


What’s on the CD-ROM 
The companion CD-ROM includes all of the source code 
published as numbered listings in the text of the book, 
plus compiled executables of many of the demos. In ad- 
dition, you’ll find the following extras on the CD: 

The classic Zen Timer code profiling tool, in both executable and source 

code format. 

a \ 

@ 
4 Exclusive! The text of Michael’s long out of print 1989 cult classic Zen of 

AsS6T373ibly Language, plus scans of all 1 OOt technical figures. 

ant essays from Michael’s ongoing work in game develop- 

g for the first time in book form. 

:nts, descriptions, copyrights, installation, limita- 

‘n. 

Hardware Platform: An Intel PC. 
Note that some code is processor-specific. 
To run all code you must have at least a 
Pentium processor. 

Wimiws 95 or NT. . 
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Foreword 

I got my start  programming  on Apple I1 computers  at  school,  and almost all 
of my early  work was on  the Apple  platform.  After  graduating,  it quickly be- 
came  obvious that  I was going  to have trouble paying my rent working  in the 
Apple I1 market  in  the  late eighties,  so I was forced  to make  a very rapid move 
into  the  Intel PC environment. 
What I was able to pick up over several years on  the Apple,  I needed to learn 
in  the space of a few months  on  the PC. 
The biggest  benefit to  me of actually  making  money as a  programmer was 
the ability to  buy all the books and magazines  I  wanted.  I bought  a  lot. I was 
in  territory  that I new almost nothing  about, so I read everything that I could 
get my hands on. Feature  articles,  editorials,  even  advertisements held infor- 
mation  for  me  to  assimilate. 
John  Romero  clued  me  in early to  the articles by Michael  Abrash. The  good 
stuff.  Graphics  hardware.  Code  optimization. Knowledge and wisdom for  the 
aspiring  developer.  They  were  even fun to read. For  a long  time, my personal 
quest was to  find  a copy of Michael’s first  book, Zen ofAssembly Language. I 
looked  in every bookstore  I  visited,  but  I  never  did  find  it. I made  do with the 
articles  I  could  dig up. 
I  learned  the  dark secrets of the EGA video controller  there,  and  developed 
a few neat tricks of my own. Some of those  tricks  became the basis for  the 
Commander Keen series of games,  which launched id  Software. 
Ayear  or two later,  after  Wolfenstein-3D7  I bumped  into Michael (in  a virtual 
sense)  for  the  first  time.  I was looking  around  on M8cT Online,  a BBS run by 
the Dr. Dobb’s publishers  before  the  Internet  explosion, when  I saw some 
posts from  the  man himself. We traded  email,  and  for  a  couple  months we 
played  tag-team gurus  on  the  graphics  forum  before Doom’s development 
took  over my life. 
A  friend of Michael’s at his newjob  put us back  in  touch with each  other  after 
Doom  began  to  make  its  impact, and I finally got  a  chance  to  meet up with 
him  in  person. 



I talked myself hoarse  that day, explaining all the  ins  and  outs of Doom  to 
Michael and  an  interested  group of his  coworkers. Every  few  days afterwards, 
I  would get  an  email  from Michael  asking  for an  elaboration  on  one of my 
points,  or discussing an  aspect of the  future of graphics. 
Eventually, I  popped  the question-I offered  him  a job  at id.  “Just  think: no 
reporting  to  anyone,  an  opportunity  to  code all day, starting  with  a  clean 
sheet of paper. A chance  to  do the right thingas a  programmer.”  It  didn’t work. 
I kept  at  it  though,  and  about  a year later I finally convinced  him  to  come 
down and  take  a  look  at id. I was working on Quake. 
Going  from  Doom  to  Quake was a  tremendous  step.  I knew where  I  wanted 
to end  up,  but I wasn’t at all clear  what  the  steps  were  to  get  there. I was trying 
a  huge  number of approaches,  and even the  failures were  teaching  me  a  lot. 
My enthusiasm  must have been  contagious,  because  he  took  the job. 
Much heroic  programming  ensued. Several hundred  thousand  lines of code 
were  written.  And  rewritten.  And  rewritten.  And  rewritten. 
In  hindsight, I have plenty of regrets  about various  aspects of Quake,  but  it is 
a  rare  person  that  doesn’t  freely  acknowledge  the  technical  triumph of it. We 
nailed  it.  Sure,  a  year  from now I will have probably  found  a new perspective 
that will make  me  cringe  at  the  clunkiness of some  part of Quake,  but  at  the 
moment  it still looks  pretty  damn  good to  me. 
I was very happy  to have Michael  describe  much of the  Quake  technology  in 
his ongoing  magazine  articles. We learned  a  lot,  and I hope we managed  to 
teach  a  bit. 
When  a  non-programmer  hears  about Michael’s  articles or  the source  code I 
have released,  I usually get  a  stunned “WTF would you do  that  for???”  look. 
They  don’t  get it. 
Programming is not  a zero-sum game.  Teaching  something  to a fellow pro- 
grammer  doesn’t take it away from you. I’m  happy  to  share what I can, because 
I’m in it for  the love of programming.  The  Ferraris  are  just gravy, honest! 
This  book  contains many of the  original  articles  that  helped  launch my pro- 
gramming  career. I hope my contribution  to  the  contents of the  later  articles 
can  provide  similar  stepping  stones  for  others. 

-John Camnack 
id  Software 
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Introduction 

What was it like working with John  Carmack  on Quake? Like being  strapped 
onto  a  rocket  during takeoff-in the  middle of a hurricane.  It  seemed like 
the whole  world was watching, waiting to  see if id Software could  top  Doom; 
every casual e-mail tidbit or conversation with a visitor ended  up  posted  on 
the  Internet within hours. And meanwhile, we were pouring everything we 
had  into Quake’s technology; I’d  often  come  in in the  morning to find  John 
still there, working on  a new idea so intriguing  that  he  couldn’t  bear to sleep 
until  he  had tried it  out. Toward the  end,  when  I  spent  most of my time 
speeding  things  up,  I would spend  the day in  a trance writing  optimized as- 
sembly code,  stagger out of the Town East Tower into  the blazing Texas heat, 
and  somehow drive home  on LBJ Freeway without  smacking  into  any of the 
speeding pickups whizzing past me  on  both sides. At home,  I’d fall into  a 
fitful sleep,  then  come back the  next day in  a  daze and  do it again. Every- 
thing  happened so fast, and  under so much  pressure,  that  sometimes I wonder 
how  any of us made  it  through  that  without  completely  burning  out. 
At the same  time, of course, i t  was tremendously  exciting.  John’s  ideas  were 
endless  and  brilliant,  and  Quake  ended  up establishing  a new standard  for 
Internet  and first-person 3-D game technology. Happily, id  has an  enlight- 
ened  attitude  about  sharing  information,  and was willing to let  me write about 
the Quake  technology-both  how it  worked and how it evolved. Over the two 
years I  worked at  id,  I wrote  a number of columns  about  Quake  in 07: Dobb’s 
Sourcebook, as  well  as a  detailed overview for  the 1997 Computer  Game Devel- 
opers  Conference. You can  find these in  the  latter  part of this  book;  they 
represent  a  rare look into  the  development  and  inner workings of leading- 
edge software development,  and I hope you enjoy reading  them as much as I 
enjoyed  developing  the  technology  and  writing  about  it. 
The rest of this  book is pretty much everything I’ve written over the past 
decade  about  graphics  and  performance  programming  that’s still relevant  to 
programming today, and  that covers a lot of ground. Most  of Zen of Ch-aphics 
Programming, 2nd  Edition is in there  (and  the rest is on  the CD) ; all of Zen of 
Code Optimization is there  too,  and even my 1989 book Zen of Assembly Lan- 
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p a g e ,  with its long-dated 8088 cycle counts  but  a  lot of useful  perspectives, is 
on  the CD.  Add to  that  the most recent 20,000 words  of Quake  material,  and 
you have most of what I’ve learned over the past decade in one  neat  package. 
I’m delighted to have  all this material  in  print in  a  single  place,  because  over 
the past  ten years I’ve run  into  a lot of people who have found my writings 
useful-and a  lot  more who  would like to read  them,  but  couldn’t  find  them. 
It’s hard to keep  programming  material (especially stuff that  started out as 
columns) in print  for very long,  and I would like to thank The Coriolis Group, 
and particularly my good  friend Jeff Duntemann  (without  whom  not only 
this volume  but  pretty  much my entire writing career  wouldn’t  exist),  for 
helping  me  keep this material available. 
I’d also like to  thank  Jon Erickson, editor of 07: Dobb’s, both  for  encourage- 
ment  and  general  good  cheer  and  for giving me  a place to write whatever I 
wanted  about  realtime 3-D. It still amazes me  that  I was able  to  find  time  to 
write a  column every two months  during  Quake’s  development,  and if Jon 
hadn’t  made  it so easy and  enjoyable,  it  could never have happened. 
I’d also like to thank Chris Hecker  and  Jennifer  Pahlka of the  Computer 
Game  Developers Conference,  without whose encouragement,  nudging,  and 
occasional well-deserved nagging  there is no  chance I would ever have writ- 
ten  a  paper  for  the CGDC-a paper  that  ended  up  being  the  most 
comprehensive overview  of the  Quake  technology  that’s ever likely to be writ- 
ten,  and which appears  in  these  pages. 
I don’t have much  else  to say that  hasn’t  already  been  said  elsewhere  in 
this  book, in one of the  introductions  to  the  previous  volumes  or  in  one 
of the  astonishingly  large  number of chapters. As you’ll see as you  read, 
it’s been  quite  a  decade  for  microcomputer  programmers,  and I have been 
extremely  fortunate  to  not  only  be  a  part of it,  but  to  be  able  to  chronicle 
part of it as well. 
And the  next  decade is shaping  up to be  just as exciting! 

”Michael Abrash 
Bellevue, Washington 
May 1997 

Introduction 



Part 1



chapter 1

the best optimizer is between your ears



ement of Code Optimization 
This book is devdted to a topic near  and  dear to my heart: writing software that 
pushes PCs to the n-of-the-mill  software, PCs run like the 97-pound- 
weakling rninicompu e. Give them  the proper care, however, and those 
ugly boxes are capable es. The key is this:  Only on microcomputers do you 
have the run of the whole machine, without layers of operating systems, drivers, and 
the like getting in $e way.  You can do anything you  want, and you can understand 

ng  on, if you so wish. 
you should  indeed so wish. 

Is performance stiIl’$n  issue in this era of cheap 486 computers and super-fast Pentium 
computers? You bet3,How many programs that you use  really run so fast that you 
wouldn’t be happier 3 they ran faster? We’re so used to slow software that when a 
compile-and-link sequence  that took two minutes on a PC takes just ten seconds on 
a 486 computer, we’re ecstatic-when in  truth we should be settling for  nothing less 
than  instantaneous response. 
Impossible, you say? Not with the  proper design, including  incremental compilation 
and linking,  use of extended and/or expanded memory, and wellcrafted code. PCs can 
do just about anything you  can  imagine  (with a few  obvious exceptions,  such  as  applica- 
tions involving super-computer-class number-crunching) if  you  believe that it can be 
done, if you understand  the  computer inside and  out,  and if you’re willing to think 
past the obvious solution to unconventional but potentially more  fmitful approaches. 
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My point is  simply  this: PCs can work wonders. It’s not easy coaxing them  into  doing 
that,  but it’s rewarding-and  it’s sure as heck fun.  In this book, we’re going  to work 
some of those wonders, starting.. . 
. . .now. 

Understanding High Performance 
Before we can  create  high-performance  code, we must understand what high  perfor- 
mance is. The objective (not always attained) in creating  high-performance software 
is to make the software able to carry out its appointed tasks so rapidly that  it  responds 
instantaneously, as f i r  as the user is concerned. In other words, high-performance code 
should ideally run so fast that any further improvement in the code would  be  pointless. 
Notice that the above definition most  emphatically does not say anything about making 
the software as fast as possible. It also does not say anything about using  assembly  lan- 
guage, or an optimizing  compiler, or, for that matter, a compiler at all. It also doesn’t say 
anything about how the code was designed and written.  What it does say is that high- 
performance code shouldn’t  get in the user’s way-and that’s all. 
That’s an  important  distinction, because all too many programmers  think  that as- 
sembly language, or the  right compiler, or a  particular high-level language, or a 
certain design approach is the answer to  creating  high-performance  code.  They’re 
not, any more  than  choosing  a  certain set of tools is the key to  building  a  house. You 
do indeed  need tools to  build  a  house, but any of many sets of tools will do. You also 
need a  blueprint,  an  understanding of everything that goes into  a  house,  and the 
ability to use the tools. 
Likewise, high-performance  programming  requires  a  clear  understanding of the 
purpose of the software being  built,  an overall program  design,  algorithms  for imple- 
menting  particular tasks, an  understanding of what the  computer can do  and of 
what  all relevant software is doing-and solid programming skills, preferably using 
an optimizing  compiler or assembly language. The optimization at  the  end  isjust  the 
finishing  touch, however. 

mthout good design, good algorithms, and complete understanding  of  the  program k p operation, your carefully optimized code will amount to one  of mankindb least 
fruitful creations-a fast slow program. 

‘What’s  a fast slow program?” you  ask. That’s  a  good  question, and a brief (true) 
story is perhaps  the best answer. 

When Fast  Isn’t  Fast 
In  the early 1970s, as the first hand-held  calculators were hitting  the  market,  I knew 
a fellow named Irwin. He was a  good  student,  and was planning to be an engineer. 
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Being an engineer back then  meant knowing  how to use a slide rule,  and Irwin could 
jockey a  slipstick  with the best  of them.  In  fact, he was so good  that  he challenged a 
fellow  with a calculator to a duel-and  won, becoming a local legend  in  the process. 
When you get  right down to it,  though, Irwin  was spitting into  the wind. In a few 
short years  his hard-earned slipstick  skills  would be worthless, and  the  entire disci- 
pline would be essentially  wiped from the face  of the  earth. What’s more,  anyone 
with  half a brain  could see that changeover coming, Irwin had basically  wasted the 
considerable  effort and time he had spent optimizing his soon-to-be-obsolete skills. 

What does all  this  have to do with programming? Plenty. When you spend time opti- 
mizing poorlydesigned assembly code, or when you count on an optimizing compiler 
to make your code fast,  you’re  wasting the optimization, much as  Irwin did. Particu- 
larly in assembly,  you’ll find  that without proper up-front  design and everything  else 
that goes into high-performance design,  you’ll  waste  considerable effort and time on 
making an inherently slow program as  fast  as possible-which  is still slow-when you 
could easily  have  improved performance a great deal more with just a little thought. As 
we’ll see, handcrafted assembly language and optimizing  compilers  matter, but less 
than you might think,  in the  grand scheme of  things-and  they  scarcely matter at all 
unless they’re used  in the context of a good design and a thorough  understanding of 
both  the task at hand  and  the PC. 

Rules for Building  High-Performance  Code 
We’ve got  the following rules for creating  high-performance software: 

Know  where  you’re  going  (understand  the  objective of the  software). 
Make a  big  map  (have  an  overall  program  design  firmly  in  mind, so the  various 
parts  of  the  program  and  the  data  structures  work  well  together). 
Make lots of  little  maps  (design  an  algorithm  for  each  separate  part of the  over- 
all  design). 
Know  the  territory  (understand  exactly  how  the  computer  carries  out  each  task). 
Know  when  it  matters  (identify  the  portions of your  programs  where  perfor- 

Always  consider  the  alternatives  (don’t  get  stuck  on  a  single  approach;  odds  are 

Know  how  to  turn  on  the  juice  (optimize  the  code  as  best  you  know  how  when  it 

mance  matters,  and  don’t  waste  your  time  optimizing  the  rest). 

there’s a  better  way,  if  you’re  clever  and  inventive  enough). 

does matter). 
Making rules is  easy; the  hard  part is figuring out how to apply them  in  the  real 
world. For my money, examining  some actual working code is  always a good way to 
get a handle  on  programming concepts, so let’s look at some of the  performance 
rules in  action. 
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Know Where You’re Going 
If we’re going  to  create  high-performance  code,  first we have to know  what that  code 
is going  to  do. As an  example, let’s  write a  program  that  generates  a 16-bit checksum 
of the bytes in  a file. In other words, the  program will add each byte in a specified file 
in  turn  into  a 16-bit value. This checksum value might  be used to make sure  that  a 
file hasn’t  been  corrupted, as might  occur during transmission over a  modem  or if a 
Trojan horse virus rears its ugly head. We’re not going  to do anything with the 
checksum value other than print it  out, however; right now we’re only interested  in 
generating  that  checksum value  as rapidly as possible. 

Make a Big Map 
How are we going  to  generate  a  checksum value for  a specified file? The logical 
approach is to  get  the file name, open the file, read  the bytes out of the file, add 
them  together, and  print  the result. Most  of those  actions are straightforward;  the 
only  tricky part lies in  reading  the bytes and  adding  them together. 

Make Lots of Little Maps 
Actually, we’re only going  to make one little  map, because we only  have one  program 
section that  requires  much thought-the section  that  reads  the bytes and adds  them 
up. What’s the best way to do this? 
It would be convenient to load  the  entire file into  memory and  then sum the bytes in 
one loop. Unfortunately, there’s no  guarantee  that any particular file will fit  in  the 
available memory;  in fact, it’s a  sure  thing  that many files won’t fit into memory, so 
that  approach is out. 
Well, if the whole  file  won’t fit into memory, one byte  surely  will. If we read the file one 
byte at  a time, adding each byte to the checksum  value  before reading the  next byte, 
we’ll  minimize  memory requirements and be  able  to handle any  size  file at all. 
Sounds  good, eh? Listing 1.1 shows an  implementation of this approach. Listing  1.1 
uses C’s read() function to read  a single byte, adds  the byte into the  checksum value, 
and loops back to  handle  the  next byte until  the  end of the file is reached. The code 
is compact, easy to write, and functions perfectly-with one slight hitch: 
It’s slow. 

LISTING 1.1 11-1.C 
I* 
* Program t o   c a l c u l a t e   t h e   1 6 - b i t   c h e c k s u m   o f   a l l   b y t e s   i n   t h e  
* s p e c i f i e d   f i l e .   O b t a i n s   t h e   b y t e s  one a t  a t i m e   v i a   r e a d 0 .  
* l e t t i n g  DOS p e r f o r m   a l l   d a t a   b u f f e r i n g .  
*I  
#i n c l  ude < s t d i  0. h> 
# i n c l u d e   < f c n t l   . h >  

m a i n ( i n t   a r g c .   c h a r   * a r g v [ ] )  ( 
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i n t  Handle;  
uns igned   cha r   By te ;  
u n s i g n e d   i n t  Checksum: 
i n t  ReadLength; 

i f  ( a r g c  !- 2 ) { 
p r i n t f ( " u s a g e :   c h e c k s u m   f i l e n a m e \ n " ) :  
e x i t ( 1 ) :  

1 
i f  ( (Handle - open(argvC11. 0-RDONLY I 0-BINARY)) - -1 ) I 

p r i n t f ( " C a n ' t  open f i l e :   % s \ n " .   a r g v C 1 1 ) :  
e x i t ( 1 ) ;  

I 

/ *  I n i t i a l i z e   t h e  checksum  accumulator  * /  
Checksum - 0;  

/ *  Add e a c h   b y t e   i n   t u r n   i n t o   t h e   c h e c k s u m   a c c u m u l a t o r  * /  
w h i l e  ( (ReadLength - r e a d ( H a n d 1 e .   & B y t e .   s i z e o f ( B y t e ) ) )  > 0 ) { 

} 
i f  ( ReadLength - -1 ) { 

Checksum +- ( u n s i g n e d   i n t )   B y t e ;  

p r i n t f ( " E r r o r   r e a d i n g   f i l e   % s \ n " .   a r g v C 1 1 ) ;  
e x i t ( 1 ) :  

) 

/ *  R e p o r t   t h e   r e s u l t  * /  
p r i n t f ( " T h e  checksum i s :  % u \ n " .  Checksum); 
e x i t ( 0 ) ;  

) 

Table 1.1 shows the time  taken for Listing 1.1 to generate a checksum  of the WordPerfect 
version 4.2 thesaurus file,  TH.WP (362,293 bytes in size), on a 10 MHz  AT machine of 
no special parentage. Execution times are given for Listing 1.1 compiled with Borland 
and Microsoft compilers, with optimization both on  and off; all four times are pretty 
much  the same, however, and all are  much too slow to  be acceptable. Listing 1.1 re- 
quires over two and one-half minutes to checksum one file! 

Listings 1.2 and 1.3 form the Uassembly equivalent to Listing 1.1,  and  Listings e 1.6 and 1.7 form the Uassembly equivalent to Listing 1.5. 

These results make it clear that it's  folly  to  rely on your compiler's optimization to 
make your programs fast.  Listing 1.1 is simply  poorly designed, and  no  amount of 
compiler optimization will compensate for that failing. To drive home  the point, con- 
sider Listings 1.2 and 1.3, which together are equivalent to  Listing 1.1 except that  the 
entire checksum loop is written in tight assembly code. The assembly language imple- 
mentation is indeed faster than any  of the C versions,  as  shown in Table 1.1, but it's  less 
than 10 percent faster, and it's still  unacceptably slow. 
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LISTING  1.2  11-2.C 
I* 
* Program t o   c a l c u l a t e   t h e   1 6 - b i t   c h e c k s u m   o f   t h e   s t r e a m   o f   b y t e s  
* f r o m   t h e   s p e c i f i e d   f i l e .   O b t a i n s   t h e   b y t e s   o n e   a t  a t i m e   i n  
* a s s e m b l e r .   v i a   d i r e c t   c a l l s   t o  00s. 
* I  

# i n c l u d e   < s t d i o . h >  
# i n c l u d e   < f c n t l . h >  

m a i n ( i n t   a r g c .   c h a r   * a r g v [ l )  { 
i n t  Hand1 e;  
u n s i g n e d   c h a r   B y t e :  
u n s i g n e d   i n t  Checksum: 
i n t  

i f  ( 

1 
i f  ( 

ReadLength: 

a r g c  !- 2 ) { 
p r i n t f ( " u s a g e :   c h e c k s u m   f i l e n a m e \ n " ) :  
e x i t ( 1 ) :  

(Handle - open(argvC11. 0-RDONLY I 0-BINARY)) - -1 ) I 
p r i n t f ( " C a n ' t   o p e n   f i l e :   % s \ n " .   a r g v C 1 1 ) :  
e x i t ( 1 ) :  

1 
i f  ( !ChecksumFile(Handle.  &Checksum) ) { 

p r i n t f ( " E r r o r   r e a d i n g   f i l e   % s \ n " .   a r g v C 1 1 ) :  
e x i t ( 1 ) :  

1 

I* R e p o r t   t h e   r e s u l t  *I  
p r i n t f ( " T h e   c h e c k s u m  i s :  %u\n".  Checksum): 
e x i t ( 0 ) ;  

1 
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LISTING  1.3  11  -3.ASM 
; A s s e m b l e r   s u b r o u t i n e   t o   p e r f o r m  a 1 6 - b i t  checksum  on t h e   f i l e  
; opened on t h e   p a s s e d - i n   h a n d l e .   S t o r e s   t h e   r e s u l t   i n   t h e  
; p a s s e d - i n   c h e c k s u m   v a r i a b l e .   R e t u r n s  1 f o r   s u c c e s s ,  0 f o r   e r r o r .  

; C a l l   a s :  
i n t  ChecksumFi le(uns igned i n t  Hand le ,   uns igned   i n t   *Checksum) ;  

; where: 
Handle - hand le  # u n d e r   w h i c h   f i l e   t o   c h e c k s u m   i s  open 
Checksum - p o i n t e r   t o   u n s i g n e d   i n t   v a r i a b l e   c h e c k s u m  i s  
t o  b e   s t o r e d   i n  

; P a r a m e t e r   s t r u c t u r e :  

Parms s t r u c  
dw ? ;pushed BP 
dw ? ; r e t u r n   a d d r e s s  

Hand1  e dw ? 
Checksum dw ? 
Pa rms ends 

TempWord  1 abe l  
TempByte 

- ChecksumFi le 

ChecksumLoop: 

E r ro rEnd :  

Success : 

.model  smal 1 

. d a t a  
word 
db 
db 

.code 
pub1 i c 
p r o c   n e a r  
push 
mov 
push 

mov 
sub 

mov 

mov 

mov 
i n t  
j c  
and 
jz 
add 

jmp 

sub 
jmp 

mov 
mov 
mov 

? ;each   by te   read   by  DDS will b e   s t o r e d   h e r e  
0 ; h i g h   b y t e   o f  TempWord i s  a lways 0 

; f o r   1 6 - b i t  adds 

- ChecksumFi l e  

bp 
bp.  sp 
s i  : s a v e   C ' s   r e g i s t e r   v a r i a b l e  

bx. [bp+Handle l  ; g e t   f i l e   h a n d l e  
s i   , s i  : ze ro   t he   checksum 

;accumu la to r  

; r e a d  

;wh ich  DOS s h o u l d   s t o r e  
: e a c h   b y t e   r e a d  

cx.1  ; request   one  byte  on  each 

d x . o f f s e t  TempByte ; p o i n t  DX t o   t h e   b y t e   i n  

a h , 3 f h  :DOS r e a d   f i l e   f u n c t i o n  # 
21h ; r e a d   t h e   b y t e  
E r ro rEnd  :an e r r o r   o c c u r r e d  
ax.ax ;any   by tes   read? 
Success ;no-end o f   f i l e  reached-we're  done 
si.[TempWord] ; a d d   t h e   b y t e   i n t o   t h e  

;checksum t o t a l  
ChecksumLoop 

a x , a x   ; e r r o r  
s h o r t  Done 

bx.[bp+Checksuml ; p o i n t   t o   t h e   c h e c k s u m   v a r i a b l e  
[ b x l   , s i  ; save   t he  new checksum 
ax .1  ;success 
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Done: 
POP s i  
POP bP 
r e t  

end 
- ChecksumFile  endp 

: r e s t o r e  C ’ s  r e g i s t e r   v a r i a b l e  

The lesson is clear:  Optimization makes code faster, but  without proper design,  opti- 
mization just creates fast slow code. 
Well, then, how are we going  to improve our design? Before we can do  that, we have 
to  understand what’s wrong with the current design. 

Know the  Territory 
Just why is Listing  1.1 so slow? In  a word: overhead. The C library  implements  the 
read() function by calling DOS to  read  the  desired number of  bytes. (I figured this 
out by watching the  code  execute with a  debugger,  but you can buy library source 
code  from  both Microsoft and Borland.) That  means that Listing  1.1 (and Listing 
1.3 as  well) executes one DOS function  per byte  processed-and DOS functions, 
especially this one,  come with a  lot of overhead. 
For starters, DOS functions  are invoked with interrupts,  and  interrupts  are  among 
the slowest instructions of the x86 family CPUs. Then, DOS has to  set up internally 
and  branch to  the  desired  function,  expending  more cycles in  the process. Finally, 
DOS has to  search its  own buffers to see  if the  desired byte has already been  read, 
read  it  from  the disk if not,  store  the byte in  the specified location, and  return. All  of 
that takes a long time-far, far  longer  than  the  rest of the  main  loop  in Listing 1.1. In 
short, Listing 1.1  spends virtually  all of its time executing read(), and most of that 
time is spent  somewhere down in DOS. 
You can verify this for yourself by watching the  code with a  debugger or using a  code 
profiler, but take my word for it: There’s  a  great  deal of overhead  to DOS calls, and 
that’s what’s draining  the life out of Listing 1.1. 
How can we speed up Listing 1.1? It should be clear  that we must somehow avoid 
invoking DOS for every  byte in  the file, and that  means  reading  more  than  one byte 
at  a time, then buffering  the  data and parceling  it out  for  examination one byte at  a 
time. By gosh, that’s a  description of C’s stream 1 / 0  feature, whereby C reads files in 
chunks and buffers the bytes internally, doling  them out to  the  application as needed 
by reading  them  from  memory  rather  than calling DOS. Let’s try using stream 1 / 0  
and see what happens. 
Listing 1.4 is similar to Listing 1 .l, but uses fopen() and getc() (rather than open() 
and read()) to access the file being  checksummed.  The  results  confirm  our  theories 
splendidly, and validate our new design. As shown in Table 1.1, Listing 1.4 runs  more 
than  an  order of magnitude  faster  than even the assembly  version  of  Listing 1.1, men 
though Listing 1.1 and  Listing 1.4 look almost the same. To the casual observer, read() 
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and getc() would  seem  slightly different  but pretty much  interchangeable,  and yet in 
this application the  performance  difference between the two  is about  the same  as 
that between a 4.77 MHz PC and a  16 MHz 386. 

Make sure you understand  what really goes on when you insert  a  seemingly- p innocuous function call into  the time-critical portions of your code. 

In this case that  means knowing how DOS and  the C/Ctt  file-access libraries do 
their work. In other words, know the  territory ! 

LISTING  1.4  11-4.C 
I* 
* Program t o   c a l c u l a t e   t h e   1 6 - b i t  checksum o f   t h e   s t r e a m   o f   b y t e s  
* f r o m   t h e   s p e c i f i e d   f i l e .   O b t a i n s   t h e   b y t e s   o n e   a t  a t i m e   v i a  
* g e t c 0 .   a l l o w i n g  C t o   p e r f o r m   d a t a   b u f f e r i n g .  
* /  
# i n c l u d e   < s t d i o .  h> 

m a i n ( i n t   a r g c .   c h a r   * a r g v [ ] )  { 
F ILE   *CheckF i l e :  
i n t   B y t e :  
u n s i g n e d   i n t  Checksum: 

i f  ( a r g c  != 2 ) { 
p r i n t f ( " u s a g e :   c h e c k s u m   f i l e n a m e \ n " ) :  
e x i t ( 1 ) :  

I 
i f  ( ( C h e c k F i l e  = f o p e n ( a r g v C 1 1 .   " r b " ) )  =- NULL ) ( 

p r i n t f ( " C a n ' t  open f i l e :   % s \ n " .   a r g v [ l ] ) :  
e x i t ( 1 ) :  

I 

/*  I n i t i a l i z e   t h e  checksum  accumulator * /  
Checksum = 0:  

/ *  Add e a c h   b y t e   i n   t u r n   i n t o   t h e  checksum  accumulator * /  
w h i l e  ( ( B y t e  = g e t c ( C h e c k F i 1 e ) )  != EOF { 

I 
Checksum += ( u n s i g n e d   i n t )   B y t e :  

/ *  R e p o r t   t h e   r e s u l t  * /  
p r i n t f ( " T h e   c h e c k s u m  i s :  %u\n". Checksum): 
e x i t ( 0 ) :  

T 

Know  When It Matters 
The last section contained  a particularly interesting  phrase: the time-criticalportions of 
your code. Time-critical portions of your code  are  those  portions  in which the  speed 
of the  code makes a significant difference  in the overall performance of your pro- 
gram-and by "significant," I don't  mean  that it makes the  code 100 percent faster, 
or 200 percent,  or any particular amount  at all, but  rather  that it makes the  program 
more responsive and/or usable from the  user's  perspective. 
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Don’t waste time optimizing non-time-critical code:  set-up  code, initialization code, 
and  the like. Spend your time improving the  performance of the  code  inside heavily- 
used  loops and in the  portions of your programs  that directly affect response time. 
Notice, for  example,  that I haven’t bothered to implement  aversion of the checksum 
program  entirely in assembly; Listings 1.2 and 1.6 call  assembly subroutines  that 
handle  the time-critical operations,  but C is still used for checking  command-line 
parameters,  opening files, printing,  and  the like. 

p Ifyou were  to  implement  any of the listings in this chapter entirely in hand-opti- 
mized  assembly, I suppose you might get  a performance  improvement of a few 
percent-but Irather  doubtyou  iiget even  that  much, andyou  iisure  as heckspend 
an  awful lot of time for whatever  meager  improvement does result. Let C do what 
it does  well, and  use  assembly  only  when it makes a  perceptible dzfference. 

Besides, we don’t want to optimize  until the design is refined to our satisfaction, and 
that won’t be  the case until we’ve thought  about  other  approaches. 

Always  Consider  the  Alternatives 
Listing 1.4 is good,  but let’s see if there  are other-perhaps  less obvious-ways to  get 
the same results faster. Let’s start by considering why Listing 1.4 is so much  better 
than Listing 1.1. Like read(),  getc() calls DOS to read  from  the file; the  speed im- 
provement of Listing 1.4 over Listing 1.1 occurs because getc()  reads many  bytes at 
once via DOS, then manages  those bytes for us. That’s  faster than  reading  them  one 
at a time using  read()-but  there’s no reason to think  that it’s faster than having our 
program  read  and manage blocks itself. Easier,  yes, but  not faster. 
Consider this: Every invocation of getc() involves pushing  a  parameter,  executing  a 
call to  the C library function,  getting  the  parameter  (in  the C library code), looking 
up information about  the desired  stream,  unbuffering the  next byte from  the stream, 
and  returning to the calling code.  That takes a considerable amount of time, espe- 
cially by contrast with simply maintaining  a  pointer to a  buffer and whizzing through 
the  data  in  the buffer  inside  a single loop. 
There  are  four reasons  that many programmers would  give for  not trying to  improve 
on Listing 1.4: 
1. The  code  is  already  fast  enough. 
2. The  code  works,  and  some  people  are  content  with  code  that  works,  even  when  it’s  slow 

enough  to  be  annoying. 
3. The C library  is  written  in  optimized  assembly,  and  it’s  likely  to  be  faster  than  any  code 

that  the  average  programmer  could  write  to  perform  essentially  the  same  function. 
4. The C library  conveniently  handles  the  buffering of file data,  and  it  would  be a nui- 

sance  to  have  to  implement  that  capability. 
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I'll  ignore  the first reason,  both because performance is no longer  an issue if the 
code is fast enough  and because the  current application  does not run fast enough- 
1 3  seconds is a  long time. (Stop and wait for 1 3  seconds while you're  doing  something 
intense,  and you'll see just how long it is.) 
The second  reason is the hallmark of the mediocre  programmer. Know when opti- 
mization matters-and then optimize when it does! 
The  third reason is often fallacious. C library functions are  not always written in 
assembly, nor  are they always particularly well-optimized. (In fact,  they're  often writ- 
ten  for portability, which has nothing to do with optimization.) What's more, they're 
general-purpose  functions, and often can be  outperformed by well-but-not-  brilliantly- 
written code  that is well-matched to  a specific task. As an example,  consider Listing 
1.5, which uses internal  buffering to handle blocks of  bytes at a time. Table 1.1 shows 
that Listing 1.5 is 2.5 to 4 times faster  than Listing 1.4 (and as much as 49 times faster 
than Listing 1.1  !), even though it uses no assembly at all. 

Clearly, you can do well by using  special-purpose C code  in  place of a  C  library p function-ifyou  have a  thorough  understanding of how  the C  library function 
operates  and  exactly  what your application needs  done.  Otherwise,  you'll end up 
rewriting C library functions in C, which makes  no  sense  at all. 

LISTING  1.5  11-5.C 
I* 
* Program t o   c a l c u l a t e   t h e   1 6 - b i t  checksum o f   t h e   s t r e a m   o f   b y t e s  
* f r o m   t h e   s p e c i f i e d   f i l e .   B u f f e r s   t h e   b y t e s   i n t e r n a l l y ,   r a t h e r  
* t h a n   l e t t i n g  C o r  DOS do t h e   w o r k .  
* I  
#i n c l   u d e   < s t d i  0. h> 
d i n c l   u d e   < f c n t l  . h> 
# i n c l u d e   < a l l o c . h >  I* a l 1 o c . h   f o r   B o r l a n d .  

r n a l 1 o c . h   f o r   M i c r o s o f t  *I  

# d e f i n e  BUFFER-SIZE 0x8000 I* 32Kb d a t a   b u f f e r  * /  

m a i n ( i n t   a r g c .   c h a r   * a r g v [ I )  [ 
i n t  Hand1 e ;  
u n s i g n e d   i n t  Checksum: 
uns igned   cha r   *Work ingBu f fe r .   *Work ingP t r ;  
i n t  Work ingLength .   Lengthcount ;  

i f  ( a rgc  != 2 1 { 
p r i n t f ( " u s a g e :   c h e c k s u m   f i l e n a r n e \ n " ) :  
e x i t ( 1 ) ;  

I 
i f  ( (Handle = o p e n ( a r g v [ l ] .  0-RDONLY I 0-BINARY)) -- -1 ) I 

p r i n t f ( " C a n ' t   o p e n   f i l e :   % s \ n " ,   a r g v C 1 1 ) :  
e x i t ( 1 ) ;  

I 

I* Get memory i n  w h i c h   t o   b u f f e r   t h e   d a t a  *I  
i f  ( ( W o r k i n g B u f f e r  = malloc(BUFFER-SIZE)) == NULL ) { 

p r i n t f ( " C a n ' t   g e t   e n o u g h   m e m o r y \ n " ) :  
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J 

I* I n i t i a l i z e   t h e  checksum  accumulator  * I  
Checksum = 0:  

I* P r o c e s s   t h e   f i l e   i n  BUFFER-SIZE chunks * I  
do { 

i f  ( (Work ingLength  = read(Hand1e.   Work ingBuf fe r .  

p r i n t f ( " E r r o r   r e a d i n g   f i l e   % s \ n " .   a r g v [ l ] ) ;  
e x i t ( 1 ) ;  

BUFFER-SIZE)) == -1 ) { 

1 
I* Checksum t h i s   c h u n k  * I  
W o r k i n g P t r  - W o r k i n g B u f f e r :  
Lengthcount  = Work ingLength :  
w h i l e  ( Lengthcount "  1 
I* Add e a c h   b y t e   i n   t u r n   i n t o   t h e  checksum  accumulator  *I  

1 
Checksum += ( u n s i g n e d   i n t )   * W o r k i n g P t r + + :  

1 w h i l e  ( Work ingLength  ) ;  

I* R e p o r t   t h e   r e s u l t  * I  
p r i n t f ( " T h e   c h e c k s u m   i s :  %u\n" .  Checksum); 
e x i t ( 0 ) ;  

I 

That brings us to the  fourth reason: avoiding an internal-buffered implementation 
like  Listing 1.5 because of the difficulty  of coding such an  approach. True,  it is easier 
to let a C library function do  the work, but it's not all that  hard to do  the buffering 
internally. The key  is the  concept of handling data in restartable  blocks; that is, reading 
a chunk of data,  operating on  the data  until  it runs  out,  suspending  the  operation 
while more data is read  in,  and  then  continuing as though  nothing  had  happened. 
In Listing 1.5  the  restartable  block  implementation is pretty  simple  because 
checksumming works  with one byte at  a time, forgetting about each byte immedi- 
ately after  adding  it  into  the total. Listing 1.5 reads  in  a block of  bytes from  the file, 
checksums the bytes in the block, and gets another block, repeating the process 
until the  entire file has been processed. In  Chapter 5, we'll see a  more  complex 
restartable block implementation, involving searching  for text strings. 
At any rate, Listing 1.5 isn't much  more complicated than Listing 1.4-and it's a lot 
faster. Always consider the alternatives; a bit of  clever thinking and  program rede- 
sign can go a  long way. 

Know How to Turn On the  Juice 
I have  said time and again that optimization is pointless until the design is settled. 
When  that time comes, however, optimization can indeed make  a significant differ- 
ence. Table 1.1 indicates that  the optimized version of Listing 1.5 produced by 
Microsoft C  outperforms  an  unoptimized version  of the same code by more  than 60 
percent. What's more, a mostly-assembly  version of Listing 1.5, shown  in  Listings 1.6 
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and 1.7, outperforms even the best-optimized C version of Listing 1.5 by 26 percent. 
These  are  considerable  improvements, well worth pursuing-once the design has 
been maxed out. 

LISTING 1.6 11-6.C 
/ *  
* Program t o   c a l c u l a t e   t h e   1 6 - b i t  checksum o f   t h e   s t r e a m   o f   b y t e s  
* f r o m   t h e   s p e c i f i e d   f i l e .   B u f f e r s   t h e   b y t e s   i n t e r n a l l y ,   r a t h e r  
* t h a n   l e t t i n g  C o r  DOS do t h e   w o r k ,   w i t h   t h e   t i m e - c r i t i c a l  

* I  
* p o r t i o n   o f   t h e   c o d e   w r i t t e n   i n   o p t i m i z e d   a s s e m b l e r .  

# i n c l u d e   < s t d i o . h >  
# i n c l u d e   < f c n t l  . h> 
# i n c l u d e   < a l l o c . h >  / *  a l 1 o c . h   f o r   B o r l a n d .  

m a l 1 o c . h   f o r   M i c r o s o f t  * /  

# d e f i n e  BUFFER-SIZE 0x8000 / *  32K d a t a   b u f f e r  * I  

m a i n ( i n t   a r g c .   c h a r   * a r g v [ ] )  t 
i n t  Handle:  
u n s i g n e d   i n t  Checksum: 
u n s i g n e d   c h a r   * W o r k i n g B u f f e r :  
i n t   W o r k i n g L e n g t h ;  

i f  ( a r g c  != 2 ) I 
p r i n t f ( " u s a g e :   c h e c k s u m   f i l e n a m e \ n " ) :  
e x i t ( 1 ) :  

I 
i f  ( (Hand le  = o p e n ( a r g v [ l ] .  0-ROONLY I 0-BINARY)) == -1 ) 1 

p r i n t f ( " C a n ' t   o p e n   f i l e :   % s \ n " .   a r g v [ l l ) :  
e x i t ( 1 ) ;  

1 

/ *  Get memory i n  w h i c h   t o   b u f f e r   t h e   d a t a  * /  
i f  ( ( W o r k i n g B u f f e r  = malloc(BUFFER-SIZE)) == NULL 1 t 

p r i n t f ( " C a n ' t   g e t   e n o u g h   m e m o r y \ n " ) :  
e x i t ( 1 ) ;  

I 

/*  I n i t i a l i z e   t h e  checksum  accumulator  * /  
Checksum = 0 :  

I*  P r o c e s s   t h e   f i l e   i n  32K chunks * /  
do 

i f  ( (Work ingLength  = read(Hand1e.   Work ingBuf fe r .  
BUFFER-SIZE)) == -1 ) 1 

p r i n t f ( " E r r o r   r e a d i n g   f i l e   % s \ n " .   a r g v C 1 1 ) :  
e x i t ( 1 ) ;  

I 
/ *  Checksum t h i s  chunk i f  t h e r e ' s   a n y t h i n g   i n  i t  * /  
i f  ( Work ingLength  ) 

] w h i l e  ( Work ingLength  ) :  

/ *  R e p o r t   t h e   r e s u l t  * /  
p r in t f ( "The   checksum  i s :   %u \n " .   Checksum) :  
e x i t ( 0 ) :  

ChecksumChunk(WorkingBuffer.  WorkingLength.  &Checksum); 
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LISTING 1.7 11 -7.ASM 
; A s s e m b l e r   s u b r o u t i n e   t o   p e r f o r m  a 1 6 - b i t  checksum  on a b l o c k   o f  
; b y t e s  1 t o  64K i n   s i z e .  Adds  checksum f o r   b l o c k   i n t o   p a s s e d - i n  
: checksum. 

; C a l l   a s :  
; vo id   ChecksumChunk(uns igned  char   *Buf fe r .  
: u n s i g n e d   i n t   B u f f e r L e n g t h .   u n s i g n e d   i n t   * C h e c k s u m ) ;  

; where: 
; B u f f e r  = p o i n t e r   t o   s t a r t   o f   b l o c k   o f   b y t e s   t o  checksum 
; B u f f e r L e n g t h  - # o f   b y t e s   t o  checksum ( 0  means  64K. n o t  0 )  
; Checksum = p o i n t e r   t o   u n s i g n e d   i n t   v a r i a b l e  checksum i s  
; s t o r e d   i n  

: P a r a m e t e r   s t r u c t u r e :  

Parms s t r u c  
dw ? ;pushed BP 
dw ? : r e t u r n   a d d r e s s  

B u f f e r  dw ? 
B u f f e r L e n g t h  dw ? 
Checksum dw ? 
Parms  ends 

.model  smal l  

.code 
p u b l i c  _ChecksumChunk 

-ChecksumChunk p r o c   n e a r  
push  bp 
mov bp.sp 
push s i  ; s a v e   C ' s   r e g i s t e r   v a r i a b l e  

c l  d ;make LODSB i n c r e m e n t  SI  
mov s i   . [ b p + B u f f e r l  ; p o i n t  t o  b u f f e r  
mov c x . [ b p + B u f f e r L e n g t h l  ; g e t   b u f f e r   l e n g t h  
mov bx.[bp+Checksuml : p o i n t   t o  checksum  va r iab le  
mov d x ,   [ b x l  ; g e t   t h e   c u r r e n t   c h e c k s u m  
sub  ah,ah ; s o  A X  will be a 1 6 - b i t   v a l u e   a f t e r  LODSB 

1 odsb ; g e t   t h e   n e x t   b y t e  
add  dx.ax :add i t  i n t o   t h e  checksum t o t a l  
l o o p  ChecksumLoop : c o n t i n u e   f o r   a l l   b y t e s   i n   b l o c k  
mov [ b x ]  , dx  ; s a v e   t h e  new checksum 

pop s i   ; r e s t o r e   C ' s   r e g i s t e r   v a r i a b l e  

r e t  

end 

ChecksumLoop: 

POP bp 

- ChecksumChunk  endp 

Note  that  in Table 1.1, optimization makes little difference  except  in the case  of 
Listing 1.5, where the design has been refined considerably. Execution time in the 
other cases is dominated by time spent in DOS and/or  the C library, so optimization 
of the  code you  write  is pretty much irrelevant. What's more, while the approxi- 
mately  two-times improvement we got by optimizing is not to be sneezed at,  it pales 
against the up-to-50-times improvement we got by redesigning. 
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By the way, the execution times  even of Listings 1.6 and 1.7 are dominated by DOS 
disk  access  times.  If a disk cache is enabled  and  the file to be checksummed is al- 
ready in the cache, the assembly  version  is three times  as  fast  as the C version. In 
other words, the  inherent  nature of this application limits the  performance improve- 
ment that can be obtained via  assembly. In applications that are  more CPU-intensive 
and less disk-bound, particularly those applications in which string instructions and/ 
or unrolled loops can be used effectively,  assembly tends to be considerably faster 
relative to C  than it is in this very  specific  case. 

Don’t  get hung  up on optimizing  compilers or assembly  language-the  best 1 optimizer is between your  ears. 

All this is  basically a way of  saying:  Know where you’re going, know the territory, and 
know when  it matters. 

Where We’ve  Been, What We’ve  Seen 
What have we learned? Don’t let other people’s code-even  DOS-do the work for 
you when  speed matters, at least not without knowing  what that  code  does and how 
well it  performs. 
Optimization only matters after you’ve done your part on  the  program design end. 
Consider the ratios on  the vertical  axis  of  Table 1.1,  which  show that optimization is 
almost totally  wasted in the checksumming application without an efficient design. 
Optimization is no panacea. Table 1.1 shows a two-times improvement  from optimi- 
zation-and a 50-times-plus improvement  from redesign. The longstanding debate 
about which C compiler optimizes code best doesn’t matter  quite so much in light of 
Table 1 .l, does  it? Your organic optimizer matters much  more  than your compiler’s 
optimizer, and there’s always  assembly for those usually  small sections of code  where 
performance really matters. 

Where We‘re Going 
This chapter has presented  a quick  step-by-step  overview of the design process. I’m 
not claiming that this is the only way to create  high-performance  code; it’s just  an 
approach  that works for  me. Create code however  you want, but never forget  that 
design matters more  than  detailed optimization. Never stop looking for inventive 
ways to boost performance-and never waste time speeding up code that doesn’t 
need to be sped  up. 
I’m going to focus on specific ways to create  high-performance  code  from now on. 
In  Chapter 5, we’ll continue to look at restartable blocks and  internal buffering, in 
the  form of a  program  that searches files for text strings. 
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Nature of Assembly  Language Optimization 
f ‘  As I showed in thd:previous chapter, optimization is  by no means always a  matter of 

“dropping  into asse In fact, in  performance  tuning high-level language code, 
assembly should be us d  then only after you’ve made sure a badly chosen 
or clumsily implemen  m isn’t eating you  alive. Certainly if you  use  assem- 
bly at all, make absoldtely sure you use it right. The potential of  assembly code to run 
slowly is poorly unddstood by a  lot of people, but that  potential is great, especially in 

ation, however, happens only at  the assembly  level, and  it  happens 
amics that is totally different  from  that governing C/C++ 
be speaking of  assembly-level optimization time and again 
0, I  think  it will be helpful if you  have a grasp of those 

assembly  specific  dynamics. 
As usual, the best way to wade in is to present  a real-world example. 

Instructions: The Individual versus  the Collective 
Some time ago, I was asked to work  over a critical assembly subroutine in order to 
make it run as  fast  as  possible. The task  of the  subroutine was to construct  a nibble 
out of four bits read  from  different bytes, rotating and combining  the bits so that 
they ultimately ended  up neatly aligned in bits 3-0 of a single byte. (In case you’re 
curious, the object was to construct  a 16-color  pixel from bits scattered over 4 bytes.) 
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I examined  the  subroutine line by line, saving a cycle here  and a cycle there,  until 
the  code truly seemed to be optimized. When I was done,  the key part of the  code 
looked  something like  this: 

LoopTop: 
l o d s b   ; g e t   t h e   n e x t   b y t e   t o   e x t r a c t  a b i t   f r o m  
and a1 , a h   ; i s o l a t e   t h e   b i t  we want  
r o l  a1 . c l   ; r o t a t e   t h e   b i t   i n t o   t h e   d e s i r e d   p o s i t i o n  
o r  b l  . a 1   : i n s e r t   t h e   b i t   i n t o   t h e   f i n a l   n i b b l e  
d e c   c x   ; t h e   n e x t   b i t   g o e s  1 p l a c e   t o   t h e   r i g h t  
d e c   d x   ; c o u n t  down t h e   n u m b e r   o f   b i t s  
j n z  L o o p T o p   : p r o c e s s   t h e   n e x t   b i t ,  i f  any 

Now,  it’s hard  to write code that’s much faster than seven instructions, only one of 
which accesses memory, and most programmers would have called it a day at this 
point. Still, something  bothered  me, so I spent  a  bit of time going over the  code 
again. Suddenly, the answer struck me-the code was rotating  each  bit  into place 
separately, so that a  multibit rotation was being  performed every time  through  the 
loop,  for a  total of four  separate time-consuming multibit  rotations! 

While  the instructions themselves were individually optimized, the  overall approach p did not  make  the bestpossible use of the instructions. 

I changed  the  code  to  the following: 

LoopTop: 
1 odsb 
a n d   a l . a h  
o r  b l  ,a1 
r o l   b l  $ 1  
dec  dx 
j n z  LoopTop 
r o l   b l   . c l  

; g e t   t h e   n e x t   b y t e  t o  e x t r a c t  a b i t   f r o m  
: i s o l a t e   t h e   b i t  we want  
: i n s e r t   t h e   b i t   i n t o   t h e   f i n a l   n i b b l e  
;make room f o r   t h e   n e x t   b i t  
; coun t  down t h e  number o f   b i t s  
: p r o c e s s   t h e   n e x t   b i t ,  i f  any 
: r o t a t e   a l l   f o u r   b i t s   i n t o   t h e i r   f i n a l  
: p o s i t i o n s   a t   t h e  same t i m e  

This moved the costly multibit rotation out of the  loop so that  it was performed  just 
once, rather  than  four times.  While the  code may not look much  different  from the 
original, and in fact still contains exactly the same number of instructions, the per- 
formance of the  entire  subroutine improved by about 10 percent  from  just this one 
change. (Incidentally, that wasn’t the  end of the optimization; I eliminated the DEC 
andJNZ instructions by expanding  the  four iterations of the loop-but  that’s a tale 
for another chapter.) 
The  point is  this: To write  truly superior assembly programs, you need to know what 
the various instructions do  and which instructions  execute fastest ... and  more. You 
must also learn to look at your programming  problems  from  a variety  of perspectives 
so that you can put those fast instructions to work in the most effective ways. 
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Assembly Is Fundamentally  Different 
Is it really so hard as  all that to write good assembly code  for  the PC? Yes! Thanks to 
the decidedly quirky nature of the x86  family CPUs, assembly language differs fun- 
damentally from  other languages, and is undeniably harder to work  with. On  the 
other  hand,  the potential of  assembly code is much  greater than that of other lan- 
guages, as  well. 
To understand why this is so, consider how a  program gets written. A programmer 
examines the  requirements of an application, designs a solution at  some level of 
abstraction, and  then makes that design come alive in a  code  implementation. If not 
handled properly, the transformation that takes  place  between conception and imple- 
mentation can reduce  performance tremendously; for example, a  programmer who 
implements  a  routine  to search a list  of 100,000 sorted items with a  linear rather 
than binary search will end  up with a disappointingly slow program. 

Transformation  Inefficiencies 
No matter how  well an  implementation is derived from  the  corresponding design, 
however,  high-level languages like C/C++ and Pascal  inevitably introduce additional 
transformation inefficiencies, as  shown in Figure 2.1. 
The process of turning a design into executable code by  way of a high-level language 
involves two transformations: one  performed by the  programmer to generate source 
code, and  another  performed by the compiler to turn source code  into  machine 

1 Created by the  programmer 
(Transformation # 1 ) 

High-Level  Language 

Compiled to machine 
language by a high-level 
language  compiler 
(Transformation #2) 

Language Code 

The high-level language transformation inefficiencies. 
Figure 2.1 
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language instructions. Consequently, the  machine  language  code  generated by com- 
pilers is usually  less than optimal given the  requirements of the original design. 
High-level languages provide artificial environments  that  lend themselves  relatively 
well to human  programming skills, in order to ease the transition from design to 
implementation.  The price for this ease  of implementation is a considerable loss of 
efficiency in transforming source  code  into  machine language. This is particularly 
true given that  the x86 family in real and 16-bit protected  mode, with its specialized 
memory-addressing instructions and  segmented memory  architecture,  does not  lend 
itself particularly well to  compiler design. Even the 32-bit mode of the 386 and its 
successors,  with their  more powerful addressing modes, offer fewer registers than 
compilers would like. 
Assembly, on  the  other  hand, is simply a  human-oriented  representation of machine 
language. As a result, assembly provides a  diffkult  programming  environment-the 
bare hardware and systems  software  of the  computer-htprqperh constructed assembly 
programs suffer no transformation loss, as  shown in Figure 2.2. 
Only one transformation is required when  creating an assembler program,  and  that 
single transformation is completely under  the programmer’s control. Assemblers 
perform  no transformation from source code to machine language; instead, they 
merely map assembler instructions to machine  language  instructions on a one-to- 
one basis. As a result, the  programmer is able to produce  machine  language  code 
that’s precisely tailored to the  needs of each task a given application requires. 

1 Created by  the  programmer 
(Transformation # 1 )  

Assem bler I Source Code c 
1 Assembled  directly  to  machine 

language (No Transformation) 

Language Code 

Properly constructed assembly programs sufer no transformation loss. 
Figure 2.2 
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The key,  of course, is the  programmer, since in assembly the  programmer  must es- 
sentially perform  the  transformation  from the application specification to machine 
language  entirely on his or  her own. (The assembler merely handles  the direct trans- 
lation  from assembly to  machine  language.) 

Self-Reliance 
The first part of  assembly language  optimization, then, is self-reliance. An assembler 
is nothing  more  than a tool to let you design machine-language programs  without 
having to think in hexadecimal codes. S o  assembly language programmers-unlike 
all other programmers-must take full responsibility for the quality of their  code. 
Since assemblers provide little help  at any level higher  than  the  generation of ma- 
chine  language,  the assembly programmer must  be  capable both of coding any 
programming  construct directly and of controlling  the PC at  the lowest practical 
level-the operating system, the BIOS, even the hardware  where necessary. High- 
level languages handle most of this transparently  to  the  programmer, but in assembly 
everything is  fair-and  necessary-game,  which brings us to another aspect of  as- 
sembly optimization: knowledge. 

Knowledge 
In  the PC world, you can never have enough knowledge, and every item you add to 
your store will make your  programs  better. Thorough familiarity with both  the  oper- 
ating system  APIs and BIOS interfaces is important; since  those  interfaces are 
well-documented and reasonably straightforward, my advice is to get  a  good  book  or 
two and  bring yourself up to  speed. Similarly, familiarity with the PC hardware is 
required. While that topic covers a  lot of  ground-display adapters, keyboards, serial 
ports, printer ports,  timer and DMA channels, memory organization, and more- 
most of the hardware is well-documented, and articles about  programming major 
hardware components  appear frequently  in the  literature, so this sort of  knowledge 
can  be  acquired readily enough. 
The single most critical aspect of the  hardware, and  the  one  about which it is hardest 
to  learn, is the CPU. The x86  family  CPUs have a  complex,  irregular  instruction  set, 
and, unlike most processors, they are  neither straightforward nor well-documented 
regarding  true  code  performance. What’s more, assembly  is so difficult to  learn  that 
most articles and books that  present assembly code settle for  code  that  just works, 
rather  than  code  that pushes the CPU to its limits. In fact, since most articles and 
books are written for  inexperienced assembly programmers, there is  very little infor- 
mation of any sort available about how to generate high-quality assembly code  for 
the x86  family  CPUs. As a  result, knowledge about  programming  them effectively is 
by far the  hardest knowledge to gather. A good  portion of this book is devoted to 
seeking out such knowledge. 
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P Be forewarned, though: No matter how  much you learn about programming the 
PC in assembly, there 5 always more to discover. 

The Flexible Mind 
Is the never-ending  collection of information all there is to the assembly optimization, 
then? Hardly.  Knowledge is simply a necessary  base on which to build. Let’s  take a 
moment to examine the objectives  of good assembly programming, and the remain- 
der of the forces that act on assembly optimization will fall into place. 
Basically, there are only two possible  objectives  to high-performance assembly pro- 
gramming: Given the requirements of the application, keep to a minimum  either  the 
number of processor cycles the program takes to run,  or  the  number of  bytes in the 
program, or some combination of both. We’ll look at ways to  achieve both objectives, 
but we’ll more often be concerned with  saving  cycles than saving  bytes, for  the PC 
generally  offers  relatively more memory than it does processing horsepower. In fact, 
we’ll find that two-to-three  times performance improvements over  already tight assembly 
code are often possible if we’re  willing to spend additional bytes in order to save  cycles. 
It’s not always desirable to  use such techniques to speed up code, due to the heavy 
memory requirements-but it is almost always possible. 

You  will notice that my short list  of  objectives for  high-performance assembly pro- 
gramming does not include traditional objectives  such  as  easy maintenance and  speed 
of development.  Those  are  indeed  important considerations-to persons and com- 
panies that develop and distribute software. People who actually buy software, on  the 
other  hand, care only about how  well that software performs, not how it was devel- 
oped  nor how it is maintained.  These days, developers spend so much time focusing 
on such admittedly important issues  as code maintainability and reusability, source 
code  control, choice of development  environment,  and  the like that they often for- 
get  rule #1: From the user’s perspective, performance is  fundamental. 

Comment your code, design it carefully, and write non-time-critical portions in a P high-level language, if you wish-but  when you write the portions that interact 
with the user and/or affect response time, performance must  be your paramount 
objective, and assembly is  the path to that goal. 

Knowledge  of the sort described earlier is absolutely essential to fulfilling either of 
the objectives  of  assembly programming.  What  that  knowledge  doesn’t do by itself is 
meet  the  need to write code  that  both  performs to the  requirements of the applica- 
tion at  hand  and also operates as efficiently as  possible in the PC environment. 
Knowledge  makes that possible, but your programming instincts make  it happen. 
And it is that intuitive, on-the-fly integration of a program specification and a sea  of 
facts about  the PC that is the  heart of the Zen-class  assembly optimization. 
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As with  Zen  of  any sort,  mastering  that Zen  of  assembly language is more a  matter of 
learning than of being taught. You will have to find your own path of learning, although 
I will start you on your way with this book. The subtle facts and examples I provide 
will help you gain the necessary experience,  but you must  continue  the  journey on 
your own. Each program you create will expand your programming  horizons  and 
increase the  options available to you in  meeting  the  next  challenge.  The ability of 
your mind to find  surprising new and  better ways to craft superior  code  from  a  con- 
cept-the flexible mind, if you will-is the  linchpin of good assembler code,  and you 
will develop this skill only by doing. 
Never underestimate  the  importance of the flexible mind. Good  assembly code is bet- 
ter than  good compiled code. Many people would  have  you  believe otherwise, but 
they’re wrong. That  doesn’t mean that high-level languages are useless; far  from it. 
High-level languages are  the best choice for the majority  of programmers, and for  the 
bulk of the  code of most applications. When the best code-the fastest or smallest code 
possible-is needed,  though, assembly is the only way to go. 
Simple logic dictates  that no compiler  can know  as much  about what a piece of code 
needs  to do  or  adapt as  well to those  needs as the person who wrote the  code. Given 
that  superior  information  and adaptability, an assembly language  programmer  can 
generate  better  code  than a  compiler, all the  more so given that  compilers  are  con- 
strained by the limitations of high-level languages and by the process of transformation 
from high-level to machine  language. Consequently, carefully optimized assembly  is 
notjust  the language of choice but  the only choice  for  the lpercent to 10 percent of 
code-usually consisting of small, well-defined subroutines-that determines over- 
all program  performance,  and it is the only choice  for  code  that  must  be as compact 
as possible, as  well. In the run-of-the-mill, non-time-critical portions of your pro- 
grams, it makes no sense to waste time and effort on writing optimized assembly 
code-concentrate your efforts on loops and  the like instead; but in those areas 
where you need  the finest code quality, accept no substitutes. 
Note that I said that an assembly programmer can generate  better  code  than  a com- 
piler, not will generate  better  code. While it is true  that  good assembly code is better 
than  good compiled code, it is  also true  that bad  assembly code is often much worse 
than bad compiled code; since the assembly programmer has so much control over 
the  program, he  or she has virtually unlimited opportunities to waste  cycles and bytes. 
The sword cuts both ways, and good  assembly code requires more, not less, forethought 
and planning  than  good  code written in  a high-level language. 
The gist of all this is simply that  good assembly programming is done in the  context 
of a solid overall framework unique to each  program,  and  the flexible mind is the 
key to creating  that framework and  holding  it together. 
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Where to Begin? 
To summarize, the skill of assembly language optimization is a  combination of knowl- 
edge, perspective, and a way of thought  that makes  possible the genesis of absolutely 
the fastest or  the smallest code. With that  in  mind, what should  the first step be? 
Development of the flexible mind is an obvious step. Still, the flexible mind is no 
better  than  the knowledge at its disposal. The first step in the  journey toward  master- 
ing optimization at that exalted level, then, would  seem to be learning how  to learn. 

30 Chapter 2 



chapter 3

assume nothing



It ran slower than  the original version! 
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The Costs of Ignorance 
As diligent as the  author  had  been,  he  had nonetheless  committed a cardinal sin  of 
x86  assembly language  programming:  He  had assumed that the information avail- 
able to him was both  correct and complete. While the  execution times provided by 
Intel  for its processors are  indeed  correct, they are incomplete; the other-and  of- 
ten  more important-part of code  performance is instruction fetch time, a topic to 
which I will return in  later  chapters. 
Had the  author taken the time to measure  the  true  performance of  his code, he 
wouldn’t have put his reputation on  the line with  relatively low-performance code. 
What’s more,  had  he actually measured  the  performance of  his code  and  found  it to 
be unexpectedly slow, curiosity might well  have led him to experiment  further  and 
thereby add to his store of reliable information  about  the CPU. 

There you have an important tenet of assembly language optimization: After craft- 1 ing  the best code  possible, check it in action to see if it j .  really doing what you 
think it is. r f  it k not behaving as expected, that 5. all to the good, since solving 
mysteries is thepath to knowledge. You’ll learn more  in  this way, Iassure  you, than 
from any manual or book on assembly language. 

Assume  nothing. I cannot emphasize this strongly enough-when  you care about per- 
formance, do your best to improve the  code  and  then measure the improvement. If 
you don’t measure performance, you’re just guessing, and if you’re guessing, you’re 
not very  likely to write top-notch code. 
Ignorance  about  true  performance can be costly. When I wrote video games for a 
living, I spent days at a time trying to  wring more  performance  from my graphics 
drivers. I rewrote whole sections of code  just to save a few  cycles, juggled registers, 
and relied heavily on blurry-fast register-to-register shifts and adds. As I was writing 
my last game, I discovered that  the  program  ran perceptibly faster if I used look-up 
tables instead of  shifts and  adds  for my calculations. It shouldn’t have run faster, ac- 
cording to my  cycle counting, but it did.  In  truth,  instruction  fetching was rearing its 
head  again, as it often does, and  the  fetching of the shifts and adds was taking as 
much as four times the nominal  execution time of those instructions. 
Ignorance can also be responsible for considerable wasted effort. I recall a debate in 
the letters column of one  computer magazine about exactly how quickly text can be 
drawn on a Color/Graphics  Adapter (CGA) screen without causing snow. The letter- 
writers counted every  cycle in  their timing loops, just as the  author in the story that 
started this chapter  had. Like that  author, the letter-writers had failed to take the 
prefetch queue  into account.  In fact, they had neglected the effects  of video wait 
states as  well, so the  code they  discussed was actually much slower than  their esti- 
mates. The  proper test would, of course, have been to run  the  code to see if snow 
resulted, since the only true  measure of code  performance is observing it  in action. 
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The Zen Timer 
Clearly, one key to mastering Zen-class optimization is a tool  with  which  to measure 
code performance. The most accurate way to measure performance is with expen- 
sive hardware, but reasonable measurements at  no cost can be made with the PC’s 
8253 timer chip, which counts at a  rate of slightly  over 1,000,000 times per second. 
The 8253 can be started at the beginning of a block of code of interest and stopped 
at the  end of that  code, with the resulting count indicating how long  the  code took 
to execute with an accuracy  of about 1 microsecond. (A microsecond is one millionth of 
a  second, and is abbreviated ps). To be precise, the 8253 counts  once every  838.1 
nanoseconds. (A nanosecond is one billionth of a  second, and is abbreviated ns.) 
Listing 3.1 shows 8253-based timer software, consisting of three  subroutines: 
ZTmerOn, ZTimerOff, and ZTimerReport. For the  remainder of this book, 1’11 re- 
fer to these routines collectively  as the “Zen timer.” C-callable  versions of the two 
precision Zen timers are  presented in Chapter K on  the companion CD-ROM. 

LISTING 3.1 PZTIMER.ASM 
The p r e c i s i o n  Zen t i m e r  (PZTIMER.ASM) 

Uses t h e  8253 t i m e r   t o   t i m e   t h e   p e r f o r m a n c e   o f   c o d e   t h a t   t a k e s  
l e s s   t h a n   a b o u t  54  m i l l i s e c o n d s   t o   e x e c u t e ,   w i t h  a r e s o l u t i o n  
o f   b e t t e r   t h a n  10 microseconds.  

By Michael   Abrash 

E x t e r n a l l y   c a l l a b l e   r o u t i n e s :  

ZTimerOn: S t a r t s   t h e  Zen t i m e r ,   w i t h   i n t e r r u p t s   d i s a b l e d .  

ZT imerOf f :   S tops   t he  Zen t i m e r ,   s a v e s   t h e   t i m e r   c o u n t ,  
t i m e s   t h e   o v e r h e a d   c o d e ,   a n d   r e s t o r e s   i n t e r r u p t s   t o   t h e  
s t a t e   t h e y   w e r e   i n  when ZTimerOn was c a l l e d .  

Z T i m e r R e p o r t :   P r i n t s   t h e   n e t   t i m e   t h a t   p a s s e d   b e t w e e n   s t a r t i n g  
a n d   s t o p p i n g   t h e   t i m e r .  

Note: I f  l o n g e r   t h a n   a b o u t  54  ms passes  between  ZTimerOn  and 
Z T i m e r O f f   c a l l s ,   t h e   t i m e r   t u r n s   o v e r   a n d   t h e   c o u n t   i s  
i n a c c u r a t e .  When t h i s   h a p p e n s ,  an e r r o r  message i s   d i s p l a y e d  
i n s t e a d   o f  a c o u n t .  The l o n g - p e r i o d  Zen t i m e r   s h o u l d   b e   u s e d  
i n  such  cases. 

N o t e :   I n t e r r u p t s  *MUST* be l e f t   o f f  b e t w e e n   c a l l s   t o  ZTimerOn 
a n d   Z T i m e r O f f   f o r   a c c u r a t e   t i m i n g   a n d   f o r   d e t e c t i o n   o f  
t i m e r   o v e r f l o w .  

N o t e :   T h e s e   r o u t i n e s   c a n   i n t r o d u c e   s l i g h t   i n a c c u r a c i e s   i n t o   t h e  
s y s t e m   c l o c k   c o u n t   f o r   e a c h   c o d e   s e c t i o n   t i m e d   e v e n  i f  
t i m e r  0 d o e s n ’ t   o v e r f l o w .  I f  t i m e r  0 d o e s   o v e r f l o w ,   t h e  
sys tem  c lock   can  become s l o w   b y   v i r t u a l l y  any  amount o f  
t i m e ,   s i n c e   t h e   s y s t e m   c l o c k   c a n ’ t   a d v a n c e   w h i l e   t h e  
p r e c i s o n   t i m e r   i s   t i m i n g .   C o n s e q u e n t l y ,   i t ’ s  a good  idea 
t o   r e b o o t   a t   t h e  end o f   e a c h   t i m i n g   s e s s i o n .   ( T h e  
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: b a t t e r y - b a c k e d   c l o c k ,  i f  any. i s   n o t   a f f e c t e d   b y   t h e  Zen 
: t i m e r . )  

: All r e g i s t e r s ,  and a l l   f l a g s   e x c e p t   t h e   i n t e r r u p t   f l a g ,   a r e  
: p r e s e r v e d   b y   a l l   r o u t i n e s .   I n t e r r u p t s   a r e   e n a b l e d   a n d   t h e n   d i s a b l e d  
: b y   Z T i m e r O n .   a n d   a r e   r e s t o r e d   b y   Z T i m e r O f f   t o   t h e   s t a t e   t h e y   w e r e  
: i n  when ZTimerOn was c a l l e d .  

Code segment   word   pub l i c  ' C O D E '  
assume  cs:Code.  ds:nothing 
p u b l i c  ZTimerOn.  ZTimerOff .   ZTimerReport  

: Base a d d r e s s   o f   t h e   8 2 5 3   t i m e r   c h i p .  

EASEL8253 equ  40h 

: T h e   a d d r e s s   o f   t h e   t i m e r  0 c o u n t   r e g i s t e r s   i n   t h e   8 2 5 3 .  

TIMER-0-8253 equ BASE-8253 + 0 

; T h e   a d d r e s s   o f   t h e  mode r e g i s t e r   i n   t h e  8253. 

MODEL8253 equ EASEL8253 + 3 

: The   add ress   o f   Opera t i on  Command Word  3 i n   t h e  8259  Programmable 
: I n t e r r u p t   C o n t r o l l e r  ( P I C )  ( w r i t e   o n l y ,   a n d   w r i t a b l e   o n l y  when 
: b i t  4 o f   t h e   b y t e   w r i t t e n   t o   t h i s   a d d r e s s   i s  0 and b i t  3 i s  1). 

OCW3 equ  20h 

: T h e   a d d r e s s   o f   t h e   I n t e r r u p t   R e q u e s t   r e g i s t e r   i n   t h e   8 2 5 9  P I C  
: ( r e a d   o n l y .   a n d   r e a d a b l e   o n l y  when b i t  1 o f  OCW3 - 1 and b i t  0 
: o f  OCW3 - 0 ) .  

I RR equ  20h 

: Macro t o   e m u l a t e  a POPF i n s t r u c t i o n   i n   o r d e r   t o   f i x   t h e   b u g   i n  some 
: 8 0 2 8 6   c h i p s   w h i c h   a l l o w s   i n t e r r u p t s   t o   o c c u r   d u r i n g  a POPF even when 
: i n t e r r u p t s   r e m a i n   d i s a b l e d .  

MPOPF macro 
l o c a l   p l .  p2 
jmp   sho r t   p2  

p l :   i r e t  
p2:   push  cs 

c a l l   p l  
endm 

: Macro t o   d e l a y   b r i e f l y  
: between  success ive  1/0 

jump t o  pushed  address & p o p   f l a g s  
c o n s t r u c t   f a r   r e t u r n   a d d r e s s   t o  
t h e   n e x t   i n s t r u c t i o n  

t o   e n s u r e   t h a t   e n o u g h   t i m e   h a s   e l a p s e d  
accesses so  t h a t   t h e  

: can  respond t o   b o t h   a c c e s s e s   e v e n  on  a v e r y  

DELAY macro 
jmp $+2 
jmp 5+2 
jmp S+2 
endm 

d e v i c e   b e i n g   a c c e s s e d  
f a s t  PC. 
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O r i g i n a l F l a g s  

TimedCount 

Referencecount  

O v e r f l  owFl  ag 

: S t r i n g   p r i n t e d  

O u t p u t S t r   l a b e l  
db 

ASCIICountEnd 
db 
db 

: S t r i n g   p r i n t e d  

O v e r f l o w S t r   l a b e l  

db ? : 

dw ? : 

dw 

db ? : 

s t o r a g e   f o r   u p p e r   b y t e   o f  
FLAGS r e g i s t e r  when 
ZTimerOn c a l l e d  
t i m e r  0 c o u n t  when t h e   t i m e r  
i s   s t o p p e d  
number o f   c o u n t s   r e q u i r e d   t o  
execu te   t imer   ove rhead   code  
used t o   i n d i c a t e   w h e t h e r   t h e  
t i m e r   o v e r f l o w e d   d u r i n g   t h e  
t i m i n g   i n t e r v a l  

t o   r e p o r t   r e s u l t s .  

b y t e  
Odh.  Oah. 'T imed  count :  ' ,  5 dup ( ? )  
l a b e l   b y t e  
' m i c r o s e c o n d s ' ,  Odh. Oah 
' f '  

t o   r e p o r t   t i m e r   o v e r f l o w .  

b y t e  
db  Odh. Oah 

db Odh. Oah 
db ' *  The t i m e r   o v e r f l o w e d ,  so t h e   i n t e r v a l   t i m e d  was * '  
db Odh. Oah 
db ' *  t o o   l o n g   f o r   t h e   p r e c i s i o n   t i m e r   t o   m e a s u r e .  * '  
db Odh, Oah 
db ' *  P l e a s e   p e r f o r m   t h e   t i m i n g   t e s t   a g a i n   w i t h   t h e  * '  
db Odh. Oah 
db ' *  l o n g - p e r i o d   t i m e r .  *. 
db  Odh. Oah 

db Odh. Oah 
db ' t '  

db . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

db . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
: * R o u t i n e   c a l l e d   t o   s t a r t   t i m i n g .  * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ZTimerOn  proc  near 

; Save t h e   c o n t e x t   o f   t h e   p r o g r a m   b e i n g   t i m e d .  

push  ax 
p u s h f  
POP ax 

mov c s : [ O r i g i n a l F l a g s ] . a h  : 

and  ah.0fdh 

g e t   f l a g s  so we can  keep 
i n t e r r u p t s   o f f  when l e a v i n g  
t h i s   r o u t i n e  
remember t h e   s t a t e   o f   t h e  
I n t e r r u p t   f l a g  
s e t   p u s h e d   i n t e r r u p t   f l a g  
t o  0 

push  ax 

: T u r n   o n   i n t e r r u p t s ,  s o  t h e   t i m e r   i n t e r r u p t   c a n   o c c u r  i f  i t ' s  
: pending.  

s t i  

Assume Nothing 37 



S e t   t i m e r  0 o f   t h e   8 2 5 3   t o  mode  2 ( d i v i d e - b y - N ) .  t o  cause 
l i n e a r   c o u n t i n g   r a t h e r   t h a n   c o u n t - b y - t w o   c o u n t i n g .   A l s o  
l e a v e s   t h e   8 2 5 3   w a i t i n g   f o r   t h e   i n i t i a l   t i m e r  0 c o u n t   t o  
be   loaded.  

mov a l .00110100b ;mode  2 
o u t  MODEL8253 .a1 

S e t   t h e   t i m e r   c o u n t   t o  0 .  so we know we w o n ' t   g e t   a n o t h e r  
t i m e r   i n t e r r u p t   r i g h t  away. 
N o t e :   t h i s   i n t r o d u c e s  a n   i n a c c u r a c y   o f   u p   t o  54 ms i n   t h e   s y s t e m  
c l o c k   c o u n t   e a c h   t i m e  i t  i s  executed.  

DELAY 
sub  a1  ,a1 
o u t  TIMER-0-8253.al 
DELAY 

; l s b  

o u t  TIMER-0-8253.al  :msb 

W a i t   b e f o r e   c l e a r i n g   i n t e r r u p t s   t o   a l l o w   t h e   i n t e r r u p t   g e n e r a t e d  
when s w i t c h i n g   f r o m  mode 3 t o  mode  2 t o  be   recogn ized.  The d e l a y  
must  be a t   l e a s t  2 1 0   n s   l o n g   t o   a l l o w   t i m e   f o r   t h a t   i n t e r r u p t   t o  
o c c u r .   H e r e ,   1 0   j u m p s   a r e   u s e d   f o r   t h e   d e l a y   t o   e n s u r e   t h a t   t h e  
d e l a y   t i m e  will be  more  than  long  enough  even  on a v e r y   f a s t  PC.  

r e p t   1 0  
jmp S+2 
endm 

D i s a b l e   i n t e r r u p t s   t o   g e t  an   accu ra te   coun t .  

c l  i 

S e t   t h e   t i m e r   c o u n t   t o  0 a g a i n   t o   s t a r t   t h e   t i m i n g   i n t e r v a l .  

mov a l .00110100b 
o u t  MODE-8253.al 
DELAY 
s u b   a l . a l  
o u t  TIMER-0-8253,al 
DELAY 

; l o a d   c o u n t   l s b  

o u t  TIMER-0-8253.al ; l o a d   c o u n t  msb 

; s e t  up t o   l o a d   i n i t i a l  
; t i m e r   c o u n t  

; R e s t o r e   t h e   c o n t e x t   a n d   r e t u r n .  

MPOPF 
POP ax 
r e t  

; k e e p s   i n t e r r u p t s   o f f  

ZTimerOn  endp 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
;* R o u t i n e   c a l l e d   t o   s t o p   t i m i n g   a n d   g e t   c o u n t .  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ZT imerOf f   p roc   near  
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: Save t h e   c o n t e x t  o f  t h e   p r o g r a m   b e i n g   t i m e d .  

push  ax 
push  cx 
push f  

: L a t c h   t h e   c o u n t .  

mov a l ,00000000b ; l a t c h   t i m e r  0 
o u t  MODE-8253,al 

: See i f  t h e   t i m e r   h a s   o v e r f l o w e d   b y   c h e c k i n g   t h e   8 2 5 9   f o r  a pend ing  
: t i m e r   i n t e r r u p t .  

mov a l .00001010b : OCW3. s e t  up t o   r e a d  
o u t  OCW3.al 
DELAY 
i n  a1,IRR ; r e a d   I n t e r r u p t   R e q u e s t  

and a l , 1  : s e t  AL t o  1 i f  IRQO ( t h e  

mov c s : [ 0 v e r f l o w F l a g ] . a l  : s t o r e   t h e   t i m e r   o v e r f l o w  

: I n t e r r u p t   R e q u e s t   r e g i s t e r  

; r e g i s t e r  

: t i m e r   i n t e r r u p t )   i s   p e n d i n g  

: s t a t u s  

: A l l o w   i n t e r r u p t s   t o  happen  again.  

s t i  

: Read o u t   t h e   c o u n t  we l a t c h e d   e a r l i e r .  

i n  al.TIMER_0-8253 ; l e a s t   s i g n i f i c a n t   b y t e  
DELAY 
mov ah .a l  
i n  a1 .TIMER-0-8253 ; m o s t   s i g n i f i c a n t   b y t e  
xchg  ah.a l  
neg  ax : conver t   f r om  coun tdown  

; r e m a i n i n g   t o   e l a p s e d  
: c o u n t  

mov cs: [T imedCount l .ax 
: Time a z e r o - l e n g t h   c o d e   f r a g m e n t ,   t o   g e t  a r e f e r e n c e   f o r  how 
; much o v e r h e a d   t h i s   r o u t i n e   h a s .   T i m e  it 16  t imes  and  average i t , 
: f o r   a c c u r a c y ,   r o u n d i n g   t h e   r e s u l t .  

mov cs: [ReferenceCount l ,O 
mov cx.16 
c l  i : i n t e r r u p t s   o f f   t o   a l l o w  a 

: D r e c i s e   r e f e r e n c e   c o u n t  
RefLoop: 

ca l l   Re fe renceZT imerDn  
c a l l   R e f e r e n c e Z T i m e r O f f  
1 oop Ref  Loop 
s t i  
add  cs: [ReferenceCount] .8 : t o t a l  + ( 
mov c l  . 4  
sh r   cs : [Re fe renceCoun t ] . c l  : ( t o t a l )  / 

: R e s t o r e   o r i g i n a l   i n t e r r u p t   s t a t e .  

POP ax : r e t r i e v e  

0.5 * 16 )  

16 + 0.5 

f l a g s  when c a l l e d  
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mov c h . ~ s : [ O r i g i n a l F l a g s 1  : 

and  ch.not  Ofdh 

and  ah.0fdh 

o r  ah.ch 

push  ax 

: R e s t o r e   t h e   c o n t e x t  

MPOPF 

POP c x  

r e t  

ZTimerOff   endp 

POP ax  

: Ca l led   by   ZT imerOf f  

ReferenceZTimerOnproc 

: Save t h e   c o n t e x t   o f  

push  ax 

g e t   b a c k   t h e   o r i g i n a l   u p p e r  
b y t e   o f   t h e  FLAGS r e g i s t e r  
o n l y   c a r e   a b o u t   o r i g i n a l  
i n t e r r u p t   f l a g  ... 
... keep all o t h e r   f l a g s   i n  
t h e i r   c u r r e n t   c o n d i t i o n  
make f l a g s   w o r d   w i t h   o r i g i n a l  
i n t e r r u p t   f l a g  
p r e p a r e   f l a g s   t o   b e   p o p p e d  

o f   t h e   p r o g r a m   b e i n g   t i m e d   a n d   r e t u r n   t o  i t . 

: r e s t o r e   t h e   f l a g s   w i t h   t h e  
: o r i g i n a l   i n t e r r u p t   s t a t e  

t o   s t a r t   t i m e r   f o r   o v e r h e a d   m e a s u r e m e n t s .  

nea r  

t h e   p r o g r a m   b e i n g   t i m e d  

p u s h f  : i n t e r r u p t s   a r e   a l r e a d y   o f f  

: S e t   t i m e r  0 o f   t h e   8 2 5 3   t o  mode 2 ( d i v i d e - b y - N ) ,   t o   c a u s e  
: l i n e a r   c o u n t i n g   r a t h e r   t h a n   c o u n t - b y - t w o   c o u n t i n g .  

mov al .00110100b : s e t  up t o   l o a d  
o u t  MODE-8253.al : i n i t i a l   t i m e r   c o u n t  
DELAY 

: S e t   t h e   t i m e r   c o u n t   t o  0. 

sub  a1,a l  
o u t  TIMER-0-8253,al : l o a d   c o u n t   l s b  
DELAY 
out   T IMER-08253,a l  : l o a d   c o u n t  msb 

: R e s t o r e   t h e   c o n t e x t   o f   t h e   p r o g r a m   b e i n g   t i m e d   a n d   r e t u r n   t o  i t . 

MPOPF 
POP ax 
r e t  

ReferenceZTimerOnendp 

: C a l l e d   b y   Z T i m e r O f f   t o   s t o p   t i m e r   a n d   a d d   r e s u l t   t o   R e f e r e n c e c o u n t  
: fo r   overhead  measurements .  
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ReferenceZTimerOf f  

: Save t h e   c o n t e x t  

p r o c   n e a r  

o f   t h e   p r o g r a m   b e i n g   t i m e d .  

push  ax 
push  cx 
push f  

: L a t c h   t h e   c o u n t   a n d   r e a d  

mov 
o u t  
DELAY 

DELAY 
i n  

mov 
i n  
xchg 
neg 

add 

a1 .00000000b 
MODEU3253,al 

a1 .TIMER-0_8253 

ah .a l  
al.TIMER-OC8253 
ah .a l  
ax 

it. 

cs : [Re fe renceCoun t l , ax  

: l a t c h   t i m e r  0 

: l s b  

: msb 

: conver t   f r om  coun tdown  
: r e m a i n i n g   t o  amount 
: coun ted  down 

: R e s t o r e   t h e   c o n t e x t   o f   t h e   p r o g r a m   b e i n g   t i m e d   a n d   r e t u r n  t o  it. 

MPOPF 
POP cx 
POP ax 
r e t  

ReferenceZTimerOff   endp 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; * R o u t i n e   c a l l e d   t o   r e p o r t   t i m i n g   r e s u l t s .  * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ZT imerRepor t   p roc   near  

p u s h f  
push  ax 
push  bx 
push  cx 
push  dx 
push s i  
push  ds 

push  cs : DOS f u n c t i o n s   r e q u i r e   t h a t  DS p o i n t  

assume  ds :Code 
POP ds : t o   t e x t   t o  b e   d i s p l a y e d  on t h e   s c r e e n  

; Check f o r   t i m e r  0 o v e r f l o w .  

cmp [ O v e r f l  owFl a g l  .O 
j z  Pr in tGoodCount  
mov d x . o f f s e t   O v e r f l o w S t r  
mov ah.9 
i n t  21h 
jmp  shor t   EndZTimerRepor t  

: C o n v e r t   n e t   c o u n t   t o   d e c i m a l  A S C I I  i n   m i c r o s e c o n d s .  
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Pr intGoodCount :  
mov ax.CTimedCount1 
sub  ax. [ReferenceCount ]  
mov s i , o f f s e t   A S C I I C o u n t E n d  - 1 

; C o n v e r t   c o u n t   t o   m i c r o s e c o n d s   b y   m u l t i p l y i n g   b y   . 8 3 8 1 .  

mov dx.8381 
mu1 dx 
mov bx,   10000 
d i v   b x  :* .8381 - * 8381 / 10000 

: C o n v e r t   t i m e   i n   m i c r o s e c o n d s   t o  5 dec imal  A S C I I  d i g i t s  

mov bx.   10 
mov cx.5 

sub dx.dx 
d i v  bx 
add d1:O‘ 
mov [ s i l . d l  
dec s i  
1 oop CTSLoop 

CTSLoop: 

; P r i n t   t h e   r e s u l t s .  

mov ah.9 
mov d x , o f f s e t   O u t p u t S t r  
i n t  21h 

EndZTimerReport :  
POP ds 
pop s i  
POP dx  
POP c x  
POP b x  

MPOPF 
POP ax 

r e t  

ZTimerReport   endp 

Code ends 
end 

The  Zen  Timer Is a Means, Not an End 
We’re going to spend  the rest of this chapter  seeing what the Zen timer can do, 
examining how it works, and learning how to use it. I’ll be using the Zen timer again 
and again  over the  course of this book, so it’s essential that you learn what the Zen 
timer can do  and how to use it. On the  other  hand,  it is  by no means essential that 
you understand exactly  how the Zen timer works. (Interesting, yes; essential, no.) 
In  other words, the Zen timer isn’t really part of the knowledge we seek; rather, it’s 
one tool with  which  we’ll acquire  that knowledge.  Consequently,  you shouldn’t worry 
if  you don’t fully grasp the  inner workings of the Zen  timer. Instead, focus on learn- 
ing how to use it, and you’ll  be on  the  right  road. 
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Starting the  Zen  Timer 
ZTimerOn is called at  the start of a  segment of code to be timed. ZTimerOn saves 
the  context of the calling code, disables interrupts, sets timer 0 of the 8253  to mode 
2 (divide-by-N mode), sets the initial timer count to 0, restores the  context of the 
calling code, and  returns.  (I’d like to note  that while Intel’s documentation  for  the 
8253 seems to indicate  that  a timer won’t reset to 0 until it finishes counting down, in 
actual practice, timers seem to reset to 0 as soon as they’re loaded.) 
Two aspects of ZTimerOn are worth discussing further. One  point of interest is that 
ZTimerOn disables interrupts. (ZTimerOff later restores interrupts to the state they 
were in when ZTimerOn was called.) Were interrupts  not disabled by ZTimerOn, 
keyboard, mouse, timer, and  other  interrupts  could  occur  during  the timing inter- 
val, and  the time required to service those interrupts would incorrectly and erratically 
appear to be part of the execution time of the code  being measured. As a result, 
code timed with the Zen timer should not expect any hardware interrupts to occur 
during  the interval between any  call  to ZTimerOn and  the  corresponding call to 
ZTimerOff, and should not enable  interrupts  during  that time. 

Time and the PC 
A second interesting  point  about ZTimerOn is that  it may introduce some small 
inaccuracy into  the system  clock time whenever it is called. To understand why this is 
so, we need to examine the way in which both  the 8253 and  the PC’s system  clock 
(which keeps the  current time) work. 
The 8253 actually contains  three timers, as  shown in Figure 3.1. All three timers are 
driven by the system board’s 14.31818 MHz crystal, divided by 12 to yield a 1.19318 
MHz clock to the timers, so the timers count  once every  838.1 ns. Each of the  three 
timers counts down in  a  programmable way, generating  a signal on its output pin 
when it  counts down to 0. Each timer is capable of being halted at any  time via a 0 
level on its gate  input; when a timer’s gate input is 1, that timer counts constantly. All 
in all, the 8253’s timers are  inherently very flexible timing devices; unfortunately, 
much of that flexibility depends on how the timers are  connected to external cir- 
cuitry, and  in  the PC the timers are  connected with  specific purposes in  mind. 
Timer 2 drives the speaker, although  it can be used for  other timing purposes 
when the speaker is not in use. As shown in Figure 3.1, timer 2 is the only timer 
with a  programmable  gate  input in the PC; that is, timer 2 is the only timer that can 
be started and  stopped  under  program  control in the  manner specified by Intel. 
On  the  other  hand,  the output of timer 2 is connected to nothing  other  than  the 
speaker. In particular, timer 2 cannot  generate  an  interrupt to get the 8088’s attention. 
Timer 1 is dedicated to providing dynamic RAM refresh, and should  not be tam- 
pered with  lest  system crashes result. 
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The configuration of the 8253 timer chip in the PC. 
Figure 3.1 

Finally, timer 0 is used  to  drive the system  clock. As programmed by the BIOS at power- 
up, every 65,536  (64K) counts, or 54.925 milliseconds, timer 0 generates a rising edge 
on its output line. (A millisecond is one-thousandth of a second, and is abbreviated 
ms.) This line is connected  to the hardware interrupt 0 (IRQO) line on  the system 
board, so every 54.925 ms, timer 0 causes hardware interrupt 0 to occur. 
The  interrupt vector for IRQO is set by the BIOS at power-up time to point to a BIOS 
routine, TJMER-INT, that maintains a time-ofday count. TIMER-INT keeps a 16-bit 
count of  IRQO interrupts  in  the BIOS data  area  at address 0000:046C (all addresses 
in this book are given in segment:offset hexadecimal pairs); this count turns over 
once  an  hour (less a few microseconds), and when it  does, TIMER-INT updates  a 
16-bit hour  count  at address 0000:046E in  the BIOS data  area. This count is the basis 
for  the  current time and  date  that DOS supports via functions 2AH (2A hexadeci- 
mal) through 2DH and by  way of the DATE and TIME commands. 
Each timer channel of the 8253 can operate in any  of  six  modes. Timer 0 normally 
operates in mode 3: square wave mode. In square wave mode,  the initial count is counted 
down two at a time;  when the  count reaches zero, the  output state is changed. The 
initial count is again counted down two at a time, and  the  output state is toggled  back 
when the  count reaches zero. The result is a square wave that changes state more 
slowly than  the input clock by a factor of the initial count. In its normal mode of 
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operation, timer 0 generates an output pulse that is  low for about 27.5  ms and high for 
about 27.5 ms;  this  pulse is sent to the 8259 interrupt controller, and its  rising edge 
generates a timer interrupt  once every  54.925  ms. 
Square wave mode is not very  useful for precision  timing  because it counts down by two 
twice per timer interrupt, thereby rendering exact  timings  impossible.  Fortunately, the 
8253  offers another timer mode, mode 2 (divide-by-N mode), which  is both a good 
substitute for square wave mode and  a perfect mode for precision  timing. 
Divide-by-N mode counts down by one from the initial count. When the  count reaches 
zero,  the  timer  turns over and starts counting down again without stopping, and a 
pulse is generated for a single clock period. While the pulse is not  held  for nearly as 
long as in square wave mode,  it  doesn’t matter, since the 8259 interrupt controller is 
configured in  the PC to be edge-triggered and  hence cares only about  the existence 
of a pulse from timer 0, not  the  duration of the pulse. As a result, timer 0 continues 
to generate timer interrupts in divide-by-N mode,  and  the system  clock continues to 
maintain good time. 
Why not use timer 2 instead of timer 0 for precision timing? After  all, timer 2 has a 
programmable gate input  and isn’t used for anything but sound  generation. The 
problem with timer 2 is that its output can’t generate  an  interrupt; in fact, timer 2 
can’t do anything but drive the speaker. We need  the  interrupt  generated by the 
output of timer 0 to tell  us when the  count has overflowed, and we  will see shortly 
that  the timer interrupt also  makes it possible to time much longer  periods  than  the 
Zen timer shown in Listing 3.1 supports. 
In fact, the Zen timer shown in Listing  3.1 can only time intervals of up to about 54 
ms in length, since that is the  period of time that can be measured by timer 0 before 
its count turns over and repeats. fifty-four  ms  may not seem like a very long time, but 
even a CPU as  slow  as the 8088 can perform  more  than 1,000 divides in 54 ms, and 
division is the single instruction  that  the 8088 performs most slowly.  If a  measured 
period  turns  out to be longer  than 54  ms (that is, if timer 0 has counted down and 
turned  over),  the Zen timer will display a message to that effect. A long-period Zen 
timer for use in such cases  will be presented  later  in this chapter. 
The Zen timer determines whether timer 0 has turned over by checking to  see whether 
an IRQO interrupt is pending. (Remember, interrupts  are off  while the Zen timer 
runs, so the timer interrupt  cannot be recognized until  the Zen timer stops and 
enables interrupts.) If an IRQO interrupt is pending,  then  timer 0 has turned over 
and  generated  a timer interrupt. Recall that ZTimerOn initially  sets timer 0 to 0, in 
order to  allow for  the longest possible  period-about 54 ms-before timer 0 reaches 
0 and generates  the timer interrupt. 
Now we’re  ready  to look at  the ways in which the Zen timer can introduce inaccuracy 
into  the system clock. Since timer 0 is initially set to 0 by the Zen  timer, and since the 
system  clock  ticks  only  when timer 0 counts off  54.925  ms and reaches 0 again, an 
average inaccuracy of one-half  of  54.925  ms, or  about 27.5  ms,  is incurred  each time 

Assume Nothing 45 



the Zen timer is started.  In  addition,  a timer interrupt is generated when timer 0 is 
switched from  mode 3 to mode 2, advancing the system  clock by up to  54.925  ms, 
although this only happens  the first time the Zen timer is run  after  a warm or cold 
boot. Finally, up to 54.925  ms  can again be lost when ZTimerOff is called, since that 
routine again sets the timer count to zero. Net result: The system  clock  will run  up to 
110 ms (about  a  ninth of a  second) slow each time the Zen timer is used. 
Potentially far greater inaccuracy can be incurred by timing code  that takes longer 
than  about 110 ms to execute. Recall that all interrupts,  including  the  timer  inter- 
rupt,  are disabled while timing code with the Zen  timer. The 8259 interrupt  controller 
is capable of remembering  at most one  pending  timer  interrupt, so all timer inter- 
rupts  after  the  first  one  during any given  Zen timing  interval  are  ignored. 
Consequently, if a timing interval exceeds 54.9  ms, the system clock  effectively stops 
54.9  ms after  the timing interval  starts and doesn’t restart  until  the timing interval 
ends, losing time all the while. 
The effects on the system time of the Zen timer  aren’t  a  matter  for  great  concern, as 
they are temporary, lasting only until  the  next warm or cold boot. Systems that have 
battery-backed clocks,  (AT-style machines; that is,  virtually  all machines in  common 
use) automatically reset  the  correct time  whenever the  computer is booted, and sys- 
temswithout battery-backed  clocks prompt  for  the  correct  date  and time  when booted. 
Also, repeated use  of the Zen timer usually  makes the system clock slow  by at most a 
total of a few seconds, unless code  that takes much  longer  than 54 ms to run is timed 
(in which  case the Zen timer will notify you that  the  code is too  long to time). 
Nonetheless, it’s a  good  idea  to  reboot your computer  at  the end of each session  with 
the Zen timer in order to make sure  that  the system  clock  is correct. 

Stopping the  Zen  Timer 
At some  point  after  ZTimerOn is called, ZTimerOff must always be called to mark 
the  end of the timing interval. ZTimerOff saves the  context of the calling program, 
latches and reads  the timer 0 count, converts that  count  from  the countdown value 
that  the timer maintains to the  number of counts elapsed since ZTimerOn was called, 
and stores  the result. Immediately after  latching  the  timer 0 count-and before  en- 
abling interrupts-ZTimerOff checks the 8259 interrupt  controller to see if there is 
a  pending timer interrupt,  setting  a flag to mark  that  the  timer overflowed if there is 
indeed  a  pending timer interrupt. 
After that,  ZTimerOff  executes  just  the overhead code of ZTimerOn and ZTimerOff 
16 times, and averages and saves the results in order to determine how many of the 
counts  in  the timing result just obtained were incurred by the  overhead of the Zen 
timer  rather  than by the  code  being  timed. 
Finally,  ZTimerOff  restores the context of the calling  program, including the state of the 
interrupt flag that was  in effect  when ZTimerOn was called  to start timing, and returns. 
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One interesting aspect of ZTimerOff is the  manner in which timer 0 is stopped  in 
order to read  the timer count. We don’t actually  have  to stop timer 0 to  read  the 
count;  the 8253 provides a special latched read  feature  for  the specific purpose of 
reading  the  count while a time is running. (That’s a good  thing, too; we’ve no docu- 
mented way to  stop timer 0 if  we wanted  to,  since  its gate input isn’t connected. Later 
in this chapter,  though, we’ll  see that timer 0 can be stopped after all.) We simply  tell 
the 8253 to latch the  current  count,  and  the 8253 does so without breaking stride. 

Reporting Timing Results 
ZTimerReport may be called  to  display  timing  results at any time  after both ZTimerOn 
and ZTiierOff have been called. ZTimerReport first  checks to see whether the timer 
overflowed (counted down to 0 and turned over) before ZTiierOff was called; if 
overflow did occur, ZTimerOff prints a message to that effect and returns. Otherwise, 
ZTimerReport subtracts the reference count  (representing  the overhead of the Zen 
timer) from the  count measured between the calls  to ZTimerOn and ZTimerOff, con- 
verts the result from timer counts to microseconds, and prints the resulting  time in 
microseconds  to the standard output. 
Note that ZTimerReport need  not  be called  immediately after ZTimerOff. In fact, 
after a given  call to ZTimerOff,  ZTimerReport can be  called at any  time right up 
until the  next call to ZTimerOn. 
You  may want to use the Zen timer to measure several portions of a program while  it 
executes normally, in which  case it may not be desirable to  have the text printed by 
ZTimerReport interfere with the program’s normal display. There  are many ways to 
deal with  this. One  approach is removal  of the invocations of the DOS print string 
function  (INT 21H with AH equal to 9) from ZTimerReport, instead running the 
program under a debugger that supports screen flipping (such as Turbo Debugger 
or Codeview), placing a breakpoint at the start of ZTimerReport, and directly  ob- 
serving the  count in microseconds as ZTimerReport calculates it. 
A second approach is modification of ZTimerReport to place the result at some safe 
location in  memory,  such  as an  unused  portion of the BIOS data  area. 
A third  approach is alteration of ZTimerReport to print  the result over a serial port 
to a terminal or to another PC acting as a terminal. Similarly,  many debuggers can 
be run from a remote terminal via a serial  link. 
Yet another  approach is modification  of ZTimerReport to send  the result to the 
printer via either DOS function 5 or BIOS interrupt 17H. 
A final approach is to  modify ZTimerReport to print  the result to the auxiliary out- 
put via  DOS function 4, and to then write and load a special  device  driver named 
AUX, to which  DOS function 4 output would  automatically be  directed. This device 
driver could  send  the result anywhere  you might desire. The result might go  to  the 
secondary display adapter, over a serial port,  or to the  printer, or could simply  be 
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stored  in  a buffer within the driver, to be  dumped  at a  later time. (Credit  for this 
final approach goes to  Michael  Geary, and thanks go to David  Miller for passing the 
idea on to me.) 
You  may  well want to devise  still other approaches  better suited to your needs  than 
those I’ve presented. Go  to  it!  I’ve just thrown out  a few possibilities  to get you started. 

Notes on the  Zen  Timer 
The Zen timer subroutines  are designed to be near-called from assembly language 
code  running in the public segment Code. The Zen timer  subroutines  can, however, 
be called from any  assembly or high-level language  code  that  generates OBJ files 
that  are compatible with the Microsoft linker, simply by modifymg the  segment  that 
the timer code  runs in to match the segment used by the  code  being timed, or by 
changing  the Zen timer  routines to far  procedures and making far calls to the Zen 
timer  code  from  the  code being timed, as  discussed at  the  end of this chapter. All 
three  subroutines preserve all registers and all  flags except  the interrupt flag, so calls 
to these routines  are  transparent to the calling code. 
If  you do change  the Zen timer routines to far  procedures in order to  call them  from 
code  running in another segment, be sure to make all the Zen timer routines far, 
including ReferenceZTimerOn and ReferenceZTimerOff. (You’ll  have  to put FAR 
PTR overrides on  the calls from ZTimerOff to the  latter two routines if  you do make 
them far.) If the  reference  routines  aren’t  the same type-near or far-as the  other 
routines, they  won’t reflect the  true overhead incurred by starting and stopping  the 
Zen timer. 
Please be aware that  the inaccuracy that  the Zen timer can introduce  into  the system 
clock time does not affect the accuracy of the  performance  measurements  reported 
by the Zen timer itself. The 8253 counts  once every 838 ns, giving us  a count resolu- 
tion of about lps, although factors such as the  prefetch queue (as discussed below), 
dynamic RAM refresh, and  internal timing variations in the 8253 make it  perhaps 
more  accurate to describe the Zen timer as measuring code  performance with an 
accuracy  of better  than lops. In fact, the Zen timer is actually most accurate  in assess- 
ing  code  performance when timing intervals longer  than about 100 ps. At any rate, 
we’re most interested in using the Zen timer to assess the relative performance of 
various code sequences-that  is, using it to compare and tweak  code-and the timer 
is more  than  accurate  enough  for  that  purpose. 
The Zen timer works on all PGcompatible computers I’ve tested it on, including XTs, 
ATs, PS/2 computers, and 386,486, and Pentium-based machines. Of course, I haven’t 
been able to test it on all PC-compatibles, but I  don’t  expect any problems; comput- 
ers  on which the Zen timer  doesn’t run can’t  truly be called “PC-compatible.” 
On the  other  hand,  there is certainly no  guarantee  that  code  performance as  mea- 
sured by the Zen timer will be the same on compatible computers as on genuine 

48 Chapter 3 



IBM machines, or that  either absolute or relative code  performance will be similar 
even on different IBM models; in fact, quite  the  opposite is true. For example, every 
PS/2 computer, even the relatively  slow  Model 30, executes code  much faster than 
does a PC or XT. As another example, I set out to do  the timings for my earlier book 
Zen of Assembly Language on  an XT-compatible computer, only  to find  that  the com- 
puter wasn't quite IBM-compatible regarding  code  performance. The differences 
were minor, mind you, but my experience illustrates the risk  of  assuming that a spe- 
cific  make  of computer will perform  in a certain way without actually checking. 
Not that this  variation  between models makes the Zen timer one whit  less  useful- 
quite the contrary. The Zen  timer is an excellent tool for evaluating code performance 
over the  entire  spectrum of PC-compatible computers. 

A Sample Use of the  Zen  Timer 
Listing 3.2 shows a test-bed program  for measuring code  performance with the Zen 
timer. This program sets DS equal  to CS (for reasons we'll  discuss shortly), includes 
the  code  to  be measured from  the file  TESTCODE, and calls ZTimerReport to dis- 
play the timing  results.  Consequently, the  code  being  measured  should be in the file 
TESTCODE, and should  contain calls to ZTimerOn and ZTimerOff. 

LISTING 3.2 PZTEST.ASM 
Program t o  measure  performance o f  c o d e   t h a t   t a k e s   l e s s   t h a n  
54 ms t o   e x e c u t e .  (PZTEST.ASM) 

L i n k   w i t h  PZTIMER.ASM ( L i s t i n g   3 . 1 ) .  PZTEST.BAT ( L i s t i n g   3 . 4 )  
can  be  used t o  assemble  and l i n k   b o t h   f i l e s .  Code t o  be 
measured  must  be i n   t h e   f i l e  TESTCODE; L i s t i n g   3 . 3  shows 
a sample TESTCODE f i l e .  

By Michae l   Abrash 

mystack   segment   para   s tack  'STACK' 

mystack  ends 
db  512  dup(?)  

Code 

S t a r t  

s e g m e n t   p a r a   p u b l i c  ' C O D E '  
assume  cs:Code.  ds:Code 
ex t rn   ZT imer0n :near .   ZT imer0 f f : nea r .   2T imerRepor t :nea r  
p roc   nea r  
push  cs 
pop  ds ; s e t  DS t o   p o i n t   t o   t h e  code  segment, 

; s o  d a t a   a s   w e l l   a s   c o d e   c a n   e a s i l y  
; b e   i n c l u d e d   i n  TESTCODE 

i n c l u d e  TESTCODE ;code t o  be   measured ,   i nc lud ing  
: c a l l s   t o  ZTimerOn  and  ZTimerOff 

; D i s p l a y   t h e   r e s u l t s .  

c a l l   Z T i m e r R e p o r t  

; T e r m i n a t e   t h e   p r o g r a m .  
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mov ah.4ch 
i n t  21h 

S t a r t   e n d p  
Code ends 

e n d   S t a r t  

Listing 3.3 shows some sample code to be timed. This listing measures the time re- 
quired to execute 1,000 loads of AL from  the memory variable MemVar. Note that 
Listing 3.3 calls ZTimerOn to start timing, performs 1,000 MOV instructions in a 
row, and calls ZTimerOff to end timing. When Listing 3.2 is named TESTCODE and 
included by Listing 3.3, Listing 3.2 calls ZTimerReport to display the  execution time 
after the  code in Listing 3.3 has been  run. 

LISTING 3.3 LST3-3.ASM 
: T e s t   f i l e :  
; Measures   t he   pe r fo rmance   o f   1 ,000   l oads   o f  AL f r o m  
; memory.  (Use  by  renaming t o  TESTCODE. w h i c h   i s  
; i n c l u d e d   b y  PZTEST.ASM ( L i s t i n g  3.2) .  PZTIME.BAT 
; ( L i s t i n g   3 . 4 )   d o e s   t h i s ,   a l o n g   w i t h   a l l   a s s e m b l y  
; a n d   l i n k i n g . )  

jmp  Sk ip   : jump  a round  de f ined  da ta  

MemVar db  ? 

Sk ip :  

; S t a r t   t i m i n g .  

c a l l  ZTimerOn 

r e p t   1 0 0 0  
mov a1 , [MemVarl 
endm 

: S t o p   t i m i n g .  

c a l l   Z T i m e r O f f  

It’s worth noting  that Listing 3.3 begins by jumping  around  the memory variable 
MemVar. This approach lets  us  avoid reproducing Listing 3.2 in its entirety for each code 
fragment we want  to  measure; by defining any needed data right in the code segment 
and  jumping  around  that data, each listing becomes selfcontained  and can be plugged 
directly into Listing 3.2 as  TESTCODE.  Listing 3.2 sets DS equal  to CS before  doing 
anything else  precisely so that  data can be  embedded in code  fragments  being timed. 
Note that only after the initial jump is performed  in Listing 3.3 is the Zen timer 
started, since we don’t want to include  the  execution time of start-up code in the 
timing interval. That’s why the calls to ZTimerOn and ZTimerOff are in TESTCODE, 
not in PZTESTMM; this way,  we have full control over  which portion of  TESTCODE 
is timed, and we can keep set-up code  and  the like out of the timing interval. 
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Listing 3.3 is used by naming  it TESTCODE, assembling both Listing 3.2 (which 
includes TESTCODE) and Listing 3.1 with TASM or MASM, and linking the two 
resulting OBJ files together by  way of the Borland or Microsoft linker. Listing 3.4 
shows a batch file, PZTIME.BAT, which does all that; when run, this batch file gener- 
ates and  runs  the executable file PZTEST.EXE.  PZTIME.BAT (Listing 3.4) assumes 
that  the file PZTIMER.ASM contains Listing 3.1, and  the file PZTEST.ASM contains 
Listing 3.2. The command-line parameter to PZTIME.BAT is the  name of the file to 
be copied to TESTCODE and included  into PZTEST.ASM. (Note  that  Turbo Assem- 
bler can be substituted for MASM  by replacing “masm” with “tasm” and “link” with 
“tlink” in Listing 3.4. The same is true of  Listing 3.7.) 

LISTING 3.4 PZTIME.BAT 
echo o f f  
rem 
rem *** L i s t i n g   3 . 4  *** 
rem 
rem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
rem * B a t c h   f i l e  PZTIME.BAT, w h i c h   b u i l d s   a n d   r u n s   t h e   p r e c i s i o n  * 
rem * Zen t i m e r   p r o g r a m  PZTEST.EXE t o   t i m e   t h e   c o d e  named a s   t h e  * 
rem * c o m m a n d - l i n e   p a r a m e t e r .   L i s t i n g   3 . 1   m u s t   b e  named * 
rem * PZTIMER.ASM. and L i s t i n g   3 . 2   m u s t   b e  named PZTEST.ASM. To * 
rem * t i m e   t h e   c o d e   i n   L S T 3 - 3 .   y o u ’ d   t y p e   t h e  DOS command: * 
rem * * 
rem * p z t i m e   l s t 3 - 3  * 
rem * * 
rem * N o t e   t h a t  MASM and  LINK  must  be i n   t h e   c u r r e n t   d i r e c t o r y   o r  * 
rem * on t h e   c u r r e n t   p a t h   i n   o r d e r   f o r   t h i s   b a t c h   f i l e   t o   w o r k .  * 
rem * * 
rem * T h i s   b a t c h   f i l e   c a n   b e   s p e e d e d   u p   b y   a s s e m b l i n g  PZTIMER.ASM * 
rem * o n c e ,   t h e n   r e m o v i n g   t h e   l i n e s :  * 
rem * * 
rem * masm p z t i m e r ;  * 
rem * i f  e r r o r l e v e l  1 g o t o   e r r o r e n d  * 
rem * * 
rem * f r o m   t h i s   f i l e .  * 
rem * * 
rem * By Michae l   Abrash * 
rem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
rem 
rem  Make s u r e   a   f i l e   t o   t e s t  was s p e c i f i e d .  
rem 
i f  n o t   x % l - x   g o t o   c k e x i s t  

echo * P l e a s e   s p e c i f y   a   f i l e   t o   t e s t .  * 

go to   end 
rem 
rem Make s u r e   t h e   f i l e   e x i s t s .  
rem 
: c k e x i s t  
i f  e x i s t  %1 goto  docopy 

echo * T h e   s p e c i f i e d   f i l e ,  “%1,” d o e s n ’ t   e x i s t ,  * 

goto   end 

echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Assuming  that  Listing  3.3 is named LST3-3.ASM and Listing  3.4 is named 
PZTIME.BAT, the code in Listing  3.3  would be timed with the command: 

p z t i m e  LST3-3.ASM 

which performs all  assembly and linking, and  reports  the  execution time of the  code 
in Listing 3.3. 
When the above command is executed on  an original 4.77 MHz IBM  PC, the time 
reported by the Zen timer is  3619 ps, or  about 3.62 ps per load of AL from memory. 
(While the exact number is 3.619 ps per load of AL, I’m going to round off that last 
digit from now on. No matter how many repetitions of a given instruction are timed, 
there’s just too  much noise in  the timing process-between dynamic RAM refresh, 
the prefetch  queue, and  the  internal state of the processor at  the  start of  timing-for 
that last digit to have  any significance.) Given the test PC’s  4.77 MHz clock, this 
works out to about 17 cycles per MOV, which is actually a  good  bit  longer  than Intel’s 
specified 10-cycle execution time for this instruction. (See the MASM or TASM docu- 
mentation, or Intel’s processor reference manuals, for official execution times.) Fear 
not,  the Zen timer is right-MOV AL,[MEMVAR] really does take 1’7 cycles  as used 
in Listing  3.3.  Exactly why that is so is just what this book is  all about. 
In  order to perform any  of the timing tests in this book, enter Listing 3.1 and name 
it  PZTIMERMM, enter Listing  3.2 and name it PZTESTASM, and  enter Listing  3.4 
and name it PZTIME.BAT. Then simply enter  the listing you  wish to run  into  the file 
filename and  enter  the command: 

p z t i m e   < f i l e n a m e >  

In fact, that’s exactly  how I timed each of the listings in this book. Code  fragments 
you  write  yourself can be timed in just  the same way.  If you  wish to time code directly 
in place in your programs, rather  than in the test-bed program of Listing 3.2,  simply 
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insert calls to ZTimerOn,  ZTimerOff, and ZTimerReport in the  appropriate places 
and link PZTIMER to your program. 

The Long-Period Zen  Timer 
With a few exceptions, the Zen timer presented above will serve us well for the remain- 
der of this book since we’ll be  focusing on relatively short code sequences that generally 
take much less than 54 ms to execute. Occasionally,  however, we will need to  time 
longer intervals.  What’s more, it is very  likely that you  will  want to  time code sequences 
longer than 54  ms at some point in your programming career. Accordingly,  I’ve  also 
developed a Zen timer for periods longer than 54 ms. The long-period Zen timer (so 
named by contrast with the precision  Zen timer just  presented) shown  in  Listing  3.5 
can measure periods up to one  hour in length. 
The key difference between the long-period Zen timer and  the precision Zen timer 
is that the long-period timer leaves interrupts  enabled  during  the timing period. As 
a result, timer  interrupts  are recognized by the PC,  allowing the BIOS  to maintain an 
accurate system  clock time over the timing period. Theoretically, this enables mea- 
surement of arbitrarily long periods. Practically speaking, however, there is no  need 
for  a timer that can measure more  than  a few minutes, since the DOS time of day 
and  date  functions (or, indeed,  the DATE and TIME commands in a batch file) serve 
perfectly well for  longer intervals. Since very long timing intervals aren’t  needed, 
the long-period Zen timer uses a simplified means of calculating elapsed time that is 
limited to measuring intervals of an  hour  or less.  If a  period  longer  than an  hour is 
timed, the long-period Zen timer prints  a message to the effect that  it is unable to 
time an interval of that  length. 
For implementation reasons, the long-period Zen timer is  also incapable of timing 
code  that starts before  midnight  and  ends after midnight; if that eventuality occurs, 
the long-period Zen timer reports  that  it was unable to  time the  code because mid- 
night was crossed. If this happens to you, just time the  code again, secure in  the 
knowledge that at least you  won’t run  into  the problem again for 23-odd hours. 
You should not use the long-period Zen timer to time code  that  requires  interrupts 
to be disabled for  more  than 54 ms at a  stretch  during  the timing interval, since 
when interrupts  are disabled the long-period Zen timer is subject to the same 54 ms 
maximum measurement time as the precision Zen  timer. 
While permitting  the timer interrupt to occur allows long intervals to be timed,  that 
same interrupt makes the long-period Zen timer less accurate than  the precision 
Zen timer, since the time the BIOS spends  handling timer interrupts  during  the 
timing interval is included in the time measured by the long-period timer.  Likewise, 
any other  interrupts  that occur during  the timing interval, most notably keyboard 
and mouse interrupts, will increase the measured time. 
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The long-period Zen timer has some of the same  effects on  the system time as does 
the precision Zen  timer, so it’s a good  idea to reboot  the system after a session  with 
the long-period Zen timer. The long-period Zen timer does not, however,  have the 
same potential  for  introducing major inaccuracy into  the system  clock time during a 
single timing run since it leaves interrupts  enabled  and  therefore allows the system 
clock to  update normally. 

Stopping the Clock 
There’s a potential  problem with the long-period Zen timer. The problem is this: In 
order to measure times longer  than 54 ms,  we must maintain not  one  but two timing 
components, the timer 0 count  and  the BIOS  time-of-day count.  The time-of-day 
count measures the passage  of  54.9  ms intervals, while the  timer 0 count measures 
time within those 54.9  ms intervals. We need to read  the two time components simul- 
taneously in order to get a clean reading. Otherwise, we  may read the timer count 
just before it turns over and generates an  interrupt,  then  read  the BIOS  time-of-day 
countjust after the  interrupt has occurred and caused the time-of-day count to turn 
over,  with a resulting 54 ms measurement inaccuracy. (The opposite sequence- 
reading  the time-of-day count  and  then  the timer count-can result in a 54 ms 
inaccuracy in  the  other  direction.) 
The only way to  avoid  this problem is to stop timer 0, read  both  the timer and time-of- 
day counts while the timer is stopped, and  then restart the timer. Alas, the gate input to 
timer 0 isn’t programcontrollable in the PC, so there’s no documented way to stop the 
timer. (The latched read  feature we used in Listing 3.1 doesn’t stop the timer; it latches 
a count,  but  the timer keeps running.) What should we do? 
As it  turns  out,  an  undocumented  feature of the 8253 makes it possible to stop the 
timer dead in its  tracks. Setting the timer to a new mode  and waiting for  an initial 
count to be  loaded causes the timer to stop  until  the count is loaded. Surprisingly, 
the timer count remains readable and correct while the timer is  waiting for  the ini- 
tial load. 
In my experience, this approach works beautifully with  fully 8253-compatible chips. 
However, there’s no guarantee  that  it will  always work, since it programs  the 8253 in 
an  undocumented way. What’s more, IBM chose not to implement compatibility 
with this particular 8253 feature  in the custom chips used in PS/2 computers. On 
PS/2 computers, we have no choice but to latch the timer 0 count  and  then stop the 
BIOS count (by disabling interrupts) as  quickly  as  possible.  We’ll just have to accept 
the fact that  on PS/2 computers we  may occasionally get a reading that’s off by 54 
ms, and leave it at that. 
I’ve set up Listing  3.5 so that it can  assemble  to either use or not use the undocumented 
timer-stopping feature, as  you please. The PS2 equate selects  between the two modes 
of operation. If PS2 is 1 (as it is in Listing 3.5),  then  the latch-and-read method is  used; 
if PS2 is 0, then  the  undocumented timer-stop approach is used. The latch-and-read 
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method will  work on all PGcompatible computers, but may  occasionally produce re- 
sults that  are  incorrect by 54 ms. The timer-stop approach avoids synchronization 
problems, but doesn't work on all computers. 

LISTING 3.5 UTIMER.ASM 

T h e   l o n g - p e r i o d  Zen t i m e r .  (LZTIMER.ASM) 
Uses t h e   8 2 5 3   t i m e r   a n d   t h e  BIOS t i m e - o f - d a y   c o u n t   t o   t i m e   t h e  
p e r f o r m a n c e   o f   c o d e   t h a t   t a k e s   l e s s   t h a n  a n   h o u r   t o   e x e c u t e .  
B e c a u s e   i n t e r r u p t s   a r e   l e f t  on ( i n   o r d e r   t o   a l l o w   t h e   t i m e r  
i n t e r r u p t   t o  b e   r e c o g n i z e d ) ,   t h i s   i s   l e s s   a c c u r a t e   t h a n   t h e  
p r e c i s i o n  Zen t i m e r ,  s o  it i s   b e s t   u s e d   o n l y   t o   t i m e   c o d e   t h a t   t a k e s  
m o r e   t h a n   a b o u t   5 4   m i l l i s e c o n d s   t o   e x e c u t e   ( c o d e   t h a t   t h e   p r e c i s i o n  
Zen t i m e r   r e p o r t s   o v e r f l o w  on). R e s o l u t i o n   i s   l i m i t e d   b y   t h e  
o c c u r r e n c e   o f   t i m e r   i n t e r r u p t s .  

By Michael   Abrash 

E x t e r n a l l y   c a l l a b l e   r o u t i n e s :  

ZTimerOn:  Saves  the B I O S  t i m e   o f   d a y   c o u n t   a n d   s t a r t s   t h e  
l o n g - p e r i o d  Zen t i m e r .  

Z T i m e r O f f :   S t o p s   t h e   l o n g - p e r i o d  Zen t i m e r   a n d   s a v e s   t h e   t i m e r  
coun t   and   t he  BIOS t i m e - o f - d a y   c o u n t .  

Z T i m e r R e p o r t :   P r i n t s   t h e   t i m e   t h a t   p a s s e d   b e t w e e n   s t a r t i n g   a n d  
s t o p p i n g   t h e   t i m e r .  

Note:  I f  e i t h e r   m o r e   t h a n   a n   h o u r   p a s s e s   o r   m i d n i g h t   f a l l s   b e t w e e n  
c a l l s   t o  ZTimerOn  and  ZTimerOf f ,   an  er ror  i s   r e p o r t e d .   F o r  
t i m i n g   c o d e   t h a t   t a k e s   m o r e   t h a n  a f e w   m i n u t e s   t o   e x e c u t e ,  
e i t h e r   t h e  OOS TIME command i n  a b a t c h   f i l e   b e f o r e  and a f t e r  
e x e c u t i o n   o f   t h e   c o d e   t o   t i m e   o r   t h e   u s e   o f   t h e  DOS 
t i m e - o f - d a y   f u n c t i o n   i n   p l a c e   o f   t h e   l o n g - p e r i o d  Zen t i m e r   i s  
more  than  adequate.  

Note:   The P S / 2  v e r s i o n   i s   a s s e m b l e d   b y   s e t t i n g   t h e   s y m b o l  PS2 t o  1. 
PS2 m u s t   b e   s e t   t o  1 on P S / 2  computers  because  the P S / Z ' s  
t i m e r s   a r e   n o t   c o m p a t i b l e   w i t h  an   undocumented  t imer -s topp ing  
f e a t u r e   o f   t h e   8 2 5 3 :   t h e   a l t e r n a t i v e   t i m i n g   a p p r o a c h   t h a t  
must  be  used  on  PS/2  computers  leaves a sho r t   w indow 
d u r i n g   w h i c h   t h e   t i m e r  0 coun t   and   t he  BIOS t i m e r   c o u n t  may 
n o t   b e   s y n c h r o n i z e d .  You s h o u l d   a l s o   s e t   t h e  PS2 symbol t o  
1 i f  y o u ' r e   g e t t i n g   e r r a t i c   o r   o b v i o u s l y   i n c o r r e c t   r e s u l t s .  

Note:  When PS2 i s  0. t h e   c o d e   r e l i e s   o n  an  undocumented  8253 
f e a t u r e   t o   g e t  more r e l i a b l e   r e a d i n g s .  It i s   p o s s i b l e   t h a t  
t h e   8 2 5 3   ( o r   w h a t e v e r   c h i p   i s   e m u l a t i n g   t h e   8 2 5 3 )  may b e   p u t  
i n t o  an u n d e f i n e d   o r   i n c o r r e c t   s t a t e  when t h i s   f e a t u r e   i s  
used. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* I f  y o u r   c o m p u t e r   d i s p l a y s   a n y   h i n t   o f   e r r a t i c   b e h a v i o r  * 
* a f t e r   t h e   l o n g - p e r i o d  Zen t i m e r   i s   u s e d ,   s u c h   a s   t h e   f l o p p y  * 
* d r i v e   f a i l i n g   t o   o p e r a t e   p r o p e r l y ,   r e b o o t   t h e   s y s t e m ,   s e t  * 
* PS2 t o  1 and  leave i t  t h a t  way! * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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: N o t e :   E a c h   b l o c k   o f   c o d e   b e i n g   t i m e d   s h o u l d   i d e a l l y   b e   r u n   s e v e r a l  
: t i m e s ,   w i t h  a t  l e a s t   t w o   s i m i l a r   r e a d i n g s   r e q u i r e d   t o  
: e s t a b l i s h  a t r u e  measurement, i n   o r d e r   t o   e l i m i n a t e  any 
: v a r i a b i l i t y   c a u s e d   b y   i n t e r r u p t s .  

: N o t e :   I n t e r r u p t s   m u s t   n o t   b e   d i s a b l e d   f o r   m o r e   t h a n  54 ms a t  a 
: s t r e t c h   d u r i n g   t h e   t i m i n g   i n t e r v a l .   B e c a u s e   i n t e r r u p t s  
: a r e   e n a b l e d ,   k e y s ,   m i c e ,   a n d   o t h e r   d e v i c e s   t h a t   g e n e r a t e  
: i n t e r r u p t s   s h o u l d   n o t  b e   u s e d   d u r i n g   t h e   t i m i n g   i n t e r v a l .  

: Note:  Any e x t r a   c o d e   r u n n i n g   o f f   t h e   t i m e r   i n t e r r u p t   ( s u c h   a s  
: some m e m o r y - r e s i d e n t   u t i l i t i e s )  will i n c r e a s e   t h e   t i m e  
: measured  by  the Zen t i m e r .  

: N o t e :   T h e s e   r o u t i n e s   c a n   i n t r o d u c e   i n a c c u r a c i e s   o f  UD t o  a few 

: All 

Code 

t e n t h s   o f  a second i n t o   t h e   s y s t e m   c l o c k   c o u n t   f o r   e a c h  
c o d e   s e c t i o n   t i m e d .   C o n s e q u e n t l y ,   i t ' s  a g o o d   i d e a   t o  
r e b o o t  a t  t h e   c o n c l u s i o n   o f   t i m i n g   s e s s i o n s .   ( T h e  
b a t t e r y - b a c k e d   c l o c k ,  i f  any. i s   n o t   a f f e c t e d  b y   t h e  Zen 
t i m e r . )  

r e g i s t e r s  and a l l   f l a g s   a r e   p r e s e r v e d   b y   a l l   r o u t i n e s .  

segment   word  publ ic  ' C O D E '  
assume  cs:Code.  ds:nothing 
p u b l i c  ZTimerOn.  ZTimerOff .   ZTimerReport  

Se t  P S 2  t o  0 t o  a s s e m b l e   f o r   u s e  on  a f u l l y   8 2 5 3 - c o m p a t i b l e  
system: when PS2 i s  0 .  t h e   r e a d i n g s   a r e   m o r e   r e l i a b l e  i f  t h e  
c o m p u t e r   s u p p o r t s   t h e   u n d o c u m e n t e d   t i m e r - s t o p p i n g   f e a t u r e ,  
b u t  may b e   b a d l y   o f f  i f  t h a t   f e a t u r e   i s   n o t   s u p p o r t e d .   I n  
f a c t ,   t i m e r - s t o p p i n g  may i n t e r f e r e   w i t h   y o u r   c o m p u t e r ' s  
o v e r a l l   o p e r a t i o n   b y   p u t t i n g   t h e   8 2 5 3   i n t o  an u n d e f i n e d   o r  
i n c o r r e c t   s t a t e .  Use w i t h   c a u t i o n ! ! !  

Set  PS2 t o  1 t o  assemble f o r   u s e  on   non-8253-compat ib le  
s y s t e m s ,   i n c l u d i n g  P S / 2  computers:  when PS2 i s  1. r e a d i n g s  
may o c c a s i o n a l l y  be o f f  by  54 ms. b u t   t h e   c o d e  will work 
p r o p e r l y  on all systems.  

A s e t t i n g   o f  1 i s   s a f e r  and will work on more  systems, 
w h i l e  a s e t t i n g   o f  0 p r o d u c e s   m o r e   r e l i a b l e   r e s u l t s   i n   s y s t e m s  
w h i c h   s u p p o r t   t h e   u n d o c u m e n t e d   t i m e r - s t o p p i n g   f e a t u r e   o f   t h e  
8253.  The  choice i s   y o u r s .  

PS2 equ 1 

: B a s e   a d d r e s s   o f   t h e   8 2 5 3   t i m e r   c h i p .  

BASE-8253 equ  40h 

: T h e   a d d r e s s   o f   t h e   t i m e r  0 c o u n t   r e g i s t e r s   i n   t h e   8 2 5 3 .  

TIMER-0-8253 equ BASE-8253 + 0 

: The   add ress   o f   t he  mode r e g i s t e r   i n   t h e   8 2 5 3 .  

MODEL8253 equ BASEL8253 + 3 
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; The  address o f   t h e  B I O S  t i m e r   c o u n t   v a r i a b l e   i n   t h e  BIOS 
: data  segment .  

TIMER-COUNT equ  46ch 

: Macro t o   e m u l a t e  a POPF i n s t r u c t i o n   i n   o r d e r   t o   f i x   t h e   b u g   i n  some 
; 80286 c h i p s   w h i c h   a l l o w s   i n t e r r u p t s   t o   o c c u r   d u r i n g  a POPF even when 
: i n t e r r u p t s   r e m a i n   d i s a b l e d .  

MPOPF macro 
l o c a l   p l .   p 2  
j m p   s h o r t   p 2  

p l :   i r e t  ; jump t o  pushed  address & p o p   f l a g s  
p2:  push c s  : c o n s t r u c t   f a r   r e t u r n   a d d r e s s   t o  

c a l l   p l  : t h e   n e x t   i n s t r u c t i o n  
endm 

; Macro t o   d e l a y   b r i e f l y   t o   e n s u r e   t h a t   e n o u g h   t i m e   h a s   e l a p s e d  
: between  success ive  1 / 0  accesses s o  t h a t   t h e   d e v i c e   b e i n g   a c c e s s e d  
; can  respond t o   b o t h   a c c e s s e s   e v e n   o n  a v e r y   f a s t  PC.  

DELAY macro 
jmp J+2 
jmp J+2 
jmp 6+2 
endm 

StartBIOSCountLowdw 

Star tB IOSCountH igh  

EndBIOSCountLow 

EndBIOSCountHigh 

EndTimedCount 

Referencecount  

: S t r i n g   p r i n t e d  

O u t p u t S t r   l a b e l  
db 

TimedCountStr  
db 
db 

dw 

? 

dw 

dw 

? 

dw 

dw 

:BIOS c o u n t   l o w   w o r d   a t   t h e  
: s t a r t   o f   t h e   t i m i n g   p e r i o d  

? :BIOS c o u n t   h i g h   w o r d   a t   t h e  
; s t a r t   o f   t h e   t i m i n g   p e r i o d  

? ;BIOS c o u n t   l o w   w o r d   a t   t h e  
: end o f  t h e   t i m i n g   p e r i o d  
:BIOS c o u n t   h i g h   w o r d   a t   t h e  
; end o f   t h e   t i m i n g   p e r i o d  

? : t i m e r  0 c o u n t   a t   t h e   e n d  o f  
: t h e   t i m i n g   p e r i o d  

? ;number o f   c o u n t s   r e q u i r e d   t o  
: execu te   t imer   ove rhead   code  

t o   r e p o r t   r e s u l t s .  

b y t e  
Odh.  Oah. 'T imed  count :  ' 
db 10 dup ( ? )  
' m i c r o s e c o n d s ' ,  Odh. Oah 
' J '  

: T e m p o r a r y   s t o r a g e   f o r   t i m e d   c o u n t  as i t ' s   d i v i d e d  down by  powers 
: o f  t e n  when c o n v e r t i n g   f r o m   d o u b l e w o r d   b i n a r y   t o  A S C I I .  

CurrentCountLow dw ? 
Cur ren tCountH igh  dw ? 

: Powers o f   t e n   t a b l e   u s e d   t o   p e r f o r m   d i v i s i o n  by 10 when d o i n g  
; d o u b l e w o r d   c o n v e r s i o n   f r o m   b i n a r y   t o  A S C I I .  

PowersOfTen 1 abel   word 
dd 1 
dd 1 0  
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dd  100 
dd  1000 
dd  10000 
dd  100000 
dd  1000000 
dd  10000000 
dd  100000000 
dd  1000000000 

PowersOfTenEnd l a b e l   w o r d  

: S t r i n g   p r i n t e d   t o   r e p o r t   t h a t   t h e   h i g h   w o r d   o f   t h e  B I O S  c o u n t  
: c h a n g e d   w h i l e   t i m i n g   ( a n   h o u r   e l a p s e d   o r   m i d n i g h t  was c r o s s e d ) ,  
: and s o  t h e   c o u n t   i s   i n v a l i d   a n d   t h e   t e s t   n e e d s   t o   b e   r e r u n .  

T u r n O v e r S t r   l a b e l   b y t e  
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 

Odh. Oah 

Odh. Oah 
' *  E i t h e r   m i d n i g h t   p a s s e d   o r   a n   h o u r   o r   m o r e   p a s s e d  * '  
Odh. Oah 
' *  w h i l e   t i m i n g  was i n   p r o g r e s s .  I f  t h e   f o r m e r  was * '  
Odh. Oah 
'* t h e   c a s e ,   p l e a s e   r e r u n   t h e   t e s t :  i f  t h e   l a t t e r  * '  
Odh. Oah 
' *  was t h e   c a s e ,   t h e   t e s t   c o d e   t a k e s   t o o   l o n g   t o  * '  
Odh. Oah 
' *  r u n   t o   b e   t i m e d   b y   t h e   l o n g - p e r i o d  Zen t i m e r .  * '  
Odh. Oah 
' *  S u g g e s t i o n s :   u s e   t h e  DOS TIME  command, t h e  DOS * '  
Odh. Oah 
' *  t i m e   f u n c t i o n ,   o r  a watch. * '  
Odh. Oah 

Odh. Oah 
' 0 '  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
:* R o u t i n e   c a l l e d   t o   s t a r t   t i m i n g .  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ZTimerOn  proc  near  

Save t h e   c o n t e x t   o f   t h e   p r o g r a m   b e i n g   t i m e d .  

push  ax 
push f  

S e t   t i m e r  0 o f   t h e  8253 t o  mode 2 ( d i v i d e - b y - N ) .   t o   c a u s e  
l i n e a r   c o u n t i n g   r a t h e r   t h a n   c o u n t - b y - t w o   c o u n t i n g .  A l s o  s t o p s  
t i m e r  0 u n t i l   t h e   t i m e r   c o u n t   i s   l o a d e d ,   e x c e p t  on  PS/2 
computers.  

mov a l .00110100b 
o u t  MODE-8253.al 

:mode  2 

S e t   t h e   t i m e r   c o u n t   t o  0, so we know we w o n ' t   g e t   a n o t h e r  
t i m e r   i n t e r r u p t   r i g h t  away. 
N o t e :   t h i s   i n t r o d u c e s  a n   i n a c c u r a c y   o f   u p   t o  54 ms i n   t h e   s y s t e m  
c l o c k   c o u n t   e a c h   t i m e  i t  i s  executed.  

58 Chapter 3 



DELAY 
sub a1 .a1 
o u t  TIMERPOP8253.al : l s b  
DELAY 
o u t  TIMER-0-8253,al :msb 

: I n  c a s e   i n t e r r u p t s   a r e   d i s a b l e d ,   e n a b l e   i n t e r r u p t s   b r i e f l y   t o   a l l o w  
: t h e   i n t e r r u p t   g e n e r a t e d  when s w i t c h i n g   f r o m  mode 3 t o  mode 2 t o  be 
: r e c o g n i z e d .   I n t e r r u p t s   m u s t   b e   e n a b l e d   f o r   a t   l e a s t   2 1 0   n s   t o   a l l o w  
: t i m e   f o r   t h a t   i n t e r r u p t   t o   o c c u r .   H e r e ,  10 j u m p s   a r e   u s e d   f o r   t h e  
: d e l a y   t o   e n s u r e   t h a t   t h e   d e l a y   t i m e  will be  more   than  long   enough 
: even  on a v e r y   f a s t  P C .  

p u s h f  
s t i  
r e p t  1 0  
jmp 1+2 

MPOPF 
endm 

: S t o r e   t h e   t i m i n g   s t a r t  BIOS c o u n t .  
: ( S i n c e   t h e   t i m e r   c o u n t  was j u s t   s e t   t o  0 .  t h e  B I O S  c o u n t  will 
: s t a y   t h e  same f o r   t h e   n e x t   5 4  ms. s o  we d o n ' t   n e e d   t o   d i s a b l e  
: i n t e r r u p t s   i n   o r d e r   t o   a v o i d   g e t t i n g  a h a l f - c h a n g e d   c o u n t . )  

push  ds 
sub ax.ax  

mov ax,ds:[TIMERPCOUNT+2] 
mov ds.ax 

mov cs:[StartBIOSCountHighl.ax 
mov ax.ds:[TIMERPCOUNT] 
mov cs:[StartBIOSCountLow],ax 
POP ds 

: S e t   t h e   t i m e r   c o u n t   t o  0 a g a i n   t o   s t a r t   t h e   t i m i n g   i n t e r v a l .  

mov a l . 0 0 1 1 0 1 0 0 b   : s e t   u p   t o   l o a d   i n i t i a l  
o u t  MOOEL8253,al 
DELAY 
sub a1 .a1 
o u t  TIMER-0-8253,al 
DELAY 

: l o a d   c o u n t   l s b  

o u t  TIMER-0-8253.al : l o a d   c o u n t  msb 

: t i m e r   c o u n t  

: R e s t o r e   t h e   c o n t e x t   o f   t h e   p r o g r a m   b e i n g   t i m e d   a n d   r e t u r n   t o  i t . 

MPOPF 
POP ax  
r e t  

ZTimerOn  endp 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
:* R o u t i n e   c a l l e d   t o   s t o p   t i m i n g   a n d   g e t   c o u n t .  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ZT imerOf f   p roc   nea r  

: Save t h e   c o n t e x t   o f   t h e   p r o g r a m   b e i n g   t i m e d .  

Assume Nothing 59 



push f  
push  ax 
push  cx 

: I n  c a s e   i n t e r r u p t s   a r e   d i s a b l e d ,   e n a b l e   i n t e r r u p t s   b r i e f l y   t o   a l l o w  
: a n y   p e n d i n g   t i m e r   i n t e r r u p t   t o   b e   h a n d l e d .   I n t e r r u p t s   m u s t   b e  
: e n a b l e d   f o r  a t  l e a s t  210  ns t o   a l l o w   t i m e   f o r   t h a t   i n t e r r u p t   t o  
: o c c u r .   H e r e ,   1 0   j u m p s   a r e   u s e d   f o r   t h e   d e l a y   t o   e n s u r e   t h a t   t h e  
: d e l a y   t i m e  will be  more  than  long  enough  even on a v e r y   f a s t  PC.  

s t i  
r e p t   1 0  
jmp 9+2 
endm 

: L a t c h   t h e   t i m e r   c o u n t .  

i f  PS2 

mov a l ,00000000b 
o u t  MODE-8253.al : l a t c h   t i m e r  0 coun t  

: T h i s   i s  where a o n e - i n s t r u c t i o n - l o n g   w i n d o w   e x i s t s  on t h e  PS/2. 
: The t i m e r   c o u n t   a n d   t h e  B I O S  c o u n t   c a n   l o s e   s y n c h r o n i z a t i o n :  
: s i n c e   t h e   t i m e r   k e e p s   c o u n t i n g   a f t e r   i t ' s   l a t c h e d ,  i t  c a n   t u r n  
: o v e r   r i g h t   a f t e r   i t ' s   l a t c h e d  and  cause  the B I O S  c o u n t   t o   t u r n  
: o v e r   b e f o r e   i n t e r r u p t s   a r e   d i s a b l e d ,   l e a v i n g  us w i t h   t h e   t i m e r  
: c o u n t   f r o m   b e f o r e   t h e   t i m e r   t u r n e d   o v e r   c o u p l e d   w i t h   t h e  B I O S  
: c o u n t   f r o m   a f t e r   t h e   t i m e r   t u r n e d   o v e r .  The r e s u l t   i s  a coun t  
: t h a t ' s  54 ms t o o   l o n g .  

e l s e  

: S e t   t i m e r  0 t o  mode  2 ( d i v i d e - b y - N ) ,   w a i t i n g   f o r  a 2 - b y t e   c o u n t  
: l o a d ,   w h i c h   s t o p s   t i m e r  0 u n t i l   t h e   c o u n t   i s   l o a d e d .   ( O n l y   w o r k s  
: on f u l l y   8 2 5 3 - c o m p a t i b l e   c h i p s . )  

mov a l .00110100b :mode 2 
o u t  MODEL8253,al 
DELAY 
mov a l . 0 0 0 0 0 0 0 0 b   : l a t c h   t i m e r  0 c o u n t  
o u t  MODEL8253,al 

end i  f 

c l  i ; s t o p   t h e  B I O S  c o u n t  

: Read t h e  B I O S  c o u n t .   ( S i n c e   i n t e r r u p t s   a r e   d i s a b l e d ,   t h e  B I O S  
: count   won ' t   change. )  

push  ds 
sub  ax.ax 
mov ds,ax 
mov ax,ds:[TIMER_COUNT+2] 
mov cs:[EndBIOSCountHighl,ax 
mov ax,ds:[TIMERLCOUNT1 
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mov cs:[EndBIOSCountLowl.ax 
POP ds 

; Read t h e   t i m e r   c o u n t   a n d   s a v e  i t .  

i n  a1 .TIMERpOp8253 
DELAY 

: l s b  

mov ah .a l  
i n  a1 ,TIMERp0-8253  :msb 
xchg  ah.a l  
neg  ax   ;conver t   f rom  countdown 

: r e m a i n i n g   t o   e l a p s e d  
: count  

mov cs: [EndTimedCount l .ax 

: R e s t a r t   t i m e r  0 .  w h i c h   i s   s t i l l   w a i t i n g   f o r  an i n i t i a l   c o u n t  
: t o  be  loaded.  

i f e  P S 2  

DELAY 
mov a1 .00110100b :mode 2 .  w a i t i n g   t o   l o a d  a 

o u t  MODEL8253,al 
DELAY 
sub a1 .a1 
o u t  TIMERpOp8253.al 
DELAY 

: l s b  

mov a1 ,ah 
o u t  TIMERpOp8253.al 
DELAY 

:msb 

: 2 - b y t e   c o u n t  

e n d i  f 

s t i   ; l e t   t h e  B I O S  c o u n t   c o n t i n u e  

: Time a z e r o - l e n g t h   c o d e   f r a g m e n t ,   t o   g e t  a r e f e r e n c e   f o r  how 
: much o v e r h e a d   t h i s   r o u t i n e   h a s .   T i m e  i t  16  t imes  and  average it, 
: f o r   a c c u r a c y ,   r o u n d i n g   t h e   r e s u l t .  

mov cs : [ReferenceCount l .O 
mov cx.16 
c l  i : i n t e r r u p t s   o f f   t o   a l l o w  a 

: p r e c i s e   r e f e r e n c e   c o u n t  
Ref  Loop: 

c a l l  ReferenceZTimerOn 
c a l l   R e f e r e n c e Z T i m e r O f f  
1 oop  Ref  Loop 
s t i  
add   cs : [Re fe renceCoun t l . 8   : t o ta l  + ( 0 . 5  * 1 6 )  
mov c l  . 4  
s h r   c s : [ R e f e r e n c e C o u n t l . c l   : ( t o t a l )  / 16 + 0.5 

; R e s t o r e   t h e   c o n t e x t   o f   t h e   p r o g r a m   b e i n g   t i m e d   a n d   r e t u r n   t o  i t .  

POP c x  
POP ax 
M P O P F  
r e t  
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ZTimerOff   endp 

: C a l l e d   b y   Z T i m e r O f f   t o   s t a r t   t h e   t i m e r   f o r   o v e r h e a d   m e a s u r e m e n t s .  

ReferenceZTimerOnproc  near 

: Save t h e   c o n t e x t   o f   t h e   p r o g r a m   b e i n g   t i m e d .  

push  ax 
p u s h f  

: S e t   t i m e r  0 o f   t h e  8253 t o  mode 2 ( d i v i d e - b y - N ) .   t o   c a u s e  
: l i n e a r   c o u n t i n g   r a t h e r   t h a n   c o u n t - b y - t w o   c o u n t i n g .  

: Set  

mov  a1 .00110100b ;mode 2 
o u t  MODE-8253.al 

t h e   t i m e r   c o u n t   t o  0 

DELAY 
sub a 1  ,a1 
o u t  TIMER-0-8253.al : l s b  
DELAY 
o u t  TIMERPOP8253.al  ;msb 

: R e s t o r e   t h e   c o n t e x t  

M P O P F  

r e t  
POP ax  

ReferenceZTimerOnendp 

: C a l l e d   b y   Z T i m e r O f f  

o f  t h e   p r o g r a m   b e i n g   t i m e d   a n d   r e t u r n   t o  i t . 

t o   s t o p   t h e   t i m e r  a n d   a d d   t h e   r e s u l t   t o  
: Referencecount   for   overhead  measurements.   Doesn ' t   need t o   l o o k  
: a t   t h e  B I O S  c o u n t   b e c a u s e   t i m i n g  a z e r o - l e n g t h   c o d e   f r a g m e n t  
: i s n ' t   g o i n g   t o   t a k e   a n y w h e r e   n e a r   5 4  ms. 

Re fe renceZT imerOf f   p roc   nea r  

: Save t h e   c o n t e x t   o f   t h e   p r o g r a m   b e i n g   t i m e d .  

p u s h f  
push  ax 
push   cx  

: M a t c h   t h e   i n t e r r u p t - w i n d o w   d e l a y   i n   Z T i m e r O f f  

s t i  
r e p t  10 
jmp $+2 
endm 

mov al .00000000b 
o u t  MODE-8253,al : l a t c h   t i m e r  
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: Read the   coun t   and   save  i t .  

DELAY 
i n  a1 ,TIMER_0_8253 ; l s b  

mov ah.al  
i n  a1 .TIMER_0_8253 ;msb 
xchg  ah ,a l  
neg  ax   ;conver t   f rom  countdown 

DELAY 

; r e m a i n i n g  t o  e l a p s e d  
: c o u n t  

add  cs: [ReferenceCount l ,ax 

; R e s t o r e   t h e   c o n t e x t   a n d   r e t u r n .  

POP c x  
POP ax 
MPOPF 
r e t  

ReferenceZTimerOf f   endp 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
;* R o u t i n e   c a l l e d   t o   r e p o r t   t i m i n g   r e s u l t s .  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ZT imerRepor t   p roc   near  

p u s h f  
push  ax 
push  bx 
push  cx 
push  dx 
push s i  
p u s h   d i  
push  ds 

push c s  :DOS f u n c t i o n s   r e q u i r e   t h a t  DS p o i n t  
POP ds : t o   t e x t   t o  b e   d i s p l a y e d  on t h e   s c r e e n  
assume  ds :Code 

; See i f  m i d n i g h t   o r   m o r e   t h a n   a n   h o u r   p a s s e d   d u r i n g   t i m i n g .  I f  so ,  
; n o t i f y   t h e   u s e r .  

mov ax . [S tar tB IOSCountH igh l  
cmp ax. [EndBIOSCountHighl  
j z  Ca lcBIOSTime  ;hour   count   d idn ' t   change,  

i n c   a x  
cmp ax. [EndBIOSCountHighl  
j n z   T e s t T o o L o n g   : m i d n i g h t   o r   t w o   h o u r  

; s o  e v e r y t h i n g ' s   f i n e  

: boundar ies   passed,  s o  t h e  
: r e s u l t s   a r e   n o   g o o d  

mov ax.CEndBIOSCountLowl 
cmp ax . [S tar tB IOSCountLowl  
j b  CalcBIOSTime  :a   s ing le  hour   boundary 

; p a s s e d - - t h a t ' s  OK.  s o  l o n g   a s  
: t h e   t o t a l   t i m e   w a s n ' t   m o r e  
; t h a n  an  hour 
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: O v e r   a n   h o u r   e l a p s e d   o r   m i d n i g h t   p a s s e d   d u r i n g   t i m i n g ,   w h i c h  
: r e n d e r s   t h e   r e s u l t s   i n v a l i d .   N o t i f y   t h e   u s e r .   T h i s   m i s s e s   t h e  
: case  where a m u l t i p l e   o f  24 h o u r s   h a s   p a s s e d ,   b u t   w e ' l l   r e l y  
: o n   t h e   p e r s p i c a c i t y   o f   t h e  user t o   d e t e c t   t h a t   c a s e .  

TestTooLong: 
mov ah.9 
mov d x . o f f s e t   T u r n O v e r S t r  
i n t  21h 
jmp  shor t   ZTimerRepor tOone 

: C o n v e r t   t h e  BIOS t i m e   t o   m i c r o s e c o n d s .  

CalcBIOSTime: 
mov ax.CEndBIOSCountLowl 
sub  ax. [StartBIOSCountLow] 
mov dx.  54925  :number o f   m i c r o s e c o n d s   e a c h  

mu1 d x  
mov b x . a x   : s e t   a s i d e  BIOS c o u n t   i n  
mov cx .dx  : microseconds 

: BIOS c o u n t   r e p r e s e n t s  

: C o n v e r t   t i m e r   c o u n t   t o   m i c r o s e c o n d s .  

mov ax,  [ EndTimedCount] 
mov s i  ,8381 
mu1 s i  
mov s i  ,10000 
d i v   s i  :* .E381 - * 8381 / 10000 

: Add t i m e r   a n d  B I O S  c o u n t s   t o g e t h e r   t o   g e t   a n   o v e r a l l   t i m e   i n  
: microseconds.  

add bx.ax 
adc cx .0  

: S u b t r a c t   t h e   t i m e r   o v e r h e a d   a n d   s a v e   t h e   r e s u l t .  

mov ax. [ReferenceCount]  
mov s i  ,8381 
mu1 s i  
mov s i ,  10000 
d i v   s i  :* .E381 - * 8381 / 10000 
sub  bx.ax 
sbb  cx.0 
mov [Cur ren tCountLowl .bx  
mov [ C u r r e n t C o u n t H i g h ] . ~ ~  

: c o n v e r t   t h e   r e f e r e n c e   c o u n t  
: t o   m i c r o s e c o n d s  

: C o n v e r t   t h e   r e s u l t   t o  an  ASCII s t r i n g   b y   t r i a l   s u b t r a c t i o n s  o f  
: powers o f   1 0 .  

mov d i . o f f s e t  PowersOfTenEnd - o f f s e t  PowersOfTen - 4 
mov s i . o f f s e t   T i m e d C o u n t S t r  

mov b l  ,'O' 

mov ax . [Cur ren tCountLow]  
mov dx , [Cur ren tCountH igh ]  
sub  ax.PowersOfTen[di ]  

CTSNextOigi t : 

CTSLoop: 
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s b b  dx.PowersOfTenCdi+2l 
j c  CTSNextPowerDown 
i n c   b l  
mov CCurrentCountLowl.ax 
mov [Cur ren tCountH igh ] .dx  
jrnp CTSLoop 

rnov [ s i l . b l  
i n c   s i  
s u b   d i  . 4  
j n s   C T S N e x t D i g i t  

CTSNextPowerDown: 

: P r i n t   t h e   r e s u l t s .  

mov ah.9 
rnov d x , o f f s e t   O u t p u t S t r  
i n t  21h 

ZTirnerReportDone: 
POP ds 
pop d i  
pop s i  
POP dx  
POP c x  
POP bx 
POP ax 
MPOPF 
r e t  

ZTimerReport  endp 

Code  ends 
end 

Moreover, because it uses an  undocumented  feature,  the timer-stop approach  could 
conceivably cause erratic 8253 operation, which could in turn seriously affect your 
computer’s  operation  until the next  reboot.  In non-8253-compatible systems,  I’ve 
observed not only wildly incorrect timing results, but also failure of a diskette drive 
to operate properly after the long-period Zen timer with PS2 set to 0 has run, so be 
alert  for signs  of trouble if  you do set PS2 to 0. 
Rebooting should clear up any timer-related problems of the sort described above. 
(This gives  us another reason to reboot at the  end of each code-timing session.) You 
should immediately reboot  and set the PS2 equate to 1 if  you get erratic or obviously 
incorrect results  with the long-period Zen timer when PS2 is set  to 0. If  you want  to  set 
PS2 to 0, it would be a good idea to time a few  of the listings in this book with PS2 set 
first  to 1 and  then to 0, to  make sure that  the results match. If  they’re  consistently 
different, you should set PS2 to 1. 
While the  the non-PS/2 version is more  dangerous  than the PS/2 version, it also 
produces  more  accurate results when it does work.  If  you  have a non-PS/Z  PC-com- 
patible computer,  the choice between the two timing approaches is yours. 
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If  you do leave the PS2 equate  at 1 in Listing 3.5, you should repeat each code-timing 
run several  times before relying on the results  to  be accurate to more than 54 ms, since 
variations may result from the possible  lack of synchronization  between the timer 0 
count and the BIOS time-ofday count.  In fact, it’s a good idea to time code more than 
once no matter which  version of the long-period Zen timer you’re using,  since inter- 
rupts, which  must  be enabled in order  for  the long-period timer to work  properly, may 
occur at any  time and can alter execution time  substantially. 
Finally, please note  that  the precision Zen timer works perfectly well on both PS/2 
and non-PS/S computers. The PS/2 and 8253 considerations we’ve just discussed 
apply only to  the  long-period Zen  timer. 

Example  Use of the  Long-Period  Zen  Timer 
The long-period Zen timer has  exactly the same  calling interface as the precision  Zen 
timer, and can  be  used in place of the precision  Zen timer simply by linking it to the 
code to be  timed in place  of linking the precision timer code. Whenever the precision 
Zen timer informs you that  the code being timed takes too long  for  the precision  timer 
to  handle, all you have to do is link in the long-period timer instead. 
Listing 3.6 shows a test-bed program  for  the  long-period Zen  timer.  While this pro- 
gram is similar to Listing 3.2, it’s worth noting  that Listing 3.6 waits for  a few seconds 
before calling ZTimerOn, thereby allowing  any pending keyboard interrupts to be 
processed. Since interrupts must be left on in order to time periods  longer  than 54 
ms, the  interrupts  generated by keystrokes (including  the  upstroke of the  Enter key 
press that starts the program)-or any other interrupts,  for  that matter-could in- 
correctly inflate  the time recorded by the  long-period Zen  timer. In light of this, 
resist the  temptation to type ahead, move the mouse, or the like  while the long- 
period Zen timer is timing. 

LISTING 3.6 UTEST.ASM 
: Program t o  measure   per formance   o f   code   tha t   takes   longer   than  
: 54 ms t o   e x e c u t e .  (LZTEST.ASM) 

: L i n k   w i t h  LZTIMER.ASM ( L i s t i n g   3 . 5 ) .  LZTIME.BAT ( L i s t i n g   3 . 7 )  
: can  be  used t o  assemble  and l i n k   b o t h   f i l e s .  Code t o   b e  
: measured  must  be i n   t h e   f i l e  TESTCODE: L i s t i n g   3 . 8  shows 
: a  sample f i l e  (LST3-8.ASM)  which  should  be named TESTCODE. 

: By Michael   Abrash 

mystack  segment  para  stack ‘STACK’ 

mystack  ends 

Code segment   para   publ ic  ‘CODE’  

db  512  dup(?)  

assume cs:Code.  ds:Code 
ex t rn   ZT imer0n:near .   ZT imer0 f f :near .   ZT imerRepor t :near  

push  cs 
S t a r t   p r o c   n e a r  
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pop  ds : p o i n t  D S  t o   t h e  code  segment. 
: so da ta  a s  w e l l  as  code  can e a s i l y  
: b e   i n c l u d e d   i n  TESTCODE 

: Delay f o r  6 - 7   s e c o n d s .   t o   l e t   t h e   E n t e r   k e y s t r o k e   t h a t   s t a r t e d   t h e  
: program come back  up. 

mov ah,2ch 
i n t  21h 
mov bh.dh 

mov ah.2ch 
push bx 
i n t  21h 
POP bx 
cmp dh,bh 

jnb  CheckDelayTime 
add  dh.60 

Del  ayLoop: 

CheckDelayTime: 
sub dh,bh 
cmp dh.7 
j b  Del  ayLoop 

i n c l u d e  TESTCODE 

: D i s p l a y   t h e   r e s u l t s .  

c a l l   Z T i m e r R e p o r t  

: Terminate   the   p rogram.  

mov ah.4ch 
i n t  21h 

S t a r t  endp 
Code ends 

end S t a r t  

: g e t   t h e   c u r r e n t   t i m e  
: s e t   t h e   c u r r e n t   t i m e   a s i d e  

; p r e s e r v e   s t a r t   t i m e  
: g e t   t i m e  
: r e t r i e v e   s t a r t   t i m e  
: i s   t h e  new seconds  count  less  t h a n  
: t h e   s t a r t   s e c o n d s   c o u n t ?  
:no 
:yes.  a m inu te   mus t   have   t u rned   ove r ,  
; so add one m i n u t e  

: g e t   t i m e   t h a t ' s   p a s s e d  
;has i t  been  more  than 6 seconds   ye t?  
; n o t   y e t  

:code t o  b e   m e a s u r e d ,   i n c l u d i n g   c a l l s  
: t o  ZTimerOn  and  ZTimerOff 

As with the precision Zen timer, the program  in Listing 3.6 is used by naming the file 
containing  the  code to be timed TESTCODE, then assembling both Listing 3.6 and 
Listing 3.5 with MASM or TASM and linking the two files together by  way of the 
Microsoft or Borland linker. Listing 3.7 shows a batch file, named LZTIME.BAT, 
which does all of the above, generating  and  running  the executable file  LZTEST.EXE. 
LZTIME.BAT assumes that the file LZTIMER.ASM contains Listing 3.5 and  the file 
LZTEST.ASM contains Listing 3.6. 

LISTING 3.7 UTIME.BAT 
echo o f f  
rem 
rem *** L i s t i n g  3.7 *** 
rem 
rem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
rem * B a t c h   f i l e  LZTIME.BAT, w h i c h   b u i l d s   a n d   r u n s   t h e  * 
rem * l o n g - p e r i o d  Zen t i m e r   p r o g r a m  LZTEST.EXE t o   t i m e   t h e   c o d e  * 
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rem * named a s   t h e   c o m m a n d - l i n e   p a r a m e t e r .   L i s t i n g   3 . 5   m u s t   b e  * 
rem * named  LZTIMER.ASM. and L i s t i n g   3 . 6   m u s t   b e  named * 
rem * LZTEST.ASM. T o   t i m e   t h e   c o d e   i n   L S T 3 - 8 ,   y o u ' d   t y p e   t h e  * 
rem * DOS command: * 
rem * * 
rem * l z t i m e   l s t 3 - 8  * 
rem * * 
rem * N o t e   t h a t  MASM and  LINK  must  be i n   t h e   c u r r e n t   d i r e c t o r y   o r  * 
rem * o n   t h e   c u r r e n t   p a t h   i n   o r d e r   f o r   t h i s   b a t c h   f i l e   t o   w o r k .  * 
rem * * 
rem * T h i s   b a t c h   f i l e   c a n   b e   s p e e d e d  up by  assembl ing  LZTIMER.ASM * 
rem * o n c e ,   t h e n   r e m o v i n g   t h e   l i n e s :  * 
rem * * 
rem * masm l z t i m e r :  * 
rem * i f  e r r o r l e v e l  1 g o t o   e r r o r e n d  * 
rem * * 
rem * f r o m   t h i s   f i l e .  * 
rem * * 
rem * By  Michael   Abrash * 
rem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
rem 
rem  Make s u r e  a f i l e   t o   t e s t  was s p e c i f i e d .  
rem 
i f  n o t  x%l-x g o t o   c k e x i s t  

echo * P l e a s e   s p e c i f y  a f i l e   t o   t e s t .  * 

go to   end  
rem 
rem  Make s u r e   t h e   f i l e   e x i s t s .  
rem 
: c k e x i s t  
i f  e x i s t  %1 go to   docopy  

echo * T h e   s p e c i f i e d   f i l e ,  "%1." d o e s n ' t   e x i s t .  * 
echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
go to   end  
rem 
r e m   c o p y   t h e   f i l e   t o   m e a s u r e   t o  TESTCODE. 
:docopy 
copy %1 t e s t c o d e  
masm l z t e s t ;  
i f  e r r o r l e v e l  1 g o t o   e r r o r e n d  
masm l z t i m e r :  
i f  e r r o r l e v e l  1 g o t o   e r r o r e n d  
l i n k   l z t e s t + l z t i m e r :  
i f  e r r o r l e v e l  1 g o t o   e r r o r e n d  
1 z t e s t  
g o t o   e n d  
: e r r o r e n d  

echo * An e r r o r   o c c u r r e d   w h i l e   b u i l d i n g   t h e   l o n g - p e r i o d  Zen t i m e r .  * 

:end 

echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Listing  3.8  shows  sample  code  that  can  be  timed with the  test-bed  program of Listing 3.6. 
Listing 3.8 measures  the  time  required  to execute 20,000 loads of AL from  memory, 
a  length of time too long  for  the  precision  Zen  timer  to  handle on the  8088. 
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LISTING 3.8 LST3-8.ASM 

: Measures t h e   p e r f o r m a n c e  o f  20.000 l o a d s  o f  AL from 
: memory. ( U s e  by  renaming t o  TESTCOOE. wh ich  i s  
; i n c l u d e d   b y  LZTEST.ASM ( L i s t i n g  3 . 6 ) .  LZTIME.BAT 
: ( L i s t i n g  3 . 7 )  does t h i s ,   a l o n g   w i t h   a l l   a s s e m b l y  
: a n d   T i n k i n g . )  

: N o t e :   t a k e s   a b o u t   t e n   m i n u t e s   t o   a s s e m b l e  on a s low  P C  i f  
; you a r e   u s i n g  MASM 

jmp   Sk ip   : j ump   a round   de f i ned   da ta  

MemVar db ? 

S k i p :  

: S t a r t   t i m i n g .  

c a l l  ZTimerOn 

r e p t  20000 
mov a1 , [MemVar] 
endm 

; S t o p   t i m i n g .  

c a l l   Z T i m e r O f f  

When LZTIME.BAT  is run  on a PC  with the following command line (assuming the 
code in Listing  3.8 is the file LST3-8.ASM) 

l z t i m e   l s t 3 - 8 . a s m  

the result is  72,544 ps, or  about 3.63 ps per load of AL from memory. This is just 
slightly longer  than the time per load of AL measured by the precision  Zen  timer,  as 
we would expect given that  interrupts  are left enabled by the long-period Zen  timer. 
The extra fraction of a microsecond measured per MOV reflects the time required 
to execute the BIOS code  that  handles  the 18.2 timer interrupts  that  occur  each 
second. 
Note that  the  command can take  as much as 10 minutes to finish on a slow  PC  if  you 
are using MASM,  with most  of that time spent assembling  Listing 3.8. Why?  Because 
MASM is notoriously slow at assembling REPT blocks, and  the block in Listing 3.8 is 
repeated 20,000  times. 

Using the  Zen  Timer from C 
The Zen timer can be  used to measure code performance when programming in 
C-but not  right out of the box. As presented earlier, the timer is designed to be 
called from assembly language; some relatively minor modifications are  required 
before the ZTimerOn (start timer), ZTimerOff (stop  timer),  and ZTimerReport 
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(display timing results) routines can be called from C. There  are two separate cases 
to be dealt with here: small code  model and large; I’ll  tackle the simpler one,  the 
small code  model, first. 
Altering the Zen  timer for linking  to a small code model C program involves the follow- 
ing  steps: Change ZTimerOn to -ZTimerOn, change ZTimerOff to -ZTimerOff, change 
ZTimerReport to -ZTiierReport, and change Code to -TEXT. Figure 3.2 shows the 
line numbers and new  states  of  all  lines from Listing 3.1 that must  be changed. These 
changes  convert the code to  use  Cstyle external label  names and  the small model C code 
segment. (In C++,  use the “C”  specifier, as in 

e x t e r n  “ C ”  ZT imerOn(vo id ) ;  

when declaring  the timer routines extern, so that name-mangling doesn’t occur, and 
the  linker can find the routines’ C-style names.) 
That’s all it takes; after  doing this, you’ll be able to use the Zen timer  from C,  as, for 
example,  in: 

ZTimerOn( : 
f o r   ( i - 0 .  x-0; i<lOO; i++) 

ZTimerOf f (  ; 
Z T i m e r R e p o r t O ;  

x +- i; 

(I’m talking about  the precision timer here.  The long-period timer-Listing 3.5- 
requires  the same modifications, but  to different lines.) 

L i n e  # Nw S t a t e  
- 

47 - TEXT segmen t   word   pub l i c  ‘ C O D E ’  
4a  assume  cs:-TEXT. d s : n o t h i n g  
49 p u b l i c  - ZTimerOn.   -2TimerOf f .   -2TimerRepor t  

140  ZTimerOn  proc  near 

216   ZT imerOf f   p roc   nea r  
296 - ZTimerOf f   endp 

210 ~ ZTimerOn  endp 

372 - ZTimerRepor t   p roc   near  
384  assume ds:-TEXT 
437 - 
439 - 

ZTimerReport   endp 
TEXT ends 

These are the  lines in Listing 3.1 that must be  changed for use with small  code 
model C, and the  states of the  lines  after  the  changes are made. 

Changes for use with small code model C. 
Figure 3.2 
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Altering the Zen timer for use in C’s large code model is a tad more complex, be- 
cause in addition to the above changes, all functions, including the  internal  reference 
timing routines  that  are used to calculate overhead so it can be subtracted  out, must 
be converted to far. Figure 3.3 shows the line numbers and new states of  all lines 
from Listing 3.1 that must be changed  in order to  call the Zen timer from large code 
model C. Again, the line numbers  are specific to the precision timer, but  the long- 
period timer is very similar. 
The full listings for  the C-callable  Zen timers are  presented in Chapter K on  the 
companion CD-ROM. 

Watch Out for Optimizing Assemblers! 
One important safety tip when modifjmg  the Zen timer for use  with large code model 
C code: Watch out for optimizing assemblers! TASM actually replaces 

c a l l   f a r   p t r  ReferenceZTimerOn 

with 

push  cs 
c a l l   n e a r   p t r   R e f e r e n c e Z T i m e r O n  

(and likewise for ReferenceZTimerOff) , which  works because ReferenceZTimerOn 
is in the same segment as the calling code. This is normally a  great optimization, 
being  both smaller and faster than  a far call.  However,  it’s not so great  for  the Zen 

L i n e  11 New S t a t e  
- 

47 
48 
49 

140 
210 
216 
267 
268 
296 
302 
336 
372 
384 
437 
439 

PZTIMER-TEXT segment   word   pub l i c  ’ C O D E ’  

p u b l i c  -ZTimerOn.  _ZTimerOff.   -ZTimerReport 
assume cs:PZTIMER-TEXT. d s : n o t h i n g  

- ZT imerOn   p roc   f a r  
-ZTimerOn  endp 
- Z T i m e r O f f   p r o c   f a r  

c a l l   f a r   p t r  ReferenceZTimerOn 
c a l l   f a r   p t r   R e f e r e n c e Z T i m e r O f f  

- ZTimerOf f   endp 
ReferenceZTimerOn  p roc   fa r  
R e f e r e n c e Z T i m e r O f f   p r o c   f a r  
-ZT imerRepor t   p roc   f a r  
assume ds:PZTIMER_TEXT 

PZTIMER-TEXT ends 
-ZTimerReport  endp 

These are the  lines in Listing 3.1 that must be  changed for use with large 
code  model C, and the  states of the  lines after the  changes are made. 

Changes for use with large code model C. 
Figure 3.3 
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timer, because our purpose in calling the  reference timing code is to determine 
exactly how much time is taken by overhead code-including the  far calls to 
ZTimerOn and ZTimerOff ! By converting the far calls to push/near call pairs within 
the Zen timer module, TASM makes it impossible to emulate exactly the overhead of 
the Zen timer, and makes timings slightly (about 16 cycles on a 386) less accurate. 
What’s the solution?  Put  the NOSMART directive at  the  start of the Zen timer code. 
This directive instructs TASM to turn off all optimizations, including converting far 
calls to push/near call pairs. By the way, there is, to the best of  my knowledge, no 
such problem with MASM up  through version 5.10A. 
In my mind,  the whole business of optimizing assemblers is a mixed blessing. In 
general, it’s nice to have the assembler shorteningjumps  and selecting sign-extended 
forms of instructions for you. On the other hand, the benefits of  tricks  like substituting 
push/near call pairs for  far calls are relatively  small, and those tricks can get in the 
way when complete  control is needed.  Sure,  complete  control is needed very  rarely, 
but when it is, optimizing assemblers can cause subtle problems; I discovered TASM’s 
alteration of far calls  only because I  happened to view the code in the debugger, and 
you might want  to do  the same if you’re using a  recent version  of MASM. 
I’ve tested the changes shown in Figures 3.2 and 3.3 with TASM and Borland C++ 
4.0, and also  with the latest MASM and Microsoft C/C++ compiler. 

Further Reading 
For those of  you  who  wish to pursue the mechanics of code  measurement  further, 
one good article about measuring code  performance with the 8253 timer is “Pro- 
gramming Insight: High-Performance Software  Analysis on  the IBM PC,” by  Byron 
Sheppard, which appeared in the January, 1987 issue  of Byte. For complete if some- 
what cryptic information on the 8253 timer itself, I  refer you to Intel’s Microsystem 
Components  Handbook, which  is  also a useful reference  for  a number of other PC 
components,  including the 8259 Programmable Interrupt Controller and  the 8237 
DMA Controller. For details about  the way the 8253 is used in the PC,  as  well  as a 
great  deal of additional  information  about the PC’s hardware and BIOS resources, I 
suggest you consult IBM’s series of technical reference manuals for the PC, XT,  AT, 
Model 30, and  microchannel  computers, such as the Models 50, 60, and 80. 
For our purposes, however, it’s not critical that you understand exactly  how the Zen 
timer works. All you  really need to know is what the Zen timer can do  and how to use 
it, and we’ve accomplished that  in this chapter. 

Armed  with the  Zen Timer, Onward  and  Upward 
The Zen timer is not perfect. For one thing, the finest resolution to which it can 
measure  an interval is at best about l p ,  a  period of time in which a 66 MHz Pentium 
computer can execute as  many  as 132 instructions (although  an 8088-based PC would 
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be hard-pressed to manage two instructions in  a  microsecond).  Another  problem is 
that  the timing code itself interferes with the state of the  prefetch queue  and proces- 
sor  cache at  the start of the  code  being  timed, because the  timing  code is not 
necessarily fetched and does not necessarily  access memory in exactly the same time 
sequence as the  code immediately preceding  the code under measurement normally 
does. This prefetch effect can introduce as much as 3 to 4 ps of  inaccuracy.  Similarly, 
the state of the  prefetch  queue  at  the end of the  code  being timed affects  how long 
the  code  that stops the  timer takes  to execute. Consequently, the Zen timer tends to 
be more  accurate  for  longer  code sequences, since the relative magnitude of the 
inaccuracy introduced by the Zen timer becomes less  over longer periods. 
Imperfections notwithstanding, the Zen timer is a  good tool for exploring C code 
and x86 family  assembly language, and it’s a tool we’ll use frequently for  the remain- 
der of this book. 
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Hardware Devours Code Performance 
' ' This  chapter, ad2hed from my earlier  book, Zen of Assembly Language located on  the 

t to  the  heart of my philosophy of optimization: Un- 
derstand where  es  when your code runs. That may sound ridiculously 

es clear, it turns  out to be  a  challenging task indeed, 
one  that  at times v magic. This chapter is a long-time favorite of mine 
because it was the large extent only-work that I know  of that dis- 

troducing a generation of PC programmers  to 

on the first popular x8Gfamily processor, the 8088. 
Some of the specifii?'€qatures and results that  I cite in this chapter  are no longer appli- 
cable to modern x8Gi"amily processors such as the 486 and Pentium, as I'll point  out 
later on when we discuss those processors. Nonetheless, the overall theme of this chap- 
ter-that understanding dimly-seen and poorly-documented code  gremlins called 
cycle-eaters that  lurk  in your system  is essential to performance programming-is ev- 
ery bit as  valid  today. Also, later chapters often refer back to the basic  cycle-eaters 
described in this chapter, so this chapter is the  foundation  for  the discussions  of x86 
family optimization to come. What's more,  the Zen timer remains an excellent tool 
with  which to flush out  and examine cycle-eaters,  as  we'll  see in later chapters, and this 
chapter is  as good  an illustration of  how to use the Zen timer as you're likely to find. 
So, don't take either  the absolute or  the relative execution times presented in this 
chapter as gospel for newer processors, and  read  on  to later  chapters to see how the 
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cycle-eaters and optimization rules have changed over time, but  do take the time to 
at least skim through this chapter to give  yourself a  good start on  the material in the 
rest of this book. 

Cycle-Eaters 
Programming has many levels, ranging  from  the familiar (high-level languages, DOS 
calls, and  the like) down to the esoteric things that lie on  the shadowy edge of hard- 
ware-land. I call these cycle-eaters because, like the monsters in a  bad 50s horror movie, 
they lurk in those shadows, taking their  share of your program’s performance with- 
out  regard to the forces of goodness or  the US.  Army. In this chapter, we’re going to 
jump right  in at  the lowest  level by examining  the cycle-eaters that live beneath  the 
programming  interface;  that is, beneath your application, DOS, and BIOS-in fact, 
beneath  the instruction set itself. 
Why start at  the lowest  level?  Simply because cycle-eaters  affect the  performance of 
all assembler code, and yet are almost unknown to most  programmers. A full under- 
standing of code optimization requires an  understanding of cycle-eaters and their 
implications. That’s no simple task, and in fact it is in precisely that  area  that  most 
books and articles about assembly programming fall short. 
Nearly  all literature on assembly programming discusses  only the programming inter- 
face: the instruction set, the registers, the flags, and the BIOS and DOS calls. Those 
topics  cover the functionality of  assembly programs most  thoroughly-but  it’s perfor- 
mance above  all  else that we’re  after. No one ever  tells  you about  the raw  stuff  of 
performance, which  lies beneath the  programming interface, in the dimly-seen  realm- 
populated by instruction prefetching, dynamic RAM refresh, and wait  states-where 
software meets hardware. This area is the domain of hardware engineers, and is almost 
never  discussed  as it relates to code performance. And  yet it is  only by understanding 
the mechanisms  operating at this  level that we can  fully understand  and properly im- 
prove the  performance of our code. 
Which brings us to cycle-eaters. 

The Nature of Cycle-Eaters 
Cycle-eaters are gremlins that live on  the bus or in peripherals (and sometimes within 
the CPU itself), slowing the  performance of  PC code so that it doesn’t  execute  at full 
speed. Most  cycle-eaters (and all  of those haunting  the  older Intel processors) live 
outside the CPU’s Execution Unit, where  they  can mLj affect the CPU when the CPU 
performs  a bus access (a memory or 1 / 0  read or write). Once your code  and data 
are already inside the CPU, those cycle-eaters can no longer be a  problem.  Only  on 
the 486 and  Pentium CPUs  will  you find cycle-eaters inside the  chip, as  we’ll see in 
later  chapters. 
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The  nature  and severity of the cycle-eaters  vary enormously from processor to pro- 
cessor, and (especially) from memory architecture  to memory architecture.  In  order 
to understand  them all, we need first to  understand  the simplest among  them, those 
that  haunted  the original 8088-based IBM PC. Later on in this book, I’ll be  better 
able to explain the newer generation of cycle-eaters  in terms of those ancestral cycle- 
eaters-but we have to  get  the  groundwork down first. 

The 8088’s Ancestral  Cycle-Eaters 
Internally, the 8088  is  a l6bit  processor, capable of running  at full speed at all times- 
unless external data is required. External data  must traverse the 8088’s external  data 
bus and  the PC’s data bus one byte at a time to and  from  peripherals, with  cycle- 
eaters  lurking  along every step of the way. What’s more, external  data  includes not 
only memory  operands but also instruction bytes, so even instructions with no memory 
operands  can suffer from cycle-eaters.  Since some of the 8088’s fastest instructions 
are register-only instructions, that’s important  indeed. 
The major cycle-eaters are: 

The  8088’s  8-bit  external  data  bus. 
The  prefetch  queue. 
Dynamic RAM refresh. 
Wait states,  notably  display  memory  wait  states and in  the AT and 80386 com- 
puters,  system  memory  wait  states. 

The locations of these cycle-eaters in  the primordial 8088-based PC are shown in 
Figure 4.1. We’ll  cover each of the cycle-eaters  in turn in this chapter. The material 
won’t be easy  since  cycle-eaters are  among  the most subtle aspects  of  assembly pro- 
gramming. By the same token, however, this will be one of the most important and 
rewarding chapters  in  this book. Don’t worry if you don’t catch everything in this 
chapter,  but  do read it  all  even if the going  gets a bit  tough. Cycle-eaters  play  a  key 
role  in  later  chapters, so some familiarity  with them is highly desirable. 

The 8-Bit Bus Cycle-Eater 
Look! Down  on the motherboard! It’s a 16-bit processor! li ’s a n  8-bit processor! It S.. . 
. . .an 8088! 
Fans of the 8088 call it a  16-bit  processor.  Fans of other 16-bit  processors  call the 
8088 an 8-bit  processor. The  truth of the matter is that  the 8088 is a  16-bit processor 
that often  performs like an %bit  processor. 
The 8088 is internally a  full  16-bit  processor, equivalent to  an 8086. (In fact, the 8086 
is identical  to the 8088, except that it has a full 16-bit  bus. The 8088 is  basically the 
poor man’s  8086, because it allows  a  cheaper-albeit  slower-system to be  built, 
thanks  to the half-sized bus.) In terms of the instruction  set, the 8088 is clearly  a l6bit 
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Internally, the 8088 is 
a full 16-bit 
processor,  just like the 
8086. No cycle 
eaters live in here! 

Cycleeater # 1 
The 8088's external 
data bus is only 8 
bits wide,  limiting the 
maximum data 
transfer rate to 1 /2 
that of the 8086. 

The 8088 

Bus Interface Unit 

I Prefetch  Queue I 
\ 

queue as quickly as 
they can  be executed 
by the EU, so the EU 
spends time idling 
while waiting for 
instructions to be 
fetched. 

PC Bus 

Cycle-eater #2 
The 8-bit bus  makes it 
difficult  for the BIU to 
fetch instruction bytes 
into the prefetch 

Memory (system RAM, I ROM, display memory) I 
I 

Cycle-eater #4 
Display  adapters insert many 
wait states because access to 
display memory must be shared 
between the 8088 and the 
video  circuitrv. 

Devices (disks, keyboard, 
display adapters, timers, 
speaker, DMA channels, 

and so on) I 
I 

Cycleeater #3 
Dynamic RAM refresh is carried 
out by  performing  a DMA read 
every 15 ms. This robs the 
8088 of up to 6 out of every 72 
cycles. 

The location of the major cycle-eaters in the IBM PC. 
Figure 4.1 

processor, capable of performing any  given  16-bit operation-addition, subtraction, 
even multiplication or division-with a single instruction. Externally,  however, the 
8088 is unequivocally an 8-bit processor, since the external  data bus is only 8 bits 
wide. In  other words, the  programming  interface is 16 bits  wide, but  the hardware 
interface is only 8 bits  wide,  as  shown in Figure 4.2. The result of this mismatch is 
simple: Word-sized data can be transferred between the 8088 and memory or pe- 
ripherals at only one-half the maximum  rate of the 8086,  which is to say one-half the 
maximum  rate  for which the Execution Unit of the 8088 was designed. 
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The 8088 

PC Bus 1 

The 8088’s internal  data bus i s  16 
bits  wide. This is  the data size seen 
at the programming interface, since 
operands  can  be either 8 or 16 
bits in size. 

The interface between the 8088 
and the hardware (the interface 
from the BIU to  the 8088’s 8 data 
bus pins, and from the 8088 to 
memory and devices via the PC 
bus)  is 8 bits wide. Consequently, 
1 byte is the largest (and  only)  data 
size supported for transfers to and 
from memory and other  devices 
external to the 8088. 

Internal  data bus widths of the 8088. 
Figure 4.2 

As shown in Figure 4.1, the 8-bit bus cycle-eater  lies squarely on  the 8088’s external 
data bus.  Technically, it might be more accurate to place this cycle-eater in the Bus 
Interface  Unit, which breaks 16-bit  memory  accesses into  paired 8-bit  accesses, but it is 
really the limited width of the  external  data bus that constricts data flow into  and  out 
of the 8088. True,  the original PC’s bus  is  also  only 8 bits  wide, but that’s just to match 
the 8088’s  &bit bus; even if the PC’s  bus were 16 bits wide, data could still  pass into  and 
out of the 8088 chip itself  only 1 byte at  a time. 
Each bus access by the 8088 takes 4 clock  cycles, or 0.838 ps in the 4.77 MHz PC, and 
transfers 1 byte. That means  that the maximum rate  at which data  can  be  transferred 
into  and  out of the 8088 is 1 byte  every  0.838 ps. While 8086 bus accesses also take 4 
clock cycles, each 8086 bus access can  transfer either 1 byte or 1 word, for  a maxi- 
mum  transfer  rate of 1 word  every 0.838 ps. Consequently, for word-sized  memory 
accesses, the 8086 has an effective transfer  rate of 1 byte  every 0.419 ps. By contrast, 
every  word-sized  access on  the 8088 requires two 4cycle-long bus accesses, one  for 
the  high byte  of the word and  one  for  the low byte of the word. As a  result, the 8088 
has an effective transfer  rate  for word-sized memory accesses of just 1 word  every 
1.676 ps-and that, in  a  nutshell, is the 8-bit bus cycle-eater. 
A related cycle-eater lurks beneath  the 386SX chip, which  is a 32-bit processor  inter- 
nally  with only a 16-bit path  to system  memory. The  numbers  are  different,  but  the 
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way the cycle-eater operates is exactly the same. AT-compatible  systems  have  16-bit 
data buses,  which can access a full 16-bit  word at a time. The 386SX can process 32 
bits (a doubleword) at  a time, however, and loses a lot of  time fetching that doubleword 
from  memory  in two halves. 

The  Impact of the 8-Bit Bus Cycle-Eater 
One obvious effect of the 8-bit bus cycle-eater  is that word-sized  accesses to memory 
operands  on  the 8088 take 4 cycles longer than byte-sized  accesses. That’s why the 
official instruction timings indicate  that  for  code running  on  an 8088 an additional 
4 cycles are  required for every  word-sized  access to a  memory operand. For instance, 

mov ax,word  ptr  [MemVarl 

takes 4 cycles longer to read  the word at address MemVar than 

mov al.byte  ptr  [MemVarl 

takes  to read the byte at address MemVar. (Actually, the difference  between the two isn’t 
very  likely to  be  exactly 4 cycles, for reasons that will become  clear once we discuss the 
prefetch queue  and dynamic RAM refresh cycleeaters later in  this chapter.) 
What’s more, in  some cases one instmction can perform multiple word-sized  ac- 
cesses, incurring that  4cycle penalty on each access. For example,  adding  a value to 
a word-sized memory variable requires two word-sized accesses-one to read  the 
destination operand  from memory prior to adding to it, and  one to write the result 
of the addition back to the destination  operand-and  thus  incurs not  one  but two 4 
cycle penalties. As a result 

add  word  ptr  CMemVar1.a~ 

takes about 8 cycles longer to execute  than: 

add  byte  ptr  CMemVar1,al 

String  instructions can suffer from  the %bit bus cycle-eater to a  greater extent  than 
other instructions. Believe it or not,  a single REP MOVSW instruction can lose as 
much as  131,070  word-sized memory accesses x 4 cycles, or 524,280 c y c b  to the 8-bit 
bus cycle-eater! In  other words, one 8088 instruction (admittedly, an instruction  that 
does  a  great  deal) can take  over one-tenth of a  second  longer  on  an 8088 than  on  an 
8086, simply because of the 8-bit bus. One-tenth of a second! That’s a  phenomenally 
long time in computer terms; in one-tenth of a  second, the 8088 can perform  more 
than 50,000 additions and subtractions. 
The  upshot of  all this is simply that the 8088 can transfer word-sized data to and  from 
memory at only  half the  speed of the 8086, which  inevitably  causes performance 
problems  when  coupled with an Execution Unit  that can process word-sized data 
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every bit as quickly  as an 8086. These  problems show up with any code  that uses 
word-sized memory operands. More ominously, as  we  will see shortly, the 8-bit bus 
cycle-eater can cause performance  problems with other sorts of code as  well. 

What to Do about the 8-Bit Bus Cycle-Eater? 
The obvious implication of the 8-bit bus cycle-eater is that byte-sized  memory  vari- 
ables should  be used whenever  possible. After all, the 8088 performs bytesized memory 
accesses just as quickly as the 8086. For instance, Listing 4.1, which  uses a byte-sized 
memory variable as a  loop  counter,  runs  in 10.03 ps per  loop. That’s 20 percent 
faster than  the 12.05 ps per loop execution time of Listing 4.2, which uses a word- 
sized counter. Why  the difference  in  execution times?  Simply because each word-sized 
DEC performs 4 byte-sized memory accesses (two to read  the word-sized operand 
and two to write the result back to  memory), while each byte-sized DEC performs 
only 2 byte-sized memory accesses in all. 

LISTING  4.1 LST4- 1 .ASM 
; M e a s u r e s   t h e   p e r f o r m a n c e   o f  a l o o p   w h i c h  uses  a 
; b y t e - s i z e d  memory v a r i a b l e  as t h e  l o o p   c o u n t e r .  

jmp S k i p  

Coun te r  db 100 

S k i p :  

LoopTop: 
c a l l  ZTimerOn 

d e c   [ C o u n t e r ]  
j n z  LoopTop 
c a l l   Z T i m e r O f f  

LISTING 4.2 LST4-2.ASM 
: M e a s u r e s   t h e   p e r f o r m a n c e   o f  a l o o p   w h i c h   u s e s  a 
; w o r d - s i z e d  memory v a r i a b l e   a s   t h e   l o o p   c o u n t e r .  

j m p   S k i p  

Coun te r  dw 100 

S k i p :  

LoopTop: 
c a l l  ZTimerOn 

dec   [Counter ]  
j n z  LoopTop 
c a l l   Z T i m e r O f f  

I’d like to make a brief aside concerning  code optimization in  the listings in this book. 
Throughout this book I’ve modeled  the sample code after working code so that  the 
timing results are applicable to real-world programming.  In Listings 4.1 and 4.2, for 
example, I  could have  shown a still greater advantage for byte-sized operands simply  by 
performing 1,000 DEC instructions in a row,  with no branching at all. However, DEC 
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instructions don’t exist in avacuum, so in the listings I used code that both decremented 
the  counter  and tested the result. The difference is that between decrementing a 
memory location (simply an instruction) and using a loop  counter  (a functional in- 
struction sequence). If  you come across code in this book  that seems  less than optimal, 
it’s  simply due to my desire to  provide code that’s relevant to real programming prob  
lems. On the other  hand, optimal code is an elusive thing indeed; by no means should 
you assume that  the code in this book is ideal! Examine it, question it, and improve 
upon it, for an inquisitive,  skeptical mind is an  important  part of the Zen  of  assembly 
optimization. 
Back to  the 8-bit bus cycle-eater. As I’ve said, in 8088 work  you should strive to use 
byte-sized memory variables whenever possible. That  does not mean  that you should 
use 2 byte-sized memory accesses to manipulate a word-sized memory variable in 
preference to 1 word-sized memory access, as, for instance, 

mov d 1 , b y t e   p t r  [MemVarl 
mov d h . b y t e   p t r  [MemVar+l l  

versus: 

mov d x . w o r d   p t r   [ M e m V a r l  

Recall that every  access to a memory byte  takes at least 4 cycles; that limitation is built 
right into  the 8088. The 8088 is  also built so that  the  second byte-sized memory 
access to a 16-bit memory variable takes just those 4 cycles and  no  more. There’s no 
way you can manipulate  the  second byte  of a word-sized memory variable faster with 
a second  separate byte-sized instruction in less than 4 cycles. As a matter of fact, 
you’re bound to access that  second byte much  more slowly  with a separate instruc- 
tion, thanks to the overhead of instruction fetching and execution, address calculation, 
and  the like. 
For example,  consider Listing 4.3, which performs 1,000 word-sized reads  from 
memory. This  code runs in 3.77 ps per word read  on a 4.77 MHz 8088. That’s 45 
percent faster than  the 5.49 ps per word read of  Listing 4.4, which reads the same 
1,000 words  as  Listing 4.3 but  does so with 2,000 byte-sized reads. Both  listings  per- 
form exactly the same number of memory accesses-2,000 accesses, each byte-sized, 
as  all 8088 memory accesses must  be.  (Remember  that the Bus Interface  Unit  must 
perform two byte-sized memory accesses in order to handle a word-sized memory 
operand.) However,  Listing 4.3 is considerably faster because it expends only 4 addi- 
tional cycles to read  the second byte  of each word,  while  Listing 4.4 performs a second 
LODSB, requiring 13 cycles, to read  the second byte  of each word. 

LISTING 4.3 LST4-3.ASM 
; M e a s u r e s   t h e   p e r f o r m a n c e  o f  r e a d i n g  1,000 words 
; from memory w i t h  1,000 w o r d - s i z e d   a c c e s s e s .  

s u b   s i . s i  
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mov c x ,  1000 
c a l l  ZTimerOn 
r e p  lodsw 
c a l l   Z T i m e r O f f  

LISTING 4.4 LST4-4.ASM 
: Measures   t he   pe r fo rmance  o f  r e a d i n g  1000 words 
: f r o m  memory w i t h  2,000 b y t e - s i z e d   a c c e s s e s .  

sub s i   , s i  
mov c x ,  2000 
c a l l  ZTimerOn 
r e p   l o d s b  
c a l l   Z T i m e r O f f  

In  short, if you must  perform  a 16-bit memory access, let  the 8088 break the access 
into two byte-sized  accesses for you. The 8088 is more efficient at  that task than your 
code  can possibly be. 
Word-sized variables should  be  stored  in registers to the greatest feasible extent, 
since registers are inside the 8088, where  16-bit operations  are  just as fast as  8-bit 
operations because the 8-bit  cycle-eater can’t  get  at  them.  In  fact, it’s a  good  idea  to 
keep as  many variables of all sorts in registers as  you can.  Instructions with register- 
only  operands  execute very rapidly,  partially  because  they  avoid  both  the 
time-consuming memory  accesses and  the lengthy address calculations associated 
with  memory operands. 
There is yet another reason why register operands  are  preferable  to memory oper- 
ands,  and it’s an  unexpected effect of the %bit bus cycle-eater. Instructions with only 
register operands  tend to be  shorter  (in terms of bytes) than instructions with  memory 
operands,  and when it  comes to performance,  shorter is usually better. In order  to 
explain why that is true  and how it relates to the &bit bus cycle-eater, I  must diverge 
for  a  moment. 
For the last few pages, you  may  well  have been  thinking  that  the %bit bus cycle-eater, 
while a  nuisance,  doesn’t  seem particularly subtle or difficult to quantify. After all, 
any instruction  reference tells us exactly  how  many  cycles each  instruction loses to 
the 8-bit bus cycle-eater, doesn’t  it? 
Yes and  no. It’s true  that  in  general we know approximately how much  longer  a given 
instruction will take to execute with a word-sized  memory operand  than with a byte- 
sized operand,  although  the dynamic RAM refresh and wait state cycle-eaters (which 
I’ll cover a little later)  can raise the cost of the 8-bit bus cycle-eater considerably. 
However, all word-sized memory accesses lose 4 cycles to  the 8-bit bus cycle-eater, 
and there’s one  sort of  word-sized  memory  access we haven’t discussed yet: instruc- 
tion  fetching. The ugliest manifestation of the %bit bus cycle-eater is in fact the 
prefetch queue cycle-eater. 
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The  Prefetch  Queue Cycle-Eater 
In an 8088 context, here’s the prefetch queue cycle-eater in a nutshell: The 8088’s  8-bit 
external  data bus keeps the Bus Interface  Unit  from  fetching  instruction bytes  as fast 
as the 16-bit Execution Unit can execute them, so the Execution Unit often lies idle 
while  waiting for the  next instruction byte to be fetched. 
Exactly why does this happen? Recall that  the 8088 is an 8086 internally, but accesses 
word-sized memory  data at only one-half the maximum  rate of the 8086 due to the 
8088’s  8-bit external  data bus. Unfortunately, instructions are  among  the word-sized 
data  the 8086 fetches, meaning  that  the 8088 can fetch  instructions at only one-half 
the  speed of the 8086. On  the  other  hand,  the 8086-equivalent Execution Unit of the 
8088 can execute instructions every bit as  fast  as the 8086. The  net result is that  the 
Execution Unit  burns  up instruction bytes much faster than  the Bus Interface  Unit 
can fetch them,  and  ends  up idling while  waiting for  instructions bytes to arrive. 
The BIU can fetch instruction bytes at a maximum  rate of one byte  every 4 cycles- 
and  that 4-cycle per  instruction byte rate is the ultimate  limit  on overall instruction execution 
time, regardless of EU speed. While the EU  may execute a given instruction that’s  al- 
ready in the prefetch queue in less than 4 cycles per byte,  over time the EU can’t 
execute  instructions any faster than they can arrive-and  they can’t arrive faster than 
1 byte  every 4 cycles. 
Clearly, then,  the prefetch queue cycle-eater is nothing  more  than  one aspect of the 
8-bit bus cycle-eater.  8088 code  often runs  at less than  the Execution Unit’s maxi- 
mum  speed because the 8-bit data bus can’t keep up with the  demand  for instruction 
bytes. That’s straightforward enough-so why all the fuss about  the prefetch queue 
cycle-eater? 
What makes the prefetch queue cycle-eater  tricky  is that it’s undocumented  and 
unpredictable. That is,  with a word-sized memory access, such as 

mov C b x 1 . a ~  

it’s well-documented that  an extra 4 cycles will always be  required to write the  upper 
byte  of AX to memory. Not so with the prefetch queue cycle-eater lurking nearby. 
For instance, the instructions 

s h r  a x . 1  
s h r  a x . 1  
s h r  a x . 1  
s h r  a x . 1  
s h r  a x . 1  

should  execute in 10 cycles, since each SHR takes 2 cycles to execute,  according to 
Intel’s specifications. Those specifications contain Intel’s official instruction execu- 
tion times, but in this case-and in many others-the specifications are drastically 
wrong. Why?  Because  they describe execution time once an instruction reaches thep-efetch 
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queue. They say nothing  about whether a given instruction will be in the prefetch 
queue when it’s time for  that instruction to run,  or how long  it will take that instruc- 
tion  to  reach  the  prefetch  queue if it’s not  there already. Thanks to the low 
performance of the 8088’s external  data bus, that’s a glaring omission-but,  alas, an 
unavoidable one. Let’s look at why the official execution times are wrong, and why 
that can’t be helped. 

Official Execution  Times Are  Only Part of the  Story 
The  sequence of 5 SHR instructions  in the last example is 10 bytes long. That means 
that  it can never execute in less than 24 cycles  even if the  4byte prefetch queue is full 
when  it starts, since 6 instruction bytes  would still remain to be fetched, at 4 cycles 
per fetch. If the prefetch queue is empty at  the start, the  sequence could take 40 
cycles. In  short, thanks to instruction  fetching, the  code won’t run  at its documented 
speed, and  could take up to four times longer than it is supposed to. 
W h y  does  Intel document Execution Unit  execution time rather  than overall in- 
struction execution time, which includes both instruction fetch time and Execution 
Unit  (EU)  execution time? Well, instruction fetching isn’t performed as part of in- 
struction execution by the Execution Unit, but instead is carried on in parallel by 
the Bus Interface  Unit (BIU) whenever the external  data bus isn’t in use or when- 
ever the EU runs  out of instruction bytes to execute. Sometimes the BIU is able to 
use spare bus cycles to prefetch  instruction bytes before the EU needs  them, so in 
those cases instruction  fetching takes no time at all, practically speaking. At other 
times the EU executes instructions faster than  the BIU can fetch them,  and instruc- 
tion fetching then becomes  a significant part of overall execution time. As a result, 
the  effective fetch time for a given instruction varies great4 depending on the code mix preceding 
that instruction. Similarly, the state in which a given instruction leaves the prefetch 
queue affects the overall execution time of the following instructions. 

In  other  words,  while  the  execution  time for a  given  instruction  is  constant,  the p fetch time for that  instruction  depends  heavily  on  the  context  in which the  instruc- 
tion  is  executing-the  amount  of  prefetching  the  preceding  instructions 
allowed-and can vary from a full 4 cycles per instruction  byte  to no time  at  all. 

As we’ll see later, other cycle-eaters, such as DRAM refresh and display memory wait 
states, can cause prefetching variations even during different executions of the same 
code sequence. Given that, it’s meaningless to talk about  the prefetch time of a given 
instruction  except  in the context of a specific code  sequence. 
So now  you  know  why the official instruction execution times are often wrong, and 
why Intel  can’t provide better specifications. You also  know  now  why it is that you 
must time your code if you  want  to know how  fast it really is. 
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There Is No Such  Beast  as a True  Instruction  Execution  Time 
The effect of the  code  preceding  an  instruction  on  the  execution time of that in- 
struction makes the Zen timer trickier to use than you might expect, and complicates 
the  interpretation of the results reported by the Zen timer. For one thing, the Zen 
timer is best used  to  time code sequences that are  more  than a few instructions long; 
below lops or so, prefetch queue effects and  the limited resolution of the clock 
driving the timer can cause problems. 
Some slight prefetch queue-induced inaccuracy  usually  exists  even when the Zen timer 
is used  to  time longer code sequences, since the calls to the Zen timer usually alter the 
code’s prefetch queue from its normal state. (Branches-jumps, calls, returns  and the 
like-empty the prefetch queue.) Ideally, the Zen timer is used  to measure the perfor- 
mance of an entire subroutine, so the prefetch queue effects  of the branches at the 
start and  end of the subroutine  are similar to the effects  of the calls  to the Zen timer 
when you’re measuring the subroutine’s performance. 
Another way in which the prefetch queue cycle-eater complicates the use of the Zen 
timer involves the practice of timing the performance of a few instructions  over and over. 
I’ll often repeat  one  or two instructions 100 or 1,000 times in a row in listings in this 
book  in order to get timing intervals that are  long  enough to provide reliable mea- 
surements. However,  as we just learned, the actual performance of  any 8088 instruction 
depends  on  the  code mix preceding any  given use of that  instruction, which in turn 
affects the state of the prefetch queue when the instruction starts executing. Alas, 
the execution time of an instruction preceded by dozens of identical instructions 
reflects just  one of many possible prefetch states (and  not a very likely state at  that), 
and some of the  other prefetch states may  well produce distinctly different results. 
For example, consider the  code in Listings 4.5 and 4.6. Listing 4.5 shows our familiar 
SHR case. Here, because the prefetch queue is  always empty, execution time should 
work out to about 4 cycles per byte, or 8 cycles per SHR, as  shown in Figure 4.3. 
(Figure 4.3 illustrates the relationship between instruction  fetching and execution 
in a simplified way, and is not  intended to show the exact timings of 8088 opera- 
tions.) That’s quite  a  contrast to the official  2-cycle execution time of SHR. In fact, 
the Zen timer reports  that Listing 4.5 executes in 1.81~s per byte, or slightly more than 
4 cycles per byte. (The extra time is the result of the dynamic RAM refresh cycle- 
eater, which we’ll discuss shortly.) Going by Listing 4.5, we would conclude  that  the 
“true”  execution time of SHR is 8.64 cycles. 

LISTING 4.5 LST4-5.ASM 
: Measures   t he   pe r fo rmance   o f  1,000 SHR i n s t r u c t i o n s  
: i n  a row.   S ince  SHR e x e c u t e s   i n  2 c y c l e s   b u t  i s  
: 2 b y t e s   l o n g ,   t h e   p r e f e t c h  queue i s  always  empty,  
: a n d   p r e f e t c h i n g   t i m e   d e t e r m i n e s   t h e  overall 
: p e r f o r m a n c e   o f   t h e   c o d e .  

c a l l  ZTimerOn 
r e p t  1000 
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shr  ax.1 
endm 
c a l l  ZTimerOff 

LISTING 4.6 LST4-6.ASM 
: Measures the performance o f  1,000 MUL/SHR i n s t r u c t i o n  
; p a i r s   i n  a r o w .  The lengthy  execution  t ime  of MUL 
: should keep the  prefetch queue from  ever  emptying. 

mov cx. 1000 
sub ax.ax 
c a l l  ZTimerOn 
rep t  1000 
mu1 ax 
shr  ax.1 
endm 
c a l l  ZTimerOff 

Execution Unit 
Activity 

Execution Unit 
executes shr 

Execution Unit 
idle 

Execution Unit 
executes  shr 

Execution Unit 
idle 

Execution Unit 
executes shr 

Execution Unit 
idle 

Bus Interface 
Unit  Activity 

Bus Interface Unit 
prefetches  next  shr 

Bus Interface Unit 
prefetches  next shr 

Bus Interface Unit 
prefetches next shr 

Execution and instruction prefetching sequence for Listing 4.5. 
Figure 4.3 
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Now let’s examine Listing  4.6. Here  each SHR follows a MUL instruction. Since 
MUL instructions take so long to execute  that the prefetch queue is  always full when 
they finish, each SHR should be ready and waiting in the prefetch queue when the 
preceding MUL ends. As a result, we’d expect  that  each SHR would execute  in  2 
cycles; together with the 118-cycle execution time of multiplying 0 times 0, the total 
execution time should come  to  120  cycles per SHR/MUL pair, as shown in Figure 4.4. 
And, by God, when we run Listing  4.6 we get an execution time of  25.14 ps per SHR/ 
MUL pair, or exact4 120  cycles! According to these results, the  “true” execution time 
of SHR would seem to be 2 cycles, quite  a  change  from the conclusion we drew from 
Listing  4.5. 
The key point is  this: We’ve seen  one  code  sequence in which SHR took 8-plus  cycles 
to execute, and  another in which it took only 2 cycles.  Are we talking about two 
different forms of S H R  here? Of course not-the difference is purely a reflection of 
the differing  states  in  which the preceding code left the prefetch queue. In Listing  4.5, 
each SHR after the first few  follows a slew  of other SHR instructions which  have 
sucked the prefetch queue dry, so overall performance reflects instruction fetch time. 
By contrast,  each SHR in Listing  4.6  follows a MUL instruction which  leaves the 
prefetch queue full, so overall performance reflects Execution Unit  execution time. 
Clearly, either  instruction fetch time or Execution Unit  execution time-or even a 
mix  of the two, if an instruction is partially prefetched-can determine  code perfor- 
mance.  Some  people  operate  under  a  rule of thumb by which  they  assume that  the 
execution time of each  instruction is 4 cycles times the  number of  bytes in the in- 
struction. While that’s often  true  for register-only code,  it frequently doesn’t hold 
for code  that accesses  memory. For one thing, the rule  should  be 4 cycles times the 
number of memory accesses, not instruction bytes, since all  accesses take 4 cycles on 
the 8088-based  PC. For another, memory-accessing instructions  often have  slower 
Execution Unit  execution times than  the  4 cycles per memory access rule would 
dictate, because the 8088  isn’t  very  fast at calculating memory addresses. Also, the  4 
cycles per instruction byte rule isn’t true  for register-only instructions  that are al- 
ready in the prefetch queue when the  preceding instruction  ends. 
The  truth is that  it never hurts performance to reduce  either  the cycle count  or  the 
byte count of a given bit of code, but there’s no  guarantee that one  or  the  other will 
improve performance either. For example, consider Listing  4.7,  which consists of a 
series of 4cycle, 2-byte MOV A L , O  instructions, and which executes at  the  rate of 
1.81 ps per instruction. Now consider Listing  4.8,  which replaces the 4-cycle MOV 
A L , O  with the 3-cycle (but still  2-byte) S U B  a,&. Despite its l-cycle-per-instruction 
advantage, Listing  4.8 runs  at exactly the same  speed as  Listing  4.7. The reason: Both 
instructions are 2 bytes long, and in both cases it is the 8-cycle instruction fetch time, 
not  the 3 or 4cycle Execution Unit  execution time, that limits performance. 
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Execution Unit 
Activity 

Execution Unit 
executes shr 

Execution Unit 
executes mu1 

Execution Unit 
executes shr 

Execution Unit 
executes mu1 

, 
Cvcle 0 

I Cvcle 3 t Cycle 4 
Cycle 5 
Cycle 6 
Cycle 7 

Cycle 1 1 

Bus Interface 
Unit  Activity 

Bus Interface 
Unit prefetches 

next shr 

Bus Interface 
Unit prefetches 

next mu1 

Bus Interface 
Unit idle 

Bus Interface 
Unit prefetches 

next shr 

Execution and instruction prefetching sequence for Listing 4.6. 
Figure 4.4 
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LISTING 4.7 LST4-7.ASM 
: M e a s u r e s   t h e   p e r f o r m a n c e   o f   r e p e a t e d  MOV A L . 0  i n s t r u c t i o n s  
: w h i c h   t a k e  4 c y c l e s   e a c h   a c c o r d i n g  t o  I n t e l ’ s   o f f i c i a l  
: s p e c i f i c a t i o n s .  

sub  ax,ax 
c a l l  ZTimerOn 
r e p t  1000 
mov a1 ,O 
endm 
c a l l   Z T i m e r O f f  

LISTING 4.8 LST4-8.ASM 
: M e a s u r e s   t h e   p e r f o r m a n c e   o f   r e p e a t e d  SUB A L . A L  i n s t r u c t i o n s  
: w h i c h   t a k e  3 c y c l e s   e a c h   a c c o r d i n g  t o  I n t e l ’ s   o f f i c i a l  
: s p e c i f i c a t i o n s .  

sub  ax.ax 
c a l l  ZTimerOn 
r e p t  1000 
sub a1 .a1 
endm 
c a l l   Z T i m e r O f f  

As you can see, it’s  easy to be drawn  into  thinking you’re saving  cycles when you’re 
not. You can only improve the  performance of a specific bit of code by reducing  the 
factor-either instruction  fetch time or execution time, or sometimes a mix  of the 
two-that’s limiting the  performance of that  code. 
In case you  missed it in all the excitement, the variability  of prefetching  means  that 
our  method of testing performance by executing 1,000 instructions  in  a row  by no 
means  produces  “true” instruction  execution times, any more  than  the official  ex- 
ecution times in the Intel manuals are  “true” times. The fact of the  matter is that  a 
given instruction takes at least as long to execute as the time given for it in the  Intel 
manuals, but may take as much as 4 cycles per byte longer, depending  on  the state of 
the prefetch queue when the  preceding instruction  ends. 

The only true execution time for an instruction is a time measured in a certain 
context, and that  time is meaningfiil only in that context. 

What we Teal& want  is to know  how long useful  working code takes  to run,  not how long 
a single instruction takes, and  the Zen timer gives  us the tool we need to gather  that 
information.  Granted, it would be easier if  we could  just  add  up neatly documented 
instruction  execution times-but that’s not  going to happen. Without actually mea- 
suring the  performance of a given code  sequence, you  simply don’t know  how  fast it 
is. For crying out  loud, even the  people who designed the 8088 at Intel  couldn’t tell 
you  exactly  how  quickly a given 8088 code  sequence executes on  the PC just by look- 
ing at it! Get used to the  idea  that  execution times are only meaningful in  context, 
learn the rules of thumb in this book,  and use the Zen timer to measure your code. 
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Approximating  Overall Execution Times 
Don’t  think  that because overall instruction  execution time is determined by both 
instruction  fetch time and Execution  Unit  execution  time, the two times should  be 
added  together when estimating  performance. For example, practically speaking, 
each SHR in Listing 4.5 does  not take 8 cycles  of instruction  fetch time plus 2 cycles 
of Execution  Unit  execution time to execute. Figure 4.3 shows that while a given 
SHR is executing,  the  fetch of the  next SHR is starting, and since the two operations 
are  overlapped  for 2 cycles, there’s no sense in  charging the time to  both instruc- 
tions. You could  think of the  extra  instruction  fetch time for SHR in Listing 4.5  as 
being 6 cycles,  which  yields an overall execution time of 8 cycles when added to the 
2 cycles  of Execution  Unit  execution time. 
Alternatively,  you could  think of each SHR in Listing 4.5 as taking 8 cycles to fetch, 
and  then executing in effectively 0 cycles  while the  next SHR is being  fetched. Which- 
ever perspective you prefer is fine.  The  important  point is that  the time during which 
the  execution of one instruction and  the  fetching of the  next  instruction overlap 
should only be counted toward the overall execution time of one of the instructions. 
For all intents and purposes, one of the two instructions runs  at  no  performance cost 
whatsoever while the overlap exists. 
As a working definition, we’ll consider the  execution time of a given instruction in  a 
particular context to start when the first byte  of the instruction is sent to the Execution 
Unit and  end when the first byte  of the  next instruction is sent to the EU. 

What to Do about the  Prefetch  Queue Cycle-Eater? 
Reducing the impact of the  prefetch queue cycle-eater is one of the overriding  prin- 
ciples of high-performance assembly code. How can you do this? One effective 
technique is to minimize access to memory operands, since such accesses compete 
with instruction  fetching  for  precious memory accesses. You can also greatly reduce 
instruction  fetch time simply by your choice of instructions: Keep your instructions 
short. Less time is required to fetch  instructions  that  are 1 or 2 bytes long  than in- 
structions  that are 5 or 6 bytes long.  Reduced  instruction  fetching lowers minimum 
execution time (minimum execution time is 4 cycles times the  number of instruc- 
tion bytes) and often  leads  to faster overall execution. 
While short instructions minimize overall prefetch time, ironically they actually of- 
ten suffer more  from  the  prefetch  queue  bottleneck  than  do  long  instructions.  Short 
instructions generally have such fast execution times that they drain  the  prefetch 
queue despite  their small size. For example,  consider the SHR of Listing 4.5, which 
runs  at only 25 percent of its Execution  Unit  execution time even though it’s only 2 
bytes long,  thanks  to the prefetch queue bottleneck.  Short  instructions are  nonethe- 
less generally  faster than  long  instructions,  thanks to the  combination of fewer 
instruction bytes and faster  Execution  Unit  execution times, and  should  be used as 
much as  possible-just don’t  expect them  to run  at their “official” documented speeds. 
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More  than  anything, the above rules mean using the registers as  heavily  as possible, 
both because register-only instructions are  short  and because they don’t  perform 
memory accesses  to read  or write operands. However, using the registers is a  rule of 
thumb,  not a commandment.  In some circumstances, it may actually  be faster to 
access memory. (The look-up table technique is one such case.) What’s more,  the 
performance of the prefetch queue  (and  hence  the  performance of each instruc- 
tion) differs from one code sequence to the next, and can  even differ during different 
executions of the same code sequence. 
All in all, writing good assembler code is as much an  art as a science. As a result, you 
should follow the rules of thumb described here-and then time your code to see 
how  fast it really is. You should  experiment freely, but always remember that  actual, 
measured  performance is the  bottom  line. 

Holding Up the 8088 
In this chapter I’ve taken you further  and  further  into  the  depths of the PC, telling 
you again and again that you must understand  the  computer  at  the lowest  possible 
level in order to  write good  code. At this point, you  may  well wonder, “Have we 
gotten low enough?” 
Not quite yet. The 8-bit bus and prefetch queue cycle-eaters are low-level indeed, but 
we’ve one level  yet  to  go.  Dynamic RAM refresh and wait  states-our next topics- 
together form the lowest  level at which the hardware of the PC  affects code performance. 
Below  this  level, the PC is of interest only  to hardware engineers. 
Before we begin our discussion of dynamic RAM refresh, let’s step back for  a mo- 
ment to  take an overall  look at this  lowest  level  of  cycle-eaters. In  truth, the distinctions 
between wait states and dynamic RAM refresh don’t  much  matter to a  programmer. 
What is important is that you understand this: Under  certain circumstances, devices on 
the PC bus can  stop  the CPU for  1 or more  cycles, making  your code run more  slowly than  it 
seemingly should. 
Unlike all the cycle-eaters we’ve encountered so far, wait states and dynamic RAM 
refresh are strictly external to the CPU,  as was shown in Figure 4.1. Adapters on  the 
PC’s  bus, such as video and memory cards, can insert wait states on any bus access, 
the idea  being  that they won’t be able to complete  the access properly unless the 
access  is stretched  out. Likewise, the  channel of the DMA controller  dedicated to 
dynamic RAM refresh can request  control of the bus at any time, although  the CPU 
must  relinquish the bus before the DMA controller can take  over. This  means  that 
your code  can’t directly control wait states or dynamic RAM refresh. However, code 
can sometimes be designed to minimize the effects of these cycle-eaters, and even 
when the cycle-eaters slow your code without there  being a thing  in the world  you 
can do about it, you’re still better off understanding  that you’re losing performance 
and knowing why your code  doesn’t run as fast  as  it’s supposed to than you  were 
programming in ignorance. 
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Let’s start with DRAM refresh, which affects the  performance of  every program  that 
runs  on  the PC. 

Dynamic RAM Refresh:  The Invisible Hand 
Dynamic RAM (DRAM) refresh is sort of an act of God. By that  I  mean  that DRAM 
refresh invisibly and inexorably steals a  certain  fraction of  all  available  memory  ac- 
cess time from  your  programs, when they are accessing memory for  code  and  data. 
(When they are accessing cache on  more  recent processors, theoretically the DRAM 
refresh cycle-eater doesn’t come into play, but  there  are  other cycle-eaters waiting to 
prey on cache-bound  programs.) While you could stop DRAM refresh, you wouldn’t 
want to since that would be  a  sure  prescription  for  crashing your computer. In  the 
end,  thanks  to DRAM refresh, almost all code  runs a bit slower on  the PC than  it 
otherwise would, and that’s that. 
A bit of background: A static RAM (SRAM) chip is a memory chip  that retains its 
contents indefinitely so long as  power  is maintained. By contrast, each of several  blocks 
of  bits in  a dynamic RAM (DRAM) chip retains its contents  for only a short time after 
it’s  accessed for a read or write. In order to get a DRAM chip to store  data  for an 
extended  period,  each of the blocks  of  bits in  that  chip must be accessed  regularly, so 
that  the chip’s stored  data is kept  refreshed and valid. So long as this is done often 
enough, a DRAM chip will retain its contents indefinitely. 
All  of the PC’s  system memory consists of  DRAM chips. Each DRAM chip  in  the PC 
must  be completely refreshed  about  once every four milliseconds in order to ensure 
the integrity of the  data it stores. Obviously,  it’s highly desirable  that the memory in 
the PC retain  the  correct  data indefinitely, so each DRAM chip  in  the PC must always 
be  refreshed within 4 ms  of the last refresh. Since there’s no guarantee  that a given 
program will access each and every DRAM block once every 4 ms, the PC contains 
special circuitry and  programming  for providing DRAM refresh. 

How DRAM Refresh Works in the PC 
On  the original 8088-based IBM PC, timer 1 of the 8253 timer chip is programmed 
at power-up to generate a signal once every 72 cycles, or  once every 15.08p. That 
signal goes to channel 0 of the 8237 DMA controller, which requests the bus from 
the 8088 upon receiving the signal. (DMA stands  for direct memory access, the ability of 
a device other  than  the 8088 to control  the  bus  and access  memory directly, without 
any help  from  the  8088.) As soon as the 8088 is between  memory accesses, it gives 
control of the bus to the 8237, which in  conjunction with special circuitry on  the 
PC’s motherboard  then  performs a single 4cycle  read access to 1 of 256 possible 
addresses, advancing to  the  next address on each successive  access. (The  read access 
is only for  the  purpose of refreshing the DRAM; the  data  that is read isn’t used.) 
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The 256 addresses accessed by the refresh DMA accesses are  arranged so that taken 
together they properly refresh all the memory in the PC. By accessing one of the 256 
addresses every 15.08 ps, all of the PC’s DRAM is refreshed  in 256 x 15.08 ps, or 3.86 
ms,  which is just  about  the desired 4 ms time I mentioned earlier. (Only  the first 
640K of memory is refreshed  in the PC; video adapters and  other adapters above 
640K containing  memory  that  requires  refreshing  must provide their own DRAM 
refresh in pre-AT  systems.) 
Don’t sweat the details here.  The  important  point is  this: For at least 4 out of  every 72 
cycles, the original PC’s bus is given  over  to DRAM refresh and is not available  to the 
8088, as  shown in Figure 4.5. That  means  that as much as 5.56 percent of the PC’s 
already inadequate bus capacity is lost.  However, DRAM refresh doesn’t necessarily 

72 cycle$ 

4 cycles 

The PC bus dynamic RAM (DRAM) refresh. 
Figure 4.5 
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stop  the 8088 in its tracks for 4 cycles. The Execution  Unit of the 8088 can keep 
processing while DRAM refresh is occurring, unless the EU needs to access  memory. 
Consequently, DRAM refresh  can slow code  performance anywhere from 0 percent 
to 5.56 percent  (and actually a  bit  more, as  we’ll see shortly),  depending  on  the 
extent to which DRAM refresh occupies cycles during which the 8088 would other- 
wise be accessing memory. 

The impact of DRAM Refresh 
Let’s look at examples  from  opposite ends of the  spectrum in terms of the impact of 
DRAM refresh on  code  performance. First, consider the series of MUL instructions 
in Listing 4.9. Since a 16-bit MUL on  the 8088 executes  in between 118 and 133 
cycles and is only 2 bytes long,  there  should  be plenty of time for  the  prefetch queue 
to fill after  each  instruction, even after DRAM refresh  has  taken its slice of memory 
access time. Consequently, the prefetch queue  should  be able to keep  the  Execution 
Unit well-supplied  with instruction bytes at all  times. Since Listing 4.9 uses no memory 
operands,  the  Execution  Unit  should never have to wait for  data  from memory, and 
DRAM refresh  should have no impact on performance.  (Remember  that  the Execu- 
tion Unit can operate normally during DRAM refreshes so long as it  doesn’t need to 
request  a memory access from  the Bus Interface  Unit.) 

LISTING 4.9 LST4-9.ASM 
: M e a s u r e s   t h e   p e r f o r m a n c e   o f   r e p e a t e d  MUL i n s t r u c t i o n s ,  
; w h i c h   a l l o w   t h e   p r e f e t c h   q u e u e   t o  be f u l l   a t   a l l   t i m e s ,  
; t o   d e m o n s t r a t e  a case i n   w h i c h  DRAM r e f r e s h   h a s  no i m p a c t  
: on  code  per formance.  

sub ax .ax  
c a l l  ZTimerOn 
r e p t  1000 
mu1 ax  
endm 
c a l l   Z T i m e r O f f  

Running Listing 4.9, we find  that  each MUL executes  in 24.72 ps, or exactly 118 
cycles. Since that’s the  shortest time in which MUL can  execute, we can see that no 
performance is lost to DRAM refresh. Listing 4.9 clearly illustrates that DRAM re- 
fresh only affects code  performance when a DRAM refresh forces the Execution 
Unit of the 8088 to wait for  a memory access. 
Now let’s look at  the series of SHR instructions shown in Listing 4.10. Since SHR 
executes  in 2 cycles but is 2 bytes long,  the  prefetch  queue  should be empty while 
Listing 4.10 executes, with the 8088 prefetching  instruction bytes non-stop. As a re- 
sult, the time per instruction of Listing 4.10 should precisely reflect the time required 
to  fetch the instruction bytes. 

In the Lair of the  Cycle-Eaters 97 



LISTING 4.10 LST4-  1 O.ASM 
: M e a s u r e s   t h e   p e r f o r m a n c e   o f   r e p e a t e d  SHR i n s t r u c t i o n s .  
: w h i c h   e m p t y   t h e   p r e f e t c h   q u e u e ,   t o   d e m o n s t r a t e   t h e  
: w o r s t - c a s e   i m p a c t  o f  DRAM r e f r e s h  on  code  per formance.  

c a l l  ZTimerOn 
r e p t  1000 
s h r   a x . 1  
endm 
c a l l   Z T i m e r O f f  

Since 4 cycles are  required to read each instruction byte, we’d expect  each SHR to 
execute in 8 cycles, or 1.676 ps, if there were no DRAM refresh. In fact, each SHR in 
Listing 4.10 executes in 1.81 ps, indicating  that DRAM refresh is taking 7.4 percent 
of the program’s execution time. That’s nearly 2 percent  more  than  our worst-case 
estimate of the loss to DRAM refresh overhead! In fact, the result indicates that DRAM 
refresh is stealing not 4, but 5.33 cycles out of  every 72 cycles.  How can this be? 
The answer is that  a given DRAM refresh can actually hold up CPU memory accesses 
for as  many  as 6 cycles, depending  on  the timing of the DRAM refresh’s DMA re- 
quest relative to the 8088’s internal  instruction  execution state. When the  code  in 
Listing 4.10 runs,  each DRAM refresh holds up  the CPU for either 5 or  6 cycles, 
depending  on where the 8088 is in executing the  current S H R  instruction  when the 
refresh request occurs. Now  we see that things can get even  worse than we thought: 
DRAM reji-esh can  steal  as  much  as 8.33 percent  of available memory  access  time-4 out of 
a e r y  72 cycles-from  the 8088. 
Which  of the two cases  we’ve examined reflects  reality?  While either case can happen, 
the latter case-significant performance  reduction,  ranging as high as 8.33 percent- 
is far  more likely to occur. This is especially true  for  high-performance assembly 
code, which  uses  fast instructions  that tend to cause non-stop instruction fetching. 

What to Do About the DRAM Refresh Cycle-Eater? 
Hmmm. When we discovered the prefetch queue cycle-eater, we learned to use short 
instructions. When we discovered the 8-bit bus cycle-eater, we learned to use byte- 
sized memory operands whenever possible, and to keep word-sized variables in 
registers. What can we do to work around  the DRAM refresh cycle-eater? 
Nothing. 
As I’ve  said before, DRAM refresh is an act of God. DRAM refresh is a  fundamental, 
unchanging  part of the PC’s operation,  and there’s nothing you or I can do  about it. 
If refresh were  any  less frequent,  the reliability  of the PC  would be compromised, so 
tinkering with either  timer 1 or DMA channel 0 to reduce DRAM refresh overhead is 
out.  Nor is there any way to structure  code to minimize the  impact of DRAM refresh. 
Sure,  some instructions are affected less by DRAM refresh than others, but how  many 
multiplies and divides in  a row can you  really use? I suppose that  code could conceiv- 
ably be structured to leave a  free  memory access  every 72 cycles, so DRAM refresh 
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wouldn’t have any effect. In the old days when code size was measured  in bytes, not 
K bytes, and processors were  less  powerful-and  complex-programmers did in fact 
use similar tricks to eke every last bit of performance  from  their  code. When pro- 
gramming  the PC, however, the prefetch queue cycle-eater  would  make such careful 
code  synchronization  a difficult task indeed,  and any modest  performance improve- 
ment  that  did  result  could  neverjustify  the  increase in programming complexity and 
the limits on creative programming  that such an  approach would entail. Besides, all 
that  effort goes to waste on faster 8088s, 286s, and  other  computers with different 
execution  speeds and refresh characteristics. There’s  no way around it:  Useful code 
accesses memory frequently and  at irregular intervals, and over the  long  haul DRAM 
refresh always exacts its price. 
If you’re still harboring  thoughts of reducing  the  overhead of  DRAM refresh,  con- 
sider this. Instructions  that  tend not to suffer very much from DRAM refresh are 
those  that have a  high  ratio of execution time to instruction  fetch  time, and those 
aren’t  the fastest instructions of the PC. It certainly wouldn’t make sense to use  slower 
instructions just to reduce DRAM refresh  overhead,  for it’s total execution time- 
DRAM refresh,  instruction  fetching, and all-that matters. 
The  important  thing to understand  about DRAM refresh is that  it generally slows 
your code down, and that the extent of that performance reduction can vary consider- 
ably and unpredictably, depending  on how the DRAM refreshes interactwith your  code’s 
pattern of memory accesses. When you  use the Zen timer and  get a  fractional cycle 
count  for  the execution time of an  instruction,  that’s  often  the DRAM refresh cycle- 
eater  at work. (The display adapter cycle-eater is another possible culprit, and,  on 
386s and later processors, cache misses and pipeline  execution  hazards produce this 
sort of effect as  well.)  Whenever  you get two timing results that differ less or  more 
than they seemingly should, that’s usually DRAM refresh  too.  Thanks to DRAM re- 
fresh, variations of up to 8.33 percent in PC code  performance  are  par  for  the  course. 

Wait States 
Wait states are cycles during which a bus access by the CPU to a device on  the PC’s 
bus is temporarily  halted by that device while the device gets ready to complete the 
read  or write. Wait states are well and truly the lowest  level  of code  performance. 
Everything we have discussed (and will  discuss)-even  DMA  accesses-can be af- 
fected by  wait states. 
Wait states exist because the CPIJ  must to be able to coexist with  any adapter, no mat- 
ter how  slow (within reason). The 8088 expects  to  be able to complete each bus access-a 
memory or 1 / 0  read or write-in 4 cycles, but  adapters can’t always respond  that 
quickly for a number of reasons. For example, display adapters must split access to 
display  memory between the CPU and  the circuitry that  generates  the video  signal 
based on  the contents of  display  memory, so they often can’t immediately fulfill a 
request by the CPU for a display  memory read or write. To  resolve this conflict, display 
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adapters can  tell the CPU to wait during bus  accesses by inserting one  or  more wait 
states,  as  shown in Figure 4.6. The CPU  simply  sits and idles as long as  wait  states are 
inserted, then completes the access  as soon as the display adapter indicates its readi- 
ness by no longer inserting wait states. The same  would  be true of  any adapter  that 
couldn’t keep up with the CPU. 
Mind  you,  this  is  all transparent to executing code. An instruction that encounters wait 
states runs exactly  as if there were no wait states, only  slower.  Wait states are  nothing 
more or less than wasted time as far as the CPU and your program  are  concerned. 
By understanding  the circumstances in which  wait states can occur, you can avoid 
them  when possible. Even when it’s not possible to work around wait states, it’s  still 
to your advantage to understand how they can cause your code to run  more slowly. 
First, let’s learn  a bit more  about wait states by contrast with DRAM refresh. Unlike 
DRAM refresh, wait states do  not  occur  on any regularly scheduled basis, and  are of 
no particular duration. Wait states can only occur  when  an  instruction  performs  a 
memory or 1/0 read  or write. Both the  presence of  wait states and  the  number of 
wait states inserted on any  given bus access are entirely controlled by the device 
being accessed. When  it  comes to wait states, the CPU is passive, merely accepting 
whatever  wait states the accessed  device chooses to insert during  the course of the 
access. All of this makes perfect sense given that the whole point of the wait state 
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mechanism is to allow a device to stretch  out any  access to itself for however much 
time it  needs to perform  the access. 
As with DRAM refresh, wait states don’t  stop  the 8088 completely. The Execution 
Unit  can  continue processing while  wait states are  inserted, so long as the EU doesn’t 
need to perform  a  bus access.  However, in  the PC, wait states most often  occur when 
an  instruction accesses a memory operand, so in fact the Execution  Unit usually is 
stopped by  wait states. (Instruction  fetches rarely wait in an 8088-based PC because 
system  memory  is  zero-wait-state.  AT-class memory systems routinely  insert 1 or  more 
wait states, however.) 
As it turns  out, wait states pose a  serious  problem  in just  one  area in  the PC. While 
any adapter can insert wait states, in the PC only  display adapters do so to the  extent 
that  performance is seriously affected. 

The Display  Adapter  Cycle-Eater 
Display adapters must  serve two masters, and  that creates a  fundamental  performance 
problem. Master #1 is the circuitry that drives the display screen.  This circuitry must 
constantly read display  memory in order to obtain  the  information  used to draw the 
characters or  dots displayed on  the screen. Since the screen must be redrawn be- 
tween  50 and 70 times per  second,  and since each  redraw of the screen  can  require 
as  many  as 36,000 reads of display memory (more in  Super VGA modes), master #1 
is a demanding master indeed. No  matter how demanding master #1 gets, however, 
its needs  must always be met-otherwise the quality of the  picture on  the screen 
would  suffer. 
Master #2 is the CPU,  which reads  from and writes to display memory in order to 
manipulate  the bytes that  the video circuitry reads to form  the  picture  on  the  screen. 
Master #2 is less important  than master #1, since the CPU affects display quality only 
indirectly. In  other words, if the video circuitry has to wait for display memory ac- 
cesses, the  picture will develop holes, snow, and  the like, but if the CPU has to wait 
for display  memory  accesses, the  program will just  run a bit slower-no big deal. 
It matters  a  great  deal which master is more  important,  for while both  the CPU and 
the video circuitry must  gain access to display  memory, only one of the two masters 
can  read  or write display memory at any one time. Potential conflicts are resolved by 
flat-out guaranteeing  the video circuitry however  many  accesses to display memory it 
needs, with the CPU waiting for whatever display memory accesses are left over. 
It  turns  out  that  the 8088 CPU has to do a  lot of waiting, for  three reasons. First, the 
video circuitry can take as much as about 90 percent of the available  display memory 
access time, as  shown in Figure 4.7, leaving as little as about 10 percent of all  display 
memory  accesses for  the 8088. (These  percentages vary considerably among  the many 
EGA and VGA clones.) 
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Allocation of display memory access. 
Figure 4.7 

Second, because the displayed dots (or pixels, short for “picture elements”) must  be 
drawn on  the screen at a constant speed, many  display adapters provide memory ac- 
cesses  only at fixed  intervals. As a result, time  can be lost  while the 8088 synchronizes 
with the start of the next display adapter  memory access,  even if the video circuitry 
isn’t accessing  display memory at  that time, as  shown in Figure 4.8. 
Finally, the time it takes a display adapter to complete a memory access is related to 
the speed of the clock  which generates pixels on the screen rather than to the  memory 
access speed of the 8088. Consequently, the time taken for display memory to com- 
plete an 8088 read  or write  access  is often longer than  the time taken for system 
memory  to  complete an access,  even if the 8088 lucks into hitting a free display 
memory access just as it  becomes available, again as  shown in Figure 4.8. Any or all  of 
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the  three factors I’ve described  can  result  in wait states, slowing the 8088 and creat- 
ing  the display adapter cycle-eater. 
If some of this is Greek to you, don’t worry. The  important  point is that display  memory 
is not very fast compared to normal system  memory.  How  slow  is it? Incredibly slow. 
Remember how  slow  IBM’s ill-fated  PCjrwas? In case  you’ve forgotten, I’ll refresh your 
memory: The PCjrwas at best only  half  as  fast  as the PC. The  PCjrhad an 8088 running 
at 4.77 MHz, just like the PC-why do you suppose it was so much slower?  I’ll  tell  you 
why: All the  memory in the Pcjr was  display  memory. 
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Enough said. All the memory  in the PC is not display  memory,  however, and unless 
you’re thickheaded  enough to put  code in display  memory, the PC isn’t going to run 
as  slowly  as a PC& (Putting  code or  other non-video data  in  unused areas of  display 
memory  sounds like a neat idea-until you consider  the effect on  instruction 
prefetching of cutting the 8088’s already-poor memory access performance in half. 
Running your code  from display memory is sort of  like running  on a hypothetical 
8084-an 8086  with a 4-bit bus. Not recommended!) Given that your code  and data 
reside in normal system memory below the 640K mark, how great an impact does 
the display adapter cycle-eater  have on  performance? 
The answer  varies considerably depending  on what  display adapter  and what display 
mode we’re talking about. The display adapter cycle-eater is  worst  with the  Enhanced 
Graphics Adapter (EGA) and the original Video Graphics Array  (VGA).  (Many VGAs, 
especially newer  ones,  insert many  fewer  wait states than IBM’s original VGA. On  the 
other  hand,  Super VGAs have more bytes  of  display memory to be  accessed in high- 
resolution mode.) While the  Color/Graphics  Adapter (CGA) , Monochrome Display 
Adapter  (MDA),  and Hercules Graphics Card  (HGC) all suffer from  the display 
adapter cycle-eater  as  well,  they suffer to a lesser degree. Since the VGA represents 
the base standard  for PC graphics now and for the foreseeable future,  and since it is 
the hardest graphics adapter to  wring performance  from, we’ll restrict our discus- 
sion to the VGA (and its  close relative, the EGA) for the  remainder of this chapter. 

