
the other byte in the word-
aligned word that covers
address 20 1 0 1 precedes the
branch destination and is
therefore of no use as an
instruction byte after the
branch.

286

’I ret

I mov ax,5

sub dl,dl

How instruction bytes are fetched after a branch.
Figure 1 1.3

Now, this code should run in, say, about 12 cycles per loop at most. Instead, it took
over 14 cycles per loop, an execution time that I could not explain in any way. After
rolling i t around in my head for a while, I took a look at the code under a
debugger ... and the answer leaped out at me. The loop begun ut a n odd address! That
meant that two instruction fetches were required each time through the loop; one to
get the opcode byte of the LOOP instruction, which resided at the end of one word-
aligned word, and another to get the displacement byte, which resided at the start of
the next word-aligned word.
One simple change brought the execution time down to a reasonable 12.5 cycles per
loop:

mov cx. 1000
call ZTimerOn
even

1 oop LoopTop
call Z T i m e r O f f

LoopTop:

While word-aligning branch destinations can improve branching performance, it’s a
nuisance and can increase code size a good deal, so it’s not worth doing in most
code. Besides, EVEN inserts a NOP instruction if necessary, and the time required to

Pushing the 286 and 386 21 7

execute a NOP can sometimes cancel the performance advantage of having a word-
aligned branch destination.

Consequently, it b best to word-align only those branch destinations that can be p reached solely by branching.

I recommend that you only go out of your way to word-align the start offsets of your
subroutines, as in:

even
FindChar proc near

In my experience, this simple practice is the one form of code alignment that consis-
tently provides a reasonable return for bytes and effort expended, although sometimes
it also pays to word-align tight time-critical loops.

Alignment and the 386
So far we’ve only discussed alignment as it pertains to the 286. What, you may well
ask, of the 386?
The 386 adds the issue of doubleword alignment (that is, alignment to addresses that
are multiples of four.) The rule for the 386 is: Word-sized memory accesses should
be word-aligned (it’s impossible for word-aligned word-sized accesses to cross
doubleword boundaries) , and doubleword-sized memory accesses should be
doubleword-aligned. However, in real (as opposed to 32-bit protected) mode,
doubleword-sized memory accesses are rare, so the simple word-alignment rule we’ve
developed for the 286 serves for the 386 in real mode as well.
As for code alignment.. . the subroutine-start word-alignment rule of the 286 serves
reasonably well there too since it avoids the worst case, where just 1 byte is fetched on
entry to a subroutine. While optimum performance would dictate doubleword align-
ment of subroutines, that takes 3 bytes, a high price to pay for an optimization that
improves performance only on the post 286 processors.

Alignment and the Stack
One side-effect of the data alignment cycle-eater of the 286 and 386 is that you should
nmerallow the stack pointer to become odd. (You can make the stack pointer odd by
adding an odd value to it or subtracting an odd value from it, or by loading it with an
odd value.) An odd stack pointer on the 286 or 386 (or a nondoubleword-aligned
stack in 32-bit protected mode on the 386,486, or Pentium) will significantly reduce
the performance of PUSH, POP, C A L L , and RET, as well as INT and IRET, which
are executed to invoke DOS and BIOS functions, handle keystrokes and incoming
serial characters, and manage the mouse. I know of a Forth programmer who vastly

21 8 Chapter 1 1

improved the performance of a complex application on the AT simply by forcing the
Forth interpreter to maintain an even stack pointer at all times.
An interesting corollary to this rule is that you shouldn’t INC SP twice to add 2, even
though that takes fewer bytes than ADD SP,2. The stack pointer is odd between the
first and second INC, so any interrupt occurring between the two instructions will be
serviced more slowly than it normally would. The same goes for decrementing twice;
use SUB SP,2 instead.

P Keep the stuckpointer aligned ut all times.

The DRAM Refresh Cycle-Eater: Still an Act of God
The DRAM refresh cycle-eater is the cycle-eater that’s least changed from its 8088 form
on the 286 and 386. In the AT, DRAM refresh uses a little over five percent of all
available memory accesses, slightly less than it uses in the PC, but in the same ballpark.
While the DRAM refresh penalty varies somewhat on various AT clones and 386 com-
puters (in fact, a few computers are built around static RAM, which requires no refresh
at all; likewise, caches are made of static RAM so cached systems generally suffer less
from DRAM refresh), the 5 percent figure is a good rule of thumb.
Basically, the effect of the DRAM refresh cycle-eater is pretty much the same through-
out the PC-compatible world: fairly small, so it doesn’t greatly affect performance;
unavoidable, so there’s no point in worrying about it anyway; and a nuisance since it
results in fractional cycle counts when using the Zen timer. Just as with the PC, a given
code sequence on the AT can execute at varying speeds at different times as a result of
the interaction between the code and DRAM refresh.
There’s nothing much new with DRAM refresh on 286/386 computers, then. Be aware
of it, but don’t overly concern yourself-DRAM refresh is still an act of God, and there’s
not a blessed thing you can do about it. Happily, the internal caches of the 486 and
Pentium make DRAM refresh largely a performance non-issue on those processors.

The Display Adapter Cycle-Eater
Finally we come to the last of the cycle-eaters, the display adapter cycle-eater. There are
two ways of looking at this cycle-eater on 286/386 computers: (1) It’s much worse than
it was on the PC, or (2) it’s just about the same as it was on the PC.
Either way, the display adapter cycle-eater is extremely bad news on 286/386 com-
puters and on 486s and Pentiums as well. In fact, this cycle-eater on those systems is
largely responsible for the popularity of VESA local bus (VLB) .
The two ways of looking at the display adapter cycle-eater on 286/386 computers are
actually the same. As you’ll recall from my earlier discussion of the matter in Chap-
ter 4, display adapters offer only a limited number of accesses to display memory

Pushing the 286 and 386 21 9

during any given period of time. The 8088 is capable of making use of most but not
all of those slots with REP MOVSW, so the number of memory accesses allowed by a
display adapter such as a standard VGA is reasonably well-matched to an 8088’s
memory access speed. Granted, access to a VGA slows the 8088 down considerably-
but, as we’re about to find out, “considerably” is a relative term. What a VGA does to
PC performance is nothing compared to what it does to faster computers.
Under ideal conditions, a 286 can access memory much, much faster than an 8088.
A 10 MHz 286 is capable of accessing a word of system memory every 0.20 ps with
REP MOVSW, dwarfing the 1 byte every 1.31 ps that the 8088 in a PC can manage.
However, access to display memory is anything but ideal for a 286. For one thing,
most display adapters are 8-bit devices, although newer adapters are 16-bit in nature.
One consequence of that is that only 1 byte can be read or written per access to
display memory; word-sized accesses to 8-bit devices are automatically split into 2
separate byte-sized accesses by the AT’s bus. Another consequence is that accesses
are simply slower; the AT’s bus inserts additional wait states on accesses to 8-bit de-
vices since it must assume that such devices were designed for PCs and may not run
reliably at AT speeds.
However, the 8-bit size of most display adapters is but one of the two factors that
reduce the speed with which the 286 can access display memory. Far more cycles are
eaten by the inherent memory-access limitations of display adapters-that is, the
limited number of display memory accesses that display adapters make available to
the 286. Look at it this way: If REP MOVSW on a PC can use more than half of all
available accesses to display memory, then how much faster can code running on a
286 or 386 possibly run when accessing display memory?
That’s right-less than twice as fast.
In other words, instructions that access display memory won’t run a whole lot faster
on ATs and faster computers than they do on PCs. That explains one of the two
viewpoints expressed at the beginning of this section: The display adapter cycle-eater
is just about the same on high-end computers as it is on the PC, in the sense that it
allows instructions that access display memory to run atjust about the same speed on
all computers.
Of course, the picture is quite a bit different when you compare the performance of
instructions that access display memory to the maximum performance of those in-
structions. Instructions that access display memory receive many more wait states
when running on a 286 than they do on an 8088. Why? While the 286 is capable of
accessing memory much more often than the 8088, we’ve seen that the frequency of
access to display memory is determined not by processor speed but by the display
adapter itself. As a result, both processors are actually allowed just about the same
maximum number of accesses to display memory in any given time. By definition,
then, the 286 must spend many more cycles waiting than does the 8088.

220 Chapter 1 1

And that explains the second viewpoint expressed above regarding the display adapter
cycle-eater vis-a-vis the 286 and 386. The display adapter cycle-eater, as measured in
cycles lost to wait states, is indeed much worse on AT-class computers than it is on the
PC, and it’s worse still on more powerful computers.

How bad is the display adapter cycle-eater on an AT? It’s this bad: Based on my (not
inconsiderable) experience in timing display adapter access, I’ve found that the dis-
play adapter cycle-eater can slow an AT-r even a 386 computer-to near-PC
speeds when display memory is accessed.

I know that’s hard to believe, but the display adapter cycle-eater gives out just so
many display memory accesses in a given time, and no more, no matter how fast the
processor is. In fact, the faster the processor, the more the display adapter cycleeater
hurts the performance of instructions that access display memory. The display adapter
cycle-eater is not only still present in 286/386 computers, it’s worse than ever.
What can we do about this new, more virulent form of the display adapter cycle-
eater? The workaround is the same as it was on the PC: Access display memory as
little as you possibly can.

New Instructions and Features: The 286
The 286 and 386 offer a number of new instructions. The 286 has a relatively small
number of instructions that the 8088 lacks, while the 386 has those instructions and
quite a few more, along with new addressing modes and data sizes. We’ll discuss the
286 and the 386 separately in this regard.
The 286 has a number of instructions designed for protected-mode operations. As
I’ve said, we’re not going to discuss protected mode in this book; in any case, pro-
tected-mode instructions are generally used only by operating systems. (I should
mention that the 286’s protected mode brings with it the ability to address 16 MB of
memory, a considerable improvement over the 8088’s 1 MB. In real mode, however,
programs are still limited to 1 MB of addressable memory on the 286. In either
mode, each segment is still limited to 64K.)
There are also a handful of 286-specific real-mode instructions, and they can be
quite useful. BOUND checks array bounds. ENTER and LEAVE support compact
and speedy stack frame construction and removal, ideal for interfacing to high-level
languages such as C and Pascal (although these instructions are actually relatively
slow on the 386 and its successors, and should be used with caution when perfor-
mance matters). INS and OUTS are new string instructions that support efficient
data transfer between memory and 1 / 0 ports. Finally, PUSHA and POPA push and
pop all eight general-purpose registers.

Pushing the 286 and 386 221

A couple of old instructions gain new features on the 286. For one, the 286 version
of PUSH is capable of pushing a constant on the stack. For another, the 286 allows
all shifts and rotates to be performed for notjust 1 bit or the number of bits specified
by CL, but for any constant number of bits.

New Instructions and Features: The 386
The 386 is somewhat more complex than the 286 regarding new features. Once
again, we won’t discuss protected mode, which on the 386 comes with the ability to
address up to 4 gigabytes per segment and 64 terabytes in all. In real mode (and in
virtual-86 mode, which allows the 386 to multitask MS-DOS applications, and which
is identical to real mode so far as MS-DOS programs are concerned), programs run-
ning on the 386 are still limited to 1 MB of addressable memory and 64Kper segment.
The 386 has many new instructions, as well as new registers, addressing modes and
data sizes that have trickled down from protected mode. Let’s take a quick look at
these new real-mode features.
Even in real mode, it’s possible to access many of the 386’s new and extended regis-
ters. Most of these registers are simply 32-bit extensions of the 16-bit registers of the
8088. For example, EAX is a 32-bit register containing AX as its lower 16 bits, EBX is
a 32-bit register containing BX as its lower 16 bits, and so on. There are also two new
segment registers: FS and GS.
The 386 also comes with a slew of new real-mode instructions beyond those supported by
the 8088 and 286. These instructions can scan data on a bit-by-bit basis, set the Carry
flag to the value of a specified bit, sign-extend or zero-extend data as it’s moved, set
a register or memory variable to 1 or 0 on the basis of any of the conditions that can
be tested with conditional jumps, and more. (Again, beware: Many of these complex
386-specific instructions are slower than equivalent sequences of simple instructions
on the 486 and especially on the Pentium.) What’s more, both old and new instruc-
tions support 32-bit operations on the 386. For example, it’s relatively simple to copy
data in chunks of 4 bytes on a 386, even in real mode, by using the MOVSD (“move
string double”) instruction, or to negate a 32-bit value with NEG EAX.
Finally, it’s possible in real mode to use the 386’s new addressing modes, in which
any 32-bit general-purpose register or pair of registers can be used to address memory.
What’s more, multiplication of memory-addressing registers by 2,4, or 8 for look-ups
in word, doubleword, or quadword tables can be built right into the memory ad-
dressing mode. (The 32-bit addressing modes are discussed further in later chapters.)
In protected mode, these new addressing modes allow you to address a full 4 gigabytes
per segment, but in real mode you’re still limited to 64K, even with 32-bit registers
and the new addressing modes, unless you play some unorthodox tricks with the
segment registers.

222 Chapter 1 1

p Note well: Those tricks don ’t necessarily work with system sofmare such as Win-
dows, so Ih’ recommend against using them. Ifyou want $-gigabyte segments, use
a 32-bit environment such as Win32.

Optimization Rules: The More Things Change.. .
Let’s see what we’ve learned about 286/386 optimization. Mostly what we’ve learned
is that our familiar PC cycle-eaters still apply, although in somewhat different forms,
and that the major optimization rules for the PC hold true on ATs and 386-based
computers. You won’t go wrong on any of these computers if you keep your instruc-
tions short, use the registers heavily and avoid memory, don’t branch, and avoid
accessing display memory like the plague.
Although we haven’t touched on them, repeated string instructions are still desir-
able on the 286 and 386 since they provide a great deal of functionality per instruction
byte and eliminate both the prefetch queue cycle-eater and branching. However,
string instructions are not quite so spectacularly superior on the 286 and 386 as they
are on the 8088 since non-string memory-accessing instructions have been speeded
up considerably on the newer processors.
There’s one cycle-eater with new implications on the 286 and 386, and that’s the data
alignment cycle-eater. From the data alignment cycle-eater we get a new rule: Word-
align your word-sized variables, and start your subroutines at even addresses.

Detailed Optimization
While the major 8088 optimization rules hold true on computers built around the 286
and 386, many of the instruction-specific optimizations no longer hold, for the execu-
tion times of most instructions are quite different on the 286 and 386 than on the
8088. We have already seen one such example of the sometimes vast difference be-
tween 8088 and 286/386 instruction execution times: MOV [wordvar],O, which has
an Execution Unit execution time of 20 cycles on the 8088, has an EU execution time
ofjust 3 cycles on the 286 and 2 cycles on the 386.
In fact, the performance of virtually all memory-accessing instructions has been im-
proved enormously on the 286 and 386. The key to this improvement is the near
elimination of effective address (EA) calculation time. Where an 8088 takes from 5
to 12 cycles to calculate an EA, a 286 or 386 usually takes no time whatsoever to
perform the calculation. If a base+index+displacement addressing mode, such as
MOV AX,[WordArray+BX+SI], is used on a 286 or 386, 1 cycle is taken to perform
the EA calculation, but that’s both the worst case and the only case in which there’s
any EA overhead at all.
The elimination of EA calculation time means that the EU execution time of memory-
addressing instructions is much closer to the EU execution time of register-only
instructions. For instance, on the 8088 ADD [wordVar],lOOH is a 31-cycle instruc-
tion, while ADD DX,lOOH is a 4cycle instruction-a ratio of nearly 8 to 1. By contrast,

Pushing the 286 and 386 223

on the 286ADD wordVar1,lOOH is a kycle instruction, while ADD DX,lOOH is a 3-cycle
instruction-a ratio ofjust 2.3 to 1.
It would seem, then, that it’s less necessary to use the registers on the 286 than it was
on the 8088, but that’s simply not the case, for reasons we’ve already seen. The key is
this: The 286 can execute memory-addressing instructions so fast that there’s no
spare instruction prefetching time during those instructions, so the prefetch queue
runs dry, especially on the AT, with its one-wait-state memory. On the AT, the 6-byte
instruction ADD [WordVar],lOOH is effectively at least a 15-cycle instruction, because
3 cycles are needed to fetch each of the three instruction words and 6 more cycles
are needed to read WordVar and write the result back to memory.
Granted, the register-only instruction ADD DX,lOOH also slows down-to 6 cycles-
because of instruction prefetching, leaving a ratio of 2.5 to 1. Now, however, let’s look at
the performance of the same code on an 8088. The register-only code would run in 16
cycles (4 instruction bytes at 4 cycles per byte), while the memory-accessing code would
run in 40 cycles (6 instruction bytes at 4 cycles per byte, plus 2 word-sized memory
accesses at 8 cycles per word). That’s a ratio of 2.5 to 1, exactly the same as on the 286.
This is all theoretical. We put our trust not in theory but in actual performance, so
let’s run this code through the Zen timer. On a PC, Listing 11.4, which performs
register-only addition, runs in 3.62 ms, while Listing 11.5, which performs addition
to a memory variable, runs in 10.05 ms. On a 10 MHz AT clone, Listing 11.4 runs in
0.64 ms, while Listing 11.5 runs in 1.80 ms. Obviously, the AT is much faster.. .but the
ratio of Listing 11.5 to Listing 11.4 is virtually identical on both computers, at 2.78
for the PC and 2.81 for the AT. If anything, the register-only form of ADD has a
slightly Zurgeradvantage on the AT than it does on the PC in this case.
Theory confirmed.

LISTING 1 1.4 11 1 -4.ASM

: *** L i s t i n g 1 1 . 4 ***

; M e a s u r e s t h e p e r f o r m a n c e o f a d d i n g a n i m m e d i a t e v a l u e
; t o a r e g i s t e r , f o r c o m p a r i s o n w i t h L i s t i n g 1 1 . 5 , w h i c h
: a d d s a n i m m e d i a t e v a l u e t o a memory v a r i a b l e .

c a l l ZTimerOn
r e p t 1 0 0 0
add dx.100h
endm
c a l l Z T i m e r O f f

LISTING 1 1.5 11 1 -5.ASM

: *** L i s t i n g 1 1 . 5 ***

: Measures t he pe r fo rmance o f add ing an immed ia te va lue
: t o a memory v a r i a b l e , f o r c o m p a r i s o n w i t h L i s t i n g 1 1 . 4 ,
; wh ich adds an immedia te va lue t o a r e g i s t e r .

224 Chapter 1 1

j v

even

WordVar dw

S k i p :
c a l l
r e p t
add
endm
c a l l

S k i p

: a lways make s u r e w o r d - s i z e d memory
: v a r i a b l e s a r e w o r d - a l i g n e d !

0

ZTimerOn
1000
[WordVar l lOOh

Z T i m e r O f f

What’s going on? Simply this: Instruction fetching is controlling overall execution
time on both processors. Both the 8088 in a PC and the 286 in an AT can execute the bytes
of the instructions in Listings 11.4 and 11.5 faster than they can be fetched. Since the
instructions are exactly the same lengths on both processors, it stands to reason that
the ratio of the overall execution times of the instructions should be the same on
both processors as well. Instruction length controls execution time, and the instruc-
tion lengths are the same-therefore the ratios of the execution times are the same.
The 286 can both fetch and execute instruction bytes faster than the 8088 can, so
code executes much faster on the 286; nonetheless, because the 286 can also ex-
ecute those instruction bytes much faster than it can fetch them, overall performance
is still largely determined by the size of the instructions.
Is this always the case? No. When the prefetch queue is full, memory-accessing in-
structions on the 286 and 386 are much faster (relative to register-only instructions)
than they are on the 8088. Given the system wait states prevalent on 286 and 386
computers, however, the prefetch queue is likely to be empty quite a bit, especially
when code consisting of instructions with short EU execution times is executed. Of
course, that’s just the sort of code we’re likely to write when we’re optimizing, so the
performance of high-speed code is more likely to be controlled by instruction size
than by EU execution time on most 286 and 386 computers, just as it is on the PC.
All of which is just a way of saying that faster memory access and EA calculation
notwithstanding, it’sjust as desirable to keep instructions short and memory accesses
to a minimum on the 286 and 386 as it is on the 8088. And the way to do that is to use
the registers as heavily as possible, use string instructions, use short forms of instruc-
tions, and the like.
The more things change, the more they remain the same.. . .

POPF and the 286
We’ve one final 286-related item to discuss: the hardware malfunction of POPF un-
der certain circumstances on the 286.
The problem is this: Sometimes POPF permits interrupts to occur when interrupts
are initially off and the setting popped into the Interrupt flag from the stack keeps

Pushing the 286 and 386 225

interrupts off. In other words, an interrupt can happen even though the Interrupt
flag is never set to 1. Now, I don’t want to blow this particular bug out of proportion.
It only causes problems in code that cannot tolerate interrupts under any circum-
stances, and that’s a rare sort of code, especially in user programs. However, some
code really does need to have interrupts absolutely disabled, with no chance of an
interrupt sneaking through. For example, a critical portion of a disk BIOS might
need to retrieve data from the disk controller the instant it becomes available; even
a few hundred microseconds of delay could result in a sector’s worth of data mis-
read. In this case, one misplaced interrupt during a POPF could result in a trashed
hard disk if that interrupt occurs while the disk BIOS is reading a sector of the File
Allocation Table.
There is a workaround for the POPF bug. While the workaround is easy to use, it’s
considerably slower than POPF, and costs a few bytes as well, so you won’t want to
use it in code that can tolerate interrupts. On the other hand, in code that truly
cannot be interrupted, you should view those extra cycles and bytes as cheap insur-
ance against mysterious and erratic program crashes.
One obvious reason to discuss the POPF workaround is that it’s useful. Another
reason is that the workaround is an excellent example of Zen-level assembly coding,
in that there’s a well-defined goal to be achieved but no obvious way to do so. The
goal is to reproduce the functionality of the POPF instruction without using POPF,
and the place to start is by asking exactly what POPF does.
All POPF does is pop the word on top of the stack into the FLAGS register, as shown
in Figure 11.4. How can we do that without POPF? Of course, the 286’s designers
intended us to use POPF for this purpose, and didn’t intentionally provide any alter-
native approach, so we’ll have to devise an alternative approach of our own. To do
that, we’ll have to search for instructions that contain some of the same functionality
as POPF, in the hope that one of those instructions can be used in some way to
replace POPF.
Well, there’s only one instruction other than POPF that loads the FLAGS register
directly from the stack, and that’s IRET, which loads the FLAGS register from the
stack as it branches, as shown in Figure 11.5. IRET has no known bugs of the sort
that plague POPF, so it’s certainly a candidate to replace POPF in non-interruptible
applications. Unfortunately, IRET loads the FLAGS register with the third word down
on the stack, not the word on top of the stack, as is the case with POPF; the far return
address that IRET pops into CS:IP lies between the top of the stack and the word
popped into the FLAGS register.
Obviously, the segment:offset that IRET expects to find on the stack above the pushed
flags isn’t present when the stack is set up for POPF, so we’ll have to adjust the stack
a bit before we can substitute IRET for POPF. What we’ll have to do is push the
segment:offset of the instruction after our workaround code onto the stack right
above the pushed flags. IRET will then branch to that address and pop the flags,

226 Chapter 1 1

SP

ss

FLAGS

@
SP

ss

FLAGS

8
SP

ss

FLAGS

I- 3000 1 Smov 31800

31801

31802

I 1800 b Memory

1 3000 1
1 0640 , I

[,1802 1

1 0295 ,

31800

31801

31802

The opemtion of POPE
fi#u?o 11.4

ending up at the instruction after the workaround code with the flags popped. That’s
just the result that would have occurred had we executed POPF-with the bonus
that no interrupts can accidentally occur when the Interrupt flag is 0 both before
and after the pop.
How can we push the segment:offset of the next instruction? Well, finding the offset
of the next instruction by performing a near call to that instruction is a tried-and-
true trick. We can do something similar here, but in this case we need a far call, since
IRE’” requires both a segment and an offset. We’ll also branch backward so that the

Pushing the 286 and 386 227

ss 31800 05

31801 90

31802 10

31803 18

31804 95

FLAGS 31805 02

31806 57

I P

cs

Memory

31800 05

31801 90

31802 10

18

31804 95

02

31806 57

Memory

31800 05

31801 90

31802 10

31803 18

31804 95

FLAGS 31805 02

+ 31806 57

IP

The operation of IRET
Figure 1 1.5

228 Chapter 1 1

address pushed on the stack will point to the instruction we want to continue with.
The code works out like this:

j m p s h o r t p o p f s k i p

i r e t : b r a n c h e s t o t h e i n s t r u c t i o n a f t e r t h e
p o p f i r e t :

; c a l l , p o p p i n g t h e w o r d b e l o w t h e a d d r e s s
: pushed by CALL i n t o t h e FLAGS r e g i s t e r

p o p f s k i p :
c a l l f a r p t r p o p f i r e t

; p u s h e s t h e s e g m e n t : o f f s e t o f t h e n e x t
; i n s t r u c t i o n on t h e s t a c k j u s t a b o v e
; t h e f l a g s w o r d , s e t t i n g t h i n g s u p s o
: t h a t IRET will b r a n c h t o t h e n e x t
; i n s t r u c t i o n a n d p o p t h e f l a g s

; When e x e c u t i o n r e a c h e s t h e i n s t r u c t i o n f o l l o w i n g t h i s comment,
; t h e w o r d t h a t was on t o p o f t h e s t a c k when JMP SHORT P O P F S K I P
: was r e a c h e d h a s b e e n p o p p e d i n t o t h e FLAGS r e g i s t e r , j u s t as
: i f a POPF i n s t r u c t i o n h a d b e e n e x e c u t e d .

The operation of this code is illustrated in Figure 11.6.
The POPF workaround can best be implemented as a macro; we can also emulate a
far call by pushing CS and performing a near call, thereby shrinking the workaround
code by 1 byte:

EMULATELPOPF macro
l o c a l p o p f s k i p . p o p f i r e t
j m p s h o r t p o p f s k i p

i r e t

push cs
c a l l p o p f i r e t
endm

p o p f i r e t :

p o p f s k i p :

By the way, the flags can be popped much more quickly if you’re willing to alter a
register in the process. For example, the following macro emulates POPF with just
one branch, but wipes out AX:

EMULATE-POPFLTRASHLAX macro
push cs
mov a x . o f f s e t $+5
push ax
i r e t
endm

It’s not a perfect substitute for POPF, since POPF doesn’t alter any registers, but it’s
faster and shorter than EMULATE-POPF when you can spare the register. If you’re
using 286-specific instructions, you can use

.286

EMULATE-POPF macro
push cs
p u s h o f f s e t $+4

Pushing the 286 and 386 229

i r e t
endm

which is shorter still, alters no registers, and branches just once. (Of course, this
version of EMULATE-POPF won't work on an 8088.)

IP 1 o f f s e t p o p f s k i p

cs 1 s e g m e n t p o p f s k i p b

FLAGS 1 ? ? ? b

c s 1 segmen t pop fsk ip C

FLAGS -1 ? ? ?

cs I segmen t pop fsk ip

'L
Memory

317FA

317FC

317FE

4 31800

31802

H ? ? ?

? ? ?

? ? ?

I ??? I

Memory

317FA ? ? ?

317FC o f f s e t p o p f s k i p + 5

317FE o f f s e t p o p f s k i p

31800 pushed f l ags

31802 ? ? ?

3-
Memory

317FA

317FA

317FE

31800

31802

Workaround code for the POPF bug.
Figure 1 1.6

230 Chapter 1 1

The standard version of EMULATE-POPF is 6 bytes longer than POPF and much
slower, as you’d expect given that it involves three branches. Anyone in his/her right
mind would prefer POPF to a larger, slower, three-branch macro-given a choice. In
non-interruptible code, however, there’s no choice here; the safer-if slower-approach
is the best. (Having people associate your programs with crashed computers is nota
desirable situation, no matter how unfair the circumstances under which it occurs.)
And now you know the nature of and the workaround for the POPF bug. Whether
you ever need the workaround or not, it’s a neatly packaged example of the tremen-
dous flexibility of the x86 instruction set.

Pushing the 286 and 386 231

’J” So this traveling sabpnan is walking down a road, and he sees a group of men digging
a ditch with their b oa, there!” he says. ‘What you guys need is a Model
8088 ditch digger!’ ut a trowel and sells it to them.
A few days later, he st0 round. They’re happy with the trowel, but he sells
them the latest ditchkigging technology, the Model 80286 spade. That keeps them
content until he stohs by again with a Model 80386 shovel (a full 32 inches wide, with

ate the trowel), and that holds them until he comes back
eally need: a Model 80486 bulldozer.

&&op of the line, the salesman doesn’t pay them a call for a while.
re they none too friendly, but they’re digging with the 80386

shovel; the bulldozer is sitting off to one side. “Why on earth are you using that shovel?’’
the salesman asks. ‘Why aren’t you digging with the bulldozer?”
‘Well, Lord knows we tried,” says the foreman, “but it was all we could do just to lift
the damn thing! ”
Substitute “processor” for the various digging implements, and you get an idea of
just how different the optimization rules for the 486 are from what you’re used to.
Okay, it’s not quite that bad-but upon encountering a processor where string in-
structions are often to be avoided and memory-to-register MOVs are frequently as
fast as register-to-register MOVs, Dorothy was heard to exclaim (before she sank out

235

It's not just a bigger 386

of sight in a swirl of hopelessly mixed metaphors), “I don’t think we’re in Kansas
anymore, Toto.”

Enter the 486
No chip that is a direct, fully compatible descendant of the 8088,286, and 386 could
ever be called a RISC chip, but the 486 certainly contains RISC elements, and it’s
those elements that are most responsible for making 486 optimization unique. Simple,
common instructions are executed in a single cycle by a RISC-like core processor,
but other instructions are executed pretty much as they were on the 386, where
every instruction takes at least 2 cycles. For example, MOVAL, [Testchar] takes only
1 cycle on the 486, assuming both instruction and data are in the cache-3 cycles
faster than the 386”but STOSB takes 5 cycles, 1 cycle slower than on the 386. The
floating-point execution unit inside the 486 is also much faster than the 38’7 math
coprocessor, largely because, being in the same silicon as the CPU (the 486 has a
math coprocessor built in), it is more tightly coupled. The results are sometimes
startling: FMUL (floating point multiply) is usually faster on the 486 than IMUL
(integer multiply) !
An encyclopedic approach to 486 optimization would take a book all by itself, so in this
chapter I’m only going to hit the highlights of 486 optimization, touching on several
optimization rules, some documented, some not. You might also want to check out
the following sources of 486 information: i486 Microprocessor Programmer’s Reference
Manual, from Intel; “8086 Optimization: Aim Down the Middle and Pray,” in the
March, 1991 DX Dobb’s Journal; and “Peak Performance: On to the 486,” in the No-
vember, 1990 Programmer’s Journal.

Rules to Optimize By
In Appendix G of the i486 Microprocessor Programmer‘s Reference Manual, Intel lists a
number of optimization techniques for the 486. While neither exhaustive (we’ll look
at two undocumented optimizations shortly) nor entirely accurate (we’ll correct two
of the rules here), Intel’s list is certainly a good starting point. In particular, the list
conveys the extent to which 486 optimization differs from optimization for earlier
x86 processors. Generally, I’ll be discussing optimization for real mode (it being the
most widely used mode at the moment), although many of the rules should apply to
protected mode as well.

486 optimization is generally more precise and less frustrating than optimization p for other x86processors because every 486 has an identical internal cache. When-
ever both the instructions being executed and the data the instructions access are
in the cache, those instructions will run in a consistent and calculatable number of
cycles on all 486s, with little chance of interference from the prefetch queue and
without regard to the speed of external memov.

236 Chapter 12

In other words, for cached code (which time-critical code almost always is), perfor-
mance is predictable and can be calculated with good precision, and those calculations
will apply on any 486. However, “predictable” doesn’t mean “trivial”; the cycle times
printed for the various instructions are not the whole story. You must be aware of all
the rules, documented and undocumented, that go into calculating actual execu-
tion times-and uncovering some of those rules is exactly what this chapter is about.

The Hazards of Indexed Addressing
Rule #1: Avoid indexed addressing (that is, try not to use either two registers or
scaled addressing to point to memory).
Intel cautions against using indexing to address memory because there’s a one-cycle
penalty for indexed addressing. True enough-but “indexed addressing” might not
mean what you expect.
Traditionally, SI and DI are considered the index registers of the x86 CPUs. That is
not the sense in which “indexed addressing” is meant here, however. In real mode,
indexed addressing means that two registers, rather than one or none, are used to
point to memory. (In this context, the use of one register to address memory is “base
addressing,” no matter what register is used.) MOV A X , [BX+DI] and MOV CL,
[BP+SI+10] perform indexed addressing; MOVAX,[BX] and MOVDL, [SI+l] do not.

‘ Therefore, in real mode, the rule is to avoid using two registers to point to memory p wheneverpossible. Often, this simply means adding the two registers together out-
side a loop before memory is actually addressed.

As an example, you might adhere to this rule by replacing the code

LoopTop:
add ax.[bx+sil
add s i . 2
d e c c x
j n z LoopTop

with this

add s i .bx

add ax.Csil
add s i . 2
dec cx
j n z LoopTop
sub si.bx

LoopTop:

which calculates the same sum and leaves the registers in the same state as the first
example, but avoids indexed addressing.
In protected mode, the definition of indexed addressing is a tad more complex. The
use of two registers to address memory, as in MOV EAX, [EDX+EDI], still qualifies

Pushing the 486 237

for the one-cycle penalty. In addition, the use of 386/486 scaled addressing, as in
MOV [ECX*2],EAX, also constitutes indexed addressing, even if only one register is
used to point to memory.
All this fuss over one cycle! You might well wonder how much difference one cycle
could make. After all, on the 8088, effective address calculations take a minimum of 5
cycles. On the 486, however, 1 cycle is a big deal because many instructions, includ-
ing most register-only instructions (MOV, ADD, GMP, and so on) execute in just 1
cycle. In particular, MOVs to and from memory execute in 1 cycle-if they’re not
hampered by something like indexed addressing, in which case they slow to half
speed (or worse, as we will see shortly).
For example, consider the summing example shown earlier. The version that uses
base+index ([BX+SI]) addressing executes in eight cycles per loop. As expected, the
version that uses base ([SI]) addressing runs one cycle faster, at seven cycles per
loop. However, the loop code executes so fast on the 486 that the single cycle saved
by using base addressing makes the whole loop more than 14 percent faster.
In a key loop on the 486, 1 cycle can indeed matter.

Calculate Memory Pointers Ahead of Time
Rule #2: Don’t use a register as a memory pointer during the next two cycles after
loading it.
Intel states that if the destination of one instruction is used as the base addressing
component of the next instruction, then a one-cycle penalty is imposed. This rule,
unlike anything ever before seen in the x86 family, reflects the heavily pipelined
nature of the 486. Apparently, the 486 starts each effective address calculation be-
fore the start of the instruction that will need it, as shown in Figure 12.1; this effectively
makes the address calculation time vanish, because it happens while the preceding
instruction executes.
Of course, the 486 can’tperform an effective address calculation for a target instruction
ahead of time if one of the address components isn’t known until the instruction starts,
and that’s exactly the case when the preceding instruction modifies one of the target
instruction’s addressing registers. For example, in the code

MOV B X . O F F S E T M e m V a r
MOV A X , [BXI

there’s no way that the 486 can calculate the address referenced by MOV AX,[BX]
until MOV BX,OFFSET MemVar finishes, so pipelining that calculation ahead of
time is not possible. A good workaround is rearranging your code so that at least one
instruction lies between the loading of the memory pointer and its use. For example,
postdecrementing, as in the following

238 Chapter 12

LoopTop:
add ax, [s i 1
add s i . 2
dec cx
j n z LoopTop

is faster than preincrementing, as in:

LoopTop:
add s i ,2
add ax,[SIl
dec cx
jnz LoopTop

Now that we understand what Intel means by this rule, let me make a very important
comment: My observations indicate that for real-mode code, the documentation un-
derstates the extent of the penalty for interrupting the address calculation pipeline
by loading a memory pointer just before it’s used.

The truth of the matter appears to be that i f a register is the destination of one 1 instruction and is then used by the next instruction to address memory in real
mode, not one but two cycles are lost!

In 32-bit protected mode, however, the penalty is, in fact, the 1 cycle that Intel
documents.
Considering that MOV normally takes only one cycle total, that’s quite a loss. For ex-
ample, the postdecrement loop shown above is 2 full cycles faster than the
preincrement loop, resulting in a 29 percent improvement in the performance of
the entire loop. But wait, there’s more. If a register is loaded 2 cycles (which gener-
ally means 2 instructions, but, because some 486 instructions take more than 1 cycle,

I I
Address being
calculated (arrow

Instruction points to cycle during
Cycle # being executed which address is used)

n N O V A X , B X

n + l M O V [B X] ,1

n+2 M O V A L , [S I + l]

n+3 M O V C X . D X

One-cycle-ahead address pipelining.
Figure 12.1

Pushing the 486 239

the 2 are not always equivalent) before it’s used to point to memory, 1 cycle is lost.
Therefore, whereas this code

mov b x . o f f s e t MemVar
mov ax , [bx]
i n c d x
d e c c x
j n z LoopTop

loses two cycles from interrupting the address calculation pipeline, this code

mov b x . o f f s e t MemVar
i n c d x
mov a x , [b x]
d e c c x
j n z LoopTop

loses only one cycle, and this code

mov b x . o f f s e t MemVar
i n c d x
dec cx
mov a x , [b x]
j n z LoopTop

loses no cycles at all. Apparently, the 486’s addressing calculation pipeline actually starts
2 cycles ahead, as shown in Figure 12.2. (In truth, my best guess at the moment is that the
addressing pipeline really does start only 1 cycle ahead; the additional cycle crops up
when the addressing pipeline has to wait for a register to be written into the register file
before it can read it out for use in addressing calculations. However, I’m guessing here,
and the 2cycle-ahead model in Figure 12.2 will do just fine for optimization purposes.)
Clearly, there’s considerable optimization potential in careful rearrangement of
486 code.

Address being
calculated (arrow

Instruction points to cycle during
Cycle # being executed which address is used)

n NOV AX,BX CBXI

n+l MOV CX,DX CSI+11

n+2 MOV [EX] ,1

n+3 MOV AL.[SI+ll

Two-cycle-ahead address pipelining.
Figure 12.2

240 Chapter 12

Caveat Programmor
A caution: I’m quite certain that the 2-cycle-ahead addressing pipeline interruption
penalty I’ve described exists in the two 486s I’ve tested. However, there’s no guaran-
tee that Intel won’t change this aspect of the 486 in the future, especially given that
the documentation indicates otherwise. Perhaps the 2-cycle penalty is the result of a
bug in the initial steps of the 486, and will revert to the documented l-cycle penalty
someday; likewise for the undocumented optimizations I’ll describe below. None-
theless, none of the optimizations I suggest would hurt performance even if the
undocumented performance characteristics of the 486 were to vanish, and they cer-
tainly will help performance on at least some 486s right now, so I feel they’re well
worth using.
There is, of course, no guarantee that I’m entirely correct about the optimizations die
cussed in this chapter. Without knowing the internals of the 486, all I can do is time code
and make inferences from the results; I invite you to deduce your own rules and cross
check them against mine. Also, most likely there are other optimizations that I’m unaware
of. If you have further information on these or any other undocumented optimizations,
please write and let me know. And, of course, if anyone from Intel is reading this and
wants to give us the gospel truth, please do!

Stack Addressing and Address Pipelining
Rule # 2 A Rule #2 sometimes, but not always, applies to the stack pointer when it is
implicitly used to point to memory.
Intel states that the stack pointer is an implied destination register for CALL, EN-
TER, LEAVE, RET, PUSH, and POP (which alter (E) SP), and that it is the implied
base addressing register for PUSH, POP, and RET (which use (E)SP to address
memory). Intel then implies that the aforementioned addressing pipeline penalty is
incurred whenever the stack pointer is used as a destination by one of the first set of
instructions and is then immediately used to address memory by one of the second
set. This raises the specter of unpleasant programming contortions such as intermix-
ing PUSHes and POPS with other instructions to avoid interrupting the addressing
pipeline. Fortunately, matters are actually not so grim as Intel’s documentation would
indicate; my tests indicate that the addressing pipeline penalty pops up only spottily
when the stack pointer is involved.
For example, you’d certainly expect a sequence such as

Pushing the 486 241

to exhibit the addressing pipeline interruption phenomenon (SP is both destina-
tion and addressing register for both instructions, according to Intel), but this code
runs in six cycles per POP/RET pair, matching the official execution times exactly.
Likewise, a sequence like

POP d x
P O P c x
POP bx
POP ax

runs in one cycle per instruction, just as it should.
On the other hand, performing arithmetic directly on SP as an explicit destination-
for example, to deallocate local variables-and then using PUSH, POP, or RET,
definitely can interrupt the addressing pipeline. For example

add sp.10h
ret

loses two cycles because SP is the explicit destination of one instruction and then the
implied addressing register for the next, and the sequence

add sp.10h
POP ax

loses two cycles for the same reason.
I certainly haven’t tried all possible combinations, but the results so far indicate that
the stack pointer incurs the addressing pipeline penalty only if (E)SP is the explicit
destination of one instruction and is then used by one of the two following instruc-
tions to address memory. So, for instance, SP isn’t the explicit operand of POP
AX-AX is-and no cycles are lost if POP AX is followed by POP or RET. Happily,
then, we need not worry about the sequence in which we use PUSH and POP. How-
ever, adding to, moving to, or subtracting from the stack pointer should ideally be
done at least two cycles before PUSH, POP, RET, or any other instruction that uses
the stack pointer to address memory.

Problems with Byte Registers
There are two ways to lose cycles by using byte registers, and neither of them is docu-
mented by Intel, so far as I know. Let’s start with the lesser and simpler of the two.
Rule #3: Do not load a byte portion of a register during one instruction, then use
that register in its entirety as a source register during the next instruction.
So, for example, it would be a bad idea to do this

mov ah.0

mov cx.[MemVarll
mov al.CMemVar21
add cx.ax

242 Chapter 12

because AL is loaded by one instruction, then AX is used as the source register for
the next instruction. A cycle can be saved simply by rearranging the instructions so that
the byte register load isn’t immediately followed by the word register usage, like so:

mov ah.0

mov a1 .[MemVarZI
mov cx.[MemVarll
add cx.ax

Strange as it may seem, this rule is neither arbitrary nor nonsensical. Basically, when
a byte destination register is part of a word source register for the next instruction,
the 486 is unable to directly use the result from the first instruction as the source for
the second instruction, because only part of the register required by the second
instruction is contained in the first instruction’s result. The full, updated register
value must be read from the register file, and that value can’t be read out until the
result from the first instruction has been written into the register file, a process that
takes an extra cycle. I’m not going to explain this in great detail because it’s not
important that you understand why this rule exists (only that it does in fact exist) , but
it is an interesting window on the way the 486 works.
In case you’re curious, there’s no such penalty for the typical XLAT sequence like

mov bx.offset MemTable

mov a1 . [s i 1
x1 at

even though AL must be converted to a word by XLAT before it can be added to BX and
used to address memory. In fact, none of the penalties mentioned in this chapter apply
to XLAT, apparently because XLAT is so slow-4 cycles-that it gives the 486 time to
perform addressing calculations during the course of the instruction.

While it’s nice that XLAT doesn ’t suffer from the various 486 addressing penal-
ties, the reason for that is basically thatXLAT is slow, so there b still no compelling
reason to use XLAT on the 486.

In general, penalties for interrupting the 486’s pipeline apply primarily to the fast
core instructions of the 486, most notably register-only instructions and MOV, al-
though arithmetic and logical operations that access memory are also often affected.
I don’t know all the performance dependencies, and I don’t plan to; figuring all of
them out would be a big, boring job of little value. Basically, on the 486 you should
concentrate on using those fast core instructions when performance matters, and all
the rules I’ll discuss do indeed apply to those instructions.
You don’t need to understand every corner of the 486 universe unless you’re a die-
hard “head who does this stuff for fun. Just learn enough to be able to speed up

Pushing the 486 243

the key portions of your programs, and spend the rest of your time on a fast design
and overall implementation.

More Fun with Byte Registers
Rule #4: Don’t load any byte register exactly 2 cycles before using any register to
address memory.
This, the last of this chapter’s rules, is the strangest of the lot. If any byte register is
loaded, and then two cycles later any register is used to point to memory, one cycle is
lost. So, for example, this code

mov a1 .bl
mov cx.dx
mov s i , [di]

takes four rather than the expected three cycles to execute. Note that it is not re-
quired that the byte register be part of the register used to address memory; any byte
register will do the trick.
Worse still, loading byte registers both one and two cycles before a register is used to
address memory costs two cycles, as in

mov bl .a1
mov c1.3
mov bx. [s i 1

which takes five rather than three cycles to run. However, there is no penalty if a byte
register is loaded one cycle but not two cycles before a register is used to address
memory. Therefore,

mov cx.3
mov dl .a1
mov si, [bxl

runs in the expected three cycles.
In truth, I do not know why this happens. Clearly, it has something to do with inter-
rupting the start of the addressing pipeline, and I have my theories about how this
works, but at this point they’re pure speculation. Whatever the reason for this rule,
ignorance of it-and of its interaction with the other rules-could lead to consider-
able performance loss in seemingly air-tight code. For instance, a casual observer
would expect the following code to run in 3 cycles:

mov bx.offset M e m V a r
mov cl .a1
mov ax, [bx]

A more sophisticated programmer would expect to lose one cycle, because BX is loaded
two cycles before being used to address memory. In fact, though, this code takes 5 c y c l e s
2 cycles, or 67 percent, longer than normal. Why? Well, under normal conditions,

244 Chapter 12

loading a byte register-CL in this case-one cycle before using a register to address
memory produces no penalty; loading 2 cycles ahead is the only case that normally
incurs a penalty. However, think of Rule #4 as meaning that loading a byte register
disrupts the memory addressing pipeline as it starts up. Viewed that way, we can see
that MOV BX,OF'FSET MemVar interrupts the addressing pipeline, forcing it to start
again, and then, presumably, MOV CL,AL interrupts the pipeline again because the
pipeline is now on its first cycle: the one that loading a byte register can affect.

p I know-it seems awfully complicated. It isn 't, rea&. Generally, try not to use byte
destinations exactly two cycles before using a register to address memory, and try
not to load a register either one or two cycles before using it to address memory,
and you '11 be fine.

Timing Your O w n 486 Code
In case you want to do some 486 performance analysis of your own, let me show you
how I arrived at one of the above conclusions; at the same time, I can warn you of the
timing hazards of the cache. Listings 12.1 and 12.2 show the code I ran through the
Zen timer in order to establish the effects of loading a byte register before using a
register to address memory. Listing 12.1 ran in 120 ps on a 33 MHz 486, or 4 cycles
per repetition (120 ps/ 1000 repetitions = 120 ns per repetition; 120 ns per repeti-
tion/30 ns per cycle = 4 cycles per repetition); Listing 12.2 ran in 90 ps, or 3 cycles,
establishing that loading a byte register costs a cycle only when it's performed ex-
actly 2 cycles before addressing memory.

LISTING 12.1 LSTl2- 1 .ASM
: M e a s u r e s t h e e f f e c t o f l o a d i n g a b y t e r e g i s t e r 2 c y c l e s b e f o r e
: u s i n g a r e g i s t e r t o a d d r e s s memory.

mov b p . 2 : r u n t h e t e s t c o d e t w i c e t o make sure

sub bx .bx

c a l l Z T i m e r O n : s t a r t t i m i n g
r e p t 1000
mov d l . c l
noP
mov a x , [b x l
endm
c a l l Z T i m e r O f f : s t o p t i m i n g
d e c b p
jz Done
jmp CacheFi 11 Loop

: i t ' s cached

C a c h e F i l l L o o p :

Done:

LISTING 12.2 LSTl2-2.ASM
: M e a s u r e s t h e e f f e c t o f l o a d i n g a b y t e r e g i s t e r 1 c y c l e b e f o r e
: u s i n g a r e g i s t e r t o a d d r e s s memory.

mov b p . 2 ; r u n t h e t e s t c o d e t w i c e t o make sure

s u b b x . b x
: i t ' s cached

Pushing the 486 245

C a c h e F i l l L o o p :
c a l l Z T i m e r O n : s t a r t t i m i n g
r e p t 1000
noP
mov d l , c l
mov ax.[bxl
endm
c a l l Z T i m e r O f f ; s t o p t i m i n g
d e c b p
j z Done
j m p C a c h e F i l l L o o p

Done:

Note that Listings 12.1 and 12.2 each repeat the timing of the code under test a
second time, to make sure that the instructions are in the cache on the second pass,
the one for which results are displayed. Also note that the code is less than 8Kin size,
so that it can all fit in the 486’s 8K internal cache. If I double the REP” value in
Listing 12.2 to 2,000, making the test code larger than 8K, the execution time more
than doubles to 224 ps, or 3.7 cycles per repetition; the extra seven-tenths of a cycle
comes from fetching noncached instruction bytes.

Whenever you see non-integral timing results of this sort, it’s a good bet that the
test code or data isn ’t cached.

The Story Continues
There’s certainly plenty more 486 lore to explore, including the 486’s unique prefetch
queue, more optimization rules, branching optimizations, performance implications
of the cache, the cost of cache misses for reads, and the implications of cache write-
through for writes. Nonetheless, we’ve covered quite a bit of ground in this chapter,
and I trust you’ve gotten a feel for the considerable extent to which 486 optimization
differs from what you’re used to. Odd as 486 optimization is, though, it’s well worth
mastering, for the 486 is, at its best, so staggeringly fast that carefully crafted 486 code
can do more than twice as much per cycle as the best 386 code-which makes it per-
haps 50 times as fast as optimized code for the original PC.
Sometimes it is hard to believe we’re still in Kansas!

Other Hazards of the High End
nt of American schoolchildren are ignorant of 92
y daughter, though. We recently visited historical

iconderoga, and she’s now 97 percent aware of a
ge: that the basic uniform for soldiers in those

ear, plus a hat so that no one could complain
es. Ha! Just kidding! Actually, what she learned
idence if a cannonball actually hit anything it
nsidering the lack of rifling, precision parts,
t off three cannons; the closest they came to
s only because the wind helped. I think the
lead in the air that some of it was bound to

hit something; preferably, but not necessarily, the enemy.
Nowadays, of course, we have automatic weapons that allow a teenager to
singlehandedly defeat the entire U.S. Army, not to mention so-called “smart” bombs,
which are smart in the sense that they can seek out and empty a taxpayer’s wallet
without being detected by radar. There’s an obvious lesson here about progress,
which I leave you to deduce for yourselves.
Here’s the same lesson, in another form. Ten years ago, we had a slow processor, the
8088, for which it was devilishly hard to optimize, and for which there was no good
optimization documentation available. Now we have a processor, the 486, that’s 50 to

249

pipelines and other hazards of the high end

100 times faster than the 8088-and for which there is no good optimization docu-
mentation available. Sure, Intel provides a few tidbits on optimization in the back of
the i486 Microprocessor Programmer’s Reference Manual, but, as I discussed in Chapter
12, that information is both incomplete and not entirely correct. Besides, most as-
sembly language programmers don’t bother to read Intel’s manuals (which are
extremely informative and well done, but only slightly more fun to read than the
phone book), and go right on programming the 486 using outdated 8088 optimiza-
tion techniques, blissfully unaware of a new and heavily mutated generation of
cycle-eaters that interact with their code in ways undreamt of even on the 386.
For example, consider how Terje Mathisen doubled the speed of his wordcounting
program on a 486 simply by shuffling a couple of instructions.

486 Pipeline Optimization
I’ve mentioned Terje Mathisen in my writings before. Terje is an assembly language
programmer extraordinaire, and author of the incredibly fast publicdomain word-
counting program WC (which comes complete with source code; well worth a look,
if you want to see what real4 fast code looks like). Terje’s a regular participant in the
ibm.pc/fast.code topic on Bix. In a thread titled “486 Pipeline Optimization, or
TANSTATFC (There Ain’t No Such Thing As The Fastest Code),” he detailed the
following optimization to WC, perhaps the best example of 486 pipeline optimiza-
tion I’ve yet seen.
Terje’s inner loop originally looked something like the code in Listing 13.1. (I’ve taken a
few liberties for illustrative purposes.) Of course, Terje unrolls this loop a few times
(128 times, to be exact). By the way, in Listing 13.1 you’ll notice that Terje counts not
only words but also lines, at a rate of three instructions for every two characters!

LISTING 1 3.1 11 3- 1 .ASM
mov di.[bp+OFFSl : g e t t h e n e x t p a i r o f c h a r a c t e r s
mov b l , [d i 1 : g e t t h e s t a t e v a l u e f o r t h e p a i r
add dx. [bx+8000hl :increment word and l i n e c o u n t

: a p p r o p r i a t e l y f o r t h e p a i r

Listing 13.1 looks as tight as it could be, with just two one-cycle instructions, one two-
cycle instruction, and no branches. It is tight, but those three instructions actually
take a minimum of 8 cycles to execute, as shown in Figure 13.1. The problem is that
DI is loaded just before being used to address memory, and that costs 2 cycles be-
cause it interrupts the 486’s internal instruction pipeline. Likewise, BX is loadedjust
before being used to address memory, costing another two cycles. Thus, this loop
takes twice as long as cycle counts would seem to indicate, simply because two regis-
ters are loaded immediately before being used, disrupting the 486’s pipeline.
Listing 13.2 shows Terje’s immediate response to these pipelining problems; he simply
swapped the instructions that load DI and BL. This one change cut execution time
per character pair from eight cycles to five cycles! The load of BL is now separated by

250 Chapter 13

M O V D I , [BP+OFFS] 1 -cycle execution time

1
M O V B L . C D I 1

1 -cycle execution time,
2-cycle pipeline penalty because
Dl was loaded by the previous
instruction and is used to
address memory by this
instruction

v 2-cycle execution time,
ADD DX,[BX+8000Hl 2-cycle pipeline penalty because

BX was loaded by the previous
instruction and is used to
address memory by this
instruction

M O V DI . [BP+OFFSl 1 cycle execution time

Cycle-eaters in the original WC.
Figure 1 3.1

one instruction from the use of BX to address memory, so the pipeline penalty is
reduced from two cycles to one cycle. The load of DI is also separated by one instruc-
tion from the use of DI to address memory (remember, the loop is unrolled, so the
last instruction is followed by the first instruction), but because the intervening in-
struction takes two cycles, there’s no penalty at all.

Remembel; pipeline penalties diminish with increasing number of cycles, not in- p structions, between the pipeline disrupter and the potentially aficted instruction.

LISTING 13.2 11 3-2.ASM
mov b l , [d i 1 ; g e t t h e s t a t e v a l u e f o r t h e p a i r
mov di.[bp+OFFS] ; g e t t h e n e x t p a i r o f c h a r a c t e r s
add dx.[bx+8000h] : i n c r e m e n t w o r d a n d l i n e c o u n t

; a p p r o p r i a t e l y f o r t h e p a i r

At this point, Terje had nearly doubled the performance of this code simply by mov-
ing one instruction. (Note that swapping the instructions also made it necessary to
preload DI at the start of the loop; Listing 13.2 is not exactly equivalent to Listing
13.1.) I’ll let Terje describe his next optimization in his own words:

Aiming the 486 251

‘When I looked closely as this, I realized that the two cycles for the final ADD is just
the sum of 1 cycle to load the data from memory, and 1 cycle to add it to DX, so the
code could just as well have been written as shown in Listing 13.3. The final break-
through came when I realized that by initializing AX to zero outside the loop, I
could rearrange it as shown in Listing 13.4 and do the final ADD DX- after the
loop. This way there are two single-cycle instructions between the first and the fourth
line, avoiding all pipeline stalls, for a total throughput of two cycles/char.”

LISTING 13.3 11 3-3.ASM
mov b l , [d i 1 ; g e t t h e s t a t e v a l u e f o r t h e p a i r
mov di.[bp+OFFSl ; g e t t h e n e x t p a i r o f c h a r a c t e r s
mov ax. [bx+8000hl ; i n c r e m e n t w o r d a n d l i n e c o u n t
add dx,ax ; a p p r o p r i a t e l y f o r t h e p a i r

LISTING 13.4 11 3-4.ASM
mov b l , [d i 1 ; g e t t h e s t a t e v a l u e f o r t h e p a i r
mov di.[bp+OFFSl ; g e t t h e n e x t p a i r o f c h a r a c t e r s
add dx,ax ; i n c r e m e n t w o r d a n d l i n e c o u n t

mov a x . [b x + 8 0 0 0 h l ; g e t i n c r e m e n t s f o r n e x t t i m e
; a p p r o p r i a t e l y f o r t h e p a i r

I’d like to point out two fairly remarkable things. First, the single cycle that Terje saved in
Listing 13.4 sped up his entire word-counting engine by 25 percent or more; Listing
13.4 is fully twice as fast as Listing 13.1-all the result of nothing more than shifting
an instruction and splitting another into two operations. Second, Terje’s word-count-
ing engine can process more than 16 million characters per second on a 486/33.
Clever 486 optimization can pay off big. QED.

BSWAP: More Useful Than You Might Think
There are only 3 non-system instructions unique to the 486. None is earthshaking,
but they have their uses. Consider BSWAP. BSWAP does just what its name implies,
swapping the bytes (not bits) of a 32-bit register from one end of the register to the
other, as shown in Figure 13.2. (BSWAP can only work with 32-bit registers; memory
locations and l6bit registers are not valid operands.) The obvious use of BSWAP is
to convert data from Intel format (least significant byte first in memory, also called
Zittb endian) to Motorola format (most significant byte first in memory, or big endian),
like so:

1 odsd
bswap
s t o s d

BSWAP can also be useful for reversing the order of pixel bits from a bitmap so that
they can be rotated 32 bits at a time with an instruction such as ROR =,I. Intel’s
byte ordering for multiword values (least-significant byte first) loads pixels in the
wrong order, so far as word rotation is concerned, but BSWAP can take care of that.

252 Chapter 13

EAX before x ,
BSWAP 0 x 3 4 0 x 7 8 0 x 5 6

Bit 3 1 Bit 0

EAX after x
BSWAP 0 x 5 6 0 x 1 2 0 x 3 4

Bit 3 1 Bit 0

BSWAP in operation.
Figure 13.2

As it turns out, though, BSWAP is also useful in an unexpected way, having to do with
making efficient use of the upper half of 32-bit registers. As any assembly language
programmer knows, the x86 register set is too small; or, to phrase that another way, it
sure would be nice if the register set were bigger. As any 386/486 assembly language
programmer knows, there are many cases in which 16 bits is plenty. For example, a
16-bit scan-line counter generally does the trick nicely in a video driver, because
there are very few video devices with more than 65,535 addressable scan lines. Com-
bining these two observations yields the obvious conclusion that it would be great if
there were some way to use the upper and lower 16 bits of selected 386 registers as
separate 16-bit registers, effectively increasing the available register space.
Unfortunately, the x86 instruction set doesn’t provide any way to work directly with
only the upper half of a 32-bit register. The next best solution is to rotate the register
to give you access in the lower 16 bits to the half you need at any particular time, with
code along the lines of that in Listing 13.5. Having to rotate the 16-bit fields into
position certainly isn’t as good as having direct access to the upper half, but surely
it’s better than having to get the values out of memory, isn’t it?

LISTING 13.5 11 3-5.ASM
mov c x , [i n i t i a l s k i p l
s h l e c x . 1 6 ; p u t s k i p v a l u e i n u p p e r h a l f o f E C X
mov c x , l O O ; p u t l o o p c o u n t i n C X

Aiming the 486 253

1 ooptop:

r o r e c x . 1 6 :make s k i p v a l u e w o r d a c c e s s i b l e i n C X
add bx .cx : sk ip BX ahead
i n c c x : s e t n e x t s k i p v a l u e
r o r ecx .16 :pu t 1 oop count i n C X
dec cx :count down l o o p
j n z 1 ooptop

Not necessarily. Shifts and rotates are among the worst performing instructions of
the 486, taking 2 to 3 cycles to execute. Thus, it takes 2 cycles to rotate the skip value
into CX in Listing 13.5, and 2 more cycles to rotate it back to the upper half of ECX.
I’d say four cycles is a pretty steep price to pay, especially considering that a MOV to
or from memory takes only one cycle. Basically, using ROR to access a 1 &bit value in
the upper half of a 16-bit register is a pretty marginal technique, unless for some
reason you can’t access memory at all (for example, if you’re using BP as a working
register, temporarily making the stack frame inaccessible).
On the 386, ROR was the only way to split a 32-bit register into two 16-bit registers.
On the 486, however, BSWAP can not only do the job, but can do it better, because
BSWAP executes in just one cycle. BSWAP has the added benefit of not affecting any
flags, unlike ROR. With BSWAP-based code like that in Listing 13.6, the upper 16 bits of
a register can be accessed with only 2 cycles of overhead and without altering any
flags, making the technique of packing two 16-bit registers into one 32-bit register
much more useful.

LISTING 13.6 11 3-6.ASM
mov c x . [i n i t i a l s k i p l
bswap ecx :pu t sk ip va lue i n u p p e r h a l f o f ECX
mov c x . 1 0 0 : p u t l o o p c o u n t i n C X

1 oop top :

bswap ecx :make s k i p v a l u e w o r d a c c e s s i b l e i n C X
add bx .cx : sk ip BX ahead
i n c c x : s e t n e x t s k i p v a l u e
b s w a p e c x : p u t l o o p c o u n t i n C X
dec cx :count down l o o p
j n z l o o p t o p

Pushing and Popping Memory
Pushing or popping a memory location, as in PUSH WORD F’TR [BX] or POP
[MemVar], is a compact, easy way to get a value onto or off of the stack, especially
when pushing parameters for calling a Gcompatible function. However, on a 486,
these are unattractive instructions from a performance perspective. Pushing a memory
location takes four cycles; by contrast, loading a memory location into a register
takes only one cycle, and pushing a register takes just 1 more cycle, for a total of two
cycles. Therefore,

254 Chapter 13

mov ax, [bxl
push ax

is twice as fast as

p u s h word p t r [bxl

and the only cost is that the previous contents of AX are destroyed.
Likewise, popping a memory location takes six cycles, but popping a register and
writing it to memory takes only two cycles combined. The i486 Microprocessor
Programmer’s Refeen,ce Manual lists a 4cycle execution time for popping a register,
but pay that no mind; popping a register takes only 1 cycle.
Why is it that such a convenient operation as pushing or popping memory is so slow?
The rule on the 486 is that simple operations, which can be executed in a single cycle
by the 486’s MSG core, are fast; whereas complex operations, which must be carried
out in microcode just as they were on the 386, are almost all relatively slow. Slow,
complex operations include all the string instructions except REP MOVS, as well as
XLAT, LOOP, and, of course, PUSH mem and POP mem.

Wheneverpossible, try to use the 486 b l-cycle instructions, including MOV, ADD, p SUB, CMP, ADC, SBB, XOR, AND, OR, TEST, LEA, and PUSH reg and POP
reg. These instructions have an added benefit in that it b often possible to rear-
range them for maximum pipeline efficiency, as is the case with Terje b optimization
described earlier in this chapter.

Optimal 1 -Bit Shifts and Rotates
On a 486, the n-bit forms of the shift and rotate instructions-as in ROR AX,2 and
SHL BX,9-are P-cycle instructions, but the 1-bit forms-as in RORAX,l and SHL
BX,l-are 3cycle instructions. Go figure.
Assemblers default to the l-bit instruction for l-bit shifts and rotates. That’s not un-
reasonable since the l-bit form is a byte shorter and is just as fast as the n-bit forms
on a 386 and faster on a 286, and the n-bit form doesn’t even exist on an 8088. In a
really critical loop, however, it might be worth hand-assembling the n-bit form of a
single-bit shift or rotate in order to save that cycle. The easiest way to do this is to
assemble a 2-bit form of the desired instruction, as in SHLAX,2, then look at the hex
codes that the assembler generates and use DB to insert them in your program code,
with the value two replaced with the value one. For example, you could determine
that SHL AX,2 assembles to the bytes OClH OEOH 002H, either by looking at the
disassembly in a debugger or by having the assembler generate a listing file. You
could then insert the n-bit version of SHL AX,1 in your code as follows:

mov ax.1
db Oclh. OeOh. OOlh
mov dx.ax

Aiming the 486 255

At the end of this sequence, DXwill contain 2, and the fast n-bit version of SHLAX,l
will have executed. If you use this approach, I’d recommend using a macro, rather
than sticking DBs in the middle of your code.
Again, this technique is advantageous only on a 486. It also doesn’t apply to RCL and
RCR, where you definitely want to use the 1-bit versions whenever you can, because
the n-bit versions are horrendously slow. But if you’re optimizing for the 486, these
tidbits can save a few critical cycles-and Lord knows that if you’re optimizing for the
486-that is, if you need even more performance than you get from unoptimized code
on a 486-you almost certainly need all the speed you can get.

32-Bit Addressing Modes
The 386 and 486 both support 32-bit addressing modes, in which any register may
serve as the base memory addressing register, and almost any register may serve as
the potentially scaled index register. For example,

rnov al.BaseTableCecx+edx*41

uses a perfectly valid 32-bit address, with the byte accessed being the one at the offset in
DS pointed to by the sum of EDX times 4 plus the offset of BaseTable plus ECX. This is
a very powerful memory addressing scheme, far superior to 8088style 1 &bit addressing,
but it’s not without its quirks and costs, so let’s take a quick look at 32-bit addressing.
(By the way, 32-bit addressing is not limited to protected mode; 32-bit instructions
may be used in real mode, although each instruction that uses 32-bit addressing
must have an address-size prefix byte, and the presence of a prefix byte costs a cycle
on a 486.)
Any register may serve as the base register component of an address. Any register
except ESP may also serve as the index register, which can be scaled by 1, 2, 4, or 8.
(Scaling is very handy for performing lookups in arrays and tables.) The same register
may serve as both base and index register, except for ESP, which can only be the base.
Incidentally, it makes sense that ESP can’t be scaled; ESP presumably always points
to a valid stack, and I can’t think of any reason you’d want to use the stack pointer
times 2, 4, or 8 in an address. ESP is, by its nature, a base rather than index pointer.
That’s all there is to the functionality of 32-bit addressing; it’s very simple, much
simpler than 16-bit addressing, with its sharply limited memory addressing register
combinations. The costs of 32-bit addressing are a bit more subtle. The only perfor-
mance cost (apart from the aforementioned l-cycle penalty for using 32-bit addressing
in real mode) is a 1-cycle penalty imposed for using an index register. In this context,
you use an index register when you use a register that’s scaled, or when you use the
sum of two registers to point to memory. MOV BL,[EBX*2] uses an index register
and takes an extra cycle, as does MOV CL,[EAX+EDX]; MOV CL,[EAX+lOOH] is not
indexed, however.

256 Chapter 13

The other cost of 32-bit addressing is in instruction size. Old-style 16-bit addressing
usually (except in a few special cases) uses one extra byte, which Intel calls the Mod-R/M
byte, which is placed immediately after each instruction’s opcode to describe the
memory addressing mode, plus 1 or 2 optional bytes of addressing displacement-that
is, a constant value to add into the address. In many cases, 32-bit addressing contin-
ues to use the Mod-R/M byte, albeit with a different interpretation; in these cases,
32-bit addressing is no larger than 16-bit addressing, except when a 32-bit displace-
ment is involved. For example, MOV A L , [EBX] is a 2-byte instruction; MOV A L ,
[EBX+lOH] is a 3byte instruction; and MOVAL, [EBX+10000H] is a &byte instruction.

Note that 1 and 4-byte displacements, but not 2-byte displacements, are supported p for 32-bit addressing. Code size can be greatly improved by keeping stack frame
variables within 128 bytes of EBR and variables in pointed-to structures within 127
bytes of the start of the structure, so that displacements can be 1 rather than 4 bytes.

However, because 32-bit addressing supports many more addressing combinations
than 16-bit addressing, the Mod-R/M byte can’t describe all the combinations. There-
fore, whenever an index register (as described above) is involved, a second byte, the
SIB byte, follows the Mod-R/M byte to provide additional address information. Con-
sequently, whenever you use a scaled memory addressing register or use the sum of
two registers to point to memory, you automatically add 1 cycle and 1 byte to that
instruction. This is not to say that you shouldn’t use index registers when they’re
needed, but if you find yourself using them inside key loops, you should see if it’s
possible to move the index calculation outside the loop as, for example, in a loop
like this:

LoopTop:
add ax,DataTable[ebx*21
i n c e b x
dec cx
j n z LoopTop

You could change this to the following for greater performance:

add ebx.ebx :ebx*2

add ax.DataTable[ebx l
add ebxX.2
dec cx
j n z LoopTop
s h r ebx.1 :ebx*2/2

LoopTop:

I’ll end this chapter with two more quirks of 32-bit addressing. First, as with l6bit
addressing, addressing that uses EBP as a base register both accesses the SS segment
by default and always has a displacement of at least 1 byte. This reflects the common
use of EBP to address a stack frame, but is worth keeping in mind if you should
happen to use EBP to address non-stack memory.

Aiming the 486 257

Lastly, as I mentioned, ESP cannot be scaled. In fact, ESP cannot be an index regis-
ter; it must be a base register. Ironically, however, ESP is the one register that cannot
be used to address memory without the presence of an SIB byte, even if it’s used
without an index register. This is an outcome of the way in which the SIB byte ex-
tends the capabilities of the Mod-R/M byte, and there’s nothing to be done about it,
but it’s at least worth noting that ESP-based, non-indexed addressing makes for in-
structions that are a byte larger than other non-indexed addressing (but not any
slower; there’s no l-cycle penalty for using ESP as a base register) on the 486.

' When you seem t&be stumped, stop for a minute and think. All the information you
need may be right"ih"front of your nose if you just look at things a little differently.
Here's a case in poin6:;:~
When I was in college&-iisEd to stay around campus for the summer. Oh, I'd take a
course or two, but m&tly it was an excuse to hang out and have fun. In that spirit, my
girlfriend, Adrian ({it my future wife, partly for reasons that will soon become appar-
ent), bussed in to sp,&nd a week, sharing a less-than-elegant $150 per month apartment
with me and br>k ggcessity, my roommate.
Our apartment w?i$::pretty much standard issue for two male college students; maybe
even a cut above. The dishes were usually washed, there was generally food in the
refrigerator, and nothing larger than a small dog had taken up permanent residence
in the bathroom. However, there was one sticking point (literally): the kitchen floor.
This floor-standard tile, with a nice pattern of black lines on an off-white back-
ground (or so we thought)-had never been cleaned. By which I mean that I know
for a certainty that we had never cleaned it, but I suspect that it had in fact not been
cleaned since the Late Jurassic, or possibly earlier. Our feet tended to stick to it; had
the apartment suddenly turned upside-down, I think we'd all have been hanging
from the ceiling.
One day, my roommate and I returned from a pickup basketball game. Adrian, having
been left to her own devices for a couple of hours, had apparently kept herself busy.

."e s '"".$" .

02..8gj iag$*.&!&&

26 1

optimizing a pretty optimum search algorithm

“Notice anything?” she asked, with an edge to her voice that suggested we had damned
well better.
“Uh, you cooked dinner?” I guessed. ‘Washed the dishes? Had your hair done?” My
roommate was equally without a clue.
She stamped her foot (really; the only time I’ve ever seen it happen), and said, “No,
you jerks! The kitchen floor! Look at the floor! I cleaned it!”
The floor really did look amazing. It was actually all white; the black lines had been
grooves filled with dirt. We assured her that it looked terrific, itjust wasn’t that obvi-
ous until you knew to look for it; anyone would tell you that it wasn’t the kind of
thing that jumped out at you, but it really was great, no kidding. We had almost
smoothed things over, when a friend walked in, looked around with a start, and said,
“Hey! Did you guys put in a new floor?”
As I said, sometimes everything you need to know is right in front of your nose.
Which brings us to Boyer-Moore string searching.

String Searching Refresher
I’ve discussed string searching earlier in this book, in Chapters 5 and 9. You may want
to refer back to these chapters for some background on string searching in general.
I’m also going to use some of the code from that chapter as part of this chapter’s test
suite. For further information, you may want to refer to the discussion of string search-
ing in the excellent Algorithm in C, by Robert Sedgewick (Addison-Wesley), which
served as the primary reference for this chapter. (If you look at Sedgewick, be aware
that in the Boyer-Moore listing on page 288, there is a mistake: “j > 0” in the for loop
should be “j >= 0,” unless I’m missing something.)
String searching is the simple matter of finding the first occurrence of a particular
sequence of bytes (the pattern) within another sequence of bytes (the buffer). The
obvious, brute-force approach is to try every possible match location, starting at the
beginning of the buffer and advancing one position after each mismatch, until ei-
ther a match is found or the buffer is exhausted. There’s even a nifty string instruction,
REPZ CMPS, that’s perfect for comparing the pattern to the contents of the buffer
at each location. What could be simpler?
We have some important information that we’re not yet using, though. Typically, the
buffer will contain a wide variety of bytes. Let’s assume that the buffer contains text,
in which case there will be dozens of different characters; and although the distribu-
tion of characters won’t usually be even, neither will any one character constitute
half the buffer, or anything close. A reasonable conclusion is that the first character
of the pattern will rarely match the first character of the buffer location currently
being checked. This allows us to use the speedy REPNZ S W B to whiz through the
buffer, eliminating most potential match locations with single repetitions of S U B .

262 Chapter 14

Only when that first character does (infrequently) match must we drop back to the
slower REPZ CMPS approach.
It’s important to understand that we’re assuming that the buffer is typical text. That’s
what I meant at the outset, when I said that the information you need may be under
your nose.

Formally, you don ’t know a blessed thing about the search buffeer, but experience, p common sense, and your knowledge of the application give you a great deal of
useful, ifsomewhat imprecise, information.

If the buffer contains the letter ‘A’ repeated 1,000 times, followed by the letter ‘B,’
then the REPNZ SWB/REPZ CMPS approach will be much slower than the brute-
force REPZ CMPS approach when searching for the pattern “AB,” because REPNZ
SCASB would match at every buffer location. You could construct a horrendous worst-
case scenario for almost any good optimization; the key is understanding the usual
conditions under which your code will work.
As discussed in Chapter 9, we also know that certain characters have lower probabili-
ties of matching than others. In a normal buffer, ‘T’ will match far more often than
‘X.’ Therefore, if we use REPNZ SCASB to scan for the least common letter in the
search string, rather than the first letter, we’ll greatly decrease the number of times
we have to drop back to REPZ CMPS, and the search time will become very close to
the time it takes REPNZ SCASB to go from the start of the buffer to the match
location. If the distance to the first match is N bytes, the least-common RJPNZ SCASB
approach will take about as long as N repetitions of REPNZ SCASB.
At this point, we’re pretty much searching at the speed of REPNZ S W B . On the
x86, there simply is no faster way to test each character in turn. In order to get any
faster, we’d have to check fewer characters-but we can’t do that and still be sure of
finding all matches. Can we?
Actually, yes, we can.

The Boyer-Moore Algorithm
All our apn‘on‘ knowledge of string searching is stated above, but there’s another sort
of knowledge-knowledge that’s generated dynamically. As we search through the
buffer, we acquire information each time we check for a match. One sort of informa-
tion that we acquire is based on partial matches; we can often skip ahead after partial
matches because (take a deep breath!) by partially matching, we have already implic-
itly done a comparison of the partially matched buffer characters with all possible
pattern start locations that overlap those partially-matched bytes.
If that makes your head hurt, it should-and don’t worry. This line of thinking, which is
the basis of the Knuth-Morris-Pratt algorithm and half the basis of the Boyer-Moore

Boyer-Moore String Searching 263

algorithm, is what gives Boyer-Moore its reputation for inscrutability. That reputa-
tion is well deserved for this aspect (which I will not discuss further in this book), but
there’s another part of Boyer-Moore that’s easily understood, easily implemented,
and highly effective.
Consider this: We’re searching for the pattern “ABC,” beginning the search at the
start (offset 0) of a buffer containing “ABZABC.” We match on ‘A,’ we match on ‘B,’
and we mismatch on ‘C’; the buffer contains a ‘Z’ in this position. What have we
learned? Why, we’ve learned not only that the pattern doesn’t match the buffer start-
ing at offset 0, but also that it can’t possibly match starting at offset 1 or offset 2,
either! After all, there’s a ‘Z’ in the buffer at offset 2; since the pattern doesn’t con-
tain a single ‘Z,’ there’s no way that the pattern can match starting at any location
from which it would span the ‘Z’ at offset 2. We can just skip straight from offset 0 to
offset 3 and continue, saving ourselves two comparisons.
Unfortunately, this approach only pays off big when a near-complete partial match is
found; if the comparison fails on the first pattern character, as often happens, we can
only skip ahead 1 byte, as usual. Look at it differently, though: What if we compare
the pattern starting with the last (rightmost) byte, rather than the first (leftmost)
byte? In other words, what if we compare from high memory toward low, in the
direction in which string instructions go after the STD instruction? After all, we’re
comparing one set of bytes (the pattern) to another set of bytes (a portion of the
buffer) ; it doesn’t matter in the least in what order we compare them, so long as all
the bytes in one set are compared to the corresponding bytes in the other set.

Why on earth would we want to start with the rightmost character? Because a 1 mismatch on the rightmost character tells us a great deal more than a mismatch on
the leftmost character.

We learn nothing new from a mismatch on the leftmost character, except that the
pattern can’t match starting at that location. A mismatch on the rightmost character,
however, tells us about the possibilities of the pattern matching starting at every buffer
location from which the pattern spans the mismatch location. If the mismatched
character in the buffer doesn’t appear in the pattern, then we’ve just eliminated not
one potential match, but as many potential matches as there are characters in the
pattern; that’s how many locations there are in the buffer that might have matched,
but have just been shown not to, because they overlap the mismatched character
that doesn’t belong in the pattern. In this case, we can skip ahead by the full pattern
length in the buffer! This is how we can outperform even REPNZ SCASB; REPNZ
SCMB has to check every byte in the buffer, but Boyer-Moore doesn’t.
Figure 14.1 illustrates the operation of a Boyer-Moore search when the rightmost char-
acter of the search pattern (which is the first character that’s compared at each location
because we’re comparing backwards) mismatches with a buffer character that appears

264 Chapter 14

Start of + 0
buffer being
searched

2
3
4
5
6
7
a
9

10
1 1
12
13
14
15

R
A
T
E

<blank:,

A
N
D

<blank>

E
Q
U
A
L

<blank>

s -
.
/

/

lil'
H

Start of
search pattern

J The pattern character 'H' is first compared
to buffer offset 3, which is 'E.' This results
in a mismatch.

This shows that not only can the pattern
not match starting at buffer offset 0, but
also that it cannot match starting at offset
1 I 2, or 3 (the other locations that span
the 'E' at offset 3) because 'E' doesn't
occur anywhere in the pattern.

Therefore, the next potential match
location starts at buffer offset 4, and the
next comparison skips ahead 4 bytes to
offset 7, saving 3 comparisons in all.

Mismatch on first character checked.
Figure 14.1

nowhere in the pattern. Figure 14.2 illustrates the operation of a partial match when
the mismatch occurs with a character that's not a pattern member. In this case, we can
only skip ahead past the mismatch location, resulting in an advance of fewer bytes than
the pattern length, and potentially as little as the same single byte distance by which
the standard search approach advances.
What if the mismatch occurs with a buffer character that does occur in the pattern?
Then we can't skip past the mismatch location, but we can skip to whatever location
aligns the rightmost occurrence of that character in the pattern with the mismatch
location, as shown in Figure 14.3.
Basically, we exercise our right as members of a free society to compare strings in
whichever direction we choose, and we choose to do so right to left, rather than the
more intuitive left to right. Whenever we find a mismatch, we see what we can learn
from the buffer character that failed to match the pattern. Imagine that we move the
pattern to the right across the mismatch location until we find a start location that

Boyer-Moore String Searching 265

r
Start of + 0
buffer being
searched

2
3
4
5
6
7
8
9

10
1 1
12
13
14
15

R
A
T
E

<blank>
A
N
D

<blank>
E
Q
U
A
L

<blank>
S

H+ search Of pattern

'E' and 'T' match, but 'I' mismatches. The
mismatch character in the buffer is 'A,'
which doesn't occur in the pattern.

This shows that not only can the pattern
not match starting at buffer offset 0, but
also that it cannot match starting at offset
1 (the other location that spans the 'A' at
offset 1). W e can therefore skip the
pattern completely past offset 1 .

However, because of the partial match,
skipping ahead past the mismatch
advances the overall search by only 2
buffer locations; the next comparison
occurs at offset 5.

Mismatch on third character checked.
Figure 14.2

the mismatch does not eliminate as a possible match for the pattern. If the mismatch
character doesn't appear in the pattern, the pattern can move clear past the mis-
match location. Otherwise, the pattern moves until a matching pattern byte lies atop
the mismatch. That's all there is to it!

Boyer-Moore: The Good and the Bad
The worst case for this version of Boyer-Moore is that the pattern mismatches on the
leftmost character-the last character compared-every time. Again, not very likely,
but it is true that this version of Boyer-Moore performs better as there are fewer and
shorter partial matches; ideally, the rightmost character would never match until the
full match location was reached. Longer patterns, which make for longer skips, help
Boyer-Moore, as does a long distance to the match location, which helps diffuse the
overhead of building the table of distances to skip ahead on all the possible mis-
match values.

266 Chapter 14

Start of -+ 0
buffer being
searched ’

2
3
4
5
6
7
8
9

10
1 1
12
13
14

15

R
A
T
E

<blank>
A
N
D

<blank>
E
Q
U
A
L

<blank>

S

Start of
search pattern

The pattern character ‘S’ is first compared
to buffer offset 3, which is ’E.‘ This results
in a mismatch.

This shows that not only can the pattern
not match starting at buffer offset 0, but
also that i t cannot match starting at offset
1 ; however, starting at offset 2, the ’E’ in
the pattern would line up with the ’E’ we
just mismatched on in the buffer.

Therefore, we can skip ahead two buffer
locations from the mismatch, so that the
buffer ’E’ lines up with the pattern ‘E‘; the
next comparison is at offset 5.

Mismatch on character that appears in pattern.
Figure 14.3

The best case for Boyer-Moore is good indeed: About N/M comparisons are required,
where N is the buffer length and M is the pattern length. This reflects the ability of Boyer-
Moore to skip ahead by a full pattern length on a complete mismatch.
How fast isBoyer-Moore? Listing 14.1 is a C implementation of Boyer-Moore search-
ing; Listing 14.2 is a test-bed program that searches up to the first 32K of a file for a
pattern. Table 14.1 (all times measured with Turbo Profiler on a 20 MHz cached 386,
searching a modified version of the text of this chapter) shows that this implementa-
tion is generally much slower than REPNZ S W B , although it does come close when
searching for long patterns. Listing 14.1 is designed primarily to make later assembly
implementations more comprehensible, rather than faster; Sedgewick’s implemen-
tation uses arrays rather than pointers, is a great deal more compact and very clever,
and may be somewhat faster. Regardless, the far superior performance of REPNZ
SCASB clearly indicates that assembly language is in order at this point.

Boyer-Moore String Searching 267

The entry “Standard Boyer-Moore in AS”’ in Table 14.1 refers to straight-forward
hand optimization of Listing 14.1, code that is not included in this chapter for the
perfectly good reason that it is slower in most cases than REPNZ SCASB. I say this
casually now, but not so yesterday, when I had all but concluded that Boyer-Moore
was simply inferior on the x86, due to two architectural quirks: the string instruc-
tions and slow branching. I had even coined a neat phrase for it: Architecture is
destiny. Has a nice ring, doesn’t it?

LISTING 14.1 11 4- 1 .C
/ * Searches a b u f f e r f o r a s p e c i f i e d p a t t e r n . I n c a s e o f a mismatch,

uses t h e v a l u e o f t h e m i s m a t c h e d b y t e t o s k i p across as many
p o t e n t i a l m a t c h l o c a t i o n s a s p o s s i b l e (p a r t i a l B o y e r - M o o r e) .
R e t u r n s s t a r t o f f s e t o f f i r s t m a t c h s e a r c h i n g f o r w a r d , o r NULL i f
no match i s found.
T e s t e d w i t h B o r l a n d C++ i n C mode and the smal l mode l . * /

i n c l u d e < s t d i o . h >

268 Chapter 14

uns igned char * F i n d S t r i n g (u n s i g n e d c h a r * B u f f e r P t r .
uns igned i n t B u f f e r L e n g t h . u n s i g n e d c h a r * P a t t e r n P t r .
uns igned i n t P a t t e r n L e n g t h)

uns igned char * Work ingPa t te rnP t r . * W o r k i n g B u f f e r P t r :
uns igned i n t CompCount. SkipTableC2561, Skip. DistanceMatched:
i n t i;

{

/ * R e j e c t i f t h e b u f f e r i s t o o s m a l l * /
i f (B u f f e r L e n g t h < P a t t e r n L e n g t h) r e t u r n (N U L L) :

I* Retu rn an i n s t a n t m a t c h i f t h e p a t t e r n i s 0 - l e n g t h *I
i f (P a t t e r n L e n g t h == 0) r e t u r n (B u f f e r P t r 1 ;

/ * C r e a t e t h e t a b l e o f d i s t a n c e s b y w h i c h t o s k i p ahead on

/ * I n i t i a l i z e a l l s k i p s t o t h e p a t t e r n l e n g t h : t h i s i s t h e s k i p

f o r (i = 0: i < 2 5 6 ; i++l S k i p T a b l e C i l = Pa t te rnLeng th ;
/ * S e t t h e s k i p v a l u e s f o r t h e b y t e s t h a t d o a p p e a r i n t h e p a t t e r n

t o t h e d i s t a n c e f r o m t h e b y t e l o c a t i o n t o t h e end o f t h e
p a t t e r n . When t h e r e a r e m u l t i p l e i n s t a n c e s o f t h e same b y t e ,
t h e r i g h t m o s t i n s t a n c e ' s s k i p v a l u e i s u s e d . N o t e t h a t t h e
r i g h t m o s t b y t e o f t h e p a t t e r n i s n ' t e n t e r e d i n t h e s k i p t a b l e :
i f we g e t t h a t v a l u e f o r a mismatch, we know f o r s u r e t h a t t h e
r i g h t end o f t h e p a t t e r n has a l ready passed the mismatch
l o c a t i o n , s o t h i s i s n o t a r e l e v a n t b y t e f o r s k i p p i n g p u r p o s e s * /

S k i p T a b l e [P a t t e r n P t r [i]] = Pa t te rnLeng th - i ~ 1 :

m i s m a t c h e s f o r e v e r y p o s s i b l e b y t e v a l u e * /

d i s t a n c e f o r b y t e s t h a t d o n ' t a p p e a r i n t h e p a t t e r n * /

f o r (i = 0: i < (P a t t e r n L e n g t h - 1) : i++)

/* P o i n t t o r i g h t m o s t b y t e o f t h e p a t t e r n * /
P a t t e r n P t r += P a t t e r n L e n g t h - 1 :
I* P o i n t t o l a s t (r i g h t m o s t) b y t e o f t h e f i r s t p o t e n t i a l p a t t e r n

B u f f e r P t r += Pa t te rnLeng th - 1:
/ * Count o f number o f p o t e n t i a l p a t t e r n m a t c h l o c a t i o n s i n

B u f f e r L e n g t h -= Pa t te rnLeng th - 1;

m a t c h l o c a t i o n i n t h e b u f f e r * /

b u f f e r * I

I* S e a r c h t h e b u f f e r * /
w h i l e (1) (

/ * See i f we have a m a t c h a t t h i s b u f f e r l o c a t i o n * I
Work ingPa t te rnP t r = P a t t e r n P t r :
W o r k i n g B u f f e r P t r = B u f f e r P t r :
CompCount = Pa t te rnLeng th :
/ * Compare t h e p a t t e r n a n d t h e b u f f e r l o c a t i o n , s e a r c h i n g f r o m

w h i l e (* W o r k i n g P a t t e r n P t r - == *Work ingBu f fe rP t r -) I
h i g h memory t o w a r d l o w (r i g h t t o l e f t) * I

/ * I f w e ' v e m a t c h e d t h e e n t i r e p a t t e r n , i t ' s a match * /
i f (-CompCount == 0)

/* Re tu rn a p o i n t e r t o t h e s t a r t o f t h e m a t c h l o c a t i o n */

I
/ * I t ' s a mismatch: l e t ' s see what we c a n l e a r n f r o m i t * /
Work ingBuf ferPtr++; / * p o i n t b a c k t o t h e m i s m a t c h l o c a t i o n *!
/ * 11 o f b y t e s t h a t d i d m a t c h * /
Dis tanceMatched = B u f f e r P t r - W o r k i n g B u f f e r P t r :
/ * I f . based on t h e m i s m a t c h c h a r a c t e r , we c a n ' t e v e n s k i p ahead

as f a r as where we s t a r t e d t h i s p a r t i c u l a r c o m p a r i s o n , t h e n
j u s t advance by 1 t o t h e n e x t p o t e n t i a l m a t c h : o t h e r w i s e ,

r e t u r n (B u f f e r P t r - P a t t e r n L e n g t h + 1):

Boyer-Moore String Searching 269

s k i p a h e a d f r o m t h e m i s m a t c h l o c a t i o n b y t h e s k i p d i s t a n c e
f o r t h e m i s m a t c h c h a r a c t e r *I

i f (Sk ipTable[*Work ingBuf ferPtr l <- DistanceMatched)
S k i p - 1: I* s k i p d o e s n ' t do any good, advance by 1 *I
e l s e

/ * Use s k i p v a l u e , a c c o u n t i n g f o r d i s t a n c e c o v e r e d b y t h e

S k i p - SkipTable[*WorkingBufferPtrl - DistanceMatched;
I* If sk ipp ing ahead wou ld exhaus t t he bu f fe r , we ' re done

w i t h o u t a match * I
if (S k i p >- B u f f e r L e n g t h f r e t u r n (N U L L) :
I* Skip ahead and per fo rm the nex t compar ison *I
B u f f e r L e n g t h -- S k i p ;
B u f f e r P t r +- S k i p ;

p a r t i a l m a t c h *I

1
J

LISTING 14.2 11 4-2.C
/ * Program t o e x e r c i s e b u f f e r - s e a r c h r o u t i n e s i n L i s t i n g s 1 4 . 1 & 14.3.

(M u s t b e m o d i f i e d t o p u t c o p y o f p a t t e r n a s s e n t i n e l a t e n d o f t h e
s e a r c h b u f f e r i n o r d e r t o be used w i t h L i s t i n g 1 4 . 4 .) * /

i n c l u d e < s t d i o . h >
Pi n c l ude < s t r i n g . h>
C i n c l ude < f c n t l . h >

d e f i n e DISPLAY-LENGTH 40
d e f i n e BUFFER-SIZE 0x8000

e x t e r n u n s i g n e d c h a r * F i n d S t r i n g (u n s i g n e d c h a r *, u n s i g n e d i n t .

v o i d m a i n (v o i d 1 :
uns igned char *, u n s i g n e d i n t) ;

v o i d m a i n 0 I
uns igned char TempBuffer[DISPLAY-LENGTH+ll:
uns igned char F i lename[l50] . Pa t te rnC1501. *MatchPt r , *Tes tBuf fe r :
i n t Hand1 e;
u n s i g n e d i n t W o r k i n g L e n g t h :

p r i n t f (" F i 1 e t o s e a r c h : ") :
ge ts (F i lename1:
p r i n t f (" P a t t e r n f o r w h i c h t o s e a r c h : ") :
g e t s (P a t t e r n) :

i f ((Handle - open(Fi1ename. 0-RDONLY 1 0-BINARY)) - -1) (

1
I* Get memory i n w h i c h t o b u f f e r t h e d a t a * /
i f ((T e s t B u f f e r - (u n s i g n e d c h a r *)malloc(BUFFER-SIZE+1)) - NULL) (

1
/ * Process a BUFFER-SIZE chunk * I
i f ((i n t) (W o r k i n g L e n g t h -

p r i n t f (" C a n ' t o p e n f i l e : % s \ n " . F i l e n a m e) ; e x i t (1) ;

p r i n t f (" C a n ' t g e t e n o u g h m e m o r y \ n ") ; e x i t (1) ;

read(Hand1e. Tes tBuf fe r . BUFFER-SIZE)) - -1) {
p r i n t f (" E r r o r r e a d i n g f i l e %s\n" , F i l e n a m e) : e x i t (1) :

I
TestBuf ferCWorkingLength] - 0: I* 0 - t e r m i n a t e b u f f e r f o r p r i n t f *I
I* S e a r c h f o r t h e p a t t e r n and r e p o r t t h e r e s u l t s *I
i f ((M a t c h P t r - F i n d S t r i n g (T e s t B u f f e r . W o r k i n g L e n g t h . P a t t e r n ,

(u n s i g n e d i n t) s t r l e n (P a t t e r n))) - NULL) (

270 Chapter 14

/ * P a t t e r n w a s n ' t f o u n d */
p r i n t f (" \ " % s \ " n o t f o u n d \ n " . P a t t e r n) ;

/ * P a t t e r n was found . Ze ro - te rm ina te TempBuf fe r : s t rncpy

TempBufferCDISPLAY-LENGTH] = 0:
p r i n t f (" \ " % s \ " f o u n d . N e x t Xd c h a r a c t e r s a t m a t c h : \ n \ " % s \ " \ n " .

1 e l s e {

won ' t do i t i f DISPLAY-LENGTH c h a r a c t e r s a r e c o p i e d * /

P a t t e r n , DISPLAY_.LENGTH,
s t rncpy (TempBuf fe r . Ma tchP t r . DISPLAY-LENGTH)):

1
e x i t (0) :

1

Well, architecture carries a lot of weight, but it sure as heck isn't destiny. I had simply
fallen into the trap of figuring that the algorithm was so clever that I didn't have to
do any thinking myself. The path leading to REPNZ SCASB from the original brute-
force approach of REPZ CMF'SB at every location had been based on my observation
that the first character comparison at each buffer location usually fails. Why not
apply the same concept to Boyer-Moore? Listing 14.3 is just like the standard imple-
mentation-except that it's optimized to handle a first-comparison mismatch as
quickly as possible in the loop at QuickSearchLoop, much as REPNZ SCASB opti-
mizes first-comparison mismatches for the brute-force approach. The results in Table
14.1 speak for themselves; Listing 14.3 is more than twice as fast as what I assure you
was already a nice, tight assembly implementation (and unrolling QuickSearchLoop
could boost performance by up to 10 percent more). Listing 14.3 is also four times
faster than REPNZ SCASB in one case.

LISTING 14.3 11 4-3.ASM
: Searches a b u f f e r f o r a s p e c i f i e d p a t t e r n . I n case o f a mismatch,
; u s e s t h e v a l u e o f t h e m i s m a t c h e d b y t e t o s k i p a c r o s s a s many
: p o t e n t i a l m a t c h l o c a t i o n s a s p o s s i b l e (p a r t i a l B o y e r - M o o r e) .
: R e t u r n s s t a r t o f f s e t o f f i r s t m a t c h s e a r c h i n g f o r w a r d , o r NULL i f
; no match i s found.
: T e s t e d w i t h TASM.
: C n e a r - c a l l a b l e a s :

uns igned char * F i n d S t r i n g (u n s i g n e d c h a r * B u f f e r P t r .
uns igned i n t B u f f e r L e n g t h . u n s i g n e d c h a r * P a t t e r n P t r .
uns igned i n t P a t t e r n L e n g t h) :

parms s t r u c
dw 2 dup(?) :pushed BP & r e t u r n a d d r e s s

B u f f e r P t r dw ? : p o i n t e r t o b u f f e r t o be searched
B u f f e r L e n g t h dw ? :# o f b y t e s i n b u f f e r t o b e s e a r c h e d
P a t t e r n P t r dw ? : p o i n t e r t o p a t t e r n f o r w h i c h t o s e a r c h
Pa t te rnLeng th dw ? : l e n g t h o f p a t t e r n f o r w h i c h t o s e a r c h
parms ends

.model small

.code
p u b l i c - F i n d s t r i n g

c l d
p u s h b p : p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p . s p : p o i n t t o o u r s t a c k f r a m e

~ F i n d S t r i n g p r o c near

Boyer-Moore String Searching 271

push s i : p r e s e r v e c a l l e r ' s r e g i s t e r v a r i ab1 es
push d i
sub sp .256*2 : a l l oca te space f o r Sk ipTab le

: C r e a t e t h e t a b l e o f d i s t a n c e s b y w h i c h t o s k i p ahead on mismatches
: f o r e v e r y p o s s i b l e b y t e v a l u e . F i r s t . i n i t i a l i z e a l l s k i p s t o t h e
: p a t t e r n l e n g t h : t h i s i s t h e s k i p d i s t a n c e f o r b y t e s t h a t d o n ' t
: appear i n t h e p a t t e r n .

mov ax .Cbp+Pat te rnLength l
and ax .ax ; re tu rn an i ns tan t ma tch i f t h e p a t t e r n i s

rnov d i .ds
mov es . d i :ES=DS=SS
mov d i . s p ; p o i n t t o S k i p B u f f e r
mov cx.256
r e p s t o s w
dec ax : f rom now on, we on ly need
mov [bp+Pat te rnLength] .ax : P a t t e r n L e n g t h - 1

j z I n s t a n t M a t c h ; O - l e n g t h

: P o i n t t o l a s t (r i g h t m o s t) b y t e o f f i r s t p o t e n t i a l p a t t e r n m a t c h
: l o c a t i o n i n b u f f e r .

: R e j e c t i f b u f f e r i s t o o s m a l l , and s e t t h e c o u n t o f t h e number o f
: p o t e n t i a l p a t t e r n m a t c h l o c a t i o n s i n t h e b u f f e r .

add [b p + B u f f e r P t r l . a x

sub [bp+Buf ferLength l .ax
j b e NoMatch

: S e t t h e s k i p v a l u e s f o r t h e b y t e s t h a t do appear i n t h e p a t t e r n t o
; t h e d i s t a n c e f r o m t h e b y t e l o c a t i o n t o t h e e n d o f t h e p a t t e r n .
: When t h e r e a r e m u l t i p l e i n s t a n c e s o f t h e same b y t e , t h e r i g h t m o s t
; i n s t a n c e ' s s k i p v a l u e i s u s e d . N o t e t h a t t h e r i g h t m o s t b y t e o f t h e
; p a t t e r n i s n ' t e n t e r e d i n t h e s k i p t a b l e : i f we g e t t h a t v a l u e f o r
: a mismatch, we know f o r s u r e t h a t t h e r i g h t end o f t h e p a t t e r n has
: a l r e a d y p a s s e d t h e m i s m a t c h l o c a t i o n , s o t h i s i s not a r e l e v a n t b y t e
: f o r s k i p p i n g p u r p o s e s .

mov
and
j z
mov

sub
mov
i nc
s h l
mo v

dec
j nz

mov
dec
mov

SetSkipLoop:

SetSkipDone:

s i . [b p + P a t t e r n P t r] : p o i n t t o s t a r t o f p a t t e r n
ax.ax : a r e t h e r e any s k i p s t o s e t ?
SetSkipDone :no
d i .sp : p o i n t t o S k i p B u f f e r

bx , b x : p r e p a r e f o r w o r d a d d r e s s i n g o f f b y t e v a l u e
b l , [s i] : g e t t h e n e x t p a t t e r n b y t e
s i : a d v a n c e t h e p a t t e r n p o i n t e r
b x . 1 ; p r e p a r e f o r w o r d l o o k u p
C d i + b x l . a x : s e t t h e s k i p v a l u e when t h i s b y t e v a l u e i s

ax
SetSkipLoop

d l , [s i 1 ; D L - r i g h t m o s t p a t t e r n b y t e f r o m now on
s i : p o i n t t o n e x t - t o - r i g h t m o s t b y t e o f p a t t e r n
[b p + P a t t e r n P t r l . s i : f r o m now on

: t h e m i s m a t c h v a l u e i n t h e b u f f e r

: S e a r c h t h e b u f f e r .
s t d : f o r b a c k w a r d REP2 CMPSB
mov d i . [b p + B u f f e r P t r] ; p o i n t t o f i r s t s e a r c h l o c a t i o n
mov cx . [bp+Buf fe rLength] :# o f m a t c h l o c a t i o n s t o c h e c k

mov s i . s p ; p o i n t SI t o S k i p T a b l e
SearchLoop:

: S k i p t h r o u g h u n t i l t h e r e ' s a m a t c h f o r t h e r i g h t m o s t p a t t e r n b y t e .
QuickSearchLoop:

mov b l , Cdi 1 ; r i g h t m o s t b u f f e r b y t e a t t h i s l o c a t i o n
cmp d l , b l :does i t m a t c h t h e r i g h t m o s t p a t t e r n b y t e ?
j z Fu l lCompare :yes, so keep going

272 Chapter 14

sub bh,bh :convert t o a word
add bx .bx : p repare f o r l ook -up i n S k i p T a b l e
mov a x , [s i + b x] : g e t s k i p v a l u e f r o m s k i p t a b l e f o r t h i s

: mismatch value
add d i , a x : B u f f e r P t r +- S k i p :
sub cx .ax :Bu f fe rLength -- S k i p :

jmp short NoMatch

a l i g n 2

mov ax.[bp+BufferPtrl
jmp sho r t Done

j a QuickSearchLoop ;cont inue i f a n y b u f f e r l e f t

: Return a p o i n t e r t o t h e s t a r t o f t h e b u f f e r (f o r 0 - l e n g t h p a t t e r n) .

I n s t a n t M a t c h :

: Compare t h e p a t t e r n and t h e b u f f e r l o c a t i o n , s e a r c h i n g f r o m h i g h
: memory t o w a r d l o w (r i g h t t o l e f t) .

Ful lCompare:
a l i g n 2

mov [b p + B u f f e r P t r] . d i
mov [b p + B u f f e r L e n g t h l . c x : t h e s e a r c h

: s a v e t h e c u r r e n t s t a t e o f

mov c x . [b p + P a t t e r n L e n g t h l :# o f b y t e s y e t t o compare
j cxz Ma tch
mov s i . [b p + P a t t e r n P t r]

;done i f o n l y one c h a r a c t e r

d e c d i
: p o i n t t o n e x t - t o - r i g h t m o s t b y t e s
: o f b u f f e r l o c a t i o n and p a t t e r n

repz cmpsb :compare t h e r e s t o f t h e p a t t e r n
j z M a t c h : t h a t ' s it: we've found a match

: I t ' s a mismatch: l e t ' s s e e what we can l e a r n from i t .
i n c d i :compensate f o r 1 - b y t e o v e r r u n o f REP2 CMPSB;

: p o i n t t o m i s m a t c h l o c a t i o n i n b u f f e r
: d o f b y t e s t h a t d i d m a t c h .

mov s i . [b p + B u f f e r P t r]
sub s i . d i

: I f . based on the m ismatch cha rac te r , we c a n ' t e v e n s k i p ahead as f a r
: a s where we s t a r t e d t h i s p a r t i c u l a r c o m p a r i s o n , t h e n j u s t a d v a n c e b y
: 1 t o t h e n e x t p o t e n t i a l m a t c h ; o t h e r w i s e , s k i p a h e a d f r o m t h i s
: c o m p a r i s o n l o c a t i o n b y t h e s k i p d i s t a n c e f o r t h e m i s m a t c h c h a r a c t e r .
: l e s s t h e d i s t a n c e c o v e r e d b y t h e p a r t i a l m a t c h .

sub bx ,bx : p repare f o r word add ress ing o f f by te va lue
mov b l , [d i l : g e t t h e v a l u e o f t h e m i s m a t c h b y t e i n b u f f e r
add b x . b x : p r e p a r e f o r w o r d l o o k - u p
add bx.sp :SP p o i n t s t o S k i p T a b l e
mov c x . [b x l : g e t t h e s k i p v a l u e f o r t h i s m i s m a t c h
mov ax .1 :assume w e ' l l j u s t a d v a n c e t o t h e n e x t

: p o t e n t i a l m a t c h l o c a t i o n
s u b c x . s i : i s t h e s k i p f a r e n o u g h t o b e w o r t h t a k i n g ?
j n a MoveAhead ;no. go w i t h t h e d e f a u l t a d v a n c e o f 1
mov a x , c x : y e s : t h i s i s t h e d i s t a n c e t o s k i p ahead from

MoveAhead:
: Skip ahead and per form the next compar ison, i f t h e r e ' s a n y b u f f e r
: l e f t t o check.

: t h e l a s t p o t e n t i a l m a t c h l o c a t i o n c h e c k e d

mov d i . C b p + B u f f e r P t r]
add d i , a x : B u f f e r P t r +== Sk ip :
mov cx . [bp+Buf fe rLength]
sub cx.ax :Buf ferLength -- S k i p :
j a SearchLoop

a l i g n 2

sub ax.ax
jmp s h o r t Done

: Return a NULL p o i n t e r f o r no match.

NoMatch:

; c o n t i n u e i f any b u f f e r l e f t

Boyer-Moore String Searching 273

: R e t u r n s t a r t

Match:
a l i g n

mo v
sub

c l d
add
POP
POP
POP
r e t

~ F i n d S t r i n g
end

Done:

o f m a t c h i n b u f f e r (B u f f e r P t r - (P a t t e r n L e n g t h - 1)).
2

ax .Cbp+Buf fe rPt r]
ax , [bp+Pat te rnLength l

: r e s t o r e d e f a u l t d i r e c t i o n f l a g
sp .256*2 ; dea l l oca te space f o r Sk ipTab le
d i ; r e s t o r e c a l l e r ' s r e g i s t e r v a r i a b l e s
s i
bP : r e s t o r e c a l l e r ' s s t a c k f r a m e

endp

Table 14.1 represents a limited and decidedly unscientific comparison of searching
techniques. Nonetheless, the overall trend is clear: For all but the shortest patterns,
well-implemented Boyer-Moore is generally as good as or better than-sometimes
much better than-brute-force searching. (For short patterns, you might want to use
REPNZ SCASB, thereby getting the best of both worlds.)
Know your data and use your smarts. Don't stop thinking just because you're imple-
menting a big-name algorithm; you know more than it does.

Further Optimization of Boyer-Moore
We can do substantially better yet than Listing 14.3 if we're willing to accept tighter
limits on the data. Limiting the length of the searched-for pattern to a maximum of
255 bytes allows us to use the XLAT instruction and generally tighten the critical
loop. (Be aware, however, that XLAT is a relatively expensive instruction on the 486
and Pentium.) Putting a copy of the searched-for string at the end of the search
buffer as a sentinel, so that the search never fails, frees us from counting down the
buffer length, and makes it easy to unroll the critical loop. Listing 14.4, which imple-
ments these optimizations, is about 60 percent faster than Listing 14.3.

LISTING 14.4 11 4-4.ASM
: Searches a b u f f e r f o r a s p e c i f i e d p a t t e r n . I n c a s e o f a mismatch,
: uses t h e v a l u e o f t h e m i s m a t c h e d b y t e t o s k i p a c r o s s as many
: p o t e n t i a l m a t c h l o c a t i o n s as p o s s i b l e (p a r t i a l B o y e r - M o o r e) .
: R e t u r n s s t a r t o f f s e t o f f i r s t m a t c h s e a r c h i n g f o r w a r d , o r NULL i f
: no match i s found.
; R e q u i r e s t h a t t h e p a t t e r n be no l o n g e r t h a n 255 b y t e s , a n d t h a t
: t h e r e b e a match f o r t h e p a t t e r n somewhere i n t h e b u f f e r (i e . . a
: c o p y o f t h e p a t t e r n s h o u l d be placed as a s e n t i n e l a t t h e end o f
: t h e b u f f e r i f t h e p a t t e r n i s n ' t a l r e a d y known t o be i n t h e b u f f e r) .
: T e s t e d w i t h TASM.
: C n e a r - c a l l a b l e a s :
: uns igned char * F i n d S t r i n g (u n s i g n e d c h a r * B u f f e r P t r .
; u n s i g n e d i n t B u f f e r L e n g t h . u n s i g n e d c h a r * P a t t e r n P t r ,
; u n s i g n e d i n t P a t t e r n L e n g t h) :

parms s t r u c
dw 2 dup(?) ;pushed BP & r e t u r n a d d r e s s

274 Chapter 14

B u f f e r P t r dw ? ; p o i n t e r t o b u f f e r t o b e s e a r c h e d
B u f f e r L e n g t h dw ? :# o f b y t e s i n b u f f e r t o b e s e a r c h e d

P a t t e r n P t r dw ?
; (n o t u s e d , a c t u a l l y)
; p o i n t e r t o p a t t e r n f o r w h i c h t o s e a r c h
: (p a t t e r n *MUST* e x i s t i n t h e b u f f e r)

Pa t te rnLeng th dw ? ; l e n g t h o f p a t t e r n f o r w h i c h t o s e a r c h (m u s t
: be <- 255)

parms ends

.model sma 1 1

.code
p u b l i c _ F i n d s t r i n g

c l d
p u s h b p ; p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov bp .sp ; po in t t o our s tack f rame
push s i : p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e s
push d i
sub sp .256 ; a l l oca te space f o r Sk ipTab le

_ F i n d s t r i n g p r o c n e a r

: C r e a t e t h e t a b l e o f d i s t a n c e s b y w h i c h t o s k i p ahead on mismatches
: f o r e v e r y p o s s i b l e b y t e v a l u e . F i r s t , i n i t i a l i z e a l l s k i p s t o t h e
; p a t t e r n l e n g t h : t h i s i s t h e s k i p d i s t a n c e f o r b y t e s t h a t d o n ' t
: appear i n t h e p a t t e r n .

mov d i .ds
mov e s , d i : ES-DS=SS
mov d i . s p : p o i n t t o S k i p B u f f e r
mov a 1 , b y t e p t r [b p + P a t t e r n L e n g t h]
and a l . a l : r e t u r n a n i n s t a n t m a t c h i f t h e p a t t e r n i s

mov ah.a l
mov cx.256/2
rep s tosw
mov ax. [bp+Pat ternLength]
dec ax : f rom now on. we on ly need
mov [bp+Pat ternLength] .ax : P a t t e r n L e n g t h - 1

: P o i n t t o r i g h t m o s t b y t e o f f i r s t p o t e n t i a l p a t t e r n m a t c h l o c a t i o n
: i n b u f f e r .

: S e t t h e s k i p v a l u e s f o r t h e b y t e s t h a t d o a p p e a r i n t h e p a t t e r n t o
: t h e d i s t a n c e f r o m t h e b y t e l o c a t i o n t o t h e end o f t h e p a t t e r n .

j z I n s t a n t M a t c h ; 0 - l e n g t h

add [bp+Bu f fe rP t r l , ax

mov
and
j z
mov
sub

mov
i nc
mov

dec
j n z

mov
dec
mov

SetSkipLoop:

SetSkipDone:

s i . C b p + P a t t e r n P t r] ; p o i n t t o s t a r t o f p a t t e r n
a x , a x : a r e t h e r e a n y s k i p s t o s e t ?
SetSkipDone ;no
d i . s p : p o i n t t o S k i p B u f f e r
b x , b x ; p r e p a r e f o r w o r d a d d r e s s i n g o f f b y t e v a l u e

b l . [s i l : g e t t h e n e x t p a t t e r n b y t e
s i : a d v a n c e t h e p a t t e r n p o i n t e r
[d i + b x l . a l : s e t t h e s k i p v a l u e when t h i s b y t e v a l u e i s

ax
SetSkipLoop

d l . [s i] : D L - r i g h t m o s t p a t t e r n b y t e f r o m now on
s i : p o i n t t o n e x t - t o - r i g h t m o s t b y t e o f p a t t e r n
[b p + P a t t e r n P t r l . s i ; f r o m now on

: the mismatch va lue i n t h e b u f f e r

: S e a r c h t h e b u f f e r .
s t d : f o r backward R E P Z CMPSB
mov d i . [b p + B u f f e r P t r l : p o i n t t o t h e f i r s t s e a r c h l o c a t i o n
mov bx.sp : p o i n t t o S k i p T a b l e f o r XLAT

Boyer-Moore String Searching 275

SearchLoop:

; S k i p t h r o u g h u n t i l t h e r e ' s a match f o r t h e f i r s t p a t t e r n b y t e .
QuickSearchLoop:
; See i f we have a match a t t h e f i r s t b u f f e r l o c a t i o n .

REPT 8 ; u n r o l l l o o p 8 t i m e s t o r e d u c e b r a n c h i n g
mov a1 , [d i 1 : n e x t b u f f e r b y t e
cmp d l .a1 ;does i t m a t c h t h e p a t t e r n ?
jz F u l lCompare ;yes, so keep go ing
x1 a t ; n o . l o o k u p t h e s k i p v a l u e f o r t h i s m i s m a t c h
add d i ,ax
ENDM

; B u f f e r P t r +- Sk ip ;

jmp QuickSearchLoop

a l i g n 2

mov ax .Cbp+Buf fe rPt r l
j m p s h o r t Done

sub ah,ah ;used t o c o n v e r t AL t o a word

; Return a p o i n t e r t o t h e s t a r t o f t h e b u f f e r (f o r 0 - l e n g t h p a t t e r n) .

I n s t a n t M a t c h :

; Compare t h e p a t t e r n and t h e b u f f e r l o c a t i o n , s e a r c h i n g f r o m h i g h
; memory t o w a r d l o w (r i g h t t o l e f t) .

Fu l l compare :
a l i g n 2

mov [b p + B u f f e r P t r l . d i : s a v e t h e c u r r e n t b u f f e r l o c a t i o n
mov cx.Cbp+PatternLength] ;# o f b y t e s y e t t o compare
j c x z M a t c h ;done i f t h e r e was o n l y one c h a r a c t e r
dec d i ; p o i n t t o n e x t d e s t i n a t i o n b y t e t o compare (S I

r e p z cmpsb ; c o m p a r e t h e r e s t o f t h e p a t t e r n
; p o i n t s t o n e x t - t o - r i g h t m o s t s o u r c e b y t e)

j z M a t c h ; t h a t ' s i t ; we've found a match
; I t ' s a mismatch: l e t ' s see what we can l ea rn f rom it.

i n c d i ;compensate f o r I - b y t e o v e r r u n o f REPZ CMPSB;
; p o i n t t o m i s m a t c h l o c a t i o n i n b u f f e r

; # o f b y t e s t h a t d i d m a t c h .
mov s i . C b p + B u f f e r P t r l
sub s i . d i

; I f . based on the mismatch charac ter , we c a n ' t e v e n s k i p a h e a d a s f a r
; as where we s t a r t e d t h i s p a r t i c u l a r c o m p a r i s o n , t h e n j u s t a d v a n c e by
; 1 t o t h e n e x t p o t e n t i a l m a t c h ; o t h e r w i s e . s k i p ahead from t h i s
; c o m p a r i s o n l o c a t i o n b y t h e s k i p d i s t a n c e f o r t h e m i s m a t c h c h a r a c t e r ,
: l e s s t h e d i s t a n c e c o v e r e d b y t h e p a r t i a l m a t c h .

mov a1 , Cdi 1 ; g e t t h e v a l u e o f t h e m i s m a t c h b y t e i n b u f f e r
x1 a t ; g e t t h e s k i p v a l u e f o r t h i s m i s m a t c h
mov c x . 1 ;assume w e ' l l j u s t advance t o t h e n e x t

s u b a x . s i ; i s t h e s k i p f a r e n o u g h t o be w o r t h t a k i n g ?
j n a MoveAhead ;no. go w i t h t h e d e f a u l t a d v a n c e o f 1
mov cx.ax ; y e s . t h i s i s t h e d i s t a n c e t o s k i p ahead from

; p o t e n t i a l m a t c h l o c a t i o n

; t h e l a s t p o t e n t i a l m a t c h l o c a t i o n c h e c k e d
MoveAhead:
; Sk ip ahead and per fo rm the nex t compar ison .

mov d i . [b p + B u f f e r P t r l
add d i , c x ; B u f f e r P t r +- S k i p ;
mov s i . [b p + P a t t e r n P t r l ; p o i n t t o t h e n e x t - t o - r i g h t m o s t

jmp SearchLoop

a l i g n 2

mov a x , [b p + B u f f e r P t r l
sub ax. [bp+Pat ternLength l

; p a t t e r n b y t e

; R e t u r n s t a r t o f m a t c h i n b u f f e r (B u f f e r P t r - (P a t t e r n L e n g t h - 1)).

Match:

276 Chapter Id

Done :
c l d : r e s t o r e d e f a u l t d i r e c t i o n f l a g
add sp.256 :deal locate space for Sk ipTab le
pop d i : r e s t o r e c a l l e r ’ s r e g i s t e r v a r i a b l e s
pop s i
POP b p : r e s t o r e c a l l e r ’ s s t a c k f r a m e
r e t

end
- F i n d S t r i ng endp

Note that Table 14.1 includes the time required to build the skip table each time
Findstring is called. This time could be eliminated for all but the first search when
repeatedly searching for a particular pattern, by building the skip table externally
and passing a pointer to it as a parameter.

Know What You Know
Here we’ve turned up our nose at a repeated string instruction, we’ve gone against
the grain by comparing backward, and yet we’ve speeded up our code quite a bit. All
this without any restrictions or special requirements (excluding Listing 14.4)”and
without any new information. Everything we needed was sitting there all along; we
just needed to think to look at it.
As Yogi Berra might put it, ‘You don’t know what you know until you know it.”

boyer-Moore String Searching 277

roblems with Familiar Data Structures
es me wince. Oh, the humiliations I suffer for your

It wasn’t until ninth ad my first real girlfriend. Okay, maybe I was a little
ey, show me a good programmer who wasn’t; it goes

annie Schweigert, and she was about four feet tall,
lling to go out with me, which made her approxi-

gether at school, and went to basketball games and a few
how the two of us were never alone. Being 14, neither of

chauffeuring us. That’s a next-to-
ter of my own (ideal being exiling

all males between the ages of 12 and 18 to Tasmania), but at the time, it drove me
nuts. You see.. . ahem.. . I had never actually kissed Jeannie-or anyone, for that mat-
ter, unless you count maiden aunts and the like-and I was dying to. At the same
time, I was terrified at the prospect. What if I turned out to be no good at it? It wasn’t
as if I could go to Kisses ‘ R Us and take lessons.
My long-awaited opportunity finally came after a basketball game. For a change, my
father was driving, and when we dropped her off at her house, I walked her to the
door. This was my big chance. I put my arms around her, bent over with my eyes
closed, just like in the movies.. . .

28 1

unfamiliar problems with familiar data structures

And whacked her on the top of the head with my chin. (As I said, she was only about
four feet tall.) And I do mean whacked. Jeannie burst into hysterical laughter, tried to
calm herself down, said goodnight, and went inside, still giggling. No kiss.
I was a pretty mature teenager, so this was only slightly more traumatic than leading
the Tournament of Roses parade in my underwear. On the next try, though, I did
manage to get the hang of this kissing business, and eventually even went on to have
a child. (Not with Jeannie, I might add; the mind boggles at the mess I could have
made of that with her.) As it turns out, none of that stuff is particularly difficult; in
fact, it’s kind of enjoyable, wink, wink, say no more.
When you’re dealing with something new, a little knowledge goes a long way. When
it comes to kissing, we have to fumble along the learning curve on our own, but
there are all sorts of resources to help speed up the learning process when it comes
to programming. The basic mechanisms of programming-searches, sorts, parsing,
and the like-are well-understood and superbly well-documented. Treat yourself to
a book like Algorithms, by Robert Sedgewick (Addison Wesley), or Knuth’s The Art of
Computer Programming series (also from Addison Wesley; and where was Knuth with
The Art of Kissing when I needed him?), or practically anything by Jon Bentley, and
when you tackle a new area, give yourself a head start. There’s still plenty of room for
inventiveness and creativity on your part, but why not apply that energy on top of the
knowledge that’s already been gained, instead of reinventing the wheel? I know,
reinventing the wheel is just the kind of challenge programmers love-but can you
really afford to waste the time? And do you honestly think that you’re so smart that you
can out-think Knuth, who’s spent a lifetime at this stuff and happens to be a genius?
Maybe you can-but I sure can’t. For example, consider the evolution of my under-
standing of linked lists.

Linked Lists
Linked lists are data structures composed of discrete elements, or nodes, joined to-
gether with links. In C, the links are typically pointers. Like all data structures, linked
lists have their strengths and their weaknesses. Primary among the strengths are:
simplicity; speedy sequential processing; ease and speed of insertion and deletion;
the ability to mix nodes of various sizes and types; and the ability to handle variable
amounts of data, especially when the total amount of data changes dynamically or is
not always known beforehand. Weaknesses include: greater memory requirements
than arrays (the pointers take up space); slow non-sequential processing, including
finding arbitrary nodes; and an inability to backtrack, unless doubly-linked lists are
used. Unfortunately, doubly linked lists need more memory, as well as processing
time to maintain the backward links.
Linked lists aren’t very good for most types of sorts. Insertion and bubble sorts work
fine, but more sophisticated sorts depend on effkient random access, which linked

282 Chapter 15

lists don’t provide. Likewise, you wouldn’t want to do a binary search on a linked list.
On the other hand, linked lists are ideal for applications where nothing more than
sequential access is needed to data that’s always sorted or nearly sorted.
Consider a polygon fill function, for example. Polygon edges are added to the active
edge list in x-sorted order, and tend to stay pretty nearly x-sorted, so sophisticated
sorting is never needed. Edges are read out of the list in sorted order, just the way
linked lists work best. Moreover, linked lists are straightforward to implement, and
with linked lists an arbitrary number of polygon edges can be handled with no fuss.
All in all, linked lists work beautifully for filling polygons. For an example of the use
of linked lists in polygon filling, see my column in the May 1991 issue of DX Dobb’s
Journal. Be warned, though, that none of the following optimizations are to be found
in that column.
You see, that column was my first heavy-duty use of linked lists, and they seemed so
simple that I didn’t even open Sedgewick or Knuth. For hashing or Boyer-Moore
searching, sure, I’d have done my homework first; but linked lists seemed too obvi-
ous to bother. I was much more concerned with the polygon-related aspects of the
implementation, and, in truth, I gave the linked list implementation not a moment’s
thought before I began coding. Heck, I had handled much tougher programming
problems in the past; surely i t would be faster to figure this one out on my own than
to look it up.
Not!
The basic concept of a linked list-the one I came up with for that DDJcolumn-is
straightforward, as shown in Figure 15.1. A head pointer points to the first node in
the list, which points to the next node, which points to the next, and so on, until the
last node in the list is reached (typically denoted by a NULL next-node pointer).
Conceptually, nothing could be simpler. From an implementation perspective, how-
ever, there are serious flaws with this model.
The fimdamental problem is that the model of Figure 15.1 unnecessarily complicates link
manipulation. In order to delete a node, for example, you must change the preceding

Pointer to
head of list

I &Node # 1

Node # 1

&Node #2

Other data
in node I

Node #2 Node #3 Node #4

Other data Other data Other data
in node in node

The basic concept of a linked list.
Figure 1 5.1

Linked Lists and Unintended Challenges 283

node's NextNode pointer to point to the following node, as shown in Listing 15.1.
(Listing 15.2 is the header file LLIST.H, which is ##included by all the linked list listings
in this chapter.) Easy enough-unless the preceding node happens to be the head
pointer, which doesn't have a NextNode field, because it's not a node, so Listing 15.1
won't work. Cumbersome special code and extra information (a pointer to the head of
the list) are required to handle the head-pointer case, as shown in Listing 15.3. (I'll
grant you that if you make the next-node pointer the first field in the LinkNode struc-
ture, at offset 0, then you could successfully point to the head pointer and pretend it
was a M o d e structure-but that's an ugly and potentially dangerous trick, and
we'll see a better approach next.)

LISTING 1 5.1 11 5- 1 .C
/* D e l e t e s t h e n o d e i n a l i n k e d l i s t t h a t f o l l o w s t h e i n d i c a t e d n o d e .

Assumes l i s t i s headed by a dummy node, s o no s p e c i a l t e s t i n g f o r
t h e h e a d - o f - l i s t p o i n t e r i s r e q u i r e d . R e t u r n s t h e same p o i n t e r
t h a t was p a s s e d i n . * /

#i n c l ude "1 1 i s t . h"
s t r u c t L i n k N o d e * D e l e t e N o d e A f t e r (s t r u c t L i n k N o d e * N o d e T o D e l e t e A f t e r)
I

NodeToDeleteAfter ->NextNode -
return(NodeToDe1eteAfter) :

NodeToOeleteAfter->NextNode->NextNode:

1

LISTING 15.2 1LIST.H
/* L i n k e d l i s t h e a d e r f i l e . * /
d e f i n e MAX-TEXT-LENGTH 100 /* l o n g e s t a l l o w e d T e x t f i e l d * /
d e f i n e SENTINEL 32767 / * l a r g e s t p o s s i b l e V a l u e f i e l d * /

s t r u c t L i n k N o d e {
s t ruc t L inkNode *Nex tNode ;
i n t Value:
cha r TextCMAX-TEXT-LENGTH+ll;
/* Any number o f a d d i t i o n a l d a t a f i e l d s may by p resen t * /

1 :
s t r u c t L i n k N o d e * D e l e t e N o d e A f t e r (s t r u c t L i n k N o d e *) ;
s t r u c t L i n k N o d e * F i n d N o d e B e f o r e V a l u e (s t r u c t LinkNode *, i n t) :
s t r u c t L i n k N o d e * I n i t L i n k e d L i s t (v o i d) ;
s t r u c t L i n k N o d e *InsertNodeSorted(struct LinkNode *.

s t r u c t L i n k N o d e *) ;

LISTING 15.3 11 5-3.C
/* D e l e t e s t h e n o d e i n t h e s p e c i f i e d l i n k e d l i s t t h a t f o l l o w s t h e

i n d i c a t e d n o d e . L i s t i s h e a d e d b y a h e a d - o f - l i s t p o i n t e r : i f t h e
p o i n t e r t o t h e n o d e t o d e l e t e a f t e r p o i n t s t o t h e h e a d - o f - l i s t
p o i n t e r , s p e c i a l h a n d l i n g i s p e r f o r m e d . * /

i i n c l ude "1 1 i s t . h"
s t r u c t L i n k N o d e * D e l e t e N o d e A f t e r (s t r u c t L i n k N o d e * * H e a d O f L i s t P t r .

{
s t r u c t L i n k N o d e * N o d e T o D e l e t e A f t e r)

/ * H a n d l e s p e c i a l l y i f t h e n o d e t o d e l e t e a f t e r i s a c t u a l l y t h e
head o f t h e l i s t (d e l e t e t h e f i r s t e l e m e n t i n t h e l i s t) * /

i f (NodeToDe le teA f te r - (s t r u c t L i n k N o d e *) H e a d O f L i s t P t r) I
* H e a d O f L i s t P t r - (* H e a d O f L i s t P t r) - > N e x t N o d e ;

284 Chapter 15

1 else {
N o d e T o D e l e t e A f t e r - > N e x t N o d e =

N o d e T o D e l e t e A f t e r - > N e x t N o d e - > N e x t N o d e ;
I

1
r e t u r n (N o d e T o D e 1 e t e A f t e r) :

However, it is true that if you’re going to store a variety of types of structures in your
linked lists, you should start each node with the LinkNode field. That way, the link
pointer is in the same place in every structure, and the same linked list code can
handle all of the structure types by casting them to the base link-node structure type.
This is a less than elegant approach, but it works. C++ can handle data mixing more
cleanly than C, via derivation from a base link-node class.
Note that Listings 15.1 and 15.3 have to specify the linked-list delete operation as
“delete the next node,” rather than “delete this node,” because in order to relink it’s
necessary to access the NextNode field of the node preceding the node to be de-
leted, and it’s impossible to backtrack in a singly linked list. For this reason,
singly-linked list operations tend to work with the structure preceding the one of
interest-and that makes the problem of having to special-case the head pointer all
the more acute.
Similar problems with the head pointer crop up when you’re inserting nodes, and in
fact in all link manipulation code. It’s easy to end up working with either pointers to
pointers or lots of special-case code, and while those approaches work, they’re inel-
egant and inefficient..

Dummies and Sentinels
A far better approach is to use a dummy node for the head of the list, as shown in
Figure 15.2. I invented this one for myself the next time I encountered linked lists,
while designing a seed fill function for MetaWindows, back during my tenure at
Metagraphics Corp. But I could have learned it by spending five minutes with
Sedgewick’s book.

Dummy
head node Node # 1 Node #2 Node #3

Dummy tail
node

&Node # 1 ”+ &Node #2

Not Other data Other data Other data Not used

&Tail node + &Node #3 ”+

used

-

in node in node in node
I

Using a dummy head and tail node with a linked list.
Figure 15.2

Linked Lists and Unintended Challenges 285

The next-node pointer of the head node, which points to thefirst real node, is the p onlypart of the head node that b actually used. This way the same code works on the
head node as on the rest of the list, so there are no special cases.

Likewise, there should be a separate node for the tail of the list, so that every node
that contains real data is guaranteed to have a node on either side of it. In this
scheme, an empty list contains two nodes, as shown in Figure 15.3. Although it is not
necessary, the tail node may point to itself as its own next node, rather than contain
a NULL pointer. This way, a deletion operation on an empty list will have no effect-
quite unlike the same operation performed on a list terminated with a NULL pointer.
The tail node of a list terminated like this can be detected because it will be the only
node for which the next-node pointer equals the current-node pointer.
Figure 15.3 is a giant step in the right direction, but we can still make a few refinements.
The inner loop of any code that scans through such a list has to perform a special test on
each node to determine whether the tail has been reached. So, for example, code to find
the first node containing a value field greater than or equal to a certain value has to
perform two tests in the inner loop, as shown in Listing 15.4.

LISTING 15.4 11 5-4.C
/* F i n d s t h e f i r s t n o d e i n a l i n k e d l i s t w i t h a v a l u e f i e l d g r e a t e r

t h a n o r e q u a l t o a k e y v a l u e , a n d r e t u r n s a p o i n t e r t o t h e n o d e
p r e c e d i n g t h a t n o d e (t o f a c i l i t a t e i n s e r t i o n and d e l e t i o n) . o r a
NULL p o i n t e r i f no such va lue was found . Assumes t h e l i s t i s
terminated w i t h a tail node p o i n t i n g t o i t s e l f a s the next node. */

i n c l u d e < s t d i o . h >
bi n c l ude "1 1 i s t . h"
s t r u c t L i n k N o d e *F indNodeBeforeValueNotLess(

I
s t r u c t L i n k N o d e * H e a d O f L i s t N o d e . i n t S e a r c h v a l u e)

s t r u c t L i n k N o d e * N o d e P t r - HeadOfLis tNode:

w h i l e ((NodePtr ->NextNode->NextNode !- NodePtr ->NextNode) &&
(NodePtr ->NextNode->Value < Searchva lue))

NodePtr - NodePtr ->NextNode:

i f (NodePtr->NextNode->NextNode -- NodePtr ->NextNode)

e l s e
r e t u r n (N U L L) ; / * we f o u n d t h e s e n t i n e l : f a i l e d s e a r c h * /

r e t u r n (N o d e P t r) : /* s u c c e s s : r e t u r n p o i n t e r t o n o d e p r e c e d i n g
node t h a t was >- * /

}

Suppose, however, that we make the tail node a sentinel by giving it a value that is
guaranteed to terminate the search, as shown in Figure 15.4. The list in Figure 15.4
has a sentinel with a value field of 32,767; since we're working with integers, that's
the highest possible search value, and is guaranteed to satisfy any search that comes
down the pike. The success or failure of the search can then be determined outside
the loop, if necessary, by checking for the tail node's special pointer-but the inside
of the loop is streamlined to just one test, as shown in Listing 15.5. Not all linked lists

286 Chapter 15

Dummy head Dummy ta i l
node node

Tail node &Tail node -

N o t N o t
used used .

Representing an empty list.
Figure 15.3

lend themselves to sentinels, but the performance benefits are considerable for those
that do.

LISTING 15.5 11 5-5.C
/* F i n d s t h e f i r s t n o d e i n a v a l u e - s o r t e d l i n k e d l i s t t h a t

has a V a l u e f i e l d g r e a t e r t h a n o r e q u a l t o a key va lue , and
r e t u r n s a p o i n t e r t o t h e n o d e p r e c e d i n g t h a t n o d e (t o f a c i l i t a t e
i n s e r t i o n and d e l e t i o n) . o r a NULL p o i n t e r i f no such va lue was
found . Assumes t h e l i s t i s t e r m i n a t e d w i t h a s e n t i n e l tail node
c o n t a i n i n g t h e l a r g e s t p o s s i b l e V a l u e f i e l d s e t t i n g and p o i n t i n g
t o i t s e l f as t h e n e x t n o d e . * /

i n c l u d e < s t d i o . h >
C i n c l ude "1 1 i s t . h"
s t r u c t L i n k N o d e *F indNodeBeforeValueNotLess(

t
s t r u c t L i n k N o d e * H e a d O f L i s t N o d e . i n t S e a r c h v a l u e)

s t ruc t L inkNode *NodePt r - HeadOfListNode;
w h i l e (NodePtr ->NextNode->Value < Searchva lue)

i f (NodePtr ->NextNode->NextNode -= NodePtr ->NextNode)

e l s e

NodePtr = NodePtr->NextNode:

r e t u r n (N U L L) ; / * we f o u n d t h e s e n t i n e l ; f a i l e d s e a r c h * /

r e t u r n (N o d e P t r) ; / * s u c c e s s ; r e t u r n p o i n t e r t o n o d e p r e c e d i n g
n o d e t h a t was >- * /

1

Dummy head
node Node # 1 Node #2 Node #3

Dumml t a i l I I n o e

& N o d e # 1 & N o d e #2

Not used
Other da ta t I

List terminated by a sentinel.
Figure 15.4

Linked Lists and Unintended Challenges 287

Circular Lists
One minor but elegant refinement yet remains: Use a single node as both the head
and the tail of the list. We can do this by connecting the last node back to the first
through the head/tail node in a circular fashion, as shown in Figure 15.5. This head/
tail node can also, of course, be a sentinel; when it’s necessary to check for the end of
the list explicitly, that can be done by comparing the current node pointer to the
head pointer. If they’re equal, you’re at the head/tail node.
W h y am I so fond of this circular list architecture? For one thing, it saves a node, and
most of my linked list programming has been done in severely memory-constrained
environments. Mostly, though, it’sjust so neut;with this setup, there’s not a single node or
inner-loop instruction wasted. Perfect economy of programming, if you ask me.
I must admit that I racked my brains for quite a while to come up with the circular
list, simple as it may seem. Shortly after coming up with it, I happened to look in
Sedgewick’s book, only to find my nifty optimization described plain as day; and a
little while after that, I came across a thread in the algorithms/computer.sci topic on
BIX that described it in considerable detail. Folks, the information is out there. Look
it up before turning on your optimizer afterburners!
Listings 15.1 and 15.6 together form a suite of C functions for maintaining a circular
linked list sorted by ascending value. (Listing 15.5 requires modification before it
will work with circular lists.) Listing 15.7 is an assembly language version of
InsertNodeSorted(); note the tremendous efficiency of the scanning loop in
InsertNodeSorted()-four instructions per node!-thanks to the dummy head/tail/
sentinel node. Listing 15.8 is a simple application that illustrates the use of the linked-
list functions in Listings 15.1 and 15.6.
Contrast Figure 15.5 with Figure 15.1, and Listings 15.1, 15.5, 15.6, and 15.7 with
Listings 15.3 and 15.4. Yes, linked lists are simple, but not so simple that a little
knowledge doesn’t make a substantial difference. Make it a habit to read Knuth or
Sedgewick or the like before you write a single line of code.

Dummy head/tail
node Node # 1 Node #2 Node #3

+
Other data Other data

- &Head/ + &Node #3 j. &Node #2 -+ &Node # 1
tail node

Not used
in node Other data in node

L in node

Representing a circular list.
Figure 15.5

288 Chapter 15

w h i l e (NodePtr->NextNode->Value < Searchva lue)
NodePtr - NodePtr->NextNode;

NodeToInsert->NextNode = NodePtr->NextNode:
NodePtr->NextNode - NodeToInser t ;
r e t u r n (N o d e P t r) :

}

LISTING 15.7 11 5-7.ASM
: C n e a r - c a l l a b l e a s s e m b l y f u n c t i o n f o r i n s e r t i n g a new node i n a
: l i n k e d l i s t s o r t e d b y a s c e n d i n g o r d e r o f t h e V a l u e f i e l d . The l i s t
: i s c i r c u l a r : t h a t i s . i t has a dummy node as bo th t he head and t he
: t a i l o f t h e l i s t . The dummy node i s a s e n t i n e l , c o n t a i n i n g t h e
: l a r g e s t p o s s i b l e V a l u e f i e l d s e t t i n g . T e s t e d w i t h TASM.
MAXLTEXT-LENGTH equ 100 : l o n g e s t a l l o w e d T e x t f i e l d
SENTINEL equ 32767 : l a r g e s t p o s s i b l e V a l u e f i e l d
L i n k N o d e s t r u c
NextNode dw ?
Va lue dw ?
Tex t db MAX-TEXTLLENGTH+l d u p (?)
:*** Any number o f a d d i t i o n a l d a t a f i e l d s may b y p r e s e n t ***
L i nkNode ends

.model smal 1

.code

: I n s e r t s t h e s p e c i f i e d n o d e i n t o a a s c e n d i n g - v a l u e - s o r t e d l i n k e d
: l i s t , s u c h t h a t v a l u e - s o r t i n g i s m a i n t a i n e d . R e t u r n s a p o i n t e r t o
: t h e n o d e a f t e r w h i c h t h e new node i s i n s e r t e d .
: C n e a r - c a l l a b l e a s :
: s t r u c t L i n k N o d e *InsertNodeSorted(struct LinkNode *HeadOfListNode.

parms s t r u c

HeadOfListNode dw ? : p o i n t e r t o h e a d n o d e o f 1 i s t
NodeToInser t dw ? ; p o i n t e r t o n o d e t o i n s e r t
parms ends

s t r u c t L i n k N o d e * N o d e T o I n s e r t)

dw 2 dup (? I : p u s h e d r e t u r n a d d r e s s & BP

p u b l i c - 1 n s e r t N o d e S o r t e d
-1nse r tNodeSor ted p roc nea r

push
mov
push
push
mov
mov
mov

SearchLoop:
mov
mov
CmP

mov
mov
mov

bP
bP. SP
s i
d i
s i , [b p l . N o d e T o I n s e r t
a x . [s i l . V a l u e
d i .Cbp l .Head0fL is tNode

b x . d i
d i .Cbx l .Nex tNode
C d i l . V a l u e . a x

SearchLoop

ax . [bx l .Nex tNode
[s i l . N e x t N o d e , a x
Cbx1.NextNode.si

: p o i n t t o s t a c k f r a m e
: p r e s e r v e r e g i s t e r v a r s

; p o i n t t o n o d e t o i n s e r t
; s e a r c h v a l u e
: p o i n t t o l i n k e d l i s t i n
: w h i c h t o i n s e r t

:advance t o t h e n e x t node
: p o i n t t o f o l l o w i n g n o d e
: i s t h e f o l l o w i n g n o d e ' s
: v a l u e l e s s t h a n t h e v a l u e
: f r o m t h e n o d e t o i n s e r t ?
:yes . s o c o n t i n u e s e a r c h i n g
:no. s o we have f ound ou r
: i n s e r t p o i n t
; l i n k t h e new node between
: t h e c u r r e n t n o d e a n d t h e
: f o l l o w i n g n o d e

290 Chapter 15

mov ax, bx

pop d i
pop s i
POP bp
r e t

end
Jnser tNodeSorted endp

; r e t u r n p o i n t e r t o node
: a f t e r w h i c h we i n s e r t e d
: r e s t o r e r e g i s t e r v a r s

LISTING 15.8 11 5-8.C
/* Sample l i n k e d l i s t p r o g r a m . T e s t e d w i t h B o r l a n d C++. * I
#i n c l u d e < s t d l i b . h>
#i n c l u d e < s t d i 0 . h>
Bi nc l ude <con i 0 . h>
Pi nc l ude <c type. h>
i n c l u d e < s t r i n g . h >
{ { i n c l u d e " 1 l i s t . h "

v o i d m a i n ()
{ i n t Done = 0 . Char, Tempvalue:

s t ruc t L inkNode *TempPt r . *L i s tP t r . *TempPt rZ :
c h a r TempBuffer[MAX-TEXT-LENGTH+31:

i f ((L i s t P t r - I n i t L i n k e d L i s t O) =- NULL) I
p r i n t f (" 0 u t o f m e m o r y \ n ") ;
e x i t (1) :

1
w h i l e (! D o n e) {

p r i n t f (" \ n A = a d d ; D - d e l e t e : F - f i n d ; L - l i s t a l l : C ! - q u i t \ n > ") :
Char = t o u p p e r (g e t c h e 0) :
p r i n t f (" \ n ") :
s w i t c h (C h a r) {

case ' A ' : I* add a node * I
i f ((TempPt r = m a l l o c (s i z e o f (s t r u c t L i n k N o d e))) -- NULL)
I

p r i n t f (" 0 u t o f memory\n) :
e x i t (1) :

1
p r i n t f (" N o d e v a l u e : "1:
scanf ("%d" . &TempPt r ->Va lue) :
i f ((F indNodeBe fo reVa lue (L i s tP t r .TempPt r ->Va lue)) != -NULL)
{ p r i n t f (" * * * v a l u e a l r e a d y i n l i s t : t r y a g a i n * * * \ n ") :

) e l s e { p r i n t f (" N o d e t e x t : ") :
f ree(TempPt r1 :

TempBuffer[O] .. MAX-TEXT-LENGTH:
c g e t s (T e m p B u f f e r) ;
s t r c p y (T e m p P t r - > T e x t . & T e m p B u f f e r [E l) :
I n s e r t N o d e S o r t e d (L i s t P t r . T e m p P t r) ;
p r i n t f (" \ n ") :

1
b r e a k :

p r i n t f (" V a 1 u e f i e l d o f n o d e t o d e l e t e : ") :

scanf ("%d". &TempVal ue) :
i f ((TempPt r - F i n d N o d e B e f o r e V a l u e (L i s t P t r . Tempvalue))

case ' D ' : I* d e l e t e a node *I

!=- NULL) I
TempPtrE - TempPtr->NextNode; I* - > node to d e l e t e *I
De le teNodeAf te r (TempPt r) : I* d e l e t e i t *I
f r e e (T e m p P t r 2) : I* f r e e i t s memory * /

Linked Lists and Unintended Challenges 291

1 e l s e (

b r e a k ;

p r i n t f (" V a 1 u e f i e l d o f n o d e t o f i n d : "1;
scanf("%d". &Tempvalue) ;
i f ((TempPtr - F i n d N o d e B e f o r e V a l u e (L i s t P t r . Tempvalue))

p r i n t f (" * * * n o s u c h v a l u e f i e l d i n l i s t * * * \ n ")

case I F ' : I* f i n d a node *I

!- NULL)
p r i n t f (" V a 1 u e : % d \ n T e x t : % s \ n " .

TempPtr->NextNode->Value. TempPtr->NextNode->Text) ;
e l s e

b r e a k ;

TempPtr - L i s t P t r - > N e x t N o d e ; I* p o i n t t o f i r s t node *I
i f (TempPtr - L i s t P t r) { I* empty i f a t s e n t i n e l *I

1 e l s e I

p r i n t f (" * * * n o s u c h v a l u e f i e l d i n l i s t * * * \ n ") ;

case ' L ' : I* l i s t all nodes *I

p r i n t f (" * * * L i s t i s empty *** \n") ;

do { p r i n t f (" V a l u e : % d \ n T e x t : % s \ n " , T e m p P t r - > V a l u e .
TempPt r ->Tex t) ;

TempPtr - TempPtr->NextNode;

1
break ;

case '0':
Done - 1;
b reak ;

b reak ;

1 wh i le (TempPt r !- L i s t P t r) ;

d e f a u l t :

1
1

1

Hi/Lo in 24 Bytes
In one of my PC TECHNIQLES "Pushing the Envelope" columns, I passed along one of
David Stafford's fiendish programming puzzles: Write a Gcallable function to find the
greatest or smallest unsigned int. Not a big deal-except that David had already done it
in 24 bytes, so the challenge was to do it in 24 bytes or less.
Such routines soon began coming at me from all angles. However (and I hate to say
this because some of my correspondents were very pleased with the thought that they
had bested David), no one has yet met the challenge-because most of you folks
missed a key point. When David said, "Write a function to find the greatest or small-
est unsigned int in 24 bytes or less," he meant, 'Write the hi and the lo functions in
24 bytes or less-combined."
Oh.
Yes, a 24byte hi/lo function is possible, anatomically improbable as it might seem.
Which I guess goes to show that when one of David's puzzles seems less than impos-
sible, odds are you're missing something. Listing 15.9 is David's 24byte solution,
from which a lot may be learned if one reads closely enough.

292 Chapter 15

LISTING 15.9 L15-9.ASM
; F i n d t h e g r e a t e s t or s m a l l e s t u n s i g n e d i n t .
; C c a l l a b l e (s m a l l m o d e l) : 24 b y t e s .
: By D a v i d S t a f f o r d .
: u n s i g n e d h i (i n t num. uns igned a []) :

: u n s i g n e d l o (i n t n u m . uns igned a []) ;

p u b l i c -.hi. -10

save:
t o p :

around:

-h i : db
-1 0 : x o r

P O P

POP
POP
push
push
push
mov

j c x z
cmc
j a
i nc
i nc
dec
j nz

cmp

Ob9h

ax
dx
bx
bx
dx
ax
ax, Cbxl
a x . [b x l
a round

c x . c x

save
bx
bx
dx
t o p

:mov cx . immedia te

: g e t r e t u r n a d d r e s s
:ge t coun t
: g e t p o i n t e r
: r e s t o r e p o i n t e r
; r e s t o r e c o u n t
; r e s t o r e r e t u r n a d d r e s s

r e t

Before I end this chapter, let me say that I get a lot of feedback from my readers, and
it's much appreciated. Keep those cards, letters, and email messages coming. And if
any of you know Jeannie Schweigert, have her drop me a line and let me know how
she's doing these days

Linked Lists and Unintended Challenges 293

ned in the Pursuit of
rd Counter

I remember readin'g ew of C++ development tools for Windows in a past
issue of PC Week. In t eft corner was the familiar box listing the 10 leading
concerns of corpora? buyers when it comes to C++. Roiled down, the list looked
like this, in order ofjHescending importance to buyers:

4. High-level Winddws support
5. Class library
6. Development cycle efficiency
7. Object-oriented development aids
8. Programming management aids
9. Online help

10. Windows development cycle automation
Is something missing here? You bet your maximum gluteus something's missing-
nowhere on that list is there so much as one word about how fast the compiled code

297

lessons learned in the pursuit of the ultimate word counter

runs! I’m not saying that performance is everything, but optimization isn’t even down
there at number 10, below online help! Ye gods and little fishes! We are talking here
about people who would take a bus from LA to New York instead of a plane because it
had a cleaner bathroom; who would choose a painting from a Holiday Inn over a
Matisse because it had a fancier frame; who would buy a h g o instead of-well, hell,
anything-because it had a nice owner’s manual and particularly attractive keys. We
are talking about people who are focusing on means, and have forgotten about ends.
We are talking about people with no programming souls.

Counting Words in a Hurry
What are we to make of this? At the very least, we can safely guess that very few
corporate buyers ever enter optimization contests. Most of my readers do, however;
in fact, far more than I thought ever would, but that gladdens me to no end. I issued
my first optimization challenge in a “Pushing the Envelope” column in PC TECH-
NIQUES back in 1991, and was deluged by respondents who, one might also gather,
do not live by PC Week.
That initial challenge was sparked by a column David Gerrold wrote (also in PC
TECHNIQUES) concerning the matter of counting the number of words in a document;
David turned up some pretty interesting optimization issues along the way. David did
all his coding in Pascal, pointing out that while an assembly language version would
probably be faster, his Pascal utility worked properly and was fast enough for him.
It wasn’t, however, fast enough for me. The logical starting place for speeding up
word counting would be David’s original Pascal code, but I’m much more comfortable
with C, so Listing 16.1 is a loose approximation of David’s word count program, trans
lated to C. I left out a few details, such as handling comment blocks, partly because I
don’t use such blocks myself, and partly so we can focus on optimizing the core word-
counting code. As Table 16.1 indicates, Listing 16.1 counts the words in a 104,448-word
file in 4.6 seconds. The file was stored on a RAM disk, and Listing 16.1 was compiled
with Borland C++ with all optimization enabled. A RAM disk was used partly because
it returns consistent times-no seek times, rotational latency, or cache to muddy the
waters-and partly to highlight word-counting speed rather than disk access speed.

298 Chapter 16

LISTING 1 6.1 11 6- 1 .C
/* W o r d - c o u n t i n g p r o g r a m . T e s t e d w i t h B o r l a n d C++ i n C

c o m p i l a t i o n mode and the sma l l mode l . * /

i n c l u d e < s t d i o . h >
% i n c l u d e < f c n t l . h>
i n c l u d e < s y s \ s t a t . h >
i n c l u d e < s t d l i b . h>
#i ncl ude <i 0 . h >

d e f i n e BUFFER-SIZE Ox8000 I * l a r g e s t c h u n k o f f i l e w o r k e d

i n t m a i n (i n t . c h a r * *) ;

i n t m a i n (i n t a r g c . c h a r * * a r g v) I

w i t h a t any one t i m e * /

i n t H a n d l e ;
u n s i g n e d i n t B l o c k S i z e :
1 o n g F i 1 eS i ze :
uns igned long WordCount - 0:
c h a r * B u f f e r . C h a r f l a g = 0. P r e d C h a r F l a g . * B u f f e r P t r . Ch:

i f (a r g c != 2) {
p r i n t f (" u s a g e : wc < f i l e n a m e > \ n ") :
e x i t (1) :

1

i f ((B u f f e r = rnalloc(BUFFERKS1ZE)) == NULL) I
p r i n t f (" C a n ' t a l l o c a t e a d e q u a t e m e m o r y \ n ") :
e x i t (1) :

I

i f ((H a n d l e = open(argvC11, 0-RDONLY I 0-BINARY)) =- -1) {
p r i n t f (" C a n ' t o p e n f i l e %s \n " . a rgvC11) :
e x i t (1) :

i f ((F i l e s i z e = f i l e l e n g t h (H a n d 1 e)) == -1) I
p r i n t f (" E r r o r s i z i n g f i l e %s \n " . a r g v [l l) ;
e x i t (1) :

}

I* P r o c e s s t h e f i l e i n c h u n k s * /
w h i l e (F i l e s i z e > 0) {

I* G e t t h e n e x t c h u n k *I
F i l e s i z e -= (B l o c k S i z e = min(Fi1eSize. BUFFER-SIZE)):
i f (r e a d (H a n d 1 e . B u f f e r , B l o c k S i z e) == -1) {

p r i n t f (" E r r o r r e a d i n g f i l e %s\n" . a rgvC11) :
e x i t (1) :

1
I* Count words i n t h e chunk * I
B u f f e r P t r = B u f f e r :
do I

PredCharF lag = C h a r f l a g :
Ch = * B u f f e r P t r + + & Ox7F; I* s t r i p h i g h b i t , w h i c h some

word p rocesso rs se t as an

CharF lag =

f l a g * I
I I

) I I
I I

There Ain't No Such Thing as the Fastest Code 299

i f ((! C h a r F l a g) && P redCharF lag) {

I
Wordcount++:

1 w h i l e (- B l o c k S i z e) ;
1

/ * C a t c h t h e l a s t w o r d , i f any */
i f (C h a r F l a g) {

Wordcount++;
1
p r i n t f (" \ n T o t a l w o r d s i n f i l e : % l u \ n " . W o r d c o u n t) :
r e t u r n (0) :

I

Listing 16.2 is Listing 16.1 modified to call a function that scans each block for words,
and Listing 16.3 contains an assembly function that counts words. Used together,
Listings 16.2 and 16.3 are just about twice as fast as Listing 16.1, a good return for a
little assembly language. Listing 16.3 is a pretty straightforward translation from C to
assembly; the new code makes good use of registers, but the key code-determining
whether each byte is a character or not-is still done with the same multiple-sequen-
tial-tests approach used by the code that the C compiler generates.

LISTING 16.2 11 6-2.C
/* W o r d - c o u n t i n g p r o g r a m i n c o r p o r a t i n g a s s e m b l y l a n g u a g e . T e s t e d

w i t h B o r l a n d C++ i n C c o m p i l a t i o n mode & t h e s m a l l m o d e l . * /

#i n c l ude < s t d i 0. h>
i n c l u d e < f c n t l . h>
i n c l u d e < s y s \ s t a t . h >
#i n c l u d e < s t d l i b. h>
i n c l u d e < i o . h >

d e f i n e BUFFER-SIZE 0x8000 / * l a r g e s t c h u n k o f f i l e worked

i n t m a i n (i n t , c h a r **I :
v o i d S c a n B u f f e r (c h a r *, u n s i g n e d i n t , c h a r *, u n s i g n e d l o n g *) ;

i n t m a i n (i n t a r g c . c h a r * * a r g v) {

w i t h a t any one t ime */

i n t Hand le :
u n s i g n e d i n t B l o c k S i z e :
l o n g F i l e S i z e :
u n s i g n e d l o n g W o r d c o u n t - 0:
c h a r * B u f f e r . C h a r F l a g - 0:

i f (a r g c !- 2) {
p r i n t f (" u s a g e : wc < f i l e n a m e > \ n ") ;
e x i t (1) :

1

i f ((B u f f e r - malloc(BUFFER-SIZE)) - NULL) {
p r i n t f (" C a n ' t a l l o c a t e a d e q u a t e m e m o r y \ n ") ;
e x i t (1) :

1

i f ((H a n d l e - open(argvC11, OCRDONLY I 0-BINARY)) - -1) (
p r i n t f (" C a n ' t open f i l e % s \ n " . a r g v C l]) :

300 Chapter 16

1
e x i t (1) :

i f ((F i l e s i z e = f i l e l e n g t h (H a n d 1 e)) == -1) {
p r i n t f (" E r r o r s i z i n g f i l e % s \ n " . a r g v [l]) :
e x i t (1) ;

I

CharF lag = 0 :
w h i l e (F i l e s i z e > 0) {

F i l e s i z e -= (B l o c k S i z e = m i n (F i 1 e S i z e . BUFFER-SIZE)):
i f (r e a d (H a n d 1 e . B u f f e r , B l o c k S i z e) =- -1) {

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v C 1 1) :
e x i t (1) :

I
S c a n B u f f e r (B u f f e r . B l o c k S i z e . & C h a r F l a g . & W o r d C o u n t) :

1

I* C a t c h t h e l a s t w o r d , i f any * I
i f (C h a r F l a g) I

Wordcount++:
1
p r i n t f (" \ n T o t a l w o r d s i n f i l e : % l u \ n " . W o r d C o u n t) :
r e t u r n (0) :

I

LISTING 16.3 11 6-3.ASM
; A s s e m b l y s u b r o u t i n e f o r L i s t i n g 1 6 . 2 . S c a n s t h r o u g h B u f f e r , o f
: l e n g t h B u f f e r L e n g t h . c o u n t i n g w o r d s a n d u p d a t i n g W o r d C o u n t a s
: a p p r o p r i a t e . B u f f e r L e n g t h m u s t b e > 0 . *CharFlag and *Wordcount
: s h o u l d e q u a l 0 on t h e f i r s t c a l l . T e s t e d w i t h TASM.
: C n e a r - c a l l a b l e a s :
: v o i d S c a n B u f f e r (c h a r * B u f f e r . u n s i g n e d i n t B u f f e r L e n g t h ,
: c h a r * C h a r F l a g . u n s i g n e d l o n g * W o r d c o u n t) :

p a r m s s t r u c

B u f f e r dw ? ; b u f f e r t o s c a n
B u f f e r L e n g t h dw ? : l e n g t h o f b u f f e r t o s c a n
CharF lag dw ? : p o i n t e r t o f l a g f o r s t a t e o f l a s t

dw 2 d u p (?) ; p u s h e d r e t u r n a d d r e s s & B P

: c h a r p r o c e s s e d o n e n t r y (0 on
: i n i t i a l c a l l) . U p d a t e d o n e x i t

; f o u n d (0 on i n i t i a l c a l l)
WordCount dw ? : p o i n t e r t o 3 2 - b i t c o u n t o f w o r d s

parms ends

.model smal 1

.code
pub1 i c _ScanBu f fe r

p u s h b p : p r e s e r v e c a l
mov b p . s p ; s e t u p l o c a l
p u s h s i ; p r e s e r v e c a l
p u s h d i

. _ScanBu f fe r p roc nea r
l e r ' s

s t a c
l e r ' s

s t a c k f r a m e

r e g i s t e r v a r s
k f r ame

mov s i , [b p + B u f f e r l ; p o i n t t o b u f f e r t o s c a n
mov bx . [bp+WordCount l
mov c x , [b x l ; g e t c u r r e n t 3 2 - b i t w o r d c o u n t
mov d x , Cbx+21
mov bx . [bp+CharF lag l

There Ain't No Such Thing as the Fastest Code 301

mov b l , [b x l ; g e t c u r r e n t C h a r F l a g
mov d i . [b p + B u f f e r L e n g t h] ; g e t I o f b y t e s t o s c a n

mov b h . b l :PredCharF lag - CharF lag ;
1 odsb ;Ch - * B u f f e r P t r + + & Ox7F;
a n d a l , 7 f h ; s t r i p h i g h b i t f o r w o r d p r o c e s s o r s

mov b l ,1 ;assume t h i s i s a c h a r ; C h a r F l a g - 1;

j b
cmp a l . ' a ' ;it i s a c h a r i f between a and z

CheckAZ
cmp a l . ' z '
j n a I s A C h a r

cmp a1 , 'A '
j b Check09
cmp a 1 , ' Z '
j n a I s A C h a r

cmp a1 , ' 0 ' ;it i s a c h a r i f between 0 and 9
j b CheckApost rophe
cmp a1 , ' 9 '
j n a I s A C h a r

cmp a1 .27h ;it i s a c h a r i f an apos t rophe
j z IsAChar
s u b b l . b l ; n o t a c h a r ; C h a r F l a g - 0;
and bh.bh
j z ScanLoopBottom ; i f ((! C h a r F l a g) && P redCharF lag) (
add cx .1 ; (WordCount)++;
adc dx .0

ScanLoop:

; t h a t s e t i t a s a n i n t e r n a l f l a g

C hec kAZ :
;it i s a c h a r i f between A and Z

Check09:

CheckApost rophe:

IsAChar :
ScanLoopBottom:

; I

d e c d i ; I w h i l e (" B u f f e r L e n g t h) ;
j n z ScanLoop

mov s i . [b p + C h a r F l a g l
mov [s i] . b l ; s e t new CharF lag
mov bx.[bp+WordCount]
mov [b x] , c x ; s e t new w o r d c o u n t
mov [bx+2] , dx

p o p d i
pop s i
POP bP
r e t

3 c a n B u f f e r e n d p
end

; r e s t o r e c a l l e r ' s r e g i s t e r v a r s

; r e s t o r e c a l l e r ' s s t a c k f r a m e

Which Way to Go from Here?
We could rearrange the tests in light of the nature of the data being scanned; for
example, we could perform the tests more efficiently by taking advantage of the
knowledge that if a byte is less than '0,' it's either an apostrophe or not a character at
all. However, that sort of fine-tuning is typically good for speedups of only 10 to 20
percent, and I've intentionally refrained from implementing this in Listing 16.3 to
avoid pointing you down the wrong path; what we need is a different tack altogether.

302 Chapter 16

Ponder this. What we really want to know is nothing more than whether a byte is a
character, not what sort of character it is. For each byte value, we want a yes/no
status, and nothing else-and that description practically begs for a lookup table.
Listing 16.4 uses a lookup table approach to boost performance another 50 percent,
to three times the performance of the original C code. On a 20 MHz 386, this repre-
sents a change from 4.6 to 1.6 seconds, which could be significant-who likes to
wait? On an 8088, the improvement in word-counting a large file could easily be 10
or 20 seconds, which is definitely significant.

LISTING 16.4 11 6-4.ASM
; A s s e m b l y s u b r o u t i n e f o r L i s t i n g 1 6 . 2 . S c a n s t h r o u g h B u f f e r . o f
; l e n g t h B u f f e r L e n g t h , c o u n t i n g w o r d s a n d u p d a t i n g W o r d C o u n t a s
; a p p r o p r i a t e , u s i n g a l o o k u p t a b l e - b a s e d a p p r o a c h . B u f f e r L e n g t h
; must be > 0. *CharF lag and *Wordcount shou ld equa l 0 on t h e
: f i r s t c a l l . T e s t e d w i t h TASM.
; C n e a r - c a l l a b l e a s :
; v o i d S c a n B u f f e r (c h a r * B u f f e r . u n s i g n e d i n t B u f f e r L e n g t h .
; c h a r * C h a r F l a g , u n s i g n e d l o n g * W o r d C o u n t) ;

p a r m s s t r u c

B u f f e r dw ? ; b u f f e r t o s c a n
B u f f e r L e n g t h dw ? ; l e n g t h o f b u f f e r t o s c a n
CharF lag dw ? ; p o i n t e r t o f l a g f o r s t a t e o f l a s t

dw 2 d u p (?) : p u s h e d r e t u r n a d d r e s s & BP

: c h a r p r o c e s s e d o n e n t r y (0 on
; i n i t i a l c a l l) . U p d a t e d on e x i t

; f o u n d (0 on i n i t i a l c a l l)
Wordcount dw ? : p o i n t e r t o 3 2 - b i t c o u n t o f w o r d s

parms ends

.model smal 1

. d a t a
; T a b l e o f c h a r / n o t s t a t u s e s f o r b y t e v a l u e s 0 - 2 5 5 (1 2 8 - 2 5 5 a r e
; d u p l i c a t e s o f 0 - 1 2 7 t o e f f e c t i v e l y mask o f f b i t 7 . wh ich some
: w o r d p r o c e s s o r s s e t a s a n i n t e r n a l f l a g) .
C h a r S t a t u s T a b l e l a b e l b y t e

REPT 2
db 39 dup(0)
db 1 ;apos t rophe
db 8 d u p (0)
db 10 dup (1)
db

; o - 9
7 d u p (0)

db 26 dup(1) ;A-2
db 6 d u p (0)
db 26 d u p (1)
db

: a - z
5 d u p (0)

ENDM

.code
p u b l i c - S c a n B u f f e r

p u s h b p ; p r e s e r v e c a l
mov b p . s p : s e t u p l o c a l
p u s h s i ; p r e s e r v e c a l
p u s h d i

- S c a n B u f f e r p r o c n e a r
l e r ' s s t a c k f r a m e

l e r ' s r e g i s t e r v a r s
s t a c k f r a m e

There Ain't No Such Thing as the Fastest Code 303

mov
mov
mov
mov
mov
mov
mov
mov

and

1 odsb

x l a t

ScanLoop:

j z

and

j z

dec
j n z

mov
mov
mov
mov
mov

POP
POP
POP
r e t

a1 i g n

add
adc
dec
j n z
jmp

-ScanBu f fe r
end

ScanLoopBottom

Done:

Countword :

s i . [b p + B u f f e r l : p o i n t t o b u f f e r t o s c a n
bx. [bp+WordCount]
d i , [b x] : g e t c u r r e n t 3 2 - b i t w o r d c o u n t
dx. [bx+El
bx . [bp+CharF lag]
a1 . C b x l : g e t c u r r e n t C h a r F l a g
cx ,Cbp+Bu f fe rLeng th l : ge t # o f b y t e s t o s c a n
b x . o f f s e t C h a r S t a t u s T a b l e

a1 .a1

ScanLoooBottom

a1 .a1

Countword

c x
ScanLoop

:ZF-0 i f l a s t b y t e was a c h a r ,
: Z F = l i f n o t
; g e t t h e n e x t b y t e
; * * * d o e s n ' t c h a n g e f l a g s * * *
: l o o k u p i t s c h a r / n o t s t a t u s
; * * *doesn ' t change f l ags* * *
: d o n ' t c o u n t a word i f l a s t b y t e was
: n o t a c h a r a c t e r
; l a s t b y t e was a c h a r a c t e r : i s t h e
: c u r r e n t b y t e a c h a r a c t e r ?
;no. s o c o u n t a word

: c o u n t down b u f f e r l e n g t h

s i . [b p + C h a r F l a g]
[s i 1 .a1
bx. [bp+WordCount l

; s e t new CharF lag

[b x l . d i : s e t new w o r d c o u n t
[bx+2 l ,dx

d i
s i
bP

2

d i .I
dx.0

ScanLoop
Done
endp

c x

: r e s t o r e c a l l e r ' s r e g i s t e r v a r s

: r e s t o r e c a l l e r ' s s t a c k f r a m e

: i n c r e m e n t t h e w o r d c o u n t

: c o u n t down b u f f e r l e n g t h

Listing 16.4 features several interesting tricks. First, i t uses LODSB and XLAT in
succession, a very neat way to get a pointed-to byte, advance the pointer, and look up
the value indexed by the byte in a table, all with just two instruction bytes. (Interest-
ingly, Listing 16.4 would probably run quite a bit better still on an 8088, where LODSB
and XLAT have a greater advantage over conventional instructions. On the 486 and
Pentium, however, LODSB and XLAT lose much of their appeal, and should be
replaced with MOV instructions.) Better yet, LODSB and XLAT don't alter the flags,
so the Zero flag status set before LODSB is still around to be tested after XLAT.
Finally, if you look closely, you will see that Listing 16.4 jumps out of the loop to
increment the word count in the case where a word is actually found, with a duplicate of
the loop-bottom code placed after the code that increments the word count, to avoid

304 Chapter 16

P

Cha

an extra branch back into the loop; this replaces the more intuitive approach of
jumping around the incrementing code to the loop bottom when a word isn’t found.
Although this incurs a branch every time a word is found, a word is typically found
only once every 5 or 6 bytes; on average, then, a branch is saved about two-thirds of
the time. This is an excellent example of how understanding the nature of the data
you’re processing allows you to optimize in ways the compiler can’t. Know your data!
So, gosh, Listing 16.4 is the best word-counting code in the universe, right? Not
hardly. If there’s one thing my years of toil in this vale of silicon have taught me, it’s
that there’s never a lack of potential for further optimization. Never! Off the top of
my head, I can think of at least three ways to speed up Listing 16.4; and, since Turbo
Profiler reports that even in Listing 16.4,88 percent of the time is spent scanning the
buffer (as opposed to reading the file), there’s potential for those further optimiza-
tions to improve performance significantly. (However, it is true that when access is
performed to a hard rather than RAM disk, disk access jumps to about half of overall
execution time.) One possible optimization is unrolling the loop, although that is
truly a last resort because it tends to make further changes extremely difficult.

Exhaust all other optimizations before unrolling loops.

llenges and Hazards
The challenge I put to the readers of PC TECHNIQLESwas to write a faster module
to replace Listing 16.4. The author of the code that counted the words in my secret
test file fastest on my 20 MHz cached 386 would be the winner and receive Numer-
ous Valuable Prizes.
No listings were to be longer than 200 lines. No complete programs were to be ac-
cepted; submissions had to be plug-compatible with Listing 16.4. (This was to
encourage people not to waste time optimizing outside the inner loop.) Finally, the
code had to produce the same results as Listing 16.4; I didn’t want to see functions
that approximated the word count by dividing the number of characters by six in-
stead of counting actual words!
So how did the entrants in this particular challenge stack up? More than one claimed
a speed-up over my assembly word-counting code of more than three times. On
top of the three-times speedup over the original C code that I had already realized,
we’re almost up to an order of magnitude faster. You are, of course, entitled to
your own opinion, but Iconsider an order of magnitude to be significant.
Truth to tell, I didn’t expect a three-times speedup; around two times was what I had
in mind. Which just goes to show that any code can be made faster than you’d ex-
pect, if you think about it long enough and from many different perspectives. (The
most potent word-counting technique seems to be a 64K lookup table that allows

There Ain’t No Such Thing as the Fastest Code 305

handling two bytes simultaneously. This is not the sort of technique one comes up
with by brute-force optimization.) Thinking (or, worse yet, boasting) that your code
is the fastest possible is rollerskating on a tightrope in a hurricane; you’re due for a
fall, if you catch my drift. Case in point: Terje Mathisen’s word-counting program.

Blinding Yourself to a Better Approach
Not so long ago, Terje Mathisen, who I introduced earlier in this book, wrote a very
fast word-counting program, and posted it on Bix. When I say it was fast, I mean fast;
this code was optimized like nobody’s business. We’re talking top-quality code here.
When the topic of optimizing came up in one of the Bix conferences, Terje’s program
was mentioned, and he posted the following message: “I challenge BIXens (and espe-
cially mabrash!) to speed it up significantly. I would consider 5 percent a good result.”
The clear implication was, ‘That code is as fast as it can possibly be.”
Naturally, it wasn’t; there ain’t no such thing as the fastest code (TANSTATFC? I
agree, it doesn’t have the ring of TANSTAAFL). I pored over Terje’s 386 native-mode
code, and found the critical inner loop, which was indeed as tight as one could
imagine, consisting of just a few 386 native-mode instructions. However, one of the
instructions was this:

CMP D H . C E B X + E A X I

Harmless enough, save for two things. First, EBX happened to be zero at this point
(a leftover from an earlier version of the code, as it turned out), so it was superfluous
as a memory-addressing component; this made it possible to use base-only address-
ing ([EAX]) rather than baset-index addressing ([EBX+EAX]), which saves a cycle
on the 386. Second: Changing the instruction to CMP [EAX],DH saved 2 cycles-
just enough, by good fortune, to speed up the whole program by 5 percent.

CMP reg,[mem] takes 6 cycles on the 386, but CMP /memJ,reg takes only 5 cycles; 1 you should always pevform CMP with the memory operand on the left on the 386.

(Granted, CMP [mem],reg is 1 cycle slower than CMP reg,[mem] on the 286, and
they’re both the same on the 8088; in this case, though, the code was specific to the 386.
In case you’re curious, both forms take 2 cycles on the 486; quite a lot faster, eh?)

Watch Out for Luggable Assumptions!
The first lesson to be learned here is not to lug assumptions that may no longer be
valid from the 8088/286 world into the wonderful new world of 386 native-mode
programming. The second lesson is that after you’ve slaved over your code for a
while, you’re in no shape to see its flaws, or to be able to get the new perspectives
needed to speed it up. I’ll bet Terje looked at that [EBX+EAX] addressing a hundred

306 Chapter 16

times while trying to speed up his code, but he didn’t really see what it did; instead,
he saw what it was supposed to do. Mental shortcuts like this are what enable us to
deal with the complexities of assembly language without overloading after about 20
instructions, but they can be a major problem when looking over familiar code.
The third, and most interesting, lesson is that a far more fruitful optimization came
of all this, one that nicely illustrates that cycle counting is not the key to happiness,
riches, and wondrous performance. After getting my 5 percent speedup, I mentioned
to Terje the possibility of using a 64K lookup table. (This predated the arrival of
entries for the optimization contest.) He said that he had considered it, but it didn’t
seem to him to be worthwhile. He couldn’t shake the thought, though, and started
to poke around, and one day, voila, he posted a new version of his word count pro-
gram, WC50, that was much faster than the old version. I don’t have exact numbers,
but Terje’s preliminary estimate was 80 percent faster, and word counting--including
disk cache access time-proceeds at more than 3 MB per second on a 33 MHz 486.
Even allowing for the speed of the 486, those are very impressive numbers indeed.
The point I want to make, though, is that the biggest optimization barrier that Terje
faced was that he thought he had the fastest code possible. Once he opened up the
possibility that there were faster approaches, and looked beyond the specific approach
that he had so carefully optimized, he was able to come up with code that was a lot
faster. Consider the incongruity of Terje’s willingness to consider a 5 percent speedup
significant in light of his later near-doubling of performance.

Don ’t get stuck in the rut of instruction-by-instruction optimization. It 5 useful in 1 key loops, but very often, a change in approach will work fa r greater wonders than
any amount of cycle counting can.

By the way, Terje’s WC50 program is a full-fledged counting program; it counts char-
acters, words, and lines, can handle multiple files, and lets you specify the characters
that separate words, should you so desire. Source code is provided as part of the
archive WC50 comes in. All in all, it’s a nice piece of work, and you might want to
take a look at it if you’re interested in really fast assembly code. I wouldn’t call it the
fastestword-counting code, though, because I would of course never be so foolish as
to call anything the fastest.

The Astonishment of Right-Brain Optimization
As it happened, the challenge I issued to my PC TECHNIQUES readers was a smashing
success, with dozens of good entries. I certainly enjoyed it, even though I did have to
look at a lot of tricky assembly code that I didn’t write-hard work under the best of
circumstances. It was worth the trouble, though. The winning entry was an astonishing
example of what assembly language can do in the right hands; on my 386, it was four
times faster at word counting than the nice, tight assembly code I provided as a starting

There Ain‘t No Such Thing as the Fastest Code 307

point-and about 13 times faster than the original C implementation. Attention, high-
level language chauvinists: Is the speedup getting significant yet? Okay, maybe word
counting isn’t the most critical application, but how would you like to have that kind of
improvement in your compression software, or in your real-time games-or in Win-
dows graphics?
The winner was David Stafford, who at the time was working for Borland Interna-
tional; his entry is shown in Listing 16.5. Dave Methvin, whom some of you may
recall as a tech editor of the late, lamented PC Tech Journal, was a close second, and
Mick Brown, about whom I know nothing more than that he is obviously an ex-
tremely good assembly language programmer, was a close third, as shown in Table
16.2, which precedes Listing 16.5. Those three were out ahead of the pack; the fourth-
place entry, good as it was (twice as fast as my original code), was twice as slow as
David’s winning entry, so you can see that David, Dave, and Mick attained a rarefied
level of optimization indeed.
Table 16.2 has two times for each entry listed: the first value is the overall counting time,
including time spent in the main program, disk I/O, and everything else; the second
value is the time actually spent counting words, the time spent in ScanBuffer. The first
value is the time perceived by the user, but the second value best reflects the quality
of the optimization in each entry, since the rest of the overall execution time is fixed.

308 Chapter 16

LISTING 16.5 QSCAN3.ASM
; QSCAN3.ASM
; D a v i d S t a f f o r d

COMMENT $

How i t works

The idea i s t o g o t h r o u g h t h e b u f f e r f e t c h i n g e a c h l e t t e r - p a i r (w o r d s
r a t h e r t h a n b y t e s) . T h e c a r r y f l a g i n d i c a t e s w h e t h e r we a r e
c u r r e n t l y i n a (t e x t) w o r d o r n o t . T h e l e t t e r - p a i r f e t c h e d f r o m t h e
b u f f e r i s c o n v e r t e d t o a 1 6 - b i t a d d r e s s b y s h i f t i n g i t l e f t one b i t
(l o s i n g t h e h i g h b i t o f t h e s e c o n d c h a r a c t e r) a n d p u t t i n g t h e c a r r y
f l a g i n t h e l o w b i t . T h e h i g h b i t o f t h e c o u n t r e g i s t e r i s s e t t o
1. T h e n t h e c o u n t r e g i s t e r i s a d d e d t o t h e b y t e f o u n d a t t h e g i v e n
address i n a l a r g e (64K. n a t u r a l l y) t a b l e . T h e b y t e a t t h e g i v e n
address will c o n t a i n a 1 i n t h e h i g h b i t i f t h e l a s t c h a r a c t e r o f t h e
l e t t e r - p a i r i s a w o r d - l e t t e r (a l p h a n u m e r i c o r a p o s t r o p h e) . T h i s will
s e t t h e c a r r y f l a g s i n c e t h e h i g h b i t o f t h e c o u n t r e g i s t e r i s a l s o a
1. The low b i t o f t h e b y t e f o u n d a t t h e g i v e n a d d r e s s will be one i f
t h e s e c o n d c h a r a c t e r o f t h e p r e v i o u s l e t t e r - p a i r was a w o r d - l e t t e r
a n d t h e f i r s t c h a r a c t e r o f t h i s l e t t e r - p a i r i s n o t a w o r d - l e t t e r . It
will a l s o b e 1 i f t h e f i r s t c h a r a c t e r o f t h i s l e t t e r - p a i r i s a
w o r d - l e t t e r b u t t h e s e c o n d c h a r a c t e r i s n o t . T h i s p r o c e s s i s
r e p e a t e d . F i n a l l y , t h e c a r r y f l a g i s s a v e d t o i n d i c a t e t h e f i n a l
i n - a - w o r d / n o t - i n - a - w o r d s t a t u s . T h e c o u n t r e g i s t e r i s m a s k e d t o
r e m o v e t h e h i g h b i t and t h e c o u n t o f w o r d s r e m a i n s i n t h e c o u n t
r e g i s t e r .

S o u n d c o m p l i c a t e d ? Y o u ' r e r i g h t ! B u t i t ' s f a s t !

T h e b e a u t y o f t h i s m e t h o d i s t h a t n o j u m p s a r e r e q u i r e d , t h e
o p e r a t i o n s a r e f a s t . it r e q u i r e s o n l y o n e t a b l e a n d t h e p r o c e s s c a n
b e r e p e a t e d (u n r o l l e d) many t i m e s . QSCAN3 c a n r e a d 2 5 6 b y t e s w i t h o u t
j ump ing .

COMMEND $

T e s t 1
Addr&x:

T e s t 2
Addr&x:

Scan
B u f f e r
B u f f e r L e n g t h
CharF lag
WordCount

.model smal l

. code

macro x .y
mov d i , Cbp+yl
adc d i . d i
o r
add a1 , Cdi 1

a x . s i

endm

macro x .y
mov d i , Cbp+yl
adc d i . d i
add ah , [d i 1
endm

- 128 -

- - 4
6 - -

- - a
10

:9 o r 1 0 b y t e s
; 3 o r 4 b y t e s

;7 o r 8 b y t e s
: 3 o r 4 b y t e s

; s c a n 2 5 6 b y t e s a t a t i m e
; parms

There Ain't No Such Thing as the Fastest Code 309

p u b l i c - S c a n B u f f e r
- S c a n B u f f e r p r o c n e a r

push
mov
push
push

x o r
mov
mov
s h r
j n z

mov
mov

mov
mov
mov
add
add
mov
cbw
s h r
adc
xchg
jmp

push
p u s h f

cwd
mov
d i v
o r

sub
sub
sub
i nc

S ta r tA tTheTop : mov
s h l
mov
xchg
x o r
mov
mov
mov
mov
mov
mov
mov
s h r

OneByteBuf:

Normal Buf :

jz

j mp

a1 i g n
add

r e p t
- Top :

n

c x , c x
s i . [b p + B u f f e r] ; s i - t e x t b u f f e r
a x . [b p + B u f f e r L e n g t h l ; d x - l e n g t h i n b y t e s
a x . 1
Normal Buf

ax.seg WordTable
es.ax

d i , [bp+CharF lag]
b h . [d i l
b l , [s i 1

bx , bx
a1 . e s : [b x]

a1 .1
c x , c x
ax, bx
C1 eanUp

b h . ' A " l

bp

c l .Scan

dx, dx
S t a r t A t T h e T o p
cx , dx
s i . c x
s i . c x
ax

bx , dx
b x . 1
d i , L o o p E n t r y [b x]
dx, ax
c x , c x
bx . [bp+CharF lag l
b l . [b x l
bp,seg WordTable
ds. bp
b p , s i
s i ,8080h
a x . s i
b l .1
d i

c x

2

0
bx , bx

Scan12

;dx - l e n g t h i n w o r d s

;bh - o l d C h a r F l a g
: b l - c h a r a c t e r
;make bh i n t o c h a r a c t e r
: p r e p a r e t o i n d e x

: g e t h i b i t i n ah (t h e n b h)
: g e t l o w b i t
; cx - 0 o r 1

:(1)
: (2)

:dx - 0

: rema inder?
;nope. do the who le banana

: a d j u s t b u f p o i n t e r

; a d j u s t f o r p a r t i a l r e a d

: g e t i n d e x f o r s t a r t ...
: . . . add ress i n d i
:dx i s t h e l o o p c o u n t e r
; t o t a l w o r d c o u n t

; b l - o l d C h a r F l a g

: s c a n b u f f e r w i t h b p
: h i b i t s
: i n i t l o c a l w o r d c o u n t e r
; c a r r y - o l d C h a r F l a g

: r e s t o r e c a r r y

3 1 0 Chapter 16

n

EndCount:

i f

e l s e

e n d i f

Q u i t :

I t s E v e n :

C leanup:

-ScanBu f fe r

Address

LoopEn t ry
n

n

i n c l u d e

T e s t l %n.%n*2
T e s t 2 %n+l.%n*2+2 - n+2
endm

sbb bx .bx
Scan ge 128
o r
add
mov

add
and

add
mov
add
dec
j n g
j mp

POPf
j n c
c l c
T e s t l
sbb
s h r
adc

push
POP
POP

mov
add
adc
and
mov
mov
POP
POP
POP
r e t
endp

. d a t a
macro
dw
endm

: s a v e c a r r y
:because a l+ah may equa l 128 !

a x . s i
a1 ,ah
ah.0

a1 ,ah
a x . 7 f h :mask

cx .ax : upda te word coun t
a x . s i
bp,Scan*2
dx :any l e f t ?
Q u i t
TOP

: (2) e v e n o r o d d b u f f e r ?
I t s E v e n

Odd.-1
b x , b x : s a v e c a r r y
a x . 1
cx .0

ds
s s : r e s t o r e d s

bp :(1)

s i . [bp+WordCount l
[s i l . c x
w o r d p t r [s i + E l . O
b h . 1 : s a v e o n l y t h e c a r r y f l a g
s i . [b p + C h a r F l a g l
[s i 1, bh
d i
s i
bp

X
Addr&X

l a b e l w o r d - Scan
REPT Scan
Address %n MOD Scan

ENDM

. f a r d a t a W o r d T a b l e
qscan3 . inc
end

- n - 1

: b u i l t b y MAKETAB

There Ain’t No Such Thing as the Fastest Code 31 1

Levels of Optimization
Three levels of optimization were evident in the word-counting entries I received in
response to my challenge. I’d briefly describe them as “fine-tuning,” “new perspec-
tive,” and “table-driven state machine.” The latter categories produce faster code,
but, by the same token, they are harder to design, harder to implement, and more
difficult to understand, so they’re suitable for only the most demanding applica-
tions. (Heck, I don’t even guarantee that David Stafford’s entry works perfectly,
although, knowing him, it probably does; the more complex and cryptic the code,
the greater the chance for obscure bugs.)

Remember, optimize only when needed, and stop when further optimization will p not be noticed. Optimization that 5. not perceptible to the user is like buying Telly
Savalas a comb; it 5. not going to do any harm, but it 5. nonetheless a waste of time.

Optimization Level 1 : Good Code
The first level of optimization involves fine-tuning and clever use of the instruction set.
The basic framework is still the same as my code (which in turn is basically the same
as that of the original C code), but that framework is implemented more efficiently.
One obvious level 1 optimization is using a word rather than dword counter.
ScanBuffer can never be called upon to handle more than 64K bytes at a time, so
no more than 32K words can ever be found. Given that, it’s a logical step to use
INC rather than ADD/ADC to keep count, adding the tally into the full 32-bit
count only upon exiting the function. Another useful optimization is aligning loop
tops and other branch destinations to word, or better yet dword, boundaries.
Eliminating branches was very popular, as it should be on x86 processors. Branches
were eliminated in a remarkable variety of ways. Many of you unrolled the loop, a
technique that does pay off nicely. A word of caution: Some of you unrolled the loop
by simply stacking repetitions of the inner loop one after the other, with DEC CX/JZ
appearing after each repetition to detect the end of the buffer. Part of the point of
unrolling a loop is to reduce the number of times you have to check for the end of
the buffer! The trick to this is to set CX to the number of repetitions of the unrolled
loop and count down only once each time through the unrolled loop. In order to
handle repetition counts that aren’t exact multiples of the unrolling factor, you must
enter the loop by branching into the middle of it to perform whatever fraction of the
number of unrolled repetitions is required to make the whole thing come out right.
Listing 16.5 (QSCAN3.ASM) illustrates this technique.
Another effective optimization is the use of LODSW rather than LODSB, thereby
processing two bytes per memory access. This has the effect of unrolling the loop one
time, since with LODSW, looping is performed at most only once every two bytes.
Cutting down the branches used to loop is only part of the branching story. More
often than not, my original code also branched in the process of checking whether it

31 2 Chapter 16

was time to count a word. There are many ways to reduce this sort of branching; in
fact, it is quite possible to eliminate it entirely. The most straightforward way to re-
duce such branching is to employ two loops. One loop is used to look for the end of
a word when the last byte was a non-separator, and one loop is used to look for the
start of a word when the last byte was a separator. This way, it’s no longer necessary to
maintain a flag to indicate the state of the last byte; that state is implied by whichever
loop is currently executing. This considerably simplifies and streamlines the inner
loop code.
Listing 16.6, contributed by Willem Clements, of Granada, Spain, illustrates a variety
of level 1 optimizations: the two-loop approach, the use of a 16- rather than 32-bit
counter, and the use of LODSW. Together, these optimizations made Willem’s code
nearly twice as fast as mine in Listing 16.4. A few details could stand improvement;
for example, AND Axpx is a shorter way to test for zero than CMP AX,O, and ALIGN 2
could be used. Nonetheless, this is good code, and it’s also fairly compact and rea-
sonably easy to understand. In short, this is an excellent example of how an hour or
so of hand-optimization might accomplish significantly improved performance at a
reasonable cost in complexity and time. This level of optimization is adequate for
most purposes (and, in truth, is beyond the abilities of most programmers).

LISTING 16.6 OPT2.ASM

Opt2
W r i t t e n b y
Modi f i ed by

parms

b u f f e r
b u f f e r l e n g t h
c h a r f l a g
wordcoun t
parms

s t r u c
dw
dw
dw
dw
dw
ends
.model
. d a t a

c h a r s t a t u s t a b l e l a b e l

db
r e p t

db
db
db
db
db
db
db
db
endm
.code

F i n a l o p t i m i z a t i o n w o r d c o u n t
M ichae l Ab rash
W i l l e m C l e m e n t s
C1 Moncayo 5, Laurel de l a Re ina
18140 La Zub ia
Granada, Spain
Te l 34 -58 -890398
Fax 34-58-224102

2 d u p (?)
?
?
?
?

s m a l l

b y t e
2
39 dup (0)
I

8 d u p (0)
1 0 d u p (1)
7 d u p (0)
26 dup(1)
6 d u p (0)
26 d u p (1)
5 d u p (0)

There Ain‘t No Such Thing as the Fastest Code 3 1 3

-ScanBu f fe r

o d d e n t r y :

s c a n l o o p l :

scanl oop2:

scanl oop4:

scan l oop5 :

d o n e l :

done2:

done:

pub1 i c
p r o c
push
mov
push
push
mov
mov
mov
mov
mov
x o r
s h r
j c
cmp
j n e
j mp
xchg
1 odsb
i nc
cmp
j n e
jmp

~ S c a n B u f f e r
n e a r
bP
b p s s p

d i
s i

s i . [b p + b u f f e r l
b x . [b p + c h a r f l a g l
a1 . Cbx l
c x . [b p + b u f f e r l e n g t h l
b x . o f f s e t c h a r s t a t u s t a b l e
d i . d i : s e t w o r d c o u n t t o z e r o

o d d e n t r y : odd number o f b y t e s t o p r o c e s s
c x . 1 : change count t o w o r d c o u n t

a1 .O lh
s c a n l oop4
s c a n l o o p l
a1 ,ah

c x
a h . 0 l h
scan l oop5
scan l oop2

: check i f l a s t one
: i f n o t s o . s e a r c h
: i f so. s e a r c h f o r
: l a s t one i n ah
: g e t f i r s t b y t e

: check i f l a s t one
: i f n o t s o . s e a r c h
: i f so, s e a r c h f o r

i s c h a r
f o r c h a r
z e r o

was c h a r
f o r c h a r
z e r o

l o c a t e t h e e n d o f a word
1 odsw : g e t t w o c h a r s
x1 a t : t r a n s l a t e f i r s t
xchg a1 ,ah : f i r s t i n ah
x1 a t : t r a n s l a t e s e c o n d
d e c c x : c o u n t down
j z d o n e l : no m o r e b y t e s l e f t
CmP ax.0101h : check i f t w o c h a r s
j e s c a n l o o p l : g o f o r n e x t t w o b y t e s

cmp a1 ,O lh : check i f new w o r d s t a r t e d
j e s c a n l o o p l : l o c a t e e n d o f w o r d

i n c d i : i n c r e a s e w o r d c o u n t

l o c a t e t h e b e g i n o f a word
1 odsw
x1 a t
xchg a1 ,ah
x1 a t
dec cx
j z done2
cmp ax .0
j e s c a n l o o p 4
CmP a1 .O lh
j e s c a n l o o p l
i n c d i
jmp scan l oop4
CmP ax.0101h
j e done

jmp done
cmp ax.0100h

i n c d i

j n e d o n e
i n c d i
mov s i . [b p + c h a r f l a g l
mov [s i 1 .a1
mov bx , [bp+wordcoun t l
mov ax . Cbx l

g e t t w o c h a r s
t r a n s 1 a t e f i r s t
f i r s t i n ah
t r a n s l a t e s e c o n d
c o u n t down
no more by tes l e f t
check i f w o r d s t a r t e d
i f n o t , l o c a t e b e g i n
c h e c k o n e - l e t t e r w o r d
i f n o t , l o c a t e e n d o f w o r d
i n c r e a s e w o r d c o u n t
l o c a t e b e g i n o f n e x t w o r d
check i f e n d - o f - w o r d
i f n o t . we h a v e f i n i s h e d
i n c r e a s e w o r d c o u n t

c h e c k f o r o n e - l e t t e r w o r d
i f n o t , we h a v e f i n i s h e d
i n c r e a s e w o r d c o u n t

31 4 Chapter 16

rnov
add
a d c
rnov
rnov
POP
POP
P O P
r e t

end
- S c a n B u f f e r endp

d x . [b x + E]
d i , a x
d x . 0
[b x l . d i
[bx+Z] .dx
d i
s i
bp

Level 2: A New Perspective
The second level of optimization is one of breaking out of the mode of thinking
established by my original code. Some entrants clearly did exactly that. They stepped
back, thought about what the code actually needed to do, rather than just improving
how it already worked, and implemented code that sprang from that new perspective.
You can see one example of this in Listing 16.6, where Willem uses CMP AX,0101H
to check two bytes at once. While you might think of this as nothing more than a
doubling up of tests, it’s a little more than that, especially when taken together with
the use of two loops. This is a break with the serial nature of the C code, a recogni-
tion that word counting is really nothing more than a state machine that transitions
from the “in word” state to the “not in word” state and back, counting a word on one
but not both of those transitions. Willem says, in effect, ‘We’re in a word; if the next
two bytes are non-separators, then we’re still in a word, else we’re not in a word, so
count and change to the appropriate state.”That’s really quite different from saying,
as I originally did, “If the last byte was a non-separator, then if the current byte is a
separator, then count a word.” Willem has moved away from the all-in-one approach,
splitting the code up into state-specific chunks that are more efficient because each
does only the work required in a particular state.
Another example of coming at the code from a new perspective is counting a word
as soon as a non-separator follows a separator (at the start of the word), rather than
waiting for a separator following a non-separator (at the end of the word). My friend
Dan Illowsky describes the thought process leading to this approach thusly:

‘T try to code as closely as possible to the real world nature of those things my program models. It
seems somehow wrong to me to count the end o f a word as you do when you look for a transition
from a word to a non-word. A word is not a transition, it is the presence o f a group of characters.
Thought ofthis way, the code would have counted the word when itfirst detected thegroup. Had
you done this, your main program would not have needed to look for the possible last transition
or deal with the semantics of the value in Charvalue.”

John Richardson, of New York, contributed a good example of the benefits of a
different perspective (in this case, a hardware perspective). John eliminated all

There Ain’t No Such Thing as the Fastest Code 3 1 5

branches used for detecting word edges; the inner loop of his code is shown in List-
ing 16.7. As John explains it:

“My next shot was to get rid of all the branches in the loop. To do that, I reached back to my
college hardware courses. I noticed that we were really looking at an edge triggered device we
want to count each time the I,m a character state goes from one to zero. Remembering that XOR
on two single-bit values will always return whether the bits are d$fierent or the same, I imple-
mented a transition countm The counter triggers every time a word begins or ends. ’’

LISTING 16.7 11 6-7.ASM
ScanLoop:

1 odsw : g e t t h e n e x t 2 b y t e s (A L - f i r s t , AH - 2nd)
x1 a t : l o o k u p f i r s t ’ s c h a r / n o t s t a t u s
x o r d 1 , a l : s e e i f t h e r e ’ s a new c h a r / n o t s t a t u s
a d d d i . d x :we add 1 f o r e a c h c h a r / n o t t r a n s i t i o n
mov d l ,a1
mov a 1 , a h ; l o o k a t t h e s e c o n d b y t e
x1 a t : l o o k u p i t s c h a r / n o t s t a t u s
x o r d l . a l : s e e i f t h e r e ’ s a new c h a r / n o t s t a t u s
a d d d i . d x :we add 1 f o r e a c h c h a r / n o t t r a n s i t i o n
mov d l .a1
d e c d x
j n z ScanLoop

John later divides the transition count by two to get the word count. (Food for thought:
It’s also possible to use CMP and ADC to detect words without branching.)
John’s approach makes it clear that wordcounting is nothing more than a fairly simple
state machine. The interesting part, of course, is building the fastest state machine.

Level 3: Breakthrough
The boundaries between the levels of optimization are not sharply defined. In a
sense, level 3 optimization is just like levels 1 and 2, but more so. At level 3, one takes
whatever level 2 perspective seems most promising, and implements it as efficiently
as possible on the x86. Even more than at level 2, at level 3 this means breaking out
of familiar patterns of thinking.
In the case of word counting, level 3 means building a table-driven state machine
dedicated to processing a buffer of bytes into a count of words with a minimum
of branching. This level of optimization strips away many of the abstractions we usu-
ally use in coding, such as loops, tests, and named variables-look back to Listing
16.5, and you’ll see what I mean. Only a few people reached this level, and I don’t
think any of them did it without long, hard thinking; David Stafford’s final entry
(that is, the one I present as Listing 16.5) was at least the fifth entry he sent me.
The key concept at level 3 is the use of a massive (64K) lookup table that processes
byte sequences directly into word-count actions. With such a table, it’s possible to
look up the appropriate action for two bytes simultaneously in just a few instruc-
tions; next, I’m going to look at the inspired and highly unusual way that David’s

31 6 Chapter 16

code, shown in Listing 16.5, does exactly that. (Before assembling Listing 16.5, you
must run the C code in Listing 16.8, to generate an include file defining the 64K
lookup table. When you assemble Listing 16.5, TASM will report a "location counter
overflow" warning; ignore it.)

LISTING 16.8 MAKETALC
/ / MAKETAB.C - B u i l d QSCAN3.INC f o r QSCAN3.ASM

l i n c l u d e < s t d i o . h>
#i ncl ude <c type. h>

#de f ine ChType(c) (((c) & O x 7 f) == ' \ " I I i s a l n u m ((c) & O x 7 f))

i n t N o c a r r y [4 1 = 1 0. 0x80, 1. 0x80 I :
i n t C a r r y [4 1 = (1. 0x81, 1. Ox80) :

v o i d m a i n (v o i d)

1
i n t a h c h a r . a l C h a r . i:
FILE *t = f o p e n ("QSCAN3.INC". " w t ") :

p r i n t f (" B u i l d i n g t a b l e . P l e a s e w a i t . . . ") :

f o r (ahChar = 0 : ahChar < 128: ahchar++ 1
t
f o r (a l C h a r = 0: a l C h a r < 2 5 6 : a lChar++ 1

i f (a l C h a r % 8 == 0 f p r i n t f (t . " \ndb %02Xh". Nocarry [i] 1 ;
e l s e f p r i n t f (t . " .%02Xh" . Nocar ry [i] 1 :

f p r i n t f (t . " .%02Xh". Carry [i 3 1 :
I

f c l o s e (t) :

I

David's approach is simplicity itself, although his implementation arguably is not.
Consider any three sequential bytes in the buffer. Those three bytes define two po-
tential places where a word might be counted, as shown in Figure 16.1. Given the
separator/non-separator states of the three bytes, you can instantly determine whether
to count a word or not; you count a word if and only if somewhere in the sequence
there is a non-separator followed by a separator. Note that a maximum of one word
can be counted per three-byte sequence.
The trick, then, is to identify the separator/not statuses of each set of three bytes and
turn them into a 1 (count word) or 0 (don't count word), as quickly as possible.
Assuming that the separator/not status for the first byte is in the Carry flag, this is
easily accomplished by a lookup in a 64K table, based on the Carry flag and the other
two bytes, as shown in Figure 16.2. (Remember thatwe're counting $-bit ASCII here,
so the high bit is ignored.) Thus, David is able to add the word/not status for each

There Ain't No Such Thing as the Fastest Code 3 1 7

Byte 0 Byte 1 Byte 2

t t
Places where the end of a word might

occur in this threebyte sequence.

The two potential word count locations.
Figure 16.1

pair of bytes to the main word count simply by getting the two bytes, working in the
carry status from the last byte, and using the resulting value to index into the 64K
table, adding in the 1 or 0 value found in that table. A sequence of MOV/ADC/ADD
suffices to perform all word-counting tasks for a pair of bytes. Three instructions, no
branches-pretty nearly perfect code.
One detail remains to be attended to: setting the Carry flag for next time if the last
byte was a non-separator. David does this in a bizarre and incredibly effective way: He

I Byte 0 Byte 1 Byte 2

A 1 is the Carry flag if
the first byte is a non-
separator; otherwise, a
0 i s the Carry flag.

The Carry flag is rotated
left into the other two bytes
to form a 16-bit look-up
address. Bit 7 of byte 1 is
lost in the process, so this
only works for 7-bit ASCII.

h h
9Ah 41 h

I.
Value at address 9A41 h in the 64K lookup
table. Bits 6-0 are 1 because there is an end-
of-word in this sequence, so a word is
counted. Bit 7 is 1 because the last byte is a
non-separator.

0
0

Looking up a word count status.
Figure 16.2

31 8 Chapter 16

presets the high bit of the count, and sets the high bit in the lookup table for those
entries looked up by non-separators. When a non-separator’s lookup entry is added
to the count, it will produce a carry, as desired. The high bit of the count is masked
off before being added to the total count, so David is essentially using different parts
of the count variables for different purposes (counting, and setting the Carry flag).
There are a number of other interesting details in David’s code, including the un-
rolling of the loop 64 times, so that 256 bytes in a row are processed without a single
branch. Unfortunately, I lack the space to discuss Listing 16.5 any further. Perhaps
that’s not so unfortunate, after all; I’d hate to deny you the pleasure of discovering
the wonders of this rather remarkable code yourself. I will say one more thing, though.
The cycle count for David’s inner loop is 6.5 cycles per byte processed, and the actual
measured time for his routine, overhead and all, is 7.9 cycles/byte. The original C
code clocked in at around 100 cycles/byte.
Enough said, I trust.

Enough Word Counting Already!
Before I finish up this chapter, I’d like to mention that Terje Mathisen’s WC word-
counting program, which I’ve mentioned previously and which is available, with
source, on Bix, is in the ballpark with David’s code for performance. What’s more,
Terje’s program handles %bit ASCII, counts lines as well as words, and supports user-
definable separator sets. It’s wonderful code, well worth a look; it also happens to be
a great word-counting utility. By the way, Terje builds his 64K table on the fly, at
program initialization; this allows for customized tables, shrinks the size of the EXE,
and, according to Terje’s calculations, takes less time than loading the table off disk
as part of the EXE.
S o , has David written the fastest possible word-counting code? Well, maybe-but I
have a letter from Terry Holmes, of San Rafael, California, that calculates the theo-
retical maximum performance of native 386 word-counting code at 5.5 cycles/byte,
which would be significantly faster than David’s code. Terry, alas, didn’t bother to
implement his design, but maybe I’ll take a shot at it someday. It’d be fun, for sure-
but jeez, I’ve got real work to do!

There Ain’t No Such Thing as the Fastest Code 3 1 9

Chapt

:;I
nj"i

sjnin si". ,*si
.,*a8

of Algorithmic Optimization
.&tomata Game

I've spent a lot of m cussing assembly language optimization, which I con-
derappreciated topic. However, I'd like to take this

t there is much, much more to optimization than as-
s essential for absolute maximum performance, but
ecessary but not sufficient, if you catch my drift-and

ing for improved but not maximum performance.
imes: Optimize your algorithm first. Devise new ap-

This is, of course, o&hat, stuff you know like the back of your hand. Or is it? As Jeff
Duntemann pointed out to me the other day, performance programmers are made,
not born. While I'm merrily gallivanting around in this book optimizing 486
pipelining and turning simple tasks into horribly complicated and terrifylngly fast
state machines, many of you are still developing your basic optimization skills. I don't
want to shortchange those of you in the latter category, so in this chapter, we'll dis-
cuss some high-level language optimizations that can be applied by mere mortals
within a reasonable period of time. We're going to examine a complete optimization
process, from start to finish, and what we will find is that it's possible to get a 50-times
speed-up without using one byte of assembly! It's all a matter of perspective-how you
look at your code and data.

'"I&

th said, Premature optimization is the root of all evil.

323

the triumph of algorithm optimization in a cellular automata game

Conway‘s Game
The program that we’re going to optimize is Conway’s famous Game of Life, long-
ago favorite of the hackers at MIT’s AI Lab. If you’ve never seen it, let me assure you:
Life is neat, and more than a little hypnotic. Fractals have been the hot graphics topic
in recent years, but for eye-catching dazzle, Life is hard to beat.
Of course, eye-catching dazzle requires real-time performance-lots of pixels help
too-and there’s the rub. When there are, say, 40,000 cells to process and display, a
simple, straightforward implementation just doesn’t cut it, even on a 33 MHz 486.
Happily, though, there are many, many ways to speed up Life, and they illustrate a
variety of important optimization principles, as this chapter will show.
First, I’ll describe the ground rules of Life, implement a very straightforward version
in C++, and then speed that version up by about eight times without using any dras-
tically different approaches or any assembly. This may be a little tame for some of
you, but be patient; for after that, we’ll haul out the big guns and move into the 30 to
40 times speed-up range. Then in the next chapter, I’ll show you how several pro-
grammers really floored it in taking me up on my second Optimization Challenge,
which involved the Game of Life.

The Rules of the Game
The Game of Life is ridiculously simple. There is a cellmap, consisting of a rectangu-
lar matrix of cells, each of which may initially be either on or off. Each cell has eight
neighbors: two horizontally, two vertically, and four diagonally. For each succeeding
generation of cells, the game logic determines whether each cell will be on or off
according to the following rules:

If a cell is on and has either two or three neighbors that are on in the current
generation, it stays on; otherwise, the cell turns off.
If a cell is off and has exactly three “on” neighbors in the current generation, it
turns on; otherwise, it stays off. That’s all the rules there are-but they give rise
to an astonishing variety of forms, including patterns that spin, march across the
screen, and explode.

It’s only a little more complicated to implement the Game of Life than it is to de-
scribe it. Listing 17.1, together with the display functions in Listing 17.2, is a C++
implementation of the Game of Life, and it’s very straightforward. A cellmap is an
object that’s accessible through member functions to set, clear, and test cell states,
and through a member function to calculate the next generation. Calculating the
next generation involves nothing more than using the other member functions to
set each cell to the appropriate state, given the number of neighboring on-cells and
the cell’s current state. The only complication is that it’s necessary to place the next
generation’s cells in another cellmap, and then copy the final result back to the

324 Chapter 17

original cellmap. This keeps us from corrupting the current generation’s cellmap
before we’re done using it to calculate the next generation.
All in all, Listing 17.1 is a clean, compact, and elegant implementation of the Game
of Life. Were it not that the code is as slow as molasses, we could stop right here.

LISTING 17.1 11 7-1 .CPP
/ * C++ Game o f L i f e i m p l e m e n t a t i o n f o r a n y mode f o r w h i c h mode s e t

a n d d r a w p i x e l f u n c t i o n s c a n b e p r o v i d e d .
T e s t e d w i t h B o r l a n d C++ i n t h e s m a l l m o d e l . * /

#i n c l u d e < s t d l i b. h>
{ [i n c l u d e < s t d i o . h>
i n c l u d e < i o s t r e a m . h >
i n c l ude <coni 0. h>
{ [inc lude < t ime.h>
{ [inc lude <dos. h>
#i nc l ude <b ios . h>
#i nc l ude <mem. h>

d e f i n e ON-COLOR 15 / / o n - c e l l p i x e l c o l o r
{ [def ine OFF-COLOR 0 / / o f f - c e l l p i x e l c o l o r
% d e f i n e MSG-LINE 10 / / row f o r t e x t messages
d e f i n e GENERATION-LINE 1 2 / / row f o r g e n e r a t i o n # d i s p l a y
d e f i n e LIMIT-18-HZ 1 / / s e t 1 f o r maximum f r a m e r a t e = 18Hz
{ [def ine WRAP-EDGES 1 / / s e t t o 0 t o d i s a b l e w r a p p i n g a r o u n d

c l a s s c e l l m a p {
p r i v a t e :

/ / a t c e l l map edges

u n s i g n e d c h a r * c e l l s :
u n s i g n e d i n t w i d t h :
u n s i g n e d i n t w i d t h - i n - b y t e s :
u n s i g n e d i n t h e i g h t :
u n s i g n e d i n t l e n g t h - i n - b y t e s :

c e l l m a p (u n s i g n e d i n t h . u n s i g n e d i n t v) :
- c e l l m a p (v o i d) :
vo id copy-ce l l s (ce l1map &sourcemap) :
v o i d s e t _ c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) :
v o i d c l e a r - c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) ;
i n t c e l l - s t a t e (i n t x . i n t y) :
v o i d next-generation(cellmap& dest-map):

p u b l i c :

1 :

e x t e r n v o i d enter-display-mode(void):
e x t e r n v o i d exit-display-mode(void):
e x t e r n v o i d d r a w - p i x e l (u n s i g n e d i n t X . u n s i g n e d i n t Y .

e x t e r n v o i d s h o w - t e x t (i n t x . i n t y . c h a r * t e x t) :

/ * C o n t r o l s t h e s i z e o f t h e c e l l map. Must be w i t h i n t h e c a p a b i l i t i e s
o f t h e d i s p l a y mode, and must be l i m i t e d t o l e a v e room f o r t e x t
d i s p l a y a t r i g h t . * /

uns igned i n t C o l o r :

u n s i g n e d i n t c e l l m a p - w i d t h - 9 6 ;
u n s i g n e d i n t c e l l m a p - h e i g h t = 96:
/* Wid th & h e i g h t i n p i x e l s o f e a c h c e l l as d i s p l a y e d on screen. * /
u n s i g n e d i n t m a g n i f i e r - 2:

The Game of Life 325

v o i d m a i n 0
(

u n s i g n e d i n t i n i t - l e n g t h . x . y , s e e d :
u n s i g n e d l o n g g e n e r a t i o n - 0;
char gen- textC801;
l o n g b i o s - t i m e . s t a r t - b i o s - t i m e :

c e l l m a p current-map(cel1map-height. ce l lmap-w id th) ;
c e l l m a p next-map(cel1map-height. ce l lmap-w id th) :

11 Get the seed: seed randomly i f 0 e n t e r e d
c o u t << "Seed (0 f o r random seed): ":
c i n >> seed:
i f (seed - 0) seed - (uns igned) t ime(NULL1:

11 Randomly i n i t i a l i z e t h e i n i t i a l c e l l map
c o u t << " I n i t i a l i z i n g . . .";
s r a n d (s e e d) ;
i n i t - l e n g t h - (c e l l m a p - h e i g h t * ce l lmap-w id th) I 2;
do {

x - random(cel1map-width) ;
y - random(cel1map-height) ;
n e x t - m a p . s e t - c e l l (x , y) :

3 w h i l e (- i n i t - l e n g t h) ;
current_map.copy-cel ls(next_map): 11 p u t i n i t map i n current-map

en te r -d i sp lay -mode() :

/ I Keep r e c a l c u l a t i n g and r e d i s p l a y i n g g e n e r a t i o n s u n t i l a key
/ I i s p r e s s e d
show-text (0. MSG-LINE, "Genera t i on : "1;
s t a r t - b i o s - t i m e - -bios-timeofday(-TIME-GETCLOCK, & b i o s - t i m e) ;
do (

generat ion++;
s p r i n t f (g e n - t e x t . "%101u" . genera t i on) ;
show- tex t (1 . GENERATION-LINE. g e n - t e x t) :
/ I R e c a l c u l a t e a n d d r a w t h e n e x t g e n e r a t i o n
current_map.next-generation(next-map);
/ I Make c u r r e n t - m a p c u r r e n t a g a i n

#if LIMIT-18-HZ
current-map.copy-cells(next~map):

/ I L i m i t t o a maximum o f 1 8 . 2 f r a m e s p e r s e c o n d . f o r v i s i b i l i t y
do I

3 w h i l e (s t a r t - b i o s - t i m e - b i o s - t i m e) :
s t a r t - b i o s - t i m e - b ios - t ime :

- bios-t imeofday(-TIMELGETCLOCK. &bios-t ime):

e n d i f
I w h i l e (! k b h i t O) ;
g e t c h (1: 11 c l e a r k e y p r e s s
ex i t -d i sp lay -mode() ;
c o u t << " T o t a l g e n e r a t i o n s : " << g e n e r a t i o n << "\nSeed: " <<

seed << " \n" :
3

I* c e l l m a p c o n s t r u c t o r . *I
cellmap::cellmap(unsigned i n t h . u n s i g n e d i n t w)
{

w i d t h - w;
w id th - i n -by tes - (w + 7) I 8;
h e i g h t - h;

326 Chapter 17

/* cellmap destructor. */
cellmap::-cellmap(void)
I

1
delete[] cells:

/* Copies one cellmap's cells to another cellmap. Both cellmaps are

void cel1map::copy-cells(cel1map &sourcemap)
(

I

/* Turns cell on. * /
void cellmap::set_cell(unsigned int x. unsigned int y)

assumed to be the same size. */

memcpy(cel1s. sourcemap.cells, length-in-bytes):

r
unsigned char *cell-ptr =

cells + (y * width-in-bytes) + (x / 8) ;

*(cell_ptr) I- Ox80 >> (x & 0x07):
1

/ * Turns cell off. * /
void cellmap::clear_cell(unsigned int x. unsigned int y)
f

unsigned char *cell-ptr -
cells + (y * width-in-bytes) + (x / 8) ;

I

/* Returns cell state (1-on or 0-off). optionally wrapping at the

int cel1map::cell-state(int x. int y)
(

*(cell-ptr) &- -(Ox80 >> (x & 0x07)):

borders around to the opposite edge. * /

unsigned char *cell-ptr:

#if WRAP-EDGES
while (x < 0) x +- width: / / wrap, if necessary
while (x >- width) x -- width:
while (y < 0) y +- height:
while (y >- height) y -- height;

if ((x < 0) 1 1 (x >- width) 1) (y < 0) 1 1 (y >- height))
#else

return 0: / / return 0 for off edges if no wrapping
lendi f

cell-ptr - cells + (y * width-in-bytes) + (x / 8) ;
return (*cell-ptr & (0x80 >> (x & 0x07))) ? 1 : 0;

1

/* Calculates the next generation of a cellmap and stores it in

void ce1lmap::next-generation(cellmap& next-map)
t

next-map. * /

unsigned int x. y. neighbor-count;

The Game of Life 327

f o r (y - 0 ; y < h e i g h t : y++) {
f o r (x -0 ; x<wid th ; x++) t

/ / F i g u r e o u t how many n e i g h b o r s t h i s c e l l h a s
ne ighbor -count - c e l l - s t a t e (x - 1 . y - 1) + c e l l - s t a t e (x . y -1) +

c e l l - s t a t e (x + l . y -1) + c e l l - s t a t e (x - 1 , y) +
c e l l - s t a t e (x + l . y) + c e l l - s t a t e (x - 1 . y+ l) +
c e l l s t a t e (x . y + l) + c e l l - s t a t e t x + l . y+l);

i f (c e l l - s t a t e (x , y) - 1) I
-

/ / The c e l l i s on; does i t s t a y on?
if ((n e i g h b o r - c o u n t !- 2) && (ne ighbor -count != 3)) I

n e x t - m a p . c l e a r - c e l l (x . y); / / t u r n it o f f
d r a w - p i x e l (x . y . OFF-COLOR);

I
I e l s e t

/ / The c e l l i s o f f : does it t u r n on?
i f (ne ighbor -count -- 3) I

next -map.se t -ce l l (x . y) ; / / t u r n i t on
d r a w - p i x e l (x , y . ON-COLOR):

I
I

I
1

I

LISTING 17.2 11 7-2.CPP
/* VGA mode 1 3 h f u n c t i o n s f o r Game o f L i f e .

i n c l u d e < s t d i o . h >
i n c l u d e < c o n i o . h >
l i n c l ude <dos. h>

d e f i n e TEXT-X-OFFSET 27
d e f i n e SCREEN-WIDTH-IN-BYTES 320

/ * Wid th & h e i g h t i n p i x e l s o f e a c h c e l l . * /
e x t e r n u n s i g n e d i n t m a g n i f i e r ;

/ * Mode 1 3 h d r a w p i x e l f u n c t i o n . P i x e l s a r e o f w i d t h & h e i g h t

v o i d d r a w - p i x e l (u n s i g n e d i n t x . u n s i g n e d i n t y . u n s i g n e d i n t c o l o r)
t
d e f i n e SCREEN-SEGMENT OxAOOO

T e s t e d w i t h B o r l a n d C++. * /

s p e c i f i e d b y m a g n i f i e r . * /

u n s i g n e d c h a r f a r * s c r e e n - p t r ;
i n t i. j ;

FP-SEG(screen-ptr) - SCREEN-SEGMENT;
FP_OFF(screen-ptr) -
f o r (i - 0 ; i < m a g n i f i e r : i++) I

y * m a g n i f i e r * SCREEN-WIDTH-IN-BYTES + x * m a g n i f i e r ;

f o r (j-0; j < m a g n i f i e r ; j++) t

I
* (s c r e e n - p t r + j) - c o l o r ;

sc reen-p t r +- SCREEN-WIDTH-IN-BYTES;
I

I

/* Mode 13h m o d e - s e t f u n c t i o n . * /
v o i d e n t e r - d i s p l a y - m o d e 0
{

u n i o n REGS r e g s e t :

328 Chapter 17

r e g s e t . x . a x = 0x0013;
i n t 8 6 (0 x 1 0 . & r e g s e t . & r e g s e t) :

1

I* T e x t mode m o d e - s e t f u n c t i o n . * /
v o i d e x i t - d i s p l a y - m o d e 0
{

u n i o n R E G S r e g s e t :

r e g s e t . x . a x = 0x0003;
i n t 8 6 (0 x 1 0 . & r e g s e t . & r e g s e t) ;

1

/* T e x t d i s p l a y f u n c t i o n . O f f s e t s t e x t t o n o n - g r a p h i c s a r e a o f

v o i d s h o w - t e x t (i n t x . i n t y . c h a r * t e x t)
I

screen. * I

gotoxy(TEXTpX_OFFSET + x . y) :
p u t s (t e x t) :

I

Where Does the Time Go?
How slow is Listing 17.1? Table 17.1 shows that even on a 486, Listing 17.1 does fewer
than three 96x96 generations per second. (The times in Table 17.1 are for 1,000
generations of a 96x96 cell map with seed=l, LIMIT-l8-HZ=O, M”-EDGES=l,
and mapifier=2, running on a 33 MHz 486.) Since my target is 18 generations per
second with a 200x200 cellmap on a 20 MHz 386, Listing 17.1 is too slow by a rather
wide margin-about 75 times too slow, in fact. You might say we have a little optimiz-
ing to do.
The first rule of optimization is: Only optimize where it matters. Use a profiler, or
risk making a fool of yourself. Consider Listings 17.1 and 17.2. Where do you think

The Game of Life 329

the potential for significant speed-up lies? I’ll tell you one place where I thought
there was considerable potential-in draw-pixel(). As a programmer of high-speed
graphics, I figured any drawing function that was not only written in C/C++ but also
recalculated the target address from scratch for each pixel would be among the first
optimization targets. I also expected to get major gains out of going to a Ping-Pong
arrangement so that I didn’t have to copy the new cellmap back to current-map
after calculating the next generation.
I was wrong. Wrong, wrong, wrong. (But at least I was smart enough to use a profiler
before actually writing any new code.) Table 17.1 shows where the time actually goes
in Listings 17.1 and 17.2. As you can see, the time taken by draw-pixel(), copy-cells(),
and atmythingother than calculating the next generation is nothing more than noise.
We could optimize these routines right down to executing instantaneously, and you know
what? It wouldn’t make the slightest perceptible difference in how fast the program
runs. Given the present state of our Game of Life implementation, the only areas
worth looking at for possible optimizations are cell-state() and nextsenerationo.

Its worth noting, though, that one reason drawqixelo doesn ’t much affectperfor- p mance is that in Listing 17.1, we 5-e smart enough to redrawpixels only when their
states change, rather than during every generation. Detecting and eliminating re-
dundant operations is part of knowing the nature of your data, and is a potent
optimization technique that will be extremely useful a little later in this chapter.

The Hazards and Advantages of Abstraction
How can we speed up cell-state() and nextsenerationo? I’ll tell you how not to do
it: By writing those member functions in assembly. It’s tempting to say that cell-state()
is taking all the time, so we need to speed it up with assembly, but what we really need
to do is figure out why cell-state() is taking all the time, then address that aspect of
the program directly.
Once you know where you need to optimize, the one word to keep in mind isn’t
assembly, it’s.. .plastics. No, actually, it’s abstraction. Well-written C and especially C++
programs are highly abstract models. For example, Listing 17.1 essentially creates a
new programming language in which cells are tangible things, with built-in manipu-
lation instructions. Given the cellmap member functions, you don’t even need to
know the cell storage format! This is a wonderful thing, in general; it saves program-
ming time and bugs, and frees you to work on the application’s needs, rather than
implementation details.

However, ifyou never look beneath the suflace of the abstract model at the implemen- p tation details, you have no idea of what the truepe$nnance cost of various operations
is, and, without that, you have largeb surrendered control over performance.

330 Chapter 17

Having said that, let me hasten to add that algorithmic improvements can make a
big difference even when working at a purely abstract level. For a large unordered
data set, a high-level Quicksort will beat the pants off the best-implemented inser-
tion sort you can imagine. Still, you can optimize your algorithm from here 'til
doomsday, and if you have a fast algorithm running on top of a highly abstract pro-
gramming model, you'll almost certainly end up with a slow program. In Listing
17.1, the abstraction that's killing us is that of looking at the eight neighbors with
eight completely independent operations, requiring eight calls to cell-state() and
eight calculations of cell address and cell mask. In fact, given the nature of cell stor-
age, the eight neighbors are in a fixed relationship to one another, and the addresses
and masks of all eight can generally be found very easily via hard-wired offsets and
shifts once the address and mask of any one is known.
There's a kicker here, though, and that's the counting of neighbors for cells at the edge of
the cellmap. When cellmap wrapping is enabled (so that the cellmap becomes essentially a
toroid, with each edge joined seamlessly to the opposite edge, as opposed to having a
border of offcells), neighbors that reside on the other edge of the cellmap can't be
accessed by the standard fixed offset, as shown in Figure 17.1. So, in general, we could
improve performance by hard-wiring our neighborcounting for the bit-percell cellmap

The left neighbors for this
cell are not at the usual
adjacent addresses but are rather on

L
the other side of the
cellmap. 1

All neighbors for this cell are at the
usual adjacent addresses.

J
Cellmap

Edge-wrapping complications.
Figure 1 7.1

The Game of Life 331

format, but it seems we’d need a lot of conditional code to handle wrapping, and that
would slow things back down again.
When a problem doesn’t lend itself well to optimization, make it a practice to see if
you can change the problem definition to one that allows for greater efficiency. In
this case, we’ll change the problem by putting padding bytes around the edge of the
cellmap, and duplicating each edge of the cellmap in the padding bytes at the oppo-
site side, as shown in Figure 17.2. That way, a hard-wired neighbor count will find
exactly what it should-the opposite edge-without any special code at all.
But doesn’t that extra copying of the edges take time? Sure, but only a little; we can
build it into the cellmap copying function, and then frankly we won’t even notice it.
Avoiding tens or hundreds of thousands of calls to cell-state(), on the other hand,
will be very noticeable. Listing 17.3 shows the alterations to Listing 1’7.1 required to
implement a hard-wired neighborcounting function. This is a minor change, in truth,
implemented in about half an hour and not making the code significantly larger-
but Listing 17.3 is 3.6 times faster than Listing 17.1, as shown in Table 17.1. We’re up
to about 10 generations per second on a 486; not where we want to be, but it is a
vast improvement.

All neighbors for this cell are at
the usual adjacent addresses,
thanks to the padding cells.

Fbdding Cells
I I Fbdding Cells -

I
JI I *
0 0 / 0 O O O 0 0 . 0

Boundary of normal cellmap (excluding padding cells).

1
J

Cellmap

The “adding cells” solution.
Figure 17.2

332 Chapter 17

LISTING 17.3 11 7-3.CPP
/* c e l l m a p c l a s s d e f i n i t i o n , c o n s t r u c t o r , c o p y - c e l l s o , s e t L c e l l 0 ,

c l e a r - c e l l O . c e l l L s t a t e 0 . c o u n t L n e i g h b o r s 0 . and
n e x t - g e n e r a t i o n 0 f o r f a s t , h a r d - w i r e d n e i g h b o r c o u n t a p p r o a c h .
O t h e r w i s e , t h e same as L i s t i n g 1 7 . 1 * /

c l a s s c e l l m a p 1
p r i v a t e :

u n s i g n e d c h a r * c e l l s ;
u n s i g n e d i n t w i d t h :
u n s i g n e d i n t w i d t h - . i n - b y t e s ;
u n s i g n e d i n t h e i g h t :
u n s i g n e d i n t l e n g t h - i n - b y t e s ;

c e l l m a p (u n s i g n e d i n t h . u n s i g n e d i n t v) :
- c e l l m a p (v o i d) ;
vo id copy-ce l l s (ce l1map &sourcemap) :
v o i d s e t - c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) :
v o i d c l e a r - c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) ;
i n t c e l l - s t a t e (i n t x . i n t y) :
i n t c o u n t - n e i g h b o r s (i n t x . i n t y) ;
v o i d next-generation(cellmap& dest._map);

p u b l i c :

} :

/ * c e l l m a p c o n s t r u c t o r . P a d s a r o u n d c e l l s t o r a g e a r e a w i t h 1 e x t r a
b y t e , u s e d f o r h a n d l i n g e d g e w r a p p i n g . * I

cellmap::cellmap(unsigned i n t h . u n s i g n e d i n t w)
i

w i d t h = w ;
w id th - in -by tes = ((w + 7) / 8) + 2 : / / p a d e a c h s i d e w i t h

h e i g h t = h ;
leng th- in -by tes = wid th- in -by tes * (h + 2) ; / / pad t op /bo t tom

c e l l s - new uns igned charC length- in -by tes] ; / / c e l l s t o r a g e
memse t (ce l1s . 0 . l eng th - in -by tes) : / I c l e a r a l l c e l l s . t o s t a r t

/ / 1 e x t r a b y t e

I / w i t h 1 e x t r a b y t e

1

/ * C o p i e s o n e c e l l m a p ' s c e l l s t o a n o t h e r c e l l m a p . I f wrapp ing i s
e n a b l e d . c o p i e s e d g e (w r a p) b y t e s i n t o o p p o s i t e p a d d i n g b y t e s i n
s o u r c e f i r s t , s o t h a t t h e p a d d i n g b y t e s o f f e a c h e d g e h a v e t h e
same va lues as wou ld be f ound by w rapp ing a round to t he oppos i te
edge. Both ce l lmaps are assumed t o b e t h e same s i z e . * /

v o i d cel1map::copy-cells(cel1map &sourcemap)
I

u n s i g n e d c h a r * c e l l - p t r ;
i n t i;

i f WRAP-EDGES
/ / Copy l e f t and r i g h t edges i n t o p a d d i n g b y t e s on r i g h t and l e f t

c e l l - p t r = sourcemap.ce l l s + wid th- in -by tes :
f o r (i=O; i < h e i g h t ; i++) {

* c e l l - p t r = * (c e l l - p t r + wid th- in -by tes - 2) :
* (c e l l - p t r + w id th - in -by tes - 1) = * (c e l l L p t r + 1) :
c e l l - p t r += wid th- in -by tes :

I
/ / Copy t o p a n d b o t t o m e d g e s i n t o p a d d i n g b y t e s on b o t t o m a n d t o p

rnemcpy(sourcemap.cells, sourcemap.ce l l s + length- in -by tes -

memcpy(sourcemap.cel1s + l e n g t h - i n - b y t e s - w id th - in -by tes .
(w id th - in -by tes * 2) . w i d t h - i n - b y t e s) :

sourcemap.cel1.s + w i d t h - i n - b y t e s . w i d t h - i n - b y t e s) ;

The Game of Life 333

#endi f
/ / Copy all cells to the destination
memcpy(cel1s. sourcemap.cells. length-in-bytes);

I

/ * Turns cell on. x and y are offset by 1 byte down and to the right,to compensate for the
padding bytes around the cellmap. * I
void ce1lmap::set-cell(unsigned int x . unsigned int y)
e

unsigned char *cell-ptr -
cells + ((y + 1) * width-in-bytes) + ((x / 8) + 1);

1
*(cell-ptr) I- Ox80 >> (x & 0x07) ;

/ * Turns cell off. x and y are offset by 1 byte down and to the right,

void cel1map::clear-cell(unsigned int x . unsigned int y)
e

to compensate for the padding bytes around the cell map. */

unsigned char *cell-ptr -
cells + ((y + 1) * width-in-bytes) + ((x / 8) + 1):

I
*(cell-ptr) &- -40x80 >> (x & 0 x 0 7)) ;

/ * Returns cell state (1-on or 0-off). x and y are offset by 1 byte
down and to the right. to compensate for the padding bytes around
the cell map. */

int cel1map::cell-state(int x . int y)
{

unsigned char *cell-ptr -
cells + ((y + 1) * width-in-bytes) + ((x / 8) + 1);

return (*cell-ptr & (Ox80 >> (x & 0 x 0 7))) ? 1 : 0;
1

/ * Counts the number of neighboring on-cells for specified cell. */
int cel1map::count-neighbors(int x . int y)
c

unsigned char *cell-ptr. mask;
unsigned int neighbor-count:

/ /
if
/ /
if

I /
if

I
I /
if
/ /

/ / Point to upper left neighbor
cell-ptr - cells + ((y * widthkin-bytes) + ((x + 7) / 8)) ;
mask - Ox80 >> ((x - 1) & 0x07) ;
/ / Count upper left neighbor
neighbor-count - (*cell-ptr & mask) ? 1 : 0;

Count left neighbor
((*(cell-ptr +-width-in-bytes) & mask)) neighbor-count++;
Count lower left neighbor
((*(cellLptr + (width-in-bytes * 2)) & mask)) neighbor-count++;

Point to upper neighbor
((mask >>- 1) - 0)
mask - 0x80;
cell-ptr++;

Count upper
((*cell-ptr
Count lower

neighbor
& mask)) neighbor-count++;
neighbor

334 Chapter 17

i f ((* (c e l l - p t r + (w i d t h - i n - b y t e s * 2)) & mask))
neighbor-count++;

I 1 P o i n t t o u p p e r r i g h t n e i g h b o r
i f ((mask >>- 1) = 0) {

mask = 0x80:
c e l l - p t r + + ;

I
/ / C o u n t u p p e r r i g h t n e i g h b o r
i f ((* c e l l _ p t r & mask)) ne ighbor-count++;
/ / Count r i g h t n e i g h b o r
i f ((* (c e l l - p t r + w i d t h - i n - b y t e s) & mask)) ne ighbor-count++:
I / C o u n t l o w e r r i g h t n e i g h b o r
i f ((* (c e l l L p t r + (width-in..bytes * 2)) & mask))

neighbor-count++;

1
r e t u r n n e i g h b o r - c o u n t :

/* C a l c u l a t e s t h e n e x t g e n e r a t i o n o f c u r r e n t - m a p a n d s t o r e s it i n

v o i d cellmap::next_generation(cellmap& next tmap)
f

next-map. * I

u n s i g n e d i n t x . y . n e i g h b o r - c o u n t :

f o r (y - 0 ; y < h e i g h t : y++) 1
f o r (x=O; x < w i d t h ; x++) I

ne ighbor -count = c o u n t - n e i g h b o r s (x . y) :
i f (c e l l - s t a t e (x . y) == 1) I

if ((n e i g h b o r - c o u n t != 2) && (ne ighbor -count != 3))
n e x t - m a p . c l e a r - c e l l (x , y) : / I t u r n it o f f
d r a w - p i x e l (x , y . OFF-COLOR) :

1
I e l s e

i f (ne ighbor -count == 3) {
n e x t - m a p . s e t - c e l l (x . y) : / I t u r n i t on
d r a w - p i x e l (x . y . ONKCOLOR):

I
1

1
1

In Listing 17.3, note the padded cellmap edges, and the alteration of the member
functions to compensate for the padding. Also note that the width now has to be a
multiple of eight, to facilitate the process of copying the edges to the opposite padding
bytes. We have decreased the generality of our Game of Life implementation in ex-
change for better performance. That’s a very common trade-off, as common as trading
memory for performance. As a rule, the more general a program is, the slower it is.
A corollary is that often (not always, but often), the more heavily optimized a pro-
gram is, the more complex and the more difficult to implement it is. You can often
improve performance a good deal by implementing only the level of generality you
need, but at the same time decreased generality makes it more difficult to change or
port the program at some later date. A Game of Life implementation, such as Listing
17.1, that’s built on set-cell(), clear-cell(), and get-cell() is completely general; you

The Game of Life 335

can change the cell storage format simply by changing the constructor and those
three functions. Listing 17.3 is harder to change because count-neighborso would
also have to be altered, and it’s more complex than any of the other functions.
So, in Listing 17.3, we’ve gotten under the hood and changed the cellmap format a
little, and gotten impressive results. But now count-neighborso is hard-wired for
optimized counting, and it’s still taking up more than half the time. Maybe now it’s
time to go to assembly?
Not hardly.

Heavy-Duty C++ Optimization
Before we get to assembly, we still have to perform C++ optimization, then see if we can
find an alternative approach that better fits the application. It would actually have made
much more sense if we had looked for a new approach as our first optimization step, but
I decided it would be better to cover straightforward C++ optimizations at this point, and
the mind-bending stuff a little later. Right now, let’s look at some C++ optimizations;
Listing 17.4 is a C++-optimized version of Listing 17.3.

LISTING 17.4 11 7-4.CPP
I* n e x t L g e n e r a t i o n 0 . i m p l e m e n t e d u s i n g f a s t , a l l - i n - o n e h a r d - w i r e d

n e i g h b o r c o u n t / u p d a t e / d r a w f u n c t i o n . O t h e r w i s e , t h e same as
L i s t i n g 1 7 . 3 . *I

I* C a l c u l a t e s t h e n e x t g e n e r a t i o n o f c u r r e n t - m a p a n d s t o r e s i t i n

v o i d cel1map::next-generation(cellmap& next-map)
next-map. * I

u n s i g n e d i n t x . y . ne ighbor -count :
u n s i g n e d i n t wi d th- in-bytesX2 - wid th- i n -by tes << 1;
u n s i g n e d c h a r * c e l l L p t r . * c u r r e n t L c e l l - p t r . m a s k , c u r r e n t t m a s k ;
uns igned char *base-ce l l -p t r . * row-ce l l -p t r . base-mask;
u n s i g n e d c h a r * d e s t - c e l l - p t r = nex t -map.ce l l s ;

11 P r o c e s s a l l c e l l s i n t h e c u r r e n t c e l l m a p
row-cel 1-ptr - c e l l s ; / / p o i n t t o u p p e r l e f t n e i g h b o r o f

f o r (y - 0 : y < h e i g h t : y++) [/ I r e p e a t f o r e a c h r o w o f c e l l s
11 C e l l p o i n t e r a n d c e l l b i t mask f o r f i r s t c e l l i n row
b a s e - c e l l - p t r = r o w - c e l l - p t r ; / I t o access upper l e f t n e i g h b o r
base-mask = 0x01: / I o f f i r s t c e l l i n row
f o r (x -0 : x<wid th ; x++) [/ I r e p e a t f o r e a c h c e l l i n r o w

/ I f i r s t c e l l i n c e l l map

/ I F i r s t , c o u n t n e i g h b o r s
/ / P o i n t t o u p p e r l e f t n e i g h b o r o f c u r r e n t c e l l
c e l l - p t r - b a s e - c e l l - p t r ; / I p o i n t e r a n d b i t mask f o r
mask = basecmask; 11 u p p e r l e f t n e i g h b o r
/ I Count upper l e f t n e i g h b o r
ne ighbor -count - (* c e l l L p t r & mask) ? 1 : 0;
/ / Count l e f t n e i g h b o r
i f ((* (c e l l - p t r + wid th- in -by tes) & mask))

/ I C o u n t l o w e r l e f t n e i g h b o r
i f ((* (c e l l - p t r + w id th - in -by tesX2) & mask))

neighbor-count++:

neighbor-count++;

336 Chapter 17

/ / Point t o upper neighbor
if ((mask >>- 1) -- 0) I

mask - 0x80:
cell-ptr++:

1
/ / Remember where to find the current cell
current-cell-ptr - cell-ptr + widthkin-bytes:
current-mask - mask:
/ I
if
/ I
if

/ I
if

1
/ I
if
/ I
if

/ /
if

if

Count upper neighbor
((*cell-ptr & mask)) neighbor-count++;
Count lower neighbor
((*(cell-ptr + widthkin-bytesX2) & mask))

neighbor-count++;
Point to upper right neighbor
((mask >>- 1) - 0) I
mask - 0x80:
cell-ptr++:

Count upper right neighbor
((*cell-ptr & mask)) neighbor-count++;
Count right neighbor
((*(cell-ptr + width-in-bytes) & mask))
neighbor-count++:
Count lower right neighbor
((*(cell-ptr + width-in-bytesX2) & mask))

(*current-cellLptr & current-mask) t
if ((neighbor-count !- 2) && (neighbor-count !- 3)) t

*(dest-cell-ptr + (current-cell-ptr - cells)) &-
-current-mask: / / turn off cell

draw-pixel(x. y . OFF-COLOR):

neighbor-count++:

1
1 else I

if (neighbor-count -- 3) {
*(dest-cell-ptr + (current-cell-ptr - cells)) 1 -

draw-pixel(x. y . ON-COLOR):
current-mask; / / turn on cell

1
I
/ / Advance t o the next cell on row
if ((base-mask >>- 1) -- 0) {

base-mask - 0x80:
base-cell_ptr++: / / advance to the next cell byte

I
1
row-cell-ptr +- width-in-bytes: / / point to start o f next row

1
I

Listing 17.4 and Listing 17.3 are functionally the same; the only difference lies in
how nextsenerationo is implemented. (Only nextsenerationo is shown in Listing
1’7.4; the program is otherwise identical to Listing 17.3.) Listing 17.4 applies the
following optimizations to nextsenerationo:
The neighbor-counting code is brought into nextseneration, eliminating many func-
tion calls and from-scratch address/mask calculations; all multiplies are eliminated by
using pointers and addition; and all cells are accessed directly via pointers and masks,
eliminating all remaining function calls and from-scratch address/mask calculations.

The Game of Life 337

The net effect of these optimizations is that Listing 17.4 is more than twice as fast as
Listing 17.3; we’ve achieved the desired 18 generations per second, albeit only on a
486, and only at 96x96. (The #define that enables code limiting the speed to 18 Hz,
which seemed ridiculous in Listing 17.1, is actually useful for keeping the genera-
tions from iterating too quickly when Listing 17.4 is running on a 486, especially with
a small cellmap like 48x48.) We’ve sped things up by about eight times so far; we
need to increase our speed another ten times to reach our goal of 200~200 at 18
generations per second on a 20 MHz 386.
It’s undoubtedly possible to improve the performance of Listing 17.4 further by fine-
tuning the code, but no tremendous improvement is possible that way.

Once you’ve reached the point offine-tuningpointer usage and register variables p and the like in Cor C++, you ’ve become compiler-dependent; you therefore might
as well go to assembly and get the real McCoy.

We’re still not ready for assembly, though; what we need is a new perspective that
lends itself to vastly better performance in C++. The Life program in the next section
is three to seven times faster than Listing 17.4-and it’s still in C++.
How is this possible? Here are some hints:

After a few dozen generations, most of the cellmap consists of cells in the off state.
There are many possible cellmap representations other than one bit-per-pixel.
Cells change state relatively infrequently.

Bringing In the Right Brain
In the previous section, we saw how a C++ program could be sped up about eight
times simply by rearranging the data and code in straightforward ways. Now we’re
going to see how right-brain non-linear optimization can speed things up by another
four times-and make the code s imph .

Now that’s Zen code optimization.
I have two objectives to achieve in the remainder of this chapter. First, I want to show
that optimization consists of many levels, from assembly language up to conceptual
design, and that assembly language kicks in pretty late in the optimization process.
Second, I want to encourage you to saturate your brain with everything you know
about any particular optimization problem, then make space for your right brain to
solve the problem.

Re-Examining the Task
Earlier in this chapter, we looked at a straightforward Game of Life implementation,
then increased performance considerably by making the implementation a little less
abstract and a little less general. We made a small change to the cellmap format,

338 Chapter 17

adding padding bytes off the edges so that pointer arithmetic would always work, but
the major optimizations were moving the critical code into a single loop and using
pointers rather than member functions whenever possible. In other words, we took
what we already knew and made it more efficient.
Now it’s time to re-examine the nature of this programming task from the ground
up, looking for things that we don’t yet know. Let’s take a moment to review what the
Game of Life consists of. The basic task is evolving a new generation, and that’s done
by looking at the number of “on” neighbors a cell has and the cell’s own state. If a
cell is on, and two or three neighbors are on, then the cell stays on; otherwise, an on-
cell is turned off. If a cell is off and exactly three neighbors are on, then the cell is
turned on; otherwise, an off-cell stays off. That’s all there is to it. As any fool can see,
the trick is to arrange things so that we can count neighbors and check the cell state
as quickly as possible. Large lookup tables, oddly encoded cellmaps, and lots of bit-
twiddling assembly code spring to mind as possible approaches. Can’t you just feel
your adrenaline start to pump?

Relax. Step back. Try to divine the true nature of theproblem. The object is not to p count neighbors and check cell states as quickly as possible; that k just one pos-
sible implementation. The object is to determine when a cell b state must be changed
and to change it appropriately, and that’s what we need to do as quickly us possible.

What difference does that new perspective make? Let’s approach it this way. What
does a typical cellmap look like? As it happens, after a few generations, the vast ma-
jority of cells are off. In fact, the vast majority of cells are not only off but are entirely
surrounded by off-cells. Also, cells change state infrequently; in any given genera-
tion after the first few, most cells remain in the same state as in the previous generation.
Do you see where I’m heading? Do you hear a whisper of inspiration from your right
brain? The original implementation stored cell states as 1-bits (on), or 0-bits (off).
For each generation and for each cell, it counted the states of the eight neighbors,
for an average of eight operations per cell per generation. Suppose, now, that on
average 10 percent of cells change state from one generation to the next. (The ac-
tual percentage is even lower, but this will do for illustration.) Suppose also that we
change the cell map format to store a byte rather than a bit for each cell, with the
byte storing not only the cell state but also the count of neighboring on-cells for that
cell. Figure 17.3 shows this format. Then, rather than counting neighbors each time,
we could just look at the neighbor count in the cell and operate directly from that.
But what about the overhead needed to maintain the neighbor counts? Well, each
time a cell changes state, eight operations would be needed to update the counts in
the eight neighboring cells. But this happens only once every ten cells, on average-
so the cost of this approach is only one-tenth that of the original approach!
Know your data.

The Game of Life 339

Acting on What We Know
Once we’ve changed the cellmap format to store neighbor counts as well as states,
with a byte for each cell, we can get another performance boost by again examining
what we know about our data. I said earlier that most cells are off during any given
generation. This means that most cells have no neighbors that are on. Since the cell
map representation for an off-cell that has no neighbors is a zero byte, we can skip
over scads of unchanged cells at a pop simply by scanning for non-zero bytes. This is
much faster than explicitly testing cell states and neighbor counts, and lends itself
beautifully to assembly language implementation as REPZ S W B or (with a little
cleverness) REPZ SCASW. (Unfortunately, there’s no C library function that can
scan memory for the next byte that’s non-zero.)
Listing 17.5 is a Game of Life implementation that uses the neighbor-count cell map
format and scans for non-zero bytes. On a 20 MHz 386, Listing 17.5 is about 4.5 times
faster at calculating generations (that is, the generation engine is 4.5 times faster;
I’m ignoring the time consumed by drawing and text display) than Listing 17.4,
which is no slouch. On a 33 MHz 486, Listing 17.5 is about 3.5 times faster than
Listing 17.4. This is true even though Listing 17.5 must be compiled using the large
model. Imagine that-getting a four times speed-up while switching from the small
model to the large model!

LISTING 17.5 11 7-5.CPP
/* C++ Game o f L i f e i m p l e m e n t a t i o n f o r a n y mode f o r w h i c h mode s e t

a n d d r a w p i x e l f u n c t i o n s c a n b e p r o v i d e d . T h e c e l l m a p s t o r e s t h e
n e i g h b o r c o u n t f o r e a c h c e l l a s w e l l a s t h e s t a t e o f e a c h c e l l :
t h i s a l l o w s v e r y f a s t n e x t - s t a t e d e t e r m i n a t i o n . Edges always wrap
i n t h i s i m p l e m e n t a t i o n .
T e s t e d w i t h B o r l a n d C++. To r u n . l i n k w i t h L i s t i n g 17 .2
i n t h e l a r g e m o d e l . * /

i n c l u d e < s t d l i b. h>
#i n c l u d e < s t d i 0. h>
i n c l u d e < i o s t r e a m . h >
i n c l u d e < c o n i o . h >

340 Chapter 17

i n c l u d e < t i m e . h >
#i n c l ude <dos . h>
fki n c l ude <b ios . h>
#i nc l ude <mem. h>

d e f i n e ONKCOLOR 1 5 / I o n - c e l l p i x e l c o l o r
d e f i n e OFF-COLOR 0 / I o f f - c e l l p i x e l c o l o r
Pde f i ne MSG-LINE 10 / I row f o r t e x t messages
d e f i n e GENERATION-LINE 12 / I row f o r g e n e r a t i o n # d i s p l a y
d e f i n e LIMIT-18-HZ 0 / / s e t 1 t o t o maximum f r a m e r a t e - 18Hz
c l a s s c e l l m a p {
p r i v a t e :

u n s i g n e d c h a r * c e l l s :
uns igned cha r * temp-ce l l s :
u n s i g n e d i n t w i d t h :
u n s i g n e d i n t h e i g h t :
u n s i g n e d i n t l e n g t h - i n - b y t e s :

c e l l m a p (u n s i g n e d i n t h . u n s i g n e d i n t v) :
- c e l l m a p (v o i d) :
v o i d s e t - c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) :
v o i d c l e a r - c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) ;
i n t c e l l - s t a t e (i n t x . i n t y) :
i n t c o u n t - n e i g h b o r s (i n t x . i n t y):
v o i d n e x t - g e n e r a t i o n (v o i d) :
v o i d i n i t (v o i d) ;

p u b l i c :

I :

e x t e r n v o i d e n t e r - d i s p l a y m o d e (v o i d) :
e x t e r n v o i d exit-display-mode(void);
e x t e r n v o i d d r a w - p i x e l (u n s i g n e d i n t X . u n s i g n e d i n t Y .

e x t e r n v o i d s h o w - t e x t (i n t x . i n t y . c h a r * t e x t) ;

I* C o n t r o l s t h e s i z e o f t h e c e l l map. Must be w i t h i n t h e c a p a b i l i t i e s
o f t h e d i s p l a y mode, and must be l i m i t e d t o l e a v e room f o r t e x t
d i s p l a y a t r i g h t . * I

u n s i g n e d i n t C o l o r) ;

u n s i g n e d i n t c e l l m a p - w i d t h - 96:
u n s i g n e d i n t c e l l m a p - h e i g h t - 96:

I* Width & h e i g h t i n p i x e l s o f e a c h c e l l . * /
u n s i g n e d i n t m a g n i f i e r - 2;

I* Randomizing seed * /
uns igned i n t seed:

v o i d m a i n 0
{

u n s i g n e d l o n g g e n e r a t i o n - 0:
char gen-textC801:
l o n g b i o s - t i m e . s t a r t - b i o s - t i m e :

ce l lmap current-map(cel1map-height. ce l lmap-w id th) :

c u r r e n t - m a p . i n i t 0 : / / r a n d o m l y i n i t i a l i z e c e l l map

enter-d i sp lay-mode() :

The Game of Life 341

/ / Keep r e c a l c u l a t i n g a n d r e d i s p l a y i n g g e n e r a t i o n s u n t i l a n y k e y
/ I i s p ressed
show- tex t (0 . MSG-LINE. "Genera t i on : ") :
s t a r t - b i o s - t i m e - -bios-timeofday(-TIME-GETCLOCK. &b ios - t ime) :
do {

generat ion++:
s p r i n t f (g e n - t e x t . " % 1 0 1 u " . g e n e r a t i o n) ;
show-text (1. GENERATION-LINE, g e n - t e x t) ;
/ / R e c a l c u l a t e a n d d r a w t h e n e x t g e n e r a t i o n
current-map.next-generationo;

i f LIMIT-18-HZ
/ / L i m i t t o a maximum o f 18.2 f r a m e s p e r s e c o n d , f o r v i s i b i l i t y
do

] w h i l e (s t a r t - b i o s - t i m e - b i o s - t i m e) ;
s t a r t - b i o s - t i m e - b ios - t ime ;

bios-t imeofday(-TIME-GETCLOCK. &bios-t ime):

#endi f
1 w h i l e (! k b h i t O) :

g e t c h 0 ; / I c l e a r k e y p r e s s
e x i t - d i s p l ay-mode() :
c o u t << " T o t a l g e n e r a t i o n s : " << g e n e r a t i o n << "\nSeed: " <<

seed << " \n" :
1

/ * c e l l m a p c o n s t r u c t o r . * /
cellmap::cellmap(unsigned i n t h , u n s i g n e d i n t w)

w i d t h - w:
h e i g h t - h;
l eng th - in -by tes - w * h:
c e l l s - new uns igned cha rC leng th - in -by tes] : / / c e l l s t o r a g e
temp-ce l l s - new u n s i g n e d c h a r [l e n g t h - i n - b y t e s l ; I / temp c e l l s t o r a g e
i f ((c e l l s - NULL) I ((t emp-ce l l s - NULL) 1 I

p r i n t f (" 0 u t o f m e m o r y \ n ") :
e x i t (1) :

I
memset(ce l1s. 0 . l e n g t h - i n - b y t e s) ; I / c l e a r a l l c e l l s , t o s t a r t

I

I* c e l l m a p d e s t r u c t o r . *I
ce l lmap : : - ce l lmap(vo id)
I

d e l e t e C l c e l l s;
d e l e t e [] t e m p - c e l l s :

1

/ * T u r n s a n o f f - c e l l o n , i n c r e m e n t i n g t h e o n - n e i g h b o r c o u n t f o r t h e

v o i d cel1map::set-cell(unsigned i n t x , u n s i g n e d i n t y)
(

e i g h t n e i g h b o r i n g c e l l s . * /

u n s i g n e d i n t w - w i d t h . h - h e i g h t :
i n t x o l e f t . x o r i g h t . y o a b o v e . y o b e l o w ;
u n s i g n e d c h a r * c e l l - p t r - c e l l s + (Y * W) + X :

I / C a l c u l a t e t h e o f f s e t s t o t h e e i g h t n e i g h b o r i n g c e l l s .
/ / a c c o u n t i n g f o r w r a p p i n g a r o u n d a t t h e e d g e s o f t h e c e l l map
i f (x -- 0)

e l s e
x o l e f t - w - 1:

x o l e f t - -1:

342 Chapter 17

i f (y -- 0)
yoabove - leng th - in -by tes - w:

e l s e
yoabove - - w :

i f (x -- (w - 1))
x o r i g h t = - (w - 1):

e l s e
x o r i g h t - 1:

i f (y -- (h - 1))
yobelow - - (l e n g t h - i n - b y t e s - w) :

e l s e
yobelow - w :

* (c e l l - p t r) I - 0x01:
* (c e l l - p t r + yoabove + x o l e f t) +- 2:
* (c e l l - p t r + yoabove) +- 2:
* (c e l l - p t r + yoabove + x o r i g h t) +- 2:
* (c e l l - p t r + x o l e f t) +- 2:
* (c e l l - p t r + x o r i g h t) +- 2:
* (c e l l - p t r + yobelow + x o l e f t) +- 2 :
* (c e l l - p t r + yobelow) +- 2:
* (c e l l - p t r + yobelow + x o r i g h t) +- 2 :

1

I* T u r n s a n o n - c e l l o f f , d e c r e m e n t i n g t h e o n - n e i g h b o r c o u n t f o r t h e

v o i d cel1map::clear-cell(unsigned i n t x . u n s i g n e d i n t y)
(

e i g h t n e i g h b o r i n g c e l l s . *I

u n s i g n e d i n t w - w i d t h , h - h e i g h t ;
i n t x o l e f t , x o r i g h t . y o a b o v e . y o b e l o w :
u n s i g n e d c h a r * c e l l - p t r - c e l l s + (y * w) + x:

I / C a l c u l a t e t h e o f f s e t s t o t h e e i g h t n e i g h b o r i n g c e l l s ,
/ I a c c o u n t i n g f o r w r a p p i n g a r o u n d a t t h e e d g e s o f t h e c e l l map
i f (x - 0)

x o l e f t - w - 1:
e l s e

x o l e f t - -1 :
i f (y -- 0)

yoabove - l e n g t h k i n - b y t e s - w :
e l s e

yoabove - - w :
i f (x -- (w - 1))

x o r i g h t - - (w - 1) ;
e l s e

x o r i g h t - 1:
if (y - (h - 1))

yobelow - - (l e n g t h - i n - b y t e s - w) :
e l s e

yobelow - w ;

* (c e l l L p t r) &- -0x01:
* (c e l l _ p t r +
*(eel 1 -p t r +
* (c e l l - p t r +
*(eel 1 -p t r +
* (c e l l _ p t r +
* (c e l l - p t r +
* (c e l l - p t r +
* (c e l l - p t r +

1

yoabove + x o l e f t) - - 2:
yoabove) -- 2:
yoabove + x o r i g h t) -- 2:
x o l e f t) -- 2:
x o r i g h t) - - 2 :
yobelow + x o l e f t) - - 2:
yobelow) - - 2:
yobelow + x o r i g h t) -- 2:

The Game of Life 343

I* Returns cell state (1-on or 0-off). *I
int cel1map::cell-statecint x, int y)
{

unsigned char *cell-ptr;

cell-ptr - cells + (y * width) + x;
return *cell-ptr & 0x01;

1

I* Calculates and displays the next generation of current-map * I
void cel1map::next-generation0
(

unsigned int x. y. count;
unsigned int h - height, w - width;
unsigned char *cellLptr. *row-cell-ptr;

I1 Copy to temp map, s o we can have an unaltered version from
If which to work
memcpy(temp-cells, cells, length-in-bytes);

/ I Process all cells in the current cell map
cell-ptr - temp-cells; I / first cell in cell map
for (y-0; y<h; y++) I I1 repeat for each row of cells
I1 Process all cells in the current row of the cell map

x - 0:
do (/ / repeat for each cell in row

11 Zip quickly through as many off-cells with no
11 neighbors as possible

while (*cell-ptr - 0) {
cell-ptr++; / I advance to the next cell
if (++x >- w) goto RowDone:

1
I / Found a cell that's either on or has on-neighbors,
/ I so see if its state needs to be changed
count - *cell-ptr >> 1; / I I of neighboring on-cells
if (*cell-ptr & 0x01) I

/ / Cell is on; turn it off if it doesn't have
I1 2 or 3 neighbors
if ((count !- 2) && (count !- 3)) (

clear-ce?l(x. y):
draw-pixel(x. y. OFF-COLOR);

1
1 else {

I f Cell is off; turn it on if it has exactly 3 neighbors
if (count - 3) (

set-cell(x. y);
draw-pixel (x. y. ON-COLOR):

1
3
/ I Advance to the next cell
cell-ptr++; / I advance to the next cell byte

) while (++x < w);
RowDone:

1
1

/* Randomly initializes the cellmap to about 50% on-pixels. * I
void cel1map::initO
{

unsigned int x. y. init-length;

344 Chapter 17

/ / Get the seed; seed randomly i f 0 e n t e r e d
c o u t << “Seed (0 f o r random seed): ”;
c i n >> seed;
i f (seed =- 0) seed = (uns igned) t ime(NULL) :

/ / Randomly i n i t i a l i z e t h e i n i t i a l c e l l map t o 50% a n - p i x e l s
/ / (a c t u a l l y g e n e r a l l y f e w e r , b e c a u s e some c o o r d i n a t e s will be
/ / randomly se lec ted more t han once)
c o u t << “ I n i t i a l i z i n g . . . “ :
s rand (seed) ;
i n i t - l e n g t h - (h e i g h t * w i d t h) / 2:
do {

x = random(w id th) :
y - random(he igh t) ;
i f (c e l l - s t a t e (x . y) -= 0) 1

I
s e t - c e l l (x . y) ;

I
I w h i l e (- i n i t - l e n g t h) ;

The large model is actually not necessary for the 96x96 cellmap in Listing 17.5. How-
ever, I was actually more interested in seeing a fast 200x200 cellmap, and two 200x200
cellmaps can’t fit in a single segment. (This can easily be worked around in assembly
language for cellmaps up to a segment in size; beyond that size, cellmap scanning
becomes pretty complex, although it can still be efficiently implemented with some
clever programming.)
Anyway, using the large model helps illustrate that it’s the data representation and
the data processing approach you choose that matter most. Optimization details like
memory models and segments and in-line functions and assembly language are im-
portant but secondary. Let your mind roam creatively before you start coding.
Otherwise, you may find you’re writing well-tuned slow code, which is by no means
the same thing as fast code.
Take a close look at Listing 17.5. You will see that it’s quite a bit simpler than Listing
17.4. To some extent, that’s because I decided to hard-wire the program to wrap
around from one edge of the cellmap to the other (it’s much more interesting that
way), but the main reason is that it’s a lot easier to work with the neighbor-count
model. There’s no complex mask and pointer management, and the only thing that
reuZ(y needs to be optimized is scanning for zero bytes. (And, in fact, I haven’t opti-
mized even that because it’s done in a Ct+ loop; it should really be REPZ SCASB.)
In truth, none of the code in Listing 17.5 is particularly well-optimized, and, as I
noted, the program must be compiled with the large model for large cellmaps. Also,
of course, the entire program is still in C+t; note well that there’s not a whit of
assembly here.

We’ve gotten more than a 30-times speedup simply by removing a little of the ab- p straction that C++ encourages, and by storing andprocessing the data in a manner
appropriate for the typical nature of the data itselJ: In other words, we’ve done

The Game of Life 345

some linear, left-brained optimization (usingpointers and reducing calls) and some
non-linear, right-brained optimization (understanding the real problem and lis-
tening for the creative whisper of non-obvious solutions).

No doubt we could get another two to five times improvement with good assembly
code-but that’s dwarfed by a 30-times improvement, so optimization at a concep-
tual level must come first.

The Challenge That Ate My Life
The most recent optimization challenge I laid my community of readers was to write
the fastest possible Game of Life generation engine. By “engine” I meant that I didn’t
care about time spent in input or output, only time consumed by the call to next-
generation. The time spent updating the cellmap was what I wanted people to
concentrate on.
Here are the rules I laid down for the challenge:

Readers could modify any code in Listing 17.5, except the main loop, as well as
change the cell map representation any way they liked. However, the code had to
produce exactly the same output as Listing 17.5 under all circumstances in order
to be eligible to win.
Engine code had to be less than 400 lines long in total, excluding the video-

Submissions had to compile/assemble with Borland C++ (in either C++ or C

All submissions had to handle cellmaps at least 200x200 in size.
Assembly language could of course be used to speed up any part of the program.

. C rather than C++ was legal as well, so long as entered implementations pro-
duced the same results as Listing 17.5 and 17.2 together and were less than 400
lines long.
All entries would be timed on the same 33 MHz 486 with a 256K external cache.

related code shown in Listing 17.2.

mode, as desired) and/or TASM.

That was the challenge I put to the readers. Little did I realize the challenge it would
lay on me: Entries poured in from the four corners of the globe. Some were plain, some
were brilliant, some were, well, berserk. Many didn’t even work. But all had to be gone
through, examined for adherence to the rules, read, compiled, linked, run, andjudged.
I learned a lot-about a lot of things, not the least ofwhich was the process (or maybe
the wisdom) of laying down challenges to readers.
Who won? What did I learn? To find out, read on.

346 Chapter 17

When I was in hi& school, my gym teacher had us run a race around the soccer
field, or rather, arotiNd a course marked with cones that roughly outlined the shape
of the field. I quickly s d into second place behind Dwight Chamberlin. We cruised
around the field, and &We came to the far corner, Dwight cut across the corner,
inside a cone placed dkwardly far out from the others. I followed, and everyone else
cut inside the cone t$o-except the pear-shaped kid bringing up the rear, who plod-
ded his way around kvery single cone on his way to finishing about half a lap behind.
When the laggar&&nally crossed the finish line, the coach named him the winner, to
my considCE%#&rj@itation. After all, the object was to see who could run the fastest,
wasn’t it?
Actually, it wasn’t. The object was to see who could run the fastest according to the
limitations placed upon the contest. This is a crucial distinction, although usually
taken for granted. Would it have been legitimate if I had cut across the middle of the
field? If I had ridden a bike? If I had broken the world record for the 100 meters by
dropping 100 meters from a plane? Competition has meaning only within a carefully
circumscribed arena.
Why am I telling you this? First, because it is a useful lesson for programming.

,_x I n 8 .

All programming is performed within limitations, some of which can be bent or p changed, but many of which cannot. You cannot change the maximum memory
bandwidth ofa VGA, or the maximum instruction execution rate o f a 486. That is

349

optimization beyond the pale

why the stunning 3 0 demos you see at SIGGRAPH have onlypassing relevance to
everyday life on the desktop. A rule that Intel5 chip designers cannot break is
8086 compatibility, much as I’m sure theya like to, but of course the pip side is
that although RISC chips are technically superiol; they command but a small fraction
of the market: rawperformance is not the arena of competition. Similarly, you will
ofen be unable to change the speczjications for the software you implement.

Breaking the Rules
-

The other reason for the anecdote has to do with the way my second Optimization
Challenge worked itself out. If you’ll recall from the last chapter, the challenge I made
to the readers of PC TECHNIQLES was to devise the fastest possible version of the
Game of Life cellular automata simulation game. I gave an example, laid out the rules,
and stood aside. Good thing, too. Apres moi, le deluge.. . .
And when the dust had settled, I was left with the uneasy realization that every submitted
entry broke the rules. Every single entry. The rules clearly stated that submitted code must
produce exactly the same output as my example implementation under all circumstances
in order to be eligible to win. I do not think that there can be any question about what
“exactly the same output” means. It means the same pixels, in the same colors, at the
same places on the screen at the same points in all the Life simulations that the origi-
nal code was capable of running. Period. And not one of the entries met that standard.
Some submitted listings were more than 400 lines long. Some didn’t display the gen-
eration number at the right side of the screen, didn’t draw the same pixel colors, or
didn’t bother with magnification. Some had bugs. Some didn’t support all possible
cellmap widths and heights up to 200x200, requiring widths and heights that were
specific multiples of a number of cells that lent itself to a particular implementation.
This last mission is, in a way, a brilliant approach, as evidenced by the fact that it yielded
the two fastest submissions, but it is not within the rules of the contest. Some of the
rule-breaking was major, some very minor, and some had nothing to do with the Life
engine itself, but the rules were clear; where was I to draw the line if not with exact
compliance? And I was fully prepared to draw that line rigorously, disqualifjmg some
mind-bending submissions in order to let lesser but fully compliant entries win-until
I realized that there were no fully compliant entries.
Given which, I heaved a sigh of relief, threw away the rules, and picked a winner in
the true spirit of the contest: raw speed. Two winners, in fact: Peter Klerings, a pro-
grammer for Turck GmbH in Munich, Germany, whose entry just plain runs like a
bat out of hell, and David Stafford (who was also the winner of my first Optimization
Challenge), of Borland International, whose entry is slightly slower mainly because
he didn’t optimize the drawing part of the program, in full accordance with the
contest rules, which specifically excluded drawing time from consideration. Unfor-
tunately, Peter’s generation code and drawing code are so tightly intertwined that it
is impossible to separate them, and hence not really possible to figure out whose

350 Chapter 18

generation engine is faster. Anyway, at 180 to 200 generations per second, including
drawing time, for 200x200 cellmaps (and in the neighborhood of lOOOgps for 96x96
cellmaps, the size of my original implementation), they’re the fastest submissions I
received. They’re both more than an order of magnitude faster than my final opti-
mized c++ Life implementation shown in Chapter 17, and more than 300 times
faster than my original, perfectly functional Life implementation. Not 300 percent-
300 times. Cell generations scud across the screen like clouds, and walkers shoot out
like bullets. Each is a worthy winner, and I feel confident that the true objective of
the challenge has been met: pure, breathtaking speed.
Notwithstanding, mea culpa. The next time I lay a challenge, I will define the rules
with scrupulous care. Even so, this was much more than just another cycle-counting
contest. We’re fortunate enough to be privy to a startling demonstration of the power
of the best optimizer anyone has yet devised-you. (That’s the general “you”; I real-
ize that the specific “you” may or may not be quite up to the optimizing level of the
specific “David Stafford” or “Peter Klerings.”)
Onward to the code.

Table-Driven Magic
David Stafford won my first Optimization Challenge by means of a huge look-up
table and an incredible state machine driven by that table. The table didn’t cause
David’s entry to exceed the line limit because David’s submission included code to
generate the table on the fly as part of the build process. David has done himself one
better this time with his QLIFE program; not only does his build process generate a
64K table, but it also generates virtually all his code, consisting of 17,000-plus lines of
assembly language spanning another 64K. What David has done is write the equiva-
lent of a bitblt compiler for the Game of Life; one might in fact call it a Life compiler.
What David’s code generates is still a general-purpose program; it takes arbitrary
seed values, and can run for an arbitrary number of generations, so it’s not as if David
simply hardwired the instructions to draw each successive screen. However, it’s a
general-purpose program that is exquisitely tailored to the task it needs to perform.
All the pieces of QLIFE are shown in Listings 18.1 through 18.5, as follows: Listing
18.1 is BUILD.BAT, the batch file used to build QLIFE; Listing 18.2 is LCOMP.C, the
program used to generate the assembler code and data file QLIFE.ASM; Listing 18.3
is MAIN.C, the main program for QLIFE; Listing 18.4 is VIDEO.C, the video-related
functions, and Listing 18.5 is LIFE.H, the header file. The following sidebar contains
David’s build instructions, exactly as he wrote them. I certainly won’t have room to
discuss all the marvelous intricacies of David’s code; I suggest you look over these
listings until you understand them thoroughly (it took me a day to pick them apart)
because there’s a lot of neat stuff in there, and it’s an approach to performance
programming that operates at a more efficient, tightly integrated level than you may
ever see again. One hint: It helps a lotto build and run LCOMP.C, redirect its output

It’s a Wonderful Life 351

is of
and to with-

LISTING 1 8.1 BUILD.BAT
bcc - v -D%1=%2;%2=%3:%3=%4;%4-%5:%5=%6:%6-%7:%7=%8;%8 1comp.c
lcomp > q l i f e . a s m
tasmx Imx lkh30000 q l i f e
b c c - v -D%1=%2:%2-%3;%3=%4:%4=%5;%5-%6:%6-%7;%7-%8:%8 q l i f e . o b j m a i n . c v i d e 0 . c

LISTING 18.2 LC0MP.C
I / LC0MP.C
/ I
/ / L i f e c o m p i l e r . v e r 1.3
/ I
/ I D a v i d S t a f f o r d
/ I

352 Chapter 18

i n c l u d e < s t d i o . h >
i n c l u d e < s t d l i b. h>
#i n c l ude "1 i f e . h "

#def ine L IST-LIMIT (46 * 138) / / when we need t o use es:

i n t Old. New, Edge, L a b e l :
char Buf [20 1;

v o i d N e x t l (v o i d)

I
char *Seg - "";
i f (WIDTH * HEIGHT > LIST-LIMIT) Seg - "es:" ;

p r i n t f ("mov b p . % s [s i] \ n " . Seg) ;
p r i n t f ("add s i .2 \n") :
p r i n t f ("mov dh . [bp+ l] \ n " 1:
p r i n t f ("and dh,OFEh\n" 1;
p r i n t f (" jmp dx\n") :
>

v o i d N e x t 2 (v o i d 1
(
p r i n t f ("mov b p . e s : [s i l \ n " 1;
p r i n t f ("add s i . 2 \n " 1:
p r i n t f ("mov dh .Cbp+ l l \ n ") :
p r i n t f ("or d h . l \ n ") :
p r i n t f (" jmp dx\n" 1:
1

v o i d B u i l d M a p s (v o i d)

I
u n s i g n e d s h o r t i. j. S i z e , x - 0. y . N1 . N2. N3. C 1 . C2. C3:

p r i n t f ("-DATA segment 'DATA' \na l ign 2 \n" 1:
p r i n t f (" p u b l i c - C e l l M a p \ n " 1:
p r i n t f (" -Ce l lMap labe l word \n") :

f o r (j - 0; j < HEIGHT: j++)

(
f o r (i - 0; i < WIDTH; i++

I
i f (i - 0 I I i - WIDTH-1 I I j -- 0 I I j - HEIGHT-1)

(
p r i n t f ("dw 8000h\n") :

1
e l s e

(
p r i n t f ("dw O\n") :

1
I

1

p r i n t f ("ChangeCell dw O\n") :
p r i n t f ("_RowColMap l a b e l w o r d \ n " 1:

It's a Wonderful Life 353

- 0; j < HEIGHT: j++ 1

i - 0: i < WIDTH: i++)

, i n t f ("dw 0%02x%02xh\n". j . i * 3) :

i f (WIDTH * HEIGHT > LIST-LIMIT)

I
p r i n t f ("Changel dw o f f s e t -CHANGE:-ChangeListl\n") :
p r i n t f ("Change2 dw o f f s e t -CHANGE:-ChangeList2\n") :
p r i n t f (" e n d s \ n \ n ") :
p r i n t f ('"CHANGE segment para publ ic 'FAR_DATA'\n" 1:
1

e l s e
{
p r i n t f (" C h a n g e l dw o f f s e t DGR0UP:-ChangeListl\n") :
p r i n t f ("Change2 dw o f f s e t DGROUP:-ChangeListZ\n") :

1

S i z e - WIDTH * HEIGHT + 1:

p r i n t f (" p u b l i c -ChangeListl\n_ChangeListl l a b e l w o r d \ n " 1:
p r i n t f ("dw %d dup (o f f s e t DGROUP:ChangeCell)\n", Size) :
p r i n t f (" p u b l i c _ C h a n g e L i s t Z \ n - C h a n g e L i s t Z l a b e l w o r d \ n ") :
p r i n t f ("dw %d dup (o f f s e t DGROUP:ChangeCell)\n". S i z e) :
p r i n t f (" e n d s \ n \ n ") :

p r i n t f ("-LDMAP s e g m e n t p a r a p u b l i c 'FAR-DATA'\n") :

do
I
/ / C u r r e n t c e l l s t a t e s
c 1 - (x & 0x0800) >> 11;
C2 - (X & 0x0400) >> 10:
c3 - (x & 0x0200) >> 9;

/ / Ne ighbor coun ts
N 1 - (X & OxOlCO) >> 6:
N2 - (X & 0x0038) >> 3 ;
N3 - (x & 0x0007) :

y - x & Ox8FFF: / / P r e s e r v e a l l b u t t h e n e x t g e n e r a t i o n s t a t e s

i f (C 1 && ((N 1 + C2 -- 2) 1) (N 1 + C2 - 3)))

I
y 1 - 0x4000:
1

i f (! C 1 && (N 1 + C2 - 3))
I
y 1 - 0x4000:
1

if(C2 && ((N2 + C 1 + C3 -- 2) 1 1 (N2 + C 1 + C3 - 3)))
{

1
y 1 - 0x2000:

354 Chapter 18

i f (!C2 && (N2 + C 1 + C3 - 3))

(
y 1 - 0x2000;
I

v o i d GetUpAndDown(v o i d)

(
p r i n t f ("mov ax.[bp+~RowColMap-~CellMapl\n") :
p r i n t f (" o r a h , a h \ n ") :
p r i n t f ("mov dx.%d\n", DOWN) :
p r i n t f ("mov cx.%d\n". WRAPUP) :
p r i n t f (" j z shor t D%d\n" , Labe l) :
p r i n t f ("cmp ah.%d\n" . HEIGHT - 1) :
p r i n t f ("mov cx .%d\n " . UP 1:
p r i n t f (" j b s h o r t D%d\n". Label 1:
p r i n t f ("mov dx,%d\n" . WRAPDOWN) :
p r i n t f ("D%d:\n", Label) :
I

v o i d F i r s t p a s s (v o i d)

(
cha r *Op;
u n s i g n e d s h o r t UpDown - 0:

p r i n t f (" o r g 0%02xOOh\n". (Edge << 7) + (New << 4) + (O l d << 1)) :

/ / r e s e t c e l l
p r i n t f (" x o r b y t e p t r [b p + l l , 0 % 0 2 x h \ n " . (New A O l d) << 1) :

/ / g e t t h e s c r e e n a d d r e s s a n d u p d a t e t h e d i s p l a y
#i f n d e f NOORAW
p r i n t f ("mov a1 .160\n") :
p r i n t f ("mov bx,[bp+-RowColMap-~CellMapl\n" 1:
p r i n t f ("mu1 bh \n " 1:
p r i n t f ("add ax.ax\n") :
p r i n t f ("mov bh.O\n") :
p r i n t f ("add bx.ax\n" 1: / / bx - s c r e e n o f f s e t

i f (((New A O l d) & 6) - 6

p r i n t f ("mov word p t r f s : ~ b x] . 0 % 0 2 x % 0 2 x h \ n " .
(New & 2) ? 1 5 : 0,
(New & 4) ? 15 : 0 1;

It's a Wonderful Life 355

i f ((New A O l d) & 1)
(
p r i n t f ("mov b y t e p t r f s : C b x + 2 l . % s \ n " ,

1
(New & 1) ? "15" : " d l " 1:

1
e l s e

{
i f (((New A O l d) & 3) - 3)

I
p r i n t f ("mov word p t r f s : [b x + l] . 0 % 0 2 x % 0 2 x h \ n " .

(New & 1) ? 15 : 0.
(New & 2) ? 15 : 0) ;

1
e l s e

I
i f ((New A O l d) & 2)

(
p r i n t f ("mov b y t e p t r f s : C b x + l l . % s \ n " .

1
(New & 2) ? "15" : " d l " 1:

i f ((New A O l d) & 1
{
p r i n t f ("mov b y t e p t r f s : [b x + 2 1 . % s \ n " .

1
(New & 1) ? "15" : " d l ") :

1

i f ((New A O l d) & 4 1
I
p r i n t f c "mov b y t e p t r f s : [b x l . % s \ n " .

1
(New & 4) ? "15" : " d l ") ;

I
#end i f

i f ((New O l d) & 4) UpDown +- (New & 4) ? 0x48 : -0x48;
i f ((New A O l d) 8 2) UpDown +- (New & 2) ? 0x49 : -0x49;
i f ((New A O l d) & 1 UpDown +- (New & 1) ? Ox09 : -0x09;

i f (Edge)

(
GetUpAndDownO; / / ah - row, a1 - c o l . c x - up. dx - down

i f ((New A O l d) & 4)
(
p r i n t f ("mov d i . % d \ n " . WRAPLEFT 1: / I d i - l e f t
p r i n t f ("cmp a l .O\n" 1:
p r i n t f (" j e s h o r t L % d \ n " . L a b e l 1;
p r i n t f ("mov d i . % d \ n " . LEFT) ;
p r i n t f (" L % d : \ n " . L a b e l) ;

i f (New & 4 Op - " i n c " :
e l s e Op - "dec":

p r i n t f ("%s word p t r [b p + d i l \ n " . Op) ;
p r i n t f ("add d i . cx \n ") :
p r i n t f ("%s word p t r C b p + d i l \ n " . Op 1;
p r i n t f (" s u b d i . c x \ n " 1:

356 Chapter 18

p r i n t f ("add d i . dx \n ") :

p r i n t f (" % s word p t r [b p + d i l \ n " . Op) :
I

i f ((New A O l d) & 1 1
I
p r i n t f ("mov d i . % d \ n " . WRAPRIGHT 1: I1 d i = r i g h t
p r i n t f ("cmp a l . % d \ n " . (WIDTH - 1) * 3) :

p r i n t f (" j e s h o r t R%d\n", Label) :
p r i n t f ("mov d i . % d \ n " . RIGHT) :
p r i n t f ("R%d:\n". Label) ;

i f (New & 1 Op = "add":
e l s e Op = "sub".

p r i n t f ("%s word p t r [b p + d i l , 4 0 h \ n " . Op) :
p r i n t f ("add d i . cx \n " 1;
p r i n t f ("%s word p t r [b p + d i I , 4 0 h \ n " . Op) :
p r i n t f (" sub d i . cx \n ") ;
p r i n t f ("add d i . dx \n ") :
p r i n t f (" % s word p t r [b p + d i l , 4 0 h \ n " . Op 1 :
I

p r i n t f ("mov d i . c x \ n " 1:
p r i n t f ("add word p t r [bp+d i l .%d\n" . UpDown 1 :
p r i n t f ("mov d i . d x \ n " 1:
p r i n t f ("add word p t r [bp+d i I ,%d\n" . UpDown) :

p r i n t f ("mov d l .O\n" 1 :
1

e l s e
(
i f ((New O l d) & 4)

(
i f (New & 4 Op = " i n c " :
e l s e Op = "dec":

p r i n t f ("%s b y t e p t r [b p + % d l \ n " . Op. LEFT) :

p r i n t f ("%s b y t e p t r [b p + % d l \ n " . Op. UPPERLEFT) :

p r i n t f ("%s b y t e p t r [b p + % d l \ n " . Op, LOWERLEFT 1 ;

i f ((New A O l d) & 1)

I
i f (New & 1) Op = "add":
e l s e Op = "sub".

p r i n t f ("%s word p t r [bp+%dl.40h\n". Op. RIGHT) :
p r i n t f ("%s word p t r [bp+%d].40h\n". Op. UPPERRIGHT 1 :
p r i n t f ("%s word p t r [bp+%d].40h\n". Op. LOWERRIGHT) :

I

i f (abs(UpDown) > 1)

I
p r i n t f ("add word p t r [bp+%dl.%d\n". U P , UpDown) :
p r i n t f ("add word p t r [bp+%dl,%d\n". DOWN, UpDown) :

1
e l s e

t
i f (UpDown == 1) Op - " i n c " :
e l s e Op = "dec":

It's a Wonderful Life 357

p r i n t f ("%s b y t e p t r [bp+%d]\n". Op. UP 1;
p r i n t f ("%s b y t e p t r [b p + % d l \ n " . Op. DOWN 1;
1

1

N e x t 1 () ;
1

v o i d T e s t (c h a r * O f f s e t , c h a r * S t r
I
p r i n t f ("mov bx .Cbp+%sl \n" . Of fse t) ;
p r i n t f ("cmp b h . [b x l \ n " 1;
p r i n t f (" j n z sho r t F IX_%s%d\n " . S t r . Labe l) ;
p r i n t f ("%s%d:\n" , St r . Label) ;

1

v o i d F i x (c h a r * O f f s e t . c h a r *Str. i n t JumpBack 1
(
p r i n t f ("FIX-%s%d:\n" . St r . Label) ;
p r i n t f ("mov b h . [b x l \ n ") ;
p r i n t f ("mov [bp+%s l ,bx \n " . O f f se t 1;

i f (* O f f s e t !- ' 0 ' p r i n t f (" l e a a x . [b p + % s l \ n " . O f f s e t) ;
e l s e p r i n t f ("mov ax.bp\n") ;

p r i n t f (" s t o s w \ n " 1;

i f (JumpBack) p r i n t f (" j m p s h o r t % s % d \ n " . Str. Label 1;
1

vo id Secondpass (vo id
I
p r i n t f (" o r g O%OZxOOh\n".

(Edge << 7) + (New << 4) + (O l d << 1) + 1 1;

i f (Edge)
I
/ / f i n i s h e d w i t h s e c o n d p a s s
i f (New - 7 && O l d - 0

(
p r i n t f ("cmp b p . o f f s e t DGROUP:ChangeCell\n") ;
p r i n t f (" j n e s h o r t N o t E n d \ n ") ;
p r i n t f ("mov word p t r e s : [d i] . o f f s e t DGROUP:ChangeCell\n" 1;
p r i n t f ("pop d i s i bp ds\n" 1;
p r i n t f ("mov Changece l l .O\n") ;
p r i n t f (" r e t f \ n " 1;
p r i n t f (" N o t E n d : \ n ") ;

1

GetUpAndDownO; / / ah - row, a1 - c o l . c x - up . dx - down

p r i n t f ("push s i \ n " 1;
p r i n t f ("mov s i . % d \ n " . WRAPLEFT 1; / / s i - l e f t
p r i n t f ("cmp a l .O\n") ;
p r i n t f (" j e s h o r t L%d\n". Label) ;
p r i n t f ("mov s i . % d \ n " . LEFT 1;
p r i n t f ("L%d:\n". Label 1;

358 Chapter 18

T e s t (" s i " , "LEFT" 1:
p r i n t f ("add s i , cx \n ") :
T e s t (" s i " . "UPPERLEFT") :
p r i n t f (" s u b s i . c x \ n " 1 ;
p r i n t f ("add s i . d x \ n ") :
T e s t (" s i " . "LOWERLEFT") :

p r i n t f ("mov s i , c x \ n ") :
T e s t (" s i " . "UP" 1:
p r i n t f ("mov s i . d x \ n ") ;
T e s t (" s i " . "DOWN") :

p r i n t f ("cmp b y t e p t r [bp+_RowColMap-_CellMapl.%d\n".
(WIDTH - 1) * 3) :

p r i n t f ("mov s i .%d\n". WRAPRIGHT) ; / / s i = r i g h t
p r i n t f (" j e shor t R%d\n" . Labe l) :
p r i n t f ("mov s i . % d \ n " , RIGHT 1:
p r i n t f ("R%d:\n". Label) :

T e s t (" s i " . "RIGHT") ;
p r i n t f (" a d d s i . c x \ n ") :
T e s t (" s i " . "UPPERRIGHT" 1:
p r i n t f (" sub s i . cx \n ") :
p r i n t f ("add s i . dx \n ") :
T e s t (" s i " . "LOWERRIGHT") ;

}
e l s e

I
T e s t (i t o a (LEFT, Buf. 1 0) , "LEFT") ;
T e s t (i t o a (UPPERLEFT. Buf. 10) . "UPPERLEFT") ;
T e s t (i t o a (LOWERLEFT. B u f . 10) , "LOWERLEFT") :

T e s t (i t o a (UP, B u f . 10 1, "UP") :
T e s t (i t o a (DOWN, Buf, 10) . "DOWN") ;
T e s t (i t o a (RIGHT, Buf. 1 0 1 , "RIGHT" 1 ;
T e s t (i t o a (UPPERRIGHT. B u f . 10 1, "UPPERRIGHT" 1 ;
T e s t (i t o a (LOWERRIGHT. B u f , 10) , "LOWERRIGHT") :

I

if(New = O l d) T e s t ("0" . "CENTER") :

i f(Edge) p r i n t f ("pop s i \ n " " m O V d l .O\n") ;

NextE() :

i f (Edge)

I
F i x (" s i " , "LEFT", 1) :
F i x (" s i " , "UPPERLEFT". 1) :

F i x (" s i " , "LOWERLEFT". 1) :

F i x (" s i " , "UP", 1) ;
F i x (" s i " . "DOWN". 1) :
F i x (" s i " . "RIGHT". 1) :
F i x (" s i " . "UPPERRIGHT". 1 1:
F i x (" s i " , "LOWERRIGHT". New == O l d) ;

1
e l s e

I
F i x (i t o a (LEFT. Buf, 10) . "LEFT", 1) :
F i x (i t o a (UPPERLEFT. B u f . 10 1, "UPPERLEFT". 1) ;
F i x (i t o a (LOWERLEFT. B u f . 10 1, "LOWERLEFT". 1 1:

It's a Wonderful Life 359

F i x (i t o a (UP, B u f . 1 0) , " U P " , 1) ;
F i x (i t o a (DOWN, B u f . 10) , "DOWN", 1 1;
F i x (i t o a (RIGHT, Bu f . 10 1, "RIGHT", 1) :
F i x (i t o a (UPPERRIGHT. B u f . 1 0) , "UPPERRIGHT". 1) ;
F i x (i t o a (LOWERRIGHT. Bu f . 10) , "LOWERRIGHT". New -= O l d) ;

1

if(New - O l d) F i x ("0". "CENTER". 0) ;

i f(Edge) p r i n t f (" p o p s i \ n " "mov d l .O\n") ;

NextE() :
1

v o i d m a i n (v o i d)

(
c h a r *Seg = "ds";

B u i l d M a p s O :

p r i n t f ("DGROUP g roup _DATA\n") ;
p r i n t f (" L I F E s e g m e n t 'CODE'\n") ;
p r i n t f ("assume cs:LIFE.ds:DGROUP,ss:DGROUP,es:NOTHING\n") :
p r i n t f (" .386C\n" "publ ic -NextGen\n\n" 1;

f o r (Edge = 0: Edge <= 1; Edge++)

I
f o r (New = 0 ; New < 8 : New++)

{
f o r (O l d - 0; O l d < 8 : Old++

I
i f (New != O l d F i r s t p a s s o : L a b e l * ;
SecondPassO: Label++:
1

1

/ / f i n i s h e d w i t h f i r s t p a s s
p r i n t f (" o r g O\n") ;
p r i n t f ("mov s i .Changel \n") :
p r i n t f ("mov d i .ChangeZ\n") ;
p r i n t f ("mov C h a n g e l . d i \ n ") ;
p r i n t f ("mov ChangeZ,si \n") :
p r i n t f ("mov Changecel l .OF000h\n") ;
p r i n t f c "mov ax.seg -LDMAP\n") ;
p r i n t f ("mov ds .ax \n" 1 :
NextZ() ;

/ I e n t r y p o i n t
p r i n t f ('"NextGen: push ds bp s i d i \ n " " c l d \ n ") :

i f (WIDTH * HEIGHT > LIST-LIMIT) Seg - "seg -CHANGE";

p r i n t f ("mov ax.%s\n". Seg) ;
p r i n t f ("mov es ,ax \n") :

#i f n d e f NDDRAW
p r i n t f ("mov ax.OAOOOh\n") :
p r i n t f ("mov f s , a x \ n ") :
#end i f

360 Chapter 18

p r i n t f ("mov s i . C h a n g e l \ n " 1:
p r i n t f ("mov d l .O \n " 1:
Nex t1 () :

p r i n t f (" L I F E e n d s \ n e n d \ n " 1 :
I

LISTING 18.3 MA1N.C
/ / MA1N.C
I /
/ / D a v i d S t a f f o r d
/ /

li n c l ude < s t d l i b . h>
i n c l u d e < s t d i o . h >
i n c l u d e < c o n i o . h >
i n c l u d e < t i m e . h >
ii nc l ude < b i o s . h>
#i n c l ude "1 i f e . h"

/ / f u n c t i o n s i n VIDE0.C
v o i d e n t e r - d i s p l a y - m o d e (v o i d 1:
v o i d e x i t - d i s p l a y - m o d e (v o i d) :
v o i d s h o w - t e x t (i n t x . i n t y . c h a r * t e x t) :

v o i d I n i t c e l l m a p (v o i d)
I
u n s i g n e d i n t i. j , t. x . y . i n i t :

f o r (i n i t - (HEIGHT * WIDTH * 3) / 2; i n i t : i n i t - 1
I
x - random(WIDTH * 3) :
y - random(HEIGHT):

Cel lMapC (y * WIDTH) + x / 3 1 1 - Ox1000 << (2 - (x % 3)) :
1

f o r (i - j - 0: i < WIDTH * HEIGHT: i++ 1
t
i f (CellMapC i 1 & 0x7000 1

ChangeL is t lC j++ 1 - (shor t)&Ce l lMapC i 1:
J

1

1
NextGenO: / / S e t c e l l s t a t e s , p r i m e t h e pump.

v o i d m a i n (v o i d 1
I
u n s i g n e d l o n g g e n e r a t i o n - 0:
c h a r g e n - t e x t [80 1:
l o n g s t a r t - t i m e . e n d - t i m e :
u n s i g n e d i n t s e e d :

p r i n t f ("Seed (0 f o r random seed): ") :
scanf("%d". &seed) :
i f (seed - 0) seed - (uns igned) t ime(NULL) :
srand(seed 1:

It's a Wonderful Life 361

i f n d e f NODRAW
en te r -d i sp lay -mode0 :
show-text (0. 10. "Genera t ion : ") :
#end? f

I n i t C e l l m a p O : / / r a n d o m l y i n i t i a l i z e c e l l map

- b ios - t imeo fday (-TIME-GETCLOCK. & s t a r t - t i m e) :

do
(
NextGenO:
generat ion++:

#i f n d e f NOCOUNTER
s p r i n t f (g e n - t e x t . " % 1 0 1 u " . g e n e r a t i o n 1:
show-text (0. 12. gen-text 1:
#endi f
I

C i f d e f GEN
w h i l e (g e n e r a t i o n < GEN 1:
e l s e
w h i l e (! k b h i t O) :
#endi f

- b i o s _ t i m e o f d a y (-TIMELGETCLOCK. &end-t ime) :
end-t ime -- s t a r t - t i m e :

i f n d e f NODRAW
g e t c h (1: / / c l e a r k e y p r e s s
e x i t - d i s p l a y - m o d e 0 :
e n d i f

p r i n t f (" T o t a l g e n e r a t i o n s : % l d \ n S e e d : % u \ n " . g e n e r a t i o n . s e e d):
p r i n t f (" % l d t i c k s \ n " . e n d - t i m e 1:
p r i n t f ("Time: %f generat ions/second\n" .

1
(doub1e)genera t i on / (doub1e)end-t ime * 18.2 1:

LISTING 18.4 VIDE0.C
/* VGA mode 1 3 h f u n c t i o n s f o r Game o f L i f e .

i n c l u d e < s t d i o . h >
i n c l u d e < c o n i o . h >
#i nc l ude <dos f h>

d e f i n e TEXT-X-OFFSET 28
d e f i n e SCREEN-WIDTH-IN-BYTES 320

d e f i n e SCREEN-SEGMENT OxAOOO

T e s t e d w i t h B o r l a n d C++. * /

/ * Mode 1 3 h m o d e - s e t f u n c t i o n . * /
v o i d e n t e r - d i s p l a y - m o d e 0
I

u n i o n REGS r e g s e t :

regse t . x .ax - 0x0013:
i n t 8 6 (0 x 1 0 . & r e g s e t . & r e g s e t) :

3

362 Chapter 18

I* T e x t mode m o d e - s e t f u n c t i o n . * I
v o i d e x i t - d i s p l ay-mode()

u n i o n REGS r e g s e t :

r e g s e t . x . a x - 0x0003:
i n t 8 6 (0 x 1 0 . & r e g s e t , & r e g s e t) :

1

/* T e x t d i s p l a y f u n c t i o n . O f f s e t s t e x t t o n o n - g r a p h i c s a r e a o f

v o i d s h o w - t e x t (i n t x . i n t y . c h a r * t e x t)
I

screen. * I

gotoxy(TEXT-XKOFFSET + x . y) :
p u t s (t e x t) :

1

LISTING 18.5 1IFE.H
v o i d f a r N e x t G e n (v o i d 1:

e x t e r n u n s i g n e d s h o r t C e l l M a p [l ;
e x t e r n u n s i g n e d s h o r t f a r C h a n g e L i s t l C I :

d e f i n e LEFT
l d e f i ne RIGHT
d e f i n e UP
d e f i n e DOWN
d e f i n e UPPERLEFT
d e f i n e UPPERRIGHT
d e f i n e LOWERLEFT
% d e f i n e LOWERRIGHT
d d e f i n e WRAPLEFT
d e f i n e WRAPRIGHT
d e f i n e WRAPUP
d e f i n e WRAPOOWN

(- 2)
(+2 1
(WIDTH * LEFT)
(WIDTH * RIGHT)
(U P + LEFT)
(U P + RIGHT)
(DOWN + LEFT)
(DOWN + RIGHT)
(RIGHT * (WIDTH - 1))
(LEFT * (WIDTH - 1))
(DOWN * (HEIGHT - 1))
(UP * (HEIGHT - 1))

Keeping Track of Change with a Change List
In my earlier optimizations to the Game of Life, described in the last chapter, I noted
that most cells in a Life cellmap are dead, and in most cases all the neighbors are
dead as well. This observation enabled me to get a major speed-up by scanning the
cellmap for the few non-zero bytes (cells that were either alive or have neighbors
that are alive). Although that was a big improvement, it still required my code to
touch every cell to check its state. David has improved on this by maintaining a change
list; that is, a list of pointers to cells that change in the current generation. Only
those cells and their neighbors need to be checked or touched in any way in order to
create the next generation, saving a great many instructions and also a great many
cache misses due to the fact that cellmaps are too big to fit into the 486’s internal
cache. During a given generation, David runs down the list of cells that changed
from the previous generation to make the changes for this generation, and in the
process generates the change list for the next generation.
That’s the overall approach, but this being David Stafford, it’s not that simple, of
course. I’ll let him tell you how his implementation works in his own words. (I’ve

It’s a Wonderful Life 363

edited David’s text a bit, and added my own comments in square brackets, so blame
me for any errors.)
“Each three cells in the life grid are packed into two bytes, as shown in Figure 18.1.
So, it is convenient if the width of the cell array is an even multiple of three. There’s
nothing in the algorithm that prevents it from supporting any arbitrary size, but the
code is a bit simpler this way. So if you want a 200x200 grid, I recommend just using
a 201x200 grid, and be happy with the extra free column. Otherwise the edge wrap-
ping code gets more complex.
“Since every cell has from zero to eight neighbors, you may be wondering how I can
manage to keep track of them with only three bits. Each cell really has only a maximum
of seven neighbors since we only need to keep track of neighbors uutsde of the current
cell word. That is, if cell ‘B’ changes state then we don’t need to reflect this in the
neighbor counts of cells ‘A’ and ‘C.’ Updating is made a little faster. [In other words,
when David picks up a word representing three cells, each of the three cells has at
least one of the other cells in that word as a neighbor, and the state of that neighbor
is stored right in that word, as shown in Figure 18.1. Therefore, the neighbor count

E A B C a b c X X X Y Y Y Z Z Z

-

B i t 1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0
5 4 3 2 1 0

E : 0 if cell is internal (nonedge, so no wrapping), 1 if on

ABC : the life/death cell states for the next generation

abc : the life/death cell states for the current generation

XXX : the neighbor count for cell A

YYY : the neighbor count for cell B
ZZZ : the neighbor count for cell C

an edge (involves wrapping)

Cells A, B, and C are horizontall adjacent, and are the
leftmost, center, and rightmost ce Y Is, respectively, represented
by this cell triplet.

Cell triplet storage.
Figure 18.1

364 Chapter 18

for a given cell never needs to reflect more than seven neighbors, because at least
one of the eight neighbors’ states is already encoded in the word.]
“The basic idea is to maintain a ‘change list.’ This is an array of pointers into the cell
array. Each change list element points to a word which changes in the next genera-
tion. This way we don’t have to waste time scanning every cell since most of them do
not change. Two passes are made through the change list. The first pass updates the
cell display on the screen, sets the life/death status of each cell for this new genera-
tion, and updates the neighbor counts for the adjacent cells. There are some
efficiencies gained by using cell triplets rather than individual cells since we usually
don’t need to set all eight neighbors. [Again, the neighbor counts for cells in the
same word are implied by the states of those cells.] The second pass sets the next-
generation states for the cells and their neighbors, and in the process builds the
change list for the next generation.
“Processing each word is a little complex but very fast. A 64K block of code exists
with routines on each 256-byte boundary. Generally speaking, the entry point corre-
sponds to the high byte of the cell word. This byte contains the life/death values and
a bit to indicate if this is an edge condition. During the first pass we take the cell
triplet word, AND it with OXFEOO, and jump to that address. During the second pass
we take the cell triplet word, AND it with OxFE00, OR it with 0x0100, and jump to
that address. [Therefore, there are 128 possible jump targets on the first pass, and
128 more on the second, all on 256-byte boundaries and all keyed off the high 7 bits
of the cell triplet state; because bit 8 of the jump index is 0 on the first pass and 1 on
the second, there is no conflict. The lower bit isn’t needed for other purposes be-
cause only the edge flag bit and the six life/death state bits matter for jumping into
David’s state machine. The other nine bits, the bits used for the neighbor counts, are
used only in the next step.]
“Determining which changes must be made to a cell triplet is easy and surprisingly
quick. There’s no counting! Instead, I use a 64K lookup table indexed by the cell
triplet itself. The value of the lookup table entry is equal to what the high byte should
be in the next generation. If this value is equal to the current high byte, then no
changes are necessary to the cell. Otherwise it is placed in the change list. Look at
the code in the Test() and Fix() functions to see how this is done.” [This step is as
important as it is obscure. David has a 64K table organized so that if you use a word
describing a cell triplet as a lookup index, the byte you will read will be the state of
the high byte for the next generation. In other words, David’s table is constructed so
that the edge flag bit, the life/death states, and the three neighbor count fields form
an index to a byte describing the next generation state for that triplet. In practice,
only the next generation field of the cell changes. Then, if another change to a
nearby cell tries to nudge that cell into changing again, David’s code sees that the
desired state is already set, and does not add that cell to the change list again.]

It’s a Wonderful Life 365

Segment usage in David’s assembly code is summarized in Listing 18.6.

LISTING 18.6 QLIFE Assembly Segment Usage
C S : 6 4 K c o d e (t a b l e o f r o u t i n e s on 256 b y t e b o u n d a r i e s)
DS : DGROUP (1st pass) / 6 4 K c e l l l i f e / d e a t h c l a s s i f i c a t i o n t a b l e (s e c o n d p a s s)
ES : Change l i s t
SS : DGROUP: t h e l i f e c e l l g r i d and row /co lumn tab le
FS : Video segment
GS : Unused

A Layperson‘s Overview of QLIFE
Most likely, you’re scratching your head right now in bemusement. I don’t blame
you; I felt the same way myself at first. It’s actually pretty simple, though, once you
have the hang of it. Basically, David runs down the change list, visiting every cell
that’s due to change in this generation, setting it to the new state, drawing it in the
new state, and adjusting the counts of all its neighbors. David has a separate assem-
bly routine for every possible change of state for a cell triplet, and he jumps to the
proper routine by taking the cell triplet word, masking off the lower 9 bits, and
jumping to the address where the appropriate code to perform that particular change
of state resides. He does this for every entry in the change list. When this is com-
pleted, the current generation has been drawn and updated.
Now David runs down the change list again to generate the change list for the next
generation. In this case, for every changed cell triplet, David looks at that triplet and
all affected neighbors to see which will change in the next generation. He tests for this
condition by using each potentially changed cell triplet word as an index into the
aforementioned lookup table of new states. If the current state matches the appropri-
ate state for the next generation, then there’s nothing to do and the cell is not added
to the change list. If the states don’t match, then the cell is added to the change list,
and the appropriate state for the next generation is set in the cell triplet. David checks
the minimum possible number of cells for change by branching to code that checks
only the relevant cells around each cell triplet in the current change list; that branch-
ing is accomplished by taking the cell triplet word, masking off the lower 9 bits, setting
bit 8 to a 1-bit, and branching to the routine at that address. As with everything in this
amazing program, this represents the least possible work to accomplish the desired
result-just three instructions:

mov d h . [b p + l l
o r d h . 1
jmp dx

These suffice to select the proper, minimum-work code to process the next cell tr ip
let that has changed, and all potentially affected neighbors. For all the size of David’s
code, it has an astonishing economy of effort, as execution glides through the change
list without a wasted instruction.

366 Chapter 18

Alas, I don’t have the room to discuss Peter Klerings’ equally remarkable Life imple-
mentation here. I’ll close this chapter with a quote from Terje Mathisen, one of the
finest optimizers it has ever been my pleasure to meet, who, after looking over David’s
and Peter’s entries, said, “This has been an eye-opening experience for me. I hon-
estly thought I had the fastest possible approach.” TANSTATFC.
There Ain’t No Such Thing As the Fastest Code.

It‘s a Wonderful Life 367

chapter 19

pentium: not the same old song

371

startling results. Nonetheless, the 486 was still too simple to mark a return to the
golden age of optimization.

The Return of Optimization as Art
Then the Pentium came around, and filled our code with optimization hazards, and
life was good again. The Pentium has two execution pipelines and enough rules and
exceptions to those rules to bringjoy to the heart of the hardest-core assemblyjunkie.
For a change, Intel documented most of the Pentium optimization rules and spread
the word about them, so we don’t have to go through as much spelunking of the
Pentium as with its predecessors. They’ve done this, I suspect, largely because more
than any previous x86 processor, the Pentium’s performance is highly dependent on
properly optimized code.
In the worst case, where the second execution pipe is dormant most of the time, the
Pentium won’t perform all that much better than a 486 at the same clock speed. In
the best case, where the second pipe is heavily used and the Pentium’s other advan-
tages (such as branch prediction, write-back cache, 64bit full speed external bus,
and dual 8K caches) can kick in, the Pentium can be more than twice as fast as a 486.
In a critical inner loop, hand optimization can double or even triple performance
over 486-optimized code-and that’s on top of the sorts of algorithmic and design
optimizations that are routinely performed on any processor. Good compilers can
make a big difference on the Pentium, too, but there are some gotchas there, to
which I’ll return later.
It’s been a long time coming, but hard-core, big-payoff assembly language optimiza-
tion is back in style, and for the rest of this book I’ll be delving into the Byzantine
wonders of the Pentium. In this chapter, I’ll do a quick overview, then cover a variety
of smaller Pentium optimization topics. In the next chapter, I’ll tackle the 900-pound
gorilla of Pentium optimization: superscalar (dual execution pipe) programming.
Trust me, this’ll be fun.
Listen, do you want to know a secret? This lead-in has been brought to you with the
help of “classic rock”-another way of saying “music Baby Boomers listened to back
when they cared more about music than 401Ks and regular flossing.” There are so
many of us Boomers that our music, even the worst of it, will never go away. When
we’re 90 years old, propped up in our Kraftmatic adjustable beds and surfing the
5,000-channel information superhighway from one infomercial to the next, the sound
system in the retirement communitywill be piping in a Muzak version of “Louie, Louie,”
while on the holovid Country Joe McDonald and the Fish pitch Preparation H. I can
hardly wait.
Gimme a “P”. . . .

372 Chapter 19

The Pentium: An Overview
Architecturally, the Pentiurn is vastly different in many ways from the 486, but most
of those differences are transparent to programmers. After all, the whole idea be-
hind the Pentium is that it runs the same code as previous x86 processors, but faster;
otherwise, Intel could have made a faster, cheaper RISC processor. Still, knowledge
of the Pentium’s architecture is useful for understanding exactly how code will per-
form, and a few of the architectural differences are most decidedly not transparent
to performance programmers.
The Pentium is essentially one full 486 execution unit (EU), plus a second stripped-
down 486 EU, on a single chip. The first EU is referred to as the U execution pipe, or
Upipe; the second, more limited one is called the Vpipe. The two pipes are capable of
executing instructions simultaneously, have separate write buffers, and can even ac-
cess the data cache simultaneously (although with certain limitations that I’ll discuss
in the next chapter), so on the Pentium it is possible to execute two instructions,
even instructions that access memory, in a single clock. The cycle times for instruc-
tion execution in a given pipe (both pipes process instructions at the same speed)
are comparable to those for the 486, although some instructions-notably MUL, the
repeated string instructions, and some of the shifts and rotates-have gotten faster.
My first thought upon hearing of the Pentium’s dual pipes was to wonder how often
the prefetch queue stalls for lack of instruction bytes, given that the demand for in-
struction bytes can be twice that of the 486. The answer is: rarely indeed, and then only
because the code is not in the internal cache. The 486 has a single 8K cache that stores
both code and data, and prefetching can stall if data fetching doesn’t allow time for
prefetching to occur (although this rarely happens in practice).

The Pentiurn, on the other hand, has two separate 8K caches, one for code and one 1 for data, so codepreftches can never collide with datafetches; the prefetch queue
can stall only when the code being fetched isn ’t in the internal code cache.

(And yes, self-modifying code still works; as with all Pentium changes, the dual caches
introduce no incompatibilities with 386/486 code.) Also, because the code and data
caches are separate, code can’t be driven out of the cache in a tight loop that ac-
cesses a lot of data, unlike the 486. In addition, the Pentium expands the 486’s 32-byte
prefetch queue to 128 bytes. In conjunction with the branch prediction feature (de-
scribed next), which allows the Pentium to prefetch properly at most branches, this
larger prefetch queue means that the Pentium’s two pipes should be better fed than
those of any previous x86 processor.

Crossing Cache Lines
There are three other characteristics of the Pentium that make for a healthy supply
of instruction bytes. One is that the Pentium can prefetch instructions across cache

Pentium: Not the Same Old Song 373

lines. Unlike the 486, where there is a 3-cycle penalty for branching to an instruction
that spans a cache line, there’s no such penalty on the Pentium. The second is that
the cache line size (the number of bytes fetched from the external cache or main
memory on a cache miss) on the Pentium is 32 bytes, twice the size of the 486’s cache
line, so a cache miss causes a longer run of instructions to be placed in the cache
than on the 486. The third is that the Pentium’s external bus is twice as wide as the
486’s, at 64 bits, and runs twice as fast, at 66 MHz, so the Pentium can fetch both
instruction and data bytes from the external cache four times as fast as the 486.

Even when the Pentium is runningflat-out with both pipes in use, it can generally p consume only about twice as many bytes as the 486; so the ratio ofexternal memory
bandwidth to processing power is much improved, although real-world perfor-
mance is heavily dependent on the size and speed ofthe external cache.

The upshot of all this is that at the same clock speed, with code and data that are
mostly in the internal caches, the Pentium maxes out somewhere around twice as
fast as a 486. (When the caches are missed a lot, the Pentium can get as much as
three to four times faster, due to the superior external bus and bigger caches.) Most
of this won’t affect how you program, but it is useful to know that you don’t have to
worry about instruction fetching. It’s also useful to know the sizes of the caches be-
cause a high cache hit rate is crucial to Pentium performance. Cache misses are
vastly slower than cache hits (anywhere from two to 50 or more times as slow, de-
pending on the speed of the external cache and whether the external cache misses
as well), and the Pentium can’t use the V-pipe on code that hasn’t already been
executed out of the cache at least once. This means that it is very important to get the
working sets of critical loops to fit in the internal caches.
One change in the Pentium that you definitely do have to worry about is superscalar
execution. Utilization of the V-pipe can range from near zero percent to 100 percent,
depending on the code being executed, and careful rearrangement of code can
have amazing effects. Maxing out V-pipe use is not a trivial task; I’ll spend all of the
next chapter discussing it so as to have time to cover it properly. In the meantime,
two good references for superscalar programming and other Pentium information
are Intel’s Pentium Processor User’s Manual: V o l u ~ ~ ~ 3 : Architecture and BopammingManual
(ISBN 1-55512-195-0; Intel order number 241430-OOl), and the article “Optimizing
Pentium Code” by Mike Schmidt, in DX Dobb’sJoumal for January 1994.

Cache Organization
There are two other interesting changes in the Pentium’s cache organization. First,
the cache is two-way set-associative, whereas the 486 is four-way set-associative. The
details of this don’t matter, but simply put, this, combined with the 32-byte cache
line size, means that the Pentium has somewhat coarser granularity in both space
and time than the 486 in terms of packing bytes into the cache, although the total

374 Chapter 19

cache space is now bigger. There’s nothing you can do about this, but it may make it
a little harder to get a loop’s working set into the cache. Second, the internal cache
can now be configured (by the BIOS or OS; you won’t have to worry about it) for
write-back rather than write-through operation. This means that writes to the inter-
nal data cache don’t necessarily get propagated to the external bus until other
demands for cache space force the data out of the cache, making repeated writes to
memory variables such as loop counters cheaper on average than on the 486, al-
though not as cheap as registers.
As a final note on Pentium architecture for this chapter, the pipeline stalls (what
Intel calls AGIs, for Address Generation Interlocks) that I discussed earlier in this book
(see Chapter 12) are still present in the Pentium. In fact, they’re there in spades on
the Pentium; the two pipelines mean that an AGI can now slow down execution of
an instruction that’s three instructions away from the AGI (because four instructions
can execute in two cycles). So, for example, the code sequence

add edx.4 ; U - p i p e cycle 1
mov ecx.[ebxl ; V - p i p e cycle 1
add ebx.4 ; U - p i p e cycle 2
mov [edxl.ecx ; V - p i p e cycle 3

; due t o A G I
; (w o u l d have been
; V - p i p e cycle 2)

takes three cycles rather than the two cycles it should take, because EDX was modi-
fied on cycle 1 and an attempt was made to use it on cycle two, before the AGI had
time to clear-even though there are two instructions between the instructions that
are actually involved in the AGI. Rearranging the code like

mov ecx.[ebxl ; U - p i p e cycle 1
add ebx.4 ; V - p i p e cycle 1
mov [edx+4].ecx :U -p ipe cycle 2
add edx.4 ; V - p i p e cycle 2

makes it functionally identical, but cuts the cycles to 2-a 50 percent improvement.
Clearly, avoiding AGIs becomes a much more challenging and rewarding game in a
superscalar world, one to which I’ll return in the next chapter.

Faster Addressing and More
I’ll spend the rest of this chapter covering a variety of Pentium optimization tips. For
starters, effective address calculations (that is, the addition and scaling required to
calculate a memory operand’s address, as for example in MOV EAX,[EBX+ECX*2+4])
never take any extra cycles on the Pentium (other than possibly an AGI cycle), even
for the use of base+index addressing (as in MOV [ESI+EDI],EAX) or scaling (“2, “4,
or “8, as in INC ARRAY[ESI*4]). On the 486, both of the latter cases cause a l-cycle
penalty. The faster effective address calculations have the side effect of making LEA
very attractive as an arithmetic instruction. LEA can add any two registers, one of

Pentium: Not the Same Old Song 375

which can be multiplied by one, two, four, or eight, plus a constant value, and can store
the result in any register-all in one cycle, apart from AGIs. Not only that, but as we’ll see
in the next chapter, LEA can go through either pipe, whereas SHL can only go through
the U-pipe, so LEA is often a superior choice for multiplication by three, four, five,
eight, or nine. (ADD is the best choice for multiplication by two.) If you use LEA for
arithmetic, do remember that unlike ADD and SHL, it doesn’t modifjr any flags.
As on the 486, memory operands should not cross any more alignment boundaries
than absolutely necessary. Word operands should be word-aligned, dword operands
should be dword-aligned, and qword operands (double-precision variables) should
be qword-aligned. Spanning a dword boundary, as in

mov ebx.3

mov eax.[ebxl

costs three cycles. On the other hand, as noted above, branch targets can now span
cache lines with impunity, so on the Pentium there’s no good argument for the para-
graph (that is, 16-byte) alignment that Intel recommends for 486 jump targets. The
32-byte alignment might make for slightly more efficient Pentium cache usage, but
would make code much bigger overall.

p In fact, given that most jump targets aren ’t in performance-critical code, it’s hard
to make a compelling argument for aligning branch targets even on the 486. I i l
say that no alignment (except possibly where you know a branch target lies in a
key loop), or at most dword alignment f o r the 386) is plenq, and can shrink code
size considerably.

Instruction prefixes are awfully expensive; avoid them if you can. (These include size
and addressing prefixes, segment ovemdes, LOCK, and the OFH prefixes that extend
the instruction set with instructions such as MOVSX. The exceptions are conditional
jumps, a fast special case.) At a minimum, a prefix byte generally takes an extra cycle
and shuts down the V-pipe for that cycle, effectively costing as much as two normal
instructions (although prefix cycles can overlap with previous multicycle instructions, or
AGIs, as on the 486). This means that using 32-bit addressing or 32-bit operands in a
16-bit segment, or vice versa, makes for bigger code that’s significantly slower. So, for
example, you should generally avoid 16-bit variables (shorts, in C) in 32-bit code,
although if using 32-bit variables where they’re not needed makes your data space
get a lot bigger, you may want to stick with shorts, especially since longs use the cache
less efficiently than shorts. The trade-off depends on the amount of data and the
number of instructions that reference that data. (eight-bit variables, such as chars,
have no extra overhead and can be used freely, although they may be less desirable
than longs for compilers that tend to promote variables to longs when performing
calculations.) Likewise, you should if possible avoid putting data in the code seg-
ment and referring to it with a CS: prefix, or otherwise using segment overrides.

376 Chapter 19

LOCK is a particularly costly instruction, especially on multiprocessor machines, be-
cause it locks the bus and requires that the hardware be brought into a synchronized
state. The cost varies depending on the processor and system, but LOCK can make an
INC [r n e m] instruction (which normally takes 3 cycles) 5 , 10, or more cycles slower.
Most programmers will never use LOCK on purpose-it’s primarily an operating sys-
tem instruction-but there’s a hidden gotcha here because the XCHG instruction
always locks the bus when used with a memory operand.

p XCHG is a tempting instruction that b often used in assembly language; for example,
exchanging with video memory is apopular way to read and write VGA memory in
a single instruction-but it b now a bad idea. As it happens, on the 486 and Pentium,
using MOVs to read and write memory is fastel; anyway; and even on the 486, my
measurements indicate a$ve-cycle tax for LOCK in general, and a nine-cycle execu-
tion time for XCHG with memory. Avoid XCHG with memory $you possibly can.

As with the 486, don’t use ENTER or LEAVE, which are slower than the equivalent
discrete instructions. Also, start using TEST reg,reginstead of AND ngregor OR regreg
to test whether a register is zero. The reason, as we’ll see in Chapter 21, is that TEST,
unlike AND and OR, never modifies the target register. Although in this particular
case AND and OR don’t modify the target register either, the Pentium has no way of
knowing that ahead of time, so if AND or OR goes through the U-pipe, the Pentium
may have to shut down the V-pipe for a cycle to avoid potential dependencies on the
result of the AND or OR. TEST suffers from no such potential dependencies.

Branch Prediction
One brand-spanking-new feature of the Pentium is hunch prediction, whereby the
Pentium tries to guess, based on past history, which way (or, for conditional jumps,
whether or not), your code will jump at each branch, and prefetches along the like-
lier path. If the guess is correct, the branch or fall-through takes only 1 cycle“:!
cycles less than a branch and the same as a fall-through on the 486; if the guess is
wrong, the branch or fall-through takes 4 or 5 cycles (if it executes in the U- or V-
pipe, respectively)-1 or 2 cycles more than a branch and 3 or 4 cycles more than a
fall-through on the 486.

p Branch prediction is unprecedented in the x86, and fundamentally alters the na-
ture ofpedal-to-the-metal optimization, for the simple reason that it renders unrolled
loops largely obsolete. Rare indeed is the loop that can ’t afford to spare even 1 or
0 (yes, zero!) cycles per iteration for loop counting, and that j . how low the cost
can go for maintaining a loop on the Pentium.

Also, unrolled loops are bigger than normal loops, so there are extra (and expen-
sive) cache misses the first time through the loop if the entire loop isn’t already in

Pentium: Not the Same Old Song 377

the cache; then, too, an unrolled loop will shoulder other code out of the internal
and external caches. If in a critical loop you absolutely need the time taken by the
loop control instructions, or if you need an extra register that can be freed by unrolling
a loop, then by all means unroll the loop. Don’t expect the sort of speed-up you get from
this on the 486 or especially the 386, though, and watch out for the cache effects.
You may well wonder exactly w h the Pentium correctly predicts branching. Alas, this is
one area that Intel has declined to document, beyond saying that you should endeavor
to fall through branches when you have a choice. That’s good advice on every other
x86 processor, anyway, so it’s well worth following. Also, it’s a pretty safe bet that in a
tight loop, the Pentium will start guessing the right branch direction at the bottom
of the loop pretty quickly, so you can treat loop branches as one-cycle instructions.
It’s an equally safe bet that it’s a bad move to have in a loop a conditional branch that
goes both ways on a random basis; it’s hard to see how the Pentium could consis-
tently predict such branches correctly, and mispredicted branches are more expensive
than they might appear to be. Not only does a mispredicted branch take 4 or 5
cycles, but the Pentium can potentially execute as many as 8 or 10 instructions in
that time-3 times as many as the 486 can execute during its branch time-so cor-
rect branch prediction (or eliminating branch instructions, if possible) is very
important in inner loops. Note that on the 486 you can count on a branch to take 1
cycle when it falls through, but on the Pentium you can’t be sure whether it will take
1 or either 4 or 5 cycles on any given iteration.

As things currently stand, branch prediction is an annoyance for assembly lan- p guage optimization because it’s impossible to be certain exactly how code will
perform until you measure it, and even then it j. drflcult to be sure exactly where
the cycles went. All I can say is try to fall through branches ifpossible, and try to
be consistent in your branching ifnot.

Miscellaneous Pentium Topics
The Pentium has all the instructions of the 486, plus a few new ones. One much-
needed instruction that has finally made it into the instruction set is CPUID, which
allows your code to determine what processor it’s running on. CPUID is 15 years
late, but at least it’s finally here. Another new instruction is CMPXCHGSB, which
does a compare and conditional exchange on a qword. CMPXCHGSB doesn’t seem
to me to be a particularly useful instruction, but I’m sure Intel wouldn’t have added
it without a reason; if you know of a use for it, please pass it along to me.

486 versus Pentium Optimization
Many Pentium optimizations help, or at least don’t hurt, on the 486. Many, but not
all-and many do hurt on the 386. As I discuss various Pentium optimizations, I will
attempt to note the effects on the 486 as well, but doing this in complete detail

378 Chapter 19

would double the sizes of these discussions and make them hard to follow. In gen-
eral, I’d recommend reserving Pentium optimization for your most critical code,
and even there, it’s a good idea to have at least two code paths, one for the 386 and
one for the 486/Pentium. It’s also a good idea to time your code on a 486 before and
after Pentium-optimizing it, to make sure you haven’t hurt performance on what will
be, after all, by far the most important processor over the next couple of years.
With that in mind, is optimizing for the Pentium even worthwhile today? That de-
pends on your application and its market-but if you want absolutely the best possible
performance for your DOS and Windows apps on the fastest hardware, Pentium
optimization can make your code scream.