The Impact of the Display Adapter Cycle-Eater 
Even on  the EGA and VGA, the effect of the display adapter cycle-eater depends  on 
the display mode selected. In text mode,  the display adapter cycle-eater is rarely a 
major  factor.  It’s not that  the cycle-eater  isn’t present; however, a  mere 4,000 bytes 
control  the  entire text mode display, and even  with the display adapter cycle-eater it 
just doesn’t take that long to manipulate 4,000 bytes.  Even  if the display adapter cycle- 
eater were  to  cause the 8088  to  take  as much as 5ps per display memory access-more 
than five times  normal-it  would  still  take  only 4,000~ 2x 5ps, or 40 ms, to read and 
write  every  byte  of  display  memory. That’s a lot of time  as measured in 8088  cycles, but 
it’s  less than  the blink of an eye in human time, and video performance only matters in 
human time.  After all, the whole point of  drawing graphics is to  convey  visual informa- 
tion, and if that information can be presented faster than the eye  can see, that is by 
definition fast enough. 
That’s not to  say that the display adapter cycleeater can’t matter in text mode. In Chap 
ter 3, I recounted the story  of a debate among letter-writers  to a magazine about exactly 
how  quickly characters could  be  written  to  display memory without  causing snow. The 
writers  carefully added  up Intel’s instruction cycle  times to  see  how  many  writes  to  dis- 
play memory they  could  squeeze into  a single  horizontal retrace interval. (On a CGA,  it’s 
only during  the short horizontal retrace interval and the longer vertical retrace interval 
that display memory can  be  accessed  in 80column text mode without  causing  snow.)  Of 

104 Chapter 4 



course, now  we  know that their cardinal sin was to ignore the prefetch queue; even  if 
there were no wait states, their calculations  would  have  been  overly  optimistic. There are 
display  memory  wait  states as well, however, so the calculations  were not  just optimistic 
but wildly optimistic. 
Text mode  situations  such as the above notwithstanding,  where the display adapter 
cycle-eater  really  kicks in is in graphics mode,  and most especially in  the high-resolu- 
tion graphics  modes of the EGA and VGA. The  problem  here is not  that  there  are 
necessarily more wait states per access in  high-resolution  graphics  modes (that varies 
from  adapter  to  adapter  and  mode  to  mode). Rather, the  problem is  simply that  are 
many more bytes  of  display memory per screen in these  modes  than  in lower-resolu- 
tion graphics modes and in text modes, so many more display  memory accesses-each 
incurring its share of display  memory  wait  states-are required  in  order  to draw an 
image of a given  size. When accessing the many thousands of  bytes used  in the high- 
resolution  graphics  modes, the cumulative effects of display  memory  wait states can 
seriously impact  code  performance, even as measured in human time. 
For example, if we assume the same 5 ps per display  memory  access for  the EGA’s 
high-resolution  graphics  mode  that we assumed for text mode, it would take 26,000 
X 2 X 5 ps, or 260 ms, to scroll the screen  once  in the EGAs high-resolution graphics 
mode,  mode 10H. That’s more  than  one-quarter of a second-noticeable by human 
standards, an eternity by computer standards. 
That sounds pretty serious, but we did make an  unfounded assumption about memory 
access speed. Let’s get  some hard  numbers. Listing 4.11  accesses  display memory at 
the 8088’s maximum speed, by  way  of a REP MOVSW with  display memory as both 
source and destination. The  code in Listing 4.11 executes  in 3.18 ps per access to 
display  memory-not as long as we had assumed, but a long time nonetheless. 

LISTING 4.1 1 LST4- 1 1 .ASM 
: Times  speed o f  memory a c c e s s   t o   E n h a n c e d   G r a p h i c s  
: A d a p t e r   g r a p h i c s  mode d i s p l a y  memory a t  A000:OOOO. 

mov ax.0010h 
i n t  1 0 h   : s e l e c t   h i - r e s  EGA g r a p h i c s  

: mode 10  hex  (AH=O s e l e c t s  
: B I O S  s e t  mode f u n c t i o n ,  
: w i t h  AL-mode t o   s e l e c t )  

mov ax.Oa000h 
mov ds ,ax  
mov es .ax  :move t o  & f r o m  same segment 
sub s i . s i  :move t o  & f r o m  same o f f s e t  
mov d i   , s i  
mov cx.800h  :move 2 K  words  
c l  d 
c a l l  ZTimerOn 
r e p  movsw ; s i m p l y   r e a d   e a c h   o f   t h e   f i r s t  

; 2K words o f   t h e   d e s t i n a t i o n   s e g m e n t ,  
: w r i t i n g   e a c h   b y t e   i m m e d i a t e l y   b a c k  
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: t o   t h e  same address .  No memory 
: l o c a t i o n s   a r e   a c t u a l l y   a l t e r e d :   t h i s  
: i s   j u s t   t o  measure  memory  access 
: t i m e s  

c a l l   Z T i m e r O f f  

mov ax.0003h 
i n t  10h : r e t u r n   t o   t e x t  mode 

For comparison, let’s  see  how long  the same code takes when accessing normal system 
RAM instead of  display  memory. The code in Listing 4.12, which performs a REP 
MOVSW from  the code segment to the code segment, executes in 1.39 ps per display 
memory access. That means  that on average, 1.79 ps (more than 8 cycles!) are lost  to 
the display adapter cycle-eater on each access. In other words, the display adapter 
cycle-eater can rnure than doubb the execution time of 8088 code! 

LISTING  4.1 2 LST4- 1 2.ASM 
: Times s w e d  o f  memory access  t o  no rma l   sys tem 
: memory. 

mov ax .ds  
mov es .ax  
s u b  s i . s i  
mov d i  , s i  
mov cx .800h 
c l  d 
c a l l  ZTimerOn 
r e p  movsw 

:move t o  & f r o m  same segment 
:move t o  & f r o m  same o f f s e t  

:move 2K words  

: s i m p l y   r e a d   e a c h   o f   t h e   f i r s t  
: 2K w o r d s   o f   t h e   d e s t i n a t i o n   s e g m e n t ,  
: w r i t i n g   e a c h   b y t e   i m m e d i a t e l y   b a c k  
: t o   t h e  same address .  No memory 
: l o c a t i o n s  a r e  a c t u a l l y   a l t e r e d :   t h i s  
: i s   j u s t   t o  measure  memory  access 
: t i m e s  

c a l l   Z T i m e r O f f  

Bear in mind  that we’re talking about a worst  case here;  the impact of the display 
adapter cycle-eater is proportional to the  percent of time a given code  sequence 
spends accessing  display  memory. 

P A line-drawing  subroutine, which executes  perhaps  a  dozen  instructions for each 
display  memory  access,  generally  loses  less  performance  to  the  display  adapter 
cycle-eater  than  does  a  block-copy  or  scrolling  subroutine  that  uses REP MOVS 
instructions.  Scaled and three-dimensional  graphics, which spend  a  great  deal of 
time  performing  calculations  (often  using  very slow floating-point  arithmetic), 
tend to  suffer  less. 

In addition, code that accesses  display memory infrequently tends to  suffer  only about 
half  of the maximum display memory wait states, because on average such code will 
access  display memory halfway between one available  display memory access  slot and 
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the next. As a  result,  code  that accesses  display  memory  less intensively than  the 
code  in Listing 4.1 1 will on average lose 4 or 5 rather  than 8-plus cycles to the display 
adapter cycle-eater on each memory access. 
Nonetheless, the display adapter cycle-eater always takes its toll on graphics  code. 
Interestingly, that toll becomes  much  higher on ATs and 80386 machines because 
while those  computers  can  execute many more instructions per microsecond  than 
can the 8088-based PC, it takes just as long to access  display memory on those com- 
puters as on  the 8088-based PC. Remember,  the  limited  speed of access to a  graphics 
adapter is an  inherent characteristic of the  adapter, so the fastest computer  around 
can’t access  display  memory one iota faster than  the  adapter will  allow. 

What to  Do about the Display Adapter Cycle-Eater? 
What can we do  about  the display adapter cycle-eater? Well,  we can minimize display 
memory  accesses  whenever possible. In particular, we can try to avoid read/modify/ 
write display memory operations of the  sort used to mask individual pixels and clip 
images. Why? Because read/modify/write  operations  require two display memory 
accesses (one  read  and  one write) each time display  memory is manipulated. In- 
stead, we should try to use writes of the  sort  that set all the pixels in  a given  byte  of 
display  memory at  once, since such writes don’t  require  accompanying  read accesses. 
The key here is that only half  as  many  display memory accesses are  required to write 
a byte to display  memory  as are  required to read  a byte from display  memory,  mask 
part of it off and  alter  the rest, and write the byte back to display  memory.  Half  as 
many  display memory accesses means half  as  many  display memory wait states. 

Moreovel; 486s and Pentiums, as well as recent Super VGAs, employ write-cach- p ing  schemes  that  make display memory writes considerably faster than display 
memory reads. 

Along the same line,  the display adapter cycle-eater makes the  popular exclusive-OR 
animation  technique, which requires  paired  reads  and writes of display  memory, 
less-than-ideal for  the PC. Exclusive-OR animation  should  be avoided in favor of 
simply writing images to display  memory  whenever possible. 
Another  principle  for display adapter  programming  on  the 8088 is to perform mul- 
tiple accesses to display memory very rapidly, in order to make use of  as many  of the 
scarce accesses to display  memory  as possible. This is especially important when  many 
large images need to be drawn  quickly, since only by using virtually  every  available 
display  memory  access  can  many  bytes be written to display  memory in a  short  period of 
time. Repeated  string  instructions are ideal  for making maximum use of display 
memory accesses;  of course,  repeated  string  instructions  can only be used on whole 
bytes, so this is another  point in favor of modifying display  memory a byte at a time. 
(On faster  processors, however,  display memory is so slow that it often pays to do several 
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instructions  worth of  work  between  display memory accesses, to take advantage of 
cycles that would otherwise be wasted on  the wait states.) 
It would be  handy to explore  the display adapter cycle-eater issue in  depth, with lots 
of example  code  and execution timings, but alas, I don’t have the space for  that  right 
now.  For the time being, all  you  really need to know about  the display adapter cycleeater 
is that  on  the 8088  you can lose more  than 8 cycles  of execution  time on each access 
to display  memory.  For  intensive  access to display  memory, the loss  really can be as high 
as 8-plus cycles (and  up to 50, 100, or even more  on 486s and Pentiums  paired with 
slow VGAs), while for average graphics  code the loss  is closer to 4 cycles; in  either 
case, the impact on performance is significant. There is only one way to discoverjust 
how significant the impact of the display adapter cycle-eater is for any particular 
graphics code,  and  that is  of course to measure  the  performance of that  code. 

Cycle-Eaters: A Summary 
We’ve covered a great  deal of sophisticated  material in this chapter, so don’t feel bad 
if you haven’t understood everything you’ve read; it will all become  clear  from fur- 
ther  reading, especially once you  study, time,  and  tune  code  that you have written 
yourself. What’s really important is that you come away from this chapter  under- 
standing  that on  the 8088: 

The  8-bit  bus  cycle-eater  causes  each  access  to a word-sized  operand  to  be 4 

The  prefetch  queue  cycle-eater  can  cause  instruction  execution  times  to  be  as 

The DRAM refresh  cycle-eater  slows  most PC code,  with  performance  reduc- 
tions  ranging  as  high  as 8.33 percent. 
The  display  adapter  cycle-eater  typically  doubles  and  can  more  than  triple  the 
length  of  the  standard  4-cycle  access  to  display  memory,  with  intensive  display 
memory  access  suffering  most. 

This basic knowledge about cycle-eaters puts you in  a  good  position  to understand 
the results reported by the Zen timer, and  that means that you’re well on your way to 
writing high-performance assembler code. 

cycles  longer  than  an  equivalent  access  to a byte-sized  operand. 

much  as  four  times  longer  than  the  officially  documented  cycle  times. 

What Does  It All Mean? 
There you  have  it: life under  the  programming interface. It’s not a particularly pretty 
picture  for  the  inhabitants of that  strange  realm  where  hardware  and software meet 
are little-known cycle-eaters that sap the  speed  from  your  unsuspecting  code. Still, 
some of those cycle-eaters can  be  minimized by keeping  instructions short, using the 
registers, using byte-sized memory operands,  and accessing display memory as little 
as possible. None of the cycle-eaters can  be  eliminated,  and dynamic RAM refresh 
can scarcely be  addressed at all; still, aren’t you better off  knowing  how fast your 
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code real4 runs-and  why-than  you were reading  the official execution times and 
guessing? And while specific cycle-eaters vary in  importance  on  later x86-family pro- 
cessors, with some cycle-eaters vanishing altogether  and new ones  appearing,  the 
concept  that  understanding  these  obscure  gremlins is a key to performance  remains 
unchanged, as  we’ll see again and again in  later  chapters. 
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ree little words should strike terror  into  the  heart of anyone 
who owns more  t bag and a  toothbrush. Our last  move was the usual 

the distance from  the old house to the new  was only 
“everything smaller than a washing machine. We have 

a sizable household , kids, computers, you name it-so the moving pro- 
A large number-33, to be exact. I personally spent 

riving  back and forth between the two houses. The move took 

things: What  does this have to do with high-perfor- 
mance  programming,  and why on  earth  didn’t I rent a truck and get the move  over 
in one  or two trips, saving hours of driving? As it  happens,  the second question an- 
swers the first. I didn’t rent a truck because it seerned easier and  cheaper to  use  cars-no 
big truck to drive, no rentals, spread the work out  more manageably, and so on. 
It wasn’t easier, and wasn’t  even much cheaper. (It costs quite  a bit to drive a car 330 
miles,  to say nothing of the value  of 15 hours of my time.) But, at  the time, it seemed 
as though my approach would be easier and cheaper. In fact, I didn’t realize just how 
much time I  had wasted driving back and  forth until I sat down to  write  this chapter. 
In Chapter 1, I briefly  discussed using restartable blocks. This, you might remember, is 
the process of handling in chunks  data sets too large to fit in memory so that they 
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can be processed just  about as  fast  as if they did fit in memory. The restartable block 
approach is very fast but is relatively difficult to program. 
At the opposite end of the  spectrum lies  byte-by-byte processing, whereby DOS (or, 
in less extreme cases, a group of library functions) is  allowed to do all the  hard work, 
so that you  only  have  to deal with one byte at a time. Byte-by-byte processing is easy to 
program  but can be extremely slow, due to the vast overhead that results from invok- 
ing DOS each time a byte must be processed. 
Sound familiar? It  should.  I moved via the byte-by-byte approach,  and  the overhead 
of driving back and  forth  made  for miserable performance.  Renting  a truck (the 
restartable block approach) would  have required  more effort and  forethought,  but 
would  have paid off  handsomely. 

The easy, familiar  approach often  has  nothing in its favor except that it requires p less thinking;  not a  great virtue when writing high-performance code-or when 
moving. 

And with that, let’s look at  a fairly complex application of restartable blocks. 

Searching for Text 
The application we’re going to examine searches a file for  a specified string. We’ll 
develop a  program  that will search the file specified on  the  command line  for  a 
string (also specified on  the  command  line),  then  report  whether  the string was 
found  or  not. (Because the searched-for string is obtained via argv, it can’t contain 
any whitespace characters.) 
This is a very limited subset of  what search utilities such as grep can do,  and isn’t 
really intended to be a generally useful application; the  purpose is to provide insight 
into restartable blocks in particular and optimization in  general in the course of 
developing a search engine. That search engine will,  however, be easy to plug into 
any program,  and there’s nothing preventing you from using it in  a  more fruitful 
context, like searching through a user-selectable file set. 
The first point to address in designing our  program involves the  appropriate text- 
search approach to use. Literally dozens of  workable ways exist  to search a file. We 
can immediately discard all approaches  that involve reading any  byte  of the file more 
than once, because disk  access time is orders of magnitude slower than any data 
handling  performed by our own code. Based on  our  experience in Chapter 1, we 
can also discard all approaches  that  get bytes either  one at  a time or in small  sets 
from DOS. We want  to read big “buffers-full” of  bytes at a pop  from  the  searched file, 
and  the bigger the buffer the better-in order to minimize DOS’s overhead. A good 
rough cut is a buffer that will be between 16K and 64K, depending  on  the exact 
search approach,  64Kbeing  the maximum size because near pointers  make  for supe- 
rior  performance. 
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So we know we want to work  with a  large buffer, filling it as infrequently as possible. 
Now  we have to figure out how to search through a file by loading it into  that  large 
buffer  in  chunks. To accomplish this, we have to know  how we want to do  our search- 
ing,  and that’s not immediately obvious. Where do we begin? 

Well, it might be instructive to consider how  we would search if our search involved 
only one buffer, already resident  in memory. In other words, suppose we don’t have to 
bother with  file handling  at all, and  further suppose that we don’t have to deal with 
searching through multiple blocks.  After  all,  that’s a good  description of the all-important 
inner loop of our searching  program, where the  program will spend virtually  all of its 
time (aside from  the unavoidable disk  access overhead). 

Avoiding the  String  Trap 
The easiest approach would be to use a C/C++ library function. The closest  match to 
what we need is strstr(), which searches one string for the first occurrence of a second 
string. However,  while strstr() would  work, it isn’t ideal for our purposes. The problem is 
this:  Where we want to search a fixed-length buffer for the first occurrence of a string, 
strstr() searches a string for the first occurrence of another string. 
We could put a  zero byte at  the  end of our buffer to allow strstr() to work, but why 
bother?  The strstr() function  must  spend time either checking  for the  end of the 
string  being  searched or  determining  the  length of that string-wasted effort given 
that we already know exactly how long  our search  buffer is.  Even  if a given strstr() 
implementation is well-written, its performance will suffer, at least for our applica- 
tion,  from unnecessary overhead. 

This illustrates why you shouldn ’t think ofC/C+ + libraryfunctions  as black boxes; 
understand what they do and try  to  figure out how they do  it, and relate that to 
their performance  in  the  context you i-e interested in. 

Brute-Force  Techniques 
Given that no C/Ct+ library function  meets  our  needs precisely, an obvious alterna- 
tive approach is the brute-force  technique  that uses memcmp() to  compare every 
potential  matching  location in the buffer to the string we’re searching for, as  illus- 
trated  in Figure 5.1. 
By the way,  we could, of course, use our own code, working with pointers  in  a  loop,  to 
perform  the  comparison in place of memcmp(). But memcmp() will almost certainly 
use the very  fast REPZ CMPS instruction. However, never assume! It  wouldn’t hurt  to 
use a  debugger to check out  the actual  machine-code  implementation of memcmp() 
from  your compiler. If necessary, you could always write your own  assembly language 
implementation of memcmp(). 
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Invoking memcmp() for each potential  match location works, but entails consider- 
able overhead. Each comparison requires  that  parameters be pushed  and that  a call 
to and  return  from memcmp() be performed,  along with a pass through  the com- 
parison loop. Surely there’s a better way! 
Indeed  there is. We can eliminate most  calls to memcmp() by performing a simple 
test on  each  potential  match location that will reject most such locations right off the 
bat. We’ll just check whether  the first character of the potentially matching buffer 
location matches the first character of the string we’re searching for. We could  make 
this check by using a  pointer in a loop to scan the buffer for the  next  match  for  the 
first character, stopping to check for  a  match with the rest of the string only when the 
first character matches, as  shown in Figure 5.2. 

Using memchr() 
There’s yet a  better way to implement this approach, however.  Use the memchr() func- 
tion, which does nothing  more  or less than find  the  next occurrence of a specified 
character in a fixed-length buffer (presumably by using the extremely  efficient REPNZ 
SCASB instruction, although again it wouldn’t hurt to check). By using memchr() to 
scan for potential matches that can then be fully tested with memcmp(), we can build 
a highly  efficient search engine  that takes good advantage of the information we have 
about  the buffer being searched and  the string we’re searching for. Our  engine also 
relies heavily on  repeated  string instructions, assuming that  the memchr() and 
memcmp() library functions are properly coded. 
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We’re going  to  go with the this approach in our file-searching program;  the only 
trick lies in  deciding how to  integrate this approach with restartable blocks in order 
to search through files larger than  our buffer. This certainly isn’t the fastest-possible 
searching  algorithm; as one example, the Boyer-Moore algorithm, which  cleverly 
eliminates many buffer  locations as potential  matches in the process of checking 
preceding locations, can be considerably faster.  However, the Boyer-Moore algorithm 
is quite  complex  to understand  and  implement,  and would distract us from our main 
focus, restartable blocks, so we’ll  save it  for  a  later  chapter  (Chapter 14, to be pre- 
cise). Besides, I  suspect you’ll find  the  approach we’ll use to be fast enough  for most 
purposes. 
Now that we’ve selected  a  searching approach, let’s integrate it with file handling 
and searching through multiple blocks. In other words, let’s make it restartable. 

Making a Search  Restartable 
As it  happens,  there’s  no  great trick to putting  the pieces of this search  program 
together. Basically,  we’ll read  in  a buffer of data (we’ll  work  with 16K at  a time to 
avoid signed overflow problems with integers),  search  it  for a  match with the 
memchr()/memcmp() engine  described, and exit with a  “string found” response if 
the desired  string is found. 
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Otherwise, we’ll load in another buffer full of data  from the file, search it, and so on. 
The only  trick  lies in handling potentially matching  sequences  in  the file that start in 
one buffer and  end in the next-that  is, sequences that  span buffers. We’ll handle 
this by copying the  unchecked bytes at  the  end of one buffer to the start of the  next 
and  reading that many fewer  bytes the  next time we fill the buffer. 
The exact number of  bytes to be copied  from  the  end of one buffer to the start of the 
next is the length of the searched-for string minus 1, since that’s how many bytes at 
the  end of the buffer can’t be  checked as  possible matches (because the check would 
run off the  end of the  buffer). 
That’s really  all there is to it. Listing 5.1 shows the file-searching program. As you can 
see, it’s not particularly complex, although a few fairly opaque lines of code  are 
required to handle merging the end of one block  with the start of the next. The code 
that searches a single  block-the function SearchForString()-is simple and compact 
(as it  should  be, given that it’s by far the most heavily-executed code in the listing). 
Listing 5.1 nicely illustrates the core  concept of restartable blocks: Organize your 
program so that you can do your processing within each block as fast  as  you could if 
there were  only one block-which is to say at top speed-and make your blocks  as 
large as  possible in order  to minimize the overhead associated with going  from  one 
block to the next. 

LISTING 5.1 SEARCH.C 
I* Program t o   s e a r c h   t h e   f i l e   s p e c i f i e d  b y   t h e   f i r s t   c o m m a n d - l i n e  
* argument f o r   t h e   s t r i n g   s p e c i f i e d   b y   t h e   s e c o n d   c o m m a n d - l i n e  
* argument .   Per fo rms  the   search   by   read ing   and  search ing   b locks  
* o f   s i z e  BLOCK-SIZE. *I  

# i n c l u d e   < s t d i o . h >  
# i n c l u d e   < f c n t l  . h> 
# i n c l u d e   < s t r i n g . h >  
# i n c l u d e   < a l l o c . h >  I* a l 1 o c . h   f o r   B o r l a n d   c o m p i l e r s ,  

m a l 1 o c . h   f o r   M i c r o s o f t   c o m p i l e r s  */  

# d e f i n e  BLOCK-SIZE 0x4000 I* w e ’ l l   p r o c e s s   t h e   f i l e   i n  1 6 K  b l o c k s  * /  

I* Searches   the   spec i f ied   number   o f   sequences  i n   t h e   s p e c i f i e d  
b u f f e r   f o r   m a t c h e s   t o   S e a r c h s t r i n g   o f   S e a r c h S t r i n g L e n g t h .   N o t e  
t h a t   t h e   c a l l i n g  code  shou ld   a l ready   have  shor tened  SearchLength  
i f  n e c e s s a r y   t o   c o m p e n s a t e   f o r   t h e   d i s t a n c e   f r o m   t h e   e n d   o f   t h e  
b u f f e r   t o   t h e   l a s t   p o s s i b l e   s t a r t   o f  a matching  sequence i n   t h e  
b u f f e r .  

*I  

i n t  SearchForString(unsigned c h a r   * B u f f e r ,   i n t   S e a r c h L e n g t h ,  

( 
u n s i g n e d   c h a r   * S e a r c h s t r i n g .   i n t   S e a r c h S t r i n g L e n g t h )  

uns igned   cha r   *Po ten t i a lMa tch :  

I* Search s o  l o n g  as t h e r e   a r e   p o t e n t i a l - m a t c h   l o c a t i o n s  

w h i l e  ( SearchLength ) I 
r e m a i n i n g  *I  

I* See i f  t h e   f i r s t   c h a r a c t e r   o f   S e a r c h s t r i n g   c a n  be  found * /  
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i f  ( ( P o t e n t i a l M a t c h  = 

memchr (Buf fe r .   *Searchs t r ing ,   SearchLength) )  -- NULL ) I 

I 
break:  /*  No matches i n  t h i s   b u f f e r  */ 

I* The f i r s t   c h a r a c t e r   m a t c h e s :  see i f  t h e   r e s t   o f   t h e   s t r i n g  

i f  ( SearchSt r i ngLeng th  -= 1 1 { 
a l s o  matches * /  

r e t u r n ( 1 ) :  I* Tha t  one m a t c h i n g   c h a r a c t e r  was t h e   w h o l e  
s e a r c h   s t r i n g ,  s o  we 've   go t  a match * I  

1 
e l s e  { 

/ *  Check   whether   the   remain ing   charac ters   match  * I  
i f  ( !memcmp(PotentialMatch + 1. S e a r c h s t r i n g  + 1. 

SearchSt r i ngLeng th  - 1) ) { 
r e t u r n c l ) ;  / *  We've g o t  a match * I  

1 
1 
I* The s t r i n g   d o e s n ' t   m a t c h :   k e e p   g o i n g   b y   p o i n t i n g   p a s t   t h e  

SearchLength -- P o t e n t i a l M a t c h  - B u f f e r  + 1; 
B u f f e r  - P o t e n t i a l M a t c h  + 1: 

p o t e n t i a l   m a t c h   l o c a t i o n  we j u s t   r e j e c t e d  * I  

1 

1 

m a i n ( i n t   a r g c .   c h a r   * a r g v [ ] )  { 

r e t u r n ( 0 ) :  I* No match  found * /  

i n t  Done: / *  I n d i c a t e s  
i n t  Handle:  / *  H a n d l e   o f  
i n t  Work ingLength;  / *  L e n g t h   o f  
i n t   S e a r c h S t r i n g L e n g t h ;  / *  L e n g t h   o f  
i n t  B lockSearchLength:  I* Length t o  
i n t  Found; / *  I n d i c a t e s  

s t a t u s  * I  

whether   search  i s  done * /  
f i l e   b e i n g   s e a r c h e d  * /  
c u r r e n t   b l o c k  * /  
s t r i n g   t o   s e a r c h   f o r  */ 
s e a r c h   i n   c u r r e n t   b l o c k  * /  
f i n a l   s e a r c h   c o m o l e t i o n  

i n t  NextLoadCount; I *  # o f   b y t e s   t o   r e a d   i n t o   n e x t   b l o c k ,  
a c c o u n t i n g   f o r   b y t e s   c o p i e d   f r o m   t h e  
l a s t   b l o c k  * /  

uns igned  char   *Work ingBlock;  I* B l o c k   s t o r a g e   b u f f e r  *I 
u n s i g n e d   c h a r   * S e a r c h s t r i n g ;  I* P o i n t e r   t o   t h e   s t r i n g   t o   s e a r c h   f o r  */ 
uns igned  char   *NextLoadPt r ;  / *  O f f s e t   a t   w h i c h   t o   s t a r t   l o a d i n g  

t h e   n e x t   b l o c k ,   a c c o u n t i n g   f o r  
b y t e s   c o p i e d   f r o m   t h e   l a s t   b l o c k  * /  

/ *  Check f o r   t h e   p r o p e r  number o f  arguments *I 
i f  ( a rgc  !- 3 { 

p r i n t f ( " u s a g e :   s e a r c h   f i l e n a m e   s e a r c h - s t r i n g \ n " ) ;  
e x i t ( 1 ) :  

1 

/ *  T r y   t o  open t h e   f i l e   t o  be  searched * /  
i f  ( (Handle - open(a rgv [ l ] .  OERDONLY 1 0-BINARY)) -- -1 1 { 

p r i n t f ( " C a n ' t  open f i l e :   % s \ n " .   a r g v [ l l ) ;  
e x i t ( 1 ) :  

> 
I* C a l c u l a t e   t h e   l e n g t h   o f   t e x t   t o   s e a r c h   f o r  * I  
S e a r c h s t r i n g  - argvCE1: 
SearchSt r i ngLeng th  - s t r l e n ( S e a r c h S t r i n g ) :  
I* T r y   t o   g e t  memory i n  w h i c h   t o   b u f f e r   t h e   d a t a  */  
i f  ( (Work ingBlock = malloc(BLOCK-SIZE)) -- NULL 1 I 

p r i n t f ( " C a n ' t   g e t  enough  memory\n"): 
e x i t ( 1 ) ;  

1 
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I* Load t h e   f i r s t   b l o c k  a t  t h e   s t a r t   o f   t h e   b u f f e r ,  and t r y   t o  

NextLoadPtr  - WorkingBlock:  
NextLoadCount = BLOCK-SIZE: 
Done = 0:  I* Not  done w i t h   s e a r c h   y e t  *I  
Found = 0:  I* Assume we w o n ' t   f i n d  a match * I  
/ *  S e a r c h   t h e   f i l e   i n  BLOCK-SIZE chunks * /  

fill t h e   e n t i r e   b u f f e r  * /  

do 
I* 

i f  

1 
I* 

i f  

1 

/* 

Read i n  however many b y t e s   a r e   n e e d e d   t o  fill o u t   t h e   b l o c k  
( a c c o u n t i n g   f o r   b y t e s   c o p i e d   o v e r   f r o m   t h e   l a s t   b l o c k ) .   o r  
t h e   r e s t   o f   t h e   b y t e s   i n   t h e   f i l e ,   w h i c h e v e r   i s   l e s s  * I  
( (WorkingLength - read(Hand1e.  NextLoadPtr .  

p r i n t f ( " E r r o r   r e a d i n g   f i l e   % s \ n " .   a r g v C 1 1 ) :  
e x i t ( 1 ) :  

NextLoadCount))  == -1 ) I 

I f  we d i d n ' t   r e a d  all t h e   b y t e s  we requested,  we're  done 
a f t e r   t h i s   b l o c k ,   w h e t h e r  we f i n d  a m a t c h   o r   n o t  * I  
( WorkingLength !- NextLoadCount { 
Done - 1: 

A c c o u n t   f o r   a n y   b y t e s  we cop ied   f rom  the   end  o f  t h e   l a s t  
b l o c k   i n   t h e   t o t a l   l e n g t h   o f   t h i s   b l o c k  *I  

WorkingLength +- NextLoadPtr  - WorkingBlock:  
/ *  C a l c u l a t e   t h e  number o f   b y t e s   i n   t h i s   b l o c k   t h a t   c o u l d  

p o s s i b l y  be t h e   s t a r t   o f  a m a t c h i n g   s e q u e n c e   t h a t   l i e s  
e n t i r e l y   i n   t h i s   b l o c k  ( s e q u e n c e s   t h a t   r u n   o f f   t h e   e n d   o f  
t h e   b l o c k  will b e   t r a n s f e r r e d   t o   t h e   n e x t   b l o c k  and  found 
when t h a t   b l o c k   i s   s e a r c h e d )  

* I  
i f  ( (B lockSearchLength  - 

WorkingLength - SearchSt r ingLength  + 1) <= 0 1 { 
Done = 1: / *  Too f e w   c h a r a c t e r s   i n   t h i s   b l o c k   f o r  

t h e r e   t o   b e  any   poss ib le   matches ,  s o  t h i s  
i s   t h e   f i n a l   b l o c k  and  we ' re   done  w i thout  
f i n d i n g  a match 

*I  
I 
e l s e  { 

/ *  S e a r c h   t h i s   b l o c k  *I  
i f  ( SearchForS t r i ng (Work ingB1ock .  BlockSearchLength.  

S e a r c h s t r i n g .   S e a r c h S t r i n g L e n g t h )  ) { 
Found = 1: I* We've found a match *I 
Done = 1: 

I 
e l s e  I 

I* 

i f  

1 
/*  

Copy any b y t e s   f r o m   t h e  end o f   t h e   b l o c k   t h a t   s t a r t  
p o t e n t i a l l y - m a t c h i n g   s e q u e n c e s   t h a t   w o u l d   r u n   o f f  
t h e   e n d   o f   t h e   b l o c k   o v e r   t o   t h e   n e x t   b l o c k  */  
( SearchSt r ingLength  > 1 ) I 
memcpy(WorkingB1ock. 

WorkingBlock+BLOCK-SIZE - SearchSt r ingLength  + 1. 
SearchSt r ingLength  - 1 ) :  

Set  up t o   l o a d   t h e   n e x t   b y t e s   f r o m   t h e   f i l e   a f t e r   t h e  
b y t e s   c o p i e d   f r o m   t h e  end o f  t h e   c u r r e n t   b l o c k  * I  

NextLoadPtr  = WorkingBlock + SearchSt r ingLength  - 1: 
NextLoadCount - BLOCK-SIZE - S e a r c h S t r i n g L e n g t h  + 1: 

1 
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I 
1 w h i l e  ( !Done ) :  

/*  R e p o r t   t h e   r e s u l t s  * /  
i f  ( Found ) ( 

1 e l s e  I 

I 
e x i t ( F o u n d ) ;  / *  R e t u r n   t h e   f o u n d / n o t   f o u n d   s t a t u s  a s  t h e  

p r i n t f ( ” S t r i n g   f o u n d \ n ” ) :  

p r i n t f ( ” S t r i n g   n o t   f o u n d \ n ” ) :  

DOS e r r o r l e v e l  * /  
} 

Interpreting Where the  Cycles Go 
To boost  the  overall  performance of Listing  5.1,  I  would  normally  convert 
SearchForString() to assembly language  at this point. However, I’m not going to do 
that,  and  the reason is as important a lesson as  any discussion of optimized assembly 
code is  likely to be. Take a moment to examine  some  interesting  performance as- 
pects of the C implementation,  and all should  become  much clearer. 
As you’ll recall from  Chapter  1,  one of the  important rules  for  optimization involves 
knowing  when optimization is worth bothering with at all. Another  rule involves 
understanding where most of a  program’s  execution time is going.  That’s more  true 
for Listing 5.1 than you might  think. 
When Listing 5.1 is run  on a  1 MB assembly source file, it takes about  three seconds 
to find the string  “xxxend” (which is at  the  end of the file) on a 20 MHz  386  ma- 
chine, with the  entire file in  a disk cache. If BLOCK-SIZE is trimmed  from 16K to 
4K, execution  time does not increaseperceptibly! At 2K, the  program slows slightly; it’s not 
until the block size shrinks to 64  bytes that  execution time becomes  approximately 
double  that of the 16K buffer. 
So the first thing we’ve discovered is that, while bigger blocks do make for the best 
performance,  the  increment  in  performance may not  be very large, and might not 
justify the  extra memory required  for  those  larger blocks. Our  next discovery is that, 
even though we read  the file in large chunks, most of the  execution time of Listing 
5.1 is nonetheless  spent in executing  the read() function. 
When I  replaced  the read() function call in Listing 5.1 with code  that simply fools 
the  program  into  thinking  that  a 1 MB file is being read,  the  program  ran almost 
instantaneously-in less than 1/2 second, even  when the searched-for string wasn’t 
anywhere to be found. By contrast, Listing 5.1  requires  three  seconds  to  run even 
when searching  for  a single character  that  isn’t  found anywhere in the file, the case 
in which a single call to memchr() (and  thus a single REPNZ SCASB) can  eliminate 
an  entire block at  a time. 
All in all, the time required  for DOS disk  access  calls is taking up  at least 80 percent 
of execution time, and search time is  less than 20 percent of overall execution time. 
In  fact,  search time is probably a  good  deal less than 20 percent of the total, given 

Crossing the Border 1 21 



that the overhead of loading the  program,  running  through  the C startup  code, 
opening  the file, executing printf(), and exiting the  program  and  returning to the 
DOS shell are also included in my timings. Given which, it  should be apparent why 
converting to assembly language isn’t worth the trouble-the best we could do by 
speeding up  the search is a 10 percent  or so improvement,  and  that would require 
more  than  doubling the  performance of code  that already uses repeated string in- 
structions to do most of the work. 
Not likely. 

Knowing When Assembly Is Pointless 
So that’s why we’re not going  to  go  to  assembly  language  in  this  example-which  is not 
to say it would  never  be  worth  converting the search engine in  Listing  5.1  to  assembly. 
If, for  example, your application will typically search buffers in which the first char- 
acter of the search string occurs frequently as might be the case when  searching  a 
text buffer for  a string starting with the space character an assembly implementation 
might be several times faster. Why? Because  assembly code can switch from REPNZ 
S W B  to match the first character to REPZ CMPS to check the  remaining charac- 
ters in just a few instructions. 
In contrast, Listing 5.1 must return  from memchr(), set up parameters, and call 
memcmp() in order to do the same thing. Likewise,  assembly can switch  back  to 
REPNZ SCASB after a  non-match  much  more quickly than Listing 5.1. The switch- 
ing overhead is high; when  searching  a file completely filled with the character z for 
the string “zy,” Listing  5.1  takes almost 1/2 minute, or nearly an  order of magnitude 
longer than when  searching  a file filled with normal text. 
It might also  be  worth  converting the search engine to  assembly for searches performed 
entirely in memory;  with the overhead of  file  access eliminated, improvements in search- 
engine  performance  would  translate  directly  into significantly  faster  overall 
performance.  One such application that would  have much  the same structure as  List- 
ing 5.1  would be searching through  expanded memory buffers, and  another would  be 
searching through  huge (segment-spanning) buffers. 
And so we find, as we so often will, that optimization is definitely not a cut-and-dried 
matter, and that there is no  such  thing as a single “best”  approach. 

You must  know what your application  will  typically  do, and you must know whether p you ’re more concerned  with  average or worst-case  performance  before  you  can 
decide  how  best to speed up yourprogram-and,  indeed,  whether  speeding  it up is 
worth  doing  at  all. 

By the way, don’t think  that just because very large block  sizes don’t  much improve 
performance, it wasn’t worth using restartable blocks in Listing 5.1. Listing  5.1 runs 
more  than  three times more slowly  with a block  size  of 32 bytes than with a block  size 
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of 4K, and any byte-by-byte approach would surely be slower still, due  to  the over- 
head of repeated calls to DOS and/or  the C stream I/O library. 
Restartable blocks do minimize the overhead of  DOS  file-access  calls in Listing 5.1; 
it’s just  that there’s no way to  reduce  that  overhead  to  the  point  where it becomes 
worth attempting to further improve the  performance of our relatively efficient search 
engine.  Although the search engine is  by no means fully optimized, it’s nonetheless 
as fast as there’s any reason  for it to be, given the  balance of performance  among  the 
components of this program. 

Always Look Where Execution Is Going 
I’ve explained two important lessons: Know when  it’s worth  optimizing  further, and 
use restartable blocks to process large data sets as a series of blocks, with each block 
handled  at  high  speed.  The first lesson is less obvious than  it seems. 
When I set out to write this chapter, I fully intended to write an assembly language 
version of Listing 5.1, and I expected  the assembly version to be  much faster. When 
I actually looked  at  where  execution time was going (which I  did by modifylng the 
program to remove the calls to the read() function,  but a  code  profiler  could  be  used 
to do  the same  thing  much  more easily), I found  that  the best  code  in the world 
wouldn’t make much  difference. 

When you  try to speed up code, take a moment  to  identzfy  the  hot spots in your 1 program so that you know  where  optimization is needed  and  whether it will make 
a significant  difference  before you invest your time. 

As for  restartable blocks: Here we tackled a considerably more complex  application 
of restartable blocks than we did  in Chapter l-which turned out not to be so difficult 
after all. Don’t  let  irregularities  in the  programming tasks  you tackle, such as strings 
that  span blocks, fluster you into settling  for easy, general-and  slow-solutions. 
Focus on making the  inner loop-the code  that  handles  each block-as efficient as 
possible, then  structure  the rest of your code to support  the  inner  loop. 
Programming with restartable blocks isn’t easy, but when speed is an issue, using 
restartable blocks in the  right places more  than pays for itself  with greatly improved 
performance. And  when speed is not an issue, of course, or in code that’s not time- 
critical, you wouldn’t dream of wasting your time on optimization. 
Would you? 
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ne Instructions May Do More Than You Think 
authors’ dinner hosted by PC Tech Jarnal  at Fall 

Comdex,  back in own as a computer editor 
o Pascal, editions 1 through 672 (or 

would  soon  make  him. I was 
r table, and, not surprisingly, 
uters, computer writing, and 

k and enjoying it at  the time, I none- 
nce-fiction  writer  when I grew up.  (I 
lite  company,  especially in the com- 
rson  has  told  me  they plan to  write 

science  fiction  “someday.” Given that probably  fewer than 500-I’m guessing  here- 
original science  fiction and fantasy short stories, and perhaps a few more novels than 
that, are published each  year  in  this  country, I see a few  mid-life  crises coming.) 
At  any rate, I had accumulated a small  collection of rejection slips, and fancied my- 
self something of an old hand in the field. At the  end of the dinner, as the  other 
writers complained half-seriously about how little  they  were  paid for writing for Tech 
Journal, I leaned over  to  Jeff and whispered, ‘You  know, the pay  isn’t so bad here. You 
should see what  they  pay for science fiction-ven to the guys  who  win awards!” 
To which  Jeff replied, “I  know.  I’ve been nominated for two Hugos.” 
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Oh. 
Had I known I was seated next to a real, live science-fiction  writer-an award-nominated 
writer, by  God!-I would  have pumped him for all I was worth, but  the possibility had 
never occurred to me. I was at a dinner  put  on by a  computer magazine, seated next 
to an  editor who had  just finished a book about Turbo Pascal, and, gosh, it was obvi- 
ous that  the  appropriate topic was computers. 
For once,  the moral is not “don’t  judge  a book by its cover.”  Jeff  is in fact what he 
appeared to be at face  value: a  computer writer and editor. However, he is more, too; 
face value  wasn’t full value. You’ll similarly find  that face value isn’t always full value 
in computer  programming, and especially so when working in assembly language, 
where many instructions have talents above and beyond their obvious abilities. 
On the  other  hand,  there  are also a  number of instructions, such as LOOP, that  are 
designed to perform specific functions  but  aren’t always the best instructions  for 
those functions. So don’t  judge  a book by its  cover, either. 
Assembly language for  the x86  family isn’t like  any other language (for which we 
should, without hesitation, offer our profuse thanks). Assembly language reflects 
the design of the processor rather than  the way  we think, so it’s full of multiple 
instructions that  perform similar functions, instructions with odd  and often confus- 
ing side effects, and endless ways to string  together  different  instructions to do much 
the same things, often with  seemingly minuscule differences that can turn  out to be 
surprisingly important. 
To produce the best code, you must decide precisely  what  you need to  accomplish, then 
put together  the  sequence of instructions that accomplishes that end most efficiently, 
regardless of  what the instructions are usually  used  for.  That’s why optimization for the 
PC is an art, and it’s  why the best  assembly  language for the x86  family will almost always 
handily outperform compiled code. With that in mind, let’s look past face value- 
and while  we’re at it, I’ll  toss in a few examples of not  judging a book by its  cover. 
The  point to all  this: You must come to regard the x86  family instructions  for what 
they do,  not what you’re used to thinking they do. Yes, SHL shifts a  pattern left-but 
a look-up table can do  the same thing,  and can often do it faster. ADD can indeed 
add two operands, but it  can’t put  the result in  a  third register; LEA can. The instruc- 
tion set is your raw material for writing high-performance  code. By limiting yourself 
to thinking only in certain well-established ways about  the various instructions, you’re 
putting yourself at a substantial disadvantage every time you  sit  down to program. 
In  short,  the x86  family can do much  more  than you  think-if  you’ll use everything 
it has to offer. Give it  a shot! 

Memory Addressing and Arithmetic 
Years ago, I saw a clip on  the David Letterman show in which Letterman walked into 
a  store by the  name of “Just Lamps” and asked, “So what do you  sell here?” 
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“Lamps,” he was told. “Just  lamps.  Can’t  you read?” 
“Lamps,” he said. “I see.  And  what else?” 
From that bit of sublime  idiocy we can learn  much  about divining the full  value of an 
instruction. To  wit: 
Quick, what do  the x86’s memory addressing modes do? 
“Calculate memory addresses,” you no  doubt replied. And you’re right, of course. 
But  what else do they do? 
They perform  arithmetic, that’s  what  they do,  and that’s a distinctly different and 
often useful  perspective on memory address calculations. 
For example, suppose you  have an array  base  address  in BX and  an index into  the 
array  in SI. You could add the two registers together to  address  memory,  like  this: 

a d d  b x . s i  
mov a1 , [ b x l  

Or you could let the processor do  the arithmetic for you in a single instruction: 

mov a1  , [ b x + s i ]  

The two approaches  are functionally interchangeable  but not equivalent from a per- 
formance  standpoint, and which is better  depends  on  the particular context. If it’s a 
one-shot memory access,  it’s  best  to let  the processor perform  the  addition; it’s gen- 
erally  faster at  doing this than a separate ADD instruction would be. If  it’s a memory 
access  within a loop, however,  it’s advantageous on  the 8088 CPU to perform  the 
addition outside the  loop, if possible, reducing effective address calculation  time 
inside the  loop, as in the following: 

a d d  b x . s i  

mov a1  , [ b x ]  
i n c  b x  
1 oop LoopTop 

LoopTop: 

Here, MOV  AL,[BX] is two cycles  faster than MOV  AL,[BX+SI]. 
On a 286 or 386,  however, the balance shifts. MOVAL,[BX+SI] takes no longer  than 
MOV  AL,[BX] on these processors  because  effective address calculations  generally 
take no extra time at all. (According to the MASM manual, one extra clock  is  re- 
quired if three memory addressing components, as  in MOVAL,[BX+SI+l], are used. 
I have not  been able  to  confirm  this from Intel publications, but  then I haven’t looked 
all that  hard.) If you’re optimizing for the 286 or 386, then, you can take  advantage 
of the processor’s  ability to  perform  arithmetic as part of  memory address calcula- 
tions without taking a performance hit. 
The 486  is an odd case,  in  which  the  use  of an index  register or the use  of a base  register 
that’s  the  destination of the  previous  instruction may  slow things  down, so it is  generally but 
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not always better  to perform the  addition  outside the loop on the 486. All memory  ad- 
dressing  calculations are free on the  Pentium, however.  I’ll  discuss 486 performance issues 
in  Chapters 12 and 13, and the Pentium in Chapters 19 through 21. 

Math via Memory Addressing 
You’re probably not particularly wowed to  hear  that you can use addressing  modes 
to  perform memory addressing arithmetic  that would  otherwise  have  to be performed 
with separate  arithmetic  instructions. You  may, however, be a  tad  more  interested  to 
hear  that you can also  use addressing  modes  to  perform  arithmetic  that has nothing 
to do with memory addressing, and with a  couple of advantages over arithmetic  in- 
structions, at that. 
How? 
With LEA, the only instruction  that  performs memory addressing  calculations  but 
doesn’t actually  address  memory. LEA accepts a standard memory  addressing operand, 
but does nothing more than store the calculated  memory  offset  in the specified  register, 
which may be any general-purpose register. The  operation of LEA is illustrated in 
Figure 6.1, which also shows the operation of register-teregister ADD, for comparison. 
What does  that give  us? Two things  that ADD doesn’t provide: the ability to  perform 
addition with either two or  three  operands,  and  the ability to  store  the  result in any 
register, not  just in one of the  source  operands. 
Imagine  that we want to  add BX to DI, add two to  the  result, and store  the  result  in 
AX. The obvious solution is this: 

mov a x . b x  
add a x . d i  
add a x . 2  

(It would be more  compact  to  increment AX twice than  to  add two to it, and would 
probably be faster on an 8088, but that’s not what we’re after  at  the  moment.) An 
elegant  alternative  solution is  simply: 

l e a   a x . [ b x + d i + 2 1  

Likewise, either of the following  would  copy SI plus two to DI 

mov d i   , s i  
add d i . 2  

or: 

l e a   d i  , [ s i + 2 l  

Mind  you, the only components LEA can  add  are BX or BP,  SI or DI, and a  constant 
displacement, so it’s not going  to  replace ADD most of the time. Also, LEA is consid- 
erably slower than ADD on an 8088, although  it is just as fast as ADD on a 286 or 386 
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when  fewer than  three memory addressing components  are used. LEA is 1 cycle 
slower than ADD on a 486 if the sum  of two registers is used to point to  memory, but 
no slower than ADD on a Pentium. On both a 486 and Pentium, LEA can also  be 
slowed  down by addressing interlocks. 

The Wonders of LEA on the 386 
LEA really  comes into its own as a “super-ADD”instruction on the 386,486, and Pentium, 
where it can  take  advantage  of the  enhanced memory  addressing  modes of those pro- 
cessors. (The 486 and Pentium  offer the same  modes as the 386, so I’ll refer only  to the 
386 from now on.)  The 386  can do two very interesting things:  It  can  use any 32-bit 
register (EAX, EBX, and so on) as the memory  addressing  base  register and/or the 
memory  addressing index register, and it can  multiply  any  32-bit  register  used  as an 
index by two, four, or eight in the process of calculating a memory  address, as  shown in 
Figure  6.2.  Let’s  see  what  that’s good for. 
Well, the obvious  advantage is that any two 32-bit  registers, or any  32-bit  register and 
any constant, or any two 32-bit  registers and any constant, can be added together, 
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with the result stored in any  register. This makes the 32-bit LEA much  more gener- 
ally useful than  the  standard 16-bit LEA in the  role of an ADD with an  independent 
destination. 
But what else can LEA do  on a 386, besides add? 
It can multiply any register used as an index. LEA can multiply only by the power-of- 
two values 2,4,  or 8, but that’s useful more  often  than you might  imagine, especially 
when dealing with pointers into tables. Besides, multiplying by 2,4,  or 8 amounts to 
a left shift of 1, 2, or 3 bits, so we can now add  up to two 32-bit registers and a 
constant, and shift (or multiply) one of the registers to some extent-all  with a single 
instruction. For example, 

l e a  edi,TableBase[ecx+edx*4] 

replaces all this 

mov e d i   . e d x  
s h l   e d i  .2 
a d d   e d i   . e c x  
a d d   e d i   . o f f s e t   T a b l e B a s e  

when pointing to an entry in a doubly indexed table. 

Multiplication  with LEA Using Non-Powers of Two 
Are  you impressed yet  with  all that LEA can do on  the 386?  Believe it or  not,  one 
more feature still  awaits  us. LEA can  actually perform a fast  multiply of a 32-bit  register by 
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some values other than powers of two.  You see, the same  32-bit register can be both 
base and index on  the 386, and can be scaled  as the  index while being used un- 
changed as the base. That means that you can,  for example, multiply EBX  by 5 with: 

1 ea   ebx .   [ebx+ebx*41  

Without LEA and scaling, multiplication of  EBX  by 5 would require  either  a rela- 
tively  slow MUL, along with a set-up instruction or two, or  three  separate instructions 
along  the lines of the following 

mov e d x . e b x  
s h l  e b x . 2  
a d d   e b x , e d x  

and would  in either case require  the destruction of the contents of another register. 
Multiplying a 32-bit  value by a non-power-of-two multiplier in just 2 cycles is a pretty 
neat trick, even though it works  only on a 386 or 486. 

The full list of values  that LEA can  multiply  a register by on a 386 or 486 is: 2, 3, p 4, 5, 8, and 9. That  list doesn 't include  every multiplier you might want, but it 
covers some common1y used ones, and the  performance  is hard to beat. 

I'd like to extend my thanks to Duane  Strong of Metagraphics for his help in brain- 
storming uses for  the 386  version of LEA and for  pointing out  the complications of 
486 instruction timings. 
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chapter 7

local optimization



You might not think  hhbut there’s much to learn  about  performance  programming 
from the Great Buffald-  .Fiasco.  To  wit: 
The scene is Buffalo, j4ew York, in the  dead of winter,  with the snow piled several feet 
deep. Four college &dents, living in typical student housing, are frozen to the  bone. 
The third floor of their house, uninsulated and so cold that it’s uninhabitable, has an 
ancient bathrooW6One fabulously cold day, inspiration strikes: 
“Hey-we could make that  bathroom  into  a sauna! ” 

Pandemonium ensuks. Someone rushes out  and buys a gas heater, and at consider- 
able risk  to  life and limb hooks it up to an  abandoned  but still  live  gas pipe  that  once 
fed  a stove on  the third floor. Someone else gets sheets of plastic and lines the walls 
of the  bathroom to keep  the moisture in,  and yet another  student gets a bucket full 
of rocks. The remaining  chap brings up some old wooden chairs and sets them up to 
make benches  along the sides of the  bathroom. Voila-instant sauna! 
They crank up  the gas heater, put  the bucket of rocks in front of it, close the door, 
take off their clothes, and sit  down  to  steam  themselves.  Mind  you,  it’s not yet 50 degrees 
Fahrenheit  in this room,  but  the gas heater is roaring. Surely warmer times await. 
Indeed they do.  The  temperature climbs  to 55 degrees,  then 60, then 63, then 65, 
and finally creeps up to 68 degrees. 

.&“3g$$@@”q 
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And there  it stops. 
68 degrees is  warm for an uninsulated  third  floor  in Buffalo in  the  dead of winter. 
Damn warm. It is not, however, particularly warm for  a sauna. Eventually someone 
acknowledges the obvious and allows that it might  have been a stupid  idea after all, and 
everyone  agrees, and they shut off the heater and leave, each no doubt offering  silent 
thanks that they had gotten out of  this  without  any incidents requiring major  surgery. 
And so we see that  the best idea in the world can fail for lack  of either  proper design 
or  adequate horsepower. The primary cause of the  Great Buffalo Sauna Fiasco was a 
lack  of horsepower; the gas heater was flat-out undersized. This is analogous to try- 
ing to  write programs  that  incorporate  features like bitmapped text and searching of 
multisegment buffers without using high-performance assembly language. Any PC 
language can perform  just  about any function you can think of-eventually. That 
heater would  eventually  have heated  the room to 110 degrees, too-along about  the 
first of June  or so. 
The Great Buffalo Sauna Fiasco  also suffered from  fundamental design flaws. A more 
powerful heater would indeed have made  the  room hotter-and might well  have 
burned  the house down in the process. Likewise, proper  algorithm selection and 
good design are  fundamental to performance. The extra horsepower a superb as- 
sembly language  implementation gives a  program is worth bothering with  only in 
the  context of a  good design. 

P Assembly language optimization is a small but crucial corner of the PCpmgramming 
world. Use it sparingly and only within the framework  of a good  design-but  ignore it 
and you  mayjind various portions of your anatomy out in the cold. 

So, drawing fortitude  from  the knowledge that  our quest is a  pure  and worthy one, 
let’s resume our exploration of assembly language instructions with hidden talents 
and instructions with  well-known talents that  are less than they appear to be.  In  the 
process, we’ll come to see that there is another, very important optimization level 
between the  algorithm/design level and  the cycle-counting/individual instruction 
level. I’ll call this middle level local optimization; it involves focusing on optimizing 
sequences of instructions rather  than individual instructions, all  with an eye  to imple- 
menting designs as  efficiently  as  possible  given the capabilities of the x86  family 
instruction set. 
And  yes, in case you’re wondering,  the above  story is indeed  true. Was I there? Let 
me put it this way:  If I were, I’d never admit it! 

When L O O P  Is a Bad  Idea 
Let’s examine first an  instruction  that is  less than  it  appears to be: LOOP. There’s no 
mystery about what LOOP does; it  decrements CX and branches if CX doesn’t dec- 
rement to zero. It’s so beautifully suited to the task of counting down loops that any 
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experienced x86 programmer instinctively  stuffs the  loop count in CX and reaches 
for LOOP when setting up a  loop. That’s fine-LOOP does, of course, work  as ad- 
vertised-but there is one problem: 

On halfofthe processors in the x86family, LOOP is  slower  than DEC CXfollowed by p JNZ. (Granted, DEC CWJNZ isn ’tprecisely equivalent to LOOE because DEC al- 
ters the Jags and LOOP doesn ?, but  in  most  situations they >e comparable.) 

How can this be? Don’t ask me, ask Intel. On the 8088 and 80286, LOOP is indeed 
faster than DEC  CX/JNZ by a cycle, and  LOOP is generally a little faster still be- 
cause it’s a byte shorter  and so can be fetched faster. On  the 386,  however, things 
change; LOOP is two cycles slower than DEC/JNZ, and  the fetch time for one extra 
byte on even an  uncached 386 generally isn’t significant. (Remember  that  the 386 
fetches four instruction bytes at a  pop.)  LOOP is three cycles  slower than DEC/JNZ 
on  the 486, and  the 486 executes instructions in so few  cycles that those three cycles 
mean that DEC/JNZ is nearly twice as  fast  as LOOP.  Then, too, unlike LOOP, DEC 
doesn’t  require  that CX be used, so the DEC/JNZ solution is both faster and  more 
flexible on  the 386 and 486, and  on  the Pentium as  well. (By the way, all  this is not 
just theory; I’ve timed the relative performances of LOOP and DEC CX/JNZ on a 
cached 386, and  LOOP really  is  slower.) 

Things  are  stranger stillfor LOOPk relative JCXZ, which branches ifand only if p CX is zero. JCXZ is  faster than AND CXCWJZ on the 8088  and  80286,  and 
equivalent  on the 80386-but is about  twice as slow  on  the 486! 

By the way, don’t fall  victim to the lures of JCXZ and  do  something like  this: 

and c x . o f h   : I s o l a t e   t h e   d e s i r e d   f i e l d  
j c x z  SkipLoop : I f   f i e l d  is  0,  don’ t   bo the r  

The AND instruction has already set  the Zero flag, so this 

and c x . 0 f h   : I s o l a t e   t h e   d e s i r e d   f i e l d  
j z  SkipLoop : I f   f i e l d  i s  0 .  don’ t   bo the r  

will do  just fine and is faster on all processors. Use JCXZ only  when the Zero  flag isn’t 
already set to reflect the status of CX. 

The Lessons of LOOP and JCXZ 
What can we learn  from LOOP and JCXZ? First, that  a single instruction that is 
intended to do a complex task is not necessarily faster than several instructions  that 
together do the same thing.  Second,  that  the relative merits of instructions and opti- 
mization rules vary to a surprisingly large degree across the x86  family. 
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In particular, if you’re going to write 386 protected  mode  code, which will run only 
on  the  386,486,  and  Pentium, you’d  be well advised to  rethink your use  of the  more 
esoteric members of the x86 instruction set. LOOP, JCXZ, the various accumulator- 
specific instructions, and even the string instructions in  many circumstances no longer 
offer the advantages they did on  the 8088. Sometimes they’re just  not any faster than 
more  general instructions, so they’re not worth going out of your way to use; some- 
times, as  with LOOP, they’re actually slower, and you’d do well to avoid them 
altogether in the 386/486 world. Reviewing the instruction cycle  times in  the MASM 
or TASM manuals, or looking over the cycle times in Intel’s literature, is a  good place 
to start; published cycle times are closer to actual execution times on  the 386 and 
486 than on the 8088, and  are reasonably reliable indicators of the relative perfor- 
mance levels  of  x86 instructions. 

Avoiding LOOPS of Any  Stripe 
Cycle counting and directly substituting instructions (DEC  CX/JNZ for LOOP, for 
example) are techniques  that  belong at  the lowest  level  of optimization. It’s an im- 
portant level, but it’s  fairly mechanical; once you’ve learned  the capabilities and 
relative performance levels  of the various instructions, you should be able to select 
the best instructions fairly easily. What’s more, this is a task at which compilers excel. 
What I’m saying  is that you shouldn’t get too  caught up in  counting cycles because 
that’s a small (albeit  important)  part of the optimization picture, and  not  the area in 
which your greatest advantage lies. 

Local Optimization 
One level at which  assembly language programming pays  off handsomely is that of 
local optimization; that is, selecting the best sequence of instructions  for  a task. The key 
to local optimization is viewing the 80x86 instruction set as a  set of building blocks, 
each with unique characteristics. Your job is to sequence those blocks so that they 
perform well. It doesn’t  matter what the  instructions are  intended to do  or what 
their  names  are; all that matters is what  they do. 
Our discussion of LOOP versus DEC/JNZ is an  excellent example of optimization 
by  cycle counting. It’s worth knowing, but  once you’ve learned it, you just routinely 
use DEC/JNZ at  the  bottom of loops in 386/486specific  code, and that’s that. Be- 
sides,  you’ll save at most a few  cycles each time, and while that  helps  a little, it’s not 
going to make all that much difference. 
Now let’s step back for  a  moment,  and with no preconceptions  consider what the 
x86 instruction set can do for us. The bulk of the time with both LOOP and DEC/ 
JNZ is taken up by branching, which just  happens to  be one of the slowest aspects of 
every processor in the x86  family, and  the rest is taken up by decrementing  the  count 
register and checking whether it’s zero. There may be ways to perform those tasks a 

1 40 Chapter 7 



little  faster by selecting different instructions, but they can get only so fast, and branch- 
ing  can't even get all that fast. 

The trick, then, is not  to find the fastest way to decrement  a  count and branch 
conditionully, but  rather to figure  out how to accomplish the same result without 
decrementing  or  branching  as often. Remember the Kobiyashi  Muru  problem  in 
Star Trek? The  same  principle  applies  here:  Redefine  the  problem to one that of- 
fers better solutions. 

Consider Listing 7.1, which searches a buffer until  either  the specified  byte is found, 
a zero byte is found,  or  the specified number of characters have been checked. Such 
a function would be useful for scanning up to a maximum number of characters in a 
zero-terminated buffer.  Listing 7.1, which  uses LOOP in the main loop,  performs a 
search of the sample string for a period ('.') in 170 ps on a 20 MHz cached 386. 
When the LOOP in  Listing 7.1 is replaced with DEC CX/JNZ, performance im- 
proves  to 168 ps, less than 2 percent faster than Listing 7.1. Actually, instruction 
fetching, instruction alignment, cache characteristics, or something similar  is  affect- 
ing these results; I'd  expect a slightly larger improvement-around 7 percent-but 
that's the most that  counting cycles could buy us in this  case. (All right, already; 
LOOPNZ could  be used at  the  bottom of the  loop, and  other optimizations are 
surely  possible, but all that won't add  up to anywhere near  the benefits we're about 
to see from local optimization, and that's the whole point.) 

LISTING 7.1 17- 1 .ASM 
: Program t o   i l l u s t r a t e   s e a r c h i n g   t h r o u g h  a b u f f e r  o f  a s p e c i f i e d  
: l e n g t h   u n t i l   e i t h e r  a s p e c i f i e d   b y t e  o r  a z e r o   b y t e   i s  
: encountered. 
: A s t a n d a r d   l o o p   t e r m i n a t e d   w i t h  LOOP i s  used. 

.model  smal 1 
s t a c k  lOOh 
.da ta  

: Sample s t r i n g   t o   s e a r c h   t h r o u g h .  
S a m p l e s t r i n g   l a b e l   b y t e  

db ' T h i s   i s  a sample s t r i n g  o f  a l ong   enough   l eng th  ' 
db ' s o  t h a t  raw  searching  speed  can  outweigh  any ' 
db ' e x t r a   s e t - u p   t i m e   t h a t  may b e   r e q u i r e d . ' . O  

SAMPLE-STRING-LENGTH equ  $ -Samples t r ing  

: User  prompt. 
Prompt   db  'Enter   character  t o  s e a r c h   f o r : $ '  

; R e s u l t   s t a t u s  messages. 
ByteFoundMsg db 0dh.Oah 

ZeroByteFoundMsg  db 0dh.Oah 

NoByteFoundMsg db  0dh.Oah 

db   'Spec i f i ed   by te   f ound . ' ,Odh .Oah , ' $ '  

db   'Zero   by te  encountered.'.Odh.Oah.'$' 

db 'Buf fer   exhausted  wi th   no  rnatch. ' ,Odh.Oah. '$ '  

Local Optimization 141 



,code 
S t a r t   p r o c   n e a r  

mov ax,Bdata  ;point  t o   s t a n d a r d   d a t a  segment 
mov ds.ax 
mov dx .o f fse t   Prompt  
mov ah.9 :OOS p r i n t   s t r i n g   f u n c t i o n  
i n t  21h  :prompt t h e   u s e r  
mov ah.1 :OOS g e t   k e y   f u n c t i o n  
i n t  21h  ;get   the  key t o   s e a r c h   f o r  
mov ah,al  
mov cx.SAMPLE-STRING-LENGTH :# o f   b y t e s   t o   s e a r c h  
mov s i   , o f f s e t   S a m p l e s t r i n g   : p o i n t   t o   b u f f e r   t o   s e a r c h  
c a l l  SearchMaxLength  :search t h e   b u f f e r  
mov d x , o f f s e t  ByteFoundMsg 
j c   P r i n t s t a t u s  

;assume we f o u n d   t h e   b y t e  
:we d i d   f i n d   t h e   b y t e  
;we d i d n ' t   f i n d   t h e   b y t e ,   f i g u r e   o u t  
:whether we found a z e r o   b y t e   o r  
: r a n   o u t   o f   b u f f e r  

;assume we d i d n ' t   f i n d  a z e r o   b y t e  

: p u t   c h a r a c t e r   t o   s e a r c h   f o r   i n  AH 

mov d x , o f f s e t  NoByteFoundMsg 

j c x z   P r i n t s t a t u s  ;we d i d n ' t   f i n d  a z e r o   b y t e  
mov dx,of fset   ZeroByteFoundMsg :we found a z e r o   b y t e  

mov ah.9 
i n t  21h 

:DOS p r i n t   s t r i n g   f u n c t i o n  
: r e p o r t   s t a t u s  

mov ah.4ch : r e t u r n   t o  OOS 
i n t   Z l h  

P r i n t s t a t u s :  

S t a r t  endp 

: F u n c t i o n   t o   s e a r c h  a b u f f e r  o f  a s p e c i f i e d   l e n g t h   u n t i l   e i t h e r  a 
: s p e c i f i e d   b y t e   o r  a z e r o   b y t e   i s   e n c o u n t e r e d .  
: I n p u t :  
; AH - c h a r a c t e r   t o   s e a r c h   f o r  
; C X  - maximum l e n g t h   t o  be  searched  (must  be > 0) 
: DS:SI - p o i n t e r   t o   b u f f e r   t o  be  searched 

: C X  - 0 i f  and o n l y  i f  we r a n   o u t   o f   b y t e s   w i t h o u t   f i n d i n g  

: DS:SI - p o i n t e r   t o   s e a r c h e d - f o r   b y t e  i f  found ,   o the rw ise   by te  

: o u t p u t :  

e i t h e r   t h e   d e s i r e d   b y t e   o r  a z e r o   b y t e  

a f t e r   z e r o   b y t e  i f  found. o t h e r w i s e   b y t e   a f t e r   l a s t  
byte  checked i f  n e i t h e r   s e a r c h e d - f o r   b y t e   n o r   z e r o  
b y t e   i s   f o u n d  

; Car ry   F lag  - s e t  i f  s e a r c h e d - f o r   b y t e   f o u n d ,   r e s e t   o t h e r w i s e  

SearchMaxLength  proc  near 

SearchMaxLengthLoop: 
c l  d 

1 odsb 
cmp a l .ah  
j z  ByteFound 
and  a1 . a l  
j z  ByteNotFound 
loop  SearchMaxLengthLoop 

ByteNotFound: 
c l  c 
r e t  

dec s i  

s t c  

ByteFound: 

: g e t   t h e   n e x t   b y t e  
; i s   t h i s   t h e   b y t e  we want? 
;yes.  we're  done w i th   success  
; i s   t h i s   t h e   t e r m i n a t i n g  0 b y t e ?  
; yes .   we ' re   done   w i th   f a i l u re  
: i t ' s   n e i t h e r ,  so check   t he   nex t  
;by te ,  i f  any 

r e t u r n   " n o t   f o u n d "   s t a t u s  

p o i n t   b a c k   t o   t h e   l o c a t i o n   a t   w h i c h  
we f o u n d   t h e   s e a r c h e d - f o r   b y t e  
r e t u r n   " f o u n d "   s t a t u s  
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r e t  
SearchMaxLength  endp 

end S t a r t  

Unrolling Loops 
Listing 7.2 takes a different tack, unrolling  the  loop so that  four bytes are checked 
for  each LOOP performed.  The same instructions are used inside the loop in  each 
listing, but Listing 7.2 is arranged so that threequarters of the LOOPS are eliminated. 
Listings 7.1 and 7.2 perform exactly the same  task, and they  use the same instructions in 
the loop-the searching algorithm hasn't changed in  any way-but  we  have sequenced 
the  instructions differently in Listing 7.2, and that makes  all the difference. 

LISTING 7.2 17-2.ASM 
; Program t o   i l l u s t r a t e   s e a r c h i n g   t h r o u g h  a b u f f e r   o f  a s p e c i f i e d  
; l e n g t h   u n t i l  a s p e c i f i e d   z e r o   b y t e   i s   e n c o u n t e r e d .  
: A l o o p   u n r o l l e d   f o u r   t i m e s  and t e r m i n a t e d   w i t h  LOOP i s  used. 

.model sma l l  

. s t a c k  lOOh 

.da ta  
: Sample s t r i n g   t o   s e a r c h   t h r o u g h .  
Sampl e S t r i n g  1 abe l   by te  

db ' T h i s   i s  a sample s t r i n g   o f  a l o n g  enough l e n g t h  ' 
db 'so t h a t  raw  searching  speed  can  outweigh  any ' 
d b   ' e x t r a   s e t - u p   t i m e   t h a t  may be requ i red . ' .O  

SAMPLE-STRING-LENGTH equ $ -Samp les t r i ng  

Prompt  db ' E n t e r   c h a r a c t e r   t o   s e a r c h   f o r : $ '  
: User  prompt. 

: R e s u l t   s t a t u s  messages. 
ByteFoundMsg db Odh.Oah 

ZeroByteFoundMsg  db 0dh.Oah 

NoByteFoundMsg db  0dh.Oah 

db 'Spec i f ied   by te   found. ' .Odh.Oah. ' l '  

db ' Z e r o   b y t e  encountered. ' .Odh.Oah.'S' 

db 'Buf fer   exhausted  wi th   no  match. ' ,Odh.Oah. 'S '  

: T a b l e   o f   i n i t i a l ,   p o s s i b l y   p a r t i a l   l o o p   e n t r y   p o i n t s   f o r  
: SearchMaxLength. 
SearchMaxLengthEntryTable  label   word 

dw SearchMaxLengthEntry4 
dw SearchMaxLengthEntryl 
dw SearchMaxLengthEntry2 
dw SearchMaxLengthEntry3 

.code 
S t a r t   p r o c   n e a r  

mov ax ,@data   : po in t   t o   s tandard   da ta  segment 
mov ds.ax 
mov d x . o f f s e t  Prompt 
mov ah.9 :DOS p r i n t   s t r i n g   f u n c t i o n  
i n t  21h  :prompt  the  user 
mov ah.1 :DOS g e t  key f u n c t i o n  
i n t  21h : g e t   t h e   k e y   t o   s e a r c h   f o r  
mov a h . a l   ; p u t   c h a r a c t e r   t o   s e a r c h   f o r   i n  AH 
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mov  cx.SAMPLELSTRING-LENGTH ;# o f   b y t e s   t o   s e a r c h  
mov s i   . o f f s e t   S a m p l e s t r i n g  
c a l l  SearchMaxLength 

; p o i n t   t o   b u f f e r   t o   s e a r c h  
; s e a r c h   t h e   b u f f e r  

mov d x . o f f s e t  ByteFoundMsg 
j c   P r i n t s t a t u s  

;assume we f o u n d   t h e   b y t e  
;we d i d   f i n d   t h e   b y t e  
;we d i d n ' t   f i n d   t h e   b y t e ,   f i g u r e   o u t  
;whether we found a z e r o   b y t e   o r  
; r a n   o u t   o f   b u f f e r  

;assume we d i d n ' t   f i n d  a z e r o   b y t e  
mov d x . o f f s e t  NoByteFoundMsg 

j c x z   P r i n t s t a t u s  ;we d i d n ' t   f i n d  a z e r o   b y t e  
mov d x , o f f s e t  ZeroByteFoundMsg ;we found a z e r o   b y t e  

mov ah.9 
i n t  21h 

P r i n t s t a t u s :  
;DOS p r i n t   s t r i n g   f u n c t i o n  
i r e p o r t   s t a t u s  

mov ah.4ch 
i n t  21h 

Start endp 

: r e t u r n   t o  DOS 

: F u n c t i o n   t o   s e a r c h  a b u f f e r   o f  a s p e c i f i e d   l e n g t h   u n t i l   e i t h e r  a 
; s p e c i f i e d   b y t e   o r  a z e r o   b y t e   i s   e n c o u n t e r e d .  
; I n p u t :  
; AH - c h a r a c t e r   t o   s e a r c h   f o r  
; C X  - maximum l e n g t h   t o  be  searched  (must  be > 0) 
: DS:SI - p o i n t e r   t o   b u f f e r   t o  be  searched 

; C X  - 0 i f  and o n l y  i f  we r a n   o u t   o f   b y t e s   w i t h o u t   f i n d i n g  

: DS:SI - p o i n t e r   t o   s e a r c h e d - f o r   b y t e  i f  f o u n d ,   o t h e r w i s e   b y t e  

: o u t p u t :  

e i t h e r   t h e   d e s i r e d   b y t e  o r  a z e r o   b y t e  

a f t e r   z e r o   b y t e  i f  f o u n d ,   o t h e r w i s e   b y t e   a f t e r   l a s t  
byte  checked i f  n e i t h e r   s e a r c h e d - f o r   b y t e   n o r   z e r o  
b y t e   i s   f o u n d  

: C a r r y   F l a g  - s e t  i f  s e a r c h e d - f o r   b y t e   f o u n d .   r e s e t   o t h e r w i s e  

SearchMaxLength  proc  near 
c l  d 
mov bx.cx 
add C X , ~  ; c a l c u l a t e   t h e  maximum I o f  passes 
s h r   c x . 1   ; t h r o u g h   t h e   l o o p ,   w h i c h   i s  
s h r   c x . 1   : u n r o l l e d  4 t imes  
a n d   b x . 3   ; c a l c u l a t e   t h e   i n d e x   i n t o   t h e   e n t r y  

; p o i n t   t a b l e   f o r   t h e   f i r s t ,  
; p o s s i b l y   p a r t i a l   l o o p  

s h l   b x . 1   : p r e p a r e   f o r  a w o r d - s i z e d   l o o k - u p  
jmp SearchMaxLengthEntryTable[bxl 

; b r a n c h   i n t o   t h e   u n r o l l e d   l o o p   t o  do 
: t h e   f i r s t ,   p o s s i b l y   p a r t i a l   l o o p  

SearchMaxLengthLoop: 
SearchMaxLengthEntry4: 

1 odsb : g e t   t h e   n e x t   b y t e  
cmp a 1  ,ah ; i s   t h i s   t h e   b y t e  we want? 
j z  ByteFound 
and  a1 .a1 

;yes.   we're  done  wi th  success 
: i s   t h i s   t h e   t e r m i n a t i n g  0 b y t e ?  

j z  By teNotFound  :yes ,   we ' re   done  w i th   fa i lu re  
SearchMaxLengthEntry3: 

1 odsb   ; ge t   t he   nex t   by te  
cmp a1  ,ah ; i s   t h i s   t h e   b y t e  we want? 
j z  ByteFound  ;yes.  we're  done  with  success 
and  a1  .a1 ; i s   t h i s   t h e   t e r m i n a t i n g  0 b y t e ?  
j z  By teNotFound  ;yes ,   we ' re   done  w i th   fa i lu re  
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SearchMaxLengthEntry2: 
l odsb  : g e t   t h e   n e x t   b y t e  
cmp a1 ,ah : i s   t h i s   t h e   b y t e  we want? 
j z  EyteFound :yes.  we're  done  with  success 
and a1 .a1 : i s   t h i s   t h e   t e r m i n a t i n g  0 b y t e ?  
j z  EyteNotFound : y e s .   w e ' r e   d o n e   w i t h   f a i l u r e  

1 odsb : g e t   t h e   n e x t   b y t e  
cmp  a1 ,ah ; i s  t h i s   t h e   b y t e  we want? 
jz ByteFound ;yes.  we're  done  with  success 
and a l . a l  : i s   t h i s   t h e   t e r m i n a t i n g  0 b y t e ?  
j z  ByteNotFound : y e s .   w e ' r e   d o n e   w i t h   f a i l u r e  
l o o p  SearchMaxLengthLoop ; i t ' s   n e i t h e r .  s o  check   the   nex t  

SearchMaxLengthEntryl:  

; f o u r   b y t e s ,  i f  any 

c l  c : r e t u r n   " n o t   f o u n d "   s t a t u s  
r e t  

dec s i  : p o i n t   b a c k   t o   t h e   l o c a t i o n  a t  which 

s t c   : r e t u r n   " f o u n d "   s t a t u s  

ByteNotFound: 

ByteFound: 

: we found   the   sea rched- fo r   by te  

r e t  
SearchMaxLength  endp 

end S t a r t  

How much difference? Listing 7.2 runs  in 121 ps-40 percent faster than Listing 7.1, 
even though Listing 7.2 still  uses LOOP rather than DEC CX/JNZ. (The loop  in 
Listing 7.2 could  be  unrolled  further, too; it's just a question of  how much  more 
memory you  want to trade for ever-decreasing performance benefits.) That's typical 
of local optimization; it won't often yield the order-of-magnitude improvements that 
algorithmic improvements can produce,  but  it  can  get you a critical 50 percent  or 
100 percent  improvement when  you've exhausted all other avenues. 

The point  is simply this: You can gain far  more by stepping back a bit and thinking 1 of  the  fastest overall way for the CPU to  perform a task than you can by saving a 
cycle here or there usingdifferent instructions. T q  to  thinkat the level ofsequences 
of instructions rather than individual instructions, and learn to treat x86 instruc- 
tions as building blocks with unique characteristics rather than  as instructions 
dedicated to spec@ tasks. 

Rotating  and  Shifting  with Tables 
As another example  of  local optimization, consider the matter of rotating or shifting a 
mask into position.  First,  let's look at the simple task  of setting  bit N of AX to 1. 
The obvious way to do this is to place N in CL, rotate  the bit into position, and OR it 
with AX, as  follows: 

M O V  B X . l  
SHL EX.CL 
OR AX.BX 
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This solution is obvious because it takes good advantage of the special  ability  of the 
x86  family to shift or rotate by the variable number of bits specified by CL. However, 
it takes an average of about 45 cycles on  an 8088. It’s actually far faster to  precalculate 
the results, pass the bit number in BX, and look the  shifted bit up, as  shown  in 
Listing 7.3. 

LISTING 7.3 17-3.ASM 
SHL BX. l  : p r e p a r e   f o r   w o r d   s i z e d   l o o k   u p  
OR AX.ShiftTableCBX1 ; l o o k   u p   t h e   b i t  and OR it i n  

S h i f t T a b l e  LABEL WORD 
BIT-PATTERN-0001H 

REPT 16 
DW BIT-PATTERN 

ENOM 
BIT-PATTERN-BIT-PATTERN SHL 1 

Even though  it accesses  memory, this approach takes  only 20 cycles-more than 
twice as  fast  as the variable shift. Once  again, we were able  to improve performance 
considerably-not by knowing the fastest instructions,  but by selecting the fastest 
sequence of instructions. 
In  the  particular  example above, we once again run  into  the difficulty of optimizing 
across the x86  family. The table lookup is faster on the 8088 and 286, but it’s  slightly 
slower on the 386 and  no faster on  the 486.  However, 386/486specific  code  could 
use enhanced addressing to accomplish the whole job in  just  one instruction,  along 
the lines of the  code  snippet  in Listing 7.4. 

LISTING 7.4 17-4.ASM 
OR EAX,Shif tTableCEBX*4]  : look  up  the b i t  and OR i t  i n  

S h i f t T a b l e  LABEL DWORD 
BIT-PATTERN-0001H 

REPT 32 
DD BIT-PATTERN 

ENDM 
BIT-PATTERN-BIT-PATTERN SHL 1 

Besides illustrating the advantages of local optimization, this example also shows p that it generally pays toprecalculate results; this  is  often done at or before assem- 
bly time, butprecalculated tables can also be  built at run time. This is merely  one 
aspect of a fundamental optimization rule: Move as much work as  possible out of 
your critical code by whatever means necessary. 

NOT Flips Bits-Not Flags 
The NOT instruction flips  all the bits  in the  operand, from 0 to 1 or from 1 to 0. 
That’s as simple as could be, but NOT nonetheless has a  minor  but  interesting tal- 
ent: It doesn’t affect the flags. That can be irritating; I once  spent  a  good  hour tracking 
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down a bug caused by  my unconscious assumption that NOT does set the flags.  After 
all,  every other arithmetic and logical instruction sets the flags; why not NOT? Prob- 
ably  because NOT isn’t considered to be an arithmetic or logical instruction at all; 
rather, it’s a data  manipulation  instruction, like MOV and the various rotates. (These 
are RCR,  RCL, ROR, and ROL, which  affect  only the Carry and Overflow  flags.) 
NOT is often used for tasks, such as flipping masks,  where there’s no reason to  test 
the state of the result, and in that  context it can be handy to keep  the flags unmodi- 
fied for later testing. 

Besides, fyou want to NOT an  operand  and  set theJags in the process, you can p just XOR it  with -1. Put  another way, the only functional d@rence  between NOT 
AX and XOR AX,OFFFF’H is that XOR modifies the Jags and NOT doesn ’t. 

The x86 instruction set offers  many ways to  accomplish  almost  any  task. Understand- 
ing  the subtle distinctions between the instructions-whether and which  flags are 
set, for example-can be critical when you’re  trying  to optimize a code  sequence 
and you’re running  out of registers, or when you’re trying to minimize branching. 

Incrementing with  and  without Carry 
Another case in which there  are two slightly different ways to perform a task  involves 
adding 1 to an operand. You can do this  with INC, as in INC A X ,  or you can do it with 
ADD, as in ADD AX,1. What’s the difference? The obvious difference is that INC is 
usually a byte or two shorter (the exception  being ADD &,I, which at two bytes  is the 
same length as INC A L )  , and is faster on some processors.  Less  obvious, but  no less 
important, is that ADD sets the Carry  flag  while INC leaves the Carry  flag untouched. 
W h y  is that  important? Because  it  allows INC to function as a data  pointer manipula- 
tion instruction for multi-word arithmetic. You can use INC to advance the  pointers 
in code like that shown in Listing 7.5 without having  to do any  work to preserve the 
Carry  status from one addition to the next. 

LISTING 7.5 17-5.ASM 

LOOP-TOP: 
c LC ; c l e a r   t h e   C a r r y   f o r   t h e   i n i t i a l   a d d i t i o n  

MOV AX. [SI ] ;get   next   source  operand  word 
ADC COI1,AX;add w i t h   C a r r y   t o   d e s t   o p e r a n d   w o r d  
I N C  SI  ; p o i n t   t o   n e x t   s o u r c e   o p e r a n d   w o r d  
I N C  S I  
I N C  D I  
I N C  D l  
LOOP LOOP-TOP 

; p o i n t   t o   n e x t   d e s t   o p e r a n d   w o r d  

If ADD were used, the Carry  flag  would  have to  be saved  between additions, with 
code  along  the lines shown in Listing 7.6. 
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LISTING 7.6 L7-6.ASM 
CLC ; c l e a r   t h e   c a r r y   f o r   t h e   i n i t i a l   a d d i t i o n  

LOOP-TOP: 
MOV A X . C S 1 1  ;get   next   source  operand  word 
ADC [ D I I . A X  ;add w i t h   c a r r y   t o   d e s t   o p e r a n d   w o r d  
LAH F ; s e t   a s i d e   t h e   c a r r y   f l a g  
ADD SI.2 
ADD D I . 2  

: p o i n t  t o  next  source  operand  word 

SAHF 
; p o i n t   t o   n e x t   d e s t   o p e r a n d   w o r d  
; r e s t o r e   t h e   c a r r y   f l a g  

LOOP  LOOP-TOP 

It’s not  that  the Listing  7.6 approach is necessarily better or worse; that  depends  on the 
processor and the situation. The Listing  7.6 approach is di&mt, and if you understand 
the differences,  you’ll  be  able  to  choose the best approach  for whatever  code  you hap  
pen to write. (DEC has the same property of preserving the Carry  flag, by the way.) 
There  are  a couple of interesting aspects to the last example. First, note that LOOP 
doesn’t affect any  flags at all; this allows the Carry  flag  to remain  unchanged  from 
one addition to the  next. Not altering  the  arithmetic flags  is a  common  characteris- 
tic  of program  control  instructions  (as  opposed  to  arithmetic and logical instructions 
like SUB and AND, which do alter  the  flags). 

The rule is not  that  the arithmetic Jags change  whenever  the CPU performs a p calculation; rathei: theflags change  whenever you execute an arithmetic, logical, 
orflag control  (such as CLC to clear the Carryflag) instruction. 

Not only do LOOP and JCXZ not alter  the flags, but REP MOVS, which counts down 
CX to 0, doesn’t affect the flags either. 
The  other interesting  point  about  the last example is the use of LAHF and SAHF, 
which transfer  the low byte  of the FLAGS register to and from AH, respectively. These 
instructions were created to help provide compatibility with the 8080’s (that’s 8080, 
not 8088) PUSH PSW and POP PSW instructions,  but  turn out to  be  compact (one 
byte) instructions  for saving and restoring  the  arithmetic flags. A word of caution, 
however: SAHF restores  the Carry, Zero, Sign, Auxiliary  Carry, and Parity  flags-but 
not the Overflow flag, which resides in  the  high byte  of the FLAGS register. Also, be 
aware that LAHF and SAHF provide a fast way to preserve the flags on an 8088 but 
are relatively slow instructions on  the 486 and  Pentium. 
There  are times when it’s a  clear liability that INC doesn’t  set  the Carry  flag. For 
instance 

INC AX 
AOC DX.0 

does not increment the 32-bit  value in DX:AX. To do that, you’d need the following: 

ADD A X . l  
ADC DX.0 

As always,  pay attention! 
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guages When You Know It’ll Help 
When I was a se high school, a pop song called  “Seasons  in the Sun,” sung by 

up the pop charts and spent, as best I can  recall, two straight 
Top 40. “Seasons in the Sun” wasn’t a particularly 

good song, primari ics  were  silly.  I’ve never understood why the 
pens with undistinguished but popular music by 
(“Don’t Pull Your  Love Out  on Me  Baby,”  “Billy 
everywhere for a month or so, then gave it  not 

ew  of a Rhino Records  collection of obscure 
ng that Jeff Duntemann is an aficionado of such esoterica 

m by The  Peppermint Trolley Company?), I sent 
the review to him. He was amused by it and, as  we kicked the names of old songs 
around, “Seasons in the  Sun” came up. I expressed my wonderment that a song that 
really  wasn’t  very good was such a big hit. 
‘Well,”  said  Jeff, ‘‘I think it suffered in the translation from the French.” 
Ah-ha!  Mystery  solved. Apparently everyone but me  knew that it was translated from 
French, and  that novelty undoubtedly made the song a big hit. The translation was 
also  surely responsible for the sappy  lyrics: dollars to donuts  that  the original French 
lyrics  were stronger. 
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Which  brings us without missing a beat to this chapter’s theme,  speeding up C with 
assembly language. When you seek to speed up a C  program by converting selected 
parts of it (generally no  more  than a few functions) to assembly language, make  sure 
you end  up with high-performance assembly language  code,  not  fine-tuned  C  code. 
Compilers like  Microsoft C/C++  and Watcom C are by  now pretty good  at fine-tun- 
ing  C  code, and you’re not likely  to do  much  better by taking the compiler’s assembly 
language output  and tweaking it. 

To make  the process of  translating C code to  assembly  language  worth  the  trouble, 1 you must  ignore  what  the compiler  does and design  your assembly  language code 
from  apure assembly  language perspective. With a merely  adequate  translation, you 
risk laboring  mightily for little or no reward. 

Apropos of which, when was the last time you heard of Terry Jacks? 

Billy, Don’t Be a Compiler 
The key to optimizing C  programs with  assembly language is,  as  always, writing good 
assembly language  code,  but with an  added twist.  Rule 1 when converting C code to 
assembly is this: Don’t  think like a compiler. That’s more easily  said than  done, espe- 
cially when the C  code you’re converting is readily available  as a model  and  the 
assembly code  that  the  compiler  generates is  available  as  well. Nevertheless, the prin- 
ciple of not thinking like a compiler is essential, and is, in one  form  or another, the 
basis for all that I’ll discuss  below. 
Before I discuss Rule 1 further,  let  me mention rule number 0: Only  optimize where it 
matters. The bulk of execution time in any program is spent in a very  small portion of 
the code, and most code beyond  that small portion  doesn’t have  any perceptible 
impact  on  performance. Unless you’re supremely concerned with code size (an  area 
in which  assembly-only programs can excel), I’d suggest that you  write most of your 
code  in  C  and reserve assembly for the truly critical sections of your code; that’s the 
formula  that I find gives the most  bang  for the buck. 
This is not to say that  complete  programs  shouldn’t  be designed with optimized as- 
sembly language  in  mind. As you’ll see shortly, orienting your data  structures towards 
assembly language can be a salubrious endeavor  indeed, even if most of your code is 
in C. When it comes  to actually optimizing code  and/or converting it  to assembly, 
though,  do it only where  it matters. Get a profiler-and use it! 
Also make  it a point to concentrate  on refining your program design and algorith- 
mic approach  at  the  conceptual  and/or C levels before doing any  assembly language 
optimization. 
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p Assembly language  optimization is  the  final and fa r  from the  only  step  in  the  opti- 
mization  chain, and  as such  should  be performed last;  converting to  assembly  too 
soon can  lock in  your  code before the design is  optimal.  At the very  least, conver- 
sion to assembly tends to make future changes and  debugging more dijficult,  slowing 
you down  and  limiting your options. 

Don’t Call Your  Functions  on Me, Baby 
In  order to think differently from a compiler, you must  understand  both what  com- 
pilers and C programmers  tend  to do  and how that differs from  what assembly 
language  does well. In this pursuit, it can be useful to examine  the  code your com- 
piler  generates,  either by  viewing the  code  in  a  debugger  or by having the  compiler 
generate  an assembly language output file. (The  latter is done with /Fa or /Fc in 
Microsoft C/C++ and -S in  Borland C++.) 
C programmers  tend to modularize  their  code with lots of function calls. That’s 
good  for  readable,  reliable,  reusable  code,  and it allows the compiler to optimize 
better because it can  deal with  fewer variables and statements  in  each  optimization 
arena-but  it’s not so good when  viewed from  the assembly language level.  Calls and 
returns  are slow, especially in  the  large  code  model,  and  the  pushes  required  to  put 
parameters  on  the stack are expensive as  well. 
What this means is that when  you  want to  speed  up a  portion of a C program, you 
should identify the  entire critical portion  and move allof  that critical portion  into  an 
assembly language  function. You don’t want to move a part of the  inner  loop  into 
assembly language and  then call it from C every time through  the  loop;  the  function 
call and  return overhead would be unacceptable. Carve out  the critical code en masse 
and move it  into assembly, and try to avoid  calls and  returns even in  your assembly 
code.  True,  in assembly  you can pass parameters  in registers, but  the calls and re- 
turns themselves are still slow;  if the  extra cycles they take don’t affect performance, 
then  the  code they’re in probably isn’t critical, and  perhaps you’ve chosen to convert 
too  much  code  to assembly, eh? 

Stack  Frames Slow So Much 
C compilers work within the stack frame  model, whereby variables reside  in  a block 
of  stack memory and  are accessed via offsets from BP. Compilers may store  a  couple 
of variables in registers and may briefly keep  other variables in registers when they’re 
used repeatedly, but  the stack frame is the underlying  architecture. It’s a  nice archi- 
tecture; it’s flexible, convenient, easy to program,  and makes for fairly compact  code. 
However,  stack frames have a few  drawbacks.  They  must be constructed and destroyed, 
which takes both time and  code. They are so easy to use that they tend to bias the 
assembly language  programmer in favor of accessing memory variables more often 
than might  be necessary.  Finally,  you cannot use BP as a  general-purpose register if 
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you intend to access a stack frame,  and having that seventh register available  is some- 
times useful indeed. 
That doesn’t  mean you shouldn’t use  stack frames, which are useful and often neces- 
sary. Just don’t fall  victim to their  undeniable  charms. 

Torn  Between Two Segments 
- 

C compilers are not terrific at handling segments. Some compilers  can  efficiently handle 
a single far pointer used in a loop by leaving ES set for the duration of the loop. But two 
far pointers used  in the same loop confuse every compiler I’ve seen, causing the full 
segment:offset address to  be reloaded each time either pointer is used. 

This particularly affects performance in 286 protected mode (under OS/2 1.X or p the Rational DOS Extendel; for example) because segment loads in protected mode 
take a minimum of 17 cycles, versus a mere 2 cycles in real mode. 

In assembly language you  have full control over segments. Use it, and, if necessary, 
reorganize your code to minimize segment  loading. 

Why Speeding Up Is Hard to Do 
You might  think  that the most obvious advantage assembly language has over C is 
that  it allows the use  of  all forms of instructions and all registers in all ways, whereas 
C compilers tend to use a subset of registers and instructions in a limited number of 
ways.  Yes and no. It’s true  that C compilers typically don’t  generate instructions such 
as XLAT, rotates, or  the string instructions. On  the  other  hand, XLAT and rotates 
are useful in  a limited set of circumstances, and string instructions are used in the C 
library functions. In fact, C library code is  likely to be carefully optimized by experts, 
and may be much  better  than equivalent code you’d produce yourself. 
Am I saying that C compilers produce  better  code  than you do? No, I’m saying that 
they can, unless you  use  assembly language properly. Writing code  in assembly lan- 
guage rather  than C guarantees  nothing. 

You can write  good assembly, bad assembly, or assembly that is virtually indistin- p guishable from compiled code; you are more likely than  not to write the latter if 
you think  that optimization consists of tweaking compiled C code. 

Sure, you can probably use the registers more efficiently and take advantage of an 
instruction or two that the  compiler missed, but  the  code isn’t going to get  a whole 
lot faster that way. 
True optimization requires  rethinking your code to take advantage of assembly lan- 
guage. A C loop  that searches through  an  integer array for matches might compile 
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A. What the compiler outputs: 
LoopTop: 

mov a x . [ b p - 8 1   : G e t   t h e   s e a r c h e d - f o r   v a l u e  
cmp [ d i l . a x  ; I s  t h i s  a match? 
j z  Match  
add d i  .2 

;Yes 

dec s i  
;No ,  a d v a n c e   t h e   p o i n t e r  
: D e c r e m e n t   t h e   l o o p   c o u n t e r  

j n z  LoopTop  :Cont inue i f  t h e r e   a r e   m o r e   d a t a   p o i n t s  

B. Removing stack frame access: 
LoopTop: 

1 odsw  :Get t h e   n e x t   a r r a y   v a l u e  
cmp ax ,   bx  :Does i t  m a t c h   t h e   s e a r c h e d - f o r   v a l u e ?  
j z  Match  :Yes 
l o o p  LoopTop :No. c o n t i n u e  i f  t h e r e   a r e   m o r e   d a t a   p o i n t s  

Tweaked compiler output for a loop. 
Figure 8.1 

to something like Figure 8.1A. You might  look at  that  and tweak it  to  the  code shown 
in Figure 8.1B. 
Congratulations! You’ve successfully eliminated all stack frame access, you’ve used 
LOOP (although DEC SI/JNZ is actually faster on 386 and  later machines, as I ex- 
plained  in the last chapter),  and you’ve used  a  string  instruction.  Unfortunately, the 
new code isn’t going  to run very much faster. Maybe 25 percent faster, maybe a little 
more. Big deal. You’ve eliminated  the  trappings of the compiler-the  stack frame 
and  the restricted register usage-but you’re still thinking like the compiler. Try this: 

repnz  scasw 
j z  Match  

It’s a simple example-but, I hope, a convincing one. Stretch  your  brain when  you 
optimize. 

Taking It to the Limit 
- 

The ultimate in assembly language  optimization  comes when you change  the rules; 
that is,  when  you reorganize the  entire  program to allow the use of better assembly 
language  code  in the small section of code  that most affects overall performance. 
For example,  consider  that the  data searched  in the last example is stored  in  an array 
of structures, with each  structure  in  the array containing  other information as  well. 
In this situation, REP SCASW couldn’t  be  used because the  data searched through 
wouldn’t be contiguous. 
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However,  if the  need  for performance  in  searching the array is urgent  enough,  there’s 
no reason why you can’t  reorganize the  data.  This  might  mean removing the array 
elements  from the  structures  and  storing  them  in  their own array so that REP SCASW 
could be  used. 

Organizing a program h data so that  the performance of the critical sections can p be optimized is a key part of design, and  one that’s easily shortchanged unless, 
during the design stage, you thoroughly understand and  work to bring together 
your data needs, the critical sections of your program, and potential assembly 
language optimizations. 

More on this  shortly. 
To recap,  here are some  things  to look for when striving to convert C code  into 
optimized assembly language: 

Move  the  entire  performance-critical  section  into  a  single  assembly  language 
function. 
Don’t  use calls  or  stack  frame  accesses  inside  the  critical  code,  if  possible,  and 

Change  segments  as  infrequently  as  possible. 
Optimize  in  terms  of  what  assembly  does  well, not in  terms  of  fine-tuning  com- 

avoid  unnecessary  memory  accesses  of  any  kind. 

piled C code. 

nize  data  structures  to  allow  efficient  assembly  language  processing. 
Change  the  rules  to  the  benefit  of  assembly,  if  necessary;  for  example,  reorga- 

That said, let  me show some of these precepts  in  action. 

A C-to-Assembly Case  Study 
Listing 8.1 is the sample C application I’m  going  to use to examine optimization in 
action. Listing 8.1 isn’t  really  complete-it doesn’t handle  the “no-matches” case 
well, and  it assumes that  the sum of all matches will fit into  an int-but it will do just 
fine as an optimization example. 

LISTING  8.1  18- 1 .C 
/*  P r o g r a m   t o   s e a r c h   a n   a r r a y   s p a n n i n g  a l i n k e d   l i s t   o f   v a r i a b l e -  

s i z e d   b l o c k s ,   f o r   a l l   e n t r i e s   w i t h  a s p e c i f i e d  I D  number, 
a n d   r e t u r n   t h e   a v e r a g e   o f   t h e   v a l u e s   o f   a l l   s u c h   e n t r i e s .   E a c h   o f  
t h e   v a r i a b l e - s i z e d   b l o c k s  may c o n t a i n   a n y   n u m b e r   o f   d a t a   e n t r i e s ,  
s t o r e d   a s   a n   a r r a y   o f   s t r u c t u r e s   w i t h i n   t h e   b l o c k .  * I  

# i n c l u d e   < s t d i o . h >  
# i f d e f  -TURBOC- 
#i nc l   ude   <a1  1 oc.   h> 
# e l s e  
#i n c l   u d e  <mal 1 oc.  h> 
#end i  f 
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v o i d   m a i n ( v o i d ) :  
v o i d   e x i t ( i n t 1 ;  
u n s i g n e d   i n t   F i n d I D A v e r a g e ( u n s i g n e d   i n t .   s t r u c t   B l o c k H e a d e r  * ) :  
/ *  S t r u c t u r e   t h a t   s t a r t s   e a c h   v a r i a b l e - s i z e d   b l o c k  * /  
s t r u c t   B l o c k H e a d e r  { 

s t r u c t   B l o c k H e a d e r   * N e x t B l o c k :  / *  P o i n t e r   t o   n e x t   b l o c k ,   o r  NULL 
i f  t h i s   i s   t h e   l a s t   b l o c k   i n   t h e  
l i n k e d   l i s t  * /  

i n   t h i s   v a r i a b l e - s i z e d   b l o c k  * /  
u n s i g n e d   i n t   B l o c k C o u n t :  / *  The  number o f   D a t a E l e m e n t   e n t r i e s  

I :  

/*  S t r u c t u r e   t h a t   c o n t a i n s  one e l e m e n t   o f   t h e   a r r a y   w e ' l l   s e a r c h  * /  
s t r u c t   D a t a E l e m e n t  { 

uns igned  i n t  I D :  / *  I D  // f o r   a r r a y   e n t r y  * /  
uns igned  i n t   V a l u e :  / *  V a l u e   o f   a r r a y   e n t r y  * /  

I :  

v o i d   m a i n ( v o i d )  { 
i n t  i . j :  
u n s i g n e d   i n t   I D T o F i n d :  
s t r u c t   B l o c k H e a d e r  *BaseAr rayB lockPo in te r . *Work ingB lockPo in te r :  
s t r u c t   D a t a E l e m e n t   * W o r k i n g D a t a P o i n t e r :  
s t r u c t   B l o c k H e a d e r   * * L a s t B l o c k P o i n t e r :  

p r i n t f ( " 1 D  /I f o r   w h i c h   t o   f i n d   a v e r a g e :  " ) :  
scan f ( "%d" .& IDToF ind ) :  
/ *  B u i l d  an a r r a y   a c r o s s  5 b l o c k s ,   f o r   t e s t i n g  * /  
/*  A n c h o r   t h e   l i n k e d   l i s t   t o   B a s e A r r a y B l o c k P o i n t e r  * /  
L a s t B l o c k P o i n t e r  - & B a s e A r r a y B l o c k P o i n t e r :  
/ *  C r e a t e  5 b l o c k s   o f   v a r y i n g   s i z e s  * /  
f o r  (i - 1: i < 6 :  i++) I 

/*  T r y   t o   g e t  memory f o r   t h e   n e x t   b l o c k  * /  
i f  ( ( W o r k i n g B l o c k P o i n t e r  - 

( s t r u c t   B l o c k H e a d e r  * )  m a l l o c ( s i z e o f ( s t r u c t   B l o c k H e a d e r )  + 
s i z e o f ( s t r u c t   D a t a E l e m e n t )  * i * 1 0 ) )  - NULL) { 

e x i t ( 1 ) :  
I 
/* S e t   t h e  /I o f   d a t a   e l e m e n t s   i n   t h i s   b l o c k  */  
Work ingB lockPo in te r ->B lockcoun t  = i * 10:  
/ *  L i n k   t h e  new b l o c k   i n t o   t h e   c h a i n  * /  
* L a s t B l o c k P o i n t e r  - W o r k i n g B l o c k P o i n t e r :  
/ *  P o i n t   t o   t h e   f i r s t   d a t a   f i e l d  * /  
Work ingDa taPo in te r  = 

( s t r u c t   D a t a E l e m e n t  * )  ( ( c h a r   * ) W o r k i n g B l o c k P o i n t e r  + 
s i z e o f ( s t r u c t   B l o c k H e a d e r ) ) :  

/ *  Fill t h e   d a t a   f i e l d s   w i t h  I D  numbers  and  values * /  
f o r  (j - 0: j < (i * 1 0 ) :  j++, Work ingDataPo in te r++)  { 

W o r k i n g D a t a P o i n t e r - > I D  - j :  
Work ingDa taPo in te r ->Va lue  - i * 1000 + j :  

I 
/ *  Remember where t o   s e t   l i n k   f r o m   t h i s   b l o c k   t o   t h e   n e x t  * /  
L a s t B l o c k P o i n t e r  - &Work ingB lockPo in te r ->Nex tB lock :  

I 
/ *  S e t   t h e   l a s t   b l o c k ' s   " n e x t   b l o c k "   p o i n t e r   t o  NULL t o  i n d i c a t e  

t h a t   t h e r e   a r e  no more   b locks  * /  
Work ingB lockPo in te r ->Nex tB lock  - NULL: 
p r i n t f ( " A v e r a g e   o f   a l l   e l e m e n t s   w i t h  I D  %d: %u\n". 

IDToF ind ,   F ind IDAverage( IDToF ind ,  B a s e A r r a y B l o c k P o i n t e r ) ) :  

Speeding  Up C with Assembly  Language 157 



I* S e a r c h e s   t h r o u g h   t h e   a r r a y   o f   D a t a E l e m e n t   e n t r i e s   s p a n n i n g   t h e  
l i n k e d   l i s t  o f  v a r i a b l e - s i z e d   b l o c k s ,   s t a r t i n g   w i t h   t h e   b l o c k  
p o i n t e d   t o   b y   B l o c k P o i n t e r .   f o r  all e n t r i e s   w i t h  I D S  m a t c h i n g  
S e a r c h e d F o r I D .   a n d   r e t u r n s   t h e   a v e r a g e   v a l u e   o f   t h o s e   e n t r i e s .  I f  
no m a t c h e s   a r e   f o u n d ,   z e r o  i s   r e t u r n e d  *I  

u n s i g n e d   i n t   F i n d I D A v e r a g e ( u n s i g n e d   i n t   S e a r c h e d F o r I D .  

{ 
s t r u c t   B l o c k H e a d e r   * B l o c k P o i n t e r )  

s t r u c t   D a t a E l e m e n t   * D a t a P o i n t e r :  
u n s i g n e d   i n t  IDMatchSum: 
u n s i g n e d   i n t   I D M a t c h C o u n t ;  
u n s i g n e d   i n t   W o r k i n g B l o c k C o u n t :  

IDMatchCount  - IDMatchSum - 0:  
I* S e a r c h   t h r o u g h  all t h e   l i n k e d   b l o c k s   u n t i l   t h e   l a s t   b l o c k  

( m a r k e d   w i t h  a N U L L  p o i n t e r   t o   t h e   n e x t   b l o c k )   h a s   b e e n  
searched *I  

I* P o i n t   t o   t h e   f i r s t   D a t a E l e m e n t   e n t r y   w i t h i n   t h i s   b l o c k  *I  
D a t a P o i n t e r  - 

do C 

( s t r u c t   D a t a E l e m e n t  * )  ( ( c h a r   * ) B l o c k P o i n t e r  + 
s i z e o f ( s t r u c t   B l o c k H e a d e r ) ) :  

I* Search  all t h e   D a t a E l e m e n t   e n t r i e s   w i t h i n   t h i s   b l o c k  

f o r   ( W o r k i n g B l o c k C o u n t - 0 ;  
a n d   a c c u m u l a t e   d a t a   f r o m   a l l   t h a t   m a t c h   t h e   d e s i r e d  I D  *I  

WorkingBlockCount<BlockPointer ->BlockCount :  
W o r k i n g B l o c k C o u n t t c .   D a t a P o i n t e r + + )  { 

I* If t h e  I D  matches,  add i n   t h e   v a l u e  a n d   i n c r e m e n t   t h e  
m a t c h   c o u n t e r  *I  

i f  ( D a t a P o i n t e r - > I D  - SearchedFor ID)  { 
IDMatchCount tc :  
IDMatchSum +- D a t a P o i n t e r - > V a l u e :  

1 
1 
I* P o i n t   t o   t h e   n e x t   b l o c k ,   a n d   c o n t i n u e  as l o n g   a s   t h a t   p o i n t e r  

i s n ' t  N U L L  *I  
1 w h i l e   ( ( B l o c k P o i n t e r  - BlockPointer->NextBlock) !- NULL): 
I* C a l c u l a t e   t h e   a v e r a g e   o f  all matches *I  
i f  ( IDMatchCount  - 0) 
e l s e  

r e t u r n ( 0 ) :  /* A v o i d   d i v i s i o n   b y  0 *I  

re turn(1DMatchSum I IDMatchCount ) ;  
1 

The main body of Listing 8.1 constructs  a  linked list of memory blocks of various 
sizes and stores an array of structures across those blocks,  as  shown in  Figure 8.2. The 
function FindIDAverage in Listing 8.1 searches  through  that  array  for all matches  to 
a  specified ID number  and  returns  the  average  value of all  such  matches. 
FindIDAverage contains two nested  loops,  the outer  one  repeating  once  for  each 
linked block and  the  inner  one  repeating  once  for  each array element  in  each block. 
The  inner loop-the critical one-is compact,  containing only four  statements,  and 
should  lend itself rather well to  compiler  optimization. 
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BlockHeader->NextBlock 
BlockHeader->BlockCount 
DataElement[Ol->ID 
DataElement[Ol->Value 
DataElementl l I->ID 
DataElementC11->Value 

1 0 0 0 -  - - - - - 

lobi""" 

Array Element 0 

Array Element 1 """ 

Blockneader->NextBlock 
Blockneader->Blockcount 
DataElementCOI->ID 
DataElementCOI->Value 

""" 

2000""" 
Array Element 2 

I I 

4 Blockneader->NextBlock - - - - - _ N U L L  - - - - - 
Blockneader->Blockcount 
DataElement[Ol->ID F l )  Array Element 3 
DataElement[Ol->Value 

""" 

3000"""  
DataElement[ l l ->ID 
DataElementC11->Value 3ooi 
DataElementCPI->ID 
DataElement[ZI->Value 3002 - - - - - - 

- - - - - Array Element 4 

Array Element 5 

Linked array  storage format (version 1). 
Figure 8.2 

As it happens, Microsoft C/C++ does optimize the inner loop of FindIDAverage nicely. 
Listing 8.2 shows the code Microsoft C/C++ generates for the inner loop, consisting of 
a mere seven  assembly language instructions inside the loop. The compiler is smart 
enough to  convert the loop index  variable,  which  counts up but is used  for nothing but 
counting loops, into a count-down  variable so that the LOOP instruction can be  used. 

LISTING 8.2  18-2.COD 
: Code g e n e r a t e d   b y   M i c r o s o f t  C f o r   i n n e r   l o o p  o f  F ind IDAverage .  
: I * * *  f o r  (Work ingBlockCount -0 :  
: I *** Work ingBlockCount<BlockPointer ->BlockCount :  
; I *** Work ingBlockCount++.   DataPointer++)  { 

mov WORD PTR [bp-61.0   ;Work ingBlockCount  
mov bx.WORD  PTR [bp+61 : B1 ockPo i  n t e r  
cmp WORD PTR [bx+21,0 
j e  I FB264 
mov  cx.WORD  PTR [bx+21 
add WORD PTR [ b p - 6 l . c x   : W o r k i n g B l o c k C o u n t  
mov  di.WORD PTR [bp-21  : IDMatchSum 
mov  dx.WORD  PTR [bp-41  : IDMatchCount  

IL20004 :  
: I * * *  i f  ( D a t a P o i n t e r - > I O  - SearchedFor ID)  { 

mov  ax.WOR0 PTR [ s i ]  
cmp WORD PTR [bp+4 l ,ax   :SearchedFor ID 
j n e   $ 1 2 6 5  
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I *** 

I 

I 
I 
‘I 

IOMatchCount++; 

*** 
i n c   d x  

add d i  .WORD PTR [ s i + 2 1  
IDMatchSum += D a t a P o i n t e r - > V a l u e ;  

*** 
*** 1 

I 
265: 

a d d   s i . 4  
1 oop  tL20004 
mov WORD PTR Cbp-2 l .d i   : IDMatchSum 
mov WORD PTR [ b p - 4 l . d x   : I D M a t c h C o u n t  

$FB264: 

It’s hard to squeeze much more  performance  from this code by tweaking it, as exem- 
plified by Listing 8.3, a fine-tuned assembly version of FindIDAverage that was 
produced by looking at the assembly output of MS C/C++ and tightening it. Listing 
8.3 eliminates all  stack frame access in the  inner  loop,  but that’s about all the tight- 
ening  there is to do.  The result, as  shown in Table  8.1, is that Listing 8.3  runs a 
modest 11 percent faster than Listing  8.1 on a 386. The results could vary consider- 
ably, depending  on  the  nature of the data set searched  through (average block  size 
and frequency of matches). But, then,  understanding  the typical and worst  case con- 
ditions is part of optimization, isn’t it? 

LISTING 8.3 18-3.ASM 
; T y p i c a l l y   o p t i m i z e d   a s s e m b l y   l a n g u a g e   v e r s i o n   o f   F i n d I D A v e r a g e .  
SearchedFor ID  equ 4 ; P a s s e d   p a r a m e t e r   o f f s e t s   i n   t h e  
B l o c k P o i n t e r   e q u  6 : s t a c k   f r a m e   ( s k i p   o v e r   p u s h e d  BP 

NextB l   ock   equ 0 : F i e l d   o f f s e t s   i n   s t r u c t   B l o c k H e a d e r  
B1 ockCount   equ 2 
BLOCK-HEAOERLSIZE equ 4 :Number o f   b y t e s   i n   s t r u c t   B l o c k H e a d e r  
ID equ 0 : s t r u c t   D a t a E l e m e n t   f i e l d   o f f s e t s  
Va lue   equ 2 
DATALELEMENT-SIZE equ 4 :Number o f   b y t e s   i n   s t r u c t   D a t a E l e m e n t  

; a n d   t h e   r e t u r n   a d d r e s s )  

.model   smal l  

. code 
p u b l i c   _ F i n d I O A v e r a g e  
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-F ind IDAverage   p roc   nea r  
p u s h   b p   : S a v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p , s p   : P o i n t   t o   o u r   s t a c k   f r a m e  
p u s h   d i   : P r e s e r v e  C r e g i s t e r   v a r i  ab1  es 
p u s h   s i  
sub  dx.dx  : IDMatchSum = 0 
mov bx.dx  : IDMatchCount  - 0 
mov s i . [ b p + B l o c k P o i n t e r ]   ; P o i n t e r   t o   f i r s t   b l o c k  
mov ax . [bp+SearchedFor ID l  : I D  w e ' r e   l o o k i n g   f o r  

; S e a r c h   t h r o u g h   a l l   t h e   l i n k e d   b l o c k s   u n t i l   t h e   l a s t   b l o c k  

B lockLoop:  
: ( m a r k e d   w i t h  a NULL p o i n t e r   t o   t h e   n e x t   b l o c k )   h a s  been searched .  

: P o i n t   t o   t h e   f i r s t   D a t a E l e m e n t   e n t r y   w i t h i n   t h i s   b l o c k .  

: S e a r c h   t h r o u g h   a l l   t h e   D a t a E l e m e n t   e n t r i e s   w i t h i n   t h i s   b l o c k  
: a n d   a c c u m u l a t e   d a t a   f r o m   a l l   t h a t   m a t c h   t h e   d e s i r e d  I D .  

l e a   d i  .[si+BLOCKpHEADER-SIZEl 

mov c x . ~ s i + B l o c k C o u n t l  
j c x z   D o N e x t B l o c k  :No d a t a   i n   t h i s   b l o c k  

cmp [ d i + I D l . a x  ;Do we have  an ID match? 
j n z  NoMatch ;No match  
i n c   b x  :We have a match:  IDMatchCount++: 
add  dx . [d i+Va lue ]  :IDMatchSum += D a t a P o i n t e r - > V a l u e :  

add di.DATApELEMENT-SIZE ; p o i n t   t o   t h e   n e x t   e l e m e n t  
1 oop I n t r a B l   o c k L o o p  

I n t r a B l o c k L o o p :  

NoMatch: 

: P o i n t   t o   t h e   n e x t   b l o c k   a n d   c o n t i n u e  i f  t h a t   p o i n t e r   i s n ' t  NULL. 
DoNextB lock :  

mov s i . [ s i + N e x t B l o c k l   : G e t   p o i n t e r   t o   t h e   n e x t   b l o c k  
and s i . s i  : I s  i t  a NULL p o i n t e r ?  
j n z   B l o c k L o o p  :No. c o n t i n u e  

sub  ax.ax  :Assume we found  no   matches  
and  bx.bx 
j z  Done :We d i d n ' t   f i n d  a n y   m a t c h e s ,   r e t u r n  0 
x c h g   a x . d x   : P r e p a r e   f o r   d i v i s i o n  
d i v   bx   :Re tu rn   IDMatchSum / IDMatchCount 

Done:  pop s i   : R e s t o r e  C r e g i s t e r   v a r i a b l e s  
pop d i  

r e t  
-F ind IDAverage ENDP 

end 

: C a l c u l a t e   t h e   a v e r a g e   o f   a l l   m a t c h e s .  

POP bP : R e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

Listing 8.4 tosses some  sophisticated  optimization  techniques  into the mix. The  loop 
is unrolled  eight times, eliminating  a  good  deal of branching,  and SCASW is used 
instead of CMP [DI],AX. (Note, however, that SCASW is in  fact slower than CMP 
[DI],AX on  the 386 and 486, and is sometimes  faster on  the 286 and 8088 only be- 
cause it's shorter and therefore may prefetch faster.) This advanced tweaking produces 
a 39 percent  improvement over the original C code-substantial, but  not a  tremen- 
dous  return  for  the optimization  effort invested. 
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LISTING 8.4  18-4.ASM 
: H e a v i l y   o p t i m i z e d   a s s e m b l y   l a n g u a g e   v e r s i o n   o f   F i n d I D A v e r a g e .  
: F e a t u r e s   a n   u n r o l l e d   l o o p   a n d   m o r e   e f f i c i e n t   p o i n t e r   u s e .  
SearchedFor ID  equ 4 
B l o c k P o i n t e r   e q u  6 

; P a s s e d   p a r a m e t e r   o f f s e t s   i n   t h e  
: s t a c k   f r a m e   ( s k i p   o v e r   p u s h e d  BP 
: a n d   t h e   r e t u r n   a d d r e s s )  

N e x t B l o c k   e q u  0 ; F i e l d   o f f s e t s   i n   s t r u c t   B l o c k H e a d e r  
B l o c k c o u n t  
BLOCK-HEADER-SIZE equ 4 

equ 2 

I D  
;Number o f   b y t e s   i n   s t r u c t   B l o c k H e a d e r  

equ 0 ; s t r u c t   D a t a E l e m e n t   f i e l d   o f f s e t s  
Va lue   equ 2 
DATA-ELEMENT-SIZE equ 4 :Number o f   b y t e s  i n  s t r u c t   D a t a E l e m e n t  

.model   smal l  

.code 
p u b l i c   - F i n d I D A v e r a g e  

p u s h   b p   : S a v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; P o i n t   t o   o u r   s t a c k   f r a m e  
p u s h   d i   : P r e s e r v e  C r e g i s t e r   v a r i a b l e s  
p u s h   s i  
mov d i  . d s   : P r e p a r e   f o r  SCASW 
mov e s . d i  
c l  d 
sub  dx.dx  : IDMatchSum = 0 
mov bx .dx   : IDMatchCount  - 0 
mov s i . [ b p + B l o c k P o i n t e r ]   ; P o i n t e r   t o   f i r s t   b l o c k  
mov ax . [bp+SearchedFor ID l  : I D  w e ' r e   l o o k i n g   f o r  

- F i n d I D A v e r a g e   p r o c   n e a r  

: S e a r c h   t h r o u g h   a l l   o f   t h e   l i n k e d   b l o c k s   u n t i l   t h e   l a s t   b l o c k  
: ( m a r k e d   w i t h  a NULL p o i n t e r   t o   t h e   n e x t   b l o c k )   h a s   b e e n   s e a r c h e d .  
B lockLoop:  
: P o i n t   t o   t h e   f i r s t   D a t a E l e m e n t   e n t r y   w i t h i n   t h i s   b l o c k .  

: S e a r c h   t h r o u g h   a l l   t h e   D a t a E l e m e n t   e n t r i e s   w i t h i n   t h i s   b l o c k  
: a n d   a c c u m u l a t e   d a t a   f r o m   a l l   t h a t   m a t c h   t h e   d e s i r e d  I D .  

l e a   d i  , [si+BLDCK-HEADER-SIZE] 

mov cx .Cs i+B lockCoun t ]  :Number o f   e l e m e n t s   i n   t h i s   b l o c k  
j c x z   D o N e x t B l o c k   ; S k i p   t h i s   b l o c k  i f  i t ' s  empty 
mov b p . c x   : * * * s t a c k   f r a m e   n o   l o n g e r   a v a i l a b l e * * *  
add  cx.7 
s h r   c x . 1  ;Number o f   r e p e t i t i o n s   o f   t h e   u n r o l l e d  
s h r   c x . 1  : l o o p  - ( B l o c k c o u n t  + 7 )  / 8 
s h r   c x . 1  
a n d   b p . 7   : G e n e r a t e   t h e   e n t r y   p o i n t   f o r   t h e  
s h l   b p . 1  ; f i r s t ,   p o s s i b l y   p a r t i a l   p a s s   t h r o u g h  
jmp   cs : [LoopEn t ryTab le+bp l  : t h e   u n r o l l e d   l o o p   a n d  

a l i g n  2 

dw LoopEntryB.LoopEntryl,LoopEntry2~LoopEntry3 
dw LoopEntry4.LoopEntry5.LoopEntry6.LoopEntry7 

l o c a l   N o M a t c h  

scasw :Do we have  an I D  match? 
j n z  NoMatch :No match  

inc   bx   ; IDMatchCount++;  
add  dx . [d i ]   ; IDMatchSum +- D a t a P o i n t e r - > V a l u e :  

add  di.DATA-ELEMENT-SIZE-2 : p o i n t   t o   t h e   n e x t   e l e m e n t  

: v e c t o r   t o   t h a t   e n t r y   p o i n t  

L o o p E n t r y T a b l e   l a b e l   w o r d  

M-IBL macro P 1  

LoopEn t ry&P l& :  

:We have a match  

NoMatch: 

: (SCASW advanced 2 b y t e s   a l r e a d y )  

162 Chapter 8 



endm 
a1 i g n  2 

M-IBL 8 
M-IBL 7 
MKIBL 6 
M-IBL 5 
M-IBL 4 
M-IBL 3 
M-IBL 2 
MKIBL 1 

I n t r a B l o c k L o o p :  

l o o p   I n t r a B l o c k L o o p  
: P o i n t   t o   t h e   n e x t   b l o c k   a n d   c o n t i n u e  i f  t h a t   p o i n t e r   i s n ' t  NULL. 
DoNextB lock :  

mov s i   . [ s i + N e x t B l o c k ]  : G e t   p o i n t e r   t o   t h e   n e x t   b l o c k  
and s i . s i  : I s  i t  a NULL p o i n t e r ?  
j n z   B l o c k L o o p  :No .   con t i nue  

sub  ax.ax :Assume we found  no  matches 
and  bx.bx 
j z  Done :We d i d n ' t   f i n d  a n y   m a t c h e s ,   r e t u r n  0 
x c h g   a x . d x   : P r e p a r e   f o r   d i v i s i o n  
d iv   bx   :Return   IDMatchSum / IDMatchCount 

Done:  pop s i   ; R e s t o r e  C r e g i s t e r   v a r i a b l e s  
p o p   d i  
POP b p   : R e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

-F ind IDAverage ENDP 
end 

: C a l c u l a t e   t h e   a v e r a g e   o f   a l l   m a t c h e s .  

Listings 8.5 and 8.6 together go the final step  and  change  the rules  in favor of assem- 
bly language. Listing 8.5 creates  the same  list of linked blocks  as Listing 8.1. However, 
instead of storing an array of structures within each block, it stores two arrays in  each 
block, one consisting of ID numbers  and  the  other consisting of the  corresponding 
values, as shown in Figure 8.3. No information is lost; the  data is merely rearranged. 

LISTING 8.5 18-5.C 
/*  Program t o   s e a r c h  an a r r a y   s p a n n i n g  a l i n k e d   l i s t   o f   v a r i a b l e -  

s i z e d   b l o c k s ,   f o r   a l l   e n t r i e s   w i t h  a s p e c i f i e d  ID number,  
a n d   r e t u r n   t h e   a v e r a g e   o f   t h e   v a l u e s   o f   a l l   s u c h   e n t r i e s .  Each o f  
t h e   v a r i a b l e - s i z e d   b l o c k s  may c o n t a i n   a n y   n u m b e r   o f   d a t a   e n t r i e s .  
s t o r e d   i n   t h e   f o r m  o f  t w o   s e p a r a t e   a r r a y s ,   o n e   f o r  I D  numbers  and 
o n e   f o r   v a l u e s .  * /  

# i n c l u d e   < s t d i o . h >  
B i f d e f  -TURBOC- 
#i ncl   ude  <a1 1 oc.  h> 
# e l s e  
# inc lude   <ma l  1 oc.   h> 
#end i  f 

v o i d   m a i n ( v o i d 1 :  
v o i d   e x i t ( i n t ) ;  
e x t e r n   u n s i g n e d   i n t   F i n d I D A v e r a g e Z ( u n s i g n e d   i n t .  

s t r u c t   B l o c k H e a d e r  * ) :  
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BlockHeader->NextBlock 
BlockHeader->BlockCount 
IDCOl 
IOCll 
Val  ue[Ol 
ValueCll 

" " " " " " " _  
Array  Elements 

""" 

BlockHeader->BlockCount 
IDCOI -1) Array  Element 2 
ValueCOI 2000- - - - - - 

BlockHeader->NextBlock 
BlockHeader->Blockcount 
IDCOl 
IDCll 
IDC21 
ValueCOl 
ValueCll 
ValueCZl 

A r r a y  
3 thl 

Elements 
,ough 5 

Linked array storage format (version 2). 
Figure 8.3 

/ *  S t r u c t u r e   t h a t   s t a r t s   e a c h   v a r i a b l e - s i z e d   b l o c k  * /  
s t r u c t   B l o c k H e a d e r  I 

s t r u c t   B l o c k H e a d e r   * N e x t B l o c k :  / *  P o i n t e r   t o   n e x t   b l o c k .  or NULL 
i f  t h i s   i s   t h e   l a s t   b l o c k   i n   t h e  
l i n k e d   l i s t  * /  

i n   t h i s   v a r i a b l e - s i z e d   b l o c k  * /  
u n s i g n e d   i n t   B l o c k C o u n t ;  / *  The  number o f   D a t a E l e m e n t   e n t r i e s  

1 :  

v o i d   m a i n ( v o i d 1  { 
i n t  i.j: 
u n s i g n e d   i n t   I D T o F i n d :  
s t r u c t   B l o c k H e a d e r  *BaseAr rayB lockPo in te r , *Work ingB lockPo in te r :  
i n t   * W o r k i n g D a t a P o i n t e r ;  
s t r u c t   B l o c k H e a d e r   * * L a s t B l o c k P o i n t e r :  

p r i n t f ( " 1 D  I/ f o r   w h i c h   t o   f i n d   a v e r a g e :  ' I ) :  

s c a n f ( " % d " . & I D T o F i n d ) :  

/ *  B u i l d  an a r r a y   a c r o s s  5 b l o c k s ,   f o r   t e s t i n g  */  
/ *  A n c h o r   t h e   l i n k e d   l i s t   t o   B a s e A r r a y B l o c k P o i n t e r  * /  
L a s t B l o c k P o i n t e r  - & B a s e A r r a y B l o c k P o i n t e r :  
/ *  C r e a t e  5 b l o c k s   o f   v a r y i n g   s i z e s  * /  
f o r  (i - 1; i < 6:  i++) I 

/*  T r y   t o   g e t  memory f o r   t h e   n e x t   b l o c k  * /  
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i f  ( ( W o r k i n g B l o c k P o i n t e r  = 

( s t r u c t   B l o c k H e a d e r  * )  m a l l o c ( s i z e o f ( s t r u c t   B l o c k H e a d e r )  + 
s i z e o f ( i n t )  * 2 * i * 1 0 ) )  == NULL) { 

e x i t ( 1 ) :  
I 
/ *  S e t   t h e   n u m b e r   o f   d a t a   e l e m e n t s   i n   t h i s   b l o c k  * /  
Work ingB lockPo in te r ->B lockCoun t  - i * 10: 
/ *  L i n k   t h e  new b l o c k   i n t o   t h e   c h a i n  * /  
* L a s t B l o c k P o i n t e r  = W o r k i n g B l o c k P o i n t e r ;  
/ *  P o i n t   t o   t h e   f i r s t   d a t a   f i e l d  * /  
Work ingDa taPo in te r  = ( i n t  * )  ( ( c h a r   * ) W o r k i n g B l o c k P o i n t e r  + 

/ *  F i l l   t h e   d a t a   f i e l d s   w i t h  I D  numbers  and  values * /  
f o r  ( j  - 0;  j < (i * 1 0 ) ;  j++, Work ingDataPo in te r++)  ( 

s i z e o f ( s t r u c t   B l o c k H e a d e r ) ) :  

*Work ingDa taPo in te r  = j ;  
* ( W o r k i n g D a t a P o i n t e r  + i * 1 0 )  = i * 1000 + j; 

1 
/ *  Remember where t o   s e t   l i n k   f r o m   t h i s   b l o c k   t o   t h e   n e x t  * /  
L a s t B l o c k P o i n t e r  = &WorkingBlockPointer->NextBlock; 

1 
/ *  S e t   t h e   l a s t   b l o c k ' s   " n e x t   b l o c k "   p o i n t e r   t o  NULL t o   i n d i c a t e  

t h a t   t h e r e   a r e   n o   m o r e   b l o c k s  * /  
WorkingBlockPointer->NextBlock - NULL: 
p r i n t f ( " A v e r a g e   o f   a l l   e l e m e n t s   w i t h  I D  %d :   %u \n " .  

e x i t ( 0 ) ;  
IDToF ind .  F i n d I D A v e r a g e Z ( 1 D T o F i n d .  B a s e A r r a y B l o c k P o i n t e r ) ) :  

LISTING 8.6  18-6.ASM 
; A l t e r n a t i v e   o p t i m i z e d   a s s e m b l y   l a n g u a g e   v e r s i o n   o f   F i n d I D A v e r a g e  
; r e q u i r e s   d a t a   o r g a n i z e d   a s   t w o   a r r a y s   w i t h i n   e a c h   b l o c k   r a t h e r  
; t h a n   a s   a n   a r r a y   o f   t w o - v a l u e   e l e m e n t   s t r u c t u r e s .   T h i s   a l l o w s   t h e  
: u s e  o f  REP SCASW f o r  I D  s e a r c h i n g .  

SearchedFor ID equ 4 ; P a s s e d   p a r a m e t e r   o f f s e t s   i n   t h e  
B l o c k P o i n t e r  equ 6 ; s t a c k   f r a m e   ( s k i p   o v e r   p u s h e d  BP 

Next61  ock equ 0 : F i e l d   o f f s e t s   i n   s t r u c t   B l o c k H e a d e r  
B lockCoun t  equ 2 
BLOCK-HEADER-SIZEequ 4 ;Number o f   b y t e s   i n   s t r u c t   B l o c k H e a d e r  

; a n d   t h e   r e t u r n   a d d r e s s )  

.model   smal l  

. code 
p u b l i c   - F i n d I D A v e r a g e Z  

p u s h   b p   : S a v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; P o i n t   t o   o u r   s t a c k   f r a m e  
p u s h   d i   ; P r e s e r v e  C r e g i s t e r   v a r i a b l e s  
p u s h   s i  
mov d i   . d s   : P r e p a r e   f o r  SCASW 
mov e s . d i  
c l  d 
mov s i . [ b p + B l o c k P o i n t e r l   : P o i n t e r   t o   f i r s t   b l o c k  
mov ax . [bp+SearchedFor ID]  ; I D  w e ' r e   l o o k i n g   f o r  
sub  dx.dx  ; IDMatchSum - 0 
mov bp,dx  ; IDMatchCount  - 0 

-F ind IDAverageE  p roc   nea r  

: * * * s t a c k   f r a m e   n o   l o n g e r   a v a i l a b l e * * *  
; S e a r c h   t h r o u g h   a l l   t h e   l i n k e d   b l o c k s   u n t i l   t h e   l a s t   b l o c k  
: ( m a r k e d   w i t h  a NULL p o i n t e r   t o   t h e   n e x t   b l o c k )   h a s   b e e n   s e a r c h e d .  
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BlockLoop:  
: S e a r c h   t h r o u g h   a l l   t h e   D a t a E l e m e n t   e n t r i e s   w i t h i n   t h i s   b l o c k  
: a n d   a c c u m u l a t e   d a t a   f r o m   a l l   t h a t   m a t c h   t h e   d e s i r e d  I D .  

mov cx ,Cs i+B lockCoun t ]  
j C X Z  D o N e x t B l o c k   ; S k i p   t h i s   b l o c k  i f  t h e r e ' s   n o   d a t a  

: t o   s e a r c h   t h r o u g h  
mov bx .cx  
s h l   b x . 1  

: W e ' l l   u s e  BX t o   p o i n t   t o   t h e  
: c o r r e s p o n d i n g   v a l u e   e n t r y   i n   t h e  
: c a s e   o f   a n  I D  match  (BX i s   t h e  
: l e n g t h   i n   b y t e s   o f   t h e  I D  a r r a y )  

: P o i n t   t o   t h e   f i r s t   D a t a E l e m e n t   e n t r y   w i t h i n   t h i s   b l o c k .  

I n t r a B l o c k L o o p :  
l e a  di .Csi+BLOCK-HEADER-SIZE] 

r e p n z   s c a s w   : S e a r c h   f o r   t h e  I D  
j n z   D o N e x t B l o c k  :No m a t c h ,   t h e   b l o c k   i s   d o n e  
i n c   b p  :We have a ma tch :   IDMatchCoun t t t ;  
add  dx.Cdi+bx-Z]  : IDMatchSum +- D a t a P o i n t e r - > V a l u e :  

: (SCASW has  advanced D I  2 b y t e s )  
a n d   c x . c x   : I s   t h e r e   m o r e   d a t a   t o   s e a r c h   t h r o u g h ?  
j n z   I n t r a B l o c k L o o p   : y e s  

: P o i n t   t o   t h e   n e x t   b l o c k   a n d   c o n t i n u e  if t h a t   p o i n t e r   i s n ' t  NULL. 
DoNextB lock :  

mov s i . C s i + N e x t B l o c k l   : G e t   p o i n t e r   t o   t h e   n e x t   b l o c k  
and s i   , s i  
j n z  B1 ockLoop 

sub  ax,ax :Assume we found  no   matches  
and  bp,bp 
J z  Done :We d i d n ' t   f i n d   a n y   m a t c h e s ,   r e t u r n  0 
xchg  ax.dx 
d i v   b p  

; P r e p a r e   f o r   d i v i s i o n  
:Return  IDMatchSum / IDMatchCount  

p o p   d i  

r e t  
-F indIDAverageZ ENDP 

end 

: I s  i t  a NULL p o i n t e r ?  
:No. c o n t i n u e  

: C a l c u l a t e   t h e   a v e r a g e   o f   a l l   m a t c h e s .  

Done:  pop s i   : R e s t o r e  C r e g i s t e r   v a r i a b l e s  

: R e s t o r e   c a l l e r ' s   s t a c k   f r a m e  POP bp 

The whole point of this rearrangement is to allow  us to use REP S W W  to  search 
through  each block, and that's exactly  what FindIDAverageQ in Listing 8.6 does. The 
result: Listing 8.6 calculates the average about three times as fast as the  original C 
implementation  and  more  than twice  as fast as Listing 8.4, heavily optimized as the 
latter  code is. 
I trust you get  the  picture.  The  sort of instruction-by-instruction  optimization that so 
many of us  love to do as a  kind of puzzle is fun,  but compilers  can do it nearly as  well 
as  you can,  and  in  the  future will surely do it  better.  What a  compiler can't do is tie 
together  the  needs of the  program  specification on  the high end  and  the processor 
on  the low end,  resulting  in critical code  that  runs  just  about as  fast  as the hardware 
permits. The only  software that can do  that is located  north of your sternum  and 
slightly aft of your nose. Dust it off and  put it to  work-and your  code will never 
again  be  confused with anything by Hamilton,  Joe,  Frank,  and Reynolds or Bo 
Donaldson and  the Heywoods. 
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i”B 
” Back in high school, I took a precalculus class from Mr. Bourgeis,  whose  most  notable 

characteristics wer6bcessant pacing and truly enormous feet. My friend Barry,  who 
sat in  the back row,  rig$$ behind  me, claimed that  it was because of his large feet  that 
Mr. Bourgeis was so resd se feet were so heavy,  Barry hypothesized, that if  Mr. 
Bourgeis remained id any one place for too long,  the  floor would give way under  the 
strain, plunging  thekmfortunate  teacher deep  into  the mantle of the  Earth and pos- 
sibly all the way thr&gh to China. Many amusing cartoons were  drawn  to this effect. 
UnfortunatelyJ3dh-y -*,e”..’:“ was too busy drawing cartoons, or,  alternatively, sleeping, to 
actually learn any math.  In  the  long  run,  that  didn’t  turn  out to be a  handicap  for 
Barry,  who went on’ko become vice-president of  sales for a ham-packing company, 
where presumably he  has rarely called upon to derive the  quadratic  equation. Barry’s 
lack  of scholarship caused some problems back then,  though. On  one memorable 
occasion, Barry was half-asleep,  with  his  eyes open  but unfocused and his chin bal- 
anced on his hand in the classic “if I fall asleep my head will fall  off  my hand  and I’ll 
wake up” posture, when Mr. Bourgeis popped  a killer problem: 
“Barry,  solve this for X, please.” On  the blackboard lay the  equation: 

8: 

x - 1 = 0  

“Minus 1,” Barry  said promptly. 
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Mr. Bourgeis shook his head mournfully. “Try again.” Barry thought  hard.  He knew 
the  fundamental rule  that the answer to  most mathematical questions is either 0, 1, 
infinity, -1, or minus infinity (do  not apply this rule to balancing your checkbook, 
however); unfortunately, that gave him only a 25 percent  chance of guessing right. 
“One,” I whispered surreptitiously. 
“Zero,” Barry announced. Mr. Bourgeis shook his head even more sadly. 
“One,” I whispered louder. Barry looked still more thoughtful-a bad sign-so I 
whispered “one” again, even louder. Barry looked so thoughtful that his eyes nearly 
rolled up into his head,  and I realized that  he was just  doing his best to convince Mr. 
Bourgeis that Barry had solved this one by himself. 
As Barry neared the climax  of  his stimng performance and  opened his mouth to  speak, 
Mr. Bourgeis looked at  him with great  concern. “Barry, can you hear  me all right?” 
“Yes, sir,” Barry replied. ‘Why?” 
‘Well, I could  hear  the answer  all the way up  here. Surely  you could  hear  it  just  one 
row  away?” 
The class went wild. They  might as well have sent us home early for all we accom- 
plished the rest of the day. 
I like to think I know more  about  performance  programming  than Barry  knew about 
math. Nonetheless, I always welcome good ideas and comments, and many readers 
have sent me a slew  of those over the years. So in this chapter,  I  think I’ll return  the 
favor by devoting a chapter to reader feedback. 

Another  Look  at LEA 
Several people have pointed  out that while LEA is great  for performing certain addi- 
tions (see Chapter 6), it isn’t a  perfect  replacement  for ADD. What’s the difference? 
LEA, an addressing instruction by trade, doesn’t affect the flags,  while the arithmetic 
ADD instruction  most certainly does. This is no  problem when performing additions 
that involve  only quantities  that fit in one  machine word (32 bits in 386 protected 
mode, 16 bits otherwise), but it renders LEAuseless for multiword operations, which 
use the Carry  flag to tie together partial results. For example, these instructions 

A D D   E A X ,  EBX 
A D C   E D X ,   E C X  

could not be replaced 

L E A  EAX.CEAX+EBXI 
A D C   E D X ,   E C X  

because LEA doesn’t affect the Carry  flag. 

170 Chapter 9 



The no-carry characteristic of LEA becomes  a  distinct advantage when performing 
pointer  arithmetic, however. For instance,  the following code uses LEA to advance 
the  pointers while adding  one 128-bit memory variable to  another such variable: 

MOV E C X . 4  :# o f  3 2 - b i t   w o r d s   t o  add 
c L C  

:no c a r r y   i n t o   t h e   i n i t i a l  ADC 
ADDLOOP:  

MOV E A X . [ E S I I  : g e t   t h e   n e x t   e l e m e n t  o f  o n e   a r r a y  
ADC [EDII . € A X  :add i t  t o   t h e   o t h e r   a r r a y ,   w i t h   c a r r y  
L E A   E S I . [ € S I + 4 1  :advance one a r r a y ’ s   p o i n t e r  
L E A   E D I ,   [ E D I + 4 ]  : a d v a n c e   t h e   o t h e r   a r r a y ’ s   p o i n t e r  

LOOP  ADDLOOP 

(Yes, I could use LODSD instead of MOV/LEA, I’m just illustrating  a  point here. 
Besides, LODS is only 1 cycle faster than MOV/LEA on  the 386, and is actually more 
than twice as slow on  the 486.) If  we used ADD rather  than LEA to advance the 
pointers,  the  carry  from  one ADC to the  next would  have to be preserved with either 
PUSHF/POPF or LAHF/SAHF. (Alternatively, we could use multiple INCs, since 
INC doesn’t affect the Carry flag.) 
In  short, LEA is indeed  different  from ADD. Sometimes  it’s better. Sometimes not; 
that’s the  nature of the various instruction  substitutions and optimizations  that will 
occur to you over time. There’s no such thing as “best”  instructions on  the x86; it all 
depends  on what you’re trying to do. 
But there  sure  are a  lot of interesting  options,  aren’t  there? 

The  Kennedy Portfolio 
ReaderJohn Kennedy regularly passes along  intriguing assembly programming tricks, 
many  of  which  I’ve never seen  mentioned anywhere else. John likes to  optimize  for 
size, whereas I lean more toward speed, but many  of his optimizations are  good  for 
both purposes. Here  are a few of my favorites: 
John’s  code  for  setting AX to its absolute value is: 

CWD 
XOR  AX.DX 
SUB AX.DX 

This  does nothing when bit 15 of AX is 0 (that is, if AX is positive). When AX is 
negative, the  code  “nots” it and  adds 1, which is exactly  how  you perform  a two’s 
complement  negate. For the case where AX is not negative, this trick usually beats 
the stuffing out of the  standard  absolute value code: 

A N D   A X . A X  : n e g a t i v e ?  
JNS I s p o s i t i v e  ;no 
NEG AX :yes,negate i t  

I s p o s i t i v e :  
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However, John’s  code is  slower on a 486; as you’re no doubt coming to realize (and as 
I’ll explain in Chapters 12 and  13), the 486  is an optimization world unto itself. 
Here’s how John copies  a block of  bytes from DS:SI to ES:DI,  moving  as much  data as 
possible a word at a time: 

SHR C X . l  
REP  MOVSW 

:word  count 
:copy  as many words   as   poss ib le  

ADC C X , C X  :CX-1  i f  c o p y   l e n g t h  was odd, 

REP  MOVSB 
;O e l s e  
:copy  any  odd  byte 

(ADC CX,CX can be replaced with RCL CX,l; which is faster depends  on  the proces- 
sor  type.) It might  be hard  to believe that  the above is faster  than this: 

SHR C X . l  :word c o u n t  
REP MOVSW :copy  as many words  as 

: p o s s i b l e  
JNC CopyDone  ;done i f  even   copy   length  
MOVSB : c o p y   t h e  odd b y t e  

CopyDone: 

However, it generally is. Sure, if the  length is odd,  John’s  approach  incurs  a  penalty 
approximately  equal to the REP startup time for MOVSB. However,  if the  length is 
even, John’s  approach  doesn’t  branch, saving  cycles and  not emptylng  the  prefetch 
queue. If copy lengths  are evenly distributed between even and  odd, John’s  approach 
is faster in most  x86  systems. (Not  on the 486, though.) 
John also points out that on  the 386, multiple LEAs can  be  combined  to  perform 
multiplications  that  can’t be handled by a single L E A ,  much as multiple shifts and 
adds  can be used for  multiplication, only  faster. LEA can be used to multiply in a 
single instruction on the 386, but only by the values 2,3,4,5,8,   and 9; several LEAS 
strung  together  can  handle  a  much wider range of values.  For example, video pro- 
grammers  are  undoubtedly familiar with the following code to multiply AX times 80 
(the width in bytes  of the  bitmap in most PC display modes) : 

SHL A X . l  :*2 
SHL A X . l  : *4  
SHL A X . l  : *8 
SHL A X . l  :*16 
MOV B X . A X  
SHL A X . l  ;*32 
SHL A X . l  : *64 
ADD A X . B X  ;*EO 

Using LEA on  the 386, the above could be reduced  to 

LEA E A X .  [EAX*ZI 
LEA EAX.[EAX*81 

: *2 
;*16 

LEA EAX.[EAX+EAX*41 :*EO 
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which  still isn’t as fast as using a  lookup table like 

M O V  EAX.MultiplesOf80Table[EAX*41 

but is close and takes a  great  deal less space. 
Of course, on  the 386, the shift and  add version could also be  reduced to this consid- 
erably more efficient code: 

SHL A X . 4  
MOV B X . A X  

; *16 

SHL A X . 2  ;*64 
A D D   A X . B X  ; *80 

Speeding Up Multiplication 
That brings us to multiplication, one of the slowest  of  x86 operations  and one  that 
allows for considerable optimization. One way to speed up multiplication is to use shift 
and  add, LEA, or a  lookup table to hard-code a multiplication operation  for  a fixed 
multiplier, as  shown  above. Another is to take advantage of the early-out feature of the 
386 (and  the 486, but  in  the interests of brevity  I’ll just say “386” from now on) by 
arranging your operands so that  the multiplier (always the rightmost operand follow- 
ing MUL or IMUL) is no larger than  the other  operand. 

Why?  Because  the  386  processes  one multiplier  bit per cycle and immediately P ends a  multiplication  when  all  sign@ant  bits of  the multiplier have been pro- 
cessed, so f m e r  cycles  are required to multiply  a  large  multiplicand times a small 
multiplier than a  small  multiplicand times a large multipliel; by a factor  of about 
1 cycle for  each significant multiplier bit eliminated. 

(There’s  a  minimum  execution time on this trick; below 3 significant multiplier bits, 
no additional cycles are saved.) For example,  multiplication of 32,767 times 1 is 12 
cycles faster than multiplication of 1 times 32,727. 
Choosing the  right  operand as the multiplier  can work wonders. According to pub- 
lished specs, the 386 takes 38  cycles to multiply by a  multiplier with 32 significant bits 
but only 9 cycles to multiply by a  multiplier of 2, a  performance  improvement of 
more  than  four times! (My tests regularly indicate  that  multiplication takes 3 to 4 
cycles longer  than  the specs indicate,  but  the cycle-per-bit advantage of smaller mul- 
tipliers holds true nonetheless.) 
This  highlights another  interesting  point: MUL and IMUL on the 386 are so fast that 
alternative multiplication  approaches, while generally still faster, are worthwhile only 
in truly time-critical code. 

On 386SXs and  uncached 386s, where code size can significantly affect perfor- P mance  due  to instruction prefetching, the compact MUL and IMUL instructions 
can approach  and in some  cases  even outperform  the  “optimized ’’ alternatives. 
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All in all, MUL and IMUL are reasonable performers  on  the 386, no  longer to be 
avoided in  most cases-and  you can help that  along by arranging your code to make 
the smaller operand  the multiplier whenever you know which operand is smaller. 
That doesn’t mean  that your code  should test and swap operands to make sure  the 
smaller one is the multiplier; that rarely pays off. I’m speaking more of the case 
where you’re scaling an array up by a value that’s always in the  range of, say, 2 to 10; 
because the scale  value will  always be small and  the array elements may  have  any 
value, the scale  value  is the logical choice for the multiplier. 

Optimizing  Optimized Searching 
Rob Williams  writes  with a wonderful optimization to the REPNZ SCASB-based opti- 
mized  searching routine I discussed in Chapter 5. As a quick refresher, I described 
searching a buffer for a text  string as  follows:  Scan for the first byte of the text string 
with REPNZ SCASB, then use REPZ CMF’S to check for a full match whenever REPNZ 
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SCASB finds  a  match  for the first character, as  shown in Figure 9.1. The principle is 
that most buffer  characters won’t match the first character of any  given string, so 
REPNZ SCASB, by far  the fastest way to search on  the PC, can  be  used  to  eliminate 
most potential  matches;  each  remaining  potential  match  can  then  be  checked  in its 
entirety with REPZ  CMPS. 
Rob’s revelation, which he credits  without  explanation to Edgar Allen Poe  (search 
nevermore?), was that by far the slowest part of the whole deal is handling REPNZ 
SCASB matches, which require  checking the  remainder of the string with REPZ 
CMPS and restarting REPNZ SCASB if no match is found. 

Rob  points out  that  the  number of REPNZ SCASB matches can easily be reduced P simply  by scanning for the character in the searched-for  string that appears least 
often in the  buffer being  searched. 

Imagine, if you  will, that  you’re  searching  for the string “EQUAL,.” By  my approach, 
you’d use REPNZ SCASB to scan for  each  occurrence of “E,” which crops up quite 
often  in  normal text. Rob points  out  that it would  make more sense to scan for ‘‘a” 
then back up  one  character  and check the whole string when a “ Q  is found, as 
shown in Figure 9.2. “ Q  is likely to  occur  much less often, resulting  in many  fewer 
whole-string checks and  much faster processing. 
Listing 9.1 implements  the scan-on-first-character approach. Listing 9.2 scans for 
whatever character  the caller specifies. Listing 9.3 is a test program  used  to  compare 
the two approaches. How much  difference  does Rob’s revelation make? Plenty.  Even 
when the  entire C function call to Findstring is  timed-strlen  calls, parameter  push- 
ing, calling, setup,  and all-the version of Findstring in Listing 9.2, which is directed 
by Listing 9.3 to scan for the infrequently-occurring ‘ Q ”  is about 40 percent faster 
on a 20 MHz cached 386 for  the test search of Listing 9.3 than is the version of 
Findstring in Listing 9.1, which always scans for  the first character,  in this case “E.” 
However,  when only the search  loops (the  code  that actually does  the  searching)  in 
the two versions of Findstring are  compared, Listing 9.2 is more  than twice as fast as 
Listing 9.1-a remarkable  improvement over code  that already uses REPNZ SCASB 
and REPZ  CMPS. 
What I like so much  about Rob’s approach is that it demonstrates  that  optimization 
involves much  more  than  instruction selection and cycle counting. Listings 9.1 and 
9.2 use pretty  much the same instructions, and even use the same approach of scan- 
ning with REPNZ SCASB and using REPZ  CMPS to  check  scanning matches. 

The difference between  Listings 9.1 and 9.2 (which gives  you more  than a  dou- P bling ofperformance) is  due entirely to understanding the  nature of the data  being 
handled, and biasing the code to reject that knowledge. 
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Faster  searching  method for locating a text string. 
Figure 9.2 

LISTING 9.1 19- 1 .ASM 
; Searches a t e x t   b u f f e r   f o r  a t e x t   s t r i n g .  Uses REPNZ SCASB t o  scan 
; t h e   b u f f e r   f o r   l o c a t i o n s   t h a t  m a t c h   t h e   f i r s t   c h a r a c t e r  of t h e  
; searched- fo r   s t r i ng ,   t hen  uses REPZ CMPS t o  check f u l l y   o n l y   t h o s e  
; l o c a t i o n s   t h a t  REPNZ  SCASB has i d e n t i f i e d  as p o t e n t i a l  matches. 

; Adapted  from Zen o f  Assembly  Language,  by  Michael  Abrash 

; C smal l   mode l -ca l lab le  as: 
; unsigned  char * FindStr ing(uns igned  char  * Buf fe r ,  
; unsigned in t   Bu f fe rLeng th .   uns igned   cha r  * Searchst r ing.  
; unsigned i n t   S e a r c h S t r i n g L e n g t h ) ;  

: Returns a p o i n t e r   t o   t h e   f i r s t  match f o r   S e a r c h s t r i n g   i n   B u f f e r . o r  
; a  NULL p o i n t e r  i f  no  match i s  f o u n d .   B u f f e r   s h o u l d   n o t   s t a r t   a t  
; o f f s e t  0 i n   t h e   d a t a  segment t o   a v o i d   c o n f u s i n g  a match a t  0 w i t h  
; no match  found. 
Parms s t r u c  

B u f f e r  
Buf ferLength dw ? : l e n g t h   o f   b u f f e r   t o   s e a r c h  

dw 2 dup(?)  ;pushed  BP/return  address 
dw ? ; p o i n t e r   t o   b u f f e r   t o   s e a r c h  
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: p o i n t e r   t o   s t r i n g   f o r   w h i c h   t o   s e a r c h  
: l e n g t h   o f   s t r i n g   f o r   w h i c h   t o   s e a r c h  

S e a r c h s t r i n g  dw 
SearchSt r ingLength  dw 

? 
? 

Parms  ends 
.model  smal 1 
.code 
p u b l i c   - F i n d s t r i n g  

p u s h   b p   ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; p o i n t   t o   o u r   s t a c k   f r a m e  
push s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
push d i  
c l  d  ;make s t r i n g   i n s t r u c t i o n s   i n c r e m e n t   p o i n t e r s  
mov s i . [ b p + S e a r c h S t r i n g ]   ; p o i n t e r   t o   s t r i n g   t o   s e a r c h   f o r  
mov bx . [bp+SearchSt r i ngLeng th l  : l e n g t h   o f   s t r i n g  
and  bx.bx 
j z  F indStr ingNotFound  :no  match i f  s t r i n g  i s  0 l e n g t h  
mov d x . [ b p + B u f f e r L e n g t h l   : l e n g t h   o f   b u f f e r  
sub d x . b x   ; d i f f e r e n c e   b e t w e e n   b u f f e r  and s t r i n g   l e n g t h s  
j c  FindStr ingNotFound  :no  match i f  s e a r c h   s t r i n g   i s  

i n c   d x   : d i f f e r e n c e   b e t w e e n   b u f f e r  a n d   s e a r c h   s t r i n g  

- F i n d s t r i n g   p r o c   n e a r  

; l o n g e r   t h a n   b u f f e r  

: l e n g t h s ,   p l u s  1 ( #  o f   p o s s i b l e   s t r i n g   s t a r t  
: l o c a t i o n s   t o   c h e c k   i n   t h e   b u f f e r )  

mov d i  .ds 
mov e s . d i  
mov d i , [ b p + B u f f e r l   : p o i n t  E S : D I  t o   b u f f e r   t o   s e a r c h   t h r u  
1 o d s b   : p u t   t h e   f i r s t   b y t e   o f   t h e   s e a r c h   s t r i n g   i n  AL 
mov b p . s i   : s e t   a s i d e   p o i n t e r   t o   t h e   s e c o n d   s e a r c h   b y t e  
d e c   b x   : d o n ' t   n e e d   t o   c o m p a r e   t h e   f i r s t   b y t e   o f   t h e  

: s t r i n g   w i t h  CMPS: w e ' l l  do i t  w i t h  SCAS 
F i n d S t r i n g L o o p :  

mov c x . d x   : p u t   r e m a i n i n g   b u f f e r   s e a r c h   l e n g t h   i n  C X  
r e p n z   s c a s b   : s c a n   f o r   t h e   f i r s t   b y t e   o f   t h e   s t r i n g  
j n z  F indSt r ingNotFound  :no t   found,  s o  t he re ' s   no   ma tch  

: found.  s o  we have a p o t e n t i a l   m a t c h - c h e c k   t h e  
; r e s t   o f   t h i s   c a n d i d a t e   l o c a t i o n  

push d i  :remember t h e   a d d r e s s   o f   t h e   n e x t   b y t e   t o   s c a n  
mov d x . c x   ; s e t   a s i d e   t h e   r e m a i n i n g   l e n g t h   t o   s e a r c h   i n  

mov s i  .bp ; p o i n t   t o   t h e   r e s t   o f   t h e   s e a r c h   s t r i n g  
mov cx.bx : s t r i n g   l e n g t h   ( m i n u s   f i r s t   b y t e )  
s h r   c x . 1  : c o n v e r t   t o   w o r d   f o r   f a s t e r   s e a r c h  
j n c   F i n d S t r i n g W o r d  :do  word  search i f  no  odd  byte 
cmpsb ;compare  the  odd  byte 
j n z   F i n d S t r i n g N o M a t c h  ;odd by te   doesn ' t   ma tch ,  so we 

: t h e   b u f f e r  

; h a v e n ' t   f o u n d   t h e   s e a r c h   s t r i n g   h e r e  
F indSt r ingWord :  

j cxz   F indSt r ingFound  ; tes t   whether   we 've   a l ready   checked 
: t h e   w h o l e   s t r i n g :  i f  s o .  t h i s   i s  a match 
: b y t e s   l o n g :  i f  s o .  we've  found a match 

repz  cmpsw : c h e c k   t h e   r e s t   o f   t h e   s t r i n g  a word a t  a t i m e  
j z  F indSt r ingFound ; i t ' s  a match 

pop d i  ; g e t   b a c k   p o i n t e r   t o   t h e   n e x t   b y t e   t o   s c a n  
and  dx.dx : i s   t h e r e   a n y t h i n g   l e f t   t o   c h e c k ?  
j n z   F i n d S t r i n g L o o p  : y e s - c h e c k   n e x t   b y t e  

sub  ax.ax ; r e t u r n  a NULL p o i n t e r   i n d i c a t i n g   t h a t   t h e  
jmp  F indStr ingDone : s t r i n g  was n o t   f o u n d  

F indSt r ingNoMatch :  

F indSt r ingNotFound:  
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FindSt r ingFound:  
pop  ax ; p o i n t   t o   t h e   b u f f e r   l o c a t i o n   a t   w h i c h   t h e  
dec  ax ; s t r i n g  was f o u n d   ( e a r l i e r  we pushed  the  

: a d d r e s s   o f   t h e   b y t e   a f t e r   t h e   s t a r t   o f   t h e  
; p o t e n t i a l   m a t c h )  

F indSt r ingDone:  
pop d i   : r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
pop s i  
p o p   b p   ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

- F i n d s t r i n g   e n d p  
end 

LISTING 9.2 L9-2.ASM 
; Searches a t e x t   b u f f e r   f o r  a t e x t   s t r i n g .  Uses REPNZ SCASB t o  scan 
; t h e   b u f f e r   f o r   l o c a t i o n s   t h a t   m a t c h  a s p e c i f i e d   c h a r a c t e r   o f   t h e  
; s e a r c h e d - f o r   s t r i n g ,   t h e n   u s e s  REPZ CMPS t o  check f u l l y   o n l y   t h o s e  
; l o c a t i o n s   t h a t  REPNZ SCASB has i d e n t i f i e d  as p o t e n t i a l   m a t c h e s .  

: C s m a l l   m o d e l - c a l l a b l e   a s :  
; uns igned   cha r  * F i n d S t r i n g ( u n s i g n e d   c h a r  * B u f f e r ,  
: u n s i g n e d   i n t   B u f f e r L e n g t h .   u n s i g n e d   c h a r  * S e a r c h s t r i n g .  
; u n s i g n e d   i n t   S e a r c h S t r i n g L e n g t h .  
; u n s i g n e d   i n t   S c a n C h a r O f f s e t ) ;  

; Returns  a p o i n t e r  t o  t h e   f i r s t  match f o r   S e a r c h s t r i n g   i n   B u f f e r . o r  
: a NULL p o i n t e r  i f  no match i s  f o u n d .   B u f f e r   s h o u l d   n o t   s t a r t   a t  
: o f f s e t  0 i n   t h e   d a t a  segment t o   a v o i d   c o n f u s i n g  a m a t c h   a t  0 w i t h  
; n o  match  found. 
Parms s t r u c  

B u f f e r  dw ? 
B u f f e r L e n g t h  
S e a r c h s t r i n g  dw ? ; p o i n t e r   t o   s t r i n g   f o r   w h i c h   t o   s e a r c h  
SearchSt r ingLength  dw ? 
ScanCharOf fse t  dw ? ; o f f s e t   i n   s t r i n g   o f   c h a r a c t e r   f o r  

Parms  ends 

dw 2 d u p ( ? )  ;pushed  BP/return  address 

dw ? ; l e n g t h   o f   b u f f e r   t o   s e a r c h  
; p o i n t e r   t o   b u f f e r   t o   s e a r c h  

; l e n g t h   o f   s t r i n g   f o r   w h i c h   t o   s e a r c h  

; w h i c h   t o   s c a n  

.model  smal 1 

.code 
p u b l i c   - F i n d s t r i n g  

p u s h   b p   : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; p o i n t   t o   o u r   s t a c k   f r a m e  
push s i   ; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
push d i  
c l  d  :make s t r i n g   i n s t r u c t i o n s   i n c r e m e n t   p o i n t e r s  
mov s i . [ b p + S e a r c h S t r i n g ]   ; p o i n t e r   t o   s t r i n g   t o   s e a r c h   f o r  
mov cx.[bp+SearchStringLengthl ; l e n g t h   o f   s t r i n g  
j cxz   F indS t r i ngNo tFound  ;no match i f  s t r i n g   i s  0 l e n g t h  
mov d x . [ b p + B u f f e r L e n g t h l   ; l e n g t h   o f   b u f f e r  
sub   dx .cx   ; d i f f e rence   be tween   bu f fe r   and   sea rch  

j c  F indSt r ingNotFound ;no match i f  s e a r c h   s t r i n g   i s  
; l o n g e r   t h a n   b u f f e r  

i n c   d x  ; d i f f e r e n c e   b e t w e e n   b u f f e r   a n d   s e a r c h   s t r i n g  
; l e n g t h s ,   p l u s  1 ( #  o f   p o s s i b l e   s t r i n g   s t a r t  
; l o c a t i o n s   t o   c h e c k   i n   t h e   b u f f e r )  

- F i   n d S t r i   n g   p r o c   n e a r  

; l e n g t h s  

mov d i  .ds 
mov e s . d i  
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mov d i  , [ b p + B u f f e r l  : p o i n t  E S : D I  t o   b u f f e r   t o   s e a r c h   t h r u  
mov bx. [bp+ScanCharOf fset l  ; o f f s e t   i n   s t r i n g   o f   c h a r a c t e r  

add d i   . b x  : p o i n t  E S : D I  t o   f i r s t   b u f f e r   b y t e   t o  scan 
mov a l .Cs i+bx l  : p u t   t h e   s c a n   c h a r a c t e r   i n  AL 
i n c   b x  : s e t  BX t o   t h e   o f f s e t   b a c k   t o   t h e   s t a r t   o f   t h e  

: on  which t o  scan 

: p o t e n t i a l   f u l l   m a t c h   a f t e r  a scan  match, 
: a c c o u n t i n g   f o r   t h e   1 - b y t e   o v e r r u n   o f  
: REPNZ SCASB 

F indS t r i ngLoop :  
rnov cx .dx  : p u t   r e m a i n i n g   b u f f e r   s e a r c h   l e n g t h   i n  CX 
repnz  scasb : s c a n   f o r   t h e   s c a n   b y t e  
j nz   F indS t r i ngNo tFound  :no t   f ound ,  s o  t h e r e ' s  no match 

; found.  s o  we have a p o t e n t i a l   m a t c h - c h e c k   t h e  
: r e s t   o f   t h i s   c a n d i d a t e   l o c a t i o n  

push d i  :remember t h e   a d d r e s s   o f   t h e   n e x t   b y t e   t o   s c a n  
mov d x . c x   : s e t   a s i d e   t h e   r e m a i n i n g   l e n g t h   t o   s e a r c h   i n  

sub d i   . b x   ; p o i n t   b a c k   t o   t h e   p o t e n t i a l   s t a r t   o f   t h e  

mov s i , [ b p + S e a r c h S t r i n g l  : p o i n t   t o   t h e   s t a r t   o f   t h e   s t r i n g  
mov cx.[bp+SearchStringLengthl : s t r i n g   l e n g t h  
s h r   c x . 1  : c o n v e r t   t o   w o r d   f o r   f a s t e r   s e a r c h  
j n c   F i n d S t r i n g W o r d  :do  word  search i f  no o d d   b y t e  
cmpsb ;compare t h e  odd b y t e  
j n z   F i n d S t r i n g N o M a t c h  ;odd b y t e   d o e s n ' t   m a t c h .  so  we 

; t h e   b u f f e r  

: match i n   t h e   b u f f e r  

; h a v e n ' t   f o u n d   t h e   s e a r c h   s t r i n g   h e r e  
F indS t r i ngWord :  

j c x z   F i n d S t r i n g F o u n d  ; i f  t h e   s t r i n g   i s   o n l y  1 b y t e   l o n g ,  

repz  cmpsw ; c h e c k   t h e   r e s t   o f   t h e   s t r i n g  a word a t  a t i m e  
j z   F i n d S t r i n g F o u n d  : i t ' s  a match 

pop d i  : g e t   b a c k   p o i n t e r   t o   t h e   n e x t   b y t e   t o   s c a n  
and  dx.dx ; i s   t h e r e   a n y t h i n g   l e f t   t o   c h e c k ?  
j n z   F i n d S t r i n g L o o p  ; y e s - c h e c k   n e x t   b y t e  

sub   ax .ax   : re tu rn  a  NULL p o i n t e r   i n d i c a t i n g   t h a t   t h e  
jmp  F indSt r ingDone : s t r i n g  was n o t   f o u n d  

p o p   a x   : p o i n t   t o   t h e   b u f f e r   l o c a t i o n   a t   w h i c h   t h e  
sub  ax.bx : s t r i n g  was f o u n d   ( e a r l i e r  we pushed t h e  

: we've  found a match 

F indStr ingNoMatch:  

F indStr ingNotFound:  

F indS t r i ngFound :  

: a d d r e s s   o f   t h e   b y t e   a f t e r   t h e   s c a n   m a t c h )  
F i   n d S t r i  ngDone: 

pop d i   : r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
pop s i  
p o p   b p   ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

_ F i n d s t r i n g  endp 
end 

LISTING 9.3 19-3.C 
I* Program t o   e x e r c i s e   b u f f e r - s e a r c h   r o u t i n e s   i n   L i s t i n g s  9 . 1  & 9 . 2  * /  
#i n c l  ude < s t d i  0. h> 
# i n c l u d e   < s t r i n g . h >  

# d e f i n e  DISPLAYLLENGTH 40 
e x t e r n   u n s i g n e d   c h a r  * F i n d S t r i n g ( u n s i g n e d   c h a r  *, u n s i g n e d   i n t .  

v o i d   m a i n ( v o i d 1 :  
uns igned  char  *, u n s i g n e d   i n t .   u n s i g n e d   i n t ) ;  
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s t a t i c   u n s i g n e d   c h a r   T e s t B u f f e r C ]  - "When, i n   t h e   c o u r s e   o f  human \ 
events ,  i t  becomes n e c e s s a r y   f o r  o n e   p e o p l e   t o   d i s s o l v e   t h e  \ 
p o l i t i c a l  bands   wh ich   have  connected   them  w i th   another ,   and  to  \ 
assume  among the powers of  the  earth  the  separate and equal s t a t i o n  \ 
t o  w h i c h   t h e   l a w s   o f   n a t u r e   a n d   o f   n a t u r e ' s  God e n t i t l e   t h e m . . . " :  

v o i d   m a i n 0  { 
s t a t i c   u n s i g n e d   c h a r   T e s t S t r i n g L l  - "equa l " ;  
uns igned  char  TempBufferCDISPLAY-LENGTH+ll; 
uns igned  char   *MatchPt r :  

/ *  S e a r c h   f o r   T e s t s t r i n g  and r e p o r t   t h e   r e s u l t s  * /  
i f  ( ( M a t c h P t r  - F i n d S t r i n g ( T e s t 6 u f f e r .  

( u n s i g n e d   i n t )  s t r l e n ( T e s t 6 u f f e r ) .  T e s t s t r i n g .  
( u n s i g n e d   i n t )  s t r l e n ( T e s t S t r i n g ) .  1)) - NULL) { 

/ *  T e s t s t r i n g   w a s n ' t   f o u n d  */  
p r i n t f ( " \ " % s \ "   n o t   f o u n d \ n " ,   T e s t s t r i n g ) ;  

/ *  T e s t s t r i n g  was f o u n d .   Z e r o - t e r m i n a t e   T e m p B u f f e r ;   s t r n c p y  
won' t   do it i f  DISPLAY-LENGTH c h a r a c t e r s   a r e   c o p i e d  * /  

TempBuffer[DISPLAYLLENGTHl - 0:  
p r i n t f ( " \ " % s \ "   f o u n d .   N e x t  %d c h a r a c t e r s   a t   m a t c h : \ n \ " % s \ " \ n " ,  

1 e l s e  I 

T e s t s t r i n g .  DISPLAY-LENGTH. 
s t rncpy(TempBuf fe r .   MatchPt r ,  DISPLAY-LENGTH)): 

I 
1 

You'll notice that  in Listing 9.2 I didn't use a table of character  frequencies in En- 
glish text to determine  the character  for which to scan, but  rather let the caller make 
that choice. Each buffer of  bytes has unique characteristics, and English-letter fre- 
quency  could well be inappropriate. What if the buffer is filled with French text? 
Cyrillic? What if it isn't text that's being  searched? It  might be worthwhile for  an 
application to build a  dynamic frequency table for each buffer so that  the best scan 
character  could be chosen for  each search. Or perhaps  not, if the search isn't time- 
critical or  the buffer is small. 
The  point is that you can improve performance dramatically by understanding  the 
nature of the data with  which  you  work. (This is equally true  for high-level language 
programming, by the way.) Listing 9.2 is very similar to and only  slightly more com- 
plex than Listing 9.1; the difference lies not in elbow grease or cycle counting  but in 
the organic  integrating optimizer technology we all carry around in our heads. 

Short  Sorts 
David Stafford (recently of Borland and Borland Japan) who happens to be one of 
the best assembly language programmers I've ever met, has written a C-callable rou- 
tine that sorts an array of integers in ascending  order.  That wouldn't be particularly 
noteworthy, except  that David's routine, shown in Listing 9.4, is  exactly 25 bytes long. 
Look at  the code; you'll keep saying to yourself,  "But this doesn't  work.. .oh, yes, I 
guess it  does." As they say in the Prego spaghetti sauce ads, it's in thereand what a 
job of packing. Anyway,  David  says that  a  24byte  sort  routine  eludes  him,  and  he'd 
like  to  know if anyone can come up with one. 
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LISTING  9.4  19-4.ASM 

.-""..._".."___..."""""..""....""...""..""."""...."... 

: S o r t s  an a r r a y  o f  i n t s .  C c a l l a b l e   ( s m a l l   m o d e l ) .  2 5  b y t e s .  
; v o i d   s o r t (   i n t  num. i n t  a [ ]  1: 

; C o u r t e s y   o f   D a v i d   S t a f f o r d .  
.".."___..."_.""""..""...""....""..""...."""."".."".. 

.model m a l  1 
.code 

pub1 i c   - s o r t  

t o p :  mov 
xchg 
xchg 

cmp 
j l  

i nc 
i nc 
1 oop 

-so r t :   pop  
POP 
POP 
push 
dec 
push 
push 
j g  

r e t  

end 

dx.   Cbxl   :swap  two  ad jacent   in tegers 
d x ,  [bx+E] 
dx.  Cbxl 

dx.   Cbxl  
t o p  

bx 
bx 
t o p  

dx 

bx 
bx 

c x  

cx 
cx 

; d i d  we put   them i n  
:no.  swaD them  back 

:go t o   n e x t   i n t e g e r  

: g e t   r e t u r n   a d d r e s s  
; g e t   c o u n t  
; g e t   p o i n t e r  
: r e s t o r e   p o i n t e r  
:decrement  count 
:save  count 

t h e   r i g h t   o r d e r ?  

( e n t r y   p o i n t )  

d x   ; r e s t o r e   r e t u r n   a d d r e s s  
t o p  : i f  cx > 0 

FuII 32-Bit Division 
One of the most annoying  limitations of the x86 is that while the dividend operand 
to the DIV instruction  can  be 32 bits in size, both  the divisor and  the result  must  be 
16 bits. That's particularly annoying  in  regards to the result  because  sometimes you 
just don't know whether the ratio of the dividend to the divisor  is greater than 64K-1 or 
not-and  if  you  guess  wrong,  you get that godawful  Divide By Zero interrupt. So, what is 
one  to  do when the result  might not fit in 16 bits, or when the dividend is larger than 
32 bits? Fall back to a software division approach?  That will  work-but oh so slowly. 
There's  another  technique that's  much faster than a pure software approach,  albeit 
not so flexible. This  technique allows arbitrarily large dividends and results, but  the 
divisor is still limited to16 bits. That's not perfect, but it does solve a number of 
problems, in particular  eliminating the possibility of a Divide By Zero interrupt  from 
a too-large result. 
This  technique involves nothing  more complicated  than  breaking up  the division 
into word-sized chunks,  starting with the most significant word  of the dividend. The 
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Bit 47 Dividend Bit 0 

The most  significant  word 
is divided by the  divisor. 

I The remainder is tacked  onto 
the  front of the  next  most -1 
significant  word,  and the  result And so on... 
is divided by the  divisor. 

1 
The quotient  goes  to  the The quotient  goes  to  the 
corresponding  word of corresponding  word of 
the  full  quotient. the  full  quotient. 

Bit 47 1 1 Bit 0 

Quotient 

Fast multiword division on  the 386. 
Figure 9.3 

most significant word is divided by the divisor  (with no chance of overflow because 
there  are only 16 bits in each) ; then  the  remainder is prepended to the  next 16 bits 
of dividend, and  the process is repeated, as  shown in Figure 9.3. This process is 
equivalent  to dividing by hand,  except  that  here we stop to carry the  remainder 
manually only after  each word of the  dividend;  the  hardware divide takes care of the 
rest. Listing 9.5 shows a  function  to divide an arbitrarily  large  dividend by a 16-bit 
divisor, and Listing 9.6 shows a  sample division  of a  large  dividend.  Note  that  the 
same principle can be applied  to  handling  arbitrarily  large  dividends  in 386 native 
mode  code, but in that case the  operation can proceed  a dword, rather  than a word, 
at  a  time. 
As for  handling  signed division  with arbitrarily  large dividends, that  can be done 
easily enough by remembering  the signs of the dividend and divisor, dividing the 
absolute value  of the  dividend by the  absolute value of the divisor, and applying  the 
stored signs to  set  the proper signs for  the  quotient and remainder. There may be 
more clever ways to  produce  the  same  result, by using IDN, for  example; if you  know 
of one,  drop  me a  line c/o Coriolis Group Books. 

LISTING 9.5 L9-5.ASM 
; Div ides an a r b i t r a r i l y   l o n g   u n s i g n e d   d i v i d e n d  by a 16-b i t   uns igned  
: d i v i s o r .  C n e a r - c a l l a b l e  a s :  
: unsigned i n t   D i v ( u n s i g n e d   i n t  * Div idend,  
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i n t   D i v i d e n d L e n g t h ,   u n s i g n e d   i n t   D i v i s o r ,  
uns igned i n t  * Q u o t i e n t ) ;  

; R e t u r n s   t h e   r e m a i n d e r   o f   t h e   d i v i s i o n .  

: Tes ted  w i th  TASM 2. 

D iv idendLeng th  dw ? 

D i v i s o r  dw ? 

Q u o t i e n t  dw ? 

parms s t r u c  

D i v i d e n d  dw ? ; p o i n t e r   t o   v a l u e   t o   d i v i d e .   s t o r e d   i n   I n t e l  
; o r d e r .  w i th  l s b   a t   l o w e s t   a d d r e s s ,  msb a t  
; h ighes t .   Must   be  composed o f  an i n t e g r a l  
; number o f  words 
;# o f  b y t e s   i n   D i v i d e n d .  Must be a mu1 t i p l e  
; o f  2 
: v a l u e   b y   w h i c h   t o   d i v i d e .   M u s t   n o t   b e   z e r o ,  
: o r  a D i v i d e  By Z e r o   i n t e r r u p t  will occur  
: p o i n t e r   t o   b u f f e r   i n   w h i c h   t o   s t o r e   t h e  
: r e s u l t   o f   t h e   d i v i s i o n ,  i n  I n t e l   o r d e r .  
: The q u o t i e n t   r e t u r n e d   i s   o f   t h e  same 
; l e n g t h  as t h e   d i v i d e n d  

dw 2 dup ( ? )  ;pushed BP & r e t u r n   a d d r e s s  

Darms ends 

.model  small  

.code 
p u b l i c  - D i  v 

p u s h   b p   : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; p o i n t   t o   o u r   s t a c k   f r a m e  
push s i  
push d i  

; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

s t d   ; w e ' r e   w o r k i n g   f r o m  msb t o   l s b  
mov ax.ds 
mov e s . a x   ; f o r  STOS 
mov cx. [bp+Div idendLength]  
sub  cx.2 
mov s i   . [ b p + D i v i d e n d l  
add s i   , c x   ; p o i n t   t o   t h e   l a s t   w o r d   o f   t h e   d i v i d e n d  

mov d i  , [bp+Ouot ient ]  
add d i   . c x   ; p o i n t   t o   t h e   l a s t   w o r d   o f   t h e   q u o t i e n t  

mov b x . [ b p + D i v i s o r l  
s h r   c x , l  
i n c   c x  ;# o f  words t o  process 
sub  dx.dx  :convert  i n i t i a l   d i v i s o r  word t o  a 3 2 - b i t  

- D i v   p r o c   n e a r  

; ( t h e   m o s t   s i g n i f i c a n t   w o r d )  

; b u f f e r   ( t h e  most s i g n i f i c a n t   w o r d )  

; v a l u e   f o r  D I V  
DivLoop: 

1 odsw ; g e t   n e x t   m o s t   s i g n i f i c a n t   w o r d   o f   d i v i s o r  
d i v   b x  
s t o s w   ; s a v e   t h i s   w o r d   o f   t h e   q u o t i e n t  

:DX c o n t a i n s   t h e   r e m a i n d e r   a t   t h i s   o o i n t .  

1 oop D i  vLoop 
mov ax,dx 

c l  d 
pop d i  
pop s i  
POP bP 

ready t o  prepend t o   t h e   n e x t   d i v i i o r   w o r d  

r e t u r n   t h e   r e m a i n d e r  

r e s t o r e   d e f a u l t   D i r e c t i o n   f l a g   s e t t i n g  
r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
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r e t  

end 
-Div  endp 

LISTING 9.6 19-6.C 
/*  Sample  use o f   D i v   f u n c t i o n   t o   p e r f o r m   d i v i s i o n  when t h e   r e s u l t  

d o e s n ' t  f i t  i n  16 b i t s  * /  

# i n c l u d e   < s t d i o . h >  

e x t e r n   u n s i g n e d   i n t   D i v ( u n s i g n e d   i n t  * D i v i d e n d ,  
i n t   D i v i d e n d L e n g t h .   u n s i g n e d   i n t   D i v i s o r ,  
u n s i g n e d   i n t  * Q u o t i e n t ) ;  

m a i n 0  { 
u n s i g n e d   l o n g  m, i - 0x20000001; 
u n s i g n e d   i n t  k .  j = 0x10; 

k - D i v ( ( u n s i g n e d   i n t  *)&i. s i z e o f ( i ) .  j. ( u n s i g n e d   i n t   * ) & I n ) ;  
p r i n t f ( " % l u  / %u - % l u  r %u\n", i. j .  m. k ) ;  

1 

Sweet Spot Revisited 
Way back in Volume 1, Number 1 of PC TECHNIQUES, (April/May 1990) I wrote the 
very first of that magazine's HAX (#l), which extolled the virtues of placing your 
most  commonly-used automatic (stack-based) variables  within the stack's  "sweet spot," 
the  area between +127 to  -128  bytes away from BP, the stack frame  pointer. The 
reason was that  the 8088 can store addressing displacements that fall within that 
range  in  a single byte; larger displacements require  a full word  of storage, increasing 
code size  by a byte per instruction, and thereby slowing down performance  due to 
increased instruction  fetching time. 
This takes on new prominence in 386 native mode, where straying from  the sweet 
spot costs not  one,  but two or  three bytes. Where  the 8088 had two possible displace- 
ment sizes, either byte or word, on  the 386 there  are  three possible  sizes:  byte, word, 
or dword. In native mode (32-bit protected mode), however, a prefix byte is needed 
in order to use a word-sized displacement, so a variable located outside the sweet 
spot requires  either two extra bytes (an extra  displacement byte plus a prefix byte) 
or  three extra bytes (a dword  displacement  rather  than  a byte displacement).  Either 
way, instructions grow  alarmingly. 
Performance may or may not suffer from missing the sweet spot, depending  on  the 
processor, the memory  architecture, and  the  code mix. On a 486, prefix bytes often 
cost a cycle; on a 386SX, increased code size often slows performance because in- 
structions must be fetched through  the half-pint l6bi t  bus; on a 386, the effect 
depends  on  the instruction mix and  whether there's  a  cache. 

On balance, though, it b as important to keep your most-used variables in the stackb 1 sweet  spot in 386 native mode as it was on the 8088. 
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In assembly, it’s easy to control  the  organization of your stack frame.  In C, however, 
you’ll have to figure out  the allocation scheme your compiler uses to allocate auto- 
matic variables, and declare  automatics  appropriately to produce  the desired effect. 
It  can be done: I did  it  in  Turbo C some years back, and  trimmed  the size of a  pro- 
gram (admittedly, a large one) by several K-not bad, when  you consider  that the 
“sweet spot”  optimization is essentially free, with no code  reorganization,  change in 
logic, or heavy thinking involved. 

Hard-core Cycle Counting 
Next, we come to an item that cycle counters will love, especially since it involves 
apparently  incorrect  documentation on Intel’s part. According to Intel’s documents, 
all RCR and RCL instructions, which perform  rotations through  the Carry flag, as 
shown in Figure 9.4, take 9 cycles on  the 386 when working with a register operand. 
My measurements indicate that  the 9-cycle execution time almost holds true for multibit 
rotate-through-carries, which  I’ve timed at 8 cycles apiece;  for  example, RCR  AX,CL 
takes 8 cycles on my 386, as does RCL DX,2. Contrast  that with ROR and ROL, which 
can  rotate  the  contents of a register any number of bits in just 3 cycles. 
However, rotating by one bit through  the Carry flag does not take 9 cycles, contrary  to 
Intel’s 80386 Programmer’s Refwence Manual, or even 8 cycles. In fact, RCR reg,l and 

I 

-”+Ll”- car,,, Bit 15 AX Bit 0 

RCR AX, 1 

car,,, D“+- Bit 15 
AX Bit 0 

RCL AX, 1 

AX 
ROR AX, 1 

car,,, cl“+ Bit 15 
AX Bit 0 

ROL AX, 1 

Performing  rotate instructions using the Carvflag. 
Figure 9.4 
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RCL reg1 take 3 cycles, just like ROR, ROL, SHR, and SHL. At least, that’s how  fast 
they run  on my 386, and I very much  doubt  that you’ll find  different  execution times 
on  other 386s. (Please let  me know if  you do, though!) 
Interestingly, according to Intel’s i486 Microprocessor  Programmer’s Reference Manual, 
the 486 can RCR or RCL a register by one bit in 3 cycles, but takes between 8 and 30 
cycles to perform a multibit register RCR or RCL! 
No great lesson here,  just a caution to be leery of multibit RCR and RCL when 
performance matters-and to take cycle-time documentation with a grain of salt. 

Hardwired Far Jumps 
Did  you  ever wonder how to code a far jump to an absolute address in assembly 
language? Probably not,  but if you  ever do, you’re going to be glad for this next  item, 
because the obvious solution doesn’t work. You might  think all it would  take to jump 
to, say, 1000:5  would be JMP FAR PTR 1000:5, but you’d be wrong. That won’t  even 
assemble. You might  then  think to construct in memory  a  far pointer containing 
1000:5,  as in the following: 

Ptr dd ? 

mov word p t r   C P t r l . 5  
mov word p t r  CPtr+E].lDOOh 
jmp CPtrl 

That will work, but  at a price in performance.  On  an 8088, JMP DWORD PTR [ m m ]  
(an indirect far jump) takes at least 37 cycles; JMP DWORD PTR label (a direct  far 
jump) takes only 15 cycles (plus, almost certainly, some cycles for  instruction fetch- 
ing).  On a 386, an indirect  far jump is documented to take at least 43 cycles in  real 
mode  (31 in protected mode); a  direct  far jump is documented to take at least 12 
cycles, about  three times  faster. In  truth,  the difference between those two  is no- 
where near that big; the fastest I’ve measured  for a direct far jump is 21 cycles, and 
I’ve measured  indirect farjumps as  fast  as 30 cycles, so direct is  still  faster, but  not by 
so much. (Oh, those cycle-time documentation blues!) Also, a  direct  far jump is 
documented to  take at least 27 cycles in  protected  mode; why the big difference in 
protected  mode,  I have no idea. 
At any rate, to return to our original problem of jumping to  1000:5: Although an 
indirect  far jump will work, a  direct  far jump is  still preferable. 
Listing 9.7 shows a short  program  that  performs  a  direct  far call  to  1000:5. (Don’t 
run it, unless you want to crash your system!) It  does this by creating  a  dummy seg- 
ment at 1000H, so that the label FarLabel can be created with the desired far  attribute 
at  the  proper location. (Segments created with “AT” don’t cause the generation of 
any actual bytes or  the allocation of  any memory; they’re just templates.) It’s a little 
kludgey, but  at least it does work. There may be a better solution; if you have one, 
pass it  along. 
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LISTING 9.7  19-7.ASM 
: Program t o  p e r f o r m  a d i r e c t  far jump t o  address 1000:5. 
: *** Do n o t   r u n   t h i s   p r o g r a m !  I t ‘ s  j u s t  an  example o f  how *** 
: *** t o   b u i l d  a d i r e c t   f a r  jump t o  an abso lu te   add ress  *** 

: T e s t e d   w i t h  TASM 2 and MASM 5 .  

FarSeg  segment a t  OlOOOh 

FarLabe l   l abe l  far 
FarSeg  ends 

o r g  5 

.model  smal  1 

.code 

jmp  FarLabel 
end s t a r t  

s t a r t :  

By the way,  if you’re wondering how I figured this out, I merely applied my good 
friend  Dan Illowsky’s long-standing rule  for  dealing with MASM: 
If the obvious doesn’t work (and it usually doesn’t),  just try everything you can think 
of, no matter how ridiculous, until you find  something  that does-a rule with plenty 
of history on its side. 

Setting 32-Bit Registers:  Time  versus Space 
To finish up this chapter, consider these two items. First, in 32-bit protected  mode, 

sub  eax.eax 
i n c  eax 

takes 4 cycles  to execute, but is only 3 bytes long, while 

mov eax.1 

takes  only 2 cycles to execute, but is 5 bytes long (because native mode constants are 
dwords and  the MOV instruction doesn’t sign-extend). Both code  fragments  are 
ways to set EAX to 1 (although  the first  affects the flags and  the  second doesn’t) ; this 
is a classic trade-off of speed  for space. Second, 

o r   e b x . - 1  

takes 2 cycles  to execute and is 3 bytes long, while 

mov ebx. -1 

takes 2 cycles to execute and is 5 bytes long.  Both  instructions set EBX to -1; this is a 
classic  trade-off  of-gee,  it’s not a trade-off at all, is it? OR is a better way to set  a 32- 
bit register to  all  1-bits, just as SUB or XOR is a better way to set a register to all  0-bits. 
Who woulda thunk it? Just goes to  show  how the 32-bit displacements and constants 
of 386 native mode  change  the familiar landscape of 80x86 optimization. 
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Be warned,  though,  that I’ve found OR, AND,  ADD, and  the like to be a cycle  slower 
than MOV when working with immediate  operands on the 386 under some  circum- 
stances,  for  reasons that  thus far escape me. This just  reinforces  the first rule of 
optimization: Measure your code  in  action,  and  place  not your trust  in  documented 
cycle  times. 
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how working quickly can bring execution to a crawl



It goes without saying that  pattern matching is good; more  than  that, it’s a large part of 
what we are,  and, generally, the faster we are  at it, the better. Not  always, though. 
Sometimes  insufficient information really  is insufficient, and, in our haste  to get the 
heady rush of coming up with a solution, incorrect  or  less-thanaptimal conclusions 
are  reached, as anyone  who  has  ever done  the Tims Sunday  crossword will attest. Still, 
my grandfather does that puzzle  every  Sunday in  ink. What’s  his secret? Patience and 
discipline. He never  fills a word  in until he’s confirmed it  in  his head via intersecting 
words, no matter how strong  the urge may be to put  something down  where he can  see 
it and feel like  he’s getting somewhere. 
There’s  a surprisingly close parallel to programming  here.  Programming is certainly 
a  sort of pattern  matching in the sense I’ve described above, and, as  with  crossword 
puzzles,  following  your programming instincts too quickly  can  be a liability.  For  many 
programmers, myself included, there’s a  strong  urge to find  a workable approach to 
a  particular  problem and start  coding  it right now, what some people call “hacking”  a 
program. Going with the first thing your programming  pattern  matcher comes up 
with can be a  lot of fun; there’s instant gratification and a  feeling of unbounded 
creativity.  Personally,  I’ve  always hungered to get results from my work  as soon as 
possible; I gravitated toward graphics  for its instant and very  visible gratification. 
Over time, however,  I’ve learned  patience. 

I t e  come to spend an increasingly large portion of my time choosing algorithms, 
designing, and simply giving my  mind quiet time in which to work on problems and 
come up with non-obvious approaches before coding; and I’ve found that the extra 
time  up front more  than pays  for itseIfin both decreased coding time  and superior 
programs. 

In this chapter, I’m going to walk  you through  a simple but illustrative  case  history 
that nicely points up  the wisdom  of delaying gratification when faced with program- 
ming  problems, so that your mind has time to chew on  the  problems  from other 
angles. The alternative solutions you find by doing this may  seem  obvious, once you’ve 
come up with them.  They may not even differ greatly from your initial solutions. 
Often, however,  they will be much better-and  you’ll  never  even  have the  chance to 
decide  whether they’re better or  not if  you take the first thing  that comes into your 
head and  run with it. 

The  Case  for  Delayed  Gratification 
Once  upon  a time, I set out to read AZgrnzthm, by Robert Sedgewick  (Addison-Wesley) , 
which turned  out to  be a wonderful,  stimulating, and most  useful  book, one that I rec- 
ommend highly. My story,  however,  involves  only  what happened in the first 12 pages, for 
it was in  those  pages that Sedgewick  discussed  Euclid’s algorithm. 

1 92 Chapter 10 



Euclid’s algorithm (discovered by Euclid, of Euclidean geometry fame, a very long 
time ago, way back when computers still used core memory) is a straightforward 
algorithm that solves one of the simplest problems imaginable: finding the greatest 
common  integer divisor (GCD) of two positive integers. Sedgewick points out  that 
this is useful for  reducing  a fraction to its lowest terms. I’m sure it’s useful for  other 
things, as  well, although none spring to mind. (A long time ago, I wrote an article 
about optimizing a bit  of code that wasn’t  even  vaguely  time-critical, and got swamped 
with letters telling me so. I knew it wasn’t  time-critical; it was just a  good example. So 
for now,  close your eyes and imagine that  finding  the GCD is not only necessary but 
must also be done as  quickly  as possible, because it’s perfect  for  the  point I want to 
make here  and now. Okay?) 
The problem  at  hand,  then, is simply  this: Find the largest integer value that evenly 
divides two arbitrary positive integers. That’s all there is to it. So warm up your pat- 
tern matchers.. .and go! 

The Brute-Force  Syndrome 
I have a funny feeling that you’d already figured out how to find  the GCD before I 
even  said “go.” That’s what I did when reading Algorithms; before  I  read another 
word, I had to figure it out for myself. Programmers are like that; give them  a  prob- 
lem and their eyes immediately glaze  over  as  they  try to solve it  before you’ve  even 
shut your mouth.  That  sort of instant response can certainly be  impressive, but it can 
backfire, too, as it did in my case. 
You see, I fell  victim to a  common  programming pitfall, the “brute-force” syndrome. 
The basis of this syndrome is that  there  are many problems that have  obvious, brute- 
force solutions-with one small  drawback. The drawback  is that if you  were  to try to 
apply a brute-force solution by hand-that  is,  work a single problem out with pencil 
and  paper  or  a calculator-it  would generally require  that you  have the patience and 
discipline to work on  the problem for approximately seven hundred years, not count- 
ing eating and sleeping, in order to get an answer. Finding all the  prime  numbers 
less than 1,000,000 is a  good example; just divide each  number  up to 1,000,000 by 
every  lesser number,  and see  what’s left standing. For  most of the history of human- 
kind,  people were forced  to  think of cleverer  solutions,  such as the Sieve of 
Eratosthenes (we’d have been in big trouble if the  ancient Greeks had  had comput- 
ers), mainly because after  about five minutes of brute force-type work, people’s 
attention gets diverted to other  important matters, such as  how far a  paper  airplane 
will fly from  a second-story window. 
Not so nowadays, though.  Computers love boring work; they’re very patient and 
disciplined, and, besides, one  human year = seven dog years = two zillion computer 
years. So when  we’re  faced  with a problem that has an obvious but exceedingly lengthy 
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solution, we’re apt to say, “Ah, let  the  computer do that, it’s fast,” and go back to 
making paper  airplanes.  Unfortunately,  brute-force  solutions  tend  to  be slow  even 
when performed by modern-day microcomputers, which are  capable of several MIPS 
except when I’m late  for an  appointment  and want to finish a  compile and  run  just 
one more test before I leave, in which  case the crystal in my computer is apparently 
designed  to automatically revert  to 1 Hz.) 
The solution that I instantly  came up with to finding  the GCD is about as brute- force 
as  you can get: Divide both  the  larger  integer  (iL)  and  the smaller integer (is) by every 
integer equal to or less than  the smaller integer, until  a  number is found  that divides 
both evenly,  as  shown in Figure  10.1.  This  works, but it’s a lousy solution,  requiring as 
many  as  iS*2  divisions; uery expensive,  especially for large values  of is. For example, 
finding  the GCD of  30,001 and 30,002  would require 60,002  divisions,  which alone, 
disregarding tests and branches, would  take about 2 seconds on an 8088, and  more 
than 50  milliseconds  even on  a 25 MHz 486-a very long time in computer years, and 
not insignificant in human years either. 
Listing 10.1 is an  implementation of the  brute-force  approach  to CCD calculation. 
Table  10.1  shows  how long  it takes this  approach to find  the GCD for several integer 
pairs. As expected,  performance is extremely poor when is is large. 
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LISTING 10.1 11 0- 1 .C 
I* F i n d s   a n d   r e t u r n s   t h e   g r e a t e s t  common d i v i s o r  o f  t w o   p o s i t i v e  

i n t e g e r s .  Works  by t r y i n g   e v e r y   i n t e g r a l   d i v i s o r   b e t w e e n   t h e  
s m a l l e r   o f   t h e   t w o   i n t e g e r s   a n d  1. u n t i l  a d i v i s o r   t h a t   d i v i d e s  
b o t h   i n t e g e r s   e v e n l y   i s   f o u n d .   A l l  C c o d e   t e s t e d   w i t h   M i c r o s o f t  
a n d   B o r l a n d   c o m p i l e r s . * /  

u n s i g n e d   i n t   g c d ( u n s i g n e d   i n t   i n t l .   u n s i g n e d   i n t   i n t 2 )  { 
u n s i g n e d   i n t   t e m p .   t r i a l - d i v i s o r ;  
/ *  Swap i f  n e c e s s a r y   t o  make s u r e   t h a t   i n t l  >= i n t 2  * I  
i f  ( i n t l  < i n t 2 )  { 

temp = i n t l ;  
i n t l  = i n t 2 ;  
i n t 2  - temp; 
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I* Now j u s t   t r y   e v e r y   d i v i s o r   f r o m   i n t 2  on down, u n t i l  a common 
d i v i s o r   i s   f o u n d .   T h i s   c a n   n e v e r  be  an i n f i n i t e   l o o p   b e c a u s e  
1 d i v i d e s   e v e r y t h i n g   e v e n l y  *I 

f o r   ( t r i a l - d i v i s o r  - i n t 2 ;   ( ( i n t l  X t r i a l - d i v i s o r )  !- 0) I I 
( ( i n t 2  X t r i a l - d i v i s o r )  !- 0); t r i a l - d i v i s o r - )  

r e t u r n ( t r i a 1 L d i v i s o r ) ;  
I 

Wasted Breakthroughs 
Sedgewick's first solution to the GCD problem was pretty much  the  one I came up 
with. He  then  pointed  out  that  the GCD of  iL and is is the same  as the GCD  of iLiS 
and is. This was obvious (once Sedgewick pointed  it  out); by the very nature of 
division, any number that divides  iL  evenly nL times and is evenly nS times must 
divide iL-iS  evenly nLnS times.  Given that insight, I immediately designed a new, 
faster approach, shown in Listing 10.2. 

LISTING 10.2 11 0-2.C 
I* F i n d s   a n d   r e t u r n s   t h e   g r e a t e s t  common d i v i s o r   o f   t w o   p o s i t i v e  

i n t e g e r s .  Works  by s u b t r a c t i n g   t h e   s m a l l e r   i n t e g e r   f r o m   t h e  
l a r g e r   i n t e g e r   u n t i l   e i t h e r   t h e   v a l u e s   m a t c h   ( i n   w h i c h   c a s e  
t h a t ' s   t h e   g c d ) ,   o r   t h e   l a r g e r   i n t e g e r  becomes t h e   s m a l l e r   o f  
t h e   t w o ,   i n   w h i c h   c a s e   t h e   t w o   i n t e g e r s  swap r o l e s  and t h e  
s u b t r a c t i o n   p r o c e s s   c o n t i n u e s .  * /  

u n s i g n e d   i n t   g c d ( u n s i g n e d   i n t   i n t l .   u n s i g n e d   i n t   i n t 2 )  I 
u n s i g n e d   i n t   t e m p ;  
I* I f  t h e   t w o   i n t e g e r s   a r e   t h e  same, t h a t ' s   t h e   g c d   a n d   w e ' r e  

done *I  
i f  ( i n t l  - i n t 2 )  I 

1 
r e t u r n ( i n t 1 ) ;  

/ *  Swap i f  n e c e s s a r y   t o  make s u r e   t h a t   i n t l  >- i n t i !  * /  
i f  ( i n t l  < i n t 2 )  { 

temp - i n t l :  
i n t l  - i n t 2 ;  
i n t 2  - temp; 

1 

I* S u b t r a c t   i n t 2   f r o m   i n t l   u n t i l   i n t l   i s  no l o n g e r   t h e   l a r g e r   o f  

do ( 

1 w h i l e   ( i n t l  > i n t i ! ) :  
I* Now r e c u r s i v e l y   c a l l   t h i s   f u n c t i o n   t o   c o n t i n u e   t h e   p r o c e s s  * /  
r e t u r n ( g c d ( i n t 1 ,   i n t 2 ) ) ;  

t h e   t w o  *I  

i n t l  - -  i n t i ? ;  

} 

Listing 10.2 repeatedly subtracts is from iL until iL becomes less than  or equal to is. 
If  iL becomes equal to is, then that's the GCD; alternatively, if  iL becomes less than 
is, iL and is switch  values, and  the process is repeated, as  shown in Figure 10.2. The 
number of iterations this approach  requires relative to Listing  10.1 depends heavily 
on  the values  of  iL and is, so it's not always faster, but, as  Table 10.1 indicates, Listing 
10.2  is generally much better  code. 
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Listing  10.2  is a far graver  misstep than Listing  10.1, for all that it’s  faster.  Listing  10.1 
is  obviously a hacked-up, brute-force approach; no  one could mistake  it for anything 
else. It could be  speeded up in any of a number of ways with a little thought. (Simply 
skipping testing  all the divisors  between is and iS/2, not inclusive,  would cut  the 
worst-case  time in half, for example; that’s not a particularly good optimization, but it 
illustrates  how  easily  Listing 10.1 can be improved.) Listing 10.1 is a hack job, crying 
out for inspiration. 
Listing 10.2, on  the  other  hand, has gotten  the inspiration-and  largely  wasted it 
through haste. Had Sedgewick not told me otherwise, I  might well have  assumed 
that Listing  10.2 was optimized, a mistake I would  never  have made with  Listing  10.1. 
I  experienced a conceptual  breakthrough when I understood Sedgewick’s point: A 
smaller number can  be subtracted from a larger number without  affecting their GCD, 
thereby inexpensively reducing  the scale  of the  problem.  And, in my hurry  to make 
this breakthrough reality, I missed  its  full scope. As Sedgewick says on  the very next 

Patient Coding, Faster Code 197 



page, the  number that one gets by subtracting is from iL until iL  is  less than is is 
precisely the same as the  remainder  that  one gets by dividing iL  by i s a g a i n ,  this is 
inherent in the  nature of  division-and that is the basis for Euclid’s algorithm, shown 
in Figure 10.3. Listing 10.3 is an  implementation of  Euclid’s algorithm. 

LISTING  10.3  11 0-3.C 
/*  F i n d s   a n d   r e t u r n s   t h e   g r e a t e s t  common d i v i s o r   o f   t w o   i n t e g e r s .  

Uses E u c l i d ’ s   a l g o r i t h m :   d i v i d e s   t h e   l a r g e r   i n t e g e r   b y   t h e  
s m a l l e r ;  i f  t h e   r e m a i n d e r  i s  0. t h e   s m a l l e r   i n t e g e r   i s   t h e  GCD, 
o t h e r w i s e   t h e   s m a l l e r   i n t e g e r  becomes t h e   l a r g e r   i n t e g e r ,   t h e  
rema inder  becomes t h e   s m a l l e r   i n t e g e r ,  and t h e   p r o c e s s   i s  
repea ted .  *I 

s t a t i c   u n s i g n e d   i n t   g c d - r e c u r s ( u n s i g n e d   i n t .   u n s i g n e d   i n t ) ;  

u n s i g n e d   i n t   g c d ( u n s i g n e d   i n t   i n t l .   u n s i g n e d   i n t   i n t 2 )  { 
u n s i g n e d   i n t   t e m p ;  
/ *  

i f  

1 
/ *  
i f  

1 

I* 

I f  t h e   t w o   i n t e g e r s   a r e   t h e  same, t h a t ’ s   t h e  GCO and  we’ re 
done *I  
( i n t l  - i n t 2 )  { 
r e t u r n ( i n t 1 ) ;  

Swap i f  n e c e s s a r y   t o  make s u r e   t h a t   i n t l  >- i n t 2  * /  
( i n t l  < i n t 2 )  { 
temp - i n t l ;  
i n t l  - i n t 2 ;  
i n t 2  - temp; 

Now c a l l   t h e   r e c u r s i v e   f o r m  of  t h e   f u n c t i o n ,   w h i c h  assumes 
t h a t   t h e   f i r s t   D a r a m e t e r   i s   t h e   l a r g e r  o f  t h e   t w o  *I  

1 

s t a t i c   u n s i g n e d   i n t   g c d - r e c u r s ( u n s i g n e d   i n t   l a r g e r - i n t .  

I 

r e t u r n ( g c d - r e c u r s ( ; n t l .   i n t 2 ) ) ;  

u n s i g n e d   i n t   s m a l l e r - i n t )  

i n t  temp; 

/ *  I f  t h e   r e m a i n d e r   o f   l a r g e r - i n t   d i v i d e d   b y   s m a l l e r - i n t   i s  0 .  

i f  ( ( t e m p  - l a r g e r - i n t  % s m a l l e r - i n t )  - 0) { 
1 
/*  Make s m a l l e r - i n t   t h e   l a r g e r   i n t e g e r   a n d   t h e   r e m a i n d e r   t h e  

s m a l l e r   i n t e g e r ,  and c a l l   t h i s   f u n c t i o n   r e c u r s i v e l y   t o  
c o n t i n u e   t h e   p r o c e s s  *I  

t h e n   s m a l l e r - i n t   i s   t h e   g c d  */ 

r e t u r n ( s m a 1 l e r - i n t ) ;  

1 
return(gcd-recurs(smaller-int, t e m p ) ) ;  

As you can see from Table 10.1, Euclid’s algorithm is superior, especially for large 
numbers  (and imagine if  we were working with large longs.?. 

Had I been  implementing GCD determination  without Sedgewicks help, I would P surely not  have settledfor Listing I O .  I-but I might well  have  ended  up  with  Listing 
10.2 in my  enthusiasm over the “brilliant” discovery of subtracting the lesser 
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number  from  the  greater: In a commercial  product, my lack of patience  and disci- 
pline could  have  been costly indeed. 

Give your mind time and space to wander around  the edges of important program- 
ming problems before you settle on any one approach. I titled this  book’s first chapter 
“The Best Optimizer Is between Your Ears,” and that’s still true; what’s  even more 
true is that the optimizer between your ears does its best work not  at  the implemen- 
tation stage, but  at  the very beginning, when you  try  to imagine how what  you  want 
to do  and what a  computer is capable of doing can best be brought together. 

Recursion 
Euclid’s algorithm lends itself to recursion beautifully, so much so that an imple- 
mentation like  Listing 10.3 comes almost without thought. Again, though, take a 
moment to stop and consider what’s  really going  on,  at  the assembly language level, 
in Listing 10.3. There’s recursion and  then there’s recursion; code recursion and 
data recursion, to  be exact. Listing 10.3 is code recursion-recursion through calls- 
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the sort most often used because it is conceptually simplest.  However, code recur- 
sion tends to be slow because it pushes parameters and calls a subroutine  for every 
iteration. Listing 10.4, which  uses data recursion, is much faster and  no  more com- 
plicated than Listing  10.3.  Actually,  you could just say that Listing 10.4 uses a loop 
and ignore any mention of recursion; conceptually, though, Listing  10.4 performs 
the same recursive operations  that Listing 10.3 does. 

LISTING 10.4 11  0-4.C 
I* F i n d s   a n d   r e t u r n s   t h e   g r e a t e s t  common d i v i s o r   o f   t w o   i n t e g e r s .  

Uses E u c l i d ' s   a l g o r i t h m :   d i v i d e s   t h e   l a r g e r   i n t e g e r   b y   t h e  
s m a l l e r ;  i f  t h e   r e m a i n d e r  i s  0 .  t h e   s m a l l e r   i n t e g e r   i s   t h e  GCD. 
o t h e r w i s e   t h e   s m a l l e r   i n t e g e r  becomes t h e   l a r g e r   i n t e g e r ,   t h e  
r e m a i n d e r   b e c o m e s   t h e   s m a l l e r   i n t e g e r ,   a n d   t h e   p r o c e s s  i s  
r e p e a t e d .   A v o i d s   c o d e   r e c u r s i o n .  *I  

u n s i g n e d   i n t   g c d ( u n s i g n e d   i n t   i n t l .   u n s i g n e d   i n t   i n t 2 )  I 
u n s i g n e d   i n t   t e m p ;  

I* Swap i f  necessary  t o  make s u r e   t h a t   i n t l  >- i n t 2  *I  
i f  ( i n t l  < i n t 2 )  { 

temp - i n t l ;  
i n t l  - i n t 2 ;  
i n t 2  - temp; 

1 
I* Now l o o p ,   d i v i d i n g   i n t l   b y   i n t 2  and   check ing   t he   rema inder ,  

u n t i l   t h e   r e m a i n d e r   i s  0. A t  each   s tep ,  i f  t h e   r e m a i n d e r   i s n ' t  
0 ,  a s s i g n   i n t 2   t o   i n t l .  
r e p e a t  *I  

I* I f  t h e   r e m a i n d e r  o f  i 

i f  ( ( t e m p  - i n t l  % i n t 2 )  

1 
I* Make i n t 2   t h e   l a r g e r  

s m a l l e r   i n t e g e r ,   a n d  
i n t l  - i n t 2 ;  
i n t 2  - temp; 

f o r  ( : ; )  { 

t h e   g c d  *I  

r e t u r n ( i n t 2 ) ;  

1 
1 

a n d   t h e   r e m a i n d e r   t o   i n t 2 .   t h e n  

n t l   d i v i d e d   b y   i n t 2   i s  0 .  t h e n   i n t 2   i s  

- 0 )  { 

i n t e g e r   a n d   t h e   r e m a i n d e r   t h e  
r e p e a t   t h e   p r o c e s s  * /  

Patient Optimization 
At long last,  we're  ready  to  optimize GCD determination in the classic  sense.  Table 
10.1 shows the  performance of  Listing 10.4 with and without  Microsoft C/C++'s maxi- 
mum optimization, and also  shows the  performance of  Listing 10.5, an assembly 
language version  of  Listing 10.4. Sure, the optimized versions are faster than  the 
unoptimized version  of  Listing  10.4-but the gains are small compared to those real- 
ized from the higher-level  optimizations in Listings  10.2 through 10.4. 

LISTING  10.5 11 0-5.ASM 
; F i n d s   a n d   r e t u r n s   t h e   g r e a t e s t  common d i v i s o r   o f   t w o   i n t e g e r s .  
; Uses E u c l i d ' s   a l g o r i t h m :   d i v i d e s   t h e   l a r g e r   i n t e g e r   b y   t h e  
; s m a l l e r ;  i f  t h e   r e m a i n d e r   i s  0 .  t h e   s m a l l e r   i n t e g e r   i s   t h e  GCD. 
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; o t h e r w i s e   t h e   s m a l l e r   i n t e g e r  becomes t h e   l a r g e r   i n t e g e r ,   t h e  
: r e m a i n d e r   b e c o m e s   t h e   s m a l l e r   i n t e g e r ,   a n d   t h e   p r o c e s s   i s  
: repea ted .   Avo ids   code   recu rs ion .  

: C n e a r - c a l l a b l e   a s :  
: u n s i g n e d   i n t   g c d ( u n s i g n e d   i n t   i n t l .   u n s i g n e d   i n t   i n t 2 ) :  

: P a r a m e t e r   s t r u c t u r e :  
pa rms   s t ruc  

dw ? :pushed B P  
dw ? : p u s h e d   r e t u r n   a d d r e s s  

i n t l  dw ? : i n t e g e r s   f o r   w h i c h   t o   f i n d  
i n t 2  dw ? : t h e  GCD 
parms  ends 

.model  smal l  

.code 
pub1 i c -gcd 
a l i g n  2 

p u s h   b p   : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; s e t   u p   o u r   s t a c k   f r a m e  
p u s h   s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
p u s h   d i  

_gcd   p roc   nea r  

:Swap i f  n e c e s s a r y   t o  make s u r e   t h a t   i n t l  >- i n t 2  
mov a x . i n t l [ b p l  
mov b x . i n t 2 C b p l  
cmp a x . b x   : i s   i n t l  >- i n t 2 ?  
j n b   I n t s S e t   : y e s .  s o  w e ' r e   a l l   s e t  
xchg  ax.bx :no. so swap i n t l  and i n t 2  

I n t s S e t :  

: Now l o o p ,   d i v i d i n g   i n t l   b y   i n t 2  a n d   c h e c k i n g   t h e   r e m a i n d e r ,   u n t i l  
: t h e   r e m a i n d e r   i s  0 .  A t  each   s tep ,  i f  t h e   r e m a i n d e r   i s n ' t  0 .  a s s i g n  
: i n t 2   t o   i n t l ,  a n d   t h e   r e m a i n d e r   t o   i n t 2 ,   t h e n   r e p e a t .  
GCDLoop: 

; i f  t h e   r e m a i n d e r   o f   i n t l   d i v i d e d   b y  
: i n t Z   i s  0 .  t h e n   i n t 2   i s   t h e   g c d  

sub  dx.dx ; p r e p a r e   i n t l   i n  D X : A X  f o r   d i v i s i o n  
d i v   b x  ; i n t l / i n t 2 :   r e m a i n d e r   i s   i n  D X  
and  dx.dx : i s   t h e   r e m a i n d e r   z e r o ?  
j z  Done : yes .  s o  i n t 2  ( B X )  i s   t h e   g c d  

:no. so  move i n t 2   t o   i n t l  and   t he  
; r e m a i n d e r   t o   i n t 2 ,  and r e p e a t   t h e  
: process  

mov ax .bx  : i n t l  = i n t 2 :  
mov bx ,dx  : i n t 2  - rema inder   f rom D I V  

: - s t a r t   o f   l o o p   u n r o l l i n g :   t h e   a b o v e   i s   r e p e a t e d   t h r e e   t i m e s -  
sub  dx.dx ; p r e p a r e   i n t l   i n  D X : A X  f o r   d i v i s i o n  
d i v   b x  ; i n t l / i n t 2 ;   r e m a i n d e r   i s   i n  D X  
and  dx.dx : i s   t h e   r e m a i n d e r   z e r o ?  
j z  Done ;yes.  s o  i n t 2  ( B X )  i s   t h e   g c d  
mov ax.bx : i n t l  - i n t 2 ;  
mov bx .dx  : i n t 2  = rema inder   f rom D I V  

sub  dx.dx ; p r e p a r e   i n t l   i n  D X : A X  f o r   d i v i s i o n  
d i v   b x  ; i n t l / i n t 2 ;   r e m a i n d e r   i s   i n  D X  

._ 
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and  dx.dx : i s   t h e   r e m a i n d e r   z e r o ?  
j z  Done :yes .  s o  i n t 2  ( B X )  i s   t h e  gcd 
mov ax.bx : i n t l  = i n t 2 :  
mov bx.dx : i n t 2  = rema inder   f rom D I V  

sub  dx.dx : p r e p a r e   i n t l   i n  D X : A X  f o r   d i v i s i o n  
d i v   b x  : i n t l / i n t 2 :   r e m a i n d e r  i s  i n  DX 
and  dx.dx : i s   t h e   r e m a i n d e r   z e r o ?  
j z  Done :yes .  so  i n t 2  ( B X )  i s   t h e   g c d  
mov ax.bx : i n t l  = i n t 2 :  
mov bx,dx ; i n t 2  = rema inder   f rom D I V  

:-end o f   l o o p   u n r o l l i n g -  
jmp GCDLoop 

a l i g n  2 

mov a x . b x   : r e t u r n   t h e  GCD 
pop d i   : r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  
pop s i  
POP b p   : r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  
r e t  

end 

._ 

Done: 

_gcd  endp 

Assembly language optimization is pattern  matching on a local  scale.  Frankly,  it’s 
also the  sort of boring, brute-force work that  people  are lousy at; compilers could 
out-optimize you at this  level  with one pass tied behind  their back ifthey knew  as 
much  about  the  code you’re writing  as  you do, which  they don’t. 

p Design optimization-conceptual breakthroughs in understanding the relationships 
between  the needs of an application, the  nature of the data the application works 
with, and  what  the computer can do-is global pattern matching. 

Computers  are much worse at  that  sort of pattern  matching  than  humans;  computers 
have no way to  integrate vast amounts of disparate information,  much of it only 
vaguely defined or subject to  change.  People, oddly enough,  are betterat  global  opti- 
mization than at local optimization. For one thing, it’s more interesting. For another, 
it’s complex and imprecise enough  to allow intuition and inspiration, two vastly un- 
derrated programming tools,  to come to the fore. And, as I pointed out earlier, people 
tend to perform  instantaneous solutions to  even the most complex problems, while 
computers bog down in geometrically or exponentially increasing execution times. 
Oh,  it may take  days or weeks for a person to absorb  enough  information  to  be able 
to  reach a solution, and  the solution may only be near-optimal-but the solution 
itself (or, at least, each of the pieces  of the  solution) arrives in a flash. 
Those flashes are your programming  pattern  matcher  doing its job. Yourjob  is to 
give your pattern  matcher  the  opportunity  to  get to  know each  problem and  run 
through  it two or  three times, from  different angles, to see what unexpected solu- 
tions it can come up with. 
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Pull  back the reins a little. Don’t measure progress by lines of code written  today; 
measure it instead by overall progress and by quality.  Relax and listen  to that  quiet 
inner voice that provides the real breakthroughs. Stop, look, listen-and think. Not 
only will  you find  that it’s a more productive and creative way to  program-but  you’ll 
also find  that it’s more  fun. 
And think what  you could do with  all those extra  computer years! 
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New  Complications 
This chapter,  adapte  arlier book Zen of Assembly Language (1989; now out 
of print), provides an Df the 286 and 386, often  contrasting those proces- 
sors with the 8088. &t the time I originally wrote this, the 8088 was the king of 
processors, and  the $36 and 386  were the new  kids on the block. Today,  of course, all 
three processors ar6 past their primes, but many millions of each are still in use, and 
the 386 in partic@r is still well worth considering when optimizing software. 
This cha  des  an  interesting look at  the evolution of the x86 architecture, to 
a  greater  degree th$n you might  expect,  for  the x86  family came into full maturity 
with the 386; the  486hnd  the  Pentium  are really nothing  more  than faster 386s,  with 
very little in  the way of  new functionality. In contrast, the 286 added  a  number of 
instructions, respectable performance, and protected  mode to the 8088's capabili- 
ties, and  the 386 added  more instructions and a whole new set of addressing modes, 
and  brought  the x86  family into  the 32-bit  world that  represents  the  future (and, 
increasingly, the  present) of personal  computing. This chapter also provides insight 
into  the effects on optimization of the variations in processors and memory architec- 
tures that  are  common  in  the PC world. So, although the 286 and 386 no longer 
represent  the mainstream of computing, this chapter is a useful mix  of history les- 
son, x86 overview, and details on two workhorse processors that  are still in wide use. 
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Fa m i I y Matters 
While the x86  family is a large one, only a few members of the family-which in- 
cludes the 8088, 8086, 80188,  80186,  286,  386SX,  386DX, numerous  permutations 
of the 486, and now the Pentium-really matter. 
The 8088 is now  all but extinct in the PC arena.  The 8086 was used fairly  widely for  a 
while, but has now all but disappeared. The 80186 and 80188 never really caught  on 
for use in PC and  don’t  require  further discussion. 
That leaves  us  with the high-end chips: the 286, the 386SX, the 386, the 486, and  the 
Pentium. At this writing, the 386SX is fast going  the way of the 8088; people  are 
realizing that its  relatively  small  cost advantage over the 386 isn’t enough to  offset  its 
relatively large performance disadvantage. After all, the 386SX suffers from  the  same 
debilitating problem  that looms over the 8088-a too-small  bus. Internally, the 386SX 
is a 32-bit processor, but externally, it’s a 16-bit processor, a non-optimal architec- 
ture, especially for 32-bit code. 
I’m not  going to  discuss the 386SX in detail. If  you do find yourself programming  for 
the 386SX,  follow the same general rules you should follow for  the 8088:  use short 
instructions, use the registers as  heavily  as possible, and don’t  branch. In  other words, 
avoid memory, since the 386SX is by definition better  at processing data internally 
than it is at accessing  memory. 
The 486 is a world unto itself for the  purposes of optimization, and  the  Pentium is a 
universe unto itself. We’ll treat  them separately in later  chapters. 
This leaves  us  with just two processors: the 286 and  the 386. Each was the PC standard 
in its day. The 286  is no longer used in new  systems, but  there  are millions of 286- 
based systems  still in daily use. The 386 is still being used in new  systems, although 
it’s on  the downhill leg of its lifespan, and it is in even wider use than  the 286. The 
future clearly belongs to the 486 and  Pentium,  but  the 286 and 386 are still  very 
much  a  part of the present-day landscape. 

Crossing the Gulf to the 286 and the 386 
Apart from vastly improved performance,  the biggest difference between the 8088 
and the 286 and 386 (as well  as the later Intel CPUs) is that  the 286 introduced pro- 
tected mode,  and  the 386  greatly expanded  the capabilities  of protected  mode. We’re 
only going to  talk about real-mode operation of the 286 and 386  in  this book, however. 
Protected mode offers a whole  new memory management scheme, one that isn’t s u p  
ported by the 8088.  Only code specifically  written for  protected  mode can run in that 
mode; it’s an alien and hostile environment for MS-DOS programs. 
In particular, segments are different  creatures  in  protected  mode. They’re selectors-“ 
indexes into  a table of segment descriptors-rather than plain old registers, and 
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can’t  be  set  to  arbitrary values. That means  that  segments  can’t  be  used  for  tempo- 
rary storage or as part of a fast indivisible 32-bit load  from memory,  as in 

l e s  ax.dword p t r   [ L o n g V a r l  
mov dx .es  

which loads LongVar into DX:AX faster  than this: 

mov a x . w o r d   p t r  [ LongVar l  
mov d x . w o r d   p t r  [LongVar+21 

Protected  mode uses those  altered  segment registers to offer access to  a  great  deal 
more memory than  real  mode: The 286 supports  16 megabytes of  memory,  while the 
386 supports 4 gigabytes (4K megabytes) of  physical  memory and 64 terabytes (64K 
gigabytes!) of virtual memory. 
In  protected  mode, your programs generally run  under  an  operating system (OS/2, 
Unix, Windows  NT or the  like)  that  exerts  much more  control over the  computer 
than  does MS-DOS. Protected  mode  operating systems can generally run multiple 
programs simultaneously, and  the  performance of any one  program may depend  far 
less on code quality than  on how efficiently the  program uses operating system  ser- 
vices and how often and  under what circumstances the  operating system preempts 
the  program.  Protected  mode  programs  are  often mostly collections of operating 
system  calls, and  the  performance of whatever code isn’t operating-system oriented 
may depend primarily on how large  a time slice the  operating system  gives that  code 
to  run  in. 
In  short, taken as a whole, protected  mode  programming is a  different  kettle of fish 
altogether  from what  I’ve been  describing  in this book. There’s certainly a knack to 
optimizing specifically for  protected  mode  under  a given operating system.. .but it’s 
not what we’ve been  learning,  and now  is not  the time to  pursue  it  further.  In  gen- 
eral,  though,  the optimization strategies discussed in this book still hold  true  in 
protected  mode; it’s just issues specific to  protected  mode  or  a  particular  operating 
system that we won’t discuss. 

In the  Lair of the  Cycle-Eaters,  Part II 
Under  the  programming  interface, the 286 and 386 differ considerably from  the 8088. 
Nonetheless, with one exception and  one addition,  the cycle-eaters remain much the 
same on computers built around  the 286 and 386. Next, we’ll  review each of the famil- 
iar cycle-eaters I covered in Chapter 4  as they apply to the 286 and 386, and we’ll look 
at  the new member of the gang,  the  data  alignment cycle-eater. 
The  one cycle-eater that vanishes on  the 286 and 386 is the 8-bit bus cycle-eater. The 
286  is a 16-bit processor both internally and externally, and  the 386  is a 32-bit proces- 
sor both internally and externally, so the Execution  Unit/Bus  Interface  Unit size 
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mismatch  that plagues the 8088 is eliminated. Consequently, there’s no longer any 
need to use byte-sized memory variables in preference to word-sized variables, at 
least so long as  word-sized  variables start at even addresses, as  we’ll see shortly. On 
the  other  hand, access  to  byte-sized  variables  still isn’t any slowm than access to word- 
sized variables, so you can use whichever  size  suits a given  task  best. 
You might think  that the elimination of the 8-bit bus cycle-eater  would mean  that  the 
prefetch queue cycle-eater  would  also vanish, since on  the 8088 the prefetch queue 
cycle-eater is a side effect of the 8-bit bus. That would seem all the  more likely  given 
that  both  the 286 and  the 386  have larger  prefetch queues  than  the 8088 (6 bytes for 
the 286, 16 bytes for the 386) and can perform memory accesses, including instruc- 
tion fetches, in  far fewer  cycles than  the 8088. 
However, the prefetch queue cycle-eater doesn’t vanish on either  the 286 or  the 386, 
for several reasons. For one thing, branching instructions still empty the prefetch 
queue, so instruction  fetching still slows things down after most branches; when the 
prefetch queue is empty, it  doesn’t  much  matter how big it is. (Even apart  from 
emptying the prefetch queue,  branches aren’t particularly fast on  the 286 or  the 386, 
at a  minimum of  seven-plus  cycles apiece. Avoid branching whenever possible.) 
After a branch it does matter how  fast the  queue can refill, and  there we come to the 
second reason the prefetch queue cycle-eater lives on:  The 286 and 386 are so fast 
that sometimes the Execution Unit can execute  instructions faster than they can be 
fetched, even though instruction  fetching is much faster on  the 286 and 386 than  on 
the 8088. 
(All other things being  equal, too-slow instruction  fetching is more of a  problem  on 
the 286 than  on  the 386, since the 386 fetches 4 instruction bytes at  a time versus the 
2 instruction bytes fetched per memory access by the 286.  However, the 386  also 
typically runs  at least twice  as fast as the 286, meaning  that  the 386 can easily execute 
instructions faster than they can be fetched unless very high-speed memory is used.) 
The most significant reason that the prefetch queue cycle-eater not only  survives but 
prospers on  the 286 and 386,  however,  lies in the various memory  architectures used 
in  computers built around  the 286 and 386. Due to the memory  architectures, the 8- 
bit bus cycle-eater is replaced by a new form of the wait state cycle-eater:  wait states 
on accesses to normal system  memory. 

System Wait States 
The 286 and 386  were designed to lose  relatively little performance to the prefetch 
queue cycle-eater.. . when used with zero-wait-state memory: memory  that can complete 
memory accesses so rapidly that no wait states are  needed. However, true zero-wait- 
state memory is almost never used with those processors. Why? Because memory  that 
can keep up with a 286  is  fairly expensive, and memory  that can keep up with a 386 
is very expensive. Instead, computer designers use alternative memory  architectures 
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that offer more  performance  for  the dollar-but less performance overall-than 
zero-wait-state  memory. (It is possible to build zero-wait-state  systems for the 286 and 
386; it’s just so expensive that it’s rarely done.) 
The IBM AT and  true compatibles use one-wait-state memory (some AT clones use 
zero-wait-state  memory, but such clones are less common than one-wait-state AT 
clones). The 386  systems  use a wide  variety of memory  systems-including  high-speed 
caches, interleaved memory, and static-column RAM-that insert anywhere  from 0 to 
about 5 wait states (and many more if 8 or  l6bit memory expansion  cards  are  used) ; 
the exact number of  wait states inserted  at any  given time depends  on  the interac- 
tion between the  code  being  executed  and  the memory system  it’s running  on. 

The performance of most 386 memory  systems  can  vary  great&,from one  memory p access to anothel; depending on  factors such as what  data  happens to  be in the  cache 
and  which  interleaved bank and/or RAM column  was  accessed last. 

The many memory systems in use make it impossible for us to optimize  for  286/386 
computers with the precision  that’s  possible on  the 8088. Instead, we must  write code 
that  runs reasonably well under  the varying conditions found in  the 286/386 arena. 
The wait states that  occur  on most  accesses to system  memory in 286 and 386  com- 
puters mean that nearly every  access to system  memory-memory in the DOS’s normal 
640K memory area-is  slowed down. (Accesses in  computers with high-speed caches 
may be wait-state-free if the desired  data is already in the  cache,  but will certainly 
encounter wait states if the  data isn’t cached; this phenomenon  produces highly 
variable instruction  execution times.) While this is our first encounter with  system 
memory wait states, we  have run  into  a wait-state  cycle-eater before: the display adapter 
cycle-eater,  which we discussed along with the  other 8088 cycle-eaters way back in 
Chapter 4.  System memory generally has fewer  wait states per access than display 
memory. However, system memory is also accessed far  more  often  than display 
memory, so system memory wait states hurt plenty-and the place they hurt most is 
instruction  fetching. 
Consider this: The 286 can  store  an  immediate value to memory, as in MOV 
[WordVar],O, in just 3 cycles.  However, that  instruction is 6 bytes long. The 286  is 
capable of fetching 1 word  every 2 cycles;  however, the one-wait-state architecture of 
the AT stretches  that to 3 cycles. Consequently, nine cycles are  needed  to fetch the 
six instruction bytes. On  top of that, 3 cycles are  needed  to write to memory, bring- 
ing  the  total  memory  access  time  to 1 2  cycles. On  balance,  memory  access 
time-especially instruction prefetching-greatly exceeds  execution  time,  to  the 
extent  that this particular  instruction  can take up to four times as long to run as it 
does  to  execute  in  the  Execution  Unit. 
And that, my friend, is unmistakably the  prefetch queue cycle-eater. I  might add  that 
the  prefetch  queue cycle-eater is in  rare  good  form  in  the above example: A 440-1 
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ratio of instruction fetch time to execution time is in a class  with the best (or worst!) 
that’s found  on  the 8088. 
Let’s check out  the prefetch queue cycle-eater in action. Listing 11.1 times MOV 
WordVar1,O. The Zen timer reports  that  on a one-wait-state 10 MHz  286-based AT 
clone (the  computer used for all  tests in this chapter), Listing 11.1 runs in 1.27 ps 
per instruction.  That’s 12.7 cycles per instruction, just as we calculated. (That extra 
seven-tenths of a cycle comes  from DRAM refresh, which we’ll get to  shortly.) 

LISTING 1 1.1 11 1-1 .ASM 

: *** L i s t i n g  11.1 *** 

: M e a s u r e s   t h e   p e r f o r m a n c e   o f   a n   i m m e d i a t e  move t o  
: memory. i n   o r d e r   t o   d e m o n s t r a t e   t h a t   t h e   p r e f e t c h  
: q u e u e   c y c l e - e a t e r   i s   a l i v e   a n d   w e l l  on t h e  AT. 

j m p   S k i p  

even   : a lways  make s u r e   w o r d - s i z e d  memory 
: v a r i a b l e s   a r e   w o r d - a l i g n e d !  

WordVar dw 0 

S k i p :  
c a l l  ZTimerOn 
r e p t  1000 
mov CWordVarl  .O 
endm 
c a l l   Z T i m e r O f f  

What  does this mean?  It means  that, practically speaking, the 286  as used in the AT 
doesn’t have a 16-bit  bus. From a performance perspective, the 286 in an AT has two- 
thirds of a 16-bit bus (a 10.7-bit bus?), since every bus access on  an AT takes 50 
percent  longer  than it  should. A 286 running  at 10 MHz should be able to access 
memory at a maximum  rate of 1 word every  200 ns; in a 10 MHz  AT, however, that 
rate is reduced to 1 word  every  300 ns by the one-wait-state  memory. 
In short, a close  relative  of our old friend  the 8-bit  bus  cycleeater-the system memory 
wait state cycle-eater-haunts  us  still on all but zero-wait-state  286 and 386 computers, 
and that means that the prefetch queue cycleeater is  alive and well. (The system memory 
wait state cycle-eater isn’t really a new cycleeater, but  rather a variant of the  general 
wait state cycleeater, of  which the display adapter cycleeater is yet another variant.) 
While the 286 in the AT can fetch instructions much faster than can the 8088 in the 
PC, it can execute those instructions faster still. 
The picture is less clear in the 386  world since there  are so many different  memory 
architectures, but similar problems can occur  in any computer built around a 286 or 
386. The prefetch queue cycle-eater is even a factor-albeit a lesser  one-on zero- 
wait-state machines, both because branching  empties  the  queue  and because some 
instructions can outrun even  zero-wait-state instruction  fetching. (Listing 11.1 would 
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take at least 8 cycles per instruction on a  zero-wait-state AT-5 cycles longer  than the 
official execution  time.) 
To summarize: 

Memory-accessing  instructions  don’t  run  at  their  official  speeds  on  non-zero- 
wait-state  286/386  computers. 

particularly  when  non-zero-wait-state  memory is used. 

the  prefetch  queue  is  emptied. 

from  one  286/386  computer  to  another,  making  precise  optimization  impossible. 

The  prefetch  queue  cycle-eater  reduces  performance  on 286/386 computers, 

Branches  often  execute  at  less  than  their  rated  speeds  on  the  286  and  386  since 

The  extent  to  which  the  prefetch  queue  and  wait  states  affect  performance  varies 

What’s to be  learned  from all this? Several  things: 
Keep  your  instructions  short. 
Keep  it  in  the  registers;  avoid  memory,  since  memory  generally  can’t  keep  up 

Don’t  jump. 
with  the  processor. 

Of course,  those  are exactly the rules that apply to 8088 optimization as  well. Isn’t it 
convenient that  the same general  rules apply  across the  board? 

Data  Alignment 
Thanks  to its l6bit  bus, the 286 can access  word-sized memory variables just as  fast  as 
byte-sized  variables. There’s a catch, however:  That’s  only true  for word-sized  variables 
that  start at even  addresses. When the 286  is asked to  perform a  word-sized  access 
starting at  an  odd address, it actually performs two separate accesses, each of which 
fetches 1 byte, just as the 8088 does for all  word-sized  accesses. 
Figure 11.1 illustrates  this phenomenon. The conversion  of  word-sized  accesses  to odd 
addresses into double byte-sized  accesses  is transparent  to  memory-accessing  instructions; 
all  any instruction knows  is that  the requested word has  been accessed, no matter 
whether 1 word-sized  access or 2  byte-sized  accesses  were required  to accomplish it. 
The penalty for  performing a  word-sized  access starting at  an odd address is  easy to 
calculate: Two accesses take twice  as long as one access. 

In other  words,  the  effective  capacity of the 286 j .  external  data bus is  halved  when .p a  word-sized  access to  an odd  address  is  performed. 

That,  in a nutshell, is the data  alignment cycle-eater, the  one new  cycle-eater  of the 
286 and 386. (The  data alignment cycle-eater  is  a  close relative of the 8088’s 8-bit bus 
cycle-eater, but since it behaves  differently-occurring  only at odd addresses-and  is 
avoided  with  a different  workaround, we’ll consider it to be a new  cycle-eater.) 

Pushing the 286 and 386 21 3 



69 
To 

286 

0 
To 

286 

Memory - 
The 80286 reads  the  word  value 
838217 at  address 20000h with  a 2003 2o02 w 
single  word-sized  access  since  that 
word  value  starts at  an  even  address. 

Memory - 
2002 

The 80286 reads  the  word  value 
8382h at  address 1 FFFFh with two 2003 
byte-sized  accesses  since  that  word 
value  starts  at an  odd  address. 

85 

The data alignment cycle-eater: 
Figure 1 1.1 

The way to deal with the data  alignment cycle-eater  is straightforward: Don’t perform 
word-sized accesses to odd addmses on the 284 ifyou can he& it. The easiest way to  avoid the 
data alignment cycleeater is to  place the directive EVEN before each of  your  word-sized 
variables. EVEN forces the offset  of the  next byte assembled to be even by inserting 
a NOP if the  current offset is odd; consequently, you can ensure  that any  word-sized 
variable can be accessed  efficiently by the 286 simply by preceding  it with EVEN. 
Listing 11.2, which  accesses memory a word at a time with each  word  starting at  an 
odd address, runs on a 10 MHz AT clone in 1.27 ps per repetition of MOVW, or 0.64 ps 
per word-sized memory access. That’s 6plus cycles per word-sized  access,  which breaks 
down to two separate  memory accesses-3  cycles to access the high byte  of each 
word and 3 cycles to access the low  byte  of each word, the inevitable result of non- 
word-aligned word-sized memory accesses-plus a bit extra  for DRAM refresh. 
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LISTING 1 1.2 11 1 -2.ASM 

; *** L i s t i n g   1 1 . 2  *** 

; M e a s u r e s   t h e   p e r f o r m a n c e   o f   a c c e s s e s   t o   w o r d - s i z e d  
; v a r i a b l e s   t h a t   s t a r t   a t  o d d   a d d r e s s e s   ( a r e   n o t  
; w o r d - a l i g n e d ) .  

S k i p :  
push 
P O P  
mov 
mov 
mov 
c l  d 
c a l l  
r e p  
c a l l  

ds 
es 
s i . l   ; s o u r c e   a n d   d e s t i n a t i o n   a r e   t h e  same 
d i . s i  ; a n d   b o t h   a r e   n o t   w o r d - a l i g n e d  
cx .1000 ;move 1000  words 

ZTimerOn 
movsw 
ZT imerOf f  

On  the  other  hand, Listing 11.3, which is exactly the same  as Listing 11.2 save that 
the memory accesses are word-aligned (start  at even addresses),  runs  in 0.64 ps per 
repetition of MOVSW, or 0.32 ps per word-sized memory access. That’s 3 cycles per 
word-sized  access-exactly  twice  as fast as the non-word-aligned accesses of Listing 
11.2, just as  we predicted. 

LISTING 1 1.3  11 1 -3.ASM 

; *** L i s t i n g   1 1 . 3  *** 

; M e a s u r e s   t h e   p e r f o r m a n c e   o f   a c c e s s e s   t o   w o r d - s i z e d  
; v a r i a b l e s   t h a t   s t a r t   a t   e v e n   a d d r e s s e s   ( a r e   w o r d - a l i g n e d ) .  

S k i p :  
push  ds 
POP es 
sub s i . s i   ; s o u r c e   a n d   d e s t i n a t i o n   a r e   t h e  same 
mov d i . s i  ; a n d   b o t h   a r e   w o r d - a l i g n e d  
mov cx .1000 :move  1000  words 
cl d 
c a l l  ZTimerOn 
r e p  movsw 
c a l l   Z T i m e r O f f  

The  data  alignment cycle-eater has  intriguing  implications  for  speeding  up 286/386 
code.  The  expenditure of a little care  and a few  bytes to make sure  that word-sized 
variables and memory blocks are word-aligned can literally double  the  performance 
of certain  code running  on  the 286.  Even if it  doesn’t  double  performance, word 
alignment usually helps and never hurts. 

Code Alignment 
Lack  of  word alignment  can also interfere with instruction  fetching on  the 286, al- 
though  not  to  the  extent  that  it  interferes with  access to word-sized memoryvariables. 
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The 286 prefetches  instructions  a  word at a time; even if a given instruction doesn’t 
begin at  an even address, the 286  simply fetches the first byte  of that  instruction at 
the same time that it fetches the last  byte  of the previous instruction, as  shown in 
Figure 11.2, then separates the bytes internally. That means  that in most cases, in- 
structions run  just as  fast whether they’re word-aligned or not. 
There is, however, a non-word-alignment penalty on branches to odd addresses. On a 
branch to an  odd address, the 286 is only able to fetch 1 useful  byte  with the first 
instruction fetch following the  branch, as  shown in Figure 11.3. In  other words,  lack 
of word  alignment of the target instruction  for any branch effectively cuts the in- 
struction-fetching power of the 286 in half for the first instruction fetch after that 
branch. While that may not  sound like much, you’d be surprised  at what it can do to 
tight loops; in fact, a brief story is in  order. 
When I was developing the Zen  timer, I used my trusty 10 MHz 286based AT clone 
to verify the basic functionality of the timer by measuring  the  performance of simple 
instruction sequences. I was cruising along with no  problems until I timed the fol- 
lowing code: 

mov cx. 1000 
c a l l  ZTimerOn 

1 oop LoopTop 
c a l l  ZTimerOff 

LoopTop: 

Memory 

A 201 00 

20101 

201 02 

201 03 

201 04 

The last byte of mov  ax, 1 and the  first 201 O5 
byte of mov  bx,2, which together 
form a worduligned word, are 
prefetched with a single word-sized 
access;  the 286 later splits  the  bytes 
apart internally in the  prefetch  queue. 

E 02 00 

mov ax, 1 

I mov bx,2 

J 

Word-aligned  prefetching on the 286. 
Figure 1 1.2 
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Memory 

20 1 00 c3 
20101 68 

201 02 05 

201 03 00 

201 04 28 

On a branch to 201 01, only 201 05 D2 
one  useful  instruction byte is 
fetched by the  first  instruction 
fetch  after  the branch, since 
the  other byte in the word- 
aligned word that  covers 
address 20 1 0 1 precedes  the 
branch destination and is 
therefore of no use  as an 
instruction byte after the 
branch. 

286 

’I ret 

I mov ax,5 

sub dl,dl 

How instruction bytes are fetched after a branch. 
Figure 1 1.3 

Now, this code should run  in, say, about 12 cycles per  loop  at most. Instead,  it took 
over 14 cycles per loop, an execution time that I could not explain in any way. After 
rolling i t  around in my head  for a while, I took  a  look at  the  code  under a 
debugger ... and the answer leaped  out  at me. The loop  begun ut a n  odd  address! That 
meant that two instruction fetches were required  each time through  the  loop;  one to 
get the  opcode byte of the LOOP instruction, which resided at  the  end of one word- 
aligned word, and  another to get the  displacement byte,  which resided at the start of 
the  next word-aligned word. 
One simple change  brought the execution time down to a reasonable 12.5 cycles per 
loop: 

mov cx.  1000 
call ZTimerOn 
even 

1 oop LoopTop 
call Z T i m e r O f f  

LoopTop: 

While word-aligning branch destinations can improve branching  performance, it’s a 
nuisance and can increase code size a  good  deal, so it’s not worth doing in  most 
code. Besides, EVEN inserts a NOP instruction if necessary, and  the time required to 
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execute  a NOP can sometimes cancel the  performance advantage of having a word- 
aligned branch destination. 

Consequently, it b best  to  word-align  only  those branch destinations  that  can  be p reached  solely  by  branching. 

I recommend that you  only go out of your way to word-align the start offsets  of your 
subroutines, as in: 

even 
FindChar  proc near 

In my experience, this simple practice is the  one  form of code alignment  that consis- 
tently  provides a reasonable return  for bytes and effort expended, although sometimes 
it also pays to  word-align tight time-critical loops. 

Alignment  and  the 386 
So far we’ve only  discussed alignment as it  pertains to the 286. What, you  may  well 
ask,  of the 386? 
The 386 adds  the issue  of doubleword alignment  (that is, alignment to addresses that 
are multiples of four.) The rule  for the 386  is:  Word-sized memory accesses should 
be  word-aligned  (it’s  impossible  for  word-aligned word-sized accesses to cross 
doubleword  boundaries) , and  doubleword-sized  memory accesses should  be 
doubleword-aligned. However, in  real (as opposed  to 32-bit protected)  mode, 
doubleword-sized memory accesses are  rare, so the simple word-alignment rule we’ve 
developed for  the 286  serves for  the 386 in real mode as  well. 
As for  code  alignment.. . the subroutine-start word-alignment rule of the 286  serves 
reasonably well there too since it avoids the worst case, where just 1 byte is fetched on 
entry to a  subroutine. While optimum  performance would dictate  doubleword align- 
ment of subroutines,  that takes 3 bytes, a  high price to pay for an optimization that 
improves performance only on  the post 286 processors. 

Alignment  and the Stack 
One side-effect  of the data  alignment cycle-eater of the 286 and 386 is that you should 
nmerallow the stack pointer to become  odd. (You can make the stack pointer  odd by 
adding  an  odd value to it or subtracting an  odd value from it, or by loading  it with an 
odd value.) An odd stack pointer  on  the 286 or 386 (or a  nondoubleword-aligned 
stack in 32-bit protected mode  on  the  386,486, or Pentium) will significantly reduce 
the  performance of PUSH, POP, C A L L ,  and RET, as  well as INT and IRET, which 
are  executed to invoke DOS and BIOS functions, handle keystrokes and  incoming 
serial characters, and  manage  the mouse. I know  of a  Forth  programmer who vastly 
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improved the  performance of a  complex  application on  the AT simply by forcing the 
Forth interpreter  to maintain an even stack pointer  at all times. 
An interesting corollary to this rule is that you shouldn’t INC SP twice to add 2, even 
though  that takes fewer  bytes than ADD SP,2. The stack pointer is odd between the 
first and  second INC, so any interrupt  occurring between the two instructions will be 
serviced more slowly than it normally would. The same goes for  decrementing twice; 
use SUB SP,2 instead. 

P Keep the stuckpointer aligned ut all times. 

The DRAM Refresh Cycle-Eater: Still an Act of God 
The DRAM refresh cycle-eater is the cycle-eater that’s least changed  from its 8088 form 
on the 286 and 386. In  the AT,  DRAM refresh uses a little over  five percent of all 
available  memory  accesses,  slightly less than it uses in the PC, but in  the same ballpark. 
While the DRAM refresh penalty varies  somewhat on various AT clones and 386 com- 
puters  (in fact, a few computers  are built around static RAM, which requires no refresh 
at all;  likewise, caches are made of static RAM so cached systems generally suffer less 
from DRAM refresh),  the 5 percent figure is a  good rule of thumb. 
Basically, the effect of the DRAM refresh cycle-eater is pretty much the same through- 
out  the PC-compatible  world:  fairly small, so it doesn’t greatly affect performance; 
unavoidable, so there’s no point in worrying about it anyway; and a nuisance since it 
results in fractional cycle counts when using the Zen  timer. Just as  with the PC, a given 
code  sequence on  the AT can execute  at varying speeds at  different times as a result of 
the  interaction between the  code and DRAM refresh. 
There’s nothing much new  with  DRAM refresh on 286/386 computers, then. Be  aware 
of it, but  don’t overly concern yourself-DRAM refresh is  still an act of God, and there’s 
not a blessed thing you can do  about it. Happily, the  internal  caches of the 486 and 
Pentium make DRAM refresh largely a  performance non-issue on those processors. 

The Display Adapter Cycle-Eater 
Finally  we come to the last  of the cycle-eaters, the display adapter cycle-eater. There  are 
two ways of looking at this cycle-eater on 286/386 computers: (1) It’s much worse than 
it was on the PC, or (2) it’s just  about  the same  as it was on  the PC. 
Either way, the display adapter cycle-eater is extremely bad news on 286/386 com- 
puters  and  on 486s and Pentiums as  well. In fact, this cycle-eater on those systems  is 
largely responsible  for the popularity of VESA local bus (VLB) . 
The two ways  of looking at  the display adapter cycle-eater on 286/386 computers  are 
actually the  same. As you’ll recall from my earlier discussion of the  matter  in  Chap- 
ter 4, display adapters offer only a  limited number of  accesses to display memory 
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during any  given period of time. The 8088 is capable of making use of most but  not 
all  of those slots  with REP  MOVSW, so the  number of memory accesses  allowed by a 
display adapter such as a standard VGA is reasonably well-matched to an 8088’s 
memory access speed.  Granted, access to a VGA  slows the 8088 down considerably- 
but, as  we’re about to find  out, “considerably” is a relative term.  What  a VGA does to 
PC performance is nothing  compared to what  it  does to faster computers. 
Under ideal conditions,  a 286 can access memory  much,  much faster than  an 8088. 
A 10 MHz 286 is capable of  accessing a word  of  system memory every  0.20 ps with 
REP  MOVSW, dwarfing the 1 byte  every 1.31 ps that  the 8088 in  a PC can manage. 
However,  access to display memory is anything but ideal for a 286. For one thing, 
most display adapters are 8-bit  devices, although  newer  adapters  are 16-bit in nature. 
One  consequence of that is that only 1 byte can be read or written per access to 
display memory; word-sized  accesses to 8-bit  devices are automatically split into 2 
separate byte-sized  accesses by the AT’s bus. Another  consequence is that accesses 
are simply  slower; the AT’s bus inserts additional wait states on accesses to 8-bit de- 
vices since it  must assume that such devices  were designed for PCs and may not  run 
reliably at AT speeds. 
However, the 8-bit  size  of most display adapters is but  one of the two factors that 
reduce  the  speed with  which the 286 can access  display  memory.  Far more cycles are 
eaten by the  inherent memory-access limitations of  display adapters-that is, the 
limited number of  display memory accesses that display adapters  make available to 
the 286. Look at it this way:  If REP  MOVSW on a PC can use more  than half of all 
available  accesses to display memory, then how much faster can code  running  on a 
286 or 386  possibly run when accessing  display memory? 
That’s right-less than twice  as fast. 
In  other words, instructions  that access  display memory won’t run a whole lot faster 
on ATs and faster computers  than they do  on PCs. That explains one of the two 
viewpoints expressed at  the  beginning of this section: The display adapter cycle-eater 
is just  about  the same on high-end computers as it is on  the PC, in the sense that  it 
allows instructions  that access  display memory to run  atjust  about  the same  speed  on 
all computers. 
Of course, the picture is quite  a bit different  when you compare  the  performance of 
instructions  that access  display memory to the maximum performance of those in- 
structions. Instructions  that access  display memory receive many more wait states 
when running  on a 286 than they do  on  an 8088. Why? While the 286 is capable of 
accessing memory much  more  often  than  the 8088, we’ve seen that  the frequency of 
access to display memory is determined  not by processor speed  but by the display 
adapter itself. As a result, both processors are actually  allowed just  about  the same 
maximum number of  accesses to display memory in any  given time. By definition, 
then,  the 286 must spend many more cycles  waiting than  does  the 8088. 
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And that explains the second viewpoint expressed above regarding  the display adapter 
cycle-eater vis-a-vis the 286 and 386. The display adapter cycle-eater,  as measured in 
cycles lost to wait states, is indeed  much worse on AT-class computers  than  it is on  the 
PC, and it’s  worse  still on  more powerful computers. 

How bad is the  display  adapter cycle-eater on an AT? It’s this bad: Based on  my  (not 
inconsiderable) experience in timing  display  adapter  access,  I’ve found that the  dis- 
play adapter  cycle-eater can slow an AT-r even a 386 computer-to near-PC 
speeds  when  display  memory  is  accessed. 

I know that’s hard to believe, but  the display adapter cycle-eater gives out  just so 
many  display memory accesses in  a given time, and  no  more,  no  matter how fast the 
processor is. In fact, the faster the processor, the  more  the display adapter cycleeater 
hurts  the  performance of instructions that access  display  memory. The display adapter 
cycle-eater is not only still present  in  286/386  computers, it’s  worse than ever. 
What can we do  about this new, more  virulent  form of the display adapter cycle- 
eater?  The workaround is the same as it was on  the PC: Access display memory as 
little as  you  possibly can. 

New Instructions and Features:  The 286 
The 286 and 386 offer a number of  new instructions. The 286 has a relatively small 
number of instructions  that the 8088 lacks,  while the 386 has those  instructions and 
quite  a few more,  along with  new addressing  modes and  data sizes.  We’ll  discuss the 
286 and  the 386 separately in this regard. 
The 286 has  a number of instructions  designed  for  protected-mode  operations. As 
I’ve said, we’re not going to discuss protected  mode  in this book; in any case, pro- 
tected-mode  instructions are generally used only by operating systems. (I should 
mention  that  the 286’s protected  mode brings with it the ability to address  16 MB  of 
memory, a  considerable  improvement over the 8088’s 1 MB. In real mode, however, 
programs are still limited to 1 MB  of addressable memory on  the 286. In either 
mode, each  segment is still limited to 64K.) 
There  are also a  handful of  286-specific real-mode  instructions, and they can  be 
quite useful. BOUND checks array bounds. ENTER and LEAVE support compact 
and speedy stack frame construction and removal, ideal for  interfacing to high-level 
languages  such as C and Pascal (although these  instructions  are actually relatively 
slow on  the 386 and its successors, and  should be used with caution when perfor- 
mance matters). INS and OUTS are new string  instructions  that support efficient 
data  transfer between  memory and 1 / 0  ports. Finally, PUSHA and POPA push and 
pop all eight  general-purpose registers. 
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A couple of old  instructions gain new features on the 286. For one, the 286  version 
of PUSH is capable of pushing  a  constant on the stack.  For another,  the 286  allows 
all shifts and rotates  to be performed for notjust 1 bit or the number of bits specified 
by  CL, but  for any constant number of bits. 

New Instructions and Features:  The 386 
The 386  is somewhat  more  complex  than  the 286 regarding new features.  Once 
again, we won’t discuss protected  mode, which on  the 386 comes with the ability to 
address up to  4 gigabytes per  segment and 64 terabytes in all. In  real  mode (and in 
virtual-86 mode, which  allows the 386 to multitask MS-DOS applications, and which 
is identical  to  real  mode so far as MS-DOS programs  are concerned), programs  run- 
ning on the 386 are still limited to 1 MB of addressable memory and  64Kper segment. 
The 386 has many new instructions, as  well  as  new registers, addressing  modes and 
data sizes that have trickled down from  protected  mode. Let’s take a  quick look at 
these new real-mode  features. 
Even in real  mode, it’s possible to access many of the 386’s  new and  extended regis- 
ters. Most of these registers are simply  32-bit extensions of the 16-bit registers of the 
8088. For example, EAX is a 32-bit register  containing AX as its lower 16 bits, EBX  is 
a 32-bit register  containing BX as its lower 16 bits, and so on.  There  are also two new 
segment registers: FS and GS. 
The 386  also  comes  with a slew  of  new real-mode instructions beyond  those supported by 
the 8088 and 286. These  instructions  can scan data  on  a bit-by-bit  basis, set  the Carry 
flag to the value of a specified bit, sign-extend or zero-extend  data as  it’s  moved, set 
a  register or memory variable to 1 or 0 on the basis of any of the  conditions  that  can 
be tested with conditional  jumps, and more. (Again, beware: Many  of these  complex 
386-specific instructions are slower than  equivalent  sequences of simple instructions 
on the 486 and especially on the  Pentium.) What’s more,  both  old  and new instruc- 
tions  support 32-bit operations on the 386.  For example, it’s  relatively simple to copy 
data in chunks of 4 bytes on a 386,  even in  real  mode, by using the MOVSD (“move 
string  double”)  instruction,  or  to  negate  a 32-bit  value  with NEG EAX. 
Finally, it’s possible in  real mode to use the 386’s  new addressing  modes, in which 
any 32-bit general-purpose register or pair of registers can be used  to address memory. 
What’s more,  multiplication of memory-addressing registers by 2,4,  or 8 for look-ups 
in word, doubleword, or  quadword tables can be built  right  into  the  memory  ad- 
dressing mode. (The 32-bit addressing  modes  are discussed further  in  later  chapters.) 
In  protected  mode, these new addressing modes allow  you to address a full 4 gigabytes 
per  segment, but in  real  mode you’re still limited  to 64K,  even  with  32-bit registers 
and the new addressing  modes, unless you  play some unorthodox tricks  with the 
segment registers. 
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p Note well: Those tricks don ’t necessarily  work  with  system  sofmare  such  as Win- 
dows, so Ih’ recommend  against  using  them. Ifyou want  $-gigabyte  segments,  use 
a  32-bit  environment  such as Win32. 

Optimization Rules:  The More Things Change.. . 
Let’s see what we’ve learned  about 286/386 optimization. Mostly what we’ve learned 
is that our familiar PC cycle-eaters  still  apply, although in somewhat  different forms, 
and that the major optimization rules for the PC hold  true  on ATs and 386-based 
computers. You won’t go wrong on any  of these computers if you keep your instruc- 
tions short, use the registers heavily and avoid  memory, don’t  branch, and avoid 
accessing  display memory like the plague. 
Although we haven’t touched on them,  repeated  string instructions are still desir- 
able on the 286 and 386  since  they  provide a  great deal of functionality per instruction 
byte and eliminate both  the  prefetch  queue cycle-eater and branching. However, 
string instructions are  not quite so spectacularly superior on the 286 and 386  as  they 
are on  the 8088 since non-string memory-accessing instructions have been  speeded 
up considerably on  the newer processors. 
There’s one cycle-eater  with  new implications on the 286 and 386, and that’s the data 
alignment cycle-eater. From  the data alignment cycle-eater we get  a new rule: Word- 
align  your  word-sized  variables, and start your subroutines at even  addresses. 

Detailed Optimization 
While the major  8088 optimization rules hold true on computers built around the 286 
and 386,  many of the instruction-specific optimizations no longer hold,  for the execu- 
tion  times  of  most instructions are quite different on the 286 and 386 than on the 
8088. We have  already seen one such example of the sometimes vast difference be- 
tween  8088 and 286/386 instruction execution times: MOV  [wordvar],O, which  has 
an Execution Unit execution time of 20  cycles on  the 8088,  has an EU execution time 
ofjust  3 cycles on the 286 and 2 cycles on  the 386. 
In fact, the  performance of  virtually  all  memory-accessing instructions has been im- 
proved enormously on  the 286 and 386. The key to this improvement is the  near 
elimination of effective address (EA) calculation time. Where an 8088  takes from 5 
to 12 cycles  to calculate an EA, a 286 or 386  usually  takes no time whatsoever to 
perform  the calculation. If a base+index+displacement addressing mode, such as 
MOV  AX,[WordArray+BX+SI], is used on a 286 or 386, 1 cycle is taken to perform 
the EA calculation, but that’s both  the worst  case and  the only  case in which there’s 
any EA overhead at all. 
The elimination of EA calculation time means  that  the EU execution time of memory- 
addressing instructions is much closer to the EU execution time of register-only 
instructions. For instance, on  the 8088 ADD [wordVar],lOOH is a 31-cycle instruc- 
tion, while ADD  DX,lOOH is a 4cycle instruction-a ratio of nearly 8 to 1. By contrast, 
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on  the 286ADD  wordVar1,lOOH  is a kycle instruction, while  ADD  DX,lOOH  is a 3-cycle 
instruction-a ratio ofjust 2.3 to 1. 
It would seem,  then,  that it’s  less necessary to use the registers on  the 286 than  it was 
on  the 8088, but that’s simply not  the case, for reasons we’ve already seen.  The key  is 
this: The 286 can  execute memory-addressing instructions so fast that  there’s no 
spare  instruction  prefetching time during those  instructions, so the  prefetch  queue 
runs dry, especially on  the AT, with  its one-wait-state memory. On the AT, the 6-byte 
instruction ADD  [WordVar],lOOH  is effectively at least a 15-cycle instruction,  because 
3 cycles are  needed  to fetch  each of the  three instruction words and 6 more cycles 
are  needed  to  read WordVar and write the result back to memory. 
Granted,  the register-only instruction ADD  DX,lOOH also slows  down-to 6 cycles- 
because  of instruction prefetching, leaving a ratio of 2.5 to 1. Now,  however, let’s look at 
the  performance of the same code on  an 8088. The register-only code would run in 16 
cycles (4 instruction bytes at 4 cycles per  byte), while the memory-accessing code would 
run  in 40  cycles (6 instruction bytes at 4 cycles per byte, plus 2 word-sized memory 
accesses at 8 cycles per  word). That’s  a  ratio of 2.5 to 1, exactly  the  same  as on the 286. 
This is all theoretical. We put  our trust not in  theory but in  actual  performance, so 
let’s run this code  through  the Zen timer. On a PC, Listing 11.4, which performs 
register-only addition,  runs  in 3.62 ms, while Listing 11.5, which performs  addition 
to  a memory variable, runs  in 10.05 ms. On a  10 MHz  AT clone, Listing 11.4 runs  in 
0.64 ms, while Listing 11.5 runs in 1.80 ms. Obviously, the AT  is much  faster.. .but  the 
ratio of Listing 11.5 to Listing 11.4 is virtually identical on  both  computers,  at 2.78 
for  the PC and 2.81 for  the AT.  If anything, the register-only form of  ADD has  a 
slightly  Zurgeradvantage on  the AT than  it  does on the PC in this case. 
Theory  confirmed. 

LISTING 1 1.4  11 1 -4.ASM 

: *** L i s t i n g   1 1 . 4  *** 

; M e a s u r e s   t h e   p e r f o r m a n c e   o f   a d d i n g   a n   i m m e d i a t e   v a l u e  
; t o  a r e g i s t e r ,   f o r   c o m p a r i s o n   w i t h   L i s t i n g   1 1 . 5 ,   w h i c h  
: a d d s   a n   i m m e d i a t e   v a l u e   t o  a memory v a r i a b l e .  

c a l l  ZTimerOn 
r e p t   1 0 0 0  
add  dx.100h 
endm 
c a l l   Z T i m e r O f f  

LISTING 1 1.5 11 1 -5.ASM 

: *** L i s t i n g   1 1 . 5  *** 

: Measures   t he   pe r fo rmance  o f  add ing   an   immed ia te   va lue  
: t o  a memory v a r i a b l e ,   f o r   c o m p a r i s o n   w i t h   L i s t i n g   1 1 . 4 ,  
; wh ich   adds   an   immedia te   va lue  t o  a r e g i s t e r .  

224 Chapter 1 1 



j v  

even 

WordVar dw 

S k i p :  
c a l l  
r e p t  
add 
endm 
c a l l  

S k i p  

: a lways  make s u r e   w o r d - s i z e d  memory 
: v a r i a b l e s   a r e   w o r d - a l i g n e d !  

0 

ZTimerOn 
1000 
[WordVar l lOOh 

Z T i m e r O f f  

What’s going on? Simply  this: Instruction  fetching is controlling overall execution 
time on both processors.  Both the 8088 in a PC and the 286 in an AT can execute the bytes 
of the instructions  in Listings 11.4 and 11.5 faster than they can  be  fetched. Since the 
instructions  are exactly the same lengths on  both processors, it  stands to reason that 
the  ratio of the overall execution times of the instructions  should be the same on 
both processors as  well. Instruction  length  controls  execution  time, and  the instruc- 
tion lengths  are  the same-therefore the ratios of the execution times are  the same. 
The 286 can both fetch and execute  instruction bytes faster  than the 8088 can, so 
code  executes  much faster on  the 286; nonetheless, because the 286 can also ex- 
ecute  those  instruction bytes much faster than it can  fetch them, overall performance 
is still largely determined by the size  of the instructions. 
Is this always the case? No. When the  prefetch  queue is full, memory-accessing in- 
structions on the 286 and 386 are  much  faster (relative to register-only instructions) 
than they are on  the 8088. Given the system  wait states prevalent on 286 and 386 
computers, however, the prefetch queue is  likely to  be  empty  quite a bit, especially 
when code consisting of instructions with short EU execution times is executed. Of 
course, that’s just  the  sort of code we’re likely  to  write  when we’re optimizing, so the 
performance of high-speed  code is more likely to  be  controlled by instruction size 
than by EU execution time on most 286 and 386 computers,  just as it is on  the PC. 
All of which is just a way of  saying that faster memory access and EA calculation 
notwithstanding,  it’sjust as desirable  to  keep  instructions  short and memory accesses 
to  a  minimum  on  the 286 and 386  as it is on  the 8088. And the way to do that is to use 
the registers as  heavily  as possible, use string  instructions, use short  forms of instruc- 
tions, and  the like. 
The  more things  change,  the  more they remain  the  same.. . . 

POPF and the 286 
We’ve one final 286-related item to discuss: the  hardware  malfunction of POPF un- 
der certain  circumstances on the 286. 
The  problem is this: Sometimes POPF permits interrupts to occur when interrupts 
are initially off and  the setting popped  into  the  Interrupt flag from  the stack keeps 
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interrupts off. In  other words, an  interrupt can happen even though  the  Interrupt 
flag is never  set  to 1. Now, I don’t want to blow this particular  bug  out of proportion. 
It only causes problems  in  code  that  cannot  tolerate  interrupts  under any circum- 
stances, and that’s  a  rare  sort of code, especially in user  programs. However, some 
code really does  need  to have interrupts absolutely disabled, with no  chance of an 
interrupt  sneaking  through. For example,  a critical portion of a disk  BIOS might 
need  to  retrieve  data  from the disk controller  the  instant  it  becomes available;  even 
a few hundred microseconds of delay could  result  in  a sector’s worth of data mis- 
read.  In this case, one misplaced interrupt  during  a POPF could  result  in  a  trashed 
hard disk if that  interrupt occurs while the disk  BIOS  is reading  a  sector of the File 
Allocation Table. 
There is a  workaround  for  the POPF bug. While the  workaround is  easy to use, it’s 
considerably slower than POPF, and costs a few bytes  as  well, so you won’t want to 
use it  in  code that can tolerate  interrupts.  On  the  other  hand,  in  code  that truly 
cannot  be  interrupted, you should view those  extra cycles and bytes  as cheap insur- 
ance  against mysterious and  erratic  program  crashes. 
One obvious reason  to discuss the POPF workaround is that it’s useful. Another 
reason is that  the  workaround is an  excellent  example of  Zen-level  assembly coding, 
in  that there’s  a well-defined goal  to be achieved but  no obvious way to do so. The 
goal is to  reproduce  the  functionality of the POPF instruction  without using POPF, 
and  the place  to  start is by asking exactly  what POPF does. 
All POPF does is pop  the word on  top of the stack into  the FLAGS register, as  shown 
in  Figure 11.4. How can we do  that  without POPF? Of course,  the 286’s designers 
intended us  to use POPF for this purpose,  and  didn’t  intentionally  provide any alter- 
native approach, so we’ll  have to devise an alternative  approach of our own. To do 
that, we’ll have to  search  for  instructions  that  contain some of the same functionality 
as POPF, in  the  hope  that  one of those  instructions  can be used in  some way to 
replace POPF. 
Well, there’s only one  instruction  other  than POPF that loads the FLAGS register 
directly  from  the stack, and that’s IRET, which loads  the FLAGS register  from  the 
stack as it  branches, as shown in Figure 11.5. IRET has no known bugs of the sort 
that plague POPF, so it’s certainly  a  candidate  to  replace POPF in non-interruptible 
applications.  Unfortunately, IRET loads  the FLAGS register with the third word  down 
on  the stack, not  the word on  top of the stack, as  is the case  with POPF; the far return 
address  that IRET pops  into CS:IP lies between the  top of the stack and  the word 
popped  into  the FLAGS register. 
Obviously, the segment:offset that IRET expects to find  on  the stack  above the  pushed 
flags  isn’t present when the stack is set up  for POPF, so we’ll  have to  adjust the stack 
a  bit  before we can substitute IRET for POPF. What we’ll  have to do is push the 
segment:offset of the  instruction  after  our  workaround  code  onto  the stack right 
above the  pushed flags. IRET will then  branch  to  that  address  and  pop  the flags, 
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ending up at the instruction after the workaround  code  with the flags popped. That’s 
just  the result that would  have occurred had we executed POPF-with the bonus 
that no interrupts can accidentally occur when the  Interrupt flag  is 0 both before 
and after the pop. 
How can we push the segment:offset of the next instruction? Well, finding the offset 
of the next instruction by performing a near call to that instruction is a tried-and- 
true trick. We can do something similar here, but in  this case we need a far call,  since 
IRE’” requires both a  segment and an offset. We’ll  also branch backward so that the 
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address  pushed on  the stack will point to the instruction we want to  continue with. 
The  code works out like this: 

j m p   s h o r t   p o p f s k i p  

i r e t   : b r a n c h e s  t o  t h e   i n s t r u c t i o n   a f t e r   t h e  
p o p f i r e t :  

; c a l l ,   p o p p i n g   t h e   w o r d   b e l o w   t h e   a d d r e s s  
: pushed  by CALL i n t o   t h e  FLAGS r e g i s t e r  

p o p f s k i p :  
c a l l   f a r   p t r   p o p f i r e t  

; p u s h e s   t h e   s e g m e n t : o f f s e t  o f  t h e   n e x t  
; i n s t r u c t i o n  on t h e   s t a c k   j u s t   a b o v e  
; t h e   f l a g s   w o r d ,   s e t t i n g   t h i n g s   u p  s o  
: t h a t  IRET will b r a n c h   t o   t h e   n e x t  
; i n s t r u c t i o n  a n d   p o p   t h e   f l a g s  

; When e x e c u t i o n   r e a c h e s   t h e   i n s t r u c t i o n   f o l l o w i n g   t h i s  comment, 
; t h e   w o r d   t h a t  was on t o p   o f   t h e   s t a c k  when JMP  SHORT P O P F S K I P  
: was r e a c h e d   h a s   b e e n   p o p p e d   i n t o   t h e  FLAGS r e g i s t e r ,   j u s t  as 
: i f  a POPF i n s t r u c t i o n   h a d   b e e n   e x e c u t e d .  

The  operation of this code is illustrated  in Figure 11.6. 
The POPF workaround can best be  implemented as a  macro; we can also emulate  a 
far call by pushing CS and  performing a near call, thereby  shrinking  the  workaround 
code by 1 byte: 

EMULATELPOPF macro 
l o c a l   p o p f s k i p .   p o p f i r e t  
j m p   s h o r t   p o p f s k i p  

i r e t  

push   cs  
c a l l   p o p f i   r e t  
endm 

p o p f  i r e t :  

p o p f s k i p :  

By the way, the flags can  be  popped  much  more quickly if you’re willing to  alter  a 
register in the process. For example, the following macro  emulates POPF with just 
one  branch,  but wipes out AX: 

EMULATE-POPFLTRASHLAX macro 
push   cs  
mov a x . o f f s e t  $+5 
push  ax 
i r e t  
endm 

It’s not a  perfect  substitute  for POPF, since POPF doesn’t  alter any registers, but it’s 
faster and  shorter  than EMULATE-POPF when  you can  spare  the register. If you’re 
using 286-specific instructions, you can use 

.286 

EMULATE-POPF macro 
push   cs  
p u s h   o f f s e t  $+4 
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i r e t  
endm 

which is shorter still, alters no registers, and  branches  just  once. (Of course, this 
version of EMULATE-POPF won't work on  an 8088.) 

IP 1 o f f s e t   p o p f s k i p  

cs 1 s e g m e n t   p o p f s k i p  b 

FLAGS 1 ? ? ?  b 

c s  1 segmen t   pop fsk ip  C 

FLAGS -1 ? ? ?  

cs  I segmen t   pop fsk ip  

'L 
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H ? ? ?  

? ? ?  

? ? ?  

I ???  I 
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Figure 1 1.6 

230 Chapter 1 1 



The standard version  of EMULATE-POPF is 6 bytes longer than POPF and  much 
slower,  as  you’d expect given that  it involves three branches. Anyone in his/her right 
mind would prefer POPF to a larger,  slower, three-branch macro-given  a choice. In 
non-interruptible code, however, there’s no choice here;  the safer-if  slower-approach 
is the best. (Having people associate your programs with crashed computers is nota 
desirable situation, no matter how unfair the circumstances under which it occurs.) 
And now you know the  nature of and  the workaround  for the POPF bug. Whether 
you  ever need  the workaround or  not, it’s a neatly packaged example of the tremen- 
dous flexibility of the x86 instruction set. 

Pushing the 286 and 386 231 





’J” So this  traveling sabpnan is walking  down a road, and he sees a group of men digging 
a ditch with their b oa, there!” he says. ‘What you  guys need is a Model 
8088 ditch digger!’ ut a trowel and sells it to them. 
A few  days later, he st0 round. They’re happy  with the trowel, but he sells 
them the latest ditchkigging technology, the Model 80286 spade. That keeps them 
content until he stohs by again with a Model  80386  shovel (a full 32 inches wide,  with 

ate the trowel), and that holds them until he comes  back 
eally need: a Model 80486 bulldozer. 

&&op of the line, the salesman  doesn’t pay them a call for a while. 
re they none too friendly, but they’re  digging  with the 80386 

shovel; the bulldozer is sitting off to one side. “Why on earth are you  using that shovel?’’ 
the salesman  asks.  ‘Why aren’t you digging with the bulldozer?” 
‘Well, Lord knows  we tried,” says the foreman, “but  it was all we could do just to lift 
the damn thing! ” 
Substitute “processor” for the various digging implements, and you get  an idea of 
just how different the optimization rules for the 486 are from what you’re used to. 
Okay,  it’s not quite that bad-but upon  encountering a processor where string in- 
structions are often to be avoided and memory-to-register MOVs are frequently as 
fast  as  register-to-register MOVs, Dorothy was heard to exclaim (before she sank out 
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of sight in a swirl  of hopelessly mixed metaphors), “I don’t  think we’re in Kansas 
anymore, Toto.” 

Enter  the 486 
No chip  that is a  direct, fully compatible descendant of the  8088,286, and 386 could 
ever be called a RISC chip,  but  the 486 certainly contains RISC elements, and it’s 
those elements that  are most responsible for making  486 optimization unique. Simple, 
common  instructions  are  executed in a single cycle  by a RISC-like core processor, 
but  other instructions  are  executed pretty much as they were on  the 386, where 
every instruction takes at least 2 cycles. For example, MOVAL, [Testchar] takes  only 
1 cycle on  the 486, assuming both  instruction and  data  are in the cache-3  cycles 
faster than  the 386”but STOSB takes 5 cycles, 1 cycle slower than  on  the 386. The 
floating-point execution  unit inside the 486 is also much faster than  the 38’7 math 
coprocessor, largely because, being in the same silicon  as the CPU (the 486 has a 
math coprocessor built in), it is more tightly coupled. The results are sometimes 
startling: FMUL (floating point multiply) is usually faster on  the 486 than IMUL 
(integer multiply) ! 
An encyclopedic approach to 486 optimization  would  take a book  all by itself, so in this 
chapter I’m only going to hit  the highlights of 486 optimization, touching on several 
optimization rules, some documented, some not. You might also  want to check out 
the following sources of  486 information: i486 Microprocessor Programmer’s Reference 
Manual, from  Intel; “8086 Optimization: Aim  Down the Middle and Pray,” in  the 
March, 1991 DX Dobb’s Journal; and “Peak Performance: On to the 486,” in the No- 
vember, 1990 Programmer’s Journal. 

Rules to Optimize By 
In Appendix G of the i486 Microprocessor Programmer‘s Reference Manual, Intel lists a 
number of optimization techniques  for  the 486.  While neither exhaustive (we’ll look 
at two undocumented optimizations shortly) nor entirely accurate (we’ll correct two 
of the rules here), Intel’s list is certainly a  good starting point.  In particular, the list 
conveys the  extent to which  486 optimization differs from optimization for earlier 
x86 processors. Generally, I’ll be discussing optimization for real mode  (it  being  the 
most widely used mode at  the  moment), although many  of the rules should apply to 
protected  mode as  well. 

486 optimization is generally more precise and less frustrating than optimization p for other x86processors because every 486 has  an identical internal cache. When- 
ever both the instructions being executed and  the data the instructions access are 
in the cache, those instructions will run  in a consistent and calculatable number of 
cycles on all 486s, with little chance  of interference from the prefetch queue and 
without regard to the speed of external memov. 
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In other words, for cached code (which  time-critical code almost always is), perfor- 
mance is predictable and can  be  calculated with good precision, and those  calculations 
will apply on any 486. However, “predictable” doesn’t mean “trivial”; the cycle  times 
printed for the various instructions are  not  the whole  story. You must be  aware of all 
the rules, documented  and  undocumented, that  go  into calculating actual execu- 
tion  times-and uncovering some of those rules is  exactly  what  this chapter is about. 

The Hazards of Indexed  Addressing 
Rule #1: Avoid indexed addressing (that is,  try not to use either two registers or 
scaled addressing to  point  to  memory). 
Intel cautions against  using indexing  to address memory  because there’s a one-cycle 
penalty for  indexed addressing. True enough-but “indexed addressing” might  not 
mean what  you expect. 
Traditionally, SI and DI are considered the  index registers  of the x86 CPUs. That is 
not  the sense  in  which “indexed addressing” is meant  here, however. In real mode, 
indexed addressing means that two registers, rather  than  one  or  none,  are used to 
point to  memory. (In this context,  the use  of one register to address memory is “base 
addressing,” no matter what  register is used.) MOV A X ,  [BX+DI] and MOV CL, 
[BP+SI+10] perform  indexed  addressing; MOVAX,[BX] and MOVDL, [SI+l] do not. 

‘ Therefore, in real mode,  the rule is to avoid using two registers to point  to  memory p wheneverpossible. Often, this simply  means  adding  the two registers  together  out- 
side a  loop before memory  is actually  addressed. 

As an example, you might adhere to  this rule by replacing the  code 

LoopTop: 
add ax.[bx+sil 
add s i  . 2  
d e c   c x  
j n z  LoopTop 

with  this 

add s i  .bx 

add  ax.Csil 
add s i  . 2  
dec  cx 
j n z  LoopTop 
sub  si.bx 

LoopTop: 

which  calculates the same  sum and leaves the registers in the same  state  as the first 
example, but avoids indexed addressing. 
In protected  mode,  the definition of indexed addressing is a tad more complex. The 
use of two registers to address memory,  as in MOV EAX, [EDX+EDI], still  qualifies 
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for the one-cycle  penalty. In  addition, the use of 386/486 scaled addressing, as in 
MOV [ECX*2],EAX, also constitutes indexed addressing, even if only one register is 
used to point to  memory. 
All this fuss  over one cycle!  You might well wonder how much difference one cycle 
could make. After  all, on  the 8088,  effective address calculations take a minimum  of 5 
cycles. On the 486,  however, 1 cycle  is a big deal because many instructions, includ- 
ing most register-only instructions (MOV, ADD, GMP, and so on) execute  in just 1 
cycle. In particular, MOVs to  and from memory execute in 1 cycle-if they’re not 
hampered by something like indexed addressing, in which  case  they slow to half 
speed (or worse,  as we  will see shortly). 
For example, consider the summing example shown earlier. The version that uses 
base+index ( [BX+SI]) addressing executes in  eight cycles per loop. As expected,  the 
version that uses  base ( [SI] ) addressing runs  one cycle  faster, at seven  cycles per 
loop. However, the  loop  code executes so fast on  the 486 that  the single cycle  saved 
by using base addressing makes the whole loop more  than  14  percent faster. 
In a key loop on  the 486, 1 cycle can indeed matter. 

Calculate Memory Pointers  Ahead of Time 
Rule #2: Don’t use a register as a memory pointer  during  the  next two cycles after 
loading it. 
Intel states that if the destination of one instruction is used as the base addressing 
component of the next  instruction,  then  a one-cycle penalty is imposed. This rule, 
unlike anything ever before seen in  the x86 family, reflects the heavily pipelined 
nature of the 486. Apparently, the 486 starts each effective address calculation be- 
fore  the start of the instruction that will need it, as  shown in Figure 12.1; this effectively 
makes the address calculation time vanish, because it  happens while the preceding 
instruction executes. 
Of course, the 486 can’tperform an effective address calculation for a target instruction 
ahead of time if one of the address components isn’t known until the instruction starts, 
and that’s  exactly the case  when the preceding instruction modifies one of the target 
instruction’s  addressing  registers.  For  example, in the code 

MOV B X . O F F S E T  M e m V a r  
MOV A X ,  [BXI 

there’s no way that  the 486 can calculate the address referenced by MOV AX,[BX] 
until MOV  BX,OFFSET  MemVar finishes, so pipelining  that calculation ahead of 
time is not possible. A good  workaround is rearranging your code so that  at least one 
instruction lies between the  loading of the memory pointer  and its use. For example, 
postdecrementing, as in the following 
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LoopTop: 
add  ax, [ s i  1 
add s i  . 2  
dec  cx 
j n z  LoopTop 

is faster than  preincrementing, as in: 

LoopTop: 
add s i  ,2  
add  ax,[SIl 
dec cx 
jnz LoopTop 

Now that we understand what Intel means by this rule,  let me make a very important 
comment: My observations indicate that  for real-mode code,  the  documentation  un- 
derstates the  extent of the penalty for  interrupting  the address calculation pipeline 
by loading  a memory pointer  just  before it’s used. 

The  truth of the  matter appears to  be  that i f a  register  is the  destination of one 1 instruction  and is then  used  by  the  next  instruction to  address memory in real 
mode,  not  one  but two cycles  are lost! 

In 32-bit protected  mode, however, the penalty is, in fact, the 1 cycle that  Intel 
documents. 
Considering that MOV normally  takes  only one cycle total,  that’s quite a loss.  For  ex- 
ample,  the  postdecrement  loop shown above is 2 full cycles faster  than  the 
preincrement  loop, resulting in a 29 percent  improvement in the  performance of 
the  entire  loop. But  wait, there’s more. If a register is loaded 2 cycles (which gener- 
ally means 2 instructions, but, because some 486 instructions take more  than 1 cycle, 

I I 
Address being 
calculated (arrow 

Instruction points to cycle during 
Cycle # being executed which address is used) 

n N O V   A X , B X  

n + l  M O V   [ B X ]  ,1 

n+2 M O V   A L , [ S I + l ]  

n+3 M O V   C X . D X  

One-cycle-ahead address pipelining. 
Figure 12.1 
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the 2 are  not always equivalent) before it’s used to point to memory, 1 cycle is lost. 
Therefore, whereas this code 

mov b x . o f f s e t  MemVar 
mov ax ,   [ bx ]  
i n c   d x  
d e c   c x  
j n z  LoopTop 

loses two cycles from  interrupting  the address calculation pipeline, this code 

mov b x . o f f s e t  MemVar 
i n c   d x  
mov a x ,   [ b x ]  
d e c   c x  
j n z  LoopTop 

loses  only one cycle, and this code 

mov b x . o f f s e t  MemVar 
i n c   d x  
dec   cx  
mov a x ,   [ b x ]  
j n z  LoopTop 

loses no cycles at all.  Apparently, the 486’s addressing  calculation pipeline actually starts 
2 cycles ahead, as shown in Figure 12.2. (In  truth, my best  guess at the moment is that the 
addressing pipeline really does start only 1 cycle ahead; the additional cycle crops up 
when the addressing pipeline has  to  wait  for a register  to  be  written into  the register  file 
before  it  can read it out for use  in  addressing  calculations.  However,  I’m  guessing here, 
and the 2cycle-ahead  model  in  Figure  12.2 will do just fine for optimization purposes.) 
Clearly, there’s  considerable optimization potential  in careful rearrangement of 
486 code. 

Address being 
calculated (arrow 

Instruction points to cycle during 
Cycle # being executed which address is used) 

n NOV  AX,BX  CBXI 

n+l MOV  CX,DX  CSI+11 

n+2 MOV  [EX] ,1 

n+3 MOV AL.[SI+ll 

Two-cycle-ahead address pipelining. 
Figure 12.2 
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Caveat  Programmor 
A caution: I’m quite certain that  the 2-cycle-ahead addressing pipeline interruption 
penalty  I’ve described exists in the two 486s I’ve tested. However, there’s no guaran- 
tee  that  Intel won’t change this aspect of the 486 in the  future, especially  given that 
the  documentation indicates otherwise. Perhaps the 2-cycle penalty is the result of a 
bug in the initial  steps of the 486, and will revert to  the  documented l-cycle  penalty 
someday;  likewise for  the  undocumented optimizations I’ll describe below. None- 
theless, none of the optimizations I suggest  would hurt performance even if the 
undocumented  performance characteristics  of the 486 were to vanish, and they  cer- 
tainly will help  performance on at least some 486s right now, so I feel  they’re well 
worth using. 
There is,  of course, no guarantee that  I’m  entirely  correct about the optimizations die 
cussed  in  this chapter. Without  knowing the internals of the 486, all I can do is time  code 
and make  inferences  from the results; I invite  you  to deduce your own rules and  cross 
check  them  against  mine. Also, most  likely there are other optimizations  that  I’m  unaware 
of.  If  you  have further information on these or any other undocumented optimizations, 
please  write and let  me know. And, of course, if anyone  from  Intel is reading  this and 
wants  to  give  us the gospel truth, please do! 

Stack  Addressing  and  Address  Pipelining 
Rule # 2 A  Rule #2 sometimes, but  not always, applies to the stack pointer when it is 
implicitly used to point to  memory. 
Intel states that  the stack pointer is an implied destination register for CALL, EN- 
TER, LEAVE, RET, PUSH, and  POP (which alter (E) SP),  and that it  is the implied 
base addressing register for  PUSH, POP, and RET (which  use (E)SP to address 
memory).  Intel  then implies that  the  aforementioned addressing pipeline penalty is 
incurred whenever the stack pointer is used as a destination by one of the first set of 
instructions and is then immediately used to address memory by one of the  second 
set. This raises the specter of unpleasant  programming  contortions such as intermix- 
ing PUSHes and POPS with other instructions to  avoid interrupting  the addressing 
pipeline. Fortunately, matters are actually not so grim  as  Intel’s documentation would 
indicate; my tests indicate that  the addressing pipeline penalty pops up only  spottily 
when the stack pointer is  involved. 
For example, you’d  certainly expect a sequence such as 
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to exhibit  the addressing pipeline  interruption  phenomenon (SP is both destina- 
tion and addressing register for  both instructions, according to Intel),  but this code 
runs in six  cycles per POP/RET pair, matching  the official execution times exactly. 
Likewise, a  sequence like 

POP d x  
P O P   c x  
POP  bx 
POP  ax 

runs in one cycle per instruction, just as it  should. 
On the  other  hand, performing  arithmetic directly on SP as an explicit destination- 
for example, to deallocate local  variables-and then using PUSH,  POP, or RET, 
definitely can interrupt  the addressing pipeline. For example 

add  sp.10h 
ret 

loses two cycles because SP is the explicit destination of one instruction and  then  the 
implied addressing register for the next, and  the  sequence 

add  sp.10h 
POP ax 

loses two cycles for  the same reason. 
I certainly haven’t tried all  possible combinations, but  the results so far  indicate  that 
the stack pointer  incurs  the addressing pipeline penalty only if (E)SP is the explicit 
destination of one instruction and is then used by one of the two following instruc- 
tions to address memory. So, for instance, SP isn’t the explicit operand of POP 
AX-AX is-and no cycles are lost if POP AX is followed by POP or RET.  Happily, 
then, we need  not worry about  the sequence  in which we use PUSH and POP. How- 
ever, adding to, moving to, or subtracting  from  the stack pointer  should ideally be 
done  at least two cycles before PUSH,  POP, RET, or any other instruction  that uses 
the stack pointer to address memory. 

Problems with Byte Registers 
There are two ways to  lose  cycles by using byte  registers, and  neither of them is docu- 
mented by Intel, so far as I know.  Let’s start with the lesser and simpler of the two. 
Rule #3: Do not load  a byte portion of a register during  one instruction,  then use 
that register in its entirety as a  source register during  the next  instruction. 
So, for  example,  it would be a  bad  idea to do this 

mov ah.0 

mov cx.[MemVarll 
mov al.CMemVar21 
add  cx.ax 
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because AL is loaded by one instruction,  then AX is used as the source register for 
the next instruction. A cycle  can be saved  simply  by rearranging the instructions so that 
the byte register load isn’t immediately followed by the word register usage, like so: 

mov ah.0 

mov a1 .[MemVarZI 
mov cx.[MemVarll 
add cx.ax 

Strange as it may seem, this rule is neither arbitrary nor nonsensical. Basically, when 
a byte destination register is part of a word source register for the next  instruction, 
the 486 is unable to directly use the result from  the first instruction as the source for 
the second instruction, because only part of the register required by the second 
instruction is contained  in  the first instruction’s result. The full, updated register 
value must be read  from  the register file, and  that value  can’t  be read out until  the 
result from the first instruction has been written into the register file, a process that 
takes an extra cycle.  I’m not going to explain this in  great detail because it’s not 
important  that you understand why this rule exists (only that  it does in fact exist) , but 
it is an interesting window on  the way the 486  works. 
In case you’re curious, there’s no such penalty for the typical XLAT sequence like 

mov bx.offset MemTable 

mov a1 . [ s i  1 
x1 at 

even though AL must  be  converted  to a word by XLAT before  it  can  be added to BX and 
used to address memory. In fact, none of the penalties mentioned in  this chapter apply 
to XLAT, apparently because XLAT is so slow-4 cycles-that it gives the 486  time to 
perform addressing  calculations during the course of the instruction. 

While it’s nice  that XLAT  doesn ’t suffer from the various 486 addressing  penal- 
ties, the  reason for that is basically  thatXLAT is slow, so there b still no compelling 
reason to use XLAT on  the 486. 

In general, penalties for  interrupting  the 486’s pipeline apply primarily to the fast 
core  instructions of the 486, most notably register-only instructions and MOV, al- 
though  arithmetic and logical operations  that access memory are also often affected. 
I don’t know  all the performance  dependencies, and I don’t plan to; figuring all of 
them  out would be a big, boring job of little value. Basically, on  the 486  you should 
concentrate on using those fast core instructions when performance matters, and all 
the rules I’ll  discuss do  indeed apply to those instructions. 
You don’t  need to understand every corner of the 486 universe unless you’re a die- 
hard “head who does this stuff for fun. Just  learn enough to be able to speed up 

Pushing the 486 243 



the key portions of  your programs, and spend  the rest of  your time on a fast design 
and overall implementation. 

More Fun with  Byte  Registers 
Rule #4: Don’t load any byte register exactly 2 cycles before using any register to 
address memory. 
This, the last  of this chapter’s rules, is the  strangest of the  lot. If any  byte register is 
loaded, and  then two cycles later any register is used to point  to memory, one cycle  is 
lost. So, for example, this code 

mov a1  .bl 
mov cx.dx 
mov s i ,  [di] 

takes four  rather  than  the  expected  three cycles to execute.  Note  that  it is not re- 
quired  that  the byte register be  part of the  register used to address memory;  any  byte 
register will do the trick. 
Worse still, loading byte registers both one  and two cycles before  a  register is used to 
address  memory costs two cycles,  as in 

mov bl .a1 
mov c1.3 
mov bx. [ s i  1 

which  takes  five rather  than  three cycles to run. However, there is no penalty if a byte 
register is loaded one cycle but  not two cycles before  a register is used to  address 
memory. Therefore, 

mov cx.3 
mov dl .a1 
mov si, [bxl 

runs  in  the  expected  three cycles. 
In  truth,  I  do  not know why this happens. Clearly, it has something  to do with inter- 
rupting  the  start of the  addressing  pipeline, and I have my theories  about how this 
works, but  at this point  they’re  pure  speculation. Whatever the reason for this rule, 
ignorance of  it-and  of its interaction with the other  rules-could lead to consider- 
able  performance loss in seemingly air-tight code. For instance,  a casual observer 
would expect  the following code to run in 3 cycles: 

mov bx.offset M e m V a r  
mov cl  .a1 
mov ax, [ bx] 

A more sophisticated programmer would expect  to lose one cycle,  because BX is loaded 
two cycles  before being  used  to  address  memory. In fact, though, this  code  takes 5 c y c l e s  
2 cycles, or 67 percent,  longer  than  normal. Why?  Well, under normal  conditions, 
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loading  a byte  register-CL in this case-one cycle before using a register to address 
memory produces no penalty; loading 2 cycles ahead is the only  case that normally 
incurs  a penalty.  However, think of  Rule #4 as meaning  that  loading a byte register 
disrupts the memory addressing pipeline as it starts up. Viewed that way,  we can see 
that MOV BX,OF'FSET MemVar interrupts  the addressing pipeline, forcing it to start 
again, and  then, presumably, MOV CL,AL interrupts  the pipeline again because the 
pipeline is now on its first cycle: the  one that  loading  a byte register can affect. 

p I know-it seems awfully complicated. It isn 't, rea&. Generally, try not to use byte 
destinations exactly two cycles before  using a register to address memory,  and try 
not to load a register either one or two cycles before using it to address memory, 
and you '11 be fine. 

Timing Your O w n  486 Code 
In case  you  want to do some 486 performance analysis  of your own, let me show  you 
how I arrived at  one of the above conclusions; at  the same time, I can warn  you  of the 
timing hazards of the cache. Listings 12.1 and 12.2  show the  code I ran  through  the 
Zen timer in order to establish the effects  of loading a byte register before using a 
register to address memory.  Listing  12.1 ran in 120 ps on a 33 MHz 486, or 4 cycles 
per repetition (120 ps/ 1000 repetitions = 120  ns per  repetition; 120 ns per repeti- 
tion/30 ns per cycle = 4 cycles per  repetition); Listing 12.2 ran in 90 ps, or 3 cycles, 
establishing that loading a byte register costs a cycle  only when it's performed ex- 
actly 2 cycles before addressing memory. 

LISTING  12.1  LSTl2- 1 .ASM 
: M e a s u r e s   t h e   e f f e c t   o f   l o a d i n g  a b y t e   r e g i s t e r  2 c y c l e s   b e f o r e  
: u s i n g  a r e g i s t e r   t o   a d d r e s s  memory. 

mov b p . 2   : r u n   t h e   t e s t   c o d e   t w i c e   t o  make   sure  

sub   bx .bx  

c a l l  Z T i m e r O n   : s t a r t   t i m i n g  
r e p t  1000 
mov d l   . c l  
noP 
mov a x ,   [ b x l  
endm 
c a l l   Z T i m e r O f f   : s t o p   t i m i n g  
d e c   b p  
jz Done 
jmp  CacheFi  11  Loop 

: i t ' s  cached  

C a c h e F i l l   L o o p :  

Done: 

LISTING 12.2 LSTl2-2.ASM 
: M e a s u r e s   t h e   e f f e c t  o f  l o a d i n g  a b y t e   r e g i s t e r  1 c y c l e   b e f o r e  
: u s i n g  a r e g i s t e r   t o   a d d r e s s  memory. 

mov b p . 2   ; r u n   t h e   t e s t   c o d e   t w i c e   t o  make   sure  

s u b   b x . b x  
: i t ' s  cached 
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C a c h e F i l l   L o o p :  
c a l l   Z T i m e r O n   : s t a r t   t i m i n g  
r e p t  1000 
noP 
mov d l   , c l  
mov ax.[bxl 
endm 
c a l l   Z T i m e r O f f   ; s t o p   t i m i n g  
d e c  b p  
j z  Done 
j m p   C a c h e F i l l   L o o p  

Done: 

Note that Listings 12.1 and 12.2 each  repeat  the timing of the  code  under test a 
second  time, to make sure  that  the  instructions  are  in  the  cache  on  the  second pass, 
the  one for which results are displayed. Also note  that  the  code is  less than 8Kin size, 
so that  it can all fit in the 486’s 8K internal cache. If I double  the REP” value in 
Listing 12.2 to 2,000, making the test code larger than 8K, the execution time more 
than  doubles  to 224 ps, or 3.7 cycles per repetition;  the  extra seven-tenths of a cycle 
comes from  fetching noncached instruction bytes. 

Whenever you see non-integral timing results of this sort, it’s a good bet that  the 
test code or data isn ’t cached. 

The Story Continues 
There’s certainly plenty more 486 lore to explore, including the 486’s unique prefetch 
queue,  more optimization rules, branching optimizations, performance implications 
of the cache, the cost  of cache misses for reads, and  the implications of cache write- 
through  for writes. Nonetheless, we’ve covered quite a bit of ground in this chapter, 
and I trust you’ve gotten a feel for  the considerable extent to which 486 optimization 
differs from what  you’re  used  to. Odd as 486 optimization is, though, it’s  well worth 
mastering, for the 486 is, at its  best, so staggeringly  fast that carefully crafted 486 code 
can do more  than twice as much per cycle as the best 386 code-which  makes it per- 
haps 50 times as fast as optimized code for the original PC. 
Sometimes it is hard to  believe  we’re  still in Kansas! 





Other  Hazards of the High End 
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iconderoga, and she’s  now 97 percent aware  of a 
ge: that the basic uniform for soldiers  in  those 
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hit something; preferably, but  not necessarily, the enemy. 
Nowadays, of course, we have automatic weapons that allow a teenager  to 
singlehandedly defeat the  entire U.S. Army, not to mention so-called “smart” bombs, 
which are smart in the sense that they  can  seek out  and empty a taxpayer’s  wallet 
without being detected by radar.  There’s an obvious  lesson here about progress, 
which I leave  you  to deduce for yourselves. 
Here’s the same  lesson, in another form. Ten  years ago, we had a slow processor, the 
8088, for which it was  devilishly hard to  optimize, and for which there was no good 
optimization documentation available. Now  we  have a processor, the 486, that’s 50 to 
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100 times faster than  the 8088-and for which there is no good  optimization  docu- 
mentation available. Sure,  Intel provides a few tidbits on  optimization  in  the back  of 
the i486 Microprocessor  Programmer’s  Reference Manual, but, as I discussed in  Chapter 
12, that  information is both  incomplete  and  not  entirely  correct. Besides, most as- 
sembly language  programmers  don’t  bother to read Intel’s manuals (which are 
extremely informative and well done,  but only  slightly more  fun  to  read  than  the 
phone  book),  and go  right  on  programming  the 486 using outdated 8088 optimiza- 
tion  techniques, blissfully unaware of a new and heavily mutated  generation of 
cycle-eaters that  interact with their  code  in ways undreamt of even on  the 386. 
For example,  consider how Terje Mathisen doubled  the  speed of  his wordcounting 
program  on  a 486 simply by shuffling  a  couple of instructions. 

486 Pipeline  Optimization 
I’ve mentioned Terje Mathisen in my writings before. Terje is an assembly language 
programmer  extraordinaire,  and  author of the  incredibly fast publicdomain word- 
counting  program WC (which comes complete with source  code; well worth a  look, 
if  you want  to see what real4 fast code looks like). Terje’s a  regular  participant  in  the 
ibm.pc/fast.code  topic  on Bix. In  a  thread titled “486 Pipeline  Optimization,  or 
TANSTATFC (There Ain’t No Such Thing As The Fastest Code),”  he  detailed  the 
following optimization to WC, perhaps  the  best  example of 486 pipeline optimiza- 
tion I’ve  yet seen. 
Terje’s inner  loop originally  looked something like the code in Listing 13.1. (I’ve taken a 
few liberties for illustrative purposes.) Of course, Terje unrolls this loop  a few times 
(128 times, to  be exact). By the way, in Listing 13.1 you’ll notice  that Terje counts  not 
only  words but also lines, at  a  rate of three  instructions  for every two characters! 

LISTING 1 3.1 11 3- 1 .ASM 
mov di.[bp+OFFSl : g e t   t h e   n e x t   p a i r   o f   c h a r a c t e r s  
mov b l  , [ d i  1 : g e t   t h e   s t a t e   v a l u e   f o r   t h e   p a i r  
add dx. [bx+8000hl  :increment  word  and l i n e   c o u n t  

: a p p r o p r i a t e l y   f o r   t h e   p a i r  

Listing 13.1 looks as tight as it  could  be, with just two one-cycle instructions,  one two- 
cycle instruction,  and  no  branches.  It is tight, but those  three  instructions actually 
take a  minimum of 8 cycles to execute, as  shown in Figure 13.1. The  problem is that 
DI  is loaded  just  before  being used to address memory, and  that costs 2 cycles  be- 
cause it  interrupts  the 486’s internal  instruction  pipeline. Likewise, BX is loadedjust 
before  being used to  address memory, costing another two cycles. Thus, this loop 
takes twice  as long as  cycle counts would seem to  indicate, simply because two regis- 
ters are  loaded immediately before  being  used,  disrupting  the 486’s pipeline. 
Listing 13.2 shows  Terje’s immediate response  to  these pipelining problems; he simply 
swapped the  instructions  that  load DI and BL. This one  change  cut  execution time 
per  character  pair  from  eight cycles to five  cycles! The load of BL  is  now separated by 
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M O V  D I , [BP+OFFS]  1 -cycle execution time 

1 
M O V  B L . C D I 1  

1 -cycle execution time, 
2-cycle pipeline  penalty because 
Dl was loaded  by the previous 
instruction and is used to 
address memory by this 
instruction 

v 2-cycle execution time, 
ADD DX,[BX+8000Hl 2-cycle pipeline  penalty because 

BX was loaded by the previous 
instruction and is used to 
address memory by this 
instruction 

M O V  DI . [BP+OFFSl  1 cycle execution time 

Cycle-eaters in the original WC. 
Figure 1 3.1 

one instruction from  the use of BX to address memory, so the pipeline penalty is 
reduced  from two cycles  to one cycle. The load of  DI  is also separated by one instruc- 
tion from  the use  of  DI to address memory (remember,  the  loop is unrolled, so the 
last instruction is followed by the first instruction),  but because the  intervening in- 
struction takes two cycles, there’s no penalty at all. 

Remembel; pipeline  penalties diminish  with  increasing  number of cycles, not in- p structions, between  the pipeline disrupter  and  the potentially aficted instruction. 

LISTING  13.2 11  3-2.ASM 
mov b l  , [ d i  1 ; g e t   t h e   s t a t e   v a l u e   f o r   t h e   p a i r  
mov di.[bp+OFFS] ; g e t   t h e   n e x t   p a i r   o f   c h a r a c t e r s  
add  dx.[bx+8000h] : i n c r e m e n t   w o r d   a n d   l i n e   c o u n t  

; a p p r o p r i a t e l y   f o r   t h e   p a i r  

At this point, Terje had nearly doubled  the  performance of  this code simply by  mov- 
ing  one instruction. (Note  that swapping the instructions also made  it necessary to 
preload DI at  the  start of the  loop; Listing 13.2 is not exactly equivalent to Listing 
13.1.) I’ll let Terje describe his next optimization in his own  words: 
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‘When I looked closely  as this, I realized that  the two cycles for  the  final ADD is just 
the sum of 1 cycle  to load  the  data  from memory, and  1 cycle to  add  it  to DX, so the 
code  could just as  well  have been written as  shown in Listing 13.3. The final break- 
through came when I realized that by initializing AX to  zero  outside  the  loop, I 
could  rearrange  it as  shown in Listing 13.4 and  do the final ADD DX- after  the 
loop.  This way there  are two single-cycle instructions between the first and  the  fourth 
line, avoiding all pipeline stalls, for  a  total  throughput of two cycles/char.” 

LISTING  13.3 11  3-3.ASM 
mov b l  , [ d i  1 ; g e t   t h e   s t a t e   v a l u e   f o r   t h e   p a i r  
mov di.[bp+OFFSl ; g e t   t h e   n e x t   p a i r   o f   c h a r a c t e r s  
mov ax. [bx+8000hl  ; i n c r e m e n t   w o r d   a n d   l i n e   c o u n t  
add  dx,ax ; a p p r o p r i a t e l y   f o r   t h e   p a i r  

LISTING  13.4 11  3-4.ASM 
mov b l  , [ d i  1 ; g e t   t h e   s t a t e   v a l u e   f o r   t h e   p a i r  
mov di.[bp+OFFSl ; g e t   t h e   n e x t   p a i r   o f   c h a r a c t e r s  
add  dx,ax ; i n c r e m e n t   w o r d   a n d   l i n e   c o u n t  

mov a x . [ b x + 8 0 0 0 h l   ; g e t   i n c r e m e n t s   f o r   n e x t   t i m e  
; a p p r o p r i a t e l y   f o r   t h e   p a i r  

I’d  like  to point  out two fairly remarkable things.  First, the single  cycle that Terje  saved in 
Listing 13.4 sped up his entire  word-counting  engine by  25 percent  or  more; Listing 
13.4 is  fully  twice  as  fast  as  Listing  13.1-all the  result of nothing  more  than  shifting 
an  instruction and splitting another  into two operations.  Second, Terje’s word-count- 
ing  engine  can process more  than  16 million characters per second on  a 486/33. 
Clever  486 optimization can pay  off big. QED. 

BSWAP: More Useful  Than You Might Think 
There  are only 3 non-system instructions  unique  to  the 486. None is earthshaking, 
but they  have their uses. Consider BSWAP. BSWAP does just what its name implies, 
swapping the bytes (not bits) of a 32-bit register  from one  end of the  register  to  the 
other, as  shown in Figure 13.2. (BSWAP can only  work  with  32-bit registers; memory 
locations and  l6bit registers are  not valid operands.)  The obvious  use of BSWAP is 
to  convert  data  from  Intel  format  (least significant byte first in memory,  also called 
Zittb endian) to Motorola format  (most significant byte first in memory, or big endian), 
like so: 

1 odsd 
bswap 
s t o s d  

BSWAP can also be useful for reversing the order of pixel bits from  a  bitmap so that 
they can  be  rotated 32 bits at  a time with an  instruction  such as ROR =,I. Intel’s 
byte ordering  for multiword values (least-significant byte first) loads pixels in the 
wrong order, so  far as word rotation is concerned,  but BSWAP can take care of that. 
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EAX before x , 
BSWAP 0 x 3 4   0 x 7 8  0 x 5  6 

Bit 3 1 Bit 0 

EAX after x 
BSWAP 0 x 5 6  0 x 1  2 0 x 3 4  

Bit 3 1 Bit 0 

BSWAP in operation. 
Figure 13.2 

As it turns out,  though, BSWAP is also  useful  in an unexpected way, having  to do with 
making efficient  use of the upper half  of  32-bit  registers. As any  assembly language 
programmer knows, the x86 register set is too small; or, to  phrase  that another way, it 
sure would  be nice if the register set were  bigger. As any 386/486 assembly language 
programmer knows, there  are many  cases in which 16 bits  is  plenty.  For example, a 
16-bit  scan-line counter generally does  the trick  nicely in a video  driver,  because 
there  are very few video  devices  with more  than 65,535 addressable scan  lines.  Com- 
bining these two observations  yields the obvious conclusion that  it would be  great if 
there were some way to  use the  upper  and lower 16 bits  of selected 386  registers  as 
separate 16-bit  registers,  effectively increasing the available  register  space. 
Unfortunately, the x86 instruction set doesn’t provide  any way to  work  directly  with 
only the  upper half  of a 32-bit  register. The next best solution is to rotate  the register 
to give  you  access in the lower 16 bits to  the half  you need at any particular time, with 
code  along  the lines of that in Listing  13.5.  Having  to rotate  the 16-bit  fields into 
position  certainly  isn’t  as good as  having direct access  to the  upper half, but surely 
it’s better than having  to get  the values out of  memory,  isn’t it? 

LISTING  13.5 11 3-5.ASM 
mov c x , [ i n i t i a l s k i p l  
s h l   e c x . 1 6   ; p u t   s k i p   v a l u e   i n   u p p e r   h a l f  o f  E C X  
mov c x , l O O   ; p u t   l o o p   c o u n t   i n  C X  
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1 ooptop:  

r o r   e c x . 1 6  :make s k i p   v a l u e   w o r d   a c c e s s i b l e   i n  C X  
add   bx .cx   : sk ip  BX ahead 
i n c   c x   : s e t   n e x t   s k i p   v a l u e  
r o r  ecx .16   :pu t  1 oop  count i n  C X  
dec   cx   :count  down l o o p  
j n z  1 ooptop 

Not necessarily.  Shifts and rotates are  among  the worst performing  instructions of 
the 486, taking 2 to 3 cycles to execute.  Thus,  it takes 2 cycles  to rotate the skip  value 
into CX in Listing 13.5, and 2 more cycles to  rotate  it back to the  upper half  of ECX. 
I’d say four cycles  is a pretty steep  price to pay, especially considering  that a MOV to 
or from memory takes  only one cycle.  Basically, using ROR to access a 1 &bit  value in 
the  upper half  of a 16-bit register is a pretty marginal technique, unless for some 
reason you can’t access memory at all (for example, if you’re using BP  as a working 
register, temporarily making the stack frame inaccessible). 
On  the 386, ROR was the only way to split a 32-bit register into two 16-bit registers. 
On  the 486,  however, BSWAP can not only do  the  job,  but can do it better, because 
BSWAP executes in just  one cycle. BSWAP has the  added benefit of not affecting any 
flags,  unlike ROR. With  BSWAP-based code like that in Listing  13.6, the  upper 16 bits  of 
a register can be accessed  with  only 2 cycles  of overhead and without altering any 
flags, making the  technique of packing two 16-bit registers into  one 32-bit register 
much  more useful. 

LISTING  13.6  11  3-6.ASM 
mov c x . [ i n i t i a l s k i p l  
bswap  ecx   :pu t   sk ip   va lue  i n  u p p e r   h a l f  o f  ECX 
mov c x . 1 0 0   : p u t   l o o p   c o u n t   i n  C X  

1 oop top :  

bswap  ecx :make s k i p   v a l u e   w o r d   a c c e s s i b l e   i n  C X  
add   bx .cx   : sk ip  BX ahead 
i n c   c x   : s e t   n e x t   s k i p   v a l u e  
b s w a p   e c x   : p u t   l o o p   c o u n t   i n  C X  
dec   cx   :count  down l o o p  
j n z   l o o p t o p  

Pushing and Popping Memory 
Pushing or  popping a memory location, as in PUSH WORD F’TR [BX] or POP 
[MemVar],  is a compact, easy  way to get a value onto  or off  of the stack,  especially 
when pushing  parameters  for calling a Gcompatible  function. However, on a 486, 
these are unattractive instructions from a performance perspective. Pushing a memory 
location takes four cycles;  by contrast, loading a memory location into a register 
takes  only one cycle, and pushing a register takes just 1 more cycle, for a total of two 
cycles. Therefore, 
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mov ax,  [bxl 
push ax 

is  twice  as  fast  as 

p u s h  word p t r  [bxl 

and  the only  cost is that  the previous contents of AX are destroyed. 
Likewise, popping a memory location takes  six  cycles, but  popping a register and 
writing it  to  memory takes  only two cycles combined.  The i486 Microprocessor 
Programmer’s Refeen,ce Manual lists a 4cycle execution time for  popping a register, 
but pay that no mind;  popping a register takes  only 1 cycle. 
Why  is it that such a convenient operation as pushing or popping memory is so slow? 
The rule on the 486 is that simple operations, which  can  be executed in a single cycle 
by the 486’s MSG core, are fast;  whereas  complex operations, which  must be carried 
out in microcode just as  they  were on the 386, are almost  all  relatively slow.  Slow, 
complex operations include all the string instructions except REP MOVS, as  well  as 
XLAT, LOOP, and, of course, PUSH mem and POP mem. 

Wheneverpossible, try to  use  the 486 b l-cycle instructions, including MOV, ADD, p SUB,  CMP, ADC, SBB,  XOR, AND, OR, TEST, LEA, and PUSH reg and POP 
reg. These instructions have  an added benefit in that  it b often possible to rear- 
range  them for maximum pipeline efficiency,  as  is  the case with  Terje b optimization 
described earlier in this chapter. 

Optimal 1 -Bit Shifts and Rotates 
On a 486, the n-bit forms of the shift and rotate instructions-as in ROR AX,2 and 
SHL BX,9-are  P-cycle instructions, but  the 1-bit forms-as in RORAX,l and SHL 
BX,l-are 3cycle instructions. Go figure. 
Assemblers default to  the  l-bit instruction for  l-bit shifts and rotates. That’s not  un- 
reasonable since the  l-bit  form is a byte shorter  and is just as  fast  as the n-bit forms 
on a 386 and faster on a 286, and  the n-bit form doesn’t even  exist on  an 8088. In a 
really  critical loop, however,  it might be worth hand-assembling the n-bit form of a 
single-bit  shift or rotate in order to save that cycle. The easiest way to do this is to 
assemble a 2-bit form of the desired instruction, as in SHLAX,2, then look at  the  hex 
codes that  the assembler generates and use DB to  insert  them in your program  code, 
with the value two replaced with the value one. For example, you could  determine 
that SHL  AX,2 assembles  to the bytes OClH OEOH 002H, either by looking at  the 
disassembly in a debugger or by having the assembler generate a listing  file. You 
could  then  insert  the n-bit  version  of SHL AX,1 in your code as  follows: 

mov ax.1 
db Oclh.  OeOh.  OOlh 
mov dx.ax 
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At the  end of this sequence, DXwill contain 2, and  the fast n-bit version of SHLAX,l 
will have executed. If you  use  this approach,  I’d  recommend using a macro,  rather 
than sticking DBs in the middle of your code. 
Again,  this technique is advantageous only on a 486. It also doesn’t apply to RCL and 
RCR, where  you  definitely  want  to  use the 1-bit  versions  whenever  you can, because 
the n-bit  versions are horrendously slow. But if you’re  optimizing for the 486,  these 
tidbits  can save a few critical cycles-and Lord knows that if you’re  optimizing for the 
486-that  is,  if  you need even more performance  than you get from unoptimized code 
on a 486-you almost  certainly need all the speed you  can  get. 

32-Bit Addressing Modes 
The 386 and 486 both  support 32-bit addressing modes, in which  any register may 
serve  as the base memory addressing register, and almost any register may serve  as 
the potentially  scaled index register.  For example, 

rnov al.BaseTableCecx+edx*41 

uses a perfectly  valid  32-bit  address,  with the byte  accessed  being the one at the offset in 
DS pointed to by the sum of EDX times 4 plus the offset  of BaseTable plus ECX. This is 
a very  powerful  memory  addressing  scheme,  far  superior  to  8088style 1 &bit addressing, 
but it’s not without its quirks and costs, so let’s  take a quick look at 32-bit addressing. 
(By the way, 32-bit addressing is not limited to  protected  mode; 32-bit instructions 
may be used in real mode,  although  each instruction that uses  32-bit addressing 
must have an address-size prefix byte, and  the presence of a prefix byte  costs a cycle 
on a 486.) 
Any register may serve  as the base  register component of an address. Any register 
except ESP  may also  serve  as the  index register,  which can be scaled by 1, 2, 4, or 8. 
(Scaling  is  very handy  for performing lookups  in  arrays and tables.) The same  register 
may  serve  as both base and index  register,  except  for ESP,  which can  only  be the base. 
Incidentally, it makes  sense that ESP can’t be scaled; ESP presumably always points 
to a valid  stack, and I can’t think of  any reason you’d  want to use the stack pointer 
times 2, 4, or 8 in an address. ESP  is,  by its nature, a base rather  than  index  pointer. 
That’s all there is to the functionality of  32-bit addressing; it’s  very simple, much 
simpler than 16-bit addressing, with  its  sharply limited memory addressing register 
combinations. The costs  of  32-bit addressing are a bit more subtle. The only perfor- 
mance cost (apart from the  aforementioned l-cycle  penalty for using  32-bit  addressing 
in real mode) is a 1-cycle penalty imposed for using an  index register. In this context, 
you  use an  index register  when  you  use a register  that’s  scaled, or when you  use the 
sum of two registers to  point to  memory. MOV BL,[EBX*2] uses an  index register 
and takes an  extra cycle,  as does MOV  CL,[EAX+EDX];  MOV  CL,[EAX+lOOH] is not 
indexed, however. 
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The  other cost of  32-bit addressing is in instruction size.  Old-style  16-bit addressing 
usually (except  in a few special  cases)  uses one extra  byte,  which  Intel  calls the Mod-R/M 
byte,  which is placed immediately after each instruction’s opcode  to describe the 
memory  addressing mode, plus 1  or 2 optional bytes  of addressing  displacement-that 
is, a constant value  to add  into  the address. In many  cases,  32-bit addressing contin- 
ues to use the Mod-R/M  byte, albeit with a different  interpretation; in these cases, 
32-bit addressing is no larger than 16-bit addressing, except when a 32-bit  displace- 
ment is  involved.  For example, MOV A L ,  [EBX] is a 2-byte instruction; MOV A L ,  
[EBX+lOH] is a 3byte instruction; and MOVAL,  [EBX+10000H] is a &byte instruction. 

Note  that 1 and  4-byte  displacements, but  not 2-byte  displacements, are supported p for  32-bit addressing. Code  size can  be  greatly improved by keeping stack  frame 
variables within 128 bytes of EBR and variables in pointed-to structures within 127 
bytes of the start of the structure, so that displacements can be 1 rather than 4 bytes. 

However,  because  32-bit addressing supports many more addressing combinations 
than 16-bit addressing, the Mod-R/M  byte can’t describe  all the combinations. There- 
fore, whenever an  index register (as described above) is involved, a second byte, the 
SIB byte,  follows the Mod-R/M  byte to provide additional address information. Con- 
sequently,  whenever  you  use a scaled memory addressing register or use the sum of 
two registers  to point  to memory,  you  automatically add 1 cycle and 1 byte  to that 
instruction. This is not to say that you shouldn’t use index registers  when they’re 
needed,  but if you find yourself  using them inside key loops,  you should see if  it’s 
possible  to  move the  index calculation outside the  loop as, for  example, in a loop 
like  this: 

LoopTop: 
add  ax,DataTable[ebx*21 
i n c   e b x  
dec  cx 
j n z  LoopTop 

You could change this to  the following for  greater  performance: 

add  ebx.ebx  :ebx*2 

add  ax.DataTable[ebx l  
add  ebxX.2 
dec   cx  
j n z  LoopTop 
s h r  ebx.1  :ebx*2/2 

LoopTop: 

I’ll end this chapter with two more quirks of 32-bit addressing. First,  as  with l6bit  
addressing, addressing that uses EBP  as a base register both accesses the SS segment 
by default and always has a displacement of at least 1 byte. This reflects the  common 
use of  EBP to address a stack frame, but is worth keeping in mind if you should 
happen  to use EBP to address non-stack  memory. 
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Lastly,  as I  mentioned, ESP cannot  be scaled. In fact, ESP cannot  be  an  index regis- 
ter; it must be a base register. Ironically,  however, ESP is the  one register that  cannot 
be used to address memory without the  presence of an SIB byte,  even if it’s used 
without an  index register. This is an  outcome of the way in which the SIB byte  ex- 
tends the capabilities of the Mod-R/M  byte, and there’s  nothing to be done  about it, 
but it’s at least worth noting  that ESP-based, non-indexed addressing makes for in- 
structions  that  are  a byte larger than  other non-indexed addressing (but  not any 
slower; there’s no l-cycle penalty for using ESP as a base register) on  the 486. 





' When you  seem  t&be stumped,  stop  for a minute and think. All the information you 
need may be right"ih"front of your nose if you just look at things a little  differently. 
Here's a case in poin6:;:~ 
When I was in college&-iisEd  to  stay around campus for  the summer. Oh, I'd take a 
course or two, but m&tly it was an excuse  to hang  out  and have fun. In that spirit, my 
girlfriend,  Adrian ({it my future wife,  partly  for  reasons  that will soon  become  appar- 
ent), bussed  in  to  sp,&nd a week, sharing a less-than-elegant $150 per  month  apartment 
with me and br>k ggcessity, my roommate. 
Our  apartment w?i$::pretty much standard issue for two male  college students; maybe 
even a cut above. The dishes were  usually  washed, there was generally food in the 
refrigerator, and  nothing larger than a small dog  had taken up  permanent residence 
in the  bathroom. However, there was one sticking point (literally): the kitchen floor. 
This floor-standard  tile,  with a nice pattern of black  lines on  an off-white  back- 
ground  (or so we thought)-had never been  cleaned. By which I mean  that I know 
for a certainty that we had never cleaned it, but I suspect that it had in fact not been 
cleaned since the Late  Jurassic, or possibly  earlier. Our feet  tended to  stick  to it; had 
the  apartment suddenly turned upside-down, I think we'd  all  have been  hanging 
from  the ceiling. 
One day,  my roommate and I returned from a pickup basketball  game.  Adrian,  having 
been left to her own devices for a couple of hours,  had apparently kept herself busy. 

."e s '"".$" . 
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“Notice anything?”  she asked,  with an  edge to her voice that suggested we had  damned 
well better. 
“Uh, you cooked dinner?”  I guessed. ‘Washed the  dishes?  Had your hair done?” My 
roommate was equally without  a  clue. 
She  stamped her foot  (really;  the only time I’ve ever seen  it happen),  and said, “No, 
you jerks! The kitchen floor! Look at  the  floor!  I  cleaned  it!” 
The floor really did  look amazing. It was actually all white; the black lines  had  been 
grooves filled with dirt. We assured her that  it  looked terrific, itjust wasn’t that obvi- 
ous until you  knew  to look for it; anyone would  tell  you that  it wasn’t the  kind of 
thing  that jumped  out  at you, but  it really was great, no kidding. We had almost 
smoothed  things over,  when a  friend walked in,  looked around with a  start, and said, 
“Hey!  Did  you  guys put in a new floor?” 
As I said, sometimes everything you need to  know is right in front of your nose. 
Which brings us to Boyer-Moore string  searching. 

String Searching Refresher 
I’ve  discussed string  searching  earlier in this book,  in  Chapters 5 and 9. You  may want 
to  refer back  to these chapters  for some background on string  searching  in  general. 
I’m also going to  use  some  of the  code  from  that  chapter as part of this chapter’s test 
suite. For further  information, you  may  want to  refer to the discussion  of string search- 
ing in the  excellent Algorithm in C, by Robert Sedgewick  (Addison-Wesley),  which 
served as the primary reference  for this chapter. (If  you  look at Sedgewick,  be  aware 
that in the Boyer-Moore  listing on page 288, there is a mistake: “j > 0” in  the for loop 
should be “j >= 0,” unless  I’m  missing something.) 
String  searching is the simple matter of finding  the first occurrence  of  a  particular 
sequence of bytes (the  pattern) within another sequence of bytes (the  buffer).  The 
obvious, brute-force  approach is to try every  possible match  location,  starting  at  the 
beginning of the buffer and advancing one position  after  each  mismatch,  until ei- 
ther  a match is found or the buffer is exhausted.  There’s even a nifty string  instruction, 
REPZ CMPS, that’s  perfect  for  comparing  the  pattern  to  the  contents of the  buffer 
at each  location. What could be simpler? 
We have some important  information  that we’re not yet using,  though. Typically, the 
buffer will contain  a wide  variety  of  bytes.  Let’s  assume that  the  buffer  contains  text, 
in which  case there will be dozens of different  characters; and  although  the  distribu- 
tion of characters won’t usually be even, neither will  any one character  constitute 
half the buffer, or anything close. A reasonable  conclusion is that  the first character 
of the  pattern will rarely match  the first character of the  buffer  location  currently 
being  checked.  This allows  us to use the speedy REPNZ S W B  to whiz through  the 
buffer, eliminating most potential  match  locations with single repetitions of S U B .  
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Only when that first character does (infrequently) match must we drop back  to the 
slower REPZ CMPS approach. 
It’s important to understand  that we’re assuming that  the buffer is typical  text. That’s 
what I meant at  the  outset, when I said that  the  information you need may be under 
your nose. 

Formally, you don ’t know a blessed thing about  the search buffeer, but experience, p common sense, and your knowledge of the application give you a great deal of 
useful, ifsomewhat imprecise, information. 

If the buffer contains the  letter ‘A’ repeated 1,000 times, followed by the  letter ‘B,’ 
then  the REPNZ SWB/REPZ CMPS approach will be  much slower than  the brute- 
force REPZ CMPS approach when searching  for  the  pattern “AB,” because REPNZ 
SCASB would match at every buffer location. You could construct a  horrendous worst- 
case scenario for almost any good optimization; the key is understanding  the usual 
conditions under which your code will work. 
As discussed in Chapter 9, we also  know that  certain  characters have  lower probabili- 
ties  of matching than  others.  In  a  normal buffer, ‘T’ will match far  more often than 
‘X.’ Therefore, if we use REPNZ SCASB to  scan for  the least common  letter in the 
search string, rather  than  the first letter, we’ll  greatly decrease the  number of times 
we have  to drop back to REPZ  CMPS, and  the search time will become very  close  to 
the time it takes REPNZ  SCASB to go from  the  start of the buffer to the match 
location. If the distance to the first match is N bytes, the least-common RJPNZ SCASB 
approach will take about as long as N repetitions of REPNZ SCASB. 
At this point, we’re pretty much searching at  the  speed of REPNZ S W B .  On  the 
x86, there simply is no faster way to  test each character in turn.  In  order to get any 
faster,  we’d  have  to check fewer  characters-but we can’t do that and still be sure of 
finding all matches. Can  we? 
Actually,  yes, we can. 

The Boyer-Moore  Algorithm 
All our apn‘on‘ knowledge of string searching is stated above, but there’s another sort 
of  knowledge-knowledge that’s generated dynamically. As we search  through  the 
buffer, we acquire  information  each time we check for  a  match. One sort of informa- 
tion that we acquire is based on partial matches; we can often skip ahead after partial 
matches because (take  a deep  breath!) by partially matching, we have already implic- 
itly done a comparison of the partially matched buffer characters with  all  possible 
pattern  start locations that overlap those partially-matched bytes. 
If that makes  your head hurt, it should-and don’t worry. This line of  thinking,  which  is 
the basis of the Knuth-Morris-Pratt algorithm and half the basis  of the Boyer-Moore 

Boyer-Moore  String  Searching 263 



algorithm, is what gives  Boyer-Moore its reputation  for inscrutability. That  reputa- 
tion is well deserved for this aspect (which I will not discuss further in this book),  but 
there’s another  part of Boyer-Moore that’s easily understood, easily implemented, 
and highly  effective. 
Consider this:  We’re searching  for  the  pattern “ABC,” beginning  the search at the 
start (offset 0) of a buffer containing “ABZABC.” We match on ‘A,’ we match on ‘B,’ 
and we mismatch on ‘C’; the buffer contains  a ‘Z’ in this position. What have we 
learned? Why,  we’ve learned  not only that  the  pattern  doesn’t  match  the buffer start- 
ing at offset 0, but also that it can’t  possibly match starting at offset 1 or offset 2, 
either! After all, there’s a ‘Z’ in the buffer at offset 2; since the  pattern doesn’t con- 
tain a single ‘Z,’ there’s no way that  the  pattern can match starting at any location 
from which it would span  the ‘Z’ at offset 2. We can just skip straight from offset 0 to 
offset 3 and  continue, saving  ourselves two comparisons. 
Unfortunately, this approach only pays  off big when a near-complete partial match is 
found; if the comparison fails on  the first pattern character, as often  happens, we can 
only  skip ahead 1 byte,  as usual. Look at it differently, though: What if we compare 
the  pattern starting with the last (rightmost) byte, rather than  the first (leftmost) 
byte? In  other words,  what if we compare  from  high memory toward low, in  the 
direction  in which string instructions go after  the STD instruction? After  all, we’re 
comparing one set of  bytes (the  pattern) to another set of  bytes (a  portion of the 
buffer) ; it  doesn’t  matter in the least in what order we compare  them, so long as  all 
the bytes in one set are compared to the corresponding bytes in  the  other set. 

Why on earth  would  we  want to start with the rightmost  character?  Because  a 1 mismatch on the  rightmost  character tells us a  great  deal  more  than  a  mismatch on 
the  leftmost character. 

We learn  nothing new from  a mismatch on  the leftmost character, except  that the 
pattern can’t match starting at  that  location. A mismatch on the rightmost character, 
however,  tells  us about  the possibilities  of the  pattern matching starting at every buffer 
location from which the  pattern spans the mismatch location. If the mismatched 
character  in the buffer doesn’t  appear in the  pattern,  then we’ve just eliminated not 
one potential  match, but as  many potential matches as there  are  characters  in the 
pattern; that’s how  many locations there  are in the buffer that might have matched, 
but have just  been shown not to, because they overlap the mismatched character 
that  doesn’t  belong in the  pattern.  In this case, we can skip ahead by the full pattern 
length  in  the buffer! This is  how  we can outperform even REPNZ SCASB; REPNZ 
SCMB has to check every  byte in  the buffer, but Boyer-Moore doesn’t. 
Figure 14.1 illustrates the  operation of a Boyer-Moore search when the rightmost char- 
acter of the search pattern (which is the first character that’s compared at each location 
because we’re comparing backwards)  mismatches  with a buffer character that appears 
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/ 

lil' 
H 

Start of 
search pattern 

J The pattern character 'H' is first compared 
to buffer offset 3, which is 'E.' This results 
in a  mismatch. 

This shows  that  not only can the pattern 
not match  starting at buffer offset 0, but 
also  that it cannot match  starting at offset 
1 I 2, or 3 (the  other locations that  span 
the 'E' at offset 3) because 'E' doesn't 
occur anywhere in the pattern. 

Therefore,  the  next potential match 
location starts at buffer offset 4, and the 
next comparison skips ahead 4 bytes  to 
offset 7, saving 3 comparisons in  all. 

Mismatch on first character checked. 
Figure 14.1 

nowhere in  the  pattern. Figure 14.2 illustrates the operation of a partial match when 
the mismatch occurs with a character that's not a  pattern member. In this  case, we can 
only  skip ahead past the mismatch location, resulting in an advance  of  fewer  bytes than 
the  pattern  length,  and potentially as little as the same  single  byte distance by which 
the standard search approach advances. 
What if the mismatch occurs with a buffer character  that does occur in the  pattern? 
Then we can't skip past the mismatch location, but we can skip to whatever location 
aligns the rightmost occurrence of that  character in the  pattern with the mismatch 
location, as  shown in Figure 14.3. 
Basically,  we exercise our right as members of a  free society to compare strings in 
whichever direction we choose, and we choose to do so right to left, rather  than  the 
more intuitive left to right. Whenever we find  a mismatch, we see  what we can learn 
from  the buffer character  that failed to match the  pattern. Imagine that we move the 
pattern to the  right across the mismatch location until we find a  start location that 
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H+ search Of pattern 

'E' and 'T' match, but 'I' mismatches.  The 
mismatch character in the buffer is 'A,' 
which doesn't  occur in the pattern. 

This shows  that  not only can the pattern 
not match  starting at buffer offset 0, but 
also  that it cannot match  starting at offset 
1 (the  other location that  spans  the 'A' at 
offset 1). W e  can therefore skip  the 
pattern completely past  offset 1 .  

However,  because of the partial match, 
skipping ahead past  the  mismatch 
advances  the overall search by only 2 
buffer locations;  the  next comparison 
occurs at offset 5. 

Mismatch on third  character checked. 
Figure 14.2 

the mismatch does not eliminate as a possible match for  the  pattern. If the mismatch 
character  doesn't  appear  in the  pattern,  the  pattern can move clear past the mis- 
match  location. Otherwise, the  pattern moves until a matching  pattern byte  lies atop 
the mismatch. That's all there is to it! 

Boyer-Moore: The Good and the Bad 
The worst  case for this version of  Boyer-Moore  is that  the  pattern mismatches on the 
leftmost character-the last character compared-every time. Again, not very likely, 
but it is true  that this  version of Boyer-Moore performs  better as there  are fewer and 
shorter partial matches; ideally, the rightmost character would never match  until the 
full match location was reached. Longer patterns, which make for  longer skips, help 
Boyer-Moore,  as does a long distance to the match location, which helps diffuse the 
overhead of building the table of distances to skip ahead  on all the possible mis- 
match values. 
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The pattern character ‘S’ is first compared 
to buffer  offset 3, which is ’E.‘ This results 
in a mismatch. 

This shows  that  not only can the pattern 
not  match  starting at buffer  offset 0, but 
also that i t  cannot match  starting at offset 
1 ; however,  starting at offset 2, the ’E’ in 
the pattern would line up with the ’E’ we 
just mismatched  on in the buffer. 

Therefore, we can skip ahead two buffer 
locations from the  mismatch, so that the 
buffer ’E’ lines  up with the pattern ‘E‘; the 
next comparison is at offset 5. 

Mismatch on character  that  appears in pattern. 
Figure 14.3 

The best case for Boyer-Moore  is good indeed: About N/M comparisons are required, 
where N is the buffer  length and M is the pattern length.  This  reflects the ability of Boyer- 
Moore  to  skip ahead by a full pattern length on a complete  mismatch. 
How  fast  isBoyer-Moore?  Listing  14.1 is a C implementation of Boyer-Moore search- 
ing; Listing 14.2 is a test-bed program  that searches up to the first 32K of a file for a 
pattern. Table  14.1  (all  times measured with Turbo Profiler on a 20 MHz cached 386, 
searching a modified version of the text of this chapter) shows that this implementa- 
tion is generally much slower than REPNZ S W B ,  although it does come close  when 
searching for  long  patterns. Listing  14.1 is designed primarily to make later assembly 
implementations  more  comprehensible,  rather  than faster; Sedgewick’s implemen- 
tation uses  arrays rather  than  pointers, is a great deal more compact and very  clever, 
and may be  somewhat  faster.  Regardless, the far superior  performance of REPNZ 
SCASB clearly indicates that assembly language is in order  at this point. 
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The entry  “Standard Boyer-Moore in AS”’ in Table 14.1 refers to straight-forward 
hand optimization of  Listing 14.1, code  that is not  included in  this chapter  for  the 
perfectly good reason that  it is slower in most  cases than REPNZ SCASB. I say this 
casually  now, but  not so yesterday, when I had all but  concluded  that Boyer-Moore 
was simply inferior on  the x86, due to two architectural quirks: the  string  instruc- 
tions and slow branching. I had even coined  a  neat  phrase  for it: Architecture is 
destiny. Has  a nice ring,  doesn’t  it? 

LISTING 14.1 11 4- 1 .C 
/ *  Searches a b u f f e r   f o r  a s p e c i f i e d   p a t t e r n .   I n   c a s e   o f  a mismatch, 

uses t h e   v a l u e   o f   t h e   m i s m a t c h e d   b y t e   t o  s k i p  across  as many 
p o t e n t i a l   m a t c h   l o c a t i o n s  a s  p o s s i b l e   ( p a r t i a l   B o y e r - M o o r e ) .  
R e t u r n s   s t a r t   o f f s e t   o f   f i r s t   m a t c h   s e a r c h i n g   f o r w a r d ,   o r  NULL i f  
no  match i s  found.  
T e s t e d   w i t h   B o r l a n d  C++ i n  C mode and  the   smal l   mode l .  * /  

# i n c l u d e   < s t d i o . h >  
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uns igned  char  * F i n d S t r i n g ( u n s i g n e d   c h a r  * B u f f e r P t r .  
uns igned i n t   B u f f e r L e n g t h .   u n s i g n e d   c h a r  * P a t t e r n P t r .  
uns igned i n t   P a t t e r n L e n g t h )  

uns igned  char  * Work ingPa t te rnP t r .  * W o r k i n g B u f f e r P t r :  
uns igned i n t  CompCount.  SkipTableC2561,  Skip.  DistanceMatched: 
i n t  i; 

{ 

/ *  R e j e c t  i f  t h e   b u f f e r   i s   t o o   s m a l l  * /  
i f  ( B u f f e r L e n g t h  < P a t t e r n L e n g t h )   r e t u r n ( N U L L ) :  

I* Retu rn  an i n s t a n t   m a t c h  i f  t h e   p a t t e r n   i s   0 - l e n g t h  *I  
i f  ( P a t t e r n L e n g t h  == 0 )  r e t u r n ( B u f f e r P t r 1 ;  

/ *  C r e a t e   t h e   t a b l e   o f   d i s t a n c e s   b y   w h i c h   t o   s k i p  ahead  on 

/ *  I n i t i a l i z e   a l l   s k i p s   t o   t h e   p a t t e r n   l e n g t h :   t h i s   i s   t h e   s k i p  

f o r  (i = 0: i < 2 5 6 ;  i++l S k i p T a b l e C i l  = Pa t te rnLeng th ;  
/ * S e t   t h e   s k i p   v a l u e s   f o r   t h e   b y t e s   t h a t   d o   a p p e a r   i n   t h e   p a t t e r n  

t o   t h e   d i s t a n c e   f r o m   t h e   b y t e   l o c a t i o n   t o   t h e  end o f   t h e  
p a t t e r n .  When t h e r e   a r e   m u l t i p l e   i n s t a n c e s   o f   t h e  same b y t e ,  
t h e   r i g h t m o s t   i n s t a n c e ' s   s k i p   v a l u e   i s   u s e d .   N o t e   t h a t   t h e  
r i g h t m o s t   b y t e   o f   t h e   p a t t e r n   i s n ' t   e n t e r e d   i n   t h e   s k i p   t a b l e :  
i f  we g e t   t h a t   v a l u e   f o r  a mismatch, we know f o r   s u r e   t h a t   t h e  
r i g h t  end o f  t h e   p a t t e r n  has  a l ready  passed  the  mismatch 
l o c a t i o n ,  s o  t h i s   i s   n o t  a r e l e v a n t   b y t e   f o r   s k i p p i n g   p u r p o s e s  * /  

S k i p T a b l e [ P a t t e r n P t r [ i ] ]  = Pa t te rnLeng th  - i ~ 1 :  

m i s m a t c h e s   f o r   e v e r y   p o s s i b l e   b y t e   v a l u e  * /  

d i s t a n c e   f o r   b y t e s   t h a t   d o n ' t   a p p e a r   i n   t h e   p a t t e r n  * /  

f o r  (i = 0:  i < ( P a t t e r n L e n g t h  - 1) :  i++) 

/* P o i n t   t o   r i g h t m o s t   b y t e   o f   t h e   p a t t e r n  * /  
P a t t e r n P t r  += P a t t e r n L e n g t h  - 1 :  
I* P o i n t   t o   l a s t   ( r i g h t m o s t )   b y t e   o f   t h e   f i r s t   p o t e n t i a l   p a t t e r n  

B u f f e r P t r  += Pa t te rnLeng th  - 1: 
/ *  Count o f  number o f  p o t e n t i a l   p a t t e r n   m a t c h   l o c a t i o n s   i n  

B u f f e r L e n g t h  -= Pa t te rnLeng th  - 1; 

m a t c h   l o c a t i o n   i n   t h e   b u f f e r  * /  

b u f f e r  * I  

I* S e a r c h   t h e   b u f f e r  * /  
w h i l e  (1) ( 

/ *  See i f  we have a m a t c h   a t   t h i s   b u f f e r   l o c a t i o n  * I  
Work ingPa t te rnP t r  = P a t t e r n P t r :  
W o r k i n g B u f f e r P t r  = B u f f e r P t r :  
CompCount = Pa t te rnLeng th :  
/ *  Compare t h e   p a t t e r n  a n d   t h e   b u f f e r   l o c a t i o n ,   s e a r c h i n g   f r o m  

w h i l e   ( * W o r k i n g P a t t e r n P t r -  == *Work ingBu f fe rP t r - )  I 
h i g h  memory t o w a r d   l o w   ( r i g h t   t o   l e f t )  * I  

/ *  I f  w e ' v e   m a t c h e d   t h e   e n t i r e   p a t t e r n ,   i t ' s  a match * /  
i f  (-CompCount == 0 )  

/* Re tu rn  a p o i n t e r   t o   t h e   s t a r t   o f   t h e   m a t c h   l o c a t i o n  */  

I 
/ *  I t ' s  a mismatch: l e t ' s  see  what we c a n   l e a r n   f r o m  i t  * /  
Work ingBuf ferPtr++;  / *  p o i n t   b a c k   t o   t h e   m i s m a t c h   l o c a t i o n  *! 
/ *  11 o f   b y t e s   t h a t   d i d   m a t c h  * /  
Dis tanceMatched = B u f f e r P t r  - W o r k i n g B u f f e r P t r :  
/ * I f .  based on t h e   m i s m a t c h   c h a r a c t e r ,  we c a n ' t   e v e n   s k i p  ahead 

as   f a r   as   where  we s t a r t e d   t h i s   p a r t i c u l a r   c o m p a r i s o n ,   t h e n  
j u s t  advance  by 1 t o   t h e   n e x t   p o t e n t i a l   m a t c h :   o t h e r w i s e ,  

r e t u r n ( B u f f e r P t r  - P a t t e r n L e n g t h  + 1): 
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s k i p  a h e a d   f r o m   t h e   m i s m a t c h   l o c a t i o n   b y   t h e   s k i p   d i s t a n c e  
f o r   t h e   m i s m a t c h   c h a r a c t e r  *I  

i f  (Sk ipTable[*Work ingBuf ferPtr l  <- DistanceMatched) 
S k i p  - 1: I* s k i p   d o e s n ' t  do  any  good,  advance  by 1 *I  
e l s e  

/ *  Use s k i p   v a l u e ,   a c c o u n t i n g   f o r   d i s t a n c e   c o v e r e d   b y   t h e  

S k i p  - SkipTable[*WorkingBufferPtrl - DistanceMatched; 
I* If sk ipp ing   ahead   wou ld   exhaus t   t he   bu f fe r ,   we ' re   done  

w i t h o u t  a match * I  
if ( S k i p  >- B u f f e r L e n g t h f   r e t u r n ( N U L L ) :  
I* Skip   ahead  and  per fo rm  the   nex t   compar ison  *I  
B u f f e r L e n g t h  -- S k i p ;  
B u f f e r P t r  +- S k i p ;  

p a r t i a l   m a t c h  *I 

1 
J 

LISTING 14.2 11 4-2.C 
/ *  Program t o   e x e r c i s e   b u f f e r - s e a r c h   r o u t i n e s   i n   L i s t i n g s   1 4 . 1  & 14.3.  

( M u s t   b e   m o d i f i e d   t o   p u t   c o p y   o f   p a t t e r n   a s   s e n t i n e l   a t   e n d   o f   t h e  
s e a r c h   b u f f e r   i n   o r d e r   t o  be  used w i t h   L i s t i n g   1 4 . 4 . )  * /  

# i n c l u d e   < s t d i o . h >  
Pi n c l  ude < s t r i n g .  h> 
C i n c l  ude < f c n t l  . h >  

# d e f i n e  DISPLAY-LENGTH 40 
# d e f i n e  BUFFER-SIZE 0x8000 

e x t e r n   u n s i g n e d   c h a r  * F i n d S t r i n g ( u n s i g n e d   c h a r  *, u n s i g n e d   i n t .  

v o i d   m a i n ( v o i d 1 :  
uns igned  char  *, u n s i g n e d   i n t ) ;  

v o i d   m a i n 0  I 
uns igned  char  TempBuffer[DISPLAY-LENGTH+ll: 
uns igned  char   F i lename[ l50 ] .   Pa t te rnC1501.   *MatchPt r ,   *Tes tBuf fe r :  
i n t  Hand1 e;  
u n s i g n e d   i n t   W o r k i n g L e n g t h :  

p r i n t f ( " F i 1 e   t o   s e a r c h : " ) :  
ge ts (F i lename1:  
p r i n t f ( " P a t t e r n   f o r   w h i c h   t o   s e a r c h : " ) :  
g e t s ( P a t t e r n ) :  

i f  ( (Handle - open(Fi1ename. 0-RDONLY 1 0-BINARY)) - -1 ) ( 

1 
I* Get memory i n  w h i c h   t o   b u f f e r   t h e   d a t a  * /  
i f  ( ( T e s t B u f f e r - ( u n s i g n e d   c h a r  *)malloc(BUFFER-SIZE+1)) - NULL) ( 

1 
/ *  Process a BUFFER-SIZE chunk * I  
i f  ( ( i n t ) ( W o r k i n g L e n g t h  - 

p r i n t f ( " C a n ' t   o p e n   f i l e :  % s \ n " .  F i l e n a m e ) ;   e x i t ( 1 ) ;  

p r i n t f ( " C a n ' t   g e t   e n o u g h   m e m o r y \ n " ) ;   e x i t ( 1 ) ;  

read(Hand1e.   Tes tBuf fe r .  BUFFER-SIZE)) - -1 ) { 
p r i n t f ( " E r r o r   r e a d i n g   f i l e  %s\n" ,  F i l e n a m e ) :   e x i t ( 1 ) :  

I 
TestBuf ferCWorkingLength]  - 0: I* 0 - t e r m i n a t e   b u f f e r   f o r   p r i n t f  *I 
I* S e a r c h   f o r   t h e   p a t t e r n  and r e p o r t   t h e   r e s u l t s  *I  
i f  ( ( M a t c h P t r  - F i n d S t r i n g ( T e s t B u f f e r .   W o r k i n g L e n g t h .   P a t t e r n ,  

( u n s i g n e d   i n t )   s t r l e n ( P a t t e r n ) ) )  - NULL) ( 
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/ *  P a t t e r n   w a s n ' t   f o u n d  */ 
p r i n t f ( " \ " % s \ "   n o t   f o u n d \ n " .   P a t t e r n ) ;  

/ *  P a t t e r n  was found .   Ze ro - te rm ina te   TempBuf fe r :   s t rncpy  

TempBufferCDISPLAY-LENGTH] = 0:  
p r i n t f ( " \ " % s \ "   f o u n d .   N e x t  Xd c h a r a c t e r s   a t   m a t c h : \ n \ " % s \ " \ n " .  

1 e l s e  { 

won ' t   do  i t  i f  DISPLAY-LENGTH c h a r a c t e r s   a r e   c o p i e d  * /  

P a t t e r n ,  DISPLAY_.LENGTH, 
s t rncpy (TempBuf fe r .   Ma tchP t r .  DISPLAY-LENGTH)): 

1 
e x i t ( 0 ) :  

1 

Well, architecture carries a lot of  weight, but  it  sure as  heck  isn't  destiny. I had simply 
fallen into  the  trap of figuring that  the algorithm was so clever that I didn't have to 
do any thinking myself. The path  leading  to REPNZ SCASB from  the original brute- 
force approach of REPZ CMF'SB at every location had  been based on my observation 
that  the first character comparison at  each buffer location usually  fails. Why not 
apply the same concept  to Boyer-Moore?  Listing 14.3 is just like the standard imple- 
mentation-except that it's optimized to  handle a first-comparison mismatch as 
quickly  as  possible in the  loop  at QuickSearchLoop, much as REPNZ SCASB opti- 
mizes  first-comparison  mismatches for  the brute-force approach. The results  in  Table 
14.1 speak for themselves;  Listing 14.3 is more  than twice  as fast  as  what I assure  you 
was already a nice, tight assembly implementation (and unrolling QuickSearchLoop 
could boost performance by up to 10 percent more). Listing 14.3 is also four times 
faster than REPNZ SCASB in one case. 

LISTING 14.3 11 4-3.ASM 
: Searches a b u f f e r   f o r  a s p e c i f i e d   p a t t e r n .  I n  case o f  a mismatch, 
; u s e s   t h e   v a l u e   o f   t h e   m i s m a t c h e d   b y t e   t o   s k i p   a c r o s s   a s  many 
: p o t e n t i a l   m a t c h   l o c a t i o n s   a s   p o s s i b l e   ( p a r t i a l   B o y e r - M o o r e ) .  
: R e t u r n s   s t a r t   o f f s e t   o f   f i r s t   m a t c h   s e a r c h i n g   f o r w a r d ,   o r  NULL i f  
; no match i s  found.  
: T e s t e d   w i t h  TASM. 
: C n e a r - c a l l a b l e   a s :  

uns igned  char  * F i n d S t r i n g ( u n s i g n e d   c h a r  * B u f f e r P t r .  
uns igned i n t   B u f f e r L e n g t h .   u n s i g n e d   c h a r  * P a t t e r n P t r .  
uns igned  i n t   P a t t e r n L e n g t h )  : 

parms s t r u c  
dw 2 dup(?)   :pushed BP & r e t u r n   a d d r e s s  

B u f f e r P t r  dw ? : p o i n t e r   t o   b u f f e r   t o  be searched 
B u f f e r L e n g t h  dw ? :# o f   b y t e s   i n   b u f f e r   t o   b e   s e a r c h e d  
P a t t e r n P t r  dw ? : p o i n t e r   t o   p a t t e r n   f o r   w h i c h   t o   s e a r c h  
Pa t te rnLeng th  dw ? : l e n g t h   o f   p a t t e r n   f o r   w h i c h   t o   s e a r c h  
parms  ends 

.model  small  

.code 
p u b l i c   - F i n d s t r i n g  

c l  d 
p u s h   b p   : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   : p o i n t   t o   o u r   s t a c k   f r a m e  

~ F i n d S t r i n g   p r o c  near  
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push s i   : p r e s e r v e   c a l l   e r ' s   r e g i s t e r   v a r i  ab1 es 
push d i  
sub   sp .256*2   : a l l oca te   space   f o r   Sk ipTab le  

: C r e a t e   t h e   t a b l e   o f   d i s t a n c e s   b y   w h i c h   t o   s k i p  ahead  on  mismatches 
: f o r   e v e r y   p o s s i b l e   b y t e   v a l u e .   F i r s t .   i n i t i a l i z e   a l l   s k i p s   t o   t h e  
: p a t t e r n   l e n g t h :   t h i s   i s   t h e   s k i p   d i s t a n c e   f o r   b y t e s   t h a t   d o n ' t  
: appear i n   t h e   p a t t e r n .  

mov ax .Cbp+Pat te rnLength l  
and   ax .ax   ; re tu rn   an   i ns tan t   ma tch  i f  t h e   p a t t e r n   i s  

rnov d i  .ds 
mov es . d i  :ES=DS=SS 
mov d i . s p   ; p o i n t   t o   S k i p B u f f e r  
mov cx.256 
r e p   s t o s w  
dec  ax  : f rom now on, we on ly   need 
mov [bp+Pat te rnLength ] .ax  : P a t t e r n L e n g t h  - 1 

j z  I n s t a n t M a t c h   ; O - l e n g t h  

: P o i n t   t o   l a s t   ( r i g h t m o s t )   b y t e   o f   f i r s t   p o t e n t i a l   p a t t e r n   m a t c h  
: l o c a t i o n   i n   b u f f e r .  

: R e j e c t  i f  b u f f e r   i s   t o o   s m a l l ,  and s e t   t h e   c o u n t   o f   t h e  number o f  
: p o t e n t i a l   p a t t e r n   m a t c h   l o c a t i o n s   i n   t h e   b u f f e r .  

add [ b p + B u f f e r P t r l . a x  

sub  [bp+Buf ferLength l .ax 
j b e  NoMatch 

: S e t   t h e   s k i p   v a l u e s   f o r   t h e   b y t e s   t h a t  do  appear i n   t h e   p a t t e r n   t o  
; t h e   d i s t a n c e   f r o m   t h e   b y t e   l o c a t i o n   t o   t h e   e n d   o f   t h e   p a t t e r n .  
: When t h e r e   a r e   m u l t i p l e   i n s t a n c e s   o f   t h e  same b y t e ,   t h e   r i g h t m o s t  
; i n s t a n c e ' s   s k i p   v a l u e   i s   u s e d .   N o t e   t h a t   t h e   r i g h t m o s t   b y t e   o f   t h e  
; p a t t e r n   i s n ' t   e n t e r e d   i n   t h e   s k i p   t a b l e :  i f  we g e t   t h a t   v a l u e   f o r  
: a mismatch, we know f o r   s u r e   t h a t   t h e   r i g h t  end o f   t h e   p a t t e r n  has 
: a l r e a d y   p a s s e d   t h e   m i s m a t c h   l o c a t i o n ,  s o  t h i s   i s  not a r e l e v a n t   b y t e  
: f o r   s k i p p i n g   p u r p o s e s .  

mov 
and 
j z  
mov 

sub 
mov 
i nc 
s h l  
mo v 

dec 
j nz 

mov 
dec 
mov 

SetSkipLoop: 

SetSkipDone: 

s i . [ b p + P a t t e r n P t r ]  : p o i n t   t o   s t a r t   o f   p a t t e r n  
ax.ax : a r e   t h e r e  any s k i p s   t o   s e t ?  
SetSkipDone :no 
d i  .sp : p o i n t   t o   S k i p B u f f e r  

bx , b x   : p r e p a r e   f o r   w o r d   a d d r e s s i n g   o f f   b y t e   v a l u e  
b l   , [ s i ]   : g e t   t h e   n e x t   p a t t e r n   b y t e  
s i  : a d v a n c e   t h e   p a t t e r n   p o i n t e r  
b x . 1   ; p r e p a r e   f o r   w o r d   l o o k u p  
C d i + b x l . a x   : s e t   t h e   s k i p   v a l u e  when t h i s   b y t e   v a l u e   i s  

ax 
SetSkipLoop 

d l   , [ s i  1 ; D L - r i g h t m o s t   p a t t e r n   b y t e   f r o m  now on 
s i  : p o i n t   t o   n e x t - t o - r i g h t m o s t   b y t e   o f   p a t t e r n  
[ b p + P a t t e r n P t r l . s i  : f r o m  now on 

: t h e   m i s m a t c h   v a l u e   i n   t h e   b u f f e r  

: S e a r c h   t h e   b u f f e r .  
s t d   : f o r   b a c k w a r d  REP2 CMPSB 
mov d i . [ b p + B u f f e r P t r ]   ; p o i n t   t o   f i r s t   s e a r c h   l o c a t i o n  
mov cx . [bp+Buf fe rLength ]  :# o f  m a t c h   l o c a t i o n s   t o   c h e c k  

mov s i   . s p   ; p o i n t  SI  t o   S k i p T a b l e  
SearchLoop: 

: S k i p   t h r o u g h   u n t i l   t h e r e ' s  a m a t c h   f o r   t h e   r i g h t m o s t   p a t t e r n   b y t e .  
QuickSearchLoop: 

mov b l  , Cdi 1 ; r i g h t m o s t   b u f f e r   b y t e  a t  t h i s   l o c a t i o n  
cmp d l   , b l  :does i t  m a t c h   t h e   r i g h t m o s t   p a t t e r n   b y t e ?  
j z  Fu l  lCompare :yes,   so  keep  going 
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sub  bh,bh  :convert  t o  a word 
add   bx .bx   : p repare   f o r   l ook -up  i n   S k i p T a b l e  
mov a x ,   [ s i + b x ]   : g e t   s k i p   v a l u e   f r o m   s k i p   t a b l e   f o r   t h i s  

: mismatch  value 
add d i , a x   : B u f f e r P t r  +- S k i p :  
sub   cx .ax   :Bu f fe rLength  -- S k i p :  

jmp  short   NoMatch 

a l i g n  2 

mov ax.[bp+BufferPtrl 
jmp   sho r t  Done 

j a  QuickSearchLoop  ;cont inue i f  a n y   b u f f e r   l e f t  

: Return  a p o i n t e r   t o   t h e   s t a r t   o f   t h e   b u f f e r   ( f o r   0 - l e n g t h   p a t t e r n ) .  

I n s t a n t M a t c h :  

: Compare t h e   p a t t e r n  and t h e   b u f f e r   l o c a t i o n ,   s e a r c h i n g   f r o m   h i g h  
: memory t o w a r d   l o w   ( r i g h t   t o   l e f t ) .  

Ful lCompare: 
a l i g n  2 

mov [ b p + B u f f e r P t r ] . d i  
mov [ b p + B u f f e r L e n g t h l . c x  : t h e   s e a r c h  

: s a v e   t h e   c u r r e n t   s t a t e   o f  

mov c x . [ b p + P a t t e r n L e n g t h l  :# o f   b y t e s   y e t   t o  compare 
j cxz   Ma tch  
mov s i . [ b p + P a t t e r n P t r ]  

;done i f  o n l y  one c h a r a c t e r  

d e c   d i  
: p o i n t   t o   n e x t - t o - r i g h t m o s t   b y t e s  
: o f   b u f f e r   l o c a t i o n  and p a t t e r n  

repz  cmpsb :compare t h e   r e s t   o f   t h e   p a t t e r n  
j z  M a t c h   : t h a t ' s  it: we've  found a match 

: I t ' s  a mismatch: l e t ' s  s e e  what we can l e a r n  from i t .  
i n c   d i  :compensate f o r   1 - b y t e   o v e r r u n   o f  REP2 CMPSB; 

: p o i n t   t o   m i s m a t c h   l o c a t i o n   i n   b u f f e r  
: d o f   b y t e s   t h a t   d i d   m a t c h .  

mov s i . [ b p + B u f f e r P t r ]  
sub s i   . d i  

: I f .  based on the   m ismatch   cha rac te r ,  we c a n ' t   e v e n   s k i p  ahead  as f a r  
: a s  where we s t a r t e d   t h i s   p a r t i c u l a r   c o m p a r i s o n ,   t h e n   j u s t   a d v a n c e   b y  
: 1 t o   t h e   n e x t   p o t e n t i a l   m a t c h ;   o t h e r w i s e ,   s k i p  a h e a d   f r o m   t h i s  
: c o m p a r i s o n   l o c a t i o n   b y   t h e   s k i p   d i s t a n c e   f o r   t h e   m i s m a t c h   c h a r a c t e r .  
: l e s s   t h e   d i s t a n c e   c o v e r e d   b y   t h e   p a r t i a l   m a t c h .  

sub   bx ,bx   : p repare   f o r   word   add ress ing   o f f   by te   va lue  
mov b l , [ d i l   : g e t   t h e   v a l u e   o f   t h e   m i s m a t c h   b y t e   i n   b u f f e r  
add b x . b x   : p r e p a r e   f o r   w o r d   l o o k - u p  
add  bx.sp :SP p o i n t s   t o   S k i p T a b l e  
mov c x . [ b x l   : g e t   t h e   s k i p   v a l u e   f o r   t h i s   m i s m a t c h  
mov ax .1  :assume w e ' l l   j u s t   a d v a n c e   t o   t h e   n e x t  

: p o t e n t i a l   m a t c h   l o c a t i o n  
s u b   c x . s i   : i s   t h e   s k i p   f a r   e n o u g h   t o  b e   w o r t h   t a k i n g ?  
j n a  MoveAhead ;no. go w i t h   t h e   d e f a u l t   a d v a n c e   o f  1 
mov a x ,   c x   : y e s :   t h i s   i s   t h e   d i s t a n c e   t o   s k i p  ahead  from 

MoveAhead: 
: Skip  ahead  and  per form  the  next   compar ison,  i f  t h e r e ' s   a n y   b u f f e r  
: l e f t   t o  check. 

: t h e   l a s t   p o t e n t i a l   m a t c h   l o c a t i o n   c h e c k e d  

mov d i . C b p + B u f f e r P t r ]  
add d i  , a x   : B u f f e r P t r  +== Sk ip :  
mov cx . [bp+Buf fe rLength ]  
sub  cx.ax  :Buf ferLength -- S k i p :  
j a  SearchLoop 

a l i g n  2 

sub ax.ax 
jmp s h o r t  Done 

: Return  a NULL p o i n t e r   f o r  no match. 

NoMatch: 

; c o n t i n u e  i f  any b u f f e r   l e f t  
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: R e t u r n   s t a r t  

Match: 
a l i g n  

mo v 
sub 

c l  d 
add 
POP 
POP 
POP 
r e t  

~ F i  n d S t r i   n g  
end 

Done: 

o f   m a t c h   i n   b u f f e r   ( B u f f e r P t r  - ( P a t t e r n L e n g t h  - 1)). 
2 

ax .Cbp+Buf fe rPt r ]  
ax , [bp+Pat te rnLength l  

: r e s t o r e   d e f a u l t   d i r e c t i o n   f l a g  
sp .256*2   ; dea l l oca te   space   f o r   Sk ipTab le  
d i   ; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
s i  
bP : r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

endp 

Table 14.1 represents  a limited and decidedly unscientific comparison of searching 
techniques. Nonetheless, the overall trend is clear: For all but  the  shortest  patterns, 
well-implemented Boyer-Moore is generally as good as or better than-sometimes 
much better than-brute-force searching. (For short  patterns, you might want  to use 
REPNZ SCASB, thereby getting the best of both worlds.) 
Know your data  and use your smarts. Don't stop  thinking just because you're imple- 
menting  a big-name algorithm; you  know more  than  it does. 

Further  Optimization of Boyer-Moore 
We can do substantially better yet than Listing 14.3 if we're willing to accept  tighter 
limits on  the data. Limiting the  length of the searched-for pattern to a maximum of 
255 bytes  allows  us to use the XLAT instruction and generally tighten the critical 
loop. (Be aware,  however, that XLAT is a relatively  expensive instruction on the 486 
and  Pentium.)  Putting  a copy of the searched-for string at  the  end of the search 
buffer as a  sentinel, so that the search never fails, frees us from counting down the 
buffer length,  and makes it easy to unroll  the critical loop. Listing  14.4,  which imple- 
ments these optimizations, is about 60 percent faster than Listing  14.3. 

LISTING 14.4 11 4-4.ASM 
: Searches a b u f f e r   f o r  a s p e c i f i e d   p a t t e r n .  I n  c a s e   o f  a mismatch, 
: uses t h e   v a l u e   o f   t h e   m i s m a t c h e d   b y t e   t o   s k i p   a c r o s s  as many 
: p o t e n t i a l   m a t c h   l o c a t i o n s  as p o s s i b l e   ( p a r t i a l   B o y e r - M o o r e ) .  
: R e t u r n s   s t a r t   o f f s e t   o f   f i r s t   m a t c h   s e a r c h i n g   f o r w a r d ,   o r  NULL i f  
: no match i s  found. 
; R e q u i r e s   t h a t   t h e   p a t t e r n  be no l o n g e r   t h a n  255 b y t e s ,   a n d   t h a t  
: t h e r e   b e  a match f o r   t h e   p a t t e r n  somewhere i n   t h e   b u f f e r   ( i e . .  a 
: c o p y   o f   t h e   p a t t e r n   s h o u l d  be  placed  as a s e n t i n e l  a t  t h e  end o f  
: t h e   b u f f e r  i f  t h e   p a t t e r n   i s n ' t   a l r e a d y  known t o  be i n  t h e   b u f f e r ) .  
: T e s t e d   w i t h  TASM. 
: C n e a r - c a l l a b l e   a s :  
: uns igned  char  * F i n d S t r i n g ( u n s i g n e d   c h a r  * B u f f e r P t r .  
; u n s i g n e d   i n t   B u f f e r L e n g t h .   u n s i g n e d   c h a r  * P a t t e r n P t r ,  
; u n s i g n e d   i n t   P a t t e r n L e n g t h ) :  

parms s t r u c  
dw 2 dup(?)  ;pushed BP & r e t u r n   a d d r e s s  
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B u f f e r P t r  dw ? ; p o i n t e r   t o   b u f f e r   t o   b e   s e a r c h e d  
B u f f e r L e n g t h  dw ? :# o f   b y t e s   i n   b u f f e r   t o   b e   s e a r c h e d  

P a t t e r n P t r  dw ? 
; ( n o t   u s e d ,   a c t u a l l y )  
; p o i n t e r   t o   p a t t e r n   f o r   w h i c h   t o   s e a r c h  
: ( p a t t e r n  *MUST* e x i s t   i n   t h e   b u f f e r )  

Pa t te rnLeng th  dw ? ; l e n g t h   o f   p a t t e r n   f o r   w h i c h   t o   s e a r c h   ( m u s t  
: be <- 255) 

parms  ends 

.model sma 1 1 

.code 
p u b l i c   _ F i n d s t r i n g  

c l  d 
p u s h   b p   ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov bp .sp   ; po in t  t o  our s tack   f rame 
push s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
push d i  
sub   sp .256   ; a l l oca te   space   f o r   Sk ipTab le  

_ F i n d s t r i n g   p r o c   n e a r  

: C r e a t e   t h e   t a b l e  o f  d i s t a n c e s   b y   w h i c h   t o   s k i p  ahead  on  mismatches 
: f o r   e v e r y   p o s s i b l e   b y t e   v a l u e .   F i r s t ,   i n i t i a l i z e   a l l   s k i p s   t o   t h e  
; p a t t e r n   l e n g t h :   t h i s   i s   t h e   s k i p   d i s t a n c e   f o r   b y t e s   t h a t   d o n ' t  
: appear i n   t h e   p a t t e r n .  

mov d i  .ds 
mov e s , d i  : ES-DS=SS 
mov d i   . s p   : p o i n t   t o   S k i p B u f f e r  
mov a 1 , b y t e   p t r   [ b p + P a t t e r n L e n g t h ]  
and a l . a l   : r e t u r n   a n   i n s t a n t   m a t c h  i f  t h e   p a t t e r n   i s  

mov ah.a l  
mov cx.256/2 
rep   s tosw 
mov ax. [bp+Pat ternLength]  
dec  ax  : f rom now on. we on ly   need 
mov [bp+Pat ternLength] .ax : P a t t e r n L e n g t h  - 1 

: P o i n t   t o   r i g h t m o s t   b y t e   o f   f i r s t   p o t e n t i a l   p a t t e r n   m a t c h   l o c a t i o n  
: i n   b u f f e r .  

: S e t   t h e   s k i p   v a l u e s   f o r   t h e   b y t e s   t h a t   d o   a p p e a r  i n  t h e   p a t t e r n   t o  
: t h e   d i s t a n c e   f r o m   t h e   b y t e   l o c a t i o n  t o  t h e  end o f   t h e   p a t t e r n .  

j z  I n s t a n t M a t c h  ; 0 - l e n g t h  

add   [ bp+Bu f fe rP t r l , ax  

mov 
and 
j z  
mov 
sub 

mov 
i nc 
mov 

dec 
j n z  

mov 
dec 
mov 

SetSkipLoop:  

SetSkipDone: 

s i . C b p + P a t t e r n P t r ]   ; p o i n t   t o   s t a r t   o f   p a t t e r n  
a x ,   a x   : a r e   t h e r e   a n y   s k i p s   t o   s e t ?  
SetSkipDone  ;no 
d i   . s p   : p o i n t  t o  S k i p B u f f e r  
b x ,   b x   ; p r e p a r e   f o r   w o r d   a d d r e s s i n g   o f f   b y t e   v a l u e  

b l . [ s i l   : g e t   t h e   n e x t   p a t t e r n   b y t e  
s i  : a d v a n c e   t h e   p a t t e r n   p o i n t e r  
[ d i + b x l . a l   : s e t   t h e   s k i p   v a l u e  when t h i s   b y t e   v a l u e   i s  

ax 
SetSkipLoop 

d l   . [ s i ]   : D L - r i g h t m o s t   p a t t e r n   b y t e   f r o m  now on 
s i   : p o i n t   t o   n e x t - t o - r i g h t m o s t   b y t e   o f   p a t t e r n  
[ b p + P a t t e r n P t r l . s i  ; f r o m  now on 

: the   mismatch   va lue  i n  t h e   b u f f e r  

: S e a r c h   t h e   b u f f e r .  
s t d  : f o r   backward  R E P Z  CMPSB 
mov d i . [ b p + B u f f e r P t r l  : p o i n t   t o   t h e   f i r s t   s e a r c h   l o c a t i o n  
mov bx.sp : p o i n t   t o   S k i p T a b l e   f o r  XLAT 
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SearchLoop: 

; S k i p   t h r o u g h   u n t i l   t h e r e ' s  a match f o r   t h e   f i r s t   p a t t e r n   b y t e .  
QuickSearchLoop: 
; See i f  we have a match a t   t h e   f i r s t   b u f f e r   l o c a t i o n .  

REPT 8 ; u n r o l l   l o o p  8 t i m e s   t o   r e d u c e   b r a n c h i n g  
mov a1 , [ d i  1 : n e x t   b u f f e r   b y t e  
cmp d l  .a1  ;does i t  m a t c h   t h e   p a t t e r n ?  
jz F u l  lCompare  ;yes, so keep  go ing 
x1 a t  ; n o .   l o o k   u p   t h e   s k i p   v a l u e   f o r   t h i s   m i s m a t c h  
add d i  ,ax 
ENDM 

; B u f f e r P t r  +- Sk ip ;  

jmp  QuickSearchLoop 

a l i g n  2 

mov ax .Cbp+Buf fe rPt r l  
j m p   s h o r t  Done 

sub  ah,ah  ;used t o   c o n v e r t  AL t o  a word 

; Return  a p o i n t e r   t o   t h e   s t a r t   o f   t h e   b u f f e r   ( f o r   0 - l e n g t h   p a t t e r n ) .  

I n s t a n t M a t c h :  

; Compare t h e   p a t t e r n  and t h e   b u f f e r   l o c a t i o n ,   s e a r c h i n g   f r o m   h i g h  
; memory t o w a r d   l o w   ( r i g h t   t o   l e f t ) .  

Fu l l compare :  
a l i g n  2 

mov [ b p + B u f f e r P t r l . d i   : s a v e   t h e   c u r r e n t   b u f f e r   l o c a t i o n  
mov cx.Cbp+PatternLength]  ;# o f   b y t e s   y e t   t o  compare 
j c x z   M a t c h  ;done i f  t h e r e  was o n l y  one c h a r a c t e r  
dec d i   ; p o i n t   t o   n e x t   d e s t i n a t i o n   b y t e   t o  compare ( S I  

r e p z  cmpsb ; c o m p a r e   t h e   r e s t   o f   t h e   p a t t e r n  
; p o i n t s   t o   n e x t - t o - r i g h t m o s t   s o u r c e   b y t e )  

j z  M a t c h   ; t h a t ' s  i t ; we've  found a match 
; I t ' s  a mismatch: l e t ' s  see  what we can   l ea rn   f rom it. 

i n c   d i  ;compensate f o r   I - b y t e   o v e r r u n   o f  REPZ CMPSB; 
; p o i n t   t o   m i s m a t c h   l o c a t i o n   i n   b u f f e r  

; # o f   b y t e s   t h a t   d i d   m a t c h .  
mov s i . C b p + B u f f e r P t r l  
sub s i   . d i  

; I f .  based  on   the   mismatch   charac ter ,  we c a n ' t   e v e n   s k i p   a h e a d   a s   f a r  
; as  where we s t a r t e d   t h i s   p a r t i c u l a r   c o m p a r i s o n ,   t h e n   j u s t   a d v a n c e  by 
; 1 t o   t h e   n e x t   p o t e n t i a l   m a t c h ;   o t h e r w i s e .   s k i p  ahead  from t h i s  
; c o m p a r i s o n   l o c a t i o n   b y   t h e   s k i p   d i s t a n c e   f o r   t h e   m i s m a t c h   c h a r a c t e r ,  
: l e s s   t h e   d i s t a n c e   c o v e r e d   b y   t h e   p a r t i a l   m a t c h .  

mov  a1 , Cdi 1 ; g e t   t h e   v a l u e   o f   t h e   m i s m a t c h   b y t e   i n   b u f f e r  
x1 a t  ; g e t   t h e   s k i p   v a l u e   f o r   t h i s   m i s m a t c h  
mov c x . 1  ;assume w e ' l l   j u s t  advance t o   t h e   n e x t  

s u b   a x . s i  ; i s   t h e   s k i p   f a r   e n o u g h   t o  be w o r t h   t a k i n g ?  
j n a  MoveAhead ;no. go w i t h   t h e   d e f a u l t   a d v a n c e   o f  1 
mov cx.ax ; y e s .   t h i s   i s   t h e   d i s t a n c e   t o   s k i p  ahead  from 

; p o t e n t i a l   m a t c h   l o c a t i o n  

; t h e   l a s t   p o t e n t i a l   m a t c h   l o c a t i o n   c h e c k e d  
MoveAhead: 
; Sk ip   ahead  and  per fo rm  the   nex t   compar ison .  

mov d i . [ b p + B u f f e r P t r l  
add d i   , c x   ; B u f f e r P t r  +- S k i p ;  
mov s i . [ b p + P a t t e r n P t r l   ; p o i n t   t o   t h e   n e x t - t o - r i g h t m o s t  

jmp  SearchLoop 

a l i g n  2 

mov a x , [ b p + B u f f e r P t r l  
sub  ax. [bp+Pat ternLength l  

; p a t t e r n   b y t e  

; R e t u r n   s t a r t   o f   m a t c h   i n   b u f f e r   ( B u f f e r P t r  - ( P a t t e r n L e n g t h  - 1)). 

Match: 
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Done : 
c l  d : r e s t o r e   d e f a u l t   d i r e c t i o n   f l a g  
add  sp.256  :deal locate  space for Sk ipTab le  
pop d i   : r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  
pop s i  
POP b p   : r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  
r e t  

end 
- F i  n d S t r i  ng endp 

Note that Table 14.1 includes the time required  to build the skip table each time 
Findstring is called. This time could be eliminated for all but  the first search when 
repeatedly searching  for  a  particular  pattern, by building the skip table externally 
and passing a pointer to it as a parameter. 

Know What You Know 
Here we’ve turned  up  our nose at a  repeated string instruction, we’ve gone against 
the grain by comparing backward, and yet we’ve speeded up  our code  quite  a bit. All 
this without any restrictions or special requirements  (excluding Listing 14.4)”and 
without any  new information. Everything we needed was sitting there all along; we 
just  needed to think to look at it. 
As Yogi Berra might put it, ‘You don’t know  what  you  know until you  know it.” 
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roblems with Familiar  Data Structures 
es me wince. Oh,  the humiliations I suffer for your 

It wasn’t until ninth  ad my first real girlfriend. Okay, maybe I was a little 
ey, show me a good  programmer who wasn’t; it goes 

annie Schweigert, and she was about  four  feet tall, 
lling to go out with me, which made her approxi- 

gether  at school, and went to basketball games and a few 
how the two of  us  were never alone. Being 14, neither of 

chauffeuring us. That’s a next-to- 
ter of  my own (ideal  being exiling 

all  males between the ages of 12 and 18 to Tasmania), but at  the time, it drove me 
nuts. You see.. . ahem.. . I had never actually  kissed  Jeannie-or anyone, for  that mat- 
ter, unless you count maiden aunts  and  the like-and I was dying to. At the same 
time, I was terrified at  the prospect. What if I turned  out to be no good at it? It wasn’t 
as  if I could go to Kisses ‘ R  Us and take lessons. 
My long-awaited opportunity finally came after a basketball game. For a change, my 
father was driving, and when we dropped  her off at  her house, I walked her to the 
door. This was  my big chance. I put my arms  around  her,  bent over  with my  eyes 
closed, just like in  the movies.. . . 
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And  whacked her  on the top of the head with  my chin. (As I said, she was only about 
four feet tall.)  And I do mean whacked. Jeannie burst into hysterical laughter, tried to 
calm  herself  down,  said goodnight, and went inside, still  giggling. No kiss. 
I was a pretty mature teenager, so this was only  slightly more traumatic than  leading 
the  Tournament of  Roses parade  in my underwear. On  the  next try, though,  I  did 
manage to get  the  hang of this kissing business, and eventually  even went on to have 
a child. (Not with Jeannie,  I  might  add;  the  mind boggles at  the mess I could have 
made of that with her.) As it  turns out,  none of that stuff is particularly difficult; in 
fact, it’s kind of enjoyable, wink,  wink, say no more. 
When you’re dealing with something new, a little knowledge goes a  long way. When 
it comes to  kissing, we have  to fumble  along  the  learning curve on  our own, but 
there  are all sorts of resources to help  speed up  the learning process when it comes 
to programming. The basic mechanisms of programming-searches, sorts, parsing, 
and  the like-are well-understood and superbly well-documented. Treat yourself to 
a book like Algorithms, by Robert Sedgewick (Addison Wesley), or Knuth’s The Art of 
Computer  Programming series (also from Addison Wesley; and where was Knuth with 
The Art of Kissing when I needed  him?),  or practically anything by Jon Bentley, and 
when you  tackle a new area, give  yourself a  head start. There’s still plenty of room  for 
inventiveness and creativity on your part, but why not apply that energy on top of the 
knowledge that’s already been  gained, instead of reinventing the wheel? I know, 
reinventing  the wheel is just  the kind of challenge programmers love-but can you 
really  afford to waste the time?  And do you  honestly think that you’re so smart that you 
can out-think  Knuth, who’s spent  a lifetime at this stuff and  happens to be a genius? 
Maybe  you  can-but I sure can’t. For example,  consider  the evolution of  my under- 
standing of linked lists. 

Linked Lists 
Linked lists are  data  structures composed of discrete elements, or nodes, joined to- 
gether with  links. In C, the links are typically pointers. Like  all data structures, linked 
lists  have their  strengths and their weaknesses. Primary among  the  strengths  are: 
simplicity; speedy sequential processing; ease and speed of insertion and deletion; 
the ability to mix nodes of various sizes and types; and  the ability to handle variable 
amounts of data, especially when the total amount of data  changes dynamically or is 
not always known beforehand. Weaknesses include:  greater memory requirements 
than arrays (the pointers take up  space); slow non-sequential processing, including 
finding arbitrary nodes; and  an inability to backtrack, unless doubly-linked lists are 
used. Unfortunately, doubly linked lists need  more memory,  as  well  as processing 
time to maintain the backward  links. 
Linked lists aren’t very good for most  types  of  sorts. Insertion and bubble sorts work 
fine, but  more sophisticated sorts depend  on  effkient random access,  which linked 
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lists don’t provide.  Likewise,  you  wouldn’t  want to do a binary  search on a linked  list. 
On the  other  hand, linked lists are ideal for applications  where nothing  more  than 
sequential  access is needed to data that’s always sorted or nearly sorted. 
Consider a polygon fill function,  for example. Polygon edges are  added to  the active 
edge list  in  x-sorted order, and tend  to stay pretty nearly  x-sorted, so sophisticated 
sorting is  never needed. Edges are  read out of the list in sorted  order, just  the way 
linked lists  work  best.  Moreover, linked lists are straightforward to implement, and 
with linked lists an arbitrary number of polygon edges can be handled with no fuss. 
All in all, linked lists  work  beautifully for filling  polygons.  For an example of the use 
of linked lists in polygon  filling,  see my column in the May 1991 issue  of DX Dobb’s 
Journal. Be warned, though,  that  none of the following optimizations are  to be found 
in that  column. 
You see, that column was  my first  heavy-duty  use  of linked lists, and they seemed so 
simple that I didn’t even open Sedgewick or Knuth. For hashing or Boyer-Moore 
searching, sure, I’d have done my homework  first; but linked lists seemed  too obvi- 
ous to bother. I was much  more  concerned with the polygon-related  aspects of the 
implementation, and, in truth, I gave the linked list implementation not a moment’s 
thought  before I began coding. Heck, I had  handled much tougher  programming 
problems in the past;  surely i t  would be faster to figure this one  out  on my  own than 
to  look it up. 
Not! 
The basic concept of a linked list-the one I came up with for  that DDJcolumn-is 
straightforward, as  shown  in  Figure  15.1. A head  pointer points to the first node in 
the list,  which points to the  next  node, which points to  the  next,  and so on, until the 
last node in the list  is reached (typically denoted by a NULL next-node pointer). 
Conceptually, nothing could be  simpler.  From an  implementation perspective,  how- 
ever, there  are serious flaws  with this model. 
The fimdamental  problem is that  the  model of  Figure  15.1  unnecessarily  complicates  link 
manipulation. In order to delete a node, for example, you  must change the preceding 

Pointer to 
head of list 

I &Node # 1  

Node # 1  

&Node #2 

Other data 
in node I 

Node #2 Node #3 Node #4 

Other data Other data Other data 
in node in node 

The basic  concept of a  linked  list. 
Figure 1 5.1 
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node's NextNode pointer  to  point  to  the following node, as  shown in Listing  15.1. 
(Listing 15.2 is the  header file  LLIST.H,  which is ##included  by all the  linked list  listings 
in this chapter.) Easy enough-unless the  preceding  node  happens to be the  head 
pointer, which doesn't have a NextNode field, because it's not  a  node, so Listing  15.1 
won't  work. Cumbersome special code  and  extra  information (a pointer  to  the  head of 
the list) are  required to handle  the  head-pointer case, as  shown in Listing  15.3. (I'll 
grant you that if  you make the  next-node  pointer  the first  field in  the LinkNode struc- 
ture,  at offset 0, then you could successfully point to the  head  pointer and  pretend it 
was a M o d e  structure-but that's  an ugly and potentially dangerous trick, and 
we'll  see a  better  approach  next.) 

LISTING 1 5.1 11 5- 1 .C 
/*  D e l e t e s   t h e   n o d e   i n  a l i n k e d   l i s t   t h a t   f o l l o w s   t h e   i n d i c a t e d   n o d e .  

Assumes l i s t   i s  headed  by a dummy node, s o  no s p e c i a l   t e s t i n g   f o r  
t h e   h e a d - o f - l i s t   p o i n t e r   i s   r e q u i r e d .   R e t u r n s   t h e  same p o i n t e r  
t h a t  was p a s s e d   i n .  * /  

#i n c l  ude  "1 1 i s t .  h" 
s t r u c t   L i n k N o d e   * D e l e t e N o d e A f t e r ( s t r u c t   L i n k N o d e   * N o d e T o D e l e t e A f t e r )  
I 

NodeToDeleteAfter ->NextNode - 
return(NodeToDe1eteAfter ) :  

NodeToOeleteAfter->NextNode->NextNode: 

1 

LISTING 15.2 1LIST.H 
/*  L i n k e d   l i s t   h e a d e r   f i l e .  * /  
# d e f i n e  MAX-TEXT-LENGTH 100 /*  l o n g e s t   a l l o w e d   T e x t   f i e l d  * /  
# d e f i n e  SENTINEL 32767 / *  l a r g e s t   p o s s i b l e   V a l u e   f i e l d  * /  

s t r u c t   L i n k N o d e  { 
s t ruc t   L inkNode   *Nex tNode ;  
i n t  Value:  
cha r  TextCMAX-TEXT-LENGTH+ll; 
/*  Any number o f   a d d i t i o n a l   d a t a   f i e l d s  may by   p resen t  * /  

1 :  
s t r u c t   L i n k N o d e   * D e l e t e N o d e A f t e r ( s t r u c t   L i n k N o d e  * ) ;  
s t r u c t   L i n k N o d e  * F i n d N o d e B e f o r e V a l u e ( s t r u c t  LinkNode *, i n t ) :  
s t r u c t   L i n k N o d e   * I n i t L i n k e d L i s t ( v o i d ) ;  
s t r u c t   L i n k N o d e  *InsertNodeSorted(struct LinkNode *. 

s t r u c t   L i n k N o d e  * ) ;  

LISTING 15.3  11 5-3.C 
/*  D e l e t e s   t h e   n o d e   i n   t h e   s p e c i f i e d   l i n k e d   l i s t   t h a t   f o l l o w s   t h e  

i n d i c a t e d   n o d e .   L i s t   i s   h e a d e d   b y  a h e a d - o f - l i s t   p o i n t e r :  i f  t h e  
p o i n t e r   t o   t h e   n o d e   t o   d e l e t e   a f t e r   p o i n t s   t o   t h e   h e a d - o f - l i s t  
p o i n t e r ,   s p e c i a l   h a n d l i n g   i s   p e r f o r m e d .  * /  

i i n c l  ude  "1 1 i s t .  h" 
s t r u c t   L i n k N o d e   * D e l e t e N o d e A f t e r ( s t r u c t   L i n k N o d e   * * H e a d O f L i s t P t r .  

{ 
s t r u c t   L i n k N o d e   * N o d e T o D e l e t e A f t e r )  

/ *  H a n d l e   s p e c i a l l y  i f  t h e   n o d e   t o   d e l e t e   a f t e r   i s   a c t u a l l y   t h e  
head o f   t h e   l i s t   ( d e l e t e   t h e   f i r s t   e l e m e n t   i n   t h e   l i s t )  * /  

i f  (NodeToDe le teA f te r  - ( s t r u c t   L i n k N o d e   * ) H e a d O f L i s t P t r )  I 
* H e a d O f L i s t P t r  - ( * H e a d O f L i s t P t r ) - > N e x t N o d e ;  
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1 else { 
N o d e T o D e l e t e A f t e r - > N e x t N o d e  = 

N o d e T o D e l e t e A f t e r - > N e x t N o d e - > N e x t N o d e ;  
I 

1 
r e t u r n ( N o d e T o D e 1 e t e A f t e r ) :  

However,  it is true  that if you’re going to store a variety  of  types  of structures in your 
linked lists,  you should start each node with the LinkNode field. That way, the link 
pointer is in the same place  in every structure, and  the same linked list code can 
handle all  of the  structure types  by casting them to the base link-node structure type. 
This is a less than  elegant  approach,  but it  works. C++ can handle  data mixing more 
cleanly than C, via derivation from a base link-node class. 
Note that Listings 15.1 and 15.3  have  to  specify the linked-list delete  operation as 
“delete  the next node,”  rather  than  “delete this node,” because in order to relink it’s 
necessary  to  access the NextNode field  of the  node preceding  the  node to be de- 
leted,  and it’s impossible  to  backtrack  in a singly linked list.  For this reason, 
singly-linked  list operations  tend to  work  with the  structure  preceding  the one of 
interest-and that makes the  problem of having to special-case the  head  pointer all 
the  more acute. 
Similar problems with the  head  pointer  crop up when you’re inserting nodes, and in 
fact  in  all  link manipulation code. It’s  easy  to end  up working  with either  pointers to 
pointers or lots of special-case code, and while those approaches work,  they’re  inel- 
egant  and inefficient.. 

Dummies and Sentinels 
A far better  approach is to  use a dummy node for  the  head of the list,  as  shown in 
Figure  15.2. I invented this one for myself the  next time I encountered linked lists, 
while designing a seed fill function  for MetaWindows,  back during my tenure  at 
Metagraphics Corp. But I  could have learned it by spending five minutes with 
Sedgewick’s  book. 

Dummy 
head node Node # 1  Node #2 Node #3 

Dummy tail 
node 

&Node # 1  ”+ &Node #2 

Not Other data Other data Other data Not used 

&Tail node + &Node #3 ”+ 

used 

- 

in node in node in node 
I 

Using  a  dummy  head  and  tail  node  with a linked  list. 
Figure 15.2 

Linked  Lists and Unintended  Challenges 285 



The next-node pointer of the head  node, which points to thefirst real  node, is the p onlypart of the  head  node  that b actually used. This way the  same code works on  the 
head  node as on the rest of the list, so there  are no special cases. 

Likewise, there  should be a  separate node for  the tail of the list, so that every node 
that  contains  real  data is guaranteed  to have a node  on  either side of it. In this 
scheme,  an empty list contains two nodes, as  shown in Figure 15.3. Although  it is not 
necessary, the tail node may point  to itself as its own next  node,  rather  than  contain 
a NULL pointer.  This way, a  deletion  operation on  an empty list will  have no effect- 
quite  unlike  the same operation  performed on a list terminated with a NULL pointer. 
The tail node of a list terminated like this can be detected because it will be the only 
node for which the  next-node  pointer  equals  the  current-node  pointer. 
Figure 15.3 is a giant step in the  right  direction,  but we can  still  make a few refinements. 
The  inner  loop of  any code that scans through such a list  has  to perform a special  test on 
each node to determine whether the tail has been reached. So, for example, code to find 
the first node containing a value  field greater than or equal to a certain value  has to 
perform two tests in the  inner  loop, as  shown in Listing 15.4. 

LISTING 15.4 11 5-4.C 
/*  F i n d s   t h e   f i r s t   n o d e   i n  a l i n k e d   l i s t   w i t h  a v a l u e   f i e l d   g r e a t e r  

t h a n   o r   e q u a l   t o  a k e y   v a l u e ,   a n d   r e t u r n s  a p o i n t e r   t o   t h e   n o d e  
p r e c e d i n g   t h a t   n o d e   ( t o   f a c i l i t a t e   i n s e r t i o n  and d e l e t i o n ) .   o r  a 
NULL p o i n t e r  i f  no  such  va lue was found .  Assumes t h e   l i s t   i s  
terminated w i t h  a tail node p o i n t i n g   t o   i t s e l f  a s  the  next node. */  

# i n c l u d e   < s t d i o . h >  
bi n c l  ude "1  1 i s t .  h" 
s t r u c t   L i n k N o d e  *F indNodeBeforeValueNotLess(  

I 
s t r u c t   L i n k N o d e   * H e a d O f L i s t N o d e .   i n t   S e a r c h v a l u e )  

s t r u c t   L i n k N o d e   * N o d e P t r  - HeadOfLis tNode:  

w h i l e  ( (NodePtr ->NextNode->NextNode !- NodePtr ->NextNode)  && 
(NodePtr ->NextNode->Value < Searchva lue )  ) 

NodePtr - NodePtr ->NextNode:  

i f  (NodePtr->NextNode->NextNode -- NodePtr ->NextNode)  

e l s e  
r e t u r n ( N U L L ) ;  / *  we f o u n d   t h e   s e n t i n e l :   f a i l e d   s e a r c h  * /  

r e t u r n ( N o d e P t r ) :  /* s u c c e s s :   r e t u r n   p o i n t e r   t o   n o d e   p r e c e d i n g  
node t h a t  was >- * /  

} 

Suppose, however, that we make the tail node a sentinel by giving it a value that is 
guaranteed  to  terminate  the  search, as  shown in Figure 15.4. The list in Figure 15.4 
has  a  sentinel with a value field of 32,767; since we're working  with integers,  that's 
the  highest possible search value, and is guaranteed  to satisfy  any search  that comes 
down the pike. The success or failure of the  search  can  then  be  determined  outside 
the  loop, if necessary, by checking  for  the tail node's special pointer-but the  inside 
of the  loop is streamlined  to just  one test, as  shown in Listing 15.5. Not all linked lists 
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Dummy  head  Dummy  ta i l  
node  node 

Tail node &Tail node - 

N o t   N o t  
used  used . 

Representing  an  empty  list. 
Figure 15.3 

lend themselves to sentinels, but  the  performance benefits are considerable for those 
that do. 

LISTING  15.5  11  5-5.C 
/*  F i n d s   t h e   f i r s t   n o d e   i n  a v a l u e - s o r t e d   l i n k e d   l i s t   t h a t  

has a V a l u e   f i e l d   g r e a t e r   t h a n   o r   e q u a l   t o  a key   va lue ,  and 
r e t u r n s  a p o i n t e r   t o   t h e   n o d e   p r e c e d i n g   t h a t   n o d e   ( t o   f a c i l i t a t e  
i n s e r t i o n  and d e l e t i o n ) .   o r  a NULL p o i n t e r  i f  no  such  va lue was 
found .  Assumes t h e   l i s t   i s   t e r m i n a t e d   w i t h  a s e n t i n e l  tail node 
c o n t a i n i n g   t h e   l a r g e s t   p o s s i b l e   V a l u e   f i e l d   s e t t i n g  and p o i n t i n g  
t o   i t s e l f  as t h e   n e x t   n o d e .  * /  

# i n c l u d e   < s t d i o . h >  
C i n c l  ude  "1 1 i s t .  h" 
s t r u c t   L i n k N o d e  *F indNodeBeforeValueNotLess(  

t 
s t r u c t   L i n k N o d e   * H e a d O f L i s t N o d e .   i n t   S e a r c h v a l u e )  

s t ruc t   L inkNode   *NodePt r  - HeadOfListNode; 
w h i l e  (NodePtr ->NextNode->Value < Searchva lue )  

i f  (NodePtr ->NextNode->NextNode -= NodePtr ->NextNode)  

e l s e  

NodePtr = NodePtr->NextNode: 

r e t u r n ( N U L L ) ;  / *  we f o u n d   t h e   s e n t i n e l ;   f a i l e d   s e a r c h  * /  

r e t u r n ( N o d e P t r ) ;  / *  s u c c e s s ;   r e t u r n   p o i n t e r   t o   n o d e   p r e c e d i n g  
n o d e   t h a t  was >- * /  

1 

Dummy  head 
node Node # 1 Node #2 Node #3 

Dumml   t a i l  I I n o e  

& N o d e  # 1 & N o d e  #2 

Not used 
Other   da ta  t I 

List  terminated by a  sentinel. 
Figure 15.4 
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Circular Lists 
One  minor  but elegant  refinement yet remains: Use a single node as both  the  head 
and the tail  of the list. We can do this by connecting  the last node back to the first 
through  the  head/tail  node in a circular fashion, as  shown  in Figure 15.5. This head/ 
tail node can also, of course, be a  sentinel; when it’s necessary to check for  the end of 
the list  explicitly, that can be done by comparing  the current  node  pointer to the 
head  pointer. If they’re equal, you’re at  the  head/tail  node. 
W h y  am I so fond of this circular list architecture? For one thing,  it saves a node,  and 
most  of my linked list programming has been  done  in severely memory-constrained 
environments. Mostly, though, it’sjust so neut;with this setup, there’s not  a single node or 
inner-loop  instruction wasted. Perfect economy of programming, if you  ask me. 
I must  admit  that I racked my brains  for  quite  a while to come up with the circular 
list, simple as it may seem. Shortly after  coming up with it, I happened to look in 
Sedgewick’s book, only  to find my nifty optimization described plain as  day; and a 
little while after that, I came across a thread  in  the algorithms/computer.sci topic on 
BIX that described it in considerable detail. Folks, the  information is out  there. Look 
it up before turning on your optimizer afterburners! 
Listings 15.1 and 15.6 together  form  a suite of C functions  for  maintaining  a circular 
linked list sorted by ascending value. (Listing 15.5 requires modification before it 
will work with circular lists.) Listing 15.7 is an assembly language  version of 
InsertNodeSorted();  note  the  tremendous efficiency of the  scanning  loop  in 
InsertNodeSorted()-four instructions per node!-thanks  to the dummy head/tail/ 
sentinel node. Listing  15.8 is a simple application that illustrates the use of the linked- 
list functions in Listings 15.1 and 15.6. 
Contrast Figure 15.5 with Figure 15.1, and Listings  15.1, 15.5, 15.6, and 15.7 with 
Listings 15.3 and 15.4. Yes, linked lists are simple, but  not so simple that  a little 
knowledge doesn’t make a substantial difference. Make it a  habit to read Knuth or 
Sedgewick or  the like before you  write a single line of code. 

Dummy head/tail 
node Node # 1  Node #2 Node #3 

+ 
Other data Other data 

- &Head/ + &Node #3 j. &Node #2 -+ &Node # 1  
tail node 

Not used 
in node Other data in node 

L in node 

Representing a circular list. 
Figure 15.5 
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w h i l e  (NodePtr->NextNode->Value < Searchva lue)  
NodePtr  - NodePtr->NextNode; 

NodeToInsert->NextNode = NodePtr->NextNode: 
NodePtr->NextNode - NodeToInser t ;  
r e t u r n ( N o d e P t r ) :  

} 

LISTING 15.7 11 5-7.ASM 
: C n e a r - c a l l a b l e   a s s e m b l y   f u n c t i o n   f o r   i n s e r t i n g  a new node i n  a 
: l i n k e d   l i s t   s o r t e d   b y   a s c e n d i n g   o r d e r   o f   t h e   V a l u e   f i e l d .  The l i s t  
: i s   c i r c u l a r :   t h a t   i s .  i t  has a dummy node   as   bo th   t he   head   and   t he  
: t a i l   o f   t h e   l i s t .  The dummy node i s  a s e n t i n e l ,   c o n t a i n i n g   t h e  
: l a r g e s t   p o s s i b l e   V a l u e   f i e l d   s e t t i n g .   T e s t e d   w i t h  TASM. 
MAXLTEXT-LENGTH equ 100 : l o n g e s t   a l l o w e d   T e x t   f i e l d  
SENTINEL equ 32767 : l a r g e s t   p o s s i b l e   V a l u e   f i e l d  
L i n k N o d e   s t r u c  
NextNode dw ? 
Va lue  dw ? 
Tex t   db  MAX-TEXTLLENGTH+l d u p ( ? )  
:*** Any  number o f   a d d i t i o n a l   d a t a   f i e l d s  may b y   p r e s e n t  *** 
L i  nkNode  ends 

.model  smal 1 

.code 

: I n s e r t s   t h e   s p e c i f i e d   n o d e   i n t o  a a s c e n d i n g - v a l u e - s o r t e d   l i n k e d  
: l i s t ,  s u c h   t h a t   v a l u e - s o r t i n g   i s   m a i n t a i n e d .   R e t u r n s  a p o i n t e r   t o  
: t h e   n o d e   a f t e r   w h i c h   t h e  new node i s   i n s e r t e d .  
: C n e a r - c a l l a b l e   a s :  
: s t r u c t   L i n k N o d e  *InsertNodeSorted(struct LinkNode  *HeadOfListNode. 

parms s t r u c  

HeadOfListNode dw ? : p o i n t e r   t o   h e a d   n o d e   o f  1 i s t  
NodeToInser t  dw ? ; p o i n t e r   t o   n o d e   t o   i n s e r t  
parms  ends 

s t r u c t   L i n k N o d e   * N o d e T o I n s e r t )  

dw 2 dup ( ? I  : p u s h e d   r e t u r n   a d d r e s s  & BP 

p u b l i c   - 1 n s e r t N o d e S o r t e d  
-1nse r tNodeSor ted   p roc   nea r  

push 
mov 
push 
push 
mov 
mov 
mov 

SearchLoop: 
mov 
mov 
CmP 

mov 
mov 
mov 

bP 
bP. SP 
s i  
d i  
s i , [ b p l . N o d e T o I n s e r t  
a x . [ s i l . V a l u e  
d i .Cbp l .Head0fL is tNode 

b x . d i  
d i .Cbx l .Nex tNode 
C d i l . V a l u e . a x  

SearchLoop 

ax . [bx l .Nex tNode 
[ s i l . N e x t N o d e , a x  
Cbx1.NextNode.si 

: p o i n t   t o   s t a c k   f r a m e  
: p r e s e r v e   r e g i s t e r   v a r s  

; p o i n t   t o   n o d e   t o   i n s e r t  
; s e a r c h   v a l u e  
: p o i n t   t o   l i n k e d   l i s t   i n  
: w h i c h   t o   i n s e r t  

:advance t o   t h e   n e x t  node 
: p o i n t   t o   f o l l o w i n g   n o d e  
: i s   t h e   f o l l o w i n g   n o d e ' s  
: v a l u e   l e s s   t h a n   t h e   v a l u e  
: f r o m   t h e   n o d e   t o   i n s e r t ?  
:yes .  s o  c o n t i n u e   s e a r c h i n g  
:no.  s o  we have   f ound   ou r  
: i n s e r t   p o i n t  
; l i n k   t h e  new node  between 
: t h e   c u r r e n t   n o d e   a n d   t h e  
: f o l l o w i n g   n o d e  
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mov ax,  bx 

pop d i  
pop s i  
POP bp 
r e t  

end 
Jnser tNodeSorted  endp 

; r e t u r n   p o i n t e r   t o  node 
: a f t e r   w h i c h  we i n s e r t e d  
: r e s t o r e   r e g i s t e r   v a r s  

LISTING 15.8 11 5-8.C 
/*  Sample l i n k e d   l i s t   p r o g r a m .   T e s t e d   w i t h   B o r l a n d  C++. * I  
#i n c l   u d e   < s t d l  i b .  h> 
#i n c l   u d e   < s t d i  0 .  h> 
Bi nc l   ude   <con i  0 .  h> 
Pi nc l   ude  <c type.   h>  
# i n c l u d e   < s t r i n g . h >  
{ { i n c l u d e   " 1 l i s t . h "  

v o i d   m a i n ( )  
{ i n t  Done = 0 .  Char,  Tempvalue: 

s t ruc t   L inkNode   *TempPt r .   *L i s tP t r .   *TempPt rZ :  
c h a r  TempBuffer[MAX-TEXT-LENGTH+31: 

i f  ( ( L i s t P t r  - I n i t L i n k e d L i s t O )  =- NULL) I 
p r i n t f ( " 0 u t   o f   m e m o r y \ n " ) ;  
e x i t ( 1 ) :  

1 
w h i l e   ( ! D o n e )  { 

p r i n t f ( " \ n A = a d d ;   D - d e l e t e :   F - f i n d ;   L - l i s t   a l l :   C ! - q u i t \ n > " ) :  
Char = t o u p p e r ( g e t c h e 0 ) :  
p r i n t f ( " \ n " ) :  
s w i t c h   ( C h a r )  { 

case ' A ' :  I* add a node * I  
i f  ( (TempPt r  = m a l l o c ( s i z e o f ( s t r u c t   L i n k N o d e ) ) )  -- NULL) 
I 

p r i n t f ( " 0 u t   o f  memory\n ) :  
e x i t ( 1 ) :  

1 
p r i n t f ( " N o d e   v a l u e :  "1: 
scanf ( "%d" .   &TempPt r ->Va lue) :  
i f  ( (F indNodeBe fo reVa lue (L i s tP t r .TempPt r ->Va lue ) ) != -NULL)  
{ p r i n t f ( " * * *   v a l u e   a l r e a d y   i n   l i s t :   t r y   a g a i n   * * * \ n " ) :  

) e l s e   { p r i n t f ( " N o d e   t e x t :  " ) :  
f ree(TempPt r1 :  

TempBuffer[O] .. MAX-TEXT-LENGTH: 
c g e t s ( T e m p B u f f e r ) ;  
s t r c p y ( T e m p P t r - > T e x t .   & T e m p B u f f e r [ E l ) :  
I n s e r t N o d e S o r t e d ( L i s t P t r .   T e m p P t r ) ;  
p r i n t f ( " \ n " ) :  

1 
b r e a k :  

p r i n t f ( " V a 1 u e   f i e l d   o f   n o d e   t o   d e l e t e :  " ) :  

scanf  ("%d".  &TempVal  ue) : 
i f  ( (TempPt r  - F i n d N o d e B e f o r e V a l u e ( L i s t P t r .  Tempvalue))  

case ' D ' :  I* d e l e t e  a node *I  

!=- NULL) I 
TempPtrE - TempPtr->NextNode; I* - >  node to d e l e t e  *I 
De le teNodeAf te r (TempPt r ) :  I* d e l e t e  i t  *I  
f r e e ( T e m p P t r 2 ) :  I* f r e e   i t s  memory * /  
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1 e l s e  ( 

b r e a k ;  

p r i n t f ( " V a 1 u e   f i e l d   o f   n o d e   t o   f i n d :  "1;  
scanf( "%d".   &Tempvalue) ;  
i f  ( (TempPtr  - F i n d N o d e B e f o r e V a l u e ( L i s t P t r .  Tempvalue))  

p r i n t f ( " * * *  n o   s u c h   v a l u e   f i e l d   i n   l i s t   * * * \ n " )  

case I F ' :  I* f i n d  a node *I  

!- NULL) 
p r i n t f ( " V a 1 u e :   % d \ n T e x t :   % s \ n " .  

TempPtr->NextNode->Value.   TempPtr->NextNode->Text) ;  
e l s e  

b r e a k ;  

TempPtr - L i s t P t r - > N e x t N o d e ;  I* p o i n t   t o   f i r s t  node *I 
i f  (TempPtr - L i s t P t r )  { I* empty i f  a t   s e n t i n e l  *I 

1 e l s e  I 

p r i n t f ( " * * *  n o   s u c h   v a l u e   f i e l d   i n   l i s t   * * * \ n " ) ;  

case   ' L ' :  I* l i s t  all nodes *I  

p r i n t f ( " * * *   L i s t   i s  empty  *** \n" ) ;  

do { p r i n t f ( " V a l u e :   % d \ n   T e x t :   % s \ n " ,   T e m p P t r - > V a l u e .  
TempPt r ->Tex t ) ;  

TempPtr - TempPtr->NextNode; 

1 
break ;  

case '0': 
Done - 1; 
b reak ;  

b reak ;  

1 wh i le   (TempPt r  !- L i s t P t r ) ;  

d e f a u l t :  

1 
1 

1 

Hi/Lo in 24 Bytes 
In one of  my PC TECHNIQLES "Pushing the Envelope"  columns, I passed along one of 
David Stafford's fiendish programming puzzles:  Write a Gcallable function to find  the 
greatest or smallest unsigned int. Not a big deal-except that David had already done it 
in 24 bytes, so the challenge was to do it in 24 bytes or less. 
Such routines soon began coming  at  me  from all angles. However (and I  hate to say 
this because some of my correspondents were very pleased with the  thought  that they 
had bested David), no  one has  yet met  the challenge-because  most of  you folks 
missed a key point. When David said, "Write a  function to find  the  greatest or small- 
est unsigned int in 24 bytes or less," he  meant, 'Write the hi and the lo functions  in 
24 bytes or less-combined." 
Oh. 
Yes, a  24byte  hi/lo  function is possible,  anatomically improbable as it  might seem. 
Which I guess goes to show that when one of  David's  puzzles  seems  less than impos- 
sible, odds  are  you're missing something. Listing 15.9 is David's 24byte  solution, 
from which a  lot may be learned if one reads closely enough. 
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LISTING 15.9 L15-9.ASM 
; F i n d   t h e   g r e a t e s t  or  s m a l l e s t   u n s i g n e d   i n t .  
; C c a l l a b l e   ( s m a l l   m o d e l ) :  24 b y t e s .  
: By D a v i d   S t a f f o r d .  
: u n s i g n e d   h i (   i n t  num. uns igned   a [ ]  ) :  

: u n s i g n e d   l o (   i n t  n u m .  uns igned   a [ ]  ) ;  

p u b l i c  -.hi. -10  

save: 
t o p :  

around: 

-h i  : db 
-1 0 : x o r  

P O P  

POP 
POP 
push 
push 
push 
mov 

j c x z  
cmc 
j a  
i nc 
i nc 
dec 
j nz 

cmp 

Ob9h 

ax 
dx  
bx 
bx 
dx  
ax 
ax,   Cbxl  
a x . [ b x l  
a round 

c x . c x  

save 
bx 
bx 
dx  
t o p  

:mov cx . immedia te  

: g e t   r e t u r n   a d d r e s s  
:ge t   coun t  
: g e t   p o i n t e r  
: r e s t o r e   p o i n t e r  
; r e s t o r e   c o u n t  
; r e s t o r e   r e t u r n   a d d r e s s  

r e t  

Before I end this chapter,  let me say that I get  a lot of feedback from my readers, and 
it's much appreciated. Keep those cards, letters, and email messages coming. And if 
any  of  you  know Jeannie Schweigert,  have her  drop me a line and  let me know  how 
she's doing these days .... 
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ned in the Pursuit of 
rd Counter 

I remember readin'g  ew of C++ development tools for Windows in a past 
issue of PC Week. In t  eft  corner was the  familiar  box listing the 10 leading 
concerns of corpora? buyers when  it  comes to C++. Roiled  down, the list looked 
like this, in order ofjHescending importance to buyers: 

4. High-level  Winddws support 
5. Class library 
6. Development  cycle efficiency 
7. Object-oriented  development  aids 
8. Programming  management aids 
9. Online help 

10.  Windows  development  cycle  automation 
Is something missing here? You bet  your  maximum gluteus something's missing- 
nowhere on  that list is there so much as one word  about how  fast the  compiled  code 
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runs! I’m not saying that  performance is everything, but optimization isn’t even  down 
there  at  number 10, below online help! Ye gods and little fishes! We are talking here 
about people who would take a bus from LA to New  York instead  of a plane because it 
had a cleaner  bathroom; who would choose a painting  from a Holiday Inn over a 
Matisse because it had a fancier  frame; who  would  buy a h g o  instead of-well, hell, 
anything-because it  had a nice owner’s manual and particularly attractive keys. We 
are talking about  people who are focusing on means, and have forgotten about ends. 
We are talking about  people with no programming souls. 

Counting Words in a Hurry 
What are we to make of this? At the very least, we can safely  guess that very  few 
corporate buyers ever enter optimization contests. Most of my readers do, however; 
in fact, far  more  than I thought ever would, but that  gladdens me to no  end. I issued 
my first optimization challenge in a “Pushing the Envelope” column in PC TECH- 
NIQUES back in 1991, and was deluged by respondents who, one might also gather, 
do  not live  by PC Week. 
That initial challenge was sparked by a column David Gerrold wrote (also in PC 
TECHNIQUES) concerning the matter of counting the number of  words  in a document; 
David turned up some pretty interesting optimization issues along the way.  David did 
all  his coding in Pascal, pointing out  that while an assembly language version  would 
probably be faster, his Pascal  utility worked properly and was fast enough for  him. 
It wasn’t,  however,  fast enough  for me. The logical starting place for  speeding up 
word counting would  be David’s original Pascal code, but I’m much more comfortable 
with C, so Listing  16.1 is a loose approximation of  David’s  word count program, trans 
lated to C. I left out a few details, such as handling  comment blocks, partly because I 
don’t use  such  blocks  myself, and partly so we can  focus on optimizing the core word- 
counting code. As Table 16.1 indicates, Listing 16.1 counts the words in a 104,448-word 
file in 4.6 seconds. The file was stored on a RAM disk, and Listing 16.1 was compiled 
with Borland C++ with  all optimization enabled. A RAM disk was used partly because 
it  returns consistent times-no seek times, rotational latency, or cache to muddy the 
waters-and partly to highlight word-counting speed  rather  than disk  access speed. 
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LISTING 1 6.1 11 6- 1 .C 
/* W o r d - c o u n t i n g   p r o g r a m .   T e s t e d   w i t h   B o r l a n d  C++ i n  C 

c o m p i l a t i o n  mode and   the   sma l l   mode l .  * /  

# i n c l u d e   < s t d i o . h >  
% i n c l u d e   < f c n t l  . h> 
# i n c l u d e   < s y s \ s t a t . h >  
# i n c l u d e   < s t d l  i b .  h> 
#i ncl  ude <i 0 .  h >  

# d e f i n e  BUFFER-SIZE Ox8000 I *  l a r g e s t   c h u n k   o f   f i l e   w o r k e d  

i n t   m a i n ( i n t .   c h a r  * * ) ;  

i n t   m a i n ( i n t   a r g c .   c h a r   * * a r g v )  I 

w i t h   a t  any one t i m e  * /  

i n t   H a n d l e ;  
u n s i g n e d   i n t   B l o c k S i z e :  
1 o n g   F i  1 eS i  ze :  
uns igned  long   WordCount  - 0:  
c h a r   * B u f f e r .   C h a r f l a g  = 0. P r e d C h a r F l a g .   * B u f f e r P t r .  Ch: 

i f  ( a r g c  != 2 )  { 
p r i n t f ( " u s a g e :  wc < f i l e n a m e > \ n " ) :  
e x i t ( 1 ) :  

1 

i f  ( ( B u f f e r  = rnalloc(BUFFERKS1ZE)) == NULL) I 
p r i n t f ( " C a n ' t   a l l o c a t e   a d e q u a t e   m e m o r y \ n " ) :  
e x i t ( 1 ) :  

I 

i f  ( ( H a n d l e  = open(argvC11,  0-RDONLY I 0-BINARY)) =- -1) { 
p r i n t f ( " C a n ' t   o p e n   f i l e  %s \n " .  a rgvC11) :  
e x i t ( 1 ) :  

i f  ( ( F i l e s i z e  = f i l e l e n g t h ( H a n d 1 e ) )  == -1) I 
p r i n t f ( " E r r o r   s i z i n g   f i l e  %s \n " .  a r g v [ l l ) ;  
e x i t ( 1 ) :  

} 

I* P r o c e s s   t h e   f i l e   i n   c h u n k s  * /  
w h i l e   ( F i l e s i z e  > 0 )  { 

I* G e t   t h e   n e x t   c h u n k  *I  
F i l e s i z e  -= ( B l o c k S i z e  = min(Fi1eSize.  BUFFER-SIZE)):  
i f  ( r e a d ( H a n d 1 e .   B u f f e r ,   B l o c k S i z e )  == -1) { 

p r i n t f ( " E r r o r   r e a d i n g   f i l e  %s\n" .  a rgvC11) :  
e x i t ( 1 ) :  

1 
I* Count   words i n   t h e  chunk * I  
B u f f e r P t r  = B u f f e r :  
do I 

PredCharF lag  = C h a r f l a g :  
Ch = * B u f f e r P t r + +  & Ox7F; I* s t r i p   h i g h   b i t ,   w h i c h  some 

word   p rocesso rs   se t   as   an  

CharF lag  = 

f l a g  * I  
I I  

) I I  
I I  
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i f  ( ( ! C h a r F l a g )  && P redCharF lag )  { 

I 
Wordcount++: 

1 w h i l e   ( - B l o c k S i z e ) ;  
1 

/ * C a t c h   t h e   l a s t   w o r d ,  i f  any */  
i f  ( C h a r F l a g )  { 

Wordcount++; 
1 
p r i n t f ( " \ n T o t a l   w o r d s   i n   f i l e :   % l u \ n " .   W o r d c o u n t ) :  
r e t u r n ( 0 ) :  

I 

Listing 16.2 is  Listing 16.1 modified to call a  function  that scans each block for words, 
and Listing 16.3 contains  an assembly function  that  counts words.  Used together, 
Listings 16.2 and 16.3 are  just  about twice  as fast as  Listing 16.1, a  good return  for a 
little assembly language. Listing 16.3 is a pretty straightforward translation from C to 
assembly; the new code makes good use of registers, but  the key code-determining 
whether  each byte  is a  character or not-is still done with the same multiple-sequen- 
tial-tests approach used by the  code  that  the C compiler generates. 

LISTING  16.2  11 6-2.C 
/*  W o r d - c o u n t i n g   p r o g r a m   i n c o r p o r a t i n g   a s s e m b l y   l a n g u a g e .   T e s t e d  

w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode & t h e   s m a l l   m o d e l .  * /  

#i n c l  ude < s t d i  0. h> 
# i n c l u d e   < f c n t l  . h> 
# i n c l u d e   < s y s \ s t a t .   h >  
#i n c l   u d e   < s t d l  i b. h> 
# i n c l u d e   < i o . h >  

# d e f i n e  BUFFER-SIZE 0x8000 / *  l a r g e s t   c h u n k  o f  f i l e  worked 

i n t   m a i n ( i n t ,   c h a r  **I :  
v o i d   S c a n B u f f e r ( c h a r  *, u n s i g n e d   i n t ,   c h a r  *, u n s i g n e d   l o n g  * ) ;  

i n t   m a i n ( i n t   a r g c .   c h a r   * * a r g v )  { 

w i t h  a t  any   one  t ime */  

i n t  Hand le :  
u n s i g n e d   i n t   B l o c k S i z e :  
l o n g   F i l e S i z e :  
u n s i g n e d   l o n g   W o r d c o u n t  - 0:  
c h a r   * B u f f e r .   C h a r F l a g  - 0:  

i f  ( a r g c  !- 2 )  { 
p r i n t f ( " u s a g e :  wc < f i l e n a m e > \ n " ) ;  
e x i t ( 1 ) :  

1 

i f  ( ( B u f f e r  - malloc(BUFFER-SIZE)) - NULL) { 
p r i n t f ( " C a n ' t   a l l o c a t e   a d e q u a t e   m e m o r y \ n " ) ;  
e x i t ( 1 ) :  

1 

i f  ( ( H a n d l e  - open(argvC11,  OCRDONLY I 0-BINARY)) - -1) ( 
p r i n t f ( " C a n ' t  open f i l e   % s \ n " .   a r g v C l ] ) :  
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1 
e x i t ( 1 ) :  

i f  ( ( F i l e s i z e  = f i l e l e n g t h ( H a n d 1 e ) )  == -1) { 
p r i n t f ( " E r r o r   s i z i n g   f i l e   % s \ n " .   a r g v [ l ] ) :  
e x i t ( 1 ) ;  

I 

CharF lag  = 0 :  
w h i l e   ( F i l e s i z e  > 0 )  { 

F i l e s i z e  -= ( B l o c k S i z e  = m i n ( F i 1 e S i z e .  BUFFER-SIZE)): 
i f  ( r e a d ( H a n d 1 e .   B u f f e r ,   B l o c k S i z e )  =- -1) { 

p r i n t f ( " E r r o r   r e a d i n g   f i l e   % s \ n " .   a r g v C 1 1 ) :  
e x i t ( 1 ) :  

I 
S c a n B u f f e r ( B u f f e r .   B l o c k S i z e .   & C h a r F l a g .   & W o r d C o u n t ) :  

1 

I* C a t c h   t h e   l a s t   w o r d ,  i f  any * I  
i f  ( C h a r F l a g )  I 

Wordcount++: 
1 
p r i n t f ( " \ n T o t a l   w o r d s   i n   f i l e :   % l u \ n " .   W o r d C o u n t ) :  
r e t u r n ( 0 ) :  

I 

LISTING  16.3  11  6-3.ASM 
; A s s e m b l y   s u b r o u t i n e   f o r   L i s t i n g   1 6 . 2 .   S c a n s   t h r o u g h   B u f f e r ,   o f  
: l e n g t h   B u f f e r L e n g t h .   c o u n t i n g   w o r d s   a n d   u p d a t i n g   W o r d C o u n t   a s  
: a p p r o p r i a t e .   B u f f e r L e n g t h   m u s t   b e  > 0 .  *CharFlag  and  *Wordcount  
: s h o u l d   e q u a l  0 on t h e   f i r s t   c a l l .   T e s t e d   w i t h  TASM. 
: C n e a r - c a l l a b l e   a s :  
: v o i d   S c a n B u f f e r ( c h a r   * B u f f e r .   u n s i g n e d   i n t   B u f f e r L e n g t h ,  
: c h a r   * C h a r F l a g .   u n s i g n e d   l o n g   * W o r d c o u n t ) :  

p a r m s   s t r u c  

B u f f e r  dw ? ; b u f f e r   t o   s c a n  
B u f f e r L e n g t h  dw ? : l e n g t h   o f   b u f f e r   t o   s c a n  
CharF lag  dw ? : p o i n t e r   t o   f l a g   f o r   s t a t e   o f   l a s t  

dw 2 d u p ( ? )   ; p u s h e d   r e t u r n   a d d r e s s  & B P  

: c h a r   p r o c e s s e d   o n   e n t r y  ( 0  on 
: i n i t i a l   c a l l ) .   U p d a t e d   o n   e x i t  

; f o u n d  ( 0  on i n i t i a l   c a l l )  
WordCount dw ? : p o i n t e r   t o   3 2 - b i t   c o u n t   o f   w o r d s  

parms  ends 

.model  smal 1 

.code 
pub1 i c  _ScanBu f fe r  

p u s h   b p   : p r e s e r v e   c a l  
mov b p . s p   ; s e t   u p   l o c a l  
p u s h   s i   ; p r e s e r v e   c a l  
p u s h   d i  

. _ScanBu f fe r   p roc   nea r  
l e r ' s  

s t a c  
l e r ' s  

s t a c k   f r a m e  

r e g i s t e r   v a r s  
k f r ame 

mov s i , [ b p + B u f f e r l   ; p o i n t   t o   b u f f e r   t o   s c a n  
mov bx . [bp+WordCount l  
mov c x  , [ b x l   ; g e t   c u r r e n t   3 2 - b i t   w o r d   c o u n t  
mov d x ,  Cbx+21 
mov bx . [bp+CharF lag l  
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mov b l  , [ b x l  ; g e t   c u r r e n t   C h a r F l a g  
mov d i . [ b p + B u f f e r L e n g t h ]  ; g e t  I o f   b y t e s   t o   s c a n  

mov b h . b l  :PredCharF lag  - CharF lag ;  
1 odsb ;Ch - * B u f f e r P t r + +  & Ox7F; 
a n d   a l , 7 f h  ; s t r i p   h i g h   b i t   f o r   w o r d   p r o c e s s o r s  

mov b l  ,1 ;assume t h i s   i s  a c h a r ;   C h a r F l a g  - 1; 

j b  
cmp a l . ' a '  ;it i s  a c h a r  i f  between a and z 

CheckAZ 
cmp a l . ' z '  
j n a   I s A C h a r  

cmp a1 , 'A '  
j b  Check09 
cmp a 1 , ' Z '  
j n a   I s A C h a r  

cmp a1 , ' 0 '  ;it i s  a c h a r  i f  between 0 and 9 
j b  CheckApost rophe 
cmp a1 , ' 9 '  
j n a   I s A C h a r  

cmp a1 .27h ;it i s  a c h a r  i f  an   apos t rophe  
j z  IsAChar  
s u b   b l   . b l   ; n o t  a c h a r ;   C h a r F l a g  - 0;  
and  bh.bh 
j z  ScanLoopBottom ; i f  ( ( ! C h a r F l a g )  && P redCharF lag )  ( 
add   cx .1  ; (WordCount)++; 
adc   dx .0  

ScanLoop: 

; t h a t   s e t  i t  a s   a n   i n t e r n a l   f l a g  

C hec kAZ : 
;it i s  a c h a r  i f  between A and Z 

Check09: 

CheckApost rophe:  

IsAChar :  
ScanLoopBottom: 

; I  

d e c   d i  ; I  w h i l e   ( " B u f f e r L e n g t h ) ;  
j n z  ScanLoop 

mov s i   . [ b p + C h a r F l a g l  
mov [ s i ] . b l   ; s e t  new CharF lag  
mov bx.[bp+WordCount] 
mov [ b x ]  , c x   ; s e t  new w o r d   c o u n t  
mov [bx+2] ,   dx 

p o p   d i  
pop s i  
POP bP 
r e t  

3 c a n B u f f e r   e n d p  
end 

; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r s  

; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

Which  Way to Go from  Here? 
We could  rearrange  the tests in  light of the  nature of the  data  being  scanned;  for 
example, we could  perform  the tests more efficiently by taking advantage of the 
knowledge that if a byte is less than '0,' it's either  an  apostrophe or  not  a character  at 
all.  However, that  sort of fine-tuning is typically good  for  speedups of only 10 to 20 
percent, and I've intentionally  refrained  from  implementing this in Listing 16.3 to 
avoid pointing you  down the  wrong  path; what we need is a  different tack altogether. 
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Ponder this. What we really want to know is nothing  more  than  whether  a byte is a 
character, not what sort of character it is. For each byte value, we want a yes/no 
status, and  nothing else-and that description practically  begs for a  lookup table. 
Listing  16.4  uses a  lookup table approach to boost performance another 50 percent, 
to three times the  performance of the original C code. On a 20 MHz 386, this repre- 
sents a  change  from 4.6 to 1.6 seconds, which could be  significant-who  likes to 
wait? On  an 8088, the  improvement in word-counting a large file could easily  be 10 
or 20 seconds, which is definitely significant. 

LISTING 16.4 11 6-4.ASM 
; A s s e m b l y   s u b r o u t i n e   f o r   L i s t i n g   1 6 . 2 .   S c a n s   t h r o u g h   B u f f e r .   o f  
; l e n g t h   B u f f e r L e n g t h ,   c o u n t i n g   w o r d s   a n d   u p d a t i n g   W o r d C o u n t   a s  
; a p p r o p r i a t e ,   u s i n g  a l o o k u p   t a b l e - b a s e d   a p p r o a c h .   B u f f e r L e n g t h  
; must   be > 0. *CharF lag   and  *Wordcount   shou ld   equa l  0 on t h e  
: f i r s t   c a l l .   T e s t e d   w i t h  TASM. 
; C n e a r - c a l l a b l e   a s :  
; v o i d   S c a n B u f f e r ( c h a r   * B u f f e r .   u n s i g n e d   i n t   B u f f e r L e n g t h .  
; c h a r   * C h a r F l a g ,   u n s i g n e d   l o n g   * W o r d C o u n t ) ;  

p a r m s   s t r u c  

B u f f e r  dw ? ; b u f f e r   t o   s c a n  
B u f f e r L e n g t h  dw ? ; l e n g t h   o f   b u f f e r   t o   s c a n  
CharF lag  dw ? ; p o i n t e r   t o   f l a g   f o r   s t a t e   o f   l a s t  

dw 2 d u p ( ? )   : p u s h e d   r e t u r n   a d d r e s s  & BP 

: c h a r   p r o c e s s e d   o n   e n t r y  ( 0  on 
; i n i t i a l   c a l l ) .   U p d a t e d  on e x i t  

; f o u n d  ( 0  on i n i t i a l   c a l l )  
Wordcount dw ? : p o i n t e r   t o   3 2 - b i t   c o u n t   o f   w o r d s  

parms  ends 

.model  smal 1 

. d a t a  
; T a b l e   o f   c h a r / n o t   s t a t u s e s   f o r   b y t e   v a l u e s   0 - 2 5 5   ( 1 2 8 - 2 5 5   a r e  
; d u p l i c a t e s  o f  0 - 1 2 7  t o   e f f e c t i v e l y  mask o f f   b i t  7 .  wh ich  some 
: w o r d   p r o c e s s o r s   s e t   a s   a n   i n t e r n a l   f l a g ) .  
C h a r S t a t u s T a b l e   l a b e l   b y t e  

REPT 2 
db   39   dup(0)  
db 1 ;apos t rophe  
db 8 d u p ( 0 )  
db   10   dup (1 )  
db 

; o - 9  
7 d u p ( 0 )  

db   26   dup(1)   ;A-2  
db 6 d u p ( 0 )  
db 26 d u p ( 1 )  
db 

: a - z  
5 d u p ( 0 )  

ENDM 

.code 
p u b l i c   - S c a n B u f f e r  

p u s h   b p   ; p r e s e r v e   c a l  
mov b p . s p   : s e t  u p  l o c a l  
p u s h   s i   ; p r e s e r v e   c a l  
p u s h   d i  

- S c a n B u f f e r   p r o c   n e a r  
l e r ' s   s t a c k   f r a m e  

l e r ' s   r e g i s t e r   v a r s  
s t a c k   f r a m e  
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mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 

and 

1 odsb 

x l a t  

ScanLoop: 

j z  

and 

j z  

dec 
j n z  

mov 
mov 
mov 
mov 
mov 

POP 
POP 
POP 
r e t  

a1 i g n  

add 
adc 
dec  
j n z  
jmp 

-ScanBu f fe r  
end 

ScanLoopBottom 

Done: 

Countword :  

s i . [ b p + B u f f e r l   : p o i n t   t o   b u f f e r   t o   s c a n  
bx. [bp+WordCount]  
d i  , [ b x ]  : g e t  c u r r e n t   3 2 - b i t   w o r d   c o u n t  
dx.   [bx+El  
bx . [bp+CharF lag ]  
a1 . C b x l   : g e t   c u r r e n t   C h a r F l a g  
cx ,Cbp+Bu f fe rLeng th l   : ge t  # o f   b y t e s   t o   s c a n  
b x . o f f s e t   C h a r S t a t u s T a b l e  

a1 .a1 

ScanLoooBottom 

a1  .a1 

Countword  

c x  
ScanLoop 

:ZF-0 i f  l a s t   b y t e  was a c h a r ,  
: Z F = l  i f  n o t  
; g e t   t h e   n e x t   b y t e  
; * * * d o e s n ' t   c h a n g e   f l a g s * * *  
: l o o k   u p   i t s   c h a r / n o t   s t a t u s  
; * * *doesn ' t   change   f l ags* * *  
: d o n ' t   c o u n t  a word  i f  l a s t   b y t e  was 
: n o t  a c h a r a c t e r  
; l a s t   b y t e  was a c h a r a c t e r :   i s   t h e  
: c u r r e n t   b y t e  a c h a r a c t e r ?  
;no.  s o  c o u n t  a word  

: c o u n t  down b u f f e r   l e n g t h  

s i   . [ b p + C h a r F l a g ]  
[ s i  1 .a1 
bx. [bp+WordCount l  

; s e t  new CharF lag  

[ b x l . d i   : s e t  new w o r d   c o u n t  
[bx+2 l   ,dx  

d i  
s i  
bP 

2 

d i  .I 
dx.0  

ScanLoop 
Done 
endp 

c x  

: r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r s  

: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

: i n c r e m e n t   t h e   w o r d   c o u n t  

: c o u n t  down b u f f e r   l e n g t h  

Listing 16.4 features several interesting tricks.  First, i t  uses LODSB and XLAT in 
succession, a very neat way to get  a  pointed-to byte, advance the pointer, and look up 
the value indexed by the byte in a table, all  with just two instruction bytes. (Interest- 
ingly,  Listing 16.4 would probably run quite a bit better still on  an 8088, where LODSB 
and XLAT have a greater advantage over conventional instructions. On the 486 and 
Pentium, however, LODSB and XLAT lose much of their  appeal, and should be 
replaced with MOV instructions.) Better yet, LODSB and XLAT don't  alter the flags, 
so the Zero flag status set before LODSB is still around to be tested after XLAT. 
Finally, if you look closely,  you will see that Listing  16.4 jumps  out of the  loop to 
increment the word count in the case  where a word is actually found, with a duplicate of 
the loop-bottom code placed after the  code  that  increments  the word count, to avoid 
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an  extra  branch back into  the  loop; this replaces the  more intuitive approach of 
jumping  around  the incrementing  code to the loop bottom when a word isn’t found. 
Although this incurs a branch every time a word is found, a word is typically found 
only once every 5 or 6 bytes; on average, then, a  branch is saved about two-thirds  of 
the time. This is an excellent example of  how understanding  the  nature of the  data 
you’re processing allows  you  to optimize in ways the compiler can’t. Know your data! 
So, gosh, Listing 16.4 is the best word-counting code in the universe, right? Not 
hardly. If there’s one  thing my years  of  toil in this  vale  of  silicon  have taught  me, it’s 
that there’s never a lack  of potential  for  further optimization. Never! Off the top of 
my head,  I can think of at least three ways to speed up Listing 16.4; and, since Turbo 
Profiler reports  that even in Listing 16.4,88 percent of the time is spent scanning the 
buffer (as opposed to reading  the  file), there’s potential  for those further optimiza- 
tions to improve performance significantly.  (However, it is true  that when access is 
performed to a  hard  rather  than RAM disk, disk  access jumps to about half of overall 
execution time.) One possible optimization is unrolling the loop,  although  that is 
truly a last resort because it tends to make further changes extremely difficult. 

Exhaust  all  other  optimizations  before  unrolling loops. 

llenges and Hazards 
The challenge I put to the  readers of PC TECHNIQLESwas to write a faster module 
to replace Listing 16.4. The  author of the  code  that  counted  the words in my secret 
test file  fastest on my 20 MHz cached 386 would be the winner and receive Numer- 
ous Valuable  Prizes. 
No  listings  were to be longer  than 200 lines. No complete programs were to be ac- 
cepted; submissions had to be plug-compatible with Listing 16.4. (This was to 
encourage  people not to  waste time optimizing outside the  inner  loop.) Finally, the 
code had to produce  the same results as  Listing 16.4; I  didn’t want to see functions 
that  approximated  the word count by dividing the  number of characters by six in- 
stead of counting actual words! 
So how did  the  entrants in this particular challenge stack up? More than  one claimed 
a  speed-up over my assembly word-counting  code of more  than  three times. On 
top of the three-times speedup over the original C code  that I had already realized, 
we’re almost up to an  order of magnitude faster. You are, of course,  entitled  to 
your own opinion,  but  Iconsider  an  order of magnitude  to be significant. 
Truth to tell, I didn’t  expect  a three-times speedup;  around two times was what I had 
in mind. Which just goes to show that any code can be made faster than you’d  ex- 
pect, if you think  about  it  long  enough  and  from many different perspectives. (The 
most potent word-counting technique seems to be a 64K lookup table that allows 
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handling two bytes simultaneously. This is not the  sort of technique one comes up 
with by brute-force  optimization.)  Thinking  (or, worse yet, boasting)  that your code 
is the fastest possible is rollerskating on  a tightrope in a  hurricane;  you’re due  for  a 
fall, if you catch my drift. Case in point: Terje Mathisen’s word-counting  program. 

Blinding Yourself  to  a  Better  Approach 
Not so long  ago, Terje Mathisen, who I introduced  earlier in this book, wrote a very 
fast word-counting  program, and posted  it on Bix. When I say it was fast, I  mean fast; 
this code was optimized like nobody’s business. We’re talking top-quality code  here. 
When the topic of optimizing came up in one of the Bix conferences, Terje’s program 
was mentioned,  and  he posted the following  message: “I challenge BIXens (and espe- 
cially mabrash!) to speed it up significantly. I would consider 5 percent  a  good  result.” 
The clear implication was, ‘That code is as  fast as it can possibly be.” 
Naturally, it wasn’t; there  ain’t no such  thing as the fastest code (TANSTATFC? I 
agree,  it doesn’t have the  ring of  TANSTAAFL). I pored over  Terje’s 386 native-mode 
code, and  found  the critical inner  loop, which was indeed as tight as one could 
imagine, consisting of just  a few 386 native-mode instructions. However, one of  the 
instructions was this: 

CMP D H . C E B X + E A X I  

Harmless enough, save for two things. First, EBX happened to be  zero at this point 
(a leftover from an earlier version of the  code, as it  turned out), so it was superfluous 
as a memory-addressing component; this made  it possible to use  base-only address- 
ing ([EAX]) rather  than  baset-index  addressing ([EBX+EAX]), which  saves a cycle 
on  the 386. Second:  Changing  the  instruction  to CMP [EAX],DH saved 2 cycles- 
just  enough, by good fortune, to  speed up  the whole program by 5 percent. 

CMP  reg,[mem] takes 6 cycles on the 386, but CMP /memJ,reg takes only 5 cycles; 1 you  should  always  pevform CMP with the  memory  operand on the left on the 386. 

(Granted, CMP [mem],reg is 1 cycle  slower than CMP reg,[mem] on the 286, and 
they’re both the same on  the 8088; in  this  case, though, the code was specific to the 386. 
In case you’re  curious,  both  forms take 2 cycles on  the 486; quite  a  lot faster, eh?) 

Watch Out for  Luggable  Assumptions! 
The first lesson to be learned  here is not to  lug  assumptions  that may no longer be 
valid from  the 8088/286 world into  the wonderful new  world of 386 native-mode 
programming. The second lesson is that  after you’ve  slaved  over  your code  for  a 
while, you’re in no shape  to see its flaws, or to be able  to  get  the new perspectives 
needed to speed it up. I’ll bet Terje looked at that [EBX+EAX] addressing  a hundred 
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times  while  trying to  speed up his code,  but he didn’t really  see  what it did; instead, 
he saw what it was supposed to do. Mental shortcuts like  this are what enable us to 
deal with the complexities of assembly language without overloading after about 20 
instructions, but they can  be a major problem when looking over  familiar code. 
The third, and most interesting, lesson is that a far more fruitful optimization came 
of  all  this, one that nicely  illustrates that cycle counting is not  the key to happiness, 
riches, and wondrous performance. After getting my 5 percent speedup, I mentioned 
to Terje the possibility  of  using a 64K lookup table. (This  predated  the arrival of 
entries for the optimization contest.) He said that  he  had considered it, but it didn’t 
seem to him  to be worthwhile. He couldn’t shake the  thought,  though,  and  started 
to poke around,  and  one day, voila, he posted a new  version  of  his  word count pro- 
gram, WC50, that was much faster than  the  old version. I don’t have exact numbers, 
but Terje’s preliminary estimate was 80 percent faster, and word  counting--including 
disk cache access  time-proceeds at  more  than 3 MB per second on a 33 MHz 486. 
Even  allowing for  the  speed of the 486, those are very impressive numbers  indeed. 
The point I want  to  make, though, is that the biggest  optimization barrier that Terje 
faced was that he thought he had  the fastest code possible. Once  he  opened up the 
possibility that  there were  faster approaches, and looked  beyond the specific approach 
that he had so carefully  optimized, he was able  to come up with code that was a lot 
faster.  Consider the incongruity of  Terje’s  willingness  to consider a 5 percent  speedup 
significant  in  light  of  his  later  near-doubling of performance. 

Don ’t get stuck in  the  rut of instruction-by-instruction optimization. It 5 useful in 1 key  loops, but very often, a change in approach  will  work fa r  greater  wonders  than 
any  amount of cycle  counting  can. 

By the way, Terje’s WC50 program is a full-fledged counting  program;  it  counts char- 
acters, words, and lines, can handle multiple files, and lets you specify the  characters 
that  separate words, should you so desire. Source code is provided as part of the 
archive WC50 comes in. All in all,  it’s a nice piece of  work, and you might want  to 
take a look at  it if you’re interested in really  fast  assembly code. I wouldn’t call it  the 
fastestword-counting code,  though, because I would  of course never be so foolish  as 
to call  anything the fastest. 

The Astonishment of Right-Brain Optimization 
As it happened,  the challenge I issued  to my PC TECHNIQUES readers was a smashing 
success,  with  dozens  of good entries. I certainly  enjoyed it, even though I did have to 
look at a lot of  tricky  assembly code that I didn’t write-hard  work under  the best  of 
circumstances. It was worth the trouble, though. The winning entry was an astonishing 
example of  what  assembly  language can do in the right hands; on my 386, it was four 
times faster at word counting than the nice,  tight  assembly code I provided  as a starting 
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point-and about 13 times faster than  the original C implementation. Attention, high- 
level language chauvinists:  Is the  speedup getting significant  yet? Okay,  maybe  word 
counting isn’t the most  critical application, but how  would  you  like to have that kind of 
improvement in your compression software, or in your  real-time games-or in Win- 
dows graphics? 
The winner was  David Stafford, who at  the time was working for Borland Interna- 
tional; his entry is shown in Listing  16.5. Dave Methvin, whom some of you  may 
recall as a tech editor of the late, lamented PC Tech Journal, was a close second, and 
Mick Brown, about whom I know nothing  more  than  that  he is obviously an ex- 
tremely good assembly language programmer, was a close third, as  shown in Table 
16.2,  which precedes Listing  16.5. Those three were out ahead of the pack; the  fourth- 
place entry, good as it was (twice  as  fast  as my original code), was  twice  as  slow as 
David’s winning entry, so you can see that David,  Dave, and Mick attained a rarefied 
level  of optimization indeed. 
Table  16.2  has  two  times for each entry listed: the first  value is the overall counting time, 
including time spent  in  the main program, disk I/O, and everything else; the  second 
value is the time  actually spent counting words, the time spent in ScanBuffer. The first 
value  is the time perceived by the user, but  the second value best reflects the quality 
of the optimization in each entry, since the rest of the overall execution time is fixed. 
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LISTING 16.5 QSCAN3.ASM 
; QSCAN3.ASM 
; D a v i d   S t a f f o r d  

COMMENT $ 

How i t  works  

The  idea  i s   t o  g o   t h r o u g h   t h e   b u f f e r   f e t c h i n g   e a c h   l e t t e r - p a i r   ( w o r d s  
r a t h e r   t h a n   b y t e s ) .   T h e   c a r r y   f l a g   i n d i c a t e s   w h e t h e r  we a r e  
c u r r e n t l y   i n  a ( t e x t )   w o r d   o r   n o t .   T h e   l e t t e r - p a i r   f e t c h e d   f r o m   t h e  
b u f f e r   i s   c o n v e r t e d   t o  a 1 6 - b i t   a d d r e s s   b y   s h i f t i n g  i t  l e f t  one b i t  
( l o s i n g   t h e   h i g h   b i t   o f   t h e   s e c o n d   c h a r a c t e r )   a n d   p u t t i n g   t h e   c a r r y  
f l a g   i n   t h e   l o w   b i t .  T h e   h i g h   b i t   o f   t h e   c o u n t   r e g i s t e r   i s   s e t   t o  
1. T h e n   t h e   c o u n t   r e g i s t e r   i s   a d d e d   t o   t h e   b y t e   f o u n d   a t   t h e   g i v e n  
address  i n  a l a r g e  (64K.  n a t u r a l l y )   t a b l e .   T h e   b y t e   a t   t h e   g i v e n  
address  will c o n t a i n  a 1 i n   t h e   h i g h   b i t  i f  t h e   l a s t   c h a r a c t e r   o f   t h e  
l e t t e r - p a i r   i s  a w o r d - l e t t e r   ( a l p h a n u m e r i c   o r   a p o s t r o p h e ) .   T h i s  will 
s e t   t h e   c a r r y   f l a g   s i n c e   t h e   h i g h   b i t   o f   t h e   c o u n t   r e g i s t e r   i s   a l s o  a 
1. The  low b i t   o f   t h e   b y t e   f o u n d   a t   t h e   g i v e n   a d d r e s s  will be  one i f  
t h e   s e c o n d   c h a r a c t e r   o f   t h e   p r e v i o u s   l e t t e r - p a i r  was a w o r d - l e t t e r  
a n d   t h e   f i r s t   c h a r a c t e r   o f   t h i s   l e t t e r - p a i r   i s   n o t  a w o r d - l e t t e r .  It 
will a l s o   b e  1 i f  t h e   f i r s t   c h a r a c t e r   o f   t h i s   l e t t e r - p a i r   i s  a 
w o r d - l e t t e r   b u t   t h e   s e c o n d   c h a r a c t e r   i s   n o t .   T h i s   p r o c e s s   i s  
r e p e a t e d .   F i n a l l y ,   t h e   c a r r y   f l a g   i s   s a v e d   t o   i n d i c a t e   t h e   f i n a l  
i n - a - w o r d / n o t - i n - a - w o r d   s t a t u s .   T h e   c o u n t   r e g i s t e r   i s   m a s k e d   t o  
r e m o v e   t h e   h i g h   b i t  and t h e   c o u n t   o f   w o r d s   r e m a i n s   i n   t h e   c o u n t  
r e g i s t e r .  

S o u n d   c o m p l i c a t e d ?   Y o u ' r e   r i g h t !   B u t   i t ' s   f a s t !  

T h e   b e a u t y   o f   t h i s   m e t h o d   i s   t h a t   n o   j u m p s   a r e   r e q u i r e d ,   t h e  
o p e r a t i o n s   a r e   f a s t .  it r e q u i r e s   o n l y   o n e   t a b l e   a n d   t h e   p r o c e s s   c a n  
b e   r e p e a t e d   ( u n r o l l e d )  many t i m e s .  QSCAN3 c a n   r e a d   2 5 6   b y t e s   w i t h o u t  
j ump ing .  

COMMEND $ 

T e s t 1  
Addr&x:  

T e s t 2  
Addr&x:  

Scan 
B u f f e r  
B u f f e r L e n g t h  
CharF lag  
WordCount 

.model   smal l  

. code 

macro  x .y  
mov d i  , Cbp+yl 
adc d i   . d i  
o r  
add a1 , Cdi 1 

a x . s i  

endm 

macro  x .y  
mov d i  , Cbp+yl 
adc d i   . d i  
add   ah ,   [ d i  1 
endm 

- 128 - 

- - 4 
6 - - 

- - a 
10 

:9 o r   1 0   b y t e s  
; 3   o r  4 b y t e s  

;7 o r  8 b y t e s  
: 3   o r  4 b y t e s  

; s c a n   2 5 6   b y t e s   a t  a t i m e  
; parms 
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p u b l i c   - S c a n B u f f e r  
- S c a n B u f f e r   p r o c   n e a r  

push 
mov 
push 
push 

x o r  
mov 
mov 
s h r  
j n z  

mov 
mov 

mov 
mov 
mov 
add 
add 
mov 
cbw 
s h r  
adc 
xchg  
jmp 

push 
p u s h f  

cwd 
mov 
d i  v 
o r  

sub 
sub 
sub 
i nc 

S ta r tA tTheTop :  mov 
s h l  
mov 
xchg 
x o r  
mov 
mov 
mov 
mov 
mov 
mov 
mov 
s h r  

OneByteBuf:  

Normal   Buf :  

jz 

j mp 

a1 i g n  
add 

r e p t  
- Top : 

n 

c x ,   c x  
s i   . [ b p + B u f f e r ]   ; s i  - t e x t   b u f f e r  
a x . [ b p + B u f f e r L e n g t h l   ; d x  - l e n g t h   i n   b y t e s  
a x . 1  
Normal  Buf 

ax.seg  WordTable 
es.ax 

d i  , [bp+CharF lag ]  
b h . [ d i l  
b l   , [ s i  1 

bx ,   bx  
a1 . e s : [ b x ]  

a1 .1 
c x  , c x  
ax,   bx 
C1 eanUp 

b h . ' A " l  

bp 

c l  .Scan 

dx,   dx 
S t a r t A t T h e T o p  
cx ,   dx  
s i   . c x  
s i   . c x  
ax 

bx ,   dx  
b x . 1  
d i   , L o o p E n t r y [ b x ]  
dx,   ax 
c x ,   c x  
bx . [bp+CharF lag l  
b l  . [ b x l  
bp,seg  WordTable 
ds.  bp 
b p , s i  
s i  ,8080h 
a x . s i  
b l  .1 
d i  

c x  

2 

0 
bx ,   bx  

Scan12 

;dx - l e n g t h   i n   w o r d s  

;bh - o l d   C h a r F l a g  
: b l  - c h a r a c t e r  
;make  bh i n t o   c h a r a c t e r  
: p r e p a r e   t o   i n d e x  

: g e t   h i   b i t   i n  ah ( t h e n   b h )  
: g e t   l o w   b i t  
; cx  - 0 o r  1 

:(1) 
: ( 2 )  

:dx - 0 

: rema inder?  
;nope.  do the   who le   banana  

: a d j u s t   b u f   p o i n t e r  

; a d j u s t   f o r   p a r t i a l   r e a d  

: g e t   i n d e x   f o r   s t a r t  ... 
: . . . add ress  i n   d i  
:dx i s   t h e   l o o p   c o u n t e r  
; t o t a l   w o r d   c o u n t  

; b l  - o l d   C h a r F l a g  

: s c a n   b u f f e r   w i t h   b p  
: h i   b i t s  
: i n i t   l o c a l   w o r d   c o u n t e r  
; c a r r y  - o l d   C h a r F l a g  

: r e s t o r e   c a r r y  
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n 

EndCount: 

i f  

e l s e  

e n d i  f 

Q u i t :  

I t s E v e n :  

C leanup:  

-ScanBu f fe r  

Address  

LoopEn t ry  
n 

n 

i n c l u d e  

T e s t l  %n.%n*2 
T e s t 2  %n+l.%n*2+2 - n+2 
endm 

sbb  bx .bx  
Scan  ge  128 
o r  
add 
mov 

add 
and 

add 
mov 
add 
dec 
j n g  
j mp 

POPf 
j n c  
c l  c 
T e s t l  
sbb 
s h r  
adc 

push 
POP 
POP 

mov 
add 
adc 
and 
mov 
mov 
POP 
POP 
POP 
r e t  
endp 

. d a t a  
macro 
dw 
endm 

: s a v e   c a r r y  
:because  a l+ah may equa l   128 !  

a x . s i  
a1 ,ah 
ah.0 

a1 ,ah 
a x . 7 f h  :mask 

cx .ax   : upda te   word   coun t  
a x . s i  
bp,Scan*2 
dx  :any l e f t ?  
Q u i t  
TOP 

: ( 2 )  e v e n   o r   o d d   b u f f e r ?  
I t s E v e n  

Odd.-1 
b x ,   b x   : s a v e   c a r r y  
a x . 1  
cx .0  

ds  
s s  : r e s t o r e   d s  

bp  :(1) 

s i . [bp+WordCount l  
[ s i l . c x  
w o r d   p t r   [ s i + E l . O  
b h . 1   : s a v e   o n l y   t h e   c a r r y   f l a g  
s i . [ b p + C h a r F l a g l  
[ s i  1, bh  
d i  
s i  
bp  

X 
Addr&X 

l a b e l   w o r d  - Scan 
REPT Scan 
Address  %n MOD Scan 

ENDM 

. f a r d a t a   W o r d T a b l e  
qscan3 . inc  
end 

- n - 1  

: b u i l t   b y  MAKETAB 
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Levels of Optimization 
Three levels  of optimization were evident in the word-counting entries I received in 
response to my challenge. I’d briefly describe them as “fine-tuning,” “new perspec- 
tive,” and “table-driven state machine.” The latter categories produce faster code, 
but, by the same token, they are  harder to design, harder to implement, and  more 
difficult to understand, so they’re suitable for only the most demanding applica- 
tions. (Heck, I don’t even guarantee  that David Stafford’s entry works perfectly, 
although, knowing him, it probably does;  the  more complex and cryptic the code, 
the greater the chance  for  obscure bugs.) 

Remember,  optimize  only  when  needed,  and stop when further optimization  will p not  be  noticed.  Optimization  that 5. not perceptible to  the  user is like  buying  Telly 
Savalas a comb;  it 5. not  going  to do any  harm,  but  it 5. nonetheless a waste of  time. 

Optimization Level 1 : Good Code 
The first  level of optimization involves fine-tuning and clever  use of the instruction set. 
The basic framework is still the same as my code (which in  turn is  basically the same 
as that of the original C code),  but  that framework is implemented  more efficiently. 
One obvious level 1 optimization is using  a word rather  than dword counter. 
ScanBuffer can never be called upon to handle  more  than 64K bytes at a  time, so 
no  more  than 32K words can ever be  found. Given that, it’s a logical step to use 
INC rather  than ADD/ADC to keep  count,  adding  the tally into  the full 32-bit 
count only upon exiting the  function.  Another useful optimization is aligning loop 
tops and  other  branch  destinations to word, or  better yet dword, boundaries. 
Eliminating branches was  very popular, as it should be on x86 processors. Branches 
were eliminated  in  a remarkable variety  of ways.  Many  of  you unrolled  the  loop,  a 
technique  that  does pay  off  nicely. A word of caution: Some of  you unrolled the loop 
by simply stacking repetitions of the  inner loop one after  the  other, with DEC CX/JZ 
appearing after each repetition to detect  the  end of the buffer. Part of the  point of 
unrolling  a  loop is to reduce  the  number of times you  have to check for  the end of 
the buffer! The trick  to this is to set CX to the  number of repetitions of the unrolled 
loop and  count down  only once  each time through  the  unrolled  loop.  In  order to 
handle  repetition  counts  that  aren’t exact multiples of the unrolling factor, you must 
enter  the loop by branching  into  the middle of it to perform whatever fraction of the 
number of unrolled  repetitions is required to make the whole thing come out right. 
Listing 16.5 (QSCAN3.ASM) illustrates this technique. 
Another effective optimization is the use  of LODSW rather  than LODSB, thereby 
processing two bytes per memory  access. This has the effect  of unrolling the loop one 
time, since with LODSW, looping is performed  at most only once every two bytes. 
Cutting down the  branches used to loop is only part of the  branching story.  More 
often than  not, my original code also branched  in  the process of checking whether  it 
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was time to  count a word. There  are many ways to reduce this sort of branching; in 
fact, it is quite possible to eliminate it entirely. The most straightforward way to  re- 
duce such branching is to employ two loops. One loop is used to look for  the end of 
a word  when the last  byte was a non-separator, and  one loop is used to look for the 
start of a word  when the last  byte was a separator. This way, it’s no longer necessary  to 
maintain a flag to indicate the state of the last  byte; that state is implied by whichever 
loop is currently executing. This considerably  simplifies and streamlines the  inner 
loop code. 
Listing 16.6, contributed by Willem Clements, of Granada, Spain, illustrates a variety 
of  level 1 optimizations: the two-loop approach,  the use  of a 16- rather  than 32-bit 
counter, and  the use  of LODSW. Together, these optimizations made Willem’s code 
nearly twice  as fast  as mine in Listing 16.4. A few details could  stand  improvement; 
for  example, AND Axpx is a shorter way to  test  for  zero than CMP AX,O, and ALIGN 2 
could be used. Nonetheless, this is good  code, and it’s  also  fairly compact and rea- 
sonably easy to  understand.  In  short, this is an excellent example of  how an hour  or 
so of hand-optimization might accomplish  significantly improved performance at a 
reasonable cost in complexity and time. This level  of optimization is adequate  for 
most purposes (and, in truth, is beyond the abilities of most programmers). 

LISTING 16.6 OPT2.ASM 

Opt2  
W r i t t e n   b y  
Modi f i ed  by 

parms 

b u f f e r  
b u f f e r l e n g t h  
c h a r f l a g  
wordcoun t  
parms 

s t r u c  
dw 
dw 
dw 
dw 
dw 
ends 
.model 
. d a t a  

c h a r s t a t u s t a b l e   l a b e l  

db 
r e p t  

db 
db 
db 
db 
db 
db 
db 
db 
endm 
.code 

F i n a l   o p t i m i z a t i o n   w o r d   c o u n t  
M ichae l   Ab rash  
W i l l e m   C l e m e n t s  
C1 Moncayo  5,   Laurel   de l a  Re ina  
18140 La Zub ia  
Granada,   Spain 
Te l   34 -58 -890398  
Fax  34-58-224102 

2 d u p ( ? )  
? 
? 
? 
? 

s m a l l  

b y t e  
2 
39   dup (0 )  
I 

8 d u p ( 0 )  
1 0   d u p ( 1 )  
7 d u p ( 0 )  
26 dup(1 )  
6 d u p ( 0 )  
26 d u p ( 1 )  
5 d u p ( 0 )  
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-ScanBu f fe r  

o d d e n t r y :  

s c a n l   o o p l :  

scanl   oop2:  

scanl   oop4:  

scan l   oop5 :  

d o n e l  : 

done2: 

done: 

pub1 i c 
p r o c  
push 
mov 
push 
push 
mov 
mov 
mov 
mov 
mov 
x o r  
s h r  
j c  
cmp 
j n e  
j mp 
xchg 
1 odsb 
i nc 
cmp 
j n e  
jmp 

~ S c a n B u f f e r  
n e a r  
bP 
b p s   s p  

d i  
s i  

s i   . [ b p + b u f f e r l  
b x . [ b p + c h a r f l a g l  
a1 . Cbx l  
c x . [ b p + b u f f e r l e n g t h l  
b x . o f f s e t   c h a r s t a t u s t a b l e  
d i   . d i  : s e t   w o r d c o u n t   t o   z e r o  

o d d e n t r y  : odd  number o f   b y t e s   t o   p r o c e s s  
c x . 1  : change  count  t o   w o r d c o u n t  

a1 .O lh  
s c a n l  oop4 
s c a n l o o p l  
a1 ,ah 

c x  
a h . 0 l h  
scan l   oop5 
scan l   oop2 

: check  i f  l a s t  one 
: i f  n o t  s o .  s e a r c h  
: i f  so.  s e a r c h   f o r  
: l a s t  one i n  ah 
: g e t   f i r s t   b y t e  

: check  i f  l a s t  one 
: i f  n o t  s o .  s e a r c h  
: i f  so, s e a r c h   f o r  

i s   c h a r  
f o r   c h a r  
z e r o  

was c h a r  
f o r   c h a r  
z e r o  

l o c a t e   t h e   e n d   o f  a word  
1 odsw : g e t   t w o   c h a r s  
x1 a t  : t r a n s l a t e   f i r s t  
xchg a1 ,ah : f i r s t   i n  ah 
x1 a t  : t r a n s l a t e   s e c o n d  
d e c   c x  : c o u n t  down 
j z   d o n e l  : no m o r e   b y t e s   l e f t  
CmP ax.0101h : check  i f  t w o   c h a r s  
j e   s c a n l o o p l  : g o   f o r   n e x t   t w o   b y t e s  

cmp a1 ,O lh  : check  i f  new w o r d   s t a r t e d  
j e   s c a n l o o p l  : l o c a t e   e n d   o f   w o r d  

i n c   d i  : i n c r e a s e   w o r d c o u n t  

l o c a t e   t h e   b e g i n   o f  a word  
1 odsw 
x1 a t  
xchg  a1 ,ah  
x1 a t  
dec   cx  
j z  done2 
cmp ax .0  
j e   s c a n l   o o p 4  
CmP a1 .O lh  
j e   s c a n l   o o p l  
i n c   d i  
jmp  scan l   oop4 
CmP ax.0101h 
j e  done 

jmp  done 
cmp ax.0100h 

i n c   d i  

j n e   d o n e  
i n c   d i  
mov s i . [ b p + c h a r f l a g l  
mov [ s i  1 .a1 
mov bx , [bp+wordcoun t l  
mov ax .   Cbx l  

g e t   t w o   c h a r s  
t r a n s 1   a t e   f i r s t  
f i r s t   i n  ah 
t r a n s l a t e   s e c o n d  
c o u n t  down 
no  more   by tes  l e f t  
check  i f  w o r d   s t a r t e d  
i f  n o t ,   l o c a t e   b e g i n  
c h e c k   o n e - l e t t e r   w o r d  
i f  n o t ,   l o c a t e   e n d   o f   w o r d  
i n c r e a s e   w o r d c o u n t  
l o c a t e   b e g i n  o f  n e x t   w o r d  
check  i f  e n d - o f - w o r d  
i f  n o t .  we h a v e   f i n i s h e d  
i n c r e a s e   w o r d c o u n t  

c h e c k   f o r   o n e - l e t t e r   w o r d  
i f  n o t ,  we h a v e   f i n i s h e d  
i n c r e a s e   w o r d c o u n t  
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rnov 
add 
a d c  
rnov 
rnov 
POP 
POP 
P O P  
r e t  

end 
- S c a n B u f f e r  endp 

d x .   [ b x + E ]  
d i   , a x  
d x . 0  
[ b x l  . d i  
[bx+Z]   .dx  
d i  
s i  
bp  

Level 2: A New Perspective 
The second level  of optimization is one of breaking out of the  mode of thinking 
established by  my original code. Some entrants clearly did exactly that. They stepped 
back, thought  about what the  code actually needed  to  do,  rather  than  just improving 
how it already  worked, and implemented  code  that  sprang  from  that new  perspective. 
You can  see one example of this in Listing 16.6, where  Willem  uses CMP AX,0101H 
to check two bytes at  once. While  you might think of  this  as nothing  more  than a 
doubling up of  tests,  it’s a little more  than  that, especially  when taken together with 
the use  of two loops. This is a break with the serial nature of the C code, a recogni- 
tion that word counting is  really nothing  more  than a state machine  that transitions 
from  the “in word” state to the  “not in word” state and back, counting a word on  one 
but  not  both of those transitions.  Willem says, in effect,  ‘We’re in a word; if the  next 
two bytes are non-separators, then we’re  still  in a word,  else we’re not in a word, so 
count  and change to the  appropriate  state.”That’s really quite  different  from saying, 
as I originally did, “If the last  byte was a non-separator, then if the  current byte  is a 
separator, then  count a word.” Willem  has  moved away from  the all-in-one approach, 
splitting the  code up  into state-specific chunks  that  are  more efficient  because each 
does only the work required in a particular state. 
Another example of coming  at  the  code  from a new  perspective  is counting a word 
as soon as a non-separator follows a separator  (at  the start of the  word),  rather  than 
waiting for a separator following a non-separator (at  the  end of the  word). My friend 
Dan  Illowsky  describes the  thought process leading to  this approach thusly: 

‘T try to code as closely as possible to  the real world nature of those things  my  program models. It 
seems somehow  wrong  to  me  to  count  the  end o f a  word as  you  do  when  you look for a transition 
from a word to a non-word. A word is not a transition,  it  is  the presence o f a  group of characters. 
Thought  ofthis way, the code would  have  counted  the word when  itfirst detected thegroup.  Had 
you  done  this,  your main program  would  not  have needed to look for the possible last  transition 
or deal  with  the  semantics of the  value in Charvalue.” 

John Richardson, of  New  York, contributed a good  example of the benefits of a 
different perspective (in this  case, a hardware perspective). John eliminated all 
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branches used for  detecting word edges;  the inner  loop of his code is shown in List- 
ing 16.7. As John explains it: 

“My  next  shot was to  get rid of all the branches in the loop. To do  that, I reached  back to my 
college hardware courses. I noticed that we  were  really looking at an edge  triggered device we 
want to count each time the I,m a character state goes from one  to  zero.  Remembering that XOR 
on two single-bit values  will  always return whether  the  bits  are d$fierent or the same, I imple- 
mented a transition  countm  The counter triggers  every time a word  begins or ends. ’’ 

LISTING  16.7  11  6-7.ASM 
ScanLoop: 

1 odsw : g e t   t h e   n e x t  2 b y t e s   ( A L  - f i r s t ,  AH - 2nd)  
x1 a t   : l o o k   u p   f i r s t ’ s   c h a r / n o t   s t a t u s  
x o r   d 1 , a l   : s e e  i f  t h e r e ’ s  a new c h a r / n o t   s t a t u s  
a d d   d i . d x  :we add 1 f o r   e a c h   c h a r / n o t   t r a n s i t i o n  
mov d l  ,a1 
mov a 1   , a h   ; l o o k   a t   t h e   s e c o n d   b y t e  
x1 a t  : l o o k   u p   i t s   c h a r / n o t   s t a t u s  
x o r   d l . a l   : s e e  i f  t h e r e ’ s  a new c h a r / n o t   s t a t u s  
a d d   d i . d x  :we add 1 f o r   e a c h   c h a r / n o t   t r a n s i t i o n  
mov d l  .a1 
d e c   d x  
j n z  ScanLoop 

John later divides the transition count by two to get the word count. (Food for  thought: 
It’s also possible  to  use CMP and ADC to detect words  without branching.) 
John’s approach makes it clear that  wordcounting is nothing more than a fairly  simple 
state  machine. The interesting  part, of course, is building  the fastest state  machine. 

Level 3: Breakthrough 
The boundaries between the levels  of optimization  are not sharply defined.  In  a 
sense, level 3 optimization is just like  levels 1 and 2, but  more so. At level 3, one takes 
whatever  level 2 perspective seems most promising, and implements it as efficiently 
as  possible on the x86. Even more  than at level 2, at level 3 this means  breaking out 
of familiar patterns of thinking. 
In the case of word counting, level 3 means  building  a table-driven state machine 
dedicated  to processing  a  buffer of bytes into  a  count of words with a  minimum 
of branching.  This level  of optimization  strips away many of the  abstractions we usu- 
ally  use in coding, such as loops, tests, and named variables-look  back to Listing 
16.5, and you’ll see  what I  mean. Only a few people  reached this level, and I don’t 
think any of them  did it without  long,  hard  thinking; David Stafford’s final  entry 
(that is, the  one  I  present as Listing 16.5) was at least the fifth entry he  sent me. 
The key concept at level 3 is the use of a massive (64K) lookup  table  that processes 
byte sequences directly into  word-count  actions. With such  a  table, it’s  possible to 
look up  the  appropriate  action  for two bytes simultaneously in just  a few instruc- 
tions; next, I’m going  to look at the  inspired and highly unusual way that David’s 

31 6 Chapter 16 



code, shown in Listing  16.5, does exactly that. (Before assembling  Listing  16.5,  you 
must run  the C code in  Listing 16.8, to generate an include file defining  the 64K 
lookup table. When you  assemble  Listing  16.5, TASM  will report a "location counter 
overflow" warning; ignore  it.) 

LISTING 16.8 MAKETALC 
/ /  MAKETAB.C - B u i l d  QSCAN3.INC f o r  QSCAN3.ASM 

l i n c l  u d e   < s t d i o .  h> 
#i ncl   ude  <c type.   h>  

#de f ine   ChType(  c ) ( ( ( c )  & O x 7 f )  == ' \ "  I I i s a l n u m ( ( c )  & O x 7 f ) )  

i n t   N o c a r r y [  4 1 = 1 0.  0x80,  1. 0x80 I :  
i n t   C a r r y [  4 1 = ( 1.  0x81,  1. Ox80 ) :  

v o i d   m a i n (   v o i d  ) 

1 
i n t   a h c h a r .   a l C h a r .  i: 
FILE *t = f o p e n (  "QSCAN3.INC". " w t "  ) :  

p r i n t f (   " B u i l d i n g   t a b l e .   P l e a s e  w a i t  . . . "  ) :  

f o r (  ahChar = 0 :  ahChar < 128:  ahchar++ 1 
t 
f o r (   a l C h a r  = 0:  a l C h a r  < 2 5 6 :  a lChar++ 1 

i f (  a l C h a r  % 8 == 0 f p r i n t f (  t .  " \ndb  %02Xh".   Nocarry [  i ] 1 ;  
e l s e  f p r i n t f (  t .  " .%02Xh" .   Nocar ry [  i ] 1 :  

f p r i n t f (  t .  " .%02Xh".   Carry [  i 3 1 :  
I 

f c l o s e (  t ) :  

I 

David's approach is  simplicity  itself, although his implementation arguably is not. 
Consider any three sequential bytes  in the buffer. Those  three bytes define two po- 
tential places where a word might be counted, as shown in Figure 16.1. Given the 
separator/non-separator states of the  three bytes,  you  can  instantly determine whether 
to count a word or not; you count a word if and only if somewhere in the  sequence 
there is a non-separator followed by a separator. Note that a maximum of one word 
can be counted  per three-byte sequence. 
The trick, then, is to identify the  separator/not statuses of each set of three bytes and 
turn  them  into a 1  (count  word) or 0 (don't  count  word), as quickly as possible. 
Assuming that  the  separator/not status for  the first  byte  is in the Carry  flag,  this is 
easily accomplished by a lookup in a 64K table, based on  the Carry flag and  the  other 
two bytes, as shown in Figure 16.2. (Remember  thatwe're  counting $-bit ASCII here, 
so the high bit is ignored.)  Thus, David  is able to add  the  word/not status for each 
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Byte 0 Byte 1 Byte 2 

t t 
Places  where  the  end  of  a word  might 

occur in this  threebyte  sequence. 

The two potential word count locations. 
Figure 16.1 

pair of bytes to  the main word count simply by getting  the two bytes,  working in  the 
carry status from  the last  byte, and using the  resulting value to  index into the 64K 
table, adding in the 1 or 0 value found  in  that  table. A sequence of MOV/ADC/ADD 
suffices to  perform all word-counting tasks for  a  pair of  bytes. Three instructions, no 
branches-pretty nearly perfect  code. 
One detail  remains to be attended to: setting  the Carry  flag for  next time if the last 
byte was a  non-separator. David does this in a  bizarre and incredibly effective way: He 

I Byte 0 Byte 1 Byte 2 

A 1 is the Carry flag if 
the  first  byte is  a  non- 
separator;  otherwise,  a 
0 i s  the Carry  flag. 

The Carry  flag is  rotated 
left  into  the  other two bytes 
to  form  a 16-bit look-up 
address.  Bit 7 of  byte 1 is  
lost in the  process, so this 
only  works  for 7-bit ASCII. 

h h 
9Ah 41 h 

I. 
Value at address 9A41 h in the 64K lookup 
table. Bits 6-0 are 1 because  there is  an  end- 
of-word in this sequence, so a  word is  
counted.  Bit 7 is  1 because  the  last  byte is a 
non-separator. 

0 
0 

Looking up a word count status. 
Figure 16.2 
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presets the high bit of the  count,  and sets the high bit in the  lookup table for those 
entries looked up by non-separators. When a non-separator’s lookup  entry is added 
to the  count, it will produce  a carry,  as desired. The high bit of the  count is masked 
off before being added to the total count, so David is essentially using different  parts 
of the  count variables for  different purposes (counting,  and setting the Carry flag). 
There  are  a  number of other interesting details in David’s code, including the un- 
rolling of the  loop 64 times, so that 256 bytes in a row are processed without a single 
branch. Unfortunately, I lack the space to discuss  Listing 16.5 any further. Perhaps 
that’s not so unfortunate, after all; I’d  hate to deny you the pleasure of discovering 
the wonders of  this rather remarkable code yourself. I will  say one more thing, though. 
The cycle count for David’s inner loop is 6.5 cycles per byte processed, and  the actual 
measured time for his routine, overhead and all, is 7.9 cycles/byte. The original C 
code clocked in at  around 100 cycles/byte. 
Enough said, I trust. 