Going Superscalar
In the next chapter, we’ll look into the single biggest element of Pentium performance,
cranking up the Pentium’s second execution pipe. This is the area in which com-
piler technology is most touted for the Pentium, the two thoughts apparently being
that (1) most existing code is in C, so recompiling to use the second pipe better is an
automatic win, and (2) it’s so complicated to optimize Pentium code that only a
compiler can do it well. The first point is a reasonable one, but it does suffer from
one flaw for large programs, in that Pentium-optimized code is larger than 486- or
386-optimized code, for reasons that will become apparent in the next chapter. Larger
code means more cache misses and more page faults; and while most of the code in
any program is not critical to performance, compilers optimize code indiscriminately.
The result is that Pentium compiler optimization not only expands code, but can be
less beneficial than expected or even slower in some cases. What makes more sense
is enabling Pentium optimization only for key code. Better yet, you could hand-tune
the most important code-and yes, you can absolutely do a better job with a small,
critical loop than any PC compiler I’ve ever seen, or expect to see. Sure, you keep
hearing how great each new compiler generation is, and compilers certainly have
improved; but they play by the same rules we do, and we’re more flexible and know
more about what we’re doing-and now we have the wonderfully complex and pow-
erful Pentium upon which to loose our carbon-based optimizers.
A compiler that generates better code than a good assembly programmer? That’ll be
the day.

Pentium: Not the Same Old Song 379

chapter 20

pentium rules

1%

arbon-Based Optimizer Can
8p Put the “Svper” in Superscalar

At the 1983 West Coht Computer Faire, my friend Dan Illowsky, Andy Greenberg
(co-author of Wizardri) me the best-selling computer game ever), and I had
an animated discussipn about starting a company in the then-budding world of mi-
crocomputer softwdk. One hot new software category at the time was educational

e hottest new educational software companies was Spinnaker
innaker as an example of a company that had been aimed at
ted up properly, and was succeeding as a result. Dan didn’t

at Spinnaker had been given a bundle of money to get off
ng only by spending a lot of that money in order to move

its products. “Heck,” said Dan, “I could get that kind of market share too if I gave
away a fifty-dollar bill with each of my games.”
Remember, this was a time when a program, two diskette drives (for duplicating
disks), and a couple of ads were enough to start a company, and, in fact, Dan built a
very successful game company out of not much more than that. (I’ll never forget
coming to visit one day and finding his apartment stuffed literally to the walls and
ceiling with boxes of diskettes and game packages; he had left a narrow path to the
computer so his wife and his mother could get in there to duplicate disks.) Back
then, the field was wide open, with just about every competent programmer think-
ing of striking out on his or her own to try to make their fortune, and Dan and Andy

and I were no exceptions. In short, we were having a perfectly normal conversation,
and Dan’s comment was both appropriate, and, in retrospect, accurate.
Appropriate, save for one thing: We were having this conversation while walking
through a low-rent section of Market Street in San Francisco at night. A bum sitting
against a nearby building overheard Dan, and rose up, shouting in a quavering voice
loud enough to wake the dead, “Fifty-dollar bill! Fifty-dollar bill! He’s giving away
fifty-dollar bills!” We ignored him; undaunted, he followed us for a good half mile,
stopping every few feet to bellow “fifty-dollar bill!” No one else seemed to notice,
and no one hassled us, but I was mighty happy to get to the sanctuary of the Fairmont
Hotel and slip inside.
The point is, most actions aren’t inherently good or bad; it’s all a matter of context. If
Dan had uttered the words “fiftydollar bill” on the West Coast Faire’s show floor, no
one would have batted an eye. If he had said it in a slightly worse part of town than he
did, we might have learned just how fast the three of us could run.
Similarly, there’s no such thing as inherently fast code, only fast code in context. At
the moment, the context is the Pentium, and the truth is that a sizable number of the
x86 optimization tricks that you and I have learned over the past ten years are obso-
lete on the Pentium. True, the Pentium contains what amounts to about one-and-a-half
486s, but, as we’ll see shortly, that doesn’t mean that optimized Pentium code looks
much like optimized 486 code, or that fast 486 code runs particularly well on a
Pentium. (Fast Pentium code, on the other hand, does tend to run well on the 486;
the only major downsides are that it’s larger, and that the FXCH instruction, which is
largely free on the Pentium, is expensive on the 486.) So discard your x86 precon-
ceptions as we delve into superscalar optimization for this one-of-a-kind processor.

An Instruction in Every Pipe
In the last chapter, we took a quick tour of the Pentium’s architecture, and started to
look into the Pentium’s optimization rules. Now we’re ready to get to the key rules,
those having to do with the Pentium’s most unique and powerful feature, the ability
to execute more than one instruction per cycle. This is known as superscalar execution,
and has heretofore been the sole province of fast RISC CPUs. The Pentium has two
integer execution units, called the Upapeand the Vpape, which can execute two sepa-
rate instructions simultaneously, potentially doubling performance-but only under
the proper conditions. (There is also a separate floating-point execution unit that I
won’t have the space to cover in this book.) Your job, as a performance programmer,
is to understand the conditions needed for superscalar performance and make sure
they’re met, and that’s what this and the next chapters are all about.
The two pipes are not independent processors housed in a single chip; that is, the
Pentium is not like having two 486s in a single computer. Rather, the two pipes are
integral, parallel parts of the same processor. They operate on the same instruction
stream, with the V-pipe simply executing the next instruction that the U-pipe would

384 Chapter 20

have handled, as shown in Figure 20.1. What the Pentium does, pure and simple, is
execute a single instruction stream and, whenever possible, take the next two waiting
instructions and execute both at once, rather than one after the other.
The U-pipe is the more capable of the two pipes, able to execute any instruction in
the Pentium's instruction set. (A number of instructions actually use both pipes at
once. Logically, though, you can think of such instructions as U-pipe instructions,
and of the Pentium optimization model as one in which the U-pipe is able to execute
all instructions and is always active, with the objective being to keep the V-pipe also
working as much of the time as possible.) The U-pipe is generally similar to a full 486
in terms of both capabilities and instruction cycle counts. The V-pipe is a 486 subset,
able to execute simple instructions such as MOV and ADD, but unable to handle
MUL, DIV, string instructions, any sort of rotation or shift, or even ADC or SBB.

i
Instruction Stream

PUSH EBX

DEC EDX

Instruction execution in the two pipes

U-pipe V-pipe

Cycle 0 7 1 +

SHR can pair
only in the U-pipe

-11 SHR EDX,1 I Cycle 2 [Writebeforeread -Idte- I
contention on EDX

The Pentium b two pipes.
Figure 20.1

Pentium Rules 385

Getting two instructions executing simultaneously in the two pipes is trickier than it
sounds, not only because the V-pipe can handle only a relatively small subset of the
Pentium’s instruction set, but also because those instructions that the V-pipe can
handle are able to pair only with certain U-pipe instructions. For example, MOVSD
uses both pipes, so no instruction can be executed in parallel with MOVSD.

The use of both pipes does make MOVSD nearly twice as fast on the Pentium as on p the 486, but it 4 nonetheless slower than using equivalent simpler instructions that
allow for superscalar execution. Stick to the Pentium 4 RISC-like instructions-
the pairable instructions I’ll discuss next-when you’re seeking maximum
performance, with just a few exceptions such as REP MOVS and REP STOS.

Trickier yet, register contention can shut down the V-pipe on any given cycle, and
Address Generation Interlocks (AGIs) can stall either pipe at any time, as we’ll see in
the next chapter.
The key to Pentium optimization is to view execution as a stream of instructions
going through the U- and V-pipes, and to eliminate, as much as possible, instruction
mixes that take the V-pipe out of action. In practice, this is not too difficult. The only
hard part is keeping in mind the long list of rules governing instruction pairing. The
place to begin is with the set of instructions that can go through the V-pipe.

V-Pipe-Capable Instructions
Any instruction can go through the U-pipe, and, for practical purposes, the U-pipe
is always executing instructions. (The exceptions are when the U-pipe execution
unit is waiting for instruction or data bytes after a cache miss, and when a U-pipe
instruction finishes before a paired V-pipe instruction, as I’ll discuss below.) Only
the instructions shown in Table 20.1 can go through the V-pipe. In addition, the V-
pipe can execute a separate instruction only when one of the instructions listed in
Table 20.2 is executing in the U-pipe; superscalar execution is not possible while any
instruction not listed in Table 20.2 is executing in the U-pipe. So, for example, if you
use SHR EDX,CL, which takes 4 cycles to execute, no other instructions can execute
during those 4 cycles; if, on the other hand, you use SHR EDX,10, it will take 1 cycle
to execute in the U-pipe, and another instruction can potentially execute concur-
rently in the V-pipe. (As you can see, similar instruction sequences can have vastly
different performance characteristics on the Pentium.)
Basically, after the current instruction or pair of instructions is finished (that is, once
neither the U- nor V-pipe is executing anything), the Pentium sends the next instruction
through the U-pipe. If the instruction after the one in the U-pipe is an instruction
the V-pipe can handle, if the instruction in the U-pipe is pairable, and if register
contention doesn’t occur, then the V-pipe starts executing that instruction, as shown
in Figure 20.2. Otherwise, the second instruction waits until the first instruction is

386 Chapter 20

done, then executes in the U-pipe, possibly pairing with the next instruction in line
if all pairing conditions are met.
The list of instructions the V-pipe can handle is not very long, and the list of U-pipe
pairable instructions is not much longer, but these actually constitute the bulk of the
instructions used in PC software. As a result, a fair amount of pairing happens even in
normal, non-Pentium-optimized code. This fact, plus the 64bit 66 MHz bus, branch
prediction, dual 8Kinternal caches, and other Pentium features, together mean that a
Pentium is considerably faster than a 486 at the same clock speed, even without Pentium-
specific optimization, contrary to some reports.
Besides, almost all operations can be performed by combinations of pairable in-
structions. For example, PUSH [mem] is not on either list, but both MOV reg,[mem]
and PUSH reg are, and those two instructions can be used to push a value stored in

Pentium Rules 387

memory. In fact, given the proper instruction stream, the discrete instructions can
perform this operation effectively in just 1 cycle (taking one-half of each of 2 cycles,
for 2*0.5 = 1 cycle total execution time), as shown in Figure 20.3-a full cycle faster
than PUSH [mem], which takes 2 cycles.

A fundamental rule of Pentium optimization is that it pays to break complex in- p structions into equivalent simple instructions, then shufle the simple instructions
for maximum use of the Vpipe. This is true partly because most of the pairable
instructions are simple instructions, andpartly because breaking instructions into
pieces allows more freedom to rearrange code to avoid the AGIs and register con-
tention I’ll discuss in the next chapter.

388 Chapter 20

Instruction stream after preceding instructions
in U- and V-pipes have completed (both pipes
waiting for new instructions).

Start execution of instruction n in the U-pipe
on the current cycle.

If instruction n+l can pair in the V-pipe, and instruction n can
pair in the U-pipe, and no write-before-read or write-before-
write register contention affects this instruction, then start
execution of instruction n+l in the V-pipe on the current cycle;
otherwise, start execution of instruction n+l in the U-pipe on
the cycle after instruction n finishes, and at that time try to pair
instruction n+2 in the V-pipe with instruction n + l in the U-pipe.

Instruction n+l

Instruction flow through the two pipes.
Figure 20.2

One downside of this “RISCification” (turning complex instructions into simple,
RISC-like ones) of Pentium-optimized code is that it makes for substantially larger
code. For example,

push dword p t r [e s i l

is one byte smaller than this sequence:

mov eax.[esil
push eax

Instruction Stream

PUSH EBX

Instruction execution in the two pipes !
Pushing a value porn memory effectively in one cycle.
Figure 20.3

Pentium Rules 389

A more telling example is the following

add [MemVarl.eax

versus the equivalent:

mov edx.[MemVar]
add edx .eax
mov [MemVarl.edx

The single complex instruction takes 3 cycles and is 6 bytes long; with proper se-
quencing, interleaving the simple instructions with other instructions that don’t use
EDX or MemVar, the three-instruction sequence can be reduced to 1.5 cycles, but it
is 14 bytes long.

It’s not unusual for Pentium optimization to approximately double both perfor- p mance and code size at the same time. In an important loop, go for performance
and ignore the size, but on a program-wide basis, the size bears watching.

Lockstep Execution
You may wonder why anyone would bother breaking ADD [MemVar],EAX into three
instructions, given that this instruction can go through either pipe with equal ease.
The answer is that while the memory-accessing instructions other than MOV, PUSH,
and POP listed in Table 20.1 (that is, INC/DEC [mem], ADD/SUB/XOR/AND/
OR/CMP/ADC/SBB reg,[mem], and ADD/SUB/XOR/AND/OR/CMP/ADC/SBB
[mem],reg/imrned) can be paired, they do not provide the 100 percent overlap that
we seek. If you look at Tables 20.1 and 20.2, you will see that instructions taking from
1 to 3 cycles can pair. However, any pair of instructions goes through the two pipes in
lockstep. This means, for example, that if ADD [EBX],EDX is going through the U-pipe,
and INC EAX is going through the V-pipe, the V-pipe will be idle for 2 of the 3 cycles
that the U-pipe takes to execute its instruction, as shown in Figure 20.4. Out of the
theoretical 6 cycles of work that can be done during this time, we actually get only 4
cycles of work, or 67 percent utilization. Even though these instructions pair, then,
this sequence fails to make maximum use of the Pentium’s horsepower.
The key here is that when two instructions pair, both execution units are tied up
until both instructions have finished (which means at least for the amount of time
required for the longer of the two to execute, plus possibly some extra cycles for
pairable instructions that can’t fully overlap, as described below). The logical con-
clusion would seem to be that we should strive to pair instructions of the same lengths,
but that is often not correct.

The actual rule is that we should strive topair one-cycle instructions (01; at most, two- p cycle instructions, but not three-cycle instructions), which in turn leads to the corollaly
that we should, in general, use mostly one-cycle instructions when optimizing.

390 Chapter 20

Instruction Stream

INC E A X

Instruction execution in the two pipes

U-pipe V-pipe

ADD [EBX],EDX
Ste 1 lood [EBX] -1dle-

io; memory 1 Cycle I Keep pipes in lockstep

Step 2: add EDX to
value loaded in Step 1 Keep pipes in lockstep

Step 3: store Ste 2
result to [EBXP

Lockstep execution and idle time in the Vpipe.
Figure 20.4

Here’s why. The Pentium is fully capable of handling instructions that use memory
operands in either pipe, or, if necessary, in both pipes at once. Each pipe has its own
write FIFO, which buffers the last few writes and takes care of writing the data out
while the Pentium continues processing. The Pentium also has a write-back internal
data cache, so data that is frequently changed doesn’t have to be written to external
memory (which is much slower than the cache) very often. This combination means
that unless you write large blocks of data at a high speed, the Pentium should be able
to keep up with both pipes’ memory writes without stalling execution.
The Pentium is also designed to satisfy both pipes’ needs for reading memory oper-
ands with little waiting. The data cache is constructed so that both pipes can read
from the cache on the same qcle . This feat is accomplished by organizing the data
cache as eight-banked memory, as shown in Figure 20.5, with each 32-byte cache line
consisting of 8 dwords, 1 in each bank. The banks are independent of one another,
so as long as the desired data is in the cache and the U- and V-pipes don’t try to read
from the same bank on the same cycle, both pipes can read memory operands on
the same cycle. (If there is a cache bank collision, the V-pipe instruction stalls for
one cycle.)
Normally, you won’t pay close attention to which of the eight dword banks your
paired memory accesses fall in-that’s just too much work-but you might want to
watch out for simultaneously read addresses that have the same values for address

Pentium Rules 391

Cache
line 0

; Bank 0 ~ Bank 1 ~ Bank 2 ; Bank 3 ~ Bank4 ; Bank 5 ~ Bank 6 ~ Bank 7 ;

Cache
line 1 ,

Cache
line 2 ,

; * :
‘ 0 ;

line 255 I
0 4 8 12 16 20 24 28

Address within cache line

I 8 . 8

Cache

The Pentiurn k eight bank data cache.
Figure 20.5

bits 2, 3, and 4 (fall in the same bank) in tight loops, and you should also avoid
sequences like

mov bl , [esi 1
mov bh, [esi+ll

because both operands will generally be in the same bank. An alternative is to place
another instruction between the two instructions that access the same bank, as in
this sequence:

mov b l , [e s i 1
mov e d i ,edx
mov bh.[esi+ll

By the way, the reason a code sequence that takes two instructions to load a single
word is attractive in a 32-bit segment is because it takes only one cycle when the two
instructions can be paired with other instructions; by contrast, the obvious way of
loading BX

mov bx.[esil

takes 1.5 to two cycles because the size prefix can’t pair, as described below. This is
yet another example of how different Pentium optimization can be from everything
we’ve learned about its predecessors.
The problem with pairing non-single-cycle instructions arises when a pipe executes
an instruction other than MOV that has an explicit memory operand. (I’ll call these
complex memory instrmctions. They’re the only pairable instructions, other than branches,
that take more than one cycle.) We’ve already seen that, because instructions go
through the pipes in lockstep, if one pipe executes a complex memory instruction

392 Chapter 20

such as ADD FAX,[EBX] while the other pipe executes a single-cycle instruction, the
pipe with the faster instruction will sit idle for part of the time, wasting cycles. You
might think that if both pipes execute complex instructions of the same length, then
neither would lie idle, but that turns out to not always be the case. Two two-cycle
instructions (instructions with register destination operands) can indeed pair and
execute in two cycles, so it’s okay to pair two instructions such as these:

add esi.[SourceSkipl ;U-pipe cycles 1 a n d 2
add e d i . t D e s t i n a t i o n S k i p 1 : V - p i p e c y c l e s 1 and 2

However, this beneficial pairing does not extend to non-MOV instructions with explicit
memory destination operands, such as ADD [EBX],EAx. The Pentium executes only
one such memory instruction at a time; if two memorydestination complex instructions
get paired, first the U-pipe instruction is executed, and then the V-pipe instruction,
with only one cycle of overlap, as shown in Figure 20.6. I don’t know for sure, but I’d
guess that this is to guarantee that the two pipes will never perform out-of-order

Instruction Stream

AND [ECX],DL

Instruction execution in the two pipes

U-pipe V-pipe

-) b e / 1: b a d iEBX] 1 Cycle 0 1 ANDEBXI At -Idle-
Wait for U-pipe to

rom memorv reach its last cycle
L I L I

-+I Step 2: and At with I Cycle 1 I AND [EBX],At -Idle-
Wait for U-pipe to

value loaded in Step 1 reach its last cycle
L I L

AND [EBX],At

result to [EBXP

Non-overlapped lockstep execution.
Figure 20.6

Pentium Rules 393

Instruction Stream

MOV DH,[ECX]

AND DH,DL

MOV [EBX],AH I
MOV [ECX],DH I

Instruction execution in the two pipes

U-pipe V-pi pe + v i Cycle 0
t

I t
-+I MOV [EBX],AH I Cycle 2 1 MOV [ECX],DH Id

Interleaving simple instructions for maximum performance.
Figure 20.7

access to any given memory location. Thus, even though AND [EBX],AL pairs with
AND [ECX],DL, the two instructions take 5 cycles in all to execute, and 4 cycles of
idle time-2 in the U-pipe and 2 in the V-pipe, out of 10 cycles in all-are incurred
in the process.
The solution is to break the instructions into simple instructions and interleave them,
as shown in Figure 20.7, which accomplishes the same task in 3 cycles, with no idle
cycles whatsoever. Figure 20.7 is a good example of what optimized Pentium code
generally looks like: mostly one-cycle instructions, mixed together so that at least two
operations are in progress at once. It’s not the easiest code to read or write, but it’s
the only way to get both pipes running at capacity.

Superscalar Notes
You may well ask why it’s necessary to interleave operations, as is done in Figure 20.7.
It seems simpler just to turn

and [e b x l . a 1

394 Chapter 20

into

mov d l , [e b x l
and d l . a 1
mov [e b x l , d l

and be done with it. The problem here is one of dependency. Before the Pentium
can execute AND DL&, it must first know what is in DL, and it can’t know that until
it loads DL from the address pointed to by EBX. Therefore, AND DL& can’t hap-
pen until the cycle after MOV DL,[EBX] executes. Likewise, the result can’t be stored
until the cycle after AND DL& has finished. This means that these instructions, as
written, can’t possibly pair, so the sequence takes the same three cycles as AND
[EBX],AL. (Now it should be clear why AND [EBX], AL takes 3 cycles.) Consequently,
it’s necessary to interleave these instructions with instructions that use other regis-
ters, so this set of operations can execute in one pipe while the other, unrelated set
executes in the other pipe, as is done in Figure 20.7.
What we’ve just seen is the read-after-write form of the superscalar hazard known as
register contention. I’ll return to the subject of register contention in the next chapter;
in the remainder of this chapter I’d like to cover a few short items about superscalar
execution.

Register Starvation
The above examples should make it pretty clear that effective superscalar programming
puts a lot of strain ori the Pentium’s relatively small register set. There are only seven
general-purpose registers (I strongly suggest using EBP in critical loops), and it does
not help to have to sacrifice one of those registers for temporary storage on each
complex memory operation; in pre-superscalar days, we used to employ those handy
CISC memory instructions to do all that stuff without using any extra registers.

More problematic still is thatfbr maximum pairing, you’ll typically have two op- P erations proceeding at once, one in each pipe, and trying to keep two operations in
registers at once is difJicult indeed. There k not much to be done about this, other
than clever and Spartan register usage, but be aware that it j . a major element of
Pentium performance programming.

Also be aware that prefixes of every sort, with the sole exception of the OFH prefix on
non-short conditional jumps, always execute in the U-pipe, and that Intel’s docu-
mentation indicates that no pairing can happen while a prefix byte executes. (As I’ll
discuss in the next chapter, my experiments indicate that this rule doesn’t always
apply to multiple-cycle instructions, but you still won’t go far wrong by assuming that
the above rule is correct and trying to eliminate prefix bytes.) A prefix byte takes one
cycle to execute; after that cycle, the actual prefixed instruction itselfwill go through
the U-pipe, and if it and the following instruction are mutually pairable, then they

Pentium Rules 395

will pair. Nonetheless, prefix bytes are very expensive, effectively taking at least as
long as two normal instructions, and possibly, if a prefixed instruction could other-
wise have paired in the V-pipe with the previous instruction, taking as long as three
normal instructions, as shown in Figure 20.8.
Finally, bear in mind that if the instructions being executed have not already been
executed at least once since they were loaded into the internal cache, they can pair
only if the first (U-pipe) instruction is not only pairable but also exactly 1 byte long,
a category that includes only INC reg, DEC reg, PUSH reg, and POP reg. Knowing this
can help you understand why sometimes, timing reveals that your code runs slower
than it seems it should, although this will generally occur only when the cache work-
ing set for the code you’re timing is on the order of 8K or more-an awful lot of code
to try to optimize.
It should be excruciatingly clear by this point that you must time your Pentiumaptimized
code if you’re to have any hope of knowing if your optimizations are working as well
as you think they are; there are just too many details involved for you to be sure your
optimizations are working properly without checking. My most basic optimization
rule has always been to grab the Zen timer and measure actual performance-and no-
where is this more true than on the Pentium. Don’t believe it until you measure it!

Instruction Stream

Instruction execution in the two pipes

U-pipe V-pipe

PUSH EDX I Cycle o 1 Prefixes -Idle- can‘t I
execute in V-pipe

I L

Prefix delays.
Figure 20.8

396 Chapter 20

chapter 21

unleashing the pentium's V-pipe

Ch

&

rill
I

Keeping Both Pentium Pipes Full
sted that we each draw the prettiest picture we

I won’t comment on who won, except to note that
ping toward a moose with antlers that bear an un-
ller beanie isn’t going to win me any scholarships
ift. Anyway, my drawing happened to feature the
ed with “moose” and “Zeus”-hence the lightning;
divulge), and she wanted to know if the moose was

had to admit that I didn’t know, so we went to the dictionary,
use is a pale apple-green color. Then she brought

trol Panel, pointed to the selection of predefined colors, and
asked, ‘Which of those is chartreuse?”-and I realized that I still didn’t know.
Some things can be described perfectly with words, but others just have to be experi-
enced. Color is one such category, and Pentium optimization is another. I’ve spent
the last two chapters detailing the rules for Pentium optimization, and I’ll spend half
of this one doing so, as well. That’s good; without understanding the fundamentals,
we have no chance of optimizing well. It’s not enough, though. We also need to look
at a real-world example of Pentium optimization in action, and we’ll do that later in
this chapter; after which, you should go out and do some Pentium optimization on
your own. Optimization is one of those things that you can learn a lot about from
reading, but ultimately it has to sink into your pores as you do it-especially Pentium

399

optimization because the Pentium is perhaps the most complex (and rewarding)
chip to optimize for that I’ve ever seen.
In the last chapter, we explored the dual-execution-pipe nature of the Pentium, and
learned which instructions could pair (execute simultaneously) in which pipes. Now
we’re ready to look at AGIs and register contention-two hazards that can prevent other-
wise properly written code from taking full advantage of the Pentiurn’s two pipes, and
can thereby keep your code from pushing the Pentium to maximum performance.

Address Generation Interlocks
The Pentium is advertised as having a five-stage pipeline for each of its execution
units. All this means is that at any given time, up to five instructions are in various
stages of execution in each pipe; this overlapping of execution is done for speed, so
each instruction doesn’t have to wait until the previous one has finished. The only
way that the Pentium’s pipelining directly affects the way you program is in the areas
of AGIs and register dependencies.
AGIs are Address Generation Interloch, a fancy way of saying that if a register is used to
address memory, as is EBX in this instruction

mov [ebxl.eax

and the value of the register is not set far enough ahead for the Pentium to perform
the addressing calculations before the instruction needs the address, then the Pentium
will stall the pipe in which the instruction is executing until the value becomes avail-
able and the addressing calculations have been performed. Remember, also, that
instructions execute in lockstep on the Pentium, so if one pipe stalls for a cycle,
making its instruction take one cycle longer, that extends by one cycle the time until
the other pipe can begin its next instruction, as well.
The rule for AGIs is simple: If you modify any part of a register during a cycle, you
cannot use that register to address memory during either that cycle or the next cycle.
If you try to do this, the Pentium will simply stall the instruction that tries to use that
register to address memory until two cycles after the register was modified. This was
true on the 486 as well, but the Pentium’s new twist is that since more than one
instruction can execute in a single cycle, an AGI can stall an instruction that’s as
many as three instructions away from the changing of the addressing register, as
shown in Figure 21.1, and an AGI can also cause a stall that costs as many as three
instructions, as shown in Figure 21.2. This means that AGIs are both much easier to
cause and potentially more expensive than on the 486, and you must keep a sharp
eye out for them. It also means that it’s often worth calculating a memory pointer
several instructions ahead of its actual use. Unfortunately, this tends to extend the
lifetimes of pointer registers to span a greater number of instructions, making the
Pentiurn’s relatively small register set seem even smaller.

400 Chapter 21

Instruction Stream

I I Instruction execution in the two pipes

[lockstep -Idle- execution I Cycle 1 [AGI (EGl:kiified on I
previous cycle]

An AGI can stall up to three instructions later.
Figure 2 1.1

As an example of a sort of AGI that's new to the Pentium, consider the following test
for a NULL pointer, followed by the use of the pointer if it's not NULL:

push ebx : U - p i p e c y c l e 1
mov e b x . C P t r 1 : V - p i p e c y c l e 1
and ebx,ebx : U - p i p e c y c l e 2
j z s h o r t I s N u l l : V - p i p e c y c l e 2
mov e a x . [e b x l : U - p i p e c y c l e 3 A G I s t a l l
mov edx.Cebp-81 : V - p i p e c y c l e 3 l o c k s t e p i d l e

: U - p i p e c y c l e 4 mov e a x . [e b x]
: V - p i p e c y c l e 4 mov e d x , [e b p - 8]

This commonplace code loses a U-pipe cycle to the AGI caused by AND EBX,EBX,
followed by the attempt two instructions later to use EBX to point to memory. The
code loses a V-pipe cycle as well, because lockstep execution won't let the next V-pipe

Unleashing the Pentium's V-pipe 401

Instruction Stream

ADD EBX,EDX
DEC EAX

~

~ "_

-

-

1 PUSH EBX I
Instruction execution in the two pipes

U-pipe V-pi pe +I MOV ESI,[Ptr] I Cycle 1 Register contention -Idle- on ESI I

An AGI can cost as many as 3 cycles.
Figure 2 1.2

instruction execute until the paired U-pipe instruction that suffered the AGI fin-
ishes. The solution is to use TEST EBX,EBX instead of AND; TEST can't modify
EBX, so no AGI occurs. Sure, AND EBX,EBX doesn't modify EBX either, but the
Pentium doesn't know that, so it has to insert the AGI.
As on the 486, you should keep a careful eye out for AGIs involving the stack pointer.
Implicit modifiers of ESP, such as PUSH and POP, are special-cased so you don't
have to worry about AGIs. However, if you explicitly modify ESP with this instruction

sub esp.100h

for example, or with the popular

mov esp.ebp

402 Chapter 21

you can then get AGIs if you attempt to use ESP to address memory, either explicitly
with instructions like this one

mov eax.[esp+20h]

or via PUSH, POP, or other instructions that implicitly use ESP as an addressing
register.
On the 486, any instruction that had both a constant value and an addressing dis-
placement, such as

mov dword p t r [ebp+16].1

suffered a 1-cycle penalty, taking a total of 2 cycles. Such instructions take only one
cycle on the Pentium, but they cannot pair, so they’re still the most expensive sort of
MOV. Knowing this can speed up something as simple as zeroing two memory vari-
ables, as in

sub eax.eax ;U-p ipe 1
; a n y V - p i p e p a i r a b l e
; i n s t r u c t i o n c a n go h e r e ,
; o r SUB c o u l d b e i n V - p i p e

mov [MemVar l l .eax ;U-p ipe 2
mov CMemVar2l.eax ; V - p i p e 2

which should never be slower and should potentially be 0.5 cycles faster, and six
bytes smaller than this sequence:

mov CMemVarl l .0 :U-pipe 1
mov [MemVarEl.O :U-pipe 2

Note, however, that my experiments thus far indicate that the two writes in the first
case don’t actually pair (possibly because the memory variables have never been
read into the internal cache), so you might want to insert an instruction between the
two MOVs-and, of course, this is yet another reason why you should always measure
your code’s actual performance.

Register Contention
Finally, we come to the last major component of superscalar optimization: register
contention. The basic premise here is simple: You can’t use the same register in two
inherently sequential ways in a single cycle. For example, you can’t execute

i n c e a x : U - p i p e c y c l e 1
: V - p i p e i d l e c y c l e 1
: due t o dependency

and ebx .eax ;U-p ipe cyc le 2

in a single cycle; AND EBX,EAX can’t execute until the value in EAX is known, and
that can’t happen until INC EAX is done. Consequently, the V-pipe idles while INC

Unleashing the Pentium‘s V-pipe 403

EAX executes in the U-pipe. We saw this in the last chapter when we discussed split-
ting instructions into simple instructions, and it is by far the most common sort of
register contention, known as read-after-write register contention. Read-after-write
register contention is the primary reason we have to interleave independent opera-
tions in order to get maximum V-pipe usage.
The other sort of register contention is known as write-after-write. Write-after-write
register contention happens when two instructions try to write to the same register
on the same cycle. While that may not seem like a particularly useful operation in
general, it can happen when subregisters are being set, as in the following

sub eax .eax ;U -p ipe cyc le 1
; V - p i p e i d l e c y c l e 1
; due t o r e g i s t e r c o n t e n t i o n

mov a l , [V a r l ; U - p i p e c y c l e 2

where an attempt is made to set both EAX and its AL subregister on the same cycle.
Write-after-write contention implies that the two instructions comprising the above
substitute for MOVZX should have at least one unrelated instruction between them
when SUB EAX,EAX executes in the V-pipe.

Exceptions to Register Contention
Intel has special-cased some very useful exceptions to register contention. Happily,
write-after-read operations do not cause contention. Such operations, as in

mov e a x , e d x ; U - p i p e c y c l e 1
sub edx .edxX ;V -p ipe cyc le 1

are free of charge.
Also, stack-related instructions that modify ESP only implicitly (without ESP as part
of any explicit operand) do not cause AGIs, and neither do they cause register con-
tention with other instructions that use ESP only implicitly; such instructions include
PUSH reg/immed, POP reg, and CALL. (However, these instructions do cause regis-
ter contention on ESP-but not AGIs-with instructions that use ESP explicitly, such
as MOV EAX,[ESP+4].) Without this special case, the following sequence would hardly
use the V-pipe at all:

mov eax,[MemVar] ; U - p i p e c y c l e 1
p u s h e s i ; V - p i p e c y c l e 1
push eax ; U - p i p e c y c l e 2
p u s h e d i ; V - p i p e c y c l e 2
push ebx ; U - p i p e c y c l e 3
c a l l F o o T i l d e ; V - p i p e c y c l e 3

But in fact, all the instructions pair, even though ESP is modified five times in the
space of six instructions.
The final register-contention special case is both remarkable and remarkably impor-
tant. There is exactly one sort of instruction that can pair only in the V-pipe: branches.

404 Chapter 21

Any near call or conditional or unconditional near jump can execute in the V-pipe
paired with any pairable U-pipe instruction, as illustrated by this sequence:

LoopTop:
mov [e s i l . e a x ; U - p i p e c y c l e 1
add e s i . 4 ; V - p i p e c y c l e 1
dec ecx ; U - p i p e c y c l e 2
j n z LoopTop ; V - p i p e c y c l e 2

Branches can’t pair in the U-pipe; a branch that executes in the U-pipe runs alone,
with the V-pipe idle. If a call orjump is correctly predicted by the Pentium’s branch
prediction circuitry (as discussed in the last chapter), it executes in a single cycle,
pairing if it runs in the V-pipe; if mispredicted, conditional jumps take 4 cycles in the
U-pipe and 5 cycles in the V-pipe, and mispredicted calls and unconditional jumps
take 3 cycles in either pipe. Note that RET can’t pair.

Who‘s in First?
One of the trickiest things about superscalar optimization is that a given instruction
stream can execute at a different speed depending on the pipe where it starts execu-
tion, because which instruction goes through the U-pipe first determines which of
the following instructions will be able to pair. If we take the last example and add
one more instruction, the other instructions will go through different pipes than
previously, and cause the loop as a whole to take 50 percent longer, even though we
only added 25 percent more cycles:

LoopTop:
i n c edx ; & p i p e c y c l e 1
rnov [e s i] . e a x ; V - p i p e c y c l e 1
add es i . 4 ; U - p i p e c y c l e 2
dec ecx ; V - p i p e c y c l e 2
j n z LoopTop ; U - p i p e c y c l e 3

; V - p i p e i d l e c y c l e 3
; because JNZ c a n ’ t
; p a i r i n t h e U - p i p e

It’s actually not hard to figure out which instructions go through which pipes; just
back up until you find an instruction that can’t pair or can only go through the U-pipe,
and work forward from there, given the knowledge that that instruction executes in
the U-pipe. The easiest thing to look for is branches. All branch target instructions
execute in the U-pipe, as do all instructions after conditional branches that fall
through. Instructions with prefix bytes are generally good U-pipe markers, although
they’re expensive instructions that should be avoided whenever possible, and have
at least one aberration with regard to pipe usage, as discussed below. Shifts, rotates,
ADC, SBB, and all other instructions not listed in Table 20.1 in the last chapter are
likewise U-pipe markers.

Unleashing the Pentium‘s V-pipe 405

Pentium Optimization Action
Now, let’s take a look at one of the simplest, tightest pieces of code imaginable, and
see what our new Pentium perspective reveals. Listing 21.1 shows a loop implement-
ing the TCP/IP checksum, a 16-bit checksum that wraps carries around to the low
bit so that the result is endian-independent. This makes it easy to perform checksums
on blocks of data regardless of the endian characteristics of the machines on which
those blocks are generated and received. (Thanks to fellow performance enthusiast
Terje Mathisen for suggesting this checksum as fertile ground for Pentium optimiza-
tion, in the ibm.pc/fast.code forum on Bix.) The loop in Listing 21.1 consists of
exactly five instructions; it’s hard to imagine that there’s a lot of performance to be
wrung from this snippet, right?

LISTING 2 1.1 12 1 - 1 .ASM
: C a l c u l a t e s T C P / I P (1 6 - b i t c a r r y - w r a p p i n g) c h e c k s u m f o r b u f f e r
: s t a r t i n g a t E S I , o f l e n g t h E C X words.
: Returns checksum i n A X .
: ECX and ESI dest royed.
: All c y c l e c o u n t s assume 3 2 - b i t p r o t e c t e d mode.
: Assumes b u f f e r l e n g t h > 0 .
: N o t e t h a t t i m i n g i n d i c a t e s t h a t t h e p i p e s e q u e n c e a n d
: c y c l e c o u n t s shown (based on documented execut ion ru les)
: d i f f e r f r o m t h e a c t u a l e x e c u t i o n s e q u e n c e a n d c y c l e c o u n t s :
: t h i s l o o p h a s b e e n m e a s u r e d t o e x e c u t e i n 5 c y c l e s : a p p a r e n t l y ,
: t h e 1 s t h a l f o f ADD somehow p a i r s w i t h t h e p r e f i x b y t e , o r t h e
: r e f i x b y t e g e t s e x e c u t e d a h e a d o f t i m e .

s u b a x . a x : i n i t i a l i z e t h e c h e c k s u m

c k l o o p :
add ax , [es i 1 : c y c l e 1 U - p i p e p r e f i x b y t e

: c y c l e 1 V - p i p e i d l e (n o p a i r i n g w / p r e f i x)
: c y c l e 2 U - p i p e 1 s t h a l f o f ADD
: c y c l e 2 V - p i p e i d l e (r e g i s t e r c o n t e n t i o n)
: c y c l e 3 U - p i p e 2 n d h a l f o f ADD
: c y c l e 3 V - p i p e i d l e (r e g i s t e r c o n t e n t i o n)

: c y c l e 4 V - p i p e i d l e (n o p a i r i n g w / p r e f i x)
: c y c l e 5 U - p i p e ADC AX.0

adc ax .0 ; cyc le 4 U - p i p e p r e f i x b y t e

a d d e s i . 2 ; c y c l e 5 V - p i p e
dec ecx ; c y c l e 6 U - p i p e
j n z c k l o o p : c y c l e 6 V - p i p e

Wrong, wrong, wrong! As detailed in Listing 21 . l , this loop should take 6 cycles per
checksummed word in 32-bit protected mode, a ridiculously high number for the
Pentium. (You’ll see why I say “should take,” not “takes,” shortly.) We should lose 2
cycles in each pipe to the two size prefixes (because the ADDS are 16-bit operations
in a 32-bit segment), and another 2 cycles because of register contention that arises
when ADC A X , O has to wait for the result of ADD AX,[ESI]. Then, too, even though
DEC and JNZ can pair and the branch prediction for JNZ is presumably correct
virtually all the time, they do take a full cycle, and maybe we can do something about
that as well.

406 Chapter 21

The first thing to do is to time the code in Listing 21.1 to verify our analysis. When I
unleashed the Zen timer on Listing 21.1, I found, to my surprise, that the code actu-
ally takes only five cycles per checksum word processed, not six. A little more
experimentation revealed that adding a size prefix to the two-cycle ADD EAX,[ESI]
instruction doesn’t cost anything, certainly not the one full cycle in each pipe that a
prefix is supposed to take. More experimentation showed that prefix bytes do cost
the documented extra cycle when used with one -cycle instructions such as MOV. At
this point, my preliminary conclusion is that prefixes can pair with the first cycle of
at least some multiple-cycle instructions. Determining exactly why this happens will
take further research on my part, but the most important conclusion is that you must
measure your code!
The first, obvious thing we can do to Listing 21.1 is change ADC A X , O to ADC E A X , O ,
eliminating a prefix byte and saving a full cycle. Now we’re down from five to four
cycles. What next?
Listing 21.2 shows one interesting alternative that doesn’t really buy us anything.
Here, we’ve eliminated all size prefixes by doing byte-sized MOVs and ADDS, but
because the size prefix on ADD AX,[ESI], for whatever reason, didn’t cost anything
in Listing 21.1, our efforts are to no avail-Listing 21.2 still takes 4 cycles per
checksummed word. What’s worth noting about Listing 21.2 is the extent to which
the code is broken into simple instructions and reordered so as to avoid size pre-
fixes, register contention, AGIs, and data bank conflicts (the latter because both
[ESI] and [ESI+l] are in the same cache data bank, as discussed in the last chapter).

LISTING 2 1.2 12 1 -2.ASM
: C a l c u l a t e s T C P / I P (1 6 - b i t c a r r y - w r a p p i n g) c h e c k s u m f o r b u f f e r
: s t a r t i n g a t E S I . o f l e n g t h E C X words.
: Returns checksum i n A X .
: H i g h w o r d o f E A X . O X , E C X and E S I d e s t r o y e d .
: All c y c l e c o u n t s assume 3 2 - b i t p r o t e c t e d mode.
: Assumes b u f f e r l e n g t h > 0.

sub eax, eax : i n i t i a l i z e t h e checksum
mov d x . [e s i l : f i r s t word t o checksum
dec ecx ; w e ’ l l do 1 c h e c k s u m o u t s i d e t h e l o o p
j z s h o r t c k l o o p e n d : o n l y 1 checksum t o do
a d d e s i . 2 : p o i n t t o t h e n e x t w o r d t o c h e c k s u m

c k l o o p :
add
mov
adc
mov
adc
add
dec
j nz

a1 . d l
d l , [e s i 1
ah.dh
d h . [e s i + l l
eax.O
e s i ,2
ecx
Ckl O O D

: c y c l e 1 U - p i p e
: c y c l e 1 V - p i p e
: c y c l e 2 U - p i p e
: c y c l e 2 V - p i p e
: c y c l e 3 U - p i p e
: c y c l e 3 V - p i p e
: c y c l e 4 U - p i p e
: c y c l e 4 V - p i p e

ck loopend:
add ax.dx :checksum the l a s t word
adc eax.O

Unleashing the Pentium’s V-pipe 407

Listing 21.3 is a more sophisticated attempt to speed up the checksum calculation.
Here we see a hallmark of Pentium optimization: two operations (the checksumming
of the current and next pair of words) interleaved together to allow both pipes to
run at near maximum capacity. Another hallmark that's apparent in Listing 21.3 is
that Pentium-optimized code tends to use more registers and require more instruc-
tions than 486-optimized code. Again, note the careful mixing of byte-sized reads to
avoid AGIs, register contention, and cache bank collisions, in particular the way in
which the byte reads of memory are interspersed with the additions to avoid register
contention, and the placement of ADD ESI,4 to avoid an AGI.

LISTING 2 1.3 12 1 -3.ASM
: C a l c u l a t e s T C P / I P (1 6 - b i t c a r r y - w r a p p i n g) c h e c k s u m f o r b u f f e r
: s t a r t i n g a t E S I . o f l e n g t h ECX words.
; Returns checksum i n A X .
: H i g h w o r d o f EAX. B X . E D X . E C X and E S I d e s t r o y e d .
: All c y c l e c o u n t s assume 3 2 - b i t p r o t e c t e d mode.
: Assumes b u f f e r l e n g t h > 0 .

sub
sub
s h r
j n c
mov
j z
add

c k l o o p s e t u p :
mov
mov
dec
j z

c k l o o p :
mov
add
s h l

o r
mov
add
mov
adc
mov
dec
j n z

ck loopend:
mov

eax, eax : i n i t i a l i z e t h e checksum
edx. edx ; p r e p a r e f o r l a t e r ORing
ecx , 1 ; w e l l 1 do two words pe r l oop
s h o r t c k l o o p s e t u p ;even number o f w o r d s
a x , [e s i 1 :do the odd word
s h o r t c k l o o p d o n e :no more words t o checksum
e s i .2 : p o i n t t o t h e n e x t w o r d

d x , [e s i 1 : l o a d m o s t o f 1 s t w o r d t o
b l . [e s i + 2 1 : checksum (l a s t b y t e l o a d e d i n l o o p)
ecx :any more dwords t o checksum?

s h o r t c k l o o p e n d ;no

bh . [es i+31
e s i ,4
ebx.16

ebx, edx
d l , [e s i 1
eax.ebx
b l , [es i+21
eax.0
d h . [e s i + l l
ecx
c k l o o p

bh . [es i+31
add ax.dx
adc ax.bx
adc ax.0

mov edx.eax
shr edx .16
add ax.dx
adc eax.O

ck loopdone:

: c y c l e 1 U - p i p e
; c y c l e 1 V - p i p e
; c y c l e 2 U - p i p e
: c y c l e 2 V - p i p e i d l e
: (r e g i s t e r c o n t e n t i o n)
; c y c l e 3 U - p i p e
; c y c l e 3 V -p ipe
: c y c l e 4 U - p i p e
: c y c l e 4 V - p i p e
: c y c l e 5 U - p i p e
; c y c l e 5 V -p ipe
; c y c l e 6 U - p i p e
: c y c l e 6 V - p i p e

: c h e c k s u m t h e l a s t d w o r d

:compress the 32-b i t checksum
: i n t o a 1 6 - b i t checksum

408 Chapter 21

The checksum loop in Listing 21.3 takes longer than the loop in Listing 21.2, at 6
cycles versus 4 cycles for Listing 21.2-but Listing 21.3 does two checksum opera-
tions in those 6 cycles, so we’ve cut the time per checksum addition from 4 to 3
cycles. You might think that this small an improvement doesn’tjustify the additional
complexity of Listing 21.3, but it is a one-third speedup, well worth it if this is a
critical loop-and, in general, if it isn’t critical, there’s no point in hand-tuning it.
That’s why I haven’t bothered to try to optimize the non-inner-loop code in Listing
21.3; it’s only executed once per checksum, so it’s unlikely that a cycle or two saved
there would make any real-world difference.
Listing 21.3 could be made a bit faster yet with some loop unrolling, but that would
make the code quite a bit more complex for relatively little return. Instead, why not
make the code more complex and get a bigreturn? Listing 21.4 does exactly that by
loading one dword at a time to eliminate both the word prefix of Listing 21.1 and
the multiple byte-sized accesses of Listing 21.3. An obvious drawback to this is the
considerable complexity needed to ensure that the dword accesses are dword-aligned
(remember that unaligned dword accesses cost three cycles each), and to handle
buffer lengths that aren’t dword multiples. I’ve handled these problems by requiring
that the buffer be dword-aligned and a dword multiple in length, which is of course
not always the case in the real world. However, the point of these listings is to illus-
trate Pentium optimization-dword issues, being non-inner-loop stuff, are solvable
details that aren’t germane to the main focus. In any case, the complexity and as-
sumptions are well justified by the performance of this code: three cycles per loop,
or 1.5 cycles per checksummed word, more than three times the speed of the origi-
nal code. Again, note that the actual order in which the instructions are arranged is
dictated by the various optimization hazards of the Pentium.

LISTING 2 1.4 12 1 -4.ASM
: C a l c u l a t e s T C P / I P (1 6 - b i t c a r r y - w r a p p i n g) c h e c k s u m f o r b u f f e r
: s t a r t i n g a t E S I . o f l e n g t h ECX words.
: Returns checksum i n A X .
; H i g h w o r d o f E A X . E C X . E O X . and E S I d e s t r o y e d .
: All c y c l e c o u n t s assume 3 2 - b i t p r o t e c t e d mode.
: Assumes b u f f e r s t a r t s on a dword boundary, i s a d w o r d m u l t i p l e
: i n l e n g t h . a n d l e n g t h > 0.

sub eax.eax ; i n i t i a l i z e t h e checksum
s h r e c x . 1 : w e ’ l l do two words per loop
mov edx, Cesi 1 : p r e l o a d t h e f i r s t d w o r d
add es i .4 ; p o i n t t o t h e n e x t d w o r d
dec ecx : w e ’ l l do 1 c h e c k s u m o u t s i d e t h e l o o p
j z s h o r t c k l o o p e n d : o n l y 1 checksum t o do

c k l o o p :
add eax.edx : c y c l e 1 U - p i p e
mov edx, Cesi 1 ; c y c l e 1 V - p i p e
adc eax.O ; c y c l e 2 U - p i p e
add es i ,4 : c y c l e 2 V - p i p e
dec ecx : c y c l e 3 U - p i p e
j n z c k l o o p ; c y c l e 3 V - p i p e

Unleashing the Pentium‘s V-pipe 409

ck loopend:
add eax.edx
adc eax.O
mov edx, eax
shr edx.16
add ax.dx
adc eax.0

: c h e c k s u m t h e l a s t d w o r d

;compress the 32-b i t checksum
: i n t o a 1 6 - b i t c h e c k s u m

Listing 21.5 improves upon Listing 21.4 by processing 2 dwords per loop, thereby
bringing the time per checksummed word down to exactly 1 cycle. Listing 21.5 basi-
cally does nothing but unroll Listing 21.4's loop one time, demonstrating that the
venerable optimization technique of loop unrolling still has some life left in it on the
Pentium. The cost for this is, as usual, increased code size and complexity, and the
use of more registers.

LISTING 21.5 121 -5.ASM
; C a l c u l a t e s T C P / I P (1 6 - b i t c a r r y - w r a p p i n g) c h e c k s u m f o r b u f f e r
; s t a r t i n g a t E S I . o f l e n g t h E C X words.
: Returns checksum i n A X .
: H i g h w o r d o f EAX. EBX. ECX. E D X , and E S I d e s t r o y e d .
: All c y c l e c o u n t s assume 3 2 - b i t p r o t e c t e d mode.
; Assumes b u f f e r s t a r t s on a dword boundary, i s a d w o r d m u l t i p l e
; i n l e n g t h , a n d l e n g t h > 0.

sub
s h r
j n c
mov
j z
add

noodddword:
mov
mov
dec
j z
add

c k l o o p :
add
mov
adc
mov
adc
add
dec
j nz

ck loopend :
add
adc
adc

ck loopdone:
mov
s h r
add
adc

eax, eax ; i n i t i a l i z e t h e checksum
ecx ,2 : w e ' l l do two dwords pe r l oop
shor t noodddword ; i s t h e r e an odd dword i n b u f f e r ?
eax. [e s i 1 ;checksum the odd dword
s h o r t c k l o o p d o n e ; n o . done
e s i .4 ; p o i n t t o t h e n e x t d w o r d

edx. Cesi 1 ; p r e l o a d t h e f i r s t d w o r d
ebx . [es i+4] : p re load t he second dword
ecx ; w e ' l l do 1 c h e c k s u m o u t s i d e t h e l o o p
s h o r t c k l o o p e n d ; o n l y 1 checksum t o do
e s i .8 ; p o i n t t o t h e n e x t d w o r d

eax , edx
e d x . [e s i 1
eax.ebx
ebx . [es i+41
eax, 0
e s i .8
ecx
c k l oop

; c y c l e 1 U - p i p e
: c y c l e 1 V - p i p e
: c y c l e 2 U - p i p e
; c y c l e 2 V - p i p e
; c y c l e 3 U - p i p e
: c y c l e 3 V - p i p e
; c y c l e 4 U - p i p e
: c y c l e 4 V - p i p e

eax , edx ; checksum the l as t two dwords
eax , ebx
eax.O

edx , eax : compress t he 32 -b i t checksum
edx, 16 ; i n t o a 1 6 - b i t c h e c k s u m
ax .dx
eax, 0

41 0 Chapter 21

Listing 21.5 is undeniably intricate code, and not the sort of thing one would choose
to write as a matter of course. On the other hand, it’s five times as fast as the tight,
seemingly-speedy loop in Listing 21.1 (and six times as fast as Listing 21.1 would
have been if the prefix byte had behaved as expected). That’s an awful lot of speed to
wring out of a five-instruction loop, and the TCP/IP checksum is, in fact, used by
network software, an area in which a five-times speedup might make a significant
difference in overall system performance.
I don’t claim that Listing 21.5 is the fastest possible way to do a TCP/IP checksum on
a Pentium; in fact, it isn’t. Unrolling the loop one more time, together with a trick of
Terje’s that uses LEA to advance ESI (neither LEA nor DEC affects the carry flag,
allowing Terje to add the carry from the previous loop iteration into the next iteration’s
checksum via ADC), produces a version that’s a full 33 percent faster. Nonetheless,
Listings 21.1 through 21.5 illustrate many of the techniques and considerations in
Pentium optimization. Hand-optimization for the Pentium isn’t simple, and requires
careful measurement to check the efficacy of your optimizations, so reserve it for
when you really, really need it-but when you need it, you need it bud.

A Quick Note on the 386 and 486
I’ve mentioned that Pentium-optimized code does fine on the 486, but not always so
well on the 386. On a 486, Listing 21.1 runs at 9 cycles per checksummed word, and
Listing 21.5 runs at 2.5 cycles per checksummed word, a healthy 3.6-times speedup.
On a 386, Listing 21.1 runs at 22 cycles per word; Listing 21.5 runs at 7 cycles per
word, a 3.1-times speedup. As is often the case, Pentium optimization helped the
other processors, but not as much as it helped the Pentium, and less on the 386 than
on the 486.

Unleashing the Pentium’s V-pipe 41 1

chapter 22

zenning and the flexible mind

Ch

And so we come &>the end of ourjourney; for now, at least. What follows is a modest
riginally served to show readers of Zen of Assembly

Language that they more than just bits and pieces of knowledge; that
they had also begun to apply the flexible mind-unconventional, broadly
integrative thinkin hing high-level optimization at the algorithmic and

urse, need no such reassurance, having just spent
xible mind in many guises, but I think you’ll find

ve nonetheless. Try to stay ahead as the level of optimization
elimination to instruction substitution to more creative solu-

nding and redesign. We’ll start out by compacting
individual instructiods and bits of code, but by the end we’ll come up with a solution
that involves the very structure of the subroutine, with each instruction carefully
integrated into a remarkably compact whole. It’s a neat example of how optimiza-
tion operates at many levels, some much less determininstic than others-and besides,
it’s just plain fun.
Enjoy!

Lennmg
In Jeff Duntemann’s excellent book Bodand PascaZFrum Square One (Random House,
1993), there’s a small assembly subroutine that’s designed to be called from a Turbo

41 5

Pascal program in order to fill the screen or a system-memory screen buffer with a
specified character/attribute pair in text mode. This subroutine involves only 21
instructions and works perfectly well; however, with what we know, we can compact
the subroutine tremendously and speed it up a bit as well. To coin a verb, we can
“Zen” this already-tight assembly code to an astonishing degree. In the process, I
hope you’ll get a feel for how advanced your assembly skills have become.
Jeff‘s original code follows as Listing 22.1 (with some text converted to lowercase in
order to match the style of this book), but the comments are mine.

LISTING
OnStack
01 dBP
RetAddr
F i l l e r
A t t r i b
B u f S i z e
BufOfs
BufSeg
EndMrk
OnStack

22.1 122- 1 .ASM
s t r u c : d a t a t h a t ’ s s t o r e d on t h e s t a c k a f t e r PUSH BP
dw ? : c a l l e r ’ s BP
dw ? : re tu rn add ress
dw ? : c h a r a c t e r t o fill t h e b u f f e r w i t h
dw ? : a t t r i b u t e t o fill t h e b u f f e r w i t h
dw ? :number o f c h a r a c t e r / a t t r i b u t e p a i r s t o fill
dw ? : b u f f e r o f f s e t
dw ? : b u f f e r segment
db ? : m a r k e r f o r t h e end o f t h e s t a c k f r a m e
ends

C l e a r s
push
mov
cmp
j n e
cmp
j e

mov
and
mov
and
o r
mov
mov
mov
mov
mov

Bye: mov
POP
r e t

S t a r t : c l d

r e p

C l e a r s

p r o c n e a r
bP ; s a v e c a l l e r ’ s B P
bP. SP : p o i n t t o s t a c k f r a m e
word p t r Cbp l .BufSeg.0 :sk ip the fill i f a n u l l
S t a r t
word p t r Cbpl.BufOfs,O
Bye

a x . C b p l . A t t r i b : l o a d AX w i t h a t t r i b u t e p a r a m e t e r
a x . O f f 0 0 h ; p r e p a r e f o r m e r g i n g w i t h fill char
b x . [b p l . F i l l e r : l o a d BX w i t h fill char
b x . 0 f f h : p r e p a r e f o r m e r g i n g w i t h a t t r i b u t e
ax .bx : comb ine a t t r i bu te and fill c h a r
bx ,Cbp l .BufOfs : load DI w i t h t a r g e t b u f f e r o f f s e t
d i , bx
bx . [bp l .Bu fSeg : l oad ES w i t h t a r g e t b u f f e r segment
e s , bx
cx .Cbp l .Bu fS ize ; l oad C X w i t h b u f f e r s i z e
s tosw ;fill t h e b u f f e r
s p . b p ; r e s t o r e o r i g i n a l s t a c k p o i n t e r
bp ; and c a l l e r ’ s BP

: p o i n t e r i s passed

:make STOSW count up

EndMrk -Re tAddr -2 : re tu rn . c lea r ing t he pa rms f rom the s tack
endp

The first thing you’ll notice about Listing 22.1 is that Clears uses a REP STOSW
instruction. That means that we’re not going to improve performance by any great
amount, no matter how clever we are. While we can eliminate some cycles, the bulk
of the work in Clears is done by that one repeated string instruction, and there’s no
way to improve on that.
Does that mean that Listing 22.1 is as good as it can be? Hardly. While the speed of
Clears is very good, there’s another side to the optimization equation: size. The whole of
Clears is 52 bytes long as it stands-but, as we’ll see, that size is hardly set in stone.

41 6 Chapter 22

Where do we begin with Clears? For starters, there’s an instruction in there that
serves no earthly purpose-MOV SP,BP. SP is guaranteed to be equal to BP at that
point anyway, so why reload it with the same value? Removing that instruction saves
us two bytes.
Well, that was certainly easy enough! We’re not going to find any more totally non-
functional instructions in Clears, however, so let’s get on to some serious optimizing.
We’ll look first for cases where we know of better instructions for particular tasks
than those that were chosen. For example, there’s no need to load any register,
whether segment or general-purpose, through BX; we can eliminate two instruc-
tions by loading ES and DI directly as shown in Listing 22.2.

LISTING 22.2 122-2.ASM
C l e a r s p r o c n e a r

push bp
mov bp. sp
cmp word p t r Cbpl.BufSeg.0
j n e S t a r t
cmp word p t r [b p l . B u f O f s . O
je Bye

mov a x . C b p l . A t t r i b
and ax.Off00h
mov bx . [bp l . F i 11 e r
and b x . 0 f f h
o r ax .bx
mov d i .Cbp].BufOfs
mov es, [bp l .BufSeg
mov cx . [bp l .Bu fS ize
rep s tosw

S t a r t : c l d

Bye :
POP bP
r e t EndMrk-RetAddr-2

C1 ears endp

: s a v e c a l l e r ’ s BP
: p o i n t t o s t a c k f r a m e
: s k i p t h e fill i f a n u l l
: p o i n t e r i s p a s s e d

:make STOSW coun t up
: l o a d A X w i t h a t t r i b u t e p a r a m e t e r
: p r e p a r e f o r m e r g i n g w i t h fill char
: l o a d BX w i t h fill char
: p r e p a r e f o r m e r g i n g w i t h a t t r i b u t e
: c o m b i n e a t t r i b u t e a n d fill char
; l o a d D I w i t h t a r g e t b u f f e r o f f s e t
: l o a d ES w i t h t a r g e t b u f f e r segment
: l o a d C X w i t h b u f f e r s i z e
:fill t h e b u f f e r

: r e s t o r e c a l l e r ’ s BP
: r e t u r n . c l e a r i n g t h e parms f r o m t h e s t a c k

(The OnStack structure definition doesn’t change in any of our examples, so I’m
not going clutter up this chapter by reproducing it for each new version of Clears.)
Okay, loading ES and DI directly saves another four bytes. We’ve squeezed a total of
6 bytes-about 11 percent-out of Clears. What next?
Well, LES would serve better than two MOV instructions for loading ES and DI as shown
in Listing 22.3.

LISTING 22.3 122-3.ASM
C l e a r s p r o c n e a r

p u s h b p : s a v e c a l l e r ’ s B P
mov bp,sp : p o i n t t o s tack f rame
cmp word p t r Cbpl .BufSeg.0 :sk ip the fill i f a n u l l
j n e S t a r t : p o i n t e r i s p a s s e d
cmp word p t r [b p l . B u f O f s , O
je Bye

mov a x . [b p l . A t t r i b : l o a d A X w i t h a t t r i b u t e p a r a m e t e r
and ax.Off00h : p r e p a r e f o r m e r g i n g w i t h fill char

S t a r t : c l d :make STOSW count up

Zenning and the Flexible Mind 41 7

mov
and
o r
1 es

mov
r e p

POP
r e t

Bye :

C l e a r s

b x . [b p l . F i l l e r
b x . 0 f f h
ax, bx
d i . d w o r d p t r [b p l . B u f O f s

cx ,Cbp l .BufS ize
stosw

bP
EndMrk-RetAddr-2
endp

: l o a d BX w i t h fill c h a r
: p r e p a r e f o r m e r g i n g w i t h a t t r i b u t e
;combine a t t r i b u t e and fill c h a r
: l o a d E S : D I w i t h t a r g e t b u f f e r
: s e g m e n t : o f f s e t
: l o a d C X w i t h b u f f e r s i z e
:fill t h e b u f f e r

: r e s t o r e c a l l e r ’ s BP
: r e t u r n . c l e a r i n g t h e pa rms f rom the s tack

That’s good for another three bytes. We’re down to 43 bytes, and counting.
We can save 3 more bytes by clearing the low and high bytes of AX and BX, respectively,
by using SUB reg8,reg8 rather than ANDing 16-bit values as shown in Listing 22.4.

LISTING 22.4 122-4.ASM
C l e a r s p roc nea r

push bp
mov bp.sp
cmp word p t r Cbpl.BufSeg.0
j n e S t a r t
cmp word p t r C b p l . B u f O f s . 0
j e Bye

mov a x . [b p l . A t t r i b
sub a1,a l
mov b x . C b p l . F i l l e r
sub bh,bh
or ax .bx
l e s d i . d w o r d p t r [b p l . B u f O f s

mov cx .Cbp l .BufS ize
rep s tosw

S t a r t : c l d

Bye :
P O P bP
re t EndMrk -Re tAddr -2

C l e a r s endD

: s a v e c a l l e r ’ s B P
: p o i n t t o s t a c k f r a m e
: s k i p t h e fill i f a n u l l
: p o i n t e r i s p a s s e d

;make STOSW count up
: l o a d A X w i t h a t t r i b u t e p a r a m e t e r
: p r e p a r e f o r m e r g i n g w i t h fill char
: l o a d BX w i t h fill char
: p r e p a r e f o r m e r g i n g w i t h a t t r i b u t e
: c o m b i n e a t t r i b u t e a n d fill char
: l o a d E S : D I w i t h t a r g e t b u f f e r
;segment :o f fse t
: l o a d C X w i t h b u f f e r s i z e
:fill t h e b u f f e r

: r e s t o r e c a l l e r ’ s BP
: r e t u r n . c l e a r i n g t h e parms f rom the s tack

Now we’re down to 40 bytes-more than 20 percent smaller than the original code.
That’s pretty much it for simple instruction-substitution optimizations. Now let’s look
for instruction-rearrangement optimizations.
It seems strange to load a word value into AX and then throw away AL. Likewise, it
seems strange to load a word value into BX and then throw away BH. However, those
steps are necessary because the two modified word values are ORed into a single char-
acter/attribute word value that is then used to fill the target buffer.
Let’s step back and see what this code really does, though. All it does in the end is
load one byte addressed relative to BP into AH and another byte addressed relative
to BP into AL. Heck, we can just do that directly! Presto-we’ve saved another 6
bytes, and turned two word-sized memory accesses into byte-sized memory accesses
as well. Listing 22.5 shows the new code.

41 8 Chapter 22

LISTING 22.5 122-5.ASM
C l e a r s p roc nea r

push bp
mov bp,sp
cmp word p t r Cbpl.BufSeg.0
j n e S t a r t
cmp word p t r [b p l . B u f O f s . O
j e Bye

mov a h , b y t e p t r [b p] . A t t r i b [l l
mov a1 , b y t e p t r [b p l . F i l l e r
l e s d i . d w o r d p t r [b p] . B u f O f s
mov cx ,Cbp l .BufS ize
rep s tosw

S t a r t : c l d

Bye :
POP bp
re t EndMrk -Re tAddr -2

Clears endp

; s a v e c a l l e r ' s BP
; p o i n t t o s t a c k f r a m e
; s k i p t h e fill i f a n u l l
: p o i n t e r i s passed

;make STOSW count up
; l o a d AH w i t h a t t r i b u t e
; l o a d AL w i t h fill char
; l o a d ES:OI w i t h t a r g e t b u f f e r s e g m e n t : o f f s e t
; l o a d C X w i t h b u f f e r s i z e
;fill t h e b u f f e r

; r e s t o r e c a l l e r ' s BP
: r e t u r n . c l e a r i n g t h e parms f rom the s tack

(We could get rid ofyet another instruction by having the calling code pack both the
attribute and the fill value into the same word, but that's not part of the specification
for this particular routine.)
Another nifty instruction-rearrangement trick saves 6 more bytes. Clears checks to see
whether the far pointer is null (zero) at the start of the routine.. .then loads and uses
that same far pointer later on. Let's get that pointer into registers and keep it there;
that way we can check to see whether it's null with a single comparison, and can use it
later without having to reload it from memory. This technique is shown in Listing 22.6.

LISTING 22.6 122-6.ASM
C l e a r s p roc nea r

push bp
mov bp,sp
l e s d i . d w o r d p t r [b p] . B u f O f s

mov ax.es
o r a x . d i
j e Bye

mov a h . b y t e p t r C b p l . A t t r i b C 1 1
mov a l . b y t e p t r C b p] . F i l l e r
mov c x . [b p l . B u f S i z e
rep s tosw

Start: c l d

Bye :
POP bp
re t EndMrk -Re tAddr -2

Clears endp

; s a v e c a l l e r ' s B P
; p o i n t t o s t a c k f r a m e
; l o a d E S : D I w i t h t a r g e t b u f f e r
;segment :o f fse t
;put segment where we c a n t e s t i t
; i s i t a n u l l p o i n t e r ?
;yes. s o we' re done
;make STOSW count up
; l o a d AH w i t h a t t r i b u t e
; l o a d AL w i t h fill char
: l o a d C X w i t h b u f f e r s i z e
:fill t h e b u f f e r

; r e s t o r e c a l l e r ' s B P
: r e t u r n , c l e a r i n g t h e parms f rom the s tack

Well. Now we're down to 28 bytes, having reduced the size of this subroutine by
nearly 50 percent. Only 13 instructions remain. Realistically, how much smaller can
we make this code?
About one-third smaller yet, as it turns out-but in order to do that, we must stretch
our minds and use the 8088's instructions in unusual ways. Let me ask you this: What
do most of the instructions in the current version of Clears do?

Zenning and the Flexible Mind 41 9

They either load parameters from the stack frame or set up the registers so that the
parameters can be accessed. Mind you, there’s nothing wrong with the stack-frame-
oriented instructions used in Clears; those instructions access the stack frame in a
highly efficient way, exactly as the designers of the 8088 intended, and just as the code
generated by a high-level language would. That means that we aren’t going to be able
to improve the code if we don’t bend the rules a bit.
Let’s think ... the parameters are sitting on the stack, and most of our instruction
bytes are being used to read bytes off the stack with BP-based addressing.. .we need a
more efficient way to address the stack.. . the stack.. .THE STACK!
Ye gods! That’s easy-we can use the stuck pointer to address the stack rather than BP.
While it’s true that the stack pointer can’t be used for mod-reg-rm addressing, as BP
can, it can be used to pop data off the stack-and POP is a one-byte instruction.
Instructions don’t get any shorter than that.
There is one detail to be taken care of before we can put our plan into action: The
return address-the address of the calling code-is on top of the stack, so the pa-
rameters we want can’t be reached with POP. That’s easily solved, however-we’ll
just pop the return address into an unused register, then branch through that regis-
ter when we’re done, as we learned to do in Chapter 14. As we pop the parameters,
we’ll also be removing them from the stack, thereby neatly avoiding the need to
discard them when it’s time to return.
With that problem dealt with, Listing 22.7 shows the Zenned version of Clears.

LISTING 22.7 122-7.ASM
C l e a r s p r o c n e a r

POP dx ; g e t t h e r e t u r n a d d r e s s
POP ax ; p u t fill c h a r i n t o AL
POP bx ; g e t t h e a t t r i b u t e
mov ah.bh ; p u t a t t r i b u t e i n t o AH
POP c x ; g e t t h e b u f f e r s i z e
pop d i : g e t t h e o f f s e t o f t h e b u f f e r o r i g i n
POP es : g e t t h e s e g m e n t o f t h e b u f f e r o r i g i n
mov bx.es ;put the segment where we c a n t e s t it
o r b x . d i ; n u l 1 p o i n t e r ?
j e Bye ;yes. so we‘re done
c l d :make STOSW count up
rep s tosw :do t h e s t r i n g s t o r e

jrnp dx : r e t u r n t o t h e c a l l i n g c o d e
Bye:

Clears endp

At long last, we’re down to the bare metal. This version of Clears is just 19 bytes long.
That’s just 37 percent as long as the original version, without any change whatsoarer in the
&nctzonuZiCy that CbarS maka available to the culling code. The code is bound to run a bit
faster too, given that there are far fewer instruction bytes and fewer memory accesses.
All in all, the Zenned version of Clears is a vast improvement over the original. Probably
not the best possible implementation-never say never!-but an awfully good one.

420 Chapter 22

Part 2

part 2

chapter 23

bones and sinew

q,Heart of Standard PC Graphics
The VGA is un ry of computer graphics, for it is by far the most

e closest we may ever come to a linguaj-anca of
computer graphics. standard has even come close to the 50,000,000
or so VGAs in use t Ily every PC compatible sold today has full VGA
compatibility built iq*. There are, of course, a variety of graphics accelerators that
outperform the sta6dard VGA, and indeed, it is becoming hard to find a plain va-

t there is no standard for accelerators, and every accelerator

t if you write your programs for the VGA, you’ll have the
for your software. In order for graphics-based software to
st perform well. Wringing the best performance from the

VGA is no simple task, and it’s impossible unless you really understand how the VGA
works-unless you have the internals down cold. This book is about PC graphics at
many levels, but high performance is the foundation for all that is to come, so it is
with the inner workings of the VGA that we will begin our exploration of PC graphics.
The first eight chapters of Part I1 is a guided tour of the heart of the VGA, after
you’ve absorbed what we’ll cover in this and the next seven chapters, you’ll have the
foundation for understanding just about everything the VGA can do, including the
fabled Mode X and more. As you read through these first chapters, please keep in
mind that the really exciting stuff-animation, 3-D, blurry-fast lines and circles and

VGA at its core.

425

polygons-has to wait until we have the fundamentals out of the way. So hold on and
follow along, and before you know it the fireworks will be well underway.
We’ll start our exploration with a quick overview of the VGA, and then we’ll dive
right in and get a taste of what the VGA can do.

The VGA
The VGA is the baseline adapter for modern IBM PC compatibles, present in virtu-
ally every PC sold today or in the last several years. (Note that the VGA is often
nothing more than a chip on a motherboard, with some memory, a DAC, and maybe
a couple of glue chips; nonetheless, I’ll refer to it as an adapter from now on for
simplicity.) It guarantees that every PC is capable of documented resolutions up to
640x480 (with 16 possible colors per pixel) and 320x200 (with 256 colors per pixel),
as well as undocumented-but nonetheless thoroughly standard-resolutions up to
360x480 in 256-color mode, as we’ll see in Chapters 31-34 and 4’7-49. In order for a
video adapter to claim VGA compatibility, it must support all the features and code
discussed in this book (with a very few minor exceptions that I’ll note)-and my
experience is that just about 100 percent of the video hardware currently shipping
or shipped since 1990 is in fact VGA compatible. Therefore, VGA code will run on
nearly all of the 50,000,000 or so PC compatibles out there, with the exceptions
being almost entirely obsolete machines from the 1980s. This makes good VGA code
and VGA programming expertise valuable commodities indeed.
Right off the bat, I’d like to make one thing perfectly clear: The VGA is hard-
sometimes very hard-to program for good performance. Hard, but not
impossible-and that’s why I like this odd board. It’s a throwback to an earlier gen-
eration of micros, when inventive coding and a solid understanding of the hardware
were the best tools for improving performance. Increasingly, faster processors and
powerful coprocessors are seen as the solution to the sluggish software produced by
high-level languages and layers of interface and driver code, and that’s surely a valid
approach. However, there are tens of millions of VGAs installed right now, in ma-
chines ranging from &MHz 286s to 90-MHz Pentiums. What’s more, because the
VGAs are generally 8- or at best 16-bit devices, and because of display memory wait
states, a faster processor isn’t as much of a help as you’d expect. The upshot is that
only a seasoned performance programmer who understands the VGA through and
through can drive the board to its fullest potential.
Throughout this book, I’ll explore the VGA by selecting a specific algorithm or fea-
ture and implementing code to support it on the VGA, examining aspects of the
VGA architecture as they become relevant. You’ll get to see VGA features in context,
where they are more comprehensible than in IBM’s somewhat arcane documenta-
tion, and you’ll get working code to use or to modify to meet your needs.
The prime directive of VGA programming is that there’s rarely just one way to pro-
gram the VGA for a given purpose. Once you understand the tools the VGA provides,

426 Chapter 23

you’ll be able to combine them to generate the particular synergy your application
needs. My VGA routines are not intended to be taken as gospel, or to show “best”
implementations, but rather to start you down the road to understanding the VGA.
Let’s begin.

An Introduction to VGA Programming
Most discussions of the VGA start out with a traditional “Here’s a block diagram of
the VGA” approach, with lists of registers and statistics. I’ll get to that eventually, but
you can find it in IBM’s VGA documentation and several other books. Besides, it’s
numbing to read specifications and explanations, and the VGA is an exciting adapter,
the kind that makes you want to get your hands dirty probing under the hood, to
write some nifty code just to see what the board can do. What’s more, the best way to
understand the VGA is to see it work, so let’s jump right into a sample of the VGA in
action, getting a feel for the VGA’s architecture in the process,
Listing 23.1 is a sample VGA program that pans around an animated 16-color me-
dium-resolution (640x350) playfield. There’s a lot packed into this code; I’m going
to focus on the VGA-specific aspects so we don’t get sidetracked. I’m not going to
explain how the ball is animated, for example; we’ll get to animation starting in
Chapter 42. What I will do is cover each of the VGA features used in this program-
the virtual screen, vertical and horizontal panning, color plane manipulation,
multi-plane block copying, and page flipping-at a conceptual level, letting the code
itself demonstrate the implementation details. We’ll return to many of these con-
cepts in more depth later in this book.

At the Core
A little background is necessary before we’re ready to examine Listing 23.1. The VGA is
built around four functional blocks, named the CRT Controller (CRTC) , the Sequence
Controller (SC), the Attribute Controller (AC) , and the Graphics Controller (GC).
The single-chip VGA could have been designed to treat the registers for all the blocks
as one large set, addressed at one pair of 1/0 ports, but in the EGA, each of these blocks
was a separate chip, and the legacy of EGA compatibility is why each of these blocks
has a separate set of registers and is addressed at different I/O ports in the VGA.
Each of these blocks has a sizable complement of registers. It is not particularly impor-
tant that you understand why a given block has a given register; all the registers together
make up the programming interface, and it is the entire interface that is of interest
to the VGA programmer. However, the means by which most VGA registers are ad-
dressed makes it necessary for you to remember which registers are in which blocks.
Most VGA registers are addressed as internally indexed registers. The internal address
of the register is written to a given block’s Index register, and then the data for that
register is written to the block’s Data register. For example, GC register 8, the Bit

Bones and Sinew 427

Mask register, is set to OFFH by writing 8 to port SCEH, the GC lndex register, and
then writing OFFH to port SCFH, the GC Data register. Internal indexing makes it
possible to address the 9 GC registers through only two ports, and allows the entire
VGA programming interface to be squeezed into fewer than a dozen ports. The
downside is that two 1 / 0 operations are required to access most VGA registers.
The ports used to control the VGA are shown in Table 23.1. The CRTC, SC, and GC
Data registers are located at the addresses of their respective Index registers plus
one. However, the AC Index and Data registers are located at the same address,
3COH. The function of this port toggles on every OUT to 3COH, and resets to Index
mode (in which the Index register is programmed by the next OUT to 3COH) on
every read from the Input Status 1 register (3DAH when the VGA is in a color mode,

428 Chapter 23

3BAH in monochrome modes). Note that all CRTC registers are addressed at either
3DXH or 3BXH, the former in color modes and the latter in monochrome modes.
This provides compatibility with the register addressing of the now-vanished Color/
Graphics Adapter and Monochrome Display Adapter.
The method used in the VGA BIOS to set registers is to point DX to the desired
Index register, load AL with the index, perform a byte OUT, increment DX to point
to the Data register (except in the case of the AC, where DX remains the same), load
AL with the desired data, and perform a byte OUT. A handy shortcut is to point DX
to the desired Index register, load AL with the index, load AH with the data, and
perform a word OUT. Since the high byte of the OUT value goes to port DX+1 , this is
equivalent to the first method but is faster. However, this technique does not work for
programming the AC Index and Data registers; both AC registers are addressed at
3COH, so two separate byte OUTs must be used to program the AC. (Actually, word
OUTs to the AC do work in the EGA, but not in the VGA, so they shouldn’t be used.)
As mentioned above, you must be sure which mode-Index or Data-the AC is in
before you do an OUT to 3COH; you can read the Input Status 1 register at any time
to force the AC to Index mode.
How safe is the word-OUT method of addressing VGA registers? I have, in the past,
run into adapter/computer combinations that had trouble with word OUTs; how-
ever, all such problems I am aware of have been fixed. Moreover, a great deal of
graphics software now uses word OUTs, so any computer or VGA that doesn’t prop-
erly support word OUTs could scarcely be considered a clone at all.

P A speed tip: The setting of each chip S Index register remains the same until it is
reprogrammed. This means that in cases where you are setting the same internal
register repeatedly, you can set the Index register to point to that internal register
once, then write to the Data register multiple times. For example, the Bit Mask
register (GC register 8) is often set repeatedly inside a loop when drawing lines.
The standard code for this is:

M O V DX.03CEH ; p o i n t t o GC I n d e x r e g i s t e r
M O V AL.8
OUT

; i n t e r n a l i n d e x o f B i t Mask r e g i s t e r
DX ,AX ;AH c o n t a i n s B i t Mask r e g i s t e r s e t t i n g

Alternatively, the GC Index register could initially be set to point to the Bit Mask
register with

M O V DX.03CEH : p o i n t t o G C I n d e x r e g i s t e r
M O V AL.8 ; i n t e r n a l i n d e x o f B i t Mask r e g i s t e r
OUT DX.AL ; s e t GC I n d e x r e g i s t e r
I N C D X : p o i n t t o GC D a t a r e g i s t e r

and then the Bit Mask register could be set repeatedly with the byte-size OUT
instruction

OUT DX.AL :AL c o n t a i n s B i t Mask r e g i s t e r s e t t i n g

Bones and Sinew 429

which is generally faster (and never slower) than a word-sized OUT, and which
does not require AH to be set, freeing up a register. Of course, this method only
works ifthe GC Index register remains unchanged throughout the loop.

Linear Planes and True VGA Modes
The VGA's memory is organized as four 64K planes. Each of these planes is a linear
bitmap; that is, each byte from a given plane controls eight adjacent pixels on the
screen, the next byte controls the next eight pixels, and so on to the end of the scan
line. The next byte then controls the first eight pixels of the next scan line, and so on
to the end of the screen.
The VGA adds a powerful twist to linear addressing; the logical width of the screen
in VGA memory need not be the same as the physical width of the display. The
programmer is free to define all or part of the VGA's large memory map as a logical
screen of up to 4,080 pixels in width, and then use the physical screen as a window
onto any part of the logical screen. What's more, a virtual screen can have any logical
height up to the capacity of VGA memory. Such a virtual screen could be used to
store a spreadsheet or a CAD/CAM drawing, for instance. As we will see shortly, the
VGA provides excellent hardware for moving around the virtual screen; taken to-
gether, the virtual screen and the VGA's smooth panning capabilities can generate
very impressive effects.
All four linear planes are addressed in the same 64K memory space starting at
A000:OOOO. Consequently, there are four bytes at any given address in VGA memory.
The VGA provides special hardware to assist the CPU in manipulating all four planes,
in parallel, with a single memory access, so that the programmer doesn't have to
spend a great deal of time switching between planes. Astute use of this VGA hard-
ware allows VGA software to as much as quadruple performance by processing the
data for all the planes in parallel.
Each memory plane provides one bit of data for each pixel. The bits for a given pixel
from each of the four planes are combined into a nibble that serves as an address
into the VGA's palette R A M , which maps the one of 16 colors selected by display
memory into any one of 64 colors, as shown in Figure 23.1. All sixty-four mappings
for all 16 colors are independently programmable. (We'll discuss the VGA's color
capabilities in detail starting in Chapter 33.)
The VGA BIOS supports several graphics modes (modes 4, 5, and 6) in which VGA
memory appears not to be organized as four linear planes. These modes exist for
CGA compatibility only, and are not true VGA graphics modes; use them when you
need CGA-type operation and ignore them the rest of the time. The VGA's special
features are most powerful in true VGA modes, and it is on the 16-color true-VGA
modes (modes ODH (320~200), OEH (640~200), 10H (640~350), and 12H (640x480))
that I will concentrate in this part of the book. There is also a 256-color mode, mode
13H, that appears to be a single linear plane, but, as we will see in Chapters 31-34

430 Chapter 23

Byte from
Plane 0

Byte from
Plane 1 0 n u

Byte from
Plane 2

Byte from
Plane 3

-
0 -

"+

2 -

bit first addressed 3 -
8 bits from plane 2 (red) from memory) 4
plane byte, shifted out 1
per dot clock, most-
significant bit first 5 -

Palette RAM
(1 6 6-Bit-wide
storage

1 locations

with four bits -
8 bits from plane 3
(intensity plane) b te,
shifted out 1 per Jot clock,
most-significant bit first

-

One pixel
per dot
clock to
digital-to-
analog
converter
(DAC)

+

Video data from memory to pixel.
Figure 23.1

and 47-49 of this book, that's a polite fiction-and discarding that fiction gives us an
opportunity to unleash the power of the VGAs hardware for vastly better perfor-
mance. VGA text modes, which feature soft fonts, are another matter entirely, upon
which we'll touch from time to time.
With that background out of the way, we can get on to the sample VGA program
shown in Listing 23.1. I suggest you run the program before continuing, since the
explanations will mean far more to you if you've seen the features in action.

LISTING 23.1 123- 1 .ASM
: Sample V G A p rog ram.
: A n i m a t e s f o u r b a l l s b o u n c i n g a r o u n d a p l a y f i e l d b y u s i n g
: p a g e f l i p p i n g . P l a y f i e l d i s p a n n e d s m o o t h l y b o t h h o r i z o n t a l l y
: and v e r t i c a l l y .
: By M i c h a e l A b r a s h .

s tack segment para s tack 'STACK'
db 512 dup(?)

s t a c k e n d s

MEORES"/IOEO~MOOE equ 0 : d e f i n e f o r 6 4 0 x 3 5 0 v i d e o mode
: comment o u t f o r 640x200 mode

VIOEO_.SEGMENT equ OaOOOh : d i s p l a y memory segment f o r
: t r u e VGA g r a p h i c s modes

LOGICAL-SCREENKWIOTH equ 6 7 2 / 8 : w i d t h i n b y t e s a n d h e i g h t i n s c a n

Bones and Sinew 431

LOGICALLSCREEN-HEIGHT

PAGE0
P A G E l
PAGEOKOFFSET equ

equ

PAGElLOFFSET equ

w

BALLLWIOTH equ
BALLLHEIGHT equ
BLANK-OFFSET equ

BALL-OFFSET equ

NUM-BALLS equ

equ 384 : l i n e s o f t h e v i r t u a l s c r e e n

0 ; f l a g f o r p a g e 0 when page f l i p p i n g
1 ; f l a g f o r p a g e 1 when page f l i p p i n g
0 ; s t a r t o f f s e t o f p a g e 0 i n VGA memory

; w e ' l l w o r k w i t h

LOGICALLSCREEN-WIDTH * LOGICALLSCREENKHEIGHT
; s t a r t o f f s e t o f p a g e 1 (b o t h p a g e s
; a r e 6 7 2 x 3 8 4 v i r t u a l s c r e e n s)

2 4 1 8 ; w i d t h o f b a l l i n d i s p l a y memory b y t e s
2 4 ; h e i g h t o f b a l l i n s c a n l i n e s
PAGE1-OFFSET * 2 ; s t a r t o f b l a n k i m a g e

BLANK-OFFSET + (BALLLWIDTH * BALLLHEIGHT)

4
: s t a r t o f f s e t o f b a l l i m a g e i n VGA memory
;number o f b a l l s t o a n i m a t e

; i n VGA memory

; VGA r e g i s t e r e q u a t e s .

SC-INDEX
MAP-MASK

equ 3c4h ; S C i n d e x r e g i s t e r
equ 2 ; S C map mask r e g i s t e r

GC- INDEX equ 3ceh ;GC i n d e x r e g i s t e r
GC-MODE
CRTC-INDEX

equ 5 :GC mode r e g i s t e r
equ 03d4h ;CRTC i n d e x r e g i s t e r

STARTLADDRESS-HIGH equ Och :CRTC s t a r t a d d r e s s h i g h b y t e
START-ADDRESS-LOW equ Odh ;CRTC s t a r t a d d r e s s l o w b y t e
CRTC-OFFSET equ 13h :CRTC o f f s e t r e g i s t e r
INPUT-STATUS-1 equ 03dah ;VGA s t a t u s r e g i s t e r
VSYNC-MASK
DE-MASK

e q u 0 8 h : v e r t i c a l s y n c b i t i n s t a t u s r e g i s t e r 1

AC- INDEX
e q u O l h ; d i s p l a y e n a b l e b i t i n s t a t u s r e g i s t e r 1

HPELPAN
equ 03cOh :AC i n d e x r e g i s t e r
equ 20h OR 13h : A C h o r i z o n t a l p e l p a n n i n g r e g i s t e r

: (b i t 7 i s h i g h t o k e e p p a l e t t e RAM
; a d d r e s s i n g o n)

dseg segment para common 'DATA'
Cur ren tpage db P A G E l ;page t o draw t o
C u r r e n t P a g e O f f s e t dw PAGEl-OFFSET

: F o u r p l a n e ' s w o r t h o f m u l t i c o l o r e d b a l l i m a g e .

B a l l P1 aneOImage 1 abel byte
db 000h. 03ch. 000h. 001h. Of fh . 080h
db 007h . O f fh . DeOh. OOfh . Of fh . OfOh
db 4 * 3 dup(000h)
d b 0 7 f h . O f f h . O f e h . O f f h . O f f h . O f f h
d b O f f h . O f f h . O f f h . O f f h . O f f h . O f f h
db 4 * 3 dup(000h)
d b 0 7 f h . O f f h . O f e h . 0 3 f h . O f f h . O f c h
db 03 fh . O f fh . O fch . O l fh . O f fh . O fBh
db 4 * 3 dup(000h)

db 4 * 3 dup(000h)
d b O l f h . O f f h , O f 8 h . 0 3 f h . O f f h . O f c h
d b 0 3 f h . O f f h . O f c h . 0 7 f h . O f f h . O f e h
d b 0 7 f h . O f f h . O f e h . O f f h . O f f h . O f f h
d b O f f h . O f f h . O f f h . O f f h . O f f h . O f f h
db 8 * 3 dup(000h)
db OOfh. Of fh . OfOh. 007h. Of fh . OeOh
db 001h. Of fh . 080h. 000h. 03ch. OOOh

db 12 * 3 dup(000h)

: b l u e p l a n e i m a g e

B a l l P1 a n e l I m a g e 1 a b e l b y t e :g reen p lane image

B a l l P1 ane2 Image 1 abe l by te ; red p lane image

432 Chapter 23

db
db

O f f h , O f f h . O f f h . O f f h . O f f h . O f f h
O f f h . O f f h . O f f h . 0 7 f h . O f f h , O f e h

d b 0 7 f h . O f f h . O f e h . 0 3 f h . O f f h . O f c h
db
db

03 fh . O f f h . O fch . O l f h . O f f h . Of8h
OOfh, O f f h . OfOh. 007h. O f f h . OeOh

db 001h. O f f h . 080h. 000h. 03ch. OOOh
B a l l P l a n e 3 I m a g e 1 a b e l b y t e : i n t e n s i t y on f o r a l l p l a n e s ,

: t o p r o d u c e h i g h - i n t e n s i t y c o l o r s
db
db
db
db
d b
db
db
db
db
db
db
db

B a l l X
B a l l Y
Las tBa l 1 X
L a s t B a l l Y
B a l l X I n c
B a l l Y I n c
B a l l Rep

B a l l C o n t r o l

000h. 03ch. 000h. 001h. O f f h . 0 8 0 h
007h. O f f h . OeOh. OOfh. O f f h . OfOh
O l f h . O f f h . O f8h . 0 3 f h . O f f h . O f c h
03 fh . O f f h . Ofch . 0 7 f h . O f f h . O f e h
07 fh . O f f h . Ofeh , O f f h . O f f h . O f f h
O f f h . O f f h . O f f h . O f f h . O f f h . O f f h
O f f h . O f f h , O f f h . O f f h . O f f h . O f f h
O f fh . O f f h . O f f h . 0 7 f h . O f f h . O f e h
0 7 f h . O f f h . Ofeh . 0 3 f h . O f f h . O f c h
03 fh . O f f h . O fch , O l f h . O f f h . O f 8 h
OOfh. O f f h . OfOh. 007h. O f f h . OeOh
001h. O f f h . 080h, 000h. 03ch. OOOh

dw 15. 50 , 4 0 . 7 0 ; a r r a y o f b a l l x coords
dw 40, 200. 110. 300 : a r r a y o f b a l l y coo rds
dw 15. 50. 40. 70
dw 40. 100. 160. 30

; p r e v i o u s b a l l x coords
: p r e v i o u s b a l l y coo rds

dw 1. 1. 1. 1
dw

: x move f a c t o r s f o r b a l l
8. 8, 8. 8 ;y move f a c t o r s f o r b a l l

dw 1. 1. 1. 1 :B t i m e s t o k e e p m o v i n g
: b a l l a c c o r d i n g t o c u r r e n t
: i n c r e m e n t s

dw B a l l O C o n t r o l , B a l l l C o n t r o l : p o i n t e r s t o c u r r e n t
dw B a l l 2 C o n t r o l . B a l l 3 C o n t r o l ; l o c a t i o n s i n b a l l

; c o n t r o l s t r i n g s
B a l l C o n t r o l S t r i n g dw B a l l O C o n t r o l , B a l l l C o n t r o l : p o i n t e r s t o

dw B a l l 2 C o n t r o 1 , B a l l 3 C o n t r o l : s t a r t o f b a l l
: c o n t r o l s t r i n g s

: B a l l c o n t r o l s t r i n g s .

B a l l O C o n t r o l l a b e l w o r d

B a l l l C o n t r o l 1 abe l word

B a l 1 2 C o n t r o l 1 abe l word

B a l l 3 C o n t r o l l a b e l w o r d

dw 10. 1. 4 , 1 0 . -1. 4 , 1 0 . -1. - 4 . 1 0 , 1. - 4 . 0

dw 12. -1. 1. 28. -1. -1. 1 2 . 1. -1. 28. 1. 1. 0

dw 20, 0. -1. 40. 0 . 1. 2 0 , 0 . -1. 0

dw 8. 1. 0. 5 2 . -1. 0. 44. 1. 0. 0

: P a n n i n g c o n t r o l s t r i n g .

i f d e f MEDRESpVIOEO_MODE
P a n n i n g C o n t r o l S t r i n g dw 32. 1. 0 . 34. 0 . 1. 32. -1, 0. 34 . 0 . -1. 0
e l s e
P a n n i n g C o n t r o l S t r i n g dw 32. 1. 0. 184, 0, 1. 32. -1. 0. 184. 0. -1. 0
e n d i f
Pann ingCon t ro l dw P a n n i n g C o n t r o l S t r i n g : p o i n t e r t o c u r r e n t l o c a t i o n

PanningRep dw 1 ;# t i m e s t o p a n a c c o r d i n g t o c u r r e n t

Pann ingXInc dw 1 ; x p a n n i n g f a c t o r
Pann ingYInc dw 0 ;y p a n n i n g f a c t o r

; i n p a n n i n g c o n t r o l s t r i n g

: p a n n i n g i n c r e m e n t s

Bones and Sinew 433

HPan db 0 ; h o r i z o n t a l p e l p a n n i n g s e t t i n g
P a n n i n g S t a r t O f f s e t dw 0 ; s t a r t o f f s e t a d j u s t m e n t t o p r o d u c e v e r t i c a l

dseg ends
; p a n n i n g & c o a r s e h o r i z o n t a l p a n n i n g

: Macro t o s e t i n d e x e d r e g i s t e r P2 o f c h i p w i t h i n d e x r e g i s t e r
; a t P 1 t o AL.

SETREG macro P 1 . P2
mov dx ,P1
mov ah .a l
mov a1 .P2
o u t d x . a x
endm

c s e g s e g m e n t p a r a p u b l i c 'CODE'

s t a r t p r o c n e a r
assume cs:cseg, ds:dseg

mov ax .dseg
mov ds .ax

: S e l e c t g r a p h i c s mode.

i f d e f MEDRES-VIDEO-MODE
mov ax.010h

e l s e
mov ax.0eh

e n d i f
i n t 10h

: ES a l w a y s p o i n t s t o VGA memory.

mov ax.VIDE0-SEGMENT
mov es ,ax

: Draw b o r d e r a r o u n d p l a y f i e l d i n b o t h p a g e s .

mov d i , PAGEO-OFFSET
c a l l D r a w B o r d e r ; p a g e 0 b o r d e r
mov d i .PAGEl-OFFSET
c a l l D r a w B o r d e r ; p a g e 1 b o r d e r

: Draw a l l f o u r p l a n e ' s w o r t h o f t h e b a l l t o u n d i s p l a y e d VGA memory.

mov a1 ,O lh
SETREG S C - I N D E X . MAP-MASK
mov s i . o f f s e t B a l l P l a n e O I m a g e
mov d i .BALL-OFFSET
mov cx.BALL-WIDTH * BALLLHEIGHT
r e p movsb
mov a1 .02h : enab le p lane 1
SETREG S C - I N D E X . MAP-MASK
mov s i , o f f s e t B a l l P l a n e l I m a g e
mov di.BALL-OFFSET
mov cx.BALL-WIDTH * BALLLHEIGHT
r e p movsb
mov a1 .04h
SETREG S C - I N D E X . MAP-MASK
mov s i . o f f s e t B a l l P l a n e 2 I m a g e
mov d i .BALLLOFFSET

; e n a b l e p l a n e 0

: e n a b l e p l a n e 2

434 Chapter 23

mov cx.BALLLWIDTH * BALLLHEIGHT
rep movsb
mov a l . 0 8 h : e n a b l e p l a n e 3
SETREG SC-INDEX. MAP-MASK
mov s i . o f f s e t B a l l P l a n e 3 I m a g e
mov d i .BALL-OFFSET
mov cx,BALL-WIDTH * BALL-HEIGHT
rep movsb

: Draw a b l a n k

mov
SETREG
mov
mov
sub

i m a g e t h e s i z e o f t h e b a l l t o u n d i s p l a y e d VGA memory.

a1 . O f h ; e n a b l e a l l memory p l a n e s , s i n c e t h e
S C - I N D E X , MAP-MASK ; b l a n k h a s t o e r a s e a l l p l a n e s
d i .BLANK-OFFSET
cx.BALLLWIDTH * BALLLHEIGHT
a1 .a1

r e p s t o s b

; Se t VGA t o w r i t e mode 1. f o r b l o c k c o p y i n g b a l l a n d b l a n k i m a g e s

mov dx.GCLINDEX
mov a1 .GCLMODE
o u t d x . a l ; p o i n t GC I n d e x t o GC Mode r e g i s t e r
i n c d x ; p o i n t t o GC D a t a r e g i s t e r
jmp $+2 ; d e l a y t o l e t b u s s e t t l e
i n a1 , d x : g e t c u r r e n t s t a t e o f GC Mode
and a1 . n o t 3 : c l e a r t h e w r i t e mode b i t s
o r a1 .1 : s e t t h e w r i t e mode f i e l d t o 1
jmp $+2 : d e l a y t o l e t b u s s e t t l e
o u t d x . a l

: Se t VGA o f f s e t r e g i s t e r i n w o r d s t o d e f i n e l o g i c a l s c r e e n w i d t h .

mov a1 .LOGICALLSCREENLWIDTH / 2
SETREG CRTC-INDEX. CRTC-OFFSET

: Move t h e b a l l s b y e r a s i n g e a c h b a l l , m o v i n g i t , and
: r e d r a w i n g it, t h e n s w i t c h i n g p a g e s when t h e y ' r e a l l moved.

B a l l A n i m a t i o n L o o p :

EachBal l Loop:

; E r a s e o l d i m a g e o f b a l l i n t h i s page (a t l o c a t i o n f r o m o n e m o r e e a r l i e r) .

mov b x . (NUM-BALLS * 2) - 2

mov si.BLANKLOFFSET : p o i n t t o b l a n k i m a g e
mov c x , [L a s t B a l l X + b x l
mov d x . [L a s t B a l l Y + b x l
c a l l DrawBal 1

: Se t new l a s t b a l l l o c a t i o n .

mov a x . [B a l l X + b x l
mov [L a s t b a l l X + b x l . a x
mov a x . [B a l l Y + b x l
mov [L a s t b a l l Y + b x l . a x

; Change t h e b a l l movement values i f i t ' s t i m e t o do so .

d e c [B a l l R e p + b x] ; h a s c u r r e n t r e p e a t f a c t o r r u n o u t ?
j n z M o v e B a l l
mov s i , [B a l l C o n t r o l + b x l ; i t ' s t i m e t o c h a n g e movement values

Bones and Sinew 435

1 odsw ;ge t new r e p e a t f a c t o r f r o m

a n d a x . a x ; a t e n d o f c o n t r o l s t r i n g ?
j n z SetNewMove
mov si,[BallControlString+bxl ; r e s e t c o n t r o l s t r i n g
1 odsw ;ge t new r e p e a t f a c t o r

mov [B a l l R e p + b x l . a x ; s e t new movement r e p e a t f a c t o r
1 odsw ; s e t new x movement increment
mov [B a l l X I n c + b x l , a x
1 odsw ; s e t new y movement increment
mov [B a l l Y I n c + b x l . a x
mov [B a l l C o n t r o l + b x l , s i : s a v e new c o n t r o l s t r i n g p o i n t e r

; c o n t r o l s t r i n g

SetNewMove:

; Move t h e b a l l .

MoveBal l

; Draw b

mov a x , [B a l l X I n c + b x l
add [Ba l l X+bx l ,ax ;move i n x d i r e c t i o n
mov a x , [B a l l Y I n c + b x l
a d d [B a l l Y + b x l . a x :move i n y d i r e c t i o n

a l l a t new l o c a t i o n .

mov si.BALL-OFFSET ; p o i n t t o b a l l ' s i m a g e
mov c x . [B a l l X + b x l
mov dx .CBa l lY+bx l
c a l l D r a w B a l l

dec bx
dec bx
j n s E a c h B a l l L o o p

; S e t u p t h e n e x t p a n n i n g s t a t e (b u t d o n ' t p r o g r a m i t i n t o t h e
; VGA y e t) .

c a l l A d j u s t p a n n i n g

; W a i t f o r d i s p l a y e n a b l e (p i x e l d a t a b e i n g d i s p l a y e d) s o we know
; w e ' r e n o w h e r e n e a r v e r t i c a l s y n c . w h e r e t h e s t a r t a d d r e s s g e t s
; la tched and used .

c a l l Wai t D i s p l a y E n a b l e

; F l i p t o t h e new p a g e b y c h a n g i n g t h e s t a r t a d d r e s s .

mov
add
push
SETREG
mov
POP
mov
SETREG

a x . [C u r r e n t P a g e O f f s e t l
a x . C P a n n i n g S t a r t O f f s e t 1
ax
CRTC-INDEX. START-ADDRESS-LOW
a 1 , b y t e p t r [C u r r e n t P a g e O f f s e t + l l
ax
a1 ,ah
CRTC-INDEX. START-ADDRESS-HIGH

; W a i t f o r v e r t i c a l s y n c s o t h e new s t a r t a d d r e s s h a s a chance
; t o t a k e e f f e c t .

436 Chapter 23

c a l l Wai tVSync

; S e t h o r i z o n t a l p a n n i n g now, j u s t as new s t a r t a d d r e s s t a k e s e f f e c t .

mov a1 , [HPanl
mov dx.INPUT-STATUS-1
i n a1 , d x ; r e s e t AC a d d r e s s i n g t o i n d e x r e g
mov dx.AC-INDEX
mov a1 .HPELPAN
o u t d x . a l ; s e t AC i n d e x t o p e l p a n r e g

o u t d x . a l ; s e t new p e l p a n n i n g
mov a 1 . [H P a n l

; F l i p t h e p a g e t o d r a w t o t o t h e u n d i s p l a y e d p a g e .

x o r C C u r r e n t P a g e l . 1
j n z I s P a g e l
mov [CurrentPageOffset].PAGEO-OFFSET
j m p s h o r t E n d F l i p P a g e

mov [CurrentPageOffsetl.PAGEl-OFFSET
I s P a g e l :

EndFl ipPage:

; E x i t i f a k e y ' s b e e n h i t .

mov ah.1
i n t 16h
j n z Done
j m p B a l l A n i m a t i o n L o o p

; F i n i s h e d , c l e a r k e y , r e s e t s c r e e n mode and e x i t .

Done:
mov ah .0 ;c lear key
i n t 16h

mov a x . 3 ; r e s e t t o t e x t mode
i n t 10h

mov a h . 4 c h ; e x i t t o DDS
i n t 21h

s t a r t endp

; R o u t i n e t o d r a w a b a l l - s i z e d i m a g e t o all p l a n e s . c o p y i n g f r o m
: o f f s e t S I i n VGA memory t o o f f s e t C X . D X (x . y) i n VGA memory i n
; t h e c u r r e n t p a g e .

DrawBal l
mov
mu1
add
add
mov
mov
push
push
POP

D r a w B a l l Loop:

p r o c n e a r
ax.LOGICAL-SCREEN-WIDTH
d x ; o f f s e t o f s t a r t o f t o p i m a g e s c a n l i n e
a x . c x ; o f f s e t o f u p p e r l e f t o f i m a g e
a x . [C u r r e n t P a g e O f f s e t] : o f f s e t o f s t a r t o f p a g e
d i , a x
bp,BALL-HEIGHT
dS
es
dS ;move f r o m VGA memory t o VGA memory

Bones and Sinew 437

p u s h d i
mov cx.BALL-WIDTH
r e p movsb ;draw a s c a n l i n e o f i m a g e
POP
add
dec
j nz
POP
r e t

DrawBal l

; W a i t f o r t h e

Wai tVSync
mov

d i
di.LOGICAL-SCREEN-WIDTH ; p o i n t t o n e x t d e s t i n a t i o n s c a n l i n e

DrawBal l Loop
ds

bp

endp

l e a d i n g e d g e o f v e r t i c a l s y n c p u l s e .

p r o c n e a r
dx.INPUT-STATUS-1

Wai tNotVSyncLoop:
i n
and a1 .VSYNC-MASK

a1 .dx

j n z Wai tNotVSyncLoop

i n
and a1 .VSYNC-MASK

a1 ,dx

Jz WaitVSyncLoop
r e t

WaitVSync endp

WaitVSyncLoop:

; W a i t f o r d i s p l a y e n a b l e t o h a p p e n (p i x e l s t o b e s c a n n e d t o
; t h e s c r e e n , i n d i c a t i n g w e ' r e i n t h e m i d d l e o f d i s p l a y i n g a f r a m e) .

W a i t D i s p l a y E n a b l e p r o c n e a r

WaitDELoop:
mov dx.INPUT-STATUS-1

i n a1 , d x
and a1 .DE-MASK
j nz Wa i tDELoop
r e t

Wa i tD isp layEnab le endp

; P e r f o r m h o r i z o n t a l / v e r t i c a l

A d j u s t p a n n i n g p r o c n e a r
dec [Pann ingRep l
i n z DoPan

p a n n i n g .

; t i m e t o g e t new p a n n i n g v a l u e s ?

mov s i . C P a n n i n g C o n t r o l 1 ; p o i n t t o c u r r e n t l o c a t i o n i n

1 odsw ; g e t p a n n i n g r e p e a t f a c t o r
a n d a x . a x ; a t e n d o f p a n n i n g c o n t r o l s t r i n g ?
jnz SetnewPanVal ues
mov s i . o f f s e t P a n n i n g C o n t r o l S t r i n g ; r e s e t t o s t a r t o f s t r i n g
1 odsw ; g e t p a n n i n g r e p e a t f a c t o r

mov C P a n n i n g R e p 1 . a ~ ; s e t new p a n n i n g r e p e a t v a l u e
1 odsw
mov C P a n n i n g X I n c 1 . a ~ ; h o r i z o n t a l p a n n i n g v a l u e
1 odsw
mov C P a n n i n g Y I n c 1 . a ~ ; v e r t i c a l p a n n i n g v a l u e
mov [P a n n i n g C o n t r o l] , s i ; s a v e c u r r e n t l o c a t i o n i n p a n n i n g

: p a n n i n g c o n t r o l s t r i n g

SetNewPanValues:

438 Chapter 23

: c o n t r o l s t r i n g

; Pan a c c o r d i n g

OoPan:
mov
and
j s
j z
mov
i n c
CmP
j b
sub
i nc
j mp

mov
dec
j n s
mov
dec

mov

PanLe f t :

SetHPan:

t o p a n n i n g v a l u e s .

a x , [P a n n i n g X I n c l
ax , ax
P a n L e f t
C h e c k V e r t i c a l P a n
a1 , [HPanl
a1
a l . 8
SetHPan
a1 .a1
[P a n n i n g S t a r t O f f s e t l
s h o r t SetHPan

a1 .[HPan]
a1
SetHPan
a l . 7
[P a n n i n g S t a r t O f f s e t l

[HPanl .a1
C h e c k v e r t i c a l P a n :

mov ax , [Pann ingYInc l
and ax.ax
j s PanUp
j z EndPan

: h o r i z o n t a l p a n n i n g

: n e g a t i v e means pan l e f t

:pan r i g h t : i f p e l p a n r e a c h e s
: 8. i t ' s t i m e t o move t o t h e
; n e x t b y t e w i t h a p e l p a n o f 0
: and a s t a r t o f f s e t t h a t ' s o n e
: h i g h e r

:pan l e f t : i f p e l p a n r e a c h e s -1,
: i t ' s t i m e t o move t o t h e n e x t
: b y t e w i t h a p e l p a n o f 7 and a
: s t a r t o f f s e t t h a t ' s o n e l o w e r

;save new p e l p a n v a l u e

: v e r t i c a l p a n n i n g

: n e g a t i v e means pan up

add [PanningStartOffset l ,LOGICAL_SCREEN_WIDTH
; p a n d o w n b y a d v a n c i n g t h e s t a r t
; address by a s c a n l i n e

j m p s h o r t EndPan

sub [PanningStartOffset l .LOGICAL_SCREEN_WIDTH
PanUp:

; p a n u p b y r e t a r d i n g t h e s t a r t
: address by a s c a n l i n e

EndPan:
r e t

: Draw t e x t u r e d b o r d e r a r o u n d p l a y f i e l d t h a t s t a r t s a t D I .

D rawBorde r p roc nea r

: Draw t h e l e f t b o r d e r .

p u s h d i
rnov cx.LOGICAL-SCREEN-HEIGHT / 16

mov a1 .Och : s e l e c t r e d c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
a d d d i .LOGICAL-SCREEN-WIDTH * 8
mov a1 .Oeh ; s e l e c t y e l l o w c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
add di.LOGICAL-SCREEN-WIDTH * 8
l o o p D r a w L e f t B o r d e r L o o p
pop d i

D rawLe f tBo rde rLoop :

: Draw t h e r i g h t b o r d e r .

p u s h d i

Bones and Sinew 439

add di.LOGICAL-SCREEN-WIDTH - 1
mov cx.LOGICAL-SCREEN-HEIGHT / 16

mov a1 .Oeh ; s e l e c t y e l l o w c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
add di.LOGICAL-SCREEN-WIDTH * 8
mov a1 .Och : s e l e c t r e d c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
add di.LOGICAL-SCREEN-WIDTH * 8
l o o p D r a w R i g h t B o r d e r L o o p
p o p d i

D rawRigh tBorde rLoop :

; Draw t h e t o p b o r d e r .

p u s h d i
mov cx.(LOGICAL-SCREEN-WIDTH - 2) / 2

DrawTopBorderLoop:
i n c d i
mov a1 .Oeh ; s e l e c t y e l l o w c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
i n c d i
mov a1 .Och ; s e l e c t r e d c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
loop DrawTopBorderLoop
p o p d i

; Draw t h e b o t t o m b o r d e r .

add di.(LOGICAL-SCREEN-HEIGHT - 8) * LOGICAL-SCREEN-WIDTH
mov cx.(LOGICAL-SCREEN-WIDTH - 2) / 2

i n c d i
mov a1 .Och ; s e l e c t r e d c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
i n c d l
mov a1 .Oeh ; s e l e c t y e l l o w c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
l oop D rawBot tomBorderLoop
r e t

DrawBorder endp

; Draws an 8x8 border b lock i n c o l o r i n AL a t l o c a t i o n 01.
; D I p r e s e r v e d .

D r a w B o r d e r B l o c k p r o c n e a r

DrawBot tomBorderLoop:

p u s h d i
SETREG SC-INDEX. MAP-MASK
mov a1 . O f f h
r e p t 8
s t o s b
add di.LOGICAL-SCREEN-WIDTH - 1
endm
POP d i
r e t

DrawBorderBl ock endp
A d j u s t p a n n i n g e n d p
cseg ends

e n d s t a r t

440 Chapter 23

Smooth Panning
The first thing you’ll notice upon running the sample program is the remarkable
smoothness with which the display pans from side-to-side and up-and-down. That
the display can pan at all is made possible by two VGA features: 256K of display
memory and the virtual screen capability. Even the most memory-hungry of the VGA
modes, mode 12H (64Ox480), uses only 37.5K per plane, for a total of 150K out of
the total 256K of VGA memory. The medium-resolution mode, mode 10H (640~350),
requires only 28K per plane, for a total of 112K. Consequently, there is room in VGA
memory to store more than two full screens of video data in mode 1OH (which the
sample program uses), and there is room in all modes to store a larger virtual screen
than is actually displayed. In the sample program, memory is organized as two virtual
screens, each with a resolution of 672x384, as shown in Figure 23.2. The area of the
virtual screen actually displayed at any given time is selected by setting the display
memory address at which to begin fetching video data; this is set by way of the start
address registers (Start Address High, CRTC register OCH, and Start Address Low,
CRTC register ODH) . Together these registers make up a 16-bit display memory ad-
dress at which the CRTC begins fetching data at the beginning of each video frame.
Increasing the start address causes higher-memory areas of the virtual screen to be

A000 : 0000

A000 : 7 EO0

A000 : FCOO

video memory organization for Listing 23. I .
Figure 23.2

Bones and Sinew 441

displayed. For example, the Start Address High register could be set to SOH and the
Start Address Low register could be set to OOH in order to cause the display screen to
reflect memory starting at offset 8000H in each plane, rather than at the default
offset of 0.
The logical height of the virtual screen is defined by the amount of VGA memory
available. As the VGA scans display memory for video data, it progresses from the
start address toward higher memory one scan line at a time, until the frame is com-
pleted. Consequently, if the start address is increased, lines farther toward the bottom
of the virtual screen are displayed; in effect, the virtual screen appears to scroll up on
the physical screen.
The logical width of the virtual screen is defined by the Offset register (CRTC regis-
ter 13H), which allows redefinition of the number of words of display memory
considered to make up one scan line. Normally, 40 words of display memory constitute a
scan line; after the CRTC scans these 40 words for 640 pixels worth of data, it advances 40
words from the start of that scan line to find the start of the next scan line in memory.
This means that displayed scan lines are contiguous in memory. However, the Offset
register can be set so that scan lines are logically wider (or narrower, for that matter)
than their displayed width. The sample program sets the Offset register to 2 A H , making
the logical width of the virtual screen 42 words, or 42 * 2 * 8 = 672 pixels, as contrasted
with the actual width of the mode 10h screen, 40 words or 640 pixels. The logical
height of the virtual screen in the sample program is 384; this is accomplished simply by
reserving 84 * 384 contiguous bytes of VGA memory for the virtual screen, where 84
is the virtual screen width in bytes and 384 is the virtual screen height in scan lines.
The start address is the key to panning around the virtual screen. The start address
registers select the row of the virtual screen that maps to the top of the display;
panning down a scan line requires only that the start address be increased by the
logical scan line width in bytes, which is equal to the Offset register times two. The start
address registers select the column that maps to the left edge of the display as well,
allowing horizontal panning, although in this case only relatively coarse byte-sized
adjustments-panning by eight pixels at a time-are supported.
Smooth horizontal panning is provided by the Horizontal Pel Panning register, AC
register 13H, working in conjunction with the start address. Up to 7 pixels worth of
single pixel panning of the displayed image to the left is performed by increasing
the Horizontal Pel Panning register from 0 to 7. This exhausts the range of motion
possible via the Horizontal Pel Panning register; the next pixel’s worth of smooth
panning is accomplished by incrementing the start address by one and resetting the
Horizontal Pel Panning register to 0. Smooth horizontal panning should be viewed as a
series of fine adjustments in the 8-pixel range between coarse byte-sized adjustments.
A horizontal panning oddity: Alone among VGA modes, text mode (in most cases)
has 9 dots per character clock. Smooth panning in this mode requires cycling the

442 Chapter 23

Horizontal Pel Panning register through the values 8,0, 1,2,3,4,5,6, and 7 . 8 is the
“no panning” setting.
There is one annoying quirk about programming the AC. When the AC Index regis-
ter is set, only the lower five bits are used as the internal index. The next most
significant bit, bit 5, controls the source of the video data sent to the monitor by the
VGA. When bit 5 is set to 1, the output of the palette RAM, derived from display
memory, controls the displayed pixels; this is normal operation. When bit 5 is 0,
video data does not come from the palette R A M , and the screen becomes a solid
color. The only time bit 5 of the AC Index register should be 0 is during the setting
of a palette RAM register, since the CPU is only able to write to palette RAM when bit
5 is 0. (Some VGAs do not enforce this, but you should always set bit 5 to 0 before
writing to the palette RAM just to be safe.) Immediately after setting palette RAM,
however, 20h (or any other value with bit 5 set to 1) should be written to the AC
Index register to restore normal video, and at all other times bit 5 should be set to 1.

By the way, palette RAM can be set via the BIOS video interrupt (interrupt I OH), P function I OH. Whenever an VGA function can be performed reasonably well through
a BIOS function, as it can in the case of setting palette RAM, it should be, both
because there is no point in reinventing the wheel and because the BIOS may well
mask incompatibilities between the IBM VG-4 and VGA clones.

Color Plane Manipulation
The VGA provides a considerable amount of hardware assistance for manipulating
the four display memory planes. Two features illustrated by the sample program are the
ability to control which planes are written to by a CPU write and the ability to copy
four bytes-one from each plane-with a single CPU read and a single CPU write.
The Map Mask register (SC register 2) selects which planes are written to by CPU
writes. If bit 0 of the Map Mask register is 1, then each byte written by the CPU will be
written to VGA memory plane 0, the plane that provides the video data for the least
significant bit of the palette RAM address. If bit 0 of the Map Mask register is 0, then CPU
writes will not affect. plane 0. Bits 1, 2, and 3 of the Map Mask register similarly control
CPU access to planes 1 , 2 , and 3, respectively. Any of the 16 possible combinations of
enabled and disabled planes can be selected. Beware, however, of writing to an area
of memory that is not zeroed. Planes that are disabled by the Map Mask register are
not altered by CPU writes, so old and new images can mix on the screen, producing
unwanted color effects as, say, three planes from the old image mix with one plane
from the new image. The sample program solves this by ensuring that the memory
written to is zeroed. A better way to set all planes at once is provided by the set/reset
capabilities of the VGA, which 1’11 cover in Chapter 25.
The sample program writes the image of the colored ball to VGA memory by en-
abling one plane at a time and writing the image of the ball for that plane. Each

Bones and Sinew 443

image is written to the same VGA addresses; only the destination plane, selected by
the Map Mask register, is different. You might think of the ball’s image as consisting
of four colored overlays, which together make up a multicolored image. The sample
program writes a blank image to VGA memory by enabling all planes and writing a
block of zero bytes; the zero bytes are written to all four VGA planes simultaneously.
The images are written to a nondisplayed portion of VGA memory in order to take
advantage of a useful VGA hardware feature, the ability to copy all four planes at
once. As shown by the image-loading code discussed above, four different sets of
reads and writes-and several OUTs as well-are required to copy a multicolored
image into VGA memory as would be needed to draw the same image into a non-
planar pixel buffer. This causes unacceptably slow performance, all the more so
because the wait states that occur on accesses to VGA memory make it very desirable
to minimize display memory accesses, and because OUTs tend to be very slow.
The solution is to take advantage of the VGAs write mode 1, which is selected via bits
0 and 1 of the GC Mode register (GC register 5) . (Be careful to preserve bits 2-7
when setting bits 0 and 1, as is done in Listing 23.1.) In write mode 1, a single CPU
read loads the addressed byte from all four planes into the VGA’s four internal latches,
and a single CPU write writes the contents of the latches to the four planes. During
the write, the byte written by the CPU is irrelevant.
The sample program uses write mode 1 to copy the images that were previously
drawn to the high end of VGA memory into a desired area of display memory, all in
a single block copy operation. This is an excellent way to keep the number of reads,
writes, and OUTs required to manipulate the VGA’s display memory low enough to
allow real-time drawing.
The Map Mask register can still mask out planes in write mode 1. All four planes are
copied in the sample program because the Map Mask register is still OFh from when
the blank image was created.
The animated images appear to move a bitjerkily because they are byte-aligned and
so must move a minimum of 8 pixels horizontally. This is easily solved by storing
rotated versions of all images in VGA memory, and then in each instance drawing
the correct rotation for the pixel alignment at which the image is to be drawn; we’ll
see this technique in action in Chapter 49.
Don’t worry if you’re not catching everything in this chapter on the first pass; the
VGA is a complicated beast, and learning about it is an iterative process. We’ll be
going over these features again, in different contexts, over the course of the rest of
this book.

Page Flipping
When animated graphics are drawn directly on the screen, with no intermediate
frame-composition stage, the image typically flickers and/or ripples, an unavoidable

444 Chapter 23

result of modifying display memory at the same time that it is being scanned for
video data. The display memory of the VGA makes it possible to perform page flipping,
which eliminates such problems. The basic premise of page flipping is that one area
of display memory is displayed while another is being modified. The modifications never
affect an area of memory as it is providing video data, so no undesirable side effects
occur. Once the modification is complete, the modified buffer is selected for display,
causing the screen to change to the new image in a single frame’s time, typically 1/60th
or 1/70th of a second. The other buffer is then available for modification.
As described above, the VGA has 64K per plane, enough to hold two pages and more
in 640x350 mode 10H, but not enough for two pages in 640x480 mode 12H. For
page flipping, two non-overlapping areas of display memory are needed. The sample
program uses two 672x384 virtual pages, each 32,256 bytes long, one starting at
A000:OOOO and the other starting at A000:7E00. Flipping between the pages is as
simple as setting the start address registers to point to one display area or the other-
but, as it turns out, that’s not as simple as it sounds.
The timing of the switch between pages is critical to achieving flicker-free animation.
It is essential that the program never be modifying an area of display memory as that
memory is providing video data. Achieving this is surprisingly complicated on the
VGA, however.
The problem is as follows. The start address is latched by the VGA’s internal circuitry
exactly once per frame, typically (but not always on all clones) at the start of the
vertical sync pulse. The vertical sync status is, in fact, available as bit 3 of the Input
Status 0 register, addressable at 3BAH (in monochrome modes) or 3DAH (color).
Unfortunately, by the time the vertical sync status is observed by a program, the start
address for the next frame has already been latched, having happened the instant
the vertical sync pulse began. That means that it’s no good to wait for vertical sync to
begin, then set the new start address; if we did that, we’d have to wait until the next
vertical sync pulse to start drawing, because the page wouldn’t flip until then.
Clearly, what we want is to set the new start address, then wait for the start of the
vertical sync pulse, at which point we can be sure the page has flipped. However, we
can’t just set the start address and wait, because we might have the extreme misfor-
tune to set one of the start address registers before the start of vertical sync and the
other after, resulting in mismatched halves of the start address and a nasty jump of
the displayed image for one frame.
One possible solution to this problem is to pick a second page start address that has
a 0 value for the lower byte, so only the Start Address High register ever needs to be
set, but in the sample program in Listing 23.1 I’ve gone for generality and always set
both bytes. To avoid mismatched start address bytes, the sample program waits for
pixel data to be displayed, as indicated by the Display Enable status; this tells us we’re
somewhere in the displayed portion of the frame, far enough away from vertical sync
so we can be sure the new start address will get used at the next vertical sync. Once

Bones and Sinew 445

the Display Enable status is observed, the program sets the new start address, waits
for vertical sync to happen, sets the new pel panning state, and then continues draw-
ing. Don't worry about the details right now; page flipping will come up again, at
considerably greater length, in later chapters.

As an interesting side note, be aware that if you run DOS software under a P multitasking environment such as Windows NT timeslicing delays can make mis-
matched start address bytes or mismatched start address and pel panning settings
much more likely, for the graphics code can be interrupted at any time. This is also
possible, although much less likely, under non-multitasking environments such as
DOS, because strategically placed interrupts can cause the same sorts of prob-
lems there. For maximum safety, you should disable interrupts around the key
portions ofyour page-flipping code, although here we run into the problem that if
interrupts are disabled from the time we start looking for Display Enable until we
set the Pel Panning register, they will be offfor far too long, and keyboard, mouse,
and network events will potentially be lost. Also, disabling interrupts won 't help in
true multitasking environments, which never let a program hog the entire CPL!
This is one reason thatpelpanning, although indubitablyflashy, isn 't widely used
and should be reserved for only those cases where it j . absolutely necessary.

Waiting for the sync pulse has the side effect of causing program execution to syn-
chronize to the VGA's frame rate of 60 or 70 frames per second, depending on the
display mode. This synchronization has the useful consequence of causing the pro-
gram to execute at the same speed on any CPU that can draw fast enough to complete
the drawing in a single frame; the program just idles for the rest of each frame that it
finishes before the VGA is finished displaying the previous frame.
An important point illustrated by the sample program is that while the VGA's display
memory is far larger and more versatile than is the case with earlier adapters, it is
nonetheless a limited resource and must be used judiciously. The sample program
uses VGA memory to store two 672x384 virtual pages, leaving only 1024 bytes free to
store images. In this case, the only images needed are a colored ball and a blank block
with which to erase it, so there is no problem, but many applications require dozens
or hundreds of images. The tradeoffs between virtual page size, page flipping, and
image storage must always be kept in mind when designing programs for the VGA.
To see the program run in 640x200 16-color mode, comment out the EQU line for
MEDRES-VIDEO-MODE.

The Hazards of VGA Clones
Earlier, I said that any VGA that doesn't support the features and functionality cov-
ered in this book can't properly be called VGA compatible. I also noted that there
are some exceptions, however, and we've just come to the most prominent one. You
see, all VGAs really arecompatible with the IBM VGA's functionality when it comes to

drawing pixels into display memory; all the write modes and read modes and set/
reset capabilities and everything else involved with manipulating display memory
really does work in the same way on all VGAs and VGA clones. That compatibility
isn’t as airtight when it comes to scanning pixels out of display memory and onto the
screen in certain infrequently-used ways, however.
The areas of incompatibility of which I’m aware are illustrated by the sample pro-
gram, and may in fact have caused you to see some glitches when you ran Listing
23.1. The problem, which arises only on certain VGAs, is that some settings of the
Row Offset register cause some pixels to be dropped or displaced to the wrong place
on the screen; often, this happens only in conjunction with certain start address
settings. (In my experience, only VRAM (Video RAM)-based VGAs exhibit this prob-
lem, no doubt due to the way that pixel data is fetched from VRAM in large blocks.)
Panning and large virtual bitmaps can be made to work reliably, by careful selection
of virtual bitmap sizes and start addresses, but it’s difficult; that’s one of the reasons that
most commercial software does not use these features, although a number of games do.
The upshot is that if you’re going to use oversized virtual bitmaps and pan around
them, you should take great care to test your software on a wide variety of VRA”
and DRAM-based VGAs.

Just the Beginning
That pretty well covers the important points of the sample VGA program in Listing 23.1.
There are many VGA features we didn’t even touch on, but the object was to give you
a feel for the variety of features available on the VGA, to convey the flexibility and
complexity of the VGA’s resources, and in general to give you an initial sense of what
VGA programming is like. Starting with the next chapter, we’ll begin to explore the
VGA systematically, on a more detailed basis.

The Macro Assembler
The code in this book is written in both C and assembly. I think C is a good develop-
ment environment, but I believe that often the best code (although not necessarily
the easiest to write or the most reliable) is written in assembly. This is especially true
of graphics code for the x86 family, given segments, the string instructions, and the
asymmetric and limited register set, and for real-time programming of a complex
board like the VGA, there’s really no other choice for the lowest-level code.
Before I’m deluged with protests from C devotees, let me add that the majority of my
productive work is done in C; no programmer is immune to the laws of time, and C
is simply a more time-efficient environment in which to develop, particularly when
working in a programming team. In this book, however, we’re after the sine qua non
of PC graphics-performance-and we can’t get there from here without a fair
amount of assembly language.

Bones and Sinew 447

Now that we know what the VGA looks like in broad strokes and have a sense of what
VGA programming is like, we can start looking at specific areas in depth. In the next
chapter, we’ll take a look at the hardware assistance the VGA provides the CPU dur-
ing display memory access. There are four latches and four ALUs in those chips,
along with some useful masks and comparators, and it’s that hardware that’s the
difference between sluggish performance and making the VGA get up and dance.

chapter 24

parallel processing with the vga

raphics Memory Four Bytes at a Time
the ability of the VGA chip to manipulate up to four bytes of

lar, the VGA provides four ALUs (Arithmetic Logic
display memory writes, and this hardware is a tre-
manipulating the VGA's sizable frame buffer. The
the surprisingly complex data flow architecture of
d in almost all memory access operations, they're

VGA amming: ALUs and Latches
I'm going to begin o4detailed tour of the VGA at the heart of the flow of data through
the VGA the four ALhs built into the VGA's Graphics Controller (GC) circuitry. The
&Us (one for each display memory plane) are capable of ORing, ANDing, and XORing
CPU data and display memory data together, as well as masking off some or all of the bits
in the data from affecting the find result. All the ALUs perform the same logical opera-
tion at any given time, but each ALU operates on a different display memory byte.
Recall that the VGA has four display memory planes, with one byte in each plane at
any given display memory address. All four display memory bytes operated on are
read from and written to the same address, but each ALU operates on a byte that was
read from a different plane and writes the result to that plane. This arrangement
allows four display memory bytes to be modified by a single CPU write (which must

45 1

often be preceded by a single CPU read, as we will see). The benefit is vastly im-
proved performance; if the CPU had to select each of the four planes in turn via
OUTS and perform the four logical operations itself, VGA performance would slow
to a crawl.
Figure 24.1 is a simplified depiction of data flow around the &Us. Each ALU has a
matching latch, which holds the byte read from the corresponding plane during the
last CPU read from display memory, even if that particular plane wasn’t the plane
that the CPU actually read on the last read access. (Only one byte can be read by the
CPU with a single display memory read; the plane supplying the byte is selected by
the Read Map register. However, the bytes at the specified address in all four planes
are always read when the CPU reads display memory, and those four bytes are stored
in their respective latches.)
Each ALU logically combines the byte written by the CPU and the byte stored in the
matching latch, according to the settings of bits 3 and 4 of the Data Rotate register
(and the Bit Mask register as well, which I’ll cover next time), and then writes the
result to display memory. It is most important to understand that neither ALU oper-
and comes directly from display memory. The temptation is to think of the ALUs as
combining CPU data and the contents of the display memory address being written
to, but they actually combine CPU data and the contents of the last display memory
location read, which need not be the location being modified. The most common

452 Chapter 24

application of the ALUs is indeed to modify a given display memory location, but
doing so requires a read from that location to load the latches before the write that
modifies it. Omission of the read results in a write operation that logically combines
CPU data with whatever data happens to be in the latches from the last read, which
is normally undesirable.
Occasionally, however, the independence of the latches from the display memory
location being written to can be used to great advantage. The latches can be used to
perform 4byte-at-a-time (one byte from each plane) block copying; in this applica-
tion, the latches are loaded with a read from the source area and written unmodified
to the destination area. The latches can be written unmodified in one of two ways: By
selecting write mode 1 (for an example of this, see the last chapter), or by setting the
Bit Mask register to 0 so only the latched bits are written.
The latches can also be used to draw a fairly complex area fill pattern, with a differ-
ent bit pattern used to fill each plane. The mechanism for this is as follows: First,
generate the desired pattern across all planes at any display memory address. Gener-
ating the pattern requires a separate write operation for each plane, so that each
plane's byte will be unique. Next, read that memory address to store the pattern in
the latches. The contents of the latches can now be written to memory any number
of times by using either write mode 1 or the bit mask, since they will not change until
a read is performed. If the fill pattern does not require a different bit pattern for
each plane-that is, if the pattern is black and white-filling can be performed more
easily by simply fanning the CPU byte out to all four planes with write mode 0. The
set/reset registers can be used in conjunction with fanning out the data to support a
variety of two-color patterns. More on this in Chapter 25.
The sample program in Listing 24.1 fills the screen with horizontal bars, then illustrates
the operation of each of the four ALU logical functions by writing avertical SO-pixel-wide
box filled with solid, empty, and vertical and horizontal bar patterns over that back-
ground using each of the functions in turn. When observing the output of the sample
program, it is important to remember that all four vertical boxes are drawn with exactly
the same code-only the logical function that is in effect differs from box to box.
All graphics in the sample program are done in black-and-white by writing to all
planes, in order to show the operation of the ALUs most clearly. Selective enabling
of planes via the Map Mask register and/or set/reset would produce color effects; in
that case, the operation of the logical functions must be evaluated on a plane-by-
plane basis, since only the enabled planes would be affected by each operation.

LISTING 24.1 124- 1 .ASM
: Program t o i l l u s t r a t e o p e r a t i o n o f ALUs and l a t c h e s o f t h e VGA's
; G r a p h i c s C o n t r o l l e r . Draws a v a r i e t y o f p a t t e r n s a g a i n s t
; a h o r i z o n t a l l y s t r i p e d b a c k g r o u n d , u s i n g e a c h o f t h e 4 a v a i l a b l e
; l o g i c a l f u n c t i o n s (d a t a u n m o d i f i e d , AND, OR, X O R) i n t u r n t o combine
; t h e images w i th t he backg round .
; By Michael Abrash.

Parallel Processing with the VGA 453

s tack segment para stack 'STACK'
db 512 dup(?)

stack ends

VGA-VIDEO-SEGMENT equ OaOOOh :VGA d i s p l a y memory segment
SCREEN-HEIGHT equ 350
SCREEN-WIDTH-IN-BYTES equ 80
DEMO-AREA-HEIGHT equ 336 :# o f scan 1 i n e s i n a r e a

: l o g i c a l f u n c t i o n o p e r a t i o n

DEMO-AREA-WIDTH-IN-BYTES equ 40
: i s demonstrated i n
: w i d t h i n b y t e s o f a r e a
: l o g i c a l f u n c t i o n o p e r a t i o n

VERTICAL-BOX-WIDTH-IN-BYTES equ 10
: i s demonstrated i n
: w i d t h i n b y t e s o f t h e b o x used t o
: demons t ra te each l og i ca l f unc t i on

; VGA reg i s te r equa tes .

GC-INDEX
GC-ROTATE

equ 3ceh ;GC i n d e x r e g i s t e r
equ 3 :GC d a t a r o t a t e / l o g i c a l f u n c t i o n

GC-MODE
: r e g i s t e r i n d e x

equ 5 :GC mode r e g i s t e r i n d e x

dseg segment para common 'DATA'

: S t r i n g used t o l a b e l l o g i c a l f u n c t i o n s .

L a b e l s t r i n g l a b e l b y t e

LABEL-STRING-LENGTH equ S - L a b e l S t r i n g

: S t r i n g s used t o l a b e l fill p a t t e r n s .

F i 11 PatternFF db 'Fill Pat te rn : OFFh'
FILL-PATTERN-FF-LENGTH equ S - F i l l P a t t e r n F F
F i 11 P a t t e r n 0 0 d b ' F i l l P a t t e r n : 0 0 0 h '
FILL-PATTERN-00-LENGTH equ S - F i l l P a t t e r n 0 0
F i 11 Pat te rnVer t db
FILL-PATTERN-VERT-LENGTH

'Fill P a t t e r n : V e r t i c a l B a r '
equ S - Fill Pat te rnVer t

F i 11 Pat te rnHorz db 'Fill P a t t e r n : H o r i z o n t a l B a r '
FILL-PATTERN-HORZ-LENGTH equ S - F i l l P a t t e r n H o r z

dseg ends

: Macro t o s e t i n d e x e d r e g i s t e r INDEX o f GC c h i p t o SETTING.

SETGC macro INDEX. SETTING

db 'UNMODIFIED AND OR XOR '

mov dx, GC-INDEX
mov ax.(SETTING SHL 8) OR I N D E X
out dx.ax
endm

: Macro t o c a l l BIOS w r i t e s t r i n g f u n c t i o n t o d i s p l a y t e x t s t r i n g
: TEXT-STRING. o f l e n g t h TEXT-LENGTH, a t l o c a t i o n ROW.COLUMN.

TEXT-UP macro TEXT-STRING. TEXT-LENGTH. ROW. COLUMN
mov ah.13h :BIOS w r i t e s t r i n g f u n c t i o n
mov b p . o f f s e t TEXT-STRING ;ES:BP p o i n t s t o s t r i n g
mov cx.TEXT-LENGTH

454 Chapter 24

mov dx.(ROW SHL 8) OR COLUMN : p o s i t i o n
sub a1 ,a1 : s t r i n g i s c h a r s o n l y , c u r s o r n o t moved
mov b l ,7 : t e x t a t t r i b u t e i s w h i t e (l i g h t g r a y)
i n t 10h
endm

cseg segment para publ ic ' C O D E '

s t a r t p r o c n e a r
assume cs:cseg. ds:dseg

mov ax, dseg
mov ds.ax

: S e l e c t 640x350 g r a p h i c s mode.

mov ax.010h
i n t 10h

: ES p o i n t s t o VGA memory.

mov ax,VGA-VIDEO-SEGMENT
mov es.ax

: Draw b a c k g r o u n d o f h o r i z o n t a l b a r s .

mov dx,SCREEN_HEIGHT/4

sub d i . d i : s t a r t a t o f f s e t 0 i n d i s p l a y memory
mov a x . 0 f f f f h :fill p a t t e r n f o r l i g h t a r e a s o f b a r s
mov bx.DEMO-AREA-WIOTH-IN-BYTES / 2 : l e n g t h o f e a c h b a r
mov si.SCREEN-WIOTH-IN-BYTES - DEMO-AREA-WIDTH-IN-BYTES
mov bp.(SCREEN-WIDTH-IN-BYTES * 3) - DEMO-AREA-WIDTH-INKBYTES

mov cx. bx : l e n g t h o f b a r

add d i . s i : p o i n t t o s t a r t o f b o t t o m h a l f o f b a r
mov cx, bx : l e n g t h o f b a r

a d d d i , b p : p o i n t t o s t a r t o f t o p o f n e x t b a r
dec dx
j n z BackgroundLoop

:# o f b a r s t o draw (each 4 p i x e l s h i g h)

BackgroundLoop:

r e p s t o s w : d r a w t o p h a l f o f b a r

rep s tosw :d raw bo t tom ha l f o f ba r

: D r a w v e r t i c a l boxes f i l l e d w i t h a v a r i e t y o f fill p a t t e r n s
: u s i n g e a c h o f t h e 4 l o g i c a l f u n c t i o n s i n t u r n .

SETGC GC-ROTATE. 0 : s e l e c t d a t a u n m o d i f i e d

mov d i .O
cal l DrawVert ica lBox ; . . .and draw box

: l o g i c a l f u n c t i o n . . .

SETGC
mov
c a l l

SETGC
mo v
c a l l

SETGC
mov
c a l l

GC-ROTATE, 08h : s e l e c t AND l o g i c a l f u n c t i o n . . .
d i .10
DrawVert icalBox : . . .and draw box

GC-ROTATE, 10h : se lec t OR l o g i c a l f u n c t i o n . . .
d i .20
DrawVert ica lBox ; . . .and draw box

GC-ROTATE, 18h :se lec t X O R l o g i c a l f u n c t i o n ...
d i .30
DrawVer t i ca l Box :...and draw box

Parallel Processing with the VGA 455

: R e s e t t h e l o g i c a l f u n c t i o n t o d a t a u n m o d i f i e d , t h e d e f a u l t s t a t e .

SETGC GC-ROTATE. 0

: Labe l the sc reen.

push ds
POP e s ; s t r i n g s w e ' l l d i s p l a y a r e p a s s e d t o B I O S

: by p o i n t i n g ES:BP t o them

: L a b e l t h e l o g i c a l f u n c t i o n s , u s i n g t h e VGA BIOS'S
: w r i t e s t r i n g f u n c t i o n .

TEXT-UP L a b e l s t r i n g , LABEL-STRING-LENGTH, 24. 0

: Labe l the fill p a t t e r n s , u s i n g t h e VGA BIOS'S
: w r i t e s t r i n g f u n c t i o n .

TEXT-UP F i l l P a t t e r n F F . FILL-PATTERN-FF-LENGTH. 3. 42
TEXT-UP F i l l P a t t e r n 0 0 . FILL-PATTERN-00-LENGTH. 9, 42
TEXT-UP F i l l P a t t e r n V e r t . FILL-PATTERN-VERT-LENGTH. 15. 42
TEXT-UP F i l l P a t t e r n H o r z , FILL-PATTERN-HORZ-LENGTH. 21. 42

: Wait u n t i l a key's been h i t t o r e s e t s c r e e n mode & e x i t .

WaitForKey:
mov ah.1
i n t 16h
jz WaitForKey

: F in i shed . C lea r key , rese t sc reen mode and e x i t .

Done:
mov ah .0 :c lear
i n t 16h

mov ax.3 : r e s e t
i n t 10h

k e y t h a t we j u s t d e t e c t e d

t o t e x t mode

mov ah.4ch : e x i t t o DOS
i n t Z l h

s t a r t endp

: S u b r o u t i n e t o d r a w a box 80x336 i n s i z e , u s i n g c u r r e n t l y s e l e c t e d
: l o g i c a l f u n c t i o n , w i t h u p p e r l e f t c o r n e r a t t h e d i s p l a y memory o f f s e t
: i n D I . Box i s f i l l e d w i t h f o u r p a t t e r n s . Top q u a r t e r o f a r e a i s
: f i l l e d w i t h OFFh (s o l i d) p a t t e r n , n e x t q u a r t e r i s f i l l e d w i t h OOh
: (e m p t y) p a t t e r n , n e x t q u a r t e r i s f i l l e d w i t h 33h (doub le p i xe l w ide
: v e r t i c a l b a r) p a t t e r n , and b o t t o m q u a r t e r i s f i l l e d w i t h d o u b l e p i x e l
: h i g h h o r i z o n t a l b a r p a t t e r n .

: Macro t o draw a column o f t h e s p e c i f i e d w i d t h i n b y t e s , o n e - q u a r t e r
: of t h e h e i g h t o f t h e b o x , w i t h t h e s p e c i f i e d fill p a t t e r n .

DRAW-BOX-QUARTER macro FILL, WIDTH
1 oca1 RowLoop. Col umnLoop
mov a1 .FILL :fill p a t t e r n
mov dx.DEMO-AREA-HEIGHT / 4 :1 /4 o f t h e f u l l box he igh t

456 Chapter 24

RowLoop:
mov cx.WIDTH

mov a h . e s : l d i l
ColumnLoop:

s t o s b

: l o a d d i s p l a y memory c o n t e n t s i n t o
: GC l a t c h e s (we d o n ' t a c t u a l l y c a r e
: a b o u t v a l u e r e a d i n t o AH)
: w r i t e p a t t e r n , w h i c h i s l o g i c a l l y
: c o m b i n e d w i t h l a t c h c o n t e n t s f o r e a c h
: p l a n e a n d t h e n w r i t t e n t o d i s p l a y
: memory

1 oop Col umnLoop
add di.SCREEN_WIDTH_IN-BYTES - WIDTH

dec dx
j n z RowLoop
endm

: p o i n t t o s t a r t o f n e x t l i n e down i n box

DrawVer t i ca l Box proc near
DRAW-BOXQUARTER O f f h . VERTICALLBOX-WIDTHKIN-BYTES

DRAW-BOX-OUARTER 0. VERTICAL_BOX-WIDTHKIN-BYTES

DRAWKBOXLOUARTER 033h. VERTICAL-BOXKWIDTHKIN-BYTES

: f i r s t fill p a t t e r n : s o l i d fill

:second fill p a t t e r n : empty fill

mov

sub
mov

dec
mov

mov
s tosb
1 oop
add
mov

mov
s t o s b
1 oop
add
i nc
mov

mov
s tosb

add
1 oop

mov

mov
s tosb
1 oop
add
dec
jnz

HorzBarLoop:

HBLoopl:

HBLoopE:

HBLoop3:

HBLoop4:

: t h i r d fill p a t t e r n : d o u b l e - p i x e l
: w i d e v e r t i c a l b a r s

dx.DEMOKAREALHEIGHT / 4 / 4
: f o u r t h fill p a t t e r n : h o r i z o n t a l b a r s i n
: s e t s o f 4 s c a n l i n e s

ax.ax
si.VERTICAL-BOXKWIDTH-IN-BYTES : w i d t h o f fill area

ax ; O f f h fill (s m a l l e r t o do word than byte D E C)
cx , s i : w i d t h t o fill

b l . e s : [d i l : l o a d l a t c h e s (d o n ' t c a r e a b o u t v a l u e)

HBLoopl
di.SCREEN-WIDTH_IN-BYTES - VERTICAL_BOX_WIDTH-IN_BYTES
c x . s i : w i d t h t o fill

b l , e s : [d i l :1 oad 1 atches

HBLoopE
di.SCREEN-WIDTH-IN-BYTES - VERTICAL-BOX-WIDTH-IN-BYTES
ax :O fill (s m a l l e r t o do word than byte DEC)
c x . s i : w i d t h t o fill

b l . e s : [d i l : 1 oad 1 atches

HBLoop3
di,SCREEN-WIDTH-IN-BYTES - VERTICAL-BOX_WIDTH-IN_BYTES
c x , s i : w i d t h t o fill

b l . e s : [d i l : l o a d l a t c h e s

HBLoop4
di.SCREENKWIDTH-IN_BYTES - VERTICALLBOXKWIDTH-IN-BYTES
dx
HorzBarLoop

: w r i t e s o l i d p a t t e r n , t h r o u g h ALUs

: w r i t e s o l i d p a t t e r n , t h r o u g h ALUs

: w r i t e empty p a t t e r n , t h r o u g h ALUs

: w r i t e empty p a t t e r n , t h r o u g h ALUs

Parallel Processing with the VGA 457

r e t
OrawVert icalBox endp
cseg ends

end s t a r t

Logical function 0, which writes the CPU data unmodified, is the standard mode of
operation of the ALUs. In this mode, the CPU data is combined with the latched
data by ignoring the latched data entirely. Expressed as a logical function, this could
be considered CPU data ANDed with 1 (or ORed with 0). This is the mode to use
whenever you want to place CPU data into display memory, replacing the previous
contents entirely. It may occur to you that there is no need to latch display memory
at all when the data unmodified function is selected. In the sample program, that is
true, but if the bit mask is being used, the latches must be loaded even for the data
unmodified function, as 1’11 discuss in the next chapter.
Logical functions 1 through 3 cause the CPU data to be ANDed, ORed, and XORed
with the latched data, respectively. Of these, XOR is the most useful, since exclusive-
ORing is a traditional way to perform animation. The uses of the AND and OR logical
functions are less obvious. AND can be used to mask a blank area into display memory,
or to mask off those portions of a drawing operation that don’t overlap an existing
display memory image. OR could conceivably be used to force an image into display
memory over an existing image. To be honest, I haven’t encountered any particu-
larly valuable applications for AND and OR, but they’re the sort of building-block
features that could come in handy in just the right context, so keep them in mind.

Notes on the ALU/Latch Demo Program
VGA settings such as the logical function select should be restored to their default
condition before the BIOS is called to output text or draw pixels. The VGA BIOS
does not guarantee that it will set most VGA registers except on mode sets, and there
are so many compatible BIOSes around that the code of the IBM BIOS is not a reliable
guide. For instance, when the BIOS is called to draw text, it’s likely that the result will
be illegible if the Bit Mask register is not in its default state. Similarly, a mode set should
generally be performed before exiting a program that tinkers with VGA settings.
Along the same lines, the sample program does not explicitly set the Map Mask register
to ensure that all planes are enabled for writing. The mode set for mode 10H leaves
all planes enabled, so I did not bother to program the Map Mask register, or any other
register besides the Data Rotate register, for that matter. However, the profusion of com-
patible BIOSes means there is some small risk in relying on the BIOS to leave registers
set properly. For the highly safety-conscious, the best course would be to program
data control registers such as the Map Mask and Read Mask explicitly before relying
on their contents.
On the other hand, any function the BIOS provides explicitly-as part of the inter-
face specification-such as setting the palette R A M , should be used in preference to

458 Chapter 24

programming the hardware directly whenever possible, because the BIOS may mask
hardware differences between VGA implementations.
The code that draws each vertical box in the sample program reads from display
memory immediately before writing to display memory. The read operation loads
the VGA latches. The value that is read is irrelevant as far as the sample program is
concerned. The read operation is present only because it is necessary to perform a
read to load the latches, and there is no way to read without placing a value in a register.
This is a bit of a nuisance, since it means that the value of some 8-bit register must be
destroyed. Under certain circumstances, a single logical instruction such as XOR or
AND can be used to perform both the read to load the latches and then write to
modify display memory without affecting any CPU registers, as we’ll see later on.
All text in the sample program is drawn by VGA BIOS function 13H, the write string
function. This function is also present in the AT’S BIOS, but not in the XT’s or PC’s,
and as a result is rarely used; the function is always available if a VGA is installed,
however. Text drawn with this function is relatively slow. If speed is important, a
program can draw text directly into display memory much faster in any given display
mode. The great virtue of the BIOS write string function in the case of the VGA is
that it provides an uncomplicated way to get text on the screen reliably in a n y mode
and color, over any background.
The expression used to load DX in the TEXT-UP macro in the sample program may
seem strange, but it’s a convenient way to save a byte of program code and a few cycles of
execution time. DX is being loaded with a word value that’s composed of two inde-
pendent immediate byte values. The obvious way to implement this would be with

MOV D L . V A L U E 1
MOV D H . V A L U E 2

which requires four instruction bytes. By shifting the value destined for the high byte
into the high byte with MASM’s shift- left operator, SHL (*100H would work also),
and then logically combining the values with MASM’s OR operator (or the ADD
operator), both halves of DX can be loaded with a single instruction, as in

MOV D X , (V A L U E E S H L 8) O R V A L U E 1

which takes only three bytes and is faster, being a single instruction. (Note, though,
that in 32-bit protected mode, there’s a size and performance penalty for 16-bit in-
structions such as the MOV above; see the first part of this book for details.) As
shown, a macro is an ideal place to use this technique; the macro invocation can
refer to two separate byte values, making matters easier for the programmer, while
the macro itself can combine the values into a single word-sized constant.

A minor optimization tip illustrated in the listing is the use of INCAX and DEC p AX in the DrawVerticalBox subroutine when only AL actually needs to be modi-
fied. Word-sized register increment and decrement instructions (or dword-sized

Parallel Processing with the VGA 459

instructions in 32-bit protected mode) are only one byte long, while byte-sized
register increment and decrement instructions are two bytes long. Consequentb,
when size counts, it is worth using a whole 16-bit (or 32-bit) register instead of the
low 8 bits of that register for INC and DEC-ifyou don 't need the upper portion
of the register for any other purpose, or ifyou can be sure that the INC or DEC
won't aflect the upperpart of the registex

The latches and ALUs are central to high-performance VGA code, since they allow
programs to process across all four memory planes without a series of OUTS and
read/write operations. It is not always easy to arrange a program to exploit this power,
however, because the &Us are far more limited than a CPU. In many instances,
however, additional hardware in the VGA, including the bit mask, the set/reset fea-
tures, and the barrel shifter, can assist the ALUs in controlling data, as we'll see in
the next few chapters.

460 Chapter 24

chapter 25

vga data machinery

Ch

k

hiker, Bit Mask, and
*&4‘#

Set/Reset
In the last chapter, amined a simplified model of data flow within the GC por-
tion of the VGA, .latches and ALUs. Now we’re ready to expand that
model to include ifter, bit mask, and the set/reset capabilities, leaving
only the write mo lored over the next few chapters.

tation
expanded model of GC data flow, featuring the barrel shifter

and bit mask circui Let’s look at the barrel shifter first. A barrel shifter is circuitry
capable of shifting-ok rotating, in the VGAs case-data an arbitrary number of bits
in a single operation, as opposed to being able to shift only one bit position at a time.
The barrel shifter in the VGA can rotate incoming CPU data up to seven bits to the
right (toward the least significant bit), with bit 0 wrapping back to bit 7, after which
the VGA continues processing the rotated byte just as it normally processes unrotated
CPU data. Thanks to the nature of barrel shifters, this rotation requires no extra
processing time over unrotated VGA operations. The number of bits by which CPU
data is shifted is controlled by bits 2-0 of GC register 3, the Data Rotate register,
which also contains the ALU function select bits (data unmodified, AND, OR, and
XOR) that we looked at in the last chapter.

463

The barrel shifter is powerful, but (as sometimes happens in this business) it sounds
more useful than it really is. This is because the GC can only rotate CPU data, a task
that the CPU itself is perfectly capable of performing. Two OUTs are needed to
select a given rotation: one to set the GC Index register, and one to set the Data
Rotate register. However, with careful programming it’s sometimes possible to leave
the GC Index always pointing to the Data Rotate register, so only one OUT is needed.
Even so, it’s often easier and/or faster to simply have the CPU rotate the data of
interest CL times than to set the Data Rotate register. (Bear in mind that a single
OUT takes from 11 to 31 cycles on a 486-and longer if the VGA is sluggish at re-
sponding to OUTS, as many VGAs are.) If only the VGA could rotate latched data,
then there would be all sorts of useful applications for rotation, but, sadly, only CPU
data can be rotated.
The drawing of bit-mapped text is one use for the barrel shifter, and I’ll demonstrate that
application below. In general, though, don’t knock yourself out trylng to figure out
how to work data rotation into your programs-itjust isn’t all that useful in most cases.

The Bit Mask
The VGA has bit mask circuitry for each of the four memory planes. The four bit masks
operate in parallel and are all driven by the same mask data for each operation, so

464 Chapter 25

Data flow through the Graphics Controller:
Figure 25.1

Data flow through the Graphics Controller:
Figure 25.1

they’re generally referred to in the singular, as “the bit mask.” Figure 25.2 illustrates
the operation of one bit of the bit mask for one plane. This circuitry occurs eight times in
the bit mask for a given plane, once for each bit of the byte written to display memory.
Briefly, the bit mask determines on a bit-by-bit basis whether the source for each byte
written to display memory is the ALU for that plane or the latch for that plane.
The bit mask is controlled by GC register 8, the Bit Mask register. If a given bit of the
Bit Mask register is 1, then the corresponding bit of data from the ALUs is written to
display memory for all four planes, while if that bit is 0, then the corresponding bit
of data from the latches for the four planes is written to display memory unchanged.
(In write mode 3, the actual bit mask that’s applied to data written to display memory
is the logical AND of the contents of the Bit Mask register and the data written by the
CPU, as we’ll see in Chapter 26.)
The most common use of the bit mask is to allow updating of selected bits within a
display memory byte. This works as follows: The display memory byte of interest is
latched; the bit mask is set to preserve all but the bit or bits to be changed; the CPU
writes to display memory, with the bit mask preserving the indicated latched bits and
allowing ALU data through to change the other bits. Remember, though, that it is
not possible to alter selected bits in a display memory byte directly; the byte must first
be latched by a CPU read, and then the bit mask can keep selected bits of the latched
byte unchanged.
Listing 25.1 shows a program that uses the bit mask data rotation capabilities of the
GC to draw bitmapped text at any screen location. The BIOS only draws characters

VGA Data Machinery 465

Bit mask operation.
Figure 25.2

on character boundaries; in 640x480 graphics mode the default font is drawn on
byte boundaries horizontally and every 16 scan lines vertically. However, with direct
bitmapped text drawing of the sort used in Listing 25.1, it's possible to draw any font
of any size anywhere on the screen (and a lot faster than via DOS or the BIOS, as well).

LISTING 25.1 125- 1 .ASM
: Program t o i l l u s t r a t e o p e r a t i o n o f d a t a r o t a t e a n d b i t mask
: f e a t u r e s o f G r a p h i c s C o n t r o l l e r . D r a w s 8 x 8 c h a r a c t e r a t
: s p e c i f i e d l o c a t i o n , u s i n g VGA's 8x8 ROM f o n t . D e s i g n e d
: f o r u s e w i t h modes OOh, OEh. OFh. 10h. and 1Zh.
: By M ichae l Ab rash .

s t a c k s e g m e n t p a r a s t a c k 'STACK'
db 512 dup(?)

s t a c k e n d s

VGACVIOEOCSEGMENT equ OaOOOh :VGA d i s p l a y memory segment
SCREEN-WIDTH-INCBYTES equ 044ah : o f f s e t o f BIOS v a r i a b l e
FONT-CHARACTER-SIZE equ 8 :# b y t e s i n e a c h f o n t c h a r

: VGA r e g i s t e r e q u a t e s .

GC-INDEX equ 3ceh ;GC i n d e x r e g i s t e r
GC-ROTATE equ 3 :GC d a t a r o t a t e / l o g i c a l f u n c t i o n

GC-BIT-MASK equ 8 ;GC b i t mask r e g i s t e r i n d e x

dseg segment para common 'DATA'
TEST-TEXT-ROW equ 69
TEST-TEXT-COL equ 1 7

: row t o d i s p l a y t e s t t e x t a t

TEST-TEXT-WIDTH equ 8
;co lumn t o d i s p l a y t e s t t e x t a t
: w i d t h o f a c h a r a c t e r i n p i x e l s

T e s t s t r i n g
db

l a b e l b y t e
' H e l l o , w o r l d ! ' . O : t e s t s t r i n g t o p r i n t .

F o n t P o i n t e r d d ? : f o n t o f f s e t
dseg ends

: r e g i s t e r i n d e x

: Macro t o s e t i n d e x e d r e g i s t e r INDEX o f GC c h i p t o SETTING.

SETGC macro I N D E X . SETTING
mov dx.GC-INDEX
mov ax,(SETTING SHL 8) OR INDEX
o u t d x . a x
endm

c s e g s e g m e n t p a r a p u b l i c ' C O D E '

s t a r t p r o c n e a r
assume cs:cseg, ds:dseg

mov ax ,dseg
mov ds ,ax

: S e l e c t 6 4 0 x 4 8 0 g r a p h i c s mode.

mov ax .012h
i n t 10h

: S e t d r i v e r t o u s e t h e 8 x 8 f o n t .

466 Chapter 25

mov a h . l l h
mov a1 .30h
mov b h , 3 : g e t 8 x 8 f o n t p o i n t e r
i n t 10h
c a l l S e l e c t F o n t

:VGA B I O S c h a r a c t e r g e n e r a t o r f u n c t i o n ,
: r e t u r n i n f o s u b f u n c t i o n

: P r i n t t h e t e s t s t r i n g .

mov s i . o f f s e t T e s t S t r i n g
mov bx.TEST_TEXT_ROW
mov cx.TEST_TEXT_COL

1 odsb
and a1 .a1

c a l l DrawChar
add cx.TEST_TEXT_WIDTH
j m p S t r i n g O u t L o o p

S t r i n g O u t L o o p :

j z S t r i ngOutDone

S t r i ngOutDone :

: R e s e t t h e d a t a r o t a t e a n d b i t mask r e g i s t e r s .

SETGC GC-ROTATE. 0
SETGC GC_EJT_MASK, O f f h

: W a i t f o r a k e y s t r o k e .

mov ah .1
i n t 21h

: R e t u r n t o t e x t mode

mov ax,03h
i n t 10h

: E x i t t o DOS.

mov ah.4ch
i n t 21h

S t a r t e n d p

: S u b r o u t i n e t o d r a w a t e x t c h a r a c t e r i n a l i n e a r g r a p h i c s mode
: (ODh, OEh. OFh. 010h. 012h) .
: F o n t u s e d s h o u l d b e p o i n t e d t o b y F o n t P o i n t e r .

: I n p u t :
: AL - c h a r a c t e r t o d r a w
: EX - row t o d r a w t e x t c h a r a c t e r a t
: C X - column t o d r a w t e x t c h a r a c t e r a t

: Forces ALU

DrawChar
push
push
push
push
push
push
push
push

f u n c t i o n t o "move".

p r o c n e a r

bx

dx

d i
s i

ds

ax

c x

bP

VGA Data Machinery 467

: S e t D S : S I t o p o i n t t o f o n t and ES t o p o i n t t o d i s p l a y memory.

I d s s i . [F o n t P o i n t e r] ; p o i n t t o f o n t
mov dx.VGA-VIDEO-SEGMENT
mov e s . d x : p o i n t t o d i s p l a y memory

: C a l c u l a t e s c r e e n a d d r e s s o f b y t e c h a r a c t e r s t a r t s i n .

push
sub
mov
xchg
mov

POP
mu1
push
mov
and
s h r
s h r

add
s h r

ds : p o i n t t o B I O S da ta segment
dx , dx
ds .dx
ax .bx
di.ds:[SCREEN-WIDTH-IN-BYTES] : r e t r i e v e B I O S

ds
d i
d i
d i . c x
c l . O l l l b
d i .1
d i .1
d i .1
d i , a x

: s c r e e n w i d t h

c a l c u l a t e o f f s e t o f s t a r t o f r o w
s e t a s i d e s c r e e n w i d t h
s e t a s i d e t h e c o l u m n
k e e p o n l y t h e c o l u m n i n - b y t e a d d r e s s

d i v i d e c o l u m n b y 8 t o make a b y t e a d d r e s s
and p o i n t t o b y t e

: C a l c u l a t e f o n t a d d r e s s o f c h a r a c t e r .

sub bh.bh
s h l b x . 1
s h l b x . 1

;assumes 8 b y t e s p e r c h a r a c t e r : u s e

s h l b x . 1
: a m u l t i p l y o t h e r w i s e
: o f f s e t i n f o n t o f c h a r a c t e r

add s i . b x : o f f s e t i n f o n t s e g m e n t o f c h a r a c t e r

: S e t u p t h e GC r o t a t i o n .

mov dx, GC-INDEX
mov a1 , GC-ROTATE
mov a h . c l
o u t d x . a x

: Set up BH as b i t mask f o r l e f t h a l f ,
: EL as r o t a t i o n f o r r i g h t h a l f .

mov b x . 0 f f f f h
s h r b h . c l
n e g c l
add c1.8
s h l b l , c l

: Draw t h e c h a r a c t e r , l e f t h a l f f i r s t , t h e n r i g h t h a l f i n t h e
; s u c c e e d i n g b y t e , u s i n g t h e d a t a r o t a t i o n t o p o s i t i o n t h e c h a r a c t e r
: a c r o s s t h e b y t e b o u n d a r y a n d t h e n u s i n g t h e b i t mask t o g e t t h e
: p r o p e r p o r t i o n o f t h e c h a r a c t e r i n t o e a c h b y t e .
; Does n o t c h e c k f o r c a s e w h e r e c h a r a c t e r i s b y t e - a l i g n e d a n d
: n o r o t a t i o n a n d o n l y o n e w r i t e i s r e q u i r e d .

mov bp.FONT-CHARACTER-SIZE
mov dx , GC-INDEX
POP c x ; g e t b a c k s c r e e n w i d t h
dec cx
dec cx ; - 2 because do t w o b y t e s f o r e a c h c h a r

468 Chapter 25

Charac te rLoop :

: S e t t h e b i t mask f o r t h e l e f t h a l f o f t h e c h a r a c t e r .

mov a1 .GC..BIT-MASK
mov ah.bh
o u t d x , a x

: G e t t h e n e x t c h a r a c t e r b y t e & w r i t e i t t o d i s p l a y memory.
; (L e f t h a l f o f c h a r a c t e r .)

mov a1 , [s i] ; g e t c h a r a c t e r b y t e
mov a h . e s : [d i l ; l o a d l a t c h e s
s t o s b ; w r i t e c h a r a c t e r b y t e

; S e t t h e b i t mask f o r t h e r i g h t h a l f o f t h e c h a r a c t e r .

mov a1 .GC~LBIT_MASK
mov ah .b l
o u t d x . a x

: G e t t h e c h a r a c t e r b y t e a g a i n
: (R i g h t h a l f o f c h a r a c t e r .)

1 odsb
mov a h . e s : [d i l
s t o s b

& w r i t e i t t o d i s p l a y memory.

; g e t c h a r a c t e r b y t e
: l o a d l a t c h e s
: w r i t e c h a r a c t e r b y t e

; P o i n t t o n e x t l i n e o f c h a r a c t e r i n d i s p l a y memory.

add d i . c x

dec bp
j n z C h a r a c t e r L o o p

POP ds
POP bp
pop d i
pop s i
POP dx
POP c x
POP b x
POP ax
r e t

DrawChar endp

: S e t t h e p o i n t e r t o t h e f o n t t o d r a w f r o m t o ES:BP.

S e l e c t F o n t p r o c n e a r
mov w o r d p t r [F o n t P o i n t e r] . b p : s a v e p o i n t e r
mov w o r d p t r [F o n t P o i n t e r + Z] . e s
r e t

S e l e c t F o n t e n d p

cseg ends
e n d s t a r t

The bit mask can be used for much more than bit-aligned fonts. For example, the bit
mask is useful for fast pixel drawing, such as that performed when drawing lines, as

VGA Data Machinery 469

we’ll see in Chapter 35. It’s also useful for drawing the edges of primitives, such as
filled polygons, that potentially involve modifylng some but not all of the pixels con-
trolled by a single byte of display memory.
Basically, the bit mask is handy whenever only some of the eight pixels in a byte of
display memory need to be changed, because it allows full use of the VGA’s four-way
parallel processing capabilities for the pixels that are to be drawn, without interfer-
ing with the pixels that are to be left unchanged. The alternative would be
plane-by-plane processing, which from a performance perspective would be undesir-
able indeed.
It’s worth pointing out again that the bit mask operates on the data in the latches,
not on the data in display memory. This makes the bit mask a flexible resource that
with a little imagination can be used for some interesting purposes. For example,
you could fill the latches with a solid background color (by writing the color some-
where in display memory, then reading that location to load the latches), and then
use the Bit Mask register (or write mode 3, as we’ll see later) as a mask through
which to draw a foreground color stencilled into the background color without read-
ing display memory first. This only works for writing whole bytes at a time (clipped
bytes require the use of the bit mask; unfortunately, we’re already using it for stencil-
ling in this case), but it completely eliminates reading display memory and does
foreground-plus-background drawing in one blurry-fast pass.

This last-described example is a good illustration of how I b! suggest you approach p the VGA: As a rich collection of hardware resources that can profitably be com-
bined in some non-obvious ways. Don ’t let yourself be limited by the obvious
applications for the latches, bit mask, write modes, read modes, map mask, ALUs,
and setheset circuitry Instead, try to imagine how they could work together to
perform whatever task you happen to need done at any given time. I ite made my
code as much as four times faster by doing this, as the discussion of Mode X in
Chapters 47-49 demonstrates.

The example code in Listing 25.1 is designed to illustrate the use of the Data Rotate
and Bit Mask registers, and is not as fast or as complete as it might be. The case
where text is byte-aligned could be detected and performed much faster, without the
use of the Bit Mask or Data Rotate registers and with only one display memory access
per font byte (to write the font byte), rather than four (to read display memory and
write the font byte to each of the two bytes the character spans). Likewise, non-
aligned text drawing could be streamlined to one display memory access per byte by
having the CPU rotate and combine the font data directly, rather than setting up the
VGA‘s hardware to do it. (Listing 25.1 was designed to illustrate VGA data rotation
and bit masking rather than the fastest way to draw text. We’ll see faster text-drawing
code soon.) One excellent rule of thumb is to minimize display memory accesses of
all types, especially reads, which tend to be considerably slower than writes. Also, in

470 Chapter 25

Listing 25.1 it would be faster to use a table lookup to calculate the bit masks for the
two halves of each character rather than the shifts used in the example.
For another (and more complex) example of drawing bit-mapped text on the VGA,
see John Cockerham’s article, “Pixel Alignment of EGA Fonts,” PC TechJournaZ, January,
198’7. Parenthetically, I’d like to pass along John’s comment about the VGA “When
programming the VGA, everything is complex.”
He’s got a point there.

The VGA’s Set/Reset Circuitry
At last we come to the final aspect of data flow through the GC on write mode 0 writes:
the set/reset circuitry. Figure 25.3 shows data flow on a write mode 0 write. The only
difference between this figure and Figure 25.1 is that on its way to each plane poten-
tially the rotated CPU data passes through the set/reset circuitry, which may or may
not replace the CPU data with set/reset data. Briefly put, the set/reset circuitry en-
ables the programmer to elect to independently replace the CPU data for each plane
with either 00 or OFFH.
What is the use of such a feature? Well, the standard way to control color is to set the
Map Mask register to enable writes to only those planes that need to be set to produce

VGA Data Machinery 471

Data flow during a write mode 0 write operation.
Figure 25.3

Dataflow during a write mode 0 write operation.
Figure 25.3

the desired color. For example, the Map Mask register would be set to 09H to draw in
high-intensity blue; here, bits 0 and 3 are set to 1, so only the blue plane (plane 0)
and the intensity plane (plane 3) are written to.
Remember, though, that planes that are disabled by the Map Mask register are not
written to or modified in any way. This means that the above approach works only if
the memory being written to is zeroed; if, however, the memory already contains
non-zero data, that data will remain in the planes disabled by the Map Mask, and the
end result will be that some planes contain the data just written and other planes
contain old data. In short, color control using the Map Mask does not force all planes
to contain the desired color. In particular, it is not possible to force some planes to
zero and other planes to one in a single write with the Map Mask register.
The program in Listing 25.2 illustrates this problem. A green pattern (plane 1 set to
1, planes 0, 2, and 3 set to 0) is first written to display memory. Display memory is then
filled with blue (only plane 0 set to 1) , with a Map Mask setting of 01H. Where the blue
crosses the green, cyan is produced, rather than blue, because the Map Mask register
setting of 01H that produces blue leaves the green plane (plane 1) unchanged. In
order to generate blue unconditionally, it would be necessary to set the Map Mask
register to OFH, clear memory, and then set the Map Mask register to 01H and fill
with blue.

LISTING 25.2 L25-2.ASM
; Program t o i l l u s t r a t e o p e r a t i o n o f Map Mask r e g i s t e r when d r a w i n g
; t o memory t h a t a l r e a d y c o n t a i n s d a t a .
; By M ichae l Ab rash .

s t a c k s e g m e n t p a r a s t a c k 'STACK'
db 512 d u p (?)

s t a c k e n d s

EGA-VIDEO-SEGMENT equ OaOOOh ;EGA d i s p l a y memory segment

; EGA r e g i s t e r e q u a t e s .

SC-INDEX equ 3c4h ; S C i n d e x r e g i s t e r
SC-MAP-MASK equ 2 ; S C map mask r e g i s t e r

; Macro t o s e t i n d e x e d r e g i s t e r I N D E X o f SC c h i p t o SETTING.

SETSC macro I N D E X , SETTING
mov dx.SC-INDEX
mov a1 , I N D E X
o u t d x , a l
i n c d x
mov a1 ,SETTING
o u t d x . a l
dec dx
endm

c s e g s e g m e n t p a r a p u b l i c ' C O D E '
assume cs:cseg

472 Chapter 25

s t a r t p r o c n e a r

: S e l e c t 6 4 0 x 4 8 0 g r a p h i c s mode.

mov ax .012h
i n t 10h

mov ax.EGA-VIDEO-SEGMENT
mov e s . a x ; p o i n t t o v i d e o memory

: D r a w 2 4 1 0 - s c a n - l i n e h i g h h o r i z o n t a l b a r s i n g r e e n , 1 0 s c a n l i n e s a p a r t .

SETSC SC-MAP_MASK.OLh :map mask s e t t i n g e n a b l e s o n l y

s u b d i . d i : s t a r t a t b e g i n n i n g o f v i d e o memory
: p l a n e 1. t h e g r e e n p l a n e

mov a1 . O f f h
mov bp .24 :# b a r s t o d r a w

mov cx.80*10 ; I b y t e s p e r h o r i z o n t a l b a r
r e p s t o s b ; d r a w b a r
add d i .80*10 : p o i n t t o s t a r t o f n e x t b a r
dec bp
j n z H o r z B a r L o o p

HorzBarLoop:

: F i l l s c r e e n w i t h b l u e , u s i n g Map Mask r e g i s t e r t o e n a b l e w r i t e s
: t o b l u e p l a n e o n l y .

SETSC SC-MAP-MASK.Olh :map mask s e t t i n g e n a b l e s
: p l a n e 0. t h e b l u e p l a n e

s u b d i , d i
mov cx , 80*480 :# b y t e s p e r s c r e e n
mov a1 . O f f h
r e p s t o s b

: W a i t f o r a k e y s t r o k e .

mov
i n t

: R e s t o r e t e x t

mov
i n t

: E x i t t o 00s.

mov
i n t

s t a r t endp
cseg ends

end

ah .1
21h

mode.

ax .03h
10h

ah .4ch
21h

s t a r t

; p e r f o r m fill (a f f e c t s o n l y
: p l a n e 0. t h e b l u e p l a n e)

on1 y

Planes to a Single Color
The set/reset circuitry can be used to force some planes to 0-bits and others to 1-bits
during a single write, while letting CPU data go to still other planes, and so provides an
efficient way to set all planes to a desired color. The set/reset circuitry works as follows:

VGA Data Machinery 473

For each of the bits 0-3 in the Enable Set/Reset register (Graphics Controller regis-
ter 1) that is 1, the corresponding bit in the Set/Reset register (GC register 0) is
extended to a byte (0 or OFFH) and replaces the CPU data for the corresponding
plane. For each of the bits in the Enable Set/Reset register that is 0, the CPU data is
used unchanged for that plane (normal operation). For example, if the Enable Set/
Reset register is set to 01H and the Set/Reset register is set to 05H, then the CPU
data is replaced for plane 0 only (the blue plane), and the value it is replaced with is
OFFH (bit 0 of the Set/Reset register extended to a byte). Note that in this case, bits
1-3 of the Set/Reset register have no effect.
It is important to understand that the set/reset circuitry directly replaces CPU data
in Graphics Controller data flow. Refer back to Figure 25.3 to see that the output of
the set/reset circuitry passes through (and may be transformed by) the ALU and the bit
mask before being written to memory, and even then the Map Mask register must
enable the write. When using set/reset, it is generally desirable to set the Map Mask
register to enable all planes the set/reset circuitry is controlling, since those memory
planes which are disabled by the Map Mask register cannot be modified, and the
purpose of enabling set/reset for a plane is to force that plane to be set by the set/
reset circuitry.
Listing 25.3 illustrates the use of set/reset to force a specific color to be written. This
program is the same as that of Listing 25.2, except that set/reset rather than the Map
Mask register is used to control color. The preexisting pattern is completely ovenvrit-
ten this time, because the set/reset circuitry writes 0-bytes to planes that must be off
as well as OFFH-bytes to planes that must be on.

LISTING 25.3 125-3.ASM
; P r o g r a m t o i l l u s t r a t e o p e r a t i o n o f s e t / r e s e t c i r c u i t r y t o f o r c e
; s e t t i n g o f memory t h a t a l r e a d y c o n t a i n s d a t a .
; By M ichae l Ab rash .

s t a c k s e g m e n t p a r a s t a c k 'STACK'
db 512 dup(?)

s t a c k e n d s

EGA-VIDEORSEGMENT equ OaOOOh ;EGA d i s p l a y memory segment

; EGA r e g i s t e r e q u a t e s .

SC-INDEX
SC-MAPLMASK equ 2

equ 3c4h ;SC i n d e x r e g i s t e r

GC-INDEX
; S C map mask r e g i s t e r

GC-SET-RESET equ 0
equ 3ceh ;GC i n d e x r e g i s t e r

GC-ENABLELSET-RESET equ 1
;GC s e t / r e s e t r e g i s t e r
;GC e n a b l e s e t / r e s e t r e g i s t e r

; Macro t o s e t i n d e x e d r e g i s t e r I N D E X o f SC c h i p t o SETTING.

SETSC macro I N D E X , SETTING
mov dx.SC-INDEX
mov a1 , I N D E X
o u t d x . a l

474 Chapter 25

i n c d x
mov a1 ,SETTING
o u t d x . a l
dec dx
endm

; Macro t o s e t i n d e x e d r e g i s t e r I N D E X o f GC c h i p t o SETTING.

SETGC macro I N D E X . SETTING
mov dx,GC_.INOEX
mov a1 , I N D E X
o u t d x . a l
i n c d x
mov a1 .SETTING
o u t d x . a l
dec dx
endm

c s e g s e g m e n t p a r a p u b l i c ' C O D E '

s t a r t p r o c n e a r
assume cs:cseg

; S e l e c t 6 4 0 x 4 8 0 g r a p h i c s mode.

mov ax.012h
i n t 10h

mov ax.EGA-VIDEO-SEGMENT
mov e s . a x ; p o i n t t o v i d e o memory

; D r a w 2 4 1 0 - s c a n - l i n e h i g h h o r i z o n t a l b a r s i n g r e e n , 10 s c a n l i n e s a p a r t .

SETSC SC-MAP-MASK.02h ;map mask s e t t i n g e n a b l e s o n l y

s u b d i . d i ; s t a r t a t b e g i n n i n g o f v i d e o memory
mov a1 . O f f h
mov bp .24 ; I b a r s t o d r a w

mov cx .80*10 ;# b y t e s p e r h o r i z o n t a l b a r
r e p s t o s b ; d r a w b a r
add d i .80*10 ; p o i n t t o s t a r t o f n e x t b a r
dec bp
j n z H o r z B a r L o o p

; p l a n e 1. t h e g r e e n p l a n e

HorzBarLoop:

; Fill s c r e e n w i t h b l u e , u s i n g s e t / r e s e t t o f o r c e p l a n e 0 t o 1 ' s and a l l
: o t h e r p l a n e t o 0 ' s .

SETSC

SETGC

SETGC

sub
mov
mov

SC_MAPKMASK.Ofh ; m u s t s e t map mask t o e n a b l e a l l
; p l a n e s , s o s e t / r e s e t v a l u e s c a n
; b e w r i t t e n t o memory

; r e p l a c e d b y s e t / r e s e t v a l u e

; (t h e b l u e p l a n e) a n d 0 f o r o t h e r
; p l a n e s

GC-ENABLE-SET-RESET,Ofh ;CPU d a t a t o a l l p l a n e s will be

GC-SET-RESET.Olh ; s e t / r e s e t v a l u e i s O f f h f o r p l a n e 0

d i . d i
cx, 80*480 ;# b y t e s p e r s c r e e n
a1 . O f f h ; s i n c e s e t / r e s e t i s e n a b l e d f o r a l l

; p l a n e s , t h e CPU d a t a i s i g n o r e d -
; o n l y t h e a c t o f w r i t i n g i s
; i m p o r t a n t

VGA Data Machinery 475

r e p s t o s b

; T u r n o f f s e t / r e s e t .

; p e r f o r m fill (a f f e c t s a l l p l a n e s)

SETGC GC-ENABLELSET-RESET.0

; W a i t f o r a k e y s t r o k e .

mov a h , l
i n t 21h

; R e s t o r e t e x t mode.

mov ax ,03h
i n t 10h

; E x i t t o 00s.

mov ah .4ch
i n t 21h

s t a r t endp
cseg ends

end s t a r t

Manipulating Planes Individually
Listing 25.4 illustrates the use of set/reset to control only some, rather than all,
planes. Here, the set/reset circuitry forces plane 2 to 1 and planes 0 and 3 to 0. Because
bit 1 of the Enable Set/Reset register is 0, however, set/reset does not affect plane 1;
the CPU data goes unchanged to the plane 1 ALU. Consequently, the CPU data can
be used to control the value written to plane 1. Given the settings of the other three
planes, this means that each bit of CPU data that is 1 generates a brown pixel, and
each bit that is 0 generates a red pixel. Writing alternating bytes of 07H and OEOH,
then, creates a vertically striped pattern of brown and red.
In Listing 25.4, note that the vertical bars are 10 and 6 bytes wide, and do not start on
byte boundaries. Although set/reset replaces an entire byte of CPU data for a plane,
the combination of set/reset for some planes and CPU data for other planes, as in
the example above, can be used to control individual pixels.

LISTING 25.4 125-4.ASM
; Program t o i l l u s t r a t e o p e r a t i o n o f s e t / r e s e t c i r c u i t r y i n c o n j u n c t i o n
; w i t h CPU d a t a t o m o d i f y s e t t i n g o f memory t h a t a l r e a d y c o n t a i n s d a t a
; By M ichae l Ab rash .

s t a c k s e g m e n t p a r a s t a c k 'STACK'
db 512 dup(?)

s t a c k e n d s

EGA-VIDEOCSEGMENT equ OaOOOh ;EGA d i s p l a y memory segment

; EGA r e g i s t e r e q u a t e s .

SC-INDEX
SC-MAP-MASK equ 2

equ 3c4h ; S C i n d e x r e g i s t e r
; S C map mask r e g i s t e r

476 Chapter 25

GC-INDEX equ 3ceh :GC i n d e x r e g i s t e r
GC-SET-RESET equ 0 :GC s e t / r e s e t r e g i s t e r
GC-ENABLELSET-RESET equ 1 ;GC e n a b l e s e t / r e s e t r e g i s t e r

: Macro t o s e t i n d e x e d r e g i s t e r I N D E X o f SC c h i p t o SETTING.

SETSC macro I N D E X , SETTING
mov d x , SC- INDEX
mov a1 , I N D E X
o u t d x , a l

mov a1 .SETTING
i n c dx

o u t d x . a l
dec dx
endm

; Macro t o s e t i n d e x e d r e g i s t e r I N D E X o f GC c h i p t o SETTING.

SETGC macro I N D E X , SETTING
mov dx.GC-INDEX
mov a1 , I N D E X
o u t d x . a l
i n c d x
mov a1 .SETTING
o u t d x . a l
dec dx
endm

c s e g s e g m e n t p a r a p u b l i c ' C O D E '

s t a r t p r o c n e a r

: S e l e c t 6 4 0 x 3 5 0 g r a p h i c s mode.

mov ax.010h
i n t 10h

mov ax,EGA-VIDEO-SEGMENT
mov e s . a x ; p o i n t t o v i d e o

: Draw 1 8 1 0 - s c a n - l i n e h i g h h o r i z o n t a l

SETSC SC-MAP_MASK,OEh

assume cs:cseg

p l a n e
s u b d i . d i
mov a1 . O f f h
mov bp .18

mov cx, 80*10

a d d d i . 8 0 * 1 0
r e p s t o s b

dec bp
j n z H o r z B a r L o o p

HorzBarLoop:

: F i l l s c r e e n w i t h a l t e r n a t i n g b a r s o f

memory

b a r s i n g r e e n , 1 0 s c a n l i n e s a p a r t .

:map mask s e t t i n g e n a b l e s o n l y
: p l a n e 1. t h e g r e e n

: s t a r t a t b e g i n n i n g o f v i d e o memory

;# b a r s t o d r a w

:# b y t e s p e r h o r i z o n t a l b a r

: p o i n t t o s t a r t o f n e x t b a r
: d r a w b a r

red and b rown , us ing CPU d a t a
: t o s e t p l a n e 1 a n d s e t / r e s e t t o s e t p l a n e s 0 . 2 & 3.

VGA Data Machinery 477

SETSC SCLMAPLMASK.Ofh : m u s t s e t map mask t o e n a b l e a l l
; p l a n e s , s o s e t / r e s e t v a l u e s c a n
; b e w r i t t e n t o p l a n e s 0. 2 & 3
; and CPU d a t a c a n b e w r i t t e n t o
: p l a n e 1 (t h e g r e e n p l a n e)

SETGC GCLENABLELSETLRESET.Odh ;CPU d a t a t o p l a n e s 0. 2 & 3 will be

SETGC GC-SET-RESET.04h : s e t / r e s e t v a l u e i s O f f h f o r p l a n e 2
; r e p l a c e d b y s e t / r e s e t v a l u e

; (t h e r e d p l a n e) a n d 0 f o r o t h e r
; p l a n e s

s u b d i . d i
mov cx .80*350/2 ; C w o r d s p e r s c r e e n
mov ax , 07eOh :CPU d a t a c o n t r o l s o n l y p l a n e 1;

r e p s t o s w ; p e r f o r m fill (a f f e c t s a l l p l a n e s)
: s e t / r e s e t c o n t r o l s o t h e r p l a n e s

; T u r n o f f s e t / r e s e t .

SETGC GC-ENABLE-SET-RESET.0

: W a i t f o r a k e y s t r o k e .

mov ah .1
i n t 21h

: R e s t o r e t e x t mode.

mov ax .03h
i n t 10h

: E x i t t o DOS.

mov ah .4ch
i n t 21h

s t a r t endp
cseg ends

e n d s t a r t

There is no clearly defined role for the set/reset circuitry, as there is for, say, the bit
mask. In many cases, set/reset is largely interchangeable with CPU data, particularly
with CPU data written in write mode 2 (write mode 2 operates similarly to the set/
reset circuitry, as we’ll see in Chapter 27). The most powerful use of set/reset, in my
experience, is in applications such as the example of Listing 25.4, where it is used to
force the value written to certain planes while the CPU data is written to other planes.
In general, though, think of set/reset as one more tool you have at your disposal in
getting the VGA to do what you need done, in this case a tool that lets you force all
bits in each plane to either zero or one, or pass CPU data through unchanged, on
each write to display memory. As tools go, set/reset is a handy one, and it’ll pop up
often in this book.

Notes on Set/Reset
The set/reset circuitry is not active in write modes 1 or 2. The Enable Set/Reset
register is inactive in write mode 3, but the Set/Reset register provides the primary
drawing color in write mode 3, as discussed in the next chapter.

478 Chapter 25

Be aware that because setheset directly replaces CPU data, it does not necessarily
have to force an entire display memory byte to 0 or OFFH, even when setlreset is
replacing CPU data for allplanes. For example, ifthe Bit Mask register is set to 80H,
the setheset circuitry can only modlfi bit 7 of the destination byte in each plane,
since the other seven bits will come from the latches for each plane. Similarly, the
setheset value for each plane can be modified by that plane b ALU Once again, this
illustrates that setheset merely replaces the CPU data for selectedplanes; the set/
reset value is then processed in exactly the same way that CPU data normally is.

A Brief Note on Word OUTs
In the early days of the EGA and VGA, there was considerable debate about whether
it was safe to do word OUTs (OUT D m) to set Index/Data register pairs in a
single instruction. Long ago, there were a few computers with buses that weren’t
quite PC- compatible, in that the two bytes in each word OUT went to the VGA in the
wrong order: Data register first, then Index register, with predictably disastrous re-
sults. Consequently, I generally wrote my code in those days to use two 8-bit OUTs to
set indexed registers. Later on, I made it a habit to use macros that could do either
one 16-bit OUT or two 8-bit OUTs, depending on how I chose to assemble the code,
and in fact you’ll find both ways of dealing with OUTs sprinkled through the code in
this part of the book. Using macros for word OUTs is still not a bad idea in that it
does no harm, but in my opinion it’s no longer necessary. Word OUTs are standard
now, and it’s been a long time since I’ve heard of them causing any problems.

VGA Data Machinery 479

chapter 26

vga write mode 3

ode That Grows on You
Over the last three' overed the VGA's write path from stem to stern-
with one exceptio only looked at how writes work in write mode 0,
the straightforward, de in which each byte that the CPU writes to dis-
play memory fans ur planes. (Actually, we also took a quick look at
write mode 1, in whi& the latches are always copied unmodified, but since exactly
the same result c a n h achieved by setting the Bit Mask register to 0 in write mode 0,

eful mode, but some of VGA's most interesting capabilities
odes that we have yet to examine: write mode 1, and, espe-

1 get to write mode 1 in the next chapter, but right now I
want to focus on wi t& mode 3, which can be confusing at first, but turns out to be
quite a bit more powerful than one might initially think.

a1 significance.)

A Mode Born in Strangeness
Write mode 3 is strange indeed, and its use is not immediately obvious. The first time
I encountered write mode 3, I understood immediately how it functioned, but could
think of very few useful applications for it. As time passed, and as I came to under-
stand the atrocious performance characteristics of OUT instructions, and the
importance of text and pattern drawing as well, write mode 3 grew considerably in
my estimation. In fact, my esteem for this mode ultimately reached the point where

483

in the last major chunk of 16-color graphics code I wrote, write mode 3 was used
more than write mode 0 overall, excluding simple pixel copying. So write mode 3 is
well worth using, but to use it you must first understand it. Here's how it works.
In write mode 3, set/reset is automatically enabled for all four planes (the Enable
Set/Reset register is ignored). The CPU data byte is rotated and then ANDed with
the contents of the Bit Mask register, and the result of this operation is used as the
contents of the Bit Mask register alone would normally be used. (If this is Greek to
you, have a look back at Chapters 23 through 25. There's no way to understand write
mode 3 without understanding the rest of the VGA's write data path first.)
That's what write mode 3 does-but what is it for? It turns out that write mode 3 is
excellent for a surprisingly large number of purposes, because it makes it possible to
avoid the bane of VGA performance, OUTS. Some uses for write mode 3 include
lines, circles, and solid and two-color pattern fills. Most importantly, write mode 3 is
ideal for transparent text; that is, it makes it possible to draw text in l k o l o r graph-
ics mode quickly without wiping out the background in the process. (As we'll see at
the end of this chapter, write mode 3 is potentially terrific for opaque text-text
drawn with the character box filled in with a solid color-as well.)
Listing 26.1 is a modification of code I presented in Chapter 25. That code used the
data rotate and bit mask features of the VGA to draw bit-mapped text in write mode
0. Listing 26.1 uses write mode 3 in place of the bit mask to draw bit-mapped text,
and in the process gains the useful ability to preserve the background into which the
text is being drawn. Where the original text-drawing code drew the entire character
box for each character, with 0 bits in the font pattern causing a black box to appear
around each character, the code in Listing 26.1 affects display memory only when 1
bits in the font pattern are drawn. As a result, the characters appear to be painted
into the background, rather than over it. Another advantage of the code in Listing
26.1 is that the characters can be drawn in any of the 16 available colors.

LISTING 26.1 126- 1 .ASM
: Program t o i l l u s t r a t e o p e r a t i o n o f w r i t e mode 3 o f t h e VGA.
; Draws 8x8 c h a r a c t e r s a t a r b i t r a r y l o c a t i o n s w i t h o u t d i s t u r b i n g
; t h e b a c k g r o u n d , u s i n g VGA's 8x8 ROM f o n t . D e s i g n e d
; f o r u s e w i t h modes ODh. OEh. OFh. 10h. and 12h.
; Runs o n l y on VGAs (i n Models 50 & up and I B M D i s p l a y A d a p t e r
; and 100% compat ib les) .
; Assemb led w i th MASM
; By Michae l Abrash

s tack segmen t pa ra s tack 'STACK'
db 512 d u p (?)

s tack ends

VGA-VIDEO-SEGMENT
SCREEN-WIDTH-IN-BYTES e q u 0 4 4 a h ; o f f s e t o f B I O S v a r i a b l e

equ OaOOOh ;VGA d i s p l a y memory segment

FONT-CHARACTER-SIZE equ 8 ;# b y t e s i n e a c h f o n t c h a r

: VGA r e g i s t e r e q u a t e s .

484 Chapter 26

SC- INDEX equ 3c4h
SC-MAP-MASK equ 2
GC-INDEX equ 3ceh
GC-SET-RESET equ 0
GC-ENABLE-SET-RESET equ 1
GC-ROTATE equ 3

GC-MODE equ 5
GC-BIT-MASK equ 8

: S C i n d e x r e g i s t e r
:SC map mask r e g i s t e r i n d e x
: G C i n d e x r e g i s t e r
:GC s e t / r e s e t r e g i s t e r i n d e x
:GC e n a b l e s e t / r e s e t r e g i s t e r i n d e x
:GC d a t a r o t a t e / l o g i c a l f u n c t i o n
: r e g i s t e r i n d e x
:GC Mode r e g i s t e r
:GC b i t mask r e g i s t e r i n d e x

dseg segment para common 'DATA'
TEST-TEXT-ROW equ 69 :row t o d i s p l a y t e s t t e x t a t
TEST-TEXT-COL equ 17 :column t o d i s p l a y t e s t t e x t a t
TEST-TEXTLWIOTH equ 8 ; w i d t h o f a c h a r a c t e r i n p i x e l s
T e s t s t r i n g l a b e l b y t e

F o n t P o i n t e r d d ? ; f o n t o f f s e t
dseg ends

d b ' H e l l o , w o r l d ! ' . O ; t e s t s t r i n g t o p r i n t .

cseg segmen t pa ra pub l i c ' C O D E '

s t a r t p r o c n e a r
assume cs:cseg. ds:dseg

mov ax.dseg
mov ds ,ax

: Se lec t 640x480 g raph ics mode.

mov a x . 0 l Z h
i n t 10h

: S e t t h e s c r e e n t o a l l b l u e . u s i n g t h e r e a d a b i l i t y o f VGA r e g i s t e r s
: t o p r e s e r v e r e s e r v e d b i t s .

mov dx.GC-INDEX
mov a1 .GC-SET-RESET
o u t d x , a l
i n c d x
i n a1 . d x
and a1 .OfOh
o r a1 .1 ; b l u e p l a n e o n l y s e t . o t h e r s r e s e t
o u t d x . a l
dec dx
mov al.GC_ENABLE-SET-RESET
o u t d x . a l
i n c d x
i n a1 .dx
and a1 ,OfOh
o r a1 . O f h : e n a b l e s e t / r e s e t f o r a l l p l a n e s

mov dx.VGA-VIDEO-SEGMENT
o u t d x . a l

mov e s . d x : p o i n t t o d i s p l a y memory
mov d i .O
mov cx, 8000h ;fill a l l 32k words
mov a x . 0 f f f f h : b e c a u s e o f s e t / r e s e t . t h e v a l u e

r e p s t o s w :fill w i t h b l u e
: w r i t t e n a c t u a l l y d o e s n ' t m a t t e r

: S e t d r i v e r t o u s e t h e 8 x 8 f o n t .

mov a h . l l h :VGA B I O S c h a r a c t e r g e n e r a t o r f u n c t i o n ,
mov a1 .30h : r e t u r n i n f o s u b f u n c t i o n

VGA Write Mode 3 485

mov bh.3
i n t 10h
c a l l S e l e c t F o n t

; g e t 8 x 8 f o n t p o i n t e r

; P r i n t t h e t e s t s t r i n g , c y c l i n g t h r o u g h c o l o r s .

mov
mov
mov
mov

1 odsb
and
jz
push
c a l l
POP
i nc
and
add
jmp

S t r i ngOutLoop :

St r ingOutDone:

s i . o f f s e t T e s t s t r i n g
bx.TEST-TEXT-ROW
cx,TEST-TEXT-COL
a h . 0 ; s t a r t w i t h c o l o r 0

a1 ,a1
S t r i ngOutDone
ax
DrawChar
ax
ah
a h . 0 f h
cx.TEST-TEXT-WIDTH
S t r i ngOutLoop

; p r e s e r v e c o l o r

; r e s t o r e c o l o r
; n e x t c o l o r
; c o l o r s r a n g e f r o m 0 t o 15

; Wait f o r a k e y , t h e n s e t t o t e x t mode & end.

mov ah.1
i n t 21h ; w a i t for a key
mov ax.3
i n t 10h i r e s t o r e t e x t mode

; E x i t t o DOS.

mov ah.4ch
i n t 21h

S t a r t e n d p

; S u b r o u t i n e t o d r a w a t e x t c h a r a c t e r i n a l i n e a r g r a p h i c s mode
: (ODh. OEh. OFh. 0 1 0 h . 0 1 2 h) . B a c k g r o u n d a r o u n d t h e p i x e l s t h a t
; make u p t h e c h a r a c t e r i s p r e s e r v e d .
; F o n t u s e d s h o u l d b e p o i n t e d t o b y F o n t P o i n t e r .

; I n p u t :
; AL - c h a r a c t e r t o d r a w
; AH - c o l o r t o d r a w c h a r a c t e r i n (0 - 1 5)
: BX - row t o d r a w t e x t c h a r a c t e r a t
; C X - column t o d r a w t e x t c h a r a c t e r a t

; Forces ALU f u n c t i o n t o "move".
; F o r c e s w r i t e mode 3.

DrawChar proc near
push ax
push bx
push cx
push dx
push s i
push d i
push bp
push ds
p u s h a x ; p r e s e r v e c h a r a c t e r t o d r a w i n AL

486 Chapter 26

: S e t u p s e t / r e s e t t o p r o d u c e c h a r a c t e r c o l o r , u s i n g t h e r e a d a b i l i t y
: o f VGA r e g i s t e r t o p r e s e r v e t h e s e t t i n g o f r e s e r v e d b i t s 7 - 4 .

mov dx.GC-INDEX
mov a1 .GC_SETLRESET
o u t d x . a l
i n c d x
i n
and a1 .OfOh

a1 .dx

and ah.0fh
o r a1 ,ah
o u t d x . a l

: S e l e c t w r i t e mode 3 . u s i n g t h e r e a d a b i l i t y o f VGA r e g i s t e r s
: t o l e a v e b i t s o t h e r t h a n t h e w r i t e mode b i t s unchanged.

mov dx, GC-I NDEX
mov a1 .GC_MODE
o u t d x , a l
i n c d x
i n a1 .dx
o r a l . 3
o u t d x , a l

: Set DS:SI t o p o i n t t o f o n t and ES t o p o i n t t o d i s p l a y memory.

I d s s i . [F o n t P o i n t e r] : p o i n t t o f o n t
mov dx.VGA-VIDEO-SEGMENT
mov e s . d x : p o i n t t o d i s p l a y memory

: C a l c u l a t e s c r e e n a d d r e s s o f b y t e c h a r a c t e r s t a r t s i n .

POP a x : g e t b a c k c h a r a c t e r t o d r a w i n A t

p u s h d s : p o i n t t o BIOS data segment
sub dx.dx
mov ds .dx
xchg ax.bx
mov di,ds:[SCREEN-WIDTH-IN-BYTES] : r e t r i e v e BIOS

: s c r e e n w i d t h
POP ds
mu1 d i : c a l c u l a t e o f f s e t o f s t a r t o f r o w
p u s h d i : s e t a s i d e s c r e e n w i d t h
mov d i . c x : s e t a s i d e t h e c o l u m n
and c l . O l l l b ; k e e p o n l y t h e c o l u m n i n - b y t e a d d r e s s
s h r d i .1
s h r d i ,1
s h r d i . l : d i v i d e c o l u m n b y 8 t o make a b y t e a d d r e s s
add d i , a x : a n d p o i n t t o b y t e

: C a l c u l a t e f o n t a d d r e s s o f c h a r a c t e r .

sub bh.bh
s h l b x , l :assumes 8 b y t e s p e r c h a r a c t e r : u s e
s h l b x . 1 : a m u l t i p l y o t h e r w i s e
s h l b x . 1 : o f f s e t i n f o n t o f c h a r a c t e r
add s i . b x : o f f s e t i n f o n t segment o f c h a r a c t e r

: S e t u p t h e GC r o t a t i o n . I n w r i t e mode 3, t h i s i s t h e r o t a t i o n
: o f CPU d a t a b e f o r e i t i s ANDed w i t h t h e B i t Mask r e g i s t e r t o

VGA Write Mode 3 487

: f o r m t h e b i t mask. Force the ALU f u n c t i o n t o "move". Uses t h e
: r e a d a b i l i t y o f VGA r e g i s t e r s t o l e a v e r e s e r v e d b i t s u n c h a n g e d .

mov dx.GC-INDEX
mov a1 , GC-ROTATE
o u t d x . a l
i n c d x
i n a1 .dx
and a1 .OeOh
o r a1 . c l
o u t d x . a l

: Set up BH as b i t mask f o r l e f t h a l f . BL as r o t a t i o n f o r r i g h t h a l f .

mov b x . 0 f f f f h
s h r b h . c l
neg c l
add c l . 0
s h l b l . c l

: Draw t h e c h a r a c t e r , l e f t h a l f f i r s t . t h e n r i g h t h a l f i n t h e
: s u c c e e d i n g b y t e , u s i n g t h e d a t a r o t a t i o n t o p o s i t i o n t h e c h a r a c t e r
: a c r o s s t h e b y t e b o u n d a r y a n d t h e n u s i n g w r i t e mode 3 t o comb ine t he
: c h a r a c t e r d a t a w i t h t h e b i t mask t o a l l o w t h e s e t / r e s e t v a l u e (t h e
: c h a r a c t e r c o l o r) t h r o u g h o n l y f o r t h e p r o p e r p o r t i o n (w h e r e t h e
: f o n t b i t s f o r t h e c h a r a c t e r a r e 1) o f t h e c h a r a c t e r f o r e a c h b y t e .
: W h e r e v e r t h e f o n t b i t s f o r t h e c h a r a c t e r a r e 0. t h e b a c k g r o u n d
: c o l o r i s p r e s e r v e d .
: Does n o t c h e c k f o r c a s e w h e r e c h a r a c t e r i s b y t e - a l i g n e d a n d
; n o r o t a t i o n a n d o n l y o n e w r i t e i s r e q u i r e d .

mov bp.FONT-CHARACTER-SIZE
mov dx.GC-INDEX
POP c x : g e t b a c k s c r e e n w i d t h
dec cx
dec cx : - 2 b e c a u s e d o t w o b y t e s f o r e a c h c h a r

Charac terLoop:

: S e t t h e b i t mask f o r t h e l e f t h a l f o f t h e c h a r a c t e r .

mov a1 .GC-BIT-MASK
mov ah.bh
o u t d x . a x

: G e t t h e n e x t c h a r a c t e r b y t e & w r i t e i t t o d i s p l a y memory.
: (L e f t h a l f o f c h a r a c t e r .)

mov a1 , [s i] ; g e t c h a r a c t e r b y t e
mov a h . e s : [d i] :1 oad 1 a t c h e s
s t o s b : w r i t e c h a r a c t e r b y t e . .

: S e t t h e b i t mask f o r t h e r i g h t h a l f o f t h e c h a r a c t e r .

mov a1 .GC-BIT-MASK
mov ah .b l
o u t d x . a x

; G e t t h e c h a r a c t e r b y t e a g a i n & w r i t e it t o d i s p l a y memory.
: (R i g h t h a l f o f c h a r a c t e r .)

488 Chapter 26

1 odsb ; g e t c h a r a c t e r b y t e
mov a h . e s : [d i l :1 oad 1 a tches
s t o s b : w r i t e c h a r a c t e r b y t e

; P o i n t t o n e x t l i n e o f c h a r a c t e r i n d i s p l a y memory.

add d i , c x

dec bp
j n z C h a r a c t e r L o o p

POP ds
POP bP
pop d i
pop s i
POP dx
POP cx
POP bx
POP ax
r e t

DrawChar endp

: S e t t h e p o i n t e r t o t h e f o n t t o d r a w f r o m t o ES:BP.

S e l e c t F o n t p r o c n e a r
mov word p t r C F o n t P o i n t e r 1 , b p : s a v e p o i n t e r
mov word p t r [F o n t P o i n t e r + 2] . e s
r e t

Se lec tFont endp

cseg ends
end s t a r t

The key to understanding Listing 26.1 is understanding the effect of ANDing the
rotated CPU data with the contents of the Bit Mask register. The CPU data is the
pattern for the character to be drawn, with bits equal to 1 indicating where character
pixels are to appear. The Data Rotate register is set to rotate the CPU data to pixel-
align it, since without rotation characters could only be drawn on byte boundaries.

As Ipointed out in Chapter 25, the CPU is perfect& capable of rotating the data itseCf; p and it b often the case that that b more efficient. The problem with using the Data
Rotate register is that the OUT that sets that register is time-consuming, espe-
cially forproportional text, which requires a different rotation for each character.
Also, ifthe code performs full-byte accesses to display memoly-that is, ifit com-
bines pieces of two adjacent characters into one byte-whenever possible for
efficiency, the CPUgenerally has to do extra work toprepare the data so the VGA k
rotator can handle it.

At the same time that the Data Rotate register is set, the Bit Mask register is set to
allow the CPU to modify only that portion of the display memory byte accessed that
the pixel-aligned character falls in, so that other characters and/or graphics data won’t
be wiped out. The result of ANDing the rotated CPU data byte with the contents of
the Bit Mask register is a bit mask that allows only the bits equal to 1 in the original

VGA Write Mode 3 489

character pattern (rotated and masked to provide pixel alignment) to be modified
by the CPU; all other bits come straight from the latches. The latches should have
previously been loaded from the target address, so the effect of the ultimate synthe-
sized bit mask value is to allow the CPU to modi* only those pixels in display memory
that correspond to the 1 bits in that part of the pixel-aligned character that falls in
the currently addressed byte. The color of the pixels set by the CPU is determined by
the contents of the Set/Reset register.
Whew. It sounds complex, but given an understanding of what the data rotator, set/
reset, and the bit mask do, it's not that bad. One good way to make sense of it is to
refer to the original text-drawing program in Listing 25.1 back in Chapter 25, and
then see how Listing 26.1 differs from that program.
It's worth noting that the results generated by Listing 26.1 could have been accomplished
without write mode 3. Write mode 0 could have been used instead, but at a significant
performance cost. Instead of letting write mode 3 rotate the CPU data and AND it with
the contents of the Bit Mask register, the CPU could simply have rotated the CPU data
directly and ANDed it with the value destined for the Bit Mask register and then set the
Bit Mask register to the resulting value. Additionally, enable set/reset could have been
forced on for all planes, emulating what write mode 3 does to provide pixel colors.
The write mode 3 approach used in Listing 26.1 can be efficiently extended to draw-
ing large blocks of text. For example, suppose that we were to draw a line of
8-pixel-wide bit-mapped text 40 characters long. We could then set up the bit mask
and data rotation as appropriate for the left portion of each bit-aligned character
(the portion of each character to the left of the byte boundary) and then draw the
left portions only of all 40 characters in write mode 3. Then the bit mask could be set
up for the right portion of each character, and the right portions of all 40 characters
could be drawn. The VGA's fast rotator would be used to do all rotation, and the only
OUTS required would be those required to set the bit mask and data rotation. This
technique could well outperform single-character bit-mapped text drivers such as
the one in Listing 26.1 by a significant margin. Listing 26.2 illustrates one implemen-
tation of such an approach. Incidentally, note the use of the 8x14 ROM font in Listing
26.2, rather than the 8x8 ROM font used in Listing 26.1. There is also an 8x16 font
stored in ROM, along with the tables used to alter the 8x14 and 8x16 ROM fonts into
9x14 and 9x16 fonts.

LISTING 26.2 126-2.ASM
: Program t o i l l u s t r a t e h i g h - s p e e d t e x t - d r a w i n g o p e r a t i o n o f
: w r i t e mode 3 o f t h e VGA.
; Draws a s t r i n g o f 8 x 1 4 c h a r a c t e r s a t a r b i t r a r y l o c a t i o n s
: w i t h o u t d i s t u r b i n g t h e b a c k g r o u n d , u s i n g VGA's 8x14 RDM f o n t .
; D e s i g n e d f o r u s e w i t h modes ODh. OEh, OFh, 10h. and 12h.
; Runs o n l y on VGAs (i n Models 50 & up and I B M D i s p l a y A d a p t e r
; and 100% compat ib les) .
; Assemb led w i th MASM
: By Michae l Abrash

490 Chapter 26

s t a c k s e g m e n t p a r a s t a c k 'STACK'
db 512 dup(?)

s tack ends

VGA-VIDEO-SEGMENT equ
SCREEN-WIDTH-IN-BYTES equ
FONT-CHARACTER-SIZE equ

: VGA r e g i s t e r e q u a t e s .

SC-INDEX
SC-MAP-MASK
GC- INDEX
GC-SET-RESET

GC-ROTATE equ

equ
equ
equ

GC-ENABLE-SET-RESET equ
equ

OaOOOh
044ah
14

3c4h
2
3ceh
0
1
3

GC-MODE equ 5
GC-BIT-MASK equ 8

dseg segment para common 'DATA'
TEST-TEXT-ROW
TEST-TEXT-COL

equ 69
equ 17

TEST-TEXT-COLOR equ Ofh
T e s t s t r i n g l a b e l b y t e

F o n t P o i n t e r d d ?
dseg ends

c s e g s e g m e n t p a r a p u b l i c ' C O D E '

s t a r t p r o c n e a r

d b ' H e l l o , w o r l d ! ' . O

assume cs:cseg, ds:dseg

mov ax .dseg
mov ds .ax

: S e l e c t 6 4 0 x 4 8 0 g r a p h i c s mode.

;VGA d i s p l a y memory segment
: o f f s e t o f BIOS v a r i a b l e
:I b y t e s i n e a c h f o n t c h a r

:SC i n d e x r e g i s t e r
;SC map mask r e g i s t e r i n d e x
:GC i n d e x r e g i s t e r
:GC s e t / r e s e t r e g i s t e r i n d e x
:GC e n a b l e s e t / r e s e t r e g i s t e r i n d e x
;GC d a t a r o t a t e / l o g i c a l f u n c t i o n
; r e g i s t e r i n d e x
:GC Mode r e g i s t e r
:GC b i t mask r e g i s t e r i n d e x

; row t o d i s p l a y t e s t t e x t a t
:column t o d i s p l a y t e s t t e x t a t
: h i g h i n t e n s i t y w h i t e

: t e s t s t r i n g t o p r i n t .
: f o n t o f f s e t

mov ax.012h
i n t 10h

: S e t t h e s c r e e n t o a l l b l u e , u s i n g t h e r e a d a b i l i t y o f VGA r e g i s t e r s
: t o p r e s e r v e r e s e r v e d b i t s .

mov dx , GC-I NDEX
mov a1 .GC-SETLRESET
o u t d x . a l
i n c d x
i n a1 , dx
and a1 .OfOh
o r a1 .1 : b l u e p l a n e o n l y s e t . o t h e r s r e s e t
o u t d x . a l
dec dx
mov a1 .GC-ENABLE-SET-RESET
o u t d x , a l
i n c d x
i n a1 .dx
and a1 .OfOh
o r a1 . O f h : e n a b l e s e t / r e s e t f o r a l l p l a n e s
o u t d x . a l
mov dx.VGA-VIDEO-SEGMENT

VGA Write Mode 3 491

mov es,dx
mov d i ,O
mov cx, 8000h
mov a x . 0 f f f f h

r e p s t o s w

; S e t d r i v e r t o u s e t h e 8 x 1 4 f o n t .

: p o i n t t o d i s p l a y memory

;fill a l l 32k words
: b e c a u s e o f s e t / r e s e t . t h e v a l u e
: w r i t t e n a c t u a l l y d o e s n ' t m a t t e r
;fill w i t h b l u e

mov a h . l l h
mov a1 .30h

:VGA B I O S c h a r a c t e r g e n e r a t o r f u n c t i o n .
; r e t u r n i n f o s u b f u n c t i o n

mov bh.2
i n t 10h

; g e t 8 x 1 4 f o n t p o i n t e r

c a l l S e l e c t F o n t

; P r i n t t h e t e s t s t r i n g .

mov s i . o f f s e t T e s t S t r i n g
mov bx.TEST-TEXT-ROW
mov cx.TEST-TEXT-COL
mov ah.TEST-TEXT-COLOR
c a l l D r a w s t r i n g

: W a i t f o r a k e y . t h e n s e t t o t e x t mode & end.

mov ah.1
i n t 2 1 h ; w a i t f o r a key
mov ax.3
i n t 1 0 h : r e s t o r e t e x t mode

: E x i t t o DOS.

mov ah.4ch
i n t 21h

S t a r t endp

: S u b r o u t i n e t o d r a w a t e x t s t r i n g l e f t - t o - r i g h t i n a l i n e a r
: g r a p h i c s mode (ODh. OEh. OFh. 0 1 0 h . 0 1 2 h) w i t h 8 - d o t - w i d e
: c h a r a c t e r s . B a c k g r o u n d a r o u n d t h e p i x e l s t h a t make up t h e
; c h a r a c t e r s i s p r e s e r v e d .
; F o n t u s e d s h o u l d b e p o i n t e d t o b y F o n t P o i n t e r .

; I n p u t :
; AH - c o l o r t o d r a w s t r i n g i n
; EX - row t o d r a w s t r i n g on
; CX - column t o s t a r t s t r i n g a t
: DS:SI - s t r i n g t o draw

; Forces ALU f u n c t i o n t o "move".
; F o r c e s w r i t e mode 3.

D r a w s t r i n g p r o c n e a r
push ax
push bx
push cx
push dx
push s i
push d i
push bp
push ds

492 Chapter 26

: S e t u p s e t / r e s e t t o p r o d u c e c h a r a c t e r c o l o r , u s i n g t h e r e a d a b i l i t y
: o f VGA r e g i s t e r t o p r e s e r v e t h e s e t t i n g o f r e s e r v e d b i t s 7 - 4 .

mov dx.GC-INDEX
mov a1 .GC-SETLRESET
o u t d x , a l
i n c d x
i n a1 .dx
and a1 .OfOh
and ah.0fh
o r a1 ,ah
o u t d x , a l

: S e l e c t w r i t e mode 3 . u s i n g t h e r e a d a b i l i t y o f VGA r e g i s t e r s
: t o l e a v e b i t s o t h e r t h a n t h e w r i t e mode b i t s unchanged.

mov dx.GC-INDEX
mov a 1 , GC-MODE
o u t d x . a l
i n c d x
i n a1 .dx
o r a1 . 3
o u t d x . a l

mov es . d x : p o i n t t o d i s p l a y memory
mov dx.VGA-VIDEO-SEGMENT

: C a l c u l a t e s c r e e n a d d r e s s o f b y t e c h a r a c t e r s t a r t s i n .

p u s h d s ; p o i n t t o BIOS data segment
sub dx.dx
mov ds ,dx
mov di,ds:[SCREEN-WIDTH-IN-BYTES] : r e t r i e v e BIOS

: s c r e e n w i d t h
POP ds
mov ax, bx : row
mu1 d i : c a l c u l a t e o f f s e t o f s t a r t o f r o w
push d i ; s e t a s i d e s c r e e n w i d t h
mov d i . c x : s e t a s i d e t h e c o l u m n
and c l . O l l l b ; k e e p o n l y t h e c o l u m n i n - b y t e a d d r e s s
s h r d i . l
s h r d i . 1
s h r d i . l : d i v i d e c o l u m n b y 8 t o make a b y t e a d d r e s s
add d i , a x ; a n d p o i n t t o b y t e

: S e t u p t h e GC r o t a t i o n . I n w r i t e mode 3 . t h i s i s t h e r o t a t i o n
: o f CPU d a t a b e f o r e i t i s ANDed w i t h t h e B i t Mask r e g i s t e r t o
: f o r m t h e b i t mask . Force the ALU f u n c t i o n t o "move". Uses t h e
: r e a d a b i l i t y o f VGA r e g i s t e r s t o l e a v e r e s e r v e d b i t s u n c h a n g e d .

mov dx.GC_INDEX
mov a1 .GC-ROTATE
o u t d x . a l
i n c d x
i n a1 .dx
and a1 .OeOh
o r a1 . c l
o u t d x . a l

: Set up BH as b i t mask f o r l e f t h a l f , B L as r o t a t i o n f o r r i g h t h a l f .

VGA Write Mode 3 493

mov b x . 0 f f f f h
s h r b h . c l
neg c l
add c l .8
s h l b l . c l

: D r a w a l l c h a r a c t e r s , l e f t p o r t i o n f i r s t , t h e n r i g h t p o r t i o n i n t h e
: s u c c e e d i n g b y t e , u s i n g t h e d a t a r o t a t i o n t o p o s i t i o n t h e c h a r a c t e r
: a c r o s s t h e b y t e b o u n d a r y a n d t h e n u s i n g w r i t e mode 3 t o combine the
: c h a r a c t e r d a t a w i t h t h e b i t mask t o a l l o w t h e s e t / r e s e t v a l u e (t h e
: c h a r a c t e r c o l o r) t h r o u g h o n l y f o r t h e p r o p e r p o r t i o n (w h e r e t h e
: f o n t b i t s f o r t h e c h a r a c t e r a r e 1) o f t h e c h a r a c t e r f o r e a c h b y t e .
: W h e r e v e r t h e f o n t b i t s f o r t h e c h a r a c t e r a r e 0. t he backg round
: c o l o r i s p r e s e r v e d .
: Does n o t c h e c k f o r c a s e w h e r e c h a r a c t e r i s b y t e - a l i g n e d a n d
: n o r o t a t i o n and o n l y one w r i t e i s r e q u i r e d .

: Draw t h e l e f t p o r t i o n o f e a c h c h a r a c t e r i n t h e s t r i n g .

POP c x : g e t b a c k s c r e e n w i d t h
push s i
push d i
push bx

; S e t t h e b i t mask f o r t h e l e f t h a l f o f t h e c h a r a c t e r .

mov dx.GC-INDEX
mov a1 .GC-BIT-MASK
mov ah.bh
o u t d x . a x

L e f t H a l f L o o p :
l o d s b
and a1 .a1

c a l l C h a r a c t e r u p
i n c d i : p o i n t t o n e x t c h a r a c t e r l o c a t i o n
j m p L e f t H a l f L o o p

jz L e f t H a l f LoopDone

Le f tHa l fLoopDone :
POP bx
pop d i
POP s i

: D r a w t h e r i g h t p o r t i o n o f e a c h c h a r a c t e r i n t h e s t r i n g .

i n c d i ; r i g h t p o r t i o n o f e a c h c h a r a c t e r i s a c r o s s
: b y t e b o u n d a r y

: S e t t h e b i t mask f o r t h e r i g h t h a l f o f t h e c h a r a c t e r .

mov dx.GC-INDEX
mov a1 .GC-BIT-MASK
mov ah .b l
o u t d x . a x

1 odsb
and a1 .a1
jz RightHal fLoopDone
c a l l C h a r a c t e r u p
i n c d i : p o i n t t o n e x t c h a r a c t e r l o c a t i o n
j m p R i g h t H a l f L o o p

R i g h t H a l f L o o p :

494 Chapter 26

RightHa l fLoopDone:

POP ds
POP bp
pop d i
pop s i
POP dx
POP c x
POP bx
POP ax
r e t

D raws t r i ng endp

: Draw a c h a r a c t e r .

: I n p u t :
: AL - c h a r a c t e r
: C X - s c r e e n w i d t h
: E S : D I - a d d r e s s t o d r a w c h a r a c t e r a t

C h a r a c t e r u p p r o c n e a r
push cx
push s i
push d i
push ds

: S e t DS:SI t o p o i n t t o f o n t a n d ES t o p o i n t t o d i s p l a y memory.

I d s s i , [F o n t P o i n t e r] ; p o i n t t o f o n t

: C a l c u l a t e f o n t a d d r e

mov b l . 1 4
mu1 b l
add s i . a x

mov bp.FDN
dec cx

1 odsb
Charac terLoop:

s o f c h a r a c t e r .

; 1 4 b y t e s p e r c h a r a c t e r

: o f f s e t i n f o n t segment o f c h a r a c t e r

-CHARACTER-SIZE
: -1 because one by te per char

; g e t c h a r a c t e r b y t e
mov a h . e s : [d i] : 1 oad 1 a t c h e s
s t o s b : w r i t e c h a r a c t e r b y t e

: P o i n t t o n e x t l i n e o f c h a r a c t e r i n d i s p l a y memory.

add

dec
j n z

POP
POP
POP
POP
r e t

C h a r a c t e r u p

d i , c x

bP
Charac terLoop

dS
d i
s i
cx

endp

: S e t t h e p o i n t e r t o t h e f o n t t o d r a w f r o m t o E S : B P .

S e l e c t F o n t p r o c n e a r
mov word p t r [F o n t P o i n t e r] . b p : s a v e p o i n t e r

VGA Write Mode 3 495

mov word p t r [F o n t P o i n t e r + E] . e s
r e t

Se lec tFon t endp

cseg ends
end s t a r t

In this chapter, I’ve tried to give you a feel for how write mode 3 works and what it
might be used for, rather than providing polished, optimized, plug-it-in-and-go code.
Like the rest of the VGAs write path, write mode 3 is a resource that can be used in
a remarkable variety of ways, and I don’t want to lock you into thinking of it as useful
in just one context. Instead, you should take the time to thoroughly understand
what write mode 3 does, and then, when you do VGA programming, think about
how write mode 3 can best be applied to the task at hand. Because I focused on
illustrating the operation of write mode 3, neither listing in this chapter is the fastest
way to accomplish the desired result. For example, Listing 26.2 could be made nearly
twice as fast by simply having the CPU rotate, mask, and join the bytes from adjacent
characters, then draw the combined bytes to display memory in a single operation.
Similarly, Listing 26.1 is designed to illustrate write mode 3 and its interaction with
the rest of the VGA as a contrast to Listing 25.1 in Chapter 25, rather than for maxi-
mum speed, and it could be made considerably more efficient. If we were going for
performance, we’d have the CPU not only rotate the bytes into position, but also do
the masking by ANDing in software. Even more significantly, we would have the CPU
combine adjacent characters into complete, rotated bytes whenever possible, so that
only one drawing operation would be required per byte of display memory modi-
fied. By doing this, we would eliminate all per-character OUTS, and would minimize
display memory accesses, approximately doubling text-drawing speed.
As a final note, consider that non-transparent text could also be accelerated with write
mode 3. The latches could be filled with the background (text box) color, set/reset
could be set to the foreground (text) color, and write mode 3 could then be used to turn
monochrome text bytes written by the CPU into characters on the screen with just
one write per byte. There are complications, such as drawing partial bytes, and rotat-
ing the bytes to align the characters, which we’ll revisit later on in Chapter 55, while
we’re working through the details of the X-Sharp library. Nonetheless, the perfor-
mance benefit of this approach can be a speedup of as much as four times-all
thanks to the decidedly quirky but surprisingly powerful and flexible write mode 3.

A Note on Preserving Register Bits
If you take a quick look, you’ll see that the code in Listing 26.1 uses the readable
register feature of the VGA to preserve reserved bits and bits other than those being
modified. Older adapters such as the CGA and EGA had few readable registers, so it
was necessary to set all bits in a register whenever that register was modified. Happily, all

496 Chapter 26

VGA registers are readable, which makes it possible to change only those bits of
immediate interest, and, in general, I highly recommend doing exactly that, since
IBM (or clone manufacturers) may well someday use some of those reserved bits or
change the meanings of some of the bits that are currently in use.

VGA Write Mode 3 497

chapter 27

yet another vga write mode

Chunky Bitmaps,
ics Coexistence

In the last chapter, we’karned about the markedly peculiar write mode 3 of the VGA,
after having spent thre& learning the ins and outs of the VGA’s data path in
write mode 0, touching mode 1 as well in Chapter 23. In all, the VGA sup-
ports four write mod&-write modes 0, 1 ,2 , and 3-and read modes 0 and 1 as well.
Which leaves two bbning questions: What is write mode 2, and how the heck do you

bit unusual but not really hard to understand, particularly if you
followed the descri&on of set/reset in Chapter 25. Reading VGA memory, on the
other hand, can be &anger than you could ever imagine.
Let’s start with the easy stuff, write mode 2, and save the read modes for the next
chapter.

Write Mode 2 and Set/Reset
Remember how set/reset works? Good, because that’s pretty much how write mode
2 works. (You don’t remember? Well, I’ll provide a brief refresher, but I suggest that
you go back through Chapters 23 through 25 and come up to speed on the VGA.)

50 1

Recall that the set/reset circuitry for each of the four planes affects the byte written
by the CPU in one of three ways: By replacing the CPU byte with 0, by replacing it
with OFFH, or by leaving it unchanged. The nature of the transformation for each
plane is controlled by two bits. The enable set/reset bit for a given plane selects
whether the CPU byte is replaced or not, and the set/reset bit for that plane selects
the value with which the CPU byte is replaced if the enable set/reset bit is 1. The net
effect of set/reset is to independently force any, none, or all planes to either of all
ones or all zeros on CPU writes. As we discussed in Chapter 25, this is a convenient
way to force a specific color to appear no matter what color the pixels being overwrit-
ten are. Set/reset also allows the CPU to control the contents of some planes while
the set/reset circuitry controls the contents of other planes.
Write mode 2 is basically a set/reset-type mode with enable set/reset always on for all
planes and the set/reset data coming directly from the byte written by the CPU. Put
another way, the lower four bits written by the CPU are written across the four planes,
thereby becoming a color value. Put yet another way, bit 0 of the CPU byte is ex-
panded to a byte and sent to the plane 0 ALU (if bit 0 is 0, a 0 byte is the CPU-side
input to the plane 0 ALU, while if bit 0 is 1, a OFFH byte is the CPU-side input);
likewise, bit I of the CPU byte is expanded to a byte for plane 1, bit 2 is expanded for
plane 2, and bit 3 is expanded for plane 3.
It’s possible that you understand write mode 2 thoroughly at this point; nonetheless, I
suspect that some additional explanation of an admittedly non-obvious mode wouldn’t
hurt. Let’s follow the CPU byte through the VGA in write mode 2, step by step.

A Byte’s Progress in Write Mode 2
Figure 27.1 shows the write mode 2 data path. The CPU byte comes into the VGA
and is split into four separate bits, one for each plane. Bits 7-4 of the CPU byte vanish
into the bit bucket, never to be heard from again. Speculation long held that those 4
unused bits indicated that IBM would someday come out with an 8-plane adapter
that supported 256 colors. When IBM did finally come out with a 256-color mode
(mode 13H of the VGA), it turned out not to be planar at all, and the upper nibble
of the CPU byte remains unused in write mode 2 to this day.
The bit of the CPU byte sent to each plane is expanded to a 0 or OFFH byte, depend-
ing on whether the bit is 0 or 1 , respectively. The byte for each plane then becomes
the CPU-side input to the respective plane’s ALU. From this point on, the write
mode 2 data path is identical to the write mode 0 data path. As discussed in earlier
articles, the latch byte for each plane is the other ALU input, and the ALU either
ANDs, ORs, or XORs the two bytes together or simply passes the CPU-side byte
through. The byte generated by each plane’s ALU then goes through the bit mask
circuitry, which selects on a bit-by-bit basis between the ALU byte and the latch byte.
Finally, the byte from the bit mask circuitry for each plane is written to that plane if
the corresponding bit in the Map Mask register is set to 1.

502 Chapter 27

It k worth noting two differences between write mode 2 and write mode 0, the p standard write mode of the VGA. First, rotation of the CPUdata byte does not take
place in write mode 2. Second, the Set/Reset and Enable Set/Reset registers have
no effect in write mode 2.

Now that we understand the mechanics of write mode 2, we can step back and get a
feel for what it might be useful for. View bits 3-0 of the CPU byte as a single pixel in

Yet Another VGA Write Mode 503

VGA data flow in write mode 2.
Figure 27.1

one of 16 colors. Next imagine that nibble turned sideways and written across the
four planes, one bit to a plane. Finally, expand each of the’bits to a byte, as shown in
Figure 27.2, so that 8 pixels are drawn in the color selected by bits 30 of the CPU byte.
Within the constraints of the VGA’s data paths, that’s exactly what write mode 2 does.
By “the constraints of the VGA’s data paths,’’ I mean the ALUs, the bit mask, and the
map mask. As Figure 2’1.1 indicates, the ALUs can modify the color written by the
CPU, the map mask can prevent the CPU from altering selected planes, and the bit
mask can prevent the CPU from altering selected bits of the byte written to. (Actu-
ally, the bit mask simply substitutes latch bits for ALU bits, but since the latches are
normally loaded from the destination display memory byte, the net effect of the bit mask
is usually to preserve bits of the destination byte.) These are not really constraints at
all, of course, but rather features of the VGA; I simply want to make it clear that the
use of write mode 2 to set 8 pixels to a given color is a rather simple special case
among the many possible ways in which write mode 2 can be used to feed data into
the VGA’s data path.
Write mode 2 is selected by setting bits 1 and 0 of the Graphics Mode register (Graphics
Controller register 5) to 1 and 0, respectively. Since VGA registers are readable, the
correct way to select write mode 2 on the VGA is to read the Graphics Mode register,
mask off bits 1 and 0, OR in OOOOOOlOb (OZH), and write the result back to the
Graphics Mode register, thereby leaving the other bits in the register undisturbed.

Copying Chunky Bitmaps to VGA Memory Using Write Mode 2
Let’s take a look at two examples of write mode 2 in action. Listing 27.1 presents a
program that uses write mode 2 to copy a graphics image in chunky format to the
VGA. In chunky format adjacent bits in a single byte make up each pixel: mode 4 of the
CGA, EGA, and VGA is a 2-bit-per-pixel chunky mode, and mode 13H of the VGA is
an 8-bit-per-pixel chunky mode. Chunky format is convenient, since all the information
about each pixel is contained in a single byte; consequently chunky format is often
used to store bitmaps in system memory.
Unfortunately, VGA memory is organized as a planar rather than chunky bitmap in
modes ODH through 12H, with the bits that make up each pixel spread across four
planes. The conversion from chunky to planar format in write mode 0 is quite a
nuisance, requiring a good deal of bit manipulation. In write mode 2, however, the
conversion becomes a snap, as shown in Listing 27.1. Once the VGA is placed in
write mode 2, the lower four bits (the lower nibble) of the CPU byte (a single 4bit
chunky pixel) become eight planar pixels, all the same color. As discussed in Chap-
ter 25, the bit mask makes it possible to narrow the effect of the CPU write down to
a single pixel.
Given the above, conversion of a chunky 4bit-per-pixel bitmap to the VGA’s planar
format in write mode 2 is trivial. First, the Bit Mask register is set to allow only the
VGA display memory bits corresponding to the leftmost chunky pixel of the two

504 Chapter 27

stored in the first chunky bitmap byte to be modified. Next, the destination byte in
display memory is read in order to load the latches. Then a byte containing two
chunky pixels is read from the chunky bitmap in system memory, and the byte is
rotated four bits to the right to get the leftmost chunky pixel in position. This ro-
tated byte is written to the destination byte; since write mode 2 is active, each bit of
the chunky pixel goes to its respective plane, and since the Bit Mask register is set up
to allow only one bit in each plane to be modified, a single pixel in the color of the
chunky pixel is written to VGA memory.
This process is then repeated for the rightmost chunky pixel, if necessary, and re-
peated again for as many pixels as there are in the image.

LISTING 27.1 127- 1 .ASM
: Program t o i l l u s t r a t e one use o f w r i t e mode 2 o f t h e VGA and EGA by
: an ima t ing t he image o f an "A" drawn by copying it from a chunky
: b i t - m a p i n s y s t e m memory t o a p l a n a r b i t - m a p i n VGA o r EGA memory.

: Assemble w i t h MASM o r TASM

: By Michael Abrash

Stack segment para s tack 'STACK'
db 512 dup(0)

Stack ends

SCREEN-WIDTH-IN-BYTES equ 80
DISPLAY-MEMORY-SEGMENT equ OaOOOh
SC- INDEX equ 3c4h Sequence Con t ro l l e r I ndex

MAP-MASK
r e g i s t e r

GC-INDEX equ 03ceh :Graph ics Cont ro l le r Index reg
GRAPHICS-MODE
BIT-MASK

Data segment para common 'DATA'

: C u r r e n t l o c a t i o n o f "A" as i t i s an imated across the sc reen.

Cur ren tX dw ?
Cur ren tY dw ?
RemainingLength dw ?

: Chunky b i t -map image of a y e l l o w "A" on a b r i g h t b l u e b a c k g r o u n d

equ 2 : i n d e x o f Map Mask r e g i s t e r

equ 5 : i n d e x o f Graph ics Mode r e g
equ 8 : i n d e x o f B i t Mask r e g

AImage l a b e l b y t e
dw 13. 13 ; w i d t h . h e i g h t i n p i x e l s
db 000h. OOOh, 000h. 000h. 000h. 000h. OOOh
db 009h. 099h, 099h. 099h. 099h. 099h. OOOh
db 009h. 099h, 099h. 099h. 099h. 099h. OOOh
db O09h. 099h, 099h. Oe9h. 099h. 099h. OOOh
db 009h. 099h, 09eh. Oeeh. 099h. 099h. OOOh
db 009h. 099h. Oeeh, 09eh. Oe9h. 099h. OOOh
db 009h. 09eh. Oe9h. 099h. Oeeh. 099h. OOOh
db 009h. 09eh. Oeeh. Oeeh. Oeeh. 099h. OOOh
db 009h. 09eh. Oe9h. 099h. Oeeh. 099h. OOOh
db 009h. 09eh. Oe9h. 099h. Oeeh, 099h. OOOh

Yet Another VGA Write Mode 505

db 009h. 099h. 099h. 099h. 099h. 099h. OOOh
db 009h. 099h. 099h. 099h. 099h. 099h. OOOh
db 000h. 000h. 000h. 000h. 000h. 000h. OOOh

Data ends

Code segmen t pa ra pub l i c 'CODE'

S t a r t p r o c n e a r
assume cs:Code, ds:Data

mov ax, Data
mov ds ,ax
mov ax.10h
i n t 1 0 h : s e l e c t v i d e o mode 10h (640x350)

: P r e p a r e f o r a n i m a t i o n .

mov CCurrentX1.0
mov CCurrentYl .200
mov CRemainingLength1.600 :move 600 t i m e s

: A n i m a t e , r e p e a t i n g R e m a i n i n g L e n g t h t i m e s . I t ' s u n n e c e s s a r y t o e r a s e
: t h e o l d i m a g e , s i n c e t h e o n e p i x e l o f b l a n k f r i n g e a r o u n d t h e i m a g e
: e r a s e s t h e p a r t o f t h e o l d i m a g e n o t o v e r l a p p e d b y t h e new image.

Animat ionLoop:
mov bx.CCurrentX1
mov cx.CCurrentY1
mov s i . o f f s e t AImage
c a l l DrawFromChunkyBitmap :draw t h e "A" image
i n c [C u r r e n t X l ;move one p i x e l t o t h e r i g h t

mov cx.0
DelayLoop:

;de lay s o we d o n ' t move t h e
: i m a g e t o o f a s t : a d j u s t as
: needed

1 oop Del ayLoop

dec
j n z

: W a i t f o r a

mov
i n t
mov
i n t
mov
i n t

S t a r t endp

[Remain ingLength l
Animat ionLoop

k e y b e f o r e r e t u r n i n g t o t e x t mode and end ing .

a h . 0 l h
21h
ax.03h
10h
ah.4ch
21h

: Draw an image s t o r e d i n a c h u n k y - b i t map i n t o p l a n a r V G A I E G A memory
: a t t h e s p e c i f i e d l o c a t i o n .

: I n p u t :
BX - X s c r e e n l o c a t i o n a t w h i c h t o d r a w t h e u p p e r - l e f t c o r n e r

o f t h e image
C X - Y s c r e e n l o c a t i o n a t w h i c h t o d r a w t h e u p p e r - l e f t c o r n e r

o f t h e image
DS:SI - p o i n t e r t o c h u n k y i m a g e t o d r a w , as f o l l o w s :

word a t 0: w i d t h o f i m a g e , i n p i x e l s
w o r d a t 2: h e i g h t o f i m a g e , i n p i x e l s

506 Chapter 27

b y t e a t 4: msb/ lsb - f i r s t & second chunky p ixe ls ,
r e p e a t i n g f o r t h e r e m a i n d e r o f t h e s c a n l i n e
o f t h e image , t hen f o r all s c a n l i n e s . Images
w i t h odd widths have an unused n u l l n i b b l e
p a d d i n g e a c h s c a n l i n e o u t t o a b y t e w i d t h

; A X , BX, C X . DX, SI. D I , ES d e s t r o y e d .

DrawFromChunkyBitmap proc near
c l d

; S e l e c t w r i t e mode 2 .

mov dx.GC-INDEX
mov a1 .GRAPHICS-MODE
o u t d x , a l
i n c d x
mov a1 .02h
o u t d x . a l

; E n a b l e w r i t e s t o all 4 p l a n e s .

mov dx , SC-I NDEX
mov a1 .MAP-MASK
o u t d x . a l
i n c d x
mov a l . O f h
o u t d x , a l

: P o i n t E S : D I t o t h e d i s p l a y memory b y t e i n w h i c h t h e f i r s t p i x e l
; o f the image goes , w i th AH s e t u p a s t h e b i t mask t o access t ha t
; p i x e l w i t h i n t h e a d d r e s s e d b y t e .

mov ax.SCREEN-WIDTH-IN-BYTES
mu1 c x : o f f s e t o f s t a r t o f t o p s c a n l i n e
mov d i ,ax
mov c l . b l
and c l . l l l b
mov ah.80h ;set AH t o t h e b i t mask f o r t h e
s h r a h . c l ; i n i t i a l p i x e l
s h r b x . 1
sh r bx .1
s h r b x . 1 ;X i n b y t e s
add d i . b x ; o f f s e t o f u p p e r - l e f t b y t e o f i m a g e
mov bx.DISPLAY-MEMORY-SEGMENT
mov es.bx ; E S : D I p o i n t s t o t h e b y t e a t w h i c h t h e

; upper l e f t o f t h e image goes

; Get t h e w i d t h and h e i g h t o f t h e image.

mov c x . [s i l ; g e t t h e w i d t h
i n c s i
i n c s i
mov b x . [s i 1 ; g e t t h e h e i g h t
i n c s i
i n c s i
mov dx.GC-INDEX
mov a1 ,BIT-MASK
o u t d x . a l ; l e a v e t h e GC I n d e x r e g i s t e r p o i n t i n g
i n c d x ; t o t h e B i t Mask r e g i s t e r

Yet Another VGA Write Mode 507

RowLoop:

push
push
push

ColumnLoop:
mov
o u t
mov
mov
s h r
s h r
s h r
s h r
s t o s b
r o r
j c
dec

CheckMorePixels:
dec
j z
mov
o u t
mov
l o d s b

s t o s b
r o r
j c
dec

a x : p r e s e r v e t h e l e f t c o l u m n ’ s b i t mask
c x ; p r e s e r v e t h e w i d t h
d i : p r e s e r v e t h e d e s t i n a t i o n o f f s e t

a1 ,ah
d x . a l
a1 ,es :Cd i l
a1 , [s i 1
a l . 1
a1 .1
a1 .1
a1 ,1

ah.1
CheckMorePixels
d i

: s e t t h e b i t mask t o draw t h i s p i x e l
: l o a d t h e l a t c h e s
; g e t t h e n e x t t w o c h u n k y p i x e l s

;move t h e f i r s t p i x e l i n t o t h e l s b
:draw the f i r s t p i x e l
;move mask t o n e x t p i x e l p o s i t i o n
: i s n e x t p i x e l i n t h e a d j a c e n t b y t e ?
:no

cx ;see i f t h e r e a r e any more p i x e l s
AdvanceToNextScanLine : across i n image
a1 ,ah
d x . a l ; s e t t h e b i t mask t o draw t h i s p i x e l
a1 . e s : [d i l ; l o a d t h e l a t c h e s

: g e t t h e same two chunky p i xe l s aga in
: a n d a d v a n c e p o i n t e r t o t h e n e x t
; t w o p i x e l s
; d r a w t h e s e c o n d o f t h e t w o p i x e l s

ah.1 :move mask t o n e x t p i x e l p o s i t i o n
CheckMorePixels2 ; i s n e x t p i x e l i n t h e a d j a c e n t b y t e ?
d i :no

CheckMorePixels2:
1 oop Col umnLoop :see i f t h e r e a r e any more p i x e l s

jmp short CheckMoreScanLines
; across i n t h e image

AdvanceToNextScanLine:
i n c s i :advance t o t h e s t a r t o f t h e n e x t

; scan 1 i n e i n t h e image

CheckMoreScanLines:
pop d i : g e t b a c k t h e d e s t i n a t i o n o f f s e t
POP c x : g e t b a c k t h e w i d t h
POP ax ; g e t b a c k t h e l e f t c o l u m n ’ s b i t mask
add di.SCREEN-WIDTH-IN-BYTES

; p o i n t t o t h e s t a r t o f t h e n e x t s c a n
: 1 i n e o f t h e image

dec bx ;see i f t h e r e a r e any more scan l i n e s
j n z RowLoop : i n t h e image
r e t

DrawFromChunkyBitmap endp
Code ends

end S t a r t

“That’s an interesting application of write mode 2,” you may well say, “but is it really
useful?” While the ability to convert chunky bitmaps into VGA bitmaps does have its
uses, Listing 27.1 is primarily intended to illustrate the mechanics of write mode 2.

508 Chapter 27

Forper$ormance, it’s best to store 16-color bitmaps in pre-separated four-plane for-
mat in system memory, and copy one plane at a time to the screen. Ideally, such
bitmaps should be copied one scan line at a time, with all four planes completed for
one scan line before moving on to the next. I say this because when entire images
are copied one plane at a time, nasty transient color effects can occur as one plane
becomes visibly changed before other planes have been modified.

Drawing Color-Patterned Lines Using Write Mode 2
A more serviceable use of write mode 2 is shown in the program presented in Listing
27.2. The program draws multicolored horizontal, vertical, and diagonal lines, bas-
ing the color patterns on passed color tables. Write mode 2 is ideal because in this
application color can vary from one pixel to the next, and in write mode 2 all that’s
required to set pixel color is a change of the lower nibble of the byte written by the
CPU. Set/reset could be used to achieve the same result, but an index/data pair of
OUTS would be required to set the Set/Reset register to each new color. Similarly,
the Map Mask register could be used in write mode 0 to set pixel color, but in this
case not only would an index/data pair of OUTS be required but there would also be
no guarantee that data already in display memory wouldn’t interfere with the color
of the pixel being drawn, since the Map Mask register allows only selected planes to
be drawn to.
Listing 27.2 is hardly a comprehensive line drawing program. It draws only a few
special line cases, and although it is reasonably fast, it is far from the fastest possible
code to handle those cases, because it goes through a dot-plot routine and because it
draws horizontal lines a pixel rather than a byte at a time. Write mode 2 would,
however, serve just as well in a full-blown line drawing routine. For any type of pat-
terned line drawing on the VGA, the basic approach remains the same: Use the bit
mask to select the pixel (or pixels) to be altered and use the CPU byte in write mode
2 to select the color in which to draw.

LISTING 27.2 127-2.ASM
: Program t o i l l u s t r a t e one use o f w r i t e mode 2 o f t h e VGA and EGA by
: d r a w i n g l i n e s i n c o l o r p a t t e r n s .

: Assemble w i t h MASM o r TASM

: By Michael Abrash

Stack segment para stack ‘STACK’
db 512 dup(0)

Stack ends

SCREEN-WIDTH-IN-BYTES
GRAPHICSLSEGMENT
SC-INDEX
MAP-MASK
GC- INDEX
GRAPHICS-MODE
BIT-MASK

equ 80
equ OaOOOh :mode 10 b i t - m a p segment
equ 3c4h :Sequence C o n t r o l l e r I n d e x r e g i s t e r
equ 2 ; i ndex o f Map Mask r e g i s t e r
equ 03ceh :Graph ics Cont ro l le r Index reg
equ 5 : i ndex o f Graphics Mode r e g
equ 0 : i ndex o f B i t Mask r e g

Yet Another VGA Write Mode 509

D a t a segment
P a t t e r n 0

P a t t e r n l

P a t t e r n 2

P a t t e r n 3

Data ends

Code segment

S t a r t p r o c
assume

mov
mov
mo v
i n t

: Draw 8 r a d i a l

mov
mov
mov
c a l l

: Draw 8 r a d i a l

mov
mov
mov
c a l l

: Draw 8 r a d i a l

mov
mov
mov
c a l l

: Draw 8 r a d i a l

mov
mov
mov
c a l l

para common 'DATA'
db 16
db 0, 1, 2, 3. 4. 5. 6. 7. 8
db 9. 10, 11. 12. 13. 14. 15
db 6
db
db 8

2. 2 . 2. 10, 10. 10

db 15, 15. 15. 0 . 0 . 15. 0 . 0
db 9
db 1. 1, 1, 2. 2. 2. 4. 4. 4

p a r a p u b l i c 'CODE'
cs:Code. ds:Data
near
ax.0ata
ds.ax
ax, 10h
1 0 h : s e l e c t v i d e o mode 10h (640x350)

l i n e s i n u p p e r - l e f t q u a d r a n t i n p a t t e r n 0.

bx.0
CX.0
s i . o f f s e t P a t t e r n 0
RuadrantUp

l i n e s i n u p p e r - r i g h t q u a d r a n t i n p a t t e r n 1.

bx , 320
cx.0
s i . o f f s e t P a t t e r n l
RuadrantUp

l i n e s i n l o w e r - l e f t q u a d r a n t i n p a t t e r n 2.

bx.0
cx.175
s i . o f f s e t P a t t e r n 2
Quadrantup

l i n e s i n l o w e r - r i g h t q u a d r a n t i n p a t t e r n 3 .

bx.320
cx.175
s i . o f f s e t P a t t e r n 3
Quadrantup

: W a i t f o r a k e y b e f o r e r e t u r n i n g t o t e x t mode and ending.

mov a h . 0 l h
i n t Z l h
mov ax.03h
i n t 10h
mov ah.4ch
i n t 21h

: Draws 8 r a d i a l l i n e s w i t h s p e c i f i e d p a t t e r n i n s p e c i f i e d mode 10h
: quadrant .

51 0 Chapter 27

; I n p u t :
BX - X c o o r d i n a t e o f u p p e r l e f t c o r n e r o f q u a d r a n t
C X - Y c o o r d i n a t e o f u p p e r l e f t c o r n e r o f q u a d r a n t
SI - p o i n t e r t o p a t t e r n , i n f o l l o w i n g f o r m :

By te 0: L e n g t h o f p a t t e r n
By te 1: Start o f p a t t e r n , one c o l o r p e r b y t e

: A X , BX. C X , DX des t royed

Quadrantup
add
add
mov
mov
c a l l
mov
mov
c a l l
mov
mov
c a l l
mov
mov
c a l l
mov
mov
c a l l
mov
mov
c a l l
rnov
mov
c a l l
mov
mov
c a l l
r e t

Quadrantup

proc near
bx. 160
cx.87
ax.0
dx.160
L i neUp
ax, 1
dx, 88
L i neUp
ax.2
dx, 88
L i neUp
ax.3
dx, 88
L i neUp
ax.4
dx.161
L i neUp
ax.5
dx, 88
L i neUp
ax.6
dx, 88
L i neUp
ax.7
dx, 88
L i neUp

endp

; p o i n t t o t h e c e n t e r o f t h e q u a d r a n t

; d r a w h o r i z o n t a l l i n e t o r i g h t edge

: d r a w d i a g o n a l l i n e t o u p p e r r i g h t

: d r a w v e r t i c a l l i n e t o t o p edge

: d r a w d i a g o n a l l i n e t o u p p e r l e f t

:draw h o r i z o n t a l l i n e t o l e f t edge

: d r a w d i a g o n a l l i n e t o l o w e r l e f t

: d r a w v e r t i c a l l i n e t o b o t t o m edge

; d r a w d i a g o n a l l i n e t o b o t t o m r i g h t

; Draws a h o r i z o n t a l , v e r t i c a l , o r d i a g o n a l l i n e (o n e o f t h e e i g h t
: p o s s i b l e r a d i a l l i n e s) o f t h e s p e c i f i e d l e n g t h f r o m t h e s p e c i f i e d
: s t a r t i n g p o i n t .

; I n p u t :
A X - l i n e d i r e c t i o n , as f o l l o w s :

3 2 1
4 * 0
5 6 7

BX - X c o o r d i n a t e o f s t a r t i n g p o i n t
C X - Y c o o r d i n a t e o f s t a r t i n g p o i n t
DX = l e n g t h o f l i n e (number o f p i x e l s d r a w n)

; All r e g i s t e r s p r e s e r v e d .

: T a b l e o f v e c t o r s t o r o u t i n e s f o r e a c h o f t h e 8 p o s s i b l e l i n e s .

L ineUpVectors label word
dw LineUpO. L ineUp l . LineUpZ. Lineup3
dw LineUp4. LineUp5. LineUp6. Lineup7

Yet Another VGA Write Mode 5 1 1

; Macro t o d r a w h o r i z o n t a l , v e r t i c a l , o r d i a g o n a l l i n e .

; I n p u t :

MLi neUp

X P a r m - 1 t o draw r i g h t , -1 t o draw l e f t , 0 t o n o t move h o r z .
YParm - 1 t o draw up, -1 t o draw down, 0 t o n o t move v e r t .
BX - X s t a r t l o c a t i o n
C X - Y s t a r t l o c a t i o n
DX - number o f p i x e l s t o draw
D S : S I - l i n e p a t t e r n

macro XParm. Y P a r m
local L ineUpLoop. CheckMoreLine
mov d i , s i : s e t a s i d e s t a r t o f f s e t o f p a t t e r n
l o d s b ; g e t l e n g t h o f p a t t e r n
mov a h . a l

LineUpLoop:
1 odsb
c a l l

i f XParm EP 1
i nc

e n d i f
i f XParm EQ -1

end i f
i f YParm ER 1

end i f
i f YParm EO -1

end i f

dec

i nc

dec

dec

mov
1 odsb
mov

j n z

CheckMoreLine:
dec
j nz
jmp
endm

L i n e u p p r o c
push
push
push
push
push
push
push

mov

mov
mov

push

; g e t c o l o r o f t h i s p i x e l
DotUpInColor ; . . .and draw i t

bx

bx

c x

c x

ah ;at end o f p a t t e r n ?
CheckMoreLine
s i . d i ; g e t b a c k s t a r t o f p a t t e r n

a h . a l ; r e s e t p a t t e r n c o u n t

dx
L i neUpLoop
L i neUpEnd

near

bx
ax

dx
s i
d i
es

c x

d i , a x

ax.GRAPHICSLSEGMENT
es ,ax

dx ;save l i n e l e n g t h

51 2 Chapter 27

: E n a b l e w r i t e s t o a l l p l a n e s .

mov dx.SC-INDEX
mov a1 .MAP-MASK
o u t d x . a l
i n c d x
mov a1 .Ofh
o u t d x . a l

: S e l e c t w r i t e mode 2.

mov dx.GC-INDEX
mov a1 .GRAPHICS-MODE
o u t d x . a l
i n c d x
mov a l . 0 2 h
o u t d x . a l

: V e c t o r t o p r o p e r r o u t i n e .

POP d x : g e t b a c k l i n e l e n g t h

s h l d i . l
jmp cs:CLineUpVectors+di]

: H o r i z o n t a l l i n e t o r i g h t .

L i neUpO:
MLineUp 1, 0

: D i a g o n a l l i n e t o u p p e r r i g h t .

L ineup1 :
MLineUp 1. -1

: V e r t i c a l l i n e t o t o p .

L i neUp2:
MLineUp 0. -1

: D i a g o n a l l i n e t o u p p e r l e f t .

L i neUp3:
MLineUp -1. -1

: H o r i z o n t a l l i n e t o l e f t .

L i neUp4:
MLineUp -1. 0

: D i a g o n a l l i n e t o b o t t o m l e f t .

L i neUp5:
MLineUp -1. 1

: V e r t i c a l l i n e t o bot tom.

LineUpC:
MLineUp 0. 1

Yet Another VGA Write Mode 5 1 3

: D i a g o n a l l i n e t o b o t t o m r i g h t .

L i neUp7 :
MLineUp 1. 1

L i neUpEnd:
POP es
POP d i
pop s i
POP dx
POP cx
POP bx
POP ax
r e t

L i neUp endp

: Draws a d o t i n t h e s p e c i f i e d c o l o r a t t h e s p e c i f i e d
: Assumes t h a t t h e VGA i s i n w r i t e mode 2 w i t h w r i t e s
: enab led and t ha t ES p o i n t s t o d i s p l a y memory.

: I n p u t :
AL - d o t c o l o r
BX - X c o o r d i n a t e o f d o t
C X - Y c o o r d i n a t e o f d o t
ES - d i s p l a y memory segment

: All r e g i s t e r s p r e s e r v e d .

DotUpInCol or proc nea r
push bx
push cx
push dx
push d i

1 oca
t o a

ti on.
11 p lanes

: P o i n t E S : D I t o t h e d i s p l a y memory b y t e i n w h i c h t h e p i x e l g o e s , w i t h
: t h e b i t mask s e t up t o a c c e s s t h a t p i x e l w i t h i n t h e a d d r e s s e d b y t e .

push
mov
mu1
mov
mov
and
mov
mov
o u t
i nc
mov
s h r
o u t
s h r
shr
s h r
add
mov
POP
s t o s b

POP
POP

51 4 Chapter 27

ax : p rese rve do t co lo r
ax.SCREEN-WIDTH-IN-BYTES
cx
d i .ax
c l , b l
c l . l l l b
dx.GC-INDEX
a1 .BIT-MASK
dx ,a l
dx
a l . 80h
a1 . c l
dx.al
bx .1
bx .1
bx .1
d i , bx
a1 . e s : [d i l
ax

d i
dx

: o f f s e t o f s t a r t o f t o p s c a n l i n e

: s e t t h e b i t mask f o r t h e p i x e l

: X i n b y t e s
: o f f s e t o f b y t e p i x e l i s i n
: 1 oad 1 atches
:ge t back do t color
: w r i t e d o t i n d e s i r e d c o l o r

POP cx

ret
DotUpInColor endp
S t a r t endp
Code ends

POP bx

end Start

When to Use Write Mode 2 and When
to Use Set/Reset
As indicated earlier, write mode 2 and set/reset are functionally interchangeable.
Write mode 2 lends itself to more efficient implementations when the drawing color
changes frequently, as in Listing 27.2.
Set/reset tends to be superior when many pixels in succession are drawn in the same
color, since with set/reset enabled for all planes the Set/Reset register provides the
color data and as a result the CPU is free to draw whatever byte value it wishes. For
example, the CPU can execute an OR instruction to display memory when set/reset
is enabled for all planes, thus both loading the latches and writing the color value
with a single instruction, secure in the knowledge that the value it writes is ignored
in favor of the set/reset color.
Set/reset is also the mode of choice whenever it is necessary to force the value written to
some planes to a fixed value while allowing the CPU byte to modify other planes.
This is the mode of operation when set/reset is enabled for some but not all planes.

Mode 13H-320x200 with 256 Colors
I’m going to take a minute-and I do mean a minute-to discuss the programming
model for mode 13H, the VGA’s 320x200 256-color mode. Frankly, there’s just not
much to it, especially compared to the convoluted 16-color model that we’ve ex-
plored over the last five chapters. Mode 13H offers the simplest programming model
in the history of PC graphics: A linear bitmap starting at A000:0000, consisting of
64,000 bytes, each controlling one pixel. The byte at offset 0 controls the upper left
pixel on the screen, the byte at offset 319 controls the upper right pixel on the
screen, the byte at offset 320 controls the second pixel down at the left of the screen,
and the byte at offset 63,999 controls the lower right pixel on the screen. That’s all
there is to it; it’s so simple that I’m not going to spend any time on a demo program,
especially given that some of the listings later in this book, such as the antialiasing
code in Chapter F on the companion CD-ROM, use mode 13H.

Flipping Pages from Text to Graphics and Back
A while back, I got an interesting letter from Phil Coleman, of La Jolla, who wrote:
“Suppose I have the EGA in mode 10H (640x350 16-color graphics). I would like to

Yet Another VGA Write Mode 5 1 5

preserve some or all of the image while I temporarily switch to text mode 3 to give
my user a ‘Help’ screen. Naturally memory is scarce so I’d rather not make a copy of
the video buffer at AOOOH to ‘remember’ the image while I digress to the Help text.
The EGA BIOS says that the screen memory will not be cleared on a mode set if bit 7
of AL is set. Yet if I try that, it is clear that writing text into the B800H buffer trashes
much more than the 4K bytes of a text page; when I switch back to mode 10H, “ghosts”
appear in the form of bands of colored dots. (When in text mode, I do make a copy
of the 4K buffer at B800H before showing the help; and I restore the 4K before
switching back to mode 10H.) Is there a way to preserve the graphics image while I
switch to text mode?”
“A corollary to this question is: Where does the 64/128/256Kof EGA memory ‘hide’
when the EGA is in text mode? Some I guess is used to store character sets, but what
happens to the rest? Or rather, how can I protect it?”
Those are good questions. Alas, answering them in full would require extensive ex-
planation that would have little general application, so I’m not going to do that.
However, the issue of how to go to text mode and back without losing the graphics
image certainly rates a short discussion, complete with some working code. That’s
especially true given that both the discussion and the code apply just as well to the
VGA as to the EGA (with a few differences in mode 12H, the VGA’s high-resolution
mode, as noted below).
Phil is indeed correct in his observation that setting bit 7 of AL instructs the BIOS
not to clear display memory on mode sets, and he is also correct in surmising that a
font is loaded when going to text mode. The normal mode 10H bitmap occupies the
first 28,000 bytes of each of the VGA’s four planes. (The mode 12H bitmap takes up
the first 38,400 bytes of each plane.) The normal mode 3 character/attribute memory
map resides in the first 4000 bytes of planes 0 and 1 (the blue and green planes in
mode 10H). The standard font in mode 3 is stored in the first 8K of plane 2 (the red
plane in mode 10H). Neither mode 3 nor any other text mode makes use of plane 3
(the intensity plane in mode IOH) ; if necessary, plane 3 could be used as scratch
memory in text mode.
Consequently, you can get away with saving a total of just under 16K bytes-the first
4000 bytes of planes 0 and 1 and the first 8K bytes of plane 2-when going from
mode 10H or mode 12H to mode 3, to be restored on returning to graphics mode.
That’s hardly all there is to the matter of going from text to graphics and back with-
out bitmap corruption, though. One interesting point is that the mode 10H bitmap
can be relocated to A000:8000 simply by doing a mode set to mode 10H and setting
the start address (programmed at CRT Controller registers OCH and ODH) to 8000H.
You can then access display memory starting at A800:8000 instead of the normal
AOOO:OOOO, with the resultant display exactly like that of normal mode 10H. There
are BIOS issues, since the BIOS doesn’t automatically access display memory at the

51 6 Chapter 27

new start address, but if your program does all its drawing directly without the help
of the BIOS, that’s no problem.
The mode 12H bitmap can’t start at A000:8000, because it’s so long that it would run
off the end of display memory. However, the mode 12H bitmap can be relocated to,
say, A000:6000, where it would fit without conflicting with the default font or the
normal text mode memory map, although it would overlap two of the upper pages
available for use (but rarely used) by text-mode programs.
At any rate, once the graphics mode bitmap is relocated, flipping to text mode and
back becomes painless. The memory used by mode 3 doesn’t overlap the relocated
mode 10H bitmap at all (unless additional portions of font memory are loaded), so
all you need do is set bit 7 of AL on mode sets in order to flip back and forth between
the two modes.
Another interesting point about flipping from graphics to text and back is that the
standard mode 3 character/attribute map doesn’t actually take up every byte of the
first 4000 bytes of planes 0 and 1. The standard mode 3 character/attribute map
actually only takes up every even byte of the first 4000 in each plane; the odd bytes
are left untouched. This means that only about 12K bytes actually have to be saved
when going to text mode. The code in Listing 27.3 flips from graphics mode to text
mode and back, saving only those 12K bytes that actually have to be saved. This code
saves and restores the first 8K of plane 2 (the font area) while in graphics mode, but
performs the save and restore of the 4000 bytes used for the character/attribute
map while in text mode, because the characters and attributes, which are actually
stored in the even bytes of planes 0 and 1, respectively, appear to be contiguous bytes
in memory in text mode and so are easily saved as a single block.
Explaining why only every other byte of planes 0 and 1 is used in text mode and why
characters and attributes appear to be contiguous bytes when they are actually in
different planes is a large part of the explanation I’m not going to go into now. One
bit of fallout from this, however, is that if you flip to text mode and preserve the
graphics bitmap using the mechanism illustrated in Listing 27.3, you shouldn’t write
to any text page other than page 0 (that is, don’t write to any offset in display memory
above 3999 in text mode) or alter the Page Select bit in the Miscellaneous Output
register (3C2H) while in text mode. In order to allow completely unfettered access
to text pages, it would be necessary to save every byte in the first 32K of each of
planes 0 and 1. (On the other hand, this would allow up to 16 text screens to be
stored simultaneously, with any one displayable instantly.) Moreover, if any fonts other
than the default font are loaded, the portions of plane 2 that those particular fonts
are loaded into would have to be saved, up to a maximum of all 64K of plane 2. In
the worst case, a full 128K would have to be saved in order to preserve all the memory
potentially used by text mode.
As I said, Phil Coleman’s question is an interesting one, and I’ve only touched on the
intriguing possibilities arising from the various configurations of display memory in

Yet Another VGA Write Mode 51 7

VGA graphics and text modes. Right now, though, we've still got the basics of the
remarkably complex (but rewarding!) VGA to cover.

LISTING 27.3 L27-3.ASM
: Program t o i l l u s t r a t e f l i p p i n g f r o m b i t - m a p p e d g r a p h i c s mode t o
: t e x t mode and back w i thou t l os ing any o f t h e g r a p h i c s b i t - m a p .

: Assemb le w i th MASM o r TASM

: By Michael Abrash

Stack segment para s tack 'STACK'
db 512 dup(0)

Stack ends

GRAPHICS-SEGMENT
TEXT-SEGMENT

equ OaOOOh :mode 10 bi t -map segment
equ Ob800h :mode 3 bi t -map segment

SC- INDEX equ 3c4h :Sequence Con t ro l l e r I ndex reg i s te r
MAP-MASK equ 2
GC-INDEX

: i n d e x o f Map Mask r e g i s t e r
e q u 3 c e h : G r a p h i c s C o n t r o l l e r I n d e x r e g i s t e r

READ-MAP equ 4 : i n d e x o f Read Map r e g i s t e r

Data segment para common 'DATA'

GStri keAnyKeyMsg0
db

l a b e l b y t e

db
Odh. Oah. 'Graphics mode' , Odh. Oah
' S t r i k e any key t o c o n t i n u e . . . ' , Odh. Oah. ' f '

GSt r i keAnyKeyMsg l l abe l by te
db Odh. Oah. 'G raph ics mode a g a i n ' , Odh. Oah
db ' S t r i k e any key t o c o n t i n u e . . . ' . Odh. Oah. ' $ '

T S t r i keAnyKeyMsg l a b e l b y t e
db
db

Odh. Oah, 'Text mode' , Odh. Oah
' S t r i k e any key t o c o n t i n u e . . . ' , Odh, Oah. ' f '

P1 ane2Save db 2000h dup (? I ; s a v e a r e a f o r p l a n e 2 d a t a

CharAt tSave db 4000 dup (?) ; s a v e a r e a f o r memory wiped
: where f o n t g e t s l o a d e d

: o u t by c h a r a c t e r / a t t r i b u t e
: d a t a i n t e x t mode

Data ends

Code segment para pub l i c ' C O D E '

S t a r t p r o c n e a r
assume cs:Code. ds:Data

mov ax.10h
i n t 1 0 h : s e l e c t v i d e o mode 10h (640x350)

: Fill t h e g r a p h i c s b i t - m a p w i t h a c o l o r e d p a t t e r n .

c l d
mov ax.GRAPHICS-SEGMENT
mov es ,ax
mov ah.3 : i n i t i a l fill p a t t e r n
mov c x . 4 : f o u r p l a n e s t o fill
mov dx.SC-INDEX
mov a1 .MAP-MASK
o u t d x , a l : l e a v e t h e SC I n d e x p o i n t i n g t o t h e
i n c d x : Map Mask r e g i s t e r

51 8 Chapter 27

F i l l B i t M a p :
mov a l . 1 0 h
s h r a1 , c l
o u t d x . a l

:generate map mask f o r t h i s p l a n e

s u b d i . d i
; s e t map mask f o r t h i s p l a n e
; s t a r t a t o f f s e t 0

mov a1 ,ah : ge t t he fill p a t t e r n
push cx
mov cx.8000h

; p r e s e r v e p l a n e c o u n t
:fill 32K words

rep s tosw ;do fill f o r t h i s p l a n e
POP c x : g e t b a c k p l a n e c o u n t
s h l a h . 1
s h l a h . 1
1 oop F i 11 B i tMap

; Put up "str ike any key" message.

mov ax.Data
mov ds.ax
mov d x . o f f s e t GStrikeAnyKeyMsgO
mov ah.9
i n t 21h

; W a i t f o r a key.

mov a h . 0 l h
i n t 21h

; Save t h e 8K o f p l a n e 2 t h a t will be used by the fon t .

mov dx.GC-INDEX
mov a1 , READ-MAP
o u t d x . a l
i n c d x
mov a1 .2
o u t d x . a l
mov ax.Data
mov es.ax
mov ax.GRAPHICS-SEGMENT
mov ds.ax
s u b s i . s i
mov d i . o f f s e t PlaneZSave
mov cx.Z000h/2 :save 8K (l e n g t h o f d e f a u l t f o n t)
r e p movsw

: s e t u p t o r e a d f r o m p l a n e 2

; GO t o t e x t mode w i t h o u t c l e a r i n g d i s p l a y memory.

mov ax.083h
i n t 10h

; Save t h e t e x t mode b i t - m a p .

mov ax.Data
mov es.ax
mov ax.TEXT-SEGMENT
mov ds.ax
sub s i . s i
mov d i , o f f s e t C h a r A t t S a v e
mov c x . 4 0 0 0 / 2 ; l e n g t h o f o n e t e x t s c r e e n i n words
r e p movsw

Yet Another VGA Write Mode 5 1 9

; F i l l t h e t e x t
; message.

mov
mov
sub
mov
mov
mov

mode s c r e e n w i t h d o t s a n d p u t u p " s t r i k e a n y k e y "

ax.TEXT-SEGMENT
es,ax
d i . d i
a1 . I . ' ;fill c h a r a c t e r
ah.7 ;fill a t t r i b u t e
c x . 4 0 0 0 / 2 ; l e n g t h o f o n e t e x t s c r e e n i n w o r d s

rep s tosw
mov ax.Data
mov ds.ax
mov dx .o f fse t TSt r i keAnyKeyMsg
mov ah.9
i n t 21h

; W a i t f o r a key.

mov ah .0 lh
i n t 21h

; R e s t o r e t h e t e x t mode s c r e e n t o t h e s t a t e i t was i n on e n t e r i n g
; t e x t mode.

mov ax.0ata

mov ax.TEXT-SEGMENT
mov ds.ax

mov es,ax
mov s i . o f f s e t C h a r A t t S a v e
s u b d i . d i
mov c x . 4 0 0 0 / 2 ; l e n g t h o f o n e t e x t s c r e e n i n words
r e p movsw

; R e t u r n t o mode 1 0 h w i t h o u t c l e a r i n g d i s p l a y memory.

mov ax,90h
i n t 10h

; R e s t o r e t h e p o r t i o n o f p l a n e 2 t h a t was w i p e d o u t b y t h e f o n t .

mov dx,SC-INDEX
mov a1 .MAP-MASK
o u t dx .a l
i n c d x
mov a1 .4
o u t d x . a l ; s e t u p t o w r i t e t o p l a n e 2
mov ax.Data
mov ds.ax
mov ax.GRAPHICS-SEGMENT
mov es.ax
mov s i . o f f s e t PlaneESave
sub d i . d i
mov cx .2000h /2 ; res to re 8K (l e n g t h o f d e f a u l t f o n t)
r e p movsw

; Put up "s t r i ke any key" message.

mov ax.Data
mov ds.ax

520 Chapter 27

mov d x . o f f s e t G S t r i k e A n y K e y M s g l
mov a h . 9
i n t 21h

: W a i t f o r a k e y b e f o r e r e t u r n i n g t o t e x t mode and ending.

mov a h . 0 l h
i n t 21h
mov a x . 0 3 h
i n t 10h
mov ah.4ch
i n t 21h

S t a r t endp
Code ends

end S t a r t

Yet Another VGA Write Mode 52 1

chapter 28

reading vga memory

s 0 and 1, and the Color Don‘t

Well, it’s taken five but we’ve finally covered the data write path and all
four write modes o ow it’s time to tackle the VGA’s two read modes.

mplex as the write modes, they’re nothing to sneeze
known as color compare mode) is rather unusual

ogramming the VGA straightforward?
es of VGA programming is what this part

Read Mode 0‘
Read mode 0 is actually relatively uncomplicated, given that you understand the
four-plane nature of the VGA. (If you don’t understand the four-plane nature of the
VGA, I strongly urge you to read Chapters 23-27 before continuing with this chap-
ter.) Read mode 0, the read mode counterpart of write mode 0, lets you read from
one (and only one) plane of VGA memory at any one time.
Read mode 0 is selected by setting bit 3 of the Graphics Mode register (Graphics
Controller register 5) to 0. When read mode 0 is active, the plane that supplies the
data when the CPU reads VGA memory is the plane selected by bits 1 and 0 of the

525

Read Map register (Graphics Controller register 4). When the Read Map register is
set to 0, CPU reads come from plane 0 (the plane that normally contains blue pixel
data). When the Read Map register is set to 1, CPU reads come from plane 1; when
the Read Map register is 2, CPU reads come from plane 2; and when the Read Map
register is 3, CPU reads come from plane 3.
That all seems simple enough; in read mode 0, the Read Map register acts as a selec-
tor among the four planes, determining which one of the planes will supply the
value returned to the CPU. There is a slight complication, however, in that the value
written to the Read Map register in order to read from a given plane is not the same
as the value written to the Map Mask register (Sequence Controller register 2) in
order to write to that plane.
Why is that? Well, in read mode 0, one and only one plane can be read at a time, so
there are only four possible settings of the Read Map register: 0, 1, 2, or 3, to select
reads from plane 0, 1, 2, or 3. In write mode 0, by contrast (in fact, in any write
mode), any or all planes may be written to at once, since the byte written by the CPU
can “fan out” to multiple planes. Consequently, there are not four but sixteen pos-
sible settings of the Map Mask register. The setting of the Map Mask register to write
only to plane 0 is 1; to write only to plane 1 is 2; to write only to plane 2 is 4; and to
write only to plane 3 is 8.
As you can see, the settings of the Read Map and Map Mask registers for accessing a
given plane don’t match. The code in Listing 28.1 illustrates this. Listing 28.1 simply
copies a sixteencolor image from system memory to VGA memory, one plane at a time,
then animates by repeatedly copying the image back to system memory, again one
plane at a time, clearing the old image, and copying the image to a new location in
VGA memory. Note the differing settings of the Read Map and Map Mask registers.

LISTING 28.1 128- 1 .ASM
; Program t o i l l u s t r a t e t h e use o f t h e Read Map r e g i s t e r i n r e a d mode 0.
; Animates by copy ing a 16-Co lOr image f rom VGA memory t o system memory.
; one p l a n e a t a t i m e , t h e n c o p y i n g t h e i m a g e b a c k t o a new l o c a t i o n
: i n VGA memory.

: By Michae l Abrash

s tack segmen t word s tack ‘STACK’

s tack ends
db 512 dup (?)

data segment
IMAGE-WIDTHEQU
IMAGELHEIGHT
LEFT-BOUND EQU
RIGHT-BOUNDEOU
VGA-SEGMENTEQU
SCREEN-WIDTH
SC-INDEX EQU
GC-INDEX EQU

word ‘DATA‘
4
EQU 32
10
66
OaOOOh
EQU 80 ; i n b y t e s
3 c 4 h ; S e q u e n c e C o n t r o l l e r I n d e x r e g i s t e r
3 c e h ; G r a p h i c s C o n t r o l l e r I n d e x r e g i s t e r

; i n b y t e s

; i n b y t e s
; i n b y t e s

: i n p i x e l s

526 Chapter 28

MAP-MASK EOU 2 :Map Mask r e g i s t e r i n d e x i n SC
READ-MAP EQU 4 :Read Map r e g i s t e r i n d e x i n GC

: B a s e p a t t e r n f o r 1 6 - C O l O r i m a g e .

P a t t e r n P l a n e O l a b e l b y t e

P a t t e r n P l a n e l 1 a b e l b y t e

Pa t te rnP l ane2 1 a b e l b y t e

Pa t te rnP l ane3 1 a b e l b y t e

db 32 dup (Offh,Offh.O.O)

db 32 dup (Offh.O.Offh.0)

db 32 dup (OfOh.OfOh.OfOh.OfOh)

db 32 dup (0cch.Occh.Occh.Occh)

: T e m p o r a r y s t o r a g e f o r 1 6 - c o l o r i m a g e d u r i n g a n i m a t i o n .

ImagePlaneOdb 32*4 d u p (? I
ImagePl anel db 32*4 dup (? I
ImagePlaneZdb 32*4 dup (?)
ImagePlane3 db 32*4 dup (?)

: C u r r e n t i m a g e l o c a t i o n & d i r e c t i o n .

ImageX dw 4 0 : i n b y t e s
ImageY dw 100 : i n p i x e l s
ImageXDi r e c t i o n dw 1 : i n b y t e s
data ends

code segment word ' C O D E '
assume cs :code,ds :da ta

S t a r t p r o c n e a r
c l d
mov ax .da ta
mov ds .ax

: S e l e c t g r a p h i c s mode 10h.

mov
i n t

: Draw t h e

mov
c a l l

ax, lOh
10h

i n i t i a l image

s i . o f f s e t P a t t e r n P l a n e O
DrawImage

: Loop t o a n i m a t e b y c o p y i n g t h e i m a g e f r o m VGA memory t o system memory,
: e r a s i n g t h e i m a g e , a n d c o p y i n g t h e i m a g e f r o m s y s t e m memory t o a new
: l o c a t i o n i n VGA memory. Ends when a key i s h i t .

AnimateLoop:

: Copy t h e i m a g e f r o m VGA memory t o s y s t e m memory

mov d i . o f f s e t ImagePlaneO
c a l l GetImage

: C l e a r t h e i m a g e f r o m V G A memory.

c a l l EraseImage

Reading VGA Memory 527

: Advance the image X c o o r d i n a t e , r e v e r s i n g d i r e c t i o n if e i t h e r edge
: o f t h e s c r e e n h a s b e e n r e a c h e d .

mov ax,CImageX]
cmp ax.LEFT-BOUND
j z R e v e r s e D i r e c t i o n
cmp ax.RIGHT-BOUND
j n z SetNewX

neg CImageXDi rec t ion]

add ax.CImageXDirect ion]
mov CImageX1.a~

R e v e r s e D i r e c t i o n :

SetNewX:

: Draw the image by copy ing i t f r o m s y s t e m memory t o VGA memory.

mov s i . o f f s e t ImagePlaneO
c a l l DrawImage

: S l o w t h i n g s down a b i t f o r v i s i b i l i t y (a d j u s t as needed).

mov c x . 0

1 oop Delay Loop
Del ayLoop:

: See if a key has been h i t , e n d i n g t h e p r o g r a m .

mov ah .1
i n t 16h
j z AnimateLoop

: C l e a r t h e k e y . r e t u r n t o t e x t mode, and r e t u r n t o 00s.

sub ah.ah
i n t 16h
mov ax.3
i n t 10h
mov ah.4ch
i n t 21h

S t a r t endp

: Draws t h e i m a g e a t o f f s e t DS:SI t o t h e c u r r e n t i m a g e l o c a t i o n i n
: VGA memory.

DrawImage proc near
mov ax,VGA-SEGMENT
mov es,ax
c a l l G e t I m a g e O f f s e t : E S : D I i s t h e d e s t i n a t i o n a d d r e s s f o r t h e

mov dx , SC-I NDEX
mov a l . l : do p lane 0 f i r s t

push d i : image i s drawn a t t h e same o f f s e t i n

p u s h a x : p r e s e r v e p l a n e s e l e c t
mov a1 .MAP-MASK :Map Mask i n d e x
o u t d x . a l : p o i n t SC I n d e x t o t h e Map Mask r e g i s t e r
POP a x ; g e t b a c k p l a n e s e l e c t
i n c d x : p o i n t t o SC i n d e x r e g i s t e r

: image i n VGA memory

DrawImagePlaneLoop:

: each p lane

528 Chapter 28

o u t d x . a l ; s e t u p t h e Map Mask t o a l l o w w r i t e s t o
; t h e p l a n e o f i n t e r e s t

d e c d x ; p o i n t b a c k t o SC D a t a r e g i s t e r
mov bx.IMAGE-HEIGHT ;# o f s c a n l i n e s i n i m a g e

mov cx.IMAGE-WIDTH ;# o f b y t e s a c r o s s i m a g e
rep movsb
add di.SCREEN-WIDTH-IMAGE-WIDTH

dec bx ;any more scan l ines?
j n z DrawImageLoop
pop d i : g e t b a c k i m a g e s t a r t o f f s e t i n VGA memory
s h l a1 . I :Map Mask s e t t i n g f o r n e x t p l a n e

DrawImageLoop:

: p o i n t t o n e x t s c a n l i n e o f i m a g e

CmD a l .10h ;have we done a l l f o u r o l a n e s ?
jnz DrawImagePlaneLoop
r e t

DrawImage endp

; C o p i e s t h e i m a g e f r o m i t s c u r r e n t l o c a t i o n i n
; b u f f e r a t D S : D I .

GetImage
mov
c a l l
xchg
push
POP
mov
mov

mov
sub

p r o c n e a r
s i . d i :move d e s t i n a t i o n o f f s e t

VGA memory i n t o t h e

i n t o S I
Ge t ImageOf fse t : D I i s o f f s e t o f image i n VGA memory
s i . d i ;SI i s o f f s e t o f image. 01 i s d e s t i n a t i o n o f f s e t
ds
es ; E S : D I i s d e s t i n a t i o n
ax.VGA-SEGMENT
ds ,ax ; D S : S I i s s o u r c e

dx.GC-INDEX
a1 .a1 :do p lane 0 f i r s t

GetImagePlaneLoop:
push s i ; image comes f r o m same o f f s e t i n each p lane
p u s h a x ; p r e s e r v e p l a n e s e l e c t
mov a1,READ”AP;Read Map i n d e x
o u t d x . a l : p o i n t GC I n d e x t o Read Map r e g i s t e r

i n c d x ; p o i n t t o GC I n d e x r e g i s t e r
o u t d x . a l ; s e t u p t h e Read Map t o s e l e c t r e a d s f r o m

; t h e p l a n e o f i n t e r e s t
d e c d x ; p o i n t b a c k t o GC d a t a r e g i s t e r
mov bx,IMAGE-HEIGHT ; C o f s c a n l i n e s i n i m a g e

mov cx.IMAGE-WIDTH ;# o f b y t e s a c r o s s i m a g e
rep movsb
add si.SCREEN-WIDTH-IMAGE-WIDTH

dec bx ;any more scan l ines?
jnz Get ImageLoop
pop s i ; g e t b a c k i m a g e s t a r t o f f s e t
i n c a1 ;Read Map s e t t i n g f o r n e x t p l a n e
cmp a l .4 : have we done a l l f o u r p l a n e s ?
jnz Ge t ImageP laneLoop
push es
POP ds ; r e s t o r e o r i g i n a l DS
r e t

GetImage endp

; Erases the image a t i t s c u r r e n t l o c a t i o n .

POP a x ; g e t b a c k p l a n e s e l e c t

GetImageLoop:

; p o i n t t o n e x t s c a n l i n e o f i m a g e

Reading VGA Memory 529

EraseImage proc near
mov dx.SC_INDEX
mov a1 .MAP-MASK
o u t d x , a l
i n c d x
mov a1 .Ofh
o u t d x . a l

: p o i n t SC I n d e x t o t h e Map Mask r e g i s t e r
; p o i n t t o SC D a t a r e g i s t e r

: s e t u p t h e Map Mask t o a l l o w w r i t e s t o g o t o
: a l l 4 p l a n e s

mov ax.VGALSEGMENT
mov es .ax
C a l l G e t I m a g e O f f s e t : E S : D I p o i n t s t o t h e s t a r t a d d r e s s

sub a1,al : e r a s e w i t h z e r o s
mov bx.IMAGE-HEIGHT ;# o f s c a n l i n e s i n image

; o f t h e image

EraseImageLooD:
mov
r e p
add

dec
j nz
r e t

EraseImage

cX.IMAGE-WIDTH :# of by tes ac ross image
s t o s b
di.SCREEN-WIDTH-IMAGE-WIDTH

bx : any more scan l i nes?
EraseImageLoop

endp

; p o i n t t o n e x t s c a n l i n e o f i m a g e

: R e t u r n s t h e c u r r e n t o f f s e t o f t h e i m a g e i n t h e VGA segment i n DI.

Get ImageOf fse t p roc nea r
mov ax,SCREEN_WIDTH
mu1 [ImageY 1
add ax.[lmageX]
mov d i ,ax
r e t

Get ImageOffset endp
code ends

e n d S t a r t

By the way, the code in Listing 28.1 is intended only to illustrate read mode 0, and is,
in general, a poor way to perform animation, since it's slow and tends to flicker.
Later in this book, we'll take a look at some far better VGA animation techniques.
As you'd expect, neither the read mode nor the setting of the Read Map register
affects CPU Wmtes to VGA memory in any way.

An important point regarding reading VGA memory involves the VGA 5. latches. P (Remember that each of the four latches stores a byte for one plane; on CPU
writes, the latches can provide some or all of the data written to display memory,
allowing fast copying and eflcient pixel masking.) Whenever the CPU reads a
given address in VGA memory, each of the four latches is loaded with the contents
of the byte at that address in its respective plane. Even though the CPU only re-
ceives data from one plane in read mode 0, all four planes are always read, and
the values read are stored in the latches. This is true in read mode I as well. In
short, whenever the CPUreads VGA memory in any read mode, all fourplanes are
read and all four latches are always loaded.

530 Chapter 28

Read Mode 1
Read mode 0 is the workhorse read mode, but it’s got an annoying limitation: When-
ever you want to determine the color of a given pixel in read mode 0, you have to
perform four VGA memory reads, one for each plane, and then interpret the four
bytes you’ve read as eight 16-color pixels. That’s a lot of programming. The code is
also likely to run slowly, all the more so because a standard IBM VGA takes an aver-
age of 1.1 microseconds to complete each memory read, and read mode 0 requires
four reads in order to read the four planes, not to mention the even greater amount
of time taken by the OUTS required to switch between the planes. (1.1 microseconds
may not sound like much, but on a 66MHz 486, it’s 73 clock cycles! Local-bus VGAs
can be a good deal faster, but a read from the fastest local-bus adapter I’ve yet seen
would still cost in the neighborhood of 10 486/66 cycles.)
Read mode 1, also known as color compare mode, provides special hardware assistance
for determining whether a pixel is a given color. With a single read mode 1 read, you
can determine whether each of up to eight pixels is a specific color, and you can
even specify any or all planes as “don’t care” planes in the pixel color comparison.
Read mode 1 is selected by setting bit 3 of the Graphics Mode register (Graphics
Controller register 5) to 1. In its simplest form, read mode 1 compares the cross-
plane value of each of the eight pixels at a given address to the color value in bits 3-0
of the Color Compare register (Graphics Controller register 2), and returns a 1 to
the CPU in the bit position of each pixel that matches the color in the Color Com-
pare register and a 0 for each pixel that does not match.
That’s certainly interesting, but what’s read mode 1 good for? One obvious applica-
tion is in implementing flood-fill algorithms, since read mode 1 makes it easy to tell
when a given byte contains a pixel of a boundary color. Another application is in
detecting on-screen object collisions, as illustrated by the code in Listing 28.2.

LISTING 28.2 128-2.ASM
: Program t o i l l u s t r a t e u s e o f r e a d mode 1 (co lo r compare mode)
: t o d e t e c t c o l l i s i o n s i n d i s p l a y memory. Draws a y e l l o w l i n e o n a
; b l u e b a c k g r o u n d , t h e n d r a w s a p e r p e n d i c u l a r g r e e n l i n e u n t i l t h e
: y e l l o w l i n e i s reached.

; By Michael Abrash

s tack segmen t word s tack ‘STACK’

s tack ends
db 512 dup (?)

VGA-SEGMENT EQU
SCREEN-WIDTH
GC- INDEX EQU
SETLRESET EQU
ENABLE-SETLRESET EQU
COLOR-COMPARE
GRAPHICS-MODE
B I TLMAS K EQU

OaOOOh
EQU 80
3ceh
0
1
EQU 2
EQU 5
8

;in b y t e s
: G r a p h i c s C o n t r o l l e r I n d e x r e g i s t e r
: S e t / R e s e t r e g i s t e r i n d e x i n GC
: E n a b l e S e t / R e s e t r e g i s t e r i n d e x i n GC
; C o l o r C o m p a r e r e g i s t e r i n d e x i n GC
;Graph ics Mode r e g i s t e r i n d e x i n GC
; B i t Mask r e g i s t e r i n d e x i n GC

Reading VGA Memory 53 1

code segment word ' C O D E '
assume cs: code

S t a r t p r o c n e a r
c l d

; S e l e c t g r a p h i c s mode 10h.

mov ax, lOh
i n t 10h

; F i l l t h e s c r e e n w i t h b l u e .

mov a l . l ; b l u e i s c o l o r 1
C a l l S e l e c t S e t R e s e t C o l o r : s e t t o d r a w i n b l u e
mov ax.VGA-SEGMENT
mov es.ax
s u b d i . d i
mov cx, 7000h
r e p s t o s b : t h e v a l u e w r i t t e n a c t u a l l y d o e s n ' t

; m a t t e r , s i n c e s e t / r e s e t i s p r o v i d i n g
; t h e d a t a w r i t t e n t o d i s p l a y memory

: Draw a v e r t i c a l y e l l o w l i n e .

mov a l . 1 4 ; y e l l o w i s c o l o r 1 4

mov dx,GC-INDEX
c a l l S e l e c t S e t R e s e t C o l o r : s e t t o d r a w i n y e l l o w

mov a1 .BIT-MASK
o u t d x . a l ; p o i n t GC I n d e x t o B i t Mask
i n c d x ; p o i n t t o GC D a t a
mov a l . 1 0 h
o u t d x . a l ; s e t B i t Mask t o 10h
mov d i - 4 0 : s t a r t i n t h e m i d d l e o f t h e t o p 1
mov cx.350 ;do f u l l h e i g h t o f s c r e e n

mov a1 . e s : [d i] ; l o a d t h e l a t c h e s
s t o s b ; w r i t e n e x t p i x e l o f y e l l o w l i n e

VLineLoop:

: p r o v i d e s t h e d a t a w r i t t e n t o d i

i

(
s.

; memory, and AL i s a c t u a l l y i g n o r e d)
add di.SCREEN-WIDTH-1 : p o i n t t o t h e n e x t s c a n l i n e
1 oop VLi neLoop

: S e l e c t w r i t e mode 0 and read mode 1.

mov dx.GC-INDEX
mov a1 .GRAPHICS-MODE
o u t d x . a l ; p o i n t GC I n d e x t o G r a p h i c s Mode r e g i s t e r
i n c d x ; p o i n t t o GC Data
mov a l . 0 0 0 0 1 0 0 0 b ; b i t 3-1 i s r e a d mode 1. b i t s 1 & 0-OD

; i s w r i t e mode 0
o u t d x . a l : s e t G r a p h i c s Mode t o r e a d mode 1.

; w r i t e mode 0

: D r a w a h o r i z o n t a l g r e e n l i n e , one p i x e l a t a t i m e , f r o m l e f t
; t o r i g h t u n t i l c o l o r compare repo r t s a y e l l o w p i x e l i s e n c o u n t e r e d .

; Draw i n green.

mov a l . 2 :green i s c o l o r 2
c a l l S e l e c t S e t R e s e t C o l o r ; s e t t o d r a w i n g r e e n

ne

s e t / r e s e t
p l a y

532 Chapter 28

: S e t c o l o r c o m p a r e t o l o o k f o r y e l l o w .

mov dx.GC_INDEX
mov a1 , COLOR-COMPARE
o u t d x , a l : p o i n t GC I n d e x t o C o l o r Compare r e g i s t e r
i n c d x : p o i n t t o GC Data
mov a l . 1 4 : w e ' r e l o o k i n g f o r y e l l o w , color 14
o u t d x . a l : s e t c o l o r c o m p a r e t o l o o k f o r y e l l o w
d e c d x : p o i n t t o GC I n d e x

: S e t u p f o r q u i c k a c c e s s t o B i t Mask r e g i s t e r .

mov a1 .BIT-MASK
o u t d x . a l : p o i n t GC I n d e x t o B i t Mask r e g i s t e r
i n c d x : p o i n t t o GC Data

: S e t i n i t i a l p i x e l m a s k a n d d i s p l a y memory o f f s e t .

mov a1 . 8 0 h : i n i t i a l p l x e l mask
mov di,lOO*SCREEN-WIDTH

: s t a r t a t l e f t edge o f s c a n l i n e 1 0 0
HLineLoop:

mov a h . e s : [d i l : d o a r e a d mode 1 (c o l o r c o m p a r e) r e a d .

a n d a h , a l : i s t h e p i x e l o f c u r r e n t i n t e r e s t y e l l o w ?
j n z W a i t K e y A n d D o n e : y e s - w e ' v e r e a c h e d t h e y e l l o w l i n e , s o w e ' r e

o u t d x . a l : s e t t h e B i t Mask r e g i s t e r s o t h a t we

mov e s : [d i l . a l : d r a w t h e p i x e l . T h e v a l u e w r i t t e n i s

: T h i s a l s o l o a d s t h e l a t c h e s .

: done

: m o d i f y o n l y t h e p i x e l o f i n t e r e s t

: i r r e l e v a n t , s i n c e s e t / r e s e t i s p r o v i d i n g
: t h e d a t a w r i t t e n t o d i s p l a y memory

r o r a l . l : s h i f t p i x e l mask t o t h e n e x t p i x e l
a d c d i . 0 : a d v a n c e t h e d i s p l a y memory o f f s e t i f

: t h e p i x e l mask wrapped

: S l o w t h i n g s down a b i t f o r v i s i b i l i t y (a d j u s t as needed) .

mov cx .0

1 oop Del ayLoop

jmp HLineLoop

Del ayLoop:

: W a i t f o r a key t o b e p r e s s e d t o e n d , t h e n r e t u r n t o t e x t mode and
: r e t u r n t o DOS.

WaitKeyAndDone:
WaitKeyLoop:

mov ah .1
i n t 16h
j z WaitKeyLoop
sub ah.ah
i n t 1 6 h : c l e a r t h e k e y
mov ax .3
i n t 1 0 h : r e t u r n t o t e x t mode
mov ah.4ch
i n t 21h :done

S t a r t e n d p

Reading VGA Memory 533

: E n a b l e s s e t / r e s e t f o r a l l p l a n e s , a n d s e t s t h e s e t / r e s e t c o l o r
; t o A L .

S e l e c t S e t R e s e t C o l o r p r o c n e a r
mov dx , GC-I NDEX
push ax ; p r e s e r v e c o l o r
mov a1 .SETPRESET
o u t d x . a l : p o i n t GC I n d e x t o S e t / R e s e t r e g i s t e r
i n c d x ; p o i n t t o GC Data

o u t d x . a l : s e t S e t / R e s e t r e g i s t e r t o s e l e c t e d c o l o r
dec dx
mov a1 ,ENABLEPSETPRESET

; p o i n t t o GC I n d e x

o u t d x , a l ; p o i n t GC I n d e x t o E n a b l e S e t / R e s e t r e g i s t e r
i n c d x ; p o i n t t o GC Data
mov a l . O f h
o u t d x , a l : e n a b l e s e t / r e s e t f o r a l l p l a n e s
r e t

POP a x : g e t b a c k c o l o r

S e l e c t S e t R e s e t C o l o r e n d p
code ends

e n d S t a r t

When all Planes “Don’t Care”
Still and all, there aren’t all that many uses for basic color compare operations. There
is, however, a genuinely odd application of read mode 1 that’s worth knowing about;
but in order to understand that, we must first look at the “don’t care” aspect of color
compare operation.
As described earlier, during read mode 1 reads the color stored in the Color Compare
register is compared to each of the 8 pixels at a given address in VGA memory. But-
and it’s a big but-any plane for which the corresponding bit in the Color Don’t
Care register is a 0 is always considered a color compare match, regardless of the
values of that plane’s bits in the pixels and in the Color Compare register.
Let’s look at this another way. A given pixel is controlled by four bits, one in each
plane. Normally (when the Color Don’t Care register is OFH) , the color in the Color
Compare register is compared to the four bits of each pixel; bit 0 of the Color Compare
register is compared to the plane 0 bit of each pixel, bit 1 of the Color Compare register
is compared to the plane 1 bit of each pixel, and so on. That is, when the lower four
bits of the Color Don’t Care register are all set to 1, then all four bits of a given pixel
must match the Color Compare register in order for a read mode 1 read to return a
1 for that pixel to the CPU.
However, if any bit of the Color Don’t Care register is 0, then the corresponding bit
of each pixel is unconditionally considered to match the corresponding bit of the
Color Compare register. You might think of the Color Don’t Care register as select-
ing exactly which planes should matter in a given read mode 1 read. At the extreme,
if all bits of the Color Don’t Care register are 0, then read mode 1 reads will always
return OFFH, since all planes are considered to match all bits of all pixels.

534 Chapter 28

Now, we’re all prone to using tools the “right” way-that is, in the way in which they
were intended to be used. By that token, the Color Don’t Care register is clearly intended
to mask one or more planes out of a color comparison, and as such, has limited use.
However, the Color Don’t Care register becomes far more interesting in exactly the
“extreme” case described above, where all planes become “don’t care” planes.
Why? Well, as I’ve said, when all planes are “don’t care” planes, read mode 1 reads
always return OFFH. Now, when you AND any value with OFFH, the value remains
unchanged, and that can be awfully handy when you’re using the bit mask to modify
selected pixels in VGA memory. Recall that you must always read VGA memory to
load the latches before writing to VGA memory when you’re using the bit mask.
Traditionally, two separate instructions-a read followed by a write-are used to per-
form this task. The code in Listing 28.2 uses this approach. Suppose, however, that
you’ve set the VGA to read mode 1, with the Color Don’t Care register set to 0 (mean-
ing all reads of VGA memory will return OFFH) . Under these circumstances, you can
use a single AND instruction to both read and write VGA memory, since ANDing any
value with OFFH leaves that value unchanged.
Listing 28.3 illustrates an efficient use of write mode 3 in conjunction with read
mode 1 and a Color Don’t Care register setting of 0. The mask in AL is passed di-
rectly to the VGA’s bit mask (that’s how write mode 3 works-see Chapter 4 for details).
Because the VGA always returns OFFH, the single AND instruction loads the latches,
and writes the value in AL, unmodified, to the VGA, where it is used to generate the
bit mask. This is more compact and register-efficient than using separate instruc-
tions to read and write, although it is not necessarily faster by cycle count, because
on a 486 or a Pentium MOV is a l-cycle instruction, but AND with memory is a 3-
cycle instruction. However, given display memory wait states, it is often the case that
the two approaches run at the same speed, and the register that the above approach
frees up can frequently be used to save one or more cycles in any case.
By the way, Listing 28.3 illustrates how write mode 3 can make for excellent pixel-
and line-drawing code.

LISTING 28.3 128-3.ASM
Program t h a t draws a d i a g o n a l l i n e t o i l l u s t r a t e t h e u s e o f a
C o l o r D o n ‘ t C a r e r e g i s t e r s e t t i n g o f OFFH t o s u p p o r t f a s t
r e a d - m o d i f y - w r i t e o p e r a t i o n s t o VGA memory i n w r i t e mode 3 by
d r a w i n g a d i a g o n a l l i n e .

Note: Works on VGAs o n l y .

By Michael Abrash

s tack segment word s tack ‘STACK’

s tack ends

VGA-SEGMENT EQU OaOOOh
SCREEN-WIDTH EQU 80 : i n b y t e s

db 512 dup (?)

Reading VGA Memory 535

GC-INDEX EQU 3ceh : G r a p h i c s C o n t r o l l e r I n d e x r e g i s t e r
SETLRESET EQU 0 ; S e t / R e s e t r e g i s t e r i n d e x i n GC
ENABLE-SET-RESET EQU 1 ; E n a b l e S e t / R e s e t r e g i s t e r i n d e x i n GC
GRAPHICS-MODE EQU 5 :Graph ics Mode r e g i s t e r i n d e x i n GC
COLOR-OONT-CARE EQU 7 : C o l o r D o n ' t C a r e r e g i s t e r i n d e x i n GC

code segment word ' C O D E '

S t a r t p r o c n e a r

: S e l e c t g r a p h i c s mode 12h.

assume cs :code

mov ax.12h
i n t 10h

: S e l e c t w r i t e mode 3 and read mode 1.

mov dx.GC_INDEX
mov a1 .GRAPHICS-MODE
o u t d x . a l
i n c d x
i n a1,dx :VGA r e g i s t e r s a r e r e a d a b l e , b l e s s t h e m !
o r a l . 0 0 0 0 1 0 1 1 b ; b i t 3-1 s e l e c t s r e a d mode 1. and

jmp f+2
o u t dx .a l
dec dx

: b i t s 1 & 0-11 s e l e c t s w r i t e mode 3
;de lay be tween IN and OUT t o same p o r t

: S e t u p s e t / r e s e t t o a l w a y s d r a w i n w h i t e .

mov a1 .SET_RESET
o u t d x . a l
i n c d x
mov a1 .Ofh
o u t d x . a l
dec dx
mov a1,ENABLE-SET-RESET
o u t d x . a l
i n c d x
mov a1 .Ofh
o u t d x , a l
dec dx

: S e t C o l o r D o n ' t C a r e t o 0. s o r e a d s o f VGA memory a l w a y s r e t u r n OFFH.

mov a1 .COLOR-OONT_CARE
o u t d x . a l
i n c d x
sub a1 .a1
o u t d x . a l

; S e t u p t h e i n i t i a l memory p o i n t e r and p i x e l mask.

mov ax.VGA_SEGMENT
mov ds.ax
sub bx.bx
mov a l . 8 0 h

: Draw 400 p o i n t s o n a d i a g o n a l l i n e s l o p i n g down and t o t h e r i g h t .

536 Chapter 28

mov cx.400
DrawDiagonal Loop:

a n d [b x l . a l : r e a d s d i s p l a y memory, l o a d i n g t h e l a t c h e s ,
: t h e n w r i t e s AL t o t h e VGA. AL becomes t h e
: b i t mask, and s e t / r e s e t p r o v i d e s t h e
: a c t u a l d a t a w r i t t e n

add bx.SCREEN-WIDTH
: p o i n t t o t h e n e x t s c a n l i n e

r o r a l . 1
adc bx.0

:move t h e p i x e l mask one p i x e l t o t h e r i g h t
;advance t o t h e n e x t b y t e i f t h e p i x e l mask wrapped

loop DrawDiagonal Loop

: W a i t f o r a k e y t o be p r e s s e d t o e n d . t h e n r e t u r n t o t e x t mode and
: r e t u r n t o DOS.

WaitKeyLoop:
mov ah.1
i n t 16h
j z WaitKeyLoop
sub ah.ah
i n t 1 6 h : c l e a r t h e k e y
mov ax.3
i n t 1 0 h : r e t u r n t o t e x t mode
mov ah.4ch
i n t 21h :done

S t a r t endp
code ends

end S t a r t

I hope I’ve given you a good feel for what color compare mode is and what it might
be used for. Color compare mode isn’t particularly easy to understand, but it’s not
that complicated in actual operation, and it’s certainly useful at times; take some
time to study the sample code and perform a few experiments of your own, and you
may well find useful applications for color compare mode in your graphics code.
A final note: The Read Map register has no effect in read mode 1, and the Color
Compare and Color Don’t Care registers have no effect either in read mode 0 or
when writing to VGA memory. And with that, by gosh, we’re actually done with the
basics of accessing VGA memory!
Not to worry-that still leaves us a slew of interesting VGA topics, including smooth
panning and scrolling, the split screen, color selection, page flipping, and Mode X.
And that’s not to mention actual uses to which the VGA’s hardware can be put, in-
cluding lines, circles, polygons, and my personal favorite, animation. We’ve covered
a lot of challenging and rewarding ground-and we’ve only just begun.

Reading VGA Memory 537

chapter 29

saving screens and other vga mysteries

ets from the VGA Zen File
VGA graphics topics that aren’t quite involved enough to

fair amount of programmer
headscratchin rve treatment somewhere in this book. This is the

this chapter we’ll touch on saving and restoring 16-
16-out-of-64 colors issue, and techniques involved

Savin ’Restoring EGA and VGA Screens
The memory archit res of EGAs and VGAs are similar enough to treat both to-
gether in this regard. The basic principle for saving EGA and VGA 16-color graphics
screens is astonishingly simple: Write each plane to disk separately. Let’s take a look
at how this works in the EGA’s hi-res mode 10H, which provides 16 colors at 640x350.
All we need do is enable reads from plane 0 and write the 28,000 bytes of plane 0 that
are displayed in mode 10H to disk, then enable reads from plane 1 and write the
displayed portion of that plane to disk, and so on for planes 2 and 3. The result is a
file that’s 112,000 (28,000 * 4) bytes long, with the planes stored as four distinct
28,000-byte blocks, as shown in Figure 29.1.
The program shown later on in Listing 29.1 does just what I’ve described here, put-
ting the screen into mode 10H, putting up some bit-mapped text so there is something

54 1

EGA/VGA Display Memory File SNAPSHOT.SCR

Displayed portion of plane 0,
starting at AOOO : 0000 when

e Read Map register = 0
""""""""""I

Displayed portion of plane 1,
starting at AOOO : 0000 when
the Read Map register = 1

Displayed portion of plane 2,
starting at A O O O : 0000 when
the Read Map register = 2

""""""""""I

"""""-""""".
I

Displayed portion OF plane 3
starting at A O O O : 0000 when
the Read Map register = 3 ""_"""""""" J

Saving EGA/VGA display memory.
Figure 29.1

to save, and creating the 112K file SNAPSHOT.SCR, which contains the visible por-
tion of the mode 1OH frame buffer.
The only part of Listing 29.1 that's even remotely tricky is the use of the Read Map
register (Graphics Controller register 4) to make each of the four planes of display
memory readable in turn. The same code is used to write 28,000 bytes of display
memory to disk four times, and 28,000 bytes of memory starting at A000:OOOO are
written to disk each time; however, a different plane is read each time, thanks to the
changing setting of the Read Map register. (If this is unclear, refer back to Figure
29.1; you may also want to reread Chapter 28 to brush up on the operation of the
Read Map register in particular and reading EGA and VGA memory in general.)
Of course, we'll want the ability to restore what we've saved, and Listing 29.2 does
this. Listing 29.2 reverses the action of Listing 29.1, selecting mode 10H and then
loading 28,000 bytes from SNAPSHOT.SCR into each plane of display memory. The
Map Mask register (Sequence Controller register 2) is used to select the plane to be
written to. If your computer is slow enough, you can see the colors of the text change

542 Chapter 29

as each plane is loaded when Listing 29.2 runs. Note that Listing 29.2 does not itself
draw any text, but rather simply loads the bit map saved by Listing 29.1 back into the
mode 10H frame buffer.

LISTING 29.1 129- 1 .ASM
: Program t o p u t up a mode 10h EGA g r a p h i c s s c r e e n , t h e n s a v e i t
: t o t h e f i l e SNAPSHOT.SCR.

VGA-SEGMENT equ OaOOOh
GC- INDEX
READ-MAP

equ 3ceh

DISPLAYED-SCREEN-SIZE
equ 4
equ (640 /8) *350

: G r a p h i c s C o n t r o l l e r I n d e x r e g i s t e r
;Read Map r e g i s t e r i n d e x i n GC
; I o f d i s p l a y e d b y t e s p e r p l a n e i n a
; h i - r e s g r a p h i c s s c r e e n

s t a c k

s t a c k

Data
Sampl eTex t

F i 1 ename
E r r M s g l
ErrMsg2
WaitKeyMsg
Hand1 e
P1 ane
Data ends

segmen t pa ra s tack 'STACK'

ends

segment word 'DATA'

db 512 dup (? I

d b ' T h i s i s b i t - m a p p e d t e x t , d r a w n i n h i - r e s '
db 'EGA g r a p h i c s mode 1 0 h . ' . Odh. Oah. Oah
d b ' S a v i n g t h e s c r e e n (i n c l u d i n g t h i s t e x t) . . . '
db Odh. Oah. ' I '
db 'SNAPSHOT.SCR'.O
db '*** Cou1dn"t open SNAPSHOT.SCR *** ' .Odh.Oah. '$ '

;name o f f i l e w e ' r e s a v i n g t o

db '*** E r r o r w r i t i n g t o SNAPSHOT.SCR *** ' .Odh,Oah. '$ '
db Odh. Oah, 'Done. Press any key t o end . . . ' . Odh.Oah. ' t '
dw ? : h a n d l e o f f i l e w e ' r e s a v i n g t o
db ? ; p l a n e b e i n g r e a d

Code segment

S t a r t
assume cs:Code. ds:Data
p r o c n e a r
mov ax .Data
mov ds ,ax

; Go t o h i - r e s g r a p h i c s mode.

mov ax.10h :AH = 0 means mode s e t , AL - 1 0 h s e l e c t s

i n t 10h ;BIOS v i d e o i n t e r r u p t
: h i - r e s g r a p h i c s mode

: Pu t up some t e x t , s o t h e s c r e e n i s n ' t e m p t y .

mov ah.9 ; O O S p r i n t s t r i n g f u n c t i o n
mov d x . o f f s e t S a m p l e T e x t
i n t 2 1 h

; D e l e t e SNAPSHOT.SCR i f i t e x i s t s .

mov a h . 4 l h :DOS u n l i n k f i l e f u n c t i o n
mov d x . o f f s e t F i l e n a m e
i n t 21h

: C r e a t e t h e f i l e SNAPSHOT.SCR.

mov ah.3ch ;DOS c r e a t e f i l e f u n c t i o n

Saving Screens and Other VGA Mysteries 543

mov d x , o f f s e t F i l e n a m e
s u b c x , c x :make i t a normal f i l e
i n t 21h
mov C H a n d l e 1 , a x : s a v e t h e h a n d l e
j n c S a v e T h e S c r e e n ; w e ' r e r e a d y t o s a v e i f n o e r r o r
mov ah.9 :DOS p r i n t s t r i n g f u n c t i o n
mov d x , o f f s e t E r r M s g l
i n t 21h ; n o t i f y o f t h e e r r o r
j m p s h o r t Done :and done

: L o o p t h r o u g h t h e 4 p l a n e s , m a k i n g e a c h r e a d a b l e i n t u r n and
: w r i t i n g it t o d i s k . N o t e t h a t a l l 4 p l a n e s a r e r e a d a b l e a t
: A000:OOOO: t h e Read Map r e g i s t e r s e l e c t s w h i c h p l a n e i s r e a d a b l e
: a t any one t ime.

SaveTheScreen:

SaveLoop:
mov

mov
mov
o u t
i nc
mov

o u t
mov
mov
mov
sub
push
mov
mov
i n t
POP
cmp
j z
mov
mov
i n t
jmp

mov
i nc
mov

j be

SaveLoopBottom:

cmp

: C l o s e SNAPSHOT.SCR

DoCl ose:
mov
mov
i n t

: W a i t f o r a keyp ress .

C P l a n e l . 0 : s t a r t w i t h p l a n e 0

dx.GC-INDEX
al.READ-MAP:set GC I n d e x t o Read Map r e g i s t e r
d x . a l
d x
a1 . [P l a n e l : g e t t h e # o f t h e p l a n e we want

d x . a l : s e t t o r e a d f r o m t h e d e s i r e d p l a n e
ah.40h ;DOS w r i t e t o f i l e f u n c t i o n
bx . [Hand le l
cx.DISPLAYED_SCREEN-SIZE :# o f b y t e s t o s a v e
d x , d x : w r i t e a l l d i s p l a y e d b y t e s a t A000:OOOO
ds
s i .VGA-SEGMENT
d s . s i
2 1 h ; w r i t e t h e d i s p l a y e d p o r t i o n o f t h i s p l a n e
ds
ax,DISPLAYED-SCREEN-SIZE ; d i d a l l b y t e s g e t w r i t t e n ?

SaveLoopBottom
ah.9 :DOS p r i n t s t r i n g f u n c t i o n
d x . o f f s e t E r r M s g 2
21h : n o t i f y a b o u t t h e e r r o r
shor t DoClose :and done

a1 , CP1 a n e l
a x : p o i n t t o t h e n e x t p l a n e
[P lane] .a1
a l . 3 : h a v e we done a l l p l a n e s ?
SaveLoop :no. s o d o t h e n e x t p l a n e

: t o save

ah,3eh :DOS c l o s e f i l e f u n c t i o n
b x , [H a n d l e l
21h

mov ah.9 :DOS p r i n t s t r i n g f u n c t i o n
mov dx .o f f se t Wa i tKeyMsg
i n t 21h :prompt
mov ah.8 ;DOS i n p u t w i t h o u t e c h o f u n c t i o n

544 Chapter 29

i n t

; R e s t o r e t e x t mode.

mov
i n t

: Done.

Done :
mov
i n t

S t a r t e n d p
Code ends

end

21h

ax.3
10h

ah,4ch ;DDS t e r m i n a t e f u n c t i o n
21h

S t a r t

LISTING 29.2 129-2.ASM
: P r o g r a m t o r e s t o r e a mode 10h EGA g r a p h i c s
: t h e f i l e SNAPSHOT.SCR.

VGA-SEGMENT
SC- INDEX
MAP-MASK
DISPLAYED-SCREEN-SIZE

equ OaOOOh
equ 3c4h
equ 2
equ (640/8) *350

s c r e e n f r o m

s t a c k s e g m e n t p a r a s t a c k 'STACK'

s t a c k e n d s

Data segment word 'DATA'
F i 1 ename db 'SNAPSHOT.SCR',t

db 512 dup (?

; S e q u e n c e C o n t r o l l e r I n d e x r e g i s t e r
;Map Mask r e g i s t e r i n d e x i n SC
;# o f d i s p l a y e d b y t e s p e r p l a n e i n a
; h i - r e s g r a p h i c s s c r e e n

)
E r r M s g l d b I*** Cou1dn"t open SNAPSHOT.SCR *** ' .Odh.Oah. '$ '
ErrMsg2 db '*** E r r o r r e a d i n g f r o m SNAPSHOT.SCR *** ' .Odh,Oah, '$ '
Wai tKeyMsg db
Hand1 e

Odh. Oah, 'Done. Press any key t o end . .. ' . Odh.Oah.'$'

P1 ane db ? ; p l a n e b e i n g w r i t t e n
Data ends

Code segment

S t a r t p r o c n e a r

;name o f f i l e w e ' r e r e s t o r i n g f r o m

dw ? ; h a n d l e o f f i l e w e ' r e r e s t o r i n g f r o m

assume cs:Code. ds:Oata

mov ax .Data
mov ds ,ax

; Go t o h i - r e s g r a p h i c s mode.

mov

i n t

; Open SNAPSHOT.SCR.

mov
mov
sub
i n t
mov
j n c
mov

ax .10h

10h

;AH - 0 means mode s e t , AL - 1 0 h s e l e c t s
; h i - r e s g r a p h i c s mode
; B I O S v i d e o i n t e r r u p t

ah.3dh ;DOS open f i l e f u n c t i o n
d x . o f f s e t F i l e n a m e

21h
a1 ,a1 ;open f o r r e a d i n g

CHandl e l ,ax ; s a v e t h e h a n d l e
RestoreTheScreen ; w e ' r e r e a d y t o r e s t o r e i f n o e r r o r
ah.9 ;DOS p r i n t s t r i n g f u n c t i o n

Saving Screens and Other VGA Mysteries 545

mov d x , o f f s e t E r r M s g l
i n t 2 1 h : n o t i f y o f t h e e r r o r
j m p s h o r t Done ;and done

: L o o p t h r o u g h t h e 4 p l a n e s . m a k i n g e a c h w r i t a b l e i n t u r n a n d
; r e a d i n g it f r o m d i s k . N o t e t h a t a l l 4 p l a n e s a r e w r i t a b l e a t
: A000:OOOO: t h e Map Mask r e g i s t e r s e l e c t s w h i c h p l a n e s a r e r e a d a b l e
: a t any one t ime. We o n l y make one p l a n e r e a d a b l e a t a t i m e .

Res to reTheScreen :
mov

RestoreLoop:
mov
rnov
o u t
i nc
mov

mov
s h l

o u t
mov
mov
rnov
sub
push
mov
mov
i n t
POP
j c
cmp
jz

mov
rnov
i n t

Res to reLoopBo t tom:
mov
i nc
rnov
crnp
j be

ReadError :

j mp

: C l o s e SNAPSHOT.SCR.

DoCl ose:
mov
mov
i n t

CPlane l .0

dx.SC-INDEX
a1 .MAP-MASK
d x , a l
dx
c l . [P l a n e l

a1 .1
a1 . c l

d x , a l
ah ,3 fh
bx. [Handl e l
cx.DISPLAYED-SCREEN-SIZE
dx . dx
ds
s i .VGA-SEGMENT
d s . s i
21h
ds
ReadError
ax.DISPLAYED-SCREEN-SIZE
Res to reLoopBo t tom

ah.9
d x . o f f s e t E r r M s g Z
21h
s h o r t D o C l o s e

a1 , [P l a n e l
ax
[P l a n e l . a l
a l . 3
Res to reLoop

ah.3eh
bx.CHandle1
21h

; W a i t f o r a k e y p r e s s .

mov ah.8
i n t 21h

: R e s t o r e t e x t mode.

: s t a r t w i t h p l a n e 0

: s e t SC I n d e x t o Map Mask r e g i s t e r

g e t t h e 11 o f t h e p l a n e we want
t o r e s t o r e

s e t t h e b i t e n a b l i n g w r i t e s t o
o n l y t h e o n e d e s i r e d p l a n e

s e t t o r e a d f r o m d e s i r e d p l a n e
DOS r e a d f r o m f i l e f u n c t i o n

:# o f b y t e s t o r e a d
: s t a r t l o a d i n g b y t e s a t A000:OOOO

; r e a d t h e d i s p l a y e d p o r t i o n o f t h i s p l a n e

: d i d all b y t e s g e t r e a d ?

:DDS p r i n t s t r i n g f u n c t i o n

; n o t i f y a b o u t t h e e r r o r
;and done

; p o i n t t o t h e n e x t p l a n e

:have we done a l l p l a n e s ?
:no. so do t h e n e x t p l a n e

:DOS c l o s e f i l e f u n c t i o n

;DOS i n p u t w i t h o u t e c h o f u n c t i o n

546 Chapter 29

mov ax.3
i n t 10h

: Done.

Done:
mov ah,4ch
i n t 21h

S t a r t e n d p
Code ends

e n d S t a r t

:DOS t e r m i n a t e f u n c t i o n

If you compare Listings 29.1 and 29.2, you will see that the Map Mask register setting
used to load a given plane does not match the Read Map register setting used to read
that plane. This is so because while only one plane can ever be read at a time, any-
where from zero to four planes can be written to at once; consequently, Read Map
register settings are plane selections from 0 to 3, while Map Mask register settings
are plane masksfrom 0 to 15, where a bit 0 setting of 1 enables writes to plane 0, a bit
1 setting of 1 enables writes to plane 1, and so on. Again, Chapter 28 provides a
detailed explanation of the differences between the Read Map and Map Mask regis-
ters.
Screen saving and restoring is pretty simple, eh? There are a few caveats, of course,
but nothing serious. First, the adapter’s registers must be programmed properly in
order for screen saving and restoring to work. For screen saving, you must be in read
mode 0; if you’re in color compare mode, there’s no telling what bit pattern you’ll
save, but it certainly won’t be the desired screen image. For screen restoring, you
must be in write mode 0, with the Bit Mask register set to OFFH and Data Rotate
register set to 0 (no data rotation and the logical function set to pass the data through
unchanged).

while these requirements are no problem $you ’re simply calling a subroutine in p order to save an image from your program, they pose a considerable problem if
you ’re designing a hot-key operated TSR that can capture a screen image at any
time. with the EGA speczjically, there k never any way to tell what state the regis-
ters are currently in, since the registers aren ’t readable. (More on this issue later
in this chapter) As a result, any TSR that sets the Bit Mask to OFFH, the Data
Rotate register to 0, and so on runs the risk of interfering with the drawing code of
the program that k already running.

What’s the solution? Frankly, the solution is to get VGA-specific. A TSR designed for
the VGA can simply read out and save the state of the registers of interest, program
those registers as needed, save the screen image, and restore the original settings.
From a programmer’s perspective, readable registers are certainly near the top of
the list of things to like about the VGA! The remaining installed base of EGAs is
steadily dwindling, and you may be able to ignore it as a market today, as you couldn’t
even a year or two ago.

Saving Screens and Other VGA Mysteries 547

If you are going to write a hi-res VGA version of the screen capture program, be sure
to account for the increased size of the VGAs mode 12H bit map. The mode 12H
(640x480) screen uses 37.5K per plane of display memory, so for mode 12H the
displayed screen size equate in Listings 29.1 and 29.2 should be changed to:

DISPLAYED-SCREEN-SIZE equ (640/8)*480

Similarly, if you’re capturing a graphics screen that starts at an offset other than 0 in
the segment at AOOOH, you must change the memory offset used by the disk func-
tions to match. You can, if you so desire, read the start offset of the display memory
providing the information shown on the screen from the Start Address registers (CRT
Controller registers OCH and ODH) ; these registers are readable even on an EGA.
Finally, be aware that the screen capture and restore programs in Listings 29.1 and 29.2
are only appropriate for EGA/VGA modes ODH, OEH, O F H , OlOH, and 012H, since they
assume a four- plane configuration of EGA/VGA memory. In all text modes and in CGA
graphics modes, and in VGA modes 11H and 13H as well, display memory can simply be
written to disk and read back as a linear block of memory, just like a normal array.
While Listings 29.1 and 29.2 are written in assembly, the principles they illustrate apply
equally well to high-level languages. In fact, there’s no need for any assembly at all when
saving an EGA/VGA screen, as long as the high-level language you’re using can perform
direct port 1 / 0 to set up the adapter and can read and write display memory directly.

One tip f y o u ’re saving and restoring the screen from a high-level language on an p EGA, though: Ajier you t e completed the save or restore operation, be sure to put
any registers that you t e changed back to their default settings. Some high-level
languages (and the BIOS as well) assume that various registers are left in a cer-
tain state, so on the EGA it 5 safest to leave the registers in their most likely state.
On the VGA, of course, you can just read the registers out before you change them,
then put them back the way you found them when you ’re done.

16 Colors out of 64
How does one produce the 64 colors from which the 16 colors displayed by the EGA
can be chosen? The answer is simple enough: There’s a BIOS function that lets you
select the mapping of the 16 possible pixel values to the 64 possible colors. Let’s lay
out a bit of background before proceeding, however.
The EGA sends pixel information to the monitor on 6 pins. This means that there are 2
to the 6th, or 64 possible colors that an EGA can generate. However, for compatibil-
ity with pre-EGA monitors, in 200-scan-line modes Enhanced Color Displaycompatible
monitors ignore two of the signals. As a result, in CGA-compatible modes (modes 4,
5,6, and the 200-scan-line versions of modes 0,1,2, and 3) you can select from only
16 colors (although the colors can still be remapped, as described below). If you’re
not hooked up to a monitor capable of displaying 350 scan lines (such as the old

548 Chapter 29

IBM Color Display), you can never select from more than 16 colors, since those
monitors only accept four input signals. For now, we’ll assume we’re in one of the
350-scan line color modes, a group which includes mode 10H and the 350-scan-line
versions of modes 0, 1, 2, and 3.
Each pixel comes out of memory (or, in text mode, out of the attribute-handling
portion of the EGA) as a 4bit value, denoting 1 of 16 possible colors. In graphics
modes, the 4bit pixel value is made up of one bit from each plane, with 8 pixels’
worth of data stored at any given byte address in display memory. Normally, we think
of the 4bit value of a pixel as being that pixel’s color, so a pixel value of 0 is black, a
pixel value of 1 is blue, and so on, as if that’s a built-in feature of the EGA.
Actually, though, the correspondence of pixel values to color is absolutely arbitrary,
depending solely on how the color-mapping portion of the EGA containing the pal-
ette registers is programmed. If you cared to have color 0 be bright red and color l
be black, that could easily be arranged, as could a mapping in which all 16 colors
were yellow. What’s more, these mappings affect text-mode characters as readily as
they do graphics-mode pixels, so you could map text attribute 0 to white and text
attribute 15 to black to produce a black on white display, if you wished.
Each of the 16 palette registers stores the mapping of one of the 16 possible 4bit pixel
values from memory to one of 64 possible &bit pixel values to be sent to the monitor
as video data, as shown in Figure 29.2. A 4bit pixel value of 0 causes the &bit value

4 bits per pixel
from display -
memory or from
a text attribute,
used to look up a
palette register

6 bits per pixel
to the display,
from the palette
register selected
by the 4-bit
pixel value

Color translation via the palette registers.
Figure 29.2

Saving Screens and Other VGA Mysteries 549

stored in palette register 0 to be sent to the display as the color of that pixel, a pixel
value of 1 causes the contents of palette register 1 to be sent to the display, and so on.
Since there are only four input bits, it stands to reason that only 16 colors are avail-
able at any one time; since there are six output bits, however, those 16 colors can be
mapped to any of 64 colors. The mapping for each of the 16 pixel values is controlled by
the lower six bits of the corresponding palette register, as shown in Figure 29.3.
Secondary red, green, and blue are less-intense versions of red, green, and blue,
although their exact effects vary from monitor to monitor. The best way to figure out
what the 64 colors look like on your monitor is to see them, and that's just what the
program in Listing 29.3, which we'll discuss shortly, lets you do.
How does one go about setting the palette registers? Well, it's certainly possible to set
the palette registers directly by addressing them at registers 0 through OFH of the
Attribute Controller. However, setting the palette registers is a bit tricky-bit 5 of the
Attribute Controller Index register must be 0 while the palette registers are written
to, and glitches can occur if the updating doesn't take place during the blanking
interval-and besides, it turns out that there's no need at all to go straight to the
hardware on this one. Conveniently, the EGA BIOS provides us with video function
10H, which supports setting either any one palette register or all 16 palette registers
(and the overscan register as well) with a single video interrupt.
Video function 10H is invoked by performing an INT 10H with AH set to 10H. If AL
is 0 (subfunction 0), then BL contains the number of the palette register to set, and
BH contains the value to set that register to. If AL, is 1 (subfunction l) , then BH
contains the value to set the overscan (border) color to. Finally, ifAL is 2 (subfunction
2) , then ES:DX points to a 17-byte array containing the values to set palette registers
0-15 and the overscan register to. (For completeness, although it's unrelated to the
palette registers, there is one more subfunction of video function 10H. If AL = 3

Palette
Register R'

B i t 7 6 5 4 3 2 1 0

B G R B' G'

R' = secondary red
G' = secondary reen
B' = secondary b 7 ue
R = red
G = reen
B = due

Bit organization within a palette register:
Figure 29.3

550 Chapter 29

(subfunction 3), bit 0 of BL is set to 1 to cause bit 7 of text attributes to select blink-
ing, or set to 0 to cause bit 7 of text attributes to select high-intensity reverse video.)
Listing 29.3 uses video function 10H, subfunction 2 to step through all 64 possible
colors. This is accomplished by putting up 16 color bars, one for each of the 16
possible 4bit pixel values, then changing the mapping provided by the palette registers
to select a different group of 16 colors from the set of 64 each time a key is pressed.
Initially, colors 0-15 are displayed, then 1-16, then 2-17, and so on up to color 3FH
wrapping around to colors 0-14, and finally back to colors 0-15. (By the way, at mode
set time the 16 palette registers are not set to colors 0-15, but rather to OH, IH, 2H,
3H, 4H, 5H, 14H, 7H, 38H, 39H, 3AH, 3BH, 3CH, 3DH, 3EH, and 3FH, respectively. Bits
6,5, and 4-secondary red, green, and blue-are all set to 1 in palette registers 8-15 in
order to produce high-intensity colors. Palette register 6 is set to 14H to produce
brown, rather than the yellow that the expected value of 6H would produce.)
When you run Listing 29.3, you'll see that the whole screen changes color as each
new color set is selected. This occurs because most of the pixels on the screen have a
value of 0, selecting the background color stored in palette register 0, and we're
reprogramming palette register 0 right along with the other 15 palette registers.
It's important to understand that in Listing 29.3 the contents of display memory are
never changed after initialization. The only change is the mapping from the 4bit
pixel data coming out of display memory to the &bit data going to the monitor. For
this reason, it's technically inaccurate to speak of bits in display memory as repre-
senting colors; more accurately, they represent attributes in the range 0-15, which
are mapped to colors 0-3FH by the palette registers.

LISTING 29.3 129-3.ASM
: Program t o i l l u s t r a t e t h e c o l o r m a p p i n g c a p a b i l i t i e s o f t h e
: EGA's p a l e t t e r e g i s t e r s .

VGA-SEGMENT equ OaOOOh
SC-INDEX equ 3c4h
MAP-MASK equ 2
BAR-HEIGHT e q u 1 4 : h e i g h t o f e a c h b a r
TOP-BAR equ BARKHEIGHT*6 : s t a r t t h e b a r s down a b i t t o

: S e q u e n c e C o n t r o l l e r I n d e x r e g i s t e r
:Map Mask r e g i s t e r i n d e x i n SC

: l e a v e r o o m f o r t e x t

s t a c k s e g m e n t p a r a s t a c k 'STACK'

s tack ends

Data segment word 'DATA'
KeyMsg db

db
' P r e s s a n y k e y t o see t h e n e x t c o l o r s e t . '

db
' T h e r e a r e 6 4 c o l o r s e t s i n a l l . '
Odh. Oah. Oah. Oah. Oah

db 13 dup (' ' 1 , ' A t t r i b u t e '
db 38 dup (' ' 1 , ' C o l o r $ '

db 512 dup (?)

: Used t o l a b e l t h e a t t r i b u t e s o f t h e c o l o r b a r s .

Saving Screens and Other VGA Mysteries 551

A t t r i b u t e N u m b e r s l a b e l b y t e
X' 0

i f x It 10

e l s e

e n d i f
X' x + l

r e p t 1 6

db ' 0 ' . x+'O'. ' h ' , Oah. 8 . 8. 8

db ' 0 ' . x + ' A ' - 1 0 . ' h ' , Oah. 8 . 8. 8

endm
db , $ *

: Used t o l a b e l t h e c o l o r s o f t h e c o l o r b a r s . (C o l o r v a l u e s a r e
: f i l l e d i n o n t h e f l y .)

C o l o r N u m b e r s l a b e l b y t e
r e p t 1 6
db ' 000h ' . Oah. 8. 8. 8 . 8
endm

db ' I '
COLORKENTRY-LENGTH e q u ($ - C o l o r N u m b e r s) / l 6

C u r r e n t C o l o r d b ?

: Space f o r t h e a r r a y o f 1 6 c o l o r s w e ' l l p a s s t o t h e BIOS, p l u s
: a n o v e r s c a n s e t t i n g o f b l a c k .

C o l o r T a b l e db 16 dup (? I , 0
Data ends

Code segment

S t a r t p r o c n e a r
assume cs:Code, ds:Data

c l d
mov ax .Data
mov ds ,ax

: Go t o h i - r e s g r a p h i c s mode.

mov ax .10h :AH - 0 means mode s e t , AL - 1 0 h s e l e c t s

i n t 1 0 h ;BIOS v i d e o i n t e r r u p t
: h i - r e s g r a p h i c s mode

: P u t u p r e l e v a n t t e x t .

mov ah.9 ;DOS p r i n t s t r i n g f u n c t i o n
mov d x . o f f s e t KeyMsg
i n t 21h

: P u t u p t h e c o l o r b a r s , o n e i n e a c h o f t h e 1 6 p o s s i b l e p i x e l v a l u e s
: (w h i c h w e ' l l c a l l a t t r i b u t e s) .

mov cx .16 : w e ' l l p u t u p 1 6 c o l o r b a r s
sub a1 .a1 : s t a r t w i t h a t t r i b u t e 0

push ax
push c x
c a l l BarUp
POP c x
POP ax

BarLoop:

552 Chapter 29

; s e l e c t t h e n e x t a t t r i b u t e i nc ax
l oop Ba rLoop

: P u t u p t h e a t t r i b u t e l a b e l s .

mov ah.2 : v i d e o i n t e r r u p t s e t c u r s o r p o s i t i o n f u n c t i o n
sub bh, bh :page 0
mov dh,TOP_BAR/14 : c o u n t i n g i n c h a r a c t e r r o w s , m a t c h t o

: t o p o f f i r s t b a r , c o u n t i n g i n
: s c a n l i n e s

mov d l .16 : j u s t t o l e f t o f b a r s
i n t 10h
mov ah.9 :DOS p r i n t s t r i n g f u n c t i o n
mov d x . o f f s e t A t t r i b u t e N u m b e r s
i n t 21h

: L o o p t h r o u g h t h e c o l o r s e t . one new s e t t i n g p e r k e y p r e s s .

mov [C u r r e n t C o l o r l . O : s t a r t w i t h c o l o r z e r o
Co lo rLoop :

: S e t t h e p a l e t t e r e g i s t e r s t o t h e c u r r e n t c o l o r s e t . c o n s i s t i n g
: o f t h e c u r r e n t c o l o r mapped t o a t t r i b u t e 0. c u r r e n t c o l o r + 1
: mapped t o a t t r i b u t e 1. and so on.

mov a1 , [C u r r e n t C o l o r l
mov b x , o f f s e t C o l o r T a b l e
mov cx .16 :we h a v e 1 6 c o l o r s t o s e t

and a1 . 3 f h :limit t o 6 - b i t c o l o r v a l u e s
mov C b x l . a 1 : b u i l d t h e 1 6 - c o l o r t a b l e u s e d f o r s e t t i n g
i n c b x : t h e p a l e t t e r e g i s t e r s
i n c a x
l o o p P a l e t t e S e t L o o p
mov a h . 1 0 h ; v i d e o i n t e r r u p t p a l e t t e f u n c t i o n
mov a l . 2 : s u b f u n c t i o n t o s e t a l l 1 6 p a l e t t e r e g i s t e r s

mov d x . o f f s e t C o l o r T a b l e
push ds
POP es ; E S : D X p o i n t s t o t h e c o l o r t a b l e
i n t 1 0 h : i n v o k e t h e v i d e o i n t e r r u p t t o s e t t h e p a l e t t e

P a l e t t e S e t L o o p :

: a n d o v e r s c a n a t o n c e

: P u t u p t h e c o l o r n u m b e r s , s o we can see how a t t r i b u t e s map
: t o c o l o r v a l u e s , a n d s o we can see how e a c h c o l o r # l o o k s
: (a t l e a s t on t h i s p a r t i c u l a r s c r e e n) .

c a l l

: W a i t f o r a keyp ress ,

Wai tKey :
mov
i n t

ColorNumbersUp

s o t h e y c a n see t h i s c o l o r s e t .

ah.8 ;DOS i n p u t w i t h o u t e c h o f u n c t i o n
21h

: Advance t o t h e n e x t c o l o r s e t .

mov a1 . [C u r r e n t C o l o r l
i nc ax
mov [C u r r e n t C o l o r l , a l
cmp a1 .64
j b e C o l o r L o o p

Saving Screens and Other VGA Mysteries 553

; R e s t o r e t e x t mode.

mov ax .3
i n t 10h

; Done.

Done:
mov ah ,4ch ;DOS t e r m i n a t e f u n c t i o n
i n t 21h

; Puts up a b a r c o n s i s t i n g o f t h e s p e c i f i e d a t t r i b u t e (p i x e l v a l u e) .
; a t a v e r t i c a l p o s i t i o n c o r r e s p o n d i n g t o t h e a t t r i b u t e .

; I n p u t : AL - a t t r i b u t e

BarUp p roc
mov
mov
mov
o u t
i nc
mov
o u t

mov
mu1
add

mov
mu1

add
mov
mov
mov

mov
mov

mov
r e p
add

dec
j n z
r e t

Ba rL ineLoop :

BarUp endp

n e a r
dx.SC-INDEX
ah .a l
a1 .MAP_MASK
d x . a l
d x
a1 ,ah
d x . a l

ah,BAR-HEIGHT
ah
ax,TDP-BAR

dx.80
dx

ax , 20
d i ,ax
ax.VGA_SEGMENT
es ,ax

dx.BAR-HEIGHT
a1 .O f fh

c x , 40
s t o s b
d i ,40

dx
BarL ineLoop

; s e t t h e Map Mask r e g i s t e r t o p r o d u c e
; t h e d e s i r e d c o l o r

; row o f t o p o f b a r
; s t a r t a f e w l i n e s down t o l e a v e room f o r
; t e x t
: r o w s a r e EO b y t e s l o n g
: o f f s e t i n b y t e s o f s t a r t o f s c a n l i n e b a r
; s t a r t s o n
; o f f s e t i n b y t e s o f u p p e r

;ES:DI p o i n t s t o o f f s e t o
; c o r n e r o f b a r

l e f t c o r n e r o f b a r

f u p p e r l e f t

; Conver t s AL t o a h e x d i g i t i n t h e r a n g e 0 -F

B i n T o H e x D i g i t p r o c n e a r
cmp a l . 9
j a I s H e x
add a1 , ' 0 '
r e t

add a1 , ' A ' -10
r e t

IsHex:

B i n T o H e x D i g i t endp

:make t h e b a r s 4 0 w i d e
; d o o n e s c a n l i n e o f t h e b a r
; p o i n t t o t h e s t a r t o f t h e n e x t s c a n l i n e
; o f t h e b a r

554 Chapter 29

: D i s p l a y s t h e c o l o r v a l u e s g e n e r a t e d b y t h e c o l o r b a r s g i v e n t h e
: c u r r e n t p a l e t t e r e g i s t e r s e t t i n g s o f f t o t h e r i g h t o f t h e c o l o r
: b a r s .

Col orNumbersUpproc
mov
sub
mov

mov
i n t
mov
mov

mov

push
and
s h r
s h r
s h r
s h r
c a l l
mov
POP
push
and
c a l l

ColorNumberLoop:

mov
add
POP
i n c
1 oop
mov
mov
i n t
r e t

ColorNumbersUpendp

S t a r t e n d p
Code ends

end

n e a r
ah.2
bh,bh

; v i d e o i n t e r r u p t s e t c u r s o r p o s i t i o n f u n c t i o n

dh.TOP-BAR114
:page 0
: c o u n t i n g i n c h a r a c t e r r o w s . m a t c h t o
: t o p o f f i r s t b a r , c o u n t i n g i n
: s c a n l i n e s
; j u s t t o r i g h t o f b a r s d l ,20+40+1

10h
a1 . [C u r r e n t C o l o r] : s t a r t w i t h t h e c u r r e n t c o l o r
b x . o f f s e t C o l o r N u m b e r s + l

c x , 1 6 : w e ’ v e g o t 1 6 c o l o r s t o d o

a x : s a v e t h e c o l o r //
a l . 3 f h :limit t o 6 - b i t c o l o r v a l u e s
a l . l
a1 .1
a1 .1
a1 .1 : i s o l a t e t h e h i g h n i b b l e o f t h e c o l o r #
B i nToHexDi g i t : c o n v e r t t h e h i g h c o l o r 11 n i b b l e
Cbxl .a1 : a n d p u t i t i n t o t h e t e x t
a x ; g e t b a c k t h e c o l o r I/
a x : s a v e t h e c o l o r #
a 1 . O f h ; i s o l a t e t h e l o w c o l o r # n i b b l e
B i n T o H e x D i g i t : c o n v e r t t h e l o w n i b b l e o f t h e

[b x + l l .a1 : a n d p u t i t i n t o t h e t e x t
bx,COLOR-ENTRY-LENGTH : p o i n t t o t h e n e x t e n t r y
a x ; g e t b a c k t h e c o l o r #
a x ; n e x t c o l o r #
Col orNumberLoop
ah.9 :DOS p r i n t s t r i n g f u n c t i o n
d x . o f f s e t C o l o r N u m b e r s
2 1 h : p u t u p t h e a t t r i b u t e n u m b e r s

: b u i l d c o l o r number t e x t s t r i n g o n t h e f l y

: c o l o r # t o A S C I I

S t a r t

Overscan
While we’re at it, I’m going to touch on overscan. Overscan is the color of the border
of the display, the rectangular area around the edge of the monitor that’s outside
the region displaying active video data but inside the blanking area. The overscan
(or border) color can be programmed to any of the 64 possible colors by either
setting Attribute Controller register 11H directly or calling video function 10H,
subfunction 1.

Saving Screens and Other VGA Mysteries 555

On ECD-compatible monitors, howevel; there 5. too little scan time to display a p proper border when the EGA is in 350-scan-line mode, so overscan should always
be 0 (black) unless you 're in 200-scan-line mode. Note, though, that a VGA can
easily display a border on a VGA-compatible monitor, and VGAs are in fact pro-
grammed at mode set for an 8-pixel-wide border in all modes; all you need do is
set the overscan color on any VGA to see the border:

A Bonus Blanker
An interesting bonus: The Attribute Controller provides a very convenient way to
blank the screen, in the form of the aforementioned bit 5 of the Attribute Controller
Index register (at address 3COH after the Input Status 1 register-3DAH in color, 3BAH
in monochrome-has been read and on every other write to 3COH thereafter). When-
ever bit 5 of the AC Index register is 0, video data is cut off, effectively blanking the
screen. Setting bit 5 of the AC Index back to 1 restores video data immediately.
Listing 29.4 illustrates this simple but effective form of screen blanking.

LISTING 29.4 129-4.ASM
; P r o g r a m t o d e m o n s t r a t e s c r e e n b l a n k i n g v i a b i t 5 o f t h e
; A t t r i b u t e C o n t r o l l e r I n d e x r e g i s t e r .

AC-INDEX equ 3cOh
INPUT-STATUS-1 equ 3dah ;co lo r -mode address o f t h e I n p u t

; A t t r i b u t e C o n t r o l l e r I n d e x r e g i s t e r

; S t a t u s 1 r e g i s t e r

: Macro t o w a i t f o r a n d c l e a r t h e n e x t k e y p r e s s .

WAIT-KEY macro
mov ah,8
i n t 21h
endm

;DOS i n p u t w i t h o u t e c h o f u n c t i o n

s t a c k s e g m e n t p a r a s t a c k 'STACK'

s t a c k e n d s

Data segment word ' DATA'
Sampl eTex t db

db
' T h i s i s b i t - m a p p e d t e x t , d r a w n i n h i - r e s '
'EGA g r a p h i c s mode 10h. ' . Ddh. Oah. Oah

db
db

' P r e s s a n y k e y t o b l a n k t h e s c r e e n , t h e n '

db
' a n y k e y t o u n b l a n k it,', Odh. Oah
' t h e n a n y k e y t o e n d . $ '

db 512 dup (?)

Data ends

Code segment

S t a r t p r o c n e a r
assume cs:Code. ds:Data

mov ax,Data
mov ds .ax

; Go t o h i - r e s g r a p h i c s mode.

mov ax , lOh

i n t 10h

;AH - 0 means mode s e t . AL - 1 0 h s e l e c t s
; h i - r e s g r a p h i c s mode
; B I O S v i d e o i n t e r r u p t

556 Chapter 29

; P u t up some t e x t , s o t h e s c r e e n i s n ’ t e m p t y .

mov ah.9 ;DOS p r i n t s t r i n g f u n c t i o n
mov dx .o f f se t SamDleTex t
i n t 2 1 h

WAIT-KEY

; B l a n k t h e s c r e e n .

mov dx.INPUT-STATUS-]
i n a1 .dx

mov dx.AC-INDEX
sub a1 .a1
o u t d x . a l

WAIT-KEY

: U n b l a n k t h e s c r e e n .

mov dx.INPUT-STATUS-]
i n a1 .dx

mov dx.AC-INDEX
mov a1 .ZOh
o u t d x . a l

WAIT-KEY

: R e s t o r e t e x t mode.

mov ax .2
i n t 10h

: Done.

Done:
mov ah .4ch
i n t 21h

S t a r t endp
Code ends

e n d S t a r t

: r e s e t p o r t 3cOh t o i n d e x (r a t h e r t h a n d a t a)
: mode

;make b i t 5 ze ro . . .
: . . . w h i c h b l a n k s t h e s c r e e n

: r e s e t p o r t 3cOh t o I n d e x (r a t h e r t h a n d a t a)
; mode

:make b i t 5 one.. .
:. . . w h i c h u n b l a n k s t h e s c r e e n

;DOS t e r m i n a t e f u n c t i o n

Does that do it for color selection? Yes and no. For the EGA, we’ve covered the whole
of color selection-but not so ‘for the VGA. The VGA can emulate everything we’ve
discussed, but actually performs one 4bit to 8-bit translation (except in 256-color
modes, where all 256 colors are simultaneously available), followed by yet another
translation, this one 8-bit to 18-bit. What’s more, the VGA has the ability to flip in-
stantly through as many as 16 16-color sets. The VGA’s color selection capabilities,
which are supported by another set of BIOS functions, can be used to produce stun-
ning color effects, as we’ll see when we cover them starting in Chapter 33.

Saving Screens and Other VGA Mysteries 557

Modifying VGA Registers
EGA registers are not readable. VGA registers are readable. This revelation will not come
as news to most of you, but many programmers still insist on setting entire VGA registers
even when they’re modifymg only selected bits, as if they were programming the
EGA. This comes to mind because I recently received a query inquiring why write
mode 1 (in which the contents of the latches are copied directly to display memory)
didn’t work in Mode X. (I’ll go into Mode X in detail later in this book.) Actually,
write mode 1 does work in Mode X; it didn’t work when this particular correspon-
dent enabled it because he did so by writing the value 01H to the Graphics Mode
register. As it happens, the write mode field is only one of several fields in that regis-
ter, as shown in Figure 29.4. In 256-color modes, one of the other fields-bit 6, which
enables 256-color pixel formatting-is not 0, and setting it to 0 messes up the screen
quite thoroughly.
The correct way to set a field within a VGA register is, of course, to read the register,
mask off the desired field, insert the desired setting, and write the result back to the
register. In the case of setting the VGA to write mode 1, do this:

mov
mov
o u t
i nc
i n
and
or
o u t

dx.3ceh
a1 .5
d x . a l
dx
a1 .dx
a l . n o t 3
a1 .1
d x . a l

: G r a p h i c s c o n t r o l l e r i n d e x
:Graphics mode r e g i n d e x
: p o i n t GC i n d e x t o GLMODE
: G r a p h i c s c o n t r o l l e r d a t a
: g e t c u r r e n t mode s e t t i n g
:mask o f f w r i t e mode f i e l d
: s e t w r i t e mode f i e l d t o 1
: s e t w r i t e mode 1

This approach is more of a nuisance than simply setting the whole register, but it’s
safer. It’s also slower; for cases where you must set a field repeatedly, it might be
worthwhile to read and mask the register once at the start, and save it in a variable, so
that the value is readily available in memory and need not be repeatedly read from
the port. This approach is especially attractive because INS are much slower than
memory accesses on 386 and 486 machines.
Astute readers may wonder why I didn’t put a delay sequence, such as JMP $+2,
between the IN and OUT involving the same register. There are, after all, guidelines
from IBM, specifjmg that a certain period should be allowed to elapse before a
second access to an 1 / 0 port is attempted, because not all devices can respond as
rapidly as a 286 or faster CPU can access a port. My answer is that while I can’t
guarantee that a delay isn’t needed, I’ve never found a VGA that required one; I
suspect that the delay specification has more to do with motherboard chips such as
the timer, the interrupt controller, and the like, and I sure hate to waste the delay
time if it’s not necessary. However, I’ve never been able to find anyone with the
definitive word on whether delays might ever be needed when accessing VGAs, so if

558 Chapter 29

Bit 7

Graphics Mode Register
(Graphics controller register #5)

0 1 0 0 0 0 01
-

I I Reserved

I I Read mode 0
I Odd/even

addressing off

CGA pixel
formatting off

Reserved

Graphics mode register fields.
Figure 29.4

you know the gospel truth, or if you know of a VGA/processor combo that does
require delays, please let me know by contacting me through the publisher. You’d be
doing a favor for a whole generation of graphics programmers who aren’t sure whether
they’re skating on thin ice without those legendary delays.

Saving Screens and Other VGA Mysteries 559

chapter 30

video est omnis divisa

il ‘ir 4,
 as^

s m *!gib‘.

.pa.

Galling Problems of Using Split
e EGA and VGA

The ability to split t two largely independent portions-one displayed
is one of the more intriguing capabilities of the VGA

and EGA. The split ature can be used for popups (including popups that
or simply to display two separate portions of display
le it’s possible to accomplish the same effects purely

in software witho e split screen, software solutions tend to be slow and hard to

f the split screen is fairly simple, once you grasp the
pull it off, and understand the limitations and pit-

falls-like the fact that the EGAs split screen implementation is a little buggy.
Furthermore, panning with the split screen enabled is not as simple as it might seem.
All in all, we do have some ground to cover.
Let’s start with the basic operation of the split screen.

How the Split Screen Works
The operation of the split screen is simplicity itself. A split screen start scan line value
is programmed into two EGA registers or three VGA registers. (More on exactly
which registers in a moment.) At the beginning of each frame, the video circuitry

563

begins to scan display memory for video data starting at the address specified by the
start address registers, just as it normally would. When the video circuitry encounters
the specified split screen start scan line in the course of scanning video data onto the
screen, it completes that scan line normally, then resets the internal pointer which
addresses the next byte of display memory to be read for video data to zero. Display
memory from address zero onward is then scanned for video data in the usual way,
progressing toward the high end of memory. At the end of the frame, the pointer to
the next byte of display memory to scan is reloaded from the start address registers,
and the whole process starts over.
The net effect: The contents of display memory starting at offset zero are displayed
starting at the scan line following the specified split screen start scan line, as shown
in Figure 30.1. It's important to understand that the scan line that matches the split
screen scan line is not part of the split screen; the split screen starts on the following
scan line. So, for example, if the split screen scan line is set to zero, the split screen
actually starts at scan line 1, the second scan line from the top of the screen.
If both the start address and the split screen start scan line are set to 0, the data at
offset zero in display memory is displayed as both the first scan line on the screen
and the second scan line. There is no way to make the split screen cover the entire
screen-it always comes up at least one scan line short.

Offset 0,
(start
of split-
screen
area of
display
memory)

Start "+

address
(start of
normal-
screen
area of
display
memory)

Display Memory

The Split Screen

Display memory and the split screen.
Figure 30.1

564 Chapter 30

So, where is the split screen start scan line stored? The answer varies a bit, depending
on whether you’re talking about the EGA or the VGA. On the EGA, the split screen start
scan line is a 9-bit value, with bits 7-0 stored in the Line Compare register (CRTC register
18H) and bit 8 stored in bit 4 of the Overflow register (CRTC register ’7). Other bits
in the Overflow register serve as the high bits of other values, such as the vertical
total and the vertical blanking start. Since EGA registers are-alas!-not readable,
you must know the correct settings for the other bits in the Overflow registers to use
the split screen on an EGA. Fortunately, there are only two standard Overflow register
settings on the EGA 11H for 200-scan-line modes and 1FH for 350-scan-line modes.
The VGA, of course, presents no such problem in setting the split screen start scan
line, for it has readable registers. However, the VGA supports a 10-bit split screen
start scan line value, with bits 8-0 stored just as with the EGA, and bit 9 stored in bit 6
of the Maximum Scan Line register (CRTC register 9).
Turning the split screen on involves nothing more than setting all bits of the split
screen start scan line to the scan line after which you want the split screen to start
appearing. (Of course, you’ll probably want to change the start address before using
the split screen; otherwise, you’ll just end up displaying the memory at offset zero
twice: once in the normal screen and once in the split screen.) Turning off the split
screen is a simple matter of setting the split screen start scan line to a value equal to
or greater than the last scan line displayed; the safest such approach is to set all bits
of the split screen start scan line to 1. (That is, in fact, the split screen start scan line
value programmed by the BIOS during a mode set.)

The Split Screen in Action
All of these points are illustrated by Listing 30.1. Listing 30.1 fills display memory
starting at offset zero (the split screen area of memory) with text identifylng the split
screen, fills display memory starting at offset 8000H with a graphics pattern, and sets
the start address to 8000H. At this point, the normal screen is being displayed (the
split screen start scan line is still set to the BIOS default setting, with all bits equal to
1, so the split screen is off), with the pixels based on the contents of display memory
at offset 8000H. The contents of display memory between offset 0 and offset 7FFFH are
not visible at all.
Listing 30.1 then slides the split screen up from the bottom of the screen, one scan
line at a time. The split screen slides halfway up the screen, bounces down a quarter
of the screen, advances another half-screen, drops another quarter-screen, and fi-
nally slides all the way up to the top. If you’ve never seen the split screen in action,
you should run Listing 30.1; the smooth overlapping of the split screen on top of the
normal display is a striking effect.
Listing 30.1 isn’t done just yet, however. After a keypress, Listing 30.1 demonstrates
how to turn the split screen off (by setting all bits of the split screen start scan line to
1). After another keypress, Listing 30.1 shows that the split screen can never cover

Video Est Omnis Divisa 565

the whole screen, by setting the start address to 0 and then flipping back and forth
between the normal screen and the split screen with a split screen start scan line
setting of zero. Both the normal screen and the split screen display the same text,
but the split screen displays it one scan line lower, because the split screen doesn't
start until after the first scan line, and that produces a jittering effect as the program
switches the split screen on and off. (On the EGA, the split screen may display two
scan lines lower, for reasons I'll discuss shortly.)
Finally, after another keypress, Listing 30.1 halts.

LISTING 30.1 130- 1 .ASM
: D e m o n s t r a t e s t h e VGA/EGA s p l i t s c r e e n i n a c t i o n .

.
I S-VGA

VGA-SEGMENT
SCREEN-WIDTH
SCREENKHEIGHT
CRTC-INDEX
OVERFLOW
MAXIMUM-SCAN-LINEequ

START-ADDRESS-HIGH

STARTLADDRESS-LOWequ

LINE-COMPARE

INPUT-STATUS-0
WORD-OUTS-OK

1 ; s e t t o 0 t o a s s e m b l e f o r EGA

OaOOOh
640
350
3d4h ;CRT C o n t r o l l e r I n d e x r e g i s t e r
7 : i n d e x o f O v e r f l o w r e g i n CRTC

: i n d e x o f Maximum Scan L i n e r e g i s t e r
: i n CRTC

: i n CRTC
: i n d e x o f S t a r t A d d r e s s Low r e g i s t e r
: i n CRTC

1 8 h ; i n d e x o f L i n e Compare r e g (b i t s 7 - 0
: o f s p l i t s c r e e n s t a r t s c a n l i n e)
: i n CRTC

Och : i n d e x o f S t a r t A d d r e s s H i g h r e g i s t e r

3 d a h : I n p u t S t a t u s 0 r e g i s t e r
1 : s e t t o 0 t o a s s e m b l e f o r

: c o m p u t e r s t h a t c a n ' t h a n d l e
: w o r d o u t s t o i n d e x e d VGA r e g i s t e r s

.
: Macro t o o u t p u t a w o r d v a l u e t o a p o r t .

OUTLWORD macro
i f WORD-OUTS-OK

o u t d x . a x
e l s e

o u t d x . a l
i n c d x
xchg ah ,a l
o u t d x . a l
dec dx
xchg ah .a l

endm
e n d i f

.
MyStack segment para s tack 'STACK'

MyStack ends

Data segment
S p l i t S c r e e n L i n e dw ? : l i n e t h e s p l i t s c r e e n c u r r e n t l y

db 512 dup (0)

.

: s t a r t s a f t e r

566 Chapter 30

S t a r t A d d r e s s dw ? : d i s p l a y memory o f f s e t a t w h i c h

: Message d i s p l a y e d i n s p l i t s c r e e n .
S p l i t S c r e e n M s g d b ' S p l i t s c r e e n t e x t r o w #'
O i g i t I n s e r t dw ?

Data ends
.
Code segment

.
S t a r t p r o c n e a r

: s c a n n i n g f o r v i d e o d a t a s t a r t s

db ' . . . s o

assume cs:Code. ds:Oata

mov ax .0a ta
mov ds.ax

: S e l e c t mode 1 0 h . 6 4 0 x 3 5 0 1 6 - c o l o r g r a p h i c s mode.

mov ax.0010h :AH-0 i s s e l e c t mode f u n c t i o n
:AL=lOh i s mode t o s e l e c t ,
: 6 4 0 x 3 5 0 1 6 - c o l o r g r a p h i c s mode

i n t 10h

: P u t t e x t i n t o d i s p l a y memory s t a r t i n g a t o f f s e t 0 . w i t h e a c h r o w
: l a b e l l e d as t o number. Th is i s t h e p a r t o f memory t h a t will be
: d i s p l a y e d i n t h e s p l i t s c r e e n p o r t i o n o f t h e d i s p l a y .

mov cx.25 :# o f l i n e s o f t e x t w e ' l l d r a w i n t o
: t h e s p l i t s c r e e n p a r t o f memory

F i l l Spl i tScreenLoop:
mov a h . 2 : s e t c u r s o r l o c a t i o n f u n c t i o n #
sub bh .bh : se t cu rso r i n page 0
mov dh.25
sub d h . c l : c a l c u l a t e r o w t o d r a w i n
s u b d l , d l : s t a r t i n c o l u m n 0
i n t 1 0 h : s e t t h e c u r s o r l o c a t i o n
mov a1 ,25
sub a1 . c l : c a l c u l a t e r o w t o d r a w i n a g a i n
sub ah,ah :make t h e v a l u e a w o r d f o r d i v i s i o n
mov dh.10
d i v d h : s p l i t t h e r o w # i n t o t w o d i g i t s
add ax, ' 00 ' : c o n v e r t t h e d i g i t s t o A S C I I
mov [O i g i t I n s e r t l . a x : p u t t h e d i g i t s i n t o t h e t e x t

mov ah.9
mov d x . o f f s e t S p l i t S c r e e n M s g
i n t 21h : p r i n t t h e t e x t
1 oop F i l l Spl i tScreenLoop

: t o b e d i s p l a y e d

: F i l l d i s p l a y memory s t a r t i n g a t 8 0 0 0 h w i t h a d i a g o n a l l y s t r i p e d
: p a t t e r n .

mov ax.VGA-SEGMENT
mov es.ax
mov d i ,8000h
mov dx,SCREENLHEIGHT
mov ax, 888811
c l d

mov cx.SCREEN-WIOTH/8/2
r e p s t o s w

RowLoop:

:fill a l l l i n e s
: s t a r t i n g fill p a t t e r n

:fill 1 scan l i n e a word a t a t i m e
:fill t h e s c a n l i n e

Video Est Omnis Divisa 567

r o r a x . 1 ; s h i f t p a t t e r n
dec dx
j n z RowLoop

; S e t t h e s t a r t a d d r e s s t o 8 0 0 0 h a n d d i s p l a y t h a t p a r t

mov [S tar tAddress1,8000h
c a l l S e t S t a r t A d d r e s s

word

o f memory.

: S l i d e t h e s p l i t s c r e e n h a l f way u p t h e s c r e e n a n d t h e n b a c k down
; a q u a r t e r o f t h e s c r e e n .

mov

mov
c a l l
mov
c a l l

; Now move

mov
c a l l
mov
c a l l

CSplitScreenLine1,SCREEN-HEIGHT-1
; s e t t h e i n i t i a l l i n e j u s t o f f
; t h e b o t t o m o f t h e s c r e e n

cx,SCREENKHEIGHT/2
Sp l i tScreenUp
cx,SCREEN_HEIGHT/4
Sp l i tScreenDown

u p a n o t h e r h a l f a sc reen and then back down a q u a r t e r .

cx.SCREEN-HEIGHT/Z
Sp l i tScreenUp
cx,SCREEN_HEIGHT/4
Sp l i tScreenDown

; F i n a l l y move up t o t h e t o p o f t h e s c r e e n .

mov
c a l l

: W a i t f o r

mov
i n t

; T u r n t h e

mov
c a l l

: W a i t f o r

mov
i n t

cx.SCREENPHEIGHT/2-2
Sp l i tScreenUp

a k e y p r e s s (d o n ' t e c h o c h a r a c t e r) .

ah.8 ;DOS c o n s o l e i n p u t w i t h o u t e c h o f u n c t i o n
21h

s p l i t s c r e e n o f f .

[SplitScreenLine].Offffh
S e t S p l i t S c r e e n S c a n L i n e

a k e y p r e s s (d o n ' t e c h o c h a r a c t e r) .

ah.8 :OOS c o n s o l e i n p u t w i t h o u t e c h o f u n c t i o n
21h

; D i s p l a y t h e memory a t 0 (t h e same memory t h e s p l i t s c r e e n d i s p l a y s) .

mov C S t a r t A d d r e s s l . 0
c a l l S e t S t a r t A d d r e s s

; F l i p b e t w e e n t h e s p l i t s c r e e n a n d
; f r a m e u n t i l a key i s p ressed.

the no rma l sc reen eve ry 10 th

F1 i pLoop:
x o r CSplitScreenLine1,Offffh
c a l l S e t S p l i tScreenScanL ine
mov cx.10

568 Chapter 30

CountVer t i ca l SyncsLoop:
c a l l W a i t F o r V e r t i c a l S y n c E n d
l o o p C o u n t V e r t i c a l S y n c s L o o p
mov ah.0bh ;DOS c h a r a c t e r a v a i l a b l e s t a t u s
i n t 21h
a n d a 1 , a l : c h a r a c t e r a v a i l a b l e ?
j z F1 i pLoop ;no. t o g g l e s p l i t s c r e e n o n / o f f s t a t u s
mov ah.1
i n t 2 1 h ; c l e a r t h e c h a r a c t e r

; R e t u r n t o t e x t mode and DOS.

rnov ax.0003h ;AH-0 i s s e l e c t mode f u n c t i o n

i n t 10h
rnov ah.4ch
i n t 2 1 h ; r e t u r n t o DOS

;AL-3 i s mode t o s e l e c t , t e x t mode
; r e t u r n t o t e x t mode

S t a r t e n d p

; W a i t s f o r t h e l e a d i n g e d g e o f t h e v e r t i c a l s y n c p u l s e .

; I n p u t : n o n e

.

; Output : none

; R e g i s t e r s a l t e r e d : AL. DX

Wa i tFo rVer t i ca lSyncSta r t p r o c n e a r

W a i t N o t V e r t i c a l S y n c :
mov dx.INPUT-STATUS-0

i n a l . d x
t e s t a l . 0 8 h
j n z W a i t N o t V e r t i c a l S y n c

W a i t V e r t i c a l S y n c :
i n a1,dx
t e s t a l , 0 8 h
jz W a i t V e r t i c a l S y n c
r e t

Wa i tFo rVer t i ca lSyncSta r t endp

; W a i t s f o r t h e t r a i l i n g e d g e o f t h e v e r t i c a l s y n c p u l s e .

; I n p u t : n o n e

.

: Output : none

; R e g i s t e r s a l t e r e d : AL. DX

W a i t F o r V e r t i c a l S y n c E n d p r o c n e a r
mov dx.INPUTLSTATUS-0

W a i t V e r t i c a l S y n c Z :
i n a l . d x
t e s t a1 .08h
j z W a i t V e r t i c a l S y n c Z

i n a l . d x
t e s t a l . 0 8 h
j n z W a i t N o t V e r t i c a l S y n c 2
r e t

W a i t N o t V e r t i c a l S y n c 2 :

Wai tForVer t i ca l SyncEnd endp

Video Est Ornnis Divisa 569

.
: S e t s t h e s t a r t a d d r e s s t o t h e v a l u e s p e c i f e d b y S t a r t A d d r e s s .
: W a i t f o r t h e t r a i l i n g edge o f v e r t i c a l s y n c b e f o r e s e t t i n g s o t h a t
: o n e h a l f o f t h e a d d r e s s i s n ' t l o a d e d b e f o r e t h e s t a r t o f t h e f r a m e
: a n d t h e o t h e r h a l f a f t e r , r e s u l t i n g i n f l i c k e r as one frame i s
: d i s p l a y e d w i t h m i s m a t c h e d h a l v e s . T h e new s t a r t a d d r e s s w o n ' t b e
: l o a d e d u n t i l t h e s t a r t o f t h e n e x t f r a m e : t h a t i s . o n e f u l l f r a m e
: will b e d i s p l a y e d b e f o r e t h e new s t a r t a d d r e s s t a k e s e f f e c t .

: I n p u t : n o n e

: Output : none

: R e g i s t e r s a1 t e r e d : A X , DX

S e t S t a r t A d d r e s s p r o c n e a r
c a l l W a i t F o r V e r t i c a l S y n c E n d
mov dx.CRTC-INDEX
mov al.START-ADDRESS-HIGH
mov a h . b y t e p t r [S t a r t A d d r e s s + l l

OUT-WORD
c l i ;make s u r e b o t h r e g i s t e r s g e t s e t a t o n c e

mov al.START-ADDRESS-LOW
mov a h . b y t e p t r [S t a r t A d d r e s s]
OUT-WORD
s t i
r e t

Se tS ta r tAddress endp

: S e t s t h e s c a n l i n e t h e s p l i t s c r e e n s t a r t s a f t e r t o t h e s c a n l i n e
: s p e c i f i e d b y S p l i t S c r e e n L i n e .

; I n p u t : n o n e

: Output : none

; All r e g i s t e r s p r e s e r v e d

S e t S p l i t S c r e e n S c a n L i n e p r o c n e a r

.

push ax
push c x
push dx

W a i t f o r t h e l e a d i n g e d g e o f t h e v e r t i c a l s y n c p u l s e . T h i s e n s u r e s
t h a t we d o n ' t g e t m i s m a t c h e d p o r t i o n s o f t h e s p l i t s c r e e n s e t t i n g
w h i l e s e t t i n g t h e t w o o r t h r e e s p l i t s c r e e n r e g i s t e r s (r e g i s t e r 1 8 h
s e t b u t r e g i s t e r 7 n o t y e t s e t when a m a t c h o c c u r s , f o r e x a m p l e) .
w h i c h c o u l d p r o d u c e b r i e f f l i c k e r i n g .

c a l l W a i t F o r V e r t i c a l S y n c S t a r t

S e t t h e s p l i t s c r e e n s c a n l i n e .

mov dx.CRTCCINDEX
mov a h . b y t e p t r [S p l i t S c r e e n L i n e]
mov a1 .LINE-COMPARE
c l i :make s u r e a l l t h e r e g i s t e r s g e t s e t a t o n c e
OUT-WORD ; s e t b i t s 7 - 0 o f t h e s p l i t s c r e e n s c a n l i n e
mov a h . b y t e p t r [S p l i t S c r e e n L i n e + l l
and ah.1

570 Chapter 30

;move b i t 8 o f t h e s p l i t s p l i t s c r e e n s c a n
; l i n e i n t o p o s i t i o n f o r t h e O v e r f l o w r e g

mov c l .4
s h l a h , c l

mov a1 ,OVERFLOW
i f IS-VGA

; The S p l i t S c r e e n , O v e r f l o w , a n d L i n e Compare r e g i s t e r s a l l c o n t a i n
; p a r t o f t h e s p l i t s c r e e n s t a r t s c a n l i n e o n t h e VGA. W e ' l l t a k e
; advantage o f t h e r e a d a b l e r e g i s t e r s o f t h e VGA t o l e a v e o t h e r b i t s
; i n t h e r e g i s t e r s we a c c e s s u n d i s t u r b e d .

o u t dx .a l : s e t CRTC I n d e x r e g t o p o i n t t o O v e r f l o w
i n c d x ; p o i n t t o CRTC D a t a r e g
i n a1,dx ; g e t t h e c u r r e n t O v e r f l o w r e g s e t t i n g
and a1 ,not 10h ; t u r n o f f s p l i t s c r e e n b i t 8
or a1,ah ; i n s e r t t h e new s p l i t s c r e e n b i t 8

o u t d x . a l ; s e t t h e new s p l i t s c r e e n b i t 8
d e c d x ; p o i n t t o CRTC I n d e x r e g
mov a h . b y t e p t r [S p l i t S c r e e n L i n e + l l
and ah.2
mov c l . 3
ror a h . c l ;move b i t 9 o f t h e s p l i t s p l i t s c r e e n s c a n

; (works i n any mode)

; l i n e i n t o p o s i t i o n f o r t h e Maximum Scan

mov al.MAXIMUM-SCAN-LINE
; L i n e r e g i s t e r

o u t d x . a l ; s e t CRTC I n d e x r e g t o p o i n t t o Maximum

i n c d x ; p o i n t t o CRTC D a t a r e g
i n a l . d x ; g e t t h e c u r r e n t Maximum Scan L i n e s e t t i n g
and a1 ,not 40h ; t u r n o f f s p l i t s c r e e n b i t 9
o r a l . a h ; i n s e r t t h e new s p l i t s c r e e n b i t 9

o u t d x , a l ; s e t t h e new s p l i t s c r e e n b i t 9

; Scan L i n e

; (works i n any mode)

e l s e

; O n l y t h e S p l i t S c r e e n a n d O v e r f l o w r e g i s t e r s c o n t a i n p a r t o f t h e
; S p l i t S c r e e n s t a r t s c a n l i n e a n d n e e d t o b e s e t o n t h e EGA.
; EGA r e g i s t e r s a r e n o t r e a d a b l e , s o we have t o s e t t h e n o n - s p l i t
; s c r e e n b i t s o f t h e O v e r f l o w r e g i s t e r t o a p r e s e t v a l u e , i n t h i s
; c a s e t h e v a l u e f o r 3 5 0 - s c a n - l i n e modes.

or a h . 0 f h ; i n s e r t t h e new s p l i t s c r e e n b i t 8

OUT-WORD

s t i

; (o n l y w o r k s i n 3 5 0 - s c a n - l i n e EGA modes)
; s e t t h e new s p l i t s c r e e n b i t 8

e n d i f

POP dx

POP ax
POP c x

r e t
Se tSp l i tSc reenScanL ine endp
.

Moves t h e s p l i t s c r e e n u p t h e s p e c i f i e d

I n p u t : C X - # o f s c a n l i n e s t o move t h e

Output : none

R e g i s t e r s a l t e r e d : C X

number o f s c a n l i n e s .

s p l i t s c r e e n u p b y

Video Est Omnis Divisa 571

Spl i tScreenUp proc near
Spl i tScreenUpLoop:

dec [Spl i t S c r e e n L i n e 1
c a l l S e t S p l i t S c r e e n S c a n L i n e
1 oop Spl i tScreenUpLoop
r e t

Spl i tScreenUp endp

; Moves t h e s p l i t s c r e e n down t h e s p e c i f i e d number o f s c a n l i n e s .

: I n p u t : C X .. # o f s c a n l i n e s t o move t h e s p l i t s c r e e n down by

: Output: none

: R e g i s t e r s a l t e r e d : C X

Spl i tScreenDown proc near
SplitScreenDownLoop:

.

i n c [S p l i t S c r e e n L i n e l
c a l l S e t S p l i t S c r e e n S c a n L i n e
1 oop Spl i tScreenOownLoop
r e t

Spl i tScreenDown endp

Code ends
.

end S t a r t

VGA and EGA Split-Screen Operation Don’t Mix
You must set the IS-VGA equate at the start of Listing 30.1 correctly for the adapter
the code will run on in order for the program to perform properly. This equate
determines how the upper bits of the split screen start scan line are set by
SetSplitScreenRow. If IS-VGA is 0 (specifjmg an EGA target), then bit 8 of the split
screen start scan line is set by programming the entire Overflow register to 1FH; this
is hard-wired for the 350-scan-line modes of the EGA. If IS-VGA is 1 (specifying a
VGA target), then bits 8 and 9 of the split screen start scan line are set by reading the
registers they reside in, changing only the split-screen-related bits, and writing the
modified settings back to their respective registers.
The VGAversion of Listing 30.1 won’t work on an EGA, because EGA registers aren’t
readable. The EGA version of Listing 30.1 won’t work on a VGA, both because VGA
monitors require different vertical settings than EGA monitors and because the EGA
version doesn’t set bit 9 of the split screen start scan line. In short, there is no way
that I know of to support both VGA and EGA split screens with common code; sepa-
rate drivers are required. This is one of the reasons that split screens are so rarely
used in PC programming.
By the way, Listing 30.1 operates in mode 10H because that’s the highest-resolution
mode the VGA and EGA share. That’s not the only mode the split screen works in,
however. In fact, it works in all modes, as we’ll see later.

572 Chapter 30

Setting the Split-Screen-Related Registers
Setting the split-screen-related registers is not as simple a matter as merely output-
ting the right values to the right registers; timing is also important. The split screen
start scan line value is checked against the number of each scan line as that scan line
is displayed, which means that the split screen start scan line potentially takes effect
the moment it is set. In other words, if the screen is displaying scan line 15 and you
set the split screen start to 16, that change will be picked up immediately and the
split screen will start after the next scan line. This is markedly different from changes
to the start address, which take effect only at the start of the next frame.
The instantly-effective nature of the split screen is a bit of a problem, not because the
changed screen appears as soon as the new split screen start scan line is set-that
seems to me to be an advantage-but because the changed screen can appear before
the new split screen start scan line is set.

-

Remember, the split screen start scan line is spread out over two or three registers. p What ifthe incompletely-changed value matches the current scan line after you ’ve set
one register but before you’ve set the rest? For one frame, you’ll see the split screen
in a wrongplace-possibly a vevy wrongplace-resulting in jumping andflicker.

The solution is simple: Set the split screen start scan line at a time when it can’t
possibly match the currently displayed scan line. The easy way to do that is to set it
when there isn’t any currently displayed scan line-during vertical non-display time.
One safe time that’s easy to find is the start of the vertical sync pulse, which is typi-
cally pretty near the middle of vertical non-display time, and that’s the approach I’ve
followed in Listing 30.1. I’ve also disabled interrupts during the period when the
split screen registers are being set. This isn’t absolutely necessary, but if it’s not done,
there’s the possibility that an interrupt will occur between register sets and delay the
later register sets until display time, again causing flicker.
One interesting effect of setting the split screen registers at the start of vertical sync
is that it has the effect of synchronizing the program to the display adapter’s frame
rate. No matter how fast the computer running Listing 30.1 may be, the split screen
will move at a maximum rate of once per frame. This is handy for regulating execution
speed over a wide variety of hardware performance ranges; however, be aware that
the VGA supports ’70 Hz frame rates in all non-480-scan-line modes, while the VGA
in 480-scan-line-modes and the EGA in all color modes support 60 Hz frame rates.

The Problem with the EGA Split Screen
I mentioned earlier that the EGAs split screen is a little buggy. How? you may well
ask, particularly given that Listing 30.1 illustrates that the EGA split screen seems
pretty functional.

Video Est Omnis Divisa 573

The bug is this: The first scan line of the EGA split screen-the scan line starting at
offset zero in display memory-is displayed not once but twice. In other words, the
first line of split screen display memory, and only the first line, is replicated one
unnecessary time, pushing all the other lines down by one.
That’s not a fatal bug, of course. In fact, if the first few scan lines are identical, it’s not
even noticeable. The EGA’s split-screen bug can produce visible distortion given
certain patterns, however, so you should try to make the top few lines identical (if
possible) when designing split-screen images that might be displayed on EGAs, and
you should in any case check how your split-screens look on both VGAs and EGAs.

I have an important caution here: Don ’t count on the EGA ’s split-screen bug; that 1 is, don ’t rely on thefirst scan line being doubled when you design your split screens.
IBM designed and made the original EGA, but a lot of companies cloned it, and
there ’s no guarantee that all EGA clones copy the bug. It is a certainty, at least,
that the VGA didn’t copy it.

There’s another respect in which the EGA is inferior to the VGA when it comes to
the split screen, and that’s in the area of panning when the split screen is on. This
isn’t a bug-it’s just one of the many areas in which the VGA’s designers learned
from the shortcomings of the EGA and went the EGA one better.

Split Screen and Panning
Back in Chapter 23, I presented a program that performed smooth horizontal pan-
ning. Smooth horizontal panning consists of two parts: byte-by-byte (8-pixel) panning
by changing the start address and pixel-by-pixel intrabyte panning by setting the Pel
Panning register (AC register 13H) to adjust alignment by 0 to 7 pixels. (IBM prefers its
own jargon and uses the word “pel” instead of “pixel” in much of their documenta-
tion, hence “pel panning.” Then there’s DASD, a.k.a. Direct Access Storage
Device-IBM-speak for hard disk.)
Horizontal smooth panning works just fine, although I’ve always harbored some
doubts that any one horizontal-smooth-panning approach works properly on all dis-
play board clones. (More on this later.) There’s a catch when using horizontal smooth
panning with the split screen up, though, and it’s a serious catch: You can’t byte-pan
the split screen (which always starts at offset zero, no matter what the setting of the
start address registers)-but you can pel-pan the split screen.
Put another way, when the normal portion of the screen is horizontally smooth-
panned, the split screen portion moves a pixel at a time until it’s time to move to the
next byte, then jumps back to the start of the current byte. As the top part of the
screen moves smoothly about, the split screen will move and jump, move and jump, over
and over. Believe me, it’s not a pretty sight.

574 Chapter 30

What’s to be done? On the EGA, nothing. Unless you ’re willing to have your users ’ p eyes doing the jitterbug, don’t use horizontal smooth scrolling while the split screen
is up. Byte punning is fine-just don’t change the Pel Punning register from its
default setting.

On the VGA, there is recourse. AVGA-only bit, bit 5 of the AC Mode Control register
(AC register lOH), turns off pel panning in the split screen. In other words, when
this bit is set to 1, pel panning is reset to zero before the first line of the split screen,
and remains zero until the end of the frame. This doesn’t allow you to pan the split
screen horizontally, mind you-there’s no way to do that-but it does let you pan the
normal screen while the split screen stays rock-solid. This can be used to produce an
attractive “streaming tape” effect in the normal screen while the split screen is used
to display non-moving information.

The Split Screen and Horizontal Panning: An Example
Listing 30.2 illustrates the interaction of horizontal smooth panning with the split
screen, as well as the suppression of pel panning in the split screen. Listing 30.2
creates a virtual screen 1024 pixels across by setting the Offset register (CRTC regis-
ter 13H) to 64, sets the normal screen to scan video data beginning far enough up in
display memory to leave room for the split screen starting at offset zero, turns on the
split screen, and fills in the normal screen and split screen with distinctive patterns.
Next, Listing 30.2 pans the normal screen horizontally without setting bit 5 of the
AC Mode Control register to 1. As you’d expect, the split screen jerks about quite
horribly. After a key press, Listing 30.2 sets bit 5 of the Mode Control register and
pans the normal screen again. This time, the split screen doesn’t budge an inch-$
the code is running on a VGA.
By the way, if IS-VGA is set to 0 in Listing 30.2, the program will assemble in a form
that will run on the EGA and only the EGA. Pel panning suppression in the split
screen won’t work in this version, however, because the EGA lacks the capability to
support that feature. When the EGA version runs, the split screen simply jerks back
and forth during both panning sessions.

LISTING 30.2 130-2.ASM
: D e m o n s t r a t e s t h e i n t e r a c t i o n o f t h e s p l i t s c r e e n a n d
: h o r i z o n t a l p e l p a n n i n g . On a V G A . f i r s t pans r i g h t i n t h e t o p
: h a l f w h i l e t h e s p l i t s c r e e n j e r k s a r o u n d , b e c a u s e s p l i t s c r e e n
; p e l p a n n i n g s u p p r e s s i o n i s d i s a b l e d , t h e n e n a b l e s s p l i t s c r e e n
: p e l p a n n i n g s u p p r e s s i o n a n d p a n s r i g h t i n t h e t o p h a l f w h i l e t h e
: s p l i t s c r e e n r e m a i n s s t a b l e . On an EGA. t h e s p l i t s c r e e n j e r k s
: around i n b o t h c a s e s , b e c a u s e t h e EGA d o e s n ’ t s u p p o r t s p l i t
: s c r e e n p e l p a n n i n g s u p p r e s s i o n .

: The j e r k i n g i n t h e s p l i t s c r e e n o c c u r s b e c a u s e t h e s p l i t s c r e e n
: i s b e i n g p e l p a n n e d (p a n n e d b y s i n g l e p i x e l s - - i n t r a b y t e p a n n i n g) .
: b u t i s n o t a n d c a n n o t b e b y t e p a n n e d (p a n n e d b y s i n g l e b y t e s - -

Video Est Omnis Divisa 575

: " e x t r a b y t e " p a n n i n g) b e c a u s e t h e s t a r t a d d r e s s o f t h e s p l i t s c r e e n
: i s f o r e v e r f i x e d a t 0.
.
I S-VGA equ

VGA-SEGMENT equ
LOGICAL-SCREENLWIDTH equ

SCREEN-HEIGHT
SPLIT-SCREEN-START equ

equ

SPLIT-SCREEN-HEIGHT equ
CRTC-INDEX
AC-INDEX

equ

OVERFLOW
e w

MAXIMUM-SCAN-LINE
equ
equ

STARTLADDRESS-HIGH equ

START-ADDRESS-LOWequ Odh

HOFFSET equ

LINE-COMPARE e w

AC-MOOELCONTROL equ
PELLPANNING
INPUT-STATUS-0
WORD-OUTS-OK e w

e w
equ

1 : s e t t o 0 t o a s s e m b l e f o r EGA

OaOOOh
1024 :# o f p i x e l s a c r o s s v i r t u a l

: s c r e e n t h a t w e ' l l p a n a c r o s s
350
200
SCREENCHEIGHT-SPLITpSCREEN-START-1

; s t a r t s c a n l i n e f o r s p l i t s c r e e n

3d4h :CRT C o n t r o l l e r I n d e x r e g i s t e r
3cOh : A t t r i b u t e C o n t r o l l e r I n d e x r e g
7 ; i n d e x o f O v e r f l o w r e g i n CRTC
9 : i n d e x o f Maximum Scan L i n e r e g i s t e r

Och ; i n d e x o f S t a r t A d d r e s s H i g h r e g i s t e r
: i n CRTC

: i n CRTC
; i n d e x o f S t a r t A d d r e s s Low r e g i s t e r
: i n CRTC

1 3 h ; i n d e x o f H o r i z o n t a l O f f s e t r e g i s t e r

18h
: i n CRTC
: i n d e x o f L i n e Compare r e g (b i t s 7 - 0
: o f s p l i t s c r e e n s t a r t s c a n l i n e)
; i n CRTC

10h
13h

: i n d e x o f Mode C o n t r o l r e g i n AC
: i n d e x o f P e l P a n n i n g r e g i n AC

3dah
1

; I n p u t S t a t u s 0 r e g i s t e r
; s e t t o 0 t o a s s e m b l e f o r
: c o m p u t e r s t h a t c a n ' t h a n d l e
: w o r d o u t s t o i n d e x e d VGA r e q i s t e r s

.
: Macro t o o u t p u t a w o r d v a l u e t o a p o r t .

OUT-WORD macro
i f WORD-OUTS-OK

o u t d x , a x
e l s e

o u t d x . a l
i n c d x
xchg ah ,a l
o u t d x . a l
dec dx
xchg ah .a l

endm
e n d i f

.
MyStack segment para stack 'STACK'

MyStack ends

Data segment
Spl i t S c r e e n L i n e dw ? : l i n e t h e s p l i t s c r e e n c u r r e n t l y

S t a r t A d d r e s s dw ? : d i s p l a y memory o f f s e t a t w h i c h

Pel Pan db ? : c u r r e n t i n t r a b y t e h o r i z o n t a l p e l

Data ends

db 512 dup (0)

.

: s t a r t s a f t e r

: s c a n n i n g f o r v i d e o d a t a s t a r t s

: p a n n i n g s e t t i n g

576 Chapter 30

..
Code segment

.
assume cs:Code. ds:Oata

S t a r t p r o c n e a r
mov ax.Data
mov ds.ax

; S e l e c t mode 10h. 640x350 16-ColOr graphics mode.

mov ax.0010h ;AH-0 i s s e l e c t mode f u n c t i o n
;AL-lOh i s mode t o s e l e c t ,
; 6 4 0 x 3 5 0 1 6 - c o l o r g r a p h i c s mode

i n t 10h

; S e t t h e O f f s e t r e g i s t e r t o make t h e o f f s e t f r o m t h e s t a r t o f one
; scan l i n e t o t h e s t a r t o f t h e n e x t t h e d e s i r e d number o f p i x e l s .
; T h i s g i v e s us a v i r t u a l s c r e e n w i d e r t h a n t h e a c t u a l s c r e e n t o
; pan across.
: N o t e t h a t t h e O f f s e t r e g i s t e r i s programmed w i t h t h e l o g i c a l
; s c r e e n w i d t h i n w o r d s , n o t b y t e s , h e n c e t h e f i n a l d i v i s i o n b y 2 .

mov dx.CRTC-INDEX
mov ax.(LOGICAL-SCREEN-WIOTH/8/2 s h l 8) o r HOFFSET
OUT-WORD

; S e t t h e s t a r t a d d r e s s t o d i s p l a y t h e memory j u s t p a s t t h e s p l i t
; sc reen memory.

c a l l S e t S t a r t A d d r e s s

; S e t t h e s p l i t s c r e e n s t a r t s c a n l i n e .

mov [SplitScreenLinel.SPLIT_SCREEN-START
c a l l S e t S p l i tScreenScanLi ne

: F i l l t h e s p l i t s c r e e n p o r t i o n o f d i s p l a y memory (

mov [StartAddressl.SPLIT_SCREEN_HEIGHT*(LOGICAL-SCREEN-WIOTH/8)

a t s t a r t i n g
; o f f s e t 0) w i t h a c h o p p y d i a g o n a l p a t t e r n s l o p i n g l e f t .

mov ax.VGA-SEGMENT
mov es.ax

mov dx.SPLIT-SCREEN-HEIGHT
sub d i . d i

;fill a l l l i n e s i n t h e s p l i t s c r e e n
mov ax.OFFOh ; s t a r t i n g fill p a t t e r n
c l d

mov cx.LOGICAL-SCREEN-WIDTH/8/4
RowLoop:

;fill 1 s c a n l i n e
ColumnLoop:

s t o s w ; d r a w p a r t o f a d i a g o n a l 1 i n e
mov word p t r e s : [d i] . O ;make v e r t i c a l b l a n k s p a c e s so

i n c d i
i n c d i
1 oop Col umnLoop
r o l ax.1
dec dx
j n z RowLoop

; p a n n i n g e f f e c t s c a n b e s e e n e a s i l y

; s h i f t p a t t e r n w o r d

Video Est Omnis Divisa 577

: F i l l t h e p o r t i o n o f d i s p l a y memory t h a t will b e d i s p l a y e d i n t h e
: n o r m a l s c r e e n (t h e n o n - s p l i t s c r e e n p a r t o f t h e d i s p l a y) w i t h a
: c h o p p y d i a g o n a l p a t t e r n s l o p i n g r i g h t .

mov di.SPLIT-SCREEN-HEIGHT*(LOGICAL_SCREEN-WIOTH/8)
mov dx.SCREEN-HEIGHT :fill a l l l i n e s
mov ax.Oc510h : s t a r t i n g fill p a t t e r n
c l d

RowLoop2:
mov cx.LOGICAL-SCREEN-WIOTti/8/4

:fill 1 scan l i n e
ColumnLoop2:

s t o s w : d r a w p a r t o f a d i a g o n a l l i n e
mov word p t r es:Cdi l .O :make v e r t i c a l b l a n k s p a c e s so

i n c d i
i n c d i
1 oop Col umnLoop2
r o r a x . 1 : s h i f t p a t t e r n w o r d
dec dx
j n z RowLoop2

: p a n n i n g e f f e c t s c a n b e s e e n e a s i l y

: P e l p a n t h e n o n - s p l i t s c r e e n p o r t i o n o f t h e d i s p l a y : b e c a u s e
: s p l i t s c r e e n p e l p a n n i n g s u p p r e s s i o n i s n o t t u r n e d on, t h e s p l i t
: s c r e e n j e r k s b a c k and f o r t h as t h e p e l p a n n i n g s e t t i n g c y c l e s .

mov c x . 2 0 0 : p a n 2 0 0 p i x e l s t o t h e l e f t
c a l l P a n R i g h t

: W a i t f o r a k e y p r e s s (d o n ' t e c h o c h a r a c t e r) .

mov ah.8
i n t 21h

;DOS c o n s o l e i n p u t w i t h o u t e c h o f u n c t i o n

: R e t u r n t o t h e o r i g i n a l s c r e e n l o c a t i o n , w i t h p e l p a n n i n g t u r n e d o f f .

mov [StartAddressl.SPLIT~SCREEN~HEIGHT*(LOGICAL-SCREEN-WIDTH/8)
c a l l S e t S t a r t A d d r e s s
mov [Pel Pan] .O
c a l l S e t P e l Pan

: T u r n o n s p l i t s c r e e n p e l p a n n i n g s u p p r e s s i o n , so t h e s p l i t s c r e e n
: won ' t be a f fec ted by pe l pann ing . No t done on EGA because bo th
: r e a d a b l e r e g i s t e r s and t h e s p l i t s c r e e n p e l p a n n i n g s u p p r e s s i o n b i t
: a r e n ' t s u p p o r t e d b y EGAs.

i f IS-VGA
mov
i n

mov

mov
o u t
i nc
i n
or

dx.INPUT-STATUS-0
a1 .dx

al.20h+AC-MODE-CONTROL

dx.AC-INDEX
d x . a l
dx
a1 , dx
a1 ,20h

: r e s e t t h e AC I n d e x / D a t a t o g g l e t o
: I n d e x s t a t e

: b i t 5 s e t t o 1 t o keep v ideo on
: p o i n t t o AC I n d e x / D a t a r e g i s t e r

: p o i n t t o AC D a t a r e g (f o r r e a d s o n l y)
: g e t t h e c u r r e n t AC Mode C o n t r o l r e g
; e n a b l e s p l i t s c r e e n p e l p a n n i n g
: s u p p r e s s i o n

578 Chapter 30

end i f

dec dx

o u t d x . a l

: p o i n t t o AC I n d e x / D a t a r e g (D a t a f o r
; w r i t e s o n l y)
: w r i t e t h e new AC Mode C o n t r o l s e t t i n g
: w i t h s p l i t s c r e e n p e l p a n n i n g
: suppress ion t u rned on

P e l p a n t h e n o n - s p l i t s c r e e n p o r t i o n o f t h e d i s p l a y ; b e c a u s e
s p l i t s c r e e n p e l p a n n i n g s u p p r e s s i o n i s t u r n e d o n . t h e s p l i t
sc reen will n o t move as t h e p e l p a n n i n g s e t t i n g c y c l e s .

mov cx.200 ;pan 200 p i x e l s t o t h e l e f t
c a l l P a n R i g h t

Wait f o r a k e y p r e s s (d o n ' t e c h o c h a r a c t e r) .

mov ah.8 ;DOS c o n s o l e i n p u t w i t h o u t e c h o f u n c t i o n
i n t 21h

R e t u r n t o t e x t mode and DOS.

mov ax.0003h :AH-0 i s s e l e c t mode f u n c t i o n

i n t 1 0 h ; r e t u r n t o t e x t mode
mov ah.4ch
i n t 21h : r e t u r n t o DOS

:AL-3 i s mode t o s e l e c t , t e x t mode

S t a r t endp

: Wai ts f o r t h e l e a d i n g edge o f t h e v e r t i c a l s y n c p u l s e .

: I n p u t : n o n e

: Output : none

: R e g i s t e r s a l t e r e d : AL. DX

WaitForVert icalSyncStar t p r o c n e a r

W a i t N o t V e r t i c a l S y n c :

.

mov dx.INPUT-STATUS-0

i n a l . d x
t e s t a1 .08h
j n z W a i t N o t V e r t i c a l S y n c

W a i t V e r t i c a l S y n c :
i n a l . d x
t e s t a1 .08h
j z W a i t V e r t i c a l S y n c
r e t

WaitForVer t ica lSyncStar t endp

: W a i t s f o r t h e t r a i l i n g e d g e o f t h e v e r t i c a l s y n c p u l s e .
.

: I n p u t : n o n e

; Output : none

: R e g i s t e r s a l t e r e d : AL. D X

Wai tFo rVer t i ca lSyncEnd p roc nea r
mov dx.INPUT-STATUS-0

Video Est Omnis Divisa 579

W a i t V e r t i c a l S y n c Z :
i n a l . d x
t e s t a l . 0 8 h
j z W a i t V e r t i c a l S y n c E

i n a l . d x
t e s t a l . 0 8 h
j n z W a i t N o t V e r t i c a l S y n c E
r e t

W a i t N o t V e r t i c a l S y n c E :

Wa i tFo rVer t i ca lSyncEnd endp

: S e t s t h e s t a r t a d d r e s s t o t h e v a l u e s p e c i f e d b y S t a r t A d d r e s s .
: W a i t f o r t h e t r a i l i n g edge o f v e r t i c a l s y n c b e f o r e s e t t i n g so t h a t
: one h a l f o f t h e a d d r e s s i s n ' t l o a d e d b e f o r e t h e s t a r t o f t h e f r a m e
: and t h e o t h e r h a l f a f t e r , r e s u l t i n g i n f l i c k e r as one frame i s
: d i s p l a y e d w i t h m i s m a t c h e d h a l v e s . The new s t a r t a d d r e s s w o n ' t b e
: l o a d e d u n t i l t h e s t a r t o f t h e n e x t f r a m e : t h a t i s . o n e f u l l f r a m e
: will b e d i s p l a y e d b e f o r e t h e new s t a r t a d d r e s s t a k e s e f f e c t .

: I n p u t : n o n e

: Output : none

: R e g i s t e r s a l t e r e d : A X , OX

S e t S t a r t A d d r e s s p r o c n e a r

.

c a l l W a i t F o r V e r t i c a l S y n c E n d
mov dx.CRTC-INDEX
mov al.START-ADDRESS-HIGH
mov a h . b y t e p t r C S t a r t A d d r e s s + l l
c l i :make s u r e b o t h r e g i s t e r s g e t s e t a t o n c e
OUTLWORO
mov al.START-ADDRESS-LOW
mov a h . b y t e p t r [S t a r t A d d r e s s l
OUT-WORD
s t i
r e t

SetStar tAddress endp
.
; S e t s t h e h o r i z o n t a l p e l p a n n i n g s e t t i n g t o t h e v a l u e s p e c i f i e d
: b y P e l P a n . W a i t s u n t i l t h e s t a r t o f v e r t i c a l s y n c t o do s o , so
: t h e new p e l p a n s e t t i n g c a n b e l o a d e d d u r i n g n o n - d i s p l a y t i m e
: a n d c a n b e r e a d y b y t h e s t a r t o f t h e n e x t f r a m e .

: I n p u t : n o n e

: Output: none

: R e g i s t e r s a l t e r e d : AL. OX

SetPe l Pan p r o c n e a r
c a l l WaitForVerticalSyncStart : a l s o r e s e t s t h e AC

: I n d e x / D a t a t o g g l e
; t o I n d e x s t a t e

mov dx.AC-INDEX
mov al.PEL-PANNING+ZOh : b i t 5 s e t t o 1 t o keep v i
o u t d x , a l : p o i n t t h e AC I n d e x t o P e l
mov a1 ,[Pel Pan]
o u t d x . a l : l o a d t h e new Pel Pan s e t t
r e t

SetPe l Pan endp

580 Chapter 30

deo on
Pan r e g

.i ng

.
: S e t s t h e s c a n l i n e t h e s p l i t s c r e e n s t a r t s a f t e r t o t h e s c a n l i n e
: s p e c i f i e d b y S p l i t S c r e e n L i n e .

: I n p u t : n o n e

: Output : none

: All r e g i s t e r s p r e s e r v e d

S e t S p l i t S c r e e n S c a n L i n e p r o c n e a r
push ax
push c x
push dx

W a i t f o r t h e l e a d i n g e d g e o f t h e v e r t i c a l s y n c p u l s e . T h i s e n s u r e s
t h a t we d o n ' t g e t m i s m a t c h e d p o r t i o n s o f t h e s p l i t s c r e e n s e t t i n g
w h i l e s e t t i n g t h e t w o o r t h r e e s p l i t s c r e e n r e g i s t e r s (r e g i s t e r 1 8 h
s e t b u t r e g i s t e r 7 n o t y e t s e t when a m a t c h o c c u r s , f o r e x a m p l e) .
w h i c h c o u l d p r o d u c e b r i e f f l i c k e r i n g .

c a l l Wai t F o r V e r t i c a 1 S y n c S t a r t

S e t t h e s p l i t s c r e e n s c a n l i n e .

mov dx.CRTC-INDEX
mov a h . b y t e p t r C S p l i t S c r e e n L i n e l
mov a1 , LINE-COMPARE
c l i
OUT-WORD
mov a h . b y t e p t r [S p l i t S c r e e n L i n e + l l
and ah.1
mov c l . 4
s h l a h . c l :move b i t 8 o f t h e s p l i t s p l i t s c r e e n s c a n

mov a1 ,OVERFLOW

:make s u r e a l l t h e r e g i s t e r s g e t s e t a t o n c e
: s e t b i t s 7 - 0 o f t h e s p l i t s c r e e n s c a n l i n e

: l i n e i n t o p o s i t i o n f o r t h e O v e r f l o w r e g

The S p l i t S c r e e n , O v e r f l o w , a n d L i n e Compare r e g i s t e r s a l l c o n t a i n
p a r t o f t h e s p l i t s c r e e n s t a r t s c a n l i n e on t h e VGA. W e ' l l t a k e
a d v a n t a g e o f t h e r e a d a b l e r e g i s t e r s o f t h e VGA t o l e a v e o t h e r b i t s
i n t h e r e g i s t e r s we a c c e s s u n d i s t u r b e d .

o u t
i nc
i n
and
o r

o u t
dec
mov
and
mov
r o r

mov
o u t

d x . a l : s e t CRTC I n d e x r e g t o p o i n t t o O v e r f l o w
d x : p o i n t t o CRTC Da ta reg
a1 . d x : g e t t h e c u r r e n t O v e r f l o w r e g s e t t i n g
a1 . n o t 1 0 h ; t u r n o f f s p l i t s c r e e n b i t 8
a1 , a h : i n s e r t t h e new s p l i t s c r e e n b i t 8

d x , a l : s e t t h e new s p l i t s c r e e n b i t 8
d x : p o i n t t o CRTC I n d e x r e g
a h . b y t e p t r [S p l i t S c r e e n L i n e + l l
ah.2
c l ,3
a h , c l :move b i t 9 o f t h e s p l i t s p l i t s c r e e n s c a n

: (works i n any mode)

; l i n e i n t o p o s i t i o n f o r t h e Maximum Scan
: L i n e r e g i s t e r

a1.MAXIMUM-SCAN-LINE
d x . a l : s e t CRTC I n d e x r e g t o p o i n t t o Maximum

: Scan L i n e

Video Est Omnis Divisa 581

582

i n c d x
i n a1,dx
and a1 .no t 40h
o r a l . a h

ou t dx .a l
e l s e

: p o i n t t o CRTC D a t a r e g
; g e t t h e c u r r e n t Maximum Scan L i n e s e t t i n g
: t u r n o f f s p l i t s c r e e n b i t 9
; i n s e r t t h e new s p l i t s c r e e n b i t 9
; (w o r k s i n a n y mode)
; s e t t h e new s p l i t s c r e e n b i t 9

O n l y t h e S p l i t S c r e e n a n d O v e r f l o w r e g i s t e r s c o n t a i n p a r t o f t h e
S p l i t S c r e e n s t a r t s c a n l i n e a n d n e e d t o b e s e t on t h e EGA.
EGA r e g i s t e r s a r e n o t r e a d a b l e , s o we have t o s e t t h e n o n - s p l i t
s c r e e n b i t s o f t h e O v e r f l o w r e g i s t e r t o a p r e s e t v a l u e , i n t h i s
c a s e t h e v a l u e f o r 3 5 0 - s c a n - l i n e m o d e s .

o r a h . 0 f h

OUT-WORD

; i n s e r t t h e new s p l i t s c r e e n b i t 8
; (o n l y w o r k s i n 3 5 0 - s c a n - l i n e EGA modes)
: s e t t h e new s p l i t s c r e e n b i t 8

end i f
s t i
POP dx
POP c x
POP ax
r e t

S e t S p l i t S c r e e n S c a n L i n e e n d p

; Pan h o r i z o n t a l l y t o t h e r i g h t t h e number o f p i x e l s s p e c i f i e d by CX.
.

: I n p u t : C X - # o f p i x e l s b y w h i c h t o p a n h o r i z o n t a l l y

: Output : none

; R e g i s t e r s a l t e r e d : A X , C X . DX

PanRight p roc near
PanLoop:

i n c [P e l Pan]
and [PelPan],07h
j n z D o S e t S t a r t A d d r e s s
i n c C S t a r t A d d r e s s l

c a l l S e t S t a r t A d d r e s s
c a l l S e t P e l Pan
l o o p PanLoop
r e t

PanRight endp

Code ends

DoSe tS ta r tAddress :

.

e n d S t a r t

Notes on Setting and Reading Registers
There are a few interesting points regarding setting and reading registers to be made
about Listing 30.2. First, bit 5 of the AC Index register should be set to 1 whenever
palette RAM is not being set (which is to say, all the time in your code, because
palette RAM should normally be set via the BIOS). When bit 5 is 0, video data from
display memory is no longer sent to palette R A M , and the screen becomes a solid
color-not normally a desirable state of affairs.

Chapter 30

Recall also that the AC Index and Data registers are both written to at 1/0 address
3COH, with the toggle that determines which one is written to at any time switching
state on every write to 3COH; this toggle is reset to index mode by each read from the
Input Status 0 register (3DAH in color modes, 3BAH in monochrome modes). The
AC Index and Data registers can also be written to at 3C1H on the EGA, but not on
the VGA, so steer clear of that practice.
On the VGA, reading AC registers is a bit different from writing to them. The AC
Data register can be read from 3COH, and the AC register currently addressed by the
AC Index register can be read from 3C1H; reading does not affect the state of the
AC index/data toggle. Listing 30.2 illustrates reading from and writing to the AC
registers. Finally, setting the start address registers (CRTC registers OCH and ODH)
has its complications. As with the split screen registers, the start address registers
must be set together and without interruption at a time when there’s no chance of a
partial setting being used for a frame. However, it’s a little more difficult to know
when that might be the case with the start address registers than it was with the split
screen registers, because it’s not clear when the start address is used.
You see, the start address is loaded into the EGAs or VGA’s internal display memory
pointer once per frame. The internal pointer is then advanced, byte-by-byte and
line-by-line, until the end of the frame (with a possible resetting to zero if the split
screen line is reached), and is then reloaded for the next frame. That’s straightfor-
ward enough; the real question is, Exactly when is the start address loaded?
In his excellent book Programmer’s Guide to PC Video Systems (Microsoft Press) Richard
Wilton says that the start address is loaded at the start of the vertical sync pulse.
(Wilton calls it vertical retrace, which can also be taken to mean vertical non-display
time, but given that he’s testing the vertical sync status bit in the Input Status 0 regis-
ter, I assume he means that the start address is loaded at the start of vertical sync.)
Consequently, he waits until the end of the vertical sync pulse to set the start address
registers, confident that the start address won’t take effect until the next frame.
I’m sure Richard is right when it comes to the real McCoy IBM VGA and EGA, but
I’m less confident that every clone out there loads the start address at the start of
vertical sync.

For that vevy reason, I generally advise people not to use horizontal smooth panning p unless they can test their software on all the makes of display adapter it might run on.
I’ve used Richard j . approach in Listings 30.1 and 30.2, and so far as I’ve seen it works
fine, but be aware that there are potential, albeit unproven, hazards to relying on
the setting of the start address registers to occur at a speclfic time in the frame.

The interaction of the start address registers and the Pel Panning register is worthy
of note. After waiting for the end of vertical sync to set the start address in Listing
30.2, I wait for the start of the nextvertical sync to set the Pel Panning register. That’s

Video Est Omnis Divisa 583

because the start address doesn’t take effect until the start of the next frame, but the
pel panning setting takes effect at the start of the next line; if we set the pel panning
at the same time we set the start address, we’d get a whole frame with the old start
address and the new pel panning settings mixed together, causing the screen to
jump. As with the split screen registers, it’s safest to set the Pel Panning register
during non-display time. For maximum reliability, we’d have interrupts off from the
time we set the start address registers to the time we change the pel planning setting,
to make sure an interrupt doesn’t come in and cause us to miss the start of a vertical
sync and thus get a mismatched pel panning/start address pair for a frame, although
for modularity I haven’t done this in Listing 30.2. (Also, doing so would require
disabling interrupts for much too long a time.)
What if you wanted to pan faster? Well, you could of course just move two pixels at a
time rather than one; I assure you no one will ever notice when you’re panning at a
rate of 10 or more times per second.

Split Screens in Other Modes
So far we’ve only discussed the split screen in mode IOH. What about other modes?
Generally, the split screen works in any mode; the basic rule is that when a scan line
on the screen matches the split screen scan line, the internal display memory pointer
is reset to zero. I’ve found this to be true even in oddball modes, such as linedoubled
CGA modes and the 320x200 256-color mode (which is really a 320x400 mode with
each line repeated. For split-screen purposes, the VGA and EGA seem to count purely
in scan lines, not in rows or doubled scan lines or the like. However, I have run into
small anomalies in those modes on clones, and I haven’t tested all modes (nor, lord
knows, all clones!) so be careful when using the split screen in modes other than
modes ODH-12H, and test your code on a variety of hardware.
Come to think of it, I warn you about the hazards of running fancy VGA code on clones
pretty often, don’t I? Ah, well-just one of the hazards of the diversity and competition of
the PC market! It is a fact of life, though-if you’re a commercial developer and
don’t test your video code on at least half a dozen VGAs, you’re living dangerously.
What of the split screen in text mode? It works fine; in fact, it not only resets the
internal memory pointer to zero, but also resets the text scan line counter-which
marks which line within the font you’re on-to zero, so the split screen starts out
with a full row of text. There’s only one trick with text mode: When split screen pel
panning suppression is on, the pel panning setting is forced to 0 for the rest of the
frame. Unfortunately, 0 is not the “no-panning” setting for 9-dot-wide text; 8 is. The
result is that when you turn on split screen pel panning suppression, the text in the
split screen won’t pan with the normal screen, as intended, but will also display the
undesirable characteristic of moving one pixel to the left. Whether this causes any
noticeable on-screen effects depends on the text displayed by a particular application;

584 Chapter 30

for example, there should be no problem if the split screen has a border of blanks
on the left side.

How Safe?
So, how safe is it to use the split screen? My opinion is that it’s perfectly safe, al-
though I’d welcome input from people with extensive split screen experience-and
the effects are striking enough that the split screen is well worth using in certain
applications.
I’m a little more leery of horizontal smooth scrolling, with or without the split screen.
Still, the Wilton book doesn’t advise any particular caution, and I haven’t heard any
horror stories from the field lately, so the clone manufacturers must finally have
gotten it right. (I vividly remember some early clones years back that didn’t quite get
it right.) So, on balance, I’d say to use horizontal smooth scrolling if you really need
it; on the other hand, in fast animation you can often get away with byte scrolling,
which is easier, faster, and safer. (I recently saw a game that scrolled as smoothly as
you could ever want. It was only by stopping it with Ctrl-NumLock that I was able to
be sure that it was, in fact, byte panning, not pel panning.)
In short, use the fancy stuff-but only when you have to.

Video Est Omnis Divisa 585

chapter 31

higher 256-color resolution on the vga

> *

x200 Really 320x400?
f One of the more ippealing features of the VGA is its ability to display 256 simulta-

neous colors. Unf&&unately, one of the less appealing features of the VGA is the
f the one 256-color mode the IBM-standard BIOS
higher resolution 256-color modes in the legion of
eans a standard, and differences between seemingly
anufacturers can be vexing.) More colors can often
ut the resolution difference between the 640x480

the 320x200 256color mode is so great that many programmers
simply can’t afford to use the 256-color mode.
about the VGA, however, it’s that there’s neverjust
, alternatives always exist for the clever program-

mer, and that’s more true than you might imagine with 256-color mode. Not only is
there a high 256-color resolution, there are lots of higher 256-color resolutions, go-
ing all the way up to 360x480-and that’s with the vanilla IBM VGA!
In this chapter, I’m going to focus on one of my favorite 256-color modes, which
provides 320x400 resolution and two graphics pages and can be set up with very little
reprogramming of the VGA. In the next chapter, I’ll discuss higher-resolution 256-
color modes, and starting in Chapter 4’7, I’ll cover the high-performance “Mode X”
256-color programming that many games use.
So. Let’s get started.

589

Why 320x200? Only IBM Knows for Sure
The first question, of course, is, “How can it be possible to get higher 256-color
resolutions out of the VGA?” After all, there were no unused higher resolutions to be
found in the CGA, Hercules card, or EGA.
The answer is another question: ‘Why did IBM not use the higher-resolution 256-
color modes of the VGA?” The VGA is easily capable of twice the 200-scan-line vertical
resolution of mode 13H, the 256-color mode, and IBM clearly made a decision not
to support a higher-resolution 256-color mode. In fact, mode 13H does display 400
scan lines, but each row of pixels is displayed on two successive scan lines, resulting
in an effective resolution of 320x200. This is the same scan-doubling approach used
by the VGA to convert the CGA’s 200-scan-line modes to 400 scan lines; however, the
resolution of the CGA has long been fixed at 200 scan lines, so IBM had no choice
with the CGA modes but to scan-double the lines. Mode 13H has no such historical
limitation-it’s the first 256-color mode ever offered by IBM, if you don’t count the
late and unlamented Professional Graphics Controller (PGC) . Why, then, would IBM
choose to limit the resolution of mode 13H?
There’s no way to know, but one good guess is that IBM wanted a standard 256-color
mode across all PS/2 computers (for which the VGA was originally created), and
mode 13H is the highest-resolution 256-color mode that could fill the bill. You see,
each 256-color pixel requires one byte of display memory, so a 320x200 256-color
mode requires 64,000 bytes of display memory. That’s no problem for the VGA, which
has 256K of display memory, but it’s a stretch for the MCGA of the Model 30, since
the MCGA comes with only 64K.
On the other hand, the smaller display memory size of the MCGA also limits the
number of colors supported in 640x480 mode to 2, rather than the 16 supported by
the VGA. In this case, though, IBM simply created two modes and made both avail-
able on the VGA mode 1 1H for 640x480 2-color graphics and mode 12H for 640x480
16-color graphics. The same could have been done for 256-color graphics-but wasn’t.
Why? I don’t know. Maybe IBM just didn’t like the odd aspect ratio of a 320x400
graphics mode. Maybe they didn’t want to have to worry about how to map in more
than 64K of display memory. Heck, maybe they made a mistake in designing the
chip. Whatever the reason, mode 13H is really a 400-scan-line mode masquerading
as a 200-scan-line mode, and we can readily end that masquerade.

320x400 256-Color Mode
Okay, what’s so great about 320x400 256-color mode? Two things: easy, safe mode
sets and page flipping.
As I said above, mode 13H is really a 320x400 mode, albeit with each line doubled to
produce an effective resolution of 320x200. That means that we don’t need to change
any display timings, widths, or heights in order to tweak mode 13H into 320x400

590 Chapter 31

mode-and that makes 320x400 a safe choice. Basically, 320x400 mode differs from
mode 13H only in the settings of mode bits, which are sure to be consistent from one
VGA clone to the next and which work equally well with all monitors. The other hi-
res 256-color modes differ from mode 13H not only in the settings of the mode bits
but also in the settings of timing and dimension registers, which may not be exactly
the same on all VGA clones and particularly not on all multisync monitors. (Because
multisyncs sometimes shrink the active area of the screen when used with standard
VGA modes, some VGAs use alternate register settings for multisync monitors that
adjust the CRT Controller timings to use as much of the screen area as possible for
displaying pixels.)
The other good thing about 320x400 256-color mode is that two pages are supported.
Each 320x400 256-color mode requires 128,000 bytes of display memory, so we can
just barely manage two pages in 320x400 mode, one starting at offset 0 in display
memory and the other starting at offset 8000H. Those two pages are the largest pair
of pages that can fit in the VGA’s 256K, though, and the higher-resolution 256-color
modes, which use still larger bitmaps (areas of display memory that control pixels on
the screen) , can’t support two pages at all. As we’ve seen in earlier chapters and will
see again in this book, paging is very useful for off-screen construction of images and
fast, smooth animation.
That’s why I like 320x400 256-color mode. The next step is to understand how dis-
play memory is organized in 320x400 mode, and that’s not so simple.

Display Memory Organization in 320x400 Mode
First, let’s look at why display memory must be organized differently in 320x400 256-
color mode than in mode 13H. The designers of the VGA intentionally limited the
maximum size of the bitmap in mode 13H to 64K, thereby limiting resolution to
320x200. This was accomplished in hardware, so there is no way to extend the bitmap
organization of mode 13H to 320x400 mode.
That’s a shame, because mode 13H has the simplest bitmap organization of any
mode-one long, linear bitmap, with each byte controlling one pixel. We can’t have
that organization, though, so we’ll have to find an acceptable substitute if we want to
use a higher 256-color resolution.
We’re talking about the VGA, so of course there are actually seueral bitmap organiza-
tions that let us use higher 256-color resolutions than mode 13H. The one I like best
is shown in Figure 31.1. Each byte controls one 256-color pixel. Pixel 0 is at address
0 in plane 0, pixel 1 is at address 0 in plane 1, pixel 2 is at address 0 in plane 2, pixel
3 is at address 0 in plane 3, pixel 4 is at address 1 in plane 0, and so on.
Let’s look at this another way. Ideally, we’d like one long bitmap, with each pixel at
the address that’s just after the address of the pixel to the left. Well, that’s true in this
case too, iif you consider the number of the plane that the pixel is in to be part of the
pixel’s address. View the pixel numbers on the screen as increasing from left to right

Higher 256-Color Resolution on the VGA 591

and from the end of one scan line to the start of the next. Then the pixel number, n,
of the pixel at display memory address address in plane plane is:
n = (address * 4) + plane
To turn that around, the display memory address of pixel number n is given by
address = n / 4
and the plane of pixel n is given by:
plane = n modulo 4
Basically, the full address of the pixel, its pixel number, is broken into two compo-
nents: the display memory address and the plane.
By the way, because 320x400 mode has a significantly different memory organization
from mode 13H, the BIOS text routines won’t work in 320x400 mode. If you want to
draw text in 320x400 mode, you’ll have to look up a font in the BIOS ROM and draw

592 Chapter 31

the text yourself. Likewise, the BIOS read pixel and write pixel routines won’t work
in 320x400 mode, but that’s no problem because I’ll provide equivalent routines in
the next section.
Our next task is to convert standard mode 13H into 320x400 mode. That’s accom-
plished by undoing some of the mode bits that are set up especially for mode 13H, so
that from a programming perspective the VGA reverts to a straightforward planar
model of memory. That means taking the VGA out of chain 4 mode and doubleword
mode, turning off the double display of each scan line, making sure chain mode, odd/
even mode, and word mode are turned off, and selecting byte mode for video data
display. All that’s done in the Set320~400Mode subroutine in Listing 31 . l , which
we’ll discuss next.

Reading and Writing Pixels
The basic graphics functions in any mode are functions to read and write single
pixels. Any more complex function can be built on these primitives, although that’s
rarely the speediest solution. What’s more, once you understand the operation of
the read and write pixel functions, you’ve got all the knowledge you need to create
functions that perform more complex graphics functions. Consequently, we’ll start
our exploration of 320x400 mode with pixel-at-a-time line drawing.
Listing 31.1 draws 8 multicolored octagons in turn, drawing a new one on top of the
old one each time a key is pressed. The main-loop code of Listing 31.1 should be
easily understood; a series of diagonal, horizontal, and vertical lines are drawn one
pixel at a time based on a list of line descriptors, with the draw colors incremented
for each successive time through the line list.

LISTING 3 1.1 13 1 - 1 .ASM
; Program t o d e m o n s t r a t e p i x e l d r a w i n g i n 3 2 0 x 4 0 0 2 5 6 - c o l o r
; mode on t h e VGA. Draws 8 l i n e s t o f o r m an octagon, a p i x e l
; a t a t i m e . Draws 8 octagons i n all, one on t o p o f t h e o t h e r ,
; each i n a d i f f e r e n t c o l o r s e t . A l t h o u g h i t ’ s n o t u s e d , a
; p i x e l r e a d f u n c t i o n i s a l s o p r o v i d e d .

VGA-SEGMENT
SC-INDEX
GC-INDEX
CRTC-INDEX
MAP-MASK
MEMORY-MODE
MAX-SCAN-LINE
START-ADDRESS-HIGH
UNDERLINE
MODE-CONTROL
READ-MAP
GRAPHICS-MODE
MISCELLANEOUS
SCREEN-WIDTH
SCREEN-HEIGHT

equ OaOOOh
equ 3c4h
equ 3ceh
equ 3d4h
equ 2
equ 4
equ 9
equ Och
equ 14h
equ 17h
equ 4
equ 5
equ 6
equ 320
equ 400

; S e q u e n c e C o n t r o l l e r I n d e x r e g i s t e r
: G r a p h i c s C o n t r o l l e r I n d e x r e g i s t e r
;CRT C o n t r o l l e r I n d e x r e g i s t e r
;Map Mask r e g i s t e r i n d e x i n SC
;Memory Mode r e g i s t e r i n d e x i n SC
;Maximum Scan L i n e r e g i n d e x i n CRTC
; S t a r t A d d r e s s H i g h r e g i n d e x i n CRTC
: U n d e r l i n e L o c a t i o n r e g i n d e x i n CRTC
;Mode C o n t r o l r e g i s t e r i n d e x i n CRTC
;Read Map r e g i s t e r i n d e x i n GC
;Graph ics Mode r e g i s t e r i n d e x i n GC
; M i s c e l l a n e o u s r e g i s t e r i n d e x i n GC
;# o f p i x e l s a c r o s s s c r e e n
;I/ o f s c a n l i n e s o n s c r e e n

Higher 256-Color Resolution on the VGA 593

WORD-OUTS-OK equ 1 : s e t t o 0 t o assemble f o r
: c o m p u t e r s t h a t c a n ' t h a n d l e
: w o r d o u t s t o i n d e x e d VGA r e g i s t e r s

s t a c k s e g m e n t p a r a s t a c k 'STACK'

s tack ends

Data segment word 'DATA'

db 512 dup (? I

BaseCol or db 0

: S t r u c t u r e u s e d t o c o n t r o l d r a w i n g o f a l i n e .

L i n e c o n t r o l s t r u c
S t a r t X
S t a r t Y

dw ?
dw ?

L i n e X I n c
L i n e Y I n c

dw ?

BaseLength
dw ?
dw ?

L i n e C o l o r d b ?
L i n e c o n t r o l e n d s

: L i s t o f d e s c r i p t o r s f o r l i n e s t o draw.

L i n e L i s t l a b e l L i n e c o n t r o l
L i n e c o n t r o l <130.110.1.0.60,0>
L i n e c o n t r o l <190.110.1.1.60,1>
LineControl<250,170.0.1.60,2>
L i n e c o n t r o l <250.230.-1.1.60.3>
L i n e c o n t r o l <190.290.-1.0.60,4>
L i n e c o n t r o l <130.290.-1.-1,60.5>
LineControl<70.230.0.-1.60,6>
LineControl<70.170.1.-1.60,7>
L i n e c o n t r o l <-1.0.0,0,0.0>

D a t a ends

: Macro t o o u t p u t

OUT-WORD macro
if WORD-OUTS-OK

o u t d x . a x
e l s e

o u t d x . a l
i n c d x
xchg ah .a l
o u t d x . a l
dec dx
xchg ah .a l

endm
e n d i f

a w o r d v a l u e t o a p o r t .

: Macro t o o u t p u t a c o n s t a n t v a l u e t o an indexed VGA r e g i s t e r .

CONSTANT-TO-INDEXED-REGISTERmacro ADDRESS. I N D E X , VALUE
mov dx.AD0RESS
mov ax.(VALUE s h l 8) + I N D E X
OUT-WORD
endm

594 Chapter 31

Code segment

S t a r t p r o c n e a r
assume cs:Code. ds:Oata

mov ax .0a ta
mov ds .ax

: Set 320x400 256-co lo r mode.

c a l l

: We're i n

Co lorLoop:
mov

LineLoop:
mov
cmp
j z

mov
mov
mov
add

P ixe l Loop :
push
push
c a l l
POP
POP
add
add
dec
j n z
add
jmp

L inesoone:
c a l l
i nc
cmp
j b

Set320By400Mode

320x400 256-co lo r mode.

s i . o f f s e t L i n e L i s t

c x , [s i + S t a r t X l
c x . -1
L i nesOone

d x . [s i + S t a r t Y l
b l , [s i + L i n e C o l o r l
bp . [s i+BaseLength l
b l . [B a s e C o l o r l

c x
dx
Wri t e P i x e l
d x

c x . [s i + L i n e X I n c l
d x , [s i + L i n e Y I n c l
bP
P ixe l Loop
s i . s i z e L i n e c o n t r o l
L ineLoop

c x

GetNextKey
[B a s e C o l o r l
[BaseColor l .B
Co lorLoop

Draw each l i n e i n t u r n .

: p o i n t t o t h e s t a r t o f t h e
: l i n e d e s c r i p t o r l i s t

: s e t t h e i n i t i a l X c o o r d i n a t e

:a d e s c r i p t o r w i t h a -1 X
: c o o r d i n a t e m a r k s t h e e n d
: o f t h e l i s t
: s e t t h e i n i t i a l Y c o o r d i n a t e ,
: l i n e c o l o r ,
: and p i x e l c o u n t
: a d j u s t t h e l i n e c o l o r a c c o r d i n g
: t o B a s e c o l o r

: s a v e t h e c o o r d i n a t e s

:draw t h i s p i x e l
: r e t r i e v e t h e c o o r d i n a t e s

; s e t t h e c o o r d i n a t e s o f t h e
: n e x t p o i n t o f t h e 1 i n e
:any more po in ts?
: y e s . d r a w t h e n e x t
; p o i n t t o t h e n e x t l i n e d e s c r i p t o r
: a n d d r a w t h e n e x t l i n e

; w a i t f o r a key . t hen
: bump t h e c o l o r s e l e c t i o n a n d
: see i f we' re done
: n o t d o n e y e t

: W a i t f o r a k e y a n d r e t u r n t o t e x t mode and end when
: one i s p ressed.

c a l l GetNextKey
mov ax.0003h
i n t 10h
mov ah.4ch
i n t 21h :done

S t a r t endp

: Sets up 320x400 256-COlOr modes.

: I n p u t : n o n e

: Output : none

t e x t mode

Higher 256-Color Resolution on the VGA 595

Set320By400Mode proc near

: F i r s t . go t o normal 320x200 256-co lor mode, which i s r e a l l y a
: 320x400 256-co lor mode w i t h e a c h l i n e s c a n n e d t w i c e .

mov ax.0013h :AH - 0 means mode s e t . AL - 13h s e l e c t s

i n t 10h : B I O S v i d e o i n t e r r u p t
: 2 5 6 - c o l o r g r a p h i c s mode

: Change CPU a d d r e s s i n g o f v i d e o memory t o l i n e a r (n o t o d d / e v e n .
: c h a i n . o r c h a i n 4) . t o a l l o w us t o access a l l 256K o f d i s p l a y
: memory. When t h i s i s done, VGA memory will l o o k j u s t l i k e memory
: i n modes 10h and 12h . excep t t ha t each by te o f d i sp lay memory will
: c o n t r o l o n e 2 5 6 - c o l o r p i x e l , w i t h 4 a d j a c e n t p i x e l s a t a n y g i v e n
: address , one p i xe l pe r p lane .

mov
mov
o u t
i nc
i n
and
o r
o u t
mov
mov
o u t
i nc
i n
and
o u t
dec
mov
o u t
i nc
i n
and
o u t

dx.SC-INDEX
a1 .MEMORY-MODE
dx .a l
dx
a1 , dx
a1 .not 08h
a l . 0 4 h
dx .a l
dx.GC-INDEX
a1 .GRAPHICS-MODE
d x . a l
dx
a1 ,dx
a1 .not 10h
dx.a l
dx
a1,MISCELLANEOUS
d x . a l
dx
a1 ,dx
a1 .not 02h
dx.a l

: t u r n o f f c h a i n 4
; t u r n o f f o d d / e v e n

: t u r n o f f o d d / e v e n

: t u r n o f f c h a i n

: NOW c l e a r t h e w h o l e s c r e e n , s i n c e t h e mode 13h mode s e t o n l y
: c l e a r e d 64K o u t o f t h e 256K o f d i s p l a y memory. Do t h i s b e f o r e
: we s w i t c h t h e CRTC o u t o f mode 13h. so we don ' t see garbage
: on t h e s c r e e n when we make t h e s w i t c h .

CONSTANT-TO-INDEXED-REGISTER SC-1NDEX.MAP-MASK.Ofh
: e n a b l e w r i t e s t o a l l p l a n e s , so
: we c a n c l e a r 4 p i x e l s a t a t i m e

mov ax.VGA-SEGMENT
mov es.ax
sub d i , d i
mov ax .d i
mov cx.8000h :# o f words i n 64K
c l d
r e p s t o s w : c l e a r a l l o f d i s p l a y memory

: Tweak t h e mode t o 320x400 256-co lor mode by no t scann ing each
: l i n e t w i c e .

mov dx.CRTC-INDEX
mov a1 .MAX-SCAN-LINE
o u t d x . a l

596 Chapter 31

i n c d x
i n a1 .dx
and a1 . n o t l f h : s e t maximum scan l i n e = 0
o u t d x . a l
dec dx

: Change CRTC scann ing f rom doub leword mode t o b y t e mode. a l l o w i n g
: t h e CRTC t o scan more than 64K o f v i d e o d a t a .

mov a1,UNDERLINE
o u t d x . a l
i n c d x
i n a l . d x
and a1 .no t 40h
o u t d x , a l
dec dx
mov a1 .MODELCONTROL
o u t d x . a l
i n c d x
i n a l . d x
o r a1 . 4 0 h : t u r n on t h e b y t e mode b i t , s o memory i s

: scanned f o r v i d e o d a t a i n a p u r e l y
: l i n e a r way. j u s t as i n modes 10h and 12h

o u t d x . a l
r e t

Set320By400Mode endp

: t u r n o f f d o u b l e w o r d

: Draws a p i x e l i n t h e s p e c i f i e d c o l o r a t t h e s p e c i f i e d
: l o c a t i o n i n 320x400 256-co lo r mode.

: I n p u t :
: C X = X c o o r d i n a t e o f p i x e l
: D X = Y c o o r d i n a t e o f p i x e l
; BL = p i x e l c o l o r

: Output : none

: R e g i s t e r s a l t e r e d : A X , C X . D X , DI. ES

W r i t e p i x e l p r o c n e a r
mov ax.VGA_SEGMENT
mov es.ax
mov ax,SCREEN_WIDTH/4

mu1 dx
push c x
s h r c x . 1
s h r c x . 1
add ax .cx
mov d i ,ax
POP c x
and c1.3
mov ah.1
s h l a h . c l

mov a1 .MAP_MASK
mov dx.SC_INDEX
OUTLWORD

: p o i n t t o d i s p l a y memory

: t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s , s o
: e a c h 3 2 0 - p i x e l r o w i s 80 b y t e s w i d e
: i n each p lane
: p o i n t t o s t a r t o f d e s i r e d r o w
: s e t a s i d e t h e X c o o r d i n a t e
: t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s
: s o d i v i d e t h e X c o o r d i n a t e b y 4
: p o i n t t o t h e p i x e l ' s a d d r e s s

: g e t b a c k t h e X c o o r d i n a t e
: g e t t h e p l a n e # o f t h e p i x e l

: s e t t h e b i t c o r r e s p o n d i n g t o t h e p l a n e
: t h e p i x e l i s i n

: s e t t o w r i t e t o t h e p r o p e r p l a n e f o r
: t h e p i x e l

Higher 256-Color Resolution on the VGA 597

mov e s : [d i l , b l : d r a w t h e p i x e l
r e t

W r i t e P i x e l e n d p

; Reads t h e c o l o r o f t h e p i x e l a t t h e s p e c i f i e d l o c a t i o n i n 3 2 0 x 4 0 0
; 2 5 6 - c o l o r mode.

; I n p u t :
; C X - X c o o r d i n a t e o f p i x e l t o r e a d
; DX - Y c o o r d i n a t e o f p i x e l t o r e a d

; o u t p u t :
; AL - p i x e l c o l o r

; R e g i s t e r s a l t e r e d : A X , C X . D X , S I . ES

ReadP ixe l p roc nea r
mov ax.VGA-SEGMENT
mov es .ax
mov ax,SCREENKWIDTH/4

: p o i n t t o d i s p l a y memory

; t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s , s o
; e a c h 3 2 0 - p i x e l r o w i s 80 b y t e s w i d e
: i n each p lane

mu1 d x ; p o i n t t o s t a r t o f d e s i r e d row
p u s h c x ; s e t a s i d e t h e X c o o r d i n a t e
s h r c x . 1 ; t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s
s h r c x . 1 : s o d i v i d e t h e X c o o r d i n a t e b y 4
a d d a x , c x ; p o i n t t o t h e p i x e l ' s a d d r e s s
mov s i ,ax
POP a x : g e t b a c k t h e X c o o r d i n a t e
and a1 .3 : ge t t he p lane I o f t h e p i x e l
mov ah .a l
mov a1 , READ-MAP
mov dx.GC-INDEX
OUT-WORD ; s e t t o r e a d f r o m t h e p r o p e r p l a n e f o r

l o d s b y t e p t r e s : [s i l ; r e a d t h e p i x e l
r e t

ReadPixel endp

: t h e p i x e l

; W a i t s f o r t h e n e x t k e y a n d r e t u r n s i t i n A X .

; I n p u t : n o n e

; o u t p u t :
; AX - f u l l 1 6 - b i t code f o r key p ressed

GetNextKey p roc near
WaitKey:

mov ah.1
i n t 16h
jz WaitKey
sub ah,ah
i n t 16h
r e t

GetNextKey endp

; w a i t f o r a key t o become a v a i l a b l e

: read t he key

Code ends

e n d S t a r t

598 Chapter 31

The interesting aspects of Listing 31.1 are three. First, the Set320x400Mode subrou-
tine selects 320x400 256color mode. This is accomplished by performing a mode
13H mode set followed by then putting the VGA into standard planar byte mode.
Set320x400Mode zeros display memory as well. It’s necessary to clear display memory
even after a mode 13H mode set because the mode 13H mode set clears only the 64K
of display memory that can be accessed in that mode, leaving 192Kof display memory
untouched.
The second interesting aspect of Listing 31.1 is the Writepixel subroutine, which
draws a colored pixel at any x,y addressable location on the screen. Although it may
not be obvious because I’ve optimized the code a little, the process of drawing a
pixel is remarkably simple. First, the pixel’s display memory address is calculated as
address = (y * (SCREEN-WIDTH / 4)) + (x / 4)
which might be more recognizable as:
address = ((y * SCREEN-WIDTH) + x) / 4
(There are 4 pixels at each display memory address in 320x400 mode, hence the
division by 4.) Then the pixel’s plane is calculated as
plane = x and 3
which is equivalent to:
plane = x modulo 4
The pixel’s color is then written to the addressed byte in the addressed plane. That’s
all there is to it!
The third item of interest in Listing 31.1 is the ReadPixel subroutine. ReadPixel is
virtually identical to Writepixel, save that in ReadPixel the Read Map register is pro-
grammed with a plane number, while WritePixel uses a plane mask to set the Map
Mask register. Of course, that difference merely reflects a fundamental difference in
the operation of the two registers. (If that’s Greek to you, refer back to Chapters 23-
30 for a refresher on VGA programming.) ReadPixel isn’t used in Listing 31.1, but
I’ve included it because, as I said above, the read and write pixel functions together
can support a whole host of more complex graphics functions.
How does 320x400 256-color mode stack up as regards performance? As it turns out,
the programming model of 320x400 mode is actually pretty good for pixel drawing,
pretty much on a par with the model of mode 13H. When you run Listing 31.1, you’ll
no doubt notice that the lines are drawn quite rapidly. (In fact, the drawing could be
considerably faster still with a dedicated line-drawing subroutine, which would avoid
the multiplication associated with each pixel in Listing 31.1 .)
In 320x400 mode, the calculation of the memory address is not significantly slower
than in mode 13H, and the calculation and selection of the target plane is quickly
accomplished. As with mode 13H, 320x400 mode benefits tremendously from the
byte-per-pixel organization of 256-color mode, which eliminates the need for the

Higher 256-Color Resolution on the VGA 599

time-consuming pixel-masking of the l k o l o r modes. Most important, byte-per-pixel
modes never require read-modify-write operations (which can be extremely slow due
to display memory wait states) in order to clip and draw pixels. To draw a pixel, you
just store its color in display memory-what could be simpler?
More sophisticated operations than pixel drawing are less easy to accomplish in
320x400 mode, but with a little ingenuity it is possible to implement a reasonably
efficient version ofjust about any useful graphics function. A fast line draw for 320x400
256-color mode would be simple (although not as fast as would be possible in mode
13H). Fast image copies could be implemented by copying one-quarter of the image
to one plane, one-quarter to the next plane, and so on for all four planes, thereby
eliminating the OUT per pixel that sequential processing requires. If you’re really
into performance, you could store your images with all the bytes for plane 0 grouped
together, followed by all the bytes for plane 1, and so on. That would allow a single
REP MOVS instruction to copy all the bytes for a given plane, with just four REP
MOVS instructions copying the whole image. In a number of cases, in fact, 320x400
256-color mode can actually be much faster than mode 13H, because the VGA’s
hardware can be used to draw four or even eight pixels with a single access; I’ll
return to the topic of high-performance programming in 256-color modes other
than mode 13H (“non-chain 4” modes) in Chapter 47.
It’s all a bit complicated, but as I say, you should be able to design an adequately
fast-and often very fast-version for 320x400 mode of whatever graphics function
you need. If you’re not all that concerned with speed, WritePixel and ReadPixel
should meet your needs.

Two 256-Color Pages
Listing 31.2 demonstrates the two pages of 320x400 256-color mode by drawing slant-
ing color bars in page 0, then drawing color bars slanting the other way in page 1 and
flipping to page 1 on the next key press. (Note that page 1 is accessed starting at
offset 8000H in display memory, and is-unsurprisingly-displayed by setting the
start address to SOOOH.) Finally, Listing 31.2 draws vertical color bars in page 0 and
flips back to page 0 when another key is pressed.
The color bar routines don’t use the Writepixel subroutine from Listing 31.1; they
go straight to display memory instead for improved speed. As I mentioned above,
better speed yet could be achieved by a color-bar algorithm that draws all the pixels
in plane 0, then all the pixels in plane 1, and so on, thereby avoiding the overhead of
constantly reprogramming the Map Mask register.

LISTING 3 1.2 L3 1 -2.ASM
: Program t o d e m o n s t r a t e t h e t w o p a g e s a v a i l a b l e i n 3 2 0 x 4 0 0
: 2 5 6 - c o l o r modes on a V G A . D r a w s d i a g o n a l c o l o r b a r s i n a l l
: 2 5 6 c o l o r s i n page 0. t h e n d o e s t h e same i n page 1 (b u t w i t h

600 Chapter 31

; t h e b a r s t i l t e d t h e o t h e r w a y) . and f i n a l l y d r a w s v e r t i c a l
: c o l o r b a r s i n page 0.

VGA-SEGMENT
SC- INDEX
GC-INDEX
CRTC-INDEX
MAP-MASK
MEMORY-MODE
MAX-SCAN-LINE
STARTLADDRESS-HIGH
UNDERLINE
MODELCONTROL
GRAPHICS-MODE
MISCELLANEOUS
SCREEN-WIDTH
SCREEN-HEIGHT
WORD-OUTS-OK

s t a c k segment

s t a c k ends

; Macro t o o u t p u t

OUT-WORD macro
i f WORD-OUTS-OK

out dx.ax
e l s e

o u t d x . a l
i n c d x
xchg ah.a l
o u t d x . a l
dec dx
xchg ah.a l

endm

db

e n d i f

; Macro t o o u t p u t

OaOOD
3c4h
3ceh
3d4h
2
4
9
Och
14h
17h
5
6
320
400
1

lh
; S e q u e n c e C o n t r o l l e r I n d e x r e g i s t e r
: G r a p h i c s C o n t r o l l e r I n d e x r e g i s t e r
:CRT C o n t r o l l e r I n d e x r e g i s t e r
;Map Mask r e g i s t e r i n d e x i n SC
;Memory Mode r e g i s t e r i n d e x i n SC
;Maximum Scan L i n e r e g i n d e x i n CRTC
: S t a r t A d d r e s s H i g h r e g i n d e x i n CRTC
; U n d e r l i n e L o c a t i o n r e g i n d e x i n CRTC
;Mode C o n t r o l r e g i s t e r i n d e x i n CRTC
;Graph ics Mode r e g i s t e r i n d e x i n GC
; M i s c e l l a n e o u s r e g i s t e r i n d e x i n GC
;# o f p i x e l s a c r o s s s c r e e n
;# o f s c a n l i n e s on screen
; s e t t o 0 t o assemble f o r
; compu te rs t ha t can ' t hand le
: w o r d o u t s t o i n d e x e d VGA r e g i s t e r s

p a r a s t a c k 'STACK'
512 dup (?)

a word va lue t o a p o r t .

a c o n s t a n t v a l u e t o an indexed VGA r e g i s t e r .

CONSTANT-TO-INDEXED-REGISTERmacro ADDRESS, I N D E X , VALUE
mov dx.AO0RESS
mov ax.(VALUE s h l 8) + I N D E X
OUT-WORD
endm

Code segment

S t a r t p r o c n e a r

; Set 320x400 256-co lo r mode.

assume cs:Code

c a l l Set320By400Mode

; We're i n 320x400 256-co lo r mode, w i t h page 0 d i s p l a y e d .
; L e t ' s fill page 0 w i t h c o l o r b a r s s l a n t i n g down and t o t h e r i g h t .

sub d i . d i ;page 0 s t a r t s a t a d d r e s s 0

Higher 256-Color Resolution on the VGA 601

mov b l . 1 ;make c o l o r b a r s s l a n t down and

c a l l Col orBarsUp : d r a w t h e c o l o r b a r s
; t o t h e r i g h t

: Now do t h e same f o r page 1. b u t w i t h t h e c o l o r b a r s
; t i l t i n g t h e o t h e r way.

mov d i ,8000h ;page 1 s t a r t s a t a d d r e s s 8 0 0 0 h
mov b l , - l ;make c o l o r b a r s s l a n t down and

c a l l Col orBarsUp ;draw t h e c o l o r b a r s
; t o t h e l e f t

; Wai t for a key and f l i p t o page 1 when one i s pressed.

c a l l G e t N e x t K e y
CONSTANT-TO-INDEXED-REGISTER CRTC-INDEX.START-ADDRESS-HIGH,EDh

; s e t t h e S t a r t A d d r e s s H i g h r e g i s t e r
; t o 80h. f o r a s t a r t a d d r e s s o f 8 0 0 0 h

; Draw v e r t i c a l b a r s i n page 0 w h i l e page 1 i s d i s p l a y e d .

s u b d i , d i
sub b l , b l
c a l l Co l o rBarsUp ;d raw the co lo r bars

; W a i t f o r a n o t h e r k e y a n d f l i p b a c k t o p a g e 0 when one i s pressed.

;page 0 s t a r t s a t a d d r e s s 0
;make c o l o r b a r s v e r t i c a l

c a l l G e t N e x t K e y
CONSTANT-TO-INDEXED-REGISTER CRTC- INDEX.START-ADDRESSHIGH,OOh

; s e t t h e S t a r t A d d r e s s H i g h r e g i s t e r
; t o OOh. f o r a s t a r t a d d r e s s o f OOOOh

; W a i t f o r y e t a n o t h e r k e y a n d r e t u r n t o t e x t mode and end when
; one i s pressed.

c a l l G e t N e x t K e y
mov ax.0003h
i n t 10h
mov ah.4ch
i n t 21h

S t a r t endp

: Sets up 320x400 256-co lor modes

: Inpu t : none

; t e x t mode

;done

; Output : none

Set320By400Mode p r o c n e a r

; F i r s t , go t o normal 320x200 256-co lor mode, which i s r e a l l y a
; 320x400 256-co lor mode w i t h e a c h l i n e s c a n n e d t w i c e .

mov ax.0013h ;AH - 0 means mode s e t . AL - 1 3 h s e l e c t s

i n t 10h ;BIOS v i d e o i n t e r r u p t
: 2 5 6 - c o l o r g r a p h i c s mode

; Change C P U a d d r e s s i n g o f v i d e o memory t o l i n e a r (n o t o d d / e v e n .
: c h a i n , o r c h a i n 4) . t o a l l o w us t o access a l l 256K o f d i s p l a y

602 Chapter 31

; t u r n o f f c h a i n 4
: t u r n o f f o d d l e v e n

; t u r n o f f o d d l e v e n

: memory. When t h i s i s done, VGA memory will l o o k j u s t l i k e memory
: i n modes 1 0 h a n d 1 2 h , e x c e p t t h a t e a c h b y t e o f d i s p l a y memory will
: c o n t r o l o n e 2 5 6 - c o l o r p i x e l , w i t h 4 a d j a c e n t p i x e l s a t any g i ven
: a d d r e s s . o n e p i x e l p e r p l a n e .

mov dx.SC-INDEX
mov a1 .MEMORY-MODE
o u t d x . a l
i n c d x
i n a1 ,dx
and a1 ,not 08h
o r a1 .04h
o u t d x . a l
mov dx.GC-INDEX
mov a1 .GRAPHICS-MODE
o u t d x , a l
i n c d x
i n a l . d x
and a1 .no t 10h
o u t d x . a l
dec dx
mov a1 ,MISCELLANEOUS
o u t d x . a l
i n c d x
i n a l . d x
a n d a l . n o t 0 2 h : t u r n o f f c h a i n
o u t d x . a l

: Now c l e a r t h e w h o l e s c r e e n , s i n c e t h e mode 13h mode s e t o n l y
: c l e a r e d 64K o u t o f t h e 256K o f d i s p l a y memory. Do t h i s b e f o r e
; we s w i t c h t h e CRTC o u t o f mode 13h. s o we don ' t see garbage
: on t h e s c r e e n when we make t h e s w i t c h .

CONSTANT-TO-INDEXED-REGISTER SC-INDEX.MAP_MASK,Ofh
: e n a b l e w r i t e s t o a l l p l a n e s , s o
; we c a n c l e a r 4 p i x e l s a t a t i m e

mov ax.VGA_SEGMENT
mov es,ax
sub d i . d i
mov a x . d i
mov cx.8000h :# o f words i n 64K
c l d
r e p s t o s w ; c l e a r a l l o f d i s p l a y memory

: Tweak t h e mode t o 320x400 256-co lo r mode b y n o t s c a n n i n g e a c h
; l i n e t w i c e .

mov dx.CRTC-INDEX
mov a1 .MAX_SCAN-LINE
o u t d x . a l
i n c d x
i n a l . d x
and a1,not l f h : s e t maximum scan 1 i n e - 0
o u t d x . a l
dec dx

; Change CRTC s c a n n i n g f r o m d o u b l e w o r d mode t o b y t e mode, a l l o w i n g
; t h e CRTC t o scan more than 64K o f v i d e o d a t a .

mov a1,UNDERLINE
o u t d x . a l

Higher 256-Color Resolution on the VGA 603

: t u r n o f f d o u b l e w o r d

i n c d x
i n a1,dx
and a1 .no t 40h
o u t d x . a l
dec dx
mov a1 ,MODELCONTROL
o u t d x . a l
i n c d x
i n a1,dx
o r a l . 4 0 h : t u r n o n t h e b y t e mode b i t , so memory i s

: scanned f o r v i d e o d a t a i n a p u r e l y
: l i n e a r way, j u s t as i n modes 10h and 12h

o u t d x . a l
r e t

Set320By400Mode endp

: Draws a f u l l s c r e e n o f s l a n t i n g c o l o r b a r s i n t h e s p e c i f i e d p a g e .

: I n p u t :
: D I - page s t a r t a d d r e s s
: BL - 1 t o make t h e b a r s s l a n t down and t o t h e r i g h t , -1 t o

make t h e m s l a n t down and t o t h e l e f t , 0 t o make
them v e r t i c a l .

Co l o rBarsUp p roc near
mov ax.VGA-SEGMENT
mov es.ax
sub bh.bh
mov s i .SCREEN-HEIGHT
mov dx.SC-INDEX
mov a1 .MAP-MASK
o u t d x . a l ; p o i n t t h e SC I n d e x r e g t o t h e Map Mask r e g
i n c d x : p o i n t DX t o t h e SC D a t a r e g i s t e r

mov cx,SCREEN_WIDTH/4

: p o i n t t o d i s p l a y memory
: s t a r t w i t h c o l o r 0
:# o f rows t o do

RowLoop:

: 4 p i x e l s a t e a c h a d d r e s s , s o
: each 320 -p i xe l row i s 80 b y t e s w i d e
: i n each p lane
: s a v e t h e r o w - s t a r t c o l o r push bx

ColumnLoop:
MAP-SELECT - 1

r e p t 4 :do a l l 4 p i x e l s a t t h i s a d d r e s s w i t h

mov a1 .MAP-SELECT
o u t d x , a l : s e l e c t p l a n e s 0. 1. 2. and 3 i n t u r n
mov e s : [d i l . b h
i n c b h

endm
i n c d i : p o i n t t o t h e a d d r e s s c o n t a i n i n g t h e n e x t

1 oop Col umnLoop
POP bx
add bh.bl

dec s i : c o u n t down l i n e s on t h e s c r e e n
j n z RowLoop
r e t

Col orBarsUp endp

: i n - l i n e code

: w r i t e t h i s p l a n e ' s p i x e l
: s e t t h e c o l o r f o r t h e n e x t p i x e l

MAP-SELECT - MAP-SELECT s h l 1

: 4 p i x e l s
: d o a n y r e m a i n i n g p i x e l s o n t h i s l i n e
: g e t b a c k t h e r o w - s t a r t c o l o r
: s e l e c t n e x t r o w - s t a r t c o l o r (c o n t r o l s
: s l a n t i n g o f c o l o r b a r s)

604 Chapter 31

: W a i t s f o r t h e n e x t k e y a n d r e t u r n s i t i n A X .

GetNextKey proc near
WaitKey:

rnov ah.1
i n t 16h
j z WaitKey : w a i t f o r a key t o become a v a i l a b l e
sub ah.ah
i n t 16h : r e a d t h e key
r e t

GetNextKey endp

Code ends

end Start

When you run Listing 31.2, note the extremely smooth edges and fine gradations of
color, especially in the screens with slanting color bars. The displays produced by
Listing 31.2 make it clear that 320x400 256-color mode can produce effects that are
simply not possible in any 16-color mode.

Something to Think About
You can, if you wish, use the display memory organization of 320x400 mode in 320x200
mode by modifymg Set320x400Mode to leave the maximum scan line setting at 1 in
the mode set. (The version of Set320x400Mode in Listings 31.1 and 31.2 forces the
maximum scan line to 0, doubling the effective resolution of the screen.) Why would you
want to do that? For one thing, you could then choose from not two butfour320x200
256-color display pages, starting at offsets 0, 4000H, 8000H, and OCOOOH in display
memory. For another, having only half as many pixels per screen can as much as
double drawing speeds; that’s one reason that many games run at 320x200, and even
then often limit the active display drawing area to only a portion of the screen.

Higher 256-Color Resolution on the VGA 605

chapter 32

be it resolved: 360x480

olor Modes About as Far as the
A Can Take Them

how to coax 320x400 256-color resolution out of a
ted that the VGA was actually capable of supporting

256-color resolutio 360x480, but didn’t pursue the topic further, prefer-
tile and easy-to-set 320x400 256-color mode instead.
ticularly useful item from John Bridges, a longtime
programmer. It was a complete mode set routine

de that he has placed into the public domain. In addition,
of freeware (free, but not public domain) utilities
ch displays PIC, PCX, and GIF images not only in

360x480~256 but also in 640~350~256,640x400x256,640~480~256, and 800~600~256
on SuperVGAs.”
In this chapter, I’m going to combine John’s mode set code with appropriately modi-
fied versions of the dot-plot code from Chapter 31 and the line-drawing code that
we’ll develop in Chapter 35. Together, those routines will make a pretty nifty demo
of the capabilities of 360x480 256-color mode.

609

Extended 256-Color Modes: What’s Not to Like?
When last we left 256-color programming, we had found that the standard 256-color
mode, mode 13H, which officially offers 320x200 resolution, actually displays 400,
not 200, scan lines, with line-doubling used to reduce the effective resolution to
320x200. By tweaking a few of the VGA’s mode registers, we converted mode 13H to
a true 320x400 256-color mode. As an added bonus, that 320x400 mode supports
two graphics pages, a distinct improvement over the single graphics page supported
by mode 13H. (We also learned how to getfourgraphics pages at 320x200 resolution,
should that be needed.)
I particularly like 320x400 256-color mode for two reasons: It supports two-page graph-
ics, which is very important for animation applications; and it doesn’t require changing
any of the monitor timing characteristics of the VGA. The mode bits that we changed
to produce 320x400 256-color mode are pretty much guaranteed to be the same
from one VGA to another, but the monitor-oriented registers are less certain to be
constant, especially for VGAs that provide special support for the extended capabili-
ties of various multiscanning monitors.
All in all, those are good arguments for 320x400 256-color mode. However, the
counter-argument seems compelling as well-nothing beats higher resolution for
producing striking graphics. Given that, and given thatJohn Bridges was kind enough
to make his mode set code available, I’m going to look at 360x480 256-color mode
next. However, bear in mind that the drawbacks of this mode are the flip side of the
strengths of 320x400 256-color mode: Only one graphics page, and direct setting of
the monitor-oriented registers. Also, this mode has a peculiar and unique aspect
ratio, with 480 pixels (as many as high-resolution mode 12H) vertically and only 360
horizontally. That makes for fairly poor horizontal resolution and sometimes-jagged
drawing; on the other hand, the resolution is better in both directions than in mode
13H, and mode 13H itself has an odd aspect ratio, so it seems a bit petty to complain.
The single graphics page isn’t a drawback if you don’t need page flipping, of course, so
there’s not much to worry about there: If you need page flipping, don’t use this mode.
The direct setting of the monitor-oriented registers is another matter altogether.
I don’t know how likely this code is to produce problems with clone VGAs in general;
however, I did find that I had to put an older Video Seven VRAM VGA into “pure”
mode-where it treats the VRAMs as DRAMS and exactly emulates a plain-vanilla
IBM VGA-before 360x480 256-color mode would work properly. Now, that particu-
lar problem was due to an inherent characteristic ofVRAMs, and shouldn’t occur on
Video Seven’s Fastwrite adapter or any other VGA clone. Nonetheless, 360x480 256-
color mode is a good deal different from any standard VGA mode, and while the
code in this chapter runs perfectly well on all other VGAs in my experience, I can’t
guarantee its functionality on any particular VGA/monitor combination, unlike
320x400 256-color mode. Mind you, 360x480 256-color mode should work on all

61 0 Chapter 32

VGAs-there are just too many variables involved for me to be certain. Feedback
from readers with broad 360x480 256-color experience is welcome.
The above notwithstanding, 360x480 256-color mode offers 64 times as many colors
and nearly three times as many pixels as IBM’s original CGA color graphics mode,
making startlingly realistic effects possible. No mode of the VGA (at least no mode
that 1 know of!), documented or undocumented, offers a better combination of reso-
lution and color; even 320x400 256-color mode has 26 percent fewer pixels.
In other words, 360x480 256-color mode is worth considering-so let’s have a look.

360x480 256-Color Mode
I’m going to start by showing you 360x480 256-color mode in action, after which
we’ll look at how i t works. I suspect that once you see what this mode looks like,
you’ll be more than eager to learn how to use it.
Listing 32.1 contains three C-callable assembly functions. As you would expect,
Set360x480Mode places the VGA into 360x480 256-color mode. Draw360x480Dot
draws a pixel of the specified color at the specified location. Finally, Read360x480Dot
returns the color of the pixel at the specified location. (This last function isn’t actu-
ally used in the example program in this chapter, but is included for completeness.)
Listing 32.2 contains an adaptation of some C line-drawing code I’ll be presenting
shortly in Chapter 35. If you’re reading this book in serial fashion and haven’t gotten
there yet, simply take it on faith. If you really really need to know how the line-draw
code works right now, by all means make a short forward call to Chapter 35 and
digest it. The line-draw code presented below has been altered to select 360x480
256-color mode, and to cycle through all 256 colors that this mode supports, draw-
ing each line in a different color.

LISTING 32.1 132- 1 .ASM
: B o r l a n d C/C++ t i n y / s m a l l / m e d i u m m o d e l - c a l l a b l e a s s e m b l e r
: s u b r o u t i n e s t o :
: * S e t 3 6 0 x 4 8 0 2 5 6 - c o l o r VGA mode
: * Draw a d o t i n 3 6 0 x 4 8 0 2 5 6 - c o l o r V G A mode
: * Read t h e c o l o r o f a d o t i n 360x480 256 -co lo r VGA mode

: A s s e m b l e d w i t h TASM

: The 360x480 256-co lo r mode s e t
: by John B r idges , who h a s p l a c e d

VGALSEGMENT equ OaOOOh
S C - I N D E X
GC- I N D E X

equ 3c4h
equ 3ceh

MAPYMASK
READ-MAP

equ 2

SCREENKWIDTH
equ 4

WORD-OUTSLOK
equ 360
equ 1

code and parameters were p rov ided
t h e m i n t o t h e p u b l i c d o m a i n .

: d i s p l a y memory segment
: S e q u e n c e C o n t r o l l e r I n d e x r e g i s t e r
: G r a p h i c s C o n t r o l l e r I n d e x r e g i s t e r
;Map Mask r e g i s t e r i n d e x i n SC
:Read Map r e g i s t e r i n d e x i n GC
:# o f p i x e l s a c r o s s s c r e e n
: s e t t o 0 t o assemble f o r
; c o m p u t e r s t h a t c a n ’ t h a n d l e
: w o r d o u t s t o i n d e x e d VGA r e g i s t e r s

Be It Resolved: 360x480 61 1

- DATA s e g m e n t p u b l i c b y t e 'DATA'

; 360x480 256-co lo r mode CRT C o n t r o l l e r r e g i s t e r s e t t i n g s .
; (Cour tesy o f John B r idges .)

v p t b l dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

vpend 1 abel
- DATA ends

06b00h
05901h
05a02h
08e03h
05e04h
08a05h
DOd06h
03e07h
04009h
OealOh
O a c l l h
O d f l 2 h
02d13h
00014h
Oe715h
00616h
Oe317h
word

; Macro t o o u t p u t

OUT-WORD macro
i f WORD-OUTS-OK

ou t dx .ax
e l s e

ou t dx .a l
i n c d x
xchg ah.a l
o u t d x . a l
dec dx
xchg ah.a l

endm
e n d i f

a word value t o a p o r t .

- TEXT s e g m e n t b y t e p u b l i c 'CODE'
assume cs:-TEXT, ds:-DATA

; Sets up 360x480 256-co lor mode.
; (C o u r t e s y o f J o h n B r i d g e s .)

; Cal l as: vo id Set360By480ModeO

; R e t u r n s : n o t h i n g

p u b l i c -Set360x480Mode

push s i
push d i
mov ax.12h
i n t 10h

- Set360x480Mode proc near

mov ax.13h
i n t 10h

h o r z t o t a l
h o r z d i s p l a y e d
s t a r t h o r z b l a n k i n g
end ho rz b lank ing
s t a r t h sync
end h sync
v e r t i c a l t o t a l
o v e r f l o w
c e l l h e i g h t
v sync s t a r t
v sync end and p ro tec t c r0 -c r7
v e r t i c a l d i s p l a y e d
o f f s e t
t u r n o f f dword mode
v b l a n k s t a r t
v b lank end
t u r n on b y t e mode

;p reserve C r e g i s t e r v a r s

; s t a r t w i t h mode 12h
: l e t t h e B I O S c l e a r t h e v i d e o memory

; s t a r t w i t h s t a n d a r d mode 13h
: l e t t h e B I O S s e t t h e mode

61 2 Chapter 32

mov dx , 3c4h
mov ax.0604h
o u t d x , a x

mov ax.0100h
o u t d x , a x
mov dx .3c2h
mov a1 .Oe7h
o u t d x , a l
mov dx .3c4h
mov ax.0300h
o u t d x . a x

; a l t e r s e q u e n c e r r e g i s t e r s
: d i s a b l e c h a i n 4

: s y n c h r o n o u s r e s e t
: a s s e r t e d
; m i s c o u t p u t
; use 28 mHz d o t c l o c k
: s e l e c t i t
: s e q u e n c e r a g a i n
: r e s t a r t s e q u e n c e r
; r u n n i n g a g a i n

mov dx.3d4h : a l t e r c r t c r e g i s t e r s

mov a1 . l l h : c r l l
o u t d x . a l ; c u r r e n t v a l u e
i n c d x : p o i n t t o d a t a
i n a1 .dx : g e t c r l l v a l u e
and a l . 7 f h ; remove crO - > c r 7
o u t d x . a l : w r i t e p r o t e c t
dec dx : p o i n t t o i n d e x
c l d
mov s i . o f f s e t v p t b l
mov c x . ((o f f s e t v p e n d) - (o f f s e t v p t b l)) s h r 1

o u t d x . a x
l o o p @b
pop d i : r e s t o r e C r e g i s t e r v a r s
pop s i
r e t

@b: lodsw

-Set360x480Mode endp

; Draws a p i x e l i n t h e s p e c i f i e d c o l o r a t t h e s p e c i f i e d
: l o c a t i o n i n 3 6 0 x 4 8 0 2 5 6 - c o l o r mode.

; C a l l a s : v o i d D r a w 3 6 0 x 4 8 0 D o t (i n t X , i n t Y . i n t C o l o r)

: R e t u r n s : n o t h i n g

DParms s t r u c
dw ?
dw ?

DrawX dw ?
DrawY dw ?
C o l o r dw ?

DParms ends

pub l ic -Draw360x480Dot

push bp
mov bp ,sp
p u s h s i
p u s h d i
mov ax.VGA-SEGMENT
mov es .ax
mov ax,SCREEN_WIOTH/4

-Draw360x480Dot proc near

;pushed BP
; r e t u r n a d d r e s s
; X c o o r d i n a t e a t w h i c h t o d r a w
: Y c o o r d i n a t e a t w h i c h t o d r a w
; c o l o r i n w h i c h t o d r a w (i n t h e
: range 0-255; u p p e r b y t e i g n o r e d)

: p r e s e r v e c a l l e r ' s BP
; p o i n t t o s t a c k f r a m e
: p r e s e r v e C r e g i s t e r v a r s

: p o i n t t o d i s p l a y memory

: t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s , s o
; e a c h 3 6 0 - p i x e l r o w i s 9 0 b y t e s w i d e
; i n e a c h p l a n e

Be It Resolved: 360x480 61 3

mu1 Cbp+DrawYl
mov d i , Cbp+DrawX]

: p o i n t t o s t a r t o f d e s i r e d r o w

s h r d i . l
: g e t t h e X c o o r d i n a t e

s h r d i . 1
; t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s

add d i , a x
: so d i v i d e t h e X c o o r d i n a t e b y 4

mov c l . b y t e p t r Cbp+OrawX]
: p o i n t t o t h e p i x e l ' s a d d r e s s

and c l .3
; g e t t h e X c o o r d i n a t e a g a i n

mov ah .1
: g e t t h e p l a n e # o f t h e p i x e l

s h l a h . c l : s e t t h e b i t c o r r e s p o n d i n g t o t h e p l a n e

mov a1 .MAP-MASK
mov dx,SC_INDEX
OUT-WORD ; s e t t o w r i t e t o t h e p r o p e r p l a n e f o r

mov a l . b y t e p t r C b p + C o l o r] : g e t t h e c o l o r
s t o s b : d r a w t h e p i x e l
pop d i ; r e s t o r e C r e g i s t e r v a r s
pop s i

r e t

: t h e p i x e l i s i n

: t h e p i x e l

POP bp : r e s t o r e c a l l e r ' s BP

- Draw360x480Dot endp

: Reads t h e c o l o r o f t h e p i x e l a t t h e s p e c i f i e d
: l o c a t i o n i n 3 6 0 x 4 8 0 2 5 6 - c o l o r mode.

; C a l l a s : i n t R e a d 3 6 0 ~ 4 8 0 D o t (i n t X . i n t Y)

: R e t u r n s : p i x e l c o l o r

RParms s t r u c
dw ?
dw ?

ReadX dw ?
Ready dw ?
RParms ends

pub l i c -Read360x480Dot

push bp
mov bp .sp
p u s h s i
p u s h d i
mov ax.VGA-SEGMENT
mov es.ax
mov ax,SCREEN-WIOTH/4

- Read360x480Dot proc near

mu1 [bp+DrawY]
mov si , [bp+DrawX]
s h r s i . l
s h r s i . l
add s i . ax
mov a h . b y t e p t r Cbp+DrawX]
and ah.3

mov a1 , READ-MAP
mov dx.GC-INDEX
OUT-WORD

:pushed BP
: r e t u r n a d d r e s s
: X c o o r d i n a t e f r o m w h i c h t o r e a d
:Y c o o r d i n a t e f r o m w h i c h t o r e a d

: p r e s e r v e c a l l e r ' s BP
: p o i n t t o s t a c k f r a m e
: p r e s e r v e C r e g i s t e r v a r s

: p o i n t t o d i s p l a y memory
: t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s , s o
: e a c h 3 6 0 - p i x e l r o w i s 90 b y t e s w i d e
: i n each D lane

; p o i n t t o s t a r t o f d e s i r e d r o w
: g e t t h e X c o o r d i n a t e
: t h e r e a r e 4 p i x e l s a t e a c h a d d r e s s
: s o d i v i d e t h e X c o o r d i n a t e b y 4
: p o i n t t o t h e p i x e l ' s a d d r e s s
: g e t t h e X c o o r d i n a t e a g a i n

: g e t t h e p l a n e # o f t h e p i x e l

: s e t t o r e a d f r o m t h e p r o p e r p l a n e f o r
: t h e p i x e l

61 4 Chapter 32

l o d s b y t e p t r e s : [s i]
sub ah.ah
p o p d i
p o p s i
POP bp
r e t

-Read360x480Dot endp
-TEXT ends

end

; r e a d t h e p i x e l
;make t h e r e t u r n v a l u e a w o r d f o r C
; r e s t o r e C r e g i s t e r v a r s

; r e s t o r e c a l l e r ' s BP

MSTING 32.2 132-2.C
* Sample program t o i l l u s t r a t e V G A l i n e d r a w i n g i n 3 6 0 x 4 8 0
* 2 5 6 - c o l o r mode.

* C o m p i l e d w i t h B o r l a n d C/C++.

* M u s t b e l i n k e d w i t h L i s t i n g 3 2 . 1 w i t h a command l i n e l i k e :

* b c c 1 1 0 - 2 . c 1 1 0 - l . a s m

*

*

*

*
* By M i c h a e l A b r a s h
* /
#i ncl ude <dos . h> /* c o n t a i n s g e n i n t e r r u p t * /

{ {de f ine TEXT-MODE 0x03
d e f i n e BIOS-VIDEO-INT Ox10
d e f i n e X-MAX 360 / * w o r k i n g s c r e e n w i d t h * I
d e f i n e Y-MAX 480 / * w o r k i n g s c r e e n h e i g h t * /

e x t e r n v o i d D r a w 3 6 0 x 4 8 0 D o t O ;
e x t e r n v o i d S e t 3 6 0 x 4 8 0 M o d e O ;

/ *
* Draws a l i n e i n o c t a n t 0 o r 3 (I D e l t a X l >- De l taY) .
* I D e l t a X I + l p o i n t s a r e d r a w n .
* I

v o i d O c t a n t O (X 0 . Y O . D e l t a X . D e l t a Y . X O i r e c t i o n . C o l o r)
u n s i g n e d i n t X O . Y O ; I* c o o r d i n a t e s o f s t a r t o f t h e l i n e * I
u n s i g n e d i n t D e l t a X . D e l t a Y ; / * l e n g t h o f t h e l i n e * /
i n t X D i r e c t i o n ; /* 1 i f l i n e i s drawn l e f t t o r i g h t ,

i n t C o l o r ;
I

-1 i f d r a w n r i g h t t o l e f t * /
/ * c o l o r i n w h i c h t o d r a w l i n e * I

i n t D e l t a Y x 2 ;
i n t D e l t a Y x Z M i n u s D e l t a X x Z :
i n t E r r o r T e r m ;

/* Set up i n i t i a l e r r o r t e r m a n d v a l u e s used i n s i d e d r a w i n g l o o p */
Oe l taYx2 = De l taY * 2 ;
Oe l taYxZMinusDel taXxZ - De l taYx2 - (i n t) (De l taX * 2 1;
E r r o r T e r m = De l taYx2 - (i n t) D e l t a X ;

/ * Draw t h e l i n e * /
Draw360x480Dot(XO. Y O . C o l o r) ; / * d r a w t h e f i r s t p i x e l * /
w h i l e (D e l t a X - - 1 {

/ * See i f i t ' s t i m e t o a d v a n c e t h e Y c o o r d i n a t e * /
i f (E r r o r T e r m >= 0) {

back down */
/* A d v a n c e t h e Y c o o r d i n a t e & a d j u s t t h e e r r o r t e r m

Be It Resolved: 360x480 61 5

YO++;

1 e l s e {
E r r o r T e r m +- De l taYxEMinusDel taXxZ;

I* Add t o t h e e r r o r t e r m *I
E r r o r T e r m +- De l taYxE;

1
X0 +- X D i r e c t i o n ;
Draw360x480Dot(XO, Y O , C o l o r) ;

1

I* a d v a n c e t h e X c o o r d i n a t e *I
I* draw a p i x e l *I

I*
* Draws a l i n e i n o c t a n t 1 o r 2 (I D e l t a X l < D e l t a Y) .

*I
* I D e l t a Y I + I p o i n t s a r e d r a w n .

v o i d O c t a n t l (X 0 . YO. D e l t a X . D e l t a Y . X D i r e c t i o n . C o l o r)
u n s i g n e d i n t XO, Y O ; I* c o o r d i n a t e s o f s t a r t o f t h e l i n e *I
u n s i g n e d i n t D e l t a X . De l taY : I* l e n g t h o f t h e l i n e *I
i n t X D i r e c t i o n ; I* 1 i f l i n e i s d r a w n l e f t t o r i g h t ,

i n t C o l o r ;
f

-1 i f d r a w n r i g h t t o l e f t *I
I* c o l o r i n w h i c h t o d r a w l i n e *I

i n t D e l t a X x 2 ;
i n t D e l t a X x Z M i n u s D e l t a Y x Z ;
i n t E r r o r T e r m :

/ * S e t u p i n i t i a l e r r o r t e r m a n d v a l u e s u s e d i n s i d e d r a w i n g l o o p *I
Del taXx2 - D e l t a X * 2;
De l taXxZMinusDe l taYxZ - De l taXxZ - (i n t) (De l taY * 2) ;
E r r o r T e r m - De l taXxZ - (i n t) D e l t a Y :

Draw360x480Dot(XO. Y O . C o l o r) ; I* d r a w t h e f i r s t p i x e l *I
w h i l e (D e l t a Y - -) {

I* See i f i t ' s t i m e t o a d v a n c e t h e X c o o r d i n a t e *I
i f (E r r o r T e r m >- 0 1 I

I* A d v a n c e t h e X c o o r d i n a t e & a d j u s t t h e e r r o r t e r m
back down *I

X0 +- X D i r e c t i o n :
E r r o r T e r m +- De l taXx2MinusDel taYxZ;

/ * Add t o t h e e r r o r t e r m *I
E r r o r T e r m +- De l taXxE:

1 e l s e I

1
YO++; I* a d v a n c e t h e Y c o o r d i n a t e *I
Draw360x480Dot(XO. YO.Color); I* draw a p i x e l *I

1

I*
* Draws a l i n e o n t h e EGA o r VGA.
*I

vo id EVGALine(X0. Y O , X 1 . Y 1 . C o l o r)
i n t X O . Y O ; I* c o o r d i n a t e s o f one e n d o f t h e l i n e *I
i n t X 1 , Y 1 ; I* c o o r d i n a t e s o f t h e o t h e r e n d o f t h e l i n e *I
u n s i g n e d c h a r C o l o r ; /* c o l o r i n w h i c h t o d r a w l i n e *I
I

i n t D e l t a X . D e l t a Y ;
i n t Temp:

61 6 Chapter 32

I* Save h a l f t h e l i n e - d r a w i n g c a s e s b y s w a p p i n g Y O w i t h Y 1
and X0 w i t h X 1 i f Y O i s g r e a t e r t h a n Y 1 . As a r e s u l t , D e l t a Y
i s a lways > 0. a n d o n l y t h e o c t a n t 0-3 cases need t o be
hand1 ed. *I

i f (Y O > Y 1 1 I
Temp - Y O ;
Y O - Y 1 ;
Y 1 - Temp;
Temp - X O ;
x0 - x1;
X 1 - Temp:

I

/ * H a n d l e a s f o u r s e p a r a t e c a s e s , f o r t h e four o c t a n t s i n w h i c h

f
Y 1 i s g r e a t e r t h a n Y O * /

D e l t a X - X 1 - X O ; / * c a l c u l a t e t h e l e n g t h o

D e l t a Y - Y 1 - Y O ;
i f (D e l t a X > 0 1 I

i n e a c h c o o r d i n a t e *I

i f (D e l t a X > De l taY (

) e l s e {

1
I e l s e (

Octan tO(X0. Y O , D e l t a X . D e l t a Y , 1. C o l o r

O c t a n t l (X 0 . Y O , D e l t a X . D e l t a Y . 1. C o l o r

t h e l i n e

D e l t a X - - D e l t a X ; / * a b s o l u t e v a l u e o f D e l t a X * I
i f (D e l t a X > D e l t a Y) (

I e l s e I

I

OctantO(X0. Y O , D e l t a X , D e l t a Y . -1. C o l o r) ;

O c t a n t l (X 0 . Y O , O e l t a X . D e l t a Y . -1. C o l o r) ;

I
I

I*
* S u b r o u t i n e t o d r a w a r e c t a n g l e f u l l o f v e c t o r s . o f t h e
* s p e c i f i e d l e n g t h and i n v a r y i n g c o l o r s , a r o u n d t h e
* s p e c i f i e d r e c t a n g l e c e n t e r .
*I

vo id Vec to rsUp(XCen te r . YCen te r . XLeng th . YLeng th)
i n t XCenter . YCenter ; / * c e n t e r o f r e c t a n g l e t o fill *I
i n t XLength. YLength; I* d i s t a n c e f r o m c e n t e r t o e d g e

I
o f r e c t a n g l e * /

i n t Work ingX. Work ingY, Co lor - 1;
/* L i n e s f r o m c e n t e r t o t o p o f r e c t a n g l e * /
WorkingX - XCenter - XLength;
WorkingY - YCenter - YLength;
f o r (; WorkingX < (XCenter + XLength 1; Work ingXW)

EVGALine(XCenter . YCenter . Work ingX, Work ingY. Color++) ;

I* L i n e s f r o m c e n t e r t o r i g h t o f r e c t a n g l e *I
WorkingX - XCenter + XLength - 1;
WorkingY - YCenter - YLength;
f o r (; WorkingY < (YCenter + YLength) ; WorkingY++ 1

EVGALine(XCenter . YCenter . Work ingX. Work ingY. Color++) ;

/ * L i n e s f r o m c e n t e r t o b o t t o m o f r e c t a n g l e */
WorkingX - XCenter + XLength - 1:
WorkingY - YCenter + YLength - 1:

Be It Resolved: 360x480 61 7

f o r (: WorkingX >= (XCenter - XLength) : WorkingX"
EVGALine(XCenter. YCenter. WorkingX. WorkingY. Color++):

I* L i n e s f r o m c e n t e r t o l e f t o f r e c t a n g l e *I
WorkingX = XCenter - XLength:
WorkingY = YCenter + YLength - 1;
f o r (: WorkingY >= (YCenter - YLength 1: Work ingY--)

1

I*

EVGALine(XCenter. YCenter. WorkingX. WorkingY. Color++):

* Sample program t o d r a w f o u r r e c t a n g l e s f u l l o f l i n e s .
* J

v o i d m a i n ()
{

char temp;

Set360x480ModeO;

/ * Draw each o f f o u r r e c t a n g l e s f u l l o f v e c t o r s * /
VectorsUp(X-MAX I 4. Y-MAX / 4 . X-MAX / 4 , Y-MAX / 4 . 1) :
VectorsUp(X_MAX * 3 / 4, Y-MAX I 4 , X-MAX / 4. Y-MAX I 4, 2) ;
VectorsUp(X-MAX I 4. Y-MAX * 3 / 4, X-MAX I 4. Y-MAX / 4. 3) :
VectorsUp(X-MAX * 3 I 4. Y-MAX * 3 / 4 . X-MAX / 4 , Y-MAX / 4 . 4) ;

/ * W a i t f o r t h e e n t e r k e y t o b e p r e s s e d * /
scanf ("%c" . & temp) :

/ * Back t o t e x t mode * /
-AX - TEXTLMODE;
geninter rupt (BIOS-VIDEO_INT):

I

The first thing you'll notice when you run this code is that the speed of 360x480 256-
color mode is pretty good, especially considering that most of the program is im-
plemented in C.

P Drawing in 360x480 256-color mode can sometimes actually be faster than in the
16-color modes, because the byte-per-pixel display memory organization of 256-
color mode eliminates the need to read display memory before writing to it in
order to isolate individual pixels coexisting within a single byte. In addition,
360x480 256-color mode is a variant of Mode X, which we'll encounter in detail
in Chapter 47, and supports all the high-perfrmance features of Mode X

The second thing you'll notice is that exquisite shading effects are possible in 360x480
256-color mode; adjacent lines blend together remarkably smoothly, even with the
default palette. The VGA allows you to select your 256 colors from a palette of 2568
so you could, if you wished, set up the colors to produce still finer shading albeit with
fewer distinctly different colors available. For more on this and related topics, see
the coverage of palette reprogramming that begins in the next chapter.
The one thing you may not notice right away is just how much detail is visible on the
screen, because the blending of colors tends to obscure the superior resolution of

61 8 Chapter 32

this mode. Each of the four rectangles displayed measures 180 pixels horizontally by
240 vertically. Put another way, each one of those rectangles has two-thirds as many
pixels as the entire mode 13H screen; in all, 360x480 256-color mode has 2.7 times
as many pixels as mode 13H! As mentioned above, the resolution is unevenly distrib-
uted, with vertical resolution matching that of mode 12H but horizontal resolution
barely exceeding that of mode 13H-but resolution is hot stuff, no matter how it’s
laid out, and 360x480 256-color mode has the highest 256-color resolution you’re
ever likely to see on a standard VGA. (SuperVGAs are quite another matter-but
when you require a SuperVGA you’re automatically excluding what might be a signifi-
cant chunk of the market for your code.)
Now that we’ve seen the wonders of which our new mode is capable, let’s take the
time to understand how it works.

How 360x480 256-Color Mode Works
In describing 360x480 256-color mode, I’m going to assume that you’re familiar with the
discussion of 320x400 256-color mode in the last chapter. If not, go back to that chapter
and read it; the two modes have a great deal in common, and I’m not going to bore you
by repeating myself when the goods are just a few page flips (the paper kind) away.
360x480 256-color mode is essentially 320x400 256-color mode, but stretched in both
dimensions. Let’s look at the vertical stretching first, since that’s the simpler of the two.

480 Scan Lines per Screen: A Little Slower, But No Big Deal
There’s nothing unusual about 480 scan lines; standard modes 11H and 12H sup-
port that vertical resolution. The number of scan lines has nothing to do with either
the number of colors or the horizontal resolution, so converting 320x400 256-color
mode to 320x480 256-color mode is a simple matter of reprogramming the VGA’s
vertical control registers-which control the scan lines displayed, the vertical sync
pulse, vertical blanking, and the total number of scan lines-to the 480-scan-line
settings, and setting the polarities of the horizontal and vertical sync pulses to tell
the monitor to adjust to a 480-line screen.
Switching to 480 scan lines has the effect of slowing the screen refresh rate. The VGA
always displays at 70 Hz except in 480-scan-line modes; there, due to the time required
to scan the extra lines, the refresh rate slows to 60 Hz. (VGA monitors always scan at the
same rate horizontally; that is, the distance across the screen covered by the electron
beam in a given period of time is the same in all modes. Consequently, adding extra
lines per frame requires extra time.) 60 Hz isn’t bad-that’s the only refresh rate the
EGA ever supported, and the EGA was the industry standard in its time-but it does
tend to flicker a little more and so is a little harder on the eyes than 70 Hz.

Be It Resolved: 360x480 61 9

360 Pixels per Scan Line: No Mean Feat
Converting from 320 to 360 pixels per scan line is more difficult than converting
from 400 to 480 scan lines per screen. None of the VGA’s graphics modes supports
360 pixels across the screen, or anything like it; the standard choices are 320 and 640
pixels across. However, the VGA does support the horizontal resolution we seek-360
pixels-in 40-column text mode.
Unfortunately, the register settings that select those horizontal resolutions aren’t
directly transferable to graphics mode. Text modes display 9 dots (the width of one
character) for each time information is fetched from display memory, while graph-
ics modes display just 4 or 8 dots per display memory fetch. (Although it’s a bit
confusing, it’s standard terminology to refer to the interval required for one display
memory fetch as a “character,” and I’ll follow that terminology from now on.) Conse-
quently, both modes display either 40 or 80 characters per scan line; the only
difference is that text modes display more pixels per character. Given that graphics
modes cun’tdisplay 9 dots per character (there’s only enough information for eight
lfkolor pixels or four 256-color pixels in each memory fetch, and that’s that) , we’d
seem to be at an impasse.
The key to solving this problem lies in recalling that the VGA is designed to drive a
monitor that sweeps the electron beam across the screen at exactly the same speed,
no matter what mode the VGA is in. If the monitor always sweeps at the same speed,
how does the VGA manage to display both 640 pixels across the screen (in high-
resolution graphics modes) and 720 pixels across the screen (in 80-column text
modes)? Good question indeed-and the answer is that the VGA has not one but two
clocks on board, and one of those clocks is just sufficiently faster than the other
clock so that an extra 80 (or 40) pixels can be displayed on each scan line.
In other words, there’s a slow clock (about 25 MHz) that’s usually used in graphics
modes to get 640 (or 320) pixels on the screen during each scan line, and a second,
fast clock (about 28 MHz) that’s usually used in text modes to crank out 720 (or 360)
pixels per scan line. In particular, 320x400 256-color mode uses the 25 MHz clock.
I’ll bet that you can see where I’m headed: We can switch from the 25 MHz clock to
the 28 MHz clock in 320x480 256color mode in order to get more pixels. It takes
two clocks to produce one 256-color pixel, so we’ll get 40 rather than 80 extra pixels
by doing this, bringing our horizontal resolution to the desired 360 pixels.
Switching horizontal resolutions sounds easy, doesn’t it? Alas, it’s not. There’s no stan-
dard VGA mode that uses the 28 MHz clock to draw 8 rather than 9 dots per character, so
the timing parameters have to be calculated from scratch. John Bridges has already
done that for us, but I want you to appreciate that producing this mode took some
work. The registers controlling the total number of characters per scan line, the
number of characters displayed, the horizontal sync pulse, horizontal blanking, the off-
set from the start of one line to the start of the next, and the clock speed all have to be

620 Chapter 32

altered in order to set up 360x480 256color mode. The function Set360x480Mode in
Listing 32.1 does all that, and sets up the registers that control vertical resolution, as well.
Once all that’s done, the VGA is in 360x480 mode, awaiting our every high-resolu-
tion 256-color graphics whim.

Accessing Display Memory in 360x480 256-Color Mode
Setting up for 360x480 256color mode proved to be quite a task. Is drawing in this
mode going to be as difficult?
No. In fact, if you know how to draw in 320x400 256-color mode, you already know
how to draw in 360x480 256-color mode; the conversion between the two is a simple
matter of changing the working screen width from 320 pixels to 360 pixels. In fact, if
you were to take the 320x400 256color pixel reading and pixel writing code from
Chapter 31 and change the SCREEN-WIDTH equate from 320 to 360, those rou-
tines would work perfectly in 360x480 256color mode.
The organization of display memory in 360x480 256-color mode is almost exactly
the same as in 320x400 256color mode, which we covered in detail in the last chap-
ter. However, as a quick refresher, each byte of display memory controls one 256-color
pixel, just as in mode 13H. The VGA is reprogrammed by the mode set so that adja-
cent pixels lie in adjacent planes of display memory. Look back to Figure 31.1 in the
last chapter to see the organization of the first few pixels on the screen; the bytes
controlling those pixels run cross-plane, advancing to the next address only every
fourth pixel. The address of the pixel at screen coordinate (x,y) is
address = ((y*360)+x) /4
and the plane of a given pixel is:
plane = x modulo 4
A new scan line starts every 360 pixels, or 90 bytes, as shown in Figure 32.1. This is
the major programming difference between the 360x480 and 320x400 256-color
modes; in the 320x400 mode, a new scan line starts every 80 bytes.
The other programming difference between the two modes is that the area of dis-
play memory mapped to the screen is longer in 360x480 256-color mode, which is
only common sense given that there are more pixels in that mode. The exact amount
of memory required in 360x480 256-color mode is 360 times 480 = 172,800 bytes.
That’s more than half of the VGA’s 256 Kb memory complement, so page-flipping is
out; however, there’s no reason you couldn’t use that extra memory to create a vir-
tual screen larger than 360x480, around which you could then scroll, if you wish.
That’s really all there is to drawing in 360x480 256color mode. From a program-
ming perspective, this mode is no more complicated than 320x400 256-color mode
once the mode set is completed, and should be capable of good performance given
some clever coding. It’s not particular straightforward to implement bitblt, block

Be It Resolved: 360x480 621

AOOOO

A005A

AOOB4

A O l O E

A0 168

0.. OOO....
0...0000..
o.........
..000000.. 000.. 0 1 OF 01 14 22

0 1 00 00 28 86

Plane 0 of Display Memory The Screen

~~ ~" ~" ."

Pixel organization in 360x480 256-color mode.
Figure 32.1

move, or fast line-drawing code for any of the extended 256-color modes, but it can
be done-and it's worth the trouble. Even the small taste we've gotten of the capa-
bilities of these modes shows that they put the traditional CGA, EGA, and generally
even VGA modes to shame.
There's more and better to come, though; in later chapters, we'll return to high-
resolution 256-color programming in a big way, by exploring the tremendous potential
of these modes for real time 2-D and 3-D animation.

622 Chapter 32

chapter 33

yogi bear and eurythmics confront vga colors

f VGA Color Generation
t the VGA’s 4bit to 8-bit to 18-bit color translation.
d out how to generate a look-up table containing

efault color palette. And surely they are only the
ing programmers from every corner of the planet

are no doubt tearing the place up looking for a discussion of VGA color, and venting
their frustration at my mailbox. Let’s have i t, they’ve said, clearly and in considerable

ics might say, who is this humble writer to disagree?
hope you all know what you’re getting into. To paraphrase

ter (and more confusing) than the average board. There’s the
basic 8-bit to 18-bit translation, there’s the EGA-compatible 4bit to 6-bit translation,
there’s the 2- or 4bit color paging register that’s used to pad 6- or 4bit pixel values
out to 8 bits, and then there’s 256-color mode. Fear not, it will all make sense in the end,
but it may take us a couple of additional chapters to get there-so let’s get started.
Before we begin, though, I must refer you to Michael Covington’s excellent article,
“Color Vision and the VGA,” in the June/July 1990 issue of PC TECHNIQUES. Michael,
one of the most brilliant people it has ever been my pleasure to meet, is an expert in
many areas I know nothing about, including linguistics and artificial intelligence.
Add to that list the topic of color perception, for his article superbly describes the
mechanisms by which we perceive color and ties that information to the VGA’s capa-
bilities. After reading Michael’s article, you’ll understand what colors the VGA is
capable of generating, and why.

625

Our topic in this chapter complements Michael’s article nicely. Where he focused
on color perception, we’ll focus on color generation; that is, the ways in which the
VGA can be programmed to generate those colors that lie within its capabilities. To
find out why a VGA can’t generate as pure a red as an LED, read Michael’s article. If
you want to find out how to flip between 16 different sets of 16 colors, though, don’t
touch that dial!
I would be remiss if I didn’t point you in the direction of two more articles, these in
the July 1990 issue of DX Dobb’s Journal. “Super VGA Programming,” by Chris Howard,
provides a good deal of useful information about SuperVGA chipsets, modes, and
programming. “Circles and the Digital Differential Analyzer,” by Tim Paterson, is a
good article about fast circle drawing, a topic we’ll tackle soon. All in all, the dog
days of 1990 were good times for graphics.

VGA Color Basics
Briefly put, the VGA color translation circuitry takes in one 4 or 8-bit pixel value at
a time and translates it into three &bit values, one each of red, green, and blue, that
are converted to corresponding analog levels and sent to the monitor. Seems simple
enough, doesn’t it? Unfortunately, nothing is ever that simple on the VGA, and color
translation is no exception.

The Palette RAM
The color path in the VGA involves two stages, as shown in Figure 33.1. The first
stage fetches a 4bit pixel from display memory and feeds it into the EGA-compatible
palette RAM (so called because it is functionally equivalent to the palette RAM color
translation circuitry of the EGA) , which translates it into a 6-bit value and sends it on
to the DAC. The translation involves nothing more complex than the 4bit value of a
pixel being used as the address of one of the 16 palette RAM registers; a pixel value
of 0 selects the contents of palette RAM register 0, a pixel value of 1 selects register 1,
and so on. Each palette RAM register stores 6 bits, so each time a palette RAM register is
selected by an incoming 4bit pixel value, 6 bits of information are sent out by the
palette R A M . (The operation of the palette RAM was described back in Chapter 29.)
The process is much the same in text mode, except that in text mode each 4bit pixel
value is generated based on the character’s font pattern and attribute. In 256-color
mode, which we’ll get to eventually, the palette RAM is not a factor from the
programmer’s perspective and should be left alone.

The DAC
Once the EGA-compatible palette RAM has fulfilled its karma and performed 4bit
to &bit translation on a pixel, the resulting value is sent to the DAC (Digital/Analog
Converter). The DAC performs an 8-bit to 18-bit conversion in much the same man-
ner as the palette RAM, converts the 18-bit result to analog red, green, and blue

626 Chapter 33

4-bit pixel value from display memory
(graphics mode) or from font/attribute

Color Select Register
(AC recl 14h) 1 Bits 0-3 in

Bits 2-3 out I 1 Bits 0-1 out
I I 4

I

If bit 7 of AC Mode
reg is 0, select
palette RAM source,
if 1 , select Color
Select reg source

Palette RAM
Uses incoming 4-bit
pixel values to look
up one of the 16 6-bit
registers, then sends
the contents of that
register out (4-bit to
6-bit conversion) c