Enough Word Counting Already! 
Before I finish up this chapter,  I’d like to mention  that Terje  Mathisen’s WC word- 
counting  program, which  I’ve mentioned previously and which is available,  with 
source, on Bix,  is in the ballpark with  David’s code for performance. What’s more, 
Terje’s program  handles %bit ASCII, counts lines as  well  as words, and supports user- 
definable separator sets.  It’s wonderful code, well worth a look; it also happens to be 
a  great word-counting utility. By the way, Terje builds his 64K table on  the fly, at 
program initialization; this allows for customized tables, shrinks the size of the EXE, 
and,  according to  Terje’s calculations, takes  less time than  loading  the table off disk 
as part of the EXE. 
S o ,  has David written the fastest  possible word-counting code? Well,  maybe-but I 
have a  letter  from Terry Holmes, of  San  Rafael, California, that calculates the theo- 
retical maximum performance of native 386 word-counting code at 5.5 cycles/byte, 
which  would be significantly faster than David’s code. Terry,  alas, didn’t  bother to 
implement his design, but maybe  I’ll  take a  shot  at  it someday. It’d be fun, for sure- 
but jeez, I’ve got real work to do! 
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of Algorithmic Optimization 
.&tomata Game 

I've spent a lot of m cussing assembly language  optimization, which I con- 
derappreciated topic. However, I'd like to take  this 

t there is much,  much  more to optimization  than as- 
s essential  for  absolute  maximum performance,  but 
ecessary but  not sufficient, if you catch my drift-and 

ing  for improved but  not  maximum  performance. 
imes: Optimize  your  algorithm  first. Devise  new ap- 

This is, of course,  o&hat, stuff  you  know like the back of your hand.  Or is it? As Jeff 
Duntemann  pointed  out  to me the  other day, performance  programmers  are  made, 
not  born. While I'm merrily  gallivanting around  in  this  book  optimizing 486 
pipelining  and  turning  simple tasks into  horribly complicated and terrifylngly  fast 
state machines, many of  you are still developing your basic optimization skills. I don't 
want to  shortchange  those of  you in the  latter category, so in this chapter, we'll  dis- 
cuss some high-level language  optimizations  that  can be applied by mere  mortals 
within a  reasonable  period of time. We're going to examine  a  complete  optimization 
process, from  start  to finish, and what we  will find is that it's possible to  get  a 50-times 
speed-up  without using one byte of assembly! It's all a  matter of  perspective-how  you 
look at your code  and  data. 

'"I& 

th  said, Premature optimization is the root of all evil. 
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Conway‘s Game 
The  program that we’re going to optimize is Conway’s famous Game of  Life, long- 
ago favorite of the hackers at MIT’s AI Lab. If  you’ve never seen it, let  me assure you: 
Life  is neat, and  more  than a little hypnotic. Fractals have been  the  hot graphics topic 
in recent years, but  for eye-catching dazzle, Life  is hard to beat. 
Of course, eye-catching  dazzle requires real-time performance-lots of  pixels help 
too-and there’s the  rub.  When  there are, say, 40,000 cells  to  process and display, a 
simple, straightforward implementation just doesn’t cut it, even on a 33 MHz 486. 
Happily, though,  there are many,  many  ways to speed up Life, and they illustrate a 
variety  of important optimization principles, as  this chapter will  show. 
First, I’ll describe the  ground rules of Life, implement  a very straightforward version 
in C++, and  then  speed  that version up by about eight times without using any dras- 
tically different  approaches  or any assembly. This may be a little tame  for  some of 
you, but be patient;  for  after  that, we’ll haul out  the big guns  and move into  the 30 to 
40 times speed-up  range.  Then  in  the  next  chapter, I’ll  show  you  how  several pro- 
grammers really floored it in taking me up on my second Optimization Challenge, 
which  involved the Game of  Life. 

The  Rules of the Game 
The Game of  Life  is ridiculously simple. There is a cellmap, consisting of a rectangu- 
lar matrix of  cells, each of  which  may  initially be either on  or off. Each cell has eight 
neighbors: two horizontally, two vertically, and  four diagonally. For each succeeding 
generation of  cells, the game logic determines  whether  each cell will be on  or off 
according to the following rules: 

If a cell is on  and  has  either two or  three  neighbors  that  are  on in the  current 
generation, it stays  on;  otherwise,  the  cell turns off. 
If a cell  is off and  has  exactly  three  “on”  neighbors  in  the  current  generation, it 
turns on;  otherwise, it stays off. That’s  all  the  rules  there  are-but  they  give  rise 
to  an  astonishing  variety  of  forms,  including  patterns  that  spin,  march  across the 
screen,  and  explode. 

It’s only a little more complicated to implement  the Game of  Life than  it is to de- 
scribe it. Listing 17.1, together with the display functions in Listing 17.2, is a  C++ 
implementation of the Game of  Life, and it’s very straightforward. A cellmap is an 
object that’s accessible through  member functions to set, clear, and test cell states, 
and  through a member function to calculate the  next  generation. Calculating the 
next  generation involves nothing  more  than using the  other  member functions to 
set  each cell to the  appropriate state, given the  number of neighboring on-cells and 
the cell’s current state. The only complication is that it’s necessary to place the  next 
generation’s cells in another cellmap, and  then copy the final result back to the 
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original  cellmap.  This keeps us from  corrupting  the  current generation’s  cellmap 
before we’re done using it to calculate the  next  generation. 
All in all, Listing 17.1 is a  clean,  compact,  and  elegant  implementation of the Game 
of  Life.  Were it not that  the  code is  as  slow  as molasses, we could  stop  right  here. 

LISTING 17.1  11  7-1 .CPP 
/ *  C++ Game o f   L i f e   i m p l e m e n t a t i o n   f o r   a n y  mode f o r   w h i c h  mode s e t  

a n d   d r a w   p i x e l   f u n c t i o n s   c a n   b e   p r o v i d e d .  
T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  * /  

#i n c l   u d e   < s t d l  i b.  h> 
{ [ i n c l u d e   < s t d i o .  h> 
# i n c l u d e   < i o s t r e a m . h >  
# i   n c l  ude  <coni  0. h> 
{ [ inc lude  < t ime.h> 
{ [ inc lude  <dos.  h> 
#i nc l   ude   <b ios .   h>  
#i nc l   ude  <mem. h> 

# d e f i n e  ON-COLOR 15 / /  o n - c e l l   p i x e l   c o l o r  
{ [def ine OFF-COLOR 0 / /  o f f - c e l l   p i x e l   c o l o r  
% d e f i n e  MSG-LINE 10 / /  row f o r   t e x t  messages 
# d e f i n e  GENERATION-LINE 1 2  / /  row f o r   g e n e r a t i o n  # d i s p l a y  
# d e f i n e  LIMIT-18-HZ 1 / /  s e t  1 f o r  maximum f r a m e   r a t e  = 18Hz 
{ [def ine WRAP-EDGES 1 / /  s e t   t o  0 t o   d i s a b l e   w r a p p i n g   a r o u n d  

c l a s s   c e l l m a p  { 
p r i v a t e :  

/ /  a t   c e l l  map edges 

u n s i g n e d   c h a r   * c e l l  s : 
u n s i g n e d   i n t   w i d t h :  
u n s i g n e d   i n t   w i d t h - i n - b y t e s :  
u n s i g n e d   i n t   h e i g h t :  
u n s i g n e d   i n t   l e n g t h - i n - b y t e s :  

c e l l m a p ( u n s i g n e d   i n t   h .   u n s i g n e d   i n t   v ) :  
- c e l l m a p ( v o i d ) :  
vo id   copy-ce l l s (ce l1map  &sourcemap) :  
v o i d   s e t _ c e l l ( u n s i g n e d   i n t   x .   u n s i g n e d   i n t  y ) :  
v o i d   c l e a r - c e l l ( u n s i g n e d   i n t   x .   u n s i g n e d   i n t  y ) ;  
i n t   c e l l - s t a t e ( i n t   x .   i n t   y ) :  
v o i d  next-generation(cellmap& dest-map): 

p u b l i c :  

1 :  

e x t e r n   v o i d  enter-display-mode(void): 
e x t e r n   v o i d  exit-display-mode(void): 
e x t e r n   v o i d   d r a w - p i x e l ( u n s i g n e d   i n t  X .  u n s i g n e d   i n t  Y .  

e x t e r n   v o i d   s h o w - t e x t ( i n t   x .   i n t  y .  c h a r   * t e x t ) :  

/ *  C o n t r o l s   t h e   s i z e   o f   t h e   c e l l  map. Must  be w i t h i n   t h e   c a p a b i l i t i e s  
o f   t h e   d i s p l a y  mode,  and  must  be l i m i t e d   t o   l e a v e  room f o r   t e x t  
d i s p l a y   a t   r i g h t .  * /  

uns igned i n t  C o l   o r  : 

u n s i g n e d   i n t   c e l l m a p - w i d t h  - 9 6 ;  
u n s i g n e d   i n t   c e l l m a p - h e i g h t  = 96: 
/* Wid th  & h e i g h t   i n   p i x e l s   o f   e a c h   c e l l  as d i s p l a y e d  on screen.  * /  
u n s i g n e d   i n t   m a g n i f i e r  - 2:  
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v o i d   m a i n 0  
( 

u n s i g n e d   i n t   i n i t - l e n g t h .   x .   y ,   s e e d :  
u n s i g n e d   l o n g   g e n e r a t i o n  - 0; 
char   gen- textC801;  
l o n g   b i o s - t i m e .   s t a r t - b i o s - t i m e :  

c e l l m a p  current-map(cel1map-height. ce l lmap-w id th ) ;  
c e l l m a p  next-map(cel1map-height. ce l lmap-w id th ) :  

11 Get  the  seed:  seed  randomly i f  0 e n t e r e d  
c o u t  << "Seed ( 0  f o r  random  seed): ": 
c i n  >> seed: 
i f  (seed  - 0 )  seed - (uns igned)   t ime(NULL1:  

11 Randomly i n i t i a l i z e   t h e   i n i t i a l   c e l l  map 
c o u t  << " I n i t i a l i z i n g . .  ."; 
s r a n d ( s e e d ) ;  
i n i t - l e n g t h  - ( c e l l m a p - h e i g h t  * ce l lmap-w id th )  I 2; 
do { 

x - random(cel1map-width) ;  
y - random(cel1map-height ) ;  
n e x t - m a p . s e t - c e l l ( x ,   y ) :  

3 w h i l e   ( - i n i t - l e n g t h ) ;  
current_map.copy-cel ls(next_map):  11 p u t   i n i t  map i n  current-map 

en te r -d i sp lay -mode( ) :  

/ I  Keep r e c a l c u l a t i n g  and r e d i s p l a y i n g   g e n e r a t i o n s   u n t i l  a key 
/ I  i s   p r e s s e d  
show-text (0.  MSG-LINE, "Genera t i on :  "1;  
s t a r t - b i o s - t i m e  - -bios-timeofday(-TIME-GETCLOCK, & b i o s - t i m e ) ;  
do ( 

generat ion++;  
s p r i n t f ( g e n - t e x t .  "%101u" .   genera t i on ) ;  
show- tex t (1 .  GENERATION-LINE. g e n - t e x t ) :  
/ I  R e c a l c u l a t e   a n d   d r a w   t h e   n e x t   g e n e r a t i o n  
current_map.next-generation(next-map); 
/ I  Make c u r r e n t - m a p   c u r r e n t   a g a i n  

#if LIMIT-18-HZ 
current-map.copy-cells(next~map): 

/ I  L i m i t   t o  a  maximum o f   1 8 . 2   f r a m e s   p e r   s e c o n d . f o r   v i s i b i l i t y  
do I 

3 w h i l e   ( s t a r t - b i o s - t i m e  - b i o s - t i m e ) :  
s t a r t - b i o s - t i m e  - b ios - t ime :  

- bios-t imeofday(-TIMELGETCLOCK.  &bios-t ime): 

# e n d i f  
I w h i l e   ( ! k b h i t O ) ;  
g e t c h (  1: 11 c l e a r   k e y p r e s s  
ex i t -d i sp lay -mode( ) ;  
c o u t  << " T o t a l   g e n e r a t i o n s :  " << g e n e r a t i o n  << "\nSeed: " << 

seed << " \n" :  
3 

I* c e l l m a p   c o n s t r u c t o r .  *I  
cellmap::cellmap(unsigned i n t  h .   u n s i g n e d   i n t  w )  
{ 

w i d t h  - w; 
w id th - i n -by tes  - ( w  + 7 )  I 8; 
h e i g h t  - h;  
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/* cellmap  destructor. */ 
cellmap::-cellmap(void) 
I 

1 
delete[] cells: 

/*  Copies  one  cellmap's  cells  to  another  cellmap.  Both  cellmaps  are 

void cel1map::copy-cells(cel1map &sourcemap) 
( 

I 

/*  Turns cell on. * /  
void cellmap::set_cell(unsigned int x. unsigned  int y) 

assumed  to  be  the  same  size. */ 

memcpy(cel1s. sourcemap.cells, length-in-bytes): 

r 
unsigned  char *cell-ptr = 

cells + (y * width-in-bytes) + (x / 8 ) ;  

*(cell_ptr) I- Ox80 >> (x & 0x07): 
1 

/ *  Turns cell  off. * /  
void cellmap::clear_cell(unsigned int x. unsigned  int  y) 
f 

unsigned  char *cell-ptr - 
cells + (y * width-in-bytes) + (x / 8 ) ;  

I 

/* Returns cell state (1-on or 0-off). optionally  wrapping  at  the 

int cel1map::cell-state(int x. int  y) 
( 

*(cell-ptr) &- -(Ox80 >> (x & 0x07)): 

borders  around  to  the  opposite  edge. * /  

unsigned  char *cell-ptr: 

#if WRAP-EDGES 
while (x < 0 )  x +- width: / /  wrap, if necessary 
while (x >- width) x -- width: 
while (y < 0 )  y +- height: 
while (y >- height) y -- height; 

if ((x < 0 )  1 1  (x >- width) 1 )  (y < 0 )  1 1  (y >- height)) 
#else 

return 0:  / /  return 0 for  off  edges  if  no  wrapping 
lendi f 

cell-ptr - cells + (y * width-in-bytes) + (x / 8 ) ;  
return (*cell-ptr & (0x80 >> (x & 0x07))) ? 1 : 0; 

1 

/*  Calculates  the  next  generation  of a cellmap  and  stores  it in 

void ce1lmap::next-generation(cellmap& next-map) 
t 

next-map. * /  

unsigned  int x. y.  neighbor-count; 
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f o r  ( y - 0 ;   y < h e i g h t :  y++) { 
f o r  (x -0 ;   x<wid th ;  x++) t 

/ /  F i g u r e   o u t  how many n e i g h b o r s   t h i s   c e l l   h a s  
ne ighbor -count  - c e l l - s t a t e ( x - 1 .  y - 1 )  + c e l l - s t a t e ( x .  y -1 )  + 

c e l l - s t a t e ( x + l .  y -1 )  + c e l l - s t a t e ( x - 1 ,  y )  + 
c e l l - s t a t e ( x + l .   y )  + c e l l - s t a t e ( x - 1 .  y+ l )  + 
c e l l   s t a t e ( x .  y + l )  + c e l l - s t a t e t x + l .  y+l); 

i f  ( c e l l - s t a t e ( x ,  y )  - 1) I 
- 

/ /  The c e l l   i s  on; does i t  s t a y  on? 
if ( ( n e i g h b o r - c o u n t  !- 2 )  && (ne ighbor -count  != 3 ) )  I 

n e x t - m a p . c l e a r - c e l l ( x .  y); / /  t u r n  it o f f  
d r a w - p i x e l   ( x .  y .  OFF-COLOR); 

I 
I e l s e  t 

/ /  The c e l l   i s   o f f :  does it t u r n  on? 
i f  (ne ighbor -count  -- 3 )  I 

next -map.se t -ce l l (x .  y ) ;  / /  t u r n  i t  on 
d r a w - p i x e l ( x ,   y .  ON-COLOR): 

I 
I 

I 
1 

I 

LISTING 17.2 11 7-2.CPP 
/*  VGA mode 1 3 h   f u n c t i o n s   f o r  Game o f   L i f e .  

# i n c l u d e   < s t d i o . h >  
# i n c l u d e   < c o n i o . h >  
l i n c l  ude  <dos.  h> 

# d e f i n e  TEXT-X-OFFSET 27 
# d e f i n e  SCREEN-WIDTH-IN-BYTES 320 

/ *  Wid th  & h e i g h t   i n   p i x e l s   o f   e a c h   c e l l .  * /  
e x t e r n   u n s i g n e d   i n t   m a g n i f i e r ;  

/ *  Mode 1 3 h   d r a w   p i x e l   f u n c t i o n .   P i x e l s   a r e   o f   w i d t h  & h e i g h t  

v o i d   d r a w - p i x e l ( u n s i g n e d   i n t   x .   u n s i g n e d   i n t  y .  u n s i g n e d   i n t   c o l o r )  
t 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

T e s t e d   w i t h   B o r l a n d  C++. * /  

s p e c i f i e d   b y   m a g n i f i e r .  * /  

u n s i g n e d   c h a r   f a r   * s c r e e n - p t r ;  
i n t  i. j ;  

FP-SEG(screen-ptr) - SCREEN-SEGMENT; 
FP_OFF(screen-ptr)  - 
f o r   ( i - 0 ;   i < m a g n i f i e r :  i++) I 

y * m a g n i f i e r  * SCREEN-WIDTH-IN-BYTES + x * m a g n i f i e r ;  

f o r  (j-0; j < m a g n i f i e r ;  j++) t 

I 
* ( s c r e e n - p t r + j )  - c o l o r ;  

sc reen-p t r  +- SCREEN-WIDTH-IN-BYTES; 
I 

I 

/*  Mode 13h m o d e - s e t   f u n c t i o n .  * /  
v o i d   e n t e r - d i s p l a y - m o d e 0  
{ 

u n i o n  REGS r e g s e t :  
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r e g s e t . x . a x  = 0x0013; 
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) :  

1 

I* T e x t  mode m o d e - s e t   f u n c t i o n .  * /  
v o i d   e x i t - d i s p l a y - m o d e 0  
{ 

u n i o n  R E G S  r e g s e t :  

r e g s e t . x . a x  = 0x0003; 
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  

1 

/*  T e x t   d i s p l a y   f u n c t i o n .   O f f s e t s   t e x t   t o   n o n - g r a p h i c s   a r e a   o f  

v o i d   s h o w - t e x t ( i n t   x .   i n t   y .   c h a r   * t e x t )  
I 

screen.  * I  

gotoxy(TEXTpX_OFFSET + x .  y ) :  
p u t s ( t e x t ) :  

I 

Where Does the Time Go? 
How  slow  is Listing 17.1? Table 17.1 shows that even on a 486, Listing 17.1 does fewer 
than  three 96x96 generations  per  second.  (The times in Table 17.1 are  for 1,000 
generations of a 96x96 cell map with seed=l, LIMIT-l8-HZ=O, M”-EDGES=l, 
and mapifier=2, running  on a 33 MHz 486.) Since my target is 18 generations  per 
second with a 200x200 cellmap on a 20 MHz 386, Listing 17.1 is too slow by a rather 
wide  margin-about  75 times too slow, in fact. You might say  we have a little optimiz- 
ing  to  do. 
The first rule of optimization is: Only optimize  where it matters. Use a profiler, or 
risk making  a  fool of yourself. Consider Listings 17.1 and 17.2. Where do you think 
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the potential  for significant speed-up lies? I’ll tell  you one place where I thought 
there was considerable potential-in draw-pixel(). As a  programmer of high-speed 
graphics, I  figured any drawing function  that was not only written in C/C++ but also 
recalculated the target address from scratch for  each pixel would be  among  the first 
optimization targets. I also expected to get major gains out of going to a Ping-Pong 
arrangement so that I didn’t have to copy the new cellmap back to current-map 
after calculating the  next  generation. 
I was wrong. Wrong, wrong, wrong. (But at least I was smart enough to use a profiler 
before actually writing any  new code.) Table 17.1 shows where the time actually goes 
in Listings  17.1 and 17.2. As you can see, the time taken by draw-pixel(),  copy-cells(), 
and atmythingother than calculating the  next  generation is nothing  more  than noise. 
We could  optimize  these routines right down  to executing instantaneously, and you  know 
what? It wouldn’t make the slightest perceptible difference in how  fast the  program 
runs. Given the present state of our Game of  Life implementation,  the only areas 
worth looking at  for possible optimizations are cell-state() and nextsenerationo. 

Its worth  noting,  though,  that  one  reason drawqixelo doesn ’t much affectperfor- p mance is that in Listing 17.1, we 5-e smart  enough  to redrawpixels only  when  their 
states change,  rather than during every generation. Detecting and  eliminating  re- 
dundant operations is part of  knowing  the  nature  of your data, and is a  potent 
optimization  technique  that will be  extremely  useful a little later in this  chapter. 

The  Hazards  and  Advantages of Abstraction 
How can we speed up cell-state() and nextsenerationo? I’ll tell you how  not to do 
it: By writing those member  functions in assembly.  It’s tempting to say that cell-state() 
is taking all the time, so we need to speed  it up with  assembly, but what we really need 
to do is figure out why cell-state() is taking all the time, then address that aspect of 
the  program directly. 
Once you know where you need to optimize, the  one word to keep in mind isn’t 
assembly, it’s.. .plastics. No, actually, it’s  abstraction.  Well-written C and especially C++ 
programs  are highly abstract models. For example, Listing  17.1  essentially creates a 
new programming language in which  cells are tangible things, with  built-in manipu- 
lation instructions. Given the cellmap member functions, you don’t even need to 
know the cell storage format! This is a wonderful thing,  in  general;  it saves program- 
ming time and bugs, and frees you to work on  the application’s needs, rather  than 
implementation details. 

However, ifyou never look beneath  the  suflace of  the abstract  model  at  the  implemen- p tation  details, you have  no idea  of what  the truepe$nnance cost of various  operations 
is,  and,  without that, you have largeb surrendered control over  performance. 
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Having  said that,  let  me hasten to add that algorithmic improvements can make a 
big difference even when working at a purely abstract level.  For a large unordered 
data set, a high-level Quicksort will beat  the pants off the best-implemented inser- 
tion sort you can imagine. Still,  you can optimize your algorithm  from here 'til 
doomsday, and if you  have a fast algorithm running  on top of a highly abstract pro- 
gramming model, you'll almost certainly end  up with a slow program.  In Listing 
17.1, the abstraction that's killing us is that of looking at the eight  neighbors with 
eight completely independent operations,  requiring  eight calls  to cell-state() and 
eight calculations of cell address and cell mask. In fact, given the nature of  cell  stor- 
age, the eight  neighbors  are in a fixed relationship to one another, and  the addresses 
and masks of all eight can generally be  found very  easily  via hard-wired offsets and 
shifts once  the address and mask  of  any one is  known. 
There's a kicker here, though, and that's the counting of neighbors  for cells at the edge of 
the cellmap.  When  cellmap  wrapping is enabled (so that the cellmap  becomes  essentially a 
toroid, with each edge joined seamlessly to the opposite edge, as opposed to having a 
border of offcells), neighbors that reside on  the  other edge of the cellmap can't be 
accessed by the standard fixed  offset,  as  shown in Figure 17.1. So, in general, we could 
improve performance by hard-wiring our  neighborcounting for the bit-percell cellmap 

The  left  neighbors  for  this 
cell are not at the  usual 
adjacent addresses ... ... but are rather  on 

L 
the  other  side  of  the 
cellmap. 1 

All neighbors  for  this  cell are  at the 
usual adjacent addresses. 

J 
Cellmap 

Edge-wrapping complications. 
Figure 1 7.1 
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format,  but it seems we’d need  a  lot of conditional  code to handle wrapping, and that 
would  slow things back  down again. 
When  a  problem  doesn’t  lend itself well to optimization, make it a practice  to see if 
you can change  the  problem  definition  to  one  that allows for  greater efficiency. In 
this case,  we’ll change  the  problem by putting  padding bytes around the  edge of the 
cellmap, and duplicating  each  edge of the  cellmap in the  padding bytes at the  oppo- 
site side, as  shown in Figure 17.2. That way, a hard-wired neighbor  count will find 
exactly  what it should-the opposite edge-without  any special code at all. 
But doesn’t  that  extra copying of the  edges take time?  Sure,  but only a  little; we can 
build  it into the  cellmap copying function,  and  then frankly we won’t even notice  it. 
Avoiding tens or  hundreds of thousands of calls to cell-state(), on the other  hand, 
will be very noticeable. Listing 17.3 shows the  alterations  to Listing 1’7.1 required  to 
implement  a hard-wired neighborcounting  function. This is a  minor  change, in truth, 
implemented  in  about half an  hour  and  not making  the  code significantly  larger- 
but Listing 17.3 is 3.6 times faster  than Listing 17.1, as  shown in Table 17.1. We’re up 
to  about 10 generations  per  second on  a 486; not where we want to be,  but  it is a 
vast improvement. 

All neighbors  for  this  cell are  at 
the  usual adjacent addresses, 
thanks to the padding cells. 

Fbdding  Cells 
I I Fbdding  Cells - 

I 
JI I * 
0 0 / 0 O O O 0 0 . 0  

Boundary of normal  cellmap  (excluding  padding  cells). 

1 
J 

Cellmap 

The “adding cells” solution. 
Figure 17.2 
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LISTING 17.3 11 7-3.CPP 
/*  c e l l m a p   c l a s s   d e f i n i t i o n ,   c o n s t r u c t o r ,   c o p y - c e l l s o ,   s e t L c e l l 0 ,  

c l e a r - c e l l O .   c e l l L s t a t e 0 .   c o u n t L n e i g h b o r s 0 .  and 
n e x t - g e n e r a t i o n 0   f o r   f a s t ,   h a r d - w i r e d   n e i g h b o r   c o u n t   a p p r o a c h .  
O t h e r w i s e ,   t h e  same as L i s t i n g  1 7 . 1  * /  

c l a s s   c e l l m a p  1 
p r i v a t e :  

u n s i g n e d   c h a r   * c e l l s ;  
u n s i g n e d   i n t   w i d t h :  
u n s i g n e d   i n t   w i d t h - . i n - b y t e s ;  
u n s i g n e d   i n t   h e i g h t :  
u n s i g n e d   i n t   l e n g t h - i n - b y t e s ;  

c e l l m a p ( u n s i g n e d   i n t   h .   u n s i g n e d   i n t   v ) :  
- c e l l m a p ( v o i d ) ;  
vo id   copy-ce l l s (ce l1map  &sourcemap) :  
v o i d   s e t - c e l l ( u n s i g n e d   i n t   x .   u n s i g n e d   i n t   y ) :  
v o i d   c l e a r - c e l l ( u n s i g n e d   i n t   x .   u n s i g n e d   i n t   y ) ;  
i n t   c e l l - s t a t e ( i n t  x .  i n t   y ) :  
i n t   c o u n t - n e i g h b o r s ( i n t   x .   i n t   y ) ;  
v o i d  next-generation(cellmap& dest._map); 

p u b l i c :  

} :  

/ *  c e l l m a p   c o n s t r u c t o r .  P a d s   a r o u n d   c e l l   s t o r a g e   a r e a   w i t h  1 e x t r a  
b y t e ,   u s e d   f o r   h a n d l i n g   e d g e   w r a p p i n g .  * I  

cellmap::cellmap(unsigned i n t  h .   u n s i g n e d   i n t  w )  
i 

w i d t h  = w ;  
w id th - in -by tes  = ( ( w  + 7 )  / 8 )  + 2 :  / /  p a d   e a c h   s i d e   w i t h  

h e i g h t  = h ;  
leng th- in -by tes  = wid th- in -by tes  * ( h  + 2 ) ;  / /  pad   t op /bo t tom 

c e l l s  - new uns igned  charC length- in -by tes ] ;  / /  c e l l   s t o r a g e  
memse t (ce l1s .   0 .   l eng th - in -by tes ) :  / I  c l e a r   a l l   c e l l s .   t o   s t a r t  

/ /  1 e x t r a   b y t e  

I /  w i t h  1 e x t r a   b y t e  

1 

/ *  C o p i e s   o n e   c e l l m a p ' s   c e l l s   t o   a n o t h e r   c e l l m a p .  I f  wrapp ing  i s  
e n a b l e d .   c o p i e s   e d g e   ( w r a p )   b y t e s   i n t o   o p p o s i t e   p a d d i n g   b y t e s   i n  
s o u r c e   f i r s t ,  s o  t h a t   t h e   p a d d i n g   b y t e s   o f f   e a c h   e d g e   h a v e   t h e  
same va lues   as   wou ld   be   f ound   by   w rapp ing   a round   to   t he   oppos i te  
edge.   Both  ce l lmaps  are  assumed t o  b e   t h e  same s i z e .  * /  

v o i d  cel1map::copy-cells(cel1map &sourcemap) 
I 

u n s i g n e d   c h a r   * c e l l - p t r ;  
i n t  i; 

# i f  WRAP-EDGES 
/ /  Copy l e f t  and r i g h t  edges i n t o   p a d d i n g   b y t e s  on r i g h t  and l e f t  

c e l l - p t r  = sourcemap.ce l l s  + wid th- in -by tes :  
f o r  (i=O; i < h e i g h t ;  i++) { 

* c e l l - p t r  = * ( c e l l - p t r  + wid th- in -by tes  - 2 ) :  
* ( c e l l - p t r  + w id th - in -by tes  - 1) = * ( c e l l L p t r  + 1 ) :  
c e l l - p t r  += wid th- in -by tes :  

I 
/ /  Copy t o p   a n d   b o t t o m   e d g e s   i n t o   p a d d i n g   b y t e s  on b o t t o m   a n d   t o p  

rnemcpy(sourcemap.cells, sourcemap.ce l l s  + length- in -by tes  - 

memcpy(sourcemap.cel1s + l e n g t h - i n - b y t e s  - w id th - in -by tes .  
(w id th - in -by tes  * 2 ) .  w i d t h - i n - b y t e s ) :  

sourcemap.cel1.s + w i d t h - i n - b y t e s .   w i d t h - i n - b y t e s ) ;  
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#endi f 
/ /  Copy all cells  to  the  destination 
memcpy(cel1s. sourcemap.cells. length-in-bytes); 

I 

/ *  Turns cell on. x and  y are  offset by 1 byte  down  and  to  the  right,to  compensate  for  the 
padding  bytes  around the  cellmap. * I  
void ce1lmap::set-cell(unsigned int x .  unsigned  int  y) 
e 

unsigned  char *cell-ptr - 
cells + ((y + 1) * width-in-bytes) + ( ( x  / 8 )  + 1); 

1 
*(cell-ptr) I- Ox80 >> ( x  & 0x07) ;  

/ *  Turns cell off. x and  y are  offset by 1 byte  down and to  the  right, 

void cel1map::clear-cell(unsigned int x .  unsigned  int y) 
e 

to  compensate  for  the  padding  bytes  around  the  cell  map. */ 

unsigned  char *cell-ptr - 
cells + ((y + 1) * width-in-bytes) + ( ( x  / 8 )  + 1): 

I 
*(cell-ptr) &- -40x80 >> ( x  & 0 x 0 7 ) ) ;  

/ *  Returns cell state (1-on or 0-off). x and  y are  offset by 1 byte 
down and to  the right. to  compensate  for  the  padding  bytes  around 
the cell  map. */ 

int cel1map::cell-state(int x .  int  y) 
{ 

unsigned  char *cell-ptr - 
cells + ((y + 1) * width-in-bytes) + ( ( x  / 8 )  + 1); 

return (*cell-ptr & (Ox80 >> ( x  & 0 x 0 7 ) ) )  ? 1 : 0; 
1 

/ *  Counts  the  number  of  neighboring  on-cells  for  specified  cell. */ 
int cel1map::count-neighbors(int x .  int  y) 
c 

unsigned  char *cell-ptr. mask; 
unsigned  int neighbor-count: 

/ /  
if 
/ /  
if 

I /  
if 

I 
I /  
if 
/ /  

/ /  Point  to  upper  left  neighbor 
cell-ptr - cells + ((y * widthkin-bytes) + ( ( x  + 7 )  / 8 ) ) ;  
mask - Ox80 >> ( ( x  - 1) & 0x07) ;  
/ /  Count  upper  left  neighbor 
neighbor-count - (*cell-ptr & mask) ? 1 : 0; 

Count  left  neighbor 
((*(cell-ptr +-width-in-bytes) & mask))  neighbor-count++; 
Count  lower  left  neighbor 
((*(cellLptr + (width-in-bytes * 2)) & mask))  neighbor-count++; 

Point  to  upper  neighbor 
((mask >>- 1) - 0 )  
mask - 0x80; 
cell-ptr++; 

Count  upper 
((*cell-ptr 
Count  lower 

neighbor 
& mask)) neighbor-count++; 
neighbor 
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i f  ( ( * ( c e l l - p t r  + ( w i d t h - i n - b y t e s  * 2 ) )  & mask))  
neighbor-count++; 

I 1  P o i n t   t o   u p p e r   r i g h t   n e i g h b o r  
i f  ((mask >>- 1) = 0 )  { 

mask = 0x80: 
c e l l - p t r + + ;  

I 
/ /  C o u n t   u p p e r   r i g h t   n e i g h b o r  
i f  ( ( * c e l l _ p t r  & mask))   ne ighbor-count++;  
/ /  Count r i g h t  n e i g h b o r  
i f  ( ( * ( c e l l - p t r  + w i d t h - i n - b y t e s )  & mask))   ne ighbor-count++:  
I /  C o u n t   l o w e r   r i g h t   n e i g h b o r  
i f  ( ( * ( c e l l L p t r  + (width-in..bytes * 2 ) )  & mask) )  

neighbor-count++; 

1 
r e t u r n   n e i g h b o r - c o u n t :  

/*  C a l c u l a t e s   t h e   n e x t   g e n e r a t i o n   o f   c u r r e n t - m a p   a n d   s t o r e s  it i n  

v o i d  cellmap::next_generation(cellmap& next tmap)  
f 

next-map. * I  

u n s i g n e d   i n t   x .   y .   n e i g h b o r - c o u n t :  

f o r   ( y - 0 ;   y < h e i g h t :  y++) 1 
f o r  (x=O; x < w i d t h ;  x++) I 

ne ighbor -count  = c o u n t - n e i g h b o r s ( x .   y ) :  
i f  ( c e l l - s t a t e ( x .   y )  == 1) I 

if ( ( n e i g h b o r - c o u n t  != 2 )  && (ne ighbor -count  != 3 ) )  
n e x t - m a p . c l e a r - c e l l ( x ,   y ) :  / I  t u r n  it o f f  
d r a w - p i x e l ( x ,  y .  OFF-COLOR) :  

1 
I e l s e  

i f  (ne ighbor -count  == 3 )  { 
n e x t - m a p . s e t - c e l l ( x .   y ) :  / I  t u r n  i t  on 
d r a w - p i x e l ( x .  y .  ONKCOLOR): 

I 
1 

1 
1 

In Listing 17.3, note  the  padded cellmap  edges, and  the  alteration of the  member 
functions to compensate  for  the  padding. Also note  that  the width now has to be a 
multiple of eight, to facilitate the process of  copying the edges to the opposite padding 
bytes. We have decreased the generality of our Game  of  Life implementation  in ex- 
change  for  better  performance. That’s a very common trade-off,  as common as trading 
memory for  performance. As a  rule, the  more  general a  program is, the slower it is. 
A corollary is that  often (not always, but  often),  the  more heavily optimized  a  pro- 
gram is, the  more complex and  the  more difficult to implement  it is. You can  often 
improve performance a good  deal by implementing only the level  of generality you 
need,  but  at  the same time decreased generality makes it  more difficult to  change  or 
port  the  program at  some  later  date. A Game of Life implementation, such as Listing 
17.1, that’s built on set-cell(), clear-cell(), and get-cell() is completely general; you 
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can  change  the cell storage format simply by changing  the  constructor  and  those 
three functions. Listing 17.3 is harder  to  change because count-neighborso would 
also have to  be  altered,  and it’s more complex  than any of the  other functions. 
So, in Listing 17.3, we’ve gotten  under  the  hood  and  changed  the cellmap format a 
little, and  gotten impressive results. But now count-neighborso is hard-wired for 
optimized  counting, and it’s  still taking up  more  than half the time. Maybe  now  it’s 
time  to go to assembly? 
Not hardly. 

Heavy-Duty C++ Optimization 
Before we get to assembly,  we  still  have to perform C++ optimization, then see if  we can 
find an alternative approach that better fits the application. It would  actually  have  made 
much more sense if  we had looked for a new approach as our first optimization step, but 
I decided it would be better to cover straightforward C++ optimizations at this point, and 
the mind-bending stuff a little  later.  Right now, let’s look at some C++ optimizations; 
Listing 17.4 is a C++-optimized version of  Listing  17.3. 

LISTING 17.4 11 7-4.CPP 
I* n e x t L g e n e r a t i o n 0 .   i m p l e m e n t e d   u s i n g   f a s t ,   a l l - i n - o n e   h a r d - w i r e d  

n e i g h b o r   c o u n t / u p d a t e / d r a w   f u n c t i o n .   O t h e r w i s e ,   t h e  same as 
L i s t i n g   1 7 . 3 .  *I  

I* C a l c u l a t e s   t h e   n e x t   g e n e r a t i o n   o f   c u r r e n t - m a p   a n d   s t o r e s  i t  i n  

v o i d  cel1map::next-generation(cellmap& next-map) 
next-map. * I  

u n s i g n e d   i n t   x .  y .  ne ighbor -count :  
u n s i g n e d  i n t  wi   d th- in-bytesX2 - wid th- i   n -by tes  << 1; 
u n s i g n e d   c h a r   * c e l l L p t r .   * c u r r e n t L c e l l - p t r .   m a s k ,   c u r r e n t t m a s k ;  
uns igned  char   *base-ce l l -p t r .   * row-ce l l -p t r .   base-mask;  
u n s i g n e d   c h a r   * d e s t - c e l l - p t r  = nex t -map.ce l l s ;  

11 P r o c e s s   a l l   c e l l s   i n   t h e   c u r r e n t   c e l l m a p  
row-cel   1-ptr  - c e l l  s ; / /  p o i n t   t o   u p p e r   l e f t   n e i g h b o r   o f  

f o r   ( y - 0 :   y < h e i g h t :  y++) [ / I  r e p e a t   f o r   e a c h   r o w   o f   c e l l s  
11 C e l l   p o i n t e r   a n d   c e l l   b i t  mask f o r   f i r s t   c e l l   i n  row 
b a s e - c e l l - p t r  = r o w - c e l l - p t r ;  / I  t o  access  upper  l e f t   n e i g h b o r  
base-mask = 0x01: / I  o f   f i r s t   c e l l   i n  row 
f o r  (x -0 :   x<wid th ;  x++) [ / I  r e p e a t   f o r   e a c h   c e l l   i n   r o w  

/ I  f i r s t   c e l l   i n   c e l l  map 

/ I  F i r s t ,   c o u n t   n e i g h b o r s  
/ /  P o i n t   t o   u p p e r   l e f t   n e i g h b o r   o f   c u r r e n t   c e l l  
c e l l - p t r  - b a s e - c e l l - p t r ;  / I  p o i n t e r   a n d   b i t  mask f o r  
mask = basecmask; 11 u p p e r   l e f t   n e i g h b o r  
/ I  Count   upper  l e f t   n e i g h b o r  
ne ighbor -count  - ( * c e l l L p t r  & mask) ? 1 : 0; 
/ /  Count l e f t   n e i g h b o r  
i f  ( ( * ( c e l l - p t r  + wid th- in -by tes)  & mask) )  

/ I  C o u n t   l o w e r   l e f t   n e i g h b o r  
i f  ( ( * ( c e l l - p t r  + w id th - in -by tesX2)  & mask) )  

neighbor-count++: 

neighbor-count++; 
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/ /  Point t o  upper  neighbor 
if ((mask >>- 1) -- 0 )  I 

mask - 0x80: 
cell-ptr++: 

1 
/ /  Remember  where  to  find  the  current cell 
current-cell-ptr - cell-ptr + widthkin-bytes: 
current-mask - mask: 
/ I  
if 
/ I  
if 

/ I  
if 

1 
/ I  
if 
/ I  
if 

/ /  
if 

if 

Count  upper  neighbor 
((*cell-ptr & mask))  neighbor-count++; 
Count  lower  neighbor 
((*(cell-ptr + widthkin-bytesX2) & mask)) 

neighbor-count++; 
Point  to  upper  right  neighbor 
((mask >>- 1) - 0 )  I 
mask - 0x80: 
cell-ptr++: 

Count  upper  right  neighbor 
((*cell-ptr & mask))  neighbor-count++; 
Count  right  neighbor 
((*(cell-ptr + width-in-bytes) & mask)) 
neighbor-count++: 
Count  lower  right  neighbor 
((*(cell-ptr + width-in-bytesX2) & mask)) 

(*current-cellLptr & current-mask) t 
if ((neighbor-count !- 2) && (neighbor-count !- 3 ) )  t 

*(dest-cell-ptr + (current-cell-ptr - cells)) &- 
-current-mask: / /  turn  off cell 

draw-pixel(x. y .  OFF-COLOR): 

neighbor-count++: 

1 
1 else I 

if (neighbor-count -- 3 )  { 
*(dest-cell-ptr + (current-cell-ptr - cells)) 1 -  

draw-pixel(x. y .  ON-COLOR): 
current-mask; / /  turn  on cell 

1 
I 
/ /  Advance t o  the  next cell on  row 
if ((base-mask >>- 1) -- 0) { 

base-mask - 0x80: 
base-cell_ptr++: / /  advance  to  the  next cell byte 

I 
1 
row-cell-ptr +- width-in-bytes: / /  point  to  start o f  next  row 

1 
I 

Listing 17.4 and Listing 17.3 are functionally the same; the only difference lies in 
how nextsenerationo is implemented. (Only nextsenerationo is  shown in Listing 
1’7.4; the program is otherwise identical to Listing 17.3.) Listing 17.4 applies the 
following optimizations to nextsenerationo: 
The neighbor-counting code is brought into nextseneration, eliminating many func- 
tion calls and from-scratch  address/mask  calculations;  all  multiplies are eliminated by 
using pointers and addition; and all  cells are accessed directly via pointers and masks, 
eliminating all remaining  function calls and from-scratch address/mask calculations. 
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The  net effect of these optimizations is that Listing  17.4 is more  than twice  as fast  as 
Listing  17.3; we’ve achieved the desired  18  generations per second, albeit only on a 
486, and only at 96x96. (The #define that  enables  code limiting the  speed to 18 Hz, 
which seemed ridiculous in Listing  17.1,  is  actually  useful for  keeping  the  genera- 
tions from  iterating  too quickly when Listing 17.4 is running  on a 486,  especially  with 
a small cellmap like  48x48.) We’ve sped things up by about  eight times so far; we 
need to increase our  speed  another ten times to reach  our goal of 200~200 at 18 
generations per  second  on a 20 MHz  386. 
It’s undoubtedly possible to improve the  performance of  Listing 17.4 further by fine- 
tuning  the code, but  no  tremendous  improvement is possible that way. 

Once you’ve reached the point offine-tuningpointer usage  and register variables p and  the  like in Cor  C++,  you ’ve become compiler-dependent; you therefore  might 
as well go to assembly and get the real McCoy. 

We’re  still not ready for assembly, though; what we need is a new perspective that 
lends itself to vastly better  performance in C++. The Life program in the  next section 
is three to seven  times faster than Listing 17.4-and  it’s  still in C++. 
How is this possible? Here  are some hints: 

After a few  dozen  generations,  most of the  cellmap  consists  of  cells in the off state. 
There  are  many  possible  cellmap  representations  other  than  one  bit-per-pixel. 
Cells  change  state  relatively  infrequently. 

Bringing In the Right  Brain 
In  the previous section, we  saw  how a C++ program  could be sped up  about eight 
times simply by rearranging  the data and  code in straightforward ways.  Now we’re 
going to see how right-brain non-linear optimization can speed things up by another 
four times-and make the  code s imph .  

Now that’s Zen code optimization. 
I have two objectives to achieve in the  remainder of this chapter. First, I  want to show 
that optimization consists of many  levels, from assembly language up to conceptual 
design, and  that assembly language kicks in pretty late in the optimization process. 
Second,  I want to encourage you  to saturate your brain with everything you  know 
about any particular optimization problem,  then  make space for your right  brain to 
solve the  problem. 

Re-Examining  the Task 
Earlier in this chapter, we looked at a straightforward Game of  Life implementation, 
then increased performance considerably by making the  implementation  a little less 
abstract and a little less general. We made a small change to the cellmap format, 
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adding  padding bytes  off the edges so that  pointer  arithmetic would always work, but 
the major  optimizations were moving the critical code  into  a single loop  and using 
pointers  rather  than  member  functions whenever possible. In  other words, we took 
what we already knew and  made it more efficient. 
Now it’s time to  re-examine  the nature of this programming task from  the  ground 
up, looking  for  things  that we don’t yet know. Let’s take a moment  to review  what the 
Game of Life consists of. The basic  task  is  evolving a new generation,  and that’s done 
by looking at  the  number of “on”  neighbors  a cell has and  the cell’s own state. If a 
cell is on,  and two or  three  neighbors  are  on,  then  the cell stays on; otherwise, an on- 
cell is turned off. If a cell is  off and exactly three  neighbors  are on, then  the cell  is 
turned  on; otherwise, an off-cell  stays  off. That’s all there is to it. As any fool  can see, 
the trick is to  arrange things so that we can count  neighbors  and check  the cell state 
as  quickly  as possible. Large lookup tables, oddly encoded cellmaps, and lots of  bit- 
twiddling assembly code  spring to mind as possible approaches.  Can’t you just feel 
your adrenaline  start  to  pump? 

Relax.  Step  back. Try to  divine  the  true  nature of theproblem.  The  object is not  to p count  neighbors  and  check  cell  states  as  quickly  as  possible;  that k just one pos- 
sible  implementation.  The  object  is  to  determine  when  a  cell b state  must  be changed 
and to change it appropriately,  and that’s what  we  need to  do  as quickly us possible. 

What difference  does that new perspective make?  Let’s approach it this way. What 
does  a typical cellmap look like? As it happens, after  a few generations,  the vast ma- 
jority of  cells are off. In fact, the vast majority of cells are  not only off but  are entirely 
surrounded by off-cells. Also, cells change  state  infrequently; in any given genera- 
tion after the first few, most  cells remain in the same state as  in the previous generation. 
Do you see where I’m heading? Do you hear a whisper of inspiration  from your right 
brain?  The original  implementation  stored cell states as 1-bits (on),  or 0-bits (off). 
For each  generation  and  for  each cell, it  counted  the states of the  eight  neighbors, 
for an average of eight  operations  per cell per  generation.  Suppose, now, that on 
average 10  percent of cells change state from one  generation to the next. (The ac- 
tual  percentage is even lower, but this will do for  illustration.)  Suppose also that we 
change  the cell map  format  to  store  a byte rather  than a  bit  for  each cell, with the 
byte storing  not only the cell state but also the  count of neighboring on-cells for  that 
cell. Figure 17.3 shows this format.  Then,  rather  than  counting  neighbors each  time, 
we could just look at  the  neighbor  count in the cell and  operate directly from  that. 
But what about  the overhead needed to maintain  the  neighbor  counts? Well, each 
time a cell changes  state,  eight  operations would be needed to update  the  counts in 
the  eight  neighboring cells.  But this happens only once every ten cells, on average- 
so the cost of this approach is only one-tenth  that of the original  approach! 
Know your data. 
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Acting  on  What We Know 
Once we’ve changed  the cellmap format to store  neighbor  counts as well  as states, 
with a byte for each cell, we can get  another  performance boost by again examining 
what we know about  our data.  I said earlier  that most  cells are off during any  given 
generation. This means  that most  cells  have no  neighbors that are  on. Since the cell 
map representation  for an off-cell that has no neighbors is a zero byte, we can skip 
over  scads  of unchanged cells at  a pop simply by scanning  for non-zero bytes. This is 
much faster than explicitly testing cell states and  neighbor counts, and lends itself 
beautifully to assembly language  implementation as REPZ S W B  or (with a little 
cleverness) REPZ SCASW. (Unfortunately, there’s no C library function  that can 
scan memory  for the  next byte that’s non-zero.) 
Listing 17.5 is a  Game of  Life implementation  that uses the  neighbor-count cell map 
format  and scans for non-zero bytes. On a 20 MHz 386,  Listing 17.5 is about 4.5 times 
faster at calculating generations (that is, the generation engine is  4.5 times faster; 
I’m  ignoring the time consumed by drawing and text display) than Listing  17.4, 
which  is no slouch. On a 33 MHz 486,  Listing  17.5  is about 3.5 times faster than 
Listing  17.4. This is true even though Listing 17.5 must be compiled using the large 
model. Imagine that-getting a four times speed-up while  switching from  the small 
model to the large model! 

LISTING  17.5  11 7-5.CPP 
/*  C++ Game o f   L i f e   i m p l e m e n t a t i o n   f o r   a n y  mode f o r   w h i c h  mode s e t  

a n d   d r a w   p i x e l   f u n c t i o n s   c a n   b e   p r o v i d e d .   T h e   c e l l m a p   s t o r e s   t h e  
n e i g h b o r   c o u n t   f o r   e a c h   c e l l   a s   w e l l   a s   t h e   s t a t e   o f   e a c h   c e l l :  
t h i s   a l l o w s   v e r y   f a s t   n e x t - s t a t e   d e t e r m i n a t i o n .  Edges  always  wrap 
i n   t h i s   i m p l e m e n t a t i o n .  
T e s t e d   w i t h   B o r l a n d  C++. To r u n .   l i n k   w i t h   L i s t i n g  17 .2  
i n   t h e   l a r g e   m o d e l .  * /  

# i n c l u d e   < s t d l  i b.  h> 
#i n c l   u d e   < s t d i  0. h> 
# i n c l u d e   < i o s t r e a m . h >  
# i n c l u d e   < c o n i o . h >  
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# i n c l u d e   < t i m e . h >  
#i n c l  ude  <dos . h> 
fki n c l  ude  <b ios .   h>  
#i nc l   ude  <mem. h> 

# d e f i n e  ONKCOLOR 1 5  / I  o n - c e l l   p i x e l   c o l o r  
# d e f i n e  OFF-COLOR 0 / I  o f f - c e l l   p i x e l   c o l o r  
Pde f  i ne MSG-LINE 10 / I  row f o r   t e x t  messages 
# d e f i n e  GENERATION-LINE 12 / I  row f o r   g e n e r a t i o n  # d i s p l a y  
# d e f i n e  LIMIT-18-HZ 0 / /  s e t  1 t o   t o  maximum f r a m e   r a t e  - 18Hz 
c l a s s   c e l l m a p  { 
p r i v a t e :  

u n s i g n e d   c h a r   * c e l l  s : 
uns igned   cha r   * temp-ce l l s :  
u n s i g n e d   i n t   w i d t h :  
u n s i g n e d   i n t   h e i g h t :  
u n s i g n e d   i n t   l e n g t h - i n - b y t e s :  

c e l l m a p ( u n s i g n e d   i n t   h .   u n s i g n e d   i n t   v ) :  
- c e l l m a p ( v o i d ) :  
v o i d   s e t - c e l l ( u n s i g n e d   i n t   x .   u n s i g n e d   i n t   y ) :  
v o i d  c l e a r - c e l l ( u n s i g n e d   i n t   x .   u n s i g n e d   i n t  y ) ;  
i n t   c e l l - s t a t e ( i n t   x .   i n t  y ) :  
i n t   c o u n t - n e i g h b o r s ( i n t   x .   i n t  y): 
v o i d   n e x t - g e n e r a t i o n ( v o i d ) :  
v o i d   i n i t ( v o i d ) ;  

p u b l i c :  

I :  

e x t e r n   v o i d  e n t e r - d i s p l a y m o d e ( v o i d ) :  
e x t e r n   v o i d  exit-display-mode(void); 
e x t e r n   v o i d   d r a w - p i x e l ( u n s i g n e d   i n t  X .  u n s i g n e d   i n t  Y .  

e x t e r n   v o i d   s h o w - t e x t ( i n t   x .   i n t   y .   c h a r   * t e x t ) ;  

I* C o n t r o l s   t h e   s i z e   o f   t h e   c e l l  map. Must  be w i t h i n   t h e   c a p a b i l i t i e s  
o f   t h e   d i s p l a y  mode, and  must  be l i m i t e d   t o   l e a v e  room f o r   t e x t  
d i s p l a y   a t   r i g h t .  * I  

u n s i g n e d   i n t   C o l o r ) ;  

u n s i g n e d   i n t   c e l l m a p - w i d t h  - 96: 
u n s i g n e d   i n t   c e l l m a p - h e i g h t  - 96: 

I* Width & h e i g h t   i n   p i x e l s   o f   e a c h   c e l l .  * /  
u n s i g n e d   i n t   m a g n i f i e r  - 2;  

I* Randomizing  seed * /  
uns igned i n t  seed: 

v o i d   m a i n 0  
{ 

u n s i g n e d   l o n g   g e n e r a t i o n  - 0: 
char  gen-textC801: 
l o n g   b i o s - t i m e .   s t a r t - b i o s - t i m e :  

ce l lmap  current-map(cel1map-height. ce l lmap-w id th ) :  

c u r r e n t - m a p . i n i t 0 :  / /  r a n d o m l y   i n i t i a l i z e   c e l l  map 

enter-d i   sp lay-mode(  ) : 
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/ /  Keep r e c a l c u l a t i n g   a n d   r e d i s p l a y i n g   g e n e r a t i o n s   u n t i l   a n y   k e y  
/ I  i s  p ressed  
show- tex t (0 .  MSG-LINE. "Genera t i on :  " ) :  
s t a r t - b i o s - t i m e  - -bios-timeofday(-TIME-GETCLOCK. &b ios - t ime) :  
do { 

generat ion++:  
s p r i n t f ( g e n - t e x t .   " % 1 0 1 u " .   g e n e r a t i o n ) ;  
show-text (1.  GENERATION-LINE, g e n - t e x t ) ;  
/ /  R e c a l c u l a t e   a n d   d r a w   t h e   n e x t   g e n e r a t i o n  
current-map.next-generationo; 

# i f  LIMIT-18-HZ 
/ /  L i m i t   t o  a  maximum o f  18.2 f r a m e s   p e r   s e c o n d ,   f o r   v i s i b i l i t y  
do 

] w h i l e   ( s t a r t - b i o s - t i m e  - b i o s - t i m e ) ;  
s t a r t - b i o s - t i m e  - b ios - t ime ;  

bios-t imeofday(-TIME-GETCLOCK.  &bios-t ime): 

#endi  f 
1 w h i l e   ( ! k b h i t O ) :  

g e t c h 0 ;  / I  c l e a r   k e y p r e s s  
e x i   t - d i   s p l  ay-mode( ) : 
c o u t  << " T o t a l   g e n e r a t i o n s :  " << g e n e r a t i o n  << "\nSeed: " << 

seed << " \n" :  
1 

/ *  c e l l m a p   c o n s t r u c t o r .  * /  
cellmap::cellmap(unsigned i n t  h ,   u n s i g n e d   i n t  w )  

w i d t h  - w: 
h e i g h t  - h; 
l eng th - in -by tes  - w * h: 
c e l l s  - new uns igned   cha rC leng th - in -by tes ] :  / /  c e l l   s t o r a g e  
temp-ce l l s  - new u n s i g n e d   c h a r [ l e n g t h - i n - b y t e s l ;  I /  temp c e l l   s t o r a g e  
i f  ( ( c e l l s  - NULL) I (  ( t emp-ce l l s  - NULL) 1 I 

p r i n t f ( " 0 u t   o f   m e m o r y \ n " ) :  
e x i t ( 1 ) :  

I 
memset(ce l1s.  0 .  l e n g t h - i n - b y t e s ) ;  I /  c l e a r   a l l   c e l l s ,   t o   s t a r t  

I 

I* c e l l m a p   d e s t r u c t o r .  *I  
ce l lmap : : - ce l lmap(vo id )  
I 

d e l   e t e C l   c e l l  s; 
d e l e t e [ ]   t e m p - c e l l s :  

1 

/ *  T u r n s   a n   o f f - c e l l   o n ,   i n c r e m e n t i n g   t h e   o n - n e i g h b o r   c o u n t   f o r   t h e  

v o i d  cel1map::set-cell(unsigned i n t  x ,   u n s i g n e d   i n t   y )  
( 

e i g h t   n e i g h b o r i n g   c e l l s .  * /  

u n s i g n e d   i n t  w - w i d t h .  h - h e i g h t :  
i n t   x o l e f t .   x o r i g h t .   y o a b o v e .   y o b e l o w ;  
u n s i g n e d   c h a r   * c e l l - p t r  - c e l l s  + ( Y  * W )  + X :  

I /  C a l c u l a t e   t h e   o f f s e t s   t o   t h e   e i g h t   n e i g h b o r i n g   c e l l s .  
/ /  a c c o u n t i n g   f o r   w r a p p i n g   a r o u n d   a t   t h e   e d g e s   o f   t h e   c e l l  map 
i f  ( x  -- 0)  

e l s e  
x o l e f t  - w - 1: 

x o l e f t  - -1: 
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i f  ( y  -- 0) 
yoabove - leng th - in -by tes  - w: 

e l s e  
yoabove - - w :  

i f  ( x  -- ( w  - 1 ) )  
x o r i g h t  = - ( w  - 1): 

e l s e  
x o r i g h t  - 1: 

i f  ( y  -- ( h  - 1 ) )  
yobelow - - ( l e n g t h - i n - b y t e s  - w ) :  

e l s e  
yobelow - w :  

* ( c e l l - p t r )  I -  0x01: 
* ( c e l l - p t r  + yoabove + x o l e f t )  +- 2: 
* ( c e l l - p t r  + yoabove)  +- 2: 
* ( c e l l - p t r  + yoabove + x o r i g h t )  +- 2: 
* ( c e l l - p t r  + x o l e f t )  +- 2: 
* ( c e l l - p t r  + x o r i g h t )  +- 2: 
* ( c e l l - p t r  + yobelow + x o l e f t )  +- 2 :  
* ( c e l l - p t r  + yobelow) +- 2: 
* ( c e l l - p t r  + yobelow + x o r i g h t )  +- 2 :  

1 

I* T u r n s   a n   o n - c e l l   o f f ,   d e c r e m e n t i n g   t h e   o n - n e i g h b o r   c o u n t   f o r   t h e  

v o i d  cel1map::clear-cell(unsigned i n t   x .   u n s i g n e d   i n t   y )  
( 

e i g h t   n e i g h b o r i n g   c e l l s .  *I  

u n s i g n e d   i n t  w - w i d t h ,  h - h e i g h t ;  
i n t   x o l e f t ,   x o r i g h t .   y o a b o v e .   y o b e l o w :  
u n s i g n e d   c h a r   * c e l l - p t r  - c e l l s  + ( y  * w )  + x:  

I /  C a l c u l a t e   t h e   o f f s e t s   t o   t h e   e i g h t   n e i g h b o r i n g   c e l l s ,  
/ I  a c c o u n t i n g   f o r   w r a p p i n g   a r o u n d   a t   t h e   e d g e s   o f   t h e   c e l l  map 
i f  ( x  - 0) 

x o l e f t  - w - 1: 
e l s e  

x o l e f t  - -1 :  
i f  ( y  -- 0) 

yoabove - l e n g t h k i n - b y t e s  - w :  
e l s e  

yoabove - - w :  
i f  ( x  -- ( w  - 1 ) )  

x o r i g h t  - - ( w  - 1 ) ;  
e l s e  

x o r i g h t  - 1: 
if ( y  - ( h  - 1)) 

yobelow - - ( l e n g t h - i n - b y t e s  - w ) :  
e l s e  

yobelow - w ;  

* ( c e l l L p t r )  &- -0x01: 
* ( c e l l _ p t r  + 
*(eel 1 -p t r  + 
* ( c e l l - p t r  + 
*(eel 1 -p t r  + 
* ( c e l l _ p t r  + 
* ( c e l l - p t r  + 
* ( c e l l - p t r  + 
* ( c e l l - p t r  + 

1 

yoabove + x o l e f t )  - -  2: 
yoabove ) -- 2: 
yoabove + x o r i g h t )  -- 2: 
x o l e f t )  -- 2: 
x o r i g h t )  - -  2 :  
yobelow + x o l e f t )  - -  2: 
yobelow) - -  2: 
yobelow + x o r i g h t )  -- 2: 
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I* Returns cell state (1-on or 0-off). *I  
int  cel1map::cell-statecint x, int y) 
{ 

unsigned  char  *cell-ptr; 

cell-ptr - cells + ( y  * width) + x; 
return *cell-ptr & 0x01; 

1 

I* Calculates and displays  the  next  generation of current-map * I  
void cel1map::next-generation0 
( 

unsigned  int x. y.  count; 
unsigned  int h - height,  w - width; 
unsigned  char  *cellLptr.  *row-cell-ptr; 

I1 Copy to temp  map, s o  we  can  have an unaltered  version  from 
If which  to  work 
memcpy(temp-cells,  cells,  length-in-bytes); 

/ I  Process all cells in the  current cell map 
cell-ptr - temp-cells; I /  first cell  in  cell map 
for (y-0; y<h; y++) I I1 repeat  for  each  row  of  cells 
I1 Process all cells in the  current  row of the cell map 

x - 0: 
do ( / /  repeat  for  each cell  in row 

11 Zip  quickly  through  as  many  off-cells  with  no 
11 neighbors  as  possible 

while (*cell-ptr - 0 )  { 
cell-ptr++; / I  advance  to  the  next cell 
if (++x >- w) goto  RowDone: 

1 
I /  Found  a cell that's  either on  or  has on-neighbors, 
/ I  so see  if  its  state  needs  to be changed 
count - *cell-ptr >> 1; / I  I of  neighboring  on-cells 
if (*cell-ptr & 0x01) I 

/ /  Cell is on;  turn  it  off  if  it  doesn't  have 
I1 2 or 3 neighbors 
if ((count !- 2 )  && (count !- 3 ) )  ( 

clear-ce?l(x. y): 
draw-pixel(x. y. OFF-COLOR); 

1 
1 else { 

I f  Cell is  off;  turn  it on if it  has exactly 3 neighbors 
if  (count - 3 )  ( 

set-cell(x. y); 
draw-pixel (x. y. ON-COLOR): 

1 
3 
/ I  Advance  to  the  next cell 
cell-ptr++; / I  advance  to  the  next cell byte 

) while (++x < w); 
RowDone: 

1 
1 

/*  Randomly  initializes  the  cellmap  to  about 50% on-pixels. * I  
void cel1map::initO 
{ 

unsigned  int x. y.  init-length; 

344 Chapter 17 



/ /  Get  the  seed;  seed  randomly i f  0 e n t e r e d  
c o u t  << “Seed ( 0  f o r  random  seed): ”; 
c i n  >> seed; 
i f  (seed  =- 0 )  seed = (uns igned)   t ime(NULL) :  

/ /  Randomly i n i t i a l i z e   t h e   i n i t i a l   c e l l  map t o  50% a n - p i x e l s  
/ /  ( a c t u a l l y   g e n e r a l l y   f e w e r ,   b e c a u s e  some c o o r d i n a t e s  will be 
/ /  randomly   se lec ted   more   t han   once )  
c o u t  << “ I n i t i a l i z i n g . . . “ :  
s rand (seed) ;  
i n i t - l e n g t h  - ( h e i g h t  * w i d t h )  / 2: 
do { 

x = random(w id th ) :  
y - random(he igh t ) ;  
i f  ( c e l l - s t a t e ( x .   y )  -= 0 )  1 

I 
s e t - c e l l ( x .   y ) ;  

I 
I w h i l e   ( - i n i t - l e n g t h ) ;  

The large  model is actually not necessary for  the 96x96 cellmap  in Listing 17.5. How- 
ever, I was actually more interested  in  seeing  a fast 200x200 cellmap, and two 200x200 
cellmaps can’t fit in  a single segment.  (This  can easily be worked around  in assembly 
language  for cellmaps up to a  segment  in size; beyond that size, cellmap  scanning 
becomes pretty  complex,  although  it  can still be efficiently implemented with some 
clever programming.) 
Anyway, using the large  model  helps illustrate that it’s the  data  representation  and 
the  data processing approach you choose  that  matter most. Optimization details like 
memory models and segments and in-line functions  and assembly language are im- 
portant  but secondary.  Let  your mind  roam creatively before you start  coding. 
Otherwise, you  may find you’re writing well-tuned slow code, which is by no means 
the same  thing as fast code. 
Take a close look at Listing 17.5. You  will see that it’s quite  a  bit  simpler  than Listing 
17.4. To some  extent, that’s because I decided to hard-wire the  program to wrap 
around  from  one  edge of the  cellmap  to  the other (it’s much  more  interesting  that 
way), but  the main reason is that it’s a  lot easier to work  with the  neighbor-count 
model.  There’s no complex mask and  pointer  management,  and  the only thing  that 
reuZ(y needs to be  optimized is scanning  for  zero bytes. (And,  in  fact, I haven’t opti- 
mized even that because it’s done in  a Ct+  loop; it should really be REPZ SCASB.) 
In  truth,  none of the  code  in Listing 17.5 is particularly well-optimized, and, as I 
noted,  the  program must  be  compiled with the  large  model  for  large cellmaps. Also, 
of course, the  entire  program is  still in C+t; note well that  there’s not a whit of 
assembly here. 

We’ve gotten  more  than  a  30-times  speedup  simply by removing  a  little of the ab- p straction  that C++ encourages,  and by storing  andprocessing  the  data  in  a  manner 
appropriate for the  typical  nature of the  data  itselJ:  In  other  words,  we’ve  done 
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some  linear,  left-brained  optimization  (usingpointers  and  reducing  calls) and some 
non-linear,  right-brained  optimization  (understanding  the  real  problem  and  lis- 
tening for the  creative  whisper of non-obvious  solutions). 

No doubt we could get  another two to five times improvement with good assembly 
code-but that’s dwarfed by a  30-times improvement, so optimization at a concep- 
tual level must come first. 

The Challenge That Ate My Life 
The most recent optimization challenge I laid my community of readers was to write 
the fastest possible Game of  Life generation  engine. By “engine” I meant  that I didn’t 
care about time spent  in  input  or  output, only time consumed by the call to next- 
generation. The time spent  updating  the cellmap was what I wanted  people to 
concentrate on. 
Here  are  the  rules I laid  down for  the challenge: 

Readers  could  modify  any  code  in  Listing 17.5, except  the  main  loop,  as  well  as 
change  the  cell  map  representation  any way  they  liked.  However,  the  code  had  to 
produce  exactly  the  same  output  as  Listing  17.5  under  all  circumstances  in  order 
to  be  eligible  to  win. 
Engine  code  had  to  be  less  than 400 lines  long in total, excluding  the  video- 

Submissions  had  to  compile/assemble  with  Borland C++ (in  either C++ or C 

All  submissions  had  to  handle  cellmaps  at  least 200x200 in  size. 
Assembly  language  could of course  be  used  to  speed  up  any  part of the  program. 

. C rather  than C++ was  legal as well, so long  as  entered  implementations  pro- 
duced  the  same  results  as  Listing 17.5 and 17.2 together  and  were  less  than 400 
lines  long. 
All  entries  would  be  timed  on  the  same 33 MHz 486 with  a 256K external  cache. 

related  code  shown  in  Listing 17.2. 

mode,  as  desired)  and/or TASM. 

That was the challenge I put  to  the readers. Little did I realize the challenge it would 
lay on me: Entries poured  in  from  the  four  corners of the globe. Some  were  plain, some 
were brilliant, some were,  well,  berserk.  Many didn’t even  work.  But  all had to be gone 
through, examined for  adherence to the rules, read, compiled,  linked, run, andjudged. 
I learned a lot-about  a lot of  things, not the least ofwhich was the process (or maybe 
the wisdom)  of  laying  down challenges to readers. 
Who won? What did I learn? To find  out, read on. 
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When I was in hi& school, my gym teacher had us run a race around  the soccer 
field, or rather, arotiNd a course marked with cones that roughly outlined  the shape 
of the field. I quickly s d into second place behind Dwight Chamberlin. We cruised 
around  the field, and &We came  to the far corner, Dwight cut across the  corner, 
inside a cone placed dkwardly far out from  the  others.  I followed, and everyone  else 
cut inside the  cone t$o-except the pear-shaped kid bringing up the rear, who  plod- 
ded his way around kvery  single cone on his way to finishing about half a lap  behind. 
When the laggar&&nally  crossed the finish line,  the coach named him the winner,  to 
my  considCE%#&rj@itation. After  all, the object was to  see  who could run  the fastest, 
wasn’t it? 
Actually,  it  wasn’t. The object was to see  who could run the fastest according to  the 
limitations placed upon  the contest. This is a crucial distinction, although usually 
taken for granted. Would  it  have been legitimate if I had  cut across the middle of the 
field? If I had  ridden a bike? If I had  broken  the world record  for  the 100 meters by 
dropping 100 meters from a plane? Competition has meaning only  within a carefully 
circumscribed arena. 
Why am I telling  you  this?  First,  because it is a useful  lesson for  programming. 

,_x I n 8 .  

All programming  is  performed within  limitations, some of which can  be  bent  or p changed, but  many  of which cannot. You cannot change the  maximum  memory 
bandwidth ofa VGA, or the maximum instruction  execution rate o f a  486. That is 
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why  the  stunning 3 0  demos you see at SIGGRAPH  have onlypassing relevance to 
everyday life on the desktop. A rule  that Intel5 chip designers cannot break is 
8086 compatibility, much as I’m sure theya like to, but of course the pip side is 
that  although RISC chips  are  technically  superiol;  they  command  but a small fraction 
of the  market: rawperformance is  not  the  arena of competition. Similarly, you will 
ofen be unable  to  change  the speczjications for the software you implement. 

Breaking the Rules 
- 

The  other reason for  the  anecdote has to do with the way  my second Optimization 
Challenge worked  itself out. If you’ll  recall from the last chapter, the challenge I made 
to the readers of PC TECHNIQLES was to  devise the fastest  possible  version  of the 
Game of  Life cellular automata simulation game. I gave an example, laid out  the rules, 
and stood aside. Good thing, too. Apres moi, le deluge.. . . 
And  when the dust had settled, I was  left  with the uneasy  realization that every submitted 
entry  broke the rules. Every single entry. The rules  clearly  stated that submitted  code  must 
produce exactly  the same output as  my example implementation under all circumstances 
in order to be eligible to win. I do  not think that  there can  be  any question about what 
“exactly the same output” means. It means the same  pixels, in the same  colors, at  the 
same  places on  the screen at the same points in all the Life simulations that  the origi- 
nal code was capable of running. Period. And not  one of the entries met  that  standard. 
Some submitted listings  were more  than 400 lines long. Some didn’t display the gen- 
eration number  at  the right side  of the screen, didn’t draw the same  pixel colors, or 
didn’t  bother with magnification. Some had bugs. Some didn’t support all  possible 
cellmap widths and heights up to 200x200, requiring widths and heights that were 
specific multiples of a number of  cells that  lent itself  to a particular implementation. 
This last  mission  is, in a way, a brilliant approach, as evidenced by the fact that  it yielded 
the two fastest  submissions, but it is not within the rules of the contest. Some of the 
rule-breaking was major, some very minor, and some had  nothing to do with the Life 
engine itself, but  the rules were  clear; where was I to  draw the line if not with exact 
compliance? And I was  fully prepared to  draw that line rigorously, disqualifjmg some 
mind-bending submissions in order to let lesser but fully compliant entries win-until 
I realized that  there were no fully compliant entries. 
Given which, I heaved a sigh  of relief, threw away the rules, and picked a winner in 
the  true spirit of the contest: raw speed. Two winners, in fact: Peter Klerings, a pro- 
grammer  for Turck GmbH in Munich, Germany,  whose entry just plain runs like a 
bat out of hell, and David Stafford (who was also the winner of  my first Optimization 
Challenge), of Borland International, whose entry is  slightly  slower  mainly because 
he didn’t optimize the drawing part of the  program, in full accordance with the 
contest rules, which  specifically excluded drawing time from  consideration. Unfor- 
tunately, Peter’s generation  code and drawing code are so tightly intertwined that  it 
is impossible to separate  them, and  hence  not really  possible to figure out whose 
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generation  engine is faster. Anyway, at 180  to 200 generations per second,  including 
drawing time, for 200x200 cellmaps (and in the  neighborhood of  lOOOgps for 96x96 
cellmaps, the size  of my original implementation), they’re the fastest submissions I 
received. They’re both  more  than  an order of magnitude faster than my final opti- 
mized c++ Life implementation shown in  Chapter 17, and more  than 300 times 
faster than my original, perfectly functional Life implementation. Not 300 percent- 
300 times. Cell generations scud across the screen like clouds, and walkers shoot out 
like bullets. Each is a worthy winner, and  I feel confident  that  the  true objective of 
the challenge has been met: pure, breathtaking speed. 
Notwithstanding, mea culpa. The next time I lay a  challenge, I will define  the rules 
with scrupulous  care. Even so, this was much  more  than just  another cycle-counting 
contest. We’re fortunate  enough to  be  privy  to a startling demonstration of the power 
of the best optimizer anyone has yet  devised-you. (That’s the  general “you”; I real- 
ize that  the specific  “you” may or may not be quite up to the optimizing level  of the 
specific  “David Stafford” or “Peter Klerings.”) 
Onward to the  code. 

Table-Driven Magic 
David Stafford won  my first Optimization Challenge by means of a  huge look-up 
table and  an incredible state machine driven by that table. The table didn’t cause 
David’s entry to exceed the  line limit because David’s submission included  code to 
generate  the table on the fly as part of the build process. David has done himself one 
better this time with  his  QLIFE program;  not only does his build process generate  a 
64K table, but it also generates virtually  all  his code, consisting of 17,000-plus lines of 
assembly language spanning another 64K. What David has done is  write the equiva- 
lent of a bitblt compiler  for  the Game of Life; one might in fact call it  a Life compiler. 
What David’s code  generates is still a  general-purpose  program;  it takes arbitrary 
seed  values, and can run for an arbitrary number of generations, so it’s not as if  David 
simply hardwired the  instructions to draw each successive screen. However,  it’s a 
general-purpose program  that is exquisitely tailored to the task it  needs to perform. 
All the pieces of QLIFE are shown in Listings 18.1 through 18.5,  as  follows:  Listing 
18.1 is  BUILD.BAT, the batch file used to build QLIFE; Listing 18.2 is LCOMP.C, the 
program used to generate  the assembler code and data file QLIFE.ASM; Listing 18.3 
is  MAIN.C, the main program for QLIFE; Listing 18.4 is VIDEO.C, the video-related 
functions, and Listing 18.5 is LIFE.H, the  header file. The following sidebar contains 
David’s build instructions, exactly  as he wrote them.  I certainly won’t  have room to 
discuss  all the marvelous intricacies of David’s code;  I suggest  you look over these 
listings until you understand  them thoroughly (it took me a day to pick them apart) 
because there’s  a lot of neat stuff in  there,  and it’s an approach to performance 
programming  that  operates  at  a  more efficient, tightly integrated level than you  may 
ever see again. One hint: It helps a lotto build and  run LCOMP.C, redirect its output 
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is of 
and to with- 

LISTING 1 8.1 BUILD.BAT 
bcc   - v  -D%1=%2;%2=%3:%3=%4;%4-%5:%5=%6:%6-%7:%7=%8;%8 1comp.c 
lcomp > q l i f e . a s m  
tasmx  Imx lkh30000 q l i f e  
b c c   - v  -D%1=%2:%2-%3;%3=%4:%4=%5;%5-%6:%6-%7;%7-%8:%8 q l i f e . o b j   m a i n . c   v i d e 0 . c  

LISTING  18.2 LC0MP.C 
I /  LC0MP.C 
/ I  
/ /  L i f e  c o m p i l e r .   v e r  1.3 
/ I  
/ I  D a v i d   S t a f f o r d  
/ I  
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# i n c l u d e   < s t d i o . h >  
# i n c l u d e   < s t d l  i b.  h> 
#i n c l  ude  "1 i f e .   h "  

#def ine  L IST-LIMIT (46  * 138)  / /  when we need t o  use  es:  

i n t  Old.  New, Edge, L a b e l :  
char   Buf [  20 1; 

v o i d   N e x t l (   v o i d  ) 

I 
char  *Seg - ""; 
i f (  WIDTH * HEIGHT > LIST-LIMIT ) Seg - "es:" ;  

p r i n t f (  "mov b p . % s [ s i ] \ n " .  Seg ) ;  
p r i n t f (  "add s i  .2 \n"  ) :  
p r i n t f (  "mov dh . [bp+ l ] \ n "  1:  
p r i n t f (  "and  dh,OFEh\n" 1; 
p r i n t f (  " jmp  dx\n"  ) :  
> 

v o i d   N e x t 2 (   v o i d  1 
( 
p r i n t f (  "mov b p . e s : [ s i l \ n "  1; 
p r i n t f (  "add s i  . 2 \n "  1:  
p r i n t f (  "mov dh .Cbp+ l l \ n "  ) :  
p r i n t f (  "or d h . l \ n "  ) :  
p r i n t f (  " jmp  dx\n"  1: 
1 

v o i d   B u i l d M a p s (   v o i d  ) 

I 
u n s i g n e d   s h o r t  i. j. S i z e ,  x - 0. y .  N1 .  N2. N3. C 1 .  C2.  C3: 

p r i n t f (  "-DATA segment   'DATA' \na l ign  2 \n"  1:  
p r i n t f (   " p u b l i c   - C e l l M a p \ n "  1: 
p r i n t f (  " -Ce l lMap  labe l   word \n"  ) :  

f o r (  j - 0; j < HEIGHT: j++ ) 

( 
f o r (  i - 0; i < WIDTH; i++ 

I 
i f (  i - 0 I I i - WIDTH-1 I I j -- 0 I I j - HEIGHT-1 ) 

( 
p r i n t f (  "dw 8000h\n" ) :  

1 
e l s e  

( 
p r i n t f (  "dw O\n" ) :  

1 
I 

1 

p r i n t f (  "ChangeCell  dw O\n" ) :  
p r i n t f (  "_RowColMap l a b e l   w o r d \ n "  1: 
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- 0;  j < HEIGHT: j++ 1 

i - 0:  i < WIDTH: i++ ) 

, i n t f (  "dw 0%02x%02xh\n". j .  i * 3 ) :  

i f (  WIDTH * HEIGHT > LIST-LIMIT ) 

I 
p r i n t f (  "Changel dw o f f s e t  -CHANGE:-ChangeListl\n" ) :  
p r i n t f (  "Change2 dw o f f s e t  -CHANGE:-ChangeList2\n" ) :  
p r i n t f (   " e n d s \ n \ n "  ) :  
p r i n t f (  '"CHANGE segment  para  publ ic  'FAR_DATA'\n" 1:  
1 

e l s e  
{ 
p r i n t f (   " C h a n g e l  dw o f f s e t  DGR0UP:-ChangeListl\n" ) :  
p r i n t f (  "Change2 dw o f f s e t  DGROUP:-ChangeListZ\n" ) :  

1 

S i z e  - WIDTH * HEIGHT + 1: 

p r i n t f (   " p u b l i c  -ChangeListl\n_ChangeListl l a b e l   w o r d \ n "  1:  
p r i n t f (  "dw %d  dup ( o f f s e t  DGROUP:ChangeCell)\n",  Size ) :  
p r i n t f (   " p u b l i c   _ C h a n g e L i s t Z \ n - C h a n g e L i s t Z   l a b e l   w o r d \ n "  ) :  
p r i n t f (  "dw %d  dup ( o f f s e t  DGROUP:ChangeCell)\n". S i z e  ) :  
p r i n t f (   " e n d s \ n \ n "  ) :  

p r i n t f (  "-LDMAP s e g m e n t   p a r a   p u b l i c  'FAR-DATA'\n" ) :  

do 
I 
/ /  C u r r e n t   c e l l   s t a t e s  
c 1  - ( x  & 0x0800) >> 11; 
C2 - ( X  & 0x0400) >> 10: 
c3 - ( x  & 0x0200) >> 9;  

/ /  Ne ighbor   coun ts  
N 1  - ( X  & OxOlCO) >> 6: 
N2 - ( X  & 0x0038) >> 3 ;  
N3 - ( x  & 0x0007) :  

y - x & Ox8FFF: / /  P r e s e r v e   a l l   b u t   t h e   n e x t   g e n e r a t i o n   s t a t e s  

i f (  C 1  && ( ( N 1  + C2 -- 2 )  1 )  ( N 1  + C2 - 3 ) )  ) 

I 
y 1 -  0x4000: 
1 

i f (  ! C 1  && ( N 1  + C2 - 3 )  ) 
I 
y 1 -  0x4000: 
1 

if( C2 && ( (N2 + C 1  + C3 -- 2) 1 1  (N2 + C 1  + C3 - 3 ) )  ) 
{ 

1 
y 1 -  0x2000: 
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i f (  !C2 && (N2 + C 1  + C3 - 3 )  ) 

( 
y 1 -  0x2000; 
I 

v o i d  GetUpAndDown( v o i d  ) 

( 
p r i n t f (  "mov ax.[bp+~RowColMap-~CellMapl\n" ) :  
p r i n t f (   " o r   a h , a h \ n "  ) :  
p r i n t f (  "mov dx.%d\n", DOWN ) :  
p r i n t f (  "mov cx.%d\n". WRAPUP ) :  
p r i n t f (  " j z  shor t   D%d\n" ,   Labe l  ) :  
p r i n t f (  "cmp ah.%d\n" .  HEIGHT - 1 ) :  
p r i n t f (  "mov cx .%d\n " .  UP 1: 
p r i n t f (   " j b   s h o r t  D%d\n".  Label 1: 
p r i n t f (  "mov dx,%d\n" .  WRAPDOWN ) :  
p r i n t f (  "D%d:\n",  Label ) :  
I 

v o i d   F i r s t p a s s (   v o i d  ) 

( 
cha r  *Op; 
u n s i g n e d   s h o r t  UpDown - 0:  

p r i n t f (   " o r g  0%02xOOh\n".  (Edge << 7 )  + (New << 4 )  + ( O l d  << 1) ) :  

/ /  r e s e t   c e l l  
p r i n t f (   " x o r   b y t e   p t r   [ b p + l l , 0 % 0 2 x h \ n " .  (New A O l d )  << 1 ) :  

/ /  g e t   t h e   s c r e e n   a d d r e s s   a n d   u p d a t e   t h e   d i s p l a y  
#i f n d e f  NOORAW 
p r i n t f (  "mov a1 .160\n"  ) :  
p r i n t f (  "mov bx,[bp+-RowColMap-~CellMapl\n" 1: 
p r i n t f (  "mu1 bh \n "  1:  
p r i n t f (  "add  ax.ax\n"  ) :  
p r i n t f (  "mov bh.O\n" ) :  
p r i n t f (  "add  bx.ax\n"  1: / /  bx - s c r e e n   o f f s e t  

i f (  ((New A O l d )  & 6 )  - 6 

p r i n t f (  "mov word p t r   f s : ~ b x ] . 0 % 0 2 x % 0 2 x h \ n " .  
(New & 2 )  ? 1 5  : 0,  
(New & 4 )  ? 15 : 0 1; 
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i f (  (New A O l d )  & 1 ) 
( 
p r i n t f (  "mov b y t e   p t r   f s : C b x + 2 l . % s \ n " ,  

1 
(New & 1) ? "15" : " d l "  1: 

1 
e l s e  

{ 
i f (  ((New A O l d )  & 3 )  - 3 ) 

I 
p r i n t f (  "mov word p t r   f s :   [ b x + l ] . 0 % 0 2 x % 0 2 x h \ n " .  

(New & 1) ? 15 : 0. 
(New & 2 )  ? 15 : 0 ) ;  

1 
e l s e  

I 
i f (  (New A O l d )  & 2 ) 

( 
p r i n t f (  "mov b y t e   p t r   f s : C b x + l l . % s \ n " .  

1 
(New & 2 )  ? "15" : " d l "  1: 

i f (  (New A O l d )  & 1 
{ 
p r i n t f (  "mov b y t e   p t r   f s : [ b x + 2 1 . % s \ n " .  

1 
(New & 1) ? "15" : " d l "  ) :  

1 

i f (  (New A O l d )  & 4 1 
I 
p r i n t f c  "mov b y t e   p t r   f s :   [ b x l   . % s \ n " .  

1 
(New & 4 )  ? "15" : " d l "  ) ;  

I 
#end i  f 

i f (  (New O l d )  & 4 ) UpDown +- (New & 4 )  ? 0x48 : -0x48; 
i f (  (New A O l d )  8 2 ) UpDown +- (New & 2 )  ? 0x49 : -0x49;  
i f (  (New A O l d )  & 1 UpDown +- (New & 1) ? Ox09 : -0x09;  

i f (  Edge ) 

( 
GetUpAndDownO; / /  ah - row, a1 - c o l .   c x  - up.  dx - down 

i f (  (New A O l d )  & 4 ) 
( 
p r i n t f (  "mov d i . % d \ n " .  WRAPLEFT 1: / I  d i  - l e f t  
p r i n t f (  "cmp a l .O\n"  1: 
p r i n t f (   " j e   s h o r t   L % d \ n " .   L a b e l  1; 
p r i n t f (  "mov d i . % d \ n " .  LEFT ) ;  
p r i n t f (   " L % d : \ n " .   L a b e l  ) ;  

i f (  New & 4 Op - " i n c " :  
e l s e  Op - "dec": 

p r i n t f (  "%s word p t r   [ b p + d i l \ n " .  Op ) ;  
p r i n t f (  "add   d i . cx \n "  ) :  
p r i n t f (  "%s word p t r   C b p + d i l \ n " .  Op 1; 
p r i n t f (   " s u b   d i . c x \ n "  1: 
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p r i n t f (  "add   d i . dx \n "  ) :  

p r i n t f (  " % s  word p t r   [ b p + d i l \ n " .  Op ) :  
I 

i f (  (New A O l d )  & 1 1 
I 
p r i n t f (  "mov d i . % d \ n " .  WRAPRIGHT 1: I1 d i  = r i g h t  
p r i n t f (  "cmp a l . % d \ n " .  (WIDTH - 1) * 3 ) :  

p r i n t f (   " j e   s h o r t  R%d\n",  Label ) :  
p r i n t f (  "mov d i . % d \ n " .  RIGHT ) :  
p r i n t f (  "R%d:\n".  Label ) ;  

i f  ( New & 1 Op = "add": 
e l s e  Op = "sub".  

p r i n t f (  "%s word p t r   [ b p + d i l , 4 0 h \ n " .  Op ) :  
p r i n t f (  "add   d i . cx \n "  1;  
p r i n t f (  "%s word p t r   [ b p + d i I , 4 0 h \ n " .  Op ) :  
p r i n t f (  " sub   d i . cx \n "  ) ;  
p r i n t f (  "add   d i . dx \n "  ) :  
p r i n t f (  " % s  word p t r   [ b p + d i l , 4 0 h \ n " .  Op 1 :  
I 

p r i n t f (  "mov d i . c x \ n "  1: 
p r i n t f (  "add  word p t r  [bp+d i l .%d\n" .  UpDown 1 :  
p r i n t f (  "mov d i . d x \ n "  1: 
p r i n t f (  "add  word p t r  [bp+d i I ,%d\n" .  UpDown ) :  

p r i n t f (  "mov d l .O\n"  1 :  
1 

e l s e  
( 
i f (  (New O l d )  & 4 ) 

( 
i f (  New & 4 Op = " i n c " :  
e l s e  Op = "dec": 

p r i n t f (  "%s b y t e   p t r   [ b p + % d l \ n " .  Op. LEFT ) :  

p r i n t f (  "%s b y t e   p t r   [ b p + % d l \ n " .  Op. UPPERLEFT ) :  

p r i n t f (  "%s b y t e   p t r   [ b p + % d l \ n " .  Op, LOWERLEFT 1 ;  

i f (  (New A O l d )  & 1 ) 

I 
i f  ( New & 1 ) Op = "add": 
e l s e  Op = "sub".  

p r i n t f (  "%s word p t r  [bp+%dl.40h\n".  Op.  RIGHT ) :  
p r i n t f (  "%s word p t r  [bp+%d].40h\n". Op.  UPPERRIGHT 1 :  
p r i n t f (  "%s word p t r  [bp+%d].40h\n".  Op. LOWERRIGHT ) :  

I 

i f (  abs( UpDown ) > 1 ) 

I 
p r i n t f (  "add  word p t r  [bp+%dl.%d\n".  U P ,  UpDown ) :  
p r i n t f (  "add  word p t r  [bp+%dl,%d\n".  DOWN, UpDown ) :  

1 
e l s e  

t 
i f (  UpDown == 1 ) Op - " i n c " :  
e l s e  Op = "dec": 
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p r i n t f (  "%s b y t e   p t r  [bp+%d]\n". Op. UP 1;  
p r i n t f (  "%s b y t e   p t r   [ b p + % d l \ n " .  Op. DOWN 1;  
1 

1 

N e x t 1  ( ) ; 
1 

v o i d   T e s t (   c h a r   * O f f s e t ,   c h a r   * S t r  
I 
p r i n t f (  "mov bx .Cbp+%sl \n" .   Of fse t  ) ;  
p r i n t f (  "cmp b h . [ b x l \ n "  1; 
p r i n t f (  " j n z  sho r t   F IX_%s%d\n " .   S t r .   Labe l  ) ;  
p r i n t f (  "%s%d:\n" ,   St r .   Label  ) ;  

1 

v o i d   F i x (   c h a r   * O f f s e t .   c h a r  *Str. i n t  JumpBack 1 
( 
p r i n t f (  "FIX-%s%d:\n" .   St r .   Label  ) ;  
p r i n t f (  "mov b h . [ b x l \ n "  ) ;  
p r i n t f (  "mov [bp+%s l ,bx \n " .   O f f se t  1;  

i f (  * O f f s e t  !- ' 0 '  p r i n t f (   " l e a   a x . [ b p + % s l \ n " .   O f f s e t  ) ;  
e l s e   p r i n t f (  "mov ax.bp\n" ) ;  

p r i n t f (   " s t o s w \ n "  1; 

i f (  JumpBack ) p r i n t f (   " j m p   s h o r t   % s % d \ n " .  Str. Label  1;  
1 

vo id   Secondpass (   vo id  
I 
p r i n t f (   " o r g  O%OZxOOh\n". 

(Edge << 7) + (New << 4 )  + ( O l d  << 1) + 1 1; 

i f (  Edge ) 
I 
/ /  f i n i s h e d   w i t h   s e c o n d   p a s s  
i f (  New - 7 && O l d  - 0 

( 
p r i n t f (  "cmp b p . o f f s e t  DGROUP:ChangeCell\n" ) ;  
p r i n t f (   " j n e   s h o r t   N o t E n d \ n "  ) ;  
p r i n t f (  "mov word p t r   e s : [ d i ] . o f f s e t  DGROUP:ChangeCell\n" 1; 
p r i n t f (  "pop d i   s i  bp  ds\n"  1;  
p r i n t f (  "mov Changece l l  .O\n" ) ;  
p r i n t f (   " r e t f \ n "  1;  
p r i n t f (   " N o t E n d : \ n "  ) ;  

1 

GetUpAndDownO; / /  ah - row,  a1 - c o l .   c x  - up .   dx  - down 

p r i n t f (  "push s i \ n "  1;  
p r i n t f (  "mov s i . % d \ n " .  WRAPLEFT 1; / /  s i  - l e f t  
p r i n t f (  "cmp a l .O\n"  ) ;  
p r i n t f (   " j e   s h o r t  L%d\n".  Label ) ;  
p r i n t f (  "mov s i . % d \ n " .  LEFT 1; 
p r i n t f (  "L%d:\n".  Label 1;  
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T e s t (   " s i " ,  "LEFT" 1: 
p r i n t f (  "add   s i , cx \n "  ) :  
T e s t (   " s i " .  "UPPERLEFT" ) :  
p r i n t f (   " s u b   s i . c x \ n "  1 ;  
p r i n t f (  "add s i   . d x \ n "  ) :  
T e s t (   " s i " .  "LOWERLEFT" ) :  

p r i n t f (  "mov s i , c x \ n "  ) :  
T e s t (   " s i " .  "UP"  1:  
p r i n t f (  "mov s i . d x \ n "  ) ;  
T e s t (   " s i " .  "DOWN" ) :  

p r i n t f (  "cmp b y t e   p t r  [bp+_RowColMap-_CellMapl.%d\n". 
(WIDTH - 1) * 3 ) :  

p r i n t f (  "mov s i  .%d\n". WRAPRIGHT ) ;  / /  s i  = r i g h t  
p r i n t f (  " j e  shor t   R%d\n" .   Labe l  ) :  
p r i n t f (  "mov s i . % d \ n " ,  RIGHT 1: 
p r i n t f (  "R%d:\n".  Label ) :  

T e s t (   " s i " .  "RIGHT" ) ;  
p r i n t f (  " a d d   s i . c x \ n "  ) :  
T e s t (   " s i " .  "UPPERRIGHT" 1:  
p r i n t f (  " sub   s i . cx \n "  ) :  
p r i n t f (  "add   s i . dx \n "  ) :  
T e s t (   " s i " .  "LOWERRIGHT" ) ;  

} 
e l s e  

I 
T e s t (   i t o a (  LEFT, Buf.  1 0  ) ,  "LEFT" ) ;  
T e s t (   i t o a (  UPPERLEFT. Buf. 10 ) .  "UPPERLEFT" ) ;  
T e s t (   i t o a (  LOWERLEFT. B u f .  10 ) ,  "LOWERLEFT" ) :  

T e s t (   i t o a (  UP,  B u f .  10 1, "UP" ) :  
T e s t (   i t o a (  DOWN, Buf, 10 ) .  "DOWN" ) ;  
T e s t (   i t o a (  RIGHT, Buf.  1 0  1 ,  "RIGHT" 1 ;  
T e s t (   i t o a (  UPPERRIGHT. B u f .  10 1,  "UPPERRIGHT" 1 ;  
T e s t (   i t o a (  LOWERRIGHT. B u f ,  10 ) ,  "LOWERRIGHT" ) :  

I 

if( New = O l d  ) T e s t (  "0" .  "CENTER" ) :  

i f( Edge ) p r i n t f (  "pop s i \ n "  " m O V  d l .O\n"  ) ;  

NextE( ) : 

i f (  Edge ) 

I 
F i x (   " s i " ,  "LEFT", 1 ) :  
F i x (   " s i " ,  "UPPERLEFT". 1 ) :  

F i x (   " s i " ,  "LOWERLEFT". 1 ) :  

F i x (   " s i " ,  "UP", 1 ) ;  
F i x (   " s i " .  "DOWN". 1 ) :  
F i x (  " s i " .  "RIGHT". 1 ) :  
F i x (   " s i " .  "UPPERRIGHT". 1 1: 
F i x (   " s i " ,  "LOWERRIGHT". New == O l d  ) ;  

1 
e l s e  

I 
F i x (   i t o a (  LEFT. Buf, 10  ) .  "LEFT", 1 ) :  
F i x (   i t o a (  UPPERLEFT. B u f .  10 1,  "UPPERLEFT". 1 ) ;  
F i x (   i t o a (  LOWERLEFT. B u f .  10 1,  "LOWERLEFT". 1 1: 
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F i x (   i t o a (  UP, B u f .   1 0  ) ,  " U P "  , 1 ) ;  
F i x (   i t o a (  DOWN, B u f .  10 ) ,  "DOWN", 1 1; 
F i x (   i t o a (  RIGHT, Bu f .  10 1,  "RIGHT", 1 ) :  
F i x (   i t o a (  UPPERRIGHT. B u f .   1 0  ) ,  "UPPERRIGHT". 1 ) ;  
F i x (   i t o a (  LOWERRIGHT. Bu f .   10  ) ,  "LOWERRIGHT". New -= O l d  ) ;  

1 

if( New - O l d  ) F i x (  "0". "CENTER". 0 ) ;  

i f( Edge ) p r i n t f (  " p o p   s i \ n "  "mov d l .O\n"  ) ;  

NextE( ) : 
1 

v o i d   m a i n (   v o i d  ) 

( 
c h a r  *Seg = "ds";  

B u i l d M a p s O :  

p r i n t f (  "DGROUP g roup _DATA\n" ) ;  
p r i n t f (   " L I F E   s e g m e n t  'CODE'\n" ) ;  
p r i n t f (  "assume cs:LIFE.ds:DGROUP,ss:DGROUP,es:NOTHING\n" ) :  
p r i n t f (  " .386C\n"  "publ ic  -NextGen\n\n" 1; 

f o r (  Edge = 0:  Edge <= 1; Edge++ ) 

I 
f o r (  New = 0 ;  New < 8 :  New++ ) 

{ 
f o r (   O l d  - 0;  O l d  < 8 :  Old++ 

I 
i f (  New != O l d   F i r s t p a s s o :   L a b e l * ;  
SecondPassO:  Label++: 
1 

1 

/ /  f i n i s h e d   w i t h   f i r s t   p a s s  
p r i n t f (   " o r g  O\n" ) ;  
p r i n t f (  "mov s i  .Changel \n" ) :  
p r i n t f (  "mov d i  .ChangeZ\n" ) ;  
p r i n t f (  "mov C h a n g e l . d i \ n "  ) ;  
p r i n t f (  "mov ChangeZ,si \n" ) :  
p r i n t f (  "mov Changecel l   .OF000h\n" ) ;  
p r i n t f c  "mov ax.seg -LDMAP\n" ) ;  
p r i n t f (  "mov ds .ax \n"  1 :  
NextZ( ) ; 

/ I  e n t r y   p o i n t  
p r i n t f (  '"NextGen: push  ds  bp s i   d i \ n "   " c l d \ n "  ) :  

i f (  WIDTH * HEIGHT > LIST-LIMIT ) Seg - "seg -CHANGE"; 

p r i n t f (  "mov ax.%s\n".  Seg  ) ;  
p r i n t f (  "mov es ,ax \n"  ) :  

#i f n d e f  NDDRAW 
p r i n t f (  "mov ax.OAOOOh\n" ) :  
p r i n t f (  "mov f s , a x \ n "  ) :  
#end i  f 
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p r i n t f (  "mov s i   . C h a n g e l \ n "  1: 
p r i n t f (  "mov d l .O \n "  1: 
Nex t1  ( ) : 

p r i n t f (   " L I F E   e n d s \ n e n d \ n "  1 :  
I 

LISTING 18.3 MA1N.C 
/ /  MA1N.C 
I /  
/ /  D a v i d   S t a f f o r d  
/ /  

li n c l  ude < s t d l  i b .  h> 
# i n c l u d e   < s t d i o . h >  
# i n c l u d e   < c o n i o . h >  
# i n c l u d e   < t i m e . h >  
ii nc l   ude  < b i o s .  h> 
#i n c l  ude "1 i f e .  h" 

/ /  f u n c t i o n s   i n  VIDE0.C 
v o i d   e n t e r - d i s p l a y - m o d e (   v o i d  1:  
v o i d   e x i t - d i s p l a y - m o d e (   v o i d  ) :  
v o i d   s h o w - t e x t (   i n t   x .   i n t   y .   c h a r   * t e x t  ) :  

v o i d   I n i t c e l l m a p (   v o i d  ) 
I 
u n s i g n e d   i n t  i. j ,  t. x .   y .   i n i t :  

f o r (   i n i t  - (HEIGHT * WIDTH * 3 )  / 2; i n i t :   i n i t -  1 
I 
x - random( WIDTH * 3 ) :  
y - random( HEIGHT ):  

Cel lMapC  (y  * WIDTH) + x / 3 1 1 -  Ox1000 << ( 2  - ( x  % 3 ) ) :  
1 

f o r (  i - j - 0:  i < WIDTH * HEIGHT: i++ 1 
t 
i f (  CellMapC i 1 & 0x7000 1 

ChangeL is t lC  j++ 1 - (shor t )&Ce l lMapC i 1: 
J 

1 

1 
NextGenO:  / /  S e t   c e l l   s t a t e s ,   p r i m e   t h e  pump. 

v o i d   m a i n (   v o i d  1 
I 
u n s i g n e d   l o n g   g e n e r a t i o n  - 0:  
c h a r   g e n - t e x t [  80 1: 
l o n g   s t a r t - t i m e .   e n d - t i m e :  
u n s i g n e d   i n t   s e e d :  

p r i n t f (  "Seed ( 0  f o r  random  seed):  " ) :  
scanf(   "%d".   &seed ) :  
i f (  seed - 0 ) seed - (uns igned)   t ime(NULL) :  
srand(   seed 1:  
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# i   f n d e f  NODRAW 
en te r -d i sp lay -mode0 :  
show-text (  0. 10.   "Genera t ion : "  ) :  
#end? f 

I n i t C e l l m a p O :  / /  r a n d o m l y   i n i t i a l i z e   c e l l  map 

- b ios - t imeo fday (  -TIME-GETCLOCK. & s t a r t - t i m e  ) :  

do 
( 
NextGenO:  
generat ion++:  

#i f n d e f  NOCOUNTER 
s p r i n t f (   g e n - t e x t .   " % 1 0 1 u " .   g e n e r a t i o n  1: 
show-text (  0. 12.  gen-text  1: 
#endi  f 
I 

C i   f d e f  GEN 
w h i l e (   g e n e r a t i o n  < GEN 1:  
# e l s e  
w h i l e (   ! k b h i t O  ) :  
#endi  f 

- b i o s _ t i m e o f d a y (  -TIMELGETCLOCK. &end-t ime ) :  
end-t ime -- s t a r t - t i m e :  

# i f n d e f  NODRAW 
g e t c h (  1: / /  c l e a r   k e y p r e s s  
e x i t - d i s p l a y - m o d e 0 :  
# e n d i f  

p r i n t f (   " T o t a l   g e n e r a t i o n s :   % l d \ n S e e d :   % u \ n " .   g e n e r a t i o n .   s e e d  ): 
p r i n t f (   " % l d   t i c k s \ n " .   e n d - t i m e  1:  
p r i n t f (  "Time: %f generat ions/second\n" .  

1 
(doub1e)genera t i on  / (doub1e)end-t ime * 18.2 1: 

LISTING 18.4 VIDE0.C 
/*  VGA mode 1 3 h   f u n c t i o n s   f o r  Game o f   L i f e .  

# i n c l u d e   < s t d i o . h >  
# i n c l u d e   < c o n i o . h >  
#i nc l   ude   <dos f   h>  

# d e f i n e  TEXT-X-OFFSET 28 
# d e f i n e  SCREEN-WIDTH-IN-BYTES 320 

# d e f i n e  SCREEN-SEGMENT  OxAOOO 

T e s t e d   w i t h   B o r l a n d  C++. * /  

/ *  Mode 1 3 h   m o d e - s e t   f u n c t i o n .  * /  
v o i d   e n t e r - d i s p l a y - m o d e 0  
I 

u n i o n  REGS r e g s e t :  

regse t . x .ax  - 0x0013: 
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) :  

3 
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I* T e x t  mode m o d e - s e t   f u n c t i o n .  * I  
v o i d   e x i   t - d i   s p l  ay-mode( ) 

u n i o n  REGS r e g s e t :  

r e g s e t . x . a x  - 0x0003: 
i n t 8 6 ( 0 x 1 0 .   & r e g s e t ,   & r e g s e t ) :  

1 

/*  T e x t   d i s p l a y   f u n c t i o n .   O f f s e t s   t e x t   t o   n o n - g r a p h i c s   a r e a   o f  

v o i d   s h o w - t e x t ( i n t   x .   i n t  y .  c h a r   * t e x t )  
I 

screen.  * I  

gotoxy(TEXT-XKOFFSET + x .  y ) :  
p u t s ( t e x t ) :  

1 

LISTING 18.5 1IFE.H 
v o i d   f a r   N e x t G e n (   v o i d  1:  

e x t e r n   u n s i g n e d   s h o r t   C e l l M a p [ l ;  
e x t e r n   u n s i g n e d   s h o r t   f a r   C h a n g e L i s t l C I :  

# d e f i n e  LEFT 
l d e f  i ne RIGHT 
# d e f i n e  UP 
# d e f i n e  DOWN 
# d e f i n e  UPPERLEFT 
# d e f i n e  UPPERRIGHT 
# d e f i n e  LOWERLEFT 
% d e f i n e  LOWERRIGHT 
d d e f i   n e  WRAPLEFT 
# d e f i n e  WRAPRIGHT 
# d e f i n e  WRAPUP 
# d e f i n e  WRAPOOWN 

( - 2 )  
(+2  1 
(WIDTH * LEFT) 
(WIDTH * RIGHT) 
( U P  + LEFT) 
( U P  + RIGHT) 
(DOWN + LEFT) 
(DOWN + RIGHT) 
(RIGHT * (WIDTH - 1)) 
(LEFT * (WIDTH - 1 ) )  
(DOWN * (HEIGHT - 1)) 
(UP * (HEIGHT - 1 ) )  

Keeping Track of Change with a Change List 
In my earlier optimizations to the Game of  Life, described in the last chapter, I noted 
that most cells in a Life cellmap are  dead,  and in most  cases  all the  neighbors  are 
dead as  well. This observation enabled  me to get a major speed-up by scanning  the 
cellmap for  the few non-zero bytes  (cells that were either alive or have neighbors 
that  are alive). Although that was a big improvement,  it still required my code  to 
touch every  cell  to check its state. David has improved on this by maintaining a change 
list; that is, a list  of pointers  to cells that  change in the  current generation. Only 
those cells and their  neighbors need to be  checked or touched in any way in order to 
create the  next  generation, saving a great many instructions and also a great many 
cache misses due to  the fact that cellmaps are too big  to  fit into  the 486’s internal 
cache. During a given generation, David runs down the list  of  cells that  changed 
from  the previous generation to  make the changes for this generation, and in the 
process generates  the  change list for  the  next  generation. 
That’s the overall approach,  but this being David Stafford,  it’s not that simple, of 
course. I’ll let him  tell  you  how  his implementation works in his  own  words.  (I’ve 
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edited David’s text a bit, and  added my  own comments in square brackets, so blame 
me  for any errors.) 
“Each three cells in the life grid are packed into two bytes,  as  shown in Figure 18.1. 
So, it is convenient if the width of the cell array is an even multiple of three. There’s 
nothing in the algorithm that prevents it  from  supporting any arbitrary size, but  the 
code is a bit simpler this way. So if you  want a 200x200 grid, I recommend  just using 
a 201x200 grid, and be happy with the  extra  free  column. Otherwise the  edge wrap- 
ping  code gets more complex. 
“Since every  cell has from  zero to eight  neighbors, you  may be wondering how I can 
manage to keep track  of them with  only three bits.  Each  cell  really  has  only a maximum 
of  seven neighbors since we only need to keep track  of neighbors uutsde of the current 
cell word. That is,  if cell ‘B’ changes state then we don’t  need to reflect this in the 
neighbor  counts of  cells ‘A’ and ‘C.’ Updating is made a little faster. [In  other words, 
when David  picks up a word representing  three cells, each of the  three cells has at 
least one of the  other cells in that word  as a neighbor, and  the state of that  neighbor 
is stored  right in that word, as  shown in Figure 18.1. Therefore,  the  neighbor  count 

E A B C a b c X X X Y Y Y Z Z Z  

- 

B i t 1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0  
5 4 3 2 1 0  

E : 0 if  cell is internal (nonedge, so no wrapping), 1 if  on 

ABC : the  life/death  cell  states  for  the  next  generation 

abc : the  life/death  cell  states  for  the  current  generation 

XXX : the  neighbor  count  for  cell A 

YYY : the  neighbor  count  for  cell B 
ZZZ : the  neighbor  count  for  cell C 

an  edge  (involves wrapping) 

Cells A, B, and C are horizontall  adjacent, and are the 
leftmost,  center, and rightmost  ce Y Is, respectively,  represented 
by  this  cell  triplet. 

Cell triplet storage. 
Figure 18.1 
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for  a given  cell never needs to reflect more  than seven neighbors, because at least 
one of the eight  neighbors’ states is already encoded in the word.] 
“The  basic idea is to maintain a  ‘change list.’ This is an array of pointers  into  the cell 
array.  Each change list element  points to a word  which changes in the  next  genera- 
tion. This way  we don’t have to waste time scanning every  cell since most  of them do 
not change. Two passes are  made  through  the  change list. The first pass updates  the 
cell display on  the screen, sets the  life/death status of each cell for this new genera- 
tion,  and  updates  the  neighbor  counts for the  adjacent cells. There  are some 
efficiencies gained by using cell triplets rather  than individual cells since we usually 
don’t  need to set all eight neighbors. [Again, the  neighbor  counts  for cells in the 
same word are implied by the states of those cells.] The second pass  sets the next- 
generation states for the cells and  their  neighbors,  and in the process builds the 
change list for the next  generation. 
“Processing each word  is a little complex but very  fast. A 64K block of code exists 
with routines on each 256-byte boundary. Generally speaking, the  entry  point  corre- 
sponds to the high byte  of the cell  word. This byte contains the  life/death values and 
a bit to indicate if this is an  edge  condition. During the first pass we take the cell 
triplet word, AND it with OXFEOO, and  jump to that address. During the second pass 
we take the cell triplet word, AND it with  OxFE00, OR it with  0x0100, and  jump to 
that address. [Therefore,  there  are 128  possible jump targets on  the first pass, and 
128 more  on  the second, all on 256-byte boundaries  and all  keyed  off the high 7 bits 
of the cell triplet state; because bit 8 of the  jump index is 0 on  the first pass and 1 on 
the  second,  there is no conflict. The lower bit isn’t needed  for  other purposes be- 
cause only the edge flag bit and  the six life/death state bits matter  for jumping  into 
David’s state machine. The  other  nine bits, the bits  used for the  neighbor  counts,  are 
used only in the  next step.] 
“Determining which changes must be made to a cell triplet is easy and surprisingly 
quick. There’s no counting!  Instead,  I use a 64K lookup table indexed by the cell 
triplet itself. The value of the  lookup table entry is equal to what the high byte should 
be in the next  generation. If this value is equal to the  current high byte, then  no 
changes are necessary  to the cell. Otherwise it is placed in the  change list. Look at 
the code in the Test() and Fix() functions to see how  this is done.” [This step is as 
important as it is obscure. David has a 64K table organized so that if you  use a word 
describing a cell triplet as a  lookup  index,  the byte  you will read will be the state of 
the high byte for the next  generation.  In other words,  David’s table is constructed so 
that  the  edge flag bit,  the  life/death states, and  the  three  neighbor  count fields form 
an  index to a byte describing the  next  generation state for  that triplet. In practice, 
only the next  generation field of the cell changes. Then, if another change to a 
nearby cell tries to nudge  that cell into  changing again, David’s code sees that  the 
desired state is already set, and does not  add  that cell  to the  change list again.] 
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Segment usage in David’s  assembly code is summarized in Listing 18.6. 

LISTING 18.6 QLIFE Assembly  Segment  Usage 
C S  : 6 4 K  c o d e   ( t a b l e  o f  r o u t i n e s  on 256 b y t e   b o u n d a r i e s )  
DS : DGROUP (1st pass )  / 6 4 K  c e l l   l i f e / d e a t h   c l a s s i f i c a t i o n   t a b l e   ( s e c o n d   p a s s )  
ES : Change l i s t  
SS : DGROUP: t h e   l i f e   c e l l   g r i d  and   row /co lumn  tab le  
FS : Video  segment 
GS : Unused 

A Layperson‘s Overview of QLIFE 
Most  likely, you’re scratching your head  right now in bemusement. I don’t blame 
you; I felt  the same way  myself at first. It’s  actually pretty simple, though,  once you 
have the  hang of it. Basically,  David runs down the change list,  visiting  every  cell 
that’s due to change in this generation,  setting  it to the new state, drawing it in the 
new state, and adjusting the  counts of  all its neighbors. David has a separate assem- 
bly routine  for every  possible change of state for a cell triplet, and  he  jumps to the 
proper  routine by taking the cell triplet word, masking off the lower 9 bits, and 
jumping to the address where the  appropriate  code to perform  that particular change 
of state resides. He does this for every entry  in  the  change list. When this is com- 
pleted, the  current generation has been drawn and  updated. 
Now  David runs down the change list  again  to generate  the change list for  the  next 
generation. In this  case, for every changed cell triplet, David looks at that triplet and 
all  affected neighbors to  see  which will change in the  next  generation.  He tests for this 
condition by using each potentially changed cell triplet word  as an  index  into  the 
aforementioned lookup table of  new states. If the  current state matches the appropri- 
ate state for the  next  generation,  then there’s nothing to do  and  the cell  is not  added 
to the change list.  If the states don’t match, then  the cell  is added to the change list, 
and  the  appropriate state for the  next generation is set in  the cell triplet. David checks 
the minimum possible number of  cells for change by branching to code that checks 
only the relevant cells around each cell triplet in the  current change list; that branch- 
ing is accomplished by taking the cell triplet word,  masking off the lower 9 bits, setting 
bit 8 to a 1-bit, and branching to the  routine  at  that address. As with  everything in this 
amazing program, this represents the least  possible  work to accomplish the desired 
result-just three instructions: 

mov d h . [ b p + l l  
o r   d h . 1  
jmp  dx 

These suffice to select the  proper, minimum-work code to process the  next cell tr ip 
let  that has changed,  and all potentially affected neighbors. For all the size of David’s 
code, it has an astonishing economy of effort, as execution glides through  the  change 
list without a wasted instruction. 
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Alas, I  don’t have the  room  to discuss Peter Klerings’  equally remarkable Life imple- 
mentation  here. I’ll close  this chapter with a  quote  from Terje Mathisen, one of the 
finest optimizers it has  ever been my pleasure  to  meet, who, after looking over  David’s 
and  Peter’s  entries,  said, “This has been  an eye-opening experience  for me. I hon- 
estly thought I had  the fastest possible approach.” TANSTATFC. 
There Ain’t No Such Thing As the Fastest Code. 
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startling results. Nonetheless, the 486 was still too simple to mark  a return to the 
golden age of optimization. 

The Return of Optimization as Art 
Then  the  Pentium came around,  and filled our  code with optimization hazards, and 
life was good  again. The  Pentium has two execution  pipelines and  enough rules and 
exceptions to those rules to bringjoy to the  heart of the hardest-core assemblyjunkie. 
For a  change,  Intel  documented  most of the  Pentium optimization rules and  spread 
the word about  them, so we don’t have to go through as much  spelunking of the 
Pentium as  with  its predecessors. They’ve done this, I suspect, largely because more 
than any previous x86 processor, the Pentium’s performance is highly dependent  on 
properly optimized code. 
In  the worst case, where the second execution  pipe is dormant most of the time, the 
Pentium won’t perform all that  much  better  than  a 486 at  the same clock speed. In 
the best case, where the  second pipe is  heavily used  and  the Pentium’s other advan- 
tages (such as branch prediction, write-back cache, 64bit full speed  external bus, 
and  dual 8K caches) can kick in,  the  Pentium can be more  than twice  as fast  as a 486. 
In a critical inner loop, hand optimization can  double  or even triple  performance 
over  486-optimized  code-and that’s on  top of the sorts of algorithmic and design 
optimizations that  are routinely performed  on any processor. Good compilers can 
make  a big difference on  the  Pentium, too, but  there  are some gotchas there, to 
which I’ll return later. 
It’s been a long time coming,  but hard-core, big-payoff  assembly language optimiza- 
tion is back in style, and  for  the rest of this book I’ll be delving into  the Byzantine 
wonders of the  Pentium.  In this chapter, I’ll do a quick overview, then cover a variety 
of smaller Pentium optimization topics. In  the  next chapter, I’ll  tackle the 900-pound 
gorilla of Pentium optimization: superscalar (dual  execution  pipe)  programming. 
Trust me, this’ll  be fun. 
Listen, do you  want to know a  secret? This lead-in has been  brought to you with the 
help of  “classic rock”-another way of  saying “music Baby Boomers listened to back 
when they cared  more  about music than 401Ks and regular flossing.” There  are so 
many of us Boomers  that our music, even the worst  of it, will never go away. When 
we’re 90  years old,  propped  up in our Kraftmatic adjustable beds  and surfing the 
5,000-channel information superhighway from  one infomercial to the next, the  sound 
system in the retirement communitywill  be piping in a Muzak  version  of  “Louie,  Louie,” 
while on  the holovid Country Joe McDonald and  the Fish pitch Preparation H. I can 
hardly wait. 
Gimme a “P”. . . . 

372 Chapter 19 



The  Pentium: An Overview 
Architecturally, the Pentiurn is  vastly different  in many ways from  the 486, but most 
of those  differences are  transparent  to  programmers. After all, the whole idea be- 
hind  the Pentium is that it runs  the  same  code as previous x86 processors, but faster; 
otherwise,  Intel  could have made  a faster, cheaper RISC processor. Still, knowledge 
of the  Pentium’s  architecture is useful for understanding exactly  how code will per- 
form,  and a few of the architectural  differences  are most decidedly not transparent 
to performance  programmers. 
The  Pentium is essentially one full 486 execution  unit (EU), plus  a  second  stripped- 
down 486 EU, on a single chip.  The first EU is referred to as the U execution  pipe,  or 
Upipe; the  second,  more  limited  one is called the Vpipe. The two pipes are capable of 
executing  instructions simultaneously, have separate write buffers, and can even ac- 
cess the  data  cache simultaneously (although with certain  limitations  that I’ll discuss 
in the  next  chapter), so on  the Pentium  it is possible to execute two instructions, 
even instructions that access  memory, in a single clock. The cycle times for  instruc- 
tion execution  in a given pipe  (both pipes process instructions at  the same speed) 
are  comparable to those for  the 486, although  some instructions-notably MUL, the 
repeated  string  instructions,  and  some of the shifts and rotates-have gotten faster. 
My first thought  upon  hearing of the Pentium’s dual  pipes was to wonder how often 
the  prefetch queue stalls for lack  of instruction bytes,  given that  the  demand  for in- 
struction bytes can be twice that of the 486. The answer  is: rarely indeed,  and  then only 
because the  code is not in the  internal cache. The 486 has a single 8K cache  that stores 
both  code and data, and prefetching can stall if data  fetching doesn’t allow time for 
prefetching to occur (although this rarely happens in practice). 

The  Pentiurn, on the  other  hand,  has two separate 8K caches,  one for code and one 1 for  data, so codepreftches can never collide with  datafetches;  the prefetch queue 
can stall only when the code being fetched isn ’t in the internal code cache. 

(And yes, self-modifying code still  works; as with  all Pentium  changes,  the  dual caches 
introduce  no incompatibilities with 386/486 code.) Also, because the  code  and  data 
caches are  separate,  code  can’t  be driven out of the cache  in  a  tight  loop  that ac- 
cesses a lot of data,  unlike  the 486. In  addition,  the  Pentium  expands  the 486’s 32-byte 
prefetch queue  to 128 bytes. In  conjunction with the  branch prediction  feature (de- 
scribed next), which  allows the  Pentium to prefetch  properly at most  branches, this 
larger  prefetch queue means  that the Pentium’s two pipes  should  be  better  fed  than 
those of  any previous x86 processor. 

Crossing  Cache Lines 
There  are  three  other characteristics of the  Pentium  that make for  a  healthy supply 
of instruction bytes. One is that  the  Pentium  can  prefetch  instructions across cache 
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lines. Unlike the 486, where there is a 3-cycle penalty for branching  to  an instruction 
that spans a cache line, there’s no such penalty on  the  Pentium.  The second is that 
the  cache  line size (the  number of bytes fetched  from the external cache or main 
memory on a  cache miss) on  the  Pentium is 32 bytes,  twice the size  of the 486’s cache 
line, so a cache miss  causes a  longer run of instructions to be placed in the  cache 
than  on  the 486. The third is that the Pentium’s external bus is twice  as  wide  as the 
486’s, at 64  bits, and  runs twice  as fast, at 66  MHz, so the  Pentium can fetch both 
instruction and data bytes from  the  external cache four times as  fast  as the 486. 

Even  when  the  Pentium  is runningflat-out with  both pipes in use, it  can generally p consume only about twice  as many bytes  as the 486; so the ratio ofexternal memory 
bandwidth to processing power is much improved, although real-world  perfor- 
mance is heavily  dependent on  the size and speed ofthe external cache. 

The  upshot of  all this is that  at  the same  clock speed, with code  and  data that are 
mostly in the internal caches, the  Pentium maxes out somewhere around twice  as 
fast as a 486. (When the caches are missed a lot, the  Pentium can get as much as 
three to four times  faster, due to the  superior external bus and bigger caches.) Most 
of this won’t affect how  you program,  but it is useful to know that you don’t have to 
worry about instruction  fetching. It’s  also  useful  to  know the sizes  of the caches be- 
cause a high cache  hit  rate is crucial to Pentium  performance.  Cache misses are 
vastly  slower than  cache hits (anywhere from two to 50 or more times as  slow, de- 
pending  on  the  speed of the external  cache and  whether  the external cache misses 
as well), and  the  Pentium can’t use the V-pipe on  code that hasn’t already been 
executed  out of the cache at least once. This means  that  it is very important to get the 
working sets of critical loops to fit in  the  internal caches. 
One change in the  Pentium  that you definitely do have to worry about is superscalar 
execution. Utilization  of the V-pipe can range from near zero percent to  100 percent, 
depending  on  the  code  being executed, and careful rearrangement of code can 
have amazing effects.  Maxing out V-pipe use is not a trivial  task;  I’ll spend all  of the 
next  chapter discussing it so as  to  have time to cover it properly. In  the  meantime, 
two good  references  for superscalar programming  and  other  Pentium information 
are Intel’s Pentium Processor User’s Manual: V o l u ~ ~ ~ 3 :  Architecture and BopammingManual 
(ISBN  1-55512-195-0; Intel  order  number 241430-OOl), and  the article “Optimizing 
Pentium  Code” by  Mike Schmidt, in DX Dobb’sJoumal for January 1994. 

Cache Organization 
There  are two other interesting  changes  in the Pentium’s cache organization. First, 
the cache is two-way set-associative, whereas the 486 is four-way  set-associative. The 
details of  this don’t matter, but simply put, this, combined with the 32-byte cache 
line size, means  that  the  Pentium has somewhat coarser granularity in  both space 
and time than  the 486 in terms of packing bytes into  the cache,  although  the total 
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cache space is  now bigger. There’s  nothing you can do  about this, but  it may make it 
a little harder  to get  a  loop’s working set  into  the  cache.  Second,  the  internal  cache 
can now be configured (by the BIOS or OS; you won’t have to worry about  it)  for 
write-back rather  than write-through  operation.  This  means that writes to  the inter- 
nal data  cache  don’t necessarily get  propagated to the  external bus  until  other 
demands for  cache space force  the  data  out of the  cache, making repeated writes to 
memory variables such as loop  counters  cheaper on average than  on  the 486, al- 
though  not as cheap as registers. 
As a final note  on  Pentium  architecture  for this chapter,  the  pipeline stalls (what 
Intel calls  AGIs, for Address Generation Interlocks) that  I discussed earlier  in this book 
(see Chapter 12) are still present in the  Pentium.  In  fact, they’re there in  spades on 
the  Pentium;  the two pipelines  mean  that an AGI can now  slow down execution of 
an instruction that’s three instructions away from  the AGI (because four instructions 
can  execute in two cycles). So, for  example, the  code  sequence 

add  edx.4 ; U - p i p e  cycle 1 
mov ecx.[ebxl ; V - p i p e  cycle 1 
add ebx.4 ; U - p i p e  cycle 2 
mov  [edxl.ecx ; V - p i p e  cycle 3 

; due t o  A G I  
; ( w o u l d  have been 
; V - p i p e  cycle 2 )  

takes three cycles rather  than  the two cycles it should  take, because EDX was modi- 
fied on cycle 1 and  an  attempt was made to use it on cycle  two, before the AGI had 
time to clear-even though  there  are two instructions between the instructions  that 
are actually involved in the AGI. Rearranging the  code like 

mov ecx.[ebxl ; U - p i p e  cycle 1 
add ebx.4 ; V - p i p e  cycle 1 
mov [edx+4].ecx :U -p ipe  cycle 2 
add edx.4 ; V - p i p e  cycle 2 

makes it functionally identical, but cuts the cycles to 2-a 50 percent improvement. 
Clearly, avoiding AGIs becomes  a  much more challenging and rewarding game in  a 
superscalar world, one to which I’ll return in the  next  chapter. 

Faster  Addressing  and  More 
I’ll spend  the rest of this chapter covering a variety of Pentium  optimization tips. For 
starters, effective address calculations (that is, the  addition  and scaling required  to 
calculate a memory operand’s address, as for example in MOV EAX,[EBX+ECX*2+4]) 
never take any extra cycles on  the Pentium (other  than possibly an AGI cycle), even 
for  the use of base+index  addressing  (as  in MOV [ESI+EDI],EAX) or scaling (“2, “4, 
or “8, as in INC ARRAY[ESI*4]). On  the 486, both of the  latter cases cause a l-cycle 
penalty. The faster effective address calculations have the side effect of making LEA 
very attractive as an  arithmetic  instruction. LEA can add any two registers, one of 
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which  can  be  multiplied by one, two, four, or eight, plus a constant value, and can  store 
the result  in  any  register-all in one cycle, apart from AGIs.  Not  only that, but as  we’ll see 
in the  next chapter, LEA can go through  either pipe, whereas SHL can  only  go through 
the U-pipe, so LEA is often a  superior choice for multiplication by three, four, five, 
eight, or nine. (ADD is the best choice for multiplication by two.) If  you use LEA for 
arithmetic, do  remember that unlike ADD and SHL, it  doesn’t modifjr  any  flags. 
As on  the 486, memory operands  should  not cross  any more  alignment  boundaries 
than absolutely necessary.  Word operands  should be word-aligned, dword operands 
should be dword-aligned, and qword operands (double-precision variables) should 
be qword-aligned. Spanning  a  dword boundary, as in 

mov ebx.3 

mov eax.[ebxl 

costs three cycles. On  the  other  hand, as noted above, branch targets can now span 
cache lines with impunity, so on  the  Pentium there’s no good  argument for the para- 
graph  (that is,  16-byte) alignment  that  Intel  recommends  for 486 jump targets. The 
32-byte alignment  might  make  for slightly more efficient Pentium  cache usage, but 
would make  code  much bigger overall. 

p In fact, given that most jump targets aren ’t in performance-critical code, it’s  hard 
to  make  a  compelling  argument for aligning branch targets even  on the 486. I i l  
say that no  alignment  (except  possibly where you know a branch target lies in a 
key loop), or at most dword alignment f o r  the 386)  is plenq, and can  shrink  code 
size considerably. 

Instruction prefixes are awfully expensive; avoid them if you can.  (These  include size 
and addressing  prefixes, segment ovemdes, LOCK, and the OFH prefixes that extend 
the instruction set with instructions such as MOVSX. The exceptions are conditional 
jumps, a fast special case.) At a  minimum,  a prefix byte generally takes an extra cycle 
and shuts down the V-pipe for  that cycle,  effectively costing as much as two normal 
instructions (although prefix  cycles can  overlap with previous  multicycle  instructions, or 
AGIs,  as on  the 486). This means  that using 32-bit addressing or 32-bit operands in  a 
16-bit segment, or vice versa,  makes for bigger code that’s significantly  slower. So, for 
example, you should generally avoid  16-bit variables (shorts,  in C) in 32-bit code, 
although if using 32-bit variables where they’re not  needed makes your data space 
get a  lot bigger, you  may want to stick  with shorts, especially since longs use the  cache 
less  efficiently than shorts. The trade-off depends  on  the  amount of data and  the 
number of instructions  that  reference  that  data. (eight-bit variables, such as chars, 
have no extra overhead and can be used freely, although they may be less desirable 
than longs for compilers that  tend to promote variables to longs when  performing 
calculations.) Likewise,  you should if possible  avoid putting data in the  code seg- 
ment  and referring to it with a CS: prefix, or otherwise using segment overrides. 
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LOCK is a particularly costly instruction, especially on multiprocessor machines, be- 
cause it locks the  bus and requires  that  the hardware be brought  into  a synchronized 
state. The cost varies depending  on  the processor and system, but LOCK can make an 
INC [ r n e m ]  instruction (which normally takes 3 cycles) 5 ,  10, or  more cycles  slower. 
Most programmers will never use LOCK on purpose-it’s primarily an operating sys- 
tem  instruction-but there’s a  hidden  gotcha  here because the XCHG instruction 
always locks the bus when used with a memory operand. 

p XCHG is a tempting  instruction  that b often used  in  assembly  language; for example, 
exchanging with video memory is apopular way to read  and write VGA memory in 
a single instruction-but it b now a bad idea. As it happens, on the 486 and Pentium, 
using MOVs to read and write memory is fastel; anyway; and even on the 486, my 
measurements  indicate  a$ve-cycle tax for LOCK in  general,  and a nine-cycle  execu- 
tion time for XCHG with memory. Avoid XCHG with memory $you possibly can. 

As with the 486, don’t use ENTER or LEAVE, which are slower than  the equivalent 
discrete instructions. Also, start using TEST reg,reginstead of  AND ngregor OR regreg 
to test whether  a register is zero. The  reason, as  we’ll see in  Chapter 21, is that TEST, 
unlike AND and OR, never modifies the target register. Although  in this particular 
case AND and OR don’t modify the target  register  either,  the  Pentium  has no way of 
knowing that  ahead of time, so if  AND or OR goes through  the U-pipe, the  Pentium 
may have to  shut down the V-pipe for  a cycle to avoid potential dependencies  on  the 
result of the AND or OR. TEST suffers from no such potential  dependencies. 

Branch  Prediction 
One brand-spanking-new feature of the  Pentium is hunch prediction, whereby the 
Pentium tries to guess, based on past history, which way (or,  for  conditional  jumps, 
whether  or  not), your  code will jump at  each branch,  and prefetches  along the like- 
lier path. If the guess is correct,  the  branch or fall-through takes only 1 cycle“:! 
cycles  less than a branch  and  the same as a  fall-through on  the 486; if the guess is 
wrong, the  branch  or fall-through takes 4 or 5 cycles (if it executes  in the U- or V- 
pipe, respectively)-1 or 2 cycles more  than  a  branch  and 3 or 4 cycles more  than a 
fall-through on  the 486. 

p Branch prediction is unprecedented in the x86, and fundamentally alters the na- 
ture ofpedal-to-the-metal optimization, for the simple reason that it renders  unrolled 
loops largely obsolete. Rare indeed is the loop that can ’t afford to spare even 1 or 
0 (yes, zero!) cycles per iteration for loop counting, and that j .  how low the cost 
can go for maintaining a loop on the Pentium. 

Also, unrolled  loops  are bigger than  normal loops, so there  are  extra  (and  expen- 
sive) cache misses the first time through  the  loop if the  entire  loop isn’t already in 
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the cache; then, too, an  unrolled  loop will shoulder  other  code  out of the  internal 
and external caches. If in  a critical loop you absolutely need  the time taken by the 
loop control instructions, or if  you need an extra register that can be freed by unrolling 
a loop, then by all  means unroll the loop. Don’t expect the sort of speed-up you get from 
this on  the 486 or especially the 386, though,  and watch out  for  the  cache effects. 
You  may  well wonder exactly w h  the Pentium correctly  predicts branching. Alas, this  is 
one area that Intel has declined to document, beyond saying that you should endeavor 
to fall through  branches  when you  have a choice. That’s good advice on every other 
x86 processor, anyway, so it’s well worth following. Also, it’s a pretty safe bet  that in  a 
tight  loop, the  Pentium will start guessing the right branch direction at  the  bottom 
of the  loop pretty quickly, so you can treat  loop  branches as  one-cycle instructions. 
It’s an equally safe bet  that it’s a  bad move to have in a  loop  a  conditional branch  that 
goes both ways on a random basis;  it’s hard to see how the  Pentium  could consis- 
tently predict such branches correctly, and mispredicted branches are  more expensive 
than they might  appear to be. Not only does  a mispredicted branch take 4 or 5 
cycles, but  the  Pentium can potentially execute as  many  as 8 or 10 instructions  in 
that time-3 times as  many as the 486 can execute during its branch time-so cor- 
rect  branch  prediction  (or  eliminating  branch instructions, if possible) is very 
important in inner loops. Note  that on  the 486  you can count  on a branch to take 1 
cycle when  it falls through,  but  on  the  Pentium you can’t be sure  whether  it will take 
1 or either  4  or 5 cycles on any  given iteration. 

As things currently stand, branch prediction is an annoyance for assembly lan- p guage optimization because it’s impossible to be certain exactly how code will 
perform until you measure it, and even then it j. drflcult to be sure exactly where 
the cycles  went. All I can say is try to fall through  branches ifpossible, and try to 
be consistent in your branching ifnot. 

Miscellaneous Pentium Topics 
The  Pentium has all the instructions of the 486, plus a few  new ones. One much- 
needed instruction  that has finally made  it  into  the  instruction set is CPUID, which 
allows your code to determine what processor it’s running  on. CPUID is 15 years 
late, but  at least it’s  finally here.  Another new instruction is CMPXCHGSB, which 
does  a  compare  and  conditional  exchange  on  a qword. CMPXCHGSB doesn’t  seem 
to me to be a particularly useful instruction, but I’m sure  Intel wouldn’t have added 
it without a reason; if you  know  of a use for it, please pass it  along to me. 

486 versus Pentium Optimization 
Many Pentium optimizations help, or  at least don’t  hurt,  on  the 486.  Many, but  not 
all-and  many do hurt  on  the 386. As I discuss  various Pentium optimizations, I will 
attempt to note  the effects on  the 486  as  well, but  doing this in  complete detail 
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would double  the sizes  of these discussions and make them  hard  to follow. In gen- 
eral,  I’d  recommend reserving Pentium  optimization  for your most critical code, 
and even there, it’s a  good  idea to have at least two code  paths, one for the 386 and 
one  for  the  486/Pentium. It’s also a  good  idea  to time your code on a 486 before and 
after  Pentium-optimizing it, to make sure you haven’t hurt  performance  on what will 
be,  after all, by far the most important processor over the  next  couple of  years. 
With that  in  mind, is optimizing  for the  Pentium even worthwhile today? That de- 
pends  on your application and its market-but if  you want absolutely the best possible 
performance  for  your DOS and Windows apps on  the fastest hardware,  Pentium 
optimization can make your code scream. 

Going Superscalar 
In  the next chapter, we’ll  look into  the single  biggest element of Pentium performance, 
cranking up  the Pentium’s  second  execution  pipe.  This is the  area in which  com- 
piler  technology is most touted  for  the  Pentium,  the two thoughts  apparently  being 
that (1) most existing code is in C, so recompiling to use the  second  pipe  better is an 
automatic win, and (2) it’s so complicated to optimize  Pentium  code that only a 
compiler  can do it well. The first point is a  reasonable one,  but  it  does suffer from 
one flaw for  large  programs,  in  that  Pentium-optimized  code is larger than 486- or 
386-optimized code,  for reasons that will become apparent in the  next  chapter. Larger 
code  means more cache misses and  more page faults; and while  most  of the  code  in 
any program is not critical to  performance, compilers optimize code indiscriminately. 
The result is that  Pentium  compiler  optimization not only expands  code,  but  can  be 
less beneficial than  expected  or even slower in  some cases.  What  makes more sense 
is enabling  Pentium  optimization only for key code.  Better yet, you could  hand-tune 
the most important code-and  yes,  you can absolutely do a better  job with a small, 
critical loop  than any PC compiler I’ve ever seen,  or  expect  to see.  Sure, you keep 
hearing how great  each new compiler  generation is, and compilers certainly have 
improved; but they play  by the same rules we do,  and we’re more flexible and know 
more  about what we’re doing-and  now we have the wonderfully complex and pow- 
erful  Pentium  upon which to loose our carbon-based optimizers. 
A compiler  that  generates  better  code  than  a  good assembly programmer?  That’ll be 
the day. 
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1% 

arbon-Based Optimizer Can 
8p Put the  “Svper” in Superscalar 

At the 1983 West Coht Computer Faire, my friend Dan Illowsky,  Andy Greenberg 
(co-author of Wizardri) me the best-selling computer game ever),  and I had 
an  animated discussipn about starting a company in  the  then-budding world  of mi- 
crocomputer  softwdk. One  hot new  software category at  the time was educational 

e hottest new educational software companies was Spinnaker 
innaker as an example of a company that  had  been  aimed  at 
ted up properly, and was succeeding as a result. Dan didn’t 

at Spinnaker  had  been given a bundle of money to get off 
ng only by spending  a  lot of that money in order to move 

its products.  “Heck,” said Dan, “I could  get  that kind of market  share  too if I gave 
away a fifty-dollar  bill  with each of my games.” 
Remember, this was a time when a program, two diskette drives (for  duplicating 
disks), and a  couple of ads were enough to start a company, and, in fact, Dan built a 
very  successful game company out of not much  more  than  that. (I’ll never forget 
coming to  visit one day and finding his apartment stuffed literally to the walls and 
ceiling with boxes of diskettes and game packages; he  had left a narrow path to the 
computer so his wife and his mother  could  get in there to duplicate disks.) Back 
then,  the field was wide open, with just  about every competent  programmer think- 
ing of striking out  on his or  her own to try to make their  fortune,  and Dan and Andy 



and I were no exceptions.  In  short, we were  having a perfectly normal  conversation, 
and Dan’s comment was both  appropriate,  and,  in  retrospect,  accurate. 
Appropriate, save for one thing: We were  having this conversation while  walking 
through  a low-rent section of Market Street in San Francisco at night. A bum  sitting 
against a nearby building  overheard Dan, and rose up, shouting in a  quavering voice 
loud  enough  to wake the dead, “Fifty-dollar  bill!  Fifty-dollar  bill!  He’s  giving away 
fifty-dollar  bills!” We ignored  him; undaunted,  he followed us  for  a  good half mile, 
stopping every  few feet  to bellow  “fifty-dollar bill!” No one else seemed  to  notice, 
and  no  one hassled  us, but  I was mighty happy  to  get  to  the  sanctuary of the  Fairmont 
Hotel and slip inside. 
The  point is, most actions aren’t inherently  good or bad; it’s  all a  matter of context. If 
Dan had  uttered  the words “fiftydollar bill” on  the West Coast  Faire’s  show  floor, no 
one would  have batted an eye. If he  had said it in  a slightly  worse part of  town than he 
did, we might have learned  just how fast the  three of us could  run. 
Similarly, there’s no such  thing as inherently fast code, only  fast code  in  context. At 
the moment, the context is the Pentium, and the truth is that  a sizable number of the 
x86 optimization tricks that you and I have learned over the past ten years are obso- 
lete  on  the  Pentium. True, the  Pentium  contains what amounts to about one-and-a-half 
486s, but, as  we’ll  see  shortly, that  doesn’t  mean  that  optimized  Pentium  code looks 
much like optimized 486 code, or  that fast 486 code  runs  particularly well on a 
Pentium. (Fast Pentium  code, on  the  other  hand, does  tend  to run well on the 486; 
the only major downsides are  that it’s larger, and  that  the FXCH instruction, which is 
largely free on the  Pentium, is expensive on  the 486.) So discard your x86 precon- 
ceptions as  we delve into  superscalar  optimization  for this one-of-a-kind processor. 

An Instruction in Every  Pipe 
In  the last chapter, we took a quick tour of the  Pentium’s  architecture, and started  to 
look into the  Pentium’s  optimization  rules. Now we’re ready to get  to  the key rules, 
those having  to do with the  Pentium’s most unique  and powerful feature,  the ability 
to  execute  more  than one instruction  per cycle. This is known  as  superscalar execution, 
and has heretofore  been  the sole province of fast RISC CPUs. The Pentium  has two 
integer  execution  units, called the Upapeand the Vpape, which can execute two sepa- 
rate  instructions simultaneously, potentially doubling performance-but only under 
the proper conditions. (There is also a  separate  floating-point  execution  unit  that  I 
won’t have the space to cover in this book.) Your job, as a  performance  programmer, 
is to understand  the  conditions  needed  for  superscalar  performance  and make sure 
they’re met,  and that’s what this and  the  next  chapters  are all about. 
The two pipes are  not  independent processors housed in a single chip;  that is, the 
Pentium is not like  having two 486s in  a single computer. Rather, the two pipes  are 
integral, parallel parts of the same  processor. They operate on the same instruction 
stream, with the V-pipe  simply executing  the  next  instruction  that  the U-pipe  would 
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have handled, as  shown  in  Figure 20.1. What the Pentium does, pure  and simple, is 
execute a single  instruction  stream and, whenever  possible,  take the  next two waiting 
instructions and execute both at  once,  rather than one after the other. 
The U-pipe is the  more capable of the two pipes, able to execute any instruction in 
the Pentium's instruction set. (A number of instructions actually use both pipes at 
once. Logically, though, you can think of such instructions as  U-pipe instructions, 
and of the  Pentium optimization model as one in which the U-pipe  is able  to  execute 
all instructions and is  always active,  with the objective being to keep  the V-pipe  also 
working  as much of the time  as  possible.) The U-pipe is generally  similar  to a full 486 
in terms of both capabilities and instruction cycle counts. The V-pipe  is a 486 subset, 
able to execute simple instructions such  as MOV and ADD, but  unable  to  handle 
MUL, DIV, string instructions, any sort of rotation or shift, or even ADC or SBB. 

i 
Instruction  Stream 

PUSH EBX 

DEC  EDX 

Instruction  execution in the two pipes 

U-pipe  V-pipe 

Cycle 0 7 1  + 

SHR can  pair 
only in  the U-pipe 

-11 SHR EDX,1 I Cycle 2 [ Writebeforeread  -Idte- I 
contention on EDX 

The Pentium b two pipes. 
Figure 20.1 
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Getting two instructions  executing simultaneously in  the two pipes is trickier than  it 
sounds, not only because the V-pipe can handle only a relatively  small subset of the 
Pentium’s instruction set, but also because those instructions  that the V-pipe can 
handle  are able to pair only  with certain U-pipe instructions. For example, MOVSD 
uses both pipes, so no instruction can be executed  in parallel with MOVSD. 

The use of both pipes does make MOVSD nearly twice as fast on the Pentium as on p the 486, but  it 4 nonetheless slower than using equivalent simpler instructions that 
allow for superscalar execution. Stick to the Pentium 4 RISC-like instructions- 
the  pairable  instructions I’ll discuss next-when you’re  seeking  maximum 
performance, with just a few exceptions such as REP MOVS and REP STOS. 

Trickier yet, register contention can shut down the V-pipe on any  given  cycle, and 
Address Generation Interlocks (AGIs) can stall either  pipe  at any time, as  we’ll see in 
the  next  chapter. 
The key to Pentium optimization is to view execution as a stream of instructions 
going through  the U- and V-pipes, and to eliminate, as much as  possible, instruction 
mixes that take the V-pipe out of action. In  practice, this is not too difficult. The only 
hard  part is keeping  in  mind  the  long list  of rules governing instruction pairing. The 
place to begin is with the set of instructions  that can go through  the V-pipe. 

V-Pipe-Capable Instructions 
Any instruction can go through  the U-pipe, and, for practical purposes, the U-pipe 
is  always executing  instructions.  (The  exceptions  are  when  the  U-pipe  execution 
unit is waiting for  instruction or data bytes after a  cache miss, and when a U-pipe 
instruction finishes before  a  paired V-pipe instruction, as I’ll discuss  below.)  Only 
the  instructions shown in Table 20.1 can go through  the V-pipe. In  addition,  the V- 
pipe can execute  a  separate  instruction only when one of the instructions listed in 
Table 20.2 is executing in the U-pipe; superscalar execution is not possible  while  any 
instruction not listed in Table 20.2 is executing in the U-pipe. So, for  example, if you 
use SHR EDX,CL, which  takes 4 cycles  to execute, no other instructions can execute 
during those 4 cycles; if, on  the  other  hand, you use SHR EDX,10, it will take 1 cycle 
to execute in the U-pipe, and  another instruction can potentially execute concur- 
rently in the V-pipe.  (As  you can see, similar instruction sequences can have  vastly 
different  performance characteristics on  the Pentium.) 
Basically, after the  current instruction or pair of instructions is finished (that is, once 
neither the U- nor V-pipe is executing anything), the Pentium sends the next instruction 
through  the U-pipe. If the  instruction  after  the one in the U-pipe is an  instruction 
the V-pipe can handle, if the  instruction in the U-pipe  is pairable, and if register 
contention  doesn’t occur, then  the V-pipe starts executing  that  instruction, as  shown 
in Figure 20.2. Otherwise, the  second instruction waits until the first instruction is 
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done,  then executes in the U-pipe, possibly pairing with the  next instruction in line 
if all pairing  conditions  are  met. 
The list  of  instructions the V-pipe can handle is not very long, and the list  of  U-pipe 
pairable  instructions is not much longer, but these  actually  constitute the bulk  of the 
instructions  used  in PC software. As a result, a fair amount of pairing happens even  in 
normal, non-Pentium-optimized code. This  fact,  plus the 64bit 66 MHz bus, branch 
prediction, dual  8Kinternal caches, and  other Pentium features, together mean  that a 
Pentium is considerably  faster than a 486 at the same  clock speed, even  without  Pentium- 
specific  optimization, contrary to some reports. 
Besides,  almost  all operations can be performed by combinations of pairable in- 
structions. For example, PUSH [mem] is not  on  either list, but  both MOV reg,[mem] 
and PUSH reg are,  and those two instructions can be used  to push a value stored in 
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memory. In fact, given the  proper instruction  stream,  the discrete instructions can 
perform this operation effectively in just 1 cycle (taking one-half of each of 2 cycles, 
for 2*0.5 = 1 cycle total execution time), as  shown in Figure 20.3-a full cycle faster 
than PUSH [mem], which  takes 2 cycles. 

A fundamental rule of Pentium  optimization is that  it pays to  break  complex in- p structions into equivalent  simple instructions, then shufle the simple instructions 
for  maximum  use of the  Vpipe. This  is true partly because  most of the  pairable 
instructions are  simple instructions, andpartly because  breaking instructions into 
pieces allows  more freedom  to rearrange code  to  avoid  the AGIs and register con- 
tention I’ll discuss in the next chapter. 
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Instruction  stream after  preceding instructions 
in U- and V-pipes  have  completed (both  pipes 
waiting for  new  instructions). 

Start  execution of instruction n in the U-pipe 
on the current  cycle. 

If instruction n+l  can  pair  in the V-pipe, and instruction n  can 
pair  in the U-pipe, and no write-before-read or write-before- 
write register  contention  affects this instruction, then  start 
execution of instruction n+l  in the V-pipe on the current  cycle; 
otherwise,  start  execution  of  instruction n+l  in the U-pipe on 
the cycle after  instruction n finishes, and  at that  time  try to pair 
instruction n+2 in the V-pipe  with instruction n + l  in the U-pipe. 

Instruction n+l  

Instruction flow through the two pipes. 
Figure 20.2 

One downside of this  “RISCification” (turning complex instructions into simple, 
RISC-like ones) of Pentium-optimized code is that it makes for substantially larger 
code. For example, 

push dword p t r  [ e s i l  

is one byte  smaller than this sequence: 

mov eax.[esil 
push eax 

Instruction  Stream 

PUSH EBX 

Instruction  execution in the two pipes ! 
Pushing  a  value porn memory effectively in  one cycle. 
Figure 20.3 
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A more telling example is the following 

add  [MemVarl.eax 

versus the equivalent: 

mov edx.[MemVar] 
add  edx  .eax 
mov [MemVarl.edx 

The single complex instruction takes 3 cycles and is 6 bytes long; with proper se- 
quencing, interleaving the simple instructions with other instructions  that  don’t use 
EDX or MemVar, the three-instruction sequence can be reduced to 1.5 cycles, but it 
is 14 bytes long. 

It’s not  unusual for Pentium optimization to approximately  double  both  perfor- p mance  and  code size at  the same time. In an important loop, go for performance 
and ignore the size, but  on  a  program-wide basis, the size bears  watching. 

Lockstep Execution 
You may wonder why anyone would bother  breaking ADD [MemVar],EAX into  three 
instructions, given that this instruction can go  through  either  pipe with equal ease. 
The answer  is that while the memory-accessing instructions other  than MOV, PUSH, 
and POP listed in Table 20.1 (that is, INC/DEC [mem], ADD/SUB/XOR/AND/ 
OR/CMP/ADC/SBB reg,[mem], and ADD/SUB/XOR/AND/OR/CMP/ADC/SBB 
[mem],reg/imrned) can be paired, they do  not provide the 100 percent overlap that 
we seek. If  you look at Tables 20.1 and 20.2, you  will see that  instructions taking from 
1 to 3 cycles can pair. However,  any pair of instructions goes through  the two pipes in 
lockstep. This means, for example, that if ADD [EBX],EDX is going through the U-pipe, 
and INC EAX is going  through  the V-pipe, the V-pipe  will be idle for 2 of the 3 cycles 
that  the U-pipe takes  to execute its instruction, as  shown in Figure 20.4. Out of the 
theoretical 6 cycles of work that can be done  during this time, we actually get only 4 
cycles  of work, or 67 percent utilization. Even though these instructions pair, then, 
this sequence fails to make maximum use  of the Pentium’s horsepower. 
The key here is that when two instructions pair, both  execution  units  are tied up 
until  both  instructions have finished (which means at least for  the amount of time 
required  for  the  longer of the two to execute, plus possibly some extra cycles for 
pairable  instructions  that can’t fully overlap, as described below). The logical con- 
clusion  would  seem to be that we should strive  to pair instructions of the same lengths, 
but  that is often not correct. 

The  actual  rule  is  that  we  should  strive topair one-cycle  instructions (01; at  most, two- p cycle  instructions,  but not three-cycle  instructions),  which in turn  leads to the corollaly 
that we should, in general,  use  mostly  one-cycle instructions when optimizing. 
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Instruction Stream 

INC E A X  

Instruction execution in the two pipes 

U-pipe V-pipe 

ADD [EBX],EDX 
Ste 1 lood [EBX] -1dle- 

io; memory 1 Cycle I Keep  pipes  in lockstep 

Step 2: add EDX to 
value loaded in Step 1 Keep  pipes  in lockstep 

Step 3: store  Ste 2 
result  to  [EBXP 

Lockstep execution and idle time in the Vpipe. 
Figure 20.4 

Here’s why. The Pentium is  fully capable of handling  instructions  that use memory 
operands in either  pipe, or, if necessary, in both pipes at once. Each pipe has  its own 
write FIFO, which  buffers the last few  writes and takes care of  writing the  data  out 
while the  Pentium  continues processing. The Pentium also has a write-back internal 
data cache, so data  that is frequently changed  doesn’t have  to be written  to external 
memory (which is much slower than  the  cache) very often. This combination means 
that unless  you  write large blocks of data  at a high  speed,  the  Pentium  should be able 
to keep up with both pipes’ memory writes without stalling execution. 
The Pentium is also designed to  satisfy both pipes’ needs  for  reading memory oper- 
ands with  little  waiting. The data cache is constructed so that  both pipes can read 
from  the cache on the same qcle .  This feat is accomplished by organizing the  data 
cache as eight-banked memory,  as  shown in Figure  20.5,  with each 32-byte cache line 
consisting of 8 dwords, 1 in each bank. The banks are  independent of one another, 
so as long as the desired data is in the cache and the U- and V-pipes don’t try  to read 
from the same bank on  the same  cycle, both pipes can read memory operands  on 
the same  cycle.  (If there is a cache bank collision, the V-pipe instruction stalls for 
one cycle.) 
Normally,  you  won’t  pay  close attention to  which  of the  eight dword  banks  your 
paired memory accesses fall in-that’s just too  much work-but  you might want to 
watch out for simultaneously read addresses that have the same  values for address 
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Cache 
line 0 

; Bank 0 ~ Bank 1 ~ Bank 2 ; Bank 3 ~ Bank4 ; Bank 5 ~ Bank 6 ~ Bank 7 ; 

Cache 
line 1 , 

Cache 
line 2 , 

; * :  
‘ 0 ;  

line 255 I 
0 4 8 12 16 20 24 28 

Address within cache line 

I 8 . 8  

Cache 

The Pentiurn k eight bank data cache. 
Figure 20.5 

bits 2, 3, and 4 (fall in the same bank) in tight loops, and you should also  avoid 
sequences like 

mov bl , [esi 1 
mov bh,  [esi+ll 

because both  operands will generally be in the same bank. An alternative is to place 
another instruction between the two instructions  that access the same bank, as in 
this sequence: 

mov b l  , [ e s i  1 
mov e d i  ,edx 
mov bh.[esi+ll 

By the way, the reason a  code  sequence  that takes two instructions to load a single 
word is attractive in a 32-bit segment is because it takes  only one cycle when the two 
instructions can be paired with other instructions; by contrast, the obvious way of 
loading BX 

mov bx.[esil 

takes 1.5 to two  cycles because the size prefix can’t pair, as described below. This is 
yet another example of  how different  Pentium optimization can be from everything 
we’ve learned  about its predecessors. 
The problem with pairing non-single-cycle instructions arises when a  pipe executes 
an  instruction other  than MOV that has an explicit memory operand. (I’ll call these 
complex memory instrmctions. They’re the only pairable instructions, other  than branches, 
that take more  than one cycle.) We’ve already seen that, because instructions go 
through  the pipes in lockstep, if one pipe executes a complex memory instruction 
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such  as ADD FAX,[EBX] while the  other pipe executes a single-cycle instruction, the 
pipe with the faster instruction will sit idle for  part of the time, wasting  cycles. You 
might  think  that if both pipes execute complex instructions of the same length,  then 
neither would  lie idle, but that  turns out to not always be the case. Two  two-cycle 
instructions (instructions with  register destination operands) can indeed  pair  and 
execute in two  cycles, so it’s  okay to  pair two instructions such  as  these: 

add esi.[SourceSkipl ;U-pipe  cycles 1 a n d  2 
add e d i . t D e s t i n a t i o n S k i p 1  : V - p i p e   c y c l e s  1 and 2 

However,  this  beneficial  pairing  does not extend to  non-MOV  instructions with explicit 
memory destination operands, such as ADD [EBX],EAx. The Pentium executes only 
one such  memory  instruction  at a time; if two memorydestination  complex  instructions 
get  paired, first the U-pipe instruction is executed, and  then  the V-pipe instruction, 
with  only one cycle  of overlap, as  shown in Figure 20.6. I don’t know for  sure,  but  I’d 
guess that this is to  guarantee  that  the two pipes will never perform out-of-order 

Instruction  Stream 

AND [ECX],DL 

Instruction  execution in the two pipes 

U-pipe V-pipe 

- ) b e /  1: b a d  iEBX] 1 Cycle 0 1 ANDEBXI At -Idle- 
Wait for  U-pipe to 

rom memorv reach its last cycle 
L I L I 

-+I Step 2: and At with I Cycle 1 I AND [EBX],At  -Idle- 
Wait for U-pipe to 

value loaded  in Step 1 reach its  last cycle 
L I L 

AND [EBX],At 

result  to [EBXP 

Non-overlapped lockstep  execution. 
Figure 20.6 
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Instruction  Stream 

MOV DH,[ECX] 

AND DH,DL 

MOV [EBX],AH I 
MOV [ECX],DH I 

Instruction execution in the two pipes 

U-pipe V-pi pe + v i  Cycle 0 
t 

I t 
-+I MOV [EBX],AH I Cycle 2 1 MOV [ECX],DH Id 

Interleaving  simple  instructions for maximum  performance. 
Figure 20.7 

access to any  given memory location. Thus, even though AND [EBX],AL pairs with 
AND [ECX],DL, the two instructions take 5 cycles in all to execute, and 4 cycles of 
idle time-2 in the U-pipe and 2 in the V-pipe, out of 10 cycles in all-are incurred 
in the process. 
The solution is to break the instructions into simple instructions and interleave them, 
as  shown in Figure 20.7,  which accomplishes the same task in 3 cycles,  with no idle 
cycles  whatsoever. Figure 20.7 is a  good example of what optimized Pentium  code 
generally looks like: mostly  one-cycle instructions, mixed together so that  at least two 
operations  are  in progress at once. It’s not  the easiest code to read  or write, but it’s 
the only way to get  both pipes running  at capacity. 

Superscalar Notes 
You may well ask  why it’s necessary  to interleave operations, as  is done in Figure 20.7. 
It seems simpler just to turn 

and [ e b x l  . a 1  
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into 

mov d l  , [ e b x l  
and d l  . a 1  
mov [ e b x l  , d l  

and be done with it. The problem  here is one of dependency. Before the  Pentium 
can execute AND DL&, it must  first  know  what is in DL, and it can’t know that until 
it  loads DL from  the address pointed to by EBX. Therefore, AND DL& can’t hap- 
pen  until  the cycle after MOV DL,[EBX] executes.  Likewise, the result can’t  be stored 
until the cycle after AND DL& has finished. This means that these instructions, as 
written, can’t possibly  pair, so the  sequence takes the same three cycles  as AND 
[EBX],AL. (Now  it should be clear why AND [EBX], AL takes 3 cycles.)  Consequently, 
it’s  necessary  to  interleave  these instructions with instructions that use other regis- 
ters, so this set of operations can execute in one pipe while the  other,  unrelated set 
executes in the  other  pipe, as  is done in Figure 20.7. 
What  we’ve just seen is the read-after-write form of the superscalar hazard known  as 
register contention. I’ll return  to  the subject of register contention  in  the  next  chapter; 
in the  remainder of this chapter  I’d like  to  cover a few short items about superscalar 
execution. 

Register  Starvation 
The above  examples  should  make it pretty  clear  that  effective  superscalar  programming 
puts a lot of strain ori the Pentium’s relatively  small  register  set. There  are only  seven 
general-purpose registers (I strongly  suggest  using EBP in  critical loops),  and  it does 
not  help to have to sacrifice one of those registers for temporary storage on each 
complex memory operation; in  pre-superscalar  days, we used  to  employ those handy 
CISC memory instructions to do all that stuff without using  any extra registers. 

More  problematic still is  thatfbr maximum pairing,  you’ll typically have two op- P erations proceeding  at  once,  one in each pipe,  and trying to keep two operations in 
registers at once is difJicult indeed. There k not much to be done about this,  other 
than clever and Spartan register usage, but be aware that it j .  a major  element of 
Pentium performance programming. 

Also be  aware that prefixes  of  every sort, with the sole exception of the OFH prefix on 
non-short conditional jumps, always execute in the U-pipe, and that Intel’s docu- 
mentation indicates that no pairing can happen while a prefix  byte executes. (As I’ll 
discuss  in the  next  chapter, my experiments indicate that this rule doesn’t always 
apply  to  multiple-cycle instructions, but you  still  won’t go far wrong by assuming that 
the above rule is correct and trying to eliminate prefix bytes.) A prefix  byte  takes one 
cycle to  execute; after that cycle, the actual prefixed instruction itselfwill go through 
the U-pipe, and if it and  the following instruction are mutually pairable, then they 
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will pair. Nonetheless, prefix bytes are very expensive, effectively taking at least as 
long as two normal  instructions, and possibly, if a  prefixed  instruction  could  other- 
wise  have paired  in  the V-pipe  with the previous instruction, taking as long as three 
normal  instructions, as  shown in Figure 20.8. 
Finally, bear  in  mind  that if the  instructions  being  executed have not already been 
executed at least once since they  were loaded into  the  internal cache, they can pair 
only if the first (U-pipe)  instruction is not only pairable  but also  exactly 1 byte long, 
a  category  that  includes only INC reg, DEC reg, PUSH reg, and POP reg. Knowing this 
can  help you understand why sometimes,  timing reveals that your code  runs slower 
than  it seems it should,  although this will generally occur only when the  cache work- 
ing set for  the  code you’re timing is on  the  order of 8K or more-an  awful lot of code 
to try to  optimize. 
It should be excruciatingly  clear by this point  that you must time  your Pentiumaptimized 
code if you’re to have  any hope of knowing if your optimizations are working as  well 
as  you think they are;  there  are  just  too many details involved for you to be sure your 
optimizations  are working properly  without  checking. My most  basic optimization 
rule has always been  to  grab  the Zen timer and measure actual performance-and no- 
where is this more  true  than  on  the  Pentium. Don’t  believe it  until you measure it! 

Instruction  Stream 

Instruction  execution  in  the two pipes 

U-pipe  V-pipe 

PUSH EDX I Cycle o 1 Prefixes -Idle- can‘t I 
execute  in V-pipe 

I L 

Prefix delays. 
Figure 20.8 
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chapter 21

unleashing the pentium's V-pipe



Ch 

& 

rill 
I 

Keeping Both  Pentium  Pipes  Full 
sted that we each draw the prettiest  picture we 

I won’t comment  on who won, except to note that 
ping toward a  moose with antlers  that  bear an un- 
ller beanie isn’t going to win me any scholarships 
ift. Anyway,  my drawing happened to feature the 
ed with “moose” and “Zeus”-hence the lightning; 
divulge), and she wanted  to  know if the moose was 

had to admit  that I didn’t know, so we went to the dictionary, 
use is a pale apple-green color. Then she brought 

trol Panel, pointed to the selection of predefined colors, and 
asked, ‘Which of those is chartreuse?”-and I realized that I still didn’t know. 
Some things can be described perfectly with  words, but others just have  to be experi- 
enced. Color is one such category, and  Pentium optimization is another. I’ve spent 
the last two chapters detailing the rules for  Pentium optimization, and I’ll spend half 
of  this one  doing so, as well. That’s good; without understanding  the fundamentals, 
we have no chance of optimizing well. It’s not  enough, though. We also need to look 
at a real-world example of Pentium optimization in action, and we’ll do that  later in 
this chapter; after which, you should go out  and  do some  Pentium optimization on 
your own. Optimization is one of those things that you can learn a lot about  from 
reading, but ultimately it has to sink into your pores as  you do it-especially Pentium 
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optimization because the  Pentium is perhaps  the most  complex  (and rewarding) 
chip to optimize for  that I’ve ever seen. 
In  the last chapter, we explored  the dual-execution-pipe nature of the  Pentium,  and 
learned which instructions  could pair (execute simultaneously) in which pipes. Now 
we’re  ready  to  look at AGIs and register  contention-two  hazards that can prevent other- 
wise properly  written code from taking  full  advantage  of the Pentiurn’s two pipes, and 
can thereby keep your code  from  pushing  the  Pentium to maximum  performance. 

Address  Generation  Interlocks 
The  Pentium is advertised as having a five-stage pipeline  for each of its execution 
units. All this means is that  at any given time, up to five instructions are in various 
stages  of execution in each  pipe; this overlapping of execution is done  for speed, so 
each  instruction  doesn’t have to wait until the previous one has finished. The only 
way that the Pentium’s pipelining directly affects the way you program is in the areas 
of  AGIs and register dependencies. 
AGIs are Address Generation Interloch, a fancy way of  saying that if a register is used to 
address memory, as  is EBX in this instruction 

mov  [ebxl.eax 

and  the value  of the register is not set  far enough  ahead for the  Pentium to perform 
the addressing calculations before the instruction needs the address, then the Pentium 
will stall the pipe in which the instruction is executing  until the value becomes avail- 
able and  the addressing calculations have been  performed. Remember, also, that 
instructions  execute in lockstep on  the  Pentium, so if one pipe stalls for  a cycle, 
making its instruction take one cycle longer, that  extends by one cycle the time until 
the  other pipe can begin its next instruction, as  well. 
The rule  for AGIs  is simple: If  you modify any part of a register during a cycle,  you 
cannot use that register to address memory during  either  that cycle or  the  next cycle. 
If  you  try to do this, the  Pentium will simply  stall the instruction  that tries to use that 
register to address memory  until two  cycles after the register was modified. This was 
true on  the 486 as  well, but  the Pentium’s new  twist  is that since more  than  one 
instruction can execute  in  a single cycle, an AGI can stall an instruction that’s  as 
many as three instructions away from  the  changing of the addressing register, as 
shown in Figure 21.1, and  an AGI can also cause a stall that costs  as many as three 
instructions, as  shown in Figure 21.2. This  means  that AGIs are  both  much easier to 
cause and potentially more expensive than  on  the 486, and you must keep a sharp 
eye out for  them.  It also means  that it’s often worth calculating a  memory pointer 
several instructions ahead of its actual use. Unfortunately, this tends to extend  the 
lifetimes of pointer registers to span  a  greater  number of instructions, making the 
Pentiurn’s relatively  small register set seem even  smaller. 
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Instruction  Stream 

I I  Instruction execution in  the two pipes 

[ lockstep -Idle- execution I Cycle 1 [ AGI (EGl:kiified on I 
previous cycle] 

An AGI can stall up to three instructions later. 
Figure 2 1.1 

As an example of a  sort of AGI that's new to the  Pentium,  consider  the following test 
for  a NULL pointer, followed by the use of the  pointer if it's not NULL: 

push  ebx : U - p i p e   c y c l e  1 
mov e b x . C P t r 1  : V - p i p e   c y c l e  1 
and  ebx,ebx : U - p i p e   c y c l e  2 
j z  s h o r t   I s N u l l  : V - p i p e   c y c l e  2 
mov e a x . [ e b x l  : U - p i p e   c y c l e  3 A G I  s t a l l  
mov edx.Cebp-81 : V - p i p e   c y c l e  3 l o c k s t e p   i d l e  

: U - p i p e   c y c l e  4 mov e a x . [ e b x ]  
: V - p i p e   c y c l e  4 mov e d x , [ e b p - 8 ]  

This  commonplace  code loses a U-pipe cycle to the AGI caused by AND EBX,EBX, 
followed by the  attempt two instructions  later  to use EBX to  point  to memory. The 
code loses a V-pipe  cycle as well, because lockstep execution won't let  the  next V-pipe 
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Instruction  Stream 

ADD  EBX,EDX 
DEC  EAX 

~ 

~ "_ 

- 

- 

1 PUSH EBX I 
Instruction  execution in the two pipes 

U-pipe V-pi pe +I MOV ESI,[Ptr] I Cycle 1 Register contention -Idle- on ESI I 

An AGI can cost as many  as 3 cycles. 
Figure 2 1.2 

instruction  execute  until the  paired U-pipe instruction  that  suffered  the AGI fin- 
ishes. The solution is to use TEST EBX,EBX instead of AND; TEST can't modify 
EBX, so no AGI occurs. Sure, AND EBX,EBX doesn't modify EBX either,  but  the 
Pentium  doesn't know that, so it  has  to  insert the AGI. 
As on  the 486, you should  keep  a  careful eye out  for AGIs involving the stack pointer. 
Implicit  modifiers of  ESP, such as PUSH and POP, are special-cased so you don't 
have to worry about AGIs.  However,  if  you explicitly modify ESP  with this instruction 

sub esp.100h 

for  example,  or with the  popular 

mov esp.ebp 
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you can then  get AGIs if you attempt to use ESP to address memory, either explicitly 
with instructions like this one 

mov eax.[esp+20h] 

or via PUSH, POP, or  other instructions  that implicitly use ESP  as an addressing 
register. 
On the 486, any instruction  that  had both a  constant value and  an addressing dis- 
placement, such as 

mov dword p t r  [ebp+16].1 

suffered  a 1-cycle penalty, taking a  total of 2 cycles. Such  instructions take only one 
cycle on  the  Pentium,  but they cannot pair, so they’re still the  most expensive sort of 
MOV.  Knowing this can  speed up something as simple as zeroing two memory  vari- 
ables, as in 

sub  eax.eax  ;U-p ipe 1 
; a n y   V - p i p e   p a i r a b l e  
; i n s t r u c t i o n   c a n  go h e r e ,  
; o r  SUB c o u l d   b e   i n   V - p i p e  

mov [MemVar l l .eax  ;U-p ipe 2 
mov CMemVar2l.eax ; V - p i p e  2 

which should never be slower and  should potentially be 0.5 cycles faster, and six 
bytes smaller than this sequence: 

mov CMemVarl l .0  :U-pipe 1 
mov [MemVarEl.O  :U-pipe 2 

Note, however, that my experiments  thus  far  indicate  that  the two writes in the first 
case don’t actually pair (possibly because the memory variables have never been 
read  into  the  internal  cache), so you might want to insert  an instruction between the 
two MOVs-and,  of course, this is yet another reason why you should always measure 
your code’s actual  performance. 

Register Contention 
Finally, we come to  the last major component of superscalar  optimization: register 
contention.  The basic premise here is simple: You can’t use the same register in two 
inherently  sequential ways in  a single cycle. For example, you can’t  execute 

i n c   e a x   : U - p i p e   c y c l e  1 
: V - p i p e   i d l e   c y c l e  1 
: due t o  dependency 

and  ebx .eax   ;U-p ipe   cyc le  2 

in  a single cycle; AND EBX,EAX can’t  execute  until the value in EAX  is known, and 
that can’t happen  until INC EAX is done. Consequently, the V-pipe idles while INC 
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EAX executes in the U-pipe. We  saw this in the last chapter when we discussed  split- 
ting instructions  into simple instructions, and  it is  by far the most  common  sort of 
register contention, known as  read-after-write register contention. Read-after-write 
register contention is the primary reason we have to interleave independent opera- 
tions in order to get  maximum V-pipe usage. 
The  other sort of register contention is known as  write-after-write.  Write-after-write 
register contention  happens when two instructions try to write to the same register 
on  the same cycle.  While that may not seem like a particularly useful operation in 
general,  it can happen when subregisters are  being set, as in the following 

sub   eax .eax   ;U -p ipe   cyc le  1 
; V - p i p e   i d l e   c y c l e  1 
; due t o   r e g i s t e r   c o n t e n t i o n  

mov a l , [ V a r l   ; U - p i p e   c y c l e  2 

where an  attempt is made to set both EAX and its AL subregister on  the same cycle. 
Write-after-write contention implies that the two instructions comprising the above 
substitute for MOVZX should have at least one  unrelated instruction between them 
when SUB EAX,EAX executes in the V-pipe. 

Exceptions to Register Contention 
Intel has special-cased some very useful exceptions to register contention. Happily, 
write-after-read operations do not cause contention. Such  operations, as in 

mov e a x , e d x   ; U - p i p e   c y c l e  1 
sub   edx .edxX   ;V -p ipe   cyc le  1 

are free of charge. 
Also, stack-related instructions  that modify ESP only  implicitly (without ESP as part 
of any explicit operand)  do  not cause AGIs, and  neither  do they cause register con- 
tention with other instructions that use ESP only  implicitly; such instructions  include 
PUSH reg/immed, POP reg, and CALL. (However, these instructions do cause regis- 
ter contention  on ESP-but not AGIs-with instructions  that use ESP  explicitly, such 
as MOV EAX,[ESP+4].) Without this  special  case, the following sequence would hardly 
use the V-pipe at all: 

mov eax,[MemVar] ; U - p i p e   c y c l e  1 
p u s h   e s i  ; V - p i p e   c y c l e  1 
push  eax ; U - p i p e   c y c l e  2 
p u s h   e d i  ; V - p i p e   c y c l e  2 
push  ebx ; U - p i p e   c y c l e  3 
c a l l   F o o T i l d e  ; V - p i p e   c y c l e  3 

But in fact, all the instructions pair,  even though ESP is modified five times in the 
space of six instructions. 
The final register-contention special case  is both  remarkable  and remarkably impor- 
tant. There is  exactly one sort of instruction that can pair only in the V-pipe: branches. 
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Any near call or conditional or  unconditional  near  jump can  execute  in  the V-pipe 
paired with any pairable U-pipe instruction, as illustrated by this sequence: 

LoopTop: 
mov [ e s i l . e a x  ; U - p i p e   c y c l e  1 
add e s i . 4  ; V - p i p e   c y c l e  1 
dec  ecx ; U - p i p e   c y c l e  2 
j n z  LoopTop ; V - p i p e   c y c l e  2 

Branches  can’t  pair in the U-pipe; a branch  that executes in  the U-pipe runs  alone, 
with the V-pipe idle. If a call orjump is correctly predicted by the Pentium’s branch 
prediction circuitry (as discussed in the last chapter), it executes  in  a single cycle, 
pairing if it runs  in  the V-pipe; if mispredicted,  conditional jumps take 4 cycles in the 
U-pipe and 5 cycles in the V-pipe, and mispredicted calls and  unconditional  jumps 
take 3 cycles in either pipe.  Note  that RET can’t pair. 

Who‘s in First? 
One of the trickiest things about superscalar  optimization is that  a given instruction 
stream  can  execute at a  different  speed  depending  on  the  pipe  where  it starts execu- 
tion, because which instruction goes through  the U-pipe first determines which  of 
the following instructions will be  able  to pair. If we take the last example and  add 
one  more  instruction,  the  other instructions will go  through  different pipes  than 
previously, and cause the  loop as a whole to take 50 percent longer, even though we 
only added 25 percent  more cycles: 

LoopTop: 
i n c  edx ; & p i p e   c y c l e  1 
rnov [ e s i ] . e a x  ; V - p i p e   c y c l e  1 
add   es i   . 4  ; U - p i p e   c y c l e  2 
dec  ecx ; V - p i p e   c y c l e  2 
j n z  LoopTop ; U - p i p e   c y c l e  3 

; V - p i p e   i d l e   c y c l e  3 
; because JNZ c a n ’ t  
; p a i r   i n  t h e  U - p i p e  

It’s actually not  hard to figure out which instructions  go through which pipes; just 
back up until you find an instruction that can’t pair or can  only go through  the U-pipe, 
and work forward from  there, given the knowledge that  that  instruction  executes  in 
the U-pipe. The easiest thing  to look for is branches. All branch  target  instructions 
execute  in  the U-pipe, as do all instructions  after  conditional  branches  that fall 
through. Instructions with prefix bytes are generally good U-pipe  markers,  although 
they’re expensive instructions  that  should be avoided whenever possible, and have 
at least one  aberration with regard  to  pipe usage, as discussed below. Shifts, rotates, 
ADC, SBB, and all other instructions not listed in Table 20.1 in the last chapter  are 
likewise U-pipe markers. 
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Pentium Optimization Action 
Now, let’s  take a look at  one of the simplest, tightest pieces of code imaginable, and 
see what our new Pentium perspective reveals.  Listing 21.1 shows a loop  implement- 
ing the TCP/IP checksum, a 16-bit checksum  that wraps carries around to the low 
bit so that the result is endian-independent. This makes it easy to perform checksums 
on blocks  of data regardless of the  endian characteristics of the machines on which 
those blocks are  generated  and received. (Thanks to fellow performance  enthusiast 
Terje Mathisen for suggesting this checksum as fertile ground for  Pentium optimiza- 
tion,  in the ibm.pc/fast.code forum  on Bix.) The  loop in Listing 21.1 consists of 
exactly  five instructions; it’s hard to imagine that there’s a  lot of performance to be 
wrung  from this snippet,  right? 

LISTING 2 1.1 12 1 - 1 .ASM 
: C a l c u l a t e s   T C P / I P   ( 1 6 - b i t   c a r r y - w r a p p i n g )   c h e c k s u m   f o r   b u f f e r  
: s t a r t i n g   a t   E S I ,   o f   l e n g t h  E C X  words.  
: Returns  checksum i n  A X .  
: ECX and  ESI   dest royed.  
: All c y c l e   c o u n t s  assume 3 2 - b i t   p r o t e c t e d  mode. 
: Assumes b u f f e r   l e n g t h  > 0 .  
: N o t e   t h a t   t i m i n g   i n d i c a t e s   t h a t   t h e   p i p e   s e q u e n c e   a n d  
: c y c l e   c o u n t s  shown  (based  on  documented  execut ion  ru les)  
: d i f f e r   f r o m   t h e   a c t u a l   e x e c u t i o n   s e q u e n c e   a n d   c y c l e   c o u n t s :  
: t h i s   l o o p   h a s   b e e n   m e a s u r e d   t o   e x e c u t e   i n  5 c y c l e s :   a p p a r e n t l y ,  
: t h e   1 s t   h a l f   o f  ADD somehow p a i r s   w i t h   t h e   p r e f i x   b y t e ,   o r   t h e  
: r e f i x   b y t e   g e t s   e x e c u t e d   a h e a d   o f   t i m e .  

s u b   a x . a x   : i n i t i a l i z e   t h e   c h e c k s u m  

c k l o o p :  
add  ax ,   [es i  1 : c y c l e  1 U - p i p e   p r e f i x   b y t e  

: c y c l e  1 V - p i p e   i d l e   ( n o   p a i r i n g   w / p r e f i x )  
: c y c l e  2 U - p i p e   1 s t   h a l f   o f  ADD 
: c y c l e  2 V - p i p e   i d l e   ( r e g i s t e r   c o n t e n t i o n )  
: c y c l e  3 U - p i p e   2 n d   h a l f   o f  ADD 
: c y c l e  3 V - p i p e   i d l e   ( r e g i s t e r   c o n t e n t i o n )  

: c y c l e  4 V - p i p e   i d l e   ( n o   p a i r i n g   w / p r e f i x )  
: c y c l e  5 U - p i p e  ADC AX.0 

adc   ax .0   ; cyc le  4 U - p i p e   p r e f i x   b y t e  

a d d   e s i  . 2  ; c y c l e  5 V - p i p e  
dec   ecx  ; c y c l e  6 U - p i p e  
j n z   c k l o o p  : c y c l e  6 V - p i p e  

Wrong, wrong, wrong! As detailed in Listing 21 . l ,  this loop  should take 6 cycles per 
checksummed  word in 32-bit protected  mode,  a ridiculously high number  for  the 
Pentium. (You’ll see why I say “should take,” not “takes,” shortly.) We should lose 2 
cycles in each  pipe to the two size prefixes (because the ADDS are 16-bit operations 
in  a 32-bit segment),  and  another 2 cycles because of register contention that arises 
when ADC A X , O  has to wait for the result of ADD AX,[ESI]. Then, too, even though 
DEC and JNZ can pair and  the  branch prediction  for JNZ is presumably correct 
virtually  all the time, they do take a full cycle, and maybe we can do  something  about 
that as  well. 
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The first thing  to do is to time the  code  in Listing 21.1 to verify our analysis. When I 
unleashed  the Zen timer on Listing 21.1, I found, to my surprise, that  the  code actu- 
ally takes only five  cycles per  checksum word  processed,  not six. A little  more 
experimentation revealed that  adding a size prefix to the two-cycle ADD EAX,[ESI] 
instruction  doesn’t cost anything, certainly not  the  one full cycle in  each  pipe  that  a 
prefix is supposed  to take. More experimentation showed that  prefix bytes do cost 
the  documented  extra cycle  when used with one -cycle instructions such as MOV. At 
this point, my preliminary  conclusion is that prefixes can  pair with the first cycle  of 
at least some multiple-cycle instructions.  Determining exactly why this happens will 
take further research on my part,  but  the most important conclusion is that you must 
measure your code! 
The first, obvious thing we can do to Listing 21.1 is change ADC A X , O  to ADC E A X , O ,  
eliminating  a  prefix byte and saving a full cycle. Now we’re down from five to  four 
cycles.  What next? 
Listing 21.2 shows one  interesting alternative  that  doesn’t really  buy  us anything. 
Here, we’ve eliminated all  size prefixes by doing byte-sized MOVs and ADDS, but 
because the size prefix on ADD AX,[ESI], for whatever reason,  didn’t cost anything 
in Listing 21.1, our efforts are  to  no avail-Listing 21.2 still takes 4 cycles per 
checksummed word. What’s worth  noting  about Listing 21.2 is the  extent  to which 
the  code is broken  into simple instructions and  reordered so as to avoid  size pre- 
fixes, register contention, AGIs, and  data  bank conflicts (the  latter because both 
[ESI] and [ESI+l] are in the same cache  data  bank, as discussed in the last chapter). 

LISTING 2 1.2  12 1 -2.ASM 
: C a l c u l a t e s   T C P / I P   ( 1 6 - b i t   c a r r y - w r a p p i n g )   c h e c k s u m   f o r   b u f f e r  
: s t a r t i n g   a t  E S I .  o f   l e n g t h  E C X  words.  
: Returns  checksum i n  A X .  
: H i g h   w o r d   o f  E A X .  O X ,  E C X  and E S I  d e s t r o y e d .  
: All c y c l e   c o u n t s  assume 3 2 - b i t   p r o t e c t e d  mode. 
: Assumes b u f f e r   l e n g t h  > 0. 

sub eax,   eax : i n i t i a l i z e   t h e  checksum 
mov d x . [ e s i l  : f i r s t  word t o  checksum 
dec  ecx ; w e ’ l l  do 1 c h e c k s u m   o u t s i d e   t h e   l o o p  
j z  s h o r t   c k l o o p e n d  : o n l y  1 checksum t o  do 
a d d   e s i . 2  : p o i n t   t o   t h e   n e x t   w o r d   t o   c h e c k s u m  

c k l o o p :  
add 
mov 
adc 
mov 
adc 
add 
dec 
j nz  

a1 . d l  
d l  , [ e s i  1 
ah.dh 
d h . [ e s i + l l  
eax.O 
e s i  ,2  
ecx  
Ckl  O O D  

: c y c l e  1 U - p i p e  
: c y c l e  1 V - p i p e  
: c y c l e  2 U - p i p e  
: c y c l e  2 V - p i p e  
: c y c l e  3 U - p i p e  
: c y c l e  3 V - p i p e  
: c y c l e  4 U - p i p e  
: c y c l e  4 V - p i p e  

ck loopend:  
add  ax.dx  :checksum  the l a s t  word 
adc  eax.O 
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Listing 21.3 is a more sophisticated attempt to speed up  the checksum calculation. 
Here we see a hallmark of Pentium optimization: two operations (the checksumming 
of the  current  and  next pair of words) interleaved together to allow both pipes to 
run  at  near maximum capacity. Another hallmark that's apparent in Listing 21.3 is 
that Pentium-optimized code  tends to use more registers and require  more instruc- 
tions than 486-optimized code. Again, note  the careful mixing of  byte-sized reads to 
avoid  AGIs, register contention,  and  cache  bank collisions, in  particular the way in 
which the byte reads of memory are interspersed with the additions to  avoid register 
contention,  and  the  placement of ADD ESI,4 to  avoid an AGI. 

LISTING 2 1.3 12 1 -3.ASM 
: C a l c u l a t e s   T C P / I P   ( 1 6 - b i t   c a r r y - w r a p p i n g )   c h e c k s u m   f o r   b u f f e r  
: s t a r t i n g   a t  E S I .  o f   l e n g t h  ECX words. 
; Returns  checksum i n  A X .  
: H i g h   w o r d   o f  EAX.  B X .   E D X .   E C X  and E S I  d e s t r o y e d .  
: All c y c l e   c o u n t s  assume 3 2 - b i t   p r o t e c t e d  mode. 
: Assumes b u f f e r   l e n g t h  > 0 .  

sub 
sub 
s h r  
j n c  
mov 
j z  
add 

c k l o o p s e t u p :  
mov 
mov 
dec 
j z  

c k l o o p :  
mov 
add 
s h l  

o r  
mov 
add 
mov 
adc 
mov 
dec 
j n z  

ck loopend:  
mov 

eax,  eax : i n i t i a l i z e   t h e  checksum 
edx.  edx ; p r e p a r e   f o r   l a t e r  ORing 
ecx ,  1 ; w e l l  1 do   two   words   pe r   l oop  
s h o r t   c k l o o p s e t u p  ;even  number o f   w o r d s  
a x ,   [ e s i  1 :do  the  odd  word 
s h o r t   c k l o o p d o n e  :no more  words t o  checksum 
e s i  .2 : p o i n t   t o   t h e   n e x t   w o r d  

d x ,   [ e s i  1 : l o a d   m o s t   o f   1 s t   w o r d   t o  
b l   . [ e s i + 2 1  : checksum ( l a s t   b y t e   l o a d e d   i n   l o o p )  
ecx  :any  more  dwords t o  checksum? 

s h o r t   c k l o o p e n d  ;no 

bh . [es i+31  
e s i  ,4  
ebx.16 

ebx,  edx 
d l ,   [ e s i  1 
eax.ebx 
b l  , [es i+21  
eax.0 
d h . [ e s i + l l  
ecx 
c k l   o o p  

bh . [es i+31  
add ax.dx 
adc ax.bx 
adc ax.0 

mov edx.eax 
shr   edx .16  
add  ax.dx 
adc  eax.O 

ck loopdone:  

: c y c l e  1 U - p i p e  
; c y c l e  1 V - p i p e  
; c y c l e  2 U - p i p e  
: c y c l e  2 V - p i p e   i d l e  
: ( r e g i s t e r   c o n t e n t i o n )  
; c y c l e  3 U - p i p e  
; c y c l e  3 V -p ipe  
: c y c l e  4 U - p i p e  
: c y c l e  4 V - p i p e  
: c y c l e  5 U - p i p e  
; c y c l e  5 V -p ipe  
; c y c l e  6 U - p i p e  
: c y c l e  6 V - p i p e  

: c h e c k s u m   t h e   l a s t   d w o r d  

:compress   the   32-b i t   checksum 
: i n t o  a 1 6 - b i t  checksum 
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The checksum loop in Listing 21.3 takes longer  than  the  loop  in Listing 21.2, at 6 
cycles  versus 4 cycles for Listing 21.2-but Listing 21.3 does two checksum opera- 
tions in  those 6 cycles, so we’ve cut  the time per checksum addition  from 4 to 3 
cycles. You might  think  that this small an  improvement  doesn’tjustify the  additional 
complexity of Listing 21.3, but it is a  one-third  speedup, well worth it if this is a 
critical loop-and, in general, if it isn’t critical, there’s no  point in  hand-tuning it. 
That’s why I haven’t bothered  to try to  optimize the non-inner-loop  code in Listing 
21.3; it’s only executed  once  per  checksum, so it’s unlikely that  a cycle or two saved 
there would  make any real-world difference. 
Listing 21.3 could be made  a bit faster yet  with some  loop  unrolling, but  that would 
make the  code  quite  a bit more complex  for relatively little return. Instead, why not 
make the  code  more  complex  and  get  a  bigreturn? Listing 21.4 does exactly that by 
loading  one dword at  a time to eliminate  both the word prefix of Listing 21.1 and 
the  multiple byte-sized accesses of Listing 21.3. An obvious drawback to this is the 
considerable complexity needed to ensure  that  the dword  accesses are dword-aligned 
(remember  that  unaligned dword  accesses cost three cycles each),  and to handle 
buffer  lengths  that  aren’t dword multiples. I’ve handled these problems by requiring 
that  the  buffer  be dword-aligned and a dword multiple  in  length, which  is  of course 
not always the case in the real world. However, the  point of these listings is to illus- 
trate  Pentium optimization-dword  issues, being  non-inner-loop stuff, are solvable 
details that  aren’t  germane to the main focus. In any case, the complexity and as- 
sumptions  are well justified by the  performance of this code: three cycles per  loop, 
or 1.5 cycles per checksummed word, more  than  three times the  speed of the origi- 
nal code. Again, note  that  the actual order in which the instructions are  arranged is 
dictated by the various optimization  hazards of the Pentium. 

LISTING 2 1.4 12 1 -4.ASM 
: C a l c u l a t e s   T C P / I P   ( 1 6 - b i t   c a r r y - w r a p p i n g )   c h e c k s u m   f o r   b u f f e r  
: s t a r t i n g   a t   E S I .   o f   l e n g t h  ECX words.  
: Returns  checksum i n  A X .  
; H i g h   w o r d   o f  E A X .  E C X .  E O X .  and E S I  d e s t r o y e d .  
: All c y c l e   c o u n t s  assume 3 2 - b i t   p r o t e c t e d  mode. 
: Assumes b u f f e r   s t a r t s  on a dword  boundary,  i s  a d w o r d   m u l t i p l e  
: i n  l e n g t h .   a n d   l e n g t h  > 0.  

sub eax.eax ; i n i t i a l i z e   t h e  checksum 
s h r   e c x . 1  : w e ’ l l  do   two  words   per   loop  
mov edx,  Cesi  1 : p r e l o a d   t h e   f i r s t   d w o r d  
add   es i  .4  ; p o i n t   t o   t h e   n e x t   d w o r d  
dec   ecx  : w e ’ l l  do 1 c h e c k s u m   o u t s i d e   t h e   l o o p  
j z  s h o r t   c k l o o p e n d  : o n l y  1 checksum t o  do 

c k l o o p :  
add  eax.edx : c y c l e  1 U - p i p e  
mov edx,  Cesi  1 ; c y c l e  1 V - p i p e  
adc  eax.O ; c y c l e  2 U - p i p e  
add   es i  ,4 : c y c l e  2 V - p i p e  
dec  ecx : c y c l e  3 U - p i p e  
j n z  c k l o o p  ; c y c l e  3 V - p i p e  
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ck loopend:  
add  eax.edx 
adc  eax.O 
mov edx,  eax 
shr   edx.16 
add  ax.dx 
adc  eax.0 

: c h e c k s u m   t h e   l a s t   d w o r d  

;compress   the   32-b i t   checksum 
: i n t o  a   1 6 - b i t   c h e c k s u m  

Listing 21.5 improves upon Listing 21.4 by processing 2 dwords per  loop,  thereby 
bringing  the time per  checksummed word down to exactly 1 cycle. Listing 21.5 basi- 
cally does nothing  but  unroll Listing 21.4's loop  one time,  demonstrating  that  the 
venerable  optimization  technique of loop  unrolling still has some life left  in it  on  the 
Pentium.  The cost for  this is,  as usual,  increased  code size and complexity, and  the 
use of more  registers. 

LISTING  21.5  121 -5.ASM 
; C a l c u l a t e s   T C P / I P   ( 1 6 - b i t   c a r r y - w r a p p i n g )   c h e c k s u m   f o r   b u f f e r  
; s t a r t i n g   a t  E S I .  o f   l e n g t h  E C X  words. 
: Returns  checksum i n  A X .  
: H i g h   w o r d   o f  EAX.  EBX. ECX.  E D X ,  and E S I  d e s t r o y e d .  
: All c y c l e   c o u n t s  assume 3 2 - b i t   p r o t e c t e d  mode. 
; Assumes b u f f e r   s t a r t s  on a  dword  boundary,  i s  a   d w o r d   m u l t i p l e  
; i n   l e n g t h ,   a n d   l e n g t h  > 0.  

sub 
s h r  
j n c  
mov 
j z  
add 

noodddword: 
mov 
mov 
dec 
j z  
add 

c k l o o p :  
add 
mov 
adc 
mov 
adc 
add 
dec 
j nz 

ck loopend :  
add 
adc 
adc 

ck loopdone:  
mov 
s h r  
add 
adc 

eax,  eax ; i n i t i a l i z e   t h e  checksum 
ecx ,2 : w e ' l l  do   two   dwords   pe r   l oop  
shor t   noodddword  ; i s   t h e r e  an odd  dword i n   b u f f e r ?  
eax.  [ e s i  1 ;checksum  the  odd  dword 
s h o r t   c k l o o p d o n e  ; n o .  done 
e s i  .4 ; p o i n t   t o   t h e   n e x t   d w o r d  

edx.  Cesi 1 ; p r e l o a d   t h e   f i r s t   d w o r d  
ebx . [es i+4 ]  : p re load   t he   second   dword  
ecx ; w e ' l l  do 1 c h e c k s u m   o u t s i d e   t h e   l o o p  
s h o r t   c k l o o p e n d  ; o n l y  1 checksum t o  do 
e s i  .8 ; p o i n t   t o   t h e   n e x t   d w o r d  

eax , edx 
e d x .   [ e s i  1 
eax.ebx 
ebx .   [es i+41 
eax,  0 
e s i  .8 
ecx 
c k l  oop 

; c y c l e  1 U - p i p e  
: c y c l e  1 V - p i p e  
: c y c l e  2 U - p i p e  
; c y c l e  2 V - p i p e  
; c y c l e   3   U - p i p e  
: c y c l e   3   V - p i p e  
; c y c l e   4   U - p i p e  
: c y c l e   4   V - p i p e  

eax ,   edx   ; checksum  the   l as t   two   dwords  
eax , ebx 
eax.O 

edx ,   eax   : compress   t he   32 -b i t   checksum 
edx,   16 ; i n t o  a   1 6 - b i t   c h e c k s u m  
ax  .dx 
eax,  0 
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Listing 21.5 is undeniably  intricate  code, and  not  the  sort of thing  one would choose 
to write as a  matter of course. On  the  other  hand, it’s five times as fast  as the tight, 
seemingly-speedy loop in Listing 21.1 (and six times as  fast  as Listing 21.1  would 
have been if the prefix byte had behaved  as expected). That’s an awful lot of speed to 
wring out of a five-instruction loop,  and  the TCP/IP checksum is, in  fact,  used by 
network software, an area in which a five-times speedup might make a significant 
difference  in overall system performance. 
I don’t claim that Listing 21.5 is the fastest possible way to do a  TCP/IP checksum on 
a  Pentium; in fact, it isn’t. Unrolling the  loop  one  more time,  together with a trick of 
Terje’s that uses LEA to advance ESI (neither LEA nor DEC affects the carry flag, 
allowing  Terje to add  the carry from  the previous loop iteration into  the  next iteration’s 
checksum via ADC), produces  a version that’s  a full 33 percent faster. Nonetheless, 
Listings 21.1 through 21.5 illustrate many  of the  techniques  and considerations in 
Pentium  optimization.  Hand-optimization  for  the  Pentium isn’t simple, and requires 
careful measurement  to  check  the efficacy  of your optimizations, so reserve it  for 
when  you  really,  really need it-but when  you need it, you need it bud. 

A Quick Note on the 386 and 486 
I’ve mentioned  that Pentium-optimized code  does  fine on the 486, but  not always so 
well on the 386. On a 486, Listing 21.1 runs  at 9 cycles per checksummed  word, and 
Listing 21.5 runs  at 2.5  cycles per checksummed  word,  a  healthy 3.6-times speedup. 
On a 386, Listing 21.1 runs  at 22 cycles per word; Listing 21.5 runs  at 7 cycles per 
word,  a 3.1-times speedup. As is often the case, Pentium  optimization  helped the 
other processors, but  not as much as it helped  the  Pentium,  and less on  the 386 than 
on the 486. 
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Ch 

And so we come &>the end of ourjourney;  for now, at least. What follows is a  modest 
riginally served to  show readers of Zen of Assembly 

Language that they more  than  just bits and pieces of  knowledge; that 
they had also begun to apply the flexible  mind-unconventional,  broadly 
integrative thinkin hing high-level optimization at  the algorithmic and 

urse, need  no such reassurance, having just  spent 
xible mind in many  guises, but  I  think you’ll find 

ve nonetheless. Try to stay ahead as the level  of optimization 
elimination to instruction substitution to more creative solu- 

nding  and redesign. We’ll start out by compacting 
individual instructiods and bits of code,  but by the  end we’ll come up with a solution 
that involves the very structure of the subroutine, with each instruction carefully 
integrated  into  a remarkably compact whole. It’s a neat example of  how optimiza- 
tion operates at many  levels, some much less determininstic than others-and  besides, 
it’s just plain fun. 
Enjoy! 

Lennmg 
In Jeff Duntemann’s excellent book Bodand PascaZFrum Square One (Random House, 
1993), there’s  a small  assembly subroutine that’s designed to be called from  a  Turbo 
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Pascal program in order to fill the screen or a system-memory screen buffer with a 
specified character/attribute pair in text mode. This subroutine involves  only  21 
instructions and works perfectly well;  however,  with  what we  know,  we can compact 
the subroutine tremendously and speed  it up a bit as  well.  To coin a verb, we can 
“Zen” this already-tight assembly code to an astonishing degree.  In  the process, I 
hope you’ll get a feel  for how advanced your assembly  skills  have become. 
Jeff‘s original code follows  as  Listing  22.1 (with some text converted to lowercase in 
order to match the style of this book),  but  the comments are mine. 

LISTING 
OnStack 
01 dBP 
RetAddr 
F i l l e r  
A t t r i b  
B u f S i z e  
BufOfs 
BufSeg 
EndMrk 
OnStack 

22.1  122- 1 .ASM 
s t r u c   : d a t a   t h a t ’ s   s t o r e d  on t h e   s t a c k   a f t e r  PUSH  BP 
dw ? : c a l l e r ’ s  BP 
dw ? : re tu rn   add ress  
dw ? : c h a r a c t e r   t o  fill t h e   b u f f e r   w i t h  
dw ? : a t t r i b u t e   t o  fill t h e   b u f f e r   w i t h  
dw ? :number o f   c h a r a c t e r / a t t r i b u t e   p a i r s   t o  fill 
dw ? : b u f f e r   o f f s e t  
dw ? : b u f f e r  segment 
db ? : m a r k e r   f o r   t h e  end o f   t h e   s t a c k   f r a m e  
ends 

C l e a r s  
push 
mov 
cmp 
j n e  
cmp 
j e  

mov 
and 
mov 
and 
o r  
mov 
mov 
mov 
mov 
mov 

Bye: mov 
POP 
r e t  

S t a r t :  c l d  

r e p  

C l e a r s  

p r o c   n e a r  
bP ; s a v e   c a l l e r ’ s  B P  
bP. SP : p o i n t   t o   s t a c k   f r a m e  
word p t r  Cbp l .BufSeg.0   :sk ip   the  fill i f  a n u l l  
S t a r t  
word p t r  Cbpl.BufOfs,O 
Bye 

a x . C b p l . A t t r i b   : l o a d  AX w i t h   a t t r i b u t e   p a r a m e t e r  
a x . O f f 0 0 h   ; p r e p a r e   f o r   m e r g i n g   w i t h  fill char  
b x . [ b p l . F i l l e r   : l o a d  BX w i t h  fill char  
b x . 0 f f h   : p r e p a r e   f o r   m e r g i n g   w i t h   a t t r i b u t e  
ax .bx   : comb ine   a t t r i bu te   and  fill c h a r  
bx ,Cbp l .BufOfs   : load  DI w i t h   t a r g e t   b u f f e r   o f f s e t  
d i  , bx 
bx . [bp l .Bu fSeg   : l oad  ES w i t h   t a r g e t   b u f f e r  segment 
e s ,  bx 
cx .Cbp l .Bu fS ize   ; l oad  C X  w i t h   b u f f e r  s i z e  
s tosw ;fill t h e   b u f f e r  
s p . b p   ; r e s t o r e   o r i g i n a l   s t a c k   p o i n t e r  
bp ; and c a l l e r ’ s  BP 

: p o i n t e r   i s  passed 

:make STOSW count  up 

EndMrk -Re tAddr -2   : re tu rn .   c lea r ing   t he   pa rms   f rom  the   s tack  
endp 

The first thing you’ll notice  about Listing 22.1 is that Clears uses a REP STOSW 
instruction. That means  that we’re not going to improve performance by any great 
amount, no matter how  clever we are. While we can eliminate some cycles, the bulk 
of the work in Clears is done by that  one  repeated string instruction, and there’s no 
way to improve on  that. 
Does that  mean  that Listing 22.1 is  as good as it can be? Hardly.  While the  speed of 
Clears is  very good, there’s another side to the optimization equation: size. The whole of 
Clears is 52 bytes long as it stands-but,  as  we’ll see, that size is hardly set in  stone. 
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Where do we begin with Clears? For starters, there’s an instruction in there  that 
serves no earthly purpose-MOV SP,BP. SP is guaranteed  to be equal to BP at that 
point anyway, so why reload it with the same value?  Removing that instruction saves 
us two bytes. 
Well, that was certainly easy enough! We’re not going to find any more totally non- 
functional instructions in Clears, however, so let’s get on to  some serious optimizing. 
We’ll look  first for cases where we know  of better instructions for particular tasks 
than those that were chosen. For example, there’s no need to load any  register, 
whether  segment or general-purpose,  through BX; we can eliminate two instruc- 
tions by loading ES and DI directly  as  shown in Listing 22.2. 

LISTING  22.2  122-2.ASM 
C l e a r s  p r o c   n e a r  

push bp 
mov bp.  sp 
cmp word p t r  Cbpl.BufSeg.0 
j n e  S t a r t  
cmp word p t r   [ b p l . B u f O f s . O  
je Bye 

mov a x . C b p l . A t t r i b  
and  ax.Off00h 
mov bx .   [ bp l  . F i  11   e r  
and b x . 0 f f h  
o r   ax .bx  
mov d i  .Cbp].BufOfs 
mov es, [bp l .BufSeg 
mov cx . [bp l .Bu fS ize  
rep  s tosw 

S t a r t :   c l d  

Bye : 
POP bP 
r e t  EndMrk-RetAddr-2 

C1 ears  endp 

: s a v e   c a l l e r ’ s  BP 
: p o i n t   t o   s t a c k   f r a m e  
: s k i p   t h e  fill i f  a n u l l  
: p o i n t e r   i s   p a s s e d  

:make STOSW coun t  up 
: l o a d  A X  w i t h   a t t r i b u t e   p a r a m e t e r  
: p r e p a r e   f o r   m e r g i n g   w i t h  fill char  
: l o a d  BX w i t h  fill char  
: p r e p a r e   f o r   m e r g i n g   w i t h   a t t r i b u t e  
: c o m b i n e   a t t r i b u t e   a n d  fill char  
; l o a d  D I  w i t h   t a r g e t   b u f f e r   o f f s e t  
: l o a d  ES w i t h   t a r g e t   b u f f e r  segment 
: l o a d  C X  w i t h   b u f f e r   s i z e  
:fill t h e   b u f f e r  

: r e s t o r e   c a l l e r ’ s  BP 
: r e t u r n .   c l e a r i n g   t h e  parms f r o m   t h e   s t a c k  

(The OnStack structure definition doesn’t  change in any of our examples, so I’m 
not going clutter up this chapter by reproducing it for each new  version  of Clears.) 
Okay, loading ES and DI directly saves another four bytes.  We’ve squeezed a total of 
6 bytes-about 11 percent-out of Clears. What next? 
Well, LES would  serve better than two MOV instructions for loading ES and DI as  shown 
in  Listing 22.3. 

LISTING  22.3  122-3.ASM 
C l e a r s   p r o c   n e a r  

p u s h   b p   : s a v e   c a l l e r ’ s  B P  
mov bp,sp : p o i n t  t o  s tack   f rame 
cmp word p t r  Cbpl .BufSeg.0  :sk ip   the fill i f  a n u l l  
j n e   S t a r t  : p o i n t e r   i s   p a s s e d  
cmp word p t r   [ b p l . B u f O f s , O  
je Bye 

mov a x . [ b p l . A t t r i b  : l o a d  A X  w i t h   a t t r i b u t e   p a r a m e t e r  
and  ax.Off00h : p r e p a r e   f o r   m e r g i n g   w i t h  fill char  

S t a r t :   c l d  :make STOSW count   up 
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mov 
and 
o r  
1 es 

mov 
r e p  

POP 
r e t  

Bye : 

C l e a r s  

b x . [ b p l . F i l l e r  
b x . 0 f f h  
ax,   bx 
d i . d w o r d   p t r   [ b p l . B u f O f s  

cx ,Cbp l .BufS ize  
stosw 

bP 
EndMrk-RetAddr-2 
endp 

: l o a d  BX w i t h  fill c h a r  
: p r e p a r e   f o r   m e r g i n g   w i t h   a t t r i b u t e  
;combine a t t r i b u t e  and fill c h a r  
: l o a d  E S : D I  w i t h   t a r g e t   b u f f e r  
: s e g m e n t : o f f s e t  
: l o a d  C X  w i t h   b u f f e r   s i z e  
:fill t h e   b u f f e r  

: r e s t o r e   c a l l e r ’ s  BP 
: r e t u r n .   c l e a r i n g   t h e  pa rms   f rom  the   s tack  

That’s good  for another  three bytes.  We’re  down to 43 bytes, and counting. 
We can save 3 more bytes  by clearing the low and high bytes of AX and BX, respectively, 
by using SUB reg8,reg8 rather  than ANDing  16-bit  values  as  shown in Listing 22.4. 

LISTING 22.4  122-4.ASM 
C l e a r s  p roc   nea r  

push bp 
mov bp.sp 
cmp word p t r  Cbpl.BufSeg.0 
j n e  S t a r t  
cmp word p t r   C b p l . B u f O f s . 0  
j e  Bye 

mov a x . [ b p l . A t t r i b  
sub a1,a l  
mov b x . C b p l . F i l l e r  
sub  bh,bh 
or   ax .bx  
l e s   d i . d w o r d   p t r   [ b p l . B u f O f s  

mov cx .Cbp l .BufS ize  
rep   s tosw 

S t a r t :  c l d  

Bye : 
P O P  bP 
re t   EndMrk -Re tAddr -2  

C l e a r s  endD 

: s a v e   c a l l e r ’ s  B P  
: p o i n t   t o   s t a c k   f r a m e  
: s k i p   t h e  fill i f  a n u l l  
: p o i n t e r   i s   p a s s e d  

;make STOSW count  up 
: l o a d  A X  w i t h   a t t r i b u t e   p a r a m e t e r  
: p r e p a r e   f o r   m e r g i n g   w i t h  fill char  
: l o a d  BX w i t h  fill char  
: p r e p a r e   f o r   m e r g i n g   w i t h   a t t r i b u t e  
: c o m b i n e   a t t r i b u t e   a n d  fill char  
: l o a d  E S : D I  w i t h   t a r g e t   b u f f e r  
;segment :o f fse t  
: l o a d  C X  w i t h   b u f f e r   s i z e  
:fill t h e   b u f f e r  

: r e s t o r e   c a l l e r ’ s  BP 
: r e t u r n .   c l e a r i n g   t h e  parms  f rom  the   s tack  

Now we’re  down to 40  bytes-more than 20 percent smaller than  the original code. 
That’s pretty much it for simple instruction-substitution optimizations. Now let’s look 
for  instruction-rearrangement optimizations. 
It seems strange to load a word  value into AX and  then throw away AL. Likewise, it 
seems strange to load a word  value into BX and  then throw away BH.  However,  those 
steps are necessary  because the two modified word  values are ORed into a single char- 
acter/attribute word  value that is then used to fill the target buffer. 
Let’s step back and see what  this code really does, though. All it  does in the  end is 
load one byte addressed relative to BP into AH and  another byte addressed relative 
to BP into AL. Heck, we can just  do  that directly! Presto-we’ve  saved another 6 
bytes, and  turned two word-sized memory accesses into byte-sized memory accesses 
as  well.  Listing 22.5 shows the new code. 
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LISTING  22.5  122-5.ASM 
C l e a r s  p roc   nea r  

push bp 
mov bp,sp 
cmp word p t r  Cbpl.BufSeg.0 
j n e  S t a r t  
cmp word p t r   [ b p l . B u f O f s . O  
j e  Bye 

mov a h , b y t e   p t r   [ b p ] . A t t r i b [ l l  
mov a1 , b y t e   p t r   [ b p l . F i l l e r  
l e s   d i . d w o r d   p t r   [ b p ] . B u f O f s  
mov cx ,Cbp l .BufS ize  
rep   s tosw 

S t a r t :   c l d  

Bye : 
POP bp 
re t   EndMrk -Re tAddr -2  

Clears  endp 

; s a v e   c a l l e r ' s  BP 
; p o i n t   t o   s t a c k   f r a m e  
; s k i p   t h e  fill i f  a n u l l  
: p o i n t e r   i s  passed 

;make STOSW count  up 
; l o a d  AH w i t h   a t t r i b u t e  
; l o a d  AL w i t h  fill char  
; l o a d  ES:OI w i t h   t a r g e t   b u f f e r   s e g m e n t : o f f s e t  
; l o a d  C X  w i t h   b u f f e r   s i z e  
;fill t h e   b u f f e r  

; r e s t o r e   c a l l e r ' s  BP 
: r e t u r n .   c l e a r i n g   t h e  parms  f rom  the   s tack  

(We could  get rid ofyet  another instruction by having the calling code pack both  the 
attribute and  the fill  value into  the same word, but that's not  part of the specification 
for this particular  routine.) 
Another nifty instruction-rearrangement trick saves 6 more bytes. Clears checks  to  see 
whether  the  far  pointer is null (zero)  at  the  start of the  routine..  .then loads and uses 
that same far pointer  later  on. Let's get  that  pointer into registers and  keep it there; 
that way we can  check  to  see whether it's  null with a single comparison, and can  use it 
later  without  having  to reload it from  memory. This technique is  shown  in  Listing 22.6. 

LISTING 22.6  122-6.ASM 
C l e a r s  p roc   nea r  

push bp 
mov bp,sp 
l e s  d i . d w o r d   p t r   [ b p ] . B u f O f s  

mov ax.es 
o r  a x . d i  
j e  Bye 

mov a h . b y t e   p t r   C b p l . A t t r i b C 1 1  
mov a l . b y t e   p t r   C b p ] . F i l l e r  
mov c x . [ b p l . B u f S i z e  
rep   s tosw 

Start: c l d  

Bye : 
POP bp 
re t   EndMrk -Re tAddr -2  

Clears  endp 

; s a v e   c a l l e r ' s  B P  
; p o i n t   t o   s t a c k   f r a m e  
; l o a d  E S : D I  w i t h   t a r g e t   b u f f e r  
;segment :o f fse t  
;put  segment  where we c a n   t e s t  i t  
; i s  i t  a n u l l   p o i n t e r ?  
;yes.  s o  we' re   done 
;make STOSW count  up 
; l o a d  AH w i t h   a t t r i b u t e  
; l o a d  AL w i t h  fill char  
: l o a d  C X  w i t h   b u f f e r   s i z e  
:fill t h e   b u f f e r  

; r e s t o r e   c a l l e r ' s  B P  
: r e t u r n ,   c l e a r i n g   t h e  parms  f rom  the   s tack  

Well.  Now we're down  to 28 bytes,  having reduced  the size of this subroutine by 
nearly 50 percent. Only 13 instructions remain. Realistically,  how much smaller can 
we make this code? 
About one-third smaller yet, as it  turns out-but in order to do that, we must stretch 
our minds and use the 8088's instructions  in unusual ways. Let me ask  you this: What 
do most of the  instructions in the  current version of Clears do? 
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They either load parameters from the stack frame or set up the registers so that  the 
parameters can  be  accessed.  Mind  you, there’s nothing wrong  with the stack-frame- 
oriented instructions used  in Clears; those instructions access the stack frame in a 
highly  efficient way, exactly  as the designers of the 8088 intended,  and  just as the  code 
generated by a high-level language would. That means that we aren’t going to be able 
to  improve the code if  we don’t  bend  the rules a bit. 
Let’s think ... the  parameters  are sitting on the stack, and most of our instruction 
bytes are  being used to read bytes off the stack  with  BP-based addressing.. .we need a 
more efficient way to address  the  stack.. . the stack.. .THE STACK! 
Ye gods! That’s easy-we can  use the stuck pointer to address  the stack rather  than BP. 
While  it’s true  that  the stack pointer  can’t be used for mod-reg-rm addressing, as BP 
can,  it can be  used  to pop data off the stack-and POP is a one-byte instruction. 
Instructions  don’t  get any shorter  than  that. 
There is one detail to be taken care of before we can put  our plan  into action: The 
return address-the address of the calling code-is on  top of the stack, so the pa- 
rameters we want can’t be reached with POP. That’s easily  solved,  however-we’ll 
just  pop  the  return  address  into  an  unused register, then  branch  through  that regis- 
ter when  we’re done, as we learned to do in  Chapter 14. As we pop  the parameters, 
we’ll  also  be removing them  from  the stack, thereby neatly avoiding the  need to 
discard them when it’s  time to return. 
With that  problem  dealt with,  Listing 22.7 shows the  Zenned version  of Clears. 

LISTING 22.7 122-7.ASM 
C l e a r s   p r o c   n e a r  

POP dx ; g e t   t h e   r e t u r n   a d d r e s s  
POP ax ; p u t  fill c h a r   i n t o  AL 
POP bx ; g e t   t h e   a t t r i b u t e  
mov ah.bh ; p u t   a t t r i b u t e   i n t o  AH 
POP c x  ; g e t   t h e   b u f f e r   s i z e  
pop d i  : g e t   t h e   o f f s e t   o f   t h e   b u f f e r   o r i g i n  
POP es : g e t   t h e   s e g m e n t   o f   t h e   b u f f e r   o r i g i n  
mov bx.es ;put  the  segment  where we c a n   t e s t  it 
o r   b x . d i  ; n u l  1 p o i n t e r ?  
j e  Bye ;yes.  so we‘re  done 
c l  d :make STOSW count  up 
rep   s tosw :do t h e   s t r i n g   s t o r e  

jrnp  dx : r e t u r n   t o   t h e   c a l l i n g   c o d e  
Bye: 

Clears  endp 

At long last,  we’re  down to the  bare metal. This version of Clears is just 19 bytes long. 
That’s just 37 percent as long as the original  version, without any change whatsoarer in the 
&nctzonuZiCy that CbarS maka available  to  the  culling code. The code is bound to run  a bit 
faster  too,  given that there  are far  fewer  instruction bytes and fewer memory accesses. 
All in  all, the Zenned  version  of Clears is a vast improvement over the original.  Probably 
not  the best possible  implementation-never say never!-but an awfully good  one. 
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q,Heart of Standard PC Graphics 
The VGA is un ry  of computer graphics, for it is  by far  the most 

e closest we  may ever come to a linguaj-anca of 
computer graphics. standard has  even come close  to the 50,000,000 
or so VGAs in use t Ily every  PC compatible sold  today has full VGA 
compatibility built iq*. There  are, of course, a variety  of graphics accelerators that 
outperform  the  sta6dard VGA, and  indeed, it is becoming hard to find a plain va- 

t there is no standard  for accelerators, and every accelerator 

t if you write your programs for the VGA, you’ll  have the 
for your software. In  order  for graphics-based software to 
st perform well. Wringing the best performance  from  the 

VGA is no simple task, and it’s impossible unless you  really understand how the VGA 
works-unless you have the  internals down cold. This book is about PC graphics at 
many  levels, but high  performance is the  foundation  for all that is to come, so it is 
with the inner workings of the VGA that we will begin our exploration of PC graphics. 
The first eight  chapters of Part I1 is a guided  tour of the  heart of the VGA, after 
you’ve absorbed what  we’ll  cover in this and  the  next seven chapters, you’ll have the 
foundation  for  understanding just  about everything the VGA can do, including  the 
fabled Mode X and more. As you read  through these first chapters, please keep  in 
mind  that  the really exciting stuff-animation, 3-D, blurry-fast lines and circles and 

VGA at its core. 
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polygons-has to wait until we have the  fundamentals out of the way. So hold on  and 
follow along, and before you  know it  the fireworks will be well underway. 
We’ll start our exploration with a quick overview  of the VGA, and  then we’ll  dive 
right in and  get  a taste of what the VGA can do. 

The VGA 
The VGA is the  baseline  adapter  for modern IBM  PC compatibles,  present in virtu- 
ally  every  PC sold today or in  the last  several  years. (Note  that  the VGA is often 
nothing  more  than  a  chip  on  a  motherboard, with some memory, a DAC, and maybe 
a  couple of glue chips; nonetheless, I’ll refer  to  it as an  adapter  from now on for 
simplicity.) It guarantees  that every PC is capable of documented resolutions up to 
640x480 (with 16 possible colors per  pixel) and 320x200 (with 256 colors per  pixel), 
as  well  as undocumented-but  nonetheless  thoroughly standard-resolutions up to 
360x480 in 256-color mode, as  we’ll see in  Chapters 31-34 and 4’7-49. In order  for  a 
video adapter  to claim VGA compatibility, it must support all the  features and code 
discussed in this book (with a very  few minor  exceptions  that I’ll note)-and my 
experience is that  just  about 100 percent of the video hardware currently  shipping 
or shipped since 1990 is in fact VGA compatible.  Therefore, VGA code will run  on 
nearly all of the 50,000,000 or so PC compatibles out  there, with the  exceptions 
being almost entirely  obsolete  machines  from  the 1980s. This makes good VGA code 
and VGA programming  expertise valuable commodities  indeed. 
Right off the  bat,  I’d like to make one  thing perfectly clear: The VGA is hard- 
sometimes very hard-to  program  for  good  performance.  Hard,  but  not 
impossible-and that’s why I like this odd  board. It’s a throwback to an earlier  gen- 
eration of micros, when inventive coding and  a solid understanding of the  hardware 
were the  best tools for  improving  performance. Increasingly, faster processors and 
powerful coprocessors are seen as the  solution  to  the sluggish  software produced by 
high-level languages and layers of interface and driver  code, and that’s surely a valid 
approach. However, there  are  tens of millions of VGAs installed  right now, in ma- 
chines  ranging  from &MHz  286s to 90-MHz Pentiums. What’s more, because the 
VGAs are generally 8- or at best  16-bit  devices, and because of display memory wait 
states,  a  faster processor isn’t  as much of a  help as  you’d expect. The  upshot is that 
only a  seasoned  performance  programmer who understands  the VGA through  and 
through can drive the  board  to its fullest potential. 
Throughout this book, I’ll explore  the VGA by selecting  a specific algorithm or fea- 
ture  and implementing  code  to  support  it on the VGA, examining aspects of the 
VGA architecture as they become  relevant. You’ll get  to see VGA features  in  context, 
where they are  more comprehensible  than  in IBM’s somewhat  arcane  documenta- 
tion, and you’ll get working code  to use or to  modify  to meet your needs. 
The prime directive of VGA programming is that there’s rarely just  one way to  pro- 
gram  the VGA for  a given purpose. Once you understand  the tools the VGA provides, 
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you’ll be  able to combine  them  to  generate  the  particular synergy your application 
needs. My VGA routines  are  not  intended to be  taken as gospel, or to show “best” 
implementations,  but  rather to start you  down the  road to understanding  the VGA. 
Let’s begin. 

An  Introduction  to VGA Programming 
Most discussions of the VGA start out with a  traditional “Here’s a block diagram of 
the VGA” approach, with  lists  of registers and statistics. I’ll get to that eventually, but 
you can  find it in IBM’s  VGA documentation  and several other books. Besides, it’s 
numbing to read specifications and explanations, and  the VGA is an exciting adapter, 
the  kind that makes  you  want to get your hands dirty probing  under  the  hood, to 
write some nifty code  just to see what the  board can do. What’s more,  the best way to 
understand  the VGA  is to see it work, so let’s jump right  into  a  sample of the VGA in 
action,  getting  a feel for  the VGA’s architecture in the process, 
Listing 23.1 is a  sample VGA program  that  pans  around  an  animated 16-color me- 
dium-resolution (640x350) playfield. There’s  a  lot  packed  into this code;  I’m  going 
to focus on  the VGA-specific aspects so we don’t  get sidetracked.  I’m not  going to 
explain how the ball is animated,  for  example; we’ll get  to  animation  starting  in 
Chapter 42. What I will do is cover each of the VGA features  used  in this program- 
the virtual screen, vertical and  horizontal  panning,  color  plane  manipulation, 
multi-plane block copying, and page flipping-at a  conceptual level, letting the  code 
itself demonstrate  the  implementation details. We’ll return  to many of these con- 
cepts  in more  depth later  in this book. 

At the Core 
A little background is  necessary before we’re  ready  to  examine  Listing 23.1. The VGA  is 
built around  four functional blocks,  named the CRT Controller (CRTC) , the Sequence 
Controller  (SC),  the  Attribute  Controller (AC) , and  the Graphics  Controller  (GC). 
The single-chip VGA could have been  designed to treat  the registers for all the blocks 
as one large set, addressed at one pair of 1/0 ports, but in the EGA, each of these  blocks 
was a  separate  chip, and  the legacy of EGA compatibility is  why each of these blocks 
has a  separate set of registers and is addressed  at  different I/O ports  in  the VGA. 
Each  of these blocks  has a sizable  complement of registers. It is not particularly  impor- 
tant that you understand why a given  block  has a given register; all the registers together 
make up  the  programming  interface,  and  it is the  entire  interface  that is  of interest 
to the VGA programmer. However, the means by which  most VGA registers are ad- 
dressed makes it necessary for you to  remember which registers are in which  blocks. 
Most  VGA registers are addressed as internally  indexed registers. The  internal address 
of the register is written to a given  block’s Index register, and  then  the  data  for  that 
register is written to the block’s Data register. For example, GC register 8, the Bit 
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Mask register, is set to OFFH  by writing 8 to port SCEH, the GC lndex register, and 
then writing OFFH to port SCFH, the GC Data register. Internal  indexing makes it 
possible to  address  the 9 GC registers through only two ports, and allows the  entire 
VGA programming  interface  to  be  squeezed  into fewer than  a  dozen  ports. The 
downside is that two 1 / 0  operations  are  required  to access  most VGA registers. 
The ports used to  control  the VGA are shown in Table 23.1. The CRTC,  SC, and GC 
Data registers are  located at the addresses of their respective Index registers plus 
one. However, the AC Index  and Data registers are  located  at  the same address, 
3COH. The function of this port toggles on every OUT to 3COH, and resets to Index 
mode (in which the  Index  register is programmed by the  next OUT to 3COH) on 
every read  from  the Input Status 1 register (3DAH when the VGA is in a  color  mode, 
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3BAH in monochrome  modes). Note  that all CRTC registers are addressed at  either 
3DXH or 3BXH, the  former in color modes and  the latter in monochrome modes. 
This provides compatibility with the register addressing of the now-vanished Color/ 
Graphics Adapter  and  Monochrome Display Adapter. 
The  method used in the VGA BIOS  to set registers is to point DX to the desired 
Index register, load AL with the  index,  perform a byte OUT,  increment DX to point 
to the Data register (except in the case  of the AC, where DX remains the  same), load 
AL with the desired data, and  perform a byte OUT. A handy shortcut is to point DX 
to the desired Index register, load AL with the index, load AH with the data, and 
perform a word OUT. Since the high byte  of the OUT value  goes  to port DX+1 , this is 
equivalent  to the first method  but is faster.  However, this technique  does  not work for 
programming  the AC Index  and Data registers; both AC registers are addressed at 
3COH, so two separate byte OUTs must be used to program  the AC.  (Actually,  word 
OUTs to the AC do work in the EGA, but  not in the VGA, so they shouldn’t be used.) 
As mentioned above, you must be sure which mode-Index or Data-the  AC is in 
before you do  an OUT to 3COH; you can read  the  Input Status 1 register at any time 
to force the AC to Index  mode. 
How  safe is the word-OUT method of addressing VGA registers? I have, in the past, 
run  into  adapter/computer combinations that  had  trouble with word OUTs; how- 
ever,  all such problems I  am aware  of  have been fixed. Moreover, a  great  deal of 
graphics software now uses  word OUTs, so any computer  or VGA that doesn’t prop- 
erly support word OUTs could scarcely be considered  a  clone  at all. 

P A speed tip: The setting of each chip S Index register remains the  same  until it is 
reprogrammed. This means that in cases where you are setting  the  same internal 
register repeatedly, you can set the  Index register to point  to that internal register 
once,  then write to the Data register multiple times. For example,  the Bit Mask 
register (GC register 8) is often set repeatedly inside  a  loop when drawing lines. 
The standard code for this is: 

M O V  DX.03CEH ; p o i n t   t o  GC I n d e x   r e g i s t e r  
M O V  AL.8 
OUT 

; i n t e r n a l   i n d e x  o f  B i t  Mask r e g i s t e r  
DX ,AX ;AH c o n t a i n s   B i t  Mask r e g i s t e r   s e t t i n g  

Alternatively,  the GC Index register could initially be set to point  to the Bit Mask 
register with 

M O V  DX.03CEH : p o i n t   t o  G C  I n d e x   r e g i s t e r  
M O V  AL.8 ; i n t e r n a l   i n d e x  o f  B i t  Mask r e g i s t e r  
OUT DX.AL ; s e t  GC I n d e x   r e g i s t e r  
I N C  D X  : p o i n t   t o  GC D a t a   r e g i s t e r  

and then the  Bit  Mask register could be  set repeatedly with the byte-size OUT 
instruction 

OUT DX.AL :AL c o n t a i n s   B i t  Mask r e g i s t e r   s e t t i n g  
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which is generally faster (and never slower) than a word-sized OUT, and  which 
does not  require AH to be set, freeing up a register. Of course, this  method only 
works ifthe GC Index register remains  unchanged  throughout  the loop. 

Linear  Planes and True VGA Modes 
The VGA's memory is organized as four 64K planes. Each of these planes is a  linear 
bitmap; that is, each byte from  a given plane  controls eight adjacent pixels on  the 
screen, the  next byte controls the  next  eight pixels, and so on to the  end of the scan 
line. The  next byte then controls the first eight pixels of the  next scan line,  and so on 
to the  end of the screen. 
The VGA adds  a powerful twist to linear addressing; the logical  width  of the screen 
in VGA memory need  not be the same as the physical width of the display. The 
programmer is free to define all or  part of the VGA's large memory map as a logical 
screen of up to 4,080 pixels in width, and  then use the physical screen as a window 
onto any part of the logical screen. What's more, a virtual screen can have  any  logical 
height up to the capacity  of VGA memory. Such  a virtual screen  could be used to 
store  a  spreadsheet or a CAD/CAM drawing, for instance. As we  will see shortly, the 
VGA provides excellent hardware for moving around  the virtual screen; taken to- 
gether, the virtual screen and  the VGA's smooth  panning capabilities can generate 
very  impressive  effects. 
All four  linear planes are  addressed in the same 64K memory space starting at 
A000:OOOO. Consequently, there  are  four bytes at any  given address in VGA memory. 
The VGA provides special hardware to assist the CPU in manipulating all four planes, 
in parallel, with a single memory access, so that  the  programmer  doesn't have to 
spend a great deal of time switching between planes. Astute use of this VGA hard- 
ware  allows  VGA software to as much as quadruple  performance by processing the 
data  for all the planes in parallel. 
Each  memory  plane provides one bit of data  for  each pixel. The bits for  a given pixel 
from  each of the  four planes are  combined  into a  nibble  that serves  as an address 
into  the VGA's palette R A M ,  which maps the  one of 16 colors selected by display 
memory into any one of 64 colors, as  shown in Figure 23.1. All sixty-four mappings 
for all 16 colors are  independently  programmable. (We'll  discuss the VGA's color 
capabilities in detail starting in Chapter 33.) 
The VGA BIOS supports several graphics modes (modes 4, 5,  and 6) in which VGA 
memory  appears  not to be organized as four linear planes. These  modes exist for 
CGA compatibility only, and  are  not  true VGA graphics modes; use them  when you 
need CGA-type operation  and ignore them  the rest of the time. The VGA's special 
features are most powerful in true VGA modes, and it is on  the 16-color  true-VGA 
modes (modes ODH (320~200), OEH (640~200),  10H (640~350),  and 12H (640x480) ) 
that I will concentrate in this part of the book. There is also a 256-color mode,  mode 
13H, that  appears to be a single linear  plane,  but, as we  will see in Chapters 31-34 
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and 47-49 of this book, that's a polite fiction-and discarding  that fiction gives  us an 
opportunity to unleash  the power of the VGAs hardware  for vastly better  perfor- 
mance. VGA text modes, which feature soft fonts,  are another  matter entirely, upon 
which  we'll touch  from time to time. 
With that  background  out of the way,  we can  get on to the sample VGA program 
shown in Listing 23.1. I suggest you run  the  program  before  continuing, since the 
explanations will mean  far  more to you if you've seen the features  in  action. 

LISTING  23.1  123- 1 .ASM 
: Sample V G A  p rog ram.  
: A n i m a t e s   f o u r   b a l l s   b o u n c i n g   a r o u n d  a p l a y f i e l d   b y   u s i n g  
: p a g e   f l i p p i n g .   P l a y f i e l d   i s   p a n n e d   s m o o t h l y   b o t h   h o r i z o n t a l l y  
: and v e r t i c a l l y .  
: By M i c h a e l   A b r a s h .  

s tack   segment   para   s tack   'STACK'  
db   512  dup(?)  

s t a c k   e n d s  

MEORES"/IOEO~MOOE equ 0 : d e f i n e   f o r   6 4 0 x 3 5 0   v i d e o  mode 
: comment o u t   f o r  640x200 mode 

VIOEO_.SEGMENT equ OaOOOh : d i s p l a y  memory  segment f o r  
: t r u e  VGA g r a p h i c s  modes 

LOGICAL-SCREENKWIOTH equ 6 7 2 / 8   : w i d t h   i n   b y t e s   a n d   h e i g h t   i n   s c a n  
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LOGICALLSCREEN-HEIGHT 

PAGE0 
P A G E l  
PAGEOKOFFSET equ 

equ 

PAGElLOFFSET equ 

w 

BALLLWIOTH equ 
BALLLHEIGHT equ 
BLANK-OFFSET equ 

BALL-OFFSET equ 

NUM-BALLS equ 

equ  384 : l i n e s   o f   t h e   v i r t u a l   s c r e e n  

0 ; f l a g   f o r   p a g e  0 when  page f l i p p i n g  
1 ; f l a g   f o r   p a g e  1 when  page f l i p p i n g  
0 ; s t a r t   o f f s e t   o f   p a g e  0 i n  VGA memory 

; w e ' l l   w o r k   w i t h  

LOGICALLSCREEN-WIDTH * LOGICALLSCREENKHEIGHT 
; s t a r t   o f f s e t   o f   p a g e  1 ( b o t h   p a g e s  
; a r e   6 7 2 x 3 8 4   v i r t u a l   s c r e e n s )  

2 4 1 8   ; w i d t h   o f   b a l l   i n   d i s p l a y  memory b y t e s  
2 4   ; h e i g h t   o f   b a l l   i n   s c a n   l i n e s  
PAGE1-OFFSET * 2 ; s t a r t   o f   b l a n k   i m a g e  

BLANK-OFFSET + (BALLLWIDTH * BALLLHEIGHT) 

4 
: s t a r t   o f f s e t   o f   b a l l   i m a g e   i n  VGA memory 
;number o f   b a l l s   t o   a n i m a t e  

; i n  VGA memory 

; VGA r e g i s t e r   e q u a t e s .  

SC-INDEX 
MAP-MASK 

equ  3c4h ; S C  i n d e x   r e g i s t e r  
equ 2 ; S C  map mask r e g i s t e r  

GC- INDEX equ  3ceh ;GC i n d e x   r e g i s t e r  
GC-MODE 
CRTC-INDEX 

equ 5 :GC mode r e g i s t e r  
equ  03d4h ;CRTC i n d e x   r e g i s t e r  

STARTLADDRESS-HIGH equ Och :CRTC s t a r t   a d d r e s s   h i g h   b y t e  
START-ADDRESS-LOW equ Odh ;CRTC s t a r t   a d d r e s s   l o w   b y t e  
CRTC-OFFSET equ  13h :CRTC o f f s e t   r e g i s t e r  
INPUT-STATUS-1 equ  03dah ;VGA s t a t u s   r e g i s t e r  
VSYNC-MASK 
DE-MASK 

e q u   0 8 h   : v e r t i c a l   s y n c   b i t   i n   s t a t u s   r e g i s t e r  1 

AC- INDEX 
e q u   O l h   ; d i s p l a y   e n a b l e   b i t   i n   s t a t u s   r e g i s t e r  1 

HPELPAN 
equ  03cOh :AC i n d e x   r e g i s t e r  
equ  20h OR 13h : A C  h o r i z o n t a l   p e l   p a n n i n g   r e g i s t e r  

: ( b i t  7 i s   h i g h   t o   k e e p   p a l e t t e  RAM 
; a d d r e s s i n g   o n )  

dseg  segment   para common 'DATA' 
Cur ren tpage  db  P A G E l  ;page t o  draw t o  
C u r r e n t P a g e O f f s e t  dw PAGEl-OFFSET 

: F o u r   p l a n e ' s   w o r t h   o f   m u l t i c o l o r e d   b a l l   i m a g e .  