Bits 4-5 out
Bits 0-3 out

~~~ ~ ~ 

DAC 
Uses incoming 8-bit pixel value  to look up one of 256 
18-bit registers,  then  sends  the  contents of  that 
register, organized as 6-bit red,  green, and blue  color 
components, on to analog conversion  circuitry,  where 
they are converted  to  three proportional analog signals 
and sent  to  the monitor (8-bit to 18-bit conversion) 

~~ 

I I 
J. 

Red analog signal 
to  monitor  (one  of 
64 possible  levels) 

Green analog signal Blue analog signal 
to  monitor (one of to  monitor  (one  of 

64 possible  levels) 64 possible  levels) 

The VGA color generation path. 
Figure 33.1 

Yogi  Bear and Eurythmics Confront VGA Colors 627 



signals (6 bits for  each  signal), and sends  the  three  analog signals to  the  monitor. 
The DAC is a  separate  chip,  external  to  the VGA chip,  but it’s an  integral  part of the 
VGA standard  and is present  on every VGA. 
(I’d like to take a moment to  point  out  that you can’t  speak of “color” at any point  in 
the  color  translation process until  the output stage of the DAC. The  4bit pixel values 
in memory,  &bit  values in  the  palette R A M ,  and 8-bit  values sent  to  the DAC are all 
attributes, not colors, because they’re  subject  to  translation by a  later stage. For  ex- 
ample,  a pixel with a 4bit value of 0 isn’t  black, it’s attribute 0. It will be translated  to 
3FH if palette RAM register 0 is set to 3FH, but that’s not  the  color white, just an- 
other attribute. The value  3FH coming  into  the DAC isn’t  white either, and if the 
value stored  in DAC register 63 is red=7, green=O, and blue=O, the  actual color dis- 
played for  that pixel that was 0 in display memory will be dim  red.  It isn’t color  until 
the DAC  says it’s color.) 
The DAC contains 256  18-bit storage  registers,  used to translate one of  256 possible 8-bit 
values into  one of  256K (262,144, to be precise) 18-bit  values. The 18-bit  values are 
actually  composed of three Gbit  values, one each for  red,  green, and blue; for each color 
component,  the higher  the  number,  the  brighter  the color, with 0 turning  that  color 
off in  the  pixel  and  63  (3FH)  making  that  color  maximum  brightness.  Got all that? 

Color  Paging  with  the  Color  Select  Register 
‘Wait a minute,” you say bemusedly. “Aren’t you  missing some bits between the pal- 
ette RAM and the DAC?” Indeed  I am. The palette RAM puts out 6 bits at  a  time, and 
the DAC takes in 8 bits at a time. The two missing bits-bits 6 and 7 going into  the 
DAC-are supplied by bits 2 and 3 of the  Color Select register  (Attribute  Controller 
register 14H). This has intriguing implications. In l k o l o r  modes,  pixel data can  select 
only one of 16 attributes, which the EGA palette RAM translates into  one of 64 attributes. 
Normally, those 64 attributes look up colors from registers 0 through  63  in  the DAC, 
because bits 2 and 3 of the  Color Select register are both  zero. By changing  the  Color 
Select register, however, one of three  other 64 color sets can be  selected instantly.  I’ll 
refer  to  the process of flipping  through  color sets in this manner as colmpuging. 
That’s interesting,  but frankly it seems somewhat half-baked; why bother  expanding 
16  attributes  to 64 attributes  before  looking up  the colors in the DAC? What we’d 
really like is to map  the  16  attributes  straight  through  the  palette RAM without  chang- 
ing  them  and supply the upper 4 bits going  to  the DAC from  a register, giving  us 16 
color pages. As it  happens, all we have to do to make that  happen is set  bit 7 of the 
Attribute  Controller Mode register  (register 10H) to 1. Once that’s  done, bits 0 
through  3 of the Color Select register  go  straight  to bits 4  through 7 of the DAC, and 
only bits 3  through 0 coming  out of the  palette RAM are used; bits 4 and 5  from  the 
palette RAM are  ignored.  In this mode,  the  palette RAM effectively contains 4bit, 
rather than &bit, registers, but  that’s no problem because the  palette RAM will be 
programmed to pass pixel values through  unchanged by having register 0 set to 0, 

628 Chapter 33 



register 1 set  to 1, and so on, a  configuration  in which the  upper two bits of all the 
palette RAM registers are  the same (zero)  and  therefore irrelevant. As a  matter of 
fact, you’ll generally want to  set the palette RAM to this pass-through state when 
working with VGA color, whether  you’re using color  paging or  not. 
Why  is it a  good  idea  to  set  the  palette RAM to a  pass-through  state? It’s a  good  idea 
because the palette RAM is programmed by the BIOS to EGA-compatible settings 
and  the first 64 DAC registers are  programmed to emulate  the 64 colors  that an EGA 
can display during  mode sets for  l6-color  modes.  This is done  for compatibility with 
EGA programs, and it’s  useless if you’re  going to tinker with the VGAs colors. As a 
VGA programmer, you  want to take a 4bit pixel value and  turn it into  an 18-bit RGB 
value; you can do that  without any help  from  the  palette RAM, and setting the pal- 
ette RAM to pass-through values  effectively takes it  out of the  circuit and simplifies 
life something  wonderful. The palette RAM exists  solely for EGA compatibility, and 
serves no useful purpose  that I know  of for VGA-only color  programming. 

256-Color Mode 
So far I’ve spoken only of 16-color modes; what of 256-color modes? 
The  rule in 256-color modes is: Don’t tinker  with the VGA palette. Period. You can select 
any colors you  want by reprogramming  the DAC, and  there’s  no  guarantee as to 
what will happen if you  mess around with the palette RAM. There’s no benefit  that I 
know  of to changing  the  palette RAM in 256-color mode,  and  the effect may  vary 
from VGA to VGA. So don’t do it unless you  know something I don’t. 
On  the  other  hand, feel free  to  alter  the DAC settings to your heart’s content in 256- 
color  mode, all the  more so because this is the only mode  in which  all  256 DAC 
settings can be displayed simultaneously. By the way, the Color Select register and bit 
7 of the Attribute  Controller Mode register are  ignored in 256-color mode; all 8 bits 
sent  from the VGA chip to the DAC come from display  memory. Therefore,  there is 
no color  paging  in 256-color mode. Of course,  that makes sense given that all  256 
DAC registers are simultaneously in use in 256-color mode. 

Setting  the  Palette RAM 
The palette RAM can  be  programmed  either directly or  through BIOS interrupt 
10H, function 10H. I strongly recommend using the BIOS interrupt; a  clone BIOS 
may  mask incompatibilities with genuine IBM silicon. Such  incompatibilities  could 
include  anything  from flicker to  trashing the palette RAM; or they may not exist at 
all, but why find  out  the  hard way? My policy is to use the BIOS unless there’s  a clear 
reason not to do so, and there’s no such reason  that I know  of in this case. 
When programming specifically for the VGA, the palette RAM needs to be loaded 
only once,  to store the pass-through values 0 through  15 in  palette RAM registers 0 
through 15.  Setting  the  entire  palette RAM is accomplished easily enough with 

Yogi  Bear and Eurythmics Confront VGA Colors 629 



subfunction 2 (AL=2) of function  10H  (AH=lOH) of interrupt  10H. A single call to 
this subfunction sets  all 16 palette RAM registers (and  the Overscan register) from  a 
block of 1’7 bytes pointed to by ES:DX,  with  ES:DX pointing to the value for register 
0, ES:DX+l pointing to the value for register 1,  and so on  up to ES:DX+16,  which 
points to the overscan value. The palette RAM registers store  6 bits each, so only the 
lower 6 bits of each of the first 16 bytes in the 17-byte  block are significant. (The 
Overscan register, which  specifies  what’s  displayed between the  area of the screen 
that’s controlled by the values in display memory and  the blanked region at  the 
edges of the screen, is an %bit register, however.) 
Alternatively,  any one palette RAM register can be set via subfunction 0 ( A L = O )  of 
function  10H  (AH=lOH) of interrupt  10H. For this subfunction, BL contains the 
number of the palette RAM register to set and  the lower 6 bits  of BH contain the 
value to which to set  that register. 
Having  said that, let’s  leave the palette RAM behind (presumably in a pass-through 
state) and move on to the DAC, which is the right place to do color translation on 
the VGA. 

Setting the DAC 
Like the palette R A M ,  the DAC registers can be set  either directly or  through  the 
BIOS. Again, the BIOS should be used whenever possible, but  there  are a few com- 
plications here. My experience is that varying degrees of flicker and screen bounce 
occur  on many VGAs when  a large block  of DAC registers is set through  the BIOS. 
That’s not a  problem  when  the DAC is loaded  just  once  and  then left that way,  as is 
the case in Listing  33.1,  which  we’ll get to  shortly, but it can be a serious problem 
when the color set is changed rapidly (“cycled”) to produce on-screen effects such as 
rippling colors. My (limited)  experience is that it’s  necessary to program  the DAC 
directly in order to cycle colors cleanly, although  input from readers who have  worked 
extensively  with VGA color is welcome. 
At any rate, the  code in this chapter will use the BIOS to set the DAC, so I’ll describe 
the BIOS  DAC-setting functions  next. Later, I’ll briefly describe how to set both  the 
palette RAM and DAC registers directly, and I’ll return to the topic in detail in an 
upcoming  chapter  when we discuss color cycling. 
An individual DAC register can be set by interrupt  10H, function  10H  (AH=lO), 
subfunction  10H  (AL=lOH), with BX indicating the register to be set and  the color 
to  which that register is to be set stored in DH (&bit red  component), CH (6-bit 
green  component),  and CL (6-bit blue component). 
A block  of sequential DAC registers ranging in size from  one register up to all  256 
can be setvia subfunction 12H (AL=12H)  of interrupt  10H, function  10H  (AH=lOH). 
In this case, BX contains the  number of the first register to set, CX contains the 
number of registers to set, and ES:DX contains the address of a table of color entries 
to which DAC registers BX through BX+CX-1 are to be set. The color entry  for  each 

630 Chapter 33 



DAC register consists of three bytes; the first byte  is a 6-bit red  component,  the sec- 
ond byte  is a 6-bit green  component,  and  the  third byte  is a 6-bit blue component, as 
illustrated by Listing 33.1. 

If You  Can’t Call the BIOS, Who Ya Gonna Call? 
Although the palette RAM and DAC registers should  be set through  the BIOS  when- 
ever possible, there  are times when the BIOS is not  the best choice or even a  choice 
at all; for  example, a protected-mode  program may not have  access to  the BIOS. 
Also, as mentioned earlier, it may be necessary to program  the DAC directly when 
performing  color cycling. Therefore, I’ll briefly describe how to set the palette RAM 
and DAC registers directly; in  Chapter A on  the  companion CD-ROM I’ll discuss 
programming  the DAC directly in  more  detail. 
The palette RAM registers are Attribute  Controller registers 0 through 15. They are 
set by first reading  the  Input Status 1 register (at 3DAH in  color  mode or 3BAH in 
monochrome  mode)  to reset the Attribute  Controller toggle to index  mode,  then 
loading  the Attribute Controller  Index register (at 3COH)  with the  number  (0  through 
15) of the register to be loaded. Do not set bit 5 of the  Index register to 1, as  you 
normally would, but  rather set  bit 5 to 0. Setting bit 5 to 0 allows  values to be written 
to the palette RAM registers, but it also causes the screen to blank, so you should wait 
for the start of vertical retrace  before  loading  palette RAM registers if  you don’t want 
the  screen to flicker. (Do you see why it’s easier to go  through  the BIOS?) Then, 
write the desired register value to 3COH, which has now toggled to become the At- 
tribute  Controller Data register. Write any desired number of additional register 
number/register  data pairs to 3COH, then write 20H to 3COH to unblank  the  screen. 
The process of loading the palette RAM registers depends heavily on  the  proper 
sequence  being followed; if the Attribute  Controller  Index  register  or  index/data 
toggle data gets changed  in  the  middle of the loading process, you’ll probably end 
up with a hideous display, or  no display at all. Consequently, for maximum safety  you 
may want to disable interrupts while  you load the palette RAM, to prevent any sort of 
interference  from a TSR or  the like that  alters the state of the  Attribute  Controller  in 
the middle of the  loading  sequence. 
The DAC registers are set by writing the  number of the first register to  set  to the DAC 
Write Index register at 3C8H, then writing three bytes-the  6-bit red  component, 
the 6-bit green  component,  and  the 6-bit blue component, in  that order-to the 
DAC Data register at 3C9H. The DAC Write Index register then  autoincrements, so 
if you write another three-byte RGB value to the DAC Data register, it’ll go  to  the 
next DAC register, and so on indefinitely; you can set all 256 registers by sending 
256*3 = 768  bytes to the DAC Data Register. 
Loading the DAC  is just as sequence-dependent  and potentially susceptible to inter- 
ference as is loading the  palette, so my personal  inclination is to go through  the 
whole process of disabling interrupts,  loading  the DAC Write Index,  and writing a 

Yogi Bear and Eurythmics Confront VGA Colors 63 1 



three-byte RGB value separately for  each DAC register; although  that  doesn’t take 
advantage of the  autoincrementing  feature, it seems to me to be least susceptible to 
outside influences. (It would  be  even better to  disable interrupts for the entire duration 
of DAC register loading, but that’s much too long a time  to  leave interrupts off.) How- 
ever, I have no hard evidence  to  offer in support of  my  conservative approach to  setting 
the DAC, just an uneasy  feeling, so I’d be  most interested in hearing from any readers. 
A final point is that the process of loading  both the palette RAM and DAC registers 
involves performing multiple OUTS to the same register. Many people whose opin- 
ions I  respect recommend delaying between 1 / 0  accesses to the same port by 
performing aJMP $+2 (jumping flushes the prefetch queue  and forces a  memory 
access-or at least a cache access-to fetch the next  instruction  byte). In fact,  some people 
recommend twoJMP $+2 instructions between 1 / 0  accesses  to the same  port,  and 
three jumps between 1 /0  accesses to the same port  that go in opposite  directions 
(OUT followed by IN or IN followed by OUT). This is clearly  necessary  when  accessing 
some motherboard chips, but I don’t know  how applicable it is when accessing VGAs, 
so make of it what you will. Input  from knowledgeable readers is eagerly solicited. 
In  the  meantime, if you can use the BIOS to set the DAC, do so; then you won’t have 
to  worry about  the real and potential complications of setting the DAC directly. 

An Example of Setting the DAC 
This chapter has gotten about as  big  as a chapter really ought to be; the VGA color 
saga will continue in the  next few. Quickly, then, Listing 33.1 is a simple example of 
setting the DAC that gives  you a taste  of the spectacular effects that color translation 
makes  possible. There’s nothing particularly complex about Listing 33.1; it just se- 
lects  256-color mode, fills the screen with  one-pixel-wide concentric  diamonds drawn 
with sequential attributes, and sets the DAC to produce a  smooth gradient of each of 
the  three primary colors and of a mix of red  and blue. Run the  program; I suspect 
you’ll be surprised at  the  stunning display this short  program produces. Clever color 
manipulation is perhaps the easiest way to produce truly  eye-catching  effects on the PC. 

LISTING 33.1 133- 1 .ASM 
: Program t o   d e m o n s t r a t e   u s e   o f   t h e  DAC r e g i s t e r s   b y   s e l e c t i n g  a 
: s m o o t h l y   c o n t i g u o u s   s e t   o f   2 5 6   c o l o r s ,   t h e n   f i l l i n g   t h e   s c r e e n  
; w i t h   c o n c e n t r i c   d i a m o n d s   i n   a l l   2 5 6   c o l o r s  so t h a t   t h e y   b l e n d  
: i n t o   o n e   a n o t h e r   t o   f o r m  a c o n t i n u u m   o f   c o l o r .  

.model   smal l  

. s t a c k   2 0 0 h  

. d a t a  

: T a b l e   u s e d   t o   s e t   a l l  256 DAC e n t r i e s  

: T a b l e   f o r m a t :  
: B y t e  0: DAC r e g i s t e r  0 r e d   v a l u e  
: B y t e  1: DAC r e g i s t e r  0 g r e e n   v a l u e  

632 Chapter 33 



: B y t e   2 :  DAC r e g i s t e r  0 b l u e  v a l u e  
: B y t e   3 :  DAC r e g i s t e r  1 r e d   v a l u e  
: B y t e  4: DAC r e g i s t e r  1 g r e e n   v a l u e  
: By te   5 :  DAC r e g i s t e r  1 b l u e   v a l u e  

: By te   765 :  DAC r e g i s t e r  255 r e d   v a l u e  
: By te   766 :  DAC r e g i s t e r  255  g reen  va lue  
: By te   767 :  DAC r e g i s t e r  255 b l u e   v a l u e  

C o l   o r T a b l e  1 a b e l   b y t e  

: The f i r s t  6 4   e n t r i e s   a r e   i n c r e a s i n g l y   d i m   p u r e   g r e e n .  
x-0 

REPT 64 
db 0 .63 -X .0  

x-x+l 
ENDM 

: T h e   n e x t   6 4   e n t r i e s   a r e   i n c r e a s i n g l y   s t r o n g   p u r e   b l u e .  
x-0 

REPT 64 
db 0,O.X 

ENDM 
X-X+ l  

; The n e x t   6 4   e n t r i e s   f a d e   t h r o u g h   v i o l e t   t o   r e d .  
x-0 

REPT 64 
db X.O.63-X 

x-x+l  
ENDM 

: The l a s t   6 4   e n t r i e s   a r e   i n c r e a s i n g l y   d i m   p u r e   r e d .  
x-0 

REPT 64 
db  63-X,O.O 

ENDM 
x-x+l 

.code 
S t a r t :  

mov ax.DO13h 

i n t  10h 

mov ax ,@data  
rnov es .ax  
mov d x . o f f s e t   C o l o r T a b l e  

mov ax,   1012h 

sub  bx.bx 

mov cx,   lOOh 
i n t  10h 

:AH-0 s e l e c t s   s e t  mode f u n c t i o n ,  
: AL-13h s e l e c t s   3 2 0 x 2 0 0   2 5 6 - c o l o r  
: mode 

: l o a d   t h e  DAC r e g i s t e r s   w i t h   t h e  
: c o l o r   s e t t i n g s  
: p o i n t  ES t o   t h e   d e f a u l t  
: data  segment  

: p o i n t  ES:DX t o   t h e   s t a r t   o f   t h e  
; b l o c k   o f  RGB t h r e e - b y t e   v a l u e s  
: t o   l o a d   i n t o   t h e  DAC r e g i s t e r s  
:AH-lOh s e l e c t s   s e t   c o l o r   f u n c t i o n ,  
: AL-12h s e l e c t s   s e t   b l o c k   o f  DAC 
: r e g i s t e r s   s u b f u n c t i o n  
: l o a d   t h e   b l o c k   o f   r e g i s t e r s  
: s t a r t i n g   a t  DAC r e g i s t e r  l o  
: s e t   a l l  2 5 6   r e g i s t e r s  
: l o a d   t h e  DAC r e g i s t e r s  

Yogi Bear and Eurythmics Confront VGA Colors 633 



mov ax ,  OaOOOh 
mov d s , a x  

mov a1 .2 
mov a h . - 1  
mov bx .320  

mov dx .160 
mov s i   , 1 0 0  
s u b   d i   , d i  
mov b p . 1  

c a l l   F i l l B l o c k  

mov a l , 2  
mov ah:l 
mov bx .320  

mov dx .160  
mov s i   , 1 0 0  
mov d i   , 3 1 9  
mov bp .  -1 

c a l l   F i l l B l o c k  

mov a l . 2  
mov ah:l 
mov bx ,   -320 

mov dx .160 
mov s i  ,100 
mov d i  .199*320 
mov bp .1  

c a l l   F i l l 8 1   o c k  

mov a l . 2  
mov ah:l 
mov bx .   -320  

mov dx,160 
mov s i   , 1 0 0  
mov d i  .199*320+319 
mov b p . - 1  

c a l l   F i  11 B1 ock  

:now fill t h e   s c r e e n   w i t h  
: c o n c e n t r i c   d i a m o n d s   i n   a l l  256 
: c o l o r   a t t r i b u t e s  
: p o i n t  DS t o   t h e   d i s p l a y  memory 
: segment 

: d r a w   d i a g o n a l   l i n e s   i n   t h e   u p p e r -  
: l e f t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  #2 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   t o p   t o   b o t t o m   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t  (0 .0 )  
:d raw l e f t   t o   r i g h t   ( d i s t a n c e   f r o m  
: one  co lumn t o   t h e   n e x t )  
:d raw i t  

: d r a w   d i a g o n a l   l i n e s   i n   t h e   u p p e r -  
: r i g h t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  112 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   t o p   t o   b o t t o m   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t   ( 3 1 9 . 0 )  
: d r a w   r i g h t   t o   l e f t   ( d i s t a n c e   f r o m  
: one  co lumn t o   t h e   n e x t )  
:d raw i t  

: d r a w   d i a g o n a l   l i n e s   i n   t h e   l o w e r -  
: l e f t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  #2 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   b o t t o m   t o   t o p   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t   ( 0 , 1 9 9 )  
:draw l e f t   t o   r i g h t   ( d i s t a n c e   f r o m  
: one  column t o   t h e   n e x t )  
:draw i t  

: d r a w   d i a g o n a l   l i n e s   i n   t h e   l o w e r -  
: r i g h t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  #2 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   b o t t o m   t o   t o p   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t   ( 3 1 9 . 1 9 9 )  
: d r a w   r i g h t   t o   l e f t   ( d i s t a n c e   f r o m  
: one  column t o   t h e   n e x t )  
:draw i t  

mov ah .1  
i n t  21h 

: w a i t   f o r  a key 

634 Chapter 33 



mov ax.0003h 
i n t  10h 

mov ah.4ch 
i n t  21h 

; r e t u r n   t o   t e x t  mode 

: d o n e - - r e t u r n   t o  DOS 

: F i l l s   t h e   s p e c i f i e d   r e c t a n g u l a r   a r e a  o f  t h e   s c r e e n   w i t h   d i a g o n a l   l i n e s  

: I n p u t :  
; AL = i n i t i a l   a t t r i b u t e   w i t h   w h i c h   t o   d r a w  
: AH = amount by w h i c h   t o   a d v a n c e   t h e   a t t r i b u t e   f r o m  

: BX = d i s t a n c e   t o   a d v a n c e   f r o m   o n e   p i x e l   t o   t h e   n e x t  
: DX = w i d t h   o f   r e c t a n g l e   t o  fill 
; S I  = h e i g h t   o f   r e c t a n g l e   t o  fill 
; DS:ON = s c r e e n   a d d r e s s   o f   f i r s t   p i x e l   t o   d r a w  
; BP = o f f s e t   f r o m   t h e   s t a r t  o f  one  column t o   t h e   s t a r t   o f  

o n e   p i x e l   t o   t h e   n e x t  

t h e   n e x t  

F i l l B l o c k :  
F i  11  HorzLoop: 

p u s h   d i  
push  ax 
mov c x . s i  

F i l l   V e r t L o o p :  
mov [ d i l . a l  
add d i   . b x  
add a1 .ah 
1 oop F i  11  Ver tLoop 
POP ax 
add   a l . ah  

p o p   d i  
add d i   . b p  
dec  dx 
j n z   F i l l H o r z L o o p  
r e t  

; p r e s e r v e   p o i n t e r   t o   t o p   o f   c o l u m n  
; p r e s e r v e   i n i t i a l   a t t r i b u t e  
; c o l u m n   h e i g h t  

: s e t   t h e   p i x e l  
; p o i n t   t o   t h e   n e x t   r o w   i n   t h e   c o l u m n  
; a d v a n c e   t h e   a t t r i b u t e  

; r e s t o r e   i n i t i a l   a t t r i b u t e  
;advance t o   t h e   n e x t   a t t r i b u t e   t o  
: s t a r t   t h e   n e x t   c o l u m n  
: r e t r i e v e   p o i n t e r   t o   t o p  o f  column 
: p o i n t   t o   n e x t   c o l u m n  
;have we done a l l   c o l u m n s ?  
;no .  d o   t h e   n e x t   c o l u m n  

e n d   S t a r t  

Note  the  jagged lines at  the  corners of the  screen when  you run Listing 33.1. This 
shows  how coarse  the 320x200 resolution of mode 13H actually is. Now look  at how 
smoothly the colors blend  together  in  the  rest of the screen.  This is an  excellent 
example of how careful color selection can boost perceived resolution, as for ex- 
ample when drawing antialiased lines, as discussed in Chapter 42. 
Finally, note  that  the  border of the screen  turns  green when Listing 33.1 is run. 
Listing 33.1 reprograms DAC register 0 to  green,  and  the  border  attribute  (in  the 
Overscan register) happens  to  be 0, so the  border comes out  green even though we 
haven’t  touched the Overscan register. Normally, attribute 0 is black, causing the 
border  to vanish, but  the  border is an %bit attribute  that  has to pass through  the 
DAC just like any other pixel value, and it’s just as subject to DAC color  translation as 
the pixels controlled by display  memory.  However, the  border color is not affected 
by the  palette RAM or by the Color Select register. 

Yogi Bear and Eurythmics Confront VGA Colors 635 



In this  chapter, we traced  the surprisingly complex  path by which the VGA turns  a 
pixel value into RGB analog signals headed for  the  monitor. In the  next  chapter  and 
Chapter A on the  companion CD-ROM, we’ll look at  some  more  code  that plays  with 
VGA color. We’ll explore in more detail  the process of reading and writing the pal- 
ette RAM and DAC registers, and we’ll observe color paging and cycling in  action. 

636 Chapter 33 



chapter 34

changing colors without writing pixels



WHOOPS! 

Our printer failed to strip in the art for 
Figure 34.1. The figure,  however,  is  not 
essential to your understandmg  of th~s 
chapter. It’s actually a screen shot of the 
output produced by Listing 34-5, a Mode 
X screen with a large number of small 
animated images zipping around. You 
can see what the figure should have  been 
(and see it in color, and see it  move, 
even!)  by executing L34-5.EXEY which 
you  will  find  in  the  listing  archive 
subduectory for Chapter 34 once  you 
install the companion diskette. 

Sorry for the omission. 

--Jeff Duntemann, Editor 



through  Realtime Manipulation 

Sometimes, strange a , the  harder you try, the less  you  accomplish. Brute 
force is fine when it s t it does not always suffice, and when it does not, 
finesse and alternativ9 approaches are called  for.  Such is the case  with  rapidly  cycling 

eatedly loading the VGA’s Digital to Analog Converter (DAG). 
you  optimize  your code, you just can’t  reliably load the whole 
le frame, so  you had best find other ways to use the DAG to 

more, BIOS support for DAC loading is so inconsistent that it’s 
unusable for color $ycling; direct loading through  the 1 / 0  ports is the only way to 
go. We’ll  see  why ne&, as we explore color cycling, and  then finish up this chapter 
and this section by cleaning up some odds and  ends  about VGA color. 
There’s a lot to be said about loading the DAC, so let’s dive right in and see  where 
the complications lie. 

* 

Color  Cycling 
- 

As we’ve learned in  past  chapters,  the VGA’s DAG contains 256 storage  locations,  each 
holding one 18-bit  value representing an RGB color triplet organized as 6 bits per 
primary color.  Each and every  pixel generated by the VGA is fed into  the DAC  as an 
8-bit  value (refer to Chapter 33 and to Chapter A on  the companion CD-ROM to see 
how  pixels  become  %bit  values  in  non-256  color  modes) and each €?-bit value  is  used  to 

639 



look up one of the 256  values stored  in the DAC. The looked-up value is then converted 
to analog  red,  green, and blue signals and sent to the  monitor to form one pixel. 
That’s straightforward enough,  and we’ve produced some pretty impressive color 
effects by loading  the DAG once and  then playing  with the &bit path  into  the DAC. 
Now,  however,  we want to generate color effects by dynamically changing the values 
stored  in  the DAC in real time, a  technique  that I’ll  call color cycling. The potential of 
color cycling should be  obvious: Smooth  motion can  easily  be simulated by altering 
the colors in  an  appropriate  pattern,  and all sorts of changing  color effects can be 
produced without altering  a single bit of  display  memory. 
For example,  a  sunset can  be made to color and darken by altering  the DAC loca- 
tions containing  the colors used to draw the  sunset, or a river  can  be made to appear 
to flow  by cycling through  the colors used to draw the river. Another use for  color 
cycling  is in providing more realistic  displays for applications like realtime 3-D games, 
where the VGA’s 256 simultaneous colors can be made to seem like  many more by 
changing  the DAC settings from  frame to frame to match the  changing  color  de- 
mands of the  rendered  scene. Which leaves  only one question: How do we load the 
DAC smoothly in  realtime? 
Actually, so far as I know,  you can’t. At least you can’t  load  the entire DAC-all  256 
locations-frame after  frame without producing distressing on-screen effects on  at 
least some  computers.  In non-256 color  modes,  it is indeed possible to load  the DAC 
quickly enough to cycle  all  displayed colors (of which there  are  16  or  fewer), so color 
cycling could be used successfully to cycle  all colors in such modes. On the other 
hand,  color paging (which  flips among  a  number of color sets stored within the DAC 
in  all modes other than 256 color  mode, as  discussed  in Chapter A on  the  compan- 
ion CD-ROM)  can be used in non-256 color  modes to produce many of the same 
effects  as color cycling and is considerably simpler and  more  reliable  then  color 
cycling, so color paging is generally superior to color cycling whenever it’s  available. 
In  short, color cycling  is  really the  method of choice for dynamic color effects  only in 
256-color  mode-but,  regrettably, color cycling  is at its least reliable and capable in 
that  mode, as  we’ll see next. 

The Heart of the Problem 
Here’s  the  problem with loading  the  entire DAC repeatedly: The DAC contains 256 
color storage locations, each  loaded via either 3 or 4 OUT instructions  (more on 
that next), so at least ’768 OUTs are  needed to load the  entire DAC. That many OUTs 
take a  considerable amount of time, all the  more so because OUTs are painfully slow 
on 486s and Pentiums, and because the DAC is frequently on the ISA bus  (although 
VLB and PC1 are increasingly common), where wait states are  inserted  in fast  com- 
puters.  In  an  8 MHz AT,  768 OUTs alone would  take  288 microseconds, and the  data 
loading and looping  that  are also required would  take in  the  ballpark of  1,800  micro- 
seconds more,  for  a  minimum of 2 milliseconds total. 

640 Chapter 34 



As it  happens,  the DAG should only be loaded during vertical blanking; that is, the 
time between the  end of displaying the  bottom  border and  the  start of  displaying the 
top border, when no video information  at all is being  sent to the screen by the DAG. 
Otherwise, small dots of  snow appear  on  the screen, and while an occasional dot of 
this sort wouldn’t be a  problem,  the  constant DAG loading  required by color cycling 
would produce  a veritable snowstorm on  the screen. By the way, I do mean “border,” 
not “frame buffer”; the overscan  pixels  pass through  the DAC just like the pixels 
controlled by the  frame buffer, so you can’t even load the DAC while the  border 
color is being displayed without getting snow. 
The start of vertical blanking itself is not easy to find, but  the  leading  edge of the 
vertical sync pulse is easy to detect via bit 3 of the  Input Status 1 register at 3DAH; 
when bit 3 is 1, the vertical sync pulse is active.  Conveniently, the vertical sync pulse 
starts partway through  but  not  too far into vertical blanking, so it serves  as a  handy 
way to  tell when it’s safe to load the DAC without producing snow on  the screen. 
So we wait for  the start of the vertical sync pulse, then begin to load the DAG. There’s 
a catch, though.  On many computers-Pentiums, 486s, and 386s sometimes, 286s 
most of the time, and 8088s all the time-there just isn’t enough time between the 
start of the vertical  sync pulse and  the  end of vertical blanking to load all  256 DAG 
locations.  That’s the crux of the problem with the DAG, and shortly  we’ll get to a tool that 
will let you explore for yourself the extent of the problem on computers in  which  you’re 
interested. First, though, we must address unother DAC loading  problem:  the BIOS. 

Loading the DAC via the BIOS 
The DAC can be loaded  either directly or  through subfunctions 10H (for  a single 
DAC register) or 12H (for a block  of DAC registers) of the BIOS  video  service interrupt 
10H, function 10H, described  in Chapter 33.  For  cycling the contents of the entire DAG, 
the block-load function (invoked by executing INT 10H with AH = 10H and AL = 12H to 
load a block of CX DAC locations, starting at location BX, from  the block of RGB 
triplets-3  bytes per triplet-starting at ES:DX into  the DAC) would be the  better of 
the two, due to the considerably greater efficiency  of calling the BIOS once  rather 
than 256  times. At any rate, we’d  like to use one  or  the  other of the BIOS functions 
for color cycling, because we know that whenever possible, one should use a BIOS 
function in preference to accessing hardware directly, in the interests of avoiding 
compatibility problems. In  the case  of color cycling,  however, it is emphatically not 
possible  to  use either of the BIOS functions, for they  have problems.  Serious  problems. 
The difficulty is this: IBM’s BIOS specification describes exactly how the parameters 
passed  to the BIOS control  the  loading of  DAC locations, and all clone BIOSes meet 
that specification scrupulously,  which is to say that if you  invoke INT 10H,  function 
10H, subfunction 12H with a given set of parameters, you can be sure  that you will 
end  up with the same  values loaded  into  the same DAG locations on all VGAs from 
all vendors. IBM’s spec does not, however, describe whether vertical retrace  should 

Changing Colors without Writing Pixels 641 



be  waited for  before  loading  the DAC, nor  does it mention  whether video should be 
left enabled while loading  the DAC, leaving cloners to choose whatever approach 
they  desire-and,  alas,  every VGA cloner seems to have selected a  different  approach. 
I tested four clone VGAs from different manufacturers,  some in a 20 MHz  386 machine 
and some  in a 10 MHz  286 machine. Two  of the four waited for vertical retrace before 
loading the DAC; two didn’t. Two of the four blanked the display  while  loading the DAC, 
resulting  in  flickering  bars  across the screen. One showed  speckled  pixels spattered across 
the  top of the  screen while the DAC  was being  loaded. Also, not  one was able to load 
all  256 DAC locations without showing some sort of garbage on  the screen for  at least 
one  frame,  but that’s not  the BIOS’S fault; it’s a  problem  endemic to the VGA. 

Thesefindings lead me inexorably to the conclusion that  the BIOS should not be p used to load the DAC dynamically. That is, $you i-e loading  the DAC just once in 
preparation for a  graphics session-sort of a DAC mode set-by all means load by 
way of the BIOS. No one will care that some  garbage  is displayed for a  single 
frame; heck, I have boards that bounce andflicker and show garbage every  time I 
do a  mode  set, and the  amount of garbage  produced by loading  the DAC once is 
far  less noticeable. If; however, you intend to load the DAC repeatedly for color 
cycling, avoid the BIOS DAC load functions like  the plague. They will bring you 
only heartache. 

As but  one example of the unsuitability of the BIOS  DAC-loading functions  for color 
cycling, imagine that you want  to  cycle  all  256 colors 70 times a  second, which  is once 
per  frame.  In order to accomplish that, you  would normally wait for  the start of the 
vertical sync signal (marking  the end of the  frame),  then call the BIOS  to load the 
DAC. On some boards-boards  with  BIOSes that  don’t wait for vertical  sync before 
loading the DAC-that will work pretty well;  you will, in fact, load the DAC once  a 
frame. On  other boards, however, it will  work  very poorly indeed; your program will 
wait for the start of  vertical  sync, and  then  the BIOS will wait for  the  start of the  next 
vertical  sync,  with the result being  that  the DAG gets loaded only once every two 
frames. Sadly, there’s no way, short of actually profiling the  performance of  BIOS 
DAC loads, for you to know  which sort of  BIOS is installed in a  particular  computer, 
so unless you  can  always control  the  brand of VGA your software will run  on, you 
really can’t afford to color cycle by calling the BIOS. 
Which is not to say that  loading  the DAC directly is a picnic either, as  we’ll see next. 

Loading the DAC Directly 
So we must  load the DAC directly  in order to perform color  cycling. The DAC is loaded 
directly by sending (with an OUT instruction) the  number of the DAC location to be 
loaded to the DAC Write Index register at 3C8H and  then  performing  three OUTs 
to  write an RGB triplet to the DAC Data register at 3C9H. This  approach  must be 
repeated 256  times to load the  entire DAG, requiring over a  thousand OUTs in all. 

642 Chapter 34 



There is another, somewhat  faster approach,  but  one  that has its  risks.  After an RGB 
triplet is written to the DAC Data  register, the DAC Write Index register automati- 
cally increments to point to the  next DAC location, and this repeats indefinitely  as 
successive  RGB triplets are written  to the DAG. By taking  advantage of this feature, 
the  entire DAC can  be loaded  withjust 769 OUTs: one OUT to the DAC Write Index 
register and 768 OUTs to the DAC Data  register. 
So what’s the drawback? Well, imagine that as you’re loading the DAG, an interrupt- 
driven TSR (such as a  program switcher or multitaker) activates and writes to the 
DAC;  you could end  up with quite  a mess on the  screen, especially  when  your pro- 
gram resumes and continues writing  to the DAC-but in all likelihood to the wrong 
locations. No problem, you say;just disable interrupts for the  duration. Good idea- 
but it takes much  longer to  load the DAC than  interrupts should be  disabled  for.  If, 
on  the  other  hand, you set the  index for each DAC location separately,  you can 
disable interrupts 256 times, once as each DAG location is loaded, without problems. 
As I commented in the last chapter, I don’t have  any gruesome tale  to relate that 
mandates taking the slower but safer road and setting the  index for each DAC loca- 
tion  separately  while interrupts  are disabled.  I’m  merely  hypothesizing as to  what 
ghastly  mishaps could happen. However,  it’s been my experience  that anything that 
can happen  on  the PC does happen eventually; there  are  just too dang many PCs out 
there for it  to  be  otherwise.  However, load the DAC any way you  like; just  don’t 
blame  me if  you get a call from  someone who’s  claims that your program sometimes 
turns  their screen into  something resembling month-old yogurt.  It’s not really  your 
fault, of  course-but  try explaining that to them! 

A Test Program  for  Color Cycling 
Anyway, the  choice of  how  to load the DAC  is yours.  Given that I’m not providing  you 
with  any  hard-and-fast  rules  (mainly  because there  don’t seem  to  be any), what  you 
need is a tool so that you  can experiment with  various  DAC-loading approaches  for 
yourself, and that’s  exactly  what  you’ll find in Listing 34.1. 
Listing 34.1 draws a  band of vertical lines, each one pixel  wide,  across the  screen. 
The attribute of each vertical line is one  greater than that of the  preceding  line, so 
there’s a smooth gradient of attributes from left  to right.  Once everything is set up, 
the  program starts  cycling the colors stored in  however  many DAC locations are 
specified by the CYCLE-SIZE equate; as  many  as  all 256 DAC locations  can  be  cycled. 
(Actually, CYCLE-SIZE-1 locations are cycled,  because  location 0 is kept  constant in 
order to keep  the background and  border colors from changing,  but CYCLE-SIZE 
locations are loaded, and it’s the  number of locations we can load without problems 
that we’re interested in.) 

Changing  Colors without Writing Pixels 643 



LISTING  34.1 134- 1 .ASM 
; F i l l s  a   b a n d   a c r o s s   t h e   s c r e e n   w i t h   v e r t i c a l   b a r s   i n   a l l   2 5 6  
; a t t r i b u t e s ,   t h e n   c y c l e s   a   p o r t i o n   o f   t h e   p a l e t t e   u n t i l   a   k e y   i s  
; p ressed .  
: Assemble w i th  MASM or  TASM 

USE-BIOS equ 

GUARD-AGAINST-INTS equ 

WAIT-VSYNC equ 

CYCLE-SIZE equ 
SCREEN-SEGMENT equ 
SCREEN-WIDTH-IN-BYTES equ 
INPUT-STATUS-1 
DAC-READ-INDEX 

equ 

DAC-WRITE-INDEX 
equ 

DAC-DATA 
eclu 
equ 

1 

1 

1 

0 

256 
OaOOOh 
320 
03dah 
03c7h 
03c8h 
03c9h 

: s e t   t o  1 t o   u s e  BIOS f u n c t i o n s   t o   a c c e s s   t h e  
; DAC.  0 t o   r e a d   a n d   w r i t e   t h e  DAC d i r e c t l y  
;1 t o   t u r n   o f f   i n t e r r u p t s  a n d   s e t   w r i t e   i n d e x  
: b e f o r e   l o a d i n g   e a c h  DAC l o c a t i o n .  0 t o   r e l y  
; on t h e  DAC a u t o - i n c r e m e n t i n g  
; s e t   t o  1 t o   w a i t   f o r   t h e   l e a d i n g  edge o f  
; v e r t i c a l   s y n c   b e f o r e   a c c e s s i n g   t h e  DAC, 0 
; n o t   t o   w a i t  
; s e t   t o  1 t o   u s e  REP INS6  and REP OUTSB when 
; a c c e s s i n g   t h e  DAC d i r e c t l y ,  0 t o   u s e  
; IN/STOSB  and LOOSB/OUT 
;# o f  DAC l o c a t i o n s   t o   c y c l e ,   2 5 6  max 
;mode 1 3 h   d i s p l a y  memory  segment 
; I  o f  b y t e s   a c r o s s   t h e   s c r e e n   i n  mode 13h 
; i n p u t   s t a t u s  1 r e g i s t e r   p o r t  
;DAC Read I n d e x   r e g i s t e r  
;DAC W r i t e   I n d e x   r e g i s t e r  
;DAC D a t a   r e g i s t e r  

i f  NOT-8088 
.286 

e n d i  f ; NOT-8088 

.model  smal  1 

.s tack   lOOh 

.da ta  
;S to rage  f o r  a l l  256 DAC l o c a t i o n s ,   o r g a n i z e d   a s   o n e   t h r e e - b y t e  
; ( a c t u a l l y   t h r e e   6 - b i t   v a l u e s ;   u p p e r   t w o   b i t s  o f  e a c h   b y t e   a r e n ' t  
; s i g n i f i c a n t )  RGB t r i p l e t   p e r   c o l o r .  
Pa le t teTempdb   256*3   dup (? )  

s t a r t :  
. code 

mov ax.@data 
mov ds ,ax  

; S e l e c t  VGA's s t a n d a r d   2 5 6 - c o l o r   g r a p h i c s  mode,  mode 13h. 
mov ax.0013h :AH - 0: s e t  mode f u n c t i o n ,  
i n t  10h ; AL - 13h:  mode # t o   s e t  

;Read a l l  256 DAC l o c a t i o n s   i n t o   P a l e t t e T e m p   ( 3   6 - b i t   v a l u e s .   o n e  
; e a c h   f o r   r e d ,   g r e e n ,   a n d   b l u e ,   p e r  DAC l o c a t i o n ) .  

i f  WAIT-VSYNC 
;Wa i t  f o r  t h e   l e a d i n g   e d g e   o f   t h e   v e r t i c a l   s y n c   p u l s e :   t h i s   e n s u r e s  
; t h a t  we r e a d   t h e  DAC s t a r t i n g   d u r i n g   t h e   v e r t i c a l   n o n - d i s p l a y  
; p e r i o d .  

W a i t N o t V S y n c :   ; w a i t   t o   b e   o u t   o f   v e r t i c a l   s y n c  
mov dx.INPUTLSTATUS-1 

i n  a l . d x  
a n d   a l . 0 8 h  
j n z   W a i t N o t V S y n c  

i n  a1 .dx  
and a1 .08h 

WaitVSync: ; w a i t   u n t i l   v e r t i c a l   s y n c   b e g i n s  

644 Chapter 34 



j z  WaitVSync 
end i  f 

i f  USE-BIOS 
mov a x . l O l 7 h  

sub   bx .bx  
mov cx .256 
mov dx .seg   Pa le t teTemp 
mov es .dx  
mov d x . o f f s e t   P a l e t t e T e m p  

i n t  10h 
e l s e  
i f  GUARD-AGAINST-INTS 

mov cx.CYCLELSIZE 
mov d i   . s e g   P a l e t t e T e m p  
mov e s . d i  
mov d i   . o f f s e t   P a l e t t e T e m p  
sub ah.ah 

mov dx.DAC-READ-INDEX 
mov a l . a h  
c l  i 
o u t   d x . a l  
mov d x ,  DAC-DATA 
i n   a l . d x  
s t o s b  
i n   a l . d x  
s t o s b  
i n   a 1 , d x  
s t o s b  
s t i  
i n c  ah 
1 oop  DACStoreLoop 

mov dx,DAC-READ-INDEX 
sub a1 .a1 
o u t   d x . a l  
mov d i   , s e g   P a l e t t e T e m p  
mov e s . d i  
mov d i   . o f f s e t   P a l e t t e T e m p  
mov dx ,  DAC-DATA 

mov cx.CYCLELSIZE*3 
r e p   i n s b  

mov cx.CYCLE-SIZE 

i n   a l . d x  
s t o s b  
i n   a l . d x  
s t o s b  
i n  a1 .dx 
s t o s b  
1 oop  DACStoreLoop 

DACStoreLoop: 

e l s e  : !GUARD-AGAINST-INTS 

i f  NOTL8088 

e l s e  :!NOT_8088 

DACStoreLoop: 

e n d i  f 
e n d i  f 

e n d i f  : U S E - B I O S  

:WAIT_VSYNC 

:AH - 1 0 h :   s e t  DAC f u n c t i o n ,  
: AL - 17h :   read  DAC b l o c k   s u b f u n c t i o n  
: s t a r t   w i t h  DAC l o c a t i o n  0 
: r e a d   o u t   a l l   2 5 6   l o c a t i o n s  

: p o i n t  ES:DX t o   a r r a y   i n   w h i c h  
: t h e  DAC v a l u e s   a r e   t o   b e   s t o r e d  
: r e a d   t h e  DAC 
:!USE-BIOS 

:# o f  DAC l o c a t i o n s   t o   l o a d  

:dump t h e  DAC i n t o   t h i s   a r r a y  
: s t a r t   w i t h  DAC l o c a t i o n  0 

: s e t   t h e  DAC l o c a t i o n  # 

: g e t   t h e   r e d   c o m p o n e n t  

;ge t   t he   g reen   componen t  

: g e t   t h e   b l u e   c o m p o n e n t  

: s e t   t h e   i n i t i a l  DAC l o c a t i o n   t o  0 

:dump t h e  DAC i n t o   t h i s   a r r a y  

: r e a d  CYCLELSIZE DAC l o c a t i o n s   a t   o n c e  

:# o f  DAC l o c a t i o n s   t o   l o a d  

; g e t   t h e   r e d   c o m p o n e n t  

: g e t   t h e   g r e e n   c o m p o n e n t  

: g e t   t h e   b l u e   c o m p o n e n t  

: NOTL8088 
:GUARDLAGAINST_INTS 

Changing  Colors  without Writing Pixels 645 



;Draw a s e r i e s   o f   1 - p i x e l - w i d e   v e r t i c a l   b a r s   a c r o s s   t h e   s c r e e n   i n  
: a t t r i b u t e s  1 th rough   255 .  

mov ax,SCREEN-SEGMENT 
mov es .ax  
mov di.50*SCREEN-WIOTH-IN-BYTES : p o i n t  ES:OI t o   t h e   s t a r t  

c l  d 
mov d x . l O O   : d r a w   1 0 0   l i n e s   h i g h  

mov a l . 1   : s t a r t   e a c h   l i n e   w i t h   a t t r  1 
mov cx.SCREEN-WIDTH-IN-BYTES :do a f u l l   l i n e   a c r o s s  

s t o s b   : d r a w  a p i x e l  
a d d   a l . l   : i n c r e m e n t   t h e   a t t r i b u t e  
a d c   a l . 0  : i f  t h e   a t t r i b u t e   j u s t   t u r n e d  

: o f   l i n e  5 0   o n   t h e   s c r e e n  

RowLoop: 

ColumnLoop: 

: o v e r   t o  0. i n c r e m e n t  it t o  1 
: b e c a u s e   w e ' r e   n o t   g o i n g   t o  
: c y c l e  OAC l o c a t i o n  0. so  
: a t t r i b u t e  0 won ' t   change 

1 oop  Col  umnLoop 
dec  dx 
j n z  RowLoop 

: C y c l e   t h e   s p e c i f i e d   r a n g e   o f  DAC l o c a t i o n s   u n t i l  a key  i s  p ressed .  
Cyc leLoop:  
; R o t a t e   c o l o r s   1 - 2 5 5   o n e   p o s i t i o n   i n   t h e   P a l e t t e T e m p   a r r a y :  
: l o c a t i o n  0 i s  a l w a y s   l e f t   u n c h a n g e d  so  t h a t   t h e   b a c k g r o u n d  
: a n d   b o r d e r   d o n ' t   c h a n g e .  

p u s h   w o r d   p t r   P a l e t t e T e m p + ( l * 3 )   ; s e t   a s i d e   P a l e t t e T e m p  
p u s h   w o r d   p t r   P a l e t t e T e m p + ( l * 3 ) + 2  ; s e t t i n g   f o r   a t t r  1 
mov cx .254 
mov s i . o f f s e t   P a l e t t e T e m p + ( 2 * 3 )  
mov d i , o f f s e t   P a l e t t e T e m p + ( l * 3 )  
mov ax .ds  

mov cx,   254*3/ 2 
mov es .ax  

r e p  movsw ; r o t a t e   P a l e t t e T e m p   s e t t i n g s  
: f o r   a t t r s  2 t h r o u g h   2 5 5   t o  
: a t t r s  1 t h r o u g h   2 5 4  

POP b x   : g e t   b a c k   o r i g i n a l   s e t t i n g s  
POP a x  : f o r   a t t r i b u t e  1 and  move 
s tosw : them t o   t h e   P a l e t t e T e m p  
mov e s : [ d i ] , b l  : l o c a t i o n   f o r   a t t r i b u t e  255 

i f  WAIT-VSYNC 
: W a i t   f o r   t h e   l e a d i n g   e d g e   o f   t h e   v e r t i c a l   s y n c   p u l s e :   t h i s   e n s u r e s  
: t h a t  we r e l o a d   t h e  OAC s t a r t i n g   d u r i n g   t h e   v e r t i c a l   n o n - d i s p l a y  
: p e r i o d .  

WaitNotVSync2: 
mov dx.INPUT-STATUS-1 

i n   a l . d x  
a n d   a l . 0 8 h  
j n z  Wai tNotVSync2 

i n  a l . d x  
and  a l .08h 
j z  WaitVSync2 

e n d i f  ;WAIT_VSYNC 

i f  USE-BIOS 
; S e t   t h e   n e w ,   r o t a t e d   p a l e t t e .  

WaitVSync2: 

;wa 

;wa 

it t o   b e   o u t  o f  v e r t i c a l   s y n c  

i t  u n t i l   v e r t i c a l   s y n c   b e g i n s  

646 Chapter 34 



mov a x . l O l 2 h  

sub  bx .bx  
mov cx.CYCLE-SIZE 
mov dx ,seg  Pa le t teTemp 
mov es .dx  
mov d x , o f f s e t   P a l e t t e T e m p  

i n t  10h 
e l s e  : !USE-BIOS 
i f  GUARD-AGAINST-INTS 

mov cx.CYCLE-SIZE 
mov s i   . o f f s e t   P a l e t t e T e m p  
sub  ah.ah 

mov dx,DAC-WRITE-INDEX 
mov a1 ,ah 
c l  i 
o u t   d x . a l  
mov dx ,  DAC-DATA 
1  odsb 
o u t   d x . a l  
1  odsb 
o u t   d x , a l  
1  odsb 
o u t   d x . a l  
s t i  
i n c   a h  
1  oop  DACLoadLoop 

mov dx.DAC_WRITE-INDEX 
sub  a1 ,a l  
o u t   d x . a l  
mov s i   . o f f s e t   P a l e t t e T e m p  
mov dx  , DAC-DATA 

mov cx,CYCLE_SIZE*3 
r e p  o u t s b  

e l s e  :!NOTL8088 
mov cx.CYCLE-SIZE 

1  odsb 
o u t   d x . a l  
1  odsb 
o u t   d x , a l  
1  odsb 
o u t   d x , a l  
l o o p  DACLoadLoop 

e n d i  f : NOTL8088 

DACLoadLoop: 

e l s e  :!GUARD-AGAINST-INTS 

i f  NOT-8088 

DACLoadLoop: 

e n d i  f ;GUARDLAGAINSTLINTS 
e n d i f  ;USE-BIOS 

;See i f  a   key   has   been  p ressed.  
mov ah,Obh 
i n t  21h 
and  a1  .a1 
j z  Cyc l   eLoop 

:C1 e a r   t h e   k e y p r e s s .  
mov ah .1  
i n t  21h 

:AH - 1 0 h :   s e t  OAC f u n c t i o n ,  
: AL - 1 2 h :   s e t  DAC b l o c k   s u b f u n c t i o n  
: s t a r t   w i t h  DAC l o c a t i o n  0 
:# o f  DAC l o c a t i o n s   t o   s e t  

; p o i n t  ES:DX t o   a r r a y   f r o m   w h i c h  
: t o   l o a d   t h e  DAC 
; l o a d   t h e  DAC 

:I\ o f  DAC l o c a t i o n s   t o  1  oad 
: l o a d   t h e  DAC f r o m   t h i s   a r r a y  
; s t a r t   w i t h  DAC l o c a t i o n  0 

; s e t   t h e  DAC l o c a t i o n  # 

: s e t   t h e   r e d   c o m p o n e n t  

: s e t   t h e   g r e e n   c o m p o n e n t  

: s e t   t h e   b l u e   c o m p o n e n t  

: s e t   t h e   i n i t i a l  DAC l o c a t i o n   t o  0 
: l o a d   t h e  DAC f r o m   t h i s   a r r a y  

: l o a d  CYCLE-SIZE DAC l o c a t i o n s   a t   o n c e  

:# o f  DAC l o c a t i o n s   t o   l o a d  

: s e t   t h e   r e d   c o m p o n e n t  

: s e t   t h e   g r e e n   c o m p o n e n t  

: s e t   t h e   b l u e   c o m p o n e n t  

;DOS c h e c k   s t a n d a r d   i n p u t   s t a t u s   f n  

: i s  a  key   pend ing? 
: n o .   c y c l e  some more 

:DDS k e y b o a r d   i n p u t   f n  

Changing  Colors  without Writing Pixels 647 



: R e s t o r e   t e x t  mode and  done. 
mov ax,  0003h 
i n t  10h 
mov ah,4ch 
i n t  21h 

e n d   s t a r t  

:AH - 0: s e t  mode f u n c t i o n ,  
: AL - 03h: mode I t o   s e t  
:DOS t e r m i n a t e   p r o c e s s   f n  

The big question is,  How does Listing 34.1 cycle colors? Via the BIOS or directly? 
With interrupts  enabled  or  disabled? Et ceteru? 
However  you like, actually. Four  equates at the  top of Listing 34.1 select  the  sort of 
color cycling performed; by changing  these  equates and CYCLE-SIZE, you can  get  a 
feel  for how  well various approaches  to  color cycling  work  with  whatever combina- 
tion of computer system and VGA you care  to test. 
The USE-BIOS equate is simple.  Set USEBIOS to 1 to  load  the DAC through  the 
block-load-DAC  BIOS function, or to 0 to  load  the DAC directly with OUTS. 
If USE-BIOS is 1, the only other equate of interest is WAIT-VSYNC. If WAIT-VSYNC 
is 1, the  program waits for  the  leading  edge of vertical sync before  loading  the DAC; 
if WAIT-VSYNC is 0, the  program doesn’t wait before  loading.  The effect of setting 
or  not setting WAIT-VSYNC depends  on whether  the BIOS  of the VGA the  program 
is running  on waits for vertical sync before  loading  the DAC.  You  may end  up with a 
double wait, causing color cycling to  proceed  at half speed, you  may end  up with no 
wait at all, causing cycling to  occur  far  too rapidly (and almost certainly with hideous 
on-screen  effects),  or you may actually end  up cycling at the proper one-cycle-per- 
frame  rate. 
If USEBIOS is 0, WAIT-VSYNC still applies. However,  you will always want  to set 
WAIT-VSYNC to 1 when USE-BIOS is 0; otherwise, cycling  will occur  much  too fast, 
and a good  deal of continuous  on-screen  garbage is likely to make  itself evident as 
the  program loads the DAC non-stop. 
If USEBIOS is 0, GUARD-AGAINST-INTS determines  whether  the possibility of 
the DAC loading process being interrupted is guarded  against by disabling  inter- 
rupts  and setting  the write index  once  for every location  loaded and whether  the 
DAC’s autoincrementing  feature is relied upon  or  not. 
If GUARD-AGAINST-INTS is 1, the following sequence is followed for  the  loading 
of each DAC location in turn:  Interrupts  are  disabled,  the DAC Write Index  register 
is set appropriately,  the RGB triplet  for  the  location is written to  the DAC Data  regis- 
ter, and  interrupts  are  enabled.  This is the slow but safe approach  described  earlier. 
Matters get still more  interesting if GUARD-AGAINST-INTS is 0. In  that case, if 
NOT-8088 is 0, then  an  autoincrementing  load is performed in a  straightforward 
fashion;  the DAC Write Index register is set  to  the  index of the first location to load 
and  the RGB triplet is sent to the DAC  by  way of three LODSB/OUT DX& pairs, 
with LOOP repeating  the process for  each of the  locations  in  turn. 

648 Chapter 34 



If, however, NOT-8088 is 1, indicating  that  the processor is a 286 or  better  (perhaps 
AT-LEA!jT-286 would  have been  a  better  name),  then after the initial DAC Write 
Index value  is set, all  768 DAC locations are  loaded with a single REP OUTSB. This 
is clearly the fastest approach,  but  it  runs  the risk, albeit remote,  that  the  loading 
sequence will be interrupted  and  the DAC registers will become garbled. 
My own experience with  Listing  34.1 indicates that  it is sometimes possible  to load 
all 256 locations cleanly but sometimes it is not; it all depends  on  the processor, the 
bus speed,  the VGA, and  the DAG, as  well  as whether  autoincrementation and REP 
OUTSB are used. I’m not going to bother to report how  many  DAC locations I could 
successfully load with each of the various approaches,  for  the simple reason that I 
don’t have enough  data points to make reliable suggestions, and I don’t want you 
acting on my comments and  running  into trouble down the pike. You  now have a 
versatile tool with  which  to probe  the limitations of  various  DAC-loading approaches; 
use i t  to perform your own tests on  a sampling of the slowest hardware configura- 
tions you expect your programs to run  on,  then leave a  generous safety margin. 
One thing’s for  sure, though-you’re not going to be able to cycle  all 256 DAC loca- 
tions cleanly once  per  frame  on  a reliable basis  across the  current generation of PCs. 
That’s why I said at  the  outset  that  brute force isn’t appropriate to the task  of color 
cycling. That doesn’t mean  that color cycling can’t be used,  just  that  subtler ap- 
proaches must be employed. Let’s look at some of those alternatives. 

Color Cycling Approaches  that Work 
First  of  all, I’d like  to point  out  that when color cycling does work,  it’s a thing of 
beauty.  Assemble  Listing  34.1 so that it doesn’t use the BIOS to load the DAC, doesn’t 
guard against interrupts,  and uses 286specific instructions if your computer sup- 
ports them.  Then tinker with CYCLE-SIZE until  the color cycling is perfectly clean 
on your computer. Color cycling looks stunningly smooth,  doesn’t it? And this is 
crude color cycling, working with the default color set;  switch  over  to a  color set that 
gradually works  its way through various hues and saturations, and you could  get 
something  that looks for all the world  like true-color animation  (albeit working with 
a small subset of the full spectrum  at any one  time). 
Given that, how can we take advantage of color cycling  within the limitations of 
loading  the DAC? The simplest approach,  and my personal favorite, is that of cycling 
a  portion of the DAC while using the rest of the DAC locations for  other, non-cycling 
purposes. For example, you might allocate 32 DAC locations to the  aforementioned 
sunset, reserve 160 additional locations for use in drawing a static mountain scene, 
and employ the remaining 64 locations to draw images of planes, cars, and  the like 
in the foreground. The 32 sunset colors  could be cycled  cleanly, and the other 224  colors 
would remain the same throughout the program, or would change only  occasionally. 
That suggests a second possibility:  If  you  have  several different color sets to be cycled, 
interleave the loading so that only one color set is cycled per  frame. Suppose you are 

Changing  Colors  without Writing Pixels 649 



animating a night  scene, with  stars  twinkling in  the background,  meteors streaking 
across the sky, and a spaceship moving  across the screen with  its jets flaring. One way 
to  produce most of the necessary  effects  with little effort would be  to draw the stars 
in several attributes and  then cycle the colors for those attributes, draw the  meteor 
paths in successive attributes, one for  each pixel, and  then cycle the colors for those 
attributes, and  do much  the same for  the jets. The only remaining task  would  be to 
animate  the spaceship across the  screen, which is not a particularly  difficult  task. 

The  key to  getting  all the color  cycling to work in the above  example,  howevel; 
would be to assign  each  color  cycling  task  a dlfferentpart of the DAC, with  each 
part cycled  independently as needed. r f ;  as is likely, the total number ofDAC loca- 
tions cycledproved to be too great to manage in one frame,  you could  simply  cycle 
the  colors  of the stars after one frame, the colors of the meteors  after the next, and 
the colors  of the jets after yet another frame, then  back  around to cycling the 
colors  of  the stars. By splitting up the DAC in this manner  and  interleaving  the 
cycling tasks, you can  perform  a  great  deal  of  seemingly  complex  color  animation 
without  loading very much  of the DAC during  any  one frame. 

Yet another  and somewhat odder workaround is that of  using  only  128 DAC loca- 
tions and page flipping. (Page flipping in 256color modes involves using the VGAs 
undocumented  256color modes; see Chapters 31, 43, and 47 for details.) In this 
mode of operation, you’d  first  display page 0, which is drawn entirely with colors 0- 
127. Then you’d draw page 1 to look just like page 0, except  that colors 128-255 are 
used instead. You’d load DAC locations 128-255  with the  next cycle settings for the 
128 colors you’re using, then you’d  switch  to  display the  second page with the new 
colors. Then you could modify page 0 as needed, drawing in colors 0-127, load DAC 
locations 0-127  with the  next color cycle  settings, and flip  back to page 0. 
The idea is that you  modify  only those DAC locations that  are not used  to  display  any 
pixels on  the  current  screen.  The advantage  of  this is not, as  you might think,  that 
you don’t  generate garbage on  the screen when  modifying  undisplayed DAC loca- 
tions; in fact, you do, for a spot of interference will  show up if you set a DAC location, 
displayed or  not,  during display  time. No, you  still  have  to  wait for vertical  sync and 
load only during vertical blanking before  loading  the DAC when page flipping with 
128 colors; the advantage is that since none of the DAG locations you’re modifying is 
currently displayed,  you can  spread the loading out over two or more vertical  blank- 
ing periods-however long it takes. If you did this  without the 128-color page flipping, 
you might get odd on-screen effects  as some of the colors changed  after  one  frame, 
some after the  next, and so o n - o r  you might not; changing  the  entire DAG in chunks 
over  several frames is another possibility worth considering. 
Yet another  approach  to color cycling  is that of loading a bit of the DAC during each 
horizontal blanking period.  Combine  that with counting scan lines, and you could 

650 Chapter 34 



vastly expand the number of simultaneous  on-screen  colors by cycling  colors us a f r u m  is 
displayed, so that  the color set changes from scan line to  scan line down the  screen. 
The possibilities are endless. However,  were I to be writing  256-color  software that 
used color cycling, I’d  find out how  many  colors could be cycled after the start of 
vertical  sync on the slowest computer  I  expected  the software  to run  on, I’d  lop off at 
least 10 percent  for a safety margin, and I’d  structure my program so that no color 
cycling set exceeded  that size, interleaving several color cycling  sets if necessary. 
That’s what I’ddo. Don’t let yourself  be held back by  my limited imagination, though! 
Color cycling  may be  the most complicated of all the color control  techniques, but 
it’s  also the most  powerful. 

Odds and Ends 
In my experience, when  relying on the  autoincrementing  feature while loading the 
DAC, the Write Index register  wraps  back from 255 to 0, and likewise  when  you load 
a block  of  registers through  the BIOS. So far as I know,  this  is a characteristic of the 
hardware, and should  be consistent; also,  Richard  Wilton documents this behavior 
for  the BIOS in the VGA bible, Programmer’s Guide to PC Video Systems, Second Edition 
(Microsoft Press), so you should  be able  to count  on it. Not that  I see that DAC index 
wrapping is  especially  useful, but it  never hurts  to  understand exactly  how  your  re- 
sources behave, and I never  know  when one of  you might come up with a serviceable 
application for any particular quirk. 

The DAC Mask 
There’s one register in the DAC that  I haven’t mentioned yet, the DAC  Mask register 
at 03C6H. The operation of  this register is simple but powerful; it can  mask  off  any 
or all  of the 8 bits of pixel information coming into  the DAC from  the VGA. When- 
ever a bit  of the DAG Mask register is 1 ,  the  corresponding bit of pixel information is 
passed along to the DAC to  be  used  in looking up the RGB triplet to be  sent  to  the 
screen. Whenever a bit of the DAC  Mask register is 0, the  corresponding pixel  bit is 
ignored,  and a 0 is used for that bit position in all  look-ups of  RGB triplets. At the 
extreme, a DAC Mask setting of 0 causes  all 8 bits  of  pixel information to be  ignored, 
so DAC location 0 is looked up for every  pixel, and  the  entire screen  displays the 
color stored in DAC location 0. This makes setting the DAC  Mask register to 0 a 
quick and easy  way to blank the screen. 

Reading the DAC 
The DAC can be  read directly, via the DAC Read Index register at 3C7H and the 
DAG Data  register at 3C9H, in much  the same way as it can  be  written  directly by  way 
of the DAC Write Index register-complete  with autoincrementing  the DAG Read 
Index register after every three reads.  Everything  I’ve  said about writing to  the DAC 

Changing Colors  without Writing Pixels 65 1 



applies  to reading from the DAC. In fact, reading from the DAC can  even  cause  snow, 
just as loading the DAC does, so it should ideally  be performed during vertical  blanking. 
The DAC can also be read by  way  of the BIOS in either of two ways. INT 10H, func- 
tion 1OH (AH=lOH),  subfunction 15H (AL=15H) reads out a single DAC location, 
specified by  BX; this function  returns the RGB triplet  stored in the specified location 
with the  red  component in the lower 6 bits of DH, the  green  component  in  the lower 
6 bits of CH, and  the blue component in the lower 6 bits  of  CL. 
INT 10H, function  10H  (AH=lOH),  subfunction  17H (AL=17H) reads out a block of 
DAC locations of length CX, starting with the location specified by  BX.  ES:DX must 
point to the buffer in which the RGB values from  the specified block  of DAC loca- 
tions are to be stored. The form of  this buffer (RGB,  RGB,  RGB ..., with three bytes 
per RGB triple) is exactly the same  as that of the buffer used when calling the BIOS 
to load  a block  of registers. 
Listing 34.1 illustrates reading  the DAC both  through  the BIOS block-read function 
and directly,  with the direct-read code capable of conditionally assembling to either 
guard against interrupts  or  not  and to use REP INSB or  not. As you can see,  reading 
the DAC settings is  very much symmetric  with setting  the DAC. 

Cycling Down 
And so, at  long last, we come to the  end of our discussion  of color control on  the 
VGA.  If it has been  more complex than  anyone  might have imagined, it has also 
been most rewarding. There’s as much obscure but very real potential  in  color con- 
trol as there is anywhere on the VGA, which is to say that there’s a very great  deal of 
potential  indeed.  Put color cycling or color paging together with the page flipping 
and image drawing techniques  explored elsewhere in this book, and you’ll  leave the 
audience gasping and wondering “How the heck did they do that?” 

652 Chapter 34 



chapter 35

bresenham is fast , and fast is good



For all the complexity~,of graphics design and  programming, surprisingly few primi- 
tive functions lie at the.&  &&most graphics software. Heavily used primitives include 
routines  that draw dati cles, area fills, bit block logical transfers, and, of course, 
lines. For many  ye&, computer  graphics were created primarily with specialized 
line-drawing hardware, so lines are in  a way the Zinguafranca of computer graphics. 
Lines are jii de variety of microcomputer  graphics  applications today, nota- 

Probably the best-khown formula  for drawing lines on a computer display is called 
Bresenham’s line-drawing algorithm. (We  have to be specific here because there is 
also a less-well-known Bresenham’s circle-drawing algorithm.)  In this chapter, 1’11 
present two implementations  for  the EGA and VGA of Bresenham’s line-drawing 
algorithm, which provides decent  line quality and excellent drawing speed. 
The first implementation is in rather plain C, with the  second  in not-so-plain assem- 
bly, and they’re  both  pretty  good  code. The assembly implementation is damned 
good  code,  in  fact,  but  ifyou want  to  know whether it’s the fastest Bresenham’s imple- 
mentation possible, I must tell  you that it isn’t. First  of all, the  code  could  be  sped up 
a bit by shuffling and  combining  the various error-term  manipulations, but  that re- 
sults in truly cryptic code. I wanted  you to be  able to relate  the  original  algorithm  to 
the final code, so I skipped  those optimizations. Also, write mode 3, which is unique 

. + “ l  . 

bly CAD/ ,, computer-aided  engineering. 

655 



to the VGA, could be used for considerably faster drawing. I’ve described write mode 
3 in  earlier  chapters, and I strongly recommend its use in VGA-only line drawing. 
Second, horizontal, vertical, and diagonal lines could be special-cased, since those 
particular lines require little calculation and can be drawn very  rapidly. (This is espe- 
cially true of horizontal lines, which can be drawn 8 pixels at a time.) 
Third, run-length slice line drawing could be used to  significantly reduce  the  num- 
ber of calculations required  per pixel, as  I’ll demonstrate in the  next two chapters. 
Finally, unrolled loops and/or duplicated code could  be  used  to  eliminate  most of the 
branches in the final assembly implementation, and because x86  processors are notori- 
ously  slow at branching, that would  make quite a difference in overall performance. If 
you’re interested in unrolled loops and similar  assembly techniques, I refer you to the 
first part of  this  book. 
That brings us neatly to my final point: Even  if I didn’t know that there were further 
optimizations to be made to my line-drawing implementation,  I’d assume that there 
were. As I’m  sure  the  experienced assembly programmers  among you  know, there 
are  dozens of  ways to tackle any problem in assembly, and  someone else always seems 
to have come up with a trick that never occurred  to you. I’ve incorporated a sugges- 
tion made by Jim Mackraz in the  code  in this chapter, and  I’d be most  interested  in 
hearing of  any other tricks or tips  you  may  have. 
Notwithstanding, the  linedrawing implementation in Listing 35.3 is plentyfast enough 
for most purposes, so let’s get  the discussion  underway. 

The Task at Hand 
There  are two important characteristics of  any linedrawing function. First, it  must 
draw a reasonable approximation of a  line. A computer screen has limited resolu- 
tion, and so a line-drawing function  must actually approximate  a straight line by 
drawing a series of pixels in  what amounts  to a  jagged  pattern  that generally pro- 
ceeds in the desired direction. That  pattern of pixels must reliably  suggest to  the 
human eye the  true  line it represents. Second, to be usable, a line-drawing function 
must befast. Minicomputers and mainframes generally have hardware that  performs 
line drawing, but most microcomputers offer no such assistance. True, nowadays 
graphics accelerators such as the S3 and AT1 chips have line drawing hardware, but 
some other accelerators don’t;  when drawing lines on  the latter  sort of chip,  when 
drawing on  the CGA,  EGA, and VGA, and when drawing sorts of lines not  supported 
by line-drawing hardware as  well, the PC’s CPU must draw lines on its own, and, as 
many users of graphics-oriented software know, that can be a slow process indeed. 
Line drawing quality and  speed derive from two factors: The algorithm used to draw 
the line and  the  implementation of that  algorithm. The first implementation (writ- 
ten  in Borland C++)  that I’ll be presenting in this chapter illustrates the workings of 
the algorithm and draws lines at a  good  rate.  The second implementation, written in 

656 Chapter 35 



assembly language and callable directly from Borland C++, draws lines at extremely 
high speed, on the order of three to six times faster than  the C version. Between 
them,  the two implementations illuminate Bresenham’s line-drawing algorithm and 
provide high-performance line-drawing capability. 
The difficulty in drawing a line lies in generating  a set of  pixels that, taken together, 
are a reasonable facsimile  of a  true  line. Only horizontal, vertical, and 1:l diagonal 
lines can be drawn precisely along  the  true line being represented; all other lines 
must be approximated  from  the array of pixels that a given video mode supports, as 
shown in Figure 35.1. 
Considerable thought has gone  into  the design of line-drawing algorithms, and a 
number of techniques  for drawing high-quality lines have been developed. Unfortu- 
nately, most of these techniques were developed for powerful, expensive graphics 
workstations and  require very high resolution, a large color palette, and/or floating- 
point hardware. These  techniques tend to perform poorly and  produce less  visually 
impressive results on all but  the best-endowed PCs. 
Bresenham’s  line-drawing algorithm, on the other  hand, is uniquely suited to micro- 
computer implementation in that it requires no floating-point operations, no divides, 
and  no multiplies inside the line-drawing loop. Moreover, it can be implemented 
with surprisingly little code. 

Bresenham’s Line-Drawing  Algorithm 
The key to grasping Bresenham’s algorithm is to understand  that when drawing an 
approximation of a line on a finite-resolution display, each pixel drawn will lie either 
exactly on the true line or to one side or  the  other of the  true  line.  The  amount by 
which the pixel actually  drawn  deviates from  the  true line is the mor of the line 

0 0 0 0 0 0 0  

@ 0 0 0 0 0 0  

Approximating a true line from a pixel array. 
Figure 35.1 

Bresenham Is Fast, and Fast Is Good 657 



drawing at that  point. As the drawing of the  line progresses from one pixel to the 
next,  the error can be used to  tell when, given the  resolution of the display, a  more 
accurate  approximation of the  line  can be drawn by placing  a given pixel one  unit of 
screen  resolution away from its predecessor in either  the  horizontal  or  the vertical 
direction, or  both. 
Let’s examine  the case of drawing a  line  where  the  horizontal, or X length of the  line 
is greater  than  the vertical, or Y length,  and  both lengths  are  greater  than 0. For 
example,  suppose we are drawing a  line  from (0,O) to (5,2), as  shown in Figure 35.2. 
Note that Figure 35.2  shows the  upper-left-hand  corner of the  screen as (O,O), rather 
than  placing (0,O) at its more traditional lower-left-hand corner  location.  Due  to  the 
way in which the PC’s graphics  are mapped to  memory, it is simpler  to work within 
this framework, although  a  translation of Y from  increasing downward to  increasing 
upward  could be effected easily enough by simply subtracting  the Y coordinate  from 
the  screen  height  minus 1; if you are  more  comfortable with the  traditional  coordi- 
nate system, feel  free  to modify the code in Listings  35.1 and 35.3. 
In Figure 35.2, the  endpoints of the  line fall  exactly on displayed  pixels.  However, no 
other  part of the  line squarely intersects  the  center of a pixel, meaning  that all other 
pixels will have to be plotted as approximations of the  line.  The  approach to  ap- 
proximation  that Bresenham’s algorithm takes is to move  exactly 1 pixel along  the 
major dimension of the  line  each time a new pixel is drawn, while  moving 1 pixel 
along  the  minor  dimension  each time the  line moves more  than halfway between 
pixels along  the  minor  dimension. 
In Figure 35.2, the X dimension is the major dimension.  This  means  that 6 dots, one 
at each of X coordinates 0,1,2,3,4,  and 5, will be drawn. The trick, then, is to decide 
on the  correct Y coordinates  to  accompany  those X coordinates. 

I 0 1 2 3 4 5 6 

3 0 0 0 0 0 0 0  

Drawing between two pixel endpoints. 
Figure 35.2 

658 Chapter 35 



It’s easy enough to select the Y coordinates by  eye in Figure 35.2. The  appropriate Y 
coordinates  are 0,  0, 1, 1, 2, 2, based on  the Y coordinate closest to the  line  for  each 
X coordinate.  Bresenham’s  algorithm makes the same selections, based on  the same 
criterion.  The  manner in  which it does this is  by keeping  a  running  record of the 
error of the line-that is, how far  from  the  true  line  the  current Y coordinate is-at 
each X coordinate, as shown in Figure 35.3. When the  running  error of the line 
indicates  that the  current Y coordinate deviates from the  true  line to the  extent  that 
the adjacent Y coordinate would be closer to the line, then  the  current Y coordinate 
is changed to that  adjacent Y coordinate. 
Let’s take a moment to follow the steps Bresenham’s algorithm would go through in 
drawing the line  in Figure 35.3. The initial pixel is drawn at (O,O), the starting  point 
of the line. At this point  the  error of the line is 0. 
Since X is the  major  dimension, the  next pixel has an X coordinate of 1. The Y 
coordinate of this pixel will  be whichever of 0 (the last Y coordinate)  or 1 (the adja- 
cent  Ycoordinate in the  direction of the  end  point of the  line)  the  true line at this X 
coordinate is closer to. The  running  error  at this point is B minus A, as shown in 
Figure 35.3. This amount is less than 1/2 (that is, less than halfway to the  next Y 
coordinate), so the Y coordinate  does  not  change  at X equal to 1. Consequently, the 
second pixel is drawn at ( 1  ,0). 
The  third pixel has  an X coordinate of 2. The  running  error  at this point is C minus 
A, which is greater than 1/2 and  therefore closer to the  next  than  to  the  current Y 
coordinate.  The  third pixel is drawn at (2,1), and 1 is subtracted  from  the  running 
error to compensate  for  the  adjustment of one pixel in the  current Y coordinate. 
The  running  error of the pixel actually drawn at this point is C minus D. 

0 1 2 3 4 5 6 

3 0 0 0 0 0 0 0  

The  error  term in Bresenham k algorithm. 
Figure 35.3 

Bresenham Is Fast, and Fast Is Good 659 



The  fourth pixel has an X coordinate of 3. The  running  error  at this point is E minus 
D; since this is  less than  1/2,  the  current Y coordinate  doesn’t  change.  The  fourth 
pixel is drawn at (3 , l ) .  
The fifth pixel has an X coordinate of 4. The  running  error  at this point is F minus 
D; since this is greater  than  1/2,  the  current Y coordinate advances. The  third pixel 
is drawn at (4,Z) , and 1 is subtracted  from  the  running  error.  The  error of the pixel 
drawn at this point is G minus F. 
Finally, the sixth pixel is the  end  point of the  line.  This pixel has an X coordinate of 
5. The  running  error  at this point is G minus G, or 0, indicating  that this point is 
squarely on  the  true line, as  of course  it  should be given that it’s the  end  point, so the 
current Y coordinate  remains  the  same.  The  end  point of the  line is drawn at  (5,2), 
and  the  line is complete. 
That’s really  all there is  to Bresenham’s algorithm.  The  algorithm is a process of 
drawing a pixel  at  each possible coordinate  along  the  major  dimension of the line, 
each with the closest possible coordinate  along  the  minor  dimension.  The  running 
error is used to  keep track of when the  coordinate  along  the  minor  dimension  must 
change in order to  remain as close as possible to the  true  line.  The above description 
of the case where X is the  major  dimension, Y is the  minor  dimension,  and  both 
dimensions  are  greater  than  zero is readily generalized  to all eight  octants in  which 
lines  could  be  drawn, as we  will see in  the C implementation. 
The above discussion summarizes  the nature  rather  than  the exact  mechanism of 
Bresenham’s linedrawing  algorithm. I’ll provide a brief seat-of-the-pants discussion 
of the  algorithm  in  action when we get  to  the C implementation of the  algorithm; 
for a full mathematical  treatment,  I  refer you to pages 433-436 of Foley and Van 
Dam’s Fundamentals ofInteractive Computer  Graphics (Addison-Wesley, 1982) , or pages 
72-78 of the  second  edition of that  book, which was published  under  the  name 
Computer  Graphics:  Principles and Practice (Addison-Wesley, 1990).  These sources  pro- 
vide the derivation of the integer-only, divide-free version of the  algorithm, as  well  as 
Pascal code  for  drawing lines in one of the  eight possible octants. 

Strengths  and  Weaknesses 
The overwhelming strength of Bresenham’s  line-drawing  algorithm is speed. With 
no divides, no  floating-point  operations,  and no  need  for variables that won’t fit in 
16 bits, it is perfectly  suited  for PCs. 
The weakness of Bresenham’s  algorithm is that  it  produces relatively  low-quality lines 
by comparison with most other line-drawing  algorithms.  In particular, lines  gener- 
ated with Bresenham’s  algorithm can tend  to look a little jagged.  On  the PC, however, 
jagged lines are  an inevitable  consequence of  relatively  low resolution  and  a small 
color  set, so lines drawn with Bresenham’s  algorithm  don’t look all that  much differ- 
ent from  lines drawn in  other ways. Besides,  in most applications, users are far  more 

660 Chapter 35 



interested in the overall picture  than in the primitive elements  from which that pic- 
ture is built. As a  general  rule, any collection of  pixels that  trend  from  point A to 
point B in  a straight fashion is accepted by the eye  as a line. Bresenham’s algorithm 
is successfully used by many current PC programs, and by the standard of this wide 
acceptance the algorithm is certainly good  enough. 
Then,  too, users hate waiting for their computer to finish drawing. By any standard 
of drawing performance, Bresenham’s algorithm excels. 

An Implementation in C 
It’s  time  to get down and look at some actual working code. Listing 35.1 is a C imple- 
mentation of Bresenham’s line-drawing algorithm for  modes OEH, OFH, IOH, and 
12H of the VGA, called as function EVGALiie. Listing 35.2 is a sample program to 
demonstrate  the use of EVGALine. 

LISTING 35.1 135- 1 .C 
/ *  
* C i m p l e m e n t a t i o n   o f   B r e s e n h a m ’ s   l i n e   d r a w i n g   a l g o r i t h m  
* f o r   t h e  EGA and VGA.  Works i n  modes OxE. OxF. 0x10.  and  0x12. 

* C o m p i l e d   w i t h   B o r l a n d  C++ 

* By Michael   Abrash 
*/  

* 

* 

#i ncl   ude  <dos . h> / *  c o n t a i n s  MK-FP macro * /  

# d e f i n e  EVGA-SCREEN-WIDTHKIN-BYTES 80 
/*  memory o f f s e t   f r o m   s t a r t   o f  

one row t o   s t a r t   o f   n e x t  * /  
# d e f i n e  EVGA-SCREEN-SEGMENT  OxAOOO 

{{define  GCINDEX Ox3CE 
/*  d i s p l a y  memory  segment * /  

/ *  G r a p h i c s   C o n t r o l  1 e r  
I n d e x   r e g i s t e r   p o r t  * /  

l d e f  i ne GC-DATA Ox3CF 
/ *  G r a p h i c s   C o n t r o l l e r  

D a t a   r e g i s t e r   p o r t  * /  
# d e f i n e  SET-RESET-INDEX 0 / *  i n d e x e s   o f   n e e d e d  * /  
# d e f i n e  ENABLELSETLRESET-INDEX 1 I* G r a p h i c s   C o n t r o l l e r  * /  
# d e f i n e  BIT-MASK-INDEX 8 / *  r e g i s t e r s  * /  

/ *  
* Draws a d o t   a t  ( X O . Y O )  i n  w h a t e v e r   c o l o r   t h e  EGA/VGA hardware i s  
* s e t  up f o r .  L e a v e s   t h e   b i t  mask s e t   t o   w h a t e v e r   v a l u e   t h e  
* d o t   r e q u i r e d .  
* I  

v o i d  EVGADot(X0, Y O )  
u n s i g n e d   i n t  X O :  / *  c o o r d i n a t e s   a t   w h i c h   t o   d r a w   d o t ,   w i t h  * I  
u n s i g n e d   i n t  Y O :  / *  (0 .0 )  a t   t h e   u p p e r   l e f t   o f   t h e   s c r e e n  * /  
{ 

u n s i g n e d   c h a r   f a r   * P i x e l B y t e P t r :  
uns igned   cha r   P i xe lMask ;  

Bresenham Is Fast, and Fast Is Good 661 



/ *  C a l c u l a t e   t h e   o f f s e t   i n   t h e   s c r e e n   s e g m e n t   o f   t h e   b y t e  i n  

P i x e l B y t e P t r  - MK-FP(EVGA-SCREEN-SEGMENT. 
w h i c h   t h e   p i x e l   l i e s  * /  

( Y O  * EVGA-SCREEN-WIDTH-IN-BYTES ) + ( X0 / 8 ) I ;  

/* Generate a mask w i t h  a 1 b i t   i n   t h e   p i x e l ' s   p o s i t i o n   w i t h i n   t h e  

P ixe lMask  - Ox80 >> ( X0 & 0x07 1; 

/*  S e t   u p   t h e   G r a p h i c s   C o n t r o l l e r ' s  B i t  Mask r e g i s t e r   t o   a l l o w  

s c r e e n   b y t e  * /  

o n l y   t h e   b i t   c o r r e s p o n d i n g   t o   t h e   p i x e l   b e i n g   d r a w n   t o  
b e   m o d i f i e d  * /  

outportb(GC-INDEX. BIT-MASK-INDEX); 
outportb(GC-DATA.  PixelMask);  

/ *  D r a w  t h e   p i x e l .   B e c a u s e  o f  t h e   o p e r a t i o n   o f   t h e   s e t i r e s e t  
f e a t u r e   o f   t h e  EGA/VGA.  t h e   v a l u e   w r i t t e n   d o e s n ' t   m a t t e r .  
The s c r e e n   b y t e   i s  ORed i n   o r d e r   t o   p e r f o r m  a r e a d   t o   l a t c h   t h e  
d i s p l a y  memory. t h e n   p e r f o r m  a w r i t e   i n   o r d e r   t o   m o d i f y  it. * I  

1 
* P i x e l B y t e P t r  1 -  OxFE: 

/ *  
* Draws a l i n e   i n   o c t a n t  0 o r  3 ( I D e l t a X J  >- De l taY  ) .  
*/  

vo id   Oc tan tO(X0 .  Y O ,  D e l t a X .   D e l t a Y .   X D i r e c t i o n )  
u n s i g n e d   i n t  X O .  Y O :  / *  c o o r d i n a t e s   o f   s t a r t   o f   t h e   l i n e  * /  
u n s i g n e d   i n t   D e l t a X .  De l taY ;  / *  l e n g t h   o f   t h e   l i n e   ( b o t h  > 0 )  * /  
i n t   X D i r e c t i o n :  I* 1 i f  l i n e  i s  drawn l e f t   t o   r i g h t ,  

I 
-1 i f  d r a w n   r i g h t   t o   l e f t  * /  

i n t  Del   taYx2; 
i n t  Del taYx2MinusDel taXx2;  
i n t   E r r o r T e r m :  

/* Set  up i n i t i a l   e r r o r   t e r m  a n d   v a l u e s   u s e d   i n s i d e   d r a w i n g   l o o p  */  
De l taYx2  - De l taY  * 2: 
Del taYx2MinusDel taXx2 - De l taYx2  - ( i n t )  ( De l taX  * 2 1; 
E r ro rTe rm - De l taYx2  - ( i n t )   D e l t a X :  

/ *  D r a w  t h e   l i n e  * /  
EVGADot(X0. Y O ) ;  I* d r a w   t h e   f i r s t   p i x e l  * /  
w h i l e  ( D e l t a X - -  ) ( 

/ *  See i f  i t ' s   t i m e   t o  advance   t he  Y c o o r d i n a t e  * /  
i f  ( E r ro rTe rm >- D ) { 

back down * /  
/*  Advance  the Y c o o r d i n a t e  & a d j u s t   t h e   e r r o r   t e r m  

YO++; 
E r ro rTe rm +- Del taYx2MinusDel taXx2;  

I e l s e  { 
/ *  Add t o   t h e   e r r o r   t e r m  */ 
Er ro rTe rm +- Oel taYx2:  

1 
X0 +- X D i r e c t i o n ;  / *  advance   the  X c o o r d i n a t e  * /  
EVGADot(XD. Y O ) ;  /*  draw a p i x e l  * /  

1 
1 

/*  
* Draws a l i n e   i n   o c t a n t  1 or 2 ( I D e l t a X l  < De l taY  1. 
* /  

662 Chapter 35 



v o i d   O c t a n t l ( X 0 .  Y O ,  D e l t a X .   D e l t a Y .   X D i r e c t i o n )  
u n s i g n e d   i n t  X O .  Y O :  / *  c o o r d i n a t e s  o f  s t a r t  o f  t h e   l i n e  * /  
u n s i g n e d   i n t   D e l t a X .  D e l t a Y :  I* l e n g t h   o f   t h e   l i n e   ( b o t h  > 0 )  * I  
i n t  X D i  r e c t i  on : I* 1 i f  l i n e   i s  drawn l e f t   t o   r i g h t ,  

{ 
-1 i f  drawn r i g h t   t o   l e f t  * I  

i n t   D e l t a X x 2 ;  
i n t   D e l t a X x Z M i n u s D e l t a Y x 2 :  
i n t  Er ro rTerm:  

/ *  Set  up i n i t i a l   e r r o r   t e r m  and  va lues 
De l taXxZ - Del taX * 2: 
De l taXxZMinusDel taYx2 - Del taXx2 - ( i n t  
E r r o r T e r m  - Del taXx2 - ( i n t )   D e l t a Y :  

u s e d   i n s i d e   d r a w i n g   l o o p  *I  

) ( De l taY * 2 ) :  

EVGADot(X0. Y O ) :  I* d r a w   t h e   f i r s t   p i x e l  * I  
w h i l e  ( D e l t a Y - -  ) [ 

/*  See i f  i t ' s   t i m e   t o  advance  the  X c o o r d i n a t e  *I 
i f  ( E r r o r T e r m  >- 0 1 ( 

I* Advance  the  X c o o r d i n a t e  & a d j u s t   t h e   e r r o r   t e r m  
back  down *I  

X0 +- X D i  r e c t i o n ;  
E r r o r T e r m  +- De l taXx2MinusDel taYx2:  

I* Add t o   t h e   e r r o r   t e r m  * /  
E r r o r T e r m  +- De l taXxZ:  

1 e l s e  { 

1 
YO++: I* advance  the  Y c o o r d i n a t e  * I  
EVGADot(X0. Y O ) :  I* draw a p i x e l  *I 

1 
1 

I* 
* Draws a l i n e  on t h e  EGA o r  VGA.  
* I  

void  EVGALine(X0.  Y O ,  X 1 .  Y 1 .  C o l o r )  
i n t  X O ,   Y O :  I* c o o r d i n a t e s   o f   o n e   e n d   o f   t h e   l i n e  *I  
i n t  X 1 .  Y 1 :  / *  c o o r d i n a t e s   o f   t h e   o t h e r   e n d   o f   t h e   l i n e  * /  
c h a r   C o l o r :  I* c o l o r   t o  draw 1 i n e   i n  * I  
I 

i n t   D e l t a X .   D e l t a Y :  
i n t  Temp: 

I* S e t   t h e   d r a w i n g   c o l o r  * I  

I* P u t   t h e   d r a w i n g   c o l o r   i n   t h e   S e t / R e s e t   r e g i s t e r  *I 
outportb(GC-INDEX, SET-RESETLINDEX): 
outportb(GC_DATA.  Color) ;  
/ *  Cause a l l   p l a n e s   t o   b e   f o r c e d   t o   t h e   S e t / R e s e t   c o l o r  * /  
outportb(GC_INDEX. ENABLELSET-RESETLINDEX):  
outportb(GC_DATA, OxF); 

/ *  Save h a l f   t h e   l i n e - d r a w i n g   c a s e s   b y   s w a p p i n g  Y O  w i t h  Y 1  
and X0 w i t h  X 1  i f  Y O  i s   g r e a t e r   t h a n  Y 1 .  As  a r e s u l t ,   D e l t a Y  
i s  always > 0 ,  a n d   o n l y   t h e   o c t a n t  0 - 3  cases  need t o  be 
hand1  ed. *I  

i f  ( Y O  > Y 1  ) I 
Temp - Y O ;  
Y O  - Y 1 :  
Y 1  - Temp; 
Temp - X O :  

Bresenham Is Fast,  and  Fast Is Good 663 



x0 - x1: 
X 1  - Temp: 

} 

/ *  H a n d l e   a s   f o u r   s e p a r a t e   c a s e s ,   f o r   t h e   f o u r   o c t a n t s   i n   w h i c h  

De l taX  - X 1  - X O :  / *  c a l c u l a t e   t h e   l e n g t h   o f   t h e   l i n e  

De l taY  - Y 1  - Y O :  
i f  ( De l taX  > 0 ) I 

Y 1  i s   g r e a t e r   t h a n  Y O  * /  

i n  e a c h   c o o r d i n a t e  * I  

i f  ( De l taX  > De l taY  { 

} e l s e  { 

1 
1 e l s e  { 

De l taX  = -Del  t a x :  / *  a b s o l u t e   v a l u e   o f   D e l t a X  * I  
i f  ( D e l t a X  > De l taY  { 

1 e l s e  { 

1 

OctantO(X0.  Y O ,  D e l t a X .   D e l t a Y .  1); 

O c t a n t l ( X 0 ,  Y O ,  De l taX ,   De l taY .  1): 

OctantO(X0, Y O ,  De l taX .   De l taY .  -1): 

O c t a n t l ( X 0 .  Y O ,  De l taX .   De l taY .  -1) :  

1 

/*  R e t u r n   t h e   s t a t e   o f   t h e  E G A I V G A  t o  normal *I  
outportb(GC-INDEX. ENABLE-SET-RESET-INDEX): 
outportb(GC-DATA. 0 ) :  
outportb(GC-INDEX. BIT-MASK-INDEX): 
outportb(GC-DATA. OxFF): 

1 

LISTING 35.2 135-2.C 
/*  
* Sample  program t o   i l l u s t r a t e  E G A I V G A  l i n e   d r a w i n g   r o u t i n e s .  

* C o m p i l e d   w i t h   B o r l a n d  C++ 

* By Michae l   Abrash 
*I  

* 

* 

# inc lude   <dos .h>  I* c o n t a i n s   g e n i n t e r r u p t  * /  

# d e f i n e  GRAPHICS-MODE Ox10 
i d e f i  ne TEXT-MODE 0x03 
# d e f i n e  BIOSpVIDEO-INT Ox10 
#de f  i ne X-MAX 640 / *  w o r k i n g   s c r e e n   w i d t h  * I  
# d e f i n e  Y-MAX 348 /*  w o r k i n g   s c r e e n   h e i g h t  * /  

e x t e r n   v o i d   E V G A L i n e ( ) :  

/ *  
S u b r o u t i n e   t o   d r a w  a r e c t a n g l e   f u l l   o f   v e c t o r s ,   o f   t h e   s p e c i f i e d  

* l e n g t h  and c o l o r ,   a r o u n d   t h e   s p e c i f i e d   r e c t a n g l e   c e n t e r .  
*I  

vo id   Vec to rsUp(XCen te r .  YCenter .   XLength.   YLength.   Color )  
i n t  XCenter.   YCenter:  / *  c e n t e r  o f  r e c t a n g l e   t o  fill *I  
i n t  XLength.  YLength: I* d i s t a n c e   f r o m   c e n t e r   t o   e d g e  

i n t   C o l o r :  I* c o l o r   t o   d r a w   l i n e s   i n  * I  
I 

o f   r e c t a n g l e  *I  

i n t  WorkingX.  WorkingY: 

664 Chapter 35 



I* L i n e s   f r o m   c e n t e r  
WorkingX = XCenter - 
WorkingY = YCenter - 

f o r  ( : WorkingX < ( 
EVGALine(XCenter. 

I* L i n e s   f r o m   c e n t e r  
WorkingX = XCenter + 
WorkingY = YCenter - 
f o r  ( : WorkingY < ( 

EVGALine(XCenter. 

I* L i n e s   f r o m   c e n t e r  
WorkingX = XCenter + 
WorkingY = YCenter + 

t o   t o p   o f   r e c t a n g l e  * I  
XLength: 
YLength:  
XCenter + XLength ) :  WorkingX++ ) 
YCenter.   WorkingX,  WorkingY.  Color) ;  

t o   r i g h t   o f   r e c t a n g l e  *I  
XLength - 1; 
Y Length  : 
YCenter + YLength ) :  WorkingY++ ) 
YCenter .   Work ingX.   Work ingY.   Color) :  

t o   b o t t o m   o f   r e c t a n g l e  * I  
XLength - 1: 
YLength - 1;  

f o r  ( ; WorkingX >- ( XCenter - XLength 1;  WorkingX" ) 
EVGALine(XCenter.   YCenter.   WorkingX.  WorkingY,  Color) :  

I* L i n e s   f r o m   c e n t e r   t o   l e f t   o f   r e c t a n g l e  * I  
WorkingX - XCenter - XLength;  
WorkingY - YCenter + YLength - 1; 
f o r  ( : WorkingY >- ( YCenter - YLength ) :  Work ingY- -  1 

1 
EVGALine(XCenter.   YCenter.   WorkingX.  WorkingY.  Color ) :  

I* 
* Sample  program t o  d r a w   f o u r   r e c t a n g l e s   f u l l   o f   l i n e s .  
*/ 

v o i d   m a i n 0  
I 

char  temp: 

/ *  S e t   g r a p h i c s  mode *I  
-AX = GRAPHICSLMDDE: 
geninterrupt(BIOS-VIDEO-1NT): 

I* Draw e a c h   o f   f o u r   r e c t a n g l e s   f u l l   o f   v e c t o r s  *I  
VectorsUp(XLMAX I 4, Y-MAX I 4, X-MAX I 4. 

VectorsUp(X-MAX * 3 / 4, YLMAX I 4. X-MAX I 4. 

VectorsUp(XLMAX I 4,  Y-MAX * 3 I 4.  XKMAX / 4.  

VectorsUp(X-MAX * 3 I 4. YLMAX * 3 / 4 .  X-MAX I 4 .  

Y L M A X  I 4.  1); 

Y-MAX f 4. 2 ) :  

Y-MAX / 4 .  3 ) ;  

Y"AX / 4, 4 ) :  

I* W a i t   f o r   t h e   e n t e r   k e y  t o  be p r e s s e d  *I  
scanf   ( "Xc" ,   &temp) ; 

I* R e t u r n   b a c k   t o   t e x t  mode * I  

geninterrupt(BIOS-VIDE0-INT): 
-AX - TEXT-MODE; 

1 

Looking at EVGALine 
The EVGALine function itself performs  four  operations. EVGALie first sets up  the 
VGAs hardware so that all  pixels drawn will be in the desired color. This is  accom- 
plished by setting two of the VGA's registers, the Enable Set/Reset register and  the 

Bresenham Is Fast,  and  Fast Is Good 665 



Set/Reset register. Setting  the Enable  Set/Reset to the value OFH,  as  is done in 
EVGALine, causes all drawing to  produce pixels in the color  contained  in  the  Set/ 
Reset register. Setting the Set/Reset  register to the passed color, in  conjunction with 
the Enable  Set/Reset  setting of OFH, causes all drawing done by EVGALine and  the 
functions it calls to  generate  the passed color. In summary, setting up  the Enable 
Set/Reset and Set/Reset registers in this way causes the  remainder of EVGALine to 
draw a  line  in the specified color. 
EVGALine next  performs a simple check  to cut  in half the  number of line  orienta- 
tions that must  be handled separately. Figure 35.4 shows the  eight possible line 
orientations  among which a  Bresenham’s  algorithm  implementation  must distin- 
guish. (In  interpreting Figure 35.4, assume that lines radiate  outward  from  the  center 
of the figure, falling into  one of eight  octants  delineated by the  horizontal  and verti- 
cal axes and  the two diagonals.) The  need  to categorize lines into these  octants falls 
out of the  major/minor axis nature of the  algorithm; the  orientations  are distin- 
guished by which coordinate  forms  the  major axis and by whether  each of X and Y 
increases or decreases  from the line  start to the line end. 

A moment  of  thought will show, howevel; that four of  the  line  orientations are p redundant. Each  of  the  four  orientations  for which DeltaY, the Y component  of  the 
line, is less than 0 (that  is, for which the  line  start Y coordinate is  greater  than  the 
line  end Y coordinate) can be transformed into  one of the  four  orientations for 
which the  line  start Y coordinate  is  less  than  the  line  end Y coordinate simply  by 
reversing the  line  start  and end  coordinates, so that  the  line  is drawn in  the  other 
direction. EVGALine does  this by swapping (XO, YO) (the  line start coordinates) 
with (XI, Y l )  (the  line end  coordinates)  whenever YO is  greater  than YI .  

This  accomplished, EVGALine must still distinguish among  the  four  remaining line 
orientations.  Those  four  orientations  form two major  categories,  orientations  for 
which the X dimension is the major axis of the line and  orientations  for which the Y 
dimension is the major axis. As shown in Figure 35.4, octants 1 (where X increases 
from  start to finish) and 2 (where X decreases  from  start to finish) fall into  the  latter 
category, and differ in only one respect, the direction in which the X coordinate 
moves when it changes.  Handling of the  running  error of the  line is exactly the same 
for  both cases, as one would expect given the symmetry  of lines  differing only in the 
sign  of DeltaX, the X coordinate of the line. Consequently, for  those cases where 
DeltaX is less than zero, the  direction of X movement is made negative, and  the 
absolute value of DeltaX is used for  error term calculations. 
Similarly, octants 0 (where X increases from  start to finish) and 3 (where X decreases 
from  start to finish) differ only in  the direction  in which the X coordinate moves 
when it  changes. The difference between line drawing in  octants 0 and 3 and line 
drawing in  octants 1 and 2 is that in  octants 0 and 3, since X is the major axis, the X 
coordinate  changes on every pixel of the line and  the Y coordinate  changes only 

666 Chapter 35 



Decreasing Y 
\ Octant 5 A Octant 6 

D e l t a X  < 0 
D e l t a Y  < 0 
I D e l t a Y l  > I D e l t a X l   I D e l t a Y l  > I D e l t a X l  

D e l t a X  > 0 
D e l t a Y  < 0 f 

Octant 4 
D e l t a X  < 0 
D e l t a Y  < 0 
I O e l t a X l  > I D e l t a Y  1 

O e l t a Y  < 0 
I D e l t a X l  > I D e l t a Y  I 

Decreasing X 4 b increasing X 
I D e l t a X l  > I D e l t a Y l  
D e l t a X  < 0 
O e l t a Y  > 0 

Octant 3 

D e l t a X  < 0 
I D e l t a Y J  > J D e l t a X J   J D e l t a Y 1  > J D e l t a X J  

D e l t a X  > 0 
D e l t a Y  > 0 

Octant 1 
increasing Y 

Bresenharn b eight  possible line orientations. 
Figure 35.4 

when the  running  error of the  line dictates. In  octants 1 and 2, the Y coordinate 
changes on every pixel and  the X coordinate  changes only when the  running  error 
dictates,  since Y is the major axis. 
There is one line-drawing function  for  octants 0 and 3,  OctantO, and  one line-draw- 
ing  function  for  octants 1 and 2, Octantl. A single function with if statements  could 
certainly be used to handle all four  octants, but  at a significant performance cost. 
There is, on the  other  hand, very little performance cost to  grouping  octants 0 and 3 
together  and octants 1 and 2 together, since the two octants  in  each  pair differ only 
in the direction of change of the X coordinate. 
EVGALiie determines which line-drawing function to call and with what value for 
the direction of change of the X coordinate based on two criteria:  whether DeltaX is 
negative or  not,  and  whether  the absolute value of DeltaX (IDeltaXI) is  less than 
DeltaY or  not, as  shown in Figure 35.5. Recall that  the value of DeltaY, and  hence  the 
direction of change of the Y coordinate, is guaranteed to be non-negative as a  result 
of the  earlier  elimination of four of the  line  orientations. 
After calling the  appropriate  function to draw the line (more  on those  functions 
shortly), EVGALiie restores the state of the Enable  Set/Reset register to its default 
of zero.  In this state,  the  Set/Reset register has no effect, so it is not necessary to 
restore  the state of the  Set/Reset register as  well. EVGALine also restores the state of 

Bresenham is Fast, and Fast is Good 667 



Dec 

Decreasing Y 

Increasing Y Increasing Y 

ling X 

E VGALine j. decision  logic. 
Figure 35.5 

the Bit  Mask register  (which, as we  will see, is modified by EVGADot, the pixeldrawing 
routine actually used to  draw each pixel of the  lines produced by EVGALine) to its 
default of OFFH. While it would be more  modular  to have EVGADot restore  the  state 
of the Bit  Mask register  after drawing each  pixel,  it would  also be considerably slower 
to do so. The same  could  be said of having EVGADot set  the  Enable  Set/Reset and 
Set/Reset registers for  each pixel: While modularity would improve, speed would 
suffer markedly. 

Drawing  Each  Line 
The Octant0 and Octantl functions draw lines  for which IDeltaXl is greater  than 
DeltaY and lines  for which IDeltaXl is  less than  or  equal  to DeltaY, respectively. The 
parameters  to Octant0 and Octantl are the  starting  point of the  line,  the  length  of 
the  line  in  each  dimension, and XDirection, the amount by which the X coordinate 
should be changed when it moves. Direction must be either 1 (to draw  toward the 
right  edge of the  screen)  or -1 (to draw  toward the  left  edge of the screen), No value 
is required  for  the  amount by which the Y coordinate  should be changed; since 
DeltaY is guaranteed  to be positive, the Y coordinate always changes by 1 pixel. 
Octant0 draws lines  for which IDeltaXl is greater  than DeltaY. For such lines, the X 
coordinate of each pixel  drawn differs from  the previous pixel by either 1 or -1, 

668 Chapter 35 



depending  on  the value of XDirection. (This makes it possible for Octant0 to draw 
lines in both  octant 0 and  octant 3.) Whenever ErrorTerm becomes non-negative, 
indicating that  the  next Y coordinate is a  better  approximation of the line  being 
drawn, the Y coordinate is increased by 1. 
Octantl draws lines for which IDeltaXl is less than  or  equal  to DeltaY. For these  lines, 
the Y coordinate of each pixel drawn is 1 greater  than  the Y coordinate of the previ- 
ous pixel. Whenever ErrorTerm becomes  non-negative,  indicating that  the  next X 
coordinate is a  better  approximation of the line  being  drawn,  the X coordinate is 
advanced by either 1 or -1, depending  on  the value of XDirection. (This makes it 
possible for Octantl to draw lines  in both  octant 1 and  octant 2.) 

Drawing Each  Pixel 
At the  core of Octant0 and Octantl is a pixel-drawing function, EVGADot.  EVGADot 
draws a pixel at  the specified coordinates  in whatever color the hardware of the VGA 
happens to be set up for. As described earlier, since the  entire line drawn by EVGALine 
is  of the same color, line-drawing performance is improved by setting the VGAs 
hardware up  once in EVGALine before  the  line is drawn, and  then drawing all the 
pixels in the line  in the same color via EVGADot. 
EVGADot makes certain  assumptions about  the screen. First, it assumes that  the 
address of the byte controlling  the pixels at  the  start of a given  row on  the screen is 
80 bytes after the start of the row immediately above it. In  other words, this imple- 
mentation of EVGADot only works for  screens  configured  to  be 80 bytes wide. Since 
this is the  standard  configuration of all  of the modes EVGALine is designed to work 
in, the assumption of 80 bytes per row should be no problem. If it is a  problem, however, 
EVGADot could easily be  modified to retrieve the BIOS integer variable at address 
0040:004A, which contains  the  number of bytes per row for  the  current video mode. 
Second, EVGADot assumes that  screen memory is organized as a  linear  bitmap start- 
ing  at address A000:0000, with the pixel at  the  upper left of the screen  controlled by 
bit 7 of the byte at offset 0, the  next pixel to the  right  controlled by bit 6, the  ninth 
pixel controlled by bit 7 of the byte at offset 1, and so on.  Further, it assumes that  the 
graphics  adapter’s  hardware is configured such that  setting the Bit  Mask register to 
allow modification of only the bit  controlling  the pixel of interest  and  then ORing a 
value of  OFEH  with display  memory will draw that pixel correctly without affecting 
any other dots. (Note  that OFEH  is used rather  than OFFH or 0 because  some  opti- 
mizing compilers turn ORs with the  latter values into  simpler  operations or optimize 
them away entirely. As explained later, however,  it’s not  the value that’s ORed that 
matters, given the way  we’ve set up  the VGAs hardware; it’s the act of ORing itself, 
and  the value OFEH forces the compiler to perform  the OR operation.) Again, this is 
the  normal way in which modes OEH,  OFH, 10H,  and 12H operate. As described 
earlier, EVGADot also assumes that  the VGA is set up so that  each pixel drawn in the 
above-mentioned manner will be drawn in  the  correct color. 

Bresenham Is Fast, and Fast Is Good 669 



Given those assumptions, EVGADot becomes  a surprisingly simple function. First, 
EVGADot builds a far pointer that points to the byte  of  display memory  controlling 
the pixel to be drawn. Second,  a mask is generated consisting of zeros for all bits 
except  the bit controlling the pixel to be drawn. Third,  the Bit Mask register is set to 
that mask, so that  when display memory is read  and  then written, all  bits except  the 
one  that controls the pixel to be drawn will be left unmodified. 
Finally, OFEH is ORed with the display memory byte controlling the pixel to be drawn. 
ORing with OFEH first reads display memory, thereby loading the VGA's internal 
latches with the contents of the display  memory  byte controlling the pixel  to  be  drawn, 
and  then writes to display memory with the value OFEH. Because  of the  unusual way 
in which the VGA's data  paths work and  the way in which EVGALine sets up  the 
VGA's Enable Set/Reset and Set/Reset registers, the value that is written by the OR 
instruction is ignored.  Instead, the value that actually gets placed in display memory 
is the color that was  passed to EVGALine and placed  in the Set/Reset  register. The Bit 
Mask register, which was set up in step three above,  allows  only the single bit control- 
ling the pixel to be drawn to be set to this color value.  For more  on  the various 
machineries  the VGA brings to bear  on graphics data, look back to Chapter 25. 
The result of  all this is simply a single pixel drawn in the color set up in EVGALine. 
EVGADot may seem excessively complex  for  a  function  that  does nothing  more that 
draw one pixel, but  programming  the VGA isn't trivial (as we've seen in the early 
chapters of this part). Besides,  while the explanation of EVGADot is lengthy, the 
code itself is only five lines long. 
Line drawing would be somewhat faster if the  code of EVGADot were made  an inline 
part of Octant0 and Octantl, thereby saving the overhead of preparing  parameters 
and calling the function. Feel free to do this if  you  wish; I maintained EVGADot as a 
separate  function  for clarity and for ease  of inserting  a pixel-drawing function  for  a 
different graphics adapter,  should  that be desired. If  you do install a pixel-drawing 
function  for  a  different  adapter, or a fundamentally different  mode such as a 256- 
color SuperVGA mode,  remember to  remove the  hardware-dependent outportb lines 
in EVGALine itself. 

Comments on the C Implementation 
EVGALine does no  error checking whatsoever. My assumption in writing EVGALine 
was that  it would be ultimately used as the lowest-level primitive of a graphics soft- 
ware package, with operations such as error checking and clipping performed  at a 
higher level.  Similarly, EVGALine is tied to the VGA's screen coordinate system  of 
(0,O) to (639,199) (in  mode OEH), (0,O) to (639,349) (in  modes OFH and  lOH),  or 
(0,O) to (639,479) (in  mode  12H), with the  upper left corner  considered to be (0,O). 
Again, transformation from any coordinate system to the coordinate system used by 
EVGALine can be performed  at a higher level. EVGALine is specifically designed to 

670 Chapter 35 



do  one thing: draw lines into  the display memory of the VGA. Additional  functional- 
ity can  be  supplied by the  code  that calls EVGALine. 
The version of EVGAlLine shown in Listing 35.1 is reasonably fast, but  it is not as fast 
as it might be. Inclusion of EVGADot directly into Octant0 and Octantl, and, indeed, 
inclusion of Octant0 and Octantl directly into EVGALine would speed  execution by 
saving the overhead of calling and  parameter passing. Handpicked register variables 
might  speed  performance as well,  as  would the use of word OUTs rather  than byte 
OUTs. A more significant performance  increase would come  from  eliminating sepa- 
rate calculation of the address and mask for  each pixel. Since the location of each 
pixel relative to  the previous pixel is known, the address and mask could simply be 
adjusted  from one pixel to the next, rather  than recalculated  from  scratch. 
These enhancements  are  not  incorporated  into  the  code in Listing 35.1 for  a  couple 
of reasons. One reason is that it’s important  that  the workings of the algorithm  be 
clearly visible in  the  code,  for  learning  purposes.  Once  the  implementation is under- 
stood, rewriting it for improved performance would certainly be a worthwhile exercise. 
Another reason is that when flat-out speed is needed, assembly language is the best 
way to go. Why produce  hard-to-understand C code to boost  speed a bit when  assem- 
bly-language code  can  perform  the same  task at two or  more times the  speed? 
Given which, a high-speed assembly language version of EVGALine would  seem  to 
be a logical next  step. 

Bresenham’s Algorithm  in Assembly 
Listing 35.3 is a high-performance  implementation of Bresenham’s algorithm, writ- 
ten  entirely  in assembly language. The  code is callable from C just as is Listing 35.1, 
with the same name, EVGALine, and with the same parameters.  Either of the two 
can  be  linked to any program  that calls EVGALine, since they appear to be identical 
to the calling program.  The only difference between the two versions is that  the 
sample program  in Listing 35.2 runs over three times as fast on a 486 with an ISA-bus 
VGA when calling the assembly-language version of EVGALine as when calling the C 
version, and  the difference would be considerably greater yet on a local bus, or with 
the use of write mode 3. Link each version with Listing 35.2 and  compare perfor- 
mance-the difference is startling. 

LISTING 35.3 135-3.ASM 
Fas t   assemb le r   imp lemen ta t i on  o f  B r e s e n h a m ‘ s   l i n e - d r a w i n g   a l g o r i t h m  
f o r   t h e  EGA and VGA.  Works i n  modes OEh. OFh. 10h.  and  12h. 
B o r l a n d  C++ n e a r - c a l l a b l e .  
Bit mask a c c u m u l a t i o n   t e c h n i q u e  when ( D e l t a X (  >= ( D e l t a Y l  

suggested   by  Jim Mackraz.  

Assembled w i t h  TASM 

By Michae l   Abrash 

Bresenham Is Fast, and Fast Is Good 671 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
: C - c o m p a t i b l e   l i n e - d r a w i n g   e n t r y   p o i n t   a t  -EVGALine. 
: N e a r   C - c a l l a b l e   a s :  

EVGALine(X0. Y O ,  X 1 .  Y 1 .  C o l o r ) ;  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

model   smal l  
.code 

: Equates. 

EVGA-SCREEN-WIDTH-IN-BYTES equ 

EVGA-SCREEN-SEGMENT 
GC-INDEX 

SET-RESET-INDEX 
ENABLE-SET-RESET-INDEX 
BIT-MASK-INDEX 

: Stack   f rame.  

EVGALineParms s t r u c  
dw 
dw 

x0 dw 
Y O  dw 
x1 dw 
Y 1  dw 
Co lor   db  

db 
EVGALineParms  ends 

80 ;memory o f f s e t   f r o m   s t a r t   o f  
; one  row t o   s t a r t   o f   n e x t  
: i n   d i s p l a y  memory 

OaOOOh : d i s p l a y  memory segment 
3 c e h   ; G r a p h i c s   C o n t r o l l e r  

0 
1 
8 

: I n d e x   r e g i s t e r   p o r t  
: i ndexes   o f   needed  
; G r a p h i c s   C o n t r o l  1 e r  
: r e g i s t e r s  

;pushed BP 
: pushed   re tu rn   add ress  (make doub le  
: w o r d   f o r  f a r  c a l l )  
: s t a r t i n g  X c o o r d i n a t e   o f   l i n e  
; s t a r t i n g  Y c o o r d i n a t e  o f  l i n e  
;end ing  X c o o r d i n a t e   o f   l i n e  
;end ing  Y c o o r d i n a t e   o f   l i n e  
; c o l o r   o f   l i n e  
;dummy t o  pad t o  w o r d   s i z e  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; L ine   d raw ing   macros .  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: Macro t o   l o o p   t h r o u g h   l e n g t h   o f   l i n e ,   d r a w i n g   e a c h   p i x e l   i n   t u r n .  
; Used f o r   c a s e   o f   ( D e l t a X I  >- ( D e l t a Y l .  
: I n p u t :  

MOVE-LEFT: 1 i f  De l taX  < 0, 0 e l s e  
AL: p i x e l  mask f o r   i n i t i a l   p i x e l  
BX: ( D e l t a X I  
D X :  a d d r e s s   o f  GC d a t a   r e g i s t e r .   w i t h   i n d e x   r e g i s t e r   s e t   t o  

SI: De l taY  
i n d e x   o f  B i t  Mask r e g i s t e r  

E S : D I :  

LINE1  macro 
1 o c a l  
1 o c a l  
mov 

d i s p l a y  memory address o f  b y t e   c o n t a i n i n g   i n i t i a l  
p i x e l  

MOVE-LEFT 
L ineLoop.   MoveXCoord,   NextPixe l  , L i n e l E n d  
MoveToNextByte.   ResetBi tMaskAccumulator  
cx.   bx :# o f   p i x e l s   i n   l i n e  

672 Chapter 35 



j c x z   L i n e l E n d   ; d o n e  i f  t h e r e   a r e   n o   m o r e   p i x e l s  
: ( t h e r e ' s   a l w a y s  a t  l e a s t   t h e  one p i x e l  
: a t   t h e   s t a r t   l o c a t i o n )  

s h l   s i . l  ;Del taY * 2 
mov b p . s i  : e r r o r   t e r m  
sub  bp.bx : e r r o r   t e r m   s t a r t s  a t  Oel taY * 2 - Oel taX 
s h l   b x . 1  :Del taX * 2 
sub s i  .bx :Del taY * 2 - De l taX  * 2 ( u s e d   i n   l o o p )  
add   bx .s i  ;Oel taY * 2 ( u s e d   i n   l o o p )  
mov ah .a l  ; s e t   a s i d e   p i x e l  mask f o r   i n i t i a l   p i x e l  

: w i t h  AL ( t h e   p i x e l  mask accumu la to r )  s e t  
: f o r   t h e   i n i t i a l   p i x e l  

L ineLoop:  

: See i f  i t ' s   t i m e   t o  advance  the Y c o o r d i n a t e   y e t .  

and  bp.bp  :see i f  e r r o r   t e r m   i s   n e g a t i v e  
j s  MoveXCoord  ;yes, s t a y   a t   t h e  same Y c o o r d i n a t e  

: Advance  the Y c o o r d i n a t e ,   f i r s t   w r i t i n g  all p i x e l s   i n   t h e   c u r r e n t  
: b y t e .   t h e n  move t h e   p i x e l  mask e i t h e r   l e f t   o r   r i g h t ,   d e p e n d i n g  
: on MOVE-LEFT. 

o u t   d x . a l   ; s e t   u p   b i t  mask f o r   p i x e l s   i n   t h i s   b y t e  
x c h g   b y t e   p t r   [ d i l  .a1 

: l o a d   l a t c h e s   a n d   w r i t e   p i x e l s ,   w i t h   b i t  mask 
: p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
; s e t / r e s e t   i s   e n a b l e d   f o r  all p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

add di.EVGALSCREEN-WIOTH_IN-BYTES ; i nc remen t  Y c o o r d i n a t e  
a d d   b p . s i   : a d j u s t   e r r o r   t e r m   b a c k  down 

: Move p i x e l  mask one p i x e l   ( e i t h e r   r i g h t   o r   l e f t ,   d e p e n d i n g  
: on MOVELLEFT). a d j u s t i n g   d i s p l a y  memory address when p i x e l  mask wraps. 

i f  MOVE-LEFT 

e l s e  

end i  f 

r o l   a h . 1  :move p i x e l  mask 1 p i x e l   t o   t h e   l e f t  

r o r   a h . 1  :move p i x e l  mask 1 p i x e l   t o   t h e   r i g h t  

j n c   R e s e t B i t M a s k A c c u m u l a t o r   : d i d n ' t   w r a p   t o   n e x t   b y t e  
j m p   s h o r t   M o v e T o N e x t B y t e   ; d i d   w r a p   t o   n e x t   b y t e  

; Move p i x e l  mask one p i x e l   ( e i t h e r   r i g h t   o r   l e f t ,   d e p e n d i n g  
: on MOVE-LEFT), a d j u s t i n g   d i s p l a y  memory a d d r e s s   a n d   w r i t i n g   p i x e l s  
: i n   t h i s   b y t e  when p i x e l  mask wraps. 

MoveXCoord: 

i f  MOVELLEFT 

e l s e  

end i  f 

add  bp.bx 

r o l   a h . 1  ;move p i x e l  mask 1 p i x e l   t o   t h e   l e f t  

r o r   a h . 1  ;move p i x e l  mask 1 p i x e l   t o   t h e   r i g h t  

j n c   N e x t P i x e l  : i f  s t i l l   i n  same b y t e ,  no need t o  

o u t   d x . a l   ; s e t   u p   b i t  mask f o r   p i x e l s   i n   t h i s   b y t e .  
x c h g   b y t e   p t r   C d i 1 , a l  

; i n c r e m e n t   e r r o r   t e r m  & keep same 

: m o d i f y   d i s p l a y  memory y e t  

Bresenham Is Fast,  and  Fast Is Good 673 



; l o a d   l a t c h e s   a n d   w r i t e   p i x e l s ,   w i t h   b i t  mask 
; p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
: s e t l r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
; v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

MoveToNextByte: 
i f  MOVE-LEFT 

e l s e  

e n d i  f 
ResetBi tMaskAccumulator :  

N e x t P i x e l  : 

dec d i   ; n e x t   p i x e l   i s   i n   b y t e   t o   l e f t  

i n c   d i  ; n e x t   p i x e l   i s   i n   b y t e   t o   r i g h t  

sub a1 .a1 

o r  a1 , a h   : a d d   t h e   n e x t   p i x e l   t o   t h e   p i x e l  mask 

1 oop  LineLoop 

; r e s e t   p i x e l  mask  accumulator  

; a c c u m u l a t o r  

: W r i t e   t h e   p i x e l s   i n   t h e   f i n a l   b y t e .  

L i n e l E n d :  
o u t   d x . a l   ; s e t   u p   b i t  mask f o r   p i x e l s   i n   t h i s   b y t e  
x c h g   b y t e   p t r   [ d i ] . a l  

; l o a d   l a t c h e s   a n d   w r i t e   p i x e l s ,   w i t h   b i t  mask 
; p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
; s e t l r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

endm 

; Macro t o   l o o p   t h r o u g h   l e n g t h   o f   l i n e ,   d r a w i n g   e a c h   p i x e l   i n   t u r n .  
: Used f o r   c a s e   o f   D e l t a X  < D e l t a Y .  
; I n p u t :  

MOVE-LEFT: 1 i f  De l taX < 0.  0 e l s e  
AL: p i x e l  mask f o r   i n i t i a l   p i x e l  
EX: I D e l   t a x  I 
D X :  a d d r e s s   o f  GC d a t a   r e g i s t e r .   w i t h   i n d e x   r e g i s t e r   s e t   t o  

S I :  Del taY 
ES:DI: d i s p l a y  memory a d d r e s s   o f   b y t e   c o n t a i n i n g   i n i t i a l  

i n d e x   o f   B i t  Mask r e g i s t e r  

p i x e l  

LINE2  macro MOVE-LEFT 
l o c a l   L i n e L o o p .  MoveYCoord.  ETermAction.  LineEEnd 
mov c x , s i  ;# o f   p i x e l s  i n  l i n e  
j c x z  LineEEnd :done i f  t h e r e   a r e   n o   m o r e   p i x e l s  
s h l   b x . 1  
mov bp.bx 
s u b   b p . s i  
s h l   s i  , I  
s u b   b x . s i  
add s i   . b x  

;De l taX * 2 
; e r r o r   t e r m  
: e r r o r   t e r m   s t a r t s   a t   D e l t a X  * 
;De l taY * 2 
:De l taX * 2 - De l taY * 2 (used 
;De l taX * 2 (used i n   l o o p )  

: S e t   u p   i n i t i a l   b i t  mask & w r i t e   i n i t i a l   p i x e l .  

o u t   d x , a l  
x c h g   b y t e   p t r   [ d i ] . a h  

: l o a d   l a t c h e s   a n d   w r i t e   p i x e l ,  

2 - De l taY 

i n   l o o p )  

w i t h   b i t  mask 
: p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
: s e t / r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

674 Chapter 35 



LineLoop: 

: See i f  i t ' s   t i m e   t o  advance  the  X c o o r d i n a t e   y e t .  

and  bp.bp ; s e e  i f  e r r o r   t e r m   i s   n e g a t i v e  
j ns   ETermAc t ion  ;no.  advance X c o o r d i n a t e  
a d d   b p . s i  : i n c r e m e n t   e r r o r   t e r m  & keep same 
j m p   s h o r t  MoveYCoord ; X c o o r d i n a t e  

ETermAct ion:  

: Move p i x e l  mask o n e   p i x e l   ( e i t h e r   r i g h t   o r   l e f t ,   d e p e n d i n g  
: on MOVE-LEFT). a d j u s t i n g   d i s p l a y  memory address  when p i x e l  mask  wraps. 

i f  MOVELLEFT 
r o l  a1 .1 
s b b   d i . 0  

r o r  a1 .1 
a d c   d i . 0  

o u t   d x . a l  
add  bp.bx 

e l s e  

e n d i  f 

: Advance Y c o o r d i n a t e .  

MoveYCoord: 
add di.EVGALSCREENLWIDTHLINLBYTES 

; W r i t e   t h e   n e x t   p i x e l .  

x c h g   b y t e   p t r   [ d i l . a h  

; s e t  new b i t  mask 
; a d j u s t   e r r o r   t e r m   b a c k  down 

: l o a d   l a t c h e s   a n d   w r i t e   p i x e l ,   w i t h   b i t  mask 
: p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
: s e t / r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

1 oop L i  neLoop 

endm 
L i  ne2End: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; L i n e   d r a w i n g   r o u t i n e .  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

pub1 i c -EVGALi ne 
-EVGALi ne p r o c   n e a r  

push bp 
mov bp .sp  
push s i  
push d i  
push ds 

; P o i n t  D S  t o   d i s p l a y  memory. 

; p r e s e r v e   r e g i s t e r   v a r i a b l e s  

mov ax,  EVGA 
mov ds  ,ax 

; Se t   t he   Se t /Rese t   and  
; t h e   s e l e c t e d   c o l o r .  

SCREENLSEGMENT 

S e t / R e s e t   E n a b l e   r e g i s t e r s   f o r  

Bresenham Is Fast, and Fast Is Good 675 



mov 
mov 
o u t  
i nc 
mov 
o u t  
dec 
mov 
o u t  
i nc 
mov 
o u t  

: Get   De l taY  

mov 
mov 

sub 
j n s  

dx.GC-INDEX 
a1 .SET-RESET-I 
d x , a l  
dx  
a1  . [bp+Color l  
d x . a l  
dx  
a1 .ENAELE-SET- 
d x , a l  
dx  
a1 , O f f h  
d x . a l  

s i ,  [bp+Y11 
ax,  [bp+YD] 

s i   , a x  

NDEX 

RESET-INDEX 

; l i n e  Y s t a r t  
; l i n e  Y end,  used l a t e r  i n  
; c a l c u l a t i n g   t h e   s t a r t   a d d r e s s  
; c a l   c u l   a t e   D e l   t a Y  

C a l c S t a r t A d d r e s s  ; i f  p o s i t i v e ,   w e ' r e   s e t  

: Del taY i s   n e g a t i v e  - -  swap c o o r d i n a t e s  so w e ' r e   a l w a y s   w o r k i n g  
: w i t h  a p o s i t i v e   D e l t a Y .  

mov ax, [bp+Y11  ;set  l i n e   s t a r t   t o  Y 1 .  f o r   u s e  

mov dx,  [bp+XO] 
xchg  dx.  [bp+X11 
mov [bp+XO] .dx  ;swap X c o o r d i n a t e s  
n e g   s i   : c o n v e r t   t o   p o s i t i v e   D e l t a Y  

: i n  c a l c u l a t i n g   t h e   s t a r t   a d d r e s s  

: C a l c u l a t e   t h e   s t a r t i n g   a d d r e s s  i n  d i s p l a y  memory o f   t h e   l i n e .  
: H a r d w i r e d   f o r  a s c r e e n   w i d t h   o f  80 b y t e s .  

C a l c S t a r t A d d r e s s :  
s h l   a x . 1  : Y O  * 2 ; Y O  i s   a l r e a d y  i n  AX 
sh l   ax .1  : Y O  * 4 
s h l   a x . 1  : Y O  * 8 
sh l   ax .1  : Y O  * 1 6  
mov d i  .ax 
sh l   ax .1  : Y O  * 32 
s h l   a x . 1  : Y O  * 64 
add  d i ,ax  : Y O  * 80 
mov dx ,  [bp+XOI 
mov c l   , d l   : s e t   a s i d e   l o w e r  3 b i t s   o f  c o l u m n   f o r  
and  c1.7 : p i x e l   m a s k i n g  
s h r   d x . 1  
s h r   d x . 1  
s h r   d x . 1   : g e t   b y t e   a d d r e s s   o f   c o l u m n   ( X 0 / 8 )  
add d i   , d x   ; o f f s e t   o f   l i n e   s t a r t  i n  d i sp lay   segmen t  

: Set   up  GC I n d e x   r e g i s t e r   t o   p o i n t   t o   t h e   B i t  Mask r e g i s t e r .  

mov  dx,GC-INDEX 
mov al.EIT-MASK-INDEX 
o u t   d x . a l  
i n c   d x   ; l e a v e  DX p o i n t i n g   t o   t h e  GC D a t a   r e g i s t e r  

; S e t   u p   p i x e l  mask ( i n - b y t e   p i x e l   a d d r e s s ) .  

676 Chapter 35 



mov a l . 8 0 h  
s h r  a1 . c l  

: C a l c u l a t e   D e l t a X .  

mov bx. [bp+Xl]  
sub  bx.[bp+XOI 

: H a n d l e   c o r r e c t   o n e  o f  f o u r   o c t a n t s  

j s  NegDel t a x  
cmp b x .   s i  
j b   O c t a n t l  

: De l taX >- Del   taY >- 0 .  

L I N E l  0 
jmp EVGALi neDone 

: Del taY > De l taX >- 0. 

O c t a n t l :  
LINE2 0 
j m p   s h o r t  EVGALineDone 

NegDel t a x :  
neg  bx : I D e l   t a x  I 
cmp b x . s i  
j b   O c t a n t 2  

: I D e l t a X l  >- Del taY  and  Del taX < 0. 

L I N E l  1 
j m p   s h o r t  EVGALineDone 

: I D e l t a X l  < Del taY  and  Del taX < 0.  

Octan t2 :  
LINE2 1 

EVGALi neDone: 

: R e s t o r e  EVGA s t a t e .  

mov 
o u t  
dec 
mov 
o u t  
i n c  
sub 
o u t  

POP 
POP 
POP 
POP 
r e t  

- EVGALi ne 

end 

a1 . O f f h  
d x . a l   : s e t   B i t  Mask r e g i s t e r   t o   O f f h  
d x  
al.ENABLE-SET-RESET-INDEX 
d x . a l  
d x  
a1 .a1 
d x . a l   : s e t   E n a b l e   S e t / R e s e t   r e g i s t e r   t o  0 

ds 
d i  
s i  
bP 

endp 

Bresenharn Is Fast, and Fast Is Good 677 



An explanation of the workings of the  code  in Listing 35.3 would be a lengthy one, 
and would be  redundant since the basic operation of the  code in Listing 35.3 is no 
different  from  that of the  code  in Listing 35.1, although  the  implementation is much 
changed  due to the  nature of  assembly language and also due to designing for  speed 
rather  than for clarity.  Given that you thoroughly  understand  the C implementation 
in Listing 35.1, the assembly language  implementation in Listing 35.3, which is 
well-commented, should speak for itself. 
One  point I do want to make is that Listing 35.3 incorporates a clever notion  for 
which  credit is due Jim Mackraz, who  described the  notion in  a  letter written in 
response to an article I wrote long  ago in the late and  lamented Programmer’s Jour- 
nul. Jim’s suggestion was that when drawing lines  for  which IDeltaXl is greater  than 
IDeltaYI, bits set to 1 for  each of the pixels controlled by a given  byte can  be accu- 
mulated in  a register, rather  than drawing each pixel individually. All the pixels 
controlled by that byte can then be drawn at  once, with a single access to display 
memory,  when all pixel processing associated with that byte has been  completed. 
This  approach can save many OUTS and many display memory reads  and writes 
when drawing nearly-horizontal lines, and that’s important because EGAs and VGAs 
hold  the CPU up  for a  considerable period of time on  each 1/0 operation  and 
display memory access. 
All too many PC programmers fall into  the high-level-language trap of thinking  that 
a  good  algorithm  guarantees  good  performance.  Not so: As our two implementa- 
tions of Bresenham’s algorithm graphically illustrate (pun  not originally intended, 
but allowed to stand once recognized), truly great PC code  requires both a  good 
algorithm and a  good assembly implementation.  In Listing 35.3, we’ve got both- 
and my-oh-my, isn’t it fun? 

678 Chapter 35 



chapter 36

the good, the bad, and the run-sliced



nham Lines with Run-Length 
Slice  Line  Diwrwing 

that asked  me to write  blazingly  fast  line-drawing 
lemented  the basic  Bresenham’s linedrawing algo 

ssible;  special-cased horizontal, diagonal, and 
mized  routines  for  lines  in  each  octant; and mas- 

done, I had line  drawing  down  to a mere five or six 
and I handed the  code over  to the AutoCAD driver  person,  con- 

shed the theoretical  limits of the Bresenham’s 
and  that this was  as fast  as line drawing could get 
ut a week, until Dave  Miller,  who these days  is a 

Windows  display-driver  whiz at Engenious Solutions,  casually mentioned Bresenham’s 
faster  run-length slice linedrawing algorithm. 
Remember Bill  Murray’s  safety tip in Ghostbusters? It goes something like  this. Harold 
Ramis  tells the Ghostbusters not to cross the beams of the antighost guns. ‘Why?” 
Murray  asks. 
“It would  be bad,” Ramis  says. 
Murray says,  “I’m  fuzzy on  the whole good/bad  thing. What exactly do you mean 
by ‘bad’?’’ It  turns out  that what  Ramis means by bad is basically the  destruction of 
the universe. 

68 1 



“Important safety tip,” Murray comments dryly. 
I  learned two important safety  tips from my line-drawing experience;  neither  in- 
volves the possible destruction of the universe, so far as I know, but they are 
nonetheless worth keeping in mind. First,  never,  never, never think you’ve written 
the fastest  possible code.  Odds  are, you  haven’t. Run your code past another good 
programmer, and  he  or she will probably say, “But why don’t you do this?” and you’ll 
realize that you  could indeed do that, and your code would then be  faster. Or relax and 
come back  to  your code later, and you  may  well see another, faster approach.  There 
are  a million ways to implement code for any task, and you can  almost always find a 
faster way if you need to. 
Second, when performance matters, never have your code  perform  the same calcu- 
lation more than once. This sounds obvious, but it’s astonishing how often it’s ignored. 
For example,  consider this snippet of code: 

f o r   ( i - 0 :   i < R u n L e n g t h :  i++) 
{ 

*Work ingScreenPtr  - C o l o r ;  
i f  ( X D e l t a  > 0 )  
I 

1 
e l s e  
( 

1 

WorkingScreenPtr++: 

W o r k i n g S c r e e n P t r - - :  

1 

Here,  the  programmer knows  which way the line is going  before the main loop be- 
gins-but nonetheless  performs  that test every time  through  the  loop,  when 
calculating the address of the  next pixel. Far better to perform  the test only once, 
outside the  loop, as  shown here: 

i f  ( X D e l t a  > 0 )  
I 

f o r  ( i -0 :  i<RunLength:  i++) 
{ 

I 
} 
e l s e  
{ 

*Work ingScreenPtr++ - C o l o r :  

f o r   ( i - 0 :   i < R u n L e n g t h :  i++) 
I 

I 
*Work ingScreenPt r - -  - C o l o r :  

3 

Think of it this way: A program is a state machine. It takes a  set of inputs and pro- 
duces  a  corresponding set of outputs by passing through  a set of states. Your primary 
job as a  programmer is to implement the desired state machine. Your additional job 
as a  performance  programmer is to minimize the  lengths of the paths through  the 

682 Chapter 36 



state machine. This means performing as  many  tests and calculations  as  possible 
outside the loops, so that  the loops themselves can do as  little  work-that  is,  pass 
through as few  states-as possible. 
Which brings us  full  circle  to Bresenham's run-length slice  line-drawing algorithm, 
which just  happens to be an excellent example of a minimized  state machine. In case 
you're fuzzy on  the  good/bad  performance thing, that's "good"-as in fast. 

Run-Length  Slice  Fundamentals 
First  off, I have a confession to make: I'm not sure  that  the algorithm I'll discuss is 
actually,  precisely Bresenham's run-length slice algorithm. It's been a long time  since 
I read  about this algorithm; in the  intervening years,  I've  misplaced Bresenham's 
article, and have been  unable  to unearth it. As a result, I had to derive the algorithm 
from scratch, which was admittedly more  fun  than  reading  about  it,  and also en- 
sured  that I understood it inside and  out.  The upshot is that what I discuss  may or 
may not be Bresenham's run-length slice  algorithm-but  it  surely is fast. 
The place  to begin understanding  the  run-length slice algorithm is the  standard 
Bresenham's line-drawing algorithm. (I discussed the  standard Bresenham's line- 
drawing algorithm at  length in the previous chapter.) The basis  of the  standard 
approach is stepping one pixel at a time along  the major  axis (the longer dimension 
of the  line), while maintaining an  integer error term that indicates at each major- 
axis step how  close the line is to advancing halfway to  the  next pixel along  the  minor 
axis.  Figure 36.1 illustrates standard Bresenham's line drawing. The key point  here is 
that a calculation and a test are  performed  once for each step  along  the major  axis. 

0 0 0 0 
"""."""""""""""""..""""..""""..""~ 

Midway points / 
between  pixels 

along minor  axis '.\ t 
__"""."_"""."""".""" . ___""".""""". 

\\// 
Pixels are stepped  one at a time along the major axis, 
and the error term  evaluated  after  each  step,  to  see 

if it's  time  for  the minor axis  to  advance. 

Standard Bresenham 5 line drawing. 
Figure 36.1 

The Good,  the  Bad, and the  Run-Sliced 683 



The run-length slice algorithm  rotates  matters 90 degrees, with salubrious results. 
The basis  of the run-length slice  algorithm is stepping one pixel at  a time  along the 
minor axis (the shorter dimension), while maintaining an integer error term  indicating 
how  close the  line is  to advancing an  extra pixel along  the major axis, as illustrated by 
Figure 36.2. 
Consider this: When you’re called upon to draw a  line with an  Xdimension of 35 
and a Y-dimension  of 10, you  have a  great  deal of information available, some of 
which is ignored by standard Bresenham’s. In  particular, because the  slope is be- 
tween 1/3 and 1/4, you  know that every  single  run-a run being  a  set of pixels at  the 
same  minor-axis  coordinate-must  be either  three  or  four pixels long. No other 
length is possible,  as  shown  in Figure 36.3 (apart  from  the first and last runs, which 
are special  cases that I’ll discuss shortly).  Therefore,  for this line, there’s no need to 
perform  an  error-term calculation and test for  each pixel. Instead, we can just per- 
form one test per  run, to see whether  the run is three or four pixels long,  thereby 
eliminating  about 70 percent of the calculations in drawing this line. 
Take a  moment to let  the idea behind run-length slice  drawing  soak in. Periodic  deci- 
sions must be  made to control pixel placement. The key to speed is to make those 
decisions as infrequently and as quickly as possible.  Of  course,  it will  work to  make a 
decision at each pixel-that’s standard Bresenham’s.  However,  most  of  those  per-pixel 
decisions are  redundant,  and  in fact we have enough information  before we begin 
drawing to know  which are  the  redundant decisions.  Run-length  slice  drawing is  exactly 
equivalent to standard Bresenham’s, but it  pares  the decision-making process down 
to a  minimum. It’s  somewhat  analogous to the difference  between finding the greatest 
common divisor  of  two numbers using Euclid’s algorithm and finding  it by trying 

Error  terms 
(cumulative  partial  pixels) / at  ends of runs \ 

after each step, to see 
whether to draw 
RUNLENGTH or 
RUNLENGTH+l pixels 
along  the  major  axis. 

0 0 0 

Run-length slice line  drawing. 
Figure 36.2 

684 Chapter 36 



0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I""""""""_ 

Runs are four  pixels long 

Runs in a slope 1/3.5 line. 
Figure 36.3 

every  possible  divisor. Both approaches  produce  the  desired result, but  that which 
takes maximum advantage of the available information and minimizes redundant 
work is preferable. 

Run-Length  Slice  Implementation 
We know that  for any line,  a given run will  always be one of two possible lengths. 
How, though, do we  know  which length to  select?  Surprisingly,  this is easy to determine. 
For the following  discussion,  assume that we  have a slope of 1/3.5, so that X is the major 
axis;  however, the discussion  also applies to Y-major lines, with X and Y reversed. 
The minimum possible length  for any run in an X-major line is int(XDelta/YDelta), 
where XDelta is the X-dimension of the line and YDelta is the Y-dimension. The 
maximum possible length is int(XDelta/YDelta)+ 1. The trick, then, is knowing  which 
of these two lengths to select for each run. To see how we can make this selection, 
refer to  Figure 36.4. For each one-pixel step along the minor axis (x in this case), we 
advance at least three pixels. The full advance distance along  X (the major axis)  is 
actually three-plus pixels, because there is also a fractional portion to the advance 
along  X  for  a single-pixel Y step. This fractional advance is the key to deciding when 
to add  an extra pixel to a run.  The fraction indicates what portion of an  extra pixel 
we advance along X (the major axis) during each run. If  we keep a running sum of 
the fractional parts, we have a measure of  how  close we are to needing  an  extra pixel; 
when the fractional sum reaches 1, it's time to add  an  extra pixel to the  current  run. 
Then, we can subtract 1 from  the  running sum (because we just advanced one  pixel), 
and  continue  on. 

The Good, the  Bad, and the  Run-Sliced 685 



I 

minimum  run  length == 3 

0 0 0 ,io\o 0 Q 0 /& ~.* 4 .""""""""" ;- I ,  " _  - 1  

8 
I ,  i -,"" """""__:".~ '"""I 

""""""""""_ 
0 im *io 0 6 0 

""""..""""r"I 6 I 
P 
0 

0 

m o o o o o ~ o \ o  # I  Cumulative error 
Cumulative error term < 1, term > 1, so draw 
so don't draw  an extra pixel an extra pixel 

How the error term determines run length. 
Figure 36.4 

Practically speaking, however, we can't work  with fractions because floating-point 
arithmetic is  slow and fixed-point arithmetic is imprecise. Therefore, we take a  cue 
from  standard Bresenham's and scale  all the  error-term calculations up so that we 
can work  with integers. The fractional X (major axis)  advance per one-pixel Y (minor 
axis) advance is the fractional portion ofXDelta/YDelta. This value is exactly  equiva- 
lent to D e l t a  % YDelta)/YDelta.  We'll  scale this up by multiplying it by YDelta"2, 
so that  the  amount by which we adjust the  error term up for each one-pixel minor- 
axis advance is  (XDelta % YDelta)*2. 
We'll  similarly  scale up the  one pixel by which we adjust the  error term down after it 
turns over, so our downward error-term  adjustment is  YDelta*2. Therefore,  before 
drawing each run, we'll add ( D e l t a  % YDelta)*2 to the  error term. If the  error term 
runs over (reaches one full pixel), we'll lengthen  the  run by 1, and subtract YDelta"2 
from  the error term. (All  values are multiplied by 2 so that the initial error term, 
which  involves a 0.5 term, can be scaled up to an  integer, as  discussed next.) 
This is not a complicated process; it involves  only integer  addition and subtraction 
and a single test, and it  lends itself to many and varied optimizations. For example, 
you could break out hardwired optimizations for drawing each possible pair of run 
lengths. For the  aforementioned line with a slope of 1/3.5, for  example, you could 
have one  routine hardwired to blast in a run of three pixels  as  quickly  as  possible, 
and  another hardwired to  blast in  a run of four pixels. These  routines would  ideally 
have no looping, but  rather  just  a series of instructions customized to draw the de- 
sired number of pixels at maximum speed. Each routine would  know that  the only 

686 Chapter 36 



possibilities for  the  length of the  next  run would be  three  and four, so they could 
increment  the  error  term,  then jump directly to the  appropriate  one of the two 
routines  depending  on  whether  the  error term turned over. Properly implemented, 
it should  be possible to  reduce  the average per-run overhead of line drawing  to  less 
than  one  branch, with  only  two additions and two tests (the  number of runs must 
also be  counted  down), plus a subtraction half the time. On a 486, this amounts to 
something on  the  order of 150 nanoseconds of overhead per pixel,  exclusive  of the 
time required to actually  write the pixel  to  display  memory. 
That’s good. 

Run-Length  Slice  Details 
A couple of run-length slice implementation details  yet remain. First is the  matter of 
how error-term turnover is detected. This is done in much  the same way as it is  with 
standard Bresenham’s: The  error term is maintained as a negative valve and advances 
for each step; when the  error term reaches 0, it’s  time  to add an extra pixel  to the 
current  run. This means that we only  have to test for carry after advancing the  error 
term to determine  whether  or  not to add  an  extra pixel to each run. (Actually, the 
code in this chapter tests for  the error term being greater  than zero, but  the assem- 
bly code in the  next  chapter will use the very efficient  carry approach.) 
The second and  more difficult detail is balancing the  runs so that they’re centered 
around  the ideal line, and therefore draw the same pixels that  standard Bresenham’s 
would  draw. If  we just drew  full-length runs  from  the start, we’d end up with an 
unbalanced  line, as shown  in  Figure 36.5. Instead, we have to split the initial  pixel 
plus one full run as evenly as possible  between the first and last runs of the  line, and 
adjust the initial error term appropriately for  the initial half-run. 
The initial error term is advanced by one-half of the  normal per-step fractional ad- 
vance,  because  the  initial  step is only  one-half  pixel  along  the  minor  axis.  This  half-step 
gets us exactly  halfivay  between the initial  pixel and  the next pixel along the minor 
axis.  All the error-term adjustments are scaled up by  two times  precisely so that we 
can scale up this  halved error term for the initial run by  two times, and thereby make 
it an integer. 
The  other trick here is that if an odd  number of pixels are allocated between the first 
and last  partial runs, we’ll end  up with an odd pixel,  since we are  unable  to draw a 
half-pixel. This odd pixel is accounted  for by adding half a pixel to  the  error  term. 
That’s all there is to  run-length slice line drawing; the partial  first and last runs  are 
the only  tricky part. Listing 36.1 is a run-length slice implementation in C. This is not 
an optimized implementation, nor is it meant  to  be; this  listing is provided so that 
you can see  how the  run-length slice algorithm works. In  the  next chapter, I’ll  move 
on to an optimized version, but  for now, Listing 36.1 will make  it much easier  to 
grasp the principles of run-length slice  drawing, and to  understand  the optimized 
code I’ll present in the  next chapter. 

The Good, the  Bad, and the  Run-Sliced 687 



Balancing run-length slice lines: a) unbalanced; b) balanced. 
Figure 36.5 

LISTING 36.1 136- 1 .C 
/ *  R u n - l e n g t h   s l i c e   l i n e   d r a w i n g   i m p l e m e n t a t i o n   f o r  mode 0x13.   the  VGA’s 
320x200   256 -co lo r  mode. N o t   o p t i m i z e d !   T e s t e d   w i t h   B o r l a n d  C++ i n  
the   sma l l   mode l .  * /  

li ncl   ude  <dos.   h> 

# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

v o i d   D r a w H o r i z o n t a l R u n ( c h a r   f a r   * * S c r e e n P t r ,   i n t   X A d v a n c e ,   i n t   R u n L e n g t h .  

v o i d   D r a w V e r t i c a l R u n ( c h a r  far **ScreenPtr .  i n t  XAdvance. i n t  RunLength. 

/*  Draws  a l i n e  b e t w e e n   t h e   s p e c i f i e d   e n d p o i n t s   i n   c o l o r   C o l o r .  * /  
v o i d   L i n e D r a w ( i n t   X S t a r t .   i n t   Y S t a r t .   i n t  XEnd. i n t  YEnd. i n t   C o l o r )  
I. 

i n t  Temp. AdjUp.  AdjDown.  ErrorTerm.  XAdvance.  XDelta.  YDelta; 
i n t  W h o l e s t e p .   I n i t i a l P i x e l C o u n t .   F i n a l P i x e l C o u n t .  i. RunLength: 
c h a r   f a r   * S c r e e n P t r :  

i n t   C o l o r ) :  

i n t   C o l o r ) ;  

688 Chapter 36 



/*  W e ' l l   a l w a y s   d r a w   t o p   t o   b o t t o m ,   t o   r e d u c e   t h e  number o f  cases we have t o  
handle,   and t o  make l i n e s   b e t w e e n   t h e  same e n d p o i n t s   d r a w   t h e  same p i x e l s  * /  
i f  ( Y S t a r t  > YEnd) { 

Temp - Y S t a r t :  
Y S t a r t  - YEnd; 
YEnd - Temp; 
Temp - X S t a r t ;  
X S t a r t  - XEnd; 
XEnd - Temp; 

I 
/ *  P o i n t   t o   t h e   b i t m a p   a d d r e s s   f i r s t   p i x e l   t o   d r a w  */  
S c r e e n P t r  - MK-FP(SCREEN_SEGMENT. Y S t a r t  * SCREEN-WIDTH + X S t a r t ) :  

/ *  F i g u r e   o u t   w h e t h e r   w e ' r e   g o i n g   l e f t   o r   r i g h t ,   a n d  how f a r   w e ' r e  

i f  ( ( X D e l t a  - XEnd - X S t a r t )  < 0 )  
{ 

g o i n g   h o r i z o n t a l l y  * /  

XAdvance - -1; 
XDel ta  - - X D e l t a :  

I 
e l s e  
I 

I 
/*  F i g u r e   o u t  how f a r   w e ' r e   g o i n g   v e r t i c a l l y  * /  
YDel ta  - YEnd - Y S t a r t ;  

XAdvance - 1; 

S p e c i a l - c a s e   h o r i z o n t a l ,   v e r t i c a l .   a n d   d i a g o n a l   l i n e s .   f o r   s p e e d  
and t o   a v o i d   n a s t y   b o u n d a r y   c o n d i t i o n s   a n d   d i v i s i o n   b y  0 * /  
( X D e l t a  - 0 )  

I* V e r t i c a l   l i n e  * I  
f o r   ( i - 0 ;   i < - Y D e l t a ;  i++) 
{ 

*ScreenPt r  - C o l o r ;  
S c r e e n P t r  +- SCREEN-WIDTH; 

I 
r e t u r n ;  

( Y D e l t a  - 0 )  

/*  H o r i z o n t a l   l i n e  * /  
f o r   ( i - 0 ;   i < - X D e l t a :  i++) 
{ 

*ScreenPt r  - C o l o r ;  
S c r e e n P t r  +- XAdvance; 

I 
r e t u r n ;  

( X D e l t a  - Y D e l t a )  

/ *  D i a g o n a l   l i n e  *I  
f o r   ( i - 0 :   i < - X D e l t a ;  i++) 
{ 

*ScreenPt r  - C o l o r ;  
S c r e e n P t r  +- XAdvance + SCREEN-WIDTH; 

I 
r e t u r n ;  

The Good, the Bad, and the  Run-Sliced 689 



/*  
i f  
{ 

3 

D e t e r m i n e   w h e t h e r   t h e   l i n e   i s  X o r  Y m a j o r ,   a n d   h a n d l e   a c c o r d i n g l y  * /  
( X D e l t a  >- Y D e l t a )  

/ *  X m a j o r   l i n e  * /  
/* Minimum # o f   p i x e l s   i n  a r u n   i n   t h i s   l i n e  */  
WholeStep - XDel ta  / YDe l ta :  

/ *  E r r o r   t e r m   a d j u s t   e a c h   t i m e  Y s teps   by  1: used t o   t e l l  when one 
e x t r a   p i x e l   s h o u l d  be  drawn  as p a r t   o f  a r u n ,   t o   a c c o u n t   f o r  
f r a c t i o n a l   s t e p s   a l o n g   t h e  X a x i s   p e r   1 - p i x e l   s t e p s   a l o n g  Y * /  

AdjUp - ( X D e l t a  % YDe l ta )  * 2: 

/ *  E r r o r   t e r m   a d j u s t  when t h e   e r r o r   t e r m   t u r n s   o v e r ,   u s e d   t o   f a c t o r  

AdjDown - YDe l ta  * 2: 

/*  I n i t i a l   e r r o r   t e r m :   r e f l e c t s  an i n i t i a l   s t e p  o f  0 .5  a l o n g   t h e  Y 

E r ro rTe rm - ( X D e l t a  % YDe l ta )  - ( Y D e l t a  * 2 ) ;  

/ *  The i n i t i a l  and l a s t   r u n s   a r e   p a r t i a l ,   b e c a u s e  Y advances   on l y  0.5 

o u t   t h e  X s t e p  made a t   t h a t   t i m e  * I  

a x i s  * /  

f o r   t h e s e   r u n s ,   r a t h e r   t h a n  1. D i v i d e   o n e   f u l l   r u n ,   p l u s   t h e  
i n i t i a l   p i x e l ,  b e t w e e n   t h e   i n i t i a l  and l a s t   r u n s  * /  

I n i t i a l P i x e l C o u n t  - (Wholestep / 2 )  + 1: 
F i n a l P i x e l C o u n t  - I n i t i a l P i x e l C o u n t :  

/ *  I f  t h e   b a s i c   r u n   l e n g t h   i s   e v e n  and t h e r e ' s   n o   f r a c t i o n a l  
advance, we h a v e   o n e   p i x e l   t h a t   c o u l d   g o   t o   e i t h e r   t h e   i n i t i a l  
o r   l a s t   p a r t i a l   r u n ,   w h i c h   w e ' l l   a r b i t r a r i l y   a l l o c a t e   t o   t h e  
l a s t   r u n  */  

i f  ( (Ad jUp  -- 0)  && ( (WholeStep & 0x01)  - 0 ) )  
{ 

3 
/*  I f  t h e r e ' r e  an odd  number o f   p i x e l s   p e r   r u n ,  we have 1 p i x e l   t h a t   c a n ' t  

I n i t i a l P i x e l C o u n t - - :  

be a l l o c a t e d   t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n .  s o  w e ' l l  add 0 .5  
t o   e r r o r   t e r m  s o  t h i s   p i x e l  will b e   h a n d l e d   b y   t h e   n o r m a l   f u l l - r u n   l o o p  * /  
i f  ( (Who les tep  & 0x01)  !- 0 )  

E r ro rTe rm +- YDe l ta :  
t 

3 
I* Draw t h e   f i r s t ,   p a r t i a l   r u n   o f   p i x e l s  * /  
DrawHor izonta lRun(&ScreenPtr .  XAdvance. I n i t i a l P i x e l C o u n t ,   C o l o r ) ;  
/ *  Draw all f u l l   r u n s  */  
f o r   ( i - 0 :   i < ( Y D e l t a - 1 ) ;  i++) 
t 

RunLength - Wholestep:  / *  r u n   i s   a t   l e a s t   t h i s   l o n g  */  
/*  Advance   the   e r ro r   t e rm  and   add  an e x t r a   p i x e l  i f  t h e   e r r o r  

i f  ( ( E r r o r T e r m  +- AdjUp) > 0 )  
t 

t e r m  so i n d i c a t e s  * /  

RunLength++; 
E r ro rTe rm -- AdjDown; / *  r e s e t   t h e   e r r o r   t e r m  */  

I 
/*  Draw t h i s   s c a n   l i n e ' s   r u n  */  
DrawHor izonta lRun(&ScreenPtr .  XAdvance.   RunLength.   Color ) :  

3 
/ *  Draw t h e   f i n a l   r u n   o f   p i x e l s  * /  
DrawHor izonta lRun(&ScreenPtr ,  X A d v a n c e ,   F i n a l P i x e l C o u n t .   C o l o r ) :  
r e t u r n :  

690 Chapter 36 



e l s e  
{ 

/ *  Y m a j o r   l i n e  * /  

/* Minimum # o f   p i x e l s   i n  a r u n   i n   t h i s   l i n e  * /  
Wholestep = YDel ta  / XDel ta :  

/ *  E r r o r   t e r m   a d j u s t   e a c h   t i m e  X s teps   by  1: used t o   t e l l  when 1 e x t r a  
p i x e l   s h o u l d   b e   d r a w n  as p a r t   o f  a r u n .   t o   a c c o u n t   f o r  
f r a c t i o n a l   s t e p s   a l o n g   t h e  Y a x i s   p e r   1 - p i x e l   s t e p s   a l o n g  X * /  

AdjUp = ( Y D e l t a  % X D e l t a )  * 2 ;  

/ *  E r r o r   t e r m   a d j u s t  when t h e   e r r o r   t e r m   t u r n s   o v e r ,   u s e d   t o   f a c t o r  

AdjDown = XDel ta  * 2 :  

/ *  I n i t i a l   e r r o r   t e r m :   r e f l e c t s   i n i t i a l   s t e p   o f  0 .5  a l o n g   t h e  X a x i s  * /  
E r r o r T e r m  = ( Y D e l t a  % X D e l t a )  - ( X D e l t a  * 2 ) :  

/ *  The i n i t i a l  and l a s t   r u n s   a r e   p a r t i a l ,   b e c a u s e  X advances   on ly   0 .5  

o u t   t h e  Y s t e p  made a t   t h a t   t i m e  * /  

f o r   t h e s e   r u n s ,   r a t h e r   t h a n  1. D i v i d e   o n e   f u l l   r u n .   p l u s   t h e  
i n i t i a l   p i x e l ,  b e t w e e n   t h e   i n i t i a l   a n d   l a s t   r u n s  * /  

I n i t i a l P i x e l C o u n t  = (Wholes tep  / 2) + 1: 
F i n a l P i x e l C o u n t  = I n i t i a l P i x e l C o u n t :  

/ *  I f  t h e   b a s i c   r u n   l e n g t h   i s   e v e n  and t h e r e ' s   n o   f r a c t i o n a l   a d v a n c e .  we 
have 1 p i x e l   t h a t   c o u l d  go t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n ,  
w h i c h   w e ' l l   a r b i t r a r i l y   a l l o c a t e   t o   t h e   l a s t   r u n  */  

i f  ( ( A d j U p  == 0 )  && ( ( W h o l e s t e p  & 0x01)  -- 0 ) )  
c 

1 
/* I f  t h e r e   a r e  an  odd  number o f   p i x e l s   p e r   r u n ,  we have   one   p i xe l  

t h a t   c a n ' t  be a l l o c a t e d   t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l  
r u n ,  s o  w e ' l l  add  0.5 t o   t h e   e r r o r   t e r m  s o  t h i s   p i x e l  will be 
h a n d l e d   b y   t h e   n o r m a l   f u l l   - r u n   l o o p  */  

I n i t i a l P i x e l C o u n t - - ;  

i f  ( ( W h o l e s t e p  & 0x01) != 0 )  
[ 

I 
/*  Draw t h e   f i r s t ,   p a r t i a l   r u n   o f   p i x e l s  * /  
DrawVerticalRun(&ScreenPtr. X A d v a n c e .   I n i t i a l P i x e l C o u n t .   C o l o r ) :  

/ *  Draw a l l   f u l l   r u n s  */  
f o r   ( i = O ;   i < ( X D e l t a - 1 ) :  i++) 
( 

E r r o r T e r m  += XDel t a :  

RunLength = WholeStep: /* r u n  i s  a t   l e a s t   t h i s   l o n g  * /  
/ *  Advance   the   e r ro r   t e rm  and   add   an   ex t ra   p i xe l  i f  t h e   e r r o r  

i f  ( ( E r r o r T e r m  +- AdjUp) > 0 )  
1 

t e r m  s o  i n d i c a t e s  * /  

RunLength++; 
E r r o r T e r m  -= AdjDown: / *  r e s e t   t h e   e r r o r   t e r m  * /  

I 
/ *  Draw t h i s   s c a n   l i n e ' s   r u n  */  
DrawVer t i ca lRun(&ScreenPt r .  XAdvance,  RunLength.   Color) :  

1 
/*  Draw t h e   f i n a l   r u n   o f   p i x e l s  * /  
DrawVerticalRun(&ScreenPtr. X A d v a n c e .   F i n a l P i x e l C o u n t ,   C o l o r ) :  
r e t u r n :  

1 

The Good, the  Bad, and the  Run-Sliced 691 



1 
I* Draws a h o r i z o n t a l   r u n   o f   p i x e l s ,   t h e n   a d v a n c e s   t h e   b i t m a p   p o i n t e r   t o  

v o i d   D r a w H o r i z o n t a l R u n ( c h a r  far * * S c r e e n P t r .   i n t  XAdvance. 

{ 

t h e   f i r s t   p i x e l   o f   t h e   n e x t   r u n .  *I  

i n t  RunLength. i n t   C o l o r )  

i n t  i: 
c h a r   f a r   * W o r k i n g S c r e e n P t r  - *ScreenPt r ;  

f o r   ( i - 0 ;   i < R u n L e n g t h ;  i++) 
{ 

*Work ingScreenPtr  - C o l o r :  

1 
WorkingScreenPtr  +- XAdvance; 

I* Advance t o   t h e   n e x t   s c a n   l i n e  *I  
WorkingScreenPtr  +- SCREEN-WIDTH; 
*Sc reenPt r  - Work ingScreenPt r ;  

1 
/ *  Draws  a v e r t i c a l   r u n   o f   p i x e l s ,   t h e n   a d v a n c e s   t h e   b i t m a p   p o i n t e r   t o  

v o i d   D r a w V e r t i c a l R u n ( c h a r   f a r   * * S c r e e n P t r .   i n t  XAdvance. 

{ 

t h e   f i r s t   p i x e l   o f   t h e   n e x t   r u n .  *I  

i n t  RunLength. i n t   C o l o r )  

i n t  i: 
c h a r   f a r   * W o r k i n g S c r e e n P t r  - *ScreenPt r ;  

f o r  ( i - 0 ;  i<RunLength;  i++) 
( 

*Work ingScreenPtr  - C o l o r ;  
Work ingScreenPtr  +- SCREEN-WIDTH: 

1 
I* Advance t o   t h e   n e x t   c o l u m n  *I  
WorkingScreenPtr  +- XAdvance; 
*Sc reenPt r  - Work ingScreenPt r :  

1 

Notwithstanding  that it’s not optimized, Listing 36.1 is reasonably fast. If you run 
Listing 36.2 (a sample linedrawing program that you  can  use  to testdrive Listing 36.1), 
you  may be as surprised as I was at how  quickly the  screen fills with vectors, consider- 
ing  that Listing 36.1 is entirely  in C and has some redundant divides. Or perhaps you 
won’t be surprised-in  which  case I suggest you not miss the  next  chapter. 

LISTING 36.2 136-2.C 
I* Sample l i n e - d r a w i n g   p r o g r a m .  Uses t h e   o p t i m i z e d  
l i n e - d r a w i n g   f u n c t i o n s   c o d e d   i n   L L i s t i n g  L36.1.C. 
T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  *I  

#i n c l  ude  <dos.  h> 

# d e f i n e  GRAPHICS-MODE 0x13 
# d e f i n e  TEXT-MODE 0x03 
# d e f i n e  BIOS-VIDEO-INT Ox10 
#de f  i ne X-MAX 320 / *  w o r k i n g   s c r e e n   w i d t h  *I  
# d e f i n e  Y-MAX 200 /*  w o r k i n g   s c r e e n   h e i g h t  * /  

e x t e r n   v o i d   L i n e D r a w ( i n t   X S t a r t .   i n t  Y S t a r t .  i n t  XEnd. i n t  YEnd. i n t   C o l o r ) ;  

692 Chapter 36 



I* S u b r o u t i n e   t o   d r a w  a r e c t a n g l e   f u l l   o f   v e c t o r s ,   o f   t h e   s p e c i f i e d  

void  VectorsUp(XCenter,   YCenter.   XLength.   YLength.   Color)  
i n t  XCenter.  YCenter: I* c e n t e r   o f   r e c t a n g l e   t o  fill *I  
i n t  XLength.  YLength: I* d i s t a n c e   f r o m   c e n t e r   t o  edge o f   r e c t a n g l e  *I  
i n t   C o l o r ;  
( 

* l e n g t h  and c o l o r ,   a r o u n d   t h e   s p e c i f i e d   r e c t a n g l e   c e n t e r .  *I  

I* c o l o r   t o  draw  1  ines i n  *I  

i n t  WorkingX.  WorkingY; 

I* l i n e s   f r o m   c e n t e r   t o   t o p  o f  r e c t a n g l e  *I 
WorkingX - XCenter - XLength: 
WorkingY - YCenter - YLength; 
f o r  ( ; WorkingX < ( XCenter + XLength 1: WorkingX++ 
t 

} 
I* l i n e s   f r o m   c e n t e r   t o   r i g h t   o f   r e c t a n g l e  *I  
WorkingX - XCenter + XLength - 1; 
WorkingY - YCenter - YLength; 
f o r  ( ; WorkingY < ( YCenter + YLength ) ;  WorkingY++ ) 

t 

1 
I* l i n e s   f r o m   c e n t e r   t o   b o t t o m   o f   r e c t a n g l e  * /  
WorkingX - XCenter + XLength - 1: 
WorkingY - YCenter + YLength - 1; 
f o r  ( ; WorkingX >- ( XCenter - XLength 1: WorkingX-- ) 

1. 

I 
I* l i n e s   f r o m   c e n t e r   t o   l e f t   o f   r e c t a n g l e  *I  
WorkingX - XCenter - XLength; 
WorkingY - YCenter + YLength - 1; 
f o r  ( ; WorkingY >- ( YCenter - YLength ) ;  WorkingY-- ) 

r 
1 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

1 
I* Sample  program t o  d r a w   f o u r   r e c t a n g l e s   f u l l   o f   l i n e s .  *I  
i n t   m a i n 0  
( 

un ion  REGS regs ;  

I* S e t   g r a p h i c s  mode */ 
regs.x.ax - GRAPHICS-MODE; 
int86(BIOS-VIDEO-INT.  &regs.  &regs); 

I* Draw each o f   f o u r   r e c t a n g l e s   f u l l  o f  v e c t o r s  * I  
VectorsUp(X-MAX I 4 .  Y-MAX I 4 .  X-MAX I 4 .  Y-MAX I 4 .  1); 
VectorsUp(X-MAX * 3 1 4 .  Y-MAX / 4.  X-MAX 1 4 .  Y-MAX / 4.  2) ;  
VectorsUp(X-MAX I 4 .  Y-MAX * 3 I 4.  X-MAX I 4 .  Y-MAX I 4 ,  3 ) ;  
VectorsUp(X-MAX * 3 I 4 .  Y-MAX * 3 I 4 ,  X-MAX I 4 .  Y-MAX I 4 .  4 ) ;  

I* Wait f o r  a  key t o  be  pressed * I  
ge tch (  ) : 

I* R e t u r n   b a c k   t o   t e x t  mode * I  
regs.x.ax - TEXT-MODE; 
int86(BIDS-YIDED-INT.  &regs,  &regs): 

} 

The Good, the Bad, and the Run-Sliced 693 



chapter 37

dead cats and lightning lines



Run-Length  Slice  Line Drawing 

As I write  this, th d I are in the throes of  yet another lightning-quick 
transcontinental to Redmond, Washington,  to work for You  Know 

at makes it worse for us  is the pets.  Getting them 
ard; there’s always the possibility that they  might 

eather; and, worst of all,  they might not make it. 
or dead, but it does happen. 

essful) effort to cheer me up about the prospect of shipping 
ng story,  which he swears  actually happened 
t has the ring of an urban legend, which  is to 

say it makes a good story, but you can  never  track  down the person it really happened 
to; it’s  always a friend of a friend. But  maybe it is true,  and anyway,  it’s a good story. 
This friend of a friend (henceforth referred to as FOF), worked  in an air-freight 
terminal.  Consequently, he handled a lot of  animals,  which  was  fine by him,  because  he 
liked  animals;  in  fact,  he  had  quite a few  cats at home. You can  imagine  his  dismay  when, 
one day, he  took a kennel off the plane  to  find  that the cat  it  carried was quite  thoroughly 
dead. (No, it wasn’t resting, nor pining for the fjords;  this  cat was bloody deceased.) 
FOF knew  how upset the owner  would be, and came up with a plan  to  make every- 
thing better. At home, he had a cat of the same  size, shape, and markings.  He  would 

697 



substitute that cat, and since all  cats treat all humans with equal disdain, the owner 
would never know the  difference, and would never suffer the trauma of the loss of 
her cat. So FOF drove home,  got his cat, put it in the  kennel, and waited for  the 
owner  to  show up-at  which point,  she took one look at  the  kennel  and said, “This 
isn’t my cat. My cat is dead.” 
As it  turned  out, she had shipped her recently deceased feline home to be  buried. 
History does not  record how our FOF dug himself out of this one. 
Okay, but what’s the  point?  The  point is, if it isn’t broken,  don’t fix it. And if it is 
broken, maybe that’s all right,  too. Which brings us, neat as a  pin, to the topic of 
drawing lines in a serious hurry. 

Fast  Run-Length  Slice  Line Drawing 
In  the last chapter, we examined the principles of run-length slice line drawing,  which 
draws lines a run  at a time rather  than a pixel at a time,  a run being  a series of pixels 
along  the major (longer) axis. It’s time to turn theory into useful practice by devel- 
oping  a fast  assembly version. Listing 37.1 is the assembly version, in  a  form that’s 
plug-compatible with the C code  from the previous chapter. 

LISTING  37.1 137- 1 .ASM 
; F a s t   r u n - l e n g t h   s l i c e   l i n e   d r a w i n g   i m p l e m e n t a t i o n  f o r  mode 0 x 1 3 .   t h e  VGA‘s 
; 320x200  256-co lor  mode. 
; Draws a l i n e  b e t w e e n   t h e   s p e c i f i e d   e n d p o i n t s   i n   c o l o r   C o l o r .  
; C n e a r - c a l l a b l e   a s :  
; v o i d   L i n e D r a w ( i n t   X S t a r t .   i n t   Y S t a r t .   i n t  XEnd, i n t  YEnd. i n t   C o l o r )  
: T e s t e d   w i t h  TASM 

SCREEN-WIDTH equ  320 
SCREENKSEGMENT equ OaOOOh 

.model  small  

.code 

; Parameters t o  
parms s t r u c  

dw 
dw 

X S t a r t  dw 
Y S t a r t  dw 
XEnd dw 
YEnd dw 
Co lor   db  

db 
parms  ends 

c a l l .  

? 
? 
? 
? 
? 
? 
? 
? 

;pushed BP 
;pushed r e t u r n   a d d r e s s  
;X  s t a r t   c o o r d i n a t e   o f   l i n e  
: Y  s t a r t   c o o r d i n a t e  o f  l i n e  
; X  e n d   c o o r d i n a t e   o f   l i n e  
; Y  e n d   c o o r d i n a t e   o f   l i n e  
; c o l o r   i n   w h i c h   t o   d r a w   l i n e  
;dummy b y t e   b e c a u s e   C o l o r  i s  r e a l l y  a word 

AdjUp 
; L o c a l   v a r i a b l e s .  

AdjDown  equ - 4  ; e r r o r   t e r m   a d j u s t  down  when e r r o r   t e r m   t u r n s   o v e r  
WholeStep  equ  -6   ;min imum  run  length 
XAdvance 
LOCAL-SIZE 

equ  -2   ;e r ro r   te rm  ad jus t   up   on   each  advance 

equ - 8  ;1 o r  -1. f o r   d i r e c t i o n   i n   w h i c h  X advances 
equ 8 

pub1 i c -Li  neDraw 

698 Chapter 37 



_L ineDraw  p roc   near  
c l  d 
push bP : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mo v bP.SP : p o i n t   t o   o u r   s t a c k   f r a m e  
sub  sp. LOCALLSIZE : a l l o c a t e   s p a c e   f o r   l o c a l   v a r i a b l e s  
push s i   : p r e s e r v e  C r e g i s t e r   v a r i a b l e s  
push d i  
p u s h   d s   : p r e s e r v e   c a l l e r ' s  DS 

; W e ' l l   d r a w   t o p   t o   b o t t o m ,   t o   r e d u c e   t h e  number o f  cases we have t o   h a n d l e ,  
: and t o  make l i n e s   b e t w e e n   t h e  same endpo in ts   a lways   d raw  the  same p i x e l s .  

mov a x . [ b p l . Y S t a r t  

j l e  L ineIsTopToBot tom 
xchg  Cbp1.YEnd.a~  :swap  endpoints 
mov C b p 1 . Y S t a r t . a ~  
mov bx . [bp l .XS ta r t  
xchg  [bpl.XEnd,bx 
mov C b p 1 . X S t a r t . b ~  

L ineIsTopToBot tom: 
: P o i n t  DI t o   t h e   f i r s t   p i x e l   t o   d r a w .  

mov  dx.SCREENLWIDTH 
mu1 dx ' : Y S t a r t  * SCREEN-WIDTH 
mov s i . [ b p l . X S t a r t  
mov d i   , s i  
add d i  ,ax : D I  - Y S t a r t  * SCREENKWIDTH + X S t a r t  

cmp ax.[bpl.YEnd 

: - o f f s e t  o f  i n i t i a l   p i x e l  
: F i g u r e   o u t  how f a r   w e ' r e   g o i n g   v e r t i c a l l y   ( g u a r a n t e e d   t o   b e   p o s i t i v e ) .  

mov cx.[bpl.YEnd 
sub   cx , [bp l .YS ta r t  : C X  - YDel ta  

: F i g u r e   o u t   w h e t h e r   w e ' r e   g o i n g   l e f t   o r   r i g h t ,   a n d  how f a r   w e ' r e   g o i n g  
: h o r i z o n t a l l y .  I n  t h e   p r o c e s s ,   s p e c i a l - c a s e   v e r t i c a l   l i n e s ,   f o r   s p e e d  and 
: t o   a v o i d   n a s t y   b o u n d a r y   c o n d i t i o n s   a n d   d i v i s i o n   b y  0. 

mov dx.Cbpl.XEnd 
sub  dx .s i  :XDel t a  
j n z   N o t V e r t i c a l L i n e   : X D e l t a  - 0 means v e r t i c a l   l i n e  

: i t i s  a v e r t i c a l   l i n e  
: y e s .   s p e c i a l   c a s e   v e r t i c a l   l i n e  

mov  ax.SCREEN-SEGMENT 
mo v ds ,   ax   : po in t  DS:DI t o   t h e   f i r s t   b y t e   t o  draw 
mov a1 . [ b p l . C o l o r  

mov [ d i  1 .a1 
add d i  .SCREEN-WIDTH 
dec  cx 
j n s  VLOOP 

VLoop: 

jmp Done 
: S p e c i a l - c a s e   c o d e   f o r   h o r i z o n t a l   l i n e s .  

I s H o r i z o n t a l L i n e :  
a l i g n  2 

mov  ax.SCREENKSEGMENT 
rnov es  ,ax 
mov a l . [ b p l . C o l o r  
mov ah.a l  
and  bx,  bx 
j n s  D i  r S e t  
sub d i   . d x  

: p o i n t  E S : D I  t o   t h e   f i r s t   b y t e   t o   d r a w  

: d u p l i c a t e   i n   h i g h   b y t e  f o r  word  access 
: l e f t   t o   r i g h t ?  
:yes 
: c u r r e n t l y   r i g h t   t o   l e f t ,   p o i n t   t o   l e f t  
: end so we can  go l e f t   t o   r i g h t  
: ( a v o i d s   u n p l e a s a n t n e s s   w i t h r i g h t   t o  
: l e f t  REP STOSW) 

Dead Cats and Lightning Lines 699 



D i  r S e t :  
mov cx,   dx 
i nc  cx 
s h r  c x . 1  :# o f  words t o  draw 
rep   s tosw 
adc cx ,   cx  
r e p   s t o s b  :do t h e   o d d   b y t e ,  i f  t h e r e   i s  one 
j mp Done 

a1 i g n  2 

mov  ax.SCREEN-SEGMENT 
mov ds   ,ax   ;po in t  DS:DI t o   t h e   f i r s t   b y t e   t o  draw 
mov 
add 

a1 , [bp]  .Col or 
bx.SCREEN-WIDTH ;advance   d i s tance   f rom  one   p i xe l   t o   nex t  

mov [ d i  1 .a1 
add d i  , bx 
dec  cx 
j n s  DLoop 
j mP Done 

a1 i g n  2 

mov b x . 1  :assume l e f t   t o   r i g h t .  s o  XAdvance - 1 

j n s   L e f t T o R i g h t   : l e f t   t o   r i g h t ,   a l l   s e t  
n e g   b x   : r i g h t   t o   l e f t ,  so XAdvance - -1 
neg  dx : I XDel t a  I 

:# o f   p i x e l s   t o  draw 

:do  as many words  as  poss ib le  

: S p e c i a l - c a s e   c o d e   f o r   d i a g o n a l   l i n e s .  

I s D i a g o n a l L i n e :  

DLoop: 

N o t V e r t i c a l L i n e :  

: *** leaves  f lags  unchanged***  

L e f t T o R i g h t :  
: S p e c i a l - c a s e   h o r i z o n t a l   l i n e s .  

and 
Jz 

cx,cx  :YDelta - O? 
I s H o r i z o n t a l   L i n e   ; y e s  

: S p e c i a l - c a s e   d i a g o n a l   l i n e s .  
cmp cx,   dx  ;YDelta - XDel ta? 
j z   I s D i a g o n a l L i n e   : y e s  

cmp dx ,   cx  
j a e  XMa j o r  

: D e t e r m i n e   w h e t h e r   t h e   l i n e   i s  X or Y m a j o r ,   a n d   h a n d l e   a c c o r d i n g l y .  

j mP YMajor 
: X - m a j o r   ( m o r e   h o r i z o n t a l   t h a n   v e r t i c a l )   l i n e .  

XMa j o r  : 
a1 i g n  2 

mov  ax.SCREEN-SEGMENT 
mov es   ,ax   ;po in t  E S : D I  t o   t h e   f i r s t   b y t e   t o  draw 
and  bx , bx : l e f t   t o   r i g h t ?  
.ins DFSet 
s t d  

mov ax.dx  :XDel t a  
sub  dx.dx 
d i  v cx  :AX - XDe l ta /YDe l ta  

:yes.  CLD i s   a l r e a d y   s e t  
; r i g h t   t o   l e f t ,  so  draw  backwards 

DFSet: 

: p r e p a r e   f o r   d i v i s i o n  

: (minimum # o f   p i x e l s   i n  a r u n   i n   t h i s   l i n e )  
:DX - XDe l ta  % YDel ta  

mov bx,  dx 
add 

: e r r o r   t e r m   a d j u s t   e a c h   t i m e  Y s teps   by  1; 
bx.  bx : used t o   t e l l  when one e x t r a   p i x e l   s h o u l d   b e  

mov Cbp1.AdjUp.b~ : drawn  as p a r t   o f  a r u n .   t o   a c c o u n t   f o r  
: f r a c t i o n a l   s t e p s   a l o n g   t h e  X a x i s   p e r  
: 1 - p i x e l   s t e p s   a l o n g  Y 

mov s i   . c x   ; e r r o r   t e r m   a d j u s t  when t h e   e r r o r   t e r m   t u r n s  

700 Chapter 37 



add s i  , s i  ; o v e r .   u s e d   t o   f a c t o r   o u t   t h e  X s t e p  made a t  
mov [bp l .Ad jDown,s i  ; t h a t   t i m e  

sub   dx .s i  ; ( X D e l t a  % YDel ta )  - ( Y D e l t a  * 2 )  
; I n i t i a l   e r r o r   t e r m ;   r e f l e c t s  an i n i t i a l   s t e p   o f  0 .5  a l o n g   t h e  Y a x i s .  

;OX * i n i t i a l   e r r o r   t e r m  
; The i n i t i a l  and l a s t   r u n s   a r e   p a r t i a l ,   b e c a u s e  Y advances  on ly  0.5 f o r  
; t h e s e   r u n s ,   r a t h e r   t h a n  1. D i v i d e  one f u l l   r u n ,   p l u s   t h e   i n i t i a l   p i x e l ,  
; b e t w e e n   t h e   i n i t i a l  and l a s t   r u n s .  

mov s i  , c x  ; S I  - YDelta 
mov cx.ax  ;whole  s tep  (min imum  run  length)  
shr   cx .1 
i n c   c x   ; i n i t i a l   p i x e l   c o u n t  - ( w h o l e   s t e p  / 2 )  + 1; 

; (may  be a d j u s t e d   l a t e r ) .   T h i s   i s   a l s o   t h e  
; f i n a l   r u n   p i x e l   c o u n t  

push  cx  ;remember f i n a l   r u n   p i x e l   c o u n t   f o r   l a t e r  
; I f  t h e   b a s i c   r u n   l e n g t h   i s   e v e n  and t h e r e ' s  no f r a c t i o n a l   a d v a n c e ,  we have 
; one p i x e l   t h a t   c o u l d  go t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n .   w h i c h  
; w e ' l l   a r b i t r a r i l y   a l l o c a t e   t o   t h e   l a s t   r u n .  
; I f  t h e r e   i s   a n  odd  number o f   p i x e l s   p e r   r u n .  we have  one p i x e l   t h a t   c a n ' t  
; b e   a l l o c a t e d   t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n .  s o  w e ' l l  add 0 .5  t o  
; t h e   e r r o r   t e r m  s o  t h i s   p i x e l  will b e   h a n d l e d   b y   t h e   n o r m a l   f u l l - r u n   l o o p .  

add d x . s i  ;assume  odd l e n g t h ,  add  YDelta t o   e r r o r   t e r m  

t e s t  a1 .I ; i s   r u n   l e n g t h   e v e n ?  
jnz  XMajorAdjustDone ; n o .   a l r e a d y   d i d   w o r k   f o r  odd  case, a l l   s e t  
s u b   d x , s i  ; l e n g t h   i s   e v e n ,  undo  odd s t u f f  we j u s t   d i d  
and  bx,  bx ; i s   t h e   a d j u s t  up  equal t o  O ?  
jnz   XMajorAd jus tDone ; n o   ( d o n ' t   n e e d   t o   c h e c k   f o r   o d d   l e n g t h ,  

dec   cx   ; bo th   cond i t i ons   me t ;  make i n i t i a l   r u n  1 

; (add 0.5 o f  a p i x e l   t o   t h e   e r r o r   t e r m )  

; because o f   t h e   a b o v e   t e s t )  

; s h o r t e r  
XMajorAdjustDone: 

mov [bp].WholeStep,ax;whole  step  (minimum  run  length) 
mov a1 , [ b p l   . C o l o r  ;AL - d r a w i n g   c o l o r  

r e p   s t o s b   ; d r a w   t h e   f i n a l   r u n  
add di,SCREEN-WIDTH ;advance  a long  the   minor   ax is  ( Y )  

cmp s i  .1 ; a r e   t h e r e  more  than 2 scans, s o  t h e r e   a r e  

j na XMajorDrawLast ;no.  no f u l l   r u n s  
dec   dx   ; ad jus t   e r ro r   t e rm  by  -1 so we can  use 

s h r   s i  .1 ; c o n v e r t   f r o m   s c a n   t o   s c a n - p a i r   c o u n t  
jnc   XMajorFu l lRunsOddEnt ry  ; i f  t h e r e   i s  an odd  number o f   s c a n s ,  

; Draw t h e   f i r s t ,   p a r t i a l   r u n   o f   p i x e l s .  

; D r a w  a l l   f u l l   r u n s .  

; some f u l l   r u n s ?  (SI - # scans - 1) 

; c a r r y   t e s t  

; do the  odd  scan now 
XMajorFul lRunsLoop: 

mov cx . [bp l .Who leStep; run  i s   a t   l e a s t   t h i s   l o n g  
add  dx,   bx  ;advance  the  er ror   term  and  add an e x t r a  
jnc  XMajorNoExtra ; p i x e l  i f  t h e   e r r o r   t e r m  s o  i n d i c a t e s  
i n c   c x   ; o n e   e x t r a   p i x e l   i n   r u n  
sub   dx . [bp l .Ad jDown  ; rese t   t he   e r ro r   t e rm 

XMajorNoExtra: 
r e p   s t o s b   ; d r a w   t h i s   s c a n   l i n e ' s   r u n  
add di.SCREEN-WIDTH ;advance   a long   t he   m ino r   ax i s  ( Y )  

XMajorFu l lRunsOddEnt ry :   ;en ter   loop   here  i f  t h e r e  i s  an odd  number 
; o f   f u l l   r u n s  

mov cx . [bp l .Who leStep; run  i s  a t  l e a s t   t h i s   l o n g  
add  dx,  bx ;advance  the   e r ro r   te rm  and  add  an   ex t ra  
j nc  XMajorNoExtraE ; p i x e l  i f  t h e   e r r o r   t e r m  s o  i n d i c a t e s  

Dead Cats  and  Lightning  Lines 701 



i n c   c x   ; o n e   e x t r a   p i x e l   i n   r u n  
sub   dx . [bp l .Ad jDown  : rese t   t he   e r ro r   t e rm 

r e p   s t o s b  
XMajorNoExtraZ: 

add di.SCREEN-WIDTH 
:draw t h i s  s c a n   l i n e ' s   r u n  
:advance   a long   t he   m ino r   ax i s  ( Y )  

dec s i  
jnz   XMajorFul lRunsLoop 

: Draw t h e   f i n a l   r u n   o f   p i x e l s .  
XMajorDrawLast: 

POP cx  
r e p   s t o s b  :' 

c l  d 
jmp Done 

a l i g n  2 
: Y - m a j o r   ( m o r e   v e r t i c a l   t h a n   h o r i z o n t a l  

YMajor: 
mov 
mov 
mov 
mov 
mov 
sub 
d i  v 

mov 
add 
mov 

mov 
add 
mov 

[bpl.XAdvance.bx 
ax.SCREENKSEGMEN1 
ds  ,ax 
ax.cx 
cx.dx 
dx,   dx 
c x  

bx.dx 
bx,   bx 
Cbpl.AdjUp.bx 

s i  , cx  
s i   , s i  
[bp l .AdjDown.s i  

g e t   b a c k   t h e   f i n a l   r u n   p i x e l   l e n g t h  
d r a w   t h e   f i n a l   r u n  

r e s t o r e   n o r m a l   d i r e c t i o n   f l a g  

l i n e .  

:remember  which way X advances 

: p o i n t  DS:DI t o   t h e   f i r s t   b y t e   t o  draw 
:YDel ta  
:XDel t a  
: p r e p a r e   f o r   d i v i s i o n  
:AX = YDe l ta /XDe l ta  
; (minimum # o f   p i x e l s   i n  a r u n   i n   t h i s   l i n e )  
:DX = YDel ta  % XDel ta  
: e r r o r   t e r m   a d j u s t   e a c h   t i m e  X s teps   by  1: 
; used t o   t e l l  when  one e x t r a   p i x e l   s h o u l d   b e  
: d r a w n   a s   p a r t   o f  a r u n ,   t o   a c c o u n t   f o r  
: f r a c t i o n a l   s t e p s   a l o n g   t h e  Y a x i s   p e r  
: 1 - p i x e l   s t e p s   a l o n g  X 
: e r r o r   t e r m   a d j u s t  when t h e   e r r o r   t e r m   t u r n s  
: o v e r ,   u s e d   t o   f a c t o r   o u t   t h e  Y s t e p  made a t  
: t h a t   t i m e  

: I n i t i a l   e r r o r   t e r m :   r e f l e c t s  an i n i t i a l   s t e p   o f  0 .5  a l o n g   t h e  X a x i s .  
sub   dx .s i   : (YDel ta  % XDe l ta )  - (XDe l ta  * 2 )  

:DX = i n i t i a l   e r r o r   t e r m  
: The i n i t i a l  and l a s t   r u n s   a r e   p a r t i a l ,   b e c a u s e  X advances  on ly  0 .5  f o r  
: t h e s e   r u n s ,   r a t h e r   t h a n  1. D i v i d e   o n e   f u l l   r u n ,   p l u s   t h e   i n i t i a l   p i x e l ,  
: b e t w e e n   t h e   i n i t i a l  and l a s t   r u n s .  

mov s i  , cx  :S I  - XDel ta  
mov cx .ax   :who le   s tep   (min imum  run   leng th)  
s h r   c x . 1  
i n c   c x   ; i n i t i a l   p i x e l   c o u n t  = (whole  s tep / 2 )  + 1; 

push  cx  :remember f i n a l   r u n   p i x e l   c o u n t   f o r   l a t e r  
: (may b e   a d j u s t e d   l a t e r )  

; I f  t h e   b a s i c   r u n   l e n g t h   i s   e v e n  and t h e r e ' s   n o   f r a c t i o n a l   a d v a n c e ,  we have 
: one p i x e l   t h a t   c o u l d  go t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n ,   w h i c h  
: w e ' l l   a r b i t r a r i l y   a l l o c a t e   t o   t h e   l a s t   r u n .  
: I f  t h e r e  i s  an  odd  number o f   p i x e l s   p e r   r u n ,  we h a v e   o n e   p i x e l   t h a t   c a n ' t  
; b e   a l l o c a t e d   t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n ,  s o  w e ' l l  add 0 .5  t o  
: t h e   e r r o r   t e r m  s o  t h i s   p i x e l  will b e   h a n d l e d   b y   t h e   n o r m a l   f u l l - r u n   l o o p .  

add  dx.s i  ;assume  odd l e n g t h ,   a d d   X D e l t a   t o   e r r o r   t e r m  
t e s t  a1 .1 : i s   r u n   l e n g t h   e v e n ?  
jnz   YMajorAd jus tDone ; n o .   a l r e a d y   d i d   w o r k   f o r   o d d   c a s e ,   a l l   s e t  
sub  dx,s i  : l e n g t h   i s   e v e n ,   u n d o   o d d   s t u f f  we j u s t   d i d  
and  bx,  bx : i s   t h e   a d j u s t   u p   e q u a l   t o  D? 

702 Chapter 37 



j nz   YMajorAd jus tDone : n o  (don ' t   need   to   check  f o r  odd l e n g t h ,  

dec  cx ; b o t h   c o n d i t i o n s   m e t :  make i n i t i a l   r u n  1 
: because   o f   t he   above   t es t )  

: s h o r t e r  
YMajorAdjustDone: 

mov [bp].WholeStep.ax ;who le   s tep   (min imum  run   leng th)  
mov  a1 , [bp ]   .Co lo r  :AL - d r a w i n g   c o l o r  
mov bx.[bpl.XAdvance ;which way X advances 

: D r a w  t h e   f i r s t ,   p a r t i a l   r u n   o f   p i x e l s .  
YMajorF i rs tLoop:  

mov [ d i l . a l  
add di.SCREEN_WIDTH 

;d raw  the   p i xe l  
:advance  a long  the   ma jor   ax is  C Y )  

dec  cx 
j n z   Y M a j o r F i r s t L o o p  
add d i  , bx   ;advance  a long  the   minor   ax is  ( X )  

: D r a w  a l l   f u l l   r u n s .  
CmP s i  . I  :# o f   f u l l  runs. Are   there   more   than  2  

: columns, so t h e r e   a r e  some f u l l   r u n s ?  
: (SI - I/ columns - 1) 

jna  YMajorDrawLast  :no.  no f u l l   r u n s  
d e c   d x   ; a d j u s t   e r r o r   t e r m   b y  -1 s o  we can  use 

s h r   s i  .1 : conve r t   f r om  co lumn  to   co lumn-pa i  r c o u n t  
jnc   YMajorFu l lRunsOddEnt ry  : i f  t h e r e   i s  an odd  number o f  

: c a r r y   t e s t  

YMajorFul lRunsLoop: 
mov c x ,   [ b p l  .Who1 eStep 
add dx . [bp l .Ad jUp 
jnc  YMajorNoExtra 
i nc  cx 
sub  dx.[bpl.AdjDown 

YMajorNoExtra: 

YMajorRunLoop: 
:d raw  the  run 

mov C d i l . a l  
add d i  ,SCREEN-WIDTH 
dec  cx 
j n z  YMajorRunLoop 
add d i  , bx 

YMajorFul lRunsOddEntry:  

mo v 
add 
j n c  
i nc 
sub 

YMajorNoExtraZ: 
: d raw  the   run  

YMajorRunLoopE: 
mov 
add 
dec 
j nz 
add 

cx. [bpl .WholeStep 
dx. [bpl .AdjUp 
YMajorNoExtraZ 

dx.Cbpl.AdjDown 
cx 

C d i l . a l  
d i  ,SCREEN-WIDTH 
c x  
YMajorRunLoop2 
d i  . bx 

dec s i  
jnz   YMajorFu l lRunsLoop 

; Draw t h e   f i n a l   r u n   o f   p i x e l s .  
YMajorDrawLast: 

POP cx 

; columns,  do  the  odd  column now 

; run  i s  a t  l e a s t   t h i s   l o n g  
:advance  the   e r ro r   te rm  and  add  an   ex t ra  
: p i x e l  i f  t h e   e r r o r   t e r m  s o  i n d i c a t e s  
; o n e   e x t r a   p i x e l   i n   r u n  
; r e s e t   t h e   e r r o r   t e r m  

: d r a w   t h e   p i x e l  
:advance  a long  the   ma jor   ax is  C Y )  

; advance   a long   t he   m ino r   ax i s  ( X )  
: e n t e r   l o o p   h e r e  i f  t h e r e   i s  an odd  number 
; o f   f u l l   r u n s  
: r u n   i s   a t   l e a s t   t h i s   l o n g  
;advance  the   e r ro r   te rm  and  add an e x t r a  
: p i x e l  i f  t h e   e r r o r   t e r m  s o  i n d i c a t e s  
;one e x t r a   p i x e l   i n   r u n  
; r e s e t   t h e   e r r o r   t e r m  

: d r a w   t h e   p i x e l  
;advance  a long  the   ma jor   ax is  ( Y )  

:advance  a long  the   minor   ax is  ( X )  

: g e t   b a c k   t h e   f i n a l   r u n   p i x e l   l e n g t h  

Dead  Cats  and  Lightning  Lines 703 



YMajorLastLoop: 
mov Cdi1,a l  
add di.SCREEN-WIDTH 
dec  cx 
jnz   YMajorLas tLoop 

POP ds 
P O P  d i  
POP s i  
mov SP * bP 
POP bP 
r e t  

end 

Done: 

-Li  neDraw  endp 

: d r a w   t h e   p i x e l  
: advance   a long   t he   ma jo r   ax i s  ( Y )  

: r e s t o r e   c a l l e r ’ s  DS 

: r e s t o r e  C r e g i s t e r   v a r i a b l e s  
: d e a l l o c a t e   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

How Fast Is Fast? 
Your first question is likely to be the following: Just how fast is  Listing 37.1? Is it 
optimized to the hilt or  just pretty fast? The quick  answer  is:  It’s fast. Listing 37.1 
draws lines at  a  rate of nearly 1 million  pixels per second on my 486/33, and is 
capable of  still  faster  drawing,  as  I’ll  discuss  shortly. (The heavily optimized AutoCAD 
line-drawing code that I mentioned in the last chapter drew 150,000 pixels per sec- 
ond  on an EGA in a 386/16, and I thought I had died and  gone to Heaven. Such is 
progress.) The full  answer  is a  more complicated one,  and ties  in to the principle 
that if it is broken, maybe  that’s  okay-and  to the principle of looking before you 
leap, also  known  as profiling before you optimize. 
When I went  to speed up run-length slice  lines, I initially  manually converted the last 
chapter’s C code into assembly. Then I streamlined the register usage and used REP 
STOS wherever  possible.  Listing 37.1 is that code. At that point, line drawing was 
surely  faster, although I didn’t know  exactly  how much faster.  Equally  surely, there 
were  significant optimizations yet to be made, and I was itching to get on to them, 
for they  were bound to  be a lot more interesting than  a basic  C-to-assembly port. 
Ego intervened at this point, however. I wanted  to know  how much of a speed-up I 
had already gotten, so I timed the performance of the C code and compared it to the 
assembly code. To  my horror, I found  that I had not gotten even a two-times  im- 
provement! I couldn’t understand how that could be-the C code was decidedly 
unoptimized-until I hit on the idea of measuring the maximum memory speed of 
the VGA to which I was drawing. 
Bingo. The Paradise VGA in my 486/33 is fast for  a single  display-memory  write, 
because  it  buffers the data, lets the CPU go on its merry way, and finishes the write 
when display memory is ready.  However, the maximum rate  at which data can be 
written to  the  adapter  turns  out to be no more than one byte  every microsecond. Put 
another way,  you can  only  write one byte  to  this adapter every 33 clock  cycles on a 
486/33. Therefore, no matter how  fast I made the line-drawing code, it could never 
draw more than 1,000,000 pixels per second in  256-color mode in my system. The C 
code was already  drawing at  about half that rate, so the potential speed-up for the 

704 Chapter 37 



assembly code was limited to a maximum of two times, which is pretty close to what 
Listing 37.1 did, in fact, achieve. When I compared  the C and assembly implementa- 
tions drawing to normal system (nondisplay) memory, I  found  that  the assembly 
code was actually four times  as  fast  as the C code. 

In fact, Listing 37.1 draws VGA lines at about 92percent of the  maximum possible p rate in my system-that is, it draws very nearly as fast as the VGA hardware will 
allow. All the optimization in the world would get me less than 10 percent faster 
line  drawing-and only $I  eliminated all overhead, an unlikely proposition at 
best. The code isn 1 fully optimized, but so what? 

Now  it’s true  that faster linedrawing  code would  likely be more beneficial on faster 
VGAs, especially local-bus VGAs, and in slower  systems. For that reason, I’ll list a 
variety of potential optimizations to Listing 37.1. On  the  other  hand, it’s  also true 
that Listing 37.1 is capable of drawing lines at  a  rate of 2.2 million pixels per second 
on a 486/ 33, given  fast enough VGA memory, so it  should be able to drive almost 
any non-local-bus VGA at nearly full speed.  In  short, Listing 37.1 is very fast, and, in 
many  systems, further optimization is basically a waste of time. 
Profile before you optimize. 

Further Optimizations 
Following  is a quick tour of some of the many  possible further optimizations to 
Listing 37.1. 
The run-handling loops could be unrolled  more  than  the current two times. How- 
ever, bear in mind  that  a two-times unrolling gets more  than half the maximum 
unrolling  benefit with  less overhead than  a  more heavily unrolled  loop. 
BX could be freed up in  the Y-major code by breaking out separate loops for X 
advances of 1 and -1. DX could be freed up by using AH as the  counter  for  the  run 
loops, although this  would limit the maximum line  length  that  could be handled. 
The freed registers could be used to keep more of the whole-step and  error variables 
in registers. Alternatively, the  freed registers could  be used to implement  more eso- 
teric approaches like unrolling  the Y-major inner loop; such unrolling  could take 
advantage of the knowledge that only two run lengths  are possible for any  given line. 
Strangely enough,  on  the 486 it might also be worth unrolling  the X-major inner 
loop, which  consists  of REP STOSB, because of the slow start-up time of REP relative 
to the speed of branching  on  that processor. 
Special code  could be implemented  for lines with integral slopes, because all runs 
are exactly the same length in such lines. Also, the X-major code  could try  to  write an 
aligned word at a time to display  memory whenever possible;  this  would improve the 
maximum  possible performance  on some 1 &bit VGAs. 

Dead Cats  and  Lightning  Lines 705 



One weakness  of  Listing 3’7.1 is that  for lines with  slopes  between 0.5 and 2, the 
average run length is  less than two, rendering  run-length slicing  ineffective. This can 
be remedied by viewing lines in  that  range as being  composed of diagonal,  rather 
than  horizontal or vertical runs. I haven’t space to take this idea any further  in this 
book, but it’s not very complicated, and it  guarantees  a minimum run length of 2, 
which renders  run drawing considerably more efficient, and makes techniques such 
as unrolling  the inner run-drawing loops more attractive. 
Finally,  be  aware that  run-length slice drawing is best for  long lines, because it has 
more and slower setup  than  a  standard Bresenham’s line draw, including  a divide. 
Run-length slice is great  for 100-pixel lines, but  not necessarily for 20-pixel lines, and 
it’s a  sure  thing  that it’s not terrific for %pixel lines. Both approaches will work, but 
if line-drawing performance is critical, whether you’ll  want to use run-length slice or 
standard Bresenham’s depends  on  the typical lengths of the  lines you’ll be drawing. 
For lines of widely  varying lengths, you might want to implement  both  approaches, 
and choose the best one for  each  line,  depending  on  the  line length-assuming, of 
course,  that your  display  memory  is  fast enough  and your application  demanding 
enough  to make that level of optimization worthwhile. 
If your code looks broken  from  a  performance perspective, think  before you  fix  it; 
that  particular cat may be  dead  for  a perfectly good  reason. 1’11  say it again: Profile 
bejwe you optimize. 

706 Chapter 37 



chapter 38

the polygon primeval



"Give me but one jirin spot on which to stand, and I will  move  the Earth. '' 
-Archimedes , ~ v : " j  

Were Archimedes ali&,~,today, he might say,  "Give me but  one fast polygon-fill 
routine  on which to calf, an'd 1 will draw the  Earth." Programmers often think of 
pixel drawing as beink  the basic graphics primitive, but filled polygons are equally 
fundamental  and fir more useful. Filled  polygons can be used for constructs as 
diverse as a single <$ixel or a 3-D surface, and virtually everything in between. 
I'll spends?me&ne in this chapter  and  the  next several developing routines to 
draw filled polygoris and building more sophisticated graphics operations  atop 
those routines.  Once.we have that  foundation, I'll get into 2-D manipulation and 
animation of polygon-based entities as preface to an  exploration of 3-D graphics. 
You can't  get  there  from  here without laying some groundwork, though, so in this 
chapter I'll begin with the basics  of filling a polygon. In  the  next  chapter, we'll see 
how  to  draw a polygon considerably faster. That's my general  approach  for this 
sort of topic: High-level exploration of a graphics topic first, followed by a speedy 
hardware-specific implementation  for  the IBM PC/VGA combination,  the most 
widely used graphics system around. Abstract, machine-independent graphics is a 
thing of beauty, but only by understanding graphics at all  levels, including  the 
hardware, can you boost performance  into  the realm of the sublime. 
And slow computer graphics is scarcely worth the  bother. 

"" " Inan .. ~ n.l ~ 

709 



Filled Polygons 
A polygon is simply a  shape  formed by lines laid end to end to  form  a  continuous, 
closed path. A polygon is filled by setting all  pixels  within the polygon’s boundaries 
to  a  color or  pattern. For now,  we’ll  work  only  with  polygons filled with solid colors. 
You can  divide  polygons into three categories:  convex,  nonconvex, and complex, as shown 
in Figure 38.1. Convex  polygons include what you’d normally think of  as “convex” 
and more; as far as  we’re concerned,  a convex  polygon is one  for which  any horizon- 
tal line drawn through  the polygon encounters  the  right  edge exactly once  and  the 
left  edge exactly once,  excluding  horizontal and zero-length  edge  segments.  Put 
another way, neither  the  right  nor  left  edge of a convex  polygon ever reverses direc- 
tion  from up to down, or vice-versa. Also, the  right and left edges of a convex  polygon 
may not cross one  another,  although they may touch so long as the  right  edge never 
crosses  over to  the  left side of the left edge.  (Check out the  second polygon  drawn in 
Listing 38.3, which certainly isn’t convex in the  normal  sense.) The boundaries of 
nonconvex polygons, on  the  other  hand, can go in whatever directions they please, 
so long as  they never cross. Complex polygons can have  any boundaries you might 
imagine, which  makes for  interesting  problems in deciding which interior spaces to 
fill and which not to fill.  Each category is a superset of the previous one. 
(See Chapter 41 for  a  more  detailed discussion of polygon  types and naming.) 
Why bother  to distinguish between  convex, nonconvex, and complex polygons? Easy: 
performance, especially when it comes to filling convex  polygons.  We’re going  to 
start with filled convex  polygons; they’re widely useful and will serve well to  intro- 
duce some of the  subtler complexities of polygon drawing, not the least of which is 
the slippery concept of “inside.” 

Which Side Is Inside? 
The basic principle of polygon filling is decomposing  each polygon into a series of 
horizontal lines, one for each horizontal row  of  pixels, or scan line, within the polygon (a 
process I’ll  call scan conversion), and drawing the  horizontal lines. I’ll refer  to  the 

Convex,  nonconvex,  and  complex polygons. 
Figure 38.1 

71 0 Chapter 38 



entire process as rasterization. Rasterization of  convex  polygons is easily done by 
starting at  the  top of the polygon and tracing down the left and right sides, one scan 
line (one vertical pixel) at  a time, filling the  extent between the two edges on each 
scan line, until  the bottom of the polygon is reached. At first glance, rasterization 
does not seem to be particularly complicated, although  it  should be apparent  that 
this simple approach is inadequate  for nonconvex polygons. 
There  are  a  couple of complications, however. The lesser complication is  how to 
rasterize the polygon  efficiently,  given that it’s difficult to write  fast code that simul- 
taneously traces two edges and fills the space between them.  The solution is to 
decouple  the process of scan-converting the polygon into  a list of horizontal lines 
from  that of drawing the horizontal lines. One device-independent  routine can trace 
along the two edges and build a list  of the  beginning  and end coordinates of the 
polygon on each raster line. Then a  second, device-specific, routine can draw from 
the list after the  entire polygon  has been  scanned. We’ll see this in action shortly. 
The  second,  greater complication arises because the definition of  which pixels are 
“within” a polygon is a  more complicated matter  than you might imagine. You might 
think  that scan-converting an  edge of a polygon is analogous to drawing a line from 
one vertex to the next, but this is not so. A line by itself is a one-dimensional con- 
struct, and as such is approximated on a display by drawing the pixels nearest to the 
line on  either side of the  true  line. A line serving  as a polygon boundary, on  the 
other  hand, is part of a two-dimensional object. When filling a polygon, we want to 
draw the pixels  within the polygon, but  a  standard vertex-to-vertex line-drawing algo- 
rithm will draw  many  pixels outside the polygon, as  shown in Figure 38.2. 
It’s no crime to use standard lines to trace out a polygon, rather  than drawing only 
interior pixels. In fact, there  are certain advantages: For example, the edges of a 

00 
00000000 
Polygon  boundary  pixels 
selected by a standard 
line-drawing  algorithm. 

00 
00000000 
Polygon boundary  pixels  when 
all drawing is kept  inside or on 
the polygon’s  bounding  lines. 

Drawing  polygons  with standard line-drawing algorithms. 
Figure 38.2 

The Polygon  Primeval 71 1 



filled  polygon will match the edges of the same polygon  drawn unfilled. Such poly- 
gons will look pretty much as  they’re supposed to, and all  drawing on raster displays 
is, after all,  only an approximation of an ideal. 
There’s one great drawback  to tracing polygons  with standard lines, however:  Adja- 
cent polygons  won’t  fit together properly,  as  shown in Figure 38.3. If you  use  six 
equilateral triangles to make a hexagon,  for  example,  the edges of the triangles will 
overlap when traced with standard lines, and  more recently  drawn  triangles will  wipe 
out portions of their predecessors. Worse  still, odd color effects will show up along 
the polygon boundaries if XOR drawing is used. Consequently,  filling out to the 
boundary lines just won’t do for drawing  images composed of fitted-together poly- 
gons. And because fitting polygons together is exactly  what I have in mind, we need 
a different  approach. 

How Do You Fit Polygons  Together? 
How, then, do you fit polygons together? Very carefully.  First, the line-tracing algo- 
rithm must be adjusted so that  it selects  only those pixels that  are truly inside the 
polygon. This basically requires shifting a standard line-drawing algorithm horizon- 
tally by one half-pixel  toward the polygon’s interior. That leaves the issue of how to 
handle points that  are exactly on  the boundary, and points that lie at vertices, so that 
those points are drawn once  and only once. To deal with that, we’re going  to adopt 
the following  rules: 

Points  located  exactly  on  nonhorizontal  edges  are  drawn  only if the  interior of 
the  polygon  is  directly  to  the  right  (left  edges  are  drawn,  right  edges  aren’t). 

00000000 
The  screen after  a  filled  polygon 
is drawn using a  standard 
line-drawing  algorithm to trace 
the  edges. 

00 
00 
00 
00  
00 
00 
00 
00  
00000000 

The  screen after  a second, adjacent 
polygon is drawn; the  second  polygon 
wipes  out  several  pixels drawn as part 
of  the  first polygon, some  of  them  within 
the  first  polygon‘s boundaries. 

The adjacent polygons problem. 
Figure 38.3 

71 2 Chapter 38 



Points  located  exactly on horizontal  edges  are  drawn  only  if  the  interior of the 
polygon  is  directly  below  them  (horizontal  top  edges  are  drawn,  horizontal  bot- 
tom  edges  aren't). 
A vertex  is  drawn  only  if  all  lines  ending at that  point  meet  the  above  conditions 
(no  right or  bottom  edges  end  at  that  point). 

All edges of a polygon except  those  that are flat tops or flat bottoms will be consid- 
ered  either  right  edges or left edges, regardless of slope. The left edge is the  one  that 
starts with the leftmost line down from  the  top of the polygon. 
These  rules  ensure that  no pixel is drawn more  than  once when adjacent polygons 
are filled, and  that if polygons cover the full 360degree  range  around a pixel, then 
that pixel will be drawn once  and only once-just  what we need in order to be  able to 
fit filled polygons together seamlessly. 

This sort of non-overlapping polygonfilling isn 't ideal for allpurposes. Polygons 1 are  skewed  toward the top and left edges, which  not only introduces drawing error 
relative to the ideal polygon but also means  that a  Jilledpolygon won 't match the 
same polygon drawn unfilled. Narrow wedges and one-pixel-wide polygons will 
show  up spottily. All in all, the choice ofpolygon-filling approach depends entirely 
on  the ways in which thefilledpolygons must be used. 

For our purposes,  nonoverlapping polygons are  the way to go, so let's have at  them. 

Filling Non-Overlapping Convex  Polygons 
Without further  ado, Listing 38.1 contains a function, FillConvexPolygon, that ac- 
cepts a list  of points that describe a convex polygon, with the last point assumed to 
connect  to  the first, and scans it  into a list  of lines to fill, then passes that list to  the 
function DrawHorizontalLineLt in Listing 38.2. Listing 38.3 is a sample  program 
that calls FillConvexPolygon to draw polygons of various sorts, and Listing 38.4  is a 
header file included by the other listings. Here  are  the listings; we'll pick up discus- 
sion on  the  other side. 

LISTING  38.1  138- 1 .C 
/*  C o l o r - f i l l s  a convex  polygon. All v e r t i c e s   a r e   o f f s e t  b y   ( X O f f s e t .  

YOf fse t ) .   "Convex"  means t h a t   e v e r y   h o r i z o n t a l   l i n e   d r a w n   t h r o u g h  
t h e   p o l y g o n   a t   a n y   p o i n t   w o u l d   c r o s s   e x a c t l y   t w o   a c t i v e   e d g e s  
( n e i t h e r   h o r i z o n t a l   l i n e s   n o r   z e r o - l e n g t h   e d g e s   c o u n t  as a c t i v e  
edges:   bo th   a re   acceptab le   anywhere  i n   t h e   p o l y g o n ) .  and t h a t   t h e  
r i g h t  & l e f t  edges  never  cross.  ( I t ' s  OK f o r  them t o   t o u c h .   t h o u g h .  
s o  l o n g  as t h e   r i g h t  edge  never  crosses  over t o   t h e   l e f t   o f   t h e  
l e f t  edge.)   Nonconvex  po lygons  won' t   be  drawn  proper ly .   Returns 1 
f o r   s u c c e s s ,  0 i f  memory a l l o c a t i o n   f a i l e d .  * /  

# i n c l u d e   < s t d i o . h >  
l i n c l  ude  <math.  h> 
# i f d e f  -TURBOC- 

The Polygon Primeval 71 3 



ii n c l  ude  <a1 1 oc.  h> 
# e l s e  / *  MSC */  
#i n c l  ude  <mal 1 oc.  h> 
Pendi  f 
# inc lude   "po l ygon .  h" 

/ *  Advances t h e   i n d e x   b y  one v e r t e x   f o r w a r d   t h r o u g h   t h e   v e r t e x   l i s t ,  

# d e f i n e  INDEX-FORWARD(1ndex) \ 
w r a p p i n g   a t   t h e   e n d   o f   t h e   l i s t  */ 

Index  - ( I n d e x  + 1) % V e r t e x L i s t - > L e n g t h ;  

/ *  Advances t h e   i n d e x   b y   o n e   v e r t e x   b a c k w a r d   t h r o u g h   t h e   v e r t e x   l i s t ,  

# d e f i n e  INDEXLBACKWARD(1ndex) \ 
wrapp ing  a t  t h e   s t a r t   o f   t h e   l i s t  * /  

Index  - ( I n d e x  - 1 + V e r t e x L i s t - > L e n g t h )  % V e r t e x L i s t - > L e n g t h :  

/* Advances t h e   i n d e x   b y  one v e r t e x   e i t h e r   f o r w a r d   o r   b a c k w a r d   t h r o u g h  
t h e   v e r t e x   l i s t ,   w r a p p i n g   a t   e i t h e r  end o f   t h e   l i s t  */ 

# d e f i n e  INDEX-MOVE(Index,Direction) \ 
i f  ( D i r e c t i o n  > 0) \ 

Index  - ( I n d e x  + 1) % V e r t e x L i s t - > L e n g t h :  \ 
e l s e  \ 

Index  - ( I n d e x  - 1 + V e r t e x L i s t - > L e n g t h )  % V e r t e x L i s t - > L e n g t h :  

e x t e r n   v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  *, i n t ) :  
s t a t i c   v o i d   S c a n E d g e ( i n t .   i n t .   i n t .   i n t .   i n t .   i n t .   s t r u c t   H L i n e  **): 

i n t  FillConvexPolygon(struct P o i n t L i s t H e a d e r  * V e r t e x L i s t .   i n t   C o l o r ,  

( 
i n t   X O f f s e t .   i n t   Y O f f s e t )  

i n t   1 .   M i n I n d e x L .   M a x I n d e x .   M i n I n d e x R .   S k i p F i r s t .  Temp: 
i n t  MinPoint -Y.   MaxPoint -Y.   TopIsFlat .   Lef tEdgeDir ;  
i n t   N e x t I n d e x .   C u r r e n t I n d e x .   P r e v i o u s l n d e x ;  
i n t  DeltaXN.  DeltaYN.  DeltaXP.  DeltaYP; 
s t r u c t   H L i n e L i s t   W o r k i n g H L i n e L i s t ;  
s t r u c t   H L i n e   * E d g e P o i n t P t r :  
s t r u c t   P o i n t   * V e r t e x P t r ;  

/ *  P o i n t   t o   t h e   v e r t e x   l i s t  * /  
V e r t e x P t r  - V e r t e x L i s t - > P o i n t P t r :  

/ *  Scan t h e   l i s t   t o   f i n d   t h e   t o p  a n d   b o t t o m   o f   t h e   p o l y g o n  */ 
i f  ( V e r t e x L i s t - > L e n g t h  - 0 )  

MaxPoint-Y - MinPoint-Y - VertexPtrCMinIndexL - MaxIndex - 01.Y: 
f o r  (i - 1: i < V e r t e x L i s t - > L e n g t h :  i++) ( 

r e t u r n ( 1 ) :  / *  r e j e c t   n u l l   p o l y g o n s  */  

i f  (Ver texP t rC i1 .Y  < MinPoint -Y)  

e l s e  i f  (Ver texP t rC i1 .Y  > MaxPoint-Y) 
MinPoint-Y - VertexPtrCMinIndexL - i1.Y: /*  new t o p  */  

MaxPoint-Y - VertexPtrCMaxIndex - i1.Y: /* new bo t tom */  
} 
i f  (MinPoint-Y - MaxPoint-Y) 

r e t u r n ( 1 ) :  /* p o l y g o n   i s   0 - h e i g h t :   a v o i d   i n f i n i t e   l o o p   b e l o w  */ 

/* Scan i n  a s c e n d i n g   o r d e r   t o   f i n d   t h e   l a s t   t o p - e d g e   p o i n t  */ 
MinIndexR - MinIndexL;  
wh i l e   (Ve r texP t rCMin IndexR1 .Y  - MinPoint -Y)  

INDEX-BACKWARD(Min1ndexR): /* back u p  t o   l a s t   t o p - e d g e   p o i n t  * /  
INDEX-FORWARD(Min1ndexR); 

71 4 Chapter 38 



I* Now scan i n  d e s c e n d i n g   o r d e r   t o   f i n d   t h e   f i r s t   t o p - e d g e   p o i n t  * /  
w h i l e   ( V e r t e x P t r [ M i n I n d e x L l . Y  - MinPoint-Y) 

INDEXLFORWARD(Min1ndexL); / *  back  up t o   f i r s t   t o p - e d g e   p o i n t  */ 

I* F i g u r e   o u t   w h i c h   d i r e c t i o n   t h r o u g h   t h e   v e r t e x   l i s t   f r o m   t h e   t o p  

L e f t E d g e D i r  - -1: I* assume l e f t  edge  runs down t h r u   v e r t e x   l i s t  * I  
i f  ( ( T o p I s F l a t  - (VertexPtrCMinIndexL1.X !- 

INDEX_BACKWARD(MinIndexL); 

v e r t e x   i s   t h e   l e f t  edge  and  which i s   t h e   r i g h t  * /  

Ver texPt r [Min IndexRl .X)  ? I : 0)  - 1 )  C 
I* I f  t h e   t o p   i s  f lat,  j u s t  see  which o f  t h e  ends i s   l e f t m o s t  *I  
i f  ( V e r t e x P t r [ M i n I n d e x L l . X  > VertexPtrCMinIndexR1.X) { 

L e f t E d g e D i r  = 1; I* l e f t  edge  runs   up   th rough  ver tex  l i s t  *I  
Temp - MinIndexL: I* swap t h e   i n d i c e s  so Min IndexL */  
Min IndexL = MinIndexR; I* p o i n t s   t o   t h e   s t a r t   o f   t h e   l e f t  * /  
MinIndexR - Temp; / *  edge, s i m i l a r l y   f o r   M i n I n d e x R  * /  

1 
1 e l s e  { 

/ *  P o i n t   t o   t h e  downward  end o f   t h e   f i r s t   l i n e   o f  each o f   t h e  

Next Index  - MinIndexR; 
INDEXLFORWARD(Next1ndex); 
P r e v i o u s I n d e x  - Min IndexL:  
INDEX-BACKWARD(Previous1ndex); 
I* C a l c u l a t e  X and Y l e n g t h s   f r o m   t h e   t o p   v e r t e x   t o   t h e  end o f  

two  edges down f r o m   t h e   t o p  * /  

t h e   f i r s t   l i n e  down each  edge:  use  those t o  compare  s lopes 
and  see  which l i n e   i s   l e f t m o s t  * I  

DeltaXN - V e r t e x P t r [ N e x t I n d e x l . X  - VertexPtrCMinIndexL1.X; 
Del taYN - V e r t e x P t r [ N e x t I n d e x l . Y  - VertexPtrCMinIndexL1.Y: 
Del taXP - VertexPtr[PreviousIndexl.X - VertexPtrCMinIndexL1.X: 
DeltaYP - Ver texP t r [P rev ious Index l .Y  - VertexPtrCMinIndexL1.Y; 
i f  ( ( ( 1 o n g ) D e l t a X N  * DeltaYP - (1ong)DeltaYN * DeltaXP) < OL) { 

L e f t E d g e D i r  = 1; I* l e f t  edge  runs  up  through  ver tex l i s t  *I  
Temp = Min IndexL:  I* swap t h e   i n d i c e s  s o  Min IndexL *I  
MinIndexL .. MinIndexR; I* p o i n t s   t o   t h e   s t a r t   o f   t h e   l e f t  * /  
MinIndexR - Temp: / *  edge, s i m i l a r l y   f o r   M i n I n d e x R  * I  

1 
1 

I* Set   t he  # o f  s c a n   l i n e s   i n   t h e   p o l y g o n ,   s k i p p i n g   t h e   b o t t o m   e d g e  
and a l s o   s k i p p i n g   t h e   t o p   v e r t e x  i f  t h e   t o p   i s n ' t   f l a t  because 
i n   t h a t  c a s e   t h e   t o p   v e r t e x   h a s  a r i g h t  edge  component,  and  set 
t h e   t o p   s c a n   l i n e   t o   d r a w ,   w h i c h   i s   l i k e w i s e   t h e   s e c o n d   l i n e   o f  
t h e   p o l y g o n   u n l e s s   t h e   t o p   i s   f l a t  *I  

i f  ( (Work ingHL ineL is t .Leng th  - 
MaxPoint-Y - MinPoint-Y - 1 + T o p I s F l a t )  <- 0 )  

r e t u r n ( 1 ) :  / *  t h e r e ' s   n o t h i n g   t o   d r a w ,  s o  we're  done */  
W o r k i n g H L i n e L i s t . Y S t a r t  - Y O f f s e t  + MinPoint-Y + 1 - T o p I s F l a t :  

/*  Get memory i n  w h i c h   t o   s t o r e   t h e   l i n e   l i s t  we genera te  *I 
i f  ( (Work ingHL ineL is t .HL inePt r  - 

( s t r u c t   H L i n e  * )  ( m a l l o c ( s i z e o f ( s t r u c t   H L i n e )  * 
Work ingHL ineL is t .Leng th ) ) )  -- NULL) 

r e t u r n ( 0 ) :  / *  c o u l d n ' t   g e t  memory f o r   t h e   l i n e   l i s t  *I  

I* Scan t h e   l e f t  edge  and s t o r e   t h e   b o u n d a r y   p o i n t s   i n   t h e   l i s t  *I  
I* I n i t i a l   p o i n t e r   f o r   s t o r i n g   s c a n   c o n v e r t e d   l e f t - e d g e   c o o r d s  *I 
EdgePoin tPt r  - Work ingHLineLis t .HLinePtr :  
I* S t a r t  f r o m   t h e   t o p   o f   t h e   l e f t   e d g e  *I  
P r e v i o u s I n d e x  - C u r r e n t I n d e x  - Min IndexL;  

The  Polygon  Primeval 71 5 



1 

/*  

/*  S k i p   t h e   f i r s t   p o i n t   o f   t h e   f i r s t   l i n e   u n l e s s   t h e   t o p   i s   f l a t :  
i f  t h e   t o p   i s n ' t   f l a t ,   t h e   t o p   v e r t e x   i s   e x a c t l y  on a r i g h t  
edge  and i s n ' t  drawn * I  

S k i p F i r s t  - T o p I s F l a t  ? 0 : 1; 
/*  Scan c o n v e r t   e a c h   l i n e   i n   t h e   l e f t  e d g e   f r o m   t o p   t o   b o t t o m  */  
do { 

INDEX-MOVE(Current1ndex.LeftEdgeDir):  
ScanEdge(VertexPtr [PreviousIndex] .X  + X O f f s e t .  

VertexPtr[PreviousIndexl.Y. 
VertexPtr[CurrentIndexl.X + X O f f s e t .  
VertexPtr[CurrentIndexl.V, 1. S k i p F i r s t .   & E d g e P o i n t P t r ) :  

P r e v i o u s I n d e x  - C u r r e n t I n d e x :  
S k i p F i r s t  - 0: I* s c a n   c o n v e r t   t h e   f i r s t   p o i n t   f r o m  now on */ 

1 w h i l e   ( C u r r e n t I n d e x  !- MaxIndex):  

/*  Scan t h e   r i g h t  edge   and   s to re   t he   boundary   po in ts  i n  t h e   l i s t  * I  
EdgePoin tPt r  - W o r k i n g H L i n e L i s t . H L i n e P t r ;  
P r e v i o u s I n d e x  - C u r r e n t I n d e x  - MinIndexR: 
S k i p F i r s t  - T o p I s F l a t  ? 0 : 1; 
/* 

do 

Scan c o n v e r t   t h e   r i g h t  edge,  top t o  bottom. X c o o r d i n a t e s   a r e  
a d j u s t e d  1 t o   t h e   l e f t .   e f f e c t i v e l y   c a u s i n g   s c a n   c o n v e r s i o n   o f  
t h e   n e a r e s t   p o i n t s   t o   t h e   l e f t   o f   b u t   n o t   e x a c t l y  on the  edge */  
( 
INDEX-MOVE(Current1ndex.-LeftEdgeDir):  
ScanEdge(VertexPtr[PreviousIndexl.X + X O f f s e t  - 1. 

VertexPtr[PreviousIndex3.Y. 
VertexPtr[CurrentIndexl.X + X O f f s e t  - 1. 
VertexPtr[CurrentIndex].Y, 0. S k i p F i r s t .   & E d g e P o i n t P t r ) ;  

P r e v i o u s I n d e x  - C u r r e n t I n d e x :  
S k i p F i r s t  - 0: / *  s c a n   c o n v e r t   t h e   f i r s t   p o i n t   f r o m  now on */  

1 w h i l e   ( C u r r e n t I n d e x  !- MaxIndex):  

I* Draw t h e   l i n e   l i s t   r e p r e s e n t i n g   t h e   s c a n   c o n v e r t e d   p o l y g o n  */ 
DrawHor i zon ta lL ineL is t (&Work ingHL ineL is t ,  C o l o r ) ;  

I* R e l e a s e   t h e   l i n e   l i s t ' s  memory and   we ' re   success fu l l y   done  * I  
f ree (Work ingHLineL is t .HL inePt r ) :  
r e t u r n ( 1 ) :  

Scan  conver ts  an edge  f rom (X1,Yl) t o  ( X Z . Y 2 ) .   n o t   i n c l u d i n g   t h e  
p o i n t   a t  ( X Z . Y 2 ) .   T h i s   a v o i d s   o v e r l a p p i n g   t h e   e n d   o f   o n e   l i n e   w i t h  
t h e   s t a r t  o f  t h e   n e x t ,   a n d   c a u s e s   t h e   b o t t o m   s c a n   l i n e   o f   t h e  
p o l y g o n   n o t   t o   b e   d r a w n .  I f  S k i p F i r s t  !- 0.  t h e   p o i n t  a t  (X1,Yl) 
i s n ' t  d r a w n .   F o r   e a c h   s c a n   l i n e ,   t h e   p i x e l   c l o s e s t   t o   t h e   s c a n n e d  
l i n e   w i t h o u t   b e i n g   t o   t h e   l e f t  o f  t h e   s c a n n e d   l i n e   i s   c h o s e n .  * /  

s t a t i c   v o i d   S c a n E d g e ( i n t  X 1 .  i n t  Y 1 .  i n t  X2. i n t  Y2. i n t   S e t X S t a r t .  

{ 
i n t   S k i p F i r s t .   s t r u c t   H L i n e   * * E d g e P o i n t P t r )  

i n t  Y .  De l taX.   De l taY:  
doub le   I nve rseS lope ;  
s t r u c t   H L i n e   * W o r k i n g E d g e P o i n t P t r ;  

/ *  C a l c u l a t e  X and Y l e n g t h s   o f   t h e   l i n e  and t h e   i n v e r s e   s l o p e  */  
De l taX - X2 - X 1 ;  
i f  ( ( D e l t a Y  - V2 - Y 1 )  <- 0 )  

I n v e r s e S l o p e  - (doub1e)DeltaX / (doub1e)DeltaY: 
r e t u r n :  /* g u a r d   a g a i n s t   0 - l e n g t h   a n d   h o r i z o n t a l   e d g e s  */  

71 6 Chapter 38 



I* S t o r e   t h e  X c o o r d i n a t e   o f   t h e   p i x e l   c l o s e s t   t o   b u t   n o t   t o   t h e  
l e f t   o f   t h e   l i n e   f o r  each Y coord ina te   be tween Y 1  and Y 2 .  n o t  
i n c l u d i n g  Y2 and a l s o   n o t   i n c l u d i n g  Y1 i f  S k i p F i r s t  != 0 * /  

Work ingEdgePointPtr  = *EdgePo in tP t r :  I* a v o i d   d o u b l e   d e r e f e r e n c e  * I  
f o r  ( Y  - Y 1  + S k i p F i r s t :  Y < Y2:  Y++. WorkingEdgePointPtr++) { 

I* S t o r e   t h e  X c o o r d i n a t e   i n   t h e   a p p r o p r i a t e  edge l i s t  * /  
i f  ( S e t X S t a r t  -= 1)  

Work ingEdgePo in tP t r ->XSta r t  - 
X 1  + ( i n t ) ( c e i l ( ( Y - Y I )  * Inve rseS lope) ) :  

e l s e  
Work ingEdgePointPtr ->XEnd = 

X 1  + ( i n t ) ( c e i l ( ( Y - Y l )  * I n v e r s e S l o p e ) ) ;  

*EdgePointPtr  - Work ingEdgePointPtr :  / *  advance c a l l e r ' s   p t r  * I  
1 

LISTING 38.2  138-2.C 
I* Draws a l l   p i x e l s   i n   t h e   l i s t   o f   h o r i z o n t a l   l i n e s   p a s s e d   i n ,   i n  

mode 13h .   t he  VGA's 320x200  256-co lor  mode.  Uses a s l o w   p i x e l - b y -  
p i x e l   a p p r o a c h ,   w h i c h   d o e s   h a v e   t h e   v i r t u e   o f   b e i n g   e a s i l y   p o r t e d  
t o  any  environment.  * I  

#i ncl  ude  <dos . h> 
d i n c l  ude  "polygon.  h" 

# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

s t a t i c   v o i d   D r a w P i x e l ( i n t .   i n t ,   i n t ) :  

v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  * H L i n e L i s t P t r .  

I 
i n t   C o l o r )  

s t r u c t   H L i n e   * H L i n e P t r ;  
i n t  Y .  X :  

I* P o i n t   t o   t h e   X S t a r t I X E n d   d e s c r i p t o r   f o r   t h e   f i r s t   ( t o p )  

HL inePt r  - H L i n e L i s t P t r - > H L i n e P t r ;  
/ *  Draw  each h o r i z o n t a l   l i n e   i n   t u r n ,   s t a r t i n g   w i t h   t h e   t o p  one and 

a d v a n c i n g   o n e   l i n e   e a c h   t i m e  * I  
f o r  ( Y  = H L i n e L i s t P t r - > Y S t a r t :  Y < ( H L i n e L i s t P t r - > Y S t a r t  + 

h o r i z o n t a l   l i n e  */  

H L i n e L i s t P t r - > L e n g t h ) ;  Y++. HLinePtr++) { 

s t a r t i n g   w i t h   t h e   l e f t m o s t  one * /  

DrawPixe l (X.  Y .  C o l o r ) ;  

I* Draw  each p i x e l   i n   t h e   c u r r e n t   h o r i z o n t a l   l i n e   i n   t u r n ,  

f o r  ( X  = H L i n e P t r - > X S t a r t :  X <= HLinePtr ->XEnd;  X++) 

1 

I* Draws t h e   p i x e l   a t  ( X .  Y )  i n   c o l o r   C o l o r   i n  VGA mode 13h *I  
s t a t i c   v o i d   D r a w P i x e l ( i n t  X .  i n t  Y .  i n t   C o l o r )  I 

uns igned   cha r   f a r   *Sc reenPt r ;  

li f d e f  -TURBOC- 

# e l s e  I* MSC 5 . 0  * I  
ScreenPt r  = MK-FP(SCREEN-SEGMENT. Y * SCREEN-WIDTH + X ) ;  

FP_SEG(ScreenPtr) = SCREEN-SEGMENT: 
FP-OFF(ScreenPtr) = Y * SCREEN-WIDTH + X ;  

#endi  f 

The  Polygon  Primeval 71 7 



1 
*ScreenPt r  - ( u n s i g n e d   c h a r ) C o l o r ;  

LISTING  38.3  138-3.C 
/ *  Sample  program t o   e x e r c i s e   t h e   p o l y g o n - f i l l i n g   r o u t i n e s .   T h i s   c o d e  

and a l l   p o l y g o n - f i l l i n g  code   has   been   tes ted   w i th   Bo r land   and  
M i c r o s o f t   c o m p i l e r s .  * /  

# inc lude   <con io .h>  
Pi n c l  ude  <dos.  h> 
#i n c l  ude  "polygon.  h" 

/ *  Draws t h e   p o l y g o n   d e s c r i b e d   b y   t h e   p o i n t   l i s t   P o i n t L i s t   i n   c o l o r  
C o l o r   w i t h  all v e r t i c e s   o f f s e t  by ( X . Y )  * /  

# d e f i n e  DRAW-POLYGON(PointList.Color,X.Y) \ 
Polygon.Length - sizeof(PointList)/sizeof(struct P o i n t ) ;  \ 
P o l y g o n . P o i n t P t r  - P o i n t L i s t ;  \ 
FillConvexPolygon(&Polygon. C o l o r .  X .  Y ) ;  

v o i d   m a i n ( v o i d 1 :  
e x t e r n   i n t  FillConvexPolygon(struct P o i n t L i s t H e a d e r  *, i n t .   i n t .   i n t l ;  

v o i d   m a i n 0  
i n t  i. j :  
s t r u c t   P o i n t L i s t H e a d e r   P o l y g o n ;  
s t a t i c   s t r u c t   P o i n t   S c r e e n R e c t a n g l e [ ]  - 
s t a t i c   s t r u c t   P o i n t  ConvexShape[] - ~t0.0~,t320.03.t320.200~,~0,200~}; 

t~0.0).~121,0}.t320.0~,t200,513,~301,51~,~250,51~,~319.143~, 
1320.2001,~22.200~.~0.2001,~50.180~,t20.1603,~50,1403, 
(20.120},  {50.100), t20.80}, (50.60} ,   {20.40} ,   t50.20})  ; 

tt90.-50~.~0.-901.~-90.-501~~-90.50~,~0,90~,~90,50~~; 
s t a t i c   s t r u c t   P o i n t  Hexagon[] - 
s t a t i c   s t r u c t   P o i n t   T r i a n g l e l C l  - ~ ~ 3 0 . 0 ~ . ~ 1 5 . 2 0 1 , t 0 . 0 } 3 :  
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 2 C l  - (I30.20}.(15.0}.(0,203}: 
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 3 C l  - ~ ~ 0 . 2 0 1 . I 2 0 . 1 0 1 . I 0 , 0 } ~ ;  
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 4 C l  - Ct20.20).~20.03.(0.103~; 
u n i o n  REGS r e g s e t ;  

/ *  S e t   t h e   d i s p l a y   t o  VGA mode 13h.   320x200  256-co lor  mode */  
r e g s e t . x . a x  - 0x0013; / *  AH - 0 s e l e c t s  mode s e t   f u n c t i o n ,  

AL - 0x13   se lec ts  mode 0x13 
when s e t  as   parameters   fo r   INT Ox10 */  

i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  

/ *  C l e a r   t h e   s c r e e n   t o   c y a n  */  
DRAW-POLYGON(ScreenRectang1e. 3 .  0. 0 ) ;  

/ *  D r a w  an i r r e g u l a r  shape t h a t  m e e t s   o u r   d e f i n i t i o n   o f   c o n v e x   b u t  

DRAW-POLYGON(ConvexShape. 6. 0 .  0 ) ;  
g e t c h 0 :  I* w a i t   f o r  a keypress  * I  

/*  D r a w  a d j a c e n t   t r i a n g l e s   a c r o s s   t h e   t o p   h a l f   o f   t h e   s c r e e n  */ 
f o r   ( j - 0 ;   j < - 8 0 ;  j+-20) ( 

i s   n o t  convex  by  any  normal   descr ip t ion */  

f o r   ( i - 0 ;   i < 2 9 0 ;  i +- 30)  { 
DRAW-POLYGON(Triangle1. 2. i, j ) :  
DRAW-POLYGON(Triangle2. 4,  i+15. j ) ;  

3 
1 

71 8 Chapter 38 



/*  D r a w  a d j a c e n t   t r i a n g l e s   a c r o s s   t h e   b o t t o m   h a l f   o f   t h e   s c r e e n  * I  
f o r  ( j -100:  j<-170;  j+-20) { 

/ *  Do a row o f   p o i n t i n g - r i g h t   t r i a n g l e s  */  
f o r   ( i - 0 :   i < 2 9 0 :  i +- 20) I 

1 
I* Do a row o f   p o i n t i n g - l e f t   t r i a n g l e s   h a l f w a y   b e t w e e n  one  row 

o f  p o i n t i n g - r i g h t   t r i a n g l e s  and t h e   n e x t ,   t o  f i t  between *I  
f o r   ( i - 0 :   i < 2 9 0 ;  i +- 20) I 

DRAW-POLYGON(Triangle4. 1. 1. j+lO): 
I 

DRAWKPOLYGON(Triangle3. 40. i. j ) :  

1 
g e t c h 0 :  I* w a i t  f o r  a keypress  * I  

I* F i n a l l y ,  draw a s e r i e s   o f   c o n c e n t r i c   h e x a g o n s   o f   a p p r o x i m a t e l y  

f o r   ( i - 0 :   i < 1 6 :  i++) I 
t h e  same p r o p o r t i o n s   i n   t h e   c e n t e r   o f   t h e   s c r e e n  * /  

DRAW-POLYGON(Hexagon. i. 160, 1 0 0 ) :  
f o r   ( j - 0 :  j<sizeof(Hexagon)/sizeof(struct P o i n t ) :  j++) I 

I* Advance  each  ver tex   toward   the   cen ter  * /  
i f  (HexagonCj1.X !- 0 )  I 

HexagonCj1.X -- HexagonCj1.X >- 0 ? 3 : - 3 :  
HexagonCj1.Y -- HexagonCj1.Y >- 0 ? 2 : -2 :  

HexagonCj1.Y -- HexagonCj1.Y >- 0 ? 3 : - 3 :  
} e l s e  I 

1 
} 

I 
g e t c h 0 :  I* w a i t  f o r  a keypress  *I  

I* R e t u r n   t o   t e x t  mode and e x i t  * /  
r e g s e t . x . a x  - 0x0003: I* AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode */  
i n t 8 6 ( 0 x 1 0 ,   & r e g s e t .   & r e g s e t ) :  

} 

LISTING 38.4 POLYG0N.H 
I* PDLYG0N.H: Header f i l e   f o r   p o l y g o n - f i l l i n g  code * I  

/ *  Descr ibes  a s i n g l e   p o i n t   ( u s e d   f o r  a s i n g l e   v e r t e x )  *I 
s t r u c t   P o i n t  I 

i n t  X ;  I* X c o o r d i n a t e  */  
i n t  Y ;  I* Y c o o r d i n a t e  * I  

I :  

I* Descr ibes  a s e r i e s   o f   p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t  
d e s c r i b e  a p o l y g o n :   e a c h   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   t w o  
a d j a c e n t   v e r t i c e s ,   a n d   t h e   l a s t   v e r t e x   i s  assumed t o  c o n n e c t   t o   t h e  
f i r s t )  * I  

i n t  Length:  I* # o f  p o i n t s  * I  
s t r u c t   P o i n t  * P o i n t P t r :  /*  p o i n t e r   t o   l i s t   o f   p o i n t s  *I 

s t r u c t   P o i n t L i s t H e a d e r  I 

1 :  

I* Descr ibes   t he   beg inn ing   and   end ing  X c o o r d i n a t e s  o f  a s i n g l e  

s t r u c t   H L i n e  I 
h o r i z o n t a l   l i n e  *I 

i n t   X S t a r t :  I* X c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   l i n e  */  
i n t  XEnd: / *  X c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  *I  

1 :  

The Polygon Primeval 71 9 



I* D e s c r i b e s  a L e n g t h - l o n g   s e r i e s  o f  h o r i z o n t a l   l i n e s ,  all assumed t o  
b e   o n   c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t  and  p roceed ing  
downward  (used t o   d e s c r i b e  a s c a n - c o n v e r t e d   p o l y g o n   t o   t h e  
low- leve l   hardware-dependent   d rawing   code)  *I  

i n t  Length;  I* # o f  h o r i z o n t a l   l i n e s  *I  
i n t  Y S t a r t ;  I* Y c o o r d i n a t e  o f  t o p m o s t   l i n e  *I  
s t r u c t   H L i n e  * H L i n e P t r ;  I* p o i n t e r   t o   l i s t  o f  h o r z   l i n e s  * /  

s t r u c t   H L i n e L i s t  ( 

} :  

Listing 38.2 isn’t particularly interesting;  it merely draws each  horizontal  line in the 
passed-in list in  the simplest possible way, one pixel at  a time. (No, that  doesn’t make 
the pixel the  fundamental primitive; in  the  next  chapter I’ll replace Listing 38.2 with 
a  much  faster version that  doesn’t  bother with individual pixels at all.) 
Listing 38.1 is where  the  action is in this chapter. Our goal is to scan out  the left and 
right  edges of each polygon so that all points  inside and  no points  outside  the poly- 
gon  are drawn, and so that all points  located exactly on the  boundary  are drawn only 
if they are  not  on right or bottom  edges.  That’s precisely  what  Listing 38.1 does. 
Here’s how: 
Listing 38.1 first finds  the  top and bottom of the polygon, then works out from  the 
top  point  to  find  the two ends of the  top  edge. If the  ends  are  at  different  locations, 
the  top is flat, which has two implications. First,  it’s easy to  find  the  starting vertices 
and directions  through  the vertex list for  the  left and  right edges. (To scan-convert 
them properly, we must first determine which edge is which.) Second,  the  top scan 
line of the polygon should be drawn without  the  rightmost pixel, because only the 
rightmost pixel of the  horizontal  edge  that makes up the  top scan line is part of a 
right  edge. 
If, on  the  other  hand,  the  ends of the  top  edge  are  at  the same location,  the  top is 
pointed.  In  that case, the  top scan line of the polygon  isn’t drawn; it’s part of the 
right-edge  line  that  starts at the  top  vertex. (It’s part of a left-edge line,  too,  but  the 
right  edge  overrides.) When the  top isn’t flat, it’s more difficult to tell in which direc- 
tion  through  the vertex list the  right and left  edges  go, because both  edges  start at 
the  top  vertex.  The  solution is to  compare  the slopes from  the  top vertex to  the  ends 
of the two lines  coming out of it in order to see  which is leftmost. The calculations in 
Listing 38.1 involving the various deltas do this, using a  rearranged  form of the slope- 
based equation: 

( D e l t a Y N / D e l t a X N ) > ( D e l t a Y P / D e l t a X P )  

Once we know where the  left  edge  starts  in  the vertex list, we can scan-convert it  a 
line  segment at  a time until  the  bottom vertex is reached. Each point is stored as the 
starting X coordinate  for  the  corresponding scan  line  in the list we’ll pass to 
DrawHorizontalLineLt. The nearest X coordinate on each scan line that’s on  or  to 
the  right of the  left  edge is selected. The last point of each  line  segment making up 
the  left  edge isn’t scan-converted, producing two desirable effects.  First, it avoids 

720 Chapter 38 



drawing each vertex twice; two lines come into every vertex, but we want to scan- 
convert each vertex only once.  Second, not scan-converting the last point of each 
line causes the  bottom scan line of the polygon not to be drawn, as required by our 
rules. The first scan line of the polygon  is  also skipped if the  top isn’t flat. 
Now we need to scan-convert the right  edge  into  the  ending X coordinate fields of 
the line list. This is performed in the same manner as for  the left edge,  except  that 
every line in the  right  edge is moved one pixel to the left before  being scan-con- 
verted. Why? We want the nearest point to the left of but not on the right edge, s o  
that the right  edge itself isn’t drawn. As it happens, drawing the  nearest  point on  or 
to the  right of a line moved one pixel to the left is exactly the same  as drawing the 
nearest  point to the left of but  not  on that line in its original location. Sketch it out 
and you’ll see what I mean. 
Once  the two edges  are  scan-converted,  the  whole  line  list is passed  to 
DrawHorizontalLineList, and  the polygon  is drawn. 
Finis. 

Oddball Cases 
Listing 38.1 handles zero-length segments (multiple vertices at  the same location) 
by ignoring  them, which will be useful down the  road because scaled-down  polygons 
can end  up with nearby vertices moved  to the same location. Horizontal line seg- 
ments are fine anywhere in a polygon, too. Basically,  Listing 38.1 scanconverts between 
active edges (the edges that  define  the  extent of the polygon on each scan line)  and 
both horizontal and zero-length lines are non-active; neither advances to another 
scan line, so they don’t affect the edges being  scanned. 
I’ve limited this chapter’s code to merely demonstrating  the principles of filling con- 
vex  polygons, and  the listings  given are by no means fast. In  the  next  chapter, we’ll 
spice things up by eliminating the floating point calculations and pixel-at-a-time  draw- 
ing and tossing a little assembly language into  the mix. 

The  Polygon  Primeval 72 1 



chapter 39

fast convex polygons



725 



The “black box”  approach does not, however,  necessarily cause the software  itself to 
become faster,  smaller, or more innovative; quite  the  opposite,  I suspect. I’ll reserve 
judgement  on whether  that is a  good  thing or  not,  but I’ll make a  prediction: In  the 
short  run,  the  aforementioned  techniques will lead  to noticeably larger, slower pro- 
grams,  as programmers understand less and less  of  what the key parts of their programs 
do  and rely increasingly on general-purpose code written by other people.  (In the 
long  run,  programs will be bigger and slower  yet, but computers will be so fast and 
will have so much memory that  no  one will care.) Over time, PC programs will also 
come to be more similar to one another-and to programs running  on  other plat- 
forms, such as the Mac-as regards both user interface and performance. 
Again, I am not saying that this is bad.  It does, however,  have major implications for 
the  future  nature of  PC graphics programming, in ways that will directly affect the 
means by which  many  of  you earn your livings. Not so very long  from now, graphics 
programming-all programming,  for  that matter-will become mostly a  matter of 
assembling in various ways components written by other people, and will cease to be 
the all-inclusively creative, mindbendingly complex pursuit  it is  today. (Using legally 
certified black boxes is, by the way, one direction  in which the  patent lawyers are 
leading us; legal considerations may be the final nail in the coffin  of homegrown 
code.) For now, though, it’s  still within your power,  as a PC programmer, to under- 
stand and even control every single thing  that  happens  on  a  computer if you so 
desire, to realize any  vision  you  may  have.  Take advantage of this unique window  of 
opportunity to create some magic! 
Neither  does  it hurt to understand what’s  involved in drawing, say, a filled polygon, 
even if you are using a GUI. You  will better  understand  the  performance implica- 
tions of the available  GUI functions, and you  will be able to fill in any gaps in the 
functions provided. You  may even find  that you can outperform  the GUI on occa- 
sion by doing your own drawing into a system memory bitmap,  then copying the 
result to the screen; for  instance, you can do this under Windows by using the WinG 
library available from Microsoft. You will also be able to understand why various 
quirks exist, and will be able to put them to good use. For example,  the X Window 
System  follows the polygon drawing rules described in  the previous chapter  (although 
it’s not obvious from  the X Window  System documentation) ; if you understood  the 
previous chapter’s discussion, you’re in  good  shape to use polygons under X. 
In  short, even though  doing so runs  counter to current trends,  it  helps to under- 
stand how things work,  especially when they’re very  visible parts of the software  you 
develop. That said, let’s learn  more  about filling convex  polygons. 

Fast Convex  Polygon Filling 
In addressing the topic of filling convex  polygons in the previous chapter, the imple- 
mentation we came up with met all of our functional  requirements.  In particular, it 
met  stringent rules that  guaranteed  that polygons  would never overlap or have gaps 

726 Chapter 39 



at shared edges, an  important consideration when building polygon-based  images. 
Unfortunately, the  implementation was also slow  as  molasses. In this chapter we’ll 
work up polygon-filling code that’s  fast enough to  be  truly  usable. 
Our original polygon  filling code involved three major tasks, each performed by a 
separate  function: 

Tracing  each  polygon  edge  to  generate a coordinate  list  (performed  by  the fmc- 

Drawing  the  scanned-out  horizontal  lines  that  constitute  the  filled  polygon 

Characterizing the  polygon  and coordinating the tracing and  drawing 

tion ScanEdge); 

(DrawHorizontalLineList); and 

(FillConvexPolygon). 
The  amount of  time  that  the  previous  chapter’s  sample  program spent in  each of these 
areas is shown in Table  39.1. As you can see,  half the time was spent drawing and  the 
other halfwas spent tracing the polygon edges (the time spent in FiUConvexPolygon 
was relatively minuscule), so we have our choice of where to begin optimizing. 

Fast Drawing 
Let’s start with  drawing,  which  is  easily sped up.  The previous chapter’s code used a 
double-nested loop that called a draw-pixel function to plot each pixel in the poly- 
gon individually. That’s a ridiculous approach in a graphics mode  that offers  linearly 
mapped memory,  as does VGA mode 13H, the  mode in which  we’re  working. At the 
very  least, we could point a far pointer  to  the left edge of each polygon  scan line, 
then draw each pixel in that scan line in quick succession,  using something  along 
the lines of *ScrPtr++ = FillColor; inside a loop. 
However, it seems silly to use a loop when the x86  has an instruction, REP STOS, 
that’s uniquely suited to filling linear memory buffers. There’s no way to  use REP 
STOS directly in C code,  but it’s a good  bet  that  the memset library function uses 
REP STOS, so you could greatly enhance  performance by using memset to draw 
each scan line of the polygon in a single shot. That, however, is easier  said than  done. 
The memset function linked in from  the library is tied to the memory model in use; 
in small  (which includes Tiny,  Small, or Medium) data models memset accepts only 
near pointers, so it can’t be used to  access screen memory.  Consequently, a large 
(which includes Compact, Large, or  Huge) data model must be used to allow memset 
to  draw to display  memory-a clear case  of the tail  wagging the  dog. This is an excel- 
lent example of  why, although  it is possible to use C to do virtually anything, it’s 
sometimes much simpler just to  use a little  assembly code and be done with it. 
At any rate, Listing  39.1 for this chapter shows a version of DrawHorizontalLineList 
that uses memset to  draw each scan line of the polygon in a single  call. When linked 
to Chapter 38’s test program, Listing  39.1  increases pure drawing speed (disregard- 
ing  edge tracing and  other nondrawing time) by more  than an order of magnitude 

Fast Convex Polygons 727 



. ."" , n  

Total  Polygon DrawHorizontal 
Linelist  ScanEdge  Polygon 

. " ^ ^  ." ~~. ,-  . i i n  . 
FillConvex 

728 Chapter 39 



over Chapter 38’s  draw-pixel-based code,  despite  the  fact  that Listing  39.1 requires  a 
large (in this case, the  Compact)  data  model. Listing 39.1 works fine with Borland 
C++, but may not work  with other compilers, for  it relies on  the aforementioned 
interaction between memset and  the selected memory model. 

LISTING 39.1 139- 1 .C 
/*  Draws a l l   p i x e l s   i n   t h e   l i s t   o f   h o r i z o n t a l   l i n e s  p a s s e d   i n ,   i n  

mode 13h,   the VGA’s 320x200  256-co lo r  mode. Uses  memset t o  fill 
e a c h   l i n e ,   w h i c h   i s  much f a s t e r   t h a n  u s i n g  DrawPixe l   bu t   requ i res  
t h a t  a l a r g e   d a t a  model   (compact .   large,   or   huge)   be i n  use when 

All C code t e s t e d   w i t h  B o r l a n d  C++. * /  
r u n n i n g   i n  r e a l  mode o r  286 p r o t e c t e d  mode. 

# i n c l u d e   < s t r i n g . h >  
# inc lude  <dos .  h> 
l i n c l  ude  “polygon.  h“ 

# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

v o i d   D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t   H L i n e L i s t  * H L i n e L i s t P t r .  

{ 
i n t   C o l o r )  

s t r u c t   H L i n e   * H L i n e P t r ;  
i n t  Length,   Width:  
u n s i g n e d   c h a r   f a r   * S c r e e n P t r ;  

/ *  P o i n t   t o   t h e   s t a r t   o f   t h e   f i r s t  scan l i n e  on   wh ich   to   d raw */  
ScreenPt r  - MK-FP(SCREENLSEGMENT. 

H L i n e L i s t P t r - > Y S t a r t  * SCREEN-WIDTH); 

/* P o i n t   t o   t h e   X S t a r t / X E n d   d e s c r i p t o r   f o r   t h e   f i r s t   ( t o p )  

H L i n e P t r  - H L i n e L i s t P t r - > H L i n e P t r :  
/ *  D r a w  e a c h   h o r i z o n t a l   l i n e   i n   t u r n ,   s t a r t i n g   w i t h   t h e   t o p  one  and 

a d v a n c i n g   o n e   l i n e   e a c h   t i m e  */  
Length - H L i n e L i s t P t r - > L e n g t h :  
w h i l e   ( L e n g t h - -  > 0) I 

h o r i z o n t a l   l i n e  */  

I* Draw t h e   w h o l e   h o r i z o n t a l   l i n e  i f  i t  has a p o s i t i v e   w i d t h  * /  
i f  ( ( W i d t h  - HLinePtr->XEnd - H L i n e P t r - > X S t a r t  + 1) > 0 )  

memset(ScreenPtr  + H L i n e P t r - > X S t a r t ,   C o l o r ,   W i d t h ) ;  
HLinePtr++: / *  p o i n t   t o   n e x t   s c a n  1 i n e  X i n f o  * /  
ScreenPt r  +- SCREEN-WIDTH; / *  p o i n t   t o   n e x t   s c a n   l i n e   s t a r t  * /  

1 
1 

At this point,  I’d like to  mention  that  benchmarks  are notoriously unreliable;  the 
results in Table  39.1 are  accurate only for  the test program, and only when running 
on a  particular system.  Results could be vastly different if smaller, larger, or  more 
complex polygons  were drawn, or if a faster or slower computer/VGA  combination 
were used.  These factors notwithstanding,  the test program  does fill a variety of poly- 
gons of varying  complexity  sized from  large to small and in between, and certainly 
the  order of magnitude  difference between Listing  39.1 and  the  old version of 
DrawHorizontalLineList is a clear indication of  which code is superior. 

Fast Convex Polygons 729 



Anyway, Listing 39.1 has the  desired effect of  vastly improving drawing time. There 
are cycles  yet to  be  had  in  the drawing code,  but as tracing polygon edges now  takes 
92 percent of the polygon filling time, it’s  logical  to optimize  the  tracing  code  next. 

Fast Edge Tracing 
There’s no secret as to why last chapter’s ScanEdge was so slow: It used floating  point 
calculations. One secret of fast graphics is using integer or fixed-point  calculations, 
instead.  (Sure,  the  floating  point  code would run  faster if a  math  coprocessor were 
installed,  but it would  still be slower than  the  alternatives; besides, why require  a 
math  coprocessor when you don’t have to?) Both integer  and  fixed-point calcula- 
tions are fast. In many  cases, fixed-point is faster, but  integer  calculations have one 
tremendous virtue: They’re completely accurate. The tiny imprecision inherent in 
either fixed or floating-point  calculations  can  result  in occasional pixels being one 
position off from  their  proper  location.  This is no great tragedy, but  after  going  to so 
much  trouble  to  ensure  that polygons don’t overlap at common  edges, why not  get  it 
exactly right? 
In  fact, when I  tested out the  integer  edge  tracing  code by comparing  an  integer- 
based test image to  one  produced by floating-point  calculations, two pixels out of 
the whole screen  differed,  leading  me  to  suspect  a  bug  in  the  integer  code.  It  turned 
out, however, that’s in those two cases, the  floating  point  results were  sufficiently 
imprecise  to  creep  from just  under an  integer value to  just over it, so that  the ceil 
function returned a  coordinate  that was one too  large. 

Floating point is very accurate-but it is not precise. Integer calculations, prop- p erly performed,  are. 

Listing 39.2 shows a C implementation of integer  edge  tracing. Vertical and diagonal 
lines, which are trivial to trace, are special-cased. Other lines are broken into two 
categories: Y-major (closer  to  vertical) and X-major (closer  to  horizontal).  The  han- 
dlers  for  the Y-major and X-major  cases operate  on  the  principle of similar triangles: 
The  number of X pixels advanced per scan line is the same  as the  ratio of the X delta 
of the  edge  to  the Y delta. Listing 39.2 is more  complex  than  the  original  floating 
point  implementation,  but not painfully so. In  return  for  that complexity,  Listing 
39.2 is more  than 80 times faster at scanning edges-and,  as just  mentioned, it’s 
actually more  accurate  than  the  floating  point  code. 
Ya gotta love that  integer  arithmetic. 

LISTING 39.2 139-2.C 
/* Scan c o n v e r t s  an  edge  from ( X 1 . Y l )  t o  ( X 2 . Y Z ) .  n o t   i n c l u d i n g   t h e  

p o i n t   a t  ( X 2 . Y 2 ) .  I f  S k i p F i r s t  - 1. t h e   p o i n t   a t  ( X 1 . Y l )  i s n ‘ t  
drawn; i f  S k i p F i r s t  - 0. it i s .  F o r  each  scan l i n e ,   t h e   p i x e l  
c l o s e s t   t o   t h e   s c a n n e d   e d g e   w i t h o u t   b e i n g   t o   t h e   l e f t  o f  t h e  
scanned  edge i s  chosen.  Uses an a l l - i n t e g e r   a p p r o a c h  f o r  speed  and 
p r e c i s i o n .  * /  

730 Chapter 39 



#i n c l  ude  <math.  h> 
# inc lude   "po l ygon .  h" 

vo id   ScanEdge( in t  X 1 .  i n t  Y 1 .  i n t  X2, i n t  Y2. i n t   S e t X S t a r t ,  

I 
i n t   S k i p F i r s t .   s t r u c t   H L i n e   * * E d g e P o i n t P t r )  

i n t  Y .  Del taX.  Height,   Width,   AdvanceAmt.   ErrorTerm, i: 
i n t  ErrorTermAdvance.  XMajorAdvanceAmt: 
s t ruc t   HL ine   *Work ingEdgePo in tP t r ;  

Work ingEdgePointPtr  - *EdgePo in tP t r :  / *  a v o i d   d o u b l e   d e r e f e r e n c e  * /  
AdvanceAmt - ( ( D e l t a X  - X2 - X 1 )  > 0 )  ? 1 : -1: 

i f  

/ *  

i f  

/* d i r e c t i o n   i n   w h i c h  X moves  (Y2 i s  
always > Y 1 ,  s o  Y a lways   counts   up)  * /  

( ( H e i g h t  - Y2 - Y 1 )  <- 0 )  / *  Y l e n g t h   o f   t h e  edge */  
r e t u r n :  / *  g u a r d   a g a i n s t   O - l e n g t h   a n d   h o r i z o n t a l  edges */  

F i g u r e   o u t   w h e t h e r   t h e   e d g e   i s   v e r t i c a l ,   d i a g o n a l ,   X - m a j o r  
( m o s t l y   h o r i z o n t a l ) .   o r   Y - m a j o r   ( m o s t l y   v e r t i c a l )   a n d   h a n d l e  
a p p r o p r i a t e l y  * /  
( ( W i d t h  - abs(De1taX))  -= 0 )  { 
I* The  edge i s   v e r t i c a l ;   s p e c i a l - c a s e   b y   j u s t   s t o r i n g   t h e  same 

/ *  Scan t h e  edge f o r   e a c h   s c a n   l i n e   i n   t u r n  * /  
f o r  (i - H e i g h t  - S k i p F i r s t :  i - -  > 0; WorkingEdgePointPtr++) { 

/ *  S t o r e   t h e  X c o o r d i n a t e   i n   t h e   a p p r o p r i a t e   e d g e   l i s t  * /  
i f  ( S e t X S t a r t  - 1) 

e l s e  

X c o o r d i n a t e   f o r   e v e r y   s c a n   l i n e  */  

Work ingEdgePointPtr ->XStar t  - X 1 ;  

Work ingEdgePointPtr ->XEnd - X 1 :  
1 

I e l s e  i f  (Wid th  - H e i g h t )  { 
/ *  The  edge i s   d i a g o n a l ;   s p e c i a l - c a s e   b y   a d v a n c i n g   t h e  X 

c o o r d i n a t e  1 p i x e l   f o r   e a c h   s c a n   l i n e  * I  
i f  ( S k i p F i r s t )  /*  s k i p   t h e   f i r s t   p o i n t  i f  so  i n d i c a t e d  */  

X 1  +- AdvanceAmt; / *  move 1 p i x e l   t o   t h e   l e f t   o r   r i g h t  * /  
/*  Scan t h e   e d g e   f o r   e a c h   s c a n   l i n e  i n  t u r n  * I  
f o r  (i - H e i g h t  - S k i p F i r s t ;  i-- > 0: WorkingEdgePointPtr++) { 

/ *  S t o r e   t h e  X c o o r d i n a t e   i n   t h e   a p p r o p r i a t e  edge l i s t  * /  
i f  ( S e t X S t a r t  -- 1) 

e l s e  

X 1  +- AdvanceAmt; / *  move 1 p i x e l   t o   t h e   l e f t   o r   r i g h t  * /  

Work ingEdgePo in tP t r ->XSta r t  - X 1 :  

WorkingEdgePointPtr->XEnd - X 1 ;  

I 

/*  Edge i s   c l o s e r   t o   v e r t i c a l   t h a n   h o r i z o n t a l   ( Y - m a j o r )  * /  
i f  (De l taX  >- 0 )  

e l s e  

i f  ( S k i p F i r s t )  { /* s k i p   t h e   f i r s t   p o i n t  i f  s o  i n d i c a t e d  * /  

1 e l s e  i f  ( H e i g h t  > Wid th )  { 

E r ro rTe rm - 0:  / *  i n i t i a l   e r r o r   t e r m   g o i n g   l e f t - > r i g h t  * /  

Er ro rTe rm - - H e i g h t  + 1; /*  g o i n g   r i g h t - > l e f t  * /  

/*  Determine  whether  i t ' s   t i m e   f o r   t h e  X c o o r d   t o   a d v a n c e  */  
i f  ( ( E r r o r T e r m  +- Wid th )  > 0) t 

X 1  +- AdvanceAmt: / *  move 1 p i x e l   t o   t h e   l e f t  or r i g h t  * I  
Er ro rTe rm -- H e i g h t :  / *  advance  ErrorTerm t o   n e x t   p o i n t  * /  

I 
I 
/ *  Scan t h e  edge f o r   e a c h   s c a n   l i n e   i n   t u r n  * /  
f o r  (i - H e i g h t  - S k i p F i r s t ;  i-- > 0: WorkingEdgePointPtr++) { 

Fast Convex Polygons 73 1 



I* S t o r e   t h e  X c o o r d i n a t e   i n   t h e   a p p r o p r i a t e   e d g e   l i s t  */ 
i f  ( S e t X S t a r t  - 1) 

e l s e  

/ *  D e t e r m i n e   w h e t h e r   i t ' s   t i m e   f o r   t h e  X c o o r d   t o   a d v a n c e  */  
i f  ( ( E r r o r T e r m  +- W i d t h )  > 0) { 

X 1  +- AdvanceAmt: I* move 1 p i x e l   t o   t h e   l e f t   o r   r i g h t  * /  
Er rorTerm -- H e i g h t :  /* advance  ErrorTerm t o   c o r r e s p o n d  */ 

Work ingEdgePointPtr ->XStar t  - X 1 :  

WorkingEdgePointPtr->XEnd - X 1 ;  

I 
I 

1 e l s e  { 
/ *  Edge i s   c l o s e r   t o   h o r i z o n t a l   t h a n   v e r t i c a l   ( X - m a j o r )  * /  
I* Minimum d i s t a n c e   t o   a d v a n c e  X each   t ime  *I  
XMajorAdvanceAmt - ( W i d t h  / H e i g h t )  * AdvanceAmt; 
I* E r r o r   t e r m   a d v a n c e   f o r   d e c i d i n g  when t o  advance X 1 e x t r a  * /  
ErrorTermAdvance - Width  % H e i g h t :  
i f  (De l taX >- 0) 

ErrorTerm - 0:  / *  i n i t i a l   e r r o r   t e r m   g o i n g   l e f t - > r i g h t  * /  
e l s e  

Er rorTerm - - H e i g h t  + 1: /*  g o i n g   r i g h t - > l e f t  * /  
i f  ( S k i p F i r s t )  { I* s k i p   t h e   f i r s t   p o i n t  i f  so i n d i c a t e d  * /  

X 1  +- XMajorAdvanceAmt: / *  move X minimum d i s t a n c e  *I  
I* D e t e r m i n e   w h e t h e r   i t ' s   t i m e   f o r  X t o  advance  one  ext ra *I  
i f  ( ( E r r o r T e r m  +- ErrorTermAdvance) > 0) { 

X 1  +- AdvanceAmt: I* move X one  more *I  
ErrorTerm -- H e i g h t :  / *  advance  ErrorTerm t o   c o r r e s p o n d  * /  

1 
I 
I* Scan t h e  edge f o r  each  scan l i n e   i n   t u r n  * /  
f o r  (i - H e i g h t  - S k i p F i r s t :   1 - -  > 0: W o r k i n g E d g e P o i n t P t r t )  { 

/ *  S t o r e   t h e  X c o o r d i n a t e   i n   t h e   a p p r o p r i a t e   e d g e   l i s t  * /  
i f  ( S e t X S t a r t  - 1) 

e l s e  

X 1  +- XMajorAdvanceAmt: / *  move X min imum  d is tance *I  
/ *  D e t e r m i n e   w h e t h e r   i t ' s   t i m e   f o r  X t o  advance  one  ext ra *I  
i f  ( ( E r r o r T e r m  +- ErrorTermAdvance) > 0) { 

WorkingEdgePointPtr->XStart - X 1 :  

WorkingEdgePointPtr->XEnd - X 1 :  

X 1  +- AdvanceAmt; / *  move X one  more */  
Er rorTerm -- H e i g h t :  / *  advance  ErrorTerm t o   c o r r e s p o n d  */  

I 
I 

I 

*EdgePoin tPt r  - Work ingEdgePoin tPt r :  / *  a d v a n c e   c a l l e r ' s   p t r  * /  
I 

The Finishing Touch: Assembly  Language 
The C implementation  in Listing 39.2 is  now nearly 20 times as  fast  as the  original, 
which is good  enough  for most purposes. Still, it  requires  that  one of the  large  data 
models  be used (for memset), and it's certainly not  the fastest  possible code. The 
obvious next  step is assembly language. 
Listing 39.3 is an assembly language version of DrawHorizontalLineList. In  actual 
use, it proved to be  about 36 percent faster than Listing 39.1; better  than  a poke in 
the eye with a  sharp stick, butjust barely. There's  more to these timing results than 

732 Chapter 39 



meets that eye, though. Display memory generally responds  much  more slowly than 
system  memory,  especially in 386 and 486 systems. That means that  much of the time 
taken by Listing 39.3 is actually spent waiting for display memory accesses to com- 
plete, with the processor forced to idle by  wait states.  If, instead, Listing 39.3 drew  to 
a local buffer in system memory or to a particularly  fast VGA, the assembly imple- 
mentation might well  display a far more substantial  advantage  over the C code. 
And indeed it does. When the test program is modified to draw  to a local buffer, 
both  the C and assembly language versions get 0.29 seconds faster, that being a mea- 
sure of the time  taken by display memory wait  states.  With those wait  states factored 
out,  the assembly language version of DrawHorizontalLineLit becomes almost three 
times  as  fast  as the C code. 

There is  a lesson here. An optimization has no fixed  payofl its value fluctuates p according to the context in  which it is used.  There k relatively little benefit to firther 
optimizing  code  that  already  spends halfits time  waiting for display memoy; no mat- 
ter how good your optimizations, you'll  get only a two-times speedup at best, and 
generally much less than that. There is, on the other hand, potential for tremen- 
dous improvement when drawing to system memo y ,  so ifthat k where most ofyour 
drawing will occui; optimizations such as Listing 39.3 are well worth the effort. 
Know the environments in which your code will run, and know where the cycles go 
in those environments. 

LISTING 39.3  139-3.ASM 
; Draws a l l   p i x e l s   i n   t h e   l i s t  o f  h o r i z o n t a l   l i n e s   p a s s e d   i n .   i n  
: mode 13h.   the  VGA's 320x200  256-co lor  mode.  Uses REP STOS t o  fill 
: each l i n e .  
; C n e a r - c a l l a b l e   a s :  
; v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  * H L i n e L i s t P t r .  

; All assemb ly   code   t es ted   w i th  TASM and MASM 
i n t   C o l o r ) ;  

SCREEN-WIDTH 
SCREEN-SEGMENT 

H L i n e   s t r u c  
X S t a r t  
XEnd 
HLi  ne 

H L i n e L i s t   s t r u c  
Lng th  
Y S t a r t  
H L i n e P t r  
H L i n e L i s t  

Parms s t r u c  

H L i n e L i s t P t r  
C o l o r  
Parms 

equ 
equ 

dw 
dw 
ends 

dw 
dw 
dw 
ends 

dw 
dw 
dw 
ends 

320 
OaOOOh 

? 
? 

? 
? 
? 

2 dup (? )  
? 
? 

; X  c o o r d i n a t e  o f  l e f t m o s t   p i x e l   i n   l i n e  
; X  c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  

;# o f  h o r i z o n t a l   l i n e s  
; Y  c o o r d i n a t e   o f   t o p m o s t   l i n e  
; p o i n t e r   t o   l i s t  o f  h o r z   l i n e s  

; r e t u r n   a d d r e s s  & pushed BP 
; p o i n t e r   t o   H L i n e L i s t   s t r u c t u r e  
; c o l o r   w i t h   w h i c h   t o  fill 

Fast Convex Polygons 733 



.model  smal l  

.code 
pub1 i c - D r a w H o r i   z o n t a l   L i   n e L i   s t  
a l i g n  2 

push  bp 
mov bp.sp 
p u s h   s i  
push d i  
c l  d 

- D r a w H o r i z o n t a l L i n e L i s t   p r o c  

mov  ax.SCREEN-SEGMENT 
mov es.ax 

mov s i   . [ b p + H L i n e L i s t P t r l  
mov  ax,SCREEN-WIDTH 
mu1 [ s i + Y S t a r t l  
mov dx,ax 

mov b x . [ s i + H L i n e P t r l  

mov s i . [ s i + L n g t h l  
and s i   . s i  
j z   F i  11 Done 
mov a l . b y t e   p t r   C b p + C o l o r l  
mov ah .a l  

mov d i   . [ b x + X S t a r t l  
mov cx.[bx+XEndl 
sub  cx.d i  
j s   L i n e F i l l D o n e  
i n c   c x  
add d i  .dx 
t e s t   d i  .1 
j z  Mai  nFi  11 
s t o s b  

dec  cx 
j z  L i   neF i   11  Done 

s h r  cx .1  
r e p  s tosw 
adc cx.cx 

Fi   11  Loop: 

M a i n F i l l :  

r e p   s t o s b  

add b x . s i z e   H L i n e  
add dx.SCREEN-WIDTH 
dec s i  
j n z   F i  11  Loop 

pop d i  
pop s i  

r e t  

end 

L i n e F i l l D o n e :  

F i  1  1 Done: 

POP  bP 

-DrawHor izonta lL ineL is t   endp 

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
: p o i n t   t o   o u r   s t a c k   f r a m e  
; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

:make s t r i n g   i n s t r u c t i o n s   i n c   p o i n t e r s  

: p o i n t  ES t o   d i s p l a y  memory f o r  REP STOS 

: p o i n t   t o   t h e   l i n e   l i s t  
: p o i n t   t o   t h e   s t a r t   o f   t h e   f i r s t   s c a n  
; l i n e   i n   w h i c h   t o  draw 
:ES:DX p o i n t s   t o   f i r s t   s c a n   l i n e   t o  
; draw 
: p o i n t   t o   t h e   X S t a r t / X E n d   d e s c r i p t o r  
: f o r   t h e   f i r s t   ( t o p )   h o r i z o n t a l   l i n e  
:P o f   s c a n   l i n e s   t o   d r a w  
; a r e   t h e r e  any l i n e s   t o  draw? 
:no. so we're  done 
; c o l o r   w i t h   w h i c h   t o  fill 
: d u p l i c a t e   c o l o r   f o r  STOSW 

: l e f t  edge o f  fill on t h i s   l i n e  
; r i g h t  edge o f  fill 

; s k i p  i f  n e g a t i v e   w i d t h  
: w i d t h   o f  fill on t h i s   l i n e  
; o f f s e t   o f   l e f t  edge o f  fill 
:does fill s t a r t   a t  an  odd  address? 
:no 
; y e s .   d r a w   t h e   o d d   l e a d i n g   b y t e   t o  
; w o r d - a l i g n   t h e   r e s t   o f   t h e  fill 
; c o u n t   o f f   t h e  o d d   l e a d i n g   b y t e  
;done i f  t h a t  was t h e   o n l y   b y t e  

;# o f  words i n  fill 
:fill as many words   as   poss ib le  
:1 i f  t h e r e ' s  an  odd t r a i l i n g   b y t e   t o  
: do, 0 o t h e r w i s e  
:fill any  odd t r a i l i n g   b y t e  

: p o i n t   t o   t h e   n e x t   l i n e   d e s c r i p t o r  
: p o i n t   t o   t h e   n e x t   s c a n   l i n e  
: c o u n t   o f f   l i n e s   t o  fill 

; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

734 Chapter 39 



Maximizing REP STOS 
Listing 39.3 doesn’t take the easy  way out  and use REP STOSB to fill each scan line; 
instead, it uses REP STOSW to fill as  many  pixel  pairs  as  possible via word-sized 
accesses,  using STOSB only  to do  odd bytes.  Word  accesses to odd addresses are 
always split by the processor into 2-byte  accesses. Such word  accesses  take  twice  as 
long as  word  accesses to even addresses, so Listing 39.3 makes sure  that all  word 
accesses occur  at even addresses, by performing a leading STOSB first if necessary. 
Listing 39.3 is another case in which  it’s  worth  knowing the environment  in  which  your 
code will run. Extra  code is required to  perform  aligned word-at-a-time  filling,  resulting 
in  extra  overhead.  For very  small or narrow  polygons, that overhead  might  overwhelm 
the advantage  of  drawing a word at a time, making plain old REP STOSB faster. 

Faster Edge Tracing 
Finally,  Listing 39.4 is an assembly language version of ScanEdge. Listing 39.4 is a 
relatively straightforward translation from C to assembly, but is nonetheless  about 
twice as fast  as  Listing 39.2. 
The version  of ScanEdge in  Listing 39.4 could certainly be sped up still further by 
unrolling the loops. FillConvexPolygon, the overall coordination routine, hasn’t  even 
been  converted  to assembly language, so that  could  be  sped up as  well. I haven’t  both- 
ered with these optimizations because  all code other than DrawHorizontalLineList 
takes  only 14 percent of the overall  polygon  filling  time  when  drawing  to  display 
memory; the  potential  return on optimizing nondrawing code simply  isn’t great 
enough to  justify the effort. Part of the value of a profiler is being able to tell when to 
stop optimizing; with  Listings 39.3 and 39.4 in use, more  than two-thirds  of the time 
taken  to  draw  polygons is spent waiting for display  memory, so optimization is pretty 
much maxed out. However, further optimization might be worthwhile  when  draw- 
ing  to system  memory, where wait  states are  out of the  picture and  the nondrawing 
code takes a significant portion (46 percent) of the overall  time. 
Again, know where the cyclps go. 
By the way, note  that all the versions of ScanEdge and FiUConvexPolygon that we’ve 
looked at  are  adapter-independent, and that  the C code is  also machine-indepen- 
dent; all  adapter-specific code is isolated in DrawHorizontalLlneList. This makes it 
easy to add  support for other graphics systems,  such as the 8514/A, the XGA, or, for 
that matter, a completely  non-PC  system. 

LISTING  39.4  139-4.ASM 
: Scan conver ts   an   edge  f rom ( X 1 , Y l )  t o  ( X 2 . Y Z ) .  n o t   i n c l u d i n g   t h e  
: p o i n t   a t  ( X 2 , Y Z ) .  I f  S k i p F i r s t  == 1. t h e   p o i n t   a t  ( X 1 , Y l )  i s n ’ t  
: drawn: i f  S k i p F i r s t  == 0.  i t  i s .   F o r   e a c h   s c a n   l i n e ,   t h e   p i x e l  
: c l o s e s t   t o   t h e  s c a n n e d   e d g e   w i t h o u t   b e i n g   t o   t h e   l e f t   o f   t h e   s c a n n e d  
: edge i s  chosen. Uses a n   a l l - i n t e g e r   a p p r o a c h   f o r   s p e e d  & p r e c i s i o n .  

Fast Convex Polygons 735 



: C n e a r - c a l l a b l e   a s :  
: v o i d   S c a n E d g e ( i n t  X 1 ,  i n t  Y 1 ,  i n t  X2, i n t  Y2. i n t   S e t X S t a r t ,  
; i n t   S k i p F i r s t .   s t r u c t   H L i n e   * * E d g e P o i n t P t r ) ;  
: Edges  must n o t  go  bottom t o   t o p :   t h a t   i s ,  Y 1  must  be <- Y2. 
: U p d a t e s   t h e   p o i n t e r   p o i n t e d   t o   b y   E d g e P o i n t P t r   t o   p o i n t   t o   t h e   n e x t  
: f r e e   e n t r y   i n   t h e   a r r a y   o f   H L i n e   s t r u c t u r e s .  

H L i n e   s t r u c  
X S t a r t  
XEnd 
HLine  ends 

Parms s t r u c  

x 1  
Y 1  
x2 
Y2 
S e t X S t a r t  

S k i p F i   r s t  

EdgePoin tPt r  

dw 
dw 

dw 
dw 
dw 
dw 
dw 
dw 

dw 

dw 

? 
? 

2 d u p ( ? )  
? 
? 
? 
? 
? 

? 

? 

;X c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   s c a n   l i n e  
; X  c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   s c a n   l i n e  

; r e t u r n   a d d r e s s  & pushed BP 
:X s t a r t   c o o r d   o f   e d g e  
:Y  s t a r t   c o o r d   o f  edge 
: X  end   coord   o f   edge 
: Y  end  coord  o f   edge 
;1 t o   s e t   t h e   X S t a r t   f i e l d   o f   e a c h  
: H L i n e   s t r u c .  0 t o   s e t  XEnd 
;1 t o   s k i p   s c a n n i n g   t h e   f i r s t   p o i n t  
: o f  the   edge,  0 t o  scan f i r s t   p o i n t  
; p o i n t e r   t o  a p o i n t e r   t o   t h e   a r r a y   o f  
: H L i n e   s t r u c t u r e s   i n   w h i c h   t o   s t o r e  
; the  scanned X c o o r d i n a t e s  

Parms ends 

: O f f s e t s   f r o m  BP i n   s t a c k   f r a m e   o f   l o c a l   v a r i a b l e s  
AdvanceAmt equ  -2  
H e i g h t  equ - 4  
LOCALLSIZE equ 4 

.model  smal 1 

.code 
pub1 i c  -ScanEdge 
a1 i g n  2 

push  bp 
mov bp.sp 
sub sp.LOCAL-SIZE 
push s i  
push d i  
mov d i . [ b p + E d g e P o i n t P t r l  
mov d i  , [ d i  1 
cmp Cbp+SetXStar t l . l  

j z  H L i n e P t r S e t  
add d i  .XEnd 

-ScanEdge p r o c  

H L i n e P t r S e t :  
mov bx.[bp+YZI 
sub  bx.[bp+Y11 
jl e ToScanEdgeExi t 
mov Cbp+Height l ,bx 
sub  cx,cx 

mov d x . 1  
mov ax.Cbp+XZl 
sub  ax.Cbp+Xll  
j z  I s v e r t i c a l  

; t o t a l   s i z e   o f   l o c a l   v a r i a b l e s  

; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
: p o i n t   t o   o u r   s t a c k   f r a m e  
; a l l o c a t e   s p a c e   f o r   l o c a l   v a r i a b l e s  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: p o i n t   t o   t h e   H L i n e   a r r a y  
; s e t   t h e   X S t a r t   f i e l d   o f   e a c h   H L i n e  
: s t r u c ?  
;yes. D I  p o i n t s   t o   t h e   f i r s t   X S t a r t  
:no. p o i n t   t o   t h e  XEnd f i e l d   o f   t h e  
: f i r s t  H L i n e   s t r u c  

:edge  he igh t  
: g u a r d   a g a i n s t   0 - l e n g t h  & horz  edges 
: H e i g h t  - Y2 - Y 1  
;assume E r r o r T e r m   s t a r t s   a t  0 ( t r u e  i f  
: w e ' r e   m o v i n g   r i g h t  as we draw) 
;assume  AdvanceAmt - 1 (move r i g h t )  

;Del taX - X2 - X 1  
: i t ' s  a v e r t i c a l   e d g e - - s p e c i a l   c a s e  i t  

736 Chapter 39 



j n s  SetAdvanceAmt ;Del taX >- 0 
mov cx .1  ;Del taX < 0 (move l e f t  as we draw) 
sub  cx.  bx ;ErrorTerm - - H e i g h t  + 1 
neg  dx ;AdvanceAmt - -1 (move l e f t )  
neg  ax ;Width - abs(De1taX) 

mov [bp+AdvanceAmtl.dx 
SetAdvanceAmt: 

: F i g u r e   o u t   w h e t h e r   t h e   e d g e   i s   d i a g o n a l ,   X - m a j o r   ( m o r e   h o r i z o n t a l ) .  
: or Y - m a j o r   ( m o r e   v e r t i c a l )  and   hand le   app rop r ia te l y .  

cmp ax.bx ; i f  Width-Height.  i t ' s  a d iagonal   edge 
j z   I s D i a g o n a l  ; i t ' s  a d iagona l   edge- -spec ia l   case  
j b  YMajor ; i t ' s  a Y - m a j o r   ( m o r e   v e r t i c a l )   e d g e  

sub  dx.dx  ;prepare DX:AX ( W i d t h )   f o r   d i v i s i o n  
d i v   b x   : W i d t h / H e i g h t  

;DX - e r r o r   t e r m   a d v a n c e   p e r   s c a n   l i n e  
mov s i . a x  ; S I  - minimum I o f   p i x e l s   t o  advance X 

: on each  scan l i n e  
t e s t  [bp+AdvanceAmt1.8000h ;move l e f t  or r i g h t ?  
j z  XMajorAdvanceAmtSet : r i g h t .   a l r e a d y   s e t  
neg s i   ; l e f t .   n e g a t e   t h e   d i s t a n c e   t o   a d v a n c e  

; on  each  scan l i n e  

; i t ' s  an  X-major  (more  horz)  edge 

XMajorAdvanceAmtSet: ; 
mov a x ,   [ b p + X l ]   ; s t a r t i n g  X c o o r d i n a t e  

cmp C b p + S k i p F i r s t l . l   ; s k i p   t h e   f i r s t   p o i n t ?  
j z  XMajorSk ipEnt ry  

XMajorLoop: 
mov [ d i ] . a x  
add d i . s i z e   H L i n e  

XMajorSk ipEnt ry :  
add  ax.si 
add  cx.dx 
j l e  XMajorNoAdvance 

add  ax.Cbp+AdvanceAmtl 
sub  cx. [bp+Height l  

dec  bx 
j n z  XMajorLoop 
jmp  ScanEdgeDone 
a l i g n  2 

jmp  ScanEdgeExit  
a l i g n  2 

mov ax,[bp+Xl] 
s u b   b x , [ b p + S k i p F i r s t l  
j z  ScanEdgeExit  

mov [ d i ] . a x  
add d i . s i z e   H L i n e  
dec  bx 
j n z  V e r t i c a l  Loop 
jmp  ScanEdgeDone 
a l i g n  2 

mov ax.Cbp+Xl] 
cmp [bp+SkipFi  r s t l . l  
j z   0 i a g o n a l S k i p E n t r y ; y e s  

XMajorNoAdvance: 

ToScanEdgeExit: 

I s v e r t i c a l  : 

V e r t i c a l  Loop: 

I s D i a g o n a l  : 

; s t o r e   t h e   c u r r e n t  X v a l u e  
; p o i n t   t o   t h e   n e x t   H L i n e   s t r u c  

; s e t  X f o r   t h e   n e x t   s c a n   l i n e  
: a d v a n c e   e r r o r   t e r m  
; n o t   t i m e   f o r  X coo rd   t o   advance   one  
; e x t r a  
:advance X coo rd   one   ex t ra  
: a d j u s t   e r r o r   t e r m   b a c k  

: c o u n t   o f f   t h i s   s c a n   l i n e  

; s t a r t i n g   ( a n d   o n l y )  X c o o r d i n a t e  
; l o o p   c o u n t  - H e i g h t  - S k i p F i r s t  
;no s c a n   l i n e s   l e f t   a f t e r   s k i p p i n g   1 s t  

: s t o r e   t h e   c u r r e n t  X v a l u e  
: p o i n t   t o   t h e   n e x t   H L i n e   s t r u c  
; c o u n t   o f f   t h i s   s c a n   l i n e  

: s t a r t i n g  X c o o r d i n a t e  
; s k i p   t h e   f i r s t   p o i n t ?  

Fast Convex Polygons 737 



Diagonal   Loop: 
mov C d i 1 . a ~  
add d i . s i z e   H L i n e  

D i a g o n a l S k i p E n t r y :  
add  ax.dx 
dec  bx 
j n z   D i a g o n a l  Loop 
jmp ScanEdgeDone 
a l i g n  2 

push  bp 
mov s i ,  Cbp+X11 
cmp [ b p + S k i p F i r s t l . l  
mov bp.bx 
j z  YMajorSk ipEnt ry  

mov [ d i  3 , s i  
add d i . s i z e   H L i n e  

YMajorSk ipEnt ry :  
add  cx.ax 
j l e  YMajorNoAdvance 
add s i  .dx 
sub  cx.bp 

YMajorNoAdvance: 
dec  bx 
jnz  YMajorLoop 
POP bp 

cmp Cbp+SetXStar t l . l  
j z  UpdateHLinePt r  
sub d i  .XEnd 

mov bx.Cbp+EdgePointPtr l  
mov Cbx l   . d i  

ScanEdgeExit :  
pop d i  
POP s i  
mov sp.bp 
POP bp 
r e t  

-ScanEdge  endp 
end 

YMajor: 

YMajorLoop: 

ScanEdgeDone: 

UpdateHLinePt r :  

: s t o r e   t h e   c u r r e n t  X v a l u e  
: p o i n t   t o   t h e   n e x t   H L i n e   s t r u c  

:advance  the X c o o r d i n a t e  
: c o u n t   o f f   t h i s   s c a n   l i n e  

: p r e s e r v e   s t a c k   f r a m e   p o i n t e r  
; s t a r t i n g  X c o o r d i n a t e  
: s k i p   t h e   f i r s t   p o i n t ?  
: p u t   H e i g h t   i n  BP f o r   e r r o r   t e r m   c a l c s  
: y e s .   s k i p   t h e   f i r s t   p o i n t  

: s t o r e   t h e   c u r r e n t  X v a l u e  
: p o i n t   t o   t h e   n e x t   H L i n e   s t r u c  

; a d v a n c e   t h e   e r r o r   t e r m  
: n o t   t i m e   f o r  X c o o r d   t o   a d v a n c e  
:advance  the X c o o r d i n a t e  
: a d j u s t   e r r o r   t e r m   b a c k  

: c o u n t   o f f   t h i s   s c a n   l i n e  

: r e s t o r e   s t a c k   f r a m e   p o i n t e r  

:were we w o r k i n g   w i t h  X S t a r t  f i e l d ?  
:yes. D I  p o i n t s   t o   t h e   n e x t   X S t a r t  
:no. p o i n t   b a c k   t o   t h e   X S t a r t   f i e l d  

: p o i n t   t o   p o i n t e r   t o   H L i n e   a r r a y  
: u p d a t e   c a l l e r ' s   H L i n e   a r r a y   p o i n t e r  

: r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: d e a l l o c a t e   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

738 Chapter 39 



chaptyer 40

of songs, taxes, and the simplicity of complex
polygons



8? 
$2:: 
I a 2” .2“ . ”  

,~ h Irregular Polygonal Areas 
“” Every so often,  m5”daughter asks me to  sing her to sleep. (If  you’ve  ever heard me 

*_n. 

sing,  this may  caus&you concern  about  either  her  hearing or  her  judgement,  but 
love  knows no boun&j As any parent is well aware, singing a young child to sleep 
can easily  take  several;&%&%, or until sunrise, whichever comes last. One night,  run- 
ning low on childre$s  songs, I switched  to a Beatles  medley, and at  long last her 
breathing became s&w and regular. At the  end, I softly  sang “A Hard Day’s Night,” 
then quietly stood i p  to  leave. As I tiptoed  out, she said, in a voice not even  faintly 
tinged with  slee  #Dad,  what do they mean, ‘working  like a dog’? Chasing a stick? 

That  led us into a dikussion of idioms, which made about as much sense to her as an 
explanation of quantnm mechanics.  Finally, I fell  back on my standard  explanation 
of the Universe,  which is that a lot of the time  it  simply doesn’t make sense. 
As a general principle, that explanation holds up remarkably  well. (In fact,  having 
just  done my taxes, I think  Earth is actually run by blob-creatures from the  planet 
Mrxx,  who are helplessly doubled over  with laughter at  the ridiculous things they 
can make  us do. “Let’s  make them get Social  Security numbers  for  their pets next 
year!” they’re saying right now, gasping for  breath.) Occasionally,  however, one has 
the  rare pleasure of finding a corner of the Universe that makes sense, where every- 
thing fits together as  if preordained. 
Filling arbitrary polygons is such a case. 

That doesflFf;& ..”x’“ 

asense;  people  don’t chase  sticks.” 

74 1 



Filling Arbitrary Polygons 
In  Chapter 38, I described three types of polygons: convex, nonconvex, and com- 
plex. The  RenderMan Companion, a terrific book by  Steve Upstill  (Addison-Wesley, 
1990) has an intuitive definition of convex: If a rubber  band  stretched  around a poly- 
gon  touches all  vertices in the  order they’re defined,  then the polygon is convex. If a 
polygon has intersecting edges, it’s complex. If a polygon doesn’t have intersecting 
edges but isn’t convex, it’s nonconvex. Nonconvex is a special case  of complex, and 
convex is a special case of nonconvex. (Which, I’m well aware,  makes  nonconvex a 
lousy  name-noncomplex  would  have been better-but I’m following X Window 
System nomenclature  here.) 
The reason for distinguishing between these three types  of  polygons  is that  the more 
specialized types can be filled with markedly faster approaches. Complex  polygons 
require  the slowest approach; however, that  approach will serve to fill any  polygon  of 
any sort. Nonconvex  polygons require less sorting, because edges never cross. Con- 
vex polygons can be filled  fastest of all by  simply scanning the two sides of the polygon, 
as we  saw in Chapter 39. 
Before we dive into complex  polygon filling, I’d like to point  out  that  the  code  in this 
chapter, like  all  polygon filling code I’ve  ever seen,  requires  that the caller describe 
the type  of the polygon to be filled. Often, however, the caller doesn’t know what 
type  of  polygon  it’s  passing, or specifies  complex for simplicity, because that will 
work for all  polygons; in such a case, the polygon filler will use the slow complex-fill 
code even if the polygon  is, in fact, a convex polygon. In  Chapter 41, I’ll discuss one 
way to improve this situation. 

Active Edges 
The basic premise of filling a complex  polygon is that  for a given  scan line, we deter- 
mine all intersections between the polygon’s edges and  that scan line and  then fill 
the spans between the  intersections, as  shown in Figure 40.1. (Section 3.6 of  Foley 
and van  Dam’s Computer Guphics, Second Edition provides an overview  of this and 
other aspects of polygon filling.) There  are several rules that  might be used to  deter- 
mine which spans are drawn and which aren’t; we’ll use the  odd/even  rule, which 
specifies that drawing turns on after odd-numbered  intersections (first, third,  and so 
on)  and off after even-numbered intersections. 
The question  then becomes how can we most efficiently determine which edges 
cross each scan line and where? As it happens,  there is a great  deal of coherence 
from one scan line to the  next  in a polygon edge list, because each  edge starts at a 
given Y coordinate and continues  unbroken  until  it  ends.  In other words, edges 
don’t  leap  about and stop and start randomly; the X coordinate of an edge at  one 
scan line is a consistent delta  from  that edge’s X coordinate  at  the last  scan line, and 
that is consistent for  the  length of the  line. 

742 Chapter 40 



Intersection #2 Intersection #3 
turns off turns on 

Intersection #1 0 
turns on 
drawing 

Scan line being 

0 0 0 0 0 0  

Filling one scan line byfinding intersecting edges. 
Figure 40.1 

This allows  us  to reduce  the  number of edges that must be checked for intersection; 
on any  given  scan line, we only need to  check for intersections with the currently 
active  edges-edges that start on that scan line, plus  all edges that  start on earlier 
(above) scan  lines and haven't ended yet-as shown in Figure 40.2. This suggests 
that we can proceed  from  the top scan line of the polygon  to the  bottom,  keeping a 

Checking currently active edges (solid lines). 
Figure 40.2 

Of Songs,  Taxes, and the Simpliciv of Complex  Polygons 743 



running list of currently active  edges-called the active edge table (AET)-with the 
edges sorted in order of ascending X coordinate of intersection with the  current 
scan line. Then, we can simply  fill each scan line in turn according to the list  of  active 
edges at  that  line. 
Maintaining the AET from one scan line to the  next involves three steps:  First, we 
must add to the AET  any edges that  start on the  current scan line, making sure to 
keep  the AET X-sorted for efficient odd/even  scanning. Second, we must  remove 
edges that  end  on  the  current scan line. Third, we must advance the X coordinates 
of active edges with the same sort of error term-based, Bresenham’s-like approach 
we used for convex  polygons, again ensuring  that the AET  is X-sorted after advanc- 
ing the edges. 
Advancing the X coordinates is easy. For each  edge, we’ll store the  current X coordi- 
nate and all required  error  term  information,  and we’ll  use that to advance the  edge 
one scan line at a time; then, we’ll resort the AET  by X coordinate as needed. Re- 
moving edges as  they end is also  easy;  we’ll just  count down the  length of each active 
edge on each scan line and remove an  edge when  its count  reaches zero. Adding 
edges as their tops are  encountered is a tad more complex. While there  are  a  num- 
ber of  ways to do this, one particularly efficient approach is to start out by putting all 
the edges of the polygon, sorted by increasing Y coordinate,  into  a single list, called 
the global edge table (GET).  Then, as each scan line is encountered, all edges at  the 
start of the GET that begin on  the  current scan line are moved to the AET; because 
the GET  is  Y-sorted, there’s no need to search the  entire GET. For  still greater effi- 
ciency, edges in the GET that share common Y coordinates can be sorted by increasing 
X coordinate; this ensures  that no more  than  one pass through  the AET per scan 
line is ever needed when adding new edges from  the GET in such a way as  to keep 
the AET sorted in ascending X order. 
What form  should the GET and AET take? Linked lists of edge  structures, as  shown 
in Figure 40.3. With linked lists,  all that’s required to move edges from  the GET to 
the AET  as they  become  active, sort  the AET, and remove edges that have been fully 
drawn is the  exchanging of a few pointers. 
In summary,  we’ll  initially store all the polygon edges in Yprimary/X-secondary sort 
order in the GET, complete with initial X and Y coordinates, error terms and  error 
term adjustments, lengths, and directions of X movement for  each  edge.  Once  the 
GET  is built, we’ll do  the following: 
1. Set  the  current Y coordinate  to the Y coordinate  of the first edge in the  GET. 
2. Move  all  edges with the current Y coordinate  from  the  GET  to the AET,  removing  them 

from  the  GET  and  maintaining  the  X-sorted  order  of  the  AET. 
3. Draw  all  odd-to-even  spans in the  AET  at  the  current Y coordinate. 
4. Count  down  the  lengths  of all edges in the  AET,  removing  any  edges  that  are  done,  and 

advancing  the X coordinates  of all remaining  edges in the AET by one  scan  line. 

744 Chapter 40 



Global Edge  Table (GET) 

Count - 
Next  * edge  Next 'edge 

Active  Edge  Table (Am) 

Count - Count - Count - Count - 
Next  'edge  Next  'edge  Next  'edge 

The global and active edge tables as linked lists. 
Figure 40.3 

5. Sort the AET in  order of ascending X coordinate. 
6. Advance  the  current Y coordinate by one  scan  line. 
7. If  either  the AET or GET isn't  empty, go to  step 2. 

That's really  all there is to it. Compare Listing 40.1 to the fast convex  polygon  filling 
code from Chapter 39, and you'll see that, contrary to expectation,  complex poly- 
gon filling is indeed one of the more sane and sensible corners of the universe. 

LISTING 40.1 L40- 1 .C 
/*  C o l o r - f i l l s  an a r b i t r a r i l y - s h a p e d   p o l y g o n   d e s c r i b e d  by V e r t e x L i s t .  

I f  t h e   f i r s t  and l a s t   p o i n t s   i n   V e r t e x L i s t   a r e   n o t   t h e  same, t h e   p a t h  
a r o u n d   t h e   p o l y g o n  i s   a u t o m a t i c a l l y   c l o s e d .  All v e r t i c e s   a r e   o f f s e t  
b y   ( X O f f s e t ,   Y O f f s e t ) .   R e t u r n s  1 f o r   s u c c e s s ,  0 i f  memory a l l o c a t i o n  
f a i l e d .  All C c o d e   t e s t e d   w i t h   B o r l a n d  C++. 
I f  t h e   p o l y g o n   s h a p e   i s  known i n  advance ,   speed ie r   p rocess ing  may be 
enab led   by   spec i f y ing   t he   shape   as   f o l l ows :   " convex"  - a rubber   band 
s t r e t c h e d   a r o u n d   t h e   p o l y g o n   w o u l d   t o u c h   e v e r y   v e r t e x   i n   o r d e r :  
"nonconvex" - t h e   p o l y g o n   i s   n o t   s e l f - i n t e r s e c t i n g ,   b u t   n e e d   n o t   b e  
convex:  "complex" - t h e   p o l y g o n  may b e   s e l f - i n t e r s e c t i n g ,   o r ,   i n d e e d ,  
any s o r t   o f   p o l y g o n   a t  all. Complex will w o r k   f o r   a l l   p o l y g o n s :   c o n v e x  
i s   f a s t e s t .   U n d e f i n e d   r e s u l t s  will occur  i f  convex i s   s p e c i f i e d   f o r  a 
nonconvex   o r   complex   po lygon.  
D e f i n e  CONVEX-CODELLINKED i f  t h e   f a s t   c o n v e x   p o l y g o n   f i l l i n g   c o d e   f r o m  
Chapter  38 i s   l i n k e d   i n .   O t h e r w i s e ,   c o n v e x   p o l y g o n s   a r e  
h a n d l e d   b y   t h e   c o m p l e x   p o l y g o n   f i l l i n g   c o d e .  
Nonconvex i s  handled  as  complex i n   t h i s   i m p l e m e n t a t i o n .  See t e x t   f o r  a 
d i s c u s s i o n   o f   f a s t e r   n o n c o n v e x   h a n d l i n g .  * /  

Pi n c l   u d e   < s t d i o .   h >  
# inc lude   <math .h>  
P i f d e f  -TURBOC- 

Of Songs,  Taxes, and the  Simplicity of Complex  Polygons 745 



# i n c l u d e   < a 1  1 oc.  h> 
# e l s e  I* MSC *I  
#i n c l   u d e  <mal 1 oc.  h> 
#endi  f 
# i   n c l   u d e   " p o l y g o n .  h" 

# d e f i n e  SWAP(a,b) {temp - a: a - b: b - temp:) 

s t r u c t   E d g e S t a t e  ( 
s t ruc t   EdgeSta te   *Nex tEdge :  
i n t  
i n t  
i n t  
i n t  
i n t  
i n t  
i n t  
i n t  

1 :  

e x t e r n  
e x t e r n  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  

X :  
S t a r t Y :  
WholePixelXMove; 
X D i  r e c t i  on: 
E r ro rTe rm:  
ErrorTermAdjUp:  
ErrorTermAdjDown; 
Count :  

v o i d  OrawHorizontalLineSeg(int. i n t .   i n t ,   i n t ) :  
i n t  FillConvexPolygon(struct P o i n t L i s t H e a d e r  *, i n t .   i n t .   i n t ) :  
v o i d   B u i l d G E T ( s t r u c t   P o i n t L i s t H e a d e r  *, s t r u c t   E d g e S t a t e  *, i n t .   i n t ) :  
vo id   MoveXSor tedToAET( in t ) :  
v o i d   S c a n O u t A E T ( i n t .   i n t ) :  
vo id   AdvanceAET(vo id1 :  
v o i d   X S o r t A E T ( v o i d ) ;  

I* P o i n t e r s   t o   g l o b a l   e d g e   t a b l e  (GET) a n d   a c t i v e   e d g e   t a b l e   ( A E T )  *I 
s t a t i c   s t r u c t   E d g e S t a t e   * G E T P t r .   * A E T P t r ;  

i n t   F i l l P o l y g o n ( s t r u c t   P o i n t L i s t H e a d e r  * V e r t e x L i s t .   i n t   C o l o r .  
i n t  PolygonShape. i n t   X O f f s e t .   i n t   Y O f f s e t )  

s t r u c t   E d g e S t a t e   * E d g e T a b l e B u f f e r :  
i n t   C u r r e n t Y :  

# i f d e f  CONVEX-CODELLINKED 
I* P a s s   c o n v e x   p o l y g o n s   t h r o u g h   t o   f a s t   c o n v e x   p o l y g o n   f i l l e r  *I  
i f  (PolygonShape - CONVEX)  

return(FillConvexPolygon(VertexList. C o l o r ,   X O f f s e t .   Y O f f s e t ) ) ;  
#endl  f 

I* It t a k e s  a minimum o f  3 v e r t i c e s   t o   c a u s e   a n y   p i x e l s   t o   b e  

i f  ( V e r t e x L i s t - > L e n g t h  < 3 )  

I* Get  enough memory t o   s t o r e   t h e   e n t i r e  edge t a b l e  *I  
i f  ( ( E d g e T a b l e B u f f e r  - 

d r a w n :   r e j e c t   p o l y g o n s   t h a t   a r e   g u a r a n t e e d   t o   b e   i n v i s i b l e  *I  

r e t u r n ( 1 ) :  

( s t r u c t   E d g e S t a t e  * )  ( m a l l o c ( s i z e o f ( s t r u c t   E d g e s t a t e )  * 
V e r t e x L i s t - > L e n g t h ) ) )  - NULL) 

r e t u r n ( 0 ) :  I* c o u l d n ' t   g e t  memory f o r   t h e   e d g e   t a b l e  * /  
I* B u i l d   t h e   g l o b a l   e d g e   t a b l e  *I 
B u i l d G E T ( V e r t e x L i s t .   E d g e T a b l e B u f f e r ,   X O f f s e t ,   Y O f f s e t ) ;  
I* Scan down t h r o u g h   t h e   p o l y g o n   e d g e s ,   o n e   s c a n   l i n e   a t  a t i m e ,  

AETPtr - NULL: I* i n i t i a l i z e   t h e   a c t i v e  e d g e   t a b l e   t o   e m p t y  * I  
Cur ren tY  - GETPt r ->S ta r tY ;  /*  s t a r t   a t   t h e   t o p   p o l y g o n   v e r t e x  *I 
w h i l e   ( ( G E T P t r  !- NULL) 1 1  (AETPtr !- NULL)) ( 

so l o n g   a s   a t   l e a s t  one  edge  remains i n   e i t h e r   t h e  GET o r  AET *I  

MoveXSortedToAET(CurrentY): I* upda te  AET f o r   t h i s   s c a n   l i n e  * I  
ScanOutAET(Cur ren tY.   Co lor ) ;  I* draw t h i s  scan l i n e   f r o m  AET *I  

746 Chapter 40 



AdvanceAETO; 
XSor tAETO;  
C u r r e n t Y U ;  

1 

/*  advance AET edges 1 scan l i n e  * /  
/*  r e s o r t  on X * /  
/*  advance t o   t h e   n e x t   s c a n   l i n e  * /  

/ *  Re lease   t he  memory we 've   a l l oca ted   and   we ' re   done  */  
f r e e ( E d g e T a b l e B u f f e r 1 ;  
r e t u r n ( 1 ) ;  

1 

/*  Creates  a GET i n  t h e   b u f f e r   p o i n t e d   t o   b y   N e x t F r e e E d g e S t r u c   f r o m  
t h e   v e r t e x   l i s t .  Edge e n d p o i n t s   a r e   f l i p p e d ,  i f  n e c e s s a r y ,   t o  
g u a r a n t e e   a l l   e d g e s   g o   t o p   t o   b o t t o m .   T h e  GET i s   s o r t e d   p r i m a r i l y  
by   ascend ing  Y s t a r t   c o o r d i n a t e ,   a n d   s e c o n d a r i l y   b y   a s c e n d i n g  X 
s t a r t   c o o r d i n a t e   w i t h i n   e d g e s   w i t h  common Y c o o r d i n a t e s .  * /  

s t a t i c   v o i d   B u i l d G E T ( s t r u c t   P o i n t L i s t H e a d e r  * V e r t e x L i s t .  

{ 
s t r u c t   E d g e S t a t e  * N e x t F r e e E d g e S t r u c .   i n t   X O f f s e t .   i n t   Y O f f s e t )  

i n t  i. S t a r t X .   S t a r t Y .  EndX. EndY. De l taY.   De l taX.   Wid th ,   temp;  
s t ruc t   EdgeSta te   *NewEdgePt r ;  
s t r u c t   E d g e S t a t e   * F o l l o w i n g E d g e ,   * * F o l l o w i n g E d g e L i n k ;  
s t r u c t   P o i n t   * V e r t e x P t r :  

/ *  S c a n   t h r o u g h   t h e   v e r t e x   l i s t   a n d   p u t   a l l   n o n - 0 - h e i g h t   e d g e s   i n t o  

V e r t e x P t r  - V e r t e x L i s t - > P o i n t P t r ;  / *  p o i n t   t o   t h e   v e r t e x   l i s t  * /  
GETPtr - NULL; / *  i n i t i a l i z e   t h e   g l o b a l  e d g e   t a b l e   t o   e m p t y  * /  
f o r  (i - 0; i < V e r t e x L i s t - > L e n g t h ;  i++) { 

t h e  GET, s o r t e d  by i n c r e a s i n g  Y s t a r t   c o o r d i n a t e  * /  

/ *  C a l c u l a t e   t h e   e d g e   h e i g h t   a n d   w i d t h  * /  
S t a r t X  - V e r t e x P t r C i 1 . X  + X O f f s e t ;  
S t a r t Y  - V e r t e x P t r C i 1 . Y  + Y O f f s e t ;  
/ *  T h e   e d g e   r u n s   f r o m   t h e   c u r r e n t   p o i n t   t o   t h e   p r e v i o u s   o n e  */  
i f  (i - 0) I 

/ *  Wrap b a c k   a r o u n d   t o   t h e   e n d   o f   t h e   l i s t  * /  
EndX - VertexPtrCVertexList->Length-1l.X + X O f f s e t ;  
EndY - V e r t e x P t r [ V e r t e x L i s t - > L e n g t h - 1 l . Y  + Y O f f s e t ;  

EndX - V e r t e x P t r C i - 1 1 . X  + X O f f s e t ;  
EndY - V e r t e x P t r C i - l l . Y  + Y O f f s e t ;  

1 e l s e  I 

1 
I* Make s u r e   t h e   e d g e   r u n s   t o p   t o   b o t t o m  */  
i f  ( S t a r t Y  > EndY) { 

SWAP(StartX. EndX); 
SWAP(StartY. EndY); 

3 
/*  S k i p  i f  t h i s   c a n ' t   e v e r   b e   a n   a c t i v e   e d g e   ( h a s  0 h e i g h t )  * /  
i f  ( ( D e l t a Y  - EndY - S t a r t Y )  !- 0)  { 

/ *  A l l o c a t e   s p a c e   f o r   t h i s   e d g e ' s   i n f o ,   a n d  fill i n   t h e  

NewEdgePtr - NextFreeEdgeStruc++: 
NewEdgePt r ->XDi rec t ion  - /* d i r e c t i o n   i n   w h i c h  X moves */  

Wid th  - abs(De1taX):  
NewEdgePtr->X - S t a r t X ;  
NewEdgePt r ->Star ty  - S t a r t Y ;  
NewEdgePtr->Count - Del   taY;  
NewEdgePtr->ErrorTermAdjDown - Del taY:  
i f  ( D e l t a X  >- 0 )  /* i n i t i a l   e r r o r   t e r m   g o i n g  L->R */  

e l s e  / *  i n i t i a l   e r r o r   t e r m   g o i n g   R - > L  */  

s t r u c t u r e  * /  

( ( D e l t a X  - EndX - S t a r t X )  > 0 )  ? 1 : -1; 

NewEdgePtr->ErrorTerm - 0;  

NewEdgePtr->ErrorTerm - - 0 e l t a Y  + 1: 

Of Songs, Taxes, and the Simplicity of Complex Polygons 747 



i f  ( D e l t a Y  >- W i d t h )  ( /* Y-major  edge */ 
NewEdgePtr->WholePixelXMove - 0; 
NewEdgePtr->ErrorTermAdjUp - Width ;  

NewEdgePtr->WholePixelXMove - 
NewEdgePtr->ErrorTermAdjUp - Width  X Del taY;  

1 e l s e  I I* X-major   edge */ 

( W i d t h  I D e l t a Y )  * NewEdgePt r ->XDi rec t ion :  

I 
I* L i n k   t h e  new edge i n t o   t h e  GET so t h a t   t h e  edge l i s t   i s  

s t i l l   s o r t e d   b y  Y coo rd ina te ,   and   by  X c o o r d i n a t e   f o r  all 
edges w i t h   t h e  same Y c o o r d i n a t e  *I  

F o l l o w i n g E d g e L i n k  - hGETPtr; 
f o r  ( ; : )  { 

Fo l low ingEdge - * F o l l o w i n g E d g e L i n k ;  
i f  ( ( F o l l o w i n g E d g e  - NULL) I I 

( F o l l o w i n g E d g e - > S t a r t y  > S t a r t Y )  1 1  
( ( F o l l   o w i   n g E d g e - > S t a r t y  - S t a r t Y  1 &h 
(Fo l low ingEdge->X >- S t a r t X ) ) )  I 

NewEdgePtr->NextEdge - Fol lowingEdge;  
* F o l l o w i n g E d g e L i n k  - NewEdgePtr; 
b reak :  

I 
F o l l o w i n g E d g e L i n k  - &FollowingEdge->NextEdge; 

3 
1 

1 
1 

I* S o r t s   a l l  edges c u r r e n t l y   i n   t h e   a c t i v e  edge t a b l e   i n t o   a s c e n d i n g  
o r d e r   o f   c u r r e n t  X c o o r d i n a t e s  *I  

s t a t i c   v o i d   X S o r t A E T O  { 
s t ruc t   EdgeSta te   *Cur ren tEdge .   * *Cur ren tEdgePt r .  *TempEdge; 
i n t  Swapoccurred; 

I* Scan t h r o u g h   t h e  AET and  swap  any a d j a c e n t   e d g e s   f o r   w h i c h   t h e  
second  edge i s   a t  a l o w e r   c u r r e n t  X c o o r d   t h a n   t h e   f i r s t   e d g e .  
R e p e a t   u n t i l   n o   f u r t h e r   s w a p p i n g  i s  needed *I  

do 
i f  (AETPtr !- NULL) ( 

Swapoccurred - 0: 
C u r r e n t E d g e P t r  - &AETPtr; 
w h i l e   ( ( C u r r e n t E d g e  - *CurrentEdgePtr)->NextEdge !- NULL) { 

I* The second  edge  has  a  lower X t h a n   t h e   f i r s t ;  

TempEdge - CurrentEdge->NextEdge->NextEdge: 
*Cur ren tEdgePt r  - CurrentEdge->NextEdge: 
CurrentEdge->NextEdge->NextEdge - Curren tEdge;  
CurrentEdge->NextEdge - TempEdge: 
Swapoccurred - 1: 

i f  (Cur ren tEdge->X > CurrentEdge->NextEdge->X) 

swap them i n   t h e  AET *I  

1 
C u r r e n t E d g e P t r  - &(*CurrentEdgePtr)->NextEdge; 

1 
I wh i le   (Swapoccur red  !- 0 ) :  

I 
1 

I* Advances  each  edge i n   t h e  AET by  one  scan l i n e .  

s t a t i c   v o i d  AdvanceAETO I 
Removes e d g e s   t h a t   h a v e   b e e n   f u l l y   s c a n n e d .  */ 

s t ruc t   EdgeSta te   *Cur ren tEdge .   * *Cur ren tEdgePt r :  

748 Chapter 40 



/* Count  down  and  remove or  advance  each  edge i n   t h e  AET */  
C u r r e n t E d g e P t r  - &AETPtr: 
w h i l e   ( ( C u r r e n t E d g e  = *Cur ren tEdgePt r )  !- NULL) I 

/*  Count o f f  one scan l i n e   f o r   t h i s  edge * /  
i f  ( ( - - ( C u r r e n t E d g e - > C o u n t ) )  -- 0 )  I 

/*  Th is   edge  i s   f i n i s h e d ,  s o  remove i t  f r o m   t h e  AET *I  
*Cur ren tEdgePt r  - CurrentEdge->NextEdge: 

I* Advance   the   edge ' s  X coo rd ina te   by   m in imum move * /  
CurrentEdge->X +- CurrentEdge->WholePixelXMove: 
/ *  D e t e r m i n e   w h e t h e r   i t ' s   t i m e   f o r  X t o  advance  one  ex t ra  * /  
i f  ( (Cur ren tEdge->Er ro rTe rm +- 

I e l s e  t 

CurrentEdge->ErrorTermAdjUp)  > 0 )  t 
CurrentEdge->X +- Cur ren tEdge->XDi rec t i on :  
Cur ren tEdge->Er rorTerm -- CurrentEdge->ErrorTermAdjDown: 

I 
Curren tEdgePt r  - &CurrentEdge->NextEdge; 

1 
I 

1 

/*  Moves a l l  edges t h a t   s t a r t   a t   t h e   s p e c i f i e d  Y c o o r d i n a t e   f r o m   t h e  

s t a t i c   v o i d   M o v e X S o r t e d T o A E T ( i n t  YToMove) I 
GET t o   t h e  AET, m a i n t a i n i n g   t h e  X s o r t i n g   o f   t h e  AET. * /  

s t r u c t   E d g e s t a t e  *AETEdge.  **AETEdgePtr,  *TempEdge: 
i n t   C u r r e n t X :  

/ *  The GET i s  Y s o r t e d .  Any  edges t h a t   s t a r t   a t   t h e   d e s i r e d  Y 
c o o r d i n a t e  will be f i r s t   i n   t h e  GET, s o  w e ' l l  move edges  f rom 
t h e  GET t o  AET u n t i l   t h e   f i r s t  edge l e f t   i n   t h e  GET i s  n o   l o n g e r  
a t   t h e   d e s i r e d  Y c o o r d i n a t e .   A l s o ,   t h e  GET i s  X s o r t e d   w i t h i n  
each Y c o o r d i n a t e ,  s o  each  success ive   edge we add t o   t h e  AET i s  
g u a r a n t e e d   t o   b e l o n g   l a t e r   i n   t h e  AET t h a n   t h e  one j u s t  added. * /  

AETEdgePtr = &AETPtr: 
w h i l e   ( ( G E T P t r  !- NULL) && (GETPt r ->Star tY  - YToMove)) I 

C u r r e n t X  - GETPtr->X; 
/ *  L i n k   t h e  new edge i n t o   t h e  AET so t h a t   t h e  AET i s   s t i l l  

f o r  ( : : I  I 
s o r t e d   b y  X c o o r d i n a t e  */  

AETEdge - *AETEdgePtr: 
i f  ((AETEdge -- NULL) 1 1  (AETEdge->X >- C u r r e n t X ) )  I 

TempEdge - GETPtr->NextEdge: 
fAETEdgePtr - GETPtr: /*  l i n k   t h e  edge i n t o   t h e  AET */  
GETPtr->NextEdge - AETEdge: 
AETEdgePtr - &GETPtr->NextEdge: 
GETPtr - TempEdge; / *  u n l i n k   t h e   e d g e   f r o m   t h e  GET *I 
break :  

AETEdgePtr - &AETEdge->NextEdge: 
} e l s e  I 

} 
I 

1 
I 

/ *  F i l l s   t h e   s c a n   l i n e   d e s c r i b e d   b y   t h e   c u r r e n t  AET a t   t h e   s p e c i f i e d  Y 

s t a t i c   v o i d   S c a n O u t A E T ( i n t  YToScan. i n t   C o l o r )  { 
c o o r d i n a t e   i n   t h e   s p e c i f i e d   c o l o r ,   u s i n g   t h e   o d d l e v e n  fill r u l e  * I  

i n t   L e f t X :  
s t r u c t   E d g e s t a t e   * C u r r e n t E d g e :  

Of Songs,  Taxes, and the  Simplicity of Complex  Polygons 749 



/*  Scan t h r o u g h   t h e  AET, d r a w i n g   l i n e   s e g m e n t s   a s   e a c h   p a i r   o f   e d g e  
c r o s s i n g s   i s   e n c o u n t e r e d .  The n e a r e s t   p i x e l  on o r   t o   t h e   r i g h t  
o f   l e f t  edges i s  d r a w n ,   a n d   t h e   n e a r e s t   p i x e l   t o   t h e   l e f t   o f   b u t  
n o t  on r i g h t  edges i s  drawn * /  

Cur ren tEdge = AETPtr;  
w h i l e   ( C u r r e n t E d g e  !- NULL) I 

L e f t X  = Cur ren tEdge->X:  
Cur ren tEdge - CurrentEdge->NextEdge; 
OrawHorizontalLineSeg(YToScan. L e f t X .   C u r r e n t E d g e - > X - 1 .   C o l o r ) :  
Cur ren tEdge - CurrentEdge->NextEdge: 

I 
1 

Complex  Polygon Filling: An Implementation 
Listing 40.1 just shown presents a function, FillPolygon(), that fills  polygons of all 
shapes. If CONVEX-FILL-LINKED is defined, the fast  convex  fill code from Chap- 
ter 39 is linked in and used  to  draw  convex  polygons. Otherwise, convex  polygons 
are  handled as if they  were complex. Nonconvex  polygons are also handled as  com- 
plex, although this is not necessary,  as  discussed  shortly. 
Listing 40.1 is a faithful implementation of the complex polygon  filling approach 
just described, with separate functions corresponding to each of the tasks, such as 
building the GET and X-sorting the AET. Listing 40.2 provides the actual drawing 
code used to fill  spans, built on a draw  pixel routine that is the only hardware depen- 
dency  anywhere  in the C code. Listing 40.3 is the  header file for  the polygon  filling 
code; note that it is an expanded version  of the  header file  used by the fast  convex 
polygon  fill code from Chapter 39. (They may  have the same name  but  are not the 
same  file!)  Listing 40.4 is a sample program that, when linked to Listings 40.1 and 
40.2, demonstrates drawing  polygons  of  various  sorts. 

LISTING 40.2 LAO-2.C 
/ *  Draws a l l   p i x e l s   i n   t h e   h o r i z o n t a l   l i n e  segmen t   passed   i n .   f r om 

( L e f t X . Y )   t o   ( R i g h t X . Y ) .   i n   t h e   s p e c i f i e d   c o l o r  i n  mode 1 3 h .   t h e  
VGA's 320x200  256-co lo r  mode. Bo th   Le f tX   and   R igh tX   a re   d rawn .  No 
d r a w i n g  will t a k e   p l a c e  i f  L e f t X  > R i g h t X .  * /  

#i ncl  ude  <dos.  h> 
Pi ncl   ude  "po lygon.   h"  

# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

s t a t i c   v o i d   O r a w P i x e l ( i n t .   i n t .   i n t ) :  

v o i d  DrawHor izonta lL ineSeg(Y,  L e f t X .   R i g h t X .   C o l o r )  ( 
i n t  X ;  

/ *  Draw  each p i x e l   i n   t h e   h o r i z o n t a l   l i n e  segment, s t a r t i n g   w i t h  

f o r  ( X  - L e f t X :  X <- R i g h t X ;  X++) 
t h e   l e f t m o s t  one * I  

DrawPixe l (X .  Y .  C o l o r ) ;  
1 

750 Chapter 40 



I* Draws t h e   p i x e l   a t  ( X .  Y )  i n   c o l o r   C o l o r   i n  VGA mode 13h * I  
s t a t i c   v o i d   D r a w P i x e l ( i n t  X ,  i n t  Y .  i n t   C o l o r )  { 

u n s i g n e d   c h a r   f a r   * S c r e e n P t r :  

i l i f d e f  -TURBOC- 

# e l s e  I* MSC 5.0 * /  
S c r e e n P t r  - MK_FP(SCREEN-SEGMENT. Y * SCREEN-WIDTH + X ) :  

FPLSEG(ScreenPtr) - SCREENLSEGMENT: 
FP-OFF(ScreenPtr1 = Y * SCREENKWIDTH + X: 

*ScreenPt r  = ( u n s i g n e d   c h a r )   C o l o r :  
#end i  f 

1 

LISTING 40.3 POLYG0N.H 
I* POLYG0N.H: Header f i l e   f o r   p o l y g o n - f i l l i n g  code *I  

# d e f i n e  C O N V E X  0 
# d e f i n e  NONCONVEX 1 
# d e f i n e  COMPLEX 2 

I* D e s c r i b e s  a s i n g l e   p o i n t   ( u s e d   f o r  a s i n g l e   v e r t e x )  * I  
s t r u c t   P o i n t  I 

i n t  X ;  I* X c o o r d i n a t e  *I  
i n t  Y ;  I* Y c o o r d i n a t e  * I  

1 :  
I* D e s c r i b e s  a s e r i e s   o f   p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t  

d e s c r i b e  a p o l y g o n ;   e a c h   v e r t e x   c o n n e c t s   t o   t h e   t w o   a d j a c e n t  
v e r t i c e s ;   t h e   l a s t   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   f i r s t )  * I  

i n t   L e n g t h ;  I* il o f   p o i n t s  *I  
s t r u c t   P o i n t  * P o i n t P t r ;  I* p o i n t e r   t o   l i s t  o f  p o i n t s  * /  

1 :  
I* D e s c r i b e s   t h e   b e g i n n i n g   a n d   e n d i n g  X c o o r d i n a t e s   o f  a s i n g l e  

h o r i z o n t a l   l i n e   ( u s e d   o n l y   b y   f a s t   p o l y g o n  fill code) *I  
s t r u c t   H L i n e  { 

i n t   X S t a r t :  I* X c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   l i n e  * I  
i n t  XEnd; I* X c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  * I  

s t r u c t   P o i n t L i s t H e a d e r  { 

1 :  
I* D e s c r i b e s  a l e n g t h - l o n g   s e r i e s   o f   h o r i z o n t a l   l i n e s ,   a l l  assumed t o  

be on c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t   a n d   p r o c e e d i n g  
downward  (used t o   d e s c r i b e  a s c a n - c o n v e r t e d   p o l y g o n   t o   t h e  
l o w - l e v e l   h a r d w a r e - d e p e n d e n t   d r a w i n g   c o d e )   ( u s e d   o n l y   b y   f a s t  
p o l y g o n  fill code) .  * /  

i n t   L e n g t h :  / *  il o f   h o r i z o n t a l   l i n e s  *I  
i n t   Y S t a r t :  I* Y c o o r d i n a t e   o f   t o p m o s t   l i n e  *I  
s t r u c t   H L i n e  * H L i n e P t r ;  I* p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  *I  

s t r u c t   H L i n e L i s t  { 

1 ;  

LISTING 40.4 L40-4.C 
I* Sample  program t o   e x e r c i s e   t h e   p o l y g o n - f i l l i n g   r o u t i n e s  *I  

# i n c l u d e   < c o n i o .  h> 
#i ncl   ude  <dos . h> 
#i ncl   ude  "po lygon.   h"  

# d e f i n e  DRAW_POLYGON(PointList,Color,Shape.X.Y) \ 
Po lygon.Length  = s i z e o f ( P o i n t L i s t ) / s i z e o f ( s t r u c t  P o i n t ) :  \ 
P o l y g o n . P o i n t P t r  - P o i n t L i s t ;  \ 
F i l l P o l y g o n ( & P o l y g o n .   C o l o r ,  Shape, X .  Y ) :  

Of Songs,  Taxes, and the Simplicity of Complex Polygons 751 



v o i d   m a i n ( v o i d ) :  
e x t e r n   i n t   F i l l P o l y g o n ( s t r u c t   P o i n t L i s t H e a d e r  *, i n t .   i n t .   i n t .   i n t ) ;  

v o i d   m a i n 0  ( 
i n t  i, j; 
s t r u c t   P o i n t L i s t H e a d e r   P o l y g o n :  
s t a t i c   s t r u c t   P o i n t   P o l y g o n l [ l  - 
s t a t i c   s t r u c t   P o i n t   P o l y g o n 2 C I  - ~(0.0).~100.150~.~320,0~,~0,200~,~220.50~,~320~200~~ 

~{0.01.~320.0~.~320.200~,~0,2001,~0,0~,~50,50~, 
(270.50~.{270.150~.(50.150~,~50.50~~: 

s t a t i c   s t r u c t   P o i n t   P o l y g o n 3 C l  - 
~(0.0).{10.0}.(105.1851,{260.30),~15,150},~5,150~,~5 
{260.53,~300,5~,~300~151,~110,200~,~100.200~,~0,10~ 

s t a t i c   s t r u c t   P o i n t   P o l y g o n 4 C I  - 
s t a t i c   s t r u c t   P o i n t   T r i a n g l e l C l  - { (30 .0 } . (15 .20 } . (0 .0 } } ;  
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 2 C l  - {(30.20).(15.0).{0.20)): 
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 3 C l  - ~ ~ 0 . 2 0 ~ . ~ 2 0 . 1 0 ~ . ~ 0 . 0 1 ~ :  
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 4 C l  - {{20,20).(20.0}.~0.10}): 
u n i o n  REGS r e g s e t :  

~(0.0}.~30,-20).~30.0).~0,20},~-30,0~,~-30,-20~~: 

i 

/* S e t   t h e   d i s p l a y   t o  VGA mode 13h.   320x200  256-co lo r  mode *I  
regse t . x .ax  - 0x0013; 
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  

I* Draw t h r e e   c o m p l e x   p o l y g o n s  */  
DRAW-POLYGON(Polygon1. 15. COMPLEX, 0. 0 ) ;  
g e t c h 0 ;  I* w a i t   f o r  a keyp ress  */  
DRAW-POLYGON(Polygon2. 5 .  COMPLEX. 0. 0): 
g e t c h 0 :  I* w a i t   f o r  a keyp ress  * I  
DRAW-POLYGON(Polygon3, 3. COMPLEX. 0, 0): 
g e t c h 0 :  I* w a i t   f o r  a keyp ress  *I  

I* Draw some ad jacent   nonconvex   po lygons  *I  
f o r   ( i - 0 :   i < 5 :  i++) ( 

f o r  ( j -0:  j < 8 :  j++) { 
ORAW~POLYGON(Polygon4. 16+i*8+j .  NONCONVEX. 40+( i *60 ) .  

3 0 + ( j * 2 0 ) ) ;  
} 

1 
g e t c h 0 :  I* w a i t   f o r  a keyp ress  *I  

/*  D r a w  a d j a c e n t   t r i a n g l e s   a c r o s s   t h e   s c r e e n  *I  
f o r   ( j - 0 ;  j<-80: j+-20) ( 

f o r   ( i - 0 :   i < 2 9 0 :  i +- 30 )  ( 
DRAW-POLYGON(Triangle1. 2 ,  CONVEX,  i. j ) :  
DRAW-POLYGON(Triangle2. 4 .  CONVEX. i+15.  j ) :  

1 
1 
f o r   ( j - 1 0 0 :   j < - 1 7 0 ;  j+-20) I 

I* Do a r o w   o f   p o i n t i n g - r i g h t   t r i a n g l e s  * I  
f o r   ( i - 0 :   i < 2 9 0 :  i +- 20)  I 

1 
I* Do a row  of p o i n t i n g - l e f t   t r i a n g l e s   h a l f w a y   b e t w e e n  one  row 

o f   p o i n t i n g - r i g h t   t r i a n g l e s   a n d   t h e   n e x t ,   t o  fit between * /  
f o r   ( i - 0 ;   i < 2 9 0 :  i +- 20)  ( 

DRAW-POLYGON(Triangle4. 1, CONVEX, i, .$+lo): 
1 

DRAW-POLYGON(Triangle3. 40. CONVEX. i. j ) :  

752 Chapter 40 



1 
g e t c h 0 ;  /*  w a i t   f o r  a keypress */ 

/*  R e t u r n   t o   t e x t  mode and e x i t  */ 
r e g s e t . x . a x  - 0x0003;  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) :  

Listing 40.4 illustrates  several  interesting  aspects of polygon  filling. The first and third 
polygons  drawn  illustrate  the  operation  of  the odd/even fill rule. The second polygon 
drawn  illustrates  how  holes  can  be created  in  seemingly  solid  objects; an edge  runs  from 
the outside of the rectangle to the inside, the edges comprising the hole are  defined, 
and then the same edge is used to move  back  to the outside; because the edges join 
seamlessly, the rectangle appears to form a solid boundary around the hole. 
The set of  V-shaped  polygons  drawn by Listing 40.4 demonstrate that polygons  shar- 
ing common edges meet  but do not overlap. This characteristic, which I discussed at 
length in Chapter 38, is not a trivial matter; it allows  polygons to fit together without 
fear of overlapping or missed  pixels. In general, Listing 40.1 guarantees that poly- 
gons are filled such that  common boundaries and vertices are drawn once and only 
once. This has the  sideeffect for any  individual  polygon of not drawing  pixels that 
lie  exactly on the bottom or right boundaries or  at vertices that terminate bottom or 
right boundaries. 
By the way, I have not seen polygon boundary filling handled precisely  this way else- 
where. The boundary filling approach  in Foley and van  Dam  is  similar, but seems to 
me to not draw  all boundary and vertex  pixels once and only once. 

More on Active  Edges 
Edges  of zero height-horizontal edges and edges defined by two vertices at the 
same  location-never  even make it  into  the GET in  Listing 40.1. A polygon edge of 
zero height can  never  be an active edge, because it can  never intersect a scan line; it 
can  only run along the scan line, and the span it runs along is defined not by that 
edge but by the edges that  connect to its endpoints. 

Performance  Considerations 
How  fast is Listing 40.1? When  drawing  triangles on a 20-MHz 386, it’s  less than  one-fifth 
the speed of the fast  convex  polygon  fill code. However, most  of that time  is spent 
drawing  individual  pixels;  when  Listing 40.2 is replaced with the fast  assembly line 
segment drawing code in  Listing 40.5, performance improves by two and one-half 
times, to about half  as  fast  as the fast  convex  fill code. Even after conversion to assem- 
bly in  Listing 40.5, DrawHorizontalLineSeg still  takes more than half of the total 
execution time, and the remaining time is spread out fairly  evenly  over the various 
subroutines in  Listing 40.1. Consequently,  there’s no single  place  in  which it’s  pos- 
sible to greatly  improve performance, and the maximum additional improvement 

Of Songs,  Taxes, and the  Simplicity of Complex  Polygons 753 



that's possible  looks to be a good deal less than two times; for that reason, and be- 
cause  of  space limitations, I'm not going to convert the rest of the code to assembly. 
However, when filling a polygon  with a great many edges, and especially one with a 
great many  active edges at  one time,  relatively more time  would  be spent traversing 
the linked lists. In such a case,  conversion to assembly  (which does a very good job 
with linked list processing) could pay  off reasonably  well. 

LISTING 40.5 L40-5.ASM 
; Draws all p i x e l s   i n   t h e   h o r i z o n t a l   l i n e  segment  passed i n ,   f r o m  
: ( L e f t X . Y )   t o   ( R i g h t X . Y ) ,   i n   t h e   s p e c i f i e d   c o l o r   i n  mode 13h .   t he  
: VGA's 320x200   256 -co lo r  mode. No d raw ing  will t a k e   p l a c e  i f  
: L e f t X  > R i g h t X .   T e s t e d   w i t h  TASM 
: C n e a r - c a l l a b l e   a s :  

v o i d  DrawHorizontalLineSeg(Y. L e f t X .   R i g h t X .   C o l o r ) ;  

SCREEN-WIDTH equ  320 
SCREEN-SEGMENT equ OaODOh 

Parms s t r u c  

Y 
dw 2 d u p ( ? )  
dw ? 

L e f t X  dw ? 
R igh tX  dw ? 
C o l o r  dw ? 
Parms  ends 

: r e t u r n   a d d r e s s  & pushed BP 
: Y  c o o r d i n a t e   o f   l i n e  segment t o  draw 
; l e f t   e n d p o i n t   o f   t h e   l i n e  segment 
; r i g h t   e n d p o i n t   o f   t h e   l i n e  segment 
: c o l o r   i n   w h i c h   t o   d r a w   t h e   l i n e   s e g m e n t  

.model  smal 1 

.code 
p u b l i c   - D r a w H o r i z o n t a l L i n e S e g  
a l i g n  2 

p u s h   b p   : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p , s p   : p o i n t   t o   o u r   s t a c k   f r a m e  
p u s h   d i   ; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e  
c l  d :make s t r i n g   i n s t r u c t i o n s   i n c   p o i n t e r s  
mov  ax.SCREEN-SEGMENT 
mov e s , a x   ; p o i n t  E S  t o   d i s p l a y  memory 
mov d i  , [bp+Le f tX ]  
mov cx. [bp+RightX]  
s u b   c x . d i   ; w i d t h   o f   l i n e  
j l  DrawDone :R igh tX  < Le f tX :   no   d raw ing   t o   do  
i n c   c x  : i n c l   u d e   b o t h   e n d p o i n t s  
mov  ax.SCREEN-WIDTH 
mu1 [ b p + Y l   ; o f f s e t   o f   s c a n   l i n e  o n   w h i c h   t o   d r a w  
add d i   , a x  : E S : D I  p o i n t s   t o   s t a r t   o f   l i n e  seg 
mov a 1 , b y t e   p t r   C b p + C o l o r l   ; c o l o r   i n   w h i c h   t o   d r a w  
mov a h . a l   : p u t   c o l o r   i n  AH f o r  STOSW 
s h r   c x . 1  :# o f   w o r d s   t o  f i  11 
r e p   s t o s w  :fill a word a t  a t i m e  
adc  cx.cx 
r e p   s t o s b   : d r a w   t h e   o d d   b y t e ,  i f  any 

pop d i   ; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e  
POP bp ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

end 

~ D rawHor i zon ta l   L ineSeg   p roc  

DrawDone: 

-DrawHor izonta lL ineSeg  endp 

754 Chapter 40 



The algorithm used to X-sort the AET is an interesting performance consideration. 
Listing 40.1 uses a bubble sort, usually a poor choice for performance. However, 
bubble sorts perform well when the data are already  almost sorted, and because of 
the X coherence of edges from one scan line to the  next, that’s  generally the case 
with the AET. An insertion sort might be  somewhat  faster, depending  on the state of 
the AET when any particular sort occurs, but a bubble sort will generally do  just fine. 
An insertion sort that scans  backward through the AET from the  current edge rather 
than forward from the start of the AET could be quite a bit faster,  because edges 
rarely move more than one  or two positions through the AET. However, scanning 
backward requires a doubly linked list, rather than the singly linked list  used  in List- 
ing 40.1. I’ve chosen to use a singly linked  list  partly  to  minimize  memory requirements 
(double-linking requires an extra pointer field) and partly  because supporting back 
links  would complicate the code a good bit. The main reason, though, is that the 
potential rewards for the complications of  back  links and insertion sorting aren’t 
great  enough; profiling a variety  of  polygons  reveals that less than ten percent of 
total time is spent sorting the AET. 

The potential 1 to 5 percent speedup gained by optimizing AET sorting j us t  isn ’t p worth it in any but  the  most demanding application-a good example of the need 
to keep an overall perspective when comparing the theoretical characteristics of 
various approaches. 

Nonconvex Polygons 
Nonconvex  polygons can be filled  somewhat faster than complex polygons.  Because 
edges never  cross or switch  positions  with other edges once they’re in the AET, the 
AET for a nonconvex polygon needs to be sorted only  when  new edges are  added. In 
order  for this to work, though, edges must  be added to the AET in strict left-to-right 
order. Complications arise  when dealing with two edges that start at the same point, 
because  slopes  must  be compared to determine which edge is leftmost. This is  cer- 
tainly doable, but because of space limitations and limited performance returns, I 
haven’t implemented this  in  Listing 40.1, 

Details,  Details 
Every so often, a programming  demon that I’d thought I’d forever  laid to rest arises 
to haunt me once again. A minor example of  this-an imp, if  you  will-is the use  of 
“ = ” when I mean “ == ,” which  I’ve done all too often in the past, and am sure I’ll do 
again. That’s minor deviltry, though,  compared to the considerably greater evils of 
one of my personal scourges, of  which I was recently reminded anew:  too-close atten- 
tion to detail. Not seeing the forest for the trees. Looking low when I should have 
looked high. Missing the big picture, if you catch my drift. 

Of Songs,  Taxes, and the Simplicity of Complex  Polygons 755 



Thoreau said it best: “Our life  is frittered away  by detail .... SimpliQ, simplify”  That 
quote  sprang to mind when I received a  letter a while  back from Anton Treuenfels of 
Fridley, Minnesota, thanking me for clarifylng the principles of filling adjacent  con- 
vex polygons in my ongoing writings on graphics programming. (You’ll find this 
material in the previous two chapters.) Anton then went on to describe his own 
method  for filling  convex  polygons. 
Anton’s approach  had its virtues and drawbacks, foremost  among  the virtues being  a 
simplicity Thoreau would  have admired. For instance, in writing my polygon-filling 
code, I had  spent  quite some time  trying to figure out  the best way to  identify  which 
edge was the left edge and which the  right, finally settling  on  comparing  the slopes 
of the edges if the top of the polygon  wasn’t flat, and  comparing  the  starting  points 
of the edges if the  top was flat. Anton simplified  this tremendously by not  bothering 
to figure out ahead of time  which was the  right edge of the polygon and which the 
left, instead  scanning out the two edges in whatever order  he  found  them  and  letting 
the low-level drawing code test, and if necessary swap, the  endpoints of each hori- 
zontal line of the fill, so that filling started  at  the leftmost edge. This is a little slower 
than my approach  (although  the  difference is almost  surely negligible),  but  it also 
makes quite  a  bit of code go away. 
What that example, and  others like it in Anton’s letter,  did was  kick  my mind  into  a 
mode  that  it hadn’t-but should have-been in when I wrote the  code,  a  mode  in 
which I began to  wonder,  “How  else can I simplify this code?”; what  you might call 
Occam’s  Razor mode. You see, I  created  the convex polygondrawing  code by first 
writing pseudocode,  then writing C code,  and finally  writing  assembly code,  and 
once  the  pseudocode was finished, I stopped  thinking  about  the  interactions of the 
various portions of the  program. 
In other words, I  became so absorbed in individual details that  I  forgot to consider 
the code as a whole. That was a mistake, and  an embarrassing one  for  someone who 
constantly preaches  that  programmers  should look at  their code from a variety  of 
perspectives; the  next  chapter shows just how much  difference  thinking  about  the 
big picture can make. May my embarrassment be your enlightenment. 
The point is not whether,  in the final analysis, my code or Anton’s code is better; 
both have their advantages. The point is that I was programming with  half a deck 
because I was so fixated on  the details of a single type of implementation; I ended  up 
with  relatively  hard-to-write, complex code,  and missed out  on many potentially use- 
ful optimizations by being so focused. It’s a big  world out there,  and  there  are many 
subtle approaches to  any problem, s o  relax and  keep  the big picture in mind as  you 
implement your programs. Your code will  likely be not only better, but also  simpler. 
And  whenever  you  see  me  walking  across hot coals in this book or elsewhere when 
there’s  an easier way to  go, please, let me know! 
Thanks, Anton. 

756 Chapter 40 



chapter 41

those way-down polygon nomenclature blues



atter when You Conceptualize 
a Data Struhre 
After I wrote the co  ns in Dr: DobbkJoumaZ that became Chapters 38-40, 

e to take me to task-and a well-deserved  kick in 
my use of non-standard polygon terminology in 
tem (XWS) defines three categories of  polygons: 
hese three categories, each  a specialized subset 

identally map  quite nicely to three increas- 
herefore,  I used the XWS names to describe 

n with each of the polygon filling techniques. 
’t accurately describe all the sorts of  polygons 

that  the  techniques  are capable of drawing. Convex  polygons are those for which no 
interior angle is greater  than 180 degrees. The “convex” drawing approach described 
in the previous few chapters actually handles  a  number of polygons that  are not 
convex; in fact, it can draw  any  polygon through which no horizontal line can be 
drawn that intersects the boundary  more  than twice. (In  other words, the  boundary 
reverses the Y direction exactly  twice, disregarding polygons that have degenerated 
into horizontal lines, which  I’m going to ignore.) 
Bill  was kind enough to send me the pages out of Computational Geometry, An Introduc- 
tion (Springer-Verlag, 1988) that describe the  correct terminology; such polygons 
are,  in fact, “monotone with respect to a vertical line” (which unfortunately makes a 

759 



rather  long #define variable). Actually,  to be  a tad more precise, I’d call them  “mono- 
tone with respect  to a  vertical line  and  simple,”  where  “simple”  means  “not 
self-intersecting.” Similarly, the polygon  type I called “nonconvex” is  actually “simple,” 
and I suppose what I called “complex”  should be referred to as “nonsimple,” or 
maybe just  “none of the above.” 

This  may  seem  like nit-picking, but actually, it  isn ’t; what it’s really about  is  the p tremendous importance of having a shared language. In one of his books, Richard 
Feynman describes having developed his  own  mathematical framework, complete 
with his  own notation and terminolom, in high school. When  he got to college and 
started working with other people who were at his level, he suddenly understood 
that people can’t  share ideas effectively unless  they speak the same language; 
otherwise, they waste a great deal of time on misunderstandings  and explanation. 

Or, as Bill Huber  put it, ‘You are  free to adopt your own terminology when it suits 
your purposes well. But you  risk losing or confusing those who could  be  among your 
most astute readers-those who already have been  trained in the same or a  related 
field.” Ditto. Likewise. D’uccord. And mea tuba; I shall endeavor to watch my lan- 
guage in  the  future. 

Nomenclature in Action 
Just to show  you  how much difference proper description and  interchange of ideas 
can make, consider the case  of identifylng convex  polygons. When I was writing 
about polygons in my column in DDJ a  nonfunctional  method  for identifylng such 
polygons-checking for exactly two X direction  changes and two Y direction changes 
around  the  perimeter of the polygon-crept into  the column by accident. That 
method, as I noted  in  a  later  column,  does  not work. (That’s why you won’t find  it in 
this book.) Still, a fast method of checking for convex  polygons  would be highly 
desirable, because such polygons can be drawn  with the fast code  from  Chapter 39, 
rather  than  the relatively slow, general-purpose  code  from  Chapter 40. 
Now consider Bill’s point  that we’re not limited to drawing convex  polygons in our 
“convex fill” code,  but can actually handle any simple polygon that’s monotone with 
respect to avertical line. Additionally, consider  Anton Treuenfels’s point, made back 
in Chapter 40, that life gets simpler if  we stop worrying about which edge of a poly- 
gon is the left edge and which is the  right, and instead just scan out each raster line 
starting at whichever edge is  left-most. Now, what do we have? 
What we have  is an  approach passed along by Jim Kent, of Autodesk Animator fame. 
If  we modify the low-level code to check which edge is  left-most on each scan line 
and start drawing there, as just described, then we can handle any  polygon  that’s 
monotone with respect to a vertical line regardless of whether  the edges cross. (I’ll 
call this “monotone-vertical” from now on; if anyone wants  to correct  that terminol- 
ogy, jump right  in.)  In other words, we can then  handle  nonsimple polygons that  are 

760 Chapter 41 



monotone-vertical; self-intersection is no longer  a  problem. We just scan around the 
polygon's perimeter  looking  for exactly two direction reversals along the Y axis only, 
and if that proves  to be the case, we can handle  the polygon at  high  speed. Figure 
41.1 shows  polygons that can be drawn by a monotone-vertical capable filler; Figure 
41.2 shows some that  cannot. Listing 41.1 shows code  to test whether  a polygon is 
appropriately  monotone. 

LISTING 41.1 L41-1.C 
/*  Re tu rns  1 i f  p o l y g o n   d e s c r i b e d   b y   p a s s e d - i n   v e r t e x   l i s t   i s   m o n o t o n e   w i t h  
r e s p e c t   t o  a v e r t i c a l   l i n e ,  0 o t h e r w i s e .   D o e s n ' t   m a t t e r  i f  po lygon  i s   s i m p l e  
( n o n - s e l f - i n t e r s e c t i n g )   o r   n o t .   T e s t e d   w i t h   B o r l a n d  C++ i n   s m a l l   m o d e l .  * /  

#i ncl   ude  "po lygon.  h" 

# d e f i n e  SIGNUM(a1 ( ( a > O ) ? l : ( ( a < O ) ? - l : O ) )  

i n t  PolygonIsMonotoneVertical(struct P o i n t L i s t H e a d e r  * V e r t e x L i s t )  

i n t  i, Length ,   De l taYSign .   Prev iousDel taYSign :  
i n t  NumYReversals - 0: 
s t r u c t   P o i n t   * V e r t e x P t r  - V e r t e x L i s t - > P o i n t P t r :  

/ *  T h r e e   o r   f e w e r   p o i n t s   c a n ' t  make a n o n - v e r t i c a l - m o n o t o n e   p o l y g o n  */  
i f  ((Length-VertexList->Length) < 4 )  r e t u r n ( 1 ) :  

/ *  Scan t o   t h e   f i r s t   n o n - h o r i z o n t a l  edge * I  
Prev iousDe l taYS ign  - SIGNUM(VertexPtr[Length-1l.Y - VertexPtrCO1.Y): 
i - 0: 
w h i l e   ( ( P r e v i o u s D e l t a Y S i g n  - 0 )  && (i < ( L e n g t h - 1 ) ) )  I 

Prev iousDe l taYS ign  - SIGNUM(VertexPtrCi1.Y - V e r t e x P t r [ i + l l . Y ) ;  
i++: 

1 

i f  

I*  

do 

(i - ( L e n g t h - 1 ) )   r e t u r n ( 1 ) :  / *  p o l y g o n   i s  a f l a t   l i n e  */  

Now coun t  Y r e v e r s a l s .   M i g h t   m i s s   o n e   r e v e r s a l ,   a t   t h e   l a s t   v e r t e x ,   b u t  
b e c a u s e   r e v e r s a l   c o u n t s   m u s t   b e   e v e n ,   b e i n g   o f f   b y   o n e   i s n ' t  a problem */  
I 
i f  ( (De l taYS ign  - SIGNUM(VertexPtrCi1.Y - V e r t e x P t r C i + l ] . Y ) )  

!- 0 )  I 

/*  Swi tched Y d i r e c t i o n :   n o t   v e r t i c a l - m o n o t o n e  i f  
r e v e r s e d  Y d i r e c t i o n  as many a s  t h r e e   t i m e s  * I  

i f  ( t tNumYReversals  > 2 )  r e t u r n ( 0 ) :  
P rev iousDe l taYS ign  - De l taYS ign :  

i f  (De l taYS ign  !- Prev iousDe l taYS ign )  [ 

1 
1 

) w h i l e  (i++ < ( L e n g t h - 1 ) ) :  
r e t u r n ( 1 ) :  / *  i t ' s  a v e r t i c a l - m o n o t o n e   p o l y g o n  * /  

1 

Listings 41.2 and 41.3 are variants of the fast  convex  polygon  fill code  from  Chapter 
39, modified to be able to handle all  monotone-vertical  polygons, including  nonsimple 
ones;  the  edge-scanning  code (Listing 39.4 from  Chapter 39) remains  the same, and 
so is not shown again here. 

Those Way-Down Polygon  Nomenclature  Blues 761 



Sample  monotone-vertical  polygons 

Monotone-vertical polygons. 
Figure 41.1 

Sample  nonmonotone-vertical  polygons 

Non-monotone-vertical polygons. 
Figure 4 1.2 

LISTING 41.2  L41-2.C 
/*  C o l o r - f i l l s  a convex  po lygon.  All v e r t i c e s   a r e   o f f s e t   b y   ( X O f f s e t .   Y O f f s e t ) .  
"Convex" means "monotone w i t h   r e s p e c t   t o  a v e r t i c a l   l i n e " :   t h a t   i s ,   e v e r y  
h o r i z o n t a l   l i n e   d r a w n   t h r o u g h   t h e   p o l y g o n  a t  any p o i n t   w o u l d   c r o s s   e x a c t l y   t w o  
a c t i v e   e d g e s   ( n e i t h e r   h o r i z o n t a l   l i n e s   n o r   z e r o - l e n g t h   e d g e s   c o u n t   a s   a c t i v e  
edges:   bo th   a re   acceptab le   anywhere  i n   t h e   p o l y g o n ) .   R i g h t  & l e f t  edges may 
c ross   (po l ygons  may b e   n o n s i m p l e ) .   P o l y g o n s   t h a t   a r e   n o t   c o n v e x   a c c o r d i n g   t o  
t h i s   d e f i n i t i o n   w o n ' t  be  drawn  proper ly.   (Yes.  "convex" i s  a l o u s y  name f o r  
t h i s   t y p e   o f   p o l y g o n ,   b u t   i t ' s   c o n v e n i e n t :   u s e   " m o n o t o n e - v e r t i c a l "  i f  i t  makes 
you   happ ie r ! )  

NOTE: t h e   l o w - l e v e l   d r a w i n g   r o u t i n e ,   D r a w H o r i z o n t a l L i n e L i s t .   m u s t   b e   a b l e   t o  
reve rse   t he   edges ,  i f  n e c e s s a r y   t o  make t h e   c o r r e c t   e d g e   l e f t  edge. It must 
a l s o   e x p e c t   r i g h t   e d g e   t o  be s p e c i f i e d   i n  +1 f o r m a t   ( t h e  X c o o r d i n a t e   i s  1 p a s t  
h i g h e s t   c o o r d i n a t e   t o   d r a w ) .   I n   b o t h   r e s p e c t s ,   t h i s   d i f f e r s   f r o m   l o w - l e v e l  
d r a w i n g   r o u t i n e s   p r e s e n t e d   i n   e a r l i e r   c o l u m n s :   c h a n g e s   a r e   n e c e s s a r y   t o  make i t  
p o s s i b l e   t o   d r a w   n o n s i m p l e   m o n o t o n e - v e r t i c a l   p o l y g o n s :   t h a t   i n   t u r n  makes it 
p o s s i b l e   t o   u s e   J i m   K e n t ' s   t e s t   f o r   m o n o t o n e - v e r t i c a l   p o l y g o n s .  

Returns  1 f o r   s u c c e s s ,  0 i f  memory a l l o c a t i o n   f a i l e d  */  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

762 Chapter 41 



# i n c l u d e   < s t d i o . h >  
# inc lude  <math.h> 
# i n c l u d e   < s t d l  i b. h> 
#i n c l  ude  "polygon.  h" 

I* Advances t h e   i n d e x   b y   o n e   v e r t e x   f o r w a r d   t h r o u g h   t h e   v e r t e x   l i s t ,  
w r a p p i n g   a t   t h e   e n d  o f  t h e   l i s t  *I  
# d e f i n e  INDEXKFORWARD(1ndex) \ 

Index  - ( I n d e x  + 1) % V e r t e x L i s t - > L e n g t h :  

/ *  A d v a n c e s   t h e   i n d e x   b y   o n e   v e r t e x   b a c k w a r d   t h r o u g h   t h e   v e r t e x   l i s t ,  
w r a p p i n g   a t   t h e   s t a r t   o f   t h e   l i s t  *I  
# d e f i n e  INDEXLBACKWARD(1ndex) \ 

Index  - ( I n d e x  - 1 + V e r t e x L i s t - > L e n g t h )  % V e r t e x L i s t - > L e n g t h :  

I* Advances   the   index   by  one v e r t e x   e i t h e r   f o r w a r d   o r   b a c k w a r d   t h r o u g h  
t h e   v e r t e x   l i s t ,   w r a p p i n g   a t   e i t h e r  end o f   t h e   l i s t  * I  
# d e f i n e  INDEX_MOVE(Index.Direction) \ 

i f  ( D i r e c t i o n  > 0 )  \ 
Index  - ( I n d e x  + 1) % V e r t e x L i s t - > L e n g t h ;  \ 

e l s e  \ 
Index  - ( I n d e x  - 1 + V e r t e x L i s t - > L e n g t h )  % V e r t e x L i s t - > L e n g t h :  

e x t e r n   v o i d   S c a n E d g e ( i n t .   i n t .  i n t .   i n t .  i n t .  i n t .  s t r u c t   H L i n e  **); 
e x t e r n   v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  *, i n t ) ;  

i n t  FillMonotoneVerticalPolygon(struct P o i n t L i s t H e a d e r  * V e r t e x L i s t .  

( 
i n t   C o l o r ,   i n t   X O f f s e t .   i n t   Y O f f s e t )  

i n t  i, MinIndex.  MaxIndex.  MinPoint-Y.  MaxPoint-Y: 
i n t  Nex t Index .   Cur ren t Index .   Prev ious Index :  
s t r u c t   H L i n e L i s t   W o r k i n g H L i n e L i s t :  
s t r u c t   H L i n e   * E d g e P o i n t P t r ;  
s t r u c t   P o i n t   * V e r t e x P t r :  

/ *  P o i n t   t o   t h e   v e r t e x   l i s t  *I  
V e r t e x P t r  - V e r t e x L i s t - > P o i n t P t r ;  

I* Scan t h e   l i s t   t o   f i n d   t h e   t o p  a n d   b o t t o m   o f   t h e   p o l y g o n  *I  
i f  ( V e r t e x L i s t - > L e n g t h  - 0 )  

MaxPoint-Y - MinPoint-Y - VertexPtrCMinIndex - MaxIndex - 01.Y: 
f o r  (i - 1: i < V e r t e x L i s t - > L e n g t h ;  i++) { 

r e t u r n ( 1 ) :  I* r e j e c t   n u l l   p o l y g o n s  *I 

i f  (Ver texP t rC i1 .Y  < MinPoint-Y) 

e l s e  i f  ( V e r t e x P t r l i 1 . Y  > MaxPoint-Y) 
MinPointLY = Ver texPtrCMinIndex - i1.Y: I* new t o p  *I  

MaxPoint-Y - VertexPtrCMaxIndex - i1.Y: I* new b o t t o m  */  
1 

I* 
i f  

S e t   t h e  # o f  s c a n   l i n e s   i n   t h e   p o l y g o n ,   s k i p p i n g   t h e   b o t t o m  
( (Work ingHL ineL is t .Leng th  - MaxPoint-Y - MinPoint -Y)  <- 0 )  
r e t u r n ( 1 ) :  I* t h e r e ' s   n o t h i n g   t o   d r a w ,  s o  we're  done *I  

W o r k i n g H L i n e L i s t . Y S t a r t  - Y O f f s e t  + MinPointLY:  

/ *  Get memory i n  w h i c h   t o   s t o r e   t h e   l i n e   l i s t  we genera te  * I  
i f  ( ( W o r k i n g H L i n e L i s t . H L i n e P t r  - 

( s t r u c t   H L i n e  *)  ( m a l l o c ( s i z e o f ( s t r u c t   H L i n e )  * 
Work ingHL ineL is t .Leng th1 ) )  - NULL) 

r e t u r n ( 0 ) ;  / *  c o u l d n ' t   g e t  memory f o r   t h e   l i n e   l i s t  * I  

edge * I  

Those Way-Down Polygon  Nomenclature Blues 763 



/*  Scan t h e   f i r s t  edge  and s t o r e   t h e   b o u n d a r y   p o i n t s   i n   t h e   l i s t  * /  
/*  I n i t i a l   p o i n t e r   f o r   s t o r i n g  s c a n   c o n v e r t e d   f i r s t - e d g e   c o o r d s  */  
EdgePo in tP t r  - Work ingHLineLis t .HLinePtr :  
/ *  S t a r t   f r o m   t h e   t o p   o f   t h e   f i r s t  edge */  
Prev ious Index  - C u r r e n t I n d e x  - MinIndex:  
/ *  Scan c o n v e r t   e a c h   l i n e   i n   t h e   f i r s t  e d g e   f r o m   t o p   t o   b o t t o m  */  
do I 

INDEX-BACKWARD(Current1ndex); 
ScanEdge(VertexPtr[PreviousIndexl.X + XOf fse t .  

VertexPtr[PreviousIndexl.Y. 
VertexPtr[CurrentIndexl.X + X O f f s e t .  
VertexPtr[CurrentIndexl.Y. 1. 0. &EdgePo in tP t r ) :  

P rev ious Index  - C u r r e n t I n d e x ;  
1 w h i l e   ( C u r r e n t I n d e x  !- MaxIndex): 

/ *  Scan the   second  edge  and  s to re   the   boundary   po in ts  i n   t h e   l i s t  * /  
EdgePo in tP t r  - Work ingHLineLis t .HLinePtr ;  
P rev ious Index  - C u r r e n t I n d e x  - MinIndex;  
/ *  Scan c o n v e r t   t h e   s e c o n d   e d g e ,   t o p   t o   b o t t o m  */  
do I 

INDEX-FORWARD(Current1ndex): 
ScanEdge(VertexPtr[PreviousIndexl.X + X O f f s e t .  

VertexPtr[PreviousIndexl.Y, 
VertexPtr[CurrentIndexl.X + XOf fse t .  
VertexPtr[CurrentIndexl.Y. 0. 0. & E d g e P o i n t P t r ) ;  

P rev ious Index  - Cur ren t Index ;  
) w h i l e   ( C u r r e n t I n d e x  !- MaxIndex) :  

/*  Draw t h e   l i n e   l i s t   r e p r e s e n t i n g   t h e  scan  conver ted   po lygon */  
DrawHor i zon ta lL ineL is t (&Work ingHL ineL is t ,  C o l o r ) :  

/*  R e l e a s e   t h e   l i n e   l i s t ' s  memory and   we ' re   success fu l l y   done  */ 
f ree (Work ingHL ineL is t .HL inePt r ) :  
r e t u r n ( 1 ) ;  

I 

LISTING 41.3 L41-3.ASM 
: Draws a l l   p i x e l s   i n   l i s t   o f   h o r i z o n t a l   l i n e s   p a s s e d   i n ,   i n  mode 13h. VGA's 
: 320x200  256-co lor  mode.  Uses REP STOS t o  fill e a c h   l i n e .  

: NOTE: i s   a b l e   t o   r e v e r s e   t h e  X c o o r d s   f o r  a s c a n   l i n e ,  i f  n e c e s s a r y ,   t o  make 
: X S t a r t  < XEnd. Expects  whichever  edge i s   r i g h t m o s t  on  any  scan l i n e   t o  be i n  
: +1 f o r m a t :   t h a t   i s ,  XEnd i s  1 g r e a t e r   t h a n   r i g h t m o s t   p i x e l   t o   d r a w .  I f  
: X S t a r t  - XEnd. n o t h i n g   i s  drawn  on t h a t  scan l i n e .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
: C n e a r - c a l l a b l e  a s :  
: v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  * H L i n e L i s t P t r .   i n t   C o l o r ) :  
: All assembly   code  tes ted   w i th  TASM and MASM 

SCREEN-WIDTH equ  320 
SCREEN-SEGMENT equ OaOOOh 

H L i n e   s t r u c  
X S t a r t  dw ? :X c o o r d i n a t e  o f  l e f t m o s t   p i x e l   i n   l i n e  
XEnd dw ? :X c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  
HLine  ends 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

H L i n e L i s t   s t r u c  
Lng th  dw ? :# o f   h o r i z o n t a l   l i n e s  
Y S t a r t  dw ? :Y c o o r d i n a t e   o f   t o p m o s t   l i n e  

764 Chapter 41 



H L i n e P t r  dw ? : p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  
H L i   n e L i   s t  ends 

Parms s t r u c  
dw 2 d u p ( ? )   ; r e t u r n   a d d r e s s  & pushed BP 

H L i n e L i s t P t r  dw 
C o l o r  

? 
dw 

; p o i n t e r   t o   H L i n e L i s t   s t r u c t u r e  
? ; c o l o r   w i t h   w h i c h   t o  fill 

Parms  ends 
.model  small  
.code 
p u b l i c   - D r a w H o r i z o n t a l L i n e L i s t  
a l i g n  2 

- 0 r a w H o r i z o n t a l L i n e L i s t   D r o c  
push 
mov 
push 
push 
c l  d 

mov 
mov 

mov 
mov 
mu 1 
mov 
mov 

mov 
and 
j z  
mov 
mov 

mov 
mov 
CmP 
j l e  
xchg 

sub 
j z  
add 
t e s t  
j z  
s t o s b  

dec 
jz 

s h r  
r e p  
adc 

F i  11  Loop: 

NoSwap: 

M a i n F i l l :  

r e p  

add 
add 
dec 
j nz 

L i n e F i l l O o n e :  

bP ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
bP * SP ; p o i n t   t o   o u r   s t a c k   f r a m e  
s i  
d i  

; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

;make s t r i n g   i n s t r u c t i o n s   i n c   p o i n t e r s  

ax,SCREEN-SEGMENT 
e s . a x   ; p o i n t  ES t o   d i s p l a y  memory f o r  REP STOS 

s i . C b p + H L i n e L i s t P t r ]   ; p o i n t   t o   t h e   l i n e   l i s t  
ax,SCREEN-WIDTH ; p o i n t   t o   t h e   s t a r t   o f   t h e   f i r s t   s c a n  
C s i + Y S t a r t l  ; l i n e   i n   w h i c h   t o  draw 
dx.ax ;ES:DX p o i n t s   t o   f i r s t   s c a n   l i n e   t o  draw 
b x . [ s i + H L i n e P t r l   ; p o i n t   t o   t h e   X S t a r t / X E n d   d e s c r i p t o r  

; f o r   t h e   f i r s t   ( t o p )   h o r i z o n t a l   l i n e  
s i   . E s i + L n g t h l  ;# o f  s c a n   l i n e s   t o   d r a w  
s i   . s i   ; a r e   t h e r e  any l i n e s   t o  draw? 
F i  11 Done ;no. s o  we're  done 
a 1 , b y t e   p t r   [ b p + C o l o r l   ; c o l o r   w i t h   w h i c h   t o  fill 
a h . a l   : d u p l i c a t e   c o l o r   f o r  STOSW 

d i . [ b x + X S t a r t l  ; l e f t  edge o f  fill on t h i s   l i n e  
cx.[bx+XEndl : r i g h t  edge o f  fill 
d i  , c x  ; i s   X S t a r t  > XEnd? 
NoSwap ;no,   we ' re  all s e t  
d i   , c x  ;yes. s o  swap edges 

c x . d i   ; w i d t h   o f  fill on t h i s   l i n e  
L i n e F i l l D o n e   : s k i p  i f  z e r o   w i d t h  
d i   , d x   ; o f f s e t  o f  l e f t  edge o f  fill 
d i  .1 
M a i n F i l l  

:does fill s t a r t   a t  an  odd  address? 
;no 
; y e s .   d r a w   t h e   o d d   l e a d i n g   b y t e   t o  
; w o r d - a l i g n   t h e   r e s t   o f   t h e  fill 

cx ; c o u n t   o f f   t h e  o d d   l e a d i n g   b y t e  
L ineF i l lDone   :done  i f  t h a t  was t h e   o n l y   b y t e  

cx ,  1 ;# o f  words i n  fill 
stosw ;fill as  many words   as   poss ib le  
c x ,   c x  ;1 i f  t h e r e ' s  an odd t r a i l i n g   b y t e   t o  

s t o s b  ;fill any  odd t r a i l i n g   b y t e  

b x . s i z e   H L i n e   : p o i n t   t o   t h e   n e x t   l i n e   d e s c r i p t o r  
dx.SCREEN-WIDTH ; p o i n t   t o   t h e   n e x t   s c a n   l i n e  
s i  
F i  11  Loop 

; do, 0 o t h e r w i s e  

: c o u n t   o f f   l i n e s   t o  fill 

Those Way-Down Polygon Nomenclature Blues 765 



F i  11  Done: 
pop d i   ; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
pop s i  

r e t  

end 

POP bP ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

- DrawHor i   zon ta l   L i   neL i   s t   endp  

Listing 41.4 is  almost  identical to Listing  40.1  from  Chapter 40. I've modified  Listing  40.1 
to employ  the  vertical-monotone detection test  we've been talking  about  and  use  the 
fast  vertical-monotone drawing code whenever  possible;  that's  what  Listing 41.4 is. 
Note  well  that  Listing 40.5 from Chapter 40 is  also  required  in  order  for  this code to link. 
Listing 41.5 is  an  appropriately  updated  version of the  POLYG0N.H  header file. 

LISTING 41.4  L41-4.C 
/ *  C o l o r - f i l l s  an a r b i t r a r i l y - s h a p e d   p o l y g o n   d e s c r i b e d   b y   V e r t e x L i s t .  
I f  t h e   f i r s t  and l a s t   p o i n t s   i n   V e r t e x L i s t   a r e   n o t   t h e  same, t h e   p a t h  
a round   the   po l ygon  i s   a u t o m a t i c a l l y   c l o s e d .  All v e r t i c e s   a r e   o f f s e t  
b y   ( X O f f s e t .   Y O f f s e t ) .   R e t u r n s  1 f o r   s u c c e s s ,  0 i f  memory a l l o c a t i o n  
f a i l e d .  All C c o d e   t e s t e d   w i t h   B o r l a n d  C++. 

I f  the   po l ygon   shape  i s  known i n  advance,   speed ier   p rocess ing  may be 
enab led   by   spec i fy ing   the   shape  as   fo l lows:   "convex"  - a rubber   band 
s t r e t c h e d   a r o u n d   t h e   p o l y g o n   w o u l d   t o u c h   e v e r y   v e r t e x   i n   o r d e r ;  
"nonconvex" - t h e   p o l y g o n   i s   n o t   s e l f - i n t e r s e c t i n g ,   b u t  need  not  be 
convex;  "complex" - t h e   p o l y g o n  may be s e l f - i n t e r s e c t i n g ,   o r ,   i n d e e d ,  
any s o r t   o f   p o l y g o n   a t  all. Complex will work f o r  all polygons:  convex 
i s   f a s t e s t .   U n d e f i n e d   r e s u l t s  will occur  i f  convex i s   s p e c i f i e d   f o r  a 
nonconvex  or   complex  po lygon.  

D e f i n e  CONVEX-CODE-LINKED i f  t h e   f a s t   c o n v e x   p o l y g o n   f i l l i n g   c o d e   f r o m  
the   February   1991  co lumn i s  1 i nked   i n .   O the rw ise ,   convex   po l ygons   a re  
h a n d l e d   b y   t h e   c o m p l e x   p o l y g o n   f i l l i n g   c o d e .  
Nonconvex i s  handled  as  complex i n   t h i s   i m p l e m e n t a t i o n .  See t e x t   f o r  a 
d i s c u s s i o n   o f   f a s t e r   n o n c o n v e x   h a n d l i n g .  * /  

# i n c l u d e   < s t d i o . h >  
# inc lude  <math .  h> 
# i   f d e f  -TURBOC- 
# i n c l u d e   < a l l o c . h >  
# e l s e  I* MSC * I  
# i n c l u d e   < m a l l o c . h >  
# e n d i f  
#i n c l  ude  "polygon.  h" 

# d e f i n e  SWAP(a.b) {temp - a; a - b:  b - temp;] 

s t r u c t   E d g e S t a t e  { 
s t ruc t   Edges ta te   *Nex tEdge ;  
i n t  X ;  
i n t   S t a r t Y ;  
i n t  WholePixelXMove; 
i n t   X D i r e c t i o n ;  
i n t   E r r o r T e r m :  
i n t  ErrorTermAdjUp; 
i n t  ErrorTermAdjDown; 
i n t  Count; 

3 ;  

766 Chapter 41 



e x t e r n   v o i d  OrawHorizontalLineSeg(int, i n t .  i n t .   i n t ) :  
e x t e r n   i n t  FillMonotoneVerticalPolygon(struct P o i n t L i s t H e a d e r  *, 

e x t e r n   i n t  PolygonIsMonotoneVertical(struct P o i n t L i s t H e a d e r  * ) :  
s t a t i c   v o i d   B u i l d G E T ( s t r u c t   P o i n t L i s t H e a d e r  *, s t r u c t   E d g e S t a t e  *, 

s t a t i c   v o i d   M o v e X S o r t e d T o A E T ( i n t ) ;  
s t a t i c   v o i d   S c a n O u t A E T ( i n t .   i n t ) :  
s t a t i c   v o i d   A d v a n c e A E T ( v o i d ) :  
s t a t i c   v o i d   X S o r t A E T ( v o i d ) ;  

/* P o i n t e r s   t o   g l o b a l   e d g e   t a b l e  (GET) and a c t i v e  edge t a b l e  (AET) * /  
s t a t i c   s t r u c t   E d g e S t a t e  *GETPtr.  *AETPtr: 

i n t   F i l l P o l y g o n ( s t r u c t   P o i n t L i s t H e a d e r  * V e r t e x L i s t .   i n t   C o l o r ,  

( 

i n t ,  i n t .   i n t ) :  

i n t .   i n t ) ;  

i n t  PolygonShape. i n t   X O f f s e t .   i n t   Y O f f s e t )  

s t ruc t   EdgeSta te   *EdgeTab leBu f fe r :  
i n t   C u r r e n t Y :  

# i f d e f  CONVEX-CODE-LINKED 
/*  Pass  convex  po lygons  through t o   f a s t  convex  po lygon f i l l e r  * /  
i f  ( (PolygonShape - CONVEX) 1 I 

PolygonIsMonotoneVertical(VertexList)) 
return(FillMonotoneVerticalPolygon(VertexList, C o l o r ,   X O f f s e t .  

Y O f f s e t ) ) ;  
Cendi f 

/ *  It t a k e s  a minimum o f  3 v e r t i c e s   t o   c a u s e   a n y   p i x e l s   t o   b e  

i f  ( V e r t e x L i s t - > L e n g t h  < 3 )  

/*  Get  enough memory t o   s t o r e   t h e   e n t i r e  edge t a b l e  * /  
i f  ( (EdgeTab leBu f fe r  - 

drawn: r e j e c t   p o l y g o n s   t h a t   a r e   g u a r a n t e e d   t o   b e   i n v i s i b l e  */  

r e t u r n ( 1 ) :  

( s t r u c t   E d g e S t a t e  * )  ( m a l l o c ( s i z e o f ( s t r u c t   E d g e s t a t e )  * 
V e r t e x L i s t - > L e n g t h ) ) )  - NULL) 

r e t u r n ( 0 ) :  / *  c o u l d n ' t   g e t  memory f o r   t h e  edge t a b l e  * /  
/*  B u i l d   t h e   g l o b a l   e d g e   t a b l e  */  
Bu i l dGET(Ver texL is t .   EdgeTab leBu f fe r .   XOf f se t .   YOf f se t ) ;  
/ *  Scan  down t h r o u g h   t h e   p o l y g o n   e d g e s ,   o n e   s c a n   l i n e   a t  a t i m e ,  

AETPtr - NULL: /* i n i t i a l i z e   t h e   a c t i v e  edge t a b l e   t o  empty * /  
Cur ren tY  - GETPtr ->Star tY;  / *  s t a r t   a t   t h e   t o p   p o l y g o n   v e r t e x  */ 
wh i l e   ( (GETPt r  !- NULL) I I (AETPtr !- NULL)) { 

so l o n g   a s   a t   l e a s t   o n e   e d g e   r e m a i n s  i n  e i t h e r   t h e  GET o r  AET */  

MoveXSortedToAET(CurrentY): I* upda te  AET f o r   t h i s  scan l i n e  */  
ScanOutAET(CurrentY.  Color) ;  / *  draw t h i s   s c a n   l i n e   f r o m  AET */  
AdvanceAETO: / *  advance AET edges 1 scan l i n e  */  
XSortAETO: / *  r e s o r t  on X * /  
CurrentY++: / *  advance t o   t h e   n e x t   s c a n   l i n e  */  

I 
/*  R e l e a s e   t h e  memory we 've   a l loca ted   and  we ' re   done */  
f ree (EdgeTab1eBu f fe r ) :  
r e t u r n ( 1 ) ;  

I 

/*  Crea tes  a GET i n   t h e   b u f f e r   p o i n t e d   t o   b y   N e x t F r e e E d g e S t r u c   f r o m  
t h e   v e r t e x   l i s t .  Edge e n d p o i n t s   a r e   f l i p p e d ,  i f  necessary,  t o  
g u a r a n t e e   a l l   e d g e s   g o   t o p   t o   b o t t o m .  The GET i s   s o r t e d   p r i m a r i l y  
by  ascending Y s t a r t   c o o r d i n a t e ,  and   secondar i l y   by   ascend ing  X 
s t a r t   c o o r d i n a t e   w i t h i n  edges w i t h  common Y c o o r d i n a t e s .  * /  

Those Way-Down Polygon  Nomenclature  Blues 767 



s t a t i c   v o i d   B u i l d G E T ( s t r u c t   P o i n t L i s t H e a d e r  * V e r t e x L i s t .  

I 
s t r u c t   E d g e S t a t e  * NextFreeEdgeStruc,  i n t   X O f f s e t .   i n t   Y O f f s e t )  

i n t  i. S t a r t X .   S t a r t Y .  EndX.  EndY. Del taY.   Del taX.   Width,   temp:  
s t r u c t   E d g e S t a t e  *NewEdgePtr; 
s t ruc t   EdgeSta te   *Fo l l ow ingEdge .   * *Fo l l ow ingEdgeL ink :  
s t r u c t   P o i n t   * V e r t e x P t r ;  

/ *  Scan t h r o u g h   t h e   v e r t e x   l i s t  and p u t   a l l   n o n - 0 - h e i g h t   e d g e s   i n t o  

V e r t e x P t r  - V e r t e x L i s t - > P o i n t P t r :  / *  p o i n t   t o   t h e   v e r t e x   l i s t  * /  
GETPtr - NULL: / *  i n i t i a l i z e   t h e   g l o b a l  edge t a b l e   t o  empty * /  
f o r  (i - 0:  i < V e r t e x L i s t - > L e n g t h ;  i++) ( 

t h e  GET, s o r t e d   b y   i n c r e a s i n g  Y s t a r t   c o o r d i n a t e  */  

/* C a l c u l a t e   t h e   e d g e   h e i g h t   a n d   w i d t h  * /  
S t a r t X  - VertexPtrCi1.X + X O f f s e t :  
S t a r t Y  - Ver texP t rC i1 .Y  + Y O f f s e t :  
/ *  T h e   e d g e   r u n s   f r o m   t h e   c u r r e n t   p o i n t   t o   t h e   p r e v i o u s   o n e  * /  
i f  (i - 0 )  { 

/ *  Wrap back  around t o   t h e  end o f   t h e   l i s t  * /  
EndX - VertexPtrCVertexList->Length-1l.X + XOffset: 
EndY - VertexPtrCVertexList->Length-l1.Y + YOffset: 

} e l s e  ( 

1 
I* 
i f  

I 
I* 
i f  

EndX - V e r t e x P t r C i - l l . X  + XOf fse t :  
EndY - Ver texP t rC i -11 .Y  + YOf fse t :  

Make s u r e   t h e   e d g e   r u n s   t o p   t o   b o t t o m  */  
( S t a r t Y  > EndY) { 
SWAP(StartX.  EndX): 
SWAP(StartY.  EndY): 

S k i p  if t h i s   c a n ' t   e v e r   b e   a n   a c t i v e   e d g e   ( h a s  0 h e i g h t )  * I  
( ( D e l t a Y  - EndY - S t a r t Y )  !- 0 )  
I* A l l o c a t e   s p a c e   f o r   t h i s   e d g e ' s   i n f o ,   a n d  fill i n   t h e  

NewEdgePtr - NextFreeEdgeStruc++; 
NewEdgePtr ->XDirect ion - /*  d i r e c t i o n   i n   w h i c h  X moves */  

Width - abs(De1taX) ;  
NewEdgePtr->X - S t a r t X :  
NewEdgePtr->StartY - S t a r t Y :  
NewEdgePtr->Count - De l taY ;  
NewEdgePtr->ErrorTermAdjDown - De l taY :  
if (De l taX  >- 0 )  / *  i n i t i a l   e r r o r   t e r m   g o i n g  L->R */  

e l s e  / *  i n i t i a l   e r r o r   t e r m   g o i n g   R - > L  * /  

i f  (De l taY  >- W id th )  ( /*  Y-major  edge */  

s t r u c t u r e  */  

( ( D e l t a X  - EndX - S t a r t X )  > 0 )  ? 1 : -1: 

NewEdgePtr->ErrorTerm - 0;  

NewEdgePtr->ErrorTerm - -Del taY + 1: 

NewEdgePtr->WholePixelXMove - 0:  
NewEdgePtr->ErrorTermAdjUp - Width:  

NewEdgePtr->WholePixelXMove - 
NewEdgePtr->ErrorTermAdjUp - Width % Del taY:  

3 e l s e  I /*  X-major  edge */  

(Wid th  / De l taY)  * NewEdgePtr ->XDirect ion:  

1 
/*  L i n k   t h e  new edge i n t o   t h e  GET s o  t h a t   t h e  edge l i s t   i s  

s t i l l   s o r t e d   b y  Y coord ina te ,   and  by  X c o o r d i n a t e   f o r   a l l  
edges w i t h   t h e  same Y c o o r d i n a t e  */  

Fo l l ow ingEdgeL ink  - &GETPtr; 
f o r  ( : : )  { 

Fol lowingEdge - *Fol lowingEdgeLink:  

768 Chapter 41 



i f  ( ( F o l l o w i n g E d g e  - NULL) I I 
( F o l l o w i n g E d g e - > S t a r t Y  > S t a r t Y )  I I 
( ( F o l l o w i n g E d g e - > S t a r t Y  - S t a r t Y )  && 
(Fo l low ingEdge->X >- S t a r t X ) ) )  I 

NewEdgePtr->NextEdge - Fol lowingEdge: 
*Fo l low ingEdgeL ink  - NewEdgePtr: 
b reak ;  

1 
Fol lowingEdgeL ink  - &FollowingEdge->NextEdge; 

1 
I 

1 
1 

/*  S o r t s   a l l  e d g e s   c u r r e n t l y   i n   t h e   a c t i v e  edge t a b l e   i n t o   a s c e n d i n g  
o r d e r   o f   c u r r e n t  X c o o r d i n a t e s  */  

s t a t i c   v o i d   X S o r t A E T O  I 
s t ruc t   EdgeSta te   *Cur ren tEdge .   * *Cur ren tEdgePt r .  *TempEdge: 
i n t  Swapoccurred: 

/ *  Scan  th rough  the  AET and swap a n y   a d j a c e n t   e d g e s   f o r   w h i c h   t h e  
second  edge i s   a t  a l o w e r   c u r r e n t  X c o o r d   t h a n   t h e   f i r s t  edge. 
Repeat u n t i l  n o   f u r t h e r   s w a p p i n g   i s   n e e d e d  */  

do I 
i f  (AETPtr !- NULL) ( 

Swapoccurred - 0: 
Cur ren tEdgePt r  - &AETPtr; 
wh i l e   ( (Cur ren tEdge  - *CurrentEdgePtr)->NextEdge !- NULL) I 

/*  The  second  edge  has a l o w e r  X t h a n   t h e   f i r s t ;  

TempEdge - CurrentEdge->NextEdge->NextEdge: 
*Cur ren tEdgePt r  - CurrentEdge->NextEdge: 
CurrentEdge->NextEdge->NextEdge - CurrentEdge: 
CurrentEdge->NextEdge - TempEdge: 
Swapoccurred - 1; 

if (CurrentEdge->X > CurrentEdge->NextEdge->X) ( 

swap them i n   t h e  AET */  

1 
Curren tEdgePt r  - &(*CurrentEdgePtr)->NextEdge; 

} 

1 
} wh i l e   (Swapoccur red  !- 0): 

1 

/*  Advances  each  edge i n   t h e  AET by  one  scan l i n e .  

s t a t i c   v o i d  AdvanceAETO I 
Removes edges tha t   have   been   fu l l y   scanned .  * /  

s t ruc t   EdgeSta te   *Cur ren tEdge ,   * *Cur ren tEdgePt r :  

/*  Count down and  remove o r  advance  each  edge i n   t h e  AET */  
Cur ren tEdgePt r  - &AETPtr: 
w h i l e   ( ( C u r r e n t E d g e  - *Cur ren tEdgePt r )  !- NULL) I 

/*  Count o f f  one  scan l i n e   f o r   t h i s  edge *I  
i f  ((--(CurrentEdge->Count)) - 0) I 

/* This   edge i s   f i n i s h e d ,  so remove it f r o m   t h e  AET * I  
*Cur ren tEdgePt r  - CurrentEdge->NextEdge: 

/* Advance  the  edge 's  X coord inate  by  min imum move */  
CurrentEdge->X +- CurrentEdge->WholePixelXMove; 
/* Determine  whether  i t ' s   t i m e   f o r  X t o  advance  one  extra * /  
i f  ((CurrentEdge->ErrorTerm +- 

1 e l s e  ( 

CurrentEdge->ErrorTermAdjUp) > 0) I 

Those Way-Down Polygon  Nomenclature  Blues 769 



CurrentEdge->X +- Cur ren tEdge->XDi rec t i on :  
Cur ren tEdge->Er rorTerm -- CurrentEdge->ErrorTermAdjDown: 

3 
Cur ren tEdgePt r  - K u r r e n t E d g e - > N e x t E d g e :  

1 
3 

1 

/*  Moves a l l  edges t h a t   s t a r t   a t   t h e   s p e c i f i e d  Y c o o r d i n a t e   f r o m   t h e  

s ta t i c   vo id   MoveXSor tedToAET( in t  YToMove) I 
GET t o   t h e  AET. m a i n t a i n i n g   t h e  X s o r t i n g   o f   t h e  AET. */ 

s t r u c t   E d g e S t a t e  *AETEdge. **AETEdgePtr. *TempEdge; 
i n t   C u r r e n t X :  

/ *  The GET i s  Y s o r t e d .  Any edges t h a t   s t a r t   a t   t h e   d e s i r e d  Y 
c o o r d i n a t e  will be f i r s t   i n   t h e  GET, so w e ' l l  move edges  f rom 
t h e  GET t o  AET u n t i l   t h e   f i r s t  edge l e f t   i n   t h e  GET i s  n o   l o n g e r  
a t  t h e   d e s i r e d  Y c o o r d i n a t e .   A l s o ,   t h e  GET i s  X s o r t e d   w i t h i n  
each Y c o o r d i n a t e ,  so each  success ive  edge we add t o   t h e  AET i s  
g u a r a n t e e d   t o   b e l o n g   l a t e r   i n   t h e  AET t h a n   t h e  one j u s t  added. * /  

AETEdgePtr - &AETPtr: 
w h i l e   ( ( G E T P t r  !- NULL) && ( G E T P t r - > S t a r t y  - YToMove)) I 

Curren tX - GETPtr->X: 
/ *  L i n k   t h e  new edge i n t o   t h e  AET s o  t h a t   t h e  AET i s   s t i l l  

for ( : : )  { 
s o r t e d   b y  X c o o r d i n a t e  */  

AETEdge - *AETEdgePtr: 
i f  ((AETEdge - NULL) I I (AETEdge->X >- C u r r e n t X ) )  I 

TempEdge - GETPtr->NextEdge; 
*AETEdgePtr - GETPtr: / *  l i n k   t h e  edge i n t o   t h e  AET */  
GETPtr->NextEdge - AETEdge: 
AETEdgePtr - &GETPtr->NextEdge; 
GETPtr - TempEdge; / *  u n l i n k   t h e   e d g e   f r o m   t h e  GET */ 
break :  

AETEdgePtr - &AETEdge->NextEdge: 
3 e l s e  I 

I 
3 

1 
3 

/ *  F i l l s   t h e   s c a n   l i n e   d e s c r i b e d  b y   t h e   c u r r e n t  AET a t   t h e   s p e c i f i e d  Y 

s t a t i c   v o i d   S c a n O u t A E T ( i n t  YToScan. i n t   C o l o r )  I 
c o o r d i n a t e   i n   t h e   s p e c i f i e d   c o l o r ,   u s i n g   t h e   o d d l e v e n  fill r u l e  * /  

i n t   L e f t X :  
s t ruc t   EdgeSta te   *Cur ren tEdge :  

/ *  Scan   th rough   the  AET. d raw ing   l i ne   segmen ts   as   each   pa i r   o f   edge  
c r o s s i n g s   i s   e n c o u n t e r e d .  The n e a r e s t   p i x e l  on o r   t o   t h e   r i g h t  
o f   l e f t  edges i s  d r a w n ,   a n d   t h e   n e a r e s t   p i x e l   t o   t h e   l e f t   o f   b u t  
n o t  on r i g h t  edges i s  drawn */  

CurrentEdge - AETPtr; 
w h i l e   ( C u r r e n t E d g e  !- NULL) I 

L e f t X  - CurrentEdge->X: 
CurrentEdge - CurrentEdge->NextEdge: 
DrawHor izonta lL ineSeg(YToScan.  Le f tX .   Cur ren tEdge->X-1 ,   Co lor ) ;  
CurrentEdge - CurrentEdge->NextEdge; 

3 
1 

770 Chapter 41 



LISTING 4 1.5 POLYG0N.H 
I* Header f i l e   f o r   p o l y g o n - f i l l i n g  code *I  

# d e f i n e  CONVEX 0 
# d e f i n e  NONCONVEX 1 
# d e f i n e  COMPLEX 2 

I* Descr ibes  a s i n g l e   p o i n t   ( u s e d   f o r  a s i n g l e   v e r t e x )  * /  
s t r u c t   P o i n t  { 

i n t  X :  / *  X c o o r d i n a t e  *I  
i n t  Y :  I* Y c o o r d i n a t e  * I  

1 ;  

I* D e s c r i b e s   s e r i e s  o f  p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t   d e s c r i b e  
a p o l y g o n ;   e a c h   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   t w o   a d j a c e n t   v e r t i c e s ,  and 
l a s t   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   f i r s t )  *I 
s t r u c t   P o i n t L i s t H e a d e r  { 

i n t  Length;  / *  11 o f   p o i n t s  * I  
s t r u c t   P o i n t  * P o i n t P t r :  I* p o i n t e r   t o   l i s t   o f   p o i n t s  *I  

I ;  

/*  Desc r ibes   beg inn ing   and   end ing  X c o o r d i n a t e s   o f  a s i n g l e   h o r i z o n t a l   l i n e  * /  
s t r u c t   H L i n e  { 

i n t   X S t a r t ;  I* X c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   l i n e  */  
i n t  XEnd; I* X c o o r d i n a t e  o f  r i g h t m o s t   p i x e l   i n   l i n e  * I  

I ;  

I* Descr ibes  a L e n g t h - l o n g   s e r i e s   o f   h o r i z o n t a l   l i n e s ,   a l l  assumed t o  be  on 
c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t  and  proceeding  downward  (used t o  
d e s c r i b e   s c a n - c o n v e r t e d   p o l y g o n   t o   l o w - l e v e l   h a r d w a r e - d e p e n d e n t   d r a w i n g   c o d e )  * /  
s t r u c t   H L i n e L i s t  { 

i n t  Length;  / *  # o f   h o r i z o n t a l   l i n e s  * /  
i n t   Y S t a r t ;  I* Y c o o r d i n a t e   o f   t o p m o s t   l i n e  * I  
s t r u c t   H L i n e  * H L i n e P t r ;  I* p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  *I  

3 ;  

I* Descr ibes  a c o l o r  as  an RGB t r i p l e ,  p l u s   o n e   b y t e   f o r   o t h e r   i n f o  *I  
s t r u c t  RGB { uns igned  char  Red, Green, B lue,   Spare:  I :  

Is monotone-vertical polygon detection worth all this trouble?  Under  the  right cir- 
cumstances, you bet.  In  a situation where a great many  polygons are  being drawn, 
and  the application either  doesn’t know whether they’re monotone-vertical or has 
no way to tell the polygon filler that they are,  performance can be increased consid- 
erably if most polygons are, in fact, monotone-vertical. This potential  performance 
advantage is helped  along by the surprising fact that Jim’s  test for monotone-vertical 
status is simpler and faster than my original, nonfunctional test for convexity. 
See what accurate terminology and effective communication can do? 

Those Way-Down Polygon Nomenclature Blues 771 



chapter 42

wu'ed in haste; fried, stewed at leisure



sing Wu‘s Algorithm 
y head as I unenthusiastically  picked through the 

ily” restaurant, trying  to decide whether the meatballs, the 
a was  likely to shorten my life the least. I decided on the 

chicken  in mystery 
aughter asked,  “Dad,  is that fried chicken?” 
t’s stewed chicken. 

” my  wife volunteered hopefully. I took a bite. It 
. I can now, unhesitatingly and without  reserva- 
ed, stewed chicken at all  costs. 

The thought I had was  as  follows: This is not good food. Not a profound thought, but it 
raises an interesting question: Why was I eating in  this restaurant? The answer,  to 
borrow a phrase from E.F. Schumacher, is uppropn’ate technology. For a family on a 
budget, with a small child, tired of staring at each other over the kitchen  table,  this 
was a perfect place  to eat. It was cheap, it had greasy food and ice  cream, no  one 
cared if children dropped things or talked  loudly or walked around, and, most  im- 
portant of all, it wasn’t  home. So what  if the food was lousy?  Good food was a luxury, 
a bonus;  everything on the above  list  was  necessary. A family restaurant was the ap- 
propriate dining-out  technology,  given the parameters within  which we had to  work. 

775 



When I read  through SIGGRAPH proceedings and  other state-of-the-art computer- 
graphics material, all too often I feel like I’m dining  at a four-star restaurant with 
two-year-old triplets and  an empty  wallet.  We’re  talking incredibly inappropriate tech- 
nology for PC graphics here.  Sure, I say to myself as I read  about  an antialiasing 
technique,  that  sounds wonderful-if I had 24bpp color, and dedicated hardware to 
do  the processing, and all day to wait to generate  one image. Yes, I think,  that is a 
good way to do  hidden surface removal-in a system with hardware z-buffering. Most 
of the stuff in  the  journal Computer  Ofaphics is riveting, but, alas, pretty much useless 
on PCs. When an x86 has to do all the work, speed becomes the overriding param- 
eter, especially for real-time graphics. 
Literature that’s applicable to fast PC graphics is hard  enough to find, but what  we’d 
really  like  is  above-average image quality combined with terrific speed,  and there’s 
almost no literature of that  sort  around. There is some, however, and you  folks are 
right  on  top of it. For example,  alert  reader Michael Chaplin, of San Diego, wrote to 
suggest that I might enjoy the line-antialiasing algorithm presented  in Xiaolin Wu’s 
article, “An Efficient  Antialiasing Technique,”  in  the July  1991  issue of Computer Guph- 
ics. Michael was dead-on  right.  This is a great  algorithm,  combining  excellent 
antialiased line qualitywith speed that’s  close to that of non-antialiased Bresenham’s 
line drawing. This is the  sort of algorithm that makes  you  want to go out  and write a 
wire-frame animation  program, just so you can see how good those smooth lines 
look in motion. Wu antialiasing is a  wonderful example of what can be accomplished 
on inexpensive, mass-market hardware with the  proper programming perspective. 
In  short, it’s a  splendid example of appropriate technology for PCs. 

Wu Antialiasing 
Antialiasing, as we’ve been discussing for  the past few chapters, is the process of 
smoothing lines and edges so that they appear less jagged. Antialiasing is partly an 
aesthetic issue, because it makes images more attractive. It’s  also partly an accuracy 
issue, because it makes it possible  to position and draw images with  effectively more 
precision than  the resolution of the display.  Finally,  it’s partly a flat-out necessity, to 
avoid the  horrible, crawling, jagged edges of temporal aliasing when performing 
animation. 
The basic premise of Wu antialiasing is  almost  ridiculously  simple: As the algorithm  steps 
one pixel unit  at a time along the major (longer) axis of a  line,  it draws the two pixels 
bracketing the line along  the  minor axis at each point. Each  of the two bracketing 
pixels  is  drawn  with a weighted fraction of the full intensity of the drawing color,  with 
the weighting for  each pixel equal to one minus the pixel’s distance along the  minor 
axis from  the ideal line. Yes, it’s a  mouthful, but Figure 42.1 illustrates the  concept. 
The intensities of the two pixels that bracket the line  are selected so that they always 
sum to exactly 1; that is, to the intensity of one fully illuminated pixel of the drawing 
color. The presence of aggregate full-pixel intensity means  that at each step, the  line 

776 Chapter 42 



has the same brightness it would  have if a single pixel were drawn at precisely the 
correct location. Moreover, thanks to the distribution of the intensity weighting, that 
brightness is centered  at  the ideal line. Not coincidentally, a line drawn with pixel 
pairs of aggregate single-pixel  intensity, centered  on  the ideal line, is perceived by 
the eye not as ajagged collection of pixel pairs, but as a smooth line  centered  on  the 
ideal line.  Thus, by weighting the bracketing pixels properly at each step, we can 
readily produce what looks like a smooth line at precisely the  right  location,  rather 
than  the  jagged  pattern of line segments that non-antialiased line-drawing algorithms 
such as Bresenham’s (see Chapters 35,36,  and 37) trace out. 
You might  expect  that  the  implementation of Wu antialiasing would  fall into two 
distinct areas: tracing out  the  line  (that is, finding  the  appropriate pixel pairs to 
draw) and calculating the appropriate weightings for each pixel  pair.  Not so, however. 
The weighting calculations involve  only a few shifts, XORS, and adds;  for all practical 
purposes, tracing and weighting are rolled into  one step-and a very fast step  it is. 
How  fast is it? On a 33-MHz  486  with a fast VGA, a  good but  not maxed-out assembly 
implementation of Wu antialiasing draws a  more  than respectable 5,000  150-pixel- 
long vectors per second. That’s  especially  impressive considering that  about 1,500,000 

Wu‘ed in Haste; Fried,  Stewed at Leisure 777 



actual  pixels are drawn per second, meaning that Wu antialiasing is drawing at around 
50 percent of the maximum memory bandwidth-half the fastest theoretically pos- 
sible  drawing speed-of  an AT-bus  VGA. In short, Wu antialiasing is about as  fast an 
antialiased line approach as  you could ever hope to find for the VGA. 

Tracing and Intensity in  One 
Horizontal, vertical, and diagonal lines do not  require Wu antialiasing because  they 
pass through  the  center of  every pixel  they meet; such lines can be  drawn  with  fast, 
special-case code. For  all other cases, Wu lines are traced out  one step at  a time along 
the major axis by means of a simple, fixed-point algorithm. The move along the 
minor axis  with respect to a one-pixel move along the major axis (the line slope for 
lines with  slopes  less than 1, l/slope for lines with  slopes greater  than 1) is calculated 
with a single integer divide. This value,  called the  “error adjust,” is stored as a fixed- 
point fraction, in  0.16 format (that is, all  bits are fractional, and the decimal point is 
just to the left of bit 15). An error accumulator, also in 0.16 format, is initialized to 0. 
Then the first pixel is drawn; no weighting is needed, because the line intersects its 
endpoints exactly. 
Now the  error adjust is added to the  error accumulator. The  error accumulator indi- 
cates how far between  pixels the line has progressed along the minor axis at any 
given step; when the  error accumulator turns over,  it’s  time to advance one pixel 
along the minor axis. At each step along the line,  the major-axis coordinate advances 
by one pixel. The two bracketing pixels to draw are simply the two pixels nearest the 
line along the minor axis.  For instance, if X is the current major-axis coordinate and 
Y is the current minor-axis coordinate, the two pixels to be  drawn are (X,Y) and 
(X,Y+l). In short, the derivation of the pixels at which to draw  involves nothing 
more complicated than advancing one pixel along the major axis, adding  the  error 
adjust to the  error accumulator, and advancing one pixel along the  minor axis when 
the error accumulator turns over. 
So far, nothing special; but now  we come  to the true  wonder of Wu antialiasing. We 
know  which pair of pixels to draw at each step along the line, but we also need to 
generate  the two proper intensities, which  must be inversely proportional to dis- 
tance from the ideal line and sum to 1, and that’s a potentially timeconsuming 
operation. Let’s  assume,  however, that the number of  possible intensity levels to be 
used for weighting is the value  NumLevels = 2” for some integer  n, with the mini- 
mum weighting (0 percent intensity) being  the value 2”-1, and  the maximum 
weighting (100 percent intensity) being the value 0. Given that, lo and behold, the 
most  significant n bits of the error accumulator select the proper intensity  value for 
one element of the pixel  pair,  as  shown in Figure 42.2. Better yet, 2“-1 minus the 
intensity of the first  pixel  selects the intensity of the  other pixel in the pair,  because 
the intensities of the two pixels must sum to 1; as it happens, this result can be o h  
tained simply by flipping the  n least-significant  bits  of the first  pixel’s  value. All this 

778 Chapter 42 



works because what the  error accumulator accumulates is precisely the ideal line’s 
current distance between the two bracketing pixels. 
The intensity calculations take longer to describe than they do to perform. All that’s 
involved is a shift of the  error accumulator to right-justify the desired intensity weight- 
ing bits, and  then  an XOR to flip the least-significant n bits of the first pixel’s  value in 
order to generate  the second pixel’s  value.  Listing 42.1 illustrates just how efficient 
Wu antialiasing is; the intensity calculations take only three  statements, and  the en- 
tire Wu linedrawing  loop is only nine statements long. Of course, a single C statement 
can hide  a  great deal of complexity, but Listing 42.6, an assembly implementation, 
shows that only 15 instructions  are  required per step along  the major axis-and the 
number of instructions could be reduced to ten by special-casing and  loop unroll- 
ing. Make no mistake about it, Wu antialiasing is fast. 

LISTING 42.1  L42-1 .C 
/* F u n c t i o n   t o   d r a w   a n   a n t i a l i a s e d   l i n e   f r o m  ( X O . Y O )  t o  ( X 1 , Y l ) .  u s i n g   a n  
* a n t i a l i a s i n g   a p p r o a c h   p u b l i s h e d   b y   X i a o l i n  Wu i n   t h e   J u l y   1 9 9 1   i s s u e   o f  
* Compute r   Graph ics .   Requ i res   t ha t   t he   pa le t te   be   se t   up  so  t h a t   t h e r e  
* a r e  NumLevels i n t e n s i t y   l e v e l s   o f   t h e   d e s i r e d   d r a w i n g   c o l o r ,   s t a r t i n g   a t  
* co lo r   BaseCo lo r  (100% i n t e n s i t y )  a n d   f o l l o w e d   b y   ( N u m L e v e l s - 1 )   l e v e l s   o f  
* e v e n l y   d e c r e a s i n g   i n t e n s i t y ,   w i t h   c o l o r   ( B a s e C o l o r + N u m L e v e l s - 1 )   b e i n g  0% 
* i n t e n s i t y   o f   t h e   d e s i r e d   d r a w i n g   c o l o r   ( b l a c k ) .   T h i s   c o d e   i s   s u i t a b l e   f o r  
* use a t   s c r e e n   r e s o l u t i o n s ,   w i t h   l i n e s   t y p i c a l l y   n o  more t h a n  1 K  l o n g :   f o r  
* l o n g e r   l i n e s ,   3 2 - b i t   e r r o r   a r i t h m e t i c   m u s t   b e   u s e d   t o   a v o i d   p r o b l e m s   w i t h  
* f i x e d - p o i n t   i n a c c u r a c y .  No c l i p p i n g   i s   p e r f o r m e d   i n  DrawWuLine; i t  must  be 
* p e r f o r m e d   e i t h e r   a t  a h i g h e r   l e v e l   o r   i n   t h e   D r a w P i x e l   f u n c t i o n .  
* T e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and the   sma l l   mode l .  
* /  

e x t e r n   v o i d   D r a w P i x e l ( i n t .   i n t .   i n t ) ;  

Wu‘ed in Haste;  Fried,  Stewed at Leisure 779 



I* Wu a n t i a l i a s e d   l i n e   d r a w e r .  
* ( X O , Y O ) . ( X l . Y l )  - l i n e   t o  draw 
* BaseColor - c o l o r  # o f   f i r s t   c o l o r   i n   b l o c k  used f o r   a n t i a l i a s i n g .   t h e  * 100% i n t e n s i t y   v e r s i o n   o f   t h e   d r a w i n g   c o l o r  
* NumLevels - s i z e   o f   c o l o r   b l o c k ,   w i t h   B a s e C o l o r + N u m L e v e l s - 1   b e i n g   t h e  
* 0% i n t e n s i t y   v e r s i o n   o f   t h e   d r a w i n g   c o l o r  
* I n t e n s i t y B i t s  - l o g  base 2 o f  NumLevels:   the # o f   b i t s  used t o   d e s c r i b e  

*I 
* t h e   i n t e n s i t y   o f   t h e   d r a w i n g   c o l o r .  2**IntensityBits--NumLevels 

vo id   DrawWuLine( in t  X O .  i n t  YO,  i n t  X 1 .  i n t  Y 1 .  i n t  BaseColor.  i n t  NumLevels. 

I 
u n s i g n e d   i n t   I n t e n s i t y B i t s )  

uns igned i n t   I n t e n s i t y S h i f t .   E r r o r A d j .   E r r o r A c c :  
uns igned   i n t   E r ro rAccTemp.   We igh t i ng ,  WeightingComplementMask: 
i n t   D e l t a X .   D e l t a Y .  Temp, XDir: 

I* Make s u r e   t h e   l i n e   r u n s   t o p   t o   b o t t o m  *I  
i f  ( Y O  > Y 1 )  t 

Temp - Y O :  Y O  - Y 1 :  Y 1  - Temp: 
Temp - X O :  X0 - X 1 :  X 1  - Temp: 

I 
/*  Draw t h e   i n i t i a l   p i x e l ,   w h i c h   i s   a l w a y s   e x a c t l y   i n t e r s e c t e d   b y  

DrawPixe l (X0.  YO,  BaseColor ) :  
t h e   l i n e  and so needs  no  weight ing */  

i f  ( ( D e l t a X  - X 1  - X O )  >- 0) t 

I e l s e  I 
XDir - 1: 

} 
/ *  

i f  

1 
i f  

} 
i f  

I 
I* 

XDir - -1: 
De l taX - -De l taX:  I* make D e l t a X   p o s i t i v e  *I  

S p e c i a l - c a s e   h o r i z o n t a l .   v e r t i c a l ,   a n d   d i a g o n a l   l i n e s ,   w h i c h  
r e q u i r e   n o   w e i g h t i n g   b e c a u s e   t h e y   g o   r i g h t   t h r o u g h   t h e   c e n t e r  o f  
e v e r y   p i x e l  * /  
( ( D e l t a Y  - Y 1  - Y O )  - D )  I 
I* H o r i z o n t a l   l i n e  *I 
w h i l e   ( D e l t a X - -  !- 0) I 

X0 +- XDir: 
DrawPixel(X0. YO, BaseColor ) :  

1 
r e t u r n :  

( D e l t a X  - 0) ( 
/* V e r t i c a l   l i n e  */  
do I 

Y D M :  
DrawPixel(X0. YO. BaseColor ) :  

1 w h i l e   ( - - D e l t a Y  !- 0 ) :  
r e t u r n :  

( D e l t a X  - D e l t a Y )  ( 
I* Diagona l  1 i n e  *I  
do I 

X0 +- XDir: 
YO*: 
DrawPixe l (X0.  Y O ,  BaseColor ) :  

1 w h i l e   ( - - D e l t a Y  !- 0): 
r e t u r n :  

l i n e   i s   n o t   h o r i z o n t a l ,   d i a g o n a l ,   o r   v e r t i c a l  *I 
E r r o r A c c  - 0: / *  i n i t i a l i z e   t h e   l i n e   e r r o r   a c c u m u l a t o r   t o  0 * /  

780 Chapter 42 



I* # o f   b i t s  b y   w h i c h   t o   s h i f t   E r r o r A c c   t o   g e t   i n t e n s i t y   l e v e l  * I  
I n t e n s i t y S h i f t  = 16 - I n t e n s i t y B i t s :  
/ *  Mask used t o   f l i p   a l l   b i t s   i n  an i n t e n s i t y   w e i g h t i n g ,   p r o d u c i n g   t h e  

r e s u l t  (1 - i n t e n s i t y   w e i g h t i n g )  * /  
WeightingComplementMask - NumLevels - 1; 
I* I s  t h i s  a n   X - m a j o r   o r   Y - m a j o r   l i n e ?  *I 
i f  (De l taY  > De l taX)  { 

I* Y - m a j o r   l i n e :   c a l c u l a t e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t  o f  a 
p i x e l   t h a t  X advances  each  t ime Y advances 1 p i x e l ,   t r u n c a t i n g   t h e  
r e s u l t  s o  t h a t  we w o n ' t   o v e r r u n   t h e   e n d p o i n t   a l o n g   t h e  X a x i s  * /  

E r r o r A d j  - ( ( u n s i g n e d   l o n g )   D e l t a X  << 16 )  I ( u n s i g n e d   l o n g )   D e l t a Y ;  
/* Draw a l l   p i x e l s   o t h e r   t h a n   t h e   f i r s t  and l a s t  * /  
w h i l e   C - D e l t a Y )  I 

ErrorAccTemp = Er ro rAcc ;  I* remember c u r r r e n t   a c c u m u l a t e d   e r r o r  * /  
Er ro rAcc  += E r r o r A d j ;  I* c a l c u l a t e   e r r o r   f o r   n e x t   p i x e l  * I  
i f  ( E r r o r A c c  <- ErrorAccTemp) { 

I* The e r r o r   a c c u m u l a t o r   t u r n e d   o v e r ,  s o  advance  the X coo rd  *I  
X0 += XDir: 

1 
YO++: I* Y-major .  so always  advance Y * /  
/ *  The I n t e n s i t y B i t s   m o s t   s i g n i f i c a n t   b i t s   o f   E r r o r A c c   g i v e   u s   t h e  

i n t e n s i t y   w e i g h t i n g   f o r   t h i s   p i x e l ,  and the   comp lemen t   o f   t he  
w e i g h t i n g   f o r   t h e   p a i r e d   p i x e l  * I  

Weigh t ing  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
DrawPixe l (X0.  Y O .  BaseColor + We igh t ing ) :  
DrawPixe l (X0 + XDir. Y O .  

BaseColor + (We igh t ing  A WeightingComplementMask)): 
1 
I* Draw t h e   f i n a l   p i x e l .   w h i c h   i s   a l w a y s   e x a c t l y   i n t e r s e c t e d   b y   t h e   l i n e  

DrawPixe l (X1.  Y 1 .  BaseColor) :  
r e t u r n :  

and s o  needs  no   we igh t ing  * I  

1 
I* I t ' s  a n   X - m a j o r   l i n e :   c a l c u l a t e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t   o f  a 

p i x e l   t h a t  Y advances  each  t ime X advances 1 p i x e l ,   t r u n c a t i n g   t h e  
r e s u l t   t o   a v o i d   o v e r r u n n i n g   t h e   e n d p o i n t   a l o n g   t h e  X a x i s  *I 

E r r o r A d j  - ( ( u n s i g n e d   l o n g )   D e l t a Y  << 16 )  / ( u n s i g n e d   l o n g )   D e l t a X :  
I* Draw a l l   p i x e l s   o t h e r   t h a n   t h e   f i r s t  and l a s t  *I  
w h i l e   ( - - D e l t a X )  I 

ErrorAccTemp - Er ro rAcc :  I* remember c u r r r e n t   a c c u m u l a t e d   e r r o r  *I  
Er ro rAcc  +- E r r o r A d j :  I* c a l c u l a t e   e r r o r   f o r   n e x t   p i x e l  * I  
i f  (E r ro rAcc  <- ErrorAccTemp) I 

I* The e r r o r   a c c u m u l a t o r   t u r n e d   o v e r ,  s o  advance  the Y coo rd  *I  
YO++; 

1 
X0 +- XDir: I* X-major ,  s o  always  advance X *I  
I* The I n t e n s i t y B i t s   m o s t   s i g n i f i c a n t   b i t s   o f   E r r o r A c c   g i v e   u s   t h e  

i n t e n s i t y   w e i g h t i n g   f o r   t h i s   p i x e l ,  and t h e   c o m p l e m e n t   o f   t h e  
w e i g h t i n g   f o r   t h e   p a i r e d   p i x e l  * /  

We igh t ing  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
DrawPixe l (X0.  Y O .  BaseColor + W e i g h t i n g ) :  
DrawPixe l (X0.  Y O  + 1. 

BaseColor + (We igh t ing  A WeightingComplementMask)); 
> 
I* Draw t h e   f i n a l   p i x e l ,   w h i c h  i s  a l w a y s   e x a c t l y   i n t e r s e c t e d   b y   t h e   l i n e  

DrawPixe l (X1.  Y 1 .  BaseColor) ;  
and s o  needs  no   we igh t ing  *I  

1 

Wu'ed in Haste;  Fried,  Stewed at Leisure 781 



Sample Wu Antialiasing 
The true test of any antialiasing technique is  how good  it looks, so let's  have a look at 
Wu antialiasing in action. Listing  42.1  is a C implementation of  Wu antialiasing. 
Listing  42.2  is a sample program  that draws a variety  of  Wu-antialiased lines, followed 
by non-antialiased  lines,  for  comparison.  Listing  42.3  contains DrawPixel() and &Mode() 
functions  for  mode 13H, the VGA's 320x200  256-color mode. Finally, Listing  42.4  is 
a simple, non-antialiased linedrawing  routine. Link these four listings together  and 
run  the resulting program to  see both Wu-antialiased and non-antialiased lines. 

LISTING 42.2 L42-2.C 
/*  Sample l i n e - d r a w i n g   p r o g r a m   t o   d e m o n s t r a t e  Wu a n t i a l i a s i n g .   A l s o   d r a w s  
* n o n - a n t i a l i a s e d   l i n e s   f o r   c o m p a r i s o n .  
* T e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and the   sma l l   mode l .  
*/ 

B i n c l  ude  <dos.  h> 
# i n c l u d e   < c o n i o . h >  

v o i d   S e t P a l e t t e ( s t r u c t  WuColor * ) :  
e x t e r n   v o i d   D r a w W u L i n e ( i n t .   i n t .   i n t .   i n t .   i n t .   i n t .   u n s i g n e d   i n t ) :  
e x t e r n   v o i d   D r a w L i n e ( i n t .   i n t .   i n t .   i n t .   i n t ) :  
e x t e r n   v o i d   S e t M o d e ( v o i d ) :  
e x t e r n   i n t   S c r e e n W i d t h I n P i x e l s :  /* sc reen   d imens ion   g loba ls  * /  
e x t e r n   i n t   S c r e e n H e i g h t I n P i x e l s :  

# d e f i n e  NUM-WU-COLORS 2 / *  # o f   c o l o r s   w e ' l l  do a n t i a l i a s e d   d r a w i n g   w i t h  */ 
s t r u c t  WuColor I /*  d e s c r i b e s   o n e   c o l o r   u s e d   f o r   a n t i a l i a s i n g  */ 

i n t  BaseColor :  / *  # o f   s t a r t  o f  p a l e t t e   i n t e n s i t y   b l o c k   i n  DAC */  
i n t  NumLevel s : /*  # o f   i n t e n s i t y   l e v e l s  * /  
i n t   I n t e n s i t y B i t s :  / *  I n t e n s i t y B i t s  - log2  NumLevels * /  
i n t  MaxRed: / *  red  component o f   c o l o r   a t   f u l l   i n t e n s i t y  */ 
i n t  MaxGreen: / *  green  component o f   c o l o r   a t   f u l l   i n t e n s i t y  * /  
i n t  MaxBlue: / *  b l u e  component o f   c o l o r   a t   f u l l   i n t e n s i t y  */ 

1 :  
enum {WU-BLUE-0.  WU-WHITE-11: /* d r a w i n g   c o l o r s  * /  
s t r u c t  WuColor WuColorsCNUM~WU~COLORSl - /* b l u e  and w h i t e  * /  

((192,  32,  5. 0. 0. Ox3F).  {224.  32.  5.  Ox3F.  Ox3F.  Ox3F1}; 

v o i d   m a i n 0  
I 

i n t   C u r r e n t C o l o r .  i; 
u n i o n  REGS r e g s e t :  

/ *  Draw W u - a n t i a l i a s e d   l i n e s   i n   a l l   d i r e c t i o n s  */ 
SetModeO: 
SetPalet te(WuCo1ors) :  
f o r   ( i - 5 :   i < S c r e e n W i d t h I n P i x e l s :  i +- 10) { 

DrawWuLine~ScreenWidthInPixels/2-ScreenWidthInPixels/lO+i/5, 
S c r e e n H e i g h t I n P i x e l s / 5 .  i. S c r e e n H e i g h t I n P i x e l s - 1 ,  
WuColors[WU~BLUEl.BaseColor. WuColorsCWU~BLUE1.NumLevels. 
WuColors[WU~BLUEl.IntensityBits): 

1 
f o r   ( i - 0 :   i < S c r e e n H e i g h t I n P i x e l s :  i +- 10)  { 

DrawWuLine(ScreenWidthInPixels/2"creenWidthInPixels/lO, i / 5 .  0. i. 
WuColorsCWU~BLUE1.BaseColor.  WuColors[WU~BLUEl.NumLevels. 
WuColorsCWU~BLUE1.IntensityBits): 

1 

782 Chapter 42 



f o r   ( i - 0 ;   i < S c r e e n H e i g h t I n P i x e l s ;  i +- 10)  { 
DrawWuLine(ScreenWidthInPixels/2+ScreenWidthInPixels/lO, i / 5 ,  

S c r e e n W i d t h I n P i x e l s - 1 ,  i. WuColors[WU~BLUE1.BaseColor. 
WuColors[WU~BLUE1.NumLevels. WuColors[WU_BLUEl.IntensityBits); 

I 
f o r   ( i - 0 ;   i < S c r e e n W i d t h I n P i x e l s ;  i +- 10)  { 

OrawWuLine~ScreenWidthInPixels/2-ScreenWidthInPixels/lO+i/5, 
S c r e e n H e i g h t I n P i x e l s .  i, 0. WuColors[WU~WHITEl.BaseColor. 
WuColorsCWU~WHITE1.NumLevels, 
WuColors[WU_WHITE1.IntensityBits): 

} 
g e t c h ( ) ;  / *  w a i t   f o r  a key   p ress  */  

/* Now c l e a r   t h e   s c r e e n  a n d   d r a w   n o n - a n t i a l i a s e d   l i n e s  */  
SetModeO; 
SetPa le t te (WuCo1ors) ;  
f o r   ( i - 0 ;   i < S c r e e n W i d t h I n P i x e l s ;  i +- 10)  { 

OrawLine~ScreenWidthInPixels/2-ScreenWidthInPixels/lO+i/5, 
S c r e e n H e i g h t I n P i x e l s / 5 ,  i. S c r e e n H e i g h t I n P i x e l s - 1 ,  
WuColors[WU~BLUEl.BaseColor~; 

I 
f o r   ( i - 0 ;   i < S c r e e n H e i g h t I n P i x e l s ;  i +- 10)  ( 

DrawLine~ScreenWidthInPixels/2-ScreenWidthInPixels/lO, i / 5 .  0. i. 

I 
f o r   ( i - 0 ;   i < S c r e e n H e i g h t I n P i x e l s ;  i +- 10)  { 

WuColors[WU~BLUE1.BaseColor); 

OrawLine(ScreenWidthInPixels/2+ScreenWidthInPixels/lO, i / 5 .  

I 
f o r   ( i - 0 ;   i < S c r e e n W i d t h I n P i x e l s ;  i +- 10)  I 

S c r e e n W i d t h I n P i x e l s - 1 ,  i, WuColors[WU-BLUE1.BaseColor); 

OrawLine~ScreenWidthInPixels/2-ScreenWidthInPixels/lO+i/5, 
S c r e e n H e i g h t I n P i x e l s .  i, 0. WuColors[WU-WHITEI.BaseColor); 

I 
g e t c h (  ) : /*  w a i t   f o r  a key  press */  

regset .x .ax  - 0x0003; /* AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode */ 
i n t 8 6 ( 0 x 1 0 ,   & r e g s e t .   & r e g s e t ) ;  /*  r e t u r n   t o   t e x t  mode */  

1 

/*  S e t s   u p   t h e   p a l e t t e   f o r   a n t i a l i a s i n g   w i t h   t h e   s p e c i f i e d   c o l o r s .  
* I n t e n s i t y   s t e p s   f o r   e a c h   c o l o r   a r e   s c a l e d   f r o m   t h e   f u l l   d e s i r e d   i n t e n s i t y  
* o f   t h e   r e d ,   g r e e n ,  and b l u e   c o m p o n e n t s   f o r   t h a t   c o l o r  down t o  0% 
* i n t e n s i t y ;   e a c h   s t e p   i s   r o u n d e d   t o   t h e   n e a r e s t   i n t e g e r .   C o l o r s   a r e  
* c o r r e c t e d   f o r  a gamma o f  2 . 3 .   T h e   v a l u e s   t h a t   t h e   p a l e t t e   i s  programmed 
* w i t h   a r e   h a r d w i r e d   f o r   t h e  VGA's 6 b i t   p e r   c o l o r  DAC. 
* /  

v o i d   S e t P a l e t t e c s t r u c t  WuColor * WColors) 
{ 

i n t  i. j; 
u n i o n  REGS r e g s e t :  
s t r u c t  SREGS s r e g s e t ;  
s t a t i c   u n s i g n e d   c h a r   P a l e t t e B l o c k C 2 5 6 1 C 3 1 ;  / *  256 RGB e n t r i e s  * /  
/*  Gamma-corrected DAC c o l o r   c o m p o n e n t s   f o r   6 4   l i n e a r   l e v e l s   f r o m  0% t o  

s t a t i c   u n s i g n e d   c h a r  GammaTableCl - { 
100% i n t e n s i t y  * /  

0.  10.  14.  17.  19.  21.  23.  24.  26.  27.  28.  29.  31.  32.  33.  34. 
35.  36.  37.  37.  38.  39.  40.  41.  41.  42,  43.  44.  44.  45.  46.  46. 
47.  48.  48.  49.  49.  50.  51.  51.  52.  52.  53.  53,  54.  54.  55. 55. 
56,  56.  57.  57, 58.  58.  59.  59. 60.  60.  61.  61,  62,  62.  63.  631; 

Wu'ed in Haste; Fried, Stewed at Leisure 783 



f o r   ( i - 0 ;  i<NUM-WU-COLORS; i++) { 
f o r   ( j - 0 ;   j < W C o l o r s [ i l . N u m L e v e l s ;  j++) I 

P a l e t t e B l o c k [ j l [ O ]  - GammaTable[((double)WColors[i].MaxRed * ( 
( d o u b 1 e ) j  I (double)(WColors[i].NumLevels - 1)))  + 0.51; 

P a l e t t e B l o c k C j l [ 1 1  - GammaTable[((double)WColors[il.MaxGreen * 
( d o u b 1 e ) j  / (double)(WColors[i].NumLevels - 1 ) ) )  + 0.51; 

P a l e t t e B l o c k [ j l [ 2 ]  - GammaTable[((double)WColors[i].MaxBlue * 
( d o u b 1 e ) j  I (double)(WColors[il.NumLevels - 1 ) ) )  + 0.51; 

I 

1.0 - 

( 1 . 0  . 

( 1 . 0  - 

/ *  Now s e t  up t h e   p a l e t t e   t o  do Wu a n t i a l i a s i n g   f o r   t h i s   c o l o r  * /  
r e g s e t . x . a x  - 0x1012; I* s e t   b l o c k   o f  DAC r e g i s t e r s   f u n c t i o n  * /  
r e g s e t . x . b x  - WColors [ i l .BaseColor ;  I* f i r s t  DAC l o c a t i o n   t o   l o a d  *I  
r e g s e t . x . c x  - WColors[ i l .NumLevels;  / *  # o f  DAC l o c a t i o n s   t o   l o a d  *I  
r e g s e t . x . d x  - ( u n s i g n e d   i n t ) P a l e t t e B l o c k ;  / *  o f f s e t   o f   a r r a y   f r o m   w h i c h  

t o   l o a d  RGB s e t t i n g s  *I  
s r e g s e t . e s  - -DS; I* segment o f   a r r a y   f r o m   w h i c h   t o   l o a d   s e t t i n g s  *I  
i n t 8 6 x ( O x 1 0 .   & r e g s e t .   & r e g s e t .   & r e g s e t ) ;  I* l o a d   t h e   p a l e t t e   b l o c k  *I  

I 
1 

LISTING 42.3  L42-3.C 
/*  VGA mode 1 3 h   p i x e l - d r a w i n g  and mode s e t   f u n c t i o n s .  
* T e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and t h e   s m a l l  model 
* I  
ti n c l  ude  <dos . h> 

I* S c r e e n   d i m e n s i o n   g l o b a l s .   u s e d   i n   m a i n   p r o g r a m   t o   s c a l e .  *I  
i n t   S c r e e n W i d t h I n P i x e l s  - 320; 
i n t   S c r e e n H e i g h t I n P i x e l s  - 200; 

/ *  Mode 1 3 h   d r a w   p i x e l   f u n c t i o n .  *I  
v o i d   D r a w P i x e l ( i n t  X .  i n t  Y .  i n t   C o l o r )  
( 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

u n s i g n e d   c h a r   f a r   * S c r e e n P t r ;  

FP-SEG(ScreenPtr) - SCREENLSEGMENT; 
FP-OFF(ScreenPtr) - ( u n s i g n e d   i n t )  Y * S c r e e n W i d t h I n P i x e l s  + X ;  
*ScreenPt r  - C o l o r ;  

3 

I* Mode 13h  mode-se t   func t ion .  *I  
void  SetModeO 
( 

u n i o n  REGS r e g s e t ;  

I* S e t   t o   3 2 0 x 2 0 0   2 5 6 - c o l o r   g r a p h i c s  mode * /  
r e g s e t . x . a x  - 0x0013; 
i n t 8 6 ( 0 x 1 0 ,   & r e g s e t .   & r e g s e t ) ;  

3 

LISTING  42.4  L42-4.C 
I* F u n c t i o n   t o   d r a w  a n o n - a n t i a l i a s e d   l i n e   f r o m  (X0,YO) t o  (X1,Yl). u s i n g  a 
* s i m p l e   f i x e d - p o i n t   e r r o r   a c c u m u l a t i o n   a p p r o a c h .  
* T e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and  the  smal l   model .  
* /  

e x t e r n   v o i d   D r a w P i x e l ( i n t .   i n t .   i n t ) ;  

784 Chapter 42 



/*  N o n - a n t i a l i a s e d   l i n e   d r a w e r .  
* ( X O . Y O ) . ( X l . Y l )  - l i n e   t o  d raw,   Co lor  - c o l o r  i n  w h i c h   t o   d r a w  
*/  

v o i d   D r a w L i n e ( i n t  X O .  i n t  YO,  i n t  X 1 .  i n t  Y 1 .  i n t   C o l o r )  
I 

u n s i g n e d   l o n g   E r r o r A c c .   E r r o r A d j ;  
i n t   D e l t a X .   D e l t a Y .  XDir. Temp; 

/ *  Make s u r e   t h e   l i n e   r u n s   t o p   t o   b o t t o m  */  
i f  ( Y O  > Y 1 )  I 

Temp - Y O ;  Y O  - Y 1 :  Y 1  - Temp; 
Temp - XO;  X0 - X 1 ;  X 1  - Temp: 

I 
DrawPixel (X0.  Y O .  C o l o r ) ;  / *  d r a w   t h e   i n i t i a l   p i x e l  * /  
i f  ( ( D e l t a X  - X 1  - X O )  >- 0 )  { 

1 e l s e  I 
XDir - 1; 
XDir - -1; 
De l taX  - -De l taX ;  / *  make D e l t a X   p o s i t i v e  * /  

I 
i f  ( ( D e l t a Y  - Y 1  - Y O )  - 0)  /* done i f  o n l y   o n e   p o i n t   i n   t h e   l i n e  */  

i f  (De l taX  - 0) r e t u r n ;  

E r ro rAcc  - 0x8000: / *  i n i t i a l i z e   l i n e   e r r o r   a c c u m u l a t o r   t o  . 5 .  so we can 

/ *  Is t h i s  a n   X - m a j o r   o r   Y - m a j o r   l i n e ?  */  
i f  (De l taY  > De l taX)  { 

advance  when we g e t   h a l f w a y   t o   t h e   n e x t   p i x e l  * /  

/*  Y - m a j o r   l i n e ;   c a l c u l a t e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t   o f  a 

E r r o r A d j  - ( ( ( (uns igned   1ong)De l taX  << 17)  / (uns igned  1ong)De l taY)  + 

/*  Draw a l l   p i x e l s   b e t w e e n   t h e   f i r s t  and l a s t  * /  
do I 

p i x e l   t h a t  X advances  each  t ime Y advances 1 p i x e l  * /  

1) >> 1: 

Er ro rAcc  +- E r r o r A d j ;  / *  c a l c u l a t e   e r r o r   f o r   t h i s   p i x e l  * /  
i f  (E r ro rAcc  & -0xFFFFL) I 

/* The e r r o r   a c c u m u l a t o r   t u r n e d   o v e r .  so advance t h e  X c o o r d  */  
X0 +- XDir; 
E r ro rAcc  &- OxFFFFL; / *  c l e a r   i n t e g e r   p a r t   o f   r e s u l t  * /  

I 
YO++: / *  Y-major .  s o  always  advance Y * /  
DrawPixe l (X0.  Y O ,  C o l o r ) :  

I w h i l e   ( - - D e l t a Y ) ;  
r e t u r n :  

1 
/*  I t ' s  a n   X - m a j o r   l i n e :   c a l c u l a t e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t   o f  a 

E r r o r A d j  - ( ( ( (uns igned   1ong)De l taY  << 17) / (uns igned   1ong)De l taX)  + 

/*  Draw a l l   r e m a i n i n g   p i x e l s  * /  
do I 

p i x e l   t h a t  Y advances  each  t ime X advances 1 p i x e l  * /  

1) >> 1: 

Er ro rAcc  +- E r r o r A d j ;  / *  c a l c u l a t e   e r r o r   f o r   t h i s   p i x e l  * /  
i f  ( E r r o r A c c  & -0xFFFFL) I 

/ *  The e r r o r   a c c u m u l a t o r   t u r n e d   o v e r ,  so advance t h e  Y c o o r d  */  
YO++: 
E r ro rAcc  &- OxFFFFL; /* c l e a r   i n t e g e r   p a r t  o f  r e s u l t  */ 

I 
X0 +- XDir; /*  X-major. s o  always  advance X * /  
DrawPixe l (X0.  Y O ,  C o l o r ) :  

1 
I w h i l e   ( - - D e l t a X ) ;  

Wu'ed in Haste; Fried,  Stewed at Leisure 785 



Listing  42.1 isn’t particularly fast, because it calls Drawpixel()  for  each pixel. On  the 
other  hand, Drawpixel() makes it easy to try out Wu antialiasing in  a variety  of modes; 
just  adapt  the  code  in Listing  42.3 for  the 256-color mode you  want to support. For 
example, Listing  42.5  shows code to draw  Wu-antialiased lines in 640x480  256-color 
mode on SuperVGAs built around  the Tseng  Labs  ET4000 chip with at least 512Kof 
display  memory installed. It’s well worth checking out Wu antialiasing at 640x480. 
Although antialiased lines look much smoother  than  normal lines at 320x200  reso- 
lution, they’re far  from  perfect, because the pixels are so big that  the eye can’t blend 
them  properly. At 640x480,  however,  Wu-antialiased lines look fabulous; from a couple 
of feet away, they look as straight and smooth as if they were drawn with a ruler. 

LISTING  42.5  142-5.C 
/ *  Mode s e t  a n d   p i x e l - d r a w i n g   f u n c t i o n s   f o r   t h e   6 4 0 x 4 8 0   2 5 6 - c o l o r  mode o f  
* Tseng  Labs  ET4000-based  SuperVGAs. 
* T e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and the   sma l l   mode l .  
*I  
#i ncl   ude  <dos . h> 

I* Screen  d imens ion   g loba ls .   used i n  main  program t o   s c a l e  * /  
i n t   S c r e e n W i d t h I n P i x e l s  - 640; 
i n t   S c r e e n H e i g h t I n P i x e l s  - 480: 

/ *  ET4000  640x480  256-co lo r   d raw  p ixe l   func t ion .  *I  
v o i d   D r a w P i x e l ( i n t  X .  i n t  Y .  i n t   C o l o r )  
t 
# d e f i n e  SCREENKSEGMENT  OxAOOO 
# d e f i n e  GC-SEGMENT-SELECT Ox3CD / *  ET4000  segment   (bank)   se lect   reg * /  

uns igned   cha r   f a r   *Sc reenPt r :  
uns igned i n t  Bank: 
uns igned  long  B i tmapAddress;  

/ *  f u l l   b i t m a p   a d d r e s s   o f   p i x e l ,  as  measured  f rom  address 0 t o  OxFFFFF * /  
BitmapAddress - ( u n s i g n e d   l o n g )  Y * Sc reenWid th InP ixe l s  + X :  
/ *  Bank # i s  upper   word   o f   b i tmap   add r  *I  
Bank - BitmapAddress >> 16: 
I* Upper n i b b l e   i s   r e a d   b a n k  #, l o w e r   n i b b l e   i s   w r i t e   b a n k  i/ * I  
outp(GC-SEGMENTKSELECT, (Bank << 4 )  I Bank): 
/ *  Draw i n t o   t h e   b a n k  *I  
FPKSEG(ScreenPtr) = SCREEN-SEGMENT: 
FP-OFF(ScreenPtr) - ( u n s i g n e d   i n t )   B i t m a p A d d r e s s :  
*ScreenPtr  - C o l o r :  

1 

I* ET4000  640x480  256-co lo r   mode-se t   func t ion .  *I  
v o i d  SetMode( ) 
{ 

u n i o n  REGS r e g s e t ;  

I* S e t   t o  640x480  256-co lo r   g raph ics  mode * /  
regse t . x .ax  - Ox002E; 
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) :  

1 

Listing  42.1 requires  that  the DAC palette be set up so that  a NumLevel-long block of 
palette  entries  contains linearly decreasing intensities of the drawing color. The size 

786 Chapter 42 



of the block is programmable, but must be a power  of two. The more intensity levels, 
the better. Wu  says that 32 intensities are  enough;  on my system, eight  and even four 
levels looked pretty good. I found  that gamma correction, which  gives linearly spaced 
intensity steps, improved antialiasing quality significantly. Fortunately, we can pro- 
gram the palette with gamma-corrected values, so our drawing code  doesn't have to 
do any extra work. 
Listing 42.1 isn't very fast, so I implemented Wu antialiasing in assembly, hard-coded 
for mode 13H. The implementation is shown in full in Listing 42.6. High-speed graph- 
ics code  and fast VGAs go  together like peanut  butter  and jelly,  which is to say  very 
well indeed;  the assembly implementation  ran  more  than twice  as fast  as the C code 
on my 486. Enough said! 

LISTING 42.6  L42-6.ASM 
; C n e a r - c a l l a b l e   f u n c t i o n   t o   d r a w  an a n t i a l i a s e d   l i n e   f r o m  
; ( X O . Y O )  t o  (X1,YI). i n  mode 13h .   t he  VGA's s tandard   320x200   256 -co lo r  
; mode. Uses  an a n t i a l i a s i n g   a p p r o a c h   p u b l i s h e d   b y   X i a o l i n  Wu i n   t h e   J u l y  
; 1 9 9 1   i s s u e   o f   C o m p u t e r   G r a p h i c s .   R e q u i r e s   t h a t   t h e   p a l e t t e   b e   s e t  up s o  
; t h a t   t h e r e   a r e  NumLevels i n t e n s i t y   l e v e l s   o f   t h e   d e s i r e d   d r a w i n g   c o l o r ,  
; s t a r t i n g   a t   c o l o r   B a s e C o l o r   ( 1 0 0 %   i n t e n s i t y )   a n d   f o l l o w e d   b y   ( N u m L e v e l s - 1 )  
; l e v e l s   o f   e v e n l y   d e c r e a s i n g   i n t e n s i t y ,   w i t h   c o l o r   ( B a s e C o l o r + N u m L e v e l s - 1 )  
; b e i n g  0% i n t e n s i t y   o f   t h e   d e s i r e d   d r a w i n g   c o l o r   ( b l a c k ) .  No c l i p p i n g   i s  
; per fo rmed i n  DrawWuLine.  Handles a maximum o f  256 i n t e n s i t y   l e v e l s   p e r  
; a n t i a l i a s e d   c o l o r .   T h i s   c o d e   i s   s u i t a b l e   f o r   u s e  a t  s c r e e n   r e s o l u t i o n s ,  
; w i t h   l i n e s   t y p i c a l l y  no  more  than 1 K  l o n g ;   f o r   l o n g e r   l i n e s ,   3 2 - b i t   e r r o r  
; a r i t h m e t i c   m u s t   b e   u s e d   t o   a v o i d   p r o b l e m s   w i t h   f i x e d - p o i n t   i n a c c u r a c y .  
; T e s t e d   w i t h  TASM. 

; C n e a r - c a l l a b l e   a s :  
; vo id   DrawWuLine( in t  X O .  i n t  Y O ,  i n t  X 1 .  i n t  Y 1 .  i n t   B a s e c o l o r .  

i n t  NumLevels.  unsigned i n t   1 n t e n s i t y B i t . s ) ;  

SCREEN-WIDTH-IN-BYTES equ  320 ;# o f   b y t e s   f r o m   t h e   s t a r t   o f  one  scan l i n e  

SCREEN-SEGMENT equ OaOOOh ;segment i n  wh ich   sc reen memory r e s i d e s  

; Parameters  passed i n   s t a c k   f r a m e .  
parms s t r u c  

X0  dw ? ; X  c o o r d i n a t e   o f   l i n e   s t a r t   p o i n t  
Y O  dw ? ; Y  c o o r d i n a t e   o f   l i n e   s t a r t   p o i n t  
X 1  dw ? ; X  c o o r d i n a t e   o f   l i n e  end p o i n t  
Y 1  dw ? ; Y  c o o r d i n a t e   o f   l i n e  end p o i n t  
BaseColor dw ? ; c o l o r  # o f   f i r s t   c o l o r   i n   b l o c k  used f o r  

; t o   t h e   s t a r t   o f   t h e   n e x t  

dw 2 dup ( ? )  ;pushed BP and r e t u r n   a d d r e s s  

; a n t i a l i a s i n g .   t h e   1 0 0 %   i n t e n s i t y   v e r s i o n   o f   t h e  
; d r a w i n g   c o l o r  

NumLevels dw ? ; s i z e   o f   c o l o r   b l o c k ,   w i t h   B a s e C o l o r + N u m L e v e l s - I  
; b e i n g   t h e  0% i n t e n s i t y   v e r s i o n   o f   t h e   d r a w i n g   c o l o r  
; (maximum  NumLevels - 256) 

I n t e n s i t y B i t s  dw ? : l og   base  2 o f  NumLevel s :  t h e  # o f   b i t s  used t o  
; d e s c r i b e   t h e   i n t e n s i t y   o f   t h e   d r a w i n g   c o l o r .  
; 2**IntensityBits--NumLevels 
; (maximum I n t e n s i t y B i t s  - 8) 

parms  ends 

Wu'ed in Haste; Fried,  Stewed at Leisure 787 



.model  small  

.code 
; Screen  d imens ion   g loba ls ,   used i n  main  program t o   s c a l e .  
- S c r e e n W i d t h I n P i x e l s  dw 320 
- S c r e e n H e i g h t I n P i x e l s  dw 200 

.code 
p u b l i c  -DrawWuLine 

p u s h   b p   ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; p o i n t   t o   l o c a l   s t a c k   f r a m e  
push s i   ; p r e s e r v e  C 's  r e g i s t e r   v a r i a b l e s  
push d i  
push  ds  ;preserve C's  d e f a u l t   d a t a  segment 
c l  d  ;make s t r i n g   i n s t r u c t i o n s   i n c r e m e n t   t h e i r   p o i n t e r s  

- DrawWuLine  proc  near 

; Make s u r e   t h e   l i n e   r u n s   t o p   t o   b o t t o m .  
mov si.Cbpl.XO 
mov ax.Cbpl.YO 
cmp ax.[bp].Yl  ;swap e n d p o i n t s  i f  n e c e s s a r y   t o   e n s u r e   t h a t  
j n a  NoSwap ; Y O  <- Y 1  
x c h g   C b p 1 . Y l . a ~  
mov Cbp1.YO.a~ 
x c h g   [ b p l . X l . s i  
mov [bpl .XO.si  

NoSwap: 

: Draw t h e   i n i t i a l   p i x e l ,   w h i c h   i s   a l w a y s   e x a c t l y   i n t e r s e c t e d  b y   t h e   l i n e  
; and so needs  no   we ish t ins .  

mov 
mov 
mov 
mu1 

add 
mov 
mov 

mov 
mov 
sub 
Jns 

neg 
neg 

Del   taXSet :  

dx,SCREEN->EGMENT 
ds   .dx   ;po in t  DS t o   t h e   s c r e e n   s e g m e n t  
dx.SCREEN_WIDTH-IN-BYTES 
dx ; Y O  * SCREEN-WIDTH-IN-BYTES y i e l d s   t h e   o f f s e t  

; o f   t h e   s t a r t   o f   t h e  row s t a r t   t h e   i n i t i a l  
; p i x e l   i s  on 

s i  , a x   ; p o i n t  D S : S I  t o   t h e   i n i t i a l   p i x e l  
a l . b y t e   p t r  Cbp1.BaseColor   ; co lo r   w i th   wh ich  t o  draw 
[ s i l . a l  

b x . 1  
cx . [bp ] .X l  
cx.[bpl.XO 
Del   taXSet  

c x  
bx 

d r a w   t h e   i n i t i a l   p i x e l  

X D i r  - 1; assume De l taX >- 0 

;De l taX;  i s  i t  >- l ?  
;yes.  move l e f t - > r i g h t .   a l l   s e t  
;no. move r i g h t - > l e f t  
;make D e l t a X   p o s i t i v e  
;XDir - -1 

; S p e c i a l - c a s e   h o r i z o n t a l ,   v e r t i c a l ,  a n d   d i a g o n a l   l i n e s ,   w h i c h   r e q u i r e   n o  
; w e i g h t i n g   b e c a u s e   t h e y   g o   r i g h t   t h r o u g h   t h e   c e n t e r   o f   e v e r y   p i x e l .  

mov dx.Cbpl.Yl  
sub  dx.Cbpl.YO  ;DeltaY; i s  it O ?  
j n z   N o t H o r z   ; n o .   n o t   h o r i z o n t a l  

and  bx.bx ; d r a w   f r o m   l e f t - > r i g h t ?  
j n s  DoHorz ;yes. a l l   s e t  
s t d  ;no.  draw r i g h t - > l e f t  

l e a   d i . [ b x + s i l   ; p o i n t  D I  t o   n e x t   p i x e l   t o   d r a w  
mov ax.ds 

;yes. i s   h o r i z o n t a l ,   s p e c i a l   c a s e  

DoHorz: 

788 Chapter 42 



mov es .ax   :po in t  ES:DI t o   n e x t   p i x e l   t o   d r a w  
mov a l . b y t e   p t r   [ b p ] . B a s e C o l o r   : c o l o r   w i t h   w h i c h   t o   d r a w  

:CX - D e l t a X   a t   t h i s   p o i n t  
r e p   s t o s b   : d r a w   t h e   r e s t   o f   t h e   h o r i z o n t a l   l i n e  
c l  d : r e s t o r e   d e f a u l t   d i r e c t i o n   f l a g  
jmp Done ;and  we're  done 

a l i g n  2 

and  cx.cx 
j n z  N o t V e r t  

mov a1 . b y t e   p t r   [ b p ] . B a s e C o l o r  

add si.SCREEN-WIDTH-IN-BYTES 
mov [ s i l . a l  
dec  dx 
j n z   V e r t L o o p  
jmp Done 

NotHorz: 

Ver t   Loop : 

: i s   D e l t a X  O ?  
: n o ,  n o t  a v e r t i c a l   l i n e  
:yes.  i s   v e r t i c a l ,   s p e c i a l   c a s e  
; c o l o r   w i t h   w h i c h   t o   d r a w  

: p o i n t   t o   n e x t   p i x e l   t o   d r a w  
: d r a w   t h e   n e x t   p i x e l  
: - -De l   taY 

:and  we're  done 

a l i g n  2 

cmp cx,dx  ;Del taX - Del taY?  
j n z   N o t D i a g   : n o ,   n o t   d i a g o n a l  

mov a 1 , b y t e   p t r   [ b p l . B a s e C o l o r   ; c o l o r   w i t h   w h i c h   t o   d r a w  

l e a   s i  .[si+SCREEN-WIDTH-IN-BYTES+bx] 

N o t V e r t  : 

:yes.  i s   d i a g o n a l ,   s p e c i a l   c a s e  

DiagLoop: 

;advance t o   n e x t   p i x e l   t o  draw  by 
; i n c r e m e n t i n g  Y and  adding XDir t o  X 

mov [ s i  1 .a1 : d r a w   t h e   n e x t   p i x e l  
dec  dx : - -De l   taY 
jnz   D iagLoop  
jmp Done ;and  we're  done 

: L i n e   i s   n o t   h o r i z o n t a l ,   d i a g o n a l ,   o r   v e r t i c a l .  

NotDiag:  
: I s  t h i s  a n   X - m a j o r   o r   Y - m a j o r   l i n e ?  

a l i g n  2 

cmp dx.cx 
j b  XMajor : i t ' s   X - m a j o r  

: I t ' s  a Y - m a j o r   l i n e .   C a l c u l a t e   t h e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t   o f  a 
: p i x e l   t h a t  X advances  each  t ime Y advances 1 p i x e l ,   t r u n c a t i n g   t h e   r e s u l t  
: t o   a v o i d   o v e r r u n n i n g   t h e   e n d p o i n t   a l o n g   t h e  X a x i s .  

xchg  dx.cx :DX - De l taX .  C X  - Del taY 
sub  ax.ax ;make D e l t a X   1 6 . 1 6   f i x e d - p o i n t   v a l u e   i n  DX:AX 
d i v   c x  ; A X  - (De l taX  << 16 )  / De l taY .   Won ' t   ove r f l ow  

; because  Del taX < Del taY 
mov d i   . c x  : D I  - D e l t a Y   ( l o o p   c o u n t )  
sub s i  . b x   ; b a c k   u p   t h e   s t a r t  X by 1. as   exp la ined  be low 
mov dx.  -1 : i n i t i a l i z e   t h e   l i n e   e r r o r   a c c u m u l a t o r   t o  -1. 

; so t h a t  i t  will t u r n   o v e r   i m m e d i a t e l y   a n d  
; advance X t o   t h e   s t a r t  X. T h i s   i s   n e c e s s a r y  
; p r o p e r l y   t o   b i a s   e r r o r  sums o f  0 t o  mean 
: "advance   nex t   t ime"   ra the r   t han   "advance  
: t h i s   t i m e , ' '  s o  t h a t   t h e   f i n a l   e r r o r  sum can 
; never   cause  d rawing  t o   o v e r r u n   t h e   f i n a l  X 
; c o o r d i n a t e   ( w o r k s  i n  c o n j u n c t i o n   w i t h  
: t r u n c a t i n g   E r r o r A d j .   t o  make s u r e  X c a n ' t  
: o v e r r u n )  

Wu'ed  in Haste;  Fried,  Stewed at Leisure 789 



mov cx .8  :CL - # o f   b i t s   b y   w h i c h   t o   s h i f t  
s u b   c x . C b p l . 1 n t e n s i t y B i t s  : E r r o r A c c   t o   g e t   i n t e n s i t y   l e v e l  (8 

: i n s t e a d   o f  16  because we work   on l y  
: w i t h   t h e   h i g h   b y t e   o f   E r r o r A c c )  

mov ch .by te   p t r   [ bp l .NumLeve ls  ;mask used t o   f l i p   a l l   b i t s   i n  an 
dec  ch : i n t e n s i t y   w e i g h t i n g  , p roduc ing  

: r e s u l t  (1 - i n t e n s i t y   w e i g h t i n g )  
mov bp .BaseColor [bp ]   : * * *s tack   f rame  no t   ava i lab le** *  

;***from now on *** 
xchg  bp.ax ;BP - E r r o r A d j .  AL - BaseColor. 

: AH - s c r a t c h   r e g i s t e r  

: Draw a l l   r e m a i n i n g   p i x e l s .  
YMajorLoop: 

add  dx.bp : c a l c u l a t e   e r r o r   f o r   n e x t   p i x e l  
j n c  NoXAdvance : n o t   t i m e   t o   s t e p   i n  X y e t  

: t h e   e r r o r   a c c u m u l a t o r   t u r n e d   o v e r ,  
;so advance  the X coord  

add s i  .bx  :add XDir t o   t h e   p i x e l   p o i n t e r  

add si.SCREEN-WIDTH-IN-BYTES ;Y-major ,  s o  always  advance Y 

; The I n t e n s i t y B i t s   m o s t   s i g n i f i c a n t   b i t s   o f   E r r o r A c c   g i v e  us t h e   i n t e n s i t y  
; w e i g h t i n g   f o r   t h i s   p i x e l .  and t h e   c o m p l e m e n t   o f   t h e   w e i g h t i n g   f o r   t h e  
: p a i r e d   p i x e l .  

NoXAdvance: 

mov ah.dh :msb o f   E r r o r A c c  
s h r   a h . c l  :We igh t i ng  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
add ah .a l  : BaseCol o r  + We igh t ing  
mov [ s i  1 ,ah :DrawPixe l (X.  Y .  BaseColor + We igh t ing ) :  
mov ah.dh :msb o f   E r r o r A c c  
s h r   a h . c l  :We igh t i ng  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
xor   ah .ch  :We igh t i ng  A WeightingComplementMask 
add ah .a l  :BaseColor + ( W e i g h t i n g  A WeightingComplementMask) 
mov [s i+bx ]   ,ah  :DrawPixe l (X+XDir .  Y .  

dec d i  : - - D e l  t a Y  
j n z  YMajorLoop 
jmp Done : w e ' r e   d o n e   w i t h   t h i s   l i n e  

: BaseColor + ( W e i g h t i n g  A WeightingComplementMask));  

: I t ' s  an   X -ma jo r   l i ne .  

XMajor: 
: C a l c u l a t e   t h e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t   o f  a p i x e l   t h a t  Y advances 
: each   t ime  X advances 1 p i x e l ,   t r u n c a t i n g   t h e   r e s u l t   t o   a v o i d   o v e r r u n n i n g  
: t h e   e n d p o i n t   a l o n g   t h e  X a x i s .  

a l i g n  2 

sub  ax.ax :make D e l t a Y   1 6 . 1 6   f i x e d - p o i n t   v a l u e   i n  DX:AX 
d i v   c x  :AX - (De l taY  << 16)  / De l tax .   Won ' t   ove r f l ow  

: because  Del taY < Del taX 
mov d i   . c x  : D I  - D e l t a X   ( l o o p   c o u n t )  
sub si.SCREEN-WIDTH-IN-BYTES :back  up t h e   s t a r t  X by 1. as 

: exp la ined   be low 
mov dx.  -1 : i n i t i a l i z e   t h e   l i n e   e r r o r   a c c u m u l a t o r   t o  -1. 

: s o  t h a t  it will turn   ove r   immed ia te l y   and  
: advance Y t o   t h e   s t a r t  Y .  T h i s   i s   n e c e s s a r y  
: p r o p e r l y   t o   b i a s   e r r o r  sums o f  0 t o  mean 
: "advance  nex t   t ime"   ra ther   than  "advance 
: t h i s   t i m e . "  so t h a t   t h e   f i n a l   e r r o r  sum can 
: n e v e r   c a u s e   d r a w i n g   t o   o v e r r u n   t h e   f i n a l  Y 
: c o o r d i n a t e   ( w o r k s   i n   c o n j u n c t i o n   w i t h  
: t r u n c a t i n g   E r r o r A d j .   t o  make s u r e  Y c a n ' t  
: o v e r r u n )  

790 Chapter 42 



mov cx.8 
s u b   c x . C b p 1 . I n t e n s i t y B i t s  

mov c h . b y t e   p t r   [ b p l . N u m L e v e l s  
dec  ch 

mov bp,BaseColor [bp l  

xchg  bp.ax 

: Draw a l l   r e m a i n i n g   p i x e l s  
XMajorLoop: 

add  dx,bp 
j n c  NoYAdvance 

add si.SCREEN_WIDTH-IN-BYTES 

add s i  .bx 
NoYAdvance: 

;CL - I/ o f   b i t s  by  which t o   s h i f t  
: E r r o r A c c   t o   g e t   i n t e n s i t y   l e v e l   ( 8  
: i n s t e a d   o f  16 because we w o r k   o n l y  
: w i t h   t h e   h i g h   b y t e   o f   E r r o r A c c )  
;mask used t o   f l i p   a l l   b i t s   i n  an 
: i n t e n s i t y   w e i g h t i n g ,   p r o d u c i n g  
: r e s u l t  (1 - i n t e n s i t y   w e i g h t i n g )  
: * * *s tack   f rame  no t   ava i l ab le * * *  
:***from now on 
: B P  - E r r o r A d j .  AL - BaseColor .  
: AH - s c r a t c h   r e g i s t e r  

*** 

: c a l c u l a t e   e r r o r   f o r   n e x t   p i x e l  
; n o t   t i m e   t o   s t e p   i n  Y y e t  
: t h e   e r r o r   a c c u m u l a t o r   t u r n e d   o v e r ,  
: so advance  the Y c o o r d  
:advance Y 

:X-major .  s o  add XDir t o   t h e   p i x e l   p o i n t e r  

: The I n t e n s i t y e i t s   m o s t   s i g n i f i c a n t   b i t s   o f   E r r o r A c c   g i v e  us t h e   i n t e n s i t y  
: w e i g h t i n g   f o r   t h i s   p i x e l ,  a n d   t h e   c o m p l e m e n t   o f   t h e   w e i g h t i n g   f o r   t h e  
: p a i r e d   p i x e l .  

mov ah.dh :msb o f   E r r o r A c c  
sh r   ah .c l   :We igh t i ng  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
add  ah,al   :Basecolor + We igh t ing  
mov Csi1,ah  :DrawPixel(X. Y .  BaseColor + We igh t ing ) :  
mov ah.dh :msb o f   E r r o r A c c  
shr   ah .c l   :Weigh t ing  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
x o r  ah.ch  :Weight ing A WeightingComplementMask 
add  ah.al   :Basecolor + (We igh t ing  A WeightingComplementMask) 
mov [si+SCREEN-WIDTH-IN-BYTES].ah 

:DrawPixe l (X.  Y+SCREEN-WIDTH-IN-BYTES, 
: BaseColor + ( W e i g h t i n g  A WeightingComplementMask)): 

dec d i   : - - 0 e l t a X  
j n z  XMajorLoop 

Done: 
POP ds 
pop d i  
pop s i  

r e t  
-0rawWuLine  endp 

end 

POP bP 

; w e ’ r e   d o n e   w i t h   t h i s   l i n e  
; r e s t o r e   C ’ s   d e f a u l t   d a t a  segment 
: r e s t o r e   C ’ s   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  
;done 

Notes on Wu Antialiasing 
Wu antialiasing can be applied to any curve for which it’s possible to calculate at 
each step the positions and intensities of  two bracketing pixels, although  the imple- 
mentation will generally be nowhere near as efficient as it is for lines. However,  Wu’s 
article in Computer Ofaphicsdoes describe an efficient algorithm for drawing  antialiased 
circles. Wu also describes a technique  for antialiasing solids, such as filled circles and 
polygons. Wu’s approach biases the edges of filled objects outward. Although this is 
no good for  adjacent polygons of the  sort used in  rendering, it’s certainly possible  to 

Wu‘ed in Haste;  Fried,  Stewed at Leisure 791 



design a  more  accurate polygon-antialiasing approach around Wu’s  basic weighting 
technique. The results would not be quite so good as more sophisticated antialiasing 
techniques,  but they  would  be much faster. 

In general, the results obtained by Wu antialiasing are only so-so, by theoretical 
measures, Wu antialiasing amounts to a simple boxfilterplaced over a fuced-point 
step approximation of a line, and that process introduces a good deal of deviation 
from the ideal. On the other hand, Wu notes that even a IOpercent error in inten- 
sity doesn ’t lead to noticeable loss of image quality, and for Wu-antialiased lines 
up to IKpixels in length, the error is under 1 Opercent. Ifit looks good, it  is good- 
and it looks good. 

With a l6bit  error accumulator, fixed-point inaccuracy becomes a  problem  for Wu- 
antialiased lines longer  than 1K. For such lines, you should switch to using 32-bit 
error values,  which  would let you handle  lines of  any practical length. 
In  the listings, I have chosen to truncate,  rather  than  round,  the  error-adjust value. 
This increases the intensity error of the line  but  guarantees  that  fixed-point inaccu- 
racy  won’t cause the  minor axis to advance past the  endpoint.  Overrunning  the 
endpoint would result  in  the drawing of pixels outside  the line’s bounding box, and 
potentially even in  an  attempt  to access  pixels off the  edge of the  bitmap. 
Finally, I should  mention  that, as published, Wu’s algorithm draws lines symmetri- 
cally, from  both  ends at once.  I haven’t done this for  a  number of reasons, not least 
of which is that symmetric drawing is an  inefficient way to draw lines that  span banks 
on  banked Super-VGAs. Banking aside, however,  symmetric drawing is potentially 
faster, because it eliminates half  of  all calculations; in so doing,  it cuts cumulative 
error in half, as  well. 
With or without symmetrical processing, Wu antialiasing beats  fried, stewed chicken 
hands-down. Trust me on this one. 

792 Chapter 42 



chapter 43

bit-plane animation



\ i 
~F 
3 f 

A: 

nd Extremely  Fast Animation  Method for 

When it comes to cokputers, my first love is animation.  There’s  nothing  quite like 
creating a miniature reality  simply by rearranging 

at makes animation particularly interesting is that 
in human  time),  and without blinking and flicker- 
illusion of motion and solidity. Those constraints 
hics  challenge-and  also the most rewarding. 

3% 

ar industry pundits rag on  the PC when it comes to animation. 
Okay, I’ll grant you h a t  the PC isn’t a Silicon Graphics workstation and never will be, 
but  then  neither is anything else on  the market. The VGA offers good resolution and 
color, and while the hardware wasn’t designed for  animation,  that doesn’t mean we 
can’t put it to work in that capacity. One lesson that any good PC graphics or assem- 
bly programmer  learns quickly  is that it’s  what the PC’s hardware can do-not  what it 
was intended to do-that’s important. (By the way, if I were to pick one aspect of the 
PC to dump  on, it would be sound,  not  animation.  The PC’s sound circuity really  is 
lousy, and it’s hard to understand why that  should be, given that  a  cheap  sound 
chip-which  even the almost-forgotten PCj-had-would  have changed everything. I 
guess IBM figured “serious” computer users would be put off  by a  computer  that 
could make fun noises.) 

795 



Anyway,  my point is that  the PC’s animation capabilities are pretty good. There’s a 
trick, though: You can only push the VGA to  its animation limits by stretching your 
mind a bit  and using some unorthodox  approaches to animation.  In fact, stretching 
your mind is the key to producing  good code for any task on the PC-that’s the topic 
of the first part of this book. For  most  software,  however, it’s not fatal if your code 
isn’t  excellent-there’s slow but  functional software  all  over the place. When it comes 
to VGA animation,  though, you  won’t get to first base without a clever approach. 
So, what  clever approaches do I have in mind? All sorts. The resources of the VGA 
(or even  its  now-ancient predecessor, the EGA) are many and varied, and can be 
applied  and  combined in hundreds of  ways to produce effective animation. For  ex- 
ample,  refer back  to Chapter 23 for  an example of page flipping. Or look at  the July 
1986 issue of PC Tech Journal, which describes the basic  block-move animation tech- 
nique, or the August 1987 issue of PC Tech Journal, which  shows a software-sprite 
scheme built  around  the EGA’s vertical interrupt  and  the AND-OR image drawing 
technique. Or look  over the rest of this book, which contains dozens of tips and 
tricks that can be applied  to  animation,  including Mode  X-based techniques  starting 
in Chapter 47 that  are  the basis for many commercial games. 
This chapter  adds yet another  sort of animation  to  the list. We’re going to take  ad- 
vantage of the bit-plane architecture  and color palette of the VGA to develop an 
animation architecture  that can handle several overlapping images  with terrific speed 
and with  virtually perfect visual  quality. This technique  produces no overlap  effects 
or flicker and allows  us to use the fastest  possible method to  draw  images-the REP 
MOVS instruction.  It has  its limitations, but unlike Mode X and some other anima- 
tion techniques,  the  techniques I’ll  show  you in this chapter will also  work on the 
EGA,  which  may  be important in some applications. 
As with  any technique on the PC, there are tradeoffs  involved  with  bit-plane  animation. 
While bit-plane animation is extremely attractive as far as performance  and visual 
quality are  concerned,  it is somewhat limited. Bit-plane animation  supports only four 
colors plus the  background color at any one time, each image  must  consist of only 
one of the  four colors, and it’s preferable  that images of the same color not intersect. 
It doesn’t much matter if bit-plane animation isn’t perfect for all  applications, though. 
The real  point of  showing  you bit-plane animation is to bring  home  the reality that 
the VGA  is a complex adapter with  many resources, and  that you can do remarkable 
things if  you understand those resources and  come up with  creative ways to  put  them 
to  work at specific  tasks. 

Bit-Planes:  The Basics 
The underlying  principle of bit-plane  animation  is  extremely  simple. The VGA has four 
separate  bit planes in modes ODH,  OEH, 10H, and 12H. Plane 0 normally contains 
data  for  the blue component of pixel  color, plane 1 normally contains  green pixel 

796 Chapter 43 



data, plane 2 red pixel data, and plane 3 intensity  pixel  data-but  we’re going to mix 
that up a bit in a  moment, so we’ll  simply refer to them as planes 0, 1, 2, and 3 from 
now on. 
Each  bit plane can  be  written to independently. The contents of the  four bit planes 
are used to generate pixels,  with the four bits that control the color of each pixel 
coming from the four planes. However, the bits from the planes go through  a look- 
up stage on the way to becoming pixels-they’re used to look up a 6bit color from 
one of the sixteen palette registers.  Figure 43.1 shows how the bits from the four 
planes feed into  the palette registers to select the color of each pixel. (On the VGA 
specifically, the output of the palette registers  goes to the DAC for an additional 
look-up  stage, as described in Chapters 33 and 34 and also Chapter A on the com- 
panion CD-ROM.) 
Take a  good look at Figure 43.1. Any light bulbs going on over  your head yet?  If not, 
consider this. The general problem with VGA animation is that it’s complex and 

I Plane 1 

Plane O 

- 
w 

plxel l. bitper rom 
each plane 

Palette I 

- 
color data 
per  pixel 
to the 
screen  (or 
to  the DAC 
on a VGA) 

How 4 bits of video  data  become 6 bits of color. 
Figure 43.1 

Bit-Plane  Animation 797 



timeconsuming to manipulate images that  span  the  four planes (as most do),  and 
that it's hard to avoid interference  problems when  images intersect, since those im- 
ages share  the same bits in display  memory. Since the  four bit planes can be written 
to and  read  from  independently,  it  should  be  apparent  that if  we could  come up with 
a way to display  images from each  plane  independently of whatever  images are  stored 
in the  other planes, we would  have four sets of images that we could  manipulate very 
easily. There would  be no  interference effects  between  images in  different planes, 
because  images in  one plane wouldn't share bits  with  images in  another  plane. What's 
more, since all the bits for  a given image would reside in  a single plane, we could do 
away with the  cumbersome  programming of the VGA's complex hardware that is 
needed to manipulate images that  span  multiple planes. 
All in all, it would be  a  good  deal if  we could  store  each image in  a single plane, as 
shown in Figure 43.2. However, a  problem arises when images  in different  planes 
overlap, as  shown in Figure 43.3. The combined bits from  overlapping images gener- 
ate new colors, so the  overlapping  parts of the images don't look  like  they belong to 
either of the two images. What we really  want, of course, is for one of the images to 
appear to be  in front of the  other.  It would  be better yet if the rearward image  showed 
through any transparent (that is, background-colored)  parts of the forward image. 
Can we do  that? 
You bet. 

Plane 3 I. 
Plane 2 l o c ,  1 

Plane 1 

I I 

m 
Plane 0 t t Screen 

Storing  images in separate planes. 
Figure 43.2 

798 Chapter 43 



Stacking  the  Palette  Registers 
Suppose that instead of  viewing the  four bits per pixel coming out of  display  memory 
as selecting one of sixteen colors,we view those bits  as selecting one offourcolors. If 
the bit from  plane 0 is 1, that would select color 0 (say, red).  The bit  from  plane 1 
would select color 1 (say, green),  the bit from  plane 2 would select color 2 (say, 
blue),  and  the bit  from  plane 3 would select color 3 (say, white). Whenever more 
than 1 bit is I,  the 1 bit from  the lowest-numbered plane would determine  the color, 
and 1 bits from all other planes would be  ignored. Finally, the absence of any 1 bits at 
all  would select the  background color (say, black). 
That would  give  us four colors and  the background color. It would  also  give  us  nifty 
image precedence, with images in  plane 0 appearing to be in front of images from 
the  other planes, images in plane 1 appearing to be in front of images from planes 2 
and 3, and so on.  It would  even  give  us transparency, where rearward images would 
show through holes  within and  around the edges of  images in forward  planes.  Finally, 
and most importantly, it would meet all the criteria needed to allow us to store  each 
image in a single plane,  letting us manipulate  the images very quickly and with no 
reprogramming of the VGA's hardware other than  the few OUT instructions re- 
quired to select the plane we want to write to. 

Bit-Plane  Animation 799 



Which  leaves  only one question: How do we get this  magical pixel-precedence scheme 
to  work? As it  turns  out, all we need to do is reprogram  the  palette registers so that 
the 1 bit from the plane with the highest precedence  determines  the color. The 
palette RAM settings for the colors described above are summarized in Table  43.1. 
Remember that  the  4bit values  coming from display  memory select which palette 
register provides the actual pixel color. Given that, it’s  easy to see that  the rightmost 
1-bit of the  four bits coming  from display  memory in Table 43.1 selects the pixel 
color. If the bit from  plane 0 is 1, then  the  color is red,  no matter what the  other bits 
are, as  shown in Figure 43.4.  If the  bit  from  plane 0 is 0, then if the bit from  plane  1 
is 1 the color is green,  and so on for  planes 2 and 3. In  other words,  with the palette 

800 Chapter 43 



Bit from plane 3 

Bit from plane 2 

Bit from plane 1 

Bit from plane 0 

PRO 
PR 1 
PR2 
PR3 
PR4 
PR5 
PR6 
PR7 
PR8 
PR9 

PRlO 
PRl  1 
PR12 
PR13 
PR14 
P R l 5  

How pixel precedence works. 
Figure 43.4 

register settings we instantly have  exactly  what we want, which is an approach  that 
keeps images in one plane  from  interfering with images in other planes while pro- 
viding precedence  and transparency. 
Seems almost too easy, doesn’t it? Nonetheless, it works  beautifully,  as  we’ll see very 
shortly.  First, though,  I’d like  to point  out  that there’s nothing sacred about  plane 0 
having precedence. We could rearrange  the  palette register settings so that any plane 
had  the highest precedence, followed by the  other planes in any order. I’ve chosen 
to make plane 0 the highest precedence only because it seems simplest to think of 
plane 0 as appearing in front of plane 1 ,  which is in front of plane 2, which is in front 
of plane 3. 

Bit-Plane Animation in Action 
Without further  ado, Listing 43.1 shows bit-plane animation in action. Listing 43.1 
animates 13 rather large images (each 32 pixels on a  side) over a complex  back- 
ground  at  a  good clip men on aprimordial 8088-based PC. Five  of the images move  very 
quickly,  while the  other 8 bounce back and  forth  at  a steady pace. 

LISTING 43.1 L43- 1 .ASM 
: Program t o  d e m o n s t r a t e   b i t - p l a n e   a n i m a t i o n .   P e r f o r m s  
: f l i c k e r - f r e e   a n i m a t i o n   w i t h   i m a g e   t r a n s p a r e n c y   a n d  
: image  precedence  across f o u r  d i s t i n c t   p l a n e s ,   w i t h  
: 1 3  32x32 images  kept i n   m o t i o n   a t  once. 

Bit-Plane Animation 801 



; S e t   t o   h i g h e r   v a l u e s   t o   s l o w  down on fas te r   compu te rs .  
: 0 i s   f i n e   f o r  a PC.  500 i s  a r e a s o n a b l e   s e t t i n g   f o r  an AT. 
; S l o w i n g   a n i m a t i o n   f u r t h e r   a l l o w s  a good l o o k   a t  
; t r a n s p a r e n c y   a n d   t h e   l a c k   o f   f l i c k e r  and c o l o r   e f f e c t s  
; when images  cross. 

SLOWDOWN equ  10000 

; P l a n e   s e l e c t s   f o r   t h e   f o u r   c o l o r s   w e ' r e   u s i n g .  

RED equ  Olh 
GREEN equ  02h 
BLUE equ  04h 
WHITE equ  08h 

VGA-SEGMENT equ OaOOOh 

SC-INDEX equ  3c4h 

MAP-MASK equ 2 

SCREEN-WIDTH equ 80 
SCREEN-HEIGHT equ  350 
WORD-OUTS-OK equ 1 

:mode 1 0 h   d i s p l a y  memory 
; segment 
;Sequence C o n t r o l l e r   I n d e x  
; r e g i s t e r  
:Map Mask r e g i s t e r   i n d e x   i n  
; Sequence C o n t r o l l e r  
;# o f   b y t e s   a c r o s s   s c r e e n  
;# o f   s c a n   l i n e s  on  screen 
; s e t   t o  0 t o  assemble f o r  
; c o m p u t e r s   t h a t   c a n ' t  
; hand le   word   ou ts   t o  
; indexed VGA regs 

s t a c k  segment  para  stack 'STACK' 
db 512 dup (? )  

s t a c k  ends 

; Complete i n f o   a b o u t  one o b j e c t   t h a t   w e ' r e   a n i m a t i n g .  

O b j e c t S t r u c t u r e   s t r u c  
Delay dw 

BaseDel  ay dw 
Image dw 

XCoord dw 
XInc dw 

X L e f t L i m i t  dw 
X R i g h t L i m i t  dw 
YCoord dw 
Y I n c  dw 

YTopLimi t  dw 
YBot tomLimi t  dw 
P1 aneSel  ect   db 

db 

? 

? 
? 

? 
? 

? 
? 
? 
? 

? 
? 
? 

? 

;used t o   d e l a y   f o r  n passes 
; t h r o u g h t   t h e   l o o p   t o  
; cont ro l   an imat ion   speed 
; r e s e t   v a l u e   f o r   D e l a y  
; p o i n t e r   t o   d r a w i n g   i n f o  
: f o r   o b j e c t  
; o b j e c t  X l o c a t i o n   i n   p i x e l s  
;# o f   p i x e l s   t o   i n c r e m e n t  
: l o c a t i o n  by i n   t h e  X 
: d i r e c t i o n  on  each move 
; l e f t  limit o f  X mo t ion  
; r i g h t  limit o f  X mo t ion  
; o b j e c t  Y l o c a t i o n   i n   p i x e l s  
; i  o f  p i x e l s   t o   i n c r e m e n t  
; l o c a t i o n  by i n   t h e  Y 
: d i r e c t i o n  on  each move 
; t o p  limit o f  Y mo t ion  
;bot tom limit o f  Y mo t ion  
;mask t o   s e l e c t   p l a n e   t o  
; w h i c h   o b j e c t   i s   d r a w n  
; t o  make an  even # o f   w o r d s  
; l o n g ,   f o r   b e t t e r  286 
; per formance  (keeps  the 
; f o l l o w i n g   s t r u c t u r e  
; word -a l i gned)  

O b j e c t S t r u c t u r e  ends 

802 Chapter 43 



Data  segment word 'DATA'  

; P a l e t t e   s e t t i n g s   t o   g i v e   p l a n e  0 p recedence ,   fo l lowed  by 
; p l a n e s  1. 2 .  and  3 .   Plane  3  h a s  t h e   l o w e s t   p r e c e d e n c e  ( i s  
; obscured by a n y   o t h e r   p l a n e ) .   w h i l e   p l a n e  0 h a s   t h e  
; h i g h e s t   p r e c e d e n c e   ( d i s p l a y s  i n  f r o n t  of  any o t h e r   p l a n e ) .  

Co lo r s  db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 

OOOh 
03ch 
03a h 
03ch 
039h 
03ch 
03a h 
03ch 
03f h 
03ch 
03a h 
03ch 
039h 
03ch 
03ah 
03ch 
O O O h  

:background  color-black 
; p l a n e  0 only-red 
: p l a n e  1 only-green 
;p l anes   O&l - red   (p l ane  0 p r i o r i t y )  
;plane  2   only-blue 
; p l a n e s  O&E-red ( p l a n e  0 p r i o r i t y )  
; p l anes   1&2-green   (p l ane  1 p r i o r i t y )  
; p l anes   O&l&E-red   (p l ane  0 p r i o r i t y )  
;p lane   3   on ly-whi te  
; p l a n e s  O&3-red ( p l a n e  0 p r i o r i t y )  
: p l anes   1&3-green   (p l ane  1 p r i o r i t y )  
; p l anes   O&l&3- red   (p l ane  0 p r i o r i t y )  
; p l a n e s   2 6 3 - b l u e   ( p l a n e   2   p r i o r i t y )  
; p l anes   0&2&3- red   (p l ane  0 p r i o r i t y )  
; p l anes   1&2&3-green   (p l ane  1 p r i o r i t y )  
;p lanes   0&1&2&3-red   (p lane  0 p r i o r i t y )  
;border   col   or-bl   ack 

; Image  of  a  hollow  square. 
; T h e r e ' s   a n   8 - p i x e l - w i d e   b l a n k   b o r d e r   a r o u n d   a l l   e d g e s  
; so t h a t   t h e   i m a g e   e r a s e s   t h e   o l d   v e r s i o n  of i t s e l f   a s  
; i t ' s  moved and  redrawn. 

Squa re   l abe l   by te  
dw 4 8 . 6   ; h e i g h t   i n   p i x e l s ,   w i d t h  i n  b y t e s  
r e p t  8 
db 0 . 0 , 0 . 0 , 0 . 0 ; t o p   b l a n k   b o r d e r  
endm 
. r a d i x  2 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 

0.11111111.11111111,11111111,11111111,0 
0.11111111.11111111.11111111.11111111.0 
0.11111111,11111111,11111111,11111111,0 
0.11111111,11111111,11111111,11111111,0 
0,11111111.11111111.11111111.11111111.0 
0.11111111.11111111,11111111,11111111,0 
0.11111111.11111111.11111111.11111111.0 
0.11111111.11111111.11111111.11111111.0 
0.11111111.00000000.00000000,11111111,0 
0,11111111,00000000.00000000.11111111,0 
0.11111111.00000000.00000000.11111111.0 
0,11111111.00000000.00000000.11111111.0 
0.11111111.00000000,00000000,11111111,0 
0,11111111,00000000,00000000.11111111.0 
0.11111111.00000000.00000000.11111111.0 
0.11111111.00000000.00000000.11111111.0 
0.11111111.00000000.00000000.11111111.0 
0,11111111,00000000,00000000.11111111.0 
0.11111111,00000000,00000000,11111111,0 
0,11111111.00000000.00000000,11111111,0 
0,11111111.00000000.00000000.11111111.0 
0.11111111,00000000.00000000,11111111,0 
0.11111111.00000000.00000000.11111111.0 
0,11111111.00000000.00000000,11111111,0 

Bit-Plane Animation 803 



db 0,11111111.11111111.11111111,11111111,0 
db 0.11111111.11111111,11111111,11111111,0 
db 0.11111111.11111111.11111111.11111111.0 
db 0.11111111,11111111.11111111,11111111,0 
db 0.11111111.11111111.11111111,11111111,0 
d b  0.11111111.11111111.11111111,11111111~0 
db 0,11111111.11111111.11111111.11111111.0 
db 0.11111111,11111111.11111111,11111111,0 
. r a d i x  10 
r e p t  8 
db  0 .0 .0 .0 .0 .0  ;bo t tom  b lank   border  
endm 

: Image  of a hol low  diamond  with a s m a l l e r   d i a m o n d   i n   t h e  
: middle .  
: T h e r e ' s   a n   8 - p i x e l - w i d e   b l a n k   b o r d e r   a r o u n d   a l l   e d g e s  
: so t h a t   t h e  i m a g e   e r a s e s   t h e   o l d   v e r s i o n  o f  i t s e l f   a s  
: i t ' s  moved and  redrawn. 

Diamond l a b e l   b y t e  
dw 48.6 : h e i g h t   i n   p i x e l s ,   w i d t h   i n   b y t e s  
r e p t  8 
d b  0.0,O.O.O.O ; t o p   b l a n k   b o r d e r  
endm 
. r a d i x  2 1 

db 
db  
db 
db  
db  
db  
db  
db  
db  
db  
db  
d b  
d b  
db  
db  
db  
db  
db  
db  
db  
db  
db  
d b  
d b  
db  
db  
db  
db  
db  
db  
db  
d b  

0.00000000.00000001.1000000.000000000.0 
0.00000000.00000011.11000000.00000000,0 
0.00000000.00000111.11100000.00000000.0 
0.00000000,00001111.11110000.00000000.0 
0.00000000.00011131.11111000.00000000.0 
0.00000000.00111110.01111100.00000000.0 
0.00000000.01111100.00111110,00000000.0 
0.00000000.11111000.00011111.00000000.0 
0.00000001,11110000.00001111,10000000.0 
0,00000011.11100000.00000111.11000000.0 
0.00000111.11000000.00000011,11100000.0 
0.00001111.10000001,10000001,11110000,0 
0.00011111.00000011.11000000*11111000.0 
0.00111110.00000111.11100000.01111100.0 
0,01111100.00001111.11110000.00111110.0 
0.11111000.00011111,11111000.00011111,0 
0.11111000.00011111.11111000.00011111.0 
0.01111100.00001111.11110000,00111110,0 
0.00111110,00000111.11100000,01111100.0 
0,00011111.00000011.11000000,11111000.0 
0,00001111,10000001.100000001.11110000.0 
0.00000111.11000000.00000011.11100000.0 
0,00000011.11100000.00000111.11000000.0 
0,00000001.11110000.00001111,10000000,0 
0.00000000.11111000.00011111,00000000*0 
0.00000000.01111100.00111110,00000000.0 
0.00000000.00111110.01111100.00000000.0 
0,00000000,00011111.11111000.00000000.0 
0.00000000.00001111.11110000.00000000.0 
0.00000000.00000111.11100000.00000000.0 
0.00000000.00000011.11000000.00000000.0 
0.00000000.00000001.1000000.000000000.0 

. r a d i x  10 
r e p t  8 
db  O,O.O,O.O.O;bot tom  blank  border  
endm 

804 Chapter 43 



: L i s t   o f   o b j e c t s   t o   a n i m a t e .  

e v e n   : w o r d - a l i g n   f o r   b e t t e r  286 per formance 

O b j e c t L i s t   l a b e l  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t S t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t S t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  

O b j e c t L i s t E n d  

Data  ends 

O b j e c t s t r u c t u r e  
<1,21.Diamond,88.8.80,512,16,0,0,350,RED> 
<1.15.Square,296.8.112,480,144.0.0,350,REO> 
<1,23.Diamond.88,8.80,512,256.0,0.35O,RED> 
<1.13.Square.120,0.0.640,144.4,0,28O,~LUE> 
<1.11.0iamond.208.0.0,640.144.4,0,280,ElLUE> 
<1.8.Square.296.0.0.640,144.4.0,288,BLUE> 
<1.9.Diamond,384,0.0.640,144.4,0~288,BLUE> 
<I .14.Square.472.0.0.640,144.4.0.280.BLUE> 
<1.8.Diamond,200,8.0,576,48,6,0,28O~GREEN> 
<1.8.Square.Z48.8,0,576,96.6.0.280.GREEN> 
<1.8.Diamond,296.8.0.576,144,6,0,28O,GREEN> 
<1.8.Square.344,8.0.576,192,6,0.280,GREEN> 
<1,8,0iamond.392.8.0.576,240,6.0,280~GREEN> 
l a b e l   O b j e c t S t r u c t u r e  

: Macro t o   o u t p u t  a w o r d   v a l u e   t o  a p o r t .  

OUT-WORD macro 
i f  WORD-OUTS-OK 

out   dx.ax 
e l s e  

ou t   dx ,a l  
i n c  dx 
xchg  ah.al  
ou t   dx .a l  
dec  dx 
xchg  ah,al 

endm 
endi  f 

: Macro t o   o u t p u t  a c o n s t a n t   v a l u e   t o  an  indexed VGA 
: r e g i s t e r .  

CONSTANT-TO-INDEXED-REGISTERmacro ADDRESS,   INDEX,  VALUE 
mov  dx.AODRESS 
mov ax.(VALUE s h l  8) + I N D E X  
OUT-WORD 
endm 

Code segment 
assume  cs:Code.  ds:Data 

S t a r t   p r o c   n e a r  
c l d  
mov ax.Data 
mov ds.ax 

: Set   640x350  16-co lor  

mov ax.0010h 

i n t  10h 

mode. 

;AH-0 means s e l e c t  mode 
:AL-lOh means s e l e c t  
: mode 10h 
:BIOS v i d e o   i n t e r r u p t  

Bit-Plane  Animation 805 



: S e t   t h e   p a l e t t e   u p   t o   p r o v i d e   b i t - p l a n e   p r e c e d e n c e .  If 
: planes  0 L 1 o v e r l a p ,   t h e   p l a n e  D c o l o r  will be  shown; 
; i f  p lanes  1 & 2 o v e r l a p ,   t h e   p l a n e  1 c o l o r  will be 
: shown:  and s o  on. 

mov ax . ( lOh   sh l  8) + 2 :AH - 10h means 
: s e t   p a l e t t e  
: r e g i s t e r s   f n  
:AL - 2 means s e t  
: a l l   p a l e t t e  
: r e g i s t e r s  

push  ds :ES:DX p o i n t s   t o  

mov d x . o f f s e t   C o l o r s  : s e t t i n g s  
i n t  10h ; c a l l   t h e  BIOS t o  

: s e t   t h e   p a l e t t e  

POP es ; t h e   p a l e t t e  

: Draw t h e   s t a t i c   b a c k d r o p   i n   p l a n e  3 .  All the  moving  images 
: will appear t o  be i n  f r o n t   o f   t h i s   b a c k d r o p ,   s i n c e   p l a n e  3 
: has the   l owes t   p recedence   the  way t h e   p a l e t t e   i s   s e t  up. 

CONSTANT-TO-INDEXED-REGISTER SC-INDEX.  MAP-MASK. D8h 
: a l l o w   d a t a   t o  go t o  
: p l a n e  3 o n l y  

: P o i n t  ES t o   d i s p l a y  memory f o r   t h e   r e s t   o f   t h e   p r o g r a m .  

mov  ax.VGA-SEGMENT 
mov es.ax 

sub d i   . d i  
mov  bp.SCREEN-HEIGHT116 

BackdropBlockLoop: 
c a l l  DrawGri  dCross 
ca l l   D rawGr idVer t  

dec  bp 
jnz  BackdropBlockLoop 
c a l l  DrawGridCross 

: S t a r t   a n i m a t i n g !  

Animat ionLoop: 
mov b x . o f f s e t   O b j e c t L i s t  

:fill i n  t h e   s c r e e n  
: 1 6   l i n e s   a t  a t i m e  

:draw a c r o s s   p i e c e  
: d r a w   t h e   r e s t   o f  a 
: 1 5 - h i g h   b l o c k  

: b o t t o m   l i n e   o f   g r i d  

: p o i n t   t o   t h e   f i r s t  
: o b j e c t   i n   t h e   l i s t  

: For each  ob jec t ,   see  i f  i t ' s   t i m e   t o  move and  draw t h a t  
; o b j e c t .  

ObjectLoop: 

; See i f  i t ' s   t i m e   t o  move t h i s   o b j e c t .  

dec Cbx+Del ay]   :count  down d e l a y  
j n z   D o N e x t O b j e c t   ; s t i l l   d e l a y i n g - d o n ' t  move 
mov ax.Cbx+BaseDelay] 
mov [bx+De lay l   , ax   : rese t   de lay   f o r   nex t   t ime  

806 Chapter 43 



: S e l e c t   t h e   p l a n e   t h a t   t h i s   o b j e c t  will be  drawn in .  

mov dx,  SC-INDEX 
mov ah. [bx+PlaneSelect l  
mov a1 .MAP-MASK 
OUT-WORD 

; Advance t h e  X c o o r d i n a t e ,   r e v e r s i n g   d i r e c t i o n  i f  e i t h e r  
: o f   t h e  X margins  has  been  reached. 

mov cx.Cbx+XCoordl ; c u r r e n t  X l o c a t i o n  
cmp c x . [ b x + X L e f t L i m i t l   ; a t   l e f t   l i m i t ?  
j a   C h e c k X R i g h t L i m i t  
neg  Cbx+XIncl 

:no 
; yes - reve rse  

cmp cx . [bx+XRigh tL im i t l  ; a t  r i g h t  limit? 
j b  SetNewX ;no 
neg  [bx+XIncl  : yes - reve rse  

add  cx.Cbx+XIncl ;move t h e  X coord 
mov [bx+XCoordl.cx ; & save it 

CheckXRightL imi t :  

SetNewX: 

; Advance t h e  Y c o o r d i n a t e ,   r e v e r s i n g   d i r e c t i o n  i f  e i t h e r  
; o f   t h e  Y margins  has  been  reached. 

mov dx,[bx+YCoordl ; c u r r e n t  Y l o c a t i o n  
cmp d x . C b x + Y T o p L i m i t l : a t   t o p   l i m i t ?  
j a  CheckYBottomLimit  ;no 
neg  Cbx+YIncl   ;yes-reverse 

CheckYBottomLimit:  
cmp dx. [bx+YBottomLimit ]   ;at   bot tom limit? 
j b  SetNewY 
neg  Cbx+YIncl 

add  dx.Cbx+YIncl ;move t h e  Y coo rd  
mov [bx+YCoordl.dx ; & save it 

;no 
; yes - reve rse  

SetNewY: 

: Draw a t   t h e  new 1 o c a t i o n .  Because o f   t h e   p l a n e   s e l e c t  
; above, o n l y  one p l a n e  will b e   a f f e c t e d .  

mov s i .Cbx+ Image l   ; po in t   t o   t he  
; o b j e c t ' s  image 
; i n f o  

c a l l   D r a w o b j e c t  

; P o i n t   t o   t h e   n e x t   o b j e c t   i n   t h e   l i s t   u n t i l  we r u n   o u t   o f  
; o b j e c t s .  

DoNextObject: 
add   bx .s i ze   Ob jec tS t ruc tu re  
cmD b x . o f f s e t   O b j e c t L i s t E n d  
j b  ObjectLoop 

; D e l a y   a s   s p e c i f i e d   t o  

i f  SLOWDOWN 
mov cx ,  SLOWDOWN 

1 oop  Del  ayLoop 
Del  ayLoop: 

end i  f 

s low   th ings  down 

Bit-Plane  Animation 807 



: If a key 's   been  pressed,   we ' re   done,   o therwise  an imate 
; again.  

CheckKey: 
mov ah.1 
i n t  16h 
jz AnimationLoop 
sub  ah.ah 
i n t  16h 

: Back t o   t e x t  mode. 

mov ax.0003h 

i n t  10h 

: Back t o  DOS. 

mov ah.4ch 
i n t  21h 

S t a r t  endp 

: i s  a key   wa i t i ng?  
:no 

: y e s - c l e a r   t h e   k e y  & done 

:AL-O3h means s e l e c t  
: mode 03h 

;DOS t e r m i n a t e   f u n c t i o n  
:done 

Draws a s i n g l e   g r i d   c r o s s - e l e m e n t   a t   t h e   d i s p l a y  memory 
l o c a t i o n   p o i n t e d   t o   b y  E S : D I .  1 h o r i z o n t a l   l i n e   i s  drawn 
ac ross   t he   sc reen .  

I n p u t :  ES:DI p o i n t s   t o   t h e   a d d r e s s  a t  w h i c h   t o   d r a w  

Output :  ES:DI p o i n t s   t o   t h e   a d d r e s s   f o l l o w i n g   t h e  
l i n e  drawn 

R e g i s t e r s   a l t e r e d :  AX,  C X ,  DI 

DrawGridCross  proc  near 
mov a x . 0 f f f f h   : d r a w  a s o l i d   l i n e  
mov cx.SCREEN-WIDTH12-1 
rep  stosw  ;draw a l l   b u t   t h e   r i g h t m o s t  

mov ax,  0080h 
: edge 

s tosw  :d raw  the   r i gh t   edge   o f   t he  

r e t  
: g r i d  

DrawGridCross  endp 

Draws t h e   n o n - c r o s s   p a r t   o f   t h e   g r i d   a t   t h e   d i s p l a y  memory 
l o c a t i o n   p o i n t e d   t o   b y  ES:DI .  15  scan l i n e s   a r e   f i l l e d .  

I n p u t :  ES:D I  p o i n t s   t o   t h e   a d d r e s s   a t   w h i c h   t o   d r a w  

Output :  ES:DI  p o i n t s   t o   t h e   a d d r e s s   f o l l o w i n g   t h e  
p a r t   o f   t h e   g r i d  drawn 

R e g i s t e r s   a l t e r e d :  AX,  C X .  DX. D I  

OrawGridVert   proc  near 
mov ax,  0080h : p a t t e r n   f o r  a v e r t i c a l   l i n e  
mov dx.15 :draw  15  scan l i n e s   ( a l l  o f  

: a g r i d   b l o c k   e x c e p t   t h e  
: s o l i d   c r o s s   l i n e )  

808 Chapter 43 



BackdropRowLoop: 
mov cx.SCREEN_WIDTH/Z 
rep  s tosw ;draw t h i s  scan l i n e ' s   b i t  

; o f   a l l   t h e   v e r t i c a l   l i n e s  
; on the   sc reen  

dec  dx 
j n z  BackdropRowLoop 
r e t  

DrawGridVert  endp 

; D r a w  t h e   s p e c i f i e d  image a t   t h e   s p e c i f i e d   l o c a t i o n .  
; Images a re   d rawn   on   by te   boundar ies   ho r i zon ta l l y ,   p i xe l  
; b o u n d a r i e s   v e r t i c a l l y .  
; The Map Mask reg i s te r   mus t   a l ready   have  been s e t   t o   e n a b l e  
; access t o   t h e   d e s i r e d   p l a n e .  

; I n p u t :  
; C X  - X c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r  
; DX - Y c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r  
; DS:SI - p o i n t e r   t o  draw i n f o   f o r  image 
; ES - d i s p l a y  memory segment 

; Output:  none 

; R e g i s t e r s   a l t e r e d :  A X ,  C X .  D X .  S I .  D I .  BP 

Drawob jec t   p roc   near  
mov  ax.SCREEN-WIDTH 
mu1 dx ; c a l c u l a t e   t h e   s t a r t   o f f s e t   i n  

; d i s p l a y  memory o f   t h e   r o w   t h e  
; image will be  drawn a t  

sh r  cx .1  
s h r  cx .1  
sh r  cx .1  

add ax.cx 

mov d i  ,ax 

1 odsw 
mov dx.ax 
1 odsw 
mov  bp.SCREENKWIDTH 
sub  bp,ax 

DrawLoop: 
mov cx.ax 
rep  movsb 

add  di ,bp 

dec  dx 
j n z  DrawLoop 
r e t  

; d i v i d e   t h e  X c o o r d i n a t e   i n   p i x e l s  
; by 8 t o   g e t   t h e  X c o o r d i n a t e   i n  
; by tes  
; d e s t i n a t i o n   o f f s e t   i n   d i s p l a y  
; memory f o r   t h e  image 
; p o i n t  E S : D I  t o   t h e   a d d r e s s   t o  
; which  the  image will be  copied 
; i n   d i s p l a y  memory 

;# o f   l i n e s   i n   t h e  image 
;# of   by tes   across   the   image 

;# o f   b y t e s   t o  add t o   t h e   d i s p l a y  
; memory o f f s e t   a f t e r   c o p y i n g  a l i n e  
; o f   t h e  image t o   d i s p l a y  memory i n  
: o r d e r   t o   p o i n t   t o   t h e   a d d r e s s  
; where t h e   n e x t   l i n e   o f   t h e  image 
; will go i n   d i s p l a y  memory 

; w i d t h   o f   t h e  image 
; c o p y   t h e   n e x t   l i n e   o f   t h e  image 
; i n t o   d i s p l a y  memory 
; p o i n t   t o   t h e   a d d r e s s  a t  wh ich   t he  
; n e x t   l i n e  will go i n   d i s p l a y  
; memory 
;count  down t h e   l i n e s   o f   t h e  image 

Bit-Plane  Animation 809 



Drawobject  endp 

Code  ends 
end S t a r t  

For those of  you  who haven’t experienced  the  frustrations of animation  program- 
ming on  a PC, there’s  a wholelot  of animation  going  on  in Listing  43.1.  What’s more, 
the  animation is  virtually flicker-free, partly thanks  to bit-plane animation and partly 
because  images are never  really  erased but  rather are simply  overwritten. (The principle 
behind  the  animation is that of redrawing each image with a blank fringe  around  it 
when it moves, so that  the  blank  fringe erases the  part of the  old image that  the new 
image  doesn’t  overwrite.  For  details on this sort of animation, see the above-mentioned 
PC TechJournaZJuly 1986 article.) Better yet, the  red images  take precedence over the 
green images,  which  take precedence over the  blue images,  which take precedence 
over the white backdrop,  and all obscured images  show through  holes  in  and  around 
the edges of images  in front of them. 
In  short, Listing  43.1 accomplishes everything we wished for  earlier  in  an  animation 
technique. 
If  you  possibly can, run Listing  43.1. The animation may  be a revelation to those  of  you 
who are  used  to weak,  slow animation  on PCs with  EGA or VGA adapters. Bit-plane 
animation makes the PC look an awful lot like-dare I say  it?-a games machine. 
Listing  43.1 was designed to run  at  the absolute fastest speed,  and as I mentioned  it 
puts in a pretty amazing performance  on  the slowest PCs of  all.  Assuming  you’ll  be 
running Listing  43.1 on  an faster computer, you’ll  have to crank up the DELAY equate 
at  the start of Listing  43.1 to slow things down to a  reasonable  pace. (It’s not a very 
good  game where all the pieces are  a  continual  blur!) Even on  something as modest 
as a 286based AT, Listing 43.1 runs much  too  fast  without a substantial  delay (although 
it  does look rather  interesting  at warp speed). We should all  have such problems, eh? 
In fact, we could easily increase  the  number of animated images past 20 on  that old 
AT, and well into  the  hundreds  on a cuttingedge local-bus  486 or Pentium. 
I’m  not  going to  discuss  Listing  43.1  in detail;  the  code is  very thoroughly com- 
mented  and  should speak for itself, and most of the individual components of Listing 
43.1-the  Map  Mask register, mode sets,  word  versus  byte OUT instructions to the 
VGA-have been covered in earlier  chapters. Do notice, however, that Listing  43.1 
sets the  palette exactly  as I described earlier. This is accomplished by passing a  pointer 
to a 1’7-byte array (1 byte for  each of the  16  palette registers, and 1 byte for  the 
border  color) to the BIOS  video interrupt (INT lOH),  function 10H, subfunction 2. 
Bit-plane animation  does have inherent limitations, which  we’ll get  to  in  a  second. 
One  limitation  that is not inherent to bit-plane animation  but simply a  shortcoming 
of  Listing  43.1 is somewhat choppy horizontal  motion.  In  the  interests of both clarity 
and  keeping Listing  43.1 to a  reasonable  length, I decided to byte-align  all  images 
horizontally. This saved the many  tables needed to define the 7 non-byte-aligned 

8 1 0 Chapter 43 



rotations of the images, as well as the  code  needed to support  rotation. Unfortu- 
nately, it also meant  that  the smallest possible horizontal movement was 8 pixels (1 
byte  of  display memory), which is far  enough to be noticeable at certain speeds. The 
situation is,  however,  easily correctable with the additional  rotations and code. We’ll 
see an  implementation of  fully rotated images (in this case for Mode X, but  the 
principles generalize nicely) in  Chapter 49. Vertically, where there is no byte-align- 
ment issue, the images  move 4 or 6 pixels at a times, resulting in considerably smoother 
animation. 
The addition of code to support  rotated images would  also open  the  door to support 
for internal  animation, where the  appearance of a given image changes over time to 
suggest that  the image is an active  entity. For example,  propellers  could whirl, jaws 
could  snap, and  jets could flare. Bit-plane animation with bit-aligned images and 
internal  animation can look truly spectacular. It’s a sight worth seeing, particularly 
for those who doubt  the PC’s worth when it comes  to animation. 

Limitations of Bit-Plane Animation 
As I’ve said, bit-plane animation is not perfect. For starters, bit-plane animation can 
only be used in the VGAs planar  modes,  modes ODH, OEH, IOH, and 12H. Also, the 
reprogramming of the palette registers that provides image precedence also reduces 
the available color set from  the  normal 16 colors to just 5 (one color per plane plus 
the  background color). Worse still, each image must consist entirely of only one of 
the  four colors. Mixing colors within an image is not allowed, since the bits for each 
image are limited to a single plane and can therefore select only one color.  Finally, 
all images of the same precedence must be the same  color. 
It is  possible to work around  the color limitations to  some extent by using only one 
or two planes for bit-plane animation, while reserving the  other planes  for multi- 
color drawing. For example, you could use plane 3 for bit-plane animation while 
using planes 0-2 for  normal 8-color drawing. The images in  plane 3 would then ap- 
pear to be in front of the 8-color images. If  we wanted the  plane 3 images to be 
yellow,  we could set up  the palette registers as  shown in Table 43.2. 
As you can see, the color yellow is displayed whenever a pixel’s bit  from  plane 3 is 1. 
This gives the images from  plane 3 precedence, while  leaving  us  with the 8 normal 
low-intensity colors for images drawn across the  other 3 planes, as  shown in Figure 
43.5. Of course, this approach provides only 1 rather  than 3 high-precedence planes, 
but  that  might be a good tradeoff for  being able to draw multi-colored images as a 
backdrop to the high-precedence images.  For the right application, high-speed  flicker- 
free  plane 3 images moving in front of an 8-color backdrop  could be a potent 
combination  indeed. 
Another limitation of bit-plane animation is that it’s best if images stored  in  the same 
plane never cross each other. Why?  Because  when images do cross, the blank fringe 

Bit-Plane  Animation 8 1 1 



around each image can temporarily erase the overlapped parts of the  other image or 
images, resulting in momentary flicker.  While that’s not fatal, it certainly detracts 
from the rock-solid animation effect of bit-plane animation. 
Not allowing images in the same plane to overlap is  actually  less  of a limitation than 
it seems. Run  Listing 43.1 again. Unless you  were looking for  it, you’d never notice 
that images of the same color almost never overlap-there’s plenty of action to dis- 
tract the eye, and  the trajectories of images of the same color are  arranged so that 
they have a full range of motion without running  into  each other. The only excep- 
tion is the chain of green images, which  occasionally doubles back on itself  when it 
bounces directly into a  corner  and reverses direction.  Here, however, the images are 
moving so quickly that  the brief moment  during which one image’s fringe blanks a 

8 1 2 Chapter 43 



Bit  from  plane 3 

Bit  from plane 2 

Bit  from  plane 1 

Bit from  plane 0 

t 
&bit palette  register #, which 
selects 1 of 1 6  palette  registers. 
The  selection is  always 1 of the 8 
normal  low-intensi  colors  when 
the bit from  plane !is 0. 

PRO 
PR 1 
PR2 
PR3 
PR4 
PR5 
PR6 
PR7 
PR8 
PR9 

PR10 
PRl  1 
PR12 
PR13 
PR14 
PR15 

8 normal 
low-intensity 
colors 

Pixel  precedence for plane 3 only. 
Figure 43.5 

portion of another image is noticeable only upon close inspection,  and not particu- 
larly unaesthetic even then. 
When a  technique has such tremendous visual and  performance advantages as does 
bit-plane animation, it behooves you to design your animation software so that  the 
limitations of the  animation  technique  don’t get in  the way. For example, you might 
design a  shooting gallery  game  with  all the images in  a given plane  marching  along 
in step  in  a  continuous  band.  The images could never overlap, so bit-plane anima- 
tion  would produce very high image quality. 

Shearing  and  Page  Flipping 
As Listing 43.1 runs, you  may occasionally see an image shear, with the top and bot- 
tom parts of the image briefly offset. This is a  consequence of drawing an image 
directly into memory  as that memory is being  scanned for video data. Occasionally 
the CRT controller scans a given area of  display  memory for pixel data just as the 
program is changing  that same  memory. If the CRT controller scans  memory faster 
than  the CPU can modi+ that memory, then  the CRT controller can scan out  the 
bytes of display  memory that have been already been  changed, pass the  point  in  the 
image that  the CPU is currently drawing, and start scanning  out bytes that haven’t 
yet been  changed. The result: Mismatched upper  and lower portions of the image. 
If the CRT controller scans more slowly than  the CPU can modify memory  (likely 
with a 386, a fast VGA, and narrow images),  then  the CPU can rip  right past the CRT 

Bit-Plane Animation 8 1 3 



controller, with the same net result of mismatched top  and  bottom  parts of the im- 
age, as the CRT controller scans out first unchanged bytes and  then  changed bytes. 
Basically, shear will occasionally occur unless the CPU and CRT proceed  at exactly 
the same rate, which is most  unlikely. Shear is more  noticeable when there  are fewer 
but  larger images, since it’s more  apparent when a  larger  screen  area is sheared,  and 
because it’s easier to  spot one  out of three  large images momentarily shearing  than 
one  out of twenty  small  images. 
Image shear isn’t  terrible-I’ve written and sold  several games in which  images  occa- 
sionally shear, and I’ve never heard  anyone complain-but neither is it  ideal. One 
solution is page flipping,  in which drawing is done to  a  nondisplayed page of display 
memory while another page of  display memory is  shown on  the  screen. (We  saw 
page flipping back in  Chapter 23, we’ll see it again in  the  next  chapter,  and we’ll use 
it heavily starting  in  Chapter 4’7.) When the drawing is finished,  the newlydrawn 
part of display memory is made  the displayed page, so that  the new screen becomes 
visible  all at once, with no shearing or flicker. The  other page is then drawn to,  and 
when the drawing is complete  the display  is  switched  back to that page. 
Page flipping can be  used in  conjunction with bit-plane animation,  although page 
flipping  does  diminish some of the  unique advantages of bit-plane animation. Page 
flipping  produces  animation of the  highest visual quality whether bit-plane anima- 
tion is used or  not.  There  are a few drawbacks to page flipping, however. 
Page flipping  requires two display memory buffers, one to draw in  and  one to display 
at any  given time. Unfortunately, in mode 12H there  just isn’t enough memory for 
two buffers, so page flipping is not  an  option in that  mode. 
Also, page flipping  requires  that you keep the contents of both buffers up to date, 
which can  require  a  good  deal of extra drawing. 
Finally, page flipping  requires  that you  wait until  you’re  sure  the page has flipped 
before you start drawing to the  other page. Otherwise, you could end  up modifying 
a page while  it’s  still being displayed, defeating  the whole purpose of page flipping. 
Waiting for pages to flip takes  time and can slow overall performance significantly. 
What’s more, it’s sometimes difficult to be sure when the page has flipped, since not 
all VGA clones implement the display adapter status  bits and page  flip  timing  identically. 
To sum up, bit-plane animation by itself is very fast and looks good.  In  conjunction 
with page flipping, bit-plane animation looks a little better  but is  slower, and  the 
overall animation  scheme is more difficult to implement  and  perhaps  a  bit less reli- 
able  on some computers. 

Beating  the Odds in the  Jaw-Dropping  Contest 
Bit-plane animation is neat stuff. Heck, good  animation of any sort is fun,  and  the PC 
is  as good  a place as any  (well, almost any) to make  people’s  jaws drop. (Certainly it’s 

8 14 Chapter 43 



the place to go if  you want to make a lot of  jaws drop.) Don’t let anyone tell  you that 
you can’t do good animation on the PC. You can--ifyou stretch your mind  to find 
ways to bring the full  power  of the VGA to bear on your applications. Bit-plane  ani- 
mation isn’t for every task; neither  are page flipping, exclusive-ORing,  pixel panning, 
or any  of the many other animation techniques you  have  available. One  or  more 
tricks from that grab-bag should give  you  what  you need,  though, and the bigger 
your  grab-bag, the  better your programs. 

Bit-Plane  Animation 8 1 5 



chapter 44

split screens save the page flipped day



ge Flipped Animation in 64K ... Almost 
t least in horseshoes and maybe a few other things. 
ircles,  where if  you need 12 MB of hard disk to 

ave 10 MB left (a situation that seems to be  some 

u dredge up the gumption to go in there and free 
1 if you  were up against an “almost-but-notquite” 
ached by freeing up something elsewhere? Sup  
plementing a wonderful VGA animation scheme 

creen space, square pixels, smooth motion and  more than 
ry you  have  is  all there is? What  would  you do? 

that won’t break easily. Then you sit  down and 
let your right brain do what it was designed to do. Sure enough, there’s a way, and in 
this chapter I’ll explain how a little VGA secret called page splitting can save the day 
for page flipped animation in 640x480 mode. But to do that, I have to lay a little 
groundwork first. Or maybe a lot of groundwork. 
No horseshoes here. 

A Plethora of Challenges 
In its  simplest terms, computer animation consists  of  rapidly  redrawing  similar  im- 
ages at slightly differing locations, so that  the eye interprets  the successive  images  as 

- 

81 9 



a single object in motion over time. The fact that  the world is an  analog realm and 
the images  displayed on a  computer  screen consist  of discrete pixels updated  at  a 
maximum  rate of about 70 Hz is irrelevant; your eye can interpret  both real-world 
images and pixel patterns on the  screen as objects in  motion, and that’s that. 
One of the key problems of computer  animation is that  it takes time to redraw a 
screen, time during which the  bitmap  controlling  the  screen is in an  intermediate 
state, with, quite possibly,  many objects erased and others half-drawn. Even when 
only  briefly  displayed, a partially-updated screen can cause flicker at best, and  at 
worst  can destroy the illusion of motion entirely. 
Another  problem of animation is that  the  screen must update  often enough so that 
motion  appears  continuous. A moving object  that moves just  once every second, 
shifting by hundreds of pixels each time it does move,  will appear to jump,  not to 
move  smoothly. Therefore,  there  are two overriding  requirements  for  smooth ani- 
mation: 1) the  bitmap must be updated quickly (once  per frame-60 to ’70 Hz-is 
ideal,  although 30 Hz will do  fine),  and, 2) the process of redrawing the  screen must 
be  invisible to the user; only the  end result  should ever  be seen. Both of these re- 
quirements  are  met by the  program  presented  in Listings 44.1 and 44.2. 

A Page Flipping Animation  Demonstration 
The listings taken together  form  a sample animation  program,  in which a single 
object  bounces endlessly off other objects, with instructions and a  count of bounces 
displayed at  the bottom of the  screen. I’ll  discuss  various aspects of  Listings 44.1 and 
44.2 during  the  balance of this article. The listings are too complex and involve too 
much VGA and animation knowledge for  for me to discuss it all in exhaustive detail 
(and I’ve covered a  lot of this stuff earlier  in  the  book) ; instead, I’ll cover the major 
elements, leaving it to you to explore  the  finer points-and, I  hope, to experiment 
with and expand on  the code I’ll provide. 

LISTING 44.1 L44-1 .C 
I* S p l i t   s c r e e n  VGA a n i m a t i o n   p r o g r a m .   P e r f o r m s   p a g e   f l i p p i n g   i n   t h e  
t o p   p o r t i o n   o f   t h e   s c r e e n   w h i l e   d i s p l a y i n g   n o n - p a g e   f l i p p e d  
i n f o r m a t i o n   i n   t h e   s p l i t   s c r e e n   a t   t h e   b o t t o m   o f   t h e   s c r e e n .  
Compi led   w i th   Bor land  C++ i n  C c o m p i l a t i o n  mode. *I  

# i n c l u d e   < s t d i o . h >  
# i n c l u d e   < c o n i o . h >  
# i n c l  ude  <dos. h> 
# inc lude   <math .h>  

# d e f i n e  SCREEN-SEG OxAOOO 
# d e f i n e  SCREEN-PIXWIDTH 640 I* i n   p i x e l s  *I  
# d e f i n e  SCREEN-WIDTH 80 I* i n   b y t e s  *I  
# d e f i n e  SPLIT-START-LINE 339 
#define  SPLIT-LINES 141 
# d e f i n e  NONSPLIT-LINES 339 
# d e f i n e  SPLIT-START-OFFSET 0 
# d e f i n e  PAGEO-START-OFFSET (SPLIT-LINES*SCREEN-WIDTH) 

820 Chapter 44 



# d e f i n e  PAGEl-START-OFFSET ((SPLIT-LINES+NONSPLIT-LINES)*SCREEN-WIOTH) 
# d e f i n e  CRTC-INDEX  Ox3D4 /* CRT C o n t r o l l e r   I n d e x   r e g i s t e r  * /  
# d e f i n e  CRTC-DATA  Ox3D5 / *  CRT C o n t r o l l e r   D a t a   r e g i s t e r  * /  
# d e f i n e  OVERFLOW 0x07 /*  i n d e x   o f  CRTC r e g   h o l d i n g   b i t  8 o f   t h e  

# d e f i n e  MAX-SCAN Ox09 /*  i n d e x   o f  CRTC r e g   h o l d i n g   b i t   9   o f   t h e  

# d e f i n e  LINE-COMPARE Ox18 /*  i n d e x   o f  CRTC r e g   h o l d i n g   l o w e r  8 b i t s  

# d e f i n e  NUM-BUMPERS (s i zeof (Bumpers ) /s izeof (bumper ) )  
/ \def ine BOUNCER-COLOR 15 
# d e f i n e  BACK-COLOR 1 /*  p l a y f i e l d   b a c k g r o u n d   c o l o r  * /  

t y p e d e f   s t r u c t  { / *  one s o l i d  bumper t o  be  bounced o f f   o f  * /  

l i n e   t h e   s p l i t   s c r e e n   s t a r t s   a f t e r  * /  

l i n e   t h e   s p l i t   s c r e e n   s t a r t s   a f t e r  * /  

o f   l i n e   s p l i t   s c r e e n   s t a r t s   a f t e r  * /  

i n t  L e f t X . T o p Y . R i g h t X , B o t t o m Y ;  
i n t   C o l o r :  

1 bumper: 

t y p e d e f   s t r u c t  t / *  one b i t   p a t t e r n   t o  be  used f o r   d r a w i n g  */  
i n t  WidthInBytes;  
i n t   H e i g h t :  
uns igned   cha r   *B i tPa t te rn :  

1 image: 

t y p e d e f   s t r u c t  t /* one   bounc ing   ob jec t   t o  move around  the   sc reen */  
i n t  LeftX.TopY; / *  l o c a t i o n  */  
i n t  Width.Height ;  / *  s i z e   i n   p i x e l s  * /  
i n t  DirX.DirY: /*  m o t i o n   v e c t o r s  * /  
i n t  CurrentXC2l.CurrentYC21; /*  c u r r e n t   l o c a t i o n   i n   e a c h  page */  
i n t   C o l o r :  /*  c o l o r   i n   w h i c h   t o   b e  drawn */  
image  *RotationO: / *  r o t a t i o n s   f o r   h a n d l i n g   t h e  8 p o s s i b l e  * /  
image * R o t a t i o n l ;  / *  i n t r a b y t e   s t a r t   a d d r e s s   a t   w h i c h   t h e  */  
image  *Rotat ion2: /* l e f t  edge  can  be *I  
image  *Rotat ion3; 
image  *Rotat ion4: 
image  *Rotat ion5; 
image  *Rotat ion6: 
image  *Rotat ion7; 

1 bouncer: 

vo id   ma in(vo id1 ;  
void  DrawBumperList(bumper *, i n t .   u n s i g n e d   i n t ) ;  
v o i d   D r a w S p l i t S c r e e n ( v 0 i d ) :  
v o i d  E n a b l e S p l i t S c r e e n ( v o i d ) ;  
void  MoveBouncer(bouncer *, bumper *, i n t ) :  
e x t e r n   v o i d  DrawRect ( in t . in t . in t . in t . in t .uns igned i n t . u n s i g n e d   i n t ) :  
e x t e r n   v o i d  ShowPage(unsigned i n t ) ;  
e x t e r n   v o i d   O r a w I m a g e ( i n t . i n t . i m a g e   * * . i n t . u n s i g n e d   i n t . u n s i g n e d   i n t ) :  
extern  void  ShowBounceCount(void):  
e x t e r n   v o i d   T e x t U p ( c h a r   * . i n t . i n t . u n s i g n e d   i n t . u n s i g n e d   i n t ) :  
ex te rn   vo id   SetBIOSBx8Font (vo id ) :  

/ *  All bumpers i n   t h e   p l a y f i e l d  * /  
bumper  Bumpers[] - t 

(0.0.19.339.21.  {0.0.639.19.21.  {620.0.639.339.21. 
{0.320.639.339.21.  I60.48.79.67.121.  ~60.108.79.127.121. 
(60.168.79.187.121.  t60.228.79.247.121.  I120.68.131.131,131, 
{120.188.131.271.131.  I240.128.259.147.141.  {240.192.259.211.141. 
t208.160.227.179.141.  {272.160.291.179.141.  t228.272.231.319.111. 
t192.52.211.55.111.  I302.80.351.99.121.  I320.260.379.267.131. 

Split Screens Save the Page Flipped Day 821 



{380.120,387.267.13), {420.60.579.63.11),  {428.110.571,113.11~, 
{420.160.579,163.11}, ~428.210.571.213.11).  (420.260.579.263.11) 1 ;  

/*  Image f o r   b o u n c i n g   o b j e c t  when l e f t  edge i s   a l i g n e d   w i t h   b i t  7 * /  
uns igned   cha r   ~BouncerRo ta t i onOCl  - I 

OxFF.OxOF.OxFO. OxFE.0x07.OxFO. OxFC.OxO3.OxFO.  OxFC.OxO3.OxFO. 
OxFE.0x07,OxFO. OxFF.OxFF.OxFO. 0xCF.OxFF.0~30.  0x87.OxFE.0x10. 
0x07.0x0E.0x00.  0x07.0x0E.0x00.  0x07.0x0E.0x00.  0x07.0x0E.0x00. 
0x87.OxFE.0x10.  0xCF.OxFF.0~30. OxFF.OxFF.OxFO. OxFE.0x07.OxFO. 
OxFC.OxO3.OxFO.  OxFC.OxO3,OxFO. OxFE.0x07.OxFO. OxFF.OxOF.OxFO~; 

image  BouncerRotationO - (3.  20.  -BouncerRotationO}; 

/ *  Image f o r   b o u n c i n g   o b j e c t  when l e f t  edge i s   a l i g n e d   w i t h   b i t  3 * /  
unsigned  char  -BouncerRotat ion4[]  - ( 

OxOF.OxFO.OxFF. 0x0F.OxE0.0x7F. OxOF.OxCO.Ox3F.  OxOF.OxCO.Ox3F. 
0x0F.OxE0.0x7F. 0xOF.OxFF.OxFF.  OxOC.OxFF.OxF3. 0x08.0x7F.OxE1. 
0x00.0x70.0xE0,  0x00.0x70.OxEO.  0x00.0x70.OxEO.  0x00.0x70.OxEO. 
0x08.0x7F.OxE1. OxOC.OxFF.OxF3.  OxOF.OxFF.OxFF. 0x0F.OxE0.0x7F. 
OxOF,OxCO,Ox3F,  OxOF.OxCO,Ox3F. 0x0F.OxE0.0x7F. OxOF.OxFO.OxFF); 

image  BouncerRotat ion4 - {3.  20.  -BouncerRotation4}: 

/ *  I n i t i a l   s e t t i n g s   f o r   b o u n c i n g   o b j e c t .   O n l y  2 r o t a t i o n s   a r e  needed 
because  the   ob jec t  moves 4 p i x e l s   h o r i z o n t a l l y   a t  a t i m e  */  

bouncer  Bouncer - (156,60.20.20.4.4.156.156.60.60.BOUNCER-COLOR, 
&BouncerRotationO,NULL,NULL,NULL,EBouncerRotation4,NULL,NULL,NULL~; 

unsigned i n t   P a g e S t a r t O f f s e t s C 2 1  - 
(PAGEO-START-OFFSET.PAGEl-START-OFFSET); 

unsigned i n t  BounceCount; 

v o i d   m a i n 0  I 
i n t  DisplayedPage.  NonDisplayedPage. Done, i: 
u n i o n  REGS r e g s e t ;  

r e g s e t . x . a x  - 0x0012; / *  s e t   d i s p l a y   t o  640x480  16-co lor  mode * /  
i n t 8 6 ( 0 x 1 0 .   E r e g s e t .   & r e g s e t ) ;  
SetBIOS8x8FontO; / *  s e t   t h e   p o i n t e r   t o   t h e  B I O S  8 x 8   f o n t  * /  
E n a b l e S p l i t S c r e e n O :  /* t u r n  on t h e   s p l i t   s c r e e n  */ 

/*  Disp lay  page 0 above t h e   s p l i t   s c r e e n  */  
ShowPage(PageStartOffsetsC0isplayedPage - 03) :  

/* Clear  both  pages  to  background  and  draw  bumpers i n  each  page */ 
f o r  ( i - 0 :  i < 2 :  i++) ( 

OrawRect~O.O.SCREEN~PIXWIDTH-l,NONSPLIT~LINES-l,BACK~COLOR, 

OrawBumperList~Bumpers,NUM~BUMPERS,PageStar tOf fsets[ i l~ ;  
PageStartOffsets[i].SCREEN-SEG); 

) 

D r a w S p l i t S c r e e n O ;  / *  draw t h e   s t a t i c   s p l i t   s c r e e n   i n f o  * /  
BounceCount - 0; 
ShowBounceCountO; / *  p u t  up t h e   i n i t i a l   z e r o   c o u n t  * /  

/*  D r a w  t h e   b o u n c i n g   o b j e c t   a t   i t s   i n i t i a l   l o c a t i o n  */  
OrawImage(Bouncer.LeftX.Bouncer.TopY,EBouncer.RotationO, 

B o u n c e r . C o l o r . P a g e S t a r t O f f s e t s C D i s p l a y e d P a g e 1 . S C R E E N ~ S E G ~ ;  

/ *  Move t h e   o b j e c t ,  draw i t  i n   t h e   n o n d i s p l a y e d  page,  and f l i p   t h e  

Done - 0;  
do ( 

page u n t i l  Esc i s  p ressed */  

NonDisplayedPage - DisplayedPage A 1: 

822 Chapter 44 



/*  E r a s e   a t   c u r r e n t   l o c a t i o n   i n   t h e   n o n d i s p l a y e d  page *I 
DrawRect(Bouncer.CurrentX[NonDisplayedPagel, 

Bouncer.CurrentY[NonDisplayedPagel. 
Bouncer.CurrentXCNonDisplayedPage3+8ouncer.Width-l ,  
Bouncer.CurrentY[NonDisplayedPagel+Bouncer.Height-l, 
BACK~COLOR.PageStar tOf fse ts [NonDisp layedPage l ,SCREEN~SEG~:  

I* Move the  bouncer  * /  
MoveBouncer(&Bouncer.  Bumpers. NUM-BUMPERS): 
/ *  Draw a t   t h e  new l o c a t i o n   i n   t h e   n o n d i s p l a y e d  page * /  
DrawImage(Bouncer.LeftX.Bouncer.TopY.&Bouncer.RotationO, 

Bouncer.Color.PageStartOffsetsCNonDisplayedPage1, 
SCREEN-SEG): 

/ *  Remember where the   bouncer  i s   i n   t h e   n o n d i s p l a y e d  page */  
Bouncer.CurrentXCNonDisplayedPage1 - Bouncer .Lef tX:  
Bouncer.CurrentY~NonDisplayedPage1 - Bouncer.TopY: 
/ *  F l i p   t o   t h e  page we j u s t  drew i n t o  * /  
ShowPage(PageStartOffsetsCDisp1ayedPage - NonDisplayedPagel):  
I* Respond t o  any k e y s t r o k e  *I  
i f  ( k b h i t 0 )  { 

s w i t c h   ( g e t c h 0 )  I 
case  OxlB: /*  Esc t o  end */  

case 0: / *  branch  on  the  extended  code * I  
Done - 1: b reak :  

s w i t c h   ( g e t c h 0 )  ( 
case  0x48: I* nudge  up */  

case Ox4B: I* nudge l e f t  * /  

case Ox4D: / *  nudge r i g h t  * /  

case  0x50: / *  nudge down */ 

Bouncer.Dit-Y - -abs(Bouncer .Di rY) ;   break:  

Bouncer.DirX - -abs(Bouncer .Di rX) :   break:  

Bouncer.OirX - abs(Bouncer .Di rX) ;   break:  

Bouncer.DirY - abs(Bouncer .Di rY) ;   break:  
I 
break:  

d e f a u l t  : 
break:  

3 
1 

I whi le   ( !Done) :  

/ *  R e s t o r e   t e x t  mode and  done * I  
regse t . x .ax  - 0x0003: 
i n t B 6 ( 0 x 1 0 .   I r e g s e t .   I r e g s e t ) :  

I 

/*  Draws t h e   s p e c i f i e d   l i s t   o f  bumpers i n t o   t h e   s p e c i f i e d  page * I  
void  DrawBumperList(bumper * Bumpers, i n t  NumBumpers. 

{ 
uns igned i n t   P a g e s t a r t o f f s e t )  

i n t  i: 

f o r   ( i - 0 :  i<NumBumpers:  i++.Bumpers++) { 
DrawRect(Bumpers->LeftX.Bumpers->TopY.Bumpers->RightX, 

Bumpers->BottomY.Bumpers->Color.PageStartOffset, 
SCREEN-SEG) : 

3 
1 

/*  D i s p l a y s   t h e   c u r r e n t  bounce  count * I  
v o i d  ShowBounceCountO { 

char  CountASCII[71: 

Split Screens  Save  the  Page  Flipped Day 823 



i toa(BounceCount.CountASCII.10); I* c o n v e r t   t h e   c o u n t   t o  A S C I I  * /  
TextUp(CountASCII.344.64.SPLIT_START_OFFSET.SCREEN_SEG): 

1 

/*  Frames t h e   s p l i t   s c r e e n  and f i l l s  i t  w i t h   v a r i o u s   t e x t  */ 
v o i d   D r a w S p l i t S c r e e n O  [ 

DrawRect~O.O,SCREEN~PIXWIDTH-1.SPLIT~LINES-1.O,SPLIT~START~OFFSET, 

DrawRect~O,l.SCREEN~PIXWIDTH-l~4,15,SPLIT~START~OFFSET, 

DrawRect~O.SPLIT~LINES-4.SCREEN~PIXWIDTH-l,SPLIT~LINES-l,15, 

D~~~R~C~(~.~.~.SPLIT-LINES-~,~~.SPLIT_START-OFFSET.SCREEN_SEG): 
O r a w R e c t ~ S C R E E N ~ P I X W I D T H - 4 . 1 . S C R E E N ~ P I X W I D T H - l , S P L I T ~ L I N E S - l , l 5 ,  

TextUp("This i s   t h e   s p l i t   s c r e e n   a r e a  ...", B.8.SPLIT-START-OFFSET. 

TextUp("Bounces: ".272.64.SPLIT-START-OFFSET.SCREEN-SEG): 
TextUp("\O33:  nudge left".520.78.SPLIT-START-OFFSET.SCREEN-SEG): 
TextUp("\032:  nudge right".520.90.SPLIT-START-OFFSET.SCREEN-SEG); 
TextUp("\031:  nudge down" .520 .102 .SPLIT~START~OFFSET,SCREEN~SEG) ;  
TextUp("\030:  nudge up".520.114.SPLIT_START-OFFSET.SCREEN-SEG); 
TextUp("Esc t o  end",520.126.SPLIT-START-OFFSET.SCREEN-SEG); 

SCREEN-SEG); 

SCREEN-SEG) ; 

SPLIT-START-OFFSET,SCREEN-SEG); 

SPLIT-START-OFFSET,SCREEN-SEG); 

SCREEN-SEG) ; 

1 

/* Turn  on t h e   s p l i t   s c r e e n   a t   t h e   d e s i r e d   l i n e   ( m i n u s  1 because  the  
s p l i t   s c r e e n   s t a r t s   * a f t e r *   t h e   l i n e   s p e c i f i e d   b y   t h e  LINE-COMPARE 
r e g i s t e r )   ( b i t  8 o f   t h e   s p l i t   s c r e e n   s t a r t   l i n e   i s   s t o r e d   i n   t h e  
O v e r f l o w   r e g i s t e r ,   a n d   b i t  9 i s   i n   t h e  Maximum Scan L i n e   r e g )  */ 

outp(CRTC-INDEX, LINE-COMPARE); 
outp(CRTC-DATA.  (SPLIT-START-LINE - 1) & OXFF): 
outp(CRTC-INDEX, OVERFLOW): 
outp(CRTC-DATA. (((((SPLIT-START-LINE - 1) & 0x100) >> 8) << 4 )  I 
outp(CRTC-INDEX. MAX-SCAN); 
outp(CRTC-DATA. (((((SPLIT-START-LINE - 1) & 0x200) >> 9) << 6) I 

v o i d   E n a b l e S p l i t S c r e e n O  { 

(inp(CRTC-DATA) & - 0 ~ 1 0 ) ) ) ;  

(inp(CRTC-DATA) & - 0 ~ 4 0 ) ) ) :  
1 

/* Moves the   bouncer ,   bounc ing  i f  bumpers a r e   h i t  * /  
void  MoveBouncer(bouncer  *Bouncer,  bumper  *BumperPtr. i n t  NumBumpers) I 

i n t  NewLeftX, NewTopY. NewRightX,  NewBottomY. i: 

/* Move t o  new l o c a t i o n ,   b o u n c i n g  i f  necessary */ 
NewLeftX - Bouncer ->Lef tX  + Bouncer->DirX; / *  new coords */  
NewTopY - Bouncer->TopY + Bouncer->DirY; 
NewRightX - NewLeftX + Bouncer->Width - 1; 
NewBottomY - NewTopY + Bouncer->Height - 1 :  
/*  Compare t h e  new l o c a t i o n   t o   a l l  bumpers,   check ing  for   bounce */ 
f o r   ( i - 0 :  i<NumBumpers;  i++.BumperPtr++) { 

/ *  I f  m o v i n g   p u t s   t h e   b o u n c e r   i n s i d e   t h i s  bumper,  bounce */  
i f  ( (NewLeftX <- BumperPtr->RightX) && 

(NewRightX >- BumperPt r ->Lef tX)  && 
(NewTopY <- BumperPtr->BottomY) && 
(NewBottomY >- BumperPtr->TopY) { 

out   which  edge(s)  i t  crossed,  and  bounce a c c o r d i n g l y  */ 
/* The  bouncer  has t r i e d   t o  move i n t o   t h i s  bumper; f i g u r e  

i f  ( ( ( B o u n c e r - > L e f t X  > BumperPtr->RightX) 86 
(NewLeftX <- BumperPt r ->Righ tX) )  1 1  
( ( ( B o u n c e r - > L e f t X  + Bouncer->Width - 1 )  < 

824 Chapter 44 



1 
i f  

1 
I* 
i f  

BumperPt r ->Lef tX)  && 
(NewRightX >- BumperPt r ->Lef tX) ) )  { 

Bouncer->DirX - -Bouncer->DirX; /* bounce h o r i z o n t a l l y  * /  
NewLeftX - Bouncer->LeftX + Bouncer->DirX: 

(((Bouncer->TopY > BumperPtr->BottomY) && 
(NewTopY <- BumperPtr->BottomY)) I I 
( ( (Bouncer->TopY + Bouncer->Height - 1) < 
BumperPtr->TopY) && 
(NewBottomY >- BumperPtr->TopY)))  ( 

Bouncer->DirY - -Bouncer->DirY; /* bounce v e r t i c a l l y  * /  
NewTopY - Bouncer->TopY + Bouncer->DirY; 

Upda te   t he   bounce   coun t   d i sp lay :   t u rn   ove r   a t  10000 */  
(++BounceCount >- 10000) t 
TextUp("0 " .344.64.SPLIT-START~OFFSET,SCREEN_SEG):  
BounceCount - 0:  

I e l s e  t 

I 
ShowBounceCountO: 

1 
1 
Bouncer ->Lef tX  = NewLeftX; / *  s e t   t h e   f i n a l  new c o o r d i n a t e s  */  
Bouncer->TopY - NewTopY: 

1 

LISTING 44.2  L44-2.ASM 
: L o w - l e v e l   a n i m a t i o n   r o u t i n e s .  
: T e s t e d   w i t h  TASM 

SCREEN-WIDTH 
INPUT-STATUS-1 
CRTC-INDEX 
START-ADDRESS-HIGH 
START-ADDRESS-LOW 
GC-INDEX 
SET-RESET 
G-MODE 

80 
03dah 
03d4h 
Och 
Od h 

0 
03ceh 

5 

: s c r e e n   w i d t h   i n   b y t e s  
: I n p u t   S t a t u s  1 r e g i s t e r  
:CRT C o n t r o l l e r   I n d e x   r e g  
: b i t m a p   s t a r t   a d d r e s s   h i g h   b y t e  
; b i t m a p   s t a r t   a d d r e s s   l o w   b y t e  
: G r a p h i c s   C o n t r o l l e r   I n d e x   r e g  
:GC i n d e x   o f   S e t /   R e s e t   r e g  
:GC i n d e x   o f  Mode r e g i s t e r  

.model  small 

.data 
BIOS8x8Ptr  dd ? : p o i n t s   t o  BIOS 8 x 8   f o n t  
: Tables  used t o   l o o k  up l e f t  and r i g h t   c l i p  masks. 
Lef tMask  db  Of fh .   07fh.   03fh.   Ol fh .  OOfh. 007h.  003h. OOlh 
RightMask  db  080h. OcOh,  OeOh, OfOh.  Of8h.  Ofch.  Ofeh.  Offh 

.code 
: Draws t h e   s p e c i f i e d   f i l l e d   r e c t a n g l e   i n   t h e   s p e c i f i e d   c o l o r .  
: Assumes t h e   d i s p l a y   i s   i n  mode 12h. Does n o t   c l i p  and  assumes 
: r e c t a n g l e   c o o r d i n a t e s   a r e   v a l i d .  

: C n e a r - c a l l a b l e   a s :   v o i d   D r a w R e c t ( i n t   L e f t X .   i n t  TopY. i n t  RightX, 
i n t  BottomY. i n t   C o l o r ,   u n s i g n e d   i n t   S c r n D f f s e t .  
unsigned i n t  ScrnSegment); 

DrawRectParms s t r u c  
dw 

L e f t X  
2 dup (? ) :pushed BP and r e t u r n   a d d r e s s  

dw ? 
TopY dw ? 
R igh tX dw 

: X  c o o r d i n a t e   o f   l e f t   s i d e   o f   r e c t a n g l e  
: Y  c o o r d i n a t e   o f   t o p   s i d e   o f   r e c t a n g l e  

? : X  c o o r d i n a t e   o f   r i g h t   s i d e  o f  r e c t a n g l e  

Split Screens Save the Page Flipped Day 825 



BottomY dw 
C o l o r  dw 

S c r n O f f s e t  
ScrnSegment 
OrawRectParms 

pub1 i c  

push 
mov 
push 
push 

c l  d 
mov 
mov 
mov 
o u t  
mov 
o u t  
1 es 
mov 
mu1 
add 
mov 
mov 
s h r  
s h r  
sh r  
add 
and 
mov 
mov 
mov 
and 
mov 
mov 
and 
sub 
s h r  
sh r  
s h r  
j n z  
and 

mov 
sub 

push 
mov 
xchg 
i nc 
mov 
dec 
js 
j z  
mov 
r e p  

-0rawRect 

MasksSet: 

F i  11  Loop: 

? 
? 

dw ? 
dw ? 

ends 

:Y c o o r d i n a t e   o f   b o t t o m   s i d e   o f   r e c t a n g l e  
: c o l o r   i n   w h i c h   t o   d r a w   r e c t a n g l e   ( o n l y   t h e  
; lower  4 b i t s   m a t t e r )  
; o f f s e t   o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  
:segment o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  

- DrawRect 
p roc   near  
bP : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
b p s   s p   : p o i n t   t o   l o c a l   s t a c k   f r a m e  
s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
d i  

dx.GC-INDEX 
a1 .SET-RESET 
a h . b y t e   p t r   C o l o r C b p l  
d x ,   a x   : s e t   t h e   c o l o r   i n   w h i c h   t o   d r a w  
ax.G-MODE + (0300h) 
d x ,   a x   : s e t   t o   w r i t e  mode 3 
d i . d w o r d   p t r   S c r n O f f s e t C b p ]   ; p o i n t   t o   b i t m a p   s t a r t  
ax.SCREEN-WIDTH 
TopY Cbpl 
d i  ,ax 
ax.LeftXCbp1 
bx,   ax 
ax.1 
ax.1 
ax. 1 
d i  .ax 
bx.7 
d l   . Le f tMaskCbx l  
bx ,R igh tX [bp l  
s i ,   b x  
bx.7 
dh.RightMaskCbx1 
b x . L e f t X [ b p l  
bx.NOT 7 
s i ,   b x  
s i  .1 
s i  .1 
s i  .1 
MasksSet 
d l  ,dh 

bx.BottomYCbp1 
bx.TopYCbp1 

d i  
a1 , d l  
e s : [ d i l . a l  
d i  
c x . s i  
cx  
L i  neDone 
DrawRightEdge 
a 1  .O f fh  
s t o s b  

; p o i n t   t o   t h e   s t a r t   o f   t h e   t o p   s c a n  
; l i n e   t o  fill 

;/8 - b y t e   o f f s e t   f r o m   l e f t   o f   s c r e e n  

; p o i n t   t o   t h e   u p p e r - l e f t   c o r n e r   o f  fill area 
; i s o l a t e   i n t r a p i x e l   a d d r e s s  
; s e t   t h e   l e f t - e d g e   c l i p  mask 

: i s o l a t e   i n t r a p i x e l   a d d r e s s   o f   r i g h t  edge 
: s e t   t h e   r i g h t - e d g e   c l i p  mask 

; i n t r a p i x e l   a d d r e s s   o f   l e f t  edge 

:# o f   b y t e s   a c r o s s  spanned  by  rectangle - 1 
; i f  t h e r e ' s   o n l y  one b y t e   a c r o s s .  
: combine  the masks 

:P o f  scan l i n e s   t o  fill - 1 

;remember l i n e   s t a r t   o f f s e t  
; l e f t  edge c l i p  mask 
;draw  the l e f t  edge 
: p o i n t  t o  t h e   n e x t   b y t e  
; I  o f   b y t e s   l e f t   t o  do 
;# o f   b y t e s   l e f t   t o  do - 1 
: t h a t ' s  i t  i f  t h e r e ' s   o n l y  1 by te   ac ross  
:no m i d d l e   b y t e s  i f  o n l y  2 by tes   ac ross  
:non -edge   by tes   a re   so l i d  
:draw t h e   s o l i d   b y t e s   a c r o s s   t h e   m i d d l e  

826 Chapter 44 



DrawRightEdge: 
mov a1,dh 
x c h g   e s : [ d i l . a l  

pop d i  
add d i  .SCREEN-WIDTH 
dec  bx 
jns F i  11  Loop 

pop d i  
pop s i  
POP bp 
r e t  

LineDone: 

- DrawRect  endp 

: r i g h t - e d g e   c l i p  mask 
: d r a w   t h e   r i g h t  edge 

: r e t r i e v e   l i n e   s t a r t   o f f s e t  
: p o i n t   t o   t h e   n e x t   l i n e  
; c o u n t   o f f   s c a n   l i n e s  

: r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

: Shows t h e  page a t   t h e   s p e c i f i e d   o f f s e t   i n   t h e   b i t m a p .  Page i s  
: d i s p l a y e d  when t h i s   r o u t i n e   r e t u r n s .  

: C n e a r - c a l l a b l e   a s :   v o i d  ShowPage(unsigned i n t   S t a r t o f f s e t ) ;  

ShowPageParms s t r u c  

S t a r t o f f s e t  dw ? : o f f s e t   i n   b i t m a p   o f  page t o   d i s p l a y  
ShowPageParms ends 

dw 2 dup ( ? I  ;pushed BP and re tu rn   add ress  

p u b l i c  -Showpage 

push   bp   : p rese rve   ca l l e r ' s   s tack   f rame 
mov b p . s p   : p o i n t   t o   l o c a l   s t a c k   f r a m e  

: W a i t  f o r   d i s p l a y   e n a b l e   t o   b e   a c t i v e   ( s t a t u s   i s   a c t i v e   l o w ) .   t o   b e  
: su re   bo th   ha l ves  o f  t h e   s t a r t   a d d r e s s  will t a k e   i n   t h e  same frame. 

- ShowPage proc   near  

mov 
mov 
mov 
mo v 
mov 

i n  
t e s t  
j nz 

mov 
mov 
o u t  
mov 

WaitDE: 

: S e t   t h e   s t a r t  

o u t  

b l  , START-ADDRESS-LOW : p r e l o a d   f o r   f a s t e s t  
bh,byte p t r   S t a r t O f f s e t [ b p l  : f l i p p i n g  once d i s p l a y  
cl.START-ADDRESS-HIGH : enable i s   d e t e c t e d  
c h . b y t e   p t r   S t a r t D f f s e t + l [ b p l  
dx.INPUT-STATUS-1 

a1 .dx 
a1 .Dlh 
Wai t D E  ; d i s p l a y   e n a b l e   i s   a c t i v e   l o w  ( 0  - a c t i v e )  
o f f s e t   i n   d i s p l a y  memory o f   t h e  page t o   d i s p l a y .  
dx.CRTC-INDEX 
ax,  bx 
dx ,   ax   ; s ta r t   add ress   l ow  
ax,   cx  

d x ,   a x   : s t a r t   a d d r e s s   h i s h  
: Now w a i t   f o r   v e r t i c a l  sync, s o  t h e   o t h e r  page will be i n v i s i b l e  when 
: we s t a r t   d r a w i n g   t o  i t . 

Wai t V S :  
mov dx.INPUT-STATUS-1 

i n  a1 .dx 
t e s t  a1 .08h 
j z  W a i t V S  : v e r t i c a l   s y n c   i s   a c t i v e   h i g h  (1 - a c t i v e )  
POP bP : r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

- ShowPage endp 

: D i s p l a y s   t h e   s p e c i f i e d  image a t  t h e   s p e c i f i e d   l o c a t i o n   i n   t h e  
: s p e c i f i e d   b i t m a p ,   i n   t h e   d e s i r e d   c o l o r .  

Split Screens Save  the  Page  Flipped Day 827 



; C n e a r - c a l l a b l e   a s :   v o i d   D r a w I m a g e ( i n t   L e f t X .   i n t  TopY. 
image  **Rotat ionTable.  i n t   C o l o r ,   u n s i g n e d   i n t   S c r n O f f s e t .  
uns igned i n t  ScrnSegment); 

DrawImageParms 
dw 

D ILe f tX  
DITopY 
Ro ta t i onTab le  

D ICo lo r  

D I S c r n O f f s e t  
DIScrnSegment 
DrawImageParms 

image s t r u c  
Wid th InBy tes  
H e i g h t  
B i t P a t t e r n  
image  ends 

pub1 i c 

push 
mov 
push 
push 

c l  d 
mov 
mo v 
mov 
o u t  
mov 
o u t  
1 es 
mov 
mu1 
add 
mov 
mov 
s h r  
s h r  

add 
s h r  

and 
s h l  
add 
mov 
mov 
mov 
mov 

push 
mov 

- DrawImage 

DrawImageLoop: 

s t r u c  
2 dup  (?);pushed BP and r e t u r n   a d d r e s s  

dw ? ;X  c o o r d i n a t e   o f   l e f t   s i d e   o f  image 
dw ? :Y c o o r d i n a t e   o f   t o p   s i d e   o f   i m a g e  
dw ? ; p o i n t e r   t o   t a b l e   o f   p o i n t e r s   t o  image 

; r o t a t i o n s  
dw ? ; c o l o r   i n   w h i c h   t o   d r a w  image ( o n l y   t h e  

; lower  4 b i t s   m a t t e r )  
dw ? ; o f f s e t  o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  
dw ? ;segment o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  

ends 

dw ? 
dw ? 
dw ? 

-DrawImage 

bP 
proc   near  

bP.SP ; p o i n t   t o   l o c a l   s t a c k   f r a m e  
s i   ; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
d i  

; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  

dx.GC_INDEX 
a1 .SETPRESET 
ah .by te   p t r   D ICo lo rEbp ]  
d x . a x   ; s e t   t h e   c o l o r   i n   w h i c h   t o   d r a w  
ax.G-MODE + (0300h) 
d x , a x   ; s e t   t o   w r i t e  mode 3 
d i , d w o r d   p t r   D I S c r n O f f s e t [ b p l   ; p o i n t   t o   b i t m a p   s t a r t  
ax.SCREEN-WIDTH 
DITopYCbpl ; p o i n t   t o   t h e   s t a r t   o f   t h e   t o p   s c a n  
d i   , a x  ; l i n e  on  which t o  draw 
ax .D ILe f tX [bp l  
bx,   ax 
ax.1 ; /E  - b y t e   o f f s e t   f r o m   l e f t  o f  screen 
ax.1 
ax.1 
d i   , a x  
bx.7 
bx .1  ;*2 f o r  word   look-up  
b x . R o t a t i o n T a b l e C b p 1   ; p o i n t   t o   t h e   i m a g e   s t r u c t u r e   f o r  
bx.  Cbxl ; t h e   i n t r a b y t e   r o t a t i o n  
dx.Cbx1.WidthInBytes  : image  width 
s i , [ b x l . B i t P a t t e r n   ; p o i n t e r   t o  image p a t t e r n   b y t e s  
bx.Cbx1.Height  ; image  height 

d i  ;remember l i n e   s t a r t   o f f s e t  
cx.dx ;# o f   b y t e s   a c r o s s  

; p o i n t   t o   t h e   u p p e r - l e f t   c o r n e r   o f   d r a w   a r e a  
; i s o l a t e   i n t r a p i x e l   a d d r e s s  

DrawImageLineLoop: 
1 odsb ;ge t   t he   nex t   image   by te  
xchg  es:   [d i ]   .a1 ;draw  the  next   image  byte 
i n c   d i  ; p o i n t   t o   t h e   f o l l o w i n g   s c r e e n   b y t e  

828 Chapter 44 



loop  DrawImageLineLoop 
pop d i   : r e t r i e v e   l i n e   s t a r t   o f f s e t  
add d i  ,SCREEN-WIDTH ; p o i n t   t o   t h e   n e x t   l i n e  
dec  bx  :count o f f  scan l i n e s  
j n z  DrawImageLoop 

pop d i   ; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
pop s i  

r e t  
-DrawImage  endp 

: Draws a 0 - t e r m i n a t e d   t e x t   s t r i n g   a t   t h e   s p e c i f i e d   l o c a t i o n   i n   t h e  
: s p e c i f i e d   b i t m a p   i n   w h i t e .   u s i n g   t h e   8 x 8  B I O S  fon t .   Must  be a t  an X 
: c o o r d i n a t e   t h a t ' s  a m u l t i p l e   o f  8. 

: C n e a r - c a l l a b l e   a s :   v o i d   T e x t U p ( c h a r   * T e x t .   i n t   L e f t X .   i n t  TopY, 
uns igned i n t   S c r n O f f s e t .   u n s i g n e d   i n t   S c r n S e g m e n t ) :  

POP b p   : r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

TextUpParms 

TULeftX 
Tex t  

TUTopY 
TUScrnOffset  
TUScrnSegment 
TextUpParms 

pub1 i c  
-Textup  proc 

push 
mov 
push 
push 

c l  d 
mov 
mov 
o u t  
1 es 
mov 
mu1 
add 
mov 
mov 
s h r  
s h r  
sh r  
add 
mov 

TextUpLoop: 
l o d s b  
and 
j z  
push 
push 
push 
ca t  1 
POP 

s t r u c  
dw 2 dup  (?):pushed BP and r e t u r n   a d d r e s s  
dw 
dw 

? : p o i n t e r   t o   t e x t   t o  draw 
? : X  c o o r d i n a t e   o f   l e f t   s i d e   o f   r e c t a n g l e  

dw ? ;Y c o o r d i n a t e   o f   t o p   s i d e   o f   r e c t a n g l e  
dw ? : o f f s e t   o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  
dw ? :segment o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  

; (must  be a m u l t i p l e   o f  8) 

ends 

-Textup 
near  
bP : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
bP.SP : p o i n t   t o   l o c a l   s t a c k   f r a m e  

d i  
s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

dx.GC-INDEX 
ax.G-MODE + (0000h) 
dx.ax  :set  t o   w r i t e  mode 0 
d i . d w o r d   p t r   T U S c r n O f f s e t E b p l   : p o i n t   t o   b i t m a p   s t a r t  
ax.SCREEN-WIDTH 
TUTopYCbpl : p o i n t   t o   t h e   s t a r t   o f   t h e   t o p   s c a n  
d i  .ax : l i n e   t h e   t e x t   s t a r t s  on 
ax.TULeftX[bp] 
bx,  ax 
ax.1 : /8 - b y t e   o f f s e t   f r o m   l e f t   o f   s c r e e n  
ax, 1 
ax.1 
d i  .ax : p o i n t   t o   t h e   u p p e r - l e f t   c o r n e r   o f   f i r s t   c h a r  
s i   . T e x t C b p l   : p o i n t   t o   t e x t   t o   d r a w  

: g e t   t h e   n e x t   c h a r a c t e r   t o   d r a w  
a1 .a1 
TextUpDone  :done i f  n u l l   b y t e  

d i  
s i   : p r e s e r v e   t e x t   s t r i n g   p o i n t e r  

ds   : p rese rve   de fau l t   da ta  segment 
CharUp  :draw t h i s   c h a r a c t e r  
ds : r e s t o r e   d e f a u l t   d a t a  segment 

: p r e s e r v e   c h a r a c t e r ' s   s c r e e n   o f f s e t  

Split Screens Save the Page Flipped Day 829 



POP 
POP 
i nc 
j mP 

TextUpDone: 
POP 
POP 
POP 
r e t  

CharUp: 
1 ds 
mov 
sub 
shl 
s h l  
s h l  
add 
mov 

CharUpLoop: 
movsb 
add 
1 oop 
r e t  

-Textup  endp 

d i  
s i  
d i  
TextUpLoop 

d i  
s i  
bP 

s i . [B IOSBx8Pt r l  
b l  , a1 
bh,  bh 
bx.1 
bx.1 
bx.1 
s i ,  bx 
cx.8 

d i  .SCREEN-WIDTH-1 
CharUpLoop 

: r e t r i e v e   c h a r a c t e r ' s   s c r e e n   o f f s e t  
: r e t r i e v e   t e x t   s t r i n g   p o i n t e r  
: p o i n t   t o   n e x t   c h a r a c t e r ' s   s t a r t   l o c a t i o n  

: r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

:draws t h e   c h a r a c t e r  i n  AL a t  ES:DI 
: p o i n t   t o   t h e   8 x 8   f o n t   s t a r t  

:*8 t o   l o o k  u p   c h a r a c t e r   o f f s e t   i n   f o n t  
: p o i n t  0S:SI t o   c h a r a c t e r   d a t a   i n   f o n t  
: c h a r a c t e r s   a r e  8 h i g h  

:copy t h e   n e x t   c h a r a c t e r   p a t t e r n   b y t e  
: p o i n t   t o   t h e   n e x t   d e s t   b y t e  

: S e t s   t h e   p o i n t e r   t o   t h e  BIOS 8 x 8   f o n t .  

: C n e a r - c a l l a b l e  as: ex te rn   vo id   Se tB IOSBx8Fon t (vo id ) :  

p u b l i c  -SetBIOSBx8Font 

push   bp   : p rese rve   ca l l e r ' s   s tack   f rame 
push s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
push d i  : and  data  segment  (don' t  assume B I O S  
push  ds : prese rves   any th ing )  
mov a h . l l h  :B IOS c h a r a c t e r   g e n e r a t o r   f u n c t i o n  
mov a l . 3 0 h  :BIOS i n f o r m a t i o n   s u b f u n c t i o n  
mov bh.3 
i n t  10h 
mov word p t r  [B IOS8xBPt r ] . bp   : s to re   t he   po in te r  
mov word p t r  [BIOSBx8Ptr+2].es 

_SetBIOSdx8Font  proc  near 

: r e q u e s t   8 x 8   f o n t   p o i n t e r  
: invoke BIOS v i d e o   s e r v i c e s  

POP ds 
POP d i   : r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
POP s i  
POP bP : r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

_SetBIOSBxBFont  endp 
end 

Listing 44.1 is written  in C .  It  could equally well  have been written in assembly lan- 
guage,  and would then have been somewhat faster.  However, I wanted to  make the 
point (as I've made again and  again)  that assembly language, and,  indeed, optimiza- 
tion  in  general, is needed only in  the most critical portions of any program,  and  then 
only when the  program would otherwise be  too slow. Only in  a highly performance- 
sensitive situation would the  performance  boost  resulting  from  converting Listing 
44.1 to assemblyjustify the time spent  in  coding  and  the bugs that would  likely creep 

830 Chapter 44 



in-and the sample program already updates  the screen at  the maximum possible 
rate of once  per  frame even on  a 1985-vintage 8-MHz AT. In this case, faster perfor- 
mance would result only in a  longer wait for  the page to flip. 

Write Mode 3 
It’s  possible to update  the  bitmap very  efficiently on  the VGA, because the VGA can 
draw up to 8 pixels at once, and because the VGA provides a number of hardware 
features to speed up drawing. This article makes considerable use  of one particularly 
unusual  hardware feature, write mode 3. We discussed  write mode 3 back in Chapter 26, 
but we’ve covered a  lot of ground since then-so I’m  going to run  through a quick 
refresher on write mode 3.  
Some background: In the standardVGA’s high-resolution mode, mode 12H (640x480 
with 16 colors, the  mode  in which this chapter’s sample program runs), each byte of 
display memory controls 8 adjacent pixels on  the screen. (The color of each pixel is, 
in turn,  controlled by 4 bits spread across the  four VGA memory planes, but we need 
not concern ourselves  with that  here.) Now, there will often be times when we want 
to change some but  not all of the pixels controlled by a particular byte  of  display 
memory. This is not easily done,  for  there is no way to write half a byte, or two bits, or 
such to memory; it’s the whole  byte or  none of it at all. 
You might think  that using AND and OR  to manipulate individual bits could solve 
the problem. Alas, not so. ANDing and ORing  would  work if the VGA had only one plane 
of memory (like the original monochrome Hercules Graphics Adapter)  but  the VGA 
has four planes, and ANDing and ORing would  work  only ifwe selected and manipu- 
lated  each plane separately, a process that would  be  hideously  slow. No, with the VGA 
you must use the hardware assist features, or you might as  well forget  about real-time 
screen updates altogether. Write mode 3 will do the trick for  our present needs. 
Write mode 3 is useful when you want to set some but  not all  of the pixels in  a single 
byte of display memory to the same color. That is, if  you want to draw a  number of  pixels 
within a byte in  a single color, write mode 3 is a  good way to do it. 
Write mode 3 works  like this. First, set the Graphics Controller Mode register to 
write mode 3.  (Look at Listing 44.2 for  code  that  does everything described here.) 
Next, set the Set/Reset register to the color with  which  you  wish to draw, in  the  range 
0-15. (It is not necessary to explicitly enable  set/reset via the Enable Set/Reset regis- 
ter; write mode 3 does  that automatically.) Then, to draw individual pixels  within a 
single byte,  simply read display  memory, and  then write a byte  to  display memory 
with  1-bits where you  want the color to be drawn and 0-bits where you  want the 
current  bitmap  contents to be preserved. (Note well that the  data  actually read ly the 
C‘PUdoesn’t m a t t q  the  read  operation latches all four planes’ data, as described way 
back in  Chapter 24.) So, for example, if write mode 3 is enabled and  the Set/Reset 
register is set to 1 (blue),  then  the following sequence of operations: 

Split Screens  Save  the  Page Flipped Day 831 



mov dx.Oa000h 
mov es.dx 
mov a1 .es:[O] 
mov byte  ptr es:[O].OfOh 

will change  the first 4 pixels on the  screen (the left nibble of the byte at offset 0 in 
display memory)  to  blue, and will leave the  next 4 pixels (the right  nibble of the byte 
at offset 0)  unchanged. 
Using one MOV to  read  from display memory and  another  to write to display memory 
is not particularly efficient on some processors.  In Listing 44.2, I  instead use XCHG, 
which reads and  then writes a memory location in a single operation, as in: 

mov dx.Oa000h 
mov es.dx 
mov a1 .OfOh 
xchg es: [O] ,a1 

Again, the  actual value that’s read is irrelevant. In  general,  the XCHG approach is 
more  compact  than two MOVs, and is faster on 386 and earlier processors, but slower 
on 486s and Pentiums. 
If all pixels in a byte  of  display memory are to be drawn in a single color, it’s not 
necessary to  read  before writing, because none of  the  information in display memory 
at that byte needs to be preserved;  a simple write of OFFH (to draw  all bits) will set all 
8 pixels to  the  set/reset  color: 

mov dx.Oa000h 
mov es.dx 
mov byte  ptr  es:Cdil.Offh 

rfvou ’re familiar with VGA programming, you ’re no doubt aware that everything p that can be done with write mode 3 can also be accomplished in write mode 0 or 
write mode 2 by using the Bit Mask register.  However, setting the  Bit Mask register 
requires at least one OUTper byte written, in addition to the read  and write of 
display memory, and OUTs are often slower than display memory accesses, espe- 
cially on 386s and 486s. One of the great virtues of write mode 3 is that it requires 
virtually no OUTs and is therefore substantially faster  for masking than the other 
write modes. 

In  short, write mode 3 is a  good  choice  for single-color drawing that modifies indi- 
vidual pixels within display memory bytes. Not coincidentally, the sample application 
draws  only single-color objects within the  animation  area;  this allows  write mode 3 to 
be used  for all drawing, in keeping with our desire  for speedy screen  updates. 

Drawing Text 
We’ll need text  in  the  sample  application; is that also a  good use for write mode 3? 
Sometimes it is, but  not in  this  particular case. 

832 Chapter 44 



Each character  in  a font is represented by a pattern of bits,  with  1-bits representing 
character pixels and 0-bits representing  background pixels. Since we’ll be using the 
8x8 font stored in the BIOS ROM (a  pointer to which can be  obtained by calling a 
BIOS service,  as illustrated by Listing 44.2), each  character is  exactly 8 bits, or 1 byte 
wide.  We’ll further insist that  characters be placed on byte boundaries (that is,  with 
their left  edges  only at pixels  with X coordinates that are multiples of 8); this  means that 
the  character bytes in  the  font  are automatically aligned with  display  memory, and 
no rotation or clipping of characters is needed. Finally,  we’ll  draw  all text in white. 
Given the above assumptions, drawing text is easy; we simply  copy each byte of each 
character to the  appropriate location in display memory, and voila, we’re done. Text 
copying is done in write mode 0, in which the byte written to display memory is 
copied  to all four planes at once;  hence, 1-bits turn  into white (color value OFH, with 
1-bits in all four  planes),  and 0-bits turn  into black (color value 0). This is faster than 
using write mode 3 because write mode 3 requires  a  read/write of display memory 
(or  at least preloading  the latches with the background color), while the write mode 
0 approach  requires only a write to display  memory. 

Is write mode 0 always the best way to do text? Not at all. The write mode 0 
approach described above draws both foreground and background pixels within 
the character box, forcing  the  backgroundpixels to black at the same time that it 
forces the foregroundpixels  to white. Ifyou want to draw transparent text (that is, 
draw only the  characterpixels, not the surrounding background box), write mode 
3 is ideal. Also, matters get far more complicated ifcharacters that aren ’t 8pixels 
wide are drawn, or if characters are  drawn starting at arbitrary pixel locations, 
without the multiple-of-8 column restriction, so that rotation and masking are  re- 
quired. La&, the Map Mask register can be used to draw text in colors other than 
white-but only ifthe background is black. Otherwise, the data remaining in the 
planes protected by the Map Mask will remain  and  can interfere with the colors of 
the text being drawn. 

I’m not going to delve any deeper  into  the considerable issues of drawing VGA text; 
I just want to sensitize  you to the existence of approaches other  than  the ones used 
in Listings 44.1 and 44.2. On the VGA, the rule is: If there’s  something you  want  to 
do,  there probably are 10 ways to do it, each with unique  strengths and weaknesses. 
Your mission, should you decide to accept it, is to figure out which one is best for 
your particular application. 

Page  Flipping 
Now that we know  how to update  the screen reasonably quickly,  it’s time to get on to 
the  fun stuff.  Page flipping answers the second requirement  for  animation, by keep- 
ing bitmap changes off the screen until they’re complete. In other words,  page flipping 
guarantees  that partially updated bitmaps are never seen. 

Split  Screens  Save  the  Page  Flipped Day 833 



How  is it  possible  to update a bitmap without seeing the  changes as they’re made? 
Easy-with page flipping, there  are two bitmaps; the  program shows  you one bitmap 
while it updates  the other. Conceptually,  it’s that simple. In practice, unfortunately, 
it’s not so simple, because  of the design  of the VGA.  To understand why that is, we 
must look at how the VGA turns bytes in display memory into pixels on  the screen. 
The VGA bitmap is a linear 64 K block  of  memory. (True, most adapters nowadays 
are SuperVGAs  with more  than 256 K of  display  memory, but every  make of SuperVGA 
has its own  way  of letting you  access that  extra memory, so going beyond standard 
VGA  is a daunting  and difficult  task. Also, it’s hard to manipulate  the large frame 
buffers  of  SuperVGA modes fast enough for real-time animation.) Normally, the 
VGA picks up the first  byte  of memory (the byte at offset 0) and displays the corre- 
sponding 8 pixels on the  screen, then picks up  the byte at offset 1 and displays the 
next 8 pixels, and so on to the  end of the  screen. However, the offset  of the first  byte 
of  display memory picked up during  each  frame is not fixed at 0, but is rather pro- 
grammable by  way of the  Start Address High and Low registers,  which together  store 
the 16-bit  offset in display memory at which the  bitmap  to  be displayed during  the 
next  frame starts. So, for example, in mode IOH (640~350,16 colors), a large enough 
bitmap to store a complete screen of information can be stored  at display memory 
offsets 0 through 27,999, and another full bitmap  could  be  stored at offsets 28,000 
through 55,999,  as  shown in Figure  44.1. (I’m discussing  640x350 mode  at  the mo- 
ment  for good reason; we’ll get  to 640x480  shortly.) When the Start Address  registers 
are set to 0, the first bitmap (or page) is  displayed; when they are set to 28,000, the 
second  bitmap is  displayed.  Page flipped  animation can be  performed by displaying 

I 

A000 : 0000 
p e t  9 

eclma ] 

A000 : DACO 
( ffset 76,000 
&cima 1 

Memory allocation for mode 1 Oh pageJQping. 
Figure 44.1 

834 Chapter 44 



page 0 and drawing to page 1, then setting the start address to page 1 to  display that 
page and drawing  to page 0, and so on ad infinitum. 

Knowing When to Flip 
There’s a hitch,  though,  and  that hitch is  knowing  exactly when it is that  the page 
has flipped. The page doesn’t flip the  instant that you set the Start Address  registers. 
The VGA loads the  starting offset from  the Start Address  registers once before start- 
ing  each  frame,  then pays those registers no nevermind until the  next  frame comes 
around. This means  that you can set the Start Address  registers  whenever  you want- 
but  the page actually being displayed doesn’t  change until after  the VGA loads that 
new  offset in preparation  for  the  next  frame. 
The potential problem  should  be obvious. Suppose that page 1 is being displayed, 
and you’re updating page 0. You finish  drawing  to page 0, set the Start Address  reg- 
isters  to 0 to  switch to displaying page 0, and start updating page 1, which is no 
longer displayed. Or is it? If the VGA  was in the middle of the  current  frame, display- 
ing page 1, when  you set the  Start Address  registers, then page 1 is going to  be 
displayed for  the rest of the  frame, no matter what  you do with the Start Address 
registers. If you start updating page 1 right away, any changes you  make may  well 
show up  on  the screen, because page 0 hasn’t yet flipped to being displayed in place 
of page 1-and that defeats the whole purpose of page flipping. 
To avoid  this problem, it is mandatory  that you  wait until you’re sure  the page has 
flipped. The Start Address  registers are, according to my tests, loaded  at  the start of 
the Vertical  Sync  signal, although  that may not  be  the case  with  all VGA clones. The 
Vertical  Sync  status is provided as  bit 3 of the  Input Status 1 register, so it  would  seem 
that all  you need to do to flip a page is set the new Start Address  registers, wait for the 
start of the Vertical  Sync  pulse that indicates that  the page has flipped, and be on 
your merry way. 
Almost-but not quite.  (Do I hear  teeth gnashing in the  background?) The problem 
is this: Suppose that, by coincidence, you set one of the Start Address  registers just 
before the start of Vertical  Sync, and  the  other  right after the start of Vertical  Sync. 
Why, then, for one frame  the Start Address High value for one page would be mixed 
with the Start Address Low value for the other page, and,  depending  on  the start 
address values, the whole screen could  appear to  shift  any number of pixels for a 
single, horrible frame. This must nmerhuppen!The solution is to  set the Start Address 
registers  when you’re certain Vertical  Sync is not  about to start. The easiest way to 
know that is to check for  the Display Enable status (bit 0 of the Input Status 1 regis- 
ter)  being active; that means that bitmap-controlled pixels are being scanned onto 
the  screen, and, since  Vertical  Sync happens in the middle of the vertical  non-display 
portion of the  frame, Vertical  Sync  can  never  be  anywhere  nearby  if  Display Enable is 
active. (Note  that one good alternative is to set up both pages  with a start address 

Split Screens  Save  the  Page Flipped  Day 835 



that’s a  multiple of 256, and  just  change  the  Start Address High register and wait for 
Vertical  Sync,  with no Display Enable wait required.) 
So, to flip pages,  you must complete all drawing to the  nondisplayed  page, wait for 
Display Enable to  be  active, set the new start address, and wait for Vertical  Sync  to  be 
active. At that  point, you can be fully confident  that  the page that you just  flipped off 
the  screen is not displayed and can safely  (invisibly)  be updated. A side benefit of 
page flipping is that your program will automatically have a  constant time base,  with 
the  rate  at which  new screens  are drawn synchronized to the  frame  rate of the dis- 
play  (typically 60 or ’70 Hz). However, complex  updates may take more  than  one 
frame to complete, especially on slower processors; this can be compensated  for by 
maintaining  a  count of  new screens drawn and cross-referencing that to the BIOS 
timer count periodically, accelerating  the overall pace of the  animation (moving 
farther  each time and  the  like) if updates  are  happening too slowly. 

Enter  the Split Screen 
So far, I’ve  discussed page flipping  in 640x350 mode.  There’s  a reason for  that: 
640x350 is the highest-resolution standard  mode  in which there’s enough display 
memory  for two full pages on  a standard VGA. It’s  possible  to program  the VGA to a 
non-standard 640x400 mode  and still  have two full pages, but that’s pretty much  the 
limit. One 640x480 page takes 38,400 bytes  of  display  memory, and clearly there isn’t 
enough  room in 64 K of  display memory  for two of those monster pages. 
And  yet, 640x480 is a wonderful mode in  many ways. It offers a 1 : 1 aspect ratio (square 
pixels), and it  provides by far  the best resolution of  any 16-color mode. Surely there’s 
some way to bring  the visual appeal of page flipping to this mode? 
Surely there is-but it’s an  odd  solution  indeed. The VGA has a  feature, known  as 
the split screen, that allows  you to force  the offset from which the VGA fetches video 
data back to 0 after any desired scan line. For example, you can  program  the VGA to 
scan through display memory as usual until it finishes scan line number 338, and 
then get the first byte  of information  for scan line number 339 from offset 0 in 
display  memory. 
That,  in  turn, allows  us  to  divvy up display memory into  three  areas, as  shown  in 
Figure 44.2. The area from 0 to 11,279 is reserved for  the split screen,  the  area  from 
11,280 to 38,399 is used for page 0, and  the area  from 38,400 to 65,519 is used for 
page I. This allows page flipping to be performed in the  top 339 scan lines (about 70 
percent) of the  screen, and leaves the  bottom 141 scan lines for  non-animation  pur- 
poses, such as  showing  scores, instructions, statuses, and suchlike. (Note  that  the 
allocation of  display memory and  number of scan lines are  dictated by the  desire to 
have  as many page-flipped scan lines as  possible; you  may,  if  you  wish,  have  fewer 
page-flipped lines and reserve part of the  bitmap  for other uses, such as off-screen 
storage for images.) 

836 Chapter 44 



A000 : 0000 
(off set O 
decimal) 
A000: 2C10 
(offset 1 1,280 
decimal) 

A000 : 9600 
(offset 38,400 
decimal) 

A000: FFFO 
(offset 65,520 
decimal) 

Split  Screen 
(always  controls  scan  lines 339-479) 

Page 0 
(controls  scan  lines 0-338 

when  start  address = 1 1,280) 

Page 1 
(controls  scan  lines 0-338 

when  start  address = 38,400) 

Screen animation - 
Memory allocation for mode 12h page  pipping. 
Figure 44.2 

The sample program  for this chapter uses the split screen and page flipping exactly 
as described above. The playfield through which the object bounces is the page- 
flipped portion of the screen, and  the rectangle at  the bottom containing  the  bounce 
count  and  the instructions is the split (that is, not animatable)  portion of the screen. 
Of course, to the user it all looks like one screen. There are no visible boundaries 
between the two unless you choose to create  them. 
Very  few animation applications use the  entire screen for animation. If  you can get 
by  with 339 scan lines of animation, split-screen page flipping gives  you the best 
combination of square pixels and high resolution possible on  a  standard VGA. 
So. Is VGA animation worth all the fuss? Muzs oui. Run the sample program; if  you’ve 
never seen aggressive VGA animation  before, you’ll be amazed at how smooth  it can 
be. Not every square millimeter of every animated screen must be in constant mo- 
tion. Most graphics screens need  a little quiet space to display scores, coordinates, 
file names, or (if  all  else  fails) company logos. If  you don’t tell the user he’s/she’s 
only getting 339 scan lines of animation,  he’ll/she’ll probably never know. 

Split  Screens  Save  the  Page  Flipped Day 837 



chapter 45

dog hair and dirty rectangles



,q 

Ies on Animation 
We brought our p&s with  us  when we moved to Seattle. At about  the same  time, our 
Golden Retriever, S his third birthday. Sam  is  relatively intelligent, in 
the sense that  he is cf ter than a banana slug, although if he were in the 
same room with  Jeff Du ’s dog Mr.  Byte, there’s a reasonable chance that  he 
would  mistake Mr. B$e for something edible (a category that includes rocks,  socks, 
and  a surprising nuhber of things too disgusting to mention),  and Jeff  would  have 

a of things to write about. 
rtant now. What is important is that-and I am not making this 

anaged to find the one pair of socks  Sam hadn’t chewed  holes 
re important is that after we moved and Sam turned  three, he 

calmed down  amazinkly. We had been waiting for this  magic transformation since 
Sam turned  one, the age at which  most puppies turn  into normal dogs  who  lie around 
a lot, waking up to eat their Science  Diet (motto, “The dog food that costs more than 
the average neurosurgeon makes in a year”) before licking  themselves  in  embarrass- 
ing places and going back to sleep. When  Sam turned  one  and remained hopelessly 
out of control we said, “Goldens take two years to calm down,” as  if  we had a clue. 
When he  turned two and remained undeniably Sam we said, “Any  day  now.” By the 
time he turned  three, we were reduced to figuring that it was only about seven more 
years until he expired, at which point we might be able to take  all the  fur  he had 
shed in his  lifetime and weave  ourselves  some clothes without holes in them, or quite 
possibly a house. 

84 1 



But miracle of miracles, we moved, and Sam instantly turned  into  the  dog we thought 
we’d gotten when we forked over $500--calm, sweet, and  obedient. Weeks went by, 
and Sam  was, if anything, better  than ever.  Clearly, the  change was permanent. 
And then we took  Sam  to the vet for his annual check-up and  found that he had an ear 
infection. Thanks to the wonders of modern animal  medicine, a $5 bottle of liquid  re- 
stored  his health in just two days.  And  with  his health, we got, as a bonus, the old Sam. 
You see, Sam hadn’t  changed.  He was just tired  from  being sick. Now he  once again 
joyously  knocks  down  any stranger who  makes the mistake  of  glancing  in  his direction, 
and will, quite possibly, be booked any  day  now on suspicion of homicide by licking. 

Plus cu Change 
Okay,  you  give up. What exactly does this have to do with graphics? I’m glad you 
asked. The lesson  to  be learned  from Sam, The Dog With A Brain The Size  Of A 
Walnut, is that while things may look like  they’ve changed, in fact they often haven’t. 
Take VGA performance. If  you  buy a 486 with a SuperVGA,  you’ll get  performance 
that knocks your socks off, especially if you run Windows. Things are liable to be so 
fast that you’ll figure  the SuperVGA has to deserve some of the  credit. Well,  maybe it 
does if it’s a local-bus VGA. But  maybe it  doesn’t, even if it is local bus-and it cer- 
tainly doesn’t if it’s an ISA bus VGA, because no ISA bus VGA can run faster than 
about 300 nanoseconds per access, and VGAs capable of that  speed have been com- 
mon  for at least a  couple of  years  now. 
Your 486 VGA system is fast almost entirely because it has a 486 in it. (486 systems 
with graphics accelerators such as the AT1 Ultra or Diamond Stealth are  another 
story altogether.)  Underneath it all, the VGA is still painfully slow-and if you  have 
an old VGA or IBM’s original PS/2 motherboard VGA, it’s incredibly slow. The fast- 
est ISA-bus  VGA around is two to  twenty times slower than system  memory, and  the 
slowest VGA around is as much as 100 times  slower. In  the old days, the  rule was, 
“Display memory is slow, and should be avoided.” Nowadays, the  rule is,  “Display 
memory is not  quite so slow, but should still be avoided.” 
So, as I say, sometimes things don’t  change. Of course, sometimes they do change. 
For example, in just 49 dog years, I fully expect to own at least one pair of underwear 
without a single hole in it. Which brings us, deus ex machina and  the creek don’t 
rise,  to  yet another animation  method: dirty-rectangle animation. 

VGA Access Times 
Actually, before we get to dirty rectangles, I’d like to take  you through  a quick re- 
fresher on VGA memory and 1 / 0  access  times. I want  to do this partly because the 
slow access  times of the VGA make dirty-rectangle animation particularly attractive, 
and partly as a public service, because even I was shocked by the results of some 1/0 
performance tests I recently ran. 

842 Chapter 45 



Table 45.1 shows the results of the  aforementioned 1 / 0  performance tests,  as run  on 
two 486/33 SuperVGA  systems under  the Phar Lap  3861DOS-Extender. (The systems 
and VGAs are  unnamed because  this is a not-very-scientific spot test, and I don’t want 
to  unfairly malign, say, a VGA whose only sin is being  plugged  into a lousy 
motherboard, or vice versa.) Under Phar Lap, 32” protected-mode apps run with 
full 1 / 0  privileges, meaning  that  the OUT instructions I measured had  the best 
official  cycle  times  possible on  the 486: 10 cycles. OUT officially  takes 16 cycles  in 
real mode on a 486, and officially takes a mind-boggling 30 cycles in protected mode 
if running without full 1 /0  privileges (as is normally the case for protected-mode 
applications). Basically, 1 / 0  is just plain slow on a 486. 
As slow  as 30 or even 10 cycles is for an OUT, one could only wish that VGA 1 /0  were 
actually that fast. The fastest measured OUT to a VGA in  Table 45.1 is  26  cycles, and 
the slowest is 126“this  for  an  operation that’s supposed to  take 10 cycles. To put this 
in context, MUL takes  only 13 to 42 cycles, and a normal MOV to or from system 
memory takes  exactly one cycle on  the 486. In short, OUTS to VGAs are as much as 
100  times  slower than  normal memory  accesses, and  are generally two to four times 
slower than even  display memory accesses, although  there  are exceptions. 
Of course, VGA display  memory  has  its  own performance problems. The fastest ISA 
bus VGA can, at best, support sustained write  times of about 10 cycles per word-sized 

Dog Hair and Dirty Rectangles 843 



write on  a 486/33; 15 or 20 cycles is more  common, even for relatively  fast  SuperVGAs; 
the worst  case I’ve seen is 65 cycles per byte.  However, intermittent writes,  mixed 
with a  lot of register and cache-only code, can effectively execute in one cycle, thanks 
to the  caching design of many VGAs and  the 486’s 4-deep  write  buffer,  which stores 
pending writes  while the CPU continues  executing  instructions. Display memory 
reads  tend to take longer, because coprocessing isn’t possible-one microsecond is a 
reasonable  rule of thumb for VGA reads,  although there’s considerable variation. So 
VGA memory  tends  not to be as bad as VGA I/O,  but lord knows it isn’t good. 

OUTs, in general, are lousy on  the 486 (and to think  they  only took three cycles on 
the 286!). OUTs to VGAs are particularly lousy. Display memory performance is 
pretty pool; especially for reads. The conclusions  are obvious, I would hope. Struc- 
ture your graphics code, and, in general, all 486 code, to avoid OUTs. 

For graphics, this especially means using  write mode 3 rather  than  the bit-mask  reg- 
ister. When you must use the  bit mask, arrange drawing so that you can set the bit 
mask once,  then  do  a  lot of drawing with that mask.  For example, draw a whole edge 
at once,  then  the  middle,  then  the other edge,  rather  than  setting  the bit mask  sev- 
eral times on each scan line to draw the  edge and middle bytes together. Don’t read 
from display memory if you don’t have to. Write each pixel once and only once. 
It is indeed  a  strange  concept:  The key to fast graphics is staying away from  the 
graphics  adapter as much as  possible. 

Dirty-Rectangle Animation 
The relative  slowness  of VGA hardware is part of the  appeal of the  technique  that  I 
call “dirty-rectangle” animation,  in which a  complete copy  of the  contents of  display 
memory is maintained in  offscreen system (nondisplay) memory. All drawing is done 
to this system buffer. As offscreen drawing is done,  a list is maintained of the  bound- 
ing  rectangles  for  the drawn-to areas; these  are the dirty rectangles, “dirty”  in  the sense 
that  that have been  altered and  no longer match the  contents of the  screen. After  all 
drawing for  a  frame is completed, all the dirty rectangles  for  that  frame  are  copied  to 
the  screen  in  a  burst, and  then  the cycle  of off-screen drawing begins again. 
Why,  exactly,  would  we  want to go through all this complication,  rather  than simply 
drawing to  the  screen in the first place? The reason is visual  quality. If  we were to do 
all our drawing directly to the  screen,  there’d be a  lot of flicker as objects were erased 
and  then redrawn. Similarly, overlapped drawing done with the  painter’s  algorithm 
(in which farther objects are drawn first, so that  nearer objects obscure  them) would 
flicker  as farther objects were  visible for  short  periods. With dirty-rectangle anima- 
tion,  only  the  finished  pixels  for any given frame ever appear  on  the  screen; 
intermediate results are never  visible. Figure 45.1 illustrates the visual problems as- 
sociated with  drawing directly to the  screen; Figure 45.2 shows  how dirty-rectangle 
animation solves these problems. 

844 Chapter 45 



Dog Hair  and  Dirty Rectangles 845 



So Why Not Use Page Flipping? 
Well, then, if  we want good visual  quality, why not use page flipping? For one thing, 
not all adapters and all modes  support page flipping. The CGA and MCGA don’t, 
and  neither do the VGA’s 640x480 16color  or 320x200  256-color modes, or many 
SuperVGA  modes. In contrast, all adapters support dirty-rectangle animation. Another 
advantage of dirty-rectangle animation is that it’s generally faster.  While it may seem 
strange  that  it would  be faster to draw  off-screen and  then copy the  result  to  the 
screen,  that is often  the case, because dirty-rectangle animation usually reduces  the 
number of  times the VGA’s hardware needs to  be touched, especially  in  256-color  modes. 
This  reduction comes about because when dirty rectangles  are  erased, it’s done in 
system  memory, not in  display  memory, and since most objects move a  good  deal less 
than  their full width (that is, the new and old positions overlap), display memory is 
written to fewer  times than with page flipping. (In 16-color modes, this is not neces- 
sarily the case,  because of the parallelism obtained  from  the VGA’s planar  hardware.) 
Also, read/modify/write  operations  are  performed in  fast  system memory  rather 
than slow  display  memory, so display memory rarely needs to be  read.  This is particu- 
larly good because display memory is generally even  slower for  reads  than  for writes. 
Also, page flipping wastes a  good  deal of time  waiting for  the page to flip at the end 
of the frame. Dirty-rectangle animation never needs to wait for  anything because 
partially  drawn  images are never present  in display  memory.  Actually,  in one sense, 
partially drawn  images are sometimes present because it’s possible for  a  rectangle to 
be partially drawn when the  scanning  raster  beam  reaches  that  part of the  screen. 
This causes the  rectangle to appear partially drawn for one frame,  producing  a  phe- 
nomenon I  call  “shearing.”  Fortunately,  shearing  tends  not  to  be  particularly 
distracting, especially for fairly  small  images, but  it can be  a  problem when copying 
large  areas.  This is one area  in which dirty-rectangle animation falls short of page 
flipping, because page flipping has perfect display  quality,  never  showing anything 
other  than a completely finished  frame. Similarly, dirty-rectangle copying may take 
two or  more frame  times  to  finish, so even if shearing doesn’t happen, it’s still possible to 
have the images in  the various dirty rectangles show up non-simultaneously. In my 
experience, this latter phenomenon is not  a serious problem,  but do be aware of it. 

Dirty Rectangles  in  Action 
Listing  45.1 demonstrates dirty-rectangle animation. This is a very simple implemen- 
tation,  in several respects. For one thing, it’s written entirely in C, and animation 
fairly cries out for assembly language. For another  thing,  it uses far  pointers, which C 
often  handles with  less than  optimal efficiency,  especially because I haven’t  used 
library functions to copy and fill  memory. (I did this so the  code would  work  in  any 
memory  model.) Also, Listing  45.1 doesn’t  attempt to coalesce rectangles so as to 
perform  a  minimum  number of display-memory  accesses; instead,  it copies each 
dirty rectangle to the  screen, even if it overlaps  with another  rectangle, so some 

846 Chapter 45 



pixels are copied multiple times.  Listing 45.1 runs pretty well, considering all of its 
failings; on my 486/33, 10 11x1 1 images animate at a very respectable clip. 

LISTING 45.1  145- 1 .C 
/ *  S a m p l e   s i m p l e   d i r t y - r e c t a n g l e   a n i m a t i o n   p r o g r a m .   D o e s n ' t   a t t e m p t   t o   c o a l e s c e  

r e c t a n g l e s   t o   m i n i m i z e   d i s p l a y  memory accesses .   No t   even   vague ly   op t im ized !  
T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  * /  

# i n c l u d e   < s t d l  i b. h> 
# i n c l u d e   < c o n i o . h >  
#i ncl   ude  <a1 1 oc.  h> 
# i n c l u d e  <memory. h >  
Pi ncl   ude  <dos . h> 

# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-HEIGHT 200 
# d e f i n e  SCREENKSEGMENT  OxAOOO 

/ *  D e s c r i b e s  a r e c t a n g l e  * /  
t y p e d e f   s t r u c t  { 

i n t  Top; 
i n t   L e f t ;  
i n t   R i g h t ;  
i n t  Bottom; 

I Rectang le ;  

/*  D e s c r i b e s   a n   a n i m a t e d   o b j e c t  * /  
t y p e d e f   s t r u c t  { 

i n t  X :  / *  u p p e r   l e f t   c o r n e r   i n   v i r t u a l   b i t m a p  */  
i n t  Y ;  
i n t   X D i r e c t i o n :  / *  d i r e c t i o n  a n d   d i s t a n c e   o f  movement * /  
i n t   Y D i r e c t i o n ;  

1 E n t i t y ;  

/ *  S t o r a g e   u s e d   f o r   d i r t y   r e c t a n g l e s  * /  
# d e f i n e  MAX-DIRTY-RECTANGLES 100 
i n t  NumDi r t y R e c t a n g l e s ;  
R e c t a n g l e  D i  r t y R e c t a n g 1  es[MAX-DIRTY-RECTANGLES] : 

/*  I f  s e t   t o  1. i g n o r e   d i r t y   r e c t a n g l e   l i s t  and  copy   the   who le   sc reen.  * /  
i n t  DrawWholeScreen - 0:  

/ *  P i x e l s   f o r   i m a g e   w e ' l l   a n i m a t e  * /  
#def 
#def 
char  

15 
15 
15 

9 
9. 

ne IMAGE-WIDTH 11 
ne IMAGE-HEIGHT 11 
I m a g e P i x e l s [ l  - [ 
15.15.   9 .   9 .   9 .   9 .   9 ,15,15.15,  
15.   9 .   9 .   9 .   9 .   9 .   9 .   9 .15.15.  

9.  9.14.14.14.14.14.  9.  9.15. 
9.14.14.14.14.14.14.14,  9.  9. 
9.14.14.14.14.14.14.14,  9.   9.  

9.   9.14.14.14.14.14,14.14,  9.   9.  
9.  9.14.14.14.14.14.14.14, 9 ,  9 .  
9.   9.14.14.14.14.14.14.14,  9.   9.  

15.   9.   9.14.14.14.14.14.  9.   9.15. 
15.15,   9 .   9 .   9 ,   9 ,   9 .   9 .   9 .15.15.  
15.15.15.  9.   9.   9.   9.   9.15.15.15. 

} :  
/ *  a n i m a t e d   e n t i t i e s  * /  

Dog  Hair  and  Dirty Rectangles 847 



# d e f i n e  NUM-ENTITIES 10 
Ent i ty   Ent i t iesCNUM-ENTITIES] ;  

/ *  p o i n t e r   t o   s y s t e m   b u f f e r   i n t o   w h i c h   w e ' l l   d r a w  */  
c h a r  far * S y s t e m B u f f e r P t r ;  

/ *  p o i n t e r   t o   s c r e e n  * I  
char  far *Sc reenPt r ;  

v o i d   E r a s e E n t i t i e s ( v o i d 1 ;  
v o i d  CopyDi   r tyRectang l   esToScreen(vo id )  ; 
v o i d   D r a w E n t i t i e s ( v o i d ) :  

v o i d   m a i n 0  
I 

i n t  i. XTemp. YTemp; 
u n s i g n e d   i n t   T e m p c o u n t :  
c h a r  far *TempPtr; 
u n i o n  REGS r e g s ;  
/ *  A l l o c a t e  memory f o r   t h e   s y s t e m   b u f f e r   i n t o   w h i c h   w e ' l l   d r a w  */  
i f  ( ! ( S y s t e m B u f f e r P t r  - f a r m a l l o c ( ( u n s i g n e d  int)SCREEN-WIDTH* 

SCREEN-HEIGHT))) I 
p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) ;  
e x i t ( 1 ) ;  

1 
/*  C l e a r   t h e   s y s t e m   b u f f e r  * /  
TempPtr - S y s t e m B u f f e r P t r ;  
f o r  (Tempcount - ((unsigned)SCREEN-WIDTH*SCREENLHEIGHT); Tempcount- - ;  1 I 

1 
/*  P o i n t   t o   t h e   s c r e e n  */  
Sc reenPt r  - MK-FP(SCREEN-SEGMENT. 0 ) ;  

/ *  S e t   u p   t h e   e n t i t i e s   w e ' l l   a n i m a t e ,  a t  r a n d o m   l o c a t i o n s  */  
randomize(  ; 
f o r  (i - 0;  i < NUM-ENTITIES: i++) I 

*TempPtr++ - 0:  

E n t i t i e s C i 1 . X  - random(SCREENKW1DTH - IMAGE-WIDTH); 
E n t i t i e s [ i ] . Y  - random(SCREENKHE1GHT - IMAGE-HEIGHT); 
E n t i t i e s [ i l . X D i r e c t i o n  - 1; 
E n t i t i e s [ i ] . Y D i r e c t i o n  - -1; 

3 
/ *  S e t   3 2 0 x 2 0 0   2 5 6 - c o l o r   g r a p h i c s  mode */  
regs.x .ax - 0x0013; 
i n t 8 6 ( 0 x 1 0 .   & r e g s .   & r e g s ) ;  

I*  Loop  and  draw u n t i l  a key i s   p r e s s e d  */  
do 

/ *  D r a w  t h e   e n t i t i e s   t o   t h e   s y s t e m   b u f f e r   a t   t h e i r   c u r r e n t   l o c a t i o n s ,  

D r a w E n t i t i e s O ;  
u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t  * /  

/*  Draw t h e   d i r t y   r e c t a n g l e s ,  or t h e   w h o l e   s y s t e m   b u f f e r  i f  

CopyDir tyRectanglesToScreenO; 

/ *  R e s e t   t h e   d i r t y   r e c t a n g l e   l i s t   t o   e m p t y  * /  
NumDi r t y R e c t a n g l e s  - 0;  

/ *  E r a s e   t h e   e n t i t i e s   i n   t h e   s y s t e m   b u f f e r   a t   t h e i r   o l d   l o c a t i o n s ,  

E r a s e E n t i t i e s O ;  

a p p r o p r i a t e  * /  

u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t  * /  

848 Chapter 45 



I* Move t h e   e n t i t i e s ,   b o u n c i n g   o f f   t h e   e d g e s   o f   t h e   s c r e e n  *I  
f o r  (i - 0; i < NUM-ENTITIES; i++) I 

XTemp - E n t i t i e s L i 1 . X  + E n t i t i e s [ i l . X D i r e c t i o n :  
YTemp - E n t i t i e s C i 1 . Y  + E n t i t i e s [ i l . Y D i r e c t i o n ;  
i f  ((XTemp < 0 )  1 1  ((XTemp + IMAGE-WIDTH) > SCREEN-WIDTH)) I 

E n t i t i e s [ i ] . X O i r e c t i o n  - -Entities[il.XDirection; 
XTemp - E n t i t i e s C i 1 . X  + E n t i t i e s [ i l . X D i r e c t i o n ;  

I 
i f  ((YTemp < 0 )  1 1  ((YTemp + IMAGE-HEIGHT) > SCREEN-HEIGHT)) { 

E n t i t i e s [ i ] . Y D i r e c t i o n  - -Entities[il.YDirection; 
YTemp - E n t i t i e s C i 1 . Y  + E n t i t i e s [ i l . Y D i r e c t i o n ;  

I 
E n t i t i e s C i 1 . X  - XTemp; 
E n t i t i e s C i 1 . Y  - YTemp; 

3 

} w h i l e   ( ! k b h i t O ) :  
g e t c h 0 ;  I* c l e a r   t h e   k e y p r e s s  */  
/*  Back t o   t e x t  mode */  
regs .x .ax  - 0x0003; 
i n t 8 6 ( 0 x 1 0 .   & r e g s .   & r e g s ) ;  

I 
/*  Draw e n t i t i e s   a t   c u r r e n t   l o c a t i o n s ,   u p d a t i n g   d i r t y   r e c t a n g l e   l i s t .  * I  
v o i d   D r a w E n t i t i e s O  

i n t  i. j ,  k; 
c h a r   f a r   * R o w P t r B u f f e r ;  
c h a r   f a r   * T e m p P t r B u f f e r ;  
cha r   f a r   *TempPt r Image ;  
f o r  (i - 0; i < NUM-ENTITIES; i++) I 

I* Remember t h e   d i r t y   r e c t a n g l e   i n f o   f o r   t h i s   e n t i t y  * /  
i f  (NumDi r t yRec tang les  >- MAX-DIRTY-RECTANGLES) I 

I* Too  many d i r t y   r e c t a n g l e s ;   j u s t   r e d r a w   t h e   w h o l e   s c r e e n  */  
DrawWhol eScreen - 1; 

/*  Remember t h i s   d i r t y   r e c t a n g l e  * /  
DirtyRectanglesCNumDirtyRectangles1.Left - E n t i t i e s C i 1 . X ;  
Dir tyRectangles[NumDir tyRectanglesl .Top - E n t i t i e s C i 1 . Y :  
Dir tyRectangles[NumDir tyRectangles3.Right  - 
DirtyRectangles[NumDirtyRectangles++l.Bottom - 

3 e l s e  I 

E n t i t i e s C i 1 . X  + IMAGE-WIDTH; 

E n t i t i e s E i 1 . Y  + IMAGE-HEIGHT: 
1 
I* P o i n t   t o   t h e   d e s t i n a t i o n   i n   t h e   s y s t e m   b u f f e r  * /  
RowPt rBu f fe r  - S y s t e m B u f f e r P t r  + ( E n t i t i e s C i 1 . Y  * SCREEN-WIDTH) + 

E n t i t i e s C i 1 . X ;  
/ *  P o i n t   t o   t h e   i m a g e   t o   d r a w  *I  
TempPtrImage - ImageP ixe l s ;  
/ *  Copy t h e   i m a g e   t o   t h e   s y s t e m   b u f f e r  *I  
f o r  (j - 0; j < IMAGE-HEIGHT; j++) I 

/*  Copy  a row * I  
f o r   ( k  - 0. TempPt rBu f fe r  - RowPt rBu f fe r ;  k < IMAGE-WIDTH;  k++) I 

*TempPtrBuf fer++ - *TempPtrImage++; 
I 
I* P o i n t   t o   t h e   n e x t   s y s t e m   b u f f e r   r o w  *I  
RowPt rBu f fe r  +- SCREEN-WIDTH; 

3 
l 

/* Copy t h e   d i r t y  
t o   t h e   s c r e e n .  *I  

r e c t a n g l e s ,   o r   t h e   w h o l e   s y s t e m   b u f f e r  i f  a p p r o p r i a t e ,  

Dog Hair and  Dirty Rectangles 849 



vo id   CopyDi   r tyRectang1  esToScreen(  1 
i 

i n t  i. j. k ,  Rec tWid th .   Rec tHe igh t ;  
u n s i g n e d   i n t   T e m p c o u n t :  
u n s i g n e d   i n t   O f f s e t :  
char   fa r   *TempPt rScreen;  
c h a r   f a r   * T e m p P t r B u f f e r ;  

i f  ( DrawWhol eScreen)  I 
I* J u s t   c o p y   t h e   w h o l e   b u f f e r   t o   t h e   s c r e e n  * I  
DrawWhol eScreen - 0;  
TempPtrScreen - S c r e e n P t r :  
T e m p P t r B u f f e r  - S y s t e m B u f f e r P t r ;  
f o r  (Tempcount - ((unsigned)SCREEN_WIDTH*SCREEN-HEIGHT): Tempcount - - ;  ) 

> 
I e l s e  i 

/* Copy o n l y   t h e   d i r t y   r e c t a n g l e s  * /  
f o r   ( i  = 0;  i < NumDi r tyRectang les :  i++) I 

*TempPtrScreen++ - *TempPtrBuffer++; 

/ *  O f f s e t   i n   b o t h   s y s t e m   b u f f e r   a n d   s c r e e n   o f   i m a g e  */  
O f f s e t  - ( u n s i g n e d  i n t )  ( D i r t y R e c t a n g l e s [ i l . T o p  * SCREENKWIDTH) + 

DirtyRectangles[il.Left; 
I* Dimensions o f   d i r t y   r e c t a n g l e  * I  
RectWid th  - DirtyRectangles[il.Right - DirtyRectangles[il.Left: 
R e c t H e i g h t  - DirtyRectangles[il.Bottom - D i r t y R e c t a n g l e s [ i l . T o p :  
I* Copy a d i r t y   r e c t a n g l e  * /  
f o r  ( j  - 0;  j < R e c t H e i g h t ;  j++) { 

I* P o i n t   t o   t h e   s t a r t   o f   r o w   o n   s c r e e n  * I  
TempPtrScreen - S c r e e n P t r  + O f f s e t :  

/ *  P o i n t   t o   t h e   s t a r t   o f   r o w   i n   s y s t e m   b u f f e r  * I  
T e m p P t r B u f f e r  - S y s t e m B u f f e r P t r  + O f f s e t ;  

/ *  Copy a row * /  
f o r  ( k  - 0;  k < RectWid th ;  k++) i 

I 
/* P o i n t   t o   t h e   n e x t   r o w  * /  
O f f s e t  +- SCREEN-WIDTH; 

*TempPtrScreen++ - *TempPtrBuffer++; 

1 
I 

1 
I 
/*  E r a s e   t h e   e n t i t i e s   i n   t h e   s y s t e m   b u f f e r   a t   t h e i r   c u r r e n t   l o c a t i o n s ,  

v o i d   E r a s e E n t i t i e s O  
i 

u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t .  * /  

i n t  i. j ,  k :  
c h a r   f a r   * R o w P t r ;  
cha r   f a r   *TempPt r :  

f o r  (i - 0; i < NUM-ENTITIES; i++) { 
/ *  Remember t h e   d i r t y   r e c t a n g l e   i n f o   f o r   t h i s   e n t i t y  * I  
i f  (NumDi r tyRectang les  >- MAX-DIRTYLRECTANGLES) I 

/*  Too many d i r t y   r e c t a n g l e s ;   j u s t   r e d r a w   t h e   w h o l e   s c r e e n  * /  
DrawWhol eScreen - 1 : 

/*  Remember t h i s   d i r t y   r e c t a n g l e  * /  
DirtyRectangles[NumDirtyRectanglesl.Left - E n t i t i e s C i 1 . X :  
D i r t yRec tang les [NumDi r t yRec tang les ] .Top  - E n t i t i e s C i 1 . Y ;  

I e l s e  { 

850 Chapter 45 



Di r t yRec tang les [NumDi r t yRec tang les l .R igh t  - 
D i  r t yRec tang les [NumDi   r t yRec tang1  es++l .Bo t tom - E n t i t i e s [ i ] . X  + IMAGELWIDTH: 

E n t i t i e s C i 1 . Y  + IMAGE-HEIGHT; 
1 
/*  P o i n t   t o   t h e   d e s t i n a t i o n   i n   t h e   s y s t e m   b u f f e r  * /  
RowPtr - S y s t e m B u f f e r P t r  + (Entities[i].Y*SCREEN-WIDTH) + E n t i t i e s C i 1 . X :  

/ *  C l e a r   t h e   e n t i t y ‘ s   r e c t a n g l e  * I  
f o r  ( j  - 0;  j < IMAGE-HEIGHT; j++) { 

/ *  C l e a r  a row */  
f o r  ( k  - 0, TempPtr - RowPtr: k < IMAGELWIDTH: k++) { 

1 
I* P o i n t   t o   t h e   n e x t   r o w  * I  
RowPtr +- SCREENCWIDTH: 

*TempPtr++ - 0:  

1 
1 

1 

One  point I’d like to make is that  although  the system-memory buffer in Listing 45.1 
has exactly the same dimensions as the screen bitmap, that’s not a  requirement,  and 
there  are some good reasons not to make the two the same  size. For example, if the 
system buffer is bigger than  the  area displayed on the  screen, it’s possible to pan  the 
visible area  around  the system buffer. Or, alternatively, the system buffer can be just 
the size  of a desired window, representing  a window into  a larger, virtual buffer. We 
could  then draw the  desired  portion of the virtual bitmap  into the system-memory 
buffer, then copy the buffer to the  screen, and  the effect will be of having panned 
the window  to the new location. 

Another  argument in favor of a small viewing window  is  that  it restricts the  amount p of display memory actually drawn  to. Restricting the display memory  used for 
animation reduces the total number of display-memory accesses, which in turn 
boosts overall performance; it also improves  the performance and appearance of 
panning, in which  the  whole  window  has to be  redrawn or copied. 

If  you keep a close  watch,  you’ll notice that many high-performance animation games 
similarly restrict their full-featured animation  area to a relatively  small region. Of- 
ten, it’s hard to  tell that this is the case, because the  animation region is surrounded 
by flashy digitized graphics and by items such as scoreboards and status screens, but 
look closely and see if the  animation  region  in your favorite game isn’t smaller than 
you thought. 

Hi-Res VGA Page Flipping 
On a standard VGA, hi-res mode is mode 12H, which offers 640x480 resolution with 
16 colors. That’s a nice mode, with plenty of pixels, and square  ones at that, but it 
lacks one thing-page flipping. The problem is that  the  mode 12H bitmap is 150 K 
in size, and  the  standard VGA has only 256 K total, too little memory for two of those 

Dog Hair  and  Dirty Rectangles 851 



monster  mode  12H pages.  With  only one page, flipping is obviously out of the ques- 
tion, and without page flipping, top-flight, hi-res animation can’t be implemented. 
The standard fallback is to use the EGA’s hi-res mode,  mode  10H (640x350, 16 col- 
ors)  for page flipping, but this mode is  less than ideal for a couple of reasons: It 
offers sharply lower  vertical resolution, and it’s  lousy for  handling scaled-up CGA 
graphics, because the vertical resolution is a fractional multiple-1.75 times, to be 
exact-of that of the CGA.  CGA resolution may not seem important these days, but 
many images were originally created  for  the CGA, as were  many graphics packages 
and games, and it’s at least convenient to be able to handle CGA graphics easily. 
Then, too, 640x350  is  also a poor multiple of the 200 scan lines of the popular 320x200 
256-color mode  13H of the VGA. 
There  are a couple of interesting, if imperfect, solutions to the  problem of  hi-res 
page flipping. One is to use the split screen to enable page flipping only in the top 
two-thirds  of the screen; see the previous chapter  for details, and for details on  the 
mechanics of page flipping generally. This doesn’t address the CGA problem, but it 
does yield square pixels and a full 640x480 screen resolution,  although not all those 
pixels are flippable and thus  animatable. 
A second solution is to program  the screen to a 640x400 mode. Such a mode uses 
almost every  byte  of  display memory (64,000 bytes,  actually;  you could  add another 
few lines, if you  really wanted to),  and thereby provides the highest resolution pos- 
sible on  the VGA for a fully page-flipped display. It maps well to CGA and  mode 13H 
resolutions, being  either  identical  or  double  in  both dimensions. As an  added  ben- 
efit, it offers an easy-on-the-eyes  70-Hz frame  rate, as opposed to the 60 Hz that is the 
best that  mode  12H can offer, due to the design of standard VGA monitors. Best  of 
all, perhaps, is that 640x400  16-color mode is  easy to set  up. 
The key to 640x400 mode is understanding  that  on a VGA, mode  10H (640x350) is, 
at  heart, a 400-scan-line mode. What I mean by that is that in mode 10H, the Vertical 
Total register, which controls  the total number of  scan lines, both displayed and 
nondisplayed, is set to 44’7, exactly the same as in the VGA’s text modes, which do in 
fact support 400 scan lines. A properly sized and  centered display  is achieved in 
mode  10H by setting  the polarity of the sync pulses to tell the  monitor to scan verti- 
cally at a faster rate (to make fewer lines fill the  screen), by starting the overscan 
after 350 lines, and by setting the vertical sync and blanking pulses appropriately  for 
the faster vertical scanning  rate.  Changing those settings is  all that’s required to turn 
mode  10H  into a 640x400 mode, and that’s easy to do, as illustrated by Listing 45.2, 
which provides mode  set  code  for 640x400 mode. 

LISTING 45.2 L45-2.C 
/*  Mode s e t   r o u t i n e  for VGA 6 4 0 x 4 0 0   1 6 - c o l o r  mode. T e s t e d   w i t h  

B o r l a n d  C++ i n  C c o m p i l a t i o n  mode. * /  

#i n c l  ude <dos . h> 

852 Chapter 45 



v o i d   S e t 6 4 0 x 4 0 0 0  
{ 

u n i o n  REGS r e g s e t :  

I* F i r s t ,   s e t   t o   s t a n d a r d   6 4 0 x 3 5 0  mode (mode  10h) * /  
r e g s e t . x . a x  - 0x0010: 
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  

/ *  M o d i f y   t h e   s y n c   p o l a r i t y   b i t s   ( b i t s  7 & 6) o f   t h e  
M i s c e l l a n e o u s   O u t p u t   r e g i s t e r   ( r e a d a b l e  a t  Ox3CC. w r i t a b l e  a t  
Ox3C2) t o   s e l e c t   t h e   4 0 0 - s c a n - l i n e   v e r t i c a l   s c a n n i n g   r a t e  */ 

outp(Ox3C2,  ( ( inp(Ox3CC) & Ox3F) I 0 x 4 0 ) ) :  

/ *  Now, t w e a k   t h e   r e g i s t e r s   n e e d e d   t o   c o n v e r t   t h e   v e r t i c a l  

outpw(Ox3D4.  Ox9C10): I* a d j u s t   t h e   V e r t i c a l  Sync S t a r t  r e g i s t e r  

ou tpw(Ox3D4.   Ox8El l ) :  I* a d j u s t   t h e   V e r t i c a l  Sync End r e g i s t e r  

outpw(Ox304.  Ox8FlZ); I* a d j u s t   t h e   V e r t i c a l   D i s p l a y  End 

outpw(Ox304,  0x9615):  I* a d j u s t   t h e   V e r t i c a l   B l a n k   S t a r t  

outpw(Ox3D4.  0x6916): / *  a d j u s t   t h e   V e r t i c a l   B l a n k  End r e g i s t e r  

t i m i n g s   f r o m   3 5 0   t o   4 0 0   s c a n   l i n e s  *I  

f o r  4 0 0   s c a n   l i n e s  * /  

f o r  400 s c a n   l i n e s  */  

r e g i s t e r   f o r  4 0 0   s c a n   l i n e s  *I  

r e g i s t e r   f o r   4 0 0   s c a n   l i n e s  * /  

f o r  400  scan l i n e s  *I  
1 

In 640x400, 16-color mode, page 0 runs  from offset 0 to  offset  31,999 (7CFFH), and 
page 1 runs  from offset 32,000 (7DOOH) to 63,999 (OFSFFH). Page 1 is selected by 
programming  the  Start Address registers (CRTC registers OCH, the  high 8 bits, and 
ODH, the low 8 bits)  to 7DOOH. Actually, because the low byte  of the  start  address is 0 
for  both pages, you can page flip simply by writing 0 or 7DH to  the  Start Address 
High register (CRTC register OCH);  this has the  benefit of eliminating  a nasty  class 
of potential  synchronization bugs that  can arise when both registers must be set. 
Listing 45.3 illustrates simple 640x400 page flipping. 

LISTING 45.3 L45-3.C 
/ *  Sample  program t o   e x e r c i s e  VGA 6 4 0 x 4 0 0   1 6 - c o l o r  mode page f l i p p i n g ,  by 

draw ing  a h o r i z o n t a l   l i n e  a t  t h e   t o p   o f   p a g e  0 and   ano the r  a t  b o t t o m   o f   p a g e  1, 
t h e n   f l i p p i n g   b e t w e e n   t h e m   o n c e   e v e r y  30   f rames .   Tes ted   w i th   Bo r land  C++, 
i n  C c o m p i l a t i o n  mode. *I  

#i n c l  ude  <dos . h> 
Pi n c l   u d e   < c o n i  0. h> 

# d e f i n e  SCREEN-SEGMENT  OxAOOO 
# d e f i n e  SCREEN-HEIGHT 400 
# d e f i n e  SCREEN-WIDTH-IN-BYTES 80 
# d e f i n e  INPUT-STATUS-1  Ox3DA /*  c o l o r - m o d e   a d d r e s s   o f   I n p u t   S t a t u s  1 

/*  The  page s t a r t   a d d r e s s e s   m u s t   b e   e v e n   m u l t i p l e s   o f   2 5 6 .   b e c a u s e   p a g e  

# d e f i n e  PAGE-0-START 0 
# d e f i n e  PAGEL-START (400*SCREEN_WIDTHKIN_BYTES) 

r e g i s t e r  * /  

f l i p p i n g   i s   p e r f o r m e d  b y   c h a n g i n g   o n l y   t h e   u p p e r   s t a r t   a d d r e s s   b y t e  *I  

Dog Hair and Dirty Rectangles 853 



v o i d   m a i n ( v o i d ) ;  
v o i d   W a i t 3 0 F r a m e s ( v o i d ) ;  
e x t e r n   v o i d   S e t 6 4 0 x 4 0 0 ( v o i d ) ;  

v o i d   m a i n ( )  
{ 

i n t  i; 
u n s i g n e d   i n t   f a r   * S c r e e n P t r :  
u n i o n  REGS r e g s e t ;  

S e t 6 4 0 x 4 0 0 0 ;  / *  s e t   t o  640x400   16 -co lo r  mode */  

/*  P o i n t   t o   f i r s t   l i n e   o f  page 0 and  draw a h o r i z o n t a l   l i n e   a c r o s s   s c r e e n  */  
FP-SEG(ScreenPtr) - SCREEN-SEGMENT; 
FP-OFF(ScreenPtr) - PAGE-0-START; 
f o r   ( i - 0 ;  i<(SCREEN-WIDTH-IN-BYTESlZ) ;  i++) *ScreenPtr++ - OxFFFF; 

/ *  P o i n t   t o   l a s t   l i n e   o f  page 1 and  draw a h o r i z o n t a l   l i n e   a c r o s s   s c r e e n  */  
FP-OFF(ScreenPtr) - 
f o r  ( i -0;  i<(SCREEN_WIDTH_IN_BYTES/2); i++) *ScreenPtr++ - OxFFFF; 

/ *  Now f l i p  pages   once   eve ry   30   f rames   un t i l  a key i s   p r e s s e d  */  
do { 

PAGE-1-START + ((SCREEN_HEIGHT-l)*SCREEN-WIDTH-IN-BYTES); 

Wai t30FramesO;  

I* F1 i p   t o  page 1 */ 
outpw(Ox3D4. OxOC I ((PAGELLSTART >> 8) << 8 ) ) :  

Wai t30FramesO:  

/ *  F l i p   t o  page 0 * I  
outpw(Ox3D4. OxOC I ((PAGE-OKSTART >> 8 )  << 8 ) ) ;  

1 w h i l e   ( k b h i t 0  - 0 ) ;  

g e t c h 0 ;  / *  c l e a r   t h e   k e y   p r e s s  * /  

/*  R e t u r n  t o  t e x t  mode and e x i t  * I  
r e g s e t . x . a x  - 0x0003; / *  AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode */  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  

I 

void  Wait30Frames.O 
t 

i n t  i: 

f o r   ( i - 0 ;   i < 3 0 ;  i++) { 

w h i l e  ((inp(1NPUT-STATUS-1) & 0x08) !- 0 )  ; 
/*  W a i t   u n t i l   w e ’ r e   n o t  i n  v e r t i c a l   s y n c ,  s o  we c a n   c a t c h   l e a d i n g   e d g e  */  

/*  W a i t   u n t i l  we a r e   i n   v e r t i c a l   s y n c  * I  
w h i l e  ((inp(INPUT-STATUS-1) & 0x08) - 0)  : 

I 
I 

After I described 640x400 mode  in a magazine article, Bill  Lindley,  of  Mesa, Arizona, 
wrote me to suggest that when programming  the VGA to a nonstandard  mode of this 
sort, it’s a good  idea to tell the BIOS about  the new screen size, for a couple of 
reasons. For one thing,  pop-up utilities often use the BIOS  variables;  Bill’s memory- 
resident  screen  printer, EGAD Screen Print,  determines  the number of scan lines to 

854 Chapter 45 



print by multiplying the BIOS “number of text rows” variable times the  “character 
height” variable.  For another, the BIOS  itself  may do  a  poorjob of displaying  text if not 
given proper information; the active  text area may not match the screen  dimensions, or 
an  inappropriate  graphics  font may be used.  (Of  course,  the BIOS isn’t going to be 
able  to display text anyway in highly nonstandard  modes  such as Mode X, but it will 
do fine in slightly nonstandard  modes  such as 640x400 16-color mode.) In the case 
of the 640x400 16-color model  described  a little earlier, Bill suggests that  the  code in 
Listing 45.4 be called immediately after  putting  the VGA into  that  mode  to tell the 
BIOS that we’re  working  with 25 rows  of 16-pixel-high text. I think this is an excel- 
lent suggestion; it can’t hurt,  and may  save  you from  getting aggravating tech  support 
calls  down the  road. 

LISTING 45.4 L45-4.C 
I* F u n c t i o n   t o   t e l l   t h e  B I O S  t o   s e t  up p r o p e r l y   s i z e d   c h a r a c t e r s   f o r  25 rows o f  

16 p i x e l   h i g h   t e x t   i n  640x400   g raph ics  mode. C a l l  i m m e d i a t e l y  a f t e r  mode s e t .  
Based  on a c o n t r i b u t i o n   b y  Bill L i n d l e y .  * I  

#i n c l  ude  <dos . h> 

v o i d   S e t 6 4 0 x 4 0 0 0  
I 

u n i o n  REGS regs :  

regs.h.ah - 0x11: I* c h a r a c t e r   g e n e r a t o r   f u n c t i o n  *I  
regs .h .a l  - 0x24; I* use ROM 8 x 1 6   c h a r a c t e r   s e t   f o r   g r a p h i c s  *I  
r e g s . h . b l  - 2: I* 25 rows *I  
i n t 8 6 ( 0 x 1 0 .   & r e g s .  & r e g s ) :  I* i n v o k e   t h e  B I O S  v i d e o   i n t e r r u p t  

1 
t o   s e t  up t h e   t e x t  * I  

The 640x400 mode I’ve described here isn’t exactly earthshaking,  but it can come in 
handy  for page flipping and CGA emulation, and I’m sure  that some of you will find 
it useful at  one time or  another. 

Another  Interesting  Twist  on  Page Flipping 
I’ve spent  a fair amount of time exploring various ways to do animation. I thought I 
had  pegged all the possible ways to do animation: exclusive-OlZing;  simply drawing 
and erasing objects; drawing objects with a blank fringe to erase  them  at  their  old 
locations as they’re drawn; page flipping; and, finally, drawing to local memory and 
copying the dirty (modified) rectangles  to the screen, as I’ve  discussed  in  this chapter. 
To  my surprise,  someone threw me an interesting and useful twist on animation not 
long ago, which turned  out  to be a cross  between page flipping and dirty-rectangle 
animation. That someone was Serge Mathieu of Concepteva  Inc., in Rosemere,  Que- 
bec, who informed  me  that  he designs everything “from a  game point de vue.” 

In normal page  flipping, you  display one page  while  you update the other page. Then 
you  display the new  page  while  you update the other. This works fine, but the need to 

Dog  Hair  and  Dirty Rectangles 855 



keep two pages current can make for a lot of bookkeeping and possibly extra draw- 
ing, especially in applications where only some of the objects are redrawn each time. 
Serge didn’t  care to do all that  bookkeeping  in his animation applications, so he 
came up with the following approach, which  I’ve reworded, amplified, and slightly 
modified in the summary here: 
1. 
2. 
3. 

4. 

5 .  

6.  

Set  the  start  address  to  display  page 0. 
Draw  to  page 1. 
Set  the  start  address to display  page 1 (the  newly  drawn  page),  then  wait  for  the  leading 
edge  of  vertical  sync,  at  which  point  the  page  has  flipped  and  it’s  safe  to  modify  page 0. 
Copy,  via  the  latches, from page 1 to  page 0 the  areas  that  changed from the  previous 
screen  to  the  current  one. 
Set  the  start  address  to  display  page 0, which  is  now  identical  to  page 1, then  wait  for 
the  leading  edge of vertical  sync,  at  which  point  the  page  has  flipped  and  it’s  safe  to 
modify  page 1. 
Go to  step 2. 

The  great benefit of Serge’s approach is that  the only page that is  ever  actually drawn 
to (as  opposed to being block-copied to) is page 1. Only one page needs to be main- 
tained, and  the complications of maintaining two separate pages vanish entirely. 
The performance of  Serge’s approach may be better or worse than  standard page 
flipping, depending  on whether a lot of extra work  is required to maintain two pages 
or  not. My guess  is that Serge’s approach will usually be slower,  owing  to the consid- 
erable amount of  display-memory copying involved, and also to the  double page-flip 
per frame. There’s no  doubt, however, that Serge’s approach is simpler, and  the 
resultant display quality is  every bit as good as standard page flipping. Given page 
flipping’s fair degree of complication, this approach is a valuable tool, especially for 
lessexperienced  animation  programmers. 
An interesting variation on Serge’s approach doesn’t  page  flip nor wait for vertical  sync: 
1. Set  the  start  address  to  display  page 0. 
2. Draw  to  page 1. 
3. Copy,  via  the  latches,  the  areas  that  changed from the  last  screen  to  the  current  one 

4. Go to  step 2. 
This  approach totally eliminates page flipping, which can consume a great  deal of 
time. The downside is that images may shear  for one frame if they’re only partially 
copied when the raster beam  reaches  them.  This  approach is  basically a standard 
dirty-rectangle approach,  except  that  the drawing buffer is stored  in display  memory, 
rather  than  in system  memory. Whether this technique is faster than drawing to 
system memory depends  on whether the benefit you get  from the VGA’s hardware, 

from  page 1 to  page 0. 

856 Chapter 45 



such as the Bit  Mask, the &Us, and especially the latches (for copymg the dirty 
rectangles) is sufficient  to  outweigh the extra display-memory  accesses  involved in 
drawing and copying,  since  display memory is notoriously slow. 
Finally, I’d like  to point  out that in any scheme that involves changing  the display- 
memory start address, a clever  trick can potentially reduce  the time spent waiting for 
pages to flip. Normally,  it’s  necessary to wait for display enable to be active, then set 
the two start address registers, and finally  wait for vertical  sync to be  active, so that 
you  know the new start address has  taken  effect. The start-address  registers must 
never be set around  the time  vertical  sync  is  active (the new start address is accepted 
at  either  the  start  or  end of vertical  sync on  the EGAs and VGAs I’m familiar with), 
because  it  would then be  possible to load a half-changed start address (one register 
loaded,  the other  not yet loaded),  and  the screen would jump for a frame. Avoiding 
this condition is the motivation for waiting for display enable, because  display en- 
able is  active  only  when  vertical  sync  is not active and will not become active for a 
long while. 
Suppose, however, that you arrange your page start addresses so that they both have 
a low-byte value  of 0 (page 0 starts at OOOOH, and page 1 starts at 8000H, for ex- 
ample). Page flipping can then be done simply by setting the new high byte of the 
start address, then waiting for  the  leading  edge of  vertical  sync. This eliminates the 
need to wait for display enable (the two bytes of the start address can  never be mis- 
matched) ; page  flipping will often involve  less  waiting,  because  display enable becomes 
inactive long  before vertical  sync becomes active.  Using the above approach reclaims 
all the time  between the  end of  display enable and  the start of vertical  sync for  doing 
useful  work. (The steps I’ve  given for Serge’s animation  approach assume that  the 
single-byte approach is in use; that’s why display enable is never  waited for.) 
In  the  next  chapter, I’ll return to the original dirty-rectangle algorithm presented  in 
this chapter, and goose  it a little  with some assembly, so that we can see what dirty- 
rectangle animation is really made of. (Probably not  dog  hair ....) 

Dog Hair and Dirty Rectangles 857 



chapter 465

who was that masked image



\: 
::h 

irty-Rectangle  Animation 
d 
,.- Programming is, ’ large, a linear process. One statement or instruction follows 

equences, with  tiny building blocks strung together to make 
mmers, we  grow adept at this  sort  of  idealized  linear 

thinking, which is, o d Thing. Still,  it’s important to keep in mind that 
n mind that doesn’t work  in a linear fashion. 
tues of nonlinear/right-brain/lateral/what-have- 

ing  tough  programming  problems, such as debugging  or 
. The mind can be an awesome pattern-matching 

tool, if  you let it. For example, the other day I was grinding my  way 
through  a particula?@  difficult bit of debugging. The code had been written by some- 
one else, and, to my hind, there’s nothing worse than debugging someone else’s 
code; there’s always the nasty feeling that you don’t quite know  what’s going on.  The 
overall operation of this code wouldn’t come clear in my head,  no  matter how long 
I stared at it, leaving  me  with a rising  sense of fmstration and  a determination not to 
quit until I got this bug. 
In the midst of this, a coworker poked his head through the door  and told  me he 
had something I had to listen  to.  Reluctantly, I went to his  office, whereupon he 
played a tape of  what  is  surely one of the most bizarre 91 1 calls in history. No doubt 
some of you  have heard this tape, which I will briefly describe as  involving a  deer 
destroying the  interior of a car and biting a man in the neck. Perhaps you found it 

86 1 



funny,  perhaps  not-but as for me, it hit me  exactly  right. I started  laughing helplessly, 
tears  rolling  down my face.  When I went  back  to  work-presto!-the  pieces  of the de- 
bugging  puzzle had come together in my head,  and  the work  went  quickly and easily. 
Obviously, my mind  needed  a break from linear, left-brain, push-it-out thinking, so it 
could do the  sort of integrating work it does so well-but that it’s  rarely  willing to  do 
under conscious control.  It was exactly this sort of thinking  I  had in mind when I 
titled my 1989 optimization book Zen ofAssembly Language. (Although I must admit 
that few people seem  to  have gotten  the  connection,  and I’ve had  to field a  lot of 
questions about whether I’m a Zen disciple. I’m  not-actually, I’m more of a Dave 
Barry  disciple. If  you don’t know  who  Dave  Barry  is,  you should; he’s good  for your 
right  brain.) Give  your mind  a  break  once in a while, and I’ll bet you’ll find you’re 
more productive. 
We’re strange  thinking machines, but we’re the best ones yet invented,  and it’s worth 
learning how  to  tap our full potential. And  with that, it’s  back  to  dirty-rectangle 
animation. 

Dirty-Rectangle  Animation,  Continued 
In  the last chapter,  I  introduced  the idea of dirty-rectangle animation. This tech- 
nique is an alternative to  page flipping that’s capable of producing  animation of  very 
high visual  quality, without any help  at all from video hardware, and without the 
need  for any extra, nondisplayed video  memory. This makes dirty-rectangle anima- 
tion more widely usable than page flipping, because many adapters  don’t  support 
page flipping. Dirty-rectangle animation also tends  to be simpler to implement than 
page flipping, because there’s only one bitmap to keep track  of. A final advantage of 
dirty-rectangle animation is that it’s potentially somewhat faster than page flipping, 
because  display-memory  accesses can theoretically be reduced to  exactly one access 
for  each pixel that changes from one frame  to  the  next. 
The speed advantage of dirty-rectangle animation was entirely theoretical in the  pre- 
vious chapter, because the  implementation was completely in C, and because no 
attempt was made to  minimize  display memory accesses. The visual  quality of Chap- 
ter 45’s animation was also  less than ideal, for reasons we’ll explore shortly. The code 
in Listings 46.1 and 46.2 addresses the shortcomings of Chapter 45’s code. 
Listing 46.2 implements  the low-level drawing routines in assembly language, which 
boosts performance  a  good  deal. For maximum performance,  it would  be  worth- 
while  to convert more of Listing 46.1 into assembly, so a call isn’t required  for each 
animated image, and overall performance could be improved by streamlining the  C 
code,  but Listing 46.2 goes a  long way toward boosting animation  speed. This pro- 
gram now supports snappy animation of 15 images (as opposed to 10 for  the software 
presented in the last chapter), and  the images are now two pixels  wider. That level  of 
performance is  all the  more impressive considering  that  for this chapter I’ve con- 
verted the code from using rectangular images  to  using  masked  images. 

862 Chapter 46 



LISTING 46.1  L46- 1 .C 
I* S a m p l e   s i m p l e   d i r t y - r e c t a n g l e   a n i m a t i o n   p r o g r a m ,   p a r t i a l l y   o p t i m i z e d  and 

f e a t u r i n g   i n t e r n a l   a n i m a t i o n ,  masked  images ( s p r i t e s ) .  a n d   n o n o v e r l a p p i n g   d i r t y  
r e c t a n g l e   c o p y i n g .   T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  *I  

#i n c l  ude < s t d l  i b.  h> 
# inc lude   <con io .h>  
#i ncl  ude  <a1 1 oc.  h> 
# i n c l u d e  <memory.  h> 
# inc lude   <dos .  h> 

I* Comment o u t   t o   d i s a b l e   o v e r l a p   e l i m i n a t i o n   i n   t h e   d i r t y   r e c t a n g l e   l i s t .  * I  
# d e f i n e  CHECK-OVERLAP 1 
# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-HEIGHT 200 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

I* Descr ibes  a d i r t y   r e c t a n g l e  *I  
t y p e d e f   s t r u c t  { 

vo id   *Nex t :  I* p o i n t e r   t o   n e x t   n o d e   i n   l i n k e d   d i r t y   r e c t   l i s t  *I  
i n t  Top: 
i n t   L e f t :  
i n t   R i g h t :  
i n t  Bottom: 

1 D i r t y R e c t a n g l e :  
I* Descr ibes   an   an imated  ob jec t  * I  
t y p e d e f   s t r u c t  { 

i n t  X :  I* upper l e f t   c o r n e r   i n   v i r t u a l   b i t m a p  *I  
i n t  Y :  
i n t   X D i r e c t i o n :  I* d i r e c t i o n  and d i s t a n c e   o f  movement *I 
i n t   Y D i r e c t i o n :  
i n t   I n t e r n a l A n i m a t e C o u n t :  I* t r a c k i n g   i n t e r n a l   a n i m a t i o n   s t a t e  *I 
i n t   I n t e r n a l A n i m a t e M a x :  I* maximum i n t e r n a l   a n i m a t i o n   s t a t e  * /  

1 E n t i t y :  
I* s t o r a g e   u s e d   f o r   d i r t y   r e c t a n g l e s  *I  
# d e f i n e  MAX-DIRTY-RECTANGLES 100 
i n t  NumDirtyRectangles:  
D i r t y R e c t a n g l e  DirtyRectanglesCMAX-DIRTY-RECTANGLES]: 
I* h e a d l t a i l   o f   d i r t y   r e c t a n g l e   l i s t  *I  
D i  r t y R e c t a n g l e  D i  r tyHead; 
I* I f  s e t   t o  1, i g n o r e   d i r t y   r e c t a n g l e   l i s t  and  copy  the  whole  screen.  *I 
i n t  DrawWholeScreen - 0:  
I* p i x e l s  and  masks f o r   t h e   t w o   i n t e r n a l l y   a n i m a t e d   v e r s i o n s  o f  the  image 

w e ' l l   a n i m a t e  *I  
# d e f i n e  IMAGE-WIDTH 13 
# d e f i n e  IMAGE-HEIGHT 11 
char  ImagePixelsOCl - I 

0.  0 .  0 .  9.  9.  9.  9.  9, 0.  0. 0 .  0 .  0 .  
0,  0. 9,  9.  9.  9.  9.  9.  9. 0 .  0 .  0,  0. 
0. 9 .   9 .  0. 0.14.14.14, 9. 9 .  0. 0 .  0 .  
9 .   9 .  0, 0 .  0 .  0.14.14.14.  9.  9. 0,  0. 
9.  9. 0.   0.   0,  0.14.14.14.  9.  9. 0 ,  0 ,  
9.   9.14. 0 .  0.14.14.14.14.  9.  9. 0 .  0 .  
9,  9.14,14.14.14.14.14.14,  9.  9. 0 ,  0 .  
9.  9.14.14.14.14.14.14.14,  9.  9. 0,  0. 
0. 9,  9.14.14.14.14.14.  9.  9, 0 .  0 ,  0 .  
0 , 0 , 9 . 9 . 9 . 9 . 9 . 9 . 9 . 0 . 0 . 0 , 0 .  
0 .  0 .   0 ,  9.  9.  9.  9,  9. 0,  0. 0 .  0 .  0 .  

1 :  

Who Was  that  Masked  Image? 863 



char  ImageMaskOCl - I 
0 . 0 . 0 . 1 . 1 . 1 . 1 . 1 . 0 . 0 . 0 , 0 . 0 ,  
0 ,   0 .  1. 1. 1. 1, 1. 1, 1. 0. 0 .  0 .   0 .  
0. 1, 1. 0.  0. 1 ,   1 ,  1, 1, 1, 0,  0,  0, 
1 . 1 . 0 . 0 . 0 . 0 . 1 . 1 , 1 . 1 , 1 . 0 , 0 .  
1 , 1 . 0 , 0 . 0 . 0 . 1 . 1 . 1 . 1 . 1 . 0 . 0 .  
1 .  1 .  1 ,  0. 0, 1 .  1. 1 .  1. 1 ,  1 .  0. 0.  
1 . 1 . 1 . 1 . 1 , 1 . 1 , 1 . 1 . 1 . 1 . 0 , 0 .  
1 . 1 , 1 . 1 . 1 . 1 , 1 . 1 , 1 , 1 . 1 . 0 . 0 ,  
0 , 1 . 1 , 1 . 1 , 1 , 1 . 1 . 1 . 1 , 0 . 0 . 0 .  
0 . 0 , 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 .  
o , o . o ,  1 . 1 . 1 .  1 . 1 . 0 . 0 . 0 . 0 . 0 .  

1 ;  
c h a r   I m a g e P i x e l s l [ l  - { 

0. 0. 0 .  9.  9.  9.  9.  9. 0.  0, 0, 0, 9. 
0 . 0 . 9 , 9 . 9 , 9 , 9 . 9 , 9 . 0 . 9 . 9 . 9 .  
0, 9 .   9 .  0 .  0.14.14,14.  9,  9.  9,  9. 0 .  
9 .   9 ,  0 .  0 .  0 .  0.14.14.14. 0, 0. 0. 0 .  
9.  9. 0.   0.   0,  0.14.14, 0,  0.  0.  0.  0, 
9.   9.14. 0 .  0.14.14.14. 0, 0 ,  0.  0. 0. 
9,  9.14,14.14,14.14,14. 0 .  0 .  0 .   0 .  0 .  
9.  9,14.14.14.14.14.14.14, 0.  0,  0.  0, 
0 ,  9,  9.14.14,14,14,14,  9.  9.  9.  9. 0 .  
0 . 0 . 9 . 9 . 9 , 9 . 9 . 9 . 9 , 0 . 9 , 9 . 9 .  
0 . 0 . 0 . 9 . 9 . 9 , 9 . 9 . 0 , 0 . 0 , 9 , 9 .  

char  ImageMasklL]  - I 
1 ;  

0 . 0 . 0 . 1 . 1 . 1 . 1 . 1 . 0 , 0 . 0 . 0 . 1 .  
0 , 0 . 1 . 1 . 1 . 1 , 1 , 1 . 1 . 0 , 1 . 1 , 1 .  
0 . 1 . 1 . 0 . 0 . 1 . 1 . 1 . 1 , 1 . 1 . 1 . 0 .  
1 . 1 . 0 . 0 . 0 . 0 . 1 . 1 . 1 . 0 . 0 . 0 , 0 .  
1 . 1 . 0 . 0 . 0 , 0 . 1 , 1 . 0 . 0 . 0 . 0 . 0 .  
1 . 1 , 1 . 0 . 0 . 1 , 1 . 1 , 0 . 0 . 0 . 0 . 0 .  
1 . 1 . 1 . 1 . 1 , 1 . 1 , 1 , 0 . 0 , 0 , 0 , 0 ,  
1 . 1 , 1 . 1 . 1 . 1 . 1 . 1 , 1 . 0 . 0 . 0 . 0 .  
0 . 1 . 1 , 1 . 1 , 1 . 1 , 1 . 1 . 1 . 1 , 1 . 0 ,  
0.   0 .  1. 1. 1. 1. 1. 1.  1, 0. 1, 1. 1. 
0 . 0 . 0 , 1 . 1 . 1 , 1 . 1 . 0 . 0 . 0 . 1 , 1 .  

1 ;  
/*  P o i n t e r s   t o   p i x e l  and  mask d a t a   f o r   v a r i o u s   i n t e r n a l l y   a n i m a t e d  

cha r  * ImageP ixe lA r ray [ ]  = { ImageP ixe l sO.   ImageP ixe l s l ) ;  
cha r  * ImageMaskArrayC] = {ImageMaskO. ImageMaskl l ;  
/ *  A n i m a t e d   e n t i t i e s  * /  
# d e f i n e  NUM-ENTITIES 15 
E n t i t y  EntitiesCNUM-ENTITIES]; 
/ *  p o i n t e r   t o   s y s t e m   b u f f e r   i n t o   w h i c h   w e ' l l   d r a w  */  
c h a r   f a r   * S y s t e m B u f f e r P t r ;  
/ *  p o i n t e r   t o   s c r e e n  * I  

ve rs ions   o f   ou r   an ima ted   image .  * /  

cha r  
v o i d  
v o i d  
v o i d  
v o i d  
v o i d  
v o i d  
v o i d  

f a r   * S c r e e n P t r :  
E r a s e E n t i t i e s ( v o i d ) ;  
CopyOirtyRectanglesToScreen(void); 
D r a w E n t i t i e s ( v o i d ) :  
A d d O i r t y R e c t ( E n t i t y  *, i n t ,   i n t ) ;  
DrawMasked(char f a r  *, char  *, char  *, i n t ,  i n t ,  i n t ) ;  
F i l l R e c t ( c h a r   f a r  *, i n t .  i n t .   i n t .  i n t ) :  
C o p y R e c t ( c h a r   f a r  *, c h a r   f a r  *, i n t .   i n t .   i n t .   i n t ) ;  

864 Chapter 46 



v o i d   m a i n 0  
r 

i n t  i. XTemp.  YTemp; 
uns igned   i n t   Tempcoun t :  
char  far *TempPtr: 
u n i o n  REGS r e g s :  
/*  A l l o c a t e  memory f o r   t h e   s y s t e m   b u f f e r   i n t o   w h i c h   w e ' l l   d r a w  * I  
i f  ( ! ( S y s t e m B u f f e r P t r  - f a r m a l l o c ( ( u n s i g n e d  int)SCREEN-WIDTH* 

SCREEN-HEIGHT))) { 
p r in t f ( "Cou1dn ' t   ge t   memory \n " ) ;  
e x i t ( 1 ) :  

1 
/* C l e a r   t h e   s y s t e m   b u f f e r  * I  
TempPtr - S y s t e m B u f f e r P t r :  
f o r  (Tempcount - ((unsigned)SCREEN-WIDTH*SCREEN-HEIGHT): Tempcount-- :  ) I 

1 
/* P o i n t   t o   t h e   s c r e e n  */  
ScreenPt r  - MK-FP(SCREEN-SEGMENT. 0): 
/*  S e t   u p   t h e   e n t i t i e s   w e ' l l   a n i m a t e ,  a t  random l o c a t i o n s  */  
randomize( ) ;  
f o r  (i - 0; i < NUM-ENTITIES: i++) C 

*TempPtr++ - 0: 

E n t i t i e s C i 1 . X  - random(SCREEN-WIDTH - IMAGE-WIDTH): 
E n t i t i e s C i 1 . Y  - random(SCREENkHE1GHT - IMAGE-HEIGHT): 
E n t i t i e s C i l . X D i r e c t i o n  - 1: 
E n t i t i e s [ i ] . Y D i r e c t i o n  - -1; 
EntitiesCil.Interna1AnimateCount - i E 1: 
Entities[i].InternalAnimateMax - 2; 

1 
/*  S e t   t h e   d i r t y   r e c t a n g l e   l i s t   t o  empty ,   and  se t   up   the   head/ ta i l   node 

as a s e n t i n e l  * /  
NumDirtyRectangles - 0: 
Dir tyHead.Next  - EDi r tyHead:  
Dir tyHead.Top - Ox7FFF: 
D i r t y H e a d . L e f t -  Ox7FFF: 
D i r tyHead.Bot tom - Ox7FFF; 
D i  r t y H e a d .   R i g h t  - Ox7FFF: 
/* Se t   320x200   256 -co lo r   g raph ics  mode */  
regs.x.ax - 0x0013: 
i n t86 (0x10 .   & regs .   & regs ) :  
/ *  Loop  and  draw u n t i l  a key i s  p ressed */ 
do I 

/*  D r a w  t h e   e n t i t i e s   t o   t h e   s y s t e m   b u f f e r   a t   t h e i r   c u r r e n t   l o c a t i o n s ,  

D r a w E n t i t i e s O :  
/* Draw t h e   d i r t y   r e c t a n g l e s ,  or t h e   w h o l e   s y s t e m   b u f f e r  i f  

CopyDir tyRectanglesToScreenO: 
/ *  R e s e t   t h e   d i r t y   r e c t a n g l e   l i s t   t o  empty * I  
NumDirtyRectangles - 0: 
D i  r tyHead  .Next  - &Di   r tyHead : 
/*  E r a s e   t h e   e n t i t i e s   i n   t h e   s y s t e m   b u f f e r   a t   t h e i r   o l d   l o c a t i o n s ,  

E r a s e E n t i t i e s O :  
/* Move t h e   e n t i t i e s ,   b o u n c i n g   o f f   t h e   e d g e s  o f  t h e   s c r e e n  */ 
f o r  (i - 0: i < NUM-ENTITIES: i++) { 

u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t  * /  

a p p r o p r i a t e  * /  

u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t  * /  

XTemp - E n t i t i e s C i 1 . X  + E n t i t i e s [ i l . X D i r e c t i o n :  
YTemp - E n t i t i e s C i 1 . Y  + E n t i t i e s C i 1 . Y D i r e c t i o n :  

Who Was that Masked Image? 865 



i f  ((XTemp < 0) I I ((XTemp + IMAGE-WIDTH) > SCREEN-WIDTH)) I 
E n t i t i e s C i l . X D i r e c t i o n  - -EntitiesCil.XDirection: 
XTemp - E n t i t i e s C i 1 . X  + E n t i t i e s C i ] . X D i r e c t i o n :  

I 
i f  ((YTemp < 0) I (  ((YTemp + IMAGE-HEIGHT) > SCREEN-HEIGHT)) { 

E n t i t i e s [ i l . Y D i r e c t i o n  - - E n t i t i e s C i l . Y D i r e c t i o n :  
YTemp - E n t i t i e s C i 1 . Y  + E n t i t i e s C i 1 . Y D i r e c t i o n :  

I 
E n t i t i e s C i 1 . X  - XTemp; 
E n t i t i e s C i 1 . Y  - YTemp: 

I 
1 w h i l e   ( ! k b h i t O ) :  
g e t c h 0 :  / *  c l e a r   t h e   k e y p r e s s  */  

/* R e t u r n   b a c k   t o   t e x t  mode */ 
regs.x .ax - 0x0003: 
i n t 8 6 ( 0 x 1 0 .   & r e g s .   & r e g s ) :  

I 
/*  Draw e n t i t l e s   a t   t h e i r   c u r r e n t   l o c a t i o n s ,   u p d a t i n g   d i r t y   r e c t a n g l e   l i s t .  * /  
v o i d   D r a w E n t i   t i e s ( )  
{ 

i n t  i: 
c h a r   f a r   * R o w P t r B u f f e r :  
char  *TempPtrImage: 
char  *TempPtrMask: 
E n t i t y   * E n t i t y P t r :  

f o r  (i - 0, E n t i t y P t r  - E n t i t i e s :  i < NUM-ENTITIES: i++, Ent i t yP t r++ )  I 
/ *  Remember t h e   d i r t y   r e c t a n g l e   i n f o   f o r   t h i s   e n t i t y  * /  
A d d D i r t y R e c t ( E n t i t y P t r ,  IMAGE-HEIGHT, IMAGE-WIDTH): 
/*  P o i n t   t o   t h e   d e s t i n a t i o n   i n   t h e   s y s t e m   b u f f e r  * /  
RowPt rBu f fe r  - Sys temBuf fe rP t r  + ( E n t i t y P t r - > Y  * SCREEN-WIDTH) + 

/* Advance t h e   i m a g e   a n i m a t i o n   p o i n t e r  * /  
i f  (HEnt i tyPt r -> In terna lAn imateCount  >- 

E n t i t y P t r - > X :  

Ent i tyPt r -> In terna lAn imateMax)  I 
Enti tyPtr->InternalAnimateCount - 0:  

I 
/*  P o i n t   t o   t h e  image  and mask t o  draw *I 
TempPtrImage - ImagePixelArrayCEntityPtr->InternalAnimateCountl: 
TempPtrMask - ImageMaskArrayCEntityPtr->InternalAnimateCountl: 
DrawMasked(RowPtrBuffer. TempPtrImage.  TempPtrMask. IMAGE-HEIGHT. 

IMAGE-WIDTH.  SCREEN-WIDTH): 
1 

1 
/*  Copy t h e   d i r t y   r e c t a n g l e s ,   o r   t h e   w h o l e   s y s t e m   b u f f e r  if a p p r o p r i a t e .  

v o i d  CopyDir tyRectanglesToScreenO 
( 

i n t  i. RectWid th .   Rec tHe igh t :  
u n s i g n e d   i n t   O f f s e t :  
D i  r t y R e c t a n g l e  * D i r t y P t r ;  
i f  (DrawWholeScreen) ( 

t o   t h e   s c r e e n .  */ 

/*  J u s t   c o p y   t h e   w h o l e   b u f f e r   t o   t h e   s c r e e n  * /  
DrawWholeScreen - 0: 
CopyRect (ScreenPt r .   Sys temBuf fe rPt r .  SCREEN-HEIGHT,  SCREEN-WIDTH. 

SCREEN-WIDTH.  SCREEN-WIDTH): 
I e l s e  { 

/ *  Copy o n l y   t h e   d i r t y   r e c t a n g l e s ,   i n   t h e   Y X - s o r t e d   o r d e r   i n   w h i c h  
t h e y ' r e   l i n k e d  */  

866 Chapter 46 



D i  r t y P t r  - D i  r t yHead.   Nex t :  
f o r  (i - 0; i < NumDirtyRectangles:  i++) I 

/ *  O f f s e t   i n   b o t h   s y s t e m   b u f f e r  and  screen o f  image */ 
O f f s e t  - ( u n s i g n e d   i n t )   ( D i r t y P t r - > T o p  * SCREEN-WIDTH) + 

/*  D i m e n s i o n s   o f   d i r t y   r e c t a n g l e  */  
RectWidth - D i r t y P t r - > R i g h t  - D i r t y P t r - > L e f t :  
Rec tHe igh t  - D i r t y P t r - > B o t t o m  - D i r t y P t r - > T o p :  
/ *  Copy  a d i r t y   r e c t a n g l e  * /  
CopyRect(ScreenPtr  + O f f s e t ,   S y s t e m B u f f e r P t r  + O f f s e t .  

/ *  P o i n t   t o   t h e   n e x t   d i r t y   r e c t a n g l e  * /  
D i r t y P t r  - D i r t y P t r - > N e x t :  

D i r t y P t r - > L e f t ;  

RectHeight .   RectWidth.  SCREEN-WIDTH.  SCREEN-WIDTH): 

3 
3 

1 
/*  E r a s e   t h e   e n t i t i e s   i n   t h e   s y s t e m   b u f f e r  a t  t h e i r   c u r r e n t   l o c a t i o n s ,  

v o i d   E r a s e E n t i t i e s O  
u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t .  * /  

{ 
i n t  i; 
char  f a r  *RowPtr: 

f o r  (i - 0:  i < NUM-ENTITIES: i++) { 
/*  Remember t h e   d i r t y   r e c t a n g l e   i n f o   f o r   t h i s   e n t i t y  * /  
A d d D i r t y R e c t ( & E n t i t i e s [ i l ,  IMAGE-HEIGHT.  IMAGE-WIDTH); 
/ *  P o i n t   t o   t h e   d e s t i n a t i o n   i n   t h e   s y s t e m   b u f f e r  * /  
RowPtr - S y s t e m B u f f e r P t r  + ( E n t i t i e s C i 1 . Y  * SCREEN-WIDTH) + 

E n t i t i e s [ i l . X :  
/ *  C l e a r   t h e   r e c t a n g l e  * /  
F i l l R e c t ( R o w P t r .  IMAGELHEIGHT. IMAGE-WIDTH.  SCREEN-WIDTH. 0): 

I 
1 
/ *  Add a d i r t y   r e c t a n g l e   t o   t h e   l i s t .  The l i s t   i s   m a i n t a i n e d   i n   t o p - t o - b o t t o m ,  

l e f t - t o - r i g h t  ( Y X  s o r t e d )   o r d e r ,   w i t h  no p i x e l   e v e r   i n c l u d e d   t w i c e ,   t o   m i n i m i z e  
t h e  number o f   d i s p l a y  memory accesses  and t o   a v o i d   s c r e e n   a r t i f a c t s   r e s u l t i n g  
f r o m  a l a r g e   t i m e   i n t e r v a l   b e t w e e n   e r a s u r e  and  redraw f o r  a g i v e n   o b j e c t   o r  for 
a d j a c e n t   o b j e c t s .  The techn ique  used i s   t o  c h e c k   f o r   o v e r l a p   b e t w e e n   t h e  
r e c t a n g l e  and all r e c t a n g l e s   a l r e a d y   i n   t h e   l i s t .  I f  n o   o v e r l a p   i s   f o u n d ,   t h e  
r e c t a n g l e   i s  added t o   t h e   l i s t .  I f  o v e r l a p   i s   f o u n d ,   t h e   r e c t a n g l e   i s   b r o k e n  
i n t o   n o n o v e r l a p p i n g   p i e c e s ,  and t h e   p i e c e s   a r e  added t o   t h e   l i s t  b y   r e c u r s i v e  
c a l l s   t o   t h i s   f u n c t i o n .  * /  
v o i d   A d d D i r t y R e c t ( E n t i t y  * p E n t i t y ,   i n t   I m a g e H e i g h t .   i n t   I m a g e w i d t h )  

D i r t y R e c t a n g l e  * D i r t y P t r :  
D i  r t yRectang1 e * TempPtr; 
E n t i t y  TempEnti t y :  
i n t  i: 
i f  (NumDi r tyRectang les  >- MAX-DIRTY-RECTANGLES) { 

{ 

/ *  Too many d i r t y   r e c t a n g l e s :   j u s t   r e d r a w   t h e   w h o l e   s c r e e n  * /  
DrawWholeScreen - 1;  
r e t u r n :  

3 
/ *  Remember t h i s   d i r t y   r e c t a n g l e .   B r e a k  up i f  necessary t o   a v o i d  

o v e r l a p   w i t h   r e c t a n g l e s   a l r e a d y   i n   t h e   l i s t ,   t h e n  add  whatever 
r e c t a n g l e s   a r e   l e f t ,   i n  Y X  s o r t e d   o r d e r  * /  

/*  Check f o r   o v e r l a p   w i t h   e x i s t i n g   r e c t a n g l e s  */  
TempPtr - Di r tyHead.Next :  
f o r  (i - 0: i < NumDi r tyRectang les :  i++. TempPtr - TempPtr->Next)  I 

# i f d e f  CHECK-OVERLAP 

Who Was that Masked Image? 867 



i f  ( ( T e m p P t r - > L e f t  < ( p E n t i t y - > X  + Imagewid th) )  && 
(TempPt r ->Righ t  > p E n t i t y - > X )  && 
(TempPtr->Top < ( p E n t i t y - > Y  + ImageHeigh t ) )  & &  
(TempPtr->Bottom > p E n t i t y - > Y ) )  I 

/*  We've found an o v e r l a p p i n g   r e c t a n g l e .   C a l c u l a t e   t h e  
r e c t a n g l e s .  i f  a n y ,   r e m a i n i n g   a f t e r   s u b t r a c t i n g   o u t   t h e  
OVerlaDDed  areas.  and  add  them t o   t h e   d i r t r   l i s t  

/*  Check f o r  a n o n o v e r l a p p e d   l e f t   p o r t i o n  * /  
i f  ( T e m p P t r - > L e f t  > p E n t i t y - > X )  { 

/ *  T h e r e ' s   d e f i n i t e l y  a n o n o v e r l a p p e d   p o r t i o n  
it, b u t   o n l y   t o   a t   m o s t   t h e   t o p  and  bottom 
r e c t :   t o p  a n d   b o t t o m   s t r i p s   a r e   t a k e n   c a r e  

TempEntity.X - p E n t i t y - > X :  
TempEnt i ty.Y - max(pEnt i ty->Y,   TempPtr ->Top) :  
AddDirtyRect(&TempEntity. 

a t  
o f  
o f  

*/ 

t h e   l e f t ;  add 
the   ove r1   app i   ng  
below */  

m i n ( p E n t i t y - > Y  + ImageHeight.   TempPtr->Bottom) - 
TempEnt i ty.Y, 

TempPt r ->Lef t  - p E n t i t y - > X ) ;  
1 
/*  Check f o r  a n o n o v e r l a p p e d   r i g h t   p o r t i o n  * /  
i f  (TempPt r ->Righ t  < ( p E n t i t y - > X  + Imagewid th) )  I 

/*  T h e r e ' s   d e f i n i t e l y  a n o n o v e r l a p p e d   p o r t i o n   a t   t h e   r i g h t :  add 
i t , b u t   o n l y   t o   a t   m o s t   t h e   t o p   a n d   b o t t o m   o f   t h e   o v e r l a p p i n g  
r e c t ;   t o p  a n d   b o t t o m   s t r i p s   a r e   t a k e n   c a r e   o f   b e l o w  * /  

TempEnt i ty.X - TempPt r ->Righ t :  
TempEnt i ty.Y - max(pEnt i ty ->Y.   TempPt r ->Top) ;  
AddDirtyRect(&TempEntity. 

m i n ( p E n t i t y - > Y  + ImageHeight,   TempPtr->Bottom) - 
TempEnt i ty.Y. 
( p E n t i t y - > X  + Imagewid th)  - TempPt r ->Righ t ) :  

1 
/* Check f o r  a n o n o v e r l a p p e d   t o p   p o r t i o n  */ 
i f  (TempPtr->Top > p E n t i t y - > Y )  I 

/*  T h e r e ' s  a t o p   p o r t i o n   t h a t ' s   n o t   o v e r l a p p e d  * /  
TempEnt i ty.X - p E n t i t y - > X ;  
TempEnt i ty.Y - p E n t i t y - > Y ;  
AddDir tyRect(&TempEnt i ty .  TempPtr->Top - p E n t i t y - > Y .   I m a g e w i d t h ) ;  

1 
/* Check f o r  a n o n o v e r l a p p e d   b o t t o m   p o r t i o n  */ 
i f  (TempPtr->Bottom < ( p E n t i t y - > Y  + ImageHeigh t ) )  I 

/* T h e r e ' s  a b o t t o m   p o r t i o n   t h a t ' s   n o t   o v e r l a p p e d  */  
TempEnt i ty.X - p E n t i t y - > X ;  
TempEnt i ty.Y - TempPtr->Bottom; 
AddDir tyRect (&TempEnt i ty .  

1 
/*  We've  added a l l   n o n - o v e r l a p p e d   p o r t i o n s   t o   t h e   d i r t y   l i s t  * /  
r e t u r n ;  

( p E n t i t y - > Y  + ImageHeight)  - TempPtr ->Bot tom.  Imagewidth) :  

1 
1 

/*  T h e r e ' s   n o   o v e r l a p   w i t h   a n y   e x i s t i n g   r e c t a n g l e ,  so we can j u s t  
add t h i s   r e c t a n g l e   a s - i s  */ 

/*  F i n d   t h e   Y X - s o r t e d   i n s e r t i o n   p o i n t .   S e a r c h e s  will a l w a y s   t e r m i n a t e ,  
b e c a u s e   t h e   h e a d / t a i l   r e c t a n g l e   i s   s e t   t o   t h e  maximum v a l u e s  */  

TempPtr - &Di r tyHead;  
w h i l e   ( ( ( D i r t y R e c t a n g l e   * ) T e m p P t r - > N e x t ) - > T o p  < p E n t i t y - > Y )  I 

1 

# e n d i f  / *  CHECK-OVERLAP * /  

TempPtr - TempPtr->Next:  

868 Chapter 46 



w h i l e   ( ( ( ( D i r t y R e c t a n g l e   * ) T e m p P t r - > N e x t ) - > T o p  -- p E n t i t y - > Y )  && 
( ( ( D i r t y R e c t a n g l e   * ) T e m p P t r - > N e x t ) - > L e f t  < p E n t i t y - > X ) )  { 

TempPtr - TempPtr->Next: 
I 
/*  S e t   t h e   r e c t a n g l e   a n d   a c t u a l l y   a d d  i t  t o   t h e   d i r t y   l i s t  * /  
D i  r t yP t r  - &Di   r tyRectang1 es[NumDi r tyRectangles++l  : 
D i r t y P t r - > L e f t  - p E n t i t y - > X :  
D i r t y P t r - > T o p  - p E n t i t y - > Y :  
D i r t y P t r - > R i g h t  - p E n t i t y - > X  + Imagewidth;  
D i r t y P t r - > B o t t o m  - p E n t i t y - > Y  + ImageHeight ;  
D i r t y P t r - > N e x t  - TempPtr->Next; 
TempPtr->Next - DirtyPtr: 

1 

LISTING 46.2  L46-2.ASM 
: A s s e m b l y   l a n g u a g e   h e l p e r   r o u t i n e s   f o r   d i r t y   r e c t a n g l e   a n i m a t i o n .   T e s t e d   w i t h  
: TASM. 
: F i l l s  a r e c t a n g l e   i n   t h e   s p e c i f i e d   b u f f e r .  
: C - c a l l a b l e   a s :  
: v o i d   F i l l R e c t ( c h a r   f a r  * B u f f e r P t r .   i n t   R e c t H e i a h t .   i n t   R e c t W i d t h .  

.model 

.code 
parms s t r u c  

B u f f e r P t r  
Rec tHe igh t  
RectWidth 
B u f f e r w i d t h  
C o l o r  
parms  ends 

- F i  11  Rect 
pub1 i c 

c l  d 
push 
mov 
push 

1 es 
mov 
mov 
sub 

mov 
mov 

mov 
s h r  
r e p  
adc 

add 
dec 
j n z  

POP 
POP 
r e t  

RowLoop: 

r e p  

-Fi  11  Rect  endp 

i n t   B u f f e r w i d t h .   i n t   C o l o r ) :  

smal 1 

dw ? 
dw ? 
dd ? 
dw ? 
dw ? 
dw ? 
dw ? 

;pushed BP 
:pushed r e t u r n   a d d r e s s  
: f a r   p o i n t e r   t o   b u f f e r   i n   w h i c h   t o  fill 
; h e i g h t   o f   r e c t a n g l e   t o  fill 
: w i d t h   o f   r e c t a n g l e   t o  fill 
; w i d t h   o f   b u f f e r   i n   w h i c h   t o  fill 
; c o l o r   w i t h   w h i c h   t o  fill 

- Fi   11   Rec t  
p roc   near  

bp 
bp.sp 
d i  

d i . [ b p + B u f f e r P t r l  
dx. [bp+RectHeight l  
bx , [bp+Bu f fe rWid th l  
bx .Cbp+Rec tWid th l   ; d i s tance   f rom  end   o f   one   des t   scan  

a l . b y t e   p t r   [ b p + C o l o r l  
a h . a l   ; d o u b l e   t h e   c o l o r   f o r  REP STOSW 

cx. [bp+RectWidth l  
cx .1  
s tosw 
c x ,   c x  
s t o s b  
d i   . b x  
dx 
RowLoop 

d i  

: t o   s t a r t   o f   n e x t  

bP 

: p o i n t   t o   n e x t   s c a n   t o  fill 
:count  down rows t o  fill 

Who  Was  that  Masked  Image? 869 



parmse   s t ruc  

B u f f e r P t r 2  
P i x e l s  
Mask 
ImageHeight 
Imagewid th  
B u f f e r W i d t h E  
parmse  ends 

pub1 i c  
-DrawMasked 

c l  d 
push 
mov 
push 
push 

1 es 
mov 
mov 
mov 
mov 
sub 
mov 

RowLoopZ: 
mov 

ColumnLoop: 
1 odsb 
and 
j z  
mov 
mov 

i nc 
i nc 
dec 
j n z  
add 
dec 
j n z  

POP 
POP 
POP 
r e t  

JrawMasked 

S k i p P i x e l  : 

; Draws a m a s k e d   i m a g e   ( a   s p r i t e )   t o   t h e   s p e c i f i e d   b u f f e r .  C - c a l l a b l e   a s :  
: vo id   DrawMasked(char   fa r  * B u f f e r P t r .   c h a r  * P i x e l s ,  c h a r  * Mask, 

i n t  ImageHeight,  i n t  Imagewidth.  i n t   B u f f e r w i d t h ) :  

dw ? 
dw ? 
dd ? 
dw ? 
dw ? 
dw ? 
dw ? 
dw ? 

;pushed BP 
;pushed  re tu rn   address  
; f a r   p o i n t e r   t o   b u f f e r   i n   w h i c h   t o   d r a w  
; p o i n t e r   t o   i m a g e   p i x e l s  
; p o i n t e r   t o   i m a g e  mask 
; h e i g h t   o f   i m a g e   t o   d r a w  
; w i d t h  o f  image t o  draw 
: w i d t h   o f   b u f f e r   i n   w h i c h   t o   d r a w  

JrawMasked 
p roc   nea r  

bp 
bp.  sp 
s i  
d i  

d i   . [ b p + B u f f e r P t r E ]  
s i  .[bp+Mask] 
b x . [ b p + P i x e l s l  
dx. [bp+ImageHeight l  
ax . [bp+Buf fe rWid thEI  
ax.[bp+ImageWidth] 
[bp+Buf fe rWid thZ l .ax  

cx.[bp+ImageWidthl 

a1  .a1 
S k i p P i x e l  
a1 . Cbxl 
e s : [ d i l . a l  

bx 
d i  

Col umnLoop 
d i . [ b p + B u f f e r W i d t h Z l  
dx 
RowLoopZ 

d i  
s i  

c x  

bp 

endp 

:d is tance  f rom  end  o f   one  des t   scan 
; t o   s t a r t   o f   n e x t  

: g e t   t h e   n e x t  mask b y t e  
:draw t h i s   p i x e l ?  
;no 
; y e s .   d r a w   t h e   p i x e l  

; p o i n t   t o   n e x t   s o u r c e   p i x e l  
; p o i n t   t o   n e x t   d e s t   p i x e l  

: p o i n t   t o   n e x t   s c a n   t o  fill 
;count down rows t o  fill 

; Copies a r e c t a n g l e   f r o m  one b u f f e r   t o   a n o t h e r .  C - c a l l a b l e   a s :  
; v o i d   C o p y R e c t ( D e s t B u f f e r P t r .   S r c B u f f e r P t r .  CopyHeight.   Copywidth.  

Oes tBu f fe rWid th .   S rcBu f fe rWid th ) :  

pa rms3   s t ruc  
dw ? ;pushed BP 
dw ? ;pushed r e t u r n   a d d r e s s  

D e s t B u f f e r P t r   d d  ? ; f a r   p o i n t e r   t o   b u f f e r   t o   w h i c h   t o   c o p y  
S r c B u f f e r P t r   d d  ? ; f a r   p o i n t e r   t o   b u f f e r   f r o m   w h i c h   t o   c o p y  

870 Chapter 46 



CopyHeight dw ? ; h e i g h t   o f   r e c t   t o   c o p y  
Copywidth dw ? ; w i d t h   o f   r e c t   t o   c o p y  
D e s t B u f f e r W i d t h  dw ? ; w i d t h   o f   b u f f e r  t o  w h i c h   t o   c o p y  
S r c B u f f e r W i d t h  
parms3  ends 

pub1 i c 
- CopyRect 

c l  d 
push 
mov 
push 
push 
push 

1 es 
I d s  
mov 
mov 
sub 
mov 
sub 

mov 
s h r  

adc 
r e p  
add 
add 
dec 
j n z  

POP 
POP 
POP 
POP 
r e t  

end 

RowLoop3: 

r e p  

JopyRect 

Masked 

dw ? : w i d t h   o f   b u f f e r   f r o m   w h i c h   t o   c o p y  

_CopyRect 
p roc   nea r  

d i . [ b p + D e s t B u f f e r P t r ]  
s i . [ b p + S r c B u f f e r P t r ]  
dx. [bp+CopyHeight l  
bx , [bp+DestBuf fe rWid th l   :d is tance  f rom  end o f  one des t   scan 
bx.Cbp+CopyWidthl : o f   c o p y   t o   t h e   n e x t  
ax . [bp+SrcBuf fe rWid th l   :d is tance  f rom  end  o f   one  source   scan 
ax.Cbp+CopyWidthl ; o f  copy t o   t h e   n e x t  

cx. [bp+CopyWidthl  :# o f   b y t e s   t o   c o p y  
cx.1 
movsw :copy  as many words   as   poss ib le  
cx , c x  
movsb  :copy  odd b y t e ,  i f  any 
s i  , a x   : p o i n t   t o   n e x t   s o u r c e   s c a n   l i n e  
d i  , bx 
dx 
RowLoop3 

ds 
d i  
s i  

: p o i n t   t o   n e x t   d e s t   s c a n   l i n e  
:count  down rows t o  fill 

bP 

endp 

Images 
Masked  images are  rendered by drawing an object’s pixels through a mask;  pixels 
are actually drawn only where the mask specifies that drawing is  allowed. This makes 
it possible to draw nonrectangular objects that  don’t improperly interfere with one 
another when  they overlap. Masked images also  make it possible  to  have transparent 
areas (windows)  within objects. Masked images produce far more realistic animation 
than do rectangular images, and therefore are  more desirable. Unfortunately, masked 
images are also considerably slower  to  draw-however, a good assembly language 
implementation can go a long way toward  making  masked images draw rapidly 
enough, as illustrated by this chapter’s code. (Masked  images are also  known  as spdes; 
some video hardware supports sprites directly, but on the PC it’s  necessary to handle 
sprites in software.) 

Who Was  that  Masked  image? 871 



Masked images make it possible to render scenes so that a given image convincingly 
appears  to  be  in  front of or  behind  other images; that is, so images are displayed in z- 
order (by distance). By consistently drawing images that  are  supposed to be  farther 
away before drawing nearer images, the  nearer images will appear  in  front of the 
other images, and because masked images draw  only  precisely the correct pixels (as 
opposed to blank pixels in the  bounding  rectangle), there’s no interference between 
overlapping images to destroy the illusion. 
In this chapter, I’ve used the  approach of having separate,  paired masks and images. 
Another, quite  different  approach to masking is to specify a transparent  color  for 
copying, and copy only those pixels that are  not  the transparent color. This has the 
advantage of not requiring  separate mask data, so it’s more compact, and  the code 
to implement this is a little less  complex than the full masking I’ve implemented. On 
the  other  hand,  the  transparent color approach is  less flexible because it makes one 
color undrawable. Also, with a transparent color, it’s not possible to keep the same 
base image but use different masks, because the mask information is embedded  in 
the image data. 

Internal Animation 
I’ve added  another feature essential to producing convincing animation: internal 
animation, which  is the process of changing the  appearance of a given object over 
time, as distinguished from  changing only the locution of a given object. Internal 
animation makes images look active and alive.  I’ve implemented  the simplest pos- 
sible form of internal animation in Listing  46.1-alternation  between two images-but 
even  this  level  of internal animation greatly  improves the feel of the overall animation. 
You could easily increase the number of  images  cycled through, simply  by increasing the 
value of InternalAnimateMax for a given  entity. You could also implement  more com- 
plex  image-selection  logic  to  produce  more  interesting and less predictable 
internal-animation effects, such as jumping,  ducking,  running, and  the like. 

Dirty-Rectangle  Management 
As mentioned above, dirty-rectangle animation makes it possible to access  display 
memory a minimum number of times. The previous chapter’s code  didn’t do any of 
that; instead, it  copied all portions of  every dirty rectangle to the screen, regardless 
of overlap between rectangles. The code I’ve presented  in this chapter goes to the 
other extreme, taking great pains never to  draw overlapped portions of rectangles 
more  than  once.  This is accomplished by checking for overlap whenever a rectangle 
is to be  added to the dirty list.  When overlap with an existing rectangle is detected, 
the new rectangle is reduced to between zero and  four nonoverlapping rectangles. 
Those rectangles are  then again considered  for  addition to the dirty list, and may 
again be  reduced, if additional overlap is detected. 

872 Chapter 46 



A good deal of code is required to generate  a fully nonoverlapped dirty list. Is it 
worth it? It certainly can be, but  in  the case  of  Listing 46.1, probably not. For one 
thing, you’d need larger, heavily overlapped objects for this approach to pay  off big. 
Besides, this program is mostly in C, and spends  a  lot of time doing things other  than 
actually  accessing  display  memory. It also  takes a fair amount of time just to generate 
the nonoverlapped list; the overhead of all the  looping, intersecting, and calling 
required to generate  the list eats up a lot of the benefits of accessing  display  memory 
less often. Nonetheless, fully nonoverlapped drawing can be useful under  the right 
circumstances, and I’ve implemented it in Listing 46.1 so you’ll  have something to 
refer to should you decide to go this route. 
There  are  a  couple of additional  techniques you might try if you  want to wring  maxi- 
mum performance  out of dirty-rectangle animation. You could try coalescing 
rectangles as you generate  the dirty-rectangle list. That is, you could  detect pairs of 
rectangles that can be joined together  into  larger rectangles, so that fewer, larger 
rectangles would  have to be copied. This would boost the efficiency of the low-level 
copying code, albeit at the cost of some cycles in the dirty-list management  code. 
You might also  try taking advantage of the  natural  coherence of animated graphics 
screens. In particular, because the rectangle used to erase an image at its old loca- 
tion often overlaps the rectangle within  which the image resides at its new location, 
you could just directly generate  the two or  three nonoverlapped rectangles required 
to copy both  the erase rectangle and  the new-image rectangle for any single moving 
image. The calculation of these rectangles could be  very efficient, given that you 
know in advance the direction of motion of your images. Handling this particular 
overlap case  would eliminate most overlapped drawing, at a minimal cost. You might 
then  decide to ignore overlapped drawing between different images, which tends  to 
be both less common and  more expensive to identify and handle. 

Drawing Order and  Visual  Quality 
A final note on dirty-rectangle animation  concerns the quality of the displayed screen 
image. In  the last chapter, we simply stuffed dirty rectangles into  a list in  the  order 
they  became  dirty, and  then copied all of the rectangles in that same order.  Unfortu- 
nately,  this caused all of the erase rectangles to be copied first, followed by all of the 
rectangles of the images at their new locations. Consequently, there was a significant 
delay between the  appearance of the erase rectangle for  a given image and  the ap- 
pearance of the new rectangle. A byproduct was the fact that a partially  complete-part 
old,  part new-image  was visible long  enough to be noticed.  In  short,  although  the 
pixels ended  up correct, they  were in an  intermediate,  incorrect state for  a sufficient 
period of time to  make the  animation look wrong. 
This violated a  fundamental  rule of animation: No pixel should ever be displuyed in a 
perceptibZy incorrect state. To correct  the  problem, I’ve sorted  the dirty rectangles first 

Who Was  that  Masked  Image? 873 



by Y coordinate,  and secondly by X coordinate.  This means the screen updates  from 
the top down, and from  left  to  right, so the several  nonoverlapping  rectangles  copied to 
draw a given image should  be drawn nearly simultaneously.  Run the  code  from  the 
last chapter  and  then this chapter; you’ll see quite  a  difference  in  appearance. 
Avoid the  trap of thinking  animation is merely a  matter of drawing the  right pixels, 
one after another. Animation is the art of  drawing the rightpwls at  the  right  times so that 
the eye and  brain see  what you want them to see. Animation is a  lot  more challeng- 
ing  than merely cranking out pixels, and  it  sure as heck isn’t a purely linear process. 

874 Chapter 46 



chapter 47

mode x: 256-color vga magic



VGA’s Undocumented 
timal“ Mode 

At a book signing fo? n of Code Optimization, an attractive young woman 
came up to me, holding and said,  ‘You’re  Michael  Abrash, aren’t you?” I con- 
fessed that  I was, prepared to respond  in an appropriately modest yet proud way to 
the compliments I a s  sure would  follow. (It was  my own book signing, after all.) It 
didn’t work out  that way, though. The first thing  out of her  mouth was: 
“‘Mode X’ is a s name  for  a graphics mode.” As my jaw started to drop, she 
added, “ dn’t invent the  mode,  either. My husband  did  it  before you did.” 
And they say there &e no groupies in  programming! 
Well. I never  claimed that I invented the mode (which is a 320x240  256-color mode with 
some very special properties, as  we’ll see shortly).  I  did discover it  independently, 
but so did other people  in the game business, some of them no  doubt before I did. 
The difference is that all those other people  held onto this powerful mode as a  trade 
secret, while I didn’t; instead,  I  spread  the word as broadly as I could in my column 
in 07; DobbSJournaZ, on  the theory that  the  more  people knew about this mode,  the 
more valuable it would be. And I succeeded, as evidenced by the fact that this now 
widely-used mode is  universally  known by the  name  I gave it  in 00) “Mode X.” Nei- 
ther  do I  think that’s a  bad name; it’s short, catchy, and easy to remember, and it 
befits the mystery status of  this mode, which was omitted entirely from IBM’s docu- 
mentation of the VGA. 

877 



In fact,  when  all is said and  done, Mode X is one of  my favorite accomplishments. I 
remember  reading  that Charles Schultz, creator of “Peanuts,” was particularly proud 
of  having introduced  the  phrase “security blanket” to the English language. I feel 
much  the same way about Mode X; it’s now a firmly entrenched  part of the com- 
puter  lexicon,  and how often do any  of  us get  a  chance to do that? And that’s not to 
mention all the  excellent games that would not have been as good  without Mode X. 
So, in  the  end, I’m  thoroughly pleased with  Mode X; the world is a  better place for it, 
even if it  did cost  me my one potential  female  fan.  (Contrary  to  popular belief, the 
lives  of computer columnists and rock stars are  not,  repeat, not, all that similar.) This 
and  the following two chapters  are based on  the DDJcolumns that  started  it all  back 
in  1991, three columns that  generated  a  tremendous  amount of interest  and spawned 
a  ton of games, and  about which I still regularly get  letters  and e-mail.  Ladies and 
gentlemen,  I give  you ... Mode X. 

What Makes Mode X Special? 
Consider the strange case  of the VGA’s 320x240  256-color  mode-Mode  X-which  is 
undeniably complex to program  and isn’t  even documented by  IBM-but which  is, 
nonetheless, perhaps the single  best  mode the VGA has  to  offer,  especially for animation. 
We’ve seen the VGA’s undocumented 256-color modes, in  Chapters 31 and 32, but 
now  it’s time to delve into  the wonders of  Mode X itself.  (Most  of the  performance 
tips I’ll  discuss for this mode also  apply to the other  nonstandard 256-color modes, 
however.)  Five features set  Mode X apart from other VGA modes.  First, it has a  1:l aspect 
ratio,  resulting in equal pixel  spacing  horizontally and vertically (that is, square  pixels). 
Square pixels  make for  the most attractive displays, and avoid considerable  program- 
ming effort  that would  otherwise  be  necessary to adjust graphics primitives and images 
to match the screen’s  pixel spacing. (For  example, with square pixels, a circle can be 
drawn  as a circle; otherwise, it must be drawn  as an ellipse that  corrects  for  the aspect 
ratio-a  slower and considerably more complicated process.) In  contrast,  mode 13H, 
the only documented 256-color mode, provides a  nonsquare 320x200 resolution. 
Second, Mode X allows page flipping,  a  prerequisite  for  the  smoothest possible ani- 
mation. Mode 13H does not allow page flipping, nor does mode 12H, the VGA’s 
high-resolution 640x480  16-color mode. 
Third, Mode X allows the VGAs plane-oriented hardware to be  used  to process pix- 
els in  parallel, improving performance by up to  four times  over mode  13H. 
Fourth, like mode  13H  but  unlike all other VGA modes, Mode X is a byte-per-pixel 
mode  (each pixel is controlled by one byte  in  display memory),  eliminating  the slow 
read-before-write and bit-masking operations often required in l6-color modes, where 
each byte  of  display memory represents  more  than  a single pixel. In  addition  to 
cutting  the  number of  memory  accesses in half, this is important because the 486/ 
Pentium write FIFO and  the memory caching schemes used by many VGA clones 
speed up writes more  than  reads. 

878 Chapter 47 



Fifth, unlike mode 13H, Mode X has plenty of offscreen memory free for image 
storage. This is particularly  effective in conjunction with the use of the VGA’s latches; 
together, the latches and the off-screen memory allow images to be copied to the 
screen four pixels at a time. 
There’s a sixth feature of Mode X that’s not so terrific: It’s hard to program effi- 
ciently. As Chapters 23 through 30 of this book  demonstrates, 16-color VGA 
programming can  be demanding. Mode X is often as demanding as  16-color  pro- 
gramming, and operates by a set of rules that turns everything you’ve learned in 
16-color mode sideways. Programming Mode X is nothing like programming  the 
nice, flat bitmap of mode  13H, or, for  that matter, the flat, linear (albeit banked) 
bitmap used by 256-color  SuperVGA  modes.  (I’t’s important to remember  that Mode 
X works on all VGAs, notjust SuperVGAs.)  Many programmers I talk to love the flat 
bitmap model, and think that it’s the  ideal  organization  for  display  memory  because  it’s 
so straightforward to program. Here, however, the complexity of Mode X is opportu- 
nity-opportunity for the best combination of performance and appearance the VGA 
has  to  offer. If  you do 256-color programming, and especially if  you  use animation, 
you’re missing the boat if you’re not using  Mode X. 
Although some developers have taken advantage  of  Mode X, its  use is certainly not 
universal, being entirely undocumented; only an experienced VGA programmer 
would  have the slightest inkling that it even  exists, and figuring out how to make it 
perform  beyond the write pixel/read  pixel  level is no mean  feat.  Little other than my 
DDJcolumns  has been  published about it,  although John Bridges  has  widely distributed 
his code for a number of undocumented 256-color resolutions, and I’d  like to ac- 
knowledge the influence of  his code on the mode set routine presented in  this  chapter. 
Given the tremendous advantages of Mode X over the documented  mode 13H, I’d 
very much like to get it into the hands of  as many developers as  possible, so I’m 
going to spend the next few chapters exploring this odd but worthy mode. I’ll  pro- 
vide mode set code, delineate the bitmap organization, and show  how the basic  write 
pixel and read pixel operations work. Then, I’ll  move on to the magic stuE rect- 
angle fills, screen clears, scrolls,  image copies, pixel  inversion, and, yes,  polygon  fills 
(just a different driver for the polygon code), all  blurry  fast;  hardware raster ops; and 
page flipping. In the end, I’ll build a working animation program that shows many 
of the features of Mode X in action. 
The mode set code is the logical  place to begin. 

Selecting 320x240 256-Color Mode 
We could, if  we wished,  write our own mode set code for Mode X from scratch-but 
why bother? Instead, we’ll let the BIOS do most of the work  by having it set up mode 
13H, which  we’ll then turn  into Mode X by changing a few registers.  Listing  47.1 
does exactly that. 

Mode X: 256-Color VGA Magic 879 



The  code in Listing  47.1 has been  around for some time, and  the very first version 
had a bug  that serves up  an interesting lesson. The original DDJversion made images 
roll on IBM’s fixed-frequency VGA monitors, a problem  that  didn’t come to my at- 
tention  until the code was in  print  and shipped to 100,000 readers. 
The bug came about this way: The code I modified to make the Mode X mode set 
code used the VGA’s 28-MHz clock. Mode X should have used the %-MHz clock, a 
simple matter of setting  bit 2 of the Miscellaneous Output register (3C2H) to 0 in- 
stead of 1. 
Alas, I neglected to change  that single bit, so frames were drawn at a faster rate  than 
they should have been; however, both of  my monitors are multifrequency types, and 
they automatically compensated  for the faster frame  rate. Consequently, my clock- 
selection bug was invisible and innocuous-until it was distributed broadly and 
everybody started  banging on it. 
IBM makes  only fixed-frequency VGA monitors, which require very specific frame 
rates; if they don’t  get what you’ve told them  to  expect,  the image rolls. The cor- 
rected version  is the  one shown here as  Listing  47.1; it  does select the 25-MHz clock, 
and works just fine on fixed-frequency monitors. 
Why didn’t I catch this bug?  Neither I nor a single one of  my testers had a fixed- 
frequency monitor! This nicely illustrates how difficult it is these days to test code in 
all the PC-compatible environments  in which it might run.  The problem is particu- 
larly  severe for small  developers,  who can’t afford to buy  every model of  every hardware 
component  from every manufacturer; just imagine trying to test network-aware  soft- 
ware in all  possible configurations! 
When people ask  why software isn’t bulletproof; why it crashes or doesn’t coexist 
with certain programs; why  PC clones aren’t always compatible; why, in  short,  the 
myriad irritations of using a PC  exist-this is a big part of the reason. I guess that’s 
just  the price we  pay for  the  unfettered creativity and vast choice of the PC market. 

LISTING 47.1  L47- 1 .ASM 
; Mode X (320x240.   256  co lors)  mode s e t   r o u t i n e .  Works on a l l  VGAs. 

; * R e v i s e d   6 / 1 9 / 9 1   t o   s e l e c t   c o r r e c t   c l o c k :   f i x e s   v e r t i c a l   r o l l  * 
; * p rob lems   on   f i xed - f requency  ( I B M  8 5 1 X - t y p e )   m o n i t o r s .  * 

; C n e a r - c a l l a b l e   a s :  

; T e s t e d   w i t h  TASM 
; M o d i f i e d   f r o m   p u b l i c - d o m a i n  mode set   code  by  John  Br idges.  

SC-INDEX 
CRTC-INDEX 

equ  03c4h  ;Sequence  Contro l ler   Index 
equ  03d4h ;CRT C o n t r o l l e r   I n d e x  

MIS-OUTPUT 
SCREEN-SEG 

equ  03c2h ; M i s c e l l a n e o u s   O u t p u t   r e g i s t e r  
equ OaOOOh ;segment o f   d i s p l a y  memory i n  mode X 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

vo id  Set320x240Mode(void) :  

.model  small  

. d a t a  

880 Chapter 47 



: I n d e x / d a t a   p a i r s   f o r  CRT C o n t r o l l e r   r e g i s t e r s   t h a t   d i f f e r  between 
: mode 13h  and mode X. 
CRTParms l a b e l   w o r d  

dw 00d06h : v e r t i c a l   t o t a l  
dw 03e07h : o v e r f l o w   ( b i t  8 o f   v e r t i c a l   c o u n t s )  
dw 04109h : c e l l   h e i g h t   ( 2   t o   d o u b l e - s c a n )  
dw OealOh :v  sync s t a r t  
dw O a c l l h  :v sync  end  and p r o t e c t   c r 0 - c r 7  
dw O d f l 2 h  ; v e r t i c a l   d i s p l a y e d  
dw 00014h : t u r n   o f f  dword mode 
dw Oe715h :v b l a n k   s t a r t  
dw 00616h ;v b lank   end 
dw Oe317h : t u r n  on b y t e  mode 

CRT-PARM-LENGTH equ  ((S-CRTParms)/2) 

p u b l i c  -Set320x240Mode 
.code 

- Set320x240Mode  Droc  near 
push 
push 
push 

mov 
i n t  

mov 
mov 
o u t  
mov 
o u t  

mov 
mov 
o u t  

mov 
mov 
o u t  

mov 
mov 
o u t  
i nc 
i n  
and 
o u t  
dec 
c l  d 
mov 
mov 

bP : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  

d i  
s i   : p r e s e r v e  C r e g i s t e r   v a r s  

: ( d o n ' t   c o u n t  on B I O S  p r e s e r v i n g   a n y t h i n g )  

ax.13h : l e t   t h e  BIOS s e t   s t a n d a r d   2 5 6 - c o l o r  
10h : mode ( 3 2 0 x 2 0 0   l i n e a r )  

dx.SC-INDEX 
ax,  0604h 
dx .ax   ; d i sab le   cha in4  mode 
ax.0100h 
dx .ax   : synch ronous   rese t   wh i l e   se t t i ng   M isc   Ou tpu t  

dx.MISC-OUTPUT 
a1  .Oe3h 
d x . a l   : s e l e c t  25 MHz d o t   c l o c k  & 60 Hz s c a n n i n g   r a t e  

dx.SC-INDEX 
ax,  0300h 
dx .ax   : undo   rese t   ( res ta r t   sequencer )  

dx.CRTC-INDEX : rep rog ram  the  CRT C o n t r o l l e r  
a l . l l h  ;VSync End r e g   c o n t a i n s   r e g i s t e r   w r i t e  
dx .a l  : p r o t e c t   b i t  
dx :CRT C o n t r o l  1 e r   D a t a   r e g i s t e r  
a l . d x   : g e t   c u r r e n t  VSync  End r e g i s t e r   s e t t i n g  
a l . 7 f h  :remove w r i t e   p r o t e c t  on v a r i o u s  
d x . a l  : CRTC r e g i s t e r s  
dx :CRT C o n t r o l l e r   I n d e x  

s i . o f f s e t  CRTParms : p o i n t   t o  CRT p a r a m e t e r   t a b l e  
cx.CRT-PARM-LENGTH :# o f   t a b l e   e n t r i e s  

: fo r   sa fe ty ,   even   t hough   c lock   unchanged  

SetCRTParmsLoop: 
1  odsw : g e t   t h e   n e x t  CRT I n d e x / O a t a   p a i r  
o u t   d x . a x   : s e t   t h e   n e x t  CRT I n d e x / O a t a   p a i r  
l o o p  SetCRTParmsLoop 

mov dx.SC-INDEX 
mov ax.OfO2h 
o u t   d x , a x   : e n a b l e   w r i t e s   t o   a l l   f o u r   p l a n e s  
mov  ax.SCREEN-SEG :now c l e a r   a l l   d i s p l a y  memory. 8 p i x e l s  
mov es.ax : a t  a t i m e  

Mode X: 256-Color VGA Magic 88 1 



sub d i , d i   : p o i n t  E S : D I  t o   d i s p l a y  memory 
sub  ax,ax  :c lear  t o   z e r o - v a l u e   p i x e l s  
mov cx.8000h :# o f  words i n   d i s p l a y  memory 
r e p   s t o s w   : c l e a r   a l l   o f   d i s p l a y  memory 

pop d i   : r e s t o r e  C r e g i s t e r   v a r s  
pop s i  
POP bP : r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  
r e t  

end 
- Set320x240Mode  endp 

After setting up mode 13H, Listing  47.1 alters the vertical counts and timings to 
select 480  visible  scan lines. (There’s no  need to alter any horizontal values, because 
mode 13H and Mode X both have  320-pixel horizontal resolutions.) The Maximum 
Scan Line register is programmed to double scan each line (that is, repeat  each scan 
line twice), however, so we get  an effective vertical resolution of  240 scan lines. It is, 
in fact, possible to get 400 or 480 independent scan lines in 256-color mode, as 
discussed in Chapter 31 and 32;  however,  400-scan-line  modes  lack square pixels and 
can’t support simultaneous off-screen  memory and page flipping. Furthermore, 480- 
scan-line modes lack page flipping altogether, due to memory constraints. 
At the same time, Listing 4’7.1 programs  the VGA’s bitmap to a  planar organization 
that is similar to  that used by the 16-color modes, and utterly different  from the 
linear  bitmap of mode 13H. The bizarre bitmap organization of  Mode X is  shown in 
Figure 47.1. The first pixel (the pixel at  the  upper left corner of the  screen) is con- 
trolled by the byte at offset 0 in  plane 0. (The  one thing  that Mode X blessedly has in 
common with mode 13H is that  each pixel is controlled by a single byte, eliminating 
the  need to mask out individual bits of display memory.) The second pixel, immedi- 
ately to the right of the first pixel, is controlled by the byte at offset 0 in plane 1. The 
third pixel comes from offset 0 in plane 2, and  the  fourth pixel from offset 0 in plane 
3. Then,  the fifth pixel is controlled by the byte at offset 1 in  plane 0, and  that cycle 
continues, with each group of four pixels spread across the  four planes at  the same 
address. The offset M of pixel N in display  memory is M = N/4, and  the plane P of 
pixel N is P = N mod 4. For display  memory  writes, the plane is selected by setting bit 
P of the Map  Mask register (Sequence  Controller register 2) to 1 and all other bits to 
0; for display  memory reads, the  plane is selected by setting the Read  Map register 
(Graphics Controller register 4) to P. 
It goes without saying that this is one ugly bitmap organization, requiring  a  lot of 
overhead to manipulate  a single pixel. The write pixel code shown in Listing 47.2 
must determine  the  appropriate  plane  and  perform  a 16-bit OUT to select that  plane 
for  each pixel written, and likewise for  the  read pixel code shown in Listing  47.3. 
Calculating and mapping in a  plane  once  for each pixel written is  scarcely a  recipe 
for  performance. 
That’s all right,  though, because most graphics software spends little time drawing 
individual pixels.  I’ve provided the write and read pixel routines as  basic  primitives, 

882 Chapter 47 



and so you’ll understand how the  bitmap is organized,  but the building blocks of 
high-performance graphics software are fills, copies, and bitblts, and it’s there  that 
Mode X shines. 

LISTING 47.2 L47-2.ASM 
: Mode X (320x240. 256 c o l o r s )   w r i t e   p i x e l   r o u t i n e .  Works  on a l l  VGAs. 
: No c l i p p i n g   i s   p e r f o r m e d .  
; C n e a r - c a l l a b l e   a s :  

; v o i d   W r i t e P i x e l X ( i n t  X .  i n t  Y .  uns igned i n t  PageBase. i n t   C o l o r ) ;  

SC-INDEX 
MAP-MASK 
SCREEN-SEG 
SCREENKWIDTH 

parms s t r u c  
dw 

X dw 
Y dw 
PageBase dw 

C o l o r  dw 
parms ends 

equ  03c4h :Sequence C o n t r o l l e r   I n d e x  
equ  02h : i n d e x   i n  SC o f  Map Mask r e g i s t e r  
equ OaOOOh :segment o f   d i s p l a y  memory i n  mode X 
equ EO ; w i d t h   o f   s c r e e n   i n   b y t e s   f r o m   o n e   s c a n   l i n e  

; t o   t h e   n e x t  

2 dup ( ? )  :pushed BP and r e t u r n   a d d r e s s  
? : X  c o o r d i n a t e   o f   p i x e l   t o  draw 
? : Y  c o o r d i n a t e   o f   p i x e l   t o   d r a w  
? ;base o f f s e t   i n   d i s p l a y  memory o f  page i n  

? ; c o l o r   i n   w h i c h   t o  draw p i x e l  
; w h i c h   t o   d r a w   p i x e l  

Mode X: 256-Color VGA Magic 883 



.model 

.code 
p u b l   i c  

-Wri t e P i x e l  X 
push 
mov 

mov 
mu1 
mov 
s h r  
s h r  
add 
add 
mov 
mov 

mov 
and 
mov 
s h l  
mov 
o u t  

mov 
mov 

POP 
r e t  

end 
- W r i t e P i x e l X  

sma l l  

-Wr i teP ixe lX  
p roc   nea r  
bp 
bP*sP 

ax.SCREEN-WIDTH 
C bp+Y 1 
bx.Cbp+XI 
bx.1 
bx.1 
bx,  ax 
bx.[bp+PageBasel 
ax.SCREEN-SEG 
es.ax 

c l . b y t e   p t r  Cbp+Xl 
c l   . O l l b  
ax.0100h + MAP-MASK 
ah .c l  
dx.SC-INDEX 
dx,  ax 

; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
; p o i n t   t o   l o c a l   s t a c k   f r a m e  

; o f f s e t   o f   p i x e l ' s   s c a n   l i n e   i n  page 

;X/4 - o f f s e t   o f   p i x e l   i n   s c a n   l i n e  
; o f f s e t   o f   p i x e l   i n  page 
: o f f s e t   o f   p i x e l   i n   d i s p l a y  memory 

; p o i n t  ES:BX t o   t h e   p i x e l ' s   a d d r e s s  

;CL - p i x e l ' s   p l a n e  
;AL - i n d e x   i n  SC o f  Map Mask r e g  
; s e t   o n l y   t h e   b i t   f o r   t h e   p i x e l ' s   p l a n e   t o  1 
; s e t   t h e  Map Mask t o   e n a b l e   o n l y   t h e  
; p i x e l ' s   p l a n e  

a1 . b y t e   p t r   [ b p + C o l o r ]  
e s : [ b x l . a l   ; d r a w   t h e   p i x e l   i n   t h e   d e s i r e d   c o l o r  

b p   ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

endD 

LISTING 47.3 L47-3.ASM 
: Mode X (320x240. 256 c o l o r s )   r e a d   p i x e l   r o u t i n e .  Works  on a l l  VGAs. 
; No c l i p p i n g   i s   p e r f o r m e d .  
: C n e a r - c a l l a b l e   a s :  

: u n s i g n e d   i n t   R e a d P i x e l X ( i n t  X .  i n t  Y ,  uns igned   i n t   PageBase) ;  

GC-INDEX 
READ-MAP 
SCREEN-SEG 
SCREEN-WIDTH 

parms s t r u c  
dw 

X dw 
Y dw 
PageBase dw 

parms  ends 

03ceh   :Graph ics   Con t ro l l e r   I ndex  
04h  : index i n  GC o f   t h e  Read Map r e g i s t e r  
OaOOOh :segment o f   d i s p l a y  memory i n  mode X 
80 ; w i d t h   o f   s c r e e n   i n   b y t e s   f r o m  one  scan l i n e  

: t o   t h e   n e x t  

.model  smal 1 

.code 
publ  i c  -Readpixel X 

-ReadPixelX p r o c   n e a r  
push bp 
mov bp.sp 

:pushed BP and r e t u r n   a d d r e s s  
; X  c o o r d i n a t e   o f   p i x e l   t o   r e a d  
; Y  c o o r d i n a t e   o f   p i x e l   t o   r e a d  
;base o f f s e t   i n   d i s p l a y  memory o f  page  f rom 
; w h i c h   t o   r e a d   p i x e l  

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
; p o i n t   t o   l o c a l   s t a c k   f r a m e  

884 Chapter 47 



mov 
mu1 
mov 
s h r  
s h r  
add 
add 
mov 
mov 

mov 
and 
mov 
mov 
o u t  

mov 
sub 

POP 
r e t  

- ReadPixel  X 
end 

ax.SCREEN-WIDTH 
[ bp+Y 1 
bx.Cbp+XI 
b x . 1  
bx.1 
bx,  ax 
bx.[bp+PageBasel 
ax.SCREEN-SEG 
es  ,ax 

a h , b y t e   p t r  [bp+X1 
a h . 0 l l b  
a1 , READ-MAP 
dx.GC-INDEX 
dx.ax 

a1 . e s : [ b x l  
ah.ah 

bP 

endp 

; o f f s e t   o f   p i x e l ' s   s c a n   l i n e   i n  page 

;X/4 - o f f s e t   o f   p i x e l   i n  scan l i n e  
; o f f s e t   o f   p i x e l   i n  page 
: o f f s e t   o f   p i x e l   i n   d i s p l a y  memory 

: p o i n t  ES:BX t o   t h e   p i x e l ' s   a d d r e s s  

:AH - p i x e l ' s   p l a n e  
;AL - i n d e x   i n  GC o f   t h e  Read Map r e g  
; s e t   t h e  Read Map t o   r e a d   t h e   p i x e l ' s  
: p l a n e  

; r e a d   t h e   p i x e l ' s   c o l o r  
: c o n v e r t  i t  t o  an u n s i g n e d   i n t  

: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

Designing from a Mode X Perspective 
Listing 47.4 shows Mode X rectangle fill code. The plane is selected for each pixel  in 
turn, with  drawing  cycling from plane 0 to plane 3, then wrapping back to plane 0. 
This is the sort of code that stems from a write-pixel line of thinking; it reflects not a 
whit  of the unique perspective that Mode X demands, and although it looks  reason- 
ably efficient, it is in fact some of the slowest graphics code you  will  ever see.  I've 
provided  Listing 47.4 partly for illustrative purposes, but mostly so we'll  have a point 
of reference for the substantial speed-up that's  possible  with code that's designed 
from a Mode X perspective. 

LISTING 47.4  L47-4.ASM 
: Mode X (320x240.   256  co lo rs )   rec tang le  fill r o u t i n e .  Works  on a l l  
: VGAs. Uses s l o w   a p p r o a c h   t h a t   s e l e c t s   t h e   p l a n e   e x p l i c i t l y   f o r   e a c h  
: p i x e l .   F i l l s  up t o   b u t   n o t   i n c l u d i n g   t h e   c o l u m n   a t  EndX and  the  row 
: a t  EndY. No c l i p p i n g   i s   p e r f o r m e d .  
: C n e a r - c a l l a b l e   a s :  

: v o i d   F i l l R e c t a n g l e X ( i n t   S t a r t X .   i n t  S t a r t Y .  i n t  EndX. i n t  EndY. 
u n s i g n e d   i n t  PageBase. i n t   C o l o r ) :  

SC-INDEX 
MAP-MASK 
SCREEN-SEG 
SCREEN-WIDTH 

parms s t r u c  
dw 

S t a r t X  dw 
S t a r t Y  dw 
EndX dw 

03c4h 
02h 
OaOOOh 
80 

:Sequence C o n t r o l l e r   I n d e x  
: i n d e x   i n  SC o f  Map Mask r e g i s t e r  
:segment o f   d i s p l a y  memory i n  mode X 
: w i d t h   o f   s c r e e n   i n   b y t e s   f r o m  one  scan l i n e  
: t o   t h e   n e x t  

:pushed BP and r e t u r n   a d d r e s s  
: X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
: Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
; X  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e   r o w   a t  EndX i s   n o t   f i l l e d )  

Mode X: 256-Color VGA Magic 885 



EndY dw ? 

PageBase dw ? 

C o l o r  dw ? 
parms  ends 

.model  smal 1 

.code 
pub1 i c -Fi   11  Rectangl  eX 

- Fi  11  Rectangl  eX p r o c   n e a r  
push 
mov 
push 
push 

mov 
mu1 
mov 
s h r  
s h r  

add 
add 

mov 
mov 

mov 
mov 
o u t  
i nc 
mov 
and 
mov 
s h l  
mov 
mov 
sub 
j l e  
mov 
sub 
j l e  

push 
push 
mov 

F i  11  RowsLoop: 

bP 
bP.SP 
s i  
d i  

ax.SCREEN-WIDTH 
[ b p + S t a r t Y l  
d i , [ b p + S t a r t X ]  
d i  .1 
d i  .1 

d i   , a x  
di.[bp+PageBasel 

ax.SCREEN-SEG 
es.ax 

dx.SC-INDEX 
a1 .MAP-MASK 
d x . a l  
dx  
c l . b y t e   p t r   [ b p + S t a r t X l  
c l   . D l l b  
a1 .O lh  
a1 . c l  
a h , b y t e   p t r   [ b p + C o l o r l  
bx.[bp+EndYI 
bx . [bp+Star tY I  
F i   11  Done 
s i  , [bp+EndX] 
s i  , [ b p + S t a r t X l  
Fi   11 Done 

ax 
d i  
c x . s i  

F i l l S c a n L i n e L o o p :  
o u t   d x . a l  
mov e s : [ d i l . a h  
s h l   a 1 , l  
and  a1 . O l l l l b  
j nz   AddressSe t  
i n c   d i  
mov al .00001b 

1 oop Fi  11  ScanLi  neLoop 
pop d i  
add d i  .SCREEN-WIDTH 

AddressSet:  

:Y c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e   c o l u m n   a t  EndY i s   n o t   f i l l e d )  
;base o f f s e t   i n   d i s p l a y  memory o f  page i n  
; w h i c h   t o  fill r e c t a n g l e  
; c o l o r   i n   w h i c h   t o   d r a w   p i x e l  

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
; p o i n t   t o   l o c a l   s t a c k   f r a m e  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

; o f f s e t   i n  page o f   t o p   r e c t a n g l e   s c a n   l i n e  

:X/4 - o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  scan 
: l i n e  
: o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  page 
; o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  
: d i s p l a y  memory 

: p o i n t  E S : D I  t o   t h e   f i r s t   r e c t a n g l e   p i x e l ' s  
; address 
; s e t   t h e  Sequence C o n t r o l l e r   I n d e x   t o  
; p o i n t   t o   t h e  Map Mask r e g i s t e r  

; p o i n t  DX t o   t h e  SC D a t a   r e g i s t e r  

;CL - f i r s t   r e c t a n g l e   p i x e l ' s   p l a n e  

; s e t   o n l y   t h e   b i t   f o r   t h e   p i x e l ' s   p l a n e   t o  1 
: c o l o r   w i t h   w h i c h   t o  fill 

;BX - h e i g h t   o f   r e c t a n g l e  
: s k i p  i f  0 or n e g a t i v e   h e i g h t  

:CX - w i d t h   o f   r e c t a n g l e  
: s k i p  i f  0 o r   n e g a t i v e   w i d t h  

;remember t h e   p l a n e  mask f o r   t h e   l e f t  edge 
;remember t h e   s t a r t   o f f s e t   o f   t h e   s c a n   l i n e  
: s e t   c o u n t   o f   p i x e l s   i n   t h i s   s c a n   l i n e  

: s e t   t h e   p l a n e   f o r   t h i s   p i x e l  
: d r a w   t h e   p i x e l  
: a d j u s t   t h e   p l a n e  mask f o r   t h e   n e x t   p i x e l ' s  
: b i t ,  modulo 4 
:advance  address i f  we t u r n e d   o v e r   f r o m  
: p l a n e  3 t o   p l a n e  0 
: s e t   p l a n e  mask b i t   f o r   p l a n e  0 

: r e t r i e v e   t h e   s t a r t   o f f s e t   o f   t h e   s c a n   l i n e  
; p o i n t   t o   t h e   s t a r t  o f  t h e   n e x t   s c a n  
: l i n e   o f   t h e   r e c t a n g l e  

886 Chapter 47 



POP ax 
dec  bx 
j n z   F i  1  1  Rows Loop 

pop d i  
pop s i  

r e t  

end 

F i   1 1  Done: 

POP bp 

- Fi   11   Rec tang l  eX endp 

: r e t r i e v e   t h e   p l a n e  mask f o r   t h e   l e f t  edge 
;count  down s c a n   l i n e s  

; r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  

; r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

The two major weaknesses of Listing 47.4 both result from selecting the  plane on a 
pixel by pixel basis.  First, endless OUTs (which are particularly slow on 386s, 486s, 
and Pentiums, much slower than accesses to display  memory)  must be performed, 
and, second, REP STOS can’t be used. Listing 47.5 overcomes both these problems 
by tailoring the fill technique to the organization of display  memory.  Each plane is 
filled in its entirety in one burst  before  the  next  plane is processed, so only  five OUTs 
are  required in all, and REP STOS can indeed be used; I’ve used REP STOSB in 
Listings 47.5 and 47.6. REP STOSW could  be  used and would  improve performance on 
most VGAs; however, REP STOSW requires extra overhead  to  set up, so it can  be  slower 
for small rectangles,  especially on &bit VGAs. Note that doing an entire plane at  a time 
can produce  a “fading-in” effect for large images, because all columns for one plane 
are drawn before any columns  for  the  next. If this is a  problem, the  four planes can 
be cycled through  once  for  each scan line,  rather  than  once  for  the  entire rectangle. 
Listing 47.5 is 2.5 times faster than Listing 47.4 at clearing the screen on a 20-MHz 
cached 386 with a Paradise VGA. Although Listing 47.5 is  slightly  slower than  an 
equivalent mode 13H fill routine would be, it’s not grievously so. 

p In general, performingplane-at-a-time operations can  make almost any Mode X 
operation, at the worst, nearly as fast as the same operation in mode 13H (al- 
though  this sort of Mode Xprogramming is admittedly fairly complex). In this 
pursuit, it can help to organize data structures with Mode Xin mind. For example, 
icons could be prearranged in system memory with the pixels organized into four 
plane-oriented sets (oy, again, in four sets per scan line to avoid a  fading-in effect) 
to facilitate copying to  the screen a plane at  a time with REP MOVS. 

LISTING 47.5 L47-5.ASM 
; Mode X (320x240. 256 c o l o r s )   r e c t a n g l e  fill r o u t i n e .  Works on a l l  
; VGAs. Uses   med ium-speed  approach  tha t   se lec ts   each  p lane  on ly   once 
; p e r   r e c t a n g l e ;   t h i s   r e s u l t s   i n  a f a d e - i n   e f f e c t   f o r   l a r g e  
; r e c t a n g l e s .   F i l l s   u p  t o  b u t   n o t   i n c l u d i n g   t h e   c o l u m n   a t  EndX and t h e  
; row a t  EndY. No c l i p p i n g  i s  per formed.  
; C n e a r - c a l l a b l e   a s :  

; v o i d   F i l l R e c t a n g l e X ( i n t   S t a r t X .   i n t   S t a r t Y ,   i n t  EndX. i n t  EndY. 
uns igned i n t  PageBase, i n t   C o l o r ) ;  

SC- INDEX equ  03c4h 
MAPLMASK equ  02h  ; index i n  SC o f  Map Mask r e g i s t e r  
SCREEN-SEG equ OaOOOh ;segment o f   d i s p l a y  memory i n  mode X 

;Sequence C o n t r o l l e r   I n d e x  

Mode X: 256-Color VGA Magic 887 



SCREEN-WIDTH 

parms s t r u c  
dw 

S t a r t X  dw 
S t a r t Y  
EndX 

dw 
dw 

EndY dw 

PageBase dw 

C o l o r  dw 
parms  ends 

S t a r t o f f s e t  
Width 
H e i g h t  
P l a n e I n f o  

equ 80 

2 dup ( ? )  
? 
? 
? 

? 

? 

? 

equ - 2  
equ - 4  
equ - 6  
equ -8  

STACK-FRAME-SIZE equ 8 

.model  smal 1 

.code 
pub1 i c  - F i  11  Rectangl eX 

- F i  11 Rectangl  eX p r o c   n e a r  
push 
mov 
sub 
push 
push 

c l  d 
mov 
mu1 
mov 
s h r  
s h r  

add 
add 

mov 
mov 
mov 
mov 
mov 
o u t  
mov 
sub 
J l e  
mov 
mov 
mov 
CmP 
J l e  
dec 
and 
sub 
s h r  
s h r  

888 Chapter 47 

bp 
bp.  sp 
sp.STACK-FRAME-SIZE 
s i  
d i  

ax.SCREEN-WIDTH 
[bp+Sta r tY l  
d i  , [bp+Sta r tX l  
d i  .1 
d i  . I  

d i  ,ax 
di.Cbp+PageBasel 

ax.SCREEN-SEG 
es  ,ax 
C b p + S t a r t O f f s e t l , d i  
dx,SC-INDEX 
a1 .MAP-MASK 
d x . a l  
bx, [bp+EndY 1 
bx.Cbp+Star tY l  
F i   1 1  Done 
Cbp+Heightl .bx 
dx.  [bp+EndXI 
cx. [bp+Star tX]  
dx.cx 
F i  11 Done 
dx 
c x . n o t   O l l b  
dx.cx 
dx.1 
dx. 1 

; w i d t h   o f   s c r e e n   i n   b y t e s   f r o m  one  scan l i n e  
: t o   t h e   n e x t  

:pushed BP and r e t u r n   a d d r e s s  
: X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
: Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
; X  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e   r o w   a t  EndX i s   n o t   f i l l e d )  
:Y  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e   c o l u m n   a t  EndY i s   n o t   f i l l e d )  
;base o f f s e t   i n   d i s p l a y  memory o f  page i n  
: w h i c h   t o  fill r e c t a n g l e  
: c o l o r   i n   w h i c h   t o  d r a w   p i x e l  

; l o c a l   s t o r a g e   f o r   s t a r t   o f f s e t   o f   r e c t a n g l e  
: l o c a l   s t o r a g e   f o r   a d d r e s s   w i d t h   o f   r e c t a n g l e  
: l o c a l   s t o r a g e   f o r   h e i g h t   o f   r e c t a n g l e  
:1  oca1 s t o r a g e   f o r   p l a n e  IF and p l a n e  mask 

; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
: p o i n t   t o   l o c a l   s t a c k   f r a m e  
: a l l o c a t e   s p a c e   f o r   l o c a l   v a r s  
; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: o f f s e t   i n  page o f   t o p   r e c t a n g l e   s c a n   l i n e  

;X/4 - o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n   s c a n  
: l i n e  
: o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  page 
: o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  
: d i s p l a y  memory 

: p o i n t  ES:DI  t o   t h e   f i r s t   r e c t a n g l e   p i x e l ' s  
: address 
; s e t   t h e   S e q u e n c e   C o n t r o l l e r   I n d e x   t o  
: p o i n t   t o   t h e  Map Mask r e g i s t e r  

:BX - h e i g h t   o f   r e c t a n g l e  
; s k i p  i f  0 o r   n e g a t i v e   h e i g h t  

; s k i p  i f  0 o r   n e g a t i v e   w i d t h  



i n c   d x  ; I  o f   a d d r e s s e s   a c r o s s   r e c t a n g l e   t o  fill 
mov [bp+Width].dx 
mov word p t r  [bp+PlaneInfo],OOOlh 

F i   1 1  P1 anesLoop: 
mov 
mov 
o u t  
mov 
mov 
mov 
and 
CmP 
j a e  
dec 
j z  
i nc 

mov 
dec 
and 
CmP 
j be 
dec 

I n i t A d d r S e t :  

j z  
WidthSet :  

mov 
sub 

mov 
mov 

mov 

add 
r e  P 

dec 
j n z  

F i  11  RowsLoop: 

F i l l LoopBo t tom:  

: l o w e r   b y t e  - p l a n e  mask f o r   p l a n e  0.  
; u p p e r   b y t e  - p l a n e  # f o r   p l a n e  0 

ax,word p t r   [ b p + P l a n e I n f o ]  
dx.SC-INDEX+l ; p o i n t  DX t o   t h e  SC D a t a   r e g i s t e r  
d x . a l   : s e t   t h e   p l a n e   f o r   t h i s   p i x e l  
d i , [ b p + S t a r t O f f s e t l   ; p o i n t  E S : D I  t o   r e c t a n g l e   s t a r t  
dx.Cbp+Widthl 
c 1 , b y t e   p t r   [ b p + S t a r t X ]  
c l   . O l l b  
ah ,c l  
I n i t A d d r S e t  
d x  
Fi   11  LoopBottom 
d i  

c l . b y t e   p t r  [bp+EndX] 
c l  
c l   . O l l b  
ah .c l  
WidthSet  
dx 
F i  11  LoopBottom 

s i  .SCREEN-WIDTH 
s i  ,dx 

bx.Cbp+Heightl  
a l . b y t e   p t r   C b p + C o l o r l  

cx ,   dx  
s t o s b  
d i   , s i  

bx  
F i  11  RowsLoop 

;p lane  # o f   f i r s t   p i x e l  i n  i n i t i a l   b y t e  
;do we draw t h i s   p l a n e   i n   t h e   i n i t i a l   b y t e ?  
;yes 
;no. so s k i p   t h e   i n i t i a l   b y t e  
: s k i p   t h i s   p l a n e  i f  n o   p i x e l s   i n  i t  

;p lane  # o f   l a s t   p i x e l   i n   f i n a l   b y t e  
;do we draw t h i s   p l a n e  i n  t h e   f i n a l   b y t e ?  
:yes 
;no. s o  s k i p   t h e   f i n a l   b y t e  
; s k i p   t h i s   p l a n e s  i f  n o  p i x e l s   i n  i t  

: d i s t a n c e   f r o m   e n d   o f   o n e   s c a n   l i n e   t o   s t a r t  
; o f   n e x t  
;# o f   l i n e s   t o  fill 
: c o l o r   w i t h   w h i c h   t o  fill 

;# o f   b y t e s   a c r o s s   s c a n   l i n e  
;fill t h e   s c a n   l i n e   i n   t h i s   p l a n e  
: p o i n t   t o   t h e   s t a r t   o f   t h e   n e x t   s c a n  
: 1 i n e   o f   t h e   r e c t a n g l e  
; coun t  down s c a n   l i n e s  

mov ax.word p t r   C b p + P l a n e I n f o l  
s h l  a1 .1 
i n c  ah 
mov word p t r   [ b p + P l a n e I n f o ] . a x  
cmp ah.4  ;have we done a l l   p l a n e s ?  
j n z   F i   1 1  P1 anesLoop ; c o n t i n u e  i f  any  more  planes 

pop d i   ; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
pop s i  
mov sp,  bp 
POP bp 

; d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  

r e t  
; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

-Fi   11  Rectangl  eX endp 
end 

; s e t   t h e   p l a n e   b i t   t o   t h e   n e x t   p l a n e  
; i n c r e m e n t   t h e   p l a n e  # 

F i   1 1  Done: 

Hardware Assist from an Unexpected  Quarter 
Listing 47.5 illustrates  the benefits of designing code from a Mode X perspective; 
this is the  software  aspect of Mode X optimization, which  suffices  to  make  Mode X 

Mode X: 256-Color VGA Magic 889 



about as  fast  as mode 13H. That alone makes  Mode X an attractive mode, given its 
square pixels,  page flipping, and offscreen  memory, but superior performance would 
nonetheless be a pleasant addition to that list. Superior performance is indeed pos- 
sible in Mode X, although, oddly enough, it comes  courtesy of the VGA’s hardware, 
which was never designed to be used in  256-color  modes. 
All  of the VGA‘s hardware  assist features are available  in  Mode X, although some are 
not particularly  useful. The VGA hardware feature that’s  truly the key to Mode X 
performance is the ability to process four planes’  worth of data in parallel; this in- 
cludes both  the latches and the capability to fan data out to any or all planes. For 
rectangular fills,  we’ll just  need to fan the  data out to various  planes, so I’ll defer a 
discussion of other hardware features for now.  (By the way, the ALUs, bit mask, and 
most other VGA hardware features are also  available in mode 13H-but parallel 
data processing is not.) 
In planar modes, such as Mode X, a byte  written by the CPU to display memory may 
actually  go to anywhere  between zero and four planes, as  shown in Figure  47.2.  Each 
plane for which the  setting of the  corresponding  bit  in the Map Mask register is 1 re- 
ceives the CPU data, and each  plane for which the corresponding  bit is 0 is not modified. 
In 16-color modes, each plane contains onequarter of each of eight pixels,  with the 
4 bits of each pixel spanning all four planes. Not so in  Mode X. Look at Figure  47.1 
again; each plane contains one pixel in its entirety, with four pixels at any  given 
address, one  per plane. Still, the Map Mask register does the same job in Mode X as 

CPU write of value  The CPU value (41 h) is written  to  offset 0 in  each of 
41 h to  offset 0 in  the two planes  enabled by the Map Mask register, 
display  memory r planes 0 and 2; planes 1 and 3 are not  altered. 

Selectingplanes with the Map Mask register. 
Figure 47.2 

890 Chapter 47 



in 16-color  modes; set it  to OFH (all 1-bits), and all four planes will be written  to by 
each CPU access. Thus, it  would  seem that up to four pixels could be set by a single 
Mode X byte-sized  write to display  memory,  potentially speeding up operations like 
rectangle fills by four times. 
And, as it  turns out, four-plane parallelism  works quite nicely indeed. Listing  47.6  is 
yet another rectangle-fill routine, this  time  using the Map  Mask to set up to  four 
pixels per STOS. The only  trick  to  Listing  47.6 is that any  left or right  edge  that isn’t 
aligned to a multiple-of-four  pixel  column (that is, a column at which one four-pixel 
set ends  and  the  next begins) must be  clipped via the Map  Mask register,  because not 
all  pixels at  the address containing  the  edge  are modified. Performance is as  ex- 
pected; Listing  47.6  is  nearly ten times  faster at clearing the screen than Listing  47.4 
and  just  about four times  faster than Listing 47.5-and also about  four times  faster 
than  the same rectangle fill in mdde 13H. Understanding  the  bitmap organizztion 
and display hardware of  Mode X does  indeed pay. 
Note that  the return from Mode X’s parallelism is not always 4x;  some adapters lack 
the underlying memory bandwidth to  write data  that fast.  However,  Mode X parallel 
access should always be faster than mode 13H  access; the only question on any  given 
adapter is  how much faster. 

LISTING  47.6  147-6.ASM 
: Mode X (320x240. 256 c o l o r s )   r e c t a n g l e  fill r o u t i n e .  Works  on a l l  
: VGAs. Uses f a s t   a p p r o a c h   t h a t   f a n s   d a t a   o u t   t o   u p   t o   f o u r   p l a n e s   a t  
: once t o  draw  up t o   f o u r   p i x e l s   a t   o n c e .   F i l l s  up t o   b u t   n o t  
: i n c l u d i n g   t h e   c o l u m n   a t  EndX and t h e   r o w   a t  EndY. No c l i p p i n g   i s  
: per formed.  
: C n e a r - c a l l a b l e   a s :  
: v o i d   F i l l R e c t a n g l e X ( i n t   S t a r t X .   i n t   S t a r t Y ,   i n t  EndX. i n t  EndY. 

uns igned i n t  PageBase. i n t   C o l o r ) :  

SC-INDEX 
MAP-MASK 
SCREEN-SEG 
SCREEN-WIDTH 

parms s t r u c  
dw 

S t a r t X  dw 
S t a r t Y  dw 
EndX dw 

EndY dw 

PageBase dw 

C o l o r  dw 
parms  ends 

.model 

. da ta  

equ 03c4h 
equ 02h 
equ OaOOOh 
equ  80 

2 dup ( ? )  
? 
? 
? 

? 

? 

? 

sma l l  

;Sequence C o n t r o l l e r   I n d e x  
; i n d e x   i n  SC o f  Map Mask r e g i s t e r  
:segment o f   d i s p l a y  memory i n  mode X 
: w i d t h   o f   s c r e e n   i n   b y t e s   f r o m   o n e   s c a n   l i n e  
: t o   t h e   n e x t  

:pushed BP and r e t u r n   a d d r e s s  
; X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
: Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
: X  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e   r o w   a t  EndX i s   n o t   f i l l e d )  
: Y  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e  column a t  EndY i s   n o t   f i l l e d )  
;base o f f s e t   i n   d i s p l a y  memory o f  page i n  
: w h i c h   t o  fill r e c t a n g l e  
: c o l o r   i n   w h i c h   t o  draw p i x e l  

: Plane  masks f o r   c l i p p i n g   l e f t  and r i g h t  edges o f   r e c t a n g l e .  
L e f t C l  i pP1 aneMask db  00fh,00eh.00ch.008h 

Mode X: 256-Color VGA Magic 891 



RightClipPlaneMask  db  00fh.001h.003h.007h 
.code 
pub1 i c Jill Rectangl  eX 

J i l lRec tang leX   Droc   nea r  
push 
mo v 
push 
push 

c l  d 
mov 
mu1 
mov 
s h r  
s h r  
add 
add 

mov 
mov 
mov 
mov 
o u t  
i nc 
mov 
and 
mov 
mov 
and 
mov 

mov 
mov 
CmP 
J l e  
dec 
and 
sub 
s h r  
s h r  
j nz 
and 

MasksSet: 
mov 
sub 
J l e  
mov 
mov 
sub 
dec 

push 
mov 
o u t  
mov 
s t o s b  
dec 
Js 
Jz 

Fi l lRowsLoop:  

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
: p o i n t   t o   l o c a l   s t a c k   f r a m e  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

ax.SCREEN-WIDTH 
[ b p + S t a r t Y l   : o f f s e t   i n   p a g e   o f   t o p   r e c t a n g l e   s c a n   l i n e  
d i   . C b p + S t a r t X l  
d i  .1 :X/4 - o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n   s c a n  
d i  .1 : l i n e  
d i  ,ax : o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  page 
d i . [ b p + P a g e B a s e l   : o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  

ax.SCREEN-SEG 
: d i s p l a y  memory 
: p o i n t  ES:DI  t o   t h e   f i r s t   r e c t a n g l e  

es  ,ax : p i x e l ' s   a d d r e s s  
dx.SC-INDEX : s e t   t h e  Sequence C o n t r o l l e r   I n d e x   t o  
a1 .MAP-MASK : p o i n t   t o   t h e  Map Mask r e g i s t e r  
dx .a l  
d x   : p o i n t  DX t o   t h e  SC D a t a   r e g i s t e r  
s i  .Cbp+StartXl 
s i  ,0003h  : look  up l e f t  edge  p lane mask 
bh.Lef tCl ipP1aneMaskCsi l  : t o   c l i p  6 p u t   i n  BH 
s i  .Cbp+EndXl 
s i  ,0003h  : look   up   r igh t   edge  p lane 
bl.RightClipP1aneMaskCsil : mask t o   c l i p  6 p u t   i n  BL 

cx.Cbp+EndXI 
s i   . C b p + S t a r t X l  
c x . s i  
F i   1 1  Done 

s i   . n o t   O l l b  
c x . s i  
cx .1  
cx .1  
MasksSet 
bh,b l  

cx  

s i  , Cbp+EndYI 
s i   . C b p + S t a r t Y l  
F i   1 1  Done 
a h . b y t e   p t r   [ b p + C o l o r l  
bp.SCREEN-WIDTH 

bp 
bp.cx 

c x  
a1 , bh 
dx .a l  
a1  ,ah 

c x  
F i  11  LoopBottom 
DoRightEdge 

: c a l c u l a t e  # o f   a d d r e s s e s   a c r o s s   r e c t  

: s k i p  i f  0 o r   n e g a t i v e   w i d t h  

:# o f   a d d r e s s e s   a c r o s s   r e c t a n g l e   t o  fill - 1 
: t h e r e ' s   m o r e   t h a n   o n e   b y t e   t o   d r a w  
: t h e r e ' s   o n l y   o n e   b y t e ,  so c o m b i n e   t h e   l e f t -  
: a n d   r i g h t - e d g e   c l i p  masks 

:BX - h e i g h t   o f   r e c t a n g l e  
: s k i p  i f  0 o r   n e g a t i v e   h e i g h t  
: c o l o r   w i t h   w h i c h   t o  fill 
:s tack   f rame  i sn ' t   needed  any   more  
: d i s t a n c e   f r o m   e n d   o f   o n e   s c a n   l i n e   t o   s t a r t  
: o f   n e x t  

:remember w i d t h   i n   a d d r e s s e s  - 1 
: p u t   l e f t - e d g e   c l i p  mask i n  AL 
: s e t   t h e   l e f t - e d g e   p l a n e   ( c l i p )  mask 
: p u t   c o l o r   i n  AL 
: d r a w   t h e   l e f t   e d g e  
: c o u n t   o f f   l e f t  edge b y t e  
: t h a t ' s   t h e   o n l y   b y t e  
: t h e r e   a r e   o n l y   t w o   b y t e s  

892 Chapter 47 



mov 
o u t  
mov 
r e p  

OoRightEdge: 
mov 
o u t  
mov 
s t o s b  

add 
F i  11  LoopBottom: 

a1 .OOfh 
dx .a l  
a1 ,ah 
s t o s b  

a1 . b l  
dx ,a l  
a1 .ah 

d i  . bp 

POP c x  
dec s i  
j nz F i  1  1  Rows Loop 

pop d i  
pop s i  

r e t  
-Fi   11  Rectangl  eX endp 

end 

F i  11  Done: 

POP bp 

;midd le   addresses   a re   d rawn 4 p i x e l s   a t  a pop 
; s e t   t h e   m i d d l e   p i x e l  mask t o  no c l i p  
; p u t   c o l o r  i n  AL 
; d r a w   t h e   m i d d l e   a d d r e s s e s   f o u r   p i x e l s   a p i e c e  

: p u t   r i g h t - e d g e   c l i p  mask i n  AL 
: s e t   t h e   r i g h t - e d g e   p l a n e   ( c l i p )  mask 
; p u t   c o l o r   i n  AL 
; d r a w   t h e   r i g h t   e d g e  

: p o i n t   t o   t h e   s t a r t  o f  t h e   n e x t   s c a n   l i n e   o f  
: t h e   r e c t a n g l e  
; r e t r i e v e   w i d t h   i n   a d d r e s s e s  - 1 
: coun t  down s c a n   l i n e s  

; r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  

; r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

Just so you can see Mode X in action, Listing 47.7 is a sample program  that selects 
Mode X and draws a  number of rectangles. Listing 47.7 links to any of the rectangle 
fill routines I’ve presented. 
And  now, I hope, you’re beginning to see why I’m so fond of Mode X. In  the  next 
chapter, we’ll continue with  Mode X by exploring  the wonders that  the latches and 
parallel plane hardware can work on scrolls, copies, blits, and  pattern fills. 

LISTING 47.7 L47-7.C 
/*  Program t o   d e m o n s t r a t e  mode X ( 3 2 0 x 2 4 0 .   2 5 6 - c o l o r s )   r e c t a n g l e  

fill b y   d r a w i n g   a d j a c e n t   2 0 x 2 0   r e c t a n g l e s   i n   s u c c e s s i v e   c o l o r s   f r o m  
0 on  up  across  and down t h e   s c r e e n  * /  

# i n c l u d e   < c o n i o .  h> 
# inc lude  <dos .  h >  

Mode X: 256-Color VGA Magic 893 



chapter 487

mode x marks the latch



!I% 
,:\, ‘8’ 6F 

&& 

s of Animation’s Best Video  Display  Mode 
In the previous chkpter, I  introduced you to what I call Mode X, an  undocumented 

GA. Mode X is distinguished from  mode 13H, the 
documented 320x mode, in that it supports page flipping, makes 
off-screen memo  square pixels, and, above  all, lets you  use the VGA’s 
hardware to incre as much as four times. (Of  course, those four 

x and  demanding  programming, to be sure- 
out results, not how hard  the code was to write, and Mode X 

big way.) In  the previous chapter we  saw  how the VGA’s plane- 
d solid fills. That’s a nice technique, but now 
-the VGA latches. 

4 

The VGA has four  latthes,  one  for each plane of  display  memory. Each latch stores 
exactly one byte, and  that byte is always the last  byte read  from  the  corresponding 
plane of display memory, as  shown in Figure 48.1. Furthermore, whenever a given 
address in display memory is read, all four planes’ bytes at  that address are  read and 
stored  in  the  corresponding latches, regardless of  which plane  supplied  the byte 
returned to the CPU (as determined by the Read  Map register). As with so much else 
about  the VGA, the above will make little sense to VGA neophytes, but  the  important 
point is  this: By reading one display memory byte, 4 bytes-one from  each plane- 
can be loaded into  the latches at once. Any or all  of those 4 bytes can then  be written 
anywhere in display memory with a single byte-sized write, as  shown in Figure 48.2. 

897 



The value 49, from  plane 1 , is read by the CPU 
A 

t .f 7 All four  latches are  loaded from 
the corresponding  planes by every 

4 4 4 + display memory read 

P 
How the VGA latches are loaded. 
Figure 48.1 

The value OFFh is written by the CPU - The  Latches 

Bit  Mask  r ister; each 1 bit selects corresponding 

A setting  of OOh selects all bits  from  latches 
t bit from C%, each 0 bit selects bit from  latches. 

Map Mask  register;  each 1 
corresponding  plane, each 

bit enables 
0 bit blocks 

writes  to 

Writing 4 bytes to display memory in a single operation. 
Figure 48.2 

898 Chapter 48 



The  upshot is that  the  latches make it possible to copy data  around  from  one  part of 
display memory to another, 32 bits (four pixels) at a time-four times as fast as nor- 
mal. (Recall from  the previous chapter  that in Mode X, pixels are  stored  one  per 
byte, with four pixels in  a row stored  in successive planes at  the same address, one 
pixel per  plane.) However, any one latch  can only be loaded  from  and written to the 
corresponding  plane, so an individual latch  can only work  with  every fourth pixel on 
the screen; the latch for  plane 0 can work  with pixels 0, 4, S.. . ,  the  latch  for  plane 1 
with pixels 1, 5 ,  9 ..., and so on. 
The latches  aren’t intended  for use in 256-color  mode-they were designed to allow 
individual bits of display  memory to be modified  in 16-color mode-but they are 
nonetheless very  useful in Mode X, particularly for patterned fills and  screen-tescreen 
copies, including scrolls. Patterned filling is a  good place to  start, because patterns 
are widely used in windowing environments  for desktops, window backgrounds, and 
scroll bars, and for textures and color  dithering  in drawing and game software. 
Fast  Mode X fills using  patterns  that  are  four pixels in width can be performed by 
drawing the  pattern  once to the  four pixels at any one address  in display  memory, 
reading  that  address  to  load  the  pattern  into  the  latches,  setting  the Bit  Mask register 
to 0 to speciEy that all bits drawn to display  memory should  come  from  the  latches, 
and  then  performing  the fill pretty much as  we did  in  the previous chapter-except 
that  each  line of the  pattern must  be  loaded into  the latches  before the  correspond- 
ing scan line on  the screen is filled. Listings 48.1 and 48.2 together  demonstrate  a 
variety  of fast Mode X four-by-four pattern fills. (The  mode set  function called by 
Listing 48.1 is from  the previous chapter’s listings.) 

LISTING 48.1  148- 1 .C 
/ *  Program t o   d e m o n s t r a t e  Mode X ( 3 2 0 x 2 4 0 .   2 5 6   c o l o r s )   p a t t e r n e d  

r e c t a n g l e   f i l l s  by f i l l i n g   t h e   s c r e e n   w i t h   a d j a c e n t   8 0 x 6 0  
r e c t a n g l e s   i n  a v a r i e t y  o f  p a t t e r n s .   T e s t e d   w i t h   B o r l a n d  C++ 
i n  C c o m p i l a t i o n  mode and  the   smal l   mode l  * /  

# i n c l u d e   < c o n i o . h >  
# i   n c l  ude  <dos.  h> 

v o i d   S e t 3 2 0 ~ 2 4 0 M o d e ( v o i d ) :  
v o i d   F i l l P a t t e r n X ( i n t .   i n t .   i n t .   i n t .   u n s i g n e d   i n t .   c h a r * ) :  

/ *  16 4 x 4   p a t t e r n s  * /  
s t a t i c   c h a r   P a t t 0 [ 1 = ~ 1 0 . 0 . 1 0 , 0 , 0 . 1 0 . 0 . 1 0 . 1 0 . 0 , 1 0 . 0 . 0 , 1 0 , 0 , 1 0 ~ :  
s t a t i c   c h a r  Pa t t l [1 - (9 .0 .0 .0 ,0 ,9 .0 .0 .0 .0 ,9 .0 .0 ,0 ,0 .91 ;  
s t a t i c   c h a r   P a t t 2 [ ] = ~ 5 , 0 . 0 . 0 , 0 , 0 , 5 , 0 , 5 , 0 , 0 . 0 , 0 , 0 , 5 , 0 ~ :  
s t a t i c   c h a r  Pa t t3 [ ]=~14 ,0 .0 ,14 ,0 .14 .14 .0 .0 .14 .14 .0 .14~0~0~141 :  
s t a t i c   c h a r  P a t t 4 ~ ] = ( 1 5 . 1 5 , 1 5 , 1 . 1 5 . 1 5 . 1 . 1 . 1 5 . 1 . 1 . 1 . 1 ~ 1 , 1 , 1 ~ ;  
s t a t i c   c h a r  P a t t 5 [ 1 = ~ 1 2 . 1 2 . 1 2 . 1 2 . 6 . 6 . 6 . 1 2 . 6 . 6 . 6 . 1 2 . 6 ~ 6 , 6 , 1 2 1 :  
s t a t i c   c h a r  Pat t6 [1=~80.80.80.E0,80,80,80,80,80,80,80,E0,80,80,80,15~:  
s t a t i c   c h a r  Pat t7 [ ] - I78 .78 .78 .78 .80 .80 .80 .80 .82 .82 .82 ,82 ,84 ,E4,84 ,84) :  
s t a t i c   c h a r  Patt8[1=~78.80,82,84.80.82.84.78,84,78,82,84,78,80,84,78,80~E2~; 
s t a t i c   c h a r  Pat t9 [1=~78.80.82,84.78,80,82,84.78,80,82,84,78,80,82,84~:  
s t a t i c   c h a r  Patt10[]-(0.1.2.3.4,5.6.7.8.9.10.11.12.13,14,151: 
s t a t i c   c h a r  Pa t t11 [1 -~0 .1 .2 ,3 ,0 ,1 ,2 ,3 ,0 ,1 .2 .3 ,0 ,1 ,2 ,31 :  
s t a t i c   c h a r   P a t t 1 2 [ 1 = [ 1 4 . 1 4 , 9 , 9 , 1 4 ~ 9 , 9 , 1 4 . 9 . 9 . 1 4 . 1 4 . 9 , 1 4 ~ 1 4 , 9 1 :  
s t a t i c   c h a r  Pat t13[ ] - [15.8.8.8,15.15.15.8,15,15,15,8,15,8,8,E~:  

Mode X Marks the  Latch 899 



s t a t i c   c h a r  Patt14[]-{3,3,3.3.3.7.7.3.3.7.7.3.3.3.3.3); 
s t a t i c   c h a r  Patt l5[ l -~O.O.O.O.O.64.0,0.0.0.0.0.0.0.0,89~;  
/* T a b l e   o f   p o i n t e r s   t o   t h e   1 6   4 x 4   p a t t e r n s   w i t h   w h i c h   t o   d r a w  */  
s t a t i c   c h a r *   P a t t T a b l e C l  - (PattO.Pattl.Patt2.Patt3.Patt4.Patt5.Patt6, 
v o i d   m a i n 0  { 

i n t  i . j ;  
u n i o n  REGS r e g s e t ;  

Set320x240ModeO;  
f o r  ( j  - 0;  j < 4;  j++) { 

Patt7,Patt8.Patt9.PattlO.Pattll.Pattl2.Pattl3,Pattl4,Pattl5~; 

f o r  (i - 0;  i < 4;  i++) ( 

1 
} 
g e t c h (  ) ; 
r e g s e t . x . a x  - 0x0003: / *  s w i t c h   b a c k   t o   t e x t  mode and  done */  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  

FillPatternX~i*80.j*60,i*80+8O,j*6O+6O,O,PattTable~j*4+il~; 

} 

LISTING 48.2 L48-2.ASM 
Mode X ( 3 2 0 x 2 4 0 .   2 5 6   c o l o r s )   r e c t a n g l e   4 x 4   p a t t e r n  fill r o u t i n e .  
U p p e r - l e f t   c o r n e r   o f   p a t t e r n   i s   a l w a y s   a l i g n e d   t o  a m u l t i p l e - o f - 4  
row  and  column.  Works  on a l l  VGAs. Uses  approach o f   c o p y i n g   t h e  
p a t t e r n   t o   o f f - s c r e e n   d i s p l a y  m e m o r y ,   t h e n   l o a d i n g   t h e   l a t c h e s   w i t h  
t h e   p a t t e r n   f o r   e a c h   s c a n   l i n e   a n d   f i l l i n g   e a c h   s c a n   l i n e   f o u r  
p i x e l s   a t  a t i m e .   F i l l s   u p   t o   b u t   n o t   i n c l u d i n g   t h e   c o l u m n   a t  EndX 
a n d   t h e   r o w   a t  EndY. No c l i p p i n g   i s   p e r f o r m e d .  All ASM c o d e   t e s t e d  
w i t h  TASM. C n e a r - c a l l a b l e   a s :  

v o i d   F i l l P a t t e r n X ( i n t   S t a r t X .   i n t   S t a r t Y .   i n t  EndX. i n t  EndY. 
u n s i g n e d   i n t   P a g e B a s e .   c h a r *   P a t t e r n ) ;  

SC-INDEX 
MAP-MASK 
GC-INDEX 
BIT-MASK 
PATTERN-BUFFER 

SCREEN-SEG 
SCREEN-WIDTH 

p a r m s   s t r u c  
dw 

S t a r t X  dw 
S t a r t Y  dw 
EndX dw 

EndY dw 

PageBase dw 

P a t t e r n  dw 
parms  ends 

Nex tScanOf fse t  

Rec tAddrWid th  

equ  03c4h 
equ  02h 
equ  03ceh 
equ  08h 
e q u   O f f f c h  

equ OaOOOh 
equ  80 

2 dup ( ? )  

H e i g h t   e q u  
STACK-FRAMELSIZE equ 

; S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
; i n d e x  i n  SC o f  Map Mask r e g i s t e r  
: G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
; i n d e x   i n  GC o f   B i t  Mask r e g i s t e r  
; o f f s e t   i n   s c r e e n  memory o f   t h e   b u f f e r   u s e d  
; t o   s t o r e   e a c h   p a t t e r n   d u r i n g   d r a w i n g  
;segment o f   d i s p l a y  memory i n  Mode X 
; w i d t h   o f   s c r e e n   i n   a d d r e s s e s   f r o m   o n e   s c a n  
; l i n e   t o   t h e   n e x t  

;pushed BP a n d   r e t u r n   a d d r e s s  
;X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
: Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
; X  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
; ( t h e   r o w   a t  EndX i s   n o t   f i l l e d )  
; Y  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
; ( t h e   c o l u m n   a t  EndY i s   n o t   f i l l e d )  
; b a s e   o f f s e t   i n   d i s p l a y  memory o f  page i n  
; w h i c h   t o  fill r e c t a n g l e  
; 4 x 4   p a t t e r n   w i t h   w h i c h   t o  fill r e c t a n g l e  

2 ; l o c a l   s t o r a g e   f o r   d i s t a n c e   f r o m   e n d   o f   o n e  
; s c a n   l i n e   t o   s t a r t   o f   n e x t  

- 4   : l o c a l   s t o r a g e   f o r   a d d r e s s   w i d t h   o f   r e c t a n g l e  
; l o c a l   s t o r a g e   f o r   h e i g h t   o f   r e c t a n g l e  -6 

6 

900 Chapter 48 



.model   smal l  

. d a t a  
: P l a n e   m a s k s   f o r   c l i p p i n g   l e f t   a n d   r i g h t   e d g e s   o f   r e c t a n g l e .  
Le f tC l   i pP laneMask   db   00 fh .00eh .00ch .008h  
R igh tC l i pP laneMask   db   00 fh .001h .003h .007h  

.code 
p u b l i c   - F i l l P a t t e r n X  

_ F i   1 1   P a t t e r n X   p r o c   n e a r  
push 
mov 
sub 
push 
push 

c l  d 
mov 
mov 

mov 
mov 
mov 
mov 
o u t  
i n c  
mov 

bp  
bp .sp  
sp,STACK_FRAMELSIZE 

d i  
s i  

ax.SCREEN-SEG 
es .ax  

s i   . [ b p + P a t t e r n l  
di.PATTERN-BUFFER 
dx.SC-INDEX 
a1 ,MAP..MASK 
d x . a l  
dx  
cx   . 4  

DownloadPat te rnLoop:  
mov 
o u t  
movsb 
dec 
mov 
o u t  
movsb 
dec 
mov 
o u t  
movsb 
dec 
mov 
o u t  
movsb 

1 oop 

mov 
mov 
o u t  

mov 
mov 
and 
add 

mov 
mu1 
mov 
mov 
s h r  
s h r  
add 

a l . 1  
d x , a l  

d i  
a1 .2 
d x . a l  

d i  
a1 ,4  
d x , a l  

d i  
a l . 8  
d x , a l  

DownloadPat te rnLoop 

dx.GC_INDEX 
ax.OOOOOh+BIT-MASK 
dx ,   ax  

ax ,Cbp+Sta r tY l  
s i   , a x  
s i   . O l l b  
s i  ,PATTERNCBUFFER 

dx.SCREEN-WIDTH 
dx  
d i   . [ b p + S t a r t X l  
bx ,d i  
d i  .1 
d i  .1 
d i  ,ax 

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
; p o i n t   t o   l o c a l   s t a c k   f r a m e  
: a l l o c a t e   s p a c e   f o r   l o c a l   v a r s  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: p o i n t  ES t o   d i s p l a y  memory 

: c o p y   p a t t e r n   t o   d i s p l a y  memory b u f f e r  
; p o i n t   t o   p a t t e r n   t o  fill w i t h  
: p o i n t  E S : O I  t o   p a t t e r n   b u f f e r  
: p o i n t   S e q u e n c e   C o n t r o l l e r   I n d e x   t o  
: Map Mask 

: p o i n t   t o  SC D a t a   r e g i s t e r  
: 4   p i x e l   q u a d r u p l e t s   i n   p a t t e r n  

: s e l e c t   p l a n e  0 f o r   w r i t e s  
: c o p y   o v e r   n e x t   p l a n e  0 p a t t e r n   p i x e l  
; s t a y   a t  same a d d r e s s   f o r   n e x t   p l a n e  

: s e l e c t   p l a n e  1 f o r   w r i t e s  
: c o p y   o v e r   n e x t   p l a n e  1 p a t t e r n   p i x e l  
: s t a y   a t  same a d d r e s s   f o r   n e x t   p l a n e  

: s e l e c t   p l a n e  2 f o r   w r i t e s  
: c o p y   o v e r   n e x t   p l a n e  2 p a t t e r n   p i x e l  
; s t a y   a t  same a d d r e s s   f o r   n e x t   p l a n e  

; s e l e c t   p l a n e  3 f o r   w r i t e s  
: c o p y   o v e r   n e x t   p l a n e  3 p a t t e r n   p i x e l  
: and  advance  address 

: s e t   t h e   b i t  mask t o   s e l e c t   a l l   b i t s  
: f r o m   t h e   l a t c h e s   a n d   n o n e   f r o m  
: t h e  CPU.  s o  t h a t  we c a n   w r i t e   t h e  
: l a t c h   c o n t e n t s   d i r e c t l y   t o  memory 
: t o p   r e c t a n g l e   s c a n   l i n e  

: t o p   r e c t   s c a n  1 i n e   m o d u l o  4 
: p o i n t   t o   p a t t e r n   s c a n   l i n e   t h a t  
: maps t o   t o p   l i n e   o f   r e c t  t o  draw 

; o f f s e t   i n   p a g e   o f   t o p   r e c t a n g l e   s c a n   l i n e  

;X /4  - o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n   s c a n  
: l i n e  
: o f f s e t  o f  f i r s t   r e c t a n g l e   p i x e l   i n   p a g e  

Mode X Marks the  Latch 901 



add 

and 
mov 
mov 
and 
mov 
mov 

mov 
mov 
CmP 
j l e  
dec 
and 
sub 
s h r  
s h r  
j n z  
and 

MasksSet:  
mov 
sub 
j l e  
mov 
mov 
sub 
dec  
mov 
mov 
mov 

F i l lRowsLoop :  
mov 
mov 

i nc 
j n z  
sub 

mov 
o u t  
s t o s b  

dec  

NoWrap: 

j s  
j z  
mov 
o u t  
r e p  

OoRightEdge: 
mov 
o u t  
s t o s b  

d i . [bp+PageBase l  

bx  ,0003h 
ah.LeftClipPlaneMaskCbx1 
bx.[bp+EndX] 
bx.0003h 
a1 .R igh tC l i pP laneMask [bx ]  
bx ,ax  

cx.[bp+EndXl 
ax . [bp+Sta r tX l  
cx ,ax  
F i  11  Done 

a x . n o t   O l l b  
c x ,   a x  
cx .1  

MasksSet 
cx .1  

b h , b l  

c x  

ax,[bp+EndY] 
a x . [ b p + S t a r t Y l  
F i  11  Done 
[ b p + H e i g h t l , a x  
ax.SCREEN-WIDTH 
a x ,   c x  
ax  
[bp+Nex tScanOf fse t ]   , ax  
[bp+RectAddrWid th ] .cx  
dx.SC-INDEX+l 

cx , [bp+Rec tAddrWid th l  
a l . e s : [ s i l  

s i  
s h o r t  NoWrap 
s i  . 4  

a1 , bh 
d x . a l  

c x  
F i   1 1   L o o p B o t t o m  
OoRightEdge 
a1  .OOfh 
d x . a l  
s t o s b  

a1 , b l  
d x . a l  

F i   11   LoopBot tom:  
a d d   d i , [ b p + N e x t S c a n O f f s e t l  

; o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  
; d i s p l a y  memory 
; l o o k   u p   l e f t  edge  p lane  mask 
; t o   c l i p  

; l o o k  up r i g h t   e d g e   p l a n e  
; mask t o   c l i p  
; p u t   t h e  masks i n  BX 

; c a l c u l a t e  I o f   a d d r e s s e s   a c r o s s   r e c t  

; s k i p  i f  0 o r   n e g a t i v e   w i d t h  

;# o f   a d d r e s s e s   a c r o s s   r e c t a n g l e   t o  fill - 1 
; t h e r e ' s   m o r e   t h a n   o n e   p i x e l   t o   d r a w  
; t h e r e ' s   o n l y   o n e   p i x e l ,  s o  c o m b i n e   t h e   l e f t  
; a n d   r i g h t - e d g e   c l i p  masks 

;AX - h e i g h t   o f   r e c t a n g l e  
; s k i p  i f  0 o r   n e g a t i v e   h e i g h t  

; d i s t a n c e   f r o m   e n d   o f   o n e   s c a n   l i n e   t o   s t a r t  
; o f   n e x t  

remember w i d t h   i n   a d d r e s s e s  - 1 
p o i n t   t o  S e q u e n c e   C o n t r o l l e r   D a t a   r e g  

(SC I n d e x   s t i l l   p o i n t s   t o  Map Mask) 

w i d t h   a c r o s s  - 1 
r e a d   d i s p l a y  memory t o   l a t c h   t h i s   s c a n  

l i n e ' s   p a t t e r n  
p o i n t   t o   t h e   n e x t   p a t t e r n   s c a n   l i n e .   w r a p p i n g  

; b a c k   t o   t h e   s t a r t   o f   t h e   p a t t e r n  i f  
; w e ' v e   r u n   o f f   t h e   e n d  

; p u t   l e f t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   l e f t - e d g e   p l a n e   ( c l i p )  mask 
; d r a w   t h e   l e f t   e d g e   ( p i x e l s  come f r o m   l a t c h e s ;  
; v a l u e   w r i t t e n   b y  CPU d o e s n ' t   m a t t e r )  
; c o u n t   o f f   l e f t   e d g e   a d d r e s s  
; t h a t ' s   t h e   o n l y   a d d r e s s  
; t h e r e   a r e   o n l y   t w o   a d d r e s s e s  
; m i d d l e   a d d r e s s e s   a r e   d r a w n  4 p i x e l s   a t  a pop 
; s e t   t h e   m i d d l e   p i x e l  mask t o  no c l i p  
; d r a w   t h e   m i d d l e   a d d r e s s e s   f o u r   p i x e l s   a p i e c e  
; ( f r o m   l a t c h e s ;   v a l u e   w r i t t e n   d o e s n ' t   m a t t e r )  

; p u t   r i g h t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   r i g h t - e d g e   p l a n e   ( c l i p )  mask 
; d r a w   t h e   r i g h t   e d g e   ( f r o m   l a t c h e s ;   v a l u e  
; w r i t t e n   d o e s n ' t   m a t t e r )  

; p o i n t   t o   t h e   s t a r t   o f   t h e   n e x t   s c a n  
; l i n e   o f   t h e   r e c t a n g l e  

902 Chapter 48 



d e c   w o r d   p t r   [ b p + H e i g h t l  
jnz F i  11  RowsLoop 

mov dx.GC-INDEX+l 
mov a1 . O f f h  
o u t   d x . a l  

p o p   d i  
pop s i  
mov sp.bp 

r e t  
- F i l l   P a t t e r n X   e n d p  

end 

F i  11  Done: 

POP bP 

: c o u n t  down  scan l i n e s  

: r e s t o r e   t h e   b i t  mask t o   i t s   d e f a u l t ,  
: w h i c h   s e l e c t s   a l l   b i t s   f r o m   t h e  CPU 
: a n d   n o n e   f r o m   t h e   l a t c h e s   ( t h e  GC 
: I n d e x   s t i l l   p o i n t s   t o  B i t  Mask) 
: r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  

: d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

Four-pixel-wide patterns  are  more useful than you might  imagine. There  are actually 
2128 possible patterns  (16 pixels, each with  28 possible colors);  that set is certainly 
large enough  for most color-dithering  purposes, and includes many often-used pat- 
terns,  such as halftones,  diagonal stripes, and crosshatches. 
Furthermore, eight-wide patterns, which are widely used,  can  be drawn  with two 
passes, one  for  each half of the  pattern.  This  principle  can  in fact be  extended  to 
patterns of arbitrary multiple-of-four widths. (Widths that  aren’t multiples of four 
are considerably more difficult to  handle, because the latches are  four pixels wide; 
one possible solution is expanding such patterns via repetition  until they are mul- 
tiple-of-four widths.) 

Allocating Memory in Mode X 
Listing 48.2 raises some  interesting  questions  about  the allocation of  display  memory 
in Mode X. In Listing 48.2, whenever a pattern is to  be  drawn, that  pattern is first 
drawn in its entirety at  the very end of display memory; the latches are  then  loaded 
from  that copy  of the  pattern  before  each scan line of the actual fill is drawn. Why 
this double copying process, and why  is the  pattern  stored in  that  particular  area of 
display memory? 
The  double copying process is used because it’s the easiest way to  load the latches. 
Remember,  there’s no way to get  information directly from  the CPU to the latches; 
the  information  must first be written to  some  location  in display  memory, because 
the latches  can  be  loaded only from display  memory. By writing the  pattern  to off- 
screen memory, we don’t have to worry about  interfering with whatever is currently 
displayed on  the  screen. 
As for why the  pattern is stored exactly where  it is, that’s part of a master memory 
allocation  plan that will come to fruition  in  the  next  chapter, when I implement  a 
Mode X animation  program. Figure 48.3  shows this master plan;  the first two pages 
of memory (each 76,800 pixels long,  spanning 19,200 addresses-that  is, 19,200 pixel 
quadruplets-in display memory) are reserved for page  flipping, the  next  page of 
memory (also 76,800 pixels long) is reserved for  storing  the  background (which is 

Mode X Marks the  Latch 



Offset O 

Offset 1 9200 

Offset 38400 

Offset 57600 

Offset 65532 

A useful Mode X display memory layout. 
Figure 48.3 

used  to  restore the holes  left  after images move),  the last 16 pixels (four addresses) 
of display memory are  reserved  for the  pattern buffer, and  the  remaining 31,728 
pixels (7,932 addresses) of  display memory  are  free  for  storage of icons, images, 
temporary  buffers,  or whatever. 
This is an efficient organization  for  animation,  but  there  are  certainly many other 
possible setups.  For  example, you might  choose  to have a  solid-colored  background, 
in  which  case  you could  dispense with the  background  page  (instead  using  the solid 
rectangle fill routine  to  replace  the  background  after images move),  freeing  up  an- 
other 76,800 pixels of off-screen storage  for images and buffers. You could even 
eliminate  page-flipping  altogether if you needed to free  up  a  great  deal of display 
memory. For example, with enough  free display memory it is possible in  Mode X to 
create  a virtual bitmap  three  times  larger  than  the  screen, with the screen  becoming 
a  scrolling window onto  that  larger  bitmap. This  technique has been  used  to  good 
effect in a  number of animated games, with and without the use of  Mode X. 

904 Chapter 48 



Copying Pixel Blocks within Display  Memory 
Another  fine use for the latches is copying  pixels from  one place in display memory 
to another.  Whenever  both the source and  the destination  share the same  nibble 
alignment  (that is, their  start addresses modulo  four  are  the  same),  it is not only 
possible but quite easy to use the latches to copy four pixels at a time. Listing 48.3 
shows a routine  that copies via the latches. (When the source and destination do  not 
share the same nibble alignment, the latches cannot be used because the source and 
destination planes for any  given pixel differ. In that case,  you can set the Read  Map 
register to select a source plane and  the Map Mask register to select the  correspond- 
ing destination plane. Then, copy  all  pixels in that plane, repeating for all four planes.) 

Although copying through the latches is, in general, a speedy technique, espe- 1 cially on slower VGAs, it 5 not always a win. Reading video memory tends to be 
quite a bit slower than writing, and on a fast VLB or PCI adaptel; it can  be faster 
to copy from main  memory to display memory  than it is to copy from display memory 
to display memory via the latches. 

LISTING 48.3 L48-3.ASM 
: Mode X ( 3 2 0 x 2 4 0 ,   2 5 6   c o l o r s )   d i s p l a y  memory t o   d i s p l a y  memory copy  
: r o u t i n e .   L e f t   e d g e   o f   s o u r c e   r e c t a n g l e   m o d u l o  4 must   equa l  l e f t  edge 
: o f   d e s t i n a t i o n   r e c t a n g l e   m o d u l o  4. Works  on a l l  VGAs. Uses  approach 
: o f   r e a d i n g  4 p i x e l s   a t  a t i m e   f r o m   t h e   s o u r c e   i n t o   t h e   l a t c h e s ,   t h e n  
: w r i t i n g   t h e   l a t c h e s   t o   t h e   d e s t i n a t i o n .   C o p i e s   u p   t o   b u t   n o t  
: i n c l u d i n g   t h e   c o l u m n   a t   S o u r c e E n d X   a n d   t h e   r o w   a t   S o u r c e E n d Y .  No 
: c l i p p i n g   i s   p e r f o r m e d .   R e s u l t s   a r e   n o t   g u a r a n t e e d  i f  t h e   s o u r c e   a n d  
: d e s t i n a t i o n   o v e r l a p .  C n e a r - c a l l a b l e   a s :  

: v o i d   C o p y S c r e e n T o S c r e e n X ( i n t   S o u r c e S t a r t X .   i n t   S o u r c e S t a r t Y .  
i n t  SourceEndX. i n t  SourceEndY. i n t   D e s t S t a r t X .  
i n t   D e s t S t a r t Y .   u n s i g n e d   i n t   S o u r c e P a g e B a s e .  
u n s i g n e d   i n t   D e s t P a g e B a s e .   i n t   S o u r c e B i t m a p W i d t h ,  
i n t   D e s t B i t m a p W i d t h ) :  

SC-INDEX equ  03c4h : S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
MAP-MASK equ  02h : i n d e x   i n  SC o f  Map Mask r e g i s t e r  
GC- INDEX equ  03ceh : G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
B I T-MAS K equ  08h : i n d e x   i n  GC o f   B i t  Mask r e g i s t e r  
SCREENKSEG equ OaOOOh :segment o f   d i s p l a y  memory i n  Mode X 

p a r m s   s t r u c  

S o u r c e S t a r t X  
S o u r c e S t a r t Y  
SourceEndX 

SourceEndY 

D e s t S t a r t X  
D e s t S t a r t Y  
SourcePageBase 

DestPageBase 

dw 2 dup ( ? )  
dw ? 
dw ? 
dw ? 

dw ? 

dw ? 
dw ? 
dw ? 

dw ? 

:pushed B P  a n d   r e t u r n   a d d r e s s  
: X  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   s o u r c e  
: Y  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   s o u r c e  
: X  c o o r d i n a t e   o f   l o w e r - r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e   r o w   a t   S o u r c e E n d X   i s   n o t   c o p i e d )  
: Y  c o o r d i n a t e   o f   l o w e r - r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e   c o l u m n   a t   S o u r c e E n d Y   i s   n o t   c o p i e d )  
: X  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   d e s t  
: Y  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   d e s t  
: b a s e   o f f s e t   i n   d i s p l a y  memory o f  page i n  
: w h i c h   s o u r c e   r e s i d e s  
: b a s e   o f f s e t   i n   d i s p l a y  memory o f   p a g e   i n  
; w h i c h   d e s t   r e s i d e s  

Mode X Marks the  Latch 905 



SourceBi tmapWidth  dw ? 

Des tB i tmapWid th  dw ? 

parms  ends 

SourceNex tScanOf fse t   equ  

DestNextScanOf fse t   equ 

RectAddrWid th   equ 
H e i g h t  
STACK-FRAME-SIZE 

equ 
equ 

.model   smal l  

. d a t a  
: P l a n e   m a s k s   f o r   c l i p p i n g  
L e f t C l i p P l a n e M a s k   d b  
R i g h t C l i p P l a n e M a s k   d b  

- 2  

- 4  

- 6  
-8 
8 

:# o f   p i x e l s   a c r o s s   s o u r c e   b i t m a p  
: (must   be a m u l t i p l e   o f   4 )  
:# o f   p i x e l s   a c r o s s   d e s t   b i t m a p  
: (must  be a m u l t i p l e   o f   4 )  

: l o c a l   s t o r a g e   f o r   d i s t a n c e   f r o m   e n d   o f  
: o n e   s o u r c e   s c a n   l i n e   t o   s t a r t   o f   n e x t  
: l o c a l   s t o r a g e   f o r   d i s t a n c e   f r o m   e n d   o f  
; one d e s t   s c a n   l i n e   t o   s t a r t   o f   n e x t  
; l o c a l   s t o r a g e   f o r   a d d r e s s   w i d t h   o f   r e c t a n g l e  
; l o c a l   s t o r a g e   f o r   h e i g h t   o f   r e c t a n g l e  

l e f t  and r i g h t   e d g e s   o f   r e c t a n g l e .  
00 fh .00eh.00ch.008h 
00fh,001h.O03h,007h 

.code 
pub l ic   JopyScreenToScreenX 

-CopyScreenToScreenX  proc  near  
push 
mov 
sub 
push 
push 
push 

c l  d 
mov 
mov 
o u t  

mov 
mov 
mov 
s h r  
s h r  
mu1 
mov 
s h r  
s h r  
add 
add 

mov 
s h r  
s h r  
mu1 
mov 
mov 
s h r  
s h r  
add 
add 

and 
mov 
mov 

906 Chapter 48 

bP 
bP.SP 
sp.STACK-FRAME-SIZE 

d i  
s i  

ds 

dx.GC-INDEX 
ax.OOOOOh+BIT-MASK 
dx .ax  

ax.SCREEN-SEG 
e s  ,ax 
ax , [bp+DestB i tmapWid th ]  
a x . 1  
a x . 1  
[ b p + D e s t S t a r t Y l  
d i . C b p + D e s t S t a r t X l  
d i  .1 
d i  .1 
d i  ,ax 
d i . [bp+DestPageBase l  
: i n   d i s p l a y  memory 

ax.[bp+SourceBitmapWidthl 
ax,  1 
ax ,  1 
[bp+SourceSta r tY ]  
s i , [ b p + S o u r c e S t a r t X l  
b x . s i  
s i  .1 
s i  .1 
s i  ,ax 
s i . [bp+SourcePageBase] 

bx.0003h 
ah,LeftClipPlaneMask[bxl 
bx.[bp+SourceEndX] 

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
: p o i n t   t o   l o c a l   s t a c k   f r a m e  
: a l l o c a t e   s p a c e   f o r   l o c a l   v a r s  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

; s e t   t h e   b i t  mask t o   s e l e c t   a l l   b i t s  
: f r o m   t h e   l a t c h e s   a n d   n o n e   f r o m  
: t h e  CPU.  s o  t h a t  we c a n   w r i t e   t h e  
: l a t c h   c o n t e n t s   d i r e c t l y   t o  memory 
; p o i n t  ES t o   d i s p l a y  memory 

: c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  

; t o p   d e s t   r e c t   s c a n   l i n e  

:X /4  - o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  
: s c a n   l i n e  
; o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n   p a g e  
; o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l  

: c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  

: t o p   s o u r c e   r e c t   s c a n   l i n e  

;X /4  - o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l   i n  
: s c a n   l i n e  
; o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l   i n   p a g e  
: o f f s e t   o f   f i r s t   s o u r c e   r e c t  
: p i x e l   i n   d i s p l a y  memory 
: l o o k   u p   l e f t   e d g e   p l a n e  mask 
: t o   c l i p  



and 
mov 
mov 

mov 
mov 
cmp 
j l e  
dec  
and 
sub 
s h r  
s h r  
j nz  
and 

MasksSet:  
mov 
sub 
j l e  
mov 
mov 
s h r  
s h r  
sub 
dec 
mov 
mov 
s h r  
s h r  
sub 
dec 
mov 
mov 

bx.0003h 
a1 . R i g h t C l i p P l a n e M a s k [ b x l  
bx ,ax  

cx. [bp+SourceEndX] 
ax . [bp+SourceSta r tX l  
cx .ax  
CopyDone 

ax .no t  O l l b  
cx .ax  
c x . 1  

MasksSet 
c x . 1  

b h ,   b l  

c x  

ax, [bp+SourceEndYI 
ax . [bp+SourceSta r tY l  
CopyDone 
[ b p + H e i g h t l . a x  
ax . [bp+DestB i tmapWid th l  
ax ,  1 
ax ,  1 
ax .cx  
ax 
[bp+DestNextScanOffsetl.ax 
ax.[bp+SourceBitmapWidthl 
ax .1  
ax .1  
ax .cx  
ax  
[bp+SourceNextScanOffsetl.ax 
Cbo+RectAddrWid th l .cx  .""""""""""" - .  

BUG F I X  
mov dx.SC-INDEX 

mov 
o u t  
i nc 

mov 
mov 

mov 
mov 
o u t  
movsb 

dec 
j s  
j z  
mov 
o u t  

....""""" 

CopyRowsLoop: 

r e p  

DoRightEdge: 
mov 
o u t  
movsb 

~~ 

a1 .MAPKMASK 
d x . a l  
dx  

ax ,   es  
ds ,   ax  

cx . [bp+RectAddrWid th l  
a1 .bh 
d x . a l  

. . . . . - - BUG F I X  

c x  
CopyLoopBottom 
DoRightEdge 
a1 .OOfh 
d x . a l  
movsb 

a1 , b l  
d x , a l  

: l o o k   u p   r i g h t - e d g e   p l a n e  
; mask t o  c l i p  
:pu t   t he   masks  i n  BX 

: c a l c u l a t e  # o f   a d d r e s s e s   a c r o s s  
; r e c t  

; s k i p  i f  0 o r   n e g a t i v e   w i d t h  

:# o f   a d d r e s s e s   a c r o s s   r e c t a n g l e   t o   c o p y  - 1 
: t h e r e ' s   m o r e   t h a n   o n e   a d d r e s s   t o   d r a w  
; t h e r e ' s   o n l y   o n e   a d d r e s s ,  s o  c o m b i n e   t h e  
; l e f t -  a n d   r i g h t - e d g e   c l i p  masks 

:AX - h e i g h t   o f   r e c t a n g l e  
; s k i p  i f  0 o r   n e g a t i v e   h e i g h t  

: c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  

; d i s t a n c e   f r o m   e n d   o f   o n e   d e s t   s c a n   l i n e   t o  
; s t a r t   o f   n e x t  

; c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  

; d i s t a n c e   f r o m   e n d   o f   o n e   s o u r c e   s c a n   l i n e   t o  
: s t a r t   o f   n e x t  

;remember w i d t h   i n   a d d r e s s e s  - I 

: p o i n t  SC I n d e x   r e g   t o  Map Mask 
: p o i n t   t o  SC D a t a   r e g  

;DS-ES-screen  segment f o r  MOVS 

: w i d t h   a c r o s s  - 1 
; p u t   l e f t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   l e f t - e d g e   p l a n e   ( c l i p )  mask 
; c o p y   t h e   l e f t   e d g e   ( p i x e l s  g o   t h r o u g h  
: l a t c h e s )  
; c o u n t   o f f   l e f t  edge  address 
: t h a t ' s   t h e   o n l y   a d d r e s s  
; t h e r e   a r e   o n l y   t w o   a d d r e s s e s  
; m i d d l e   a d d r e s s e s   a r e   d r a w n  4 p i x e l s   a t  a pop 
; s e t   t h e   m i d d l e   p i x e l  mask t o  no c l i p  
; d r a w   t h e   m i d d l e   a d d r e s s e s   f o u r   p i x e l s   a p i e c e  
; ( p i x e l s   c o p i e d   t h r o u g h   l a t c h e s )  

; p u t   r i g h t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   r i g h t - e d g e   p l a n e   ( c l i p )  mask 
; d r a w   t h e   r i g h t   e d g e   ( p i x e l s   c o p i e d   t h r o u g h  
; l a t c h e s )  

Mode X Marks  the  Latch 907 



CopyLoopBottom: 
add si.[bp+SourceNextScanOffset] 
add di,[bp+DestNextScanOffsetl 
dec  word p t r   [ b p + H e i g h t l  
j n z  CopyRowsLoop 

mov dx.GC-INDEX+l 
mov a1 . O f f h  
o u t   d x . a l  

CopyDone: 

POP ds 
pop d i  
pop s i  
mov sp.bp 
POP bp 
r e t  

end 
-CopyScreenToScreenX  endp 

: p o i n t   t o   t h e   s t a r t   o f  
: n e x t   s o u r c e  & d e s t   l i n e s  
;count  down s c a n   l i n e s  

: r e s t o r e   t h e   b i t  mask t o   i t s   d e f a u l t ,  
: w h i c h   s e l e c t s   a l l   b i t s   f r o m   t h e  CPU 
: a n d   n o n e   f r o m   t h e   l a t c h e s   ( t h e  GC 
: I n d e x   s t i l l   p o i n t s   t o  B i t  Mask) 

; r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  

: d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

Listing  48.3  has an  important limitation: It does not  guarantee  proper  handling when 
the source and destination overlap, as in the case  of a downward scroll, for  example. 
Listing  48.3 performs top-to-bottom, left-to-right copying.  Downward scrolls require 
bottom-to-top copying;  likewise, rightward horizontal scrolls require right-to-left  copy- 
ing. As it happens, my intended use for Listing 48.3 is to copy images between 
off-screen memory and on-screen memory, and to save areas under  pop-up  menus 
and  the like, so I don’t really need overlap handling-and I do really need to keep 
the complexity of this discussion down. However,  you will surely  want  to add overlap 
handling if  you plan to perform arbitrary scrolling and copying in display  memory. 
Now that we have a fast way to copy images around in display  memory, we can draw 
icons and  other images as much as four times faster than in mode 13H, depending 
on  the  speed of the VGAs display  memory. (In case you’re worried about  the nibble- 
alignment limitation on fast copies, don’t be; I’ll address that fully in due time, but 
the secret is to store all four possible rotations in off-screen memory, then select the 
correct  one  for  each copy.)  However, before our fast display memory-to-display 
memory copy routine can do us  any good, we must have a way to get pixel patterns 
from system memory  into display  memory, so that they can then be copied with the 
fast  copy routine. 

Copying to Display Memory 
The final piece of the puzzle  is the system memory to display-memory-copy-routine 
shown in Listing  48.4. This routine assumes that pixels are stored  in system memory 
in exactly the  order in which they will ultimately appear  on  the screen; that is, in the 
same  linear  order that  mode  13H uses. It would be  more efficient to store all the 
pixels for  one  plane first, then all the pixels for the  next plane, and so on  for all four 
planes, because many OUTS could be avoided, but that would make images rather 
hard to create.  And, while it is true  that the  speed of drawing images is, in  general, 
often a critical performance factor, the  speed of copying images from system memory 

908 Chapter 48 



to  display memory is not particularly critical in Mode X. Important images can be 
stored in off-screen  memory and copied to the screen via the latches much faster than 
even the speediest system  memory-to-display memory copy routine  could manage. 
I'm not going  to present a routine to perform Mode X copies from display  memory  to 
system  memory, but such a routine would be a straightforward  inverse of  Listing 48.4. 

LISTING 48.4  L48-4.ASM 
: Mode X ( 3 2 0 x 2 4 0 .   2 5 6   c o l o r s )   s y s t e m  memory t o  d i s p l a y  memory  copy 
: r o u t i n e .  U s e s   a p p r o a c h   o f   c h a n g i n g   t h e   p l a n e   f o r   e a c h   p i x e l   c o p i e d ;  
: t h i s   i s   s l o w e r   t h a n   c o p y i n g   a l l   p i x e l s   i n   o n e   p l a n e ,   t h e n   a l l   p i x e l s  
: i n   t h e   n e x t   p l a n e ,   a n d  so o n ,   b u t  i t  i s   s i m p l e r ;   b e s i d e s ,   i m a g e s   f o r  
: w h i c h   p e r f o r m a n c e   i s   c r i t i c a l   s h o u l d   b e   s t o r e d   i n   o f f - s c r e e n  memory 
: and  cop ied  t o   t h e   s c r e e n   v i a   t h e   l a t c h e s .   C o p i e s   u p   t o   b u t   n o t  
; i n c l u d i n g   t h e   c o l u m n   a t   S o u r c e E n d X   a n d   t h e   r o w   a t   S o u r c e E n d Y .  No 
: c l i p p i n g   i s   p e r f o r m e d .  C n e a r - c a l l a b l e   a s :  

; v o i d   C o p y S y s t e m T o S c r e e n X ( i n t   S o u r c e S t a r t X .   i n t   S o u r c e S t a r t Y .  
i n t  SourceEndX. i n t  SourceEndY. i n t   D e s t S t a r t X .  
i n t   D e s t S t a r t Y .   c h a r *   S o u r c e P t r .   u n s i g n e d   i n t   D e s t P a g e B a s e .  
i n t   S o u r c e B i t m a p W i d t h .   i n t   O e s t B i t m a p W i d t h ) ;  

SC-INDEX equ  03c4h 
MAP-MASK equ  02h 
SCREEN-SEG equ OaOODh 

p a r m s   s t r u c  

S o u r c e S t a r t X  
S o u r c e S t a r t Y  
SourceEndX 

SourceEndY 

D e s t S t a r t X  
D e s t S t a r t Y  
S o u r c e P t r  

DestPageBase 

SourceBi tmapWid th  
Des tB i tmapWid th  

parms  ends 

dw 
dw 
dw 
dw 

dw 

dw 
dw 
dw 

dw 

dw 
dw 

RectWid th   equ 
Le f tMask   equ 
STACK-FRAME-SIZE equ 

.model  smal 1 

.code 

2 dup ( ? )  
? 
? 
? 

? 

- 2  
- 4  
4 

pub l ic   -CopySystemToScreenX 

push  bp 
mov bp .sp  
sub sp.STACK-FRAMELSIZE 
p u s h   s i  
p u s h   d i  

-CopySystemToScreenX  proc  near  

: S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
; i n d e x   i n  SC o f  Map Mask r e g i s t e r  
:segment o f   d i s p l a y  memory i n  Mode X 

;pushed BP and r e t u r n   a d d r e s s  
: X  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   s o u r c e  
:Y  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   s o u r c e  
: X  c o o r d i n a t e   o f   l o w e r - r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e   r o w   a t  EndX i s   n o t   c o p i e d )  
: Y  c o o r d i n a t e   o f   l o w e r - r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e   c o l u m n   a t  EndY i s   n o t   c o p i e d )  
; X  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   d e s t  
; Y  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   d e s t  
; p o i n t e r   i n  DS t o   s t a r t   o f   b i t m a p   i n   w h i c h  
: s o u r c e   r e s i d e s  
; b a s e   o f f s e t  i n  d i s p l a y  memory o f  page i n  
; w h i c h   d e s t   r e s i d e s  
;# o f   p i x e l s   a c r o s s   s o u r c e   b i t m a p  
;# o f   p i x e l s   a c r o s s   d e s t   b i t m a p  
: (must   be a m u l t i p l e   o f  4 )  

; l o c a l   s t o r a g e   f o r   w i d t h   o f   r e c t a n g l e  
; l o c a l   s t o r a g e   f o r   l e f t   r e c t   e d g e   p l a n e  mask 

; p r e s e r v e  
: p o i n t   t o  
: a l l o c a t e  
: p r e s e r v e  

c a l l e r ' s   s t a c k   f r a m e  
l o c a l   s t a c k   f r a m e  
s p a c e   f o r   l o c a l   v a r s  
c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

Mode X Marks the  Latch 909 



c l  d 
mov 
mov 
mov 
mu1 
add 
add 
mov 

mov 
s h r  
s h r  
mov 
mu1 
mov 
mov 
s h r  
s h r  
add 
add 

and 
mov 

s h l  
mov 

mov 
sub 
j l e  
mov 
mov 
sub 
j l e  
mov 
mov 
o u t  
i nc 

mov 
mov 
push 
push 

CopyRowsLoop: 

ax.SCREEN_SEG 
es  ,ax 
ax,Cbp+SourceBitmapWidth] 
[ b p + S o u r c e S t a r t Y l  
ax . [bp+SourceSta r tX ]  
ax . [bp+SourcePt r ]  
s i  ,ax 

ax. [bp+DestBi tmapWidth]  
a x . 1  
a x . 1  
[bp+DestBi tmapWidth] .ax 
[ b p + D e s t S t a r t Y l  
d i . [ b p + D e s t S t a r t X ]  
c x , d i  
d i  .1 
d i  .1 
d i   , a x  
di.Cbp+DestPageBase] 

c l   . O l l b  
a1 . l l h  

a1 . c l  
[bp+Lef tMask]   .a1 

cx.[bp+SourceEndX1 
cx . [bp+SourceSta r tX ]  
CopyDone 
[bp+Rec tWid th l . cx  
bx.[bp+SourceEndY] 
bx . [bp+SourceSta r tY ]  
CopyDone 
dx.SC-INDEX 
a1 .MAP-MASK 
d x . a l  
dx 

ax , [bp+Le f tMask ]  
cx . [bp+Rec tWid th l  

d i  
s i  

CopyScanLineLoop: 
o u t  
movsb 
r o l  
cmc 
sbb 

1 oop 
POP 
add 

POP 
add 

dec 
j n z  

d x . a l  

a l . l  

d i  .O 

d i  
CopyScanLineLoop 

d i . [ b p + D e s t B i t m a p W i d t h l  

s i  
si.[bp+SourceBitmapWidthl 

bx 
CopyRowsLoop 

: p o i n t  ES t o   d i s p l a y  memory 

: t o p   s o u r c e   r e c t   s c a n   l i n e  

: o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l  
: i n  DS 

: c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  

: remember   address   w id th  
; t o p   d e s t   r e c t   s c a n   l i n e  

: s e t   t h e   b i t   f o r   t h e   f i r s t   d e s t   p i x e l ' s  
; p l a n e   i n   e a c h   n i b b l e   t o  1 

X/4 - o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  

o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  page 
o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l  

CL = f i r s t   d e s t   p i x e l ' s   p l a n e  
u p p e r   n i b b l e  comes i n t o   p l a y  when 

p l a n e   w r a p s   f r o m  3 b a c k   t o  0 

scan l i n e  

i n   d i s p l a y  memory 

: c a l c u l a t e  I o f   p i x e l s   a c r o s s  
: r e c t  
: s k i p  i f  0 or n e g a t i v e   w i d t h  

;EX - h e i g h t   o f   r e c t a n g l e  
; s k i p  i f  0 o r   n e g a t i v e   h e i g h t  
; p o i n t   t o  SC I n d e x   r e g i s t e r  

: p o i n t  SC I n d e x   r e g   t o   t h e  Map Mask 
: p o i n t  DX t o  SC D a t a  r e g  

:remember t h e   s t a r t   o f f s e t   i n   t h e   s o u r c e  
;remember t h e   s t a r t   o f f s e t   i n   t h e   d e s t  

; s e t   t h e   p l a n e   f o r   t h i s   p i x e l  
: c o p y   t h e   p i x e l   t o   t h e   s c r e e n  
: s e t  mask f o r   n e x t   p i x e l ' s   p l a n e  
; a d v a n c e   d e s t i n a t i o n   a d d r e s s   o n l y  when 
; w r a p p i n g   f r o m   p l a n e  3 t o   p l a n e  0 
: ( e l s e  undo I N C  D I  done  by M O V S B )  

: r e t r i e v e   t h e   d e s t   s t a r t   o f f s e t  
: p o i n t   t o   t h e   s t a r t   o f   t h e  
: n e x t   s c a n   l i n e   o f   t h e   d e s t  
: r e t r i e v e   t h e   s o u r c e   s t a r t   o f f s e t  
: p o i n t   t o   t h e   s t a r t   o f   t h e  
: n e x t   s c a n   l i n e  o f  t h e   s o u r c e  
: c o u n t  down s c a n   l i n e s  

91 0 Chapter 48 



CopyDone: 
pop d i  
pop s i  
mov sp.bp 
POP bP 
r e t  

-CopySystemToScreenX  endp 
end 

; r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  

; d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

Who Was that Masked  Image  Copier? 
At this point, it’s getting  to be time for us to take all the Mode X tools we’ve devel- 
oped, together with one  more tool-masked image copying-and the  remaining 
unexplored  feature of Mode X, page flipping, and build  an  animation  application. I 
hope that  when we’re done, you’ll agree with me that Mode X is the way to  animate 
on the PC. 
In  truth,  though,  it  matters less whether or  not you think  that Mode X is the best way 
to animate  than  whether or  not your users think it’s the best way based on results; 
end users care only about results, not how  you produced  them. For my writing, you 
folks are  the end users-and notice how remarkably little you care  about how this 
book gets written and  produced. You care  that  it  turned up in the  bookstore, and 
you care  about  the  contents,  but you sure as heck don’t care  about how it got  that  far 
from  a bin of tree  pulp.  When  you’re  a  creator,  the process matters.  When  you’re  a 
buyer, results are everything. All important. Sine qua non. The whole enchilada. 
If you catch my drift. 

Mode X Marks the Latch 91 1 



chapter 49

mode x 256-color animation



e the VGA Really Get up and Dance 
rmative anecdotes to kick off this chapter; lotta 

ground to cover, g re impatient, I can smell it. I won’t talk about the 
of loudly saying “$100 bill” during an animated dis- 

cussion while wa ums on Market Street in San Francisco one night, 
context is everything. I can’t spare a word about 

how my daughter thinks my 11-year-old floppy-disk-based CP/M machine is more 
6 with its 100-MB hard disk because the CP/M machine’s word 
runs twice as fast as the 386’s Windows-based word processor, 
rogress is not the neat exponential curve we’d like to think it is, 

and that features and performance are often conflicting notions. And, lord knows, I 
can’t take the time to discuss the habits of small white dogs, notwithstanding that 
such dogs seem to be relevant to just about every aspect of computing, as Jeff 
Duntemann’s writings make manifest. No lighthearted fluff for us; we have real work 
to do, for today we animate with 256 colors in Mode X. 

Masked Copying 
Over the past two chapters, we’ve put together most of the tools needed to imple- 
ment animation in the VGA’s undocumented 320x240 256-color Mode X. We now 
have mode set code, solid and 4x4 pattern fills, system memory-to-display memory 
block copies, and display memory-to-display memory block copies. The final piece 

91 5 



of the puzzle  is the ability to copy a nonrectangular image to display  memory. I call 
this masked copying. 
Masked copying is sort of  like drawing through a stencil, in that only certain pixels 
within the destination rectangle are drawn. The objective  is to fit the image seamlessly 
into  the background, without the rectangular fringe that results when nonrectangular 
images are drawn by block copying their  bounding rectangle. This is accomplished 
by using a second  rectangular  bitmap,  separate  from the image but corresponding 
to it  on a pixel-by-pixel  basis, to  control which destination pixels are set from the 
source and which are left unchanged. With a masked copy,  only those pixels prop- 
erly belonging  to  an  image  are  drawn,  and  the  image fits perfectly  into  the 
background, with no rectangular border. In fact, masked copying even  makes it pos- 
sible  to  have transparent  areas within images. 
Note that  another way to achieve this effect is  to implement copying code  that sup- 
ports a transparent color; that is, a color  that  doesn’t  get  copied but  rather leaves the 
destination  unchanged.  Transparent copying makes for  more  compact images, be- 
cause no  separate mask is needed,  and is generally  faster  in a software-only 
implementation. However, Mode X supports masked copying but  not  transparent 
copying in hardware, so we’ll use masked copying in this chapter. 
The system memory to display memory masked copy routine  in Listing 49.1 imple- 
ments masked copying in a straightforward fashion. In  the main drawing loop, the 
corresponding mask  byte is consulted as each image pixel is encountered,  and  the 
image pixel is copied only if the mask  byte is nonzero. As with most of the system-to- 
display code I’ve presented, Listing 49.1 is not heavily optimized,  because it’s 
inherently slow; there’s a better way to go when performance matters, and that’s to 
use the VGA’s hardware. 

LISTING 49.1  L49- 1 .ASM 
Mode X (320x240. 256 c o l o r s )   s y s t e m   m e m o r y - t o - d i s p l a y  memory masked  copy 
r o u t i n e .   N o t   p a r t i c u l a r l y   f a s t :   i m a g e s   f o r   w h i c h   p e r f o r m a n c e  i s  c r i t i c a l  
s h o u l d   b e   s t o r e d   i n   o f f - s c r e e n  memory a n d   c o p i e d   t o   s c r e e n   v i a   l a t c h e s .  Works 
on a l l  VGAs. Copies  up t o   b u t   n o t   i n c l u d i n g   c o l u m n  a t  SourceEndX  and  row a t  
SourceEndY. No c l i p p i n g   i s   p e r f o r m e d .  Mask and  source   image  a re   bo th   by te -  
p e r - p i x e l .   a n d   m u s t   b e   o f  same w i d t h s   a n d   r e s i d e   a t  same c o o r d i n a t e s   i n   t h e i r  
r e s p e c t i v e   b i t m a p s .   A s s e m b l y   c o d e   t e s t e d   w i t h  TASM C n e a r - c a l l a b l e   a s :  

v o i d  CopySystemToScreenMaskedX(int SourceSta r tX .  
i n t   S o u r c e S t a r t Y .   i n t   S o u r c e E n d X .   i n t   S o u r c e E n d Y .  
i n t   D e s t S t a r t X .   i n t   D e s t S t a r t Y .   c h a r  * S o u r c e P t r .  
u n s i g n e d   i n t   D e s t P a g e B a s e .   i n t   S o u r c e B i t m a p W i d t h .  
i n t  Des tB i tmapWid th .   char  * MaskPt r ) :  

SC-INDEX equ  03c4h 
MAP-MASK equ  02h  : index i n  SC o f  Map Mask r e g i s t e r  
SCREEN-SEG equ OaOOOh :segment o f   d i s p l a y  memory i n  mode X 

: S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  

parms s t r u c  

SourceSta r tX  dw ? :X c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   s o u r c e  
dw 2 dup ( ? )  :pushed BP and r e t u r n   a d d r e s s  

: ( s o u r c e   i s   i n   s y s t e m  memory) 

91 6 Chapter 49 



SourceSta r tY  dw ? 
SourceEndX dw ? 

SourceEndY dw ? 

D e s t S t a r t X  dw ? 

D e s t S t a r t Y  dw ? 
SourcePt r  dw ? 
DestPageBase dw ? 

SourceBi tmapWidth dw ? 

DestBi   tmapWidth dw ? 
MaskPtr  dw ? 

parms  ends 

RectWidth  equ  -2  
Rec tHe igh t   equ   -4  
Lef tMask 
STACK-FRAME-SIZE equ 6 

equ - 6  

.model  smal 1 

.code 

; Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   s o u r c e  
;X c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   s o u r c e  
; ( t h e   c o l u m n   a t  EndX i s   n o t   c o p i e d )  
; Y  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e   r o w   a t  EndY i s   n o t   c o p i e d )  
; X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   d e s t  
; ( d e s t i n a t i o n   i s   i n   d i s p l a y  memory) 
; Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   d e s t  
; p o i n t e r   i n  DS t o   s t a r t   o f   b i t m a p   w h i c h   s o u r c e   r e s i d e s  
:base o f f s e t   i n   d i s p l a y  memory o f  page i n  
; w h i c h   d e s t   r e s i d e s  
;# o f   p i x e l s   a c r o s s   s o u r c e   b i t m a p   ( a l s o   m u s t  
: b e   w i d t h   a c r o s s   t h e   m a s k )  
;# o f   p i x e l s   a c r o s s   d e s t   b i t m a p   ( m u s t   b e   m u l t i p l e   o f   4 )  
; p o i n t e r   i n  DS t o   s t a r t   o f   b i t m a p   i n   w h i c h  mask 
: r e s i d e s   ( b y t e - p e r - p i x e l   f o r m a t ,   j u s t   l i k e   t h e   s o u r c e  

:1 
;1 
:1 

p u b l i c  -CopySystemToScreenMaskedX 
-CopySystemToScreenMaskedX p r o c   n e a r  

push 
mov 
sub 
push 
push 

mov 
mov 
mov 
mu1 
add 
mov 
add 
mov 
add 

mov 
s h r  
s h r  
mov 
mu1 
mov 
mov 
s h r  
s h r  
add 
add 

and 
mo v 

s h l  
mov 

image ;   0 -by tes  mean d o n ' t   c o p y   c o r r e s p o n d i n g   s o u r c e  
p i x e l  , 1 - b y t e s  mean do  copy) 

o c a l   s t o r a g e   f o r   w i d t h   o f   r e c t a n g l e  
o c a l   s t o r a g e   f o r   h e i g h t   o f   r e c t a n g l e  
o c a l   s t o r a g e   f o r   l e f t   r e c t   e d g e   p l a n e  mask 

b p   ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
b P * s P   ; p o i n t   t o   l o c a l   s t a c k   f r a m e  
sp.STACK-FRAME-SIZE ; a l l o c a t e   s p a c e   f o r   l o c a l   v a r s  
s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
d i  

ax.SCREEN-SEG ; p o i n t  E S  t o   d i s p l a y  memory 
es  ,ax 
ax.Cbp+SourceBitmapWidthl 
[ b p + S o u r c e S t a r t Y ]   ; t o p   s o u r c e   r e c t   s c a n   l i n e  
ax . [bp+SourceSta r tX l  
bx,   ax 
a x . C b p + S o u r c e P t r l   ; o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l  
s i  ,ax ; i n  OS 
b x . C b p + M a s k P t r l   : o f f s e t   o f   f i r s t  mask p i x e l   i n  OS 

ax. [bp+DestBi tmapWidth l  
ax, 1 : c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  
ax.1 
[bp+DestBi tmapWidth] .ax  ; remember  address  width 
[bp+Des tS ta r tY l  
d i . [ bp+Des tS ta r tX ]  
c x . d i  
d i  .1 
d i  .1 
d i  ,ax 
di .Cbp+OestPageBasel  

c l   . O l l b  
a1 . l l h  

a1 . c l  
[ bp+Le f tMask l .a l  

: t o p   d e s t   r e c t   s c a n   l i n e  

;X/4 - o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  
; s c a n   l i n e  
; o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  page 
: o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l  
: i n   d i s p l a y  memory 
;CL - f i r s t   d e s t   p i x e l ' s   p l a n e  
: u p p e r   n i b b l e  comes i n t o   p l a y  when p lane   w raps  
; f r o m  3 b a c k   t o  0 
: s e t   t h e   b i t   f o r   t h e   f i r s t   d e s t   p i x e l ' s   p l a n e  
: i n  e a c h   n i b b l e   t o  1 

Mode X 256-Color Animation 91 7 



mov 
sub 
j l e  
mov 
sub 

mov 
sub 
j l e  
mov 
mov 
mov 
o u t  
i nc 

mov 
mov 
push 

CopyRowsLoop: 

ax . [bp+SourceEndXI   : ca lcu la te  11 o f   p i x e l s   a c r o s s  
ax . [bp+SourceSta r tX l  : r e c t  
CopyDone : s k i p  i f  0 o r   n e g a t i v e   w i d t h  
Cbp+RectWidthl .ax 
word p t r  [bp+SourceBitmapWidthl.ax 

: d i s t a n c e   f r o m   e n d   o f   o n e   s o u r c e   s c a n   l i n e   t o   s t a r t   o f   n e x t  
ax.[bp+SourceEndYI 
ax.Cbp+SourceStar tY l  
CopyDone 
Cbp+RectHeight l .ax 
dx.SC-INDEX 
a1 .MAP-MASK 
d x , a l  
dx 

a1 . [bp+Lef tMaskl  
cx . [bp+Rec tWid th l  
d i  

CopyScani ineLoop:  
CmP 
j z  

o u t  
mov 
mov 

i nc 
i nc 
r o l  
adc 

MaskOff :  

1 oop 
POP 
add 

add 

add 

dec 
j n z  

POP 
POP 
mov 
POP 
r e t  

CopyDone: 

b y t e   p t r   C b x l . 0  
MaskOff  

dx .a l  
a h . [ s i l  
e s : [ d i l . a h  

bx 
s i  
a1 ,1 
d i  .O 

CopyScanLineLoop 
d i  
d i . [ bp+Des tB i tmapWid th l  

si.[bp+SourceBitmapWidthl 

bx.[bp+SourceBitmapWidthl 

word p t r   [ b p + R e c t H e i g h t l  
CopyRowsLoop 

d i  
s i  
sp.bp 
bP 

: h e i g h t   o f   r e c t a n g l e  
: s k i p  i f  0 o r   n e g a t i v e   h e i g h t  

; p o i n t   t o  SC I n d e x   r e g i s t e r  

: p o i n t  SC I n d e x   r e g   t o   t h e  Map Mask 
: p o i n t  DX t o  SC D a t a   r e g  

:remember t h e   s t a r t   o f f s e t   i n   t h e   d e s t  

: i s   t h i s   p i x e l   m a s k - e n a b l e d ?  
;no. s o  d o n ' t   d r a w  i t  
: y e s .   d r a w   t h e   p i x e l  
: s e t   t h e   p l a n e   f o r   t h i s   p i x e l  
: g e t   t h e   p i x e l   f r o m   t h e   s o u r c e  
: c o p y   t h e   p i x e l   t o   t h e   s c r e e n  

:advance  the  mask p o i n t e r  
: a d v a n c e   t h e   s o u r c e   p o i n t e r  
: s e t  mask f o r   n e x t   p i x e l ' s   p l a n e  
: a d v a n c e   d e s t i n a t i o n   a d d r e s s   o n l y  when 
: w r a p p i n g   f r o m   p l a n e  3 t o   p l a n e  0 

: r e t r i e v e   t h e   d e s t   s t a r t   o f f s e t  
: p o i n t   t o   t h e   s t a r t   o f   t h e  
: n e x t   s c a n   l i n e   o f   t h e   d e s t  
: p o i n t   t o   t h e   s t a r t   o f   t h e  
: n e x t   s c a n   l i n e   o f   t h e   s o u r c e  
: p o i n t   t o   t h e   s t a r t   o f   t h e  
: n e x t   s c a n   l i n e   o f   t h e  mask 
: c o u n t  down s c a n   l i n e s  

; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

- CopySystemToScreenMaskedX endp 
end 

Faster Masked Copying 
In  the previous chapter we  saw  how the VGA's latches can be used  to copy four pixels 
at a time from one  area of display memory to another in Mode X. We've further seen 
that  in Mode X the Map  Mask register  can be used to  select which planes  are  copied. 
That's all we need to know to be able  to  perform fast  masked copies; we can  store an 
image in off-screen display  memory, and set the Map  Mask to  the  appropriate mask 
value  as up to  four pixels at a time are copied. 

9 1 8 Chapter 49 



There’s a slight hitch,  though. The latches can only  be used when the source and 
destination left edge coordinates, modulo four, are  the same,  as explained in  the 
previous chapter. The solution is to  copy  all four possible alignments of each image 
to display  memory, each properly positioned for  one of the  four possible destina- 
tion-left-edge-modulo-four  cases. These aligned images must be  accompanied by the 
four possible alignments of the image  mask, stored in system  memory.  Given  all four 
image and mask alignments, masked  copying  is a simple matter of selecting the align- 
ment that’s appropriate  for  the destination’s left edge,  then setting the Map  Mask 
with the 4bit mask corresponding  to each four-pixel set as we copy four pixels at a 
time via the latches. 
Listing 49.2 performs fast  masked  copying. This code expects to  receive a pointer to 
a MaskedImage structure, which in turn points to  four AlignedMaskedImage struc- 
tures that describe the  four possible  image and mask alignments. The aligned images 
are already stored  in display  memory, and  the  aligned masks are already stored  in 
system memory; further,  the masks are predigested into Map  Mask register-compat- 
ible form. Given  all that ready-to-use data, Listing 49.2 selects and works  with the 
appropriate image-mask pair  for  the destination’s left edge  alignment. 

LISTING 49.2  L49-2.ASM 
: Mode X ( 3 2 0 x 2 4 0 .   2 5 6   c o l o r s )   d i s p l a y  memory t o   d i s p l a y  memory  masked  copy 
: r o u t i n e .  Works  on a l l  VGAs. Uses approach o f   r e a d i n g  4 p i x e l s   a t  a t i m e   f r o m  
: s o u r c e   i n t o   l a t c h e s ,   t h e n   w r i t i n g   l a t c h e s   t o   d e s t i n a t i o n ,   u s i n g  Map Mask 
: r e g i s t e r   t o   p e r f o r m   m a s k i n g .   C o p i e s   u p   t o   b u t   n o t   i n c l u d i n g   c o l u m n   a t  
: SourceEndX  and  row a t  SourceEndY. No c l i p p i n g   i s   p e r f o r m e d .   R e s u l t s   a r e   n o t  
: guaranteed i f  s o u r c e   a n d   d e s t i n a t i o n   o v e r l a p .  C n e a r - c a l l a b l e   a s :  

: v o i d  CopyScreenToScreenMaskedX(int S o u r c e S t a r t X .  
i n t   S o u r c e S t a r t Y .   i n t  SourceEndX. i n t  SourceEndY. 
i n t   D e s t S t a r t X ,   i n t   O e s t S t a r t Y .   M a s k e d I m a g e  * Source, 
u n s i g n e d   i n t   D e s t P a g e B a s e .   i n t   D e s t B i t m a p W i d t h ) :  

SC-INDEX 
MAP-MASK 
GC-INDEX 
BIT-MASK 
SCREENKSEG 

parms s t r u c  

S o u r c e S t a r t X  
S o u r c e S t a r t Y  
SourceEndX 

SourceEndY 

D e s t S t a r t X  
D e s t S t a r t Y  
Source 

DestPageBase 

DestBi tmapWidth 
parms  ends 

03c4h 
02h 
03ceh 
08h 
OaOODh 

2 dup ( ? )  
? 
? 
? 

? 

? 
? 
? 

1 

? 

: S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
: i n d e x   i n  SC o f  Map Mask r e g i s t e r  
; G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
; i n d e x   i n  GC o f  Bit Mask r e g i s t e r  
:segment o f   d i s p l a y  memory i n  mode X 

;pushed B P  and r e t u r n   a d d r e s s  
: X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   s o u r c e  
:Y c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   s o u r c e  
: X  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   s o u r c e  
: ( the   co lumn  a t   SourceEndX i s   n o t   c o p i e d )  
; Y  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e  row  a t   SourceEndY i s   n o t   c o p i e d )  
; X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   d e s t  
: Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r  o f  d e s t  
: p o i n t e r   t o  MaskedImage s t r u c t   f o r   s o u r c e  
: w h i c h   s o u r c e   r e s i d e s  
: b a s e   o f f s e t   i n   d i s p l a y  memory o f  page i n  
: w h i c h   d e s t   r e s i d e s  
;# o f   p i x e l s   a c r o s s   d e s t   b i t m a p   ( m u s t   b e   m u l t i p l e   o f  4 )  

Mode X 256-Color Animation 9 1 9 



SourceNextScanOf fse t  

Des tNextScanOf fse t  

Rec tAddrWid th  
R e c t H e i g h t  
SourceBi tmapWidthequ 

STACK-FRAME-SIZE 
MaskedImage 

A1 ignments  

MaskedImage  ends 
Al ignedMaskedImage 

Imagewid th  dw 
ImagePt r  dw 
MaskPtr  dw 

equ   -2  

equ  -4  

equ - 6  
equ -8  
- 10 

equ  10 
s t r u c  
dw 4 d u p ( ? )  

s t r u c  
? 
? 
? 
ends 

; l o c a l   s t o r a g e   f o r   d i s t a n c e   f r o m   e n d   o f  
; o n e   s o u r c e   s c a n   l i n e   t o   s t a r t   o f   n e x t  
; l o c a l   s t o r a g e   f o r   d i s t a n c e   f r o m   e n d   o f  
; o n e   d e s t   s c a n   l i n e   t o   s t a r t   o f   n e x t  
; l o c a l   s t o r a g e   f o r   a d d r e s s   w i d t h   o f   r e c t a n g l e  
; l o c a l   s t o r a g e   f o r   h e i g h t   o f   r e c t a n g l e  
; l o c a l   s t o r a g e   f o r   w i d t h   o f   s o u r c e   b i t m a p  
; ( i n   a d d r e s s e s )  

; p o i n t e r s   t o   A l i g n e d M a s k e d I m a g e s   f o r   t h e  
: 4 p o s s i b l e   d e s t i n a t i o n   i m a g e   a l i g n m e n t s  

Al ignedMaskedImage 
.model  small  
.code 
p u b l i c  -CopyScreenToScreenMaskedX 

-CopyScreenToScreenMaskedX p r o c   n e a r  

: image  w id th  i n  a d d r e s s e s   ( a l s o  mask w i d t h   i n   b y t e s )  
; o f f s e t   o f   i m a g e   b i t m a p   i n   d i s p l a y  memory 
: p o i n t e r   t o  mask b i t m a p   i n  DS 

push 
mov 
sub 
push 
push 

c l  d 
mov 
mov 
o u t  

mov 
mov 
mov 
shr 
s h r  
mu1 
mov 
mov 
s h r  
s h r  
add 
add 

and 
mo v 
s h l  
mov 
mov 

mov 
mov 
mu1 
mov 
s h r  
s h r  
add 

b p   ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
b p . s p   ; p o i n t   t o   l o c a l   s t a c k   f r a m e  

s i   ; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
sp.STACK-FRAME-SIZE ; a l l o c a t e   s p a c e   f o r   l o c a l  VarS 

d i  

dx.GC-INDEX ; s e t   t h e   b i t  mask t o   s e l e c t   a l l   b i t s  
ax.OOOOOh+BIT-MASK ; f r o m   t h e   l a t c h e s   a n d   n o n e   f r o m  
dx.ax : t h e  CPU.  so t h a t  we c a n   w r i t e   t h e  

; l a t c h   c o n t e n t s   d i r e c t l y   t o  memory 
ax.SCREEN-SEG : p o i n t  ES t o   d i s p l a y  memory 
es.ax 
ax. [bp+DestBi tmapWidthl  
a x . 1   : c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  
a x . 1  
[ b p + D e s t S t a r t Y l   ; t o p   d e s t   r e c t   s c a n   l i n e  
d i . [ b p + D e s t S t a r t X l  
s i   , d i  
d i  .1 ;X/4 - o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  
d i  .1 ; scan l i n e  
d i  ,ax ; o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n   p a g e  
d i . [ b p + D e s t P a g e B a s e ]   : o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n   d i s p l a y  

; memory. now l o o k   u p   t h e   i m a g e   t h a t ' s  
: a l i g n e d   t o   m a t c h   l e f t - e d g e   a l i g n m e n t  
; o f   d e s t i n a t i o n  

s i  . 3  ;Des tStar tX   modu lo  4 
c x , s i  : s e t   a s i d e   a l i g n m e n t   f o r   l a t e r  
s i  .1 ; p r e p a r e   f o r   w o r d   l o o k - u p  
bx.   [bp+Sourcel  ; p o i n t   t o   s o u r c e   M a s k e d I m a g e   s t r u c t u r e  
b x . [ b x + A l i g n m e n t s + s i l  ; p o i n t   t o   A l i g n e d M a s k e d I m a g e  

ax, [bx+ImageWidth l   ; image  width i n  addresses  
[bp+SourceBitmapWidthl.ax ;remember  image w i d t h   i n   a d d r e s s e s  
[ b p + S o u r c e S t a r t Y ]   ; t o p   s o u r c e   r e c t   s c a n   l i n e  
s i ,   [ b p + S o u r c e S t a r t X l  
s i  .1 :X/4 - a d d r e s s   o f   f i r s t   s o u r c e   r e c t   p i x e l   i n  
s i  .1 ; scan l i n e  
s i  ,ax ; o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l   i n   i m a g e  

: s t r u c   f o r   c u r r e n t   l e f t  edge  a l ignment  

920 Chapter 49 



mov 
add 
mov 
add 

mov 
add 
add 
CmP 
j l e  
add 
and 
sub 
s h r  
s h r  
mov 
sub 
j l e  
mov 
mov 
s h r  
s h r  
sub 
mov 
mov 
sub 
mov 
mov 

mov 
mov 
o u t  
i nc 

a x . s i  
s i . [ b x + M a s k P t r l  
bx . [bx+ImagePt r l  
bx.ax 

ax , [bp+SourceStar tX l  
ax ,cx  
cx,[bp+SourceEndX] 
cx .ax  
CopyDone 
cx .3  
a x . n o t   O l l b  
cx .ax  
cx .  1 
c x . 1  
ax.[bp+SourceEndYl 
ax.Cbp+SourceStartYl  
CopyDone 
[bp+RectHe igh t l .ax  

: p o i n t   t o  mask o f f s e t   o f   f i r s t  mask p i x e l   i n  OS 
; o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l  
: i n   d i s p l a y  memory 

: c a l c u l a t e  # o f  add resses   ac ross  
; r e c t .   s h i f t i n g  i f  n e c e s s a r y   t o  
; a c c o u n t   f o r   a l i g n m e n t  

; s k i p  i f  0 o r   n e g a t i v e   w i d t h  

;# o f  a d d r e s s e s   a c r o s s   r e c t a n g l e   t o   c o p y  

:AX - h e i g h t   o f   r e c t a n g l e  
; s k i p  i f  0 o r   n e g a t i v e   h e i g h t  

ax. [bp+DestBi tmapWidthl  
a x . 1   ; c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  
a x . 1  
a x . c x   : d i s t a n c e   f r o m   e n d   o f   o n e   d e s t   s c a n   l i n e   t o   s t a r t   o f   n e x t  
Cbp+DestNextScanOffsetl.ax 
ax.[bp+SourceBitmapWidthl ; w i d t h   i n   a d d r e s s e s  
ax .cx   : d i s tance   f rom  end  o f  s o u r c e   s c a n   l i n e   t o   s t a r t   o f   n e x t  
[bp+SourceNextScanDffsetl.ax 
Cbp+RectAddrWidthl .cx  ; remember  width i n  addresses  

dx.SC-INDEX 
a1 ,MAP"MASK 
d x . a l   ; p o i n t  SC I n d e x   r e g i s t e r   t o  Map Mask 
d x   ; p o i n t   t o  SC D a t a   r e g i s t e r  

CopyRowsLoop: 

CopyScanLineLoop: 
mov cx. [bp+RectAddrWidthl  ; w i d t h   a c r o s s  

l o d s b  : g e t   t h e  mask f o r   t h i s   f o u r - D i x e l   s e t  

o u t  
mov 
mov 
i nc 
i nc 
dec 
j n z  

mov 
add 
add 
add 
dec 
j nz 

mov 
mov 
o u t  

CopyDone: 

POP 
POP 
mov 

: -and   advance   t he  mask p o i n t e r  
d x . a l   : s e t   t h e  mask 
a1 . e s : [ b x l   ; l o a d   t h e   l a t c h e s   w i t h   f o u r - p i x e l   s e t   f r o m   s o u r c e  
e s : [ d i ] . a l   ; c o p y   t h e   f o u r - p i x e l   s e t   t o   t h e   d e s t  
b x   : a d v a n c e   t h e   s o u r c e   p o i n t e r  
d i  ; a d v a n c e   t h e   d e s t i n a t i o n   p o i n t e r  
c x   ; c o u n t   o f f   f o u r - p i x e l   s e t s  
CopyScanLineLoop 

ax,[bp+SourceNextScanOffset] 
s i  , a x   ; p o i n t   t o   t h e   s t a r t   o f  
bx.ax : t h e   n e x t   s o u r c e ,  mask, 
d i . [ bp+Des tNex tScanOf fse t l  : a n d   d e s t   l i n e s  
word p t r   [ b p + R e c t H e i g h t l   : c o u n t  down s c a n   l i n e s  
CopyRowsLoop 

dx.GC-INDEX+l ; r e s t o r e   t h e   b i t  mask t o   i t s   d e f a u l t ,  
a1 . O f f h  ; w h i c h   s e l e c t s   a l l   b i t s   f r o m   t h e  CPU 
d x . a l  : a n d   n o n e   f r o m   t h e   l a t c h e s   ( t h e  GC 

d i   : r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
s i  

; I n d e x   s t i l l   p o i n t s   t o   B i t  Mask) 

s p . b p   ; d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  

Mode X 256-Color Animation 921 



POP b p   : r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

end 
-CopyScreenToScreenMaskedX endp 

It would be handy to have a function  that, given a base image and mask, generates 
the  four image and mask alignments and fills in the MaskedImage structure. Listing 
49.3, together with the  include file in Listing 49.4 and  the system  memory-to-display 
memory block-copy routine  in Listing 48.4 (in  the previous chapter)  does  just  that. 
It would be faster if Listing 49.3 were in assembly language, but there's no reason to 
think  that  generating aligned images needs to be particularly fast; in such cases, I 
prefer to use C, for reasons of coding  speed, fewer bugs, and maintainability. 

LISTING 49.3 L49-3.C 
/* Generates a l l   f o u r   p o s s i b l e  mode X image/mask  a l ignments ,   s to res   image 
a l i g n m e n t s   i n   d i s p l a y  memory. a l l o c a t e s  memory f o r  and  generates mask 
a l i gnmen ts ,   and  f i l l s   o u t  an A l i gnedMasked Image   s t ruc tu re .   Image   and  mask must 
b o t h   b e   i n   b y t e - p e r - p i x e l   f o r m ,   a n d   m u s t   b o t h   b e   o f   w i d t h   I m a g e w i d t h .  Mask 
maps i s o m o r p h i c a l l y   ( o n e   t o   o n e )   o n t o   i m a g e ,   w i t h   e a c h   0 - b y t e   i n  mask masking 
o f f   c o r r e s p o n d i n g   i m a g e   p i x e l   ( c a u s i n g  i t  n o t   t o  be   d rawn) .   and  each  non-0-by te  
a l l o w i n g   c o r r e s p o n d i n g   i m a g e   p i x e l   t o   b e   d r a w n .   R e t u r n s  0 i f  f a i l u r e ,  or # o f  
d i s p l a y  memory a d d r e s s e s   ( 4 - p i x e l   s e t s )   u s e d  i f  success.  For s i m p l i c i t y ,  
a l l o c a t e d  memory i s   n o t   d e a l l o c a t e d   i n   c a s e   o f   f a i l u r e .   C o m p i l e d   w i t h  
B o r l a n d  C++ i n  C c o m p i l a t i o n  mode. * /  

# i n c l u d e   < s t d i o . h >  
#i n c l  ude < s t d l  i b.  h> 
# inc lude  "maskim.h"  

e x t e r n   v o i d  CopySystemToScreenX(int, i n t .   i n t .   i n t .   i n t .   i n t .   c h a r  *, 
u n s i g n e d   i n t ,   i n t .   i n t ) ;  

u n s i g n e d   i n t  CreateAlignedMaskedImage(Masked1mage * ImageToSet. 
u n s i g n e d   i n t   D i s p M e m S t a r t .   c h a r  * Image, i n t  Imagewidth.  
i n t  ImageHeigh t .   char  * Mask) 

i n t   A l i g n ,   S c a n L i n e .   B i t N u m .   S i z e ,   T e m p I m a g e W i d t h ;  
uns igned   cha r  MaskTemp; 
u n s i g n e d   i n t   D i s p M e m O f f s e t  - DispMemStart;  
A1 ignedMaskedImage  *WorkingAMImage; 
char  *NewMaskPtr .   *OldMaskPtr :  
I* G e n e r a t e   e a c h   o f   t h e   f o u r   a l i g n m e n t s   i n   t u r n .  * I  
f o r   ( A l i g n  - 0:  A l i g n  < 4;  Align++) I 

( 

/*  A l l o c a t e   s p a c e   f o r   t h e   A l i g n e d M a s k e d I m a g e   s t r u c t   f o r   t h i s   a l i g n m e n t .  * /  
i f  ((WorkingAMImage - ImageToSet->AlignmentsCAlignl - 

malloc(sizeof(AlignedMasked1mage))) -- N U L L )  
r e t u r n  0; 

WorkingAMImage->Imagewidth - 
WorkingAMImage->ImagePtr - DispMemOffset: I* image  des t  * /  
/*  Download t h i s   a l i g n m e n t   o f   t h e   i m a g e .  * /  
CopySystemToScreenX(0, 0. Imagew id th .   ImageHe igh t ,   A l i gn ,  0. 

/*  C a l c u l a t e   t h e  number o f   b y t e s   n e e d e d   t o   s t o r e   t h e  mask i n  

S i z e  - WorkingAMImage->Imagewidth * ImageHeight :  
i f  ( (WorkingAMImage->MaskPtr - m a l l o c ( S i z e ) )  - NULL) 

( Imagew id th  + A l i g n  + 3 )  / 4; / *  w i d t h   i n   4 - p i x e l   s e t s  * /  

Image,  DispMemOffset.   Imagewidth.  WorkingAMImage->Imagewidth * 4 ) ;  

n i b b l e  (Map M a s k - r e a d y )   f o r m ,   t h e n   a l l o c a t e   t h a t   s p a c e .  * /  

r e t u r n  0; 

922 Chapter 49 



/* G e n e r a t e   t h i s   n i b b l e   o r i e n t e d  (Map M a s k - r e a d y )   a l i g n m e n t   o f  

OldMaskPtr  - Mask: 
NewMaskPtr - WorkingAMImage->MaskPtr:  
f o r   ( S c a n L i n e  - 0:  ScanLine < ImageHeight:   ScanLine++) { 

t h e  mask,  one  scan l i n e   a t  a t i m e .  * /  

Bi tNum - A l i g n :  
MaskTemp - 0:  
TempImageWidth - Imagewidth:  
do { 

/ *  S e t   t h e  mask b i t   f o r   n e x t   p i x e l   a c c o r d i n g   t o   i t s   a l i g n m e n t .  * /  
MaskTemp I- (*OldMaskPtr++ !- 0 )  << BitNum: 
i f  (++BitNum > 3 )  { 

*NewMaskPtr++ - MaskTemp: 
MaskTemp - BitNum - 0:  

1 
1 whi le   ( - -TempImageWidth) :  
/ *  S e t   a n y   p a r t i a l   f i n a l  mask  on t h i s   s c a n   l i n e .  * /  
i f  (B i tNum !- 0 )  *NewMaskPtr++ - MaskTemp: 

1 
DispMemOffset +- S i z e :  / *  mark o f f   t h e  space we j u s t   u s e d  */  

1 
r e t u r n   D i s p M e m O f f s e t  - DispMemStart ;  

1 

LISTING 49.4 MASK1M.H 
/*  MASK1M.H: s t r u c t u r e s   u s e d   f o r   s t o r i n g   a n d   m a n i p u l a t i n g   m a s k e d  

images */  

/* D e s c r i b e s   o n e   a l i g n m e n t   o f  a mask - image   pa i r .  * /  
t y p e d e f   s t r u c t  { 

i n t   I m a g e w i d t h :  / *  i m a g e   w i d t h   i n   a d d r e s s e s   i n   d i s p l a y  memory ( a l s o  

u n s i g n e d   i n t   I m a g e P t r :  / *  o f f s e t   o f  image  b i tmap i n   d i s p l a y  mem */  
char   *MaskPtr ;  / *  p o i n t e r   t o  mask  bi tmap */  

mask w i d t h   i n   b y t e s )  * /  

1 Al ignedMaskedImage; 

/ *  D e s c r i b e s   a l l   f o u r   a l i g n m e n t s   o f  a mask - image   pa i r .  * /  
t y p e d e f   s t r u c t  { 

A l ignedMaskedImage  *Al ignments[41:  / *  p t r s   t o   A l i g n e d M a s k e d I m a g e  
s t r u c t s   f o r   f o u r   p o s s i b l e   d e s t i n a t i o n  
image  a l ignments  * /  

1 MaskedImage: 

Notes on Masked Copying 
Listings 49.1 and 49.2, like  all  Mode X code I’ve presented,  perform no clipping, 
because clipping code would complicate the listings too  much. While clipping can 
be implemented directly in  the low-level Mode X routines (at  the beginning of  List- 
ing 49.1, for  instance),  another, potentially simpler approach would be to perform 
clipping at a  higher level, modifjmg  the  coordinates  and dimensions passed to low- 
level routines such as  Listings 49.1 and 49.2 as  necessary to accomplish the desired 
clipping. It is for precisely this reason that  the low-level Mode X routines  support 
programmable  start  coordinates in the source images, rather  than assuming (0,O) ; 
likewise for  the distinction between the width of the image and  the width  of the  area 
of the image to draw. 

Mode X 256-Color Animation 923 



Also, it would  be more  efficient  to make up  structures  that  describe  the  source and 
destination bitmaps, with dimensions  and  coordinates  built in,  and simply  pass point- 
ers  to  these  structures  to  the low level, rather  than passing  many separate  parameters, 
as  is  now the case. I’ve used separate  parameters  for simplicity and flexibility. 

Be aware that as nijii as Mode X hardware-assisted masked copying is, whether 
or not it’s actually faster than software-only masked or transparent copying de- 
pends upon  the processor and  the video adapter The advantage of Mode Xmasked 
copying is the 32-bit parallelism; the disadvantages are the need  to  read display 
memory  and  the  need to perform an OUT for every four  pixels. (OUT is a slow 
486/Pentium instruction, and  most VGAs respond to OUTS much  more slowly than 
to display memory writes.) 

Animation 
Gosh. There’s just  no way I  can discuss  high-level animation  fundamentals in any 
detail  here;  I  could  spend an  entire  (and entirely  separate)  book on animation tech- 
niques  alone. You might want to have a  look at Chapters 43 through 46 before 
attacking  the  code  in this chapter;  that will  have to do us for  the  present volume. (I 
will return to 3-D animation  in  the  next  chapter.) 
Basically,  I’m going  to  perform page flipped  animation, in which one page (that is, a 
bitmap  large  enough  to  hold  a full screen) of display memory is displayed  while 
another page is drawn to. When the drawing is finished,  the newly modified page is 
displayed, and  the other-now  invisible-page  is  drawn to. The process repeats  ad 
infinitum. For further information, some good places to  start  are Computer  Guphics, 
by Foley and van  Dam  (Addison-Wesley) ; Principles  oflnteructive  Computer  Graphics, by 
Newman and Sproull (McGraw Hill) ; and “Real-Time Animation” by Rahner  James 
(January 1990, Dr. Dobb’s Journal ) . 
Some of the  code  in this chapter was adapted  for Mode X from  the  code in Chapter 
44-yet  another reason  to  read  that  chapter  before  finishing  this one. 

Mode X Animation in  Action 
Listing  49.5  ties together everything I’ve discussed about Mode X so far  in  a  compact 
but surprisingly powerful animation package. Listing 49.5 first uses  solid and pat- 
terned fills and system-memory-to-screen-memory masked copying to draw a static 
background  containing  a  mountain,  a  sun,  a  plain, water, and a  house with  puffs of 
smoke coming out of the chimney, and sets up the  four  alignments of a masked  kite 
image. The background is transferred  to  both display pages, and drawing of 20 kite 
images in  the  nondisplayed page using fast masked  copying begins. After all images 
have been drawn, the page is flipped to  show the newly updated  screen,  and  the kites 
are moved and drawn in  the  other  page, which is no  longer displayed. Kites are 
erased at their  old positions in the  nondisplayed page by block copying from  the 

924 Chapter 49 



background page. (See the discussion in the previous chapter  for  the display memory 
organization used by Listing 49.5.) So far as the displayed image is concerned,  there 
is never any hint of flicker or disturbance of the  background. This continues  at  a  rate 
of up to 60 times a second until Esc is pressed to exit the  program. See Figure 49.1 
for  a screen shot of the resulting image-add the  animation  in your imagination. 

LISTING 49.5 L49-5.C 
/*  Sample mode X VGA a n i m a t i o n   p r o g r a m .   P o r t i o n s   o f   t h i s   c o d e   f i r s t   a p p e a r e d  

i n  P C  T e c h n i q u e s .   C o m p i l e d   w i t h   B o r l a n d  C++ 2.0 i n  C c o m p i l a t i o n  mode. * /  

# i n c l u d e   < s t d i o . h >  
#i nc l   ude   <con i  0. h> 
# inc lude  <dos .   h>  
# inc lude  <math .h> 
# inc lude  "maskim.h"  

# d e f i n e  SCREEN-SEG  OxAOOO 
# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-HEIGHT 240 
# d e f i n e  PAGEO-START-OFFSET 0 
# d e f i n e  PAGE1-START-OFFSET (((long)SCREEN-HEIGHT*SCREEN-WIOTH)/4) 
# d e f i n e  BG-STARTLOFFSET (( ( long)SCREEN_HEIGHT*SCREEN_WIDTH*2) /4)  
# d e f i n e  DOWNLOAD-STARTLOFFSET (((long)SCREENKHEIGHT*SCREEN-WIDTH*3)/4) 

s t a t i c   u n s i g n e d   i n t   P a g e S t a r t O f f s e t s C Z l  - {PAGEOKSTART-OFFSET.PAGEl-START-OFFSET): 
s ta t i c   cha r   GreenAndBrownPat te rnC]  - ( 2 . 6 . 2 . 6 .   6 . 2 . 6 . 2 .   2 . 6 . 2 . 6 .   6 . 2 . 6 . 2 ) ;  
s t a t i c   c h a r   P i n e T r e e P a t t e r n C l  - (2.2.2.2, 2 . 6 . 2 . 6 .   2 . 2 . 6 . 2 .  2.2.2,2): 
s t a t i c   c h a r   B r i c k P a t t e r n C l  - I 6 . 6 . 7 . 6 .   7 . 7 . 7 . 7 .   7 . 6 . 6 , 6 .  7 . 7 , 7 , 7 . } :  
s t a t i c   c h a r   R o o f P a t t e r n C l  - ( 8 . 8 . 8 . 7 ,  7.7 .7 .7 .  8 . 8 . 8 . 7 ,   8 . 8 . 8 . 7 ) ;  

# d e f i n e  SMOKE-WIDTH 7 
# d e f i n e  SMOKE-HEIGHT 7 

Mode X 256-Color Animation 925 



s t a t i c   c h a r   S m o k e P i x e l s C l  - ( 
0. 0.15.15.15. 0. 0. 
0. 7.  7.15.15.15. 0. 
8. 7. 7. 7.15.15.15, 
8. 7. 7. 7.  7.15.15. 
0. 8, 7. 7, 7.  7.15. 
0. 0. 8. 7. 7. 7. 0. 
0. 0. 0. 8.  8.  0. 01: 

s t a t i c   c h a r  SmokeMaskCl - ( 
0. 0. 1. 1. 1. 0. 0. 
0. 1. 1. 1. 1. 1. 0. 
1, 1,  1. 1. 1. 1. 1. 
1. 1. 1. 1. 1. 1. 1. 
1, 1. 1. 1.  1. 1. 1. 
0.1.1.1.1.1.0. 
0. 0. 1. 1. 1. 0. 01: 

# d e f i n e  KITELWIDTH 10 
# d e f i n e  KITELHEIGHT 16 
s t a t i c   c h a r   K i t e P i x e l s C l  - ( 

0. 0. 0. 0.45, 0. 0. 0. 0. 0. 
0. 0. 0.46.46.46, 0. 0. 0. 0. 
0. 0.47.47.47.47.47. 0. 0. 0. 
0.48.48.48,48.48.48.48. 0. 0. 

49.49,49.49.49.49.49.49.49.  0. 
0,50.50.50.50.50.50.50. 0. 0. 
0.51.51.51.51.51,51.51, 0. 0. 
0. 0.52.52.52.52.52. 0.  0. 0. 
0. 0,53.53.53.53.53. 0. 0. 0. 
0, 0, 0.54.54.54. 0. 0, 0. 0. 
0. 0. 0.55.55.55. 0. 0. 0. 0. 
0.  0.  0. 0.58, 0. 0. 0. 0. 0. 
0. 0. 0. 0.59, 0. 0. 0. 0.66. 
0. 0. 0. 0.60, 0. 0.64,  0.65. 
0. 0. 0. 0. 0.61, 0. 0.64. 0. 
0. 0. 0. 0. 0. 0.62.63,  0.641; 

0 . 0 . 0 . 0 , 1 . 0 . 0 . 0 . 0 . 0 .  
0. 0. 0. 1. 1. 1. 0. 0, 0. 0. 
0. 0. 1. 1. 1.  1. 1. 0. 0. 0. 
0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 
1. 1. 1. 1.  1. 1. 1. 1. 1. 0. 
0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . 0 .  
0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 
0. 0. 1. 1, 1. 1. 1. 0. 0. 0, 
0. 0. 1.  1. 1. 1. 1. 0. 0. 0. 
0 . 0 . 0 . 1 . 1 . 1 . 0 . 0 , 0 . 0 .  
0. 0. 0. 1. 1. 1. 0. 0.  0. 0. 
0 . 0 . 0 . 0 . 1 . 0 . 0 . 0 , 0 . 0 .  
0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 
0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 
0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 
0. 0.  0. 0. 0. 0. 1. 1. 0. 11: 

s t a t i c   c h a r   K i t e M a s k C l  - ( 

s t a t i c  MaskedImage  KiteImage: 

# d e f i n e  NUM-OBJECTS 20 
t y p e d e f   s t r u c t  ( 

i n t  X,Y.Width.Height.XDir.YDir.XOtherPage.YOtherPage; 
MaskedImage  *Image: 

1 Animatedobject :  

926 Chapter 49 



An imatedob jec t   An ima tedOb jec tsC l  - I 
[ 0 .  O.KITE-WIDTH.KITE_HEIGHT. 1. 1. 0.  O,&Ki te Image l ,  
{ 10 .  10,KITE-WIDTH.KITE-HEIGHT. 0 .  1, 10 .   lO .&K i te Image I .  
{ 20. 20.KITEKWIDTH.KITEKHEIGHT.-1. 1, 20.   2O.&Ki te Imagej .  
[ 30. 30.KITE~WIDTH.KITE~HEIGHT."1.  30 .   30 .&K i te Image j ,  
( 40. 40.KITE-WIDTH.KITE-HEIGHT. 1;l. 40.   40.&Ki te Image) .  
[ 50,  50.KITEKWIDTH,KITEKHEIGHT. O,-l, 50. 50.&Ki te Image) .  
I 60,  60.KITE-WIDTH.KITE_HEIGHT. 1. 0. 60.   60.&Ki te Image) .  
[ 70. 7O.KITE-WIDTH.KITE-HEIGHT,-l, 0.  70.  7D.&KiteImage).  
[ EO. 80.KITE-WI0TH.KITE-HEIGHT. 1, 2.  EO. EO,&KiteImage).  
{ 90. 90.KITE-WI0TH.KITE-HEIGHT. 0.  2 .   90,   90.&Ki te Image} .  
[100 .100 .K ITE~WIDTH.K ITE~HEIGHT. -1 .  2.100.10D.&KiteImageI.  
~ 1 1 0 . 1 1 0 . K I T E K W I D T H . K I T E H E I G H T . - 1 . - 2 , l l O , l l O . & K i t e I m a ~ e ~ .  
[ 1 2 0 . 1 2 0 . K I T E ~ W I D T H , K I T E ~ H E I G H T ,  1.-2.120.120.&KiteImage). 
[130.130,KITEKWIDTH,KITEKHE1GHT, 0.-2.130.130.&KiteImage). 
(14D.140.KITE~W10TH.KITELHEIGHT. 2,  0.140.140.&KiteImage).  
{150.150,KITE~WIDTH.KITEKHE1GHT,-2. 0.150,150.&KiteImage).  
(160,160,KITEKWIDTH.K1TEKHE1GHT, 2 .   2 ,16D. l60.&Ki te Image) ,  
{170.170.KITE~WIDTH.KITE~HEIGHT.-2, 2.170.170.&KiteImage).  
{1E0.1E0,KITEKWIOTH,KITEKHEIGHT.-2.-2,lEO,lEO,&KiteImage~, 
[190.190,KITE~WIDTH,KITEKHEIGHT, 2.-2.190.190.&KiteImagej. 

I ;  
v o i d   m a i n ( v o i d ) ;  
v o i d   D r a w B a c k g r o u n d ( u n s i g n e d   i n t ) ;  
v o i d  MoveOb jec t (An ima ted0b jec t  * ) ;  
e x t e r n   v o i d   S e t 3 2 0 ~ 2 4 0 M o d e ( v o i d ) ;  
e x t e r n   v o i d   F i l l R e c t a n g l e X ( i n t ,   i n t .   i n t .   i n t .   u n s i g n e d   i n t .   i n t ) :  
e x t e r n   v o i d   F i l l P a t t e r n X ( i n t .   i n t .   i n t .   i n t .   u n s i g n e d   i n t .   c h a r * ) ;  
e x t e r n   v o i d  CopySystemToScreenMaskedX(int. i n t .   i n t .   i n t ,   i n t .   i n t .  

e x t e r n   v o i d  CopyScreenToScreenX(int. i n t .   i n t .   i n t .   i n t .   i n t ,  

e x t e r n   u n s i g n e d   i n t  CreateAlignedMaskedImage(Masked1mage *,  

e x t e r n   v o i d  CopyScreenToScreenMaskedX(int. i n t .   i n t .   i n t .   i n t .   i n t .  

e x t e r n   v o i d   S h o w P a g e ( u n s i g n e d   i n t ) ;  

c h a r  *, u n s i g n e d   i n t .   i n t .   i n t ,   c h a r  * ) ;  

u n s i g n e d   i n t .   u n s i g n e d   i n t .   i n t .   i n t ) ;  

u n s i g n e d   i n t .   c h a r  *, i n t .   i n t .   c h a r  * ) :  

MaskedImage *, u n s i g n e d   i n t .   i n t ) ;  

v o i d   m a i n 0  
I 

i n t   D i sp layedPage .   NonD isp layedPage ,   Done ,  i; 

Set320x240ModeO; 
u n i o n  REGS r e g s e t ;  

/ *  D o w n l o a d   t h e   k i t e   i m a g e   f o r   f a s t   c o p y i n g   l a t e r .  * /  
i f  (CreateAlignedMaskedImage(&KiteImage. DOWNLOADKSTART-OFFSET, 

K i t e P i x e l s .  KITELWIDTH.  KITELHEIGHT, K i teMask)  -- 0 )  { 
r e g s e t . x . a x  - 0 x 0 0 0 3 ;   i n t E 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) :  
p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) :   e x i t ( ) ;  

j 
/*  Draw t h e   b a c k g r o u n d   t o   t h e   b a c k g r o u n d   p a g e .  * /  
DrawBackground(BG-STARTL0FFSET); 
/ *  Copy t h e   b a c k g r o u n d   t o   b o t h   d i s p l a y a b l e   p a g e s .  * /  
CopyScreenToScreenX(0, 0 .  SCREEN-WIDTH,  SCREENKHEIGHT. 0.   0 .  

CopyScreenToScreenX(0, 0 .  SCREENKWIDTH.  SCREEN-HEIGHT. 0.  0. 

/ *  Move t h e   o b j e c t s   a n d   u p d a t e   t h e i r   i m a g e s   i n   t h e   n o n d i s p l a y e d  

Done = Disp layedPage - 0;  
do I 

BG-START-OFFSET,  PAGEO-START-OFFSET,  SCREEN-WIDTH. SCREENKWIDTH); 

BGKSTART-OFFSET.  PAGE1-START-OFFSET,  SCREEN-WIDTH.  SCREEN-WIDTH); 

page,   then f l i p   t h e  page, u n t i l  Esc i s  p ressed.  * /  

NonDisplayedPage - Disp layedPage A 1; 

Mode X 256-Color Animation 927 



I* E r a s e   e a c h   o b j e c t   i n   n o n d i s p l a y e d   p a g e   b y   c o p y i n g   b l o c k   f r o m  

f o r   ( i - 0 :  i<NUM-OBJECTS; i++) ( 
b a c k g r o u n d   p a g e   a t   l a s t   l o c a t i o n   i n   t h a t   p a g e .  *I  

CopyScreenToScreenX~AnimatedObjects~il.XOtherPage, 
AnimatedObjects [ i l .YOtherPage.  
AnimatedObjects[il.XOtherPage + 
AnimatedObjects[il.Width. 
A n i m a t e d O b j e c t s [ i l . Y O t h e r P a g e  + 
AnimatedObjects[il.Height. 
A n i m a t e d O b j e c t s [ i l . X O t h e r P a g e .  
AnimatedObjects [ i l .YOtherPage.  BG-START-OFFSET. 
PageStartOffsetsCNonDisplayedPagel. SCREEN-WIDTH.  SCREEN-WIDTH): 

1 
I* Move and   d raw  each   ob jec t  i n   t h e   n o n d i s p l a y e d   p a g e .  *I  
f o r   ( i - 0 ;  i<NUMLOBJECTS; i++) ( 

M o v e O b j e c t ( & A n i m a t e d O b j e c t s [ i l ) :  
I* Draw o b j e c t   i n t o   n o n d i s p l a y e d   p a g e   a t  new l o c a t i o n  *I  
CopyScreenToScreenMaskedX(0, 0, AnimatedObjects[il.Width, 

A n i m a t e d O b j e c t s [ i l . H e i g h t .  A n i m a t e d O b j e c t s [ i l . X ,  
A n i m a t e d O b j e c t s [ i l . Y .  AnimatedObjectsCil.1mage. 
PageStartOffsets[NonDisplayedPagel, SCREEN-WIDTH): 

I 
/ *  F l i p  t o  t h e   p a g e   i n t o   w h i c h  we j u s t  drew. *I 
ShowPaqe(PaaeStar tOf fse ts rD isD1ayedPage - NonOisplayedPage]) ;  
I* See i f  i t ' s   t i m e   t o  end. * I  
i f  ( k b h i t 0 )  ( 

1 
i f  ( g e t c h 0  - OxlB)  Done - 
" - .  

1 w h i l e   ( ! D o n e ) :  
I* R e s t o r e   t e x t  mode and  done. *I  
r e g s e t . x . a x  - 0x0003 ;   i n t86 (0x10 .  

1 

1; I* Esc t o  end *I  

& r e g s e t .   & r e g s e t ) ;  

vo id   DrawBackground(unsigned i n t   P a g e s t a r t )  
I 

i n t   i . j , T e m p ;  
I* F i l l   t h e   s c r e e n   w i t h   c y a n .  * I  
F i l l R e c t a n g l e X ( 0 ,  0 .  SCREEN-WIDTH.  SCREEN-HEIGHT. P a g e s t a r t .  11); 
I* Draw a g r e e n   a n d   b r o w n   r e c t a n g l e   t o   c r e a t e  a f l a t   p l a i n .  *I  
F i l l P a t t e r n X ( 0 .   1 6 0 ,  SCREEN-WIDTH,  SCREEN-HEIGHT. P a g e S t a r t ,  

I* D r a w   b l u e   w a t e r   a t   t h e   b o t t o m   o f   t h e   s c r e e n .  * I  
F i l l R e c t a n g l e X ( 0 .  SCREENLHEIGHT-30. SCREEN-WIDTH.  SCREEN-HEIGHT. 

I* Draw a b r o w n   m o u n t a i n   r i s i n g   o u t   o f   t h e   p l a i n .  *I  
f o r   ( i - 0 :   i < 1 2 0 :  i++) 

GreenAndBrownPattern):  

P a g e s t a r t ,  1) : 

FillRectangleX(SCREEN~WIDTHl2-30-i. 51+i,  SCREEN-WIDTH/2-30+i+l, 
5 1 + i + l ,   P a g e s t a r t .   6 ) ;  

I* Draw a y e l l o w   s u n   b y   o v e r l a p p i n g   r e c t s   o f   v a r i o u s   s h a p e s .  *I  
f o r   ( i - 0 ;   i < - 2 0 :  i++) ( 

Temp - ( i n t ) ( s q r t ( 2 0 . 0 * 2 0 . 0  - ( f l o a t ) i * ( f l o a t ) i )  + 0 . 5 ) :  
F i l lRec tang leX(SCREEN_WIDTH-25- i .  30-Temp,  SCREEN-WIDTH-25+i+l. 

30+Temp+l. P a g e s t a r t .   1 4 ) ;  
1 
I* Draw  g reen   t rees  down t h e   s i d e  o f   t he   moun ta in .  *I 
f o r   ( i - 1 0 :   i < 9 0 ;  i +- 1 5 )  

f o r   ( j - 0 ;   j < 2 0 ;  j++) 
FillPatternX(SCREENLWIDTH12+i-j13-15, i+ j+51,SCREEN~WIDTH/2+ i+ j I3 -15+1,  