B a l l  P1 aneOImage  1   abel   byte 
db   000h.   03ch.   000h.   001h.   Of fh .   080h 
db   007h .   O f fh .  DeOh. OOfh .   Of fh .  OfOh 
db  4 * 3   dup(000h)  
d b   0 7 f h .   O f f h .   O f e h .   O f f h .   O f f h .   O f f h  
d b   O f f h .   O f f h .   O f f h .   O f f h .   O f f h .   O f f h  
db  4 * 3   dup(000h)  
d b   0 7 f h .   O f f h .   O f e h .   0 3 f h .   O f f h .   O f c h  
db   03 fh .   O f fh .   O fch .   O l fh .   O f fh .   O fBh  
db  4 * 3  dup(000h)  

db  4  * 3  dup(000h)  
d b   O l f h .   O f f h ,   O f 8 h .   0 3 f h .   O f f h .   O f c h  
d b   0 3 f h .   O f f h .   O f c h .   0 7 f h .   O f f h .   O f e h  
d b   0 7 f h .   O f f h .   O f e h .   O f f h .   O f f h .   O f f h  
d b   O f f h .   O f f h .   O f f h .   O f f h .   O f f h .   O f f h  
db 8 * 3   dup(000h)  
db  OOfh.   Of fh .   OfOh.   007h.   Of fh .  OeOh 
db  001h.   Of fh .   080h.   000h.   03ch.  OOOh 

db   12  * 3   dup(000h)  

: b l u e   p l a n e   i m a g e  

B a l l  P1 a n e l I m a g e   1   a b e l   b y t e  :g reen   p lane   image  

B a l l  P1 ane2 Image   1   abe l   by te   ; red   p lane   image  
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db 
db 

O f f h ,   O f f h .   O f f h .   O f f h .   O f f h .   O f f h  
O f f h .   O f f h .   O f f h .   0 7 f h .   O f f h ,   O f e h  

d b   0 7 f h .   O f f h .   O f e h .   0 3 f h .   O f f h .   O f c h  
db 
db 

03 fh .  O f f h .  O fch .  O l f h .  O f f h .  Of8h  
OOfh, O f f h .  OfOh. 007h. O f f h .  OeOh 

db  001h. O f f h .  080h. 000h. 03ch.  OOOh 
B a l l   P l a n e 3 I m a g e  1 a b e l   b y t e   : i n t e n s i t y  on f o r   a l l   p l a n e s ,  

: t o   p r o d u c e   h i g h - i n t e n s i t y   c o l o r s  
db 
db 
db 
db 
d b  
db 
db 
db 
db 
db 
db 
db 

B a l l  X 
B a l l Y  
Las tBa l  1 X 
L a s t B a l l Y  
B a l l X I n c  
B a l l Y I n c  
B a l l  Rep 

B a l l   C o n t r o l  

000h. 03ch. 000h. 001h. O f f h .   0 8 0 h  
007h. O f f h .  OeOh. OOfh. O f f h .  OfOh 
O l f h .  O f f h .  O f8h .  0 3 f h .  O f f h .   O f c h  
03 fh .  O f f h .  Ofch .  0 7 f h .  O f f h .   O f e h  
07 fh .  O f f h .  Ofeh ,  O f f h .  O f f h .   O f f h  
O f f h .  O f f h .  O f f h .  O f f h .  O f f h .   O f f h  
O f f h .  O f f h ,  O f f h .  O f f h .  O f f h .   O f f h  
O f fh .  O f f h .  O f f h .  0 7 f h .  O f f h .   O f e h  
0 7 f h .  O f f h .  Ofeh .  0 3 f h .  O f f h .   O f c h  
03 fh .  O f f h .  O fch ,  O l f h .  O f f h .   O f 8 h  
OOfh. O f f h .  OfOh. 007h. O f f h .  OeOh 
001h. O f f h .  080h, 000h. 03ch.  OOOh 

dw 15.  50 ,  4 0 .   7 0   ; a r r a y   o f   b a l l  x coords  
dw 40,  200.  110. 300 : a r r a y   o f   b a l l  y coo rds  
dw 15.  50. 40.  70 
dw 40. 100.  160. 30 

; p r e v i o u s   b a l l  x coords  
: p r e v i o u s   b a l l  y coo rds  

dw 1. 1. 1. 1 
dw 

: x  move f a c t o r s   f o r   b a l l  
8. 8, 8. 8 ;y move f a c t o r s   f o r   b a l l  

dw 1. 1. 1. 1 :B t i m e s   t o   k e e p   m o v i n g  
: b a l l   a c c o r d i n g   t o   c u r r e n t  
: i n c r e m e n t s  

dw B a l l O C o n t r o l ,   B a l l l C o n t r o l   : p o i n t e r s   t o   c u r r e n t  
dw B a l l 2 C o n t r o l .   B a l l 3 C o n t r o l  ; l o c a t i o n s   i n   b a l l  

; c o n t r o l   s t r i n g s  
B a l l C o n t r o l S t r i n g  dw B a l l O C o n t r o l ,   B a l l l C o n t r o l   : p o i n t e r s   t o  

dw B a l l 2 C o n t r o 1 ,   B a l l 3 C o n t r o l  : s t a r t   o f   b a l l  
: c o n t r o l   s t r i n g s  

: B a l l   c o n t r o l   s t r i n g s .  

B a l l O C o n t r o l   l a b e l   w o r d  

B a l   l l C o n t r o l  1 abe l   word  

B a l 1 2 C o n t r o l  1 abe l   word  

B a l l 3 C o n t r o l   l a b e l   w o r d  

dw 10.  1. 4 ,   1 0 .  -1. 4 ,   1 0 .  -1. - 4 .   1 0 ,  1. - 4 .  0 

dw 12.  -1. 1. 28. -1. -1. 1 2 .  1. -1. 28. 1. 1. 0 

dw 20, 0. -1. 40. 0 .  1. 2 0 ,  0 .  -1. 0 

dw 8. 1. 0. 5 2 .  -1. 0.  44. 1. 0.  0 

: P a n n i n g   c o n t r o l   s t r i n g .  

i f d e f  MEDRESpVIOEO_MODE 
P a n n i n g C o n t r o l S t r i n g  dw 32.  1. 0 .  34.  0 .  1. 32.  -1, 0.  34 .  0 .  -1. 0 
e l s e  
P a n n i n g C o n t r o l S t r i n g  dw 32.  1. 0. 184,  0, 1. 32. -1. 0. 184.  0. -1. 0 
e n d i f  
Pann ingCon t ro l  dw P a n n i n g C o n t r o l S t r i n g   : p o i n t e r   t o   c u r r e n t   l o c a t i o n  

PanningRep dw 1 ;# t i m e s   t o   p a n   a c c o r d i n g   t o   c u r r e n t  

Pann ingXInc  dw 1 ; x  p a n n i n g   f a c t o r  
Pann ingYInc  dw 0 ;y p a n n i n g   f a c t o r  

; i n   p a n n i n g   c o n t r o l   s t r i n g  

: p a n n i n g   i n c r e m e n t s  
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HPan db 0 ; h o r i z o n t a l   p e l   p a n n i n g   s e t t i n g  
P a n n i n g S t a r t O f f s e t  dw 0 ; s t a r t   o f f s e t   a d j u s t m e n t  t o  p r o d u c e   v e r t i c a l  

dseg  ends 
; p a n n i n g  & c o a r s e   h o r i z o n t a l   p a n n i n g  

: Macro t o   s e t   i n d e x e d   r e g i s t e r  P2 o f   c h i p   w i t h   i n d e x   r e g i s t e r  
; a t  P 1  t o  AL. 

SETREG macro P 1 .  P2 
mov dx ,P1 
mov ah .a l  
mov a1 .P2 
o u t   d x . a x  
endm 

c s e g   s e g m e n t   p a r a   p u b l i c  'CODE' 

s t a r t   p r o c   n e a r  
assume  cs:cseg,   ds:dseg 

mov ax .dseg 
mov ds .ax  

: S e l e c t   g r a p h i c s  mode. 

i f d e f  MEDRES-VIDEO-MODE 
mov ax.010h 

e l s e  
mov ax.0eh 

e n d i  f 
i n t  10h 

: ES a l w a y s   p o i n t s   t o  VGA memory. 

mov ax.VIDE0-SEGMENT 
mov es ,ax 

: Draw b o r d e r   a r o u n d   p l a y f i e l d   i n   b o t h   p a g e s .  

mov d i  , PAGEO-OFFSET 
c a l l   D r a w B o r d e r   ; p a g e  0 b o r d e r  
mov d i  .PAGEl-OFFSET 
c a l l   D r a w B o r d e r   ; p a g e  1 b o r d e r  

: Draw a l l   f o u r   p l a n e ' s   w o r t h   o f   t h e   b a l l  t o  u n d i s p l a y e d  VGA memory. 

mov a1 ,O lh  
SETREG S C - I N D E X .  MAP-MASK 
mov s i   . o f f s e t   B a l l   P l a n e O I m a g e  
mov d i  .BALL-OFFSET 
mov cx.BALL-WIDTH * BALLLHEIGHT 
r e p  movsb 
mov a1 .02h   : enab le   p lane  1 
SETREG S C - I N D E X .  MAP-MASK 
mov s i   , o f f s e t   B a l l P l a n e l I m a g e  
mov di.BALL-OFFSET 
mov cx.BALL-WIDTH * BALLLHEIGHT 
r e p  movsb 
mov a1 .04h 
SETREG S C - I N D E X .  MAP-MASK 
mov s i   . o f f s e t   B a l l P l a n e 2 I m a g e  
mov d i  .BALLLOFFSET 

; e n a b l e   p l a n e  0 

: e n a b l e   p l a n e  2 
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mov cx.BALLLWIDTH * BALLLHEIGHT 
rep  movsb 
mov a l . 0 8 h   : e n a b l e   p l a n e  3 
SETREG SC-INDEX.  MAP-MASK 
mov s i . o f f s e t   B a l l P l a n e 3 I m a g e  
mov d i  .BALL-OFFSET 
mov cx,BALL-WIDTH * BALL-HEIGHT 
rep  movsb 

: Draw a b l a n k  

mov 
SETREG 
mov 
mov 
sub 

i m a g e   t h e   s i z e   o f   t h e   b a l l   t o   u n d i s p l a y e d  VGA memory. 

a1 . O f h   ; e n a b l e   a l l  memory p l a n e s ,   s i n c e   t h e  
S C - I N D E X ,  MAP-MASK ; b l a n k   h a s   t o   e r a s e   a l l   p l a n e s  
d i  .BLANK-OFFSET 
cx.BALLLWIDTH * BALLLHEIGHT 
a1 .a1 

r e p   s t o s b  

; Se t  VGA t o   w r i t e  mode 1. f o r   b l o c k   c o p y i n g   b a l l   a n d   b l a n k   i m a g e s  

mov dx.GCLINDEX 
mov a1 .GCLMODE 
o u t   d x . a l   ; p o i n t  GC I n d e x   t o  GC Mode r e g i s t e r  
i n c   d x   ; p o i n t   t o  GC D a t a   r e g i s t e r  
jmp $+2 ; d e l a y   t o   l e t   b u s   s e t t l e  
i n  a1 , d x   : g e t   c u r r e n t   s t a t e   o f  GC Mode 
and a1 . n o t  3 : c l e a r   t h e   w r i t e  mode b i t s  
o r  a1 .1 : s e t   t h e   w r i t e  mode f i e l d   t o  1 
jmp $+2 : d e l a y   t o   l e t   b u s   s e t t l e  
o u t   d x . a l  

: Se t  VGA o f f s e t   r e g i s t e r   i n   w o r d s   t o   d e f i n e   l o g i c a l   s c r e e n   w i d t h .  

mov a1 .LOGICALLSCREENLWIDTH / 2 
SETREG CRTC-INDEX. CRTC-OFFSET 

: Move t h e   b a l l s   b y   e r a s i n g   e a c h   b a l l ,   m o v i n g  i t , and 
: r e d r a w i n g  it, t h e n   s w i t c h i n g   p a g e s  when t h e y ' r e   a l l  moved. 

B a l l A n i m a t i o n L o o p :  

EachBal l   Loop:  

; E r a s e   o l d   i m a g e  o f  b a l l   i n   t h i s  page ( a t   l o c a t i o n   f r o m   o n e   m o r e   e a r l i e r ) .  

mov b x . (  NUM-BALLS * 2 ) - 2 

mov si.BLANKLOFFSET : p o i n t   t o   b l a n k   i m a g e  
mov c x , [ L a s t B a l l X + b x l  
mov d x . [ L a s t B a l l Y + b x l  
c a l l  DrawBal 1 

: Se t  new l a s t   b a l l   l o c a t i o n .  

mov a x . [ B a l l X + b x l  
mov [ L a s t b a l l X + b x l . a x  
mov a x . [ B a l l Y + b x l  
mov [ L a s t b a l l Y + b x l . a x  

; Change t h e   b a l l  movement  values i f  i t ' s   t i m e   t o  do so .  

d e c   [ B a l   l R e p + b x ]   ; h a s   c u r r e n t   r e p e a t   f a c t o r   r u n   o u t ?  
j n z   M o v e B a l l  
mov s i , [ B a l l C o n t r o l + b x l   ; i t ' s   t i m e   t o   c h a n g e  movement  values 
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1 odsw  ;ge t  new r e p e a t   f a c t o r   f r o m  

a n d   a x . a x   ; a t   e n d   o f   c o n t r o l   s t r i n g ?  
j n z  SetNewMove 
mov si,[BallControlString+bxl ; r e s e t   c o n t r o l   s t r i n g  
1 odsw  ;ge t  new r e p e a t   f a c t o r  

mov [ B a l l R e p + b x l . a x   ; s e t  new  movement r e p e a t   f a c t o r  
1 odsw ; s e t  new x movement   increment  
mov [ B a l l   X I n c + b x l   , a x  
1 odsw ; s e t  new y movement   increment  
mov [ B a l l Y I n c + b x l . a x  
mov [ B a l l C o n t r o l + b x l , s i   : s a v e  new c o n t r o l   s t r i n g   p o i n t e r  

; c o n t r o l   s t r i n g  

SetNewMove: 

; Move t h e   b a l l .  

MoveBal l  

; Draw b 

mov a x ,   [ B a l l   X I n c + b x l  
add  [Ba l l   X+bx l   ,ax  ;move i n  x d i r e c t i o n  
mov a x ,   [ B a l l  Y I n c + b x l  
a d d   [ B a l l Y + b x l . a x  :move i n  y d i r e c t i o n  

a l l   a t  new l o c a t i o n .  

mov si.BALL-OFFSET ; p o i n t   t o   b a l l ' s   i m a g e  
mov c x .   [ B a l l   X + b x l  
mov dx .CBa l lY+bx l  
c a l l   D r a w B a l l  

dec   bx  
dec   bx  
j n s   E a c h B a l l   L o o p  

; S e t   u p   t h e   n e x t   p a n n i n g   s t a t e   ( b u t   d o n ' t   p r o g r a m  i t  i n t o   t h e  
; VGA y e t ) .  

c a l l   A d j u s t p a n n i n g  

; W a i t   f o r   d i s p l a y   e n a b l e   ( p i x e l   d a t a   b e i n g   d i s p l a y e d )  s o  we know 
; w e ' r e   n o w h e r e   n e a r   v e r t i c a l   s y n c .   w h e r e   t h e   s t a r t   a d d r e s s   g e t s  
; la tched   and   used .  

c a l l  Wai t D i s p l   a y E n a b l e  

; F l i p   t o   t h e  new p a g e   b y   c h a n g i n g   t h e   s t a r t   a d d r e s s .  

mov 
add 
push 
SETREG 
mov 
POP 
mov 
SETREG 

a x . [ C u r r e n t P a g e O f f s e t l  
a x . C P a n n i n g S t a r t O f f s e t 1  
ax  
CRTC-INDEX. START-ADDRESS-LOW 
a 1 , b y t e   p t r   [ C u r r e n t P a g e O f f s e t + l l  
ax  
a1 ,ah 
CRTC-INDEX. START-ADDRESS-HIGH 

; W a i t   f o r   v e r t i c a l   s y n c  s o  t h e  new s t a r t   a d d r e s s   h a s  a chance 
; t o   t a k e   e f f e c t .  
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c a l l  Wai tVSync 

; S e t   h o r i z o n t a l   p a n n i n g  now, j u s t  as new s t a r t   a d d r e s s   t a k e s   e f f e c t .  

mov a1 , [HPanl 
mov dx.INPUT-STATUS-1 
i n  a1 , d x   ; r e s e t  AC a d d r e s s i n g   t o   i n d e x   r e g  
mov dx.AC-INDEX 
mov a1 .HPELPAN 
o u t   d x . a l   ; s e t  AC i n d e x   t o   p e l   p a n   r e g  

o u t   d x . a l   ; s e t  new p e l   p a n n i n g  
mov a 1  . [ H P a n l  

; F l i p   t h e   p a g e   t o   d r a w   t o   t o   t h e   u n d i s p l a y e d   p a g e .  

x o r   C C u r r e n t P a g e l . 1  
j n z   I s P a g e l  
mov [CurrentPageOffset].PAGEO-OFFSET 
j m p   s h o r t   E n d F l i p P a g e  

mov [CurrentPageOffsetl.PAGEl-OFFSET 
I s P a g e l :  

EndFl  ipPage: 

; E x i t  i f  a k e y ' s   b e e n   h i t .  

mov ah.1 
i n t  16h 
j n z  Done 
j m p   B a l l A n i m a t i o n L o o p  

; F i n i s h e d ,   c l e a r   k e y ,   r e s e t   s c r e e n  mode and e x i t .  

Done: 
mov ah .0   ;c lear   key  
i n t  16h 

mov a x . 3   ; r e s e t   t o   t e x t  mode 
i n t  10h 

mov a h . 4 c h   ; e x i t   t o  DDS 
i n t  21h 

s t a r t  endp 

; R o u t i n e   t o   d r a w  a b a l l - s i z e d   i m a g e   t o  all p l a n e s .   c o p y i n g   f r o m  
: o f f s e t  S I  i n  VGA memory t o   o f f s e t  C X . D X  ( x . y )   i n  VGA memory i n  
; t h e   c u r r e n t   p a g e .  

DrawBal l  
mov 
mu1 
add 
add 
mov 
mov 
push 
push 
POP 

D r a w B a l l  Loop: 

p r o c   n e a r  
ax.LOGICAL-SCREEN-WIDTH 
d x   ; o f f s e t   o f   s t a r t   o f   t o p   i m a g e   s c a n   l i n e  
a x . c x   ; o f f s e t   o f   u p p e r   l e f t   o f   i m a g e  
a x . [ C u r r e n t P a g e O f f s e t ]   : o f f s e t   o f   s t a r t   o f   p a g e  
d i   , a x  
bp,BALL-HEIGHT 
dS 
es 
dS ;move f r o m  VGA memory t o  VGA memory 
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p u s h   d i  
mov cx.BALL-WIDTH 
r e p  movsb  ;draw a s c a n   l i n e   o f   i m a g e  
POP 
add 
dec 
j nz 
POP 
r e t  

DrawBal l  

; W a i t   f o r   t h e  

Wai tVSync 
mov 

d i  
di.LOGICAL-SCREEN-WIDTH ; p o i n t   t o   n e x t   d e s t i n a t i o n   s c a n   l i n e  

DrawBal l   Loop 
ds 

bp 

endp 

l e a d i n g   e d g e   o f   v e r t i c a l   s y n c   p u l s e .  

p r o c   n e a r  
dx.INPUT-STATUS-1 

Wai tNotVSyncLoop:  
i n  
and a1 .VSYNC-MASK 

a1 .dx 

j n z  Wai tNotVSyncLoop 

i n  
and a1 .VSYNC-MASK 

a1 ,dx 

Jz  WaitVSyncLoop 
r e t  

WaitVSync  endp 

WaitVSyncLoop: 

; W a i t   f o r   d i s p l a y   e n a b l e   t o   h a p p e n   ( p i x e l s   t o   b e   s c a n n e d   t o  
; t h e   s c r e e n ,   i n d i c a t i n g   w e ' r e   i n   t h e   m i d d l e   o f   d i s p l a y i n g  a f r a m e ) .  

W a i t D i s p l a y E n a b l e   p r o c   n e a r  

WaitDELoop: 
mov dx.INPUT-STATUS-1 

i n  a1 , d x  
and  a1 .DE-MASK 
j nz   Wa i tDELoop  
r e t  

Wa i tD isp layEnab le   endp  

; P e r f o r m   h o r i z o n t a l / v e r t i c a l  

A d j u s t p a n n i n g  p r o c   n e a r  
dec [Pann ingRep l  
i n z  DoPan 

p a n n i n g .  

; t i m e   t o   g e t  new p a n n i n g   v a l u e s ?  

mov s i . C P a n n i n g C o n t r o l 1   ; p o i n t   t o   c u r r e n t   l o c a t i o n   i n  

1  odsw ; g e t   p a n n i n g   r e p e a t   f a c t o r  
a n d   a x . a x   ; a t   e n d   o f   p a n n i n g   c o n t r o l   s t r i n g ?  
jnz  SetnewPanVal   ues 
mov s i . o f f s e t   P a n n i n g C o n t r o l S t r i n g   ; r e s e t   t o   s t a r t   o f   s t r i n g  
1 odsw ; g e t   p a n n i n g   r e p e a t   f a c t o r  

mov C P a n n i n g R e p 1 . a ~   ; s e t  new p a n n i n g   r e p e a t   v a l u e  
1 odsw 
mov C P a n n i n g X I n c 1 . a ~   ; h o r i z o n t a l   p a n n i n g   v a l u e  
1 odsw 
mov C P a n n i n g Y I n c 1 . a ~   ; v e r t i c a l   p a n n i n g   v a l u e  
mov [ P a n n i n g C o n t r o l ] , s i   ; s a v e   c u r r e n t   l o c a t i o n   i n   p a n n i n g  

: p a n n i n g   c o n t r o l   s t r i n g  

SetNewPanValues: 
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: c o n t r o l   s t r i n g  

; Pan a c c o r d i n g  

OoPan: 
mov 
and 
j s  
j z  
mov 
i n c  
CmP 
j b  
sub 
i nc 
j mp 

mov 
dec 
j n s  
mov 
dec 

mov 

PanLe f t :  

SetHPan: 

t o   p a n n i n g   v a l u e s .  

a x , [ P a n n i n g X I n c l  
ax ,   ax  
P a n L e f t  
C h e c k V e r t i c a l P a n  
a1 , [HPanl 
a1 
a l . 8  
SetHPan 
a1 .a1 
[ P a n n i n g S t a r t O f f s e t l  
s h o r t  SetHPan 

a1 .[HPan] 
a1 
SetHPan 
a l . 7  
[ P a n n i n g S t a r t O f f s e t l  

[HPanl  .a1 
C h e c k v e r t i c a l   P a n :  

mov ax , [Pann ingYInc l  
and  ax.ax 
j s  PanUp 
j z  EndPan 

: h o r i z o n t a l   p a n n i n g  

: n e g a t i v e  means  pan l e f t  

:pan r i g h t :  i f  p e l   p a n   r e a c h e s  
: 8. i t ' s   t i m e   t o  move t o   t h e  
; n e x t   b y t e   w i t h  a p e l   p a n   o f  0 
: and a s t a r t   o f f s e t   t h a t ' s   o n e  
: h i g h e r  

:pan l e f t :  i f  p e l   p a n   r e a c h e s  -1, 
: i t ' s   t i m e   t o  move t o   t h e   n e x t  
: b y t e   w i t h  a p e l   p a n   o f  7 and a 
: s t a r t   o f f s e t   t h a t ' s   o n e   l o w e r  

;save new p e l   p a n   v a l u e  

: v e r t i c a l   p a n n i n g  

: n e g a t i v e  means  pan  up 

add [PanningStartOffset l ,LOGICAL_SCREEN_WIDTH 
; p a n   d o w n   b y   a d v a n c i n g   t h e   s t a r t  
; address   by  a s c a n   l i n e  

j m p   s h o r t  EndPan 

sub  [PanningStartOffset l .LOGICAL_SCREEN_WIDTH 
PanUp: 

; p a n   u p   b y   r e t a r d i n g   t h e   s t a r t  
: address   by  a s c a n   l i n e  

EndPan: 
r e t  

: Draw t e x t u r e d   b o r d e r   a r o u n d   p l a y f i e l d   t h a t   s t a r t s   a t  D I .  

D rawBorde r   p roc   nea r  

: Draw t h e   l e f t   b o r d e r .  

p u s h   d i  
rnov cx.LOGICAL-SCREEN-HEIGHT / 16 

mov a1  .Och : s e l e c t   r e d   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l o c k  
a d d   d i  .LOGICAL-SCREEN-WIDTH * 8 
mov a1  .Oeh ; s e l e c t   y e l l o w   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l o c k  
add di.LOGICAL-SCREEN-WIDTH * 8 
l o o p   D r a w L e f t B o r d e r L o o p  
pop d i  

D rawLe f tBo rde rLoop :  

: Draw t h e   r i g h t   b o r d e r .  

p u s h   d i  
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add di.LOGICAL-SCREEN-WIDTH - 1 
mov cx.LOGICAL-SCREEN-HEIGHT / 16 

mov a1 .Oeh ; s e l e c t   y e l l o w   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l o c k  
add di.LOGICAL-SCREEN-WIDTH * 8 
mov  a1  .Och : s e l e c t   r e d   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l   o c k  
add di.LOGICAL-SCREEN-WIDTH * 8 
l o o p   D r a w R i g h t B o r d e r L o o p  
p o p   d i  

D rawRigh tBorde rLoop :  

; Draw t h e   t o p   b o r d e r .  

p u s h   d i  
mov cx.(LOGICAL-SCREEN-WIDTH - 2) / 2 

DrawTopBorderLoop:  
i n c   d i  
mov a1 .Oeh ; s e l e c t   y e l l o w   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l o c k  
i n c   d i  
mov a1 .Och ; s e l e c t   r e d   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l   o c k  
loop  DrawTopBorderLoop 
p o p   d i  

; Draw t h e   b o t t o m   b o r d e r .  

add di.(LOGICAL-SCREEN-HEIGHT - 8 )  * LOGICAL-SCREEN-WIDTH 
mov cx.(LOGICAL-SCREEN-WIDTH - 2 )  / 2 

i n c   d i  
mov a1 .Och ; s e l e c t   r e d   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l o c k  
i n c   d l  
mov a1 .Oeh ; s e l e c t   y e l l o w   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l   o c k  
l oop   D rawBot tomBorderLoop  
r e t  

DrawBorder  endp 

; Draws  an   8x8   border   b lock  i n   c o l o r   i n  AL a t   l o c a t i o n  01. 
; D I  p r e s e r v e d .  

D r a w B o r d e r B l o c k   p r o c   n e a r  

DrawBot tomBorderLoop:  

p u s h   d i  
SETREG SC-INDEX. MAP-MASK 
mov a1 . O f f h  
r e p t   8  
s t o s b  
add di.LOGICAL-SCREEN-WIDTH - 1 
endm 
POP d i  
r e t  

DrawBorderBl   ock  endp 
A d j u s t p a n n i n g   e n d p  
cseg  ends 

e n d   s t a r t  
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Smooth Panning 
The first thing you’ll notice upon  running  the sample program is the remarkable 
smoothness with  which the display pans from side-to-side and up-and-down. That 
the display can pan  at all is made possible by two VGA features: 256K  of display 
memory and  the virtual screen capability.  Even the most memory-hungry of the VGA 
modes, mode  12H (64Ox480),  uses  only  37.5K per plane,  for  a total of 150K out of 
the total 256K  of  VGA memory. The medium-resolution mode,  mode 10H (640~350), 
requires only 28K per plane,  for  a total of 112K. Consequently, there is room in VGA 
memory to store  more than two full screens of video data in mode 1OH (which the 
sample program  uses),  and  there is room  in all modes to store  a larger virtual screen 
than is actually displayed. In the sample program,  memory is organized as two virtual 
screens, each with a resolution of  672x384,  as  shown in Figure 23.2. The  area of the 
virtual screen actually  displayed at any  given time is selected by setting the display 
memory address at which  to begin fetching video data; this is set by  way  of the start 
address registers (Start Address High, CRTC register OCH, and Start Address Low, 
CRTC register ODH) . Together these registers make up a 16-bit  display memory ad- 
dress at which the CRTC begins fetching  data at  the  beginning of each video frame. 
Increasing the start address causes higher-memory areas of the virtual screen to be 

A000 : 0000 

A000 : 7 EO0 

A000 : FCOO 

video memory organization for Listing 23. I .  
Figure 23.2 
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displayed. For example, the Start Address High register could be set to SOH and  the 
Start Address Low register could be set to OOH in order  to cause the display screen to 
reflect memory starting at offset 8000H in each plane, rather  than  at  the default 
offset  of 0. 
The logical height of the virtual screen is defined by the  amount of  VGA memory 
available. As the VGA scans display memory  for video data,  it progresses from  the 
start address toward higher memory one scan line at a time, until the  frame is com- 
pleted. Consequently, if the start address is increased, lines farther toward the  bottom 
of the virtual screen are displayed; in effect, the virtual screen appears to scroll up  on 
the physical screen. 
The logical width of the virtual screen is defined by the Offset register (CRTC  regis- 
ter 13H), which allows redefinition of the  number of words of  display memory 
considered to  make up  one scan  line.  Normally, 40  words  of  display memory constitute a 
scan line; after the CRTC scans  these 40  words for 640  pixels  worth  of data, it advances  40 
words from  the start of that scan line to find the start of the  next scan line in memory. 
This  means  that displayed  scan lines are contiguous in memory.  However, the Offset 
register can be set so that scan lines are logically wider (or narrower, for  that matter) 
than their displayed  width. The sample program sets the Offset  register  to 2 A H ,  making 
the logical  width  of the virtual  screen 42  words, or 42 * 2 * 8 = 672  pixels, as contrasted 
with the actual width  of the  mode  10h screen, 40 words or 640  pixels. The logical 
height of the virtual  screen  in the sample program is  384;  this  is  accomplished  simply by 
reserving 84 * 384 contiguous bytes  of VGA memory  for the virtual screen,  where  84 
is the virtual screen width in bytes and 384 is the virtual screen  height  in scan lines. 
The start address is the key to panning  around  the virtual screen. The start address 
registers select the row  of the virtual screen that  maps to the top of the display; 
panning down a scan line  requires only that the start address be increased by the 
logical  scan line width in bytes,  which is equal to the Offset  register  times two. The start 
address  registers select the  column  that  maps to the left edge of the display  as  well, 
allowing horizontal  panning, although in this case  only  relatively coarse byte-sized 
adjustments-panning by eight pixels at a time-are supported. 
Smooth  horizontal panning is provided by the Horizontal Pel Panning register, AC 
register 13H, working in conjunction with the start address. Up to 7 pixels worth of 
single pixel panning of the displayed image to the left is performed by increasing 
the Horizontal Pel Panning register from 0 to 7. This exhausts the  range of motion 
possible via the Horizontal Pel Panning register; the  next pixel’s worth of smooth 
panning is accomplished by incrementing  the start address by one  and resetting the 
Horizontal  Pel Panning register  to 0. Smooth horizontal panning should be viewed as a 
series of fine adjustments in the 8-pixel range between coarse byte-sized adjustments. 
A horizontal panning oddity: Alone among VGA modes, text mode  (in most cases) 
has 9 dots per character clock. Smooth  panning in this mode  requires cycling the 
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Horizontal Pel Panning register through  the values 8,0,  1,2,3,4,5,6,   and 7 .  8 is the 
“no  panning” setting. 
There is one annoying  quirk about  programming  the AC. When the AC Index regis- 
ter is set, only the lower five bits are used as the  internal  index.  The  next  most 
significant bit, bit 5, controls the source of the video data  sent to the  monitor by the 
VGA. When bit 5 is set to  1, the  output of the palette RAM, derived  from display 
memory, controls  the displayed pixels; this is normal  operation. When bit 5 is 0, 
video data  does  not come from  the  palette R A M ,  and  the screen  becomes  a solid 
color. The only time bit 5 of the AC Index register should be 0 is during  the setting 
of a  palette RAM register, since the CPU  is only able  to write to  palette RAM when bit 
5 is 0. (Some VGAs do  not  enforce this, but you should always set bit 5  to 0 before 
writing to the palette RAM just to be safe.) Immediately after  setting  palette RAM, 
however,  20h (or any other value with bit  5  set  to 1) should  be written to the AC 
Index register to restore  normal video, and  at all other times bit 5  should  be set to 1. 

By  the way, palette  RAM can be set via the BIOS video interrupt (interrupt I OH), P function I OH. Whenever an VGA function can be performed reasonably  well  through 
a BIOS function,  as  it can in the case of setting palette  RAM, it should be, both 
because there is no point  in reinventing the wheel and because  the  BIOS  may well 
mask incompatibilities between the  IBM VG-4 and VGA clones. 

Color Plane Manipulation 
The VGA provides a  considerable amount of hardware assistance for  manipulating 
the  four display  memory  planes. Two features illustrated by the sample program are  the 
ability to control which planes are written to by a CPU write and  the ability to copy 
four bytes-one from  each plane-with a single CPU read  and a single CPU write. 
The Map  Mask register (SC register 2) selects which planes are written to by  CPU 
writes. If bit 0 of the Map  Mask register is 1, then each byte written by the CPU  will be 
written to VGA memory plane 0, the  plane  that provides the video data  for  the least 
significant bit of the palette RAM address. If bit 0 of the Map  Mask register is 0, then CPU 
writes  will not affect. plane 0. Bits 1, 2, and 3 of the Map  Mask register similarly control 
CPU  access to  planes 1 , 2 ,  and 3, respectively. Any  of the  16 possible combinations of 
enabled  and disabled planes  can  be  selected. Beware,  however,  of writing to an  area 
of memory that is not zeroed. Planes that  are disabled by the Map  Mask register are 
not  altered by  CPU writes, so old  and new images can mix on  the  screen,  producing 
unwanted  color effects as, say, three planes  from the  old image  mix  with one  plane 
from the new image. The sample  program solves this by ensuring  that  the memory 
written to is zeroed. A better way to set all planes  at once is provided by the  set/reset 
capabilities of the VGA, which 1’11 cover in Chapter 25. 
The sample program writes the image  of the  colored ball to VGA memory by en- 
abling one plane at a time and writing the image of the ball for  that  plane. Each 
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image is written to the same VGA addresses; only the destination  plane, selected by 
the Map Mask register, is different. You might think of the ball’s image as consisting 
of four colored overlays,  which together  make up a multicolored image. The sample 
program writes a blank image to VGA memory by enabling all planes and writing a 
block  of zero bytes; the zero bytes are written to all four VGA planes simultaneously. 
The images are written to a nondisplayed portion of VGA memory  in order to take 
advantage of a useful VGA hardware feature, the ability to copy  all four planes at 
once. As shown by the image-loading code discussed  above, four different sets of 
reads and writes-and  several OUTs as  well-are required to copy a multicolored 
image into VGA memory as  would be needed to draw the same image into  a  non- 
planar pixel buffer. This causes unacceptably slow performance, all the  more so 
because the wait states that  occur  on accesses to VGA memory  make  it very desirable 
to minimize display memory accesses, and because OUTs tend to be very  slow. 
The solution is to take advantage of the VGAs  write mode 1, which  is selected via bits 
0 and 1 of the GC Mode register (GC register 5 ) .  (Be careful to preserve bits 2-7 
when setting bits 0 and 1, as is done in Listing 23.1.) In write mode 1, a single CPU 
read loads the addressed byte from all four planes into the VGA’s four  internal latches, 
and a single CPU write  writes the contents of the latches to the  four planes. During 
the write, the byte written by the CPU  is irrelevant. 
The sample program uses  write mode 1 to copy the images that were  previously 
drawn to the high end of VGA memory into a  desired area of display  memory,  all in 
a single block  copy operation. This is an excellent way to keep  the  number of reads, 
writes, and OUTs required to manipulate  the VGA’s display memory low enough to 
allow real-time drawing. 
The Map Mask register can still  mask out planes in write mode 1. All four planes are 
copied  in  the sample program because the Map Mask register is still OFh from  when 
the blank image was created. 
The  animated images appear to move a  bitjerkily because they are byte-aligned and 
so must move a  minimum of 8 pixels  horizontally. This is easily  solved  by storing 
rotated versions  of  all images in VGA memory, and  then in  each instance drawing 
the correct  rotation  for the pixel alignment  at which the image is to be drawn; we’ll 
see this technique  in action in Chapter 49. 
Don’t worry if you’re not catching everything in this chapter  on  the first pass; the 
VGA is a complicated beast, and learning about it is an iterative process. We’ll be 
going over these features  again, in different contexts, over the course of the rest of 
this book. 

Page Flipping 
When  animated graphics are drawn directly on  the screen, with no  intermediate 
frame-composition stage, the image typically flickers and/or ripples, an unavoidable 
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result of modifying display memory at  the same time that  it is being  scanned  for 
video data. The display  memory of the VGA makes it possible  to perform page flipping, 
which eliminates such problems. The basic premise of page  flipping is that  one  area 
of  display  memory is  displayed  while another is being modified. The modifications  never 
affect an  area of memory as it is providing video data, so no undesirable side effects 
occur. Once  the modification is complete,  the  modified buffer is selected  for display, 
causing the screen to change to the new  image in a single  frame’s time, typically 1/60th 
or 1/70th of a second. The  other buffer is then available for  modification. 
As described above, the VGA has 64K per  plane,  enough  to  hold two pages and  more 
in 640x350 mode 10H, but  not  enough for two pages in 640x480 mode  12H. For 
page  flipping, two non-overlapping  areas of  display  memory are  needed.  The sample 
program uses two 672x384 virtual pages, each 32,256 bytes long,  one starting at 
A000:OOOO and  the  other starting at A000:7E00. Flipping between the pages is  as 
simple as setting  the  start  address registers to  point to one display area  or  the other- 
but, as it  turns  out, that’s not as simple as it sounds. 
The timing of the switch  between pages is critical to achieving flicker-free animation. 
It is essential that  the  program never be modifying an  area of display  memory  as that 
memory is providing video data. Achieving this is surprisingly complicated on  the 
VGA,  however. 
The  problem is  as  follows. The start  address is latched by the VGA’s internal circuitry 
exactly once  per  frame, typically (but  not always on all clones) at  the start of the 
vertical sync pulse. The vertical sync status is, in fact, available  as bit  3 of the  Input 
Status 0 register, addressable  at 3BAH (in  monochrome  modes) or 3DAH (color). 
Unfortunately, by the time the vertical sync status is observed by a  program,  the  start 
address  for the  next  frame  has already been  latched, having happened  the  instant 
the vertical sync pulse began. That means that it’s no good to wait for vertical sync to 
begin,  then  set  the new start address; if  we did  that, we’d  have to wait until the next 
vertical sync pulse to start drawing, because the page  wouldn’t flip until then. 
Clearly,  what we want is to set the new start  address, then wait for  the  start of the 
vertical sync pulse, at which point we can  be  sure the page  has  flipped. However, we 
can’t just set the start  address and wait, because we might have the  extreme misfor- 
tune  to set one of the start  address registers before the start of vertical sync and  the 
other after, resulting  in  mismatched halves  of the start  address and a nasty jump of 
the displayed image for  one frame. 
One possible solution to this problem is to pick a  second  page  start  address  that  has 
a 0 value for the lower byte, so only the  Start Address High register ever needs to be 
set, but in the sample program  in Listing 23.1  I’ve gone for  generality and always set 
both bytes.  To  avoid mismatched  start  address bytes, the sample  program waits for 
pixel data  to be displayed, as indicated by the Display Enable status; this tells  us we’re 
somewhere  in the displayed portion of the  frame,  far  enough away from vertical sync 
so we can be sure  the new start  address will get  used  at the  next vertical sync. Once 
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the Display Enable status is observed, the  program sets the new start address, waits 
for vertical sync  to happen, sets the new pel panning state, and  then continues draw- 
ing. Don't worry about  the details right now; page flipping will come up again, at 
considerably greater  length, in later  chapters. 

As an  interesting  side  note,  be  aware  that if you run  DOS  software  under  a P multitasking  environment such as Windows NT timeslicing  delays  can  make  mis- 
matched  start  address  bytes  or  mismatched  start  address and pel  panning settings 
much more likely, for the  graphics  code  can be interrupted at any  time.  This  is  also 
possible,  although  much  less  likely,  under  non-multitasking  environments  such  as 
DOS, because  strategically  placed  interrupts  can  cause  the  same  sorts  of  prob- 
lems  there. For maximum  safety, you should  disable  interrupts around the  key 
portions ofyour page-flipping code,  although  here we run  into  the  problem  that if 
interrupts are disabled from the  time we start  looking for Display  Enable  until we 
set  the Pel Panning register, they  will be  offfor  far too  long, and keyboard,  mouse, 
and network  events  will  potentially  be  lost. Also, disabling  interrupts  won 't help  in 
true  multitasking  environments, which never  let  a  program hog the  entire CPL! 
This  is  one  reason thatpelpanning, although  indubitablyflashy,  isn 't widely used 
and should  be  reserved for only  those  cases where it j .  absolutely  necessary. 

Waiting for  the sync pulse has the side effect of causing program  execution to syn- 
chronize to the VGA's frame  rate of 60 or 70 frames per second, depending  on  the 
display mode. This synchronization has the useful consequence of causing the pro- 
gram to execute at the same speed  on any CPU that can draw  fast enough to complete 
the drawing in a single frame; the  program  just idles for the rest of each  frame  that  it 
finishes before the VGA  is finished displaying the previous frame. 
An important  point illustrated by the sample program is that while the VGA's display 
memory is far larger and  more versatile than is the case  with earlier  adapters,  it is 
nonetheless  a limited resource and must be used judiciously. The sample program 
uses VGA memory to store two 672x384 virtual pages, leaving  only 1024 bytes free to 
store  images. In this  case, the only  images needed are a colored ball and a blank  block 
with  which to erase it, so there is no  problem,  but many applications require dozens 
or  hundreds of images. The tradeoffs between virtual page size, page flipping, and 
image storage must always be kept in mind  when designing programs  for  the VGA. 
To see the  program  run in 640x200 16-color mode,  comment  out  the EQU line for 
MEDRES-VIDEO-MODE. 

The Hazards of VGA Clones 
Earlier, I said that any VGA that  doesn't  support  the features and functionality cov- 
ered in this book  can't properly be called VGA compatible. I also noted  that  there 
are some exceptions, however, and we've just come to the most prominent  one. You 
see, all VGAs really arecompatible with the IBM VGA's functionality when  it  comes to 



drawing pixels into display memory; all the write modes and  read modes and set/ 
reset capabilities and everything else  involved  with manipulating display memory 
really does work in the same way on all VGAs and VGA clones. That compatibility 
isn’t as airtight  when  it  comes to scanning pixels out of  display memory and  onto  the 
screen in certain infrequently-used ways,  however. 
The areas of incompatibility of which I’m aware are illustrated by the sample pro- 
gram,  and may in fact have caused you  to see some glitches when you ran Listing 
23.1. The  problem, which arises only on certain VGAs, is that some settings of the 
Row Offset register cause some pixels to be dropped  or displaced to the wrong place 
on  the screen; often, this happens only in conjunction with certain  start address 
settings. (In my experience, only VRAM (Video  RAM)-based VGAs exhibit this prob- 
lem, no  doubt  due to the way that pixel data is fetched  from VRAM in large blocks.) 
Panning  and large virtual bitmaps can be made to work  reliably, by careful selection 
of virtual bitmap sizes and start  addresses, but it’s  difficult;  that’s one of the reasons that 
most  commercial  software does not use  these  features, although a  number of  games do. 
The upshot is that if you’re going to use  oversized virtual bitmaps and  pan  around 
them, you should take great care to test your software on a wide  variety  of VRA” 
and DRAM-based VGAs. 

Just the Beginning 
That pretty well  covers the important points of the sample VGA program in Listing 23.1. 
There  are many VGA features we didn’t even touch  on,  but  the object was to give  you 
a feel for the variety  of features available on  the VGA, to convey the flexibility and 
complexity of the VGA’s resources, and in general to  give  you an initial sense of  what 
VGA programming is like. Starting with the  next  chapter, we’ll begin to explore the 
VGA systematically, on a more detailed basis. 

The Macro Assembler 
The  code in this book is written in  both C and assembly. I think C is a good develop- 
ment  environment,  but I believe that  often the best code  (although  not necessarily 
the easiest  to  write or  the most reliable) is written in assembly. This is  especially true 
of graphics code  for  the x86  family,  given segments, the string instructions, and  the 
asymmetric and limited register set, and for real-time programming of a  complex 
board like the VGA, there’s really no  other choice for the lowest-level code. 
Before I’m deluged with protests from C devotees, let  me add  that  the majority of  my 
productive work  is done in C; no programmer is immune to the laws  of time, and C 
is simply a more time-efficient environment in which to develop, particularly when 
working in a  programming team. In this book, however, we’re after the sine qua non 
of PC graphics-performance-and we can’t  get there  from  here  without a fair 
amount of  assembly language. 
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Now that we know  what the VGA looks like in  broad strokes and have a sense of what 
VGA programming is like, we can start looking at specific areas in depth.  In  the  next 
chapter, we’ll take a look at  the hardware assistance the VGA provides the CPU dur- 
ing display memory access. There  are  four latches and  four ALUs in those chips, 
along with some useful masks and comparators, and it’s that hardware that’s the 
difference between sluggish performance  and making the VGA get  up  and dance. 



chapter 24

parallel processing with the vga



raphics Memory Four Bytes at a Time 
the ability  of the VGA chip to manipulate up to four bytes of 

lar, the VGA provides four ALUs (Arithmetic Logic 
display memory writes, and this hardware is a tre- 
manipulating  the VGA's sizable frame buffer. The 
the surprisingly complex data flow architecture of 
d in almost all memory access operations, they're 

VGA amming: ALUs and Latches 
I'm going to begin o4detailed tour of the VGA at the heart of the flow of data through 
the VGA the four ALhs built into the VGA's Graphics Controller (GC)  circuitry. The 
&Us (one for each display  memory plane) are capable  of  ORing,  ANDing, and XORing 
CPU data and display  memory data together, as well as masking off some or all  of the bits 
in the data from affecting the find result. All the ALUs perform the same  logical opera- 
tion at any  given time, but each ALU operates on a different display memory byte. 
Recall that the VGA has four display memory planes, with one byte in each  plane at 
any  given  display memory address. All four display memory bytes operated on are 
read  from and written to the same address, but each ALU operates on a byte that was 
read  from a different  plane  and writes the result to that  plane. This arrangement 
allows four display memory bytes to be modified by a single CPU write (which must 
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often  be  preceded by a single CPU read, as we  will see).  The benefit is  vastly  im- 
proved performance; if the CPU had  to select each of the  four planes in  turn via 
OUTS and  perform  the  four logical operations itself, VGA performance would  slow 
to a crawl. 
Figure 24.1 is a simplified depiction of data flow around  the &Us. Each ALU has a 
matching latch, which holds the byte read  from  the  corresponding  plane during the 
last  CPU read  from display  memory,  even if that particular plane wasn’t the plane 
that  the CPU actually read on  the last read access. (Only one byte can be read by the 
CPU  with a single display memory  read;  the plane supplying the byte  is selected by 
the Read Map register. However, the bytes at  the specified address in all four planes 
are always read when the CPU reads display  memory, and those four bytes are  stored 
in their respective latches.) 
Each ALU logically combines the byte written by the CPU and the byte stored  in  the 
matching latch, according to the settings of bits 3 and 4 of the Data Rotate register 
(and the Bit  Mask register as  well,  which  I’ll  cover next  time),  and  then writes the 
result to display  memory. It is most important to understand  that  neither ALU oper- 
and comes directly from display  memory. The temptation is to think of the ALUs  as 
combining CPU data and  the contents of the display memory address being written 
to, but they  actually combine CPU data and the  contents of the last  display memory 
location read, which need  not be the location being modified. The most  common 
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application of the ALUs is indeed to modify a given  display memory location, but 
doing so requires a read  from  that location to load the latches before  the write that 
modifies it. Omission of the  read results in  a write operation  that logically combines 
CPU data with  whatever data  happens to  be in the latches from  the last read, which 
is normally undesirable. 
Occasionally,  however, the  independence of the latches from the display memory 
location being written to can be used to great advantage. The latches can be used to 
perform 4byte-at-a-time (one byte from each plane) block copying; in this applica- 
tion,  the latches are loaded with a  read  from  the source area  and written unmodified 
to the destination  area. The latches can be written unmodified in one of  two  ways: By 
selecting write mode 1 (for  an example of this, see the last chapter),  or by setting the 
Bit  Mask register to 0 so only the latched bits are written. 
The latches can also be used to  draw a fairly complex area fill pattern, with a differ- 
ent bit  pattern used to fill each plane. The mechanism for this  is  as  follows:  First, 
generate  the  desired  pattern across  all planes at any  display memory address. Gener- 
ating  the  pattern  requires  a separate write operation  for each plane, so that each 
plane's byte will be  unique. Next, read  that memory address to store the  pattern in 
the latches. The contents of the latches can now be written to memory any number 
of times by using either write mode 1 or  the bit mask, since they  will not change  until 
a  read is performed. If the fill pattern does not require  a  different bit pattern  for 
each plane-that  is, if the  pattern is  black and white-filling can be  performed  more 
easily  by simply fanning  the CPU  byte out to all four planes with  write mode 0. The 
set/reset registers can be used in conjunction with fanning  out  the  data to support  a 
variety  of  two-color patterns. More on this in  Chapter 25. 
The sample program in Listing 24.1 fills the screen with horizontal  bars, then illustrates 
the operation of each of the four ALU logical functions by writing avertical SO-pixel-wide 
box filled with solid, empty, and vertical and horizontal bar  patterns over that back- 
ground using  each of the functions in turn. When  observing the  output of the sample 
program, it is important to remember that all four vertical  boxes are drawn  with exactly 
the same code-only the logical function  that is in effect differs from box to  box. 
All graphics in the sample program  are done in black-and-white by writing to all 
planes, in order to show the  operation of the ALUs most  clearly.  Selective enabling 
of planes via the Map  Mask register and/or set/reset would produce color effects; in 
that case, the  operation of the logical functions must be evaluated on a plane-by- 
plane basis, since only the  enabled planes would be affected by each  operation. 

LISTING 24.1 124- 1 .ASM 
: Program t o   i l l u s t r a t e   o p e r a t i o n   o f  ALUs and l a t c h e s  o f  t h e  VGA's 
; G r a p h i c s   C o n t r o l l e r .  Draws a v a r i e t y  o f  p a t t e r n s   a g a i n s t  
; a h o r i z o n t a l l y   s t r i p e d   b a c k g r o u n d ,   u s i n g   e a c h   o f   t h e  4 a v a i l a b l e  
; l o g i c a l   f u n c t i o n s   ( d a t a   u n m o d i f i e d ,  AND, OR, X O R )  i n   t u r n   t o  combine 
; t h e  images w i th   t he   backg round .  
; By Michael   Abrash. 
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s tack  segment  para  stack 'STACK' 
db 512 dup(? )  

stack  ends 

VGA-VIDEO-SEGMENT equ OaOOOh :VGA d i s p l a y  memory segment 
SCREEN-HEIGHT equ  350 
SCREEN-WIDTH-IN-BYTES equ 80 
DEMO-AREA-HEIGHT equ  336 :# o f  scan 1 i n e s   i n   a r e a  

: l o g i c a l   f u n c t i o n   o p e r a t i o n  

DEMO-AREA-WIDTH-IN-BYTES equ 40 
: i s  demonstrated i n  
: w i d t h   i n   b y t e s   o f   a r e a  
: l o g i c a l   f u n c t i o n   o p e r a t i o n  

VERTICAL-BOX-WIDTH-IN-BYTES equ 10 
: i s  demonstrated i n  
: w i d t h   i n   b y t e s   o f   t h e   b o x  used t o  
: demons t ra te   each   l og i ca l   f unc t i on  

; VGA reg i s te r   equa tes .  

GC-INDEX 
GC-ROTATE 

equ  3ceh ;GC i n d e x   r e g i s t e r  
equ  3 :GC d a t a   r o t a t e / l o g i c a l   f u n c t i o n  

GC-MODE 
: r e g i s t e r   i n d e x  

equ 5 :GC mode r e g i s t e r   i n d e x  

dseg  segment  para common 'DATA' 

: S t r i n g  used t o   l a b e l   l o g i c a l   f u n c t i o n s .  

L a b e l s t r i n g   l a b e l   b y t e  

LABEL-STRING-LENGTH equ S - L a b e l S t r i n g  

: S t r i n g s  used t o   l a b e l  fill p a t t e r n s .  

F i  11  PatternFF db 'Fill Pat te rn :  OFFh' 
FILL-PATTERN-FF-LENGTH equ S - F i l l P a t t e r n F F  
F i  11 P a t t e r n 0 0   d b   ' F i l l   P a t t e r n :   0 0 0 h '  
FILL-PATTERN-00-LENGTH equ S - F i l l P a t t e r n 0 0  
F i  11 Pat te rnVer t   db  
FILL-PATTERN-VERT-LENGTH 

'Fill P a t t e r n :   V e r t i c a l   B a r '  
equ S - Fill Pat te rnVer t  

F i  11 Pat te rnHorz   db  'Fill P a t t e r n :   H o r i z o n t a l   B a r '  
FILL-PATTERN-HORZ-LENGTH equ S - F i l l P a t t e r n H o r z  

dseg  ends 

: Macro t o   s e t   i n d e x e d   r e g i s t e r  INDEX o f  GC c h i p   t o  SETTING. 

SETGC macro INDEX. SETTING 

db 'UNMODIFIED AND OR XOR ' 

mov dx, GC-INDEX 
mov ax.(SETTING SHL 8)  OR I N D E X  
out  dx.ax 
endm 

: Macro t o   c a l l  BIOS w r i t e   s t r i n g   f u n c t i o n   t o   d i s p l a y   t e x t   s t r i n g  
: TEXT-STRING. o f  l e n g t h  TEXT-LENGTH, a t   l o c a t i o n  ROW.COLUMN. 

TEXT-UP macro TEXT-STRING.  TEXT-LENGTH. ROW. COLUMN 
mov ah.13h  :BIOS w r i t e   s t r i n g   f u n c t i o n  
mov b p . o f f s e t  TEXT-STRING ;ES:BP p o i n t s   t o   s t r i n g  
mov  cx.TEXT-LENGTH 
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mov  dx.(ROW  SHL 8 )  OR COLUMN : p o s i t i o n  
sub a1 ,a1 : s t r i n g   i s   c h a r s   o n l y ,   c u r s o r   n o t  moved 
mov b l  ,7 : t e x t   a t t r i b u t e   i s   w h i t e   ( l i g h t   g r a y )  
i n t  10h 
endm 

cseg  segment  para  publ ic ' C O D E '  

s t a r t   p r o c   n e a r  
assume cs:cseg.  ds:dseg 

mov ax,  dseg 
mov ds.ax 

: S e l e c t  640x350 g r a p h i c s  mode. 

mov ax.010h 
i n t  10h 

: ES p o i n t s   t o  VGA memory. 

mov  ax,VGA-VIDEO-SEGMENT 
mov es.ax 

: Draw b a c k g r o u n d   o f   h o r i z o n t a l   b a r s .  

mov dx,SCREEN_HEIGHT/4 

sub d i   . d i   : s t a r t   a t   o f f s e t  0 i n   d i s p l a y  memory 
mov a x . 0 f f f f h  :fill p a t t e r n   f o r   l i g h t   a r e a s   o f   b a r s  
mov bx.DEMO-AREA-WIOTH-IN-BYTES / 2 : l e n g t h   o f   e a c h   b a r  
mov si.SCREEN-WIOTH-IN-BYTES - DEMO-AREA-WIDTH-IN-BYTES 
mov bp.(SCREEN-WIDTH-IN-BYTES * 3 )  - DEMO-AREA-WIDTH-INKBYTES 

mov cx.  bx : l e n g t h   o f   b a r  

add d i . s i  : p o i n t   t o   s t a r t   o f   b o t t o m   h a l f   o f   b a r  
mov cx,   bx : l e n g t h   o f   b a r  

a d d   d i , b p   : p o i n t   t o   s t a r t   o f   t o p   o f   n e x t   b a r  
dec  dx 
j n z  BackgroundLoop 

:# o f   b a r s   t o  draw  (each 4 p i x e l s   h i g h )  

BackgroundLoop: 

r e p   s t o s w   : d r a w   t o p   h a l f   o f   b a r  

rep   s tosw  :d raw  bo t tom  ha l f   o f   ba r  

: D r a w  v e r t i c a l  boxes f i l l e d   w i t h  a v a r i e t y   o f  fill p a t t e r n s  
: u s i n g   e a c h   o f   t h e  4 l o g i c a l   f u n c t i o n s   i n   t u r n .  

SETGC  GC-ROTATE. 0 : s e l e c t   d a t a   u n m o d i f i e d  

mov d i  .O 
cal l   DrawVert ica lBox  ; . . .and  draw  box 

: l o g i c a l   f u n c t i o n . .  . 

SETGC 
mov 
c a l l  

SETGC 
mo v 
c a l l  

SETGC 
mov 
c a l l  

GC-ROTATE, 08h : s e l e c t  AND l o g i c a l   f u n c t i o n . .  . 
d i  .10 
DrawVert icalBox  : . . .and  draw  box 

GC-ROTATE, 10h   : se lec t  OR l o g i c a l   f u n c t i o n . .  . 
d i  .20 
DrawVert ica lBox ; . . .and  draw  box 

GC-ROTATE, 18h  :se lec t  X O R  l o g i c a l   f u n c t i o n  ... 
d i  .30 
DrawVer t i   ca l  Box :...and  draw  box 

Parallel  Processing with the VGA 455 



: R e s e t   t h e   l o g i c a l   f u n c t i o n   t o   d a t a   u n m o d i f i e d ,   t h e   d e f a u l t   s t a t e .  

SETGC  GC-ROTATE. 0 

: Labe l   the   sc reen.  

push  ds 
POP e s   ; s t r i n g s   w e ' l l   d i s p l a y   a r e   p a s s e d   t o  B I O S  

: by p o i n t i n g  ES:BP t o  them 

: L a b e l   t h e   l o g i c a l   f u n c t i o n s ,   u s i n g   t h e  VGA BIOS'S 
: w r i t e   s t r i n g   f u n c t i o n .  

TEXT-UP L a b e l s t r i n g ,  LABEL-STRING-LENGTH, 24. 0 

: Labe l   the  fill p a t t e r n s ,   u s i n g   t h e  VGA BIOS'S 
: w r i t e   s t r i n g   f u n c t i o n .  

TEXT-UP F i l l P a t t e r n F F .  FILL-PATTERN-FF-LENGTH. 3.  42 
TEXT-UP F i l l P a t t e r n 0 0 .  FILL-PATTERN-00-LENGTH. 9, 42 
TEXT-UP F i l l P a t t e r n V e r t .  FILL-PATTERN-VERT-LENGTH. 15.  42 
TEXT-UP F i l l P a t t e r n H o r z ,  FILL-PATTERN-HORZ-LENGTH. 21.  42 

: Wait u n t i l  a key's  been h i t   t o   r e s e t   s c r e e n  mode & e x i t .  

WaitForKey: 
mov ah.1 
i n t  16h 
jz WaitForKey 

: F in i shed .   C lea r   key ,   rese t   sc reen  mode and e x i t .  

Done: 
mov ah .0   :c lear  
i n t  16h 

mov ax.3 : r e s e t  
i n t  10h 

k e y   t h a t  we j u s t   d e t e c t e d  

t o   t e x t  mode 

mov ah.4ch : e x i t   t o  DOS 
i n t   Z l h  

s t a r t  endp 

: S u b r o u t i n e   t o   d r a w  a box  80x336 i n   s i z e ,   u s i n g   c u r r e n t l y   s e l e c t e d  
: l o g i c a l   f u n c t i o n ,   w i t h   u p p e r   l e f t   c o r n e r  a t  t h e   d i s p l a y  memory o f f s e t  
: i n  D I .  Box i s   f i l l e d   w i t h   f o u r   p a t t e r n s .  Top q u a r t e r   o f   a r e a   i s  
: f i l l e d   w i t h  OFFh ( s o l i d )   p a t t e r n ,   n e x t   q u a r t e r   i s   f i l l e d   w i t h  OOh 
: ( e m p t y )   p a t t e r n ,   n e x t   q u a r t e r   i s   f i l l e d   w i t h  33h   (doub le   p i xe l   w ide  
: v e r t i c a l   b a r )   p a t t e r n ,  and b o t t o m   q u a r t e r   i s   f i l l e d   w i t h   d o u b l e   p i x e l  
: h i g h   h o r i z o n t a l   b a r   p a t t e r n .  

: Macro t o  draw a column o f   t h e   s p e c i f i e d   w i d t h   i n   b y t e s ,   o n e - q u a r t e r  
: of t h e   h e i g h t   o f   t h e   b o x ,   w i t h   t h e   s p e c i f i e d  fill p a t t e r n .  

DRAW-BOX-QUARTER macro  FILL, WIDTH 
1 oca1 RowLoop. Col umnLoop 
mov  a1 .FILL :fill p a t t e r n  
mov  dx.DEMO-AREA-HEIGHT / 4 :1 /4 o f  t h e   f u l l  box   he igh t  
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RowLoop: 
mov cx.WIDTH 

mov a h . e s : l d i l  
ColumnLoop: 

s t o s b  

: l o a d   d i s p l a y  memory c o n t e n t s   i n t o  
: GC l a t c h e s  (we d o n ' t   a c t u a l l y   c a r e  
: a b o u t   v a l u e   r e a d   i n t o  AH) 
: w r i t e   p a t t e r n ,   w h i c h   i s   l o g i c a l l y  
: c o m b i n e d   w i t h   l a t c h   c o n t e n t s   f o r   e a c h  
: p l a n e  a n d   t h e n   w r i t t e n   t o   d i s p l a y  
: memory 

1 oop Col umnLoop 
add di.SCREEN_WIDTH_IN-BYTES - WIDTH 

dec  dx 
j n z  RowLoop 
endm 

: p o i n t   t o   s t a r t   o f   n e x t   l i n e  down i n  box 

DrawVer t i   ca l  Box proc   near  
DRAW-BOXQUARTER O f f h .  VERTICALLBOX-WIDTHKIN-BYTES 

DRAW-BOX-OUARTER 0. VERTICAL_BOX-WIDTHKIN-BYTES 

DRAWKBOXLOUARTER 033h. VERTICAL-BOXKWIDTHKIN-BYTES 

: f i r s t  fill p a t t e r n :   s o l i d  fill 

:second fill p a t t e r n :  empty fill 

mov 

sub 
mov 

dec 
mov 

mov 
s tosb  
1 oop 
add 
mov 

mov 
s t o s b  
1 oop 
add 
i nc 
mov 

mov 
s tosb  

add 
1 oop 

mov 

mov 
s tosb  
1 oop 
add 
dec 
jnz 

HorzBarLoop: 

HBLoopl: 

HBLoopE: 

HBLoop3: 

HBLoop4: 

: t h i r d  fill p a t t e r n :   d o u b l e - p i x e l  
: w i d e   v e r t i c a l   b a r s  

dx.DEMOKAREALHEIGHT / 4 / 4 
: f o u r t h  fill p a t t e r n :   h o r i z o n t a l   b a r s   i n  
: s e t s   o f  4 s c a n   l i n e s  

ax.ax 
si.VERTICAL-BOXKWIDTH-IN-BYTES : w i d t h   o f  fill area 

ax ; O f f h  fill ( s m a l l e r   t o  do  word  than  byte D E C )  
cx ,  s i  : w i d t h   t o  fill 

b l   . e s : [ d i l   : l o a d   l a t c h e s   ( d o n ' t   c a r e   a b o u t   v a l u e )  

HBLoopl 
di.SCREEN-WIDTH_IN-BYTES - VERTICAL_BOX_WIDTH-IN_BYTES 
c x . s i   : w i d t h   t o  fill 

b l   , e s : [ d i l  :1  oad 1 atches 

HBLoopE 
di.SCREEN-WIDTH-IN-BYTES - VERTICAL-BOX-WIDTH-IN-BYTES 
ax :O fill ( s m a l l e r   t o  do  word  than  byte DEC)  
c x . s i   : w i d t h   t o  fill 

b l . e s : [ d i l  : 1 oad 1 atches 

HBLoop3 
di,SCREEN-WIDTH-IN-BYTES - VERTICAL-BOX_WIDTH-IN_BYTES 
c x , s i   : w i d t h   t o  fill 

b l   . e s : [ d i l   : l o a d   l a t c h e s  

HBLoop4 
di.SCREENKWIDTH-IN_BYTES - VERTICALLBOXKWIDTH-IN-BYTES 
dx 
HorzBarLoop 

: w r i t e   s o l i d   p a t t e r n ,   t h r o u g h  ALUs 

: w r i t e   s o l i d   p a t t e r n ,   t h r o u g h  ALUs 

: w r i t e  empty p a t t e r n ,   t h r o u g h  ALUs 

: w r i t e  empty p a t t e r n ,   t h r o u g h  ALUs 
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r e t  
OrawVert icalBox  endp 
cseg  ends 

end s t a r t  

Logical function 0, which  writes the CPU data  unmodified, is the  standard  mode of 
operation of the ALUs. In this mode,  the CPU data is combined with the  latched 
data by ignoring  the  latched  data entirely. Expressed as a logical function, this could 
be considered CPU data ANDed  with 1 (or ORed with 0).  This is the  mode  to use 
whenever you  want to place CPU data  into display  memory, replacing  the previous 
contents entirely. It may occur to you that  there is no  need  to  latch display memory 
at all when the  data  unmodified  function is selected.  In  the sample program,  that is 
true,  but if the bit mask  is being  used,  the  latches must be loaded even for  the  data 
unmodified  function, as 1’11 discuss in  the  next  chapter. 
Logical functions 1 through 3 cause the CPU data  to be ANDed, ORed, and XORed 
with the  latched  data, respectively.  Of these, XOR  is the most useful, since exclusive- 
ORing is a  traditional way to  perform  animation.  The uses  of the AND and OR logical 
functions  are less  obvious. AND can be used to mask a blank area  into display  memory, 
or to mask  off those  portions of a drawing operation  that  don’t overlap an existing 
display memory image. OR could conceivably be used  to  force an image into display 
memory over an existing image. To be honest,  I haven’t encountered any particu- 
larly valuable applications  for AND and OR, but  they’re  the  sort of building-block 
features  that  could  come in handy in  just  the  right context, so keep  them in mind. 

Notes on the  ALU/Latch  Demo Program 
VGA settings such as the logical function  select  should be restored  to  their  default 
condition  before  the BIOS is called  to output text or draw  pixels. The VGA BIOS 
does not  guarantee  that it will set most VGA registers except on mode sets, and  there 
are so many  compatible  BIOSes around  that the code of the IBM  BIOS  is not  a reliable 
guide.  For instance, when the BIOS  is called to draw text, it’s  likely that  the  result will 
be illegible if the Bit  Mask register is not in its default state. Similarly, a mode set should 
generally be performed  before  exiting  a  program  that  tinkers with VGA settings. 
Along the same  lines, the sample program does not explicitly set the Map Mask register 
to ensure  that all planes  are  enabled  for writing. The  mode set for mode  10H leaves 
all planes enabled, so I did not  bother to program the Map Mask register, or any other 
register  besides the Data  Rotate  register, for that matter. However, the profusion of com- 
patible BIOSes means  there is some small  risk in relying on  the BIOS  to  leave registers 
set properly. For the highly  safety-conscious, the best course would be to  program 
data  control registers such as the Map  Mask and Read Mask explicitly before relying 
on  their  contents. 
On  the other  hand, any function  the BIOS provides explicitly-as part of the  inter- 
face specification-such as setting  the  palette R A M ,  should be used in preference  to 
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programming  the hardware directly whenever possible,  because the BIOS  may  mask 
hardware differences between VGA implementations. 
The code  that draws each vertical  box in  the sample program  reads  from display 
memory immediately before writing to display  memory. The read  operation loads 
the VGA latches. The value that is read is irrelevant as far as the sample program is 
concerned.  The  read  operation is present only  because  it is necessary to  perform a 
read to load the latches, and there is no way to  read  without  placing a value  in a register. 
This is a bit  of a nuisance, since  it means that  the value  of  some  8-bit  register must be 
destroyed. Under certain circumstances, a single  logical instruction such as XOR or 
AND can be used to  perform  both  the  read  to load the latches and  then write  to 
modify  display memory without affecting  any  CPU  registers,  as  we’ll  see later on. 
All text in the sample program is  drawn by VGA BIOS function  13H,  the write string 
function. This function is also present  in  the AT’S  BIOS, but  not in the XT’s or PC’s, 
and as a result is  rarely used; the  function is  always available if a VGA is installed, 
however.  Text  drawn  with  this function is  relatively  slow.  If speed is important, a 
program can draw  text  directly into display memory much faster in any  given  display 
mode. The great virtue  of the BIOS  write string  function in the case of the VGA is 
that  it provides an  uncomplicated way to get text on  the screen reliably in a n y  mode 
and color,  over  any background. 
The expression used to load DX in  the TEXT-UP macro in the sample program may 
seem  strange, but it’s a convenient way to save a byte  of program  code and a few  cycles  of 
execution time. DX is being  loaded with a word  value that’s composed of two inde- 
pendent immediate byte  values. The obvious way to implement this would be with 

MOV D L . V A L U E 1  
MOV D H . V A L U E 2  

which requires  four instruction bytes. By shifting the value destined for the  high byte 
into  the high byte  with MASM’s shift- left operator, SHL (*100H would  work also), 
and  then logically combining  the values  with MASM’s OR operator  (or  the ADD 
operator),  both halves  of DX can be loaded with a single instruction, as  in 

MOV D X , ( V A L U E E   S H L  8 )  O R   V A L U E 1  

which  takes  only three bytes and is faster, being a single instruction. (Note,  though, 
that in  32-bit protected  mode, there’s a size and performance penalty for 16-bit  in- 
structions such  as the MOV above;  see the first part of this book for details.) As 
shown, a macro is an ideal place to use  this technique;  the  macro invocation can 
refer to two separate byte  values,  making matters easier for the programmer, while 
the macro itself can combine  the values into a single  word-sized constant. 

A minor optimization tip illustrated  in  the listing is the use of INCAX and DEC p AX in the DrawVerticalBox subroutine when only AL actually needs to be modi- 
fied. Word-sized  register increment and decrement instructions (or dword-sized 
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instructions in 32-bit protected  mode) are only  one byte long, while byte-sized 
register increment and decrement instructions are two bytes long. Consequentb, 
when size counts, it is worth using a whole 16-bit (or 32-bit) register instead of the 
low 8 bits of that register for INC and DEC-ifyou don 't need the upper  portion 
of the register for any  other  purpose,  or ifyou can be  sure that the INC or DEC 
won't aflect the upperpart of the registex 

The latches and ALUs are  central to high-performance VGA code, since they  allow 
programs to process across  all four  memory planes without  a series of OUTS and 
read/write  operations.  It is not always  easy to arrange  a  program  to  exploit this  power, 
however, because the &Us are  far  more  limited  than  a CPU. In many instances, 
however, additional  hardware  in the VGA, including  the  bit mask, the  set/reset fea- 
tures, and  the barrel shifter, can  assist the ALUs in  controlling  data, as  we'll see in 
the  next few chapters. 
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hiker,  Bit  Mask, and 
*&4‘# 

Set/Reset 
In  the last chapter,  amined  a simplified model of data flow  within the GC por- 
tion of the VGA, .latches  and ALUs. Now we’re ready to expand  that 
model  to  include ifter, bit mask, and  the  set/reset capabilities, leaving 
only the write mo lored over the  next few chapters. 

tation 
expanded model of  GC data flow, featuring the barrel shifter 

and bit mask circui Let’s look at the barrel shifter first. A barrel shifter is circuitry 
capable of  shifting-ok rotating, in the VGAs  case-data an arbitrary number of  bits 
in a single operation, as opposed to being able to shift only one bit position at a time. 
The barrel shifter in  the VGA can rotate  incoming CPU data up to seven bits to the 
right (toward the least significant bit), with bit 0 wrapping back to bit 7, after which 
the VGA continues processing the  rotated byte just as it normally processes unrotated 
CPU data.  Thanks to the  nature of barrel shifters, this rotation  requires no extra 
processing time over unrotated VGA operations. The  number of bits by which CPU 
data is shifted is controlled by bits 2-0 of  GC register 3, the Data Rotate register, 
which  also contains the ALU function select bits (data  unmodified, AND, OR, and 
XOR) that we looked at  in  the last chapter. 
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The  barrel shifter is powerful, but (as sometimes happens  in  this business) it  sounds 
more useful than  it really is. This is because the GC can only rotate CPU data,  a task 
that  the CPU itself is perfectly capable of performing. Two OUTs are  needed to 
select  a given rotation: one to set the GC Index register, and  one to  set  the Data 
Rotate register. However,  with careful  programming it’s sometimes possible to leave 
the GC Index always pointing  to  the Data Rotate register, so only one OUT is needed. 
Even so, it’s often easier and/or faster  to simply  have the CPU rotate  the  data of 
interest CL times than  to  set  the Data Rotate register. (Bear in  mind  that  a single 
OUT takes from 11 to 31 cycles on a 486-and longer if the VGA is sluggish at re- 
sponding  to OUTS, as many VGAs are.) If only the VGA could  rotate latched data, 
then  there would be all sorts of useful applications  for  rotation, but, sadly, only CPU 
data  can be rotated. 
The drawing  of bit-mapped  text is one use for  the barrel shifter, and I’ll demonstrate that 
application below. In  general,  though,  don’t knock  yourself out trylng to figure out 
how to  work data  rotation  into your  programs-itjust  isn’t  all that useful in most  cases. 

The Bit Mask 
The VGA has  bit  mask  circuitry for each of the  four memory  planes. The  four bit masks 
operate in parallel and  are all driven by the same mask data  for  each  operation, so 
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they’re generally referred  to in the singular,  as “the bit  mask.”  Figure  25.2  illustrates 
the operation of one bit of the bit mask for one plane.  This  circuitry  occurs  eight  times in 
the bit  mask for a given plane,  once  for each bit of the byte  written  to  display  memory. 
Briefly, the bit mask determines on a bit-by-bit  basis whether  the source for each byte 
written  to  display  memory  is the ALU for that plane or the latch for that plane. 
The bit mask  is controlled by GC register 8, the Bit  Mask register. If a given bit of the 
Bit  Mask register is 1, then  the  corresponding bit of data  from  the ALUs  is written to 
display memory for all four planes, while if that bit is 0, then  the  corresponding bit 
of data  from  the latches for the  four planes is written  to  display  memory unchanged. 
(In write mode 3, the actual bit mask  that’s applied  to  data written to display memory 
is the logical AND of the  contents of the Bit  Mask register and  the  data written by the 
CPU,  as  we’ll  see in Chapter 26.) 
The most common use  of the bit mask  is to allow updating of selected bits  within a 
display memory byte. This works as  follows: The display memory byte  of interest is 
latched;  the bit mask  is set to preserve  all but  the bit or bits to  be  changed;  the CPU 
writes  to  display  memory,  with the bit mask preserving the  indicated  latched bits and 
allowing ALU data  through to change  the other bits. Remember, though,  that  it is 
not possible to  alter selected bits in a display  memory  byte directly; the byte must first 
be latched by a CPU read,  and  then  the bit mask can keep selected bits  of the latched 
byte unchanged. 
Listing  25.1  shows a program  that uses the bit  mask data  rotation capabilities  of the 
GC to draw bitmapped text at any screen location. The BIOS only  draws characters 
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on character  boundaries; in 640x480 graphics mode  the default font is drawn on 
byte boundaries horizontally and every 16 scan lines vertically.  However,  with direct 
bitmapped text drawing of the sort used in Listing 25.1, it's possible to draw  any font 
of any  size  anywhere on the screen (and  a lot faster than via DOS or the BIOS, as well). 

LISTING 25.1 125- 1 .ASM 
: Program t o   i l l u s t r a t e   o p e r a t i o n   o f   d a t a   r o t a t e   a n d   b i t  mask 
: f e a t u r e s   o f   G r a p h i c s   C o n t r o l l e r .   D r a w s   8 x 8   c h a r a c t e r   a t  
: s p e c i f i e d   l o c a t i o n ,   u s i n g  VGA's 8x8  ROM f o n t .   D e s i g n e d  
: f o r   u s e   w i t h  modes OOh, OEh. OFh. 10h. and  1Zh. 
: By M ichae l   Ab rash .  

s t a c k   s e g m e n t   p a r a   s t a c k  'STACK' 
db   512  dup(?)  

s t a c k   e n d s  

VGACVIOEOCSEGMENT equ OaOOOh :VGA d i s p l a y  memory  segment 
SCREEN-WIDTH-INCBYTES equ  044ah : o f f s e t   o f  BIOS v a r i a b l e  
FONT-CHARACTER-SIZE equ 8 :# b y t e s   i n   e a c h   f o n t   c h a r  

: VGA r e g i s t e r   e q u a t e s .  

GC-INDEX equ  3ceh ;GC i n d e x   r e g i s t e r  
GC-ROTATE equ  3 :GC d a t a   r o t a t e / l o g i c a l   f u n c t i o n  

GC-BIT-MASK equ 8 ;GC b i t  mask r e g i s t e r   i n d e x  

dseg  segment   para  common 'DATA' 
TEST-TEXT-ROW equ 69 
TEST-TEXT-COL equ 1 7  

: row t o   d i s p l a y   t e s t   t e x t   a t  

TEST-TEXT-WIDTH equ  8 
;co lumn t o  d i s p l a y   t e s t   t e x t   a t  
: w i d t h   o f   a   c h a r a c t e r   i n   p i x e l s  

T e s t s t r i n g  
db 

l a b e l   b y t e  
' H e l l o ,   w o r l d ! ' . O   : t e s t   s t r i n g   t o   p r i n t .  

F o n t P o i n t e r   d d  ? : f o n t   o f f s e t  
dseg  ends 

: r e g i s t e r   i n d e x  

: Macro t o   s e t   i n d e x e d   r e g i s t e r  INDEX o f  GC c h i p   t o  SETTING. 

SETGC macro  I N D E X .  SETTING 
mov dx.GC-INDEX 
mov ax,(SETTING SHL 8 )  OR INDEX 
o u t   d x . a x  
endm 

c s e g   s e g m e n t   p a r a   p u b l i c  ' C O D E '  

s t a r t   p r o c   n e a r  
assume  cs:cseg,  ds:dseg 

mov ax ,dseg 
mov ds ,ax  

: S e l e c t   6 4 0 x 4 8 0   g r a p h i c s  mode. 

mov ax .012h 
i n t  10h 

: S e t   d r i v e r  t o  u s e   t h e   8 x 8   f o n t .  
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mov a h . l l h  
mov a1 .30h 
mov b h , 3   : g e t   8 x 8   f o n t   p o i n t e r  
i n t  10h 
c a l l   S e l   e c t F o n t  

:VGA B I O S  c h a r a c t e r   g e n e r a t o r   f u n c t i o n ,  
: r e t u r n   i n f o   s u b f u n c t i o n  

: P r i n t   t h e   t e s t   s t r i n g .  

mov s i   . o f f s e t   T e s t S t r i n g  
mov bx.TEST_TEXT_ROW 
mov cx.TEST_TEXT_COL 

1 odsb 
and a1 .a1 

c a l l  DrawChar 
add cx.TEST_TEXT_WIDTH 
j m p   S t r i n g O u t L o o p  

S t r i n g O u t L o o p :  

j z  S t r i ngOutDone  

S t r i ngOutDone :  

: R e s e t   t h e   d a t a   r o t a t e   a n d   b i t  mask r e g i s t e r s .  

SETGC  GC-ROTATE. 0 
SETGC GC_EJT_MASK, O f f h  

: W a i t   f o r  a k e y s t r o k e .  

mov ah .1  
i n t  21h 

: R e t u r n   t o   t e x t  mode 

mov ax,03h 
i n t  10h 

: E x i t   t o  DOS. 

mov ah.4ch 
i n t  21h 

S t a r t   e n d p  

: S u b r o u t i n e   t o   d r a w  a t e x t   c h a r a c t e r   i n  a l i n e a r   g r a p h i c s  mode 
: (ODh, OEh. OFh. 010h.   012h) .  
: F o n t   u s e d   s h o u l d   b e   p o i n t e d   t o   b y   F o n t P o i n t e r .  

: I n p u t :  
: AL - c h a r a c t e r   t o   d r a w  
: EX - row t o  d r a w   t e x t   c h a r a c t e r   a t  
: C X  - column t o   d r a w   t e x t   c h a r a c t e r   a t  

: Forces  ALU 

DrawChar 
push 
push 
push 
push 
push 
push 
push 
push 

f u n c t i o n   t o  "move". 

p r o c   n e a r  

bx  

dx  

d i  
s i  

ds  

ax  

c x  

bP 
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: S e t  D S : S I  t o   p o i n t   t o   f o n t  and ES t o   p o i n t   t o   d i s p l a y  memory. 

I d s   s i   . [ F o n t P o i n t e r ]   ; p o i n t   t o   f o n t  
mov dx.VGA-VIDEO-SEGMENT 
mov e s . d x   : p o i n t   t o   d i s p l a y  memory 

: C a l c u l a t e   s c r e e n   a d d r e s s   o f   b y t e   c h a r a c t e r   s t a r t s   i n .  

push 
sub 
mov 
xchg 
mov 

POP 
mu1 
push 
mov 
and 
s h r  
s h r  

add 
s h r  

ds : p o i n t   t o  B I O S  da ta   segment  
dx ,   dx  
ds  .dx 
ax .bx  
di.ds:[SCREEN-WIDTH-IN-BYTES] : r e t r i e v e  B I O S  

ds 
d i  
d i  
d i   . c x  
c l   . O l l l b  
d i  .1 
d i  .1 
d i  .1 
d i   , a x  

: s c r e e n   w i d t h  

c a l c u l a t e   o f f s e t   o f   s t a r t   o f   r o w  
s e t   a s i d e   s c r e e n   w i d t h  
s e t   a s i d e   t h e   c o l u m n  
k e e p   o n l y   t h e   c o l u m n   i n - b y t e   a d d r e s s  

d i v i d e   c o l u m n   b y  8 t o  make a b y t e   a d d r e s s  
and p o i n t   t o   b y t e  

: C a l c u l a t e   f o n t   a d d r e s s   o f   c h a r a c t e r .  

sub  bh.bh 
s h l   b x . 1  
s h l   b x . 1  

;assumes  8 b y t e s   p e r   c h a r a c t e r :   u s e  

s h l   b x . 1  
: a m u l t i p l y   o t h e r w i s e  
: o f f s e t   i n   f o n t   o f   c h a r a c t e r  

add s i   . b x   : o f f s e t   i n   f o n t   s e g m e n t   o f   c h a r a c t e r  

: S e t   u p   t h e  GC r o t a t i o n .  

mov dx,  GC-INDEX 
mov a1 , GC-ROTATE 
mov a h . c l  
o u t   d x . a x  

: Set   up BH as b i t  mask f o r   l e f t   h a l f ,  
: EL as r o t a t i o n   f o r   r i g h t   h a l f .  

mov b x . 0 f f f f h  
s h r   b h . c l  
n e g   c l  
add  c1.8 
s h l   b l   , c l  

: Draw t h e   c h a r a c t e r ,   l e f t   h a l f   f i r s t ,   t h e n   r i g h t   h a l f   i n   t h e  
; s u c c e e d i n g   b y t e ,   u s i n g   t h e   d a t a   r o t a t i o n   t o   p o s i t i o n   t h e   c h a r a c t e r  
: a c r o s s   t h e   b y t e   b o u n d a r y   a n d   t h e n   u s i n g   t h e   b i t  mask t o   g e t   t h e  
: p r o p e r   p o r t i o n   o f   t h e   c h a r a c t e r   i n t o   e a c h   b y t e .  
; Does n o t   c h e c k   f o r   c a s e   w h e r e   c h a r a c t e r   i s   b y t e - a l i g n e d   a n d  
: n o   r o t a t i o n   a n d   o n l y   o n e   w r i t e   i s   r e q u i r e d .  

mov bp.FONT-CHARACTER-SIZE 
mov dx ,  GC-INDEX 
POP c x   ; g e t   b a c k   s c r e e n   w i d t h  
dec   cx  
dec  cx ; - 2  because do t w o   b y t e s   f o r   e a c h   c h a r  
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Charac te rLoop :  

: S e t   t h e   b i t  mask f o r   t h e   l e f t   h a l f   o f   t h e   c h a r a c t e r .  

mov a1 .GC..BIT-MASK 
mov ah.bh 
o u t   d x , a x  

: G e t   t h e   n e x t   c h a r a c t e r   b y t e  & w r i t e  i t  t o   d i s p l a y  memory. 
; ( L e f t   h a l f   o f   c h a r a c t e r . )  

mov a1 , [ s i ]  ; g e t   c h a r a c t e r   b y t e  
mov a h . e s : [ d i l  ; l o a d   l a t c h e s  
s t o s b  ; w r i t e   c h a r a c t e r   b y t e  

; S e t   t h e   b i t  mask f o r   t h e   r i g h t   h a l f   o f   t h e   c h a r a c t e r .  

mov a1 .GC~LBIT_MASK 
mov ah .b l  
o u t   d x . a x  

: G e t   t h e   c h a r a c t e r   b y t e   a g a i n  
: ( R i g h t   h a l f   o f   c h a r a c t e r . )  

1 odsb 
mov a h . e s : [ d i l  
s t o s b  

& w r i t e  i t  t o   d i s p l a y  memory. 

; g e t   c h a r a c t e r   b y t e  
: l o a d   l a t c h e s  
: w r i t e   c h a r a c t e r   b y t e  

; P o i n t   t o   n e x t   l i n e   o f   c h a r a c t e r  i n  d i s p l a y  memory. 

add d i   . c x  

dec  bp 
j n z   C h a r a c t e r L o o p  

POP ds  
POP bp 
pop d i  
pop s i  
POP dx  
POP c x  
POP b x  
POP ax  
r e t  

DrawChar  endp 

: S e t   t h e   p o i n t e r   t o   t h e   f o n t   t o   d r a w   f r o m   t o  ES:BP. 

S e l   e c t F o n t   p r o c   n e a r  
mov w o r d   p t r   [ F o n t P o i n t e r ] . b p   : s a v e   p o i n t e r  
mov w o r d   p t r   [ F o n t P o i n t e r + Z ] . e s  
r e t  

S e l e c t F o n t   e n d p  

cseg  ends 
e n d   s t a r t  

The bit mask can be used for  much  more  than bit-aligned fonts. For example,  the  bit 
mask is useful for fast  pixel drawing, such as that  performed when drawing lines, as 
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we’ll see in Chapter 35. It’s  also  useful for drawing the edges of  primitives, such as 
filled polygons, that potentially involve modifylng some but  not all  of the pixels con- 
trolled by a single byte of display  memory. 
Basically, the bit mask is handy whenever only some of the  eight pixels in  a byte  of 
display memory need  to be changed, because it allows full use of the VGA’s four-way 
parallel processing capabilities for  the pixels that  are to be drawn, without interfer- 
ing with the pixels that  are  to  be  left  unchanged.  The  alternative would  be 
plane-by-plane processing, which from  a  performance perspective would be undesir- 
able indeed. 
It’s worth pointing out again that  the  bit mask operates on  the  data in the latches, 
not  on  the data in display  memory. This makes the bit mask a flexible resource  that 
with a little imagination can be used for some interesting purposes. For example, 
you could fill the latches with a solid background color (by writing the color some- 
where in display memory, then  reading  that location to load the  latches),  and  then 
use the Bit  Mask register (or write mode 3, as  we’ll see later) as a mask through 
which to draw a  foreground color stencilled into  the  background  color without read- 
ing display memory first. This only  works for writing whole  bytes at  a time (clipped 
bytes require  the use  of the bit mask; unfortunately, we’re already using it  for stencil- 
ling in this case),  but  it completely eliminates reading display memory and does 
foreground-plus-background drawing in one blurry-fast  pass. 

This last-described example is a  good illustration of how I b! suggest you approach p the VGA: As a rich collection of hardware resources that can profitably be com- 
bined in some non-obvious ways. Don ’t let yourself be limited by the obvious 
applications for the latches, bit mask, write modes, read modes, map mask, ALUs, 
and setheset circuitry Instead, try to imagine how  they could work together to 
perform whatever task you happen to need done at any given time. I ite made my 
code as much as  four times faster by doing this, as the discussion of Mode X in 
Chapters 47-49 demonstrates. 

The example code in Listing 25.1 is designed to illustrate the use  of the Data Rotate 
and Bit  Mask registers, and is not as fast or as complete as it  might  be. The case 
where text is byte-aligned could be detected and  performed  much faster, without the 
use of the Bit  Mask or Data Rotate registers and with  only one display memory access 
per  font byte (to write the  font  byte),  rather  than  four  (to read display memory and 
write the  font byte to each of the two bytes the  character  spans). Likewise, non- 
aligned text drawing could be streamlined to one display memory access per byte by 
having the CPU rotate and combine the  font data directly, rather  than  setting  up  the 
VGA‘s hardware to do it. (Listing 25.1 was designed to illustrate VGA data  rotation 
and bit masking rather  than  the fastest way to draw text. We’ll see faster text-drawing 
code  soon.)  One excellent rule of thumb is to minimize display memory accesses  of 
all  types,  especially reads, which tend to be considerably slower than writes. Also, in 
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Listing 25.1 it would be faster to use a table lookup to  calculate the bit masks for  the 
two  halves  of each  character  rather  than  the shifts used in the example. 
For another  (and  more complex) example of drawing bit-mapped text on  the VGA, 
see John Cockerham’s  article,  “Pixel  Alignment  of EGA Fonts,” PC TechJournaZ, January, 
198’7. Parenthetically, I’d like to pass along  John’s  comment  about  the VGA  “When 
programming  the VGA, everything is complex.” 
He’s got a point  there. 

The VGA’s Set/Reset Circuitry 
At  last  we come  to the final  aspect of data flow through the GC on write mode 0 writes: 
the  set/reset circuitry.  Figure  25.3  shows data flow on a write mode 0 write. The only 
difference between  this figure and Figure  25.1 is that on its way to each plane  poten- 
tially the  rotated CPU data passes through  the  set/reset circuitry,  which may or may 
not replace the CPU data with set/reset  data. Briefly put,  the  set/reset circuitry en- 
ables the  programmer to elect to independently replace the CPU data for each plane 
with either 00 or OFFH. 
What is the use of such a feature? Well, the  standard way to control color is to set the 
Map  Mask  register to  enable  writes  to  only  those  planes  that need to  be  set  to produce 
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Dataflow during a write mode 0 write operation. 
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the  desired color. For example,  the Map  Mask register would be set to 09H to draw in 
high-intensity blue;  here, bits 0 and 3 are set to 1, so only the  blue  plane  (plane 0) 
and  the intensity plane  (plane 3) are written to. 
Remember, though,  that  planes  that  are  disabled by the Map  Mask register  are not 
written to or modified in any way. This  means  that  the above approach works  only if 
the memory being written to is zeroed; if,  however, the memory already contains 
non-zero  data,  that  data will remain in the  planes  disabled by the Map  Mask, and the 
end result will be  that some planes  contain  the  data just written and  other planes 
contain  old  data.  In  short,  color  control using the Map  Mask does not force all planes 
to  contain  the  desired color. In particular,  it is not possible to  force some planes  to 
zero and  other planes  to one in  a single write  with the Map  Mask register. 
The program  in Listing 25.2 illustrates this problem. A green  pattern  (plane 1 set to 
1, planes 0, 2, and 3 set  to 0) is first  written to display  memory.  Display  memory is then 
filled  with  blue  (only plane 0 set  to 1) , with a Map Mask setting of 01H. Where the blue 
crosses the green, cyan is produced,  rather  than  blue, because the Map  Mask register 
setting of 01H that  produces  blue leaves the  green  plane  (plane 1 )  unchanged.  In 
order to  generate  blue  unconditionally,  it would be necessary to set the Map  Mask 
register  to OFH, clear memory, and  then set the Map  Mask register  to 01H and fill 
with blue. 

LISTING 25.2 L25-2.ASM 
; Program t o   i l l u s t r a t e   o p e r a t i o n  o f  Map Mask r e g i s t e r  when d r a w i n g  
; t o  memory t h a t   a l r e a d y   c o n t a i n s   d a t a .  
; By M ichae l   Ab rash .  

s t a c k   s e g m e n t   p a r a   s t a c k  'STACK' 
db 512 d u p ( ? )  

s t a c k   e n d s  

EGA-VIDEO-SEGMENT equ OaOOOh ;EGA d i s p l a y  memory  segment 

; EGA r e g i s t e r   e q u a t e s .  

SC-INDEX equ  3c4h ; S C  i n d e x   r e g i s t e r  
SC-MAP-MASK equ 2 ; S C  map mask r e g i s t e r  

; Macro t o   s e t   i n d e x e d   r e g i s t e r  I N D E X  o f  SC c h i p   t o  SETTING. 

SETSC macro I N D E X ,  SETTING 
mov dx.SC-INDEX 
mov a1 , I N D E X  
o u t   d x , a l  
i n c   d x  
mov a1  ,SETTING 
o u t   d x . a l  
dec  dx 
endm 

c s e g   s e g m e n t   p a r a   p u b l i c  ' C O D E '  
assume  cs:cseg 
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s t a r t   p r o c   n e a r  

: S e l e c t   6 4 0 x 4 8 0   g r a p h i c s  mode. 

mov ax .012h 
i n t  10h 

mov ax.EGA-VIDEO-SEGMENT 
mov e s . a x   ; p o i n t   t o   v i d e o  memory 

: D r a w   2 4   1 0 - s c a n - l i n e   h i g h   h o r i z o n t a l   b a r s   i n   g r e e n ,   1 0   s c a n   l i n e s   a p a r t .  

SETSC  SC-MAP_MASK.OLh :map mask s e t t i n g   e n a b l e s   o n l y  

s u b   d i   . d i   : s t a r t   a t   b e g i n n i n g   o f   v i d e o  memory 
: p l a n e  1. t h e   g r e e n   p l a n e  

mov a1 . O f f h  
mov bp .24  :# b a r s   t o   d r a w  

mov cx.80*10 ; I  b y t e s   p e r   h o r i z o n t a l   b a r  
r e p   s t o s b   ; d r a w   b a r  
add d i  .80*10 : p o i n t   t o   s t a r t   o f   n e x t   b a r  
dec  bp 
j n z   H o r z B a r L o o p  

HorzBarLoop:  

: F i l l   s c r e e n   w i t h   b l u e ,   u s i n g  Map Mask r e g i s t e r   t o   e n a b l e   w r i t e s  
: t o   b l u e   p l a n e   o n l y .  

SETSC  SC-MAP-MASK.Olh :map mask s e t t i n g   e n a b l e s  
: p l a n e  0. t h e   b l u e   p l a n e  

s u b   d i   , d i  
mov cx ,   80*480 :# b y t e s   p e r   s c r e e n  
mov a1 . O f f h  
r e p   s t o s b  

: W a i t   f o r  a k e y s t r o k e .  

mov 
i n t  

: R e s t o r e   t e x t  

mov 
i n t  

: E x i t   t o  00s. 

mov 
i n t  

s t a r t  endp 
cseg  ends 

end 

ah .1  
21h 

mode. 

ax .03h 
10h 

ah .4ch 
21h 

s t a r t  

; p e r f o r m  fill ( a f f e c t s   o n l y  
: p l a n e  0.  t h e   b l u e   p l a n e )  

on1 y 

Planes to a Single Color 
The  set/reset circuitry can be used to force some planes to  0-bits and  others to  1-bits 
during  a single  write,  while letting CPU data go to  still other planes, and so provides an 
efficient way to set all planes to a desired color. The  set/reset circuitry  works  as  follows: 
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For each of the bits 0-3 in the Enable Set/Reset register (Graphics Controller regis- 
ter 1) that is 1, the  corresponding bit in  the Set/Reset register (GC register 0) is 
extended to a byte (0 or OFFH) and replaces the CPU data  for  the  corresponding 
plane. For each of the bits in  the Enable Set/Reset register that is 0, the CPU data is 
used unchanged  for  that  plane  (normal  operation). For example, if the Enable Set/ 
Reset register is set to 01H and  the Set/Reset register is set to 05H, then  the CPU 
data is replaced  for  plane 0 only (the blue plane),  and  the value it is replaced with is 
OFFH (bit 0 of the Set/Reset register extended to a  byte). Note that in this case, bits 
1-3 of the Set/Reset register have no effect. 
It is important to understand  that  the  set/reset circuitry directly replaces CPU data 
in Graphics Controller  data flow. Refer  back to Figure 25.3 to see that  the  output of 
the set/reset circuitry  passes through (and may be  transformed by) the ALU and  the bit 
mask before  being written to memory, and even then  the Map  Mask register must 
enable  the write. When using set/reset, it is generally desirable to set  the Map  Mask 
register to enable all planes the set/reset circuitry is controlling, since those memory 
planes which are disabled by the Map  Mask register cannot be modified, and  the 
purpose of enabling  set/reset  for  a  plane is to force that  plane to be set by the set/ 
reset circuitry. 
Listing 25.3 illustrates the use of set/reset to force  a specific color to be written. This 
program is the same as that of  Listing 25.2, except  that  set/reset  rather  than the Map 
Mask register is used to control color. The preexisting pattern is completely ovenvrit- 
ten this time, because the set/reset circuitry writes  0-bytes to planes  that must be off 
as well as OFFH-bytes to planes that must be on. 

LISTING  25.3  125-3.ASM 
; P r o g r a m   t o   i l l u s t r a t e   o p e r a t i o n  o f  s e t / r e s e t   c i r c u i t r y   t o   f o r c e  
; s e t t i n g   o f  memory t h a t   a l r e a d y   c o n t a i n s   d a t a .  
; By M ichae l   Ab rash .  

s t a c k   s e g m e n t   p a r a   s t a c k  'STACK' 
db   512  dup(?)  

s t a c k   e n d s  

EGA-VIDEORSEGMENT equ OaOOOh ;EGA d i s p l a y  memory  segment 

; EGA r e g i s t e r   e q u a t e s .  

SC-INDEX 
SC-MAPLMASK equ 2 

equ 3c4h ;SC i n d e x   r e g i s t e r  

GC-INDEX 
; S C  map mask r e g i s t e r  

GC-SET-RESET equ 0 
equ  3ceh ;GC i n d e x   r e g i s t e r  

GC-ENABLELSET-RESET equ 1 
;GC s e t / r e s e t   r e g i s t e r  
;GC e n a b l e   s e t / r e s e t   r e g i s t e r  

; Macro t o   s e t   i n d e x e d   r e g i s t e r  I N D E X  o f  SC c h i p   t o  SETTING. 

SETSC macro I N D E X ,  SETTING 
mov dx.SC-INDEX 
mov a1 , I N D E X  
o u t   d x . a l  
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i n c   d x  
mov a1  ,SETTING 
o u t   d x . a l  
dec  dx 
endm 

; Macro t o   s e t   i n d e x e d   r e g i s t e r  I N D E X  o f  GC c h i p   t o  SETTING. 

SETGC macro I N D E X .  SETTING 
mov dx,GC_.INOEX 
mov a1 , I N D E X  
o u t   d x . a l  
i n c   d x  
mov a1  .SETTING 
o u t   d x . a l  
dec  dx 
endm 

c s e g   s e g m e n t   p a r a   p u b l i c  ' C O D E '  

s t a r t   p r o c   n e a r  
assume  cs:cseg 

; S e l e c t   6 4 0 x 4 8 0   g r a p h i c s  mode. 

mov ax.012h 
i n t  10h 

mov ax.EGA-VIDEO-SEGMENT 
mov e s . a x   ; p o i n t   t o   v i d e o  memory 

; D r a w   2 4   1 0 - s c a n - l i n e   h i g h   h o r i z o n t a l   b a r s   i n   g r e e n ,  10 s c a n   l i n e s   a p a r t .  

SETSC  SC-MAP-MASK.02h ;map mask s e t t i n g   e n a b l e s   o n l y  

s u b   d i   . d i   ; s t a r t   a t   b e g i n n i n g   o f   v i d e o  memory 
mov a1 . O f f h  
mov bp .24  ; I  b a r s   t o   d r a w  

mov cx .80*10 ;# b y t e s   p e r   h o r i z o n t a l   b a r  
r e p   s t o s b   ; d r a w   b a r  
add d i  .80*10 ; p o i n t   t o   s t a r t   o f   n e x t   b a r  
dec  bp 
j n z   H o r z B a r L o o p  

; p l a n e  1. t h e   g r e e n   p l a n e  

HorzBarLoop:  

; Fill s c r e e n   w i t h   b l u e ,   u s i n g   s e t / r e s e t   t o   f o r c e   p l a n e  0 t o   1 ' s  and a l l  
: o t h e r   p l a n e   t o  0 ' s .  

SETSC 

SETGC 

SETGC 

sub 
mov 
mov 

SC_MAPKMASK.Ofh ; m u s t   s e t  map mask t o   e n a b l e   a l l  
; p l a n e s ,  s o  s e t / r e s e t   v a l u e s   c a n  
; b e   w r i t t e n   t o  memory 

; r e p l a c e d   b y   s e t / r e s e t   v a l u e  

; ( t h e   b l u e   p l a n e )   a n d  0 f o r   o t h e r  
; p l a n e s  

GC-ENABLE-SET-RESET,Ofh ;CPU d a t a   t o   a l l   p l a n e s  will be 

GC-SET-RESET.Olh ; s e t / r e s e t   v a l u e   i s   O f f h   f o r   p l a n e  0 

d i   . d i  
cx,   80*480 ;# b y t e s   p e r   s c r e e n  
a1 . O f f h   ; s i n c e   s e t / r e s e t   i s   e n a b l e d   f o r   a l l  

; p l a n e s ,   t h e  CPU d a t a   i s   i g n o r e d -  
; o n l y   t h e   a c t   o f   w r i t i n g   i s  
; i m p o r t a n t  
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r e p   s t o s b  

; T u r n   o f f   s e t / r e s e t .  

; p e r f o r m  fill ( a f f e c t s   a l l   p l a n e s )  

SETGC GC-ENABLELSET-RESET.0 

; W a i t   f o r  a k e y s t r o k e .  

mov a h , l  
i n t  21h 

; R e s t o r e   t e x t  mode. 

mov ax ,03h 
i n t  10h 

; E x i t   t o  00s. 

mov ah .4ch 
i n t  21h 

s t a r t  endp 
cseg  ends 

end s t a r t  

Manipulating Planes Individually 
Listing  25.4 illustrates the use  of set/reset to control only some, rather  than all, 
planes. Here, the set/reset circuitry  forces plane 2 to 1 and planes 0 and 3 to 0. Because 
bit 1 of the Enable Set/Reset register is 0, however, set/reset  does not affect plane 1; 
the CPU data goes unchanged to the  plane 1 ALU. Consequently, the CPU data can 
be used to control  the value written to plane 1. Given the settings of the  other  three 
planes, this means that each bit of CPU data  that is 1 generates  a brown pixel, and 
each bit that is 0 generates  a  red pixel. Writing alternating bytes  of  07H and OEOH, 
then, creates a vertically striped  pattern of  brown and  red. 
In Listing  25.4, note  that  the vertical bars are 10 and 6 bytes  wide, and  do  not start on 
byte boundaries. Although set/reset replaces an  entire byte  of  CPU data  for  a  plane, 
the  combination of set/reset  for some planes and CPU data  for other planes, as in 
the example above, can be used to control individual pixels. 

LISTING  25.4  125-4.ASM 
; Program t o   i l l u s t r a t e   o p e r a t i o n   o f   s e t / r e s e t   c i r c u i t r y   i n   c o n j u n c t i o n  
; w i t h  CPU d a t a   t o   m o d i f y   s e t t i n g   o f  memory t h a t   a l r e a d y   c o n t a i n s   d a t a  
; By M ichae l   Ab rash .  

s t a c k   s e g m e n t   p a r a   s t a c k  'STACK' 
db   512  dup(?)  

s t a c k   e n d s  

EGA-VIDEOCSEGMENT equ OaOOOh ;EGA d i s p l a y  memory  segment 

; EGA r e g i s t e r   e q u a t e s .  

SC-INDEX 
SC-MAP-MASK equ 2 

equ  3c4h ; S C  i n d e x   r e g i s t e r  
; S C  map mask r e g i s t e r  
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GC-INDEX equ 3ceh :GC i n d e x   r e g i s t e r  
GC-SET-RESET equ 0 :GC s e t / r e s e t   r e g i s t e r  
GC-ENABLELSET-RESET equ 1 ;GC e n a b l e   s e t / r e s e t   r e g i s t e r  

: Macro t o   s e t   i n d e x e d   r e g i s t e r  I N D E X  o f  SC c h i p   t o  SETTING. 

SETSC macro I N D E X ,  SETTING 
mov d x ,  SC- INDEX 
mov a1 , I N D E X  
o u t   d x , a l  

mov a1  .SETTING 
i n c  dx  

o u t   d x . a l  
dec  dx 
endm 

; Macro t o   s e t   i n d e x e d   r e g i s t e r  I N D E X  o f  GC c h i p   t o  SETTING. 

SETGC macro I N D E X ,  SETTING 
mov dx.GC-INDEX 
mov a1 , I N D E X  
o u t   d x . a l  
i n c   d x  
mov a1  .SETTING 
o u t   d x . a l  
dec  dx 
endm 

c s e g   s e g m e n t   p a r a   p u b l i c  ' C O D E '  

s t a r t   p r o c   n e a r  

: S e l e c t   6 4 0 x 3 5 0   g r a p h i c s  mode. 

mov ax.010h 
i n t  10h 

mov ax,EGA-VIDEO-SEGMENT 
mov e s . a x   ; p o i n t   t o   v i d e o  

: Draw 1 8   1 0 - s c a n - l i n e   h i g h   h o r i z o n t a l  

SETSC  SC-MAP_MASK,OEh 

assume  cs:cseg 

p l a n e  
s u b   d i   . d i  
mov a1 . O f f h  
mov bp .18  

mov cx,   80*10 

a d d   d i   . 8 0 * 1 0  
r e p   s t o s b  

dec  bp 
j n z   H o r z B a r L o o p  

HorzBarLoop:  

: F i l l   s c r e e n   w i t h   a l t e r n a t i n g   b a r s   o f  

memory 

b a r s   i n   g r e e n ,   1 0   s c a n   l i n e s   a p a r t .  

:map  mask s e t t i n g   e n a b l e s   o n l y  
: p l a n e  1. t h e   g r e e n  

: s t a r t   a t   b e g i n n i n g   o f   v i d e o  memory 

;# b a r s   t o   d r a w  

:# b y t e s   p e r   h o r i z o n t a l   b a r  

: p o i n t   t o   s t a r t  o f  n e x t   b a r  
: d r a w   b a r  

red   and   b rown ,   us ing  CPU d a t a  
: t o   s e t   p l a n e  1 a n d   s e t / r e s e t   t o   s e t   p l a n e s  0 .  2 & 3.  
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SETSC  SCLMAPLMASK.Ofh : m u s t   s e t  map mask t o   e n a b l e   a l l  
; p l a n e s ,  s o  s e t / r e s e t   v a l u e s   c a n  
; b e   w r i t t e n   t o   p l a n e s  0.  2 & 3 
; and CPU d a t a   c a n   b e   w r i t t e n  t o  
: p l a n e  1 ( t h e   g r e e n   p l a n e )  

SETGC GCLENABLELSETLRESET.Odh ;CPU d a t a   t o   p l a n e s  0.  2 & 3 will be 

SETGC GC-SET-RESET.04h : s e t / r e s e t   v a l u e   i s   O f f h   f o r   p l a n e  2 
; r e p l a c e d   b y   s e t / r e s e t   v a l u e  

; ( t h e   r e d   p l a n e )   a n d  0 f o r   o t h e r  
; p l a n e s  

s u b   d i   . d i  
mov cx .80*350/2  ; C  w o r d s   p e r   s c r e e n  
mov ax ,  07eOh :CPU d a t a   c o n t r o l s   o n l y   p l a n e  1; 

r e p   s t o s w   ; p e r f o r m  fill ( a f f e c t s   a l l   p l a n e s )  
: s e t / r e s e t   c o n t r o l s   o t h e r   p l a n e s  

; T u r n   o f f   s e t / r e s e t .  

SETGC GC-ENABLE-SET-RESET.0 

: W a i t   f o r  a k e y s t r o k e .  

mov ah .1  
i n t  21h 

: R e s t o r e   t e x t  mode. 

mov ax .03h 
i n t  10h 

: E x i t  t o  DOS. 

mov ah .4ch 
i n t  21h 

s t a r t  endp 
cseg ends 

e n d   s t a r t  

There is no clearly defined  role  for  the  set/reset circuitry,  as there is for, say, the bit 
mask. In many  cases, set/reset is  largely interchangeable with  CPU data, particularly 
with  CPU data written in write mode 2 (write mode 2 operates similarly to the  set/ 
reset circuitry, as  we’ll see in  Chapter 27). The most powerful use of set/reset,  in my 
experience, is in applications such as the  example of  Listing 25.4, where it is used to 
force the value written to certain planes while the CPU data is written to other planes. 
In  general,  though,  think of set/reset as one  more tool you  have at your disposal in 
getting the VGA to do what  you need  done, in this case a tool that lets you force all 
bits in each  plane to either zero or  one,  or pass  CPU data  through  unchanged,  on 
each write to display memory. As tools go,  set/reset is a handy one,  and it’ll pop  up 
often  in this book. 

Notes on Set/Reset 
The set/reset circuitry is not active in write modes 1 or 2. The Enable Set/Reset 
register is inactive in write mode 3, but  the Set/Reset register provides the primary 
drawing color in write mode 3, as  discussed in the  next  chapter. 
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Be  aware  that  because setheset directly  replaces CPU data, it does  not  necessarily 
have to force an entire display memory byte to 0 or OFFH, even when setlreset is 
replacing CPU data for allplanes. For example, ifthe Bit Mask  register is set to 80H, 
the setheset circuitry can only modlfi bit 7 of the destination byte in each plane, 
since the other seven bits will come from the latches for each plane. Similarly, the 
setheset value for each plane can  be  modified by that plane b ALU Once  again,  this 
illustrates that setheset merely replaces the CPU data for selectedplanes;  the set/ 
reset value is then processed in exactly the same way that CPU data normally is. 

A Brief Note on Word OUTs 
In  the early days of the EGA and VGA, there was considerable  debate  about  whether 
it was safe to do word OUTs (OUT D m )  to set Index/Data register pairs in  a 
single instruction.  Long ago, there were a few computers with  buses that weren’t 
quite PC- compatible, in that  the two bytes in each word OUT went to  the VGA in the 
wrong order: Data register first,  then  Index register, with predictably disastrous re- 
sults. Consequently, I generally wrote my code in those days to  use two 8-bit OUTs to 
set indexed registers. Later  on, I made it a  habit to  use macros that  could do  either 
one 16-bit OUT or two 8-bit OUTs, depending  on how I chose to assemble the  code, 
and in fact you’ll find  both ways  of dealing with OUTs sprinkled  through  the  code in 
this part of the  book. Using macros for word OUTs is still not  a bad  idea  in  that  it 
does no  harm,  but in my opinion it’s no longer necessary.  Word OUTs are  standard 
now, and it’s been  a  long time since I’ve heard of them causing any problems. 
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chapter 26

vga write mode 3



ode That Grows on You 
Over the last three' overed the VGA's write path  from stem to stern- 
with one exceptio only looked at how writes  work in write mode 0, 
the straightforward, de in which each byte that  the CPU writes to dis- 
play memory fans ur planes. (Actually, we also took a quick look at 
write mode 1, in whi& the latches are always copied  unmodified,  but since exactly 
the same result c a n h  achieved by setting the Bit Mask register to 0 in write mode 0, 

eful mode,  but some of VGA's most interesting capabilities 
odes that we have  yet to examine: write mode 1, and, espe- 

1 get to write mode 1 in  the  next chapter, but right now I 
want to focus on wi t& mode 3, which  can be confusing at first, but turns out to be 
quite a bit  more powerful than  one might initially think. 

a1 significance.) 

A Mode Born in Strangeness 
Write mode 3 is strange indeed,  and its use is not immediately obvious. The first time 
I encountered write mode 3, I understood immediately how it  functioned, but could 
think of  very  few  useful applications for it. As time passed, and as I came to under- 
stand  the  atrocious  performance characteristics of OUT instructions,  and  the 
importance of text and  pattern drawing as well,  write mode 3 grew considerably in 
my estimation. In fact, my esteem for this mode ultimately reached  the  point where 

483 



in the last  major chunk of  16-color graphics code I wrote,  write mode 3 was used 
more than write mode 0 overall, excluding simple  pixel  copying. So write mode 3 is 
well worth  using, but to  use it you must  first understand it. Here's how it works. 
In write mode 3, set/reset is automatically enabled  for all four planes (the Enable 
Set/Reset register is ignored).  The CPU data byte is rotated and then ANDed  with 
the contents of the Bit  Mask register, and the result of this operation is used as the 
contents of the Bit  Mask register alone would  normally  be used. (If this is Greek to 
you,  have a look  back at Chapters 23 through 25. There's no way to understand write 
mode 3 without understanding  the rest of the VGA's write data  path first.) 
That's what  write mode 3 does-but  what  is it for? It  turns  out that write mode 3 is 
excellent for a surprisingly large number of purposes, because it makes it possible to 
avoid the  bane of VGA performance, OUTS. Some uses for write mode 3 include 
lines,  circles, and solid and two-color pattern fills.  Most  importantly,  write mode 3 is 
ideal for transparent text; that is, it  makes it possible to draw text in l k o l o r  graph- 
ics mode quickly without wiping out the background in the process. (As we'll  see at 
the end of  this chapter, write mode 3 is potentially terrific for opaque text-text 
drawn  with the character box  filled in with a solid color-as  well.) 
Listing  26.1  is a modification of code I presented in Chapter 25. That code used the 
data rotate and bit mask features of the VGA to draw bit-mapped text in write mode 
0. Listing  26.1  uses  write mode 3 in place of the bit mask to draw bit-mapped text, 
and in the process  gains the useful  ability to preserve the background into which the 
text is being drawn. Where the original text-drawing code drew the entire character 
box for each character, with 0 bits  in the  font  pattern causing a black  box to  appear 
around each character, the code in Listing  26.1  affects  display memory only when 1 
bits in the font  pattern  are drawn. As a result, the characters appear  to be painted 
into  the background, rather than over it. Another advantage  of the code in Listing 
26.1  is that the characters can be  drawn in any  of the 16 available colors. 

LISTING  26.1  126- 1 .ASM 
: Program t o   i l l u s t r a t e   o p e r a t i o n   o f   w r i t e  mode 3 o f   t h e  VGA. 
; Draws 8x8 c h a r a c t e r s  a t  a r b i t r a r y   l o c a t i o n s   w i t h o u t   d i s t u r b i n g  
; t h e   b a c k g r o u n d ,   u s i n g  VGA's 8x8 ROM f o n t .   D e s i g n e d  
; f o r   u s e   w i t h  modes ODh.  OEh.  OFh. 10h.  and  12h. 
; Runs o n l y  on VGAs ( i n  Models 50 & up  and I B M  D i s p l a y   A d a p t e r  
; and  100%  compat ib les) .  
; Assemb led   w i th  MASM 
; By Michae l   Abrash 

s tack   segmen t   pa ra   s tack  'STACK' 
db 512 d u p ( ? )  

s tack   ends  

VGA-VIDEO-SEGMENT 
SCREEN-WIDTH-IN-BYTES e q u   0 4 4 a h   ; o f f s e t   o f  B I O S  v a r i a b l e  

equ OaOOOh ;VGA d i s p l a y  memory segment 

FONT-CHARACTER-SIZE equ 8 ;# b y t e s   i n   e a c h   f o n t   c h a r  

: VGA r e g i s t e r   e q u a t e s .  
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SC- INDEX equ  3c4h 
SC-MAP-MASK equ 2 
GC-INDEX equ  3ceh 
GC-SET-RESET equ 0 
GC-ENABLE-SET-RESET equ 1 
GC-ROTATE equ 3 

GC-MODE equ 5 
GC-BIT-MASK equ 8 

: S C  i n d e x   r e g i s t e r  
:SC map mask r e g i s t e r   i n d e x  
: G C  i n d e x   r e g i s t e r  
:GC s e t / r e s e t   r e g i s t e r   i n d e x  
:GC e n a b l e   s e t / r e s e t   r e g i s t e r   i n d e x  
:GC d a t a   r o t a t e / l o g i c a l   f u n c t i o n  
: r e g i s t e r   i n d e x  
:GC Mode r e g i s t e r  
:GC b i t  mask r e g i s t e r   i n d e x  

dseg  segment  para common 'DATA' 
TEST-TEXT-ROW equ 69 :row t o   d i s p l a y   t e s t   t e x t   a t  
TEST-TEXT-COL equ  17  :column t o   d i s p l a y   t e s t   t e x t   a t  
TEST-TEXTLWIOTH equ 8 ; w i d t h   o f  a c h a r a c t e r   i n   p i x e l s  
T e s t s t r i n g   l a b e l   b y t e  

F o n t P o i n t e r   d d  ? ; f o n t   o f f s e t  
dseg  ends 

d b   ' H e l l o ,   w o r l d ! ' . O   ; t e s t   s t r i n g   t o   p r i n t .  

cseg   segmen t   pa ra   pub l i c  ' C O D E '  

s t a r t   p r o c   n e a r  
assume  cs:cseg.  ds:dseg 

mov ax.dseg 
mov ds ,ax  

: Se lec t   640x480   g raph ics  mode. 

mov a x . 0 l Z h  
i n t  10h 

: S e t   t h e   s c r e e n   t o   a l l   b l u e .   u s i n g   t h e   r e a d a b i l i t y   o f  VGA r e g i s t e r s  
: t o   p r e s e r v e   r e s e r v e d   b i t s .  

mov  dx.GC-INDEX 
mov a1 .GC-SET-RESET 
o u t   d x , a l  
i n c   d x  
i n  a1 . d x  
and a1 .OfOh 
o r  a1 .1 ; b l u e   p l a n e   o n l y   s e t .   o t h e r s   r e s e t  
o u t   d x . a l  
dec  dx 
mov  al.GC_ENABLE-SET-RESET 
o u t   d x . a l  
i n c   d x  
i n  a1 .dx 
and a1 ,OfOh 
o r  a1 . O f h   : e n a b l e   s e t / r e s e t   f o r   a l l   p l a n e s  

mov  dx.VGA-VIDEO-SEGMENT 
o u t   d x . a l  

mov e s   . d x   : p o i n t   t o   d i s p l a y  memory 
mov d i  .O 
mov cx,   8000h ;fill a l l  32k  words 
mov a x . 0 f f f f h   : b e c a u s e   o f   s e t / r e s e t .   t h e   v a l u e  

r e p   s t o s w  :fill w i t h   b l u e  
: w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

: S e t   d r i v e r   t o   u s e   t h e   8 x 8   f o n t .  

mov a h . l l h  :VGA B I O S  c h a r a c t e r   g e n e r a t o r   f u n c t i o n ,  
mov a1 .30h : r e t u r n   i n f o   s u b f u n c t i o n  
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mov bh.3 
i n t  10h 
c a l l   S e l e c t F o n t  

; g e t   8 x 8   f o n t   p o i n t e r  

; P r i n t   t h e   t e s t   s t r i n g ,   c y c l i n g   t h r o u g h   c o l o r s .  

mov 
mov 
mov 
mov 

1 odsb 
and 
jz 
push 
c a l l  
POP 
i nc 
and 
add 
jmp 

S t r i ngOutLoop :  

St r ingOutDone:  

s i   . o f f s e t   T e s t s t r i n g  
bx.TEST-TEXT-ROW 
cx,TEST-TEXT-COL 
a h . 0   ; s t a r t   w i t h   c o l o r  0 

a1  ,a1 
S t r i ngOutDone  
ax 
DrawChar 
ax 
ah 
a h . 0 f h  
cx.TEST-TEXT-WIDTH 
S t r i ngOutLoop  

; p r e s e r v e   c o l o r  

; r e s t o r e   c o l o r  
; n e x t   c o l o r  
; c o l o r s   r a n g e   f r o m  0 t o  15 

; Wait f o r  a k e y ,   t h e n   s e t   t o   t e x t  mode & end. 

mov ah.1 
i n t  21h ; w a i t  for a key 
mov ax.3 
i n t  10h i r e s t o r e   t e x t  mode 

; E x i t   t o  DOS. 

mov ah.4ch 
i n t  21h 

S t a r t   e n d p  

; S u b r o u t i n e   t o   d r a w  a t e x t   c h a r a c t e r   i n  a l i n e a r   g r a p h i c s  mode 
: (ODh. OEh. OFh. 0 1 0 h .   0 1 2 h ) .   B a c k g r o u n d   a r o u n d   t h e   p i x e l s   t h a t  
; make u p   t h e   c h a r a c t e r   i s   p r e s e r v e d .  
; F o n t   u s e d   s h o u l d   b e   p o i n t e d   t o   b y   F o n t P o i n t e r .  

; I n p u t :  
; AL - c h a r a c t e r   t o   d r a w  
; AH - c o l o r   t o   d r a w   c h a r a c t e r   i n   ( 0 - 1 5 )  
: BX - row t o  d r a w   t e x t   c h a r a c t e r   a t  
; C X  - column t o  d r a w   t e x t   c h a r a c t e r  a t  

; Forces ALU f u n c t i o n   t o  "move". 
; F o r c e s   w r i t e  mode 3.  

DrawChar  proc  near 
push  ax 
push  bx 
push  cx 
push  dx 
push s i  
push d i  
push  bp 
push  ds 
p u s h   a x   ; p r e s e r v e   c h a r a c t e r   t o   d r a w   i n  AL 
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: S e t   u p   s e t / r e s e t   t o   p r o d u c e   c h a r a c t e r   c o l o r ,   u s i n g   t h e   r e a d a b i l i t y  
: o f  VGA r e g i s t e r   t o   p r e s e r v e   t h e   s e t t i n g   o f   r e s e r v e d   b i t s  7 - 4 .  

mov  dx.GC-INDEX 
mov a1 .GC_SETLRESET 
o u t   d x . a l  
i n c   d x  
i n  
and a1 .OfOh 

a1 .dx 

and  ah.0fh 
o r  a1 ,ah 
o u t   d x . a l  

: S e l e c t   w r i t e  mode 3 .  u s i n g   t h e   r e a d a b i l i t y   o f  VGA r e g i s t e r s  
: t o   l e a v e   b i t s   o t h e r   t h a n   t h e   w r i t e  mode b i t s  unchanged. 

mov dx,  GC-I  NDEX 
mov a1 .GC_MODE 
o u t  d x , a l  
i n c   d x  
i n  a1 .dx  
o r   a l . 3  
o u t   d x , a l  

: Set  DS:SI t o   p o i n t   t o   f o n t  and ES t o   p o i n t   t o   d i s p l a y  memory. 

I d s  s i  . [ F o n t P o i n t e r ]   : p o i n t   t o   f o n t  
mov  dx.VGA-VIDEO-SEGMENT 
mov e s   . d x   : p o i n t   t o   d i s p l a y  memory 

: C a l c u l a t e   s c r e e n   a d d r e s s   o f   b y t e   c h a r a c t e r   s t a r t s  i n .  

POP a x   : g e t   b a c k   c h a r a c t e r   t o   d r a w   i n  A t  

p u s h   d s   : p o i n t   t o  BIOS data  segment 
sub  dx.dx 
mov ds  .dx 
xchg  ax.bx 
mov di,ds:[SCREEN-WIDTH-IN-BYTES] : r e t r i e v e  BIOS 

: s c r e e n   w i d t h  
POP ds 
mu1 d i   : c a l c u l a t e   o f f s e t   o f   s t a r t   o f   r o w  
p u s h   d i   : s e t   a s i d e   s c r e e n   w i d t h  
mov d i   . c x   : s e t   a s i d e   t h e   c o l u m n  
and c l   . O l l l b   ; k e e p   o n l y   t h e   c o l u m n   i n - b y t e   a d d r e s s  
s h r   d i  .1 
s h r   d i  ,1 
s h r   d i . l   : d i v i d e   c o l u m n   b y  8 t o  make a b y t e   a d d r e s s  
add d i   , a x   : a n d   p o i n t   t o   b y t e  

: C a l c u l a t e   f o n t   a d d r e s s   o f   c h a r a c t e r .  

sub  bh.bh 
s h l  b x , l  :assumes 8 b y t e s   p e r   c h a r a c t e r :   u s e  
s h l   b x . 1  : a m u l t i p l y   o t h e r w i s e  
s h l   b x . 1   : o f f s e t   i n   f o n t   o f   c h a r a c t e r  
add s i   . b x   : o f f s e t   i n   f o n t  segment o f   c h a r a c t e r  

: S e t   u p   t h e  GC r o t a t i o n .  I n  w r i t e  mode 3,  t h i s   i s   t h e   r o t a t i o n  
: o f  CPU d a t a   b e f o r e  i t  i s  ANDed w i t h   t h e   B i t  Mask r e g i s t e r   t o  
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: f o r m   t h e   b i t  mask.   Force  the ALU f u n c t i o n   t o  "move".  Uses t h e  
: r e a d a b i l i t y   o f  VGA r e g i s t e r s   t o   l e a v e   r e s e r v e d   b i t s   u n c h a n g e d .  

mov  dx.GC-INDEX 
mov a1 , GC-ROTATE 
o u t   d x . a l  
i n c   d x  
i n  a1 .dx 
and a1 .OeOh 
o r  a1 . c l  
o u t   d x . a l  

: Set   up  BH as b i t  mask f o r   l e f t   h a l f .  BL as r o t a t i o n   f o r   r i g h t   h a l f .  

mov b x . 0 f f f f h  
s h r   b h . c l  
neg c l  
add c l  . 0  
s h l   b l . c l  

: Draw t h e   c h a r a c t e r ,   l e f t   h a l f   f i r s t .   t h e n   r i g h t   h a l f   i n   t h e  
: s u c c e e d i n g   b y t e ,   u s i n g   t h e   d a t a   r o t a t i o n   t o   p o s i t i o n   t h e   c h a r a c t e r  
: a c r o s s   t h e   b y t e   b o u n d a r y   a n d   t h e n   u s i n g   w r i t e  mode 3 t o  comb ine   t he  
: c h a r a c t e r   d a t a   w i t h   t h e   b i t  mask t o   a l l o w   t h e   s e t / r e s e t   v a l u e   ( t h e  
: c h a r a c t e r   c o l o r )   t h r o u g h   o n l y   f o r   t h e   p r o p e r   p o r t i o n   ( w h e r e   t h e  
: f o n t   b i t s   f o r   t h e   c h a r a c t e r   a r e  1) o f   t h e   c h a r a c t e r   f o r   e a c h   b y t e .  
: W h e r e v e r   t h e   f o n t   b i t s   f o r   t h e   c h a r a c t e r   a r e  0. t h e   b a c k g r o u n d  
: c o l o r   i s   p r e s e r v e d .  
: Does n o t   c h e c k   f o r   c a s e   w h e r e   c h a r a c t e r   i s   b y t e - a l i g n e d   a n d  
; n o   r o t a t i o n   a n d   o n l y   o n e   w r i t e   i s   r e q u i r e d .  

mov  bp.FONT-CHARACTER-SIZE 
mov  dx.GC-INDEX 
POP c x   : g e t   b a c k   s c r e e n   w i d t h  
dec   cx  
dec   cx  : - 2  b e c a u s e   d o   t w o   b y t e s   f o r   e a c h   c h a r  

Charac terLoop:  

: S e t   t h e   b i t  mask f o r   t h e   l e f t   h a l f   o f   t h e   c h a r a c t e r .  

mov a1 .GC-BIT-MASK 
mov ah.bh 
o u t   d x . a x  

: G e t   t h e   n e x t   c h a r a c t e r   b y t e  & w r i t e  i t  t o   d i s p l a y  memory. 
: ( L e f t   h a l f  o f  c h a r a c t e r . )  

mov a1 , [ s i ]  ; g e t   c h a r a c t e r   b y t e  
mov a h . e s : [ d i ]  :1  oad 1 a t c h e s  
s t o s b  : w r i t e   c h a r a c t e r   b y t e  . .  

: S e t   t h e   b i t  mask f o r   t h e   r i g h t   h a l f   o f   t h e   c h a r a c t e r .  

mov a1 .GC-BIT-MASK 
mov ah .b l  
o u t   d x . a x  

; G e t   t h e   c h a r a c t e r   b y t e   a g a i n  & w r i t e  it t o   d i s p l a y  memory. 
: ( R i g h t   h a l f   o f   c h a r a c t e r . )  

488 Chapter 26 



1 odsb ; g e t   c h a r a c t e r   b y t e  
mov a h . e s : [ d i l  :1 oad 1 a tches  
s t o s b  : w r i t e   c h a r a c t e r   b y t e  

; P o i n t   t o   n e x t   l i n e   o f   c h a r a c t e r   i n   d i s p l a y  memory. 

add d i   , c x  

dec  bp 
j n z   C h a r a c t e r L o o p  

POP ds 
POP bP 
pop d i  
pop s i  
POP dx 
POP cx 
POP bx 
POP ax 
r e t  

DrawChar  endp 

: S e t   t h e   p o i n t e r   t o   t h e   f o n t   t o   d r a w   f r o m   t o  ES:BP.  

S e l e c t F o n t   p r o c   n e a r  
mov word p t r   C F o n t P o i n t e r 1 , b p   : s a v e   p o i n t e r  
mov word p t r   [ F o n t P o i n t e r + 2 ] . e s  
r e t  

Se lec tFont   endp 

cseg  ends 
end s t a r t  

The key to understanding Listing 26.1 is understanding the effect of  ANDing the 
rotated CPU data with the contents of the Bit  Mask register. The CPU data is the 
pattern for the character to be drawn, with  bits equal to 1 indicating where character 
pixels are to appear. The Data  Rotate  register is set  to rotate the CPU data to pixel- 
align it, since without rotation characters could only  be  drawn on byte boundaries. 

As Ipointed out  in  Chapter 25, the  CPU is perfect& capable of rotating the data itseCf; p and it b often the case that that b more efficient. The problem with using the Data 
Rotate register is that the OUT that sets that register is time-consuming, espe- 
cially forproportional text, which requires a different rotation for each character. 
Also, ifthe code performs  full-byte accesses to display memoly-that is, ifit com- 
bines pieces of two adjacent characters into one byte-whenever possible for 
efficiency, the CPUgenerally has to do extra  work toprepare the data so the VGA k 
rotator can handle it. 

At the same  time that the Data  Rotate register is set, the Bit  Mask register is set to 
allow the CPU to  modify  only that portion of the display memory byte  accessed that 
the  pixel-aligned  character  falls  in, so that other characters and/or graphics  data  won’t 
be  wiped out. The result of  ANDing the rotated CPU data byte  with the contents of 
the Bit Mask register is a bit mask that allows  only the bits equal to 1 in the original 
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character pattern  (rotated  and masked to provide  pixel alignment) to  be modified 
by the CPU;  all other bits come straight from the latches. The latches should have 
previously been loaded from the target address, so the effect of the ultimate synthe- 
sized bit mask  value  is to allow the CPU to modi*  only those pixels  in  display memory 
that correspond to the 1 bits in that part of the pixel-aligned character that falls in 
the currently addressed byte. The color of the pixels  set by the CPU is determined by 
the contents of the Set/Reset register. 
Whew. It sounds complex, but given an understanding of what the data rotator, set/ 
reset, and the bit mask do, it's not that bad. One good way to make sense of it is to 
refer to the original text-drawing program in Listing  25.1  back  in Chapter 25, and 
then see  how  Listing  26.1  differs from that program. 
It's  worth  noting  that the results generated by Listing  26.1  could  have  been  accomplished 
without  write mode 3. Write mode 0 could  have  been  used  instead, but at a significant 
performance  cost.  Instead of letting write mode 3 rotate the CPU data and AND it with 
the  contents  of the Bit  Mask  register, the CPU could  simply  have rotated the CPU data 
directly and ANDed it with the value destined for the Bit Mask register and then set the 
Bit  Mask register  to  the  resulting  value.  Additionally,  enable set/reset could have been 
forced on for all  planes,  emulating  what  write mode 3 does  to  provide  pixel  colors. 
The write mode 3 approach used in Listing  26.1  can  be  efficiently extended to draw- 
ing large blocks  of text. For example,  suppose  that we were to draw a line of 
8-pixel-wide bit-mapped text 40 characters long. We could then set up the bit mask 
and data rotation as appropriate for the left portion of each bit-aligned character 
(the portion of each character to the left of the byte boundary) and then draw the 
left portions only of  all  40 characters in write mode 3. Then the bit mask could be set 
up for  the right portion of each character, and the right portions of  all  40 characters 
could be drawn. The VGA's fast rotator would  be  used  to do all rotation, and the only 
OUTS required would be those required to set the bit mask and data rotation. This 
technique could well outperform single-character bit-mapped text drivers such as 
the one in Listing  26.1 by a significant margin. Listing  26.2 illustrates one implemen- 
tation of such an approach. Incidentally, note the use  of the 8x14 ROM font in Listing 
26.2, rather than the 8x8 ROM font used in  Listing  26.1. There is  also an 8x16 font 
stored in  ROM, along with the tables used to alter the 8x14 and 8x16 ROM fonts into 
9x14 and 9x16 fonts. 

LISTING  26.2  126-2.ASM 
: Program t o   i l l u s t r a t e   h i g h - s p e e d   t e x t - d r a w i n g   o p e r a t i o n   o f  
: w r i t e  mode 3 o f   t h e  VGA. 
; Draws a s t r i n g   o f   8 x 1 4   c h a r a c t e r s   a t   a r b i t r a r y   l o c a t i o n s  
: w i t h o u t   d i s t u r b i n g   t h e   b a c k g r o u n d ,   u s i n g  VGA's 8x14 RDM f o n t .  
; D e s i g n e d   f o r   u s e   w i t h  modes ODh.  OEh, OFh, 10h.  and  12h. 
; Runs o n l y  on VGAs ( i n  Models 50 & up  and I B M  D i s p l a y   A d a p t e r  
; and  100%  compat ib les) .  
; Assemb led   w i th  MASM 
: By Michae l   Abrash 
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s t a c k   s e g m e n t   p a r a   s t a c k  'STACK' 
db  512  dup(?)  

s tack   ends  

VGA-VIDEO-SEGMENT equ 
SCREEN-WIDTH-IN-BYTES equ 
FONT-CHARACTER-SIZE equ 

: VGA r e g i s t e r   e q u a t e s .  

SC-INDEX 
SC-MAP-MASK 
GC- INDEX 
GC-SET-RESET 

GC-ROTATE equ 

equ 
equ 
equ 

GC-ENABLE-SET-RESET equ 
equ 

OaOOOh 
044ah 
14  

3c4h 
2 
3ceh 
0 
1 
3 

GC-MODE equ 5 
GC-BIT-MASK equ  8 

dseg  segment   para common 'DATA' 
TEST-TEXT-ROW 
TEST-TEXT-COL 

equ 69 
equ 17 

TEST-TEXT-COLOR equ  Ofh 
T e s t s t r i n g   l a b e l   b y t e  

F o n t P o i n t e r   d d  ? 
dseg  ends 

c s e g   s e g m e n t   p a r a   p u b l i c  ' C O D E '  

s t a r t   p r o c   n e a r  

d b   ' H e l l o ,   w o r l d ! ' . O  

assume  cs:cseg,  ds:dseg 

mov ax .dseg 
mov ds .ax  

: S e l e c t   6 4 0 x 4 8 0   g r a p h i c s  mode. 

;VGA d i s p l a y  memory  segment 
: o f f s e t   o f  BIOS v a r i a b l e  
:I b y t e s   i n   e a c h   f o n t   c h a r  

:SC i n d e x   r e g i s t e r  
;SC map mask r e g i s t e r   i n d e x  
:GC i n d e x   r e g i s t e r  
:GC s e t / r e s e t   r e g i s t e r   i n d e x  
:GC e n a b l e   s e t / r e s e t   r e g i s t e r   i n d e x  
;GC d a t a   r o t a t e / l o g i c a l   f u n c t i o n  
; r e g i s t e r   i n d e x  
:GC Mode r e g i s t e r  
:GC b i t  mask r e g i s t e r   i n d e x  

; row t o   d i s p l a y   t e s t   t e x t   a t  
:column t o   d i s p l a y   t e s t   t e x t   a t  
: h i g h   i n t e n s i t y   w h i t e  

: t e s t   s t r i n g   t o   p r i n t .  
: f o n t   o f f s e t  

mov ax.012h 
i n t  10h 

: S e t   t h e   s c r e e n   t o   a l l   b l u e ,   u s i n g   t h e   r e a d a b i l i t y   o f  VGA r e g i s t e r s  
: t o   p r e s e r v e   r e s e r v e d   b i t s .  

mov dx ,  GC-I NDEX 
mov a1 .GC-SETLRESET 
o u t   d x . a l  
i n c   d x  
i n  a1 , dx  
and  a1  .OfOh 
o r  a1 .1 : b l u e   p l a n e   o n l y   s e t .   o t h e r s   r e s e t  
o u t   d x . a l  
dec   dx  
mov a1 .GC-ENABLE-SET-RESET 
o u t   d x , a l  
i n c   d x  
i n  a1 .dx  
and a1 .OfOh 
o r  a1 . O f h   : e n a b l e   s e t / r e s e t   f o r   a l l   p l a n e s  
o u t   d x . a l  
mov dx.VGA-VIDEO-SEGMENT 
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mov es,dx 
mov d i  ,O 
mov cx,   8000h 
mov a x . 0 f f f f h  

r e p   s t o s w  

; S e t   d r i v e r   t o   u s e   t h e   8 x 1 4   f o n t .  

: p o i n t   t o   d i s p l a y  memory 

;fill a l l  32k  words 
: b e c a u s e   o f   s e t / r e s e t .   t h e   v a l u e  
: w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  
;fill w i t h   b l u e  

mov a h . l l h  
mov a1 .30h 

:VGA B I O S  c h a r a c t e r   g e n e r a t o r   f u n c t i o n .  
; r e t u r n   i n f o   s u b f u n c t i o n  

mov bh.2 
i n t  10h 

; g e t   8 x 1 4   f o n t   p o i n t e r  

c a l l   S e l e c t F o n t  

; P r i n t   t h e   t e s t   s t r i n g .  

mov s i   . o f f s e t   T e s t S t r i n g  
mov  bx.TEST-TEXT-ROW 
mov cx.TEST-TEXT-COL 
mov  ah.TEST-TEXT-COLOR 
c a l l   D r a w s t r i n g  

: W a i t   f o r  a k e y .   t h e n   s e t   t o   t e x t  mode & end. 

mov ah.1 
i n t  2 1 h   ; w a i t   f o r  a key 
mov ax.3 
i n t  1 0 h   : r e s t o r e   t e x t  mode 

: E x i t   t o  DOS. 

mov ah.4ch 
i n t  21h 

S t a r t  endp 

: S u b r o u t i n e   t o   d r a w  a t e x t   s t r i n g   l e f t - t o - r i g h t   i n  a l i n e a r  
: g r a p h i c s  mode  (ODh. OEh.  OFh. 0 1 0 h .   0 1 2 h )   w i t h   8 - d o t - w i d e  
: c h a r a c t e r s .   B a c k g r o u n d   a r o u n d   t h e   p i x e l s   t h a t  make up t h e  
; c h a r a c t e r s   i s   p r e s e r v e d .  
; F o n t   u s e d   s h o u l d   b e   p o i n t e d   t o   b y   F o n t P o i n t e r .  

; I n p u t :  
; AH - c o l o r   t o   d r a w   s t r i n g   i n  
; EX - row t o  d r a w   s t r i n g  on 
; CX - column t o   s t a r t   s t r i n g  a t  
: DS:SI - s t r i n g   t o  draw 

; Forces ALU f u n c t i o n   t o  "move". 
; F o r c e s   w r i t e  mode 3. 

D r a w s t r i n g   p r o c   n e a r  
push  ax 
push  bx 
push  cx 
push  dx 
push s i  
push d i  
push  bp 
push  ds 

492 Chapter 26 



: S e t   u p   s e t / r e s e t   t o   p r o d u c e   c h a r a c t e r   c o l o r ,   u s i n g   t h e   r e a d a b i l i t y  
: o f  VGA r e g i s t e r   t o   p r e s e r v e   t h e   s e t t i n g   o f   r e s e r v e d   b i t s  7 - 4 .  

mov  dx.GC-INDEX 
mov a1 .GC-SETLRESET 
o u t   d x , a l  
i n c   d x  
i n  a1 .dx 
and  a1  .OfOh 
and  ah.0fh 
o r  a1 ,ah 
o u t   d x , a l  

: S e l e c t   w r i t e  mode 3 .  u s i n g   t h e   r e a d a b i l i t y   o f  VGA r e g i s t e r s  
: t o   l e a v e   b i t s   o t h e r   t h a n   t h e   w r i t e  mode b i t s  unchanged. 

mov  dx.GC-INDEX 
mov  a 1 , GC-MODE 
o u t   d x . a l  
i n c   d x  
i n  a1 .dx 
o r  a1 . 3  
o u t   d x . a l  

mov es . d x   : p o i n t   t o   d i s p l a y  memory 
mov  dx.VGA-VIDEO-SEGMENT 

: C a l c u l a t e   s c r e e n   a d d r e s s   o f   b y t e   c h a r a c t e r   s t a r t s   i n .  

p u s h   d s   ; p o i n t   t o  BIOS data  segment 
sub  dx.dx 
mov ds  ,dx 
mov di,ds:[SCREEN-WIDTH-IN-BYTES] : r e t r i e v e  BIOS 

: s c r e e n   w i d t h  
POP ds 
mov ax,   bx  : row 
mu1 d i   : c a l c u l a t e   o f f s e t   o f   s t a r t   o f   r o w  
push d i   ; s e t   a s i d e   s c r e e n   w i d t h  
mov d i   . c x   : s e t   a s i d e   t h e   c o l u m n  
and c l   . O l l l b   ; k e e p   o n l y   t h e   c o l u m n   i n - b y t e   a d d r e s s  
s h r   d i . l  
s h r   d i . 1  
s h r   d i . l   : d i v i d e   c o l u m n   b y  8 t o  make a b y t e   a d d r e s s  
add d i  , a x   ; a n d   p o i n t   t o   b y t e  

: S e t   u p   t h e  GC r o t a t i o n .   I n   w r i t e  mode 3 .  t h i s   i s   t h e   r o t a t i o n  
: o f  CPU d a t a   b e f o r e  i t  i s  ANDed w i t h   t h e   B i t  Mask r e g i s t e r   t o  
: f o r m   t h e   b i t  mask .   Force   the  ALU f u n c t i o n   t o  "move".  Uses t h e  
: r e a d a b i l i t y   o f  VGA r e g i s t e r s   t o   l e a v e   r e s e r v e d   b i t s   u n c h a n g e d .  

mov dx.GC_INDEX 
mov a1 .GC-ROTATE 
o u t   d x . a l  
i n c   d x  
i n  a1 .dx  
and a1 .OeOh 
o r  a1 . c l  
o u t   d x . a l  

: Set   up BH as b i t  mask f o r   l e f t   h a l f ,  B L  as r o t a t i o n   f o r   r i g h t   h a l f .  

VGA Write Mode 3 493 



mov b x . 0 f f f f h  
s h r   b h . c l  
neg c l  
add c l  .8 
s h l   b l   . c l  

: D r a w  a l l   c h a r a c t e r s ,   l e f t   p o r t i o n   f i r s t ,   t h e n   r i g h t   p o r t i o n   i n   t h e  
: s u c c e e d i n g   b y t e ,   u s i n g   t h e   d a t a   r o t a t i o n   t o   p o s i t i o n   t h e   c h a r a c t e r  
: a c r o s s   t h e   b y t e   b o u n d a r y   a n d   t h e n   u s i n g   w r i t e  mode 3 t o  combine   the  
: c h a r a c t e r   d a t a   w i t h   t h e   b i t  mask t o   a l l o w   t h e   s e t / r e s e t   v a l u e   ( t h e  
: c h a r a c t e r   c o l o r )   t h r o u g h   o n l y   f o r   t h e   p r o p e r   p o r t i o n   ( w h e r e   t h e  
: f o n t   b i t s   f o r   t h e   c h a r a c t e r   a r e  1) o f   t h e   c h a r a c t e r   f o r   e a c h   b y t e .  
: W h e r e v e r   t h e   f o n t   b i t s   f o r   t h e   c h a r a c t e r   a r e  0. t he   backg round  
: c o l o r   i s   p r e s e r v e d .  
: Does n o t   c h e c k   f o r   c a s e   w h e r e   c h a r a c t e r   i s   b y t e - a l i g n e d   a n d  
: n o   r o t a t i o n  and o n l y  one w r i t e   i s   r e q u i r e d .  

: Draw t h e   l e f t   p o r t i o n   o f   e a c h   c h a r a c t e r   i n   t h e   s t r i n g .  

POP c x   : g e t   b a c k   s c r e e n   w i d t h  
push s i  
push d i  
push  bx 

; S e t   t h e   b i t  mask f o r   t h e   l e f t   h a l f   o f   t h e   c h a r a c t e r .  

mov dx.GC-INDEX 
mov a1 .GC-BIT-MASK 
mov ah.bh 
o u t   d x . a x  

L e f t H a l f L o o p :  
l o d s b  
and a1 .a1 

c a l l   C h a r a c t e r u p  
i n c   d i   : p o i n t   t o   n e x t   c h a r a c t e r   l o c a t i o n  
j m p   L e f t H a l f L o o p  

jz L e f t H a l  f LoopDone 

Le f tHa l fLoopDone :  
POP bx 
pop d i  
POP s i  

: D r a w  t h e   r i g h t   p o r t i o n   o f   e a c h   c h a r a c t e r   i n   t h e   s t r i n g .  

i n c   d i   ; r i g h t   p o r t i o n   o f   e a c h   c h a r a c t e r   i s   a c r o s s  
: b y t e   b o u n d a r y  

: S e t   t h e   b i t  mask f o r   t h e   r i g h t   h a l f   o f   t h e   c h a r a c t e r .  

mov dx.GC-INDEX 
mov a1 .GC-BIT-MASK 
mov ah .b l  
o u t   d x . a x  

1 odsb 
and  a1  .a1 
jz RightHal fLoopDone 
c a l l   C h a r a c t e r u p  
i n c   d i   : p o i n t   t o   n e x t   c h a r a c t e r   l o c a t i o n  
j m p   R i g h t H a l f L o o p  

R i g h t H a l f L o o p :  
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RightHa l fLoopDone:  

POP ds 
POP bp  
pop d i  
pop s i  
POP dx  
POP c x  
POP bx 
POP ax 
r e t  

D raws t r i ng   endp  

: Draw a c h a r a c t e r .  

: I n p u t :  
: AL - c h a r a c t e r  
: C X  - s c r e e n   w i d t h  
: E S : D I  - a d d r e s s   t o   d r a w   c h a r a c t e r   a t  

C h a r a c t e r u p   p r o c   n e a r  
push   cx  
push s i  
push d i  
push  ds 

: S e t  DS:SI t o   p o i n t   t o   f o n t   a n d  ES t o   p o i n t   t o   d i s p l a y  memory. 

I d s   s i   , [ F o n t P o i n t e r ]   ; p o i n t   t o   f o n t  

: C a l c u l a t e   f o n t   a d d r e  

mov b l   . 1 4  
mu1 b l  
add s i   . a x  

mov  bp.FDN 
dec   cx  

1 odsb 
Charac terLoop:  

s o f   c h a r a c t e r .  

; 1 4   b y t e s   p e r   c h a r a c t e r  

: o f f s e t   i n   f o n t  segment o f   c h a r a c t e r  

-CHARACTER-SIZE 
: -1 because  one  by te   per   char  

; g e t   c h a r a c t e r   b y t e  
mov a h . e s : [ d i ]  : 1 oad 1 a t c h e s  
s t o s b  : w r i t e   c h a r a c t e r   b y t e  

: P o i n t   t o   n e x t   l i n e   o f   c h a r a c t e r   i n   d i s p l a y  memory. 

add 

dec 
j n z  

POP 
POP 
POP 
POP 
r e t  

C h a r a c t e r u p  

d i  , c x  

bP 
Charac terLoop 

dS 
d i  
s i  
cx  

endp 

: S e t   t h e   p o i n t e r   t o   t h e   f o n t   t o   d r a w   f r o m   t o  E S : B P .  

S e l e c t F o n t   p r o c   n e a r  
mov word p t r   [ F o n t P o i n t e r ] . b p   : s a v e   p o i n t e r  
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mov word p t r   [ F o n t P o i n t e r + E ] . e s  
r e t  

Se lec tFon t   endp  

cseg ends 
end s t a r t  

In this chapter, I’ve tried to give  you a feel for how write mode 3 works and what it 
might be used for, rather  than providing polished, optimized, plug-it-in-and-go code. 
Like the rest of the VGAs  write path, write mode 3 is a  resource  that can be used in 
a  remarkable variety  of  ways, and I  don’t want to  lock you into  thinking of it as  useful 
in just  one context.  Instead, you should take the time to thoroughly  understand 
what  write mode 3 does, and  then, when you do VGA programming,  think about 
how write mode 3 can best be applied to the task at  hand. Because I focused on 
illustrating the  operation of write mode 3, neither listing in this chapter is the fastest 
way to accomplish the desired result. For example, Listing 26.2 could be made nearly 
twice  as fast by  simply having the CPU rotate, mask, and  join  the bytes from  adjacent 
characters, then draw the  combined bytes to display  memory in a single operation. 
Similarly,  Listing  26.1 is designed to illustrate write mode 3 and its interaction with 
the rest of the VGA as a  contrast to Listing  25.1 in Chapter 25, rather  than  for maxi- 
mum speed, and it  could be made considerably more efficient. If  we were going  for 
performance, we’d  have the CPU not only rotate the bytes into position, but also do 
the masking by  ANDing in software. Even more significantly, we would  have the CPU 
combine  adjacent  characters  into  complete,  rotated bytes whenever possible, so that 
only one drawing operation would be required  per byte  of  display  memory modi- 
fied. By doing this, we would eliminate all per-character OUTS, and would minimize 
display  memory  accesses, approximately doubling text-drawing speed. 
As a final note, consider that non-transparent text  could  also  be  accelerated with write 
mode 3.  The latches could be filled with the background  (text  box) color, set/reset 
could  be  set  to the foreground (text) color, and write mode 3 could then be  used  to turn 
monochrome text bytes written by the CPU into  characters on  the screen with just 
one write per byte. There  are complications, such as drawing partial bytes, and rotat- 
ing the bytes to align the characters, which  we’ll  revisit later on in  Chapter 55,  while 
we’re working through  the details of the X-Sharp library. Nonetheless, the  perfor- 
mance  benefit of this approach can be a  speedup of  as much as four times-all 
thanks to the decidedly quirky but surprisingly powerful and flexible write mode 3. 

A Note  on Preserving Register Bits 
If  you take a quick look, you’ll see that the code in Listing  26.1  uses the  readable 
register feature of the VGA to preserve reserved bits and bits other  than those being 
modified. Older  adapters such as the CGA and EGA had few readable registers, so it 
was  necessary to  set  all  bits  in a register  whenever that register was modified. Happily, all 
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VGA registers are  readable, which  makes it possible  to change only those bits of 
immediate  interest, and, in general, I highly recommend doing exactly that, since 
IBM (or clone manufacturers) may  well someday use some of those reserved bits or 
change  the meanings of some of the bits that  are currently in use. 
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chapter 27

yet another vga write mode



Chunky Bitmaps, 
ics Coexistence 

In  the last chapter, we’karned  about  the markedly peculiar write mode  3 of the VGA, 
after having spent  thre&  learning  the ins and  outs of the VGA’s data  path in 
write mode 0, touching  mode 1 as  well in Chapter 23. In all, the VGA sup- 
ports four write mod&-write modes 0, 1 ,2 ,  and 3-and read modes 0 and 1 as  well. 
Which leaves two bbning questions: What is write mode 2, and how the heck do you 

bit  unusual but  not really hard to understand, particularly if you 
followed the descri&on of set/reset in Chapter 25. Reading VGA memory, on the 
other  hand, can be &anger  than you could ever imagine. 
Let’s start with the easy stuff, write mode 2, and save the  read modes for  the  next 
chapter. 

Write  Mode 2 and Set/Reset 
Remember how set/reset works? Good, because that’s pretty much how write mode 
2 works. (You don’t remember? Well, I’ll provide a brief refresher, but I suggest that 
you  go  back through  Chapters 23 through 25 and come up to speed on  the VGA.) 
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Recall that  the  set/reset circuitry for each of the  four planes affects the byte written 
by the CPU in one of three ways:  By replacing  the CPU  byte  with 0, by replacing it 
with OFFH, or by leaving it  unchanged.  The  nature of the transformation for  each 
plane is controlled by  two bits. The enable  set/reset bit for  a given plane selects 
whether  the CPU  byte is replaced or  not,  and  the  set/reset bit for  that  plane selects 
the value  with  which the CPU  byte  is replaced if the  enable  set/reset bit is 1. The  net 
effect of set/reset is to independently  force any, none,  or all planes to either of all 
ones  or all zeros on CPU writes. As  we discussed in  Chapter 25, this is a  convenient 
way to force  a specific color to appear no matter what color the pixels being overwrit- 
ten  are.  Set/reset also  allows the CPU to control  the  contents of some planes while 
the  set/reset circuitry controls  the  contents of other planes. 
Write mode 2 is  basically a set/reset-type mode with enable  set/reset always on  for all 
planes and  the  set/reset  data  coming directly from  the byte written by the CPU. Put 
another way, the lower four bits written by the CPU are written across the  four planes, 
thereby becoming  a  color value. Put yet another way, bit 0 of the CPU  byte is ex- 
panded to a byte and sent to the  plane 0 ALU (if bit 0 is 0, a 0 byte  is the CPU-side 
input to the  plane 0 ALU,  while if bit 0 is 1, a OFFH byte  is the CPU-side input); 
likewise, bit I of the CPU  byte is expanded to a byte for  plane 1,  bit 2 is expanded  for 
plane 2, and bit 3 is expanded  for  plane 3.  
It’s  possible that you understand write mode 2 thoroughly at this point; nonetheless, I 
suspect that some additional explanation of an admittedly non-obvious mode wouldn’t 
hurt. Let’s  follow the CPU  byte through  the VGA in write mode 2, step by step. 

A Byte’s Progress in Write  Mode 2 
Figure 27.1  shows the write mode 2 data  path. The CPU  byte comes into  the VGA 
and is split into  four separate bits, one for each plane. Bits  7-4  of the CPU  byte  vanish 
into  the  bit  bucket, never to be  heard  from again. Speculation long  held  that those 4 
unused bits indicated  that IBM would someday come out with an 8-plane adapter 
that  supported 256 colors. When IBM did finally come out with a 256-color mode 
(mode 13H of the VGA), it  turned  out  not to be planar  at all, and  the  upper  nibble 
of the CPU  byte remains unused in write mode 2 to this day. 
The bit of the CPU  byte sent to each  plane is expanded to a 0 or OFFH byte, depend- 
ing on whether  the bit is 0 or 1 ,  respectively. The byte for each plane  then becomes 
the CPU-side input to the respective plane’s ALU. From this point  on,  the write 
mode 2 data  path is identical to the write mode 0 data  path. As discussed in  earlier 
articles, the latch byte for each plane is the  other ALU input,  and  the ALU either 
ANDs, ORs, or XORs the two bytes together  or simply  passes the CPU-side  byte 
through.  The byte generated by each plane’s ALU then goes through  the bit mask 
circuitry,  which selects on a bit-by-bit  basis between the ALU byte and  the latch byte. 
Finally, the byte from  the bit mask circuitry for each plane is written to that  plane if 
the  corresponding bit in the Map  Mask register is set to 1. 
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It k worth noting two differences between write  mode 2 and write mode 0, the p standard write mode of the VGA. First, rotation of the  CPUdata byte does not take 
place  in write mode 2. Second,  the Set/Reset and Enable Set/Reset registers have 
no effect in write mode 2. 

Now that we understand  the mechanics of write mode 2, we can step back and get a 
feel for what  it might be  useful for. View bits 3-0 of the CPU byte  as a single  pixel  in 
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VGA data flow in write mode 2. 
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one of 16 colors. Next imagine that nibble turned sideways and written across the 
four planes, one bit to a  plane. Finally, expand  each of the’bits to a byte,  as  shown in 
Figure 27.2, so that 8 pixels are drawn  in the color  selected by bits 30 of the CPU  byte. 
Within the  constraints of the VGA’s data paths, that’s exactly  what  write mode 2 does. 
By “the constraints of the VGA’s data paths,’’ I mean the ALUs, the  bit mask, and  the 
map mask. As Figure 2’1.1 indicates, the ALUs can modify the color written by the 
CPU, the  map mask can prevent the CPU from  altering selected planes, and  the  bit 
mask can prevent the CPU from  altering selected bits of the byte written to. (Actu- 
ally, the bit mask  simply substitutes  latch  bits for ALU bits, but since the latches are 
normally loaded from the destination display  memory  byte, the net effect  of the bit mask 
is  usually to preserve bits  of the  destination byte.) These are not really constraints at 
all, of course, but  rather  features of the VGA; I simply  want to make it clear that  the 
use of  write mode 2 to set 8 pixels to a given color is a  rather simple special case 
among  the many  possible ways in which  write mode 2 can be used to feed  data  into 
the VGA’s data  path. 
Write mode 2 is selected by setting bits 1 and 0 of the Graphics Mode register (Graphics 
Controller register 5 )  to 1 and 0,  respectively. Since VGA registers are  readable, the 
correct way to select write mode 2 on  the VGA is to read the Graphics Mode register, 
mask  off bits 1 and 0, OR in OOOOOOlOb (OZH), and write the result back  to the 
Graphics Mode register, thereby leaving the  other bits in the register undisturbed. 

Copying  Chunky  Bitmaps to VGA Memory  Using  Write  Mode 2 
Let’s take a look at two examples of  write mode 2 in  action. Listing 27.1 presents  a 
program  that uses  write mode 2 to copy a  graphics image in chunky format to the 
VGA. In chunky format adjacent bits in a single  byte  make up each pixel: mode 4 of the 
CGA,  EGA, and VGA is a 2-bit-per-pixel chunky mode, and  mode 13H of the VGA is 
an 8-bit-per-pixel  chunky mode. Chunky format is convenient,  since  all the information 
about each pixel is contained  in  a single byte; consequently chunky format is often 
used to store bitmaps in system  memory. 
Unfortunately, VGA memory is organized as a  planar rather  than chunky bitmap in 
modes ODH through 12H, with the bits that make up each pixel spread across four 
planes. The conversion from chunky to planar  format  in write mode 0 is quite  a 
nuisance, requiring  a  good deal of bit manipulation.  In write mode 2, however, the 
conversion becomes a  snap, as  shown in Listing 27.1. Once  the VGA  is placed in 
write mode 2, the lower four bits (the lower nibble) of the CPU  byte (a single 4bit 
chunky pixel) become eight  planar pixels,  all the same color. As discussed in Chap- 
ter 25, the  bit mask  makes it possible to narrow the effect of the CPU  write  down  to 
a single pixel. 
Given the above, conversion of a chunky 4bit-per-pixel bitmap to the VGA’s planar 
format in write mode 2 is trivial.  First, the Bit  Mask register is set to  allow  only the 
VGA display memory bits corresponding to the leftmost chunky pixel of the two 
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stored in the first chunky bitmap byte to be modified. Next, the  destination byte in 
display memory is read  in order to  load  the latches. Then  a byte containing two 
chunky pixels is read  from  the chunky bitmap in system  memory, and the byte is 
rotated  four bits to  the  right  to  get  the  leftmost chunky pixel in  position.  This  ro- 
tated byte  is written to the  destination byte; since write mode 2 is active, each  bit of 
the chunky pixel goes to  its respective plane, and since  the Bit  Mask register is set up 
to  allow  only one bit in each  plane to be modified, a single pixel in the  color of the 
chunky pixel is written to VGA memory. 
This process is then  repeated  for  the  rightmost  chunky pixel, if necessary, and re- 
peated again for as  many  pixels  as there  are in the image. 

LISTING 27.1 127- 1 .ASM 
: Program t o   i l l u s t r a t e  one  use o f  w r i t e  mode 2 o f  t h e  VGA and EGA by 
: an ima t ing   t he   image  o f  an "A"  drawn  by  copying it from  a  chunky 
: b i t - m a p   i n   s y s t e m  memory t o  a p l a n a r   b i t - m a p   i n  VGA o r  EGA memory. 

: Assemble w i t h  MASM o r  TASM 

: By Michael   Abrash 

Stack   segment   para   s tack  'STACK' 
db 512 dup(0)  

Stack  ends 

SCREEN-WIDTH-IN-BYTES equ 80 
DISPLAY-MEMORY-SEGMENT equ OaOOOh 
SC- INDEX equ   3c4h   Sequence   Con t ro l l e r   I ndex  

MAP-MASK 
r e g i s t e r  

GC-INDEX equ  03ceh  :Graph ics   Cont ro l le r   Index   reg  
GRAPHICS-MODE 
BIT-MASK 

Data  segment  para common 'DATA' 

: C u r r e n t   l o c a t i o n  o f  "A" as i t  i s  an imated  across   the   sc reen.  

Cur ren tX dw ? 
Cur ren tY dw ? 
RemainingLength dw ? 

: Chunky b i t -map   image  of a y e l l o w  "A" on a b r i g h t   b l u e   b a c k g r o u n d  

equ 2 : i n d e x  o f  Map Mask r e g i s t e r  

equ 5 : i n d e x  o f  Graph ics  Mode r e g  
equ 8 : i n d e x  o f  B i t  Mask r e g  

AImage l a b e l   b y t e  
dw 13.  13 ; w i d t h .  h e i g h t   i n   p i x e l s  
db  000h. OOOh, 000h.  000h. 000h.  000h. OOOh 
db  009h.  099h, 099h.  099h. 099h.  099h. OOOh 
db  009h.  099h, 099h.  099h. 099h.  099h. OOOh 
db O09h. 099h, 099h. Oe9h. 099h.  099h. OOOh 
db  009h.  099h, 09eh. Oeeh. 099h.  099h. OOOh 
db  009h.  099h. Oeeh, 09eh. Oe9h. 099h. OOOh 
db  009h.  09eh. Oe9h.  099h. Oeeh.  099h. OOOh 
db  009h.  09eh. Oeeh.  Oeeh. Oeeh. 099h. OOOh 
db  009h.  09eh. Oe9h. 099h. Oeeh.  099h. OOOh 
db  009h.  09eh. Oe9h. 099h. Oeeh, 099h. OOOh 
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db  009h.  099h.  099h.  099h.  099h.  099h. OOOh 
db  009h.  099h.  099h.  099h.  099h.  099h. OOOh 
db  000h.  000h.  000h.  000h.  000h.  000h. OOOh 

Data  ends 

Code segmen t   pa ra   pub l i c  'CODE'  

S t a r t   p r o c   n e a r  
assume cs:Code,  ds:Data 

mov ax,  Data 
mov ds  ,ax 
mov ax.10h 
i n t  1 0 h   : s e l e c t   v i d e o  mode 10h  (640x350) 

: P r e p a r e   f o r   a n i m a t i o n .  

mov CCurrentX1.0 
mov CCurrentYl .200 
mov CRemainingLength1.600 :move 600 t i m e s  

: A n i m a t e ,   r e p e a t i n g   R e m a i n i n g L e n g t h   t i m e s .   I t ' s   u n n e c e s s a r y   t o   e r a s e  
: t h e   o l d   i m a g e ,   s i n c e   t h e   o n e   p i x e l   o f   b l a n k   f r i n g e   a r o u n d   t h e   i m a g e  
: e r a s e s   t h e   p a r t   o f   t h e   o l d   i m a g e   n o t   o v e r l a p p e d   b y   t h e  new image. 

Animat ionLoop:  
mov bx.CCurrentX1 
mov cx.CCurrentY1 
mov s i   . o f f s e t  AImage 
c a l l  DrawFromChunkyBitmap  :draw t h e  "A" image 
i n c   [ C u r r e n t X l  ;move one p i x e l   t o   t h e   r i g h t  

mov cx.0 
DelayLoop: 

;de lay  s o  we d o n ' t  move t h e  
: i m a g e   t o o   f a s t :   a d j u s t  as 
: needed 

1  oop  Del  ayLoop 

dec 
j n z  

: W a i t   f o r   a  

mov 
i n t  
mov 
i n t  
mov 
i n t  

S t a r t  endp 

[Remain ingLength l  
Animat ionLoop 

k e y   b e f o r e   r e t u r n i n g   t o   t e x t  mode and end ing .  

a h . 0 l h  
21h 
ax.03h 
10h 
ah.4ch 
21h 

: Draw  an  image s t o r e d   i n  a   c h u n k y - b i t  map i n t o   p l a n a r  V G A I E G A  memory 
: a t   t h e   s p e c i f i e d   l o c a t i o n .  

: I n p u t :  
BX - X s c r e e n   l o c a t i o n   a t   w h i c h   t o   d r a w   t h e   u p p e r - l e f t   c o r n e r  

o f   t h e  image 
C X  - Y s c r e e n   l o c a t i o n   a t   w h i c h   t o   d r a w   t h e   u p p e r - l e f t   c o r n e r  

o f   t h e  image 
DS:SI - p o i n t e r   t o   c h u n k y   i m a g e   t o   d r a w ,  as f o l l o w s :  

word a t  0: w i d t h   o f   i m a g e ,   i n   p i x e l s  
w o r d   a t  2: h e i g h t   o f   i m a g e ,   i n   p i x e l s  
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b y t e  a t  4:  msb/ lsb  - f i r s t  & second  chunky   p ixe ls ,  
r e p e a t i n g   f o r   t h e   r e m a i n d e r  o f  t h e   s c a n   l i n e  
o f   t h e  image ,   t hen   f o r  all s c a n   l i n e s .  Images 
w i t h  odd  widths  have an unused n u l l   n i b b l e  
p a d d i n g   e a c h   s c a n   l i n e   o u t   t o  a b y t e   w i d t h  

; A X ,  BX, C X .  DX,  SI. D I ,  ES d e s t r o y e d .  

DrawFromChunkyBitmap  proc  near 
c l  d 

; S e l e c t   w r i t e  mode 2 .  

mov dx.GC-INDEX 
mov  a1 .GRAPHICS-MODE 
o u t   d x , a l  
i n c   d x  
mov  a1 .02h 
o u t   d x . a l  

; E n a b l e   w r i t e s   t o  all 4 p l a n e s .  

mov dx ,  SC-I NDEX 
mov a1 .MAP-MASK 
o u t   d x . a l  
i n c   d x  
mov a l . O f h  
o u t   d x , a l  

: P o i n t  E S : D I  t o   t h e   d i s p l a y  memory b y t e   i n   w h i c h   t h e   f i r s t   p i x e l  
; o f  the   image  goes ,   w i th  AH s e t   u p   a s   t h e   b i t  mask t o  access   t ha t  
; p i x e l   w i t h i n   t h e   a d d r e s s e d   b y t e .  

mov ax.SCREEN-WIDTH-IN-BYTES 
mu1 c x   : o f f s e t   o f   s t a r t   o f   t o p   s c a n   l i n e  
mov d i  ,ax 
mov c l   . b l  
and c l   . l l l b  
mov ah.80h  ;set  AH t o   t h e   b i t  mask f o r   t h e  
s h r   a h . c l  ; i n i t i a l   p i x e l  
s h r   b x . 1  
sh r   bx .1  
s h r   b x . 1  ;X i n   b y t e s  
add d i  . b x   ; o f f s e t   o f   u p p e r - l e f t   b y t e   o f   i m a g e  
mov bx.DISPLAY-MEMORY-SEGMENT 
mov es.bx ; E S : D I  p o i n t s   t o   t h e   b y t e   a t   w h i c h   t h e  

; upper l e f t   o f   t h e  image  goes 

; Get t h e   w i d t h  and h e i g h t   o f   t h e  image. 

mov c x . [ s i l   ; g e t   t h e   w i d t h  
i n c   s i  
i n c   s i  
mov b x .   [ s i  1 ; g e t   t h e   h e i g h t  
i n c   s i  
i n c   s i  
mov  dx.GC-INDEX 
mov a1  ,BIT-MASK 
o u t   d x . a l   ; l e a v e   t h e  GC I n d e x   r e g i s t e r   p o i n t i n g  
i n c   d x  ; t o   t h e  B i t  Mask r e g i s t e r  
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RowLoop: 

push 
push 
push 

ColumnLoop: 
mov 
o u t  
mov 
mov 
s h r  
s h r  
s h r  
s h r  
s t o s b  
r o r  
j c  
dec 

CheckMorePixels:  
dec 
j z  
mov 
o u t  
mov 
l o d s b  

s t o s b  
r o r  
j c  
dec 

a x   : p r e s e r v e   t h e   l e f t   c o l u m n ’ s   b i t  mask 
c x   ; p r e s e r v e   t h e   w i d t h  
d i   : p r e s e r v e   t h e   d e s t i n a t i o n   o f f s e t  

a1 ,ah 
d x . a l  
a1 ,es :Cd i l  
a1 , [ s i  1 
a l . 1  
a1 .1 
a1 .1 
a1 ,1 

ah.1 
CheckMorePixels 
d i  

: s e t   t h e   b i t  mask t o  draw t h i s   p i x e l  
: l o a d   t h e   l a t c h e s  
; g e t   t h e   n e x t   t w o   c h u n k y   p i x e l s  

;move t h e   f i r s t   p i x e l   i n t o   t h e   l s b  
:draw  the f i r s t   p i x e l  
;move  mask t o   n e x t   p i x e l   p o s i t i o n  
: i s   n e x t   p i x e l   i n   t h e   a d j a c e n t   b y t e ?  
:no 

cx  ;see i f  t h e r e   a r e  any  more p i x e l s  
AdvanceToNextScanLine : across  i n  image 
a1  ,ah 
d x . a l   ; s e t   t h e   b i t  mask t o  draw t h i s   p i x e l  
a1 . e s : [ d i l   ; l o a d   t h e   l a t c h e s  

: g e t   t h e  same two   chunky   p i xe l s   aga in  
: a n d   a d v a n c e   p o i n t e r   t o   t h e   n e x t  
; t w o   p i x e l s  
; d r a w   t h e   s e c o n d   o f   t h e   t w o   p i x e l s  

ah.1 :move  mask t o   n e x t   p i x e l   p o s i t i o n  
CheckMorePixels2 ; i s   n e x t   p i x e l   i n   t h e   a d j a c e n t   b y t e ?  
d i  :no 

CheckMorePixels2:  
1 oop  Col  umnLoop  :see i f  t h e r e   a r e  any  more p i x e l s  

jmp  short   CheckMoreScanLines 
; across  i n   t h e  image 

AdvanceToNextScanLine: 
i n c   s i  :advance t o   t h e   s t a r t   o f   t h e   n e x t  

; scan 1 i n e   i n   t h e  image 

CheckMoreScanLines: 
pop d i  : g e t   b a c k   t h e   d e s t i n a t i o n   o f f s e t  
POP c x  : g e t   b a c k   t h e   w i d t h  
POP ax ; g e t   b a c k   t h e   l e f t   c o l u m n ’ s   b i t  mask 
add di.SCREEN-WIDTH-IN-BYTES 

; p o i n t   t o   t h e   s t a r t   o f   t h e   n e x t   s c a n  
: 1 i n e   o f   t h e  image 

dec  bx  ;see i f  t h e r e   a r e  any  more  scan l i n e s  
j n z  RowLoop : i n   t h e  image 
r e t  

DrawFromChunkyBitmap  endp 
Code ends 

end S t a r t  

“That’s  an  interesting  application of write mode 2,” you  may  well  say,  “but  is it really 
useful?” While  the  ability  to  convert  chunky  bitmaps into VGA bitmaps does have its 
uses,  Listing 27.1 is primarily intended to  illustrate  the  mechanics of write mode 2. 
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Forper$ormance,  it’s best to  store 16-color bitmaps in pre-separated four-plane  for- 
mat  in  system  memory, and copy one plane at a time  to the  screen.  Ideally, such 
bitmaps should  be  copied one scan line at a time, with all four planes  completed for 
one  scan  line  before  moving  on  to  the  next. I say this  because when entire  images 
are copied one  plane at a time, nasty transient  color effects can occur as one  plane 
becomes  visibly changed before other  planes  have  been  modified. 

Drawing  Color-Patterned  Lines Using Write Mode 2 
A more serviceable  use of write mode 2 is  shown in the program  presented  in  Listing 
27.2. The program draws multicolored horizontal, vertical, and diagonal lines, bas- 
ing  the color patterns on passed color tables.  Write mode 2 is ideal because in this 
application color can vary from one pixel to the  next, and in write mode 2 all  that’s 
required to  set  pixel color is a change of the lower nibble of the byte  written by the 
CPU. Set/reset could be used to achieve the same result, but  an  index/data pair of 
OUTS would  be required to set the Set/Reset register to each new  color.  Similarly, 
the Map Mask register could be  used  in  write mode 0 to set  pixel  color, but in this 
case not only  would an  index/data  pair of OUTS be required  but  there would  also  be 
no  guarantee that  data already in display memory wouldn’t interfere with the  color 
of the pixel being drawn, since the Map  Mask register  allows  only selected planes to 
be  drawn to. 
Listing 27.2 is hardly a comprehensive line drawing program.  It draws  only a few 
special line cases, and although it is reasonably  fast, it is far from the fastest  possible 
code to  handle those cases,  because it goes through a dot-plot routine  and because it 
draws horizontal lines a pixel rather  than a byte at a time.  Write mode 2 would, 
however,  serve just as well in a full-blown line drawing routine. For  any  type  of pat- 
terned line drawing on  the VGA, the basic approach remains the same:  Use the bit 
mask to select the pixel (or pixels)  to be  altered and use the CPU byte in write mode 
2 to select the color in which to draw. 

LISTING 27.2  127-2.ASM 
: Program t o   i l l u s t r a t e  one use o f  w r i t e  mode 2 o f  t h e  VGA and EGA by 
: d r a w i n g   l i n e s   i n   c o l o r   p a t t e r n s .  

: Assemble w i t h  MASM o r  TASM 

: By Michael   Abrash 

Stack  segment  para  stack ‘STACK’ 
db 512 dup(0 )  

Stack  ends 

SCREEN-WIDTH-IN-BYTES 
GRAPHICSLSEGMENT 
SC-INDEX 
MAP-MASK 
GC- INDEX 
GRAPHICS-MODE 
BIT-MASK 

equ 80 
equ OaOOOh :mode 10 b i t - m a p  segment 
equ  3c4h  :Sequence C o n t r o l l e r   I n d e x   r e g i s t e r  
equ 2 ; i ndex  o f  Map Mask r e g i s t e r  
equ  03ceh  :Graph ics   Cont ro l le r   Index   reg  
equ 5 : i ndex  o f  Graphics Mode r e g  
equ 0 : i ndex  o f  B i t  Mask r e g  
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D a t a  segment 
P a t t e r n 0  

P a t t e r n l  

P a t t e r n 2  

P a t t e r n 3  

Data  ends 

Code segment 

S t a r t   p r o c  
assume 

mov 
mov 
mo v 
i n t  

: Draw 8 r a d i a l  

mov 
mov 
mov 
c a l l  

: Draw 8 r a d i a l  

mov 
mov 
mov 
c a l l  

: Draw 8 r a d i a l  

mov 
mov 
mov 
c a l l  

: Draw 8 r a d i a l  

mov 
mov 
mov 
c a l l  

para  common 'DATA'  
db  16 
db 0, 1, 2,  3.  4.  5.  6. 7. 8 
db 9.  10, 11. 12.  13.  14.  15 
db 6 
db 
db 8 

2. 2 .  2. 10,  10.  10 

db  15,  15.  15. 0 .   0 .  15.  0 .  0 
db 9 
db 1.  1,  1, 2. 2. 2. 4.  4. 4 

p a r a   p u b l i c  'CODE'  
cs:Code.  ds:Data 
near  
ax.0ata 
ds.ax 
ax,  10h 
1 0 h   : s e l e c t   v i d e o  mode 10h  (640x350) 

l i n e s   i n   u p p e r - l e f t   q u a d r a n t   i n   p a t t e r n  0.  

bx.0 
CX.0 
s i . o f f s e t   P a t t e r n 0  
RuadrantUp 

l i n e s   i n   u p p e r - r i g h t   q u a d r a n t   i n   p a t t e r n  1. 

bx ,  320 
cx.0 
s i . o f f s e t   P a t t e r n l  
RuadrantUp 

l i n e s   i n   l o w e r - l e f t   q u a d r a n t   i n   p a t t e r n  2. 

bx.0 
cx.175 
s i . o f f s e t   P a t t e r n 2  
Quadrantup 

l i n e s   i n   l o w e r - r i g h t   q u a d r a n t   i n   p a t t e r n   3 .  

bx.320 
cx.175 
s i . o f f s e t   P a t t e r n 3  
Quadrantup 

: W a i t   f o r  a k e y   b e f o r e   r e t u r n i n g   t o   t e x t  mode and  ending. 

mov a h . 0 l h  
i n t   Z l h  
mov ax.03h 
i n t  10h 
mov ah.4ch 
i n t  21h 

: Draws 8 r a d i a l   l i n e s   w i t h   s p e c i f i e d   p a t t e r n   i n   s p e c i f i e d  mode 10h 
: quadrant .  
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; I n p u t :  
BX - X c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   q u a d r a n t  
C X  - Y c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   q u a d r a n t  
SI - p o i n t e r   t o   p a t t e r n ,   i n   f o l l o w i n g   f o r m :  

By te  0: L e n g t h   o f   p a t t e r n  
By te  1: Start o f   p a t t e r n ,  one c o l o r   p e r   b y t e  

: A X ,  BX.  C X ,  DX des t royed  

Quadrantup 
add 
add 
mov 
mov 
c a l l  
mov 
mov 
c a l l  
mov 
mov 
c a l l  
mov 
mov 
c a l l  
mov 
mov 
c a l l  
mov 
mov 
c a l l  
rnov 
mov 
c a l l  
mov 
mov 
c a l l  
r e t  

Quadrantup 

proc   near  
bx.  160 
cx.87 
ax.0 
dx.160 
L i  neUp 
ax, 1 
dx,  88 
L i  neUp 
ax.2 
dx,  88 
L i  neUp 
ax.3 
dx,  88 
L i  neUp 
ax.4 
dx.161 
L i  neUp 
ax.5 
dx,  88 
L i  neUp 
ax.6 
dx,  88 
L i  neUp 
ax.7 
dx,  88 
L i  neUp 

endp 

; p o i n t   t o   t h e   c e n t e r   o f   t h e   q u a d r a n t  

; d r a w   h o r i z o n t a l   l i n e   t o   r i g h t  edge 

: d r a w   d i a g o n a l   l i n e   t o   u p p e r   r i g h t  

: d r a w   v e r t i c a l   l i n e   t o   t o p  edge 

: d r a w   d i a g o n a l   l i n e   t o   u p p e r   l e f t  

:draw h o r i z o n t a l   l i n e   t o   l e f t  edge 

: d r a w   d i a g o n a l   l i n e   t o   l o w e r   l e f t  

: d r a w   v e r t i c a l   l i n e   t o   b o t t o m  edge 

; d r a w   d i a g o n a l   l i n e   t o   b o t t o m   r i g h t  

; Draws a h o r i z o n t a l ,   v e r t i c a l ,   o r   d i a g o n a l   l i n e   ( o n e   o f   t h e   e i g h t  
: p o s s i b l e   r a d i a l   l i n e s )  o f  t h e   s p e c i f i e d   l e n g t h   f r o m   t h e   s p e c i f i e d  
: s t a r t i n g   p o i n t .  

; I n p u t :  
A X  - l i n e   d i r e c t i o n ,  as f o l l o w s :  

3 2 1  
4 * 0  
5 6 7  

BX - X c o o r d i n a t e   o f   s t a r t i n g   p o i n t  
C X  - Y c o o r d i n a t e   o f   s t a r t i n g   p o i n t  
DX = l e n g t h   o f   l i n e  (number o f   p i x e l s   d r a w n )  

; All r e g i s t e r s   p r e s e r v e d .  

: T a b l e   o f   v e c t o r s   t o   r o u t i n e s   f o r   e a c h   o f   t h e  8 p o s s i b l e   l i n e s .  

L ineUpVectors   label   word 
dw LineUpO. L ineUp l .  LineUpZ. Lineup3 
dw LineUp4. LineUp5. LineUp6. Lineup7 
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; Macro t o  d r a w   h o r i z o n t a l ,   v e r t i c a l ,   o r   d i a g o n a l   l i n e .  

; I n p u t :  

MLi neUp 

X P a r m  - 1 t o  draw r i g h t ,  -1 t o  draw l e f t ,  0 t o   n o t  move h o r z .  
YParm - 1 t o  draw  up, -1 t o  draw down, 0 t o   n o t  move v e r t .  
BX - X s t a r t   l o c a t i o n  
C X  - Y s t a r t   l o c a t i o n  
DX - number o f  p i x e l s   t o  draw 
D S : S I  - l i n e   p a t t e r n  

macro XParm. Y P a r m  
local   L ineUpLoop.  CheckMoreLine 
mov d i   , s i   : s e t   a s i d e   s t a r t   o f f s e t  o f  p a t t e r n  
l o d s b   ; g e t   l e n g t h  o f  p a t t e r n  
mov a h . a l  

LineUpLoop: 
1 odsb 
c a l l  

i f  XParm EP 1 
i nc 

e n d i f  
i f  XParm EQ -1 

end i  f 
i f  YParm ER 1 

end i  f 
i f  YParm EO -1 

end i  f 

dec 

i nc 

dec 

dec 

mov 
1 odsb 
mov 

j n z  

CheckMoreLine: 
dec 
j nz 
jmp 
endm 

L i n e u p   p r o c  
push 
push 
push 
push 
push 
push 
push 

mov 

mov 
mov 

push 

; g e t   c o l o r   o f   t h i s   p i x e l  
DotUpInColor  ; . . .and  draw i t  

bx 

bx 

c x  

c x  

ah ;at   end o f  p a t t e r n ?  
CheckMoreLine 
s i   . d i   ; g e t   b a c k   s t a r t  o f  p a t t e r n  

a h . a l   ; r e s e t   p a t t e r n   c o u n t  

dx  
L i  neUpLoop 
L i  neUpEnd 

near 

bx 
ax 

dx  
s i  
d i  
es 

c x  

d i   , a x  

ax.GRAPHICSLSEGMENT 
es ,ax 

dx  ;save l i n e   l e n g t h  
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: E n a b l e   w r i t e s  t o  a l l   p l a n e s .  

mov  dx.SC-INDEX 
mov a1 .MAP-MASK 
o u t   d x . a l  
i n c   d x  
mov a1 .Ofh 
o u t   d x . a l  

: S e l e c t   w r i t e  mode 2. 

mov  dx.GC-INDEX 
mov a1 .GRAPHICS-MODE 
o u t   d x . a l  
i n c   d x  
mov a l . 0 2 h  
o u t   d x . a l  

: V e c t o r   t o   p r o p e r   r o u t i n e .  

POP d x   : g e t   b a c k   l i n e   l e n g t h  

s h l   d i . l  
jmp  cs:CLineUpVectors+di] 

: H o r i z o n t a l   l i n e   t o   r i g h t .  

L i  neUpO: 
MLineUp 1, 0 

: D i a g o n a l   l i n e   t o   u p p e r   r i g h t .  

L ineup1  : 
MLineUp 1. -1 

: V e r t i c a l   l i n e   t o   t o p .  

L i  neUp2: 
MLineUp 0. -1 

: D i a g o n a l   l i n e   t o   u p p e r   l e f t .  

L i  neUp3: 
MLineUp -1. -1 

: H o r i z o n t a l   l i n e   t o   l e f t .  

L i  neUp4: 
MLineUp -1. 0 

: D i a g o n a l   l i n e   t o   b o t t o m   l e f t .  

L i  neUp5: 
MLineUp -1. 1 

: V e r t i c a l   l i n e  t o  bot tom. 

LineUpC: 
MLineUp 0. 1 
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: D i a g o n a l   l i n e   t o   b o t t o m   r i g h t .  

L i  neUp7 : 
MLineUp 1. 1 

L i  neUpEnd: 
POP es 
POP d i  
pop s i  
POP dx 
POP cx  
POP bx 
POP ax 
r e t  

L i  neUp endp 

: Draws a d o t   i n   t h e   s p e c i f i e d   c o l o r   a t   t h e   s p e c i f i e d  
: Assumes t h a t   t h e  VGA i s   i n   w r i t e  mode 2 w i t h   w r i t e s  
: enab led   and   t ha t  ES p o i n t s   t o   d i s p l a y  memory. 

: I n p u t :  
AL - d o t   c o l o r  
BX - X c o o r d i n a t e  o f  d o t  
C X  - Y c o o r d i n a t e   o f   d o t  
ES - d i s p l a y  memory segment 

: All r e g i s t e r s   p r e s e r v e d .  

DotUpInCol or proc   nea r  
push  bx 
push  cx 
push  dx 
push d i  

1 oca 
t o  a 

ti on. 
11  p lanes 

: P o i n t  E S : D I  t o   t h e   d i s p l a y  memory b y t e   i n   w h i c h   t h e   p i x e l   g o e s ,   w i t h  
: t h e   b i t  mask s e t  up t o  a c c e s s   t h a t   p i x e l   w i t h i n   t h e   a d d r e s s e d   b y t e .  

push 
mov 
mu1 
mov 
mov 
and 
mov 
mov 
o u t  
i nc 
mov 
s h r  
o u t  
s h r  
shr 
s h r  
add 
mov 
POP 
s t o s b  

POP 
POP 
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ax   : p rese rve   do t   co lo r  
ax.SCREEN-WIDTH-IN-BYTES 
cx  
d i  .ax 
c l  , b l  
c l   . l l l b  
dx.GC-INDEX 
a1 .BIT-MASK 
dx ,a l  
dx 
a l . 80h  
a1 . c l  
dx.al 
bx .1  
bx .1  
bx .1  
d i  , bx 
a1 . e s : [ d i l  
ax 

d i  
dx 

: o f f s e t   o f   s t a r t   o f   t o p   s c a n   l i n e  

: s e t   t h e   b i t  mask f o r   t h e   p i x e l  

: X  i n   b y t e s  
: o f f s e t   o f   b y t e   p i x e l   i s   i n  
: 1 oad 1 atches 
:ge t   back   do t  color 
: w r i t e   d o t   i n   d e s i r e d   c o l o r  



POP cx 

ret 
DotUpInColor  endp 
S t a r t  endp 
Code ends 

POP bx 

end  Start 

When to Use Write  Mode 2 and When 
to Use Set/Reset 
As indicated earlier, write mode  2  and  set/reset  are functionally interchangeable. 
Write mode 2 lends itself  to more efficient implementations when the drawing color 
changes frequently, as in Listing 27.2. 
Set/reset  tends to be superior when many pixels in succession are drawn in  the same 
color, since with set/reset  enabled  for all planes the Set/Reset register provides the 
color data  and as a result the CPU is free to draw  whatever  byte  value it wishes. For 
example,  the CPU can execute  an OR instruction to display memory when set/reset 
is enabled  for all planes, thus both  loading  the latches and writing the color value 
with a single instruction, secure in the knowledge that  the value it writes is ignored 
in favor  of the  set/reset color. 
Set/reset is also the mode of choice  whenever it is necessary  to  force the value  written to 
some planes to a fixed value  while  allowing the CPU  byte to modify other planes. 
This is the mode of operation when set/reset is enabled  for some but  not all planes. 

Mode  13H-320x200  with 256 Colors 
I’m going to take a minute-and I do mean a minute-to  discuss the  programming 
model for  mode  13H,  the VGA’s 320x200  256-color mode. Frankly, there’s just  not 
much to it, especially compared to the convoluted 16-color model  that we’ve  ex- 
plored over the last five chapters. Mode 13H offers the simplest programming  model 
in the history of  PC graphics: A linear  bitmap starting at A000:0000, consisting of 
64,000  bytes, each controlling one pixel. The byte at offset 0 controls the  upper left 
pixel on  the screen,  the byte at offset  319 controls the  upper right pixel on  the 
screen,  the byte at offset  320 controls the second pixel down at  the left of the screen, 
and  the byte at offset 63,999 controls the lower right pixel on  the screen. That’s all 
there is to it; it’s so simple that I’m not going to spend any time on  a  demo  program, 
especially  given that some of the listings later  in this book, such as the antialiasing 
code  in  Chapter  F on  the companion CD-ROM, use mode 13H. 

Flipping Pages  from  Text  to  Graphics  and  Back 
A while back, I  got  an  interesting  letter  from Phil Coleman, of La Jolla, who wrote: 
“Suppose I have the EGA in mode 10H (640x350  16-color graphics).  I would  like  to 
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preserve some or all of the image while I temporarily switch to text  mode  3 to give 
my user  a  ‘Help’  screen. Naturally memory is scarce so I’d  rather  not make a copy of 
the video buffer at AOOOH to ‘remember’  the image while I digress to the  Help text. 
The EGA  BIOS  says that  the  screen  memory will not be cleared on a  mode set if bit 7 
of AL is set. Yet  if I try that,  it is clear that writing text into  the B800H buffer trashes 
much  more  than  the 4K bytes  of a text page;  when I switch  back to mode 10H, “ghosts” 
appear  in  the  form of bands of colored  dots.  (When  in text mode,  I  do make a copy 
of the 4K buffer at B800H before showing the  help; and I  restore  the 4K before 
switching  back to mode  10H.) Is there  a way to preserve the  graphics image while I 
switch to text mode?” 
“A corollary to this question is: Where  does  the  64/128/256Kof EGA memory  ‘hide’ 
when the EGA  is in text mode? Some I guess is used to store  character sets, but what 
happens to the rest? Or rather, how can I  protect it?” 
Those  are  good  questions. Alas,  answering them  in full would require extensive  ex- 
planation  that would  have little  general  application, so I’m not going  to do that. 
However, the issue  of  how to go to text  mode and back without losing the  graphics 
image certainly rates  a  short discussion, complete with some working code.  That’s 
especially true given that  both  the discussion and  the  code apply just as  well to the 
VGA  as to the EGA (with a few differences  in  mode  12H,  the VGA’s high-resolution 
mode, as noted  below). 
Phil is indeed  correct  in his observation that  setting  bit 7 of AL instructs  the BIOS 
not to clear display memory on  mode sets, and  he is  also correct  in surmising that  a 
font is loaded  when  going to text mode. The normal  mode  10H  bitmap occupies the 
first 28,000  bytes  of each of the VGA’s four planes. (The  mode  12H  bitmap takes up 
the first 38,400  bytes  of each plane.) The normal  mode  3  character/attribute memory 
map resides in  the first 4000  bytes  of planes 0 and 1 (the blue and green planes in 
mode  10H).  The standard  font  in  mode 3 is stored in the first 8K of plane 2 (the red 
plane  in  mode 10H). Neither  mode  3 nor any other text mode makes use of plane  3 
(the intensity plane  in  mode IOH) ; if necessary, plane 3 could be  used as scratch 
memory  in text mode. 
Consequently, you can get away with  saving a  total of just  under 16K  bytes-the first 
4000  bytes  of planes 0 and 1 and the first 8K  bytes of plane 2-when going  from 
mode  10H  or  mode  12H to mode 3, to be  restored on  returning to graphics  mode. 
That’s hardly all there is to the  matter of going  from text to graphics and back  with- 
out bitmap  corruption,  though.  One  interesting  point is that  the  mode  10H  bitmap 
can be  relocated  to A000:8000  simply by doing  a  mode  set to mode  10H  and  setting 
the  start address (programmed  at CRT Controller registers OCH and ODH) to 8000H. 
You can then access  display memory  starting  at A800:8000 instead of the  normal 
AOOO:OOOO, with the  resultant display  exactly  like that of normal  mode 10H. There 
are BIOS  issues, since the BIOS doesn’t automatically access  display memory  at  the 
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new start address, but if your program does all its drawing directly without the  help 
of the BIOS, that’s no problem. 
The mode  12H  bitmap can’t start at A000:8000, because it’s so long  that it would run 
off the  end of display  memory.  However, the  mode  12H  bitmap can be relocated to, 
say, A000:6000, where it would fit without conflicting with the default font  or  the 
normal text mode memory map,  although it would overlap two of the  upper pages 
available for use (but rarely used) by text-mode programs. 
At any rate,  once the graphics mode  bitmap is relocated, flipping to text mode  and 
back becomes painless. The memory used by mode  3  doesn’t overlap the  relocated 
mode  10H  bitmap  at all (unless additional  portions of font memory are  loaded), so 
all  you need do is set bit 7 of AL on  mode sets in order to flip back and  forth between 
the two modes. 
Another  interesting  point  about flipping from graphics to text and back is that  the 
standard  mode  3  character/attribute  map  doesn’t actually  take up every  byte  of the 
first 4000 bytes  of planes 0 and 1. The standard  mode  3  character/attribute  map 
actually  only  takes up every  even  byte  of the first 4000 in each plane;  the  odd bytes 
are left untouched. This means that only about 12K bytes  actually  have to be saved 
when going to text mode. The code in Listing  27.3 flips from graphics mode to text 
mode and back, saving  only those 12K bytes that actually  have to be saved. This code 
saves and restores the first 8K  of plane 2 (the  font  area) while in graphics mode,  but 
performs the save and restore of the 4000  bytes used for  the  character/attribute 
map while in text mode, because the characters and  attributes, which are actually 
stored in the even  bytes  of planes 0 and 1, respectively, appear to be contiguous bytes 
in memory in text mode  and so are easily  saved  as a single block. 
Explaining why only  every other byte  of planes 0 and 1 is used in text mode and why 
characters and attributes  appear to be contiguous bytes when they are actually in 
different planes is a large part of the  explanation I’m not going to go into now. One 
bit of fallout from this, however, is that if you flip to text mode  and preserve the 
graphics bitmap using the mechanism illustrated in Listing  27.3,  you shouldn’t write 
to  any text page other  than page 0 (that is, don’t write to any  offset in display memory 
above  3999 in text mode)  or alter  the Page Select bit in  the Miscellaneous Output 
register (3C2H) while in text mode. In order to  allow completely unfettered access 
to text pages, it would be necessary  to save  every  byte in the first 32K  of each of 
planes 0 and 1. (On  the  other  hand, this would allow up to 16 text screens to be 
stored simultaneously,  with  any one displayable  instantly.)  Moreover, if any fonts other 
than  the  default  font  are  loaded,  the  portions of plane 2 that those particular fonts 
are  loaded  into would  have to be  saved, up to a maximum of all 64K of plane 2. In 
the worst  case, a full 128K  would  have to be saved in order to preserve all the memory 
potentially used by text mode. 
As I said, Phil Coleman’s question is an  interesting one,  and I’ve  only touched on  the 
intriguing possibilities arising from  the various configurations of display memory in 
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VGA graphics  and  text modes. Right  now, though, we've still got the  basics of the 
remarkably complex (but rewarding!) VGA to  cover. 

LISTING 27.3 L27-3.ASM 
: Program t o   i l l u s t r a t e   f l i p p i n g   f r o m   b i t - m a p p e d   g r a p h i c s  mode t o  
: t e x t  mode and   back   w i thou t   l os ing   any  o f  t h e   g r a p h i c s   b i t - m a p .  

: Assemb le   w i th  MASM o r  TASM 

: By Michael   Abrash 

Stack  segment   para  s tack 'STACK' 
db  512  dup(0) 

Stack  ends 

GRAPHICS-SEGMENT 
TEXT-SEGMENT 

equ OaOOOh :mode  10 bi t -map  segment 
equ Ob800h  :mode  3 bi t -map  segment 

SC- INDEX equ   3c4h   :Sequence   Con t ro l l e r   I ndex   reg i s te r  
MAP-MASK equ 2 
GC-INDEX 

: i n d e x   o f  Map Mask r e g i s t e r  
e q u   3 c e h   : G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r  

READ-MAP equ 4 : i n d e x   o f  Read Map r e g i s t e r  

Data  segment  para common 'DATA' 

GStri keAnyKeyMsg0 
db 

l a b e l   b y t e  

db 
Odh. Oah. 'Graphics  mode' ,  Odh. Oah 
' S t r i k e  any  key t o   c o n t i n u e . . . ' ,  Odh. Oah. ' f '  

GSt r i keAnyKeyMsg l   l abe l   by te  
db  Odh.  Oah. 'G raph ics  mode a g a i n ' ,  Odh. Oah 
db ' S t r i k e  any  key t o   c o n t i n u e . . . ' .  Odh.  Oah. ' $ '  

T S t r i  keAnyKeyMsg l a b e l   b y t e  
db 
db 

Odh.  Oah, 'Text   mode' ,  Odh. Oah 
' S t r i k e  any  key t o   c o n t i n u e . . . ' ,  Odh, Oah. ' f '  

P1 ane2Save db  2000h  dup ( ? I  ; s a v e   a r e a   f o r   p l a n e  2 d a t a  

CharAt tSave db 4000 dup ( ? )  ; s a v e   a r e a   f o r  memory wiped 
: where f o n t   g e t s   l o a d e d  

: o u t  by c h a r a c t e r / a t t r i b u t e  
: d a t a   i n   t e x t  mode 

Data  ends 

Code segment   para   pub l i c  ' C O D E '  

S t a r t   p r o c   n e a r  
assume cs:Code.  ds:Data 

mov ax.10h 
i n t  1 0 h   : s e l e c t   v i d e o  mode 10h  (640x350) 

: Fill t h e   g r a p h i c s   b i t - m a p   w i t h  a c o l o r e d   p a t t e r n .  

c l  d 
mov  ax.GRAPHICS-SEGMENT 
mov es  ,ax 
mov ah.3 : i n i t i a l  fill p a t t e r n  
mov c x . 4   : f o u r   p l a n e s   t o  fill 
mov dx.SC-INDEX 
mov a1 .MAP-MASK 
o u t   d x , a l   : l e a v e   t h e  SC I n d e x   p o i n t i n g   t o   t h e  
i n c   d x  : Map Mask r e g i s t e r  
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F i l l B i t M a p :  
mov a l . 1 0 h  
s h r  a1 , c l  
o u t   d x . a l  

:generate map mask f o r   t h i s   p l a n e  

s u b   d i . d i  
; s e t  map mask f o r   t h i s   p l a n e  
; s t a r t   a t   o f f s e t  0 

mov a1 ,ah   : ge t   t he  fill p a t t e r n  
push  cx 
mov cx.8000h 

; p r e s e r v e   p l a n e   c o u n t  
:fill 32K words 

rep  s tosw  ;do fill f o r   t h i s   p l a n e  
POP c x   : g e t   b a c k   p l a n e   c o u n t  
s h l   a h . 1  
s h l   a h . 1  
1 oop F i   11  B i  tMap 

; Put  up  "str ike  any  key"  message. 

mov ax.Data 
mov ds.ax 
mov d x . o f f s e t  GStrikeAnyKeyMsgO 
mov ah.9 
i n t  21h 

; W a i t   f o r  a key.  

mov a h . 0 l h  
i n t  21h 

; Save t h e  8K o f   p l a n e  2 t h a t  will be  used  by   the   fon t .  

mov  dx.GC-INDEX 
mov a1 , READ-MAP 
o u t   d x . a l  
i n c   d x  
mov a1 .2 
o u t   d x . a l  
mov ax.Data 
mov es.ax 
mov  ax.GRAPHICS-SEGMENT 
mov ds.ax 
s u b   s i . s i  
mov d i . o f f s e t  PlaneZSave 
mov cx.Z000h/2  :save 8K ( l e n g t h   o f   d e f a u l t   f o n t )  
r e p  movsw 

: s e t   u p   t o   r e a d   f r o m   p l a n e  2 

; GO t o   t e x t  mode w i t h o u t   c l e a r i n g   d i s p l a y  memory. 

mov ax.083h 
i n t  10h 

; Save t h e   t e x t  mode b i t - m a p .  

mov ax.Data 
mov es.ax 
mov  ax.TEXT-SEGMENT 
mov ds.ax 
sub s i . s i  
mov d i , o f f s e t   C h a r A t t S a v e  
mov c x . 4 0 0 0 / 2   ; l e n g t h   o f   o n e   t e x t   s c r e e n  i n  words 
r e p  movsw 
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; F i l l   t h e   t e x t  
; message. 

mov 
mov 
sub 
mov 
mov 
mov 

mode s c r e e n   w i t h   d o t s   a n d   p u t   u p   " s t r i k e   a n y   k e y "  

ax.TEXT-SEGMENT 
es,ax 
d i   . d i  
a1 . I . '  ;fill c h a r a c t e r  
ah.7 ;fill a t t r i b u t e  
c x . 4 0 0 0 / 2   ; l e n g t h   o f   o n e   t e x t   s c r e e n   i n   w o r d s  

rep   s tosw 
mov ax.Data 
mov ds.ax 
mov dx .o f fse t   TSt r i keAnyKeyMsg 
mov ah.9 
i n t  21h 

; W a i t   f o r  a  key. 

mov ah .0 lh  
i n t  21h 

; R e s t o r e   t h e   t e x t  mode s c r e e n   t o   t h e   s t a t e  i t  was i n  on e n t e r i n g  
; t e x t  mode. 

mov ax.0ata 

mov  ax.TEXT-SEGMENT 
mov ds.ax 

mov es,ax 
mov s i . o f f s e t   C h a r A t t S a v e  
s u b   d i . d i  
mov c x . 4 0 0 0 / 2   ; l e n g t h   o f   o n e   t e x t   s c r e e n  i n  words 
r e p  movsw 

; R e t u r n   t o  mode 1 0 h   w i t h o u t   c l e a r i n g   d i s p l a y  memory. 

mov ax,90h 
i n t  10h 

; R e s t o r e   t h e   p o r t i o n   o f   p l a n e  2 t h a t  was w i p e d   o u t   b y   t h e   f o n t .  

mov dx,SC-INDEX 
mov a1 .MAP-MASK 
o u t  dx .a l  
i n c   d x  
mov a1 .4 
o u t   d x . a l   ; s e t   u p   t o   w r i t e   t o   p l a n e  2 
mov ax.Data 
mov ds.ax 
mov  ax.GRAPHICS-SEGMENT 
mov es.ax 
mov s i  . o f f s e t  PlaneESave 
sub d i   . d i  
mov cx .2000h /2   ; res to re  8K ( l e n g t h   o f   d e f a u l t   f o n t )  
r e p  movsw 

; Put   up   "s t r i ke   any   key"   message.  

mov ax.Data 
mov ds.ax 
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mov d x . o f f s e t   G S t r i k e A n y K e y M s g l  
mov a h . 9  
i n t  21h 

: W a i t   f o r   a   k e y   b e f o r e   r e t u r n i n g  t o  t e x t  mode and  ending.  

mov a h . 0 l h  
i n t  21h 
mov a x . 0 3 h  
i n t  10h 
mov ah.4ch 
i n t  21h 

S t a r t  endp 
Code ends 

end S t a r t  
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reading vga memory



s 0 and 1, and the Color Don‘t 

Well, it’s taken five but we’ve finally covered the data write path  and all 
four write modes o ow it’s time to tackle the VGA’s two read modes. 

mplex as the write modes, they’re nothing to sneeze 
known  as color compare mode) is rather  unusual 

ogramming  the VGA straightforward? 
es  of VGA programming is what this part 

Read Mode 0‘ 
Read mode 0 is actually  relatively uncomplicated, given that you understand  the 
four-plane  nature of the VGA. (If you don’t  understand  the four-plane nature of the 
VGA, I strongly urge you to read  Chapters 23-27 before  continuing with  this chap- 
ter.) Read mode 0, the  read  mode  counterpart of write mode 0, lets you read  from 
one  (and only one) plane of VGA memory at any one time. 
Read mode 0 is selected by setting  bit 3 of the Graphics Mode register (Graphics 
Controller register 5 )  to 0. When read  mode 0 is active, the plane  that supplies the 
data when the CPU reads VGA memory is the  plane selected by bits 1 and 0 of the 
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Read  Map register (Graphics  Controller  register 4). When the Read  Map register is 
set to 0, CPU reads  come  from  plane 0 (the plane  that normally contains  blue pixel 
data). When  the Read  Map register is set to 1, CPU reads  come  from  plane 1; when 
the Read Map register is 2, CPU reads  come  from  plane 2; and when the Read  Map 
register is 3, CPU reads  come  from  plane 3. 
That all  seems simple enough;  in  read  mode 0, the Read Map register acts as a selec- 
tor  among  the  four planes, determining which one of the planes will supply the 
value returned to the CPU. There is a slight complication, however, in  that  the value 
written to the Read Map register in order to read from a given plane is not  the same 
as the value written to the Map  Mask register (Sequence  Controller register 2) in 
order to write to that  plane. 
Why  is that? Well, in read  mode 0, one  and only one plane can  be read  at  a time, so 
there  are only four possible settings of the Read Map register: 0, 1, 2, or 3, to select 
reads  from  plane 0, 1, 2, or 3. In write mode 0, by contrast  (in fact, in any  write 
mode), any or all planes may be written to at  once, since the byte written by the CPU 
can  “fan out” to multiple  planes. Consequently, there  are  not  four  but sixteen pos- 
sible settings of the Map  Mask register. The setting of the Map  Mask register  to write 
only to plane 0 is 1; to  write  only to plane 1 is 2; to write  only to plane 2 is 4; and to 
write  only to  plane 3 is 8. 
As you  can see, the settings of the Read Map and Map Mask registers for accessing a 
given plane  don’t  match. The code  in Listing  28.1 illustrates this. Listing  28.1  simply 
copies a  sixteencolor image  from  system  memory  to VGA memory, one plane at  a time, 
then  animates by repeatedly copying the image back to system  memory, again one 
plane at a time, clearing  the  old image, and copying the image to  a new location  in 
VGA memory.  Note the differing settings of the Read Map and Map  Mask registers. 

LISTING 28.1  128- 1 .ASM 
; Program t o   i l l u s t r a t e   t h e  use o f  t h e  Read Map r e g i s t e r   i n   r e a d  mode 0. 
; Animates   by   copy ing   a   16-Co lOr   image  f rom VGA memory t o  system  memory. 
; one p l a n e   a t   a   t i m e ,   t h e n   c o p y i n g   t h e   i m a g e   b a c k   t o   a  new l o c a t i o n  
: i n  VGA memory. 

: By Michae l   Abrash 

s tack   segmen t   word   s tack  ‘STACK’ 

s tack   ends  
db 512 dup ( ? )  

data  segment  
IMAGE-WIDTHEQU 
IMAGELHEIGHT 
LEFT-BOUND EQU 
RIGHT-BOUNDEOU 
VGA-SEGMENTEQU 
SCREEN-WIDTH 
SC-INDEX EQU 
GC-INDEX EQU 

word ‘DATA‘ 
4 
EQU 32 
10 
66 
OaOOOh 
EQU 80 ; i n   b y t e s  
3 c 4 h   ; S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r  
3 c e h   ; G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r  

; i n   b y t e s  

; i n   b y t e s  
; i n   b y t e s  

: i n   p i x e l s  
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MAP-MASK EOU 2 :Map Mask r e g i s t e r   i n d e x   i n  SC 
READ-MAP EQU 4 :Read Map r e g i s t e r   i n d e x   i n  GC 

: B a s e   p a t t e r n   f o r   1 6 - C O l O r   i m a g e .  

P a t t e r n P l a n e O   l a b e l   b y t e  

P a t t e r n P l   a n e l  1 a b e l   b y t e  

Pa t te rnP l   ane2  1 a b e l   b y t e  

Pa t te rnP l   ane3  1 a b e l   b y t e  

db  32  dup  (Offh,Offh.O.O) 

db  32  dup  (Offh.O.Offh.0) 

db  32  dup  (OfOh.OfOh.OfOh.OfOh) 

db  32  dup  (0cch.Occh.Occh.Occh) 

: T e m p o r a r y   s t o r a g e   f o r   1 6 - c o l o r   i m a g e   d u r i n g   a n i m a t i o n .  

ImagePlaneOdb 32*4 d u p  ( ? I  
ImagePl   anel   db 32*4  dup ( ? I  
ImagePlaneZdb 32*4  dup ( ? )  
ImagePlane3  db 32*4  dup ( ? )  

: C u r r e n t   i m a g e   l o c a t i o n  & d i r e c t i o n .  

ImageX dw 4 0   : i n   b y t e s  
ImageY dw 100 : i n   p i x e l s  
ImageXDi r e c t i o n  dw 1 : i n   b y t e s  
data  ends 

code  segment  word ' C O D E '  
assume cs :code,ds :da ta  

S t a r t   p r o c   n e a r  
c l  d 
mov ax .da ta  
mov ds .ax  

: S e l e c t   g r a p h i c s  mode 10h. 

mov 
i n t  

: Draw t h e  

mov 
c a l l  

ax, lOh 
10h 

i n i t i a l  image 

s i   . o f f s e t   P a t t e r n P l a n e O  
DrawImage 

: Loop t o   a n i m a t e   b y   c o p y i n g   t h e   i m a g e   f r o m  VGA memory t o  system  memory, 
: e r a s i n g   t h e   i m a g e ,   a n d   c o p y i n g   t h e   i m a g e   f r o m   s y s t e m  memory t o  a  new 
: l o c a t i o n  i n  VGA memory.  Ends when a key i s   h i t .  

AnimateLoop: 

: Copy t h e   i m a g e   f r o m  VGA memory t o   s y s t e m  memory 

mov d i   . o f f s e t  ImagePlaneO 
c a l l  GetImage 

: C l e a r   t h e   i m a g e   f r o m  V G A  memory. 

c a l l  EraseImage 
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: Advance  the  image X c o o r d i n a t e ,   r e v e r s i n g   d i r e c t i o n  if e i t h e r  edge 
: o f   t h e   s c r e e n   h a s   b e e n   r e a c h e d .  

mov ax,CImageX] 
cmp  ax.LEFT-BOUND 
j z  R e v e r s e D i r e c t i o n  
cmp  ax.RIGHT-BOUND 
j n z  SetNewX 

neg  CImageXDi rec t ion ]  

add  ax.CImageXDirect ion]  
mov CImageX1.a~ 

R e v e r s e D i r e c t i o n :  

SetNewX: 

: Draw the   image   by   copy ing  i t  f r o m   s y s t e m  memory t o  VGA memory. 

mov s i . o f f s e t  ImagePlaneO 
c a l l  DrawImage 

: S l o w   t h i n g s  down a b i t   f o r   v i s i b i l i t y   ( a d j u s t  as  needed). 

mov c x . 0  

1 oop  Delay  Loop 
Del  ayLoop: 

: See if a key  has  been h i t ,   e n d i n g   t h e   p r o g r a m .  

mov ah .1  
i n t  16h 
j z  AnimateLoop 

: C l e a r   t h e   k e y .   r e t u r n   t o   t e x t  mode,  and r e t u r n   t o  00s. 

sub ah.ah 
i n t  16h 
mov ax.3 
i n t  10h 
mov ah.4ch 
i n t  21h 

S t a r t  endp 

: Draws t h e   i m a g e   a t   o f f s e t  DS:SI t o   t h e   c u r r e n t  i m a g e   l o c a t i o n   i n  
: VGA memory. 

DrawImage  proc  near  
mov  ax,VGA-SEGMENT 
mov es,ax 
c a l l   G e t I m a g e O f f s e t  : E S : D I  i s   t h e   d e s t i n a t i o n   a d d r e s s   f o r   t h e  

mov dx  , SC-I NDEX 
mov a l . l  : do   p lane  0 f i r s t  

push d i  : image i s  drawn a t   t h e  same o f f s e t   i n  

p u s h   a x   : p r e s e r v e   p l a n e   s e l e c t  
mov a1 .MAP-MASK :Map Mask i n d e x  
o u t   d x . a l   : p o i n t  SC I n d e x   t o   t h e  Map Mask r e g i s t e r  
POP a x   ; g e t   b a c k   p l a n e   s e l e c t  
i n c   d x   : p o i n t   t o  SC i n d e x   r e g i s t e r  

: image i n  VGA memory 

DrawImagePlaneLoop: 

: each  p lane 
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o u t   d x . a l   ; s e t   u p   t h e  Map Mask t o   a l l o w   w r i t e s   t o  
; t h e   p l a n e   o f   i n t e r e s t  

d e c   d x   ; p o i n t   b a c k   t o  SC D a t a   r e g i s t e r  
mov bx.IMAGE-HEIGHT ;# o f   s c a n   l i n e s   i n   i m a g e  

mov cx.IMAGE-WIDTH ;# o f   b y t e s   a c r o s s   i m a g e  
rep  movsb 
add di.SCREEN-WIDTH-IMAGE-WIDTH 

dec  bx  ;any  more  scan  l ines? 
j n z  DrawImageLoop 
pop d i   : g e t   b a c k   i m a g e   s t a r t   o f f s e t   i n  VGA memory 
s h l  a1 . I  :Map Mask s e t t i n g   f o r   n e x t   p l a n e  

DrawImageLoop: 

: p o i n t   t o   n e x t   s c a n   l i n e   o f   i m a g e  

CmD a l .10h  ;have we done a l l   f o u r   o l a n e s ?  
jnz  DrawImagePlaneLoop 
r e t  

DrawImage  endp 

; C o p i e s   t h e   i m a g e   f r o m   i t s   c u r r e n t   l o c a t i o n   i n  
; b u f f e r   a t  D S : D I .  

GetImage 
mov 
c a l l  
xchg 
push 
POP 
mov 
mov 

mov 
sub 

p r o c   n e a r  
s i   . d i  :move d e s t i n a t i o n   o f f s e t  

VGA memory i n t o   t h e  

i n t o  S I  
Ge t ImageOf fse t  : D I  i s   o f f s e t   o f  image i n  VGA memory 
s i . d i  ;SI i s   o f f s e t   o f  image.  01 i s   d e s t i n a t i o n   o f f s e t  
ds 
es ; E S : D I  i s   d e s t i n a t i o n  
ax.VGA-SEGMENT 
ds  ,ax ; D S : S I  i s   s o u r c e  

dx.GC-INDEX 
a1 .a1  :do  p lane 0 f i r s t  

GetImagePlaneLoop: 
push s i  ; image comes f r o m  same o f f s e t   i n  each   p lane  
p u s h   a x   ; p r e s e r v e   p l a n e   s e l e c t  
mov a1,READ”AP;Read Map i n d e x  
o u t   d x . a l   : p o i n t  GC I n d e x   t o  Read Map r e g i s t e r  

i n c   d x   ; p o i n t   t o  GC I n d e x   r e g i s t e r  
o u t   d x . a l   ; s e t   u p   t h e  Read Map t o   s e l e c t   r e a d s   f r o m  

; t h e   p l a n e   o f   i n t e r e s t  
d e c   d x   ; p o i n t   b a c k   t o  GC d a t a   r e g i s t e r  
mov bx,IMAGE-HEIGHT ; C  o f   s c a n   l i n e s   i n   i m a g e  

mov cx.IMAGE-WIDTH ;# o f   b y t e s   a c r o s s   i m a g e  
rep  movsb 
add si.SCREEN-WIDTH-IMAGE-WIDTH 

dec  bx   ;any   more   scan  l ines? 
jnz  Get ImageLoop 
pop s i   ; g e t   b a c k   i m a g e   s t a r t   o f f s e t  
i n c  a1 ;Read Map s e t t i n g   f o r   n e x t   p l a n e  
cmp a l .4   : have  we done a l l   f o u r   p l a n e s ?  
jnz   Ge t ImageP laneLoop  
push  es 
POP ds ; r e s t o r e   o r i g i n a l  DS 
r e t  

GetImage  endp 

; Erases   the   image a t  i t s   c u r r e n t   l o c a t i o n .  

POP a x   ; g e t   b a c k   p l a n e   s e l e c t  

GetImageLoop: 

; p o i n t   t o   n e x t   s c a n   l i n e   o f   i m a g e  
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EraseImage  proc  near  
mov dx.SC_INDEX 
mov a1 .MAP-MASK 
o u t   d x , a l  
i n c   d x  
mov a1 .Ofh 
o u t   d x . a l  

: p o i n t  SC I n d e x   t o   t h e  Map Mask r e g i s t e r  
; p o i n t   t o  SC D a t a   r e g i s t e r  

: s e t   u p   t h e  Map Mask t o   a l l o w   w r i t e s   t o   g o   t o  
: a l l  4 p l a n e s  

mov  ax.VGALSEGMENT 
mov es .ax  
C a l l   G e t I m a g e O f f s e t   : E S : D I   p o i n t s   t o   t h e   s t a r t   a d d r e s s  

sub  a1,al  : e r a s e   w i t h   z e r o s  
mov bx.IMAGE-HEIGHT ;# o f   s c a n   l i n e s   i n  image 

; o f   t h e  image 

EraseImageLooD: 
mov 
r e p  
add 

dec 
j nz  
r e t  

EraseImage 

cX.IMAGE-WIDTH :# of   by tes   ac ross   image  
s t o s b  
di.SCREEN-WIDTH-IMAGE-WIDTH 

bx   : any   more   scan   l i nes?  
EraseImageLoop 

endp 

; p o i n t   t o   n e x t   s c a n   l i n e   o f   i m a g e  

: R e t u r n s   t h e   c u r r e n t   o f f s e t   o f   t h e   i m a g e   i n   t h e  VGA segment i n  DI. 

Get ImageOf fse t   p roc   nea r  
mov  ax,SCREEN_WIDTH 
mu1 [ ImageY 1 
add  ax.[lmageX] 
mov d i  ,ax 
r e t  

Get ImageOffset   endp 
code  ends 

e n d   S t a r t  

By the way, the code in  Listing 28.1 is intended only  to  illustrate  read mode 0, and  is, 
in general,  a  poor way to  perform  animation,  since it's slow and  tends  to  flicker. 
Later  in  this book, we'll take a  look at some far better VGA animation  techniques. 
As you'd expect, neither  the  read  mode  nor  the  setting of the  Read  Map register 
affects CPU Wmtes to VGA memory  in  any  way. 

An important point regarding reading VGA memory involves the VGA 5. latches. P (Remember that each of  the four latches stores a byte for one plane; on CPU 
writes, the latches can provide some or all of the data written to display memory, 
allowing fast copying and eflcient  pixel masking.) Whenever the CPU reads a 
given address in VGA memory, each of  the four latches is loaded with the contents 
of the byte at that address in its respective plane. Even though the CPU only re- 
ceives data from one  plane in read mode 0, all four planes are always read, and 
the values read  are stored in the latches. This is true in read mode I as well. In 
short, whenever the CPUreads VGA memory in any read mode, all fourplanes are 
read  and all four latches are always loaded. 
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Read Mode 1 
Read mode 0 is the workhorse read  mode,  but it’s got an annoying limitation: When- 
ever  you  want to determine  the color of a given pixel in  read  mode 0, you  have to 
perform four VGA memory reads, one for each plane, and  then  interpret  the  four 
bytes  you’ve read as eight 16-color  pixels. That’s a  lot of programming. The code is 
also  likely  to run slowly, all the  more so because a  standard IBM  VGA takes an aver- 
age of 1.1 microseconds  to complete each memory read, and read mode 0 requires 
four  reads  in order to read  the  four planes, not to mention  the even greater  amount 
of time taken by the OUTS required to  switch between the planes. (1.1 microseconds 
may not sound like much, but  on a 66MHz  486, it’s 73 clock  cycles!  Local-bus VGAs 
can be a good deal faster, but a read  from  the fastest  local-bus adapter I’ve  yet seen 
would  still  cost in  the  neighborhood of 10 486/66 cycles.) 
Read mode 1, also  known  as color compare  mode, provides special hardware assistance 
for  determining  whether  a pixel is a given  color.  With a single read  mode 1 read, you 
can determine  whether  each of up to eight pixels  is a specific  color, and you can 
even  specify  any or all planes as “don’t  care” planes in the pixel color comparison. 
Read mode 1 is selected by setting bit 3 of the Graphics Mode register (Graphics 
Controller register 5 )  to 1. In its simplest form,  read  mode 1 compares the cross- 
plane value  of each of the  eight pixels at a given address to the color value in bits 3-0 
of the Color Compare register (Graphics Controller register 2), and  returns  a 1 to 
the CPU in the bit position of each pixel that matches the color in the Color Com- 
pare register and a 0 for each pixel that does not match. 
That’s certainly interesting,  but what’s read  mode 1 good  for? One obvious applica- 
tion is in  implementing flood-fill algorithms, since read  mode 1 makes it easy to tell 
when a given  byte contains  a pixel  of a  boundary color. Another application is in 
detecting on-screen object collisions,  as illustrated by the  code in Listing 28.2. 

LISTING 28.2 128-2.ASM 
: Program t o   i l l u s t r a t e   u s e  o f  r e a d  mode 1 (co lo r   compare   mode)  
: t o   d e t e c t   c o l l i s i o n s   i n   d i s p l a y  memory.  Draws a y e l l o w   l i n e   o n  a 
; b l u e   b a c k g r o u n d ,   t h e n   d r a w s   a   p e r p e n d i c u l a r   g r e e n   l i n e   u n t i l   t h e  
: y e l l o w   l i n e  i s  reached. 

; By Michael   Abrash 

s tack   segmen t   word   s tack  ‘STACK’ 

s tack   ends  
db 512 dup ( ? )  

VGA-SEGMENT EQU 
SCREEN-WIDTH 
GC- INDEX EQU 
SETLRESET  EQU 
ENABLE-SETLRESET EQU 
COLOR-COMPARE 
GRAPHICS-MODE 
B I TLMAS K EQU 

OaOOOh 
EQU 80 
3ceh 
0 
1 
EQU 2 
EQU 5 
8 

;in b y t e s  
: G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r  
: S e t / R e s e t   r e g i s t e r   i n d e x   i n  GC 
: E n a b l e   S e t / R e s e t   r e g i s t e r   i n d e x   i n  GC 
; C o l o r   C o m p a r e   r e g i s t e r   i n d e x   i n  GC 
;Graph ics  Mode r e g i s t e r   i n d e x  i n  GC 
; B i t  Mask r e g i s t e r   i n d e x   i n  GC 
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code  segment  word ' C O D E '  
assume cs:   code 

S t a r t   p r o c   n e a r  
c l  d 

; S e l e c t   g r a p h i c s  mode 10h. 

mov ax, lOh 
i n t  10h 

; F i l l   t h e   s c r e e n   w i t h   b l u e .  

mov a l . l   ; b l u e   i s   c o l o r  1 
C a l l   S e l e c t S e t R e s e t C o l o r   : s e t   t o   d r a w   i n   b l u e  
mov  ax.VGA-SEGMENT 
mov es.ax 
s u b   d i . d i  
mov cx,   7000h 
r e p   s t o s b   : t h e   v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t  

; m a t t e r ,   s i n c e   s e t / r e s e t   i s   p r o v i d i n g  
; t h e   d a t a   w r i t t e n   t o   d i s p l a y  memory 

: Draw  a v e r t i c a l   y e l l o w   l i n e .  

mov a l . 1 4   ; y e l l o w   i s   c o l o r   1 4  

mov dx,GC-INDEX 
c a l l   S e l e c t S e t R e s e t C o l o r   : s e t   t o   d r a w   i n   y e l l o w  

mov a1 .BIT-MASK 
o u t   d x . a l   ; p o i n t  GC I n d e x   t o  B i t  Mask 
i n c   d x   ; p o i n t   t o  GC D a t a  
mov a l . 1 0 h  
o u t   d x . a l   ; s e t  B i t  Mask t o  10h 
mov d i   - 4 0   : s t a r t   i n   t h e   m i d d l e   o f   t h e   t o p  1 
mov cx.350  ;do f u l l   h e i g h t   o f   s c r e e n  

mov a1 . e s : [ d i ]  ; l o a d   t h e   l a t c h e s  
s t o s b  ; w r i t e   n e x t   p i x e l   o f   y e l l o w   l i n e  

VLineLoop: 

: p r o v i d e s   t h e   d a t a   w r i t t e n   t o  d i  

i 

( 
s. 

; memory,  and AL i s   a c t u a l l y   i g n o r e d )  
add di.SCREEN-WIDTH-1 : p o i n t   t o   t h e   n e x t   s c a n   l i n e  
1 oop VLi  neLoop 

: S e l e c t   w r i t e  mode 0 and  read mode 1. 

mov dx.GC-INDEX 
mov a1 .GRAPHICS-MODE 
o u t   d x . a l   ; p o i n t  GC I n d e x   t o   G r a p h i c s  Mode r e g i s t e r  
i n c   d x   ; p o i n t   t o  GC Data 
mov a l . 0 0 0 0 1 0 0 0 b   ; b i t  3-1 i s   r e a d  mode 1. b i t s  1 & 0-OD 

; i s   w r i t e  mode 0 
o u t   d x . a l   : s e t   G r a p h i c s  Mode t o   r e a d  mode 1. 

; w r i t e  mode 0 

: D r a w  a h o r i z o n t a l   g r e e n   l i n e ,  one p i x e l   a t  a t i m e ,   f r o m   l e f t  
; t o   r i g h t   u n t i l   c o l o r  compare   repo r t s  a y e l l o w   p i x e l   i s   e n c o u n t e r e d .  

; Draw i n  green.  

mov a l . 2  :green i s   c o l o r  2 
c a l l   S e l e c t S e t R e s e t C o l o r  ; s e t   t o   d r a w   i n   g r e e n  

ne 

s e t / r e s e t  
p l a y  
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: S e t   c o l o r   c o m p a r e   t o   l o o k   f o r   y e l l o w .  

mov dx.GC_INDEX 
mov a1 , COLOR-COMPARE 
o u t   d x , a l   : p o i n t  GC I n d e x   t o   C o l o r  Compare r e g i s t e r  
i n c   d x   : p o i n t   t o  GC Data  
mov a l . 1 4   : w e ' r e   l o o k i n g   f o r   y e l l o w ,  color 14 
o u t   d x . a l   : s e t   c o l o r   c o m p a r e   t o   l o o k   f o r   y e l l o w  
d e c   d x   : p o i n t   t o  GC I n d e x  

: S e t   u p   f o r   q u i c k   a c c e s s   t o   B i t  Mask r e g i s t e r .  

mov a1 .BIT-MASK 
o u t   d x . a l   : p o i n t  GC I n d e x   t o   B i t  Mask r e g i s t e r  
i n c   d x   : p o i n t   t o  GC Data  

: S e t   i n i t i a l   p i x e l  m a s k   a n d   d i s p l a y  memory o f f s e t .  

mov a1 . 8 0 h   : i n i t i a l   p l x e l  mask 
mov di,lOO*SCREEN-WIDTH 

: s t a r t   a t   l e f t  edge o f   s c a n   l i n e   1 0 0  
HLineLoop: 

mov a h . e s : [ d i l   : d o  a r e a d  mode 1 ( c o l o r   c o m p a r e )   r e a d .  

a n d   a h , a l   : i s   t h e   p i x e l   o f   c u r r e n t   i n t e r e s t   y e l l o w ?  
j n z  W a i t K e y A n d D o n e   : y e s - w e ' v e   r e a c h e d   t h e   y e l l o w   l i n e ,  s o  w e ' r e  

o u t   d x . a l   : s e t   t h e   B i t  Mask r e g i s t e r  s o  t h a t  we 

mov e s : [ d i l . a l   : d r a w   t h e   p i x e l .  T h e   v a l u e   w r i t t e n   i s  

: T h i s   a l s o   l o a d s   t h e   l a t c h e s .  

: done 

: m o d i f y   o n l y   t h e   p i x e l   o f   i n t e r e s t  

: i r r e l e v a n t ,   s i n c e   s e t / r e s e t   i s   p r o v i d i n g  
: t h e   d a t a   w r i t t e n   t o   d i s p l a y  memory 

r o r   a l . l  : s h i f t   p i x e l  mask t o   t h e   n e x t   p i x e l  
a d c   d i . 0  : a d v a n c e   t h e   d i s p l a y  memory o f f s e t  i f  

: t h e   p i x e l  mask  wrapped 

: S l o w   t h i n g s  down a b i t   f o r   v i s i b i l i t y   ( a d j u s t  as  needed) .  

mov cx .0  

1 oop  Del  ayLoop 

jmp  HLineLoop 

Del  ayLoop: 

: W a i t   f o r  a key  t o  b e   p r e s s e d   t o   e n d ,   t h e n   r e t u r n   t o   t e x t  mode and 
: r e t u r n   t o  DOS. 

WaitKeyAndDone: 
WaitKeyLoop: 

mov ah .1  
i n t  16h 
j z  WaitKeyLoop 
sub  ah.ah 
i n t  1 6 h   : c l e a r   t h e   k e y  
mov ax .3  
i n t  1 0 h   : r e t u r n   t o   t e x t  mode 
mov ah.4ch 
i n t  21h  :done 

S t a r t   e n d p  
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: E n a b l e s   s e t / r e s e t   f o r   a l l   p l a n e s ,   a n d   s e t s   t h e   s e t / r e s e t   c o l o r  
; t o  A L .  

S e l e c t S e t R e s e t C o l o r   p r o c   n e a r  
mov dx  , GC-I NDEX 
push ax ; p r e s e r v e   c o l o r  
mov a1 .SETPRESET 
o u t  d x . a l   : p o i n t  GC I n d e x   t o   S e t / R e s e t   r e g i s t e r  
i n c   d x   ; p o i n t   t o  GC Data  

o u t  d x . a l   : s e t   S e t / R e s e t   r e g i s t e r   t o   s e l e c t e d   c o l o r  
dec   dx  
mov a1 ,ENABLEPSETPRESET 

; p o i n t   t o  GC I n d e x  

o u t   d x , a l   ; p o i n t  GC I n d e x   t o   E n a b l e   S e t / R e s e t   r e g i s t e r  
i n c   d x   ; p o i n t   t o  GC Data  
mov a l . O f h  
o u t   d x , a l   : e n a b l e   s e t / r e s e t   f o r   a l l   p l a n e s  
r e t  

POP a x   : g e t   b a c k   c o l o r  

S e l e c t S e t R e s e t C o l o r   e n d p  
code  ends 

e n d   S t a r t  

When all Planes  “Don’t  Care” 
Still and all, there  aren’t all that many  uses for basic color  compare  operations.  There 
is, however, a  genuinely odd application of read  mode 1 that’s worth knowing about; 
but in order to  understand  that, we must first look at  the  “don’t  care”  aspect of color 
compare  operation. 
As described  earlier, during read mode 1 reads the color stored in the Color  Compare 
register is compared  to  each of the 8 pixels at  a given address  in VGA memory. But- 
and it’s a big but-any plane  for which the  corresponding  bit in the  Color Don’t 
Care register is a 0 is always considered a color  compare  match,  regardless of the 
values of that  plane’s bits in the pixels and in  the Color Compare register. 
Let’s look at this another way. A given pixel is controlled by four bits, one in  each 
plane. Normally (when  the Color Don’t Care register is  OFH) , the  color in the Color 
Compare  register is compared to the four bits  of each pixel;  bit 0 of the Color  Compare 
register is compared to the plane 0 bit of each pixel,  bit 1 of the Color  Compare  register 
is compared  to  the  plane 1 bit of each  pixel, and so on.  That is, when the lower four 
bits of the Color Don’t Care register  are all set to 1, then all four bits of a given pixel 
must match  the Color Compare  register in  order for  a  read  mode 1 read  to  return  a 
1 for  that pixel to  the CPU. 
However, if any bit of the  Color  Don’t Care register is 0, then  the  corresponding  bit 
of each pixel is unconditionally  considered  to  match  the  corresponding  bit of the 
Color Compare register. You might  think of the Color Don’t Care register as select- 
ing exactly  which planes  should  matter  in  a given read  mode 1 read. At the  extreme, 
if all  bits of the Color Don’t Care register are 0, then  read  mode 1 reads will  always 
return OFFH, since all planes  are  considered  to  match all bits of all pixels. 
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Now, we’re  all prone to  using  tools the  “right” way-that is, in the way in which  they 
were intended to  be  used. By that  token, the Color  Don’t  Care  register is clearly intended 
to mask one  or  more planes out of a color comparison, and as such, has limited use. 
However, the Color Don’t Care register becomes far more  interesting in exactly the 
“extreme” case described above,  where  all planes become “don’t  care” planes. 
Why?  Well,  as  I’ve said, when  all planes are  “don’t  care” planes, read  mode 1 reads 
always return OFFH.  Now, when you AND any  value  with OFFH, the value remains 
unchanged,  and that can be awfully handy when you’re using the bit mask to modify 
selected pixels in VGA memory.  Recall that you  must always read VGA memory to 
load the latches before writing  to VGA memory when you’re using the bit  mask. 
Traditionally, two separate instructions-a read followed by a write-are used to per- 
form this  task. The code  in Listing 28.2 uses  this approach. Suppose, however, that 
you’ve set the VGA to  read  mode 1, with the Color Don’t Care register set to 0 (mean- 
ing all reads of VGA memory will return OFFH) . Under these circumstances, you can 
use a single AND instruction to  both  read  and write VGA memory,  since  ANDing  any 
value  with OFFH leaves that value unchanged. 
Listing 28.3 illustrates an efficient  use  of  write mode 3 in conjunction with read 
mode 1 and a Color Don’t Care register setting of 0. The mask in AL is passed  di- 
rectly  to the VGA’s bit mask (that’s how  write mode 3 works-see Chapter 4 for  details). 
Because the VGA always returns OFFH, the single AND instruction loads the latches, 
and writes the value in AL, unmodified, to the VGA, where it is used to  generate  the 
bit mask. This is more compact and register-efficient than using separate instruc- 
tions to  read and write, although  it is not necessarily faster by  cycle count, because 
on a 486 or a Pentium MOV is a l-cycle instruction,  but AND  with memory is a 3- 
cycle instruction. However,  given  display memory wait  states, it is often the case that 
the two approaches run at  the same speed, and  the register that  the above approach 
frees up can frequently be used to save one  or more cycles in any  case. 
By the way, Listing 28.3 illustrates  how  write mode 3 can make for excellent pixel- 
and line-drawing code. 

LISTING  28.3  128-3.ASM 
Program t h a t  draws a d i a g o n a l   l i n e   t o   i l l u s t r a t e   t h e  u s e  o f  a 
C o l o r   D o n ‘ t   C a r e   r e g i s t e r   s e t t i n g   o f  OFFH t o   s u p p o r t   f a s t  
r e a d - m o d i f y - w r i t e   o p e r a t i o n s   t o  VGA memory i n   w r i t e  mode 3 by 
d r a w i n g  a d i a g o n a l   l i n e .  

Note:  Works  on VGAs o n l y .  

By Michael   Abrash 

s tack   segment   word   s tack  ‘STACK’ 

s tack   ends  

VGA-SEGMENT EQU OaOOOh 
SCREEN-WIDTH EQU 80 : i n  b y t e s  

db 512  dup ( ? )  
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GC-INDEX EQU 3ceh : G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r  
SETLRESET EQU 0 ; S e t / R e s e t   r e g i s t e r   i n d e x  i n  GC 
ENABLE-SET-RESET EQU 1 ; E n a b l e   S e t / R e s e t   r e g i s t e r   i n d e x   i n  GC 
GRAPHICS-MODE EQU 5 :Graph ics  Mode r e g i s t e r   i n d e x  i n  GC 
COLOR-OONT-CARE EQU 7 : C o l o r   D o n ' t   C a r e   r e g i s t e r   i n d e x   i n  GC 

code  segment  word ' C O D E '  

S t a r t   p r o c   n e a r  

: S e l e c t   g r a p h i c s  mode 12h. 

assume  cs  :code 

mov ax.12h 
i n t  10h 

: S e l e c t   w r i t e  mode 3  and  read mode 1. 

mov dx.GC_INDEX 
mov a1 .GRAPHICS-MODE 
o u t   d x . a l  
i n c   d x  
i n  a1,dx :VGA r e g i s t e r s   a r e   r e a d a b l e ,   b l e s s   t h e m !  
o r   a l . 0 0 0 0 1 0 1 1 b   ; b i t  3-1 s e l e c t s   r e a d  mode 1. and 

jmp f+2 
o u t  dx .a l  
dec dx  

: b i t s  1 & 0-11 s e l e c t s   w r i t e  mode 3 
;de lay   be tween IN and OUT t o  same p o r t  

: S e t   u p   s e t / r e s e t   t o   a l w a y s   d r a w   i n   w h i t e .  

mov a1 .SET_RESET 
o u t   d x . a l  
i n c   d x  
mov a1  .Ofh 
o u t   d x . a l  
dec   dx  
mov  a1,ENABLE-SET-RESET 
o u t   d x . a l  
i n c   d x  
mov a1 .Ofh 
o u t   d x , a l  
dec  dx 

: S e t   C o l o r   D o n ' t   C a r e   t o  0. s o  r e a d s  o f  VGA memory a l w a y s   r e t u r n  OFFH. 

mov a1 .COLOR-OONT_CARE 
o u t   d x . a l  
i n c   d x  
sub a1 .a1 
o u t   d x . a l  

; S e t   u p   t h e   i n i t i a l  memory p o i n t e r  and p i x e l  mask. 

mov  ax.VGA_SEGMENT 
mov ds.ax 
sub  bx.bx 
mov a l . 8 0 h  

: Draw 400 p o i n t s   o n   a   d i a g o n a l   l i n e   s l o p i n g  down and t o   t h e   r i g h t .  
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mov cx.400 
DrawDiagonal  Loop: 

a n d   [ b x l . a l   : r e a d s   d i s p l a y  memory, l o a d i n g   t h e   l a t c h e s ,  
: t h e n   w r i t e s  AL t o   t h e  VGA.  AL becomes t h e  
: b i t  mask,  and s e t / r e s e t   p r o v i d e s   t h e  
: a c t u a l   d a t a   w r i t t e n  

add bx.SCREEN-WIDTH 
: p o i n t   t o   t h e   n e x t   s c a n   l i n e  

r o r   a l . 1  
adc  bx.0 

:move t h e   p i x e l  mask  one p i x e l   t o   t h e   r i g h t  
;advance t o  t h e   n e x t   b y t e  i f  t h e   p i x e l  mask  wrapped 

loop  DrawDiagonal   Loop 

: W a i t   f o r   a   k e y   t o  be p r e s s e d   t o   e n d .   t h e n   r e t u r n   t o   t e x t  mode and 
: r e t u r n   t o  DOS.  

WaitKeyLoop: 
mov ah.1 
i n t  16h 
j z  WaitKeyLoop 
sub  ah.ah 
i n t  1 6 h   : c l e a r   t h e   k e y  
mov ax.3 
i n t  1 0 h   : r e t u r n   t o   t e x t  mode 
mov ah.4ch 
i n t  21h  :done 

S t a r t  endp 
code  ends 

end S t a r t  

I hope I’ve  given  you a  good feel for what color compare  mode is and what it might 
be used for. Color compare  mode isn’t particularly easy to understand,  but it’s not 
that complicated in actual operation,  and it’s certainly useful at times; take some 
time to study the sample code and perform  a few experiments of your own, and you 
may  well find useful applications for color compare  mode in your graphics code. 
A final note: The Read  Map register has no effect in read  mode 1, and  the Color 
Compare  and Color Don’t Care registers have no effect either in read  mode 0 or 
when writing to VGA memory. And with that, by gosh, we’re  actually done with the 
basics of accessing VGA memory! 
Not to worry-that  still  leaves  us a slew  of interesting VGA topics, including smooth 
panning  and scrolling, the split screen,  color selection, page flipping, and Mode X. 
And that’s not to mention actual uses  to  which the VGA’s hardware can be put, in- 
cluding lines, circles, polygons, and my personal favorite, animation. We’ve covered 
a lot of challenging and rewarding ground-and we’ve only just begun. 
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chapter 29

saving screens and other vga mysteries



ets from the VGA Zen  File 
VGA graphics topics that  aren’t  quite involved enough to 

fair  amount of programmer 
headscratchin rve treatment somewhere in this book. This is the 

this chapter we’ll touch on saving and restoring 16- 
16-out-of-64 colors issue, and techniques involved 

Savin  ’Restoring EGA and VGA Screens 
The memory archit res of  EGAs and VGAs are similar enough to treat  both to- 
gether  in this regard. The basic principle for saving EGA and VGA 16-color graphics 
screens is astonishingly simple: Write each plane to disk  separately.  Let’s take a look 
at how  this  works in  the EGA’s hi-res mode  10H, which provides 16 colors at 640x350. 
All  we need do is enable reads from  plane 0 and write the 28,000  bytes  of plane 0 that 
are displayed in  mode 10H to disk, then  enable reads from  plane 1 and write the 
displayed portion of that  plane to disk, and so on  for planes 2 and 3. The result is a 
file that’s 112,000 (28,000 * 4) bytes long, with the planes stored as four distinct 
28,000-byte  blocks,  as  shown in Figure 29.1. 
The program shown later on in Listing  29.1 does just what  I’ve described here,  put- 
ting the screen into mode 10H, putting up some bit-mapped text so there is something 
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EGA/VGA Display Memory File SNAPSHOT.SCR 

Displayed  portion of plane 0, 
starting at AOOO : 0000 when 

e  Read Map register = 0 
""""""""""I 

Displayed  portion of plane 1, 
starting at AOOO : 0000 when 
the  Read Map register = 1 

Displayed  portion of plane 2, 
starting at A O O O  : 0000 when 
the  Read Map register = 2 

""""""""""I 

"""""-""""". 
I 

Displayed  portion OF plane 3 
starting at A O O O :  0000 when 
the  Read Map register = 3 ""_"""""""" J 

Saving EGA/VGA display memory. 
Figure 29.1 

to save, and creating  the 112K file  SNAPSHOT.SCR,  which contains  the visible por- 
tion of the  mode 1OH frame buffer. 
The only part of Listing  29.1 that's even remotely tricky  is the use of the Read Map 
register (Graphics  Controller  register 4) to make each of the  four  planes of  display 
memory  readable  in  turn. The same code is used to write  28,000  bytes of display 
memory to  disk four times, and 28,000  bytes  of memory  starting at A000:OOOO are 
written to disk each time; however, a  different  plane is read  each time, thanks to the 
changing  setting of the Read  Map register. (If this is unclear,  refer back to Figure 
29.1;  you  may  also  want to reread  Chapter 28 to brush up  on the  operation of the 
Read  Map register in particular and reading EGA and VGA memory  in  general.) 
Of course, we'll  want the ability to restore what we've  saved, and Listing  29.2 does 
this.  Listing  29.2  reverses the action of Listing  29.1, selecting mode  10H  and  then 
loading 28,000  bytes from SNAPSHOT.SCR into  each  plane of display  memory. The 
Map Mask register  (Sequence  Controller register 2) is used to select the  plane to be 
written to. If your computer is  slow enough, you can see the colors of the text change 
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as each plane is loaded when Listing  29.2 runs. Note that Listing  29.2 does not itself 
draw  any text, but  rather simply loads the  bit map saved by Listing 29.1 back into  the 
mode 10H frame buffer. 

LISTING  29.1  129- 1 .ASM 
: Program t o   p u t  up a mode 10h EGA g r a p h i c s   s c r e e n ,   t h e n   s a v e  i t  
: t o   t h e   f i l e  SNAPSHOT.SCR. 

VGA-SEGMENT equ OaOOOh 
GC- INDEX 
READ-MAP 

equ 3ceh 

DISPLAYED-SCREEN-SIZE 
equ 4 
equ (640 /8 ) *350  

: G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r  
;Read Map r e g i s t e r   i n d e x   i n  GC 
; I  o f   d i s p l a y e d   b y t e s   p e r   p l a n e   i n  a 
; h i - r e s   g r a p h i c s   s c r e e n  

s t a c k  

s t a c k  

Data  
Sampl eTex t  

F i  1 ename 
E r r M s g l  
ErrMsg2 
WaitKeyMsg 
Hand1 e 
P1 ane 
Data  ends 

segmen t   pa ra   s tack  'STACK' 

ends 

segment  word  'DATA' 

db  512  dup ( ? I  

d b   ' T h i s   i s   b i t - m a p p e d   t e x t ,   d r a w n   i n   h i - r e s  ' 
db 'EGA g r a p h i c s  mode 1 0 h . ' .  Odh.  Oah. Oah 
d b   ' S a v i n g   t h e   s c r e e n   ( i n c l u d i n g   t h i s   t e x t )  . . . '  
db Odh.  Oah. ' I '  
db 'SNAPSHOT.SCR'.O 
db '*** Cou1dn"t   open SNAPSHOT.SCR *** ' .Odh.Oah. '$ '  

;name o f   f i l e   w e ' r e   s a v i n g   t o  

db '*** E r r o r   w r i t i n g   t o  SNAPSHOT.SCR *** ' .Odh,Oah. '$ '  
db Odh.  Oah, 'Done.  Press  any  key t o  end . . . ' .  Odh.Oah. ' t '  
dw ? : h a n d l e   o f   f i l e   w e ' r e   s a v i n g   t o  
db ? ; p l a n e   b e i n g   r e a d  

Code  segment 

S t a r t  
assume  cs:Code.  ds:Data 
p r o c   n e a r  
mov ax .Data  
mov ds  ,ax 

; Go t o   h i - r e s   g r a p h i c s  mode. 

mov ax.10h :AH = 0 means  mode s e t ,  AL - 1 0 h   s e l e c t s  

i n t  10h ;BIOS v i d e o   i n t e r r u p t  
: h i - r e s   g r a p h i c s  mode 

: Pu t   up  some t e x t ,  s o  t h e   s c r e e n   i s n ' t   e m p t y .  

mov ah.9 ; O O S  p r i n t   s t r i n g   f u n c t i o n  
mov d x . o f f s e t   S a m p l e T e x t  
i n t   2 1  h 

; D e l e t e  SNAPSHOT.SCR i f  i t  e x i s t s .  

mov a h . 4 l h  :DOS u n l i n k   f i l e   f u n c t i o n  
mov d x . o f f s e t   F i l e n a m e  
i n t  21h 

: C r e a t e   t h e   f i l e  SNAPSHOT.SCR. 

mov ah.3ch ;DOS c r e a t e   f i l e   f u n c t i o n  
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mov d x , o f f s e t   F i l e n a m e  
s u b   c x ,   c x  :make i t  a normal  f i l e  
i n t  21h 
mov C H a n d l e 1 , a x : s a v e   t h e   h a n d l e  
j n c   S a v e T h e S c r e e n   ; w e ' r e   r e a d y   t o   s a v e  i f  n o   e r r o r  
mov ah.9 :DOS p r i n t   s t r i n g   f u n c t i o n  
mov d x , o f f s e t   E r r M s g l  
i n t  21h ; n o t i f y   o f   t h e   e r r o r  
j m p   s h o r t  Done  :and  done 

: L o o p   t h r o u g h   t h e  4 p l a n e s ,   m a k i n g   e a c h   r e a d a b l e  i n  t u r n  and 
: w r i t i n g  it t o   d i s k .   N o t e   t h a t   a l l  4 p l a n e s   a r e   r e a d a b l e   a t  
: A000:OOOO: t h e  Read Map r e g i s t e r   s e l e c t s   w h i c h   p l a n e   i s   r e a d a b l e  
: a t  any  one  t ime.  

SaveTheScreen: 

SaveLoop: 
mov 

mov 
mov 
o u t  
i nc 
mov 

o u t  
mov 
mov 
mov 
sub 
push 
mov 
mov 
i n t  
POP 
cmp 
j z  
mov 
mov 
i n t  
jmp 

mov 
i nc 
mov 

j be 

SaveLoopBottom: 

cmp 

: C l o s e  SNAPSHOT.SCR 

DoCl  ose: 
mov 
mov 
i n t  

: W a i t   f o r  a keyp ress .  

C P l a n e l . 0   : s t a r t   w i t h   p l a n e  0 

dx.GC-INDEX 
al.READ-MAP:set GC I n d e x   t o  Read Map r e g i s t e r  
d x . a l  
d x  
a1 . [ P l a n e l   : g e t   t h e  # o f   t h e   p l a n e  we want  

d x . a l   : s e t   t o   r e a d   f r o m   t h e   d e s i r e d   p l a n e  
ah.40h ;DOS w r i t e   t o   f i l e   f u n c t i o n  
bx . [Hand le l  
cx.DISPLAYED_SCREEN-SIZE :# o f   b y t e s   t o   s a v e  
d x ,   d x   : w r i t e   a l l   d i s p l a y e d   b y t e s   a t  A000:OOOO 
ds  
s i  .VGA-SEGMENT 
d s . s i  
2 1 h   ; w r i t e   t h e   d i s p l a y e d   p o r t i o n   o f   t h i s   p l a n e  
ds  
ax,DISPLAYED-SCREEN-SIZE ; d i d   a l l   b y t e s   g e t   w r i t t e n ?  

SaveLoopBottom 
ah.9 :DOS p r i n t   s t r i n g   f u n c t i o n  
d x . o f f s e t   E r r M s g 2  
21h : n o t i f y   a b o u t   t h e   e r r o r  
shor t   DoClose  :and  done 

a1 , CP1 a n e l  
a x   : p o i n t   t o   t h e   n e x t   p l a n e  
[P lane]   .a1  
a l . 3   : h a v e  we done a l l   p l a n e s ?  
SaveLoop :no. s o  d o   t h e   n e x t   p l a n e  

: t o  save 

ah,3eh :DOS c l o s e   f i l e   f u n c t i o n  
b x , [ H a n d l e l  
21h 

mov ah.9 :DOS p r i n t   s t r i n g   f u n c t i o n  
mov dx .o f f se t   Wa i tKeyMsg  
i n t  21h  :prompt  
mov ah.8 ;DOS i n p u t   w i t h o u t   e c h o   f u n c t i o n  
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i n t  

; R e s t o r e   t e x t  mode. 

mov 
i n t  

: Done. 

Done : 
mov 
i n t  

S t a r t   e n d p  
Code  ends 

end 

21h 

ax.3 
10h 

ah,4ch ;DDS t e r m i n a t e   f u n c t i o n  
21h 

S t a r t  

LISTING  29.2  129-2.ASM 
: P r o g r a m   t o   r e s t o r e   a  mode 10h EGA g r a p h i c s  
: t h e   f i l e  SNAPSHOT.SCR. 

VGA-SEGMENT 
SC- INDEX 
MAP-MASK 
DISPLAYED-SCREEN-SIZE 

equ OaOOOh 
equ  3c4h 
equ  2 
equ  (640/8) *350 

s c r e e n   f r o m  

s t a c k   s e g m e n t   p a r a   s t a c k  'STACK' 

s t a c k   e n d s  

Data  segment  word  'DATA' 
F i   1  ename db 'SNAPSHOT.SCR',t 

db  512  dup ( ?  

; S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r  
;Map Mask r e g i s t e r   i n d e x   i n  SC 
;# o f   d i s p l a y e d   b y t e s   p e r   p l a n e   i n   a  
; h i - r e s   g r a p h i c s   s c r e e n  

) 
E r r M s g l   d b  I*** Cou1dn"t   open SNAPSHOT.SCR *** ' .Odh.Oah. '$ '  
ErrMsg2  db '*** E r r o r   r e a d i n g   f r o m  SNAPSHOT.SCR *** ' .Odh,Oah, '$ '  
Wai tKeyMsg  db 
Hand1  e 

Odh.  Oah, 'Done.  Press  any  key t o  end . .. ' .  Odh.Oah.'$' 

P1 ane  db ? ; p l a n e   b e i n g   w r i t t e n  
Data  ends 

Code  segment 

S t a r t   p r o c   n e a r  

;name o f   f i l e   w e ' r e   r e s t o r i n g   f r o m  

dw ? ; h a n d l e   o f   f i l e   w e ' r e   r e s t o r i n g   f r o m  

assume  cs:Code.  ds:Oata 

mov ax .Data  
mov ds  ,ax 

; Go t o   h i - r e s   g r a p h i c s  mode. 

mov 

i n t  

; Open SNAPSHOT.SCR. 

mov 
mov 
sub 
i n t  
mov 
j n c  
mov 

ax .10h 

10h 

;AH - 0 means  mode s e t ,  AL - 1 0 h   s e l e c t s  
; h i - r e s   g r a p h i c s  mode 
; B I O S  v i d e o   i n t e r r u p t  

ah.3dh ;DOS open f i l e   f u n c t i o n  
d x . o f f s e t   F i l e n a m e  

21h 
a1  ,a1  ;open f o r   r e a d i n g  

CHandl e l  ,ax ; s a v e   t h e   h a n d l e  
RestoreTheScreen ; w e ' r e   r e a d y   t o   r e s t o r e  i f  n o   e r r o r  
ah.9 ;DOS p r i n t   s t r i n g   f u n c t i o n  
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mov d x , o f f s e t   E r r M s g l  
i n t  2 1 h   : n o t i f y   o f   t h e   e r r o r  
j m p   s h o r t  Done ;and  done 

: L o o p   t h r o u g h   t h e  4 p l a n e s .   m a k i n g   e a c h   w r i t a b l e   i n   t u r n   a n d  
; r e a d i n g  it f r o m   d i s k .   N o t e   t h a t   a l l  4 p l a n e s   a r e   w r i t a b l e   a t  
: A000:OOOO: t h e  Map Mask r e g i s t e r   s e l e c t s   w h i c h   p l a n e s   a r e   r e a d a b l e  
: a t  any  one  t ime.  We o n l y  make  one p l a n e   r e a d a b l e   a t  a t i m e .  

Res to reTheScreen :  
mov 

RestoreLoop:  
mov 
rnov 
o u t  
i nc 
mov 

mov 
s h l  

o u t  
mov 
mov 
rnov 
sub 
push 
mov 
mov 
i n t  
POP 
j c  
cmp 
jz 

mov 
rnov 
i n t  

Res to reLoopBo t tom:  
mov 
i nc 
rnov 
crnp 
j be 

ReadError :  

j mp 

: C l o s e  SNAPSHOT.SCR. 

DoCl ose: 
mov 
mov 
i n t  

CPlane l .0  

dx.SC-INDEX 
a1 .MAP-MASK 
d x , a l  
dx 
c l   . [ P l a n e l  

a1 .1 
a1 . c l  

d x , a l  
ah ,3 fh  
bx.   [Handl  e l  
cx.DISPLAYED-SCREEN-SIZE 
dx .   dx  
ds 
s i  .VGA-SEGMENT 
d s . s i  
21h 
ds 
ReadError  
ax.DISPLAYED-SCREEN-SIZE 
Res to reLoopBo t tom 

ah.9 
d x . o f f s e t   E r r M s g Z  
21h 
s h o r t   D o C l o s e  

a1 , [ P l  a n e l  
ax 
[ P l a n e l . a l  
a l . 3  
Res to reLoop  

ah.3eh 
bx.CHandle1 
21h 

; W a i t   f o r  a k e y p r e s s .  

mov ah.8 
i n t  21h 

: R e s t o r e   t e x t  mode. 

: s t a r t   w i t h   p l a n e  0 

: s e t  SC I n d e x   t o  Map Mask r e g i s t e r  

g e t   t h e  11 o f   t h e   p l a n e  we want  
t o  r e s t o r e  

s e t   t h e   b i t   e n a b l i n g   w r i t e s   t o  
o n l y   t h e   o n e   d e s i r e d   p l a n e  

s e t   t o   r e a d   f r o m   d e s i r e d   p l a n e  
DOS r e a d   f r o m   f i l e   f u n c t i o n  

:# o f   b y t e s   t o   r e a d  
: s t a r t   l o a d i n g   b y t e s   a t  A000:OOOO 

; r e a d   t h e   d i s p l a y e d   p o r t i o n   o f   t h i s   p l a n e  

: d i d  all b y t e s   g e t   r e a d ?  

:DDS p r i n t   s t r i n g   f u n c t i o n  

; n o t i f y   a b o u t   t h e   e r r o r  
;and  done 

; p o i n t   t o   t h e   n e x t   p l a n e  

:have we done a l l   p l a n e s ?  
:no. so do t h e   n e x t   p l a n e  

:DOS c l o s e   f i l e   f u n c t i o n  

;DOS i n p u t   w i t h o u t   e c h o   f u n c t i o n  
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mov ax.3 
i n t  10h 

: Done. 

Done: 
mov ah,4ch 
i n t  21h 

S t a r t   e n d p  
Code ends 

e n d   S t a r t  

:DOS t e r m i n a t e   f u n c t i o n  

If  you compare Listings  29.1 and 29.2,  you  will  see that  the Map  Mask register setting 
used to load a given plane  does not match the Read  Map register setting used to  read 
that plane. This is so because  while  only one plane can ever be  read at a time,  any- 
where from zero to four planes can be written to at  once; consequently,  Read  Map 
register settings are plane selections from 0 to 3, while  Map Mask register  settings 
are  plane masksfrom 0 to 15, where a bit 0 setting of 1 enables writes to  plane 0, a bit 
1 setting of 1 enables writes to plane 1, and so on. Again, Chapter 28 provides a 
detailed explanation of the differences between the Read  Map and Map  Mask  regis- 
ters. 
Screen saving and restoring is pretty simple, eh?  There  are a few  caveats,  of course, 
but  nothing serious.  First, the adapter’s registers must be  programmed properly in 
order for screen saving and restoring to  work.  For screen saving,  you must be  in  read 
mode 0; if you’re in color compare  mode, there’s no telling  what bit pattern you’ll 
save, but it  certainly  won’t be  the desired screen image.  For screen restoring, you 
must be in write mode 0, with the Bit  Mask register set to OFFH and Data Rotate 
register set to 0 (no  data rotation and the logical function set to pass the  data  through 
unchanged). 

while these  requirements  are no problem  $you ’re simply calling a subroutine in p order  to save an  image from  your  program, they pose a considerable problem if 
you ’re designing a hot-key  operated TSR that  can  capture a screen  image at any 
time. with  the EGA speczjically, there k never  any way to tell what state the regis- 
ters are  currently in, since  the registers aren ’t readable.  (More  on this issue later 
in this chapter) As a result, any TSR that sets the  Bit  Mask to OFFH,  the Data 
Rotate register to 0, and so on runs  the risk of  interfering  with  the  drawing code of 
the  program  that k already running. 

What’s the solution? Frankly, the solution is to  get VGA-specific. A TSR designed for 
the VGA can simply read out  and save the state of the registers  of interest,  program 
those registers  as needed, save the  screen image, and restore the original settings. 
From a programmer’s perspective, readable registers are certainly near  the  top of 
the list of things to like about  the VGA! The remaining installed  base  of EGAs  is 
steadily  dwindling, and you  may be able to  ignore it  as a market today,  as  you couldn’t 
even a year or two ago. 
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If  you are  going to write a hi-res VGA version  of the screen capture  program, be sure 
to account  for  the increased size  of the VGAs mode  12H  bit  map.  The  mode  12H 
(640x480) screen uses  37.5K per plane of  display  memory, so for  mode  12H  the 
displayed screen size equate in Listings  29.1 and 29.2 should be changed to: 

DISPLAYED-SCREEN-SIZE equ (640/8)*480 

Similarly, if you’re capturing a graphics screen that starts at  an offset other  than 0 in 
the  segment at AOOOH, you must change the memory offset used by the disk func- 
tions to  match. You can, if you so desire, read  the  start offset  of the display memory 
providing the information shown on the screen from  the Start Address registers (CRT 
Controller registers OCH and ODH) ; these registers are  readable even on  an EGA. 
Finally, be aware that the screen capture and restore programs in Listings  29.1 and 29.2 
are only appropriate for EGA/VGA modes ODH,  OEH, O F H ,  OlOH, and 012H,  since  they 
assume a four- plane configuration of  EGA/VGA  memory. In all  text  modes and in CGA 
graphics  modes, and in VGA modes 11H and 13H as  well,  display memory  can  simply be 
written to disk and read back  as a linear block  of  memory, just like a normal array. 
While  Listings  29.1 and 29.2 are written in assembly, the principles  they  illustrate  apply 
equally  well to high-level  languages. In fact,  there’s no need for any  assembly at all  when 
saving an EGA/VGA screen, as long as the high-level  language  you’re  using  can perform 
direct port 1 / 0  to  set up the adapter and can read and write  display  memory  directly. 

One tip f y o u  ’re saving and restoring the screen  from  a high-level  language on  an p EGA,  though: Ajier you t e  completed the save or restore operation, be  sure to put 
any registers that you t e  changed back to their default settings. Some high-level 
languages  (and  the BIOS as well) assume  that various registers are  left in a cer- 
tain state, so on  the  EGA  it 5 safest to leave the registers in their most likely state. 
On  the  VGA, of course, you can just read the registers out  before you change  them, 
then put them back the way  you  found them  when you ’re done. 

16 Colors out of 64 
How does one  produce  the 64 colors from which the 16 colors displayed by the EGA 
can be  chosen? The answer  is simple enough: There’s a BIOS function  that lets you 
select the  mapping of the  16 possible pixel values to the 64  possible colors. Let’s lay 
out a bit of background  before  proceeding, however. 
The EGA sends  pixel information to the monitor on 6 pins. This means that there  are 2 
to the  6th,  or 64 possible colors that  an EGA can generate. However, for compatibil- 
ity with pre-EGA monitors, in 200-scan-line modes Enhanced Color Displaycompatible 
monitors  ignore two of the signals. As a result, in CGA-compatible modes  (modes 4, 
5,6,  and the 200-scan-line versions of modes 0,1,2,  and 3) you can select from only 
16 colors (although  the colors can still be  remapped, as described below). If you’re 
not hooked up to a monitor capable of  displaying  350  scan lines (such as the old 
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IBM Color Display),  you can never  select from  more  than 16 colors,  since those 
monitors only accept four input signals.  For now,  we’ll  assume  we’re in one of the 
350-scan line color modes, a group which includes mode 10H and  the 350-scan-line 
versions  of modes 0, 1, 2, and 3. 
Each  pixel comes out of memory (or, in text mode, out of the  attribute-handling 
portion of the EGA)  as a 4bit value, denoting 1 of 16 possible  colors. In graphics 
modes, the 4bit pixel  value is made up of one bit from  each  plane, with 8 pixels’ 
worth of data  stored  at any  given  byte address in display  memory.  Normally, we think 
of the 4bit value of a pixel  as being that pixel’s  color, so a pixel  value  of 0 is black, a 
pixel  value of 1 is blue, and so on, as  if that’s a built-in feature of the EGA. 
Actually, though,  the  correspondence of pixel  values  to color is absolutely  arbitrary, 
depending solely on how the color-mapping portion of the EGA containing  the pal- 
ette registers is programmed. If  you cared to  have color 0 be  bright  red and color l 
be black, that could easily  be arranged, as could a mapping in which  all 16 colors 
were yellow.  What’s more, these mappings affect  text-mode characters as  readily  as 
they do graphics-mode pixels, so you could  map text attribute 0 to  white and text 
attribute 15 to black to  produce a black on white  display, if you  wished. 
Each  of the 16 palette  registers  stores the mapping of one of the 16  possible 4bit pixel 
values from memory to one of 64 possible  &bit  pixel  values to  be  sent to the  monitor 
as  video data, as  shown in Figure 29.2. A 4bit pixel  value of 0 causes the &bit  value 

4 bits per  pixel 
from  display - 
memory  or  from 
a text  attribute, 
used  to  look  up a 
palette  register 

6 bits  per  pixel 
to  the  display, 
from  the  palette 
register  selected 
by the 4-bit 
pixel  value 

Color translation via the  palette registers. 
Figure 29.2 
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stored  in  palette  register 0 to be sent  to  the display  as the  color of that pixel, a pixel 
value of 1 causes the  contents of palette  register 1 to be sent  to  the display, and so on. 
Since there  are only four  input bits, it  stands to reason  that only 16  colors are avail- 
able at any one time; since there  are six output bits, however, those  16 colors can be 
mapped to  any of 64  colors. The mapping for each of the  16 pixel  values is controlled by 
the lower  six  bits  of the  corresponding  palette register, as  shown in Figure 29.3. 
Secondary red,  green,  and  blue  are less-intense versions of red,  green,  and  blue, 
although  their  exact effects vary from  monitor  to  monitor.  The best way to  figure out 
what the 64 colors look like on your monitor is to see them,  and  that's  just what the 
program  in Listing  29.3,  which  we'll  discuss  shortly, lets you do. 
How does one go about  setting  the  palette  registers? Well, it's certainly possible to set 
the  palette registers directly by addressing  them at registers 0 through OFH of the 
Attribute  Controller. However, setting  the  palette registers is a  bit tricky-bit 5 of the 
Attribute  Controller  Index  register must be 0 while the  palette registers are  written 
to, and glitches can  occur if the  updating  doesn't take place during  the blanking 
interval-and besides, it  turns out  that  there's  no  need  at all to go straight  to  the 
hardware on this one. Conveniently, the EGA  BIOS provides us  with video function 
10H, which supports  setting  either any one palette  register or all 16  palette registers 
(and  the overscan register as well)  with a single video interrupt. 
Video function  10H is invoked by performing  an INT 10H with AH set to  10H. If AL 
is 0 (subfunction 0), then BL contains  the  number of the  palette  register  to  set, and 
BH contains  the value to set that  register  to. If AL, is 1 (subfunction l) ,  then BH 
contains  the value to set the overscan (border) color to. Finally,  ifAL  is 2 (subfunction 
2) , then ES:DX points  to  a 17-byte array containing  the values to set palette registers 
0-15 and the overscan register  to.  (For  completeness,  although  it's  unrelated to the 
palette registers, there is one  more  subfunction of video function  10H. If AL = 3 

Palette 
Register R' 

B i t 7  6 5 4 3 2 1 0  

B G R B' G' 

R' = secondary  red 
G' = secondary  reen 
B' = secondary b 7 ue 
R = red 
G = reen 
B = due 

Bit  organization  within a palette register: 
Figure 29.3 

550 Chapter 29 



(subfunction 3), bit 0 of BL is set to  1 to cause bit 7 of text attributes to select blink- 
ing, or set to 0 to cause bit 7 of text attributes to select high-intensity reverse video.) 
Listing  29.3  uses  video function 10H, subfunction 2 to step  through all  64  possible 
colors. This is accomplished by putting up 16  color bars, one for  each of the 16 
possible 4bit pixel  values, then changing the mapping provided by the palette registers 
to select a  different group of 16 colors from  the set of  64 each time a key is pressed. 
Initially, colors 0-15 are displayed, then 1-16, then 2-17, and so on up to color 3FH 
wrapping around to colors 0-14, and finally  back to colors 0-15. (By the way, at mode 
set time the  16  palette registers are  not set to colors 0-15, but  rather to OH, IH, 2H, 
3H,  4H, 5H, 14H,  7H,  38H,  39H, 3AH,  3BH,  3CH,  3DH,  3EH, and 3FH,  respectively.  Bits 
6,5, and 4-secondary red, green, and blue-are  all  set to 1 in  palette  registers 8-15 in 
order to produce high-intensity colors. Palette register 6 is set to 14H to produce 
brown, rather  than  the yellow that  the  expected value of 6H  would produce.) 
When you run Listing  29.3,  you'll see that  the whole screen changes color as each 
new color set is selected. This occurs because most of the pixels on  the screen have a 
value  of 0, selecting the  background color stored in palette register 0, and we're 
reprogramming  palette register 0 right  along with the  other 15 palette registers. 
It's important to understand  that in Listing  29.3 the  contents of display memory are 
never changed after initialization. The only change is the  mapping  from  the 4bit 
pixel data coming out of  display memory to the &bit data  going to the monitor. For 
this reason, it's technically inaccurate to speak of bits in display memory as repre- 
senting colors; more accurately,  they represent  attributes in the  range 0-15,  which 
are  mapped to colors 0-3FH  by the palette registers. 

LISTING 29.3  129-3.ASM 
: Program t o   i l l u s t r a t e   t h e   c o l o r   m a p p i n g   c a p a b i l i t i e s   o f   t h e  
: EGA's p a l e t t e   r e g i s t e r s .  

VGA-SEGMENT equ OaOOOh 
SC-INDEX equ  3c4h 
MAP-MASK equ 2 
BAR-HEIGHT e q u   1 4   : h e i g h t   o f   e a c h   b a r  
TOP-BAR equ BARKHEIGHT*6 : s t a r t   t h e   b a r s  down a b i t   t o  

: S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r  
:Map Mask r e g i s t e r   i n d e x   i n  SC 

: l e a v e   r o o m   f o r   t e x t  

s t a c k   s e g m e n t   p a r a   s t a c k  'STACK' 

s tack   ends  

Data  segment  word  'DATA' 
KeyMsg  db 

db 
' P r e s s   a n y   k e y   t o  see t h e   n e x t   c o l o r   s e t .  ' 

db 
' T h e r e   a r e   6 4   c o l o r   s e t s   i n   a l l  . '  
Odh.  Oah. Oah.  Oah. Oah 

db  13  dup ( '  ' 1 ,  ' A t t r i b u t e '  
db 38 dup ( '  ' 1 ,  ' C o l o r $ '  

db 512 dup ( ? )  

: Used t o   l a b e l   t h e   a t t r i b u t e s  o f  t h e   c o l o r   b a r s .  
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A t t r i b u t e N u m b e r s   l a b e l   b y t e  
X' 0 

i f  x It 10 

e l s e  

e n d i  f 
X' x + l  

r e p t   1 6  

db  ' 0 ' .  x+'O'. ' h ' ,  Oah. 8 .  8.  8 

db ' 0 ' .  x + ' A ' - 1 0 .   ' h ' ,  Oah. 8 .  8. 8 

endm 
db , $ *  

: Used t o   l a b e l   t h e   c o l o r s   o f   t h e   c o l o r   b a r s .   ( C o l o r   v a l u e s   a r e  
: f i l l e d   i n  o n   t h e  f l y . )  

C o l   o r N u m b e r s   l a b e l   b y t e  
r e p t   1 6  
db   ' 000h ' .  Oah. 8.  8. 8 .  8 
endm 

db  ' I '  
COLORKENTRY-LENGTH e q u   ( $ - C o l o r N u m b e r s ) / l 6  

C u r r e n t C o l o r   d b  ? 

: Space f o r   t h e   a r r a y   o f   1 6   c o l o r s   w e ' l l   p a s s   t o   t h e  BIOS, p l u s  
: a n   o v e r s c a n   s e t t i n g   o f   b l a c k .  

C o l   o r T a b l  e db  16  dup ( ? I ,  0 
Data  ends 

Code  segment 

S t a r t   p r o c   n e a r  
assume  cs:Code,  ds:Data 

c l  d 
mov ax .Data  
mov ds  ,ax 

: Go t o   h i - r e s   g r a p h i c s  mode. 

mov ax .10h :AH - 0 means  mode s e t ,  AL - 1 0 h   s e l e c t s  

i n t   1 0 h  ;BIOS v i d e o   i n t e r r u p t  
: h i - r e s   g r a p h i c s  mode 

: P u t   u p   r e l e v a n t   t e x t .  

mov ah.9 ;DOS p r i n t   s t r i n g   f u n c t i o n  
mov d x . o f f s e t  KeyMsg 
i n t  21h 

: P u t   u p   t h e   c o l o r   b a r s ,   o n e   i n   e a c h   o f   t h e   1 6   p o s s i b l e   p i x e l   v a l u e s  
: ( w h i c h   w e ' l l   c a l l   a t t r i b u t e s ) .  

mov cx .16  : w e ' l l   p u t   u p   1 6   c o l o r   b a r s  
sub a1 .a1 : s t a r t   w i t h   a t t r i b u t e  0 

push ax  
push c x  
c a l l  BarUp 
POP c x  
POP ax 

BarLoop:  
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; s e l e c t   t h e   n e x t   a t t r i b u t e  i nc  ax 
l oop   Ba rLoop  

: P u t   u p   t h e   a t t r i b u t e   l a b e l s .  

mov ah.2 : v i d e o   i n t e r r u p t   s e t   c u r s o r   p o s i t i o n   f u n c t i o n  
sub  bh,   bh :page 0 
mov dh,TOP_BAR/14 : c o u n t i n g   i n   c h a r a c t e r   r o w s ,   m a t c h   t o  

: t o p   o f   f i r s t   b a r ,   c o u n t i n g   i n  
: s c a n   l i n e s  

mov d l  .16 : j u s t   t o   l e f t   o f   b a r s  
i n t  10h 
mov ah.9 :DOS p r i n t   s t r i n g   f u n c t i o n  
mov d x . o f f s e t   A t t r i b u t e N u m b e r s  
i n t  21h 

: L o o p   t h r o u g h   t h e   c o l o r   s e t .  one new s e t t i n g   p e r   k e y p r e s s .  

mov [ C u r r e n t C o l o r l . O   : s t a r t   w i t h   c o l o r   z e r o  
Co lo rLoop :  

: S e t   t h e   p a l e t t e   r e g i s t e r s   t o   t h e   c u r r e n t   c o l o r   s e t .   c o n s i s t i n g  
: o f   t h e   c u r r e n t   c o l o r  mapped t o   a t t r i b u t e  0.  c u r r e n t   c o l o r  + 1 
: mapped t o   a t t r i b u t e  1. and so  on. 

mov a1 , [ C u r r e n t C o l o r l  
mov b x , o f f s e t   C o l o r T a b l e  
mov cx .16  :we h a v e   1 6   c o l o r s   t o   s e t  

and a1 . 3 f h  :limit t o   6 - b i t   c o l o r   v a l u e s  
mov C b x l   . a 1   : b u i l d   t h e   1 6 - c o l o r   t a b l e   u s e d   f o r   s e t t i n g  
i n c   b x  : t h e   p a l e t t e   r e g i s t e r s  
i n c   a x  
l o o p   P a l e t t e S e t L o o p  
mov a h . 1 0 h   ; v i d e o   i n t e r r u p t   p a l e t t e   f u n c t i o n  
mov a l . 2   : s u b f u n c t i o n   t o   s e t   a l l   1 6   p a l e t t e   r e g i s t e r s  

mov d x . o f f s e t   C o l o r T a b l e  
push  ds 
POP es ; E S : D X  p o i n t s   t o   t h e   c o l o r   t a b l e  
i n t  1 0 h   : i n v o k e   t h e   v i d e o   i n t e r r u p t   t o   s e t   t h e   p a l e t t e  

P a l e t t e S e t L o o p :  

: a n d   o v e r s c a n   a t   o n c e  

: P u t   u p   t h e   c o l o r   n u m b e r s ,  s o  we can see how a t t r i b u t e s  map 
: t o   c o l o r   v a l u e s ,   a n d  s o  we can see how e a c h   c o l o r  # l o o k s  
: ( a t   l e a s t  on t h i s   p a r t i c u l a r   s c r e e n ) .  

c a l l  

: W a i t   f o r  a keyp ress ,  

Wai tKey :  
mov 
i n t  

ColorNumbersUp 

s o  t h e y   c a n  see t h i s   c o l o r   s e t .  

ah.8 ;DOS i n p u t   w i t h o u t   e c h o   f u n c t i o n  
21h 

: Advance t o   t h e   n e x t   c o l o r   s e t .  

mov a1 . [ C u r r e n t C o l o r l  
i nc   ax  
mov [ C u r r e n t C o l o r l , a l  
cmp a1 .64 
j b e   C o l o r L o o p  
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; R e s t o r e   t e x t  mode. 

mov ax .3  
i n t  10h 

; Done. 

Done: 
mov ah ,4ch ;DOS t e r m i n a t e   f u n c t i o n  
i n t  21h 

; Puts   up  a b a r   c o n s i s t i n g   o f   t h e   s p e c i f i e d   a t t r i b u t e   ( p i x e l   v a l u e ) .  
; a t  a v e r t i c a l   p o s i t i o n   c o r r e s p o n d i n g   t o   t h e   a t t r i b u t e .  

; I n p u t :  AL - a t t r i b u t e  

BarUp  p roc  
mov 
mov 
mov 
o u t  
i nc 
mov 
o u t  

mov 
mu1 
add 

mov 
mu1 

add 
mov 
mov 
mov 

mov 
mov 

mov 
r e p  
add 

dec 
j n z  
r e t  

Ba rL ineLoop :  

BarUp  endp 

n e a r  
dx.SC-INDEX 
ah .a l  
a1 .MAP_MASK 
d x . a l  
d x  
a1  ,ah 
d x . a l  

ah,BAR-HEIGHT 
ah 
ax,TDP-BAR 

dx.80 
dx  

ax ,  20 
d i  ,ax 
ax.VGA_SEGMENT 
es  ,ax 

dx.BAR-HEIGHT 
a1   .O f fh  

c x ,  40 
s t o s b  
d i  ,40 

dx  
BarL ineLoop  

; s e t   t h e  Map Mask r e g i s t e r   t o   p r o d u c e  
; t h e   d e s i r e d   c o l o r  

; row o f   t o p   o f   b a r  
; s t a r t  a f e w   l i n e s  down t o   l e a v e  room f o r  
; t e x t  
: r o w s   a r e  EO b y t e s   l o n g  
: o f f s e t   i n   b y t e s   o f   s t a r t   o f   s c a n   l i n e   b a r  
; s t a r t s   o n  
; o f f s e t   i n   b y t e s   o f   u p p e r  

;ES:DI p o i n t s   t o   o f f s e t  o 
; c o r n e r   o f   b a r  

l e f t   c o r n e r   o f   b a r  

f u p p e r   l e f t  

; Conver t s  AL t o  a h e x   d i g i t   i n   t h e   r a n g e  0 -F  

B i   n T o H e x D i   g i  t p r o c   n e a r  
cmp a l . 9  
j a   I s H e x  
add  a1 , ' 0 '  
r e t  

add  a1 , ' A '  -10 
r e t  

IsHex:  

B i   n T o H e x D i   g i  t endp 

:make t h e   b a r s   4 0   w i d e  
; d o   o n e   s c a n   l i n e   o f   t h e   b a r  
; p o i n t   t o   t h e   s t a r t   o f   t h e   n e x t   s c a n   l i n e  
; o f   t h e   b a r  
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: D i s p l a y s   t h e   c o l o r   v a l u e s   g e n e r a t e d   b y   t h e   c o l o r   b a r s   g i v e n   t h e  
: c u r r e n t   p a l e t t e   r e g i s t e r   s e t t i n g s   o f f   t o   t h e   r i g h t   o f   t h e   c o l o r  
: b a r s .  

Col   orNumbersUpproc 
mov 
sub 
mov 

mov 
i n t  
mov 
mov 

mov 

push 
and 
s h r  
s h r  
s h r  
s h r  
c a l l  
mov 
POP 
push 
and 
c a l l  

ColorNumberLoop: 

mov 
add 
POP 
i n c  
1 oop 
mov 
mov 
i n t  
r e t  

ColorNumbersUpendp 

S t a r t   e n d p  
Code  ends 

end 

n e a r  
ah.2 
bh,bh 

; v i d e o   i n t e r r u p t   s e t   c u r s o r   p o s i t i o n   f u n c t i o n  

dh.TOP-BAR114 
:page 0 
: c o u n t i n g  i n  c h a r a c t e r   r o w s .   m a t c h   t o  
: t o p   o f   f i r s t   b a r ,   c o u n t i n g   i n  
: s c a n   l i n e s  
; j u s t   t o   r i g h t   o f   b a r s  d l  ,20+40+1 

10h 
a1 . [ C u r r e n t C o l o r ]   : s t a r t   w i t h   t h e   c u r r e n t   c o l o r  
b x . o f f s e t   C o l o r N u m b e r s + l  

c x ,   1 6   : w e ’ v e   g o t   1 6   c o l o r s   t o   d o  

a x   : s a v e   t h e   c o l o r  // 
a l . 3 f h  :limit t o   6 - b i t   c o l o r   v a l u e s  
a l . l  
a1 .1 
a1 .1 
a1 .1 : i s o l a t e   t h e   h i g h   n i b b l e   o f   t h e   c o l o r  # 
B i  nToHexDi g i  t : c o n v e r t   t h e   h i g h   c o l o r  11 n i b b l e  
Cbxl   .a1 : a n d   p u t  i t  i n t o   t h e   t e x t  
a x   ; g e t   b a c k   t h e   c o l o r  I/ 
a x   : s a v e   t h e   c o l o r  # 
a 1   . O f h   ; i s o l a t e   t h e   l o w   c o l o r  # n i b b l e  
B i   n T o H e x D i   g i  t : c o n v e r t   t h e   l o w   n i b b l e   o f   t h e  

[ b x + l l  .a1 : a n d   p u t  i t  i n t o   t h e   t e x t  
bx,COLOR-ENTRY-LENGTH : p o i n t   t o   t h e   n e x t   e n t r y  
a x   ; g e t   b a c k   t h e   c o l o r  # 
a x   ; n e x t   c o l o r  # 
Col  orNumberLoop 
ah.9 :DOS p r i n t   s t r i n g   f u n c t i o n  
d x . o f f s e t   C o l o r N u m b e r s  
2 1  h : p u t   u p   t h e   a t t r i b u t e   n u m b e r s  

: b u i l d   c o l o r  number t e x t   s t r i n g   o n   t h e  f l y  

: c o l o r  # t o  A S C I I  

S t a r t  

Overscan 
While  we’re at it, I’m going to touch on overscan. Overscan  is the color of the  border 
of the display, the rectangular  area around  the edge of the  monitor that’s outside 
the region displaying  active video data but inside the blanking area. The overscan 
(or  border) color can be programmed to any of the 64 possible colors by either 
setting  Attribute  Controller register 11H directly or calling video function 10H, 
subfunction 1. 
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On ECD-compatible monitors, howevel; there 5. too little scan time to display a p proper border when the EGA is in 350-scan-line mode, so overscan should always 
be 0 (black) unless you 're in 200-scan-line mode. Note, though, that a VGA can 
easily display a border on a VGA-compatible monitor, and  VGAs are in fact pro- 
grammed at mode set for an 8-pixel-wide border in all modes; all you need do  is 
set the overscan color on any VGA to  see the border: 

A Bonus Blanker 
An interesting  bonus:  The  Attribute  Controller provides a very convenient way to 
blank  the  screen,  in  the  form of the  aforementioned  bit 5 of the Attribute  Controller 
Index register (at address 3COH after the  Input Status 1 register-3DAH  in  color,  3BAH 
in monochrome-has been  read  and on every other write  to 3COH thereafter). When- 
ever bit 5 of the AC Index  register is 0, video data is cut off,  effectively blanking  the 
screen.  Setting  bit 5 of the AC Index back  to 1 restores video data immediately. 
Listing 29.4 illustrates this simple but effective form of screen  blanking. 

LISTING  29.4  129-4.ASM 
; P r o g r a m   t o   d e m o n s t r a t e   s c r e e n   b l a n k i n g   v i a   b i t  5 o f   t h e  
; A t t r i b u t e   C o n t r o l l e r   I n d e x   r e g i s t e r .  

AC-INDEX equ 3cOh 
INPUT-STATUS-1 equ  3dah  ;co lo r -mode  address  o f  t h e   I n p u t  

; A t t r i b u t e   C o n t r o l l e r   I n d e x   r e g i s t e r  

; S t a t u s  1 r e g i s t e r  

: Macro t o   w a i t   f o r  a n d   c l e a r   t h e   n e x t   k e y p r e s s .  

WAIT-KEY macro 
mov ah,8 
i n t  21h 
endm 

;DOS i n p u t   w i t h o u t   e c h o   f u n c t i o n  

s t a c k   s e g m e n t   p a r a   s t a c k  'STACK' 

s t a c k   e n d s  

Data  segment  word ' DATA' 
Sampl eTex t   db  

db 
' T h i s   i s   b i t - m a p p e d   t e x t ,   d r a w n   i n   h i - r e s  ' 
'EGA g r a p h i c s  mode 10h. ' .  Ddh. Oah. Oah 

db 
db 

' P r e s s   a n y   k e y   t o   b l a n k   t h e   s c r e e n ,   t h e n  ' 

db 
' a n y   k e y   t o   u n b l a n k  it,', Odh. Oah 
' t h e n   a n y   k e y   t o   e n d . $ '  

db 512 dup ( ? )  

Data  ends 

Code segment 

S t a r t   p r o c   n e a r  
assume  cs:Code.  ds:Data 

mov ax,Data 
mov ds .ax  

; Go t o   h i - r e s   g r a p h i c s  mode. 

mov ax , lOh 

i n t  10h 

;AH - 0 means  mode s e t .  AL - 1 0 h   s e l e c t s  
; h i - r e s   g r a p h i c s  mode 
; B I O S  v i d e o   i n t e r r u p t  
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; P u t  up some t e x t ,  s o  t h e   s c r e e n   i s n ’ t   e m p t y .  

mov ah.9 ;DOS p r i n t   s t r i n g   f u n c t i o n  
mov dx .o f f se t   SamDleTex t  
i n t   2 1  h 

WAIT-KEY 

; B l a n k   t h e   s c r e e n .  

mov dx.INPUT-STATUS-] 
i n  a1 .dx  

mov dx.AC-INDEX 
sub a1 .a1 
o u t   d x . a l  

WAIT-KEY 

: U n b l a n k   t h e   s c r e e n .  

mov dx.INPUT-STATUS-] 
i n  a1 .dx  

mov dx.AC-INDEX 
mov a1 .ZOh 
o u t   d x . a l  

WAIT-KEY 

: R e s t o r e   t e x t  mode. 

mov ax .2  
i n t  10h 

: Done. 

Done: 
mov ah .4ch 
i n t  21h 

S t a r t  endp 
Code  ends 

e n d   S t a r t  

: r e s e t   p o r t  3cOh t o   i n d e x   ( r a t h e r   t h a n   d a t a )  
: mode 

;make b i t  5 ze ro . . .  
: . . . w h i c h   b l a n k s   t h e   s c r e e n  

: r e s e t   p o r t  3cOh t o   I n d e x   ( r a t h e r   t h a n   d a t a )  
; mode 

:make b i t  5 one.. .  
:. . . w h i c h   u n b l a n k s   t h e   s c r e e n  

;DOS t e r m i n a t e   f u n c t i o n  

Does that do it for color selection? Yes and no. For the EGA,  we’ve covered the whole 
of color selection-but not so ‘for the VGA. The VGA can emulate everything we’ve 
discussed, but actually performs one  4bit to 8-bit translation (except in 256-color 
modes, where all 256 colors are simultaneously available), followed by yet another 
translation, this one 8-bit to 18-bit.  What’s more,  the VGA has the ability to flip in- 
stantly through as  many  as 16 16-color  sets. The VGA’s color selection capabilities, 
which are  supported by another set of BIOS functions, can be used to produce  stun- 
ning color effects, as we’ll see when we cover them starting in Chapter 33. 
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Modifying VGA Registers 
EGA registers are  not readable. VGA registers are readable. This  revelation will not come 
as news to  most  of  you, but many programmers still insist on setting entire VGA registers 
even when they’re  modifymg  only selected bits, as if they were programming  the 
EGA. This comes to mind because I recently received a query inquiring why write 
mode 1 (in which the  contents of the latches are  copied directly to display memory) 
didn’t work in Mode X. (I’ll go  into Mode X in detail later in this book.) Actually, 
write mode 1 does work in Mode X; it  didn’t work when this particular  correspon- 
dent  enabled it because he did so by writing the value  01H to the Graphics Mode 
register. As it happens, the write mode field is only one of several fields in  that regis- 
ter,  as  shown in Figure 29.4. In 256-color modes, one of the  other fields-bit 6, which 
enables 256-color pixel formatting-is not 0, and setting  it to 0 messes up  the screen 
quite thoroughly. 
The correct way to  set a field within a VGA register is,  of course, to read the register, 
mask off the desired field, insert the desired setting, and write the result back to the 
register. In  the case  of setting  the VGA to write mode 1, do this: 

mov 
mov 
o u t  
i nc 
i n  
and 
or 
o u t  

dx.3ceh 
a1 .5 
d x . a l  
dx 
a1  .dx 
a l . n o t  3 
a1 .1 
d x . a l  

: G r a p h i c s   c o n t r o l l e r   i n d e x  
:Graphics mode r e g   i n d e x  
: p o i n t  GC i n d e x   t o  GLMODE 
: G r a p h i c s   c o n t r o l l e r   d a t a  
: g e t   c u r r e n t  mode s e t t i n g  
:mask o f f   w r i t e  mode f i e l d  
: s e t   w r i t e  mode f i e l d   t o  1 
: s e t   w r i t e  mode 1 

This  approach is more of a nuisance than simply setting  the whole register, but it’s 
safer.  It’s  also  slower; for cases where you must set a field repeatedly, it  might be 
worthwhile to read and mask the register once  at  the  start,  and save it in a variable, so 
that  the value  is readily available in memory and  need  not  be repeatedly read  from 
the  port.  This  approach is  especially attractive because INS are  much slower than 
memory accesses on 386 and 486 machines. 
Astute readers may wonder why I didn’t put a delay sequence, such as JMP $+2, 
between the IN and OUT involving the same register. There  are, after all, guidelines 
from IBM, specifjmg  that a certain  period  should be allowed to elapse before a 
second access to an 1 / 0  port is attempted, because not all  devices can respond as 
rapidly as a 286 or faster CPU can access a port. My answer  is that while I can’t 
guarantee  that a delay isn’t needed, I’ve never found a VGA that  required  one; I 
suspect that the delay specification has more to do with motherboard chips such as 
the timer, the  interrupt controller, and  the like, and I sure  hate to waste the delay 
time if it’s not necessary.  However,  I’ve never been able to find  anyone with the 
definitive word on whether delays might ever be  needed when accessing VGAs, so if 
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Bit 7 

Graphics  Mode Register 
(Graphics  controller  register #5) 

0 1 0 0 0 0  01 
- 

I I  Reserved 

I I Read  mode 0 
I Odd/even 

addressing off 

CGA pixel 
formatting off 

Reserved 

Graphics mode register fields. 
Figure 29.4 

you  know the gospel truth,  or if you  know  of a VGA/processor combo  that  does 
require delays, please let me  know by contacting me through  the publisher. You’d  be 
doing  a favor for a whole generation of graphics programmers who aren’t sure whether 
they’re skating on  thin ice without those legendary delays. 
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Galling Problems of Using Split 
e EGA and VGA 

The ability  to  split t two largely independent portions-one  displayed 
is one of the  more  intriguing capabilities of the VGA 

and EGA. The split ature can be used for  popups  (including  popups  that 
or simply to display two separate  portions of  display 
le  it’s  possible to accomplish the same effects  purely 

in  software witho e split  screen,  software  solutions tend to  be slow and  hard to 

f the split screen is  fairly simple, once you grasp the 
pull it  off, and  understand  the limitations and pit- 

falls-like the fact that  the EGAs split screen  implementation is a little buggy. 
Furthermore,  panning with the split screen enabled is not as  simple  as it might seem. 
All in all, we do have some ground to  cover. 
Let’s start with the basic operation of the split screen. 

How the Split Screen Works 
The operation of the split screen is simplicity  itself. A split screen  start scan line value 
is programmed  into two EGA registers or  three VGA registers. (More on exactly 
which  registers in a moment.) At the  beginning of each  frame,  the video  circuitry 
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begins to scan  display memory  for video data  starting  at  the  address specified by the 
start  address registers, just as it normally would. When  the video circuitry encounters 
the specified split screen start scan line  in  the  course of scanning video data onto  the 
screen,  it  completes  that scan line normally, then resets the  internal  pointer which 
addresses the  next byte  of  display memory to be  read  for video data to zero. Display 
memory  from  address  zero onward is then  scanned  for video data  in  the usual way, 
progressing toward the high end of  memory. At the end of the  frame,  the  pointer to 
the  next byte  of  display memory to  scan is reloaded  from  the  start  address registers, 
and  the whole process starts over. 
The  net effect: The contents of  display memory  starting at offset zero  are displayed 
starting  at  the scan line following the specified split screen  start scan line, as  shown 
in Figure 30.1. It's important to understand  that  the scan line  that matches the split 
screen scan line is not part of the split screen;  the split screen starts on  the following 
scan line. So, for example, if the split screen scan line is set to zero,  the split screen 
actually starts at scan line 1, the  second scan line  from  the  top of the  screen. 
If both  the  start  address and  the split screen start scan line  are set to 0, the  data  at 
offset zero in display memory is displayed as both  the first scan line on  the  screen 
and the  second scan line. There is no way to make the split screen cover the  entire 
screen-it always comes up  at least one scan line  short. 

Offset 0, 
(start 
of split- 
screen 
area of 
display 
memory) 

Start "+ 

address 
(start of 
normal- 
screen 
area of 
display 
memory) 

Display  Memory 

The Split Screen 

Display memory  and  the split screen. 
Figure 30.1 
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So, where is the split screen start scan line stored? The answer  varies a bit, depending 
on whether  you’re  talking about the EGA or the VGA. On the EGA, the split  screen  start 
scan  line is a 9-bit  value,  with  bits  7-0 stored  in the Line  Compare  register (CRTC register 
18H)  and bit 8 stored in bit 4 of the Overflow  register  (CRTC  register ’7). Other bits 
in the Overflow  register  serve  as the high bits  of other values, such as the vertical 
total and  the vertical blanking start. Since EGA registers are-alas!-not readable, 
you must know the  correct settings for  the other bits in  the Overflow  registers  to  use 
the split  screen on an EGA. Fortunately, there are  only two standard Overflow register 
settings on the EGA  11H  for  200-scan-line  modes and 1FH  for  350-scan-line  modes. 
The VGA,  of course, presents no such problem in setting the split screen start scan 
line,  for  it has readable registers.  However, the VGA supports a 10-bit  split screen 
start scan line value,  with  bits  8-0 stored just as  with the EGA, and bit 9 stored  in bit 6 
of the Maximum  Scan  Line  register  (CRTC  register 9).  
Turning  the split screen on involves nothing  more  than setting all  bits of the split 
screen start scan line to the scan line after which  you  want the split screen to start 
appearing. (Of course, you’ll  probably  want  to change  the start address before using 
the split screen; otherwise, you’ll just  end  up displaying the memory at offset zero 
twice: once in the  normal screen and  once in the split screen.)  Turning off the split 
screen is a simple matter of setting the split screen start scan line to a value equal  to 
or greater  than  the last  scan line displayed; the safest  such approach is to set all  bits 
of the split screen start scan line to 1. (That is, in fact, the split screen start scan line 
value programmed by the BIOS during a mode  set.) 

The Split Screen in Action 
All  of these points are illustrated by Listing 30.1. Listing 30.1 fills  display  memory 
starting at offset  zero (the split  screen area of memory) with text  identifylng the split 
screen,  fills  display memory starting at offset 8000H with a graphics pattern,  and sets 
the start address to  8000H. At this point,  the  normal screen is being displayed (the 
split screen start scan line is  still set to the BIOS default setting, with  all  bits equal  to 
1, so the split screen is off), with the pixels  based on  the contents of  display  memory 
at offset 8000H. The contents of  display  memory  between  offset 0 and offset 7FFFH are 
not visible at all. 
Listing  30.1 then slides the split screen up from  the  bottom of the  screen, one scan 
line at a time. The split screen slides halfway up the  screen,  bounces down a quarter 
of the  screen, advances another half-screen, drops  another quarter-screen, and fi- 
nally  slides  all the way up to the top. If you’ve  never seen  the split screen in action, 
you should run Listing 30.1; the  smooth overlapping of the split screen on top of the 
normal display  is a striking  effect. 
Listing  30.1  isn’t done  just yet,  however.  After a keypress,  Listing  30.1 demonstrates 
how to  turn  the split screen off  (by setting all  bits  of the split screen start scan line to 
1). After another keypress,  Listing  30.1  shows that  the split screen can  never  cover 
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the whole screen, by setting  the start address to 0 and  then  flipping back and  forth 
between the normal screen and  the split screen with a split screen start scan line 
setting of zero. Both the normal screen and  the split screen display the same text, 
but  the split screen displays it  one scan line lower, because the split screen doesn't 
start  until after the first scan line, and  that  produces  a  jittering effect as the  program 
switches the split screen on  and off. (On  the EGA, the split screen may display two 
scan lines lower, for reasons I'll discuss  shortly.) 
Finally, after another keypress,  Listing 30.1 halts. 

LISTING 30.1 130- 1 .ASM 
: D e m o n s t r a t e s   t h e  VGA/EGA s p l i t   s c r e e n   i n   a c t i o n .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I S-VGA 

VGA-SEGMENT 
SCREEN-WIDTH 
SCREENKHEIGHT 
CRTC-INDEX 
OVERFLOW 
MAXIMUM-SCAN-LINEequ 

START-ADDRESS-HIGH 

STARTLADDRESS-LOWequ 

LINE-COMPARE 

INPUT-STATUS-0 
WORD-OUTS-OK 

1 ; s e t   t o  0 t o  a s s e m b l e   f o r  EGA 

OaOOOh 
640 
350 
3d4h ;CRT C o n t r o l l e r   I n d e x   r e g i s t e r  
7 : i n d e x   o f   O v e r f l o w   r e g   i n  CRTC 

: i n d e x   o f  Maximum  Scan L i n e   r e g i s t e r  
: i n  CRTC 

: i n  CRTC 
: i n d e x   o f   S t a r t   A d d r e s s  Low r e g i s t e r  
: i n  CRTC 

1 8 h   ; i n d e x   o f   L i n e  Compare r e g   ( b i t s  7 - 0  
: o f  s p l i t   s c r e e n   s t a r t   s c a n   l i n e )  
: i n  CRTC 

Och : i n d e x   o f   S t a r t   A d d r e s s   H i g h   r e g i s t e r  

3 d a h   : I n p u t   S t a t u s  0 r e g i s t e r  
1 : s e t   t o  0 t o  a s s e m b l e   f o r  

: c o m p u t e r s   t h a t   c a n ' t   h a n d l e  
: w o r d   o u t s   t o   i n d e x e d  VGA r e g i s t e r s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
: Macro t o   o u t p u t  a   w o r d   v a l u e   t o   a   p o r t .  

OUTLWORD macro 
i f  WORD-OUTS-OK 

o u t   d x . a x  
e l s e  

o u t   d x . a l  
i n c   d x  
xchg  ah ,a l  
o u t   d x . a l  
dec   dx  
xchg  ah .a l  

endm 
e n d i  f 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MyStack  segment   para  s tack 'STACK' 

MyStack  ends 

Data  segment 
S p l i t S c r e e n L i n e  dw ? : l i n e   t h e   s p l i t   s c r e e n   c u r r e n t l y  

db  512  dup ( 0 )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: s t a r t s   a f t e r  
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S t a r t A d d r e s s  dw ? : d i s p l a y  memory o f f s e t   a t   w h i c h  

: Message d i s p l a y e d   i n   s p l i t   s c r e e n .  
S p l i t S c r e e n M s g   d b   ' S p l i t   s c r e e n   t e x t   r o w  #' 
O i g i t I n s e r t  dw ? 

Data  ends 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Code  segment 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
S t a r t   p r o c   n e a r  

: s c a n n i n g   f o r   v i d e o   d a t a   s t a r t s  

db ' . . . s o  

assume  cs:Code.  ds:Oata 

mov ax .0a ta  
mov ds.ax 

: S e l e c t  mode 1 0 h .   6 4 0 x 3 5 0   1 6 - c o l o r   g r a p h i c s  mode. 

mov ax.0010h :AH-0 i s  s e l e c t  mode f u n c t i o n  
:AL=lOh i s  mode t o   s e l e c t ,  
: 6 4 0 x 3 5 0   1 6 - c o l o r   g r a p h i c s  mode 

i n t  10h 

: P u t   t e x t   i n t o   d i s p l a y  memory s t a r t i n g   a t   o f f s e t  0 .  w i t h   e a c h   r o w  
: l a b e l l e d  as t o  number.   Th is  i s   t h e   p a r t   o f  memory t h a t  will be 
: d i s p l a y e d   i n   t h e   s p l i t   s c r e e n   p o r t i o n  o f  t h e   d i s p l a y .  

mov cx.25 :# o f   l i n e s   o f   t e x t   w e ' l l   d r a w   i n t o  
: t h e   s p l i t   s c r e e n   p a r t   o f  memory 

F i l l  Spl  i tScreenLoop:  
mov a h . 2   : s e t   c u r s o r   l o c a t i o n   f u n c t i o n  # 
sub   bh .bh   : se t   cu rso r  i n  page 0 
mov dh.25 
sub d h . c l   : c a l c u l a t e   r o w   t o   d r a w   i n  
s u b   d l   , d l   : s t a r t   i n   c o l u m n  0 
i n t  1 0 h   : s e t   t h e   c u r s o r   l o c a t i o n  
mov a1 ,25 
sub a1 . c l   : c a l c u l a t e   r o w   t o   d r a w   i n   a g a i n  
sub  ah,ah  :make t h e   v a l u e  a w o r d   f o r   d i v i s i o n  
mov dh.10 
d i v   d h   : s p l i t   t h e   r o w  # i n t o   t w o   d i g i t s  
add  ax, ' 00 '  : c o n v e r t   t h e   d i g i t s   t o  A S C I I  
mov [ O i g i t I n s e r t l . a x   : p u t   t h e   d i g i t s   i n t o   t h e   t e x t  

mov ah.9 
mov d x . o f f s e t   S p l i t S c r e e n M s g  
i n t  21h : p r i n t   t h e   t e x t  
1 oop F i l l  Spl  i tScreenLoop 

: t o  b e   d i s p l a y e d  

: F i l l   d i s p l a y  memory s t a r t i n g   a t  8 0 0 0 h   w i t h  a d i a g o n a l l y   s t r i p e d  
: p a t t e r n .  

mov  ax.VGA-SEGMENT 
mov es.ax 
mov d i  ,8000h 
mov  dx,SCREENLHEIGHT 
mov ax,  888811 
c l  d 

mov cx.SCREEN-WIOTH/8/2 
r e p   s t o s w  

RowLoop: 

:fill a l l   l i n e s  
: s t a r t i n g  fill p a t t e r n  

:fill 1 scan l i n e  a word a t  a t i m e  
:fill t h e   s c a n   l i n e  
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r o r   a x . 1   ; s h i f t   p a t t e r n  
dec   dx  
j n z  RowLoop 

; S e t   t h e   s t a r t   a d d r e s s   t o   8 0 0 0 h   a n d   d i s p l a y   t h a t   p a r t  

mov [S tar tAddress1,8000h 
c a l l   S e t S t a r t A d d r e s s  

word 

o f  memory. 

: S l i d e   t h e   s p l i t   s c r e e n   h a l f  way u p   t h e   s c r e e n   a n d   t h e n   b a c k  down 
; a q u a r t e r   o f   t h e   s c r e e n .  

mov 

mov 
c a l l  
mov 
c a l l  

; Now move 

mov 
c a l l  
mov 
c a l l  

CSplitScreenLine1,SCREEN-HEIGHT-1 
; s e t   t h e   i n i t i a l   l i n e   j u s t   o f f  
; t h e   b o t t o m   o f   t h e   s c r e e n  

cx,SCREENKHEIGHT/2 
Sp l  i tScreenUp 
cx,SCREEN_HEIGHT/4 
Sp l i tScreenDown 

u p   a n o t h e r   h a l f  a sc reen  and  then  back  down a q u a r t e r .  

cx.SCREEN-HEIGHT/Z 
Sp l  i tScreenUp 
cx,SCREEN_HEIGHT/4 
Sp l i tScreenDown 

; F i n a l l y  move up t o   t h e   t o p   o f   t h e   s c r e e n .  

mov 
c a l l  

: W a i t   f o r  

mov 
i n t  

; T u r n   t h e  

mov 
c a l l  

: W a i t   f o r  

mov 
i n t  

cx.SCREENPHEIGHT/2-2 
Sp l  i tScreenUp 

a k e y   p r e s s   ( d o n ' t   e c h o   c h a r a c t e r ) .  

ah.8 ;DOS c o n s o l e   i n p u t   w i t h o u t   e c h o   f u n c t i o n  
21h 

s p l i t   s c r e e n   o f f .  

[SplitScreenLine].Offffh 
S e t S p l i t S c r e e n S c a n L i n e  

a k e y   p r e s s   ( d o n ' t   e c h o   c h a r a c t e r ) .  

ah.8 :OOS c o n s o l e   i n p u t   w i t h o u t   e c h o   f u n c t i o n  
21h 

; D i s p l a y   t h e  memory a t  0 ( t h e  same memory t h e   s p l i t   s c r e e n   d i s p l a y s ) .  

mov C S t a r t A d d r e s s l . 0  
c a l l   S e t S t a r t A d d r e s s  

; F l i p   b e t w e e n   t h e   s p l i t   s c r e e n   a n d  
; f r a m e   u n t i l  a key i s  p ressed.  

the   no rma l   sc reen   eve ry   10 th  

F1 i pLoop: 
x o r  CSplitScreenLine1,Offffh 
c a l l   S e t S p l  i tScreenScanL ine  
mov cx.10 

568 Chapter 30 



CountVer t i   ca l   SyncsLoop:  
c a l l   W a i t F o r V e r t i c a l S y n c E n d  
l o o p   C o u n t V e r t i c a l S y n c s L o o p  
mov ah.0bh ;DOS c h a r a c t e r   a v a i l a b l e   s t a t u s  
i n t  21h 
a n d   a 1 , a l   : c h a r a c t e r   a v a i l a b l e ?  
j z  F1 i pLoop ;no. t o g g l e   s p l i t   s c r e e n   o n / o f f   s t a t u s  
mov ah.1 
i n t  2 1 h   ; c l e a r   t h e   c h a r a c t e r  

; R e t u r n   t o   t e x t  mode and DOS.  

rnov ax.0003h ;AH-0 i s   s e l e c t  mode f u n c t i o n  

i n t  10h 
rnov ah.4ch 
i n t  2 1 h   ; r e t u r n   t o  DOS 

;AL-3 i s  mode t o   s e l e c t ,   t e x t  mode 
; r e t u r n   t o   t e x t  mode 

S t a r t   e n d p  

; W a i t s   f o r   t h e   l e a d i n g   e d g e   o f   t h e   v e r t i c a l   s y n c   p u l s e .  

; I n p u t :   n o n e  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Output :   none 

; R e g i s t e r s   a l t e r e d :  AL. DX 

Wa i tFo rVer t i ca lSyncSta r t  p r o c   n e a r  

W a i t N o t V e r t i c a l S y n c :  
mov dx.INPUT-STATUS-0 

i n   a l . d x  
t e s t   a l . 0 8 h  
j n z  W a i t N o t V e r t i c a l S y n c  

W a i t V e r t i c a l S y n c :  
i n  a1,dx 
t e s t   a l , 0 8 h  
jz W a i t V e r t i c a l S y n c  
r e t  

Wa i tFo rVer t i ca lSyncSta r t  endp 

; W a i t s   f o r   t h e   t r a i l i n g   e d g e   o f   t h e   v e r t i c a l   s y n c   p u l s e .  

; I n p u t :   n o n e  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: Output :   none 

; R e g i s t e r s   a l t e r e d :  AL. DX 

W a i t F o r V e r t i c a l S y n c E n d   p r o c   n e a r  
mov dx.INPUTLSTATUS-0 

W a i t V e r t i c a l S y n c Z :  
i n   a l . d x  
t e s t  a1 .08h 
j z  W a i t V e r t i c a l S y n c Z  

i n  a l . d x  
t e s t   a l . 0 8 h  
j n z  W a i t N o t V e r t i c a l S y n c 2  
r e t  

W a i t N o t V e r t i c a l S y n c 2 :  

Wai tForVer t i ca l   SyncEnd  endp 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
: S e t s   t h e   s t a r t   a d d r e s s   t o   t h e   v a l u e   s p e c i f e d   b y   S t a r t A d d r e s s .  
: W a i t   f o r   t h e   t r a i l i n g  edge o f   v e r t i c a l   s y n c   b e f o r e   s e t t i n g  s o  t h a t  
: o n e   h a l f   o f   t h e   a d d r e s s   i s n ' t   l o a d e d   b e f o r e   t h e   s t a r t   o f   t h e   f r a m e  
: a n d   t h e   o t h e r   h a l f   a f t e r ,   r e s u l t i n g   i n   f l i c k e r  as  one  frame i s  
: d i s p l a y e d   w i t h   m i s m a t c h e d   h a l v e s .   T h e  new s t a r t   a d d r e s s   w o n ' t   b e  
: l o a d e d   u n t i l   t h e   s t a r t   o f   t h e   n e x t   f r a m e :   t h a t   i s .   o n e   f u l l   f r a m e  
: will b e   d i s p l a y e d   b e f o r e   t h e  new s t a r t   a d d r e s s   t a k e s   e f f e c t .  

: I n p u t :   n o n e  

: Output :   none 

: R e g i s t e r s  a1 t e r e d :  A X ,  DX 

S e t S t a r t A d d r e s s   p r o c   n e a r  
c a l l   W a i t F o r V e r t i c a l S y n c E n d  
mov  dx.CRTC-INDEX 
mov  al.START-ADDRESS-HIGH 
mov a h . b y t e   p t r   [ S t a r t A d d r e s s + l l  

OUT-WORD 
c l  i ;make s u r e   b o t h   r e g i s t e r s   g e t   s e t   a t   o n c e  

mov  al.START-ADDRESS-LOW 
mov a h . b y t e   p t r   [ S t a r t A d d r e s s ]  
OUT-WORD 
s t i  
r e t  

Se tS ta r tAddress   endp  

: S e t s   t h e   s c a n   l i n e   t h e   s p l i t   s c r e e n   s t a r t s   a f t e r   t o   t h e   s c a n   l i n e  
: s p e c i f i e d   b y   S p l i t S c r e e n L i n e .  

; I n p u t :   n o n e  

: Output :   none 

; All r e g i s t e r s   p r e s e r v e d  

S e t S p l i t S c r e e n S c a n L i n e   p r o c   n e a r  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

push ax  
push c x  
push dx  

W a i t   f o r   t h e   l e a d i n g   e d g e   o f   t h e   v e r t i c a l   s y n c   p u l s e .   T h i s   e n s u r e s  
t h a t  we d o n ' t   g e t   m i s m a t c h e d   p o r t i o n s   o f   t h e   s p l i t   s c r e e n   s e t t i n g  
w h i l e   s e t t i n g   t h e   t w o   o r   t h r e e   s p l i t   s c r e e n   r e g i s t e r s   ( r e g i s t e r   1 8 h  
s e t   b u t   r e g i s t e r  7 n o t   y e t   s e t  when a m a t c h   o c c u r s ,   f o r   e x a m p l e ) .  
w h i c h   c o u l d   p r o d u c e   b r i e f   f l i c k e r i n g .  

c a l l  W a i t F o r V e r t i c a l S y n c S t a r t  

S e t   t h e   s p l i t   s c r e e n   s c a n   l i n e .  

mov  dx.CRTCCINDEX 
mov a h . b y t e   p t r   [ S p l i t S c r e e n L i n e ]  
mov a1 .LINE-COMPARE 
c l  i :make s u r e   a l l   t h e   r e g i s t e r s   g e t   s e t   a t   o n c e  
OUT-WORD ; s e t   b i t s  7 - 0  o f   t h e   s p l i t   s c r e e n   s c a n   l i n e  
mov a h . b y t e   p t r   [ S p l i t S c r e e n L i n e + l l  
and  ah.1 
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;move b i t  8 o f   t h e   s p l i t   s p l i t   s c r e e n   s c a n  
; l i n e   i n t o   p o s i t i o n   f o r   t h e   O v e r f l o w   r e g  

mov c l  .4 
s h l   a h , c l  

mov a1 ,OVERFLOW 
i f  IS-VGA 

; The S p l i t   S c r e e n ,   O v e r f l o w ,   a n d   L i n e  Compare r e g i s t e r s   a l l   c o n t a i n  
; p a r t   o f   t h e   s p l i t   s c r e e n   s t a r t   s c a n   l i n e   o n   t h e  VGA. W e ' l l   t a k e  
; advantage o f  t h e   r e a d a b l e   r e g i s t e r s   o f   t h e  VGA t o   l e a v e   o t h e r   b i t s  
; i n   t h e   r e g i s t e r s  we a c c e s s   u n d i s t u r b e d .  

o u t  dx .a l  : s e t  CRTC I n d e x   r e g   t o   p o i n t   t o   O v e r f l o w  
i n c   d x  ; p o i n t   t o  CRTC D a t a   r e g  
i n  a1,dx ; g e t   t h e   c u r r e n t   O v e r f l o w   r e g   s e t t i n g  
and a1 ,not   10h ; t u r n   o f f   s p l i t   s c r e e n   b i t  8 
or a1,ah ; i n s e r t   t h e  new s p l i t   s c r e e n   b i t  8 

o u t   d x . a l   ; s e t   t h e  new s p l i t   s c r e e n   b i t  8 
d e c   d x   ; p o i n t   t o  CRTC I n d e x   r e g  
mov a h . b y t e   p t r   [ S p l i t S c r e e n L i n e + l l  
and  ah.2 
mov c l  . 3  
ror a h . c l  ;move b i t  9 o f   t h e   s p l i t   s p l i t   s c r e e n   s c a n  

; (works  i n  any  mode) 

; l i n e   i n t o   p o s i t i o n   f o r   t h e  Maximum  Scan 

mov  al.MAXIMUM-SCAN-LINE 
; L i n e   r e g i s t e r  

o u t   d x . a l   ; s e t  CRTC I n d e x   r e g   t o   p o i n t   t o  Maximum 

i n c   d x   ; p o i n t   t o  CRTC D a t a   r e g  
i n   a l . d x  ; g e t   t h e   c u r r e n t  Maximum  Scan L i n e   s e t t i n g  
and  a1  ,not   40h ; t u r n   o f f   s p l i t   s c r e e n   b i t  9 
o r   a l . a h  ; i n s e r t   t h e  new s p l i t   s c r e e n   b i t  9 

o u t   d x , a l   ; s e t   t h e  new s p l i t   s c r e e n   b i t  9 

; Scan L i n e  

; (works  i n  any  mode) 

e l s e  

; O n l y   t h e   S p l i t   S c r e e n   a n d   O v e r f l o w   r e g i s t e r s   c o n t a i n   p a r t   o f   t h e  
; S p l i t   S c r e e n   s t a r t   s c a n   l i n e   a n d   n e e d   t o   b e   s e t   o n   t h e  EGA. 
; EGA r e g i s t e r s   a r e   n o t   r e a d a b l e ,  s o  we have t o   s e t   t h e   n o n - s p l i t  
; s c r e e n   b i t s   o f   t h e   O v e r f l o w   r e g i s t e r   t o  a p r e s e t   v a l u e ,   i n   t h i s  
; c a s e   t h e   v a l u e   f o r   3 5 0 - s c a n - l i n e  modes. 

or a h . 0 f h   ; i n s e r t   t h e  new s p l i t   s c r e e n   b i t  8 

OUT-WORD 

s t i  

; ( o n l y   w o r k s  i n  3 5 0 - s c a n - l i n e  EGA modes) 
; s e t   t h e  new s p l i t   s c r e e n   b i t  8 

e n d i  f 

POP dx  

POP ax  
POP c x  

r e t  
Se tSp l i tSc reenScanL ine   endp  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Moves t h e   s p l i t   s c r e e n   u p   t h e   s p e c i f i e d  

I n p u t :  C X  - # o f   s c a n   l i n e s   t o  move t h e  

Output :   none 

R e g i s t e r s   a l t e r e d :  C X  

number o f  s c a n   l i n e s .  

s p l i t   s c r e e n   u p   b y  
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Spl i tScreenUp  proc   near  
Spl i tScreenUpLoop:  

dec  [Spl i t S c r e e n L i n e 1  
c a l l   S e t S p l   i t S c r e e n S c a n L i n e  
1 oop Spl i tScreenUpLoop 
r e t  

Spl i tScreenUp  endp 

; Moves t h e   s p l i t   s c r e e n  down t h e   s p e c i f i e d  number o f  s c a n   l i n e s .  

: I n p u t :  C X  .. # o f  s c a n   l i n e s   t o  move t h e   s p l i t   s c r e e n  down by 

: Output:  none 

: R e g i s t e r s   a l t e r e d :  C X  

Spl   i tScreenDown  proc  near  
SplitScreenDownLoop: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i n c   [ S p l i t S c r e e n L i n e l  
c a l l   S e t S p l i t S c r e e n S c a n L i n e  
1 oop Spl i tScreenOownLoop 
r e t  

Spl i tScreenDown  endp 

Code ends 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

end S t a r t  

VGA and EGA Split-Screen  Operation  Don’t Mix 
You must set  the IS-VGA equate  at  the  start of Listing  30.1 correctly for  the  adapter 
the  code will run  on in order for  the  program to perform properly. This  equate 
determines how the  upper bits of the  split  screen  start scan line  are  set by 
SetSplitScreenRow. If IS-VGA is 0 (specifjmg  an EGA target),  then bit 8 of the split 
screen  start scan line is set by programming  the  entire Overflow register to 1FH; this 
is hard-wired for  the 350-scan-line modes of the EGA.  If IS-VGA is 1 (specifying a 
VGA target),  then bits 8 and 9 of the split screen  start scan line  are  set by reading  the 
registers they reside in,  changing only the split-screen-related bits, and writing the 
modified settings back to their respective registers. 
The VGAversion of Listing  30.1  won’t  work on an EGA, because EGA registers aren’t 
readable. The EGA version of Listing  30.1  won’t  work on a VGA, both because VGA 
monitors  require  different vertical settings than EGA monitors and because the EGA 
version doesn’t set bit 9 of the split screen  start scan line.  In  short,  there is no way 
that  I know  of to support  both VGA and EGA split screens with common  code; sepa- 
rate drivers are  required. This is one of the reasons that split screens  are so rarely 
used in PC programming. 
By the way, Listing  30.1 operates  in  mode  10H because that’s the highest-resolution 
mode  the VGA and EGA share.  That’s  not  the only mode  the split screen works in, 
however. In fact, it works in all modes, as  we’ll see later. 
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Setting  the  Split-Screen-Related  Registers 
Setting the split-screen-related  registers  is not as  simple a matter as  merely output- 
ting the  right values  to the  right registers; timing is also important. The split screen 
start scan line value  is checked against the  number of each scan line as that scan line 
is displayed,  which means that  the split screen start scan line potentially  takes  effect 
the  moment  it is set. In  other words, if the screen is displaying  scan line 15 and you 
set the split screen start to 16, that  change will be picked up immediately and  the 
split screen will start after the  next scan line. This is markedly different  from changes 
to the start address, which  take  effect  only at  the start of the  next frame. 
The instantly-effective nature of the split screen is a bit of a problem, not because the 
changed screen appears as soon as the new  split screen start scan line is  set-that 
seems to  me  to  be  an advantage-but  because the  changed screen can appear before 
the new  split screen start scan line is set. 

- 

Remember, the split screen start scan line is spread out  over two or three registers. p What ifthe incompletely-changed  value  matches  the  current  scan  line  after you ’ve set 
one register but before you’ve set the rest? For one frame, you’ll see the split screen 
in a  wrongplace-possibly  a vevy wrongplace-resulting in jumping  andflicker. 

The solution is simple:  Set the split screen start scan line at a time when it can’t 
possibly match the currently displayed  scan line. The easy  way to do that is  to set it 
when there isn’t  any currently displayed  scan  line-during  vertical  non-display time. 
One safe  time  that’s  easy to  find is the start of the vertical  sync pulse, which is  typi- 
cally pretty near  the middle of  vertical  non-display  time, and that’s the  approach I’ve 
followed in Listing 30.1. I’ve  also  disabled interrupts  during  the  period when the 
split screen registers are  being set. This isn’t  absolutely  necessary, but if it’s not  done, 
there’s the possibility that  an  interrupt will occur between register sets and delay the 
later register  sets until display time, again causing flicker. 
One interesting effect of setting the split screen registers at  the start of  vertical  sync 
is that  it has the effect of synchronizing the  program  to  the display adapter’s frame 
rate. No matter how  fast the  computer  running Listing 30.1 may be,  the split screen 
will  move at a maximum  rate of once per frame.  This is handy  for  regulating  execution 
speed over a wide  variety  of hardware performance ranges; however, be aware that 
the VGA supports ’70 Hz frame rates in all  non-480-scan-line modes, while the VGA 
in 480-scan-line-modes and  the EGA in all color modes support 60 Hz frame rates. 

The Problem with the EGA Split Screen 
I  mentioned earlier that  the EGAs  split screen is a little buggy.  How?  you  may  well 
ask,  particularly  given that Listing 30.1 illustrates that  the EGA split screen seems 
pretty functional. 
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The bug is this: The first scan line of the EGA split screen-the scan line  starting at 
offset zero  in display memory-is displayed not once  but twice. In other words, the 
first line of split screen display  memory, and only the first line, is replicated one 
unnecessary time,  pushing all the  other lines down by one. 
That’s not  a fatal bug, of course.  In  fact, if the first few scan lines  are  identical, it’s not 
even noticeable. The EGA’s split-screen bug  can  produce visible distortion given 
certain  patterns, however, so you should try to make the  top few lines  identical (if 
possible) when designing split-screen images that  might be displayed on EGAs, and 
you should  in any  case check how your split-screens look on  both VGAs and EGAs. 

I have an important caution here: Don ’t count  on  the  EGA ’s split-screen bug; that 1 is, don ’t rely on thefirst scan line being doubled when you design your split screens. 
IBM designed and made the original EGA, but a lot of companies cloned it, and 
there ’s no guarantee that all EGA clones copy the bug. It is a certainty, at least, 
that  the VGA didn’t  copy  it. 

There’s  another  respect in which the EGA  is inferior  to  the VGA when it comes to 
the split screen, and that’s in the  area of panning when the split screen is on. This 
isn’t a bug-it’s just  one of the many areas  in which the VGA’s designers  learned 
from  the  shortcomings of the EGA and went the EGA one better. 

Split Screen and Panning 
Back in  Chapter 23, I presented  a  program  that  performed  smooth  horizontal  pan- 
ning.  Smooth  horizontal  panning consists of two parts: byte-by-byte (8-pixel) panning 
by changing the start address and pixel-by-pixel  intrabyte panning by setting the Pel 
Panning register (AC register 13H) to  adjust alignment by 0 to 7 pixels.  (IBM prefers its 
own jargon and uses the word “pel”  instead of “pixel”  in  much of their  documenta- 
tion,  hence  “pel  panning.”  Then  there’s DASD, a.k.a.  Direct Access Storage 
Device-IBM-speak for  hard disk.) 
Horizontal  smooth  panning works just fine,  although I’ve  always harbored some 
doubts  that any one horizontal-smooth-panning  approach works properly on all dis- 
play board clones. (More on this later.) There’s  a catch when using horizontal  smooth 
panning with the split screen  up,  though, and it’s a  serious  catch: You can’t byte-pan 
the split screen (which always starts at offset zero, no  matter what the  setting of the 
start  address registers)-but you can pel-pan the split screen. 
Put  another way, when the  normal  portion of the  screen is horizontally smooth- 
panned,  the split screen  portion moves a pixel at  a time until it’s time to move to  the 
next byte, then  jumps back to  the  start of the current byte. As the  top  part of the 
screen moves  smoothly about,  the split  screen will  move and  jump, move and jump, over 
and over.  Believe me, it’s not  a pretty  sight. 
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What’s to  be  done?  On  the EGA, nothing. Unless you ’re willing to have your users ’ p eyes  doing the  jitterbug, don’t  use  horizontal  smooth scrolling while the split screen 
is up. Byte  punning is fine-just  don’t  change the Pel  Punning register from  its 
default setting. 

On  the VGA, there is recourse. AVGA-only bit, bit 5 of the AC Mode Control register 
(AC register lOH), turns off pel panning in the split screen. In  other words, when 
this  bit is set to 1, pel panning is reset to zero before the first line of the split screen, 
and remains zero until the  end of the  frame. This doesn’t allow  you to  pan  the split 
screen horizontally, mind you-there’s no way to do that-but  it does let you pan  the 
normal screen while the split screen stays rock-solid. This can be used to produce  an 
attractive “streaming tape” effect in the  normal screen while the split screen is used 
to display  non-moving information. 

The Split Screen and  Horizontal  Panning:  An  Example 
Listing 30.2 illustrates the  interaction of horizontal smooth  panning with the split 
screen, as  well  as the suppression of pel panning in the split screen. Listing 30.2 
creates a virtual screen 1024 pixels  across by setting the Offset register (CRTC  regis- 
ter 13H) to 64, sets the  normal screen to  scan  video data  beginning  far  enough up in 
display memory to  leave room  for  the split screen starting at offset zero,  turns on  the 
split screen, and fills in  the  normal screen and split screen with  distinctive patterns. 
Next,  Listing 30.2 pans the  normal screen horizontally without setting bit 5 of the 
AC Mode Control register  to 1. As you’d expect,  the split screen jerks  about  quite 
horribly.  After a key press,  Listing 30.2 sets bit 5 of the Mode Control register and 
pans  the  normal screen again. This time, the split screen doesn’t  budge  an inch-$ 
the  code is running  on a VGA. 
By the way,  if IS-VGA is set to 0 in Listing 30.2, the  program will assemble in a form 
that will run  on  the EGA and only the EGA. Pel panning suppression in  the split 
screen won’t  work in this  version,  however,  because the EGA lacks the capability to 
support  that  feature. When the EGA version runs, the split screen simply jerks back 
and  forth  during  both  panning sessions. 

LISTING  30.2  130-2.ASM 
: D e m o n s t r a t e s   t h e   i n t e r a c t i o n   o f   t h e   s p l i t   s c r e e n   a n d  
: h o r i z o n t a l   p e l   p a n n i n g .  On a V G A .  f i r s t  pans r i g h t   i n   t h e   t o p  
: h a l f   w h i l e   t h e   s p l i t   s c r e e n   j e r k s   a r o u n d ,   b e c a u s e   s p l i t   s c r e e n  
; p e l   p a n n i n g   s u p p r e s s i o n   i s   d i s a b l e d ,   t h e n   e n a b l e s   s p l i t   s c r e e n  
: p e l   p a n n i n g   s u p p r e s s i o n   a n d   p a n s   r i g h t   i n   t h e   t o p   h a l f   w h i l e   t h e  
: s p l i t   s c r e e n   r e m a i n s   s t a b l e .  On an EGA. t h e   s p l i t   s c r e e n   j e r k s  
: around i n   b o t h   c a s e s ,   b e c a u s e   t h e  EGA d o e s n ’ t   s u p p o r t   s p l i t  
: s c r e e n   p e l   p a n n i n g   s u p p r e s s i o n .  

: The j e r k i n g   i n   t h e   s p l i t   s c r e e n   o c c u r s   b e c a u s e   t h e   s p l i t   s c r e e n  
: i s   b e i n g   p e l   p a n n e d   ( p a n n e d   b y   s i n g l e   p i x e l s - - i n t r a b y t e   p a n n i n g ) .  
: b u t   i s   n o t  a n d   c a n n o t   b e   b y t e   p a n n e d   ( p a n n e d   b y   s i n g l e   b y t e s - -  
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: " e x t r a b y t e "   p a n n i n g )   b e c a u s e   t h e   s t a r t   a d d r e s s   o f   t h e   s p l i t   s c r e e n  
: i s   f o r e v e r   f i x e d   a t  0. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I S-VGA equ 

VGA-SEGMENT equ 
LOGICAL-SCREENLWIDTH equ 

SCREEN-HEIGHT 
SPLIT-SCREEN-START equ 

equ 

SPLIT-SCREEN-HEIGHT equ 
CRTC-INDEX 
AC-INDEX 

equ 

OVERFLOW 
e w  

MAXIMUM-SCAN-LINE 
equ 
equ 

STARTLADDRESS-HIGH equ 

START-ADDRESS-LOWequ  Odh 

HOFFSET equ 

LINE-COMPARE e w  

AC-MOOELCONTROL equ 
PELLPANNING 
INPUT-STATUS-0 
WORD-OUTS-OK e w  

e w  
equ 

1 : s e t   t o  0 t o  a s s e m b l e   f o r  EGA 

OaOOOh 
1024 :# o f   p i x e l s   a c r o s s   v i r t u a l  

: s c r e e n   t h a t   w e ' l l   p a n   a c r o s s  
350 
200 
SCREENCHEIGHT-SPLITpSCREEN-START-1 

; s t a r t   s c a n   l i n e   f o r   s p l i t   s c r e e n  

3d4h :CRT C o n t r o l l e r   I n d e x   r e g i s t e r  
3cOh : A t t r i b u t e   C o n t r o l l e r   I n d e x   r e g  
7 ; i n d e x   o f   O v e r f l o w   r e g  i n  CRTC 
9 : i n d e x   o f  Maximum  Scan L i n e   r e g i s t e r  

Och ; i n d e x   o f   S t a r t   A d d r e s s   H i g h   r e g i s t e r  
: i n  CRTC 

: i n  CRTC 
; i n d e x   o f   S t a r t   A d d r e s s  Low r e g i s t e r  
: i n  CRTC 

1 3 h   ; i n d e x   o f   H o r i z o n t a l   O f f s e t   r e g i s t e r  

18h 
: i n  CRTC 
: i n d e x   o f   L i n e  Compare r e g   ( b i t s  7 - 0  
: o f   s p l i t   s c r e e n   s t a r t   s c a n   l i n e )  
; i n  CRTC 

10h 
13h 

: i n d e x   o f  Mode C o n t r o l   r e g   i n  AC 
: i n d e x   o f   P e l   P a n n i n g   r e g   i n  AC 

3dah 
1 

; I n p u t   S t a t u s  0 r e g i s t e r  
; s e t   t o  0 t o  a s s e m b l e   f o r  
: c o m p u t e r s   t h a t   c a n ' t   h a n d l e  
: w o r d   o u t s   t o   i n d e x e d  VGA r e q i s t e r s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
: Macro t o   o u t p u t  a w o r d   v a l u e   t o  a p o r t .  

OUT-WORD macro 
i f  WORD-OUTS-OK 

o u t   d x , a x  
e l s e  

o u t   d x . a l  
i n c   d x  
xchg  ah ,a l  
o u t  d x . a l  
dec   dx  
xchg  ah .a l  

endm 
e n d i  f 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MyStack  segment  para  stack 'STACK' 

MyStack  ends 

Data  segment 
Spl  i t S c r e e n L i   n e  dw ? : l i n e   t h e   s p l i t   s c r e e n   c u r r e n t l y  

S t a r t A d d r e s s  dw ? : d i s p l a y  memory o f f s e t   a t   w h i c h  

Pel Pan db ? : c u r r e n t   i n t r a b y t e   h o r i z o n t a l   p e l  

Data  ends 

db  512  dup ( 0 )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: s t a r t s   a f t e r  

: s c a n n i n g   f o r   v i d e o   d a t a   s t a r t s  

: p a n n i n g   s e t t i n g  
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........................................................................ 
Code segment 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
assume  cs:Code.  ds:Oata 

S t a r t  p r o c   n e a r  
mov ax.Data 
mov ds.ax 

; S e l e c t  mode 10h.   640x350  16-ColOr  graphics mode. 

mov ax.0010h ;AH-0 i s  s e l e c t  mode f u n c t i o n  
;AL-lOh i s  mode t o  s e l e c t ,  
; 6 4 0 x 3 5 0   1 6 - c o l o r   g r a p h i c s  mode 

i n t  10h 

; S e t   t h e   O f f s e t   r e g i s t e r   t o  make t h e   o f f s e t   f r o m   t h e   s t a r t   o f  one 
; scan l i n e   t o   t h e   s t a r t   o f   t h e   n e x t   t h e   d e s i r e d  number o f   p i x e l s .  
; T h i s   g i v e s  us a v i r t u a l   s c r e e n   w i d e r   t h a n   t h e   a c t u a l   s c r e e n   t o  
; pan  across.  
: N o t e   t h a t   t h e   O f f s e t   r e g i s t e r   i s  programmed w i t h   t h e   l o g i c a l  
; s c r e e n   w i d t h   i n   w o r d s ,   n o t   b y t e s ,   h e n c e   t h e   f i n a l   d i v i s i o n   b y  2 .  

mov dx.CRTC-INDEX 
mov ax.(LOGICAL-SCREEN-WIOTH/8/2 s h l  8) o r  HOFFSET 
OUT-WORD 

; S e t   t h e   s t a r t   a d d r e s s   t o   d i s p l a y   t h e  memory j u s t   p a s t   t h e   s p l i t  
; sc reen  memory. 

c a l l   S e t S t a r t A d d r e s s  

; S e t   t h e   s p l i t   s c r e e n   s t a r t   s c a n   l i n e .  

mov [SplitScreenLinel.SPLIT_SCREEN-START 
c a l l   S e t S p l  i tScreenScanLi  ne 

: F i l l   t h e   s p l i t   s c r e e n   p o r t i o n   o f   d i s p l a y  memory ( 

mov [StartAddressl.SPLIT_SCREEN_HEIGHT*(LOGICAL-SCREEN-WIOTH/8) 

a t  s t a r t i n g  
; o f f s e t  0 )  w i t h  a c h o p p y   d i a g o n a l   p a t t e r n   s l o p i n g   l e f t .  

mov  ax.VGA-SEGMENT 
mov es.ax 

mov dx.SPLIT-SCREEN-HEIGHT 
sub d i   . d i  

;fill a l l   l i n e s   i n   t h e   s p l i t   s c r e e n  
mov ax.OFFOh ; s t a r t i n g  fill p a t t e r n  
c l  d 

mov cx.LOGICAL-SCREEN-WIDTH/8/4 
RowLoop: 

;fill 1 s c a n   l i n e  
ColumnLoop: 

s t o s w   ; d r a w   p a r t   o f  a d i a g o n a l  1 i n e  
mov word p t r   e s : [ d i ] . O  ;make v e r t i c a l   b l a n k   s p a c e s  so 

i n c  d i  
i n c  d i  
1 oop Col umnLoop 
r o l  ax.1 
dec dx  
j n z  RowLoop 

; p a n n i n g   e f f e c t s   c a n   b e   s e e n   e a s i l y  

; s h i f t   p a t t e r n   w o r d  
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: F i l l   t h e   p o r t i o n   o f   d i s p l a y  memory t h a t  will b e   d i s p l a y e d   i n   t h e  
: n o r m a l   s c r e e n   ( t h e   n o n - s p l i t   s c r e e n   p a r t   o f   t h e   d i s p l a y )   w i t h  a 
: c h o p p y   d i a g o n a l   p a t t e r n   s l o p i n g   r i g h t .  

mov di.SPLIT-SCREEN-HEIGHT*(LOGICAL_SCREEN-WIOTH/8) 
mov dx.SCREEN-HEIGHT :fill a l l   l i n e s  
mov ax.Oc510h : s t a r t i n g  fill p a t t e r n  
c l  d 

RowLoop2: 
mov cx.LOGICAL-SCREEN-WIOTti/8/4 

:fill 1 scan l i n e  
ColumnLoop2: 

s t o s w   : d r a w   p a r t   o f  a d i a g o n a l   l i n e  
mov word p t r  es:Cdi l .O :make v e r t i c a l   b l a n k   s p a c e s  so 

i n c   d i  
i n c   d i  
1 oop  Col  umnLoop2 
r o r   a x . 1   : s h i f t   p a t t e r n   w o r d  
dec  dx 
j n z  RowLoop2 

: p a n n i n g   e f f e c t s   c a n   b e   s e e n   e a s i l y  

: P e l   p a n   t h e   n o n - s p l i t   s c r e e n   p o r t i o n   o f   t h e   d i s p l a y :   b e c a u s e  
: s p l i t   s c r e e n   p e l   p a n n i n g   s u p p r e s s i o n   i s   n o t   t u r n e d  on, t h e   s p l i t  
: s c r e e n   j e r k s   b a c k  and f o r t h  as t h e   p e l   p a n n i n g   s e t t i n g   c y c l e s .  

mov c x . 2 0 0   : p a n   2 0 0   p i x e l s   t o   t h e   l e f t  
c a l l   P a n R i g h t  

: W a i t   f o r  a k e y   p r e s s   ( d o n ' t   e c h o   c h a r a c t e r ) .  

mov ah.8 
i n t  21h 

;DOS c o n s o l e   i n p u t   w i t h o u t   e c h o   f u n c t i o n  

: R e t u r n   t o   t h e   o r i g i n a l   s c r e e n   l o c a t i o n ,   w i t h   p e l   p a n n i n g   t u r n e d   o f f .  

mov [StartAddressl.SPLIT~SCREEN~HEIGHT*(LOGICAL-SCREEN-WIDTH/8) 
c a l l   S e t S t a r t A d d r e s s  
mov [Pel   Pan] .O 
c a l l   S e t P e l  Pan 

: T u r n   o n   s p l i t   s c r e e n   p e l   p a n n i n g   s u p p r e s s i o n ,  so t h e   s p l i t   s c r e e n  
: won ' t   be   a f fec ted   by   pe l   pann ing .   No t   done   on  EGA because   bo th  
: r e a d a b l e   r e g i s t e r s  and t h e   s p l i t   s c r e e n   p e l   p a n n i n g   s u p p r e s s i o n   b i t  
: a r e n ' t   s u p p o r t e d   b y  EGAs. 

i f IS-VGA 
mov 
i n  

mov 

mov 
o u t  
i nc 
i n  
or 

dx.INPUT-STATUS-0 
a1  .dx 

al.20h+AC-MODE-CONTROL 

dx.AC-INDEX 
d x . a l  
dx  
a1 , dx 
a1  ,20h 

: r e s e t   t h e  AC I n d e x / D a t a   t o g g l e   t o  
: I n d e x   s t a t e  

: b i t  5 s e t   t o  1 t o  keep  v ideo  on 
: p o i n t   t o  AC I n d e x / D a t a   r e g i s t e r  

: p o i n t   t o  AC D a t a   r e g   ( f o r   r e a d s   o n l y )  
: g e t   t h e   c u r r e n t  AC Mode C o n t r o l   r e g  
; e n a b l e   s p l i t   s c r e e n   p e l   p a n n i n g  
: s u p p r e s s i o n  
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end i  f 

dec dx 

o u t  d x . a l  

: p o i n t   t o  AC I n d e x / D a t a   r e g   ( D a t a   f o r  
; w r i t e s   o n l y )  
: w r i t e   t h e  new AC Mode C o n t r o l   s e t t i n g  
: w i t h   s p l i t   s c r e e n   p e l   p a n n i n g  
: suppress ion   t u rned   on  

P e l   p a n   t h e   n o n - s p l i t   s c r e e n   p o r t i o n  o f  t h e   d i s p l a y ;   b e c a u s e  
s p l i t   s c r e e n   p e l   p a n n i n g   s u p p r e s s i o n   i s   t u r n e d   o n .   t h e   s p l i t  
sc reen  will n o t  move as t h e   p e l   p a n n i n g   s e t t i n g   c y c l e s .  

mov cx.200 ;pan 200 p i x e l s   t o   t h e   l e f t  
c a l l   P a n R i g h t  

Wait f o r  a k e y   p r e s s   ( d o n ' t   e c h o   c h a r a c t e r ) .  

mov ah.8 ;DOS c o n s o l e   i n p u t   w i t h o u t   e c h o   f u n c t i o n  
i n t  21h 

R e t u r n   t o   t e x t  mode and DOS. 

mov ax.0003h :AH-0 i s   s e l e c t  mode f u n c t i o n  

i n t  1 0 h   ; r e t u r n   t o   t e x t  mode 
mov ah.4ch 
i n t  21h : r e t u r n   t o  DOS 

:AL-3 i s  mode t o   s e l e c t ,   t e x t  mode 

S t a r t  endp 

: Wai ts  f o r  t h e   l e a d i n g  edge o f  t h e   v e r t i c a l   s y n c   p u l s e .  

: I n p u t :   n o n e  

: Output :   none 

: R e g i s t e r s   a l t e r e d :  AL. DX 

WaitForVert icalSyncStar t  p r o c   n e a r  

W a i t N o t V e r t i c a l S y n c :  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

mov dx.INPUT-STATUS-0 

i n   a l . d x  
t e s t  a1 .08h 
j n z   W a i t N o t V e r t i c a l S y n c  

W a i t V e r t i c a l S y n c :  
i n   a l . d x  
t e s t  a1 .08h 
j z  W a i t V e r t i c a l S y n c  
r e t  

WaitForVer t ica lSyncStar t  endp 

: W a i t s   f o r   t h e   t r a i l i n g   e d g e  o f  t h e   v e r t i c a l   s y n c   p u l s e .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: I n p u t :   n o n e  

; Output :   none 

: R e g i s t e r s   a l t e r e d :  AL. D X  

Wai tFo rVer t i ca lSyncEnd   p roc   nea r  
mov dx.INPUT-STATUS-0 
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W a i t V e r t i c a l S y n c Z :  
i n   a l . d x  
t e s t   a l . 0 8 h  
j z   W a i t V e r t i c a l S y n c E  

i n   a l . d x  
t e s t   a l . 0 8 h  
j n z   W a i t N o t V e r t i c a l S y n c E  
r e t  

W a i t N o t V e r t i c a l S y n c E :  

Wa i tFo rVer t i ca lSyncEnd   endp  

: S e t s   t h e   s t a r t   a d d r e s s   t o   t h e   v a l u e   s p e c i f e d   b y   S t a r t A d d r e s s .  
: W a i t   f o r   t h e   t r a i l i n g  edge o f   v e r t i c a l   s y n c   b e f o r e   s e t t i n g  so t h a t  
: one h a l f   o f   t h e   a d d r e s s   i s n ' t   l o a d e d   b e f o r e   t h e   s t a r t   o f   t h e   f r a m e  
: and t h e   o t h e r   h a l f   a f t e r ,   r e s u l t i n g   i n   f l i c k e r  as  one  frame i s  
: d i s p l a y e d   w i t h   m i s m a t c h e d   h a l v e s .  The new s t a r t   a d d r e s s   w o n ' t   b e  
: l o a d e d   u n t i l   t h e   s t a r t   o f   t h e   n e x t   f r a m e :   t h a t   i s .   o n e   f u l l   f r a m e  
: will b e   d i s p l a y e d   b e f o r e   t h e  new s t a r t   a d d r e s s   t a k e s   e f f e c t .  

: I n p u t :   n o n e  

: Output :   none 

: R e g i s t e r s   a l t e r e d :  A X ,  OX 

S e t S t a r t A d d r e s s   p r o c   n e a r  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

c a l l   W a i t F o r V e r t i c a l S y n c E n d  
mov dx.CRTC-INDEX 
mov al.START-ADDRESS-HIGH 
mov a h . b y t e   p t r   C S t a r t A d d r e s s + l l  
c l  i :make s u r e   b o t h   r e g i s t e r s   g e t   s e t   a t   o n c e  
OUTLWORO 
mov  al.START-ADDRESS-LOW 
mov a h . b y t e   p t r   [ S t a r t A d d r e s s l  
OUT-WORD 
s t i  
r e t  

SetStar tAddress   endp 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; S e t s   t h e   h o r i z o n t a l   p e l   p a n n i n g   s e t t i n g   t o   t h e   v a l u e   s p e c i f i e d  
: b y   P e l P a n .   W a i t s   u n t i l   t h e   s t a r t   o f   v e r t i c a l   s y n c   t o  do s o ,  so 
: t h e  new p e l   p a n   s e t t i n g   c a n   b e   l o a d e d   d u r i n g   n o n - d i s p l a y   t i m e  
: a n d   c a n   b e   r e a d y   b y   t h e   s t a r t   o f   t h e   n e x t   f r a m e .  

: I n p u t :   n o n e  

: Output:   none 

: R e g i s t e r s   a l t e r e d :  AL. OX 

SetPe l  Pan p r o c   n e a r  
c a l l  WaitForVerticalSyncStart : a l s o   r e s e t s   t h e  AC 

: I n d e x / D a t a   t o g g l e  
; t o   I n d e x   s t a t e  

mov dx.AC-INDEX 
mov al.PEL-PANNING+ZOh : b i t  5 s e t   t o  1 t o  keep v i  
o u t   d x , a l   : p o i n t   t h e  AC I n d e x   t o   P e l  
mov a1 ,[Pel  Pan] 
o u t   d x . a l   : l o a d   t h e  new Pel Pan s e t t  
r e t  

SetPe l  Pan  endp 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
: S e t s   t h e   s c a n   l i n e   t h e   s p l i t   s c r e e n   s t a r t s   a f t e r   t o   t h e   s c a n   l i n e  
: s p e c i f i e d   b y   S p l i t S c r e e n L i n e .  

: I n p u t :   n o n e  

: Output :   none 

: All r e g i s t e r s   p r e s e r v e d  

S e t S p l i t S c r e e n S c a n L i n e   p r o c   n e a r  
push ax 
push c x  
push dx  

W a i t   f o r   t h e   l e a d i n g   e d g e   o f   t h e   v e r t i c a l   s y n c   p u l s e .   T h i s   e n s u r e s  
t h a t  we d o n ' t   g e t   m i s m a t c h e d   p o r t i o n s   o f   t h e   s p l i t   s c r e e n   s e t t i n g  
w h i l e   s e t t i n g   t h e   t w o   o r   t h r e e   s p l i t   s c r e e n   r e g i s t e r s   ( r e g i s t e r   1 8 h  
s e t   b u t   r e g i s t e r  7 n o t   y e t   s e t  when a m a t c h   o c c u r s ,   f o r   e x a m p l e ) .  
w h i c h   c o u l d   p r o d u c e   b r i e f   f l i c k e r i n g .  

c a l l  Wai t F o r V e r t i c a 1   S y n c S t a r t  

S e t   t h e   s p l i t   s c r e e n   s c a n   l i n e .  

mov dx.CRTC-INDEX 
mov a h . b y t e   p t r   C S p l i t S c r e e n L i n e l  
mov a1 , LINE-COMPARE 
c l  i 
OUT-WORD 
mov a h . b y t e   p t r   [ S p l i t S c r e e n L i n e + l l  
and  ah.1 
mov c l  . 4  
s h l   a h . c l  :move b i t  8 o f   t h e   s p l i t   s p l i t   s c r e e n   s c a n  

mov  a1 ,OVERFLOW 

:make s u r e   a l l   t h e   r e g i s t e r s   g e t   s e t   a t   o n c e  
: s e t   b i t s  7 - 0  o f   t h e   s p l i t   s c r e e n   s c a n   l i n e  

: l i n e   i n t o   p o s i t i o n   f o r   t h e   O v e r f l o w   r e g  

The S p l i t   S c r e e n ,   O v e r f l o w ,   a n d   L i n e  Compare r e g i s t e r s   a l l   c o n t a i n  
p a r t   o f   t h e   s p l i t   s c r e e n   s t a r t   s c a n   l i n e  on t h e  VGA.  W e ' l l   t a k e  
a d v a n t a g e   o f   t h e   r e a d a b l e   r e g i s t e r s   o f   t h e  VGA t o   l e a v e   o t h e r   b i t s  
i n   t h e   r e g i s t e r s  we a c c e s s   u n d i s t u r b e d .  

o u t  
i nc 
i n  
and 
o r  

o u t  
dec 
mov 
and 
mov 
r o r  

mov 
o u t  

d x . a l   : s e t  CRTC I n d e x   r e g   t o   p o i n t   t o   O v e r f l o w  
d x   : p o i n t   t o  CRTC Da ta   reg  
a1 . d x   : g e t   t h e   c u r r e n t   O v e r f l o w   r e g   s e t t i n g  
a1 . n o t   1 0 h   ; t u r n   o f f   s p l i t   s c r e e n   b i t  8 
a1 , a h   : i n s e r t   t h e  new s p l i t   s c r e e n   b i t  8 

d x , a l   : s e t   t h e  new s p l i t   s c r e e n   b i t  8 
d x   : p o i n t   t o  CRTC I n d e x   r e g  
a h . b y t e   p t r   [ S p l i t S c r e e n L i n e + l l  
ah.2 
c l  ,3  
a h , c l  :move b i t  9 o f   t h e   s p l i t   s p l i t   s c r e e n   s c a n  

: (works  i n  any  mode) 

; l i n e   i n t o   p o s i t i o n   f o r   t h e  Maximum  Scan 
: L i n e   r e g i s t e r  

a1.MAXIMUM-SCAN-LINE 
d x . a l   : s e t  CRTC I n d e x   r e g   t o   p o i n t   t o  Maximum 

: Scan L i n e  
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i n c   d x  
i n  a1,dx 
and a1 .no t   40h  
o r   a l . a h  

ou t   dx .a l  
e l s e  

: p o i n t   t o  CRTC D a t a  r e g  
; g e t   t h e   c u r r e n t  Maximum  Scan L i n e   s e t t i n g  
: t u r n   o f f   s p l i t   s c r e e n   b i t  9 
; i n s e r t   t h e  new s p l i t   s c r e e n   b i t  9 
; ( w o r k s   i n   a n y  mode) 
; s e t   t h e  new s p l i t   s c r e e n   b i t  9 

O n l y   t h e   S p l i t   S c r e e n   a n d   O v e r f l o w   r e g i s t e r s   c o n t a i n   p a r t   o f   t h e  
S p l i t   S c r e e n   s t a r t   s c a n   l i n e   a n d   n e e d   t o   b e   s e t  on t h e  EGA. 
EGA r e g i s t e r s   a r e   n o t   r e a d a b l e ,  s o  we have t o   s e t   t h e   n o n - s p l i t  
s c r e e n   b i t s   o f   t h e   O v e r f l o w   r e g i s t e r  t o  a p r e s e t   v a l u e ,   i n   t h i s  
c a s e   t h e   v a l u e   f o r   3 5 0 - s c a n - l i n e   m o d e s .  

o r   a h . 0 f h  

OUT-WORD 

; i n s e r t   t h e  new s p l i t   s c r e e n   b i t  8 
; ( o n l y   w o r k s   i n   3 5 0 - s c a n - l i n e  EGA modes) 
: s e t   t h e  new s p l i t   s c r e e n   b i t  8 

end i  f 
s t i  
POP dx  
POP c x  
POP ax 
r e t  

S e t S p l i t S c r e e n S c a n L i n e   e n d p  

; Pan h o r i z o n t a l l y   t o   t h e   r i g h t   t h e  number o f   p i x e l s   s p e c i f i e d  by CX.  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: I n p u t :  C X  - # o f   p i x e l s  b y   w h i c h   t o   p a n   h o r i z o n t a l l y  

: Output :   none 

; R e g i s t e r s   a l t e r e d :  A X ,  C X .  DX 

PanRight   p roc   near  
PanLoop: 

i n c   [ P e l  Pan] 
and  [PelPan],07h 
j n z   D o S e t S t a r t A d d r e s s  
i n c   C S t a r t A d d r e s s l  

c a l l   S e t S t a r t A d d r e s s  
c a l l   S e t P e l  Pan 
l o o p  PanLoop 
r e t  

PanRight  endp 

Code ends 

DoSe tS ta r tAddress :  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

e n d   S t a r t  

Notes on Setting and Reading Registers 
There  are  a few interesting  points  regarding  setting and reading registers to be made 
about Listing 30.2. First, bit 5 of the AC Index  register  should be set  to 1 whenever 
palette RAM is not being  set (which is to say, all the time in your code, because 
palette RAM should normally be set via the BIOS). When bit 5 is 0, video data  from 
display memory is no  longer  sent to palette R A M ,  and the  screen becomes a solid 
color-not normally a  desirable  state of affairs. 
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Recall  also that  the AC Index  and Data registers are  both written to at 1/0 address 
3COH,  with the toggle that  determines which one is written to at any time switching 
state on every  write to 3COH; this toggle is reset to index  mode by each read  from the 
Input Status 0 register (3DAH in color modes, 3BAH in monochrome  modes).  The 
AC Index  and Data registers can also be written to at 3C1H on  the EGA, but  not  on 
the VGA, so steer clear of that practice. 
On  the VGA, reading AC registers is a bit different  from writing to them.  The AC 
Data register can be read  from 3COH, and  the AC register currently addressed by the 
AC Index register can be read  from 3C1H; reading  does not affect the state of the 
AC index/data toggle. Listing  30.2 illustrates reading  from  and writing to the AC 
registers. Finally, setting the start address registers (CRTC registers OCH and ODH) 
has  its complications. As with the split screen registers, the start address registers 
must be set together and without interruption  at  a time when there’s no chance of a 
partial setting  being used for  a frame. However,  it’s a little more difficult to know 
when that might be the case  with the start address registers than  it was  with the split 
screen registers, because it’s not clear when the start address is used. 
You see, the start address is loaded  into the EGAs or VGA’s internal display memory 
pointer  once per frame. The internal  pointer is then advanced, byte-by-byte and 
line-by-line, until  the end of the  frame (with a possible resetting to zero if the split 
screen line is reached),  and is then  reloaded  for  the  next  frame. That’s straightfor- 
ward enough;  the real question is, Exactly  when is the start address  loaded? 
In his excellent book Programmer’s Guide to PC Video Systems (Microsoft Press) Richard 
Wilton says that  the start address is loaded at  the start of the vertical sync pulse. 
(Wilton  calls it vertical retrace, which can also be taken to mean vertical non-display 
time, but given that he’s testing the vertical sync status bit in the  Input Status 0 regis- 
ter, I assume he means that the start address is loaded at  the start of  vertical  sync.) 
Consequently, he waits until  the end of the vertical sync pulse to set the start address 
registers, confident  that the start address won’t take effect until  the  next frame. 
I’m sure Richard is right when it comes to the real McCoy  IBM  VGA and EGA, but 
I’m less confident  that every clone out  there loads the  start address at  the start of 
vertical  sync. 

For that  vevy  reason, I generally  advise people not to use  horizontal  smooth panning p unless  they  can  test  their  software on all  the  makes  of  display  adapter it might run on. 
I’ve  used  Richard j .  approach in Listings 30.1 and 30.2, and so far as I’ve  seen it works 
fine, but  be  aware that there  are potential, albeit unproven,  hazards to relying on 
the setting of the start address registers to occur at a speclfic time in the frame. 

The interaction of the start address registers and  the Pel Panning register is worthy 
of note. After  waiting for  the end of  vertical  sync to set the start address in Listing 
30.2, I wait for  the start of the nextvertical  sync  to set the Pel Panning register. That’s 
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because  the  start  address  doesn’t take effect until  the  start of the  next  frame,  but  the 
pel panning  setting takes effect at the  start of the  next  line; if  we set the pel panning 
at  the same time we set  the  start  address, we’d get  a whole frame with the  old  start 
address and  the new pel  panning  settings  mixed  together, causing the  screen  to 
jump. As with the split screen registers, it’s  safest to set the Pel Panning  register 
during non-display time. For maximum reliability,  we’d  have interrupts off from  the 
time we set the  start  address registers to  the time we change  the pel planning  setting, 
to make sure  an interrupt doesn’t  come  in and cause us to miss the  start of a vertical 
sync and thus  get  a mismatched pel  panning/start  address  pair  for  a  frame,  although 
for modularity I haven’t done this in Listing 30.2. (Also, doing so would require 
disabling  interrupts  for  much  too  long  a  time.) 
What if you wanted to  pan  faster? Well,  you could of course just move two pixels at  a 
time rather  than  one;  I assure you no  one will ever notice when you’re panning  at  a 
rate of 10 or  more times per  second. 

Split Screens in Other  Modes 
So far we’ve only  discussed the split screen  in  mode IOH. What about  other  modes? 
Generally, the split screen works in any mode;  the basic rule is that when a scan line 
on  the screen  matches  the split screen scan line,  the  internal display memory pointer 
is reset  to  zero. I’ve found this to  be  true even in oddball modes, such as linedoubled 
CGA modes and  the 320x200 256-color mode (which is really a 320x400 mode with 
each  line  repeated. For  split-screen purposes, the VGA and EGA seem to count purely 
in scan lines, not  in rows or  doubled scan lines or the  like. However, I have run  into 
small anomalies in those  modes on clones, and  I haven’t tested all modes  (nor,  lord 
knows,  all clones!) so be careful when using the split screen  in  modes other than 
modes ODH-12H, and test your code on  a variety of hardware. 
Come  to  think  of it, I warn  you about the hazards of running fancy VGA code on clones 
pretty often, don’t  I? Ah, well-just one of the hazards of the diversity and competition of 
the PC market!  It is a fact of life, though-if you’re a  commercial  developer and 
don’t test your video code on  at least half a  dozen VGAs, you’re living dangerously. 
What of the split screen in text mode?  It works fine; in fact, it not only resets the 
internal  memory  pointer  to  zero,  but also resets the  text scan line counter-which 
marks which line within the  font you’re on-to zero, so the split screen starts out 
with a full row  of text.  There’s only one trick with text  mode: When split screen pel 
panning  suppression is on, the pel panning  setting is forced  to 0 for  the  rest of the 
frame.  Unfortunately, 0 is not the  “no-panning”  setting  for 9-dot-wide text; 8 is. The 
result is that when you turn  on split screen pel panning  suppression,  the  text  in  the 
split screen won’t pan with the  normal  screen, as intended,  but will also  display the 
undesirable  characteristic of moving one pixel to  the  left.  Whether  this causes  any 
noticeable  on-screen  effects depends  on  the text  displayed by a particular application; 
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for  example,  there  should be no problem if the split screen has a  border of blanks 
on  the  left side. 

How Safe? 
So, how  safe is it  to use the split screen? My opinion is that it’s perfectly safe,  al- 
though I’d  welcome input from  people with  extensive split screen experience-and 
the effects are  striking  enough  that  the split screen is well worth using in  certain 
applications. 
I’m a  little  more leery of horizontal  smooth scrolling, with or without  the split screen. 
Still, the Wilton book doesn’t advise  any particular  caution, and I haven’t heard any 
horror stories  from  the field lately, so the  clone  manufacturers must finally  have 
gotten it right. (I vividly remember some early clones years  back that didn’t quite  get 
it  right.) So, on balance,  I’d say to use horizontal  smooth  scrolling if you  really need 
it; on  the  other  hand, in fast animation you can  often  get away with  byte scrolling, 
which is easier,  faster, and safer. (I recently saw a  game  that scrolled as smoothly as 
you could ever  want. It was only by stopping  it with  Ctrl-NumLock that  I was able to 
be sure  that  it was, in fact, byte panning,  not pel panning.) 
In  short, use the fancy  stuff-but  only  when  you  have to. 
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chapter 31

higher 256-color resolution on the vga



> *  

x200 Really 320x400? 
f One of the  more ippealing features of the VGA is  its  ability to display  256 simulta- 

neous colors. Unf&&unately, one of the less appealing  features of the VGA  is the 
f the  one 256-color mode  the IBM-standard  BIOS 
higher resolution 256-color modes  in  the legion of 
eans a standard, and differences  between  seemingly 
anufacturers can be vexing.)  More colors can often 
ut  the resolution difference between the 640x480 

the 320x200 256color  mode is so great  that many programmers 
simply can’t afford to use the 256-color mode. 
about  the VGA, however,  it’s that there’s neverjust 
, alternatives always exist for  the clever program- 

mer, and that’s more  true  than you might imagine with  256-color mode. Not only  is 
there a high 256-color resolution,  there  are lots of higher 256-color resolutions, go- 
ing all the way up to 360x480-and that’s with the vanilla IBM VGA! 
In this chapter, I’m going to focus on  one of my favorite  256-color modes, which 
provides 320x400 resolution and two graphics pages and can be set up with  very little 
reprogramming of the VGA. In the  next  chapter, I’ll discuss higher-resolution 256- 
color modes, and starting in  Chapter 4’7, I’ll cover the high-performance “Mode X” 
256-color programming  that many games use. 
So. Let’s get  started. 
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Why 320x200? Only IBM Knows for Sure 
The first question, of course, is,  “How can it be possible to  get  higher 256-color 
resolutions out of the VGA?” After all, there were no unused  higher  resolutions  to  be 
found  in  the CGA, Hercules  card, or EGA. 
The answer is another question: ‘Why did IBM not use the  higher-resolution 256- 
color  modes of the VGA?” The VGA  is  easily capable of twice the 200-scan-line  vertical 
resolution of mode  13H,  the 256-color mode, and IBM clearly made  a decision not 
to  support  a  higher-resolution 256-color mode. In fact, mode 13H does display  400 
scan lines, but  each row  of pixels is displayed on two successive scan lines,  resulting 
in  an effective resolution of  320x200. This is the same scan-doubling  approach  used 
by the VGA to  convert  the CGA’s 200-scan-line modes to  400  scan lines; however, the 
resolution of the CGA has long  been fixed at 200 scan lines, so IBM had no choice 
with the CGA modes  but to scan-double the lines. Mode 13H has no such historical 
limitation-it’s the first 256-color mode ever offered by  IBM,  if you don’t  count  the 
late  and  unlamented Professional Graphics Controller (PGC) . Why, then, would IBM 
choose  to limit the  resolution of mode  13H? 
There’s no way to know, but  one  good guess is that IBM wanted a  standard 256-color 
mode across all PS/2 computers  (for which the VGA was originally created),  and 
mode  13H is the  highest-resolution 256-color mode  that  could fill the bill. You see, 
each 256-color pixel requires one byte  of  display  memory, so a 320x200  256-color 
mode  requires 64,000  bytes  of  display  memory. That’s no problem  for  the VGA, which 
has 256K  of display  memory, but it’s a  stretch  for  the MCGA  of the Model  30, since 
the MCGA comes with  only  64K. 
On the other  hand, the smaller display memory size  of the MCGA also limits the 
number of colors supported in 640x480 mode  to 2, rather  than  the 16 supported by 
the VGA. In this case, though, IBM simply created two modes and made  both avail- 
able  on  the VGA mode 1 1H  for 640x480  2-color graphics  and  mode  12H  for 640x480 
16-color graphics. The same could have been done for 256-color  graphics-but  wasn’t. 
Why? I don’t know.  Maybe IBM just  didn’t like the  odd  aspect  ratio of a 320x400 
graphics  mode. Maybe they didn’t want to have to worry about how to  map in more 
than 64K  of display  memory. Heck, maybe they made  a mistake in designing  the 
chip. Whatever the  reason,  mode 13H is really a 400-scan-line mode  masquerading 
as a 200-scan-line mode, and we can readily end  that masquerade. 

320x400  256-Color Mode 
Okay,  what’s so great  about 320x400  256-color mode? Two things: easy,  safe mode 
sets and page flipping. 
As I said above, mode  13H is really a 320x400 mode,  albeit with each  line  doubled  to 
produce an effective resolution of 320x200. That means  that we don’t  need  to  change 
any  display timings, widths, or heights in order to tweak mode  13H  into 320x400 
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mode-and that makes  320x400 a safe choice. Basically, 320x400 mode differs from 
mode 13H only in  the settings of mode bits,  which are sure to be consistent from one 
VGA clone to the  next  and which  work  equally well  with  all monitors. The  other hi- 
res 256-color modes differ from  mode 13H not only in the settings of the  mode bits 
but also in the settings of timing and dimension registers,  which may not be exactly 
the same on all VGA clones and particularly not  on all  multisync monitors. (Because 
multisyncs sometimes shrink  the active area of the screen when used with standard 
VGA modes, some VGAs use alternate register  settings for multisync monitors  that 
adjust the CRT Controller timings to use  as much of the screen area as  possible for 
displaying  pixels.) 
The  other  good  thing  about 320x400  256-color mode is that two pages are  supported. 
Each  320x400  256-color mode  requires 128,000  bytes  of  display  memory, so we can 
just barely manage two pages in 320x400 mode,  one starting at offset 0 in display 
memory and  the  other starting at offset 8000H. Those two pages are  the largest pair 
of  pages that can fit in  the VGA’s  256K, though,  and  the higher-resolution 256-color 
modes, which  use  still larger bitmaps (areas of  display memory that  control pixels on 
the  screen) , can’t support two pages at all. As  we’ve seen  in  earlier  chapters and will 
see again in this book, paging is  very useful for off-screen construction of  images and 
fast, smooth  animation. 
That’s why I like  320x400  256-color mode.  The next  step is to  understand how  dis- 
play memory is organized in 320x400 mode,  and that’s not so simple. 

Display  Memory  Organization in 320x400 Mode 
First,  let’s  look at why display memory must be organized differently in 320x400  256- 
color mode  than in mode  13H. The designers of the VGA intentionally limited the 
maximum size  of the  bitmap  in  mode 13H to 64K, thereby limiting resolution to 
320x200. This was accomplished in hardware, so there is no way to extend  the  bitmap 
organization of mode  13H to 320x400 mode. 
That’s a shame, because mode 13H has the simplest bitmap organization of any 
mode-one long, linear  bitmap, with each byte controlling one pixel. We can’t have 
that organization, though, so we’ll  have to  find  an acceptable substitute if  we want to 
use a higher 256-color resolution. 
We’re  talking about  the VGA, so of course there  are actually seueral bitmap organiza- 
tions that  let us  use higher 256-color resolutions than  mode 13H. The  one I like best 
is shown in Figure  31.1.  Each  byte controls one 256-color  pixel.  Pixel 0 is at address 
0 in plane 0, pixel 1 is at address 0 in plane 1, pixel 2 is at address 0 in  plane 2, pixel 
3 is at address 0 in plane 3,  pixel 4 is at address 1 in plane 0, and so on. 
Let’s look at this another way. Ideally,  we’d  like one  long bitmap, with each pixel at 
the address that’s just after the address of the pixel to the left. Well, that’s true in this 
case too, iif you consider the  number of the  plane  that  the pixel  is in to be  part of the 
pixel’s  address. View the pixel numbers  on  the screen as increasing from left to right 
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and from  the end of one scan line  to  the  start of the  next. Then the pixel number, n, 
of the pixel at display memory address address in plane plane is: 
n = (address * 4) + plane 
To turn  that  around,  the display memory address of pixel number n is given by 
address = n / 4 
and  the  plane of pixel n is given by: 
plane = n modulo 4 
Basically, the full address of the pixel, its pixel number, is broken into two compo- 
nents:  the display memory address and the  plane. 
By the way, because 320x400 mode has a significantly different memory organization 
from  mode 13H, the BIOS text  routines won’t work in 320x400 mode. If you want to 
draw text  in 320x400 mode, you’ll  have to look up  a  font in  the BIOS ROM and draw 
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the text yourself.  Likewise, the BIOS read pixel and write pixel routines won’t  work 
in 320x400 mode, but that’s no problem because I’ll provide equivalent routines in 
the  next section. 
Our next task is to convert standard  mode 13H into 320x400 mode. That’s accom- 
plished by undoing some of the  mode bits that  are  set  up especially for  mode 13H, so 
that  from  a  programming perspective the VGA reverts to a straightforward planar 
model of memory. That means taking the VGA out of chain 4 mode and doubleword 
mode, turning off the double display  of each  scan line, making sure chain mode, odd/ 
even mode, and word mode  are  turned off, and selecting byte mode  for video data 
display. All that’s done in  the Set320~400Mode subroutine in Listing 31 . l ,  which 
we’ll  discuss next. 

Reading  and Writing Pixels 
The basic graphics functions  in any mode  are  functions to read  and write single 
pixels. Any more complex function can be built on these primitives, although that’s 
rarely the speediest solution. What’s more,  once you understand  the  operation of 
the  read and write pixel functions, you’ve got all the knowledge you need to create 
functions  that  perform  more complex graphics functions. Consequently, we’ll start 
our exploration of 320x400 mode with  pixel-at-a-time line drawing. 
Listing 31.1 draws 8 multicolored octagons in turn, drawing a new one  on  top of the 
old one each time a key  is pressed. The main-loop code of Listing 31.1 should be 
easily understood;  a series of diagonal, horizontal, and vertical lines are drawn one 
pixel at a time based on a list  of line descriptors, with the draw colors incremented 
for each successive time through  the line list. 

LISTING 3 1.1 13 1 - 1 .ASM 
; Program t o   d e m o n s t r a t e   p i x e l   d r a w i n g   i n   3 2 0 x 4 0 0   2 5 6 - c o l o r  
; mode on t h e  VGA. Draws 8 l i n e s   t o   f o r m  an  octagon,  a p i x e l  
; a t  a t i m e .  Draws 8 octagons i n  all, one on t o p   o f   t h e   o t h e r ,  
; each i n  a d i f f e r e n t   c o l o r   s e t .   A l t h o u g h   i t ’ s   n o t   u s e d ,  a 
; p i x e l   r e a d   f u n c t i o n   i s   a l s o   p r o v i d e d .  

VGA-SEGMENT 
SC-INDEX 
GC-INDEX 
CRTC-INDEX 
MAP-MASK 
MEMORY-MODE 
MAX-SCAN-LINE 
START-ADDRESS-HIGH 
UNDERLINE 
MODE-CONTROL 
READ-MAP 
GRAPHICS-MODE 
MISCELLANEOUS 
SCREEN-WIDTH 
SCREEN-HEIGHT 

equ OaOOOh 
equ 3c4h 
equ 3ceh 
equ 3d4h 
equ 2 
equ 4 
equ 9 
equ Och 
equ 14h 
equ 17h 
equ 4 
equ 5 
equ 6 
equ 320 
equ 400 

; S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r  
: G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r  
;CRT C o n t r o l l e r   I n d e x   r e g i s t e r  
;Map Mask r e g i s t e r   i n d e x   i n  SC 
;Memory Mode r e g i s t e r   i n d e x   i n  SC 
;Maximum Scan L i n e   r e g   i n d e x   i n  CRTC 
; S t a r t  A d d r e s s   H i g h   r e g   i n d e x   i n  CRTC 
: U n d e r l i n e   L o c a t i o n   r e g   i n d e x   i n  CRTC 
;Mode C o n t r o l   r e g i s t e r   i n d e x   i n  CRTC 
;Read Map r e g i s t e r   i n d e x   i n  GC 
;Graph ics  Mode r e g i s t e r   i n d e x   i n  GC 
; M i s c e l l a n e o u s   r e g i s t e r   i n d e x   i n  GC 
;# o f   p i x e l s   a c r o s s   s c r e e n  
;I/ o f  s c a n   l i n e s   o n   s c r e e n  
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WORD-OUTS-OK equ 1 : s e t   t o  0 t o  assemble f o r  
: c o m p u t e r s   t h a t   c a n ' t   h a n d l e  
: w o r d   o u t s   t o   i n d e x e d  VGA r e g i s t e r s  

s t a c k   s e g m e n t   p a r a   s t a c k  'STACK' 

s tack   ends  

Data  segment  word  'DATA' 

db 512 dup ( ? I  

BaseCol  or   db 0 

: S t r u c t u r e   u s e d   t o   c o n t r o l   d r a w i n g   o f  a l i n e .  

L i n e c o n t r o l   s t r u c  
S t a r t X  
S t a r t Y  

dw ? 
dw ? 

L i n e X I n c  
L i n e Y I n c  

dw ? 

BaseLength 
dw ? 
dw ? 

L i n e C o l   o r   d b  ? 
L i n e c o n t r o l   e n d s  

: L i s t   o f   d e s c r i p t o r s   f o r   l i n e s   t o  draw. 

L i n e L i s t   l a b e l   L i n e c o n t r o l  
L i n e c o n t r o l  <130.110.1.0.60,0> 
L i n e c o n t r o l  <190.110.1.1.60,1> 
LineControl<250,170.0.1.60,2> 
L i n e c o n t r o l  <250.230.-1.1.60.3> 
L i n e c o n t r o l  <190.290.-1.0.60,4> 
L i n e c o n t r o l  <130.290.-1.-1,60.5> 
LineControl<70.230.0.-1.60,6> 
LineControl<70.170.1.-1.60,7> 
L i n e c o n t r o l  <-1.0.0,0,0.0> 

D a t a  ends 

: Macro t o   o u t p u t  

OUT-WORD macro 
if WORD-OUTS-OK 

o u t   d x . a x  
e l s e  

o u t   d x . a l  
i n c   d x  
xchg  ah .a l  
o u t   d x . a l  
dec  dx 
xchg  ah .a l  

endm 
e n d i  f 

a w o r d   v a l u e   t o  a p o r t .  

: Macro t o   o u t p u t  a c o n s t a n t   v a l u e   t o  an  indexed VGA r e g i s t e r .  

CONSTANT-TO-INDEXED-REGISTERmacro ADDRESS. I N D E X ,  VALUE 
mov dx.AD0RESS 
mov ax.(VALUE s h l  8) + I N D E X  
OUT-WORD 
endm 
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Code  segment 

S t a r t   p r o c   n e a r  
assume  cs:Code.  ds:Oata 

mov ax .0a ta  
mov ds .ax  

: Set   320x400  256-co lo r  mode. 

c a l l  

: We're i n  

Co lorLoop:  
mov 

LineLoop: 
mov 
cmp 
j z  

mov 
mov 
mov 
add 

P ixe l   Loop  : 
push 
push 
c a l l  
POP 
POP 
add 
add 
dec 
j n z  
add 
jmp 

L inesoone:  
c a l l  
i nc 
cmp 
j b  

Set320By400Mode 

320x400  256-co lo r  mode. 

s i   . o f f s e t   L i n e L i s t  

c x , [ s i + S t a r t X l  
c x .  -1 
L i  nesOone 

d x . [ s i + S t a r t Y l  
b l   , [ s i + L i n e C o l o r l  
bp . [s i+BaseLength l  
b l   . [ B a s e C o l o r l  

c x  
dx  
Wri t e P i x e l  
d x  

c x . [ s i + L i n e X I n c l  
d x , [ s i + L i n e Y I n c l  
bP 
P ixe l   Loop  
s i   . s i z e   L i n e c o n t r o l  
L ineLoop 

c x  

GetNextKey 
[ B a s e C o l o r l  
[BaseColor l .B  
Co lorLoop 

Draw each l i n e   i n   t u r n .  

: p o i n t   t o   t h e   s t a r t   o f   t h e  
: l i n e   d e s c r i p t o r   l i s t  

: s e t   t h e   i n i t i a l  X c o o r d i n a t e  

:a d e s c r i p t o r   w i t h  a -1 X 
: c o o r d i n a t e   m a r k s   t h e   e n d  
: o f   t h e   l i s t  
: s e t   t h e   i n i t i a l  Y c o o r d i n a t e ,  
: l i n e   c o l o r ,  
: and p i x e l   c o u n t  
: a d j u s t   t h e   l i n e   c o l o r   a c c o r d i n g  
: t o   B a s e c o l o r  

: s a v e   t h e   c o o r d i n a t e s  

:draw t h i s   p i x e l  
: r e t r i e v e   t h e   c o o r d i n a t e s  

; s e t   t h e   c o o r d i n a t e s   o f   t h e  
: n e x t   p o i n t  o f  t h e  1 i n e  
:any   more   po in ts?  
: y e s .   d r a w   t h e   n e x t  
; p o i n t   t o   t h e   n e x t   l i n e   d e s c r i p t o r  
: a n d   d r a w   t h e   n e x t   l i n e  

; w a i t   f o r  a key .   t hen  
: bump t h e   c o l o r   s e l e c t i o n   a n d  
: see i f  we' re  done 
: n o t   d o n e   y e t  

: W a i t   f o r  a k e y   a n d   r e t u r n   t o   t e x t  mode and  end  when 
: one i s  p ressed.  

c a l l  GetNextKey 
mov ax.0003h 
i n t  10h 
mov ah.4ch 
i n t  21h  :done 

S t a r t  endp 

: Sets  up  320x400  256-COlOr  modes. 

: I n p u t :   n o n e  

: Output :   none 

t e x t  mode 
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Set320By400Mode  proc  near 

: F i r s t .  go t o  normal   320x200  256-co lor  mode, which i s   r e a l l y  a 
: 320x400  256-co lor  mode w i t h   e a c h   l i n e   s c a n n e d   t w i c e .  

mov ax.0013h :AH - 0 means mode s e t .  AL - 13h s e l e c t s  

i n t  10h : B I O S  v i d e o   i n t e r r u p t  
: 2 5 6 - c o l o r   g r a p h i c s  mode 

: Change CPU a d d r e s s i n g   o f   v i d e o  memory t o   l i n e a r   ( n o t   o d d / e v e n .  
: c h a i n .   o r   c h a i n   4 ) .   t o   a l l o w  us t o  access a l l  256K o f   d i s p l a y  
: memory. When t h i s   i s  done, VGA memory will l o o k   j u s t   l i k e  memory 
: i n  modes 10h   and   12h .   excep t   t ha t   each   by te   o f   d i sp lay  memory will 
: c o n t r o l  o n e   2 5 6 - c o l o r   p i x e l ,   w i t h  4 a d j a c e n t   p i x e l s   a t   a n y   g i v e n  
: address ,   one   p i xe l   pe r   p lane .  

mov 
mov 
o u t  
i nc 
i n  
and 
o r  
o u t  
mov 
mov 
o u t  
i nc 
i n  
and 
o u t  
dec 
mov 
o u t  
i nc 
i n  
and 
o u t  

dx.SC-INDEX 
a1 .MEMORY-MODE 
dx .a l  
dx 
a1 , dx 
a1 .not  08h 
a l . 0 4 h  
dx .a l  
dx.GC-INDEX 
a1 .GRAPHICS-MODE 
d x . a l  
dx 
a1  ,dx 
a1 .not  10h 
dx.a l  
dx 
a1,MISCELLANEOUS 
d x . a l  
dx 
a1 ,dx 
a1 .not  02h 
dx.a l  

: t u r n   o f f   c h a i n  4 
; t u r n   o f f   o d d / e v e n  

: t u r n   o f f   o d d / e v e n  

: t u r n   o f f   c h a i n  

: NOW c l e a r   t h e   w h o l e   s c r e e n ,   s i n c e   t h e  mode 13h mode s e t   o n l y  
: c l e a r e d  64K o u t   o f   t h e  256K o f   d i s p l a y  memory. Do t h i s   b e f o r e  
: we s w i t c h   t h e  CRTC o u t   o f  mode 13h. so we don ' t   see  garbage 
: on t h e   s c r e e n  when we make t h e   s w i t c h .  

CONSTANT-TO-INDEXED-REGISTER  SC-1NDEX.MAP-MASK.Ofh 
: e n a b l e   w r i t e s   t o   a l l   p l a n e s ,  so 
: we c a n   c l e a r  4 p i x e l s   a t  a t i m e  

mov  ax.VGA-SEGMENT 
mov es.ax 
sub d i   , d i  
mov ax .d i  
mov cx.8000h :# o f  words i n  64K 
c l  d 
r e p   s t o s w   : c l e a r   a l l   o f   d i s p l a y  memory 

: Tweak t h e  mode t o  320x400  256-co lor  mode by no t   scann ing   each  
: l i n e   t w i c e .  

mov dx.CRTC-INDEX 
mov a1 .MAX-SCAN-LINE 
o u t   d x . a l  
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i n c   d x  
i n  a1 .dx 
and a1 . n o t   l f h   : s e t  maximum scan l i n e  = 0 
o u t   d x . a l  
dec  dx 

: Change CRTC scann ing   f rom  doub leword  mode t o   b y t e  mode. a l l o w i n g  
: t h e  CRTC t o  scan  more  than 64K o f  v i d e o   d a t a .  

mov a1,UNDERLINE 
o u t  d x . a l  
i n c   d x  
i n   a l . d x  
and a1 .no t   40h 
o u t   d x , a l  
dec  dx 
mov a1 .MODELCONTROL 
o u t   d x . a l  
i n c   d x  
i n   a l . d x  
o r  a1 . 4 0 h   : t u r n  on t h e   b y t e  mode b i t ,  s o  memory i s  

: scanned f o r   v i d e o   d a t a   i n  a p u r e l y  
: l i n e a r  way. j u s t  as i n  modes 10h  and  12h 

o u t   d x . a l  
r e t  

Set320By400Mode  endp 

: t u r n   o f f   d o u b l   e w o r d  

: Draws a p i x e l   i n   t h e   s p e c i f i e d   c o l o r   a t   t h e   s p e c i f i e d  
: l o c a t i o n   i n  320x400  256-co lo r  mode. 

: I n p u t :  
: C X  = X c o o r d i n a t e   o f   p i x e l  
: D X  = Y c o o r d i n a t e   o f   p i x e l  
; BL = p i x e l   c o l o r  

: Output :   none 

: R e g i s t e r s   a l t e r e d :  A X ,  C X .  D X ,  DI. ES 

W r i t e p i x e l  p r o c   n e a r  
mov ax.VGA_SEGMENT 
mov es.ax 
mov ax,SCREEN_WIDTH/4 

mu1 dx  
push c x  
s h r  c x . 1  
s h r  c x . 1  
add ax .cx  
mov d i  ,ax 
POP c x  
and c1.3 
mov ah.1 
s h l  a h . c l  

mov a1 .MAP_MASK 
mov dx.SC_INDEX 
OUTLWORD 

: p o i n t   t o   d i s p l a y  memory 

: t h e r e   a r e  4 p i x e l s   a t   e a c h   a d d r e s s ,  s o  
: e a c h   3 2 0 - p i x e l   r o w  i s  80 b y t e s   w i d e  
: i n  each   p lane  
: p o i n t   t o   s t a r t  o f  d e s i r e d   r o w  
: s e t   a s i d e   t h e  X c o o r d i n a t e  
: t h e r e   a r e  4 p i x e l s   a t   e a c h   a d d r e s s  
: s o  d i v i d e   t h e  X c o o r d i n a t e   b y  4 
: p o i n t   t o   t h e   p i x e l ' s   a d d r e s s  

: g e t   b a c k   t h e  X c o o r d i n a t e  
: g e t   t h e   p l a n e  # o f   t h e   p i x e l  

: s e t   t h e   b i t   c o r r e s p o n d i n g   t o   t h e   p l a n e  
: t h e   p i x e l   i s   i n  

: s e t   t o   w r i t e   t o   t h e   p r o p e r   p l a n e  f o r  
: t h e   p i x e l  
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mov e s : [ d i l , b l   : d r a w   t h e   p i x e l  
r e t  

W r i t e P i x e l   e n d p  

; Reads t h e   c o l o r  o f  t h e   p i x e l   a t   t h e   s p e c i f i e d   l o c a t i o n   i n   3 2 0 x 4 0 0  
; 2 5 6 - c o l o r  mode. 

; I n p u t :  
; C X  - X c o o r d i n a t e   o f   p i x e l   t o   r e a d  
; DX - Y c o o r d i n a t e  o f  p i x e l   t o   r e a d  

; o u t p u t :  
; AL - p i x e l   c o l o r  

; R e g i s t e r s   a l t e r e d :  A X ,  C X .  D X ,  S I .  ES 

ReadP ixe l   p roc   nea r  
mov  ax.VGA-SEGMENT 
mov es .ax  
mov ax,SCREENKWIDTH/4 

: p o i n t   t o   d i s p l a y  memory 

; t h e r e   a r e  4 p i x e l s   a t   e a c h   a d d r e s s ,  s o  
; e a c h   3 2 0 - p i x e l   r o w   i s  80 b y t e s   w i d e  
: i n  each   p lane  

mu1 d x   ; p o i n t   t o   s t a r t  o f  d e s i r e d  row 
p u s h   c x   ; s e t   a s i d e   t h e  X c o o r d i n a t e  
s h r   c x . 1   ; t h e r e   a r e  4 p i x e l s   a t   e a c h   a d d r e s s  
s h r   c x . 1  : s o  d i v i d e   t h e  X c o o r d i n a t e   b y  4 
a d d   a x , c x   ; p o i n t   t o   t h e   p i x e l ' s   a d d r e s s  
mov s i  ,ax 
POP a x   : g e t   b a c k   t h e  X c o o r d i n a t e  
and   a1 .3   : ge t   t he   p lane  I o f   t h e   p i x e l  
mov ah .a l  
mov a1 , READ-MAP 
mov  dx.GC-INDEX 
OUT-WORD ; s e t   t o   r e a d   f r o m   t h e   p r o p e r   p l a n e   f o r  

l o d s   b y t e   p t r   e s : [ s i l   ; r e a d   t h e   p i x e l  
r e t  

ReadPixel  endp 

: t h e   p i x e l  

; W a i t s   f o r   t h e   n e x t   k e y   a n d   r e t u r n s  i t  i n  A X .  

; I n p u t :   n o n e  

; o u t p u t :  
; AX - f u l l   1 6 - b i t  code f o r  key   p ressed  

GetNextKey  p roc   near  
WaitKey: 

mov ah.1 
i n t  16h 
jz WaitKey 
sub  ah,ah 
i n t  16h 
r e t  

GetNextKey  endp 

; w a i t   f o r  a key t o  become a v a i l a b l e  

: read   t he   key  

Code  ends 

e n d   S t a r t  
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The interesting aspects  of  Listing 31.1 are  three. First, the Set320x400Mode subrou- 
tine selects 320x400 256color  mode. This is accomplished by performing a mode 
13H mode set followed by then  putting  the VGA into  standard  planar byte mode. 
Set320x400Mode zeros  display  memory  as  well.  It’s  necessary  to  clear  display  memory 
even after a mode 13H mode set because the  mode 13H mode set clears  only the 64K 
of  display  memory that can be  accessed in that  mode, leaving 192Kof display  memory 
untouched. 
The second  interesting aspect of Listing 31.1 is the Writepixel subroutine, which 
draws a colored pixel at any x,y addressable location on  the screen. Although it may 
not be obvious  because  I’ve optimized the  code a little, the process  of  drawing a 
pixel  is  remarkably  simple.  First, the pixel’s  display memory address is calculated as 
address = (y * (SCREEN-WIDTH / 4))  + ( x  / 4) 
which might be more recognizable as: 
address = ( (y  * SCREEN-WIDTH) + x) / 4 
(There  are 4 pixels at each display memory address in 320x400 mode,  hence  the 
division by 4.) Then  the pixel’s plane is calculated as 
plane = x and 3 
which is equivalent to: 
plane = x modulo 4 
The pixel’s color is then written to  the addressed byte in the addressed plane. That’s 
all there is to  it! 
The third item of interest in Listing 31.1 is the ReadPixel subroutine. ReadPixel is 
virtually identical to Writepixel, save that in ReadPixel the Read  Map  register  is pro- 
grammed with a plane number, while WritePixel uses a plane mask to set the Map 
Mask register.  Of course, that difference merely  reflects a fundamental difference in 
the  operation of the two registers.  (If  that’s Greek to  you, refer back to  Chapters 23- 
30 for a refresher on VGA programming.) ReadPixel isn’t used in Listing 31.1, but 
I’ve included  it because, as I said  above, the  read and write  pixel functions  together 
can support a whole host of more complex graphics functions. 
How does 320x400 256-color mode stack up as regards performance? As it turns out, 
the  programming  model of 320x400 mode is actually pretty good  for pixel  drawing, 
pretty much on a par with the model of mode 13H. When you run Listing 31.1, you’ll 
no  doubt notice that  the lines are drawn quite rapidly. (In fact, the drawing could  be 
considerably faster still  with a dedicated line-drawing subroutine, which  would  avoid 
the multiplication associated  with each pixel in Listing 31.1 .) 
In 320x400 mode,  the calculation of the memory address is not significantly  slower 
than in mode 13H, and  the calculation and selection  of the target plane is quickly 
accomplished. As with mode 13H,  320x400 mode benefits tremendously from  the 
byte-per-pixel organization of  256-color mode, which eliminates the  need  for  the 
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time-consuming pixel-masking of the l k o l o r  modes. Most important, byte-per-pixel 
modes never require read-modify-write operations (which can be extremely slow due 
to display memory wait states)  in order  to clip and draw  pixels.  To  draw a pixel, you 
just store its color in display  memory-what could be simpler? 
More sophisticated  operations  than pixel drawing are less  easy to accomplish in 
320x400 mode,  but with a  little  ingenuity it is possible to  implement  a reasonably 
efficient version ofjust  about any  useful graphics function. A fast line draw for 320x400 
256-color mode would be simple (although  not as fast  as  would be possible in mode 
13H). Fast image copies  could be implemented by copying one-quarter of the image 
to one  plane, one-quarter  to  the  next  plane, and so on  for all four  planes,  thereby 
eliminating  the OUT per pixel that sequential processing requires. If you’re really 
into  performance, you could  store your images with  all the bytes for  plane 0 grouped 
together, followed by all the bytes for  plane 1, and so on.  That would  allow a single 
REP MOVS instruction  to copy  all the bytes for  a given plane, with just  four REP 
MOVS instructions copying the whole image. In  a  number of  cases, in fact, 320x400 
256-color mode  can actually be much  faster  than  mode  13H, because the VGA’s 
hardware can be used to draw four  or even eight pixels with a single access;  I’ll 
return to the topic of high-performance  programming in 256-color modes other 
than  mode  13H  (“non-chain  4”  modes) in Chapter 47. 
It’s  all a  bit  complicated,  but as I say,  you should be able  to design an  adequately 
fast-and often very fast-version for 320x400 mode of whatever graphics  function 
you need. If you’re not all that  concerned with speed, WritePixel and ReadPixel 
should  meet your needs. 

Two 256-Color Pages 
Listing 31.2 demonstrates  the two pages of 320x400  256-color mode by drawing slant- 
ing  color  bars  in page 0, then drawing color  bars  slanting  the other way in page 1 and 
flipping  to page 1  on  the  next key press. (Note  that page 1 is accessed starting at 
offset  8000H in display  memory, and is-unsurprisingly-displayed by setting  the 
start  address  to SOOOH.) Finally, Listing 31.2  draws vertical color  bars  in page 0 and 
flips  back  to page 0 when another key  is pressed. 
The color  bar  routines  don’t use the Writepixel subroutine  from Listing  31.1;  they 
go straight to display memory instead  for improved speed. As I  mentioned above, 
better  speed yet could be achieved by a color-bar algorithm  that draws  all the pixels 
in plane 0, then all the pixels in plane 1, and so on, thereby avoiding the  overhead of 
constantly reprogramming  the Map  Mask register. 

LISTING 3 1.2 L3 1 -2.ASM 
: Program t o   d e m o n s t r a t e   t h e   t w o   p a g e s   a v a i l a b l e   i n   3 2 0 x 4 0 0  
: 2 5 6 - c o l o r  modes  on a V G A .  D r a w s   d i a g o n a l   c o l o r   b a r s   i n   a l l  
: 2 5 6   c o l o r s  i n  page 0. t h e n   d o e s   t h e  same i n  page 1 ( b u t   w i t h  
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; t h e   b a r s   t i l t e d   t h e   o t h e r   w a y ) .  and f i n a l l y  d r a w s   v e r t i c a l  
: c o l o r   b a r s   i n  page 0.  

VGA-SEGMENT 
SC- INDEX 
GC-INDEX 
CRTC-INDEX 
MAP-MASK 
MEMORY-MODE 
MAX-SCAN-LINE 
STARTLADDRESS-HIGH 
UNDERLINE 
MODELCONTROL 
GRAPHICS-MODE 
MISCELLANEOUS 
SCREEN-WIDTH 
SCREEN-HEIGHT 
WORD-OUTS-OK 

s t a c k  segment 

s t a c k  ends 

; Macro t o   o u t p u t  

OUT-WORD macro 
i f  WORD-OUTS-OK 

out   dx.ax 
e l s e  

o u t   d x . a l  
i n c   d x  
xchg  ah.a l  
o u t   d x . a l  
dec  dx 
xchg  ah.a l  

endm 

db 

e n d i  f 

; Macro t o   o u t p u t  

OaOOD 
3c4h 
3ceh 
3d4h 
2 
4 
9 
Och 
14h 
17h 
5 
6 
320 
400 
1 

lh 
; S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r  
: G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r  
:CRT C o n t r o l l e r   I n d e x   r e g i s t e r  
;Map Mask r e g i s t e r   i n d e x   i n  SC 
;Memory  Mode r e g i s t e r   i n d e x   i n  SC 
;Maximum Scan L i n e   r e g   i n d e x   i n  CRTC 
: S t a r t   A d d r e s s   H i g h   r e g   i n d e x   i n  CRTC 
; U n d e r l i n e   L o c a t i o n   r e g   i n d e x   i n  CRTC 
;Mode C o n t r o l   r e g i s t e r   i n d e x   i n  CRTC 
;Graph ics  Mode r e g i s t e r   i n d e x   i n  GC 
; M i s c e l l a n e o u s   r e g i s t e r   i n d e x   i n  GC 
;# o f  p i x e l s   a c r o s s   s c r e e n  
;# o f  s c a n   l i n e s  on  screen 
; s e t   t o  0 t o  assemble f o r  
; compu te rs   t ha t   can ' t   hand le  
: w o r d   o u t s   t o   i n d e x e d  VGA r e g i s t e r s  

p a r a   s t a c k  'STACK' 
512  dup ( ? )  

a   word  va lue t o  a p o r t .  

a   c o n s t a n t   v a l u e   t o  an  indexed VGA r e g i s t e r .  

CONSTANT-TO-INDEXED-REGISTERmacro ADDRESS, I N D E X ,  VALUE 
mov dx.AO0RESS 
mov ax.(VALUE s h l  8) + I N D E X  
OUT-WORD 
endm 

Code segment 

S t a r t   p r o c   n e a r  

; Set   320x400  256-co lo r  mode. 

assume  cs:Code 

c a l l  Set320By400Mode 

; We're i n  320x400  256-co lo r  mode, w i t h  page 0 d i s p l a y e d .  
; L e t ' s  fill page 0 w i t h   c o l o r   b a r s   s l a n t i n g  down and t o   t h e   r i g h t .  

sub d i . d i  ;page 0 s t a r t s   a t   a d d r e s s  0 
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mov b l . 1  ;make c o l o r   b a r s   s l a n t  down and 

c a l l  Col  orBarsUp : d r a w   t h e   c o l o r   b a r s  
; t o   t h e   r i g h t  

: Now do t h e  same f o r  page 1. b u t   w i t h   t h e   c o l o r   b a r s  
; t i l t i n g   t h e   o t h e r  way. 

mov d i  ,8000h ;page 1 s t a r t s   a t   a d d r e s s   8 0 0 0 h  
mov b l , - l  ;make c o l o r   b a r s   s l a n t  down and 

c a l l  Col  orBarsUp ;draw t h e   c o l o r   b a r s  
; t o   t h e   l e f t  

; Wai t   for   a   key  and f l i p   t o  page 1 when one i s  pressed.  

c a l l   G e t N e x t K e y  
CONSTANT-TO-INDEXED-REGISTER CRTC-INDEX.START-ADDRESS-HIGH,EDh 

; s e t   t h e   S t a r t   A d d r e s s   H i g h   r e g i s t e r  
; t o  80h. f o r  a s t a r t   a d d r e s s   o f   8 0 0 0 h  

; Draw v e r t i c a l   b a r s   i n  page 0 w h i l e  page 1 i s   d i s p l a y e d .  

s u b   d i , d i  
sub b l   , b l  
c a l l  Co l   o rBarsUp  ;d raw  the   co lo r   bars  

; W a i t   f o r   a n o t h e r   k e y   a n d   f l i p   b a c k   t o   p a g e  0 when  one i s  pressed.  

;page 0 s t a r t s   a t   a d d r e s s  0 
;make c o l o r   b a r s   v e r t i c a l  

c a l l   G e t N e x t K e y  
CONSTANT-TO-INDEXED-REGISTER CRTC- INDEX.START-ADDRESSHIGH,OOh 

; s e t   t h e   S t a r t   A d d r e s s   H i g h   r e g i s t e r  
; t o  OOh. f o r  a s t a r t   a d d r e s s   o f  OOOOh 

; W a i t   f o r   y e t   a n o t h e r   k e y   a n d   r e t u r n   t o   t e x t  mode and  end when 
; one i s  pressed.  

c a l l   G e t N e x t K e y  
mov ax.0003h 
i n t  10h 
mov ah.4ch 
i n t  21h 

S t a r t  endp 

: Sets  up  320x400  256-co lor  modes 

: Inpu t :   none  

; t e x t  mode 

;done 

; Output :   none 

Set320By400Mode p r o c   n e a r  

; F i r s t ,  go t o  normal   320x200  256-co lor  mode, which i s   r e a l l y  a 
; 320x400  256-co lor  mode w i t h   e a c h   l i n e   s c a n n e d   t w i c e .  

mov ax.0013h ;AH - 0 means mode s e t .  AL - 1 3 h   s e l e c t s  

i n t  10h ;BIOS v i d e o   i n t e r r u p t  
: 2 5 6 - c o l o r   g r a p h i c s  mode 

; Change C P U  a d d r e s s i n g   o f   v i d e o  memory t o   l i n e a r   ( n o t   o d d / e v e n .  
: c h a i n ,   o r   c h a i n   4 ) .   t o   a l l o w  us t o  access a l l  256K o f  d i s p l a y  
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; t u r n   o f f   c h a i n  4 
: t u r n   o f f   o d d l e v e n  

; t u r n   o f f   o d d l e v e n  

: memory. When t h i s   i s  done, VGA memory will l o o k   j u s t   l i k e  memory 
: i n  modes 1 0 h   a n d   1 2 h ,   e x c e p t   t h a t   e a c h   b y t e   o f   d i s p l a y  memory will 
: c o n t r o l   o n e   2 5 6 - c o l o r   p i x e l ,   w i t h  4 a d j a c e n t   p i x e l s  a t  any   g i ven  
: a d d r e s s .   o n e   p i x e l   p e r   p l a n e .  

mov dx.SC-INDEX 
mov a1 .MEMORY-MODE 
o u t   d x . a l  
i n c   d x  
i n  a1 ,dx 
and a1 ,not  08h 
o r  a1 .04h 
o u t   d x . a l  
mov  dx.GC-INDEX 
mov a1 .GRAPHICS-MODE 
o u t   d x , a l  
i n c   d x  
i n   a l . d x  
and a1 .no t   10h 
o u t   d x . a l  
dec   dx  
mov a1 ,MISCELLANEOUS 
o u t   d x . a l  
i n c   d x  
i n   a l . d x  
a n d   a l . n o t   0 2 h   : t u r n   o f f   c h a i n  
o u t   d x . a l  

: Now c l e a r   t h e   w h o l e   s c r e e n ,   s i n c e   t h e  mode 13h mode s e t   o n l y  
: c l e a r e d  64K o u t   o f   t h e  256K o f   d i s p l a y  memory. Do t h i s   b e f o r e  
; we s w i t c h   t h e  CRTC o u t   o f  mode 13h. s o  we don ' t   see   garbage 
: on t h e   s c r e e n  when we make t h e   s w i t c h .  

CONSTANT-TO-INDEXED-REGISTER  SC-INDEX.MAP_MASK,Ofh 
: e n a b l e   w r i t e s   t o   a l l   p l a n e s ,  s o  
; we c a n   c l e a r  4 p i x e l s   a t  a t i m e  

mov  ax.VGA_SEGMENT 
mov es,ax 
sub d i   . d i  
mov a x . d i  
mov cx.8000h :# o f  words i n  64K 
c l  d 
r e p   s t o s w   ; c l e a r   a l l   o f   d i s p l a y  memory 

: Tweak t h e  mode t o  320x400  256-co lo r  mode b y   n o t   s c a n n i n g   e a c h  
; l i n e   t w i c e .  

mov  dx.CRTC-INDEX 
mov a1 .MAX_SCAN-LINE 
o u t   d x . a l  
i n c   d x  
i n   a l . d x  
and  a1,not l f h   : s e t  maximum scan 1 i n e  - 0 
o u t   d x . a l  
dec  dx 

; Change CRTC s c a n n i n g   f r o m   d o u b l e w o r d  mode t o  b y t e  mode, a l l o w i n g  
; t h e  CRTC t o  scan  more  than 64K o f   v i d e o   d a t a .  

mov a1,UNDERLINE 
o u t   d x . a l  
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: t u r n   o f f   d o u b l e w o r d  

i n c   d x  
i n  a1,dx 
and a1 .no t   40h  
o u t   d x . a l  
dec  dx 
mov a1 ,MODELCONTROL 
o u t   d x . a l  
i n c   d x  
i n  a1,dx 
o r   a l . 4 0 h   : t u r n   o n   t h e   b y t e  mode b i t ,  so memory i s  

: scanned f o r   v i d e o   d a t a   i n  a p u r e l y  
: l i n e a r  way, j u s t  as i n  modes 10h  and  12h 

o u t   d x . a l  
r e t  

Set320By400Mode  endp 

: Draws a f u l l   s c r e e n  o f  s l a n t i n g   c o l o r   b a r s   i n   t h e   s p e c i f i e d   p a g e .  

: I n p u t :  
: D I  - page s t a r t   a d d r e s s  
: BL - 1 t o  make t h e   b a r s   s l a n t  down and t o   t h e   r i g h t ,  -1 t o  

make t h e m   s l a n t  down and t o   t h e   l e f t ,  0 t o  make 
them v e r t i c a l .  

Co l   o rBarsUp  p roc   near  
mov  ax.VGA-SEGMENT 
mov es.ax 
sub  bh.bh 
mov s i  .SCREEN-HEIGHT 
mov dx.SC-INDEX 
mov a1 .MAP-MASK 
o u t   d x . a l   ; p o i n t   t h e  SC I n d e x   r e g   t o   t h e  Map Mask r e g  
i n c   d x   : p o i n t  DX t o   t h e  SC D a t a   r e g i s t e r  

mov cx,SCREEN_WIDTH/4 

: p o i n t   t o   d i s p l a y  memory 
: s t a r t   w i t h   c o l o r  0 
:# o f  rows t o  do 

RowLoop: 

: 4   p i x e l s   a t   e a c h   a d d r e s s ,  s o  
: each   320 -p i xe l   row  i s  80 b y t e s   w i d e  
: i n  each   p lane  
: s a v e   t h e   r o w - s t a r t   c o l o r  push  bx 

ColumnLoop: 
MAP-SELECT - 1 

r e p t  4 :do a l l  4 p i x e l s   a t   t h i s   a d d r e s s   w i t h  

mov a1 .MAP-SELECT 
o u t   d x , a l   : s e l e c t   p l a n e s  0. 1. 2.  and 3 i n   t u r n  
mov e s : [ d i l . b h  
i n c   b h  

endm 
i n c   d i   : p o i n t   t o   t h e   a d d r e s s   c o n t a i n i n g   t h e   n e x t  

1 oop  Col umnLoop 
POP bx 
add  bh.bl  

dec s i   : c o u n t  down l i n e s  on t h e   s c r e e n  
j n z  RowLoop 
r e t  

Col  orBarsUp  endp 

: i n - l i n e  code 

: w r i t e   t h i s   p l a n e ' s   p i x e l  
: s e t   t h e   c o l o r   f o r   t h e   n e x t   p i x e l  

MAP-SELECT - MAP-SELECT s h l  1 

: 4 p i x e l s  
: d o   a n y   r e m a i n i n g   p i x e l s   o n   t h i s   l i n e  
: g e t   b a c k   t h e   r o w - s t a r t   c o l o r  
: s e l e c t   n e x t   r o w - s t a r t   c o l o r   ( c o n t r o l s  
: s l a n t i n g   o f   c o l o r   b a r s )  
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: W a i t s   f o r   t h e   n e x t   k e y   a n d   r e t u r n s  i t  i n  A X .  

GetNextKey  proc  near 
WaitKey: 

rnov ah.1 
i n t  16h 
j z  WaitKey : w a i t  f o r  a key t o  become a v a i l a b l e  
sub  ah.ah 
i n t  16h : r e a d   t h e  key 
r e t  

GetNextKey  endp 

Code ends 

end Start 

When you run Listing  31.2, note  the extremely smooth edges and fine  gradations of 
color,  especially in  the screens with slanting color bars. The displays produced by 
Listing 31.2 make  it  clear that 320x400  256-color mode can produce effects that  are 
simply not possible in any  16-color mode. 

Something to Think About 
You can, if  you  wish,  use the display  memory  organization  of  320x400 mode in 320x200 
mode by modifymg  Set320x400Mode to leave the maximum scan line setting at 1 in 
the  mode set. (The version  of  Set320x400Mode in Listings  31.1 and 31.2 forces the 
maximum  scan  line  to 0, doubling the effective resolution of the screen.) Why  would  you 
want  to do that? For one thing, you could then choose from not two butfour320x200 
256-color  display  pages, starting at offsets 0, 4000H, 8000H, and OCOOOH in  display 
memory.  For another, having  only  half  as  many  pixels per screen can as much as 
double drawing speeds; that’s one reason that many  games run  at 320x200, and even 
then often limit the active  display  drawing area  to only a portion of the  screen. 
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chapter 32

be it resolved: 360x480



olor Modes About as  Far  as  the 
A Can Take Them 

how to coax  320x400  256-color resolution out of a 
ted that  the VGA was actually capable of supporting 

256-color resolutio 360x480, but  didn’t  pursue  the topic further, prefer- 
tile and easy-to-set 320x400 256-color mode instead. 
ticularly  useful item from  John Bridges, a longtime 
programmer. It was a  complete  mode set routine 

de that he has placed into  the public domain.  In  addition, 
of freeware (free, but  not public domain) utilities 
ch displays  PIC,  PCX, and GIF images not only in 

360x480~256 but also in 640~350~256,640x400x256,640~480~256, and 800~600~256 
on SuperVGAs.” 
In this chapter, I’m going to combine  John’s mode set code with appropriately modi- 
fied versions of the dot-plot code from  Chapter 31 and  the line-drawing code  that 
we’ll develop in Chapter 35. Together, those routines will make  a pretty nifty demo 
of the capabilities of  360x480  256-color mode. 
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Extended 256-Color Modes: What’s Not to Like? 
When last we left 256-color programming, we had  found  that  the  standard 256-color 
mode,  mode  13H, which  officially offers 320x200 resolution, actually displays 400, 
not 200, scan lines, with line-doubling  used  to  reduce the effective resolution to 
320x200. By tweaking a few  of the VGA’s mode registers, we converted mode 13H to 
a true 320x400 256-color mode. As an  added  bonus,  that 320x400 mode  supports 
two graphics pages, a  distinct  improvement over the single graphics  page supported 
by mode  13H. (We also learned how to  getfourgraphics pages at 320x200 resolution, 
should  that be needed.) 
I particularly like  320x400  256-color mode  for two reasons: It  supports two-page graph- 
ics,  which  is  very important  for  animation applications; and it doesn’t require  changing 
any of the  monitor  timing characteristics of the VGA. The  mode bits that we changed 
to produce 320x400 256-color mode  are  pretty  much  guaranteed to be  the same 
from  one VGA to  another,  but  the  monitor-oriented registers are less certain to be 
constant, especially for VGAs that provide special support  for  the  extended capabili- 
ties  of various multiscanning  monitors. 
All in all, those are  good  arguments  for 320x400 256-color mode. However, the 
counter-argument seems compelling as  well-nothing beats higher resolution  for 
producing striking graphics. Given that, and given thatJohn Bridges was kind enough 
to make his mode  set  code available, I’m  going to look at 360x480  256-color mode 
next. However, bear in mind  that  the drawbacks of this mode  are  the flip side of the 
strengths of  320x400  256-color mode: Only one graphics  page, and  direct setting of 
the  monitor-oriented registers. Also, this mode has  a  peculiar and  unique aspect 
ratio, with  480 pixels (as many  as high-resolution  mode 12H) vertically and only 360 
horizontally. That makes for fairly poor  horizontal resolution and sometimes-jagged 
drawing; on  the  other  hand,  the resolution is better in both  directions  than  in  mode 
13H, and  mode 13H itself has an  odd aspect  ratio, so it seems a  bit petty to  complain. 
The single graphics page  isn’t a drawback if  you don’t  need page flipping, of course, so 
there’s not much  to worry about there: If  you need page flipping, don’t use  this  mode. 
The  direct setting of the  monitor-oriented registers is another  matter altogether. 
I don’t know  how  likely this code is to produce  problems with clone VGAs in  general; 
however, I did  find  that  I  had  to  put  an  older Video  Seven VRAM  VGA into  “pure” 
mode-where it treats the VRAMs as DRAMS and exactly emulates  a plain-vanilla 
IBM  VGA-before 360x480 256-color mode would  work properly. Now, that particu- 
lar  problem was due  to  an  inherent characteristic ofVRAMs, and shouldn’t  occur on 
Video  Seven’s  Fastwrite adapter  or any other VGA clone.  Nonetheless, 360x480  256- 
color  mode is a  good  deal  different  from any standard VGA mode,  and while the 
code  in this chapter  runs perfectly well on all other VGAs in my experience,  I  can’t 
guarantee its functionality on any particular  VGA/monitor combination,  unlike 
320x400  256-color mode. Mind you, 360x480  256-color mode should work on all 
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VGAs-there are  just too many variables involved for me to be  certain. Feedback 
from  readers with broad 360x480 256-color experience is welcome. 
The above notwithstanding, 360x480 256-color mode offers 64 times as  many colors 
and nearly three times as many pixels as IBM’s original CGA color  graphics mode, 
making startlingly realistic effects possible. No mode of the VGA (at least no mode 
that 1 know of!),  documented  or  undocumented, offers a better  combination of reso- 
lution  and  color; even 320x400  256-color mode has 26 percent fewer pixels. 
In other words, 360x480 256-color mode is worth  considering-so let’s have a look. 

360x480 256-Color Mode 
I’m  going to start by showing you  360x480 256-color mode in action,  after which 
we’ll look at how i t  works. I suspect  that  once you see what this mode looks like, 
you’ll be more  than  eager to learn how to use it. 
Listing 32.1 contains  three C-callable assembly functions. As you  would expect, 
Set360x480Mode places the VGA into 360x480 256-color mode. Draw360x480Dot 
draws a pixel of the specified color  at  the specified location. Finally,  Read360x480Dot 
returns  the color of the pixel at  the specified location.  (This last function isn’t actu- 
ally used  in  the  example  program  in this chapter,  but is included  for  completeness.) 
Listing 32.2 contains an adaptation of some C line-drawing code I’ll be presenting 
shortly in  Chapter 35. If you’re  reading this book in serial fashion and haven’t  gotten 
there yet, simply take it on faith. If  you really really need to  know  how the line-draw 
code works right now, by all means make a short forward call to Chapter 35 and 
digest it. The line-draw code  presented below has  been  altered to select 360x480 
256-color mode,  and to cycle through all  256 colors  that this mode  supports, draw- 
ing  each  line in a different color. 

LISTING  32.1  132- 1 .ASM 
: B o r l a n d  C/C++ t i n y / s m a l l / m e d i u m   m o d e l - c a l l a b l e   a s s e m b l e r  
: s u b r o u t i n e s   t o :  
: * S e t   3 6 0 x 4 8 0   2 5 6 - c o l o r  VGA mode 
: * Draw a d o t   i n   3 6 0 x 4 8 0   2 5 6 - c o l o r  V G A  mode 
: * Read t h e   c o l o r  o f  a d o t   i n  360x480   256 -co lo r  VGA mode 

: A s s e m b l e d   w i t h  TASM 

: The  360x480  256-co lo r  mode s e t  
: by   John   B r idges ,  who h a s   p l a c e d  

VGALSEGMENT equ OaOOOh 
S C - I N D E X  
GC- I N D E X  

equ 3c4h 
equ  3ceh 

MAPYMASK 
READ-MAP 

equ 2 

SCREENKWIDTH 
equ 4 

WORD-OUTSLOK 
equ 360 
equ 1 

code  and  parameters   were   p rov ided 
t h e m   i n t o   t h e   p u b l i c   d o m a i n .  

: d i s p l a y  memory  segment 
: S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r  
: G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r  
;Map Mask r e g i s t e r   i n d e x   i n  SC 
:Read Map r e g i s t e r   i n d e x   i n  GC 
:# o f  p i x e l s   a c r o s s   s c r e e n  
: s e t   t o  0 t o  assemble  f o r  
; c o m p u t e r s   t h a t   c a n ’ t   h a n d l e  
: w o r d   o u t s   t o   i n d e x e d  VGA r e g i s t e r s  
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- DATA s e g m e n t   p u b l i c   b y t e  'DATA' 

; 360x480  256-co lo r  mode CRT C o n t r o l l e r   r e g i s t e r   s e t t i n g s .  
; (Cour tesy  o f  John   B r idges . )  

v p t b l  dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 

vpend  1  abel 
- DATA ends 

06b00h 
05901h 
05a02h 
08e03h 
05e04h 
08a05h 
DOd06h 
03e07h 
04009h 
OealOh 
O a c l l h  
O d f l 2 h  
02d13h 
00014h 
Oe715h 
00616h 
Oe317h 
word 

; Macro t o   o u t p u t  

OUT-WORD macro 
i f  WORD-OUTS-OK 

ou t   dx .ax  
e l s e  

ou t   dx .a l  
i n c   d x  
xchg  ah.a l  
o u t   d x . a l  
dec  dx 
xchg  ah.a l  

endm 
e n d i  f 

a  word  value t o  a p o r t .  

- TEXT s e g m e n t   b y t e   p u b l i c  'CODE' 
assume  cs:-TEXT, ds:-DATA 

; Sets  up  360x480  256-co lor  mode. 
; ( C o u r t e s y   o f   J o h n   B r i d g e s . )  

; Cal l   as:   vo id   Set360By480ModeO 

; R e t u r n s :   n o t h i n g  

p u b l i c  -Set360x480Mode 

push s i  
push d i  
mov ax.12h 
i n t  10h 

- Set360x480Mode  proc  near 

mov ax.13h 
i n t  10h 

h o r z   t o t a l  
h o r z   d i   s p l   a y e d  
s t a r t   h o r z   b l a n k i n g  
end   ho rz   b lank ing  
s t a r t  h sync 
end  h  sync 
v e r t i c a l   t o t a l  
o v e r f l o w  
c e l l   h e i g h t  
v  sync s t a r t  
v   sync   end  and  p ro tec t   c r0 -c r7  
v e r t i c a l   d i s p l a y e d  
o f f s e t  
t u r n   o f f  dword mode 
v b l a n k   s t a r t  
v   b lank  end 
t u r n  on b y t e  mode 

;p reserve  C r e g i s t e r   v a r s  

; s t a r t   w i t h  mode 12h 
: l e t   t h e  B I O S  c l e a r   t h e   v i d e o  memory 

; s t a r t   w i t h   s t a n d a r d  mode 13h 
: l e t   t h e  B I O S  s e t   t h e  mode 
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mov dx ,   3c4h 
mov ax.0604h 
o u t   d x , a x  

mov ax.0100h 
o u t   d x , a x  
mov dx .3c2h 
mov a1  .Oe7h 
o u t   d x , a l  
mov dx .3c4h 
mov ax.0300h 
o u t   d x . a x  

; a l t e r   s e q u e n c e r   r e g i s t e r s  
: d i s a b l e   c h a i n  4 

: s y n c h r o n o u s   r e s e t  
: a s s e r t e d  
; m i s c   o u t p u t  
; use 28 mHz d o t   c l o c k  
: s e l e c t  i t  
: s e q u e n c e r   a g a i n  
: r e s t a r t   s e q u e n c e r  
; r u n n i n g   a g a i n  

mov dx.3d4h : a l t e r   c r t c   r e g i s t e r s  

mov a1 . l l h  : c r l l  
o u t   d x . a l  ; c u r r e n t   v a l u e  
i n c   d x  : p o i n t   t o   d a t a  
i n  a1 .dx  : g e t   c r l l   v a l u e  
and a l . 7 f h  ; remove  crO - >  c r 7  
o u t   d x . a l  : w r i t e   p r o t e c t  
dec  dx : p o i n t   t o   i n d e x  
c l  d 
mov s i   . o f f s e t   v p t b l  
mov c x . ( ( o f f s e t   v p e n d ) - ( o f f s e t   v p t b l ) )   s h r  1 

o u t   d x . a x  
l o o p  @b 
pop d i   : r e s t o r e  C r e g i s t e r   v a r s  
pop s i  
r e t  

@b:  lodsw 

-Set360x480Mode  endp 

; Draws a p i x e l   i n   t h e   s p e c i f i e d   c o l o r   a t   t h e   s p e c i f i e d  
: l o c a t i o n   i n   3 6 0 x 4 8 0   2 5 6 - c o l o r  mode. 

; C a l l   a s :   v o i d   D r a w 3 6 0 x 4 8 0 D o t ( i n t  X ,  i n t  Y .  i n t   C o l o r )  

: R e t u r n s :   n o t h i n g  

DParms s t r u c  
dw ? 
dw ? 

DrawX dw ? 
DrawY dw ? 
C o l o r  dw ? 

DParms ends 

pub l ic   -Draw360x480Dot  

push  bp 
mov bp ,sp  
p u s h   s i  
p u s h   d i  
mov ax.VGA-SEGMENT 
mov es .ax  
mov ax,SCREEN_WIOTH/4 

-Draw360x480Dot   proc  near  

;pushed BP 
; r e t u r n   a d d r e s s  
; X  c o o r d i n a t e   a t   w h i c h   t o   d r a w  
: Y  c o o r d i n a t e   a t   w h i c h   t o   d r a w  
; c o l o r   i n   w h i c h   t o   d r a w   ( i n   t h e  
: range  0-255; u p p e r   b y t e   i g n o r e d )  

: p r e s e r v e   c a l l e r ' s  BP 
; p o i n t   t o   s t a c k   f r a m e  
: p r e s e r v e  C r e g i s t e r   v a r s  

: p o i n t   t o   d i s p l a y  memory 

: t h e r e   a r e  4 p i x e l s   a t   e a c h   a d d r e s s ,  s o  
; e a c h   3 6 0 - p i x e l   r o w   i s   9 0   b y t e s   w i d e  
; i n   e a c h   p l a n e  
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mu1 Cbp+DrawYl 
mov d i  , Cbp+DrawX] 

: p o i n t   t o   s t a r t   o f   d e s i r e d   r o w  

s h r   d i . l  
: g e t   t h e  X c o o r d i n a t e  

s h r   d i . 1  
; t h e r e   a r e  4 p i x e l s   a t   e a c h   a d d r e s s  

add d i   , a x  
: so d i v i d e   t h e  X c o o r d i n a t e   b y  4 

mov c l   . b y t e   p t r  Cbp+OrawX] 
: p o i n t   t o   t h e   p i x e l ' s   a d d r e s s  

and c l  .3 
; g e t   t h e  X c o o r d i n a t e   a g a i n  

mov ah .1  
: g e t   t h e   p l a n e  # o f   t h e   p i x e l  

s h l   a h . c l   : s e t   t h e   b i t   c o r r e s p o n d i n g   t o   t h e   p l a n e  

mov a1 .MAP-MASK 
mov dx,SC_INDEX 
OUT-WORD ; s e t   t o   w r i t e   t o   t h e   p r o p e r   p l a n e   f o r  

mov a l . b y t e   p t r   C b p + C o l o r ]   : g e t   t h e   c o l o r  
s t o s b   : d r a w   t h e   p i x e l  
pop d i   ; r e s t o r e  C r e g i s t e r   v a r s  
pop s i  

r e t  

: t h e   p i x e l   i s   i n  

: t h e   p i x e l  

POP bp  : r e s t o r e   c a l l e r ' s  BP 

- Draw360x480Dot  endp 

: Reads t h e   c o l o r   o f   t h e   p i x e l   a t   t h e   s p e c i f i e d  
: l o c a t i o n   i n   3 6 0 x 4 8 0   2 5 6 - c o l o r  mode. 

; C a l l   a s :   i n t   R e a d 3 6 0 ~ 4 8 0 D o t ( i n t  X .  i n t  Y )  

: R e t u r n s :   p i x e l   c o l o r  

RParms s t r u c  
dw ? 
dw ? 

ReadX dw ? 
Ready dw ? 
RParms ends 

pub l i c   -Read360x480Dot  

push  bp 
mov bp .sp  
p u s h   s i  
p u s h   d i  
mov ax.VGA-SEGMENT 
mov es.ax 
mov ax,SCREEN-WIOTH/4 

- Read360x480Dot   proc  near  

mu1 [bp+DrawY] 
mov si , [bp+DrawX] 
s h r   s i . l  
s h r   s i . l  
add   s i . ax  
mov a h . b y t e   p t r  Cbp+DrawX] 
and  ah.3 

mov a1 , READ-MAP 
mov dx.GC-INDEX 
OUT-WORD 

:pushed BP 
: r e t u r n   a d d r e s s  
: X  c o o r d i n a t e   f r o m   w h i c h   t o   r e a d  
:Y  c o o r d i n a t e   f r o m   w h i c h   t o   r e a d  

: p r e s e r v e   c a l l e r ' s  BP 
: p o i n t   t o   s t a c k   f r a m e  
: p r e s e r v e  C r e g i s t e r   v a r s  

: p o i n t   t o   d i s p l a y  memory 
: t h e r e   a r e  4 p i x e l s   a t   e a c h   a d d r e s s ,  s o  
: e a c h   3 6 0 - p i x e l   r o w   i s  90 b y t e s   w i d e  
: i n  each   D lane  

; p o i n t   t o   s t a r t   o f   d e s i r e d   r o w  
: g e t   t h e  X c o o r d i n a t e  
: t h e r e   a r e  4 p i x e l s   a t   e a c h   a d d r e s s  
: s o  d i v i d e   t h e  X c o o r d i n a t e   b y  4 
: p o i n t   t o   t h e   p i x e l ' s   a d d r e s s  
: g e t   t h e  X c o o r d i n a t e   a g a i n  

: g e t   t h e   p l a n e  # o f   t h e   p i x e l  

: s e t   t o   r e a d   f r o m   t h e   p r o p e r   p l a n e   f o r  
: t h e   p i x e l  
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l o d s   b y t e   p t r   e s : [ s i ]  
sub  ah.ah 
p o p   d i  
p o p   s i  
POP bp  
r e t  

-Read360x480Dot  endp 
-TEXT ends 

end 

; r e a d   t h e   p i x e l  
;make t h e   r e t u r n   v a l u e  a w o r d   f o r  C 
; r e s t o r e  C r e g i s t e r   v a r s  

; r e s t o r e   c a l l e r ' s  BP 

MSTING 32.2 132-2.C 
* Sample  program t o   i l l u s t r a t e  V G A  l i n e   d r a w i n g   i n   3 6 0 x 4 8 0  
* 2 5 6 - c o l o r  mode. 

* C o m p i l e d   w i t h   B o r l a n d  C/C++. 

* M u s t   b e   l i n k e d   w i t h   L i s t i n g   3 2 . 1   w i t h  a command l i n e   l i k e :  

* b c c   1 1 0 - 2 . c   1 1 0 - l . a s m  

* 

* 

* 

* 
* By M i c h a e l   A b r a s h  
* /  
#i ncl   ude  <dos  . h> /* c o n t a i n s   g e n i n t e r r u p t  * /  

{ {de f ine  TEXT-MODE 0x03 
# d e f i n e  BIOS-VIDEO-INT Ox10 
# d e f i n e  X-MAX 360 / *  w o r k i n g   s c r e e n   w i d t h  * I  
# d e f i n e  Y-MAX 480 / *  w o r k i n g   s c r e e n   h e i g h t  * /  

e x t e r n   v o i d   D r a w 3 6 0 x 4 8 0 D o t O ;  
e x t e r n   v o i d   S e t 3 6 0 x 4 8 0 M o d e O ;  

/ *  
* Draws a l i n e   i n   o c t a n t  0 o r  3 ( I D e l t a X l  >- De l taY  ) .  
* I D e l t a X I + l   p o i n t s   a r e   d r a w n .  
* I  

v o i d   O c t a n t O ( X 0 .  Y O .  D e l t a X .   D e l t a Y .   X O i r e c t i o n .   C o l o r )  
u n s i g n e d   i n t  X O .  Y O ;  I* c o o r d i n a t e s   o f   s t a r t   o f   t h e   l i n e  * I  
u n s i g n e d   i n t   D e l t a X .  D e l t a Y ;  / *  l e n g t h   o f   t h e   l i n e  * /  
i n t   X D i r e c t i o n ;  /*  1 i f  l i n e  i s  drawn l e f t   t o   r i g h t ,  

i n t   C o l o r ;  
I 

-1 i f  d r a w n   r i g h t   t o   l e f t  * /  
/ *  c o l o r   i n   w h i c h   t o   d r a w   l i n e  * I  

i n t   D e l t a Y x 2 ;  
i n t   D e l t a Y x Z M i n u s D e l t a X x Z :  
i n t   E r r o r T e r m ;  

/* Set   up i n i t i a l   e r r o r   t e r m   a n d   v a l u e s  used i n s i d e   d r a w i n g   l o o p  */ 
Oe l taYx2  = De l taY  * 2 ;  
Oe l taYxZMinusDel taXxZ - De l taYx2  - ( i n t )  ( De l taX  * 2 1;  
E r r o r T e r m  = De l taYx2  - ( i n t )   D e l t a X ;  

/ *  Draw t h e   l i n e  * /  
Draw360x480Dot(XO. Y O .  C o l o r ) ;  / *  d r a w   t h e   f i r s t   p i x e l  * /  
w h i l e  ( D e l t a X - -  1 { 

/ *  See i f  i t ' s   t i m e   t o  a d v a n c e   t h e  Y c o o r d i n a t e  * /  
i f  ( E r r o r T e r m  >= 0 ) { 

back  down */  
/*  A d v a n c e   t h e  Y c o o r d i n a t e  & a d j u s t   t h e   e r r o r   t e r m  
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YO++; 

1 e l s e  { 
E r r o r T e r m  +- De l taYxEMinusDel taXxZ;  

I* Add t o   t h e   e r r o r   t e r m  *I  
E r r o r T e r m  +- De l taYxE;  

1 
X0 +- X D i r e c t i o n ;  
Draw360x480Dot(XO, Y O ,  C o l o r ) ;  

1 

I* a d v a n c e   t h e  X c o o r d i n a t e  *I  
I* draw a p i x e l  *I  

I* 
* Draws a l i n e   i n   o c t a n t  1 o r  2 ( I D e l t a X l  < D e l t a Y  ) .  

*I  
* I D e l t a Y I + I   p o i n t s   a r e   d r a w n .  

v o i d   O c t a n t l ( X 0 .  YO.  D e l t a X .   D e l t a Y .   X D i r e c t i o n .   C o l o r )  
u n s i g n e d   i n t  XO,  Y O ;  I* c o o r d i n a t e s   o f   s t a r t   o f   t h e   l i n e  *I  
u n s i g n e d   i n t   D e l t a X .  De l taY :  I* l e n g t h   o f   t h e   l i n e  *I  
i n t   X D i r e c t i o n ;  I* 1 i f  l i n e   i s   d r a w n   l e f t   t o   r i g h t ,  

i n t  C o l o r ;  
f 

-1 i f  d r a w n   r i g h t   t o   l e f t  *I  
I* c o l o r   i n   w h i c h   t o   d r a w   l i n e  *I  

i n t   D e l t a X x 2 ;  
i n t   D e l t a X x Z M i n u s D e l t a Y x Z ;  
i n t   E r r o r T e r m :  

/ *  S e t   u p   i n i t i a l   e r r o r   t e r m   a n d   v a l u e s   u s e d   i n s i d e   d r a w i n g   l o o p  *I  
Del   taXx2 - D e l t a X  * 2;  
De l taXxZMinusDe l taYxZ  - De l taXxZ  - ( i n t )  ( De l taY  * 2 ) ;  
E r r o r T e r m  - De l taXxZ  - ( i n t )   D e l t a Y :  

Draw360x480Dot(XO. Y O .  C o l o r ) ;  I* d r a w   t h e   f i r s t   p i x e l  *I  
w h i l e  ( D e l t a Y - -  ) { 

I* See i f  i t ' s   t i m e   t o  a d v a n c e   t h e  X c o o r d i n a t e  *I  
i f  ( E r r o r T e r m  >- 0 1 I 

I* A d v a n c e   t h e  X c o o r d i n a t e  & a d j u s t   t h e   e r r o r   t e r m  
back  down *I  

X0 +- X D i r e c t i o n :  
E r r o r T e r m  +- De l   taXx2MinusDel   taYxZ;  

/ *  Add t o   t h e   e r r o r   t e r m  *I  
E r r o r T e r m  +- De l taXxE:  

1 e l s e  I 

1 
YO++; I* a d v a n c e   t h e  Y c o o r d i n a t e  *I  
Draw360x480Dot(XO.  YO.Color); I* draw a p i x e l  *I  

1 

I* 
* Draws a l i n e  o n   t h e  EGA o r  VGA. 
*I  

vo id   EVGALine(X0.  Y O ,  X 1 .  Y 1 .  C o l o r )  
i n t  X O .  Y O ;  I* c o o r d i n a t e s   o f  one e n d   o f   t h e   l i n e  *I  
i n t  X 1 ,  Y 1 ;  I* c o o r d i n a t e s  o f  t h e   o t h e r   e n d   o f   t h e   l i n e  *I  
u n s i g n e d   c h a r   C o l o r ;  /*  c o l o r   i n   w h i c h   t o   d r a w   l i n e  *I  
I 

i n t  D e l t a X .   D e l t a Y ;  
i n t  Temp: 
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I* Save h a l f   t h e   l i n e - d r a w i n g   c a s e s   b y   s w a p p i n g  Y O  w i t h  Y 1  
and X0 w i t h  X 1  i f  Y O  i s   g r e a t e r   t h a n  Y 1 .  As a r e s u l t ,   D e l t a Y  
i s  a lways  > 0. a n d   o n l y   t h e   o c t a n t  0-3 cases  need t o  be 
hand1  ed. *I  

i f  ( Y O  > Y 1  1 I 
Temp - Y O ;  
Y O  - Y 1 ;  
Y 1  - Temp; 
Temp - X O ;  
x0 - x1; 
X 1  - Temp: 

I 

/ *  H a n d l e   a s   f o u r   s e p a r a t e   c a s e s ,   f o r   t h e  four  o c t a n t s   i n   w h i c h  

f 
Y 1  i s   g r e a t e r   t h a n  Y O  * /  

D e l t a X  - X 1  - X O ;  / *  c a l c u l a t e   t h e   l e n g t h  o 

D e l t a Y  - Y 1  - Y O ;  
i f  ( D e l t a X  > 0 1 I 

i n  e a c h   c o o r d i n a t e  *I  

i f  ( D e l t a X  > De l taY ( 

) e l s e  { 

1 
I e l s e  ( 

Octan tO(X0.  Y O ,  D e l t a X .   D e l t a Y ,  1. C o l o r  

O c t a n t l ( X 0 .  Y O ,  D e l t a X .   D e l t a Y .  1. C o l o r  

t h e   l i n e  

D e l t a X  - - D e l t a X ;  / *  a b s o l u t e   v a l u e   o f   D e l t a X  * I  
i f  ( D e l t a X  > D e l t a Y  ) ( 

I e l s e  I 

I 

OctantO(X0.  Y O ,  D e l t a X ,   D e l t a Y .  -1. C o l o r ) ;  

O c t a n t l ( X 0 .  Y O ,  O e l t a X .   D e l t a Y .  -1. C o l o r ) ;  

I 
I 

I* 
* S u b r o u t i n e   t o   d r a w  a r e c t a n g l e   f u l l   o f   v e c t o r s .   o f   t h e  
* s p e c i f i e d   l e n g t h  and i n   v a r y i n g   c o l o r s ,   a r o u n d   t h e  
* s p e c i f i e d   r e c t a n g l e   c e n t e r .  
*I  

vo id   Vec to rsUp(XCen te r .   YCen te r .   XLeng th .   YLeng th )  
i n t  XCenter .   YCenter ;  / *  c e n t e r  o f  r e c t a n g l e   t o  fill *I  
i n t  XLength.   YLength;  I* d i s t a n c e   f r o m   c e n t e r   t o   e d g e  

I 
o f   r e c t a n g l e  * /  

i n t  Work ingX.   Work ingY,   Co lor  - 1; 
/* L i n e s   f r o m   c e n t e r   t o   t o p   o f   r e c t a n g l e  * /  
WorkingX - XCenter  - XLength;  
WorkingY - YCenter  - YLength;  
f o r  ( ; WorkingX < ( XCenter  + XLength 1; Work ingXW ) 

EVGALine(XCenter .   YCenter .   Work ingX,   Work ingY.   Color++) ;  

I* L i n e s   f r o m   c e n t e r   t o   r i g h t   o f   r e c t a n g l e  *I  
WorkingX - XCenter  + XLength - 1; 
WorkingY - YCenter  - YLength;  
f o r  ( ; WorkingY < ( YCenter  + YLength ) ;  WorkingY++ 1 

EVGALine(XCenter .   YCenter .   Work ingX.   Work ingY.   Color++) ;  

/ *  L i n e s   f r o m   c e n t e r   t o   b o t t o m   o f   r e c t a n g l e  */ 
WorkingX - XCenter  + XLength - 1: 
WorkingY - YCenter  + YLength - 1: 
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f o r  ( : WorkingX >= ( XCenter - XLength ) :  WorkingX" 
EVGALine(XCenter.  YCenter.  WorkingX.  WorkingY.  Color++): 

I* L i n e s   f r o m   c e n t e r   t o   l e f t   o f   r e c t a n g l e  *I  
WorkingX = XCenter - XLength: 
WorkingY = YCenter + YLength - 1; 
f o r  ( : WorkingY >= ( YCenter - YLength 1: Work ingY--  ) 

1 

I* 

EVGALine(XCenter.  YCenter.  WorkingX.  WorkingY.  Color++): 

* Sample  program t o  d r a w   f o u r   r e c t a n g l e s   f u l l   o f   l i n e s .  
* J  

v o i d   m a i n ( )  
{ 

char  temp; 

Set360x480ModeO; 

/ *  Draw each o f   f o u r   r e c t a n g l e s   f u l l   o f   v e c t o r s  * /  
VectorsUp(X-MAX I 4. Y-MAX / 4 .  X-MAX / 4 ,  Y-MAX / 4 .  1 ) :  
VectorsUp(X_MAX * 3 / 4, Y-MAX I 4 ,  X-MAX / 4. Y-MAX I 4,  2 ) ;  
VectorsUp(X-MAX I 4.  Y-MAX * 3 / 4, X-MAX I 4.  Y-MAX / 4. 3 ) :  
VectorsUp(X-MAX * 3 I 4. Y-MAX * 3 / 4 .  X-MAX / 4 ,  Y-MAX / 4 .  4 ) ;  

/ *  W a i t   f o r   t h e   e n t e r   k e y   t o   b e   p r e s s e d  * /  
scanf ( "%c" .   & temp) :  

/ *  Back t o   t e x t  mode * /  
-AX - TEXTLMODE; 
geninter rupt (BIOS-VIDEO_INT):  

I 

The first thing  you'll  notice when  you run this code is that  the  speed of 360x480 256- 
color  mode is pretty  good, especially considering  that  most of the  program is im- 
plemented  in C. 

P Drawing in 360x480 256-color mode can sometimes actually be faster than in the 
16-color modes, because the byte-per-pixel display memory organization of 256- 
color mode eliminates the need to read display memory before writing to  it in 
order to  isolate  individual  pixels  coexisting within a  single byte. In  addition, 
360x480 256-color mode is a variant of Mode X, which we'll encounter in detail 
in Chapter  47,  and  supports all the high-perfrmance features of Mode X 

The second  thing you'll notice is that exquisite shading effects are possible in 360x480 
256-color mode;  adjacent  lines  blend  together remarkably smoothly, even with the 
default  palette. The VGA allows you to  select  your 256 colors  from  a  palette of 2568 
so you could, if you wished, set up  the colors to produce still finer  shading  albeit with 
fewer distinctly different  colors available. For more  on this and  related topics, see 
the coverage of palette  reprogramming  that begins in the  next  chapter. 
The  one  thing you  may not  notice  right away  is just how much  detail is  visible on  the 
screen,  because the  blending of colors  tends to obscure  the  superior  resolution of 
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this mode. Each of the  four  rectangles displayed measures 180 pixels horizontally by 
240 vertically. Put  another way, each one of those  rectangles  has two-thirds as many 
pixels as the  entire  mode 13H screen;  in all, 360x480  256-color mode  has 2.7 times 
as many pixels as mode 13H! As mentioned above, the resolution is unevenly distrib- 
uted, with vertical resolution  matching  that of mode 12H but horizontal  resolution 
barely exceeding  that of mode 13H-but resolution is hot stuff, no  matter how  it’s 
laid out,  and 360x480  256-color mode has the  highest 256-color resolution  you’re 
ever likely to see on a standard VGA. (SuperVGAs are quite  another matter-but 
when  you require a SuperVGA you’re automatically excluding what might be a signifi- 
cant  chunk of the  market  for your code.) 
Now that we’ve seen the  wonders of  which our new mode is capable, let’s take the 
time to understand how it works. 

How 360x480  256-Color Mode Works 
In describing 360x480  256-color mode, I’m going to  assume that you’re familiar with the 
discussion  of  320x400  256-color mode in the last chapter. If not, go back to that chapter 
and read it; the two modes have a great deal in common, and I’m not going to bore you 
by repeating myself when the goods are  just a few page flips (the  paper  kind) away. 
360x480  256-color mode is essentially  320x400  256-color mode,  but stretched in both 
dimensions. Let’s  look at the vertical stretching first,  since  that’s the simpler of the two. 

480 Scan  Lines per Screen: A Little Slower, But No Big Deal 
There’s  nothing  unusual  about 480 scan lines; standard  modes 11H and 12H sup- 
port  that vertical resolution. The  number of scan lines  has nothing  to  do with either 
the  number of colors or  the horizontal  resolution, so converting 320x400  256-color 
mode  to 320x480  256-color mode is a simple matter of reprogramming  the VGA’s 
vertical control registers-which control  the scan lines displayed, the vertical sync 
pulse, vertical blanking, and  the total number of scan lines-to the 480-scan-line 
settings, and setting the polarities of the horizontal and vertical sync pulses to tell 
the  monitor to adjust to a 480-line screen. 
Switching to 480 scan lines has the effect of  slowing the  screen  refresh  rate. The VGA 
always displays at 70 Hz except in 480-scan-line modes; there,  due to the time required 
to scan the extra lines, the refresh rate slows to 60  Hz. (VGA monitors always  scan at the 
same rate horizontally; that is, the distance across the screen covered by the  electron 
beam in a given period of time is the same  in all modes. Consequently, adding extra 
lines per  frame  requires  extra  time.) 60 Hz isn’t bad-that’s the only refresh  rate the 
EGA ever supported,  and  the EGA  was the  industry  standard in its time-but it does 
tend  to flicker a little more  and so is a little harder  on  the eyes than 70 Hz. 
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360 Pixels  per  Scan  Line: No Mean Feat 
Converting from 320 to 360  pixels per scan line is more difficult than converting 
from 400 to 480  scan lines per screen. None of the VGA’s graphics modes  supports 
360  pixels across the screen, or anything like it; the standard choices are 320 and 640 
pixels across.  However, the VGA  does support  the horizontal resolution we  seek-360 
pixels-in 40-column text mode. 
Unfortunately, the register settings that select those horizontal resolutions aren’t 
directly transferable to graphics mode. Text modes display 9 dots (the width  of one 
character)  for each time information is fetched  from display memory, while graph- 
ics modes display just 4 or 8 dots per display memory  fetch. (Although it’s a bit 
confusing, it’s standard terminology to refer to the interval required for one display 
memory  fetch as a “character,” and I’ll follow that terminology from now on.) Conse- 
quently, both  modes display either 40 or 80 characters  per scan line;  the only 
difference is that text modes display more pixels per character. Given that  graphics 
modes cun’tdisplay 9 dots per character  (there’s only enough  information  for  eight 
lfkolor pixels or  four 256-color  pixels in each  memory  fetch, and that’s that) , we’d 
seem to be at  an impasse. 
The key to solving this problem lies in recalling that  the VGA is designed to drive a 
monitor  that sweeps the electron  beam across the screen at exactly the same  speed, 
no matter  what  mode  the VGA is in. If the  monitor always  sweeps at  the same  speed, 
how does  the VGA manage to display both 640  pixels across the screen  (in high- 
resolution  graphics  modes) and 720 pixels across the screen  (in 80-column text 
modes)? Good  question indeed-and the answer is that the VGA has not  one  but two 
clocks on board, and  one of those clocks  is just sufficiently faster than  the  other 
clock so that  an  extra 80 (or 40) pixels can be displayed on each scan line. 
In  other words, there’s a slow clock (about 25  MHz) that’s usually used in graphics 
modes  to  get 640 (or 320) pixels on the screen during  each scan line, and a second, 
fast  clock (about 28  MHz) that’s usually used in text modes to crank  out 720 (or 360) 
pixels per scan line. In particular, 320x400  256-color mode uses the 25 MHz clock. 
I’ll bet that you can see where  I’m headed: We can switch from  the 25 MHz clock to 
the 28  MHz clock in 320x480 256color  mode in order to get more pixels. It takes 
two clocks to produce  one 256-color pixel, so we’ll get 40 rather  than 80 extra pixels 
by doing this, bringing our horizontal resolution to the desired 360 pixels. 
Switching  horizontal  resolutions sounds easy, doesn’t it? Alas,  it’s not. There’s no stan- 
dard VGA mode  that uses the 28  MHz  clock to draw 8 rather than 9 dots per character, so 
the timing parameters have  to be calculated from scratch. John Bridges has already 
done  that  for us, but I want  you to appreciate  that  producing this mode took some 
work. The registers controlling the total number of characters per scan line, the 
number of characters displayed, the horizontal sync  pulse,  horizontal  blanking, the off- 
set from the start of one line  to the start of the next, and the clock speed all  have  to be 
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altered in order  to set up 360x480 256color  mode.  The  function Set360x480Mode in 
Listing  32.1 does all that, and sets up the  registers that control vertical resolution, as well. 
Once all that’s  done,  the VGA is in 360x480 mode, awaiting our every high-resolu- 
tion 256-color graphics whim. 

Accessing  Display  Memory in 360x480 256-Color Mode 
Setting up for 360x480 256color  mode proved to be quite  a task. Is drawing in this 
mode  going to be as difficult? 
No. In fact, if you  know  how to draw in 320x400  256-color mode, you already know 
how to draw in 360x480  256-color mode;  the conversion between the two is a simple 
matter of changing  the working screen width from 320 pixels to 360 pixels. In fact, if 
you  were to take the 320x400 256color pixel reading and pixel writing code  from 
Chapter 31 and change  the SCREEN-WIDTH equate  from 320  to  360, those  rou- 
tines would  work perfectly in 360x480 256color  mode. 
The organization of display memory  in 360x480  256-color mode is almost exactly 
the same as in 320x400 256color  mode, which we covered in detail in the last chap- 
ter.  However,  as a quick refresher, each byte of display memory  controls one 256-color 
pixel, just as in  mode  13H.  The VGA is reprogrammed by the  mode set so that adja- 
cent pixels lie in  adjacent  planes of display  memory. Look back to Figure 31.1 in the 
last chapter  to see the  organization of the first few pixels on the  screen;  the bytes 
controlling  those pixels run cross-plane, advancing to  the  next  address only  every 
fourth  pixel. The address of the pixel at screen  coordinate (x,y) is 
address = ((y*360)+x) /4 
and the  plane of a given  pixel is: 
plane = x modulo  4 
A new  scan line starts every  360  pixels, or 90 bytes,  as  shown in Figure 32.1. This is 
the  major  programming  difference between the 360x480 and 320x400  256-color 
modes; in  the 320x400 mode,  a new  scan line  starts every  80  bytes. 
The  other  programming  difference between the two modes is that  the  area of  dis- 
play memory  mapped to the  screen is longer in 360x480  256-color mode, which is 
only common sense given that  there  are  more pixels in that  mode.  The exact amount 
of memory  required  in 360x480  256-color mode is  360 times 480 = 172,800 bytes. 
That’s more  than half of the VGA’s 256  Kb memory  complement, so page-flipping is 
out; however, there’s no reason you couldn’t use that  extra  memory  to  create  a vir- 
tual screen  larger  than 360x480, around which  you could  then scroll, if you  wish. 
That’s really  all there is to drawing in 360x480 256color  mode. From a  program- 
ming perspective, this mode is no  more complicated  than 320x400  256-color mode 
once  the  mode set is completed, and should be capable of good  performance given 
some clever coding. It’s not particular  straightforward  to  implement  bitblt, block 
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Pixel  organization in 360x480 256-color mode. 
Figure 32.1 

move, or fast line-drawing  code  for any of the  extended 256-color modes, but it can 
be done-and  it's worth the  trouble. Even the small  taste  we've gotten of the capa- 
bilities of these  modes shows that they put  the  traditional CGA,  EGA, and generally 
even VGA modes  to  shame. 
There's  more  and  better  to  come,  though; in later  chapters, we'll return to  high- 
resolution 256-color programming in a big way,  by exploring  the  tremendous  potential 
of these  modes  for  real time 2-D and 3-D animation. 
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f VGA Color Generation 
t the VGA’s 4bit to 8-bit to 18-bit color translation. 
d out how to generate a look-up table containing 

efault color palette. And surely they are only the 
ing programmers from every corner of the planet 

are no doubt tearing the place up looking for a discussion of VGA color, and venting 
their frustration at my mailbox. Let’s have i t, they’ve said, clearly and in considerable 

ics might say, who is this humble writer to disagree? 
hope you all know what you’re getting into. To paraphrase 

ter (and more confusing) than the average board. There’s the 
basic 8-bit to 18-bit translation, there’s the EGA-compatible 4bit to 6-bit translation, 
there’s the 2- or 4bit color paging register that’s used to pad 6- or 4bit pixel values 
out to 8 bits, and then there’s 256-color mode. Fear not, it will all make sense in the end, 
but it may take us a couple of additional chapters to get there-so let’s get started. 
Before we begin, though, I must refer you to Michael Covington’s excellent article, 
“Color Vision and the VGA,” in the June/July 1990 issue of PC TECHNIQUES. Michael, 
one of the most brilliant people it has ever been my pleasure to meet, is an expert in 
many areas I know nothing about, including linguistics and artificial intelligence. 
Add to that list the topic of color perception, for his article superbly describes the 
mechanisms by which we perceive color and ties that information to the VGA’s capa- 
bilities. After reading Michael’s article, you’ll understand what colors the VGA is 
capable of generating, and why. 
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Our topic in this chapter  complements Michael’s article nicely. Where he focused 
on color perception, we’ll focus on color generation;  that is, the ways in which the 
VGA can be programmed to generate those colors that lie  within  its capabilities. To 
find out why a VGA can’t generate as pure a red as an LED, read Michael’s article. If 
you  want to find out how to flip between 16 different sets of 16 colors, though,  don’t 
touch  that dial! 
I would be remiss if I didn’t  point you in the direction of  two more articles, these in 
the July  1990  issue  of DX Dobb’s Journal. “Super VGA Programming,” by Chris Howard, 
provides a  good deal of  useful information about SuperVGA chipsets, modes, and 
programming. “Circles and  the Digital Differential Analyzer,” by Tim Paterson, is a 
good article about fast circle drawing, a topic we’ll  tackle soon. All in all, the  dog 
days  of  1990  were good times for graphics. 

VGA Color Basics 
Briefly put,  the VGA color translation circuitry takes in one 4 or 8-bit pixel value at 
a time and translates it  into  three &bit  values, one  each of red,  green,  and blue,  that 
are converted to corresponding analog levels and  sent to the monitor. Seems simple 
enough, doesn’t it? Unfortunately, nothing is ever that simple on  the VGA, and color 
translation is no exception. 

The Palette RAM 
The color path in the VGA involves two stages,  as  shown in Figure 33.1. The first 
stage fetches a 4bit pixel from display memory and feeds it into  the EGA-compatible 
palette RAM (so called because it is functionally equivalent to the palette RAM color 
translation circuitry of the EGA) , which translates it into  a 6-bit  value and sends it on 
to the DAC. The translation involves nothing  more complex than  the  4bit value  of a 
pixel being used as the address of one of the 16  palette RAM registers; a pixel value 
of 0 selects the contents of palette RAM register 0, a pixel value  of 1 selects register 1, 
and so on. Each palette RAM register  stores 6 bits, so each time a palette RAM register  is 
selected by an  incoming 4bit pixel value, 6 bits of information are sent out by the 
palette R A M .  (The  operation of the palette RAM was described back in Chapter 29.) 
The process is much  the  same in text mode,  except  that in text mode each 4bit pixel 
value is generated based on  the character’s font  pattern  and attribute. In 256-color 
mode, which we’ll get  to eventually, the  palette RAM is not a factor  from  the 
programmer’s perspective and  should be left alone. 

The DAC 
Once  the EGA-compatible palette RAM has fulfilled its karma and  performed  4bit 
to &bit translation on a pixel, the resulting value is sent to the DAC (Digital/Analog 
Converter).  The DAC performs  an 8-bit  to  18-bit conversion in much  the  same  man- 
ner as the palette RAM, converts the 18-bit result to analog red, green,  and blue 
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signals (6 bits for  each  signal), and sends  the  three  analog signals to  the  monitor. 
The DAC is a  separate  chip,  external  to  the VGA chip,  but it’s an  integral  part of the 
VGA standard  and is present  on every VGA. 
(I’d like to take a moment to  point  out  that you can’t  speak of “color” at any point  in 
the  color  translation process until  the output stage of the DAC. The  4bit pixel values 
in memory,  &bit  values in  the  palette R A M ,  and 8-bit  values sent  to  the DAC are all 
attributes, not colors, because they’re  subject  to  translation by a  later stage. For  ex- 
ample,  a pixel with a 4bit value of 0 isn’t  black, it’s attribute 0. It will be translated  to 
3FH if palette RAM register 0 is set to 3FH, but that’s not  the  color white, just an- 
other attribute. The value  3FH coming  into  the DAC isn’t  white either, and if the 
value stored  in DAC register 63 is red=7, green=O, and blue=O, the  actual color dis- 
played for  that pixel that was 0 in display memory will be dim  red.  It isn’t color  until 
the DAC  says it’s color.) 
The DAC contains 256  18-bit storage  registers,  used to translate one of  256 possible 8-bit 
values into  one of  256K (262,144, to be precise) 18-bit  values. The 18-bit  values are 
actually  composed of three Gbit  values, one each for  red,  green, and blue; for each color 
component,  the higher  the  number,  the  brighter  the color, with 0 turning  that  color 
off in  the  pixel  and  63  (3FH)  making  that  color  maximum  brightness.  Got all that? 

Color  Paging  with  the  Color  Select  Register 
‘Wait a minute,” you say bemusedly. “Aren’t you  missing some bits between the pal- 
ette RAM and the DAC?” Indeed  I am. The palette RAM puts out 6 bits at  a  time, and 
the DAC takes in 8 bits at a time. The two missing bits-bits 6 and 7 going into  the 
DAC-are supplied by bits 2 and 3 of the  Color Select register  (Attribute  Controller 
register 14H). This has intriguing implications. In l k o l o r  modes,  pixel data can  select 
only one of 16 attributes, which the EGA palette RAM translates into  one of 64 attributes. 
Normally, those 64 attributes look up colors from registers 0 through  63  in  the DAC, 
because bits 2 and 3 of the  Color Select register are both  zero. By changing  the  Color 
Select register, however, one of three  other 64 color sets can be  selected instantly.  I’ll 
refer  to  the process of flipping  through  color sets in this manner as colmpuging. 
That’s interesting,  but frankly it seems somewhat half-baked; why bother  expanding 
16  attributes  to 64 attributes  before  looking up  the colors in the DAC? What we’d 
really like is to map  the  16  attributes  straight  through  the  palette RAM without  chang- 
ing  them  and supply the upper 4 bits going  to  the DAC from  a register, giving  us 16 
color pages. As it  happens, all we have to do to make that  happen is set  bit 7 of the 
Attribute  Controller Mode register  (register 10H) to 1. Once that’s  done, bits 0 
through  3 of the Color Select register  go  straight  to bits 4  through 7 of the DAC, and 
only bits 3  through 0 coming  out of the  palette RAM are used; bits 4 and 5  from  the 
palette RAM are  ignored.  In this mode,  the  palette RAM effectively contains 4bit, 
rather than &bit, registers, but  that’s no problem because the  palette RAM will be 
programmed to pass pixel values through  unchanged by having register 0 set to 0, 
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register 1 set  to 1, and so on, a  configuration  in which the  upper two bits of all the 
palette RAM registers are  the same (zero)  and  therefore irrelevant. As a  matter of 
fact, you’ll generally want to  set the palette RAM to this pass-through state when 
working with VGA color, whether  you’re using color  paging or  not. 
Why  is it a  good  idea  to  set  the  palette RAM to a  pass-through  state? It’s a  good  idea 
because the palette RAM is programmed by the BIOS to EGA-compatible settings 
and  the first 64 DAC registers are  programmed to emulate  the 64 colors  that an EGA 
can display during  mode sets for  l6-color  modes.  This is done  for compatibility with 
EGA programs, and it’s  useless if you’re  going to tinker with the VGAs colors. As a 
VGA programmer, you  want to take a 4bit pixel value and  turn it into  an 18-bit RGB 
value; you can do that  without any help  from  the  palette RAM, and setting the pal- 
ette RAM to pass-through values  effectively takes it  out of the  circuit and simplifies 
life something  wonderful. The palette RAM exists  solely for EGA compatibility, and 
serves no useful purpose  that I know  of for VGA-only color  programming. 

256-Color Mode 
So far I’ve spoken only of 16-color modes; what of 256-color modes? 
The  rule in 256-color modes is: Don’t tinker  with the VGA palette. Period. You can select 
any colors you  want by reprogramming  the DAC, and  there’s  no  guarantee as to 
what will happen if you  mess around with the palette RAM. There’s no benefit  that I 
know  of to changing  the  palette RAM in 256-color mode,  and  the effect may  vary 
from VGA to VGA. So don’t do it unless you  know something I don’t. 
On  the  other  hand, feel free  to  alter  the DAC settings to your heart’s content in 256- 
color  mode, all the  more so because this is the only mode  in which  all  256 DAC 
settings can be displayed simultaneously. By the way, the Color Select register and bit 
7 of the Attribute  Controller Mode register are  ignored in 256-color mode; all 8 bits 
sent  from the VGA chip to the DAC come from display  memory. Therefore,  there is 
no color  paging  in 256-color mode. Of course,  that makes sense given that all  256 
DAC registers are simultaneously in use in 256-color mode. 

Setting  the  Palette RAM 
The palette RAM can  be  programmed  either directly or  through BIOS interrupt 
10H, function 10H. I strongly recommend using the BIOS interrupt; a  clone BIOS 
may  mask incompatibilities with genuine IBM silicon. Such  incompatibilities  could 
include  anything  from flicker to  trashing the palette RAM; or they may not exist at 
all, but why find  out  the  hard way? My policy is to use the BIOS unless there’s  a clear 
reason not to do so, and there’s no such reason  that I know  of in this case. 
When programming specifically for the VGA, the palette RAM needs to be loaded 
only once,  to store the pass-through values 0 through  15 in  palette RAM registers 0 
through 15.  Setting  the  entire  palette RAM is accomplished easily enough with 

Yogi  Bear and Eurythmics Confront VGA Colors 629 



subfunction 2 (AL=2) of function  10H  (AH=lOH) of interrupt  10H. A single call to 
this subfunction sets  all 16 palette RAM registers (and  the Overscan register) from  a 
block of 1’7 bytes pointed to by ES:DX,  with  ES:DX pointing to the value for register 
0, ES:DX+l pointing to the value for register 1,  and so on  up to ES:DX+16,  which 
points to the overscan value. The palette RAM registers store  6 bits each, so only the 
lower 6 bits of each of the first 16 bytes in the 17-byte  block are significant. (The 
Overscan register, which  specifies  what’s  displayed between the  area of the screen 
that’s controlled by the values in display memory and  the blanked region at  the 
edges of the screen, is an %bit register, however.) 
Alternatively,  any one palette RAM register can be set via subfunction 0 ( A L = O )  of 
function  10H  (AH=lOH) of interrupt  10H. For this subfunction, BL contains the 
number of the palette RAM register to set and  the lower 6 bits  of BH contain the 
value to which to set  that register. 
Having  said that, let’s  leave the palette RAM behind (presumably in a pass-through 
state) and move on to the DAC, which is the right place to do color translation on 
the VGA. 

Setting the DAC 
Like the palette R A M ,  the DAC registers can be set  either directly or  through  the 
BIOS. Again, the BIOS should be used whenever possible, but  there  are a few com- 
plications here. My experience is that varying degrees of flicker and screen bounce 
occur  on many VGAs when  a large block  of DAC registers is set through  the BIOS. 
That’s not a  problem  when  the DAC is loaded  just  once  and  then left that way,  as is 
the case in Listing  33.1,  which  we’ll get to  shortly, but it can be a serious problem 
when the color set is changed rapidly (“cycled”) to produce on-screen effects such as 
rippling colors. My (limited)  experience is that it’s  necessary to program  the DAC 
directly in order to cycle colors cleanly, although  input from readers who have  worked 
extensively  with VGA color is welcome. 
At any rate, the  code in this chapter will use the BIOS to set the DAC, so I’ll describe 
the BIOS  DAC-setting functions  next. Later, I’ll briefly describe how to set both  the 
palette RAM and DAC registers directly, and I’ll return to the topic in detail in an 
upcoming  chapter  when we discuss color cycling. 
An individual DAC register can be set by interrupt  10H, function  10H  (AH=lO), 
subfunction  10H  (AL=lOH), with BX indicating the register to be set and  the color 
to  which that register is to be set stored in DH (&bit red  component), CH (6-bit 
green  component),  and CL (6-bit blue component). 
A block  of sequential DAC registers ranging in size from  one register up to all  256 
can be setvia subfunction 12H (AL=12H)  of interrupt  10H, function  10H  (AH=lOH). 
In this case, BX contains the  number of the first register to set, CX contains the 
number of registers to set, and ES:DX contains the address of a table of color entries 
to which DAC registers BX through BX+CX-1 are to be set. The color entry  for  each 
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DAC register consists of three bytes; the first byte  is a 6-bit red  component,  the sec- 
ond byte  is a 6-bit green  component,  and  the  third byte  is a 6-bit blue component, as 
illustrated by Listing 33.1. 

If You  Can’t Call the BIOS, Who Ya Gonna Call? 
Although the palette RAM and DAC registers should  be set through  the BIOS  when- 
ever possible, there  are times when the BIOS is not  the best choice or even a  choice 
at all; for  example, a protected-mode  program may not have  access to  the BIOS. 
Also, as mentioned earlier, it may be necessary to program  the DAC directly when 
performing  color cycling. Therefore, I’ll briefly describe how to set the palette RAM 
and DAC registers directly; in  Chapter A on  the  companion CD-ROM I’ll discuss 
programming  the DAC directly in  more  detail. 
The palette RAM registers are Attribute  Controller registers 0 through 15. They are 
set by first reading  the  Input Status 1 register (at 3DAH in  color  mode or 3BAH in 
monochrome  mode)  to reset the Attribute  Controller toggle to index  mode,  then 
loading  the Attribute Controller  Index register (at 3COH)  with the  number  (0  through 
15) of the register to be loaded. Do not set bit 5 of the  Index register to 1, as  you 
normally would, but  rather set  bit 5 to 0. Setting bit 5 to 0 allows  values to be written 
to the palette RAM registers, but it also causes the screen to blank, so you should wait 
for the start of vertical retrace  before  loading  palette RAM registers if  you don’t want 
the  screen to flicker. (Do you see why it’s easier to go  through  the BIOS?) Then, 
write the desired register value to 3COH, which has now toggled to become the At- 
tribute  Controller Data register. Write any desired number of additional register 
number/register  data pairs to 3COH, then write 20H to 3COH to unblank  the  screen. 
The process of loading the palette RAM registers depends heavily on  the  proper 
sequence  being followed; if the Attribute  Controller  Index  register  or  index/data 
toggle data gets changed  in  the  middle of the loading process, you’ll probably end 
up with a hideous display, or  no display at all. Consequently, for maximum safety  you 
may want to disable interrupts while  you load the palette RAM, to prevent any sort of 
interference  from a TSR or  the like that  alters the state of the  Attribute  Controller  in 
the middle of the  loading  sequence. 
The DAC registers are set by writing the  number of the first register to  set  to the DAC 
Write Index register at 3C8H, then writing three bytes-the  6-bit red  component, 
the 6-bit green  component,  and  the 6-bit blue component, in  that order-to the 
DAC Data register at 3C9H. The DAC Write Index register then  autoincrements, so 
if you write another three-byte RGB value to the DAC Data register, it’ll go  to  the 
next DAC register, and so on indefinitely; you can set all 256 registers by sending 
256*3 = 768  bytes to the DAC Data Register. 
Loading the DAC  is just as sequence-dependent  and potentially susceptible to inter- 
ference as is loading the  palette, so my personal  inclination is to go through  the 
whole process of disabling interrupts,  loading  the DAC Write Index,  and writing a 

Yogi Bear and Eurythmics Confront VGA Colors 63 1 



three-byte RGB value separately for  each DAC register; although  that  doesn’t take 
advantage of the  autoincrementing  feature, it seems to me to be least susceptible to 
outside influences. (It would  be  even better to  disable interrupts for the entire duration 
of DAC register loading, but that’s much too long a time  to  leave interrupts off.) How- 
ever, I have no hard evidence  to  offer in support of  my  conservative approach to  setting 
the DAC, just an uneasy  feeling, so I’d be  most interested in hearing from any readers. 
A final point is that the process of loading  both the palette RAM and DAC registers 
involves performing multiple OUTS to the same register. Many people whose opin- 
ions I  respect recommend delaying between 1 / 0  accesses to the same port by 
performing aJMP $+2 (jumping flushes the prefetch queue  and forces a  memory 
access-or at least a cache access-to fetch the next  instruction  byte). In fact,  some people 
recommend twoJMP $+2 instructions between 1 / 0  accesses  to the same  port,  and 
three jumps between 1 /0  accesses to the same port  that go in opposite  directions 
(OUT followed by IN or IN followed by OUT). This is clearly  necessary  when  accessing 
some motherboard chips, but I don’t know  how applicable it is when accessing VGAs, 
so make of it what you will. Input  from knowledgeable readers is eagerly solicited. 
In  the  meantime, if you can use the BIOS to set the DAC, do so; then you won’t have 
to  worry about  the real and potential complications of setting the DAC directly. 

An Example of Setting the DAC 
This chapter has gotten about as  big  as a chapter really ought to be; the VGA color 
saga will continue in the  next few. Quickly, then, Listing 33.1 is a simple example of 
setting the DAC that gives  you a taste  of the spectacular effects that color translation 
makes  possible. There’s nothing particularly complex about Listing 33.1; it just se- 
lects  256-color mode, fills the screen with  one-pixel-wide concentric  diamonds drawn 
with sequential attributes, and sets the DAC to produce a  smooth gradient of each of 
the  three primary colors and of a mix of red  and blue. Run the  program; I suspect 
you’ll be surprised at  the  stunning display this short  program produces. Clever color 
manipulation is perhaps the easiest way to produce truly  eye-catching  effects on the PC. 

LISTING 33.1 133- 1 .ASM 
: Program t o   d e m o n s t r a t e   u s e   o f   t h e  DAC r e g i s t e r s   b y   s e l e c t i n g  a 
: s m o o t h l y   c o n t i g u o u s   s e t   o f   2 5 6   c o l o r s ,   t h e n   f i l l i n g   t h e   s c r e e n  
; w i t h   c o n c e n t r i c   d i a m o n d s   i n   a l l   2 5 6   c o l o r s  so t h a t   t h e y   b l e n d  
: i n t o   o n e   a n o t h e r   t o   f o r m  a c o n t i n u u m   o f   c o l o r .  