i + j + 5 1 + 1 .   P a g e s t a r t .   P i n e T r e e P a t t e r n ) :  
I* Draw a house on t h e   p l a i n .  *I  
F i l l P a t t e r n X ( 2 6 5 .   1 5 0 .   2 9 5 .   1 7 0 .   P a g e s t a r t .   B r i c k P a t t e r n ) ;  

928 Chapter 49 



F i l l P a t t e r n X ( 2 6 5 ,   1 3 0 .   2 7 0 ,   1 5 0 .   P a g e S t a r t .   B r i c k P a t t e r n ) ;  
f o r   ( i = O :   i < 1 2 ;  i++) 

/* F i n a l l y ,   d r a w   p u f f s   o f  smoke r i s i n g   f r o m   t h e   c h i m n e y .  * I  
f o r   ( i - 0 :   i < 4 ;  i++) 

F i l l P a t t e r n X ( 2 8 0 - i * 2 .   1 3 8 + i .  28O+i*2+1.   138+ i+ l .   Pagestar t .   RoofPat te rn) :  

CopySystemToScreenMaskedX(0, 0 .  SMOKELWIDTH.  SMOKE-HEIGHT. 264, 
110 - i *20 ,   SmokeP ixe l s .   PageSta r t .  SMOKE-WIDTH.SCREEN_WIDTH, SmokeMask): 

1 
/ *  Move t h e   s p e c i f i e d   o b j e c t ,   b o u n c i n g   a t   t h e   e d g e s  o f  t h e   s c r e e n   a n d  

remember ing   where   t he   ob jec t  was b e f o r e   t h e  move f o r   e r a s i n g   n e x t   t i m e .  * I  
v o i d  MoveObject(Animated0bject * ObjectToMove) 

i n t  X ,  Y :  
X - ObjectToMove->X + ObjectToMove->XDir ;  
Y - ObjectToMove->Y + ObjectToMove->YDir :  
i f  ( ( X  < 0 )  1 1  (X > (SCREEN-WIDTH - Ob jec tToMove->Wid th) ) )  [ 

ObjectToMove->XDir  - -0b jec tToMove->XDi r :  
X - ObjectToMove->X + ObjectToMove->XDir :  

1 
i f  ( ( Y  < 0 )  1 1  ( Y  > (SCREEN-HEIGHT - O b j e c t T o M o v e - > H e i g h t ) ) )  { 

ObjectToMove->YDir  - -0b jec tToMove->YDi r :  
Y - ObjectToMove->Y + ObjectToMove->YDir ;  

1 
/*  Remember p r e v i o u s   l o c a t i o n   f o r   e r a s i n g   p u r p o s e s .  * I  
ObjectToMove->XDtherPage - ObjectToMove->X: 
ObjectToMove->YOtherPage - ObjectToMove->Y; 
ObjectToMove->X - X :  / *  s e t  new l o c a t i o n  * /  
ObjectToMove->Y - Y :  

1 

Here’s something worth noting: The animation is extremely smooth on a 20 MHz 
386. It is somewhat more jerky on  an 8 MHz 286, because only 30 frames a second 
can  be  processed. If animation looks jerky on your PC, try reducing the number of  kites. 
The kites  draw perfectly into  the  background, with no  interference  or  fringe,  thanks 
to  masked  copying. In fact, the kites  also  cross  with no interference (the last-drawn 
kite is always  in front), although that’s not readily apparent because they  all look the 
same anyway and  are moving  fast.  Listing  49.5 isn’t inherently limited to kites; create 
your own images and initialize the object list  to  display a mix  of those images and see 
the full power  of  Mode X animation. 
The external  functions called by Listing  49.5 can be found  in Listings  49.1,  49.2, 
49.3, and 49.6, and in the listings for the previous two chapters. 

LISTING 49.6  L49-6.ASM 
: Shows t h e   p a g e   a t   t h e   s p e c i f i e d   o f f s e t   i n   t h e   b i t m a p .  Page i s   d i s p l a y e d  when 
: t h i s   r o u t i n e   r e t u r n s .  

INPUTLSTATUSLl 
: C n e a r - c a l l a b l e   a s :   v o i d   S h o w P a g e ( u n s i g n e d   i n t   S t a r t o f f s e t ) :  

equ  03dah  : Input   S ta tus  1 r e g i s t e r  
CRTC-INDEX equ 03d4h :CRT C o n t r o l l e r   I n d e x   r e g  
START-ADDRESS-HIGH equ Och ; b i t m a p   s t a r t   a d d r e s s   h i g h   b y t e  
START_ADDRESSLLOWequ  Odh : b i t m a p   s t a r t   a d d r e s s   l o w   b y t e  

ShowPageParms s t r u c  

S t a r t o f f s e t  dw ? : o f f s e t   i n   b i t m a p   o f   p a g e   t o   d i s p l a y  
ShowPageParms  ends 

dw 2 dup ( ? )  :pushed BP and r e t u r n   a d d r e s s  

Mode X 256-Color Animation 929 



.model  smal l  

.code 
p u b l i c   3 h o w P a g e  

-Showpage p r o c   n e a r  
push bp  
mov bp.sp 

: p r e s e r v e   c a l l e r ’ s   s t a c k   f r a m e  
; p o i n t   t o   l o c a l   s t a c k   f r a m e  

: W a i t   f o r   d i s p l a y   e n a b l e   t o   b e   a c t i v e   ( s t a t u s   i s   a c t i v e   l o w ) .   t o   b e  
: s u r e   b o t h   h a l v e s   o f   t h e   s t a r t   a d d r e s s  will t a k e   i n   t h e  same frame. 

mov  bl.START-ADDRESS-LOW 
mov b h . b y t e   p t r   S t a r t O f f s e t C b p ]  

: p r e l o a d   f o r   f a s t e s t  

mov  cl.START_ADDRESS-HIGH 
: f l i p p i n g  o n c e   d i s p l a y  

mov c h . b y t e   p t r   S t a r t O f f s e t + l [ b p ]  
: e n a b l e  i s   d e t e c t e d  

mov dx.INPUT-STATUSpl 

i n  a1 .dx 
t e s t  a1  ,Olh 
j n z  WaitDE 

mov  dx.CRTCJNDEX 
mov ax.bx 
o u t   d x . a x   ; s t a r t   a d d r e s s   l o w  
mov ax ,cx  
o u t   d x . a x   ; s t a r t   a d d r e s s   h i g h  

: Now w a i t   f o r   v e r t i c a l   s y n c ,  s o  t h e   o t h e r   p a g e  will b e   i n v i s i b l e  when 
: we s t a r t   d r a w i n g   t o  i t .  

Wai tVS: 

WaitDE: 

: S e t   t h e   s t a r t   o f f s e t   i n   d i s p l a y  memory o f   t h e  page t o  d i s p l a y .  
; d i s p l a y   e n a b l e   i s   a c t i v e   l o w  ( 0  - a c t i v e )  

mov dx.INPUT-STATUS-1 

i n  a1  ,dx 
t e s t  a1 .08h 
j z  WaitVS 
POP bp 
r e t  

-Showpage  endp 
end 

: v e r t i c a l   s y n c   i s   a c t i v e   h i g h  (1 - a c t i v e )  
: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

Works  Fast,  Looks Great 
We now end  our exploration of Mode X, although we’ll  use it again shortly for 3-D 
animation. Mode X admittedly has its complexities; that’s why I’ve provided  a  broad 
and flexible primitive set. Still, so what if it is complex? Take a look at Listing 49.5 in 
action. That sort of colorful,  high-performance  animation is worth jumping  through 
a few hoops  for; drawing 20, or even 10, fair-sized objects at  a  rate of 60 Hz,  with no 
flicker, interference,  or fringe, is no mean  accomplishment, even on  a 386. 
There’s  much  more we could do with animation in general and with  Mode X in 
particular,  but it’s time to move on to new challenges.  In closing, I’d like to  point  out 
that all of the VGA’s hardware  features,  including  the built-in AND, OR, and XOR 
functions,  are available in Mode X, just as they are in the  standard VGA modes. If 
you understand  the VGA’s hardware  in  mode 12H, try applying that knowledge to 
Mode X; you might be surprised at what you find you can  do. 

930 Chapter 49 



chapter 50

adding a dimension



933 



Times change, and they seem to do so much faster in  computer technology than  in 
other parts of the universe. A 486 is capable of decent 3-D animation, owing to its 
integrated  math coprocessor; not in  the class of, say, an i860, but pretty good  none- 
theless. A 386 is  less  satisfactory, though;  the 38’7 is no match for  the 486’s coprocessor, 
and most 386  systems  lack coprocessors. However,  all  is not lost;  32-bit registers and 
built-in integer multiply and divide hardware make it possible to do some very inter- 
esting 3-D animation on a 386  with fixed-point arithmetic. Actually,  it’s  possible  to 
do a surprising amount of 3-D animation in real  mode, and even on lesser  x86 pro- 
cessors; in  fact,  the  code in  this  article will perform real-time 3-D animation 
(admittedly very simple, but nonetheless real-time and 3-D) on a 286 without a 287, 
even though  the  code is written in real-mode C and uses floating-point arithmetic. 
In  short,  the  potential  for 3-D animation on  the x86  family  is considerable. 
With this chapter, we kick off an  exploration of some of the sorts of 3-D animation 
that can be performed  on  the x86  family.  Mind  you,  I’m talking about real-time 3-D 
animation, with  all calculations and drawing performed on-the-fly. Generating frames 
ahead of time and playing them back is an excellent technique,  but I’m interested in 
seeing how far we can  push purely real-time animation.  Granted, we’re not going to 
make it to the level  of Terminator 2, but we should have some fun nonetheless. The 
first few chapters  in this final section of the book may seem pretty basic  to those of 
you experienced with 3-D programming,  and, at  the same time, 3-D neophytes will 
inevitably be distressed at  the  amount of material I skip or skim  over. That can’t be 
helped,  but at least there’ll be working code, the references  mentioned later, and 
some explanation;  that  should be enough to start you on your way with  3-D. 
Animating in  three dimensions is a  complex task, so this will be the largest single 
section of the book, with later chapters building on earlier ones; and even  this  first 3-D 
chapter will rely on polygon fill and page-flip code  from  earlier  chapters. 
In  a sense, I’ve  saved the best for last, because, to my mind, real-time 3-D animation 
is one of the most exciting things of any stripe  that can be done with a computer- 
and because, with  today’s hardware, it can in fact be done. Nay, it can be done 
amazingly  well. 

References on 3-D Drawing 
There  are several good sources for  information  about 3-D graphics. Foley and van 
Dam’s Computer Graphics: Principles and Practice (Second Edition, Addison-Wesley, 1990) 
provides a lengthy discussion  of the topic and a  great many references  for further 
study. Unfortunately, this book is  heavy going at times; a  more  approachable discus- 
sion is provided in Principles of Interactive  Computer Graphics, by Newman and Sproull 
(McGraw-Hill, 1979). Although the latter book  lacks the last decade’s worth of graphics 
developments, it  nonetheless provides a  good overview  of  basic  3-D techniques, in- 
cluding many of the  approaches likely  to  work  well in realtime on a PC. 

934 Chapter 50 



A source that you  may or may not find useful is the series of  six  books on C graphics 
by Lee Adams,  as exemplified by High-Performance CAD Graphics in C (Windcrest/ 
Tab, 1986). (I  don’t know if all  six  books  discuss 3-D graphics, but  the  four I’ve seen 
do.) To be  honest, this book has a number of problems, including: Relatively  little 
theory and explanation;  incomplete and sometimes erroneous discussions  of graph- 
ics hardware; use  of nothing  but global  variables,  with  cryptic names like  “array3” 
and “B21;” and-well,  you get  the idea. On  the  other  hand,  the book at least touches 
on a great many  aspects of  3-D drawing, and there’s a lot of C code  to back that  up. 
A number of people have spoken warmly  to  me  of  Adams’  books  as their  introduc- 
tion to 3-D graphics. I wouldn’t recommend these books  as  your  only 3-D references, 
but if you’re just starting out, you might want  to  look at  one  and see if it helps you 
bridge the  gap between the theory and implementation of  3-D graphics. 

The 3-D Drawing Pipeline 
Each 3-D object that we’ll handle will be built out of  polygons that  represent  the 
surface of the object. Figure 50.1 shows the stages a polygon  goes through  enroute 
to  being drawn on the  screen.  (For  the  present, we’ll  avoid complications such  as 
clipping, lighting, and shading.) First, the polygon is transformed from object space, 
the  coordinate system the object is defined  in, to  world space, the  coordinate system 
of the 3-D universe. Transformation may  involve rotating, scaling, and moving the 
polygon.  Fortunately,  applying the desired transformation to each of the polygon 
vertices in  an object is equivalent to transforming the polygon;  in other words,  trans- 
formation of a polygon is  fully defined by transformation of  its  vertices, so it is not 
necessary to transform every point in a polygon, just  the vertices.  Likewise,  transfor- 
mation of  all the polygon  vertices in an object fully transforms the object. 
Once  the polygon is in world space, it must again be  transformed, this  time into view 
space, the space defined such that  the viewpoint is at (O,O,O), looking down the Z 
axis,  with the Yaxis straight up  and  the X axis  off to  the right. Once in view space, the 
polygon can be  perspective-projected  to the  screen, with the projected X and Y coor- 
dinates of the vertices  finally being used to draw the polygon. 
That’s  really  all there is to  basic  3-D  drawing:  transformation  from  object  space  to  world 
space  to view space to the screen.  Next, we’ll  look at the mechanics of transformation. 
One note: I’ll  use a purely right-handed convention for  coordinate systems.  Right- 
handed means that if you hold your right hand with  your fingers curled and  the 
thumb sticking out,  the  thumb points along  the Z axis and  the fingers point  in  the 
direction of rotation  from  the X axis  to the Yaxis,  as  shown in Figure 50.2. Rotations 
about  an axis are counter-clockwise7  as  viewed looking down an axis  toward the ori- 
gin. The handedness of a coordinate system  is just a convention, and left-handed 
would do equally  well;  however, right-handed is generally used for object and world 
space. Sometimes, the  handedness is flipped for view space, so that increasing Z 
equals increasing distance from  the viewer along  the line of sight, but I have chosen 

Adding a Dimension 935 



Polygon  transformed into world space,  the  shared 3-D 
universe. At this  point, (O,O,O) is  the origin of the 3-D 
universe and is not  affected by the locatlon or 
orientation of the polygon, the  viewer, or the  screen. 4 ) World space  to  view 

space transformation 

on  transformed  into  view  space,  the 3-D universe 
from  the  view  oint;  the  viewpoint becomes 

the origin (O,O,O), with tRe viewer  looklng  straight  down 
the Z axis. 

Perspective projection from view 
space  to  the  screen 

V 

The 3-0 drawing pipeline. 
Figure 50.1 

Y 

Direction of positive  rotation 
around  the Z axis, 

from the X axis 
to the Y axis 

1 X 

A right-handed coordinate system. 
Figure 50.2 

936 Chapter 50 



not to do  that  here, to avoid confusion. Therefore, Z decreases as distance along the 
line of sight increases; a view space coordinate of (O,O,-1000) is directly ahead, twice 
as far away  as a  coordinate of (O,O,-500). 

Projection 
Working  backward from  the final image, we want to take the vertices of a polygon, as 
transformed into view space, and project  them to 2-D coordinates on  the screen, 
which, for projection purposes, is assumed to be  centered  on  and  perpendicular to 
the Z axis in view space, at some distance from  the screen. We’re after visual realism, 
so  we’ll want to do a perspective projection, in order that  farther objects look smaller 
than  nearer objects, and so that  the field of  view  will widen  with distance. This is 
done by scaling the X and Y coordinates of each point  proportionately to the Z 
distance of the  point  from  the viewer, a simple matter of similar triangles, as shown 
in Figure 50.3. It doesn’t really matter how far down the Z axis the screen is assumed 
to be; what matters is the  ratio of the distance of the screen from  the viewpoint to the 
width  of the screen. This ratio defines the  rate of divergence of the viewing  pyra- 
mid-the full field of  view-and  is used for  performing all perspective projections. 
Once perspective projection has been  performed, all that remains before calling the 
polygon filler is  to convert the  projected X and Y coordinates to integers, appropri- 
ately clipped and adjusted as  necessary  to center  the origin on  the screen or otherwise 
map  the image into  a window, if desired. 

Translation 
Translation means adding X, E: and Z offsets to a  coordinate to  move it linearly through 
space. Translation is as simple as it seems; it  requires  nothing  more  than  an  addition 

y (UP) 
A 

I 
! TOD ofview 
I 

I 
I ‘ pyramid 

! / 3 - D 1 2  
c proiected 

oint  proiected to screen 

+ $ i x + i o n  
of view) 

Screen 

Bottom  of  view  pyramid 

Perspective projection. 
Figure 50.3 

Adding a Dimension 937 



for  each axis. Translation is, for  example, used to move objects from object space, in 
which the  center of the object is  typically the origin (O,O,O), into world space, where 
the object may be located anywhere. 

Rotation 
Rotation is the process  of  circularly  moving coordinates around the origin.  For our present 
purposes, it’s  necessary  only to rotate objects about  their  centers in object space, so 
as  to turn them to the desired  attitude  before translating them  into world space. 
Rotation of a point  about  an axis is accomplished by transforming it according to the 
formulas shown in Figure 50.4. These formulas map into  the more generally useful 
matrix-multiplication forms also  shown in Figure 50.4. Matrix representation is more 

(a) 
n e w  = x 
newy = cos(theta) * y - sin(theta) * z 
newz = sin(theta) * y + cos(theta) * z 

Matrix form of rotation  around X axis: 

[i cos(theta) 0 -sin/th:a/] x k] 
(b) 
n e w  = cos(theta) * x + sinltheta) * z 
newy = y 
newz = -sin(theta) * x + cos(theta) * z 

sin(theta) cos  theta 

Matrix form of rotation  around Y axis: 
~ - - _  

(c) 
n e w  = cos(theta) * x - sin(theta) * y 
newy = sin(theta) * x + cos(theta) * y 
newz = z 

Matrix form of rotation  around Z axis: 8 ] x k] 
3 - 0  rotation formulas. 
Figure 50.4 

938 Chapter 50 



useful for two reasons:  First, it is possible  to concatenate multiple rotations  into a 
single matrix by multiplying them  together in the desired order; that single matrix 
can then  be used to  perform  the rotations more efficiently. 
Second, 3x3 rotation matrices  can become the upper-left-hand portions of 4x4 ma- 
trices that also perform translation (and scaling  as  well, but we won't need scaling in 
the  near  future), as  shown  in  Figure 50.5. A 4x4 matrix of this sort utilizes homoge- 
neous coordinates; that's a topic way beyond this book, but, basically, homogeneous 
coordinates allow you to handle  both rotations and translations with 4x4 matrices, 
thereby allowing the same code  to work  with either, and making it possible  to  concat- 
enate a long series  of rotations and translations into a single matrix that  performs 
the same transformation as the  sequence of rotations and transformations. 
There's  much  more to be said about transformations and  the supporting matrix 
math,  but, in the interests of getting  to working code in this chapter, I'll  leave that  to 
be discussed  as the need arises. 

A Simple 3-D Example 
At this point, we know enough to be able to put together a simple  working 3-D ani- 
mation example. The example will do  nothing  more complicated than display a 
single  polygon  as it sits in 3-D space, rotating around  the Y axis.  To  make things a 
little more  interesting, we'll let the user move the polygon around in space  with the 
arrow keys, and with the "A" (away), and "T" (toward) keys. The sample program 
requires two sorts  of  functionality: The ability to transform and project the polygon 
from object space onto  the screen (3-D functionality), and  the ability to draw the 

Rotation of 90' around the Y axis  Translation  (move) of 100 units along the 
X axis  and IO units along the Z axis 

1 -1 """"""""""""- r""- 

0 1 

1 0 $ 0  
' I  I - 1  0 

0 0 1 '  L 9  """"""""""""""" I 
,"""""""""""""""" 

t t 
Not used at the  moment A 3-D point represented in 

homogeneous  coordinates 

A 4x4 Transformation Matrix. 
Figure 50.5 

Adding a  Dimension 939 



projected polygon (complete with clipping) and  handle  the  other details of anima- 
tion (2-D functionality). 
Happily (and  not coincidentally), we put together  a nice 2-D animation framework 
back in  Chapters 4’7,48, and 49, during  our exploratory discussion of Mode X, so we 
don’t have much  to worry about in terms of  non-3-D details. Basically,  we’ll  use  Mode 
X (320x240, 256 colors), and we’ll flip between two display pages, drawing to one 
while the  other is displayed. One new 2-D element  that we need is the ability to clip 
polygons;  while we could avoid this for  the  moment by restricting  the  range of  mo- 
tion of the polygon so that  it stays fully on the  screen, certainly in the  long  run we’ll 
want to  be  able  to  handle partially or fully clipped polygons.  Listing 50.1 is the low- 
level code  for  a Mode X polygon filler that  supports  clipping. (The high-level  polygon 
fill code is mode  independent,  and is the same as that  presented  in  Chapters 38,39, 
and 40, as noted  further on.) The clipping is implemented at the low level, by trim- 
ming  the Y extent of the scan line list up  front,  then clipping  the X coordinates of 
each scan line  in turn. This is not a particularly fast approach  to clipping-ideally, 
the polygon  would be  clipped  before  it was scanned into a  line list, avoiding poten- 
tially  wasted scanning and eliminating  the line-by-line X clipping-but it’s much 
simpler, and, as we shall see, polygon filling performance is the least of our worries at 
the  moment. 

LISTING 50.1 150- 1 .ASM 
; Draws a l l   p i x e l s   i n   t h e   l i s t   o f   h o r i z o n t a l   l i n e s   p a s s e d   i n ,   i n  
: Mode X .  t h e  VGA’s undocumented  320x240  256-co lo r  mode. C l i p s   t o  
: t h e   r e c t a n g l e   s p e c i f i e d   b y  (ClipMinX.ClipMinY).(ClipMaxX.ClipMaxY). 
: Draws t o   t h e   p a g e   s p e c i f i e d   b y   C u r r e n t P a g e B a s e .  
; C n e a r - c a l l a b l e   a s :  

: v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  * H L i n e L i s t P t r .  
i n t   C o l o r ) ;  

: All a s s e m b l y   c o d e   t e s t e d   w i t h  TASM and MASM 

SCREEN-WIDTH equ  320 
SCREEN-SEGMENT equ OaOOOh 
SC-INDEX equ  03c4h 
MAP-MASK equ 2  :Map Mask r e g i s t e r   i n d e x   i n  SC 

H L i n e   s t r u c  
X S t a r t  dw ? : X  c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   l i n e  
XEnd dw ? : X  c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  
HL ine   ends  

H L i n e L i s t   s t r u c  
L n g t h  dw ? ;I o f  h o r i z o n t a l   l i n e s  
Y S t a r t  dw ? ;Y c o o r d i n a t e   o f   t o p m o s t   l i n e  
H L i n e P t r  dw ? ; p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  
H L i   n e L i   s t   e n d s  

: S e q u e n c e   C o n t r o l l e r   I n d e x  

Parms s t r u c  

H L i n e L i s t P t r  dw ? ; p o i n t e r   t o   H L i n e L i s t   s t r u c t u r e  
dw 2 d u p ( ? )   ; r e t u r n   a d d r e s s  & pushed BP 

940 Chapter 50 



C o l o r  dw ? : c o l o r   w i t h   w h i c h   t o  fill 
Parms  ends 

.model   smal l  

. d a t a  
e x t r n  -CurrentPageBase:word._ClipMinX:word 
e x t r n  -ClipMinY:word.LClipMaxX:word,-ClipMaxY:word 

: P l a n e   m a s k s   f o r   c l i p p i n g   l e f t   a n d   r i g h t   e d g e s   o f   r e c t a n g l e .  
Le f tC l i pP laneMask   db   00 fh .00eh .00ch .008h  
R igh tC l i pP laneMask   db   001h .003h .007h .00 fh  

.code 
a l i g n  2 

jmp F i  11  Done 
p u b l i c   - 0 r a w H o r i z o n t a l L i n e L i s t  
a1 i g n  2 

- D r a w H o r i z o n t a l L i n e L i s t   p r o c  
push  bp 
mov bp .sp  
p u s h   s i  
p u s h   d i  
c l  d 
mov dx.SC-INDEX 
mov a1 .MAPFMASK 
o u t   d x . a l  
mov ax.SCREENLSEGMENT 
mov es ,ax 
mov s i . [ b p + H L i n e L i s t P t r l  
mov b x . [ s i + H L i n e P t r l  

mov c x . [ s i + Y S t a r t l  
mov s i   . [ s i + L n g t h l  
cmp s i . 0  
j 1 e ToFi  11  Done 
cmp c x . [ L C l i p M i n Y I  
j g e   M i n Y N o t C l i p p e d  
neg   cx  
add  cx . [ -C l ipMinYl  
s u b   s i . c x  
j 1 e ToFi  11  Done 
s h l   c x . 1  
s h l   c x . 1  
add  bx.cx 
mov c x .  [LC1 i pMi nY 1 

mov d x . s i  
add  dx,cx 
cmp dx .  [LC1 i pMaxY 1 
j l e  MaxYNotCl ipped 
sub  dx . [ -C l ipMaxYI  
sub s i   . d x  
j l e   T o F i l l O o n e  

mov ax,SCREENlWIDTH/4 
mu1 c x  
add  ax. [ -CurrentPageBasel  
mov dx .ax  
mov a h , b y t e   p t r   [ b p + C o l o r l  

push   bx  

T o F i l   l D o n e :  

M inYNotC l ipped :  

MaxYNotCl ipped:  

F i  11  Loop: 

; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
; p o i n t   t o   o u r   s t a c k   f r a m e  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

;make s t r i n g   i n s t r u c t i o n s   i n c   p o i n t e r s  

: p o i n t  SC I n d e x   t o   t h e  Map Mask 

: p o i n t  ES t o   d i s p l a y  memory f o r  REP STOS 
; p o i n t   t o   t h e   l i n e   l i s t  
: p o i n t   t o   t h e   X S t a r t / X E n d   d e s c r i p t o r  
: f o r   t h e   f i r s t   ( t o p )   h o r i z o n t a l   l i n e  
: f i r s t   s c a n   l i n e   t o   d r a w  
:# o f  s c a n   l i n e s   t o   d r a w  
; a r e   t h e r e   a n y   l i n e s   t o   d r a w ?  
:no. s o  we ' re   done 
: c l i p p e d   a t   t o p ?  
:no 
; y e s .   d i s c a r d   h o w e v e r  many l i n e s   a r e  
: c l i p p e d  
; t h a t  many f e w e r   l i n e s   t o   d r a w  
:no l i n e s   l e f t   t o   d r a w  
: l i n e s   t o   s k i p * 2  
; l i n e s   t o   s k i p * 4  
: a d v a n c e   t h r o u g h   t h e   l i n e   l i s t  
: s t a r t   a t   t h e   t o p   c l i p   l i n e  

; b o t t o m   r o w   t o   d r a w  + 1 
: c l i p p e d   a t   b o t t o m ?  
:no 
:# o f   l i n e s   t o   c l i p   o f f   t h e   b o t t o m  
:# o f   l i n e s   l e f t   t o   d r a w  
: a l l   l i n e s   a r e   c l i p p e d  

: p o i n t   t o   t h e   s t a r t   o f   t h e   f i r s t  
: s c a n   l i n e   o n   w h i c h   t o   d r a w  
: o f f s e t   o f   f i r s t   l i n e  
:ES:DX p o i n t s   t o   f i r s t   s c a n   l i n e   t o   d r a w  
; c o l o r   w i t h   w h i c h   t o  fill 

:remember l i n e   l i s t   l o c a t i o n  
p u s h   d x   : r e m e m b e r   o f f s e t   o f   s t a r t   o f   l i n e  

Adding a Dimension 941 



p u s h   s i  
mov d i   , [ b x + X S t a r t ]  
cmp d i  , [LC1 i pMi  nX1 
j g e  Mi nXNotCl i pped 
mov d i  , [LC1 i pMi  nX] 

mov s i   . d i  
mov cx.Cbx+XEndl 
cmp c x  , [LC1 i pMaxX] 
jl MaxXNotCl  ipped 
mov c x ,  [LC1  ipMaxX] 
d e c   c x  

M i  nXNotCl i pped: 

MaxXNotCl i pped: 

;remember # o f  1 i n e s   t o   d r a w  
; l e f t   e d g e   o f  fill o n   t h i s   l i n e  
; c l   i p p e d   t o  1 e f t  edge? 
; n o  
; y e s .   c l i p   t o   t h e   l e f t  edge 

; r i g h t   e d g e   o f  fill 
; c l i p p e d   t o   r i g h t   e d g e ?  
;no 
; y e s ,   c l i p   t o   t h e   r i g h t  edge 

CmP 
jl 
s h r  
s h r  
add 
mov 
and 
mov 
mov 
and 
mov 
and 
sub 
s h r  
s h r  
j n z  
and 

MasksSet:  

F i  11  RowsLoop: 
mov 

mov 
o u t  
mov 
s t o s b  
dec  
j s  
j z  
rnov 
o u t  
mov 

DoRightEdge: 
r e p  

mov 
o u t  
mov 
s t o s b  

c x . d i  
L i n e F i l   l D o n e   ; s k i p  i f  n e g a t i v e   w i d t h  
d i  .1 ;X/4  - o f f s e t   o f   f i r s t   r e c t   p i x e l   i n   s c a n  
d i  ,1 
d i  , dx  
d x . s i   ; X S t a r t  
s i  , 0 0 0 3 h   ; l o o k   u p   l e f t - e d g e   p l a n e   m a s k  
bh.LeftClipPlaneMask[si] ; t o   c l i p  & p u t   i n  BH 
s i   . c x  
s i  , 0 0 0 3 h   ; l o o k   u p   r i g h t - e d g e   p l a n e  
bl.RightClipPlaneMask[sil ; mask t o   c l i p  & p u t   i n  BL 

; l i n e  
; o f f s e t   o f   f i r s t   r e c t   p i x e l   i n   d i s p l a y  mem 

d x . n o t   O l l b  
cx .dx  
C X . 1  

MasksSet 
c x . 1  

b h , b l  

dx.SC-INDEX+l 

a1 ,bh 
d x , a l  
a1 .ah 

c x  
F i   1 1   L o o p B o t t o m  
DoRightEdge 
a1 .OOfh 
d x . a l  
a1 ,ah 
s t o s b  

a1 , b l  
d x . a l  
a1 .ah 

F i l l  LoopBottom: 
L i n e F i l l D o n e :  

p o p   s i  
POP dx  
POP b x  
add dx,SCREENLWIDTH/4 
a d d   b x . s i z e   H L i n e  
d e c   s i  
j n z   F i   1 1   L o o p  

; c a l c u l a t e  I o f   a d d r e s s e s   a c r o s s   r e c t  

;# o f   a d d r e s s e s   a c r o s s   r e c t a n g l e   t o  fill - 1 
; t h e r e ' s   m o r e   t h a n   o n e   b y t e   t o   d r a w  
; t h e r e ' s   o n l y   o n e   b y t e ,  so c o m b i n e   t h e   l e f t  
; a n d   r i g h t   e d g e   c l i p  masks 

; a l r e a d y   p o i n t s   t o   t h e  Map Mask r e g  

; p u t   l e f t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   l e f t - e d g e   p l a n e   ( c l i p )  mask 
; p u t   c o l o r   i n  AL 
; d r a w   t h e   l e f t   e d g e  
; c o u n t   o f f   l e f t   e d g e   b y t e  
; t h a t ' s   t h e   o n l y   b y t e  
; t h e r e   a r e   o n l y   t w o   b y t e s  
;m idd le   add resses   a re   d rawn  4 p i x e l s   a t  a pop 
; s e t   t h e   m i d d l e   p i x e l  mask t o  n o  c l i p  
; p u t   c o l o r  i n  AL 
; d r a w   t h e   m i d d l e   a d d r e s s e s   f o u r   p i x e l s   a p i e c e  

; p u t   r i g h t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   r i g h t - e d g e   p l a n e   ( c l i p )  mask 
: p u t   c o l o r   i n  AL 
; d r a w   t h e   r i g h t   e d g e  

; r e t r i e v e  # o f   l i n e s   t o   d r a w  
; r e t r i e v e   o f f s e t   o f   s t a r t   o f   l i n e  
; r e t r i e v e   l i n e   l i s t   l o c a t i o n  
; p o i n t   t o   s t a r t   o f   n e x t   l i n e  
: p o i n t   t o   t h e   n e x t   l i n e   d e s c r i p t o r  
: c o u n t  down l i n e s  

942 Chapter 50 



F i  11  Done: 
pop d i  
pop s i  

r e t  

end 

POP bP 

- D r a w H o r i z o n t a l L i n e L i s t   e n d p  

; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

The  other 2-D element we need is some way to erase the polygon at its old location 
before it's moved and redrawn. We'll do that by remembering  the  bounding rect- 
angle of the polygon each time it's drawn, then erasing by clearing that  area with a 
rectangle fill. 
With the 2-D side of the  picture well under control, we're ready to concentrate  on 
the  good stuff.  Listings 50.2 through 50.5 are  the sample 3-D animation  program. 
Listing 50.2 provides matrix multiplication functions in a straightforward fashion. 
Listing 50.3 transforms, projects, and draws  polygons.  Listing 50.4 is the  general 
header file for the program, and Listing 50.5 is the main animation  program. 
Other modules required  are: Listings 47.1 and 47.6 from  Chapter 47 (Mode X mode 
set, rectangle fill); Listing 49.6 from  Chapter 49; Listing 39.4 from  Chapter 39 (poly- 
gon  edge  scan); and  the FillConvexPolygon() function  from Listing 38.1 in  Chapter 
38. All necessary code  modules,  along with a project file, are  present in the 
subdirectory for this chapter  on  the listings  disk, whether they  were presented in this 
chapter  or some earlier chapter. This will be the case for  the  next several chapters as 
well, where listings from previous chapters are, referenced. This scheme may crowd 
the listings diskette a little bit,  but it will certainly reduce confusion! 

LISTING 50.2 150-2.C 
/*  M a t r i x   a r i t h m e t i c   f u n c t i o n s .  

T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  *I  

/*  M a t r i x   m u l t i p l i e s   X f o r m   b y   S o u r c e V e c .   a n d   s t o r e s   t h e   r e s u l t   i n  
D e s t V e c .   M u l t i p l i e s  a 4 x 4   m a t r i x   t i m e s  a 4 x 1   m a t r i x :   t h e   r e s u l t  
i s  a 4 x 1   m a t r i x ,   a s   f o l l o w s :  
.. 

I I 1 4 1   1 4 1  
1 4 x 4  I x 1 x 1  - 1 x 1  
I I I l l   I l l  

" " " .. .. 

" " .. " " " */ 

d o u b l e  * DestVec)  

i n t  i.j; 

f o r   ( i - 0 ;   i < 4 :  i++) I 
D e s t V e c C i l  - 0;  
f o r  (j-0; j < 4 :  j++) 

vo id   X formVec(doub1e  X form[41[41 .   doub le  SourceVec. 

I 

D e s t V e c C i l  +- X f o r m C i l C j l  * SourceVecC j l :  
1 

1 

Adding a Dimension 943 



/*  M a t r i x   m u l t i p l i e s   S o u r c e X f o r m l   b y   S o u r c e X f o r m Z   a n d   s t o r e s   t h e  
r e s u l t   i n   D e s t X f o r m .   M u l t i p l i e s  a 4 x 4   m a t r i x   t i m e s  a 4 x 4   m a t r i x ;  
t h e   r e s u l t   i s  a 4 x 4   m a t r i x ,   a s   f o l l o w s :  
" " " " " " 

" " " " " .. */ 

doub le   Des tXform[41C41)  

i n t   i , j , k ;  

f o r   ( i - 0 :   i < 4 ;  i++) { 

vo id   ConcatXforms(doub1e  SourceXforml [41 [41 .   doub le   SourceXform2[41[41 ,  

I 

f o r   ( j - 0 ;   j < 4 :  j++) I 
D e s t X f o r m [ i l [ j l  - 0;  
f o r  (k-0:  k<4; k++) 

1 
D e s t X f o r m [ i l [ j l  +- S o u r c e X f o r m l C i l [ k l  * S o u r c e X f o r m 2 ~ k l C j l ;  

1 
1 

LISTING 50.3 150-3.C 
/*  T r a n s f o r m s   c o n v e x   p o l y g o n   P o l y   ( w h i c h   h a s   P o l y L e n g t h   v e r t i c e s ) .  

p e r f o r m i n g   t h e   t r a n s f o r m a t i o n   a c c o r d i n g   t o   X f o r m   ( w h i c h   g e n e r a l l y  
r e p r e s e n t s  a t r a n s f o r m a t i o n   f r o m   o b j e c t   s p a c e   t h r o u g h   w o r l d   s p a c e  
t o   v i e w   s p a c e ) .   t h e n   p r o j e c t s   t h e   t r a n s f o r m e d   p o l y g o n   o n t o   t h e  
screen  and  draws it i n   c o l o r   C o l o r .   A l s o   u p d a t e s   t h e   e x t e n t   o f   t h e  
r e c t a n g l e   ( E r a s e R e c t )   t h a t ' s   u s e d   t o   e r a s e   t h e   s c r e e n   l a t e r .  
T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  * /  

#i nc l   ude   "po l ygon .   h "  

v o i d  XformAndProjectPoly(doub1e X f o r m [ 4 ] [ 4 ] .   s t r u c t   P o i n t 3  * P o l y ,  

( 
i n t   P o l y L e n g t h .   i n t   C o l o r )  

i n t  i; 
s t r u c t   P o i n t 3  XformedPoly[MAX_POLY-LENGTH]; 
s t r u c t   P o i n t  ProjectedPoly[MAX-POLY-LENGTH]; 
s t r u c t   P o i n t L i s t H e a d e r   P o l y g o n :  

/ *  T r a n s f o r m   t o   v i e w   s p a c e ,   t h e n   p r o j e c t   t o   t h e   s c r e e n  */  
f o r   ( i - 0 ;   i < P o l y L e n g t h ;  i++) { 

/*  T r a n s f o r m   t o   v i e w   s p a c e  */  
X f o r m V e c ( X f o r m .   ( d o u b l e   * ) & P o l y [ i l .   ( d o u b l e   * ) & X f o r m e d P o l y [ i l ) ;  
/ *  P r o j e c t   t h e  X & Y c o o r d i n a t e s   t o   t h e   s c r e e n ,   r o u n d i n g   t o   t h e  

n e a r e s t   i n t e g r a l   c o o r d i n a t e s .  The Y c o o r d i n a t e   i s   n e g a t e d   t o  
f l i p   f r o m   v i e w   s p a c e ,   w h e r e   i n c r e a s i n g  Y i s  up. t o   s c r e e n  
s p a c e ,   w h e r e   i n c r e a s i n g  Y i s  down.  Add i n   h a l f   t h e   s c r e e n  
w i d t h   a n d   h e i g h t   t o   c e n t e r  on t h e   s c r e e n  */  

P r o j e c t e d P o l y C i 1 . X  - ( ( i n t )  (XformedPoly[i].X/XformedPoly[i].Z * 

P r o j e c t e d P o l y C i 1 . Y  - ( ( i n t )  (XformedPolyCil.Y/XformedPoly[i].Z * 
P R O J E C T I O N ~ R A T I O * ~ S C R E E N ~ W I D T H / Z . O ~ + O . 5 ~ ~ + S C R E E N ~ W I D T H / Z ;  

-1.0 * PROJECTION-RATIO * (SCREEN-WIDTH / 2 . 0 )  + 0.5)) + 
SCREEN-HEIGHT/Z: 

/ *  A p p r o p r i a t e l y   a d j u s t   t h e   e x t e n t   o f   t h e   r e c t a n g l e   u s e d   t o  
e r a s e   t h i s   p a g e   l a t e r  * /  
i f  ( P r o j e c t e d P o l y C i 1 . X  > EraseRect [NonDisp layedPage] .Right )  
i f  ( P r o j e c t e d P o l y C i 1 . X  < SCREENKWIDTH) 

e l s e  E raseRec t [NonD isp layedPage l .R igh t  - SCREEN-WIDTH; 
EraseRect [NonDisp layedPage] .Right  - P r o j e c t e d P o l y [ i ] . X :  

944 Chapter 50 



i f  ( P r o j e c t e d P o l y [ i l . Y  > EraseRect [NonDisp layedPagel .Bot tom) 
i f  ( P r o j e c t e d P o l y [ i l . Y  < SCREENkHEIGHT) 

e l s e  E r a s e R e c t [ N o n D i s p l a y e d P a g e l . B o t t o m  - SCREEN-HEIGHT: 
i f  ( P r o j e c t e d P o l y [ i l . X  < E raseRec t [NonD isp layedPage l .Le f t )  
i f  ( P r o j e c t e d P o l y C i 1 . X  > 0 )  

e l s e  E raseRec t [NonD isp layedPage l .Le f t  = 0; 

i f  ( P r o j e c t e d P o l y C i 1 . Y  > 0 )  

e l s e  EraseRect[NonDisplayedPagel.Top = 0:  

EraseRect[NonDisplayedPagel.Bottom = P r o j e c t e d P o l y [ i l . Y :  

E raseRec t [NonD isp layedPage l .Le f t  = P r o j e c t e d P o l y C i 1 . X :  

i f  ( P r o j e c t e d P o l y [ i ] . Y  < EraseRect[NonDisplayedPagel.Top) 

EraseRect[NonDisplayedPagel.Top = P r o j e c t e d P o l y [ i l . Y ;  

1 
/*  Draw t h e   p o l y g o n  */  
DRAWlPDLYGON(ProjectedPo1y. P o l y L e n g t h .   C o l o r .  0 .  0 ) ;  

1 

LISTING 50.4 POLYG0N.H 
/*  POLYG0N.H: Header f i l e   f o r   p o l y g o n - f i l l i n g   c o d e ,   a l s o   i n c l u d e s  

a number o f   u s e f u l   i t e m s   f o r   3 - 0   a n i m a t i o n .  * /  

# d e f i n e  MAX-POLY-LENGTH 4 /* f o u r   v e r t i c e s   i s   t h e  max p e r   p o l y  * /  
# d e f i n e  SCREENKWIDTH 320 
# d e f i n e  SCREEN-HEIGHT 240 
# d e f i n e  PAGEDKSTART-OFFSET 0 
# d e f i n e  PAGElLSTART-OFFSET (((long)SCREENKHEIGHT*SCREEN-WIDTH)/4) 
/* R a t i o :   d i s t a n c e   f r o m   v i e w p o i n t   t o   p r o j e c t i o n   p l a n e  / w i d t h   o f  

p r o j e c t i o n   p l a n e .   D e f i n e s   t h e   w i d t h   o f   t h e   f i e l d   o f   v i e w .   L o w e r  
a b s o l u t e   v a l u e s  - w i d e r   f i e l d s  o f  v i e w :   h i g h e r   v a l u e s  = n a r r o w e r  * /  

# d e f i n e  PRDJECTIDN-RATIO - 2 . 0  / *  n e g a t i v e   b e c a u s e   v i s i b l e  Z 

/ *  Draws t h e   p o l y g o n   d e s c r i b e d   b y   t h e   p o i n t   l i s t   P o i n t L i s t   i n   c o l o r  
C o l o r   w i t h   a l l   v e r t i c e s   o f f s e t   b y  ( X . Y )  * /  

# d e f i n e  DRAW-POLYGON(PointList.NumPoints.Co1or.X.Y) \ 
Po lygon .Leng th  - NumPoints;  \ 
P o l y g o n . P o i n t P t r  - P o i n t L i s t ;  \ 
FillConvexPolygon(&Polygon. C o l o r ,  X .  Y): 

c o o r d i n a t e s   a r e   n e g a t i v e  * I  

/* D e s c r i b e s  a s i n g l e   2 - D   p o i n t  * /  
s t r u c t   P o i n t  I 

i n t  X :  / *  X c o o r d i n a t e  * /  
i n t  Y :  / *  Y c o o r d i n a t e  * /  

I :  
/* D e s c r i b e s  a s i n g l e   3 - D   p o i n t   i n  homogeneous  coord ina tes  * /  
s t r u c t   P o i n t 3  { 

d o u b l e  X ;  / *  X c o o r d i n a t e  * /  
d o u b l e  Y :  / *  Y c o o r d i n a t e  * /  
d o u b l e  Z ;  / *  2 c o o r d i n a t e  * /  
d o u b l e  W :  

1 :  
/*  D e s c r i b e s  a s e r i e s   o f   p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t  

d e s c r i b e  a p o l y g o n :   e a c h   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   t w o  
a d j a c e n t   v e r t i c e s ,   a n d   t h e   l a s t   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e  
f i r s t )  * /  

i n t   L e n g t h :  /*  # o f   p o i n t s  * /  
s t r u c t   P o i n t  * P o i n t P t r :  / *  p o i n t e r   t o   l i s t   o f   p o i n t s  * /  

s t r u c t   P o i n t L i s t H e a d e r  I 

1 :  

Adding a Dimension 945 



I* D e s c r i b e s   t h e   b e g i n n i n g   a n d   e n d i n g  X c o o r d i n a t e s   o f  a s i n g l e  

s t r u c t   H L i n e  I 
h o r i z o n t a l   l i n e  * I  

i n t   X S t a r t :  I* X c o o r d i n a t e   o f   l e f t m o s t   p i x e l  i n  l i n e  *I  
i n t  XEnd; I* X c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  *I  

1 :  

I* D e s c r i b e s  a L e n g t h - l o n g   s e r i e s   o f   h o r i z o n t a l   l i n e s ,   a l l  assumed t o  
be o n   c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t   a n d   p r o c e e d i n g  
downward  (used t o   d e s c r i b e  a s c a n - c o n v e r t e d   p o l y g o n   t o   t h e  
l o w - l e v e l   h a r d w a r e - d e p e n d e n t   d r a w i n g   c o d e )  * /  

i n t   L e n g t h :  I* # o f   h o r i z o n t a l   l i n e s  *I  
i n t   Y S t a r t :  I* Y c o o r d i n a t e   o f   t o p m o s t   l i n e  * I  
s t r u c t   H L i n e  * H L i n e P t r :  I* p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  *I  

s t r u c t   H L i n e L i s t  I 

I :  
s t r u c t   R e c t  { i n t   L e f t ,  Top ,   R igh t ,   Bo t tom:  1 :  

extern   vo id   X formVec(doub1e  X formC43[41.   doub le  * SourceVec. 

e x t e r n   v o i d   C o n c a t X f o r m s ( d o u b 1 e   S o u r c e X f o r m l [ 4 ] [ 4 ] .  

e x t e r n   v o i d  XformAndProjectPoly(doub1e X fo rm[4 ] [4 ] .  

e x t e r n   i n t  FillConvexPolygon(struct P o i n t L i s t H e a d e r  *, i n t .   i n t .   i n t ) ;  
e x t e r n   v o i d   S e t 3 2 0 ~ 2 4 0 M o d e ( v o i d ) :  
e x t e r n   v o i d   S h o w P a g e ( u n s i g n e d   i n t   S t a r t o f f s e t ) :  
e x t e r n   v o i d   F i l l R e c t a n g l e X ( i n t   S t a r t X .   i n t   S t a r t Y .   i n t  EndX, 

i n t  EndY, u n s i g n e d   i n t   P a g e B a s e .   i n t   C o l o r ) :  
e x t e r n   i n t   D i s p l a y e d P a g e .   N o n D i s p l a y e d P a g e :  
e x t e r n   s t r u c t   R e c t   E r a s e R e c t C ] :  

d o u b l e  * Des tVec ) :  

d o u b l e   S o u r c e X f o r m 2 [ 4 ] [ 4 ] .   d o u b l e   D e s t X f o r m [ 4 1 [ 4 1 ) ;  

s t r u c t   P o i n t 3  * P o l y ,   i n t   P o l y L e n g t h ,   i n t   C o l o r ) :  

LISTING 50.5 150-5.C 
I* S i m p l e   3 - D   d r a w i n g   p r o g r a m   t o   v i e w  a po lygon   as  it r o t a t e s   i n  

Mode X .  View  space i s   c o n g r u e n t   w i t h   w o r l d   s p a c e ,   w i t h   t h e  
v i e w p o i n t   f i x e d   a t   t h e   o r i g i n  ( 0 . 0 . 0 )  o f   w o r l d   s p a c e ,   l o o k i n g   i n  
t h e   d i r e c t i o n   o f   i n c r e a s i n g l y   n e g a t i v e  Z.  A r i g h t - h a n d e d  
c o o r d i n a t e   s y s t e m   i s   u s e d   t h r o u g h o u t .  
T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  * /  

# i n c l u d e   < c o n i o . h >  
# i n c l u d e   < s t d i o . h >  
#i ncl   ude  <dos.   h> 
#i ncl   ude  <math.   h> 
l i n c l  ude "polygon.   h"  
v o i d   m a i n ( v o i d ) :  

I* B a s e   o f f s e t   o f   p a g e   t o   w h i c h   t o   d r a w  *I  
u n s i g n e d   i n t   C u r r e n t P a g e B a s e  = 0 ;  
/*  C l i p   r e c t a n g l e :   c l i p s   t o   t h e   s c r e e n  */  
i n t  C l ipMinX-0 .   C l ipMinY-0 :  
i n t  ClipMaxX-SCREEN-WIDTH.  ClipMaxY-SCREEN-HEIGHT; 
/ *  R e c t a n g l e   s p e c i f y i n g   e x t e n t   t o   b e   e r a s e d   i n   e a c h   p a g e  * /  
s t r u c t   R e c t   E r a s e R e c t C Z ]  - [ IO. 0 .  SCREEN-WIDTH. SCREEN-HEIGHT}. 

I* T r a n s f o r m a t i o n   f r o m   p o l y g o n ' s   o b j e c t   s p a c e   t o   w o r l d   s p a c e .  
[ O ,  0 .  SCREEN-WIDTH,  SCREEN-HEIGHT} } :  

I n i t i a l l y   s e t  up t o   p e r f o r m   n o   r o t a t i o n   a n d   t o  move t h e   p o l y g o n  
i n t o   w o r l d   s p a c e   - 1 4 0   u n i t s  away f r o m   t h e   o r i g i n  down t h e  Z a x i s .  
G i v e n   t h e   v i e w i n g   p o i n t ,   - 1 4 0  down t h e  2 a x i s  means  140 u n i t s  away 
s t r a i g h t  ahead i n   t h e   d i r e c t i o n   o f   v i e w .  T h e   p r o g r a m   d y n a m i c a l l y  
c h a n g e s   t h e   r o t a t i o n   a n d   t r a n s l a t i o n .  * /  

946 Chapter 50 



s t a t i c   d o u b l e   P o l y W o r l d X f o r m [ 4 1 [ 4 1  - I 
{1.0.  0.0,  0.0.  0 . 0 1 ,  
(0 .0.  1.0, 0.0, 0 .0 ) .  
{O.O. 0.0,  1 .0 ,  -140.01. 
{O.O. 0.0,  0.0,  1.0) ) :  

/ *  T r a n s f o r m a t i o n   f r o m   w o r l d   s p a c e   i n t o   v i e w   s p a c e .   I n   t h i s   p r o g r a m .  
t h e   v i e w   p o i n t   i s   f i x e d   a t   t h e   o r i g i n   o f   w o r l d   s p a c e ,   l o o k i n g  down 
t h e  2 a x i s   i n   t h e   d i r e c t i o n   o f   i n c r e a s i n g l y   n e g a t i v e  2. s o  v i e w  
space i s   i d e n t i c a l   t o   w o r l d   s p a c e :   t h i s   i s   t h e   i d e n t i t y   m a t r i x .  * /  

s t a t i c   d o u b l e   W o r l d V i e w X f o r m [ 4 1 [ 4 1  - I 
{1.0. 0 .0,  0.0, 0 .01 .  
t 0 .0 ,  1 . 0 .  0.0, 0 .01 .  
(0 .0 ,  0.0, 1 . 0 ,  0.01. 
(0.0. 0.0, 0.0, 1.01 

):  
s t a t i c   u n s i g n e d   i n t   P a g e S t a r t O f f s e t s [ E l  - 
i n t   D i s p l a y e d P a g e .   N o n D i s p l a y e d P a g e :  

v o i d   m a i n 0  [ 

{PAGEO_START-OFFSET.PAGEl-STARTCOFFSET1: 

i n t  Done - 0:  
doub le   Work ingX fo rm[41 [41 ;  
s t a t i c   s t r u c t   P o i n t 3   T e s t P o l y C l  - 

~t-30.-15.0.11.~0.15.0,11,t10,-5,0,111; 
# d e f i n e  TEST-POLY-LENGTH (sizeof(TestPoly)/sizeof(struct P o i n t 3 ) )  

d o u b l e   R o t a t i o n  = " P I  / 60.0: / *  i n i t i a l   r o t a t i o n  - 3 degrees  */  
u n i o n  REGS r e g s e t ;  

Set320x240ModeO;  
ShowPage(PageStar tOf fse tsCDisp1ayedPage - 0 1 ) ;  
/ *  Keep r o t a t i n g   t h e   p o l y g o n ,   d r a w i n g  i t  t o   t h e   u n d i s p l a y e d   p a g e .  

and f l i p p i n g   t h e   p a g e   t o  show it * /  

Cur ren tPageBase = /*  s e l e c t   o t h e r   p a g e  f o r  d r a w i n g   t o  * /  

/ *  M o d i f y   t h e   o b j e c t   s p a c e   t o   w o r l d   s p a c e   t r a n s f o r m a t i o n   m a t r i x  

PolyWorldXform[O][O] = Po lyWor ldXform[21[Z1 - c o s ( R o t a t i o n ) ;  
Po lyWor ldXform[E] [O]  - - ( P o l y W o r l d X f o r m [ O 1 [ ~ ]  - s i n ( R o t a t i o n ) ) :  
/ *  C o n c a t e n a t e   t h e   o b j e c t - t o - w o r l d   a n d   w o r l d - t o - v i e w  

t r a n s f o r m a t i o n s   t o  make a t r a n s f o r m a t i o n   m a t r i x   t h a t  will 
c o n v e r t   v e r t i c e s   f r o m   o b j e c t   s p a c e   t o   v i e w   s p a c e   i n  a s i n g l e  
o p e r a t i o n  * /  

do 

PageSta r tO f f se ts [NonOisp layedPage  = D isp layedPage  A 11; 

f o r   t h e   c u r r e n t   r o t a t i o n   a r o u n d   t h e  Y a x i s  * /  

ConcatXforms(Wor1dViewXform.  Po lyWor ldX fo rm,   Work ingX fo rm) ;  
/ *  C l e a r   t h e   p o r t i o n   o f   t h e   n o n - d i s p l a y e d   p a g e   t h a t  was drawn 

FillRectangleX(EraseRect[NonDisplayedPagel.Left, 
t o   l a s t   t i m e ,   t h e n   r e s e t   t h e   e r a s e   e x t e n t  * /  

EraseRect [NonDisp layedPage l .Top.  
E raseRec t [NonD isp layedPage l .R igh t .  
EraseRect[NonDisplayedPagel.Bottom. Curren tPageBase.  0 ) ;  

EraseRect [NonDisp layedPage l .Top - Ox7FFF: 
E raseRec t [NonD isp layedPage l .Le f t  - 
EraseRec t [NonD isp layedPage l .R igh t  = 

/*  T r a n s f o r m   t h e   p o l y g o n ,   p r o j e c t  i t  o n   t h e   s c r e e n ,   d r a w  i t  */ 
XformAndProjectPoly(Work ingXform.  T e s t P o l y .  TEST-POLYCLENGTH.9): 
/ *  F l i p   t o   d i s p l a y   t h e   p a g e   i n t o   w h i c h  we j u s t   d r e w  * /  
ShowPage(PageSta r tO f f se ts [D isp layedPage  = NonDisp layedPage l ) :  
/ *  R o t a t e  6 d e g r e e s   f a r t h e r   a r o u n d   t h e  Y a x i s  * /  
i f  ( ( R o t a t i o n  += (M-PI /30 .0) )  >- ( M _ P I * E ) )   R o t a t i o n  -= M-PI*2; 

EraseRect [NonDisp layedPagel .Bot tom - 0; 

Adding a Dimension 947 



i f  ( k b h i t 0 )  { 
s w i t c h   ( g e t c h 0 )  { 

case  0x16:  / *  Esc t o   e x i t  * /  
Done - 1; b r e a k ;  

case ' A ' :  c a s e   * a ' :  / *  away ( - 2 )  *I  
Po lyWor ldX fo rmCEl [31  -- 3 .0 ;   b reak ;  

case ' T ' :  / *  t o w a r d s  (+2) .  D o n ' t   a l l o w   t o   g e t   t o o  * /  
case ' t ' :  /*  c l o s e ,  so  2 c l i p p i n g   i s n ' t   n e e d e d  *I  

P o l y W o r l d X f o r m ~ 2 1 C 3 1  +- 3 . 0 :   b r e a k ;  
i f  (Po lyWor ldX fo rm[21C31  < -40.0)  

case 0:  / *  ex tended  code */  
s w i t c h   ( g e t c h 0 )  I 

case  0x46: / *  l e f t  ( - X )  * /  

case Ox4D: / *  r i g h t  ( + X )  * /  

case  0x48: / *  up ( + Y )  */ 

case  0x50:  / *  down ( - Y )  */ 

d e f a u l t :  

PolyWor ldXformC01[31 -- 3.0 ;   b reak :  

PolyWor ldXformCO1[31 +- 3 .0 ;   b reak :  

Po lyWor ldX fo rm[11 [31  +- 3 .0 ;   b reak ;  

P o l y W o r l d X f o r m ~ 1 3 [ 3 1  -- 3 .0 ;   b reak :  

b r e a k :  
3 
b r e a k :  

g e t c h 0 :   b r e a k ;  
d e f a u l t :  / *  a n y   o t h e r   k e y   t o   p a u s e  *I  

1 
I 

} w h i l e   ( ! D o n e ) ;  
I* R e t u r n   t o   t e x t  mode and e x i t  * /  
r e g s e t . x . a x  - 0x0003;  / *  AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode */  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t ,   & r e g s e t ) ;  

1 

Notes  on  the 3-D Animation  Example 
The sample  program  transforms  the polygon's vertices from  object space to world 
space to view space to  the  screen, as described  earlier. In this case,  world space and 
view space are congruent-we're looking  right down the negative Z axis of world 
space-so the  transformation  matrix  from world to view  is the  identity  matrix; you 
might want to  experiment with changing this matrix  to  change  the viewpoint. The 
sample  program uses 4x4 homogeneous  coordinate  matrices  to  perform transfor- 
mations, as described above. Floating-point arithmetic is used for all 3-D calculations. 
Setting  the  translation  from  object space to world space is a simple matter of chang- 
ing  the  appropriate  entry  in  the  fourth  column of the object-to-world transformation 
matrix.  Setting  the  rotation around  the Y axis  is almost as simple, requiring only the 
setting of the  four  matrix  entries  that  control  the Y rotation  to  the sines and cosines 
of the  desired  rotation. However, rotations involving more  than one axis require 
multiple  rotation  matrices, one for  each axis rotated  around;  those  matrices  are  then 
concatenated  together  to  produce  the object-to-world transformation.  This  area is 
trickier  than it might initially appear  to be; more  in  the  near  future. 
The maximum translation  along  the Z axis is limited  to 40; this keeps the polygon 
from  extending past the viewpoint to positive Z coordinates.  This would  wreak  havoc 

948 Chapter 50 



with the  projection and 2-D clipping, and would require 3-D clipping, which  is far 
more  complicated  than 2-D. We’ll get  to 3-D clipping at some point,  but, for now,  it’s 
much  simpler just to limit all vertices to negative Z coordinates.  The polygon does 
get mighty  close to  the viewpoint, though; run the  program and use the  “T” key to 
move the polygon as close as  possible-the near vertex swinging  past provides a strik- 
ing sense of perspective. 
The  performance of Listing 50.5 is, perhaps, surprisingly good, clocking in at 16 
frames  per  second on a 20 MHz 386 with a VGA of average speed and  no 387, al- 
though  there is, of course, only one polygon being drawn, rather  than  the  hundreds 
or thousands we’d ultimately like. What’s far  more  interesting is where  the execu- 
tion  time  goes. Even though  the program is working  with  only one polygon, 73 percent 
of the time goes for  transformation  and  projection. An additional 7 percent is spent 
waiting to flip the  screen. Only 20 percent of the  total time is spent in all other 
activity-and only 2 percent is spent actually drawing polygons.  Clearly,  we’ll  want  to 
tackle transformation and projection first when we look  to  speed  things  up.  (Note, 
however, that  a  math  coprocessor would considerably decrease  the time taken by 
floating-point  calculations.) 
In Listing 50.3, when the  extent of the  bounding  rectangle is calculated  for  later 
erasure  purposes,  that  extent is clipped  to  the  screen.  This is due to  the lack of 
clipping in the  rectangle fill code  from Listing 47.5 in  Chapter 47; the  problem 
would more  appropriately be addressed by putting  clipping  into  the fill code,  but, 
unfortunately,  I lack the space to do that  here. 
Finally, observe the  jaggies crawling along  the edges of the polygon  as it  rotates.  This 
is temporal  aliasing at its finest! We won’t address  antialiasing further, realtime 
antialiasing  being  decidedly  nontrivial, but this  should give  you an  idea of why 
antialiasing is so desirable. 

An Ongoing Journey 
In  the  next  chapter, we’ll  assign fronts and backs to polygons, and start drawing only 
those that are facing the viewer. That will enable us to  handle convex polyhedrons, 
such as tetrahedrons  and cubes. We’ll also look at interactively controllable  rotation, 
and  at  more complex  rotations  than  the simple rotation  around  the Y axis that we 
did this time. In time, we’ll use fixed-point  arithmetic  to  speed  things up,  and  do 
some shading and texture  mapping.  The  journey has only begun; we’ll get to all that 
and more  soon. 

Adding a Dimension 949 



chapter 51

sneakers in space



ace Removal to Eliminate 

puter animation isn’t a matter of mathematically 
rowess, but  rather of fooling the eye and  the mind. 

ation, where we’re not only q n g  to convince 
n a screen-when  in truth that screen contains 
els-but  we’re  also trying to create the illusion 
, possessing four dimensions (counting move- 
) of their own. To make  this  magic happen, we 
ly to pick out boundaries, but also to detect 
volves perspective, shading, proper  handling 
th screen updates; the whole deal is consid- 

erably more difficult  to pull off on a PC than 2-D animation. 

In some senses, however, 3 - 0  animation is easier than 2-0. Because  there S more p going on in 3 - 0  animation, the eye and  brain  tend  to  make  more  assumptions,  and 
so are more apt to see what  they expect to see, rather than what 5. actually there. 

If you’re  piloting a (virtual) ship through a field  of  thousands  of  asteroids at high  speed, 
you’re  unlikely  to  notice ifthe more  distant  asteroids  occasionally  seem  to  go  right  through 
each other, or if the topographic detail on the asteroids’  surfaces  sometimes  shifts 

953 



about  a  bit. You’ll be busy  viewing the  asteroids  in  their primary role, as objects to be 
navigated around,  and  the mere  presence of topographic  detail will suffice; without 
being aware  of it, you’ll fill in  the blanks. Your mind will see the  topography  periph- 
erally, recognize  it  for what it is supposed to be, and, unless the  landscape  does 
something really obtrusive such as vanishing altogether or suddenly  shooting  a spike 
miles into space, you  will see what you expect  to see: a  bunch of nicely detailed 
asteroids  tumbling around you. 
To what extent can you  rely on  the eye and mind  to make up for  imperfections  in  the 
3-D animation process? In some areas,  hardly at all; for  example,  jaggies crawling 
along  edges stick out like red flags, and likewise for flicker. In other areas, though, 
the  human  perceptual system  is more forgiving than you’d think.  Consider this: At 
the end of Return of the Jedi, in the  battle  to end all battles around  the Death Star, 
there is a  sequence of about five seconds  in which  several spaceships are visible in 
the  background. One of those spaceships (and it’s not very far  in  the  background, 
either) looks a  bit  unusual. What it looks like is a sneaker. In fact, it is a sneaker-but 
unless you  know to look for  it, you’ll never notice it, because your mind is  busy 
making simplifylng assumptions  about  the  complex  scene it’s  seeing-and one of 
those  assumptions is that medium-sized  objects  floating in space are spaceships,  unless 
proven  otherwise. (Thanks to Chris  Hecker for pointing this out. I’d never have noticed 
the  sneaker, myself, without  being  tipped off-which  is,  of course,  the whole point.) 
If it’s good  enough  for  George Lucas, it’s good  enough  for us.  And  with that, let’s 
resume our quest  for  realtime 3-D animation on  the PC. 

One-sided Polygons: Backface  Removal 
In  the previous chapter, we implemented  the basic  polygon drawing pipeline, trans- 
forming  a polygon  all the way from its basic definition  in  object space, through  the 
shared 3-D world space, and  into the 3-D space as seen  from  the viewpoint, called 
v i m  space. From view space, we performed  a perspective projection  to  convert  the 
polygon into screen space, then  mapped  the  transformed and projected vertices to 
the  nearest  screen  coordinates and filled the polygon. Armed with code  that  imple- 
mented this pipeline, we were able to watch as a polygon rotated  about its Y axis, and 
were able  to move the polygon around in space freely. 
One of the drawbacks of the previous chapter’s  approach was that  the polygon had 
two visible sides. Why  is that  a drawback? It isn’t, necessarily, but  in  our case we want 
to  use  polygons to  build solid objects with continuous surfaces, and in  that  context, 
only one side of a polygon is visible; the other side always faces the  inside of the 
object, and can never be seen. It would save time and simplify the process of hidden 
surface removal if we could quickly and easily determine  whether  the  inside  or  out- 
side face of each polygon was facing us, so that we could draw each polygon  only if it 
were  visible (that is, had  the  outside face pointing toward the viewer). On average, 
half the polygons in  an  object  could be instantly rejected by a test of this sort.  Such 

954 Chapter 51 



testing  of  polygon  visibility  goes by a number of names in the  literature,  including 
backplane culling, backface  removal, and assorted  variations thereon; I’ll refer to it 
as backface  removal. 
For a single  convex polyhedron, removal  of  polygons that  aren’t facing the viewer 
would  solve  all hidden surface problems. In a convex polyhedron, any  polygon fat- 
ing  the viewer can never be obscured by any other polygon in that  polyhedron; this 
falls out of the definition of a convex polyhedron. Likewise,  any polygon facing away 
from the viewer  can  never  be  visible. Therefore, in order to  draw a convex  polyhe- 
dron, if you  draw  all  polygons facing toward the viewer but  none facing away from 
the viewer,  everything will work out properly,  with no additional checking for over- 
lap and  hidden surfaces needed. 
Unfortunately, backface  removal  completely  solves the  hidden surface problem  for 
convex polyhedrons only, and only if there’s a single  convex polyhedron involved; 
when convex polyhedrons  overlap, other  methods must be used.  Nonetheless, 
backface  removal does instantly  halve the  number of  polygons to  be  handled in ren- 
dering any  particular  scene.  Backface  removal  can  also speed hidden-surface handling 
if objects are built out of  convex polyhedrons. In this chapter,  though, we have  only 
one convex polyhedron to  deal with, so backface  removal alone will do  the trick. 
Given that I’ve  convinced  you that backface  removal  would  be a handy thing to  have, 
how do we actually do  it? A logical approach,  often  implemented in the PC litera- 
ture, would  be to calculate the  plane  equation  for  the  plane in which the polygon 
lies, and see  which way the normal  (perpendicular) vector  to the  plane points. That 
works, but there’s a more efficient way to  calculate the  normal to the polygon:  as the 
cross-product  of two of the polygon’s  edges. 
The cross-product of two vectors is defined as the vector  shown  in  Figure 51.1. One 
interesting  property of the cross-product  vector is that it is perpendicular  to  the 
plane in which the two original vectors  lie. If  we take the cross-product of the vectors 
that  form two edges of a polygon, the result will be a vector perpendicular to the 

The cross-product of two vectors. 
Figure 5 1.1 

Sneakers in Space 955 



polygon; then, we’ll  know that the polygon  is  visible if and only if the cross-product 
vector points toward the viewer.  We need  one  more thing to make the cross-product 
approach work, though.  The cross-product can actually point  either way, depending 
on which edges of the polygon we choose to work  with and  the  order  in which we 
evaluate them, so we must establish some conventions for  defining polygons and 
evaluating the cross-product. 
We’ll define only  convex polygons, with the vertices defined in clockwise order, as 
viewed from  the outside; that is,  if you’re looking at  the visible side of the polygon, 
the vertices will appear in the polygon definition  in clockwise order. With those as- 
sumptions,  the  cross-product  becomes a  quick and easy indicator of polygon 
orientation with respect to the viewer;  we’ll calculate it as the cross-product of the 
first and last vectors in  a polygon, as  shown in Figure 51.2, and if it’s pointing toward 
the viewer,  we’ll  know that  the polygon  is  visible.  Actually, we don’t even  have to 
calculate the  entire cross-product vector, because the Z component  alone suffices to 
tell  us  which way the polygon is facing: positive Z means visible,  negative Z means 
not.  The Z component can be calculated very  efficiently,  with  only two multiplies 
and a  subtraction. 
The question  remains of the  proper space in which to perform backface removal. 
There’s  a  temptation to perform  it  in view space, which  is, after all, the space defined 
with respect to the viewer, but view space is not a  good choice. Screen space-the 
space in which perspective projection has been performed-is the best choice. The 
purpose of backface removal is to determine  whether  each polygon  is  visible to the 
viewer, and, despite its name, view space does not provide that  information; unlike 
screen space, it  does not reflect perspective effects. 

Vector w 
(polygon  edge #3) 

Polygon  normal = v x w 
(cross-product of v & w) 

Vertex 3 Vertex 1 

Using  the cross product to generate a polygon normal. 
Figure 5 1.2 

956 Chapter 51 



Backface  removal  may  also be  performed using the polygon  vertices in screen coor- 
dinates, which are  integers.  This is  less accurate  than  using  the  screen  space 
coordinates, which are floating point, but is,  by the same token, faster. In Listing 
51.3,  which  we'll  discuss  shortly,  backface  removal is performed  in screen coordi- 
nates in  the interests of speed. 
Backface  removal,  as implemented in Listing  51.3, will not work  reliably if the poly- 
gon is not convex, if the vertices don't  appear in clockwise order, if either  the first or 
last edge in a polygon  has zero length, or if the first and last edges are collinear. 
These  latter two points  are  the reason it's preferable  to work in  screen space rather 
than screen coordinates (which  suffer from  rounding  problems),  speed consider- 
ations aside. 

Backface  Removal in Action 
Listings  51.1 through 51.5 together  form a program  that rotates a solid cube in real- 
time under user control. Listing 51.1 is the main program; Listing  51.2 performs 
transformation and projection; Listing  51.3 performs backface  removal and draws 
visible  faces;  Listing  51.4 concatenates  incremental rotations to  the object-to-world 
transformation matrix; Listing  51.5  is the  general  header file. Also required  from 
previous chapters are: Listings  50.1 and 50.2 from  Chapter 50 (draw clipped line list, 
matrix math  functions); Listings  47.1 and 47.6 from  Chapter 47, (Mode X mode set, 
rectangle fill); Listing  49.6 from  Chapter 49;  Listing  39.4 from  Chapter 39  (polygon 
edge  scan);  and  the FiUConvexPolygon() function  from Listing 38.1 from  Chapter 
38. All necessary modules, along with a project file, will be  present in the subdirectory 
for this chapter  on  the listings diskette, whether they  were presented  in this chapter 
or some earlier chapter. This may crowd the listings diskette a little  bit, but  it will 
certainly reduce confusion! 

LISTING  51.1  151-1.C 
/* 3D a n i m a t i o n   p r o g r a m   t o   v i e w  a cube  as i t  r o t a t e s   i n  Mode X .  The   v iewpo in t  

i s   f i x e d   a t   t h e   o r i g i n  ( 0 . 0 . 0 )  o f  w o r l d   s p a c e ,   l o o k i n g  i n  t h e   d i r e c t i o n  o f  
i n c r e a s i n g l y   n e g a t i v e  Z .  A r i g h t - h a n d e d   c o o r d i n a t e   s y s t e m   i s   u s e d   t h r o u g h o u t .  
All C c o d e   t e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode. * /  

#i nc l   ude   <con i  0. h> 
#i ncl   ude  <dos . h> 
# inc lude  <math .h> 
#i ncl   ude  "po lygon.   h "  

# d e f i n e  ROTATION ("PI / 30.0) / *  r o t a t e   b y  6 d e g r e e s   a t  a t i m e  * /  

/ *  b a s e   o f f s e t  o f  page t o   w h i c h   t o   d r a w  * /  
u n s i g n e d   i n t   C u r r e n t P a g e B a s e  = 0:  
/ *  C l i p   r e c t a n g l e :   c l i p s   t o   t h e   s c r e e n  * /  
i n t  Cl ipMinX-0.  Cl ipMinY-0: 
i n t  ClipMaxX-SCREEN-WIDTH.  ClipMaxY-SCREEN-HEIGHT: 
/ *  R e c t a n g l e   s p e c i f y i n g   e x t e n t   t o   b e   e r a s e d   i n   e a c h   p a g e .  * /  
s t r u c t   R e c t   E r a s e R e c t C E l  .. I IO. 0.  SCREEN-WIDTH,  SCREEN-HEIGHT), 

IO. 0.  SCREEN-WIDTH.  SCREEN-HEIGHT) I :  

Sneakers in Space 957 



s t a t i c   u n s i g n e d   i n t   P a g e S t a r t O f f s e t s C 2 1  - 
i n t  OisplayedPage.  NonDisplayedPage: 
I* T r a n s f o r m a t i o n   f r o m   c u b e ' s   o b j e c t   s p a c e   t o   w o r l d   s p a c e .   I n i t i a l l y  

s e t   u p   t o   p e r f o r m   n o   r o t a t i o n   a n d   t o  move t h e   c u b e   i n t o   w o r l d  
s p a c e   - 1 0 0   u n i t s  away f r o m   t h e   o r i g i n  down t h e  Z a x i s .   G i v e n   t h e  
v i e w i n g   p o i n t ,   - 1 0 0  down t h e  Z a x i s  means 1 0 0   u n i t s  away i n   t h e  
d i r e c t i o n   o f   v i e w .  The   p rog ram  dynamica l l y   changes   bo th   t he  
t r a n s l a t i o n   a n d   t h e   r o t a t i o n .  *I  

s t a t i c   d o u b l e   C u b e W o r l d X f o r m [ 4 1 [ 4 1  - I 
I 1 . 0 .  0.0, 0.0, 0.0). 
(0.0. 1.0, 0.0, 0.01. 
{O.O. 0.0, 1.0 ,   -100.01 ,  
{O.O. 0.0, 0.0, 1.0) 1 :  

a p p l i c a t i o n   t h e   v i e w   p o i n t   i s   f i x e d   a t   t h e   o r i g i n   o f   w o r l d   s p a c e ,  
l o o k i n g  down t h e  Z a x i s   i n   t h e   d i r e c t i o n   o f   i n c r e a s i n g  Z .  v iew  space i s  
i d e n t i c a l   t o   w o r l d   s p a c e ,  and t h i s   i s   t h e   i d e n t i t y   m a t r i x .  *I  

I 1 . 0 .  0.0, 0.0, 0.0). 
{O.O. 1.0, 0.0, 0.01. 
{O.O. 0.0, 1.0.  0.01.  
{O.O. 0.0, 0.0, 1 .01 

{PAGEO-START-OFFSET.PAGEl-START-OFFSETl: 

/* T r a n s f o r m a t i o n   f r o m   w o r l d   s p a c e   i n t o   v i e w   s p a c e .   B e c a u s e   i n   t h i s  

s t a t i c   d o u b l e   W o r l d V i e w X f o r m [ 4 ] [ 4 1  - { 

1 :  
I* a l l   v e r t - i c e s   i n   t h e   c u b e  *I  
s t a t i c   s t r u c t   P o i n t 3   C u b e V e r t s C l  - { 

~15.15.15.11.{15.15.-15,1)~{15,-15,15,1~,~15,-15,-15,1~, 
{-15.15.15.1).{-15.15,-15,1)~{-15,-15,15,1~,~-15,-15,-15,1~~; 

I* v e r t i c e s   a f t e r   t r a n s f o r m a t i o n  *I  
s t a t i c   s t r u c t   P o i n t 3  

I* v e r t i c e s   a f t e r   p r o j e c t i o n  *I  
s t a t i c   s t r u c t   P o i n t 3  

I* v e r t i c e s   i n   s c r e e n   c o o r d i n a t e s  *I  
s t a t i c   s t r u c t   P o i n t  

I* v e r t e x   i n d i c e s   f o r   i n d i v i d u a l   f a c e s  *I  
s t a t i c   i n t   F a c e l C l  - {1.3,2.0} ;  
s t a t i c   i n t  Face2[1 - {5.7.3,1): 
s t a t i c   i n t  Face3[] - (4.5.1.0): 
s t a t i c   i n t  Face4[] - {3.7.6.2) :  
s t a t i c   i n t  Face5[] - {5.4.6.7) :  
s t a t i c   i n t  Face6[] - {0 ,2 .6 .4 } ;  
I* l i s t   o f  cube  faces  *I  
s t a t i c   s t r u c t  Face  CubeFaces[] - ~ ~ F a c e 1 . 4 . 1 5 1 . ~ F a c e 2 . 4 . 1 4 3 .  

I* m a s t e r   d e s c r i p t i o n   f o r   c u b e  *I  
s t a t i c   s t r u c t   O b j e c t  Cube - {sizeof(CubeVerts)/sizeof(struct P o i n t 3 ) .  

XformedCubeVerts[sizeof(CubeVerts)/sizeof(struct P o i n t 3 ) l ;  

ProjectedCubeVerts[sizeof(CubeVerts)/sizeof(struct P o i n t 3 ) I ;  

ScreenCubeVerts[sizeof(CubeVerts)/sizeof(struct P o i n t 3 ) I :  

~ F a c e 3 . 4 . 1 2 ~ . { F a c e 4 . 4 , 1 1 ~ , ~ F a c e 5 , 4 , 1 0 ~ , ~ F a c e 6 , 4 . 9 1 ~ :  

CubeVerts .   XformedCubeVerts .   Pro jectedCubeVerts .   ScreenCubeVerts .  
sizeof(CubeFaces)/sizeof(struct Face).  CubeFaces); 

v o i d   m a i n 0  I 
i n t  Done - 0. RecalcXform - 1: 
doub le   Work ingXform[41[4 ] :  
u n i o n  REGS r e g s e t :  

I* S e t   u p   t h e   i n i t i a l   t r a n s f o r m a t i o n  *I  
Set320x240ModeO: / *  s e t   t h e   s c r e e n   t o  Mode X * /  
ShowPage(PageStar tOf fsetsCDisp1ayedPage - 0 1 ) :  

958 Chapter 51 



/*  Keep t r a n s f o r m i n g   t h e   c u b e ,   d r a w i n g  i t  t o   t h e   u n d i s p l a y e d   p a g e .  

do t 
and f l i p p i n g   t h e  page t o  show i t  *I  

/*  R e g e n e r a t e   t h e   o b j e c t - > v i e w   t r a n s f o r m a t i o n   a n d  

i f  (Reca lcXform)  I 
r e t r a n s f o r m l p r o j e c t  i f  necessary  *I  

ConcatXforms(Wor1dViewXform. CubeWorldXform.  WorkingXform);  
/ *  T r a n s f o r m   a n d   p r o j e c t   a l l   t h e   v e r t i c e s   i n   t h e   c u b e  *I  
XformAndProjectPoints(WorkingXform,  &Cube); 
Reca lcXform - 0;  

I 
CurrentPageBase - /*  s e l e c t   o t h e r   p a g e   f o r   d r a w i n g   t o  * I  

PageSta r tO f f se tsCNonDisp layedPage  - Disp layedPage A 11; 
I* C l e a r   t h e   p o r t i o n   o f   t h e   n o n - d i s p l a y e d   p a g e   t h a t  was drawn 

FillRectangleX(EraseRect[NonDisplayedPagel.Left, 
t o   l a s t   t i m e ,   t h e n   r e s e t   t h e   e r a s e   e x t e n t  * /  

EraseRect[NonDisplayedPagel.Top. 
EraseRect [NonDisp layedPagel .Right .  
EraseRect[NonDisplayedPagel.Bottom, CurrentPageBase. 0 ) ;  

EraseRect[NonDisplayedPagel.Top - Ox7FFF; 

EraseRect[NonDisplayedPagel.Bottom - 0;  

EraseRect[NonDisplayedPagel.Left - 
EraseRect [NonDisp layedPagel .Right  - 
I* Draw a l l   v i s i b l e   f a c e s  o f  t he   cube  *I  
DrawVisibleFaces(&Cube); 
/*  F l i p   t o   d i s p l a y   t h e  page i n t o   w h i c h  we j u s t   d r e w  * I  
ShowPage(PageStar tOf fsets [Disp layedPage - NonDisp layedPage l ) ;  
w h i l e   ( k b h i t 0 )  ( 

s w i t c h   ( g e t c h 0 )  t 
case  OxlB: I* Esc t o   e x i t  * I  

Done - 1; b r e a k ;  
case ' A * :  c a s e   ' a ' :  I* away ( - 2 )  *I 

CubeWorldXform[2l [31 -- 3.0;   RecalcXform - 1; b r e a k ;  
c a s e   ' T I :  / *  towards  (+Z). D o n ' t   a l l o w   t o   g e t   t o o  * /  
case ' t ' :  I* c l o s e ,  s o  Z c l i p p i n g   i s n ' t  needed * /  

i f  (CubeWorldXform[21[31 < -40.0)  I 
CubeWorldXform[21[31 +- 3.0: 
Reca lcXform - 1; 

1 
b r e a k ;  

case ' 4 ' :  / *  r o t a t e   c l o c k w i s e   a r o u n d  Y *I  
AppendRotationY(CubeWor1dXform. -ROTATION); 
RecalcXform-1;  break; 

AppendRotationY(CubeWor1dXform. ROTATION); 
RecalcXform-1;  break: 

case '8': I* r o t a t e   c l o c k w i s e   a r o u n d  X * /  
AppendRotationX(CubeWor1dXform. -ROTATION); 
RecalcXform-1;  break; 

AppendRotationX(CubeWor1dXform. ROTATION); 
RecalcXform-1;  break; 

s w i t c h   ( g e t c h 0 )  I 

case '6': I* r o t a t e   c o u n t e r c l o c k w i s e   a r o u n d  Y *I  

case '2': I* r o t a t e   c o u n t e r c l o c k w i s e   a r o u n d  X *I  

case 0: I* extended  code *I  

case Ox3B: I* r o t a t e   c o u n t e r c l o c k w i s e   a r o u n d  Z * I  
AppendRotationZ(CubeWor1dXform. ROTATION); 
RecalcXform-1;  break; 

AppendRotationZ(CubeWor1dXform. -ROTATION); 
RecalcXform-1;  break; 

case Ox3C: I* r o t a t e   c l o c k w i s e   a r o u n d  Z * I  

Sneakers  in  Space 959 



case Ox4B: I* l e f t  ( - X )  *I  
CubeWorldXform[OIC31 -- 3.0:  

case  0x40: I* r i g h t  ( + X )  *I 
CubeWorldXformCO1[31 +- 3.0;  

case  0x48: I* up ( + Y )  * /  
CubeWorldXform[11[31 +- 3.0; 

case  0x50: I* down ( - Y )  * I  
CubeWorldXformCllC31 --  3.0: 

d e f a u l t :  
b reak :  

1 
b r e a k :  

RecalcXform-1; 

RecalcXform-1: 

RecalcXform-1: 

RecalcXform-1: 

b reak ;  

b reak :  

b reak :  

b reak :  

d e f a u l t :  I* any o t h e r   k e y   t o   p a u s e  *I  
g e t c h 0 :   b r e a k :  

1 
1 

I w h i l e   ( ! D o n e ) ;  
I* R e t u r n   t o   t e x t  mode and e x i t  *I  
r e g s e t . x . a x  - 0x0003; / *  AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode *I  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t ,   & r e g s e t ) :  

1 

LISTING 5 1.2 15 1 -2.C 
I* Trans fo rms  all v e r t i c e s   i n   t h e   s p e c i f i e d   o b j e c t   i n t o   v i e w   s p a c e .   t h e n  

p e r s p e c t i v e   p r o j e c t s   t h e m   t o   s c r e e n   s p a c e   a n d  maps them t o   s c r e e n   c o o r d i n a t e s ,  
s t o r i n g   t h e   r e s u l t s   i n   t h e   o b j e c t .  * /  

# inc lude   <math .  h> 
Ik inc l   ude  "po lygon.   h "1  

v o i d  XformAndProjectPoints(doub1e Xform[4] [4 ] .  

I 
s t r u c t   O b j e c t  * ObjectToXform) 

i n t  i, NumPoints - ObjectToXform->NumVerts: 
s t r u c t   P o i n t 3  * P o i n t s  - ObjectToXform->Ver texL is t ;  
s t r u c t   P o i n t 3  * XformedPoints  - ObjectToXform->XformedVertexList :  
s t r u c t   P o i n t 3  * P r o j e c t e d P o i n t s  - O b j e c t T o X f o r m - > P r o j e c t e d V e r t e x L i s t :  
s t r u c t   P o i n t  * S c r e e n p o i n t s  - ObjectToXform->ScreenVertexList ;  

f o r   ( i - 0 :   i < N u m P o i n t s ;  i++. Poin ts++ .   X fo rmedPo in ts t t .  
Pro jec tedPo in ts++,   ScreenPoin ts++)  { 

I* T r a n s f o r m   t o   v i e w   s p a c e  *I  
X f o r m V e c ( X f o r m .   ( d o u b l e   * ) P o i n t s ,   ( d o u b l e   * ) X f o r m e d P o i n t s ) :  
I* P e r s p e c t i v e - p r o j e c t   t o   s c r e e n   s p a c e  *I  
P r o j e c t e d P o i n t s - > X  - XformedPoints->X I Xfo rmedPo in ts ->Z  * 

P r o j e c t e d P o i n t s - > Y  - XformedPoints->Y I Xfo rmedPo in ts ->Z  * 

P r o j e c t e d P o i n t s - > Z  - Xfo rmedPo in ts ->Z ;  
I* C o n v e r t   t o   s c r e e n   c o o r d i n a t e s .  The Y c o o r d   i s   n e g a t e d   t o  

PROJECTION-RATIO * (SCREENLWIDTH / 2 . 0 ) :  

PROJECTION-RATIO * (SCREEN-WIDTH I 2.0); 

f l i p   f r o m   i n c r e a s i n g  Y b e i n g   u p   t o   i n c r e a s i n g  Y b e i n g  down, 
a s   e x p e c t e d   b y   t h e   p o l y g o n   f i l l e r .  Add i n   h a l f   t h e   s c r e e n  
w i d t h  and h e i g h t   t o   c e n t e r  on t h e   s c r e e n .  *I  

ScreenPo in ts ->X  - ( ( i n t )  floor(ProjectedPoints->X + 0 . 5 ) )  + SCREENLWIOTH/2: 
Sc reenPo in ts ->Y  - ( - ( ( i n t )  f l o o r ( P r o j e c t e d P o i n t s - > Y  + 0 . 5 ) ) )  + 

SCREEN-HEIGHTIE: 
1 

1 

960 Chapter 51 



LISTING 5 1.3 15 1 -3.C 
I* Draws a l l   v i s i b l e   f a c e s   ( f a c e s   p o i n t i n g   t o w a r d   t h e   v i e w e r )   i n   t h e   s p e c i f i e d  

o b j e c t .   T h e   o b j e c t   m u s t   h a v e   p r e v i o u s l y   b e e n   t r a n s f o r m e d   a n d   p r o j e c t e d .  s o  
t h a t   t h e   S c r e e n V e r t e x L i s t   a r r a y   i s   f i l l e d   i n .  * /  

#i ncl   ude  "po lygon.   h "  

v o i d   D r a w V i s i b l e F a c e s ( s t r u c t   O b j e c t  * Objec tToXform)  
I 

i n t  i. j .  NumFaces - ObjectToXform->NumFaces, NumVert ices;  
i n t  * VertNumsPtr:  
s t r u c t  Face * FacePt r  - Ob jec tToXfo rm->FaceL is t :  
s t r u c t   P o i n t  * S c r e e n P o i n t s  - Ob jec tToXfo rm->ScreenVer texL is t ;  
l o n g   v l . v 2 . w l , w 2 :  
s t r u c t   P o i n t  VerticesCMAX-POLYLLENGTHI: 
s t r u c t   P o i n t L i s t H e a d e r   P o l y g o n :  

/ *  Draw  each v i s i b l e   f a c e   ( p o l y g o n )   o f   t h e   o b j e c t   i n   t u r n  * /  
fo r   ( i -0 ;   i<NumFaces;  i++. FacePtr++) I 

NumVert ices - FacePtr->NumVerts:  
/ *  C o p y   o v e r   t h e   f a c e ' s   v e r t i c e s   f r o m   t h e   v e r t e x   l i s t  *I  
f o r  ( j - 0 ,  VertNumsPtr-FacePtr->VertNums: j<NumVert ices:   j++)  

/ *  Draw o n l y  i f  o u t s i d e   f a c e   s h o w i n g  ( i f  t h e   n o r m a l   t o   t h e  
V e r t i c e s C j l  - ScreenPoints[*VertNumsPtr++l: 
p o l y g o n   p o i n t s   t o w a r d   t h e   v i e w e r :   t h a t   i s ,   h a s  a p o s i t i v e  
2 component) *I  

v l  - V e r t i c e s C 1 l . X  - Vert icesCO1.X: 
w l  - Vert icesCNumVert ices- l1 .X  - Vert icesCO1.X: 
v2 - V e r t i c e s C 1 l . Y  - Vert icesCO1.Y; 
w2 - Ver t i cesCNumVer t i ces - l1 .Y  - Vert icesCO1.Y: 
i f  ( ( v l * w 2  - v2*wl )  > 0 )  I 

/*  It i s   f a c i n g   t h e   s c r e e n ,   s o   d r a w  * /  
I* A p p r o p r i a t e l y   a d j u s t   t h e   e x t e n t   o f   t h e   r e c t a n g l e   u s e d   t o  

e r a s e   t h i s   p a g e   l a t e r  * /  
f o r   ( j - 0 :   j < N u m V e r t i c e s :  j++) { 

i f  ( V e r t i c e s C j 1 . X  > EraseRectCNonDisplayedPagel .Right )  
i f  ( V e r t i c e s C j 1 . X  < SCREEN-WIDTH) 

e l s e  EraseRectCNonDisp1ayedPagel.Right - SCREENLWIDTH: 

i f  ( V e r t i c e s C j 1 . Y  < SCREENKHEIGHT) 
EraseRectCNonDisplayedPagel .Bot tom - V e r t i c e s C j 1 . Y :  

e l s e  EraseRect [NonDi~p layedPage] .Bot tom-SCREEN~HEIGHT:  

i f  ( V e r t i c e s C j 1 . X  > 0 )  

e l s e  EraseRectCNonDisp layedPage1.Le f t  = 0:  

i f  ( V e r t i c e s C j 1 . Y  > 0 )  

e lse  EraseRectCNonDisp1ayedPagel .Top - 0:  

EraseRect[NonDisplayedPagel.Right - V e r t i c e s C j 1 . X :  

if ( V e r t i c e s C j 1 . Y  > EraseRect [NonDisp layedPage l .Bot tom)  

if ( V e r t i c e s C j 1 . X  < EraseRect[NonDisplayedPagel.Left) 

EraseRectCNonDisp layedPage3.Le f t  - V e r t i c e s C j 1 . X ;  

i f  ( V e r t i c e s C j 1 . Y  < EraseRectCNonDisplayedPagel.Top) 

EraseRect [NonDisp layedPagel .Top - V e r t i c e s C j 1 . Y :  

1 
/* Draw t h e   p o l y g o n  */  
DRAW-POLYGON(Vertices. NumVer t i ces .   FacePt r ->Co lo r .  0 .   0 ) ;  

The sample program, as  shown in Figure 51.3, places a cube, floating in three-space, 
under  the complete  control of the user. The arrow keys  may be used to  move the 

Sneakers  in  Space 96 1 



cube left, right,  up, and down, and  the A and T keys  may be used to  move the cube 
away from or toward the viewer. The F1 and F2  keys perform  rotation around  the Z 
axis, the axis running from  the viewer straight into  the  screen.  The 4 and 6 keys 
perform  rotation around  the Y (vertical) axis, and  the 2 and 8 keys perform  rotation 
around  the X axis,  which runs horizontally across the screen; the  latter  four keys are 
most conveniently used by flipping  the keypad to the numeric state. 
The  demo involves  six  polygons, one for each side of the cube. Each of the polygons 
must be transformed and projected, so it would seem that 24 vertices (four  for  each 
polygon) must be handled,  but some steps have been taken to improve performance. 
All vertices for  the object have been  stored  in  a single list; the definition of each face 
contains not  the vertices for  that face themselves, but  rather indexes into  the object’s 
vertex  list, as shown  in  Figure 51.4. This reduces the  number of  vertices  to  be manipu- 
lated from 24 to 8, for there  are, after all,  only eight vertices in  a  cube, with three 
faces sharing  each vertex. In this way, the transformation burden is lightened by two- 
thirds. Also,  as mentioned earlier, backface  removal is performed with integers, in 
screen  coordinates,  rather  than with floating-point values in screen space. Finally, 
the RecalcXForm flag is set whenever the user changes  the object-to-world transfor- 
mation. Only when this  flag  is set is the full  object-to-view transformation recalculated 
and  the object’s  vertices  transformed and projected again;  otherwise, the values  already 
stored within the object are  reused.  In  the sample application, this brings no visual 
improvement, because there’s only the  one object, but  the underlying mechanism is 

962 Chapter 51 



r 

41 15,  15,  15, 1 I rl 15,  15,  -15, 1 

15, -15, 15, 1 

A w l  15,-15,-15, 1 1 
-15, 15,  15, 1 

-15,  15,  -15, 1 

-15,  -15,  15, 1 

Jums t“, 
J 

7 

n e  object data structure 
Figure 5 1.4 

sound:  In a full-blown 3-D animation application, with multiple objects moving about 
the  screen,  it would help a great  deal to flag  which  of the objects had moved  with 
respect to the viewer, performing a new transformation and projection only for those 
that  had. 
With the above  optimizations, the sample program is certainly  adequately  responsive on 
a 20 MHz 386 (sans 387; I’m sure it’s  wonderfully  responsive  with a math coprocessor). 
Still, it couldn’t  quite  keep up with the keyboard when I modified it to read only one 
key each time through  the loop-and  we’re talking about only eight vertices here. 
This indicates that we’re already near  the limit of animation complexity possible 
with our  current  approach. It’s time to start  rethinking  that  approach; over two- 
thirds of the overall time is spent  in floating-point calculations, and it’s there  that 
we’ll begin to attack the  performance bottleneck we find ourselves up against. 

Sneakers  in  Space 963 



Incremental  Transformation 
Listing  51.4 contains three  functions; each concatenates  an  additional  rotation  around 
one of the  three axes to an existing rotation. To improve performance, only the 
matrix  entries  that are affected  in  a  rotation around each  particular axis are recalcu- 
lated  (all but  four of the  entries  in  a single-axis rotation  matrix  are  either 0 or 1, as 
shown in  Chapter 50). This  cuts  the  number of floating-point  multiplies  from  the 64 
required  for  the  multiplication of two 4x4 matrices to  just 12, and floating  point 
adds  from 48 to 6. 
Be aware that Listing 51.4 performs an incremental  rotation  on  top of whatever 
rotation is already in  the matrix. The cube may already have been  turned  left,  right, 
up, down, and sideways; regardless, Listing 51.4just tacks the specified rotation onto 
whatever already exists. In this way, the object-to-world transformation  matrix  con- 
tains a history of all the  rotations ever specified by the user, concatenated one after 
another  onto  the original matrix. Potential loss of precision is a  problem associated 
with using such an  approach  to  represent  a very long  concatenation of transforma- 
tions, especially  with fixed-point  arithmetic;  that's not  a problem  for us  yet, but we'll 
run  into it eventually. 

LISTING 5 1.4 15 1 -4.C 
I* R o u t i n e s   t o   p e r f o r m   i n c r e m e n t a l   r o t a t i o n s   a r o u n d   t h e   t h r e e   a x e s  * I  
#inc lude  <math.h> 
# inc lude   "po l ygon .   h "  

I* C o n c a t e n a t e   a   r o t a t i o n   b y   A n g l e   a r o u n d   t h e  X a x i s   t o   t h e   t r a n s f o r m a t i o n   i n  
X f o r m T o C h a n g e ,   p l a c i n g   r e s u l t   b a c k   i n   X f o r m T o C h a n g e .  * I  
void  AppendRotat ionX(doub1e  XformToChange[41[41.  double  Angle) 

double  TemplO.  Templ l ,   Templ2,  Temp2O. TempEl.  Temp22: 
d o u b l e  CosTemp - cos(Ang1e).   SinTemp - s i n ( A n g 1 e ) ;  
I* C a l c u l a t e   t h e  new v a l u e s   o f   t h e   f o u r   a f f e c t e d   m a t r i x   e n t r i e s  * /  
TemplO - CosTemp*XformToChange[l][Ol+ -SinTemp*XformToChange[2][01: 
T e m p l l  - CosTemp*XformToChangeCll[ll+ -SinTemp*XformToChange[21[1]: 
Temp12 - CosTemp*XformToChangeCll[21+ -SinTemp*XformToChange[21[2]: 
Temp20 - SinTemp*XformToChange[ll[Ol+ CosTemp*XformToChange~21~01:  
Temp21 - SinTemp*XformToChange[ll[ll+ CosTemp*XformToChange~21~11:  
Temp22 - SinTemp*XformToChange[ll[21+ CosTemp*XformToChange~21[21; 
I* P u t   t h e   r e s u l t s   b a c k   i n t o  XformToChange *I  
XformToChange[l][O] - TemplO:   XformToChange~11~11 - T e m p l l :  
XformToChange[l][2] - Templ2:  XformToChange[21[01 - Temp2O: 
XformToChange[21[11 - Temp21; XformToChange[21C23 - Temp22: 

{ 

} 

I* C o n c a t e n a t e   a   r o t a t i o n   b y   A n g l e   a r o u n d   t h e  Y a x i s   t o   t h e   t r a n s f o r m a t i o n  i n  
X f o r m T o C h a n g e .   p l a c i n g   r e s u l t   b a c k   i n   X f o r m T o C h a n g e .  * I  
void  AppendRotat ionY(doub1e  XformToChange[4] [4] .   double  Angle) 

( 
d o u b l e  TempOO. TempOl.  Temp02. Temp2O. Tempel.  Temp22: 
d o u b l e  CosTemp - cos(Ang1e).   SinTemp - s i n ( A n g 1 e ) :  

964 Chapter 51 



/ *  C a l c u l a t e   t h e  new v a l u e s   o f   t h e   f o u r   a f f e c t e d   m a t r i x   e n t r i e s  * /  
TempOO = CosTemp*XformToChange[Ol[Ol+ SinTemp*XformToChange[21[01: 
TempOl - CosTemp*XformToChange[Ol[ll+ SinTemp*XformToChange[2][11: 
Temp02 - CosTemp*XformToChange[OI[21+  SinTemp*XformToChangeC21C21; 
Temp20 - -SinTemp*XformToChange[Ol[Ol+ CosTemp*XformToChange[Zl[Ol; 
Temp21 = -SinTemp*XformToChange[Ol[ll+ CosTemp*XformToChange~21~11: 
Temp22 - -SinTemp*XformToChange[OI[21+ CosTemp*XformToChange~21~21:  
/ *  P u t   t h e   r e s u l t s   b a c k   i n t o   X f o r m T o C h a n g e  * I  
XformToChange[O1[0] - TempOO; XformToChange[0][11 - TempOl: 
XformToChange[Ol[2l  - TempO2: XformToChange[2lC01 - TempEO: 
XformToChange[2][11 - Tempel:  XformToChange[21[2] - Temp22: 

1 

I* C o n c a t e n a t e   a   r o t a t i o n   b v   A n c l l e   a r o u n d   t h e  2 a x i s   t o   t h e   t r a n s f o r m a t i o n   i n  
X f o r m T o C h a n g e .   p l a c i n g   r e s u l i   b a c k   i n   X f o r m T o C h a n g e .  * /  
void  AppendRotat ionZ(doub1e  XformToChange[41C41,  double  Angle) 

d o u b l e  TempOO. TempOl, TempO2. TemplO.  Templl .   TemplE: 
d o u b l e  CosTemp .. cos(Ang1e).  SinTemp - s i n ( A n g 1 e ) :  
/ *  C a l c u l a t e   t h e  new v a l u e s   o f   t h e   f o u r   a f f e c t e d   m a t r i x   e n t r i e s  * /  
TempOO - CosTemp*XformToChange[Ol[Ol+ -SinTemp*XformToChange~ll~Ol: 
TempOl - CosTemp*XformToChange[Ol[ll+  -SinTemp*XformToChange~ll~ll: 
Temp02 - CosTemp*XformToChange[Ol[Zl+ -SinTemp*XformToChange[l1[21; 
TemplO - SinTemp*XformToChange[Ol[Ol+ CosTemp*XformToChange[ll[Ol: 
T e m p l l  - SinTemp*XformToChange[Ol[ll+ CosTemp*XformToChangeC1IC13: 
Temp12 - SinTemp*XformToChange[Ol[Zl+ CosTemp*XformToChange~l1~21: 
/ *  P u t   t h e   r e s u l t s   b a c k   i n t o   X f o r m T o C h a n g e  */  
XformToChange[0][01 - TempOO: XformToChangeCO1~11 - TempOl; 
XformToChange[Ol[Z] - Temp02: XformToChange~11C01 - TemplO: 
X formToChange[ l ] [ l l  .. Templl:   XformToChange[1][21 - TemplZ; 

LISTING 5 1.5 POLYG0N.H 
/*  POLYG0N.H: Header f i l e   f o r   p o l y g o n - f i l l i n g   c o d e ,   a l s o   i n c l u d e s  a  number o f  

# d e f i n e  MAX-POLY-LENGTH 4 / *  f o u r   v e r t i c e s   i s   t h e  max p e r   p o l y  * /  
# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-HEIGHT 240 
# d e f i n e  PAGEO-START-OFFSET 0 
# d e f i n e  PAGE1-START-OFFSET (( ( long)SCREEN-HEIGHT*SCREENKWIDTH)/4)  
/ *  R a t i o :   d i s t a n c e   f r o m   v i e w p o i n t   t o   p r o j e c t i o n   p l a n e  / w i d t h   o f   p r o j e c t i o n  

u s e f u l   i t e m s   f o r  3D a n i m a t i o n .  * /  

p l a n e .   D e f i n e s   t h e   w i d t h   o f   t h e   f i e l d   o f   v i e w .   L o w e r   a b s o l u t e   v a l u e s  - w i d e r  
f i e l d s   o f   v i e w :   h i g h e r   v a l u e s  - n a r r o w e r .  * /  

#def ine  PROJECTION-RATIO -2.0 /* n e g a t i v e   b e c a u s e   v i s i b l e  Z coo rd ina tes   a re   nega t i ve  * I  
/*  Draws t h e   p o l y g o n   d e s c r i b e d   b y   t h e   p o i n t   l i s t   P o i n t L i s t   i n   c o l o r   C o l o r   w i t h  

a l l   v e r t i c e s   o f f s e t   b y  ( X . Y )  * /  
# d e f i n e  DRAW-POLYGON(PointList.NumPoints.Co1or.X.Y) \ 

Po lygon.Length  - NumPoin ts :   Po lygon.Po in tP t r  - P o i n t L i s t :  \ 
FillConvexPolygon(&Polygon. C o l o r ,  X .  Y ) ;  

/ *  D e s c r i b e s   a   s i n g l e  2D p o i n t  * /  
s t r u c t   P o i n t  I 

i n t  X ;  I* X c o o r d i n a t e  * /  
i n t  Y :  I* Y c o o r d i n a t e  * /  

1 :  
/*  D e s c r i b e s   a   s i n g l e  3D p o i n t   i n  homogeneous c o o r d i n a t e s  * /  
s t r u c t   P o i n t 3  { 

d o u b l e  X :  / *  X c o o r d i n a t e  * /  
d o u b l e  Y :  / *  Y c o o r d i n a t e  * /  
d o u b l e  Z: / *  2 c o o r d i n a t e  * /  
d o u b l e  W :  

3 :  

Sneakers in Space 965 



I* 

I :  
I* 

Descr ibes  a s e r i e s   o f   p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t  
d e s c r i b e  a p o l y g o n :   e a c h   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   t w o   a d j a c e n t  
v e r t i c e s ,  and t h e   l a s t   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   f i r s t )  *I  
s t r u c t   P o i n t L i s t H e a d e r  { 
i n t   L e n g t h :  I* # o f   p o i n t s  * I  
s t r u c t   P o i n t  * P o i n t P t r :  I* p o i n t e r   t o   l i s t  o f  p o i n t s  *I  

D e s c r i b e s   b e g i n n i n g   a n d   e n d i n g  X c o o r d i n a t e s   o f  a s i n g l e   h o r i z o n t a l   l i n e  *I  
s t r u c t   H L i n e  { 

i n t   X S t a r t :  I* X c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   l i n e  *I  
i n t  XEnd: I* X c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  * I  

I :  
I* D e s c r i b e s  a L e n g t h - l o n g   s e r i e s   o f   h o r i z o n t a l   l i n e s ,   a l l  assumed t o  be  on 

c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t  and  p roceed ing   downward   (descr ibes  
a s c a n - c o n v e r t e d   p o l y g o n   t o   l o w - l e v e l   h a r d w a r e - d e p e n d e n t   d r a w i n g   c o d e )  *I  

i n t   L e n g t h :  I* i o f   h o r i z o n t a l   l i n e s  *I  
i n t   Y S t a r t :  I* Y c o o r d i n a t e   o f   t o p m o s t   l i n e  *I  
s t r u c t   H L i n e  * H L i n e P t r :  I* p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  * I  

s t r u c t   H L i n e L i s t  

I :  
s t r u c t   R e c t  { i n t   L e f t ,  Top,   R igh t ,   Bo t tom:  l :  
I* S t r u c t u r e   d e s c r i b i n g  o n e   f a c e   o f   a n   o b j e c t   ( o n e   p o l y g o n )  *I  
s t r u c t  Face I 

i n t  * VertNums: I* p o i n t e r   t o   v e r t e x   p t r s  * I  
i n t  NumVerts; I* # o f   v e r t i c e s  *I  
i n t   C o l o r :  I* p o l y g o n   c o l o r  * I  

I :  
I* S t r u c t u r e   d e s c r i b i n g  an o b j e c t  *I  
s t r u c t   O b j e c t  { 

i n t  NumVerts: 
s t r u c t   P o i n t 3  * V e r t e x L i s t :  
s t r u c t   P o i n t 3  * X f o r m e d V e r t e x L i s t :  
s t r u c t ' P o i n t 3  * P r o j e c t e d V e r t e x L i s t :  
s t r u c t   P o i n t  * S c r e e n V e r t e x L i s t ;  
i n t  NumFaces: 
s t r u c t  Face * F a c e L i s t ;  

ex te rn   vo id   X formVec(doub1e  X formC41C41.   doub le  * SourceVec.   double * OestVec) :  
1 :  

ex te rn   vo id   Conca tX fo rms(doub1e   SourceXfo rm l [4 ] [41 .  

e x t e r n   v o i d  XformAndProjectPoly(doub1e XformC4lC41. 

e x t e r n   i n t  FillConvexPolygon(struct P o i n t L i s t H e a d e r  *, i n t .   i n t .   i n t ) :  
e x t e r n   v o i d   S e t 3 2 0 ~ 2 4 0 M o d e ( v o i d ) :  
e x t e r n   v o i d   S h o w P a g e ( u n s i g n e d   i n t   S t a r t o f f s e t ) :  
e x t e r n   v o i d   F i l l R e c t a n g l e X ( i n t  S t a r t X .  i n t  S t a r t Y .  i n t  EndX. 

i n t  EndY. u n s i g n e d   i n t  PageBase, i n t   C o l o r ) :  
e x t e r n   v o i d  XformAndProjectPoints(doub1e X f o r m [ 4 1 [ 4 l . s t r u c t   O b j e c t  * Ob jec tToXfo rm) :  
e x t e r n   v o i d   D r a w V i s i b l e F a c e s ( s t r u c t   O b j e c t  * Ob jec tToXfo rm) :  
e x t e r n   v o i d   A p p e n d R o t a t i o n X ( d o u b 1 e  XformToChangeC41C41. d o u b l e   A n g l e ) :  
e x t e r n   v o i d   A p p e n d R o t a t i o n Y ( d o u b 1 e  XformToChangeC41C41. d o u b l e   A n g l e ) ;  
e x t e r n   v o i d   A p p e n d R o t a t i o n Z ( d o u b 1 e  XformToChangeC41C41. d o u b l e   A n g l e ) :  
e x t e r n   i n t   D i s p l a y e d P a g e .   N o n D i s p l a y e d P a g e :  
e x t e r n   s t r u c t   R e c t   E r a s e R e c t C l :  

double  SourceXform2C41C41.   double  DestXformC4lC41) :  

s t r u c t   P o i n t 3  * P o l y ,   i n t   P o l y L e n g t h .   i n t   C o l o r ) :  

A Note  on Rounding Negative Numbers 
In the  previous  chapter, I added 0.5 and  truncated in order  to  round  values  from 
floating-point  to  integer  format. Here, in  Listing 51.2, I've  switched to  adding 0.5 

Chapter 51 



and using the floor() function. For positive  values, the two approaches  are equiva- 
lent;  for negative  values,  only the floor() approach works properly. 

Object Representation 
Each object consists  of a list  of  vertices and a list  of  faces,  with the vertices  of each 
face defined by pointers  into  the vertex list; this allows each vertex to be transformed 
exactly once, even though several faces may share a single vertex. Each object con- 
tains the vertices not only in their original, untransformed state, but in  three  other 
forms as  well: transformed to view space, transformed and projected to screen space, 
and converted to screen coordinates. Earlier, we  saw that  it can be convenient to 
store the screen  coordinates within the object, so that if the object hasn’t moved  with 
respect to the viewer, it can be redrawn without the  need  for recalculation, but why 
bother  storing  the view and screen space forms of the vertices  as  well? 
The screen space vertices are useful for some sorts of hidden surface removal. For 
example, to determine  whether two polygons overlap as seen by the viewer,  you must 
first  know  how  they  look  to the viewer, accounting for perspective;  screen  space  provides 
that information. (So do the final  screen  coordinates, but with less  accuracy, and without 
any Z information.) The view space vertices are useful for collision and proximity 
detection; screen space can’t be used here, because objects are  distorted by the per- 
spective projection into screen space. World space would  serve  as well as view space 
for collision detection, but because it’s  possible  to transform directly from object 
space to view space with a single matrix, it’s often preferable to skip  over  world space. 
It’s not mandatory  that vertices be stored  for all these different spaces, but  the coor- 
dinates  in all those spaces have to be calculated as intermediate steps anyway, so we 
might as well keep  them  around  for those occasions when they’re needed. 

Sneakers in Space 967 



CHAPTER 52

FAST 3-D ANIMATION: MEET X-SHARP



’’. 3-D Anirnahon Package 
Across the lake  fror few miles into upstate New  York, the Ausable  River 
has carved out a fai  ive gorge known  as  “Ausable Chasm.” Impressive for 
the East, anyway;  yo nk of it as the  poor man’s Grand Canyon.  Some  time 
back, I did  the  tour  and five-year-old, and it was fun, although I confess 
that I didn’t loosen,&y grip on my daughter’s hand until we were on the bus and 

;hat gorge is deep,  and  the railings tend to  be  of the single-bar, 

e straight to this  wonder of nature,  but Vermonters must take 
their cars  across on the ferry; the alternative is  driving three  hours  around  the  south 
end of Lake Champlain. No problem;  the ferry ride is an  hour well spent  on a beau- 
tiful  lake.  Or, rather, no problem-once you’re on  the ferry. Getting to New  York  is 
easy, but, as we found  out,  the line of cars  waiting  to  come  back from Ausable  Chasm 
gets lengthy about mid-afternoon. The ferry can hold only so many cars, and we 
wound up spending  an  unexpected hour exploring  the wonders of the ferry  docks. 
Not a big deal, with a good-natured kid and  an entertaining mom; we got ice cream, 
explored  the beach, looked through binoculars, and told stories. It was a fun break, 
actually, and before we knew  it, the ferry was steaming back to pick  us up. 
A friend of mine,  an elementary-school teacher, helped take 65 sixth graders  to 
Ausable  Chasm.  Never mind the potential for  trouble with 65 kids  loose on a ferry. 

97 1 



Never mind what it was like  trying to herd  that  group  around  a  gorge  that looks  like 
it was designed  to swallow children and small animals without a trace. The hard  part 
was getting back to the docks and  finding they’d  have  to  wait an  hour  for  the  next 
ferry. As my friend  put it, “Let me tell  you, an  hour is an  eternitywith 65 sixth graders 
screaming  the song ‘You Are My Sunshine.”’ 
Apart from  reminding you  how  lucky  you are to  be  working  in a  quiet, air-condi- 
tioned  room,  in front of a gently humming  computer,  free to think  deep  thoughts 
and  eat Cheetos to your heart’s  content, this story  provides a useful perspective on 
the malleable nature of time. An hour isn’tjust  an hour-it can be forever, or it can 
be the wink  of an eye. Just  think of the last hour you spent working under a  deadline; 
I  bet  it went past in  a flash. Which  is not to say, mind you, that  I  recommend working 
in a bus full of screaming kids in order to make time pass more slowly; there  are 
quality  issues here as  well. 
In  our 3-D animation work so far, we’ve used floating-point  arithmetic. Floating- 
point arithmetic-even  with a  floating-point processor but especially without one-is 
the  microcomputer  animation  equivalent  ofworking  in  a school bus: It takes forever 
to do anything, and you just know you’re never going to accomplish as much as  you 
want to. In this chapter, we’ll address  fixed-point  arithmetic, which will  give us an 
instant order-of-magnitude performance boost. We’ll  also  give our 3-D animation 
code  a  much  more powerful and extensible framework, making it easy to  add new 
and  different sorts of objects. Taken together,  these  alterations will let us start to do 
some really interesting real-time animation. 

This Chapter‘s Demo  Program 
Three-dimensional  animation is a  complicated business, and  it takes an  astonishing 
amount of functionality just  to  get off the  launching  pad: page flipping, polygon 
filling, clipping, transformations, list management, and so forth. I’ve been  building 
toward a critical mass  of animation  functionality over the  course of this book, and 
this chapter’s code builds on  the  code  from  no fewer than five previous chapters. 
The code that’s required  in order to link this chapter’s  animation  demo  program is 
the following: 

Listing 50. I from  Chapter 50 (draw  clipped  line  list); 
Listings  47.1  and 47.6 from  Chapter 47 (Mode X mode set,  rectangle  fill); 
Listing  49.6 from Chapter  49; 
Listing  39.4  from  Chapter  39  (polygon  edge  scan);  and 
The FillConvexPolygon( ) function from Listing  38.1  from  Chapter 38. Note 
that  the struct keywords  in FillConvexPolygon( ) must  be  removed  to  reflect 
the  switch  to  typedefs in the  animation  header file. 

As always, all required files are in this chapter’s subdirectory  on  the CD-ROM. 

972 Chapter 52 



LISTING 52.1 152- 1 .C 
/* 3-0 a n i m a t i o n   p r o g r a m   t o   r o t a t e   1 2   c u b e s .  Uses f i x e d   p o i n t .  All C code 

t e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and the   sma l l   mode l .  * /  

#i n c l  ude  <coni  0. h> 
#i n c l  ude  <dos . h> 
# i n c l u d e   " p o l y g o n .   h "  

/ *  b a s e   o f f s e t   o f   p a g e   t o   w h i c h   t o   d r a w  * /  
u n s i g n e d   i n t   C u r r e n t P a g e B a s e  - 0:  
/ *  c l i p   r e c t a n g l e ;   c l i p s   t o   t h e   s c r e e n  */ 
i n t   C l i p M i n X  = 0. C l i pM inY  - 0;  
i n t  ClipMaxX = SCREEN-WIDTH. ClipMaxY - SCREEN-HEIGHT: 
s t a t i c   u n s i g n e d   i n t   P a g e S t a r t O f f s e t s C 2 1  - 
i n t  OisplayedPage.  NonOisplayedPage: 
i n t   R e c a l c A l l X f o r m s  = 1. NumObjects - 0;  
Xform  WorldViewXform: / *  i n i t i a l i z e d   f r o m   f l o a t s  */ 
/*  p o i n t e r s   t o   o b j e c t s  */ 
O b j e c t  *ObjectList [MAX._OBJECTSI:  

{PAGEOpSTART-OFFSET,PAGEl-STARTpOFFSET); 

v o i d   m a i n 0  { 

O b j e c t   * O b j e c t P t r ;  
i n t  Done = 0. i: 

u n i o n  REGS r e g s e t ;  

I n i t i a l i z e F i x e d P o i n t O :  I* s e t   u p   f i x e d - p o i n t   d a t a  * /  
I n i t i a l i z e c u b e s o :  / *  s e t  up  cubes  and  add  them t o   o b j e c t   l i s t :   o t h e r  

o b j e c t s   w o u l d   b e   i n i t i a l i z e d  now, 
Set320x240ModeO: I* s e t   t h e   s c r e e n   t o  mode X *I 
ShowPage(PageStartOffsetsCDisp1ayedPage = 01) :  
/*  Keep t r a n s f o r m i n g   t h e   c u b e ,   d r a w i n g  i t  t o   t h e   u n d i s p l a y e d  

do I 
and f l i p p i n g   t h e   p a g e   t o  show i t  * /  

/* For e a c h   o b j e c t ,   r e g e n e r a t e   v i e w i n g   i n f o ,  i f  necessary 
fo r   ( i - 0 :   i <NurnOb jec ts :  i++) [ 

i f  ( ( O b j e c t P t r  - ObjectListCi1)->RecalcXform I I 
Recal   cAl1  Xforrns)  I 

ObjectPtr->RecalcFunc(ObjectPtr): 
O b j e c t P t r - > R e c a l c X f o r m  = 0; 

1 
1 
R e c a l c A l l X f o r m s  - 0: 

i f  the re   were   any  */ 

CurrentPageBase - /*  s e l e c t   o t h e r   p a g e   f o r   d r a w i n g   t o  * /  

/ *  F o r   e a c h   o b j e c t .   c l e a r   t h e   p o r t i o n   o f   t h e   n o n - d i s p l a y e d   p a g e  

f o r   ( i - 0 :   i < N u r n O b j e c t s ;  i++) [ 

PageSta r tO f f se tsCNonDisp layedPage  - DisplayedPage * 11: 

t h a t  was drawn t o   l a s t   t i m e ,   t h e n   r e s e t   t h e   e r a s e   e x t e n t  * /  

O b j e c t P t r  = O b j e c t L i s t [ i l ;  
FillRectangleX~ObjectPtr->EraseRect[NonDisplayedPagel.Left, 

ObjectPtr->EraseRect[NonDisplayedPagel.Top, 
ObjectPtr->EraseRect[NonDisplayedPagel.Right, 
ObjectPtr->EraseRect[NonDisplayedPagel.Bottom, 
CurrentPageBase. 0 ) ;  

ObjectPtr->EraseRectCNonDisplayedPage].Left - 
Ob jec tP t r ->EraseRec t [NonD isp layedPage l .R igh t  - ObjectPtr ->EraseRect [NonDisp layedPage] .Top - Ox7FFF; 

ObjectPtr->EraseRect[NonDisplayedPagel.Bottom - 0: 
1 

Fast 3-D Animation: Meet X-Sharp 973 



/* Draw a l l   o b j e c t s  * /  
f o r   ( i - 0 :   i < N u m O b j e c t s :  i++) 

/* F l i p   t o   d i s p l a y   t h e   p a g e   i n t o   w h i c h  we j u s t  drew * I  
ShowPage(PageStartOffsets1DisplayedPage - NonDisplayedPage]) :  
/ *  Move a n d   r e o r i e n t   e a c h   o b j e c t  * /  
f o r  ( i - 0 :  i<NumObjects; i++) 

i f  ( k b h i t 0 )  

Ob jec tL i s tC i l ->DrawFunc(Ob jec tL i s tC i l ) ;  

O b j e c t L i s t C i l - > M o v e F u n c ( 0 b j e c t L i s t C i 3 ) ;  

i f  ( g e t c h 0  - OxlB)  Done - 1: /*  Esc t o   e x i t  */ 
1 w h i l e   ( ! D o n e ) ;  
/ *  R e t u r n   t o   t e x t  mode and e x i t  * /  
r e g s e t . x . a x  - 0x0003; / *  AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode */  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  
e x i t ( 1 ) :  

1 

LISTING 52.2 152-2.C 
/* T r a n s f o r m s   a l l   v e r t i c e s   i n   t h e   s p e c i f i e d   p o l y g o n - b a s e d   o b j e c t   i n t o   v i e w  

s p a c e ,   t h e n   p e r s p e c t i v e   p r o j e c t s   t h e m   t o   s c r e e n   s p a c e   a n d  maps them t o   s c r e e n  
c o o r d i n a t e s ,   s t o r i n g   r e s u l t s   i n   t h e   o b j e c t .   R e c a l c u l a t e s   o b j e c t - > v i e w  
t r a n s f o r m a t i o n   b e c a u s e   o n l y  i f  t rans fo rm  changes   wou ld  we b o t h e r  
t o   r e t r a n s f o r m   t h e   v e r t i c e s .  */ 

# inc lude   <math .h>  
# inc lude   "po1ygon .h "  

v o i d  XformAndProjectPObject(P0bject * ObjectToXform) 
[ 

i n t  i. NumPoints - ObjectToXform->NumVerts: 
P o i n t 3  * P o i n t s  - O b j e c t T o X f o r m - > V e r t e x L i s t :  
P o i n t 3  * XformedPoints  - ObjectToXform->XformedVertexList: 
P o i n t 3  * P r o j e c t e d P o i n t s  - ObjectToXform->Pro jec tedVer texL is t :  
P o i n t  * S c r e e n p o i n t s  - ObjectToXform-XcreenVer texL is t :  

/ *  R e c a l c u l a t e   t h e   o b j e c t - > v i e w   t r a n s f o r m  */ 
ConcatXforms(Wor1dViewXform. ObjectToXform->XformToWorld. 

ObjectToXform->XformToView):  
/*  A p p l y   t h a t  new t r a n s f o r m a t i o n  and p r o j e c t   t h e   p o i n t s  */ 
f o r   ( i - 0 :   i < N u m P o i n t s ;  i++. Points++,  XformedPoints++, 

P r o j e c t e d P o i n t s + + .   S c r e e n P o i n t s t t )  I 
/* T r a n s f o r m   t o   v i e w   s p a c e  * /  
XformVec(0bjectToXform->XformToView. ( F i x e d p o i n t  * )  P o i n t s ,  

( F i x e d p o i n t  * )  X fo rmedPo in ts ) :  
/* P e r s p e c t i v e - p r o j e c t   t o   s c r e e n   s p a c e  * /  
P r o j e c t e d P o i n t s - > X  - 

DOUBLE~TO~FIXED(PROJECTION~RATIO * (SCREEN-WIDTH/Z))); 
FixedMul(FixedDiv(XformedPoints->X. Xfo rmedPo in ts ->Z) .  

O O U B L E ~ T O ~ F I X E O ( P R O J E C T I O N ~ R A T I O  * (SCREEN_WIOTH/E))): 
FixedMul(FixedDiv(XformedPoints->Y, Xfo rmedPo in ts ->Z) ,  

P r o j e c t e d P o i n t s - > Y  - 
P r o j e c t e d P o i n t s - > Z  - XformedPoints->Z:  
/ *  C o n v e r t   t o   s c r e e n   c o o r d i n a t e s .  The Y c o o r d   i s   n e g a t e d   t o  f l i p  f rom 

i n c r e a s i n g  Y b e i n g   u p   t o   i n c r e a s i n g  Y b e i n g  down, as   expec ted   by   po lygon 
f i l l e r .  Add i n  h a l f   t h e   s c r e e n   w i d t h   a n d   h e i g h t   t o   c e n t e r  on  screen. * /  

Sc reenPo in ts ->X  - ( ( i n t )   ( ( P r o j e c t e d P o i n t s - > X  + 

ScreenPo in ts ->Y  - ( - ( ( i n t )   ( ( P r o j e c t e d P o i n t s - > Y  + 
DOUBLE-TO-FIXED(0.5)) >> 1 6 ) )  + SCREEN_WIDTH/2: 

DOUBLE-TO-FIXED(0.5)) >> 1 6 ) ) )  + SCREEN-HEIGHT/Z; 
1 

1 

974 Chapter 52 



LISTING 52.3 152-3.C 
/*  Routines  to  perform  incremental  rotations  around  the  three  axes. */ 

#include  <math.h> 
t i  ncl  ude  "polygon. h" 

/ *  Concatenate  a  rotation  by  Angle  around  the  X  axis  to  transformation  in 

void  AppendRotationX(Xform  XformToChange.  double  Angle) 
I 

XformToChange.  placing  the  result  back  into  XformToChange. */ 

Fixedpoint  TemplO.  Templl.  Templ2.  TempZO.  Tempel.  Temp22: 
Fixedpoint  CosTemp - DOUElLE-TO-FIXED(cos(Angle)); 
Fixedpoint  SinTemp - DOUBLE-TO-FIXED(sin(Angle)): 
/*  Calculate  the  new  values  of  the  six  affected  matrix  entries * /  
TemplO - FixedMul(CosTemp.  XformToChange[ll[O1) + 

FixedMul(-SinTemp.  XformToChange[21[01); 
Templl - FixedMul(CosTemp.  XformToChange[ll[11) + 

FixedMul(-SinTemp, XformToChange[21[1]); 
Temp12 - FixedMul(CosTemp.  XformToChange[ll[2]) + 

FixedMul(-SinTemp.  XformToChange[21[21); 
Temp20 - FixedMul(SinTemp.  XformToChange[ll[OI) + 

FixedMul(CosTemp.  XformToChange[21CO1); 
Temp21 - FixedMul(SinTemp.  XformToChange[ll[ll) + 

FixedMul(CosTemp.  XformToChange[ZlCll): 
Temp22 - FixedMul(SinTemp,  XformToChange[llC21) + 

FixedMul(CosTemp.  XformToChange[Z1[21); 
/*  Put  the  results  back  into  XformToChange */ 
XformToChange[11[0] - TemplO;  XformToChangeC1][11 - Templl; 
XformToChange[l][Z] - TemplE:  XformToChange[2l[Ol - Temp2D; 
XformToChange[21[11 - TempEl:  XformToChange[2][21 - Temp22; 

1 
/* Concatenate  a  rotation  by  Angle  around  the Y axis to transformation  in 

void  AppendRotationY(Xform  XformToChange.  double  Angle) 
{ 

XformToChange.  placing  the  result  back  into  XformToChange. */ 

Fixedpoi  nt  TempOO,  TempOl,  Temp02,  TempZO,  TempLl,  Temp22; 
Fixedpoint  CosTemp - DOUELE-TO_FIXED(cos(Angle)): 
Fixedpoint  SinTemp - DDUBLE_TD_FIXED(sin(Angle)); 
/*  Calculate  the  new  values  of  the  six  affected  matrix  entries */ 
TempOO - FixedMul(CosTemp.  XformToChange[O1CO1) + 

FixedMul  (SinTemp.  XformToChange[21[01); 
TempOl - FixedMul(CosTemp.  XformToChange[Ol[11) + 

FixedMul(SinTemp.  XformToChange[21[11); 
Temp02 - FixedMul(CosTemp.  XformToChangeC01C21) + 

FixedMul(SinTemp.  XformToChange[21[21); 
Temp20 - FixedMul(-SinTemp.  XformToChange[01[01) + 

FixedMul(  CosTemp.  XformToChangeC21[0]); 
Temp21 - FixedMul  (-SinTemp.  XformToChange[Ol[11) + 

FixedMul(CosTemp.  XformToChange[21[11); 
Temp22 - FixedMul(-SinTemp.  XformToChange[Ol[21) + 

FixedMul(CosTemp.  XformToChange[Zl[Z]); 
/*  Put  the  results  back  into  XformToChange */ 
XformToChange[O][O] - TempOO:  XformToChange[O1[11 - TempOl; 
XformToChange[01[2] - TempOZ;  XformToChange[2l[Ol - Temp20; 
XformToChange[2l[ll - Temp21;  XformToChange[21[21 - Temp22; 

I 

Fast 3-D Animation: Meet X-Sharp 975 



/*  Concatenate  a r o t a t i o n  by   Ang le   a round  the  2 a x i s   t o   t r a n s f o r m a t i o n   i n  

vo id  AppendRotat ionZ(Xform  XformToChange.   double  Angle)  
{ 

X fo rmToChange ,   p lac ing   t he   resu l t   back   i n to   X fo rmToChange .  * /  

F i x e d p o i n t  TempOO. TempOl. TempOZ. TemplO.  Templ l .   Templ2:  
F i x e d p o i n t  CosTemp - DOUBLE-TO-FIXED(cos(Angle)): 
F i x e d p o i n t  SinTemp - DOUBLE-TO-FIXED(sin(Angle)); 
/* C a l c u l a t e   t h e  new v a l u e s   o f   t h e   s i x   a f f e c t e d   m a t r i x   e n t r i e s  * /  
TempOO - FixedMul(CosTemp.  XformToChange[O][Ol) + 

FixedMul( -S inTemp,   XformToChange[ l ] [O]) :  
TempOl - FixedMul(CosTemp.  XformToChange[O1[11) + 

F i x e d M u l ( - S i n T e m p ,   X f o r m T o C h a n g e ~ l l ~ 1 1 ) ;  
Temp02 - FixedMul(CosTemp.  XformToChange[O1[El) + 

FixedMul(-SinTemp.  XformToChange[ l ] [21);  
TemplO - FixedMul(SinTemp.  XformToChange[01~01) + 

FixedMul(CosTernp.  XformToChange[ l l [Ol) :  
T e m p l l  - FixedMul(SinTemp.  XformToChange[O1[1]) + 

FixedMul(CosTernp.  XformToChangeC11[11): 
Temp12 - FixedMul(SinTemp.  XformToChange[O1[El) + 

FixedMul(CosTemp.  XforrnToChange[11[21): 
/ *  P u t   t h e   r e s u l t s   b a c k   i n t o  XformToChange */  
XformToChange[OI[O1 - TempOO; 
XformToChange[O1CE] - TempO2: 
X f o r m T o C h a n g e [ l l [ l l  - T e m p l l ;  

1 

LISTING  52.4  152-4.C 
/ *  F i x e d   p o i n t   m a t r i x   a r i t h m e t i c  

# i n c l u d e   " p o l y g o n .  h" 

XformToChange[0][11 - TempOl: 
XformToChange[l ] [O] - TemplO: 
XformToChange[l ] [E] - TernplZ; 

f u n c t i o n s .  * /  

I *  M a t r i x   m u l t i p l i e s   X f o r m   b y   S o u r c e V e c .  and s t o r e s   t h e   r e s u l t   i n   D e s t V e c .  
M u l t i p l i e s   a   4 x 4   m a t r i x   t i m e s   a   4 x 1   m a t r i x :   t h e   r e s u l t   i s   a   4 x 1   m a t r i x .   C h e a t s  
by   assuming  the  W c o o r d   i s  1 a n d   b o t t o m   r o w   o f   m a t r i x   i s  0 0 0 1. and d o e s n ' t  
b o t h e r   t o   s e t   t h e  W c o o r d i n a t e   o f   t h e   d e s t i n a t i o n .  * /  

vo id   X formVec(Xfor rn   Work ingXfor rn .   F ixedpo in t   *SourceVec.  
F i x e d p o i n t   * D e s t V e c )  

( 
i n t  i: 

f o r   ( i - 0 :   i < 3 :  i++) 
D e s t V e c C i l  - FixedMul  (WorkingXform[i lCOI,   SourceVecCOI) + 

FixedMul(WorkingXform[ilCll, SourceVecCl I )  + 
FixedMul(WorkingXform[iI~21~ SourceVecCEl) + 
Work ingXform[ i ] [3 ] ;  / *  no  need t o   m u l t i p l y  by W  - 1 */ 

1 

/*  M a t r i x   m u l t i p l i e s   S o u r c e X f o r m l   b y   S o u r c e X f o r m E   a n d   s t o r e s   r e s u l t   i n  
D e s t X f o r m .   M u l t i p l i e s   a   4 x 4   m a t r i x   t i m e s   a   4 x 4   m a t r i x ;   r e s u l t   i s   a   4 x 4   m a t r i x .  
C h e a t s   b y   a s s u m i n g   b o t t o m   r o w   o f   e a c h   m a t r i x   i s  0 0 0 1. a n d   d o e s n ' t   b o t h e r  
t o   s e t   t h e   b o t t o m   r o w   o f   t h e   d e s t i n a t i o n .  * /  

Xform  DestXform) 

i n t  i. j: 

f o r   ( i - 0 :   i < 3 ;  i++) ( 

vo id   ConcatXforms(Xform  SourceXforml .   X form  SourceXformE,  

( 

f o r  ( j -0 :  j < 4 ;  j++) 

976 Chapter 52 



D e s t X f o r m C i l [ j l  - 
FixedMul(SourceXforml[il[Ol, SourceXform2[O][ j ] )  + 
FixedMul(SourceXforml[il[ll, S o u r c e X f o r m 2 ~ 1 1 ~ j l )  + 
FixedMul(SourceXforml[ i lC23.  S o u r c e X f o r m 2 [ 2 l [ j l )  + 
S o u r c e X f o r m l [ i l [ 3 1 :  

1 
3 

LISTING 52.5  152-5.C 
/* S e t   u p   b a s i c   d a t a   t h a t   n e e d s   t o   b e   i n   f i x e d   p o i n t ,   t o   a v o i d   d a t a  

d e f i n i t i o n   h a s s l e s .  * /  

#i ncl   ude  "po lygon.   h"  

/ *  All v e r t i c e s   i n   t h e   b a s i c   c u b e  * /  
s t a t i c   I n t P o i n t 3  IntCubeVertsCNUM-CUBE-VERTSI - ( 

(15.15.15}.~15.15.-15~,~15,-15,15~,~15,-15,-153, 
[ - 1 5 . 1 5 . 1 5 ] . ( - 1 5 , 1 5 , - 1 5 ~ ~ ~ ~ 1 5 , ~ 1 5 , 1 5 ~ . ~ ~ 1 5 ~ ~ 1 5 , ~ 1 5 1  1 ;  

/*  T r a n s f o r m a t i o n   f r o m   w o r l d   s p a c e   i n t o   v i e w   s p a c e  (no t r a n s f o r m a t i o n ,  
c u r r e n t l y )  * /  

s t a t i c   i n t   I n t W o r l d V i e w X f o r m [ 3 ] [ 4 1  - ( 
t 1 , O . O . O ) .  to.1.0.01. t 0 . 0 . 1 . 0 ~ 1 :  

v o i d   I n i t i a l i z e F i x e d P o i n t O  
I 

i n t  i. j :  

f o r   ( i - 0 :   i < 3 :  i++) 
f o r   ( j - 0 :   j < 4 :  j++) 

W o r l d V i e w X f o r m [ i l [ j l  - INT~TO_FIXEO(IntWorldViewXform~il[jl): 
f o r  ( i - 0 :  i<NUM-CUBE-VERTS: i++) I 

CubeVer ts [ i ] .X  - INT-TO-FIXED(IntCubeVertsCi1.X); 
CubeVer ts [ i ] .Y  - INT_TO_FIXED(IntCubeVerts[il.Y): 
C u b e V e r t s C i l . 2  - INT-TO-FIXED(IntCubeVerts[il.Z): 

1 
3 

LISTING 52.6  152-6.C 
/*  Rotates  and  moves a p o l y g o n - b a s e d   o b j e c t   a r o u n d   t h e   t h r e e   a x e s .  

Movement i s  i m p l e m e n t e d   o n l y   a l o n g   t h e  2 a x i s   c u r r e n t l y .  * /  

#i ncl   ude  "po lygon.   h "  

vo id   Rota teAndMovePObjec t (P0b jec t  * ObjectToMove) 
( 

i f  (--0bjectToMove->RDelayCount - 0 )  ( /* r o t a t e  * /  
ObjectToMove->RDelayCount - ObjectToMove->RDelayCountBase: 
i f  (ObjectToMove->Rotate.RotateX !- 0.0)  

AppendRotationX(0bjectToMove->XformToWorld, 
Objec tToMove->Ro ta te .Ro ta teX) :  

AppendRotat ionY(0bjectToMove->XformToWorld ,  
Objec tToMove->Ro ta te .Ro ta teY) :  

AppendRotationZ(0bjectToMove->XformToWorld, 
Objec tToMove->Ro ta te .Ro ta teZ) :  

i f  (ObjectToMove->Rotate.RotateY !- 0.0)  

i f  (Ob jec tToMove->Ro ta te .Ro ta teZ  !- 0.0) 

ObjectToMove->RecalcXform - 1: 

Fast 3-D Animation: Meet X-Sharp 977 



I* Move i n  Z, c h e c k i n g   f o r   b o u n c i n g   a n d   s t o p p i n g  *I  
i f  ( - -0b jectToMove->MDelayCount  - 0 )  { 

ObjectToMove->MDelayCount - ObjectToMove->MDelayCountBase; 
ObjectToMove->XformToWorld[21[31 +- ObjectToMove->Move.MoveZ; 
i f  ~ObjectToMove->XformToWorldC21C33>0bjectToMove->Move.MaxZ) 

ObjectToMove->Move.MoveZ - 0;  I* s t o p  i f  c lose   enough  * I  
ObjectToMove->RecalcXform - 1: 

1 
1 

LISTING 52.7 152-7.C 
I* Draws a l l   v i s i b l e   f a c e s   i n   s p e c i f i e d   p o l y g o n - b a s e d   o b j e c t .   O b j e c t   m u s t   h a v e  

p r e v i o u s l y   b e e n   t r a n s f o r m e d   a n d   p r o j e c t e d ,  s o  t h a t   S c r e e n V e r t e x L i s t   a r r a y   i s  
f i l l e d   i n .  *I  

# inc l   ude   "po l ygon .   h "  

v o i d   D r a w P O b j e c t ( P 0 b j e c t  * Objec tToXform)  

i n t  i. j .  NumFaces - ObjectToXform->NumFaces. NumVer t ices ;  
i n t  * VertNumsPtr;  
Face * FacePt r  - Ob jec tToXfo rm->FaceL is t :  
P o i n t  * S c r e e n p o i n t s  - Ob jec tToXfo rm->ScreenVer texL is t ;  
l o n g   v l ,   v 2 ,  w l .  w2; 
P o i n t  VerticesCMAX-POLY-LENGTH]; 
P o i n t L i s t H e a d e r   P o l y g o n ;  

I* Draw  each v i s i b l e   f a c e   ( p o l y g o n )   o f   t h e   o b j e c t   i n   t u r n  *I  
fo r   ( i -0 ;   i<NumFaces;  i++. FacePtr++) { 

NumVer t i ces  - FacePtr->NumVerts;  
/ *  C o p y   o v e r   t h e   f a c e ' s   v e r t i c e s   f r o m   t h e   v e r t e x   l i s t  *I  
f o r   ( j - 0 ,  Ver tNumsPt r -FacePt r ->Ver tNums;  j<NumVer t i ces ;  j++) 

/*  Draw o n l y  i f  o u t s i d e   f a c e   s h o w i n g  ( i f  t h e   n o r m a l   t o   t h e  

v l  - V e r t i c e s C 1 l . X  - Vert icesCO1.X: 
w l  - Ver t i cesCNumVer t i ces -1 l .X  - Vert icesCO1.X: 
v2 - Vert icesC11.Y - Vert icesCO1.Y: 
w2 - VerticesCNumVertices-l1.Y - Vert icesCO1.Y; 
i f  ( ( v l * w 2  - v2*wl )  > 0 )  ( 

V e r t i c e s C j l  - ScreenPointsC*Ver tNumsPtr++l ;  

p o l y g o n   p o i n t s   t o w a r d   v i e w e r ;   t h a t   i s .   h a s  a p o s i t i v e  Z component) *I  

I* It i s   f a c i n g   t h e   s c r e e n ,  so draw *I  
I* A p p r o p r i a t e l y   a d j u s t   t h e   e x t e n t   o f   t h e   r e c t a n g l e   u s e d   t o  

e r a s e   t h i s   o b j e c t   l a t e r  * /  
f o r   ( j - 0 ;   j < N u m V e r t i c e s ;  j++) { 

i f  ( V e r t i c e s C j 1 . X  > 
ObjectToXform->EraseRectCNonDisplayedPagel .Right~ 

ObjectToXform->EraseRect [NonDisp layedPagel .Right  - 
e l s e  ObjectToXform->EraseRect [NonDisp layedPagel .Right  = 

i f  ( V e r t i c e s C j 1 . X  < SCREEN-WIDTH) 

V e r t i c e s C j 1 . X ;  

SCREEN-WIDTH; 
i f  ( V e r t i c e s C j 1 . Y  > 

Db jec tToXfo rm->EraseRec t [NonD isp layedPage l .Bo t tom~ 

ObjectToXform->EraseRect [NonDisp layedPagel .Bot tom - i f  ( V e r t i c e s C j 1 . Y  < SCREEN-HEIGHT) 

V e r t i c e s C j 1 . Y ;  
e l s e  ObjectToXform->EraseRect [NonDisp layedPagel .Bot tom- 

SCREEN-HEIGHT; 
i f  ( V e r t i c e s C j 1 . X  < 

ObjectToXform->EraseRect[NonDisplayedPagel.Left) 

978 Chapter 52 



i f  ( V e r t i c e s C j 1 . X  > 0 )  
Ob jec tToXfo rm->EraseRec t [NonD isp layedPage l .Le f t  - 

e l s e  O b j e c t T o X f o r m - > E r a s e R e c t [ N o n D i  sp l   ayedPage1.   Lef t -0 :  
V e r t i c e s C j 1 . X ;  

i f  ( V e r t i c e s r j 1 . Y  < 
Ob jec tToXform->EraseRect [NonDisp layedPage l .Top)  

Ob jec tToXform->EraseRectCNonDisp layedPage l .Top - 
e l s e  Objec tToXform->EraseRect [NonDisp layedPage l .Top-O:  

i f  ( V e r t i c e s C j 1 . Y  > 0 )  

V e r t i c e s C j 1 . Y :  

> 
/ *  Draw t h e   p o l y g o n  * /  
DRAW-POLYGON(Vertices. NumVer t i ces .   FacePt r ->Co lo r .  0. 0 ) :  

I 

LISTING 52.8  152-8.C 
/*  I n i t i a l i z e s   t h e  cubes  and  adds  them t o   t h e   o b j e c t   l i s t .  * /  

#i n c l   u d e   < s t d l  i b.  h> 
#i ncl  ude  <math.  h> 
ti ncl   ude  "po lygon.   h"  

# d e f i n e  ROT-6 ("PI / 30 .0)  / *  r o t a t e  6 d e g r e e s   a t  a t i m e  */  
# d e f i n e  ROT-3 ("PI / 60.0) /*  r o t a t e  3 d e g r e e s   a t  a t i m e  */  
# d e f i n e  ROT-2 ("PI / 90.0)  / *  r o t a t e  2 d e g r e e s   a t  a t i m e  */  
# d e f i n e  NUM-CUBES 12 / *  d o f  cubes * /  

P o i n t 3  CubeVertsCNUM-CUBE-VERTSI: /* s e t   e l s e w h e r e ,   f r o m   f l o a t s  * /  
/ *  v e r t e x   i n d i c e s   f o r   i n d i v i d u a l   c u b e   f a c e s  */  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  

n t   F a c e l [ ]  = (1.3.2.0}:  
n t  FaceZCl - [5.7.3.11; 
n t  Face3C1 - 14.5.1.01: 
n t  Face4[] - (3.7.6.21: 
n t  Face5C1 - (5.4.6.71; 
n t  Face6CI = I0 .2 .6 .41 :  
n t   *Ver tNumList [ ] - [Facel ,   FaceZ,   Face3.   Face4.   Face5.   Face61:  
n t   V e r t s I n F a c e [ ] - {  sizeof(Facel)/sizeof(int). 

i 
i 
i 
i 
i 
i 
i 
i 

s i z e o f ( F a c e 2 ) / s i z e o f ( i n t ) .  sizeof(Face3)/sizeof(int), 
s i z e o f ( F a c e 4 ) / s i z e o f ( i n t ) .  s i z e o f ( F a c e 5 ) / s i z e o f ( i n t ) .  
s i z e o f ( F a c e 6 ) / s i z e o f ( i n t )  I :  

/* X .  Y .  2 r o t a t i o n s  f o r  cubes * I  
s t a t i c   R o t a t e c o n t r o l  InitialRotateCNUM-CUBES] = I 

{O.O.ROT_6.ROT-6), ~ROT~3,0.O,ROT~3II   [ROT_3.ROT_3.0.0},  
(ROT-3, -ROT-3,0.01  .I-ROT_3.ROT-2,0.01,  (-ROTL6.-ROT-3.0.01, 
~ R O T ~ 3 . 0 . 0 . - R O T ~ 6 ~ . ~ - R O T _ 2 . 0 . O . 0 ~ R 0 T ~ 3 J , ~ - R 0 T ~ 3 , 0 . 0 , - R 0 T ~ 3 1 ,  
[ O . O . R O T _ 2 . - R O T ~ 2 ~ . ( O . O , - R O T _ 3 . R O T ~ 3 } , ~ O . O , - R O T ~ 6 , - R O T ~ 6 ~ , } :  

s ta t ic   MoveContro l   In i t ia lMove[NUM-CUBES] - I 
[0,0.80.0.0.0,0,0,-350J,[0,0,80,0,0,0,0,0,-350J, 
~0 .0 .B0 .0 .0 .0 ,0 .0 . -3501 ,~0 ,0 ,80 ,0 ,0 ,0 ,0 ,0 , -3501 ,  
I0.0.80.0.0.0.0.0.-3501~~0,0~80.0.0.0.0.0,-3501, 
~0.0.80.0.0,0.0.0.-350~,(0,0,80,0,0,0,0,0,-350), 
~0,0.80.0.0.0.0.0,-3501,~0,0.80,0,0.0.0.0;3501, 
~0,0,80,0.0,0,0.0.-350~,~0,0,80.0.0.0.0.0,-3501, I :  

/ *  f a c e   c o l o r s   f o r   v a r i o u s   c u b e s  * /  
s t a t i c   i n t  Colors[NUM-CUBES][NUM_CVBE-FACESI - I 

~15.14.12.11.10.9~.I1,2,3,4,5,61,~35.37,39,41,43,45~, 
(47.49,51.53.55.571.(59.61.63.65.67.691,(71,73,75,77,79,811, 
I83,85.87.89.91,93~.~95.97.99,101,103.105J, 

Fast 3-D Animation: Meet X-Sharp 979 



(107.109,111.113.115~1171,~119,121,123,125,127,1291, 
{131,133,135.137,139,1411,~143.145.147,149,151~1531 I ;  

/*  s t a r t i n g   c o o r d i n a t e s  for cubes i n   w o r l d   s p a c e  */  
s t a t i c   i n t  CubeStartCoords[NUM-CUBESIC31 - I 

[ 100 .0 . -60001 .   I 100 .70 .~60001 .  I100 , -70 . -60001 ,  (33.0. -6000] .  
133.70, -60001,   I33. -70. -60001.  I -33 .0 . -60001 .  I -33 ,70 . -60001 ,  
~-33.-70.-60001.~-100.0.-6000~, ( -100.70. -6000) ,  I -100 . -70 . -60003) :  

/ *  d e l a y   c o u n t s   ( s p e e d   c o n t r o l )   f o r   c u b e s  */  
s t a t i c   i n t  InitRDelayCountsCNUM_CVBESI - (1.2.1,2.1.1.1.1.1.2.1.1): 
s t a t i c   i n t  BaseRDelayCountsCNUM_CUBESI - (1,2,1,2,2,1,1,1,2,2,2,11; 
s t a t i c   i n t  InitMDelayCountsCNUM_CUBESl - {1,1,1,1,1,1,1,1,1,1,1,11; 
s t a t i c   i n t  BaseMDelayCountsCNUM~CUBESl - ~1.1.1.1.1.1.1.1,1.1,1,11; 

v o i d   I n i t i a l i z e C u b e s O  
I 

i n t  i. j ,  k ;  
PObject   *Workingcube: 

f o r   ( i - 0 :  i<NUM-CUBES; i++) ( 
i f  ( (Work ingcube  - malloc(sizeof(P0bject))) - NULL) I 

p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) :   e x i t ( 1 ) ;  I 
Workingcube->DrawFunc - DrawPObject: 
Work ingcube->RecalcFunc = X fo rmAndPro jec tPOb jec t :  
Workingcube->MoveFunc - RotateAndMovePObject ;  
Workingcube->RecalcXform - 1: 
f o r  (k-0:  k<2: k++) { 

Workingcube->EraseRect[kl.Left - 
Workingcube->EraseRect [k l .Right  - 0;  
Workingcube->EraseRect[kl.Bottom - 0:  

Workingcube->EraseRect[kl.Top - Ox7FFF; 

I 
Workingcube->RDelayCount - I n i t R D e l a y C o u n t s C i l :  
Workingcube->RDelayCountBase - BaseRDelayCountsCi l ;  
Workingcube->MDelayCount - I n i t M D e l a y C o u n t s C i l :  
Workingcube->MDelayCountBase - BaseMDelayCounts[ i l ;  
/ *  S e t   t h e   o b j e c t - > w o r l d   x f o r m   t o   n o n e  * /  
f o r   ( j - 0 ;   j < 3 ;  j++) 

f o r   ( k - 0 ;   k < 4 ;  k++) 
Workingcube->XformToWorld[jl[kl - INT-TOpFIXED(0); 

Workingcube->XformToWorld[Ol[Ol - 
Workingcube->XformToWorld[llCll - 
WorkingCube->XformToWorldC23C21 - 
WorkingCube->XformToWorld[31[3] - INT-TO_FIXED(l): 

/ *  S e t   t h e   i n i t i a l   l o c a t i o n  * /  
f o r   ( j - 0 ;   j < 3 ;  j++) WorkingCube->XformToWorldCjl[31 - 
Workingcube->NumVerts - NUM-CUBE-VERTS: 
W o r k i n g c u b e - > V e r t e x L i s t  - CubeVerts :  
Workingcube->NumFaces - NUM-CUBELFACES: 
Work ingcube->Rotate - I n i t i a l R o t a t e C i l :  
Workingcube->Move.MoveX - INT-TO~FIXED(InitialMove[i].MoveX): 
Workingcube->Move.MoveY - I N T ~ T O ~ F I X E D ( I n i t i a l M o v e C i l . M o v e Y ) ;  
Workingcube->Move.MoveZ - INT~TO~FIXEO(InitialMove[il.MoveZ); 
Workingcube->Move.MinX - INT~TO~FIXEO(InitialMove~il.MinX): 
Workingcube->Move.MinY - INT_TO-FIXED(InitialMoveCil.MinY); 
Workingcube->Move.MinZ - INT-TO-FIXED(InitialMoveCil.MinZ); 
Workingcube->Move.MaxX - INT-TO-FIXED(InitialMove[il.MaxX); 
Workingcube->Move.MaxY - INT-TO-FIXED(InitialMove[il.MaxY); 
Workingcube->Move.MaxZ - INT_TO-FIXED(InitialMove[i].MaxZ); 

I N T ~ T O ~ F I X E D ( C u b e S t a r t C o o r d s C i 1 C j l ) :  

980 Chapter 52 



i f  ( (Workingcube->XformedVertexList  - 
malloc(NUM-CUBE-VERTS*sizeof(Point3))) - NULL) { 

p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) ;   e x i t ( 1 ) ;  ) 
i f  ( ( W o r k i n g c u b e - > P r o j e c t e d V e r t e x L i s t  - 

malloc(NUM-CUBE-VERTS*sizeof(Point3))) - NULL) { 
p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) ;   e x i t ( 1 ) ;  1 

i f  ( (Work ingcube->ScreenVer texL is t  - 
malloc(NUM_CUBE-VERTS*sizeof(Point))) - NULL) { 

p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) ;   e x i t ( 1 ) ;  
i f  ( ( W o r k i n g c u b e - > F a c e L i s t  - 

malloc(NUM-CUBE_FACES*sizeof(Face))) - NULL) { 
p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) ;   e x i t ( 1 ) ;  1 

/*  I n i t i a l i z e   t h e   f a c e s  */  
f o r   ( j - 0 ;  j<NUM-CUBE-FACES; j++) { 

Work ingcube->FaceLis t [ j l .Ver tNums - V e r t N u m L i s t C j l ;  
Work ingcube->FaceLis tCj l .NumVerts  - V e r t s I n F a c e C j l :  

1 
WorkingCube->FaceList[jl.Color - C o l o r s C i l [ j ] ;  

ObjectListCNumObjects++l - (Object   * )Work ingCube;  
1 

1 

LISTING 52.9 152-9.ASM 
; 3 8 6 - s p e c i f i c   f i x e d   p o i n t   m u l t i p l y  a n d   d i v i d e .  

; C n e a r - c a l l a b l e   a s :   F i x e d p o i n t   F i x e d M u l ( F i x e d p 0 i n t  M 1 .  F i x e d p o i n t   M 2 ) ;  
F i x e d p o i n t   F i x e d D i v ( F i x e d p o i n t   D i v i d e n d ,   F i x e d p o i n t   D i v i s o r ) ;  

; T e s t e d   w i t h  TASM 

.model  smal l  

.386 

.code 
pub1 i c -FixedMul  .-Fi  xedDi v 

; M u l t i D l i e s   t w o   f i x e d - p o i n t   v a l u e s   t o g e t h e r .  
FMparms s t r u c  

dw 
M 1  dd 
M2 dd 
FMparms ends 

- FixedMul 
a1 i g n  

push 
mov 
mov 
i mu1 
add 
adc 
s h r  
POP 
r e t  

-Fi  xedMul 

2 d u p ( ? )   ; r e t u r n   a d d r e s s  & pushed BP 
? 
? 

2 

bP 
p r o c   n e a r  

b p . w  
eax.[bp+M11 
dword p t r  Cbp+M2] ; m u l t i p l y  
eax ,   8000h  ; round  by   add ing   2^ ( -16)  
edx, 0 ; w h o l e   p a r t   o f   r e s u l t   i s  i n  OX 
e a x . 1 6   ; p u t   t h e   f r a c t i o n a l   p a r t   i n  AX 
bP 

endp 
; D i v i d e s   o n e   f i x e d - p o i n t   v a l u e   b y   a n o t h e r .  
FDparms s t r u c  

D i v i d e n d   d d  ? 
D i v i s o r   d d  ? 
FDparms  ends 

a l i g n  2 

dw 2 d u p ( ? )   ; r e t u r n   a d d r e s s  & pushed BP 

Fast 3-D Animation: Meet X-Sharp 98 1 



- F i  xedDi v 

F D P l  : 

FDPL: 

FDP3: 

push 
mov 
sub 
mov 
and 
j n s  
i nc 

sub 

r o l  

mov 
sub 
mov 
and 
j n s  
dec 
neg 
d i  v 
s h r  
adc 
dec 
CmP 
adc 

and 
j z  
neg 
mov 

s h r  
POP 
r e t  

neg 

- Fi   xedDi  v 
end 

p r o c   n e a r  
bp 
bp. SP 
c x ,   c x  ;assume p o s i t i v e   r e s u l t  
eax.Cbp+Div idendl  
e a x ,   e a x   ; p o s i t i v e   d i v i d e n d ?  
FDPl  ;yes 
cx  :mark i t ' s  a n e g a t i v e   d i v i d e n d  
eax ;make t h e   d i v i d e n d   p o s i t i v e  
edx,  edx ;make it a 6 4 - b i t   d i v i d e n d ,   t h e n   s h i f t  

: l e f t  16 b i t s  so t h a t   r e s u l t  will be i n  EAX 
e a x ,   1 6   : p u t   f r a c t i o n a l   p a r t   o f   d i v i d e n d   i n  

: h i g h   w o r d   o f  EAX 
d x , a x   : p u t   w h o l e   p a r t   o f   d i v i d e n d   i n  DX 
a x . a x   : c l e a r   l o w   w o r d   o f  EAX 
e b x . d w o r d   p t r   [ b p + D i v i s o r l  
ebx.ebx 
FDPZ 

: p o s i t i v e   d i v i s o r ?  
:yes 

cx  :mark i t ' s  a n e g a t i v e   d i v i s o r  
ebx :make d i v i s o r   p o s i t i v e  
e b x   ; d i v i d e  
e b x . 1   ; d i v i s o r / 2 .   m i n u s  1 i f  t h e   d i v i s o r   i s  
ebx.O : even 
ebx 
ebx ,   edx   ; se t   Car ry  i f  remainder  i s   a t   l e a s t  
eax,  0 ; h a l f  as l a r g e  as t h e   d i v i s o r ,   t h e n  

: u s e   t h a t   t o   r o u n d   u p  i f  necessa ry  
; s h o u l d   t h e   r e s u l t  be made n e g a t i v e ?  
;no 

c x  , c x  
FDP3 
eax  ;yes.   negate i t  
edx , e a x   ; r e t u r n   r e s u l t   i n  D X : A X ;  f r a c t i o n a l  

e d x ,   1 6   : w h o l e   p a r t   o f   r e s u l t   i n  DX 
: p a r t   i s   a l r e a d y   i n  AX 

bp 

endp 

LISTING 52.10 POLYG0N.H 
/ *  POLYG0N.H: Header f i l e   f o r   p o l y g o n - f i l l i n g   c o d e ,   a l s o   i n c l u d e s  

a number o f   u s e f u l   i t e m s   f o r  3-D a n i m a t i o n .  * I  

# d e f i n e  MAX-OBJECTS 100 / *  max s imu l taneous  # o b j e c t s   s u p p o r t e d  */  
# d e f i n e  MAX-POLY-LENGTH 4 I* f o u r   v e r t i c e s   i s   t h e  max p e r   p o l y  * /  
# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-HEIGHT 240 
# d e f i n e  PAGEO-START-OFFSET 0 
# d e f i n e  PAGE1-START-OFFSET (((long)SCREENLHEIGHT*SCREEN_WIDTH)/4) 
# d e f i n e  NUM-CUBE-VERTS 8 / *  # o f   v e r t i c e s   p e r   c u b e  */  
# d e f i n e  NUM-CUBE-FACES 6 I* # o f   f a c e s   p e r   c u b e  */  
/*  R a t i o :   d i s t a n c e   f r o m   v i e w p o i n t   t o   p r o j e c t i o n   p l a n e  / w i d t h   o f  

p r o j e c t i o n   p l a n e .   D e f i n e s   t h e   w i d t h   o f   t h e   f i e l d   o f   v i e w .  Lower 
a b s o l u t e   v a l u e s  - w i d e r   f i e l d s   o f   v i e w :   h i g h e r   v a l u e s  - nar rower  * /  

# d e f i n e  PROJECTION-RATIO -2 .0  / *  n e g a t i v e   b e c a u s e   v i s i b l e  2 

/ *  Draws t h e   p o l y g o n   d e s c r i b e d   b y   t h e   p o i n t   l i s t   P o i n t L i s t   i n   c o l o r  
C o l o r   w i t h   a l l   v e r t i c e s   o f f s e t  by ( X . Y )  * I  

# d e f i n e  DRAW-POLYGON(PointList.NumPoints.Co1or.X.Y) \ 
Polygon.Length - NumPo in ts :   Po lygon .Po in tP t r  - P o i n t L i s t ;  \ 
FillConvexPolygon(&Polygon. C o l o r ,  X. Y ) ;  

c o o r d i n a t e s   a r e   n e g a t i v e  * /  

982 Chapter 52 



# d e f i n e  INT-TO-FIXED(x) ( ( ( l o n g ) ( i n t ) x )  << 1 6 )  
# d e f i n e  DOUBLE-TO-FIXED(x) ( ( l o n g )   ( x  * 65536.0 + 0.5)) 

t y p e d e f  1 o n g   F i x e d p o i   n t  : 
typede f   F i xedpo in t   X fo rmC31 [41 :  
I* D e s c r i b e s  a s i n g l e  2D p o i n t  *I  
t y p e d e f   s t r u c t  { i n t  X :  i n t  Y ;  1 P o i n t :  
I* D e s c r i b e s  a s i n g l e  3D p o i n t   i n  homogeneous c o o r d i n a t e s :   t h e  W 

t y p e d e f   s t r u c t  I F i x e d p o i n t  X .  Y .  Z; I P o i n t 3 :  
t y p e d e f   s t r u c t  { i n t  X :  i n t  Y :  i n t  Z: I I n t P o i n t 3 :  
I* D e s c r i b e s  a s e r i e s   o f   p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t  

d e s c r i b e  a p o l y g o n :   e a c h   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   t w o  
a d j a c e n t   v e r t i c e s :   l a s t   v e r t e x   i s  assumed t o   c o n n e c t   t o   f i r s t )  *I  

c o o r d i n a t e   i s n ' t   p r e s e n t ,   t h o u g h :  assumed t o  be 1 a n d   i m p l i e d  *I  

t y p e d e f   s t r u c t  { i n t   L e n g t h :   P o i n t  * P o i n t P t r :  > P o i n t L i s t H e a d e r ;  
/ *  D e s c r i b e s   t h e   b e g i n n i n g   a n d   e n d i n g  X c o o r d i n a t e s  o f  a s i n g l e  

t y p e d e f   s t r u c t  { i n t  X S t a r t ;   i n t  XEnd: I HLine:  
I* D e s c r i b e s  a L e n g t h - l o n g   s e r i e s   o f   h o r i z o n t a l   l i n e s ,   a l l  assumed t o  

h o r i z o n t a l   l i n e  *I  

be on c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t   a n d   p r o c e e d i n g  
downward  (used t o   d e s c r i b e  a s c a n - c o n v e r t e d   p o l y g o n   t o   t h e  
l o w - l e v e l   h a r d w a r e - d e p e n d e n t   d r a w i n g   c o d e ) .  * /  

t y p e d e f   s t r u c t  { i n t   L e n g t h :   i n t   Y S t a r t :   H L i n e  * H L i n e P t r : }   H L i n e L i s t :  
t y p e d e f   s t r u c t  { i n t   L e f t ,   T o p ,   R i g h t ,   B o t t o m :  > Rec t ;  
I* s t r u c t u r e   d e s c r i b i n g   o n e   f a c e  o f  an o b j e c t   ( o n e   p o l y g o n )  * /  
t y p e d e f   s t r u c t  { i n t  * VertNums: i n t  NumVerts; i n t   C o l o r :  } Face: 
t y p e d e f   s t r u c t  I doub le   Ro ta teX .   Ro ta teY .   Ro ta teZ :  1 R o t a t e C o n t r o l ;  
t y p e d e f   s t r u c t  { F i x e d p o i n t  MoveX,  MoveY.  MoveZ. Minx,   MinY.  MinZ. 

MaxX. MaxY. MaxZ; I MoveCont ro l :  
I* f i e l d s  common t o   e v e r y   o b j e c t  * /  
# d e f i n e  BASE-OBJECT \ 

v o i d   ( * D r a w F u n c ) O :  / *  d raws   ob jec t  *I  \ 
v o i d   ( * R e c a l c F u n c ) ( ) :  I* p r e p a r e s   o b j e c t   f o r   d r a w i n g  * /  \ 
vo id   ( *MoveFunc )O:  I* moves o b j e c t  *I  \ 
i n t  Reca lcXform;  I* 1 t o   i n d i c a t e  need t o   r e c a l c  *I  \ 
Rect  EraseRectC21: I* r e c t a n g l e   t o   e r a s e   i n   e a c h   p a g e  * /  

I* b a s i c   o b j e c t  *I  
t y p e d e f   s t r u c t  { BASELOBJECT 1 O b j e c t :  
I* s t r u c t u r e   d e s c r i b i n g  a p o l y g o n - b a s e d   o b j e c t  *I  
t y p e d e f   s t r u c t  I 

BASE-OBJECT 
i n t  RDelayCount.  RDelayCountBase: I* c o n t r o l s   r o t a t i o n   s p e e d  * /  
i n t  MDelayCount,  MDelayCountBase: I* c o n t r o l s  movement  speed * I  
Xform  XformToWorld; / *  t r a n s f o r m   f r o m   o b j e c t - > w o r l d   s p a c e  * /  
Xform  XformToView; / *  t r a n s f o r m   f r o m   o b j e c t - > v i e w   s p a c e  *I  
R o t a t e C o n t r o l   R o t a t e :  I* c o n t r o l s   r o t a t i o n   c h a n g e   o v e r   t i m e  * I  
MoveControl  Move: I* c o n t r o l s   o b j e c t  movement  over  t ime * I  
i n t  NumVerts; / *  # v e r t i c e s   i n   V e r t e x L i s t  * I  
P o i   n t 3  * V e r t e x L i   s t :  I* u n t r a n s f o r m e d   v e r t i c e s  * I  
P o i n t 3  * X f o r m e d V e r t e x L i s t ;  / *  t r a n s f o r m e d   i n t o   v i e w   s p a c e  *I  
P o i n t 3  * P r o j e c t e d V e r t e x L i s t :  I* p r o j e c t e d   i n t o   s c r e e n   s p a c e  */  
P o i n t  * S c r e e n V e r t e x L i s t :  I* c o n v e r t e d   t o   s c r e e n   c o o r d i n a t e s  *I  
i n t  NumFaces : I* # o f   f a c e s   i n   o b j e c t  * /  
Face * F a c e L i s t ;  /*  p o i n t e r   t o   f a c e   i n f o  *I  

I PObjec t :  

e x t e r n   v o i d   X f o r m V e c ( X f o r m .   F i x e d p o i n t  *, F i x e d p o i n t  * ) ;  
ex te rn   vo id   Conca tX fo rms(X fo rm.   X fo rm,   X fo rm) :  
e x t e r n   i n t  FillConvexPolygon(PointListHeader *, i n t .   i n t .   i n t ) :  
e x t e r n   v o i d   S e t 3 2 0 ~ 2 4 0 M o d e ( v o i d ) :  

Fast 3-D Animation: Meet X-Sharp 983 



e x t e r n   v o i d   S h o w P a g e ( u n s i g n e d   i n t ) :  
e x t e r n   v o i d   F i l l R e c t a n g l e X ( i n t .   i n t .   i n t .   i n t .   u n s i g n e d   i n t .   i n t ) ;  
e x t e r n   v o i d  XformAndProjectPObject (P0bject  * ) ;  
e x t e r n   v o i d   D r a w P O b j e c t ( P 0 b j e c t  *) ;  
extern   vo id   AppendRota t ionX(Xform.   double ) :  
ex tern   vo id   AppendRota t ionY(Xform.   double ) ;  
ex tern   vo id   AppendRota t ionZ(Xform.   double ) :  
e x t e r n   n e a r   F i x e d p o i n t   F i x e d M u l ( F i x e d p o i n t .   F i x e d p o i n t ) ;  
e x t e r n   n e a r   F i x e d p o i n t   F i x e d D i v ( F i x e d p 0 i n t .   F i x e d p o i n t ) ;  
e x t e r n   v o i d  InitializeFixedPoint(void); 
e x t e r n   v o i d  RotateAndMovePObject (P0bject  * ) ;  
e x t e r n   v o i d   I n i t i a l i z e C u b e s ( v o i d ) ;  
e x t e r n   i n t   D i   s p l   a y e d P a g e ,  NonDi spl  ayedPage.  Recal  cAl1  Xforms ; 
e x t e r n   i n t   N u m O b j e c t s ;  
extern  Xform  WorldViewXform; 
e x t e r n   O b j e c t   * O b j e c t L i s t [ l ;  
e x t e r n   P o i n t 3   C u b e V e r t s C ] ;  

A New Animation  Framework:  X-Sharp 
Listings 52.1 through 52.10 shown earlier  represent  not merely faster animation  in 
library form,  but also a nearly complete,  extensible,  datadriven  animation frame- 
work. Whereas much of the  earlier  animation  code I’ve presented  in this book was 
hardwired to demonstrate  certain  concepts, this chapter’s  code is intended to serve 
as the basis for  a solid animation package. Objects are  stored, in their entirety, in 
customizable structures; new structures can be  devised for new sorts of objects. Draw- 
ing,  preparing  for drawing, and moving are all vectored functions, so that variations 
such as shading or texturing, or even  radically different sorts of graphics objects, 
such as scaled bitmaps, could  be  supported. The cube initialization is entirely  data 
driven; more or different cubes, or  other sorts of  convex polyhedrons, could be added 
by simply changing  the initialization data in  Listing 52.8. 
Somewhere along  the way in writing the material that became this section of the 
book, I realized that I had  a generally useful animation package by the tail and gave 
it  a  name: X-Sharp. (Xfor Mode X, sharp because good  animation looks sharp,  and, 
well,  who  would  want a flat animation  package?) 
Note that  the X-Sharp library as presented in this chapter  (and,  indeed,  in this book) 
is not  a fully complete 3-D library.  Movement is supported only along  the Z axis in 
this chapter’s version, and  then  in  a  non-general  fashion. More interesting move- 
ment isn’t supported  at this point because of one of the two missing features in 
X-Sharp: hidden-surface removal. (The  other missing feature is general 3-D clip 
ping.)  Without  hidden surface removal, nothing can  safely overlap. It would  actually 
be easy enough to perform  hidden-surface removal by keeping  the cubes in differ- 
ent Z bands and drawing them back to  front,  but this gets into  sorting and list  issues, 
and is not  a complete solution-and  I’ve crammed as much as will fit into  one chapter’s 
code, anyway. 
I’m working  toward a goal in this last section of the  book, and  there  are many  lessons 
to be  learned  and stories to be told along  the way. So as  X-Sharp  grows,  you’ll find its 

984 Chapter 52 



evolving implementations in the  chapter subdirectories on  the listings diskette. This 
chapter’s  subdirectory,  for  example,  contains  the  self-extracting  archive file 
XSHARP14.EXE, (to extract its contents you  simply run it as though it were a pro- 
gram)  and  the  code  in  that archive is the code I’m speaking of  specifically in this 
chapter, with  all the limitations mentioned above. Chapter 53’s subdirectory, how- 
ever, contains the file XSHARP15.EXE,  which is the  next  step in the evolution of 
X-Sharp, and it is the version that I’ll be specifically talking about in that chapter. 
Later chapters will  have their own implementations  in  their respective chapter 
subdirectories, in files of the  form XSHARPxx.EXE, where xx is an  ascending  num- 
ber  indicating  the version. The final and most recent X-Sharp  version will be present 
in its own subdirectory called XSHARP22.  If you’re intending to  use  X-Sharp in  a 
real project, use the most recent version to be sure  that you  avail  yourself  of  all  new 
features and bug fixes. 

Three  Keys to Realtime Animation Performance 
As of the previous chapter, we were at  the  point where we could rotate, move, and 
draw a solid cube in real time. Not too shabby. ..but the  code I’m presenting  in this 
chapter goes a bit further,  rotating 12 solid cubes at  an  update  rate of about  15 
frames per second (fps)  on  a 20 MHz 386  with a slow VGA. That’s 12 transformation 
matrices, 72 polygons, and 96  vertices being  handled in real time; not Star Wars, 
granted,  but  a  giant  step beyond a single cube. Run the  program if you get  a  chance; 
you  may be surprised  at  just how effective this level  of animation is. I’d like to point 
out, in case anyone missed it,  that this is fully general 3-D. I’m not using any shortcuts 
or tricks,  like prestoring  coordinates or pregenerating bitmaps; if you  were to feed in 
different  rotations or vertices, the animation would change accordingly. 
The keys to the  performance increase manifested in this chapter’s  code  are  three. 
The first key is fixed-point arithmetic.  In  the previous two chapters, we worked  with 
floating-point coordinates and transformation matrices. Those values are now stored 
as  32-bit fixed-point numbers,  in  the  form 16.16 (16 bits of  whole number,  16 bits of 
fraction). 32-bit fxed-point numbers allow sufficient  precision for 3-D animation, but 
can be manipulated with  fast integer  operations,  rather  than by  slow floating-point 
processor operations or excruciatingly slow floating-point emulator operations.  Although 
the  speed advantage of fixed-point varies depending  on  the  operation,  on  the pro- 
cessor, and  on whether or  not a coprocessor is present, fixed-point multiplication 
can be as much as 100 times faster than  the  emulated floating-point equivalent. (I’d 
like  to take a  moment to thank Chris Hecker for his invaluable input in this area.) 
The second performance key is the use of the 386’s  native  32-bit multiply and divide 
instructions. C compilers operating in  real  mode  call  library routines to perform multi- 
plications and divisions  involving  32-bit  values, and those library functions  are fairly 
slow, especially for division. On a 386,32-bit multiplication and division can  be handled 
with the bit of code in Listing 52.9-and  most  of  even that code is only for  rounding. 

Fast 3-D Animation: Meet X-Sharp 985 



The third  performance key is maintaining and operating on only the relevant  por- 
tions of transformation  matrices and coordinates. The  bottom row  of every 
transformation matrix we’ll  use (in this book) is [0 0 0 11, so why bother using or 
recalculating it when concatenating transforms and transforming points? Likewise 
for the  fourth  element of a 3-D vector in homogeneous coordinates, which is always 
1. Basically, transformation matrices are treated as consisting of a 3x3 rotation ma- 
trix and a 3x1 translation vector, and coordinates are treated as  3x1  vectors. This 
saves a great many multiplications in the course of transforming each point. 
Just for  fun, I reimplemented the animation of  Listings  52.1 through 52.10  with 
floating-point instructions. Together, the preceeding optimizations improve the per- 
formance of the entire animation-including  drawing  time and overhead, and  not 
just math-by more than ten times  over the code that uses the floating-point emula- 
tor.  Amazing  what one can  accomplish  with a few dozen lines of  assembly and a 
switch in number format, isn’t it? Note that no assembly code other than the native 
386  multiply and divide is used in Listings  52.1 through 52.10, although the polygon 
fill code is  of course mostly in assembly;  we’ve achieved  12 cubes animated at  15 fps 
while doing  the 3-D  work almost entirely in Borland C++, and we’re still doing sine 
and cosine via the floating-point emulator. Happily,  we’re  still nowhere near  the 
upper limit on the animation potential of the PC. 

Drawbacks 
The techniques we’ve used to turbocharge 3-D animation are very powerful, but 
there’s a dark side to them as  well.  Obviously,  native  386 instructions won’t  work on 
8088 and 286 machines. That’s rectifiable; equivalent multiplication and division 
routines could be implemented for real mode and performance would  still  be  rea- 
sonable. It sure is nice to be able to plug  in a 32-bit IMUL or DIV and be done with 
it, though. More importantly,  32-bit fixed-point arithmetic has limitations in range 
and accuracy.  Points outside a 64Kx64Kx64K space  can’t  be handled, imprecision 
tends to creep in over the course of multiple matrix concatenations, and it’s quite 
possible to generate the dreaded divide by 0 interrupt if Z coordinates with absolute 
values  less than one are used. 
I don’t have  space to discuss these issues in detail, but  here  are some  brief thoughts: 
The working  64Kx64Kx64Kfixed-point  space  can  be  paged into a larger virtual  space. 
Imprecision of a pixel or two rarely matters in terms of  display  quality, and deteriora- 
tion of concatenated  rotations can be corrected by restoring orthogonality, for 
example by periodically calculating one row  of the matrix as the cross-product of the 
other two (forcing it to be perpendicular to both). Alternatively, transformations 
can  be calculated from scratch each time an object or the viewer  moves, so there’s no 
chance for cumulative error. 3-D clipping with a front clip plane of -1 or less can 
prevent divide  overflow. 

986 Chapter 52 



Where the  Time  Goes 
The distribution of execution time in  the  animation  code is no longer wildly biased 
toward transformation, but sine and cosine are certainly  still  sucking up cycles.  Like- 
wise, the overhead in the calls to FixedMulO and FixedDivO is  costly.  Much of this is 
correctable with a little  carefully crafted assembly language and a lookup table; I’ll 
provide that shortly. 
Regardless,  with  this chapter we have made the critical jump to a usable  level of 
performance and a serviceable general-purpose framework.  From here  on  out, it’s 
the  fun stuff. 

Fast 3-D Animation: Meet X-Sharp 987 



chapter 53

raw speed and more



uth About Speed in 3-D Animation 
et’s  call  him  Bert-went  to  Hawaii  with three  other 
n from  high  school.  This was an unchaperoned trip, 
responsibly  as  you’d expect four teenagers to  be- 

a story about a rental car that, to  this day, Bert  can’t 
ood time, though, save for one thing: no girls. 
by the pool, but  the boys couldn’t get past the hi- 

they retired to their hotel room to plot a better approach. This 
g slightly  tipsy teenagers with raging hormones 

ned IQ of four eggplants, it took them no time at all to come 
: streaking. The girls had mentioned their room number, so 

ed the button for the girls’  floor,  shucked their 
clothes as fast as they could, and sprinted to the girls’ door. They  knocked on the 
door  and  ran on down the hall. As the girls opened their door, Bert and his crew 
raced  past,  toward the elevator, laughing hysterically. 
Bert was  by far the fastest of them all. He whisked  between the elevator doors just as 
they started to close; by the time  his friends got there, it was too late, and  the doors 
slid shut in their faces. As the elevator  began  to  move,  Bert could hear the frantic 
pounding of  six  fists thudding on the closed doors. As Bert  stood among the clothes 
littering the elevator  floor, the thought of his friends stuck in the hall, naked as 
jaybirds, was just too much, and  he doubled over  with  helpless laughter, tears  stream- 

991 



ing down  his  face. The universe  had  blessed  him  with one of those  exceedingly rare 
moments of perfect timing and execution. 
The universe wasn’t done with  Bert quite yet, though. He was still contorted with 
laughter-and  still quite thoroughly undressed-when the elevator doors opened 
again. On the lobby. 
And  with that, we come to  this chapter’s topics: raw speed and hidden surfaces. 

Raw Speed, Part 1 : Assembly Language 
I would  like to state, here  and for the record, that I am not an assembly  language 
fanatic.  Frankly, I prefer programming in C; assembly language is hard work, and I 
can get a whole lot  more done with  fewer  hassles in C. However, I am a performance 
fanatic, performance being defined as having programs be as nimble as  possible  in 
those areas where the user wants  fast response. And, in the course of pursuing per- 
formance, there  are times  when a little assembly  language  goes a long way. 
We’re  now four chapters into development of the X-Sharp 3-D animation package. 
In realtime animation, performance is sine qua non (Latin for “Make it fast or find 
another line of work”), so some  judiciously applied assembly language is in order. In 
the previous chapter, we got up to a serviceable performance level by switching to 
fixed-point math, then implementing the fixed-point multiplication and division 
functions in assembly  in order to  take  advantage of the 386’s  32-bit  capabilities. There’s 
another  area of the program that fairly  cries out for assembly  language: matrix math. 
The function to multiply a matrix by a vector (XformVec()) and the function to 
concatenate matrices (ConcatXforms()) both loop heavily around calls to FixedMul(); 
a lot of calling and looping can  be eliminated by converting these functions to pure 
assembly language. 
Listing  53.1  is the  module FIXED.” from  this chapter’s iteration of X-Sharp,  with 
XformVec() and ConcatXforms() implemented in assembly language. The code is 
heavily optimized, to the  extent of completely unrolling the loops via macros so that 
looping is eliminated altogether. FIXED.ASM is highly  effective; the time  taken for 
matrix math is  now  down to the point where  it’s a fairly minor component of execu- 
tion time, representing less than  ten  percent of the total. It’s  time to turn  our 
optimization  sights  elsewhere. 

LISTING 53.1 FIXED.ASM 
; 3 8 6 - s p e c i f i c   f i x e d   p o i n t   r o u t i n e s .  

ROUNDING-ON 
: T e s t e d   w i t h  TASM 

equ 1 :1 f o r   r o u n d i n g ,  0 f o r  no  rounding 
:no r o u n d i n g   i s   f a s t e r .   r o u n d i n g   i s  
; more a c c u r a t e  

ALIGNMENT equ 2 
.model  smal 1 
. 3 8 6  
.code 

992 Chapter 53 



; M u l t i p l i e s   t w o   f i x e d - p o i n t   v a l u e s   t o g e t h e r .  
; C n e a r - c a l l a b l e   a s :  
; F i x e d p o i n t   F i x e d M u l ( F i x e d p 0 i n t  M1.  F i x e d p o i n t  M2); 
: F i x e d p o i n t   F i x e d D i v ( F i x e d p 0 i n t   D i v i d e n d .   F i x e d p o i n t   D i v i s o r ) :  
FMparms s t r u c  

M 1  dd ? 
M2 dd ? 
FMparms ends 

dw 2 dup(? )   : re tu rn   add ress  d pushed BP 

a1 i g n  ALIGNMENT 
p u b l i c  -FixedMul 

- FixedMul p roc   near  
push bp 
mov bp.sp 
mov eax,[bp+Ml] 
imu l  dword p t r  Cbp+M21 

add  eax.8000h 
adc  edx.O 

shr  eax.16 

r e t  

i f  ROUNDING-ON 

e n d i f  ;ROUNDING-ON 

POP bp 

- FixedMul  endp 

; m u l t i p l y  

: round  by  adding  2".(-17) 
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; p u t   t h e   f r a c t i o n a l   p a r t   i n  A X  

: D i v i d e s  one f i x e d - p o i n t   v a l u e   b y   a n o t h e r .  
: C n e a r - c a l l a b l e   a s :  
; F i x e d p o i n t   F i x e d D i v ( F i x e d p 0 i n t   D i v i d e n d .   F i x e d p o i n t   D i v i s o r ) :  
FOparms s t r u c  

dw 2 dup(? )   : re tu rn   add ress  & pushed BP 
D iv idend  dd  ? 
D i v i s o r  dd ? 
FDparms ends 

a1 i g n  ALIGNMENT 
p u b l i c  - F i  xedDi v 

-Fi  xedDi v p roc   near  
push bp 
mov bp.sp 

i f  ROUNDING-ON 
sub 
mov 
and 
j n s  
i nc 
neg 

FDP1: sub 

r o l  

mov 
sub 
mov 
and 
jns 
dec 
neg 

CX .cx ;assume p o s i t i v e   r e s u l t  
eax, [bp+Dividend] 
eax.eax 
F D P l  

; p o s i t i v e   d i v i d e n d ?  
;yes 
;mark i t ' s  a n e g a t i v e   d i v i d e n d  

eax :make t h e   d i v i d e n d   p o s i t i v e  
edx , edx ;make i t  a 6 4 - b i t   d i v i d e n d ,   t h e n   s h i f t  

cx  

: l e f t  16 b i t s  s o  t h a t   r e s u l t  will be 
; i n  EAX 

: h i g h   w o r d   o f  EAX 
e a x .   1 6   ; p u t   f r a c t i o n a l   p a r t  o f  d i v i d e n d   i n  

d x ,   a x   : p u t   w h o l e   p a r t   o f   d i v i d e n d   i n  DX 
ax ,   ax   :c lear   low  word   o f  EAX 
ebx,dword p t r   [ b p + O i v i s o r ]  
ebx,  ebx 
FDP2 ;yes 
cx  ;mark i t ' s  a n e g a t i v e   d i v i s o r  
ebx :make d i v i s o r   p o s i t i v e  

: p o s i t i v e   d i v i s o r ?  

Raw Speed and More 993 



FDP2: d i v  ebx 
shr   ebx .1  
adc  ebx.O 
dec  ebx 
cmp ebx,  edx 
adc eax.O 

and  cx,cx 
j z  FOP3 
neg  eax 

FDP3: 
e l s e  : !ROUNDING-ON 

mov edx.Cbp+Dividendl 
sub  eax.eax 
shrd  eax.edx.16 
sar  edx,   16 
i d i v  dword p t r   [ b p + D i v i s o r ]  

s h l d  edx.eax.16 
endi  f 

POP bp 
r e t  

- FixedDi  v  endp 

: d i v i d e  
; d i v i s o r / 2 ,   m i n u s  1 i f  t h e   d i v i s o r   i s  
: even 

; s e t   C a r r y  i f  remainder  i s  a t  l e a s t  
; h a l f  as l a r g e  as t h e   d i v i s o r .   t h e n  
; use t h a t   t o   r o u n d  up if necessary 
; s h o u l d   t h e   r e s u l t   b e  made n e g a t i v e ?  
:no 
:yes.   negate i t  

; p o s i t i o n  s o  t h a t   r e s u l t  ends  up 
; i n  EAX 

;ROUNDING-ON 
; w h o l e   p a r t   o f   r e s u l t   i n  D X ;  
; f r a c t i o n a l   p a r t   i s   a l r e a d y   i n  A X  

~~ ~~ ~ ~~ ~ ~~ ~ ~~ 

; R e t u r n s   t h e   s i n e   a n d   c o s i n e   o f  an  angle. 
; C n e a r - c a l l a b l e   a s :  
; v o i d  CosSin(TAng1e  Angle,   Fixedpoint   *Cos.  Fixedpoint  *) :  

~ ~~ 

a1 i g n  ALIGNMENT 
CosTable  1  abel  dword 

i n c l u d e   c o s t a b l e . i n c  

SCparms s t r u c  

Angle dw ? 
cos dw ? 
S i n  dw ? 
SCparms ends 

dw 2 dup(? )  

a1 i g n  ALIGNMENT 
pub1 i c  JosSi  n 

-CosSin p roc   nea r  
push bp 
mov bp.sp 

mov bx.Cbpl .Angle 
and  bx.bx 
j n s  CheckInRange 

add  bx.360*10 
j s  MakePos 
jmp  short  CheckInRange 

a1 i g n  ALIGNMENT 

sub  bx.360*10 

cmp bx,  360*10 
j g  MakeInRange 

MakePos: 

MakeInRange: 

CheckInRange: 

; re tu rn   add ress  & pushed BP 
:ang le  t o  c a l c u l a t e  s i n e  & c o s i n e   f o r  
: p o i n t e r   t o   c o s   d e s t i n a t i o n  
; p o i n t e r   t o   s i n   d e s t i n a t i o n  

;p rese rve   s tack   f rame 
: s e t  up l o c a l   s t a c k   f r a m e  

:make sure  angle 's   between 0 and  2*pi 

; l e s s   t h a n  0, so make i t  p o s i t i v e  

:make s u r e   a n g l e   i s  no more than  2*p i  

994 Chapter 53 



cmp bx.  180*10 
j a  Eot tomHal f  
cmp bx,  90*10 
j a   Q u a d r a n t l  

sh l   bx .2  
mov eax.CosTable[bxl 
neg  bx 
mov edx.CosTable[bx+90*10*41 
jmp  shor t  CSDone 

a l i g n  ALIGNMENT 

neg  bx 
add  bx,  180*10 
sh l   bx.2 
mov eax.CosTable[bx] 
neg  eax 
neg  bx 
mov edx.CosTableCbx+90*10*4] 
jmp s h o r t  CSDone 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.360*10 
cmp bx,  90*10 
j a  Quadrant2 

sh l   bx .2  
mov eax.CosTable[bx] 
neg  bx 
mov edx.CosTable[90*10*4+bx] 
neg  edx 
jmp  shor t  CSDone 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.180*10 
sh l   bx.2 
mov eax.CosTable[bxl 
neg  eax 
neg  bx 
mov edx,CosTable[90*10*4+bxl 
neg  edx 

mov b x ,   [ b p l  .Cos 
mov Cbxl  .eax 
mov bx, [bp l .S in 
mov [bx]  , edx 

Quadran t l :  

Eot tomHal f :  

Quadrant2:  

CSDone: 

POP bP 
r e t  

- CosSin  endp 

: f i g u r e   o u t   w h i c h   q u a d r a n t  
:quadrant  2 o r  3 
:quadrant  0 o r  1 

:quadrant  0 

: l o o k  up s i n e  
: s i n ( A n g l e )  - cos (90 -Ang le )  
: look up  cos ine 

: conve r t   t o   ang le   be tween  0 and  90 

: l o o k  up cos ine  
: n e g a t i v e   i n   t h i s   q u a d r a n t  
: s i n ( A n g l e )  - cos (90 -Ang le )  
: l ook  up cos ine  

:quadrant  2 o r  3 

: conve r t   t o   ang le   be tween  0 and  180 
:quadrant  2 o r  3 

:quadrant  3 

: l o o k  up cos ine  
; s in (Ang le )  - cos(90-Angle)  
: l o o k  up s i n e  
: n e g a t i v e   i n   t h i s   q u a d r a n t  

: conve r t   t o   ang le   be tween  0 and  90 

: look   up   cos ine  
: n e g a t i v e   i n   t h i s   q u a d r a n t  
: s i n ( A n g l e )  - cos (90 -Ang le )  
: l o o k  up s i n e  
:nega t i ve  i n   t h i s   q u a d r a n t  

: r e s t o r e   s t a c k   f r a m e  

: M a t r i x   m u l t i p l i e s   X f o r m  by  SourceVec.   and  s tores  the  resul t  i n  
: O e s t V e c .   M u l t i p l i e s  a 4 x 4   m a t r i x   t i m e s  a 4 x 1   m a t r i x :   t h e   r e s u l t  
: i s  a 4x1  matr ix .   Cheats  by  assuming  the W coord i s  1 and t h e  
: b o t t o m   r o w   o f   t h e   m a t r i x   i s  0 0 0 1. a n d   d o e s n ' t   b o t h e r   t o   s e t  

Raw  Speed  and More 995 



: t h e  W c o o r d i n a t e   o f   t h e   d e s t i n a t i o n .  
: C n e a r - c a l l a b l e   a s :  
: void  XformVec(Xform  WorkingXform,  Fixedpoint  *SourceVec, 

F ixedpoint   *DestVec) :  

: This  assembly  code i s  e q u i v a l e n t   t o   t h i s  C code: 
; i n t  i: 

: f o r   ( i - 0 :   i < 3 :  i+) 
DestVecCi] - FixedMul(WorkingXform[il[Ol, SourceVecCOI) + 

FixedMul(WorkingXform[~l[ll, SourceVecCl]) + 
FixedMul(WorkingXformCilC21, SourceVecC21) + 
Work ingXform[ i l [3 ] :  / *  no  need t o   m u l t i p l y  by W - 1 * /  

XVparms s t r u c  

WorkingXform dw ? : p o i n t e r   t o   t r a n s f o r m   m a t r i x  
SourceVec dw ’? : p o i n t e r   t o   s o u r c e   v e c t o r  
DestVec dw ? ; p o i n t e r   t o   d e s t i n a t i o n   v e c t o r  
XVparms ends 

dw 2   dup (? )   : re tu rn   add ress  a pushed BP 

a1 i g n  ALIGNMENT 
pub1 i c  -XformVec 

- XformVec  proc  near 
push bp 
mov bp.sp 
push s i  
push d i  

mov s i . [bp l .Work ingXform 
mov bx.[bpl.SourceVec 
mov di.Cbp1.DestVec 

s o f f - 0  
d o f f - 0  

REPT 3 
mov e a x . [ s i + s o f f l  
imul  dword p t r   [ b x l  

add  eax.8000h 
adc  edx.0 

e n d i f  :ROUNDING-ON 
shrd  eax.edx.16 
mov ecx,  eax 

mov eax . [s i+so f f+41 
imul  dword p t r  [bx+41 

add  eax.8000h 
adc  edx.0 

e n d i f  :ROUNDING-ON 
shrd  eax.edx.16 
add  ecx.eax 

mov eax . [s i+so f f+81 
imul  dword p t r  Cbx+81 

add  eax.8000h 
adc edx.O 

i f  ROUNDING-ON 

i f  ROUNDING-ON 

i f  ROUNDING-ON 

:p reserve   s tack   f rame 
:se t   up   loca l   s tack   f rame 
: p r e s e r v e   r e g i s t e r   v a r i a b l e s  

: S I  p o i n t s   t o   x f o r m   m a t r i x  
:BX p o i n t s   t o   s o u r c e   v e c t o r  
: D I  p o i n t s   t o   d e s t   v e c t o r  

:do  once  each f o r   d e s t  X ,  Y .  and Z 
:column 0 e n t r y  on t h i s  row 
: x fo rm  en t r y   t imes   sou rce  X e n t r y  

: round  by  adding  2A(-17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  OX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
: s e t   r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row 
: x f o r m   e n t r y   t i m e s   s o u r c e  Y e n t r y  

: round  by  adding 2^(-17) 
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: r u n n i n g   t o t a l   f o r   t h i s  row 

:column  2  entry on t h i s  row 
: x f o r m   e n t r y   t i m e s   s o u r c e  Z e n t r y  

: round  by  adding  2^( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  OX 

996 Chapter 53 



e n d i f  ;ROUNDING-ON 
shrd  eax.edx.16 
add  ecx,  eax 

add ecx , [ s i+so f f+ lZ ]  
mov [ d i + d o f f ]   , e c x  

s o f f - s o f f + l 6  
do f f -do f f+4  

ENDM 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
: r u n n i n g   t o t a l   f o r   t h i s  row 

:add i n   t r a n s l a t i o n  
: s a v e   t h e   r e s u l t  i n  t h e   d e s t   v e c t o r  

pop d i   : r e s t o r e   r e g i s t e r   v a r i  ab1 es 
pop s i  

r e t  
-XformVec  endp 

: M a t r i x   m u l t i p l i e s   S o u r c e X f o r m l  by  SourceXformZ  and s t o r e s   t h e  
: r e s u l t  i n  D e s t X f o r m .   M u l t i p l i e s  a 4 x 4   m a t r i x   t i m e s  a 4x4   ma t r i x ;  
: t h e   r e s u l t   i s  a 4x4  matr ix .   Cheats  by  assuming  the  bot tom  row  of  
: each   ma t r i x  i s  0 0 0 1. and d o e s n ' t   b o t h e r   t o   s e t   t h e   b o t t o m  row 
: o f   t h e   d e s t i n a t i o n .  
: C n e a r - c a l l a b l e   a s :  

POP  bP : r e s t o r e   s t a c k   f r a m e  

. """"""Y""p""y.n-. 

void  ConcatXforms(Xform  SourceXforml.  Xform  SourceXformZ. 
Xform  OestXform) 

: This  assembly  code i s   e q u i v a l e n t   t o   t h i s  C code: 
: i n t  i, j :  

: f o r  ( i - 0 :  i < 3 :  i++) { 
f o r   ( j - 0 :   j < 3 ;  j++) 

O e s t X f o r m [ i l C j l  - 
FixedMul(SourceXforml~il[Ol, SourceXformZ[O1Cjl) + 
FixedMul(SourceXforml~il[ll, SourceXfo rmZ[ l ]C j l )  + 
F ixedMu l (SourceXfo rm1Ci l~21 ,  SourceXformE[ZICj l ) :  

DestXformCilC31 - 
F i x e d M u l ( S o u r c e X f o r m l ~ i l ~ O 1 ,  SourceXformZCOIC3]) + 
FixedMul(SourceXform1Ci l~l1,  SourceXform2[11[31) + 
FixedMul(SourceXforml~il~Z1, SourceXform2[21C31) + 
SourceXfo rm l [ i l [ 31 :  

: I  

CXparms s t r u c  

SourceXforml  dw ? 
SourceXformZ dw ? 
DestXform dw ? 
CXparms ends 

dw 2 dup(? )  

a1 i g n  A L I G N M E N T  
publ ic   _ConcatXforms 

-ConcatXforms  proc  near 
push bp 
mov bp.sp 
push s i  
oush d i  

mov bx.Cbpl.SourceXform2 
mov s i .Cbpl .SourceXform1 
mov d i . [ bp l .Des tX fo rm 

: re tu rn   add ress  & pushed BP 
: p o i n t e r   t o   f i r s t   s o u r c e   x f o r m   m a t r i x  
: p o i n t e r  t o  second  source  x form  matr ix  
: p o i n t e r   t o   d e s t i n a t i o n   x f o r m   m a t r i x  

; p rese rve   s tack   f rame 
: s e t  up l o c a l   s t a c k   f r a m e  
: p r e s e r v e   r e g i s t e r   v a r i a b l e s  

;BX p o i n t s   t o   x f o r m 2   m a t r i x  
:SI p o i n t s   t o   x f o r m l   m a t r i x  
:DI p o i n t s   t o   d e s t   x f o r m   m a t r i x  

Raw  Speed  and More 997 



r o f f - 0  

c o f f - 0  
REPT 3 

REPT 3 

mov e a x . C s i + r o f f l  
imul  dword p t r   C b x + c o f f l  

add  eax,  8000h 

e n d i f  ;ROUNDING-ON 
adc  edx.O 

shrd  eax.edx.16 
mov ecx,  eax 

mov e a x . [ s i + r o f f + 4 1  
imul  dword p t r   [ b x + c o f f + l 6 1  

add  eax.8000h 
adc edx.O 

e n d i f  ;ROUNDING-ON 
shrd  eax.edx.16 
add ecx,  eax 

mov eax ,   [ s i+ ro f f+81  
imul  dword p t r   [ b x + c o f f + 3 2 ]  

add  eax.8000h 
adc edx.O 

e n d i f  :ROUNDING-ON 
shrd  eax.edx.16 
add  ecx,  eax 

mov [ d i + c o f f + r o f f l . e c x  

ENDM 

i f  ROUNDING-ON 

i f  ROUNDING-ON 

i f  ROUNDING-ON 

c o f f - c o f f + 4  

mov e a x . [ s i + r o f f l  
imul  dword p t r   [ b x + c o f f l  

add  eax.8000h 
adc  edx.O 

e n d i f  ;ROUNDING-ON 
shrd  eax.edx.16 
mov ecx,  eax 

i f  ROUNDING-ON 

mov eax . [s i+ ro f f+41 
imul  dword p t r   [ b x + c o f f + l 6 1  

add  eax.8000h 
adc  edx.O 

e n d i f  ;ROUNDING-ON 
shrd  eax.edx.16 
add  ecx.eax 

i f  ROUNDING-ON 

mov e a x . [ s i + r o f f + 8 ]  
imul  dword p t r   [ b x + c o f f + 3 2 1  

;row o f f s e t  
:once f o r  each  row 
;column o f f s e t  
;once f o r   e a c h   o f   t h e   f i r s t   3   c o l u m n s ,  
; assuming 0 as t h e   b o t t o m   e n t r y   ( n o  
; t r a n s l a t i o n )  
;column 0 e n t r y  on t h i s  row 
; t imes  row 0 e n t r y   i n  column 

; round  by  adding  2^( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
; s e t   r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row 
; t imes  row 1 e n t r y   i n   c o l  

; round  by  adding  2"( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
; r u n n i n g   t o t a l  

;column 2 e n t r y  on t h i s  row 
; t imes  row  2   ent ry  i n   c o l  

; round  by  adding  2"(-17) 
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
r u n n i n g   t o t a l  

save t h e   r e s u l t   i n   d e s t   m a t r i x  
p o i n t   t o   n e x t  col i n  xform2 & d e s t  

now do the   f ou r th   co lumn,   assuming  
; 1 as t h e   b o t t o m   e n t r y ,   c a u s i n g  
; t r a n s l a t i o n   t o  be  performed 
;column 0 e n t r y  on t h i s  row 
; t imes  row 0 e n t r y   i n  column 

: round  by  adding  2^( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
; s e t   r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row 
;times  row 1 e n t r y   i n   c o l  

; round  by  adding  2"( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
; r u n n i n g   t o t a l  

;column  2  entry on t h i s  row 
;t imes  row 2 e n t r y   i n   c o l  

998 Chapter 53 



i f  ROUNDING-ON 
add  eax.8000h 
adc  edx.O 

e n d i f  ;ROUNDING-ON 
shrd  eax.edx.16 
add  ecx.eax 

; round  by  adding 2 ^ ( - 1 7 )  
: w h o l e   p a r t   o f   r e s u l t  i s  i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
; r u n n i n g   t o t a l  

add  ecx . [s i+ ro f f+ l21  :add i n  t r a n s l a t i o n  

mov [ d i + c o f f + r o f f ] . e c x  ;save t h e   r e s u l t  i n  d e s t   m a t r i x  
c o f f - c o f f + 4   : p o i n t   t o   n e x t   c o l  i n  xform‘2 & d e s t  

r o f f - r o f f + l 6  
ENOM 

pop d i  
pop s i  

r e t  

end 

POP bP 

XoncatXforms  endp 

: p o i n t   t o   n e x t   c o l   i n   x f o r m 2  & d e s t  

; r e s t o r e   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   s t a c k   f r a m e  

Raw Speed, Part II: Look it Up 
It’s a funny  thing about Turbo  Profiler:  Time  spent  in  the  Borland  C++ 80x87 emulator 
doesn’t show up directly  anywhere that I can  see in the timing results. The only way 
to detect it is by  way  of the line that reports what percent of total time is represented 
by all the areas that were profiled; if you’re profiling all areas, whatever’s not explic- 
itly accounted for seems  to  be the floating-point emulator time. This quirk fooled 
me for  a while, leading me to think sine and cosine  weren’t  major drags on perfor- 
mance,  because the sin() and cos() functions spend most  of their time  in the emulator, 
and that time  doesn’t show up in Turbo Profiler’s  statistics on those functions. Once 
I figured out what was going on, it turned  out that not only  were sin() and cos() 
major  drags,  they  were  taking up over  half the total execution time by themselves. 
The solution is a lookup table.  Listing  53.1 contains a function called CosSin() that 
calculates both the sine and cosine of an angle, via a lookup table. The function 
accepts angles in tenths of degrees; I decided to use tenths of degrees rather than 
radians because that way  it’s  always possible to look up the sine and cosine of the 
exact angle requested,  rather than approximating, as  would  be required with radi- 
ans. Tenths of degrees should be fine enough control for most purposes; if not, it’s 
easy to alter CosSin() for finer gradations yet.  GENCOS.C, the program used  to gen- 
erate  the lookup table  (COSTABLE.INC), included in  Listing  53.1, can be found in 
the XSHARp22 subdirectory on the listings diskette. GENC0S.C can generate  a co- 
sine table with  any integral number of steps per degree. 
FIXED.ASM (Listing 53.1) speeds X-Sharp up quite a bit, and it changes the perfor- 
mance balance a  great deal. When we started out with  3-D animation, calculation 
time was the dragon we faced; more than 90 percent of the total  time was spent 
doing matrix and projection math. Additional optimizations in the area of math 

Raw  Speed  and More 999 



could  still  be  made  (using  32-bit  multiplies  in the backface-removal code,  for  example), 
but fixed-point math, the sine and cosine lookup, and selective  assembly  optimiza- 
tions  have done a pretty good job already. The bulk of the time  taken by X-Sharp is 
now spent drawing  polygons,  drawing rectangles (to erase objects), and waiting for 
the page  to  flip. In other words,  we’ve  slain the dragon of 3-D math, or at least wounded 
it grievously;  now  we’re  back  to the dragon of polygon  filling. We’ll address faster 
polygon  filling soon, but for the  moment, we have more than enough horsepower  to 
have  some fun with.  First, though, we need one more feature: hidden surfaces. 

Hidden  Surfaces 
So far, we’ve made a number of  simplifymg assumptions  in order to get the anima- 
tion to  look good; for example, all  objects  must currently be  convex polyhedrons. 
What’s more, right now, objects  can  never pass behind or in front of each other. 
What that  means is that it’s  time  to  have a look at  hidden surfaces. 
There  are a passel  of  ways to do hidden surfaces. Way off at one  end  (the slow end) 
of the spectrum is  Z-buffering,  whereby each pixel  of each polygon  is checked as  it’s 
drawn  to  see whether it’s the frontmost version of the pixel at those coordinates. At 
the  other  end is the technique of  simply drawing the objects in back-to-front order, 
so that  nearer objects are drawn on top of farther objects. The latter approach, depth 
sorting, is the one we’ll  take  today.  (Actually, true depth sorting involves detecting 
and resolving  possible  ambiguities  when  objects  overlap in 2; in  this chapter, we’ll 
simply sort the objects on Z and leave it  at that.) 
This limited  version of depth sorting is fast but less than perfect. For one thing, it 
doesn’t address the issue  of nonconvex  objects, so we’ll  have to  stick  with  convex 
polyhedrons. For another, there’s the question of  what part of each object to use  as 
the sorting key; the nearest point, the center, and  the farthest point are all  possibili- 
ties-and,  whichever point is used, depth sorting doesn’t handle some  overlap  cases 
properly.  Figure  53.1  illustrates one case in which  back-to-front sorting doesn’t work, 
regardless of what point is  used  as the sorting key. 
For  photo-realistic rendering, these are serious problems. For  fast  PC-based  anima- 
tion, however,  they’re  manageable.  Choose  objects that aren’t too elongated; arrange 
their paths of travel so they don’t intersect in problematic ways; and, if  they do over- 
lap incorrectly, trust that the glitch will be  lost  in the speed of the animation and  the 
complexity of the screen. 
Listing  53.2  shows  X-Sharp  file  OLIST.C,  which includes the key routines for depth 
sorting. Objects are now stored in a linked list. The initial, empty  list, created by 
InitializeObjectList(), consists of a sentinel entry at  either end,  one at  the farthest 
possible z coordinate, and one  at the  nearest. New entries are inserted byAddObject() 
in z-sorted order. Each  time the objects are moved, before they’re  drawn at their new 
locations, Sortobjects0 is  called  to  2-sort the object list, so that drawing will proceed 
from back to front. The Z-sorting is done  on the basis  of the objects’ center points; a 

1000 Chapter 53 



X axis 

I Farthest  points ' \ Middle points 

V 
Viewer 

why back-to-font sorting doesn 't always workproperly 
Figure 53.1 

center-point field has been added to the  object  structure to support  this,  and  the 
center point for  each  object is now  transformed along with  the  vertices.  That's  really 
all  there is to depth sorting-and  now  we  can  have  objects  that  overlap in X and Y 

LISTING 53.2 0LIST.C 
/*  Object  list-related  functions. */  
#i ncl  ude  <stdi 0. h> 
#include  "polygon, h" 

/* Set  up  the  empty  object  list,  with  sentinels  at  both  ends  to 

void  InitializeObjectListO 
{ 

terminate  searches * /  

0bjectListStart.NextObject - &ObjectListEnd: 
0bjectListStart.PreviousObject - NULL: 
0bjectListStart.CenterInView.Z - INT_TO_FIXED(-32768): 
0bjectListEnd.NextObject - NULL: 
0bjectListEnd.PreviousObject - &ObjectListStart; 
ObjectListEnd.CenterInView.2 - Ox7FFFFFFFL: 
NumObjects - 0: 

1 

/*  Adds  an  object  to  the  object  list,  sorted  by  center 2 coord. */ 
void  AddObject(0bject  *ObjectPtr) 
{ 

Object  *ObjectListPtr - 0bjectListStart.NextObject; 
I* Find  the  insertion  point.  Guaranteed  to  terminate  because  of 

while (ObjectPtr->CenterInView.Z > ObjectL is tPt r ->Center InV iew.Z)  { 

1 

the  end  sentinel */ 

ObjectListPtr - O b j e c t L i s t P t r - > N e x t o b j e c t :  

Raw Speed and  More 1 00 1 



/* L i n k   i n   t h e  new o b j e c t  * /  
O b j e c t L i s t P t r - > P r e v i o u s o b j e c t - > N e x t o b j e c t  - O b j e c t P t r ;  
O b j e c t P t r - > N e x t o b j e c t  - O b j e c t L i s t P t r ;  
ObjectPt r ->Prev iousobjec t  - Ob jec tL i s tP t r ->Prev iousOb jec t ;  
O b j e c t L i s t P t r - > P r e v i o u s O b j e c t  - O b j e c t P t r ;  
NumObjects++; 

I 

/ *  R e s o r t s   t h e   o b j e c t s   i n   o r d e r   o f   a s c e n d i n g   c e n t e r  2 c o o r d i n a t e   i n   v i e w   s p a c e ,  
by  moving  each  object  i n   t u r n   t o   t h e   c o r r e c t   p o s i t i o n   i n   t h e   o b j e c t   l i s t .  * /  

v o i d   S o r t O b j e c t s O  
I 

i n t  i; 
Object   *ObjectPtr .   *ObjectCmpPtr .   *NextObjectPtr :  

/ *  S t a r t   c h e c k i n g   w i t h   t h e   s e c o n d   o b j e c t  * /  
ObjectCmpPtr - 0 b j e c t L i s t S t a r t . N e x t O b j e c t ;  
O b j e c t P t r  - ObjectCmpPtr->Nextobject; 
f o r  (i-1; i<NumObjects; i++) ( 

/* See i f  we need t o  move backward   th rough  the  l i s t  * /  
i f  (ObjectPtr->CenterInView.Z < ObjectCmpPtr->CenterInView.Z) [ 

/*  Remember where t o  resume s o r t i n g   w i t h   t h e   n e x t   o b j e c t  * /  
N e x t O b j e c t P t r  - O b j e c t P t r - > N e x t o b j e c t ;  
/ *  Yes. move backward u n t i l  we f i n d   t h e   p r o p e r   i n s e r t i o n  

do ( 

3 w h i l e  (ObjectPtr->CenterInView.Z < 
ObjectCmpPtr->CenterInView.Z); 

p o i n t .   T e r m i n a t i o n   g u a r a n t e e d   b e c a u s e   o f   s t a r t   s e n t i n e l  * /  

ObjectCmpPtr - ObjectCmpPtr ->PreviousObject ;  

/*  Now move t h e   o b j e c t   t o   i t s  new l o c a t i o n  */  
/*  U n l i n k   t h e   o b j e c t   a t   t h e   o l d   l o c a t i o n  */  
ObjectPtr->PreviousObject->Nextobject - 

O b j e c t P t r - > N e x t o b j e c t ;  
ObjectPt r ->Nextob jec t ->Prev iousobjec t  - 

ObjectPtr->PreviousObject: 

/*  L i n k   i n   t h e   o b j e c t   a t   t h e  new l o c a t i o n  * /  
ObjectCmpPtr->Nextobject->Previousobject  - O b j e c t P t r ;  
ObjectPt r ->Prev iousObjec t  - ObjectCmpPtr; 
O b j e c t P t r - > N e x t o b j e c t  - ObjectCmpPtr->Nextobject; 
ObjectCmpPtr->Nextobject - O b j e c t P t r ;  

/ *  Advance t o   t h e   n e x t   o b j e c t   t o   s o r t  */ 
ObjectCmpPtr - NextObjec tPt r ->Prev iousObjec t ;  
O b j e c t P t r  - N e x t O b j e c t P t r ;  

/ *  Advance t o   t h e   n e x t   o b j e c t   t o   s o r t  * /  
ObjectCmpPtr - O b j e c t P t r :  
O b j e c t P t r  - O b j e c t P t r - > N e x t o b j e c t ;  

1 e l s e  ( 

1 
I 

I 

Rounding 
FIXED." contains  the  equate ROUNDING-ON. When  this  equate is 1 , the  re- 
sults of multiplications  and  divisions  are  rounded  to  the  nearest  fixed-point  values; 
when it's 0, the  results  are  truncated. The difference  between  the  results  produced 

1002 Chapter 53 



by the two approaches is, at most, 2-16; you  wouldn’t think that would  make much 
difference, now,  would  you?  But it does.  When the animation is run with rounding 
disabled, the cubes  start  to  distort visibly after a few minutes, and after a few minutes 
more they  look  like  they’ve been run over. In contrast, I’ve never  seen  any  significant 
distortion with rounding  on, even after a half-hour or so. I think the difference  with 
rounding is not that it’s so much more accurate, but  rather that the  errors  are evenly 
distributed; with truncation, the errors are biased, and biased errors become very 
visible  when  they’re applied to  right-angle  objects. Even  with rounding,  though,  the 
errors will eventually creep  in,  and reorthogonalization will become  necessary at 
some point. 
The performance cost  of rounding is small, and  the benefits are highly  visible.  Still, 
truncation errors become significant  only  when  they  accumulate  over  time,  as, for 
example,  when  rotation  matrices  are  repeatedly  concatenated  over  the  course of  many 
transformations.  Some  time  could  be saved  by rounding only in such  cases.  For  ex- 
ample,  division is performed only  in the course of projection, and  the results do  not 
accumulate  over  time, so it would  be  reasonable  to  disable rounding for division. 

Having a Ball 
So far  in our exploration of 3-D animation, we’ve had nothing to  look at but tri- 
angles and cubes. It’s time for something a little more visually appealing, so the 
demonstration program now features a 72-sided  ball.  What’s  particularly interesting 
about this ball is that it’s created by the GENBALL.C program in the BALL 
subdirectory of  X-Sharp, and both the size  of the ball and  the  number of bands of 
faces are programmable. GENBALL.C spits out to a file  all the arrays of vertices and 
faces needed to create the ball,  ready for inclusion  in 1NITBALL.C.  Ti-ue, if you 
change the  number of bands, you must change the Colors array  in 1NITBALL.C  to 
match, but that’s a tiny detail; by and large, the process of generating a ball-shaped 
object is now automated. In fact,  we’re not limited  to  ball-shaped  objects;  substitute 
a different vertex and face generation program for GENBALL.C, and you  can  make 
whatever  convex polyhedron you  want;  again,  all  you  have  to do is change the Colors 
array  correspondingly. You can easily create multiple  versions of the base  object,  too; 
1NITCUBE.C is an example of this, creating 11 different cubes. 
What we have here is the first  glimmer of an object-editing  system.  GENBALL.C  is 
the prototype for object definition, and 1NITBALL.C is the prototype for general- 
purpose  object  instantiation.  Certainly,  it  would  be  nice  to  someday  have an interactive 
3-D object editing tool and resource management setup. We have our  hands full  with 
the drawing end of things at  the  moment, though, and for now  it’s enough to  be  able 
to create objects in a semiautomated way. 

Raw Speed  and More 1 003 



chapter 54

3-d shading



istic  Surfaces on Animated 3-D Objects 
just acquired basic hidden-surface 
oved through the use of fixed-point 
ite a bit more: support for 8088 and 
. That’s an awful lot to  cover  in one 
apter), so let’s get to  it! 

86,  because it uses  32-bit  multiply and 
’t support. I chose  32-bit instructions 
fixed-point arithmetic than any a p  
y’re much easier  to implement than 

any other approach. In short, I was after maximum performance, and I was perhaps 
just a little lazy. 
I should have  known better than to try to  sneak  this one by you. The most common 
feedback I’ve gotten on X-Sharp is that I should make it support  the 8088 and 286. 
Well, I can  take a hint as  well  as the next guy. Listing 54.1 is an improved  version of 
FIXED.ASM, containing  dual 386/8088 versions of CosSinO,  XformVec(), and 
ConcatXforms(), as  well  as FixedMulO and FixedDivO. 
Given the new  version  of  FIXED.“,  with USE386 set  to 0, X-Sharp  will  now run  on 
any  processor. That’s not to say that it will run fast on any  processor, or at least not as 

1007 



fast  as it used to. The switch to 8088 instructions makes  X-Sharp’s fixed-point calcula- 
tions about 2.5  times  slower  overall.  Since a PC  is perhaps 40 times  slower than a 486/33, 
we’re  talking about a hundred-times  speed difference between the low end  and main- 
stream. A 486/33 can animate a 72-sided ball, complete with shading (as discussed 
later),  at 60 frames per second (fps) , with plenty of  cycles to spare; an 8-MHz  AT can 
animate  the same  ball at  about 6 fps.  Clearly, the level  of animation an application 
uses  must be tailored to the available CPU horsepower. 
The implementation of a 32-bit multiply using 8088 instructions is a simple matter of 
adding  together  four partial products. A  32-bit  divide  is not so simple, however. In 
fact, in Listing 54.1 I’ve chosen not to implement a full 32x32 divide, but  rather only 
a 3‘2x16 divide. The reason is simple: performance. A  32x16  divide can be imple- 
mented  on  an 8088 with  two DIV instructions, but a 32x32  divide  takes a great  deal 
more work, so far as I can see. (If anyone has a fast 32x32 divide, or has a faster way 
to handle signed multiplies and divides than  the  approach taken by Listing 54.1, 
please drop me a line care of the publisher.) In X-Sharp,  division is used only to 
divide either X or Y by Z in the process of projecting  from view space to screen space, 
so the cost  of using a 32x16 divide  is  merely  some inaccuracy in calculating screen 
coordinates, especially  when objects get very close to the Z = 0 plane.  This error is 
not cumulative (that is, it  doesn’t carry over to later  frames),  and  in my experience 
doesn’t cause noticeable image degradation;  therefore, given the already slow per- 
formance of the 8088 and 286, I’ve opted  for  performance over precision. 
At any rate, please keep in mind  that the non-386 version of FixedDiv() is not a 
general-purpose 32x32 fixed-point division routine.  In fact, it will generate a divide- 
by-zero error if passed a fixed-point divisor between -1 and 1. As I’ve explained, the 
non-386 version of Fixed-Div() is designed to do  just what X-Sharp needs, and  no 
more, as  quickly  as possible. 

LISTING 54.1 FIXED.ASM 
; F i x e d   p o i n t   r o u t i n e s .  
; T e s t e d   w i t h  TASM 

USE386 equ 1 ;1 f o r   3 8 6 - s p e c i f i c   o p c o d e s .  0 f o r  

MUL-ROUNDING-ON equ 1 ;1 f o r   r o u n d i n g  on m u l t i p l i e s ,  
; 8088 opcodes 

; 0 f o r  no  rounding.   Not   rounding i s   f a s t e r ,  
; rounding i s  more   accura te   and   genera l ly  a 
; good i d e a  

; 0 f o r  no  rounding.   Not   rounding i s   f a s t e r ,  
; rounding i s  more accura te ,   but   because  
; d i v i s i o n   i s   o n l y   p e r f o r m e d   t o   p r o j e c t   t o  
; t h e   s c r e e n ,   r o u n d i n g   q u o t i e n t s   g e n e r a l l y  
; i s n ’ t   n e c e s s a r y  

DIV-ROUNDING-ON equ 0 ;1 f o r   r o u n d i n g  on d i v i d e s ,  

ALIGNMENT equ 2 

.model smal 1 

. 3 8 6  

.code 

1008 Chapter 54 



; M u l t i p l i e s   t w o   f i x e d - p o i n t   v a l u e s   t o g e t h e r .  
; C n e a r - c a l l a b l e   a s :  
; F i x e d p o i n t   F i x e d M u l ( F i x e d p 0 i n t  M 1 .  F i xedpo in t   HZ) ;  
FMparms s t r u c  

M 1  
M2 
FMparms ends 

~ ~~~~ 

dw 2   dup (? )   ; re tu rn   add ress  & pushed BP 
dd ? 
dd ? 

a1 i g n  ALIGNMENT 
p u b l i c  F i  xedMul 

- FixedMul p roc   near  
push bp 
mov bp.sp 

i f  USE386 

mov eax.[bp+Ml] 
i m u l   d w o r d   p t r  [bp+M2] 

add  eax,  8000h 
adc  edx.0 

e n d i f  :MUL-ROUNDING-ON 
shr  eax.16 

i f  MUL-ROUNDING-ON 

e l s e  ; !USE386 

push s i  
push d i  

sub  cx.cx 
mov ax.word p t r  [bp+M1+2] 
mov s i . w o r d   p t r  [bp+Ml] 
and  ax.ax 
j n s  CheckSecondOperand 
neg  ax 
neg s i  
sbb  ax.0 
i n c   c x  

CheckSecondOperand: 
mov bx.word p t r  [bp+M2+2] 
mov d i  .word p t r  [bp+M2] 
and  bx.bx 
jns  SaveSignStatus 
neg  bx 
neg d i  
sbb  bx.0 
x o r   c x . 1  

SaveSignStatus: 
push  cx 

push ax 
mu1 bx 
mov cx.ax 

; m u l t i p l y  

; round  by  adding  2^( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  D X  

; p u t   t h e   f r a c t i o n a l   p a r t   i n  AX 

;do f o u r   p a r t i a l   p r o d u c t s  and 
; add  them t o g e t h e r .   a c c u m u l a t i n g  
; t h e   r e s u l t   i n  CX:BX 
; p rese rve  C r e g i s t e r   v a r i a b l e s  

; f i g u r e   o u t   s i g n s ,  so we can  use 
; u n s i g n e d   m u l t i p l i e s  
;assume b o t h   o p e r a n d s   p o s i t i v e  

; f i r s t  operand  negat ive?  
;no 
;yes. s o  negate f i r s t  operand 

;mark t h a t   f i r s t   o p e r a n d   i s   n e g a t i v e  

;second  operand  negat ive? 
;no 
;yes. so negate  second  operand 

;mark t h a t  second  operand i s   n e g a t i v e  

;remember s i g n   o f   r e s u l t ;  1 i f  r e s u l t  
; n e g a t i v e ,  0 i f  r e s u l t   n o n n e g a t i v e  
;remember h igh  word o f  M 1  
;h igh  word M 1  t imes  h igh   word  M2 
; a c c u m u l a t e   r e s u l t   i n  CX:BX ( B X  not   used 
; u n t i l   n e x t   o p e r a t i o n ,   h o w e v e r )  
;assume  no o v e r f l o w   i n t o  DX 

3-D Shading 1009 



mov ax, s i  
mu1 bx 
mov bx.ax 
add cx.dx 
POP ax 
mu1 d i  
add bx.ax 
adc cx.dx 
mov ax, s i  
mu1 d i  

i f  MUL-ROUNDING-ON 
add  ax.8000h 
adc  bx.dx 

e l s e  :!MUL-ROUNDING-ON 
add  bx.dx 

e n d i f  ;MUL-ROUNDING-ON 
adc  cx.0 
mov dx.cx 
mov ax.bx 
POP cx  
and  cx,cx 
j z  F i  xedMul Done 
neg  dx 
neg  ax 
sbb  dx.0 

FixedMulDone: 

pop d i  
pop s i  

e n d i f  :USE386 

POP bP 
r e t  

- FixedMul  endp 

: low  word M 1  t imes  h igh   word  M2 

: a c c u m u l a t e   r e s u l t   i n  CX:BX 
; r e t r i e v e   h i g h   w o r d   o f  M 1  
;h igh  word M 1  t imes  low  word  M Z  

: a c c u m u l a t e   r e s u l t   i n  C X : B X  
: low  word M 1  t imes  low  word M2 

; round  by  adding  2^( -17)  

:don ' t   r ound  

; a c c u m u l a t e   r e s u l t   i n  CX:BX 

: i s   t h e   r e s u l t   n e g a t i v e ?  
; n o .   w e ' r e   a l l   s e t  
;yes. s o  negate  DX:AX 

: r e s t o r e  C r e g i s t e r   v a r i a b l e s  

: D i v i d e s  one f i x e d - p o i n t   v a l u e  by  another.  
: C n e a r - c a l l a b l e   a s :  
; F i x e d p o i n t   F i x e d D i v ( F i x e d p 0 i n t   D i v i d e n d ,   F i x e d p o i n t   D i v i s o r ) ;  
FDparms s t r u c  

dw 2   d u p ( ? )   : r e t u r n   a d d r e s s  & pushed BP 
D iv idend  dd  ? 
D i v i s o r   d d  ? 
FDparms ends 

a1 i gn ALIGNMENT 
p u b l i c  JixedOiv 

JixedDi  v p roc   near  
push bp 
mov bP SSP 

i f  USE386 

i f  DIV-ROUNDING-ON 
sub  cx.cx ;assume p o s i t i v e   r e s u l t  
mov eax.[bp+Oividendl  
and  eax ,eax   ;pos i t i ve   d iv idend? 
j n s  FOP1 :yes 
i n c   c x  :mark i t ' s  a n e g a t i v e   d i v i d e n d  
neg  eax :make t h e   d i v i d e n d   p o s i t i v e  

101 0 Chapter 54 



FDPl : 

FDPZ: 

FDP3 : 

sub  edx , edx ;make i t  a 6 4 - b i t   d i v i d e n d ,   t h e n   s h i f t  

r o l   e a x , l 6  : p u t   f r a c t i o n a l   p a r t   o f   d i v i d e n d   i n  

mov dx.ax ; p u t   w h o l e   p a r t   o f   d i v i d e n d   i n  DX 
sub   ax .ax   :c lear   low  word   o f  EAX 
mov ebx.dword p t r   [ b p + D i v i s o r l  

: l e f t  16 b i t s  s o  t h a t   r e s u l t  will be i n  EAX 

: h i g h   w o r d   o f  EAX 

and  ebx.ebx 
j n s  FOP2 
dec  cx 
neg  ebx 
d i v  ebx 
sh r   ebx .1  
adc ebx.O 
dec  ebx 
cmp ebx,  edx 
adc  eax.O 

and  cx.cx 
j z  FDP3 
neg  eax 

e l s e  :!DIV-ROUNDING-ON 
mov edx. [bp+Div idendl  
sub  eax,eax 
shrd  eax.edx.16 
sar  edx.16 
i d i v  dword p t r   [ b p + D i v i s o r ]  

e n d i f  :DIV-ROUNDING-ON 
shld  edx.eax.16 

e l s e  

:NOTE!!! Non-386 d i v i s i o n  uses a 

: p o s i t i v e   d i v i s o r ?  
:yes 
;mark i t ' s  a n e g a t i v e   d i v i s o r  
:make d i v i s o r   p o s i t i v e  
: d i v i d e  
; d i v i s o r / 2 .   m i n u s  1 i f  t h e   d i v i s o r   i s  
: even 

: s e t   C a r r y  i f  the  remainder  i s   a t   l e a s t  
: h a l f  as l a r g e  as t h e   d i v i s o r ,   t h e n  
: u s e   t h a t   t o   r o u n d   u p  i f  necessary 
; s h o u l d   t h e   r e s u l t   b e  made n e g a t i v e ?  
:no 
:yes.   negate i t  

: p o s i t i o n  so t h a t   r e s u l t  ends  up 
: i n  EAX 

: w h o l e   p a r t   o f   r e s u l t   i n  D X :  
: f r a c t i o n a l   p a r t   i s   a l r e a d y   i n  A X  

: !USE386 

3 2 - b i t   d i v i d e n d   b u t   o n l v   t h e   u m e r   1 6   b i t s  
: o f   t h e   d i v i s o r :   i n   o t h e r   w o r d s ,   o n l y   t h e   i n t e g e r   p a r t   o f   t h e   d i v i s o r   i s  
: used.   Th is  i s  done s o  t h a t   t h e   d i v i s i o n   c a n   b e   a c c o m p l i s h e d   w i t h   t w o   f a s t  
: h a r d w a r e   d i v i d e s   i n s t e a d   o f  a s low  so f tware   imp lementa t ion ,   and i s   ( i n  my 
: o p i n i o n )   a c c e p t a b l e   b e c a u s e   d i v i s i o n   i s   o n l y   u s e d   t o   p r o j e c t   p o i n t s   t o   t h e  
: s c r e e n   ( n o r m a l l y .   t h e   d i v i s o r   i s  a 2 c o o r d i n a t e ) .  so t h e r e ' s  no c u m u l a t i v e  
: e r r o r ,   a l t h o u g h   t h e r e  will be some e r r o r   i n   p i x e l   p l a c e m e n t   ( t h e   m a g n i t u d e  
: o f   t h e   e r r o r   i s   l e s s   t h e   f a r t h e r  away f r o m   t h e  Z-0 p l a n e   o b j e c t s   a r e ) .   T h i s  
: i s   * n o t *  a g e n e r a l - p u r p o s e   d i v i d e ,   t h o u g h :  i f  t h e   d i v i s o r   i s   l e s s   t h a n  1, 
: f o r   i n s t a n c e ,  a d i v i d e - b y - z e r o   e r r o r  will r e s u l t !   F o r   t h i s   r e a s o n ,   n o n - 3 8 6  
: p r o j e c t i o n   c a n ' t   b e   p e r f o r m e d   f o r   p o i n t s   c l o s e r   t o   t h e   v i e w p o i n t   t h a n  Z-1. 

. .  

sub 
mov ax.word p t r  [bp+Dividend+Z] 

cx ,   cx  

and  ax.ax 
j n s  CheckSecondOperandD  :no 
neg  ax 
neg  word p t r  [bp+Dividend] 
sbb  ax.0 
i nc  cx 

mov bx .word   p t r   [bp+Div isor+El  
and  bx,  bx 
jns  SaveSignStatusD 

CheckSecondOperandD: 

: f i g u r e   o u t   s i g n s .  s o  we can  use 
: u n s i g n e d   d i v i s i o n s  
:assume b o t h   o p e r a n d s   p o s i t i v e  

: f i r s t  operand  negat ive?  

:yes. so n e g a t e   f i r s t   o p e r a n d  

:mark t h a t   f i r s t  operand i s   n e g a t i v e  

;second  operand  negat ive? 
:no 

3-D Shading 101 1 



neg  bx  :yes. so negate  second  operand 
neg  word p t r   [ b p + D i v i s o r l  
sbb bx.0 
x o r  c x . 1  

push c x  
SaveSignStatusD: 

sub dx.dx 
d i v  bx 

mov cx.ax 
mov ax.word p t r   [ b p + D i v i d e n d l  

d i v   b x  

i f  DIV-ROUNDING-ON EO 0 
s h r  bx.1 
adc bx.0 
dec bx  
cmp bx.dx 
adc ax.0 

e n d i f  :DIV-ROUNDING-ON 
adc  cx.0 

mov dx.cx 
POP cx  
and  cx,cx 
j z F i  xedDi vDone 
neg  dx 
neg  ax 
sbb  dx.0 

FixedDivDone: 

e n d i f  :USE386 

POP bP 

- F i  xedDi  v endp 
r e t  

:mark t h a t  second  operand i s   n e g a t i v e  

:remember s i g n   o f   r e s u l t :  1 i f  r e s u l t  
: n e g a t i v e ,  0 i f  r e s u l t   n o n n e g a t i v e  
: p u t   D i v i d e n d + Z   ( i n t e g e r   p a r t )   i n  DX:AX 
: f i r s t   h a l f   o f  3 2 / 1 6   d i v i s i o n ,   i n t e g e r   p a r t  
: d i v i d e d   b y   i n t e g e r   p a r t  
: s e t   a s i d e   i n t e g e r   p a r t   o f   r e s u l t  
: c o n c a t e n a t e   t h e   f r a c t i o n a l   p a r t   o f  
: t h e   d i v i d e n d   t o   t h e   r e m a i n d e r   ( f r a c t i o n a l  
: p a r t )   o f   t h e   r e s u l t   f r o m   d i v i d i n g   t h e  
: i n t e g e r   p a r t   o f   t h e   d i v i d e n d  
:second h a l f   o f   3 2 / 1 6   d i v i s i o n  

:d i v i so r /Z .   m inus  1 i f  t h e   d i v i s o r   i s  
: even 

: se t   Car ry  i f  t h e   r e m a i n d e r   i s   a t   l e a s t  
: h a l f  as l a r g e  as t h e   d i v i s o r ,   t h e n  
: u s e   t h a t   t o   r o u n d   u p  i f  necessary 

: a b s o l u t e   v a l u e   o f   r e s u l t   i n  DX:AX 

: i s   t h e   r e s u l t   n e g a t i v e ?  
: n o .   w e ' r e   a l l   s e t  
:yes. s o  negate  DX:AX 

: Re tu rns   t he   s ine   and   cos ine   o f  an ang le .  
: C n e a r - c a l l a b l e   a s :  
: void  CosSin(TAng1e  Angle,   F ixedpoint  *Cos. F i x e d p o i n t  * ) ;  

a1 i g n  ALIGNMENT 
CosTabl  e  1  abel  dword 

i n c l u d e   c o s t a b l e . i n c  

SCparms s t r u c  

Angle dw ? 
cos dw ? 
S i n  dw ? 
SCparms ends 

dw 2  dup(?)  

a1 i g n  ALIGNMENT 
pub1 1 c  -CosSi  n 

; re tu rn   add ress  & pushed BP 
: a n g l e   t o   c a l c u l a t e   s i n e  & c o s f n e   f o r  
: p o i n t e r   t o   c o s   d e s t i n a t i o n  
: p o i n t e r   t o   s i n   d e s t i n a t i o n  

1 01 2 Chapter 54 



- CosSin proc  near  
push bp 
mov bp.sp 

i f  USE386 

mov bx. [bpJ.Angle 
and  bx.bx 
j n s  CheckInRange 

add  bx.360*10 
j s  MakePos 
jmp s h o r t  CheckInRange 

a l i g n  ALIGNMENT 

sub  bx.360*10 

cmp bx.360*10 
j g  MakeInRange 

Ma kePos : 

MakeInRange: 

CheckInRange: 

cmp bx.  180*10 
j a  BottomHal f 
cmp bx.90*10 
j a   Q u a d r a n t l  

s h l  bx.2 
mov eax.CosTable[bxl 
neg  bx 
mov ed~.CosTable[bx+90*10*4J 
jmp s h o r t  CSDone 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx, 180*10 
sh l   bx .2  
mov eax.CosTable[bxl 
neg  eax 
neg  bx 
mov edx.CosTable[bx+90*lO*4] 
jmp  shor t  CSDone 

a1 i gn ALIGNMENT 

neg  bx 
add  bx.360*10 
cmp bx.90*10 
j a  Quadrant2 

s h l  bx.2 
mov eax.CosTable[bxl 
neg  bx 
mov edx.CosTable[90*10*4+bxl 
neg  edx 
jmp s h o r t  CSDone 

Quadrant l :  

BottomHal f: 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.180*10 

Quadrant2:  

; p rese rve   s tack   f rame 
: s e t   u p   l o c a l   s t a c k   f r a m e  

:make sure  angle 's   between 0 and 2*pi 

: l e s s   t h a n  0. so make i t  p o s i t i v e  

;make s u r e   a n g l e   i s  no  more than  2*p i  

; f i g u r e   o u t   w h i c h   q u a d r a n t  
;quadrant  2 o r  3 
:quadrant  0 o r  1 

:quadrant  0 

: l o o k  up s i n e  
; s i n ( A n g l e )  - cos(90-Angle)  
: look   up   cos ine  

; conve r t   t o   ang le   be tween  0 and  90 

; look   up   cos ine  
; n e g a t i v e   i n   t h i s   q u a d r a n t  
; s i n ( A n g l e )  - cos(90-Angle)  
: l ook   up   cos ine  

;quadrant  2 o r  3 

; conve r t   t o   ang le   be tween  0 and  180 
;quadrant  2 o r  3 

:quadrant  3 

: l ook   up   cos ine  
; s i n ( A n g l e )  - cos (90 -Ang le )  
; l o o k   u p   s i n e  
; n e g a t i v e   i n   t h i s   q u a d r a n t  

; conve r t   t o   ang le   be tween  0 and  90 

3-D Shading 101 3 



s h l  
mov 
neg 
neg 
mov 
neg 

mov 
mov 
mov 
mov 

CSDone: 

bx.2 
eax.CosTable[bxl  
eax 
bx 
edx.CosTable[90*10*4+bxl 
edx 

bx.[bpl.Cos 
[bx l   . eax  
bx . [bp l .S in  
[bx l   . edx  

e l s e  : !USE386 

mov bx . [bp l .Ang le  
and  bx.bx 
j n s  CheckInRange 

add  bx.360*10 
j s  MakePos 
jmp  short  CheckInRange 

a1 i gn ALIGNMENT 

sub  bx.360*10 

cmp bx.360*10 
j g  MakeInRange 

Ma kePos : 

MakeInRange: 

CheckInRange: 

: l ook  up c o s i n e  
: n e g a t i v e   i n   t h i s   q u a d r a n t  
: s i n ( A n g l e )  - cos(90-Ang le)  
: l ook   up   s ine  
: n e g a t i v e   i n   t h i s   q u a d r a n t  

:make sure   ang le 's   be tween 0 and  2*pi 

: l e s s   t h a n  0,  s o  make i t  p o s i t i v e  

:make s u r e   a n g l e   i s   n o  more  than  2*pi 

bx ,   180*10  ; f igure   ou t   wh ich   quadrant  
BottomHal f :quadrant  2 or   3  
bx,  90*10  :quadrant 0 o r  1 
Q u a d r a n t l  

bx.2 
ax.word p t r  CosTab le [bx l   : look   up   s ine  
dx.word p t r  CosTable[bx+2] 
b x   : s i n ( A n g l e )  - cos(90-Ang le)  
cx.word p t r  CosTable[bx+90*10*4+2]  : look  up  cosine 
bx.word p t r  CosTable[bx+90*10*41 
CSDone 

:quadrant 0 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.180*10  :convert t o   a n g l e  between 0 and 90 
s h l   b x . 2  
mov ax.word p t r  CosTableCbxl   : look up c o s i n e  
mov dx.word p t r  CosTableCbx+21 
neg  dx  :negat ive i n   t h i s   q u a d r a n t  
neg  ax 
sbb  dx.0 
neg  bx  :s in(Angle)  - cos(90-Ang le)  
mov c x . w o r d   p t r  CosTable[bx+90*10*4+21  :look  up  cosine 
mov bx,word p t r  CosTableCbx+90*10*43 
jmp   sho r t  CSDone 

Quadrant l :  

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.360*10 

BottomHal f :  :quadrant  2  or   3 

: c o n v e r t   t o   a n g l e   b e t w e e n  0 and  180 

1 01 4 Chapter 54 



cmp bx.90*10 
j a  Quadrant2 

s h l  bx.2 
mov ax.word p t r  CosTableCbx] 
mov dx.word p t r  CosTable[bx+2] 
neg  bx 
mov cx.word p t r  CosTable[90*10*4+bx+2] 
mov bx.word p t r  CosTable[90*10*4+bxl 
neg  cx 
neg  bx 
sbb  cx.0 
jmp  shor t  CSDone 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.180*10 
sh l   bx .2  
mov ax.word p t r  CosTable[bx] 
mov dx.word p t r  CosTable[bx+P] 
neg  dx 
neg  ax 
sbb dx,O 
neg  bx 
mov cx.word p t r  CosTable[90*10*4+bx+2] 
mov bx.word p t r  CosTable[90*10*4+bx] 
neg  cx 
neg  bx 
sbb  cx.0 

push  bx 
mov bx,  [ b p l  .Cos 
mov [bx]  ,ax 
mov [ bx+2] , dx 
mov bx .   [ bp l   .S in  
POP ax 
mov [bx].ax 
mov Cbx+Zl .cx  

Quadrant2: 

CSDone: 

e n d i f  ;USE386 

POP bP 
r e t  

X o s S i n  endp 

;quadrant  2 o r  3 

:quadrant  3 

: l o o k  up cos ine  

; s i n ( A n g l e )  - cos (90 -Ang le )  
; l ook  ;p s i n e  

; n e g a t i v e   i n   t h i s  

: c o n v e r t   t o   a n g l e  

: look   up   cos ine  

: n e g a t i v e   i n   t h i s  

quadrant  

between 0 and  90 

quadrant  

: s i n ( A n g l e )  - cos (90 -Ang le )  
; l ook  UD s i n e  

: n e g a t i v e   i n   t h i s   q u a d r a n t  

: res to re   s tack   f rame 

; M a t r i x   m u l t i p l i e s   X f o r m  by  SourceVec.  and s t o r e s   t h e   r e s u l t   i n  
; OestVec. M u l t i p l i e s  a  4x4 m a t r i x   t i m e s  a 4 x 1   m a t r i x ;   t h e   r e s u l t  
; i s  a 4x1   mat r ix .   Cheats   by   assuming  the  W coord i s  1 and t h e  
; b o t t o m   r o w   o f   t h e   m a t r i x   i s  0 0 0 1. and d o e s n ' t   b o t h e r   t o   s e t  
: t h e  W c o o r d i n a t e   o f   t h e   d e s t i n a t i o n .  
; C n e a r - c a l l a b l e   a s :  
; void  XformVec(Xform  WorkingXform.  Fixedpoint  *SourceVec. 

F ixedpo in t   *DestVec) ;  

; This  assembly  code i s   e q u i v a l e n t   t o   t h i s  C code: 
; i n t  i; 

3-D Shading 101 5 



: f o r   ( i - 0 ;   i < 3 ;  i++) 
DestVecCi l  - FixedMul(WorkingXform[il[Ol, SourceVecCO]) + 

FixedMul(WorkingXform~il~l1, SourceVecC11) + 
FixedMul(WorkingXform[ilL?l, SourceVecCZI) + 
WorkingXformCil [3] :  / *  no  need t o   m u l t i p l y  by W - 1 * /  

XVparms s t r u c  

WorkingXform dw ? : p o i n t e r   t o   t r a n s f o r m   m a t r i x  
SourceVec dw ? : p o i n t e r   t o   s o u r c e   v e c t o r  
DestVec dw ? : p o i n t e r   t o   d e s t i n a t i o n   v e c t o r  
XVparms ends 

FIXED-MUL MACRO M 1  ,M2 
; Macro f o r  non-386 m u l t i p l y .  AX,  EX. C X .  DX des t royed.  

dw 2 d u p ( ? )   : r e t u r n   a d d r e s s  & pushed BP 

l o c a l  CheckSecondOperand,SaveSignStatus,FixedMulOone 

sub  cx.cx 
mov bx.word p t r  C&M1&+2] 
and  bx,bx 
j n s  CheckSecondOperand 
neg  bx 
neg  word p t r  C&Ml&I 
sbb  bx.0 
mov word p t r  C&M1&+2].bx 
i n c   c x  

CheckSecondOperand: 
mov bx.word p t r  C&M2&+21 
and  bx.bx 
jns   SaveSignSta tus  
neg  bx 
neg  word p t r  [&M2&1 
sbb bx.0 
mov word p t r  [&M2&+2].bx 
x o r   c x . 1  

SaveSignStatus:  
push 

mov 
mu1 
mov 

mov 
mu1 
mov 
add 
mov 
mu1 
add 
adc 
mov 
mu1 

c x  

ax.word p t r  C&M1&+21 
word p t r  [&M2&+21 
cx.ax 

ax.word p t r  C&M1&+2] 
word p t r  [&MZ&l  
bx,   ax 
cx.   dx 
ax.word p t r   [ & M l & l  
word p t r  [&M2&+21 
bx,  ax 
cx.dx 
ax,word p t r   [ & M l & l  
word p t r  [&M2&1 

i f  MUL-ROUNDING-ON 
add  ax,  8000h 

adc  bx.dx 

:do f o u r   p a r t i a l   p r o d u c t s  and 
; add  them  together ,   accumulat ing 
: t h e   r e s u l t   I n  CX:BX 
: f i g u r e   o u t   s i g n s ,  so we can  use 
: u n s i g n e d   m u l t i p l i e s  
:assume b o t h   o p e r a n d s   p o s i t i v e  

: f i r s t   o p e r a n d   n e g a t i v e ?  
:no 
:yes. so n e g a t e   f i r s t   o p e r a n d  

:mark t h a t   f i r s t  operand i s   n e g a t i v e  

:second  operand  negat ive? 

:yes. s o  negate  second  operand 
:no 

:mark t h a t  second  operand i s   n e g a t i v e  

;remember s i g n   o f   r e s u l t :  1 i f  r e s u l t  
: n e g a t i v e ,  0 i f  r e s u l t   n o n n e g a t i v e  
:h igh   word   t imes  h igh   word  

:assume  no o v e r f l o w   i n t o  DX 
:h igh  word  t imes  low  word 

: low  word  t imes  h igh  word 

: low  word  t imes  low  word 

: round  by  adding Z A ( - 1 7 )  

1 01 6 Chapter 54 



e l s e  ;!MUL-ROUNDING-ON 
add  bx.dx 

e n d i f  :MUL-ROUNDING-ON 
adc  cx.0 
mov dx,cx 
mov ax.bx 
POP cx  
and  cx.cx 
jz FixedMulDone 
neg  dx 
neg  ax 
sbb  dx.0 

ENDM 
FixedMulDone: 

a1 i g n  ALIGNMENT 
pub1 i c  -XformVec 

-XformVec proc   near  
push bp 
mov bp.sp 
push s i  
push d i  

i f  USE366 

mov s i . [bp l .Work ingXform 
mov bx.Cbpl.SourceVec 
mov d i  , [ b p l  .DestVec 

so f f -0  
do f f -0  

REPT 3 
mov e a x . [ s i + s o f f l  
i m u l   d w o r d   p t r   [ b x l  

add  eax.8000h 
adc  edx.O 

e n d i f  ;MUL-ROUNDING-ON 
shrd  eax.edx.16 
mov ecx,  eax 

mov eax. [s i+sof f+41 
imul   dword  p t r   [bx+4]  

add  eax.8000h 
adc  edx.0 

e n d i f  ;MUL-ROUNDING-ON 
shrd  eax.edx.16 
add  ecx,  eax 

mov eax. [s i+sof f+61 
imul  dword p t r  [bx+6] 

add  eax.8000h 
adc  edx.O 

e n d i f  :MUL-ROUNDING-ON 
shrd  eax.edx.16 
add  ecx.eax 

add e c x . [ s i + s o f f + l 2 ]  
mov Cd i+do f f l . ecx  

i f  MUL-ROUNDING-ON 

i f  MUL-ROUNDING-ON 

i f  MUL-ROUNDING-ON 

;don’ t   round 

: i s   t h e   r e s u l t   n e g a t i v e ?  
:no.  we’re a l l   s e t  
;yes. s o  negate DX:AX 

: p rese rve   s tack   f rame 
: s e t  u p  l o c a l   s t a c k   f r a m e  
; p r e s e r v e   r e g i s t e r   v a r i a b l e s  

:SI p o i n t s   t o   x f o r m   m a t r i x  
:BX p o i n t s   t o   s o u r c e   v e c t o r  
: D I  p o i n t s   t o   d e s t   v e c t o r  

:do  once  each f o r   d e s t  X .  Y ,  and 2 
:column 0 e n t r y  on t h i s  row 
; x fo rm  en t r y   t imes   sou rce  X e n t r y  

: round  by  adding  2” ( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: s e t   r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row 
; x fo rm  en t r y   t imes   sou rce  Y e n t r y  

; round  by   add ing   2^ ( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
; r u n n i n g   t o t a l   f o r   t h i s   r o w  

;co lumn  2  ent ry  on t h i s  row 
: x fo rm  en t r y   t imes   sou rce  2 e n t r y  

; round  by  adding  2*( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
: r u n n i n g   t o t a l   f o r   t h i s   r o w  

:add i n   t r a n s l a t i o n  
: s a v e   t h e   r e s u l t   i n   t h e   d e s t   v e c t o r  

3-D Shading 101 7 



s o f f - s o f f + l 6  
d o f f - d o f f + 4  

ENOM 

e l s e  : !USE386 

mov si .Cbp].WorkingXform 
mov di.[bp].SourceVec 
mov bx. [bpl .OestVec 
push  bp 

s o f f - 0  
d o f f - 0  

R E P T  
push 
push 
push 
push 
push 
c a l l  
add 
mov 
mov 

3 
bx 
word p t r   [ s i + s o f f + 2 1  
word p t r   [ s i + s o f f l  
word p t r  Cdi+21 
word p t r   [ d i l  
-FixedMul 
sp.8 
c x , a x   : s e t   r u n n i n g   t o t a l  
bp.dx 

push 
push 
push 
push 
push 
c a l l  
add 
POP 
add 
adc 

push 
push 
push 
push 
push 
c a l l  
add 
POP 
add 
adc 

cx  
word p t r   [ s i + s o f f + 4 + 2 ]  
word p t r   [ s i + s o f f + 4 ]  
word p t r  [di+4+21 
word p t r  [d1+41 
- FixedMul 
sp.8 

cx,  ax 
bp  .dx 

cx  

c x  
word p t r   [ s i + s o f f + 8 + 2 1  
word p t r   [ s i + s o f f + 8 1  
word p t r  Cdi+B+ZI 
word p t r   [ d i + 8 1  
- FixedMul 
sp.8 

cx,  ax 
bp.dx 

cx  

add c x . [ s i + s o f f + l 2 1  
adc  bp. [s i+sof f+ l2+21 
POP bx 
mov [ b x + d o f f l . c x  
mov [bx+doff+El,bp 

s o f f - s o f f + l 6  
d o f f - d o f f + 4  

ENDM 

POP bP 

end i  f ;USE386 

pop d i  
POP s i  

:SI p o i n t s   t o   x f o r m   m a t r i x  
: D I  p o i n t s   t o   s o u r c e   v e c t o r  
:BX p o i n t s   t o   d e s t   v e c t o r  
; p rese rve   s tack   f rame  po in te r  

;do  once  each f o r   d e s t  X. Y .  and 2 
:remember d e s t   v e c t o r   p o i n t e r  

; x fo rm  en t r y   t imes   sou rce  X e n t r y  
:c lear   parameters   f rom  s tack  

: p r e s e r v e   l o w   w o r d   o f   r u n n i n g   t o t a l  

: x f o r m   e n t r y   t i m e s   s o u r c e  Y e n t r y  
:c lear   parameters   f rom  s tack  
; r e s t o r e   l o w   w o r d   o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

: p r e s e r v e   l o w   w o r d   o f   r u n n i n g   t o t a l  

: x fo rm  en t ry   t imes  source  2 e n t r y  
; c lea r   pa ramete rs   f rom  s tack  
; r e s t o r e   l o w   w o r d   o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

:add i n   t r a n s l a t i o n  

: r e s t o r e   d e s t   v e c t o r   p o i n t e r  
: s a v e   t h e   r e s u l t   i n   t h e   d e s t   v e c t o r  

: r e s t o r e   s t a c k   f r a m e   p o i n t e r  

; r e s t o r e   r e g i s t e r   v a r i a b l e s  

1 01 8 Chapter 54 



POP bp 
r e t  

-XformVec  endp 

: r e s t o r e   s t a c k   f r a m e  

. ~""~""""""---y"~"""~ 

M a t r i x   m u l t i p l i e s   S o u r c e X f o r m l  by  SourceXformE  and s t o r e s   t h e  
r e s u l t   i n  Oes tX fo rm.   Mu l t i p l i es  a 4x4   ma t r i x   t imes  a 4x4 m a t r i x :  
t h e   r e s u l t   i s  a 4x4  matr ix .   Cheats  by  assuming  the  bot tom  row  of  
e a c h   m a t r i x   i s  0 0 0 1, and d o e s n ' t   b o t h e r   t o   s e t   t h e   b o t t o m   r o w  
o f   t h e   d e s t i n a t i o n .  
C n e a r - c a l l a b l e  as:  

void  ConcatXforms(Xform  SourceXforml.  Xform  SourceXformE. 
Xform  DestXform) 

This  assembly  code i s   e q u i v a l e n t   t o   t h i s  C code: 
i n t  i. j ;  

f o r   ( i - 0 :   i < 3 :  i++) { 
f o r  ( j - 0 :  j<3:  j++) 

O e s t X f o r m [ i l [ j l  - 
FixedMul(SourceXform1Cil[Ol, SourceXfo rm2[01 [ j l )  + 
FixedMul(SourceXforml[il[11. SourceXfo rm2[11 [ j l )  + 
FixedMul(SourceXformlCil~21, S o u r c e X f o r m E ~ E l ~ j l ) :  

OestXformCilC31 - 
FixedMul(SourceXforml[il[Ol, SourceXform2[01[31) + 
FixedMul(SourceXforml[i][ll. SourceXform2[l lC31) + 
FixedMul(SourceXforml~il~21, SourceXform2C21C31) + 
SourceXfo rm lC i l [ 31 :  

} 

CXparms s t r u c  

SourceXforml  dw ? 
SourceXformE dw ? 
OestXform dw ? 
CXparms ends 

dw 2 dup(? )  

a1 i g n  ALIGNMENT 
publ ic   _ConcatXforms 

push bp 
mov bp.sp 
push s i  
Dush d i  

X o n c a t X f o r m s  proc  near 

i f  USE386 

mov bx.[bpl.SourceXform2 
mov s i . [ bp l .SourceXfo rm l  
mov d i . [ bp l .Oes tX fo rm 

r o f f - 0  

c o f f - 0  
REPT 3 

REPT 3 

mov e a x , [ s i + r o f f l  
imul  dword p t r   [ b x + c o f f l  

: r e tu rn   add ress  & pushed BP 
: p o i n t e r   t o   f i r s t   s o u r c e   x f o r m   m a t r i x  
: p o i n t e r   t o  second  source  x form  matr ix  
: p o i n t e r   t o   d e s t i n a t i o n   x f o r m   m a t r i x  

:preserve  s tack  f rame 
: s e t  up l o c a l   s t a c k   f r a m e  
: p r e s e r v e   r e g i s t e r   v a r i a b l e s  

:BX p o i n t s   t o   x f o r m 2   m a t r i x  
:SI p o i n t s   t o   x f o r m l   m a t r i x  
: D I  p o i n t s   t o   d e s t   x f o r m   m a t r i x  

:row o f f s e t  
;once f o r  each  row 
:column o f f s e t  
:once f o r  each o f   t h e   f i r s t  3 columns. 
: assuming 0 as t h e   b o t t o m   e n t r y  (no 
: t r a n s l a t i o n )  
;column 0 e n t r y  on t h i s  row 
:t imes  row 0 e n t r y   i n  column 

3-D Shading 101 9 



i f  MUL-ROUNDING-ON 
add  eax.8000h 
adc  edx , 0 

shrd  eax.edx.16 
mov ecx,  eax 

e n d i f  :MUL-ROUNDING-ON 

mov eax.[s i+rof f+41 
imul  dword p t r  Cbx+coff+l61 

add  eax.8000h 
adc  edx, 0 

shrd  eax.edx.16 
add  ecx.eax 

i f  MUL-ROUNDING-ON 

e n d i f  :MUL-ROUNDING-ON 

mov eax . [s i+ ro f f+81 
imu l   dword   p t r   [bx+cof f+321 

add  eax.8000h 
adc  edx, 0 

shrd  eax.edx.16 
add  ecx.eax 

i f  MUL-ROUNDING-ON 

e n d i f  ;MUL-ROUNDING-ON 

mov [ d i + c o f f + r o f f ] . e c x  
c o f f - c o f f + 4  

ENDM 

mov e a x . [ s i + r o f f l  
imul   dword p t r   [ b x + c o f f l  

add  eax.8000h 
adc  edx, 0 

shrd  eax.edx.16 
mov ecx,eax 

mov e a x . [ s i + r o f f + 4 1  
imul  dword p t r   [ b x + c o f f + l 6 1  

add  eax,  8000h 
adc  edx, 0 

shrd  eax.edx, l6  
add  ecx.eax 

i f  MUL-ROUNDING-ON 

e n d i f  ;MUL-ROUNDING-ON 

i f  MUL-ROUNDING-ON 

e n d i f  ;MUL-ROUNDING-ON 

mov eax . [s i+ ro f f+8 ]  
imul  dword p t r   [ b x + c o f f + 3 2 1  

add  eax.8000h 
adc  edx.0 

shrd  eax.edx.16 
add  ecx,  eax 

add  ecx ,Cs i+ro f f+ l2 ]  

i f  MUL-ROUNDING-ON 

e n d i f  :MUL-ROUNDING-ON 

: round  by  adding  2"( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: s e t   r u n n i n g   t o t a l  

:column 1 e n t r y  on t h i s  row 
: t imes  row 1 e n t r y  i n  c o l  

: round  by  adding  2*( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: r u n n i n g   t o t a l  

;column 2 e n t r y   o n   t h i s   r o w  
: t imes  row 2 e n t r y   i n   c o l  

: round  by  adding  2"( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
: r u n n i n g   t o t a l  

:save t h e   r e s u l t   i n   d e s t   m a t r i x  
: p o i n t   t o   n e x t   c o l   i n   x f o r m 2  & d e s t  

:now do t h e   f o u r t h  column,  assuming 
: 1 as t h e   b o t t o m   e n t r y ,   c a u s i n g  
: t r a n s l a t i o n   t o  be  per formed 
;column 0 e n t r y  on t h i s  row 
:t imes  row 0 e n t r y   i n  column 

: round  by  adding  2^( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: s e t   r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row 
: t imes  row 1 e n t r y   i n   c o l  

: round  by  adding  ZA(-17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
: r u n n i n g   t o t a l  

:column  2 e n t r y  on t h i s  row 
: t imes  row 2 e n t r y   i n   c o l  

: round  by  adding  2^( -17)  
;who le   pa r t  o f  r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: r u n n i n g   t o t a l  

:add i n   t r a n s l a t i o n  

1020 Chapter 54 



mov C d i + c o f f + r o f f l . e c x  
c o f f - c o f f + 4  

r o f f - r o f f + l 6  
ENDM 

e l  se : ! USE386 

mov di. [bp].SourceXformZ 
mov s i . [ bp l .SourceXfo rm l  
mov bx. [bp l .DestXform 
push  bp 

r o f f - 0  

c o f f - 0  
REPT 3 

REPT 3 

push 
push 
push 
push 
push 
c a l l  

add 
mov 
mov 

push 
push 
push 
push 
push 
c a l l  

add 
P O P  
add 
adc 

push 
push 
push 
push 
push 
c a l l  

add 
POP 
add 
adc 

POP 
mov 
mov 

bx 
word p t r   C s i + r o f f + 2 ]  
word p t r   [ s i + r o f f ]  
word p t r   [ d i + c o f f + 2 ]  
word p t r   [ d i + c o f f ]  
- FixedMul 

sp.8 
c x , a x   : s e t   r u n n i n g   t o t a l  
bp.dx 

cx 
word p t r   [ s i + r o f f + 4 + Z ]  
word p t r   [ s i + r o f f + 4 ]  
word p t r   [ d i + c o f f + l 6 + 2 ]  
word p t r   [ d i + c o f f + l 6 ]  
- FixedMul 

sp.8 

cx.ax 
bp.  dx 

cx  

word p t r   [ s i + r o f f + 8 + 2 1  
word p t r   [ s i + r o f f + 8 ]  
word p t r   [ d i + c o f f + 3 2 + 2 ]  
word p t r   [ d i + c o f f + 3 2 ]  
JixedMul 

cx  

sp.8 

cx.ax 
bp.dx 

bx 
Cbx+co f f+ ro f f ] . cx  
[bx+cof f+rof f+21,bp 

cx 

: s a v e   t h e   r e s u l t   i n   d e s t   m a t r i x  
: p o i n t   t o   n e x t   c o l   i n  xform2 & d e s t  

; p o i n t   t o   n e x t   c o l   i n  xform2 & d e s t  

: D I  p o i n t s   t o   x f o r m 2   m a t r i x  
:SI p o i n t s   t o   x f o r m l   m a t r i x  
:BX p o i n t s   t o   d e s t   x f o r m   m a t r i x  
: p r e s e r v e   s t a c k   f r a m e   p o i n t e r  

;row o f f s e t  
:once f o r  each  row 
;column o f f s e t  
;once f o r  each o f   t h e   f i r s t  3 columns, 
: assuming 0 as t h e   b o t t o m   e n t r y  ( n o  
: t r a n s l a t i o n )  
:remember d e s t   v e c t o r   p o i n t e r  

:column 0 e n t r y  on t h i s  row  t imes  row 0 
: e n t r y   i n  column 
: c lea r   pa ramete rs   f rom  s tack  

: p r e s e r v e   l o w   w o r d   o f   r u n n i n g   t o t a l  

:column 1 e n t r y  on t h i s  row  t imes  row 1 
; e n t r y   i n  column 
: c lea r   pa ramete rs   f rom  s tack  
: r e s t o r e   l o w   w o r d   o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

: p r e s e r v e   l o w   w o r d   o f   r u n n i n g   t o t a l  

:column 1 e n t r y  on t h i s  row  t imes  row 1 
: e n t r y   i n  column 
: c lea r   pa ramete rs   f rom  s tack  
; r e s t o r e   l o w  word o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

; r e s t o r e  DestXForm p o i n t e r  
; s a v e   t h e   r e s u l t   i n   d e s t   m a t r i x  

3-D Shading 1 02 1 



c o f f - c o f f + 4  
ENDM 

; p o i n t   t o   n e x t   c o l   i n   x f o r m 2  & d e s t  

push 
push 
push 
push 
push 
c a l l  

add 
mov 
mov 

push 
push 
push 
push 
push 
c a l l  

add 
POP 
add 
adc 

push 
push 
push 
push 
push 
c a l l  

add 
POP 
add 
adc 

add 
add 

POP 
mov 
mov 

c o f f - c o f f + 4  

r o f f - r o f f + l 6  
ENDM 

POP 

e n d i f  ;USE386 

POP 
POP 
POP 
r e t  

end 
-ConcatXforms 

bx 
word p t r   [ s i + r o f f + 2 ]  
word p t r   [ s i + r o f f l  
word p t r   [ d i + c o f f + 2 1  
word p t r   [ d i + c o f f l  
- F i  xedMul 

sp.8 
c x . a x   ; s e t   r u n n i n g   t o t a l  
bp.  dx 

cx  
word p t r   [ s i + r o f f + 4 + 2 1  
word p t r   [ s i + r o f f + 4 1  
word p t r   [ d i + c o f f + l 6 + 2 ]  
word p t r   [ d i + c o f f + l 6 ]  
- F i  xedMul 

sp.8 

cx,ax 
bp , dx 

c x  

cx  
word p t r   [ s i + r o f f + 8 + 2 1  
word p t r   [ s i + r o f f + 8 1  
word p t r  [di+coff+32+21 
word p t r   [ d i + c o f f + 3 2 ]  
- FixedMul 

sp,8 

cx,   ax 
bp.dx 

c x . C s i + r o f f + l Z l  
bp . [ s i+ ro f f+ l2+21  

bx 
[ b x + c o f f + r o f f l , c x  
[bx+cof f+rof f+2] .bp 

cx  

bp 

d i  
s i  
bv 

endp 

:now do the   four th   co lumn,   assuming 
: 1 as t h e   b o t t o m   e n t r y ,   c a u s i n g  
; t r a n s l a t i o n   t o  be  performed 
;remember d e s t   v e c t o r   p o i n t e r  

;column 0 e n t r y  on t h i s  row  t imes row 0 
; e n t r y   i n  column 
; c lea r   pa ramete rs   f rom  s tack  

;p reserve   low  word  o f  r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row  t imes row 1 
; e n t r y   i n  column 
; c lea r   pa ramete rs   f rom  s tack  
; r e s t o r e   l o w   w o r d   o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

; p r e s e r v e   l o w   w o r d   o f   r u n n i n g   t o t a l  

:column 1 e n t r y  on t h i s  row  t imes  row 1 
: e n t r y   i n  column 
: c lea r   pa ramete rs   f rom  s tack  
; r e s t o r e   l o w   w o r d   o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

;add i n   t r a n s l a t i o n  

; r e s t o r e  DestXForm p o i n t e r  
; s a v e   t h e   r e s u l t   i n   d e s t   m a t r i x  

; p o i n t   t o   n e x t   c o l   i n   x f o r m 2  & d e s t  

; p o i n t   t o   n e x t   c o l   i n   x f o r m 2  & d e s t  

; r e s t o r e   s t a c k   f r a m e   p o i n t e r  

: r e s t o r e   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   s t a c k   f r a m e  

1022 Chapter 54 



Shading 
So far, the polygons out of  which our animated objects have been built have had 
colors of fixed intensities. For example,  a face of a  cube  might be blue, or  green,  or 
white, but whatever color it is, that color never brightens or dims.  Fixed colors are 
easy to implement,  but they don’t make for very realistic animation.  In  the real world, 
the intensity of the color of a surface varies depending  on how brightly it is  illumi- 
nated. The ability  to simulate the illumination of a surface, or shading, is the  next 
feature we’ll add to X-Sharp. 
The overall shading of an object is the sum of several  types of shading  components. 
Ambient shadingis illumination by what  you might think of  as background light, light 
that’s coming  from all directions; all surfaces are equally illuminated by ambient 
light, regardless of their  orientation. Directed lighting, producing diffuse shading, is 
illumination from one or more specific light sources. Directed light has a specific 
direction, and  the angle at which it strikes a surface determines how brightly it lights 
that surface. Specular reJection is the tendency of a surface to reflect light  in a mirror- 
like fashion. There  are  other sorts of shading  components,  including transparency 
and atmospheric effects, but  the ambient and diffuse-shading components  are all 
we’re going to deal with in X-Sharp. 

Ambient  Shading 
The basic model  for  both  ambient and diffuse shading is a simple one. Each surface 
has a reflectivity between 0 and 1, where 0 means  all light is absorbed and 1 means all 
light is reflected. A certain  amount of light energy strikes each surface. The energy 
(intensity) of the light is expressed such that if light of intensity 1 strikes a surface 
with reflectivity 1, then  the  brightest possible shading is displayed for  that surface. 
Complicating this somewhat  is the  need to support color; we do this by separating 
reflectance and shading  into  three  components each-red, green,  and blue-and 
calculating the shading for each color component separately for  each surface. 
Given an ambient-light red intensity of Ured and a surface red reflectance Rred, the 
displayed red  ambient  shading  for  that surface, as a fraction of the maximum red 
intensity, is  simply min(IAredx Rred, 1). The green and blue color components  are 
handled similarly. That’s really  all there is to ambient shading, although of course we 
must design some way to map displayed color components  into  the available palette 
of colors; I’ll do that in the  next  chapter. Ambient shading isn’t the whole shading 
picture,  though.  In fact, scenes tend to look pretty bland without diffuse shading. 

Diffuse Shading 
Diffuse shading is more complicated than  ambient shading, because the effective 
intensity of directed light falling on  a surface depends  on the angle at which it strikes 
the surface. According to Lambert’s law, the light energy from  a  directed  light source 

3-D Shading 1023 



striking a surface is proportional to the cosine of the angle at which it strikes the 
surface, with the angle measured relative to a vector perpendicular to the polygon (a 
polygon normal), as  shown in Figure  54.1.  If the red intensity of directed light is 
IDred, the red reflectance of the surface is Rred, and the angle between the incoming 
directed light and the surface’s normal is theta, then  the displayed red diffuse shad- 
ing  for  that  surface, as a fraction of the largest possible red intensity, is min 

That’s easy enough  to calculate-but  seemingly slow. Determining the cosine of an 
angle can be sped up with a table lookup, but there’s  also the task of figuring out  the 
angle, and, all in all, it doesn’t seem that diffuse shading is going to be  speedy enough 
for our purposes. Consider this,  however:  According to the properties of the dot 
product (denoted by the operator “.”, as shown in  Figure  54.2), cos(B)=(vw) / IvI X IwI ) , 
where v and w are vectors, 8 is the angle between v and w, and Ivl is the  length of v. 
Suppose, now, that v and w are  unit vectors; that is,  vectors  exactly one unit long. 
Then the above equation reduces to cos(e)=v.w. In  other words, we can calculate 
the cosine  between N, the unit-normal vector (one-unit-long perpendicular vector) 
of a polygon, and L’, the reverse of a unit vector describing the direction of a light 
source, with just  three multiplies and two adds. (I’ll explain why the  lightdirection 
vector must be  reversed later.) Once we have that, we can easily calculate the red 

(1D,edxRre,xcos(8), ’)* 

Light  from  directed  Polygon  normal  (perpendicular  vector) 
illumination  source 
D, of energy E. 

Illumination by a directed light source. 
Figure 54.1 

For two vectors  v and w, as  follows:  the  dot  product  v w is: 

v w = v,w,+  yw,+ v,w, 

The dot product of two vectors. 
Figure 54.2 

1024 Chapter 54 



diffuse shading  from  a  directed  light source as min(1DredxRredx(L'* N), 1) and like- 
wise for the  green  and blue color components. 
The overall red shading for each polygon can  be  calculated by summing the ambient- 
shading  red  component with the diffuse-shading component  from  each  light  source, 
as  in min( (IAredxRred) + (1Drcd,,xRredx(LO' N))  + (IDredlxRredx(L1' N))  +..., 1)  where 
IDredo and Lo' are  the  red intensity and  the reversed unit-direction vector, respec- 
tively, for spotlight 0. Listing 54.2 shows the X-Sharp module DRAWPOBJ.C, which 
performs  ambient and diffuse shading. Toward the  end, you  will find the code  that 
performs  shading exactly  as described by the above equation, first calculating the 
ambient red,  green,  and  blue shadings, then summing that with the diffuse red, 
green,  and  blue shadings generated by each directed light source. 

LISTING 54.2 DRAWP0BJ.C 
/*  Draws a l l   v i s i b l e   f a c e s   i n   t h e   s p e c i f i e d   p o l y g o n - b a s e d   o b j e c t .  The o b j e c t  

must   have  prev ious ly   been  t ransformed and p r o j e c t e d ,  so  t h a t  all v e r t e x  
a r r a y s   a r e   f i l l e d   i n .   A m b i e n t  and d i f f use   shad ing   a re   suppor ted .  * /  

Di ncl   ude  "po lygon.  h" 

vo id   DrawPObjec t (P0b jec t  * ObjectToXform) 
t 

i n t  i. j .  NumFaces - Objec tToXform->NumFaces.  NumVert ices: 
i n t  * VertNumsPtr,  Spot; 
Face * FacePtr - O b j e c t T o X f o r m - > F a c e L i s t :  
P o i n t  * Screenpoints  = Ob jec tToXfo rm->ScreenVer texL is t ;  
Po in tL is tHeader   Po lygon:  
F i x e d p o i n t   D i f f u s i o n :  
Model  Col o r  Col  orTemp: 
M o d e l I n t e n s i t y   I n t e n s i t y T e m p :  
Point3  Uni tNormal ,   *NormalStar tpo int .   *NormalEndpoint :  
l o n g  VI. v2, w l .  w2: 
P o i n t  VerticesCMAX-POLY-LENGTH]; 

/*  D r a w  each v i s i b l e   f a c e   ( p o l y g o n )   o f   t h e   o b j e c t   i n   t u r n  * /  
f o r  (i=O: i<NumFaces; i++. FacePtr++) I 

/*  Remember where we can f i n d   t h e   s t a r t  and  end o f   t h e   p o l y g o n ' s  
u n i t   n o r m a l   i n   v i e w   s p a c e ,  and s k i p   o v e r   t h e   u n i t   n o r m a l   e n d p o i n t  
e n t r y .  The  end  and s t a r t   p o i n t s   o f   t h e   u n i t  normal t o   t h e   p o l y g o n  
must be t h e   f i r s t  and  second e n t r i e s   i n   t h e   p o l g y o n ' s   v e r t e x   l i s t .  
N o t e   t h a t   t h e  second p o i n t   i s   a l s o  an a c t i v e   p o l y g o n   v e r t e x  */  

VertNumsPtr = FacePtr->VertNums: 
NormalEndpoint - &ObjectToXform->XformedVertexLis t [ *Ver tNumsPtr++l :  
N o r m a l S t a r t p o i n t  = &Ob jec tToXfo rm->Xfo rmedVer texL is tC*Ver tNumsPt r l :  
/ *  Copy o v e r   t h e   f a c e ' s   v e r t i c e s   f r o m   t h e   v e r t e x   l i s t  * /  
NumVert ices = FacePtr->NumVerts: 
f o r   ( j - 0 :   j < N u m V e r t i c e s ;  j++) 

I* D r a w  o n l y  i f  ou ts ide   f ace   show ing  ( i f  t h e   n o r m a l   t o   t h e   p o l y g o n  
V e r t i c e s C j l  - ScreenPoin tsC*Ver tNumsPt r++ l :  

i n  s c r e e n   c o o r d i n a t e s   p o i n t s   t o w a r d   t h e   v i e w e r :   t h a t   i s .  has a 
p o s i t i v e  2 component) * /  

v l  - Vert icesC11.X - VerticesCO1.X: 
w l  = Ver t i ces [NumVer t i ces -1 l .X  - VerticesCO1.X: 
v2 = Vert icesC11.Y - VerticesCO1.Y; 
w2 = Ver t i cesCNurnVer t i ces - l1 .Y  - VerticesCO1.Y; 
i f  ( ( v l * w 2  - v2*wl)  > 0 )  [ 

/ *  It i s   f a c i n g   t h e   s c r e e n ,  s o  draw * /  

3-D Shading 1025 



/ *  A p p r o p r i a t e l y   a d j u s t   t h e   e x t e n t   o f   t h e   r e c t a n g l e   u s e d   t o  
e r a s e   t h i s   o b j e c t   l a t e r  * /  

f o r   ( j - 0 :   j < N u m V e r t i c e s ;  j++) { 
i f  ( V e r t i c e s 1 j l . X  > 

ObjectToXform->EraseRect[NonOisplayedPagel.Right~ 

ObjectToXform->EraseRectCNonDisplayedPagel.Right - 
e l s e  ObjectToXform->EraseRect [NonDisp layedPagel .Right  = 

i f  (Ver t i cesC j1 .X  < SCREEN-WIDTH) 

Ver t i cesC j1 .X ;  

SCREEN-WIDTH: 
i f  (Ver t i cesC j1 .Y  > 

Ob jec tToXfo rm->EraseRec t [NonOisp layedPage l .Bo t tom~ 

ObjectToXform->EraseRect [NonDisp layedPagel .Bot tom - i f  (Ver t i cesC j1 .Y  < SCREEN-HEIGHT) 

V e r t i c e s [ j ] . Y :  
e l s e  ObjectToXform->EraseRect[NonDisplayedPagel.Bottom- 

SCREEN-HEIGHT; 
i f  (Ver t i cesC j1 .X  < 

ObjectToXform->EraseRect[NonDisplayedPagel.Left) 

ObjectToXform->EraseRect[NonOisplayedPagel.Left - 
e l s e  ObjectToXform->EraseRectCNonOisplayedPagel.Left-O: 

i f  (Ver t i cesC j1 .X  > 0 )  

Ve r t i cesC j1 .X :  

i f  (Ver t i cesC j1 .Y  < 
ObjectToXform->EraseRect[NonDisplayedPagel.Top) 

ObjectToXform->EraseRect [NonDisp layedPagel .Top - 
e l s e  ObjectToXform->EraseRectCNonDisplayedPagel.Top-O: 

i f  (Ver t i cesC j1 .Y  > 0 )  

Ve r t i cesC j1 .Y :  

1 
/*  See i f  t h e r e ' s  any  shading * I  

i f  (FacePtr ->ShadingType - 0 )  { 
I* No shading i n   e f f e c t ,  so j u s t  draw */  
DRAW_POLYGON(Vertices, NumVert ices,   FacePtr ->Color Index.  0 ,   0 ) :  

I* Handle  shading * I  
/* 00 ambient  shading, i f  enabled */  
i f  (Ambienton && (FacePtr ->ShadingType & AMBIENT-SHADING)) I 

} e l s e  { 

/ *  Use the  ambient  shading  component * /  
In tens i t yTemp - A m b i e n t I n t e n s i t y :  

SET-INTENSITY(1ntensityTemp. 0.   0 .  0 ) :  
I e l s e  { 

I* Do d i f f u s e   s h a d i n g ,  i f  enabled * /  
i f  (FacePtr->ShadingType & DIFFUSE-SHADING) { 

/ *  C a l c u l a t e   t h e   u n i t   n o r m a l   f o r   t h i s   p o l y g o n ,   f o r   u s e   i n   d o t  

UnitNorma1.X - NormalEndpoint->X - Norma lS ta r tpo in t ->X ;  
UnitNorma1.Y - NormalEndpoint->Y - Norma lS ta r tpo in t ->Y :  
Uni tNormal .2  - NormalEndpoint ->2 - N o r m a l S t a r t p o i n t - > Z :  
/ *  C a l c u l a t e   t h e   d i f f u s e   s h a d i n g  component f o r  each   ac t i ve  

f o r  (Spot-0: Spot<MAX-SPOTS: Spot++) I 

produc ts  * I  

s p o t l i g h t  * /  

i f  (SpotOnCSpotl !- 0 )  I 
/*  Spot i s  on.  so sum. f o r  each c o l o r  component, t h e  

i n t e n s i t y ,   a c c o u n t i n g   f o r   t h e   a n g l e   o f   t h e   l i g h t   r a y s  
r e l a t i v e   t o   t h e   o r i e n t a t i o n   o f   t h e   p o l y g o n  */  

I* C a l c u l a t e   c o s i n e   o f   a n g l e   b e t w e e n   t h e   l i g h t  and t h e  
po lygon   no rma l :   sk ip  i f  s p o t   i s   s h i n i n g   f r o m   b e h i n d  
the   po l ygon  * /  

1026 Chapter 54 



i f  ( ( D i f f u s i o n  - D D T ~ P R O D U C T ( S p o t D i r e c t i o n V i e w [ S p o t l ,  
UnitNorma1 1)  > 0 )  I 

1ntensityTemp.Red += 

1ntensi tyTemp.Green +- 

1ntensi tyTemp.Blue +- 

FixedMul(SpotIntensity[Spotl.Red. D i f f u s i o n ) ;  

FixedMul(SpotIntensity[Spotl.Green, D i f f u s i o n ) ;  

FixedMul(SpotIntensity[Spotl.Blue. D i f f u s i o n ) :  
I 

1 
1 

1 
/*  C o n v e r t   t h e   d r a w i n g   c o l o r   t o   t h e   d e s i r e d   f r a c t i o n   o f   t h e  

IntensityAdjustColor(&ColorTemp. & F a c e P t r - > F u l l C o l o r ,  

I* Draw w i t h   t h e   c u m u l a t i v e   s h a d i n g ,   c o n v e r t i n g   f r o m   t h e   g e n e r a l  

DRAWKPOLYGON(Vertices. NumVert ices,  

b r i g h t e s t   p o s s i b l e   c o l o r  * /  

&In tens i tyTemp) ;  

c o l o r   r e p r e s e n t a t i o n   t o   t h e   b e s t - m a t c h   c o l o r   i n d e x  */  

1 
ModelColorToColorIndex(&ColorTemp). 0. 0): 

1 
I 

I 

Shading:  Implementation  Details 
In  order to calculate the cosine of the angle between an incoming light source and a 
polygon’s unit normal, we must first have the polygon’s unit  normal. This could be 
calculated by generating  a cross-product on two polygon edges to generate  a nor- 
mal, then calculating the normal’s length  and scaling to produce  a  unit  normal. 
Unfortunately, that would require taking a square root, so it’s not a desirable course 
of action. Instead, I’ve made a  change to X-Sharp’s  polygon format. Now, the first 
vertex in a  shaded polygon’s vertex list is the  end-point of a  unit  normal  that starts at 
the second point in the polygon’s vertex list,  as  shown in Figure 54.3. The first point 
isn’t one of the polygon’s vertices, but is used only to generate  a  unit  normal.  The 

Vertex 0 must be the endpoint of a  unit 
starting at vertex 1 .  This point 

is not part of the polygon. 

Vertex 1 must be the  startpoint of 
a  unit normal ending at vertex 0. 
This point is part of the polygon. Polygon I 

The  unit normal in the polygon data structure. 
Figure 54.3 

3-D Shading 1027 



Reversed  unit 
vector L’ toward 

Light  from  directed  illumination  source D, directed light Polygon  unit 

the  unit  vector L 
i of energy E, with  direction  expressed by 

I 
Polygon  surface 

The reversed  light  source  vector: 
Figure 54.4 

second point, however,  is a polygon vertex. Calculating the difference vector  be- 
tween the first and  second points yields the polygon’s unit  normal.  Adding a 
unit-normal endpoint to each polygon  isn’t free; each of those end-points has to be 
transformed, along with the rest of the vertices, and that takes time. Still,  it’s faster 
than calculating a  unit normal for each polygon from scratch. 
We also need a  unit vector for each directed light source. The directed light sources 
I’ve implemented in X-Sharp are spotlights; that is, they’re considered to be point 
light sources that are infinitely far away. This allows the simplifylng assumption that 
all light rays from a spotlight are parallel and of equal intensity throughout  the dis- 
played universe, so each spotlight can be represented with a single unit vector and a 
single  intensity. The only  trick is that in order to calculate the desired cos(theta) 
between the polygon unit normal and a spotlight’s unit vector, the direction of the 
spotlight’s unit vector  must be reversed, as  shown in Figure 54.4. This is necessary 
because the dot product implicitly  places  vectors  with their start points at  the same 
location when  it’s  used to calculate the cosine of the angle between two vectors. The 
light vector is incoming to the polygon surface, and the unit normal is outbound, so 
only by reversing one vector or the  other will  we get the cosine of the desired angle. 
Given the two unit vectors,  it’s a piece of cake to calculate intensities, as  shown in 
Listing 54.2. The sample program DEMO1, in the X-Sharp  archive on the listings 
disk (built by running K1 .BAT), puts the shading code to work  displaying a rotating 
ball  with ambient lighting and three  spot lighting sources that  the user can turn on 
and off. What you’ll  see when you run DEMO1 is that the shading is  very  good-face 
colors change very smoothly  indeed-so long as only green lighting sources are  on. 
However, if you combine spotlight two,  which  is blue, with  any other light source, 
polygon  colors will start to shift abruptly and unevenly. As configured in the demo, 
the palette supports a wide range of shading intensities for  a pure version  of  any one 
of the  three primary colors, but  a very limited number of intensity steps (four, in  this 

1028 Chapter 54 



case) for each color  component when two or more primary colors are mixed. While 
this situation can be improved, it is fundamentally a result of the restricted capabili- 
ties of the 256-color palette, and  there is only so much that can be done without a 
larger color set. In  the  next chapter, I’ll talk about some ways to improve the quality 
of 256-color shading. 

3-D Shading 1029 



chapter 55

color modeling in 256-color mode



's Color Model in an 

Once she turned six, my daughter wanted some fairly sophisticated books read to 
her. Wind in the Willows use on the Prairie. Pretty heady stuff for one so young, 
and sometimes I wondered how much of it she really understood. As an experiment, 
during one reading)! stopped whenever I came to a word I thought she might not 
know, and asked her what it meant. One such word was “mulling.” 

ulling’ means?” I asked. 
r a while, then said, “Pondering.” 
e than a little surprised. 

She smiled and said, “But, Dad, how do you know that I know what ‘pondering’ means?” 
“Okay,” I said, ‘What does ‘pondering’ mean?” 
“Mulling,” she said. 
What does this anecdote tell us about the universe in which we live? Well, it certainly 
indicates that this universe is inhabited by at least one comedian and one good straight 
man. Beyond that, though, it can be construed as a parable about the difficulty of 
defining things properly; for example, consider the complications inherent in the 
definition of color on a 256-color display adapter such as the VGA. Coincidentally, 
VGA color modeling just happens to be this chapter’s topic, and the place to start is 
with color modeling in general. 

1033 



A Color Model 
We’ve been  developing X-Sharp for several chapters now. In  the previous chapter, 
we added  illumination  sources and shading;  that  addition makes it necessary for us 
to have a  general-purpose  color  model, so that we can display the  gradations of color 
intensity necessary to render illuminated  surfaces properly. In other words, when a 
bright  light is shining  straight at a  green  surface, we need  to be able  to display bright 
green,  and as that  light dims or tilts to strike the  surface at a shallower angle, we 
need  to be able to  display  progressively dimmer  shades of green. 
The first thing to do is to  select  a  color  model in which to  perform our shading 
calculations. I’ll use the dot product-based stuff I discussed in the previous chapter. 
The  approach we’ll take is to select an ideal  representation of the full color space 
and do our calculations  there, as if  we really could display  every  possible color; only 
as a final step will  we map each desired color into the limited 25kolor set of the VGA, or 
the color range of  whatever adapter we happen to  be  working with. There  are  a  number 
of color models that we might  choose  to work  with, but I’m going  to go with the one 
that’s  both most familiar and, in my opinion, simplest: RGB (red,  green,  blue). 
In the RGB model,  a given color is modeled as the mix of specific fractions of full 
intensities of each of the  three  color  primaries. For example,  the  brightest possible 
pure blue is O.O*R,  O.O*G, l.O*B. Half-bright cyan is O.O*R, 0.5*G,  0.5*B. Quarter- 
bright gray is 0.25*R,  0.25*G, 0.25”B. You can  think of  RGB color space as being  a 
cube, as  shown in Figure 55.1,  with  any particular  color lying somewhere inside or 
on the  cube. 

Red 

Increasing / 
red  intensity 

I Yellow 

Cyan 

Green 

\ 
Increasing 
green  intensity 

The RGB color cube. 
Figure 55.1 

1034 Chapter 55 



RGB  is good  for  modeling colors generated by light sources, because red,  green,  and 
blue are  the additive primaries; that is,  all other colors can be generated by mixing 
red,  green,  and blue light sources. They're also the primaries for color computer 
displays, and  the RGB model maps  beautifully onto the display  capabilities  of  15- 
and  24bpp display adapters, which tend  to  represent pixels  as RGB combinations in 
display  memory. 
How, then,  are RGB colors represented  in X-Sharp?  Each color is represented as an 
RGB triplet, with eight bits each of red,  green,  and  blue resolution, using the struc- 
ture shown in Listing  55.1. 

LISTING 55.1  155- 1 .C 
t y p e d e f   s t r u c t   " o d e l C o l o r  [ 

uns igned   cha r  Red: / *  255  = rnax r e d ,  0 = n o   r e d  * I  
uns igned  char   Green:  / *  255  = rnax g reen ,  0 = no  g reen */  
u n s i g n e d   c h a r   B l u e :  / *  255  = rnax b l u e .  0 = n o   b l u e  * I  

I Model   Co l   o r :  

Here, each color is described by three color components-one each for red,  green, 
and blue-and each primary color component is represented by eight bits.  Zero 
intensity  of a color component is represented by the value 0, and full  intensity is 
represented by the value  255. This gives  us  256  levels  of each primary color compo- 
nent,  and a total  of  16,772,216  possible  colors. 
Holy  cow! Isn't 16,OOO,OOO-plus colors a bit of  overkill? 
Actually, no, it  isn't. At the  eighth Annual Computer Graphics Show in New  York, 
Sheldon Linker, of Linker Systems, related an  interesting tale about color percep- 
tion research at  the  Jet Propulsion Lab  back in the '70s. The JPL color research folks 
had  the capability  to print  more  than 50,000,000 distinct and very  precise colors on 
paper. As a test,  they tried printing out words in various  colors,  with each word printed 
on a background  that differed by only one color index  from  the word's  color. No 
one expected  the  human eye to  be able to differentiate between two colors, out of 
5O,OOO,OOO-plus, that were so similar. It  turned  out,  though,  that everyone could read 
the words  with no trouble  at all; the  human eye  is surprisingly  sensitive  to color 
gradations, and also happens to be wonderful at  detecting edges. 
When the JPL  team  went  to  test the eye's  sensitivity to color on  the  screen, they 
found  that only about 16,000,000 colors could be distinguished, because the color- 
sensing mechanism of the  human eye  is more compatible with  reflective sources 
such as paper  and ink than with  emissive sources such  as CRTs. Still, the  human eye 
can distinguish about 16,000,000  colors on  the  screen. That's not so hard  to believe, 
if you think about it; the eye senses each primary color separately, so we're  really  only 
talking about  detecting 256  levels  of  intensity per primary here. It's the  brain  that 
does  the amazing part;  the 16,OOO,OOO-plus color capability  actually comes not from 
extraordinary sensitivity in the eye, but  rather from the brain's ability to distinguish 
between  all the mixes of  256  levels  of each of three primaries. 

Color Modeling in 256-Color Mode 1035 



So it's perfectly reasonable  to  maintain 24 bits of color  resolution, and X-Sharp rep- 
resents  colors  internally as ideal,  device-independent 24bit RGB triplets. All shading 
calculations  are  performed on these  triplets, with 24bit color  precision. It's only 
after  the  final 24bit RGB drawing color is calculated  that  the display adapter's  color 
capabilities come into play,  as the X-Sharp function ModelColorToColorIndex() is 
called to  map  the  desired RGB color to the closest match  the  adapter is capable of 
displaying. Of course,  that  mapping is adapter-dependent.  On  a 24bpp device, it's 
pretty obvious  how the  internal RGB color  format maps to displayed pixel colors: 
directly. On VGAs with 15-bpp Sierra  Hicolor DACS, the  mapping is equally simple, 
with the five upper bits of each  color  component  mapping  straight  to display  pixels. 
But how on  earth do we map  those 16,OOO,OOO-plus  RGB colors into  the 256-color 
space of a  standard VGA? 
This is the "color definition"  problem I mentioned  at  the  start of this chapter. The 
VGA palette is arbitrarily  programmable to  any set of  256 colors, with each  color 
defined by  six bits each of red,  green,  and  blue intensity. In X-Sharp, the  function 
InitializePaletteO can be customized to set up the  palette however we wish; this gives 
us nearly complete flexibility in  defining  the working color set. Even  with infinite 
flexibility,  however,  256 out of 16,000,000 or so possible colors is a  pretty  puny selec- 
tion. It's easy to set up  the palette  to give  yourself a  good  selection of just blue 
intensities, or  ofjust greens; but  for  general color modeling  there's simply not  enough 
palette  to go around. 
One way to  deal with the  limited  simultaneous  color capabilities of the VGA is to 
build an application  that uses  only a  subset of  RGB space, then bias the VGA's palette 
toward that  subspace.  This is the  approach used in the DEMOl sample  program in 
X-Sharp;  Listings  55.2 and 55.3 show the  versions of Initializepalette0 and 
ModelColorToColorIndex() that set up  and perform  the  color  mapping  for  DEMOl. 

LISTING  55.2  155-2.C 
/*  S e t s   u p   t h e   p a l e t t e   i n  mode X ,  t o  a 2 - 2 - 2  g e n e r a l  R - G - B  o r g a n i z a t i o n ,   w i t h  

64 s e p a r a t e   l e v e l s   e a c h   o f   p u r e   r e d ,   g r e e n ,   a n d   b l u e .   T h i s   i s   v e r y   g o o d  
f o r   p u r e   c o l o r s ,   b u t   m e d i o c r e   a t   b e s t   f o r   m i x e s .  

....."""""""""~ 

10 0 I Red lGreen l   B lue  I 

7 6 5 4 3 2 1 0  
"""""""""""" 

"""""""""""" 

10 1 I Red I 
"""""""""""" 

7 6 5 4 3 2 1 0  

"""""""""""" 

11 0 I Green I 

7 6 5 4 3 2 1 0  

""""""".......... 

1036 Chapter 55 



_______"_."........... 

I1 1 I B1 ue I 
""""""""""".. 

7 6 5 4 3 2 1 0  

Colors  are  gamma  corrected  for a gamma  of  2.3  to  provide  approximately 
even  intensity  steps on the  screen. 

P i  ncl  ude <dos . h> 
#include  "polygon. h" 

static  unsigned  char  Gamma4Levels[l - { 0.  39. 53,  63 I ;  
static  unsigned  char  Gamma64Levels[] - { 

0 .  10. 14. 17. 19. 21. 23. 24. 26, 27. 28. 29, 31. 32. 33. 34. 
35. 36, 37. 37. 38. 39, 40. 41. 41. 42, 43, 44. 44, 45. 46. 46, 
47. 48, 48. 49. 49. 50. 51. 51. 52, 52, 53, 53, 54. 54. 55. 55. 
56. 56. 57. 57. 58, 58. 59. 59. 60, 60, 61. 61. 62, 62. 63. 63. 

I ;  

static  unsigned  char  PaletteBlock[256][31: I* 256 RGB entries *I  

void InitializePaletteO 
I 

int Red, Green, Blue.  Index: 
union  REGS  regset: 
struct  SREGS  sregset: 

for  (Red-0:  Red<4:  Red++) { 
for  (Green-0: Green<4: Green++) I 

for  (Blue-0:  Blue<4:  Blue++) { 
Index = (Red<<4)+(Green<<Z)+Blue:  
PaletteBlock[Indexl[01 - Gamma4Levels[Redl: 
PaletteBlock[Index][l] - Gamma4Levels[Greenl: 
PaletteBlock[Indexl[21 - Gamma4Levels[Bluel: 

1 
I 

I 

for  (Red-0:  Red<64:  Red++) { 
PaletteBlock[64+Redl[Ol = Gamma64Levels[Redl; 
PaletteBlock[64+Redl[ll - 0: 
PaletteBlock[64+Redl[2] - 0: 

1 

for  (Green-0:  Green<64:  Green++) { 
PaletteBlock[128+Greenl[Ol - 0:  
PaletteBlock[l28+Greenl[ll - Gamma64Levels[Greenl: 
PaletteBlock[l2B+Green1[2] - 0:  

1 

for  (Blue-0:  Blue<64:  Blue++) { 
PaletteBlock[192+Bluel[Ol - 0:  
PaletteBlock[192+Bluel[ll - 0:  
Palette61 ock[  192+B1 uelC21 - Gamma64Level  sCBl  uel : 

1 

I* Now set up the palette * /  
re9set.x.a~ - 0x1012: I* set  block  of  DAC  registers  function *I  
regset.x.bx - 0;  I* first  DAC  location  to  load *I  

Color Modeling in 256-Color Mode 1037 



r e g s e t . x . c x  - 256: I* I o f  DAC l o c a t i o n s   t o  1 oad *I  
r e g s e t . x . d x  - ( u n s i g n e d  i n t ) P a l e t t e B l o c k ;  I* o f f s e t   o f   a r r a y   f r o m   w h i c h  

t o   l o a d  RGB s e t t i n g s  *I  
s r e g s e t . e s  - -DS; I* segment o f   a r r a y   f r o m   w h i c h   t o   l o a d   s e t t i n g s  *I  
i n t 8 6 x ( O x l O .   & r e g s e t .   & r e g s e t .   & r e g s e t ) ;  I* l o a d   t h e   p a l e t t e   b l o c k  *I  

1 

LISTING 55.3 155-3.C 
/* C o n v e r t s  a m o d e l   c o l o r   ( a   c o l o r   i n   t h e  RGB c o l o r   c u b e ,   i n   t h e   c u r r e n t  

c o l o r   m o d e l )   t o  a c o l o r   i n d e x   f o r  mode X .  P u r e   p r i m a r y   c o l o r s   a r e  
s p e c i a l - c a s e d ,   a n d   e v e r y t h i n g   e l s e   i s   h a n d l e d   b y  a 2 - 2 - 2  mode l .  *I  

i n t  Model   Col   orToCol   or Index(Mode1  Col   or  * C o l   o r )  
I 

i f  ( C o l o r - > R e d  - 0 )  { 
i f  ( C o l o r - > G r e e n  - 0 )  { 

/ *  P u r e   b l u e  *I  
r e t u r n ( l 9 2 + ( C o l o r - > B l u e  >> 2 ) ) ;  

I* Pure  green *I  
return(l28+(Color->Green >> 2 ) ) ;  

1 e l s e  i f  ( C o l o r - > B l u e  - 0 )  { 

1 

/*  P u r e   r e d  *I 
r e t u r n ( 6 4 + ( C o l o r - > R e d  >> 2 ) ) ;  

1 e l s e  i f  ( ( C o l o r - > G r e e n  - 0) && ( C o l o r - > B l u e  - 0 ) )  { 

1 
I* M u l t i - c o l o r   m i x ;   l o o k   u p   t h e   i n d e x   w i t h   t h e   t w o   m o s t   s i g n i f i c a n t   b i t s  

r e t u r n ( ( ( C o 1 o r - > R e d  & OxCO) >> 2 )  I ( ( C o l o r - > G r e e n  & OxCO) >> 4 )  I 
o f   e a c h   c o l o r   c o m p o n e n t  *I  

( ( C o l o r - > B l u e  & OxCO) >> 6)); 
1 

In DEMOl, threequarters of the  palette is set up with  64 intensity levels  of each of 
the  three  pure  primary colors (red,  green,  and  blue),  and  then most drawing is done 
with  only pure primary  colors.  The  resulting  rendering quality is very good because 
there  are so many  levels  of each primary. 
The downside is that this excellent quality is available for only three colors: red, 
green,  and  blue. What about all the  other colors that  are mixes of the  primaries, like 
cyan or yellow, to say nothing of gray? In  the DEMOl color  model, any RGB color 
that is not  a  pure primary is mapped  into  a 2-2-2 RGB space that  the  remaining 
quarter of the VGA's palette is set up to display; that is, there  are exactly two bits of 
precision  for  each  color  component, or 64 general RGB colors  in all. This is genu- 
inely  lousy color  resolution,  being only 1/64th of the  resolution we really need  for 
each  color  component. In this model,  a  staggering 262,144 colors  from  the 24bit 
RGB cube  map  to each color in the 2-2-2 VGA palette. The results are  not impressive; 
the  colors of mixed-primary surfaces jump abruptly, badly damaging  the illusion of 
real  illumination. To see how poor a 2-2-2 RGB selection  can look, run DEMO1, and 
press the '2' key to  turn  on  spotlight 2, the  blue  spotlight. Because the  ambient 
lighting is green,  turning  on  the  blue  spotlight causes mixed-primary colors to be 
displayed-and the  result looks terrible, because there  just  isn't  enough  color reso- 
lution.  Unfortunately, 2-2-2 RGB is close to  the best general  color  resolution  the 
VGA can display; 3-3-2 is  as good as it gets. 

1038 Chapter 55 



Another  approach would  be to set up  the palette with  reasonably good mixes  of two 
primaries but  no mixes  of three primaries, then use  only  two-primary colors in your 
applications (no grays or whites or  other three-primary mixes). Or you could choose 
to shade only selected objects, using part of the palette for a good  range of the colors 
of those objects, and reserving the rest  of the palette for  the fixed colors of the other, 
nonshaded objects.  Jim Kent, author of  Autodesk  Animator,  suggests  dynamically 
adjusting the palette to the  needs of each  frame,  for  example by allocating the colors 
for each frame on a first-come,  first-served  basis. That wouldn’t be trivial  to do in real 
time, but  it would  make for extremely efficient  use of the palette. 
Another widely used solution is to set up a 2-2-2, 3-3-2, or 2.6-2.6-2.6 (6 levels per 
primary) palette, and  dither colors. Dithering is an excellent solution,  but outside 
the scope of this book. Take a look at  Chapter 13 of  Foley and Van Dam (cited  in 
“Further Readings”) for an introduction to color perception and approximation. 
The sad truth is that  the VGAs 256-color palette is an  inadequate resource for  gen- 
eral RGB shading. The good news  is that clever workarounds can make VGA graphics 
look  nearly  as good as 24bpp graphics; but  the  burden falls on you, the program- 
mer, to design  your applications and color mapping to compensate  for  the VGAs 
limitations. To experiment with a different  256color  model in X-Sharp, just change 
InitializePalette() to set up the desired palette and ModelColorToColorIndex() to 
map  24bit RGB triplets into  the palette you’ve set up. It’s that simple, and  the results 
can be striking indeed. 

A Bonus from the BitMan 
Finally, a note  on fast VGA text, which came in from a correspondent who  asked  to 
be  referred to  simply  as the BitMan. The BitMan  passed along a nifty application of 
the VGA’s under-appreciated write mode 3 that is, under  the  proper circumstances, 
the fastest  possible way to draw  text in any  16-color VGA mode. 
The task at hand is illustrated by Figure  55.2. We want  to  draw  what’s  known  as  solid 
text, in which the effect is the same as  if the cell around each character was drawn in 
the  background color, and  then each  character was drawn on top of the  background 
box. (This is in contrast to transparent text,  where each character is drawn in  the 
foreground color without disturbing  the  background.) Assume that each character 
fits in an eight-wide  cell (as is the case  with the  standard VGA fonts),  and that we’re 
drawing text at byte-aligned locations in display  memory. 
Solid text is useful for drawing menus, text areas, and  the like;  basically, it can be 
used  whenever  you  want to display text on a solid-color background. The obvious 
way to  implement solid text is to fill the rectangle representing  the background box, 
then draw transparent text on top of the  background box.  However, there  are two 
problems with doing solid text this way. First, there’s some flicker,  because for a little 
while the box is there  but  the text  hasn’t  yet  arrived.  More important is that  the 
background-followed-by-foreground approach accesses  display memory three times 

Color Modeling  in 256-Color Mode 1039 



Character  drawn in foreground  color 
I 

I \ I 
\ 

Character cell (background  box) 
drawn in background  color 

Drawing solid text. 
Figure 55.2 

for  each byte  of font data:  once to draw the background box, once to read display 
memory to load  the latches, and  once to  actually  draw the  font  pattern. Display 
memory is incredibly slow, so we’d  like to  reduce  the  number of  accesses  as much as 
possible.  With the BitMan’s approach, we can reduce  the  number of accesses to just 
one  per  font byte, and eliminate flicker, too. 
The keys to fast solid text are  the latches and write mode 3. The latches, as  you  may 
recall from  earlier discussions in this book, are  four  internal VGA registers that  hold 
the last  bytes read  from  the VGA’s four planes; every read  from VGA memory loads 
the latches with the values stored at  that display memory address across the  four 
planes. Whenever a write is performed to VGA memory, the latches can provide 
some, none,  or all  of the bits written to memory, depending  on  the  bit mask,  which 
selects between the latched data  and  the drawing data on a bit-by-bit  basis. The latches 
solve  half our problem; we can fill the latches with the background color, then use 
them to draw the background box. The trick  now is drawing the text pixels in the 
foreground  color  at  the same time. 
This is where it gets a little complicated. In write mode 3 (which incidentally is not 
available on  the EGA) , each byte  value that the CPU writes to the VGA does not  get 
written to  display memory. Instead,  it  turns  into  the bit mask.  (Actually, it’s ANDed 
with the Bit  Mask register, and  the result becomes the  bit mask, but we’ll  leave the Bit 
Mask register set to OxFF, so the CPU value will become the bit mask.) The bit mask 
selects, on a bit-by-bit  basis, between the  data  in  the latches for  each  plane (the 
previously loaded  background color, in this case) and  the  foreground color. Where 
does the  foreground  color come from, if not from the CPU? From the Set/Reset 
register, as  shown in Figure 55.3. Thus,  each byte written by the CPU (font  data, 
presumably) selects foreground  or background  color  for each of eight pixels,  all 
done with a single write to display  memory. 

1040 Chapter 55 



I Bit-mask  Register 1 Byte written  to VGA memory by CPU 

1 1 
I AND bit-mask  register and CPU data I 
I I Set/Reset  Register I 

“I I I 

I 

bit-mask is 0; 
set/reset bit 
where  bit-mask 

1 
(Assumes 

written to Map Mask is 
Eight  bits 

memory planes are 
display OXOF, so all 

written.) V 

bit where 

1 
T 

I1 

OxFF; a 0 

J- c 
Selects  latch 
bit where 
bit-mask is 0; 
set/reset bit 
where  bit-mask 
bit is  I .  

1 Eight  bits 
written to 
display 
memory 

bit where 
bit-mask is  0; 
set/reset bit 
where  bit-mask 
bit is  I .  

L 

Eight  bits 
written  to 
display 
memory 

set/reset bit 
where  bit-mask 
bit is  I .  

c J- 

Eight  bits 
written to 
display 
memory 

Memory Memory Memory 

The  data path in write  mode 3. 
Figure 55.3 

I know  this sounds pretty esoteric, but  think of it  this way: The latches hold  the 
background color in a form suitable for writing eight  background pixels (one full 
byte) at a pop. Write mode 3 allows each CPU  byte  to punch holes in the  background 
color provided by the latches, holes through which the  foreground color from  the 
Set/Reset register can flow. The result is that a single  write  draws  exactly the combi- 
nation of foreground  and background pixels described by each font byte  written by 
the CPU. It may help to look at Listing 55.4, which  shows The BitMan’s technique in 
action. And yes,  this technique is absolutely  worth the  trouble; it’s about  three times 
faster than  the fill-then-draw approach described above, and  about twice  as fast  as 
transparent text. So far as I know, there is no faster way to draw text on a VGA. 

Color Modeling in 256-Color Mode I041 



It's  important  to  note  that  the BitMan's technique only  works on full bytes  of  display 
memory. There's no way to clip to  finer  precision;  the  background  color will inevita- 
bly flood all of the  eight  destination pixels that aren't selected as foreground pixels. 
This makes The BitMan's technique most suitable  for  monospaced  fonts with char- 
acters  that  are multiples of eight pixels in width, and for drawing to byte-aligned 
addresses; the  technique can be used in other situations,  but is considerably more 
difficult to apply. 

LISTING 55.4 155-4.ASM 
: D e m o n s t r a t e s   d r a w i n g   s o l i d   t e x t  on t h e  VGA.  u s i n g   t h e   B i t M a n ' s   w r i t e  mode 
: 3 - b a s e d .   o n e - p a s s   t e c h n i q u e .  

CHAR-HEIGHT 
SCREEN-HEIGHT 
SCREENLSEGMENT 
FGLCOLOR 
BG-COLOR 
GC-INDEX 
SETLRESET 
G-MODE 
BIT-MASK 

.model 

. s t a c k  

. d a t a  
L i n e  
CharHe igh t  
MaxL ines  
L ineWid thBy tes  
F o n t P t r  
S a m p l e s t r i n g  

equ 8 
equ  480 
equ OaOOOh 
equ  14  
equ 1 
equ  3ceh 
equ 0 
equ 5 
equ 8 

smal 1 
200h 

dw ? 
dw ? 
dw ? 
dw ? 
dd  ? 
l a b e l   b v t e  

:# o f   s c a n   l i n e s   p e r   c h a r a c t e r   ( m u s t   b e   < 2 5 6 )  
:# o f   s c a n   l i n e s   p e r   s c r e e n  
:where   sc reen  memory i s  
: t e x t   c o l   o r  
: b a c k g r o u n d   b o x   c o l o r  
: G r a p h i c s   C o n t r o l l e r  ( G C )  I n d e x   r e g  1/0 p o r t  
: S e t / R e s e t   r e g i s t e r   i n d e x   i n  GC 
:Graph ics  Mode r e g i s t e r   i n d e x   i n  GC 
: B i t  Mask r e g i s t e r   i n d e x   i n  GC 

: c u r r e n t   l i n e  # 
:# o f   s c a n   l i n e s   i n   e a c h   c h a r a c t e r   ( m u s t   b e   < 2 5 6 )  
:max # o f   s c a n   l i n e s   o f   t e x t   t h a t  will f i t  on  sc reen 
: o f f s e t   f r o m   o n e   s c a n   l i n e   t o   t h e   n e x t  
; p o i n t e r   t o   f o n t   w i t h   w h i c h   t o   d r a w  

db 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'  
db ' a b c d e f g h i j k l m n o p q r s t u v w x y z '  
db ' 0 1 2 3 4 5 6 7 8 9 ! @ ~ ~ S % A & * 0 . < . > / ? ; : ' . 0  

.code 
s t a r t :  

mov 
mov 

mov 
i n t  

mov 
mov 
mov 
i n t  
mov 
mov 

mov 
mov 
mov 
sub 
d i  v 
mu1 
mov 

ax .@data  
ds .ax  

ax,   12h 
10h : s e l e c t   6 4 0 x 4 8 0   1 6 - c o l o r  mode 

a h . l l h  :BIOS c h a r a c t e r   g e n e r a t o r   f u n c t i o n  
a1 .30h :BIOS g e t   f o n t   p o i n t e r   s u b f u n c t i o n  
b h . 3   : g e t   8 x 8  ROM f o n t   s u b s u b f u n c t i o n  
1 0 h   : g e t   t h e   p o i n t e r   t o   t h e  B I O S  8x8 f o n t  
w o r d   p t r   C F o n t P t r 1 . b ~  
w o r d   p t r   C F o n t P t r + E l . e s  

bx.CHAR-HEIGHT 
C C h a r H e i g h t 1 . b ~  :# o f   s c a n   l i n e s   p e r   c h a r a c t e r  
ax.SCREEN-HEIGHT 
dx ,   dx  
b x  
b x  :max # o f   f u l l   s c a n   l i n e s   o f   t e x t   t h a t  
[ M a x L i   n e s l   , a x  : will f i t  on t h e   s c r e e n  

1042 Chapter 55 



mov a h . 0 f h  : B I O S  v i d e o   s t a t u s   f u n c t i o n  
i n t  10h   : ge t  # o f   c o l u m n s   ( b y t e s )   p e r   r o w  
mov a1 , a h   ; c o n v e r t   b y t e   c o l u m n s   v a r i a b l e   i n  
sub  ah.ah : AH t o   w o r d   i n  A X  
mov C L i n e W i d t h B y t e s 1 , a x   : w i d t h   o f   s c a n   l i n e   i n   b y t e s  

: n o w   d r a w   t h e   t e x t  
sub  bx.bx 
mov [ L i n e ] ,   b x   : s t a r t   a t   s c a n   l i n e  0 

s u b   a x . a x   ; s t a r t   a t   c o l u m n  0;  must   be a m u l t i p l e   o f  8 
mov ch ,  FG-COLOR : c o l o r   i n   w h i c h  t o  d r a w   t e x t  
mov c l  .BG-COLOR : c o l o r   i n   w h i c h   t o   d r a w   b a c k g r o u n d   b o x  
mov s i   . o f f s e t   S a m p l e s t r i n g   : t e x t   t o   d r a w  
c a l l   D r a w T e x t S t r i n g   : d r a w   t h e   s a m p l e   t e x t  
mov bx .  I: L i   n e ]  
add  bx . [CharHe igh t ]  :# o f   n e x t   s c a n   l i n e   t o   d r a w   o n  
mov C L i n e 1 . b ~  
cmp bx ,   [MaxL i   nes ]   ; done   ye t?  
j b  L i n e L o o p   : n o t   y e t  

mov ah.7 
i n t  2 1 h   : w a i t   f o r  a k e y   p r e s s ,   w i t h o u t   e c h o  

mov ax.03h 
i n t  10h  :back t o   t e x t  mode 

mov ah .4ch 
i n t  21h ; e x i t   t o  DOS 

L ineLoop:  

: Draws a t e x t   s t r i n g .  
: I n p u t :  AX = X c o o r d i n a t e   a t   w h i c h   t o   d r a w   u p p e r - l e f t   c o r n e r   o f   f i r s t   c h a r  
: BX - Y c o o r d i n a t e   a t   w h i c h   t o   d r a w   u p p e r - l e f t   c o r n e r   o f   f i r s t   c h a r  
: CH = f o r e g r o u n d   ( t e x t )   c o l o r  
: CL - b a c k g r o u n d   ( b o x )   c o l o r  
: D S : S I  - p o i n t e r   t o   s t r i n g   t o   d r a w ,   z e r o   t e r m i n a t e d  
: C h a r H e i g h t   m u s t   b e   s e t   t o   t h e   h e i g h t   o f   e a c h   c h a r a c t e r  
: F o n t P t r   m u s t   b e   s e t   t o   t h e   f o n t   w i t h   w h i c h   t o   d r a w  

: D o n ' t   c o u n t  on a n y   r e g i s t e r s   o t h e r   t h a n  DS. SS.  and S P  b e i n g   p r e s e r v e d .  
: The X c o o r d i n a t e   i s   t r u n c a t e d   t o  a m u l t i p l e   o f  8. C h a r a c t e r s   a r e  

L i n e W i d t h B y t e s   m u s t   b e   s e t   t o   t h e   s c a n   l i n e   w i d t h   i n   b y t e s  

: assumed t o  be 8 p i x e l s   w i d e .  

D r a w T e x t S t r i n g   p r o c   n e a r  
a l i g n  2 

c l  d 
s h r   a x . 1  
s h r   a x . 1  
s h r   a x . 1  
mov d i   , a x  
mov ax .CL ineWid thBy tes1  
mu1 b x  
add d i   , a x  
mov ax.SCREENKSEGMENT 
mov es .ax  

mov dx,GC-INDEX 
mov a x . ( O f f h  SHL 8 )  + BIT-MASK 
o u t   d x . a x  

; b y t e   a d d r e s s   o f   s t a r t i n g  X w i t h i n   s c a n   l i n e  

; s t a r t   o f f s e t   o f   i n i t i a l  s c a n   l i n e  
; s t a r t   o f f s e t   o f   i n i t i a l  b y t e  

;ES:DI - o f f s e t   o f   i n i t i a l   c h a r a c t e r ' s  
: f i r s t   s c a n   l i n e  
: s e t  up t h e  V G A ' s  hardware  s o  t h a t  we can 
: fill t h e   l a t c h e s   w i t h   t h e   b a c k g r o u n d   c o l o r  

: s e t  B i t  Mask r e g i s t e r   t o  OxFF ( t h a t ' s   t h e  
: d e f a u l t ,   b u t  I ' m  d o i n g   t h i s   j u s t   t o  make s u r e  

Color Modeling in 256-Color Mode 1043 



mov ax , (003h  SHL 8 )  + G-MODE 
o u t   d x . a x  
mov a h . c l  
mov a1 .SET-RESET 
o u t   d x . a x  
mov b y t e   p t r   e s : [ O f f f f h l . O f f h  

mov c l   . e s : [ O f f f f h l  

mov ah.ch 
o u t  dx.ax 

DrawTextLoop: 
1 odsb 
and a1 .a1 
j z  DrawTextDone 
push  ds  
p u s h   s i  
p u s h   d i  

mov d x , [ L i n e W i d t h B y t e s l  
dec  dx 
mov cx .CCharHe igh t1  
mu1 c l  
I d s   s i   . C F o n t P t r l  
add s i  ,ax 

DrawCharLoop: 
movsb 

add d i   . d x  
loop  DrawCharLoop 

pop d i  
i n c   d i  
pop s i  
POP ds  
jmp  DrawTextLoop 

a l i g n  2 
DrawTextDone: 

mov dx.GC-INDEX 
mov ax , (000h SHL 8)  + G-MODE 
o u t   d x . a x  
r e t  

D r a w T e x t S t r i n g   e n d p  
e n d   s t a r t  

; y o u   u n d e r s t a n d   t h a t   B i t  Mask r e g i s t e r   a n d  
; CPU d a t a   a r e  ANDed i n   w r i t e  mode 3 )  

; s e l e c t   w r i t e  mode 3 
; b a c k g r o u n d   c o l o r  

; s e t   t h e   d r a w i n g   c o l o r   t o   b a c k g r o u n d   c o l o r  
; w r i t e  8 p i x e l s   o f   t h e   b a c k g r o u n d  
; c o l o r   t o   u n u s e d   o f f - s c r e e n  memory 
; r e a d   t h e   b a c k g r o u n d   c o l o r   b a c k   i n t o   t h e  
; l a t c h e s ;   t h e   l a t c h e s   a r e  now f i l l e d   w i t h  
; t h e   b a c k g r o u n d   c o l o r .   T h e   v a l u e   i n  CL 
; d o e s n ' t   m a t t e r ,  we j u s t   n e e d e d  a t a r g e t  
: f o r   t h e   r e a d ,  s o  we c o u l d   l o a d   t h e   l a t c h e s  
; f o r e g r o u n d   c o l o r  
: s e t   t h e   S e t / R e s e t   ( d r a w i n g )   c o l o r   t o   t h e  
; f o r e g r o u n d   c o l o r  
; w e ' r e   r e a d y   t o   d r a w !  

; n e x t   c h a r a c t e r   t o   d r a w  
;end o f   s t r i n g ?  

;yes 
;remember s t r i n g ' s  segment 
;remember o f f s e t   o f   n e x t   c h a r a c t e r   i n   s t r i n g  
: r e m e m b e r   d r a w i n g   o f f s e t  
; l o a d   t h e s e   v a r i a b l e s   b e f o r e  we w i p e   o u t  DS 
: o f f s e t   f r o m   o n e   l i n e   t o   n e x t  
; c o m p e n s a t e   f o r  STOSB 

; o f f s e t   o f   c h a r a c t e r  i n  f o n t   t a b l e  
; p o i n t   t o   f o n t   t a b l e  
: p o i n t   t o   s t a r t   o f   c h a r a c t e r   t o   d r a w  
; t h e   f o l l o w i n g   l o o p   s h o u l d   b e   u n r o l l e d   f o r  
; maximum per fo rmance !  
;draw a l l   l i n e s   o f   t h e   c h a r a c t e r  
; g e t   t h e   n e x t   b y t e   o f   t h e   c h a r a c t e r   a n d   d r a w  
; c h a r a c t e r ;   d a t a  i s  ANDed w i t h   B i t  Mask 
: r e g i s t e r   t o  become b i t  mask ,   and   se lec ts  
; b e t w e e n   l a t c h   ( c o n t a i n i n g   t h e   b a c k g r o u n d  
; c o l o r )   a n d   S e t / R e s e t   r e g i s t e r   ( c o n t a i n i n g  
; f o r e g r o u n d   c o l o r )  
; p o i n t   t o   n e x t   l i n e   o f   d e s t i n a t i o n  

; r e t r i e v e   i n i t i a l   d r a w i n g   o f f s e t  
; d r a w i n g   o f f s e t   f o r   n e x t   c h a r  
; r e t r i e v e   o f f s e t   o f   n e x t   c h a r a c t e r   i n   s t r i n g  
; r e t r i e v e   s t r i n g ' s  segment 
; d r a w   n e x t   c h a r a c t e r ,  i f  any 

; r e s t o r e   t h e   G r a p h i c s  Mode r e g i s t e r   t o   i t s  
; d e f a u l t   s t a t e   o f   w r i t e  mode 0 

; s e l e c t   w r i t e  mode 0 

1044 Chapter 55 



chapter 56

pooh and the space station



exture Mapping to Place Pooh  on a Polygon 
lives: in a space station orbiting Saturn. No, really; 
er, and  an eight-year-old  wouldn’t  make up some- 
? One day she  wondered  aloud, “Where is the 

before I could give one of those boring parental 
ary-but  A.A.  Milne probably imagined it to be 
ghter  announced  that the Hundred Acre  Wood 

’s a very good location for the Hundred Acre  Wood, leading to 
es for Pooh and Piglet. Consider the time  they  went  down to 
(we’re talking centrifugal force here; the station is spinning, 

of course) and nearlykurned into pancakes of the Pooh and Piglet  varieties,  respec- 
tively. Or the time  they drifted out into  the free-fall area  at  the core and had to be 
rescued by humans with  wings strapped on (a tip of the hat to Robert Heinlein here). 
Or the time  they  were caught up by the current in the river through  the Wood and 
drifted for weeks around the circumference of the station, meeting many cultures 
and finding many adventures along the way,  (Yes, Farmer’s Riverworld; no  one said 
the stories  you  tell  your children need to be  purely original, just interesting.) 
(If you think Pooh and Piglet in a space station is a tad peculiar, then I won’t  even 
mention Karla, the woman  who invented agriculture, medicine, sanitation, reading 
and writing, peace, and  just  about everything  else  while  travelling the length of the 

orbiting Saturn, and there you  have it. 

1047 



Americas  with her mountain lion during  the last Ice Age; or  the Mars  Cats and their 
trip  in  suspended  animation to the Lesser  Magellenic Cloud and beyond; or most 
assuredly Little Whale, the baby  Universe Whale that is naughty enough to eat in- 
habited universes.  But I digress.) 
Anyway, I bring up  Pooh  and the space station because the time has come  to discuss 
fast texture  mapping. Texture mapping is the process of mapping  an image (in  our 
case, a  bitmap) onto the surface of a polygon  that’s been  transformed  in  the process 
of 3-D drawing. Up to this point, each polygon  we’ve  drawn in X-Sharp  has been  a 
single, solid  color.  Over the last couple of chapters we added the ability  to shade 
polygons according to lighting,  but  each polygon was still a single color. Thus, in 
order  to  produce any sort of intricate design, a  great many  tiny  polygons  would  have 
to be drawn. That would  be  very  slow, so we need  another  approach.  One such ap- 
proach is texture mapping; that is, mapping  the  bitmap  containing  the  desired image 
onto  the pixels contained within the transformed polygon. Done properly,  this should 
make  it possible to  change X-Sharp’s output from a  bland collection of monocolor 
facets to a lively, detailed, and  much  more realistic scene. 
‘What  sort of scene?” you  may  well  ask. This is where Pooh and the space station 
came in. When I sat  down to think of a sample texture-mapping  application,  it oc- 
curred to me that  the  shaded ball demo we added to X-Sharp recently looked at least 
a bit like a  spinning,  spherical space station, and  that  the single unshaded, yellow 
polygon looked somewhat  like a window  in the space station, and it  might be a nice 
example if someone were standing  in  the window. ... 
The rest is history. 

Principles of Quick-and-Dirty Texture Mapping 
The key to our texture-mapping  approach will be to quickly determine what  pixel 
value to draw for  each pixel in  the  transformed  destination polygon. These polygon 
pixel  values will be determined by mapping each destination pixel  in the transformed 
polygon  back to the image bitmap, via a reverse transformation, and seeing what 
color resides at  the  corresponding  location  in  the image bitmap, as  shown in Figure 
56.1. It might seem more intuitive to map pixels the  other way, from the image bitmap 
to the  transformed polygon, but  in fact it’s crucial that  the  mapping  proceed back- 
ward from  the  destination to avoid gaps in  the final image. With the  approach of 
finding  the  right value for  each  destination pixel  in turn, via a backward mapping, 
there’s no way  we can miss  any destination pixels. On  the  other  hand, with the for- 
ward-mapping method,  some  destination pixels may be skipped or double-drawn, 
because this is not necessarily a one-to-one or one-to-many mapping. Although we’re 
not  going to take advantage of it now, mapping back to the  source makes it possible 
to average  several neighboring image  pixels together to calculate the value for  each 
destination pixel; that is, to antialias the image. This can greatly improve texture 
quality, although  it is slower. 

1048 Chapter 56 



Mapping Textures Made Easy 
To understand how  we’re going to  map textures, consider Figure 56.2, which  maps a 
bitmapped image directly onto  an untransformed polygon. Here, we simply map  the 
origin of the polygon’s untransformed  coordinate system somewhere within the im- 
age, then  map  the vertices  to the  corresponding image  pixels. (For simplicity,  I’ll 
assume in this  discussion that  the polygon’s coordinate system  is in units of  pixels, 
but scaling  images  to  polygons  is eminently doable. This will become clearer when 
we look at mapping images onto transformed polygons, next.) Mapping the image 
to the polygon  is then a simple matter of stepping one scan line at a time in  both  the 

Pooh and the Space  Station 1049 

colol: Using Using reverse reverse transformation transformation the source pixel colol: 
Figure 56.1 
Using reverse transformation to find the source pixel colol: 
Figure 56.1 

g a 
Figure 56.2 

Mapping a texture onto an untransformed polygon



image and the polygon, each time advancing the X coordinates of the  edges  accord- 
ing  to  the slopes of the  lines, just as is normally done when filling a polygon. Since 
the polygon is untransformed,  the  stepping is identical  in  both  the image and  the 
polygon, and  the pixel  mapping is one-to-one, so the  appropriate  part of each scan 
line of the image can simply be block copied  to  the  destination. 
Now, matters  get  more  complicated. What if the  destination polygon is rotated  in 
two dimensions? We no  longer have a neat  direct  mapping  from  image scan lines to 
destination polygon  scan lines. We still  want to draw across each  destination scan 
line,  but  the  proper  source pixels for  each  destination scan line may  now track across 
the  source  bitmap at an  angle, as  shown in Figure 56.3. What can we do? 
The  solution is remarkably simple. We’ll just map  each  transformed vertex to the 
corresponding vertex in the  bitmap; this is  easy, because the vertices are  at the same 
indices  in  the  original and transformed vertex lists.  Each time we select  a new edge 
to  scan for  the  destination polygon, we’ll select  the  corresponding  edge  in  the  source 
bitmap, as  well.  Then-and this is crucial-each time we step  a  destination  edge one 
scan line, we’ll step  the  corresponding  source image edge an equivalent  amount. 
Ah, but what is an  “equivalent amount”?  Think of it this way. If a  destination  edge is 
100 scan lines  high,  it will be stepped 100 times. Then, we’ll divide the SourceXWidth 
and SourceYHeight lengths of the  source  edge by 100, and  add those amounts  to  the 
source edge’s coordinates  each time the  destination is stepped one scan line.  Put 
another way,  we have, as usual, arranged  things so that in the  destination polygon we 
step DestYHeight times, where DestYHeight is the  height of the  destination  edge. 
The  this  approach  arranges  to  step  the  source image edge DestYHeight times also, 
to  match what the  destination is doing. 

1050 Chapter 56 



Now we’re able to  track the  coordinates of the polygon edges through  the source 
image in tandem with the destination edges. Stepping across each destination scan 
line uses  precisely the same technique, as  shown in Figure 56.4. In  the  destination, 
we step DestXWidth times  across each scan line of the polygon, once  for  each pixel 
on  the scan line. (DestXWidth is the horizontal distance between the two edges be- 
ing  scanned on any  given  scan line.) To match this, we divide SourceXWidth and 
SourceYHeight (the lengths of the scan line in the source image, as determined by 
the source edge points we’ve been tracking, as just described) by the width of the 
destination scan line, DestXWidth, to produce SourceXStep and SourceYStep. Then, 
we just step DestXWidth times, adding SourceXStep and SourceYStep to SourceX 
and SourceY each time, and choose the  nearest image  pixel  to (SourceX,SourceY) 
to  copy to (DestX,DestY). (Note  that  the names used above,  such  as SourceXWidth, 
are used for descriptive purposes, and  don’t necessarily correspond to the actual 
variable names used in Listing 56.2.) 
That’s a workable approach for 2-D rotated polygons-but  what about 3-D rotated 
polygons, where the visible dimensions of the polygon can vary  with  3-D rotation and 
perspective projection? First, I’d like  to  make  it  clear that  texture  mapping takes 
place  from the source  image  to the destination  polygon  after the destination  polygon  is 
projected to the screen. That is, the image will be  mapped after the destination 
polygon  is in  its  final,  drawable  form.  Given  that,  it  should  be apparent that the above 
approach automatically compensates for all changes in the dimensions of a polygon. 
You see, this approach divides source edges and scan lines into however  many  steps 
the destination polygon requires. If the destination polygon is much narrower than 
the source polygon,  as a result of  3-D rotation and perspective projection, we just 
end  up taking  bigger  steps through  the source image and skipping a lot of source 
image  pixels, as shown in Figure  56.5. The upshot is that  the above approach  handles 

Source image 
(texture to map) 

Transformed (2-D rotated)  destination 
polygon (onto  which texture is mapped) 

Mapping a horizontal destination scan line back to the source image. 
Figure 56.4 

Pooh and the  Space  Station 1051 



all transformations and projections effortlessly. It could also be used to scale source 
images up to fit in larger polygons;  all that’s needed is a list  of where the polygon’s 
vertices map  into  the  source image, and everything else happens automatically. In 
fact, mapping  from any  polygonal area of a  bitmap to  any destination polygon will 
work,  given  only that  the two polygons  have the same number of  vertices. 

Notes on DDA Texture Mapping 
That’s all there is to quick-and-dirty texture  mapping.  This  technique basically  uses a 
two-stage digital differential analyzer  (DDA) approach to step  through  the  appropri- 
ate  part of the source image in tandem with the normal scan-line stepping  through 
the  destination polygon, so I’ll call it “DDA texture  mapping.” It’s worth noting  that 
there is no  need  for any trigonometric  functions at all, and only two divides are 
required  per scan line. 
This isn’t a  perfect  approach, of course. For one thing,  it isn’t anywhere near as  fast 
as drawing solid polygons; the  speed is more  comparable to drawing each polygon  as 
a series of lines. Also, the DDA approach results in far from  perfect image quality, 
since source pixels may be skipped or selected twice. I trust, however, that you can 
see how  easy it would be to improve image quality by antialiasing with the DDA 
approach. For example, we could simply average the  four  surrounding pixels  as we 
did  for simple, unweighted antialiasing in Chapters F, G, and  Chapter K on  the com- 
panion CD-ROM. Or, we could take a Wu antialiasing approach (see Chapter 5 7 )  
and average the two bracketing pixels along  each axis according to proximity. If  we 
had cycles to waste (which, given that this is real-time animation on a PC,  we don’t), 
we could improve image quality by putting  the  source pixels through  a low-pass filter 
sized in X and Y according to the ratio of the source and destination dimensions 
(that is,  how much the destination is scaled up  or down from the  source). 

1052 Chapter 56 

Source image 

(texture to map) 

Transformed (narrower *) destination 

polygon (onto which texture is mapped) 

Mapping a texture onto a narrower polygon. 
Figure 56.5 



Even more  important is that  the  sort of texture  mapping I’ll do in X-Sharp doesn’t 
correct  for perspective. That doesn’t  much  matter  for small  polygons or polygons 
that  are nearly parallel to the screen in 3-space, but it can produce very noticeable 
bowing  of textures on large polygons at  an angle to the screen. Perspective texture 
mapping is a complex subject that’s outside the scope of  this book, but you should 
be aware of its existence, because perspective texture  mapping is a key element of 
many games these days. 
Finally, I’d like  to point out that this sort of DDA texture mapping is  display-hardware 
dependent, because the  bitmap  for each image must be compatible with the  num- 
ber of  bits per pixel in the  destination. That’s actually a fairly serious issue. One of 
the nice things about X-Sharp’s  polygon orientation is that,  until now, the only  dis- 
play dependent  part of X-Sharp has been  the transformation from RGB color space 
to the adapter’s color space. Compensation for aspect ratio, resolution, and  the like 
all happens automatically in  the course of projection. Still, we need  the ability  to 
display detailed surfaces, and it’s hard to  conceive  of a fast way to do so that’s totally 
hardware independent. (If you  know of one, let me know care of the publisher.) 
For now,  all we need is fast texture  mapping of adequate quality,  which the straight- 
forward, non-antialiased DDA approach supplies. I’m sure  there  are many other fast 
approaches,  and, as  I’ve said, there  are  more accurate approaches,  but DDA texture 
mapping works  well,  given the constraints of the PC’s horsepower. Next, we’ll look at 
code  that  performs DDA texture  mapping. First, though,  I’d like to take a  moment 
to thank Jim Kent, author of Autodesk Animator and  a  frequent  correspondent,  for 
getting me started with the DDA approach. 

Fast  Texture Mapping: An Implementation 
As you might expect, I’ve implemented DDA texture  mapping in X-Sharp, and  the 
changes are reflected in the X-Sharp archive in this chapter’s subdirectory on  the 
listings  disk.  Listing  56.1  shows the new header file entries, and Listing  56.2  shows 
the actual texture-mapped polygon  drawer. The set-pixel routine  that Listing  56.2 
calls is a slight modification of the Mode X set-pixel routine  from  Chapter 47. In 
addition, 1NITBALL.C has been modified to create  three  texture-mapped polygons 
and define the texture bitmaps, and modifications have been  made to allow the user 
to flip the axis  of rotation. You  will  of course need  the  complete X-Sharp library to 
see texture  mapping in action, but Listings  56.1 and 56.2 are  the actual texture map- 
ping  code in its entirety. 

Here b a major tip: DDA texture mapping look best on fast-moving surfaces, where p the  eye  doesn ’t have  time to pick nits  with  the  shearing  and  aliasing  that’s  an  inevitable 
by-product of such a crude approach. Compile DEMO1 from the X-Sharp archive 
in this chapter b subdirectory of the listings disk, and  run it. The initial display 
looks okay, but certainly not great, because the rotational speed is so slow. Now 

Pooh and the  Space  Station 1053 



press the S key a f a y  times to speed up  the rotation and flip between different 
rotation axes. I think you'll  be amazed at how  much better DDA texture mapping 
looks at high speed. This  technique would be greatfor mapping textures onto hur- 
tling asteroids orjets, but would come  up shortfor  slow,finely detailed movements. 

LISTING  56.1  156- 1 .C 
/*  New header f i l e   e n t r i e s   r e l a t e d   t o   t e x t u r e - m a p p e d   p o l y g o n s  */  

/*  Draws t h e   p o l y g o n   d e s c r i b e d   b y   t h e   p o i n t   l i s t   P o i n t L i s t   w i t h  a b i tmap  
t e x t u r e  mapped o n t o  i t  */ 

i d e f i n e  DRAW_TEXTURED-POLYGON(PointList.NumPoints,TexVerts,TexMap) \ 
Polygon.Length - NumPoints ;   Polygon.PointPt r  - P o i n t L i s t ;  \ 
DrawTexturedPolygon(&Polygon. TexVerts.  TexMap): 

# d e f i n e  FIXED-TO-INT(FixedVa1) ( ( i n t )   ( F i x e d V a l  >> 16)) 
# d e f i n e  ROUND-FIXED-TO_INT(FixedVal) \ 

( ( i n t )   ( ( F i x e d V a l  + DOUBLE-TO_FIXED(0.5)) >> 16)) 
/*  R e t r i e v e s   s p e c i f i e d   p i x e l   f r o m   s p e c i f i e d   i m a g e   b i t m a p   o f   s p e c i f i e d   w i d t h .  * /  
# d e f i n e  GET-IMAGE-PIXEL(TexMapBits. TexMapWidth, X .   Y )  \ 

# d e f i n e  NO-SHADING 
/* Masks t o  mark   shad ing   types  i n  Face s t r u c t u r e  * /  

0x0000 
# d e f i n e  AMBIENT-SHADING Ox0001 
# d e f i n e  DIFFUSE-SHADING Ox0002 
i d e f i n e  TEXTURE-MAPPED-SHADING 0x0004 
/*  Desc r ibes  a t e x t u r e  map */  
t y p e d e f   s t r u c t  { 

TexMapBits[(Y * TexMapWidth) + X ]  

i n t  TexMapWidth; / *  t e x t u r e  map w i d t h   i n   b y t e s  */  
char  *TexMapBits;  / *  p o i n t e r   t o   t e x t u r e   b i t m a p  */  

I TextureMap; 

/ *  S t r u c t u r e   d e s c r i b i n g   o n e   f a c e   o f   a n   o b j e c t   ( o n e   p o l y g o n )  * /  
t y p e d e f   s t r u c t  I 

i n t  * VertNums: / *  p o i n t e r   t o   l i s t   o f   i n d e x e s   o f   t h i s   p o l y g o n ' s   v e r t i c e s  
i n   t h e   o b j e c t ' s   v e r t e x   l i s t .  The f i r s t   t w o   i n d e x e s  
m u s t   s e l e c t   e n d   a n d   s t a r t   p o i n t s ,   r e s p e c t i v e l y ,   o f   t h i s  
p o l y g o n ' s   u n i t   n o r m a l   v e c t o r .  Second p o i n t   s h o u l d   a l s o  
b e   a n   a c t i v e   p o l y g o n   v e r t e x  * /  

v e r t e x ,   w h i c h   m u s t   b e   t h e   e n d   o f  a u n i t   n o r m a l   v e c t o r  
t h a t   s t a r t s   a t   t h e   s e c o n d   i n d e x   i n  VertNums */  

i n t  NumVerts; / *  # o f   v e r t s   i n   f a c e ,   n o t   i n c l u d i n g   t h e   i n i t i a l  

i n t   C o l o r I n d e x ;  / *  d i r e c t   p a l e t t e   i n d e x ;   u s e d   o n l y   f o r   n o n - s h a d e d   f a c e s  */  
M o d e l C o l o r   F u l l C o l o r ;  / *  p o l y g o n ' s   c o l o r  * /  
i n t  ShadingType: / *  n o n e ,   a m b i e n t ,   d i f f u s e ,   t e x t u r e  mapped, e t c .  * /  
TextureMap * TexMap; / *  p o i n t e r   t o   b i t m a p   f o r   t e x t u r e   m a p p i n g ,  i f  any */  
P o i n t  TexVer t s ;  / *  p o i n t e r   t o   l i s t   o f   t h i s   p o l y g o n ' s   v e r t i c e s ,   i n  

Tex tu reMap   coo rd ina tes .   I ndex  n must map t o   i n d e x  
n + 1 i n  VertNums. ( t h e  + 1 i s   t o   s k i p   o v e r   t h e   u n i t  
normal   endpo in t  i n  VertNums) * /  

1 Face; 
e x t e r n   v o i d  DrawTex tu redPo lygon(Po in tL i s tHeader  *, P o i n t  *, TextureMap * ) ;  

LISTING 56.2 156-2.C 
/*  Draws a b i tmap .  mapped t o  a convex  po lygon  (draws a t e x t u r e - m a p p e d   p o l y g o n ) .  

"Convex"  means t h a t   e v e r y   h o r i z o n t a l   l i n e   d r a w n   t h r o u g h   t h e   p o l y g o n   a t   a n y  
p o i n t   w o u l d   c r o s s   e x a c t l y   t w o   a c t i v e   e d g e s   ( n e i t h e r   h o r i z o n t a l   l i n e s   n o r  
ze ro - leng th   edges   coun t   as   ac t i ve   edges ;   bo th   a re   accep tab le   anywhere  i n  
t h e   p o l y g o n ) .   a n d   t h a t   t h e   r i g h t  & l e f t  edges  never  cross.   Nonconvex 
p o l y g o n s   w o n ' t   b e   d r a w n   p r o p e r l y .   C a n ' t   f a i l .  * /  

1054 Chapter 56 



#i n c l  ude < s t d i  0. h> 
#i n c l  ude  <math.  h> 
# inc lude   "po l ygon .   h "  
/ *  D e s c r i b e s   t h e   c u r r e n t   l o c a t i o n  and  s tepping,  i n   b o t h   t h e   s o u r c e  and 

t h e   d e s t i n a t i o n ,   o f  an edge * /  
t y p e d e f   s t r u c t  I 

i n t  D i  r e c t i  on : 

i n t  Remai n i  ngScans : 
i n t  CurrentEnd: 
F ixedpo in t   SourceX;  
F ixedpo in t   SourceY:  
F ixedpo in t   SourceStepX;  
F ixedpo in t   SourceStepY:  

i n t  DestX: 
i n t   D e s t X I n t S t e p :  
i n t   D e s t X D i r e c t i o n :  
i n t  DestXErrTerm: 
i n t  DestXAdjUp: 
i n t  DestXAdjDown; 

1 EdgeScan: 
i n t  StepEdge(EdgeScan * ) :  

/ *  t h r o u g h   e d g e   l i s t :  1 f o r  a r i g h t  edge ( f o r w a r d  
t h r o u g h   v e r t e x   l i s t ) ,  -1 f o r  a l e f t  edge  (backward 
t h r o u g h   v e r t e x   l i s t )  * /  

I* h e i g h t   l e f t   t o  scan  ou t  i n   d e s t  * I  
/* v e r t e x  # o f  end o f  cu r ren t   edge  */ 
I* c u r r e n t  X l o c a t i o n   i n   s o u r c e   f o r   t h i s  edge * I  
I* c u r r e n t  Y l o c a t i o n  i n  s o u r c e   f o r   t h i s  edge */  
I* X s t e p   i n   s o u r c e   f o r  Y s t e p   i n   d e s t   o f  1 */  
I* Y s t e p   i n   s o u r c e   f o r  Y s t e p   i n   d e s t   o f  1 * I  
/*  v a r i a b l e s   u s e d   f o r   a l l - i n t e g e r   B r e s e n h a m ' s - t y p e  

X s t e p p i n g   t h r o u g h   t h e   d e s t ,   n e e d e d   f o r   p r e c i s e  
p i x e l   p l a c e m e n t   t o   a v o i d   g a p s  * I  

I* c u r r e n t  X l o c a t i o n   i n   d e s t   f o r   t h i s  edge */  
/*  w h o l e   p a r t   o f   d e s t  X s t e p   p e r   s c a n - l i n e  Y s t e p  */  
/* -1 o r  1 t o   i n d i c a t e  way X s t e p s   ( l e f t / r i g h t )  */ 
I* c u r r e n t   e r r o r   t e r m   f o r   d e s t  X s t e p p i n g  * /  
I* amount t o  add t o   e r r o r   t e r m   p e r   s c a n   l i n e  move */  
I* amount t o   s u b t r a c t   f r o m   e r r o r   t e r m  when t h e  

e r r o r   t e r m   t u r n s   o v e r  * /  

i n t  SetUpEdge(EdgeScan *, i n t ) :  
void  ScanOutLine(EdgeScan *, EdgeScan * ) :  
i n t   G e t I m a g e P i x e l ( c h a r  *, i n t .   i n t .   i n t ) ;  
/ *  S t a t i c s   t o   s a v e   t i m e   t h a t   w o u l d   o t h e r w i s e   p a s s   t h e m   t o   s u b r o u t i n e s .  */ 
s t a t i c   i n t   M a x V e r t .   N u m V e r t s .   D e s t Y :  
s t a t i c   P o i n t  * V e r t e x P t r :  
s t a t i c   P o i n t  * T e x V e r t s P t r :  
s t a t i c   c h a r  * TexMapBits:  
s t a t i c   i n t  TexMapWidth; 
/ *  Draws a t ex tu re -mapped   po l ygon ,   g i ven  a l i s t   o f   d e s t i n a t i o n   p o l y g o n  

v e r t i c e s ,  a l i s t   o f   c o r r e s p o n d i n g   s o u r c e   t e x t u r e   p o l y g o n   v e r t i c e s ,  and a 
p o i n t e r   t o   t h e   s o u r c e   t e x t u r e ' s   d e s c r i p t o r .  * /  

TextureMap * TexMap) 

i n t  MinY. MaxY. M i n V e r t .  i: 
EdgeScan Lef tEdge.   RightEdge:  
NumVerts - Polygon->Length :  
V e r t e x P t r  = P o l y g o n - > P o i n t P t r ;  
T e x V e r t s P t r  - TexVer ts :  
TexMapBits - TexMap->TexMapBits; 
TexMapWidth - TexMap->TexMapWidth: 
/ *  N o t h i n g   t o   d r a w  i f  l e s s   t h a n  3 v e r t i c e s  */  
i f  (NumVerts < 3 )  { 

1 
/ *  Scan t h r o u g h   t h e   d e s t i n a t i o n   p o l y g o n   v e r t i c e s  and f i n d   t h e   t o p   o f   t h e  

v o i d  DrawTex tu redPo lygon(Po in tL i s tHeader  * Po lygon ,   Po in t  * TexVer ts ,  

( 

r e t u r n :  

l e f t  and r i g h t  edges, t a k i n g   a d v a n t a g e   o f   o u r   k n o w l e d g e   t h a t   v e r t i c e s   r u n  
i n  a c l o c k w i s e   d i r e c t i o n  ( e l s e  t h i s   p o l y g o n   w o u l d n ' t   b e   v i s i b l e  due t o  
back face   remova l )  * /  

MinY - 32767; 
MaxY - -32768; 
f o r   ( i - 0 :   i < N u m V e r t s :  itc) ( 

Pooh and the  Space  Station 1055 



i f  

1 
i f  

1 
1 

( V e r t e x P t r [ i l . Y  < MinY) { 
MinY - Ver texPt rC i1 .Y ;  
M i n V e r t  - i ; 
( V e r t e x P t r C i 1 . Y  > MaxY) { 
MaxY - V e r t e x P t r C i 1 . Y ;  
MaxVert  - i; 

/* R e j e c t  flat ( 0 - p i x e l - h i g h )   p o l y g o n s  */  
i f  (MinY >- MaxY) I 

1 
/*  The d e s t i n a t i o n  Y c o o r d i n a t e   i s   n o t   e d g e   s p e c i f i c ;  i t  a p p l i e s   t o  

DestY - MinY; 
/ *  Set  up t o  s c a n   t h e   i n i t i a l   l e f t  and r i g h t  edges o f   t h e   s o u r c e   a n d  

r e t u r n ;  

bo th   edges ,   s ince  we a lways   s tep  Y by 1 */  

d e s t i n a t i o n   p o l y g o n s .  We a l w a y s   s t e p   t h e   d e s t i n a t i o n   p o l y g o n   e d g e s  
by  one i n  Y .  so c a l c u l a t e   t h e   c o r r e s p o n d i n g   d e s t i n a t i o n  X s t e p   f o r  
each  edge,   and  then  the  corresponding  source  image X and Y s t e p s  */  

L e f t E d g e . D i r e c t i o n  - -1; /* s e t   u p   l e f t  edge f i r s t  * /  
SetUpEdge(&Lef tEdge.   M inVer t ) ;  
R i g h t E d g e . D i r e c t i o n  - 1; /*  s e t  up r i g h t  edge */  
SetUpEdge(&RightEdge.  MinVert) ;  
/ *  Step down d e s t i n a t i o n   e d g e s  one  scan l i n e   a t  a t i m e .  A t  each  scan 

l i n e .   f i n d   t h e   c o r r e s p o n d i n g   e d g e   p o i n t s   i n   t h e   s o u r c e   i m a g e .  Scan 
be tween  the   edge  po in ts  i n   t h e   s o u r c e ,   d r a w i n g   t h e   c o r r e s p o n d i n g  
p i x e l s   a c r o s s   t h e   c u r r e n t   s c a n   l i n e   i n   t h e   d e s t i n a t i o n   p o l y g o n .  (We 
know wh ich  way t h e   l e f t  and r i g h t  e d g e s   r u n   t h r o u g h   t h e   v e r t e x   l i s t  
because v i s i b l e   ( n o n - b a c k f a c e - c u l l e d )   p o l y g o n s   a l w a y s   h a v e   t h e   v e r t i c e s  
i n   c l o c k w i s e   o r d e r  as   seen   f rom  the   v iewpo in t )  * /  

f o r  ( ; : I  
/* 
i f  

/*  
i f  

1 
/*  

i f  

1 
i f  

1 

Done i f  o f f   b o t t o m   o f   c l i p   r e c t a n g l e  * /  
(DestY >- Cl ipMaxY) I 
r e t u r n ;  

Draw o n l y  i f  i n s i d e  Y bounds o f   c l i p   r e c t a n g l e  * /  
(DestY >- C l i p M i n Y )  { 
/ *  Draw t h e   s c a n   l i n e   b e t w e e n   t h e   t w o   c u r r e n t   e d g e s  */  
ScanOutL ine(&Lef tEdge.   &Righ tEdge) ;  

Advance  the   source   and  des t ina t ion   po lygon  edges ,   end ing  i f  we've 
scanned a l l   t h e  way t o   t h e   b o t t o m   o f   t h e   p o l y g o n  */  
( !S tepEdge(&Lef tEdge) )  { 
b reak :  

( !S tepEdge(&RightEdge) )  { 
b reak ;  

I 
DestY++; 

1 
/*  Steps  an  edge  one  scan l i n e   i n   t h e   d e s t i n a t i o n ,  and t h e   c o r r e s p o n d i n g  

d i s t a n c e   i n   t h e   s o u r c e .  I f  an   edge   runs   ou t ,   s ta r t s  a new edge i f  t h e r e  
i s  one.  Returns 1 f o r   s u c c e s s .   o r  0 i f  the re   a re   no   more   edges   t o   scan .  * /  

i n t  StepEdge(EdgeScan * Edge) 
{ 

/ *  Count o f f   t h e   s c a n   l i n e  we s t e p p e d   l a s t   t i m e ;  i f  t h i s  edge i s  

i f  (--Edge->Remaininsscans - 0) { f i n i s h e d ,  t r y  t o   s t a r t   a n o t h e r  one */  

1056 Chapter 56 



/* Set  up  the  next  edge;  done i f  t h e r e   i s  no n e x t  edge * I  
i f  (SetUpEdge(Edge.   Edge-XurrentEnd)  -- 0 )  I 

I 
r e t u r n ( 1 ) ;  / *  all s e t   t o   d r a w   t h e  new edge */  

r e t u r n ( 0 ) :  I* no  more  edges:  done  drawing  polygon * /  

1 
I* Step   t he   cu r ren t   sou rce   edge  * I  
Edge->SourceX +- Edge->SourceStepX; 
Edge->SourceY +- Edge->SourceStepY; 
/ *  S tep   des t  X w i t h   B r e s e n h a m - s t y l e   v a r i a b l e s ,   t o   g e t   p r e c i s e   d e s t   p i x e l  

Edge->DestX += Edge->DestXIn tStep ;  / *  w h o l e   p i x e l   s t e p  * /  
/*  Do e r r o r   t e r m   s t u f f   f o r   f r a c t i o n a l   p i x e l  X s t e p   h a n d l i n g  */  
i f  ((Edge->DestXErrTerrn +- Edge->DestXAdjUp) > 0 )  I 

placement a n d  a v o i d  g a p s  */ 

Edge->DestX +- Edge->DestXDi rec t ion :  
Edge->DestXErrTerm -= Edge->DestXAdjDown; 

1 
r e t u r n ( 1 ) ;  

1 
/ *  Sets  up an edge t o  be   scanned;   the   edge  s ta r ts  a t  S t a r t V e r t  and  proceeds 

i n   d i r e c t i o n   E d g e - > D i r e c t i o n   t h r o u g h   t h e   v e r t e x   l i s t .   E d g e - > D i r e c t i o n   m u s t  
be s e t   p r i o r   t o   c a l l ;  -1 t o  scan a l e f t  edge  (backward   th rough  the   ver tex  
l i s t ) .  1 t o  scan a r i g h t  edge ( f o r w a r d   t h r o u g h   t h e   v e r t e x   l i s t ) .  
A u t o m a t i c a l l y   s k i p s   o v e r   0 - h e i g h t   e d g e s .   R e t u r n s  1 f o r   s u c c e s s ,   o r  0 i f  
t h e r e   a r e  no more  edges t o  scan. * /  

i n t  SetUpEdge(EdgeScan * Edge, i n t   S t a r t V e r t )  
I 

i n t   N e x t V e r t .   D e s t X W i d t h ;  
F i x e d p o i n t   D e s t Y H e i g h t ;  
f o r  ( ; ; I  I 

/ *  Done i f  t h i s  edge s t a r t s  a t  t h e   b o t t o m   v e r t e x  * I  
i f  ( S t a r t V e r t  =- MaxVert)  I 

I 
/ *  Advance t o   t h e   n e x t   v e r t e x ,   w r a p p i n g  if we r u n   o f f   t h e   s t a r t   o r  end 

o f   t h e   v e r t e x   l i s t  * /  
N e x t V e r t  - S t a r t V e r t  + E d g e - > D i r e c t i o n ;  
i f  ( N e x t V e r t  >- NumVerts) { 

I e l s e  i f  ( N e x t V e r t  < 0 )  I 

1 
I* C a l c u l a t e   t h e   v a r i a b l e s   f o r   t h i s  edge  and  done i f  t h i s   i s   n o t  a 

i f  ((Edge->RemainingScans = 

r e t u r n ( 0 ) ;  

N e x t V e r t  = 0 ;  

N e x t V e r t  - NumVerts - 1; 

z e r o - h e i g h t  edge * I  

Ver texPt rCNextVer t1 .Y  - V e r t e x P t r C S t a r t V e r t 1 . Y )  !- 0 )  I 
DestYHeight - INT-TO_FIXED(Edge->Remaif l ingscans);  
Edge->CurrentEnd - N e x t V e r t :  
Edge->SourceX = INTLTO-FIXED(TexVertsPtr[StartVert].X); 
Edge->SourceY - INT-TOLFIXED(TexVertsPtr[StartVertl.Y); 
Edge->SourceStepX - F i x e d D i v ( I N T ~ T O L F I X E D ( T e x V e r t s P t r [ N e x t V e r t l . X ~  - 

Edge->SourceStepY = FixedDiv(INT-TOLFIXED(TexVertsPtr[NextVertl.Y) - 

/ *  Set   up   Bresenharn-s ty le   var iab les   fo r   des t  X s t e p p i n g  * /  
Edge->OestX - V e r t e x P t r C S t a r t V e r t 1 . X ;  
i f  ( (OestXWid th  - 

Edge->SourceX.  DestYHeight) :  

Edge->SourceY.  DestYHeight) :  

( V e r t e x P t r [ N e x t V e r t l . X  - Ve r texP t rCSta r tVe r t1 .X ) )  < 0 )  I 
/*  Set  up f o r   d r a w i n g   r i g h t   t o   l e f t  * /  
Edge->DestXDi rec t ion  = -1; 

Pooh and the  Space  Station 1057 



DestXWidth - -DestXWidth;  
Edge->DestXErrTerm - 1 - Edge->RemainingScans; 
Edge->DestXIn tStep  - - (DestXWid th  / Edge->RemainingScans): 

/ *  S e t   u p   f o r   d r a w i n g   l e f t   t o   r i g h t  * /  
Edge->DestXDi r e c t i  on - 1; 
Edge->DestXErrTerm - 0; 
Edge->DestXIn tStep  - DestXWidth / Edge->RemainingScans; 

1 e l s e  { 

1 
Edge->DestXAdjUp - DestXWidth % Edge->RemainingScans; 
Edge->DestXAdjDown - Edge->RemainingScans; 
r e t u r n ( 1 ) ;  / *  success */  

1 
S t a r t V e r t  - N e x t V e r t ;  / *  k e e p   l o o k i n g   f o r  a non -0 -he igh t   edge  */  

1 
1 
/*  Tex ture-map-draw  the   scan  l ine   be tween  two  edges .  * /  
void  ScanOutLine(EdgeScan * LeftEdge. EdgeScan * RightEdge) 
{ 

F ixedpo in t   SourceX - LeftEdge->SourceX: 
F ixedpo in t   SourceY - LeftEdge->SourceY; 
i n t  DestX - LeftEdge->DestX; 
i n t  DestXMax - RightEdge->DestX; 
F i xedpo in t   Des tWid th ;  
F ixedpoint   SourceXStep.   SourceYStep;  
/ *  N o t h i n g   t o  do i f  f u l l y  X c l i p p e d  */  
i f  ((DestXMax <- C l i p M i n X )  1 1  (DestX >- C l ipMaxX))  { 

1 
i f  ((DestXMax - DestX) <- 0) { 

1 
I* W i d t h   o f   d e s t i n a t i o n   s c a n   l i n e .   f o r   s c a l i n g .   N o t e :   b e c a u s e   t h i s   i s  an 

i n t e g e r - b a s e d   s c a l i n g ,  i t  can  have a t o t a l   e r r o r   o f  as much as n e a r l y  
one p i x e l .   F o r   m o r e   p r e c i s e   s c a l i n g ,   a l s o   m a i n t a i n  a f i x e d - p o i n t  DestX 
i n  each  edge.  and  use i t  f o r   s c a l i n g .  I f  t h i s   i s  done, i t  will a l s o  
b e   n e c e s s a r y   t o   n u d g e   t h e   s o u r c e   s t a r t   c o o r d i n a t e s   t o   t h e   r i g h t   b y  an 
a m o u n t   c o r r e s p o n d i n g   t o   t h e   d i s t a n c e   f r o m   t h e   t h e   r e a l   ( f i x e d - p o i n t )  
DestX  and  the f i r s t   p i x e l  ( a t  an i n t e g e r  X )  t o  be  drawn) * /  

r e t u r n :  

r e t u r n ;  / *  n o t h i n g   t o   d r a w  * /  

DestWid th  - INT-TO_FIXED(DestXMax - DestX);  
/* C a l c u l a t e   s o u r c e   s t e p s   t h a t   c o r r e s p o n d   t o   e a c h   d e s t  X s t e p   ( a c r o s s  

SourceXStep - FixedDiv(RightEdge->SourceX - SourceX.  DestWidth);  
SourceYStep - FixedDiv(RightEdge->SourceY - SourceY,  DestWidth);  

t h e   s c a n   l i n e )  * /  

/* 
i f  

1 
I* 
i f  

1 
/*  

C l i p   r i g h t  edge i f  necessary  * /  
(DestXMax > Cl ipMaxX) I 
DestXMax - ClipMaxX: 

C l i p   l e f t  edge i f  necssary  * /  
(DestX < C l i p M i n X )  { 
SourceX +- SourceXStep * (C l ipMinX - Des tX) ;  
SourceY +- SourceYStep * (C l ipMinX - Des tX) ;  
DestX - Cl ipMinX;  

Scan   ac ross   t he   des t i na t i on   scan   l i ne ,   upda t ing   t he   sou rce   image  
p o s i t i o n   a c c o r d i n g l y  *I  

f o r  ( ;  DestX<DestXMax;  DestX++) I 
/* Get c u r r e n t l y  mapped p i xe l   ou t   o f   image   and   d raw i t  t o   s c r e e n  * /  
Wr i teP ixe lX(DestX.   Des tY.  

GET-IMAGE-PIXEL(TexMapBits. TexMapWidth. 
FIXED-TO-INT(SourceX).  FIXED_TO-INT(SourceY)) ) ;  

1058 Chapter 56 



I* P o i n t  t o  t h e  n e x t  source p i x e l  * I  
SourceX +- SourceXStep: 
SourceY +- SourceYStep: 

1 
1 

No matter how  you  slice it, DDA texture  mapping beats boring, single-color poly- 
gons  nine ways to Sunday. The big downside is that it’s much slower than  a  normal 
polygon fill: move the ball  close  to the screen in DEMO1, and watch things slow 
down when one of those big texture maps comes around. Of course, that’s partly 
because the  code is all in C; some well-chosen optimizations would  work wonders. In 
the  next  chapter we’ll  discuss texture  mapping  further,  crank up  the speed of our 
texture mapper, and  attend to some rough spots that  remain in the DDA texture 
mapping  implementation, most notably in the  area of exactly  which texture pixels 
map to which destination pixels  as a polygon rotates. 
And, in case you’re curious, yes, there is a  bear in DEMO1. I wouldn’t say he looks 
much like a Pooh-type bear, but he’s a  bear nonetheless. He  does  tend to look a little 
startled when you flip the ball around so that he’s zipping by on his head,  but, heck, 
you  would too in the same situation. And remember, when you  buy the  next VGA 
megahit, Bears in Space, you saw it here first. 

Pooh and the  Space  Station 1059 



chapter 57

10,000 freshly 
sheared sheep on the 
screen



le of Experience in Implementing 
Mapping 

ning how to shear a sheep. Among other 
the importance of selecting the proper comb for 
who holds the world’s record for sheep sheared in 
serves), and discovered, Lord help me, the many 
Zealand Sheep Shearing Board improves the a p  
ry year. The fellow giving the presentation did his 
n’t very interesting. If you have children, you’ll 

f you don’t, there’s no use explaining. 
one thing that stuck with me, although it may 

not sound particularly profound. (Actually, it sounds pretty silly, but bear with me.) 
He said, ‘You don’t get really good at sheep shearing for 10 years, or 10,000 sheep.” 
I’ll buy that. In fact, to extend that morsel of wisdom to the greater, non-ovine-cen- 
tric universe, it actually takes a good chunk of experience before you get good at 
anything worthwhile-especially graphics, for a couple of reasons. First, performance 
matters a lot in graphics, and performance programming is largely a matter of expe- 
rience. You can’t speed up PC graphics simply by looking in a book for a better 
algorithm; you have to understand the code C compilers generate, assembly lan- 
guage optimization, VGA hardware, and the performance implications of various 
graphics-programming approaches and algorithms. Second, computer graphics is a 

Fast, 

things, I 

1063 



matter of illusion, of convincing the eye to see what you  want it to see, and that’s very 
much a black art based on experience. 

Visual Quality: A Black  Hole .. . Er, Art 
Pleasing the eye  with realtime computer  animation is something less than a science, 
at least at  the PC level, where  there’s a limited  color  palette  and no time for 
antialiasing; in fact, sometimes it can be  more  than a little frustrating. As you  may 
recall, in the previous chapter I implemented  texture  mapping in X-Sharp. There 
was plenty of experience involved there, some of which I didn’t  mention. My first 
implementation was disappointing; the  texture maps shimmied and sheared badly, 
like a loosely affiliated flock  of  pixels, each marching to its own drummer. Then, I 
added a control key to speed up  the rotation; what a difference! The aliasing prob- 
lems were  still there,  but with the faster rotation,  the pixels  moved too quickly for 
the eye to pick up  on  the aliasing; the  rotating  texture maps, and  the  rotating ball  as 
a whole, crossed the threshold  into  being  accepted by the eye  as a viewed object, 
rather  than simply a collection of  pixels. 
The obvious  lesson here is that  adequate  speed is important to convincing anima- 
tion.  There’s  another, less  obvious side to this lesson, though.  I’d  been running  the 
texture-mapping demo  on a 20 MHz 386 with a slow VGA when I discovered the 
beneficial effects  of greater  animation  speed. When, some time later, I ran  the  demo 
on a 33 MHz 486 with a fast VGA, I found that the faster rotation was too fast! The 
ball spun so rapidly that  the eye couldn’t blend successive images together  into con- 
tinuous  motion,  much like watching a badly flickering movie. 

So the second lesson is that either too little or too much speed can destroy the 1 illusion. Unless you ’re antialiasing, you need to tune  the  shifting ofyour images so 
that  they ’re  in  the “sweet spot” of apparent motion, in which  the eye is willing to 
ignore the jumping and aliasing, and  blend  the images together into continuous 
motion. Only experience can give  you a feel  for that sweet spot. 

Fixed-point  Arithmetic,  Redux 
In  the previous chapter I added texture  mapping to X-Sharp, but lacked space to 
explain some of its finer points. I’ll  pick up  the  thread now and cover some of those 
points  here, and discuss the visual and performance  enhancements  that previous 
chapter’s code needed-and  which are now present in the version  of  X-Sharp in this 
chapter’s subdirectory on  the CD-ROM. 
Back in  Chapter 38, I spent a good bit of time explaining exactly  which  pixels  were 
inside a polygon and which  were outside, and how to draw those pixels  accordingly. 
This was important, I said, because only  with a precise, consistent way  of defining 
inside and outside would it  be possible to draw adjacent polygons without either 
overlap or gaps between them. 

1064 Chapter 57 



As a corollary, I  added  that only an all-integer, edge-stepping approach would do for 
polygon  filling.  Fixed-point  arithmetic, although alluring  for  speed and ease  of  use,  would 
be unacceptable because round-off error would result in imprecise pixel placement. 
More than a year then passed between the time I wrote that  statement and  the time 
I implemented X-Sharp’s texture  mapper,  during which time my long-term memory 
apparently suffered at least  partial  failure.  When I went  to implement texture mapping 
for  the previous chapter, I decided  that since transformed destination vertices can 
fall at fractional pixel locations, the cleanest way to do  the texture  mapping would  be 
to  use fxed-point coordinates for both the source texture and the destination  screen 
polygon. That way, there would be a  minimum of distortion as the polygon rotated 
and moved. Theoretically, that made sense; but  there was one small problem: gaps 
between polygons. 
Yes, folks, I had  ignored  the voice  of experience (my own voice, at  that)  at my own 
peril. You can be assured I will not forget this particular lesson again: Fixed-point 
arithmetic is not precise. That’s not to say that it’s impossible to use fixed-point for 
drawing polygons; if all adjacent edges share  common start and  end vertices and 
common edges are always stepped in the same direction, all  polygons should  share 
the same fixed-point imprecision, and edges should fit properly (although polygons 
may not  include exactly the  right  pixels). What you absolutely cannot  do is  mix 
fixed-point and all-integer polygon-filling approaches when drawing, as  shown in 
Figure 57.1. Consequently, I ended  up using an all-integer approach in X-Sharp for 
stepping  through  the destination polygon.  However, I kept  the fixed-point approach, 
which is faster and much simpler, for  stepping  through  the  source. 
Why  was it all right to mix approaches in this  case?  Precise pixel placement only 
matters when drawing; otherwise, we can get gaps, which are very  visible. When se- 
lecting a pixel to copy from the source texture, however, the worst that  happens is 
that we pick the source pixel next to the  one we really want, causing the  mapped 
texture to appear to have shifted by one pixel at  the  corresponding  destination pixel; 
given  all the aliasing and shearing already going on in the texture-mapping process, 
a one-pixel mapping error is insignificant. 
Experience again: It’s the difference between knowing  which flaws (like small  tex- 
ture shifts) can reasonably be ignored, and which (like those that  produce gaps 
between polygons) must be avoided at all  costs. 

Texture Mapping:  Orientation Independence 
The double-DDA texture-mapping  code  presented in the previous chapter worked 
adequately, but there were two things about it that left  me  less than satisfied. One flaw 
was performance; I’ll address that shortly. The  other flaw  was the way textures shifted 
noticeably as the  orientations of the polygons onto which  they  were mapped  changed. 
The previous chapter’s code followed the  standard polygon inside/outside  rule  for 
determining which  pixels in the source texture  map were to be mapped: Pixels that 

10,000 Freshly  Sheared  Sheep on the  Screen 1 065 



Missed  pixels  (gaps) 

Edge  start  vertex 

Polygon  scanned  with 
fixed-point  approach 

Polygon  scanned  with 
all-integer  approach ..... 

Edge  as  scanned by  precise, 
all-integer  approach ’ Ed \Edge as  scanned by 

ge end  Vertex fixed-point  approach 

Gaps caused by mixingjixed-point and all-integer math. 
Figure 57.1 

mapped exactly  to the left and  top destination edges  were considered to be inside, and 
pixels that mapped exactly  to the  right  and bottom destination edges  were considered to 
be  outside.  That’s  fine  for filling polygons, but when copying texture maps, it causes 
different  edges of the  texture  map  to be omitted, depending  on  the destination 
orientation, because different  edges of the  texture  map  correspond  to  the  right and 
bottom  destination  edges, depending  on  the  current  rotation. Also, the previous 
chapter’s  code  truncated  to  get  integer  source  coordinates. This, together with the 
orientation  problem,  meant  that when a  texture turned upside down, it slowed one 
new  row and  one new column of pixels from  the  next row and column of the  texture 
map.  This asymmetry was quite visible, and  not  at all the  desired effect. 
Listing 57.1 is one solution  to  these  problems.  This  code, which replaces  the equiva- 
lently named  function  presented  in  the previous chapter  (and, of course, is present 
in  the X-Sharp archive in  this  chapter’s  subdirectory of the listings disk), makes no 
attempt to  follow the  standard polygon inside/outside rules when mapping  the source. 
Instead,  it advances a half-step into  the  texture  map  before drawing the first pixel, so 
pixels along all edges  are half included.  Rounding  rather  than  truncation  to  texture- 
map  coordinates is also performed.  The  result is that  the  texture  map stays pretty 
much  centered within the  destination polygon as the  destination  rotates, with a  much- 
reduced level  of orientation-dependent asymmetry. 

1066 Chapter 57 



LISTING 57.1 157- 1 .C 
I* T e x t u r e - m a p - d r a w   t h e   s c a n   l i n e   b e t w e e n   t w o   e d g e s .   U s e s   a p p r o a c h   o f  

p r e - s t e p p i n g  112 p i x e l   i n t o   t h e   s o u r c e   i m a g e   a n d   r o u n d i n g   t o   t h e   n e a r e s t  
s o u r c e   p i x e l   a t   e a c h   s t e p ,  s o  t h a t   t e x t u r e  maps will appear 
r e a s o n a b l y   s i m i l a r   a t   a l l   a n g l e s .  * I  

void  ScanOutLine(EdgeScan * LeftEdge.  EdgeScan * Righ tEdge)  

F i xedpo in t   SourceX;  
F i xedpo in t   SourceY:  
i n t  DestX - Lef tEdge->DestX;  
i n t  DestXMax = Righ tEdge->DestX;  
F i x e d p o i n t   D e s t W i d t h :  
F i xedpo in t   SourceStepX.   SourceStepY:  

I* N o t h i n g   t o   d o  i f  f u l l y  X c l i p p e d  * I  
i f  ((DestXMax <- C l i p M i n X )  I I (DestX >- C l ipMaxX))  { 

1 

i f  ((DestXMax - DestX) <= 0 )  { 

1 
SourceX = Lef tEdge->SourceX:  
SourceY = Lef tEdge->SourceY:  

I* W i d t h   o f   d e s t i n a t i o n   s c a n   l i n e ,   f o r   s c a l i n g .   N o t e :   b e c a u s e   t h i s   i s   a n  
i n t e g e r - b a s e d   s c a l i n g ,  i t  can  have a t o t a l   e r r o r   o f  as  much  as n e a r l y  
one p i x e l .   F o r   m o r e   p r e c i s e   s c a l i n g ,   a l s o   m a i n t a i n  a f i x e d - p o i n t  DestX 
i n  each  edge,  and use i t  f o r   s c a l i n g .  I f  t h i s   i s  done, i t  will a l s o  
be  necessary t o  n u d g e   t h e   s o u r c e   s t a r t   c o o r d i n a t e s   t o   t h e   r i g h t   b y  an 
a m o u n t   c o r r e s p o n d i n g   t o   t h e   d i s t a n c e   f r o m   t h e   t h e   r e a l   ( f i x e d - p o i n t )  
DestX  and t h e   f i r s t   p i x e l   ( a t  an i n t e g e r  X) t o  be  drawn).  *I  

r e t u r n :  

r e t u r n :  I* n o t h i n g   t o   d r a w  *I  

DestWid th  = INTCTOCFIXED(OestXMax - Des tX) :  

I* C a l c u l a t e   s o u r c e   s t e p s   t h a t   c o r r e s p o n d   t o   e a c h   d e s t  X s t e p   ( a c r o s s  

SourceStepX - FixedDiv(RightEdge->SourceX - SourceX.   DestWidth) :  
SourceStepY = FixedDiv(RightEdge->SourceY - SourceY.   DestWidth) :  

I* Advance 112 s t e p   i n   t h e   s t e p p i n g   d i r e c t i o n ,   t o   s p a c e   s c a n n e d   p i x e l s  
e v e n l y   b e t w e e n   t h e   l e f t   a n d   r i g h t   e d g e s .   ( T h e r e ' s  a s l i g h t   i n a c c u r a c y  
i n   d i v i d i n g   n e g a t i v e  numbers  by 2 b y   s h i f t i n g   r a t h e r   t h a n   d i v i d i n g ,  
b u t   t h e   i n a c c u r a c y   i s   i n   t h e   l e a s t   s i g n i f i c a n t   b i t ,  and w e ' l l   j u s t  
l i v e   w i t h  i t . )  * /  

t h e   s c a n   l i n e )  *I  

SourceX +- SourceStepX >> 1: 
SourceY +- SourceStepY >> 1: 

I* 
i f  

I* 
i f  

I 
/ *  

C l i p   r i g h t  edge i f  n e c s s a r y  * /  
(DestXMax > Cl ipMaxX) 
DestXMax - Cl ipMaxX; 

C1 i p   l e f t  edge i f  n e c s s a r y  *I  
(DestX < C l i p M i n X )  { 
SourceX +- FixedMul(SourceStepX.  INTCTOCFIXED(Cl ipMinX - O e s t X ) ) :  
SourceY +- FixedMul(S0urceStepY.  INT-TO-FIXED(C1ipMinX - D e s t X ) ) :  
DestX - C l i p M i n X :  

S c a n   a c r o s s   t h e   d e s t i n a t i o n   s c a n   l i n e ,   u p d a t i n g   t h e   s o u r c e   i m a g e  
p o s i t i o n   a c c o r d i n g l y  * I  

10,000 Freshly  Sheared  Sheep on the  Screen 1 067 



f o r  ( ;  DestX<DestXMax;  DestX++) I 
I* G e t   t h e   c u r r e n t l y  mapped p i x e l   o u t  o f  the  image  and  draw it t o  

Wr i teP ixe lX (Des tX .   Des tY .  
t h e   s c r e e n  *I  

GET-IMAGE-PIXEL(TexMapBits. TexMapWidth, 
ROUND-FIXED-TO_INT(SourceX).  ROUND_FIXED_TO_INT(SourceY)) ) :  

I* P o i n t   t o   t h e   n e x t   s o u r c e   p i x e l  *I  
SourceX +- SourceStepX; 
SourceY +- SourceStepY; 

1 
1 

Mapping Textures  across Multiple Polygons 
One of the truly  nifty things about double-DDA texture  mapping is that  it is not 
limited to mapping a texture onto a single polygon. A single texture can be mapped 
across any number of adjacent polygons  simply by having polygons that  share verti- 
ces in 3-space  also share vertices in  the  texture  map.  In fact, the  demonstration 
program DEMOl in the X-Sharp archive maps a single texture across two polygons; 
this is the blue-on-green pattern  that  stretches across two panels of the  spinning ball. 
This capability  makes it easy to produce polygon-based objects with complex sur- 
faces (such as banding and insignia on spaceships, or even human figures). Just  map 
the desired  texture onto  the underlying polygonal framework of an object, and let 
double-DDA texture  mapping do  the rest. 

Fast  Texture Mapping 
Of course, there’s a problem with mapping a texture across many polygons: Texture 
mapping is  slow.  If  you run DEMOl and move the ball up close to the screen, you’ll 
see that  the ball slows considerably whenever a texture swings around  into view. To 
some extent  that can’t be helped, because each pixel of a texture-mapped polygon 
has to be calculated and drawn independently. Nonetheless, we can certainly im- 
prove the  performance of texture  mapping a good  deal over what I presented  in  the 
previous chapter. 
By and large,  there  are two keys to improving PC graphics performance. The first- 
no surprise-is  assembly language. The second, without which  assembly language is 
far less  effective, is understanding exactly where the cycles go in inner loops. In  our 
case, that  means  understanding where the bottlenecks are in Listing  57.1. 
Listing  57.2 is a high-performance assembly language implementation of Listing  57.1. 
Apart from the conversion to assembly language, this implementation improves per- 
formance by focusing on reducing inner loop bottlenecks. In fact, the whole of Listing 
57.2  is nothing  more  than  the  inner  loop  for  texture-mapped polygon drawing; List- 
ing 57.2  is  only the  code to draw a single scan line. Most  of the work in drawing a 
texture-mapped polygon comes in scanning out individual lines, though, so this is 
the  appropriate place to optimize. 

1068 Chapter 57 



LISTING 57.2 157-2.ASM 
: Draws a l l   p i x e l s   i n   t h e   s p e c i f i e d   s c a n   l i n e ,   w i t h   t h e   p i x e l   c o l o r s  
: t a k e n   f r o m   t h e   s p e c i f i e d   t e x t u r e  map. Uses  approach o f   p r e - s t e p p i n g  
: 1 / 2   p i x e l   i n t o   t h e   s o u r c e   i m a g e   a n d   r o u n d i n g   t o   t h e   n e a r e s t   s o u r c e  
: p i x e l   a t   e a c h   s t e p ,  s o  t h a t   t e x t u r e  maps will a p p e a r   r e a s o n a b l y   s i m i l a r  
: a t   a l l   a n g l e s .   T h i s   r o u t i n e   i s   s p e c i f i c   t o   3 2 0 - p i x e l - w i d e   p l a n a r  
: ( n o n - c h a i n 4 1   2 5 6 - c o l o r  modes,  such  as mode X ,  w h i c h  i s  a p l a n a r  
: ( n o n - c h a i n 4 1   2 5 6 - c o l o r  mode w i t h  a r e s o l u t i o n   o f   3 2 0 x 2 4 0 .  
: C n e a r - c a l l a b l e   a s :  
: void  ScanOutLine(EdgeScan * LeftEdge.  EdgeScan * Righ tEdge) ;  
: T e s t e d   w i t h  TASM 3.0. 

SC- INDEX equ  03c4h 
MAP-MASK equ  02h 
SCREEN-SEG equ OaOOOh :segment o f   d i s p l a y  memory i n  mode X 
SCREEN-WIDTH equ 80 ; w i d t h   o f   s c r e e n   i n   b y t e s   f r o m   o n e   s c a n   l i n e  

: t o   t h e   n e x t  

; S e q u e n c e   C o n t r o l l e r   I n d e x  
; i n d e x   i n  SC o f  Map Mask r e g i s t e r  

.model  smal l  

. d a t a  
extrn  -TexMapBits:word.  -TexMapWidth:word.  -DestY:word 
ext rn  -CurrentPageBase:word.   -Cl ipMinX:word 
extrn  -Cl ipMinY:word.  -Cl ipMaxX:word.  -Cl ipMaxY:word 

: D e s c r i b e s   t h e   c u r r e n t   l o c a t i o n   a n d   s t e p p i n g ,   i n   b o t h   t h e   s o u r c e   a n d  
: t h e   d e s t i n a t i o n ,   o f  a n   e d g e .   M i r r o r s   s t r u c t u r e   i n  DRAWTEXP.C. 
EdgeScan s t r u c  
D i  r e c t i  on 

RemainingScans 
Cur ren tEnd 
SourceX 
SourceY 
SourceStepX 
SourceStepY 

DestX 
O e s t X I n t S t e p  
D e s t X D i   r e c t i o n  
DestXErrTerm 
DestXAdjUp 
DestXAdjDown 

EdgeScan  ends 

Parms s t r u c  

Le f tEdge 
RightEdge 
Parms  ends 

dw 

dw 
dw 
dd 
dd 
dd 
dd 

dw 
dw 
dw 
dw 
dw 
dw 

dw 
dw 
dw 

? 

? 
? 
? 
? 
? 
? 

? 
? 
? 
? 
? 
? 

: through  edge l i s t :  1 f o r  a r i g h t  edge   ( f o rward  
: t h r o u g h   v e r t e x   l i s t ) .  -1 f o r  a l e f t  edge  (backward 
: t h r o u g h   v e r t e x   l i s t )  
: h e i g h t   l e f t   t o   s c a n   o u t   i n   d e s t  
: v e r t e x  # o f  end o f   c u r r e n t  edge 
; X  l o c a t i o n   i n   s o u r c e   f o r   t h i s  edge 
: Y  l o c a t i o n  i n  s o u r c e   f o r   t h i s  edge 
: X  s t e p   i n   s o u r c e   f o r  Y s t e p  i n  d e s t   o f  1 
: Y  s t e p   i n   s o u r c e   f o r  Y s t e p   i n   d e s t   o f  1 
: v a r i a b l e s   u s e d   f o r   a l l - i n t e g e r   B r e s e n h a m ' s - t y p e  
: X s t e p p i n g   t h r o u g h   t h e   d e s t .   n e e d e d   f o r   p r e c i s e  
: p i x e l   p l a c e m e n t   t o   a v o i d   g a p s  
: c u r r e n t  X l o c a t i o n   i n   d e s t   f o r   t h i s  edge 
: w h o l e   p a r t   o f   d e s t  X s t e p   p e r   s c a n - l i n e  Y s t e p  
: -1  o r  1 t o   i n d i c a t e   w h i c h  way X s t e p s   ( l e f t / r i g h t )  
: c u r r e n t   e r r o r   t e r m   f o r   d e s t  X s t e p p i n g  
:amount t o  add t o   e r r o r   t e r m   p e r   s c a n   l i n e  move 
:amount t o   s u b t r a c t   f r o m   e r r o r   t e r m  when t h e  
: e r r o r   t e r m   t u r n s   o v e r  

2 d u p ( ? )   : r e t u r n   a d d r e s s  & pushed BP 
? ; p o i n t e r   t o  EdgeScan s t r u c t u r e   f o r   l e f t  edge 
? : p o i n t e r   t o  EdgeScan s t r u c t u r e   f o r   r i g h t   e d g e  

; O f f s e t s   f r o m  BP i n   s t a c k   f r a m e   o f   l o c a l   v a r i a b l e s .  
1 SourceX  equ - 4  : c u r r e n t  X c o o r d i n a t e   i n   s o u r c e   i m a g e  
1 SourceY  equ -8  : c u r r e n t  Y c o o r d i n a t e   i n   s o u r c e   i m a g e  
1SourceStepX  equ  -12 ; X  s t e p   i n   s o u r c e   i m a g e   f o r  X d e s t   s t e p   o f  1 
1SourceStepY  equ - 1 6  ;Y s t e p   i n   s o u r c e   i m a g e   f o r  X d e s t   s t e p   o f  1 

10,000 Freshly  Sheared  Sheep  on  the  Screen 1 069 



lXAdvanceByOne  equ - 1 8   ; u s e d   t o   s t e p   s o u r c e   p o i n t e r  1 p i x e l  

1XBaseAdvance  equ -20 ;use t o   s t e p   s o u r c e   p o i n t e r  minimum  number o f  

1YAdvanceByOne  equ -22  ;used t o   s t e p   s o u r c e   p o i n t e r  1 p i x e l  

1YBaseAdvance  equ - 2 4   ; u s e   t o   s t e p   s o u r c e   p o i n t e r   m i n i m u m   n u m b e r   o f  

LOCALLSIZE equ 24 : t o t a l   s i z e   o f   l o c a l   v a r i a b l e s  

; i n c r e m e n t a l l y   i n  X 

; p i x e l s   i n c r e m e n t a l l y   i n  X 

; i n c r e m e n t a l l y   i n  Y 

: p i x e l s   i n c r e m e n t a l l y   i n  Y 

.code 
ex t rn   J i xedMu l   : nea r ,   -F i xedD iv :nea r  
a l i g n  2 

jmp ScanDone 
p u b l i c  3 c a n O u t L i n e  
a l i g n  2 

-ScanOutL ine  proc  near  
p u s h   b p   ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; p o i n t   t o   o u r   s t a c k   f r a m e  
sub sp.LOCAL-SIZE : a l l o c a t e   s p a c e   f o r   l o c a l   v a r i a b l e s  
push s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
p u s h   d i  

mov d i . [ b p l . R i g h t E d g e  
mov s i ,  Cdi 1 .DestX 
cmp s i   . [ - C l i p M i n X ]  
jl e  ToScanDone ; r i g h t  edge i s   t o   l e f t   o f   c l i p   r e c t .  so done 
mov b x , [ b p l . L e f t E d g e  
mov dx. [bx l .OestX 
cmp dx,  [LC1 i pMaxXl 
j g e  ToScanDone ; l e f t  edge i s   t o   r i g h t   o f   c l i p   r e c t ,  s o  done 
s u b   s i . d x   ; d e s t i n a t i o n  fill w i d t h  
j l e  ToScanDone ; n u l l   o r   n e g a t i v e   f u l l   w i d t h ,  s o  done 

mov ax.word p t r   [ b x l . S o u r c e X   ; i n i t i a l   s o u r c e  X c o o r d i n a t e  
mov word p t r   [ b p l . l S o u r c e X . a x  
mov ax,word p t r   [ b x ] . S o u r c e X + 2  
mov word p t r  Cbp].lSourceX+Z.ax 

mov a x s w o r d   p t r   C b x l . S o u r c e Y   ; i n i t i a l   s o u r c e  Y c o o r d i n a t e  
mov word p t r   C b p l . 1 S o u r c e Y . a ~  
mov ax .word   p t r   [ bx l .SourceY+Z 
mov word p t r   [ b p l . l S o u r c e Y + 2 . a x  

ToScanDone: 

; N o t h i n g   t o  do i f  d e s t i n a t i o n   i s   f u l l y  X c l i p p e d .  

; C a l c u l a t e   s o u r c e   s t e p s   t h a t   c o r r e s p o n d   t o   e a c h   1 - p i x e l   d e s t i n a t i o n  X s t e p  
: ( a c r o s s   t h e   d e s t i n a t i o n   s c a n   l i n e ) .  

push 
sub 
push 
mov 
sub 
mov 
sbb 
push 
push 
c a l l  
add 
mov 
mov 
mov 
and 

s i  ;push  des t  X w i d t h ,   i n   f i x e d p o i n t   f o r m  
ax,  ax 
ax  ;push 0 as f r a c t i o n a l   p a r t   o f   d e s t  X w i d t h  
ax.word p t r   [ d i ] . S o u r c e X  
ax.word p t r   [ b p ] . l S o u r c e X   ; l o w   w o r d   o f   s o u r c e  X w i d t h  
dx.word p t r   [ d i ] . S o u r c e X + Z  
dx.word p t r   [ b p ] . l S o u r c e X + Z   ; h i g h   w o r d   o f   s o u r c e  X w i d t h  
dx  :push  source X w i d t h ,   i n   f i x e d p o i n t   f o r m  
ax 
- F i x e d D i v   : s c a l e   s o u r c e  X w i d t h   t o   d e s t  X w i d t h  
s p . 8   ; c l e a r   p a r a m e t e r s   f r o m   s t a c k  
word p t r   [bp ] . lSourceStepX.ax   ; remember   source  X s t e p   f o r  
word p t r   [ b p ] . l S o u r c e S t e p X + 2 , d x  ; 1 - p i x e l   d e s t i n a t i o n  X s t e p  
C X . 1  ;assume source  X advances   non -nega t i ve  
dx.dx  :which way does  source X advance? 

1070 Chapter 57 



j n s  
neg 
cmp 
j z  
i nc 

SourceXNonNeg: 
mov 

mov 

push 
sub 
push 
mov 
sub 
mov 
sbb 
push 
push 
c a l l  
add 
mov 
mov 
mov 
and 
j n s  
neg 
cmp 
jz 
i n c  

SourceYNonNeg: 
mov 

mov 
i mu1 
mov 

SourceXNonNeg  ;non-negat ive 

a x . 0   : i s   t h e   w h o l e   s t e p   e x a c t l y   a n   i n t e g e r ?  
SourceXNonNeg  :yes 
d x  :no. t r u n c a t e   t o   i n t e g e r   i n   t h e   d i r e c t i o n   o f  

c x   : n e g a t i v e  

: 0.  b e c a u s e   o t h e r w i s e   w e ' l l   e n d   u p   w i t h  a 
: w h o l e   s t e p   o f   1 - t o o - l a r g e   m a g n i t u d e  

Cbpl . 1 XAdvanceByOne,  cx :amount t o  add t o   s o u r c e   p o i n t e r   t o  

Cbpl .1XBaseAdvance.d~ :minimum  amount t o  add t o   s o u r c e  
: move by  one i n  X 

: p o i n t e r   t o  advance i n  X e a c h   t i m e  
: t h e   d e s t   a d v a n c e s  one i n  X 

s i  : push   des t  Y h e i g h t .   i n   f i x e d p o i n t   f o r m  
ax ,   ax  
ax  :push 0 as f r a c t i o n a l   p a r t  o f  d e s t  Y h e i g h t  
ax.word p t r   [ d i l . S o u r c e Y  
ax.word p t r  Cbp]. lSourceY  : low  word o f   s o u r c e  Y h e i g h t  
dx.word p t r  Cdil.SourceY+Z 
dx.word p t r  [ b p l . l S o u r c e Y + E   : h i g h   w o r d   o f   s o u r c e  Y h e i g h t  
dx   :push  source  Y h e i g h t ,   i n   f i x e d p o i n t   f o r m  
ax  
- F i x e d D i v   : s c a l e   s o u r c e  Y h e i g h t   t o   d e s t  X w i d t h  
s p . 8   : c l e a r   p a r a m e t e r s   f r o m   s t a c k  
word p t r   [ b p l . l S o u r c e S t e p Y . a x  ;remember  source Y s t e p   f o r  
word p t r  [bp] . lSourceStepY+2,dx : 1 - p i x e l   d e s t i n a t i o n  X s t e p  
cx.[-TexMapWidth]  :assume  source Y advances   non -nega t i ve  
dx,   dx  :which way does  source Y advance? 
SourceYNonNeg  ;non-negat ive 
c x   : n e g a t i v e  
a x . 0   : i s   t h e   w h o l e   s t e p   e x a c t l y  an i n t e g e r ?  
SourceYNonNeg  :yes 
d x   : n o .   t r u n c a t e   t o   i n t e g e r   i n   t h e   d i r e c t i o n   o f  

: 0 .  b e c a u s e   o t h e r w i s e   w e ' l l   e n d   u p   w i t h  a 
: w h o l e   s t e p   o f   1 - t o o - l a r g e   m a g n i t u d e  

Cbpl . lYAdvanceBy0ne.c~  :amount  t o  add t o   s o u r c e   p o i n t e r   t o  

ax.[-TexMapWidthl : m i n i m u m   d i s t a n c e   s k i p p e d   i n   s o u r c e  
dx  : image  b i tmap when Y s t e p s   ( i g n o r i n g  
C b ~ 1 . l Y B a s e A d v a n c e . a ~  : c a r r y   f r o m   t h e   f r a c t i o n a l   D a r t )  

; move by  one i n  Y 

: Advance  112 s t e p ' i n   t h e   s t e p p i n g   d i r e c t i o n ,  t o  space  scanned  p ixe l ;   even ly  
: b e t w e e n   t h e   l e f t   a n d   r i g h t   e d g e s .   ( T h e r e ' s  a s l i g h t   i n a c c u r a c y   i n   d i v i d i n g  
: nega t i ve   numbers   by  2 b y   s h i f t i n g   r a t h e r   t h a n   d i v i d i n g ,   b u t   t h e   i n a c c u r a c y  
: i s   i n   t h e   l e a s t   s i g n i f i c a n t   b i t ,  and w e ' l l   j u s t   l i v e   w i t h  i t . )  

mov ax,word p t r  Cbpl . lSourceStepX 
mov dx.word p t r  [bp] . lSourceStepX+E 
s a r   d x . 1  
r c r   a x , l  
add  word p t r   [ b p l . l S o u r c e X . a x  
adc  word p t r  [bp] . lSourceX+E.dx 

mov ax.word p t r  [bp] . lSourceStepY 
mov dx.word p t r  [bp] . lSourceStepY+E 
s a r   d x , l  
r c r   a x . 1  
add  word p t r   [ b p ] . l S o u r c e Y . a x  
adc  word p t r  Cbp].lSourceY+Z.dx 

mov s i ,   [ d i  1 .DestX 
: C l i p   r i g h t  edge i f  necessary .  

10,000 Freshly  Sheared  Sheep on the  Screen 1 071 



cmp s i  , [LC1 i pMaxX1 
jl Righ tEdgeC l ipped  
mov s i  , [LC1 i pMaxXl 

R igh tEdgeC l ipped :  
; C1 i p   l e f t  edge i f  necssa ry  

mov bx.Cbp1.Lef tEdge 
mov d i   . [ b x l   . D e s t X  
cmp d i  , [LC1  ipMinX1 
j g e   L e f t E d g e C l i p p e d  

; L e f t   c l i p p i n g   i s   n e c e s s a r y ;   a d v a n c e   t h e   s o u r c e   a c c o r d i n g l y  
neg 
add 

push 
sub 
push 
push 
push 
c a l l  
add 
add 
adc 

push 
sub 
push 

d i  
d i  , C-Cl i pM inX1  

d i  
ax.ax 
ax 
word p t r   [ b p l .  
word p t r   [ b p l .  
- F i  xedMul 

word p t r  [ b p l .  
word p t r  [ b p l .  

d i  
ax,  ax 
ax 

SP.8 
1 
1 

;C l i pM inX  - DestX 
; f i r s t .  advance  the   source  i n  X 
;push  Cl ipMinX - DestX. i n   f i x e d p o i n t   f o r m  

;push 0 as f r a c t i o n a l   p a r t   o f   C l i p M i n X - D e s t X  
SourceStepX+E 
SourceStepX 

; t o t a l   s o u r c e  X s t e p p i n g   i n   c l i p p e d   a r e a  
; c l e a r   p a r a m e t e r s   f r o m   s t a c k  

SourceX.ax   ; s tep   t he   sou rce  X p a s t   c l i p p i n g  
SourceX+2,dx 

;now advance  the   source  i n  Y 
;push  Cl ipMinX - DestX. i n   f i x e d p o i n t   f o r m  

;push 0 as f r a c t i o n a l   p a r t   o f   C l i p M i n X - D e s t X  
push  word p t r   Cbp ] . lSourceStepY+2  
push  word p t r   [ b p l . l S o u r c e S t e p Y  
c a l l   - F i x e d M u l   ; t o t a l   s o u r c e  Y s t e p p i n g   i n   c l i p p e d   a r e a  
a d d   s p . 8   ; c l e a r   p a r a m e t e r s   f r o m   s t a c k  
add  word p t r   [ b p ] . l S o u r c e Y . a x   : s t e p   t h e   s o u r c e  Y p a s t   c l i p p i n g  
adc  word p t r   [ b p l . l S o u r c e Y + Z . d x  
mov d i  , [LC1 i pMi nX1 ; s t a r t  X c o o r d i n a t e   i n   d e s t   a f t e r   c l i p p i n g  

Le f tEdgeCl   ipped:  
: C a l c u l a t e   a c t u a l   c l i p p e d   d e s t i n a t i o n   d r a w i n g   w i d t h .  

; S c a n   a c r o s s   t h e   d e s t i n a t i o n   s c a n   l i n e ,   u p d a t i n g   t h e   s o u r c e   i m a g e   p o s i t i o n  
; a c c o r d i n g l y  . 
: P o i n t   t o   t h e   i n i t i a l   s o u r c e   i m a g e   p i x e l ,   a d d i n g  0 .5  t o   b o t h  X and Y s o  t h a t  
; we c a n   t r u n c a t e   t o   i n t e g e r s   f r o m  now on b u t   e f f e c t i v e l y   g e t   r o u n d i n g .  

sub s i , d i  

add  word p t r  Cbpl.1SourceY.8000h  ;add 0.5 
mov ax.word p t r   C b p ] . l S o u r c e Y + 2  
adc  ax.0 
mu1 [ L T e x M a p W i d t h l   : i n i t i a l   s c a n   l i n e   i n   s o u r c e   i m a g e  
add  word p t r   [ bp l . lSourceX.8000h   ;add  0 .5  
mov b x . w o r d   p t r   [ b p ] . l S o u r c e X + E   ; o f f s e t   i n t o   s o u r c e   s c a n   l i n e  
a d c   b x . a x   ; i n i t i a l   s o u r c e   o f f s e t   i n   s o u r c e   i m a g e  
add  bx,  [LTexMapBi t s l  ;DS:BX p o i n t s   t o   t h e   i n i t i a l  i m a g e   p i x e l  

; P o i n t   t o   i n i t i a l   d e s t i n a t i o n   p i x e l .  
mov  ax.SCREEN_SEG 
mov es  ,ax 
mov  ax,SCREENLWIDTH 
mu1 [LDestY 1 
mov c x . d i  
s h r   d i . l  
s h r   d i , l  
add d i  ,ax 
add  d i , [ -CurrentPageBasel  

; o f f s e t   o f   i n i t i a l   d e s t   s c a n   l i n e  
; i n i t i a l   d e s t i n a t i o n  X 

;X/4 - o f f s e t   o f   p i x e l   i n   s c a n   l i n e  
: o f f s e t   o f   p i x e l   i n  page 
; o f f s e t   o f   p i x e l   i n   d i s p l a y  memory 
; E S : D I  now p o i n t s   t o   t h e   f i r s t   d e s t i n a t i o n   p i x e l  

1072 Chapter 57 



and c l   , O l l b  ;CL = p i x e l ' s   p l a n e  
mov a1 ,MAP_MASK 
mov dx ,  SC-INDEX 
o u t   d x . a l   ; p o i n t   t h e  SC I n d e x   r e g i s t e r   t o   t h e  Map Mask 
mov a l . 1 l h  :one p l a n e   b i t   i n   e a c h   n i b b l e ,  s o  w e ' l l   g e t   c a r r y  

s h l  a1 . c l   : s e t   t h e   b i t   f o r   t h e   f i r s t   p i x e l ' s   p l a n e   t o  1 
: a u t o m a t i c a l l y  when g o i n g   f r o m   p l a n e  3 t o   p l a n e  0 

; If Source X s t e p   i s   n e g a t i v e ,   c h a n g e   o v e r   t o   w o r k i n g   w i t h   n o n - n e g a t i v e  
: v a l u e s .  

cmp word p t r  [bpl.lXAdvanceByOne,O 
jge   SXStepSet  
neg  word p t r   [ b p l . l S o u r c e S t e p X  
n o t   w o r d   p t r   C b p l . l S o u r c e X  

SXStepSet: 

: v a l u e s .  
; I f  s o u r c e  Y s t e p   i s   n e g a t i v e ,   c h a n g e   o v e r   t o   w o r k i n g   w i t h   n o n - n e g a t i v e  

cmp word p t r  Cbpl.lYAdvanceByOne,O 
jge   SYStepSet  
neg  word p t r   [ b p l . l S o u r c e S t e p Y  
n o t   w o r d   p t r   [ b p l . l S o u r c e Y  

SYStepSet: 
: A t  t h i s   p o i n t :  

AL = i n i t i a l   p i x e l ' s   p l a n e  mask 
BX - p o i n t e r   t o   i n i t i a l  i m a g e   p i x e l  
SI  - # o f   p i x e l s   t o  fill 
DI - p o i n t e r   t o   i n i t i a l   d e s t i n a t i o n   p i x e l  
mov dx.SC-INDEX+l 

TexScanLoop: 
: S e t   t h e  Map Mask f o r   t h i s   p i x e l ' s   p l a n e .   t h e n   d r a w   t h e   p i x e l .  

; p o i n t   t o  SC D a t a ;   I n d e x   p o i n t s   t o  Map Mask 

o u t   d x . a l  
mov ah . [bx ]   : ge t   image   p i xe l  
mov e s : [ d i l . a h   ; s e t   i m a g e   p i x e l  

add  bx.[bp]. lXBaseAdvance  ;advance  the  minimum I o f   p i x e l s   i n  X 
mov cx.word p t r   [ b p l . l S o u r c e S t e p X  
add  word p t r   C b p 1 . l S o u r c e X . c ~   ; s t e p   t h e   s o u r c e  X f r a c t i o n a l   p a r t  
j n c  NoExtraXAdvance 
add  bx,[bp].1XAdvanceByOne 

; d i d n ' t   t u r n   o v e r :  no ex t ra   advance  
; d i d   t u r n   o v e r ;   a d v a n c e  X one e x t r a  

add  bx. [bpl . lYBaseAdvance  :advance  the  minimum # o f   p i x e l s   i n  Y 
mov cx.word p t r   [ b p l . l S o u r c e S t e p Y  
add  word p t r   C b p 1 . l S o u r c e Y . c ~   ; s t e p   t h e   s o u r c e  Y f r a c t i o n a l   p a r t  
j n c  NoExtraYAdvance 
add  bx. [bpl . lYAdvanceByOne 

; d i d n ' t   t u r n   o v e r ;   n o   e x t r a   a d v a n c e  
; d i d   t u r n   o v e r ;   a d v a n c e  Y one e x t r a  

; P o i n t   t o   t h e   n e x t   s o u r c e   p i x e l .  

NoExtraXAdvance: 

NoExtraYAdvance: 
: P o i n t   t o   t h e   n e x t   d e s t i n a t i o n   p i x e l ,   b y   c y c l i n g   t o   t h e   n e x t   p l a n e ,   a n d  
: a d v a n c i n g   t o   t h e   n e x t   a d d r e s s  if t h e   p l a n e   w r a p s   f r o m  3 t o  0. 

r o l   a l . 1  
a d c   d i . 0  

dec s i  
j n z  TexScanLoop 

pop d i  
pop s i  
mov s p . b p   ; d e a l l o c a t e   l o c a l   v a r i a b l e s  

r e t  
- ScanOut L i  ne endp 

end 

; C o n t i n u e  i f  t h e r e   a r e   a n y   m o r e   d e s t   p i x e l s   t o   d r a w .  

ScanDone: 
: r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

POP b p   ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

10,000 Freshly  Sheared  Sheep on the Screen 1 073 



Within  Listing 57.2, all the  important optimization is in the loop that draws  across 
each destination scan line,  near  the end of the listing. One optimization is  elimina- 
tion of the call to the set-pixel routine used  to  draw each pixel in Listing 57.1. Function 
calls are expensive operations,  to  be avoided  when performance matters. Also, al- 
though Mode X (the  undocumented 320x240 256-color VGA mode X-Sharp runs 
in)  doesn’t  lend itself  well to pixel-oriented operations like line drawing or texture 
mapping, t,he inner loop has been set up to minimize  Mode X’s overhead. A rotating 
plane mask  is maintained in AL, with DX pointing  to  the Map  Mask register; thus, 
only a rotate and  an OUT are  required  to select the  plane to  which to write,  cycling 
from  plane 0 through  plane 3 and wrapping back to 0. Better yet,  because we know 
that we’re simply stepping horizontally  across the destination scan line, we can use a 
clever optimization to both  step  the destination and  reduce  the overhead of main- 
taining the mask. Two copies of the  current plane mask are  maintained, one  in each 
nibble ofAL. (The Map  Mask register pays attention only to the lower nibble.) Then, 
when one copy rotates out of the lower nibble,  the other copy rotates into  the lower 
nibble and is ready  to be used. This approach eliminates the  need to  test for the 
mask wrapping from  plane 3 to  plane 0, all the  more so because a carry is generated 
when wrapping occurs, and that carry can be added to DI to  advance the screen 
pointer.  (Check out  the next  chapter, however, to see the best Map Mask optimiza- 
tion of all-setting it  once  and leaving  it unchanged.) 
In all, the overhead of drawing each pixel is reduced  from a call to  the set-pixel 
routine  and full calculation of the screen address and plane mask  to  five instructions 
and  no branches. This is an excellent example of converting full, from-scratch  calcu- 
lations to  incremental processing,  whereby  only information  that has changed since 
the last operation (the plane mask  moving one pixel, for  example) is recalculated. 
Incremental processing and knowing where the cycles go are  both  important in the 
final optimization in Listing 57.2, speeding up the retrieval  of  pixels from  the tex- 
ture  map. This operation looks  very  efficient in Listing 57.1, consisting  of  only two 
adds and  the macro GET- IMAGE-PIXEL. However, those adds  are fixed-point adds, 
so they  take four instructions apiece, and  the macro  hides not only  conversion from 
fixed-point to integer, but also a time-consuming multiplication. Incremental ap- 
proaches  are excellent at avoiding multiplication, because cumulative additions  can 
often replace multiplication. That’s the case  with stepping  through  the source tex- 
ture in Listing 57.2; ten instructions, with a maximum of two branches, replace all 
the texture calculations  of  Listing 57.1. Listing 57.2 simply detects when the frac- 
tional part of the source x or y coordinate  turns over and advances the source texture 
pointer accordingly. 
As you might  expect, all  this optimization is pretty hard  to  implement, and makes 
Listing 57.2 much  more complicated than Listing 57.1. Is it worth the  trouble?  In- 
deed  it is. Listing 57.2 is more  than twice  as fast  as  Listing 57.1, and  the difference is 
very noticeable when large, texture-mapped areas are  animated.  Whether  more  than 

1074 Chapter 57 



doubling  performance is significant is a  matter of opinion, I suppose,  but  imagine 
that  you’re in William  Gibson’s Neuromancer, trying to crack a  corporate  database. 
Which texture-mapping routine would  you rather have interfacing you to Cyberspace? 
I’m always interested  in  getting your feedback on  and  hearing  about  potential im- 
provements  to X-Sharp. Contact me through  the publisher. There is no  truth  to  the 
rumor  that I can be reached under the alias “sheep-shearer,” at least not  for  another 
9,999 sheep. 

10,000 Freshly  Sheared Sheep on  the  Screen 1 075 



chapter 58

heinlein's crystal ball, 
spock's brain, and the 
9-cycle dare



hole-Brain Approach to Accelerate 

reading several of the works of Robert A. Heinlein, 
a teenager-but in a different way. The first time 
r romance of technology married to powerful sto- 
l by The Master’s remarkable prescience. ‘‘Blowups 
lear power, and their effects on human psychol- 
on had ever happened on this planet. “Solution 

out the unsolvable dilemma-ultimate offense, no defense- 
941. And in Between Planets (1951), consider this 

minor bit of action: 
The doctor’s phone regretted politely that Dr. Jefferson was not at home and 
requested him to leave a message. He was dictating it when a warm voice 
interrupted: ‘I’m at home to you, Donald. Where are you, lad?’ 

Predicting the widespread use of answering machines is perhaps not so remarkable, 
but foreseeing that they would be used for call screening is; technology is much 
easier to extrapolate than are social patterns. 
Even so, Heinlein was no prophet; his crystal ball was just a little less fuzzy than ours. 
The aforementioned call in Between Planets was placed on a viewphone; while that 
technology has indeed come to pass, its widespread use has not. The ultimate weapon 

1079 



in “Solution Unsatisfactory” was radioactive dust, not nuclear bombs, and we have 
somehow survived nearly 50 years  of nuclear weapons without either  acquiring  a 
world dictator or destroying ourselves. Slide rules are all  over the place in Heinlein’s 
works, and in one story (the name now lost to memory),  an  astronaut straps himself 
into a massive integral calculator; computers  are nowhere to be found. 
Most telling, I  think, is that in “Blowups Happen,”  the  engineers  running  the  nuclear 
power  plant-at considerable risk to both body and sanity-are the best of the best, 
highly  skilled in  math and  required to ride  the  nuclear reaction on  a second-to- 
second basis,  with the risk  of an explosion that  might end life on Earth, and would 
surely  kill them, if they slip. Contrast that with our present-day reality  of nuclear 
plants run by generally competent technicians, with the occasional report of shoddy 
maintenance and  bored power-plant employees using drugs, playing games, and fall- 
ing asleep while on duty. Heinlein’s universe makes for  a  better story,  of course, but, 
more  than  that,  it shows the filters and biases through which he viewed the world. At 
least in  print,  Heinlein was an unwavering believer in science, technology, and ratio- 
nality, and in his stories it is  usually the  engineers  and scientists who are  the  heroes 
and push civilization forward, often kicking and screaming. In  the real world, I have 
rarely observed that to be  the case. 
But  of course Heinlein was hardly the only person to have  his or  her perceptions of 
the universe, past, present, or  future,  blurred by his built-in assumptions; you and  I, 
as programmers, are also on  that list-and probably pretty near  the  top,  at  that. 
Performance  programming is basically a process of going  from  the  general to the 
specific,  special-casing the  code so that  it  does just what it has to, and  no more. The 
greatest  impediment to this process is seeing the  problem  in terms of  what the code 
currently does, or what  you already know, thereby ignoring many  possible solutions. 
Put  another way,  how you look at  an optimization problem  determines how  you’ll 
solve it; your assumptions may speed and simplify the process, but they are also your 
limitations. Consider, for example, how a seemingly intractable  problem becomes 
eminently tractable the  instant you learn  that  someone else has solved it. 
As Exhibit #1, I present my experience with speeding up  the texture  mapper  in 
X-Sharp. 

Texture Mapping Redux 
We’ve spent  the previous several chapters  exploring  the X Sharp graphics library, 
something  I built over time as a serious exercise in 3-D graphics. When X-Sharp 
reached  the  point at which we left it at  the  end of the previous chapter,  I was rather 
pleased with it-with one exception. 
My last addition to X-Sharp was a texture mapper, a  routine  that warped and rotated 
any  desired  bitmap  to map onto an arbitrary  convex  polygon.  Texture mappers are criti- 
cal to good 3-D games; just a few texture-mapped polygons, backed with  well-drawn 

1080 Chapter 58 



bitmaps, can represent  more detail and look more realistic than dozens or even 
hundreds of solid-color polygons. My X-Sharp texture  mapper was in reasonable 
assembly-pretty good  code, by most  standards!-and I felt comfortable with my 
implementation; but  then I got  a  letter  from John Miles,  who was at  the time getting 
seriously into 3-D and is now the  author of a 3-D game library. (Yes, you can license it 
from  his  company,  Non-Linear  Arts, if you’d  like; John  can  be  reached  at 
70322.2457@compuserve.com.) John wrote me as  follows: “Hmm, so that’s how  tex- 
ture-mapping works. But 3 jumps perpixel! Hmph!” 
It was the  “Hmph”  that really got to me. 

Left-Brain  Optimization 
That was the first shot  ofjuice  for my optimizer (or  at least blow  to my ego, which can 
be just as productive). John went on to say he  had  gotten  texture  mapping down to 
9 cycles per pixel and  one  jump  per scanline on a 486 (all cycle times will be for  the 
486 unless otherwise noted); given that my code took, on average, about 44 cycles 
and 2 taken jumps  (plus 1 not  taken)  per pixel, I  had  a  long way to go. 
The  inner loop of  my original texture-mapping  code is  shown in Listing 58.1. All this 
code does is draw a single texture-mapped scanline, as  shown in Figure 58.1; an 
outer  loop  runs  through all the scanlines in whatever  polygon is being drawn. I im- 
mediately saw that  I could eliminate nearly 10 percent of the cycles  by unrolling  the 
loop; obviously, John  had  done  that, else there’s no way he could  branch only once 
per scanline. (By the way, branching only once  per scanline via a fully unrolled  loop 
is not generally recommended. A branch every  few pixels  costs  relatively little, and 
the  cache effects of  fully unrolled  code are not good.) I quickly came up with  several 

Source  Texture  Bitmap 

Destination  Polygon  on  Screen 

Texture mapping a single horizontal scanline. 
Figure 58.1 

HeinleinO  Crystal  Ball, Spock‘s Brain,  and  the  9-Cycle Dare 1 08 1 



other ways to  speed  up  the  code,  but soon  realized  that all the clever coding  in  the 
world  wasn't going to get me within 100 percent of John's  performance so long as I 
had  to cycle from one  plane to the  next  for every  pixel. 

LISTING  58.1  158- 1 .ASM 
: I n n e r   l o o p   t o   d r a w  a s i n g l e   t e x t u r e - m a p p e d   h o r i z o n t a l   s c a n l i n e   i n  
: Mode X .  t h e  VGA's p a g e - f l i p p e d   2 5 6 - c o l o r  mode. Because  adjacent 
: p i x e l s   l i e   i n   d i f f e r e n t   p l a n e s   i n  Mode X .  an OUT must  be  performed 
: t o   s e l e c t   t h e   p r o p e r   p l a n e   b e f o r e   d r a w i n g   e a c h   p i x e l .  

: A t  t h i s   p o i n t :  
AL - i n i t i a l   p i x e l ' s   p l a n e  mask 
DS:BX - i n i t i a l   s o u r c e   t e x t u r e   p o i n t e r  
DX - p o i n t e r   t o  VGA's Sequencer   Data  reg is ter  
S I  - # o f   p i x e l s   t o  fill 
ES:DI - p o i n t e r   t o   i n i t i a l   d e s t i n a t i o n   p i x e l  

TexScanLoop: 

: S e t   t h e  Map Mask f o r   t h i s   p i x e l ' s   p l a n e ,   t h e n  d r a w   t h e   p i x e l .  

o u t   d x . a l  
mov ah ,   Cbx l   : ge t   t ex tu re   p i xe l  
mov e s : [ d i l . a h   ; s e t   s c r e e n   p i x e l  

; P o i n t   t o   t h e   n e x t   s o u r c e   p i x e l .  

add  bx.  Cbpl.1  XBaseAdvance  :advance t h e  minimum il o f   p i x e l s   i n  X 
mov cx.word p t r   [ bp l . lSourceStepX 

j n c  NoExtraXAdvance 
add  word p t r   [ b p l . l S o u r c e X . c x   ; s t e p   t h e   s o u r c e  X f r a c t i o n a l   p a r t  

; d i d n ' t   t u r n   o v e r :   n o   e x t r a   a d v a n c e  
add  bx.Cbpl.1XAdvanceByOne : d i d   t u r n   o v e r ;   a d v a n c e  X one e x t r a  

NoExtraXAdvance: 

add  bx.[bpl.lYBaseAdvance  :advance  the  minimum # o f   p i x e l s   i n  Y 
mov cx,word p t r  Cbp1.lSourceStepY 
add  word p t r   [ bp l . lSourceY.cx   ; s tep   t he   sou rce  Y f r a c t i o n a l   p a r t  
j n c  NoExt raYAdvance  :d idn ' t   tu rn   over :   no   ex t ra   advance 
add  bx.[bpl.lYAdvanceByOne  :did tu rn   over :   advance Y one e x t r a  

NoExtraYAdvance: 

: P o i n t   t o   t h e   n e x t   d e s t i n a t i o n   p i x e l ,   b y   c y c l i n g   t o   t h e   n e x t   p l a n e ,  and 
: advancing t o   t h e   n e x t   a d d r e s s  i f  the   p lane  wraps   f rom 3 t o  0 .  

r o l  a1 .1 
adc d i . 0  

: Cont inue i f  t h e r e   a r e  any  more d e s t   p i x e l s   t o  draw. 

dec s i  
j n z  TexScanLoop 

Figure 58.2 shows  why this cycling is necessary. In Mode X, the page-flipped 2 5 6  
color  mode of the VGA, each successive pixel across a  scanline is stored  in  a  different 
hardware  plane,  and  an OUT to the VGA's hardware is needed to select the  plane 
being drawn to. (See  Chapters 47, 48, and 49 for details.) An OUT instruction by 

1082 Chapter 58 



I 

Pixels on Screen 

Display Memory 

Display memory organization in Mode X. 
Figure 58.2 

itself takes 16 cycles (and in the  neighborhood of 30 cycles  in virtual46  or  non- 
privileged protected mode),  and  an ROL takes 2 more, for a total of 18 cycles, double 
John’s 9 cycles, just to handle plane management. Clearly, getting  plane  control out 
of the  inner  loop was absolutely  necessary. 
I must confess,  with  some embarrassment,  that  at this point I threw myself into  de- 
signing a solution that involved executing the  texture  mapping  code  up to four times 
per scanline, once For the pixels  in each plane. It’s hard to  overstate the complexity 
of  this approach, which  involves quadrupling  the  normal pixel-to-pixel increments, 
adjusting the start value for each of the passes, and dealing with  some  nasty bound- 
ary  cases.  Make no mistake, the  code was perfectly doable, and would  in  fact  have 
gotten plane control out of the inner  loop,  but would  have been very difficult to get 
exactly right, and would  have suffered from substantial overhead. 
Fortunately,  in the last sentence I was able to say “would  have,” not “was,”  because my 
friend Chris Hecker (checker@bix.com) came along to toss a figurative bucket of 
cold  water on my right brain, which was evidently  asleep. (Or possibly stolen by scantily- 
clad, attractive  aliens; remember “Spock’s Brain”?) Chris is the  author of the WinG 
Windows game graphics package,  available from Microsoft via FTP, CompuServe, or 
MSDN  Level 2; if, like me, you  were at  the Game  Developers Conference in  April 
1994, you, along with  everyone  else,  were stunned to see  Id’s megahit DOOM run- 
ning  at full speed in a window, thanks to  WinG. If you  write  games for a living, run, 
don’t walk,  to check WinG out! 

Heinlein’s Crystal  Ball, Spock‘s Brain, and the 9-Cycle  Dare 1083 



Chris listened  to my proposed design for all of  maybe  30 seconds, growing visibly 
more  horrified by the  moment,  before  he said, “But why don’t you just draw vertical 
rather than  horizontal  scanlines?” 
W h y  indeed? 

A 90-Degree Shift in Perspective 
As I said earlier, how  you look at an  optimization  problem  defines how  you’ll be able 
to solve it. In order to boost performance,  sometimes it’s necessary to look at things 
from  a  different angle-and for  texture  mapping this was literally as  well  as figura- 
tively true. Chris suggested nothing  more  nor less than  scanning out polygons at  a 
90-degree angle to normal,  starting, say, at the  left  edge of the polygon, and texture- 
mapping vertically along  each  column of pixels,  as  shown in Figure 58.3. That way, 
all the pixels in  each  texture-mapped  column would be in the same plane, and I 
would need to change  planes only  between columns-outside the inner loop. A trivial 
change,  not  fundamental  in any  sense-and yetjust  that  one  change, plus unrolling 
the  loop,  reduced  the  inner  loop  to  the 22-cycles-per-pixel  version  shown in Listing 
58.2. That’s exactly  twice  as fast as Listing 58.1-and  given  how incredibly slow most 
VGAs are  at  completing OUTS, the real-world speedup  should be considerably greater 
still. (The fastest byte OUT I’ve ever measured  for  a VGA is 29  cycles, the slowest 
more  than 60 cycles; in the  latter case, Listing  58.2  would be on the order of four 
times faster  than Listing  58.1 .) 

LISTING 58.2 158-2.ASM 
: I n n e r   l o o p   t o   d r a w  a s i n g l e   t e x t u r e - m a p p e d   v e r t i c a l   c o l u m n ,   r a t h e r  
: t h a n  a h o r i z o n t a l   s c a n l i n e .   T h i s   a l l o w s   a l l   p i x e l s   h a n d l e d  
: by t h i s  code t o   r e s i d e   i n   t h e  same p l a n e ,  so t h e   t i m e - c o n s u m i n g  
: p l a n e   s w i t c h i n g   c a n   b e  moved o u t   o f   t h e   i n n e r   l o o p .  

: A t  t h i s   p o i n t :  
DS:BX - i n i t i a l   s o u r c e   t e x t u r e   p o i n t e r  
D X  - o f f s e t   t o   a d v a n c e   t o   t h e   n e x t   p i x e l   i n   t h e   d e s t   c o l u m n  

SI - # o f   p i x e l s   t o  fill 
E S : D I  - p o i n t e r   t o   i n i t i a l   d e s t i n a t i o n   p i x e l  
YGA s e t  up t o  draw t o   t h e   c o r r e c t   p l a n e   f o r   t h i s   c o l u m n  

( e i t h e r   p o s i t i v e   o r   n e g a t i v e   s c a n l i n e   w i d t h )  

REPT  LOOP-UNROLL 

: S e t   t h e  Map Mask f o r   t h i s   p i x e l ’ s   p l a n e ,   t h e n   d r a w   t h e   p i x e l .  

mov ah.Cbx1 
mov e s : C d i l . a h  

: g e t   t e x t u r e   p i x e l  
: s e t   s c r e e n   p i x e l  

: P o i n t   t o   t h e   n e x t   s o u r c e   p i x e l .  

add  bx. [bpl . lXBaseAdvance  :advance  the  minimum I/ o f   p i x e l s   i n  X 
mov cx.word p t r   Cbp l .1SourceStepX 
add  word p t r   [ b p ] . l S o u r c e X . c x   : s t e p   t h e   s o u r c e  X f r a c t i o n a l   p a r t  
j n c   N o E x t r a X A d v a n c e   : d i d n ’ t   t u r n   o v e r :   n o   e x t r a   a d v a n c e  
add  bx . [bp l . lXAdvanceByOne  :d id   tu rn   over :   advance X one e x t r a  

1084 Chapter 58 



NoExtraXAdvance: 

add  bx,[bp].lYBaseAdvance  :advance  the  minimum # o f  p i x e l s   i n  Y 
mov cx.word p t r   [ bp l . lSourceStepY 
add  word p t r   [ b p l . l S o u r c e Y . c x   : s t e p   t h e   s o u r c e  Y f r a c t i o n a l   p a r t  
j n c  NoExtraYAdvance : d i d n ' t   t u r n   o v e r :  no e x t r a  advance 
add  bx.[bpl.lYAdvanceByOne : d i d   t u r n   o v e r :   a d v a n c e  Y one e x t r a  

NoExtraYAdvance: 

: P o i n t   t o   t h e   n e x t   d e s t i n a t i o n   p i x e l ,   w h i c h   i s  on t h e   n e x t   s c a n   l i n e .  

adc   d i ,dx  

ENDM 

I'd like  to emphasize that algorithmically and conceptually, there is no difference 
between scanning out a polygon top to bottom and scanning  it out left to right; it is 
only in conjunction with the hardware organization of Mode X that  the  scanning 
direction matters in the least. 

That k what  Zen programming is all about, though; tying together two pieces of p seemingly unrelated information to good effect-and that's what I had failed  to do. 
Like Robert Heinlein-like all of us-I had  viewed the world through afilter com- 
posed of my ingrained assumptions, and one of those assumptions, based on all 
my past experience, was that pixel  processingproceeds left to right. Eventually, I 
might have come up with Chris k approach; but I would only have come up with it 
when  and if1 relaxed  and stepped back a little, and  allowed myself"a1most dared 
myself-to think of it. When you 're optimizing, be sure to leave quiet, nondirected 
time in which to conjure up those less obvious solutions, and periodically try to 
figure out what assumptions you 're  making-and then question them! 

All pixels in this  column are in the  same plane. 
I 

~~~1 ' p $  
Source Texture Bitmap

Destination Polygon on Screen

Texture mapping a single vertical column.
Figure 58.3

Heinlein's Crystal Ball, Spock's Brain, and the 9-Cycle Dare 1085

There are a few complications with Chris’s approach, not least that X-Sharp’s poly-
gon-filling convention (top and left edges included, bottom and right edges excluded)
is hard to reproduce for column-oriented texture mapping. I solved this in X-Sharp
version 22 by tweaking the edge-scanning code to allow column-oriented texture
mapping to match the current convention. (You’ll find X-Sharp 22 on the listings
diskette in the directory for this chapter.)
Chris also illustrated another important principle of optimization: A second pair of
eyes is invaluable. Even the best of us have blind spots and get caught up in particu-
lar implementations; if you bounce your ideas off someone, you may well find them
coming back with an unexpected-and welcome-spin.

That’s Nice-But it Sure as Heck Ain‘t 9 Cycles
Excellent as Chris’s suggestion was, I still had work to do: Listing 58.2 is still more
than twice as slow as John Miles’s code. Traditionally, I start the optimization process
with algorithmic optimization, then try to tie the algorithm and the hardware to-
gether for maximum efficiency, and finish up with instruction-by-instruction,
take-no-prisoners optimization. We’ve already done the first two steps, so it’s time to
get down to the bare metal.
Listing 58.2 contains three functional parts: Drawing the pixel, advancing the desti-
nation pointer, and advancing the source texture pointer. Each of the three parts is
amenable to further acceleration.
Drawing the pixel is difficult to speed up, given that it consists of only two instruc-
tions-diffkult, but not impossible. True, the instructions themselves are indeed
irreducible, but if we can get rid of the ES: prefix (and, as we shall see, we can), we
can rearrange the code to make it run faster on the Pentium. Without a prefix, the
instructions execute as follows on the Pentium:

MOV AH.CBX1 : c y c l e 1 U - p i p e

MOV [D I I . A H ; c y c l e 2 U - p i p e

The second MOV, being dependent on the value loaded into AH by the first MOV,
can’t execute until the first MOV is finished, so the Pentium’s second pipe, the V-pipe,
lies idle for a cycle. We can reclaim that cycle simply by shuffling another instruction
between the two MOVs.
Advancing the destination pointer is easy to speed up: Just build the offset from one
scanline to the next into each pixeldrawing instruction as a constant, as in

; c y c l e 1 V - p i p e i d l e ; reg c o n t e n t i o n

MOV [EDI+SCANOFFSETI .AH

and advance ED1 only once per unrolled loop iteration.
Advancing the source texture pointer is more complex, but correspondingly more
rewarding. Listing 58.2 uses avariant form of 32-bit fixed-point arithmetic to advance the

1086 Chapter 58

source pointer, with the source texture coordinates and increments stored in 16.16
(16 bits of integer, 16 bits of fraction) format. The source coordinates are stored in a
slightly unusual format, whereby the fractional X and Y coordinates are stored and
advanced separately, but a single integer value, the source pointer, is used to reflect
both the X and Y coordinates. In Listing 58.2, the integer and fractional parts are
added into the current coordinates with four separate 16-bit operations, and carries
from fractional to integer parts are detected via conditional jumps, as shown in Fig-
ure 58.4. There's quite a lot we can do to improve this.

J-
Add integer X increment

to source Dointer I
Add fractional X increment
to fractional X coordinate

J-
Carry from

fractional addition?
I

Yes 1 No
Advance source pointer

one more pixel in X

J
Add integer Y increment

to source pointer
-I

.1
Add fractional Y increment
to fractional Y coordinate

J-
Carry from

fractional addition?
A

I

Yes 1 No
Advance source pointer

one more pixel in Y

Original method for advancing the source texture pointer:
Figure 58.4

Heinlein's Crystal Ball, Spock's Brain, and the 9-Cycle Dare 1087

First, we can sum the X and Y integer advance amounts outside the loop, then add
them both to the source pointer with a single instruction. Second, we can recognize
that X advances exactly one extra byte when its fractional part carries, and use ADC
to account for X carries, as shown in Figure 58.5. That single ADC can add in not
only any X carry, but both the X and Y integer advance amounts as well, thereby
eliminating a good chunk of the source-advance code in Listing 58.2. Furthermore,
we should somehow be able to use 32-bit registers and instructions to help with the
32-bit fixed-point arithmetic; true, the size override prefix (because we’re in a 16-bit
segment) will cost a cycle per 32-bit instruction, but that’s better than the 3 cycles it
takes to do 32-bit arithmetic with 16-bit instructions. It isn’t obvious, but there’s a
nifty trick we can use here, again courtesy of Chris Hecker (who, as you can tell, has
done a fair amount of thinking about the complexities of texture mapping).
We can store the current fractional parts of both the X and Y source coordinates in
a single 32-bit register, EDX, as shown in Figure 58.6. It’s important to note that the
Y fraction is actually only 15 bits, with bit 15 of EDX always kept at zero; this allows bit
15 to store the carry status from each Y advance. We can similarly store the fractional
X and Y advance amounts in ECX, and can store the sum of the integer parts of the
X and Y advance amounts in BP. With this arrangement, the single instruction ADD
EDX,ECX advances the fractional parts of both X and y and the following instruction

J
Add fractional X increment
to fractional X coordinate I

4
increment, and carry from last

J-
Add fractional Y increment
to fractional Y coordinate I

J-
[Carry from fractional addition? I

Eficient method for advancing source texture pointer
Figure 58.5

1088 Chapter 58

Fractional Y Carry
1

Fractional X

Bit 15
Bit 31 Bit 16 Bit 14 Bit 0

Coordinate (1 5 bits) Coordinate (1 6 bits)
Fractional Y

Storing both Xand Y fractional coordinates in one register.
Figure 58.6

ADC S1,BP finishes advancing the source pointer in X. That’s a mere 3 cycles, and all
that remains is to finish advancing the source pointer in Y
Actually, we also advanced the source pointer by the Yinteger amount back when we
added BP to SI; all that’s left is to detect whether our addition to the Y fractional
current coordinate produced a carry. That’s easily done by testing bit 15 of EDX; if
it’s zero, there was no carry and we’re done; otherwise, Y carried, so we have to reset
bit 15 and advance the source pointer by one scanline. The resulting program flow is
shown in Figure 58.7. Note that unlike the X fractional addition, we can’t get away
with just adding in the carry from the Y fractional addition, because when the Y
fraction carries, it indicates a move not from one pixel to the next on a scanline (a
single byte), but rather from one scanline to the next (a full scanline width).
All of the above optimizations together get us to 10 cycles--very close to John Miles,
but not there yet. We have one more trick up our sleeve, though: Suppose we point
SS to the segment containing our textures, and point DS to the screen? (This re-
quires either setting up a stack in the texture segment or ensuring that interrupts
and other stack activity can’t happen while SS points to that segment.) Then, we
could swap the functions of SI and BP; that would let us use BP, which accesses SS by
default, to get at the textures, and DI to access the screen-all with no segment
prefixes at all. By gosh, that would get us exactly one more cycle, and would bring us
down to the same 9 cycles John Miles attained; Listing 58.3 shows that code. At long
last, the Holy Grail attained and our honor defended, we can rest.
Or can we?

LISTING 58.3 158-3.ASM
: I n n e r l o o p t o d r a w a s i n g l e t e x t u r e - m a p p e d v e r t i c a l c o l u m n ,
: r a t h e r t h a n a h o r i z o n t a l s c a n l i n e . M a x e d - o u t 1 6 - b i t v e r s i o n .

: A t t h i s p o i n t :
A X = s o u r c e p o i n t e r i n c r e m e n t t o a d v a n c e o n e i n Y
E C X = f r a c t i o n a l Y advance i n l o w e r 1 5 b i t s o f C X .

f r a c t i o n a l X advance i n h i g h w o r d o f E C X . b i t
1 5 s e t t o 0

Heinlein‘s Crystal Ball, Spock‘s Brain, and the 9-Cycle Dare 1089

Increments to fractional coordinates
with a single X -b i t ADD

4
Add integer X increment, integer Y

increment, and carry from last
operation to source pointer with ADC

J-
Carry from fractional Y addition?
(Bit 15 of result of X -b i t ADD)

1 Advance source pointer
one more Dixel in Y I

1
Reset bit 15 of 32-bit fractional

coordinate accumulator I
J

Final method for advancing source texture pointer:
Figure 58.7

E O X = f r a c t i o n a l s o u r c e t e x t u r e Y c o o r d i n a t e i n l o w e r
1 5 b i t s o f C X . f r a c t i o n a l s o u r c e t e x t u r e X c o o r d
i n h i g h w o r d o f E C X . b i t 15 s e t t o 0

S I - sum o f i n t e g r a l X & Y s o u r c e p o i n t e r a d v a n c e s
D S : O I - i n i t i a l d e s t i n a t i o n p o i n t e r
SS:BP = i n i t i a l s o u r c e t e x t u r e p o i n t e r

SCANOFFSET-0

REPT LOOP~UNROLL

mov b l , [b p l
mov [di+SCANOFFSETl,bl

add edx.ecx

a d c b p , s i

t e s t dh,80h
j z @F
add bp,ax
and dh.not 80h

: g e t t e x t u r e p i x e l
; s e t s c r e e n p i x e l

; a d v a n c e f r a c Y i n D X ,
; f r a c X i n h i g h w o r d o f EDX
; a d v a n c e s o u r c e p o i n t e r b y i n t e g r a l
; X & Y amount, a l s o a c c o u n t i n g f o r
; c a r r y f r o m X f r a c t i o n a l a d d i t i o n
; c a r r y f r o m Y f r a c t i o n a l a d d i t i o n ?
:no
;yes. advance Y by one
; r e s e t t h e Y f r a c t i o n a l c a r r y b i t

1090 Chapter 58

@@:

SCANOFFSET = SCANOFFSET + SCANWIDTH

ENDM

Don‘t Stop Thinking about Those Cycles
Remember what I said at the outset, that knowing something has been done makes it
much easier to do? A corollary is that pushing past that point, once attained, is very
difficult. It’s only natural to want to relax in the satisfaction of a job well done; then,
too, the very nature of the work changes. Getting from 44 cycles down to John’s 9
cycles was a huge leap, but we knew it could be done-therefore the nature of the
problem was to figure out how it was done; in cases like this, if we’re sharp enough
(and of course we are!), we’re guaranteed eventual gratification. Now that we’ve
reached John’s level of performance, the problem becomes whether the code can be
made faster yet, and that’s a different kettle of fish altogether, for it may well be that
after thinking about it for a while, we’ll conclude that it can’t. Not only will we have
wasted time, but we’ll also never be sure we were right; we’ll know only that wecouldn’t
find a solution. That way lies madness.
And yet-someone has to blaze the trail to higher performance, and that someone
might as well be us. Let’s look for weaknesses in Listing 58.3. None are readily appar-
ent; the only cycle that looks even slightly wasted is the size prefix on ADD EDX,ECX.
As it turns out, that cycle really is wasted, for there’s a way to make the size prefix
vanish without losing the benefits of 32-bit instructions: Move the code into a 32-bit
segment and make all the instructions 32-bit. That’s what Listing 58.4 does; this code
is similar to Listing 58.3, but runs in 8 cycles per pixel, a 12.5 percent speedup over
Listing 58.3. Whether Listing 58.4 actually draws more pixels per second than List-
ing 58.3 depends on whether display memory is fast enough to handle pixels as
rapidly as Listing 58.4 can deliver them. That speed, one pixel every 122 nanosec-
onds on a 486/66, is one that ISA adapters can’t hope to match, but fast VLB and
PC1 adapters can handle with ease. Be aware, too, that cache misses when reading
the source texture will generally reduce performance below the calculated 8-cycles-
per-pixel level, especially because textures, which can be scanned across at any angle,
are rarely accessed at consecutive addresses, which is the arrangement that would
make for the fewest cache misses.

LISTING 58.4 158-4.ASM
: I n n e r l o o p t o d r a w a s i n g l e t e x t u r e - m a p p e d v e r t i c a l c o l u m n ,
: r a t h e r t h a n a h o r i z o n t a l s c a n l i n e . M a x e d - o u t 3 2 - b i t v e r s i o n .

: A t t h i s p o i n t :
EAX = sum o f i n t e g r a l X & Y s o u r c e p o i n t e r a d v a n c e s
E C X - s o u r c e p o i n t e r i n c r e m e n t t o a d v a n c e o n e i n Y
EDX - f r a c t i o n a l s o u r c e t e x t u r e Y c o o r d i n a t e i n l o w e r

15 b i t s o f D X , f r a c t i o n a l s o u r c e t e x t u r e X c o o r d
i n h i g h w o r d o f E D X . b i t 15 s e t t o 0

Heinlein‘s Crystal Ball, Spock‘s Brain, and the 9-Cycle Dare 1091

E S I - i n i t i a l s o u r c e t e x t u r e p o i n t e r
ED1 - i n i t i a l d e s t i n a t i o n p o i n t e r
EBP - f r a c t i o n a l Y advance i n l o w e r 15 b i t s o f B P .

f r a c t i o n a l X advance i n h i g h w o r d o f EBP. b i t
15 s e t t o 0

SCANOFFSET-0

REPT LOOP-UNROLL

mov b l , Cesi 3
add edx, ebp

adc e s i . e a x

mov C e d i + S C A N O F F S E T l , b l

t e s t dh.8Oh
jz s h o r t @ F
add e s i . e c x

and dh.not 80h
@e:

SCANOFFSET - SCANOFFSET + SCANWIDTH

; g e t i m a g e p i x e l
:advance f r a c Y i n D X ,
; f r a c X i n h i g h w o r d o f EDX
; a d v a n c e s o u r c e p o i n t e r b y i n t e g r a l
; X & Y a m o u n t , a l s o a c c o u n t i n g f o r
; c a r r y f r o m X f r a c t i o n a l a d d i t i o n
; s e t s c r e e n p i x e l
; (l o c a t e d h e r e t o a v o i d 4 8 6
; A G I f r o m p r e v i o u s b y t e o p)
; c a r r y f r o m Y f r a c t i o n a l a d d i t i o n ?
;no
;yes. advance Y by one
; (produces Pent ium A G I f o r MOV B L . [E S I])
; r e s e t t h e Y f r a c t i o n a l c a r r y b i t

ENDM

And there you have it: A five to 10-times speedup of a decent assembly language
texture mapper. All it took was some help from my friends, a good, stiffjolt of right-
brain thinking, and some solid left-brain polishing-plus the knowledge that such a
speedup was possible. Treat every optimization task as if John Miles has just written
to inform you that he’s made it faster than your wildest dreams, and you’ll be amazed
at what you can do!

Texture Mapping Notes
Listing 58.3 contains no 486 pipeline stalls; it has Pentium stalls, but not much can
be done for them because of the size prefix on ADD EDX,ECX, which takes 1 cycle to
go through the U-pipe, and shuts down the V-pipe for that cycle. Listing 58.4, on the
other hand, has been rearranged to eliminate all Pentium stalls save one. When the
Y coordinate fractional part carries and ESI advances, the code executes as follows:

ADD E S I . E C X ; c y c l e 1 U - p i p e
AND DH,NOT 80H ; c y c l e 1 V - p i p e

MOV B L . C E S I 1 ; c y c l e 3 U - p i p e
ADD E D X , E B P ; c y c l e 3 V - p i p e

However, I don’t see any way to eliminate this last AGI, which happens about half the
time; even with it, the Pentium execution time for Listing 58.4 is 5.5 cycles. That’s 61

; c y c l e 2 i d l e A G I on E S I

1092 Chapter 58

nanoseconds-a highly respectable 16 million texture-mapped pixels per second-
on a 90 MHz Pentium.
The type of texture mapping discussed in both this and earlier chapters doesn’t do
perspective correction when mapping textures. Why that is and how to handle per-
spective correction is a topic for a whole separate book, but be aware that the textures
on some large polygons (not the polygon edges themselves) drawn with the code in
this chapter will appear to be unnaturally bowed, although small polygons should
look fine.
Finally, we never did get rid of the last jump in the texture mapper, yet John Miles
claimed no jumps at all. How did he do it? I’m not sure, but I’d guess that he used a
two-entry look-up table, based on the Y carry, to decide how much to advance the
source pointer in Y. However, I couldn’t come up with any implementation of this
approach that didn’t take 0.5 to 1 cycle more than the test-and-jump approach, so
either I didn’t come up with an adequately efficient implementation of the table,
John saved a cycle somewhere else, or perhaps John implemented his code in a 32-
bit segment, but used the less-efficient table in his fervor to get rid of the final jump.
The knowledge that I apparently came up with a different solution than John high-
lights that the technical aspects of John’s implementation were, in truth, totally
irrelevant to my optimization efforts; the only actual effect John’s code had on me
was to make me belime a texture mapper could run that fast.
Believe it! And while you’re at it, give both halves of your brain equal time-and
watch out for aliens in short skirts, 60’s bouffant hairdos, and an undue interest in
either half.

Heinlein‘s Crystal Ball, Spockf Brain, and the 9-Cycle Dare 1093

chapter 59

the idea of bsp trees

1097

The name was there in my mind, somewhere; I could feel the shape of it, in that
same back storeroom, if only I could figure out how to retrieve it.
1 poked and worried at that memory, trying to get it to come to the surface. I concen-
trated on it as hard as I could, and even started going through the alphabet one
letter at a time, trying to remember if her name started with each letter. After 15
minutes, I was wide awake and totally frustrated. I was also farther than ever from
answering the question; all the focusing on the memory was beginning to blur the
original imprint.
At this point, I consciously relaxed and made myself think about something com-
pletely different. Every time my mind returned to the mystery girl, I gently shifted it
to something else. After a while, I began to drift off to sleep, and as I did a connec-
tion was made, and a name popped, unbidden, into my mind.
Wendy Tucker.
There are many problems that are amenable to the straight-ahead, purely conscious
sort of approach that I first tried to use to retrieve Wendy’s name. Writing code
(once it’s designed) is often like that, as are some sorts of debugging, technical writ-
ing, and balancing your checkbook. I personally find these left-brain activities to be
very appealing because they’re finite and controllable; when I start one, I know 1’11
be able to deal with whatever comes up and make good progress, just by plowing
along. Inspiration and intuitive leaps are sometimes useful, but not required.
The problem is, though, that neither you nor I will ever do anything great without
inspiration and intuitive leaps, and especially not without stepping away from what’s
known and venturing into territories beyond. The way to do that is not by trying harder
but, paradoxically, by q n g less hard, stepping back, and giving your right brain room to
work, then listening for and nurturing whatever comes of that. On a small scale,
that’s how I remembered Wendy’s name, and on a larger scale, that’s how program-
mers come up with products that are more than me-too, checklist-oriented software.
Which, for a couple of reasons, brings us neatly to this chapter’s topic, Binary Space
Partitioning (BSP) trees. First, games are probably the sort of software in which the
right-brain element is most important-blockbuster games are almost always break-
throughs in one way or another-and some very successful games use BSP trees,
most notably id Software’s megahit DOOM. Second, BSP trees aren’t intuitively easy
to grasp, and considerable ingenuity and inventiveness is required to get the most
from them.
Before we begin, I’d like to thank John Carmack, the technical wizard behind DOOM,
for generously sharing his knowledge of BSP trees with me.

BSP Trees
A BSP tree is, at heart, nothing more than a tree that subdivides space in order to
isolate features of interest. Each node of a BSP tree splits an area or a volume (in 2-D or

1098 Chapter 59

3-D, respectively) into two parts along a line or a plane; thus the name “Binary Space
Partitioning.” The subdivision is hierarchical; the root node splits the world into two
subspaces, then each of the root’s two children splits one of those two subspaces into
two more parts. This continues with each subspace being further subdivided, until
each component of interest (each line segment or polygon, for example) has been
assigned its own unique subspace. This is, admittedly, a pretty abstract description,
but the workings of BSP trees will become clearer shortly; it may help to glance
ahead to this chapter’s figures.
Building a tree that subdivides space doesn’t sound particularly profound, but there’s
a lot that can be done with such a structure. BSP trees can be used to represent
shapes, and operating on those shapes is a simple matter of combining trees as needed;
this makes BSP trees a powerful way to implement Constructive Solid Geometry
(CSG). BSP trees can also be used for hit testing, line-of-sight determination, and
collision detection.

Visibility Determination
For the time being, I’m going to discuss only one of the many uses of BSP trees: The
ability of a BSP tree to allow you to traverse a set of line segments or polygons in
back-to-front or front-to-back order as seen from any arbitrary viewpoint. This sort of
traversal can be very helpful in determining which parts of each line segment or
polygon are visible and which are occluded from the current viewpoint in a 3-D
scene. Thus, a BSP tree makes possible an efficient implementation of the painter’s
algorithm, whereby polygons are drawn in back-to-front order, with closer polygons
overwriting more distant ones that overlap, as shown in Figure 59.1. (The line seg-
ments in Figure 1 (a) and in other figures in this chapter, represent vertical walls,
viewed from directly above.) Alternatively, visibility determination can be performed
by front-to-back traversal working in conjunction with some method for remember-
ing which pixels have already been drawn. The latter approach is more complex, but
has the potential benefit of allowing you to early-out from traversal of the scene
database when all the pixels on the screen have been drawn.
Back-to-front or front-to-back traversal in itself wouldn’t be so impressive-there are
many ways to do that-were it not for one additional detail: The traversal can always
be performed in linear time, as we’ll see later on. For instance, you can traverse, a
polygon list back-to-front from any viewpoint simply by walking through the corre-
sponding BSP tree once, visiting each node one and only one time, and performing
only one relatively inexpensive test at each node.
It’s hard to get cheaper sorting than linear time, and BSP-based rendering stacks up
well against alternatives such as z-buffering, octrees, z-scan sorting, and polygon sort-
ing. Better yet, a scene database represented as a BSP tree can be clipped to the view
pyramid very efficiently; huge chunks of a BSP tree can be lopped off when clipping
to the view pyramid, because if the entire area or volume of a node lies entirely

The Idea of BSP Trees 1099

B
/
C
V

A. Walls viewed from above

B. After drawing far wall

C. After drawing next farthest wall

-
D. After drawing nearest wall

The painter 5. algorithm.
Figure 59.1

outside the view volume, then all nodes and leaves that are children of that node
must likewise be outside the view volume, for reasons that will become clear as we
delve into the workings of BSP trees.

Limitations of BSP Trees
Powerful as they are, BSP trees aren’t perfect. By far the greatest limitation of BSP
trees is that they’re time-consuming to build, enough so that, for all practical pur-
poses, BSP trees must be precalculated, and cannot be built dynamically at runtime.
In fact, a BSP-tree compiler that attempts to perform some optimization (limiting
the number of surfaces that need to be split, for example) can easily take minutes or
even hours to process large world databases.
A fixed world database is fine for walkthrough or flythrough applications (where the
viewpoint moves through a static scene), but not much use for games or virtual real-
ity, where objects constantly move relative to one another. Consequently, various
workarounds have been developed to allow moving objects to appear in BSP tree-
based scenes. DOOM, for example, uses 2-D sprites mixed into BSP-based 3-D scenes;
note, though, that this approach requires maintaining z information so that sprites
can be drawn and occluded properly. Alternatively, movable objects could be repre-
sented as separate BSP trees and merged anew into the world BSP tree with each
move. Dynamic merging may or may not be fast enough, depending on the scene,
but merging BSP trees tends to be quicker than building them, because the BSP
trees being merged are already spatially sorted.

1 100 Chapter 59

Another possibility would be to generate a per-pixel z-buffer for each frame as it’s
rendered, to allow dynamically changing objects to be drawn into the BSP-based
world. In this scheme, the BSP tree would allow fast traversal and clipping of the
complex, static world, and the z-buffer would handle the relatively localized visibility
determination involving moving objects. The drawback of this is the need for a
memory-hungry z-buffer; a typical 640x480 z-buffer requires a fairly appalling 600K,
with equally appalling cache-miss implications for performance.
Yet another possibility would be to build the world so that each dynamic object falls
entirely within a single subspace of the static BSP tree, rather than straddling split-
ting lines or planes. In this case, dynamic objects can be treated as points, which are
then just sorted into the BSP tree on the fly as they move.
The only other drawbacks of BSP trees that I know of are the memory required to
store the tree, which amounts to a few pointers per node, and the relative complex-
ity of debugging BSP-tree compilation and usage; debugging a large data set being
processed by recursive code (which BSP code tends to be) can be quite a challenge.
Tools like the BSP compiler I’ll present in the next chapter, which visually depicts
the process of spatial subdivision as a BSP tree is constructed,
BSPdebugging:

Building a BSP Tree
Now that we know a good bit about what a BSP tree is, how it

help a great dealwith

telps in visible surface l-
determination, and what its strengths and weaknesses are, let’s take a look at how a
BSP tree actually works to provide front-to-back or back-to-front ordering. This
chapter’s discussion will be at a conceptual level, with plenty of figures; in the next
chapter we’ll get into mechanisms and implementation details.
I’m going to discuss only 2-D BSP trees from here on out, because they’re much
easier to draw and to grasp than their 3-D counterparts. Don’t worry, though; the
principles of 2-D BSP trees using line segments generalize directly to 3-D BSP trees
using polygons. Also, 2-D BSP trees are quite powerful in their own right, as evi-
denced by DOOM, which is built around 2-D BSP trees.
First, let’s construct a simple BSP tree. Figure 59.2 shows a set of four lines that will
constitute our sample world. I’ll refer to these as walls, because that’s one easily-
visualized context in which a 2-D BSP tree would be useful in a game. Think of Figure
59.2 as depicting vertical walls viewed from directly above, so they’re lines for the
purpose of the BSP tree. Note that each wall has a front side, denoted by a normal
(perpendicular) vector, and a back side. To make a BSP tree for this sample set, we
need to split the world in two, then each part into two again, and so on, until each
wall resides in its own unique subspace. An obvious question, then, is how should we
carve up the world of Figure 59.2?

The Idea of BSP Trees 1 1 01

A sample set of walls, viewed from above.
Figure 59.2

There are infinitely valid ways to carve up Figure 59.2, but the simplest is just to carve
along the lines of the walls themselves, with each node containing one wall. This is
not necessarily optimal, in the sense of producing the smallest tree, but it has the
virtue of generating the splitting lines without expensive analysis. It also saves on
data storage, because the data for the walls can do double duty in describing the
splitting lines as well. (Putting one wall on each splitting line doesn’t actually create
a unique subspace for each wall, but it does create a unique subspace boundary for
each wall; as we’ll see, that spatial organization provides for the same unambiguous
visibility ordering as a unique subspace would.)
Creating a BSP tree is a recursive process, so we’ll perform the h t split and go from there.
Figure 59.3 shows the world carved along the line of wall C into two parts: walls that are
in front ofwall C, and walls that are behind. (Any of the walls would have been an equally

front

BSP tree

child

front lines back lines

child

1

J

Initial split along the line of wall C.
Figure 59.3

1 102 Chapter 59

valid choice for the initial split; we'll return to the issue of choosing splitting walls in the
next chapter.) This splitting into front and back is the essential dualism of BSP trees.
Next, in Figure 59.4, the front subspace of wall C is split by wall D. This is the only
wall in that subspace, so we're done with wall C's front subspace.
Figure 59.5 shows the back subspace of wall C being split by wall B. There's a differ-
ence here, though: Wall A straddles the splitting line generated from wall B. Does
wall A belong in the front or back subspace of wall B?

Split of wall C j . front subspace along the line of wall D.
Figure 59.4

BSP tree

fronl

Split of wall C's buck subspace along the line of wall B.
Figure 59.5

The Idea of BSP Trees 1 103

Both, actually. Wall A gets split into two pieces, which I’ll call wall A and wall E; each
piece is assigned to the appropriate subspace and treated as a separate wall. As shown
in Figure 59.6, each of the split pieces then has a subspace to itself, and each be-
comes a leaf of the tree. The BSP tree is now complete.

Visibility Ordering
Now that we’ve successfully built a BSP tree, you might justifiably be a little puzzled
as to how any of this helps with visibility ordering. The answer is that each BSP node
can definitively determine which of its child trees is nearer and which is farther from
any and all viewpoints; applied throughout the tree, this principle makes it possible
to establish visibility ordering for all the line segments or planes in a BSP tree, no
matter what the viewing angle.
Consider the world of Figure 59.2 viewed from an arbitrary angle, as shown in Figure
59.7. The viewpoint is in front of wall C; this tells us that all walls belonging to the
front tree that descends from wall C are nearer along every ray from the viewpoint
than wall C is (that is, they can’t be occluded by wall C) . All the walls in wall C’s back
tree are likewise farther away than wall C along any ray. Thus, for this viewpoint, we
know for sure that if we’re using the painter’s algorithm, we want to draw all the walls
in the back tree first, then wall C, and then the walls in the front tree. If the view-
point had been on the back side of wall C, this order would have been reversed.
Of course, we need more ordering information than wall C alone can give us, but we
get that by traversing the tree recursively, making the same far-near decision at each
node. Figure 59.8 shows the painter’s algorithm (back-to-front) traversal order of
the tree for the viewpoint of Figure 59.7. At each node, we decide whether we’re

BSP tree

~ _ _ ~ ~ ”~ ~

The final BSP tree.
Figure 59.6

1 104 Chapter 59

Viewing the BSP tree from an arbitrary angle.
Figure 59.7

seeing the front or back side of that node’s wall, then visit whichever of the wall’s
children is on the far side from the viewpoint, draw the wall, and then visit the node’s
nearer child, in that order. Visiting a child is recursive, involving the same far-near
visiting order.
The key is that each BSP splitting line separates all the walls in the current subspace
into two groups relative to the viewpoint, and every single member of the farther

Note: ‘F‘ and ‘N‘ indicate the far and near children,
respectively, of each node from the viewpoint of
Figure 59.7.

Back-to-front traversal of the BSP tree as viewed in Figure 59.7.
Figure 59.8

The Idea of BSP Trees 1 1 05

group is guaranteed not to occlude every single member of the nearer. By applying
this ordering recursively, the BSP tree can be traversed to provide back-to-front or
front-to-back ordering, with each node being visited only once.
The type of tree walk used to produce front-to-back or back-to-front BSP traversal is
known as an inorderwalk. More on this very shortly; you’re also likely to find a discus-
sion of inorder walking in any good data structures book. The only special aspect of
BSP walks is that a decision has to be made at each node about which way the node’s
wall is facing relative to the viewpoint, so we know which child tree is nearer and
which is farther.
Listing 59.1 shows a function that draws a BSP tree back-to-front. The decision whether
a node’s wall is facing forward, made by WallFacingForward() in Listing 59.1, can, in
general, be made by generating a normal to the node’s wall in screenspace (perspec-
tive-corrected space as seen from the viewpoint) and checking whether the z
component of the normal is positive or negative, or by checking the sign of the dot
product of a viewspace (non-perspective corrected space as seen from the viewpoint)
normal and a ray from the viewpoint to the wall. In 2-D, the decision can be made by
enforcing the convention that when a wall is viewed from the front, the start vertex is
leftmost; then a simple screenspace comparison of the x coordinates of the left and
right vertices indicates which way the wall is facing.

listing 59.1 159-1 .C
v o i d WalkBSPTree(N0DE *pNode)
I

i f (Wal lFacingForward(pNode) {
i f (pNode->Backch i ld) {

1
Draw(pNode);
i f (p N o d e - > F r o n t c h i l d) I

I
J e l s e {

i f (p N o d e - > F r o n t c h i l d) {

1
Draw(pNode):
i f (pNode->Backch i ld) {

I

WalkBSPTree(pN0de->Backchi ld) ;

WalkBSPTree(pN0de->Frontchi ld) :

WalkBSPTree(pN0de->Frontchi ld) :

WalkBSPTree(pN0de->Backchild):

1
I

Be aware that BSP trees can often be made smaller and more efficient by detecting p collinear surfaces (like aligned wall segments) and generating only one BSP node
for each collinear set, with the collinear surfaces stored in, say, a linked list at-
tached to that node. Collinear surfacespartition space identically and can ’t occlude
one another, so it suffices to generate one splitting node for each collinear set.

1 106 Chapter 59

Inorder Walks of BSP Trees
It was implementing BSP trees that got me to thinking about inorder tree traversal.
In inorder traversal, the left subtree of each node gets visited first, then the node,
and then the right subtree. You apply this sequence recursively to each node and its
children until the entire tree has been visited, as shown in Figure 59.9. Walking a
BSP tree is basically an inorder tree walk; the only difference is that with a BSP tree
a decision is made before each descent as to which subtree to visit first, rather than
simply visiting whatever’s pointed to by the left-subtree pointer. Conceptually, how-
ever, an inorder walk is what’s used to traverse a BSP tree; from now on I’ll discuss
normal inorder walking, with the understanding that the same principles apply to
BSP trees.
As I’ve said again and again in my printed works over the years, you have to dig deep
below the surface to real4 understand something if you want to get it right, and
inorder walking turns out to be an excellent example of this. In fact, it’s such a good
example that I routinely use i t as an interview question for programmer candidates,
and, to my astonishment, not one interviewee has done a good job with this one yet.
I ask the question in two stages, and I get remarkably consistent results.
First, I ask for an implementation of a function WalkTree() that visits each node in a
passed-in tree in inorder sequence. Each candidate unhesitatingly writes something
like the perfectly good code in Listings 59.2 and 59.3 shown next.

An inorder walk of a BSP tree.
Figure 59.9

The Idea of BSP Trees 1 107

Listing 59.2 159-2.C
I / F u n c t i o n t o i n o r d e r w a l k a t r e e , u s i n g c o d e r e c u r s i o n
/ / T e s t e d w i t h 3 2 - b i t V i s u a l C++ 1.10.
Pi n c l ude < s t d l i b. h>
l i n c l ude “ t ree . h ”
e x t e r n v o i d V i s i t (N 0 D E * p N o d e) :
v o i d WalkTree(N0DE *pNode)
(

I / Make s u r e t h e t r e e i s n ’ t e m p t y
i f (pNode !- NULL)
(

/ / T r a v e r s e t h e l e f t s u b t r e e . i f t h e r e i s one
i f (p N o d e - > p L e f t C h i l d !- NULL)
I

I
I / V i s i t t h i s node
V i s i t (p N o d e) :
/ / T r a v e r s e t h e r i g h t s u b t r e e . i f t h e r e i s one
i f (pNode->pRightCh i ld !- NULL)
I

1

WalkTree(pNode->pLeftChild):

WalkTree(pNode->pRightChild);

I
1

listing 59.3 159-3.H
/ / Header f i l e TREE.H f o r t r e e - w a l k i n g c o d e .
t y p e d e f s t r u c t -NODE I

s t r u c t -NODE * p L e f t C h i l d :
s t r u c t -NODE * p R i g h t C h i l d ;

1 NODE:

Then I ask if they have any idea how to make the code faster; some don’t, but most
point out that function calls are pretty expensive. Either way, I then ask them to
rewrite the function without code recursion.
And then I sit back and squirm for a minimum of 15 minutes.
I have never had anyone write a functional data-recursion inorder walk function in
less time than that, and several people have simply never gotten the code to work at
all. Even the best of them have fumbled their way through the code, sticking in a
push here or a pop there, then working through sample scenarios in their head to
see what’s broken, programming by trial and error until the errors seem to be gone.
No one is ever sure they have it right; instead, when they can’t find any more bugs,
they look at me hopefully to see if it’s thumbs-up or thumbs-down.
And yet, a data-recursive inorder walk implementation has exactly the same flowchart
and exactly the same functionality as the code-recursive version they’ve already writ-
ten. They already have a fully functional model to follow, with all the problems solved,
but they can’t make the connection between that model and the code they’re trylng
to implement. Why is this?

1 108 Chapter 59

Know it Cold
The problem is that these people don't understand inorder walking through and
through. They understand the concepts of visiting left and right subtrees, and they
have a general picture of how traversal moves about the tree, but they do not under-
stand exactly what the code-recursive version does. If they really comprehended
everything that happens in each iteration of WalkTreeO-how each call saves the
state, and what that implies for the order in which operations are performed-they
would simply and without fuss implement code like that in Listing 59.4, working with
the code-recursive version as a model.

Listing 59.4 159-4.C
/ I F u n c t i o n t o i n o r d e r w a l k a t r e e , u s i n g d a t a r e c u r s i o n .
/ / No s t a c k o v e r f l o w t e s t i n g i s p e r f o r m e d .
/ / T e s t e d w i t h 3 2 - b i t V i s u a l C++ 1.10.
i n c l u d e < s t d l i b . h >
#i n c l ude " t r e e . h"
d e f i n e MAX-PUSHED-NODES 100
ex te rn vo id V i s i t (NO0E *pNode) :
v o i d WalkTree(NO0E *pNode)
(

NODE *NodeStack[MAX-PUSHED_NODESI:
NODE **pNodeStack;
/ / Make s u r e t h e t r e e i s n ' t e m p t y
i f (pNode !- NULL)
I

NodeStackCOl - NULL: / / push "s tack empty" va lue
pNodeStack - NodeStack + 1;
f o r (: :)
[

/ / I f the cu r ren t node has a l e f t c h i l d , push
I / t h e c u r r e n t n o d e a n d d e s c e n d t o t h e l e f t
/ / c h i l d t o s t a r t t r a v e r s i n g t h e l e f t s u b t r e e .
/ I Keep d o i n g t h i s u n t i l we come t o a node
/ / w i t h n o l e f t c h i l d ; t h a t ' s t h e n e x t node t o
I / v i s i t i n i n o r d e r sequence
w h i l e (p N o d e - > p L e f t C h i l d !- NULL)

*pNodeStack++ - pNode:
pNode - p N o d e - > p L e f t C h i l d ;

We're a t a node t h a t has no l e f t c h i l d . S O

v i s i t t h e n o d e , t h e n v i s i t t h e r i g h t
s u b t r e e i f t h e r e i s one. o r t h e l a s t -
pushed node o therw ise : repeat fo r each
popped node u n t i l one w i t h a r i g h t
s u b t r e e i s f o u n d o r we run ou t o f pushed
n o d e s (n o t e t h a t t h e l e f t s u b t r e e s o f
pushed nodes have a l ready been v is i ted. s o
t h e y ' r e e q u i v a l e n t a t t h i s p o i n t t o n o d e s
w i t h n o l e f t c h i l d r e n)

f o r (: : I
{

V i s i t (p N o d e 1 ;
I / I f the node has a r i g h t c h i l d . make
/ / t h e c h i l d t h e c u r r e n t n o d e and s t a r t

The Idea of BSP Trees 1 109

I !
/ I
/ /
/ /
/ /
i f
I

t r a v e r s i n g t h a t s u b t r e e ; o t h e r w i s e , p o p
b a c k u p t h e t r e e , v i s i t i n g nodes we
passed on the way down, u n t i l we f i n d a
node w i t h a r i g h t s u b t r e e t o t r a v e r s e
or run ou t o f pushed nodes and a re done
(pNode->pRightCh i ld !- NULL)

/ / Current node has a r i g h t c h i l d :
/ / t r a v e r s e t h e r i g h t s u b t r e e
pNode - pNode->pRightCh i ld :
b r e a k :

Pop t h e n e x t n o d e f r o m t h e s t a c k so
we can v i s i t i t and see i f it has a
r i g h t s u b t r e e t o b e t r a v e r s e d
((pNode - *-pNodeStack) - NULL)

/ I S t a c k i s empty and the current node
/ / has no r i g h t c h i l d : w e ’ r e d o n e
r e t u r n :

Take a few minutes to look over Listing 59.4 and relate it to Listing 59.2. The struc-
ture is different, but upon examination it becomes clear that both listings reflect the
same underlying model: For each node, visit the left subtree, visit the node, visit the
right subtree. And although Listing 59.4 is longer, that’s mostly because I commented
it heavily to make sure its workings are understood; there are only 13 lines that actu-
ally do anything in Listing 59.4.
Let’s look at it another way. All the code in Listing 59.2 does is say: “Here I am at a
node. First I’ll visit the left subtree if there is one, then I’ll visit this node, then I’ll
visit the right subtree if there is one. While I’m visiting the left subtree, I’ll just push
a marker on a stack that tells me to come back here when the left subtree is done. If,
after visiting a node, there are no right children to visit and nothing left on the stack,
I’m finished. The code does this at each node-and that’s allit does. That’s all List-
ing 59.4 does, too, but people tend to get tangled up in pushes and pops and while
loops when they use data recursion. When the implementation model changes to
one with which they are unfamiliar, they abandon the perfectly good model they
used before and try to rederive it in the new context by the seat of their pants.

Here S a secret when you ’re faced with a situation like this: Step back and get a 1 clear picture of what your code has to do. Omit no steps. You should build a model
that is so consistent and solid that you can instantly answer any question about
how the code should behave in any situation. For example, my intewiavees often
decide, by trial and error, that there are two distinct types of right children: Right
children visited after popping back to visit a node after the left subtree has been
visited, and right children visited after descending to a node that has no left child.

1 1 1 0 Chapter 59

This makes the traversal code a mass of special cases, each of which has to be
detected by the programmer by trying out scenarios. Worse, you can never be sure
with this approach that you 've caught all the special cases.
The alternative is to develop and apply a unlfiing model. There aren 't really two
types of right children; the rule is that all right children are visited after their
parents are visited, period. The presence or absence of a left child is irrelevant.
The possibility that a right child may be reached via different code paths depend-
ing on the presence of a left child does not afect the overall model. While this
distinction may seem trivial it is in fact crucial, because ifyou have the model
down cold, you can always tell if the implementation is correct by comparing it
with the model.

Measure and Learn
How much difference does all this fuss make, anyway? Listing 59.5 is a sample pro-
gram that builds a tree, then calls WalkTree () to walk it 1,000 times, and times how
long this takes. Using 32-bit Visual C+t 1.10 running on Windows NT, with default
optimization selected, Listing 59.5 reports that Listing 59.4 is about 20 percent faster
than Listing 59.2 on a 486/33, a reasonable return for a little code rearrangement,
especially when you consider that the speedup is diluted by calling the Visit() func-
tion and by the cache miss that happens on virtually every node access. (Listing 59.5
builds a rather unique tree, one in which every node has exactly two children. Differ-
ent sorts of trees can and do produce different performance results. Always know
what you're measuring!)

listing 59.5 159-5.C
/ / Sample program t o e x e r c i s e a n d t i m e t h e p e r f o r m a n c e of
I1 imp lemen ta t i ons o f Wal k T r e e 0 .
/ / T e s t e d w i t h 3 2 - b i t V i s u a l C++ 1.10 under Windows NT.
i n c l u d e < s t d i o . h >
inc lude <con io .h>
#i n c l u d e < s t d l i b. h>
inc lude < t ime .h>
#i n c l u d e " t r e e . h"
l o n g V i s i t c o u n t - 0;
v o i d m a i n (v o i d 1 ;
void Bui ldTree(N0DE *pNode. i n t RemainingOepth):
e x t e r n v o i d WalkTree(N0DE *pRootNode);
v o i d m a i n 0
{

NODE RootNode;
i n t i;
l o n g S t a r t T i m e ;
I / B u i l d a sample t r e e
Bu i ldTree(&RootNode. 14) ;
11 Walk t h e t r e e 1000 t imes and see how l o n g i t takes
S t a r t T i m e - time(NULL);
f o r (i - 0 : i<lOOO; i++)
(

I
WalkTree(&RootNode);

The Idea of BSP Trees 1 1 1 1

p r i n t f (" S e c o n d s e l a p s e d : % l d \ n " .
t ime(NULL) - S t a r t T i m e l :

g e t c h (1 ;
1
/ /
/ / F u n c t i o n t o add r i g h t and l e f t s u b t r e e s of t h e
/ / s p e c i f i e d d e p t h o f f t h e p a s s e d - i n node.
/ I
vo id Bu i ldTree(N0DE *pNode, i n t RemainingDepth)
r

i f (RemainingDepth - 0)
c

p N o d e - > p L e f t C h i l d - NULL;
pNode->pRightCh i ld - NULL:

3
e l s e
I

p N o d e - > p L e f t C h i l d - m a l l o c (s i z e o f (N 0 D E)) :
i f (p N o d e - > p L e f t C h i l d - NULL)
c

p r i n t f (" 0 u t o f m e m o r y \ n ") :
e x i t (1) :

3
pNode->pRightCh i ld - m a l l o c (s i z e o f (N 0 D E)) :
i f (pNode->pRightCh i ld - NULL)

p r i n t f (" 0 u t o f m e m o r y \ n ") :
e x i t (1) ;

r

1
BuildTree(pNode->pLeftChild. RemainingDepth - 1):
BuildTree(pNode->pRightChild. RemainingDepth - 1):

1
I
/ /
/ / N o d e - v i s i t i n g f u n c t i o n so WalkTreeO has something t o
/ / c a l l .
/ I
void V is i t (N0DE *pNode)
{

3
Vi s i tCount++:

Things change when maximum optimization is selected, however: The performance
of the two implementations becomes virtually identical! How can this be? Part of the
answer is that the compiler does an amazingly good job with Listing 59.2. Most im-
pressively, when compiling Listing 59.2, the compiler actually converts all right-subtree
descents from code recursion to data recursion, by simply jumping back to the left-
subtree handling code instead of recursively calling WalkTreeO. This means that
half the time Listing 59.4 has no advantage over Listing 59.2; in fact, it's at a disad-
vantage because the code that the compiler generates for handling right-subtree
descent in Listing 59.4 is somewhat inefficient, but the right-subtree code in Listing
59.2 is a marvel of code generation, atjust 3 instructions.
What's more, although left-subtree traversal is more efficient with data recursion
than with code recursion, the advantage is only four instructions, because only one

1 1 12 Chapter 59

parameter is passed and because the compiler doesn’t bother setting up an EBP-
based stack frame, instead it uses ESP to address the stack. (And, in fact, this cost
could be reduced still further by eliminating the check for a NULL pNode at all but
the top level.) There are other interesting aspects to what the compiler does with
Listings 59.2 and 59.4 but that’s enough to give you the idea. It’s worth noting that
the compiler might not do as well with code recursion in a more complex function,
and that a good assembly language implementation could probably speed up Listing
59.4 enough to make it measurably faster than Listing 59.2, but not even close to
being enough faster to be worth the effort.
The moral of this story (apart from it being a good idea to enable compiler optimiza-
tion) is:
1. Understand what you’re doing, through and through.
2. Build a complete and consistent model in your head.
3. Design from the principles that the model provides.
4. Implement the design.
5. Measure to learn what you’ve wrought.
6. Go back to step 1 and apply what you’ve just learned.

With each iteration you’ll dig deeper, learn more, and improve your ability to know
where and how to focus your design and programming efforts. For example, with
the C compilers I used five to 10 years ago, back when I learned about the relative
strengths and weaknesses of code and data recursion, and with the processors then
in use, Listing 59.4 would have blown away Listing 59.2. While doing this chapter,
I’ve learned that given current processors and compiler technology, data recursion
isn’t going to get me any big wins; and yes, that was news to me. That’s good; this
information saves me from wasted effort in the future and tells me what to concen-
trate on when I use recursion.
Assume nothing, keep digging deeper, and never stop learning and growing. The
world won’t hold still for you, but fortunately you can run fast enough to keep up if
you just keep at it.
Depths within depths indeed!

Surfing Amidst the Trees
In the next chapter, we’ll build a BSP-tree compiler, and after that, we’ll put together
a rendering system built around the BSP trees the compiler generates. If the subject
of BSP trees really grabs your fancy (as it should if you care at all about performance
graphics) there is at this writing (February 1996) a World Wide Web page on BSP
trees that you must investigate at http://www.qualia.com/bspfaq/. It’s set up in the
familiar Internet Frequently Asked Questions (FAQ) style, and is very good stuff.

The idea of BSP Trees 1 1 13

Related Reading
Foley, J., A. van Dam, S. Feiner, and J. Hughes, Computer Gaphics: Principles and Practice
(Second Edition), Addison Wesley, 1990, pp. 555-557, 675-680.
Fuchs, H., Z. Kedem, and B. Naylor, “On Visible Surface Generation by A Priori Tree
Structures,” Computer GraphicsVol. 17(3), June 1980, pp. 124133.
Gordon, D., and S. Chen, “Front-teBack Display of BSP Trees,” IEEE Computer Graphics
and Applications, September 1991, pp. 79-85.
Naylor, B., “Binary Space Partitioning Trees as an Alternative Representation of
Polytopes,” Computer Aided Design, Vol. 22(4), May 1990, pp. 250-253.

1 1 14 Chapter 59

chapter 60

compiling bsp trees

P
?:
3 %$~

ees from Concept to Reality
,i""

As long-time readkrs of my columns know, I tend to move my family around the
country quite a bit. &bange doesn't come out of the blue, so there's some interesting
history to every move roots of the latest move go back even farther than
usual. To wit:

om Pennsylvania to California, I started writing a
I was paid peanuts for writing it, and I doubt if even
t issues the columns appeared in, but I had a lot of

By 1991, we were inVermont, and I was writing the OraphicsPro~ummingcolumn for
Dr. Dobb's Journal (a& having a great time doing it, even though it took all my spare
nights and weekends $0 stay ahead of the deadlines). In those days I received a lot of
unsolicited evaluation software, including a PC shareware game called Commander
Keen, a side-scrolling game that was every bit as good as the hot Nintendo games of
the day. I loved the way the game looked, and actually drafted a column opening
about how for years I'd been claiming that the PC could be a great game machine in
the hands of great programmers, and here, finally, was the proof, in the form of
Commander Keen. In the end, though, I decided that would be too close to a prod-
uct review, an area that I've observed inflames passions in nonconstructive ways, so I
went with a different opening.

"graphics for the EGA and VGA.

1117

In 1992, I did a series of columns about my X-Sharp 3-D library, and hung out on
DDJs bulletin board. There was another guy who hung out there who knew a lot
about 3-D, a fellow named John Carmack who was surely the only game programmer
I’d ever heard of who developed under NEXTSTEP. When we moved to Redmond, I
didn’t have time for BBSs anymore, though.
In early 1993, I hired Chris Hecker. Later that year, Chris showed me an alpha copy
of DOOM, and I nearly fell out of my chair. About a year later, Chris forwarded me a
newsgroup post about NEXTSTEP, and said, “Isn’t this the guy you used to know on
the DDJ bulletin board?” Indeed it was John Carmack; what’s more, it turned out
that John was the guy who had written DOOM. I sent him a congratulatory piece of
mail, and he sent back some thoughts about what he was working on, and some-
where in there I asked if he ever came up my way. It turned out he had family in
Seattle, so he stopped in and visited, and we had a great time.
Over the next year, we exchanged some fascinating mail, and I became steadily more
impressed with John’s company, id Software. Eventually, John asked if I’d be inter-
ested in joining id, and after a good bit of consideration I couldn’t think of anything
else that would be as much fun or teach me as much. The upshot is that here we all
are in Dallas, our fourth move of 2,000 miles or more since I’ve starting writing in
the computer field, and now I’m writing some seriously cool 3-D software.
Now that I’m here, it’s an eye-opener to look back and see how events fit together
over the last decade. You see, when John started doing PC game programming he
learned fast graphics programming from those early Programmer’s Journal articles of
mine. The copy of Commander Keen that validated my faith in the PC as a game
machine was the fruit of those articles, for that was an id game (although I didn’t
know that then). When John was hanging out on the DDJBBS, he had just done
Castle Wolfenstein 3-D, the first great indoor 3-D game, and was thinking about how
to do DOOM. (If only I’d known that then!) And had I not hired Chris, or had he
not somehow remembered me talking about that guy who used NEXTSTEP, I’d never
have gotten back in touch with John, and things would surely be different. (At the
very least, I wouldn’t be hearing jokes about how my daughter’s going to grow up
saying “y’all”.)
I think there’s a worthwhile lesson to be learned from all this, a lesson that I’ve
seen hold true for many other people, as well. If you do what you love, and do it as
well as you can, good things will eventually come of it. Not necessarily quickly or
easily, but if you stick with it, they will come. There are threads that run through
our lives, and by the time we’ve been adults for a while, practically everything that
happens has roots that run far back in time. The implication should be clear: If
you want good things to happen in your future, stretch yourself and put in the
extra effort now at whatever you care passionately about, so those roots will have
plenty to work with down the road.

1 1 18 Chapter 60

All this
John is
around

is surprisingly
the fellow who
them. He also

closely related to this chapter’s topic, BSP trees, because
brought BSP trees into the spotlight by building DOOM
got me started with BSP trees by explaining how DOOM

worked and getting me interested enough to want to experiment; the BSP com-
piler in this article is the direct result. Finally, John has been an invaluable help
to me as I’ve learned about BSP trees, as will become evident when we discuss
BSP optimization.
Onward to compiling BSP trees.

Compiling BSP Trees
As you’ll recall from the previous chapter, a BSP tree is nothing more than a series of
binary subdivisions that partion space into eversmaller pieces. That’s a simple data struc-
ture, and a BSP compiler is a correspondingly simple tool. First, it groups all the surfaces
(lines in 2-D, or polygons in 3-D) together into a single subspace that encompasses the
entire world of the database. Then, it chooses one of the surfaces as the root node, and
uses its line or plane to divide the remaining surfaces into two subspaces, splitting surfaces
into two parts if they cross the line or plane of the root. Each of the two resultant subspaces
is then processed in the same fashion, and so on, recursively, until the point is reached
where all surfaces have been assigned to nodes, and each leaf surface subdivides a sub
space that is empty except for that surface. Put another way, the root node carves space
into two parts, and the root’s children carve each of those parts into two more parts, and so
on, with each surface carving ever smaller subspaces, until all surfaces have been used.
(Actually, there are many other lines or planes that a BSP tree can use to carve up space,
but this is the approach we’ll use in the current discussion.)
If you find any of the above confusing (and it would be understandable if that were
the case; BSP trees are not easy to get the hang of), you might want to refer back to
the previous chapter. It would also be a good idea to get hold of the visual BSP
compiler I’ll discuss shortly; when it comes to understanding BSP trees, there’s noth-
ing quite like seeing one being built.
So there are really only two interesting operations in building a BSP tree: choosing a
root node for the current subspace (a “splitter”) and assigning surfaces to one side
or another of the current root node, splitting any that straddle the splitter. We’ll get
to the issue of choosing splitters shortly, but first let’s look at the process of splitting
and assigning. To do that, we need to understand parametric lines.

Parametric Lines
We’re all familiar with lines described in slope-intercept form, with y as a function of x
y = m x + b
but there’s another sort of line description that’s very useful for clipping (and for a
variety of 3-D purposes, such as curved surfaces and texture mapping): parametric

Compiling BSP Trees 1 1 1 9

lines. In parametric lines, x and y are decoupled from one another, and are instead
described as a function of the parameter t:

x = Xstart + %nd - x,,,,)
Y = Ys,t + t(Yend - Y,,,).

‘ = ‘start + ‘(Lend - ‘start)

This can be summarized as

where L = (x, y).
Figure 60.1 shows how a parametric line works. The t parameter describes how far
along a line segment the current x and y coordinates are. Note that this description
is valid not only for the line segment, but also for the entire infinite line; however,
only points with t values between 0 and 1 are actually on the line segment.
In our 2-D BSP compiler (as you’ll recall from the previous chapter, we’re working
with 2-D trees for simplicity, but the principles generalize to 3-D), we’ll represent our
walls (all vertical) as line segments viewed from above. The segments will be stored
in parametric form, with the endpoints of the original line segment and two t values
describing the endpoints of the current (possibly clipped) segment providing a com-
plete specification for each segment, as shown in Figure 60.2.
What does that do for us? For one thing, it keeps clipping errors from creeping in,
because clipped line segments are always based on the original line segment, not
derived from clipped versions. Also, it’s potentially a more compact format, because
we need to store the endpoints only for the original line segments; for clipped line
segments, we can just store pairs of t values, along with a pointer to the original line
segment. The biggest win, however, is that it allows us to use parametric line clip-
ping, a very clean form of clipping, indeed.

(1 60,170) ,’
i k 1 . 2

(1 50,150)

r 1
(133,117) f k0.67 I Line equations: I

00)50)/ I y = 50 + t(150-50)
x = 100+t(150-100~

k 0
I I

(80,lO)).
ob-0.4

A sample parametric line.
Figure 60.1

1 120 Chapter 60

Clipped segment #1: f=O to M . 2 5 t = 0.25

Original line segment:
(100,50), (150,1501,
from t=O to 01

Line segment storage in the BSP compiler:
Figure 60.2

Parametric Line Clipping
In order to assign a line segment to one subspace or the other of a splitter, we must
somehow figure out whether the line segment straddles the splitter or falls on one
side or the other. In order to determine that, we first plug the line segment and
splitter into the following parametric line intersection equation
numer = N (L,,, - SS,,,) (Equation 1)
denom = -N (Lend - Ls,,) (Equation 2)
tintersect = numer / denom (Equation 3)
where N is the normal of the splitter, SSmrt is the start point of the splitting line seg-
ment in standard (x,y) form, and LSmrt and Lend are the endpoints of the line segment
being split, again in (x,y) form. Figure 60.3 illustrates the intersection calculation.
Due to lack of space, I’m just going to present this equation and its implications as fact,
rather than deriving them; if you want to know more, there’s an excellent explanation
on page 1 17 of Cmputer Graphics: Principb and Practice, by Foley and van Dam (Addison
Wesley, ISBN 0-201-121 10-7), a book that you should certainly have in your library.
If the denominator is zero, we know that the lines are parallel and don’t intersect, so
we don’t divide, but rather check the sign of the numerator, which tells us which side
of the splitter the line segment is on. Otherwise, we do the division, and the result is

Compiling BSP Trees 1 1 21

1

Clipped

Clipped segment #2: k0.6 to kl Lend
t = 1

S: Splitting line segment

1 122 Chapter 60

the t value for the intersection point, as shown in Figure 60.3. We then simply compare
the t value to the t values of the endpoints of the line segment being split. If it’s be-
tween them, that’s where we split the line segment, otherwise, we can tell which side of
the splitter the line segment is on by which side of the line segment’s t range it’s on.
Simple comparisons do all the work, and there’s no need to do the work of generating
actual x and y values. If you look closely at Listing 60.1, the core of the BSP compiler,
you’ll see that the parametric clipping code itself is exceedingly short and simple.
One interesting point about Listing 60.1 is that it generates normals to splitting surfaces
simply by exchanging the x and y lengths of the splitting line segment and negating
the resultant y value, thereby rotating the line 90 degrees. In 3-D, it’s not that simple
to come by a normal; you could calculate the normal as the cross-product of two of
the polygon’s edges, or precalculate it when you build the world database.

The BSP Compiler
Listing 60.1 shows the core of a BSP compiler-the code that actually builds the BSP
tree. (Note that Listing 60.1 is excerpted from a C++ .CPP file, but in fact what I show
here is very close to straight C . It may even compile as a .C file, though I haven’t
checked.) The compiler begins by setting up an empty tree, then passes that tree
and the complete set of line segments from which a BSP tree is to be generated to
SelectBSPTree(), which chooses a root node and calls BuildBSPTree() to add that
node to the tree and generate child trees for each of the node’s two subspaces.
BuildBSPTree() calls SelectBSPTree() recursively to select a root node for each of
those child trees, and this continues until all lines have been assigned nodes.
SelectBSP() uses parametric clipping to decide on the splitter, as described below,
and BuildBSPTree() uses parametric clipping to decide which subspace of the split-
ter each line belongs in, and to split lines, if necessary.

LISTING 60.1 160-1 .CPP
d e f i n e MAX-NUM-LINESEGS 1000
d e f i n e MAX-INT Ox7FFFFFFF
d e f i n e MATCH-TOLERANCE 0.00001
/ / A v e r t e x
t y p e d e f s t r u c t _VERTEX
I

double x :
d o u b l e y :

1 VERTEX:
/ / A p o t e n t i a l l y s p l i t p i e c e o f a l i n e segment, as processed f rom the
/ / base l i n e i n t h e o r i g i n a l l i s t
t y p e d e f s t r u c t -LINESEG
{

- LINESEG *pnex t l i neseg :
i n t s t a r t v e r t e x :
i n t e n d v e r t e x :
doub le wa l l t op :
doub le wa l l bo t tom:
d o u b l e t s t a r t :
doub le tend:

Compiling BSP Trees 1 123

int color;
- LINESEG *pfronttree;
LINESEG *pbacktree;

1 LINESEG. *PLINESEG:
static VERTEX *pvertexlist;
static int NumCompiledLinesegs - 0:
static LINESEG *pCompiledLinesegs:
/ / Builds a BSP tree from the specified line list. List must contain
/ / at least one entry. If pCurrentTree is NULL, then this is the root
/ / node, otherwise pCurrentTree is the tree that's been build so far.
/ / Returns NULL for errors.
LINESEG * SelectBSPTree(L1NESEG * plineseghead.
(

LINESEG * pCurrentTree, LINESEG ** pParentsChildPointer)

LINESEG *pminsplit;
int minsplits:
int tempsplitcount;
LINESEG *prootline:
LINESEG *pcurrentline:
double nx. ny. numer, denom. t;
/ / Pick a line as the root. and remove it from the list o f lines
/ / to be categorized. The line we'll select is the one of those in
/ / the list that splits the fewest of the other lines in the list
mi nspl its - MAX-INT:
prootline - plineseghead;
while (prootline !- NULL) (

pcurrentline - plineseghead;
tempsplitcount - 0;
while (pcurrentline !- NULL) I

/ / See how many other lines the current line splits
nx - pvertexlist[prootline->startvertex].y -

pvertexlist[prootline->endvertexl.y;
ny - -(pvertexlist[prootline->startvertex].x -

pvertexlist[prootline->endvertexl.x);
/ / Calculate the dot products we'll need for line
/ / intersection and spatial relationship
numer - (nx * (pvertexlist[pcurrentline->startvertexl.x -

p v e r t e x l i s t [p r o o t l i n e - > s t a r t v e r t e x 3 . x)) +
(ny * (pvertexlist[pcurrentline->startvertexl.y -
pvertexlist[prootline->startvertexl.y));

denom - ((- n x) * (pvertexlist[pcurrentline->endvertexl.x -

pvertexlist[pcurrentline->startvertexl.x)) +
((-fly) * (pvertexlist[pcurrentline->endvertexl.y -
pvertexlist[pcurrentline->startvertexl.y));

/ / Figure out if the infinite lines of the current line
/ / and the root intersect; if so, figure out if the
/ / current line segment is actually split, split if so,
/ / and add front/back polygons as appropriate
if (denom - 0.0) I

/ / No intersection. because lines are parallel: no
/ / split, s o nothing to do

/ / Infinite lines intersect: figure out whether the
/ / actual line segment intersects the infinite line
/ / of the root, and split if so
t - numer / denom;
if ((t > pcurrentline->tstart) I&

I else (

(t < pcurrentline->tend)) (
I / The root splits the current line
tempspl i tcounttt:

1 else (

1 124 Chapter 60

/ / Intersection outside segment limits, s o no
/ / split, nothing to do

I
I
pcurrentline = pcurrentline->pnextlineseg:

1
if (tempsplitcount < minsplits) (

pminsplit = prootline;

3
minsplits = tempsplitcount;

prootline = prootline->pnextlineseg:
I
/ / For now, make this a leaf node so we can traverse the tree
/ / as it is at this point. BuildBSPTreeO will add children as
I / appropriate
pminsplit->pfronttree = NULL:
pminsplit->pbacktree = NULL:
/ / Point the parent's child pointer to this node, so we can
/ / track the currently-build tree
*pParentsChildPointer = pminsplit;

I
return BuildBSPTree(p1ineseghead. pminsplit. pCurrentTree);

/ / Builds a BSP tree given the specified root, by creating front and
/ / back lists from the remaining lines, and calling itself recursively
LINESEG * BuildBSPTree(L1NESEG * plineseghead. LINESEG * prootline.

t
LINESEG * pCurrentTree)

LINESEG *pfrontlines;
LINESEG *pbacklines;
LINESEG *pcurrentline:
LINESEG *pnextlineseg;
LINESEG *psplitline;
double nx. ny. numer, denom. t;
int Done;
/ / Categorize all non-root lines as either in front of the root's
/ / infinite line, behind the root's infinite line, or split by the
/ / root's infinite line, in which case we split it into two lines
pfrontlines = NULL:
pbacklines = NULL;
pcurrentline = plineseghead;
while (pcurrentline != NULL)

/ / Skip the root line when encountered
if (pcurrentline == prootline)

1 else {
pcurrentline = pcurrentline->pnextlineseg:

nx = pvertexlist[prootline->startvertexl.y -
pvertexlist[prootline->endvertexl.y;

ny = -(pvertexlist[prootline->startvertexl.x -
pvertexlist[prootline->endvertexl.x);

/ / Calculate the dot products we'll need for line intersection
/ / and spatial relationship
numer = (nx * (pvertexlist[pcurrentline->startvertexl.x -

(ny * (pvertexlist[pcurrentline->startvertexl.y -
pvertexlist[prootline->startvertexl.x)) +

pvertexlist[prootline->startvertexl.y));
denom = ((-nx) * (pvertexlist[pcurrentline->endvertexl.x -

pvertexlist[pcurrentline->startvertex].x)) +
(-(ny) * (pvertexlist[pcurrentline->endvertexl.y -
pvertexlist[pcurrentline->startvertexl.y));

Compiling BSP Trees 1 125

/ / Figure out if the infinite lines of the current line and
/ / the root intersect; if so. figure out if the current line
/ / segment is actually split, split if s o . and add front/back
/ I polygons as appropriate
if (denom -- 0.0) {

/ / No intersection, because lines are parallel: just add
/ / to appropriate list
pnextlineseg - pcurrentline->pnextlineseg;
if (numer < 0.0) I

/ / Current line is in front of root line; link into
/ / front list
pcurrentline->pnextlineseg - pfrontlines;
pfrontlines - pcurrentline:
/ / Current line behind root line: link into back list
pcurrentline->pnextlineseg - pbacklines;
pbacklines - pcurrentline;

1 else (

1
pcurrentline - pnextlineseg;

1 else I
/ / Infinite lines intersect; figure out whether the actual
/ / line segment intersects the infinite line of the root,
/ / and split if s o
t - numer / denom;

> pcurrentline->tstart) &&

The line segment must be split; add one split
segment to each list
(NumCompiledLinesegs > (MAX-NUM-LINESEGS - 1)) (

(t < pcurrentline->tend)) {

DisplayMessageBox("0ut of space for line segs; "

return NULL;
"increase MAX-NUM-LINESEGS") :

Make a new line entry for the split Dart of line
pspl i tl i ne - &pCompi ledLi nesegs[NumCompi 1 edLi nesegsl ;
NumCompiledLinesegs++;
*psplitline - *pcurrentline;
psplitline->tstart - t;
pcurrentline->tend - t;
pnextlineseg - pcurrentline->pnextlineseg:
if (numer < 0.0) {

I / Presplit part is in front of root line: link
/ / into front list and put postsplit part in back
/ f list
pcurrentline->pnextlineseg - pfrontlines;
pfrontlines - pcurrentline;
psplitline->pnextlineseg - pbacklines;
pbackl ines - pspl i tl ine:
/ / Presplit part is in back of root line: link
/ / into back list and put postsplit part in front
I / list
psplitline->pnextlineseg - pfrontlines;
pfrontlines - psplitline:
pcurrentline->pnextlineseg - pbacklines:
pbacklines - pcurrentline;

1 else (

>
pcurrentline - pnextlineseg:

1 else (

1 126 Chapter 60

/ / Intersection outside segment limits, s o no need to
/ I split; just add to proper list
pnextlineseg - pcurrentline->pnextlineseg:
Done - 0;
while (!Done) {

if (numer < -MATCHTOLERANCE)
I / Current line is in front of root line;
/ I link into front list
pcurrentline->pnextlineseg - pfrontlines;
pfrontlines - pcurrentline:
Done - I ;

/ / Current line i s behind root line: link
/ / into back list
pcurrentline->pnextlineseg - pbacklines;
pbacklines - pcurrentline;
Done - 1:
I / The point on the current line we picked to
I / do frontlback evaluation happens to be
/ / collinear with the root, s o use the other
/ / end of the current line and try again
numer -

1 else if (numer > MATCH-TOLERANCE) [

1 else I

(nx *
(pvertexlist[pcurrentline->endvertexl.x -
pvertexlist[prootline->startvertexl.x))+

(pvertexlist[pcurrentline-hndvertex1.y -
pvertexlist[prootline->startvertexl.y));

(ny *

I
I
pcurrentline - pnextlineseg;

>
I

1
I
/ I Make a node out of the root line, with the front and back trees
/ I attached
if (pfrontlines - NULL) {

1 else I
prootline->pfronttree - NULL:
if (!SelectBSPTree(pfrontlines. pCurrentTree,

&prootline->pfronttree)) I
return NULL:

1
I
if (pbacklines -- NULL) (

1 else {
prootline->pbacktree - NULL:
if (!SelectBSPTree(pbacklines. pCurrentTree.

&prootline->pbacktree)) {

I
return NULL:

1
return(proot1ine);

1

Listing 60.1 isn’t very long or complex, but it’s somewhat more complicated than it
could be because it’s structured to allow visual display of the ongoing compilation

Compiling BSP Trees 1 127

process. That’s because Listing 60.1 is actuallyjust a part of a BSP compiler for Win32
that visually depicts the progressive subdivision of space as the BSP tree is built. (Note
that Listing 60.1 might not compile as printed; I may have missed copying some
global variables that it uses.) The complete code is too large to print here in its
entirety, but it’s on the CD-ROM in file DDJBSP.ZIP.

Optimizing the BSP Tree
In the previous chapter, I promised that I’d discuss how to go about deciding which
wall to use as the splitter at each node in constructing a BSP tree. That turns out to
be a far more difficult problem than one might think, but we can’t ignore it, because
the choice of splitter can make a huge difference.
Consider, for example, a BSP in which the line or plane of the splitter at the root
node splits every single other surface in the world, doubling the total number of
surfaces to be dealt with. Contrast that with a BSP built from the same surface set
in which the initial splitter doesn’t split anything. Both trees provide a valid order-
ing, but one tree is much larger than the other, with twice as many polygons after
the selection ofjust one node. Apply the same difference again to each node, and
the relative difference in size (and, correspondingly, in traversal and rendering
time) soon balloons astronomically. So we need to do something to optimize the
BSP tree-but what? Before we can try to answer that, we need to know exactly
what we’d like to optimize.
There are several possible optimization objectives in BSP compilation. We might
choose to balance the tree as evenly as possible, thereby reducing the average depth
to which the tree must be traversed. Alternatively, we might try to approximately
balance the area or volume on either side of each splitter. That way we don’t end up
with huge chunks of space in some tree branches and tiny slivers in others, and the
overall processing time will be more consistent. Or, we might choose to select planes
aligned with the major axes, because such planes can help speed up our BSP traversal.
The BSP metric that seems most useful to me, however, is the number of polygons
that are split into two polygons in the course of building a BSP tree. Fewer splits is
better; the tree is smaller with fewer polygons, and drawing will go faster with fewer
polygons to draw, due to per-polygon overhead. There’s a problem with the fewest-
splits metric, though: There’s no sure way to achieve it.
The obvious approach to minimizing polygon splits would be to try all possible trees
to find the best one. Unfortunately, the order of that particular problem is N!, as I
found to my dismay when I implemented brute-force optimization in the first ver-
sion of my BSP compiler. Take a moment to calculate the number of operations for
the 20-polygon set I originally tried brute-force optimization on. I’ll give you a hint:
There are 19 digits in 20!, and if each operation takes only one microsecond, that’s
over 70,000 years (or, if you prefer, over 500,000 dog years). Now consider that a

1 128 Chapter 60

single game level might have 5,000 to 10,000 polygons; there aren’t anywhere near
enough dog years in the lifetime of the universe to handle that. We’re going to have
to give up on optimal compilation and come up with a decent heuristic approach,
no matter what optimization objective we select.
In Listing 60.1, I’ve applied the popular heuristic of choosing as the splitter at each
node the surface that splits the fewest of the other surfaces that are being consid-
ered for that node. In other words, I choose the wall that splits the fewest of the walls
in the subspace it’s subdividing.

BSP Optimization: an Undiscovered Country
Although BSP trees have been around for at least 15 years now, they’re still only
partially understood and are a ripe area for applied research and general ingenuity.
You might want to try your hand at inventing new BSP optimization approaches; it’s
an interesting problem, and you might strike paydirt. There are many things that
BSP trees can’t do well, because it takes so long to build them-but what they do,
they do exceedingly well, so a better compilation approach that allowed BSP trees to
be used for more purposes would be valuable, indeed.

Compiling BSP Trees 1 1 29

chapter 61

frames of reference

k

entals of the Math behind 3-D Graphics
,‘ Several years ago, \,opened a column in Dr. DobbSJournaZwith a story about singing

my daughter to sle les’ songs. Beatles’ songs, at least the earlier ones,
tend to be bouncy t, which makes them suitable goodnight fodder-
and there are a lot of eful hedge against terminal boredom. So for many
good reasons, “Ca ve ”and “A Hard Day’s Night” and “Help!” and the
rest were evening shples for years.

. You see, I got my wife some Beatles tapes for Christmas, and
ning to them in the car, and now that my daughter has heard
$an barely stand to be in the same room, much less fall asleep,

when I sing those sbngs.
What’s noteworthy is that the only variable involved in this change was my daughter’s
frame of reference. My singing hasn’t gotten any worse over the last four years. (I’m
not sure it’s possibkfor my singing to get worse.) All that changed was my daughter’s
frame of reference for those songs. The rest of the universe stayed the same; the
change was in her mind, lock, stock, and barrel.
Often, the key to solving a problem, or to working on a problem efficiently, is having
a proper frame of reference. The model you have of a problem you’re tackling often
determines how deeply you can understand the problem, and how flexible and in-
novative you’ll be able to be in solving it.

F

1133

An excellent example of this, and one that I’ll discuss toward the end of this chapter,
is that of 3-D transfomzation-the process of converting coordinates from one coordi-
nate space to another, for example from worldspace to viewspace. The way this is
traditionally explained is functional, but not particularly intuitive, and fairly hard to
visualize. Recently, I’ve come across another way of looking at transforms that seems
to me to be far easier to grasp. The two approaches are technically equivalent, s o the
difference is purely a matter of how we choose to view things-but sometimes that’s
the most important sort of difference.
Before we can talk about transforming between coordinate spaces, however, we need
two building blocks: dot products and cross products.

3-D Math
At this point in the book, I was originally going to present a BSP-based renderer, to
complement the BSP compiler I presented in the previous chapter. What changed
my plans was the considerable amount of mail about 3-D math that I’ve gotten in
recent months. In every case, the writer has bemoaned his/her lack of expertise with 3-D
math, and has asked what books about 3-D math I’d recommend, and how else he/she
could learn more.
That’s a commendable attitude, but the truth is, there’s not all that much to 3-D
math, at least not when it comes to the sort of polygon-based, realtime 3-D that’s
done on PCs. You really need only two basic math tools beyond simple arithmetic:
dot products and cross products, and really mostly just the former. My friend Chris
Hecker points out that this is an oversimplification; he notes that lots more math-
related stuff, like BSP trees, graphs, discrete math for edge stepping, and affine and
perspective texture mappings, goes into a productionquality game. While that’s surely
true, dot and cross products, together with matrix math and perspective projection,
constitute the bulk of what most people are asking about when they inquire about
“3-D math,” and, as we’ll see, are key tools for a lot of useful 3-D operations.
The other thing the mail made clear was that there are a lot of people out there who
don’t understand either type of product, at least insofar as they apply to 3-D. Since
much or even most advanced 3-D graphics machinery relies to a greater or lesser
extent on dot products and cross products (even the line intersection formula I
discussed in the last chapter is actually a quotient of dot products), I’m going to
spend this chapter examining these basic tools and some of their 3-D applications. If
this is old hat to you, my apologies, and I’ll return to BSP-based rendering in the
next chapter.

Foundation Definitions
The dot and cross products themselves are straightforward and require almost no
context to understand, but I need to define some terms I’ll use when describing applica-
tions of the products, so I’ll do that now, and then get started with dot products.

1 1 34 Chapter 61

I’m going to have to assume you have some math background, or we’ll never get to
the good stuff. So, I’m just going to quickly define a vector as a direction and a mag-
nitude, represented as a coordinate pair (in 2-D) or triplet (in 3-D), relative to the
origin. That’s a pretty sloppy definition, but it’ll do for our purposes; if you want the
Real McCoy, I suggest you check out Calculus and Analytic Geometry, by Thomas and
Finney (Addison-Wesley: ISBN 0-201-52929-7).
So, for example, in 3-D, the vector V = [5 0 51 has a length, or magnitude, by the
Pythagorean theorem, of

(where vertical double bars denote vector length), and a direction in the plane of
the x and z axes, exactly halfway between those two axes.
I’ll be working in a left-handed coordinate system, whereby if you wrap the fingers of
your left hand around the z axis with your thumb pointing in the positive z direction,
your fingers will curl from the positive x axis to the positive y axis. The positive x axis
runs left to right across the screen, the positive y axis runs bottom to top across the
screen, and the positive z axis runs into the screen.
For our purposes, projection is the process of mapping coordinates onto a line or sur-
face. Perspectiveprojection projects 3-D coordinates onto a viewplane, scaling coordinates
according to their z distance from the viewpoint in order to provide proper perspec-
tive. Objectspace is the coordinate space in which an object is defined, independent of
other objects and the world itself. Worldspace is the absolute frame of reference for a 3-D
world; all objects’ locations and orientations are with respect to worldspace, and this is
the frame of reference around which the viewpoint and view direction move. Viewspace
is worldspace as seen from the viewpoint, looking in the view direction. Screenspace is
viewspace after perspective projection and scaling to the screen.
Finally, transformation is the process of converting points from one coordinate space
into another; in our case, that’ll mean rotating and translating (moving) points from
objectspace or worldspace to viewspace.
For additional information, you might want to check out Foley & van Dam’s Com-
puter Graphics (ISBN 0-201-12110-’7), or the chapters in this book dealing with my
X-Sharp 3-D graphics library.

The Dot Product
Now we’re ready to move on to the dot product. Given two vectors U = [u, u, u,] and
V = [v, v, v,] , their dot product, denoted by the symbol 0, is calculated as:

Frames of Reference 1 1 35

As you can see, the result is a scalar value (a single real-valued number), not
another vector.
Now that we know how to calculate a dot product, what does that get us? Not much.
The dot product isn’t of much use for graphics until you start thinking of it this way

u v = cos(8) IPII llvll (eq. 3)
where q is the angle between the two vectors, and the other two terms are the lengths
of the vectors, as shown in Figure 61 .l. Although it’s not immediately obvious, equa-
tion 3 has a wide variety of applications in 3-D graphics.

Dot Products of Unit Vectors
The simplest case of the dot product is when both vectors are unit vectars; that is, when their
lengths are both one, as calculated as in Equation 1. In this case, equation 3 simplifies to:

u v = cos(e) (eq. 4)

In other words, the dot product of two unit vectors is the cosine of the angle between
them.
One obvious use of this is to find angles between unit vectors, in conjunction with an
inverse cosine function or lookup table. A more useful application in 3-D graphics

llull l lvl l

The dot product.
Figure 6 1 . 1

1 1 36 Chapter 61

lies in lighting surfaces, where the cosine of the angle between incident light and the
normal (perpendicular vector) of a surface determines the fraction of the light’s full
intensity at which the surface is illuminated, as in

where Is is the intensity of illumination of the surface, I, is the intensity of the light,
and q is the angle between -D, (where Dl is the light direction vector) and the surface
normal. If the inverse light vector and the surface normal are both unit vectors, then
this calculation can be performed with four multiplies and three additions-and no
explicit cosine calculations-as

I, = I& ”), (eq. 6)

where Ns is the surface unit normal and D, is the light unit direction vector, as shown
in Figure 61.2.

Cross Products and the Generation of Polygon Normals
One question equation 6 begs is where the surface unit normal comes from. One
approach is to store the end of a surface normal as an extra data point with each
polygon (with the start being some point that’s already in the polygon), and trans-
form it along with the rest of the points. This has the advantage that if the normal
starts out as a unit normal, it will end up that way too, if only rotations and transla-
tions (but not scaling and shears) are performed.
The problem with having an explicit normal is that it will remain a normal-that is,
perpendicular to the surface-only through viewspace. Rotation, translation, and

The dot product as used in calculating lighting intensity.
Figure 61.2

Frames of Reference 1 1 37

scaling preserve right angles, which is why normals are still normals in viewspace, but
perspective projection does not preserve angles, so vectors that were surface normals
in viewspace are no longer normals in screenspace.
Why does this matter? It matters because, on average, half the polygons in any scene
are facing away from the viewer, and hence shouldn’t be drawn. One way to identify
such polygons is to see whether they’re facing toward or away from the viewer; that
is, whether their normals have negative z values (so they’re visible) or positive z Val-
ues (so they should be culled). However, we’re talking about screenspace normals
here, because the perspective projection can shift a polygon relative to the viewpoint
so that although its viewspace normal has a negative z, its screenspace normal has a
positive z, and vice-versa, as shown in Figure 61.3. So we need screenspace normals,
but those can’t readily be generated by transformation from worldspace.

viewpoint in viewspace

x,

viewplane in screenspace after perspective projection

A problem with determining front/back visibi1iQ.
Figure 61.3

1 138 Chapter 61

The solution is to use the cross product of two of the polygon's edges to generate a
normal. The formula for the cross product is:

u x v = [u2v3 -u3v2 u3v1 - q v 3 y v 2 - U 2 V 1] (eq. 7)

(Note that the cross product operation is denoted by an X.) Unlike the dot product,
the result of the cross product is a vector. Not just any vector, either; the vector gen-
erated by the cross product is perpendicular to both of the original vectors. Thus,
the cross product can be used to generate a normal to any surface for which you
have two vectors that lie within the surface. This means that we can generate the
screenspace normals we need by taking the cross product of two adjacent polygon
edges, as shown in Figure 61.4.

In fact, we can cull with only one-third the work needed to generate a full cmss p product; because we 're interested only in the sign of the z component of the nor-
mal, we can skip entirely calculating the x and y components. The only caveat is to
be careful that neither edge you choose is zero-length and that the edges aren 't
collineal: because the dot product can ?produce a normal in those cases.

How the cross product of polygon edge vectors generates a polygon normal.
Figure 6 1.4

Frames of Reference 1 1 39

Perhaps the most often asked question about cross products is ‘Which way do normals
generated by cross products go?” In a left-handed coordinate system, curl the fingers
of your left hand so the fingers curl through an angle of less than 180 degrees from
the first vector in the cross product to the second vector. Your thumb now points in
the direction of the normal.
If you take the cross product of two orthogonal (right-angle) unit vectors, the result
will be a unit vector that’s orthogonal to both of them. This means that if you’re
generating a new coordinate space-such as a new viewing frame of reference-you
only need to come up with unit vectors for two of the axes for the new coordinate
space, and can then use their cross product to generate the unit vector for the third
axis. If you need unit normals, and the two vectors being crossed aren’t orthogonal
unit vectors, you’ll have to normalize the resulting vector; that is, divide each of the
vector’s components by the length of the vector, to make it a unit long.

Using the Sign of the Dot Product
The dot product is the cosine of the angle between two vectors, scaled by the magni-
tudes of the vectors. Magnitudes are always positive, so the sign of the cosine determines
the sign of the result. The dot product is positive if the angle between the vectors is less
than 90 degrees, negative if it’s greater than 90 degrees, and zero if the angle is exactly
90 degrees. This means thatjust the sign of the dot product suffices for tests involving
comparisons of angles to 90 degrees, and there are more of those than you’d think.
Consider, for example, the process of backface culling, which we discussed above in
the context of using screenspace normals to determine polygon orientation relative
to the viewer. The problem with that approach is that it requires each polygon to be
transformed into viewspace, then perspective projected into screenspace, before the
test can be performed, and that involves a lot of time-consuming calculation. In-
stead, we can perform culling way back in worldspace (or even earlier, in objectspace,
if we transform the viewpoint into that frame of reference) , given only a vertex and
a normal for each polygon and a location for the viewer.
Here’s the trick: Calculate the vector from the viewpoint to any vertex in the polygon
and take its dot product with the polygon’s normal, as shown in Figure 61.5. If the
polygon is facing the viewpoint, the result is negative, because the angle between the
two vectors is greater than 90 degrees. If the polygon is facing away, the result is
positive, and if the polygon is edge-on, the result is 0. That’s all there is to it-and
this sort of backface culling happens before any transformation or projection at all is
performed, saving a great deal of work for the half of all polygons, on average, that
are culled.
Backface culling with the dot product is just a special case of determining which side of
a plane any point (in this case, the viewpoint) is on. The same trick can be applied
whenever you want to determine whether a point is in front of or behind a plane,

1 1 40 Chapter 61

polygon 0 polygon 1

L; i-"

vo* N0<0, ; Vl.N1>0,
so pol gon O
faces orward & '"-, faces Lackward &
is visible

r ; so pol gon O

* ' is not visible

viewpoint in viewspace

Bacyace culling with the dot product.
Figure 61.5

where a plane is described by any point that's on the plane (which I'll call the plane
origin), plus a plane normal. One such application is in clipping a line (such as a
polygon edge) to a plane. Just do a dot product between the plane normal and the
vector from one line endpoint to the plane origin, and repeat for the other line end-
point. If the signs of the dot products are the same, no clipping is needed; if they differ,
clipping is needed. And yes, the dot product is also the way to do the actual clipping;
but before we can talk about that, we need to understand the use of the dot product
for projection.

Using the Dot Product for Projection
Consider Equation 3 again, but this time make one of the vectors, say V, a unit vector.
Now the equation reduces to:

In other words, the result is the cosine of the angle between the two vectors, scaled
by the magnitude of the non-unit vector. Now, consider that cosine is really just the

Frames of Reference 1 1 41

"""."""""""..
unit vector U

4 F
U * V

How the dot product with a unit vector performs a projection.
Figure 61.6

length of the adjacent leg of a right triangle, and think of the non-unit vector as the
hypotenuse of a right triangle, and remember that all sides of similar triangles scale
equally. What it all works out to is that the value of the dot product of any vector with
a unit vector is the length of the first vector projected onto the unit vector, as shown
in Figure 61.6.
This unlocks all sorts of neat stuff. Want to know the distance from a point to a
plane? Just dot the vector from the point P to the plane origin 0, with the plane unit
normal N,, to project the vector onto the normal, then take the absolute value

distance = I p - $) . Elp[

as shown in Figure 61.7.
Want to clip a line to a plane? Calculate the distance from one endpoint to the
plane, as just described, and dot the whole line segment with the plane normal, to
get the full length of the line along the plane normal. The ratio of the two dot
products is then how far along the line from the endpoint the intersection point is;
just move along the line segment by that distance from the endpoint, and you're at
the intersection point, as shown in Listing 61.1.

LISTING 61.1 161-l.C
11 Given two line endpoints, a point on a plane, and a unit normal
I ! for the plane, returns the point of intersection of the line
11 and the plane i n intersectpoint.
#define DOT-PROOUCT(x,y) CxCOl*yCOl+x[ll*yC1l+x[21*yC2l)
void LineIntersectPlane (float *linestart. float *lineend.

{
float *planeorigin. float *planenormal, float *intersectpoint)

float veclC31. projectedlinelength, startdistfromplane. scale;
veclCO] - linestart[Ol - planeoriginC01;
vecl[ll - linestartCl] - planeoriginC11;

1 142 Chapter 61

veclC2l - linestartC21 - planeoriginC21:
startdistfromplane - OOT-PROOUCT(vec1. planenormal):
if (startdistfromplane - 0)
I

/ / point is in plane
intersectpointC01 - linestartC01:
intersectpointC11 - linestartC11;
intersectpointCZ1 - linestartC11:
return:

I
veclCO1 - linestartCO1 - lineendC01:
veclCll - linestartcll - lineendC11:
vecl[21 - linestartC21 - lineendC21:
projectedlinelength - DOT-PRODUCT(vec1, planenormal):
scale - startdistfromplane / projectedlinelength:
intersectpointC01 - 1inestartCOl - vecl[Ol * scale;
intersectpoint[l] - linestartCl] - vecl[ll * scale:
intersectpointC21 - 1inestartCll - veclC21 * scale;

1

Rotation by Projection
We can use the dot product’s projection capability to look at rotation in an interest-
ing way. Typically, rotations are represented by matrices. This is certainly a workable
representation that encapsulates all aspects of transformation in a single object, and
is ideal for concatenations of rotations and translations. One problem with matrices,
though, is that many people, myself included, have a hard time looking at a matrix of
sines and cosines and visualizing what’s actually going on. So when two 3 D experts, John

Using the dot product to get the distance from a point to a plane.
Figure 61.7

Frames of Reference 1 143

Carmack and Billy Zelsnack, mentioned that they think of rotation differently, in a
way that seemed more intuitive to me, I thought it was worth passing on.
Their approach is this: Think of rotation as projecting coordinates onto new axes.
That is, given that you have points in, say, worldspace, define the new coordinate
space (viewspace, for example) you want to rotate to by a set of three orthogonal unit
vectors defining the new axes, and then project each point onto each of the three axes to
get the coordinates in the new coordinate space, as shown for the 2-D case in Figure
61.8. In 3-D, this involves three dot products per point, one to project the point onto
each axis. Translation can be done separately from rotation by simple addition.

Rotation by projection is exactly the same as rotation via matrix multiplication; in
fact, the rows of a rotation matrix are the orthogonal unit vectors pointing along
the new axes. Rotation byprojection buys us no technical advantages, so that b not
what b important here; the key is that the concept of rotation by projection, to-
gether with a separate translation step, gives us a new way to look at transformation
that I, for one, find easier to visualize and experiment with. A new frame of refer-
ence for how we think about 3-0 frames of reference, f y o u will.

Three things I’ve learned over the years are that it never hurts to learn a new way of
looking at things, that it helps to have a clearer, more intuitive model in your head of
whatever it is you’re working on, and that new tools, or new ways to use old tools, are
Good Things. My experience has been that rotation by projection, and dot product
tricks in general, offer those sorts of benefits for 3-D.

y axis

Rotation to a new coordinate space by projection onto new axes.
Figure 6 1.8

1 1 44 Chapter 61

chapter 62

one story, two rules,
and a bsp renderer

ga
@>
,2@&

Ai”

d(.;.~ .a*:
a ”

n _ n

mpiled BSP Tree from Logical to

As I’ve noted before,B&‘m working on Quake, id Software’s follow-up to DOOM. A
flipping to Quake, and made the startling discov-
twice as fast with page flipping as it did with the
whole frame to system memory, then copying it to
his, but baffled. I did a few tests and came up with
ding slow writes through the external cache, poor
che misses when copying the frame from system

each of these can indeed affect performance,
none seemed to accaunt for the magnitude of the speedup, so I assumed there was
some hidden hardware interaction at work. Anyway, “why” was secondary; what really
mattered was that we had a way to double performance, which meant I had a lot of
work to do to support page flipping as widely as possible.
A few days ago, I was using the Pentium’s built-in performance counters to seek out
areas for improvement in Quake and, for no particular reason, checked the number
of writes performed while copying the frame to the screen in non-page-flipped mode.
The answer was 64,000. That seemed odd, since there were 64,000 byte-sized pixels
to copy, and I was calling memcpyo, which of course performs copies a dword at a
time whenever possible. I thought maybe the Pentium counters report the number
of bytes written rather than the number of writes performed, but fortunately, this

1147

time I tested my assumptions by writing an ASM routine to copy the frame a dword at
a time, without the help of memcpy(). This time the Pentium counters reported
16,000 writes.
whoops.
As it turns out, the memcpy() routine in the DOS version of our compiler (gcc)
inexplicably copies memory a byte at a time. With my new routine, the non-page-
flipped approach suddenly became slightly faster than page flipping.
The first relevant rule is pretty obvious: Assume nothing. Measure early and often.
Know what’s really going on when your program runs, if you catch my drift. To do
otherwise is to risk looking mighty foolish.
The second rule: when you do look foolish (and trust me, it will happen if you do
challenging work) have a good laugh at yourself, and use it as a reminder of Rule #l.
I hadn’t done any extra page-flipping work yet, so I didn’t waste any time due to my
faulty assumption that memcpy() performed a maximum-speed copy, but that was
just luck. I should have done experiments until I was sure I knew what was going on
before drawing any conclusions and acting on them.

P In general, make it apoint not to fall into a tightly focused rut; stay loose and think
of alternative possibilities and new approaches, and always, always, always keep
asking questions. It ’llpay off big in the long run. IfI hadn ’t indulged my curiosity
by running the Pentium counter test on the copy to the screen, even though there
was no specific reason to do so, I would never have discovered the memcpyo
problem-and by so doing I doubled the performance of the entire program in five
minutes, a rare accomplishment indeed.

By the way, I have found the Pentium’s performance counters to be very useful in
figuring out what my code really does and where the cycles are going. One useful source
of information on the performance counters and other aspects of the Pentium is
Mike Schmit’s book, Pentium Processor Optimization Tools, AP Professional,
ISBN 0-1 2-627230-1.
Onward to rendering from a BSP tree.

BSP-based Rendering
For the last several chapters I’ve been discussing the nature of BSP (Binary Space
Partitioning) trees, and in Chapter 60 I presented a compiler for 2-D BSP trees. Now
we’re ready to use those compiled BSP trees to do realtime rendering.
As you’ll recall, the BSP compiler took a list of vertical walls and built a 2-D BSP tree
from the walls, as viewed from above. The result is shown in Figure 62.1. The world is
split into two pieces by the line of the root wall, and each half of the world is then
split again by the root’s children, and so on, until the world is carved into subspaces
along the lines of all the walls.

1 148 Chapter 62

I BSP tree I

front c%ck back child

front child child

Vertical walls and a BSP tree to represent them.
Figure 62.1

Our objective is to draw the world so that whenever walls overlap we see the nearer
wall at each overlapped pixel. The simplest way to do that is with the painter’s algo-
rithm; that is, drawing the walls in back-to-front order, assuming no polygons
interpenetrate or form cycles. BSP trees guarantee that no polygons interpenetrate
(such polygons are automatically split), and make it easy to walk the polygons in
back-to-front (or front-to-back) order.
Given a BSP tree, in order to render a view of that tree, all we have to do is descend
the tree, deciding at each node whether we’re seeing the front or back of the wall at
that node from the current viewpoint. We use that knowledge to first recursively
descend and draw the farther subtree of that node, then draw that node, and finally
draw the nearer subtree of that node. Applied recursively from the root of our BSP
trees, this approach guarantees that overlapping polygons will always be drawn in
back-to-front order. Listing 62.1 draws a BSP-based world in this fashion. (Because of
the constraints of the printed page, Listing 62.1 is only the core of the BSP renderer,
without the program framework, some math routines, and the polygon rasterizer;
but, the entire program is on the CD-ROM as DDJBSP2.ZIP. Listing 62.1 is in a com-
pressed format, with relatively little whitespace; the full version on the CD-ROM is
formatted normally.)

LISTING 62.1 162- 1 .C
/ * C o r e r e n d e r e r f o r W i n 3 2 p r o g r a m t o d e m o n s t r a t e d r a w i n g f r o m a 2-D

BSP t r e e : i l l u s t r a t e t h e u s e o f BSP t r e e s f o r s u r f a c e v i s i b i l i t y .
Upda teWor ldO i s t h e t o p - l e v e l f u n c t i o n i n t h i s m o d u l e .
F u l l s o u r c e c o d e f o r t h e B S P - b a s e d r e n d e r e r , a n d f o r t h e
accompanying BSP c o m p i l e r , may be d o w n l o a d e d f r o m
ftp.idsoftware.com/mikeab. i n t h e f i l e d d j b s p 2 . z i p .
T e s t e d w i t h VC++ 2 .0 running on Windows NT 3 .5 . * /

#def ine FIXEDPOINT(x) ((FIXEDPOINT)(((long)x)*((long)OxlOOOO))~
d e f i n e F I X T O I N T (x) ((i n t) (x >> 1 6))

One Story, Two Rules, and a BSP Renderer 1 149

l d e f i ne
d e f i n e
d e f i ne
i d e f i ne
d e f i n e
d e f i n e
d e f i n e
P d e f i ne
d e f i n e
d e f i n e
d e f i ne
l d e f i ne

t y p e d e f
t y p e d e f

ANGLE(x) ((1 o n g) x)
STANDARD-SPEED (FIXEDPDINT(20))
STANDARD-ROTATION (ANGLE(4))
MAX-NUM-NODES 2000
MAX-NUM-EXTRA-VERTICES 2000
WORLD-MIN-X (FIXEDPOINT(-16000))
WORLD-MAX-X (FIXEDPOINT(16000))
WORLD-MIN-Y (F IXEDPOINT(-16000))
WORLD-MAX-Y (FIXEDPOINT(16000))
WORLD-MIN-Z (FIXEDPOINT(-16000))
WORLD-MAX-Z (FIXEDPDINT(16000))
PROJECTION-RATIO (2 .011.0) 11 c o n t r o l s f i e l d o f v i e w : t h e

I1 b i g g e r t h i s i s , t h e n a r r o w e r t h e f i e l d o f v i e w
l o n g FIXEDPOINT;
s t r u c t -VERTEX (. .

FIXEDPOINT x . z . v i e w x , v i e w z :
1 VERTEX, *PVERTEX;
t y p e d e f s t r u c t -POINT2 { FIXEDPOINT x , z : 1 POINTE. *PPOINT2;
t y p e d e f s t r u c t -POINTZINT (i n t x : i n t y : 1 POINTLINT. *PPOINTZINT;
t y p e d e f l o n g ANGLE: 11 a n g l e s a r e s t o r e d i n degrees
t y p e d e f s t r u c t -NODE (

VERTEX * p s t a r t v e r t e x . * p e n d v e r t e x :
FIXEDPOINT w a l l t o p . w a l l b o t t o m . t s t a r t . t e n d :
FIXEDPOINT c l i p p e d t s t a r t . c l i p p e d t e n d :
s t r u c t -NODE * f r o n t t r e e . * b a c k t r e e ;
i n t c o l o r , i s v i s i b l e :
FIXEDPOINT s c r e e n x s t a r t . s c r e e n x e n d ;
FIXEDPOINT s c r e e n y t o p s t a r t , s c r e e n y b o t t o m s t a r t ;
FIXEDPOINT sc reeny topend . sc reenybo t tomend :

1 NODE. *PNDDE;
c h a r * pDIB: / I p o i n t e r t o D I B s e c t i o n w e ' l l d r a w i n t o
HBITMAP hDIBSec t ion : / I h a n d l e o f DIB s e c t i o n
HPALETTE hpa lD IB ;
i n t i t e r a t i o n - 0. Wor ld I sRunn ing - 1;
HWND hwndou tpu t ;
i n t D IBWid th . D IBHe igh t . D IBP i t ch . numver t i ces , numnodes :
FIXEDPOINT f x H a l f D I B W i d t h . f x H a l f O I B H e i g h t ;
VERTEX * p v e r t e x l i s t , * p e x t r a v e r t e x l i s t :
NODE * p n o d e l i s t :
POINT2 c u r r e n t l o c a t i o n . c u r r e n t d i r e c t i o n . c u r r e n t o r i e n t a t i o n :
ANGLE c u r r e n t a n g l e :
FIXEDPOINT c u r r e n t s p e e d . f x V i e w e r Y . c u r r e n t Y S p e e d :
FIXEDPOINT F r o n t C l i p P l a n e - FIXEDPOINT(10);
FIXEDPOINT FixedMul (FIXEDPOINT x. FIXEDPOINT y) :
FIXEDPOINT FixedDiv(FIXEDPD1NT x. FIXEDPOINT y) :
FIXEDPOINT FixedSin(ANGLE angle). FixedCos(ANGLE angle):
e x t e r n i n t FillConvexPolygon(POINT2INT * V e r t e x P t r . i n t C o l o r) :
11 R e t u r n s n o n z e r o i f a w a l l i s f a c i n g t h e v i e w e r , 0 e l s e .
i n t Wal lFac ingViewer (N0DE * p w a l l)
(

FIXEDPOINT v i e w x s t a r t - pwall->pstartvertex->viewx:
FIXEDPOINT v i e w z s t a r t - pwall->pstartvertex->viewz:
FIXEDPOINT v iewxend - pwall->pendvertex->viewx:
FIXEDPOINT v iewzend - pwall->pendvertex->viewz:
i n t Temp;

i f ((((pwall->pstartvertex->viewx >> 1 6) *
I* I / e q u i v a l e n t C code

((pwall->pendvertex->view2 -

((pwall->pstartvertex->viewz >> 1 6) *
pwall->pstartvertex->viewz) >> 1 6)) +

1 150 Chapter 62

((pwall->pstartvertex->viewx -
pwall->pendvertex->viewx) >> 1 6)) 1

< 0)
r e t u r n (1) :

r e t u r n (0) :
e l s e

* I
I

rnov eax .v iewzend
s u b e a x . v i e w z s t a r t
i m u l v i e w x s t a r t
rnov ecx, edx
mov ebx .eax
rnov e a x . v i e w x s t a r t
sub eax .v iewxend
i m u l v i e w z s t a r t
add eax.ebx
adc edx.ecx
mov eax.O
jns s h o r t WFVDone
i n c e a x

mov Temp, eax
WFVDone:

I
r e t u r n (T e m p) :

1
/ / U p d a t e t h e v i e w p o i n t p o s i t i o n as needed.
v o i d U p d a t e v i e w P o s o
I

i f (c u r r e n t s p e e d != 0) {
c u r r e n t 1 o c a t i o n . x += FixedMul(currentdirection.x.

i f (c u r r e n t 1 o c a t i o n . x <= WORLDLMINKX)
c u r r e n t l o c a t i o n . ~ = WORLDLMIN-X:

i f (c u r r e n t l o c a t i o n . ~ >- WORLD-MAXLX)
c u r r e n t 1 o c a t i o n . x = WORLDLMAXLX - 1:

c u r r e n t 1 o c a t i o n . z += FixedMul(currentdirection.z.

i f (c u r r e n t 1 o c a t i o n . z <= WORLDLMINLZ)
c u r r e n t 1 o c a t i o n . z = WORLD-MIN-2:

i f (c u r r e n t 1 o c a t i o n . z >= WORLDLMAXLZ)
c u r r e n t l o c a t i o n . ~ = WORLDLMAXKZ - 1;

c u r r e n t s p e e d) :

c u r r e n t s p e e d) :

}
i f (cu r ren tYSpeed != 0) {

f xV iewerY += cu r ren tYSpeed :
i f (f x V i e w e r Y <= WORLDLMINKY)

f xV iewerY = WORLO_MIN_Y:
i f (f x V i e w e r Y >= WORLD-MAX-Y)

f xV iewerY = WORLDLMAXKY - 1;
I

I
/ / T r a n s f o r m a l l v e r t i c e s i n t o v i e w s p a c e .
v o i d T r a n s f o r m v e r t i c e s 0
(

VERTEX * p v e r t e x :
FIXEDPOINT tempx. tempz:
i n t v e r t e x :
p v e r t e x = p v e r t e x l i s t :
f o r (v e r t e x = 0 : v e r t e x < n u m v e r t i c e s ; v e r t e x + +) 1

I / T r a n s l a t e t h e v e r t e x a c c o r d i n g t o t h e v i e w p o i n t

One Story, Two Rules, and a BSP Renderer 1 151

tempx - p v e r t e x - > x - c u r r e n t 1 o c a t i o n . x :
tempz - p v e r t e x - > z - c u r r e n t 1 o c a t i o n . z ;
11 R o t a t e t h e v e r t e x s o v i e w p o i n t i s l o o k i n g down z a x i s
p v e r t e x - > v i e w x - FixedMul(F ixedMul(tempx.

current orientation.^) +
F i x e d M u l (t e m p z . - c u r r e n t o r i e n t a t i o n . x) .
F IXEDPOINT(PROJECTION_RATIO)) :

p v e r t e x - > v i e w 2 = F ixedMu l (tempx . current orientation.^) +
F i x e d M u l (t e m p z . c u r r e n t o r i e n t a t i o n . z) :

pvertex++:
I

1
/ I 3 - 0 c l i p a l l w a l l s . If a n y p a r t o f e a c h w a l l i s s t i l l v i s i b l e ,
/ I t r a n s f o r m t o p e r s p e c t i v e v i e w s p a c e .
v o i d C l i p w a l l s o
I

NODE * p w a l l :
i n t w a l l :
FIXEDPOINT t e m p s t a r t x . t e m p e n d x . t e m p s t a r t z . t e m p e n d z :
FIXEDPOINT t e m p s t a r t w a l l t o p . t e m p s t a r t w a l l b o t t o m :
FIXEDPOINT tempendwa l l t op . t empendwa l lbo t tom;
VERTEX * p s t a r t v e r t e x . * p e n d v e r t e x :
VERTEX * p e x t r a v e r t e x - p e x t r a v e r t e x l i s t :
p w a l l - p n o d e l i s t :
f o r (w a l l - 0: w a l l < numnodes; wall++) I

I / Assume t h e w a l l w o n ' t b e v i s i b l e
p w a l l - > i s v i s i b l e - 0:
11 G e n e r a t e t h e w a l l e n d p o i n t s , a c c o u n t i n g f o r t va lues and
I / c l i p p i n g
/ I C a l c u l a t e t h e v i e w s p a c e c o o r d i n a t e s f o r t h i s w a l l
p s t a r t v e r t e x - p w a l l - > p s t a r t v e r t e x :
p e n d v e r t e x - p w a l l - > p e n d v e r t e x ;
I / L o o k f o r z c l i p p i n g f i r s t
/ I C a l c u l a t e s t a r t a n d e n d z c o o r d i n a t e s f o r t h i s w a l l
i f (p w a l l - > t s t a r t -- FIXEDPOINT(0))

e l s e
t e m p s t a r t z - p s t a r t v e r t e x - > v i e w z :

t e m p s t a r t z - p s t a r t v e r t e x - > v i e w 2 +
FixedMul((pendvertex->viewz-pstartvertex->viewz),
p w a l l - > t s t a r t) ;

i f (p w a l l - > t e n d -- FIXEDPOINT(1))

e l s e
tempendz - p e n d v e r t e x - > v i e w z :

tempendz - p s t a r t v e r t e x - > v i e w 2 +
FixedMul((pendvertex->viewz-pstartvertex->viewz),
p w a l l - > t e n d) :

I / C l i p t o t h e f r o n t p l a n e
i f (tempendz < F r o n t C l i p P l a n e) I

i f (t e m p s t a r t z < F r o n t C l i p P l a n e) [
/ I F u l l y f r o n t - c l i p p e d
g o t o N e x t w a l l :

p w a l l - > c l i p p e d t s t a r t = p w a l l - > t s t a r t :
/ I C l i p t h e e n d p o i n t t o t h e f r o n t c l i p p l a n e
p w a l l - k l i p p e d t e n d -

1 e l s e {

F i x e d D i v (p s t a r t v e r t e x - > v i e w 2 - F r o n t C l i p P l a n e ,
pstartvertex->viewz-pendvertex->viewz):

tempendz - p s t a r t v e r t e x - > v i e w z +
FixedMul((pendvertex->viewz-pstartvertex->viewz),
p w a l l - > c l i p p e d t e n d) :

1

1 152 Chapter 62

1 else {
pwall->clippedtend - pwall->tend;
if (tempstartz < FrontClipPlane) t

/ / Clip the start point to the front clip plane
pwall->clippedtstart -

FixedDiv(FrontClipP1ane - pstartvertex->viewz,
pendvertex->viewz-pstartvertex->viewz):

tempstartz - pstartvertex->view2 +
FixedMul((pendvertex->viewz-pstartvertex->viewz),
pwall->clippedtstart):

1 else t

}
pwall->clippedtstart - pwall->tstart;

1
/ / Calculate x coordinates
if (pwall-hlippedtstart - FIXEDPOINT(0))
else

tempstartx - pstartvertex->viewx;
tempstartx - pstartvertex->viewx +

FixedMul((pendvertex->viewx-pstartvertex->viewx),
pwall->clippedtstart);

if (pwall->clippedtend - FIXEDPOINT(1))
else

tempendx - pendvertex->viewx;
tempendx - pstartvertex->viewx +

FixedMul((pendvertex->viewx-pstartvertex->viewx).
pwall ->cl ippedtend) ;

/ / Clip in x as needed
if ((tempstartx > tempstartz) 1 1 (tempstartx < -tempstartz)) I

/ / The start point is outside the view triangle in x:
/ / perform a quick test for trivial rejection by seeing if
/ / the end point is outside the view triangle on the same
/ / side as the start point
if (((tempstartx>tempstartz) && (tempendx>tempendz)) I I

((tempstartx<-tempstartz) && (tempendx<-tempendz)))
/ / Fully clipped-trivially reject
goto NextWall ;

/ / Clip the start point
if (tempstartx > tempstartz) {

/ / Clip the start point on the right side
pwall-klippedtstart -

FixedDiv(pstartvertex->viewx-pstartvertex->viewz,
pendver tex ->v iewz-pstar tver tex ->v iewz -
pendvertex->viewx+pstartvertex->viewx):

tempstartx - pstartvertex->viewx +
FixedMul((pendvertex->viewx-pstartvertex->viewx),

pwall->clippedtstart):
tempstartz - tempstartx:
/ / Clip the start point on the left side
pwall ->clippedtstart -

} else {

FixedDiv(-pstartvertex->viewx-pstartvertex->viewz,
pendvertex->viewx+pendvertex->view2 -
pstartvertex->viewz-pstartvertex->viewx);

tempstartx - pstartvertex->viewx +
FixedMul((pendvertex->viewx-pstartvertex->viewx),

pwall->clippedtstart);

>
tempstartz - -tempstartx:

}

One Story, Two Rules, and a BSP Renderer 1 153

I1 See if the end point needs clipping
if ((tempendx > tempendz) I I (tempendx < -tempendz)) {

I1 Clip the end point
if (tempendx > tempendz) {

I1 Clip the end point on the right side
pwall ->cl ippedtend -

FixedDiv(pstartvertex->viewx-pstartvertex->viewz,
pendver tex ->v iewz-pstar tver tex ->v iew2 -

pendvertex->viewx+pstartvertex->viewx);
tempendx - pstartvertex->viewx +

FixedMul((pendvertex->viewx-pstartvertex->viewx),
pwall-klippedtend):

tempendz - tempendx:
I / Clip the end point on the left side
pwall ->cl ippedtend -

1 else {

FixedDiv(-pstartvertex->viewx-pstartvertex->viewz,
pendvertex->viewx+pendvertex->view2 -
pstartvertex->viewz-pstartvertex->viewx):

tempendx - pstartvertex->viewx +
FixedMul((pendvertex->viewx-pstartvertex->viewx),

pwall-klippedtend):

1
tempendz - -tempendx:

1
tempstartwall top - FixedMul ((pwall ->wall top - fxViewerY 1,

tempendwalltop - tempstartwalltop:
tempstartwall bottom - FixedMul ((pwall ->wall bottom-fxViewerY) ,

tempendwallbottom - tempstartwallbottom:
I1 Partially clip in y (the rest is done later in 2D)
I / Check for trivial accept
if ((tempstartwalltop > tempstartz) I I

F IXEDPOINT(PROJECTION_RATIO)) :

F IXEDPOINT(PROJECTION_RATIO)) :

(tempstartwallbottom < -tempstartz) 1 I
(tempendwalltop > tempendz) I I
(tempendwallbottom < -tempendz)) {
I1 Not trivially unclipped: check for fully clipped
if ((tempstartwallbottom > tempstartz) &&

(tempstartwalltop < -tempstartz) &&
(tempendwallbottom > tempendz) &&
(tempendwalltop < -tempendz)) {
I / Outside view triangle. trivially clipped
goto NextWall :

1
I 1 Partially clipped in Y: we'll do Y clipping at
/ I drawing time

1
I1 The wall is visible: mark it as such and project it.
I1 +1 on scaling because of bottomlright exclusive polygon
I1 filling
pwall->isvisible - 1:
pwall->screenxstart -

(F i x e d M u l D i v (t e m p s t a r t x . fxHalfDIBWidth+FIXEDPOINT(O.5).
tempstartz) + fxHalfDIBWidth + FIXEDPOINT(0.5)):

(FixedMulDiv(tempstartwal1top.
fxHalfDIBHeight + FIXEDPDINT(0.5). tempstartz) +
fxHalfDIBHeight + FIXEDPOINT(0.5));

(FixedMulDiv(tempstartwal1bottom.

pwall->screenytopstart -

pwall->screenybottomstart -

1 154 Chapter 62

/ I
/ I
/ I
/ I
/ I
/ I
/ I
if

fxHalfDIBHeight + FIXEOPOINT(0.5). tempstartz) +
fxHalfDIBHeight + FIXEDPOINT(O.5));

(FixedMulDiv(tempendx. fxHalfDIBWidth+FIXEDPOINT(O.5).
tempendz) + fxHalfDIBWidth + FIXEDPOINT(0.5)):

(FixedMulDiv(tempendwal1top.
fxHalfDIBHeight + FIXEDPOINT(0.5). tempendz) +
fxHalfDIBHeight + FIXEDPOINT(0.5)):

(FixedMulDiv(tempendwallbottom,
fxHalfOIBHeight + FIXEDPOINT(0.5). tempendz) +
fxHalfOIBHeight + FIXEDPOINT(0.5)):

pwall->screenxend -
pwall-hcreenytopend -

pwall->screenybottomend -

NextWall :
pwa11++;

I
I
I / Walk the tree back to front: backface cull whenever possible,
11 and draw front-facing walls in back-to-front order.
void DrawWallsBackToFrontO
(

NODE *pFarChildren. *pNearChildren. *pwall:
NODE *pendingnodes[MAX-NUM-NODES]:
NODE **pendingstackptr:
POINTLINT apointC41;
pwall - pnodelist:
pendingnodesCO1 - (NODE *)NULL:
pendingstackptr - pendingnodes + 1;
for (: :) {

for (: :) {
Descend as far as Dossible toward the back,
remembering the nodes we pass through on the way.
Figure whether this wall is facing frontward or
backward: do in viewspace because non-visible walls
aren't projected into screenspace. and we need to
traverse all walls in the BSP tree, visible or not,
i n order to find all the visible walls
(WallFacingViewer(pwal1)) {
I / We're on the forward side of this wall, do the back
/ / children first
DFarChildren - pwall->backtree:

j e i s e I
/ / We're on the back side of this wall, do the front
/ / children first
pFarChildren - pwall->fronttree:

1
if (pFarChildren - NULL)
*pendingstackptr - pwall:
pendingstackptr++:
pwall - pFarChildren:

break:

1
for (: : I (

/ / See if the wall is even visible
if (pwall->isvisible1 {

I / See if we can backface cull this wall
if (pwall->screenxstart < pwall->screenxend) {

/ / Draw the wall
apointC0l.x - FIXTOINT(pwal1->screenxstart):
apointC1l.x - FIXTOINT(pwal1->screenxstart):

One Story, Two Rules, and a BSP Renderer 1 155

1
/ /
/ /
/ /
/ /
/ /
/ /
/ /

i f

a p o i n t C 2 l . x - FIXTOINT(pwal1->screenxend):
a p o i n t C 3 l . x - FIXTOINT(pwal1->screenxend);
a p o i n t C 0 l . y - F IXTOINT(pwa l1 ->sc ree f l y tops ta r t) :
a p o i n t C l 1 . y - FIXTOINT(pwal1->screenybottomstart):
a p o i n t C 2 l . y - FIXTOINT(pwal1->screenybottomend):
a p o i n t C 3 l . y - FIXTOINT(pwal1->screenytopend):
FillConvexPolygon(apoint. p w a l l - > c o l o r) ;

1

I f t h e r e ' s a n e a r t r e e f r o m t h i s n o d e . d r a w i t :
o t h e r w i s e , w o r k b a c k u p t o t h e l a s t - p u s h e d p a r e n t
node o f t h e b r a n c h we j u s t f i n i s h e d : w e ' r e d o n e i f
t h e r e a r e no p e n d i n g p a r e n t n o d e s .
F i g u r e w h e t h e r t h i s w a l l i s f a c i n g f r o n t w a r d o r
backward: do i n v i e w s p a c e b e c a u s e n o n - v i s i b l e w a l l s
a r e n ' t p r o j e c t e d i n t o s c r e e n s p a c e , a n d we need t o
/ / t r a v e r s e all w a l l s i n t h e BSP t r e e , v i s i b l e o r n o t ,
/ / i n o r d e r t o f i n d all t h e v i s i b l e w a l l s
(WallFacingViewer(pwal1)) {
/ / We're on t h e f o r w a r d s i d e o f t h i s w a l l , d o t h e
/ / f r o n t c h i l d r e n now
p N e a r C h i l d r e n - p w a l l - > f r o n t t r e e :

3 e l s e {
/ / We're on t h e b a c k s i d e o f t h i s w a l l , do t h e b a c k
/ / c h i l d r e n now

1
p N e a r C h i l d r e n - p w a l l - > b a c k t r e e ;

/ / Walk t h e n e a r s u b t r e e o f t h i s w a l l
i f (p N e a r C h i l d r e n !- NULL)

/ / Pop t h e l a s t - p u s h e d w a l l
p e n d i n g s t a c k p t r - ;
p w a l l - * p e n d i n g s t a c k p t r :
i f (p w a l l - NULL)

g o t o NodesDone:

g o t o Wal kNearTree;

1
Wal kNearTree:

p w a l l - p N e a r C h i l d r e n :
1

NodesDone:

1
/ / R e n d e r t h e c u r r e n t s t a t e o f t h e w o r l d t o t h e s c r e e n .
v o i d U p d a t e w o r l d 0
{

HPALETTE h o l d p a l :
HDC hdcScreen. hdcDIBSect ion :
HBITMAP h o l d b i t m a p ;
/ / D r a w t h e f r a m e
Upda teV iewPosO;
memset(pD1B. 0 . D I B P i t c h * D I B H e i g h t) : / / c l e a r f r a m e
T r a n s f o r m V e r t i c e s O ;
C l i p W a l l s O :
D r a w W a l l s B a c k T o F r o n t O ;
/ / We've drawn the f rame: copy i t t o t h e s c r e e n
hdcScreen - GetDC(hwnd0u tpu t) :
h o l d p a l - S e l e c t P a l e t t e (h d c S c r e e n . h p a l O IB . FALSE) :
RealizePalette(hdcScreen):
hdcDIBSec t ion - CreateCompatibleDC(hdcScreen);
h o l d b i t m a p - SelectObject(hdcD1BSection. h D I B S e c t i o n) :

1 156 Chapter 62

B i t B l t (h d c S c r e e n . 0 . 0. D I B W i d t h . D I B H e i g h t . h d c D I B S e c t i o n .

SelectPalette(hdcScreen. h o l d p a l . FALSE):
Re leaseDC(hwnd0utpu t . hdcScreen) :
S e l e c t O b j e c t (h d c D 1 B S e c t i o n . h o l d b i t m a p) :
Re leaseDC(hwnd0utpu t . hdcDIBSect ion) :
i t e r a t i o n + + :

0 . 0. SRCCOPY);

I

The Rendering Pipeline
Conceptually rendering from a BSP tree really is that simple, but the implementa-
tion is a bit more complicated. The full rendering pipeline, as coordinated by
Updateworld(), is this:

Update the current location.
Transform all wall endpoints into viewspace (the world as seen from the current

Clip all walls to the view pyramid.
Project wall vertices to screen coordinates.
Walk the walls back to front, and for each wall that lies at least partially in the
view pyramid, perform backface culling (skip walls facing away from the viewer),
and draw the wall if it’s not culled.

Next, we’ll look at each part of the pipeline more closely. The pipeline is too com-
plex for me to be able to discuss each part in complete detail. Some sources for
further reading are Computer Graphics, by Foley and van Dam (ISBN 0-201-121 10-’7),
and the DDJEssential Books on Graphics Programming CD.

location with the current viewing angle).

Moving the Viewer
The sample BSP program performs first-person rendering; that is, it renders the
world as seen from your eyes as you move about. The rate of movement is controlled
by key-handling code that’s not shown in Listing 62.1; however, the variables set by
the key-handling code are used in UpdateViewPosO to bring the current location
up to date.
Note that the view position can change not only in x and z (movement around the
plane upon which the walls are set), but also in y (vertically). However, the view direction
is always horizontal; that is, the code in Listing 62.1 supports moving to any 3-D point,
but only viewing horizontally. Although the BSP tree is only 2-D, it is quite possible to
support looking up and down to at least some extent, particularly if the world dataset
is restricted so that, for example, there are never two rooms stacked on top of each
other, or any tilted walls. For simplicity’s sake, I have chosen not to implement this in
Listing 62.1, but you may find it educational to add it to the program yourself.

One Story, Two Rules, and a BSP Renderer 1 157

Transformation into Viewspace
The viewing angle (which controls direction of movement as well as view direction)
can sweep through the full 360 degrees around the viewpoint, so long as it remains
horizontal. The viewing angle is controlled by the key handler, and is used to define
a unit vector stored in currentorientation that explicitly defines the view direction
(the z axis of viewspace), and implicitly defines the x axis of viewspace, because that
axis is at right angles to the z axis, where x increases to the right of the viewer.
As I discussed in the prekious chapter, rotation to a new coordinate system can be
performed by using the dot product to project points onto the axes of the new coor-
dinate system, and that’s what TransformVertices() does, after first translating
(moving) the coordinate system to have its origin at the viewpoint. (It’s necessary to
perform the translation first so that the viewing rotation is around the viewpoint.)
Note that this operation can equivalently be viewed as a matrix math operation, and
that this is in fact the more common way to handle transformations.
At the same time, the points are scaled in x according to PROJECTION-RATIO to
provide the desired field of view. Larger scale values result in narrower fields of view.
When this is done the walls are in viewspace, ready to be clipped.

Clipping
In viewspace, the walls may be anywhere relative to the viewpoint: in front, behind,
off to the side. We only want to draw those parts of walls that properly belong on the
screen; that is, those parts that lie in the view pyramid (view frustum), as shown in
Figure 62.2. Unclipped walls-walls that lie entirely in the frustum-should be drawn
in their entirety, fully clipped walls should not be drawn, and partially clipped walls
must be trimmed before being drawn.
In Listing 62.1, Clipwalk() does this in three steps for each wall in turn. First, the z
coordinates of the two ends of the wall are calculated. (Remember, walls are vertical
and their ends go straight up and down, so the top and bottom of each end have the
same x and z coordinates.) If both ends are on the near side of the front clip plane,
then the polygon is fully clipped, and we’re done with it. If both ends are on the far
side, then the polygon isn’t z-clipped, and we leave it unchanged. If the polygon
straddles the near clip plane, then the wall is trimmed to stop at the near clip plane
by adjusting the t value of the nearest endpoint appropriately; this calculation is a
simple matter of scaling by z, because the near clip plane is at a constant z distance.
(The use of t values for parametric lines was discussed in Chapter 60.) The process is
further simplified because the walls can be treated as lines viewed from above, so we
can perform 2-D clipping in z; this would not be the case if walls sloped or had
sloping edges.
After clipping in z, we clip by viewspace x coordinate, to ensure that we draw only
wall portions that lie between the left and right edges of the screen. Like z-clipping,
x-clipping can be done as a 2-D clip, because the walls and the left and right sides of

1 158 Chapter 62

x == z clip plane

-x == z clip plane z near clip plane

Note: Solid lines are visible (unclipped) parts of walls, viewed from above.

Clipping to the view pyramid.
Figure 62.2

the frustum are all vertical. We compare both the start and endpoint of each wall to
the left and right sides of the frustum, and reject, accept, or clip each wall’s t values
accordingly. The test for x clipping is very simple, because the edges of the frustum
are defined as the planes where x==z and -x==z.
The final clip stage is clipping by y coordinate, and this is the most complicated,
because vertical walls can be clipped at an angle in y, as shown in Figure 62.3, so true
3-D clipping of all four wall vertices is involved. We handle this in ClipWalls() by
detecting trivial rejection in y, using y==z and -y==z as the y boundaries of the frus-
tum. However, we leave partial clipping to be handled as a 2-D clipping problem; we
are able to do this only because our earlier z-clip to the near clip plane guarantees
that no remaining polygon point can have z<=O, ensuring that when we project we’ll
always pass valid, y-clippable screenspace vertices to the polygon filler.

Projection to Screenspace
At this point, we have viewspace vertices for each wall that’s at least partially visible.
All we have to do is project these vertices according to z distance-that is, perform
perspective projection-and scale the results to the width of the screen, then we’ll
be ready to draw. Although this step is logically separate from clipping, it is per-
formed as the last step for visible walls in Clipwalk().

One Story, Two Rules, and a BSP Renderer 1 159

Z clip plane I

-y == z clip plane I
Why y clipping is more complex than x or z clipping.
Figure 62.3

Walking the Tree, Backface Culling and Drawing
Now that we have all the walls clipped to the frustum, with vertices projected into
screen coordinates, all we have to do is draw them back to front; that's the job of
DrawWallsBackToFront(). Basically, this routine walks the BSP tree, descending re-
cursively from each node to draw the farther children of each node first, then the
wall at the node, then the nearer children. In the interests of efficiency, this particu-
lar implementation performs a data-recursive walk of the tree, rather than the more
familiar code recursion. Interestingly, the performance speedup from data recur-
sion turned out to be more modest than I had expected, based on past experience;
see Chapter 59 for further details.
As it comes to each wall, DrawWallsBackToFront() first descends to draw the farther
subtree. Next, if the wall is both visible and pointing toward the viewer, it is drawn as
a solid polygon. The polygon filler (not shown in Listing 62.1) is a modification of
the polygon filler I presented in Chapters 38 and 39.
It's worth noting how backface culling and front/back wall orientation testing are
performed. (Note that walls are always one-sided, visible only from the front.) I dis-
cussed backface culling in general in the previous chapter, and mentioned two possible
approaches: generating a screenspace normal (perpendicular vector) to the poly-
gon and seeing which way that points, or taking the world or screenspace dot product

1 160 Chapter 62

between the vector from the viewpoint to any polygon point and the polygon’s nor-
mal and checking the sign. Listing 62.1 does both, but because our BSP tree is 2-D
and the viewer is always upright, we can save some work.
Consider this: Walls are stored so that the left end, as viewed from the front side of
the wall, is the start vertex, and the right end is the end vertex. There are only two
possible ways that a wall can be positioned in screenspace, then: viewed from the
front, in which case the start vertex is to the left of the end vertex, or viewed from the
back, in which case the start vertex is to the right of the end vertex, as shown in
Figure 62.4. So we can tell which side of a wall we’re seeing, and thus backface cull,
simply by comparing the screenspace x coordinates of the start and end vertices, a
simple 2-D version of checking the direction of the screenspace normal.
The wall orientation test used for walking the BSP tree, performed in WaUFacingViewer(),
takes the other approach, and checks the viewspace sign of the dot product of the
wall’s normal with a vector from the viewpoint to the wall. Again, this code takes
advantage of the 2-D nature of the tree to generate the wall normal by swapping x
and z and altering signs. We can’t use the quicker screenspace x test here that we
used for backface culling, because not all walls can be projected into screenspace;
for example, trying to project a wall at z==O would result in division by zero.
All the visible, front-facing walls are drawn into a buffer by DrawWallsBackToFront(),
then Updateworld() calls Win32 to copy the new frame to the screen. The frame of
animation is complete.

start vertex end vertex

end vertex start vertex

Fast backspace culling test in screenspace.
Figure 62.4

One Story, Two Rules, and a BSP Renderer 1 1 61

Notes on the BSP Renderer
Listing 62.1 is far from complete or optimal. There is no such thing as a tiny BSP
rendering demo, because 3D rendering, even when based on a 2-D BSP tree, re-
quires a substantial amount of code and complexity. Listing 62.1 is reasonably close
to a minimum rendering engine, and is specifically intended to illuminate basic BSP
principles, given the space limitations of one chapter in a book that’s already larger
than it should be. Think of Listing 62.1 as a learning tool and a starting point.
The most obvious lack in Listing 62.1 is that there is no support for floors and ceil-
ings; the walls float in space, unsupported. Is it necessary to go to 3-D BSP trees to get
a normal-looking world?
No. Although 3-D BSP trees offer many advantages in that they allow arbitrary datasets
with viewing in any arbitrary direction and, in truth, aren’t much more complicated
than 2-D BSP trees for back-to-front drawing, they do tend to be larger and more
difficult to debug, and they aren’t necessary for floors and ceilings. One way to get
floors and ceilings out of a 2-D BSP tree is to change the nature of the BSP tree so
that polygons are no longer stored in the splitting nodes. Instead, each leaf of the
tree-that is, each subspace carved out by the tree-would store the polygons for the
walls, floors, and ceilings that lie on the boundaries of that space and face into that
space. The subspace would be convex, because all BSP subspaces are automatically
convex, so the polygons in that subspace can be drawn in any order. Thus, the s u b
spaces in the BSP tree would each be drawn in turn as convex sets, back to front, just
as Listing 62.1 draws polygons back to front.
This sort of BSP tree, organized around volumes rather than polygons, has some
additional interesting advantages in simulating physics, detecting collisions, doing
line-of-sight determination, and performing volume-based operations such as dy-
namic illumination and event triggering. However, that discussion will have to wait
until another day.

1 162 Chapter 62

chapter 63

floating-point for real-
time 3-d

hen to Hurl Conventional Math Wisdom
,/

@id

ow
t to go with the first solution that comes into your head-

but not very often.
When I turned 16 her had an aging, three-cylinder Saab-not one of the

e late OS, but a blunt-nosed, ungainly little wagon
sardine-like comfort, with two of them perched on

as the car I learned to drive on, and the one I took whenever I
mother didn’t need it.
, was a Volvo sedan, only a couple of years old and

easily the classiest carfny family had ever owned. To the best of my recollection, as of
New Year’s of my senior year, I had never driven that car. However, I was going to a
New Year’s party-in fact, I was going to chauffeur four other people-and for rea-
sons lost in the mists of time, I was allowed to take the Volvo. So, one crystal clear,
stunningly cold night, I picked up my passengers, who included Robin Viola, Kathy
Smith, Jude Hawron ... and Alan, whose last name I’ll omit in case he wants to run for
president someday.
The party was at Craig Alexander’s house, way out in the middle of nowhere, and it
was a good one. I heard Al Green for the first time, much beer was consumed (none
by me, though), and around 2 a.m., we decided it was time to head home. So we
piled into the Volvo, cranked the heat up to the max, and set off.

1165

We had gone about five miles when I sensed Alan was t y n g to tell me something. As
I turned toward him, he said, quite expressively, “BLEARGH!” and deposited a con-
siderable volume of what had until recently been beer and chips into his lap.
Mind you, this wasn’t just any car Alan was tossing his cookies in-it was my father’s
prized Volvo. My reactions were up to the task; without a moment’s hesitation, I
shouted, “Do it out the window! Open the window!” Alan obligingly rolled the win-
dow down and, with flawless aim, sent some more erstwhile beer and chips on its way.
And it was here that I learned that fast decisions are not necessarily good decisions.
A second after the liquid flew out the window, there was a loud smacking sound, and
a yelp from Robin, as the sodden mass hit the slipstream and splattered along the
length of the car. At that point, I did what I should have done in the first place; I
stopped the car so Alan could get out and finish being sick in peace, while I assessed
the full dimensions of the disaster. Not only was the rear half of the car on the pas-
senger side-including Robin’s window, accounting for the yelp-covered, but the
noxious substance had frozen solid. It looked like someone had melted an enor-
mous candle, or possibly put cake frosting on the car.
The next morning, my father was remarkably good-natured about the whole thing,
considering, although I don’t remember ever actually driving the Volvo again. My
penance consisted of cleaning the car, no small punishment considering that I had
to take a hair dryer out to our unheated garage and melt and clean the gunk one
small piece at a time.
One thing I learned from this debacle is to pull over very, very quickly if anyone
shows signed of being ill, a bit of wisdom that has proven useful a suprising number
of times over the years. More important, though, is the lesson that it almost always
pays to take at least a few seconds to size up a crisis situation and choose an effective
response, and that’s served me well more times than I can count.
There’s a surprisingly close analog to this in programming. Often, when faced with a
problem in his or her code, a programmer’s response is to come up with a solution
as quickly as possible and immediately hack it in. For all but the simplest problems,
though, there are side effects and design issues involved that should be thought
through before any coding is done. I try to think of bugs and other problem situa-
tions as opportunities to reexamine how my code works, as well as chances to detect
and correct structural defects I hadn’t previously suspected; in fact, I’m often able to
simplify code as I fix a bug, thanks to the understanding I gain in the process.
Taking that a step farther, it’s useful to reexamine assumptions periodically even if
no bugs are involved. You might be surprised at how quickly assumptions that once
were completely valid can deteriorate.
For example, consider floating-point math.

1 166 Chapter 63

Not Your Father’s Floating-point
Until last year, I had never done any serious floating-point (FP) optimization, for the
perfectly good reason that FP math had never been fast enough for any of the code
I needed to write. It was an article of faith that FP, while undeniably convenient,
because of its automatic support for constant precision over an enormous range of
magnitudes, was just not fast enough for real-time programming, so I, like pretty
much everyone else doing 3-D, expended a lot of time and effort in making fixed-
point do the job.
That article of faith was true up through the 486, but all the old assumptions are out
the window on the Pentium, for three reasons: faster FP instructions, a pipelined
floating-point unit (FPU) , and the magic of a parallel FXCH. Taken together, these
mean that FP addition and subtraction are nearly as fast as integer operations, and
FP multiplication and division have the potential to be much faster-all with the
range and precision advantages of FP. Better yet, the FPU has its own set of eight
registers, so the use of floating-point can help relieve pressure on the x86’s integer
registers, as well.
One effect of all this is that with the Pentium, floating-point on the x86 has gone
from being irrelevant to real-time 3-D to being a key element. Quake uses FP all the
way down into the inner loop of the span rasterizer, performing several FP opera-
tions every 16 pixels.
Floating-point has not only become important for real-time 3-D on the PC, but will
soon become even more crucial. Hardware accelerators will take care of texture
mapping and will increase feasible scene complexity, meaning the CPU will do less
bit-twiddling and will have far more vertices to transform and project, and far more
motion physics and line-of-sight calculations and the like as well.
By way of getting you started with floating-point for real-time 3-D, in this chapter I’ll
examine the basics of Pentium FP optimization, then look at how some key math-
ematical techniques for 3-D-dot product, cross product, transformation, and
projection-can be accelerated.

Pentium Floating-Point Optimization
I’m going to assume you’re already familiar with x86 FP code in general; for additional
information, check out Intel’s Pentiurn Processor User’s Munuul (order #241430-001;
1-800-548-4725), a book that you should have if you’re doing Pentium programming
of any sort. I’d also recommend taking a look around http://www.intel.com.
I’m going to focus on six core instructions in this section: FLD, FST, FADD, FSUB,
FMUL, and FDIV. First, let’s look at cycle times for these instructions. FLD takes 1
cycle; the value is pushed onto the FP stack and ready for use on the next cycle. FST
takes 2 cycles, although when storing to memory, there’s a potential extra cycle that
can be lost, as I’ll describe shortly.

Floating-Point for Real-Time 3-D 1 167

FDIV is a painfully slow instruction, taking 39 cycles at full precision and 33 cycles at
double precision, which is the default precision for Visual Ct+ 2.0. While FDIV ex-
ecutes, the FPU is occupied, and can’t process subsequent FP instructions until FDIV
finishes. However, during the cycles while FDIV is executing (with the exception of
the one cycle during which FDIV starts), the integer unit can simultaneously execute
instructions other than IMUL. (IMUL uses the FPU, and can only overlap with FDIV
for a few cycles.) Since the integer unit can execute two instructions per cycle, this
means it’s possible to have three instructions, an FDIV and two integer instructions,
executing at the same time. That’s exactly what happens, for example, during the
second cycle of this code:

F D I V S T (O) . S T (l)
ADD EAX.ECX
I N C EDX

There’s an important limitation, though; if the instruction stream following the FDIV
reaches a FP instruction (or an IMUL), then that instruction and all subsequent
instructions, both integer and FP, must wait to execute until FDIV has finished.
When a FADD, FSUB, or FMUL instruction is executed, it is 3 cycles before the result
can be used by another instruction. (There’s an exception: If the instruction that at-
tempts to use the result is an FST to memory, there’s an extra cycle lost, so it’s 4 cycles
from the start of an arithmetic instruction until an FST of that value can begin, so

FMUL ST(O),ST(l)
F S T [temp]

takes 6 cycles in all.) Again, it’s possible to execute integer-unit instructions during
the 2 (or 3, for FST) cycles after one of these FP instructions starts. There’s a more
exciting possibility here, though: Given properly structured code, the FPU is capable
of averaging 1 cycle per FADD, FSUB, or FMUL. The secret is pipelining.

Pipelining, Latency, and Throughput
The Pentium’s FPU is the first pipelined x86 FPU. Pipehingmeans that the FPU is
capable of starting an instruction every cycle, and can simultaneously handle several
instructions in various stages of completion. Only certain x86 FP instructions allow
another instruction to start on the next cycle, though: FADD, FSUB, and FMUL are
pipelined, but FST and FDIV are not. (FLD executes in a single cycle, so pipelining
is not an issue.) Thus, in the code sequence

FADD,
FSUB
FADD,
FMUL

FADD, can start on cycle N, FSUB can start on cycle N+1, FADD, can start on cycle
N+2, and FMUL can start on cycle N+3. At the start of cycle N+3, the result of FADD,

1 168 Chapter 63

is available in the destination operand, because it’s been 3 cycles since the instruc-
tion started; FSUB is starting the final cycle of calculation; FADD, is starting its second
cycle, with one cycle yet to go after this; and FMUL is about to be issued. Each of the
instructions takes 3 cycles to produce a result from the time it starts, but because
they’re simultaneously processed at different pipeline stages, one instruction is is-
sued and one instruction completes every cycle. Thus, the latency of these
instructions-that is, the time until the result is available-is 3 cycles, but the through-
put-the rate at which the FPU can start new instructions-is 1 cycle. An exception
is that the FPU is capable of starting an FMUL only every 2 cycles, so between these
two instructions

FMUL S T (l) . S T (O)
F M U L S T (E) . S T (O)

there’s a l-cycle stall, and the following three instructions execute just as fast as the
above pair:

FMUL ST(l),ST(O)
F L D S T (4)
FMUL ST(O).ST(l)

There’s a caveat here, though: A FP instruction can’t be issued until its operands are
available. The FPU can reach a throughput of 1 cycle per instruction on this code

FADD ST(l).ST(O)
F L D [temp]
FSUB ST(l).ST(O)

because neither the FLD nor the FSUB needs the result from the FADD. Consider,
however

FADD S T (O) . S T (2)
FSUB ST(O).ST(l)

where the ST(0) operand to FSUB is calculated by FADD. Here, FSUB can’t start
until FADD has completed, so there are 2 stall cycles between the two instructions.
When dependencies like this occur, the FPU runs at latency rather than throughput
speeds, and performance can drop by as much as two-thirds.

FXCH
One piece of the puzzle is still missing. Clearly, to get maximum throughput, we
need to interleave FP instructions, such that at any one time ideally three instruc-
tions are in the pipeline at once. Further, these instructions must not depend on one
another for operands. But ST(0) must always be one of the operands; worse, FLD
can only push into ST(0) , and FST can only store from ST(0). How, then, can we
keep three independent instructions going?

Floating-point for Real-Time 3-D 1 169

The easy answer would be for Intel to change the FP registers from a stack to a set of
independent registers. Since they couldn’t do that, thanks to compatibility issues,
they did the next best thing: They made the FXCH instruction, which swaps ST(0)
and any other FP register, virtually free. In general, if FXCH is both preceded and
followed by FP instructions, then it takes no cycles to execute. (Application Note 500,
“Optimizations for Intel’s 32-bit Processors,” February 1994, available from http://
www.intel.com, describes all the conditions under which FXCH is free.) This allows
you to move the target of a pending operation from ST(0) to another register, at the
same time bringing another register into ST(0) where it can be used, all at no cost.
So, for example, we can start three multiplications, then use FXCH to swap back to
start adding the results of the first two multiplications, without incurring any stalls,
as shown in Listing 63.1.

LISTING 63.1 163- 1 .ASM
: u s e o f f x c h t o a l l o w a d d i t i o n o f f i r s t t w o : p r o d u c t s t o s t a r t w h i l e t h i r d
: m u l t i p l i c a t i o n f i n i s h e s

f l d [v e c 0 + 0] ; s t a r t s & ends on c y c l e 0
fmu l [vec l+O l
f 1 d [vec0+4]

; s t a r t s on c y c l e 1
; s t a r t s & ends on c y c l e 2

fmu l [vec l+41
f l d [vecO+dl

: s t a r t s on c y c l e 3

fmu l [vec l+81
: s t a r t s & ends on c y c l e 4
; s t a r t s on c y c l e 5

f x c h s t (1) : n o c o s t
f a d d p s t (2) . s t (O) : s t a r t s on c y c l e 6

The Dot Product
Now we’re ready to look at fast FP for common 3-D operations; we’ll start by looking
at how to speed up the dot product. As discussed in Chapter 30, the dot product is
heavily used in 3-D to calculate cosines and to project points along vectors. The dot
product is calculated as d = ulvl + u2v2 + usv3; with three loads, three multiplies, two
adds, and a store, the theoretical minimum time for this calculation is 10 cycles.
Listing 63.2 shows a straightforward dot product implementation. This version loses
7 cycles to stalls. Listing 63.3 cuts the loss to 5 cycles by doing all three FMULs first,
then using FXCH to set the third FXCH aside to complete while the results of the
first two FMULs, which have completed, are added. Listing 43.3 still loses 50 percent
to stalls, but unless some other code is available to be interleaved with the dot prod-
uct code, that’s all we can do to speed things up. Fortunately, dot products are often
used in contexts where there’s plenty of interleaving potential, as we’ll see when we
discuss transformation.

LISTING 63.2 1163-2.ASM
; u n o p t i m i z e d d o t p r o d u c t ; 17 c y c l e s

f l d [vec0+0] : s t a r t s & ends on c y c l e 0
fmu l [vec l+Ol ; s t a r t s on c y c l e 1
f l d [vec0+41 : s t a r t s & ends on c y c l e 2
fmu l [vec l+41 ; s t a r t s on c y c l e 3

1 170 Chapter 63

f l d [vecO+81
fmul [vec l+8]

f addp s t (l) . s t (O)

faddp s t (l) . s t (O)

s t a r t s & ends on c y c l e 4
s t a r t s on c y c l e 5
s t a l l s f o r c y c l e s 6 - 7
s t a r t s on c y c l e 8
s t a l l s f o r c y c l e s 9 - 1 0
s t a r t s on c y c l e 11
s t a l l s f o r c y c l e s 1 2 - 1 4

f s t p C d o t l : s t a r t s on c y c l e 1 5 .
: ends on c y c l e 1 6

LISTING 63.3 L63-3.ASM
: o p t i m i z e d d o t p r o d u c t : 1 5 c y c l e s

f l d [vec0+01 : s t a r t s & ends on cyc le 0
fmu l [vec l+Ol : s t a r t s on c y c l e 1
f l d [vec0+41 : s t a r t s & ends on cyc le 2
fmu l [vec l+41 : s t a r t s on c y c l e 3
f l d [vec0+8] ; s t a r t s & ends on c y c l e 4
fmu l [vec l+81 ; s t a r t s on c y c l e 5
f x c h s t (1) ;no c o s t
f a d d p s t (Z) . s t (O) ; s t a r t s on c y c l e 6

f a d d p s t (l) . s t (O) ; s t a r t s on c y c l e 9

f s t p [d o t] : s t a r t s on c y c l e 1 3 .

: s t a l l s f o r c y c l e s 7 - 8

: s t a l l s f o r c y c l e s 1 0 - 1 2

: ends on cyc le 14

The Cross Product
When last we looked at the cross product, we found that it’s handy for generating a
vector that’s normal to two other vectors. The cross product is calculated as [u2v3;u3v2
u3vl-u1vs ulv2-u2vl]. The theoretical minimum cycle count for the cross product 1s 21
cycles. Listing 63.4 shows a straightfornard implementation that calculates each com-
ponent of the result separately, losing 15 cycles to stalls.

LISTING 63.4 L63-4.ASM
; u n o p t i m i z e d c r o s s p r o d u c t : 36 c y c l e s

f l d [vec0+41 : s t a r t s & ends on c y c l e 0
fmu l [vec l+8] : s t a r t s on c y c l e 1
f l d [vec0+8] : s t a r t s & ends on cyc le 2
fmul [vec1+4] ; s t a r t s on c y c l e 3

f s u b r p s t (l) . s t (O) ; s t a r t s on c y c l e 6

f s t p [v e c 2 + 0] : s t a r t s on c y c l e 1 0 .

f l d [vecO+8] : s t a r t s & ends on c y c l e 1 2
fmul [vecl+O] : s t a r t s on c y c l e 1 3
f l d [vec0+0] : s t a r t s & ends on cyc le 14
fmu l [vec l+8] ; s t a r t s on c y c l e 1 5

f s u b r p s t (l) . s t (O) ; s t a r t s on c y c l e 1 8

f s t p [v e c 2 + 4 1 ; s t a r t s on c y c l e 2 2 .

: s t a l l s f o r c y c l e s 4 - 5

: s t a l l s f o r c y c l e s 7 - 9

: ends on c y c l e 11

; s t a l l s f o r c y c l e s 1 6 - 1 7

: s t a l l s f o r c y c l e s 1 9 - 2 1

: ends on c y c l e 23

Floating-point for Real-Time 3-D 1 171

f l d Cvec0+01 : s t a r t s & ends on cyc le 24
fmul [vec1+4] : s t a r t s o n c y c l e 25
f l d [vec0+4] : s t a r t s & ends on c y c l e 2 6
fmul [vec l+O] : s t a r t s o n c y c l e 27

f s u b r p s t (l) . s t (O) : s t a r t s o n c y c l e 3 0

f s t p Cvec2+8] : s t a r t s on c y c l e 3 4 .

: s t a l l s f o r c y c l e s 2 8 - 2 9

: s t a l l s f o r c y c l e s 3 1 - 3 3

: ends on cyc le 35

We couldn’t get rid of many of the stalls in the dot product code because with six
inputs and one output, it was impossible to interleave all the operations. However,
the cross product, with three outputs, is much more amenable to optimization. In
fact, three is the magic number; because we have three calculation streams and the
latency of FADD, FSUB, and FMUL is 3 cycles, we can eliminate almost every single
stall in the cross-product calculation, as shown in Listing 63.5. Listing 63.5 loses only
one cycle to a stall, the cycle before the first FST; the relevant FSUB has just finished
on the preceding cycle, so we run into the extra cycle of latency associated with FST.
Listing 63.5 is more than 60 percent faster than Listing 63.4, a striking illustration of
the power of properly managing the Pentium’s FP pipeline.

LISTING 63.5 L63-5.ASM
: o p t i m i z e d c r o s s p r o d u c t : 2 2 c y c l e s

f l d Cvec0+41 : s t a r t s & ends on cyc le 0
fmu l
f l d

Cvec1+8] : s t a r t s on c y c l e 1
Cvec0+8] : s t a r t s & ends on cyc le 2

fmu l
f l d

C v e c l + O l : s t a r t s on c y c l e 3
Cvec0+01 : s t a r t s & ends on c y c l e 4

fmu l
f l d

C v e c l + 4 1 : s t a r t s on c y c l e 5
Cvec0+81 : s t a r t s & ends on c y c l e 6

fmu l
f l d

Cvec1+41 : s t a r t s on c y c l e 7
Cvec0+01 : s t a r t s & ends on c y c l e 8

fmu l
f l d

C v e c l + 8 I : s t a r t s on c y c l e 9
Cvec0+41 : s t a r t s & ends on c y c l e 1 0

fmu l [vec l+Ol : s t a r t s on c y c l e 11
f x c h s t (2) : no cos t
f s u b r p s t (5) . s t (O) : s t a r t s on c y c l e 1 2
f s u b r p s t (3) . s t (O) : s t a r t s on c y c l e 1 3
f s u b r p s t (l) . s t (O) : s t a r t s on c y c l e 1 4
f x c h s t (2) : n o c o s t

: s t a l l s f o r c y c l e 1 5

: ends on c y c l e 1 7

: ends on cyc le 19

: ends on c y c l e 2 1

f s t p [vecE+O] : s t a r t s on c y c l e 1 6 .

f s t p Cvec2+41 : s t a r t s on c y c l e 1 8 .

f s t p [vec2+81 : s t a r t s on c y c l e 2 0 .

Transformation
Transforming a point, for example from worldspace to viewspace, is one of the most
heavily used FP operations in realtime 3-D. Conceptually, transformation is nothing
more than three dot products and three additions, as I will discuss in Chapter 61.

1 172 Chapter 63

(Note that I'm talking about a subset of a general 4x4 transformation matrix, where
the fourth row is always implicitly [0 0 0 11. This limited form suffices for common
transformations, and does 25 percent less work than a full 4x4 transformation.)
Transformation is calculated as:

m31 m32 m33 m34
0 0 0 1 1

-I

"

U1

U,

u3
1
"

'1 = mllul + m12u2 + m13u3 + m14

'2 = m21u1 + m22u2 + m23u3 + m24

'3 = m31u1 + m32u2 + m33u3 + m34.

When it comes to implementation, however, transformation is quite different from
three separate dot products and additions, because once again the magic number
three is involved. Three separate dot products and additions would take 60 cycles if
each were calculated using the unoptimized dot-product code of Listing 63.2, and
would take 54 cycles if done one after the other using the faster dot-product code of
Listing 63.3, in each case followed by the a final addition per dot product.
When fully interleaved, however, only a single cycle is lost (again to the extra cycle of
FST latency), and the cycle count drops to 34, as shown in Listing 63.6. This means
that on a 100 MHz Pentium, it's theoretically possible to do nearly 3,000,000 trans-
forms per second, although that's a purely hypothetical number, due to cache effects
and set-up costs. Still, more than 1,000,000 transforms per second is certainly fea-
sible; at a frame rate of 30 Hz, that's an impressive 30,000 transforms per frame.

LISTING 63.6 163-6.ASM
: o p t i m i z e d t r a n s f o r m a t i o n : 3 4 c y c l e s

f l d [vecO+01
fmu l [m a t r i x + O l
f l d [vec0+01
fmu l [m a t r i x + l 6 1
f l d Cvec0+0]
fmul [mat r i x+321
f l d [vec0+41
fmu l [m a t r i x + 4 1
f l d [vec0+41
fmu l [mat r i x+20]
f l d [vec0+43
fmu l [mat r i x+361
f x c h s t (2)
f a d d p s t (5) , s t (O)
faddp s t (3) , s t (O)
faddp s t (l) , s t (O)
f l d [vecO+81

: s t a r t s & ends on c y c l e 0
; s t a r t s on c y c l e 1
; s t a r t s & ends on c y c l e 2
: s t a r t s on c y c l e 3
: s t a r t s & ends on cyc le 4
; s t a r t s on c y c l e 5
: s t a r t s & ends on c y c l e 6
: s t a r t s on c y c l e 7
; s t a r t s & ends on c y c l e 8
: s t a r t s on c y c l e 9
; s t a r t s & ends on cyc le 10
: s t a r t s on c y c l e 11
:no c o s t
: s t a r t s o n c y c l e 1 2
; s t a r t s on c y c l e 1 3
: s t a r t s on c y c l e 1 4
: s t a r t s & ends on c y c l e 15

Floating-point for Real-Time 3-D 1 173

fmul
fl d
fmul
fld
fmul
fxch
faddp
faddp
faddp
fxch
f add
fxch
fadd
fxch
fadd
fxch
fstp

fstp

fstp

[rnatrix+E]
[vecO+El
[matrix+241
[vecO+81
[matrix+40]
st(2)
st(5),st(O)
st(3).st(O)
st(l).st(O)
st(2)
[matrix+lEl
st(1)
[matrix+28]
st(2)
[matrix+441
st(1)
[vecl+Ol

[vecl+81

[vecl+41

;starts on cycle 16
;starts & ends on cycle 17
:starts on cycle 18
;starts & ends on cycle 19
;starts on cycle 20
:no cost
:starts on cycle 21
;starts on cycle 22
;starts on cycle 23
;no cost
;starts on cycle 24
;starts on cycle 25
;starts on cycle 26
;no cost
:starts on cycle 27
:no cost
;starts on cycle 28,
; ends on cycle 29
;starts on cycle 30.
: ends on cycle 31
;starts on cycle 32,
; ends on cycle 33

Projection
The final optimization we’ll look at is projection to screenspace. Projection itself is
basically nothing more than a divide (to get l / z) , followed by two multiplies (to get
x/z and y/z), so there wouldn’t seem to be much in the way of FP optimization
possibilities there. However, remember that although FDIV has a latency of up to 39
cycles, it can overlap with integer instructions for all but one of those cycles. That
means that if we can find enough independent integer work to do before we need
the l / z result, we can effectively reduce the cost of the FDIV to one cycle. Projection
by itself doesn’t offer much with which to overlap, but other work such as clamping,
window-relative adjustments, or 2-D clipping could be interleaved with the FDIV for
the next point.
Another dramatic speed-up is possible by setting the precision of the FPU down to
single precision via FLDCW, thereby cutting the time FDIV takes to a mere 19 cycles.
I don’t have the space to discuss reduced precision in detail in this book, but be
aware that along with potentially greater performance, it carries certain risks, as well.
The reduced precision, which affects FADD, FSUB, FMUL, FDIV, and FSQRT, can
cause subtle differences from the results you’d get using compiler defaults. If you
use reduced precision, you should be on the alert for precision-related problems,
such as clipped values that vary more than you’d expect from the precise clip point,
or the need for using larger epsilons in comparisons for point-on-plane tests.

Rounding Control
Another useful area that I can note only in passing here is that of leaving the FPU in
a particular rounding mode while performing bulk operations of some sort. For

-

1 1 74 Chapter 63

example, conversion to int via the FIST instruction requires that the FPU be in chop
mode. Unfortunately, the FLDCW instruction must be used to get the FPU into and
out of chop mode, and each FLDCW takes 7 cycles, meaning that compilers often
take at least 14 cycles for each float->int conversion. In assembly, you can just set the
rounding state (or, likewise, the precision, for faster FDIVs) once at the start of the
loop, and save all those FLDCW cycles each time through the loop. This is even
more true for ceil(), which many compilers implement as horrendously inefficient
subroutines, even though there are rounding modes for both ceil() and floor(). Again,
though, be aware that results of FP calculations will be subtly different from com-
piler default behavior while chop, ceil, or floor mode is in effect.
A final note: There are some speed-ups to be had by manipulating FP variables with
integer instructions. Check out Chris Hecker’s column in the February/March 1996
issue of Game Developer for details.

A Farewell to 3-D Fixed-point
As with most optimizations, there are both benefits and hazards to floating-point
acceleration, especially pedal-to-the-metal optimizations such as the last few I’ve
mentioned. Nonetheless, I’ve found floating-point to be generally both more robust
and easier to use than fixed-point even with those maximum optimizations. Now
that floating-point is fast enough for real time, I don’t expect to be doing a whole lot
of fixed-point 3-D math from here on out.
And I won’t miss it a bit.

Floating-point for Real-Time 3-D 1 175

chapter 64

quake's visible-
surface
determination

eparating All Things Seen from

Years ago, I was wor anished video adapter manufac-
clone. The fellow who was designing Video Seven’s
ked around the clock for months to make his VGA
nfident he had pretty much maxed out its perfor-
ishing touches on his chip design, however, news
r, Paradise, had juiced up the performance of the

about what sort of FIFO, or how
much it helped, or ahything else. Nonetheless, Tom, normally an affable, laid-back
sort, took on the wide-awake, haunted look of a man with too much caffeine in him
and no answers to show for it, as he tried to figure out, from hopelessly thin informa-
tion, what Paradise had done. Finally, he concluded that Paradise must have put a
write FIFO between the system bus and the VGA, so that when the CPU wrote to
video memory, the write immediately went into the FIFO, allowing the CPU to keep
on processing instead of stalling each time it wrote to display memory.
Tom couldn’t spare the gates or the time to do a full FIFO, but he could implement a
onedeep FIFO, allowing the CPU to get one write ahead of the VGA. He wasn’t sure
how well it would work, but it was all he could do, so he put it in and taped out the chip.

1179

The one-deep FIFO turned out to work astonishingly well; for a time, Video Seven’s
VGAs were the fastest around, a testament to Tom’s ingenuity and creativity under
pressure. However, the truly remarkable part of this story is that Paradise’s FIFO design
turned out to bear not the slightest resemblance to Tom’s, and didn’t work as well.
Paradise had stuck a read FIFO between display memory and the video output stage of
the VGA, allowing the video output to read ahead, so that when the CPU wanted to
access display memory, pixels could come from the FIFO while the CPU was serviced
immediately. That did indeed help performance-but not as much as Tom’s write FIFO.

What we have here is as neat a parable about the nature of creative design as one p could hope to find. The scrap of news about Paradise j . chip contained almost no
actual information, but it forced Tom to push past the limits he had unconsciously
set in coming up with his original design. And, in the end, I think that the single
most important element of great design, whether it be hardware, software, or any
creative endeavor, is precisely what the Paradise news triggered in Tom: the abil-
ity to detect the limits you have built into the way you think about your design, and
then transcend those limits.

The problem, of course, is how to go about transcending limits you don’t even know
you’ve imposed. There’s no formula for success, but two principles can stand you in
good stead: simplify and keep on trylng new things.
Generally, if you find your code getting more complex, you’re fine-tuning a frozen
design, and it’s likely you can get more of a speed-up, with less code, by rethinking
the design. A really good design should bring with it a moment of immense satisfac-
tion in which everything falls into place, and you’re amazed at how little code is
needed and how all the boundary cases just work properly.
As for how to rethink the design, do it by pursuing whatever ideas occur to you, no
matter how off-the-wall they seem. Many of the truly brilliant design ideas I’ve heard
of over the years sounded like nonsense at first, because they didn’t fit my precon-
ceived view of the world. Often, such ideas are in fact off-the-wall, butjust as the news
about Paradise’s chip sparked Tom’s imagination, aggressively pursuing seemingly
outlandish ideas can open up new design possibilities for you.
Case in point: The evolution of Quake’s 3-D graphics engine.

VSD: The Toughest 3-0 Challenge of All
I’ve spent most of my waking hours for the last several months working on Quake, id
Software’s successor to DOOM, and I suspect I have a few more months to go. The
very best things don’t happen easily, nor quickly-but when they happen, all the
sweat becomes worthwhile.
In terms of graphics, Quake is to DOOM as DOOM was to its predecessor, Wolfenstein
3-D. Quake adds true, arbitrary 3-D (you can look up and down, lean, and even fall

1 180 Chapter 64

on your side), detailed lighting and shadows, and 3-D monsters and players in place
of DOOM’S sprites. Someday I hope to talk about how all that works, but for the here
and now I want to talk about what is, in my opinion, the toughest 3-D problem of all:
visible surface determination (drawing the proper surface at each pixel), and its close
relative, culling (discarding non-visible polygons as quickly as possible, a way of accelerat-
ing visible surface determination). In the interests of brevity, I’ll use the abbreviation
VSD to mean both visible surface determination and culling from now on.
Why do I think VSD is the toughest 3-D challenge? Although rasterization issues
such as texture mapping are fascinating and important, they are tasks of relatively
finite scope, and are being moved into hardware as 3-D accelerators appear; also,
they only scale with increases in screen resolution, which are relatively modest.
In contrast, VSD is an open-ended problem, and there are dozens of approaches
currently in use. Even more significantly, the performance of VSD, done in an unso-
phisticated fashion, scales directly with scene complexity, which tends to increase as
a square or cube function, so this very rapidly becomes the limiting factor in render-
ing realistic worlds. I expect VSD to be the increasingly dominant issue in realtime
PC 3-D over the next few years, as 3-D worlds become increasingly detailed. Already,
a good-sized Quake level contains on the order of 10,000 polygons, about three times
as many polygons as a comparable DOOM level.

The Structure of Quake Levels
Before diving into VSD, let me note that each Quake level is stored as a single huge 3-D
BSP tree. This BSP tree, like any BSP, subdivides space, in this case along the planes of
the polygons. However, unlike the BSP tree I presented in Chapter 62, Quake’s BSP tree
does not store polygons in the tree nodes, as part of the splitting planes, but rather
in the empty (non-solid) leaves, as shown in overhead view in Figure 64.1.
Correct drawing order can be obtained by drawing the leaves in front-to-back or
back-to-front BSP order, again as discussed in Chapter 62. Also, because BSP leaves
are always convex and the polygons are on the boundaries of the BSP leaves, facing
inward, the polygons in a given leaf can never obscure one another and can be drawn
in any order. (This is a general property of convex polyhedra.)

Culling and Visible Surface Determination
The process of VSD would ideally work as follows: First, you would cull all polygons that
are completely outside the view frustum (view pyramid), and would clip away the irrel-
evant portions of any polygons that are partially outside. Then, you would draw only
those pixels of each polygon that are actuallyvisible from the current viewpoint, as shown
in overhead view in Figure 64.2, wasting no time overdrawing pixels multiple times; note
how little of the polygon sets in Figure 64.2 actually need to be drawn. Finally, in a per-
fect world, the tests to figure out what parts of which polygons are visible would be free,

Quake’s Visible-Surkrce Determination 1 1 8 1

1 Chapter 64

and the processing time would be the same for all possible viewpoints, giving the game a
smooth visual flow.
As it happens, it is easy to determine which polygons are outside the frustum or
partially clipped, and it’s quite possible to figure out precisely which pixels need to be
drawn. Alas, the world is far from perfect, and those tests are far from free, so the real
trick is how to accelerate or skip various tests and still produce the desired result.
As I discussed at length in Chapter 62, given a BSP, it’s easy and inexpensive to walk
the world in front-to-back or back-to-front order. The simplest VSD solution, which I
in fact demonstrated earlier, is to simply walk the tree back-to-front, clip each poly-
gon to the frustum, and draw it if it’s facing forward and not entirely clipped (the
painter’s algorithm). Is that an adequate solution?
For relatively simple worlds, it is perfectly acceptable. It doesn’t scale very well, though.
One problem is that as you add more polygons in the world, more transformations
and tests have to be performed to cull polygons that aren’t visible; at some point,
that will bog considerably performance down.

Nodes Inside and Outside the View Frustum
Happily, there’s a good workaround for this particular problem. As discussed earlier,
each leaf of a BSP tree represents a convex subspace, with the nodes that bound the
leaf delimiting the space. Perhaps less obvious is that each node in a BSP tree also
describes a subspace-the subspace composed of all the node’s children, as shown
in Figure 64.3. Another way of thinking of this is that each node splits the subspace

Quake‘s Visible-Surface Determination 1 1 83

The substance described by node E.
Figure 64.3

into two pieces created by the nodes above it in the tree, and the node’s children
then further carve that subspace into all the leaves that descend from the node.
Since a node’s subspace is bounded and convex, it is possible to test whether it is
entirely outside the frustum. If it is, all of the node’s children are certain to be fully
clipped and can be rejected without any additional processing. Since most of the
world is typically outside the frustum, many of the polygons in the world can be
culled almost for free, in huge, node-subspace chunks. It’s relatively expensive to
perform a perfect test for subspace clipping, so instead bounding spheres or boxes
are often maintained for each node, specifically for culling tests.
So culling to the frustum isn’t a problem, and the BSP can be used to draw back-to-
front. What, then, is the problem?

Overdraw
The problem John Carmack, the driving technical force behind DOOM and Quake,
faced when he designed Quake was that in a complex world, many scenes have an
awful lot of polygons in the frustum. Most of those polygons are partially or entirely
obscured by other polygons, but the painter’s algorithm described earlier requires
that every pixel of every polygon in the frustum be drawn, often only to be over-
drawn. In a 10,000-polygon Quake level, it would be easy to get a worst-case overdraw
level of 10 times or more; that is, in some frames each pixel could be drawn 10 times
or more, on average. No rasterizer is fast enough to compensate for an order of such
magnitude and more work than is actually necessary to show a scene; worse still, the
painter’s algorithm will cause a vast difference between best-case and worst-case per-
formance, so the frame rate can vary wildly as the viewer moves around.
So the problem John faced was how to keep overdraw down to a manageable level,
preferably drawing each pixel exactly once, but certainly no more than two or three
times in the worst case. As with frustum culling, it would be ideal if he could elimi-
nate all invisible polygons in the frustum with virtually no work. It would also be a
plus if he could manage to draw only the visible parts of partially-visible polygons,
but that was a balancing act in that it had to be a lower-cost operation than the
overdraw that would otherwise result.
When I arrived at id at the beginning of March 1995, John already had an engine
prototyped and a plan in mind, and I assumed that our work was a simple matter of
finishing and optimizing that engine. If I had been aware of id’s history, however, I
would have known better. John had done not only DOOM, but also the engines for
Wolfenstein 3-D and several earlier games, and had actually done several different
versions of each engine in the course of development (once doing four engines in
four weeks), for a total of perhaps 20 distinct engines over a four-year period. John’s
tireless pursuit of new and better designs for Quake’s engine, from every angle he
could think of, would end only when we shipped the product.

1 184 Chapter 64

By three months after I arrived, only one element of the original VSD design was
anywhere in sight, and John had taken the dictum of “try new things” farther than
I’d ever seen it taken.

The Beam Tree
John’s original Quake design was to draw front-to-back, using a second BSP tree to
keep track of what parts of the screen were already drawn and which were still empty
and therefore drawable by the remaining polygons. Logically, you can think of this
BSP tree as being a 2-D region describing solid and empty areas of the screen, as
shown in Figure 64.4, but in fact it is a 3-D tree, of the sort known as a beam tree. A
beam tree is a collection of 3-D wedges (beams), bounded by planes, projecting out
from some center point, in this case the viewpoint, as shown in Figure 64.5.
In John’s design, the beam tree started out consisting of a single beam describing
the frustum; everything outside that beam was marked solid (so nothing would
draw there), and the inside of the beam was marked empty. As each new polygon
was reached while walking the world BSP tree front-to-back, that polygon was con-
verted to a beam by running planes from its edges through the viewpoint, and any
part of the beam that intersected empty beams in the beam tree was considered
drawable and added to the beam tree as a solid beam. This continued until either
there were no more polygons or the beam tree became entirely solid. Once the
beam tree was completed, the visible portions of the polygons that had contrib-
uted to the beam tree were drawn.

Quake’s Visible-Surface Determination 1 1 85

Figure 64.4

Beams as wedges projecting from the viewpoint to polygon edges.
Figure 64.5

The advantage to working with a 3 D beam tree, rather than a 2-D region, is that deter-
mining which side of a beam plane a polygon vertex is on involves only checking the sign
of the dot product of the ray to the vertex and the plane normal, because all beam planes
run through the origin (the viewpoint). Also, because a beam plane is completely de-
scribed by a single normal, generating a beam from a polygon edge requires only a
crossproduct of the edge and a ray from the edge to the viewpoint. Finally, bounding
spheres of BSP nodes can be used to do the aforementioned bulk culling to the frustum.
The early-out feature of the beam tree-stopping when the beam tree becomes solid-
seems appealing, because it appears to cap worst-case performance. Unfortunately,
there are still scenes where it’s possible to see all the way to the sky or the back wall of
the world, so in the worst case, all polygons in the frustum will still have to be tested
against the beam tree. Similar problems can arise from tiny cracks due to numeric
precision limitations. Beam-tree clipping is fairly time-consuming, and in scenes with
long view distances, such as views across the top of a level, the total cost of beam
processing slowed Quake’s frame rate to a crawl. So, in the end, the beam-tree ap-
proach proved to suffer from much the same malady as the painter’s algorithm: The
worst case was much worse than the average case, and it didn’t scale well with in-
creasing level complexity.

3-D Engine du lour
Once the beam tree was working, John relentlessly worked at speeding up the 3-D
engine, always t y n g to improve the design, rather than tweaking the implementation.
At least once a week, and often every day, he would walk into my office and say

1 186 Chapter 64

“Last night I couldn’t get to sleep, so I was thinking ...” and I’d know that I was
about to get my mind stretched yet again. John tried many ways to improve the
beam tree, with some success, but more interesting was the profusion of wildly
different approaches that he generated, some of which were merely discussed, oth-
ers of which were implemented in overnight or weekend-long bursts of coding, in
both cases ultimately discarded or further evolved when they turned out not to
meet the design criteria well enough. Here are some of those approaches, pre-
sented in minimal detail in the hopes that, like Tom Wilson with the Paradise FIFO,
your imagination will be sparked.

Subdividing Raycast
Rays are cast in an 8x8 screen-pixel grid; this is a highly efficient operation because
the first intersection with a surface can be found by simply clipping the ray into the
BSP tree, starting at the viewpoint, until a solid leaf is reached. If adjacent rays don’t
hit the same surface, then a ray is cast halfway between, and so on until all adjacent
rays either hit the same surface or are on adjacent pixels; then the block around
each ray is drawn from the polygon that was hit. This scales very well, being limited
by the number of pixels, with no overdraw. The problem is dropouts; it’s quite pos-
sible for small polygons to fall between rays and vanish.

Vertex-Free Surfaces
The world is represented by a set of surface planes. The polygons are implicit in the
plane intersections, and are extracted from the planes as a final step before drawing.
This makes for fast clipping and a very small data set (planes are far more compact
than polygons), but it’s time-consuming to extract polygons from planes.

The Draw-Buffer
Like a z-buffer, but with 1 bit per pixel, indicating whether the pixel has been
drawn yet. This eliminates overdraw, but at the cost of an inner-loop buffer test,
extra writes and cache misses, and, worst of all, considerable complexity. Varia-
tions include testing the draw-buffer a byte at a time and completely skipping
fully-occluded bytes, or branching off each draw-buffer byte to one of 256 un-
rolled inner loops for drawing 0-8 pixels, in the process possibly taking advantage
of the ability of the x86 to do the perspective floating-point divide in parallel
while 8 pixels are processed.

Span-Based Drawing
Polygons are rasterized into spans, which are added to a global span list and clipped
against that list so that only the nearest span at each pixel remains. Little sorting is
needed with front-to-back walking, because if there’s any overlap, the span already in
the list is nearer. This eliminates overdraw, but at the cost of a lot of span arithmetic;
also, every polygon still has to be turned into spans.

Quake’s Visible-Surface Determination 1 1 87

Portals
The holes where polygons are missing on surfaces are tracked, because it’s only
through such portals that line-of-sight can extend. Drawing goes front-to-back, and
when a portal is encountered, polygons and portals behind it are clipped to its lim-
its, until no polygons or portals remain visible. Applied recursively, this allows drawing
only the visible portions of visible polygons, but at the cost of a considerable amount
of portal clipping.

Breakthrough!
In the end, John decided that the beam tree was a sort of second-order structure,
reflecting information already implicitly contained in the world BSP tree, so he
tackled the problem of extracting visibility information directly from the world
BSP tree. He spent a week on this, as a byproduct devising a perfect DOOM (2-D)
visibility architecture, whereby a single, linear walk of a DOOM BSP tree produces
zero-overdraw 2-D visibility. Doing the same in 3-D turned out to be a much more
complex problem, though, and by the end of the week John was frustrated by the
increasing complexity and persistent glitches in the visibility code. Although the
direct-BSP approach was getting closer to working, it was taking more and more
tweaking, and a simple, clean design didn’t seem to be falling out. When I left
work one Friday, John was preparing to try to get the direct-BSP approach working
properly over the weekend.
When I came in on Monday, John had the look of a man who had broken through to
the other side-and also the look of a man who hadn’t had much sleep. He had
worked all weekend on the direct-BSP approach, and had gotten it working reason-
ably well, with insights into how to finish it off. At 3:30 Monday morning, as he lay in
bed, thinking about portals, he thought of precalculating and storing in each leaf a
list of all leaves visible from that leaf, and then at runtime just drawing the visible
leaves back-to-front for whatever leaf the viewpoint happens to be in, ignoring all
other leaves entirely.
Size was a concern; initially, a raw, uncompressed potentially visible set (PVS) was
several megabytes in size. However, the PVS could be stored as a bit vector, with 1 bit
per leaf, a structure that shrunk a great deal with simple zero-byte compression.
Those steps, along with changing the BSP heuristic to generate fewer leaves (choos-
ing as the next splitter the polygon that splits the fewest other polygons appears to
be the best heuristic) and sealing the outside of the levels so the BSPer can remove
the outside surfaces, which can never be seen, eventually brought the PVS down to
about 20 Kb for a good-size level.
In exchange for that 20 Kb, culling leaves outside the frustum is speeded up (be-
cause only leaves in the PVS are considered), and culling inside the frustum costs
nothing more than a little overdraw (the PVS for a leaf includes all leaves visible

1 188 Chapter 64

from anywhere in the leaf, so some overdraw, typically on the order of 50 percent
but ranging up to 150 percent, generally occurs). Better yet, precalculating the
PVS results in a leveling of performance; worst case is no longer much worse than
best case, because there’s no longer extra VSD processing-just more polygons
and perhaps some extra overdraw-associated with complex scenes. The first time
John showed me his working prototype, I went to the most complex scene I knew
of, a place where the frame rate used to grind down into the single digits, and spun
around smoothly, with no perceptible slowdown.
John says precalculating the PVS was a logical evolution of the approaches he had
been considering, that there was no moment when he said “Eureka!” Nonetheless,
it was clearly a breakthrough to a brand-new, superior design, a design that, to-
gether with a still-in-development sorted-edge rasterizer that completely eliminates
overdraw, comes remarkably close to meeting the “perfect-world’’ specifications we
laid out at the start.

Simplify, and Keep on Trying New Things
What does it all mean? Exactly what I said up front: Simplify, and keep trying new
things. The precalculated PVS is simpler than any of the other schemes that had
been considered (although precalculating the PVS is an interesting task that I’ll dis-
cuss another time). In fact, at runtime the precalculated PVS is just a constrained
version of the painter’s algorithm. Does that mean it’s not particularly profound?
Not at all. All really great designs seem simple and even obvious-once they’ve
been designed. But the process of getting there requires incredible persistence
and a willingness to try lots of different ideas until the right one falls into place, as
happened here.

p My friend Chris Hecker has a theory that all approaches work out to the same
thing in the end, since they all reflect the same underlying state and functionali@.
In terms of underlying theory, I’ve found that to be true; whether you do perspec-
tive texture mapping with a divide or with incremental hyperbolic calculations,
the numbers do exactly the same thing. When it comes to implementation, however,
my experience is that simply time-shifting an approach, or matching hardware
capabilities better, or caching can make an astonishing difference.

My friend Terje Mathisen likes to say that “almost all programming can be viewed as
an exercise in caching,” and that’s exactly what John did. No matter how fast he
made his VSD calculations, they could never be as fast as precalculating and looking
up the visibility, and his most inspired move was to yank himself out of the “faster
code” mindset and realize that it was in fact possible to precalculate (in effect, cache)
and look up the PVS.
The hardest thing in the world is to step outside a familiar, pretty good solution to a
difficult problem and look for a different, better solution. The best ways I know to do

Quake‘s Visible-Surface Determination 1 1 89

that are to keep trying new, wacky things, and always, always, always try to simplify.
One of John’s goals is to have fewer lines of code in each 3-D game than in the
previous game, on the assumption that as he learns more, he should be able to do
things better with less code.
So far, it seems to have worked out pretty well for him.