.model   smal l  

. s t a c k   2 0 0 h  

. d a t a  

: T a b l e   u s e d   t o   s e t   a l l  256 DAC e n t r i e s  

: T a b l e   f o r m a t :  
: B y t e  0: DAC r e g i s t e r  0 r e d   v a l u e  
: B y t e  1: DAC r e g i s t e r  0 g r e e n   v a l u e  
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: B y t e   2 :  DAC r e g i s t e r  0 b l u e  v a l u e  
: B y t e   3 :  DAC r e g i s t e r  1 r e d   v a l u e  
: B y t e  4: DAC r e g i s t e r  1 g r e e n   v a l u e  
: By te   5 :  DAC r e g i s t e r  1 b l u e   v a l u e  

: By te   765 :  DAC r e g i s t e r  255 r e d   v a l u e  
: By te   766 :  DAC r e g i s t e r  255  g reen  va lue  
: By te   767 :  DAC r e g i s t e r  255 b l u e   v a l u e  

C o l   o r T a b l e  1 a b e l   b y t e  

: The f i r s t  6 4   e n t r i e s   a r e   i n c r e a s i n g l y   d i m   p u r e   g r e e n .  
x-0 

REPT 64 
db 0 .63 -X .0  

x-x+l 
ENDM 

: T h e   n e x t   6 4   e n t r i e s   a r e   i n c r e a s i n g l y   s t r o n g   p u r e   b l u e .  
x-0 

REPT 64 
db 0,O.X 

ENDM 
X-X+ l  

; The n e x t   6 4   e n t r i e s   f a d e   t h r o u g h   v i o l e t   t o   r e d .  
x-0 

REPT 64 
db X.O.63-X 

x-x+l  
ENDM 

: The l a s t   6 4   e n t r i e s   a r e   i n c r e a s i n g l y   d i m   p u r e   r e d .  
x-0 

REPT 64 
db  63-X,O.O 

ENDM 
x-x+l 

.code 
S t a r t :  

mov ax.DO13h 

i n t  10h 

mov ax ,@data  
rnov es .ax  
mov d x . o f f s e t   C o l o r T a b l e  

mov ax,   1012h 

sub  bx.bx 

mov cx,   lOOh 
i n t  10h 

:AH-0 s e l e c t s   s e t  mode f u n c t i o n ,  
: AL-13h s e l e c t s   3 2 0 x 2 0 0   2 5 6 - c o l o r  
: mode 

: l o a d   t h e  DAC r e g i s t e r s   w i t h   t h e  
: c o l o r   s e t t i n g s  
: p o i n t  ES t o   t h e   d e f a u l t  
: data  segment  

: p o i n t  ES:DX t o   t h e   s t a r t   o f   t h e  
; b l o c k   o f  RGB t h r e e - b y t e   v a l u e s  
: t o   l o a d   i n t o   t h e  DAC r e g i s t e r s  
:AH-lOh s e l e c t s   s e t   c o l o r   f u n c t i o n ,  
: AL-12h s e l e c t s   s e t   b l o c k   o f  DAC 
: r e g i s t e r s   s u b f u n c t i o n  
: l o a d   t h e   b l o c k   o f   r e g i s t e r s  
: s t a r t i n g   a t  DAC r e g i s t e r  l o  
: s e t   a l l  2 5 6   r e g i s t e r s  
: l o a d   t h e  DAC r e g i s t e r s  
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mov ax ,  OaOOOh 
mov d s , a x  

mov a1 .2 
mov a h . - 1  
mov bx .320  

mov dx .160 
mov s i   , 1 0 0  
s u b   d i   , d i  
mov b p . 1  

c a l l   F i l l B l o c k  

mov a l , 2  
mov ah:l 
mov bx .320  

mov dx .160  
mov s i   , 1 0 0  
mov d i   , 3 1 9  
mov bp .  -1 

c a l l   F i l l B l o c k  

mov a l . 2  
mov ah:l 
mov bx ,   -320 

mov dx .160 
mov s i  ,100 
mov d i  .199*320 
mov bp .1  

c a l l   F i l l 8 1   o c k  

mov a l . 2  
mov ah:l 
mov bx .   -320  

mov dx,160 
mov s i   , 1 0 0  
mov d i  .199*320+319 
mov b p . - 1  

c a l l   F i  11 B1 ock  

:now fill t h e   s c r e e n   w i t h  
: c o n c e n t r i c   d i a m o n d s   i n   a l l  256 
: c o l o r   a t t r i b u t e s  
: p o i n t  DS t o   t h e   d i s p l a y  memory 
: segment 

: d r a w   d i a g o n a l   l i n e s   i n   t h e   u p p e r -  
: l e f t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  #2 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   t o p   t o   b o t t o m   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t  (0 .0 )  
:d raw l e f t   t o   r i g h t   ( d i s t a n c e   f r o m  
: one  co lumn t o   t h e   n e x t )  
:d raw i t  

: d r a w   d i a g o n a l   l i n e s   i n   t h e   u p p e r -  
: r i g h t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  112 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   t o p   t o   b o t t o m   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t   ( 3 1 9 . 0 )  
: d r a w   r i g h t   t o   l e f t   ( d i s t a n c e   f r o m  
: one  co lumn t o   t h e   n e x t )  
:d raw i t  

: d r a w   d i a g o n a l   l i n e s   i n   t h e   l o w e r -  
: l e f t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  #2 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   b o t t o m   t o   t o p   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t   ( 0 , 1 9 9 )  
:draw l e f t   t o   r i g h t   ( d i s t a n c e   f r o m  
: one  column t o   t h e   n e x t )  
:draw i t  

: d r a w   d i a g o n a l   l i n e s   i n   t h e   l o w e r -  
: r i g h t   q u a r t e r   o f   t h e   s c r e e n  
: s t a r t   w i t h   c o l o r   a t t r i b u t e  #2 
: c y c l e  down t h r o u g h   t h e   c o l o r s  
: d r a w   b o t t o m   t o   t o p   ( d i s t a n c e   f r o m  
: one l i n e   t o   t h e   n e x t )  
: w i d t h   o f   r e c t a n g l e  
: h e i g h t   o f   r e c t a n g l e  
: s t a r t   a t   ( 3 1 9 . 1 9 9 )  
: d r a w   r i g h t   t o   l e f t   ( d i s t a n c e   f r o m  
: one  column t o   t h e   n e x t )  
:draw i t  

mov ah .1  
i n t  21h 

: w a i t   f o r  a key 
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mov ax.0003h 
i n t  10h 

mov ah.4ch 
i n t  21h 

; r e t u r n   t o   t e x t  mode 

: d o n e - - r e t u r n   t o  DOS 

: F i l l s   t h e   s p e c i f i e d   r e c t a n g u l a r   a r e a  o f  t h e   s c r e e n   w i t h   d i a g o n a l   l i n e s  

: I n p u t :  
; AL = i n i t i a l   a t t r i b u t e   w i t h   w h i c h   t o   d r a w  
: AH = amount by w h i c h   t o   a d v a n c e   t h e   a t t r i b u t e   f r o m  

: BX = d i s t a n c e   t o   a d v a n c e   f r o m   o n e   p i x e l   t o   t h e   n e x t  
: DX = w i d t h   o f   r e c t a n g l e   t o  fill 
; S I  = h e i g h t   o f   r e c t a n g l e   t o  fill 
; DS:ON = s c r e e n   a d d r e s s   o f   f i r s t   p i x e l   t o   d r a w  
; BP = o f f s e t   f r o m   t h e   s t a r t  o f  one  column t o   t h e   s t a r t   o f  

o n e   p i x e l   t o   t h e   n e x t  

t h e   n e x t  

F i l l B l o c k :  
F i  11  HorzLoop: 

p u s h   d i  
push  ax 
mov c x . s i  

F i l l   V e r t L o o p :  
mov [ d i l . a l  
add d i   . b x  
add a1 .ah 
1 oop F i  11  Ver tLoop 
POP ax 
add   a l . ah  

p o p   d i  
add d i   . b p  
dec  dx 
j n z   F i l l H o r z L o o p  
r e t  

; p r e s e r v e   p o i n t e r   t o   t o p   o f   c o l u m n  
; p r e s e r v e   i n i t i a l   a t t r i b u t e  
; c o l u m n   h e i g h t  

: s e t   t h e   p i x e l  
; p o i n t   t o   t h e   n e x t   r o w   i n   t h e   c o l u m n  
; a d v a n c e   t h e   a t t r i b u t e  

; r e s t o r e   i n i t i a l   a t t r i b u t e  
;advance t o   t h e   n e x t   a t t r i b u t e   t o  
: s t a r t   t h e   n e x t   c o l u m n  
: r e t r i e v e   p o i n t e r   t o   t o p  o f  column 
: p o i n t   t o   n e x t   c o l u m n  
;have we done a l l   c o l u m n s ?  
;no .  d o   t h e   n e x t   c o l u m n  

e n d   S t a r t  

Note  the  jagged lines at  the  corners of the  screen when  you run Listing 33.1. This 
shows  how coarse  the 320x200 resolution of mode 13H actually is. Now look  at how 
smoothly the colors blend  together  in  the  rest of the screen.  This is an  excellent 
example of how careful color selection can boost perceived resolution, as for ex- 
ample when drawing antialiased lines, as discussed in Chapter 42. 
Finally, note  that  the  border of the screen  turns  green when Listing 33.1 is run. 
Listing 33.1 reprograms DAC register 0 to  green,  and  the  border  attribute  (in  the 
Overscan register) happens  to  be 0, so the  border comes out  green even though we 
haven’t  touched the Overscan register. Normally, attribute 0 is black, causing the 
border  to vanish, but  the  border is an %bit attribute  that  has to pass through  the 
DAC just like any other pixel value, and it’s just as subject to DAC color  translation as 
the pixels controlled by display  memory.  However, the  border color is not affected 
by the  palette RAM or by the Color Select register. 
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In this  chapter, we traced  the surprisingly complex  path by which the VGA turns  a 
pixel value into RGB analog signals headed for  the  monitor. In the  next  chapter  and 
Chapter A on the  companion CD-ROM, we’ll look at  some  more  code  that plays  with 
VGA color. We’ll explore in more detail  the process of reading and writing the pal- 
ette RAM and DAC registers, and we’ll observe color paging and cycling in  action. 
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chapter 34

changing colors without writing pixels



WHOOPS! 

Our printer failed to strip in the art for 
Figure 34.1. The figure,  however,  is  not 
essential to your understandmg  of th~s 
chapter. It’s actually a screen shot of the 
output produced by Listing 34-5, a Mode 
X screen with a large number of small 
animated images zipping around. You 
can see what the figure should have  been 
(and see it in color, and see it  move, 
even!)  by executing L34-5.EXEY which 
you  will  find  in  the  listing  archive 
subduectory for Chapter 34 once  you 
install the companion diskette. 

Sorry for the omission. 

--Jeff Duntemann, Editor 



through  Realtime Manipulation 

Sometimes, strange a , the  harder you try, the less  you  accomplish. Brute 
force is fine when it s t it does not always suffice, and when it does not, 
finesse and alternativ9 approaches are called  for.  Such is the case  with  rapidly  cycling 

eatedly loading the VGA’s Digital to Analog Converter (DAG). 
you  optimize  your code, you just can’t  reliably load the whole 
le frame, so  you had best find other ways to use the DAG to 

more, BIOS support for DAC loading is so inconsistent that it’s 
unusable for color $ycling; direct loading through  the 1 / 0  ports is the only way to 
go. We’ll  see  why ne&, as we explore color cycling, and  then finish up this chapter 
and this section by cleaning up some odds and  ends  about VGA color. 
There’s a lot to be said about loading the DAC, so let’s dive right in and see  where 
the complications lie. 

* 

Color  Cycling 
- 

As we’ve learned in  past  chapters,  the VGA’s DAG contains 256 storage  locations,  each 
holding one 18-bit  value representing an RGB color triplet organized as 6 bits per 
primary color.  Each and every  pixel generated by the VGA is fed into  the DAC  as an 
8-bit  value (refer to Chapter 33 and to Chapter A on  the companion CD-ROM to see 
how  pixels  become  %bit  values  in  non-256  color  modes) and each €?-bit value  is  used  to 
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look up one of the 256  values stored  in the DAC. The looked-up value is then converted 
to analog  red,  green, and blue signals and sent to the  monitor to form one pixel. 
That’s straightforward enough,  and we’ve produced some pretty impressive color 
effects by loading  the DAG once and  then playing  with the &bit path  into  the DAC. 
Now,  however,  we want to generate color effects by dynamically changing the values 
stored  in  the DAC in real time, a  technique  that I’ll  call color cycling. The potential of 
color cycling should be  obvious: Smooth  motion can  easily  be simulated by altering 
the colors in  an  appropriate  pattern,  and all sorts of changing  color effects can be 
produced without altering  a single bit of  display  memory. 
For example,  a  sunset can  be made to color and darken by altering  the DAC loca- 
tions containing  the colors used to draw the  sunset, or a river  can  be made to appear 
to flow  by cycling through  the colors used to draw the river. Another use for  color 
cycling  is in providing more realistic  displays for applications like realtime 3-D games, 
where the VGA’s 256 simultaneous colors can be made to seem like  many more by 
changing  the DAC settings from  frame to frame to match the  changing  color  de- 
mands of the  rendered  scene. Which leaves  only one question: How do we load the 
DAC smoothly in  realtime? 
Actually, so far as I know,  you can’t. At least you can’t  load  the entire DAC-all  256 
locations-frame after  frame without producing distressing on-screen effects on  at 
least some  computers.  In non-256 color  modes,  it is indeed possible to load  the DAC 
quickly enough to cycle  all  displayed colors (of which there  are  16  or  fewer), so color 
cycling could be used successfully to cycle  all colors in such modes. On the other 
hand,  color paging (which  flips among  a  number of color sets stored within the DAC 
in  all modes other than 256 color  mode, as  discussed  in Chapter A on  the  compan- 
ion CD-ROM)  can be used in non-256 color  modes to produce many of the same 
effects  as color cycling and is considerably simpler and  more  reliable  then  color 
cycling, so color paging is generally superior to color cycling whenever it’s  available. 
In  short, color cycling  is  really the  method of choice for dynamic color effects  only in 
256-color  mode-but,  regrettably, color cycling  is at its least reliable and capable in 
that  mode, as  we’ll see next. 

The Heart of the Problem 
Here’s  the  problem with loading  the  entire DAC repeatedly: The DAC contains 256 
color storage locations, each  loaded via either 3 or 4 OUT instructions  (more on 
that next), so at least ’768 OUTs are  needed to load the  entire DAC. That many OUTs 
take a  considerable amount of time, all the  more so because OUTs are painfully slow 
on 486s and Pentiums, and because the DAC is frequently on the ISA bus  (although 
VLB and PC1 are increasingly common), where wait states are  inserted  in fast  com- 
puters.  In  an  8 MHz AT,  768 OUTs alone would  take  288 microseconds, and the  data 
loading and looping  that  are also required would  take in  the  ballpark of  1,800  micro- 
seconds more,  for  a  minimum of 2 milliseconds total. 
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As it  happens,  the DAG should only be loaded during vertical blanking; that is, the 
time between the  end of displaying the  bottom  border and  the  start of  displaying the 
top border, when no video information  at all is being  sent to the screen by the DAG. 
Otherwise, small dots of  snow appear  on  the screen, and while an occasional dot of 
this sort wouldn’t be a  problem,  the  constant DAG loading  required by color cycling 
would produce  a veritable snowstorm on  the screen. By the way, I do mean “border,” 
not “frame buffer”; the overscan  pixels  pass through  the DAC just like the pixels 
controlled by the  frame buffer, so you can’t even load the DAC while the  border 
color is being displayed without getting snow. 
The start of vertical blanking itself is not easy to find, but  the  leading  edge of the 
vertical sync pulse is easy to detect via bit 3 of the  Input Status 1 register at 3DAH; 
when bit 3 is 1, the vertical sync pulse is active.  Conveniently, the vertical sync pulse 
starts partway through  but  not  too far into vertical blanking, so it serves  as a  handy 
way to  tell when it’s safe to load the DAC without producing snow on  the screen. 
So we wait for  the start of the vertical sync pulse, then begin to load the DAG. There’s 
a catch, though.  On many computers-Pentiums, 486s, and 386s sometimes, 286s 
most of the time, and 8088s all the time-there just isn’t enough time between the 
start of the vertical  sync pulse and  the  end of vertical blanking to load all  256 DAG 
locations.  That’s the crux of the problem with the DAG, and shortly  we’ll get to a tool that 
will let you explore for yourself the extent of the problem on computers in  which  you’re 
interested. First, though, we must address unother DAC loading  problem:  the BIOS. 

Loading the DAC via the BIOS 
The DAC can be loaded  either directly or  through subfunctions 10H (for  a single 
DAC register) or 12H (for a block  of DAC registers) of the BIOS  video  service interrupt 
10H, function 10H, described  in Chapter 33.  For  cycling the contents of the entire DAG, 
the block-load function (invoked by executing INT 10H with AH = 10H and AL = 12H to 
load a block of CX DAC locations, starting at location BX, from  the block of RGB 
triplets-3  bytes per triplet-starting at ES:DX into  the DAC) would be the  better of 
the two, due to the considerably greater efficiency  of calling the BIOS once  rather 
than 256  times. At any rate, we’d  like to use one  or  the  other of the BIOS functions 
for color cycling, because we know that whenever possible, one should use a BIOS 
function in preference to accessing hardware directly, in the interests of avoiding 
compatibility problems. In  the case  of color cycling,  however, it is emphatically not 
possible  to  use either of the BIOS functions, for they  have problems.  Serious  problems. 
The difficulty is this: IBM’s BIOS specification describes exactly how the parameters 
passed  to the BIOS control  the  loading of  DAC locations, and all clone BIOSes meet 
that specification scrupulously,  which is to say that if you  invoke INT 10H,  function 
10H, subfunction 12H with a given set of parameters, you can be sure  that you will 
end  up with the same  values loaded  into  the same DAG locations on all VGAs from 
all vendors. IBM’s spec does not, however, describe whether vertical retrace  should 
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be  waited for  before  loading  the DAC, nor  does it mention  whether video should be 
left enabled while loading  the DAC, leaving cloners to choose whatever approach 
they  desire-and,  alas,  every VGA cloner seems to have selected a  different  approach. 
I tested four clone VGAs from different manufacturers,  some in a 20 MHz  386 machine 
and some  in a 10 MHz  286 machine. Two  of the four waited for vertical retrace before 
loading the DAC; two didn’t. Two of the four blanked the display  while  loading the DAC, 
resulting  in  flickering  bars  across the screen. One showed  speckled  pixels spattered across 
the  top of the  screen while the DAC  was being  loaded. Also, not  one was able to load 
all  256 DAC locations without showing some sort of garbage on  the screen for  at least 
one  frame,  but that’s not  the BIOS’S fault; it’s a  problem  endemic to the VGA. 

Thesefindings lead me inexorably to the conclusion that  the BIOS should not be p used to load the DAC dynamically. That is, $you i-e loading  the DAC just once in 
preparation for a  graphics session-sort of a DAC mode set-by all means load by 
way of the BIOS. No one will care that some  garbage  is displayed for a  single 
frame; heck, I have boards that bounce andflicker and show garbage every  time I 
do a  mode  set, and the  amount of garbage  produced by loading  the DAC once is 
far  less noticeable. If; however, you intend to load the DAC repeatedly for color 
cycling, avoid the BIOS DAC load functions like  the plague. They will bring you 
only heartache. 

As but  one example of the unsuitability of the BIOS  DAC-loading functions  for color 
cycling, imagine that you want  to  cycle  all  256 colors 70 times a  second, which  is once 
per  frame.  In order to accomplish that, you  would normally wait for  the start of the 
vertical sync signal (marking  the end of the  frame),  then call the BIOS  to load the 
DAC. On some boards-boards  with  BIOSes that  don’t wait for vertical  sync before 
loading the DAC-that will work pretty well;  you will, in fact, load the DAC once  a 
frame. On  other boards, however, it will  work  very poorly indeed; your program will 
wait for the start of  vertical  sync, and  then  the BIOS will wait for  the  start of the  next 
vertical  sync,  with the result being  that  the DAG gets loaded only once every two 
frames. Sadly, there’s no way, short of actually profiling the  performance of  BIOS 
DAC loads, for you to know  which sort of  BIOS is installed in a  particular  computer, 
so unless you  can  always control  the  brand of VGA your software will run  on, you 
really can’t afford to color cycle by calling the BIOS. 
Which is not to say that  loading  the DAC directly is a picnic either, as  we’ll see next. 

Loading the DAC Directly 
So we must  load the DAC directly  in order to perform color  cycling. The DAC is loaded 
directly by sending (with an OUT instruction) the  number of the DAC location to be 
loaded to the DAC Write Index register at 3C8H and  then  performing  three OUTs 
to  write an RGB triplet to the DAC Data register at 3C9H. This  approach  must be 
repeated 256  times to load the  entire DAG, requiring over a  thousand OUTs in all. 
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There is another, somewhat  faster approach,  but  one  that has its  risks.  After an RGB 
triplet is written to the DAC Data  register, the DAC Write Index register automati- 
cally increments to point to the  next DAC location, and this repeats indefinitely  as 
successive  RGB triplets are written  to the DAG. By taking  advantage of this feature, 
the  entire DAC can  be loaded  withjust 769 OUTs: one OUT to the DAC Write Index 
register and 768 OUTs to the DAC Data  register. 
So what’s the drawback? Well, imagine that as you’re loading the DAG, an interrupt- 
driven TSR (such as a  program switcher or multitaker) activates and writes to the 
DAC;  you could end  up with quite  a mess on the  screen, especially  when  your pro- 
gram resumes and continues writing  to the DAC-but in all likelihood to the wrong 
locations. No problem, you say;just disable interrupts for the  duration. Good idea- 
but it takes much  longer to  load the DAC than  interrupts should be  disabled  for.  If, 
on  the  other  hand, you set the  index for each DAC location separately,  you can 
disable interrupts 256 times, once as each DAG location is loaded, without problems. 
As I commented in the last chapter, I don’t have  any gruesome tale  to relate that 
mandates taking the slower but safer road and setting the  index for each DAC loca- 
tion  separately  while interrupts  are disabled.  I’m  merely  hypothesizing as to  what 
ghastly  mishaps could happen. However,  it’s been my experience  that anything that 
can happen  on  the PC does happen eventually; there  are  just too dang many PCs out 
there for it  to  be  otherwise.  However, load the DAC any way you  like; just  don’t 
blame  me if  you get a call from  someone who’s  claims that your program sometimes 
turns  their screen into  something resembling month-old yogurt.  It’s not really  your 
fault, of  course-but  try explaining that to them! 

A Test Program  for  Color Cycling 
Anyway, the  choice of  how  to load the DAC  is yours.  Given that I’m not providing  you 
with  any  hard-and-fast  rules  (mainly  because there  don’t seem  to  be any), what  you 
need is a tool so that you  can experiment with  various  DAC-loading approaches  for 
yourself, and that’s  exactly  what  you’ll find in Listing 34.1. 
Listing 34.1 draws a  band of vertical lines, each one pixel  wide,  across the  screen. 
The attribute of each vertical line is one  greater than that of the  preceding  line, so 
there’s a smooth gradient of attributes from left  to right.  Once everything is set up, 
the  program starts  cycling the colors stored in  however  many DAC locations are 
specified by the CYCLE-SIZE equate; as  many  as  all 256 DAC locations  can  be  cycled. 
(Actually, CYCLE-SIZE-1 locations are cycled,  because  location 0 is kept  constant in 
order to keep  the background and  border colors from changing,  but CYCLE-SIZE 
locations are loaded, and it’s the  number of locations we can load without problems 
that we’re interested in.) 
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LISTING  34.1 134- 1 .ASM 
; F i l l s  a   b a n d   a c r o s s   t h e   s c r e e n   w i t h   v e r t i c a l   b a r s   i n   a l l   2 5 6  
; a t t r i b u t e s ,   t h e n   c y c l e s   a   p o r t i o n   o f   t h e   p a l e t t e   u n t i l   a   k e y   i s  
; p ressed .  
: Assemble w i th  MASM or  TASM 

USE-BIOS equ 

GUARD-AGAINST-INTS equ 

WAIT-VSYNC equ 

CYCLE-SIZE equ 
SCREEN-SEGMENT equ 
SCREEN-WIDTH-IN-BYTES equ 
INPUT-STATUS-1 
DAC-READ-INDEX 

equ 

DAC-WRITE-INDEX 
equ 

DAC-DATA 
eclu 
equ 

1 

1 

1 

0 

256 
OaOOOh 
320 
03dah 
03c7h 
03c8h 
03c9h 

: s e t   t o  1 t o   u s e  BIOS f u n c t i o n s   t o   a c c e s s   t h e  
; DAC.  0 t o   r e a d   a n d   w r i t e   t h e  DAC d i r e c t l y  
;1 t o   t u r n   o f f   i n t e r r u p t s  a n d   s e t   w r i t e   i n d e x  
: b e f o r e   l o a d i n g   e a c h  DAC l o c a t i o n .  0 t o   r e l y  
; on t h e  DAC a u t o - i n c r e m e n t i n g  
; s e t   t o  1 t o   w a i t   f o r   t h e   l e a d i n g  edge o f  
; v e r t i c a l   s y n c   b e f o r e   a c c e s s i n g   t h e  DAC, 0 
; n o t   t o   w a i t  
; s e t   t o  1 t o   u s e  REP INS6  and REP OUTSB when 
; a c c e s s i n g   t h e  DAC d i r e c t l y ,  0 t o   u s e  
; IN/STOSB  and LOOSB/OUT 
;# o f  DAC l o c a t i o n s   t o   c y c l e ,   2 5 6  max 
;mode 1 3 h   d i s p l a y  memory  segment 
; I  o f  b y t e s   a c r o s s   t h e   s c r e e n   i n  mode 13h 
; i n p u t   s t a t u s  1 r e g i s t e r   p o r t  
;DAC Read I n d e x   r e g i s t e r  
;DAC W r i t e   I n d e x   r e g i s t e r  
;DAC D a t a   r e g i s t e r  

i f  NOT-8088 
.286 

e n d i  f ; NOT-8088 

.model  smal  1 

.s tack   lOOh 

.da ta  
;S to rage  f o r  a l l  256 DAC l o c a t i o n s ,   o r g a n i z e d   a s   o n e   t h r e e - b y t e  
; ( a c t u a l l y   t h r e e   6 - b i t   v a l u e s ;   u p p e r   t w o   b i t s  o f  e a c h   b y t e   a r e n ' t  
; s i g n i f i c a n t )  RGB t r i p l e t   p e r   c o l o r .  
Pa le t teTempdb   256*3   dup (? )  

s t a r t :  
. code 

mov ax.@data 
mov ds ,ax  

; S e l e c t  VGA's s t a n d a r d   2 5 6 - c o l o r   g r a p h i c s  mode,  mode 13h. 
mov ax.0013h :AH - 0: s e t  mode f u n c t i o n ,  
i n t  10h ; AL - 13h:  mode # t o   s e t  

;Read a l l  256 DAC l o c a t i o n s   i n t o   P a l e t t e T e m p   ( 3   6 - b i t   v a l u e s .   o n e  
; e a c h   f o r   r e d ,   g r e e n ,   a n d   b l u e ,   p e r  DAC l o c a t i o n ) .  

i f  WAIT-VSYNC 
;Wa i t  f o r  t h e   l e a d i n g   e d g e   o f   t h e   v e r t i c a l   s y n c   p u l s e :   t h i s   e n s u r e s  
; t h a t  we r e a d   t h e  DAC s t a r t i n g   d u r i n g   t h e   v e r t i c a l   n o n - d i s p l a y  
; p e r i o d .  

W a i t N o t V S y n c :   ; w a i t   t o   b e   o u t   o f   v e r t i c a l   s y n c  
mov dx.INPUTLSTATUS-1 

i n  a l . d x  
a n d   a l . 0 8 h  
j n z   W a i t N o t V S y n c  

i n  a1 .dx  
and a1 .08h 

WaitVSync: ; w a i t   u n t i l   v e r t i c a l   s y n c   b e g i n s  
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j z  WaitVSync 
end i  f 

i f  USE-BIOS 
mov a x . l O l 7 h  

sub   bx .bx  
mov cx .256 
mov dx .seg   Pa le t teTemp 
mov es .dx  
mov d x . o f f s e t   P a l e t t e T e m p  

i n t  10h 
e l s e  
i f  GUARD-AGAINST-INTS 

mov cx.CYCLELSIZE 
mov d i   . s e g   P a l e t t e T e m p  
mov e s . d i  
mov d i   . o f f s e t   P a l e t t e T e m p  
sub ah.ah 

mov dx.DAC-READ-INDEX 
mov a l . a h  
c l  i 
o u t   d x . a l  
mov d x ,  DAC-DATA 
i n   a l . d x  
s t o s b  
i n   a l . d x  
s t o s b  
i n   a 1 , d x  
s t o s b  
s t i  
i n c  ah 
1 oop  DACStoreLoop 

mov dx,DAC-READ-INDEX 
sub a1 .a1 
o u t   d x . a l  
mov d i   , s e g   P a l e t t e T e m p  
mov e s . d i  
mov d i   . o f f s e t   P a l e t t e T e m p  
mov dx ,  DAC-DATA 

mov cx.CYCLELSIZE*3 
r e p   i n s b  

mov cx.CYCLE-SIZE 

i n   a l . d x  
s t o s b  
i n   a l . d x  
s t o s b  
i n  a1 .dx 
s t o s b  
1 oop  DACStoreLoop 

DACStoreLoop: 

e l s e  : !GUARD-AGAINST-INTS 

i f  NOTL8088 

e l s e  :!NOT_8088 

DACStoreLoop: 

e n d i  f 
e n d i  f 

e n d i f  : U S E - B I O S  

:WAIT_VSYNC 

:AH - 1 0 h :   s e t  DAC f u n c t i o n ,  
: AL - 17h :   read  DAC b l o c k   s u b f u n c t i o n  
: s t a r t   w i t h  DAC l o c a t i o n  0 
: r e a d   o u t   a l l   2 5 6   l o c a t i o n s  

: p o i n t  ES:DX t o   a r r a y   i n   w h i c h  
: t h e  DAC v a l u e s   a r e   t o   b e   s t o r e d  
: r e a d   t h e  DAC 
:!USE-BIOS 

:# o f  DAC l o c a t i o n s   t o   l o a d  

:dump t h e  DAC i n t o   t h i s   a r r a y  
: s t a r t   w i t h  DAC l o c a t i o n  0 

: s e t   t h e  DAC l o c a t i o n  # 

: g e t   t h e   r e d   c o m p o n e n t  

;ge t   t he   g reen   componen t  

: g e t   t h e   b l u e   c o m p o n e n t  

: s e t   t h e   i n i t i a l  DAC l o c a t i o n   t o  0 

:dump t h e  DAC i n t o   t h i s   a r r a y  

: r e a d  CYCLELSIZE DAC l o c a t i o n s   a t   o n c e  

:# o f  DAC l o c a t i o n s   t o   l o a d  

; g e t   t h e   r e d   c o m p o n e n t  

: g e t   t h e   g r e e n   c o m p o n e n t  

: g e t   t h e   b l u e   c o m p o n e n t  

: NOTL8088 
:GUARDLAGAINST_INTS 
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;Draw a s e r i e s   o f   1 - p i x e l - w i d e   v e r t i c a l   b a r s   a c r o s s   t h e   s c r e e n   i n  
: a t t r i b u t e s  1 th rough   255 .  

mov ax,SCREEN-SEGMENT 
mov es .ax  
mov di.50*SCREEN-WIOTH-IN-BYTES : p o i n t  ES:OI t o   t h e   s t a r t  

c l  d 
mov d x . l O O   : d r a w   1 0 0   l i n e s   h i g h  

mov a l . 1   : s t a r t   e a c h   l i n e   w i t h   a t t r  1 
mov cx.SCREEN-WIDTH-IN-BYTES :do a f u l l   l i n e   a c r o s s  

s t o s b   : d r a w  a p i x e l  
a d d   a l . l   : i n c r e m e n t   t h e   a t t r i b u t e  
a d c   a l . 0  : i f  t h e   a t t r i b u t e   j u s t   t u r n e d  

: o f   l i n e  5 0   o n   t h e   s c r e e n  

RowLoop: 

ColumnLoop: 

: o v e r   t o  0. i n c r e m e n t  it t o  1 
: b e c a u s e   w e ' r e   n o t   g o i n g   t o  
: c y c l e  OAC l o c a t i o n  0. so  
: a t t r i b u t e  0 won ' t   change 

1 oop  Col  umnLoop 
dec  dx 
j n z  RowLoop 

: C y c l e   t h e   s p e c i f i e d   r a n g e   o f  DAC l o c a t i o n s   u n t i l  a key  i s  p ressed .  
Cyc leLoop:  
; R o t a t e   c o l o r s   1 - 2 5 5   o n e   p o s i t i o n   i n   t h e   P a l e t t e T e m p   a r r a y :  
: l o c a t i o n  0 i s  a l w a y s   l e f t   u n c h a n g e d  so  t h a t   t h e   b a c k g r o u n d  
: a n d   b o r d e r   d o n ' t   c h a n g e .  

p u s h   w o r d   p t r   P a l e t t e T e m p + ( l * 3 )   ; s e t   a s i d e   P a l e t t e T e m p  
p u s h   w o r d   p t r   P a l e t t e T e m p + ( l * 3 ) + 2  ; s e t t i n g   f o r   a t t r  1 
mov cx .254 
mov s i . o f f s e t   P a l e t t e T e m p + ( 2 * 3 )  
mov d i , o f f s e t   P a l e t t e T e m p + ( l * 3 )  
mov ax .ds  

mov cx,   254*3/ 2 
mov es .ax  

r e p  movsw ; r o t a t e   P a l e t t e T e m p   s e t t i n g s  
: f o r   a t t r s  2 t h r o u g h   2 5 5   t o  
: a t t r s  1 t h r o u g h   2 5 4  

POP b x   : g e t   b a c k   o r i g i n a l   s e t t i n g s  
POP a x  : f o r   a t t r i b u t e  1 and  move 
s tosw : them t o   t h e   P a l e t t e T e m p  
mov e s : [ d i ] , b l  : l o c a t i o n   f o r   a t t r i b u t e  255 

i f  WAIT-VSYNC 
: W a i t   f o r   t h e   l e a d i n g   e d g e   o f   t h e   v e r t i c a l   s y n c   p u l s e :   t h i s   e n s u r e s  
: t h a t  we r e l o a d   t h e  OAC s t a r t i n g   d u r i n g   t h e   v e r t i c a l   n o n - d i s p l a y  
: p e r i o d .  

WaitNotVSync2: 
mov dx.INPUT-STATUS-1 

i n   a l . d x  
a n d   a l . 0 8 h  
j n z  Wai tNotVSync2 

i n  a l . d x  
and  a l .08h 
j z  WaitVSync2 

e n d i f  ;WAIT_VSYNC 

i f  USE-BIOS 
; S e t   t h e   n e w ,   r o t a t e d   p a l e t t e .  

WaitVSync2: 

;wa 

;wa 

it t o   b e   o u t  o f  v e r t i c a l   s y n c  

i t  u n t i l   v e r t i c a l   s y n c   b e g i n s  
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mov a x . l O l 2 h  

sub  bx .bx  
mov cx.CYCLE-SIZE 
mov dx ,seg  Pa le t teTemp 
mov es .dx  
mov d x , o f f s e t   P a l e t t e T e m p  

i n t  10h 
e l s e  : !USE-BIOS 
i f  GUARD-AGAINST-INTS 

mov cx.CYCLE-SIZE 
mov s i   . o f f s e t   P a l e t t e T e m p  
sub  ah.ah 

mov dx,DAC-WRITE-INDEX 
mov a1 ,ah 
c l  i 
o u t   d x . a l  
mov dx ,  DAC-DATA 
1  odsb 
o u t   d x . a l  
1  odsb 
o u t   d x , a l  
1  odsb 
o u t   d x . a l  
s t i  
i n c   a h  
1  oop  DACLoadLoop 

mov dx.DAC_WRITE-INDEX 
sub  a1 ,a l  
o u t   d x . a l  
mov s i   . o f f s e t   P a l e t t e T e m p  
mov dx  , DAC-DATA 

mov cx,CYCLE_SIZE*3 
r e p  o u t s b  

e l s e  :!NOTL8088 
mov cx.CYCLE-SIZE 

1  odsb 
o u t   d x . a l  
1  odsb 
o u t   d x , a l  
1  odsb 
o u t   d x , a l  
l o o p  DACLoadLoop 

e n d i  f : NOTL8088 

DACLoadLoop: 

e l s e  :!GUARD-AGAINST-INTS 

i f  NOT-8088 

DACLoadLoop: 

e n d i  f ;GUARDLAGAINSTLINTS 
e n d i f  ;USE-BIOS 

;See i f  a   key   has   been  p ressed.  
mov ah,Obh 
i n t  21h 
and  a1  .a1 
j z  Cyc l   eLoop 

:C1 e a r   t h e   k e y p r e s s .  
mov ah .1  
i n t  21h 

:AH - 1 0 h :   s e t  OAC f u n c t i o n ,  
: AL - 1 2 h :   s e t  DAC b l o c k   s u b f u n c t i o n  
: s t a r t   w i t h  DAC l o c a t i o n  0 
:# o f  DAC l o c a t i o n s   t o   s e t  

; p o i n t  ES:DX t o   a r r a y   f r o m   w h i c h  
: t o   l o a d   t h e  DAC 
; l o a d   t h e  DAC 

:I\ o f  DAC l o c a t i o n s   t o  1  oad 
: l o a d   t h e  DAC f r o m   t h i s   a r r a y  
; s t a r t   w i t h  DAC l o c a t i o n  0 

; s e t   t h e  DAC l o c a t i o n  # 

: s e t   t h e   r e d   c o m p o n e n t  

: s e t   t h e   g r e e n   c o m p o n e n t  

: s e t   t h e   b l u e   c o m p o n e n t  

: s e t   t h e   i n i t i a l  DAC l o c a t i o n   t o  0 
: l o a d   t h e  DAC f r o m   t h i s   a r r a y  

: l o a d  CYCLE-SIZE DAC l o c a t i o n s   a t   o n c e  

:# o f  DAC l o c a t i o n s   t o   l o a d  

: s e t   t h e   r e d   c o m p o n e n t  

: s e t   t h e   g r e e n   c o m p o n e n t  

: s e t   t h e   b l u e   c o m p o n e n t  

;DOS c h e c k   s t a n d a r d   i n p u t   s t a t u s   f n  

: i s  a  key   pend ing? 
: n o .   c y c l e  some more 

:DDS k e y b o a r d   i n p u t   f n  

Changing  Colors  without Writing Pixels 647 



: R e s t o r e   t e x t  mode and  done. 
mov ax,  0003h 
i n t  10h 
mov ah,4ch 
i n t  21h 

e n d   s t a r t  

:AH - 0: s e t  mode f u n c t i o n ,  
: AL - 03h: mode I t o   s e t  
:DOS t e r m i n a t e   p r o c e s s   f n  

The big question is,  How does Listing 34.1 cycle colors? Via the BIOS or directly? 
With interrupts  enabled  or  disabled? Et ceteru? 
However  you like, actually. Four  equates at the  top of Listing 34.1 select  the  sort of 
color cycling performed; by changing  these  equates and CYCLE-SIZE, you can  get  a 
feel  for how  well various approaches  to  color cycling  work  with  whatever combina- 
tion of computer system and VGA you care  to test. 
The USE-BIOS equate is simple.  Set USEBIOS to 1 to  load  the DAC through  the 
block-load-DAC  BIOS function, or to 0 to  load  the DAC directly with OUTS. 
If USE-BIOS is 1, the only other equate of interest is WAIT-VSYNC. If WAIT-VSYNC 
is 1, the  program waits for  the  leading  edge of vertical sync before  loading  the DAC; 
if WAIT-VSYNC is 0, the  program doesn’t wait before  loading.  The effect of setting 
or  not setting WAIT-VSYNC depends  on whether  the BIOS  of the VGA the  program 
is running  on waits for vertical sync before  loading  the DAC.  You  may end  up with a 
double wait, causing color cycling to  proceed  at half speed, you  may end  up with no 
wait at all, causing cycling to  occur  far  too rapidly (and almost certainly with hideous 
on-screen  effects),  or you may actually end  up cycling at the proper one-cycle-per- 
frame  rate. 
If USEBIOS is 0, WAIT-VSYNC still applies. However,  you will always want  to set 
WAIT-VSYNC to 1 when USE-BIOS is 0; otherwise, cycling  will occur  much  too fast, 
and a good  deal of continuous  on-screen  garbage is likely to make  itself evident as 
the  program loads the DAC non-stop. 
If USEBIOS is 0, GUARD-AGAINST-INTS determines  whether  the possibility of 
the DAC loading process being interrupted is guarded  against by disabling  inter- 
rupts  and setting  the write index  once  for every location  loaded and whether  the 
DAC’s autoincrementing  feature is relied upon  or  not. 
If GUARD-AGAINST-INTS is 1, the following sequence is followed for  the  loading 
of each DAC location in turn:  Interrupts  are  disabled,  the DAC Write Index  register 
is set appropriately,  the RGB triplet  for  the  location is written to  the DAC Data  regis- 
ter, and  interrupts  are  enabled.  This is the slow but safe approach  described  earlier. 
Matters get still more  interesting if GUARD-AGAINST-INTS is 0. In  that case, if 
NOT-8088 is 0, then  an  autoincrementing  load is performed in a  straightforward 
fashion;  the DAC Write Index register is set  to  the  index of the first location to load 
and  the RGB triplet is sent to the DAC  by  way of three LODSB/OUT DX& pairs, 
with LOOP repeating  the process for  each of the  locations  in  turn. 
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If, however, NOT-8088 is 1, indicating  that  the processor is a 286 or  better  (perhaps 
AT-LEA!jT-286 would  have been  a  better  name),  then after the initial DAC Write 
Index value  is set, all  768 DAC locations are  loaded with a single REP OUTSB. This 
is clearly the fastest approach,  but  it  runs  the risk, albeit remote,  that  the  loading 
sequence will be interrupted  and  the DAC registers will become garbled. 
My own experience with  Listing  34.1 indicates that  it is sometimes possible  to load 
all 256 locations cleanly but sometimes it is not; it all depends  on  the processor, the 
bus speed,  the VGA, and  the DAG, as  well  as whether  autoincrementation and REP 
OUTSB are used. I’m not going to bother to report how  many  DAC locations I could 
successfully load with each of the various approaches,  for  the simple reason that I 
don’t have enough  data points to make reliable suggestions, and I don’t want you 
acting on my comments and  running  into trouble down the pike. You  now have a 
versatile tool with  which  to probe  the limitations of  various  DAC-loading approaches; 
use i t  to perform your own tests on  a sampling of the slowest hardware configura- 
tions you expect your programs to run  on,  then leave a  generous safety margin. 
One thing’s for  sure, though-you’re not going to be able to cycle  all 256 DAC loca- 
tions cleanly once  per  frame  on  a reliable basis  across the  current generation of PCs. 
That’s why I said at  the  outset  that  brute force isn’t appropriate to the task  of color 
cycling. That doesn’t mean  that color cycling can’t be used,  just  that  subtler ap- 
proaches must be employed. Let’s look at some of those alternatives. 

Color Cycling Approaches  that Work 
First  of  all, I’d like  to point  out  that when color cycling does work,  it’s a thing of 
beauty.  Assemble  Listing  34.1 so that it doesn’t use the BIOS to load the DAC, doesn’t 
guard against interrupts,  and uses 286specific instructions if your computer sup- 
ports them.  Then tinker with CYCLE-SIZE until  the color cycling is perfectly clean 
on your computer. Color cycling looks stunningly smooth,  doesn’t it? And this is 
crude color cycling, working with the default color set;  switch  over  to a  color set that 
gradually works  its way through various hues and saturations, and you could  get 
something  that looks for all the world  like true-color animation  (albeit working with 
a small subset of the full spectrum  at any one  time). 
Given that, how can we take advantage of color cycling  within the limitations of 
loading  the DAC? The simplest approach,  and my personal favorite, is that of cycling 
a  portion of the DAC while using the rest of the DAC locations for  other, non-cycling 
purposes. For example, you might allocate 32 DAC locations to the  aforementioned 
sunset, reserve 160 additional locations for use in drawing a static mountain scene, 
and employ the remaining 64 locations to draw images of planes, cars, and  the like 
in the foreground. The 32 sunset colors  could be cycled  cleanly, and the other 224  colors 
would remain the same throughout the program, or would change only  occasionally. 
That suggests a second possibility:  If  you  have  several different color sets to be cycled, 
interleave the loading so that only one color set is cycled per  frame. Suppose you are 
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animating a night  scene, with  stars  twinkling in  the background,  meteors streaking 
across the sky, and a spaceship moving  across the screen with  its jets flaring. One way 
to  produce most of the necessary  effects  with little effort would be  to draw the stars 
in several attributes and  then cycle the colors for those attributes, draw the  meteor 
paths in successive attributes, one for  each pixel, and  then cycle the colors for those 
attributes, and  do much  the same for  the jets. The only remaining task  would  be to 
animate  the spaceship across the  screen, which is not a particularly  difficult  task. 

The  key to  getting  all the color  cycling to work in the above  example,  howevel; 
would be to assign  each  color  cycling  task  a dlfferentpart of the DAC, with  each 
part cycled  independently as needed. r f ;  as is likely, the total number ofDAC loca- 
tions cycledproved to be too great to manage in one frame,  you could  simply  cycle 
the  colors  of the stars after one frame, the colors of the meteors  after the next, and 
the colors  of the jets after yet another frame, then  back  around to cycling the 
colors  of  the stars. By splitting up the DAC in this manner  and  interleaving  the 
cycling tasks, you can  perform  a  great  deal  of  seemingly  complex  color  animation 
without  loading very much  of the DAC during  any  one frame. 

Yet another  and somewhat odder workaround is that of  using  only  128 DAC loca- 
tions and page flipping. (Page flipping in 256color modes involves using the VGAs 
undocumented  256color modes; see Chapters 31, 43, and 47 for details.) In this 
mode of operation, you’d  first  display page 0, which is drawn entirely with colors 0- 
127. Then you’d draw page 1 to look just like page 0, except  that colors 128-255 are 
used instead. You’d load DAC locations 128-255  with the  next cycle settings for the 
128 colors you’re using, then you’d  switch  to  display the  second page with the new 
colors. Then you could modify page 0 as needed, drawing in colors 0-127, load DAC 
locations 0-127  with the  next color cycle  settings, and flip  back to page 0. 
The idea is that you  modify  only those DAC locations that  are not used  to  display  any 
pixels on  the  current  screen.  The advantage  of  this is not, as  you might think,  that 
you don’t  generate garbage on  the screen when  modifying  undisplayed DAC loca- 
tions; in fact, you do, for a spot of interference will  show up if you set a DAC location, 
displayed or  not,  during display  time. No, you  still  have  to  wait for vertical  sync and 
load only during vertical blanking before  loading  the DAC when page flipping with 
128 colors; the advantage is that since none of the DAG locations you’re modifying is 
currently displayed,  you can  spread the loading out over two or more vertical  blank- 
ing periods-however long it takes. If you did this  without the 128-color page flipping, 
you might get odd on-screen effects  as some of the colors changed  after  one  frame, 
some after the  next, and so o n - o r  you might not; changing  the  entire DAG in chunks 
over  several frames is another possibility worth considering. 
Yet another  approach  to color cycling  is that of loading a bit of the DAC during each 
horizontal blanking period.  Combine  that with counting scan lines, and you could 
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vastly expand the number of simultaneous  on-screen  colors by cycling  colors us a f r u m  is 
displayed, so that  the color set changes from scan line to  scan line down the  screen. 
The possibilities are endless. However,  were I to be writing  256-color  software that 
used color cycling, I’d  find out how  many  colors could be cycled after the start of 
vertical  sync on the slowest computer  I  expected  the software  to run  on, I’d  lop off at 
least 10 percent  for a safety margin, and I’d  structure my program so that no color 
cycling set exceeded  that size, interleaving several color cycling  sets if necessary. 
That’s what I’ddo. Don’t let yourself  be held back by  my limited imagination, though! 
Color cycling  may be  the most complicated of all the color control  techniques, but 
it’s  also the most  powerful. 

Odds and Ends 
In my experience, when  relying on the  autoincrementing  feature while loading the 
DAC, the Write Index register  wraps  back from 255 to 0, and likewise  when  you load 
a block  of  registers through  the BIOS. So far as I know,  this  is a characteristic of the 
hardware, and should  be consistent; also,  Richard  Wilton documents this behavior 
for  the BIOS in the VGA bible, Programmer’s Guide to PC Video Systems, Second Edition 
(Microsoft Press), so you should  be able  to count  on it. Not that  I see that DAC index 
wrapping is  especially  useful, but it  never hurts  to  understand exactly  how  your  re- 
sources behave, and I never  know  when one of  you might come up with a serviceable 
application for any particular quirk. 

The DAC Mask 
There’s one register in the DAC that  I haven’t mentioned yet, the DAC  Mask register 
at 03C6H. The operation of  this register is simple but powerful; it can  mask  off  any 
or all  of the 8 bits of pixel information coming into  the DAC from  the VGA. When- 
ever a bit  of the DAG Mask register is 1 ,  the  corresponding bit of pixel information is 
passed along to the DAC to  be  used  in looking up the RGB triplet to be  sent  to  the 
screen. Whenever a bit of the DAC  Mask register is 0, the  corresponding pixel  bit is 
ignored,  and a 0 is used for that bit position in all  look-ups of  RGB triplets. At the 
extreme, a DAC Mask setting of 0 causes  all 8 bits  of  pixel information to be  ignored, 
so DAC location 0 is looked up for every  pixel, and  the  entire screen  displays the 
color stored in DAC location 0. This makes setting the DAC  Mask register to 0 a 
quick and easy  way to blank the screen. 

Reading the DAC 
The DAC can be  read directly, via the DAC Read Index register at 3C7H and the 
DAG Data  register at 3C9H, in much  the same way as it can  be  written  directly by  way 
of the DAC Write Index register-complete  with autoincrementing  the DAG Read 
Index register after every three reads.  Everything  I’ve  said about writing to  the DAC 
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applies  to reading from the DAC. In fact, reading from the DAC can  even  cause  snow, 
just as loading the DAC does, so it should ideally  be performed during vertical  blanking. 
The DAC can also be read by  way  of the BIOS in either of two ways. INT 10H, func- 
tion 1OH (AH=lOH),  subfunction 15H (AL=15H) reads out a single DAC location, 
specified by  BX; this function  returns the RGB triplet  stored in the specified location 
with the  red  component in the lower 6 bits of DH, the  green  component  in  the lower 
6 bits of CH, and  the blue component in the lower 6 bits  of  CL. 
INT 10H, function  10H  (AH=lOH),  subfunction  17H (AL=17H) reads out a block of 
DAC locations of length CX, starting with the location specified by  BX.  ES:DX must 
point to the buffer in which the RGB values from  the specified block  of DAC loca- 
tions are to be stored. The form of  this buffer (RGB,  RGB,  RGB ..., with three bytes 
per RGB triple) is exactly the same  as that of the buffer used when calling the BIOS 
to load  a block  of registers. 
Listing 34.1 illustrates reading  the DAC both  through  the BIOS block-read function 
and directly,  with the direct-read code capable of conditionally assembling to either 
guard against interrupts  or  not  and to use REP INSB or  not. As you can see,  reading 
the DAC settings is  very much symmetric  with setting  the DAC. 

Cycling Down 
And so, at  long last, we come to the  end of our discussion  of color control on  the 
VGA.  If it has been  more complex than  anyone  might have imagined, it has also 
been most rewarding. There’s as much obscure but very real potential  in  color con- 
trol as there is anywhere on the VGA, which is to say that there’s a very great  deal of 
potential  indeed.  Put color cycling or color paging together with the page flipping 
and image drawing techniques  explored elsewhere in this book, and you’ll  leave the 
audience gasping and wondering “How the heck did they do that?” 
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chapter 35

bresenham is fast , and fast is good



For all the complexity~,of graphics design and  programming, surprisingly few primi- 
tive functions lie at the.&  &&most graphics software. Heavily used primitives include 
routines  that draw dati cles, area fills, bit block logical transfers, and, of course, 
lines. For many  ye&, computer  graphics were created primarily with specialized 
line-drawing hardware, so lines are in  a way the Zinguafranca of computer graphics. 
Lines are jii de variety of microcomputer  graphics  applications today, nota- 

Probably the best-khown formula  for drawing lines on a computer display is called 
Bresenham’s line-drawing algorithm. (We  have to be specific here because there is 
also a less-well-known Bresenham’s circle-drawing algorithm.)  In this chapter, 1’11 
present two implementations  for  the EGA and VGA of Bresenham’s line-drawing 
algorithm, which provides decent  line quality and excellent drawing speed. 
The first implementation is in rather plain C, with the  second  in not-so-plain assem- 
bly, and they’re  both  pretty  good  code. The assembly implementation is damned 
good  code,  in  fact,  but  ifyou want  to  know whether it’s the fastest Bresenham’s imple- 
mentation possible, I must tell  you that it isn’t. First  of all, the  code  could  be  sped up 
a bit by shuffling and  combining  the various error-term  manipulations, but  that re- 
sults in truly cryptic code. I wanted  you to be  able to relate  the  original  algorithm  to 
the final code, so I skipped  those optimizations. Also, write mode 3, which is unique 
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to the VGA, could be used for considerably faster drawing. I’ve described write mode 
3 in  earlier  chapters, and I strongly recommend its use in VGA-only line drawing. 
Second, horizontal, vertical, and diagonal lines could be special-cased, since those 
particular lines require little calculation and can be drawn very  rapidly. (This is espe- 
cially true of horizontal lines, which can be drawn 8 pixels at a time.) 
Third, run-length slice line drawing could be used to  significantly reduce  the  num- 
ber of calculations required  per pixel, as  I’ll demonstrate in the  next two chapters. 
Finally, unrolled loops and/or duplicated code could  be  used  to  eliminate  most of the 
branches in the final assembly implementation, and because x86  processors are notori- 
ously  slow at branching, that would  make quite a difference in overall performance. If 
you’re interested in unrolled loops and similar  assembly techniques, I refer you to the 
first part of  this  book. 
That brings us neatly to my final point: Even  if I didn’t know that there were further 
optimizations to be made to my line-drawing implementation,  I’d assume that there 
were. As I’m  sure  the  experienced assembly programmers  among you  know, there 
are  dozens of  ways to tackle any problem in assembly, and  someone else always seems 
to have come up with a trick that never occurred  to you. I’ve incorporated a sugges- 
tion made by Jim Mackraz in the  code  in this chapter, and  I’d be most  interested  in 
hearing of  any other tricks or tips  you  may  have. 
Notwithstanding, the  linedrawing implementation in Listing 35.3 is plentyfast enough 
for most purposes, so let’s get  the discussion  underway. 

The Task at Hand 
There  are two important characteristics of  any linedrawing function. First, it  must 
draw a reasonable approximation of a  line. A computer screen has limited resolu- 
tion, and so a line-drawing function  must actually approximate  a straight line by 
drawing a series of pixels in  what amounts  to a  jagged  pattern  that generally pro- 
ceeds in the desired direction. That  pattern of pixels must reliably  suggest to  the 
human eye the  true  line it represents. Second, to be usable, a line-drawing function 
must befast. Minicomputers and mainframes generally have hardware that  performs 
line drawing, but most microcomputers offer no such assistance. True, nowadays 
graphics accelerators such as the S3 and AT1 chips have line drawing hardware, but 
some other accelerators don’t;  when drawing lines on  the latter  sort of chip,  when 
drawing on  the CGA,  EGA, and VGA, and when drawing sorts of lines not  supported 
by line-drawing hardware as  well, the PC’s CPU must draw lines on its own, and, as 
many users of graphics-oriented software know, that can be a slow process indeed. 
Line drawing quality and  speed derive from two factors: The algorithm used to draw 
the line and  the  implementation of that  algorithm. The first implementation (writ- 
ten  in Borland C++)  that I’ll be presenting in this chapter illustrates the workings of 
the algorithm and draws lines at a  good  rate.  The second implementation, written in 
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assembly language and callable directly from Borland C++, draws lines at extremely 
high speed, on the order of three to six times faster than  the C version. Between 
them,  the two implementations illuminate Bresenham’s line-drawing algorithm and 
provide high-performance line-drawing capability. 
The difficulty in drawing a line lies in generating  a set of  pixels that, taken together, 
are a reasonable facsimile  of a  true  line. Only horizontal, vertical, and 1:l diagonal 
lines can be drawn precisely along  the  true line being represented; all other lines 
must be approximated  from  the array of pixels that a given video mode supports, as 
shown in Figure 35.1. 
Considerable thought has gone  into  the design of line-drawing algorithms, and a 
number of techniques  for drawing high-quality lines have been developed. Unfortu- 
nately, most of these techniques were developed for powerful, expensive graphics 
workstations and  require very high resolution, a large color palette, and/or floating- 
point hardware. These  techniques tend to perform poorly and  produce less  visually 
impressive results on all but  the best-endowed PCs. 
Bresenham’s  line-drawing algorithm, on the other  hand, is uniquely suited to micro- 
computer implementation in that it requires no floating-point operations, no divides, 
and  no multiplies inside the line-drawing loop. Moreover, it can be implemented 
with surprisingly little code. 

Bresenham’s Line-Drawing  Algorithm 
The key to grasping Bresenham’s algorithm is to understand  that when drawing an 
approximation of a line on a finite-resolution display, each pixel drawn will lie either 
exactly on the true line or to one side or  the  other of the  true  line.  The  amount by 
which the pixel actually  drawn  deviates from  the  true line is the mor of the line 
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Approximating a true line from a pixel array. 
Figure 35.1 

Bresenham Is Fast, and Fast Is Good 657 



drawing at that  point. As the drawing of the  line progresses from one pixel to the 
next,  the error can be used to  tell when, given the  resolution of the display, a  more 
accurate  approximation of the  line  can be drawn by placing  a given pixel one  unit of 
screen  resolution away from its predecessor in either  the  horizontal  or  the vertical 
direction, or  both. 
Let’s examine  the case of drawing a  line  where  the  horizontal, or X length of the  line 
is greater  than  the vertical, or Y length,  and  both lengths  are  greater  than 0. For 
example,  suppose we are drawing a  line  from (0,O) to (5,2), as  shown in Figure 35.2. 
Note that Figure 35.2  shows the  upper-left-hand  corner of the  screen as (O,O), rather 
than  placing (0,O) at its more traditional lower-left-hand corner  location.  Due  to  the 
way in which the PC’s graphics  are mapped to  memory, it is simpler  to work within 
this framework, although  a  translation of Y from  increasing downward to  increasing 
upward  could be effected easily enough by simply subtracting  the Y coordinate  from 
the  screen  height  minus 1; if you are  more  comfortable with the  traditional  coordi- 
nate system, feel  free  to modify the code in Listings  35.1 and 35.3. 
In Figure 35.2, the  endpoints of the  line fall  exactly on displayed  pixels.  However, no 
other  part of the  line squarely intersects  the  center of a pixel, meaning  that all other 
pixels will have to be plotted as approximations of the  line.  The  approach to  ap- 
proximation  that Bresenham’s algorithm takes is to move  exactly 1 pixel along  the 
major dimension of the  line  each time a new pixel is drawn, while  moving 1 pixel 
along  the  minor  dimension  each time the  line moves more  than halfway between 
pixels along  the  minor  dimension. 
In Figure 35.2, the X dimension is the major dimension.  This  means  that 6 dots, one 
at each of X coordinates 0,1,2,3,4,  and 5, will be drawn. The trick, then, is to decide 
on the  correct Y coordinates  to  accompany  those X coordinates. 

I 0 1 2 3 4 5 6 
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Drawing between two pixel endpoints. 
Figure 35.2 
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It’s easy enough to select the Y coordinates by  eye in Figure 35.2. The  appropriate Y 
coordinates  are 0,  0, 1, 1, 2, 2, based on  the Y coordinate closest to the  line  for  each 
X coordinate.  Bresenham’s  algorithm makes the same selections, based on  the same 
criterion.  The  manner in  which it does this is  by keeping  a  running  record of the 
error of the line-that is, how far  from  the  true  line  the  current Y coordinate is-at 
each X coordinate, as shown in Figure 35.3. When the  running  error of the line 
indicates  that the  current Y coordinate deviates from the  true  line to the  extent  that 
the adjacent Y coordinate would be closer to the line, then  the  current Y coordinate 
is changed to that  adjacent Y coordinate. 
Let’s take a moment to follow the steps Bresenham’s algorithm would go through in 
drawing the line  in Figure 35.3. The initial pixel is drawn at (O,O), the starting  point 
of the line. At this point  the  error of the line is 0. 
Since X is the  major  dimension, the  next pixel has an X coordinate of 1. The Y 
coordinate of this pixel will  be whichever of 0 (the last Y coordinate)  or 1 (the adja- 
cent  Ycoordinate in the  direction of the  end  point of the  line)  the  true line at this X 
coordinate is closer to. The  running  error  at this point is B minus A, as shown in 
Figure 35.3. This amount is less than 1/2 (that is, less than halfway to the  next Y 
coordinate), so the Y coordinate  does  not  change  at X equal to 1. Consequently, the 
second pixel is drawn at ( 1  ,0). 
The  third pixel has  an X coordinate of 2. The  running  error  at this point is C minus 
A, which is greater than 1/2 and  therefore closer to the  next  than  to  the  current Y 
coordinate.  The  third pixel is drawn at (2,1), and 1 is subtracted  from  the  running 
error to compensate  for  the  adjustment of one pixel in the  current Y coordinate. 
The  running  error of the pixel actually drawn at this point is C minus D. 

0 1 2 3 4 5 6 
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The  error  term in Bresenham k algorithm. 
Figure 35.3 
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The  fourth pixel has an X coordinate of 3. The  running  error  at this point is E minus 
D; since this is  less than  1/2,  the  current Y coordinate  doesn’t  change.  The  fourth 
pixel is drawn at (3 , l ) .  
The fifth pixel has an X coordinate of 4. The  running  error  at this point is F minus 
D; since this is greater  than  1/2,  the  current Y coordinate advances. The  third pixel 
is drawn at (4,Z) , and 1 is subtracted  from  the  running  error.  The  error of the pixel 
drawn at this point is G minus F. 
Finally, the sixth pixel is the  end  point of the  line.  This pixel has an X coordinate of 
5. The  running  error  at this point is G minus G, or 0, indicating  that this point is 
squarely on  the  true line, as  of course  it  should be given that it’s the  end  point, so the 
current Y coordinate  remains  the  same.  The  end  point of the  line is drawn at  (5,2), 
and  the  line is complete. 
That’s really  all there is  to Bresenham’s algorithm.  The  algorithm is a process of 
drawing a pixel  at  each possible coordinate  along  the  major  dimension of the line, 
each with the closest possible coordinate  along  the  minor  dimension.  The  running 
error is used to  keep track of when the  coordinate  along  the  minor  dimension  must 
change in order to  remain as close as possible to the  true  line.  The above description 
of the case where X is the  major  dimension, Y is the  minor  dimension,  and  both 
dimensions  are  greater  than  zero is readily generalized  to all eight  octants in  which 
lines  could  be  drawn, as we  will see in  the C implementation. 
The above discussion summarizes  the nature  rather  than  the exact  mechanism of 
Bresenham’s linedrawing  algorithm. I’ll provide a brief seat-of-the-pants discussion 
of the  algorithm  in  action when we get  to  the C implementation of the  algorithm; 
for a full mathematical  treatment,  I  refer you to pages 433-436 of Foley and Van 
Dam’s Fundamentals ofInteractive Computer  Graphics (Addison-Wesley, 1982) , or pages 
72-78 of the  second  edition of that  book, which was published  under  the  name 
Computer  Graphics:  Principles and Practice (Addison-Wesley, 1990).  These sources  pro- 
vide the derivation of the integer-only, divide-free version of the  algorithm, as  well  as 
Pascal code  for  drawing lines in one of the  eight possible octants. 

Strengths  and  Weaknesses 
The overwhelming strength of Bresenham’s  line-drawing  algorithm is speed. With 
no divides, no  floating-point  operations,  and no  need  for variables that won’t fit in 
16 bits, it is perfectly  suited  for PCs. 
The weakness of Bresenham’s  algorithm is that  it  produces relatively  low-quality lines 
by comparison with most other line-drawing  algorithms.  In particular, lines  gener- 
ated with Bresenham’s  algorithm can tend  to look a little jagged.  On  the PC, however, 
jagged lines are  an inevitable  consequence of  relatively  low resolution  and  a small 
color  set, so lines drawn with Bresenham’s  algorithm  don’t look all that  much differ- 
ent from  lines drawn in  other ways. Besides,  in most applications, users are far  more 
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interested in the overall picture  than in the primitive elements  from which that pic- 
ture is built. As a  general  rule, any collection of  pixels that  trend  from  point A to 
point B in  a straight fashion is accepted by the eye  as a line. Bresenham’s algorithm 
is successfully used by many current PC programs, and by the standard of this wide 
acceptance the algorithm is certainly good  enough. 
Then,  too, users hate waiting for their computer to finish drawing. By any standard 
of drawing performance, Bresenham’s algorithm excels. 

An Implementation in C 
It’s  time  to get down and look at some actual working code. Listing 35.1 is a C imple- 
mentation of Bresenham’s line-drawing algorithm for  modes OEH, OFH, IOH, and 
12H of the VGA, called as function EVGALiie. Listing 35.2 is a sample program to 
demonstrate  the use of EVGALine. 

LISTING 35.1 135- 1 .C 
/ *  
* C i m p l e m e n t a t i o n   o f   B r e s e n h a m ’ s   l i n e   d r a w i n g   a l g o r i t h m  
* f o r   t h e  EGA and VGA.  Works i n  modes OxE. OxF. 0x10.  and  0x12. 

* C o m p i l e d   w i t h   B o r l a n d  C++ 

* By Michael   Abrash 
*/  

* 

* 

#i ncl   ude  <dos . h> / *  c o n t a i n s  MK-FP macro * /  

# d e f i n e  EVGA-SCREEN-WIDTHKIN-BYTES 80 
/*  memory o f f s e t   f r o m   s t a r t   o f  

one row t o   s t a r t   o f   n e x t  * /  
# d e f i n e  EVGA-SCREEN-SEGMENT  OxAOOO 

{{define  GCINDEX Ox3CE 
/*  d i s p l a y  memory  segment * /  

/ *  G r a p h i c s   C o n t r o l  1 e r  
I n d e x   r e g i s t e r   p o r t  * /  

l d e f  i ne GC-DATA Ox3CF 
/ *  G r a p h i c s   C o n t r o l l e r  

D a t a   r e g i s t e r   p o r t  * /  
# d e f i n e  SET-RESET-INDEX 0 / *  i n d e x e s   o f   n e e d e d  * /  
# d e f i n e  ENABLELSETLRESET-INDEX 1 I* G r a p h i c s   C o n t r o l l e r  * /  
# d e f i n e  BIT-MASK-INDEX 8 / *  r e g i s t e r s  * /  

/ *  
* Draws a d o t   a t  ( X O . Y O )  i n  w h a t e v e r   c o l o r   t h e  EGA/VGA hardware i s  
* s e t  up f o r .  L e a v e s   t h e   b i t  mask s e t   t o   w h a t e v e r   v a l u e   t h e  
* d o t   r e q u i r e d .  
* I  

v o i d  EVGADot(X0, Y O )  
u n s i g n e d   i n t  X O :  / *  c o o r d i n a t e s   a t   w h i c h   t o   d r a w   d o t ,   w i t h  * I  
u n s i g n e d   i n t  Y O :  / *  (0 .0 )  a t   t h e   u p p e r   l e f t   o f   t h e   s c r e e n  * /  
{ 

u n s i g n e d   c h a r   f a r   * P i x e l B y t e P t r :  
uns igned   cha r   P i xe lMask ;  
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/ *  C a l c u l a t e   t h e   o f f s e t   i n   t h e   s c r e e n   s e g m e n t   o f   t h e   b y t e  i n  

P i x e l B y t e P t r  - MK-FP(EVGA-SCREEN-SEGMENT. 
w h i c h   t h e   p i x e l   l i e s  * /  

( Y O  * EVGA-SCREEN-WIDTH-IN-BYTES ) + ( X0 / 8 ) I ;  

/* Generate a mask w i t h  a 1 b i t   i n   t h e   p i x e l ' s   p o s i t i o n   w i t h i n   t h e  

P ixe lMask  - Ox80 >> ( X0 & 0x07 1; 

/*  S e t   u p   t h e   G r a p h i c s   C o n t r o l l e r ' s  B i t  Mask r e g i s t e r   t o   a l l o w  

s c r e e n   b y t e  * /  

o n l y   t h e   b i t   c o r r e s p o n d i n g   t o   t h e   p i x e l   b e i n g   d r a w n   t o  
b e   m o d i f i e d  * /  

outportb(GC-INDEX. BIT-MASK-INDEX); 
outportb(GC-DATA.  PixelMask);  

/ *  D r a w  t h e   p i x e l .   B e c a u s e  o f  t h e   o p e r a t i o n   o f   t h e   s e t i r e s e t  
f e a t u r e   o f   t h e  EGA/VGA.  t h e   v a l u e   w r i t t e n   d o e s n ' t   m a t t e r .  
The s c r e e n   b y t e   i s  ORed i n   o r d e r   t o   p e r f o r m  a r e a d   t o   l a t c h   t h e  
d i s p l a y  memory. t h e n   p e r f o r m  a w r i t e   i n   o r d e r   t o   m o d i f y  it. * I  

1 
* P i x e l B y t e P t r  1 -  OxFE: 

/ *  
* Draws a l i n e   i n   o c t a n t  0 o r  3 ( I D e l t a X J  >- De l taY  ) .  
*/  

vo id   Oc tan tO(X0 .  Y O ,  D e l t a X .   D e l t a Y .   X D i r e c t i o n )  
u n s i g n e d   i n t  X O .  Y O :  / *  c o o r d i n a t e s   o f   s t a r t   o f   t h e   l i n e  * /  
u n s i g n e d   i n t   D e l t a X .  De l taY ;  / *  l e n g t h   o f   t h e   l i n e   ( b o t h  > 0 )  * /  
i n t   X D i r e c t i o n :  I* 1 i f  l i n e  i s  drawn l e f t   t o   r i g h t ,  

I 
-1 i f  d r a w n   r i g h t   t o   l e f t  * /  

i n t  Del   taYx2; 
i n t  Del taYx2MinusDel taXx2;  
i n t   E r r o r T e r m :  

/* Set  up i n i t i a l   e r r o r   t e r m  a n d   v a l u e s   u s e d   i n s i d e   d r a w i n g   l o o p  */  
De l taYx2  - De l taY  * 2: 
Del taYx2MinusDel taXx2 - De l taYx2  - ( i n t )  ( De l taX  * 2 1; 
E r ro rTe rm - De l taYx2  - ( i n t )   D e l t a X :  

/ *  D r a w  t h e   l i n e  * /  
EVGADot(X0. Y O ) ;  I* d r a w   t h e   f i r s t   p i x e l  * /  
w h i l e  ( D e l t a X - -  ) ( 

/ *  See i f  i t ' s   t i m e   t o  advance   t he  Y c o o r d i n a t e  * /  
i f  ( E r ro rTe rm >- D ) { 

back down * /  
/*  Advance  the Y c o o r d i n a t e  & a d j u s t   t h e   e r r o r   t e r m  

YO++; 
E r ro rTe rm +- Del taYx2MinusDel taXx2;  

I e l s e  { 
/ *  Add t o   t h e   e r r o r   t e r m  */ 
Er ro rTe rm +- Oel taYx2:  

1 
X0 +- X D i r e c t i o n ;  / *  advance   the  X c o o r d i n a t e  * /  
EVGADot(XD. Y O ) ;  /*  draw a p i x e l  * /  

1 
1 

/*  
* Draws a l i n e   i n   o c t a n t  1 or 2 ( I D e l t a X l  < De l taY  1. 
* /  
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v o i d   O c t a n t l ( X 0 .  Y O ,  D e l t a X .   D e l t a Y .   X D i r e c t i o n )  
u n s i g n e d   i n t  X O .  Y O :  / *  c o o r d i n a t e s  o f  s t a r t  o f  t h e   l i n e  * /  
u n s i g n e d   i n t   D e l t a X .  D e l t a Y :  I* l e n g t h   o f   t h e   l i n e   ( b o t h  > 0 )  * I  
i n t  X D i  r e c t i  on : I* 1 i f  l i n e   i s  drawn l e f t   t o   r i g h t ,  

{ 
-1 i f  drawn r i g h t   t o   l e f t  * I  

i n t   D e l t a X x 2 ;  
i n t   D e l t a X x Z M i n u s D e l t a Y x 2 :  
i n t  Er ro rTerm:  

/ *  Set  up i n i t i a l   e r r o r   t e r m  and  va lues 
De l taXxZ - Del taX * 2: 
De l taXxZMinusDel taYx2 - Del taXx2 - ( i n t  
E r r o r T e r m  - Del taXx2 - ( i n t )   D e l t a Y :  

u s e d   i n s i d e   d r a w i n g   l o o p  *I  

) ( De l taY * 2 ) :  

EVGADot(X0. Y O ) :  I* d r a w   t h e   f i r s t   p i x e l  * I  
w h i l e  ( D e l t a Y - -  ) [ 

/*  See i f  i t ' s   t i m e   t o  advance  the  X c o o r d i n a t e  *I 
i f  ( E r r o r T e r m  >- 0 1 ( 

I* Advance  the  X c o o r d i n a t e  & a d j u s t   t h e   e r r o r   t e r m  
back  down *I  

X0 +- X D i  r e c t i o n ;  
E r r o r T e r m  +- De l taXx2MinusDel taYx2:  

I* Add t o   t h e   e r r o r   t e r m  * /  
E r r o r T e r m  +- De l taXxZ:  

1 e l s e  { 

1 
YO++: I* advance  the  Y c o o r d i n a t e  * I  
EVGADot(X0. Y O ) :  I* draw a p i x e l  *I 

1 
1 

I* 
* Draws a l i n e  on t h e  EGA o r  VGA.  
* I  

void  EVGALine(X0.  Y O ,  X 1 .  Y 1 .  C o l o r )  
i n t  X O ,   Y O :  I* c o o r d i n a t e s   o f   o n e   e n d   o f   t h e   l i n e  *I  
i n t  X 1 .  Y 1 :  / *  c o o r d i n a t e s   o f   t h e   o t h e r   e n d   o f   t h e   l i n e  * /  
c h a r   C o l o r :  I* c o l o r   t o  draw 1 i n e   i n  * I  
I 

i n t   D e l t a X .   D e l t a Y :  
i n t  Temp: 

I* S e t   t h e   d r a w i n g   c o l o r  * I  

I* P u t   t h e   d r a w i n g   c o l o r   i n   t h e   S e t / R e s e t   r e g i s t e r  *I 
outportb(GC-INDEX, SET-RESETLINDEX): 
outportb(GC_DATA.  Color) ;  
/ *  Cause a l l   p l a n e s   t o   b e   f o r c e d   t o   t h e   S e t / R e s e t   c o l o r  * /  
outportb(GC_INDEX. ENABLELSET-RESETLINDEX):  
outportb(GC_DATA, OxF); 

/ *  Save h a l f   t h e   l i n e - d r a w i n g   c a s e s   b y   s w a p p i n g  Y O  w i t h  Y 1  
and X0 w i t h  X 1  i f  Y O  i s   g r e a t e r   t h a n  Y 1 .  As  a r e s u l t ,   D e l t a Y  
i s  always > 0 ,  a n d   o n l y   t h e   o c t a n t  0 - 3  cases  need t o  be 
hand1  ed. *I  

i f  ( Y O  > Y 1  ) I 
Temp - Y O ;  
Y O  - Y 1 :  
Y 1  - Temp; 
Temp - X O :  
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x0 - x1: 
X 1  - Temp: 

} 

/ *  H a n d l e   a s   f o u r   s e p a r a t e   c a s e s ,   f o r   t h e   f o u r   o c t a n t s   i n   w h i c h  

De l taX  - X 1  - X O :  / *  c a l c u l a t e   t h e   l e n g t h   o f   t h e   l i n e  

De l taY  - Y 1  - Y O :  
i f  ( De l taX  > 0 ) I 

Y 1  i s   g r e a t e r   t h a n  Y O  * /  

i n  e a c h   c o o r d i n a t e  * I  

i f  ( De l taX  > De l taY  { 

} e l s e  { 

1 
1 e l s e  { 

De l taX  = -Del  t a x :  / *  a b s o l u t e   v a l u e   o f   D e l t a X  * I  
i f  ( D e l t a X  > De l taY  { 

1 e l s e  { 

1 

OctantO(X0.  Y O ,  D e l t a X .   D e l t a Y .  1); 

O c t a n t l ( X 0 ,  Y O ,  De l taX ,   De l taY .  1): 

OctantO(X0, Y O ,  De l taX .   De l taY .  -1): 

O c t a n t l ( X 0 .  Y O ,  De l taX .   De l taY .  -1) :  

1 

/*  R e t u r n   t h e   s t a t e   o f   t h e  E G A I V G A  t o  normal *I  
outportb(GC-INDEX. ENABLE-SET-RESET-INDEX): 
outportb(GC-DATA. 0 ) :  
outportb(GC-INDEX. BIT-MASK-INDEX): 
outportb(GC-DATA. OxFF): 

1 

LISTING 35.2 135-2.C 
/*  
* Sample  program t o   i l l u s t r a t e  E G A I V G A  l i n e   d r a w i n g   r o u t i n e s .  

* C o m p i l e d   w i t h   B o r l a n d  C++ 

* By Michae l   Abrash 
*I  

* 

* 

# inc lude   <dos .h>  I* c o n t a i n s   g e n i n t e r r u p t  * /  

# d e f i n e  GRAPHICS-MODE Ox10 
i d e f i  ne TEXT-MODE 0x03 
# d e f i n e  BIOSpVIDEO-INT Ox10 
#de f  i ne X-MAX 640 / *  w o r k i n g   s c r e e n   w i d t h  * I  
# d e f i n e  Y-MAX 348 /*  w o r k i n g   s c r e e n   h e i g h t  * /  

e x t e r n   v o i d   E V G A L i n e ( ) :  

/ *  
S u b r o u t i n e   t o   d r a w  a r e c t a n g l e   f u l l   o f   v e c t o r s ,   o f   t h e   s p e c i f i e d  

* l e n g t h  and c o l o r ,   a r o u n d   t h e   s p e c i f i e d   r e c t a n g l e   c e n t e r .  
*I  

vo id   Vec to rsUp(XCen te r .  YCenter .   XLength.   YLength.   Color )  
i n t  XCenter.   YCenter:  / *  c e n t e r  o f  r e c t a n g l e   t o  fill *I  
i n t  XLength.  YLength: I* d i s t a n c e   f r o m   c e n t e r   t o   e d g e  

i n t   C o l o r :  I* c o l o r   t o   d r a w   l i n e s   i n  * I  
I 

o f   r e c t a n g l e  *I  

i n t  WorkingX.  WorkingY: 
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I* L i n e s   f r o m   c e n t e r  
WorkingX = XCenter - 
WorkingY = YCenter - 

f o r  ( : WorkingX < ( 
EVGALine(XCenter. 

I* L i n e s   f r o m   c e n t e r  
WorkingX = XCenter + 
WorkingY = YCenter - 
f o r  ( : WorkingY < ( 

EVGALine(XCenter. 

I* L i n e s   f r o m   c e n t e r  
WorkingX = XCenter + 
WorkingY = YCenter + 

t o   t o p   o f   r e c t a n g l e  * I  
XLength: 
YLength:  
XCenter + XLength ) :  WorkingX++ ) 
YCenter.   WorkingX,  WorkingY.  Color) ;  

t o   r i g h t   o f   r e c t a n g l e  *I  
XLength - 1; 
Y Length  : 
YCenter + YLength ) :  WorkingY++ ) 
YCenter .   Work ingX.   Work ingY.   Color) :  

t o   b o t t o m   o f   r e c t a n g l e  * I  
XLength - 1: 
YLength - 1;  

f o r  ( ; WorkingX >- ( XCenter - XLength 1;  WorkingX" ) 
EVGALine(XCenter.   YCenter.   WorkingX.  WorkingY,  Color) :  

I* L i n e s   f r o m   c e n t e r   t o   l e f t   o f   r e c t a n g l e  * I  
WorkingX - XCenter - XLength;  
WorkingY - YCenter + YLength - 1; 
f o r  ( : WorkingY >- ( YCenter - YLength ) :  Work ingY- -  1 

1 
EVGALine(XCenter.   YCenter.   WorkingX.  WorkingY.  Color ) :  

I* 
* Sample  program t o  d r a w   f o u r   r e c t a n g l e s   f u l l   o f   l i n e s .  
*/ 

v o i d   m a i n 0  
I 

char  temp: 

/ *  S e t   g r a p h i c s  mode *I  
-AX = GRAPHICSLMDDE: 
geninterrupt(BIOS-VIDEO-1NT): 

I* Draw e a c h   o f   f o u r   r e c t a n g l e s   f u l l   o f   v e c t o r s  *I  
VectorsUp(XLMAX I 4, Y-MAX I 4, X-MAX I 4. 

VectorsUp(X-MAX * 3 / 4, YLMAX I 4. X-MAX I 4. 

VectorsUp(XLMAX I 4,  Y-MAX * 3 I 4.  XKMAX / 4.  

VectorsUp(X-MAX * 3 I 4. YLMAX * 3 / 4 .  X-MAX I 4 .  

Y L M A X  I 4.  1); 

Y-MAX f 4. 2 ) :  

Y-MAX / 4 .  3 ) ;  

Y"AX / 4, 4 ) :  

I* W a i t   f o r   t h e   e n t e r   k e y  t o  be p r e s s e d  *I  
scanf   ( "Xc" ,   &temp) ; 

I* R e t u r n   b a c k   t o   t e x t  mode * I  

geninterrupt(BIOS-VIDE0-INT): 
-AX - TEXT-MODE; 

1 

Looking at EVGALine 
The EVGALine function itself performs  four  operations. EVGALie first sets up  the 
VGAs hardware so that all  pixels drawn will be in the desired color. This is  accom- 
plished by setting two of the VGA's registers, the Enable Set/Reset register and  the 
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Set/Reset register. Setting  the Enable  Set/Reset to the value OFH,  as  is done in 
EVGALine, causes all drawing to  produce pixels in the color  contained  in  the  Set/ 
Reset register. Setting the Set/Reset  register to the passed color, in  conjunction with 
the Enable  Set/Reset  setting of OFH, causes all drawing done by EVGALine and  the 
functions it calls to  generate  the passed color. In summary, setting up  the Enable 
Set/Reset and Set/Reset registers in this way causes the  remainder of EVGALine to 
draw a  line  in the specified color. 
EVGALine next  performs a simple check  to cut  in half the  number of line  orienta- 
tions that must  be handled separately. Figure 35.4 shows the  eight possible line 
orientations  among which a  Bresenham’s  algorithm  implementation  must distin- 
guish. (In  interpreting Figure 35.4, assume that lines radiate  outward  from  the  center 
of the figure, falling into  one of eight  octants  delineated by the  horizontal  and verti- 
cal axes and  the two diagonals.) The  need  to categorize lines into these  octants falls 
out of the  major/minor axis nature of the  algorithm; the  orientations  are distin- 
guished by which coordinate  forms  the  major axis and by whether  each of X and Y 
increases or decreases  from the line  start to the line end. 

A moment  of  thought will show, howevel; that four of  the  line  orientations are p redundant. Each  of  the  four  orientations  for which DeltaY, the Y component  of  the 
line, is less than 0 (that  is, for which the  line  start Y coordinate is  greater  than  the 
line  end Y coordinate) can be transformed into  one of the  four  orientations for 
which the  line  start Y coordinate  is  less  than  the  line  end Y coordinate simply  by 
reversing the  line  start  and end  coordinates, so that  the  line  is drawn in  the  other 
direction. EVGALine does  this by swapping (XO, YO) (the  line start coordinates) 
with (XI, Y l )  (the  line end  coordinates)  whenever YO is  greater  than YI .  

This  accomplished, EVGALine must still distinguish among  the  four  remaining line 
orientations.  Those  four  orientations  form two major  categories,  orientations  for 
which the X dimension is the major axis of the line and  orientations  for which the Y 
dimension is the major axis. As shown in Figure 35.4, octants 1 (where X increases 
from  start to finish) and 2 (where X decreases  from  start to finish) fall into  the  latter 
category, and differ in only one respect, the direction in which the X coordinate 
moves when it changes.  Handling of the  running  error of the  line is exactly the same 
for  both cases, as one would expect given the symmetry  of lines  differing only in the 
sign  of DeltaX, the X coordinate of the line. Consequently, for  those cases where 
DeltaX is less than zero, the  direction of X movement is made negative, and  the 
absolute value of DeltaX is used for  error term calculations. 
Similarly, octants 0 (where X increases from  start to finish) and 3 (where X decreases 
from  start to finish) differ only in  the direction  in which the X coordinate moves 
when it  changes. The difference between line drawing in  octants 0 and 3 and line 
drawing in  octants 1 and 2 is that in  octants 0 and 3, since X is the major axis, the X 
coordinate  changes on every pixel of the line and  the Y coordinate  changes only 
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Decreasing Y 
\ Octant 5 A Octant 6 

D e l t a X  < 0 
D e l t a Y  < 0 
I D e l t a Y l  > I D e l t a X l   I D e l t a Y l  > I D e l t a X l  

D e l t a X  > 0 
D e l t a Y  < 0 f 

Octant 4 
D e l t a X  < 0 
D e l t a Y  < 0 
I O e l t a X l  > I D e l t a Y  1 

O e l t a Y  < 0 
I D e l t a X l  > I D e l t a Y  I 

Decreasing X 4 b increasing X 
I D e l t a X l  > I D e l t a Y l  
D e l t a X  < 0 
O e l t a Y  > 0 

Octant 3 

D e l t a X  < 0 
I D e l t a Y J  > J D e l t a X J   J D e l t a Y 1  > J D e l t a X J  

D e l t a X  > 0 
D e l t a Y  > 0 

Octant 1 
increasing Y 

Bresenharn b eight  possible line orientations. 
Figure 35.4 

when the  running  error of the  line dictates. In  octants 1 and 2, the Y coordinate 
changes on every pixel and  the X coordinate  changes only when the  running  error 
dictates,  since Y is the major axis. 
There is one line-drawing function  for  octants 0 and 3,  OctantO, and  one line-draw- 
ing  function  for  octants 1 and 2, Octantl. A single function with if statements  could 
certainly be used to handle all four  octants, but  at a significant performance cost. 
There is, on the  other  hand, very little performance cost to  grouping  octants 0 and 3 
together  and octants 1 and 2 together, since the two octants  in  each  pair differ only 
in the direction of change of the X coordinate. 
EVGALiie determines which line-drawing function to call and with what value for 
the direction of change of the X coordinate based on two criteria:  whether DeltaX is 
negative or  not,  and  whether  the absolute value of DeltaX (IDeltaXI) is  less than 
DeltaY or  not, as  shown in Figure 35.5. Recall that  the value of DeltaY, and  hence  the 
direction of change of the Y coordinate, is guaranteed to be non-negative as a  result 
of the  earlier  elimination of four of the  line  orientations. 
After calling the  appropriate  function to draw the line (more  on those  functions 
shortly), EVGALiie restores the state of the Enable  Set/Reset register to its default 
of zero.  In this state,  the  Set/Reset register has no effect, so it is not necessary to 
restore  the state of the  Set/Reset register as  well. EVGALine also restores the state of 
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ling X 

E VGALine j. decision  logic. 
Figure 35.5 

the Bit  Mask register  (which, as we  will see, is modified by EVGADot, the pixeldrawing 
routine actually used to  draw each pixel of the  lines produced by EVGALine) to its 
default of OFFH. While it would be more  modular  to have EVGADot restore  the  state 
of the Bit  Mask register  after drawing each  pixel,  it would  also be considerably slower 
to do so. The same  could  be said of having EVGADot set  the  Enable  Set/Reset and 
Set/Reset registers for  each pixel: While modularity would improve, speed would 
suffer markedly. 

Drawing  Each  Line 
The Octant0 and Octantl functions draw lines  for which IDeltaXl is greater  than 
DeltaY and lines  for which IDeltaXl is  less than  or  equal  to DeltaY, respectively. The 
parameters  to Octant0 and Octantl are the  starting  point of the  line,  the  length  of 
the  line  in  each  dimension, and XDirection, the amount by which the X coordinate 
should be changed when it moves. Direction must be either 1 (to draw  toward the 
right  edge of the  screen)  or -1 (to draw  toward the  left  edge of the screen), No value 
is required  for  the  amount by which the Y coordinate  should be changed; since 
DeltaY is guaranteed  to be positive, the Y coordinate always changes by 1 pixel. 
Octant0 draws lines  for which IDeltaXl is greater  than DeltaY. For such lines, the X 
coordinate of each pixel  drawn differs from  the previous pixel by either 1 or -1, 
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depending  on  the value of XDirection. (This makes it possible for Octant0 to draw 
lines in both  octant 0 and  octant 3.) Whenever ErrorTerm becomes non-negative, 
indicating that  the  next Y coordinate is a  better  approximation of the line  being 
drawn, the Y coordinate is increased by 1. 
Octantl draws lines for which IDeltaXl is less than  or  equal  to DeltaY. For these  lines, 
the Y coordinate of each pixel drawn is 1 greater  than  the Y coordinate of the previ- 
ous pixel. Whenever ErrorTerm becomes  non-negative,  indicating that  the  next X 
coordinate is a  better  approximation of the line  being  drawn,  the X coordinate is 
advanced by either 1 or -1, depending  on  the value of XDirection. (This makes it 
possible for Octantl to draw lines  in both  octant 1 and  octant 2.) 

Drawing Each  Pixel 
At the  core of Octant0 and Octantl is a pixel-drawing function, EVGADot.  EVGADot 
draws a pixel at  the specified coordinates  in whatever color the hardware of the VGA 
happens to be set up for. As described earlier, since the  entire line drawn by EVGALine 
is  of the same color, line-drawing performance is improved by setting the VGAs 
hardware up  once in EVGALine before  the  line is drawn, and  then drawing all the 
pixels in the line  in the same color via EVGADot. 
EVGADot makes certain  assumptions about  the screen. First, it assumes that  the 
address of the byte controlling  the pixels at  the  start of a given  row on  the screen is 
80 bytes after the start of the row immediately above it. In  other words, this imple- 
mentation of EVGADot only works for  screens  configured  to  be 80 bytes wide. Since 
this is the  standard  configuration of all  of the modes EVGALine is designed to work 
in, the assumption of 80 bytes per row should be no problem. If it is a  problem, however, 
EVGADot could easily be  modified to retrieve the BIOS integer variable at address 
0040:004A, which contains  the  number of bytes per row for  the  current video mode. 
Second, EVGADot assumes that  screen memory is organized as a  linear  bitmap start- 
ing  at address A000:0000, with the pixel at  the  upper left of the screen  controlled by 
bit 7 of the byte at offset 0, the  next pixel to the  right  controlled by bit 6, the  ninth 
pixel controlled by bit 7 of the byte at offset 1, and so on.  Further, it assumes that  the 
graphics  adapter’s  hardware is configured such that  setting the Bit  Mask register to 
allow modification of only the bit  controlling  the pixel of interest  and  then ORing a 
value of  OFEH  with display  memory will draw that pixel correctly without affecting 
any other dots. (Note  that OFEH  is used rather  than OFFH or 0 because  some  opti- 
mizing compilers turn ORs with the  latter values into  simpler  operations or optimize 
them away entirely. As explained later, however,  it’s not  the value that’s ORed that 
matters, given the way  we’ve set up  the VGAs hardware; it’s the act of ORing itself, 
and  the value OFEH forces the compiler to perform  the OR operation.) Again, this is 
the  normal way in which modes OEH,  OFH, 10H,  and 12H operate. As described 
earlier, EVGADot also assumes that  the VGA is set up so that  each pixel drawn in the 
above-mentioned manner will be drawn in  the  correct color. 
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Given those assumptions, EVGADot becomes  a surprisingly simple function. First, 
EVGADot builds a far pointer that points to the byte  of  display memory  controlling 
the pixel to be drawn. Second,  a mask is generated consisting of zeros for all bits 
except  the bit controlling the pixel to be drawn. Third,  the Bit Mask register is set to 
that mask, so that  when display memory is read  and  then written, all  bits except  the 
one  that controls the pixel to be drawn will be left unmodified. 
Finally, OFEH is ORed with the display memory byte controlling the pixel to be drawn. 
ORing with OFEH first reads display memory, thereby loading the VGA's internal 
latches with the contents of the display  memory  byte controlling the pixel  to  be  drawn, 
and  then writes to display memory with the value OFEH. Because  of the  unusual way 
in which the VGA's data  paths work and  the way in which EVGALine sets up  the 
VGA's Enable Set/Reset and Set/Reset registers, the value that is written by the OR 
instruction is ignored.  Instead, the value that actually gets placed in display memory 
is the color that was  passed to EVGALine and placed  in the Set/Reset  register. The Bit 
Mask register, which was set up in step three above,  allows  only the single bit control- 
ling the pixel to be drawn to be set to this color value.  For more  on  the various 
machineries  the VGA brings to bear  on graphics data, look back to Chapter 25. 
The result of  all this is simply a single pixel drawn in the color set up in EVGALine. 
EVGADot may seem excessively complex  for  a  function  that  does nothing  more that 
draw one pixel, but  programming  the VGA isn't trivial (as we've seen in the early 
chapters of this part). Besides,  while the explanation of EVGADot is lengthy, the 
code itself is only five lines long. 
Line drawing would be somewhat faster if the  code of EVGADot were made  an inline 
part of Octant0 and Octantl, thereby saving the overhead of preparing  parameters 
and calling the function. Feel free to do this if  you  wish; I maintained EVGADot as a 
separate  function  for clarity and for ease  of inserting  a pixel-drawing function  for  a 
different graphics adapter,  should  that be desired. If  you do install a pixel-drawing 
function  for  a  different  adapter, or a fundamentally different  mode such as a 256- 
color SuperVGA mode,  remember to  remove the  hardware-dependent outportb lines 
in EVGALine itself. 

Comments on the C Implementation 
EVGALine does no  error checking whatsoever. My assumption in writing EVGALine 
was that  it would be ultimately used as the lowest-level primitive of a graphics soft- 
ware package, with operations such as error checking and clipping performed  at a 
higher level.  Similarly, EVGALine is tied to the VGA's screen coordinate system  of 
(0,O) to (639,199) (in  mode OEH), (0,O) to (639,349) (in  modes OFH and  lOH),  or 
(0,O) to (639,479) (in  mode  12H), with the  upper left corner  considered to be (0,O). 
Again, transformation from any coordinate system to the coordinate system used by 
EVGALine can be performed  at a higher level. EVGALine is specifically designed to 
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do  one thing: draw lines into  the display memory of the VGA. Additional  functional- 
ity can  be  supplied by the  code  that calls EVGALine. 
The version of EVGAlLine shown in Listing 35.1 is reasonably fast, but  it is not as fast 
as it might be. Inclusion of EVGADot directly into Octant0 and Octantl, and, indeed, 
inclusion of Octant0 and Octantl directly into EVGALine would speed  execution by 
saving the overhead of calling and  parameter passing. Handpicked register variables 
might  speed  performance as well,  as  would the use of word OUTs rather  than byte 
OUTs. A more significant performance  increase would come  from  eliminating sepa- 
rate calculation of the address and mask for  each pixel. Since the location of each 
pixel relative to  the previous pixel is known, the address and mask could simply be 
adjusted  from one pixel to the next, rather  than recalculated  from  scratch. 
These enhancements  are  not  incorporated  into  the  code in Listing 35.1 for  a  couple 
of reasons. One reason is that it’s important  that  the workings of the algorithm  be 
clearly visible in  the  code,  for  learning  purposes.  Once  the  implementation is under- 
stood, rewriting it for improved performance would certainly be a worthwhile exercise. 
Another reason is that when flat-out speed is needed, assembly language is the best 
way to go. Why produce  hard-to-understand C code to boost  speed a bit when  assem- 
bly-language code  can  perform  the same  task at two or  more times the  speed? 
Given which, a high-speed assembly language version of EVGALine would  seem  to 
be a logical next  step. 

Bresenham’s Algorithm  in Assembly 
Listing 35.3 is a high-performance  implementation of Bresenham’s algorithm, writ- 
ten  entirely  in assembly language. The  code is callable from C just as is Listing 35.1, 
with the same name, EVGALine, and with the same parameters.  Either of the two 
can  be  linked to any program  that calls EVGALine, since they appear to be identical 
to the calling program.  The only difference between the two versions is that  the 
sample program  in Listing 35.2 runs over three times as fast on a 486 with an ISA-bus 
VGA when calling the assembly-language version of EVGALine as when calling the C 
version, and  the difference would be considerably greater yet on a local bus, or with 
the use of write mode 3. Link each version with Listing 35.2 and  compare perfor- 
mance-the difference is startling. 

LISTING 35.3 135-3.ASM 
Fas t   assemb le r   imp lemen ta t i on  o f  B r e s e n h a m ‘ s   l i n e - d r a w i n g   a l g o r i t h m  
f o r   t h e  EGA and VGA.  Works i n  modes OEh. OFh. 10h.  and  12h. 
B o r l a n d  C++ n e a r - c a l l a b l e .  
Bit mask a c c u m u l a t i o n   t e c h n i q u e  when ( D e l t a X (  >= ( D e l t a Y l  

suggested   by  Jim Mackraz.  

Assembled w i t h  TASM 

By Michae l   Abrash 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
: C - c o m p a t i b l e   l i n e - d r a w i n g   e n t r y   p o i n t   a t  -EVGALine. 
: N e a r   C - c a l l a b l e   a s :  

EVGALine(X0. Y O ,  X 1 .  Y 1 .  C o l o r ) ;  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

model   smal l  
.code 

: Equates. 

EVGA-SCREEN-WIDTH-IN-BYTES equ 

EVGA-SCREEN-SEGMENT 
GC-INDEX 

SET-RESET-INDEX 
ENABLE-SET-RESET-INDEX 
BIT-MASK-INDEX 

: Stack   f rame.  

EVGALineParms s t r u c  
dw 
dw 

x0 dw 
Y O  dw 
x1 dw 
Y 1  dw 
Co lor   db  

db 
EVGALineParms  ends 

80 ;memory o f f s e t   f r o m   s t a r t   o f  
; one  row t o   s t a r t   o f   n e x t  
: i n   d i s p l a y  memory 

OaOOOh : d i s p l a y  memory segment 
3 c e h   ; G r a p h i c s   C o n t r o l l e r  

0 
1 
8 

: I n d e x   r e g i s t e r   p o r t  
: i ndexes   o f   needed  
; G r a p h i c s   C o n t r o l  1 e r  
: r e g i s t e r s  

;pushed BP 
: pushed   re tu rn   add ress  (make doub le  
: w o r d   f o r  f a r  c a l l )  
: s t a r t i n g  X c o o r d i n a t e   o f   l i n e  
; s t a r t i n g  Y c o o r d i n a t e  o f  l i n e  
;end ing  X c o o r d i n a t e   o f   l i n e  
;end ing  Y c o o r d i n a t e   o f   l i n e  
; c o l o r   o f   l i n e  
;dummy t o  pad t o  w o r d   s i z e  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; L ine   d raw ing   macros .  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: Macro t o   l o o p   t h r o u g h   l e n g t h   o f   l i n e ,   d r a w i n g   e a c h   p i x e l   i n   t u r n .  
; Used f o r   c a s e   o f   ( D e l t a X I  >- ( D e l t a Y l .  
: I n p u t :  

MOVE-LEFT: 1 i f  De l taX  < 0, 0 e l s e  
AL: p i x e l  mask f o r   i n i t i a l   p i x e l  
BX: ( D e l t a X I  
D X :  a d d r e s s   o f  GC d a t a   r e g i s t e r .   w i t h   i n d e x   r e g i s t e r   s e t   t o  

SI: De l taY  
i n d e x   o f  B i t  Mask r e g i s t e r  

E S : D I :  

LINE1  macro 
1 o c a l  
1 o c a l  
mov 

d i s p l a y  memory address o f  b y t e   c o n t a i n i n g   i n i t i a l  
p i x e l  

MOVE-LEFT 
L ineLoop.   MoveXCoord,   NextPixe l  , L i n e l E n d  
MoveToNextByte.   ResetBi tMaskAccumulator  
cx.   bx :# o f   p i x e l s   i n   l i n e  
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j c x z   L i n e l E n d   ; d o n e  i f  t h e r e   a r e   n o   m o r e   p i x e l s  
: ( t h e r e ' s   a l w a y s  a t  l e a s t   t h e  one p i x e l  
: a t   t h e   s t a r t   l o c a t i o n )  

s h l   s i . l  ;Del taY * 2 
mov b p . s i  : e r r o r   t e r m  
sub  bp.bx : e r r o r   t e r m   s t a r t s  a t  Oel taY * 2 - Oel taX 
s h l   b x . 1  :Del taX * 2 
sub s i  .bx :Del taY * 2 - De l taX  * 2 ( u s e d   i n   l o o p )  
add   bx .s i  ;Oel taY * 2 ( u s e d   i n   l o o p )  
mov ah .a l  ; s e t   a s i d e   p i x e l  mask f o r   i n i t i a l   p i x e l  

: w i t h  AL ( t h e   p i x e l  mask accumu la to r )  s e t  
: f o r   t h e   i n i t i a l   p i x e l  

L ineLoop:  

: See i f  i t ' s   t i m e   t o  advance  the Y c o o r d i n a t e   y e t .  

and  bp.bp  :see i f  e r r o r   t e r m   i s   n e g a t i v e  
j s  MoveXCoord  ;yes, s t a y   a t   t h e  same Y c o o r d i n a t e  

: Advance  the Y c o o r d i n a t e ,   f i r s t   w r i t i n g  all p i x e l s   i n   t h e   c u r r e n t  
: b y t e .   t h e n  move t h e   p i x e l  mask e i t h e r   l e f t   o r   r i g h t ,   d e p e n d i n g  
: on MOVE-LEFT. 

o u t   d x . a l   ; s e t   u p   b i t  mask f o r   p i x e l s   i n   t h i s   b y t e  
x c h g   b y t e   p t r   [ d i l  .a1 

: l o a d   l a t c h e s   a n d   w r i t e   p i x e l s ,   w i t h   b i t  mask 
: p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
; s e t / r e s e t   i s   e n a b l e d   f o r  all p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

add di.EVGALSCREEN-WIOTH_IN-BYTES ; i nc remen t  Y c o o r d i n a t e  
a d d   b p . s i   : a d j u s t   e r r o r   t e r m   b a c k  down 

: Move p i x e l  mask one p i x e l   ( e i t h e r   r i g h t   o r   l e f t ,   d e p e n d i n g  
: on MOVELLEFT). a d j u s t i n g   d i s p l a y  memory address when p i x e l  mask wraps. 

i f  MOVE-LEFT 

e l s e  

end i  f 

r o l   a h . 1  :move p i x e l  mask 1 p i x e l   t o   t h e   l e f t  

r o r   a h . 1  :move p i x e l  mask 1 p i x e l   t o   t h e   r i g h t  

j n c   R e s e t B i t M a s k A c c u m u l a t o r   : d i d n ' t   w r a p   t o   n e x t   b y t e  
j m p   s h o r t   M o v e T o N e x t B y t e   ; d i d   w r a p   t o   n e x t   b y t e  

; Move p i x e l  mask one p i x e l   ( e i t h e r   r i g h t   o r   l e f t ,   d e p e n d i n g  
: on MOVE-LEFT), a d j u s t i n g   d i s p l a y  memory a d d r e s s   a n d   w r i t i n g   p i x e l s  
: i n   t h i s   b y t e  when p i x e l  mask wraps. 

MoveXCoord: 

i f  MOVELLEFT 

e l s e  

end i  f 

add  bp.bx 

r o l   a h . 1  ;move p i x e l  mask 1 p i x e l   t o   t h e   l e f t  

r o r   a h . 1  ;move p i x e l  mask 1 p i x e l   t o   t h e   r i g h t  

j n c   N e x t P i x e l  : i f  s t i l l   i n  same b y t e ,  no need t o  

o u t   d x . a l   ; s e t   u p   b i t  mask f o r   p i x e l s   i n   t h i s   b y t e .  
x c h g   b y t e   p t r   C d i 1 , a l  

; i n c r e m e n t   e r r o r   t e r m  & keep same 

: m o d i f y   d i s p l a y  memory y e t  
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; l o a d   l a t c h e s   a n d   w r i t e   p i x e l s ,   w i t h   b i t  mask 
; p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
: s e t l r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
; v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

MoveToNextByte: 
i f  MOVE-LEFT 

e l s e  

e n d i  f 
ResetBi tMaskAccumulator :  

N e x t P i x e l  : 

dec d i   ; n e x t   p i x e l   i s   i n   b y t e   t o   l e f t  

i n c   d i  ; n e x t   p i x e l   i s   i n   b y t e   t o   r i g h t  

sub a1 .a1 

o r  a1 , a h   : a d d   t h e   n e x t   p i x e l   t o   t h e   p i x e l  mask 

1 oop  LineLoop 

; r e s e t   p i x e l  mask  accumulator  

; a c c u m u l a t o r  

: W r i t e   t h e   p i x e l s   i n   t h e   f i n a l   b y t e .  

L i n e l E n d :  
o u t   d x . a l   ; s e t   u p   b i t  mask f o r   p i x e l s   i n   t h i s   b y t e  
x c h g   b y t e   p t r   [ d i ] . a l  

; l o a d   l a t c h e s   a n d   w r i t e   p i x e l s ,   w i t h   b i t  mask 
; p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
; s e t l r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

endm 

; Macro t o   l o o p   t h r o u g h   l e n g t h   o f   l i n e ,   d r a w i n g   e a c h   p i x e l   i n   t u r n .  
: Used f o r   c a s e   o f   D e l t a X  < D e l t a Y .  
; I n p u t :  

MOVE-LEFT: 1 i f  De l taX < 0.  0 e l s e  
AL: p i x e l  mask f o r   i n i t i a l   p i x e l  
EX: I D e l   t a x  I 
D X :  a d d r e s s   o f  GC d a t a   r e g i s t e r .   w i t h   i n d e x   r e g i s t e r   s e t   t o  

S I :  Del taY 
ES:DI: d i s p l a y  memory a d d r e s s   o f   b y t e   c o n t a i n i n g   i n i t i a l  

i n d e x   o f   B i t  Mask r e g i s t e r  

p i x e l  

LINE2  macro MOVE-LEFT 
l o c a l   L i n e L o o p .  MoveYCoord.  ETermAction.  LineEEnd 
mov c x , s i  ;# o f   p i x e l s  i n  l i n e  
j c x z  LineEEnd :done i f  t h e r e   a r e   n o   m o r e   p i x e l s  
s h l   b x . 1  
mov bp.bx 
s u b   b p . s i  
s h l   s i  , I  
s u b   b x . s i  
add s i   . b x  

;De l taX * 2 
; e r r o r   t e r m  
: e r r o r   t e r m   s t a r t s   a t   D e l t a X  * 
;De l taY * 2 
:De l taX * 2 - De l taY * 2 (used 
;De l taX * 2 (used i n   l o o p )  

: S e t   u p   i n i t i a l   b i t  mask & w r i t e   i n i t i a l   p i x e l .  

o u t   d x , a l  
x c h g   b y t e   p t r   [ d i ] . a h  

: l o a d   l a t c h e s   a n d   w r i t e   p i x e l ,  

2 - De l taY 

i n   l o o p )  

w i t h   b i t  mask 
: p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
: s e t / r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  
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LineLoop: 

: See i f  i t ' s   t i m e   t o  advance  the  X c o o r d i n a t e   y e t .  

and  bp.bp ; s e e  i f  e r r o r   t e r m   i s   n e g a t i v e  
j ns   ETermAc t ion  ;no.  advance X c o o r d i n a t e  
a d d   b p . s i  : i n c r e m e n t   e r r o r   t e r m  & keep same 
j m p   s h o r t  MoveYCoord ; X c o o r d i n a t e  

ETermAct ion:  

: Move p i x e l  mask o n e   p i x e l   ( e i t h e r   r i g h t   o r   l e f t ,   d e p e n d i n g  
: on MOVE-LEFT). a d j u s t i n g   d i s p l a y  memory address  when p i x e l  mask  wraps. 

i f  MOVELLEFT 
r o l  a1 .1 
s b b   d i . 0  

r o r  a1 .1 
a d c   d i . 0  

o u t   d x . a l  
add  bp.bx 

e l s e  

e n d i  f 

: Advance Y c o o r d i n a t e .  

MoveYCoord: 
add di.EVGALSCREENLWIDTHLINLBYTES 

; W r i t e   t h e   n e x t   p i x e l .  

x c h g   b y t e   p t r   [ d i l . a h  

; s e t  new b i t  mask 
; a d j u s t   e r r o r   t e r m   b a c k  down 

: l o a d   l a t c h e s   a n d   w r i t e   p i x e l ,   w i t h   b i t  mask 
: p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
: s e t / r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

1 oop L i  neLoop 

endm 
L i  ne2End: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; L i n e   d r a w i n g   r o u t i n e .  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

pub1 i c -EVGALi ne 
-EVGALi ne p r o c   n e a r  

push bp 
mov bp .sp  
push s i  
push d i  
push ds 

; P o i n t  D S  t o   d i s p l a y  memory. 

; p r e s e r v e   r e g i s t e r   v a r i a b l e s  

mov ax,  EVGA 
mov ds  ,ax 

; Se t   t he   Se t /Rese t   and  
; t h e   s e l e c t e d   c o l o r .  

SCREENLSEGMENT 

S e t / R e s e t   E n a b l e   r e g i s t e r s   f o r  
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mov 
mov 
o u t  
i nc 
mov 
o u t  
dec 
mov 
o u t  
i nc 
mov 
o u t  

: Get   De l taY  

mov 
mov 

sub 
j n s  

dx.GC-INDEX 
a1 .SET-RESET-I 
d x , a l  
dx  
a1  . [bp+Color l  
d x . a l  
dx  
a1 .ENAELE-SET- 
d x , a l  
dx  
a1 , O f f h  
d x . a l  

s i ,  [bp+Y11 
ax,  [bp+YD] 

s i   , a x  

NDEX 

RESET-INDEX 

; l i n e  Y s t a r t  
; l i n e  Y end,  used l a t e r  i n  
; c a l c u l a t i n g   t h e   s t a r t   a d d r e s s  
; c a l   c u l   a t e   D e l   t a Y  

C a l c S t a r t A d d r e s s  ; i f  p o s i t i v e ,   w e ' r e   s e t  

: Del taY i s   n e g a t i v e  - -  swap c o o r d i n a t e s  so w e ' r e   a l w a y s   w o r k i n g  
: w i t h  a p o s i t i v e   D e l t a Y .  

mov ax, [bp+Y11  ;set  l i n e   s t a r t   t o  Y 1 .  f o r   u s e  

mov dx,  [bp+XO] 
xchg  dx.  [bp+X11 
mov [bp+XO] .dx  ;swap X c o o r d i n a t e s  
n e g   s i   : c o n v e r t   t o   p o s i t i v e   D e l t a Y  

: i n  c a l c u l a t i n g   t h e   s t a r t   a d d r e s s  

: C a l c u l a t e   t h e   s t a r t i n g   a d d r e s s  i n  d i s p l a y  memory o f   t h e   l i n e .  
: H a r d w i r e d   f o r  a s c r e e n   w i d t h   o f  80 b y t e s .  

C a l c S t a r t A d d r e s s :  
s h l   a x . 1  : Y O  * 2 ; Y O  i s   a l r e a d y  i n  AX 
sh l   ax .1  : Y O  * 4 
s h l   a x . 1  : Y O  * 8 
sh l   ax .1  : Y O  * 1 6  
mov d i  .ax 
sh l   ax .1  : Y O  * 32 
s h l   a x . 1  : Y O  * 64 
add  d i ,ax  : Y O  * 80 
mov dx ,  [bp+XOI 
mov c l   , d l   : s e t   a s i d e   l o w e r  3 b i t s   o f  c o l u m n   f o r  
and  c1.7 : p i x e l   m a s k i n g  
s h r   d x . 1  
s h r   d x . 1  
s h r   d x . 1   : g e t   b y t e   a d d r e s s   o f   c o l u m n   ( X 0 / 8 )  
add d i   , d x   ; o f f s e t   o f   l i n e   s t a r t  i n  d i sp lay   segmen t  

: Set   up  GC I n d e x   r e g i s t e r   t o   p o i n t   t o   t h e   B i t  Mask r e g i s t e r .  

mov  dx,GC-INDEX 
mov al.EIT-MASK-INDEX 
o u t   d x . a l  
i n c   d x   ; l e a v e  DX p o i n t i n g   t o   t h e  GC D a t a   r e g i s t e r  

; S e t   u p   p i x e l  mask ( i n - b y t e   p i x e l   a d d r e s s ) .  
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mov a l . 8 0 h  
s h r  a1 . c l  

: C a l c u l a t e   D e l t a X .  

mov bx. [bp+Xl]  
sub  bx.[bp+XOI 

: H a n d l e   c o r r e c t   o n e  o f  f o u r   o c t a n t s  

j s  NegDel t a x  
cmp b x .   s i  
j b   O c t a n t l  

: De l taX >- Del   taY >- 0 .  

L I N E l  0 
jmp EVGALi neDone 

: Del taY > De l taX >- 0. 

O c t a n t l :  
LINE2 0 
j m p   s h o r t  EVGALineDone 

NegDel t a x :  
neg  bx : I D e l   t a x  I 
cmp b x . s i  
j b   O c t a n t 2  

: I D e l t a X l  >- Del taY  and  Del taX < 0. 

L I N E l  1 
j m p   s h o r t  EVGALineDone 

: I D e l t a X l  < Del taY  and  Del taX < 0.  

Octan t2 :  
LINE2 1 

EVGALi neDone: 

: R e s t o r e  EVGA s t a t e .  

mov 
o u t  
dec 
mov 
o u t  
i n c  
sub 
o u t  

POP 
POP 
POP 
POP 
r e t  

- EVGALi ne 

end 

a1 . O f f h  
d x . a l   : s e t   B i t  Mask r e g i s t e r   t o   O f f h  
d x  
al.ENABLE-SET-RESET-INDEX 
d x . a l  
d x  
a1 .a1 
d x . a l   : s e t   E n a b l e   S e t / R e s e t   r e g i s t e r   t o  0 

ds 
d i  
s i  
bP 

endp 
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An explanation of the workings of the  code  in Listing 35.3 would be a lengthy one, 
and would be  redundant since the basic operation of the  code in Listing 35.3 is no 
different  from  that of the  code  in Listing 35.1, although  the  implementation is much 
changed  due to the  nature of  assembly language and also due to designing for  speed 
rather  than for clarity.  Given that you thoroughly  understand  the C implementation 
in Listing 35.1, the assembly language  implementation in Listing 35.3, which is 
well-commented, should speak for itself. 
One  point I do want to make is that Listing 35.3 incorporates a clever notion  for 
which  credit is due Jim Mackraz, who  described the  notion in  a  letter written in 
response to an article I wrote long  ago in the late and  lamented Programmer’s Jour- 
nul. Jim’s suggestion was that when drawing lines  for  which IDeltaXl is greater  than 
IDeltaYI, bits set to 1 for  each of the pixels controlled by a given  byte can  be accu- 
mulated in  a register, rather  than drawing each pixel individually. All the pixels 
controlled by that byte can then be drawn at  once, with a single access to display 
memory,  when all pixel processing associated with that byte has been  completed. 
This  approach can save many OUTS and many display memory reads  and writes 
when drawing nearly-horizontal lines, and that’s important because EGAs and VGAs 
hold  the CPU up  for a  considerable period of time on  each 1/0 operation  and 
display memory access. 
All too many PC programmers fall into  the high-level-language trap of thinking  that 
a  good  algorithm  guarantees  good  performance.  Not so: As our two implementa- 
tions of Bresenham’s algorithm graphically illustrate (pun  not originally intended, 
but allowed to stand once recognized), truly great PC code  requires both a  good 
algorithm and a  good assembly implementation.  In Listing 35.3, we’ve got both- 
and my-oh-my, isn’t it fun? 
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chapter 36

the good, the bad, and the run-sliced



nham Lines with Run-Length 
Slice  Line  Diwrwing 

that asked  me to write  blazingly  fast  line-drawing 
lemented  the basic  Bresenham’s linedrawing algo 

ssible;  special-cased horizontal, diagonal, and 
mized  routines  for  lines  in  each  octant; and mas- 

done, I had line  drawing  down  to a mere five or six 
and I handed the  code over  to the AutoCAD driver  person,  con- 

shed the theoretical  limits of the Bresenham’s 
and  that this was  as fast  as line drawing could get 
ut a week, until Dave  Miller,  who these days  is a 

Windows  display-driver  whiz at Engenious Solutions,  casually mentioned Bresenham’s 
faster  run-length slice linedrawing algorithm. 
Remember Bill  Murray’s  safety tip in Ghostbusters? It goes something like  this. Harold 
Ramis  tells the Ghostbusters not to cross the beams of the antighost guns. ‘Why?” 
Murray  asks. 
“It would  be bad,” Ramis  says. 
Murray says,  “I’m  fuzzy on  the whole good/bad  thing. What exactly do you mean 
by ‘bad’?’’ It  turns out  that what  Ramis means by bad is basically the  destruction of 
the universe. 
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“Important safety tip,” Murray comments dryly. 
I  learned two important safety  tips from my line-drawing experience;  neither  in- 
volves the possible destruction of the universe, so far as I know, but they are 
nonetheless worth keeping in mind. First,  never,  never, never think you’ve written 
the fastest  possible code.  Odds  are, you  haven’t. Run your code past another good 
programmer, and  he  or she will probably say, “But why don’t you do this?” and you’ll 
realize that you  could indeed do that, and your code would then be  faster. Or relax and 
come back  to  your code later, and you  may  well see another, faster approach.  There 
are  a million ways to implement code for any task, and you can  almost always find a 
faster way if you need to. 
Second, when performance matters, never have your code  perform  the same calcu- 
lation more than once. This sounds obvious, but it’s astonishing how often it’s ignored. 
For example,  consider this snippet of code: 

f o r   ( i - 0 :   i < R u n L e n g t h :  i++) 
{ 

*Work ingScreenPtr  - C o l o r ;  
i f  ( X D e l t a  > 0 )  
I 

1 
e l s e  
( 

1 

WorkingScreenPtr++: 

W o r k i n g S c r e e n P t r - - :  

1 

Here,  the  programmer knows  which way the line is going  before the main loop be- 
gins-but nonetheless  performs  that test every time  through  the  loop,  when 
calculating the address of the  next pixel. Far better to perform  the test only once, 
outside the  loop, as  shown here: 

i f  ( X D e l t a  > 0 )  
I 

f o r  ( i -0 :  i<RunLength:  i++) 
{ 

I 
} 
e l s e  
{ 

*Work ingScreenPtr++ - C o l o r :  

f o r   ( i - 0 :   i < R u n L e n g t h :  i++) 
I 

I 
*Work ingScreenPt r - -  - C o l o r :  

3 

Think of it this way: A program is a state machine. It takes a  set of inputs and pro- 
duces  a  corresponding set of outputs by passing through  a set of states. Your primary 
job as a  programmer is to implement the desired state machine. Your additional job 
as a  performance  programmer is to minimize the  lengths of the paths through  the 
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state machine. This means performing as  many  tests and calculations  as  possible 
outside the loops, so that  the loops themselves can do as  little  work-that  is,  pass 
through as few  states-as possible. 
Which brings us  full  circle  to Bresenham's run-length slice  line-drawing algorithm, 
which just  happens to be an excellent example of a minimized  state machine. In case 
you're fuzzy on  the  good/bad  performance thing, that's "good"-as in fast. 

Run-Length  Slice  Fundamentals 
First  off, I have a confession to make: I'm not sure  that  the algorithm I'll discuss is 
actually,  precisely Bresenham's run-length slice algorithm. It's been a long time  since 
I read  about this algorithm; in the  intervening years,  I've  misplaced Bresenham's 
article, and have been  unable  to unearth it. As a result, I had to derive the algorithm 
from scratch, which was admittedly more  fun  than  reading  about  it,  and also en- 
sured  that I understood it inside and  out.  The upshot is that what I discuss  may or 
may not be Bresenham's run-length slice  algorithm-but  it  surely is fast. 
The place  to begin understanding  the  run-length slice algorithm is the  standard 
Bresenham's line-drawing algorithm. (I discussed the  standard Bresenham's line- 
drawing algorithm at  length in the previous chapter.) The basis  of the  standard 
approach is stepping one pixel at a time along  the major  axis (the longer dimension 
of the  line), while maintaining an  integer error term that indicates at each major- 
axis step how  close the line is to advancing halfway to  the  next pixel along  the  minor 
axis.  Figure 36.1 illustrates standard Bresenham's line drawing. The key point  here is 
that a calculation and a test are  performed  once for each step  along  the major  axis. 

0 0 0 0 
"""."""""""""""""..""""..""""..""~ 

Midway points / 
between  pixels 

along minor  axis '.\ t 
__"""."_"""."""".""" . ___""".""""". 

\\// 
Pixels are stepped  one at a time along the major axis, 
and the error term  evaluated  after  each  step,  to  see 

if it's  time  for  the minor axis  to  advance. 

Standard Bresenham 5 line drawing. 
Figure 36.1 
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The run-length slice algorithm  rotates  matters 90 degrees, with salubrious results. 
The basis  of the run-length slice  algorithm is stepping one pixel at  a time  along the 
minor axis (the shorter dimension), while maintaining an integer error term  indicating 
how  close the  line is  to advancing an  extra pixel along  the major axis, as illustrated by 
Figure 36.2. 
Consider this: When you’re called upon to draw a  line with an  Xdimension of 35 
and a Y-dimension  of 10, you  have a  great  deal of information available, some of 
which is ignored by standard Bresenham’s. In  particular, because the  slope is be- 
tween 1/3 and 1/4, you  know that every  single  run-a run being  a  set of pixels at  the 
same  minor-axis  coordinate-must  be either  three  or  four pixels long. No other 
length is possible,  as  shown  in Figure 36.3 (apart  from  the first and last runs, which 
are special  cases that I’ll discuss shortly).  Therefore,  for this line, there’s no need to 
perform  an  error-term calculation and test for  each pixel. Instead, we can just per- 
form one test per  run, to see whether  the run is three or four pixels long,  thereby 
eliminating  about 70 percent of the calculations in drawing this line. 
Take a  moment to let  the idea behind run-length slice  drawing  soak in. Periodic  deci- 
sions must be  made to control pixel placement. The key to speed is to make those 
decisions as infrequently and as quickly as possible.  Of  course,  it will  work to  make a 
decision at each pixel-that’s standard Bresenham’s.  However,  most  of  those  per-pixel 
decisions are  redundant,  and  in fact we have enough information  before we begin 
drawing to know  which are  the  redundant decisions.  Run-length  slice  drawing is  exactly 
equivalent to standard Bresenham’s, but it  pares  the decision-making process down 
to a  minimum. It’s  somewhat  analogous to the difference  between finding the greatest 
common divisor  of  two numbers using Euclid’s algorithm and finding  it by trying 

Error  terms 
(cumulative  partial  pixels) / at  ends of runs \ 

after each step, to see 
whether to draw 
RUNLENGTH or 
RUNLENGTH+l pixels 
along  the  major  axis. 

0 0 0 

Run-length slice line  drawing. 
Figure 36.2 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I""""""""_ 

Runs are four  pixels long 

Runs in a slope 1/3.5 line. 
Figure 36.3 

every  possible  divisor. Both approaches  produce  the  desired result, but  that which 
takes maximum advantage of the available information and minimizes redundant 
work is preferable. 

Run-Length  Slice  Implementation 
We know that  for any line,  a given run will  always be one of two possible lengths. 
How, though, do we  know  which length to  select?  Surprisingly,  this is easy to determine. 
For the following  discussion,  assume that we  have a slope of 1/3.5, so that X is the major 
axis;  however, the discussion  also applies to Y-major lines, with X and Y reversed. 
The minimum possible length  for any run in an X-major line is int(XDelta/YDelta), 
where XDelta is the X-dimension of the line and YDelta is the Y-dimension. The 
maximum possible length is int(XDelta/YDelta)+ 1. The trick, then, is knowing  which 
of these two lengths to select for each run. To see how we can make this selection, 
refer to  Figure 36.4. For each one-pixel step along the minor axis (x in this case), we 
advance at least three pixels. The full advance distance along  X (the major axis)  is 
actually three-plus pixels, because there is also a fractional portion to the advance 
along  X  for  a single-pixel Y step. This fractional advance is the key to deciding when 
to add  an extra pixel to a run.  The fraction indicates what portion of an  extra pixel 
we advance along X (the major axis) during each run. If  we keep a running sum of 
the fractional parts, we have a measure of  how  close we are to needing  an  extra pixel; 
when the fractional sum reaches 1, it's time to add  an  extra pixel to the  current  run. 
Then, we can subtract 1 from  the  running sum (because we just advanced one  pixel), 
and  continue  on. 
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minimum  run  length == 3 

0 0 0 ,io\o 0 Q 0 /& ~.* 4 .""""""""" ;- I ,  " _  - 1  

8 
I ,  i -,"" """""__:".~ '"""I 

""""""""""_ 
0 im *io 0 6 0 

""""..""""r"I 6 I 
P 
0 

0 

m o o o o o ~ o \ o  # I  Cumulative error 
Cumulative error term < 1, term > 1, so draw 
so don't draw  an extra pixel an extra pixel 

How the error term determines run length. 
Figure 36.4 

Practically speaking, however, we can't work  with fractions because floating-point 
arithmetic is  slow and fixed-point arithmetic is imprecise. Therefore, we take a  cue 
from  standard Bresenham's and scale  all the  error-term calculations up so that we 
can work  with integers. The fractional X (major axis)  advance per one-pixel Y (minor 
axis) advance is the fractional portion ofXDelta/YDelta. This value is exactly  equiva- 
lent to D e l t a  % YDelta)/YDelta.  We'll  scale this up by multiplying it by YDelta"2, 
so that  the  amount by which we adjust the  error term up for each one-pixel minor- 
axis advance is  (XDelta % YDelta)*2. 
We'll  similarly  scale up the  one pixel by which we adjust the  error term down after it 
turns over, so our downward error-term  adjustment is  YDelta*2. Therefore,  before 
drawing each run, we'll add ( D e l t a  % YDelta)*2 to the  error term. If the  error term 
runs over (reaches one full pixel), we'll lengthen  the  run by 1, and subtract YDelta"2 
from  the error term. (All  values are multiplied by 2 so that the initial error term, 
which  involves a 0.5 term, can be scaled up to an  integer, as  discussed next.) 
This is not a complicated process; it involves  only integer  addition and subtraction 
and a single test, and it  lends itself to many and varied optimizations. For example, 
you could break out hardwired optimizations for drawing each possible pair of run 
lengths. For the  aforementioned line with a slope of 1/3.5, for  example, you could 
have one  routine hardwired to blast in a run of three pixels  as  quickly  as  possible, 
and  another hardwired to  blast in  a run of four pixels. These  routines would  ideally 
have no looping, but  rather  just  a series of instructions customized to draw the de- 
sired number of pixels at maximum speed. Each routine would  know that  the only 
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possibilities for  the  length of the  next  run would be  three  and four, so they could 
increment  the  error  term,  then jump directly to the  appropriate  one of the two 
routines  depending  on  whether  the  error term turned over. Properly implemented, 
it should  be possible to  reduce  the average per-run overhead of line drawing  to  less 
than  one  branch, with  only  two additions and two tests (the  number of runs must 
also be  counted  down), plus a subtraction half the time. On a 486, this amounts to 
something on  the  order of 150 nanoseconds of overhead per pixel,  exclusive  of the 
time required to actually  write the pixel  to  display  memory. 
That’s good. 

Run-Length  Slice  Details 
A couple of run-length slice implementation details  yet remain. First is the  matter of 
how error-term turnover is detected. This is done in much  the same way as it is  with 
standard Bresenham’s: The  error term is maintained as a negative valve and advances 
for each step; when the  error term reaches 0, it’s  time  to add an extra pixel  to the 
current  run. This means that we only  have to test for carry after advancing the  error 
term to determine  whether  or  not to add  an  extra pixel to each run. (Actually, the 
code in this chapter tests for  the error term being greater  than zero, but  the assem- 
bly code in the  next  chapter will use the very efficient  carry approach.) 
The second and  more difficult detail is balancing the  runs so that they’re centered 
around  the ideal line, and therefore draw the same pixels that  standard Bresenham’s 
would  draw. If  we just drew  full-length runs  from  the start, we’d end up with an 
unbalanced  line, as shown  in  Figure 36.5. Instead, we have to split the initial  pixel 
plus one full run as evenly as possible  between the first and last runs of the  line, and 
adjust the initial error term appropriately for  the initial half-run. 
The initial error term is advanced by one-half of the  normal per-step fractional ad- 
vance,  because  the  initial  step is only  one-half  pixel  along  the  minor  axis.  This  half-step 
gets us exactly  halfivay  between the initial  pixel and  the next pixel along the minor 
axis.  All the error-term adjustments are scaled up by  two times  precisely so that we 
can scale up this  halved error term for the initial run by  two times, and thereby make 
it an integer. 
The  other trick here is that if an odd  number of pixels are allocated between the first 
and last  partial runs, we’ll end  up with an odd pixel,  since we are  unable  to draw a 
half-pixel. This odd pixel is accounted  for by adding half a pixel to  the  error  term. 
That’s all there is to  run-length slice line drawing; the partial  first and last runs  are 
the only  tricky part. Listing 36.1 is a run-length slice implementation in C. This is not 
an optimized implementation, nor is it meant  to  be; this  listing is provided so that 
you can see  how the  run-length slice algorithm works. In  the  next chapter, I’ll  move 
on to an optimized version, but  for now, Listing 36.1 will make  it much easier  to 
grasp the principles of run-length slice  drawing, and to  understand  the optimized 
code I’ll present in the  next chapter. 
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Balancing run-length slice lines: a) unbalanced; b) balanced. 
Figure 36.5 

LISTING 36.1 136- 1 .C 
/ *  R u n - l e n g t h   s l i c e   l i n e   d r a w i n g   i m p l e m e n t a t i o n   f o r  mode 0x13.   the  VGA’s 
320x200   256 -co lo r  mode. N o t   o p t i m i z e d !   T e s t e d   w i t h   B o r l a n d  C++ i n  
the   sma l l   mode l .  * /  

li ncl   ude  <dos.   h> 

# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

v o i d   D r a w H o r i z o n t a l R u n ( c h a r   f a r   * * S c r e e n P t r ,   i n t   X A d v a n c e ,   i n t   R u n L e n g t h .  

v o i d   D r a w V e r t i c a l R u n ( c h a r  far **ScreenPtr .  i n t  XAdvance. i n t  RunLength. 

/*  Draws  a l i n e  b e t w e e n   t h e   s p e c i f i e d   e n d p o i n t s   i n   c o l o r   C o l o r .  * /  
v o i d   L i n e D r a w ( i n t   X S t a r t .   i n t   Y S t a r t .   i n t  XEnd. i n t  YEnd. i n t   C o l o r )  
I. 

i n t  Temp. AdjUp.  AdjDown.  ErrorTerm.  XAdvance.  XDelta.  YDelta; 
i n t  W h o l e s t e p .   I n i t i a l P i x e l C o u n t .   F i n a l P i x e l C o u n t .  i. RunLength: 
c h a r   f a r   * S c r e e n P t r :  

i n t   C o l o r ) :  

i n t   C o l o r ) ;  
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/*  W e ' l l   a l w a y s   d r a w   t o p   t o   b o t t o m ,   t o   r e d u c e   t h e  number o f  cases we have t o  
handle,   and t o  make l i n e s   b e t w e e n   t h e  same e n d p o i n t s   d r a w   t h e  same p i x e l s  * /  
i f  ( Y S t a r t  > YEnd) { 

Temp - Y S t a r t :  
Y S t a r t  - YEnd; 
YEnd - Temp; 
Temp - X S t a r t ;  
X S t a r t  - XEnd; 
XEnd - Temp; 

I 
/ *  P o i n t   t o   t h e   b i t m a p   a d d r e s s   f i r s t   p i x e l   t o   d r a w  */  
S c r e e n P t r  - MK-FP(SCREEN_SEGMENT. Y S t a r t  * SCREEN-WIDTH + X S t a r t ) :  

/ *  F i g u r e   o u t   w h e t h e r   w e ' r e   g o i n g   l e f t   o r   r i g h t ,   a n d  how f a r   w e ' r e  

i f  ( ( X D e l t a  - XEnd - X S t a r t )  < 0 )  
{ 

g o i n g   h o r i z o n t a l l y  * /  

XAdvance - -1; 
XDel ta  - - X D e l t a :  

I 
e l s e  
I 

I 
/*  F i g u r e   o u t  how f a r   w e ' r e   g o i n g   v e r t i c a l l y  * /  
YDel ta  - YEnd - Y S t a r t ;  

XAdvance - 1; 

S p e c i a l - c a s e   h o r i z o n t a l ,   v e r t i c a l .   a n d   d i a g o n a l   l i n e s .   f o r   s p e e d  
and t o   a v o i d   n a s t y   b o u n d a r y   c o n d i t i o n s   a n d   d i v i s i o n   b y  0 * /  
( X D e l t a  - 0 )  

I* V e r t i c a l   l i n e  * I  
f o r   ( i - 0 ;   i < - Y D e l t a ;  i++) 
{ 

*ScreenPt r  - C o l o r ;  
S c r e e n P t r  +- SCREEN-WIDTH; 

I 
r e t u r n ;  

( Y D e l t a  - 0 )  

/*  H o r i z o n t a l   l i n e  * /  
f o r   ( i - 0 ;   i < - X D e l t a :  i++) 
{ 

*ScreenPt r  - C o l o r ;  
S c r e e n P t r  +- XAdvance; 

I 
r e t u r n ;  

( X D e l t a  - Y D e l t a )  

/ *  D i a g o n a l   l i n e  *I  
f o r   ( i - 0 :   i < - X D e l t a ;  i++) 
{ 

*ScreenPt r  - C o l o r ;  
S c r e e n P t r  +- XAdvance + SCREEN-WIDTH; 

I 
r e t u r n ;  
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/*  
i f  
{ 

3 

D e t e r m i n e   w h e t h e r   t h e   l i n e   i s  X o r  Y m a j o r ,   a n d   h a n d l e   a c c o r d i n g l y  * /  
( X D e l t a  >- Y D e l t a )  

/ *  X m a j o r   l i n e  * /  
/* Minimum # o f   p i x e l s   i n  a r u n   i n   t h i s   l i n e  */  
WholeStep - XDel ta  / YDe l ta :  

/ *  E r r o r   t e r m   a d j u s t   e a c h   t i m e  Y s teps   by  1: used t o   t e l l  when one 
e x t r a   p i x e l   s h o u l d  be  drawn  as p a r t   o f  a r u n ,   t o   a c c o u n t   f o r  
f r a c t i o n a l   s t e p s   a l o n g   t h e  X a x i s   p e r   1 - p i x e l   s t e p s   a l o n g  Y * /  

AdjUp - ( X D e l t a  % YDe l ta )  * 2: 

/ *  E r r o r   t e r m   a d j u s t  when t h e   e r r o r   t e r m   t u r n s   o v e r ,   u s e d   t o   f a c t o r  

AdjDown - YDe l ta  * 2: 

/*  I n i t i a l   e r r o r   t e r m :   r e f l e c t s  an i n i t i a l   s t e p  o f  0 .5  a l o n g   t h e  Y 

E r ro rTe rm - ( X D e l t a  % YDe l ta )  - ( Y D e l t a  * 2 ) ;  

/ *  The i n i t i a l  and l a s t   r u n s   a r e   p a r t i a l ,   b e c a u s e  Y advances   on l y  0.5 

o u t   t h e  X s t e p  made a t   t h a t   t i m e  * I  

a x i s  * /  

f o r   t h e s e   r u n s ,   r a t h e r   t h a n  1. D i v i d e   o n e   f u l l   r u n ,   p l u s   t h e  
i n i t i a l   p i x e l ,  b e t w e e n   t h e   i n i t i a l  and l a s t   r u n s  * /  

I n i t i a l P i x e l C o u n t  - (Wholestep / 2 )  + 1: 
F i n a l P i x e l C o u n t  - I n i t i a l P i x e l C o u n t :  

/ *  I f  t h e   b a s i c   r u n   l e n g t h   i s   e v e n  and t h e r e ' s   n o   f r a c t i o n a l  
advance, we h a v e   o n e   p i x e l   t h a t   c o u l d   g o   t o   e i t h e r   t h e   i n i t i a l  
o r   l a s t   p a r t i a l   r u n ,   w h i c h   w e ' l l   a r b i t r a r i l y   a l l o c a t e   t o   t h e  
l a s t   r u n  */  

i f  ( (Ad jUp  -- 0)  && ( (WholeStep & 0x01)  - 0 ) )  
{ 

3 
/*  I f  t h e r e ' r e  an odd  number o f   p i x e l s   p e r   r u n ,  we have 1 p i x e l   t h a t   c a n ' t  

I n i t i a l P i x e l C o u n t - - :  

be a l l o c a t e d   t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n .  s o  w e ' l l  add 0 .5  
t o   e r r o r   t e r m  s o  t h i s   p i x e l  will b e   h a n d l e d   b y   t h e   n o r m a l   f u l l - r u n   l o o p  * /  
i f  ( (Who les tep  & 0x01)  !- 0 )  

E r ro rTe rm +- YDe l ta :  
t 

3 
I* Draw t h e   f i r s t ,   p a r t i a l   r u n   o f   p i x e l s  * /  
DrawHor izonta lRun(&ScreenPtr .  XAdvance. I n i t i a l P i x e l C o u n t ,   C o l o r ) ;  
/ *  Draw all f u l l   r u n s  */  
f o r   ( i - 0 :   i < ( Y D e l t a - 1 ) ;  i++) 
t 

RunLength - Wholestep:  / *  r u n   i s   a t   l e a s t   t h i s   l o n g  */  
/*  Advance   the   e r ro r   t e rm  and   add  an e x t r a   p i x e l  i f  t h e   e r r o r  

i f  ( ( E r r o r T e r m  +- AdjUp) > 0 )  
t 

t e r m  so i n d i c a t e s  * /  

RunLength++; 
E r ro rTe rm -- AdjDown; / *  r e s e t   t h e   e r r o r   t e r m  */  

I 
/*  Draw t h i s   s c a n   l i n e ' s   r u n  */  
DrawHor izonta lRun(&ScreenPtr .  XAdvance.   RunLength.   Color ) :  

3 
/ *  Draw t h e   f i n a l   r u n   o f   p i x e l s  * /  
DrawHor izonta lRun(&ScreenPtr ,  X A d v a n c e ,   F i n a l P i x e l C o u n t .   C o l o r ) :  
r e t u r n :  
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e l s e  
{ 

/ *  Y m a j o r   l i n e  * /  

/* Minimum # o f   p i x e l s   i n  a r u n   i n   t h i s   l i n e  * /  
Wholestep = YDel ta  / XDel ta :  

/ *  E r r o r   t e r m   a d j u s t   e a c h   t i m e  X s teps   by  1: used t o   t e l l  when 1 e x t r a  
p i x e l   s h o u l d   b e   d r a w n  as p a r t   o f  a r u n .   t o   a c c o u n t   f o r  
f r a c t i o n a l   s t e p s   a l o n g   t h e  Y a x i s   p e r   1 - p i x e l   s t e p s   a l o n g  X * /  

AdjUp = ( Y D e l t a  % X D e l t a )  * 2 ;  

/ *  E r r o r   t e r m   a d j u s t  when t h e   e r r o r   t e r m   t u r n s   o v e r ,   u s e d   t o   f a c t o r  

AdjDown = XDel ta  * 2 :  

/ *  I n i t i a l   e r r o r   t e r m :   r e f l e c t s   i n i t i a l   s t e p   o f  0 .5  a l o n g   t h e  X a x i s  * /  
E r r o r T e r m  = ( Y D e l t a  % X D e l t a )  - ( X D e l t a  * 2 ) :  

/ *  The i n i t i a l  and l a s t   r u n s   a r e   p a r t i a l ,   b e c a u s e  X advances   on ly   0 .5  

o u t   t h e  Y s t e p  made a t   t h a t   t i m e  * /  

f o r   t h e s e   r u n s ,   r a t h e r   t h a n  1. D i v i d e   o n e   f u l l   r u n .   p l u s   t h e  
i n i t i a l   p i x e l ,  b e t w e e n   t h e   i n i t i a l   a n d   l a s t   r u n s  * /  

I n i t i a l P i x e l C o u n t  = (Wholes tep  / 2) + 1: 
F i n a l P i x e l C o u n t  = I n i t i a l P i x e l C o u n t :  

/ *  I f  t h e   b a s i c   r u n   l e n g t h   i s   e v e n  and t h e r e ' s   n o   f r a c t i o n a l   a d v a n c e .  we 
have 1 p i x e l   t h a t   c o u l d  go t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n ,  
w h i c h   w e ' l l   a r b i t r a r i l y   a l l o c a t e   t o   t h e   l a s t   r u n  */  

i f  ( ( A d j U p  == 0 )  && ( ( W h o l e s t e p  & 0x01)  -- 0 ) )  
c 

1 
/* I f  t h e r e   a r e  an  odd  number o f   p i x e l s   p e r   r u n ,  we have   one   p i xe l  

t h a t   c a n ' t  be a l l o c a t e d   t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l  
r u n ,  s o  w e ' l l  add  0.5 t o   t h e   e r r o r   t e r m  s o  t h i s   p i x e l  will be 
h a n d l e d   b y   t h e   n o r m a l   f u l l   - r u n   l o o p  */  

I n i t i a l P i x e l C o u n t - - ;  

i f  ( ( W h o l e s t e p  & 0x01) != 0 )  
[ 

I 
/*  Draw t h e   f i r s t ,   p a r t i a l   r u n   o f   p i x e l s  * /  
DrawVerticalRun(&ScreenPtr. X A d v a n c e .   I n i t i a l P i x e l C o u n t .   C o l o r ) :  

/ *  Draw a l l   f u l l   r u n s  */  
f o r   ( i = O ;   i < ( X D e l t a - 1 ) :  i++) 
( 

E r r o r T e r m  += XDel t a :  

RunLength = WholeStep: /* r u n  i s  a t   l e a s t   t h i s   l o n g  * /  
/ *  Advance   the   e r ro r   t e rm  and   add   an   ex t ra   p i xe l  i f  t h e   e r r o r  

i f  ( ( E r r o r T e r m  +- AdjUp) > 0 )  
1 

t e r m  s o  i n d i c a t e s  * /  

RunLength++; 
E r r o r T e r m  -= AdjDown: / *  r e s e t   t h e   e r r o r   t e r m  * /  

I 
/ *  Draw t h i s   s c a n   l i n e ' s   r u n  */  
DrawVer t i ca lRun(&ScreenPt r .  XAdvance,  RunLength.   Color) :  

1 
/*  Draw t h e   f i n a l   r u n   o f   p i x e l s  * /  
DrawVerticalRun(&ScreenPtr. X A d v a n c e .   F i n a l P i x e l C o u n t ,   C o l o r ) :  
r e t u r n :  

1 
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1 
I* Draws a h o r i z o n t a l   r u n   o f   p i x e l s ,   t h e n   a d v a n c e s   t h e   b i t m a p   p o i n t e r   t o  

v o i d   D r a w H o r i z o n t a l R u n ( c h a r  far * * S c r e e n P t r .   i n t  XAdvance. 

{ 

t h e   f i r s t   p i x e l   o f   t h e   n e x t   r u n .  *I  

i n t  RunLength. i n t   C o l o r )  

i n t  i: 
c h a r   f a r   * W o r k i n g S c r e e n P t r  - *ScreenPt r ;  

f o r   ( i - 0 ;   i < R u n L e n g t h ;  i++) 
{ 

*Work ingScreenPtr  - C o l o r :  

1 
WorkingScreenPtr  +- XAdvance; 

I* Advance t o   t h e   n e x t   s c a n   l i n e  *I  
WorkingScreenPtr  +- SCREEN-WIDTH; 
*Sc reenPt r  - Work ingScreenPt r ;  

1 
/ *  Draws  a v e r t i c a l   r u n   o f   p i x e l s ,   t h e n   a d v a n c e s   t h e   b i t m a p   p o i n t e r   t o  

v o i d   D r a w V e r t i c a l R u n ( c h a r   f a r   * * S c r e e n P t r .   i n t  XAdvance. 

{ 

t h e   f i r s t   p i x e l   o f   t h e   n e x t   r u n .  *I  

i n t  RunLength. i n t   C o l o r )  

i n t  i: 
c h a r   f a r   * W o r k i n g S c r e e n P t r  - *ScreenPt r ;  

f o r  ( i - 0 ;  i<RunLength;  i++) 
( 

*Work ingScreenPtr  - C o l o r ;  
Work ingScreenPtr  +- SCREEN-WIDTH: 

1 
I* Advance t o   t h e   n e x t   c o l u m n  *I  
WorkingScreenPtr  +- XAdvance; 
*Sc reenPt r  - Work ingScreenPt r :  

1 

Notwithstanding  that it’s not optimized, Listing 36.1 is reasonably fast. If you run 
Listing 36.2 (a sample linedrawing program that you  can  use  to testdrive Listing 36.1), 
you  may be as surprised as I was at how  quickly the  screen fills with vectors, consider- 
ing  that Listing 36.1 is entirely  in C and has some redundant divides. Or perhaps you 
won’t be surprised-in  which  case I suggest you not miss the  next  chapter. 

LISTING 36.2 136-2.C 
I* Sample l i n e - d r a w i n g   p r o g r a m .  Uses t h e   o p t i m i z e d  
l i n e - d r a w i n g   f u n c t i o n s   c o d e d   i n   L L i s t i n g  L36.1.C. 
T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  *I  

#i n c l  ude  <dos.  h> 

# d e f i n e  GRAPHICS-MODE 0x13 
# d e f i n e  TEXT-MODE 0x03 
# d e f i n e  BIOS-VIDEO-INT Ox10 
#de f  i ne X-MAX 320 / *  w o r k i n g   s c r e e n   w i d t h  *I  
# d e f i n e  Y-MAX 200 /*  w o r k i n g   s c r e e n   h e i g h t  * /  

e x t e r n   v o i d   L i n e D r a w ( i n t   X S t a r t .   i n t  Y S t a r t .  i n t  XEnd. i n t  YEnd. i n t   C o l o r ) ;  
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I* S u b r o u t i n e   t o   d r a w  a r e c t a n g l e   f u l l   o f   v e c t o r s ,   o f   t h e   s p e c i f i e d  

void  VectorsUp(XCenter,   YCenter.   XLength.   YLength.   Color)  
i n t  XCenter.  YCenter: I* c e n t e r   o f   r e c t a n g l e   t o  fill *I  
i n t  XLength.  YLength: I* d i s t a n c e   f r o m   c e n t e r   t o  edge o f   r e c t a n g l e  *I  
i n t   C o l o r ;  
( 

* l e n g t h  and c o l o r ,   a r o u n d   t h e   s p e c i f i e d   r e c t a n g l e   c e n t e r .  *I  

I* c o l o r   t o  draw  1  ines i n  *I  

i n t  WorkingX.  WorkingY; 

I* l i n e s   f r o m   c e n t e r   t o   t o p  o f  r e c t a n g l e  *I 
WorkingX - XCenter - XLength: 
WorkingY - YCenter - YLength; 
f o r  ( ; WorkingX < ( XCenter + XLength 1: WorkingX++ 
t 

} 
I* l i n e s   f r o m   c e n t e r   t o   r i g h t   o f   r e c t a n g l e  *I  
WorkingX - XCenter + XLength - 1; 
WorkingY - YCenter - YLength; 
f o r  ( ; WorkingY < ( YCenter + YLength ) ;  WorkingY++ ) 

t 

1 
I* l i n e s   f r o m   c e n t e r   t o   b o t t o m   o f   r e c t a n g l e  * /  
WorkingX - XCenter + XLength - 1: 
WorkingY - YCenter + YLength - 1; 
f o r  ( ; WorkingX >- ( XCenter - XLength 1: WorkingX-- ) 

1. 

I 
I* l i n e s   f r o m   c e n t e r   t o   l e f t   o f   r e c t a n g l e  *I  
WorkingX - XCenter - XLength; 
WorkingY - YCenter + YLength - 1; 
f o r  ( ; WorkingY >- ( YCenter - YLength ) ;  WorkingY-- ) 

r 
1 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

LineDraw(XCenter.  YCenter.  WorkingX.  WorkingY.  Color); 

1 
I* Sample  program t o  d r a w   f o u r   r e c t a n g l e s   f u l l   o f   l i n e s .  *I  
i n t   m a i n 0  
( 

un ion  REGS regs ;  

I* S e t   g r a p h i c s  mode */ 
regs.x.ax - GRAPHICS-MODE; 
int86(BIOS-VIDEO-INT.  &regs.  &regs); 

I* Draw each o f   f o u r   r e c t a n g l e s   f u l l  o f  v e c t o r s  * I  
VectorsUp(X-MAX I 4 .  Y-MAX I 4 .  X-MAX I 4 .  Y-MAX I 4 .  1); 
VectorsUp(X-MAX * 3 1 4 .  Y-MAX / 4.  X-MAX 1 4 .  Y-MAX / 4.  2) ;  
VectorsUp(X-MAX I 4 .  Y-MAX * 3 I 4.  X-MAX I 4 .  Y-MAX I 4 ,  3 ) ;  
VectorsUp(X-MAX * 3 I 4 .  Y-MAX * 3 I 4 ,  X-MAX I 4 .  Y-MAX I 4 .  4 ) ;  

I* Wait f o r  a  key t o  be  pressed * I  
ge tch (  ) : 

I* R e t u r n   b a c k   t o   t e x t  mode * I  
regs.x.ax - TEXT-MODE; 
int86(BIDS-YIDED-INT.  &regs,  &regs): 

} 
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chapter 37

dead cats and lightning lines



Run-Length  Slice  Line Drawing 

As I write  this, th d I are in the throes of  yet another lightning-quick 
transcontinental to Redmond, Washington,  to work for You  Know 

at makes it worse for us  is the pets.  Getting them 
ard; there’s always the possibility that they  might 

eather; and, worst of all,  they might not make it. 
or dead, but it does happen. 

essful) effort to cheer me up about the prospect of shipping 
ng story,  which he swears  actually happened 
t has the ring of an urban legend, which  is to 

say it makes a good story, but you can  never  track  down the person it really happened 
to; it’s  always a friend of a friend. But  maybe it is true,  and anyway,  it’s a good story. 
This friend of a friend (henceforth referred to as FOF), worked  in an air-freight 
terminal.  Consequently, he handled a lot of  animals,  which  was  fine by him,  because  he 
liked  animals;  in  fact,  he  had  quite a few  cats at home. You can  imagine  his  dismay  when, 
one day, he  took a kennel off the plane  to  find  that the cat  it  carried was quite  thoroughly 
dead. (No, it wasn’t resting, nor pining for the fjords;  this  cat was bloody deceased.) 
FOF knew  how upset the owner  would be, and came up with a plan  to  make every- 
thing better. At home, he had a cat of the same  size, shape, and markings.  He  would 
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substitute that cat, and since all  cats treat all humans with equal disdain, the owner 
would never know the  difference, and would never suffer the trauma of the loss of 
her cat. So FOF drove home,  got his cat, put it in the  kennel, and waited for  the 
owner  to  show up-at  which point,  she took one look at  the  kennel  and said, “This 
isn’t my cat. My cat is dead.” 
As it  turned  out, she had shipped her recently deceased feline home to be  buried. 
History does not  record how our FOF dug himself out of this one. 
Okay, but what’s the  point?  The  point is, if it isn’t broken,  don’t fix it. And if it is 
broken, maybe that’s all right,  too. Which brings us, neat as a  pin, to the topic of 
drawing lines in a serious hurry. 

Fast  Run-Length  Slice  Line Drawing 
In  the last chapter, we examined the principles of run-length slice line drawing,  which 
draws lines a run  at a time rather  than a pixel at a time,  a run being  a series of pixels 
along  the major (longer) axis. It’s time to turn theory into useful practice by devel- 
oping  a fast  assembly version. Listing 37.1 is the assembly version, in  a  form that’s 
plug-compatible with the C code  from the previous chapter. 

LISTING  37.1 137- 1 .ASM 
; F a s t   r u n - l e n g t h   s l i c e   l i n e   d r a w i n g   i m p l e m e n t a t i o n  f o r  mode 0 x 1 3 .   t h e  VGA‘s 
; 320x200  256-co lor  mode. 
; Draws a l i n e  b e t w e e n   t h e   s p e c i f i e d   e n d p o i n t s   i n   c o l o r   C o l o r .  
; C n e a r - c a l l a b l e   a s :  
; v o i d   L i n e D r a w ( i n t   X S t a r t .   i n t   Y S t a r t .   i n t  XEnd, i n t  YEnd. i n t   C o l o r )  
: T e s t e d   w i t h  TASM 

SCREEN-WIDTH equ  320 
SCREENKSEGMENT equ OaOOOh 

.model  small  

.code 

; Parameters t o  
parms s t r u c  

dw 
dw 

X S t a r t  dw 
Y S t a r t  dw 
XEnd dw 
YEnd dw 
Co lor   db  

db 
parms  ends 

c a l l .  

? 
? 
? 
? 
? 
? 
? 
? 

;pushed BP 
;pushed r e t u r n   a d d r e s s  
;X  s t a r t   c o o r d i n a t e   o f   l i n e  
: Y  s t a r t   c o o r d i n a t e  o f  l i n e  
; X  e n d   c o o r d i n a t e   o f   l i n e  
; Y  e n d   c o o r d i n a t e   o f   l i n e  
; c o l o r   i n   w h i c h   t o   d r a w   l i n e  
;dummy b y t e   b e c a u s e   C o l o r  i s  r e a l l y  a word 

AdjUp 
; L o c a l   v a r i a b l e s .  

AdjDown  equ - 4  ; e r r o r   t e r m   a d j u s t  down  when e r r o r   t e r m   t u r n s   o v e r  
WholeStep  equ  -6   ;min imum  run  length 
XAdvance 
LOCAL-SIZE 

equ  -2   ;e r ro r   te rm  ad jus t   up   on   each  advance 

equ - 8  ;1 o r  -1. f o r   d i r e c t i o n   i n   w h i c h  X advances 
equ 8 

pub1 i c -Li  neDraw 
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_L ineDraw  p roc   near  
c l  d 
push bP : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mo v bP.SP : p o i n t   t o   o u r   s t a c k   f r a m e  
sub  sp. LOCALLSIZE : a l l o c a t e   s p a c e   f o r   l o c a l   v a r i a b l e s  
push s i   : p r e s e r v e  C r e g i s t e r   v a r i a b l e s  
push d i  
p u s h   d s   : p r e s e r v e   c a l l e r ' s  DS 

; W e ' l l   d r a w   t o p   t o   b o t t o m ,   t o   r e d u c e   t h e  number o f  cases we have t o   h a n d l e ,  
: and t o  make l i n e s   b e t w e e n   t h e  same endpo in ts   a lways   d raw  the  same p i x e l s .  

mov a x . [ b p l . Y S t a r t  

j l e  L ineIsTopToBot tom 
xchg  Cbp1.YEnd.a~  :swap  endpoints 
mov C b p 1 . Y S t a r t . a ~  
mov bx . [bp l .XS ta r t  
xchg  [bpl.XEnd,bx 
mov C b p 1 . X S t a r t . b ~  

L ineIsTopToBot tom: 
: P o i n t  DI t o   t h e   f i r s t   p i x e l   t o   d r a w .  

mov  dx.SCREENLWIDTH 
mu1 dx ' : Y S t a r t  * SCREEN-WIDTH 
mov s i . [ b p l . X S t a r t  
mov d i   , s i  
add d i  ,ax : D I  - Y S t a r t  * SCREENKWIDTH + X S t a r t  

cmp ax.[bpl.YEnd 

: - o f f s e t  o f  i n i t i a l   p i x e l  
: F i g u r e   o u t  how f a r   w e ' r e   g o i n g   v e r t i c a l l y   ( g u a r a n t e e d   t o   b e   p o s i t i v e ) .  

mov cx.[bpl.YEnd 
sub   cx , [bp l .YS ta r t  : C X  - YDel ta  

: F i g u r e   o u t   w h e t h e r   w e ' r e   g o i n g   l e f t   o r   r i g h t ,   a n d  how f a r   w e ' r e   g o i n g  
: h o r i z o n t a l l y .  I n  t h e   p r o c e s s ,   s p e c i a l - c a s e   v e r t i c a l   l i n e s ,   f o r   s p e e d  and 
: t o   a v o i d   n a s t y   b o u n d a r y   c o n d i t i o n s   a n d   d i v i s i o n   b y  0. 

mov dx.Cbpl.XEnd 
sub  dx .s i  :XDel t a  
j n z   N o t V e r t i c a l L i n e   : X D e l t a  - 0 means v e r t i c a l   l i n e  

: i t i s  a v e r t i c a l   l i n e  
: y e s .   s p e c i a l   c a s e   v e r t i c a l   l i n e  

mov  ax.SCREEN-SEGMENT 
mo v ds ,   ax   : po in t  DS:DI t o   t h e   f i r s t   b y t e   t o  draw 
mov a1 . [ b p l . C o l o r  

mov [ d i  1 .a1 
add d i  .SCREEN-WIDTH 
dec  cx 
j n s  VLOOP 

VLoop: 

jmp Done 
: S p e c i a l - c a s e   c o d e   f o r   h o r i z o n t a l   l i n e s .  

I s H o r i z o n t a l L i n e :  
a l i g n  2 

mov  ax.SCREENKSEGMENT 
rnov es  ,ax 
mov a l . [ b p l . C o l o r  
mov ah.a l  
and  bx,  bx 
j n s  D i  r S e t  
sub d i   . d x  

: p o i n t  E S : D I  t o   t h e   f i r s t   b y t e   t o   d r a w  

: d u p l i c a t e   i n   h i g h   b y t e  f o r  word  access 
: l e f t   t o   r i g h t ?  
:yes 
: c u r r e n t l y   r i g h t   t o   l e f t ,   p o i n t   t o   l e f t  
: end so we can  go l e f t   t o   r i g h t  
: ( a v o i d s   u n p l e a s a n t n e s s   w i t h r i g h t   t o  
: l e f t  REP STOSW) 
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D i  r S e t :  
mov cx,   dx 
i nc  cx 
s h r  c x . 1  :# o f  words t o  draw 
rep   s tosw 
adc cx ,   cx  
r e p   s t o s b  :do t h e   o d d   b y t e ,  i f  t h e r e   i s  one 
j mp Done 

a1 i g n  2 

mov  ax.SCREEN-SEGMENT 
mov ds   ,ax   ;po in t  DS:DI t o   t h e   f i r s t   b y t e   t o  draw 
mov 
add 

a1 , [bp]  .Col or 
bx.SCREEN-WIDTH ;advance   d i s tance   f rom  one   p i xe l   t o   nex t  

mov [ d i  1 .a1 
add d i  , bx 
dec  cx 
j n s  DLoop 
j mP Done 

a1 i g n  2 

mov b x . 1  :assume l e f t   t o   r i g h t .  s o  XAdvance - 1 

j n s   L e f t T o R i g h t   : l e f t   t o   r i g h t ,   a l l   s e t  
n e g   b x   : r i g h t   t o   l e f t ,  so XAdvance - -1 
neg  dx : I XDel t a  I 

:# o f   p i x e l s   t o  draw 

:do  as many words  as  poss ib le  

: S p e c i a l - c a s e   c o d e   f o r   d i a g o n a l   l i n e s .  

I s D i a g o n a l L i n e :  

DLoop: 

N o t V e r t i c a l L i n e :  

: *** leaves  f lags  unchanged***  

L e f t T o R i g h t :  
: S p e c i a l - c a s e   h o r i z o n t a l   l i n e s .  

and 
Jz 

cx,cx  :YDelta - O? 
I s H o r i z o n t a l   L i n e   ; y e s  

: S p e c i a l - c a s e   d i a g o n a l   l i n e s .  
cmp cx,   dx  ;YDelta - XDel ta? 
j z   I s D i a g o n a l L i n e   : y e s  

cmp dx ,   cx  
j a e  XMa j o r  

: D e t e r m i n e   w h e t h e r   t h e   l i n e   i s  X or Y m a j o r ,   a n d   h a n d l e   a c c o r d i n g l y .  

j mP YMajor 
: X - m a j o r   ( m o r e   h o r i z o n t a l   t h a n   v e r t i c a l )   l i n e .  

XMa j o r  : 
a1 i g n  2 

mov  ax.SCREEN-SEGMENT 
mov es   ,ax   ;po in t  E S : D I  t o   t h e   f i r s t   b y t e   t o  draw 
and  bx , bx : l e f t   t o   r i g h t ?  
.ins DFSet 
s t d  

mov ax.dx  :XDel t a  
sub  dx.dx 
d i  v cx  :AX - XDe l ta /YDe l ta  

:yes.  CLD i s   a l r e a d y   s e t  
; r i g h t   t o   l e f t ,  so  draw  backwards 

DFSet: 

: p r e p a r e   f o r   d i v i s i o n  

: (minimum # o f   p i x e l s   i n  a r u n   i n   t h i s   l i n e )  
:DX - XDe l ta  % YDel ta  

mov bx,  dx 
add 

: e r r o r   t e r m   a d j u s t   e a c h   t i m e  Y s teps   by  1; 
bx.  bx : used t o   t e l l  when one e x t r a   p i x e l   s h o u l d   b e  

mov Cbp1.AdjUp.b~ : drawn  as p a r t   o f  a r u n .   t o   a c c o u n t   f o r  
: f r a c t i o n a l   s t e p s   a l o n g   t h e  X a x i s   p e r  
: 1 - p i x e l   s t e p s   a l o n g  Y 

mov s i   . c x   ; e r r o r   t e r m   a d j u s t  when t h e   e r r o r   t e r m   t u r n s  
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add s i  , s i  ; o v e r .   u s e d   t o   f a c t o r   o u t   t h e  X s t e p  made a t  
mov [bp l .Ad jDown,s i  ; t h a t   t i m e  

sub   dx .s i  ; ( X D e l t a  % YDel ta )  - ( Y D e l t a  * 2 )  
; I n i t i a l   e r r o r   t e r m ;   r e f l e c t s  an i n i t i a l   s t e p   o f  0 .5  a l o n g   t h e  Y a x i s .  

;OX * i n i t i a l   e r r o r   t e r m  
; The i n i t i a l  and l a s t   r u n s   a r e   p a r t i a l ,   b e c a u s e  Y advances  on ly  0.5 f o r  
; t h e s e   r u n s ,   r a t h e r   t h a n  1. D i v i d e  one f u l l   r u n ,   p l u s   t h e   i n i t i a l   p i x e l ,  
; b e t w e e n   t h e   i n i t i a l  and l a s t   r u n s .  

mov s i  , c x  ; S I  - YDelta 
mov cx.ax  ;whole  s tep  (min imum  run  length)  
shr   cx .1 
i n c   c x   ; i n i t i a l   p i x e l   c o u n t  - ( w h o l e   s t e p  / 2 )  + 1; 

; (may  be a d j u s t e d   l a t e r ) .   T h i s   i s   a l s o   t h e  
; f i n a l   r u n   p i x e l   c o u n t  

push  cx  ;remember f i n a l   r u n   p i x e l   c o u n t   f o r   l a t e r  
; I f  t h e   b a s i c   r u n   l e n g t h   i s   e v e n  and t h e r e ' s  no f r a c t i o n a l   a d v a n c e ,  we have 
; one p i x e l   t h a t   c o u l d  go t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n .   w h i c h  
; w e ' l l   a r b i t r a r i l y   a l l o c a t e   t o   t h e   l a s t   r u n .  
; I f  t h e r e   i s   a n  odd  number o f   p i x e l s   p e r   r u n .  we have  one p i x e l   t h a t   c a n ' t  
; b e   a l l o c a t e d   t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n .  s o  w e ' l l  add 0 .5  t o  
; t h e   e r r o r   t e r m  s o  t h i s   p i x e l  will b e   h a n d l e d   b y   t h e   n o r m a l   f u l l - r u n   l o o p .  

add d x . s i  ;assume  odd l e n g t h ,  add  YDelta t o   e r r o r   t e r m  

t e s t  a1 .I ; i s   r u n   l e n g t h   e v e n ?  
jnz  XMajorAdjustDone ; n o .   a l r e a d y   d i d   w o r k   f o r  odd  case, a l l   s e t  
s u b   d x , s i  ; l e n g t h   i s   e v e n ,  undo  odd s t u f f  we j u s t   d i d  
and  bx,  bx ; i s   t h e   a d j u s t  up  equal t o  O ?  
jnz   XMajorAd jus tDone ; n o   ( d o n ' t   n e e d   t o   c h e c k   f o r   o d d   l e n g t h ,  

dec   cx   ; bo th   cond i t i ons   me t ;  make i n i t i a l   r u n  1 

; (add 0.5 o f  a p i x e l   t o   t h e   e r r o r   t e r m )  

; because o f   t h e   a b o v e   t e s t )  

; s h o r t e r  
XMajorAdjustDone: 

mov [bp].WholeStep,ax;whole  step  (minimum  run  length) 
mov a1 , [ b p l   . C o l o r  ;AL - d r a w i n g   c o l o r  

r e p   s t o s b   ; d r a w   t h e   f i n a l   r u n  
add di,SCREEN-WIDTH ;advance  a long  the   minor   ax is  ( Y )  

cmp s i  .1 ; a r e   t h e r e  more  than 2 scans, s o  t h e r e   a r e  

j na XMajorDrawLast ;no.  no f u l l   r u n s  
dec   dx   ; ad jus t   e r ro r   t e rm  by  -1 so we can  use 

s h r   s i  .1 ; c o n v e r t   f r o m   s c a n   t o   s c a n - p a i r   c o u n t  
jnc   XMajorFu l lRunsOddEnt ry  ; i f  t h e r e   i s  an odd  number o f   s c a n s ,  

; Draw t h e   f i r s t ,   p a r t i a l   r u n   o f   p i x e l s .  

; D r a w  a l l   f u l l   r u n s .  

; some f u l l   r u n s ?  (SI - # scans - 1) 

; c a r r y   t e s t  

; do the  odd  scan now 
XMajorFul lRunsLoop: 

mov cx . [bp l .Who leStep; run  i s   a t   l e a s t   t h i s   l o n g  
add  dx,   bx  ;advance  the  er ror   term  and  add an e x t r a  
jnc  XMajorNoExtra ; p i x e l  i f  t h e   e r r o r   t e r m  s o  i n d i c a t e s  
i n c   c x   ; o n e   e x t r a   p i x e l   i n   r u n  
sub   dx . [bp l .Ad jDown  ; rese t   t he   e r ro r   t e rm 

XMajorNoExtra: 
r e p   s t o s b   ; d r a w   t h i s   s c a n   l i n e ' s   r u n  
add di.SCREEN-WIDTH ;advance   a long   t he   m ino r   ax i s  ( Y )  

XMajorFu l lRunsOddEnt ry :   ;en ter   loop   here  i f  t h e r e  i s  an odd  number 
; o f   f u l l   r u n s  

mov cx . [bp l .Who leStep; run  i s  a t  l e a s t   t h i s   l o n g  
add  dx,  bx ;advance  the   e r ro r   te rm  and  add  an   ex t ra  
j nc  XMajorNoExtraE ; p i x e l  i f  t h e   e r r o r   t e r m  s o  i n d i c a t e s  
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i n c   c x   ; o n e   e x t r a   p i x e l   i n   r u n  
sub   dx . [bp l .Ad jDown  : rese t   t he   e r ro r   t e rm 

r e p   s t o s b  
XMajorNoExtraZ: 

add di.SCREEN-WIDTH 
:draw t h i s  s c a n   l i n e ' s   r u n  
:advance   a long   t he   m ino r   ax i s  ( Y )  

dec s i  
jnz   XMajorFul lRunsLoop 

: Draw t h e   f i n a l   r u n   o f   p i x e l s .  
XMajorDrawLast: 

POP cx  
r e p   s t o s b  :' 

c l  d 
jmp Done 

a l i g n  2 
: Y - m a j o r   ( m o r e   v e r t i c a l   t h a n   h o r i z o n t a l  

YMajor: 
mov 
mov 
mov 
mov 
mov 
sub 
d i  v 

mov 
add 
mov 

mov 
add 
mov 

[bpl.XAdvance.bx 
ax.SCREENKSEGMEN1 
ds  ,ax 
ax.cx 
cx.dx 
dx,   dx 
c x  

bx.dx 
bx,   bx 
Cbpl.AdjUp.bx 

s i  , cx  
s i   , s i  
[bp l .AdjDown.s i  

g e t   b a c k   t h e   f i n a l   r u n   p i x e l   l e n g t h  
d r a w   t h e   f i n a l   r u n  

r e s t o r e   n o r m a l   d i r e c t i o n   f l a g  

l i n e .  

:remember  which way X advances 

: p o i n t  DS:DI t o   t h e   f i r s t   b y t e   t o  draw 
:YDel ta  
:XDel t a  
: p r e p a r e   f o r   d i v i s i o n  
:AX = YDe l ta /XDe l ta  
; (minimum # o f   p i x e l s   i n  a r u n   i n   t h i s   l i n e )  
:DX = YDel ta  % XDel ta  
: e r r o r   t e r m   a d j u s t   e a c h   t i m e  X s teps   by  1: 
; used t o   t e l l  when  one e x t r a   p i x e l   s h o u l d   b e  
: d r a w n   a s   p a r t   o f  a r u n ,   t o   a c c o u n t   f o r  
: f r a c t i o n a l   s t e p s   a l o n g   t h e  Y a x i s   p e r  
: 1 - p i x e l   s t e p s   a l o n g  X 
: e r r o r   t e r m   a d j u s t  when t h e   e r r o r   t e r m   t u r n s  
: o v e r ,   u s e d   t o   f a c t o r   o u t   t h e  Y s t e p  made a t  
: t h a t   t i m e  

: I n i t i a l   e r r o r   t e r m :   r e f l e c t s  an i n i t i a l   s t e p   o f  0 .5  a l o n g   t h e  X a x i s .  
sub   dx .s i   : (YDel ta  % XDe l ta )  - (XDe l ta  * 2 )  

:DX = i n i t i a l   e r r o r   t e r m  
: The i n i t i a l  and l a s t   r u n s   a r e   p a r t i a l ,   b e c a u s e  X advances  on ly  0 .5  f o r  
: t h e s e   r u n s ,   r a t h e r   t h a n  1. D i v i d e   o n e   f u l l   r u n ,   p l u s   t h e   i n i t i a l   p i x e l ,  
: b e t w e e n   t h e   i n i t i a l  and l a s t   r u n s .  

mov s i  , cx  :S I  - XDel ta  
mov cx .ax   :who le   s tep   (min imum  run   leng th)  
s h r   c x . 1  
i n c   c x   ; i n i t i a l   p i x e l   c o u n t  = (whole  s tep / 2 )  + 1; 

push  cx  :remember f i n a l   r u n   p i x e l   c o u n t   f o r   l a t e r  
: (may b e   a d j u s t e d   l a t e r )  

; I f  t h e   b a s i c   r u n   l e n g t h   i s   e v e n  and t h e r e ' s   n o   f r a c t i o n a l   a d v a n c e ,  we have 
: one p i x e l   t h a t   c o u l d  go t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n ,   w h i c h  
: w e ' l l   a r b i t r a r i l y   a l l o c a t e   t o   t h e   l a s t   r u n .  
: I f  t h e r e  i s  an  odd  number o f   p i x e l s   p e r   r u n ,  we h a v e   o n e   p i x e l   t h a t   c a n ' t  
; b e   a l l o c a t e d   t o   e i t h e r   t h e   i n i t i a l   o r   l a s t   p a r t i a l   r u n ,  s o  w e ' l l  add 0 .5  t o  
: t h e   e r r o r   t e r m  s o  t h i s   p i x e l  will b e   h a n d l e d   b y   t h e   n o r m a l   f u l l - r u n   l o o p .  

add  dx.s i  ;assume  odd l e n g t h ,   a d d   X D e l t a   t o   e r r o r   t e r m  
t e s t  a1 .1 : i s   r u n   l e n g t h   e v e n ?  
jnz   YMajorAd jus tDone ; n o .   a l r e a d y   d i d   w o r k   f o r   o d d   c a s e ,   a l l   s e t  
sub  dx,s i  : l e n g t h   i s   e v e n ,   u n d o   o d d   s t u f f  we j u s t   d i d  
and  bx,  bx : i s   t h e   a d j u s t   u p   e q u a l   t o  D? 
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j nz   YMajorAd jus tDone : n o  (don ' t   need   to   check  f o r  odd l e n g t h ,  

dec  cx ; b o t h   c o n d i t i o n s   m e t :  make i n i t i a l   r u n  1 
: because   o f   t he   above   t es t )  

: s h o r t e r  
YMajorAdjustDone: 

mov [bp].WholeStep.ax ;who le   s tep   (min imum  run   leng th)  
mov  a1 , [bp ]   .Co lo r  :AL - d r a w i n g   c o l o r  
mov bx.[bpl.XAdvance ;which way X advances 

: D r a w  t h e   f i r s t ,   p a r t i a l   r u n   o f   p i x e l s .  
YMajorF i rs tLoop:  

mov [ d i l . a l  
add di.SCREEN_WIDTH 

;d raw  the   p i xe l  
:advance  a long  the   ma jor   ax is  C Y )  

dec  cx 
j n z   Y M a j o r F i r s t L o o p  
add d i  , bx   ;advance  a long  the   minor   ax is  ( X )  

: D r a w  a l l   f u l l   r u n s .  
CmP s i  . I  :# o f   f u l l  runs. Are   there   more   than  2  

: columns, so t h e r e   a r e  some f u l l   r u n s ?  
: (SI - I/ columns - 1) 

jna  YMajorDrawLast  :no.  no f u l l   r u n s  
d e c   d x   ; a d j u s t   e r r o r   t e r m   b y  -1 s o  we can  use 

s h r   s i  .1 : conve r t   f r om  co lumn  to   co lumn-pa i  r c o u n t  
jnc   YMajorFu l lRunsOddEnt ry  : i f  t h e r e   i s  an odd  number o f  

: c a r r y   t e s t  

YMajorFul lRunsLoop: 
mov c x ,   [ b p l  .Who1 eStep 
add dx . [bp l .Ad jUp 
jnc  YMajorNoExtra 
i nc  cx 
sub  dx.[bpl.AdjDown 

YMajorNoExtra: 

YMajorRunLoop: 
:d raw  the  run 

mov C d i l . a l  
add d i  ,SCREEN-WIDTH 
dec  cx 
j n z  YMajorRunLoop 
add d i  , bx 

YMajorFul lRunsOddEntry:  

mo v 
add 
j n c  
i nc 
sub 

YMajorNoExtraZ: 
: d raw  the   run  

YMajorRunLoopE: 
mov 
add 
dec 
j nz 
add 

cx. [bpl .WholeStep 
dx. [bpl .AdjUp 
YMajorNoExtraZ 

dx.Cbpl.AdjDown 
cx 

C d i l . a l  
d i  ,SCREEN-WIDTH 
c x  
YMajorRunLoop2 
d i  . bx 

dec s i  
jnz   YMajorFu l lRunsLoop 

; Draw t h e   f i n a l   r u n   o f   p i x e l s .  
YMajorDrawLast: 

POP cx 

; columns,  do  the  odd  column now 

; run  i s  a t  l e a s t   t h i s   l o n g  
:advance  the   e r ro r   te rm  and  add  an   ex t ra  
: p i x e l  i f  t h e   e r r o r   t e r m  s o  i n d i c a t e s  
; o n e   e x t r a   p i x e l   i n   r u n  
; r e s e t   t h e   e r r o r   t e r m  

: d r a w   t h e   p i x e l  
:advance  a long  the   ma jor   ax is  C Y )  

; advance   a long   t he   m ino r   ax i s  ( X )  
: e n t e r   l o o p   h e r e  i f  t h e r e   i s  an odd  number 
; o f   f u l l   r u n s  
: r u n   i s   a t   l e a s t   t h i s   l o n g  
;advance  the   e r ro r   te rm  and  add an e x t r a  
: p i x e l  i f  t h e   e r r o r   t e r m  s o  i n d i c a t e s  
;one e x t r a   p i x e l   i n   r u n  
; r e s e t   t h e   e r r o r   t e r m  

: d r a w   t h e   p i x e l  
;advance  a long  the   ma jor   ax is  ( Y )  

:advance  a long  the   minor   ax is  ( X )  

: g e t   b a c k   t h e   f i n a l   r u n   p i x e l   l e n g t h  
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YMajorLastLoop: 
mov Cdi1,a l  
add di.SCREEN-WIDTH 
dec  cx 
jnz   YMajorLas tLoop 

POP ds 
P O P  d i  
POP s i  
mov SP * bP 
POP bP 
r e t  

end 

Done: 

-Li  neDraw  endp 

: d r a w   t h e   p i x e l  
: advance   a long   t he   ma jo r   ax i s  ( Y )  

: r e s t o r e   c a l l e r ’ s  DS 

: r e s t o r e  C r e g i s t e r   v a r i a b l e s  
: d e a l l o c a t e   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

How Fast Is Fast? 
Your first question is likely to be the following: Just how fast is  Listing 37.1? Is it 
optimized to the hilt or  just pretty fast? The quick  answer  is:  It’s fast. Listing 37.1 
draws lines at  a  rate of nearly 1 million  pixels per second on my 486/33, and is 
capable of  still  faster  drawing,  as  I’ll  discuss  shortly. (The heavily optimized AutoCAD 
line-drawing code that I mentioned in the last chapter drew 150,000 pixels per sec- 
ond  on an EGA in a 386/16, and I thought I had died and  gone to Heaven. Such is 
progress.) The full  answer  is a  more complicated one,  and ties  in to the principle 
that if it is broken, maybe  that’s  okay-and  to the principle of looking before you 
leap, also  known  as profiling before you optimize. 
When I went  to speed up run-length slice  lines, I initially  manually converted the last 
chapter’s C code into assembly. Then I streamlined the register usage and used REP 
STOS wherever  possible.  Listing 37.1 is that code. At that point, line drawing was 
surely  faster, although I didn’t know  exactly  how much faster.  Equally  surely, there 
were  significant optimizations yet to be made, and I was itching to get on to them, 
for they  were bound to  be a lot more interesting than  a basic  C-to-assembly port. 
Ego intervened at this point, however. I wanted  to know  how much of a speed-up I 
had already gotten, so I timed the performance of the C code and compared it to the 
assembly code. To  my horror, I found  that I had not gotten even a two-times  im- 
provement! I couldn’t understand how that could be-the C code was decidedly 
unoptimized-until I hit on the idea of measuring the maximum memory speed of 
the VGA to which I was drawing. 
Bingo. The Paradise VGA in my 486/33 is fast for  a single  display-memory  write, 
because  it  buffers the data, lets the CPU go on its merry way, and finishes the write 
when display memory is ready.  However, the maximum rate  at which data can be 
written to  the  adapter  turns  out to be no more than one byte  every microsecond. Put 
another way,  you can  only  write one byte  to  this adapter every 33 clock  cycles on a 
486/33. Therefore, no matter how  fast I made the line-drawing code, it could never 
draw more than 1,000,000 pixels per second in  256-color mode in my system. The C 
code was already  drawing at  about half that rate, so the potential speed-up for the 
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assembly code was limited to a maximum of two times, which is pretty close to what 
Listing 37.1 did, in fact, achieve. When I compared  the C and assembly implementa- 
tions drawing to normal system (nondisplay) memory, I  found  that  the assembly 
code was actually four times  as  fast  as the C code. 

In fact, Listing 37.1 draws VGA lines at about 92percent of the  maximum possible p rate in my system-that is, it draws very nearly as fast as the VGA hardware will 
allow. All the optimization in the world would get me less than 10 percent faster 
line  drawing-and only $I  eliminated all overhead, an unlikely proposition at 
best. The code isn 1 fully optimized, but so what? 

Now  it’s true  that faster linedrawing  code would  likely be more beneficial on faster 
VGAs, especially local-bus VGAs, and in slower  systems. For that reason, I’ll list a 
variety of potential optimizations to Listing 37.1. On  the  other  hand, it’s  also true 
that Listing 37.1 is capable of drawing lines at  a  rate of 2.2 million pixels per second 
on a 486/ 33, given  fast enough VGA memory, so it  should be able to drive almost 
any non-local-bus VGA at nearly full speed.  In  short, Listing 37.1 is very fast, and, in 
many  systems, further optimization is basically a waste of time. 
Profile before you optimize. 

Further Optimizations 
Following  is a quick tour of some of the many  possible further optimizations to 
Listing 37.1. 
The run-handling loops could be unrolled  more  than  the current two times. How- 
ever, bear in mind  that  a two-times unrolling gets more  than half the maximum 
unrolling  benefit with  less overhead than  a  more heavily unrolled  loop. 
BX could be freed up in  the Y-major code by breaking out separate loops for X 
advances of 1 and -1. DX could be freed up by using AH as the  counter  for  the  run 
loops, although this  would limit the maximum line  length  that  could be handled. 
The freed registers could be used to keep more of the whole-step and  error variables 
in registers. Alternatively, the  freed registers could  be used to implement  more eso- 
teric approaches like unrolling  the Y-major inner loop; such unrolling  could take 
advantage of the knowledge that only two run lengths  are possible for any  given line. 
Strangely enough,  on  the 486 it might also be worth unrolling  the X-major inner 
loop, which  consists  of REP STOSB, because of the slow start-up time of REP relative 
to the speed of branching  on  that processor. 
Special code  could be implemented  for lines with integral slopes, because all runs 
are exactly the same length in such lines. Also, the X-major code  could try  to  write an 
aligned word at a time to display  memory whenever possible;  this  would improve the 
maximum  possible performance  on some 1 &bit VGAs. 
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One weakness  of  Listing 3’7.1 is that  for lines with  slopes  between 0.5 and 2, the 
average run length is  less than two, rendering  run-length slicing  ineffective. This can 
be remedied by viewing lines in  that  range as being  composed of diagonal,  rather 
than  horizontal or vertical runs. I haven’t space to take this idea any further  in this 
book, but it’s not very complicated, and it  guarantees  a minimum run length of 2, 
which renders  run drawing considerably more efficient, and makes techniques such 
as unrolling  the inner run-drawing loops more attractive. 
Finally,  be  aware that  run-length slice drawing is best for  long lines, because it has 
more and slower setup  than  a  standard Bresenham’s line draw, including  a divide. 
Run-length slice is great  for 100-pixel lines, but  not necessarily for 20-pixel lines, and 
it’s a  sure  thing  that it’s not terrific for %pixel lines. Both approaches will work, but 
if line-drawing performance is critical, whether you’ll  want to use run-length slice or 
standard Bresenham’s depends  on  the typical lengths of the  lines you’ll be drawing. 
For lines of widely  varying lengths, you might want to implement  both  approaches, 
and choose the best one for  each  line,  depending  on  the  line length-assuming, of 
course,  that your  display  memory  is  fast enough  and your application  demanding 
enough  to make that level of optimization worthwhile. 
If your code looks broken  from  a  performance perspective, think  before you  fix  it; 
that  particular cat may be  dead  for  a perfectly good  reason. 1’11  say it again: Profile 
bejwe you optimize. 
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chapter 38

the polygon primeval



"Give me but one jirin spot on which to stand, and I will  move  the Earth. '' 
-Archimedes , ~ v : " j  

Were Archimedes ali&,~,today, he might say,  "Give me but  one fast polygon-fill 
routine  on which to calf, an'd 1 will draw the  Earth." Programmers often think of 
pixel drawing as beink  the basic graphics primitive, but filled polygons are equally 
fundamental  and fir more useful. Filled  polygons can be used for constructs as 
diverse as a single <$ixel or a 3-D surface, and virtually everything in between. 
I'll spends?me&ne in this chapter  and  the  next several developing routines to 
draw filled polygoris and building more sophisticated graphics operations  atop 
those routines.  Once.we have that  foundation, I'll get into 2-D manipulation and 
animation of polygon-based entities as preface to an  exploration of 3-D graphics. 
You can't  get  there  from  here without laying some groundwork, though, so in this 
chapter I'll begin with the basics  of filling a polygon. In  the  next  chapter, we'll see 
how  to  draw a polygon considerably faster. That's my general  approach  for this 
sort of topic: High-level exploration of a graphics topic first, followed by a speedy 
hardware-specific implementation  for  the IBM PC/VGA combination,  the most 
widely used graphics system around. Abstract, machine-independent graphics is a 
thing of beauty, but only by understanding graphics at all  levels, including  the 
hardware, can you boost performance  into  the realm of the sublime. 
And slow computer graphics is scarcely worth the  bother. 

"" " Inan .. ~ n.l ~ 
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Filled Polygons 
A polygon is simply a  shape  formed by lines laid end to end to  form  a  continuous, 
closed path. A polygon is filled by setting all  pixels  within the polygon’s boundaries 
to  a  color or  pattern. For now,  we’ll  work  only  with  polygons filled with solid colors. 
You can  divide  polygons into three categories:  convex,  nonconvex, and complex, as shown 
in Figure 38.1. Convex  polygons include what you’d normally think of  as “convex” 
and more; as far as  we’re concerned,  a convex  polygon is one  for which  any horizon- 
tal line drawn through  the polygon encounters  the  right  edge exactly once  and  the 
left  edge exactly once,  excluding  horizontal and zero-length  edge  segments.  Put 
another way, neither  the  right  nor  left  edge of a convex  polygon ever reverses direc- 
tion  from up to down, or vice-versa. Also, the  right and left edges of a convex  polygon 
may not cross one  another,  although they may touch so long as the  right  edge never 
crosses  over to  the  left side of the left edge.  (Check out the  second polygon  drawn in 
Listing 38.3, which certainly isn’t convex in the  normal  sense.) The boundaries of 
nonconvex polygons, on  the  other  hand, can go in whatever directions they please, 
so long as  they never cross. Complex polygons can have  any boundaries you might 
imagine, which  makes for  interesting  problems in deciding which interior spaces to 
fill and which not to fill.  Each category is a superset of the previous one. 
(See Chapter 41 for  a  more  detailed discussion of polygon  types and naming.) 
Why bother  to distinguish between  convex, nonconvex, and complex polygons? Easy: 
performance, especially when it comes to filling convex  polygons.  We’re going  to 
start with filled convex  polygons; they’re widely useful and will serve well to  intro- 
duce some of the  subtler complexities of polygon drawing, not the least of which is 
the slippery concept of “inside.” 

Which Side Is Inside? 
The basic principle of polygon filling is decomposing  each polygon into a series of 
horizontal lines, one for each horizontal row  of  pixels, or scan line, within the polygon (a 
process I’ll  call scan conversion), and drawing the  horizontal lines. I’ll refer  to  the 

Convex,  nonconvex,  and  complex polygons. 
Figure 38.1 
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entire process as rasterization. Rasterization of  convex  polygons is easily done by 
starting at  the  top of the polygon and tracing down the left and right sides, one scan 
line (one vertical pixel) at  a time, filling the  extent between the two edges on each 
scan line, until  the bottom of the polygon is reached. At first glance, rasterization 
does not seem to be particularly complicated, although  it  should be apparent  that 
this simple approach is inadequate  for nonconvex polygons. 
There  are  a  couple of complications, however. The lesser complication is  how to 
rasterize the polygon  efficiently,  given that it’s difficult to write  fast code that simul- 
taneously traces two edges and fills the space between them.  The solution is to 
decouple  the process of scan-converting the polygon into  a list of horizontal lines 
from  that of drawing the horizontal lines. One device-independent  routine can trace 
along the two edges and build a list  of the  beginning  and end coordinates of the 
polygon on each raster line. Then a  second, device-specific, routine can draw from 
the list after the  entire polygon  has been  scanned. We’ll see this in action shortly. 
The  second,  greater complication arises because the definition of  which pixels are 
“within” a polygon is a  more complicated matter  than you might imagine. You might 
think  that scan-converting an  edge of a polygon is analogous to drawing a line from 
one vertex to the next, but this is not so. A line by itself is a one-dimensional con- 
struct, and as such is approximated on a display by drawing the pixels nearest to the 
line on  either side of the  true  line. A line serving  as a polygon boundary, on  the 
other  hand, is part of a two-dimensional object. When filling a polygon, we want to 
draw the pixels  within the polygon, but  a  standard vertex-to-vertex line-drawing algo- 
rithm will draw  many  pixels outside the polygon, as  shown in Figure 38.2. 
It’s no crime to use standard lines to trace out a polygon, rather  than drawing only 
interior pixels. In fact, there  are certain advantages: For example, the edges of a 

00 
00000000 
Polygon  boundary  pixels 
selected by a standard 
line-drawing  algorithm. 

00 
00000000 
Polygon boundary  pixels  when 
all drawing is kept  inside or on 
the polygon’s  bounding  lines. 

Drawing  polygons  with standard line-drawing algorithms. 
Figure 38.2 

The Polygon  Primeval 71 1 



filled  polygon will match the edges of the same polygon  drawn unfilled. Such poly- 
gons will look pretty much as  they’re supposed to, and all  drawing on raster displays 
is, after all,  only an approximation of an ideal. 
There’s one great drawback  to tracing polygons  with standard lines, however:  Adja- 
cent polygons  won’t  fit together properly,  as  shown in Figure 38.3. If you  use  six 
equilateral triangles to make a hexagon,  for  example,  the edges of the triangles will 
overlap when traced with standard lines, and  more recently  drawn  triangles will  wipe 
out portions of their predecessors. Worse  still, odd color effects will show up along 
the polygon boundaries if XOR drawing is used. Consequently,  filling out to the 
boundary lines just won’t do for drawing  images composed of fitted-together poly- 
gons. And because fitting polygons together is exactly  what I have in mind, we need 
a different  approach. 

How Do You Fit Polygons  Together? 
How, then, do you fit polygons together? Very carefully.  First, the line-tracing algo- 
rithm must be adjusted so that  it selects  only those pixels that  are truly inside the 
polygon. This basically requires shifting a standard line-drawing algorithm horizon- 
tally by one half-pixel  toward the polygon’s interior. That leaves the issue of how to 
handle points that  are exactly on  the boundary, and points that lie at vertices, so that 
those points are drawn once  and only once. To deal with that, we’re going  to adopt 
the following  rules: 

Points  located  exactly  on  nonhorizontal  edges  are  drawn  only if the  interior of 
the  polygon  is  directly  to  the  right  (left  edges  are  drawn,  right  edges  aren’t). 

00000000 
The  screen after  a  filled  polygon 
is drawn using a  standard 
line-drawing  algorithm to trace 
the  edges. 

00 
00 
00 
00  
00 
00 
00 
00  
00000000 

The  screen after  a second, adjacent 
polygon is drawn; the  second  polygon 
wipes  out  several  pixels drawn as part 
of  the  first polygon, some  of  them  within 
the  first  polygon‘s boundaries. 

The adjacent polygons problem. 
Figure 38.3 
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Points  located  exactly on horizontal  edges  are  drawn  only  if  the  interior of the 
polygon  is  directly  below  them  (horizontal  top  edges  are  drawn,  horizontal  bot- 
tom  edges  aren't). 
A vertex  is  drawn  only  if  all  lines  ending at that  point  meet  the  above  conditions 
(no  right or  bottom  edges  end  at  that  point). 

All edges of a polygon except  those  that are flat tops or flat bottoms will be consid- 
ered  either  right  edges or left edges, regardless of slope. The left edge is the  one  that 
starts with the leftmost line down from  the  top of the polygon. 
These  rules  ensure that  no pixel is drawn more  than  once when adjacent polygons 
are filled, and  that if polygons cover the full 360degree  range  around a pixel, then 
that pixel will be drawn once  and only once-just  what we need in order to be  able to 
fit filled polygons together seamlessly. 

This sort of non-overlapping polygonfilling isn 't ideal for allpurposes. Polygons 1 are  skewed  toward the top and left edges, which  not only introduces drawing error 
relative to the ideal polygon but also means  that a  Jilledpolygon won 't match the 
same polygon drawn unfilled. Narrow wedges and one-pixel-wide polygons will 
show  up spottily. All in all, the choice ofpolygon-filling approach depends entirely 
on  the ways in which thefilledpolygons must be used. 

For our purposes,  nonoverlapping polygons are  the way to go, so let's have at  them. 

Filling Non-Overlapping Convex  Polygons 
Without further  ado, Listing 38.1 contains a function, FillConvexPolygon, that ac- 
cepts a list  of points that describe a convex polygon, with the last point assumed to 
connect  to  the first, and scans it  into a list  of lines to fill, then passes that list to  the 
function DrawHorizontalLineLt in Listing 38.2. Listing 38.3 is a sample  program 
that calls FillConvexPolygon to draw polygons of various sorts, and Listing 38.4  is a 
header file included by the other listings. Here  are  the listings; we'll pick up discus- 
sion on  the  other side. 

LISTING  38.1  138- 1 .C 
/*  C o l o r - f i l l s  a convex  polygon. All v e r t i c e s   a r e   o f f s e t  b y   ( X O f f s e t .  

YOf fse t ) .   "Convex"  means t h a t   e v e r y   h o r i z o n t a l   l i n e   d r a w n   t h r o u g h  
t h e   p o l y g o n   a t   a n y   p o i n t   w o u l d   c r o s s   e x a c t l y   t w o   a c t i v e   e d g e s  
( n e i t h e r   h o r i z o n t a l   l i n e s   n o r   z e r o - l e n g t h   e d g e s   c o u n t  as a c t i v e  
edges:   bo th   a re   acceptab le   anywhere  i n   t h e   p o l y g o n ) .  and t h a t   t h e  
r i g h t  & l e f t  edges  never  cross.  ( I t ' s  OK f o r  them t o   t o u c h .   t h o u g h .  
s o  l o n g  as t h e   r i g h t  edge  never  crosses  over t o   t h e   l e f t   o f   t h e  
l e f t  edge.)   Nonconvex  po lygons  won' t   be  drawn  proper ly .   Returns 1 
f o r   s u c c e s s ,  0 i f  memory a l l o c a t i o n   f a i l e d .  * /  

# i n c l u d e   < s t d i o . h >  
l i n c l  ude  <math.  h> 
# i f d e f  -TURBOC- 
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ii n c l  ude  <a1 1 oc.  h> 
# e l s e  / *  MSC */  
#i n c l  ude  <mal 1 oc.  h> 
Pendi  f 
# inc lude   "po l ygon .  h" 

/ *  Advances t h e   i n d e x   b y  one v e r t e x   f o r w a r d   t h r o u g h   t h e   v e r t e x   l i s t ,  

# d e f i n e  INDEX-FORWARD(1ndex) \ 
w r a p p i n g   a t   t h e   e n d   o f   t h e   l i s t  */ 

Index  - ( I n d e x  + 1) % V e r t e x L i s t - > L e n g t h ;  

/ *  Advances t h e   i n d e x   b y   o n e   v e r t e x   b a c k w a r d   t h r o u g h   t h e   v e r t e x   l i s t ,  

# d e f i n e  INDEXLBACKWARD(1ndex) \ 
wrapp ing  a t  t h e   s t a r t   o f   t h e   l i s t  * /  

Index  - ( I n d e x  - 1 + V e r t e x L i s t - > L e n g t h )  % V e r t e x L i s t - > L e n g t h :  

/* Advances t h e   i n d e x   b y  one v e r t e x   e i t h e r   f o r w a r d   o r   b a c k w a r d   t h r o u g h  
t h e   v e r t e x   l i s t ,   w r a p p i n g   a t   e i t h e r  end o f   t h e   l i s t  */ 

# d e f i n e  INDEX-MOVE(Index,Direction) \ 
i f  ( D i r e c t i o n  > 0) \ 

Index  - ( I n d e x  + 1) % V e r t e x L i s t - > L e n g t h :  \ 
e l s e  \ 

Index  - ( I n d e x  - 1 + V e r t e x L i s t - > L e n g t h )  % V e r t e x L i s t - > L e n g t h :  

e x t e r n   v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  *, i n t ) :  
s t a t i c   v o i d   S c a n E d g e ( i n t .   i n t .   i n t .   i n t .   i n t .   i n t .   s t r u c t   H L i n e  **): 

i n t  FillConvexPolygon(struct P o i n t L i s t H e a d e r  * V e r t e x L i s t .   i n t   C o l o r ,  

( 
i n t   X O f f s e t .   i n t   Y O f f s e t )  

i n t   1 .   M i n I n d e x L .   M a x I n d e x .   M i n I n d e x R .   S k i p F i r s t .  Temp: 
i n t  MinPoint -Y.   MaxPoint -Y.   TopIsFlat .   Lef tEdgeDir ;  
i n t   N e x t I n d e x .   C u r r e n t I n d e x .   P r e v i o u s l n d e x ;  
i n t  DeltaXN.  DeltaYN.  DeltaXP.  DeltaYP; 
s t r u c t   H L i n e L i s t   W o r k i n g H L i n e L i s t ;  
s t r u c t   H L i n e   * E d g e P o i n t P t r :  
s t r u c t   P o i n t   * V e r t e x P t r ;  

/ *  P o i n t   t o   t h e   v e r t e x   l i s t  * /  
V e r t e x P t r  - V e r t e x L i s t - > P o i n t P t r :  

/ *  Scan t h e   l i s t   t o   f i n d   t h e   t o p  a n d   b o t t o m   o f   t h e   p o l y g o n  */ 
i f  ( V e r t e x L i s t - > L e n g t h  - 0 )  

MaxPoint-Y - MinPoint-Y - VertexPtrCMinIndexL - MaxIndex - 01.Y: 
f o r  (i - 1: i < V e r t e x L i s t - > L e n g t h :  i++) ( 

r e t u r n ( 1 ) :  / *  r e j e c t   n u l l   p o l y g o n s  */  

i f  (Ver texP t rC i1 .Y  < MinPoint -Y)  

e l s e  i f  (Ver texP t rC i1 .Y  > MaxPoint-Y) 
MinPoint-Y - VertexPtrCMinIndexL - i1.Y: /*  new t o p  */  

MaxPoint-Y - VertexPtrCMaxIndex - i1.Y: /* new bo t tom */  
} 
i f  (MinPoint-Y - MaxPoint-Y) 

r e t u r n ( 1 ) :  /* p o l y g o n   i s   0 - h e i g h t :   a v o i d   i n f i n i t e   l o o p   b e l o w  */ 

/* Scan i n  a s c e n d i n g   o r d e r   t o   f i n d   t h e   l a s t   t o p - e d g e   p o i n t  */ 
MinIndexR - MinIndexL;  
wh i l e   (Ve r texP t rCMin IndexR1 .Y  - MinPoint -Y)  

INDEX-BACKWARD(Min1ndexR): /* back u p  t o   l a s t   t o p - e d g e   p o i n t  * /  
INDEX-FORWARD(Min1ndexR); 
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I* Now scan i n  d e s c e n d i n g   o r d e r   t o   f i n d   t h e   f i r s t   t o p - e d g e   p o i n t  * /  
w h i l e   ( V e r t e x P t r [ M i n I n d e x L l . Y  - MinPoint-Y) 

INDEXLFORWARD(Min1ndexL); / *  back  up t o   f i r s t   t o p - e d g e   p o i n t  */ 

I* F i g u r e   o u t   w h i c h   d i r e c t i o n   t h r o u g h   t h e   v e r t e x   l i s t   f r o m   t h e   t o p  

L e f t E d g e D i r  - -1: I* assume l e f t  edge  runs down t h r u   v e r t e x   l i s t  * I  
i f  ( ( T o p I s F l a t  - (VertexPtrCMinIndexL1.X !- 

INDEX_BACKWARD(MinIndexL); 

v e r t e x   i s   t h e   l e f t  edge  and  which i s   t h e   r i g h t  * /  

Ver texPt r [Min IndexRl .X)  ? I : 0)  - 1 )  C 
I* I f  t h e   t o p   i s  f lat,  j u s t  see  which o f  t h e  ends i s   l e f t m o s t  *I  
i f  ( V e r t e x P t r [ M i n I n d e x L l . X  > VertexPtrCMinIndexR1.X) { 

L e f t E d g e D i r  = 1; I* l e f t  edge  runs   up   th rough  ver tex  l i s t  *I  
Temp - MinIndexL: I* swap t h e   i n d i c e s  so Min IndexL */  
Min IndexL = MinIndexR; I* p o i n t s   t o   t h e   s t a r t   o f   t h e   l e f t  * /  
MinIndexR - Temp; / *  edge, s i m i l a r l y   f o r   M i n I n d e x R  * /  

1 
1 e l s e  { 

/ *  P o i n t   t o   t h e  downward  end o f   t h e   f i r s t   l i n e   o f  each o f   t h e  

Next Index  - MinIndexR; 
INDEXLFORWARD(Next1ndex); 
P r e v i o u s I n d e x  - Min IndexL:  
INDEX-BACKWARD(Previous1ndex); 
I* C a l c u l a t e  X and Y l e n g t h s   f r o m   t h e   t o p   v e r t e x   t o   t h e  end o f  

two  edges down f r o m   t h e   t o p  * /  

t h e   f i r s t   l i n e  down each  edge:  use  those t o  compare  s lopes 
and  see  which l i n e   i s   l e f t m o s t  * I  

DeltaXN - V e r t e x P t r [ N e x t I n d e x l . X  - VertexPtrCMinIndexL1.X; 
Del taYN - V e r t e x P t r [ N e x t I n d e x l . Y  - VertexPtrCMinIndexL1.Y: 
Del taXP - VertexPtr[PreviousIndexl.X - VertexPtrCMinIndexL1.X: 
DeltaYP - Ver texP t r [P rev ious Index l .Y  - VertexPtrCMinIndexL1.Y; 
i f  ( ( ( 1 o n g ) D e l t a X N  * DeltaYP - (1ong)DeltaYN * DeltaXP) < OL) { 

L e f t E d g e D i r  = 1; I* l e f t  edge  runs  up  through  ver tex l i s t  *I  
Temp = Min IndexL:  I* swap t h e   i n d i c e s  s o  Min IndexL *I  
MinIndexL .. MinIndexR; I* p o i n t s   t o   t h e   s t a r t   o f   t h e   l e f t  * /  
MinIndexR - Temp: / *  edge, s i m i l a r l y   f o r   M i n I n d e x R  * I  

1 
1 

I* Set   t he  # o f  s c a n   l i n e s   i n   t h e   p o l y g o n ,   s k i p p i n g   t h e   b o t t o m   e d g e  
and a l s o   s k i p p i n g   t h e   t o p   v e r t e x  i f  t h e   t o p   i s n ' t   f l a t  because 
i n   t h a t  c a s e   t h e   t o p   v e r t e x   h a s  a r i g h t  edge  component,  and  set 
t h e   t o p   s c a n   l i n e   t o   d r a w ,   w h i c h   i s   l i k e w i s e   t h e   s e c o n d   l i n e   o f  
t h e   p o l y g o n   u n l e s s   t h e   t o p   i s   f l a t  *I  

i f  ( (Work ingHL ineL is t .Leng th  - 
MaxPoint-Y - MinPoint-Y - 1 + T o p I s F l a t )  <- 0 )  

r e t u r n ( 1 ) :  / *  t h e r e ' s   n o t h i n g   t o   d r a w ,  s o  we're  done */  
W o r k i n g H L i n e L i s t . Y S t a r t  - Y O f f s e t  + MinPoint-Y + 1 - T o p I s F l a t :  

/*  Get memory i n  w h i c h   t o   s t o r e   t h e   l i n e   l i s t  we genera te  *I 
i f  ( (Work ingHL ineL is t .HL inePt r  - 

( s t r u c t   H L i n e  * )  ( m a l l o c ( s i z e o f ( s t r u c t   H L i n e )  * 
Work ingHL ineL is t .Leng th ) ) )  -- NULL) 

r e t u r n ( 0 ) :  / *  c o u l d n ' t   g e t  memory f o r   t h e   l i n e   l i s t  *I  

I* Scan t h e   l e f t  edge  and s t o r e   t h e   b o u n d a r y   p o i n t s   i n   t h e   l i s t  *I  
I* I n i t i a l   p o i n t e r   f o r   s t o r i n g   s c a n   c o n v e r t e d   l e f t - e d g e   c o o r d s  *I 
EdgePoin tPt r  - Work ingHLineLis t .HLinePtr :  
I* S t a r t  f r o m   t h e   t o p   o f   t h e   l e f t   e d g e  *I  
P r e v i o u s I n d e x  - C u r r e n t I n d e x  - Min IndexL;  
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/*  

/*  S k i p   t h e   f i r s t   p o i n t   o f   t h e   f i r s t   l i n e   u n l e s s   t h e   t o p   i s   f l a t :  
i f  t h e   t o p   i s n ' t   f l a t ,   t h e   t o p   v e r t e x   i s   e x a c t l y  on a r i g h t  
edge  and i s n ' t  drawn * I  

S k i p F i r s t  - T o p I s F l a t  ? 0 : 1; 
/*  Scan c o n v e r t   e a c h   l i n e   i n   t h e   l e f t  e d g e   f r o m   t o p   t o   b o t t o m  */  
do { 

INDEX-MOVE(Current1ndex.LeftEdgeDir):  
ScanEdge(VertexPtr [PreviousIndex] .X  + X O f f s e t .  

VertexPtr[PreviousIndexl.Y. 
VertexPtr[CurrentIndexl.X + X O f f s e t .  
VertexPtr[CurrentIndexl.V, 1. S k i p F i r s t .   & E d g e P o i n t P t r ) :  

P r e v i o u s I n d e x  - C u r r e n t I n d e x :  
S k i p F i r s t  - 0: I* s c a n   c o n v e r t   t h e   f i r s t   p o i n t   f r o m  now on */ 

1 w h i l e   ( C u r r e n t I n d e x  !- MaxIndex):  

/*  Scan t h e   r i g h t  edge   and   s to re   t he   boundary   po in ts  i n  t h e   l i s t  * I  
EdgePoin tPt r  - W o r k i n g H L i n e L i s t . H L i n e P t r ;  
P r e v i o u s I n d e x  - C u r r e n t I n d e x  - MinIndexR: 
S k i p F i r s t  - T o p I s F l a t  ? 0 : 1; 
/* 

do 

Scan c o n v e r t   t h e   r i g h t  edge,  top t o  bottom. X c o o r d i n a t e s   a r e  
a d j u s t e d  1 t o   t h e   l e f t .   e f f e c t i v e l y   c a u s i n g   s c a n   c o n v e r s i o n   o f  
t h e   n e a r e s t   p o i n t s   t o   t h e   l e f t   o f   b u t   n o t   e x a c t l y  on the  edge */  
( 
INDEX-MOVE(Current1ndex.-LeftEdgeDir):  
ScanEdge(VertexPtr[PreviousIndexl.X + X O f f s e t  - 1. 

VertexPtr[PreviousIndex3.Y. 
VertexPtr[CurrentIndexl.X + X O f f s e t  - 1. 
VertexPtr[CurrentIndex].Y, 0. S k i p F i r s t .   & E d g e P o i n t P t r ) ;  

P r e v i o u s I n d e x  - C u r r e n t I n d e x :  
S k i p F i r s t  - 0: / *  s c a n   c o n v e r t   t h e   f i r s t   p o i n t   f r o m  now on */  

1 w h i l e   ( C u r r e n t I n d e x  !- MaxIndex):  

I* Draw t h e   l i n e   l i s t   r e p r e s e n t i n g   t h e   s c a n   c o n v e r t e d   p o l y g o n  */ 
DrawHor i zon ta lL ineL is t (&Work ingHL ineL is t ,  C o l o r ) ;  

I* R e l e a s e   t h e   l i n e   l i s t ' s  memory and   we ' re   success fu l l y   done  * I  
f ree (Work ingHLineL is t .HL inePt r ) :  
r e t u r n ( 1 ) :  

Scan  conver ts  an edge  f rom (X1,Yl) t o  ( X Z . Y 2 ) .   n o t   i n c l u d i n g   t h e  
p o i n t   a t  ( X Z . Y 2 ) .   T h i s   a v o i d s   o v e r l a p p i n g   t h e   e n d   o f   o n e   l i n e   w i t h  
t h e   s t a r t  o f  t h e   n e x t ,   a n d   c a u s e s   t h e   b o t t o m   s c a n   l i n e   o f   t h e  
p o l y g o n   n o t   t o   b e   d r a w n .  I f  S k i p F i r s t  !- 0.  t h e   p o i n t  a t  (X1,Yl) 
i s n ' t  d r a w n .   F o r   e a c h   s c a n   l i n e ,   t h e   p i x e l   c l o s e s t   t o   t h e   s c a n n e d  
l i n e   w i t h o u t   b e i n g   t o   t h e   l e f t  o f  t h e   s c a n n e d   l i n e   i s   c h o s e n .  * /  

s t a t i c   v o i d   S c a n E d g e ( i n t  X 1 .  i n t  Y 1 .  i n t  X2. i n t  Y2. i n t   S e t X S t a r t .  

{ 
i n t   S k i p F i r s t .   s t r u c t   H L i n e   * * E d g e P o i n t P t r )  

i n t  Y .  De l taX.   De l taY:  
doub le   I nve rseS lope ;  
s t r u c t   H L i n e   * W o r k i n g E d g e P o i n t P t r ;  

/ *  C a l c u l a t e  X and Y l e n g t h s   o f   t h e   l i n e  and t h e   i n v e r s e   s l o p e  */  
De l taX - X2 - X 1 ;  
i f  ( ( D e l t a Y  - V2 - Y 1 )  <- 0 )  

I n v e r s e S l o p e  - (doub1e)DeltaX / (doub1e)DeltaY: 
r e t u r n :  /* g u a r d   a g a i n s t   0 - l e n g t h   a n d   h o r i z o n t a l   e d g e s  */  
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I* S t o r e   t h e  X c o o r d i n a t e   o f   t h e   p i x e l   c l o s e s t   t o   b u t   n o t   t o   t h e  
l e f t   o f   t h e   l i n e   f o r  each Y coord ina te   be tween Y 1  and Y 2 .  n o t  
i n c l u d i n g  Y2 and a l s o   n o t   i n c l u d i n g  Y1 i f  S k i p F i r s t  != 0 * /  

Work ingEdgePointPtr  = *EdgePo in tP t r :  I* a v o i d   d o u b l e   d e r e f e r e n c e  * I  
f o r  ( Y  - Y 1  + S k i p F i r s t :  Y < Y2:  Y++. WorkingEdgePointPtr++) { 

I* S t o r e   t h e  X c o o r d i n a t e   i n   t h e   a p p r o p r i a t e  edge l i s t  * /  
i f  ( S e t X S t a r t  -= 1)  

Work ingEdgePo in tP t r ->XSta r t  - 
X 1  + ( i n t ) ( c e i l ( ( Y - Y I )  * Inve rseS lope) ) :  

e l s e  
Work ingEdgePointPtr ->XEnd = 

X 1  + ( i n t ) ( c e i l ( ( Y - Y l )  * I n v e r s e S l o p e ) ) ;  

*EdgePointPtr  - Work ingEdgePointPtr :  / *  advance c a l l e r ' s   p t r  * I  
1 

LISTING 38.2  138-2.C 
I* Draws a l l   p i x e l s   i n   t h e   l i s t   o f   h o r i z o n t a l   l i n e s   p a s s e d   i n ,   i n  

mode 13h .   t he  VGA's 320x200  256-co lor  mode.  Uses a s l o w   p i x e l - b y -  
p i x e l   a p p r o a c h ,   w h i c h   d o e s   h a v e   t h e   v i r t u e   o f   b e i n g   e a s i l y   p o r t e d  
t o  any  environment.  * I  

#i ncl  ude  <dos . h> 
d i n c l  ude  "polygon.  h" 

# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

s t a t i c   v o i d   D r a w P i x e l ( i n t .   i n t ,   i n t ) :  

v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  * H L i n e L i s t P t r .  

I 
i n t   C o l o r )  

s t r u c t   H L i n e   * H L i n e P t r ;  
i n t  Y .  X :  

I* P o i n t   t o   t h e   X S t a r t I X E n d   d e s c r i p t o r   f o r   t h e   f i r s t   ( t o p )  

HL inePt r  - H L i n e L i s t P t r - > H L i n e P t r ;  
/ *  Draw  each h o r i z o n t a l   l i n e   i n   t u r n ,   s t a r t i n g   w i t h   t h e   t o p  one and 

a d v a n c i n g   o n e   l i n e   e a c h   t i m e  * I  
f o r  ( Y  = H L i n e L i s t P t r - > Y S t a r t :  Y < ( H L i n e L i s t P t r - > Y S t a r t  + 

h o r i z o n t a l   l i n e  */  

H L i n e L i s t P t r - > L e n g t h ) ;  Y++. HLinePtr++) { 

s t a r t i n g   w i t h   t h e   l e f t m o s t  one * /  

DrawPixe l (X.  Y .  C o l o r ) ;  

I* Draw  each p i x e l   i n   t h e   c u r r e n t   h o r i z o n t a l   l i n e   i n   t u r n ,  

f o r  ( X  = H L i n e P t r - > X S t a r t :  X <= HLinePtr ->XEnd;  X++) 

1 

I* Draws t h e   p i x e l   a t  ( X .  Y )  i n   c o l o r   C o l o r   i n  VGA mode 13h *I  
s t a t i c   v o i d   D r a w P i x e l ( i n t  X .  i n t  Y .  i n t   C o l o r )  I 

uns igned   cha r   f a r   *Sc reenPt r ;  

li f d e f  -TURBOC- 

# e l s e  I* MSC 5 . 0  * I  
ScreenPt r  = MK-FP(SCREEN-SEGMENT. Y * SCREEN-WIDTH + X ) ;  

FP_SEG(ScreenPtr) = SCREEN-SEGMENT: 
FP-OFF(ScreenPtr) = Y * SCREEN-WIDTH + X ;  

#endi  f 
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1 
*ScreenPt r  - ( u n s i g n e d   c h a r ) C o l o r ;  

LISTING  38.3  138-3.C 
/ *  Sample  program t o   e x e r c i s e   t h e   p o l y g o n - f i l l i n g   r o u t i n e s .   T h i s   c o d e  

and a l l   p o l y g o n - f i l l i n g  code   has   been   tes ted   w i th   Bo r land   and  
M i c r o s o f t   c o m p i l e r s .  * /  

# inc lude   <con io .h>  
Pi n c l  ude  <dos.  h> 
#i n c l  ude  "polygon.  h" 

/ *  Draws t h e   p o l y g o n   d e s c r i b e d   b y   t h e   p o i n t   l i s t   P o i n t L i s t   i n   c o l o r  
C o l o r   w i t h  all v e r t i c e s   o f f s e t  by ( X . Y )  * /  

# d e f i n e  DRAW-POLYGON(PointList.Color,X.Y) \ 
Polygon.Length - sizeof(PointList)/sizeof(struct P o i n t ) ;  \ 
P o l y g o n . P o i n t P t r  - P o i n t L i s t ;  \ 
FillConvexPolygon(&Polygon. C o l o r .  X .  Y ) ;  

v o i d   m a i n ( v o i d 1 :  
e x t e r n   i n t  FillConvexPolygon(struct P o i n t L i s t H e a d e r  *, i n t .   i n t .   i n t l ;  

v o i d   m a i n 0  
i n t  i. j :  
s t r u c t   P o i n t L i s t H e a d e r   P o l y g o n ;  
s t a t i c   s t r u c t   P o i n t   S c r e e n R e c t a n g l e [ ]  - 
s t a t i c   s t r u c t   P o i n t  ConvexShape[] - ~t0.0~,t320.03.t320.200~,~0,200~}; 

t~0.0).~121,0}.t320.0~,t200,513,~301,51~,~250,51~,~319.143~, 
1320.2001,~22.200~.~0.2001,~50.180~,t20.1603,~50,1403, 
(20.120},  {50.100), t20.80}, (50.60} ,   {20.40} ,   t50.20})  ; 

tt90.-50~.~0.-901.~-90.-501~~-90.50~,~0,90~,~90,50~~; 
s t a t i c   s t r u c t   P o i n t  Hexagon[] - 
s t a t i c   s t r u c t   P o i n t   T r i a n g l e l C l  - ~ ~ 3 0 . 0 ~ . ~ 1 5 . 2 0 1 , t 0 . 0 } 3 :  
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 2 C l  - (I30.20}.(15.0}.(0,203}: 
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 3 C l  - ~ ~ 0 . 2 0 1 . I 2 0 . 1 0 1 . I 0 , 0 } ~ ;  
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 4 C l  - Ct20.20).~20.03.(0.103~; 
u n i o n  REGS r e g s e t ;  

/ *  S e t   t h e   d i s p l a y   t o  VGA mode 13h.   320x200  256-co lor  mode */  
r e g s e t . x . a x  - 0x0013; / *  AH - 0 s e l e c t s  mode s e t   f u n c t i o n ,  

AL - 0x13   se lec ts  mode 0x13 
when s e t  as   parameters   fo r   INT Ox10 */  

i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  

/ *  C l e a r   t h e   s c r e e n   t o   c y a n  */  
DRAW-POLYGON(ScreenRectang1e. 3 .  0. 0 ) ;  

/ *  D r a w  an i r r e g u l a r  shape t h a t  m e e t s   o u r   d e f i n i t i o n   o f   c o n v e x   b u t  

DRAW-POLYGON(ConvexShape. 6. 0 .  0 ) ;  
g e t c h 0 :  I* w a i t   f o r  a keypress  * I  

/*  D r a w  a d j a c e n t   t r i a n g l e s   a c r o s s   t h e   t o p   h a l f   o f   t h e   s c r e e n  */ 
f o r   ( j - 0 ;   j < - 8 0 ;  j+-20) ( 

i s   n o t  convex  by  any  normal   descr ip t ion */  

f o r   ( i - 0 ;   i < 2 9 0 ;  i +- 30)  { 
DRAW-POLYGON(Triangle1. 2. i, j ) :  
DRAW-POLYGON(Triangle2. 4,  i+15. j ) ;  

3 
1 

71 8 Chapter 38 



/*  D r a w  a d j a c e n t   t r i a n g l e s   a c r o s s   t h e   b o t t o m   h a l f   o f   t h e   s c r e e n  * I  
f o r  ( j -100:  j<-170;  j+-20) { 

/ *  Do a row o f   p o i n t i n g - r i g h t   t r i a n g l e s  */  
f o r   ( i - 0 :   i < 2 9 0 :  i +- 20) I 

1 
I* Do a row o f   p o i n t i n g - l e f t   t r i a n g l e s   h a l f w a y   b e t w e e n  one  row 

o f  p o i n t i n g - r i g h t   t r i a n g l e s  and t h e   n e x t ,   t o  f i t  between *I  
f o r   ( i - 0 :   i < 2 9 0 ;  i +- 20) I 

DRAW-POLYGON(Triangle4. 1. 1. j+lO): 
I 

DRAWKPOLYGON(Triangle3. 40. i. j ) :  

1 
g e t c h 0 :  I* w a i t  f o r  a keypress  * I  

I* F i n a l l y ,  draw a s e r i e s   o f   c o n c e n t r i c   h e x a g o n s   o f   a p p r o x i m a t e l y  

f o r   ( i - 0 :   i < 1 6 :  i++) I 
t h e  same p r o p o r t i o n s   i n   t h e   c e n t e r   o f   t h e   s c r e e n  * /  

DRAW-POLYGON(Hexagon. i. 160, 1 0 0 ) :  
f o r   ( j - 0 :  j<sizeof(Hexagon)/sizeof(struct P o i n t ) :  j++) I 

I* Advance  each  ver tex   toward   the   cen ter  * /  
i f  (HexagonCj1.X !- 0 )  I 

HexagonCj1.X -- HexagonCj1.X >- 0 ? 3 : - 3 :  
HexagonCj1.Y -- HexagonCj1.Y >- 0 ? 2 : -2 :  

HexagonCj1.Y -- HexagonCj1.Y >- 0 ? 3 : - 3 :  
} e l s e  I 

1 
} 

I 
g e t c h 0 :  I* w a i t  f o r  a keypress  *I  

I* R e t u r n   t o   t e x t  mode and e x i t  * /  
r e g s e t . x . a x  - 0x0003: I* AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode */  
i n t 8 6 ( 0 x 1 0 ,   & r e g s e t .   & r e g s e t ) :  

} 

LISTING 38.4 POLYG0N.H 
I* PDLYG0N.H: Header f i l e   f o r   p o l y g o n - f i l l i n g  code * I  

/ *  Descr ibes  a s i n g l e   p o i n t   ( u s e d   f o r  a s i n g l e   v e r t e x )  *I 
s t r u c t   P o i n t  I 

i n t  X ;  I* X c o o r d i n a t e  */  
i n t  Y ;  I* Y c o o r d i n a t e  * I  

I :  

I* Descr ibes  a s e r i e s   o f   p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t  
d e s c r i b e  a p o l y g o n :   e a c h   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   t w o  
a d j a c e n t   v e r t i c e s ,   a n d   t h e   l a s t   v e r t e x   i s  assumed t o  c o n n e c t   t o   t h e  
f i r s t )  * I  

i n t  Length:  I* # o f  p o i n t s  * I  
s t r u c t   P o i n t  * P o i n t P t r :  /*  p o i n t e r   t o   l i s t   o f   p o i n t s  *I 

s t r u c t   P o i n t L i s t H e a d e r  I 

1 :  

I* Descr ibes   t he   beg inn ing   and   end ing  X c o o r d i n a t e s  o f  a s i n g l e  

s t r u c t   H L i n e  I 
h o r i z o n t a l   l i n e  *I 

i n t   X S t a r t :  I* X c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   l i n e  */  
i n t  XEnd: / *  X c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  *I  

1 :  

The Polygon Primeval 71 9 



I* D e s c r i b e s  a L e n g t h - l o n g   s e r i e s  o f  h o r i z o n t a l   l i n e s ,  all assumed t o  
b e   o n   c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t  and  p roceed ing  
downward  (used t o   d e s c r i b e  a s c a n - c o n v e r t e d   p o l y g o n   t o   t h e  
low- leve l   hardware-dependent   d rawing   code)  *I  

i n t  Length;  I* # o f  h o r i z o n t a l   l i n e s  *I  
i n t  Y S t a r t ;  I* Y c o o r d i n a t e  o f  t o p m o s t   l i n e  *I  
s t r u c t   H L i n e  * H L i n e P t r ;  I* p o i n t e r   t o   l i s t  o f  h o r z   l i n e s  * /  

s t r u c t   H L i n e L i s t  ( 

} :  

Listing 38.2 isn’t particularly interesting;  it merely draws each  horizontal  line in the 
passed-in list in  the simplest possible way, one pixel at  a time. (No, that  doesn’t make 
the pixel the  fundamental primitive; in  the  next  chapter I’ll replace Listing 38.2 with 
a  much  faster version that  doesn’t  bother with individual pixels at all.) 
Listing 38.1 is where  the  action is in this chapter. Our goal is to scan out  the left and 
right  edges of each polygon so that all points  inside and  no points  outside  the poly- 
gon  are drawn, and so that all points  located exactly on the  boundary  are drawn only 
if they are  not  on right or bottom  edges.  That’s precisely  what  Listing 38.1 does. 
Here’s how: 
Listing 38.1 first finds  the  top and bottom of the polygon, then works out from  the 
top  point  to  find  the two ends of the  top  edge. If the  ends  are  at  different  locations, 
the  top is flat, which has two implications. First,  it’s easy to  find  the  starting vertices 
and directions  through  the vertex list for  the  left and  right edges. (To scan-convert 
them properly, we must first determine which edge is which.) Second,  the  top scan 
line of the polygon should be drawn without  the  rightmost pixel, because only the 
rightmost pixel of the  horizontal  edge  that makes up the  top scan line is part of a 
right  edge. 
If, on  the  other  hand,  the  ends of the  top  edge  are  at  the same location,  the  top is 
pointed.  In  that case, the  top scan line of the polygon  isn’t drawn; it’s part of the 
right-edge  line  that  starts at the  top  vertex. (It’s part of a left-edge line,  too,  but  the 
right  edge  overrides.) When the  top isn’t flat, it’s more difficult to tell in which direc- 
tion  through  the vertex list the  right and left  edges  go, because both  edges  start at 
the  top  vertex.  The  solution is to  compare  the slopes from  the  top vertex to  the  ends 
of the two lines  coming out of it in order to see  which is leftmost. The calculations in 
Listing 38.1 involving the various deltas do this, using a  rearranged  form of the slope- 
based equation: 

( D e l t a Y N / D e l t a X N ) > ( D e l t a Y P / D e l t a X P )  

Once we know where the  left  edge  starts  in  the vertex list, we can scan-convert it  a 
line  segment at  a time until  the  bottom vertex is reached. Each point is stored as the 
starting X coordinate  for  the  corresponding scan  line  in the list we’ll pass to 
DrawHorizontalLineLt. The nearest X coordinate on each scan line that’s on  or  to 
the  right of the  left  edge is selected. The last point of each  line  segment making up 
the  left  edge isn’t scan-converted, producing two desirable effects.  First, it avoids 
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drawing each vertex twice; two lines come into every vertex, but we want to scan- 
convert each vertex only once.  Second, not scan-converting the last point of each 
line causes the  bottom scan line of the polygon not to be drawn, as required by our 
rules. The first scan line of the polygon  is  also skipped if the  top isn’t flat. 
Now we need to scan-convert the right  edge  into  the  ending X coordinate fields of 
the line list. This is performed in the same manner as for  the left edge,  except  that 
every line in the  right  edge is moved one pixel to the left before  being scan-con- 
verted. Why? We want the nearest point to the left of but not on the right edge, s o  
that the right  edge itself isn’t drawn. As it happens, drawing the  nearest  point on  or 
to the  right of a line moved one pixel to the left is exactly the same  as drawing the 
nearest  point to the left of but  not  on that line in its original location. Sketch it out 
and you’ll see what I mean. 
Once  the two edges  are  scan-converted,  the  whole  line  list is passed  to 
DrawHorizontalLineList, and  the polygon  is drawn. 
Finis. 

Oddball Cases 
Listing 38.1 handles zero-length segments (multiple vertices at  the same location) 
by ignoring  them, which will be useful down the  road because scaled-down  polygons 
can end  up with nearby vertices moved  to the same location. Horizontal line seg- 
ments are fine anywhere in a polygon, too. Basically,  Listing 38.1 scanconverts between 
active edges (the edges that  define  the  extent of the polygon on each scan line)  and 
both horizontal and zero-length lines are non-active; neither advances to another 
scan line, so they don’t affect the edges being  scanned. 
I’ve limited this chapter’s code to merely demonstrating  the principles of filling con- 
vex  polygons, and  the listings  given are by no means fast. In  the  next  chapter, we’ll 
spice things up by eliminating the floating point calculations and pixel-at-a-time  draw- 
ing and tossing a little assembly language into  the mix. 
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The “black box”  approach does not, however,  necessarily cause the software  itself to 
become faster,  smaller, or more innovative; quite  the  opposite,  I suspect. I’ll reserve 
judgement  on whether  that is a  good  thing or  not,  but I’ll make a  prediction: In  the 
short  run,  the  aforementioned  techniques will lead  to noticeably larger, slower pro- 
grams,  as programmers understand less and less  of  what the key parts of their programs 
do  and rely increasingly on general-purpose code written by other people.  (In the 
long  run,  programs will be bigger and slower  yet, but computers will be so fast and 
will have so much memory that  no  one will care.) Over time, PC programs will also 
come to be more similar to one another-and to programs running  on  other plat- 
forms, such as the Mac-as regards both user interface and performance. 
Again, I am not saying that this is bad.  It does, however,  have major implications for 
the  future  nature of  PC graphics programming, in ways that will directly affect the 
means by which  many  of  you earn your livings. Not so very long  from now, graphics 
programming-all programming,  for  that matter-will become mostly a  matter of 
assembling in various ways components written by other people, and will cease to be 
the all-inclusively creative, mindbendingly complex pursuit  it is  today. (Using legally 
certified black boxes is, by the way, one direction  in which the  patent lawyers are 
leading us; legal considerations may be the final nail in the coffin  of homegrown 
code.) For now, though, it’s  still within your power,  as a PC programmer, to under- 
stand and even control every single thing  that  happens  on  a  computer if you so 
desire, to realize any  vision  you  may  have.  Take advantage of this unique window  of 
opportunity to create some magic! 
Neither  does  it hurt to understand what’s  involved in drawing, say, a filled polygon, 
even if you are using a GUI. You  will better  understand  the  performance implica- 
tions of the available  GUI functions, and you  will be able to fill in any gaps in the 
functions provided. You  may even find  that you can outperform  the GUI on occa- 
sion by doing your own drawing into a system memory bitmap,  then copying the 
result to the screen; for  instance, you can do this under Windows by using the WinG 
library available from Microsoft. You will also be able to understand why various 
quirks exist, and will be able to put them to good use. For example,  the X Window 
System  follows the polygon drawing rules described in  the previous chapter  (although 
it’s not obvious from  the X Window  System documentation) ; if you understood  the 
previous chapter’s discussion, you’re in  good  shape to use polygons under X. 
In  short, even though  doing so runs  counter to current trends,  it  helps to under- 
stand how things work,  especially when they’re very  visible parts of the software  you 
develop. That said, let’s learn  more  about filling convex  polygons. 

Fast Convex  Polygon Filling 
In addressing the topic of filling convex  polygons in the previous chapter, the imple- 
mentation we came up with met all of our functional  requirements.  In particular, it 
met  stringent rules that  guaranteed  that polygons  would never overlap or have gaps 

726 Chapter 39 



at shared edges, an  important consideration when building polygon-based  images. 
Unfortunately, the  implementation was also slow  as  molasses. In this chapter we’ll 
work up polygon-filling code that’s  fast enough to  be  truly  usable. 
Our original polygon  filling code involved three major tasks, each performed by a 
separate  function: 

Tracing  each  polygon  edge  to  generate a coordinate  list  (performed  by  the fmc- 

Drawing  the  scanned-out  horizontal  lines  that  constitute  the  filled  polygon 

Characterizing the  polygon  and coordinating the tracing and  drawing 

tion ScanEdge); 

(DrawHorizontalLineList); and 

(FillConvexPolygon). 
The  amount of  time  that  the  previous  chapter’s  sample  program spent in  each of these 
areas is shown in Table  39.1. As you can see,  half the time was spent drawing and  the 
other halfwas spent tracing the polygon edges (the time spent in FiUConvexPolygon 
was relatively minuscule), so we have our choice of where to begin optimizing. 

Fast Drawing 
Let’s start with  drawing,  which  is  easily sped up.  The previous chapter’s code used a 
double-nested loop that called a draw-pixel function to plot each pixel in the poly- 
gon individually. That’s a ridiculous approach in a graphics mode  that offers  linearly 
mapped memory,  as does VGA mode 13H, the  mode in which  we’re  working. At the 
very  least, we could point a far pointer  to  the left edge of each polygon  scan line, 
then draw each pixel in that scan line in quick succession,  using something  along 
the lines of *ScrPtr++ = FillColor; inside a loop. 
However, it seems silly to use a loop when the x86  has an instruction, REP STOS, 
that’s uniquely suited to filling linear memory buffers. There’s no way to  use REP 
STOS directly in C code,  but it’s a good  bet  that  the memset library function uses 
REP STOS, so you could greatly enhance  performance by using memset to draw 
each scan line of the polygon in a single shot. That, however, is easier  said than  done. 
The memset function linked in from  the library is tied to the memory model in use; 
in small  (which includes Tiny,  Small, or Medium) data models memset accepts only 
near pointers, so it can’t be used to  access screen memory.  Consequently, a large 
(which includes Compact, Large, or  Huge) data model must be used to allow memset 
to  draw to display  memory-a clear case  of the tail  wagging the  dog. This is an excel- 
lent example of  why, although  it is possible to use C to do virtually anything, it’s 
sometimes much simpler just to  use a little  assembly code and be done with it. 
At any rate, Listing  39.1 for this chapter shows a version of DrawHorizontalLineList 
that uses memset to  draw each scan line of the polygon in a single  call. When linked 
to Chapter 38’s test program, Listing  39.1  increases pure drawing speed (disregard- 
ing  edge tracing and  other nondrawing time) by more  than an order of magnitude 
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over Chapter 38’s  draw-pixel-based code,  despite  the  fact  that Listing  39.1 requires  a 
large (in this case, the  Compact)  data  model. Listing 39.1 works fine with Borland 
C++, but may not work  with other compilers, for  it relies on  the aforementioned 
interaction between memset and  the selected memory model. 

LISTING 39.1 139- 1 .C 
/*  Draws a l l   p i x e l s   i n   t h e   l i s t   o f   h o r i z o n t a l   l i n e s  p a s s e d   i n ,   i n  

mode 13h,   the VGA’s 320x200  256-co lo r  mode. Uses  memset t o  fill 
e a c h   l i n e ,   w h i c h   i s  much f a s t e r   t h a n  u s i n g  DrawPixe l   bu t   requ i res  
t h a t  a l a r g e   d a t a  model   (compact .   large,   or   huge)   be i n  use when 

All C code t e s t e d   w i t h  B o r l a n d  C++. * /  
r u n n i n g   i n  r e a l  mode o r  286 p r o t e c t e d  mode. 

# i n c l u d e   < s t r i n g . h >  
# inc lude  <dos .  h> 
l i n c l  ude  “polygon.  h“ 

# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

v o i d   D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t   H L i n e L i s t  * H L i n e L i s t P t r .  

{ 
i n t   C o l o r )  

s t r u c t   H L i n e   * H L i n e P t r ;  
i n t  Length,   Width:  
u n s i g n e d   c h a r   f a r   * S c r e e n P t r ;  

/ *  P o i n t   t o   t h e   s t a r t   o f   t h e   f i r s t  scan l i n e  on   wh ich   to   d raw */  
ScreenPt r  - MK-FP(SCREENLSEGMENT. 

H L i n e L i s t P t r - > Y S t a r t  * SCREEN-WIDTH); 

/* P o i n t   t o   t h e   X S t a r t / X E n d   d e s c r i p t o r   f o r   t h e   f i r s t   ( t o p )  

H L i n e P t r  - H L i n e L i s t P t r - > H L i n e P t r :  
/ *  D r a w  e a c h   h o r i z o n t a l   l i n e   i n   t u r n ,   s t a r t i n g   w i t h   t h e   t o p  one  and 

a d v a n c i n g   o n e   l i n e   e a c h   t i m e  */  
Length - H L i n e L i s t P t r - > L e n g t h :  
w h i l e   ( L e n g t h - -  > 0) I 

h o r i z o n t a l   l i n e  */  

I* Draw t h e   w h o l e   h o r i z o n t a l   l i n e  i f  i t  has a p o s i t i v e   w i d t h  * /  
i f  ( ( W i d t h  - HLinePtr->XEnd - H L i n e P t r - > X S t a r t  + 1) > 0 )  

memset(ScreenPtr  + H L i n e P t r - > X S t a r t ,   C o l o r ,   W i d t h ) ;  
HLinePtr++: / *  p o i n t   t o   n e x t   s c a n  1 i n e  X i n f o  * /  
ScreenPt r  +- SCREEN-WIDTH; / *  p o i n t   t o   n e x t   s c a n   l i n e   s t a r t  * /  

1 
1 

At this point,  I’d like to  mention  that  benchmarks  are notoriously unreliable;  the 
results in Table  39.1 are  accurate only for  the test program, and only when running 
on a  particular system.  Results could be vastly different if smaller, larger, or  more 
complex polygons  were drawn, or if a faster or slower computer/VGA  combination 
were used.  These factors notwithstanding,  the test program  does fill a variety of poly- 
gons of varying  complexity  sized from  large to small and in between, and certainly 
the  order of magnitude  difference between Listing  39.1 and  the  old version of 
DrawHorizontalLineList is a clear indication of  which code is superior. 
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Anyway, Listing 39.1 has the  desired effect of  vastly improving drawing time. There 
are cycles  yet to  be  had  in  the drawing code,  but as tracing polygon edges now  takes 
92 percent of the polygon filling time, it’s  logical  to optimize  the  tracing  code  next. 

Fast Edge Tracing 
There’s no secret as to why last chapter’s ScanEdge was so slow: It used floating  point 
calculations. One secret of fast graphics is using integer or fixed-point  calculations, 
instead.  (Sure,  the  floating  point  code would run  faster if a  math  coprocessor were 
installed,  but it would  still be slower than  the  alternatives; besides, why require  a 
math  coprocessor when you don’t have to?) Both integer  and  fixed-point calcula- 
tions are fast. In many  cases, fixed-point is faster, but  integer  calculations have one 
tremendous virtue: They’re completely accurate. The tiny imprecision inherent in 
either fixed or floating-point  calculations  can  result  in occasional pixels being one 
position off from  their  proper  location.  This is no great tragedy, but  after  going  to so 
much  trouble  to  ensure  that polygons don’t overlap at common  edges, why not  get  it 
exactly right? 
In  fact, when I  tested out the  integer  edge  tracing  code by comparing  an  integer- 
based test image to  one  produced by floating-point  calculations, two pixels out of 
the whole screen  differed,  leading  me  to  suspect  a  bug  in  the  integer  code.  It  turned 
out, however, that’s in those two cases, the  floating  point  results were  sufficiently 
imprecise  to  creep  from just  under an  integer value to  just over it, so that  the ceil 
function returned a  coordinate  that was one too  large. 

Floating point is very accurate-but it is not precise. Integer calculations, prop- p erly performed,  are. 

Listing 39.2 shows a C implementation of integer  edge  tracing. Vertical and diagonal 
lines, which are trivial to trace, are special-cased. Other lines are broken into two 
categories: Y-major (closer  to  vertical) and X-major (closer  to  horizontal).  The  han- 
dlers  for  the Y-major and X-major  cases operate  on  the  principle of similar triangles: 
The  number of X pixels advanced per scan line is the same  as the  ratio of the X delta 
of the  edge  to  the Y delta. Listing 39.2 is more  complex  than  the  original  floating 
point  implementation,  but not painfully so. In  return  for  that complexity,  Listing 
39.2 is more  than 80 times faster at scanning edges-and,  as just  mentioned, it’s 
actually more  accurate  than  the  floating  point  code. 
Ya gotta love that  integer  arithmetic. 

LISTING 39.2 139-2.C 
/* Scan c o n v e r t s  an  edge  from ( X 1 . Y l )  t o  ( X 2 . Y Z ) .  n o t   i n c l u d i n g   t h e  

p o i n t   a t  ( X 2 . Y 2 ) .  I f  S k i p F i r s t  - 1. t h e   p o i n t   a t  ( X 1 . Y l )  i s n ‘ t  
drawn; i f  S k i p F i r s t  - 0. it i s .  F o r  each  scan l i n e ,   t h e   p i x e l  
c l o s e s t   t o   t h e   s c a n n e d   e d g e   w i t h o u t   b e i n g   t o   t h e   l e f t  o f  t h e  
scanned  edge i s  chosen.  Uses an a l l - i n t e g e r   a p p r o a c h  f o r  speed  and 
p r e c i s i o n .  * /  
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#i n c l  ude  <math.  h> 
# inc lude   "po l ygon .  h" 

vo id   ScanEdge( in t  X 1 .  i n t  Y 1 .  i n t  X2, i n t  Y2. i n t   S e t X S t a r t ,  

I 
i n t   S k i p F i r s t .   s t r u c t   H L i n e   * * E d g e P o i n t P t r )  

i n t  Y .  Del taX.  Height,   Width,   AdvanceAmt.   ErrorTerm, i: 
i n t  ErrorTermAdvance.  XMajorAdvanceAmt: 
s t ruc t   HL ine   *Work ingEdgePo in tP t r ;  

Work ingEdgePointPtr  - *EdgePo in tP t r :  / *  a v o i d   d o u b l e   d e r e f e r e n c e  * /  
AdvanceAmt - ( ( D e l t a X  - X2 - X 1 )  > 0 )  ? 1 : -1: 

i f  

/ *  

i f  

/* d i r e c t i o n   i n   w h i c h  X moves  (Y2 i s  
always > Y 1 ,  s o  Y a lways   counts   up)  * /  

( ( H e i g h t  - Y2 - Y 1 )  <- 0 )  / *  Y l e n g t h   o f   t h e  edge */  
r e t u r n :  / *  g u a r d   a g a i n s t   O - l e n g t h   a n d   h o r i z o n t a l  edges */  

F i g u r e   o u t   w h e t h e r   t h e   e d g e   i s   v e r t i c a l ,   d i a g o n a l ,   X - m a j o r  
( m o s t l y   h o r i z o n t a l ) .   o r   Y - m a j o r   ( m o s t l y   v e r t i c a l )   a n d   h a n d l e  
a p p r o p r i a t e l y  * /  
( ( W i d t h  - abs(De1taX))  -= 0 )  { 
I* The  edge i s   v e r t i c a l ;   s p e c i a l - c a s e   b y   j u s t   s t o r i n g   t h e  same 

/ *  Scan t h e  edge f o r   e a c h   s c a n   l i n e   i n   t u r n  * /  
f o r  (i - H e i g h t  - S k i p F i r s t :  i - -  > 0; WorkingEdgePointPtr++) { 

/ *  S t o r e   t h e  X c o o r d i n a t e   i n   t h e   a p p r o p r i a t e   e d g e   l i s t  * /  
i f  ( S e t X S t a r t  - 1) 

e l s e  

X c o o r d i n a t e   f o r   e v e r y   s c a n   l i n e  */  

Work ingEdgePointPtr ->XStar t  - X 1 ;  

Work ingEdgePointPtr ->XEnd - X 1 :  
1 

I e l s e  i f  (Wid th  - H e i g h t )  { 
/ *  The  edge i s   d i a g o n a l ;   s p e c i a l - c a s e   b y   a d v a n c i n g   t h e  X 

c o o r d i n a t e  1 p i x e l   f o r   e a c h   s c a n   l i n e  * I  
i f  ( S k i p F i r s t )  /*  s k i p   t h e   f i r s t   p o i n t  i f  so  i n d i c a t e d  */  

X 1  +- AdvanceAmt; / *  move 1 p i x e l   t o   t h e   l e f t   o r   r i g h t  * /  
/*  Scan t h e   e d g e   f o r   e a c h   s c a n   l i n e  i n  t u r n  * I  
f o r  (i - H e i g h t  - S k i p F i r s t ;  i-- > 0: WorkingEdgePointPtr++) { 

/ *  S t o r e   t h e  X c o o r d i n a t e   i n   t h e   a p p r o p r i a t e  edge l i s t  * /  
i f  ( S e t X S t a r t  -- 1) 

e l s e  

X 1  +- AdvanceAmt; / *  move 1 p i x e l   t o   t h e   l e f t   o r   r i g h t  * /  

Work ingEdgePo in tP t r ->XSta r t  - X 1 :  

WorkingEdgePointPtr->XEnd - X 1 ;  

I 

/*  Edge i s   c l o s e r   t o   v e r t i c a l   t h a n   h o r i z o n t a l   ( Y - m a j o r )  * /  
i f  (De l taX  >- 0 )  

e l s e  

i f  ( S k i p F i r s t )  { /* s k i p   t h e   f i r s t   p o i n t  i f  s o  i n d i c a t e d  * /  

1 e l s e  i f  ( H e i g h t  > Wid th )  { 

E r ro rTe rm - 0:  / *  i n i t i a l   e r r o r   t e r m   g o i n g   l e f t - > r i g h t  * /  

Er ro rTe rm - - H e i g h t  + 1; /*  g o i n g   r i g h t - > l e f t  * /  

/*  Determine  whether  i t ' s   t i m e   f o r   t h e  X c o o r d   t o   a d v a n c e  */  
i f  ( ( E r r o r T e r m  +- Wid th )  > 0) t 

X 1  +- AdvanceAmt: / *  move 1 p i x e l   t o   t h e   l e f t  or r i g h t  * I  
Er ro rTe rm -- H e i g h t :  / *  advance  ErrorTerm t o   n e x t   p o i n t  * /  

I 
I 
/ *  Scan t h e  edge f o r   e a c h   s c a n   l i n e   i n   t u r n  * /  
f o r  (i - H e i g h t  - S k i p F i r s t ;  i-- > 0: WorkingEdgePointPtr++) { 
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I* S t o r e   t h e  X c o o r d i n a t e   i n   t h e   a p p r o p r i a t e   e d g e   l i s t  */ 
i f  ( S e t X S t a r t  - 1) 

e l s e  

/ *  D e t e r m i n e   w h e t h e r   i t ' s   t i m e   f o r   t h e  X c o o r d   t o   a d v a n c e  */  
i f  ( ( E r r o r T e r m  +- W i d t h )  > 0) { 

X 1  +- AdvanceAmt: I* move 1 p i x e l   t o   t h e   l e f t   o r   r i g h t  * /  
Er rorTerm -- H e i g h t :  /* advance  ErrorTerm t o   c o r r e s p o n d  */ 

Work ingEdgePointPtr ->XStar t  - X 1 :  

WorkingEdgePointPtr->XEnd - X 1 ;  

I 
I 

1 e l s e  { 
/ *  Edge i s   c l o s e r   t o   h o r i z o n t a l   t h a n   v e r t i c a l   ( X - m a j o r )  * /  
I* Minimum d i s t a n c e   t o   a d v a n c e  X each   t ime  *I  
XMajorAdvanceAmt - ( W i d t h  / H e i g h t )  * AdvanceAmt; 
I* E r r o r   t e r m   a d v a n c e   f o r   d e c i d i n g  when t o  advance X 1 e x t r a  * /  
ErrorTermAdvance - Width  % H e i g h t :  
i f  (De l taX >- 0) 

ErrorTerm - 0:  / *  i n i t i a l   e r r o r   t e r m   g o i n g   l e f t - > r i g h t  * /  
e l s e  

Er rorTerm - - H e i g h t  + 1: /*  g o i n g   r i g h t - > l e f t  * /  
i f  ( S k i p F i r s t )  { I* s k i p   t h e   f i r s t   p o i n t  i f  so i n d i c a t e d  * /  

X 1  +- XMajorAdvanceAmt: / *  move X minimum d i s t a n c e  *I  
I* D e t e r m i n e   w h e t h e r   i t ' s   t i m e   f o r  X t o  advance  one  ext ra *I  
i f  ( ( E r r o r T e r m  +- ErrorTermAdvance) > 0) { 

X 1  +- AdvanceAmt: I* move X one  more *I  
ErrorTerm -- H e i g h t :  / *  advance  ErrorTerm t o   c o r r e s p o n d  * /  

1 
I 
I* Scan t h e  edge f o r  each  scan l i n e   i n   t u r n  * /  
f o r  (i - H e i g h t  - S k i p F i r s t :   1 - -  > 0: W o r k i n g E d g e P o i n t P t r t )  { 

/ *  S t o r e   t h e  X c o o r d i n a t e   i n   t h e   a p p r o p r i a t e   e d g e   l i s t  * /  
i f  ( S e t X S t a r t  - 1) 

e l s e  

X 1  +- XMajorAdvanceAmt: / *  move X min imum  d is tance *I  
/ *  D e t e r m i n e   w h e t h e r   i t ' s   t i m e   f o r  X t o  advance  one  ext ra *I  
i f  ( ( E r r o r T e r m  +- ErrorTermAdvance) > 0) { 

WorkingEdgePointPtr->XStart - X 1 :  

WorkingEdgePointPtr->XEnd - X 1 :  

X 1  +- AdvanceAmt; / *  move X one  more */  
Er rorTerm -- H e i g h t :  / *  advance  ErrorTerm t o   c o r r e s p o n d  */  

I 
I 

I 

*EdgePoin tPt r  - Work ingEdgePoin tPt r :  / *  a d v a n c e   c a l l e r ' s   p t r  * /  
I 

The Finishing Touch: Assembly  Language 
The C implementation  in Listing 39.2 is  now nearly 20 times as  fast  as the  original, 
which is good  enough  for most purposes. Still, it  requires  that  one of the  large  data 
models  be used (for memset), and it's certainly not  the fastest  possible code. The 
obvious next  step is assembly language. 
Listing 39.3 is an assembly language version of DrawHorizontalLineList. In  actual 
use, it proved to be  about 36 percent faster than Listing 39.1; better  than  a poke in 
the eye with a  sharp stick, butjust barely. There's  more to these timing results than 
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meets that eye, though. Display memory generally responds  much  more slowly than 
system  memory,  especially in 386 and 486 systems. That means that  much of the time 
taken by Listing 39.3 is actually spent waiting for display memory accesses to com- 
plete, with the processor forced to idle by  wait states.  If, instead, Listing 39.3 drew  to 
a local buffer in system memory or to a particularly  fast VGA, the assembly imple- 
mentation might well  display a far more substantial  advantage  over the C code. 
And indeed it does. When the test program is modified to draw  to a local buffer, 
both  the C and assembly language versions get 0.29 seconds faster, that being a mea- 
sure of the time  taken by display memory wait  states.  With those wait  states factored 
out,  the assembly language version of DrawHorizontalLineLit becomes almost three 
times  as  fast  as the C code. 

There is  a lesson here. An optimization has no fixed  payofl its value fluctuates p according to the context in  which it is used.  There k relatively little benefit to firther 
optimizing  code  that  already  spends halfits time  waiting for display memoy; no mat- 
ter how good your optimizations, you'll  get only a two-times speedup at best, and 
generally much less than that. There is, on the other hand, potential for tremen- 
dous improvement when drawing to system memo y ,  so ifthat k where most ofyour 
drawing will occui; optimizations such as Listing 39.3 are well worth the effort. 
Know the environments in which your code will run, and know where the cycles go 
in those environments. 

LISTING 39.3  139-3.ASM 
; Draws a l l   p i x e l s   i n   t h e   l i s t  o f  h o r i z o n t a l   l i n e s   p a s s e d   i n .   i n  
: mode 13h.   the  VGA's 320x200  256-co lor  mode.  Uses REP STOS t o  fill 
: each l i n e .  
; C n e a r - c a l l a b l e   a s :  
; v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  * H L i n e L i s t P t r .  

; All assemb ly   code   t es ted   w i th  TASM and MASM 
i n t   C o l o r ) ;  

SCREEN-WIDTH 
SCREEN-SEGMENT 

H L i n e   s t r u c  
X S t a r t  
XEnd 
HLi  ne 

H L i n e L i s t   s t r u c  
Lng th  
Y S t a r t  
H L i n e P t r  
H L i n e L i s t  

Parms s t r u c  

H L i n e L i s t P t r  
C o l o r  
Parms 

equ 
equ 

dw 
dw 
ends 

dw 
dw 
dw 
ends 

dw 
dw 
dw 
ends 

320 
OaOOOh 

? 
? 

? 
? 
? 

2 dup (? )  
? 
? 

; X  c o o r d i n a t e  o f  l e f t m o s t   p i x e l   i n   l i n e  
; X  c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  

;# o f  h o r i z o n t a l   l i n e s  
; Y  c o o r d i n a t e   o f   t o p m o s t   l i n e  
; p o i n t e r   t o   l i s t  o f  h o r z   l i n e s  

; r e t u r n   a d d r e s s  & pushed BP 
; p o i n t e r   t o   H L i n e L i s t   s t r u c t u r e  
; c o l o r   w i t h   w h i c h   t o  fill 
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.model  smal l  

.code 
pub1 i c - D r a w H o r i   z o n t a l   L i   n e L i   s t  
a l i g n  2 

push  bp 
mov bp.sp 
p u s h   s i  
push d i  
c l  d 

- D r a w H o r i z o n t a l L i n e L i s t   p r o c  

mov  ax.SCREEN-SEGMENT 
mov es.ax 

mov s i   . [ b p + H L i n e L i s t P t r l  
mov  ax,SCREEN-WIDTH 
mu1 [ s i + Y S t a r t l  
mov dx,ax 

mov b x . [ s i + H L i n e P t r l  

mov s i . [ s i + L n g t h l  
and s i   . s i  
j z   F i  11 Done 
mov a l . b y t e   p t r   C b p + C o l o r l  
mov ah .a l  

mov d i   . [ b x + X S t a r t l  
mov cx.[bx+XEndl 
sub  cx.d i  
j s   L i n e F i l l D o n e  
i n c   c x  
add d i  .dx 
t e s t   d i  .1 
j z  Mai  nFi  11 
s t o s b  

dec  cx 
j z  L i   neF i   11  Done 

s h r  cx .1  
r e p  s tosw 
adc cx.cx 

Fi   11  Loop: 

M a i n F i l l :  

r e p   s t o s b  

add b x . s i z e   H L i n e  
add dx.SCREEN-WIDTH 
dec s i  
j n z   F i  11  Loop 

pop d i  
pop s i  

r e t  

end 

L i n e F i l l D o n e :  

F i  1  1 Done: 

POP  bP 

-DrawHor izonta lL ineL is t   endp 

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
: p o i n t   t o   o u r   s t a c k   f r a m e  
; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

:make s t r i n g   i n s t r u c t i o n s   i n c   p o i n t e r s  

: p o i n t  ES t o   d i s p l a y  memory f o r  REP STOS 

: p o i n t   t o   t h e   l i n e   l i s t  
: p o i n t   t o   t h e   s t a r t   o f   t h e   f i r s t   s c a n  
; l i n e   i n   w h i c h   t o  draw 
:ES:DX p o i n t s   t o   f i r s t   s c a n   l i n e   t o  
; draw 
: p o i n t   t o   t h e   X S t a r t / X E n d   d e s c r i p t o r  
: f o r   t h e   f i r s t   ( t o p )   h o r i z o n t a l   l i n e  
:P o f   s c a n   l i n e s   t o   d r a w  
; a r e   t h e r e  any l i n e s   t o  draw? 
:no. so we're  done 
; c o l o r   w i t h   w h i c h   t o  fill 
: d u p l i c a t e   c o l o r   f o r  STOSW 

: l e f t  edge o f  fill on t h i s   l i n e  
; r i g h t  edge o f  fill 

; s k i p  i f  n e g a t i v e   w i d t h  
: w i d t h   o f  fill on t h i s   l i n e  
; o f f s e t   o f   l e f t  edge o f  fill 
:does fill s t a r t   a t  an  odd  address? 
:no 
; y e s .   d r a w   t h e   o d d   l e a d i n g   b y t e   t o  
; w o r d - a l i g n   t h e   r e s t   o f   t h e  fill 
; c o u n t   o f f   t h e  o d d   l e a d i n g   b y t e  
;done i f  t h a t  was t h e   o n l y   b y t e  

;# o f  words i n  fill 
:fill as many words   as   poss ib le  
:1 i f  t h e r e ' s  an  odd t r a i l i n g   b y t e   t o  
: do, 0 o t h e r w i s e  
:fill any  odd t r a i l i n g   b y t e  

: p o i n t   t o   t h e   n e x t   l i n e   d e s c r i p t o r  
: p o i n t   t o   t h e   n e x t   s c a n   l i n e  
: c o u n t   o f f   l i n e s   t o  fill 

; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
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Maximizing REP STOS 
Listing 39.3 doesn’t take the easy  way out  and use REP STOSB to fill each scan line; 
instead, it uses REP STOSW to fill as  many  pixel  pairs  as  possible via word-sized 
accesses,  using STOSB only  to do  odd bytes.  Word  accesses to odd addresses are 
always split by the processor into 2-byte  accesses. Such word  accesses  take  twice  as 
long as  word  accesses to even addresses, so Listing 39.3 makes sure  that all  word 
accesses occur  at even addresses, by performing a leading STOSB first if necessary. 
Listing 39.3 is another case in which  it’s  worth  knowing the environment  in  which  your 
code will run. Extra  code is required to  perform  aligned word-at-a-time  filling,  resulting 
in  extra  overhead.  For very  small or narrow  polygons, that overhead  might  overwhelm 
the advantage  of  drawing a word at a time, making plain old REP STOSB faster. 

Faster Edge Tracing 
Finally,  Listing 39.4 is an assembly language version of ScanEdge. Listing 39.4 is a 
relatively straightforward translation from C to assembly, but is nonetheless  about 
twice as fast  as  Listing 39.2. 
The version  of ScanEdge in  Listing 39.4 could certainly be sped up still further by 
unrolling the loops. FillConvexPolygon, the overall coordination routine, hasn’t  even 
been  converted  to assembly language, so that  could  be  sped up as  well. I haven’t  both- 
ered with these optimizations because  all code other than DrawHorizontalLineList 
takes  only 14 percent of the overall  polygon  filling  time  when  drawing  to  display 
memory; the  potential  return on optimizing nondrawing code simply  isn’t great 
enough to  justify the effort. Part of the value of a profiler is being able to tell when to 
stop optimizing; with  Listings 39.3 and 39.4 in use, more  than two-thirds  of the time 
taken  to  draw  polygons is spent waiting for display  memory, so optimization is pretty 
much maxed out. However, further optimization might be worthwhile  when  draw- 
ing  to system  memory, where wait  states are  out of the  picture and  the nondrawing 
code takes a significant portion (46 percent) of the overall  time. 
Again, know where the cyclps go. 
By the way, note  that all the versions of ScanEdge and FiUConvexPolygon that we’ve 
looked at  are  adapter-independent, and that  the C code is  also machine-indepen- 
dent; all  adapter-specific code is isolated in DrawHorizontalLlneList. This makes it 
easy to add  support for other graphics systems,  such as the 8514/A, the XGA, or, for 
that matter, a completely  non-PC  system. 

LISTING  39.4  139-4.ASM 
: Scan conver ts   an   edge  f rom ( X 1 , Y l )  t o  ( X 2 . Y Z ) .  n o t   i n c l u d i n g   t h e  
: p o i n t   a t  ( X 2 , Y Z ) .  I f  S k i p F i r s t  == 1. t h e   p o i n t   a t  ( X 1 , Y l )  i s n ’ t  
: drawn: i f  S k i p F i r s t  == 0.  i t  i s .   F o r   e a c h   s c a n   l i n e ,   t h e   p i x e l  
: c l o s e s t   t o   t h e  s c a n n e d   e d g e   w i t h o u t   b e i n g   t o   t h e   l e f t   o f   t h e   s c a n n e d  
: edge i s  chosen. Uses a n   a l l - i n t e g e r   a p p r o a c h   f o r   s p e e d  & p r e c i s i o n .  

Fast Convex Polygons 735 



: C n e a r - c a l l a b l e   a s :  
: v o i d   S c a n E d g e ( i n t  X 1 ,  i n t  Y 1 ,  i n t  X2, i n t  Y2. i n t   S e t X S t a r t ,  
; i n t   S k i p F i r s t .   s t r u c t   H L i n e   * * E d g e P o i n t P t r ) ;  
: Edges  must n o t  go  bottom t o   t o p :   t h a t   i s ,  Y 1  must  be <- Y2. 
: U p d a t e s   t h e   p o i n t e r   p o i n t e d   t o   b y   E d g e P o i n t P t r   t o   p o i n t   t o   t h e   n e x t  
: f r e e   e n t r y   i n   t h e   a r r a y   o f   H L i n e   s t r u c t u r e s .  

H L i n e   s t r u c  
X S t a r t  
XEnd 
HLine  ends 

Parms s t r u c  

x 1  
Y 1  
x2 
Y2 
S e t X S t a r t  

S k i p F i   r s t  

EdgePoin tPt r  

dw 
dw 

dw 
dw 
dw 
dw 
dw 
dw 

dw 

dw 

? 
? 

2 d u p ( ? )  
? 
? 
? 
? 
? 

? 

? 

;X c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   s c a n   l i n e  
; X  c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   s c a n   l i n e  

; r e t u r n   a d d r e s s  & pushed BP 
:X s t a r t   c o o r d   o f   e d g e  
:Y  s t a r t   c o o r d   o f  edge 
: X  end   coord   o f   edge 
: Y  end  coord  o f   edge 
;1 t o   s e t   t h e   X S t a r t   f i e l d   o f   e a c h  
: H L i n e   s t r u c .  0 t o   s e t  XEnd 
;1 t o   s k i p   s c a n n i n g   t h e   f i r s t   p o i n t  
: o f  the   edge,  0 t o  scan f i r s t   p o i n t  
; p o i n t e r   t o  a p o i n t e r   t o   t h e   a r r a y   o f  
: H L i n e   s t r u c t u r e s   i n   w h i c h   t o   s t o r e  
; the  scanned X c o o r d i n a t e s  

Parms ends 

: O f f s e t s   f r o m  BP i n   s t a c k   f r a m e   o f   l o c a l   v a r i a b l e s  
AdvanceAmt equ  -2  
H e i g h t  equ - 4  
LOCALLSIZE equ 4 

.model  smal 1 

.code 
pub1 i c  -ScanEdge 
a1 i g n  2 

push  bp 
mov bp.sp 
sub sp.LOCAL-SIZE 
push s i  
push d i  
mov d i . [ b p + E d g e P o i n t P t r l  
mov d i  , [ d i  1 
cmp Cbp+SetXStar t l . l  

j z  H L i n e P t r S e t  
add d i  .XEnd 

-ScanEdge p r o c  

H L i n e P t r S e t :  
mov bx.[bp+YZI 
sub  bx.[bp+Y11 
jl e ToScanEdgeExi t 
mov Cbp+Height l ,bx 
sub  cx,cx 

mov d x . 1  
mov ax.Cbp+XZl 
sub  ax.Cbp+Xll  
j z  I s v e r t i c a l  

; t o t a l   s i z e   o f   l o c a l   v a r i a b l e s  

; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
: p o i n t   t o   o u r   s t a c k   f r a m e  
; a l l o c a t e   s p a c e   f o r   l o c a l   v a r i a b l e s  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: p o i n t   t o   t h e   H L i n e   a r r a y  
; s e t   t h e   X S t a r t   f i e l d   o f   e a c h   H L i n e  
: s t r u c ?  
;yes. D I  p o i n t s   t o   t h e   f i r s t   X S t a r t  
:no. p o i n t   t o   t h e  XEnd f i e l d   o f   t h e  
: f i r s t  H L i n e   s t r u c  

:edge  he igh t  
: g u a r d   a g a i n s t   0 - l e n g t h  & horz  edges 
: H e i g h t  - Y2 - Y 1  
;assume E r r o r T e r m   s t a r t s   a t  0 ( t r u e  i f  
: w e ' r e   m o v i n g   r i g h t  as we draw) 
;assume  AdvanceAmt - 1 (move r i g h t )  

;Del taX - X2 - X 1  
: i t ' s  a v e r t i c a l   e d g e - - s p e c i a l   c a s e  i t  
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j n s  SetAdvanceAmt ;Del taX >- 0 
mov cx .1  ;Del taX < 0 (move l e f t  as we draw) 
sub  cx.  bx ;ErrorTerm - - H e i g h t  + 1 
neg  dx ;AdvanceAmt - -1 (move l e f t )  
neg  ax ;Width - abs(De1taX) 

mov [bp+AdvanceAmtl.dx 
SetAdvanceAmt: 

: F i g u r e   o u t   w h e t h e r   t h e   e d g e   i s   d i a g o n a l ,   X - m a j o r   ( m o r e   h o r i z o n t a l ) .  
: or Y - m a j o r   ( m o r e   v e r t i c a l )  and   hand le   app rop r ia te l y .  

cmp ax.bx ; i f  Width-Height.  i t ' s  a d iagonal   edge 
j z   I s D i a g o n a l  ; i t ' s  a d iagona l   edge- -spec ia l   case  
j b  YMajor ; i t ' s  a Y - m a j o r   ( m o r e   v e r t i c a l )   e d g e  

sub  dx.dx  ;prepare DX:AX ( W i d t h )   f o r   d i v i s i o n  
d i v   b x   : W i d t h / H e i g h t  

;DX - e r r o r   t e r m   a d v a n c e   p e r   s c a n   l i n e  
mov s i . a x  ; S I  - minimum I o f   p i x e l s   t o  advance X 

: on each  scan l i n e  
t e s t  [bp+AdvanceAmt1.8000h ;move l e f t  or r i g h t ?  
j z  XMajorAdvanceAmtSet : r i g h t .   a l r e a d y   s e t  
neg s i   ; l e f t .   n e g a t e   t h e   d i s t a n c e   t o   a d v a n c e  

; on  each  scan l i n e  

; i t ' s  an  X-major  (more  horz)  edge 

XMajorAdvanceAmtSet: ; 
mov a x ,   [ b p + X l ]   ; s t a r t i n g  X c o o r d i n a t e  

cmp C b p + S k i p F i r s t l . l   ; s k i p   t h e   f i r s t   p o i n t ?  
j z  XMajorSk ipEnt ry  

XMajorLoop: 
mov [ d i ] . a x  
add d i . s i z e   H L i n e  

XMajorSk ipEnt ry :  
add  ax.si 
add  cx.dx 
j l e  XMajorNoAdvance 

add  ax.Cbp+AdvanceAmtl 
sub  cx. [bp+Height l  

dec  bx 
j n z  XMajorLoop 
jmp  ScanEdgeDone 
a l i g n  2 

jmp  ScanEdgeExit  
a l i g n  2 

mov ax,[bp+Xl] 
s u b   b x , [ b p + S k i p F i r s t l  
j z  ScanEdgeExit  

mov [ d i ] . a x  
add d i . s i z e   H L i n e  
dec  bx 
j n z  V e r t i c a l  Loop 
jmp  ScanEdgeDone 
a l i g n  2 

mov ax.Cbp+Xl] 
cmp [bp+SkipFi  r s t l . l  
j z   0 i a g o n a l S k i p E n t r y ; y e s  

XMajorNoAdvance: 

ToScanEdgeExit: 

I s v e r t i c a l  : 

V e r t i c a l  Loop: 

I s D i a g o n a l  : 

; s t o r e   t h e   c u r r e n t  X v a l u e  
; p o i n t   t o   t h e   n e x t   H L i n e   s t r u c  

; s e t  X f o r   t h e   n e x t   s c a n   l i n e  
: a d v a n c e   e r r o r   t e r m  
; n o t   t i m e   f o r  X coo rd   t o   advance   one  
; e x t r a  
:advance X coo rd   one   ex t ra  
: a d j u s t   e r r o r   t e r m   b a c k  

: c o u n t   o f f   t h i s   s c a n   l i n e  

; s t a r t i n g   ( a n d   o n l y )  X c o o r d i n a t e  
; l o o p   c o u n t  - H e i g h t  - S k i p F i r s t  
;no s c a n   l i n e s   l e f t   a f t e r   s k i p p i n g   1 s t  

: s t o r e   t h e   c u r r e n t  X v a l u e  
: p o i n t   t o   t h e   n e x t   H L i n e   s t r u c  
; c o u n t   o f f   t h i s   s c a n   l i n e  

: s t a r t i n g  X c o o r d i n a t e  
; s k i p   t h e   f i r s t   p o i n t ?  
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Diagonal   Loop: 
mov C d i 1 . a ~  
add d i . s i z e   H L i n e  

D i a g o n a l S k i p E n t r y :  
add  ax.dx 
dec  bx 
j n z   D i a g o n a l  Loop 
jmp ScanEdgeDone 
a l i g n  2 

push  bp 
mov s i ,  Cbp+X11 
cmp [ b p + S k i p F i r s t l . l  
mov bp.bx 
j z  YMajorSk ipEnt ry  

mov [ d i  3 , s i  
add d i . s i z e   H L i n e  

YMajorSk ipEnt ry :  
add  cx.ax 
j l e  YMajorNoAdvance 
add s i  .dx 
sub  cx.bp 

YMajorNoAdvance: 
dec  bx 
jnz  YMajorLoop 
POP bp 

cmp Cbp+SetXStar t l . l  
j z  UpdateHLinePt r  
sub d i  .XEnd 

mov bx.Cbp+EdgePointPtr l  
mov Cbx l   . d i  

ScanEdgeExit :  
pop d i  
POP s i  
mov sp.bp 
POP bp 
r e t  

-ScanEdge  endp 
end 

YMajor: 

YMajorLoop: 

ScanEdgeDone: 

UpdateHLinePt r :  

: s t o r e   t h e   c u r r e n t  X v a l u e  
: p o i n t   t o   t h e   n e x t   H L i n e   s t r u c  

:advance  the X c o o r d i n a t e  
: c o u n t   o f f   t h i s   s c a n   l i n e  

: p r e s e r v e   s t a c k   f r a m e   p o i n t e r  
; s t a r t i n g  X c o o r d i n a t e  
: s k i p   t h e   f i r s t   p o i n t ?  
: p u t   H e i g h t   i n  BP f o r   e r r o r   t e r m   c a l c s  
: y e s .   s k i p   t h e   f i r s t   p o i n t  

: s t o r e   t h e   c u r r e n t  X v a l u e  
: p o i n t   t o   t h e   n e x t   H L i n e   s t r u c  

; a d v a n c e   t h e   e r r o r   t e r m  
: n o t   t i m e   f o r  X c o o r d   t o   a d v a n c e  
:advance  the X c o o r d i n a t e  
: a d j u s t   e r r o r   t e r m   b a c k  

: c o u n t   o f f   t h i s   s c a n   l i n e  

: r e s t o r e   s t a c k   f r a m e   p o i n t e r  

:were we w o r k i n g   w i t h  X S t a r t  f i e l d ?  
:yes. D I  p o i n t s   t o   t h e   n e x t   X S t a r t  
:no. p o i n t   b a c k   t o   t h e   X S t a r t   f i e l d  

: p o i n t   t o   p o i n t e r   t o   H L i n e   a r r a y  
: u p d a t e   c a l l e r ' s   H L i n e   a r r a y   p o i n t e r  

: r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: d e a l l o c a t e   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
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chaptyer 40

of songs, taxes, and the simplicity of complex
polygons



8? 
$2:: 
I a 2” .2“ . ”  

,~ h Irregular Polygonal Areas 
“” Every so often,  m5”daughter asks me to  sing her to sleep. (If  you’ve  ever heard me 

*_n. 

sing,  this may  caus&you concern  about  either  her  hearing or  her  judgement,  but 
love  knows no boun&j As any parent is well aware, singing a young child to sleep 
can easily  take  several;&%&%, or until sunrise, whichever comes last. One night,  run- 
ning low on childre$s  songs, I switched  to a Beatles  medley, and at  long last her 
breathing became s&w and regular. At the  end, I softly  sang “A Hard Day’s Night,” 
then quietly stood i p  to  leave. As I tiptoed  out, she said, in a voice not even  faintly 
tinged with  slee  #Dad,  what do they mean, ‘working  like a dog’? Chasing a stick? 

That  led us into a dikussion of idioms, which made about as much sense to her as an 
explanation of quantnm mechanics.  Finally, I fell  back on my standard  explanation 
of the Universe,  which is that a lot of the time  it  simply doesn’t make sense. 
As a general principle, that explanation holds up remarkably  well. (In fact,  having 
just  done my taxes, I think  Earth is actually run by blob-creatures from the  planet 
Mrxx,  who are helplessly doubled over  with laughter at  the ridiculous things they 
can make  us do. “Let’s  make them get Social  Security numbers  for  their pets next 
year!” they’re saying right now, gasping for  breath.) Occasionally,  however, one has 
the  rare pleasure of finding a corner of the Universe that makes sense, where every- 
thing fits together as  if preordained. 
Filling arbitrary polygons is such a case. 

That doesflFf;& ..”x’“ 

asense;  people  don’t chase  sticks.” 
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Filling Arbitrary Polygons 
In  Chapter 38, I described three types of polygons: convex, nonconvex, and com- 
plex. The  RenderMan Companion, a terrific book by  Steve Upstill  (Addison-Wesley, 
1990) has an intuitive definition of convex: If a rubber  band  stretched  around a poly- 
gon  touches all  vertices in the  order they’re defined,  then the polygon is convex. If a 
polygon has intersecting edges, it’s complex. If a polygon doesn’t have intersecting 
edges but isn’t convex, it’s nonconvex. Nonconvex is a special case  of complex, and 
convex is a special case of nonconvex. (Which, I’m well aware,  makes  nonconvex a 
lousy  name-noncomplex  would  have been better-but I’m following X Window 
System nomenclature  here.) 
The reason for distinguishing between these three types  of  polygons  is that  the more 
specialized types can be filled with markedly faster approaches. Complex  polygons 
require  the slowest approach; however, that  approach will serve to fill any  polygon  of 
any sort. Nonconvex  polygons require less sorting, because edges never cross. Con- 
vex polygons can be filled  fastest of all by  simply scanning the two sides of the polygon, 
as we  saw in Chapter 39. 
Before we dive into complex  polygon filling, I’d like to point  out  that  the  code  in this 
chapter, like  all  polygon filling code I’ve  ever seen,  requires  that the caller describe 
the type  of the polygon to be filled. Often, however, the caller doesn’t know what 
type  of  polygon  it’s  passing, or specifies  complex for simplicity, because that will 
work for all  polygons; in such a case, the polygon filler will use the slow complex-fill 
code even if the polygon  is, in fact, a convex polygon. In  Chapter 41, I’ll discuss one 
way to improve this situation. 

Active Edges 
The basic premise of filling a complex  polygon is that  for a given  scan line, we deter- 
mine all intersections between the polygon’s edges and  that scan line and  then fill 
the spans between the  intersections, as  shown in Figure 40.1. (Section 3.6 of  Foley 
and van  Dam’s Computer Guphics, Second Edition provides an overview  of this and 
other aspects of polygon filling.) There  are several rules that  might be used to  deter- 
mine which spans are drawn and which aren’t; we’ll use the  odd/even  rule, which 
specifies that drawing turns on after odd-numbered  intersections (first, third,  and so 
on)  and off after even-numbered intersections. 
The question  then becomes how can we most efficiently determine which edges 
cross each scan line and where? As it happens,  there is a great  deal of coherence 
from one scan line to the  next  in a polygon edge list, because each  edge starts at a 
given Y coordinate and continues  unbroken  until  it  ends.  In other words, edges 
don’t  leap  about and stop and start randomly; the X coordinate of an edge at  one 
scan line is a consistent delta  from  that edge’s X coordinate  at  the last  scan line, and 
that is consistent for  the  length of the  line. 
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Intersection #2 Intersection #3 
turns off turns on 

Intersection #1 0 
turns on 
drawing 

Scan line being 

0 0 0 0 0 0  

Filling one scan line byfinding intersecting edges. 
Figure 40.1 

This allows  us  to reduce  the  number of edges that must be checked for intersection; 
on any  given  scan line, we only need to  check for intersections with the currently 
active  edges-edges that start on that scan line, plus  all edges that  start on earlier 
(above) scan  lines and haven't ended yet-as shown in Figure 40.2. This suggests 
that we can proceed  from  the top scan line of the polygon  to the  bottom,  keeping a 

Checking currently active edges (solid lines). 
Figure 40.2 
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running list of currently active  edges-called the active edge table (AET)-with the 
edges sorted in order of ascending X coordinate of intersection with the  current 
scan line. Then, we can simply  fill each scan line in turn according to the list  of  active 
edges at  that  line. 
Maintaining the AET from one scan line to the  next involves three steps:  First, we 
must add to the AET  any edges that  start on the  current scan line, making sure to 
keep  the AET X-sorted for efficient odd/even  scanning. Second, we must  remove 
edges that  end  on  the  current scan line. Third, we must advance the X coordinates 
of active edges with the same sort of error term-based, Bresenham’s-like approach 
we used for convex  polygons, again ensuring  that the AET  is X-sorted after advanc- 
ing the edges. 
Advancing the X coordinates is easy. For each  edge, we’ll store the  current X coordi- 
nate and all required  error  term  information,  and we’ll  use that to advance the  edge 
one scan line at a time; then, we’ll resort the AET  by X coordinate as needed. Re- 
moving edges as  they end is also  easy;  we’ll just  count down the  length of each active 
edge on each scan line and remove an  edge when  its count  reaches zero. Adding 
edges as their tops are  encountered is a tad more complex. While there  are  a  num- 
ber of  ways to do this, one particularly efficient approach is to start out by putting all 
the edges of the polygon, sorted by increasing Y coordinate,  into  a single list, called 
the global edge table (GET).  Then, as each scan line is encountered, all edges at  the 
start of the GET that begin on  the  current scan line are moved to the AET; because 
the GET  is  Y-sorted, there’s no need to search the  entire GET. For  still greater effi- 
ciency, edges in the GET that share common Y coordinates can be sorted by increasing 
X coordinate; this ensures  that no more  than  one pass through  the AET per scan 
line is ever needed when adding new edges from  the GET in such a way as  to keep 
the AET sorted in ascending X order. 
What form  should the GET and AET take? Linked lists of edge  structures, as  shown 
in Figure 40.3. With linked lists,  all that’s required to move edges from  the GET to 
the AET  as they  become  active, sort  the AET, and remove edges that have been fully 
drawn is the  exchanging of a few pointers. 
In summary,  we’ll  initially store all the polygon edges in Yprimary/X-secondary sort 
order in the GET, complete with initial X and Y coordinates, error terms and  error 
term adjustments, lengths, and directions of X movement for  each  edge.  Once  the 
GET  is built, we’ll do  the following: 
1. Set  the  current Y coordinate  to the Y coordinate  of the first edge in the  GET. 
2. Move  all  edges with the current Y coordinate  from  the  GET  to the AET,  removing  them 

from  the  GET  and  maintaining  the  X-sorted  order  of  the  AET. 
3. Draw  all  odd-to-even  spans in the  AET  at  the  current Y coordinate. 
4. Count  down  the  lengths  of all edges in the  AET,  removing  any  edges  that  are  done,  and 

advancing  the X coordinates  of all remaining  edges in the AET by one  scan  line. 
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Global Edge  Table (GET) 

Count - 
Next  * edge  Next 'edge 

Active  Edge  Table (Am) 

Count - Count - Count - Count - 
Next  'edge  Next  'edge  Next  'edge 

The global and active edge tables as linked lists. 
Figure 40.3 

5. Sort the AET in  order of ascending X coordinate. 
6. Advance  the  current Y coordinate by one  scan  line. 
7. If  either  the AET or GET isn't  empty, go to  step 2. 

That's really  all there is to it. Compare Listing 40.1 to the fast convex  polygon  filling 
code from Chapter 39, and you'll see that, contrary to expectation,  complex poly- 
gon filling is indeed one of the more sane and sensible corners of the universe. 

LISTING 40.1 L40- 1 .C 
/*  C o l o r - f i l l s  an a r b i t r a r i l y - s h a p e d   p o l y g o n   d e s c r i b e d  by V e r t e x L i s t .  

I f  t h e   f i r s t  and l a s t   p o i n t s   i n   V e r t e x L i s t   a r e   n o t   t h e  same, t h e   p a t h  
a r o u n d   t h e   p o l y g o n  i s   a u t o m a t i c a l l y   c l o s e d .  All v e r t i c e s   a r e   o f f s e t  
b y   ( X O f f s e t ,   Y O f f s e t ) .   R e t u r n s  1 f o r   s u c c e s s ,  0 i f  memory a l l o c a t i o n  
f a i l e d .  All C c o d e   t e s t e d   w i t h   B o r l a n d  C++. 
I f  t h e   p o l y g o n   s h a p e   i s  known i n  advance ,   speed ie r   p rocess ing  may be 
enab led   by   spec i f y ing   t he   shape   as   f o l l ows :   " convex"  - a rubber   band 
s t r e t c h e d   a r o u n d   t h e   p o l y g o n   w o u l d   t o u c h   e v e r y   v e r t e x   i n   o r d e r :  
"nonconvex" - t h e   p o l y g o n   i s   n o t   s e l f - i n t e r s e c t i n g ,   b u t   n e e d   n o t   b e  
convex:  "complex" - t h e   p o l y g o n  may b e   s e l f - i n t e r s e c t i n g ,   o r ,   i n d e e d ,  
any s o r t   o f   p o l y g o n   a t  all. Complex will w o r k   f o r   a l l   p o l y g o n s :   c o n v e x  
i s   f a s t e s t .   U n d e f i n e d   r e s u l t s  will occur  i f  convex i s   s p e c i f i e d   f o r  a 
nonconvex   o r   complex   po lygon.  
D e f i n e  CONVEX-CODELLINKED i f  t h e   f a s t   c o n v e x   p o l y g o n   f i l l i n g   c o d e   f r o m  
Chapter  38 i s   l i n k e d   i n .   O t h e r w i s e ,   c o n v e x   p o l y g o n s   a r e  
h a n d l e d   b y   t h e   c o m p l e x   p o l y g o n   f i l l i n g   c o d e .  
Nonconvex i s  handled  as  complex i n   t h i s   i m p l e m e n t a t i o n .  See t e x t   f o r  a 
d i s c u s s i o n   o f   f a s t e r   n o n c o n v e x   h a n d l i n g .  * /  

Pi n c l   u d e   < s t d i o .   h >  
# inc lude   <math .h>  
P i f d e f  -TURBOC- 
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# i n c l u d e   < a 1  1 oc.  h> 
# e l s e  I* MSC *I  
#i n c l   u d e  <mal 1 oc.  h> 
#endi  f 
# i   n c l   u d e   " p o l y g o n .  h" 

# d e f i n e  SWAP(a,b) {temp - a: a - b: b - temp:) 

s t r u c t   E d g e S t a t e  ( 
s t ruc t   EdgeSta te   *Nex tEdge :  
i n t  
i n t  
i n t  
i n t  
i n t  
i n t  
i n t  
i n t  

1 :  

e x t e r n  
e x t e r n  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  

X :  
S t a r t Y :  
WholePixelXMove; 
X D i  r e c t i  on: 
E r ro rTe rm:  
ErrorTermAdjUp:  
ErrorTermAdjDown; 
Count :  

v o i d  OrawHorizontalLineSeg(int. i n t .   i n t ,   i n t ) :  
i n t  FillConvexPolygon(struct P o i n t L i s t H e a d e r  *, i n t .   i n t .   i n t ) :  
v o i d   B u i l d G E T ( s t r u c t   P o i n t L i s t H e a d e r  *, s t r u c t   E d g e S t a t e  *, i n t .   i n t ) :  
vo id   MoveXSor tedToAET( in t ) :  
v o i d   S c a n O u t A E T ( i n t .   i n t ) :  
vo id   AdvanceAET(vo id1 :  
v o i d   X S o r t A E T ( v o i d ) ;  

I* P o i n t e r s   t o   g l o b a l   e d g e   t a b l e  (GET) a n d   a c t i v e   e d g e   t a b l e   ( A E T )  *I 
s t a t i c   s t r u c t   E d g e S t a t e   * G E T P t r .   * A E T P t r ;  

i n t   F i l l P o l y g o n ( s t r u c t   P o i n t L i s t H e a d e r  * V e r t e x L i s t .   i n t   C o l o r .  
i n t  PolygonShape. i n t   X O f f s e t .   i n t   Y O f f s e t )  

s t r u c t   E d g e S t a t e   * E d g e T a b l e B u f f e r :  
i n t   C u r r e n t Y :  

# i f d e f  CONVEX-CODELLINKED 
I* P a s s   c o n v e x   p o l y g o n s   t h r o u g h   t o   f a s t   c o n v e x   p o l y g o n   f i l l e r  *I  
i f  (PolygonShape - CONVEX)  

return(FillConvexPolygon(VertexList. C o l o r ,   X O f f s e t .   Y O f f s e t ) ) ;  
#endl  f 

I* It t a k e s  a minimum o f  3 v e r t i c e s   t o   c a u s e   a n y   p i x e l s   t o   b e  

i f  ( V e r t e x L i s t - > L e n g t h  < 3 )  

I* Get  enough memory t o   s t o r e   t h e   e n t i r e  edge t a b l e  *I  
i f  ( ( E d g e T a b l e B u f f e r  - 

d r a w n :   r e j e c t   p o l y g o n s   t h a t   a r e   g u a r a n t e e d   t o   b e   i n v i s i b l e  *I  

r e t u r n ( 1 ) :  

( s t r u c t   E d g e S t a t e  * )  ( m a l l o c ( s i z e o f ( s t r u c t   E d g e s t a t e )  * 
V e r t e x L i s t - > L e n g t h ) ) )  - NULL) 

r e t u r n ( 0 ) :  I* c o u l d n ' t   g e t  memory f o r   t h e   e d g e   t a b l e  * /  
I* B u i l d   t h e   g l o b a l   e d g e   t a b l e  *I 
B u i l d G E T ( V e r t e x L i s t .   E d g e T a b l e B u f f e r ,   X O f f s e t ,   Y O f f s e t ) ;  
I* Scan down t h r o u g h   t h e   p o l y g o n   e d g e s ,   o n e   s c a n   l i n e   a t  a t i m e ,  

AETPtr - NULL: I* i n i t i a l i z e   t h e   a c t i v e  e d g e   t a b l e   t o   e m p t y  * I  
Cur ren tY  - GETPt r ->S ta r tY ;  /*  s t a r t   a t   t h e   t o p   p o l y g o n   v e r t e x  *I 
w h i l e   ( ( G E T P t r  !- NULL) 1 1  (AETPtr !- NULL)) ( 

so l o n g   a s   a t   l e a s t  one  edge  remains i n   e i t h e r   t h e  GET o r  AET *I  

MoveXSortedToAET(CurrentY): I* upda te  AET f o r   t h i s   s c a n   l i n e  * I  
ScanOutAET(Cur ren tY.   Co lor ) ;  I* draw t h i s  scan l i n e   f r o m  AET *I  
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AdvanceAETO; 
XSor tAETO;  
C u r r e n t Y U ;  

1 

/*  advance AET edges 1 scan l i n e  * /  
/*  r e s o r t  on X * /  
/*  advance t o   t h e   n e x t   s c a n   l i n e  * /  

/ *  Re lease   t he  memory we 've   a l l oca ted   and   we ' re   done  */  
f r e e ( E d g e T a b l e B u f f e r 1 ;  
r e t u r n ( 1 ) ;  

1 

/*  Creates  a GET i n  t h e   b u f f e r   p o i n t e d   t o   b y   N e x t F r e e E d g e S t r u c   f r o m  
t h e   v e r t e x   l i s t .  Edge e n d p o i n t s   a r e   f l i p p e d ,  i f  n e c e s s a r y ,   t o  
g u a r a n t e e   a l l   e d g e s   g o   t o p   t o   b o t t o m .   T h e  GET i s   s o r t e d   p r i m a r i l y  
by   ascend ing  Y s t a r t   c o o r d i n a t e ,   a n d   s e c o n d a r i l y   b y   a s c e n d i n g  X 
s t a r t   c o o r d i n a t e   w i t h i n   e d g e s   w i t h  common Y c o o r d i n a t e s .  * /  

s t a t i c   v o i d   B u i l d G E T ( s t r u c t   P o i n t L i s t H e a d e r  * V e r t e x L i s t .  

{ 
s t r u c t   E d g e S t a t e  * N e x t F r e e E d g e S t r u c .   i n t   X O f f s e t .   i n t   Y O f f s e t )  

i n t  i. S t a r t X .   S t a r t Y .  EndX. EndY. De l taY.   De l taX.   Wid th ,   temp;  
s t ruc t   EdgeSta te   *NewEdgePt r ;  
s t r u c t   E d g e S t a t e   * F o l l o w i n g E d g e ,   * * F o l l o w i n g E d g e L i n k ;  
s t r u c t   P o i n t   * V e r t e x P t r :  

/ *  S c a n   t h r o u g h   t h e   v e r t e x   l i s t   a n d   p u t   a l l   n o n - 0 - h e i g h t   e d g e s   i n t o  

V e r t e x P t r  - V e r t e x L i s t - > P o i n t P t r ;  / *  p o i n t   t o   t h e   v e r t e x   l i s t  * /  
GETPtr - NULL; / *  i n i t i a l i z e   t h e   g l o b a l  e d g e   t a b l e   t o   e m p t y  * /  
f o r  (i - 0; i < V e r t e x L i s t - > L e n g t h ;  i++) { 

t h e  GET, s o r t e d  by i n c r e a s i n g  Y s t a r t   c o o r d i n a t e  * /  

/ *  C a l c u l a t e   t h e   e d g e   h e i g h t   a n d   w i d t h  * /  
S t a r t X  - V e r t e x P t r C i 1 . X  + X O f f s e t ;  
S t a r t Y  - V e r t e x P t r C i 1 . Y  + Y O f f s e t ;  
/ *  T h e   e d g e   r u n s   f r o m   t h e   c u r r e n t   p o i n t   t o   t h e   p r e v i o u s   o n e  */  
i f  (i - 0) I 

/ *  Wrap b a c k   a r o u n d   t o   t h e   e n d   o f   t h e   l i s t  * /  
EndX - VertexPtrCVertexList->Length-1l.X + X O f f s e t ;  
EndY - V e r t e x P t r [ V e r t e x L i s t - > L e n g t h - 1 l . Y  + Y O f f s e t ;  

EndX - V e r t e x P t r C i - 1 1 . X  + X O f f s e t ;  
EndY - V e r t e x P t r C i - l l . Y  + Y O f f s e t ;  

1 e l s e  I 

1 
I* Make s u r e   t h e   e d g e   r u n s   t o p   t o   b o t t o m  */  
i f  ( S t a r t Y  > EndY) { 

SWAP(StartX. EndX); 
SWAP(StartY. EndY); 

3 
/*  S k i p  i f  t h i s   c a n ' t   e v e r   b e   a n   a c t i v e   e d g e   ( h a s  0 h e i g h t )  * /  
i f  ( ( D e l t a Y  - EndY - S t a r t Y )  !- 0)  { 

/ *  A l l o c a t e   s p a c e   f o r   t h i s   e d g e ' s   i n f o ,   a n d  fill i n   t h e  

NewEdgePtr - NextFreeEdgeStruc++: 
NewEdgePt r ->XDi rec t ion  - /* d i r e c t i o n   i n   w h i c h  X moves */  

Wid th  - abs(De1taX):  
NewEdgePtr->X - S t a r t X ;  
NewEdgePt r ->Star ty  - S t a r t Y ;  
NewEdgePtr->Count - Del   taY;  
NewEdgePtr->ErrorTermAdjDown - Del taY:  
i f  ( D e l t a X  >- 0 )  /* i n i t i a l   e r r o r   t e r m   g o i n g  L->R */  

e l s e  / *  i n i t i a l   e r r o r   t e r m   g o i n g   R - > L  */  

s t r u c t u r e  * /  

( ( D e l t a X  - EndX - S t a r t X )  > 0 )  ? 1 : -1; 

NewEdgePtr->ErrorTerm - 0;  

NewEdgePtr->ErrorTerm - - 0 e l t a Y  + 1: 
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i f  ( D e l t a Y  >- W i d t h )  ( /* Y-major  edge */ 
NewEdgePtr->WholePixelXMove - 0; 
NewEdgePtr->ErrorTermAdjUp - Width ;  

NewEdgePtr->WholePixelXMove - 
NewEdgePtr->ErrorTermAdjUp - Width  X Del taY;  

1 e l s e  I I* X-major   edge */ 

( W i d t h  I D e l t a Y )  * NewEdgePt r ->XDi rec t ion :  

I 
I* L i n k   t h e  new edge i n t o   t h e  GET so t h a t   t h e  edge l i s t   i s  

s t i l l   s o r t e d   b y  Y coo rd ina te ,   and   by  X c o o r d i n a t e   f o r  all 
edges w i t h   t h e  same Y c o o r d i n a t e  *I  

F o l l o w i n g E d g e L i n k  - hGETPtr; 
f o r  ( ; : )  { 

Fo l low ingEdge - * F o l l o w i n g E d g e L i n k ;  
i f  ( ( F o l l o w i n g E d g e  - NULL) I I 

( F o l l o w i n g E d g e - > S t a r t y  > S t a r t Y )  1 1  
( ( F o l l   o w i   n g E d g e - > S t a r t y  - S t a r t Y  1 &h 
(Fo l low ingEdge->X >- S t a r t X ) ) )  I 

NewEdgePtr->NextEdge - Fol lowingEdge;  
* F o l l o w i n g E d g e L i n k  - NewEdgePtr; 
b reak :  

I 
F o l l o w i n g E d g e L i n k  - &FollowingEdge->NextEdge; 

3 
1 

1 
1 

I* S o r t s   a l l  edges c u r r e n t l y   i n   t h e   a c t i v e  edge t a b l e   i n t o   a s c e n d i n g  
o r d e r   o f   c u r r e n t  X c o o r d i n a t e s  *I  

s t a t i c   v o i d   X S o r t A E T O  { 
s t ruc t   EdgeSta te   *Cur ren tEdge .   * *Cur ren tEdgePt r .  *TempEdge; 
i n t  Swapoccurred; 

I* Scan t h r o u g h   t h e  AET and  swap  any a d j a c e n t   e d g e s   f o r   w h i c h   t h e  
second  edge i s   a t  a l o w e r   c u r r e n t  X c o o r d   t h a n   t h e   f i r s t   e d g e .  
R e p e a t   u n t i l   n o   f u r t h e r   s w a p p i n g  i s  needed *I  

do 
i f  (AETPtr !- NULL) ( 

Swapoccurred - 0: 
C u r r e n t E d g e P t r  - &AETPtr; 
w h i l e   ( ( C u r r e n t E d g e  - *CurrentEdgePtr)->NextEdge !- NULL) { 

I* The second  edge  has  a  lower X t h a n   t h e   f i r s t ;  

TempEdge - CurrentEdge->NextEdge->NextEdge: 
*Cur ren tEdgePt r  - CurrentEdge->NextEdge: 
CurrentEdge->NextEdge->NextEdge - Curren tEdge;  
CurrentEdge->NextEdge - TempEdge: 
Swapoccurred - 1: 

i f  (Cur ren tEdge->X > CurrentEdge->NextEdge->X) 

swap them i n   t h e  AET *I  

1 
C u r r e n t E d g e P t r  - &(*CurrentEdgePtr)->NextEdge; 

1 
I wh i le   (Swapoccur red  !- 0 ) :  

I 
1 

I* Advances  each  edge i n   t h e  AET by  one  scan l i n e .  

s t a t i c   v o i d  AdvanceAETO I 
Removes e d g e s   t h a t   h a v e   b e e n   f u l l y   s c a n n e d .  */ 

s t ruc t   EdgeSta te   *Cur ren tEdge .   * *Cur ren tEdgePt r :  
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/* Count  down  and  remove or  advance  each  edge i n   t h e  AET */  
C u r r e n t E d g e P t r  - &AETPtr: 
w h i l e   ( ( C u r r e n t E d g e  = *Cur ren tEdgePt r )  !- NULL) I 

/*  Count o f f  one scan l i n e   f o r   t h i s  edge * /  
i f  ( ( - - ( C u r r e n t E d g e - > C o u n t ) )  -- 0 )  I 

/*  Th is   edge  i s   f i n i s h e d ,  s o  remove i t  f r o m   t h e  AET *I  
*Cur ren tEdgePt r  - CurrentEdge->NextEdge: 

I* Advance   the   edge ' s  X coo rd ina te   by   m in imum move * /  
CurrentEdge->X +- CurrentEdge->WholePixelXMove: 
/ *  D e t e r m i n e   w h e t h e r   i t ' s   t i m e   f o r  X t o  advance  one  ex t ra  * /  
i f  ( (Cur ren tEdge->Er ro rTe rm +- 

I e l s e  t 

CurrentEdge->ErrorTermAdjUp)  > 0 )  t 
CurrentEdge->X +- Cur ren tEdge->XDi rec t i on :  
Cur ren tEdge->Er rorTerm -- CurrentEdge->ErrorTermAdjDown: 

I 
Curren tEdgePt r  - &CurrentEdge->NextEdge; 

1 
I 

1 

/*  Moves a l l  edges t h a t   s t a r t   a t   t h e   s p e c i f i e d  Y c o o r d i n a t e   f r o m   t h e  

s t a t i c   v o i d   M o v e X S o r t e d T o A E T ( i n t  YToMove) I 
GET t o   t h e  AET, m a i n t a i n i n g   t h e  X s o r t i n g   o f   t h e  AET. * /  

s t r u c t   E d g e s t a t e  *AETEdge.  **AETEdgePtr,  *TempEdge: 
i n t   C u r r e n t X :  

/ *  The GET i s  Y s o r t e d .  Any  edges t h a t   s t a r t   a t   t h e   d e s i r e d  Y 
c o o r d i n a t e  will be f i r s t   i n   t h e  GET, s o  w e ' l l  move edges  f rom 
t h e  GET t o  AET u n t i l   t h e   f i r s t  edge l e f t   i n   t h e  GET i s  n o   l o n g e r  
a t   t h e   d e s i r e d  Y c o o r d i n a t e .   A l s o ,   t h e  GET i s  X s o r t e d   w i t h i n  
each Y c o o r d i n a t e ,  s o  each  success ive   edge we add t o   t h e  AET i s  
g u a r a n t e e d   t o   b e l o n g   l a t e r   i n   t h e  AET t h a n   t h e  one j u s t  added. * /  

AETEdgePtr = &AETPtr: 
w h i l e   ( ( G E T P t r  !- NULL) && (GETPt r ->Star tY  - YToMove)) I 

C u r r e n t X  - GETPtr->X; 
/ *  L i n k   t h e  new edge i n t o   t h e  AET so t h a t   t h e  AET i s   s t i l l  

f o r  ( : : I  I 
s o r t e d   b y  X c o o r d i n a t e  */  

AETEdge - *AETEdgePtr: 
i f  ((AETEdge -- NULL) 1 1  (AETEdge->X >- C u r r e n t X ) )  I 

TempEdge - GETPtr->NextEdge: 
fAETEdgePtr - GETPtr: /*  l i n k   t h e  edge i n t o   t h e  AET */  
GETPtr->NextEdge - AETEdge: 
AETEdgePtr - &GETPtr->NextEdge: 
GETPtr - TempEdge; / *  u n l i n k   t h e   e d g e   f r o m   t h e  GET *I 
break :  

AETEdgePtr - &AETEdge->NextEdge: 
} e l s e  I 

} 
I 

1 
I 

/ *  F i l l s   t h e   s c a n   l i n e   d e s c r i b e d   b y   t h e   c u r r e n t  AET a t   t h e   s p e c i f i e d  Y 

s t a t i c   v o i d   S c a n O u t A E T ( i n t  YToScan. i n t   C o l o r )  { 
c o o r d i n a t e   i n   t h e   s p e c i f i e d   c o l o r ,   u s i n g   t h e   o d d l e v e n  fill r u l e  * I  

i n t   L e f t X :  
s t r u c t   E d g e s t a t e   * C u r r e n t E d g e :  

Of Songs,  Taxes, and the  Simplicity of Complex  Polygons 749 



/*  Scan t h r o u g h   t h e  AET, d r a w i n g   l i n e   s e g m e n t s   a s   e a c h   p a i r   o f   e d g e  
c r o s s i n g s   i s   e n c o u n t e r e d .  The n e a r e s t   p i x e l  on o r   t o   t h e   r i g h t  
o f   l e f t  edges i s  d r a w n ,   a n d   t h e   n e a r e s t   p i x e l   t o   t h e   l e f t   o f   b u t  
n o t  on r i g h t  edges i s  drawn * /  

Cur ren tEdge = AETPtr;  
w h i l e   ( C u r r e n t E d g e  !- NULL) I 

L e f t X  = Cur ren tEdge->X:  
Cur ren tEdge - CurrentEdge->NextEdge; 
OrawHorizontalLineSeg(YToScan. L e f t X .   C u r r e n t E d g e - > X - 1 .   C o l o r ) :  
Cur ren tEdge - CurrentEdge->NextEdge: 

I 
1 

Complex  Polygon Filling: An Implementation 
Listing 40.1 just shown presents a function, FillPolygon(), that fills  polygons of all 
shapes. If CONVEX-FILL-LINKED is defined, the fast  convex  fill code from Chap- 
ter 39 is linked in and used  to  draw  convex  polygons. Otherwise, convex  polygons 
are  handled as if they  were complex. Nonconvex  polygons are also handled as  com- 
plex, although this is not necessary,  as  discussed  shortly. 
Listing 40.1 is a faithful implementation of the complex polygon  filling approach 
just described, with separate functions corresponding to each of the tasks, such as 
building the GET and X-sorting the AET. Listing 40.2 provides the actual drawing 
code used to fill  spans, built on a draw  pixel routine that is the only hardware depen- 
dency  anywhere  in the C code. Listing 40.3 is the  header file for  the polygon  filling 
code; note that it is an expanded version  of the  header file  used by the fast  convex 
polygon  fill code from Chapter 39. (They may  have the same name  but  are not the 
same  file!)  Listing 40.4 is a sample program that, when linked to Listings 40.1 and 
40.2, demonstrates drawing  polygons  of  various  sorts. 

LISTING 40.2 LAO-2.C 
/ *  Draws a l l   p i x e l s   i n   t h e   h o r i z o n t a l   l i n e  segmen t   passed   i n .   f r om 

( L e f t X . Y )   t o   ( R i g h t X . Y ) .   i n   t h e   s p e c i f i e d   c o l o r  i n  mode 1 3 h .   t h e  
VGA's 320x200  256-co lo r  mode. Bo th   Le f tX   and   R igh tX   a re   d rawn .  No 
d r a w i n g  will t a k e   p l a c e  i f  L e f t X  > R i g h t X .  * /  

#i ncl  ude  <dos.  h> 
Pi ncl   ude  "po lygon.   h"  

# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

s t a t i c   v o i d   O r a w P i x e l ( i n t .   i n t .   i n t ) :  

v o i d  DrawHor izonta lL ineSeg(Y,  L e f t X .   R i g h t X .   C o l o r )  ( 
i n t  X ;  

/ *  Draw  each p i x e l   i n   t h e   h o r i z o n t a l   l i n e  segment, s t a r t i n g   w i t h  

f o r  ( X  - L e f t X :  X <- R i g h t X ;  X++) 
t h e   l e f t m o s t  one * I  

DrawPixe l (X .  Y .  C o l o r ) ;  
1 
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I* Draws t h e   p i x e l   a t  ( X .  Y )  i n   c o l o r   C o l o r   i n  VGA mode 13h * I  
s t a t i c   v o i d   D r a w P i x e l ( i n t  X ,  i n t  Y .  i n t   C o l o r )  { 

u n s i g n e d   c h a r   f a r   * S c r e e n P t r :  

i l i f d e f  -TURBOC- 

# e l s e  I* MSC 5.0 * /  
S c r e e n P t r  - MK_FP(SCREEN-SEGMENT. Y * SCREEN-WIDTH + X ) :  

FPLSEG(ScreenPtr) - SCREENLSEGMENT: 
FP-OFF(ScreenPtr1 = Y * SCREENKWIDTH + X: 

*ScreenPt r  = ( u n s i g n e d   c h a r )   C o l o r :  
#end i  f 

1 

LISTING 40.3 POLYG0N.H 
I* POLYG0N.H: Header f i l e   f o r   p o l y g o n - f i l l i n g  code *I  

# d e f i n e  C O N V E X  0 
# d e f i n e  NONCONVEX 1 
# d e f i n e  COMPLEX 2 

I* D e s c r i b e s  a s i n g l e   p o i n t   ( u s e d   f o r  a s i n g l e   v e r t e x )  * I  
s t r u c t   P o i n t  I 

i n t  X ;  I* X c o o r d i n a t e  *I  
i n t  Y ;  I* Y c o o r d i n a t e  * I  

1 :  
I* D e s c r i b e s  a s e r i e s   o f   p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t  

d e s c r i b e  a p o l y g o n ;   e a c h   v e r t e x   c o n n e c t s   t o   t h e   t w o   a d j a c e n t  
v e r t i c e s ;   t h e   l a s t   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   f i r s t )  * I  

i n t   L e n g t h ;  I* il o f   p o i n t s  *I  
s t r u c t   P o i n t  * P o i n t P t r ;  I* p o i n t e r   t o   l i s t  o f  p o i n t s  * /  

1 :  
I* D e s c r i b e s   t h e   b e g i n n i n g   a n d   e n d i n g  X c o o r d i n a t e s   o f  a s i n g l e  

h o r i z o n t a l   l i n e   ( u s e d   o n l y   b y   f a s t   p o l y g o n  fill code) *I  
s t r u c t   H L i n e  { 

i n t   X S t a r t :  I* X c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   l i n e  * I  
i n t  XEnd; I* X c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  * I  

s t r u c t   P o i n t L i s t H e a d e r  { 

1 :  
I* D e s c r i b e s  a l e n g t h - l o n g   s e r i e s   o f   h o r i z o n t a l   l i n e s ,   a l l  assumed t o  

be on c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t   a n d   p r o c e e d i n g  
downward  (used t o   d e s c r i b e  a s c a n - c o n v e r t e d   p o l y g o n   t o   t h e  
l o w - l e v e l   h a r d w a r e - d e p e n d e n t   d r a w i n g   c o d e )   ( u s e d   o n l y   b y   f a s t  
p o l y g o n  fill code) .  * /  

i n t   L e n g t h :  / *  il o f   h o r i z o n t a l   l i n e s  *I  
i n t   Y S t a r t :  I* Y c o o r d i n a t e   o f   t o p m o s t   l i n e  *I  
s t r u c t   H L i n e  * H L i n e P t r ;  I* p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  *I  

s t r u c t   H L i n e L i s t  { 

1 ;  

LISTING 40.4 L40-4.C 
I* Sample  program t o   e x e r c i s e   t h e   p o l y g o n - f i l l i n g   r o u t i n e s  *I  

# i n c l u d e   < c o n i o .  h> 
#i ncl   ude  <dos . h> 
#i ncl   ude  "po lygon.   h"  

# d e f i n e  DRAW_POLYGON(PointList,Color,Shape.X.Y) \ 
Po lygon.Length  = s i z e o f ( P o i n t L i s t ) / s i z e o f ( s t r u c t  P o i n t ) :  \ 
P o l y g o n . P o i n t P t r  - P o i n t L i s t ;  \ 
F i l l P o l y g o n ( & P o l y g o n .   C o l o r ,  Shape, X .  Y ) :  
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v o i d   m a i n ( v o i d ) :  
e x t e r n   i n t   F i l l P o l y g o n ( s t r u c t   P o i n t L i s t H e a d e r  *, i n t .   i n t .   i n t .   i n t ) ;  

v o i d   m a i n 0  ( 
i n t  i, j; 
s t r u c t   P o i n t L i s t H e a d e r   P o l y g o n :  
s t a t i c   s t r u c t   P o i n t   P o l y g o n l [ l  - 
s t a t i c   s t r u c t   P o i n t   P o l y g o n 2 C I  - ~(0.0).~100.150~.~320,0~,~0,200~,~220.50~,~320~200~~ 

~{0.01.~320.0~.~320.200~,~0,2001,~0,0~,~50,50~, 
(270.50~.{270.150~.(50.150~,~50.50~~: 

s t a t i c   s t r u c t   P o i n t   P o l y g o n 3 C l  - 
~(0.0).{10.0}.(105.1851,{260.30),~15,150},~5,150~,~5 
{260.53,~300,5~,~300~151,~110,200~,~100.200~,~0,10~ 

s t a t i c   s t r u c t   P o i n t   P o l y g o n 4 C I  - 
s t a t i c   s t r u c t   P o i n t   T r i a n g l e l C l  - { (30 .0 } . (15 .20 } . (0 .0 } } ;  
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 2 C l  - {(30.20).(15.0).{0.20)): 
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 3 C l  - ~ ~ 0 . 2 0 ~ . ~ 2 0 . 1 0 ~ . ~ 0 . 0 1 ~ :  
s t a t i c   s t r u c t   P o i n t   T r i a n g l e 4 C l  - {{20,20).(20.0}.~0.10}): 
u n i o n  REGS r e g s e t :  

~(0.0}.~30,-20).~30.0).~0,20},~-30,0~,~-30,-20~~: 

i 

/* S e t   t h e   d i s p l a y   t o  VGA mode 13h.   320x200  256-co lo r  mode *I  
regse t . x .ax  - 0x0013; 
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  

I* Draw t h r e e   c o m p l e x   p o l y g o n s  */  
DRAW-POLYGON(Polygon1. 15. COMPLEX, 0. 0 ) ;  
g e t c h 0 ;  I* w a i t   f o r  a keyp ress  */  
DRAW-POLYGON(Polygon2. 5 .  COMPLEX. 0. 0): 
g e t c h 0 :  I* w a i t   f o r  a keyp ress  * I  
DRAW-POLYGON(Polygon3, 3. COMPLEX. 0, 0): 
g e t c h 0 :  I* w a i t   f o r  a keyp ress  *I  

I* Draw some ad jacent   nonconvex   po lygons  *I  
f o r   ( i - 0 :   i < 5 :  i++) ( 

f o r  ( j -0:  j < 8 :  j++) { 
ORAW~POLYGON(Polygon4. 16+i*8+j .  NONCONVEX. 40+( i *60 ) .  

3 0 + ( j * 2 0 ) ) ;  
} 

1 
g e t c h 0 :  I* w a i t   f o r  a keyp ress  *I  

/*  D r a w  a d j a c e n t   t r i a n g l e s   a c r o s s   t h e   s c r e e n  *I  
f o r   ( j - 0 ;  j<-80: j+-20) ( 

f o r   ( i - 0 :   i < 2 9 0 :  i +- 30 )  ( 
DRAW-POLYGON(Triangle1. 2 ,  CONVEX,  i. j ) :  
DRAW-POLYGON(Triangle2. 4 .  CONVEX. i+15.  j ) :  

1 
1 
f o r   ( j - 1 0 0 :   j < - 1 7 0 ;  j+-20) I 

I* Do a r o w   o f   p o i n t i n g - r i g h t   t r i a n g l e s  * I  
f o r   ( i - 0 :   i < 2 9 0 :  i +- 20)  I 

1 
I* Do a row  of p o i n t i n g - l e f t   t r i a n g l e s   h a l f w a y   b e t w e e n  one  row 

o f   p o i n t i n g - r i g h t   t r i a n g l e s   a n d   t h e   n e x t ,   t o  fit between * /  
f o r   ( i - 0 ;   i < 2 9 0 :  i +- 20)  ( 

DRAW-POLYGON(Triangle4. 1, CONVEX, i, .$+lo): 
1 

DRAW-POLYGON(Triangle3. 40. CONVEX. i. j ) :  
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1 
g e t c h 0 ;  /*  w a i t   f o r  a keypress */ 

/*  R e t u r n   t o   t e x t  mode and e x i t  */ 
r e g s e t . x . a x  - 0x0003;  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) :  

Listing 40.4 illustrates  several  interesting  aspects of polygon  filling. The first and third 
polygons  drawn  illustrate  the  operation  of  the odd/even fill rule. The second polygon 
drawn  illustrates  how  holes  can  be created  in  seemingly  solid  objects; an edge  runs  from 
the outside of the rectangle to the inside, the edges comprising the hole are  defined, 
and then the same edge is used to move  back  to the outside; because the edges join 
seamlessly, the rectangle appears to form a solid boundary around the hole. 
The set of  V-shaped  polygons  drawn by Listing 40.4 demonstrate that polygons  shar- 
ing common edges meet  but do not overlap. This characteristic, which I discussed at 
length in Chapter 38, is not a trivial matter; it allows  polygons to fit together without 
fear of overlapping or missed  pixels. In general, Listing 40.1 guarantees that poly- 
gons are filled such that  common boundaries and vertices are drawn once and only 
once. This has the  sideeffect for any  individual  polygon of not drawing  pixels that 
lie  exactly on the bottom or right boundaries or  at vertices that terminate bottom or 
right boundaries. 
By the way, I have not seen polygon boundary filling handled precisely  this way else- 
where. The boundary filling approach  in Foley and van  Dam  is  similar, but seems to 
me to not draw  all boundary and vertex  pixels once and only once. 

More on Active  Edges 
Edges  of zero height-horizontal edges and edges defined by two vertices at the 
same  location-never  even make it  into  the GET in  Listing 40.1. A polygon edge of 
zero height can  never  be an active edge, because it can  never intersect a scan line; it 
can  only run along the scan line, and the span it runs along is defined not by that 
edge but by the edges that  connect to its endpoints. 

Performance  Considerations 
How  fast is Listing 40.1? When  drawing  triangles on a 20-MHz 386, it’s  less than  one-fifth 
the speed of the fast  convex  polygon  fill code. However, most  of that time  is spent 
drawing  individual  pixels;  when  Listing 40.2 is replaced with the fast  assembly line 
segment drawing code in  Listing 40.5, performance improves by two and one-half 
times, to about half  as  fast  as the fast  convex  fill code. Even after conversion to assem- 
bly in  Listing 40.5, DrawHorizontalLineSeg still  takes more than half of the total 
execution time, and the remaining time is spread out fairly  evenly  over the various 
subroutines in  Listing 40.1. Consequently,  there’s no single  place  in  which it’s  pos- 
sible to greatly  improve performance, and the maximum additional improvement 

Of Songs,  Taxes, and the  Simplicity of Complex  Polygons 753 



that's possible  looks to be a good deal less than two times; for that reason, and be- 
cause  of  space limitations, I'm not going to convert the rest of the code to assembly. 
However, when filling a polygon  with a great many edges, and especially one with a 
great many  active edges at  one time,  relatively more time  would  be spent traversing 
the linked lists. In such a case,  conversion to assembly  (which does a very good job 
with linked list processing) could pay  off reasonably  well. 

LISTING 40.5 L40-5.ASM 
; Draws all p i x e l s   i n   t h e   h o r i z o n t a l   l i n e  segment  passed i n ,   f r o m  
: ( L e f t X . Y )   t o   ( R i g h t X . Y ) ,   i n   t h e   s p e c i f i e d   c o l o r   i n  mode 13h .   t he  
: VGA's 320x200   256 -co lo r  mode. No d raw ing  will t a k e   p l a c e  i f  
: L e f t X  > R i g h t X .   T e s t e d   w i t h  TASM 
: C n e a r - c a l l a b l e   a s :  

v o i d  DrawHorizontalLineSeg(Y. L e f t X .   R i g h t X .   C o l o r ) ;  

SCREEN-WIDTH equ  320 
SCREEN-SEGMENT equ OaODOh 

Parms s t r u c  

Y 
dw 2 d u p ( ? )  
dw ? 

L e f t X  dw ? 
R igh tX  dw ? 
C o l o r  dw ? 
Parms  ends 

: r e t u r n   a d d r e s s  & pushed BP 
: Y  c o o r d i n a t e   o f   l i n e  segment t o  draw 
; l e f t   e n d p o i n t   o f   t h e   l i n e  segment 
; r i g h t   e n d p o i n t   o f   t h e   l i n e  segment 
: c o l o r   i n   w h i c h   t o   d r a w   t h e   l i n e   s e g m e n t  

.model  smal 1 

.code 
p u b l i c   - D r a w H o r i z o n t a l L i n e S e g  
a l i g n  2 

p u s h   b p   : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p , s p   : p o i n t   t o   o u r   s t a c k   f r a m e  
p u s h   d i   ; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e  
c l  d :make s t r i n g   i n s t r u c t i o n s   i n c   p o i n t e r s  
mov  ax.SCREEN-SEGMENT 
mov e s , a x   ; p o i n t  E S  t o   d i s p l a y  memory 
mov d i  , [bp+Le f tX ]  
mov cx. [bp+RightX]  
s u b   c x . d i   ; w i d t h   o f   l i n e  
j l  DrawDone :R igh tX  < Le f tX :   no   d raw ing   t o   do  
i n c   c x  : i n c l   u d e   b o t h   e n d p o i n t s  
mov  ax.SCREEN-WIDTH 
mu1 [ b p + Y l   ; o f f s e t   o f   s c a n   l i n e  o n   w h i c h   t o   d r a w  
add d i   , a x  : E S : D I  p o i n t s   t o   s t a r t   o f   l i n e  seg 
mov a 1 , b y t e   p t r   C b p + C o l o r l   ; c o l o r   i n   w h i c h   t o   d r a w  
mov a h . a l   : p u t   c o l o r   i n  AH f o r  STOSW 
s h r   c x . 1  :# o f   w o r d s   t o  f i  11 
r e p   s t o s w  :fill a word a t  a t i m e  
adc  cx.cx 
r e p   s t o s b   : d r a w   t h e   o d d   b y t e ,  i f  any 

pop d i   ; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e  
POP bp ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

end 

~ D rawHor i zon ta l   L ineSeg   p roc  

DrawDone: 

-DrawHor izonta lL ineSeg  endp 
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The algorithm used to X-sort the AET is an interesting performance consideration. 
Listing 40.1 uses a bubble sort, usually a poor choice for performance. However, 
bubble sorts perform well when the data are already  almost sorted, and because of 
the X coherence of edges from one scan line to the  next, that’s  generally the case 
with the AET. An insertion sort might be  somewhat  faster, depending  on the state of 
the AET when any particular sort occurs, but a bubble sort will generally do  just fine. 
An insertion sort that scans  backward through the AET from the  current edge rather 
than forward from the start of the AET could be quite a bit faster,  because edges 
rarely move more than one  or two positions through the AET. However, scanning 
backward requires a doubly linked list, rather than the singly linked list  used  in List- 
ing 40.1. I’ve chosen to use a singly linked  list  partly  to  minimize  memory requirements 
(double-linking requires an extra pointer field) and partly  because supporting back 
links  would complicate the code a good bit. The main reason, though, is that the 
potential rewards for the complications of  back  links and insertion sorting aren’t 
great  enough; profiling a variety  of  polygons  reveals that less than ten percent of 
total time is spent sorting the AET. 

The potential 1 to 5 percent speedup gained by optimizing AET sorting j us t  isn ’t p worth it in any but  the  most demanding application-a good example of the need 
to keep an overall perspective when comparing the theoretical characteristics of 
various approaches. 

Nonconvex Polygons 
Nonconvex  polygons can be filled  somewhat faster than complex polygons.  Because 
edges never  cross or switch  positions  with other edges once they’re in the AET, the 
AET for a nonconvex polygon needs to be sorted only  when  new edges are  added. In 
order  for this to work, though, edges must  be added to the AET in strict left-to-right 
order. Complications arise  when dealing with two edges that start at the same point, 
because  slopes  must  be compared to determine which edge is leftmost. This is  cer- 
tainly doable, but because of space limitations and limited performance returns, I 
haven’t implemented this  in  Listing 40.1, 

Details,  Details 
Every so often, a programming  demon that I’d thought I’d forever  laid to rest arises 
to haunt me once again. A minor example of  this-an imp, if  you  will-is the use  of 
“ = ” when I mean “ == ,” which  I’ve done all too often in the past, and am sure I’ll do 
again. That’s minor deviltry, though,  compared to the considerably greater evils of 
one of my personal scourges, of  which I was recently reminded anew:  too-close atten- 
tion to detail. Not seeing the forest for the trees. Looking low when I should have 
looked high. Missing the big picture, if you catch my drift. 
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Thoreau said it best: “Our life  is frittered away  by detail .... SimpliQ, simplify”  That 
quote  sprang to mind when I received a  letter a while  back from Anton Treuenfels of 
Fridley, Minnesota, thanking me for clarifylng the principles of filling adjacent  con- 
vex polygons in my ongoing writings on graphics programming. (You’ll find this 
material in the previous two chapters.) Anton then went on to describe his own 
method  for filling  convex  polygons. 
Anton’s approach  had its virtues and drawbacks, foremost  among  the virtues being  a 
simplicity Thoreau would  have admired. For instance, in writing my polygon-filling 
code, I had  spent  quite some time  trying to figure out  the best way to  identify  which 
edge was the left edge and which the  right, finally settling  on  comparing  the slopes 
of the edges if the top of the polygon  wasn’t flat, and  comparing  the  starting  points 
of the edges if the  top was flat. Anton simplified  this tremendously by not  bothering 
to figure out ahead of time  which was the  right edge of the polygon and which the 
left, instead  scanning out the two edges in whatever order  he  found  them  and  letting 
the low-level drawing code test, and if necessary swap, the  endpoints of each hori- 
zontal line of the fill, so that filling started  at  the leftmost edge. This is a little slower 
than my approach  (although  the  difference is almost  surely negligible),  but  it also 
makes quite  a  bit of code go away. 
What that example, and  others like it in Anton’s letter,  did was  kick  my mind  into  a 
mode  that  it hadn’t-but should have-been in when I wrote the  code,  a  mode  in 
which I began to  wonder,  “How  else can I simplify this code?”; what  you might call 
Occam’s  Razor mode. You see, I  created  the convex polygondrawing  code by first 
writing pseudocode,  then writing C code,  and finally  writing  assembly code,  and 
once  the  pseudocode was finished, I stopped  thinking  about  the  interactions of the 
various portions of the  program. 
In other words, I  became so absorbed in individual details that  I  forgot to consider 
the code as a whole. That was a mistake, and  an embarrassing one  for  someone who 
constantly preaches  that  programmers  should look at  their code from a variety  of 
perspectives; the  next  chapter shows just how much  difference  thinking  about  the 
big picture can make. May my embarrassment be your enlightenment. 
The point is not whether,  in the final analysis, my code or Anton’s code is better; 
both have their advantages. The point is that I was programming with  half a deck 
because I was so fixated on  the details of a single type of implementation; I ended  up 
with  relatively  hard-to-write, complex code,  and missed out  on many potentially use- 
ful optimizations by being so focused. It’s a big  world out there,  and  there  are many 
subtle approaches to  any problem, s o  relax and  keep  the big picture in mind as  you 
implement your programs. Your code will  likely be not only better, but also  simpler. 
And  whenever  you  see  me  walking  across hot coals in this book or elsewhere when 
there’s  an easier way to  go, please, let me know! 
Thanks, Anton. 
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chapter 41

those way-down polygon nomenclature blues



atter when You Conceptualize 
a Data Struhre 
After I wrote the co  ns in Dr: DobbkJoumaZ that became Chapters 38-40, 

e to take me to task-and a well-deserved  kick in 
my use of non-standard polygon terminology in 
tem (XWS) defines three categories of  polygons: 
hese three categories, each  a specialized subset 

identally map  quite nicely to three increas- 
herefore,  I used the XWS names to describe 

n with each of the polygon filling techniques. 
’t accurately describe all the sorts of  polygons 

that  the  techniques  are capable of drawing. Convex  polygons are those for which no 
interior angle is greater  than 180 degrees. The “convex” drawing approach described 
in the previous few chapters actually handles  a  number of polygons that  are not 
convex; in fact, it can draw  any  polygon through which no horizontal line can be 
drawn that intersects the boundary  more  than twice. (In  other words, the  boundary 
reverses the Y direction exactly  twice, disregarding polygons that have degenerated 
into horizontal lines, which  I’m going to ignore.) 
Bill  was kind enough to send me the pages out of Computational Geometry, An Introduc- 
tion (Springer-Verlag, 1988) that describe the  correct terminology; such polygons 
are,  in fact, “monotone with respect to a vertical line” (which unfortunately makes a 
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rather  long #define variable). Actually,  to be  a tad more precise, I’d call them  “mono- 
tone with respect  to a  vertical line  and  simple,”  where  “simple”  means  “not 
self-intersecting.” Similarly, the polygon  type I called “nonconvex” is  actually “simple,” 
and I suppose what I called “complex”  should be referred to as “nonsimple,” or 
maybe just  “none of the above.” 

This  may  seem  like nit-picking, but actually, it  isn ’t; what it’s really about  is  the p tremendous importance of having a shared language. In one of his books, Richard 
Feynman describes having developed his  own  mathematical framework, complete 
with his  own notation and terminolom, in high school. When  he got to college and 
started working with other people who were at his level, he suddenly understood 
that people can’t  share ideas effectively unless  they speak the same language; 
otherwise, they waste a great deal of time on misunderstandings  and explanation. 

Or, as Bill Huber  put it, ‘You are  free to adopt your own terminology when it suits 
your purposes well. But you  risk losing or confusing those who could  be  among your 
most astute readers-those who already have been  trained in the same or a  related 
field.” Ditto. Likewise. D’uccord. And mea tuba; I shall endeavor to watch my lan- 
guage in  the  future. 

Nomenclature in Action 
Just to show  you  how much difference proper description and  interchange of ideas 
can make, consider the case  of identifylng convex  polygons. When I was writing 
about polygons in my column in DDJ a  nonfunctional  method  for identifylng such 
polygons-checking for exactly two X direction  changes and two Y direction changes 
around  the  perimeter of the polygon-crept into  the column by accident. That 
method, as I noted  in  a  later  column,  does  not work. (That’s why you won’t find  it in 
this book.) Still, a fast method of checking for convex  polygons  would be highly 
desirable, because such polygons can be drawn  with the fast code  from  Chapter 39, 
rather  than  the relatively slow, general-purpose  code  from  Chapter 40. 
Now consider Bill’s point  that we’re not limited to drawing convex  polygons in our 
“convex fill” code,  but can actually handle any simple polygon that’s monotone with 
respect to avertical line. Additionally, consider  Anton Treuenfels’s point, made back 
in Chapter 40, that life gets simpler if  we stop worrying about which edge of a poly- 
gon is the left edge and which is the  right, and instead just scan out each raster line 
starting at whichever edge is  left-most. Now, what do we have? 
What we have  is an  approach passed along by Jim Kent, of Autodesk Animator fame. 
If  we modify the low-level code to check which edge is  left-most on each scan line 
and start drawing there, as just described, then we can handle any  polygon  that’s 
monotone with respect to a vertical line regardless of whether  the edges cross. (I’ll 
call this “monotone-vertical” from now on; if anyone wants  to correct  that terminol- 
ogy, jump right  in.)  In other words, we can then  handle  nonsimple polygons that  are 
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monotone-vertical; self-intersection is no longer  a  problem. We just scan around the 
polygon's perimeter  looking  for exactly two direction reversals along the Y axis only, 
and if that proves  to be the case, we can handle  the polygon at  high  speed. Figure 
41.1 shows  polygons that can be drawn by a monotone-vertical capable filler; Figure 
41.2 shows some that  cannot. Listing 41.1 shows code  to test whether  a polygon is 
appropriately  monotone. 

LISTING 41.1 L41-1.C 
/*  Re tu rns  1 i f  p o l y g o n   d e s c r i b e d   b y   p a s s e d - i n   v e r t e x   l i s t   i s   m o n o t o n e   w i t h  
r e s p e c t   t o  a v e r t i c a l   l i n e ,  0 o t h e r w i s e .   D o e s n ' t   m a t t e r  i f  po lygon  i s   s i m p l e  
( n o n - s e l f - i n t e r s e c t i n g )   o r   n o t .   T e s t e d   w i t h   B o r l a n d  C++ i n   s m a l l   m o d e l .  * /  

#i ncl   ude  "po lygon.  h" 

# d e f i n e  SIGNUM(a1 ( ( a > O ) ? l : ( ( a < O ) ? - l : O ) )  

i n t  PolygonIsMonotoneVertical(struct P o i n t L i s t H e a d e r  * V e r t e x L i s t )  

i n t  i, Length ,   De l taYSign .   Prev iousDel taYSign :  
i n t  NumYReversals - 0: 
s t r u c t   P o i n t   * V e r t e x P t r  - V e r t e x L i s t - > P o i n t P t r :  

/ *  T h r e e   o r   f e w e r   p o i n t s   c a n ' t  make a n o n - v e r t i c a l - m o n o t o n e   p o l y g o n  */  
i f  ((Length-VertexList->Length) < 4 )  r e t u r n ( 1 ) :  

/ *  Scan t o   t h e   f i r s t   n o n - h o r i z o n t a l  edge * I  
Prev iousDe l taYS ign  - SIGNUM(VertexPtr[Length-1l.Y - VertexPtrCO1.Y): 
i - 0: 
w h i l e   ( ( P r e v i o u s D e l t a Y S i g n  - 0 )  && (i < ( L e n g t h - 1 ) ) )  I 

Prev iousDe l taYS ign  - SIGNUM(VertexPtrCi1.Y - V e r t e x P t r [ i + l l . Y ) ;  
i++: 

1 

i f  

I*  

do 

(i - ( L e n g t h - 1 ) )   r e t u r n ( 1 ) :  / *  p o l y g o n   i s  a f l a t   l i n e  */  

Now coun t  Y r e v e r s a l s .   M i g h t   m i s s   o n e   r e v e r s a l ,   a t   t h e   l a s t   v e r t e x ,   b u t  
b e c a u s e   r e v e r s a l   c o u n t s   m u s t   b e   e v e n ,   b e i n g   o f f   b y   o n e   i s n ' t  a problem */  
I 
i f  ( (De l taYS ign  - SIGNUM(VertexPtrCi1.Y - V e r t e x P t r C i + l ] . Y ) )  

!- 0 )  I 

/*  Swi tched Y d i r e c t i o n :   n o t   v e r t i c a l - m o n o t o n e  i f  
r e v e r s e d  Y d i r e c t i o n  as many a s  t h r e e   t i m e s  * I  

i f  ( t tNumYReversals  > 2 )  r e t u r n ( 0 ) :  
P rev iousDe l taYS ign  - De l taYS ign :  

i f  (De l taYS ign  !- Prev iousDe l taYS ign )  [ 

1 
1 

) w h i l e  (i++ < ( L e n g t h - 1 ) ) :  
r e t u r n ( 1 ) :  / *  i t ' s  a v e r t i c a l - m o n o t o n e   p o l y g o n  * /  

1 

Listings 41.2 and 41.3 are variants of the fast  convex  polygon  fill code  from  Chapter 
39, modified to be able to handle all  monotone-vertical  polygons, including  nonsimple 
ones;  the  edge-scanning  code (Listing 39.4 from  Chapter 39) remains  the same, and 
so is not shown again here. 
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Sample  monotone-vertical  polygons 

Monotone-vertical polygons. 
Figure 41.1 

Sample  nonmonotone-vertical  polygons 

Non-monotone-vertical polygons. 
Figure 4 1.2 

LISTING 41.2  L41-2.C 
/*  C o l o r - f i l l s  a convex  po lygon.  All v e r t i c e s   a r e   o f f s e t   b y   ( X O f f s e t .   Y O f f s e t ) .  
"Convex" means "monotone w i t h   r e s p e c t   t o  a v e r t i c a l   l i n e " :   t h a t   i s ,   e v e r y  
h o r i z o n t a l   l i n e   d r a w n   t h r o u g h   t h e   p o l y g o n  a t  any p o i n t   w o u l d   c r o s s   e x a c t l y   t w o  
a c t i v e   e d g e s   ( n e i t h e r   h o r i z o n t a l   l i n e s   n o r   z e r o - l e n g t h   e d g e s   c o u n t   a s   a c t i v e  
edges:   bo th   a re   acceptab le   anywhere  i n   t h e   p o l y g o n ) .   R i g h t  & l e f t  edges may 
c ross   (po l ygons  may b e   n o n s i m p l e ) .   P o l y g o n s   t h a t   a r e   n o t   c o n v e x   a c c o r d i n g   t o  
t h i s   d e f i n i t i o n   w o n ' t  be  drawn  proper ly.   (Yes.  "convex" i s  a l o u s y  name f o r  
t h i s   t y p e   o f   p o l y g o n ,   b u t   i t ' s   c o n v e n i e n t :   u s e   " m o n o t o n e - v e r t i c a l "  i f  i t  makes 
you   happ ie r ! )  

NOTE: t h e   l o w - l e v e l   d r a w i n g   r o u t i n e ,   D r a w H o r i z o n t a l L i n e L i s t .   m u s t   b e   a b l e   t o  
reve rse   t he   edges ,  i f  n e c e s s a r y   t o  make t h e   c o r r e c t   e d g e   l e f t  edge. It must 
a l s o   e x p e c t   r i g h t   e d g e   t o  be s p e c i f i e d   i n  +1 f o r m a t   ( t h e  X c o o r d i n a t e   i s  1 p a s t  
h i g h e s t   c o o r d i n a t e   t o   d r a w ) .   I n   b o t h   r e s p e c t s ,   t h i s   d i f f e r s   f r o m   l o w - l e v e l  
d r a w i n g   r o u t i n e s   p r e s e n t e d   i n   e a r l i e r   c o l u m n s :   c h a n g e s   a r e   n e c e s s a r y   t o  make i t  
p o s s i b l e   t o   d r a w   n o n s i m p l e   m o n o t o n e - v e r t i c a l   p o l y g o n s :   t h a t   i n   t u r n  makes it 
p o s s i b l e   t o   u s e   J i m   K e n t ' s   t e s t   f o r   m o n o t o n e - v e r t i c a l   p o l y g o n s .  

Returns  1 f o r   s u c c e s s ,  0 i f  memory a l l o c a t i o n   f a i l e d  */  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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# i n c l u d e   < s t d i o . h >  
# inc lude  <math.h> 
# i n c l u d e   < s t d l  i b. h> 
#i n c l  ude  "polygon.  h" 

I* Advances t h e   i n d e x   b y   o n e   v e r t e x   f o r w a r d   t h r o u g h   t h e   v e r t e x   l i s t ,  
w r a p p i n g   a t   t h e   e n d  o f  t h e   l i s t  *I  
# d e f i n e  INDEXKFORWARD(1ndex) \ 

Index  - ( I n d e x  + 1) % V e r t e x L i s t - > L e n g t h :  

/ *  A d v a n c e s   t h e   i n d e x   b y   o n e   v e r t e x   b a c k w a r d   t h r o u g h   t h e   v e r t e x   l i s t ,  
w r a p p i n g   a t   t h e   s t a r t   o f   t h e   l i s t  *I  
# d e f i n e  INDEXLBACKWARD(1ndex) \ 

Index  - ( I n d e x  - 1 + V e r t e x L i s t - > L e n g t h )  % V e r t e x L i s t - > L e n g t h :  

I* Advances   the   index   by  one v e r t e x   e i t h e r   f o r w a r d   o r   b a c k w a r d   t h r o u g h  
t h e   v e r t e x   l i s t ,   w r a p p i n g   a t   e i t h e r  end o f   t h e   l i s t  * I  
# d e f i n e  INDEX_MOVE(Index.Direction) \ 

i f  ( D i r e c t i o n  > 0 )  \ 
Index  - ( I n d e x  + 1) % V e r t e x L i s t - > L e n g t h ;  \ 

e l s e  \ 
Index  - ( I n d e x  - 1 + V e r t e x L i s t - > L e n g t h )  % V e r t e x L i s t - > L e n g t h :  

e x t e r n   v o i d   S c a n E d g e ( i n t .   i n t .  i n t .   i n t .  i n t .  i n t .  s t r u c t   H L i n e  **); 
e x t e r n   v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  *, i n t ) ;  

i n t  FillMonotoneVerticalPolygon(struct P o i n t L i s t H e a d e r  * V e r t e x L i s t .  

( 
i n t   C o l o r ,   i n t   X O f f s e t .   i n t   Y O f f s e t )  

i n t  i, MinIndex.  MaxIndex.  MinPoint-Y.  MaxPoint-Y: 
i n t  Nex t Index .   Cur ren t Index .   Prev ious Index :  
s t r u c t   H L i n e L i s t   W o r k i n g H L i n e L i s t :  
s t r u c t   H L i n e   * E d g e P o i n t P t r ;  
s t r u c t   P o i n t   * V e r t e x P t r :  

/ *  P o i n t   t o   t h e   v e r t e x   l i s t  *I  
V e r t e x P t r  - V e r t e x L i s t - > P o i n t P t r ;  

I* Scan t h e   l i s t   t o   f i n d   t h e   t o p  a n d   b o t t o m   o f   t h e   p o l y g o n  *I  
i f  ( V e r t e x L i s t - > L e n g t h  - 0 )  

MaxPoint-Y - MinPoint-Y - VertexPtrCMinIndex - MaxIndex - 01.Y: 
f o r  (i - 1: i < V e r t e x L i s t - > L e n g t h ;  i++) { 

r e t u r n ( 1 ) :  I* r e j e c t   n u l l   p o l y g o n s  *I 

i f  (Ver texP t rC i1 .Y  < MinPoint-Y) 

e l s e  i f  ( V e r t e x P t r l i 1 . Y  > MaxPoint-Y) 
MinPointLY = Ver texPtrCMinIndex - i1.Y: I* new t o p  *I  

MaxPoint-Y - VertexPtrCMaxIndex - i1.Y: I* new b o t t o m  */  
1 

I* 
i f  

S e t   t h e  # o f  s c a n   l i n e s   i n   t h e   p o l y g o n ,   s k i p p i n g   t h e   b o t t o m  
( (Work ingHL ineL is t .Leng th  - MaxPoint-Y - MinPoint -Y)  <- 0 )  
r e t u r n ( 1 ) :  I* t h e r e ' s   n o t h i n g   t o   d r a w ,  s o  we're  done *I  

W o r k i n g H L i n e L i s t . Y S t a r t  - Y O f f s e t  + MinPointLY:  

/ *  Get memory i n  w h i c h   t o   s t o r e   t h e   l i n e   l i s t  we genera te  * I  
i f  ( ( W o r k i n g H L i n e L i s t . H L i n e P t r  - 

( s t r u c t   H L i n e  *)  ( m a l l o c ( s i z e o f ( s t r u c t   H L i n e )  * 
Work ingHL ineL is t .Leng th1 ) )  - NULL) 

r e t u r n ( 0 ) ;  / *  c o u l d n ' t   g e t  memory f o r   t h e   l i n e   l i s t  * I  

edge * I  
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/*  Scan t h e   f i r s t  edge  and s t o r e   t h e   b o u n d a r y   p o i n t s   i n   t h e   l i s t  * /  
/*  I n i t i a l   p o i n t e r   f o r   s t o r i n g  s c a n   c o n v e r t e d   f i r s t - e d g e   c o o r d s  */  
EdgePo in tP t r  - Work ingHLineLis t .HLinePtr :  
/ *  S t a r t   f r o m   t h e   t o p   o f   t h e   f i r s t  edge */  
Prev ious Index  - C u r r e n t I n d e x  - MinIndex:  
/ *  Scan c o n v e r t   e a c h   l i n e   i n   t h e   f i r s t  e d g e   f r o m   t o p   t o   b o t t o m  */  
do I 

INDEX-BACKWARD(Current1ndex); 
ScanEdge(VertexPtr[PreviousIndexl.X + XOf fse t .  

VertexPtr[PreviousIndexl.Y. 
VertexPtr[CurrentIndexl.X + X O f f s e t .  
VertexPtr[CurrentIndexl.Y. 1. 0. &EdgePo in tP t r ) :  

P rev ious Index  - C u r r e n t I n d e x ;  
1 w h i l e   ( C u r r e n t I n d e x  !- MaxIndex): 

/ *  Scan the   second  edge  and  s to re   the   boundary   po in ts  i n   t h e   l i s t  * /  
EdgePo in tP t r  - Work ingHLineLis t .HLinePtr ;  
P rev ious Index  - C u r r e n t I n d e x  - MinIndex;  
/ *  Scan c o n v e r t   t h e   s e c o n d   e d g e ,   t o p   t o   b o t t o m  */  
do I 

INDEX-FORWARD(Current1ndex): 
ScanEdge(VertexPtr[PreviousIndexl.X + X O f f s e t .  

VertexPtr[PreviousIndexl.Y, 
VertexPtr[CurrentIndexl.X + XOf fse t .  
VertexPtr[CurrentIndexl.Y. 0. 0. & E d g e P o i n t P t r ) ;  

P rev ious Index  - Cur ren t Index ;  
) w h i l e   ( C u r r e n t I n d e x  !- MaxIndex) :  

/*  Draw t h e   l i n e   l i s t   r e p r e s e n t i n g   t h e  scan  conver ted   po lygon */  
DrawHor i zon ta lL ineL is t (&Work ingHL ineL is t ,  C o l o r ) :  

/*  R e l e a s e   t h e   l i n e   l i s t ' s  memory and   we ' re   success fu l l y   done  */ 
f ree (Work ingHL ineL is t .HL inePt r ) :  
r e t u r n ( 1 ) ;  

I 

LISTING 41.3 L41-3.ASM 
: Draws a l l   p i x e l s   i n   l i s t   o f   h o r i z o n t a l   l i n e s   p a s s e d   i n ,   i n  mode 13h. VGA's 
: 320x200  256-co lor  mode.  Uses REP STOS t o  fill e a c h   l i n e .  

: NOTE: i s   a b l e   t o   r e v e r s e   t h e  X c o o r d s   f o r  a s c a n   l i n e ,  i f  n e c e s s a r y ,   t o  make 
: X S t a r t  < XEnd. Expects  whichever  edge i s   r i g h t m o s t  on  any  scan l i n e   t o  be i n  
: +1 f o r m a t :   t h a t   i s ,  XEnd i s  1 g r e a t e r   t h a n   r i g h t m o s t   p i x e l   t o   d r a w .  I f  
: X S t a r t  - XEnd. n o t h i n g   i s  drawn  on t h a t  scan l i n e .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
: C n e a r - c a l l a b l e  a s :  
: v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  * H L i n e L i s t P t r .   i n t   C o l o r ) :  
: All assembly   code  tes ted   w i th  TASM and MASM 

SCREEN-WIDTH equ  320 
SCREEN-SEGMENT equ OaOOOh 

H L i n e   s t r u c  
X S t a r t  dw ? :X c o o r d i n a t e  o f  l e f t m o s t   p i x e l   i n   l i n e  
XEnd dw ? :X c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  
HLine  ends 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

H L i n e L i s t   s t r u c  
Lng th  dw ? :# o f   h o r i z o n t a l   l i n e s  
Y S t a r t  dw ? :Y c o o r d i n a t e   o f   t o p m o s t   l i n e  
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H L i n e P t r  dw ? : p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  
H L i   n e L i   s t  ends 

Parms s t r u c  
dw 2 d u p ( ? )   ; r e t u r n   a d d r e s s  & pushed BP 

H L i n e L i s t P t r  dw 
C o l o r  

? 
dw 

; p o i n t e r   t o   H L i n e L i s t   s t r u c t u r e  
? ; c o l o r   w i t h   w h i c h   t o  fill 

Parms  ends 
.model  small  
.code 
p u b l i c   - D r a w H o r i z o n t a l L i n e L i s t  
a l i g n  2 

- 0 r a w H o r i z o n t a l L i n e L i s t   D r o c  
push 
mov 
push 
push 
c l  d 

mov 
mov 

mov 
mov 
mu 1 
mov 
mov 

mov 
and 
j z  
mov 
mov 

mov 
mov 
CmP 
j l e  
xchg 

sub 
j z  
add 
t e s t  
j z  
s t o s b  

dec 
jz 

s h r  
r e p  
adc 

F i  11  Loop: 

NoSwap: 

M a i n F i l l :  

r e p  

add 
add 
dec 
j nz 

L i n e F i l l O o n e :  

bP ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
bP * SP ; p o i n t   t o   o u r   s t a c k   f r a m e  
s i  
d i  

; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

;make s t r i n g   i n s t r u c t i o n s   i n c   p o i n t e r s  

ax,SCREEN-SEGMENT 
e s . a x   ; p o i n t  ES t o   d i s p l a y  memory f o r  REP STOS 

s i . C b p + H L i n e L i s t P t r ]   ; p o i n t   t o   t h e   l i n e   l i s t  
ax,SCREEN-WIDTH ; p o i n t   t o   t h e   s t a r t   o f   t h e   f i r s t   s c a n  
C s i + Y S t a r t l  ; l i n e   i n   w h i c h   t o  draw 
dx.ax ;ES:DX p o i n t s   t o   f i r s t   s c a n   l i n e   t o  draw 
b x . [ s i + H L i n e P t r l   ; p o i n t   t o   t h e   X S t a r t / X E n d   d e s c r i p t o r  

; f o r   t h e   f i r s t   ( t o p )   h o r i z o n t a l   l i n e  
s i   . E s i + L n g t h l  ;# o f  s c a n   l i n e s   t o   d r a w  
s i   . s i   ; a r e   t h e r e  any l i n e s   t o  draw? 
F i  11 Done ;no. s o  we're  done 
a 1 , b y t e   p t r   [ b p + C o l o r l   ; c o l o r   w i t h   w h i c h   t o  fill 
a h . a l   : d u p l i c a t e   c o l o r   f o r  STOSW 

d i . [ b x + X S t a r t l  ; l e f t  edge o f  fill on t h i s   l i n e  
cx.[bx+XEndl : r i g h t  edge o f  fill 
d i  , c x  ; i s   X S t a r t  > XEnd? 
NoSwap ;no,   we ' re  all s e t  
d i   , c x  ;yes. s o  swap edges 

c x . d i   ; w i d t h   o f  fill on t h i s   l i n e  
L i n e F i l l D o n e   : s k i p  i f  z e r o   w i d t h  
d i   , d x   ; o f f s e t  o f  l e f t  edge o f  fill 
d i  .1 
M a i n F i l l  

:does fill s t a r t   a t  an  odd  address? 
;no 
; y e s .   d r a w   t h e   o d d   l e a d i n g   b y t e   t o  
; w o r d - a l i g n   t h e   r e s t   o f   t h e  fill 

cx ; c o u n t   o f f   t h e  o d d   l e a d i n g   b y t e  
L ineF i l lDone   :done  i f  t h a t  was t h e   o n l y   b y t e  

cx ,  1 ;# o f  words i n  fill 
stosw ;fill as  many words   as   poss ib le  
c x ,   c x  ;1 i f  t h e r e ' s  an odd t r a i l i n g   b y t e   t o  

s t o s b  ;fill any  odd t r a i l i n g   b y t e  

b x . s i z e   H L i n e   : p o i n t   t o   t h e   n e x t   l i n e   d e s c r i p t o r  
dx.SCREEN-WIDTH ; p o i n t   t o   t h e   n e x t   s c a n   l i n e  
s i  
F i  11  Loop 

; do, 0 o t h e r w i s e  

: c o u n t   o f f   l i n e s   t o  fill 
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F i  11  Done: 
pop d i   ; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
pop s i  

r e t  

end 

POP bP ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

- DrawHor i   zon ta l   L i   neL i   s t   endp  

Listing 41.4 is  almost  identical to Listing  40.1  from  Chapter 40. I've modified  Listing  40.1 
to employ  the  vertical-monotone detection test  we've been talking  about  and  use  the 
fast  vertical-monotone drawing code whenever  possible;  that's  what  Listing 41.4 is. 
Note  well  that  Listing 40.5 from Chapter 40 is  also  required  in  order  for  this code to link. 
Listing 41.5 is  an  appropriately  updated  version of the  POLYG0N.H  header file. 

LISTING 41.4  L41-4.C 
/ *  C o l o r - f i l l s  an a r b i t r a r i l y - s h a p e d   p o l y g o n   d e s c r i b e d   b y   V e r t e x L i s t .  
I f  t h e   f i r s t  and l a s t   p o i n t s   i n   V e r t e x L i s t   a r e   n o t   t h e  same, t h e   p a t h  
a round   the   po l ygon  i s   a u t o m a t i c a l l y   c l o s e d .  All v e r t i c e s   a r e   o f f s e t  
b y   ( X O f f s e t .   Y O f f s e t ) .   R e t u r n s  1 f o r   s u c c e s s ,  0 i f  memory a l l o c a t i o n  
f a i l e d .  All C c o d e   t e s t e d   w i t h   B o r l a n d  C++. 

I f  the   po l ygon   shape  i s  known i n  advance,   speed ier   p rocess ing  may be 
enab led   by   spec i fy ing   the   shape  as   fo l lows:   "convex"  - a rubber   band 
s t r e t c h e d   a r o u n d   t h e   p o l y g o n   w o u l d   t o u c h   e v e r y   v e r t e x   i n   o r d e r ;  
"nonconvex" - t h e   p o l y g o n   i s   n o t   s e l f - i n t e r s e c t i n g ,   b u t  need  not  be 
convex;  "complex" - t h e   p o l y g o n  may be s e l f - i n t e r s e c t i n g ,   o r ,   i n d e e d ,  
any s o r t   o f   p o l y g o n   a t  all. Complex will work f o r  all polygons:  convex 
i s   f a s t e s t .   U n d e f i n e d   r e s u l t s  will occur  i f  convex i s   s p e c i f i e d   f o r  a 
nonconvex  or   complex  po lygon.  

D e f i n e  CONVEX-CODE-LINKED i f  t h e   f a s t   c o n v e x   p o l y g o n   f i l l i n g   c o d e   f r o m  
the   February   1991  co lumn i s  1 i nked   i n .   O the rw ise ,   convex   po l ygons   a re  
h a n d l e d   b y   t h e   c o m p l e x   p o l y g o n   f i l l i n g   c o d e .  
Nonconvex i s  handled  as  complex i n   t h i s   i m p l e m e n t a t i o n .  See t e x t   f o r  a 
d i s c u s s i o n   o f   f a s t e r   n o n c o n v e x   h a n d l i n g .  * /  

# i n c l u d e   < s t d i o . h >  
# inc lude  <math .  h> 
# i   f d e f  -TURBOC- 
# i n c l u d e   < a l l o c . h >  
# e l s e  I* MSC * I  
# i n c l u d e   < m a l l o c . h >  
# e n d i f  
#i n c l  ude  "polygon.  h" 

# d e f i n e  SWAP(a.b) {temp - a; a - b:  b - temp;] 

s t r u c t   E d g e S t a t e  { 
s t ruc t   Edges ta te   *Nex tEdge ;  
i n t  X ;  
i n t   S t a r t Y ;  
i n t  WholePixelXMove; 
i n t   X D i r e c t i o n ;  
i n t   E r r o r T e r m :  
i n t  ErrorTermAdjUp; 
i n t  ErrorTermAdjDown; 
i n t  Count; 

3 ;  
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e x t e r n   v o i d  OrawHorizontalLineSeg(int, i n t .  i n t .   i n t ) :  
e x t e r n   i n t  FillMonotoneVerticalPolygon(struct P o i n t L i s t H e a d e r  *, 

e x t e r n   i n t  PolygonIsMonotoneVertical(struct P o i n t L i s t H e a d e r  * ) :  
s t a t i c   v o i d   B u i l d G E T ( s t r u c t   P o i n t L i s t H e a d e r  *, s t r u c t   E d g e S t a t e  *, 

s t a t i c   v o i d   M o v e X S o r t e d T o A E T ( i n t ) ;  
s t a t i c   v o i d   S c a n O u t A E T ( i n t .   i n t ) :  
s t a t i c   v o i d   A d v a n c e A E T ( v o i d ) :  
s t a t i c   v o i d   X S o r t A E T ( v o i d ) ;  

/* P o i n t e r s   t o   g l o b a l   e d g e   t a b l e  (GET) and a c t i v e  edge t a b l e  (AET) * /  
s t a t i c   s t r u c t   E d g e S t a t e  *GETPtr.  *AETPtr: 

i n t   F i l l P o l y g o n ( s t r u c t   P o i n t L i s t H e a d e r  * V e r t e x L i s t .   i n t   C o l o r ,  

( 

i n t ,  i n t .   i n t ) :  

i n t .   i n t ) ;  

i n t  PolygonShape. i n t   X O f f s e t .   i n t   Y O f f s e t )  

s t ruc t   EdgeSta te   *EdgeTab leBu f fe r :  
i n t   C u r r e n t Y :  

# i f d e f  CONVEX-CODE-LINKED 
/*  Pass  convex  po lygons  through t o   f a s t  convex  po lygon f i l l e r  * /  
i f  ( (PolygonShape - CONVEX) 1 I 

PolygonIsMonotoneVertical(VertexList)) 
return(FillMonotoneVerticalPolygon(VertexList, C o l o r ,   X O f f s e t .  

Y O f f s e t ) ) ;  
Cendi f 

/ *  It t a k e s  a minimum o f  3 v e r t i c e s   t o   c a u s e   a n y   p i x e l s   t o   b e  

i f  ( V e r t e x L i s t - > L e n g t h  < 3 )  

/*  Get  enough memory t o   s t o r e   t h e   e n t i r e  edge t a b l e  * /  
i f  ( (EdgeTab leBu f fe r  - 

drawn: r e j e c t   p o l y g o n s   t h a t   a r e   g u a r a n t e e d   t o   b e   i n v i s i b l e  */  

r e t u r n ( 1 ) :  

( s t r u c t   E d g e S t a t e  * )  ( m a l l o c ( s i z e o f ( s t r u c t   E d g e s t a t e )  * 
V e r t e x L i s t - > L e n g t h ) ) )  - NULL) 

r e t u r n ( 0 ) :  / *  c o u l d n ' t   g e t  memory f o r   t h e  edge t a b l e  * /  
/*  B u i l d   t h e   g l o b a l   e d g e   t a b l e  */  
Bu i l dGET(Ver texL is t .   EdgeTab leBu f fe r .   XOf f se t .   YOf f se t ) ;  
/ *  Scan  down t h r o u g h   t h e   p o l y g o n   e d g e s ,   o n e   s c a n   l i n e   a t  a t i m e ,  

AETPtr - NULL: /* i n i t i a l i z e   t h e   a c t i v e  edge t a b l e   t o  empty * /  
Cur ren tY  - GETPtr ->Star tY;  / *  s t a r t   a t   t h e   t o p   p o l y g o n   v e r t e x  */ 
wh i l e   ( (GETPt r  !- NULL) I I (AETPtr !- NULL)) { 

so l o n g   a s   a t   l e a s t   o n e   e d g e   r e m a i n s  i n  e i t h e r   t h e  GET o r  AET */  

MoveXSortedToAET(CurrentY): I* upda te  AET f o r   t h i s  scan l i n e  */  
ScanOutAET(CurrentY.  Color) ;  / *  draw t h i s   s c a n   l i n e   f r o m  AET */  
AdvanceAETO: / *  advance AET edges 1 scan l i n e  */  
XSortAETO: / *  r e s o r t  on X * /  
CurrentY++: / *  advance t o   t h e   n e x t   s c a n   l i n e  */  

I 
/*  R e l e a s e   t h e  memory we 've   a l loca ted   and  we ' re   done */  
f ree (EdgeTab1eBu f fe r ) :  
r e t u r n ( 1 ) ;  

I 

/*  Crea tes  a GET i n   t h e   b u f f e r   p o i n t e d   t o   b y   N e x t F r e e E d g e S t r u c   f r o m  
t h e   v e r t e x   l i s t .  Edge e n d p o i n t s   a r e   f l i p p e d ,  i f  necessary,  t o  
g u a r a n t e e   a l l   e d g e s   g o   t o p   t o   b o t t o m .  The GET i s   s o r t e d   p r i m a r i l y  
by  ascending Y s t a r t   c o o r d i n a t e ,  and   secondar i l y   by   ascend ing  X 
s t a r t   c o o r d i n a t e   w i t h i n  edges w i t h  common Y c o o r d i n a t e s .  * /  
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s t a t i c   v o i d   B u i l d G E T ( s t r u c t   P o i n t L i s t H e a d e r  * V e r t e x L i s t .  

I 
s t r u c t   E d g e S t a t e  * NextFreeEdgeStruc,  i n t   X O f f s e t .   i n t   Y O f f s e t )  

i n t  i. S t a r t X .   S t a r t Y .  EndX.  EndY. Del taY.   Del taX.   Width,   temp:  
s t r u c t   E d g e S t a t e  *NewEdgePtr; 
s t ruc t   EdgeSta te   *Fo l l ow ingEdge .   * *Fo l l ow ingEdgeL ink :  
s t r u c t   P o i n t   * V e r t e x P t r ;  

/ *  Scan t h r o u g h   t h e   v e r t e x   l i s t  and p u t   a l l   n o n - 0 - h e i g h t   e d g e s   i n t o  

V e r t e x P t r  - V e r t e x L i s t - > P o i n t P t r :  / *  p o i n t   t o   t h e   v e r t e x   l i s t  * /  
GETPtr - NULL: / *  i n i t i a l i z e   t h e   g l o b a l  edge t a b l e   t o  empty * /  
f o r  (i - 0:  i < V e r t e x L i s t - > L e n g t h ;  i++) ( 

t h e  GET, s o r t e d   b y   i n c r e a s i n g  Y s t a r t   c o o r d i n a t e  */  

/* C a l c u l a t e   t h e   e d g e   h e i g h t   a n d   w i d t h  * /  
S t a r t X  - VertexPtrCi1.X + X O f f s e t :  
S t a r t Y  - Ver texP t rC i1 .Y  + Y O f f s e t :  
/ *  T h e   e d g e   r u n s   f r o m   t h e   c u r r e n t   p o i n t   t o   t h e   p r e v i o u s   o n e  * /  
i f  (i - 0 )  { 

/ *  Wrap back  around t o   t h e  end o f   t h e   l i s t  * /  
EndX - VertexPtrCVertexList->Length-1l.X + XOffset: 
EndY - VertexPtrCVertexList->Length-l1.Y + YOffset: 

} e l s e  ( 

1 
I* 
i f  

I 
I* 
i f  

EndX - V e r t e x P t r C i - l l . X  + XOf fse t :  
EndY - Ver texP t rC i -11 .Y  + YOf fse t :  

Make s u r e   t h e   e d g e   r u n s   t o p   t o   b o t t o m  */  
( S t a r t Y  > EndY) { 
SWAP(StartX.  EndX): 
SWAP(StartY.  EndY): 

S k i p  if t h i s   c a n ' t   e v e r   b e   a n   a c t i v e   e d g e   ( h a s  0 h e i g h t )  * I  
( ( D e l t a Y  - EndY - S t a r t Y )  !- 0 )  
I* A l l o c a t e   s p a c e   f o r   t h i s   e d g e ' s   i n f o ,   a n d  fill i n   t h e  

NewEdgePtr - NextFreeEdgeStruc++; 
NewEdgePtr ->XDirect ion - /*  d i r e c t i o n   i n   w h i c h  X moves */  

Width - abs(De1taX) ;  
NewEdgePtr->X - S t a r t X :  
NewEdgePtr->StartY - S t a r t Y :  
NewEdgePtr->Count - De l taY ;  
NewEdgePtr->ErrorTermAdjDown - De l taY :  
if (De l taX  >- 0 )  / *  i n i t i a l   e r r o r   t e r m   g o i n g  L->R */  

e l s e  / *  i n i t i a l   e r r o r   t e r m   g o i n g   R - > L  * /  

i f  (De l taY  >- W id th )  ( /*  Y-major  edge */  

s t r u c t u r e  */  

( ( D e l t a X  - EndX - S t a r t X )  > 0 )  ? 1 : -1: 

NewEdgePtr->ErrorTerm - 0;  

NewEdgePtr->ErrorTerm - -Del taY + 1: 

NewEdgePtr->WholePixelXMove - 0:  
NewEdgePtr->ErrorTermAdjUp - Width:  

NewEdgePtr->WholePixelXMove - 
NewEdgePtr->ErrorTermAdjUp - Width % Del taY:  

3 e l s e  I /*  X-major  edge */  

(Wid th  / De l taY)  * NewEdgePtr ->XDirect ion:  

1 
/*  L i n k   t h e  new edge i n t o   t h e  GET s o  t h a t   t h e  edge l i s t   i s  

s t i l l   s o r t e d   b y  Y coord ina te ,   and  by  X c o o r d i n a t e   f o r   a l l  
edges w i t h   t h e  same Y c o o r d i n a t e  */  

Fo l l ow ingEdgeL ink  - &GETPtr; 
f o r  ( : : )  { 

Fol lowingEdge - *Fol lowingEdgeLink:  
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i f  ( ( F o l l o w i n g E d g e  - NULL) I I 
( F o l l o w i n g E d g e - > S t a r t Y  > S t a r t Y )  I I 
( ( F o l l o w i n g E d g e - > S t a r t Y  - S t a r t Y )  && 
(Fo l low ingEdge->X >- S t a r t X ) ) )  I 

NewEdgePtr->NextEdge - Fol lowingEdge: 
*Fo l low ingEdgeL ink  - NewEdgePtr: 
b reak ;  

1 
Fol lowingEdgeL ink  - &FollowingEdge->NextEdge; 

1 
I 

1 
1 

/*  S o r t s   a l l  e d g e s   c u r r e n t l y   i n   t h e   a c t i v e  edge t a b l e   i n t o   a s c e n d i n g  
o r d e r   o f   c u r r e n t  X c o o r d i n a t e s  */  

s t a t i c   v o i d   X S o r t A E T O  I 
s t ruc t   EdgeSta te   *Cur ren tEdge .   * *Cur ren tEdgePt r .  *TempEdge: 
i n t  Swapoccurred: 

/ *  Scan  th rough  the  AET and swap a n y   a d j a c e n t   e d g e s   f o r   w h i c h   t h e  
second  edge i s   a t  a l o w e r   c u r r e n t  X c o o r d   t h a n   t h e   f i r s t  edge. 
Repeat u n t i l  n o   f u r t h e r   s w a p p i n g   i s   n e e d e d  */  

do I 
i f  (AETPtr !- NULL) ( 

Swapoccurred - 0: 
Cur ren tEdgePt r  - &AETPtr; 
wh i l e   ( (Cur ren tEdge  - *CurrentEdgePtr)->NextEdge !- NULL) I 

/*  The  second  edge  has a l o w e r  X t h a n   t h e   f i r s t ;  

TempEdge - CurrentEdge->NextEdge->NextEdge: 
*Cur ren tEdgePt r  - CurrentEdge->NextEdge: 
CurrentEdge->NextEdge->NextEdge - CurrentEdge: 
CurrentEdge->NextEdge - TempEdge: 
Swapoccurred - 1; 

if (CurrentEdge->X > CurrentEdge->NextEdge->X) ( 

swap them i n   t h e  AET */  

1 
Curren tEdgePt r  - &(*CurrentEdgePtr)->NextEdge; 

} 

1 
} wh i l e   (Swapoccur red  !- 0): 

1 

/*  Advances  each  edge i n   t h e  AET by  one  scan l i n e .  

s t a t i c   v o i d  AdvanceAETO I 
Removes edges tha t   have   been   fu l l y   scanned .  * /  

s t ruc t   EdgeSta te   *Cur ren tEdge ,   * *Cur ren tEdgePt r :  

/*  Count down and  remove o r  advance  each  edge i n   t h e  AET */  
Cur ren tEdgePt r  - &AETPtr: 
w h i l e   ( ( C u r r e n t E d g e  - *Cur ren tEdgePt r )  !- NULL) I 

/*  Count o f f  one  scan l i n e   f o r   t h i s  edge *I  
i f  ((--(CurrentEdge->Count)) - 0) I 

/* This   edge i s   f i n i s h e d ,  so remove it f r o m   t h e  AET * I  
*Cur ren tEdgePt r  - CurrentEdge->NextEdge: 

/* Advance  the  edge 's  X coord inate  by  min imum move */  
CurrentEdge->X +- CurrentEdge->WholePixelXMove; 
/* Determine  whether  i t ' s   t i m e   f o r  X t o  advance  one  extra * /  
i f  ((CurrentEdge->ErrorTerm +- 

1 e l s e  ( 

CurrentEdge->ErrorTermAdjUp) > 0) I 
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CurrentEdge->X +- Cur ren tEdge->XDi rec t i on :  
Cur ren tEdge->Er rorTerm -- CurrentEdge->ErrorTermAdjDown: 

3 
Cur ren tEdgePt r  - K u r r e n t E d g e - > N e x t E d g e :  

1 
3 

1 

/*  Moves a l l  edges t h a t   s t a r t   a t   t h e   s p e c i f i e d  Y c o o r d i n a t e   f r o m   t h e  

s ta t i c   vo id   MoveXSor tedToAET( in t  YToMove) I 
GET t o   t h e  AET. m a i n t a i n i n g   t h e  X s o r t i n g   o f   t h e  AET. */ 

s t r u c t   E d g e S t a t e  *AETEdge. **AETEdgePtr. *TempEdge; 
i n t   C u r r e n t X :  

/ *  The GET i s  Y s o r t e d .  Any edges t h a t   s t a r t   a t   t h e   d e s i r e d  Y 
c o o r d i n a t e  will be f i r s t   i n   t h e  GET, so w e ' l l  move edges  f rom 
t h e  GET t o  AET u n t i l   t h e   f i r s t  edge l e f t   i n   t h e  GET i s  n o   l o n g e r  
a t  t h e   d e s i r e d  Y c o o r d i n a t e .   A l s o ,   t h e  GET i s  X s o r t e d   w i t h i n  
each Y c o o r d i n a t e ,  so each  success ive  edge we add t o   t h e  AET i s  
g u a r a n t e e d   t o   b e l o n g   l a t e r   i n   t h e  AET t h a n   t h e  one j u s t  added. * /  

AETEdgePtr - &AETPtr: 
w h i l e   ( ( G E T P t r  !- NULL) && ( G E T P t r - > S t a r t y  - YToMove)) I 

Curren tX - GETPtr->X: 
/ *  L i n k   t h e  new edge i n t o   t h e  AET s o  t h a t   t h e  AET i s   s t i l l  

for ( : : )  { 
s o r t e d   b y  X c o o r d i n a t e  */  

AETEdge - *AETEdgePtr: 
i f  ((AETEdge - NULL) I I (AETEdge->X >- C u r r e n t X ) )  I 

TempEdge - GETPtr->NextEdge; 
*AETEdgePtr - GETPtr: / *  l i n k   t h e  edge i n t o   t h e  AET */  
GETPtr->NextEdge - AETEdge: 
AETEdgePtr - &GETPtr->NextEdge; 
GETPtr - TempEdge; / *  u n l i n k   t h e   e d g e   f r o m   t h e  GET */ 
break :  

AETEdgePtr - &AETEdge->NextEdge: 
3 e l s e  I 

I 
3 

1 
3 

/ *  F i l l s   t h e   s c a n   l i n e   d e s c r i b e d  b y   t h e   c u r r e n t  AET a t   t h e   s p e c i f i e d  Y 

s t a t i c   v o i d   S c a n O u t A E T ( i n t  YToScan. i n t   C o l o r )  I 
c o o r d i n a t e   i n   t h e   s p e c i f i e d   c o l o r ,   u s i n g   t h e   o d d l e v e n  fill r u l e  * /  

i n t   L e f t X :  
s t ruc t   EdgeSta te   *Cur ren tEdge :  

/ *  Scan   th rough   the  AET. d raw ing   l i ne   segmen ts   as   each   pa i r   o f   edge  
c r o s s i n g s   i s   e n c o u n t e r e d .  The n e a r e s t   p i x e l  on o r   t o   t h e   r i g h t  
o f   l e f t  edges i s  d r a w n ,   a n d   t h e   n e a r e s t   p i x e l   t o   t h e   l e f t   o f   b u t  
n o t  on r i g h t  edges i s  drawn */  

CurrentEdge - AETPtr; 
w h i l e   ( C u r r e n t E d g e  !- NULL) I 

L e f t X  - CurrentEdge->X: 
CurrentEdge - CurrentEdge->NextEdge: 
DrawHor izonta lL ineSeg(YToScan.  Le f tX .   Cur ren tEdge->X-1 ,   Co lor ) ;  
CurrentEdge - CurrentEdge->NextEdge; 

3 
1 
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LISTING 4 1.5 POLYG0N.H 
I* Header f i l e   f o r   p o l y g o n - f i l l i n g  code *I  

# d e f i n e  CONVEX 0 
# d e f i n e  NONCONVEX 1 
# d e f i n e  COMPLEX 2 

I* Descr ibes  a s i n g l e   p o i n t   ( u s e d   f o r  a s i n g l e   v e r t e x )  * /  
s t r u c t   P o i n t  { 

i n t  X :  / *  X c o o r d i n a t e  *I  
i n t  Y :  I* Y c o o r d i n a t e  * I  

1 ;  

I* D e s c r i b e s   s e r i e s  o f  p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t   d e s c r i b e  
a p o l y g o n ;   e a c h   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   t w o   a d j a c e n t   v e r t i c e s ,  and 
l a s t   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   f i r s t )  *I 
s t r u c t   P o i n t L i s t H e a d e r  { 

i n t  Length;  / *  11 o f   p o i n t s  * I  
s t r u c t   P o i n t  * P o i n t P t r :  I* p o i n t e r   t o   l i s t   o f   p o i n t s  *I  

I ;  

/*  Desc r ibes   beg inn ing   and   end ing  X c o o r d i n a t e s   o f  a s i n g l e   h o r i z o n t a l   l i n e  * /  
s t r u c t   H L i n e  { 

i n t   X S t a r t ;  I* X c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   l i n e  */  
i n t  XEnd; I* X c o o r d i n a t e  o f  r i g h t m o s t   p i x e l   i n   l i n e  * I  

I ;  

I* Descr ibes  a L e n g t h - l o n g   s e r i e s   o f   h o r i z o n t a l   l i n e s ,   a l l  assumed t o  be  on 
c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t  and  proceeding  downward  (used t o  
d e s c r i b e   s c a n - c o n v e r t e d   p o l y g o n   t o   l o w - l e v e l   h a r d w a r e - d e p e n d e n t   d r a w i n g   c o d e )  * /  
s t r u c t   H L i n e L i s t  { 

i n t  Length;  / *  # o f   h o r i z o n t a l   l i n e s  * /  
i n t   Y S t a r t ;  I* Y c o o r d i n a t e   o f   t o p m o s t   l i n e  * I  
s t r u c t   H L i n e  * H L i n e P t r ;  I* p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  *I  

3 ;  

I* Descr ibes  a c o l o r  as  an RGB t r i p l e ,  p l u s   o n e   b y t e   f o r   o t h e r   i n f o  *I  
s t r u c t  RGB { uns igned  char  Red, Green, B lue,   Spare:  I :  

Is monotone-vertical polygon detection worth all this trouble?  Under  the  right cir- 
cumstances, you bet.  In  a situation where a great many  polygons are  being drawn, 
and  the application either  doesn’t know whether they’re monotone-vertical or has 
no way to tell the polygon filler that they are,  performance can be increased consid- 
erably if most polygons are, in fact, monotone-vertical. This potential  performance 
advantage is helped  along by the surprising fact that Jim’s  test for monotone-vertical 
status is simpler and faster than my original, nonfunctional test for convexity. 
See what accurate terminology and effective communication can do? 
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chapter 42

wu'ed in haste; fried, stewed at leisure



sing Wu‘s Algorithm 
y head as I unenthusiastically  picked through the 

ily” restaurant, trying  to decide whether the meatballs, the 
a was  likely to shorten my life the least. I decided on the 

chicken  in mystery 
aughter asked,  “Dad,  is that fried chicken?” 
t’s stewed chicken. 

” my  wife volunteered hopefully. I took a bite. It 
. I can now, unhesitatingly and without  reserva- 
ed, stewed chicken at all  costs. 

The thought I had was  as  follows: This is not good food. Not a profound thought, but it 
raises an interesting question: Why was I eating in  this restaurant? The answer,  to 
borrow a phrase from E.F. Schumacher, is uppropn’ate technology. For a family on a 
budget, with a small child, tired of staring at each other over the kitchen  table,  this 
was a perfect place  to eat. It was cheap, it had greasy food and ice  cream, no  one 
cared if children dropped things or talked  loudly or walked around, and, most  im- 
portant of all, it wasn’t  home. So what  if the food was lousy?  Good food was a luxury, 
a bonus;  everything on the above  list  was  necessary. A family restaurant was the ap- 
propriate dining-out  technology,  given the parameters within  which we had to  work. 
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When I read  through SIGGRAPH proceedings and  other state-of-the-art computer- 
graphics material, all too often I feel like I’m dining  at a four-star restaurant with 
two-year-old triplets and  an empty  wallet.  We’re  talking incredibly inappropriate tech- 
nology for PC graphics here.  Sure, I say to myself as I read  about  an antialiasing 
technique,  that  sounds wonderful-if I had 24bpp color, and dedicated hardware to 
do  the processing, and all day to wait to generate  one image. Yes, I think,  that is a 
good way to do  hidden surface removal-in a system with hardware z-buffering. Most 
of the stuff in  the  journal Computer  Ofaphics is riveting, but, alas, pretty much useless 
on PCs. When an x86 has to do all the work, speed becomes the overriding param- 
eter, especially for real-time graphics. 
Literature that’s applicable to fast PC graphics is hard  enough to find, but what  we’d 
really  like  is  above-average image quality combined with terrific speed,  and there’s 
almost no literature of that  sort  around. There is some, however, and you  folks are 
right  on  top of it. For example,  alert  reader Michael Chaplin, of San Diego, wrote to 
suggest that I might enjoy the line-antialiasing algorithm presented  in Xiaolin Wu’s 
article, “An Efficient  Antialiasing Technique,”  in  the July  1991  issue of Computer Guph- 
ics. Michael was dead-on  right.  This is a great  algorithm,  combining  excellent 
antialiased line qualitywith speed that’s  close to that of non-antialiased Bresenham’s 
line drawing. This is the  sort of algorithm that makes  you  want to go out  and write a 
wire-frame animation  program, just so you can see how good those smooth lines 
look in motion. Wu antialiasing is a  wonderful example of what can be accomplished 
on inexpensive, mass-market hardware with the  proper programming perspective. 
In  short, it’s a  splendid example of appropriate technology for PCs. 

Wu Antialiasing 
Antialiasing, as we’ve been discussing for  the past few chapters, is the process of 
smoothing lines and edges so that they appear less jagged. Antialiasing is partly an 
aesthetic issue, because it makes images more attractive. It’s  also partly an accuracy 
issue, because it makes it possible  to position and draw images with  effectively more 
precision than  the resolution of the display.  Finally,  it’s partly a flat-out necessity, to 
avoid the  horrible, crawling, jagged edges of temporal aliasing when performing 
animation. 
The basic premise of Wu antialiasing is  almost  ridiculously  simple: As the algorithm  steps 
one pixel unit  at a time along the major (longer) axis of a  line,  it draws the two pixels 
bracketing the line along  the  minor axis at each point. Each  of the two bracketing 
pixels  is  drawn  with a weighted fraction of the full intensity of the drawing color,  with 
the weighting for  each pixel equal to one minus the pixel’s distance along the  minor 
axis from  the ideal line. Yes, it’s a  mouthful, but Figure 42.1 illustrates the  concept. 
The intensities of the two pixels that bracket the line  are selected so that they always 
sum to exactly 1; that is, to the intensity of one fully illuminated pixel of the drawing 
color. The presence of aggregate full-pixel intensity means  that at each step, the  line 
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has the same brightness it would  have if a single pixel were drawn at precisely the 
correct location. Moreover, thanks to the distribution of the intensity weighting, that 
brightness is centered  at  the ideal line. Not coincidentally, a line drawn with pixel 
pairs of aggregate single-pixel  intensity, centered  on  the ideal line, is perceived by 
the eye not as ajagged collection of pixel pairs, but as a smooth line  centered  on  the 
ideal line.  Thus, by weighting the bracketing pixels properly at each step, we can 
readily produce what looks like a smooth line at precisely the  right  location,  rather 
than  the  jagged  pattern of line segments that non-antialiased line-drawing algorithms 
such as Bresenham’s (see Chapters 35,36,  and 37) trace out. 
You might  expect  that  the  implementation of Wu antialiasing would  fall into two 
distinct areas: tracing out  the  line  (that is, finding  the  appropriate pixel pairs to 
draw) and calculating the appropriate weightings for each pixel  pair.  Not so, however. 
The weighting calculations involve  only a few shifts, XORS, and adds;  for all practical 
purposes, tracing and weighting are rolled into  one step-and a very fast step  it is. 
How  fast is it? On a 33-MHz  486  with a fast VGA, a  good but  not maxed-out assembly 
implementation of Wu antialiasing draws a  more  than respectable 5,000  150-pixel- 
long vectors per second. That’s  especially  impressive considering that  about 1,500,000 
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actual  pixels are drawn per second, meaning that Wu antialiasing is drawing at around 
50 percent of the maximum memory bandwidth-half the fastest theoretically pos- 
sible  drawing speed-of  an AT-bus  VGA. In short, Wu antialiasing is about as  fast an 
antialiased line approach as  you could ever hope to find for the VGA. 

Tracing and Intensity in  One 
Horizontal, vertical, and diagonal lines do not  require Wu antialiasing because  they 
pass through  the  center of  every pixel  they meet; such lines can be  drawn  with  fast, 
special-case code. For  all other cases, Wu lines are traced out  one step at  a time along 
the major axis by means of a simple, fixed-point algorithm. The move along the 
minor axis  with respect to a one-pixel move along the major axis (the line slope for 
lines with  slopes  less than 1, l/slope for lines with  slopes greater  than 1) is calculated 
with a single integer divide. This value,  called the  “error adjust,” is stored as a fixed- 
point fraction, in  0.16 format (that is, all  bits are fractional, and the decimal point is 
just to the left of bit 15). An error accumulator, also in 0.16 format, is initialized to 0. 
Then the first pixel is drawn; no weighting is needed, because the line intersects its 
endpoints exactly. 
Now the  error adjust is added to the  error accumulator. The  error accumulator indi- 
cates how far between  pixels the line has progressed along the minor axis at any 
given step; when the  error accumulator turns over,  it’s  time to advance one pixel 
along the minor axis. At each step along the line,  the major-axis coordinate advances 
by one pixel. The two bracketing pixels to draw are simply the two pixels nearest the 
line along the minor axis.  For instance, if X is the current major-axis coordinate and 
Y is the current minor-axis coordinate, the two pixels to be  drawn are (X,Y) and 
(X,Y+l). In short, the derivation of the pixels at which to draw  involves nothing 
more complicated than advancing one pixel along the major axis, adding  the  error 
adjust to the  error accumulator, and advancing one pixel along the  minor axis when 
the error accumulator turns over. 
So far, nothing special; but now  we come  to the true  wonder of Wu antialiasing. We 
know  which pair of pixels to draw at each step along the line, but we also need to 
generate  the two proper intensities, which  must be inversely proportional to dis- 
tance from the ideal line and sum to 1, and that’s a potentially timeconsuming 
operation. Let’s  assume,  however, that the number of  possible intensity levels to be 
used for weighting is the value  NumLevels = 2” for some integer  n, with the mini- 
mum weighting (0 percent intensity) being  the value 2”-1, and  the maximum 
weighting (100 percent intensity) being the value 0. Given that, lo and behold, the 
most  significant n bits of the error accumulator select the proper intensity  value for 
one element of the pixel  pair,  as  shown in Figure 42.2. Better yet, 2“-1 minus the 
intensity of the first  pixel  selects the intensity of the  other pixel in the pair,  because 
the intensities of the two pixels must sum to 1; as it happens, this result can be o h  
tained simply by flipping the  n least-significant  bits  of the first  pixel’s  value. All this 
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works because what the  error accumulator accumulates is precisely the ideal line’s 
current distance between the two bracketing pixels. 
The intensity calculations take longer to describe than they do to perform. All that’s 
involved is a shift of the  error accumulator to right-justify the desired intensity weight- 
ing bits, and  then  an XOR to flip the least-significant n bits of the first pixel’s  value in 
order to generate  the second pixel’s  value.  Listing 42.1 illustrates just how efficient 
Wu antialiasing is; the intensity calculations take only three  statements, and  the en- 
tire Wu linedrawing  loop is only nine statements long. Of course, a single C statement 
can hide  a  great deal of complexity, but Listing 42.6, an assembly implementation, 
shows that only 15 instructions  are  required per step along  the major axis-and the 
number of instructions could be reduced to ten by special-casing and  loop unroll- 
ing. Make no mistake about it, Wu antialiasing is fast. 

LISTING 42.1  L42-1 .C 
/* F u n c t i o n   t o   d r a w   a n   a n t i a l i a s e d   l i n e   f r o m  ( X O . Y O )  t o  ( X 1 , Y l ) .  u s i n g   a n  
* a n t i a l i a s i n g   a p p r o a c h   p u b l i s h e d   b y   X i a o l i n  Wu i n   t h e   J u l y   1 9 9 1   i s s u e   o f  
* Compute r   Graph ics .   Requ i res   t ha t   t he   pa le t te   be   se t   up  so  t h a t   t h e r e  
* a r e  NumLevels i n t e n s i t y   l e v e l s   o f   t h e   d e s i r e d   d r a w i n g   c o l o r ,   s t a r t i n g   a t  
* co lo r   BaseCo lo r  (100% i n t e n s i t y )  a n d   f o l l o w e d   b y   ( N u m L e v e l s - 1 )   l e v e l s   o f  
* e v e n l y   d e c r e a s i n g   i n t e n s i t y ,   w i t h   c o l o r   ( B a s e C o l o r + N u m L e v e l s - 1 )   b e i n g  0% 
* i n t e n s i t y   o f   t h e   d e s i r e d   d r a w i n g   c o l o r   ( b l a c k ) .   T h i s   c o d e   i s   s u i t a b l e   f o r  
* use a t   s c r e e n   r e s o l u t i o n s ,   w i t h   l i n e s   t y p i c a l l y   n o  more t h a n  1 K  l o n g :   f o r  
* l o n g e r   l i n e s ,   3 2 - b i t   e r r o r   a r i t h m e t i c   m u s t   b e   u s e d   t o   a v o i d   p r o b l e m s   w i t h  
* f i x e d - p o i n t   i n a c c u r a c y .  No c l i p p i n g   i s   p e r f o r m e d   i n  DrawWuLine; i t  must  be 
* p e r f o r m e d   e i t h e r   a t  a h i g h e r   l e v e l   o r   i n   t h e   D r a w P i x e l   f u n c t i o n .  
* T e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and the   sma l l   mode l .  
* /  

e x t e r n   v o i d   D r a w P i x e l ( i n t .   i n t .   i n t ) ;  
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I* Wu a n t i a l i a s e d   l i n e   d r a w e r .  
* ( X O , Y O ) . ( X l . Y l )  - l i n e   t o  draw 
* BaseColor - c o l o r  # o f   f i r s t   c o l o r   i n   b l o c k  used f o r   a n t i a l i a s i n g .   t h e  * 100% i n t e n s i t y   v e r s i o n   o f   t h e   d r a w i n g   c o l o r  
* NumLevels - s i z e   o f   c o l o r   b l o c k ,   w i t h   B a s e C o l o r + N u m L e v e l s - 1   b e i n g   t h e  
* 0% i n t e n s i t y   v e r s i o n   o f   t h e   d r a w i n g   c o l o r  
* I n t e n s i t y B i t s  - l o g  base 2 o f  NumLevels:   the # o f   b i t s  used t o   d e s c r i b e  

*I 
* t h e   i n t e n s i t y   o f   t h e   d r a w i n g   c o l o r .  2**IntensityBits--NumLevels 

vo id   DrawWuLine( in t  X O .  i n t  YO,  i n t  X 1 .  i n t  Y 1 .  i n t  BaseColor.  i n t  NumLevels. 

I 
u n s i g n e d   i n t   I n t e n s i t y B i t s )  

uns igned i n t   I n t e n s i t y S h i f t .   E r r o r A d j .   E r r o r A c c :  
uns igned   i n t   E r ro rAccTemp.   We igh t i ng ,  WeightingComplementMask: 
i n t   D e l t a X .   D e l t a Y .  Temp, XDir: 

I* Make s u r e   t h e   l i n e   r u n s   t o p   t o   b o t t o m  *I  
i f  ( Y O  > Y 1 )  t 

Temp - Y O :  Y O  - Y 1 :  Y 1  - Temp: 
Temp - X O :  X0 - X 1 :  X 1  - Temp: 

I 
/*  Draw t h e   i n i t i a l   p i x e l ,   w h i c h   i s   a l w a y s   e x a c t l y   i n t e r s e c t e d   b y  

DrawPixe l (X0.  YO,  BaseColor ) :  
t h e   l i n e  and so needs  no  weight ing */  

i f  ( ( D e l t a X  - X 1  - X O )  >- 0) t 

I e l s e  I 
XDir - 1: 

} 
/ *  

i f  

1 
i f  

} 
i f  

I 
I* 

XDir - -1: 
De l taX - -De l taX:  I* make D e l t a X   p o s i t i v e  *I  

S p e c i a l - c a s e   h o r i z o n t a l .   v e r t i c a l ,   a n d   d i a g o n a l   l i n e s ,   w h i c h  
r e q u i r e   n o   w e i g h t i n g   b e c a u s e   t h e y   g o   r i g h t   t h r o u g h   t h e   c e n t e r  o f  
e v e r y   p i x e l  * /  
( ( D e l t a Y  - Y 1  - Y O )  - D )  I 
I* H o r i z o n t a l   l i n e  *I 
w h i l e   ( D e l t a X - -  !- 0) I 

X0 +- XDir: 
DrawPixel(X0. YO, BaseColor ) :  

1 
r e t u r n :  

( D e l t a X  - 0) ( 
/* V e r t i c a l   l i n e  */  
do I 

Y D M :  
DrawPixel(X0. YO. BaseColor ) :  

1 w h i l e   ( - - D e l t a Y  !- 0 ) :  
r e t u r n :  

( D e l t a X  - D e l t a Y )  ( 
I* Diagona l  1 i n e  *I  
do I 

X0 +- XDir: 
YO*: 
DrawPixe l (X0.  Y O ,  BaseColor ) :  

1 w h i l e   ( - - D e l t a Y  !- 0): 
r e t u r n :  

l i n e   i s   n o t   h o r i z o n t a l ,   d i a g o n a l ,   o r   v e r t i c a l  *I 
E r r o r A c c  - 0: / *  i n i t i a l i z e   t h e   l i n e   e r r o r   a c c u m u l a t o r   t o  0 * /  
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I* # o f   b i t s  b y   w h i c h   t o   s h i f t   E r r o r A c c   t o   g e t   i n t e n s i t y   l e v e l  * I  
I n t e n s i t y S h i f t  = 16 - I n t e n s i t y B i t s :  
/ *  Mask used t o   f l i p   a l l   b i t s   i n  an i n t e n s i t y   w e i g h t i n g ,   p r o d u c i n g   t h e  

r e s u l t  (1 - i n t e n s i t y   w e i g h t i n g )  * /  
WeightingComplementMask - NumLevels - 1; 
I* I s  t h i s  a n   X - m a j o r   o r   Y - m a j o r   l i n e ?  *I 
i f  (De l taY  > De l taX)  { 

I* Y - m a j o r   l i n e :   c a l c u l a t e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t  o f  a 
p i x e l   t h a t  X advances  each  t ime Y advances 1 p i x e l ,   t r u n c a t i n g   t h e  
r e s u l t  s o  t h a t  we w o n ' t   o v e r r u n   t h e   e n d p o i n t   a l o n g   t h e  X a x i s  * /  

E r r o r A d j  - ( ( u n s i g n e d   l o n g )   D e l t a X  << 16 )  I ( u n s i g n e d   l o n g )   D e l t a Y ;  
/* Draw a l l   p i x e l s   o t h e r   t h a n   t h e   f i r s t  and l a s t  * /  
w h i l e   C - D e l t a Y )  I 

ErrorAccTemp = Er ro rAcc ;  I* remember c u r r r e n t   a c c u m u l a t e d   e r r o r  * /  
Er ro rAcc  += E r r o r A d j ;  I* c a l c u l a t e   e r r o r   f o r   n e x t   p i x e l  * I  
i f  ( E r r o r A c c  <- ErrorAccTemp) { 

I* The e r r o r   a c c u m u l a t o r   t u r n e d   o v e r ,  s o  advance  the X coo rd  *I  
X0 += XDir: 

1 
YO++: I* Y-major .  so always  advance Y * /  
/ *  The I n t e n s i t y B i t s   m o s t   s i g n i f i c a n t   b i t s   o f   E r r o r A c c   g i v e   u s   t h e  

i n t e n s i t y   w e i g h t i n g   f o r   t h i s   p i x e l ,  and the   comp lemen t   o f   t he  
w e i g h t i n g   f o r   t h e   p a i r e d   p i x e l  * I  

Weigh t ing  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
DrawPixe l (X0.  Y O .  BaseColor + We igh t ing ) :  
DrawPixe l (X0 + XDir. Y O .  

BaseColor + (We igh t ing  A WeightingComplementMask)): 
1 
I* Draw t h e   f i n a l   p i x e l .   w h i c h   i s   a l w a y s   e x a c t l y   i n t e r s e c t e d   b y   t h e   l i n e  

DrawPixe l (X1.  Y 1 .  BaseColor) :  
r e t u r n :  

and s o  needs  no   we igh t ing  * I  

1 
I* I t ' s  a n   X - m a j o r   l i n e :   c a l c u l a t e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t   o f  a 

p i x e l   t h a t  Y advances  each  t ime X advances 1 p i x e l ,   t r u n c a t i n g   t h e  
r e s u l t   t o   a v o i d   o v e r r u n n i n g   t h e   e n d p o i n t   a l o n g   t h e  X a x i s  *I 

E r r o r A d j  - ( ( u n s i g n e d   l o n g )   D e l t a Y  << 16 )  / ( u n s i g n e d   l o n g )   D e l t a X :  
I* Draw a l l   p i x e l s   o t h e r   t h a n   t h e   f i r s t  and l a s t  *I  
w h i l e   ( - - D e l t a X )  I 

ErrorAccTemp - Er ro rAcc :  I* remember c u r r r e n t   a c c u m u l a t e d   e r r o r  *I  
Er ro rAcc  +- E r r o r A d j :  I* c a l c u l a t e   e r r o r   f o r   n e x t   p i x e l  * I  
i f  (E r ro rAcc  <- ErrorAccTemp) I 

I* The e r r o r   a c c u m u l a t o r   t u r n e d   o v e r ,  s o  advance  the Y coo rd  *I  
YO++; 

1 
X0 +- XDir: I* X-major ,  s o  always  advance X *I  
I* The I n t e n s i t y B i t s   m o s t   s i g n i f i c a n t   b i t s   o f   E r r o r A c c   g i v e   u s   t h e  

i n t e n s i t y   w e i g h t i n g   f o r   t h i s   p i x e l ,  and t h e   c o m p l e m e n t   o f   t h e  
w e i g h t i n g   f o r   t h e   p a i r e d   p i x e l  * /  

We igh t ing  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
DrawPixe l (X0.  Y O .  BaseColor + W e i g h t i n g ) :  
DrawPixe l (X0.  Y O  + 1. 

BaseColor + (We igh t ing  A WeightingComplementMask)); 
> 
I* Draw t h e   f i n a l   p i x e l ,   w h i c h  i s  a l w a y s   e x a c t l y   i n t e r s e c t e d   b y   t h e   l i n e  

DrawPixe l (X1.  Y 1 .  BaseColor) ;  
and s o  needs  no   we igh t ing  *I  

1 
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Sample Wu Antialiasing 
The true test of any antialiasing technique is  how good  it looks, so let's  have a look at 
Wu antialiasing in action. Listing  42.1  is a C implementation of  Wu antialiasing. 
Listing  42.2  is a sample program  that draws a variety  of  Wu-antialiased lines, followed 
by non-antialiased  lines,  for  comparison.  Listing  42.3  contains DrawPixel() and &Mode() 
functions  for  mode 13H, the VGA's 320x200  256-color mode. Finally, Listing  42.4  is 
a simple, non-antialiased linedrawing  routine. Link these four listings together  and 
run  the resulting program to  see both Wu-antialiased and non-antialiased lines. 

LISTING 42.2 L42-2.C 
/*  Sample l i n e - d r a w i n g   p r o g r a m   t o   d e m o n s t r a t e  Wu a n t i a l i a s i n g .   A l s o   d r a w s  
* n o n - a n t i a l i a s e d   l i n e s   f o r   c o m p a r i s o n .  
* T e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and the   sma l l   mode l .  
*/ 

B i n c l  ude  <dos.  h> 
# i n c l u d e   < c o n i o . h >  

v o i d   S e t P a l e t t e ( s t r u c t  WuColor * ) :  
e x t e r n   v o i d   D r a w W u L i n e ( i n t .   i n t .   i n t .   i n t .   i n t .   i n t .   u n s i g n e d   i n t ) :  
e x t e r n   v o i d   D r a w L i n e ( i n t .   i n t .   i n t .   i n t .   i n t ) :  
e x t e r n   v o i d   S e t M o d e ( v o i d ) :  
e x t e r n   i n t   S c r e e n W i d t h I n P i x e l s :  /* sc reen   d imens ion   g loba ls  * /  
e x t e r n   i n t   S c r e e n H e i g h t I n P i x e l s :  

# d e f i n e  NUM-WU-COLORS 2 / *  # o f   c o l o r s   w e ' l l  do a n t i a l i a s e d   d r a w i n g   w i t h  */ 
s t r u c t  WuColor I /*  d e s c r i b e s   o n e   c o l o r   u s e d   f o r   a n t i a l i a s i n g  */ 

i n t  BaseColor :  / *  # o f   s t a r t  o f  p a l e t t e   i n t e n s i t y   b l o c k   i n  DAC */  
i n t  NumLevel s : /*  # o f   i n t e n s i t y   l e v e l s  * /  
i n t   I n t e n s i t y B i t s :  / *  I n t e n s i t y B i t s  - log2  NumLevels * /  
i n t  MaxRed: / *  red  component o f   c o l o r   a t   f u l l   i n t e n s i t y  */ 
i n t  MaxGreen: / *  green  component o f   c o l o r   a t   f u l l   i n t e n s i t y  * /  
i n t  MaxBlue: / *  b l u e  component o f   c o l o r   a t   f u l l   i n t e n s i t y  */ 

1 :  
enum {WU-BLUE-0.  WU-WHITE-11: /* d r a w i n g   c o l o r s  * /  
s t r u c t  WuColor WuColorsCNUM~WU~COLORSl - /* b l u e  and w h i t e  * /  

((192,  32,  5. 0. 0. Ox3F).  {224.  32.  5.  Ox3F.  Ox3F.  Ox3F1}; 

v o i d   m a i n 0  
I 

i n t   C u r r e n t C o l o r .  i; 
u n i o n  REGS r e g s e t :  

/ *  Draw W u - a n t i a l i a s e d   l i n e s   i n   a l l   d i r e c t i o n s  */ 
SetModeO: 
SetPalet te(WuCo1ors) :  
f o r   ( i - 5 :   i < S c r e e n W i d t h I n P i x e l s :  i +- 10) { 

DrawWuLine~ScreenWidthInPixels/2-ScreenWidthInPixels/lO+i/5, 
S c r e e n H e i g h t I n P i x e l s / 5 .  i. S c r e e n H e i g h t I n P i x e l s - 1 ,  
WuColors[WU~BLUEl.BaseColor. WuColorsCWU~BLUE1.NumLevels. 
WuColors[WU~BLUEl.IntensityBits): 

1 
f o r   ( i - 0 :   i < S c r e e n H e i g h t I n P i x e l s :  i +- 10)  { 

DrawWuLine(ScreenWidthInPixels/2"creenWidthInPixels/lO, i / 5 .  0. i. 
WuColorsCWU~BLUE1.BaseColor.  WuColors[WU~BLUEl.NumLevels. 
WuColorsCWU~BLUE1.IntensityBits): 

1 
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f o r   ( i - 0 ;   i < S c r e e n H e i g h t I n P i x e l s ;  i +- 10)  { 
DrawWuLine(ScreenWidthInPixels/2+ScreenWidthInPixels/lO, i / 5 ,  

S c r e e n W i d t h I n P i x e l s - 1 ,  i. WuColors[WU~BLUE1.BaseColor. 
WuColors[WU~BLUE1.NumLevels. WuColors[WU_BLUEl.IntensityBits); 

I 
f o r   ( i - 0 ;   i < S c r e e n W i d t h I n P i x e l s ;  i +- 10)  { 

OrawWuLine~ScreenWidthInPixels/2-ScreenWidthInPixels/lO+i/5, 
S c r e e n H e i g h t I n P i x e l s .  i, 0. WuColors[WU~WHITEl.BaseColor. 
WuColorsCWU~WHITE1.NumLevels, 
WuColors[WU_WHITE1.IntensityBits): 

} 
g e t c h ( ) ;  / *  w a i t   f o r  a key   p ress  */  

/* Now c l e a r   t h e   s c r e e n  a n d   d r a w   n o n - a n t i a l i a s e d   l i n e s  */  
SetModeO; 
SetPa le t te (WuCo1ors) ;  
f o r   ( i - 0 ;   i < S c r e e n W i d t h I n P i x e l s ;  i +- 10)  { 

OrawLine~ScreenWidthInPixels/2-ScreenWidthInPixels/lO+i/5, 
S c r e e n H e i g h t I n P i x e l s / 5 ,  i. S c r e e n H e i g h t I n P i x e l s - 1 ,  
WuColors[WU~BLUEl.BaseColor~; 

I 
f o r   ( i - 0 ;   i < S c r e e n H e i g h t I n P i x e l s ;  i +- 10)  ( 

DrawLine~ScreenWidthInPixels/2-ScreenWidthInPixels/lO, i / 5 .  0. i. 

I 
f o r   ( i - 0 ;   i < S c r e e n H e i g h t I n P i x e l s ;  i +- 10)  { 

WuColors[WU~BLUE1.BaseColor); 

OrawLine(ScreenWidthInPixels/2+ScreenWidthInPixels/lO, i / 5 .  

I 
f o r   ( i - 0 ;   i < S c r e e n W i d t h I n P i x e l s ;  i +- 10)  I 

S c r e e n W i d t h I n P i x e l s - 1 ,  i, WuColors[WU-BLUE1.BaseColor); 

OrawLine~ScreenWidthInPixels/2-ScreenWidthInPixels/lO+i/5, 
S c r e e n H e i g h t I n P i x e l s .  i, 0. WuColors[WU-WHITEI.BaseColor); 

I 
g e t c h (  ) : /*  w a i t   f o r  a key  press */  

regset .x .ax  - 0x0003; /* AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode */ 
i n t 8 6 ( 0 x 1 0 ,   & r e g s e t .   & r e g s e t ) ;  /*  r e t u r n   t o   t e x t  mode */  

1 

/*  S e t s   u p   t h e   p a l e t t e   f o r   a n t i a l i a s i n g   w i t h   t h e   s p e c i f i e d   c o l o r s .  
* I n t e n s i t y   s t e p s   f o r   e a c h   c o l o r   a r e   s c a l e d   f r o m   t h e   f u l l   d e s i r e d   i n t e n s i t y  
* o f   t h e   r e d ,   g r e e n ,  and b l u e   c o m p o n e n t s   f o r   t h a t   c o l o r  down t o  0% 
* i n t e n s i t y ;   e a c h   s t e p   i s   r o u n d e d   t o   t h e   n e a r e s t   i n t e g e r .   C o l o r s   a r e  
* c o r r e c t e d   f o r  a gamma o f  2 . 3 .   T h e   v a l u e s   t h a t   t h e   p a l e t t e   i s  programmed 
* w i t h   a r e   h a r d w i r e d   f o r   t h e  VGA's 6 b i t   p e r   c o l o r  DAC. 
* /  

v o i d   S e t P a l e t t e c s t r u c t  WuColor * WColors) 
{ 

i n t  i. j; 
u n i o n  REGS r e g s e t :  
s t r u c t  SREGS s r e g s e t ;  
s t a t i c   u n s i g n e d   c h a r   P a l e t t e B l o c k C 2 5 6 1 C 3 1 ;  / *  256 RGB e n t r i e s  * /  
/*  Gamma-corrected DAC c o l o r   c o m p o n e n t s   f o r   6 4   l i n e a r   l e v e l s   f r o m  0% t o  

s t a t i c   u n s i g n e d   c h a r  GammaTableCl - { 
100% i n t e n s i t y  * /  

0.  10.  14.  17.  19.  21.  23.  24.  26.  27.  28.  29.  31.  32.  33.  34. 
35.  36.  37.  37.  38.  39.  40.  41.  41.  42,  43.  44.  44.  45.  46.  46. 
47.  48.  48.  49.  49.  50.  51.  51.  52.  52.  53.  53,  54.  54.  55. 55. 
56,  56.  57.  57, 58.  58.  59.  59. 60.  60.  61.  61,  62,  62.  63.  631; 
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f o r   ( i - 0 ;  i<NUM-WU-COLORS; i++) { 
f o r   ( j - 0 ;   j < W C o l o r s [ i l . N u m L e v e l s ;  j++) I 

P a l e t t e B l o c k [ j l [ O ]  - GammaTable[((double)WColors[i].MaxRed * ( 
( d o u b 1 e ) j  I (double)(WColors[i].NumLevels - 1)))  + 0.51; 

P a l e t t e B l o c k C j l [ 1 1  - GammaTable[((double)WColors[il.MaxGreen * 
( d o u b 1 e ) j  / (double)(WColors[i].NumLevels - 1 ) ) )  + 0.51; 

P a l e t t e B l o c k [ j l [ 2 ]  - GammaTable[((double)WColors[i].MaxBlue * 
( d o u b 1 e ) j  I (double)(WColors[il.NumLevels - 1 ) ) )  + 0.51; 

I 

1.0 - 

( 1 . 0  . 

( 1 . 0  - 

/ *  Now s e t  up t h e   p a l e t t e   t o  do Wu a n t i a l i a s i n g   f o r   t h i s   c o l o r  * /  
r e g s e t . x . a x  - 0x1012; I* s e t   b l o c k   o f  DAC r e g i s t e r s   f u n c t i o n  * /  
r e g s e t . x . b x  - WColors [ i l .BaseColor ;  I* f i r s t  DAC l o c a t i o n   t o   l o a d  *I  
r e g s e t . x . c x  - WColors[ i l .NumLevels;  / *  # o f  DAC l o c a t i o n s   t o   l o a d  *I  
r e g s e t . x . d x  - ( u n s i g n e d   i n t ) P a l e t t e B l o c k ;  / *  o f f s e t   o f   a r r a y   f r o m   w h i c h  

t o   l o a d  RGB s e t t i n g s  *I  
s r e g s e t . e s  - -DS; I* segment o f   a r r a y   f r o m   w h i c h   t o   l o a d   s e t t i n g s  *I  
i n t 8 6 x ( O x 1 0 .   & r e g s e t .   & r e g s e t .   & r e g s e t ) ;  I* l o a d   t h e   p a l e t t e   b l o c k  *I  

I 
1 

LISTING 42.3  L42-3.C 
/*  VGA mode 1 3 h   p i x e l - d r a w i n g  and mode s e t   f u n c t i o n s .  
* T e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and t h e   s m a l l  model 
* I  
ti n c l  ude  <dos . h> 

I* S c r e e n   d i m e n s i o n   g l o b a l s .   u s e d   i n   m a i n   p r o g r a m   t o   s c a l e .  *I  
i n t   S c r e e n W i d t h I n P i x e l s  - 320; 
i n t   S c r e e n H e i g h t I n P i x e l s  - 200; 

/ *  Mode 1 3 h   d r a w   p i x e l   f u n c t i o n .  *I  
v o i d   D r a w P i x e l ( i n t  X .  i n t  Y .  i n t   C o l o r )  
( 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

u n s i g n e d   c h a r   f a r   * S c r e e n P t r ;  

FP-SEG(ScreenPtr) - SCREENLSEGMENT; 
FP-OFF(ScreenPtr) - ( u n s i g n e d   i n t )  Y * S c r e e n W i d t h I n P i x e l s  + X ;  
*ScreenPt r  - C o l o r ;  

3 

I* Mode 13h  mode-se t   func t ion .  *I  
void  SetModeO 
( 

u n i o n  REGS r e g s e t ;  

I* S e t   t o   3 2 0 x 2 0 0   2 5 6 - c o l o r   g r a p h i c s  mode * /  
r e g s e t . x . a x  - 0x0013; 
i n t 8 6 ( 0 x 1 0 ,   & r e g s e t .   & r e g s e t ) ;  

3 

LISTING  42.4  L42-4.C 
I* F u n c t i o n   t o   d r a w  a n o n - a n t i a l i a s e d   l i n e   f r o m  (X0,YO) t o  (X1,Yl). u s i n g  a 
* s i m p l e   f i x e d - p o i n t   e r r o r   a c c u m u l a t i o n   a p p r o a c h .  
* T e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and  the  smal l   model .  
* /  

e x t e r n   v o i d   D r a w P i x e l ( i n t .   i n t .   i n t ) ;  
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/*  N o n - a n t i a l i a s e d   l i n e   d r a w e r .  
* ( X O . Y O ) . ( X l . Y l )  - l i n e   t o  d raw,   Co lor  - c o l o r  i n  w h i c h   t o   d r a w  
*/  

v o i d   D r a w L i n e ( i n t  X O .  i n t  YO,  i n t  X 1 .  i n t  Y 1 .  i n t   C o l o r )  
I 

u n s i g n e d   l o n g   E r r o r A c c .   E r r o r A d j ;  
i n t   D e l t a X .   D e l t a Y .  XDir. Temp; 

/ *  Make s u r e   t h e   l i n e   r u n s   t o p   t o   b o t t o m  */  
i f  ( Y O  > Y 1 )  I 

Temp - Y O ;  Y O  - Y 1 :  Y 1  - Temp; 
Temp - XO;  X0 - X 1 ;  X 1  - Temp: 

I 
DrawPixel (X0.  Y O .  C o l o r ) ;  / *  d r a w   t h e   i n i t i a l   p i x e l  * /  
i f  ( ( D e l t a X  - X 1  - X O )  >- 0 )  { 

1 e l s e  I 
XDir - 1; 
XDir - -1; 
De l taX  - -De l taX ;  / *  make D e l t a X   p o s i t i v e  * /  

I 
i f  ( ( D e l t a Y  - Y 1  - Y O )  - 0)  /* done i f  o n l y   o n e   p o i n t   i n   t h e   l i n e  */  

i f  (De l taX  - 0) r e t u r n ;  

E r ro rAcc  - 0x8000: / *  i n i t i a l i z e   l i n e   e r r o r   a c c u m u l a t o r   t o  . 5 .  so we can 

/ *  Is t h i s  a n   X - m a j o r   o r   Y - m a j o r   l i n e ?  */  
i f  (De l taY  > De l taX)  { 

advance  when we g e t   h a l f w a y   t o   t h e   n e x t   p i x e l  * /  

/*  Y - m a j o r   l i n e ;   c a l c u l a t e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t   o f  a 

E r r o r A d j  - ( ( ( (uns igned   1ong)De l taX  << 17)  / (uns igned  1ong)De l taY)  + 

/*  Draw a l l   p i x e l s   b e t w e e n   t h e   f i r s t  and l a s t  * /  
do I 

p i x e l   t h a t  X advances  each  t ime Y advances 1 p i x e l  * /  

1) >> 1: 

Er ro rAcc  +- E r r o r A d j ;  / *  c a l c u l a t e   e r r o r   f o r   t h i s   p i x e l  * /  
i f  (E r ro rAcc  & -0xFFFFL) I 

/* The e r r o r   a c c u m u l a t o r   t u r n e d   o v e r .  so advance t h e  X c o o r d  */  
X0 +- XDir; 
E r ro rAcc  &- OxFFFFL; / *  c l e a r   i n t e g e r   p a r t   o f   r e s u l t  * /  

I 
YO++: / *  Y-major .  s o  always  advance Y * /  
DrawPixe l (X0.  Y O ,  C o l o r ) :  

I w h i l e   ( - - D e l t a Y ) ;  
r e t u r n :  

1 
/*  I t ' s  a n   X - m a j o r   l i n e :   c a l c u l a t e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t   o f  a 

E r r o r A d j  - ( ( ( (uns igned   1ong)De l taY  << 17) / (uns igned   1ong)De l taX)  + 

/*  Draw a l l   r e m a i n i n g   p i x e l s  * /  
do I 

p i x e l   t h a t  Y advances  each  t ime X advances 1 p i x e l  * /  

1) >> 1: 

Er ro rAcc  +- E r r o r A d j ;  / *  c a l c u l a t e   e r r o r   f o r   t h i s   p i x e l  * /  
i f  ( E r r o r A c c  & -0xFFFFL) I 

/ *  The e r r o r   a c c u m u l a t o r   t u r n e d   o v e r ,  so advance t h e  Y c o o r d  */  
YO++: 
E r ro rAcc  &- OxFFFFL; /* c l e a r   i n t e g e r   p a r t  o f  r e s u l t  */ 

I 
X0 +- XDir; /*  X-major. s o  always  advance X * /  
DrawPixe l (X0.  Y O ,  C o l o r ) :  

1 
I w h i l e   ( - - D e l t a X ) ;  
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Listing  42.1 isn’t particularly fast, because it calls Drawpixel()  for  each pixel. On  the 
other  hand, Drawpixel() makes it easy to try out Wu antialiasing in  a variety  of modes; 
just  adapt  the  code  in Listing  42.3 for  the 256-color mode you  want to support. For 
example, Listing  42.5  shows code to draw  Wu-antialiased lines in 640x480  256-color 
mode on SuperVGAs built around  the Tseng  Labs  ET4000 chip with at least 512Kof 
display  memory installed. It’s well worth checking out Wu antialiasing at 640x480. 
Although antialiased lines look much smoother  than  normal lines at 320x200  reso- 
lution, they’re far  from  perfect, because the pixels are so big that  the eye can’t blend 
them  properly. At 640x480,  however,  Wu-antialiased lines look fabulous; from a couple 
of feet away, they look as straight and smooth as if they were drawn with a ruler. 

LISTING  42.5  142-5.C 
/ *  Mode s e t  a n d   p i x e l - d r a w i n g   f u n c t i o n s   f o r   t h e   6 4 0 x 4 8 0   2 5 6 - c o l o r  mode o f  
* Tseng  Labs  ET4000-based  SuperVGAs. 
* T e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and the   sma l l   mode l .  
*I  
#i ncl   ude  <dos . h> 

I* Screen  d imens ion   g loba ls .   used i n  main  program t o   s c a l e  * /  
i n t   S c r e e n W i d t h I n P i x e l s  - 640; 
i n t   S c r e e n H e i g h t I n P i x e l s  - 480: 

/ *  ET4000  640x480  256-co lo r   d raw  p ixe l   func t ion .  *I  
v o i d   D r a w P i x e l ( i n t  X .  i n t  Y .  i n t   C o l o r )  
t 
# d e f i n e  SCREENKSEGMENT  OxAOOO 
# d e f i n e  GC-SEGMENT-SELECT Ox3CD / *  ET4000  segment   (bank)   se lect   reg * /  

uns igned   cha r   f a r   *Sc reenPt r :  
uns igned i n t  Bank: 
uns igned  long  B i tmapAddress;  

/ *  f u l l   b i t m a p   a d d r e s s   o f   p i x e l ,  as  measured  f rom  address 0 t o  OxFFFFF * /  
BitmapAddress - ( u n s i g n e d   l o n g )  Y * Sc reenWid th InP ixe l s  + X :  
/ *  Bank # i s  upper   word   o f   b i tmap   add r  *I  
Bank - BitmapAddress >> 16: 
I* Upper n i b b l e   i s   r e a d   b a n k  #, l o w e r   n i b b l e   i s   w r i t e   b a n k  i/ * I  
outp(GC-SEGMENTKSELECT, (Bank << 4 )  I Bank): 
/ *  Draw i n t o   t h e   b a n k  *I  
FPKSEG(ScreenPtr) = SCREEN-SEGMENT: 
FP-OFF(ScreenPtr) - ( u n s i g n e d   i n t )   B i t m a p A d d r e s s :  
*ScreenPtr  - C o l o r :  

1 

I* ET4000  640x480  256-co lo r   mode-se t   func t ion .  *I  
v o i d  SetMode( ) 
{ 

u n i o n  REGS r e g s e t ;  

I* S e t   t o  640x480  256-co lo r   g raph ics  mode * /  
regse t . x .ax  - Ox002E; 
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) :  

1 

Listing  42.1 requires  that  the DAC palette be set up so that  a NumLevel-long block of 
palette  entries  contains linearly decreasing intensities of the drawing color. The size 
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of the block is programmable, but must be a power  of two. The more intensity levels, 
the better. Wu  says that 32 intensities are  enough;  on my system, eight  and even four 
levels looked pretty good. I found  that gamma correction, which  gives linearly spaced 
intensity steps, improved antialiasing quality significantly. Fortunately, we can pro- 
gram the palette with gamma-corrected values, so our drawing code  doesn't have to 
do any extra work. 
Listing 42.1 isn't very fast, so I implemented Wu antialiasing in assembly, hard-coded 
for mode 13H. The implementation is shown in full in Listing 42.6. High-speed graph- 
ics code  and fast VGAs go  together like peanut  butter  and jelly,  which is to say  very 
well indeed;  the assembly implementation  ran  more  than twice  as fast  as the C code 
on my 486. Enough said! 

LISTING 42.6  L42-6.ASM 
; C n e a r - c a l l a b l e   f u n c t i o n   t o   d r a w  an a n t i a l i a s e d   l i n e   f r o m  
; ( X O . Y O )  t o  (X1,YI). i n  mode 13h .   t he  VGA's s tandard   320x200   256 -co lo r  
; mode. Uses  an a n t i a l i a s i n g   a p p r o a c h   p u b l i s h e d   b y   X i a o l i n  Wu i n   t h e   J u l y  
; 1 9 9 1   i s s u e   o f   C o m p u t e r   G r a p h i c s .   R e q u i r e s   t h a t   t h e   p a l e t t e   b e   s e t  up s o  
; t h a t   t h e r e   a r e  NumLevels i n t e n s i t y   l e v e l s   o f   t h e   d e s i r e d   d r a w i n g   c o l o r ,  
; s t a r t i n g   a t   c o l o r   B a s e C o l o r   ( 1 0 0 %   i n t e n s i t y )   a n d   f o l l o w e d   b y   ( N u m L e v e l s - 1 )  
; l e v e l s   o f   e v e n l y   d e c r e a s i n g   i n t e n s i t y ,   w i t h   c o l o r   ( B a s e C o l o r + N u m L e v e l s - 1 )  
; b e i n g  0% i n t e n s i t y   o f   t h e   d e s i r e d   d r a w i n g   c o l o r   ( b l a c k ) .  No c l i p p i n g   i s  
; per fo rmed i n  DrawWuLine.  Handles a maximum o f  256 i n t e n s i t y   l e v e l s   p e r  
; a n t i a l i a s e d   c o l o r .   T h i s   c o d e   i s   s u i t a b l e   f o r   u s e  a t  s c r e e n   r e s o l u t i o n s ,  
; w i t h   l i n e s   t y p i c a l l y  no  more  than 1 K  l o n g ;   f o r   l o n g e r   l i n e s ,   3 2 - b i t   e r r o r  
; a r i t h m e t i c   m u s t   b e   u s e d   t o   a v o i d   p r o b l e m s   w i t h   f i x e d - p o i n t   i n a c c u r a c y .  
; T e s t e d   w i t h  TASM. 

; C n e a r - c a l l a b l e   a s :  
; vo id   DrawWuLine( in t  X O .  i n t  Y O ,  i n t  X 1 .  i n t  Y 1 .  i n t   B a s e c o l o r .  

i n t  NumLevels.  unsigned i n t   1 n t e n s i t y B i t . s ) ;  

SCREEN-WIDTH-IN-BYTES equ  320 ;# o f   b y t e s   f r o m   t h e   s t a r t   o f  one  scan l i n e  

SCREEN-SEGMENT equ OaOOOh ;segment i n  wh ich   sc reen memory r e s i d e s  

; Parameters  passed i n   s t a c k   f r a m e .  
parms s t r u c  

X0  dw ? ; X  c o o r d i n a t e   o f   l i n e   s t a r t   p o i n t  
Y O  dw ? ; Y  c o o r d i n a t e   o f   l i n e   s t a r t   p o i n t  
X 1  dw ? ; X  c o o r d i n a t e   o f   l i n e  end p o i n t  
Y 1  dw ? ; Y  c o o r d i n a t e   o f   l i n e  end p o i n t  
BaseColor dw ? ; c o l o r  # o f   f i r s t   c o l o r   i n   b l o c k  used f o r  

; t o   t h e   s t a r t   o f   t h e   n e x t  

dw 2 dup ( ? )  ;pushed BP and r e t u r n   a d d r e s s  

; a n t i a l i a s i n g .   t h e   1 0 0 %   i n t e n s i t y   v e r s i o n   o f   t h e  
; d r a w i n g   c o l o r  

NumLevels dw ? ; s i z e   o f   c o l o r   b l o c k ,   w i t h   B a s e C o l o r + N u m L e v e l s - I  
; b e i n g   t h e  0% i n t e n s i t y   v e r s i o n   o f   t h e   d r a w i n g   c o l o r  
; (maximum  NumLevels - 256) 

I n t e n s i t y B i t s  dw ? : l og   base  2 o f  NumLevel s :  t h e  # o f   b i t s  used t o  
; d e s c r i b e   t h e   i n t e n s i t y   o f   t h e   d r a w i n g   c o l o r .  
; 2**IntensityBits--NumLevels 
; (maximum I n t e n s i t y B i t s  - 8) 

parms  ends 

Wu'ed in Haste; Fried,  Stewed at Leisure 787 



.model  small  

.code 
; Screen  d imens ion   g loba ls ,   used i n  main  program t o   s c a l e .  
- S c r e e n W i d t h I n P i x e l s  dw 320 
- S c r e e n H e i g h t I n P i x e l s  dw 200 

.code 
p u b l i c  -DrawWuLine 

p u s h   b p   ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; p o i n t   t o   l o c a l   s t a c k   f r a m e  
push s i   ; p r e s e r v e  C 's  r e g i s t e r   v a r i a b l e s  
push d i  
push  ds  ;preserve C's  d e f a u l t   d a t a  segment 
c l  d  ;make s t r i n g   i n s t r u c t i o n s   i n c r e m e n t   t h e i r   p o i n t e r s  

- DrawWuLine  proc  near 

; Make s u r e   t h e   l i n e   r u n s   t o p   t o   b o t t o m .  
mov si.Cbpl.XO 
mov ax.Cbpl.YO 
cmp ax.[bp].Yl  ;swap e n d p o i n t s  i f  n e c e s s a r y   t o   e n s u r e   t h a t  
j n a  NoSwap ; Y O  <- Y 1  
x c h g   C b p 1 . Y l . a ~  
mov Cbp1.YO.a~ 
x c h g   [ b p l . X l . s i  
mov [bpl .XO.si  

NoSwap: 

: Draw t h e   i n i t i a l   p i x e l ,   w h i c h   i s   a l w a y s   e x a c t l y   i n t e r s e c t e d  b y   t h e   l i n e  
; and so needs  no   we ish t ins .  

mov 
mov 
mov 
mu1 

add 
mov 
mov 

mov 
mov 
sub 
Jns 

neg 
neg 

Del   taXSet :  

dx,SCREEN->EGMENT 
ds   .dx   ;po in t  DS t o   t h e   s c r e e n   s e g m e n t  
dx.SCREEN_WIDTH-IN-BYTES 
dx ; Y O  * SCREEN-WIDTH-IN-BYTES y i e l d s   t h e   o f f s e t  

; o f   t h e   s t a r t   o f   t h e  row s t a r t   t h e   i n i t i a l  
; p i x e l   i s  on 

s i  , a x   ; p o i n t  D S : S I  t o   t h e   i n i t i a l   p i x e l  
a l . b y t e   p t r  Cbp1.BaseColor   ; co lo r   w i th   wh ich  t o  draw 
[ s i l . a l  

b x . 1  
cx . [bp ] .X l  
cx.[bpl.XO 
Del   taXSet  

c x  
bx 

d r a w   t h e   i n i t i a l   p i x e l  

X D i r  - 1; assume De l taX >- 0 

;De l taX;  i s  i t  >- l ?  
;yes.  move l e f t - > r i g h t .   a l l   s e t  
;no. move r i g h t - > l e f t  
;make D e l t a X   p o s i t i v e  
;XDir - -1 

; S p e c i a l - c a s e   h o r i z o n t a l ,   v e r t i c a l ,  a n d   d i a g o n a l   l i n e s ,   w h i c h   r e q u i r e   n o  
; w e i g h t i n g   b e c a u s e   t h e y   g o   r i g h t   t h r o u g h   t h e   c e n t e r   o f   e v e r y   p i x e l .  

mov dx.Cbpl.Yl  
sub  dx.Cbpl.YO  ;DeltaY; i s  it O ?  
j n z   N o t H o r z   ; n o .   n o t   h o r i z o n t a l  

and  bx.bx ; d r a w   f r o m   l e f t - > r i g h t ?  
j n s  DoHorz ;yes. a l l   s e t  
s t d  ;no.  draw r i g h t - > l e f t  

l e a   d i . [ b x + s i l   ; p o i n t  D I  t o   n e x t   p i x e l   t o   d r a w  
mov ax.ds 

;yes. i s   h o r i z o n t a l ,   s p e c i a l   c a s e  

DoHorz: 
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mov es .ax   :po in t  ES:DI t o   n e x t   p i x e l   t o   d r a w  
mov a l . b y t e   p t r   [ b p ] . B a s e C o l o r   : c o l o r   w i t h   w h i c h   t o   d r a w  

:CX - D e l t a X   a t   t h i s   p o i n t  
r e p   s t o s b   : d r a w   t h e   r e s t   o f   t h e   h o r i z o n t a l   l i n e  
c l  d : r e s t o r e   d e f a u l t   d i r e c t i o n   f l a g  
jmp Done ;and  we're  done 

a l i g n  2 

and  cx.cx 
j n z  N o t V e r t  

mov a1 . b y t e   p t r   [ b p ] . B a s e C o l o r  

add si.SCREEN-WIDTH-IN-BYTES 
mov [ s i l . a l  
dec  dx 
j n z   V e r t L o o p  
jmp Done 

NotHorz: 

Ver t   Loop : 

: i s   D e l t a X  O ?  
: n o ,  n o t  a v e r t i c a l   l i n e  
:yes.  i s   v e r t i c a l ,   s p e c i a l   c a s e  
; c o l o r   w i t h   w h i c h   t o   d r a w  

: p o i n t   t o   n e x t   p i x e l   t o   d r a w  
: d r a w   t h e   n e x t   p i x e l  
: - -De l   taY 

:and  we're  done 

a l i g n  2 

cmp cx,dx  ;Del taX - Del taY?  
j n z   N o t D i a g   : n o ,   n o t   d i a g o n a l  

mov a 1 , b y t e   p t r   [ b p l . B a s e C o l o r   ; c o l o r   w i t h   w h i c h   t o   d r a w  

l e a   s i  .[si+SCREEN-WIDTH-IN-BYTES+bx] 

N o t V e r t  : 

:yes.  i s   d i a g o n a l ,   s p e c i a l   c a s e  

DiagLoop: 

;advance t o   n e x t   p i x e l   t o  draw  by 
; i n c r e m e n t i n g  Y and  adding XDir t o  X 

mov [ s i  1 .a1 : d r a w   t h e   n e x t   p i x e l  
dec  dx : - -De l   taY 
jnz   D iagLoop  
jmp Done ;and  we're  done 

: L i n e   i s   n o t   h o r i z o n t a l ,   d i a g o n a l ,   o r   v e r t i c a l .  

NotDiag:  
: I s  t h i s  a n   X - m a j o r   o r   Y - m a j o r   l i n e ?  

a l i g n  2 

cmp dx.cx 
j b  XMajor : i t ' s   X - m a j o r  

: I t ' s  a Y - m a j o r   l i n e .   C a l c u l a t e   t h e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t   o f  a 
: p i x e l   t h a t  X advances  each  t ime Y advances 1 p i x e l ,   t r u n c a t i n g   t h e   r e s u l t  
: t o   a v o i d   o v e r r u n n i n g   t h e   e n d p o i n t   a l o n g   t h e  X a x i s .  

xchg  dx.cx :DX - De l taX .  C X  - Del taY 
sub  ax.ax ;make D e l t a X   1 6 . 1 6   f i x e d - p o i n t   v a l u e   i n  DX:AX 
d i v   c x  ; A X  - (De l taX  << 16 )  / De l taY .   Won ' t   ove r f l ow  

; because  Del taX < Del taY 
mov d i   . c x  : D I  - D e l t a Y   ( l o o p   c o u n t )  
sub s i  . b x   ; b a c k   u p   t h e   s t a r t  X by 1. as   exp la ined  be low 
mov dx.  -1 : i n i t i a l i z e   t h e   l i n e   e r r o r   a c c u m u l a t o r   t o  -1. 

; so t h a t  i t  will t u r n   o v e r   i m m e d i a t e l y   a n d  
; advance X t o   t h e   s t a r t  X. T h i s   i s   n e c e s s a r y  
; p r o p e r l y   t o   b i a s   e r r o r  sums o f  0 t o  mean 
: "advance   nex t   t ime"   ra the r   t han   "advance  
: t h i s   t i m e , ' '  s o  t h a t   t h e   f i n a l   e r r o r  sum can 
; never   cause  d rawing  t o   o v e r r u n   t h e   f i n a l  X 
; c o o r d i n a t e   ( w o r k s  i n  c o n j u n c t i o n   w i t h  
: t r u n c a t i n g   E r r o r A d j .   t o  make s u r e  X c a n ' t  
: o v e r r u n )  
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mov cx .8  :CL - # o f   b i t s   b y   w h i c h   t o   s h i f t  
s u b   c x . C b p l . 1 n t e n s i t y B i t s  : E r r o r A c c   t o   g e t   i n t e n s i t y   l e v e l  (8 

: i n s t e a d   o f  16  because we work   on l y  
: w i t h   t h e   h i g h   b y t e   o f   E r r o r A c c )  

mov ch .by te   p t r   [ bp l .NumLeve ls  ;mask used t o   f l i p   a l l   b i t s   i n  an 
dec  ch : i n t e n s i t y   w e i g h t i n g  , p roduc ing  

: r e s u l t  (1 - i n t e n s i t y   w e i g h t i n g )  
mov bp .BaseColor [bp ]   : * * *s tack   f rame  no t   ava i lab le** *  

;***from now on *** 
xchg  bp.ax ;BP - E r r o r A d j .  AL - BaseColor. 

: AH - s c r a t c h   r e g i s t e r  

: Draw a l l   r e m a i n i n g   p i x e l s .  
YMajorLoop: 

add  dx.bp : c a l c u l a t e   e r r o r   f o r   n e x t   p i x e l  
j n c  NoXAdvance : n o t   t i m e   t o   s t e p   i n  X y e t  

: t h e   e r r o r   a c c u m u l a t o r   t u r n e d   o v e r ,  
;so advance  the X coord  

add s i  .bx  :add XDir t o   t h e   p i x e l   p o i n t e r  

add si.SCREEN-WIDTH-IN-BYTES ;Y-major ,  s o  always  advance Y 

; The I n t e n s i t y B i t s   m o s t   s i g n i f i c a n t   b i t s   o f   E r r o r A c c   g i v e  us t h e   i n t e n s i t y  
; w e i g h t i n g   f o r   t h i s   p i x e l .  and t h e   c o m p l e m e n t   o f   t h e   w e i g h t i n g   f o r   t h e  
: p a i r e d   p i x e l .  

NoXAdvance: 

mov ah.dh :msb o f   E r r o r A c c  
s h r   a h . c l  :We igh t i ng  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
add ah .a l  : BaseCol o r  + We igh t ing  
mov [ s i  1 ,ah :DrawPixe l (X.  Y .  BaseColor + We igh t ing ) :  
mov ah.dh :msb o f   E r r o r A c c  
s h r   a h . c l  :We igh t i ng  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
xor   ah .ch  :We igh t i ng  A WeightingComplementMask 
add ah .a l  :BaseColor + ( W e i g h t i n g  A WeightingComplementMask) 
mov [s i+bx ]   ,ah  :DrawPixe l (X+XDir .  Y .  

dec d i  : - - D e l  t a Y  
j n z  YMajorLoop 
jmp Done : w e ' r e   d o n e   w i t h   t h i s   l i n e  

: BaseColor + ( W e i g h t i n g  A WeightingComplementMask));  

: I t ' s  an   X -ma jo r   l i ne .  

XMajor: 
: C a l c u l a t e   t h e   1 6 - b i t   f i x e d - p o i n t   f r a c t i o n a l   p a r t   o f  a p i x e l   t h a t  Y advances 
: each   t ime  X advances 1 p i x e l ,   t r u n c a t i n g   t h e   r e s u l t   t o   a v o i d   o v e r r u n n i n g  
: t h e   e n d p o i n t   a l o n g   t h e  X a x i s .  

a l i g n  2 

sub  ax.ax :make D e l t a Y   1 6 . 1 6   f i x e d - p o i n t   v a l u e   i n  DX:AX 
d i v   c x  :AX - (De l taY  << 16)  / De l tax .   Won ' t   ove r f l ow  

: because  Del taY < Del taX 
mov d i   . c x  : D I  - D e l t a X   ( l o o p   c o u n t )  
sub si.SCREEN-WIDTH-IN-BYTES :back  up t h e   s t a r t  X by 1. as 

: exp la ined   be low 
mov dx.  -1 : i n i t i a l i z e   t h e   l i n e   e r r o r   a c c u m u l a t o r   t o  -1. 

: s o  t h a t  it will turn   ove r   immed ia te l y   and  
: advance Y t o   t h e   s t a r t  Y .  T h i s   i s   n e c e s s a r y  
: p r o p e r l y   t o   b i a s   e r r o r  sums o f  0 t o  mean 
: "advance  nex t   t ime"   ra ther   than  "advance 
: t h i s   t i m e . "  so t h a t   t h e   f i n a l   e r r o r  sum can 
: n e v e r   c a u s e   d r a w i n g   t o   o v e r r u n   t h e   f i n a l  Y 
: c o o r d i n a t e   ( w o r k s   i n   c o n j u n c t i o n   w i t h  
: t r u n c a t i n g   E r r o r A d j .   t o  make s u r e  Y c a n ' t  
: o v e r r u n )  
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mov cx.8 
s u b   c x . C b p 1 . I n t e n s i t y B i t s  

mov c h . b y t e   p t r   [ b p l . N u m L e v e l s  
dec  ch 

mov bp,BaseColor [bp l  

xchg  bp.ax 

: Draw a l l   r e m a i n i n g   p i x e l s  
XMajorLoop: 

add  dx,bp 
j n c  NoYAdvance 

add si.SCREEN_WIDTH-IN-BYTES 

add s i  .bx 
NoYAdvance: 

;CL - I/ o f   b i t s  by  which t o   s h i f t  
: E r r o r A c c   t o   g e t   i n t e n s i t y   l e v e l   ( 8  
: i n s t e a d   o f  16 because we w o r k   o n l y  
: w i t h   t h e   h i g h   b y t e   o f   E r r o r A c c )  
;mask used t o   f l i p   a l l   b i t s   i n  an 
: i n t e n s i t y   w e i g h t i n g ,   p r o d u c i n g  
: r e s u l t  (1 - i n t e n s i t y   w e i g h t i n g )  
: * * *s tack   f rame  no t   ava i l ab le * * *  
:***from now on 
: B P  - E r r o r A d j .  AL - BaseColor .  
: AH - s c r a t c h   r e g i s t e r  

*** 

: c a l c u l a t e   e r r o r   f o r   n e x t   p i x e l  
; n o t   t i m e   t o   s t e p   i n  Y y e t  
: t h e   e r r o r   a c c u m u l a t o r   t u r n e d   o v e r ,  
: so advance  the Y c o o r d  
:advance Y 

:X-major .  s o  add XDir t o   t h e   p i x e l   p o i n t e r  

: The I n t e n s i t y e i t s   m o s t   s i g n i f i c a n t   b i t s   o f   E r r o r A c c   g i v e  us t h e   i n t e n s i t y  
: w e i g h t i n g   f o r   t h i s   p i x e l ,  a n d   t h e   c o m p l e m e n t   o f   t h e   w e i g h t i n g   f o r   t h e  
: p a i r e d   p i x e l .  

mov ah.dh :msb o f   E r r o r A c c  
sh r   ah .c l   :We igh t i ng  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
add  ah,al   :Basecolor + We igh t ing  
mov Csi1,ah  :DrawPixel(X. Y .  BaseColor + We igh t ing ) :  
mov ah.dh :msb o f   E r r o r A c c  
shr   ah .c l   :Weigh t ing  - Er ro rAcc  >> I n t e n s i t y S h i f t :  
x o r  ah.ch  :Weight ing A WeightingComplementMask 
add  ah.al   :Basecolor + (We igh t ing  A WeightingComplementMask) 
mov [si+SCREEN-WIDTH-IN-BYTES].ah 

:DrawPixe l (X.  Y+SCREEN-WIDTH-IN-BYTES, 
: BaseColor + ( W e i g h t i n g  A WeightingComplementMask)): 

dec d i   : - - 0 e l t a X  
j n z  XMajorLoop 

Done: 
POP ds 
pop d i  
pop s i  

r e t  
-0rawWuLine  endp 

end 

POP bP 

; w e ’ r e   d o n e   w i t h   t h i s   l i n e  
; r e s t o r e   C ’ s   d e f a u l t   d a t a  segment 
: r e s t o r e   C ’ s   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  
;done 

Notes on Wu Antialiasing 
Wu antialiasing can be applied to any curve for which it’s possible to calculate at 
each step the positions and intensities of  two bracketing pixels, although  the imple- 
mentation will generally be nowhere near as efficient as it is for lines. However,  Wu’s 
article in Computer Ofaphicsdoes describe an efficient algorithm for drawing  antialiased 
circles. Wu also describes a technique  for antialiasing solids, such as filled circles and 
polygons. Wu’s approach biases the edges of filled objects outward. Although this is 
no good for  adjacent polygons of the  sort used in  rendering, it’s certainly possible  to 

Wu‘ed in Haste;  Fried,  Stewed at Leisure 791 



design a  more  accurate polygon-antialiasing approach around Wu’s  basic weighting 
technique. The results would not be quite so good as more sophisticated antialiasing 
techniques,  but they  would  be much faster. 

In general, the results obtained by Wu antialiasing are only so-so, by theoretical 
measures, Wu antialiasing amounts to a simple boxfilterplaced over a fuced-point 
step approximation of a line, and that process introduces a good deal of deviation 
from the ideal. On the other hand, Wu notes that even a IOpercent error in inten- 
sity doesn ’t lead to noticeable loss of image quality, and for Wu-antialiased lines 
up to IKpixels in length, the error is under 1 Opercent. Ifit looks good, it  is good- 
and it looks good. 

With a l6bit  error accumulator, fixed-point inaccuracy becomes a  problem  for Wu- 
antialiased lines longer  than 1K. For such lines, you should switch to using 32-bit 
error values,  which  would let you handle  lines of  any practical length. 
In  the listings, I have chosen to truncate,  rather  than  round,  the  error-adjust value. 
This increases the intensity error of the line  but  guarantees  that  fixed-point inaccu- 
racy  won’t cause the  minor axis to advance past the  endpoint.  Overrunning  the 
endpoint would result  in  the drawing of pixels outside  the line’s bounding box, and 
potentially even in  an  attempt  to access  pixels off the  edge of the  bitmap. 
Finally, I should  mention  that, as published, Wu’s algorithm draws lines symmetri- 
cally, from  both  ends at once.  I haven’t done this for  a  number of reasons, not least 
of which is that symmetric drawing is an  inefficient way to draw lines that  span banks 
on  banked Super-VGAs. Banking aside, however,  symmetric drawing is potentially 
faster, because it eliminates half  of  all calculations; in so doing,  it cuts cumulative 
error in half, as  well. 
With or without symmetrical processing, Wu antialiasing beats  fried, stewed chicken 
hands-down. Trust me on this one. 
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bit-plane animation
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A: 

nd Extremely  Fast Animation  Method for 

When it comes to cokputers, my first love is animation.  There’s  nothing  quite like 
creating a miniature reality  simply by rearranging 

at makes animation particularly interesting is that 
in human  time),  and without blinking and flicker- 
illusion of motion and solidity. Those constraints 
hics  challenge-and  also the most rewarding. 

3% 

ar industry pundits rag on  the PC when it comes to animation. 
Okay, I’ll grant you h a t  the PC isn’t a Silicon Graphics workstation and never will be, 
but  then  neither is anything else on  the market. The VGA offers good resolution and 
color, and while the hardware wasn’t designed for  animation,  that doesn’t mean we 
can’t put it to work in that capacity. One lesson that any good PC graphics or assem- 
bly programmer  learns quickly  is that it’s  what the PC’s hardware can do-not  what it 
was intended to do-that’s important. (By the way, if I were to pick one aspect of the 
PC to dump  on, it would be sound,  not  animation.  The PC’s sound circuity really  is 
lousy, and it’s hard to understand why that  should be, given that  a  cheap  sound 
chip-which  even the almost-forgotten PCj-had-would  have changed everything. I 
guess IBM figured “serious” computer users would be put off  by a  computer  that 
could make fun noises.) 
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Anyway,  my point is that  the PC’s animation capabilities are pretty good. There’s a 
trick, though: You can only push the VGA to  its animation limits by stretching your 
mind a bit  and using some unorthodox  approaches to animation.  In fact, stretching 
your mind is the key to producing  good code for any task on the PC-that’s the topic 
of the first part of this book. For  most  software,  however, it’s not fatal if your code 
isn’t  excellent-there’s slow but  functional software  all  over the place. When it comes 
to VGA animation,  though, you  won’t get to first base without a clever approach. 
So, what  clever approaches do I have in mind? All sorts. The resources of the VGA 
(or even  its  now-ancient predecessor, the EGA) are many and varied, and can be 
applied  and  combined in hundreds of  ways to produce effective animation. For  ex- 
ample,  refer back  to Chapter 23 for  an example of page flipping. Or look at  the July 
1986 issue of PC Tech Journal, which describes the basic  block-move animation tech- 
nique, or the August 1987 issue of PC Tech Journal, which  shows a software-sprite 
scheme built  around  the EGA’s vertical interrupt  and  the AND-OR image drawing 
technique. Or look  over the rest of this book, which contains dozens of tips and 
tricks that can be applied  to  animation,  including Mode  X-based techniques  starting 
in Chapter 47 that  are  the basis for many commercial games. 
This chapter  adds yet another  sort of animation  to  the list. We’re going to take  ad- 
vantage of the bit-plane architecture  and color palette of the VGA to develop an 
animation architecture  that can handle several overlapping images  with terrific speed 
and with  virtually perfect visual  quality. This technique  produces no overlap  effects 
or flicker and allows  us to use the fastest  possible method to  draw  images-the REP 
MOVS instruction.  It has  its limitations, but unlike Mode X and some other anima- 
tion techniques,  the  techniques I’ll  show  you in this chapter will also  work on the 
EGA,  which  may  be important in some applications. 
As with  any technique on the PC, there are tradeoffs  involved  with  bit-plane  animation. 
While bit-plane animation is extremely attractive as far as performance  and visual 
quality are  concerned,  it is somewhat limited. Bit-plane animation  supports only four 
colors plus the  background color at any one time, each image  must  consist of only 
one of the  four colors, and it’s preferable  that images of the same color not intersect. 
It doesn’t much matter if bit-plane animation isn’t perfect for all  applications, though. 
The real  point of  showing  you bit-plane animation is to bring  home  the reality that 
the VGA  is a complex adapter with  many resources, and  that you can do remarkable 
things if  you understand those resources and  come up with  creative ways to  put  them 
to  work at specific  tasks. 

Bit-Planes:  The Basics 
The underlying  principle of bit-plane  animation  is  extremely  simple. The VGA has four 
separate  bit planes in modes ODH,  OEH, 10H, and 12H. Plane 0 normally contains 
data  for  the blue component of pixel  color, plane 1 normally contains  green pixel 
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data, plane 2 red pixel data, and plane 3 intensity  pixel  data-but  we’re going to mix 
that up a bit in a  moment, so we’ll  simply refer to them as planes 0, 1, 2, and 3 from 
now on. 
Each  bit plane can  be  written to independently. The contents of the  four bit planes 
are used to generate pixels,  with the four bits that control the color of each pixel 
coming from the four planes. However, the bits from the planes go through  a look- 
up stage on the way to becoming pixels-they’re used to look up a 6bit color from 
one of the sixteen palette registers.  Figure 43.1 shows how the bits from the four 
planes feed into  the palette registers to select the color of each pixel. (On the VGA 
specifically, the output of the palette registers  goes to the DAC for an additional 
look-up  stage, as described in Chapters 33 and 34 and also Chapter A on the com- 
panion CD-ROM.) 
Take a  good look at Figure 43.1. Any light bulbs going on over  your head yet?  If not, 
consider this. The general problem with VGA animation is that it’s complex and 

I Plane 1 

Plane O 

- 
w 

plxel l. bitper rom 
each plane 

Palette I 

- 
color data 
per  pixel 
to the 
screen  (or 
to  the DAC 
on a VGA) 

How 4 bits of video  data  become 6 bits of color. 
Figure 43.1 
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timeconsuming to manipulate images that  span  the  four planes (as most do),  and 
that it's hard to avoid interference  problems when  images intersect, since those im- 
ages share  the same bits in display  memory. Since the  four bit planes can be written 
to and  read  from  independently,  it  should  be  apparent  that if  we could  come up with 
a way to display  images from each  plane  independently of whatever  images are  stored 
in the  other planes, we would  have four sets of images that we could  manipulate very 
easily. There would  be no  interference effects  between  images in  different planes, 
because  images in  one plane wouldn't share bits  with  images in  another  plane. What's 
more, since all the bits for  a given image would reside in  a single plane, we could do 
away with the  cumbersome  programming of the VGA's complex hardware that is 
needed to manipulate images that  span  multiple planes. 
All in all, it would be  a  good  deal if  we could  store  each image in  a single plane, as 
shown in Figure 43.2. However, a  problem arises when images  in different  planes 
overlap, as  shown in Figure 43.3. The combined bits from  overlapping images gener- 
ate new colors, so the  overlapping  parts of the images don't look  like  they belong to 
either of the two images. What we really  want, of course, is for one of the images to 
appear to be  in front of the  other.  It would  be better yet if the rearward image  showed 
through any transparent (that is, background-colored)  parts of the forward image. 
Can we do  that? 
You bet. 

Plane 3 I. 
Plane 2 l o c ,  1 

Plane 1 

I I 

m 
Plane 0 t t Screen 

Storing  images in separate planes. 
Figure 43.2 
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Stacking  the  Palette  Registers 
Suppose that instead of  viewing the  four bits per pixel coming out of  display  memory 
as selecting one of sixteen colors,we view those bits  as selecting one offourcolors. If 
the bit from  plane 0 is 1, that would select color 0 (say, red).  The bit  from  plane 1 
would select color 1 (say, green),  the bit from  plane 2 would select color 2 (say, 
blue),  and  the bit  from  plane 3 would select color 3 (say, white). Whenever more 
than 1 bit is I,  the 1 bit from  the lowest-numbered plane would determine  the color, 
and 1 bits from all other planes would be  ignored. Finally, the absence of any 1 bits at 
all  would select the  background color (say, black). 
That would  give  us four colors and  the background color. It would  also  give  us  nifty 
image precedence, with images in  plane 0 appearing to be in front of images from 
the  other planes, images in plane 1 appearing to be in front of images from planes 2 
and 3, and so on.  It would  even  give  us transparency, where rearward images would 
show through holes  within and  around the edges of  images in forward  planes.  Finally, 
and most importantly, it would meet all the criteria needed to allow us to store  each 
image in a single plane,  letting us manipulate  the images very quickly and with no 
reprogramming of the VGA's hardware other than  the few OUT instructions re- 
quired to select the plane we want to write to. 
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Which  leaves  only one question: How do we get this  magical pixel-precedence scheme 
to  work? As it  turns  out, all we need to do is reprogram  the  palette registers so that 
the 1 bit from the plane with the highest precedence  determines  the color. The 
palette RAM settings for the colors described above are summarized in Table  43.1. 
Remember that  the  4bit values  coming from display  memory select which palette 
register provides the actual pixel color. Given that, it’s  easy to see that  the rightmost 
1-bit of the  four bits coming  from display  memory in Table 43.1 selects the pixel 
color. If the bit from  plane 0 is 1, then  the  color is red,  no matter what the  other bits 
are, as  shown in Figure 43.4.  If the  bit  from  plane 0 is 0, then if the bit from  plane  1 
is 1 the color is green,  and so on for  planes 2 and 3. In  other words,  with the palette 
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Bit from plane 3 

Bit from plane 2 

Bit from plane 1 

Bit from plane 0 

PRO 
PR 1 
PR2 
PR3 
PR4 
PR5 
PR6 
PR7 
PR8 
PR9 

PRlO 
PRl  1 
PR12 
PR13 
PR14 
P R l 5  

How pixel precedence works. 
Figure 43.4 

register settings we instantly have  exactly  what we want, which is an approach  that 
keeps images in one plane  from  interfering with images in other planes while pro- 
viding precedence  and transparency. 
Seems almost too easy, doesn’t it? Nonetheless, it works  beautifully,  as  we’ll see very 
shortly.  First, though,  I’d like  to point  out  that there’s nothing sacred about  plane 0 
having precedence. We could rearrange  the  palette register settings so that any plane 
had  the highest precedence, followed by the  other planes in any order. I’ve chosen 
to make plane 0 the highest precedence only because it seems simplest to think of 
plane 0 as appearing in front of plane 1 ,  which is in front of plane 2, which is in front 
of plane 3. 

Bit-Plane Animation in Action 
Without further  ado, Listing 43.1 shows bit-plane animation in action. Listing 43.1 
animates 13 rather large images (each 32 pixels on a  side) over a complex  back- 
ground  at  a  good clip men on aprimordial 8088-based PC. Five  of the images move  very 
quickly,  while the  other 8 bounce back and  forth  at  a steady pace. 

LISTING 43.1 L43- 1 .ASM 
: Program t o  d e m o n s t r a t e   b i t - p l a n e   a n i m a t i o n .   P e r f o r m s  
: f l i c k e r - f r e e   a n i m a t i o n   w i t h   i m a g e   t r a n s p a r e n c y   a n d  
: image  precedence  across f o u r  d i s t i n c t   p l a n e s ,   w i t h  
: 1 3  32x32 images  kept i n   m o t i o n   a t  once. 
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; S e t   t o   h i g h e r   v a l u e s   t o   s l o w  down on fas te r   compu te rs .  
: 0 i s   f i n e   f o r  a PC.  500 i s  a r e a s o n a b l e   s e t t i n g   f o r  an AT. 
; S l o w i n g   a n i m a t i o n   f u r t h e r   a l l o w s  a good l o o k   a t  
; t r a n s p a r e n c y   a n d   t h e   l a c k   o f   f l i c k e r  and c o l o r   e f f e c t s  
; when images  cross. 

SLOWDOWN equ  10000 

; P l a n e   s e l e c t s   f o r   t h e   f o u r   c o l o r s   w e ' r e   u s i n g .  

RED equ  Olh 
GREEN equ  02h 
BLUE equ  04h 
WHITE equ  08h 

VGA-SEGMENT equ OaOOOh 

SC-INDEX equ  3c4h 

MAP-MASK equ 2 

SCREEN-WIDTH equ 80 
SCREEN-HEIGHT equ  350 
WORD-OUTS-OK equ 1 

:mode 1 0 h   d i s p l a y  memory 
; segment 
;Sequence C o n t r o l l e r   I n d e x  
; r e g i s t e r  
:Map Mask r e g i s t e r   i n d e x   i n  
; Sequence C o n t r o l l e r  
;# o f   b y t e s   a c r o s s   s c r e e n  
;# o f   s c a n   l i n e s  on  screen 
; s e t   t o  0 t o  assemble f o r  
; c o m p u t e r s   t h a t   c a n ' t  
; hand le   word   ou ts   t o  
; indexed VGA regs 

s t a c k  segment  para  stack 'STACK' 
db 512 dup (? )  

s t a c k  ends 

; Complete i n f o   a b o u t  one o b j e c t   t h a t   w e ' r e   a n i m a t i n g .  

O b j e c t S t r u c t u r e   s t r u c  
Delay dw 

BaseDel  ay dw 
Image dw 

XCoord dw 
XInc dw 

X L e f t L i m i t  dw 
X R i g h t L i m i t  dw 
YCoord dw 
Y I n c  dw 

YTopLimi t  dw 
YBot tomLimi t  dw 
P1 aneSel  ect   db 

db 

? 

? 
? 

? 
? 

? 
? 
? 
? 

? 
? 
? 

? 

;used t o   d e l a y   f o r  n passes 
; t h r o u g h t   t h e   l o o p   t o  
; cont ro l   an imat ion   speed 
; r e s e t   v a l u e   f o r   D e l a y  
; p o i n t e r   t o   d r a w i n g   i n f o  
: f o r   o b j e c t  
; o b j e c t  X l o c a t i o n   i n   p i x e l s  
;# o f   p i x e l s   t o   i n c r e m e n t  
: l o c a t i o n  by i n   t h e  X 
: d i r e c t i o n  on  each move 
; l e f t  limit o f  X mo t ion  
; r i g h t  limit o f  X mo t ion  
; o b j e c t  Y l o c a t i o n   i n   p i x e l s  
; i  o f  p i x e l s   t o   i n c r e m e n t  
; l o c a t i o n  by i n   t h e  Y 
: d i r e c t i o n  on  each move 
; t o p  limit o f  Y mo t ion  
;bot tom limit o f  Y mo t ion  
;mask t o   s e l e c t   p l a n e   t o  
; w h i c h   o b j e c t   i s   d r a w n  
; t o  make an  even # o f   w o r d s  
; l o n g ,   f o r   b e t t e r  286 
; per formance  (keeps  the 
; f o l l o w i n g   s t r u c t u r e  
; word -a l i gned)  

O b j e c t S t r u c t u r e  ends 
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Data  segment word 'DATA'  

; P a l e t t e   s e t t i n g s   t o   g i v e   p l a n e  0 p recedence ,   fo l lowed  by 
; p l a n e s  1. 2 .  and  3 .   Plane  3  h a s  t h e   l o w e s t   p r e c e d e n c e  ( i s  
; obscured by a n y   o t h e r   p l a n e ) .   w h i l e   p l a n e  0 h a s   t h e  
; h i g h e s t   p r e c e d e n c e   ( d i s p l a y s  i n  f r o n t  of  any o t h e r   p l a n e ) .  

Co lo r s  db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 

OOOh 
03ch 
03a h 
03ch 
039h 
03ch 
03a h 
03ch 
03f h 
03ch 
03a h 
03ch 
039h 
03ch 
03ah 
03ch 
O O O h  

:background  color-black 
; p l a n e  0 only-red 
: p l a n e  1 only-green 
;p l anes   O&l - red   (p l ane  0 p r i o r i t y )  
;plane  2   only-blue 
; p l a n e s  O&E-red ( p l a n e  0 p r i o r i t y )  
; p l anes   1&2-green   (p l ane  1 p r i o r i t y )  
; p l anes   O&l&E-red   (p l ane  0 p r i o r i t y )  
;p lane   3   on ly-whi te  
; p l a n e s  O&3-red ( p l a n e  0 p r i o r i t y )  
: p l anes   1&3-green   (p l ane  1 p r i o r i t y )  
; p l anes   O&l&3- red   (p l ane  0 p r i o r i t y )  
; p l a n e s   2 6 3 - b l u e   ( p l a n e   2   p r i o r i t y )  
; p l anes   0&2&3- red   (p l ane  0 p r i o r i t y )  
; p l anes   1&2&3-green   (p l ane  1 p r i o r i t y )  
;p lanes   0&1&2&3-red   (p lane  0 p r i o r i t y )  
;border   col   or-bl   ack 

; Image  of  a  hollow  square. 
; T h e r e ' s   a n   8 - p i x e l - w i d e   b l a n k   b o r d e r   a r o u n d   a l l   e d g e s  
; so t h a t   t h e   i m a g e   e r a s e s   t h e   o l d   v e r s i o n  of i t s e l f   a s  
; i t ' s  moved and  redrawn. 

Squa re   l abe l   by te  
dw 4 8 . 6   ; h e i g h t   i n   p i x e l s ,   w i d t h  i n  b y t e s  
r e p t  8 
db 0 . 0 , 0 . 0 , 0 . 0 ; t o p   b l a n k   b o r d e r  
endm 
. r a d i x  2 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 

0.11111111.11111111,11111111,11111111,0 
0.11111111.11111111.11111111.11111111.0 
0.11111111,11111111,11111111,11111111,0 
0.11111111,11111111,11111111,11111111,0 
0,11111111.11111111.11111111.11111111.0 
0.11111111.11111111,11111111,11111111,0 
0.11111111.11111111.11111111.11111111.0 
0.11111111.11111111.11111111.11111111.0 
0.11111111.00000000.00000000,11111111,0 
0,11111111,00000000.00000000.11111111,0 
0.11111111.00000000.00000000.11111111.0 
0,11111111.00000000.00000000.11111111.0 
0.11111111.00000000,00000000,11111111,0 
0,11111111,00000000,00000000.11111111.0 
0.11111111.00000000.00000000.11111111.0 
0.11111111.00000000.00000000.11111111.0 
0.11111111.00000000.00000000.11111111.0 
0,11111111,00000000,00000000.11111111.0 
0.11111111,00000000,00000000,11111111,0 
0,11111111.00000000.00000000,11111111,0 
0,11111111.00000000.00000000.11111111.0 
0.11111111,00000000.00000000,11111111,0 
0.11111111.00000000.00000000.11111111.0 
0,11111111.00000000.00000000,11111111,0 
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db 0,11111111.11111111.11111111,11111111,0 
db 0.11111111.11111111,11111111,11111111,0 
db 0.11111111.11111111.11111111.11111111.0 
db 0.11111111,11111111.11111111,11111111,0 
db 0.11111111.11111111.11111111,11111111,0 
d b  0.11111111.11111111.11111111,11111111~0 
db 0,11111111.11111111.11111111.11111111.0 
db 0.11111111,11111111.11111111,11111111,0 
. r a d i x  10 
r e p t  8 
db  0 .0 .0 .0 .0 .0  ;bo t tom  b lank   border  
endm 

: Image  of a hol low  diamond  with a s m a l l e r   d i a m o n d   i n   t h e  
: middle .  
: T h e r e ' s   a n   8 - p i x e l - w i d e   b l a n k   b o r d e r   a r o u n d   a l l   e d g e s  
: so t h a t   t h e  i m a g e   e r a s e s   t h e   o l d   v e r s i o n  o f  i t s e l f   a s  
: i t ' s  moved and  redrawn. 

Diamond l a b e l   b y t e  
dw 48.6 : h e i g h t   i n   p i x e l s ,   w i d t h   i n   b y t e s  
r e p t  8 
d b  0.0,O.O.O.O ; t o p   b l a n k   b o r d e r  
endm 
. r a d i x  2 1 

db 
db  
db 
db  
db  
db  
db  
db  
db  
db  
db  
d b  
d b  
db  
db  
db  
db  
db  
db  
db  
db  
db  
d b  
d b  
db  
db  
db  
db  
db  
db  
db  
d b  

0.00000000.00000001.1000000.000000000.0 
0.00000000.00000011.11000000.00000000,0 
0.00000000.00000111.11100000.00000000.0 
0.00000000,00001111.11110000.00000000.0 
0.00000000.00011131.11111000.00000000.0 
0.00000000.00111110.01111100.00000000.0 
0.00000000.01111100.00111110,00000000.0 
0.00000000.11111000.00011111.00000000.0 
0.00000001,11110000.00001111,10000000.0 
0,00000011.11100000.00000111.11000000.0 
0.00000111.11000000.00000011,11100000.0 
0.00001111.10000001,10000001,11110000,0 
0.00011111.00000011.11000000*11111000.0 
0.00111110.00000111.11100000.01111100.0 
0,01111100.00001111.11110000.00111110.0 
0.11111000.00011111,11111000.00011111,0 
0.11111000.00011111.11111000.00011111.0 
0.01111100.00001111.11110000,00111110,0 
0.00111110,00000111.11100000,01111100.0 
0,00011111.00000011.11000000,11111000.0 
0,00001111,10000001.100000001.11110000.0 
0.00000111.11000000.00000011.11100000.0 
0,00000011.11100000.00000111.11000000.0 
0,00000001.11110000.00001111,10000000,0 
0.00000000.11111000.00011111,00000000*0 
0.00000000.01111100.00111110,00000000.0 
0.00000000.00111110.01111100.00000000.0 
0,00000000,00011111.11111000.00000000.0 
0.00000000.00001111.11110000.00000000.0 
0.00000000.00000111.11100000.00000000.0 
0.00000000.00000011.11000000.00000000.0 
0.00000000.00000001.1000000.000000000.0 

. r a d i x  10 
r e p t  8 
db  O,O.O,O.O.O;bot tom  blank  border  
endm 
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: L i s t   o f   o b j e c t s   t o   a n i m a t e .  

e v e n   : w o r d - a l i g n   f o r   b e t t e r  286 per formance 

O b j e c t L i s t   l a b e l  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t S t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t S t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  

O b j e c t L i s t E n d  

Data  ends 

O b j e c t s t r u c t u r e  
<1,21.Diamond,88.8.80,512,16,0,0,350,RED> 
<1.15.Square,296.8.112,480,144.0.0,350,REO> 
<1,23.Diamond.88,8.80,512,256.0,0.35O,RED> 
<1.13.Square.120,0.0.640,144.4,0,28O,~LUE> 
<1.11.0iamond.208.0.0,640.144.4,0,280,ElLUE> 
<1.8.Square.296.0.0.640,144.4.0,288,BLUE> 
<1.9.Diamond,384,0.0.640,144.4,0~288,BLUE> 
<I .14.Square.472.0.0.640,144.4.0.280.BLUE> 
<1.8.Diamond,200,8.0,576,48,6,0,28O~GREEN> 
<1.8.Square.Z48.8,0,576,96.6.0.280.GREEN> 
<1.8.Diamond,296.8.0.576,144,6,0,28O,GREEN> 
<1.8.Square.344,8.0.576,192,6,0.280,GREEN> 
<1,8,0iamond.392.8.0.576,240,6.0,280~GREEN> 
l a b e l   O b j e c t S t r u c t u r e  

: Macro t o   o u t p u t  a w o r d   v a l u e   t o  a p o r t .  

OUT-WORD macro 
i f  WORD-OUTS-OK 

out   dx.ax 
e l s e  

ou t   dx ,a l  
i n c  dx 
xchg  ah.al  
ou t   dx .a l  
dec  dx 
xchg  ah,al 

endm 
endi  f 

: Macro t o   o u t p u t  a c o n s t a n t   v a l u e   t o  an  indexed VGA 
: r e g i s t e r .  

CONSTANT-TO-INDEXED-REGISTERmacro ADDRESS,   INDEX,  VALUE 
mov  dx.AODRESS 
mov ax.(VALUE s h l  8) + I N D E X  
OUT-WORD 
endm 

Code segment 
assume  cs:Code.  ds:Data 

S t a r t   p r o c   n e a r  
c l d  
mov ax.Data 
mov ds.ax 

: Set   640x350  16-co lor  

mov ax.0010h 

i n t  10h 

mode. 

;AH-0 means s e l e c t  mode 
:AL-lOh means s e l e c t  
: mode 10h 
:BIOS v i d e o   i n t e r r u p t  
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: S e t   t h e   p a l e t t e   u p   t o   p r o v i d e   b i t - p l a n e   p r e c e d e n c e .  If 
: planes  0 L 1 o v e r l a p ,   t h e   p l a n e  D c o l o r  will be  shown; 
; i f  p lanes  1 & 2 o v e r l a p ,   t h e   p l a n e  1 c o l o r  will be 
: shown:  and s o  on. 

mov ax . ( lOh   sh l  8) + 2 :AH - 10h means 
: s e t   p a l e t t e  
: r e g i s t e r s   f n  
:AL - 2 means s e t  
: a l l   p a l e t t e  
: r e g i s t e r s  

push  ds :ES:DX p o i n t s   t o  

mov d x . o f f s e t   C o l o r s  : s e t t i n g s  
i n t  10h ; c a l l   t h e  BIOS t o  

: s e t   t h e   p a l e t t e  

POP es ; t h e   p a l e t t e  

: Draw t h e   s t a t i c   b a c k d r o p   i n   p l a n e  3 .  All the  moving  images 
: will appear t o  be i n  f r o n t   o f   t h i s   b a c k d r o p ,   s i n c e   p l a n e  3 
: has the   l owes t   p recedence   the  way t h e   p a l e t t e   i s   s e t  up. 

CONSTANT-TO-INDEXED-REGISTER SC-INDEX.  MAP-MASK. D8h 
: a l l o w   d a t a   t o  go t o  
: p l a n e  3 o n l y  

: P o i n t  ES t o   d i s p l a y  memory f o r   t h e   r e s t   o f   t h e   p r o g r a m .  

mov  ax.VGA-SEGMENT 
mov es.ax 

sub d i   . d i  
mov  bp.SCREEN-HEIGHT116 

BackdropBlockLoop: 
c a l l  DrawGri  dCross 
ca l l   D rawGr idVer t  

dec  bp 
jnz  BackdropBlockLoop 
c a l l  DrawGridCross 

: S t a r t   a n i m a t i n g !  

Animat ionLoop: 
mov b x . o f f s e t   O b j e c t L i s t  

:fill i n  t h e   s c r e e n  
: 1 6   l i n e s   a t  a t i m e  

:draw a c r o s s   p i e c e  
: d r a w   t h e   r e s t   o f  a 
: 1 5 - h i g h   b l o c k  

: b o t t o m   l i n e   o f   g r i d  

: p o i n t   t o   t h e   f i r s t  
: o b j e c t   i n   t h e   l i s t  

: For each  ob jec t ,   see  i f  i t ' s   t i m e   t o  move and  draw t h a t  
; o b j e c t .  

ObjectLoop: 

; See i f  i t ' s   t i m e   t o  move t h i s   o b j e c t .  

dec Cbx+Del ay]   :count  down d e l a y  
j n z   D o N e x t O b j e c t   ; s t i l l   d e l a y i n g - d o n ' t  move 
mov ax.Cbx+BaseDelay] 
mov [bx+De lay l   , ax   : rese t   de lay   f o r   nex t   t ime  
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: S e l e c t   t h e   p l a n e   t h a t   t h i s   o b j e c t  will be  drawn in .  

mov dx,  SC-INDEX 
mov ah. [bx+PlaneSelect l  
mov a1 .MAP-MASK 
OUT-WORD 

; Advance t h e  X c o o r d i n a t e ,   r e v e r s i n g   d i r e c t i o n  i f  e i t h e r  
: o f   t h e  X margins  has  been  reached. 

mov cx.Cbx+XCoordl ; c u r r e n t  X l o c a t i o n  
cmp c x . [ b x + X L e f t L i m i t l   ; a t   l e f t   l i m i t ?  
j a   C h e c k X R i g h t L i m i t  
neg  Cbx+XIncl 

:no 
; yes - reve rse  

cmp cx . [bx+XRigh tL im i t l  ; a t  r i g h t  limit? 
j b  SetNewX ;no 
neg  [bx+XIncl  : yes - reve rse  

add  cx.Cbx+XIncl ;move t h e  X coord 
mov [bx+XCoordl.cx ; & save it 

CheckXRightL imi t :  

SetNewX: 

; Advance t h e  Y c o o r d i n a t e ,   r e v e r s i n g   d i r e c t i o n  i f  e i t h e r  
; o f   t h e  Y margins  has  been  reached. 

mov dx,[bx+YCoordl ; c u r r e n t  Y l o c a t i o n  
cmp d x . C b x + Y T o p L i m i t l : a t   t o p   l i m i t ?  
j a  CheckYBottomLimit  ;no 
neg  Cbx+YIncl   ;yes-reverse 

CheckYBottomLimit:  
cmp dx. [bx+YBottomLimit ]   ;at   bot tom limit? 
j b  SetNewY 
neg  Cbx+YIncl 

add  dx.Cbx+YIncl ;move t h e  Y coo rd  
mov [bx+YCoordl.dx ; & save it 

;no 
; yes - reve rse  

SetNewY: 

: Draw a t   t h e  new 1 o c a t i o n .  Because o f   t h e   p l a n e   s e l e c t  
; above, o n l y  one p l a n e  will b e   a f f e c t e d .  

mov s i .Cbx+ Image l   ; po in t   t o   t he  
; o b j e c t ' s  image 
; i n f o  

c a l l   D r a w o b j e c t  

; P o i n t   t o   t h e   n e x t   o b j e c t   i n   t h e   l i s t   u n t i l  we r u n   o u t   o f  
; o b j e c t s .  

DoNextObject: 
add   bx .