Learn Now, Pay Forward
There’s one other thing-I’d like to mention before I close this chapter. Much of what
I’ve learned, and a great deal of what I’ve written, has been in the pages of Dr: Dobb’s
Journal. As far back as I can remember, DDJhas epitomized the attitude that sharing
programming information is A Good Thing. I know a lot of programmers who were
able to leap ahead in their development because of Hendrix’s Tiny C, or Stevens’ D-
Flat, or simply by browsing through DDJs annual collections. (Me, for one.)
Understandably, most companies understandably view sharing information in a very
different way, as potential profit lost-but that’s what makes DDJso valuable to the
programming community.
It is in that spirit that id Software is allowing me to describe in these pages (which
also appeared in one of the DDJspecial issues) how Quake works, even before Quake
has shipped. That’s also why id has placed the full source code for Wolfenstein 3-D
on ftp.idsoftware.com/idstuff/source; and although you can’tjust recompile the code
and sell it, you can learn how a full-blown, successful game works. Check wolfsrc.txt
in the above-mentioned directory for details on how the code may be used.
So remember, when it’s legally possible, sharing information benefits us all in the
long run. You can pay forward the debt for the information you gain here and else-
where by sharing what you know whenever you can, by writing an article or book or
posting on the Net. None of us learns in a vacuum; we all stand on the shoulders of
giants such as Wirth and Knuth and thousands of others. Lend your shoulders to
building the future!

References
Foley, James D., et al., Computer Graphics: Principles and Practice, Addison Wesley, 1990,
ISBN 0-201-121 10-7 (beams, BSP trees, VSD) .
Teller, Seth, Visibility Computations in Densely Occluded Polyhedral Environments (disser-
tation), available on http://theory.lcs.mit.edu/-Seth/ along with several other papers
relevant to visibility determination.

Teller, Seth, Visibility Preprocessing for Interactive Walkthroughs, SIGGRAPH 91 proceed-
ings, pp. 61-69.

1 190 Chapter 64

chapter 65

3-d clipping and other thoughts

hat’s Inside Your Field of View
is changing, and I’m concerned. By way of explanation, three

anecdotes.
Anecdote the first: In

ii ” : ;n k ”&,
on to one of his books, Frank Herbert, author of
proached by a friend who claimed he (the friend)

d offered to tell it to Herbert. In return, Herbert had to
a story, he’d split the money from the story with this

nse was that ideas were a dime a dozen; he had more story ideas
me. The hard part was the writing, not the ideas.
ogramming micros for 15 years, and writing about
until about a year ago, I had never-not once!-

had anyone offer to sell me a technical idea. In the last year, it’s happened multiple
times, generally via unsolicited email along the lines of Herbert’s tale.
This trend toward selling ideas is one symptom of an attitude that I’ve noticed more
and more among programmers over the past few years-an attitude of which soft-
ware patents are the most obvious manifestation-a desire to think something up
without breaking a sweat, then let someone else’s hard work make you money. It’s an
attitude that says, “I’m so smart that my ideas alone set me apart.” Sorry, it doesn’t
work that way in the real world. Ideas are a dime a dozen in programming, too; I
have a lifetime’s worth of article and software ideas written neatly in a notebook, and

1193

I know several truly original thinkers who have far more yet. Folks, it’s not the ideas;
it’s design, implementation, and especially hard work that make the difference.
Virtually every idea I’ve encountered in 3-D graphics was invented decades ago. You
think you have a clever graphics idea? Sutherland, Sproull, Schumacker, Catmull,
Smith, Blinn, Glassner, Kajiya, Heckbert, or Teller probably thought of your idea
years ago. (I’m serious-spend a few weeks reading through the literature on 3-D
graphics, and you’ll be amazed at what’s already been invented and published.) If
they thought it was important enough, they wrote a paper about it, or tried to com-
mercialize it, but what they didn’t do was try to charge people for the idea itself.
A closely related point is the astonishing lack of gratitude some programmers show
for the hard work and sense of community that went into building the knowledge
base with which they work. How about this? Anyone who thinks they have a unique
idea that they want to “own” and milk for money can do so-but first they have to
track down and appropriately compensate all the people who made possible the
compilers, algorithms, programming courses, books, hardware, and so forth that
put them in a position to have their brainstorm.
Put that way, it sounds like a silly idea, but the idea behind software patents is pre-
cisely that eventually everyone will own parts of our communal knowledge base, and
that programming will become in large part a process of properly identifylng and
compensating each and every owner of the techniques you use. All I can say is that if
we do go down that path, I guarantee that it will be a poorer profession for all of us-
except the patent attorneys, I guess.
Anecdote the third: A while back, I had the good fortune to have lunch down by
Seattle’s waterfront with Neal Stephenson, the author of Snow Crash and The Diu-
mond Age (one of the best SF books I’ve come across in a long time). As he talked
about the nature of networked technology and what he hoped to see emerge, he
mentioned that a couple of blocks down the street was the pawn shop where Jimi
Hendrix bought his first guitar. His point was that if a cheap guitar hadn’t been
available, Hendrix’s unique talent would never have emerged. Similarly, he views the
networking of society as a way to get affordable creative tools to many people, so as
much talent as possible can be unearthed and developed.
Extend that to programming. The way it should work is that a steady flow of informa-
tion circulates, so that everyone can do the best work they’re capable of. The idea is
that I don’t gain by intellectually impoverishing you, and vice-versa; as we both com-
pete and (intentionally or otherwise) share ideas, both our products become better,
so the market grows larger and everyone benefits.
That’s the way things have worked with programming for a long time. So far as I can
see it has worked remarkably well, and the recent signs of change make me con-
cerned about the future of our profession.

1 194 Chapter 65

Things aren’t changing everywhere, though; over the past year, I’ve circulated a good
bit of info about 3-D graphics, and plan to keep on doing it as long as I can. Next,
we’re going to take a look at 3-D clipping.

3-D Clipping Basics
Before I got deeply into 3-D, I kept hearing how difficult 3-D clipping was, so I was
pleasantly surprised when I actually got around to doing it and found that it was
quite straightforward, after all. At heart, 3-D clipping is nothing more than evaluat-
ing whether and where a line intersects a plane; in this context, the plane is considered
to have an “inside” (a side on which points are to be kept) and an “outside” (a side
on which points are to be removed or clipped). We can easily extend this single
operation to polygon clipping, working with the line segments that form the edges
of a polygon.
The most common application of 3-D clipping is as part of the process of hidden
surface removal. In this application, the four planes that make up the view volume,
or view frustum, are used to clip away parts of polygons that aren’t visible. Sometimes
this process includes clipping to near and far plane, to restrict the depth of the
scene. Other applications include clipping to splitting planes while building BSP
trees, and clipping moving objects to convex sectors such as BSP leaves. The clipping
principles I’ll cover apply to any sort of 3-D clipping task, but clipping to the frustum
is the specific context in which I’ll discuss clipping below.
In a commercial application, you wouldn’t want to clip every single polygon in the
scene database individually. As I mentioned in the last chapter, the use of bounding
volumes to cull chunks of the scene database that fall entirely outside the frustum,
without having to consider each polygon separately, is an important performance
aspect of scene rendering. Once that’s done, however, you’re still left with a set of
polygons that may be entirely inside, or partially or completely outside, the frustum.
In this chapter, I’m going to talk about how to clip those remaining polygons. 1’11
focus on the basics of 3 D clipping, the stuff I wish I’d known when I started doing 3-D.
There are plenty of ways to speed up clipping under various circumstances, some of
which I’ll mention, but the material covered below will give you the tools you need to
implement functional 3-D clipping.

Intersecting a Line Segment with a Plane
The fundamental 3-D clipping operation is clipping a line segment to a plane. There
are two parts to this operation: determining if the line is clipped by (intersects) the
plane at all and, if it is clipped, calculating the point of intersection.
Before we can intersect a line segment with a plane, we must first define how we’ll repre-
sent the line segment and the plane. The segment will be represented in the obvious
way by the (x,y,z) coordinates of its two endpoints; this extends well to polygons,

3-D Clipping and Other Thoughts 1 195

where each vertex is an (x,y,z) point. Planes can be described in many ways, among
them are three points on the plane, a point on the plane and a unit normal, or a unit
normal and a distance from the origin along the normal; we’ll use the latter defini-
tion. Further, we’ll define the normal to point to the inside (unclipped side) of the
plane. The structures for points, polygons, and planes are shown in Listing 65.1.

LISTING 65.1 165-1 .h
t y p e d e f s t r u c t I

doub le vC31;
1 p o i n t - t ;

t y p e d e f s t r u c t I

I po in t2D- t :

t y p e d e f s t r u c t {

d o u b l e x . y ;

i n t c o l o r :
i n t n u m v e r t s ;
p o i n t - t verts[MAX-POLY-VERTSl;

1 po lygon- t :

t y p e d e f s t r u c t I
i n t c o l o r ;
i n t
po in t2D- t vertsCMAX-POLY-VERTSI;

numver ts ;

1 polygon2D-t;

t y p e d e f s t r u c t c o n v e x o b j e c t L s {
s t r u c t c o n v e x o b j e c t - s *pnex t ;
p o i n t - t c e n t e r ;
doub le v d i s t ;
i n t numpolys :
po lygon- t * p p o l y ;

1 c o n v e x o b j e c t - t :

t y p e d e f s t r u c t I
d o u b l e d i s t a n c e ;
p o i n t - t n o r m a l ;

1 p l a n e - t ;

Given a line segment, and a plane to which to clip the segment, the first question is
whether the segment is entirely on the inside or the outside of the plane, or inter-
sects the plane. If the segment is on the inside, then the segment is not clipped by
the plane, and we’re done. If it’s on the outside, then it’s entirely clipped, and we’re
likewise done. If it intersects the plane, then we have to remove the clipped portion
of the line by replacing the endpoint on the outside of the plane with the point of
intersection between the line and the plane.
The way to answer this question is to find out which side of the plane each endpoint
is on, and the dot product is the right tool for the job. As you may recall from Chap-
ter 61, dotting any vector with a unit normal returns the length of the projection of
that vector onto the normal. Therefore, if we take any point and dot it with the plane
normal we’ll find out how far from the origin the point is, as measured along the

1 196 Chapter 65

plane normal. Another way to think of this is to say that the dot product of a point
and the plane normal returns how far from the origin along the normal the plane
would have to be in order to have the point lie within the plane, as if we slid the
plane along the normal until it touched the point.
Now, remember that our definition of a plane is a unit normal and a distance along
the normal. That means that we have a distance for the plane as part of the plane
structure, and we can get the distance at which the plane would have to be to touch
the point from the dot product of the point and the normal; a simple comparison of
the two values suffices to tell us which side of the plane the point is on. If the dot
product of the point and the plane normal is greater than the plane distance, then
the point is in front of the plane (inside the volume being clipped to); if it’s less,
then the point is outside the volume and should be clipped.
After we do this twice, once for each line endpoint, we know everything necessary to
categorize our line segment. If both endpoints are on the same side of the plane,
there’s nothing more to do, because the line is either completely inside or com-
pletely outside; otherwise, it’s on to the next step, clipping the line to the plane by
replacing the outside vertex with the point of intersection of the line and the plane.
Happily, it turns out that we already have all of the information we need to do this.
From our earlier tests, we already know the length from the plane, measured along
the normal, to the inside endpoint; that’s just the distance, along the normal, of
the inside endpoint from the origin (the dot product of the endpoint with the
normal), minus the plane distance, as shown in Figure 65.1. We also know the
length of the line segment, again measured as projected onto the normal; that’s
the difference between the distances along the normal of the inside and outside
endpoints from the origin. The ratio of these two lengths is the fraction of the
segment that remains after clipping. If we scale the x, y, and z lengths of the line
segment by that fraction, and add the results to the inside endpoint, we get a new,
clipped endpoint at the point of intersection.

Polygon Clipping
” . . -

Line clipping is fine for wireframe rendering, but what we really want to do is poly-
gon rendering of solid models, which requires polygon clipping. As with line segments,
the clipping process with polygons is to determine if they’re inside, outside, or par-
tially inside the clip volume, lopping off any vertices that are outside the clip volume
and substituting vertices at the intersection between the polygon and the clip plane,
as shown in Figure 65.2.
An easy way to clip a polygon is to decompose it into a set of edges, and clip each edge
separately as a line segment. Let’s define a polygon as a set of vertices that wind clock-
wise around the outside of the polygonal area, as viewed from the front side of the
polygon; the edges are implicitly defined by the order of the vertices. Thus, an edge is

3-D Clipping and Other Thoughts 1 1 97

1 1 98 Chapter 65

the line segment described by the two adjacent vertices that form its endpoints. We’ll
clip a polygon by clipping each edge individually, emitting vertices for the resulting
polygon as appropriate, depending on the clipping state of the edge. If the start point
of the edge is inside, that point is added to the output polygon. Then, if the start and
end points are in different states (one inside and one outside), we clip the edge to the
plane, as described above, and add the point at which the line intersects the clip plane
as the next polygon vertex, as shown in Figure 65.3. Listing 65.2 shows a polygon-
clipping function.

LISTING 65.2 165-2.c
i n t C l i p T o P l a n e (p o 1 y g o n - t * p i n . p l a n e - t * p p l a n e . p o l y g o n - t * p o u t)
I

i n t i, j . n e x t v e r t . c u r i n . n e x t i n :
d o u b l e c u r d o t . n e x t d o t , s c a l e :
p o i n t - t * p i n v e r t . * p o u t v e r t :

p i n v e r t = p i n - > v e r t s ;
p o u t v e r t = p o u t - > v e r t s ;

c u r d o t = D o t P r o d u c t (p i n v e r t . & p p l a n e - > n o r m a l) :
c u r i n = (c u r d o t >= p p l a n e - > d i s t a n c e) :

f o r (i=O : i < p i n - > n u m v e r t s : i++)
I

n e x t v e r t = (i + 1) % p i n - > n u m v e r t s :

/ / Keep t h e c u r r e n t v e r t e x i f i t ’ s i n s i d e t h e p l a n e
i f (c u r i n)

*poutver t++ = * p i n v e r t ;

n e x t d o t = D o t P r o d u c t (& p i n - > v e r t s [n e x t v e r t l , & p p l a n e - > n o r m a l) :
n e x t i n = (n e x t d o t >= p p l a n e - > d i s t a n c e) ;

Add a c l i p p e d v e r t e x i f one end o f t h e c u r r e n t e d g e i s
i n s i d e t h e p l a n e a n d t h e o t h e r i s o u t s i d e
(c u r i n != n e x t i n)

s c a l e = (p p l a n e - > d i s t a n c e - c u r d o t) /

f o r (j = O : j < 3 : j++)
I

(n e x t d o t - c u r d o t) :

p o u t v e r t - > v [j l = p i n v e r t - > v [j l +
((pin->verts[nextvertl.v[jl - p i n v e r t - > v C J l) *

1
poutver t++:

s c a l e) :

c u r d o t = n e x t d o t ;
c u r i n = n e x t i n ;
p i n v e r t + + :

I

p o u t - > n u m v e r t s = p o u t v e r t - p o u t - > v e r t s ;
i f (p o u t - > n u m v e r t s < 3)

r e t u r n 0:

3-D Clipping and Other Thoughts 1 199

p o u t - > c o l o r - p i n - > c o l o r :
return 1;

I

Believe it or not, this technique, applied in turn to each edge, is all that’s needed to
clip a polygon to a plane. Better yet, a polygon can be clipped to multiple planes by
repeating the above process once for each clip plane, with each interation trimming
away any part of the polygon that’s clipped by that particular plane.
One particularly useful aspect of 3-D clipping is that if you’re drawing texture mapped
polygons, texture coordinates can be clipped in exactly the same way as (x,y,z) coor-
dinates. In fact, the very same fraction that’s used to advance x, y, and z from the
inside point to the point of intersection with the clip plane can be used to advance
the texture coordinates as well, so only one extra multiply and one extra add are
required for each texture coordinate.

Clipping to the Frustum
Given a polygon-clipping function, it’s easy to clip to the frustum: set up the four
planes for the sides of the frustum, with another one or two planes for near and far
clipping, if desired; next, clip each potentially visible polygon to each plane in turn;
then draw whatever polygons emerge from the clipping process. Listing 65.3 is the
core code for a simple 3-D clipping example that allows you to move around and
look at polygonal models from any angle. The full code for this program is available
on the CD-ROM in the file DDJCLIP.ZIP.

1 200 Chapter 65

LISTING 65.3 165-3.c
i n t DIBWidth. DIBHeight :
i n t D I B P i t c h :
d o u b l e r o l l , p i t c h , yaw:
d o u b l e c u r r e n t s p e e d ;
p o i n t - t c u r r e n t p o s ;
d o u b l e f i e l d o f v i e w , x c e n t e r . y c e n t e r :
d o u b l e x s c r e e n s c a l e , ysc reensca le . maxsca l e :
i n t n u m o b j e c t s :
doub le speedsca le - 1 . 0 ;
p l a n e - t frustumplanesCNUM-FRUSTUM_PLANESl:
double mro l lC31C31 - ((1. 0 . 01, CO. 1. 01. (0 . 0 . 111:
double mpitchC31C31 = I { l , 0 . 0 1 , IO, 1. 0) . IO, 0, 111:
d o u b l e myawC31C31 = (11. 0. 01 , IO, 1. 01, IO, 0. 111:
p o i n t - t v p n . v r i g h t . v u p :
p o i n t - t x a x i s - 11. 0 . 0) :
p o i n t - t z a x i s = (0, 0 . 1):
c o n v e x o b j e c t - t o b j e c t h e a d = {NULL. t O . O . O j . -999999.01;

11 P r o j e c t v i e w s p a c e p o l y g o n v e r t i c e s i n t o s c r e e n c o o r d i n a t e s .
I / N o t e t h a t t h e y ax is goes up i n wor ldspace and v iewspace. bu t
11 goes down i n screenspace.
vo id P ro jec tPo lygon (po l ygon- t *ppo ly , po l ygon2D- t *ppo ly2D)

i n t i:
d o u b l e z r e c i p :

f o r (i - 0 : i < p p o l y - > n u m v e r t s : i++)
I

z r e c i p - 1.0 I p p o l y - > v e r t s [i] . v [Z] :
p p o l y Z D - > v e r t s [i 1 . x -
p p o l y Z D - > v e r t s [i l . y = DIBHeigh t -

p p o l y - > v e r t s ~ i I . v [0 1 * z r e c i p * maxsca le + x c e n t e r :

(p p o l y - > v e r t s [i l . v [1 1 * z r e c i p * maxsca le + y c e n t e r) :
I
p p o l y 2 D - > c o l o r - p p o l y - > c o l o r ;
ppo ly2D->numver ts - p p o l y - > n u m v e r t s :

/ / S o r t t h e o b j e c t s a c c o r d i n g t o z d i s t a n c e f r o m v i e w p o i n t .
v o i d Z S o r t O b j e c t s (v o i d)
I

i n t
d o u b l e v d i s t :
c o n v e x o b j e c t - t * p o b j e c t ;
p o i n t - t d i s t :

o b j e c t h e a d . p n e x t - & o b j e c t h e a d :
f o r (i - 0 : i < n u m o b j e c t s : i++)
t

f o r (j - 0 : j < 3 : j++)

o b j e c t s [i] . v d i s t = s q r t (d i s t . v C 0 1 * d i s t . v [O l +
d i s t . v C 1 1 * d i s t . v C 1 1 +
d i s t . v [Z] * d i s t . v C 2 1) :

i. j:

d i s t . v [j] = o b j e c t s C i l . c e n t e r . v [j l - c u r r e n t p o s . v [j] ;

p o b j e c t = & o b j e c t h e a d :
v d i s t - o b j e c t s [i l . v d i s t ;
I1 V i e w s p a c e - d i s t a n c e - s o r t t h i s o b j e c t i n t o t h e o t h e r s .
11 Guaranteed t o t e r m i n a t e b e c a u s e o f s e n t i n e l
w h i l e (v d i s t < p o b j e c t - > p n e x t - > v d i s t)

p o b j e c t = p o b j e c t - > p n e x t :

3-D Clipping and Other Thoughts 1201

o b j e c t s [i l . p n e x t - p o b j e c t - > p n e x t :
p o b j e c t - > p n e x t - & o b j e c t s [i l :

1
1

/ / Move t h e v i e w p o s i t i o n and s e t t h e w o r l d - > v i e w t r a n s f o r m .
vo id Upda teV iewPosO
{

i n t i;
p o i n t - t m o t i o n v e c ;
d o u b l e s . c, mtemplC31C31, mtempZC31C31:

/ / Move i n t h e v i e w d i r e c t i o n , a c r o s s t h e x - y p l a n e , as if
I / w a l k i n g . T h i s a p p r o a c h moves s lower when l o o k i n g up or
I / down a t more o f an a n g l e
mot ionvec.vC01 - D o t P r o d u c t (& v p n . & x a x i s) :
m o t i o n v e c . v [l l - 0.0:
m o t i o n v e c . v [Z l - D o t P r o d u c t (& v p n . & z a x i s) :
f o r (i - 0 : i < 3 ; i++)
{

c u r r e n t p o s . v [i] +- m o t i o n v e c . v [i l * c u r r e n t s p e e d :
i f (c u r r e n t p o s . v [i l > MAXKCOORD)

c u r r e n t p o s . v C i 1 - MAX-COORD:
i f (c u r r e n t p o s . v [i l < -MAX-COORD)

c u r r e n t p o s . v C i 1 = -MAXLCOORD:
1
11 S e t u p t h e w o r l d - t o - v i e w r o t a t i o n .
/ / Note: much o f t h e w o r k d o n e i n c o n c a t e n a t i n g t h e s e m a t r i c e s
/ / c a n b e f a c t o r e d o u t , s i n c e i t c o n t r i b u t e s n o t h i n g t o t h e
/ I f i n a l r e s u l t : m u l t i p l y t h e t h r e e m a t r i c e s t o g e t h e r on paper
/ / t o g e n e r a t e a m i n i m u m e q u a t i o n f o r e a c h o f t h e 9 f i n a l e l e m e n t s
s - s i n (r o l 1) :
c - c o s (r o l 1) :
m r o l l [O l [O 1 - c :
m r o l l [0] [1 1 - s ;
m r o l l [1 1 C O l = - s :
m r o l l [l l [l l - c ;
s - s i n (p i t c h 1 :
c = c o s (p i t c h 1 :
m p i t c h C l l C l 1 - c :
m p i t c h C l] [Z l - s ;
mpi tch [21 [11 - - s ;
m p i t c h [Z l [Z l - c :
s - s i n (y a w) ;
c - cos (yaw) ;
myaw[Ol[Ol - c ;
myaw[O1[21 - - s :
myaw[Zl[O] - s :
myawCEl[Zl - c :
MConcat(mrol1. myaw. mtemp l) ;
MConcat(mpitch. mtempl, mtempz);
/ / B r e a k o u t t h e r o t a t i o n m a t r i x i n t o v r i g h t . v u p , and vpn.
/ / We c o u l d w o r k d i r e c t l y w i t h t h e m a t r i x : b r e a k i n g i t o u t
/ / i n t o t h r e e v e c t o r s i s j u s t t o make t h i n g s c l e a r e r
f o r (i - 0 : i < 3 : i++)
{

v r i g h t . v C i 1 - mtempZCOlCi1:
v u p . v [i l - mtempZC11Cil:
v p n . v [i l - mtempZC21Cil:

1

1 202 Chapter 65

/ / S i m u l a t e c r u d e f r i c t i o n
i f (c u r r e n t s p e e d > (MOVEMENT-SPEED * speedsca le I 2.0))

e l s e i f (c u r r e n t s p e e d < -(MOVEMENT-SPEED * speedsca le I 2.0))

e l s e

c u r r e n t s p e e d -- MOVEMENT-SPEED * speedsca le I 2.0;

c u r r e n t s p e e d +- MOVEMENT-SPEED * speedscale / 2.0;

c u r r e n t s p e e d - 0.0:
3

/ / R o t a t e a v e c t o r f r o m v i e w s p a c e t o w o r l d s p a c e .
v o i d B a c k R o t a t e V e c t o r (p o i n t - t * p i n . p o i n t - t * p o u t)
{

i n t i:

11 R o t a t e i n t o t h e w o r l d o r i e n t a t i o n
f o r (i - 0 ; i < 3 : it+)

p o u t - > v [i l - p i n - > v [0 1 * v r i g h t . v [i l +
p i n - > v [1 1 * v u p . v [i l +
p i n - > v [2 1 * v p n . v [i] :

3

/ I Trans fo rm a p o i n t f r o m w o r l d s p a c e t o v i e w s p a c e .
v o i d T r a n s f o r m P o i n t (p o i n t - t * p i n , p o i n t - t * p o u t)
{

i n t i:
p o i n t - t t v e r t :

/ / T r a n s l a t e i n t o a v i e w p o i n t - r e l a t i v e c o o r d i n a t e
f o r (i - 0 : i < 3 : i++)

t v e r t . v [i l - p i n - > v [i l - c u r r e n t p o s . v [i l :
/ / R o t a t e i n t o t h e v i e w o r i e n t a t i o n
pout->v[O] - D o t P r o d u c t (& t v e r t . & v r i g h t) ;
p o u t - > v [I] - O o t P r o d u c t (& t v e r t . L v u p) :
p o u t - > v [2] - D o t P r o d u c t (& t v e r t . b v p n) ;

1

/ / T rans fo rm a p o l y g o n f r o m w o r l d s p a c e t o v i e w s p a c e .
v o i d TransformPolygon(po1ygon-t * p i n p o l y , p o l y g o n - t * p o u t p o l y)
{

i n t i:

f o r (i - 0 : i < p i n p o l y - > n u m v e r t s : i++)

p o u t p o l y - > c o l o r - p i n p o l y - > c o l o r ;
p o u t p o l y - > n u m v e r t s - p i n p o l y - > n u m v e r t s ;

T r a n s f o r m P o i n t (& p i n p o l y - > v e r t s [i l . L p o u t p o l y - > v e r t s ~ i l) ;

3

/ I R e t u r n s t r u e i f p o l y g o n f a c e s t h e v i e w p o i n t , a s s u m i n g a c l o c k w i s e
/ / w i n d i n g o f v e r t i c e s a s s e e n f r o m t h e f r o n t .
i n t PolyFacesViewer(po1ygon-t * p p o l y)
I

i n t i:
p o i n t - t v i e w v e c ,

f o r (i - 0 : i < 3 :
{

v i e w v e c . v [i l
e d g e l . v C i 1 -
edge2 .vE i l -

3

edgel , edge2. normal :

i ++)

- p p o ~ y - > v e r t s [0 l . v ~ i l - c u r r e n t p o s . v [i l :
p p o l y - > v e r t s [0] . v C i l - p p o l y - > v e r t s ~ l l . v ~ i l ;
p p o l y - > v e r t s [2] . v [i l - p p o l y - > v e r t s ~ l l . v ~ i l ;

3-0 Clipping and Other Thoughts 1 203

CrossProduct(&edgel. &edge2. &normal):
if (DotProduct(&viewvec. &normal) > 0)

else
return 1:

return 0:
1

/ I Set up a clip plane with the specified normal.
void SetWorldspaceClipPlane(point-t *normal, planect *plane)
{

I / Rotate the plane normal into worldspace
BackRotateVector(norma1. &plane->normal);
plane->distance - DotProduct(¤tpos. &plane->normal) +

CLIP-PLANELEPSILON;
1

/ / Set up the planes of the frustum, in worldspace coordinates.
void SetUpFrustum(void)
t

double angle, s, c;
point-t normal ;

angle - atan(2.0 I fieldofview * maxscale / xscreenscale);
s - sin(ang1e):
c - cos(ang1e):
11 Left clip plane
normal .v[O1 - s:
normal.vC11 - 0:
normal .v[21 - c;
SetWorldspaceClipPlane(&normal. &frustumplanes[Ol):
/ / Right clip plane
normal.v[Ol - - s :
SetWorldspaceClipPlane(&normal. &frustumplanes[ll):
angle - atan(2.0 I fieldofview * maxscale / yscreenscale);
s - sin(ang1e);
c - cos(ang1e);
11 Bottom clip plane
normal.v[Ol - 0;
normal .v[11 - s ;
normal.vC21 - c;
SetWorldspaceClipPlane(&normal. &frustumplanes[2]);
I / Top clip plane
normal.v[lI - - s ;
SetWorldspaceClipPlane(&normal, &frustumplanes[31);

1

I / Clip a polygon to the frustum.
int ClipToFrustum(po1ygon-t *pin, polygon-t *pout)
t

i nt i , curpoly;
polygon-t tpolyC21. *ppoly;

curpoly - 0;
ppoly - pin;
for (i-0 : i< (NUM-FRUSTUM-PLANES- l) ; i++)
t

if (!ClipToPlane(ppoly.
&frustumpl anes[i 3 ,
&tpolyCcurpolyl) 1

return 0;

1 204 Chapter 65

p p o l y = & t p o l y [c u r p o l y l ;
c u r p o l y 1;

1
r e t u r n C l i p T o P l a n e (p p o 1 y .

&frustumplanes[NUMKFRUSTUM_PLANES-ll,
p o u t) :

1

11 R e n d e r t h e c u r r e n t s t a t e o f t h e w o r l d t o t h e s c r e e n .
v o i d U p d a t e W o r l d O
I

HPALETTE h o l d p a l :
HDC hdcScreen. hdcOIBSect ion;
HBITMAP h o l d b i t m a p :
polygon2D-t s c r e e n p o l y :

c o n v e x o b j e c t - t * p o b j e c t :
i n t i, j . k:

UpdateViewPosO;
memset(pDIBBase, 0, OIBWid th*OIBHeigh t) : / / c l e a r f r a m e
SetUpFrus tumO:
Z S o r t O b j e c t s O :
/ I Draw a l l v i s i b l e f a c e s i n a l l o b j e c t s
p o b j e c t = o b j e c t h e a d . p n e x t ;
w h i l e (p o b j e c t != & o b j e c t h e a d)
t

p p o l y = p o b j e c t - > p p o l y :
f o r (i - 0 ; i < p o b j e c t - > n u m p o l y s ; i++)
{

p o l Y g o n K t * p p o l y . t p o l y 0 . t p o l y l . t p o l y 2 :

/ I Move t h e p o l y g o n r e l a t i v e t o t h e a b j e c t c e n t e r
t p o l y 0 . c o l o r = p p o l y - > c o l o r :
tpoly0.numvert .s - p p o l y - > n u m v e r t s :
f o r (j = O : j < t p o l y O . n u m v e r t s : j++)
t

f o r (k=O ; k<3 ; k++)
t p o l y O . v e r t s [j l . v [k l - p p o l y - > v e r t s [j l . v [k l +

I
i f (PalyFacesViewer(&tpalyO))
t

p o b j e c t - > c e n t e r . v [k l ;

i f (C l i p T o F r u s t u m (& t p o l y O . & t p o l y l))
I

T r a n s f o r m P o l y g o n (& t p o l y l , & t p o l y 2) :
P r o j e c t P o l y g o n (& t p o l y 2 . & s c r e e n p o l y) :
F i l l P o l y g o n E D (& s c r e e n p o l y) ;

I
1
ppoly++:

1
p o b j e c t - p o b j e c t - > p n e x t :

>
/ I We've drawn the f rame: copy i t t o t h e s c r e e n
hdcScreen - GetDC(hwnd0utput) :
h o l d p a l - S e l e c t P a l e t t e (h d c S c r e e n , hpalDIB. FALSE):
R e a l i z e P a l e t t e (h d c S c r e e n) :
hdcDIBSect ion = CreateCompat ib leDC(hdcScreen) ;
h o l d b i t m a p - SelectObject(hdc0IBSection. hOIBSect ion) :
B i t B l t (h d c S c r e e n . 0. 0. DIBWidth. DIBHeight . hdcDIBSect ion.

0. 0, S R C C O P Y) :

3-D Clipping and Other Thoughts 1205

SelectPalette(hdcScreen. holdpal. F A L S E) :
ReleaseDC(hwnd0utput. hdckreen):
SelectObject(hdcD1BSection. holdbitmap):
ReleaseDC(hwnd0utput. hdcDIBSection):

I

The Lessons of Listing 65.3
There are several interesting points to Listing 65.3. First, floating-point arithmetic is
used throughout the clipping process. While it is possible to use fixed-point, doing
so requires considerable care regarding range and precision. Floating-point is much
easier-and, with the Pentium generation of processors, is generally comparable in
speed. In fact, for some operations, such as multiplication in general and division
when the floating-point unit is in single-precision mode, floating-point is much faster.
Check out Chris Hecker’s column in the February 1996 Game Deueloperfor an inter-
esting discussion along these lines.
Second, the planes that form the frustum are shifted ever so slightly inward from
their proper positions at the edge of the field of view. This guarantees that it’s never
possible to generate a visible vertex exactly at the eyepoint, averting the divide-by-zero
error that such a vertex would cause when projected and at no performance cost.
Third, the orientation of the viewer relative to the world is specified via yaw, pitch, and
roll angles, successively applied in that order. These angles are accumulated from frame
to frame according to user input, and for each frame are used to rotate the view up,
view right, and viewplane normal vectors, which define the world coordinate system,
into the viewspace coordinate system; those transformed vectors in turn define the
rotation from worldspace to viewspace. (See Chapter 61 for a discussion of coordinate
systems and rotation, and take a look at Chapters 5 and 6 of Complter Graphics, by Foley
and van Dam, for a broader overview.) One attractive aspect of accumulating angular
rotations that are then applied to the coordinate system vectors is that there is no
deterioration of the rotation matrix over time. This is in contrast to my XSharp package,
in which I accumulated rotations by keeping a cumulative matrix of all the rotations
ever performed; unfortunately, that approach caused roundoff error to accumulate,
so objects began to warp visibly after many rotations.
Fourth, Listing 65.3 processes each input polygon into a clipped polygon, one line
segment at a time. It would be more efficient to process all the vertices, categorizing
whether and how they’re clipped, and then perform a test such as the Cohen-
Sutherland outcode test to detect trivial acceptance (the polygon is entirely inside)
and sometimes trivial rejection (the polygon is fully outside) without ever dealing
with the edges, and to identify which planes actually need to be clipped against, as
discussed in “Line-Segment Clipping Revisited,”Dr. DobbkJournaZ, January 1996. Some
clipping approaches also minimize the number of intersection calculations when a
segment is clipped by multiple planes. Further, Listing 65.3 clips a polygon against
each plane in turn, generating a new output polygon for each plane; it is possible

1 206 Chapter 65

and can be more efficient to generate the final, clipped polygon without any inter-
mediate representations. For further reading on advanced clipping techniques, see
the discussion starting on page 271 of Foley and van Dam.
Finally, clipping in Listing 65.3 is performed in worldspace, rather than in viewspace.
The frustum is backtransformed from viewspace (where it is defined, since it exists
relative to the viewer) to worldspace for this purpose. Worldspace clipping allows us
to transform only those vertices that are visible, rather than transforming all vertices
into viewspace, then clipping them. However, the decision whether to clip in
worldspace or viewspace is not clear-cut and is affected by several factors.

Advantages of Viewspace Clipping
Although viewspace clipping requires transforming vertices that may not be drawn, it
has potential performance advantages. For example, in worldspace, near and far clip
planes are just additional planes that have to be tested and clipped to, using dot prod-
ucts. In viewspace, near and far clip planes are typically planes with constant z
coordinates, so testing whether a vertex is near or far-clipped can be performed with a
single z compare, and the fractional distance along a line segment to a near or far clip
intersection can be calculated with a couple of z subtractions and a divide; no dot
products are needed.
Similarly, if the field of view is exactly 90 degrees, so the frustum planes go out at 45
degree angles relative to the viewplane, then x==z and y==z along the clip planes.
This means that the clipping status of a vertex can be determined with a simple
comparison, far more quickly than the standard dot-product test. This lends itself
particularly well to outcode-based clipping algorithms, since each compare can set
one outcode bit.
For a game, 90 degrees is a pretty good field of view, but can we get the same sort of
efficient clipping if we need some other field of view? Sure. All we have to do is scale
the x and y results of the world-to-view transformation to account for the field of view,
so that the coordinates lie in a viewspace that’s normalized such that the frustum planes
extend along lines of x==z and y==z. The resulting visible projected points span the
range -1 to 1 (before scaling up to get pixel coordinates), just as with a 90degree field
of view, so the rest of the drawing pipeline remains unchanged. Better yet, there is no cost
in performance because the adjustment can be added to the transformation matrix.
I didn’t implement normalized clipping in Listing 65.3 because I wanted to illustrate
the general 3-D clipping mechanism without additional complications, and because
for many applications the dot product (which, after all, takes only 10-20 cycles on a
Pentium) is sufficient. However, the more frustum clipping you’re doing, especially
if most of the polygons are trivially visible, the more attractive the performance ad-
vantages of normalized clipping become.

3-D Clipping and Other Thoughts 1 207

Further Reading
You now have the basics of 3-D clipping, but because fast clipping is central to high-
performance 3-D, there’s a lot more to be learned. One good place for further reading
is Foley and van Dam; another is Procedural Elements of Computer Graphics, by David F.
Rogers. Read and understand either of these books, and you’ll know everything you
need for world-class clipping.
And, as you read, you might take a moment to consider how wonderful it is that
anyone who’s interested can tap into so much expert knowledge for the price of a
book-or, on the Internet, for free-with no strings attached. Our part of the world
is a pretty good place right now, isn’t it?

1 208 Chapter 65

chapter 66

quake's hidden-surface removal

ed of classic rock. Admittedly, it’s been a while, about
to hear anything by the Cars or Boston, and I was

e first place about Bob Seger or Queen, to say noth-
n’t changed. But I knew something was up when I
n on the Allman Brothers and Steely Dan and Pink
atles (just stuff like “Hello Goodbye” and “I’ll Cry

“Ticket to Ride” or “A Day in the Life”; I’m not that far gone).
figure out what the problem was; I’d been hearing the same

songs for a quarter-ckntury, and I was bored.
I tell you this by way of explaining why it was that when my daughter and I drove back
from dinner the other night, the radio in my car was tuned, for the first time ever, to
a station whose slogan is “There is no alternative.”
Now, we’re talking here about a 10-year-old who worships the Beatles and has been
raised on a steady diet of oldies. She loves melodies, catchy songs, and good singers,
none of which you’re likely to find on an alternative rock station. So it’s no surprise
that when I turned on the radio, the first word out of her mouth was “Yuck!”
What did surprise me was that after listening for a while, she said, “You know, Dad,
it’s actually kind of interesting.”

121 1

Apart from giving me a clue as to what sort of music I can expect to hear blasting
through our house when she’s a teenager, her quick uptake on alternative rock
(versus my decades-long devotion to the music of my youth) reminded me of
something that it’s easy to forget as we become older and more set in our ways. It
reminded me that it’s essential to keep an open mind, and to be willing, better
yet, eager, to try new things. Programmers tend to become attached to familiar
approaches, and are inclined to stick with whatever is currently doing the job
adequately well, but in programming there are always alternatives, and I’ve found
that they’re often worth considering.
Not that I should have needed any reminding, considering the ever-evolving nature
of Quake.

Creative Flux and Hidden Surfaces
Back in Chapter 64, I described the creative flux that led to John Carmack’s decision
to use a precalculated potentially visible set (PVS) of polygons for each possible viewpoint
in Quake, the game we’re developing here at id Software. The precalculated PVS meant
that instead of having to spend a lot of time searching through the world database to
find out which polygons were visible from the current viewpoint, we could simply draw
all the polygons in the PVS from back-to-front (getting the ordering courtesy of the
world BSP tree) and get the correct scene drawn with no searching at all; letting the
back-to-front drawing perform the final stage of hidden-surface removal (HSR) . This
was a terrific idea, but it was far from the end of the road for Quake’s design.

Drawing Moving Objects
For one thing, there was still the question of how to sort and draw moving objects
properly; in fact, this is the single technical question I’ve been asked most often in
recent months, so I’ll take a moment to address it here. The primary problem is that
a moving model can span multiple BSP leaves, with the leaves that are touched vary-
ing as the model moves; that, together with the possibility of multiple models in one
leaf, means there’s no easy way to use BSP order to draw the models in correctly
sorted order. When I wrote Chapter 64, we were drawing sprites (such as explo-
sions), moveable BSP models (such as doors), and polygon models (such as monsters)
by clipping each into all the leaves it touched, then drawing the appropriate parts as
each BSP leaf was reached in back-to-front traversal. However, this didn’t solve the
issue of sorting multiple moving models in a single leaf against each other, and also
left some ugly sorting problems with complex polygon models.
John solved the sorting issue for sprites and polygon models in a startlingly low-tech
way: We now z-buffer them. (That is, before we draw each pixel, we compare its
distance, or z, value with the z value of the pixel currently on the screen, drawing
only if the new pixel is nearer than the current one.) First, we draw the basic world,
walls, ceilings, and the like. No z-buffer testing is involved at this point (the world

1 21 2 Chapter 66

visible surface determination is done in a different way, as we’ll see soon) ; however,
we do fill the z-buffer with the z values (actually, l / z values, as discussed below) for
all the world pixels. Z-filling is a much faster process than z-buffering the entire
world would be, because no reads or compares are involved, just writes of z values.
Once the drawing and z-filling of the world is done, we can simply draw the sprites
and polygon models with z-buffering and get perfect sorting all around.

Performance Impact
Whenever a z-buffer is involved, the questions inevitably are: What’s the memory foot-
print and what’s the performance impact? Well, the memory footprint at 320x200 is
128K, not trivial but not a big deal for a game that requires 8 MB to run. The perfor-
mance impact is about 10 percent for z-filling the world, and roughly 20 percent (with
lots of variation) for drawing sprites and polygon models. In return, we get a perfectly
sorted world, and also the ability to do additional effects, such as particle explosions
and smoke, because the z-buffer lets us flawlessly sort such effects into the world. All in
all, the use of the z-buffer vastly improved the visual quality and flexibility of the Quake
engine, and also simplified the code quite a bit, at an acceptable memory and perfor-
mance cost.

Leveling and Improving Performance
As I said above, in the Quake architecture, the world itself is drawn first, without z-
buffer reads or compares, but filling the z-buffer with the world polygons’ z values,
and then the moving objects are drawn atop the world, using full z-buffering. Thus
far, I’ve discussed how to draw moving objects. For the rest of this chapter, I’m going
to talk about the other part of the drawing equation; that is, how to draw the world
itself, where the entire world is stored as a single BSP tree and never moves.
As you may recall from Chapter 64, we’re concerned with both raw performance and
level performance. That is, we want the drawing code to run as fast as possible, but
we also want the difference in drawing speed between the average scene and the
slowest-drawing scene to be as small as possible.

It does little good to average 30 frames per second if1 Opercent of the scenes draw p at 5 fps, because the jerkiness in those scenes will be extremely obvious by com-
parison with the average scene, and highly objectionable. It would be better to
average I5 f p s 100percent of the time, even though the average drawing speed is
only halfas much.

The precalculated PVS was an important step toward both faster and more level
performance, because it eliminated the need to identify visible polygons, a relatively
slow step that tended to be at its worst in the most complex scenes. Nonetheless, in
some spots in real game levels the precalculated PVS contains five times more polygons
than are actually visible; together with the back-to-front HSR approach, this created

Quake’s Hidden-Surface Removal 1 2 1 3

hot spots in which the frame rate bogged down visibly as hundreds of polygons are
drawn back-to- front, most of those immediately getting overdrawn by nearer poly-
gons. Raw performance in general was also reduced by the typical 50% overdraw
resulting from drawing everything in the PVS. So, although drawing the PVS back-to-
front as the final HSR stage worked and was an improvement over previous designs,
it was not ideal. Surely, John thought, there’s a better way to leverage the PVS than
back-to-front drawing.
And indeed there is.

Sorted Spans
The ideal final HSR stage for Quake would reject all the polygons in the PVS that are
actually invisible, and draw only the visible pixels of the remaining polygons, with no
overdraw, that is, with every pixel drawn exactly once, all at no performance cost, of
course. One way to do that (although certainly not at zero cost) would be to draw the
polygons from front-to-back, maintaining a region describing the currently occluded
portions of the screen and clipping each polygon to that region before drawing it. That
sounds promising, but it is in fact nothing more or less than the beam tree approach I
described in Chapter 64, an approach that we found to have considerable overhead and
serious leveling problems.
We can do much better if we move the final HSR stage from the polygon level to the
span level and use a sorted-spans approach. In essence, this approach consists of
turning each polygon into a set of spans, as shown in Figure 66.1, and then sorting

polygon A spans

Span generation.
Figure 66.1

1 21 4 Chapter 66

and clipping the spans against each other until only the visible portions of visible spans
are left to be drawn, as shown in Figure 66.2. This may sound a lot like z-buffering
(which is simply too slow for use in drawing the world, although it’s fine for smaller
moving objects, as described earlier), but there are crucial differences.
By contrast with z-buffering, only visible portions of visible spans are scanned out
pixel by pixel (although all polygon edges must still be rasterized). Better yet, the
sorting that z-buffering does at each pixel becomes a per-span operation with sorted
spans, and because of the coherence implicit in a span list, each edge is sorted only
against some of the spans on the same line and is clipped only to the few spans that
it overlaps horizontally. Although complex scenes still take longer to process than
simple scenes, the worst case isn’t as bad as with the beam tree or back-to-front ap-
proaches, because there’s no overdraw or scanning of hidden pixels, because
complexity is limited to pixel resolution and because span coherence tends to limit
the worst-case sorting in any one area of the screen. As a bonus, the output of sorted
spans is in precisely the form that a low-level rasterizer needs, a set of span descrip-
tors, each consisting of a start coordinate and a length.
In short, the sorted spans approach meets our original criteria pretty well; although
it isn’t zero-cost, it’s not horribly expensive, it completely eliminates both overdraw
and pixel scanning of obscured portions of polygons and it tends to level worst-case
performance. We wouldn’t want to rely on sorted spans alone as our hidden-surface
mechanism, but the precalculated PVS reduces the number of polygons to a level
that sorted spans can handle quite nicely.
So we’ve found the approach we need; now it’s just a matter of writing some code
and we’re on our way, right? Well, yes and no. Conceptually, the sorted-spans ap-
proach is simple, but it’s surprisingly difficult to implement, with a couple of major
design choices to be made, a subtle mathematical element, and some tricky gotchas
that I’ll have to defer until Chapter 67. Let’s look at the design choices first.

Edges versus Spans
The first design choice is whether to sort spans or edges (both of which fall into the
general category of “sorted spans”). Although the results are the same both ways, a
list of spans to be drawn, with no overdraw, the implementations and performance
implications are quite different, because the sorting and clipping are performed
using very different data structures.
With span-sorting, spans are stored in x-sorted, linked list buckets, typically with one
bucket per scan line. Each polygon in turn is rasterized into spans, as shown in Fig-
ure 66.1, and each span is sorted and clipped into the bucket for the scan line the
span is on, as shown in Figure 66.2, so that at any time each bucket contains the
nearest spans encountered thus far, always with no overlap. This approach involves
generating all spans for each polygon in turn, with each span immediately being
sorted, clipped, and added to the appropriate bucket.

Quake‘s Hidden-Surface Removal 1 21 5

polygon A spans
I I I I I I

1 x = 22, y = 0, count = o I
I x = 2 2 , v = 1,count=0 I
I x=21.v=2,count=1 I
I x = 20. v = 3. count = 2 I

A and B composited

I , , , , ,

visible spans
A: x = 20, y = 0, count = 0 B: x = 22, y = 0, count = 0

A : x = 2 0 , y = l , c o u n t = l B:x=22,y=l ,count=O

A x = 1 9 , y = 2 , c o u n t = 2 B:x=21,y=2,count=l

Two sets of spans sorted and clipped against one another:
Figure 66.2

1 21 6 Chapter 66

With edge-sorting, edges are stored in x-sorted, linked list buckets according to their
start scan line. Each polygon in turn is decomposed into edges, cumulatively build-
ing a list of all the edges in the scene. Once all edges for all polygons in the view
frustum have been added to the edge list, the whole list is scanned out in a single
top-to-bottom, left-to-right pass. An active edge list (AEL) is maintained. With each
step to a new scan line, edges that end on that scan line are removed from the AEL,
active edges are stepped to their new x coordinates, edges starting on the new scan
line are added to the AEL, and the edges are sorted by current x coordinate.
For each scan line, a z-sorted active polygon list (APL) is maintained. The x-sorted
AEL is stepped through in order. As each new edge is encountered (that is, as each
polygon starts or ends as we move left to right), the associated polygon is activated
and sorted into the APL, as shown in Figure 66.3, or deactivated and removed from
the APL, as shown in Figure 66.4, for a leading or trailing edge, respectively. If the
nearest polygon has changed (that is, if the new polygon is nearest, or if the nearest
polygon just ended) , a span is emitted for the polygon that just stopped being the
nearest, starting at the point where the polygon first because nearest and ending at
the x coordinate of the current edge, and the current x coordinate is recorded in
the polygon that is now the nearest. This saved coordinate later serves as the start of
the span emitted when the new nearest polygon ceases to be in front.
Don’t worry if you didn’t follow all of that; the above is just a quick overview of edge-
sorting to help make the rest of this chapter a little clearer. My thorough discussion
of the topic will be in Chapter 6’7.
The spans that are generated with edge-sorting are exactly the same spans that ulti-
mately emerge from span-sorting; the difference lies in the intermediate data
structures that are used to sort the spans in the scene. With edge-sorting, the spans
are kept implicit in the edges until the final set of visible spans is generated, so the
sorting, clipping, and span emission is done as each edge adds or removes a polygon,
based on the span state implied by the edge and the set of active polygons. With
span-sorting, spans are immediately made explicit when each polygon is rasterized,
and those intermediate spans are then sorted and clipped against other the spans on
the scan line to generate the final spans, so the states of the spans are explicit at all
times, and all work is done directly with spans.
Both span-sorting and edge-sorting work well, and both have been employed suc-
cessfully in commercial projects. We’ve chosen to use edge-sorting in Quake partly
because it seems inherently more efficient, with excellent horizontal coherence that
makes for minimal time spent sorting, in contrast with the potentially costly sorting
into linked lists that span-sorting can involve. A more important reason, though, is
that with edge-sorting we’re able to share edges between adjacent polygons, and that
cuts the work involved in sorting, clipping, and rasterizing edges nearly in half, while
also shrinking the world database quite a bit due to the sharing.

Quake‘s Hidden-Surface Removal 121 7

Active Edge List

I .
I

Current edge; since it's a

M into the active polygon.
leading edge, sort polygon

+ trail edge polygon M; x = lo0

Active Polygon List

polygon M

I I

Polygon M has a nearer z at x=l8
than any polygon in the APL, so put
polygon M at the top of the APL; it is
the nearest surface at this pixel,
hence visible. Emit a span for
olygon J, starting at x where J

gecame visible and ending at x=l8.
x=l8 is the start coordinate for the
span that will be emitted for polygon M
when it ends on this scan line or
becomes occluded.

polygon J
zatx=18 is 100

1
za tx= l8 is 125

1
If polygon M had not been the nearest polygon L
polygon at x=l8, it would have been z at x=l8 is 500
inserted into the APL at the proper z-
sorted location, and nothing more would
have been done.

Activating a polygon when a leading edge is encountered in the AEL.
Figure 66.3

One final advantage of edge-sorting is that it makes no distinction between convex
and concave polygons. That's not an important consideration for most graphics en-
gines, but in Quake, edge clipping, transformation, projection, and sorting have
become a major bottleneck, so we're doing everything we can to get the polygon and
edge counts down, and concave polygons help a lot in that regard. While it's possible

1 21 8 Chapter 66

Active Edge List
1 I I i

+ trail edge polygon M; x = lo0 ”+ lead edge polygon R; x =110

t
I I I

Current edge; since it‘s a lead edge polygon S; x =111 +
trailing edge, remove poly on
M from the active polygon 9 ist.

Active Polygon List

Remove polygon M from the APL.
Polygon M is on top of the APL,
meaning it’s currently visible (the
nearest polygon as we reach this
pixel), so we emit a span starting at
the coordinate at which polygon M
became visible (x=l8), and ending at
the current coordinate (x=lOO). Mark
that polygon J became visible at
x=lOO.

If polygon M had not been on top of
the APL, we wouldn’t have done
anything except removing it from
the APL.

nearest at x=l8

polygon J

polygon L

Deactivating a polygon when a trailing edge is encountered in the AEL.
Figure 66.4

to handle concave polygons with span-sorting, that can involve significant perfor-
mance penalties.
Nonetheless, there’s no cut-and-dried answer as to which approach is better. In the
end, span-sorting and edge-sorting amount to the same functionality, and the choice
between them is a matter of whatever you feel most comfortable with. In Chapter 67,
I’ll go into considerable detail about edge-sorting, complete with a full implementation.
I’m going the spend the rest of this chapter laying the foundation for Chapter 67 by
discussing sorting keys and l / z calculation. In the process, I’m going to have to

Quake’s Hidden-Surface Removal 1 2 1 9

make a few forward references to aspects of edge-sorting that I haven’t yet covered in
detail; my apologies, but it’s unavoidable, and all should become clear by the end of
Chapter 6’7.

Edge-Sorting Keys
Now that we know we’re going to sort edges, using them to emit spans for the poly-
gons nearest the viewer, the question becomes: How can we tell which polygons are
nearest? Ideally, we’d just store a sorting key in each polygon, and whenever a new
edge came along, we’d compare its surface’s key to the keys of other currently active
polygons, and could easily tell which polygon was nearest.
That sounds too good to be true, but it is possible. If, for example, your world data-
base is stored as a BSP tree, with all polygons clipped into the BSP leaves, then BSP
walk order is a valid drawing order. So, for example, if you walk the BSP back-to-
front, assigning each polygon an incrementally higher key as you reach it, polygons
with higher keys are guaranteed to be in front of polygons with lower keys. This is the
approach Quake used for a while, although a different approach is now being used,
for reasons I’ll explain shortly.
If you don’t happen to have a BSP or similar data structure handy, or if you have lots
of moving polygons (BSPs don’t handle moving polygons very efficiently), another
way to accomplish your objectives would be to sort all the polygons against one an-
other before drawing the scene, assigning appropriate keys based on their spatial
relationships in viewspace. Unfortunately, this is generally an extremely slow task,
because every polygon must be compared to every other polygon. There are tech-
niques to improve the performance of polygon sorts, but I don’t know of anyone
who’s doing general polygon sorts of complex scenes in realtime on a PC.
An alternative is to sort by z distance from the viewer in screenspace, an approach
that dovetails nicely with the excellent spatial coherence of edge-sorting. As each
new edge is encountered on a scan line, the corresponding polygon’s z distance can
be calculated and compared to the other polygons’ distances, and the polygon can
be sorted into the APL accordingly.
Getting z distances can be tricky, however. Remember that we need to be able to
calculate z at any arbitrary point on a polygon, because an edge may occur and
cause its polygon to be sorted into the APL at any point on the screen. We could
calculate z directly from the screen x and y coordinates and the polygon’s plane
equation, but unfortunately this can’t be done very quickly, because the z for a
plane doesn’t vary linearly in screenspace; however, l / z does vary linearly, so we’ll
use that instead. (See Chris Hecker’s 1995 series of columns on texture mapping
in Game Developer magazine for a discussion of screenspace linearity and gradients
for l /z .) Another advantage of using l / z is that its resolution increases with de-
creasing distance, meaning that by using l / ~ , we’ll have better depth resolution
for nearby features, where it matters most.

1 220 Chapter 66

The obvious way to get a l / z value at any arbitrary point on a polygon is to calculate
l / z at the vertices, interpolate it down both edges of the polygon, and interpolate
between the edges to get the value at the point of interest. Unfortunately, that re-
quires doing a lot of work along each edge, and worse, requires division to calculate
the l / z step per pixel across each span.
A better solution is to calculate l / z directly from the plane equation and the screen
x and y of the pixel of interest. The equation is
l / z = (a/d)x’ - (b/d)y’ + c/d
where z is the viewspace z coordinate of the point on the plane that projects to screen
coordinate (x’,y’) (the origin for this calculation is the center of projection, the point on
the screen straight ahead of the viewpoint), [a b c] is the plane normal in viewspace,
and d is the distance from the viewspace origin to the plane along the normal. Divi-
sion is done only once per plane, because a, b, c, and d are per-plane constants.
The full l / z calculation requires two multiplies and two adds, all of which should be
floating-point to avoid range errors. That much floating-point math sounds expen-
sive but really isn’t, especially on a Pentium, where a plane’s l / z value at any point
can be calculated in as little as six cycles in assembly language.

Where That 1 /Z Equation Comes From
For those who are interested, here’s a quick derivation of the l / z equation. The
plane equation for a plane is
= + b y + c z - d = O
where x and y are viewspace coordinates, and a, b, c, d, and z are defined above. If we
substitute x=x’z and y=-y’z (from the definition of the perspective projection, with y
inverted because y increases upward in viewspace but downward in screenspace),
and do some rearrangement, we get:
z = d / (=”by’+c)
Inverting and distributing yields:
l / z = ax’/d - by’/d + c/d
We’ll see l / z sorting in action in Chapter 67.

Quake and Z-Sorting
I mentioned earlier that Quake no longer uses BSP order as the sorting key; in fact,
it uses l / z as the key now. Elegant as the gradients are, calculating l / z from them is
clearly slower than just doing a compare on a BSP-ordered key, so why have we switched
Quake to l / z ?
The primary reason is to reduce the number of polygons. Drawing in BSP order means
following certain rules, including the rule that polygons must be split if they cross BSP
planes. This splitting increases the numbers of polygons and edges considerably. By

Quake‘s Hidden-Surface Removal 1 22 1

sorting on l / z , we’re able to leave polygons unsplit but still get correct drawing
order, so we have far fewer edges to process and faster drawing overall, despite the
added cost of l / z sorting.
Another advantage of l / z sorting is that it solves the sorting issues I mentioned at
the start involving moving models that are themselves small BSP trees. Sorting in
world BSP order wouldn’t work here, because these models are separate BSPs, and
there’s no easy way to work them into the world BSP’s sequence order. We don’t want
to use z-buffering for these models because they’re often large objects such as doors,
and we don’t want to lose the overdraw-reduction benefits that closed doors provide
when drawn through the edge list. With sorted spans, the edges of moving BSP mod-
els are simply placed in the edge list (first clipping polygons so they don’t cross any
solid world surfaces, to avoid complications associated with interpenetration), along
with all the world edges, and l / z sorting takes care of the rest.

Decisions Deferred
There is, without a doubt, an awful lot of information in the preceding pages, and it
may not all connect together yet in your mind. The code and accompanying expla-
nation in the next chapter should help; if you want to peek ahead, the code is available
on the CD-ROM as DDJZSORT.ZIP in the directory for Chapter 67. You may also
want to take a look at Foley and van Dam’s Computer Graphics or Rogers’ Procedural
Elements fm Computer Graphics.
As I write this, it’s unclear whether Quake will end up sorting edges by BSP order or
l / z . Actually, there’s no guarantee that sorted spans in any form will be the final
design. Sometimes it seems like we change graphics engines as often as they play
Elvis on the ‘50s oldies stations (but, one would hope, with more aesthetically pleas-
ing results!) and no doubt we’ll be considering the alternatives right up until the day
we ship.

1222 Chapter 66

chapter 67

sorted spans in action

g Independent Span Sorting for
hout Overdraw

g into the intricacies of hidden surface removal by
ted) spans. At the end of that chapter, I noted that

we were curre d spans in Quake, but it was unclear whether we’d
switch back to e time after that writing, it’s become clear: We’re

’s wonderful story “The Man Who Sold the Moon,” the chief
rocket project tries to figure out how to get a payload of three

e starts out with a four-stage rocket design, but
finds that it won’t dokhe job, so he adds a fifth stage. The fifth stage helps, but not
quite enough, “Because,” he explains, “I’ve had to add in too much dead weight,
that’s why.” (The dead weight is the control and safety equipment that goes with the
fifth stage.) He then tries adding yet another stage, only to find that the sixth stage
actually results in a net slowdown. In the end, he has to give up on the three-person
design and build a one-person spacecraft instead.
l/z-sorted spans in Quake turned out pretty much the same way, as we’ll see in a
moment. First, though, I’d like to note up front that this chapter is very technical
and builds heavily on material I covered earlier in this section of the book; if you
haven’t already read Chapters 59 through 66, you really should. Make no mistake
about it, this is commercial-quality stuff; in fact, the code in this chapter uses the

1225

same sorting technique as the test version of Quake, QTESTl.ZIP, that id Software
placed on the Internet in early March 1996. This material is the Real McCoy, true
reports from the leading edge, and I trust that you’ll be patient if careful rereading
and some occasional catch-up reading of earlier chapters are required to absorb
everything contained herein. Besides, the ultimate reference for any design is work-
ing code, which you’ll find, in part, in Listing 67.1, and in its entirety in the file
DDJZSORT.ZIP on the CD-ROM.

Quake and Sorted Spans
As you’ll recall from Chapter 66, Quake uses sorted spans to get zero overdraw while
rendering the world, thereby both improving overall performance and leveling frame
rates by speeding up scenes that would otherwise experience heavy overdraw. Our
original design used spans sorted by BSP order; because we traverse the world BSP
tree from front-to-back relative to the viewpoint, the order in which BSP nodes are
visited is a guaranteed front-to-back sorting order. We simply gave each node an
increasing BSP sequence number as it was visited, set each polygon’s sort key to the
BSP sequence number of the node (BSP splitting plane) it lay on, and used those
sort keys when generating spans.
(In a change from earlier designs, polygons now are stored on nodes, rather than
leaves, which are the convex subspaces carved out by the BSP tree. Visits to poten-
tially visible leaves are used only to mark that the polygons that touch those leaves
are visible and need to be drawn, and each marked-visible polygon is then drawn
after everything in front of its node has been drawn. This results in less BSP splitting
of polygons, which is A Good Thing, as explained below.)
This worked flawlessly for the world, but had a couple of downsides. First, it didn’t
address the issue of sorting small, moving BSP models such as doors; those models
could be clipped into the world BSP tree’s leaves and assigned sort keys correspond-
ing to the leaves into which they fell, but there was still the question of how to sort
multiple BSP models in the same world leaf against each other. Second, strict BSP
order requires that polygons be split so that every polygon falls entirely within a
single leaf. This can be stretched by putting polygons on nodes, allowing for larger
polygons on average, but even then, polygons still need to be split so that every
polygon falls within the bounding volume for the node on which it lies. The end result,
in either case, is more and smaller polygons than if BSP order weren’t used-and that, in
turn, means lower performance, because more polygons must be clipped, trans-
formed, and projected, more sorting must be done, and more spans must be drawn.
We figured that if only we could avoid those BSP splits, Quake would get a lot faster.
Accordingly, we switched from sorting on BSP order to sorting on l / z , and left our
polygons unsplit. Things did get faster at first, but not as much as we had expected,
for two reasons.

1226 Chapter 67

First, as the world BSP tree is descended, we clip each node’s bounding box in turn
to see if it’s inside or outside each plane of the view frustum. The clipping results can
be remembered, and often allow the avoidance of some or all clipping for the node’s
polygons. For example, all polygons in a node that has a trivially accepted bounding
box are likewise guaranteed to be unclipped and in the frustum, since they all lie
within the node’s volume and need no further clipping. This efficient clipping mecha-
nism vanished as soon as we stepped out of BSP order, because a polygon was no
longer necessarily confined to its node’s volume.
Second, sorting on l / z isn’t as cheap as sorting on BSP order, because floating-point
calculations and comparisons are involved, rather than integer compares. So Quake
got faster but, like Heinlein’s fifth rocket stage, there was clear evidence of diminish-
ing returns.
That wasn’t the bad part; after all, even a small speed increase is A Good Thing. The
real problem was that our initial l / z sorting proved to be unreliable. We first ran
into problems when two forward-facing polygons started at a common edge, because
it was hard to tell which one was really in front (as discussed below), and we had to
do additional floating-point calculations to resolve these cases. This fixed the prob-
lems for a while, but then odd cases started popping up where just the right
combination of polygon alignments caused new sorting errors. We tinkered with
those too, adding more code and incurring additional slowdowns in the process.
Finally, we had everything working smoothly again, although by this point Quake
was back to pretty much the same speed it had been with BSP sorting.
And then yet another crop of sorting errors popped up.
We could have fixed those errors too; we’ll take a quick look at how to deal with such
cases shortly. However, like the sixth rocket stage, the fixes would have made Quake
slower than it had been with BSP sorting. S o we gave up and went back to BSP order,
and now the code is simpler and sorting works reliably. It’s too bad our experiment
didn’t work out, but it wasn’t wasted time because in trying what we did we learned
quite a bit. In particular, we learned that the information provided by a simple, reli-
able world ordering mechanism, such as a BSP tree, can do more good than is
immediately apparent, in terms of both performance and solid code,
Nonetheless, sorting on l / z can be a valuable tool, used in the right context; drawing a
Quake world just doesn’t happen to be such a case. In fact, sorting on l / z is how we’re
now handling the sorting of multiple BSP models that lie within the same world leaf
in Quake. In this case, we don’t have the option of using BSP order (because we’re
drawing multiple independent trees), so we’ve set restrictions on the BSP models to
avoid running into the types of l / z sorting errors we encountered drawing the Quake
world. Next, we’ll look at another application in which sorting on l / z is quite useful,
one where objects move freely through space. As is so often the case in 3-D, there is
no one “right” technique, but rather a great many different techniques, each one
handy in the right situations. Often, a combination of techniques is beneficial; for

Sorted Spans in Action 1227

example, the combination in Quake of BSP sorting for the world and l / z sorting for
BSP models in the same world leaf.
For the remainder of this chapter, I'm going to look at the three main types of l / z
span sorting, then discuss a sample 3-D app built around l / z span sorting.

Types of 1 /z Span Sorting
As a quick refresher: With l / z span sorting, all the polygons in a scene are treated as
sets of screenspace pixel spans, and l / z (where z is distance from the viewpoint in
viewspace, as measured along the viewplane normal) is used to sort the spans so that
the nearest span overlapping each pixel is drawn. As I discussed in Chapter 66, in the
sample program we're actually going to do all our sorting with polygon edges, which
represent spans in an implicit form.
There are three types of l / z span sorting, each requiring a different implementa-
tion. In order of increasing speed and decreasing complexity, they are: intersecting,
abutting, and independent. (These are names of my own devising; I haven't come
across any standard nomenclature in the literature.)

Intersecting Span Sorting
Intersecting span sorting occurs when polygons can interpenetrate. Thus, two spans
may cross such that part of each span is visible, in which case the spans have to be
split and drawn appropriately, as shown in Figure 6'7.1.

invisible portion
of polygon B

invisible portion
of polygon A
l..--* -" ".

-I -. "."" ...I ". -. ""
"" *.--

visible of polygon portion h A visible portion
span split point of polygon B

viewpoint

Note: Polygons A and B are viewed from above.

Intersecting span sorting.
Figure 67.1

1228 Chapter 67

Intersecting is the slowest and most complicated type of span sorting, because it is
necessary to compare l / z values at two points in order to detect interpenetration,
and additional work must be done to split the spans as necessary. Thus, although
intersecting span sorting certainly works, it’s not the first choice for performance.

Abutting Span Sorting
Abutting span sorting occurs when polygons that are not part of a continuous surface
can butt up against one another, but don’t interpenetrate, as shown in Figure 67.2. This
is the sorting used in Quake, where objects like doors often abut walls and floors, and
turns out to be more complicated than you might think. The problem is that when
an abutting polygon starts on a given scan line, as with polygon B in Figure 67.2, it
starts at exactly the same l / z value as the polygon it abuts, in this case, polygon A, so
additional sorting is needed when these ties happen. Of course, the two-point sort-
ing used for intersecting polygons would work, but we’d like to find something faster.
As it turns out, the additional sorting for abutting polygons is actually quite simple;
whichever polygon has a greater l / z gradient with respect to screen x (that is, which-
ever polygon is heading fastest toward the viewer along the scan line) is the front
one. The hard part is identifylng when ties-that is, abutting polygons-occur; due
to floating-point imprecision, as well as fixed-point edge-stepping imprecision that
can move an edge slightly on the screen, calculations of l / z from the combination
of screen coordinates and l / z gradients (as discussed last time) can be slightly off, so

invisible portion
of polygon A

visible portion I visible portion
of polygon A Polygone B starts here, of polygon B

abutting polygon A.
At this location, both polygons
have the same 1 /z value.

‘0’
viewpoint

Note: Polygons A and B are viewed from above.

Abutting span sorting.
Figure 67.2

Sorted Spans in Action 1 229

most tie cases will show up as near matches, not exact matches. This imprecision
makes it necessary to perform two comparisons, one with an adjust-up by a small
epsilon and one with an adjust-down, creating a range in which near-matches are
considered matches. Fine-tuning this epsilon to catch all ties, without falsely report-
ing close-but-not-abutting edges as ties, proved to be troublesome in Quake, and the
epsilon calculations and extra comparisons slowed things down.
I do think that abutting l / z span sorting could have been made reliable enough for
production use in Quake, were it not that we share edges between adjacent polygons
in Quake, so that the world is a large polygon mesh. When a polygon ends and is
followed by an adjacent polygon that shares the edge that just ended, we simply
assume that the adjacent polygon sorts relative to other active polygons in the same
place as the one that ended (because the mesh is continuous and there’s no inter-
penetration), rather than doing a l / z sort from scratch. This speeds things up by
saving a lot of sorting, but it means that if there is a sorting error, a whole string of
adjacent polygons can be sorted incorrectly, pulled in by the one missorted polygon.
Missorting is a very real hazard when a polygon is very nearly perpendicular to the
screen, so that the l / z calculations push the limits of numeric precision, especially
in single-precision floating point.
Many caching schemes are possible with abutting span sorting, because any given
pair of polygons, being noninterpenetrating, will sort in the same order throughout
a scene. However, in Quake at least, the benefits of caching sort results were out-
weighed by the additional overhead of maintaining the caching information, and
every caching variant we tried actually slowed Quake down.

Independent Span Sorting
Finally, we come to independent span sorting, the simplest and fastest of the three,
and the type the sample code in Listing 67.1 uses. Here, polygons never intersect
or touch any other polygons except adjacent polygons with which they form a con-
tinuous mesh. This means that when a polygon starts on a scan line, a single l / z
comparison between that polygon and the polygons it overlaps on the screen is
guaranteed to produce correct sorting, with no extra calculations or tricky cases to
worry about.
Independent span sorting is ideal for scenes with lots of moving objects that never
actually touch each other, such as a space battle. Next, we’ll look at an implementa-
tion of independent l / z span sorting.

1 / z Span Sorting in Action
Listing 67.1 is a portion of a program that demonstrates independent l / z span sort-
ing. This program is based on the sample 3-D clipping program from Chapter 65;
however, the earlier program did hidden surface removal (HSR) by simply z-sorting

1230 Chapter 67

whole objects and drawing them back-to-front, while Listing 67.1 draws all polygons
by way of a l/z-sorted edge list. Consequently, where the earlier program worked
only so long as object centers correctly described sorting order, Listing 67.1 works
properly for all combinations of non-intersecting and non-abutting polygons. In
particular, Listing 67.1 correctly handles concave polyhedra; a new L-shaped object
(the data for which is not included in Listing 67.1) has been added to the sample
program to illustrate this capability. The ability to handle complex shapes makes
Listing 67.1 vastly more useful for real-world applications than the 3-D clipping demo
from Chapter 65.

LISTING 67.1 167-1 .C
/ / P a r t o f Win32 program t o d e m o n s t r a t e z - s o r t e d s p a n s . W h i t e s p a c e
/ / removed f o r s p a c e r e a s o n s . F u l l s o u r c e c o d e , w i t h w h i t e s p a c e ,
/ / a v a i l a b l e f r o m ftp.idsoftware.com/mikeab/ddjzsort.zip.

Wdef i ne MAX-SPANS 10000
C d e f i ne MAXLSURFS 1000
d e f i n e MAXKEDGES 5000

t y p e d e f s t r u c t s u r f - s {
s t r u c t s u r f - s * p n e x t . * p p r e v :
i n t c o l o r , v i s x s t a r t , s t a t e :
d o u b l e z i n v 0 0 . z i n v s t e p x . z i n v s t e p y :

1 s u r f - t :

t y p e d e f s t r u c t edge-s t
i n t
s u r f - t

x . x s t e p . l e a d i n g :
* p s u r f :

s t r u c t edge-s *pnex t . *pp rev . *pnex t remove :
I edge-t :

/ / Span. edge, and sur face l i s t s
span-t spans[MAX_SPANSl:
edge-t edgesCMAX-EDGES]:
s u r f - t surfsCMAXLSURFS1:

/ I Bucke t l i s t o f new edges t o add on each scan l i n e
edge-t newedgesrMAX-SCREEN-HEIGHT]:

/ / B u c k e t l i s t o f edges t o remove on each scan l i n e
edge- t *removeedges[MAX_SCREEN~HEIGHTl;

/ / Head and tail f o r t h e a c t i v e e d g e l i s t
edge- t edgehead . edge ta i l :

/ I Edge used as s e n t i n e l o f new edge l i s t s
edge-t maxedge = tOx7FFFFFFFl:

/ / Head/tail/sentinel/background s u r f a c e o f a c t i v e s u r f a c e s t a c k
s u r f - t s u r f s t a c k :

/ / p o i n t e r s t o n e x t a v a i l a b l e s u r f a c e a n d e d g e
s u r f - t * p a v a i l s u r f :
edge- t *pavai 1 edge:

Sorted Spans in Action 1231

I1 Returns true if polygon faces the viewpoint, assuming a clockwise
/ / winding of vertices as seen from the front.
int PolyFacesViewer(po1ygon-t *ppoly. plane-t *pplane)
I

int i;
point-t viewvec;

for (i-0 ; i < 3 : i++)

11 Use an epsilon here s o we don't get polygons tilted s o
/ / sharply that the gradients are unusable or invalid
if (OotProduct (&viewvec. &pplane->normal) < -0.01)

return 0;

viewvec.v[il - ppoly->verts[Ol.v[il - currentpos.v[i];

return 1:

1

/ / Add the polygon's edges to the global edge table.
void AddPolygonEdges (plane-t *plane. polygon2D-t *screenpoly)
I

double distinv, deltax, deltay. slope:
int i , nextvert, numverts. temp, topy. bottomy, height;
edge-t *pedge;

numverts - screenpoly->numverts;
/ / Clamp the polygon's vertices just in case some very near
I1 points have wandered out o f range due to floating-point
/ / imprecision
for (i-0 ; i<numverts ; i++) {

if (screenpoly->verts[il.x < -0.5)
screenpoly->verts[i].x - -0.5;

if (screenpoly->verts[i].x > ((doub1e)OIBWidth - 0 . 5))
screenpoly->verts[i].x - (doub1e)DIBWidth - 0 . 5 ;

if (screenpoly->verts[il.y < - 0 . 5)
screenpoly->verts[il.y - - 0 . 5 ;

if (screenpoly->verts[il.y > ((doub1e)DIBHeight - 0 . 5))
screenpoly->verts[i].y - (doub1e)OIBHeight - 0.5;

I

I / Add each edge in turn
for (i-0 : i<numverts ; i++) {

nextvert - i + 1;
if (nextvert >- numverts)

nextvert - 0;
topy - (int)ceil(screenpoly->verts[il.y);
bottomy - (int)ceil(screenpoly->verts[nextvertl.y):
height - bottomy - topy:
if (height -- 0)

if (height < 0) {
continue; / / doesn't cross any scan lines

/ / Leading edge
temp - topy;
topy - bottomy;
bottomy - temp;
pavailedge->leading - 1;
deltax - screenpoly->verts[il.x -

deltay - screenpoly->verts[i].y -

slope - deltax / deltay:

screenpoly->verts[nextvert].x:

screenpoly->verts[nextvertl.y:

1232 Chapter 67

/ / Edge coordinates are in 16.16 fixed point
pavailedge->xstep - (int)(slope * (float)Ox10000):
pavailedge->x - (int)((screenpoly->verts[nextvert].x +

slope) * (f1oat)OxlOOOO):
((floatltopy - s c r e e n p o l y - > v e r t s [n e x t v e r t] . y) *

I else I
/ / Trailing edge
pavailedge->leading - 0:
deltax - screenpoly->verts[nextvert].x -

screenpoly->verts[i].x;
deltay - screenpoly->verts[nextvertl.y -

screenpoly->verts[i].y:
slope - deltax f deltay;
/ / Edge coordinates are in 16.16 fixed point
pavailedge->xstep - (int)(slope * (f1oat)OxlOOOO):
pavailedge->x - (int)((screenpoly->verts[il.x +

((floatltopy - screenpoly->verts[i].y) * slope) *
(f1oat)OxlOOOO):

I

I / Put the edge on the list to be added on top scan
pedge - &newedges[topyl:
while (pedge->pnext->x < pavailedge->x)

pavailedge->pnext - pedge->pnext:
pedge->pnext - pavailedge:
/ I Put the edge on the list to be removed after final scan
pavailedge->pnextremove - removeedgesCbottomy - 11;
removeedges[bottomy - 13 - pavailedge:
/ I Associate the edge with the surface we'll create for
/ I this polygon
pavailedge->psurf - pavailsurf:
I / Make sure we don't overflow the edge array
if (pavailedge < &edges[MAX-EDGES])

pedge - pedge->pnext;

1

/ / Create the surface, so we'll know how to sort and draw from
I / the edges
pavailsurf->state - 0:
Davai 1 surf ->col or - currentcol or:

pavai 1 edge++:

/ / Set up the l/z gradients from the polygon, calculating the
I1 base value at screen coordinate 0.0 s o we can use screen
I / coordinates directly when calculating l l z from the gradients
distinv - 1.0 / plane->distance:
pavailsurf->zinvstepx - plane->normal.v[O] * distinv *

maxscreenscaleinv * (fieldofview / 2 .0) :
pavailsurf->zinvstepy - -plane->normal.vClI * distinv *

maxscreenscaleinv * (fieldofview / 2.0):
pavailsurf->zinv00 - plane->normal.v[Z] * distinv -

xcenter * pavailsurf->zinvstepx -
ycenter * pavailsurf->zinvstepy:

/ / Make sure we don't overflow the surface array
if (pavailsurf < &surfs[MAX-SURFS])

pavailsurfce:
1

Sorted Spans in Action 1233

/ / Scan all the edges in the global edge table into spans.
void ScanEdges (void)
{

int x. y ;
double fx. fy, zinv, zinv2;
edge-t *pedge. *pedge2. *ptemp;
span-t *pspan;
surf-t *psurf, *psurf2;

pspan - spans;
/ / Set up the active edge list as initially empty, containing
/ / only the sentinels (which are also the background fill). Most
/ / of these fields could be set up just once at start-up
edgehead.pnext - &edgetail:
edgehead.pprev - NULL;
edgehead.x - -0xFFFF; / / left edge of screen
edgehead.leading - 1;
edgehead.psurf - &surfstack:
edgetail.pnext - NULL; / / mark edge of list
edgetail.pprev - &edgehead;
edgetai1.x - DIBWidth << 16; / I right edge of screen
edgetai1.leading - 0;
edgetail.psurf - &surfstack;
/ / The background surface is the entire stack initially, and
/ / is infinitely far away, s o everything sorts in front of it.
/ / This could be set just once at start-up
surfstack.pnext - surfstack.pprev - &surfstack;
surfstack.color - 0;
surfstack.zinv00 - -999999.0;
surfstack.zinvstepx - surfstack.zinvstepy - 0.0:
for (y-0 ; y<OIBHeight : y++) {

fy - (doub1e)y;
/ / Sort in any edges that start on this scan
pedge - newedges[yl.pnext:
pedge2 - &edgehead;
while (pedge !- &maxedge) (

while (pedge->x > pedge2->pnext->x)

ptemp - pedge->pnext;
pedge->pnext - pedge2->pnext;
pedge->pprev - pedge2;
pedge2->pnext->pprev - pedge;
pedgeZ->pnext - pedge:
pedge2 - pedge:
pedge - ptemp;

pedge2 - pedgeZ->pnext;

1

/ / Scan out the active edges into spans
/ / Start out with the left background edge already inserted,
/ / and the surface stack containing only the background
surfstack.state - 1;
surfstack.visxstart - 0;
for (pedge-edgehead.pnext ; pedge : pedge-pedge->pnext) I

psurf - pedge->psurf;
if (pedge->leading) (

/ / It's a leading edge. Figure out where it is
/ / relative to the current surfaces and insert in
/ / the surface stack; if it's on top, emit the span
/ / for the current top.

1234 Chapter 67

/ I F i r s t , make s u r e t h e e d g e s d o n ' t c r o s s
i f (t t p s u r f - > s t a t e - 1) (

f x - (doub1e)pedge->x * (1 .0 / (doub le)Ox10000) :
/ I C a l c u l a t e t h e s u r f a c e ' s l l z v a l u e a t t h i s p i x e l
z i n v - p s u r f - > z i n v 0 0 + p s u r f - > z i n v s t e p x * f x +

I / See i f t h a t makes i t a new t o p s u r f a c e
p s u r f 2 - s u r f s t a c k . p n e x t ;
z i n v 2 - p s u r f 2 - > z i n v 0 0 + p s u r f 2 - > z i n v s t e p x * f x +

i f (z i n v >- z i n v 2) {

p s u r f - > z i n v s t e p y * f y ;

p s u r f Z - > z i n v s t e p y * f y :

/ I I t ' s a new t o p s u r f a c e
/ I e m i t t h e s p a n f o r t h e c u r r e n t t o p
x - (pedge->x + OxFFFF) >> 16:
pspan->coun t - x - p s u r f 2 - > v i s x s t a r t :
i f (pspan->coun t > 0) (

pspan->y - y :
pspan->x - p s u r f 2 - > v i s x s t a r t ;
p s p a n - > c o l o r - p s u r f 2 - > c o l o r :
/ I Make s u r e we d o n ' t o v e r f l o w
I / t h e s p a n a r r a y
i f (pspan < &spansCMAX-SPANS])

pspan++:
1
p s u r f - > v i s x s t a r t - x :
/ I Add t h e e d g e t o t h e s t a c k
p s u r f - > p n e x t - p s u r f 2 :
p s u r f 2 - > p p r e v - p s u r f :
s u r f s t a c k . p n e x t - p s u r f :
p s u r f - > p p r e v - & s u r f s t a c k ;

/ I Not a new t o p : s o r t i n t o t h e s u r f a c e s t a c k .
/ I Guaranteed t o t e r m i n a t e d u e t o s e n t i n e l
/ I b a c k g r o u n d s u r f a c e
do {

1 e l s e {

p s u r f 2 - p s u r f 2 - > p n e x t :
z i n v 2 - p s u r f Z - > z i n v 0 0 +

p s u r f 2 - > z i n v s t e p x * f x +
p s u r f 2 - > z i n v s t e p y * f y ;

1 w h i l e (z i n v < z i n v 2) :
/ I I n s e r t t h e s u r f a c e i n t o t h e s t a c k
p s u r f - > p n e x t - p s u r f 2 :
p s u r f - > p p r e v - p s u r f Z - > p p r e v :
p s u r f 2 - > p p r e v - > p n e x t - p s u r f :
p s u r f 2 - > p p r e v - p s u r f :

1
1

1 e l s e {
I / I t ' s a t r a i l i n g e d g e : i f t h i s was t h e t o p s u r f a c e .
I / emi t t he span and remove it.
I / F i r s t , make s u r e t h e e d g e s d i d n ' t c r o s s
i f (- p s u r f - > s t a t e - 0) {

i f (s u r f s t a c k . p n e x t - p s u r f) {
/ I I t ' s on t o p , e m i t t h e s p a n
x - ((pedge->x + OxFFFF) >> 16) :
pspan->coun t - x - p s u r f - > v i s x s t a r t :
i f (pspan->coun t > 0) {

pspan->y - y:
pspan->x - p s u r f - > v i s x s t a r t :
p s p a n - > c o l o r - p s u r f - > c o l o r :

Sorted Spans in Action 1 235

/ / Make s u r e we d o n ' t o v e r f l o w
/ / t h e s p a n a r r a y
i f (pspan < &spans[MAX-SPANSl)

p s p a n t c ;
I

1
p s u r f - > p n e x t - > v i s x s t a r t - x;

/ / Remove t h e s u r f a c e f r o m t h e s t a c k
p s u r f - > p n e x t - > p p r e v - p s u r f - > p p r e v ;
p s u r f - > p p r e v - > p n e x t - p s u r f - > p n e x t ;

}

/ / Remove e d g e s t h a t a r e d o n e
pedge - removeedgesCy1;
w h i l e (p e d g e) {

p e d g e - > p p r e v - > p n e x t - pedge->pnex t ;
p e d g e - > p n e x t - > p p r e v - pedge->pprev ;
pedge - pedge->pnextremove:

1

/ / S t e p t h e r e m a i n i n g e d g e s o n e s c a n l i n e . a n d r e - s o r t
f o r (p e d g e - e d g e h e a d . p n e x t ; pedge !- & e d g e t a i l ; 1 {

ptemp - p e d g e - > p n e x t ;
/ / S t e p t h e e d g e
pedge->x +- p e d g e - > x s t e p ;
/ / Move t h e e d g e b a c k t o t h e p r o p e r s o r t e d l o c a t i o n .
/ / i f n e c e s s a r y
w h i l e (p e d g e - > x < p e d g e - > p p r e v - > x) I

pedge2 - pedge->pprev ;
pedge2->pnex t - pedge->pnex t :
p e d g e - > p n e x t - > p p r e v - pedge2:
p e d g e 2 - > p p r e v - > p n e x t - pedge;
pedge->pprev - pedgeZ->pprev :
p e d g e - > p n e x t - pedge2;
pedge2->pprev - pedge:

1
pedge - ptemp;

I
1
pspan->x - -1: / / m a r k t h e e n d o f t h e l i s t

/ / D r a w a l l t h e s p a n s t h a t w e r e s c a n n e d o u t .
v o i d DrawSpans (v o i d)
I

span-t *pspan;
f o r (pspan-spans ; pspan->x !- -1 ; pspan++)

memset (pDIB + (D I B P i t c h * p s p a n - > y) + p s p a n - > x .
p s p a n - > c o l o r ,
p s p a n - > c o u n t) :

1

/ / C l e a r t h e l i s t s o f e d g e s t o a d d a n d r e m o v e on e a c h s c a n l i n e .
v o i d C l e a r E d g e L i s t s (v o i d 1
(

i n t i:

1236 Chapter 67

f o r (i=O ; i < D I B H e i g h t ; i++) {

n e w e d g e s [i l . p n e x t = &maxedge;
removeedges [i] = NULL;

}
1

/ / R e n d e r t h e c u r r e n t s t a t e o f t h e w o r l d
v o i d U p d a t e W o r l d O
{

HPALETTE h o l d o a l :

t o t h e s c r e e n .

HDC
HBITMAP
polygon2D-t
po l ygon- t
c o n v e x o b j e c t - t
i n t
p l a n e - t
p o i n t L t

hdcScreen. hdcDIBSect ion ;
h o l d b i t m a p :
s c r e e n p o l y ;
* p p o l y . t p o l y 0 . t p o l y l . t p o l y 2 ;
* p o b j e c t ;
i. j . k ;
p l a n e ;
t n o r m a l :

U p d a t e v i e w P o s o ;
S e t U p F r u s t u m O :
C l e a r E d g e L i s t s O ;
p a v a i l s u r f = s u r f s :
p a v a i l e d g e = edges;

I / Draw a l l v i s i b l e f a c e s i n a l l o b j e c t s
p o b j e c t = o b j e c t h e a d . p n e x t ;
w h i l e (p o b j e c t != & o b j e c t h e a d) [

p p o l y = p o b j e c t - > p p o l y ;
f o r (i=O : i < p o b j e c t - > n u m p o l y s : i++) {

I / Move t h e p o l y g o n r e l a t i v e t o t h e o b j e c t c e n t e r
tpo ly0.numver t .s = p p o l y [i l . n u m v e r t s ;
f o r (j = O ; j < t p o l y O . n u m v e r t s ; j++) {

f o r (k=O ; k<3 ; k++)
t p o l y O . v e r t s [j l . v [k l = p p o l y [i l . v e r t s [j l . v [k l +

p o b j e c t - > c e n t e r . v [k l ;
I
i f (P o l y F a c e s V i e w e r (& t p o l y O . & p p o l y [i l . p l a n e)) {

i f (C l i p T o F r u s t u m (& t p o l y O . & t p o l y l)) t
c u r r e n t c o l o r = p p o l y [i l . c o l o r ;
T r a n s f o r m P o l y g o n (& t p o l y l . & t p o l y 2) ;
P r o j e c t P o l y g o n (& t p o l y 2 . & s c r e e n p o l y) :

/ I Move t h e p o l y g o n ' s p l a n e i n t o v i e w s p a c e
/ / F i r s t move i t i n t o w o r l d s p a c e (o b j e c t r e l a t i v e)
t n o r m a l = p p o l y [i l . p l a n e . n o r m a l ;
p l a n e . d i s t a n c e = p p o l y [i] . p l a n e . d i s t a n c e +

D o t P r o d u c t (& p o b j e c t - > c e n t e r . & t n o r m a l) ;

/ / Now t r a n s f o r m i t i n t o v i e w s p a c e
/ I D e t e r m i n e t h e d i s t a n c e f r o m t h e v i e w p o n t
p l a n e . d i s t a n c e -=

D o t P r o d u c t (& c u r r e n t p o s . & t n o r m a l

I / R o t a t e t h e n o r m a l i n t o v i e w o r i e n t a t
p lane.norma1 .v [O] =

D o t p r o d u c t (& t n o r m a l . & v r i g h t) :
p l a n e . n o r m a 1 . v [l l =

D o t p r o d u c t (& t n o r m a l . & v u p) ;

1 ;

i o n

Sorted Spans in Action 1237

p lane.norma1 .v [21 -
AddPo lygonEdges (&p lane , &sc reenpo ly) :

D o t P r o d u c t (& t n o r r n a l . & v p n) :

1
1

1
p o b j e c t = p o b j e c t - > p n e x t ;

1
ScanEdges 0 ;
DrawSpans 0 ;

/ / We’ve drawn the f rame; copy i t t o t h e s c r e e n
hdcScreen - GetDC(hwndOutput1:
h o l d p a l - SelectPalette(hdcScreen. hpalDIB. FALSE);
RealizePalette(hdcScreen):
hdcDIBSec t ion - CreateCompatibleDC(hdcScreen):
h o l d b i t m a p - SelectObject(hdcD1BSection. h D I B S e c t i o n) ;
B i t B l t (h d c S c r e e n , 0 . 0 , D IBWid th . D IBHe igh t . hdcDIBSec t ion .

S e l e c t P a l e t t e (h d c S c r e e n , h o l d p a l , FALSE) ;
ReleaseDC(hwndDutput , hdcscreen) ;
SelectObject(hdcD1BSection. h o l d b i t m a p) :
D e l e t e D C (h d c D 1 B S e c t i o n) ;

0. 0. S R C C O P Y) :

By the same token, Listing 67.1 is quite a bit more complicated than the earlier code.
The earlier code’s HSR consisted of a z-sort of objects, followed by the drawing of the
objects in back-to-front order, one polygon at a time. Apart from the simple object
sorter, all that was needed was backface culling and a polygon rasterizer.
Listing 6’7.1 replaces this simple pipeline with a three-stage HSR process. After
backface culling, the edges of each of the polygons in the scene are added to the
global edge list, by way of AddPolygonEdges(). After all edges have been added, the
edges are turned into spans by ScanEdgesO, with each pixel on the screen being
covered by one and only one span (that is, there’s no overdraw). Once all the spans
have been generated, they’re drawn by Drawspans(), and rasterization is complete.
There’s nothing tricky aboutAddPolygonEdges(), and Drawspans(), as implemented
in Listing 6’1.1, is very straightforward as well. In an implementation that supported
texture mapping, however, all the spans wouldn’t be put on one global span list and
drawn at once, as is done in Listing 67.1, because that would result in drawing spans
from all the surfaces in no particular order. (A surface is a drawing object that’s
originally described by a polygon, but in ScanEdgesO there is no polygon in the
classic sense of a set of vertices bounding an area, but rather just a set of edges and a
surface that describes how to draw the spans outlined by those edges.) That would
mean constantly skipping from one texture to another, which in turn would hurt
processor cache coherency a great deal, and would also incur considerable overhead
in setting up gradient and perspective calculations each time a surface was drawn. In
Quake, we have a linked list of spans hanging off each surface, and draw all the spans
for one surface before moving on to the next surface.

1238 Chapter 67

The core of Listing 67.1, and the most complex aspect of l/z-sorted spans, is
ScanEdgesO, where the global edge list is converted into a set of spans describing
the nearest surface at each pixel. This process is actually pretty simple, though, if
you think of it as follows:
For each scan line, there is a set of active edges, which are those edges that intersect
the scan line. A good part of S c d d g e s () is dedicated to adding any edges that first
appear on the current scan line (scan lines are processed from the top scan line on
the screen to the bottom), removing edges that reach their bottom on the current
scan line, and x-sorting the active edges so that the active edges for the next scan can
be processed from left to right. All this is per-scan-line maintenance, and is basically
just linked list insertion, deletion, and sorting.
The heart of the action is the loop in ScanEdges() that processes the edges on the cur-
rent scan line from left to right, generating spans as needed. The best way to think of
this loop is as a surface event processor, where each edge is an event with an associated
surface. Each leading edge is an event marking the start of its surface on that scan line; if
the surface is nearer than the current nearest surface, then a span ends for the nearest
surface, and a span starts for the new surface. Each trailing edge is an event marking
the end of its surface; if its surface is currently nearest, then a span ends for that surface,
and a span starts for the next-nearest surface (the surface with the next-largest l / z at
the coordinate where the edge intersects the scan line). One handy aspect of this
event-oriented processing is that leading and trailing edges do not need to be explic-
itly paired, because they are implicitly paired by pointing to the same surface. This
saves the memory and time that would otherwise be needed to track edge pairs.
One more element is required in order for ScanEdges() to work efficiently. Each
time a leading or trailing edge occurs, it must be determined whether its surface is
nearest (at a larger l / z value than any currently active surface). In addition, for
leading edges, the currently topmost surface must be known, and for trailing edges,
it may be necessary to know the currently next-to-topmost surface. The easiest way to
accomplish this is with a surface stuck that is, a linked list of all currently active sur-
faces, starting with the nearest surface and progressing toward the farthest surface,
which, as described below, is always the background surface. (The operation of this
sort of edge event-based stack was described and illustrated in Chapter 66.) Each
leading edge causes its surface to be l/z-sorted into the surface stack, with a span
emitted if necessary. Each trailing edge causes its surface to be removed from the
surface stack, again with a span emitted if necessary. As you can see from Listing 67.1,
it takes a fair bit of code to implement this, but all that’s really going on is a surface
stack driven by edge events.

Implementation Notes
Finally, a few notes on Listing 67.1. First, you’ll notice that although we clip all poly-
gons to the view frustum in worldspace, we nonetheless later clamp them to valid

Sorted Spans in Action 1239

screen coordinates before adding them to the edge list. This catches any cases where
arithmetic imprecision results in clipped polygon vertices that are a bit outside the
frustum. I’ve only found such imprecision to be significant at very small z distances,
so clamping would probably be unnecessary if there were a near clip plane, and
might not even be needed in Listing 67.1, because of the slight nudge inward that we
give the frustum planes, as described in Chapter 65. However, my experience has
consistently been that relying on worldspace or viewspace clipping to produce valid
screen coordinates 100 percent of the time leads to sporadic and hard-todebug errors.
There is no separate routine to clear the background in Listing 67.1. Instead, a spe-
cial background surface at an effectively infinite distance is added, so whenever no
polygons are active the background color is drawn. If desired, it’s a simple matter to
flag the background surface and draw the background specially. For example, the
background could be drawn as a starfield or a cloudy sky.
The edge-processing code in Listing 67.1 is fully capable of handling concave poly-
gons as easily as convex polygons, and can handle an arbitrary number of vertices
per polygon, as well. One change is needed for the latter case: Storage for the maxi-
mum number of vertices per polygon must be allocated in the polygon structures. In
a fully polished implementation, vertices would be linked together or pointed to,
and would be dynamically allocated from a vertex pool, so each polygon wouldn’t
have to contain enough space for the maximum possible number of vertices.
Each surface has a field named state, which is incremented when a leading edge for
that surface is encountered, and decremented when a trailing edge is reached. A
surface is activated by a leading edge only if state increments to 1, and is deactivated
by a trailing edge only if state decrements to 0. This is another guard against arith-
metic problems, in this case quantization during the conversion ofvertex coordinates
from floating point to fixed point. Due to this conversion, it is possible, although
rare, for a polygon that is viewed nearly edge-on to have a trailing edge that occurs
slightly before the corresponding leading edge, and the span-generation code will
behave badly if it tries to emit a span for a surface that hasn’t yet started. It would
help performance if this sort of fix-up could be eliminated by careful arithmetic, but
I haven’t yet found a way to do so for l/z-sorted spans.
Lastly, as discussed in Chapter 66, Listing 67.1 uses the gradients for l / z with respect
to changes in screen x and y to calculate l / z for active surfaces each time a leading
edge needs to be sorted into the surface stack. The natural origin for gradient calcu-
lations is the center of the screen, which is (x,y) coordinate (0,O) in viewspace.
However, when the gradients are calculated in AddPolygonEdges(), the origin value
is calculated at the upper-left corner of the screen. This is done so that screen x and
y coordinates can be used directly to calculate l / z , with no need to adjust the coordi-
nates to be relative to the center of the screen. Also, the screen gradients grow more
extreme as a polygon is viewed closer to edge-on. In order to keep the gradient
calculations from becoming meaningless or generating errors, a small epsilon is ap-

1240 Chapter 67

plied to backface culling, so that polygons that are very nearly edge-on are culled.
This calculation would be more accurate if it were based directly on the viewing
angle, rather than on the dot product of a viewing ray to the polygon with the poly-
gon normal, but that would require a square root, and in my experience the epsilon
used in Listing 6’7.1 works fine.

Sorted Spans in Action 1 241

chapter 68

quake's lighting model

Different Approach to Lighting Polygons
ollege that I discovered computer games. Not Wiz-

cause none of those existed yet-the game that
Trek game, in which you navigated from one 8x8

of starbases, occasionally firing phasers or photon
than it sounds; after each move, the current quad-
atch, along with the current stats-and the output

tball console. A typical game took over an hour, during which
mulating ever happened (Klingons appeared periodically, but
your next move before attacking, and your photon torpedoes

never in doubt), but none of that mattered; noth-
hrill of being in a computer-simulated universe.

Then the college got a PDP-11 with four CRT terminals, and suddenly Star Trek
could redraw in a second instead of a minute. Better yet, I found the source code for
the Star Trek program in the recesses of the new system, the first time I’d ever seen
any real-world code other than my own, and excitedly dove into it. One evening, as I
was looking through the code, a really cute girl at the next terminal asked me for
help getting a program to run. After I had helped her, eager to get to know her
better, I said, ‘Want to see something? This is the actual source for the Star Trek
game!” and proceeded to page through the code, describing each subroutine. We
got to talking, and eventually I worked up the nerve to ask her out. She said sure, and
we ended up having a good time, although things soon fell apart because of her two

1245

or three other boyfriends (I never did get an exact count). The interesting thing,
though, was her response when I finally got around to asking her out. She said, “It’s
about time!” When I asked what she meant, she said, “I’ve been trying to get you to
ask me out all evening-but it took you forever! You didn’t actually think I was inter-
ested in that Star Trek program, did you?”
Actually, yes, I had thought that, because Iwas interested in it. One thing I learned
from that experience, and have had reinforced countless times since, is that we-
you, me, anyone who programs because they love it, who would do it for free if
necessary-are a breed apart. We’re different, and luckily so; while everyone else is
worrying about downsizing, we’re in one of the hottest industries in the world. And,
so far as I can see, the biggest reason we’re in such a good situation isn’t intelligence,
or hard work, or education, although those help; it’s that we actually like this stuff.
It’s important to keep it that way. I’ve seen far too many people start to treat pro-
gramming like a job, forgetting the joy of doing it, and burn out. So keep an eye on
how you feel about the programming you’re doing, and if it’s getting stale, it’s time
to learn something new; there’s plenty of interesting programming of all sorts to be
done. Follow your interests-and don’t forget to have fun!

The Lighting Conundrum
I spent about two years working with John Carmack on Quake’s 3-D graphics engine.
John faced several fundamental design issues while architecting Quake. I’ve written
in earlier chapters about some of those issues, including eliminating non-visible poly-
gons quickly via a precalculated potentially visible set (PVS), and improving
performance by inserting potentially visible polygons into a global edge list and scan-
ning out only the nearest polygon at each pixel.
In this chapter, I’m going to talk about another, equally crucial design issue: how we
developed our lighting approach for the part of the Quake engine that draws the
world itself, the static walls and floors and ceilings. Monsters and players are drawn
using completely different rendering code, with speed the overriding factor. A pri-
mary goal for the world, on the other hand, was to be as precise as possible, getting
everything right so that polygons, textures, and sophisticated lighting would be pegged
in place, with no visible shifting or distortion under all viewing conditions, for maxi-
mum player immersion-all with good performance, of course. As I’ll discuss, the
twin goals of performance and rock-solid, complex lighting proved to be difficult to
achieve with traditional lighting approaches; ultimately, a dramatically different ap-
proach was required.

Gouraud Shading
The traditional way to do realistic lighting in polygon pipelines is Gouraud shading
(also known as smooth shading). Gouraud shading involves generating a lighting value

1246 Chapter 68

at each polygon vertex by applying all relevant world lighting, linearly interpolating
between lighting values down the edges of the polygon, and then linearly interpolat-
ing between the edges of the polygon across each span. If texture mapping is desired
(and all polygons are texture mapped in Quake), then at each pixel in each span,
the pixel’s corresponding texture map location (texel) is determined, and the inter-
polated lighting is applied to the texel to generate a final, lit pixel. Texels are generally
taken from a 32x32 or 64x64 texture that’s tiled repeatedly across the polygon, for
several reasons: performance (a 64x64 texture sits nicely in the 486 or Pentium cache),
database size, and less artwork.
The interpolated lighting can consist of either a color intensity value or three sepa-
rate red, green, and blue values. RGB lighting produces more sophisticated results,
such as colored lights, but is slower and best suited to RGB modes. Games like Quake
that are targeted at palettized 256-color modes generally use intensity lighting; each
pixel is lit by looking up the pixel color in a table, using the texel color and the
lighting intensity as the look-up indices.
Gouraud shading allows for decent lighting effects with a relatively small amount of
calculation and a compact data set that’s a simple extension of the basic polygon
model. However, there are several important drawbacks to Gouraud shading, as well.

Problems with Gouraud Shading
The quality of Gouraud shading depends heavily on the average size of the polygons
being drawn. Linear interpolation is used, so highlights can only occur at vertices,
and color gradients are monotonic across the face of each polygon. This can make
for bland lighting effects if polygons are large, and makes it difficult to do spotlights
and other detailed or dramatic lighting effects. After John brought the initial, primi-
tive Quake engine up using Gouraud shading for lighting, the first thing he tried to
improve lighting quality was adding a single vertex and creating new polygons wher-
ever a spotlight was directly overhead a polygon, with the new vertex added directly
underneath the light, as shown in Figure 68.1. This produced fairly attractive high-
lights, but simultaneously made evident several problems.
A primary problem with Gouraud shading is that it requires the vertices used for
world geometry to serve as lighting sample points as well, even though there isn’t
necessarily a close relationship between lighting and geometry. This artificial cou-
pling often forces the subdivision of a single polygon into several polygons purely for
lighting reasons, as with the spotlights mentioned above; these extra polygons in-
crease the world database size, and the extra transformations and projections that
they induce can harm performance considerably.
Similar problems occur with overlapping lights, and with shadows, where additional
polygons are required in order to approximate lighting detail well. In particular,
good shadow edges need small polygons, because otherwise the gradient between
light and dark gets spread across too wide an area. Worse still, the rate of lighting

Quake’s Lighting Model 1247

r

Wall is a single polygon before adding a
light vertex

Wall becomes four polygons after adding a
light vertex directly beneath a light

Adding an extra vertex directly beneath a light.
Figure 68.1

change across a shadow edge can vary considerably as a function of the geometry the
edge crosses; wider polygons stretch and diffuse the transition between light and
shadow. A related problem is that lighting discontinuities can be very visible at t-
junctions (although ultimately we had to add edges to eliminate tjunctions anyway,
because otherwise dropouts can occur along polygon edges). These problems can
be eased by adding extra edges, but that increases the rasterization load.

Perspective Correctness
Another problem is that Gouraud shading isn’t perspective-correct. With Gouraud
shading, lighting varies linearly across the face of a polygon, in equal increments per
pixel-but unless the polygon is parallel to the screen, the same sort of perspective
correction is needed to step lighting across the polygon properly as is required for
texture mapping. Lack of perspective correction is not as visibly wrong for lighting
as it is for texture mapping, because smooth lighting gradients can tolerate consider-
ably more warping than can the detailed bitmapped images used in texture mapping,
but it nonetheless shows up in several ways.

1 248 Chapter 68

First, the extent of the mismatch between Gouraud shading and perspective lighting
varies with the angle and orientation of the polygon being lit. As a polygon turns to
become more on-edge, for example, the lighting warps more and therefore shifts
relative to the perspective-texture mapped texels it’s shading, an effect I’ll call view-
ing vam’ance. Lighting can similarly shift as a result of clipping, for example if one or
more polygon edges are completely clipped; I’ll refer to this as clipping vam’ance.
These are fairly subtle effects; more pronounced is the rotational variance that occurs
when Gouraud shading any polygon with more than three vertices. Consistent light-
ing for a polygon is fully defined by three lighting values; taking four or more vertices
and interpolating between them, as Gouraud shading does, is basically a hack, and
does not reflect any consistent underlying model. If you view a Gouraud-shaded quad
head-on, then rotate it like a pinwheel, the lighting will shift as the quad turns, as
shown in Figure 68.2. The extent of the lighting shift can be quite drastic, depend-
ing on how different the colors at the vertices are.
It was rotational variance that finally brought the lighting issue to a head for Quake.
We’d look at the floors, which were Gouraud-shaded quads; then we’d pivot, and the
lighting would shimmy and shift, especially where there were spotlights and shadows.
Given the goal of rendering the world as accurately and convincingly as possible, this
was unacceptable.
The obvious solution to rotational variance is to use only triangles, but that brings
with it a new set of problems. It takes twice as many triangles as quads to describe the

0 1

0 1

Rotated 0 degrees Rotated 90 degrees

How Gouraud shading varies with polygon screen orientation.
Figure 68.2

Quake’s Lighting Model 1249

same scene, increasing the size of the world database and requiring extra rasterization,
at a performance cost. Triangles still don’t provide perspective lighting; their light-
ing is rotationally invariant, but it’s still wrong-just wrong in a more consistant way.
Gouraud-shaded triangles still result in odd lighting patterns, and require lots of
triangles to support shadowing and other lighting detail. Finally, triangles don’t solve
clipping or viewing variance.
Yet another problem is that while it may work well to add extra geometry so that
spotlights and shadows show up well, that’s feasible only for static lighting. Dynamic
lighting-light cast by sources that move-has to work with whatever geometry the
world has to offer, because its needs are constantly changing.
These issues led us to conclude that if we were going to use Gouraud shading, we
would have to build Quake levels from many small triangles, with sufficiently finely
detailed geometry so that complex lighting could be supported and the inaccuracies
of Gouraud shading wouldn’t be too noticeable. Unfortunately, that line of thinking
brought us back to the problem of a much larger world database and a much heavier
rasterization load (all the worse because Gouraud shading requires an additional
interpolant, slowing the inner rasterization loop), so that not only would the world still
be less than totally solid, because of the limitations of Gouraud shading, but the engine
would also be too slow to support the complex worlds we had hoped for in Quake.

The Quest for Alternative Lighting
None of which is to say that Gouraud shading isn’t useful in general. Descent uses it
to excellent effect, and in fact Quake uses Gouraud shading for moving entities,
because these consist of small triangles and are always in motion, which helps hide
the relatively small lighting errors. However, Gouraud shading didn’t seem capable
of meeting our design goals for rendering quality and speed for drawing the world as
a whole, so it was time to look for alternatives.
There are many alternative lighting approaches, most of them higher-quality than
Gouraud, starting with Phong shading, in which the surface normal is interpolated
across the polygon’s surface, and going all the way up to ray-tracing lighting tech-
niques in which full illumination calculations are performed for all direct and
reflected paths from each light source for each pixel. What all these approaches
have in common is that they’re slower than Gouraud shading, too slow for our pur-
poses in Quake. For weeks, we kicked around and rejected various possibilities and
continued working with Gouraud shading for lack of a better alternative-until the
day John came into work and said, “You know, I have an idea ”

Decoupling Lighting from Rasterization
John’s idea came to him while was looking at a wall that had been carved into several
pieces because of a spotlight, with an ugly lighting glitch due to a t-junction. He

1 250 Chapter 68

thought to himself that if only there were some way to treat it as one surface, it would
look better and draw faster-and then he realized that there was a way to do that.
The insight was to split lighting and rasterization into two separate steps. In a normal
Gouraud-based rasterizer, there’s first an off-line preprocessing step when the world
database is built, during which polygons are added to support additional lighting
detail as needed, and lighting values are calculated at the vertices of all polygons. At
runtime, the lighting values are modified if dynamic lighting is required, and then
the polygons are drawn with Gouraud shading.
Quake’s approach, which I’ll call surface-based lighting, preprocesses differently,
and adds an extra rendering step. Duri,ng off-line preprocessing, a grid, called a
light map, is calculated for each polygon in the world, with a lighting value every 16
texels horizontally and vertically. This lighting is done by casting light from all the
nearby lights in the world to each of the grid points on the polygon, and summing
the results for each grid point. The Quake preprocessor filters the values, so shadow
edges don’t have a stair-step appearance (a technique suggested by Billy Zelsnack) ;
additional preprocessing could be done, for example Phong shading to make sur-
faces appear smoothly curved. Then, at runtime, the polygon’s texture is tiled into a
buffer, with each texel lit according to the weighted average intensities of the four
nearest light map points, as shown in Figure 68.3. If dynamic lighting is needed, the
light map is modified accordingly before the buffer, which I’ll call a surface, is built.
Then the polygon is drawn with perspective texture mapping, with the surface serv-
ing as the input texture, and with no lighting performed during the texture mapping.
So what does surface-based lighting buy us? First and foremost, it provides consis-
tent, perspective-correct lighting, eliminating all rotational, viewing, and clipping
variance, because lighting is done in surface space rather than in screen space. By
lighting in surface space, we bind the lighting to the texels in an invariant way, and
then the lighting gets a free ride through the perspective texture mapper and ends
up perfectly matched to the texels. Surface-based lighting also supports good, al-
though not perfect, detail for overlapping lights and shadows. The 16-texel grid has
a resolution of two feet in the Quake frame of reference, and this relatively fine
resolution, together with the filtering performed when the light map is built, is suf-
ficient to support complex shadows with smoothly fading edges. Additionally,
surface-based lighting eliminates lighting glitches at t-junctions, because lighting is
unrelated to vertices. In short, surface-based lighting meets all of Quake’s visual quality
goals, which leaves only one question: How does it perform?

Size and Speed
As it turns out, the raw speed of surface-based lighting is pretty good. Although an
extra step is required to build the surface, moving lighting and tiling into a separate
loop from texture mapping allows each of the two loops to be optimized very effec-
tively, with almost all variables kept in registers. The surface-building inner loop is

Quake’s Lighting Model 1 25 1

Light map
0 32 64 96 128
0 0 0 0 0
32 64 96 128 160

0 0 0 0 0
64 96 128 160 192
0 0 0 0 0

Texture tile

0 0 0 0 0
96 128 160 192 224

0 0 0 0 0
128 160 192 224 255

/
The texture is tiled across the surface,
with each texel lit according to the
weighted averages of the four nearest
light map values. (The black dots on
the surface show where the light map
points fall for illustrative purposes,
and are not actually drawn.)

I
Surtace

nd lighting the texels from the light map.
Figure 68.3

1 252 Chapter 68

1252 Chapter 68

1252 Chapter

68

68

particularly efficient, because it consists of nothing more than interpolating inten-
sity, combining it with a texel and using the result to look up a lit texel color, and
storing the results with a dword write every four texels. In assembly language, we got
this code down to 2.25 cycles per lit texel in Quake. Similarly, the texture-mapping
inner loop, which overlaps an FDIV for floating-point perspective correction with
integer pixel drawing in 16-pixel bursts, has been squeezed down to 7.5 cycles per
pixel on a Pentium, so the combined inner loop times for building and drawing a
surface is roughly in the neighborhood of 10 cycles per pixel. It’s certainly possible
to write a Gouraud-shaded perspectivecorrect texture mapper that’s somewhat faster
than 10 cycles, but 10 cycles/pixel is fast enough to do 40 frames/second at 640x400
on a Pentium/100, so the cycle counts of surface-based lighting are acceptable. It’s
worth noting that it’s possible to write a one-pass texture mapper that does approxi-
mately perspective-correct lighting. However, I have yet to hear of or devise such an
inner loop that isn’t complicated and full of special cases, which makes it hard to
optimize; worse, this approach doesn’t work well with the procedural and post-pro-
cessing techniques I’ll discuss shortly.
Moreover, surface-based lighting tends to spend more of its time in inner loops,
because polygons can have any number of sides and don’t need to be split into multiple
smaller polygons for lighting purposes; this reduces the amount of transformation
and projection that are required, and makes polygon spans longer. So the perfor-
mance of surface-based lighting stacks up very well indeed-except for caching.
I mentioned earlier that a 64x64 texture tile fits nicely in the processor cache. A
typical surface doesn’t. Every texel in every surface is unique, so even at 320x200
resolution, something on the rough order of 64,000 texels must be read in order to
draw a single scene. (The number actually varies quite a bit, as discussed below, but
64,000 is in the ballpark.) This means that on a Pentium, we’re guaranteed to miss
the cache once every 32 texels, and the number can be considerably worse than that
if the texture access patterns are such that we don’t use every texel in a given cache
line before that data gets thrown out of the cache. Then, too, when a surface is built,
the surface buffer won’t be in the cache, so the writes will be uncached writes that
have to go to main memory, then get read back from main memory at texture map-
ping time, potentially slowing things further still. All this together makes the
combination of surface building and unlit texture mapping a potential performance
problem, but that never posed a problem during the development of Quake, thanks
to surface caching.

Surface Caching
When he thought of surface-based lighting, John immediately realized that surface build-
ing would be relatively expensive. (In fact, he assumed it would be considerably more
expensive than it actually turned out to be with full assembly-language optimization.)

Quake‘s Lighting Model 1253

Consequently, his design included the concept of caching surfaces, so that if the same
surface were visible in the next frame, it could be reused without having to be rebuilt.
With surface rebuilding needed only rarely, thanks to surface caching, Quake's
rasterization speed is generally the speed of the unlit, perspective-correct texture-
mapping inner loop, which suffers from more cache misses than Gouraud-shaded,
tiled texture mapping, but doesn't have the overhead of Gouraud shading, and allows
the use of larger polygons. In the worst case, where everything in a frame is a new
surface, the speed of the surface-caching approach is somewhat slower than Gouraud
shading, but generally surface caching provides equal or better performance, so once
surface caching was implemented in Quake, performance was no longer a prob-
lem-but size became a concern.
The amount of memory required for surface caching looked forbidding at first. Surfaces
are large relative to texture tiles, because every texel of every surface is unique. Also,
a surface can contain many texels relative to the number of pixels actually drawn on
the screen, because due to perspective foreshortening, distant polygons have only a
few pixels relative to the surface size in texels. Surfaces associated with partly hidden
polygons must be fully built, even though only part of the polygon is visible, and if
polygons are drawn back to front with overdraw, some polygons won't even be vis-
ible, but will still require surface building and caching. What all this meant was that
the surface cache initially looked to be very large, on the order of several megabytes,
even at 32Ox200"too much for a game intended to run on an 8 MB machine.

Mipmapping To The Rescue
Two factors combined to solve this problem. First, polygons are drawn through an
edge list with no overdraw, as I discussed a few chapters back, so no surface is ever
built unless at least part of it is visible. Second, surfaces are built at four mipmap
levels, depending on distance, with each mipmap level having one-quarter as many
texels as the preceding level, as shown in Figure 68.4.
For those whose heads haven't been basted in 3-D technology for the past several
years, mipmuppingis 3-D graphics jargon for a process that normalizes the number of
texels in a surface to be approximately equal to the number of pixels, reducing calcula-
tion time for distant surfaces containing only a few pixels. The mipmap level for a given
surface is selected to result in a texe1:pixel ratio approximately between 1:l and 1:2,
so texels map roughly to pixels, and more distant surfaces are correspondingly smaller.
As a result, the number of surface texels required to draw a scene at 320x200 is on
the rough order of 64,000; the number is actually somewhat higher, because of por-
tions of surfaces that are obscured and viewspace-tilted polygons, which have high
texel-to-pixel ratios along one axis, but not a whole lot higher. Thanks to mipmapping
and the edge list, 600K has proven to be plenty for the surface cache at 320x200,
even in the most complex scenes, and at 640x480, a little more than 1 MB suffices.

1254 Chapter 68

o o o e e e
Mipmap level 0 texels

\ I /
0 e Corresponding mipmap

level 1 texels

How mipmapping reduces surface caching requirements.
Figure 68.4

All mipmapped texture tiles are generated as a preprocessing step, and loaded from
disk at runtime. One interesting point is that a key to making mipmapping look good
turned out to be box-filtering down from one level to the next by averaging four adjacent
pixels, then using error diffusion dithering to generate the mipmapped texels.
Also, mipmapping is done on a per-surface basis; the mipmap level for a whole sur-
face is selected based on the distance from the viewer of the nearest vertex. This led
us to limit surface size to a maximum of 256x256. Otherwise, surfaces such as floors
would extend for thousands of texels, all at the mipmap level of the nearest vertex,
and would require huge amounts of surface cache space while displaying a great
deal of aliasing in distant regions due to a high texe1:pixel ratio.

Two Final Notes on Surface Caching
Dynamic lighting has a significant impact on the performance of surface caching,
because whenever the lighting on a surface changes, the surface has to be rebuilt. In
the worst case, where the lighting changes on every visible surface, the surface cache
provides no benefit, and rendering runs at the combined speed of surface building
and texture mapping. This worst-case slowdown is tolerable but certainly noticeable,
so it’s best to design games that use surface caching so only some of the surfaces
change lighting at any one time. If necessary, you could alternate surface relighting
so that half of the surfaces change on even frames, and half on odd frames, but
large-scale, constant relighting is not surface caching’s strongest suit.
Finally, Quake barely begins to tap surface caching’s potential. All sorts of proce-
dural texturing and post-processing effects are possible. If a wall is shot, a sprite of
pockmarks could be attached to the wall’s data structure, and the sprite could be
drawn into the surface each time the surface is rebuilt. The same could be done for
splatters, or graffiti, with translucency easily supported. These effects would then be
cached and drawn as part of the surface, so the performance cost would be much

Quake‘s Lighting Model 1255

less than effects done by on-screen overdraw every frame. Basically, the surface is a
handy repository for all sorts of effects, because multiple techniques can be
composited, because it caches the results for reuse without rebuilding, and because
the texels constructed in a surface are automatically drawn in perspective.

1 256 Chapter 68

chapter 69

surface caching and quake's triangle models

are-Assisted Surfaces and Fast
n Without Sprites

In the late OS, I sp summer doing contract programming at a government-
funded installation c theast Solar Energy Center (NESEC). Those were
heady times for solar ith the oil shortages, and there was lots of money
being thrown at pla#s like NESEC, which was growing fast.

e street from MIT, which made for good access to resources.
meant that NESEC was in a severely parking-impaired part of
he student population and Boston’s chronic parking shortage.
did have its own parking lot, but it wasn’t nearly big enough,

because students parked in it at every opportunity. The lot was posted, and cars peri-
odically got towed, but King Canute stood a better chance against the tide than
NESEC did against the student hordes, and late arrivals to work often had to park
blocks away and hike to work, to their considerable displeasure.
Back then, I drove an aging Volvo sedan that was sorely in need of a ring job. It ran fine
but burned a quart of oil every 250 miles, so I carried a case of oil in the trunk, and
checked the level frequently. One day, walking to the computer center a couple of
blocks away, I cut through the parking lot and checked the oil in my car. It was low, so
I topped it off, left the empty oil can next to the car so I would see it and remember
to pick it up to throw out on my way back, and headed toward the computer center.

i’ ;

1 259

I’d gone only a few hundred feet when I heard footsteps and shouting behind me,
and a wild-eyed man in a business suit came running up to me, screaming. “It’s bad
enough you park in our lot, but now you’re leaving your garbage lying around!” he
yelled. “Don’t you people have any sense of decency?” I told him I worked at NESEC
and was going to pick up the can on my way back, and he shouted, “Don’t give me
that!” I repeated my statements, calmly, and told him who I worked for and where
my office was, and he said, “Don’t give me that” again, but with a little less certainty.
I kept adding detail until it was obvious that I was telling the truth, and he suddenly
said, “Oh, my God,” turned red, and started to apologize profusely. A few days later,
we passed in the hallway, and he didn’t look me in the eye.
The interesting point is that there was really no useful outcome that could have
resulted from his outburst. Suppose I had been a student-what would he have ac-
complished by yelling at me? He let his emotions overrule his common sense, and as
a result, did something he later wished he hadn’t. I’ve seen many programmers do
the same thing, especially when they’re working long hours and not feeling adequately
appreciated. For example, some time back I got mail from a programmer who com-
plained bitterly that although he was critical to his company’s success, management
didn’t appreciate his hard work and talent, and asked if I could help him find a
betterjob. I suggested several ways that he might look for anotherjob, but also asked
if he had tried working his problems out with his employers; if he really was that
valuable, what did he have to lose? He admitted he hadn’t, and recently he wrote
back and said that he had talked to his boss, and now he was getting paid a lot more
money, was getting credit for his work, and was just flat-out happy.
We programmers think of ourselves as rational creatures, but most of us get angry at
times, and when we do, like everyone else, we tend to be driven by our emotions
instead of our minds. It’s my experience that thinking rationally under those cir-
cumstances can be difficult, but produces better long-term results every time-so if
you find yourself in that situation, stay cool and think your way through it, and odds
are you’ll be happier down the road.
Of course, most of the time programmers really are rational creatures, and the more
information we have, the better. In that spirit, let’s look at more of the stuff that
makes Quake tick, starting with what I’ve recently learned about surface caching.

Surface Caching with Hardware Assistance
In Chapter 68, I discussed in detail the surface caching technique that Quake uses to
do detailed, highquality lightingwithout lots of polygons. Since writing that chapter, I’ve
gone further, and spent a considerable amount of time working on the port of Quake to
Rendition’s Verite 3-D accelerator chip. So let me start off this chapter by discussing
what I’ve learned about using surface caching in conjunction with hardware.
As you’ll recall, the key to surface caching is that lighting information and polygon
detail are stored separately, with lighting not tied to polygon vertices, then com-

1 260 Chapter 69

bined on demand into what I call surfaces: lit, textured rectangles that are used as the
input to the texture mapper. Building surfaces takes time, so performance is en-
hanced by caching the surfaces from one frame to the next. As I pointed out in
Chapter 68, 3-D hardware accelerators are designed to optimize Gouraud shading,
but surface caching can also work on hardware accelerators, with some significant
quality advantages.
The surface-caching architecture of the Verite version of Quake (which we call
VQuake) is essentially the same as in the software-only version of Quake: The CPU
builds surfaces on demand, which are then downloaded to the accelerator’s memory
and cached there. There are a couple of key differences, however: the need to download
surfaces, and the requirement that the surfaces be in 16-bit-per-pixel (bpp) format.
Downloading surfaces to the accelerator is a performance hit that doesn’t exist in
the software-only version. Although Verite uses DMA to download surfaces, DMA
does in fact steal performance from the CPU. This cost is increased by the require-
ment for 16-bpp surfaces, because twice as much data must be downloaded. Worse
still, it takes about twice as long to build 16-bpp surfaces as 8-bpp surfaces, so the cost
of missing the surface cache is well over twice as expensive in VQuake as in Quake.
Fortunately, there’s 4 MB of memory on Verite-based adapters, so the surface cache
doesn’t miss very often and VQuake runs fine (and looks very good, thanks to bilinear
texture filtering, which by itself is pretty much worth the cost of 3-D hardware), but
it’s nonetheless true that a completely straightforward port of the surface-caching
model is not as appealing for hardware as for software. This is especially true at high
resolutions, where the needs of the surface cache increase due to more detailed
surfaces but available memory decreases due to frame buffer size.
Does my recent experience indicate that as the PC market moves to hardware, there’s
no choice but to move to Gouraud shading, despite the quality issues? Not at all.
First of all, surface caching does still work well, just not as relatively well compared to
Gouraud shading as is the case in software. Second, there are at least two alternatives
that preserve the advantages of surface caching without many of the disadvantages
noted above.

Letting the Graphics Card Build the Textures
One obvious solution is to have the accelerator card build the textures, rather than
having the CPU build and then download them. This eliminates downloading com-
pletely, and lets the accelerator, which should be faster at such things, do the texel
manipulation. Whether this is actually faster depends on whether the CPU or the
accelerator is doing more of the work overall, but it eliminates download time, which
is a big help. This approach retains the ability to composite other effects, such as
splatters and dents, onto surfaces, but by the same token retains the high memory
requirements and dynamic lighting performance impact of the surface cache. It also
requires that the 3-D API and accelerator being used allow drawing into a texture,

Surface Caching and Quake’s Triangle Models 1261

which is not universally true. Neither do all APIs or accelerators allow applications
enough control over the texture heap so that an efficient surface cache can be imple-
mented, a point that favors non-caching approaches. (A similar option that wasn’t
open to us due to time limitations is downloading 8-bpp surfaces and having the
accelerator expand them to l6bpp surfaces as it stores them in texture memory.
Better yet, some accelerators support 8-bpp palettized hardware textures that are
expanded to IGbpp on the fly during texturing.)

The Light Map as Alpha Texture
Another appealing non-caching approach is doing unlit texture-mapping in one pass,
then lighting from the light map as a second pass, using the light map as an alpha
texture. In other words, the textured polygon is drawn first, with no lighting, then
the light map is textured on top of the polygon, with the light map intensity used as
an alpha value to determine how brightly to light each texel. The hardware’s tex-
ture-mapping circuitry is used for both passes, s o the lighting comes out
perspective-correct and consistent under all viewing conditions, just as with the sur-
face cache. The lighting polygons don’t even have to match the texture polygons, so
they can represent dynamically changing lighting.
Two-pass lighting not only looks good, but has no memory footprint other than tex-
ture and light map storage, and provides level performance, because it’s not
dependent on surface cache hit rate. The primary downside to two-pass lighting is
that it requires at least twice as much performance from the accelerator as single-
pass drawing. The current crop of 3-D accelerators is not particularly fast, and few of
them are up to the task of doing two passes at high resolution, although that will
change soon. Another potential problem is that some accelerators don’t implement
true alpha blending. Nonetheless, as accelerators get better, I expect two-pass draw-
ing (or three-or-more-pass, for adding splatters and the like by overlaying sprite
polygons) to be widely used. I also expect Gouraud shading to be widely used; it’s
easy to use and fast. Also, speedier CPUs and accelerators will enable much more
detailed geometry to be used, and the smaller that polygons become, the better
Gouraud shading looks compared to surface caching and two-pass lighting.
The next graphics engine you’ll see from id Software will be oriented heavily toward
hardware accelerators, and at this point it’s a tossup whether the engine will use
surface caching, Gouraud shading, or two-pass lighting.

Drawing Triangle Models
Most of the last group of chapters in this book discuss how Quake works. If you look
closely, though, you’ll see that almost all of the information is about drawing the
world-the static walls, floors, ceilings, and such. There are several reasons for this,
in particular that it’s hard to get a world renderer working well, and that the world is the
base on which everything else is drawn. However, moving entities, such as monsters,

1262 Chapter 69

are essential to a useful game engine. Traditionally, these have been done with sprites,
but when we set out 1.0 build Quake, we knew that it was time to move on to polygon-
based models. (In the case of Quake, the models are composed of triangles.) We
didn’t know exactly how we were going to make the drawing of these models fast
enough, though, and went through quite a bit of experimentation and learning in
the process of doing so. For the rest of this chapter 1’11 discuss some interesting
aspects of our triangle-model architecture, and present code for one useful approach
for the rapid drawing of triangle models.

Drawing Triangle Models fast
We would have liked one rendering model, and hence one graphics pipeline, for all
drawing in Quake; this would have simplified the code and tools, and would have
made it much easier to focus our optimization efforts. However, when we tried adding
polygon models to Quake’s global edge table, edge processing slowed down unaccept-
ably. This isn’t that surprising, because the edge table was designed to handle 200 to 300
large polygons, not the 2,000 to 3,000 tiny triangles that a dozen triangle models in
a scene can add. Restructuring the edge list to use trees rather than linked lists would
have helped with the larger data sets, but the basic problem is that the edge table
requires a considerable amount of overhead per edge per scan line, and triangle
models have too few pixels per edge to justify that overhead. Also, the much larger
edge table generated by adding triangle models doesn’t fit well in the CPU cache.
Consequently, we implemented a separate drawing pipeline for triangle models, as
shown in Figure 69.1. Unlike the world pipeline, the triangle-model pipeline is in
most respects a traditional one, with a few exceptions, noted below. The entire world
is drawn first, and then the triangle models are drawn, using z-buffering for proper
visibility. For each triangle model, all vertices are transformed and projected first,
and then each triangle is drawn separately.
Triangle models are stored quite differently from the world itself. Each model con-
sists of front and back skins stretched around a triangle mesh, and contains a full set
of vertex coordinates for each animation frame, so animation is performed by sim-
ply using the correct set of coordinates for the desired frame. No interpolation,
morphing, or other runtime vertex calculations are performed.
Early on, we decided to allow lower drawing quality for triangle models than for the
world, in the interests of speed. For example, the triangles in the models are small,
and usually distant-and generally part of a quickly moving monster that’s trying its
best to do you in-so the quality benefits of perspective texture mapping would add
little value. Consequently, we chose to draw the triangles with affine texture map-
ping, avoiding the work required for perspective. Mind you, the models are
perspective-correct at the vertices; it’s just the pixels between the vertices that suffer
slight warping.

Surface Caching and Quake’s Triangle Models 1263

Quake 5 triangle-model drawing pipeline.
Figure 69.1

1264 Chapter 69

Trading Subpixel Precision for Speed
Another sacrifice at the altar of performance was subpixel precision. Before each
triangle is drawn, we snap its vertices to the nearest integer screen coordinates, rather
than doing the extra calculations to handle fractional vertex coordinates. This causes
some jumping of triangle edges, but again, is not a problem in normal gameplay,
especially for the animation of figures in continuous motion.
One interesting benefit of integer coordinates is that they let us do backface culling
and rejection of degenerate triangles in one operation, because the cross-product z
component used for backface culling returns zero for degenerate triangles. Conve-
niently, that cross-product component is also the denominator for the lighting and
texture gradient calculations used in drawing each triangle, so as soon as we check
the cross-product z value and determine that the triangle is drawable, we immedi-
ately start the FDIV to calculate the reciprocal. By the time we get around to calculating
the gradients, the FDIV has completed execution, effectively taking only the one
cycle required to issue it, because the integer execution pipes can process indepen-
dently while FDIV executes.
Finally, we decided to Gouraud-shade the triangle models, because this makes them
look considerably more 3-D. However, we can’t afford to calculate where all the rel-
evant light sources for each model are in each frame, or even which is the primary
light source. Instead, we select each model’s lighting level based on how brightly the
floor point it was standing on is lit, and use that lighting level for both ambient
lighting (so all parts of the model have some illumination) and Gouraud shading-
but the lighting vector for Gouraud shading is a fixed vector, so the model is always
lit from the same direction. Somewhat surprisingly, in practice this looks consider-
ably better than pure ambient lighting.

An Idea that Didn‘t Work
As we implemented triangle models, we tried several ideas that didn’t work out. One
that’s notable because it seems so appealing is caching a model’s image from one
frame and reusing it in the next frame as a sprite. Our thinking was that clipping,
transforming, projecting, and drawing a several-hundred-triangle model was going
to be a lot more expensive than drawing a sprite, too expensive to allow very many
models to be visible at once. We wanted to be able to display at least a dozen simulta-
neous models, so the idea was that for all but the closest models, we’d draw into a
sprite, then reuse that sprite at the model’s new locations for the next two or three
frames, amortizing the 3-D drawing cost over several frames and boosting overall
model-drawing performance. The rendering wouldn’t be exactly right when the sprite
was reused, because the view of the model would change from frame to frame as the
viewer and model moved, but it didn’t seem likely that that slight inaccuracy would
be noticeable for any but the nearest and largest models.

Surface Caching and Quake’s Triangle Models 1265

As it turns out, though, we were wrong: The repeated frames were sometimes pain-
fully visible, looking like jerky cardboard cutouts. In fact they looked a lot like the
sprites used in DOOM-precisely the effect we were trying to avoid. This was espe-
cially true if we reused them more than once-and if we reused them only once,
then we had to do one full 3-D rendering plus two sprite renderings every two frames,
which wasn’t much faster than simply doing two 3-D renderings.
The sprite architecture also introduced considerable code complexity, increased
memory footprint because of the need to cache the sprites, and made it difficult to
get hidden surfaces exactly right because sprites are unavoidably 2-D. The perfor-
mance of drawing the sprites dropped sharply as models got closer, and that’s also
where the sprites looked worse when they were reused, limiting sprites to use at a
considerable distance. All these problems could have been worked out reasonably
well if necessary, but the sprite architecture just had the feeling of being fundamen-
tally not the right approach, so we tried thinking along different lines.

An Idea that Did Work
John Carmack had the notion that it was just way too much effort per pixel to do all
the work of scanning out the tiny triangles in distant models. After all, distant mod-
els are just indistinct blobs of pixels, suffering heavily from effects such as texture
aliasing and pixel quantization, he reasoned, so it should workjust as well if we could
come up with another way of drawing blobs of approximately equal quality. The trick
was to come up with such an alternative approach. We tossed around half-formed
ideas like flood-filling the model’s image within its silhouette, or encoding the model
as a set of deltas, picking a visible seed point, and working around the visible side of
the model according to the deltas. The first approach that seemed practical enough
to try was drawing the pixel at each vertex replicated to form a 2x2 box, with all the
vertices together forming the approximate shape of the model. Sometimes this worked
quite well, but there were gaps where the triangles were large, and the quality was
very erratic. However, it did point the way to something that in the end did the trick.
One morning I came in to the office to find that overnight (and well into the morn-
ing), John had designed and implemented a technique I’ll call subdivision rusterizution.
This technique scans out approximately the right pixels for each triangle, with al-
most no overhead, as follows. First, all vertices in the model are drawn. Ideally, only
the vertices on the visible side of the model would be drawn, but determining which
vertices those are would take time, and the occasional error from a visible back ver-
tex is lost in the noise.
Once the vertices are drawn, the triangles are processed one at a time. Each triangle
that makes it through backface culling is then drawn with recursive subdivision. If
any of the triangle’s sides is more than one pixel long in either x or y-that is, if the
triangle contains any pixels that aren’t at vertices-then that side is split in half as
nearly as possible at given integer coordinates, and a new vertex is created at the

1266 Chapter 69

split, with texture and screen coordinates that are halfway between those of the ver-
tices at the endpoints. (The same splitting could be done for lighting, but we found
that for small triangles-the sort that subdivision works well on-it was adequate to
flat-shade each triangle at the light level of the first vertex, so we didn’t bother with
Gouraud shading.) The halfway values can be calculated very quickly with shifts.
This vertex is drawn, and then each of the two resulting triangles is then processed
recursively in the same way, as shown in Figure 69.2. There are some additional de-
tails, such as the fill rule that ensures that each pixel is drawn only once (except for
backside vertices, as noted above), but basically subdivision rasterization boils down
to taking a triangle, splitting a side that has at least one undrawn pixel and drawing
the vertex at the split, and repeating the process for each of the two new triangles.
The code to do this, shown in Listing 69.1, is very simple and easily optimized, espe-
cially by comparison with a generalized triangle rasterizer.
Subdivision rasterization introduces considerably more error than affine texture
mapping, and doesn’t draw exactly the right triangle shape, but the difference is
very hard to detect for triangles that contain only a few pixels. We found that the
point at which the difference between the two rasterizers becomes noticeable was
surprisingly close: 30 or 40 feet for the Ogres, and about 12 feet for the Zombies.
This means that most of the triangle models that are visible in a typical Quake scene
are drawn with subdivision rasterization, not affine texture mapping.
How much does subdivision rasterization help performance? When John originally
implemented it, it more than doubled triangle-model drawing speed, because the
affine texture mapper was not yet optimized. However, I took it upon myself to see
how fast I could make the mapper, so now affine texture mapping is only about 20
percent slower than subdivision rasterization. While 20 percent may not sound im-
pressive, it includes clipping, transform, projection, and backface-culling time, so
the rasterization difference alone is more than 50 percent. Besides, 20 percent over-
all means that we can have 12 monsters now where we could only have had 10 before,
so we count subdivision rasterization as a clear success.

LISTING 69.1 169- 1 .C
Quake‘s r e c u r s i v e s u b d i v i s i o n t r i a n g l e r a s t e r i z e r : d r a w s a l l
p i x e l s i n a t r i a n g l e o t h e r t h a n t h e v e r t i c e s b y s p l i t t i n g an
edge t o f o r m a new v e r t e x . d r a w i n g t h e v e r t e x , a n d r e c u r s i v e l y
p rocess ing each o f the two new t r i a n g l e s f o r m e d by u s i n g t h e
new v e r t e x . R e s u l t s a r e l e s s accura te t han f rom a p r e c i s e
a f f i n e o r p e r s p e c t i v e t e x t u r e m a p p e r , and drawing boundar ies
a r e n o t i d e n t i c a l t o t h o s e o f a p rec ise po lygon d rawer , a l though
t h e y a r e c o n s i s t e n t b e t w e e n a d j a c e n t p o l y g o n s d r a w n w i t h t h i s
techn ique .

I nven ted and implemented by John Carmack o f i d S o f t w a r e .

v o i d D-PolysetRecursiveTriangle (i n t * I p l . i n t * l p 2 , i n t * l p 3)
(

i n t *temp:
i n t d;

Surface Caching and Quake’s Triangle Models 1267

Original triangle

(vertices have

already been drawn)

t
Split vertex

id rawn as soon

as it’s identified)

Two new triangles,

each of which is recursively

processed the same way

One recursive subdivision triangle-drawing step.
Figure 69.2

1268 Chapter 69

i n t newC61:
i n t z ;
s h o r t * zbu f ;

I / t r y t o f i n d an edge t h a t ' s more than one p ixe l long i n x or y
d - lp2CO1 - 1p lCOl :
i f (d < -1 I (d > 1)

g o t o s p l i t :
d - lp2C11 - l p l [l l
i f (d < -1) I d > 1

d - lp3CO1 - lp2CO1
i f (d < -1 (1 d > 1

d - 1 ~ 3 1 1 1 - l p2111
i f (d < -1 1 1 d > 1

g o t o s p l i t :

g o t o s p l i t 2 :

a o t o s o l i t 2 :
d - 1piCOl -' lp3CO1:
i f (d < -1 (1 d > 1)

g o t o s p l i t 3 :
d - l p l C l l - lp3C11;
i f (d < -1 1) d > 1)
I

s p l i t 3 :
/ / s h u f f l e p o i n t s s o f i r s t edge i s edge t o s p l i t

temp - l p l :
l p l - l p 3 :
l p 3 - l p 2 :
l p 2 - temp:
g o t o s p l i t :

1

r e t u r n : / / n o p i x e l s l e f t t o fill i n t r i a n g l e

s p l i t 2 :
/ I s h u f f l e p o i n t s so f i r s t edge I s edge t o s p l i t

temp - l p l :
l p l - l p 2 :
1pZ - l p 3 ;
l p 3 - temp:

s p l i t :
/ / s p l i t f i r s t edge screen x. screen y . t e x t u r e s . t e x t u r e t , and z
/ I t o f o r m a new v e r t e x . L i g h t i n g (i n d e x 4) i s i g n o r e d : t h e
/ I d i f f e r e n c e b e t w e e n i n t e r p o l a t i n g l i g h t i n g and u s i n g t h e same
/ / shading f o r t h e e n t i r e t r i a n g l e i s u n n o t i c e a b l e f o r s m a l l
/ / t r i a n g l e s , so we j u s t u s e t h e l i g h t i n g f o r t h e f i r s t v e r t e x o f
/ I t h e o r i g i n a l t r i a n g l e (w h i c h was u s e d d u r i n g s e t - u p t o s e t
/ I d-colormap. used below t o l o o k up lit t e x e l s)

newCOl - (l p l C 0 1 + 1pZCOl) >> 1: / / s p l i t s c r e e n x
newCl l - (1 p l C l l + lpZC11) >> 1: / / s p l i t s c r e e n y
new[,?] - (l p l C 2 1 + lp2 [21) >> 1; / I s p l i t t e x t u r e s
new[Jl - (l p l C 3 1 + lp2 [31) >> 1: / I s p l i t t e x t u r e t
newC51 - (l p 1 [5 1 + l p 2 [5 1) >> 1: / I s p l i t 2

I1 d r a w t h e p o i n t i f s p l i t t i n g a l e a d i n g edge
i f (l p 2 C l l > l p l C 1 1)

i f ((l p2C11 - l p 1 [1]) && (1p2COI < l p lCO1))
goto nodraw;

goto nodraw:

Surface Caching and Quake's Triangle Models 1269

z - newC51>>16:

/ / p o i n t t o t h e p i x e l ’ s z - b u f f e r e n t r y . l o o k i n g up t h e s c a n l i n e s t a r t
/ I address based on screen y and adding i n t h e s c r e e n x c o o r d i n a t e

z b u f - zspantable[new[111 + newCO1;

/ / d r a w t h e s p l i t v e r t e x i f i t ’ s n o t o b s c u r e d b y s o m e t h i n g n e a r e r , as
/ / i n d i c a t e d b y t h e z - b u f f e r

i f (z >- * z b u f)
{

i n t p i x :

11 s e t t h e z - b u f f e r t o t h e new p i x e l ’ s d i s t a n c e
*zbu f - z:

/ / g e t t h e t e x e l f r o m t h e m o d e l ’ s s k i n b i t m a p , a c c o r d i n g t o
/ I t h e s and t t e x t u r e c o o r d i n a t e s , and t r a n s l a t e i t th rough
/ I t h e l i g h t i n g l o o k - u p t a b l e s e t a c c o r d i n g t o t h e f i r s t
/ I v e r t e x f o r t h e o r i g i n a l (t o p - l e v e l) t r i a n g l e . B o t h s and
/ / t a r e i n 16.16 format

p i x = d~pco1ormap[sk in tab1e[new[31>>161Cnew~2]>>1611;

I / d r a w t h e p i x e l , l o o k i n g up t h e s c a n l i n e s t a r t a d d r e s s
/ I based on screen y and a d d i n g i n t h e s c r e e n x c o o r d i n a t e

I
d~viewbuffer[d~scantable~new[lll + new[O]l - p i x :

nodraw:
/ I r e c u r s i v e l y draw the two new t r i a n g l e s we c r e a t e d by adding the
/ / s p l i t v e r t e x

D-PolysetRecursiveTriangle (l p 3 . I p l , new):
D-PolysetRecursiveTriangle (l p 3 , new, l p 2) :

1

More Ideas that Might Work
Useful as subdivision rasterization proved to be, we by no means think that we’ve
maxed out triangle-model drawing, if only because we spent far less design and de-
velopment time on subdivision than on the affine rasterizer, so it’s likely that there’s
quite a bit more performance to be found for drawing small triangles. For example,
it could be faster to precalculate drawing masks or even precompile drawing code
for all possible small triangles (say, up to 4x4 or 5x5), and the memory footprint
looks reasonable. (It’s worth noting that both precalculated drawing and subdivision
rasterization are only possible because we snap to integer coordinates; none of this
stuff works with fixed-point vertices.)
More interesting still is the stack-based rendering described in the article “Time/
Space Tradeoffs for Polygon Mesh Rendering,” by Bar-Yehuda and Gotsman, in the
April, 1996 ACM Transactions on Graphics. Unfortunately, the article is highly abstract
and slow going, but the bottom line is that it’s possible to represent a triangle mesh
as a stream of commands that place vertices in a stack, remove them from the stack,
and draw triangles using the vertices in the stack. This results in excellent CPU cache
coherency, because rather than indirecting all over a vertex pool to retrieve vertex
data, all vertices reside in a tiny stack that’s guaranteed to be in the cache. Local

1 270 Chapter 69

variables used while drawing can be stored in a small block next to the stack, and the
stream of commands representing the model is accessed sequentially from start to
finish, so cache utilization should be very high. As processors speed up at a much
faster rate than main memory access, cache optimizations of this sort will become
steadily more import.ant in improving drawing performance.
As with so many aspects of 3-D, there is no one best approach to drawing triangle
models, and no such thing as the fastest code. In a way, that’s frustrating, but the
truth is, it’s these nearly infinite possibilities that make 3-D so interesting; not only is
it an endless, varied challenge, but there’s almost always a better solution waiting to
be found.

Surface Caching and Quake‘s Triangle Models 1 271

chapter 70

quake: a post-mortem
and a glimpse into
the future

1275

I’ve talked about Quake’s technology elsewhere in this book, However, those chap-
ters focused on specific areas, not overall structure. Moreover, Quake changed in
significant ways between the writing of those chapters and the final shipping. Then,
after shipping, Quake was ported to 3-D hardware. And the postQuake engine, code-
named Trinity, is already in development at this writing (Spring 1997), with some
promising results. So in wrapping up this book, I’ll recap Quake’s overall structure
relatively quickly, then bring you up to date on the latest developments. And in the
spirit of Frederik Pohl’s quote, I’ll point out that we implemented and discarded at
least half a dozen 3-D engines in the course of developing Quake (and all of Quake’s
code was written from scratch, rather than using Doom code), and almost switched
to another one in the final month, as I’ll describe later. And even at this early stage,
Trinity uses almost no Quake technology.
In fact, I’ll take this opportunity to coin Carmack’s Law, as follows: Fight code entropy.
If you have a new fundamental assumption, throw away your old code and rewrite it
from scratch. Incremental patching and modifying seems easier at first, and is the
normal course of things in software development, but ends up being much harder
and producing bulkier, markedly inferior code in the long run, as we’ll see when we
discuss the net code for Quakeworld. It may seem safer to modify working code, but
the nastiest bugs arise from unexpected side effects and incorrect assumptions, which
almost always arise in patched-over code, not in code designed from the ground up.
Do the hard work up front to make your code simple, elegant, great-and just plain
right-and it’ll pay off many times over in the long run.
Before I begin, I’d like to remind you that all of the Doom and Quake material I’m
presenting in this book is presented in the spirit of sharing information to make our
corner of the world a better place for everyone. I’d like to thank John Carmack,
Quake’s architect and lead programmer, and id Software for allowing me to share
this technology with you, and I encourage you to share your own insights by posting
on the Internet and writing books and articles whenever you have the opportunity
and the right to do so. (Of course, check with your employer first!) We’ve all ben-
efited greatly from the shared wisdom of people like Knuth, Foley and van Dam, Jim
Blinn, Jim Kajiya, and hundreds of others-are you ready to take a shot at making
your own contribution to the future?

Preprocessing the World
For the most part, I’ll discuss Quake’s 3-D engine in this chapter, although I’ll touch
on other areas of interest. For 3-D rendering purposes, Quake consists of two basic
sorts of objects: the world, which is stored as a single BSP model and never changes
shape or position; and potentially moving objects, called entities, which are drawn in
several different ways. I’ll discuss each separately.
The world is constructed from a set of brushes, which are n-sided convex polyhedra
placed in a level by a designer using a map editor, with a selectable texture on each

1276 Chapter 70

face. When a level is completed, a preprocessing program combines all brushes to
form a skin around the solid areas of the world, so there is no interpenetration of
polygons, just a continuous mesh delineating solid and empty areas. Once this is
done, the next step is generating a BSP tree for the level.
The BSP consists of splitting planes aligned with polygons, called nodes, and of leaves,
which are the convex subspaces into which all the nodes carve space. The top node
carves the world into two subspaces, and divides the remaining polygons into two
sets, splitting any polygon that spans the node into two pieces. Each subspace is then
similarly split by one node each, and so on until all polygons have been used to create
nodes. A node’s subspace is the total space occupied by all its children: the subspace
that the node splits into two parts, and that its children continue to subdivide. When
the only polygon in a node’s subspace is the polygon that splits the subspace-the
polygon whose plane defines the node-then the two child subspaces are called
leaves, and are not divided any further.
The BSP tree is built using the polygon that splits the fewest of the polygons in the
current node’s subspace as the heuristic for choosing splitters, which is not an optimal
solution-but an optimal solution is NP-complete, and our heuristic adds only 10%
to 15% more polygons to the level as a result of BSP splits. Polygons are not split all the
way into leaves; rather, they are placed on the nodes with which they are coplanar
(one set on the front and one on the back, which has the advantage of letting us reuse
the BSP-walking dot product for backface culling as well), thereby reducing splitting
considerably, because polygons are split only by parent nodes, not by child nodes (as
would be necessary if polygons were split into leaves). Eliminating polygon splits, thus
reducing the total number of polygons per level, not only shrinks Quake’s memory
footprint, but also reduces the number of polygons that need to be processed by the
3-D pipeline, producing a speedup of about 10% in Quake’s overall performance.
Getting proper front-toback drawing order is a little more complicated with polygons
on nodes. As we walk the BSP tree front-to-back, in each leaf we mark the polygons
that are at least partially in that leaf, and then after we’ve recursed and processed
everything in front of a node, we then process all the marked polygons on that node,
after which we recurse to process the polygons behind the node. So putting the
polygons on the nodes saves memory and improves performance significantly, but
loses the simple approach of simply recursing the tree and processing the polygons
in each leaf as we come to it, in favor of recursing and marking in front of a node,
processing marked polygons on the node, then recursing behind the node.
After the BSP is built, the outer surfaces of the level, which no one can ever see
(because levels are sealed spaces), are removed, so the interior of the level, contain-
ing all the empty space through which a player can move, is completely surrounded
by a solid region. This eliminates a great many irrelevant polygons, and reduces the
complexity of the next step, calculating the potentially visible set.

Quake: A Post-Mortem and a Glimpse into the Future 1277

The Potentially Visible Set (PVS)
After the BSP tree is built, the potentially visible set (PVS) for each leaf is calculated.
The PVS for a leaf consists of all the leaves that can be seen from anywhere in that leaf,
and is used to reduce to a near-minimum the polygons that have to be considered for
drawing from a given viewpoint, as well as the entities that have to be updated over the
network (for multiplayer games) and drawn. Calculating the PVS is expensive; Quake
levels take 10 to 30 minutes to process on a four-processor Alpha, and even with
speedup tweaks to the BSPer (the most effective of which was replacing many calls to
malloc() with stack-based structures-beware of malloc() in performance-sensitive
code), Quake 2 levels are taking up to an hour to process. (Note, however, that that
includes BSPing, PVS calculations, and radiosity lighting, which I’ll discuss later.)
Some good news, though, is that in the nearly two years since we got the Alpha,
Pentium Pros have become as fast as that generation of Alphas, so it is now possible
to calculate the PVS on an affordable machine. On the other hand, even 10 minutes
of BSPing does hurt designer productivity. John has always been a big advocate of
moving code out of the runtime program into utilities, and of preprocessing for
performance and runtime simplicity, but even he thinks that in Quake, we may have
pushed that to the point where it interfered too much with workflow. The real problem,
of course, is that even a huge amount of money can’t buy orders of magnitude more
performance than commodity computers; we are getting an eight-R10000 SGI compute
server, but that’s only about twice as fast as an off-the-shelf four-processor Pentium Pro.
The size of the PVS for each leaf is manageable because it is stored as a bit vector,
with a 1-bit for the position in the overall leaf array of each leaf that’s visible from the
current leaf. Most leaves are invisible from any one leaf, so the PVS for each leaf
consists mostly of zeros, and compacts nicely with run-length encoding.
There are two further interesting points about the PVS. First, the Quake PVS does
not exclude quite as many leaves from potential visibility as it could, because the
surfaces that precisely describe leaf-to-leaf visibility are quadratic surfaces; in the
interests of speed and simplicity, planar surfaces with some slope are used instead.
Second, the PVS describes visibility from anywhere in a leaf, rather than from a spe-
cific viewpoint; this can cause two or three times as many polygons as are actually
visible to be considered. John has been researching the possibility of an EVS-an
exactly visible set-and has concluded that a 6-D BSP with hyperbolic separating planes
could do the job; the problem now is that he doesn’t know how to get the math to
work, at least at any reasonable speed.
An interesting extension of the PVS is what John calls the potentially hearable set (PHs)-
all the leaves visible from a given leaf, plus all the leaves visible from those leaves-in
other words, both the directly visible leaves and the one-bounce visible leaves. Of
course, this is not exactly the hearable space, because sounds could echo or carry
further than that, but it does serve quite nicely as a potentially relevant space-the set

1 278 Chapter 70

of leaves that have any interest to the player. In Quake, all sounds that happen any-
where in the world are sent to the client, and are heard, even through walls, if they’re
close enough; an explosion around the corner could be well within hearing and very
important to hear, so the PVS can’t be used to reject that sound, but unfortunately
an explosion on the other side of a solid wall will sound exactly the same. Not only is
it confusing hearing sounds through walls, but in a modem game, the bandwidth
required to send all the sounds in a level can slow things down considerably. In a
recent version of Quakeworld, a specifically multiplayer variant of Quake I’ll d’ lSCUSS

later, John uses the PHS to determine which sounds to bother sending, and the
resulting bandwidth improvement has made it possible to bump the maximum num-
ber of players from 16 to 32. Better yet, a sound on the other side of a solid wall won’t
be heard unless there’s an opening that permits the sound to come through. (In the
future, John will use the PVS to determine fully audible sounds, and the PHS to
determine muted sounds.) Also, the PHS can be used for events like explosions that
might not have their center in the PVS, but have portions that reach into the PVS. In
general, the PHS is useful as an approximation of the space in which the client might
need to be notified of events.
The final preprocessing step is light map generation. Each light is traced out into
the world to see what polygons it strikes, and the cumulative effect of all lights on
each surface is stored as a light map, a sampling of light values on a lf5texel grid. In
Quake 2, radiosity lighting-a considerably more expensive process, but one that
produces highly realistic lighting-is performed, but I’ll save that for later.

Passages: The Last-Minute Change that Didn’t Happen
Earlier, I mentioned that we almost changed 3-D engines again in the last month of
Quake’s development. Here’s what happened: One of the alternatives to the PVS is
.the use of portals, where the focus is on the places where polygons don’t exist along
leaffaces, rather than the more usual focus on the polygons themselves. These “empty”
places are themselves polygons, called portals, that describe all the places that visibil-
ity can pass from one leaf to another. Portals are used by the PVS generator to
determine visibility, and are used in other 3-D engines as the primary mechanism for
determining leaf or sector visibility. For example, portals can be projected to
screenspace, then used as a 2-D clipping region to restrict drawing of more distant
polygons to only those that are visible through the portal. Or, as in Quake’s preprocessor,
visibility boundary planes can be constructed from one portal to the next, and 3-D
clipping to those planes can be used to determine visible polygons or leaves. Used
either way, portals can support more changeable worlds than the PVS, because, un-
like the PVS, the portals themselves can easily be changed on the fly.
The problem with portal-based visibility is that it tends to perform at its worst in
complex scenes, which can have many, many portals. Since those are the most ex-
pensive scenes to draw, as well, portals tend to worsen the worst case. However, late

Quake: A Post-Mortem and a Glimpse into the Future 1279

in Quake’s development, John realized that the approach of storing portals them-
selves in the world database could readily be improved upon. (To be clear, Quake
wasn’t using portals at that point, and didn’t end up using them.) Since the afore-
mentioned sets of 3-D visibility clipping planes between portals-which he named
pussuge+were what actually got used for visibility, if he stored those, instead of gen-
erating them dynamically from the portals, he would be able to do visibility much
faster than with standard portals. This would give a significantly tighter polygon set
than the PVS, because it would be based on visibility through the passages from the
viewpoint, rather than the PVS’s approach of visibility from anywhere in the leaf,
and that would be a considerable help, because the level designers were running
right up against performance limits, partly because of the PVS’s relatively loose poly-
gon set. John immediately decided that passages-based visibility was a sufficiently
superior approach that if it worked out, he would switch Quake to it, even at that late
stage, and within a weekend, he had implemented it and had it working-only to
find that, like portals, it improved best cases but worsened worst cases, and overall
wasn’t a win for Quake. In truth, given how close we were to shipping, John was as
much thankful as disappointed that passages didn’t work out, but the possibilities
were too great for us not to have taken a shot at it.
So why even bother mentioning this? Partly to show that not every interesting idea
pans out; I tend to discuss those that did pan out, and it’s instructive to point out that
many ideas don’t. That doesn’t mean you shouldn’t try promising ideas, though.
First, some do pan out, and you’ll never know which unless you try. Second, an idea
that doesn’t work out in one case can still be filed away for another case. It’s quite
likely that passages will be useful in a different context in a future engine.
The more approaches you try, the larger your toolkit and the broader your under-
standing will be when you tackle your next project.

Drawing the World
Everything described so far is a preprocessing step. When Quake is actually running,
the world is drawn as follows: First, the PVS for the view leaf is decompressed, and
each leaf flagged as visible is marked as being in the current frame’s PVS. (The mark-
ing is done by storing the current frame’s number in the leaf; this avoids having to
clear the PVS marking each frame.) All the parent nodes of each leaf in the PVS are
also marked; this information could have been stored as additional PVS flags, but to
save space is bubbled up the BSP from each visible leaf.
After the PVS is marked, the BSP is walked front-to-back. At each node, the bound-
ing box of the node’s subspace is clipped against the view frustum; if the bounding
box is fully clipped, then that node and all its children are ignored. Likewise, if the
node is not in the PVS for the current viewpoint leaf, the node and all its children
are ignored. If the bounding box is partially clipped or not clipped at all, that infor-
mation is passed to the children so that any unnecessary clip tests can be avoided.

1280 Chapter 70

The children in front of the node are then processed recursively. When a leaf is
reached, polygons that touch that leaf are marked as potentially drawable. When
recursion in front of a node is finished, all polygons on the front side of the node
that are marked as potentially drawable are added to the edge list, and then the
children on the back side of that node are similarly processed recursively.
The edge list is a special, intermediate step between polygons and drawing. Each
polygon is clipped, transformed, and projected, and its non-horizontal edges are
added to a global list of potentially drawable edges. After all the potentially drawable
edges in the world have been added, the global edge list is scanned out all at once,
and all the visible spans (the nearest spans, as determined by sorting on BSP-walk
order) in the world are emitted into span lists linked off the respective surface de-
scriptors (for now, you can think of a surface as being the same as a polygon). Taken
together, these spans cover every pixel on the screen once and only once, resulting
in zero overdraw; surfaces that are completely hidden by nearer surfaces generate
no spans at all. The spans are then drawn; all the spans for one surface are drawn, and
then all the spans for the next, so that there’s texture coherency between spans, which is
very helpful for processor cache coherency, and also to reduce setup overhead.
The primary purpose of the edge list is to make Quake’s performance as level-that is, as
consistent-as possible. Compared to simply drawing all potentially drawable polygons
front-to-back, the edge list certainly slows down the best case, that is, when there’s no
overdraw. However, by eliminating overdraw, the worst case is helped considerably; in
Quake, there’s a ratio of perhaps 4:l between worst and best case drawing time, versus
the 1 O : l or more that can happen with straight polygon drawing. Leveling is very
important, because cases where a game slows down to the point of being unplayable
dictate game and level design, and the fewer constraints placed on design, the better.

A corollary is that best case performance can be seductively misleading; itk a
great feeling to see a scene running at 30 or even 60 frames per second, but ifthe
bulk of the game runs at ISfPs, those best cases are just going to make the rest of
the game look worse.

The edge list is an atypical technology for John; it’s an extra stage in the engine, it’s
complex, and it doesn’t scale well. A Quake level might have a maximum of 500
potentially drawable polygons that get placed into the edge list, and that runs fine,
but if you were to try to put 5,000 polygons into the edge list, it would quickly bog
down due to edge sorting, link following, and dataset size. Different data structures
(like using a tree to store the edges rather than a linear linked list) would help to
some degree, but basically the edge list has a relatively small window of applicability;
it was appropriate technology for the degree of complexity possible in a Pentium-
based game (and even then, only with the reduction in polygons made possible by
the PVS) , but will probably be poorly suited to more complex scenes. It served well
in the Quake engine, but remains an inelegant solution, and, in the end, it feels like

Quake: A Post-Mortem and a Glimpse into the Future 1 281

there’s something better we didn’t hit on. However, as John says, “I’m pragmatic
above all else’’-and the edge list did the job.

Rasterization
Once the visible spans are scanned out of the edge list, they must still be drawn, with
perspective-correct texture mapping and lighting. This involves hundreds of lines of
heavily optimized assembly language, but is fundamentally pretty simple. In order to
draw the spans for a given surface, the screenspace equations for l/z, s/z, and t/z
(where s and t are the texture coordinates and z is distance) are calculated for the
surface. Then for each span, these values are calculated for the points at each end of
the span, the reciprocal of l / z is calculated with a divide, and s and t are then calcu-
lated as (s/z)*z and (t/z) *z. If the span is longer than 16 pixels, s and t are likewise
calculated every 16 pixels along the span. Then each stretch of up to 16 pixels is
drawn by linearly interpolating between these correctly calculated points. This intro-
duces some slight error, but this is almost never visible, and even then is only a small
ripple, well worth the performance improvement gained by doing the perspective-
correct math only once every 16 pixels. To speed things up a little more, the FDIV to
calculate the reciprocal of l / z is overlapped with drawing 16 pixels, taking advan-
tage of the Pentiurn’s ability to perform floating-point in parallel with integer
instructions, so the FDIV effectively takes only one cycle.

Lighting
Lighting is less simple to explain. The traditional way of doing polygon lighting is to
calculate the correct light at the vertices and linearly interpolate between those points
(Gouraud shading), but this has several disadvantages; in particular, it makes it hard
to get detailed lighting without creating a lot of extra polygons, the lighting isn’t
perspective correct, and the lighting varies with viewing angle for polygons other
than triangles. To address these problems, Quake uses surface-based lighting instead.
In this approach, when it’s time to draw a surface (a world polygon), that polygon’s
texture is tiled into a memory buffer. At the same time, the texture is lit according to
the surface’s light map, as calculated during preprocessing. Lighting values are linearly
interpolated between the light map’s lGtexel grid points, so the lighting effects are smooth,
but slightly blurry. Then, the polygon is drawn to the screen using the perspective-
correct texture mapping described above, with the prelit surface buffer being the
source texture, rather than the original texture tile. No additional lighting is per-
formed during texture mapping; all lighting is done when the surface buffer is created.
Certainly it takes longer to build a surface buffer and then texture map from it than
it does to do lighting and texture mapping in a single pass. However, surface buffers
are cached for reuse, so only the texture mapping stage is usually needed. Quake
surfaces tend to be big, so texture mapping is slowed by cache misses; however, the
Quake approach doesn’t need to interpolate lighting on a pixel-by-pixel basis, which

1282 Chapter 70

helps speed things up, and it doesn’t require additional polygons to provide sophis-
ticated lighting. On balance, the performance of surface-based drawing is roughly
comparable to tiled, Gouraud-shaded texture mapping-and it looks much better, be-
ing perspective correct, rotationally invariant, and highly detailed. Surface-based drawing
also has the potential to support some interesting effects, because anything that can
be drawn into the surface buffer can be cached as well, and is automatically drawn in
correct perspective. For instance, paint splattered on a wall could be handled by
drawing the splatter image as a sprite into the appropriate surface buffer, so that
drawing the surface would draw the splatter as well.

Dynamic Lighting
Here we come to a feature added to Quake after last year’s Computer Game
Developer’s Conference (CGDC) . At that time, Quake did not support dynamic light-
ing; that is, explosions and such didn’t produce temporary lighting effects. We hadn’t
thought dynamic lighting would add enough to the game to be worth the trouble;
however, at CGDC Billy Zelsnack showed us a demo of his latest 3-D engine, which
was far from finished at the time, but did have impressive dynamic lighting effects.
This caused us to move dynamic lighting up the priority list, and when I got back to
id, I spent several days making the surface-building code as fast as possible (winding
up at 2.25 cycles per texel in the inner loop) in anticipation of adding dynamic
lighting, which would of course cause dynamically lit surfaces to constantly be re-
built as the lighting changed. (A significant drawback of dynamic lighting is that it
makes surface caching worthless for dynamically lit surfaces, but if most of the sur-
faces in a scene are not dynamically lit at any one time, it works out fine.) There
things stayed for several weeks, while more critical work was done, and it was uncer-
tain whether dynamic lighting would, in fact, make it into Quake.
Then, one Saturday, John suggested that I take a shot at adding the high-level dy-
namic lighting code, the code that would take the dynamic light sources and project
their sphere of illumination into the world, and which would then add the dynamic
contributions into the appropriate light maps and rebuild the affected surfaces. I
said I would as soon as I finished up the stuff I was working on, but it might be a day
or two. A little while later, he said, “I bet I can get dynamic lighting working in less
than an hour,” and dove into the code. One hour and nine minutes later, we had
dynamic lighting, and it’s now hard to imagine Quake without it. (It sure is easier to
imagine the impact of features and implement them once you’ve seen them done by
someone else!)
One interesting point about Quake’s dynamic lighting is how inaccurate it is. It is
basically a linear projection, accounting properly for neither surface angle nor light-
ing falloff with distance-and yet that’s almost impossible to notice unless you
specifically look for it, and has no negative impact on gameplay whatsoever. Motion
and fast action can surely cover for a multitude of graphics sins.

Quake: A Post-Mortem and a Glimpse into the Future 1283

It’s well worth pointing out that because Quake’s lighting is perspective correct and
independent of vertices, and because the rasterizer is both subpixel and subtexel
correct, Quake worlds are visually very solid and stable. This was an important design
goal from the start, both as a point of technical pride and because it greatly improves
the player’s sense of immersion.

Entities
So far, all we’ve drawn is the static, unchanging (apart from dynamic lighting) world.
That’s an important foundation, but it’s certainly not a game; now we need to add
moving objects. These objects fall into four very different categories: BSP models,
polygon models, sprites, and particles.

BSP Models
BSP models are just like the world, except that they can move. Examples include
doors, moving bridges, and health and ammo boxes. The way these are rendered is
by clipping their polygons into the world BSP tree, so each polygon fragment is in
only one leaf. Then these fragments are added to the edge list, just like world poly-
gons, and scanned out, along with the rest of the world, when the edge list is processed.
The only trick here is front-to-back ordering. Each BSP model polygon fragment is
given the BSP sorting order of the leaf in which it resides, allowing it to sort properly
versus the world polygons. If two or more polygons from different BSP models are in
the same leaf, however, BSP ordering is no longer useful, so we then sort those poly-
gons by l / z , calculated from the polygons’ plane equations.
Interesting note: We originally tried to sort all world polygons on l / z as well, the
reason being that we could then avoid splitting polygons except when they actually
intersected, rather than having to split them along the lines of parent nodes. This
would result in fewer edges, and faster edge list processing and rasterization. Unfor-
tunately, we found that precision errors and special cases such as seamlessly abutting
objects made it difficult to get global l / z sorting to work completely reliably, and the
code that we had to add to work around these problems slowed things up to the
point where we were getting no extra performance for all the extra code complexity.
This is not to say that l / z sorting can’t work (especially in something like a flight sim,
where objects never abut), but BSP sorting order can be a wonderful thing, partly
because it always works perfectly, and partly because it’s simpler and faster to sort on
integer node and leaf orders than on floating-point l / z values.
BSP models take some extra time because of the cost of clipping them into the world
BSP tree, but render just as fast as the rest of the world, again with no overdraw, so
closed doors, for example, block drawing of whatever’s on the other side (although
it’s still necessary to transform, project, and add to the edge list the polygons the
door occludes, because they’re still in the PVS-they’re potentially visible if the door
opens). This makes BSP models most suitable for fairly simple structures, such as

1 284 Chapter 70

boxes, which have relatively few polygons to clip, and cause relatively few edges to be
added to the edge list.

Polygon Models and Z-Buffering
Polygon models, such as monsters, weapons, and projectiles, consist of a triangle
mesh with front and back skins stretched over the model. For speed, the triangles
are drawn with affine texture mapping; the triangles are small enough, and the mod-
els are generally distant enough, that affine distortion isn’t visible. (However, it is
visible on the player’s weapon; this caused a lot of extra work for the artists, and we
will probably implement a perspective-correct polygon-model rasterizer in Quake 2
for this specific purpose.) The triangles are also Gouraud shaded; interestingly, the
light vector used to shade the models is always from the same direction, and has no
relation to any actual lights in the world (although it does vary in intensity, along
with the model’s ambient lighting, to match the brightness of the spot the player is
standing above in the world). Even this highly inaccurate lighting works well, though;
the Gouraud shading makes models look much more three-dimensional, and vary-
ing the lighting in even so crude a way allows hiding in shadows and illumination by
explosions and muzzle flashes.
One issue with polygon models was how to handle occlusion issues; that is, what
parts of models were visible, and what surfaces they were in front of. We couldn’t add
models to the edge list, because the hundreds of polygons per model would over-
whelm the edge list. Our initial occlusion solution was to sort polygon-model polygons
into the world BSP, drawing the portions in each leaf at the right points as we drew
the world in BSP order. That worked reasonably well with respect to the world (not
perfectly, though, because it would have been too expensive to clip all the polygon-
model polygons into the world, so there was some occlusion error), but didn’t handle
the case of sorting polygon models in the same leaf against each other, and also
didn’t help the polygons in a given polygon model sort properly against each other.
The solution to this turned out to be z-buffering. After all the spans in the world are
drawn, the z-buffer is filled in for those spans. This is a write-only operation, and
involves no comparisons or overdraw (remember, the spans cover every pixel on the
screen exactly once), so it’s not that expensive-the performance cost is about 10%.
Then polygon models are drawn with z-buffering; this involves a z-compare at each
polygon-model pixel, but no complicated clipping or sorting-and occlusion is ex-
actly right in all respects. Polygon models tend to occupy a small portion of the
screen, so the cost of z-buffering is not that high, anyway.
Opinions vary as to the desirability of z-buffers; some people who favor more analyti-
cal approaches to hidden surface removal claim that John has been seduced by the
z-buffer. Maybe so, but there’s a lot there to be seduced by, and that will be all the
more true as hardware rendering becomes the norm. The addition of particles-
thousands of tiny colored rectangles-to Quake illustrated just how seductive the

Quake: A Post-Mortem and a Glimpse into the Future 1285

z-buffer can be; it would have been very difficult to get all those rectangles to draw
properly using any other occlusion technique. Certainly z-buffering by itself can’t
perform well enough to serve for all hidden surface removal; that’s why we have the
PVS and the edge list (although for hardware rendering the PVS would suffice), but
z-buffering pretty much means that if you can figure out how to draw an effect, you
can readily insert it into the world with proper occlusion, and that’s a powerful capa-
bility indeed.
Supporting scenes with a dozen or more models of 300 to 500 polygons each was a
major performance challenge in Quake, and the polygon-model drawing code was
being optimized right up until the last week before it shipped. One help in allowing
more models per scene was the PVS; we only drew those models that were in the PVS,
meaning that levels could have a hundred or more models without requiring a lot of
work to eliminate most of those that were occluded. (Note that this is not unique to
the PVS; whatever high-level culling scheme we had ended up using for world poly-
gons would have provided the same benefit for polygon models.) Also, model
bounding boxes were used to trivially clip those that weren’t in the view pyramid,
and to identify those that were unclipped, s o they could be sent through a special
fast path. The biggest breakthrough, though, was a very different sort of rasterizer
that John came up with for relatively distant models.

The Subdivision Rasterizer
This rasterizer, which we call the subdivision rasterizer, first draws all the vertices in the
model. Then it takes each front-facing triangle, and determines if it has a side that’s
at least two pixels long. If it does, we split that side into two pieces at the pixel nearest
to the middle (using adds and shifts to average the endpoints of that side), draw the
vertex at the split point, and process each of the two split triangles recursively, until
we get down to triangles that have only one-pixel sides and hence have nothing left
to draw. This approach is hideously slow and quite ugly (due to inaccuracies from
integer quantization) for 100-pixel triangles-but it’s very fast for, say, five-pixel tri-
angles, and is indistinguishable from more accurate rasterization when a model is 25
or 50 feet away. Better yet, the subdivider is ridiculously simple-a few dozen lines of
code, far simpler than the affine rasterizer-and was implemented in an evening,
immediately making the drawing of distant models about three times as fast, a very
good return for a bit of conceptual work. The affine rasterizer got fairly close to the
same performance with further optimization-in the range of 10% to 50% slower-
but that took weeks of difficult programming.
We switch between the two rasterizers based on the model’s distance and average
triangle size, and in almost any scene, most models are far enough away so subdivi-
sion rasterization is used. There are undoubtedly faster ways yet to rasterize distant
models adequately well, but the subdivider was clearly a win, and is a good example
of how thinking in a radically different direction can pay off handsomely.

1286 Chapter 70

Sprites
We had hoped to be able to eliminate sprites completely, making Quake 100% 3-D,
but sprites-although sometimes very visibly 2-D-were used for a few purposes, most
noticeably the cores of explosions. As of CGDC last year, explosions consisted of an
exploding spray of particles (discussed below), but there just wasn’t enough visual
punch with that representation; adding a series of sprites animating an explosion
did the trick. (In hindsight, we probably should have made the explosions polygon
models rather than sprites; it would have looked about as good, and the few sprites
we used didn’t justify the considerable amount of code and programming time re-
quired to support them.) Drawing a sprite is similar to drawing a normal polygon,
complete with perspective correction, although of course the inner loop must detect
and skip over transparent pixels, and must also perform z-buffering.

Particles
The last drawing entity type is particles. Each particle is a solid-colored rectangle,
scaled by distance from the viewer and drawn with z-buffering. There can be up to
2,000 particles in a scene, and they are used for rocket trails, explosions, and the
like. In one sense, particles are very primitive technology, but they allow effects that
would be extremely difficult to do well with the other types of entities, and they work
well in tandem with other entities, as, for example, providing a trail of fire behind a
polygon-model lava ball that flies into the air, or generating an expanding cloud
around a sprite explosion core.

How We Spent Our Summer Vacation:
After Shipping Quake
Since shipping Quake in the summer of 1996, we’ve extended it in several ways:
We’ve worked with Rendition to port it to the Verite accelerator chip, we’ve ported it
to OpenGL, we’ve ported it to Win32, we’ve done Quakeworld, and we’ve added
features for Quake 2. I’ll discuss each of these briefly.

Verite Quake
Verite Quake (VQuake) was the first hardware-accelerated version of Quake. It looks
extremely good, due to bilinear texture filtering, which eliminates most pixel aliasing,
and because it provides good performance at higher resolutions such as 512x384
and 640x480. Implementing VQuake proved to be an interesting task, for two rea-
sons: The Verite chip’s fill rate was marginal for Quake’s needs, and Verite contains
a programmable RISC chip, enabling more sophisticated processing than most 3-D
accelerators. The need to squeeze as much performance as possible out of Verite
ruled out the use of a standard API such as Direct 3D or OpenGL; instead, VQuake
uses Rendition’s proprietary API, Speedy3D, with the addition of some special calls
and custom Verite code.

Quake: A Post-Mortem and a Glimpse into the Future 1287

Interestingly, VQuake is very similar to software Quake; in order to allow Verite to
handle the high pixel processing loads of high-res, VQuake uses an edge list and
builds span lists on the CPU, just as in software Quake, then Verite DMAs the span
descriptors to onboard memory and draws them. (This was only possible because
Verite is fully programmable; most accelerators wouldn’t be able to support this ar-
chitecture.) Similarly, the CPU builds lit, tiled surfaces in system R A M , then Verite
DMAs them to an onboard surface cache, from which they are texture-mapped. In
short, VQuake is very much like normal Quake, except that the drawing of the spans
is done by a specialized processor.
This approach works well, but some of the drawbacks of a surface cache become
more noticeable when hardware is involved. First, the DMAing is an extra step that’s
not necessary in software, slowing things down. Second, onboard memory is a rela-
tively limited resource (4 MB total), and textures must be 16-bpp (because hardware
can only do filtering in RGB modes), thus eating up twice as much memory as the
software version’s 8-bpp textures-and memory becomes progressively scarcer at
higher resolutions, especially given the need for a z-buffer and two 16-bpp pages.
(Note that using the edge list helps here, because it filters out spans from polygons
that are in the PVS but fully occluded, reducing the number of surfaces that have to
be downloaded.) Surface caching in VQuake usually works just fine, but response
when coming around corners into complex scenes or when spinning can be more
sluggish than in software Quake.
An alternative to surface caching would have been to do two passes across each span,
one tiling the texture, and the other doing an alpha blend using the light map as a
texture, to light the texture (two-pass alpha lighting). This approach produces ex-
actly the same results as the surface cache, without requiring downloading and caching
of large surfaces, and has the advantage of very level performance. However, this
approach requires at least twice the fill rate of the surface cache approach, and Verite
didn’t have enough fill rate for that at higher resolutions. It’s also worth noting that
two-pass alpha lighting doesn’t have the same potential for procedural texturing
that surface caching does. In fact, given MMX and ever-faster CPUs, and the ability
of the CPU and the accelerator to process in parallel, it will become increasingly
tempting to use the CPU to build surfaces with procedural texturing such as bump
mapping, shimmers, and warps; this sort of procedural texturing has the potential to
give accelerated games highly distinctive visuals. So the choice between surface cach-
ing and two-pass alpha lighting for hardware accelerators depends on a game’s needs,
and it seems most likely that the two approaches will be mixed together, with surface
caching used for special surfaces, and two-pass alpha lighting used for most drawing.

GLQuake
The second (and, according to current plans, last) port of Quake to a hardware
accelerator was an OpenGL version, GLQuake, a native Win32 application. I have

1288 Chapter 70

no intention of getting into the 3-D MI wars currently raging; the observation I want
to make here is that GLQuake uses two-pass alpha lighting, and runs very well on fast
chips such as the SDfx, but rather slowly on most of the current group of accelera-
tors. The accelerators coming out this year should all run GLQuake fine, however.
It’s also worth noting that we’ll be using two-pass alpha lighting in the N64 port of
Quake; in fact, it looks like the N64’s hardware is capable of performing both tex-
ture-tiling and alpha-lighting in a single pass, which is pretty much an ideal
hardware-acceleration architecture: It’s as good looking and generally faster than
surface caching, without the need to build, download, and cache surfaces, and much
better looking and about as fast as Gouraud shading. We hope to see similar capabili-
ties implemented in PC accelerators and exposed by 3-D MIS in the near future.
Dynamic lighting is done differently in GLQuake than in software Quake. It could
have been implemented by changing the light maps, as usual, but current OpenGL
drivers are not very fast at downloading textures (when the light maps are used as in
GLQuake); also, it takes time to identify and change the affected light maps. Instead,
GLQuake simply alpha-blends an approximate sphere around the light source. This
requires very little calculation and no texture downloading, and as a bonus allows
dynamic lights to be colored, so a rocket, for example, can cast a yellowish light.
Unlike Quake or VQuake, GLQuake does not use the edge list and draws all polygons in
the potentially visible set. Because OpenGL drivers are not currentlyvery fast at selecting
new textures, GLQuake sorts polygons by texture, so that all polygons that use a
given texture are drawn together. Once texture selection is faster, it might be worth-
while to draw back-to-front with z-fill, because some hardware can do z-fill faster than
z-compare, or to draw front-to-back, so that z-buffering can reject as many pixels as
possible, saving display-memory writes. GLQuake also avoids having to do z-buffer
clearing by splitting the z range into two parts, and alternating between the two parts
from frame to frame; at the same time, the z-compare polarity is switched (from
greater-than-or-equal to less-than-or-equal) , so that the previous frame’s z values are
always considered more distant than the current frame’s.
GLQuake was very easy to develop, taking only a weekend to get up and running,
and that leads to another important point: OpenGL is also an excellentAP1 on which
to build tools. QuakeEd, the tool we use to build levels, is written for OpenGL run-
ning on Win32, and when John needed a 3-D texture editing tool for modifymg
model skins, he was able to write it in one night by building it on OpenGL. After we
finished Quake, we realized that about half our code and half our time was spent on
toals, rather than on the game engine itself, and the artists’ and level designers’
productivity is heavily dependent on the tools they have to use; considering all that,
we’d be foolish not to use OpenGL, which is very well suited to such tasks.
One good illustration of how much easier a good 3-D AF’I can make development is
how quickly John was able to add two eye-candy features to GLQuake: dynamic shad-
ows and reflections. Dynamic shadows were implemented by projecting a model’s

Quake: A Post-Mortem and a Glimpse into the Future 1289

silhouette onto the ground plane, then alpha-blending that silhouette into the world.
This doesn’t always work properly-for example, if the player is standing at the edge
of a cliff, the shadow sticks out in the air-but it was added in a few hours, and most
of the time looks terrific. Implementing it properly will take only a day or two more
and should run adequately fast; it’s a simple matter of projecting the silhouette into
the world, and onto the surfaces it encounters.
Reflections are a bit more complex, but again were implemented in a day. A special
texture is designated as a mirror surface; when this is encountered while drawing, a
hole is left. Then the z-range is changed so that everything drawn next is considered
more distant than the scene just drawn, and a second scene is drawn, this time from
the reflected viewpoint behind the mirror; this causes the mirror to be behind any
nearer objects in the true scene. The only drawback to this approach (apart from the
extra processing time to draw two scenes) is that because of the z-range change, the
mirror must be against a sealed wall, with nothing in the PVS behind it, to ensure
that a hole is left into which the reflection can be drawn. (Note that an OpenGL
stencil buffer would be ideal here, but while OpenGL accelerators can be relied upon to
support z-buffering and alpha-blending in hardware, the same is not yet true of sten-
cil buffers.) As a final step, a marbled texture is blended into the mirror surface, to
make the surface itself less than perfectly reflective and visible enough to seem real.
Both alpha-blending and z-buffering are relatively new to PC games, but are stan-
dard equipment on accelerators, and it’s a lot of fun seeing what sorts of previously
very difficult effects can now be up and working in a matter of hours.

WinQuake
I’m not going to spend much time on the Win32 port of Quake; most of what I
learned doing this consists of tedious details that are doubtless well covered else-
where, and frankly it wasn’t a particularly interesting task and was harder than I
expected, and I’m pretty much tired of the whole thing. However, I will say that
Win32 is clearly the future, especially now that NT is coming on strong, and like it or
not, you had best learn to write games for Win32. Also, Internet gaming is becoming
ever more important, and Win32’s built-in TCP/IP support is a big advantage over
DOS; that alone was enough to convince us we had to port Quake. As a last com-
ment, I’d say that it is nice to have Windows take care of device configuration and
interfacing-now if only we could get manufacturers to write drivers for those de-
vices that actually worked reliably! This will come as no surprise to veteran Windows
programmers, who have suffered through years of buggy 2-D Windows drivers, but if
you’re new to Windows programming, be prepared to run into and learn to work
around-or at least document in your readme files-driver bugs on a regular basis.
Still, when you get down to it, the future of gaming is a networked Win32 world, and
that’s that, so if you haven’t already moved to Win32, I’d say it’s time.

1290 Chapter 70

Qua keWorld
Quakeworld is a native Win32 multiplayer-only version of Quake, and was done as a
learning experience; it is not a commercial product, but is freely distributed on the
Internet. The idea behind it was to try to improve the multiplayer experience, especially
for people linked by modem, by reducing actual and perceived latency. Before I discuss
Quakeworld, however, I should discuss the evolution of Quake’s multiplayer code.
From the beginning, Quake was conceived as a client-server app, specifically so that
it would be possible to have persistent servers always running on the Internet, inde-
pendent of whether anyone was playing on them at any particular time, as a step
toward the long-term goal of persistent worlds. Also, client-server architectures tend
to be more flexible and robust than peer-to-peer, and it is much easier to have play-
ers come and go at will with client-server. Quake is client-server from the ground up,
and even in single-player mode, messages are passed through buffers between the
client code and the server code; it’s quite likely that the client and server would have
been two processes, in fact, were it not for the need to support DOS. Client-server
turned out to be the right decision, because Quake’s ability to support persistent,
come-and-go-as-you-please Internet servers with up to 16 people has been instru-
mental in the game’s high visibility in the press, and its lasting popularity.
However, client-server is not without a cost, because, in its pure form, latency for
clients consists of the round trip from the client to the server and back. (In Quake,
orientation changes instantly on the client, short-circuiting the trip to the server, but
all other events, such as motion and firing, must make the round trip before they
happen on the client.) In peer-to-peer games, maximum latency can be just the cost
of the one-way trip, because each client is running a simulation of the game, and
each peer sees its own actions instantly. What all this means is that latency is the
downside of client-server, but in many other respects client-server is very attractive.
So the big task with client-server is to reduce latency.
As of the release of QTestl, the first and last prerelease of Quake, John had smoothed
net play considerably by actually keeping the client’s virtual time a bit earlier than
the time of the last server packet, and interpolating events between the last two pack-
ets to the client’s virtual time. This meant that events didn’t snap to whatever packet
had arrived last, and got rid of considerable jerking and stuttering. Unfortunately, it
actually increased latency, because of the retarding of time needed to make the in-
terpolation possible. This illustrates a common tradeoff, which is that reduced latency
often makes for rougher play.

Reduced latency also o f en makes for more frustrating play. It’s actually not hard p to reduce the latency perceived by the player, but many of the approaches that
reduce latency introduce the potential for paradoxes that can be quite distracting
and annoying. For example, a player may see a rocket go by, and think they’ve
dodged it, only toJind themselves exploding a second later as the d@erence of opinion
between his simulation and the other simulation is resolved to his detriment.

Quake: A Post-Mortem and a Glimpse into the Future 1291

Worse, QTestl was prone to frequent hitching over all but the best connections, because
it was built around reliable packet delivery (TCP) provided by the operating system.
Whenever a packet didn’t arrive, there was a long pause waiting for the retransmis-
sion. After QTestl, John realized that this was a fundamentally wrong assumption,
and changed the code to use unreliable packet delivery (UDP), sending the relevant
portion of the full state every time (possible only because the PVS can be used to cull
most events in a level), and letting the game logic itself deal with packets that didn’t
arrive. A reliable sideband was used as well, but only for events like scores, not for
gameplay state. However, this was a good example of Carmack’s Law: John did not
rewrite the net code to reflect this new fundamental assumption, and wound up with
8,000 lines of messy code that took right up until Quake shipped to debug. For
Quakeworld, John did rewrite the net code from scratch around the assumption of
unreliable packet delivery, and it wound up as just 1,500 lines of clean, bug-free code.
In the long run, it’s cheaper to rewrite than to patch and modify!
So as of shipping Quake, multiplayer performance was quite smooth, but latencywas
still a major issue, often in the 250 to 400 ms range for modem players. Quakeworld
attacked this in two ways. First, it reduced latency by around 50 to 100 ms with a
server change. The Quake server runs 10 or 20 times a second, batching up inputs in
between ticks, and sending out results after the tick. By contrast, Quakeworld serv-
ers run immediately whenever a client sends input, knocking up to 50 or 100 ms off
response time, although at the cost of a greater server processing load. (A similar
anti-latency idea that wasn’t implemented in Quakeworld is having a separate thread
that can send input off to the server as soon as it happens, instead of incurring up to
a frame of latency.)
The second way in which Quakeworld attacks latency is by not interpolating. The
player is actually predicted well ahead of the latest server packet (after all, the client
has all the information needed to move the player, unless an outside force inter-
venes), giving very responsive control. The rest of the world is drawn as of the latest
server packet; this is jerkier than Quake, again showing that smoothness is often a
tradeoff for latency. The player’s prediction may, of course, result in a minor para-
dox; for example, if an explosion turns out to have knocked the player sideways, the
player’s location may suddenly jump without warning as the server packet arrives
with the correct location. In the latest version of Quakeworld, the other players are
predicted as well, with consequently more frequent paradoxes, but smoother, more
convincing motion. Platforms and doors are still not predicted, and consequently
are still pretty jerky. It is, of course, possible to predict more and more objects into
the future; it’s a tradeoff of smoothness and perceived low latency for the frustration
of paradoxes-and that’s the way it’s going to stay until most people are connected
to the Internet by something better than modems.

1 292 Chapter 70

Quake 2
I can’t talk in detail about Quake 2 as a game, but I can describe some interesting
technology features. The Quake 2 rendering engine isn’t going to change that much
from Quake; the improvements are largely in areas such as physics, gameplay, artwork,
and overall design. The most interesting graphics change is in the preprocessing, where
John has added support for radiosity lighting; that is, the ability to put a light source into
the world and have the light bounced around the world realistically. This is sometimes
terrific-it makes for great glowing light around lava and hanging light panels-but in
other cases it’s less spectacular than the effects that designers can get by placing lots of
direct-illumination light sources in a room, so the two methods can be used as needed.
Also, radiosity is very computationally expensive, approximately as expensive as BSPing.
Most of the radiosity demos I’ve seen have been in one or two rooms, and the order
of the problem goes up tremendously on whole Quake levels. Here’s another case
where the PVS is essential; without it, radiosity processing time would be 0 (polygons2),
but with the PVS it’s 0 (po1ygons”average-potentially-visible-polygons) , which is over
an order of magnitude less (and increases approximately linearly, rather than as a
squared function, with greater-level complexity).
Also, the moving sky texture will probably be gone or will change. One likely replace-
ment is an enclosing texture-mapped box around the world, at a virtually infinite
distance; this will allow open vistas, much like Doom, a welcome change from the
claustrophobic feel of Quake.
Another likely change in Quake 2 is a shift from interpreted Quake-C code for game
logic to compiled DLLs. Part of the incentive here is performance-interpretation
isn’t cheap-and part is debugging, because the standard debugger can be used with
DLLs. The drawback, of course, is portability; Quake-C program files are completely
portable to any platform Quake runs on, with no modification or recompilation, but
DLLs compiled for Win32 require a real porting effort to run anywhere else. Our
thinking here is that there are almost no non-console platforms other than the PC
that matter that much anymore, and for those few that do (notably the Mac and
Linux), the DLLs can be ported along with the core engine code. It just doesn’t
make sense for easy portability to tiny markets to impose a significant development
and performance cost on the one huge market. Consoles will always require serious
porting effort anyway, so going to Win32-specific DLLs for the PC version won’t make
much difference in the ease of doing console ports.
Finally, Internet support will improve in Quake 2. Some of the Quakeworld latency
improvements will doubtless be added, but more important, there will be a new
interface, especially for monitoring and joining net games, in the form of an HTML
page. John has always been interested in moving as much code as possible out of the
game core, and letting the browser take care of most of the UI makes it possible to
eliminate menuing and such from the Quake 2 engine. Think of being able to browse
hundreds of Quake servers from a single Web page (much as you can today with

Quake: A Post-Mortem and a Glimpse into the Future 1293

QSpy, but with the advantage of a standard, familiar interface and easy extensibility),
and I think you’ll see why John considers this the game interface of the future.
By the way, Quake 2 is currently being developed as a native Win32 app only; no DOS
version is planned.

Looking Forward
In my address to the Computer Game Developer’s Conference in 1996, I said that it
wasn’t a bad time to start up a game company aimed at hardware-only rasterization,
and trying to make a game that leapfrogged the competition. It looks like I was
probably a year early, because hardware took longer to ship than I expected, al-
though there was a good living to be made writing games that hardware vendors
could bundle with their boards. Now, though, it clearly is time. By Christmas 1997,
there will be several million fast accelerators out there, and by Christmas 1998, there
will be tens of millions. At the same time, vastly more people are getting access to the
Internet, and it’s from the convergence of these two trends that I think the technol-
ogy for the next generation of breakthrough real-time games will emerge.
John is already working on id’s next graphics engine, code-named Trinity and tar-
geted around Christmas of 1998. Trinity is not only a hardware-only engine, its baseline
system is a Pentium Pro 200-plus with MMX, 32 MB, and an accelerator capable of at
least 50 megapixels and 300 K triangles per second with alpha blending and z-buffer-
ing. The goals of Trinity are quite different from those of Quake. Quake’s primary
technical goals were to do high-quality, well-lit, complex indoor scenes with 6 de-
grees of freedom, and to support client-server Internet play. That was a good start,
but only that. Trinity’s goals are to have much less-constrained, better-connected
worlds than Quake. Imagine seeing through open landscape from one server to the
next, and seeing the action on adjacent servers in detail, in real time, and you’ll have
an idea of where things are heading in the near future.
A huge graphics challenge for the next generation of games is level of detail (LOD)
management. If we’re to have larger, more open worlds, there will inevitably be more
geometry visible at one time. At the same time, the push for greater detail that’s
been in progress for the past four years or so will continue; people will start expect-
ing to see real cracks and bumps when they get close to a wall, not just a picture of
cracks and bumps painted on a flat wall. Without LOD, these two trends are in direct
opposition; there’s no way you can make the world larger and make all its surfaces
more detailed at the same time, without bringing the renderer to its knees.
The solution is to draw nearer surfaces with more detail than farther surfaces. In itself,
that’s not so hard, but doing it without popping and snapping being visible as you move
about is quite a challenge. John has implemented fractal landscapes with constantly
adjustable level of detail, and has made it so new vertices appear as needed and
gradually morph to their final positions, so there is no popping. Trinity is already

1294 Chapter 70

capable of displaying oval pillars that have four sides when viewed from a distance,
and add vertices and polygons smoothly as you get closer, such that the change is
never visible, and the pillars look oval at all times.
Similarly, polygon models, which maxed out at about 5,000 polygon-model polygons
total-for all models-per scene in Quake, will probably reach 6,000 or 7,000 per
scene in Quake 2 in the absence of LOD. Trinity will surely have many more moving
objects, and those objects will look far more detailed when viewed up close, so LOD
for moving polygon models will definitely be needed.
One interesting side effect of morphing vertices as part of LOD is that Gouraud
shading doesn’t work very well with this approach. The problem is that adding a new
vertex causes a major shift in Gouraud shading, which is, after all, based on lighting
at vertices. Consequently, two-pass alpha lighting and surface caching seem to be
much better matches for smoothly changing LOD.
Some people worry that the widespread use of hardware acceleration will mean that
3-D programs will all look the same, and that there will no longer be much challenge
in 3-D programming. I hope that this brief discussion of the tightly interconnected,
highly detailed worlds toward which we’re rapidly heading will help you realize that
both the challenge and the potential of 3-D programming are in fact greater than
they’ve ever been. The trick is that rather than getting stuck in the rut of established
techniques, you must constantly strive to “do better with less, in a different way”;
keep learning and changing and trying new approaches-and working your rear
end off-and odds are you’ll be part of the wave of the future.

Quake: A Post-Mortem and a Glimpse into the Future 1295

Afterword

If you’ve followed me this far, you might agree that we’ve come through some rough
country. Still, I’m of the opinion that hard-won knowledge is the best knowledge,
not only because it sticks to you better, but also because winning a hard race makes it
easier to win the next one.
This is an unusual book in that sense: In addition to being a compilation of much of
what I know about fast computer graphics, it is a journal recording some of the
process by which I discovered and refined that knowledge. I didn’tjust sit down one
day to write this book-I wrote it over a period of years and published its component
parts in many places. It is ajournal of my successes and frustrations, with side glances
of my life as it happened along the way.
And there is yet another remarkable thing about this book: You, the reader, helped
me write it. Perhaps not you personally, but many people who have read my articles
and columns over the years sent me notes asking me questions, suggesting improve-
ments (occasionally by daring me to beat them at the code performance game!) or
sometimes just dumping remarkable code into my lap. Where it seemed appropri-
ate, I dropped in the code and sometimes even the words of my correspondents, and
the book is much the richer for it.
Here and there, I learned things that had nothing at all to do with fast graphics.
For example: I’m not a doomsayer who thinks American education lags hopelessly
behind the rest of the Western world, but now and then something happens that
makes me wonder. Some time back, I received a letter from one Melvyn J. Lafitte
requesting that I spend some time in my columns describing fast 3-D animation
techniques. Melvyn hoped that I would be so kind as to discuss, among other things,
hidden surface removal and perspective projection, performed in real time, of course,
and preferably in Mode X. Sound familiar?
Melvyn shared with me a hidden surface approach that he had developed. His tech-
nique involved defining polygon vertices in clockwise order, as viewed from the visible
side. Then, he explained, one can use the cross-product equations found in any
math book to determine which way the perpendicular to the polygon is pointing.
Better yet, he pointed out, it’s necessary to calculate only the Z component of the
perpendicular, and only the sign of the Z component need actually be tested.

1297

What Melvyn described is, of course, backface removal, a key hidden-surface tech-
nique that I used heavily in X-Sharp. In general, other hidden surface techniques
must be used in conjunction with backface removal, but backface removal is none-
theless important and highly efficient. Simply put, Melvyn had devised for himself
one of the fundamental techniques of 3-D drawing.
Melvyn lives in Moens, France. At the time he wrote me, Melvyn was 1’7 years old. Try
to imagine any American 17-year-old of your acquaintance inventing backface re-
moval. Try to imagine any teenager you know even using the phrase “the cross-product
equations found in any math book.” Not to mention that Melvyn was able to write a
highly technical letter in English; and if Melvyn’s English was something less than
flawless, it was perfectly understandable, and, in my experience, vastly better than an
average, or even well-educated, American’s French. Please understand, I believe we
Americans excel in a wide variety of ways, but I worry that when it comes to math and
foreign languages, we are becoming a nation of tEtes depomme de t m e .

Maybe I worry too much. If the glass is half empty, well, it’s also half full. Plainly,
something I wrote inspired Melvyn to do something that is wonderful, whether he
realizes it or not. And it has been tremendously gratifylng to sense in the letters I
have received the same feeling of remarkably smart people going out there and
doing amazing things just for the sheer unadulterated fun of it.
I don’t think I’m exaggerating too much (well, maybe a little) when I say that this sort of
fun is what I live for. I’m glad to see that so many of you share that same passion.
Good luck. Thank you for your input, your code, and all your kind words. Don’t be
afraid to attempt the impossible. Simply knowing what is impossible is useful knowl-
edge-and you may well find, in the wake of some unexpected success, that not half
of the things we call impossible have any right at all to wear the label.

-Michael Abrash

1298 Afterword

Index

Numbers
l/z sorting

abutting span sorting, 1229-1230
AddPolygonEdges function, 1232-

vs. BSP-order sorting, 1226-1227
calculating l/z value, 1220-1222
ClearEdgeLists function, 1236-1237
Drawspans function, 1236
independent span sorting, 1230, 1231-

intersecting span sorting, 1228-1229
PolyFacesViewer function, 1232
reliability, 1227
ScanEdges function, 1234-1236,

Updateworld function, 1237-1238

See also Hidden surface removal; 3-D

1233, 1238

1238, 1239-1241

1238-1239

3-D animation

drawing; 3-D polygon rotation
demo program; X-Sharp 3-D
animation package.

solid cube rotation program, 957-

3-D polygon rotation program, 939,

12-cube rotation program, 972, 973-

demo programs

961, 962-963, 964-966, 967

940-945, 948-949

984, 985-987
depth sorting, 1000, 1001-1002
rotation

ConcatXforms function, 944
matrix representation, 938-939
multiple axes of rotation, 948
XformVec function, 943

rounding vs. truncation, 1002-1003
translation of objects, 937-938

3-D clipping
arithmetic imprecision, handling, 1240
line segments, clipping to planes,

overview, 1195
polygon clipping

1195-1197

BackRotateVector function, 1203
clipping to frustum, 1200, 1201-

ClipToFrustum function, 1204
ClipToPlane function, 1199
optimization, 1207
overview, 1197-1200
PolyFacesViewer function, 1203
ProjectPolygon function, 1201
SetUpFrustum function, 1204
SetWorldspace function, 1204
TransformPoint function, 1203
TransformPolygon function, 1203
Updateworld function, 1205
viewspace clipping, 1207
ZSortObjects function, 1201

1206, 1206-1207

3-D drawing
See also BSP (Binary Space

Partitioning) trees; Hidden surface
removal; Polygons, filling; Shading;
3-D animation.

backface removal
BSP tree rendering, 1160-1161
calculations, 955-957
motivation for, 9 54-9 j j
and sign of dot product, 1140
solid cube rotation demo program,

957-961, 962-963, 964-966, 967
background surfaces, 1240
draw-buffers, and beam trees, 1187
and dynamic objects, 1100-1101
Gouraud shading, 1246-1250

1299

lighting
Gouraud shading, 1246-1250
overlapping lights, 1247
perspective correctness, 1248-1250
rotational variance, 1247
surface-based lighting, 1250-1256,

viewing variance, 1249

1212-1222

1260-1262

moving models in 3-D drawings,

painter's algorithm, 1099, 1104-1105
perspective correctness problem,

portals, and beam trees, 1188
projection

dot products, 1141-1 142
overview, 937, 948

1248-1250

raycast, subdividing, and beam trees, 1187
reference materials, 734-935
rendering BSP trees

clipping, 1158-1159
Clipwalls function, 1152-1155,

DrawWahBackToFront function,
1155-1156, 1160-3161

overview, 1149
reference materials, 1157
TransformVertices function, 1151-

UpdateViewPos function, 1151, 1157
Updateworld function,

viewspace, transformation of

wall orientation testing, 1160-1 161
WallFacingViewer function, 1150-

1158-1157

1152, 1158

1156-1157, 1157

objects to, 1158

1151, 1161
span-based drawing, and beam

transformation of objects, 935-936
triangle model drawing

fast triangle drawing, 1263-1265
overview, 1262-1263
precision, 1265
subdivision rasterization, 1266-1267,

trees, 1187

1267-1270
vertex-free surfaces, and beam

visibility determination, 1097-1 106
trees, 1187

visible surface determination (VSD)
beam trees, 1185-1189
culling to frustum, 1181-1184
overdraw problem, 1184-1 185
potentially visible set (PVS),

precalculating, 1188-1189
3-D engine, Quake

BSP trees, 1276-1277
lighting, 1282-1283
model overview, 1276-1277
portals, 1279-1280
potentially visible set (PVS), 1278-1279
rasterization, 1282
world, drawing, 1280-1281

cross products, 1139-1 140
dot products

calculating, 1135-1137
calculating light intensity, 1137
projection, 1141-1142
rotation, 1143-1144
sign of, 1140-1141
of unit vectors, 1136
of vectors, 1135-1136

assembly routines, 992, 996-999
C-language implementations, 974-976
normal vectors, calculating, 955-956
rotation of 3-D objects, 738-939,

transformation, optimized, 1172-

3-D math

matrix math

943-944, 948

1173, 1173-1174
vector length, 1135

matrix multiplication functions, 943-
944,748

overview, 937
performance, 949
polygon filling with clipping support,

transformation and projection,

3-D polygon rotation demo program

940-943

944-945, 948
3-D solid cube rotation demo program

basic implementation, 957-961, 962-963
incremental transformations, 964-966
object representation, 967

8-bit bus cycle-eater
286 and 386 processors, 210
8088 processor

effects on performance, 82
optimizing for, 83-85
overview, 79-82
and registers, 85

12-cube rotation demo program
limitations of, 986
optimizations in, 985-986
performance, 986
X-Sharp animation package, 972, 973-

984, 984-985
16-bit checksum program

See also TCP/IP checksum program.
assembly implementation, 10-12, 17-18
C language implementation, 8-9, 15-16
overview, 8
redesigning, 9

color paging, 628-629
DAC (DigitaVAnalog Converter), 626-628
palette RAM, 626

16-color VGA modes

24-byte hi/lo function, 292-293
32-bit addressing modes, 256-258
32-bit division, 181-184, 1008
32-bit fixed-point arithmetic, optimizing,

32-bit instructions, optimizing, 1091
32-bit registers

See also Registers; VGA registers.
adding with LEA, 131
BSWAP instruction, 252
multiplying with LEA, 132-133
386 processor, 222
time vs. space tradeoff, 187
using as two 16-bit registers, 253-254

See also 320x400 256-color mode.
DAC settings, 629
mapping RGB model to, 1036, 1037-

resolution, 360x480 256-color mode,

1086-1089, 1090-1091, 1092-1093

256-color modes

1038, 1039

619-620
286 processor

CMP instruction, 161, 306
code alignment, 215-218
cycle-eaters, 209-210
data alignment, 213-215
data transfer rates, 212
display adapter cycle-eater, 219-221
display memory wait states, 220
DRAM refresh cycle-eater, 219

effective address calculations,

instruction fetching, 215-218
LEA vs. ADD instructions, 130
lookup tables, vs. rotating or

shifting, 145-146
LOOP instruction vs. DEC/JNZ

sequence, 139
memory access, performance, 223-225
new features, 221
POPF instruction, and interrupts, 226
protected mode, 208-209
stack pointer alignment, 218-219
system wait states, 210-212

320x240 256-color mode. See Mode X.
320x400 256-color mode

advantages of, 590-591
display memory organization, 591-593
line drawing, 600
page flipping demo program, 600-605
performance, 599-600
pixel drawing demo program, 593-

129, 223-225

598, 599-600
360x480 256-color mode

display memory, accessing, 621-622
Draw360~480Dot subroutine, 613-614
drawing speed, 618
horizontal resolution, 620
line drawing demo program, 615-618,

mode set routine Qohn Bridges), 609,

on VGA clones, 610-611
Read36Ox48ODot subroutine, 614-615
256-color resolution, 619-620
vertical resolution, 619

618-619

612, 620-621

386 native mode, 32-bit displacements, 187
386 processor

alignment, stack pointer, 218-219
CMP instruction, 161, 306
cycle-eaters, 209-210
data alignment, 213, 218
and display adapter cycle-eater, 107
display adapter cycle-eater, 219-221
doubleword alignment, 218
DRAM refresh cycle-eater, 219
effective address calculations,

LEA instruction, 130-133, 172
LODSD vs. MOV/LEA sequence, 171

129, 223-225

lookup tables, vs. rotating or shifting,

LOOP instruction vs. DEC/JNZ

memory access, performance, 223-225
MUL and IMUL instructions, 173-174
multiplication operations, increasing

new instructions and features, 222
Pentium code, running on, 411
protected mode, 208-209
rotation instructions, clock

system wait states, 210-212
32-bit addressing modes, 256-258
32-bit multiply and divide

using 32-bit register as two 16-bit

XCHG vs. MOV instructions, 377, 832
386SX processor, 16-bit bus cycle-eater, 81
486 processor

145-146

sequence, 139

speed of, 173-174

cycles, 185-186

operations, 985

registers, 253-254

AX register, setting to absolute
value, 172

byte registers and lost cycles, 242-245
CMP instruction

operands, order of, 306
vs. SCASW, 161

copying bytes between registers, 172
and display adapter cycle-eater, 107
indexed addressing, 237-238
internal cache

effect on code timing, 246
optimization, 236

LAHF and S A H F instructions, 148
LEA instruction, vs. ADD, 131
LODSB instruction, 304
LODSD instruction, vs. MOV/LF,A

lookup tables, vs. rotating or shifting,

LOOP instruction, vs. DEC/JNZ

MOV instruction, vs. XCHG, 377
n-bit vs. 1-bit shift and rotate

Pentium code, running on, 411
pipelining

sequence, 171

145-146

sequence, 139

instructions, 255-256

address calculation, 238-240, 250

stack addressing, 241-242

cycles, 185-186
rotation instructions, clock

stack-based variables, 184-184
32-bit addressing modes, 256-258
timing code, 245-246
using 32-bit register as two 16-bit

registers, 253-254
XCHG instruction, vs. MOV, 377, 832

640x400 mode, mode set routine, 852-853
640x480 mode, page flipping, 836-837
8086 processor vs. 8088 processor, 79-81
8088 processor

CMP instruction, 161, 306
cycle-eaters

8-bit bus cycle-eater, 79-85
display adapter cycle-eater, 101-108
DRAM refresh cycle-eater, 95-99
overview, 78-79, 80
prefetch queue cycle-eater, 86-94
wait states, 99-101

display memory access, 220
effective address calculation options, 129
vs. 8086 processor, 79-81
U H F and SAHF instructions, 148
LEA vs. ADD, 130
LODSB instruction, 304
lookup tables, vs. rotating or shifting,

LOOP instruction vs. DEC/JNZ

memory variables, size of, 83-85
stack-based variables, placement of,

145-146

sequence, 139

184-184
8253 timer chip

and DRAM refresh, 95
reference material, 72
resetting, 43
system clock inaccuracies

long-period Zen timer, 53, 54
Zen timer, 43, 45-46, 48

operation, 44
stopping, 54, 65

timer modes, 44, 45
timer operation, 43-45
undocumented features, 54, 65

timer 0

A
Absolute value, setting AX register, 171
Abstraction, and optimization, 330-332,

Abutting span sorting, 1229-1230
AC (Attribute Controller), VGA

addressing, 427-428
Color Select register, 628-629
Index register, 443, 555
Mode Control register, 575
Mode register

color paging, 628-629
256-color modes, 629

palette RAM registers, setting, 631-632
Pel Panning register, 574
registers, setting and reading, 583
screen blanking demo program,

345-346

556-557
Active edge table (AET), 744
Adapters, display. See Display adapter

cycle-eater.
ADD instruction

and Carry flag, 147-148
VS. INC, 147-148, 219
VS. LEA, 130, 170-171

AddDirtyRect function, 867-869
Addition, using LEA, 130, 131
Addobject function, 1001-1002
AddPolygonEdges function, 1232-

1233, 1238
Addressable memory, protected

mode, 221
Addressing modes

486 processor
indexed addressing, 237-238
32-bit addressing modes, 256-258

386 processor, 130-133. 222
VGA, internal indexing, 427-428

Addressing pipeline penalty
See also Pipeline stalls.
486 processor, 238-240, 250
Pentium processor, 400-403

complex polygons, 748-749
monotone-vertical polygons, 769

AET (active edge table), 744
AGIs (Address Generation Interlocks),

AdvanceAET function

400-403

See also Addressing pipeline penalty;
Pipeline stalls.

Algorithms In C (book), 192, 196
Alignment

Pentium processor
non-alignment penalties, 376
TCP/IP checksum program, 409

REP STOS instruction, 735
386 processor, 218
286 processor

code alignment, 215-218
data alignment, 213-215
stack pointer alignment, 218-219

ALU and latch demo program, 453-457,

ALUs (Arithmetic Logic Units), VGA
458-460

ALU and latch demo program, 453-

logical functions, 458
operational modes, 458
overview, 451-452

457, 458-460

Ambient shading, 1023, 1025-1027
AND instruction, Pentium processor

AGIs (Address Generation Interlocks),
401-402

vs. TEST, 377

See also Animation demo programs;

apparent motion, 1064
ball animation demo program, 431-

challenges in, 819-820
on PCs, 795-796
page flipping, flicker-free animation,

speed, importance of, 1064
Animation demo programs

Mode X animation, 924-925, 925-930
page flipping animation

Animation

Mode X; 3-D animation.

441

444-446

assembly code, 825-830
C code, 820-825
split screen and page flipping,

830-837
3-D polygon rotation

matrix multiplication functions, 943-
944, 948

overview, 939
performance, 949

polygon filling with clipping

transformation and projection, 944-

3-D solid cube rotation demo program

support, 940-943

945, 948

basic implementation, 957-961,

incremental transformations, 964-966
object representation, 967

962-963

Animation techniques
bit-plane animation

assembly implementation,

limitations, 811-813
page flipping, 814
palette registers, 799-801
principles, 796-798
shearing, 813

dirty-rectangle animation
C implementation, 847-851, 863-869
description, 844-845
ordering rectangles, 873
overlapping rectangles, 872-873
vs. page flipping, 846, 862
performance, 873
system memory buffer size, 851
writing to display memory, 856-857

801-809, 810

internal animation, 872
masked images, 871-872

Antialiasing, Wu’s algorithm, 776-779,

Apparent motion, in animation, 1064
AppendRotationX function, 964, 975
AppendRotationY function, 964-%5,975
AppendRotationZ function, 965, 976
Appropriate technology, 775-776
Arithmetic flags. See Flags.
Arrays, sorting, 180-181
Aspect ratio, Mode X, 878
Assemblers

780-791, 791-792

MASM (Microsoft Assembler), 187
optimizing assemblers, 71-72
TASM (Turbo Assembler), 71-72

Assembly language optimization
See also Clock cycles; Local

optimization; Optimization.
data, placing limitations on, 274
instruction size vs. execution time, 90-

multi-bit rotations, 23-24
92 ,93

objectives, 28
optimizing instructions, 23-24
programmer’s responsibilities, 27-29
rearranging instructions, 418-419
reducing size of code, 416-418
stack addressing, 420
understanding data, importance of, 122

compilers, 154-155

issues, 25-26

display adapter cycle-eater, 107
286 processor, data transfer rates, 212

Attribute Controller, VGA. See AC
(Attribute Controller), VGA.

Automatic variables, 184-185
AX register, setting to absolute value, 171

Assembly language programmers, vs.

Assembly language, transformation

AT computer

B
Backface culling. See Backface removal.
Backface removal
See also Hidden surface removal;

Visible surface determination.
BSP tree rendering, 1160-1161
calculations, 955-957
motivation for, 954-955
and sign of dot product, 1140
solid cube rotation demo program,

957-961, 962-963, 964-966, 967
Background surfaces, 1240
BackRotateVector function, 1203
Ball animation demo program, 431-441
Barrel shifter, VGA, 463-464
Beam trees

improvement, attempts at, 1187-1188
overview, 1185
performance, 1186
potentially visible set (PVS),

precalculating, 1188-1 189
Benchmarks, reliability of, 729
Biased perceptions, and optimization,

Big endian format, 252
BIOS. See EGA BIOS; VGA BIOS.
Bit mask

1080, 1085

bitmapped text demo program, 466-
469, 470-471

and latches, 470
overview, 464-466

bit mask, controlling, 465
drawing solid text, 1040
setting inside a loop, 429
vs. write mode 3, 832, 844

BitMan, 1039-1041, 1042-1044
Bitmap organization, Mode X, 882-883
Bitmapped text

demo program using bit mask, 466-

reference material, 471

Bit Mask register

469, 470-471

Bitmapped text demo program, 466-469,

Bitmaps
470-471

chunky, converting to planar, 504- 505,

relocating, 516-517
transient color effects, 509

assembly implementation, 801-809, 810
limitations, 811-813
overview, 796
page flipping, 814
palette registers, 799-801
principles, 796-798
shearing, 813

“Black box” approach, and future of
programming, 725-726

Blocks. See Restartable blocks.
Borders (overscan), 55 5-556
BOUND instruction, 221
Boundary pixels, polygons

rules for selecting, 712
texture mapping, 1049-1052, 1065-

505-508

Bit-plane animation

1066, 1067
Bounding volumes, 1184
Boyer-Moore algorithm

assembly implementations, 271-274,

C language implementation, 269
overview, 263-265
performance, 266-268
test-bed program, 270

377-378

See also Branch prediction.
286 and 386 processors

274-277

Branch prediction, Pentium processor,

Branching instructions

non-word-alignment penalty, 216
and prefetch queue cycle-eater, 210

eliminating, 312-313
Pentium processor

branches within loops, 378
pairing in U-pipe, 405

x86 family CPUs, performance, 140

basic algorithm
Bresenham’s line-drawing algorithm

assembly implementation, 6 j 5-6 56,

C language implementation, 661-

description, 657-660
strengths and weaknesses, 660-661

run-length slice algorithm
assembly implementation, 698-704
C-language implementations, 688-

description, 683-684
implementation details, 685-687
integer-based implementation,

potential optimizations, 70 j

See Run-length slice algorithm.

mode set routine, 360x480 256-color

256-color modes, undocumented, 879

671-677

665, 665-671

692, 692-693

685-687

Bresenham’s run-length slice algorithm.

Bridges, John

mode, 609, 612, 620-621

Brute-force solutions, 193
BSP (Binary Space Partitioning) trees

2-D line representation, 1120
3-D rendering, 1162
beam trees

improvement, attempts at, 1187-1 188
overview, 118 j
performance, 1186
potentially visible set (PVS),

precalculating, 1188-1189
BSP compiler

BuildBSPTree function, 1125-1127
SelectBSPTree function, 1124-1125

BuildBSPTree function, 1125-1127
building, 1101-1104
BuildTree function, 1112
data recursion vs. code recursion,

description, 1098-1099, 1119
and dynamic objects, 1100-1101

1108-1113

edge sorting for hidden surface

inorder traversal, 1107-1113
leaves, storing polygons in, 1181
multiple BSP trees, sorting, 1227
optimizations, 1128-1129
performance, 1100, 1111-1113
potentially visible set (PVS)

precalculating, 1188-1189
world, drawing, 1280-1281

removal, 1220, 1226

reference materials, 11 14
rendering recursively

backface removal, 1160-1161
clipping, 1158-1 159
Clipwalls function, 1152-1155,

DrawWaUsBackToFront function,

overview, 1149
reference materials, 1157
TransformVertices function, 1151-

UpdateWewI” function, 1151,1157
Updateworld function,

viewspace, transformation of

wall orientation testing, 1160-1161
WfiacingViewer function, 1150-

1158-1159

1155-1156, 1160-1161

1152, 1158

1156-1157, 1157

objects to, 1158

1151, 1161
SelectBSPTree function, 1124-1125
splitting heuristic, 1128-1129
3-D engine, Quake

overview, 1276-1277
potentially visible set (PVS)

management, 1278-1279
visible surface determination (VSD)

beam trees, 1185-1189
culling to frustum, 1181-1184
overdraw problem, 1184-1 185
painter’s algorithm, 1099-1 106
polygon culling, 1181-1 184
PVS, precalculating, 1188-1189

WalkBSPTree function, 1106
WalkTree function, 1109-1110

BuildBSPTree function, 1125-1127
overview, 11 23
SelectBSFT’ree function, 1124-1125

BSP compiler

BSP models, Quake 3-D engine, 1284

BSWAP instruction, 486 processor
32-bit registers, using as two 16-bit

registers, 253-254
rotating pixel bits, 252

Bubble sort, 755
Buffer-filling routine, optimizations

rearranging instructions, 418-419
reducing size of code, 416-418
stack addressing, 420

in 16-bit checksum program, 15-16
in search engine, 114-1 15

BuildBSPTree function, 1125-1127
BuildGET function, 768-769
BuildGETStructure function, 747-748
BuildMaps function, 353-355
BuildTree function, 11 12
Bus access

Buffers, internal

8088 processor, 81, 99-101
Pentium processor, 377

Byte registers, 486 processor, 242-245
Byte-OUT instruction, 429
Byte-per-pixel mode. See Mode X.

C
C library functions

getco function, 12, 14
m e m c w function, 116
memcmpo function, 116
memcpy0 function, 1147-1148
memsea function, 727
optimization, 15
read0 function, 12, 121
strsts() function, 11 5

Cache, internal. See Internal cache.
Cache lines, Pentium processor, 374
Calculations, redundant, and

optimization, 682-683
Calculus and Analytic Geometry

(book), 1135
CALL instruction

486 processor, 241-242
Pentium processor, 404

and id Software, 1118
overdraw, 1184-1186
subdivision rasterization, 1266-1267,

Carmack, John

1267-1270

Carry flag
DEC instruction, 148
INC vs. ADD instructions, 147-148
LOOP instruction, 148
rotating bits through, 185
in word count program (David

Cats, shipping via air freight, 697-698
cellmap class, 325-329, 333-335, 341-345
Cellmap wrapping, Game of Life, 331-

Cell-state method, 327, 334, 344
CGA (Color/Graphics Adapter)

display adapter cycle-eater, 104
VGA compatibility with, 430

Game of Life

Stafford), 317-319

332, 333-335, 336, 337-338

Challenges

rules, 346, 350
3-cell-per-word implementation

(David Stafford), 351-352, 353-
363, 363-365

ScanBuffer routine, 30 5 , 307-319
Change list, in Game of Life, 363-366
Chaplin, Michael, 776
Charactedattribute map, VGA mode 3, 517
Chartreuse moose story, 399
Checksum programs. See 16-bit

checksum program; TCP/IP checksum
program.

program, 505-508
Chunky bitmap conversion demo

Chunky bitmaps, converting to planar,

Circular linked lists. 288-292
Clear-cell method, 327, 334, 343
ClearEdgeLists function, 1236-1237
Clements, Willem, 313-315
Client-server architecture, and

Clipping

504-505, 505-508

Quakeworld, 1291

See also Hidden surface removal
(HSR); Visible surface determination
(VSD).

arithmetic imprecision, handling, 1240
in BSP tree rendering, 1158-1159
line segments, clipping to planes,

masked copying, Mode X, 923
overview, 1195

1195-1197

polygon clipping
BackRotateVector function, 1203
clipping to frustum, 1200, 1201-

ClipToFrustum function, 1204
ClipToPlane function, 1199
optimization, 1207
overview, 1197-1200
PolyFacesViewer function, 1203
ProjectPolygon function, 1201
SetUpFrustum function, 1204
SetWorldspace function, 1204
TransformPoint function, 1203
TransformPolygon function, 1203
UpdateViewPos function, 1202
Updateworld function, 1205
viewspace clipping, 1207
ZSortObjects function, 1201

1206, 1206-1207

ClipToFrustum function, 1204
ClipToPlane function, 1199
Clock cycles

See also Cycle-eaters.
address calculation pipeline, 238-240
branch prediction, 377-378
byte registers and lost cycles, 242-245
cross product floating point

optimization, 1171, 1172
and data alignment, 213-215
data transfer rates, 81, 82
dot product floating point

optimization, 1170
dual-pipe execution, 405
effective address calculations

286 and 386 processors, 223-225
Pentium processor, 375-376

data transfer rates, 81, 82
memory access, 82, 83-85

8088 processor

floating point instructions, 1167-1170
486 processor

address calculation pipeline, 238-
240, 250

byte registers and lost cycles,

indexed addressing, 237-238
stack addressing, 241-242
32-bit addressing modes, 256-258

242-245

EXCH instruction, 1170
indexed addressing, 237-238

instruction execution times, 86-93
lockstep execution, 390-394, 400-403
matrix transformation optimization, 1173
memory access, 82, 83-85
non-alignment penalties, 376
non-word-alignment penalty, 217
l /z value of planes, calculating, 1221
OUT instructions, 843, 1082-1083
Pentium processor

branch prediction, 377-378
cross product floating point

optimization, 1171, 1172
dot product floating point

optimization, 1170
effective address calculations, 375-376
floating point instructions, 1167-1168
FXCH instruction, 1170
initial pipe, effect of, 405
lockstep execution, 390-394, 400-403
matrix transformation

optimization, 1173
non-alignment penalties, 376
pipelining, 1168-1170
prefix bytes, 376, 395, 407

prefix bytes, 376, 395, 407
vs. program size, 28
projection, floating point

optimization, 1174
stack addressing, 241-242
string instructions, 82
system wait states, 211
32-bit addressing modes, 256-258
386 processor, effective address

286 processor
calculation, 223-225

effective address calculation, 223-225
system wait states, 211

CMP instruction
operands, order of, 306
vs. S M W , 161

processor, 378

386 processor, 218
286 processor, 215-218

Code generator, for Game of Life (David
Stafford), 351-352, 353-363, 363-365

Code recursion
vs. data recursion, 1108-1 110

CMPXCHGSB instruction, Pentium

Code alignment

Euclid’s algorithm, 198-199

program, 531-534

adapter-dependent mapping, IO36
color perception research, 1035
reflective vs. emissive, 1035

Collision detection demo

Color

Color Compare register, 531
Color cycling

bit-by-bit loading of DAC, 650-651
demo program, 643, 644-648, 648-649
interleaved loading of DAC, 649-650
loading DAC, 640-643
overview, 639-640
using page flipping, 650
using subset of DAC, 649

Color cycling demo program, 643, 644-

Color Don’t Care register, 534
Color Don’t Care register demo program,

Color mapping demo program, EGA,

Color models. See RGB (red, green,
blue) color model.

Color paging, 628-629
Color path, VGA

648, 648-649

535-537, 535

551-555

color paging, 628-629
DAC (DigitaYAnalog

Converter), 626-628
palette R A M , 626

Color planes. See Planes, VGA.
Color Select register, 628-629
Color selection

EGA
overscan, 555-556
palette registers, 548-551, 551-555
screen blanking, 556-557

ColorBarsUp subroutine, 604
Color-forcing demo program, 474-476
Color-patterned lines demo program,

Compiled DLLs, Quake 2, 1293
Compiler-based optimization

VGA, 557

509-515

cautions for use of, 9
data recursion vs. code recursion,

in FindIDAverage function, 159
1112-1113

Compilers
vs. assembly language programmers,

avoiding thinking like, 152, 154-155
bitblt compiler for Game of Life

154-155

(David Stafford), 351-352, 353-363,
363-365

handling of segments, 154
Complex polygons

defined, 710, 742
edges, keeping track of, 742-744, 753,

polygon-filling programs, 745-752, 754
Computational Geomety, An

Introduction (book), 759-760
Computer Graphics: Princaples and

Practice (book), 660, 934, 1121
Computer Graphics (book), 1135, 1157
ConcatXforms function

assembly implementation, 997-999,

C-language implementation, 944, 976
CONSTAN'-TO-INDEXED_REGISTER

macro, 594
Coordinate systems

left-handed, 1140
right-handed, 935-937

755, 756

1019-1022

Copy-cells method, 327, 333
CopyDirtyRectangles function, 850
CopyDirtyRectangleToScreen

Copying
function, 866-867

bytes between registers, 172
pixels, using latches (Mode X), 905-

907, 908, 909-911
CopyRect subroutine, 871
CopyScreenToScreenMaskedX

subroutine, 918, 919-921
CopyScreenToScreenX subroutine,

CopySystemToScreenMakedX

CopySystemToScreenX subroutine,

CosSin subroutine, 994-996,

Count-neighbors method, 334-335
CPU reads from VGA memory, 526
CPUID instruction, Pentium

905-907, 908

subroutine, 916-918

908, 909-911

999, 1013-1015

processor, 378
CreateAlignedMaskedImage function,

Cross products
922-923

calculating, 955-956, 1139-1140
floating point optimization, 1171, 1172

CRT Controller, VGA. See CRTC (CRT
Controller), VGA.

CRTC (CRT Controller), VGA
addressing, 427-428
Line Compare register, 565
Overflow register, 565
shearing, 813-814
start address registers, setting, 583

286 and 386 processors
Cycle-eaters

data alignment cycle-eater,

display adapter cycle-eater, 219-221
DRAM refresh cycle-eater, 219
overview, 209-210
prefetch queue cycle-eater, 211-212
system wait states, 210-212

data alignment cycle-eater
386 processor, 218
286 processor, 213-215

display adapter cycle-eater
286 and 386 processors, 219-221
8088 processor, 101-108

286 and 386 processors, 219
8088 processor, 95-99, 108

8-bit bus cycle-eater, 79-85, 108
8088 processor

213-215, 218

DRAM refresh cycle-eater

display adapter cycle-eater, 101-108
DRAM refresh cycle-eater, 95-99, 108
8-bit bus cycle-eater, 79-85, 108
prefetch queue cycle-eater, 86-94, 108
wait states, 99-101

286 and 386 processors, 209-210
8088 processor, 78-79, 80

286 and 386 processors, 211-212
8088 processor, 86-94, 108

overview

prefetch queue cycle-eater

system wait states, 210-212
wait states, 99-101

Cycles. See Clock cycles; Cycle-eaters.

D
DAC (DigitaVAnalog Converter)

color cycling
bit-by-bit loading, 650-651
color cycling demo program, 643,

interleaved loading, 649-650
problems, 640-643
using subset of, 649

Data register, 642-643
index wrapping, 651
loading

644-648, 648-649

bit-by-bit loading, 650-651
directly, 642-643
interleaved loading, 649-650
via VGA BIOS, 641-642, 648
and Write Index register, 642-643, 651

Mask register, blanking screen, 651
Read Index register, 651-652
reading, 651-652
setting registers, 630, 631-632
in VGA color path, 626-628
Write Index register

DAC index wrapping, 651
loading DAC, 642-643

DAC registers demo program, 632-635
Data alignment cycle-eater

386 processor, 218
286 processor, 213-215

Data bus, 8-bit
See also 8-bit bus cycle-eater.

Data manipulation instructions, and
flags, 147

Data recursion
vs. code recursion, 1108
Euclid’s algorithm, 200
inorder tree traversal, 1108, 1109-

Data register, loading DAC, 642-643
Data Rotate register

barrel shifter, controlling, 463
vs. CPU-based rotations, 489
effect on ALUs, 452

Data rotation, VGA
barrel shifter, 463-464
bit mask, 464-471
CPU vs. Data Rotate register, 489

1110,1110

Data transfer rates
display adapters, 220
8088 processor vs. 8086 processor, 81,82
286 processor, 212

texture mapping
assembly implementation,

C implementation, 1053-1058
disadvantages, 1052-1053, 1059
DrawTexturedPolygon, 1055-1056
hardware dependence, 1053
multiple adjacent polygons, 1068
optimized implementation, 1069-

1073, 1074
orientation independence,

1065-1067, 1067
performance, 1074
ScanOutLine function, 1058-1059,

SetUpEdge function, 1057-1058
StepEdge function, 1056-1057
techniques, 1048-1051

Programming (CD), 1157

and Carry flag, 148
memory accesses, 83
vs. SUB, 219

DEC/JNZ sequence, 139
Delay sequences

DDA (digital differential analyzer)

1069-1073, 1074

1067, 1069-1073, 1074

DDJ Essential Books on Graphics

DEC instruction

loading palette RAM or DAC

VGA programming, 558
registers, 632

DeleteNodeAfter function, 284
Depth sorting of nonconvex objects,

Diffuse shading, 1023-1025, 1025-1027
Digital differential analyzer. See DDA

(digital differential analyzer).
Direct far jumps, 186
Direct memory access. See DMA.
Directed lighting, and shading, 1023, 1028
Directives

1000, 1001-1002

EVEN, 214
NOSMART, 72

demo program, C implementation,
Dirty-rectangle animation

847-851, 863-869

description, 844-845
ordering rectangles, 873
overlapping rectangles, 872-873
vs. page flipping, 846, 862
performance, 873
system memory buffer size, 851
writing to display memory, 856-857

Disk caches, 19
Display adapter cycle-eater

286 and 386 processors, 219-221
data transfer rates, 220
8088 processor

graphics routines, impact on, 106
optimizing for, 107
overview, 101-104
performance, impact on, 104
read/write/modify operations, 107
wait states, 99-101

Display memory
See also Bit mask; Display

Mode X
memory access.

copying between memory locations,

copying from system memory, 908,

masked copy from system memory,

masked copying between locations,

memory allocation, 903-904

905-907, 908

909-911

916-918, 916

918-919, 919-921

running code from, 104
start address, changing, 857
VGA

access times, 842-844
360x480 256-color mode, 621-622
320 x 400 256-color mode,

591-593, 605
Display memory access

See also Display memory;

display adapter cycle-eater, 101-103,

and string instructions, 107
VGA access times, 842-844
wait states, 101-103, 220, 733

See Planes, VGA.

81-184, 1008

Memory access.

105, 107

Display memory planes.

DIV instruction, 32-bit division, 1

Divide By Zero interrupt, 181
Divide-by-N timer mode, 45
Division, 32-bit, 181-184, 1008
DMA (direct memory access), and DRAM

“Don’t care” planes, 535
DOS function calls

refresh, 95

overhead, 9
and restartable blocks, 123

calculating, 1135-1137
calculating light intensity, 1137
floating point optimization, 1170, 1171
line segments, clipping to planes,

projection, 1141-1142
rotation, 1143-1144
sign of, 1140-1141
of unit vectors, 1136
of vectors, 1135-1136

(digital differential analyzer)
texture mapping.

Dot products

1196-1197

Double-DDA texture mapping. See DDA

D-PolysetRecursiveTriangle function,

Dr. Dobbs Journal, 1190
DRAM (dynamic RAM) refresh

cycle-eater
286 and 386 processors, 219
8088 processor

1267-1270

impact on performance, 97-98
optimizing for, 98-99
overview, 95-97
vs. wait states, 100

and 8253 timer chip, 95
and Zen timer, 99

Draw360~480Dot subroutine, 613-614
DrawBackground function, 928
Draw-buffers, and beam trees, 1187
DrawBumperList function, 823
DrawEntities function, 849, 866
DrawGridCross subroutine, 808
DrawGridVert subroutine, 808-809
DrawHorizontalLineList function

monotone-vertical polygons, filling, 765
non-overlapping convex polygon

assembly implementation, 734
C implementation, 717, 720-721
using memseto function, 727, 729

DrawHorizontdLineList subroutine,

DrawHorizontdLineSeg function
assembly implementation, 754
C implementation, 750-751

DrawHorizontalRun function, 692
DrawImage subroutine, 828
Drawing

941-943

See also Line-drawing algorithms;

fill patterns, using latches, 453
pixel drawing

Lines; 3-D drawing.

EVGADot function, 6 1 - 6 2 , 669-670
optimization, 1074, 1086
painter’s algorithm and overdraw

single-color drawing with write mode

speeding up, 727-729
text

problem, 1184

3, 831-832

bitmapped text using bit mask, 466-

bitmapped text using write mode 3,

solid text using latches, 1039-1041,

using write mode 0, 832-833

469, 470-471

484-489, 489-490, 490-496

1042-1044

DrawLine function, 785
DrawMasked subroutine, 870
DrawObject subroutine, 809-810
Draw-pixel function, 328, 330
DrawPObject function, 978-979,

DrawRect subroutine, 826-827
Drawspans function, 1236
Drawsplitscreen function, 824
DrawTextString subroutine, 1043-1044
DrawTexturedPolygon function,

DrawVerticalRun function, 692
DrawVisibleFaces function, 961
DrawWuLine function

1025-1027

1055-1056

assembly implementation, 787-791
C implementation, 780-781

Duntemann, Jeff, 127-128
Dynamic lighting

in GLQuake, 1289-1290
in Quake 3-D engine, 1282-1283

Dynamic objects, and BSP trees, 1100-1 101

Dynamic palette adjustment, 1039
Dynamic RAM. See DRAM (dynamic
RAM) refresh.

E
EA (effective address) calculations

286 and 386 processors, 223-225
8088 processor, 129
486 processor

address calculation pipeline, 238-240
stack addressing, 241-242

Pentium processor, 375-376
320x400 256-color mode, 599-600

EBP register, 257
Edge tracing

overview, 711-713
ScanEdge function

assembly implementation,

floating-point C implementation,

integer-based C implementation,

735-738, 735

716-717

730-732
Edge triggered devices, 316
Edges vs. spans, sorted span hidden

surface removal, 1215-1220
EGA BIOS, video function 10H,

EGA (Enhanced Graphics Adapter)
550-551, 555

color mapping, 548-551, 551-555
and display adapter cycle-eater, 104-108
mode 10H, 515-517, 518-521
palette registers, 549-550
registers, and high-level languages, 548
screens, capturing and restoring, 541-

split screens
542, 543-547, 547-548

EGA bug, 573-574
horizontal panning, 574-575, 575-

overview, 563-565
registers, setting, 573
safety of, 585
split screen demo program, 565,

text mode, 584
turning on and off, 565

582, 583

566-572, 572

8-bit bus cycle-eater
286 and 386 processors, 210
8088 processor

effects on performance, 82
optimizing for, 83-85
overview, 79-82
and registers, 85

8086 processor vs. 8088 processor, 79-81
8088 processor

CMP instruction, 161, 306
cycle-eaters

8-bit bus cycle-eater, 79-85
display adapter cycle-eater, 101-108
DRAM refresh cycle-eater, 95-99
overview, 78-79, 80
prefetch queue cycle-eater, 86-94
wait states, 99-101

display memory access, 220
vs. 8086 processor, 79-81
effective address calculation options, 129
LAHF and SAHF instructions, 148
LEA vs. ADD, 130
LODSB instruction, 304
lookup tables, vs. rotating or shifting,

LOOP instruction vs. DEC/JNZ

memory variables, size of, 83-85
stack-based variables, placement of,

14 5-146

sequence, 139

184-184
8253 timer chip

and DRAM refresh, 95
reference material, 72
resetting, 43
system clock inaccuracies

long-period Zen timer, 53, 54
Zen timer, 43, 45-46, 48

operation, 44
stopping, 54, 65

timer modes, 44, 45
timer operation, 43-45
undocumented features, 54, 65

timer 0

Emissive color, vs. reflective color, 1035
Enable Set/Reset register

setting drawing color, 666
specifying plane, 474

EnableSplitScreen function, 824
ENTER instruction

486 processor, 241-242

Pentium processor, 377
286 processor, 221

Enter-display-mode function, 328, 362
Entities, Quake 3-D engine

BSP models, 1284
particles, 1287
polygon models, 1285-1286
sprites, 1287
subdivision rasterization, 1286
z-buffering, 1285-1286

EraseEntities function, 850, 867
Error accumulation, Wu antialiasing

EU (Execution Unit)
algorithm, 778-779, 792

286 and 386 processors
instruction execution times, 223-225
and prefetch queue, 210

8-bit bus cycle-eater, 80
prefetch queue cycle-eater, 86
wait states, 101

8088 processor

Euclid’s algorithm
algorithm, 197
optimized assembly implementation,

200-202
recursive implementations, 198, 200

EVEN directive, 214
EVGADot function, 661-662, 669-670
EVGALine function

Bresenham’s algorithm
assembly implementation, 671,

C-language implementation, 664-

360x480 256-color mode line drawing

675-677

665, 665-668, 670-671

program, 616-617
Execution times. See Clock cycles;

Instruction execution time.
Exit-display-mode function,

328, 329, 362

F
FADD instruction, Pentium processor,

Far jumps, to absolute addresses, 186-187
FDIV instruction, Pentium processor,

1167-1170

1167-1170

Fetch time
See also Instruction fetching.
286 and 386 processors, 210, 211
8088 processor, 86-93

reading from
Files

getco function, 12, 14
read0 function, 12

restartable blocks, 16
text, searching for. See Search engine.

Fill patterns, drawing using latches, 453
FillConvexPolygon function, 714-716,

FillMonotoneVerticalPolygon

FillPatternX subroutine, 899, 900-903,

FillPolygon function

720-721

function, 763-764

903-904

complex polygons, 746
monotone-vertical polygons, 767

FillRect subroutine, 869-870
FillRectangleX subroutine

four-plane parallel processing, 888-

pixel-by-pixel plane selection, 885-887
plane-by-plane processing, 887-889

assembly implementations

891, 891-893

FindIDAverage function

based on compiler optimization, 160
data structure reorganization, 163,

unrolled loop, 161, 162
C language implementation, 158
compiler optimization, 159

FindNodeBeforeValue function, 289
FindNodeBeforeValueNotLess

function, 286, 287
F inatr ing function

Boyer-Moore algorithm, 269, 271-274,

overview, 175
scan-on-first-character approach, 176
s c a n - o n - s p e c i c t e r approach, 178

165-166

274-277

FirsWass function, 355-358
Fix function, 358, 365
FixedDiv subroutine, 982, 993,

FIXED-MUL macro, 1016-1017
FtvedMul subroutine, 981, 993-994,

1010-1012

1009-1010

Fixed-point arithmetic
vs. floating point, 985, 1206
vs. integer arithmetic, 730, 1065
32-bit fixed-point arithmetic, 1086-

1089, 1090-1091, 1092-1093
Flags

and BSWTAP instruction, 254
Carry flag, 147-148, 185, 317-319
INC vs. ADD, 147-148
and LOOP instruction, 148
and NOT instruction, 146-147

FLD instruction, Pentium processor,
1167-1 170

Floating point optimization
clock cycles, core instructions,

cross product optimization, 1171, 1172
dot product optimization, 1170, 1171
FXCH instruction, 1169-1170
interleaved instructions, 1169-1170
matrix transformation optimization,

overview, 1167-1170
pipelining, 1168-1170
projection to screen space, 1174
rounding control, 1174-1175

vs. fixed-point calculations, 985, 1206
vs. integer calculations, 730

486 processor, 236
Pentiurn processor, 1167-1170

AX register, setting to absolute value, 172
byte registers and lost cycles, 242-245
CMP instruction

1167-1 168

1172-1173, 1173-1174

Floating-point calculations

FMUL instruction

486 processor

operands, order of, 306
vs. SCASW, 161

copying bytes between registers, 172
and display adapter cycle-eater, 107
indexed addressing, 237-238
internal cache

effect on code timing, 246
optimization, 236

LAHF and S A H F instructions, 148
LEA instruction, vs. ADD, 131
LODSB instruction, 304
LODSD instruction, vs. MOVLEA

sequence, 171

lookup tables, vs. rotating or shifting,

LOOP instruction, vs. DEC/JNZ

MOV instruction, vs. XCHG, 377
n-bit vs. 1-bit shift and rotate

Pentium code, running on, 411
pipelining

145-146

sequence, 139

instructions, 255-256

address calculation, 238-240, 250
stack addressing, 241-242

cycles, 185-186
rotation instructions, clock

stack-based variables, 184-184
32-bit addressing modes, 256-258
timing code, 245-246
using 32-bit register as two 16-bit

registers, 253-254
XCHG instruction, vs. MOV, 377, 832

clock cycles, core instructions, 1167-1168
cross product optimization, 1171, 1172
dot product optimization, 1170, 1171
FXCH instruction, 1169-1170
interleaved instructions, 1169-1 170
matrix transformation optimization,

overview, 1167-1 170
pipelining, 1168-1170
projection to screen space, 1174
rounding control, 1174-1175

FPU, Pentium processor

1172-1173, 1173-1174

Frustum, clipping to, 1200, 1201-1206,

FST instruction, Pentium processor,

FSUB instruction, Pentium processor,

Function 13H, VGA BIOS, 459
Function calls, performance, 153
Fundamentals of Interactive Computer

FXCH instruction, Pentium processor,

1206-1207

1167-1170

1167-1170

Graphics (book). 660

1169-1170

G
Game of Life

abstraction and performance, 330-332,
345-346

byte-per-cell implementation, 339-340,

C++ implementation
341-345

basic, 324, 325-328
optimized, 336, 337-338

cellmap-wrapped implementation,

challenge to readers
rules, 346, 350
3-cell-per-word implementation

331-332, 333-335, 336, 337-338

(David Stafford), 351-352, 353-
363, 363-365

change list, 363-366
performance analysis, 329-330, 332,

338, 340, 350
re-examining problem, 338-339, 363
rules, 324
3-cell-per-word implementation

discussion, 363-365
listing, 352-363
overview, 351-352

GC (Graphics Controller), VGA
addressing, 427-428
architecture

ALUS, 451-452
barrel shifter, 463-464
bit mask, 464-471
latches, 452-453
set/reset circuitry, 471-479

bit mask, controlling, 465
drawing solid text, 1040
setting inside a loop, 429
vs. write mode 3, 832, 844

Color Compare register, 531
Data Rotate register

Bit Mask register

barrel shifter, controlling, 463
vs. CPU-based rotations, 489
effect on ALUs, 452

Enable Set/Reset register
setting drawing color, 666
specifying plane, 474

Graphics Mode register
read mode 0 , selecting, 525
read mode 1 , selecting, 531

plane, selecting, for CPU reads, 526
planes, specifying to be read, 542

Read Map register

Set/Reset register, 666

Gcdo function
brute-force approach, 195
Euclid’s algorithm

code recursive approach, 198
data recursion approach, 200

GCD (Greatest Common Denominator)
subtraction approach, 196

problem
brute-force approach, 193-196
Euclid’s algorithm, 197-200
subtraction approach, 196-197

Gcd-recurs0 function, 199
Generality, vs. performance, 335
Gerrold, David, 298
GET (global edge table), 744
GetcO function

overhead, 14
vs. read0 function, 12

GetNextKey subroutine, 598, 605
GetUphdDown function, 355
Global edge table (GET), 744
GLQuake, 1288-1290
Gouraud shading

overview, 1246-1247
perspective correction, 1248-1250
problems with, 1247-1250

Graphics cards, and surface caching,

Graphics Controller, VGA. See GC
(Graphics Controller), VGA.

Graphics Mode register
read mode 0, selecting, 525
read mode 1, selecting, 531

543-545

545-547

1261-1262

Graphics screen capture demo program,

Graphics screen restore demo program,

Graphics-to-text demo program, 518-521
Great Buffalo Sauna Fiasco, 137-138
GUIs, and future of programming

profession, 725-726

H
Hardware dependence, DDA (digital

differential analyzer) texture
mapping, 1053

texture mapping insight, 1083
Hecker, Chris

underlying functionality of different
approaches, 1189

Heinlein, Robert A., 1079-1080
Herbert, Frank, 1193
HGC (Hercules Graphics Card), 104
Hidden surface removal (HSR)

backface removal, 954-957
depth sorting, 1000, 1001-1002
sorted spans approach

abutting span sorting, 1229-1230
AdclPolygonEdges function, 1232-

BSP order vs. l/z order, 1220, 1226
ClearEdgeUsts function, 1236-1237
Drawspans function, 1236
edge sorting, 1220-1222
edges vs. spans, 1215-1220
independent span sorting, 1230,

intersecting span sorting, 1228-1229
l/z sorting, 1220-1222, 1227-1231,

overview, 1214-1215
PolyFacesViewer function, 1232
rotation instructions, clock cycles,

ScanEdges function, 1234-1236,

Updateworld function, 1237-1238
High school graduates in Hawaii, 991-992
Horizontal Pel Panning register, 442
Horizontal resolution, 360x480 256-color

Horizontal smooth panning. See Panning.

1233, 1238

1231-1238, 1239-1241

1231-1238, 1239-1241

185-186

1238-1239

mode, 620

I
id Software, 1118, 1190
Ideas, selling, 1193-1194
Illowsky, Dan, 187, 315
Image precedence. See

Bit-plane animation.
DluL instruction

486 processor, 236
on 386 processor, 173-174

INC instruction
VS. ADD, 147-148, 219
and Carry flag, 147-148

Incremental transformations of 3-D

Independent span sorting
objects, 964

AddPolygonEdges function, 1232-

ClearEdgeLists function, 1236-1237
Drawspans function, 1236
overview, 1230
PolyFacesViewer function, 1232
ScanEdges function, 1234-1236,

texture mapping, 1238
Updateworld function, 1237-1238

Index registers, VGA
AC Index register, 443
overview, 427-428

Indexed addressing, 237-238
Indirect far jumps, 186
Information, sharing, 1190, 1194
Initcellmap function, 361
Initializecubes function, 980-981
InitializeFixedPoint function, 977
InitializeObjecUist function, 1001
IniWePalette function, 1037
IniWedList function, 289
Inorder tree traversal

1233, 1238

1238-1 239

code recursion vs. data recursion,

data recursive implementation, 1108,

performance, 11 11-1 113

1107-1108

1109-1110, 1110

INS instruction, 221
InsertNodeSorted assembly routine, 290
InsertNodeSorted function, 289
Instruction execution times

See also Clock cycles; Zen timer.
DRAM refresh cycle-eater, 97, 99
8-bit bus cycle-eater, 82-85
estimating, 93
and instruction fetching, 225
vs. instruction size, 90-92, 93, 211
memory-addressing vs. register-only

prefetch queue cycle-eater, 86-93

See also Prefetch queue cycle-eater.
code alignment, 215-218
8088 processor, 86-93
and instruction execution times, 225

instructions, 223-225

Instruction fetching

Pentium processor, 374
and system wait states, 211
286 processor, 215-218
and wait states, 101

modes, 257

optimizing, 23-24
Pentium processor

Instruction size, 32-bit addressing

Instructions, assembly language

pairable instructions, 388, 390-394
V-pipe-capable instructions, 386-387

Integer calculations, vs. fixed-point, 730,

Integers, sorting, 180-181
Interleaved color cycling, 649-650
Interleaved operations, Pentium

size vs. execution time, 90-92, 93

1065

processor
FXCH instruction and floating point

matrix transformation, 1172-1173,

overview, 394-395
TCPAP checksum program, 408

Internal animation, 872
Internal buffering

operations, 1169-1170

1173-1174

See also Restartable blocks.
in 16-bit checksum program, 15-16
in search engine, 114-115

486 processor
Internal cache

effect on optimization, 236
timing code, 246

Pentium processor
instruction fetching, 374
organization, 374-375
paired instructions, 391, 396

Internal indexing, VGA, 427-429
Internet support

Quake 2, 1293
Quakeworld, 1291

DAC, loading, 643, 648
Divide By Zero interrupt, 181
and IRET instruction, 227
and long-period Zen timer, 53, 66
and page flipping, 446
and POPF instruction, 226
and Zen timer, 43, 45-46

Interrupts

Index

Intersecting lines, 1121-1123
Intersecting span sorting, 1228-1229
Intuitive leaps, 1098
IRET instruction, vs. POPF instruction,

IRQO interrupts, and Zen timer, 45
IS-VGA equate, 572, 575

226-231

J
Jet Propulsion Lab, color perception

JMP $+2 instructions, 558, 632
JMP DWORD PTR instruction, 186-187
Jumps, to absolute addresses, 186-187

research, 1035

K
Kennedy, John, 171-172
Kent, Jim

dynamic palette adjustment, 1039
monotone-vertical polygons, filling,

760-761
Kissing, learning to,

Kitchen floor story, 261-262
Klerings, Peter, 350
Knuth, Donald, 323

281-282

L
UHF instruction, 148
Large code model

linking Zen timer, 71
optimizing assemblers, 71-72

and bit mask, 470
and Color Don’t Care register, 535-

and CPU reads, 530
drawing solid text, 1039-1041,

Mode X

Latches

537, 535

1042-1044

copying pixels, 905-907, 908,

loading, with double copying
909-911

process, 903

masked copying, 918-919, 919-921,

pattern fills, 899, 900-903, 903-904
922-923

overview, 452-453, 897-898
Latency, in Quakeworld, 1291-1292
LEA instruction

VS. ADD, 130, 170-171
multiplication operations, 132-133,

172, 375-376
32-bit registers

addition, 131
multiplication, 132-133

LEAVE instruction
486 processor, 241-242
Pentium processor, 377
286 processor, 221

Level performance, 1213-1214
Life, Game of. See Game of Life.
Lighting

See also Shading.
Gouraud shading

overview, 1246-1 247
perspective correction, 1248-1250
problems with, 1247-1250

intensity, calculating, 1137
overlapping lights, 1247
perspective correctness, 1248-1250
in Quake 3-D engine, 1282-1283
rotational variance, 1249
surface-based lighting

description, 1250-1251
mipmapping, 1254-1255
performance, 1251-1253
surface caching, 1253-1256, 1260-1262

two-pass approach, 1262
viewing variance, 1249

Limits, transcending, in creative design,

Lindley, Bill, 854-855
LINE1 macro, 672-674
LINE2 macro, 674-675
Line Compare register, 565
Line segments

1179-1180

clipping to planes, 1195-1197
representation, 1195, 1196

Linear addressing, VGA, 430
Linear-time sorting, 1099
LineDraw function

assembly implementation, 699-704,

704-706
C-language implementation, 688-691

accumulated pixels approach (Jim

Bresenham’s algorithms

Line-drawing algorithms

Mackraz), 678

basic line-drawing algorithm, 655-

run-length slice algorithm, 683-693,
661, 661-665, 665-671, 671-677

698-704, 705
characteristics of, 656-657
run-length slice algorithm, 683-693,

Wu antialiasing algorithm, 776-779,

Line-drawing demo program, 615-618,

LineIntersectPJane function, 1142-1143
Lines

698-704, 705

780-791, 791-792

618-619

drawing
See also Line-drawing algorithms.
color-patterned lines demo

32OSee also Restartable blocks.400

write mode 2, 509
intersecting, 1121-1123
parametric lines

program, 509-515

256-color mode, 600

clipping, 1121-1123
overview, 1119-1120

Linked lists
basic implementation, 283-285
circular lists, 288-292
dummy nodes, 285-287
head pointers, 284, 285
InsertNodeSorted assembly

routine, 290
overview, 282
sentinels, 285-287
sorting techniques, 755
tail nodes, 286
test-bed program, 291

Little endian format, 252
Local optimization

See also Assemhly language
optimization; Optimization.

bit flipping and flags, 146-147
defined, 140
incrementing and decrementing,

147-148

lookup tables, 145-146
unrolling loops, 143-145, 305, 312,

377-378, 410
LOCK instruction, 377
Lockstep execution, Pentium processor,

LODSB instruction, 304, 312
LODSD instruction, 171
LODSW instruction, 312
Logical functions, ALU, 458
Logical height, virtual screen, 442
Logical width, virtual screen, 442
Long-period Zen timer

See also Zen timer.
calling from C code, 69-72
and interrupts, 53
LZTEST.ASM listing, 66-67
LZTIME.BAT listing, 67-68
LZTIMER.ASM listing, 55-65
overview, 53
PS2 equate, 65-66
system clock inaccuracies, 43,

test-bed program, 66-69
TESTCODE listing, 69
ZTimerOff subroutine, 59-63
ZTimerOn subroutine, 58-59
ZTimerReport subroutine, 63-65

CosSin subroutine, 994-996, 999
vs. rotating or shifting, 145-146
3-cell-per-word implementation, Game

word count program

390-394, 400-403

45-46, 48

Lookup tables

of Life, 365

author’s implementation, 303, 304
David Stafford’s implementation,

WC50 (Terje Mathisen), 307
309-311, 317-319

LOOP instruction
See also Loops.
vs. DEC/JNZ sequence, 139, 140-141
and flags, 148

See also LOOP instruction.
avoiding, 140
and branch prediction, Pentium

unrolling, 143-145, 305, 312,

Loops

processor, 377-378

377-378, 410

M optimization of, 986, 1172-1173, 1173-

3-D rotation, representation of, 938-939

assembly routines, 992, 996-999
C-language implementations, 974-976
normal vectors, calculating, 955-956
rotation of 3-D objects, 938-939, 943-

transformation, optimized, 1172-1 173,

MDA (Monochrome Display Adapter), 104
MemchrO function, 116
MemcmpO function, 116
MemcpyO function, 1147-1 148
Memory access

1174

Matrix math

944, 948

1173-1174

See also Display memory access.
clock cycles, bytes vs. words, 82, 83-85
DEC instruction, 83
and DRAM refresh, 98
8-bit bus cycle-eater, 82
performance, 286 and 386 processors,

prefetch queue cycle-eater, 86
system wait states, 210-213
and wait states, 100

Memory addressing, 221
Memory addressing modes, and

arithmetic operations, 130-133
Memory allocation

display memory, 903-904
page flipping, 834

223-225

Mackraz, Jim, 678
Map Mask register

demo program, 472-473
drawing text, 833
optimizing Mode X, 1074
vs. Read Map register, 526
selecting planes for CPU writes, 443-

444, 471-472
with sedreset circuitry, 474
write mode 1, 443

Map Mask register demo program,

Mask register, blanking screen, 651
Masked copying, Mode X

472-473

clipping, 923
between display memory locations,

image and mask alignments,

performance, 924
system memory to display memory,

918-919, 919-921

generating, 922-923

916-918, 916
Masked images, 871-872
MASM (Microsoft Assembler), 187
Math, 3-D

cross products, 1139-1140
dot products

calculating, 1135-1137
calculating light intensity, 1137
projection, 1141-1142
rotation, 1143-1 144
sign of, 1140-1141
of unit vectors, 1136
of vectors, 1135-1136

assembly routines, 992, 996-999
C-language implementations, 974976
normal vectors, calculating, 955-956
rotation of 3-D objects, 938-939,

transformation, optimized, 1172-

matrix math

943-944, 948

1173, 1173-1174
vector length, 1135

Mathiew, Serge, 855-857
Mathisen, Terje, 250-252, 306, 319
Matrices

incremental transformations, 964

Memory locations, pushing and popping,
254-255

Memory variables
data alignment, 213-215
8088 processor, optimization, 83-85

Memory-addressing instructions, 223-225
MemsetO C library function, 727
Miles, John, 1081, 1093
Mipmapping, 1254-1255
Mode 12H (hi-res mode), 851-855
Mode 13H, 515, 590
Mode Control register, 575
Mode register

color paging, 628-629
256-color modes, 629

See also X-Sharp 3-D animation
Mode X

package.

animation demo programs
page-flipped animation, 924-925,

3-D polygon rotation, 939,

bitmap organization, 882-883
features, 878-879
FillRectangleX subroutine

925-930

940-945, 943

four-plane parallel processing, 888-

pixel-by-pixel plane selection,

plane-by-plane processing, 887-889

891, 891-893

885-887

four-plane parallel processing, 888-

latches
891, 891-893

copying pixels, 905-907, 908,
909-91 1

loading, with double copying
process, 903

overview, 897-898
pattern fills, 899, 900-903, 903-904

animation demo program, 924-925,

clipping, 923
between display memory locations,

image and mask alignments,

performance, 924
system memory to display memory,

masked copying

925-930

918-919, 919-921

generating, 922-923

916-918, 916
memory allocation, 903-904
mode set routine, 880-881, 882
optimization, 1074
pattern fills, 899, 900-903, 903-904
pixel access and hardware planes, 1082
ReadPixelX subroutine, 884-885
vertical scanlines vs. horizontal,

WritePixelX subroutine, 883-884
ModelColor structure, 1035
ModelColofloColorIndex function,

1036, 1038
Mod-WM byte, 257
Modular code

1084-1086

and future of programming

optimizing, 153
profession, 725-726

Monotone-vertical polygons, filling, 760-

MOV instruction, 236, 377, 832
MoveBouncer function, 824-825
Moveobject function, 929
MoveXsortedToAET function

complex polygons, 749
monotone-vertical polygons, 770

MOVSD instruction, 222, 386
MUL instruction, 97, 173-174
Multiplication

761, 761-771, 771

increasing speed of, 173-174
using LEA, 132-133, 172

Multi-word arithmetic. 147-148

N
NEG EAX instruction, 222
Negation, two’s complement, 171
Next1 function, 353
Next2 function, 353
Nextseneration method, 327-328,

335, 336, 337-338, 344
Nonconvex objects, depth sorting, 1000,

1001-1002
Normal vectors

building BSP trees, 1106
calculating, 955-956
direction of, 1140

Normals. See Normal vectors.
NOSMART assembler directive, 72
NOT instruction, 146-147, 147

0
Object collisions, detecting, 531-534
Object space, 935, 1135
Object-oriented programming, 725-726
Octant0 function

360x480 256-color mode line drawing

Bresenham’s line-drawing algorithm,
demo program, 615

662, 668-669
Octant1 function

360x480 256-color mode line drawing

Bresenham’s line-drawing algorithm,
demo program, 616

663, 668-669

Octants, and line orientations, 666-667
l /z sorting

abutting span sorting, 1229-1230
AddPolygonEdges function, 1232-

vs. BSP-order sorting, 1226-1227
calculating l/z value, 1220-1222
ClearEdgeLists function, 1236-1237
DrawSpans function, 1236
independent span sorting, 1230, 1231-

intersecting span sorting, 1228-1229
PolyFacesViewer function, 1232
reliability, 1227
ScanEdges function, 1234-1236,

Updateworld function, 1237-1238
On-screen object collisions, detecting,

531-534
OpenGL MI, GLQuake, 1288-1290
Operands, order of, 173-174
OPT2.ASM listing, 313-315
Optimization

1233, 1238

1238, 1239-1241

1238-1239

See also Assembly language

32-bit registers, 187
and abstraction, 330-332, 345-346
and application parameters, 122
assemblers, optimizing, 71-72
avoiding thinking like a compiler, 152,

and biased perceptions, 1080, 1085
breakthrough level, 316
BSP trees, 1128-1129
buffer-filling routine, 416-420
C library functions, 15
compiler-based

optimization; Local optimization.

154-155

data recursion vs. code recursion,

on vs. off, 9
1112-1113

data recursion, 1108-1113
data structures, 155-166
disk caches, 19
display adapter cycle-eater, 107
DRAM refresh, 98-99
8-bit bus cycle-eater, 83-85
fine-tuning existing code, 312-313
floating point operations

clock cycles, core instructions,
1167-1168

cross product optimization,

dot product optimization, 1170,1171
FXCH instruction, 1169-1 170
interleaved instructions, 1169-1 170
matrix transformation optimization,

overview, 1167-1170
pipelining, 1168-1170
projection to screen space, 1174
rounding control, 1174-1175

addressing pipeline penalty, 238-

internal cache, 236
vs. Pentium processor, 378-379
pushing and popping, 254-255
reference materials, 236
shift and rotate instructions, 255-256
single cycle, importance of, 238
stack addressing, 241-242

1171, 1172

1172-1173, 1173-1174

486 processor

240, 243, 250-252

general rules, 223
generality, decreasing, 335
hardware efficiency, 1084-1086
knowing when to stop, 735
local optimization, 138-148
Mode X, 1074
modular code, 153
objectives and rules, 7-19, 156
pattern matching, 191-192, 202
Pentium processor

and branch prediction, 378
code size and performance, 390
floating point operations, 1167-1175
interleaving operations, 394-395
pairing instructions, 390-394
pixel-drawing code, 1086
prefix bytes, 376, 395, 407
reference material, 374
superscalar execution, 384-396
vs. 386 and 486 processors,

378-379, 384
perspective on problem, changing,

pixel drawing, 1074
pointer advancement optimization,

prefetch queue cycle-eater, 93
problem definition, changing, 332
rearranging instructions, 418-419

315-316, 1084

1086-1089, 1090-1091, 1092-1093

reducing size of code, 416-418
redundant calculations, 682-683
re-examining problem, 338-339
register variables, 338
restartable blocks, 118
sorting techniques, 755
stack addressing, 420
sufficient, 312
superscalar execution

initial pipe, effect of, 405
overview, 384-386
pairable instructions, 388
V-pipe-capable instructions, 386-387

texture-mapping optimization
inner-loop optimizations, 1069-

instruction-by-instruction
optimizations, 1086-1092

pointer advancement optimization,
1086-1089, 1090-1091

vertical scanlines, 1084-1086
%bit fixed-point arithmetic, 1086-

32-bit instructions, 1091
386 processor, 378-379
time vs. space tradeoff, 187
transformation inefficiencies, 2 5-26
transformation matrices, 986
understanding data, importance of,

understanding how things work, 726
unifying model, developing, 11 10-1 11 1
unrolling loops, 143-145, 410
using restartable blocks, 118
and VGA memory speed, 704-705

1073, 1074, 1081-1084

1089, 1090-1091, 1092-1093

122, 175, 180, 305

Optimized searching, 174-180
Optimizing assemblers, 71-72
OR instruction, 377
Orientation-independent texture

mapping, 1065-1066, 1067
OUT instruction

clock cycles, 1082-1083
loading DAC, 640, 642-643
loading palette KAM or DAC

performance, 444, 843
word-OUT vs. byte-OUT, 429, 479
vs. write mode 3, 483-484

registers, 632

OUTS instruction, 221

OUT-WORD macro, 566, 594
Overdraw problem, VSD

and beam trees, 1185-1186
painter’s algorithm, 1184-1 185
sorted spans, 1215

operation, 565

DOS function calls

Overflow register, split screen

Overhead

in 16-bit checksum program, 12
in search engine, 121

memcmpo function, 116
strstm function, 115
of Zen timer, timing, 46, 72

Overlapping rectangles, in dirty-
rectangle animation, 872-873

Overscan, 555-556, 641

P
Page flipping

and bit-plane animation, 814
color cycling, 650
vs. dirty-rectangle animation, 846, 862
display memory start address,

mechanics of, 833-836
memory allocation, 834, 903-904
overview, 444-446
single-page technique, 855-857
640x480 mode, 836-837
with split screen, 836-837
320x400 256-color mode, 600-605
timing updates, 835-836
VGA mode 12H (hi-res mode), 851-855

Page flipping animation demo programs
Mode X, 924-925, 925-930
split screen and page flipping, 820-

320x400 256-color mode, 600-605

See also 3-D animation; 3-D drawing.
and BSP trees, 1099, 1104-1105
overdraw problem, 1184-1 18 j
potentially visible set (PVS),

precalculating, 1188-1189
Pairable instructions, Pentium

changing, 857

825, 825-830, 836-837

Painter’s algorithm

processor, 388

Palette adjustment, dynamic, 1039
Palette RAM

See also Palette registers.
color paging, 628-629
setting registers, 629-630, 631-632
VGA color path, 626

See also Palette R A M .

setting for bit-plane animation, 799-

Palette registers

EGA, 549-550

801, 811-813
Panning

byte-by-byte vs. pixel-by-pixel, 574
overview, 441-442
in split screens, 574-575, 575-582,

in text mode, 442
582-583

PanRight subroutine, 582
Parametric lines

clipping, 1121-1123
overview, 1119-1120

Particles, Quake 3-D engine, 1287
Pattern fills, 899, 900-903, 903-904
Pattern matching, 191-192, 202
PC compatibility, Zen timer, 48-49
Pel panning. See Panning.
Pel Panning register, 574, 583
Pentium processor

AGIs (Address Generation Interlocks),

alignment, 376
branch instructions, pairing, 404-405
branch prediction, 377-378
bus, locking, 377
cache lines, 374
code size and performance, 390
data cache and paired instructions, 391
display adapter cycle-eater, 107
EA (effective address) calculations,

floating point optimization

400-403

375-376

clock cycles, core instructions,

cross product optimization,

dot product optimization,

FXCH instruction, 1169-1170
interleaved instructions, 1169-1170

1167-1168

1171, 1172

1170, 1171

matrix transformation optimization,

overview, 1167-1170
pipelining, 1168-1170
projection to screen space, 1174
rounding control, 1174-1175

1172-1173, 1173-1174

FPU pipelining, 1168-1170
instruction fetching, 374
internal cache, 374-375, 396
LAHF and SAHF instructions, 148
LEA vs. ADD instructions, 131
LODSB instruction, 304
LOOP instruction vs. DEC/JNZ

MOV vs. XCHG instructions, 377
optimization

pairing instructions, 390-394
pixel-drawing code, 1086
reference material, 374

sequence, 139

overview, 373-375
pipeline stalls

FPU, 1168-1170
overview, 375
texture-mapping code, 1092

prefix bytes, 376, 395, 407
running Pentium code on

386 or 486, 411
superscalar execution

initial pipe, effect of, 405
interleaving operations, 394-395
internal cache, 396
lockstep execution, 390-394,

overview, 384-386
pairable instructions, 388
prefix bytes, 395
register contention, 403-405
registers, small set, 395

U-pipe, 385-386
V-pipe, 385-386, 386-387
XCHG vs. MOV instructions, 377, 832

(book), 1148

See also Assembly language

400-403

Pentium Processor Optimization Tools

Performance

optimization; Clock cycles; Cycle-
eaters; Local optimization;
Optimization; Zen timer.

and abstraction, 330-332, 345-346

beam trees, 1186
Boyer-Moore algorithm, 266-268
branching, 140
BSP (Binary Space Partitioning) trees,

bubble sort, 755
complex polygons, filling, 753
dirtyrectangle animation, 873
display adapter cycle-eater, 221
DRAM refresh, 97
function calls, 153
Game of Life

1100, 1111-1113

byte-per-cell implementation, 340
cellmap-wrapped implementation,

challenge results, 351
general analysis, 329-330

and generality, 335
level performance, 1213-1214
lookup tabies, vs. rotating or shifting,

masked copying, Mode X, 924
measuring, importance of, 34, 396
memory access, 223-225
OUT instruction, 444
OUT instructions, 843
PC-compatible computers, 48-49
polygon-filling implementations, 728
precalculated potentially visible set

profiling and 80x87 emulator, Borland

stack frames, 153
SuperVGA, with 486 processor, 842-844
texture mapping, 1074-1074
3-D polygon rotation demo

360x480 256-color mode, 618
320x400 256-color mode, 599-600
time-critical code, 13
vertical scanlines in texture mapping,

video performance, 104
Wu antialiasing algorithm, 777-778
z-buffers, 1213

Perspective correction in texture
mapping, 1093

Perspective correctness problem,
Gouraud shading, 1248-1250

332, 338

145-146

(PVS), 1213-1214

C++, 999

programs, 949

1084

Perspective projection, 937, 1135

Pipeline stalls, Pentium processor, 375
See also Projection.

See also Addressing pipeline penalty;
AGIs (Address Generation
Interlocks).

486 processor

240, 250

Pipelining

addressing pipeline penalty, 238-

stack addressing, 241-242
FPU, Pentium processor, 1168-1170

Pitch angle, in polygon clipping, 1206
Pixel bits, rotating, 252
Pixel drawing

See also Pixels.
EVGADot function, 661-662, 669-670
optimization, 1074, 1086
painter’s algorithm and overdraw

problem, 1184
Pixel intensity calculations, Wu’s

antialiasing algorithm, 778-779
Pixel values, mapping to colors, 548-551,

Pixels
551-555

See also Boundary pixels, polygons;

copying, using latches (Mode X), 905-

reading (320x400 256-color mode), 599
redrawing, display adapter

rotating bits, 252
writing (320x400 256-color mode),

Pixel drawing.

907, 908, 909-911

cycle-eater, 102

599, 600
Plane mask, 1074
Plane-manipulation demo program,

Planes
476-478

clipping line segments to, 1195-1 197
l /z value, calculating, 1221
representation, 1196

See also Bit-plane animation.
ALUs and latches, 451-453
and bit mask, 465
capturing and restoring screens, 541-

and Color Don’t Care register, 534-535,

Planes, VGA

542, 543-547, 547-548

535-537

fonts, in text modes, 516
manipulating, 443-444, 476-478
and Map Mask register, 471-472
Mode X

bitmap organization, 882-883
four-plane parallel processing, 888-

pixel-by-pixel plane selection,

plane-by-plane processing, 887-889

891, 891-893

885-887

Mode X pixel access, 1082
overview, 430
and Read Map register, 542
read mode 0, 525-526
and set/reset circuitry, 471-478
setting all to single color, 473-474
single-color drawing with write mode

write mode 2, 502-504, 509
3, 831-832

Pohl, Frederick, 1275
Pointer advancement optimization, 1086-

Pointer arithmetic, 171
Points, representation of, 1196
PolyFacesViewer function, 1203, 1232
Polygon clipping

BackRotateVector function, 1203
clipping to frustum, 1200, 1201-1206,

ClipToFrustum function, 1204
ClipToPlane function, 1199
optimization, 1207
overview, 1197-1200
PolyFacesViewer function, 1203
ProjectPolygon function, 1201
SetUpFrustum function, 1204
Setworldspace function, 1204
TransformPoint function, 1203
TransformPolygon function, 1203
Updateviewpos function, 1202
Updateworld function, 1205
viewspace clipping, 1207
ZSortObjects function, 1201

complex polygons, 751
monotone-vertical polygons,

non-overlapping convex polygons,

1089, 1090-1091, 1092-1093

1206-1207

POLYG0N.H header file

filling, 771

719-720

texture mapped polygons, 1054
3-D polygon rotation, 945-946
3-D solid cube rotation program, 965
X-Sharp 3-D animation package,

Polygon models, Quake 3-D engine,

Polygon-filling programs

982-984

1285-1286

See also Polygons, filling.
complex polygons, 742-744, 745-752,

monotone-vertical polygons, 760,

non-overlapping convex polygons

753, 754, 755-756

761-771

assembly implementations, 732-733,

C-language implementations, 713-
733-734, 735-739

720, 720-721, 729-732
PolygonIsMonotoneVertical

Polygons
function, 761

See also Texture mapping.
adjacent, and l/z span sorting, 1230
backface removal, 954-957, 1160-1161
categories of, 710, 742, 759-760
clipping, 1158-1159
Gouraud shading, 1247
hidden surface removal, 1214-1222
normal vector, calculating, 955-956
projection in 3-D space, 937,

representation, 1196
3-D polygon rotation demo program

944-945,948

matrix multiplication functions, 943-

overview, 939
performance, 949
polygon filling with clipping

transformation and projection, 944-

944,948

support, 940-943

945, 948
transformation to 3-D space, 935
unit normal, calculating, 1027-1028,

visibility, calculating, 955-956
visible surface determination (VSD)

beam trees, 1185-1189
overdraw problem, 1184-1 185

1137-1140

polygon culling, 1181-1184
potentially visible set (PVS),

precalculating, 1188-1189
visible surface determination

wall orientation testing, BSP tree
(VSD)culling to frustum, 1181-1184

rendering, 1160-1161
Polygons, filling

See also Polygon-filling programs;
Polygons; Texture mapping.

active edges, 742-744, 753, 755, 756
boundary pixels, selecting, 712
with clipping support, 940-943
complex polygons, 742
drawing, speeding up, 727-729
edge tracing

overview, 711-713
ScanEdge function, 716-717, 720-

721, 730-732, 735-738
fitting adjacent polygons, 712-713
flat vs. pointed top, 720
integer vs. fixed-point arithmetic, 1065
in Mode X, 940-943
monotone-vertical polygons,

nonconvex polygons, 755
non-overlapping convex polygons,

performance, comparison of

rasterization, 710-712
scan conversion, 710, 720-721

760-761, 771

720-721

implementations, 728

active edges, 721, 742-744, 753,

C-language implementation, 713-

defined, 710
zero-length segments, 721

755, 756

717, 720-721

Polyhedrons
hidden surfaces, 955, 1000, 1001-1002
representation of, 962
3-D solid cube rotation demo program

basic implementation, 957-961,

incremental transformations, 964-966
object representation, 967

962-963

POP instruction, 241-242, 404
POPA instruction, 221

POPF instruction, 226, 226-231
Popping, memory locations vs. registers,

Portable code, and future of

Portals

254-255

programming profession, 725-726

and beam trees, 1188
in Quake 3-D engine, 1279-1280

Potentially visible set (PVS)
vs. portals, 1279-1280
precalculating, 1188-1189, 1213-1214
Quake 3-D engine, 1278-1279

BSP trees and potentially visible set

lookup tables, 146

long-period Zen timer, 53
rounding vs. truncation, 1002-1003
Zen timer, 48, 52

286 and 386 processors, 225

286 and 386 processors, 210
instruction execution times, 87-93
optimizing for, 93
overview, 86
system wait states, 210
and Zen timer, 88, 92

Pentium processor, 376, 395, 407
and stack-based variables, 184

Prefixes. See Prefix bytes.
Principles of Interactive Computer

Graphics (book), 934
Problems, quick responses to, 1166
Profiling, and 80x87 emulator, Borland

Program size vs. clock cycles, 28
Programmer’s Guide to PC Video Systems

Projection

Precalculated results

(PVS), 1188-1189

Precision

Prefetch queue

Prefetch queue cycle-eater

Prefix bytes

c++, 999

(book), 651

defined, 1135
floating point optimization, 1174
LineIntersectPlane function,

overview, 937, 948
1142-1143

XformAndProjectPoly function,
944-945

rotation without matrices, 1143-1144
using dot product, 1141-1142

ProjectPolygon function, 1201
Proportional text, 489
Protected mode

addressable memory, 221
486 processor

addressing calculation pipeline, 239
indexed addressing, 237-238

general tips, 140
overview, 208-209
32-bit addressing modes, 256-258

PS2 equate, long-period Zen timer, 65-66
Ps/2 computers, 54, 66
PUSH instruction, 222, 241-242, 404
PUSHA instruction, 221
Pushing, memory locations vs. registers,

PZTEST.ASM listing, Zen timer, 49
PZTIME.BAT listing, Zen timer, 51
PZTIMER.ASM listing, Zen timer, 35-42

254-255

Q
QLife program, 352-363
QSCAN3.ASM listing, 309-311
Quake 2, 1293
Quake

surface caching, 1253-1256, 1260-1262
surface-based lighting

description, 1250-1251
mipmapping, 1254-1255
performance, 1251-1253
surface caching, 1253-1256,

texture mapping, 1261-1262

BSP trees, 1276-1277
lighting, 1282-1283
model overview, 1276-1277
portals, 1279-1280
potentially visible set (PVS), 1278-1279
rasterization, 1282
world, drawing, 1280-1281

(VSD), 1181

1260-1262

3-D engine

and visible surface determination

Quakeworld, 1291-1292

R
Radiosity lighting, Quake 2, 1293
Rasterization of polygons

See also Polygons, filling.
boundary pixels, selecting, 712
efficient implementation, 71 1
in Quake 3-D engine, 1282

Rate of divergence, in 3-D drawing, 937
Raycast, subdividing, and beam trees, 1187
RCL instruction, 185-186
RCR instruction, 185-186
Read360x480Dot subroutine, 614-615
Read0 C library function

vs. getco function, 12
overhead, 121

Read Index register, 651-652
Read Map register

demo program, 526-530
planes, specifying to be read, 542
read mode, 0, 526

Read Map register demo program, 526-530
Read mode, 0, 521
Read mode 1

Color Don’t Care register, 534
overview, 525-526
vs. read mode 0, 521
selecting, 525

Read/write/modify operations, 107
Read-after-write register contention, 404
ReadPixel subroutine, 598, 599
ReadPixelX subroutine, 884-885
Real mode. See 386 processor.
Real mode

addressing calculation pipeline, 239
32-bit addressing modes, 256-258

four-plane parallel processing, 888-

pixel-by-pixel plane selection,

plane-by-plane processing, 887-889

BSP trees

Rectangle fill, Mode X

891, 891-893

885-887

Recursion

building BSP trees, 1101-1104
data recursive inorder traversal,

visibility ordering, 1104-1 106
1107-1113

code recursion
vs. data recursion, 1108-1110
Euclid’s algorithm, 198-199

compiler-based optimization,

data recursion
1112-1113

vs. code recursion, 1108-1 110
compiler-based optimization,

Euclid’s algorithm, 200
inorder tree traversal, 1108-1110
performance, 11 11-1 113

1112-1113

performance, 1111-1113
Reference materials

3-D drawing, 934-935
3-D math, 1135
bitmapped text, drawing, 471
Bresenham’s line-drawing

algorithm, 660
BSP trees, 1114, 1157
circle drawing, 626
color perception, 625
8253 timer chip, 72
486 processor, 236
parametric line clipping, 1121
Pentium processor, 374, 1148
SVGA programming, 626
VGA registers, 583

ReferenceZTimerOff subroutine, 41
ReferenceZTimerOn subroutine, 40
Reflections, in GLQuake, 1290
Reflective color, vs. emissive color, 1035
Register contention, Pentium processor,

Register-only instructions, 223-225
Registers

403-405

See also 32-bit registers; VGA registers.
AX register, 171
copying bytes between, 172
EGA palette registers, 549-550
8-bit bus cycle-eater, 85
486 processor

240, 250

cycles, 242-245

addressing pipeline penalty, 238-

byte registers and lost

indexed addressing, 237-238
pushing or popping, vs. memory

locations, 254-255

scaled, 2 56-2 58
stack addressing, 241-242
32-bit addressing modes, 256-258

prefetch queue cycle-eater, 94
and split screen operations, 573
and stack frames, 153
VGA architecture, 427-429

Relocating bitmaps, 516-517
Rendering BSP trees

backface removal, 1160-1161
clipping, 1158-1159
Clipwalls function, 1152-1155,

DrawWallsBackToFront function,

overview, 1149
reference materials, 1157
TransformVertices function, 1151-

UpdateViewPos function, 1151, 1157
Updateworld function, 1156-

viewspace, transformation of objects

wall orientation testing, 1160-1161
WallFacingViewer function, 1150-

1158-11 59

1155-1156, 1160-1161

1152, 1158

1157, 1157

to, 1158

1151, 1161
RenderMan Companion (book), 742
REP MOVS instruction, 148
REP MOVSW instruction, 82, 105, 220
REP SCASW instruction, 166
REP STOS instruction, 727, 735
REPNZ SCASB instruction

vs. Boyer-Moore algorithm, 267-268,

in string searching problem, 121-122,
271, 274

174-175, 262-263
REPZ CMPS instruction

vs. Boyer-Moore algorithm, 267-268,

in string searching problem, 121-122,
271, 274

174-175, 262-263
Restartable blocks

in 16-bit checksum program, 16
optimizing file processing, 118
performance, 122
in search engine, 117-118
size of, 114, 121

Results, precalculating
See also lookup tables.
BSP trees and potentially visible set

(PVS), 1188-1189
RET instruction, 241-242
Reusable code, and future of

programming profession, 725-726
RGB (red, green, blue) color model

mapping to 256-color mode, 1036,

overview, 1034-1035
1037-1038, 1039

Richardson, John, 316
Right-handed coordinate system, 935-937
ROL instruction, 185-186
Roll angle, in polygon clipping, 1206
ROR instruction, 185-186
Rotate instructions

hand assembling, 255-256
n-bit vs. 1-bit, 255-256
286 processor, 222

RotateAndMovePObject
function, 977-978

Rotation, 3-D animation
Concatxforms function, 944
matrix representation, 938-939
multiple axes of rotation, 948
using dot product, 1143-1144
XformVec function, 943

Rotational variance, 1249
Rotations, bitwise

vs. lookup tables, 145-146
multi-bit vs. single-bit, 185-186

in 3-D animation, 1002-1003
floating point optimization, 1174-1 175
texture mapping, 1066-1067

assembly implementation, 698-704
C-language implementations, 688-692,

description, 683-684
implementation details, 685-687
integer-based implementation, 685-687
potential optimizations, 705

Rounding vs. truncation

Run-length slice algorithm

692-693

Ruts, mental, staying out of, 1147-1148

S
SAHF instruction, 148
Sam the Golden Retriever, 841-842
SC (Sequence Controller), VGA

addressing, 427-428
Map Mask register

CPU writes, selecting planes, 443-

drawing text, 833
optimizing Mode X, 1074
vs. Read Map register, 526
with set/reset circuitry, 474
write mode 1, 444

Scaled registers, 256-258
Scan conversion, polygons

444, 471-472

active edges, 721, 742-744,

C-language implementation, 713-717,

defined, 710
zero-length segments, 721

redefining length of, 442
in split screens, 564-565, 573
360x480 256-color mode, 619
vertical, in texture mapping, 1084-1086

author’s implementation, 301-302,

hand-optimized

753, 755, 756

720-721

Scan lines

ScanBuffer assembly routine

303-304

implementation(Wil1em Clements),
313-315

lookup table implementation (David
Stafford), 309-311, 317-319

ScanEdge function
assembly implementation, 735-738, 735
floating-point C implementation, 716-

integer-based C implementation,
717, 720-721

730-732
ScanEdges function, 1234-1236,

ScanOutAET function
1238-1239

complex polygons, 749-750

Index

monotone-vertical polygons, 770

assembly implementation,

C-language implementation, 1058-

ScanOutLine function

1069-1073, 1074

1059, 1067-1069
SCASW instruction, 161
Screen blanking

demo program, 556-557
using DAC Mask register, 651

Screen blanking demo program,
556-557

Screen capture programs, 541-548
Screen redraws, and display adapter

cycle-eater, 101, 102
Screen refresh rate, 619
Screenspace

defined, 1135
and normals of polygons, 1137-1138
projecting to, BSP tree rendering, 1159
uses for, 967

SEARCH.C listing, 118-121
Search engine

See also Searching.
Boyer-Moore algorithm, 263-277
design considerations, 114
execution profile, 121
Findstring function, 175, 176,

optimization, 174-180
restartable blocks, 117-1 18
search space and optimization,

search techniques, 115-116, 175

178, 269

122, 175

SearchForString function, 118
Searching

See also Search engine.
Boyer-Moore algorithm, 263-277
in linked list of arrays, 156-166
for specified byte in buffer, 141-145
using REP SCASW, 166

SecondPass function, 358-360
Sedgewick, Robert (Algorithms), 192, 196
Segments

compiler handling of, 154
and far jumps, 186
protected mode, 208-209
386 processor, 222

SelectBSPTree function, 1124-1125

Selling ideas, 1193-1194
Sentinels, in linked lists, 286
Sequence Controller, VGA. See SC

(Sequence Controller), VGA.
Set320x400Mode subroutine, 593, 596-

Set320x240Mode subroutine, 881-882
Set360x480Mode subroutine,

Set64ox400 function, 855
Set/reset circuitry, VGA

color-forcing demo program, 474-476
and CPU data, 474
emulating write mode 3, 490
overview, 471-472, 478-479
plane-manipulation demo program,

planes, setting all to single

and write mode 2, 501-502, 509, 515

597, 599, 602-604

612, 620-621

476-478

color, 473-474

Set/Reset register, 666
SetBIOSSxSFont subroutine, 830
Set-cell method, 327, 334, 342
SETGC macro, 454, 475
Setpalette function, 783-784
SetPelPan subroutine, 580
SETSC macro, 474
SetSplitScreenScanLine subroutine,

SetStartAddress subroutine, 570, 580
SetUpEdge function, 1057-1058
Setworldspace function, 1204
Shading

570-571, 581

See also Lighting; 3-D drawing.
ambient shading, 1023
diffuse shading, 1023-1024
directed light sources, 1028
effects, 360x480 256-color mode, 618
overall shading, calculating, 1025
of polygons, 1025-1026, 1027-1029

cause of, 813
in dirty-rectangle animation, 846
page flipping, 814
sheep, 1063

Shearing

Shift instructions, 222, 255-256
Shifting bits, vs. lookup tables, 145-146
SHL instruction, 376
ShowBounceCount function, 823-824

Showpage subroutine
masked copying animation, Mode X,

page flipping animation, 827
Show-text function, 329, 363
SHR instruction, 88-91, 97
SIB byte, 257
640x400 mode, mode set routine,

640x480 mode, page flipping, 836-837
16-bit checksum program

See also TCP/IP checksum program.
assembly implementation,

C language implementation,

overview, 8
redesigning, 9

color paging, 628-629
DAC (DigitaVAnalog

Converter), 626-628
palette R A M , 626

Small code model, linking Zen timer, 70
Software patents, 1194
Sorted span hidden surface removal

abutting span sorting, 1229-1230
AddPolygonEdges function, 1232-

BSP order vs. l / z order, 1220, 1226
ClearEdgeLists function, 1236-1237
DrawSpans function, 1236
edge sorting, 1220-1222
edges vs. spans, 1215-1220
independent span sorting, 1230, 1231-

intersecting span sorting, 1228-1229
l / z sorting, 1220-1222, 1227-1231,

overview, 1214-1215
PolyFacesViewer function, 1232
ScanEdges function, 1234-1236,

Updateworld function, 1237-1238
Sorting techniques

25-byte sorting routine, 180-181
BSP trees, 1099
moving models in 3-D

drawings, 1212-1222

929-930

852-853

10-12, 17-18

8-9, 15-16

16-color VGA modes

1233, 1238

1238, 1239-1241

1231-1238, 1239-1241

1238-1239

l /z sorting for hidden surface
removal, 1220-1222

and optimization, 755
z-buffers, 1212-1213

Sortobjects function, 1002
Span-based drawing, and

Specular reflection, 1023
Split screens

beam trees, 1187

EGA bug, 573-574
horizontal panning, 574-575,

overview, 563-565
page flipping, 640x480 mode, 836-837
registers, setting, 573
safety of, 585
split screen demo program, 565, 566-

572, 572
text mode, 584
turning on and off, 565

575-582, 583

SplitScreenDown subroutine, 572
SplitScreenUp subroutine, 572
Spotlights

Gouraud shading, 1247
shading implementation, 1028

masked images, 871-872
Quake 3-D engine, 1287

Square wave timer mode, 44
Stack addressing

Sprites

address pipeline effects, 241-242
assembly language optimization, 420

Stack frames, performance, 153
Stack pointer alignment, 218-219
Stack-based variables, placement

Stacks, POPF vs. IRET, 226-231
Stafford, David

of, 184-185

25-byte sorting routine, 180-181
Game of Life implementation, 351-352,

ScanBuffer assembly routine, word
count program, 309-311, 317-319

24-byte hi/lo function, 292-293

353-363, 363-365

Start Address High and Low registers,

State machines
834-836

3-cell-per-word implementation, Game
of Life, 363-366

word count program, 315
StepEdge function, 1056-1057
STOSB instruction, 236
String instructions, 107
String searching. See Search

engine; Searching.
StrstrO function, 11 5
SUB instruction, 219
Subdivision rasterization, 1266-1267,

Superscalar execution
1267-1270, 1286

initial pipe, effect of, 405
interleaving operations, 394-395
lockstep execution, 390-394, 400-403
overview, 384-386
register contention, 403-405
V-pipe-capable instructions, 386-387

SuperVGA, 104, 107, 842-844
Surface caching

hardware interactions, 1260-1262
surface-based lighting, 1253-1256
in VQuake, 1288

Surface-based lighting
description, 1250-1251
mipmapping, 1254-1255
performance, 1251-1253
surface caching, 1253-1256, 1260-1262
texture mapping, 1261-1262

inaccuracies
System clock

long-period Zen timer, 53, 54
Zen timer, 43, 45-46, 48

timer 0, 8253 chip, 44, 54

copying to display memory, 908, 909-

masked copy to display memory, 916-

System memory, Mode X

911

918, 916
System wait states, 210-213

T
Table-driven state machines, 316-319
Tail nodes, in linked lists, 286
TASM (Turbo Assembler), 71-72
TCPAP checksum program

basic implementation, 406
dword implementation, 409

interleaved implementation, 408
unrolled loop implementation, 410

Test function, 358, 365
TEST instruction, 377, 401-402
Texels

Gouraud shading, 1247
mipmapping, 1254-1255

bitmapped text demo program
Text, drawing

using bit mask, 466-469, 470-471
using write mode 3, 484-489, 489-

high-speed text demo program, using

solid text demo program, using

using write mode 0, 832-833

display adapter cycle-eater, 104
horizontal resolution, 620
panning, 443
split screen operations, 584-585

Text pages, flipping from graphics to
text, 517

TEm-UP macro, 454, 459
TextUp subroutine, 829
Texture mapping

490, 490-496

write mode 3, 490-496

latches, 1039-1041, 1042-1044

Text mode

See also DDA (digital differential
analyzer) texture mapping.

boundary pixels, polygons, 1049-1052,
1066, 1067

C implementation, 1053-1058
independent span sorting, 1238
onto 2-D transformed polygons, 1050
onto 3-D transformed polygons, 1051
onto untransformed polygon, 1049
optimization

inner-loop optimizations, 1069-

instruction-by-instruction

pointer advancement optimization,

vertical scanlines, 1084-1086

1073, 1074, 1081-1084

optimizations, 1086-1092

1086-1089, 1090-1091

orientation independence,

overview, 1048
Pentium pipeline stalls, 1092
perspective correction, 1093

1065-1066, 1067

surface-based lighting, 1261-1262
vertical scanlines, 1084-1086

32-bit addressing modes, 256-258
32-bit division, 181-184, 1008
32-bit fixed-point arithmetic, optimizing,

32-bit instructions, optimizing, 1091
32-bit registers

See also Registers; VGA registers.
adding with LEA, 131
BSWAP instruction, 252
multiplying with LEA, 132-133
386 processor, 222
time vs. space tradeoff, 187
using as two 16-bit registers, 253-254

See also Hidden surface removal; 3-D

1086-1089, 1090-1091, 1092-1093

3-D animation

drawing; 3-D polygon rotation
demo program; X-Sharp 3-D
animation package.

solid cube rotation program, 957-

3-D polygon rotation program, 939,

12-cube rotation program, 972, 973-

demo programs

961, 962-963, 964-966, 967

940-945, 948-949

984, 985-987
depth sorting, 1000, 1001-1002
rotation

ConcatXforms function, 944
matrix representation, 938-939
multiple axes of rotation, 948
Xformvec function, 943

rounding vs. truncation, 1002-1003
translation of objects, 937-938

arithmetic imprecision, handling, 1240
line segments, clipping to planes,

overview, 1195
polygon clipping

3-D clipping

1195-1 197

BackRotateVector function, 1203
clipping to frustum, 1200, 1201-

ClipToFrustum function, 1204
ClipToPlane function, 1199
optimization, 1207

1206, 1206-1207

overview, 1197-1200
PolyFacesViewer function, 1203
ProjectPolygon function, 1201
SetUpFrustum function, 1204
SetWorldspace function, 1204
TransformPoint function, 1203
TransformPolygon function, 1203
updateviewpos function, 1202
Updateworld function, 1205
viewspace clipping, 1207
ZSortObjects function, 1201

3-D drawing
See also BSP (Binary Space

Partitioning) trees; Hidden surface
removal; Polygons, filling; Shading;
3-D animation.

backface removal
BSP tree rendering, 1160-1161
calculations, 955-957
motivation for, 954-955
and sign of dot product, 1140
solid cube rotation demo program,

957-961, 962-963, 964-966, 967
background surfaces, 1240
draw-buffers, and beam trees, 1187
and dynamic objects, 1100-1101
Gouraud shading, 1246-1250
lighting

Gouraud shading, 1246-1250
overlapping lights, 1247
perspective correctness, 1248-1250
rotational variance, 1249
surface-based lighting, 1250-1256,

viewing variance, 1249
moving models in 3-D

drawings, 1212-1222
painter’s algorithm, 1099, 1104-1105
perspective correctness problem,

portals, and beam trees, 1188
projection

dot products, 1141-1142
overview, 937, 948

raycast, subdividing, and
beam trees, 1187

reference materials, 934-935

1260-1262

1248-1250

Index

rendering BSP trees
backface removal, 1160-1161
clipping, 1158-1159
Clipwalls function, 1152-1155,

DrawWaUsBackToFront function,
1155-1156, 1160-1161

overview, 1149
reference materials, 11 57
TransformVertices function,

UpdateViewPos function,

Updateworld function,

viewspace, transformation of

wall orientation testing, 1160-1161
WallFacingViewer function, 1150-

1158-1159

1151-1152, 1158

1151, 1157

1156-1157, 1157

objects to, 1158

1151, 1161
span-based drawing, and

beam trees, 1187
transformation of objects, 935-936
triangle model drawing

fast triangle drawing, 1263-1265
overview, 1262-1263
precision, 1265
subdivision rasterization, 1266-1267,

1267-1270
vertex-free surfaces, and

visibility determination, 1099-1 106
visible surface determination (VSD)

beam trees, 1185-1189
culling to frustum, 1181-1184
overdraw problem, 1184-1185
polygon culling, 1181-1184
potentially visible set (PVS),

precalculating, 1188-1189

beam trees, 1187

3-D engine, Quake
BSP trees, 1276-1277
lighting, 1282-1283
model overview, 1276-1277
portals, 1279-1280
potentially visible set (PVS), 1278-1279
rasterization, 1282
world, drawing, 1280-1281

cross products, 1139-1140
3-D math

dot products
calculating, 1135-1137
calculating light intensity, 1137
projection, 1141-1142
rotation, 1143-1144
sign of, 1140-1141
o f unit vectors, 1136
of vectors, 1135-1136

assembly routines, 992, 996-999
C-language implementations,

normal vectors, calculating, 955-956
rotation of 3-D objects, 938-939,

transformation, optimized, 1172-

matrix math

974-976

943-944, 948

1173, 1173-1174
vector length, 1135

3-D polygon rotation demo program
matrix multiplication functions,

overview, 939
performance, 949
polygon filling with clipping

transformation and projection,

943-944, 948

support, 940-943

944-945, 948
3-D solid cube rotation demo program

basic implementation, 957-961,

incremental transformations, 964-966
object representation, 967

386 native mode, 32-bit
displacements, 187

386 processor
alignment, stack pointer, 218-219
CMP instruction, 161, 306
cycle-eaters, 209-210
data alignment, 213, 218
and display adapter cycle-eater, 107
display adapter cycle-eater, 219-221
doubleword alignment, 218
DRAM refresh cycle-eater, 219
effective address calculations, 129,

LEA instruction, 130-133, 172
LODSD vs. MOV/LEA sequence, 171
lookup tables, vs. rotating or shifting,

962-963

223-225

145-146

sequence, 139
LOOP instruction vs. DEC/JNZ

memory access, performance, 223-225
MUL and I"L instructions, 173-174
multiplication operations, increasing

new instructions and features, 222
Pentium code, running on, 411
protected mode, 208-209
rotation instructions, clock

system wait states, 210-212
32-bit addressing modes, 256-258
32-bit multiply and divide

operations, 985
using 32-bit register as two 16-bit

registers, 253-254
XCHG vs. MOV instructions, 377, 832

386SX processor, 16-bit bus
cycle-eater, 81

360x480 256-color mode
display memory, accessing, 621-622
Draw360x480Dot

subroutine, 613-614
drawing speed, 618
horizontal resolution, 620
line drawing demo program,

mode set routine (John Bridges), 609,

on VGA clones, 610-611
Read360x480Dot

subroutine, 614-615
256-color resolution, 619-620
vertical resolution, 619

320x400 256-color mode
advantages of, 590-591
display memory organization, 591-593
line drawing, 600
page flipping demo program, 600-605
performance, 599-600
pixel drawing demo program, 593-

320x240 256-color mode. See Mode X.
Time perception, subjectivity of, 972
Time-critical code, 13

speed of, 173-174

cycles, 185-186

615-618, 618-619

612, 620-621

598, 599-600

Timer 0, 8253 timer chip
operation, 44
stopping, 54, 65

Timer modes, 44, 45
TIMERJNT BIOS routine, 44
Timers

See also 8253 timer chip; Long-period

divide-by-N mode, 45
square wave mode, 44

Zen timer; Zen timer.

Timeslicing delays, 446
Timing intervals

long-period Zen timer, 53
Zen timer, 45

Transformation inefficiencies, 25-26
Transformation matrices. See Matrices;

Transformation of 3-D objects
Matrix math.

defined, 1135
floating point optimization, 1172-1173,

1173-1174
incremental transformations, 964
steps in, 935-936

TransformPolygon function, 1203
Translation in 3-D space, 937-938
Treuenfels, Anton, 756
Triangle model drawing

fast triangle drawing, 1263-1265
overview, 1262-1263
precision, 1265
subdivision rasterization, 1266-1267,

1267-1270
Triangles, and rotational

variance, 1249-1250
Trinity, 1294
Truncation errors, in 3-D animation,

Truncation vs. rounding
1002-1003

floating point optimization, 1174-1175
texture mapping, 1066-1067

TSRs, and DAC, loading, 643, 648
Turbo Profiler, and 80x87 emulator,

12-cube rotation demo program
Borland C++, 999

limitations of, 986
optimizations in, 985-986
performance, 986

Index

X-Sharp animation package, 972, 973-
984, 984-985

24-byte hi/lo function, 292-293
286 processor

CMP instruction, 161, 306
code alignment, 215-218
cycle-eaters, 209-210
data alignment, 213-215
data transfer rates, 212
display adapter cycle-eater, 219-221
display memory wait states, 220
DRAM refresh cycle-eater, 219
effective address calculations,

instruction fetching, 215-218
LEA vs. ADD instructions, 130
lookup tables, vs. rotating or shifting,

145-146
LOOP instruction vs. DEC/JNZ

sequence, 139
memory access, performance, 223-225
new features, 221
POPF instruction, and interrupts, 226
protected mode, 208-209
stack pointer alignment, 218-219
system wait states, 210-212

See also 320x400 256-color mode.
DAC settings, 629
mapping RGB model to, 1036, 1037-

1038, 1039
resolution, 360x480 256-color mode,

619-620

129, 223-225

256-color modes

Two-pass lighting, 1262
Two’s complement negation, 171

U
Unifying models, and optimization,

Unit normal of polygons, calculating,

Unit vectors, dot product, 1136-1137
Unrolling loops, 143-145, 305, 312, 377-

Updateviewpos function, 1202

1110-1111

1027-1028, 1137-1140

378, 410

Updateworld function, 1205, 1237-1238
U-pipe, Pentium processor

branch instructions, 404-405
overview, 385-386
pairable instructions, 388

V
Variables, word-sized vs. byte-sized,

Vectors
82, 83-85

cross product, 1139-1140
cross-products, calculating, 955-956
dot product, 1135-1137
length equation, 1135
optimization of, 986
unit vectors, dot product, 1136-1137

Bresenham’s line-drawing algorithm,

360x480 256-color mode line drawing

Vectorsup function

664-665

program, 617-618
Verite Quake, 1287-1280
Vertex-free surfaces, and beam trees, 1187
Vertical blanking, loading DAC, 641
Vertical resolution, 360x480 256-color

Vertical scanlines, in texture mapping,

Vertical sync pulse

mode, 619

1084-1086

loading DAC, 641, 648
and page flipping, 444-446, 835-836
split screens, 573

DAC (Digital/Analog Converter)
loading, 641-642, 648
setting registers, 630, 631-632

programming, 458-459

VGA BIOS

vs. direct hardware

function 13H, 459
and nonstandard modes, 854-855
palette RAM, setting registers, 629-630,

reading from DAC, 652
text routines, in 320x400 256-color

631-632

mode, 592

Index

and VGA registers, 458

potential incompatibilities, 446-447
360x480 256-color mode, 610-611

color paging, 628-629
DAC (Digital/Analog Converter), 626-

628, 630, 631-632
palette RAM, 626, 629-630, 631-632

VGA clones

VGA color path

VGA compatibility, 446-447, 610-611
VGA memory

Color Don’t Care register, 535-537, 535
CPU reads, 520, 526

bit-plane animation, 81 1
color compare mode, 531-534, 531
mode 0, set/reset circuitry, 471-472,

mode 12H (hi-res mode), page

mode 13H

VGA modes

474-479

flipping, 851-855

converting to 320x400 256-color
mode, 593

overview, 515
resolution, 590

bitmap organization, 882-883
copying pixels using latches, 905-

features, 878-879
four-plane parallel processing, 888-

masked copying, 916-918, 916,

memory allocation, 903-904
mode set routine, 880-881, 882
pattern fills, 899, 900-903, 903-904
pixel-by-pixel plane

plane-by-plane processing, 887-889
ReadpixelX subroutine, 884-885
WritePixelX subroutine, 883-884

Mode X

907, 908, 909-911

891, 891-893

918-919, 919-921

selection, 885-887

and page flipping, 444-445
read mode 1

Color Don’t Care register, 534
overview, 525-526, 531
selecting, 525

and sedreset circuitry, 478

640x400 mode set routine, 852-853
split screen operations, 584-585
text mode, panning, 443
320x400 256-color mode

advantages, 590-591
converting mode 13H to, 593
display memory organization, 591-593
page flipping demo program, 600-605

and virtual screens, 441
write mode 0, drawing text, 832-833
write mode 1, overview, 444
write mode 2

chunky bitmaps, converting to
planar, 504-505, 505-508

mechanics, 502
overview, 501-502
selecting, 504

vs. Bit Mask register, 844
drawing bitmapped text, 484-489,

overview, 483-484,496
single-color drawing, 831-832
vs. write mode 0, 490

write mode 3

489-490, 490-496

VGA registers
AC Index register, bit 5 settings, 443
Bit Mask register

bit mask, controlling, 465
drawing solid text, 1040
setting inside a loop, 429
vs. write mode 3, 832, 844

Color Compare register, in read
mode 1, 531

Color Don’t Care register, in read
mode 1, 534

Color Select register, color paging,
628-629

Data register, loading DAC, 642-643
Data Rotate register

barrel shifter, controlling, 463
vs. CPU-based rotations, 489
effect on ALUs, 452

Enable Set/Reset register
setting drawing color, 666
specifying plane, 474

Graphics Mode register
read mode 0, selecting, 525
read mode 1, selecting, 531

and high-level languages, 548

Horizontal Pel Panning register, 442
internal indexing, 427-429
Line Compare register, split screen

operation, 565
Map Mask register

drawing text, 833
optimizing Mode X, 1074
vs. Read Map register, 526
selecting planes for CPu writes,

with set/reset circuitry, 474
write mode 1, 444

443-444, 471-472

Mask register, blanking screen, 651
Mode Control register, pel panning in

Mode register
split screen, 575

color paging, 628-629
256-color modes, 629

operation, 565
Overflow register, split screen

palette RAM registers, setting, 631-632
Pel Panning register, 574, 583
Read Index register, 651-652
Read Map register

plane, selecting, for CPU reads, 526
planes, specifying to be read, 542

Set/Reset register, setting drawing
color, 666

setting, 504, 558
setting and reading, 582
Start Address High and Low registers,

and VGA BIOS, 458
Write Index register

834-836

DAC index wrapping, 651
loading DAC, 642-643

VGA (Video Graphics Adapter)
ALU and latch demo program, 453-

architecture, 426-429
457, 458-460

ALUS, 451-452
barrel shifter, 463-464
bit mask, 464-471
latches, 452-453
set/reset circuitry, 471-479

ball animation demo program, 431-441
CGA compatibility, 430
delay sequences, 558
and display adapter cycle-eater, 104-108

display memory, 446
fill patterns, drawing, 453
GC (Graphics Controller), architecture,

I/O access times, 842-844
linear addressing, 430
memory access times, 842-844
overview, 426
page flipping, 444-446
panning, 441-443
performance, with 486

processor, 842-844
potential incompatibilities, 446-447
registers, internal indexing, 426-429
screens, capturing and restoring, 541-

split screens

451-453, 463-479

542, 543-547, 547-548

horizontal panning, 574-575, 575-

overview, 563-565
registers, setting, 573
safety of, 585
split screen demo program, 565,

text mode, 584
turning on and off, 565

25 MHz clock and 28 MHz clock,
switching between, 620-621

virtual screens
overview, 430
panning, 441-443

582, 583

566-572, 572

Video function 10H, EGA BIOS,

Viewing angle, and BSP tree rendering,

Viewing variance, 1249
Viewspace

550-551, 555

1157-1158

defined, 1135
and normals of polygons, 1137-1138
in 3-D transformation, 935
transformation to, BSP rendering, 1158
uses for, 967

Viewspace clipping, 1207
Virtual screens

overview, 430
panning, 441-443

Visibility determination
See also Visible surface determination.
and BSP trees, 1099-1106

Visibility of polygons, calculating, 955-956
Visible surface determination (VSD)

beam trees, 1185-1189
culling to frustum, 1181-1184
overdraw problem, 1184-1185
polygon culling, 1181-1184
and portals, 1279-1280
potentially visible set (PVS),

precalculating, 1188-1 189

branch instructions, 404-405
overview, 385-386
V-pipe-capable instructions, 386-387

VQuake, 1287-1280
VSD. See Visible surface determination

V-pipe, Pentium processor

(VSD).

W
Wait30Frames function, 854
Wait states

display memory wait states
8088 processor, 101-103
286 processor, 220

vs. DRAM refresh, 100
overview, 99
system memory wait states, 210-213

WaitForVerticaLSyncEnd subroutine,
569, 579-580

WaitForVerticaLSyncStart subroutine,

WalkBSPTree function, 1106
WalkTree function

569, 579

code recursive version, 1108
data recursive version, 1109-1110

Wall orientation testing, BSP tree
rendering, 1160-1161

WC word counting program (Terje
Mathisen), optimization, 250-252,
306, 319

Williams, Rob, 174
Winnie the Pooh orbiting Saturn, 1047
WinQuake, 1290
Word alignment, 286 processor

code alignment, 215-218
data alignment, 213-215
stack pointer alignment, 218-219

Word count program

edge triggered device, 316
fine-tuning optimization, 312-313
initial C implementation, 299
lookup table, 303, 304, 317-319
ScanBuffer assembly routine

author’s implementation, 301-302
Stafford, David’s, 309-311, 317-319
Willem Clements’ implementation,

313-315
as state machine, 315
theoretical maximum performance, 319

Word-OUT instruction, 429
Word-sized variables, 8088 processor

memory access, 82
optimization, 83-85

World, drawing, in Quake 3-D engine,

Worldspace
1280-1281

defined, 1135
in 3-D transformation, 935
uses for, 967

DAC index wrapping, 651
loading DAC, 642-643

drawing text, 832-833
vs. write mode 2, 503

overview, 444
vs. write mode 3, 490

chunky bitmaps, converting to planar,

color-patterned lines demo program,

mechanics, 502
overview, 501-502
selecting, 504
vs. set/reset circuitry, 509, 515
vs. write mode 0, 503

vs. Bit Mask register, 844
charactedattribute map, 517
drawing bitmapped text, 484-489,

drawing solid text, 1039-1041,

graphics, preserving on switch to, 515-

Write Index register

Write mode 0

Write mode 1

Write mode 2

504-505, 505-508

509-515

Write mode 3

489-490, 490-496

1042-1044

517, 518-521

overview, 483-484, 496
single-color drawing, 831-832
vs. write mode 1, 490

Write mode 3 demo program, 484-489,

Write modes, VGA
489-490, 490-496

and set/reset circuitry, 478
text, drawing, 484, 490, 496

Write-after-write register contention, 404
Writepixel subroutine, 597, 599
WritePixelX subroutine, 883-884
Writing pixels

Wu antialiasing algorithm
320x400 256-color mode, 599, 600

assembly implementation, 787-791
C-language implementation, 780-786
description, 776-778, 791-792
error accumulation, 778-779, 792
performance, 777-778
pixel intensity calculations, 778-779

algorithm.
Wu, Xiaolin. See Wu antialiasing

X
X86 family CPUs

See also 8088 processor.
32-bit division, 181-184, 1008
branching, performance, 140
copying bytes between registers, 172
interrupts, 9
limitations for assembly

lookup tables, vs. rotating or shifting,

LOOP instruction vs. DEC/JNZ

machine instructions, versatility, 128
memory addressing modes, 129-133
overview, 208
transformation inefficiencies, 26

programmers, 27

145-146

sequence, 139

XCHG instruction, 377, 832
X-clipping, in BSP tree rendering, 1159
XformAndProjectPObject function, 974
SormAndProjectPoints function, 960
XformAndproectPoly function, 944-945
XformVec function

assembly implementation, 996-997,

1017-1019
C implementation, 943, 976

in Boyer-Moore algorithm, 274-277
byte registers, 243
with lookup table, 304

XLAT instruction

XOR instruction, vs. NOT, 147
X-Sharp 3-D animation package

AppendRotationX function, 975
AppendRotationY function,

AppendRotationZ function, 965, 976
code archives on diskette, 985
ConcatXforms function

964-965, 975

assembly implementation, 997-999,

C implementations, 944, 976
cossin subroutine, 994-996, 999,

DDA (digital differential analyzer)

1019-1022

1013-1015

texture mapping
assembly implementation, 1069-

1073, 1074
C implementation, 1053-1058
disadvantages, 1052-1053, 1059
DrawTexturedPolygon, 1055-1056
hardware dependence, 1053
multiple adjacent polygons, 1068
optimized implementation, 1069-

orientation independence, 1065-

performance, 1074
ScanOutLine function, 1058-1059,

SetUpEdge function, 1057-1058
StepEdge function, 1056-1057
techniques, 1048-1051

DrawPObject function, 978-979
ambient and diffuse shading

FixedDiv subroutine, 982, 993,

FIXED-MUL macro, 1016-1017
FixedMd subroutine, 981, 993-994,

InitMizeCubes function, 980-981
InitializeFixedPoint function, 977

1073, 1074

1067, 1067

1067

S U P P O ~ ~ , 1025-1027

1010-1012

1009-1010

matrix math, assembly routines, 992,
996-999

ModelColoffoColorIndex function,
' 1036, 1038
older processors, support for, 1007-

overview, 984-985
POLYG0N.H header file, 982-984
RGB color model

1008, 1008-1023

mapping to 256-color mode, 1036,

overview, 1034-1035
1037-1038, 1039

RotateAndMovePObject function,

XforrnAndProjaect hnction, 974
XformVec function

assembly implementation, 996-997,

C implementation, 976

977-978

1017-1019

XSortAET function
complex polygons, 748
monotone-vertical polygons, 769

Y
Yaw angle, in polygon clipping, 1206
Y-clipping, in BSP tree rendering, 1159

Z
Z-buffers

performance, 1213
Quake 3-D engine, 1285-1286
vs. sorted spans, 1215
sorting moving models, 1212-1213

Z-clipping, in BSP tree rendering, 1158
Zen timer

See also Long-period Zen timer.
calling, 48

calling from C code, 69-72
and DRAM refresh, 99
and interrupts, 43
interval length, 45
overhead of, timing, 46, 72
PC compatibility, 48-49
precision, 48, 52
prefetch queue cycle-eater, 88, 92
PS/2 compatibility, 66
PZTEST.ASM listing, 49
PZTIME.BAT listing, 51
PZTIMER.ASM listing, 35-42
ReferenceZTimerOff subroutine, 41
ReferenceZTimerOn subroutine, 40
reporting results, 47
starting, 43
stopping, 46
system clock inaccuracies, 43, 45-46, 48
test-bed program, 48-52
TESTCODE listing, 50
timing 486 code, 245-246
ZTimerOff subroutine, 38-41, 46-47
2TimerOn subroutine, 37-38, 43
ZTimerReport subroutine, 41-42,

47-48
Zero-wait-state memory, 21 1
Z-order display, masked images, 872
Z-sorting, for hidden surface removal,

ZSortObjects function, 1201
ZTimerOff subroutine

1220-1222

long-period Zen timer, 59-63
Zen timer, 38-41, 46-47

ZTimerOn subroutine
long-period Zen timer, 58-59
Zen timer, 37-38, 43

ZTimerReport subroutine
long-period Zen timer, 63-65
Zen timer, 41-42, 47-48

Index

	Cover
	Contents
	Foreward
	Introduction
	Part I
	1. The Best Optimizer Is between Your Ears
	2. A World Apart
	3. Assume Nothing
	4. In the Lair of the Cycle-Eaters
	5. Crossing the Border
	6. Looking Past Face Value
	7. Local Optimization
	8. Speeding Up C with Assembly Language
	9. Hints My Readers Gave Me
	10. Patient Coding, Faster Code
	11. Pushing the 286 and 386
	12. Pushing the 486
	13. Aiming the 486
	14. Aiming the 486
	15. Linked Lists and plain Unintended Challenges
	16. There Ain’t No Such Thing as the Fastest Code
	17. The Game of Life
	18. It’s a plain Wonderful Life
	19. Pentium: Not the Same Old Song
	20. Pentium Rules
	21. Unleashing the Pentium’s V-Pipe
	22. Zenning and the Flexible Mind

	Part II
	23. Bones and Sinew
	24. Bones and Sinew
	25. VGA Data Machinery
	26. VGA Write Mode 3
	27. Yet Another VGA Write Mode
	28. Reading VGA Memory
	29. Saving Screens and Other VGA Mysteries
	30. Saving Screens and Other VGA Mysteries
	31. Higher 256-Color Resolution on the VGA
	32. Higher 256-Color Resolution on the VGA
	33. Higher 256-Color Resolution on the VGA
	34. Higher 256-Color Resolution on the VGA
	35. Higher 256-Color Resolution on the VGA
	36. Higher 256-Color Resolution on the VGA
	37. Higher 256-Color Resolution on the VGA
	38. The Polygon Primeval
	39. The Polygon Primeval
	40. Of Songs, Taxes, and the Simplicity of Complex Polygons
	41. Those Way-Down Polygon Nomenclature Blues
	42. Wu’ed in Haste; Fried, Stewed at Leisure
	43. Bit-Plane Animation
	44. Split Screens Save the Page Flipped Day
	45. Dog Hair and Dirty Rectangles
	46. Who Was that Masked Image?
	47. Mode X: 256-Color VGA Magic
	48. Mode X Marks the Latch
	49. Mode X 256-Color Animation
	50. Adding a Dimension
	51. Sneakers in Space
	52. Fast 3-D Animation: Meet X-Sharp
	53. Raw Speed and More
	54. 3-D Shading
	55. Color Modeling in 256-Color Mode
	56. Color Modeling in 256-Color Mode
	57. 10,000 Freshly Sheared Sheep on the Screen
	58. Heinlein’s Crystal Ball, Spock’s Brain, and the 9-Cycle Dare
	59. The Idea of BSP Trees
	60. Compiling BSP Trees
	61. Frames of Reference
	62. One Story, Two Rules, and a BSP Renderer
	63. Floating-Point for Real-Time 3-D
	64. Quake’s Visible-Surface Determination
	65. 3-D Clipping and Other Thoughts
	66. Quake’s Hidden-Surface Removal
	67. Sorted Spans in Action
	68. Quake’s Lighting Model
	69. Surface Caching and Quake’s Triangle Models
	70. Quake: A Post-Mortem and a Glimpse into the Future

	Afterword
	Index

	next:
	home:
	previous:
	Next:
	Home:

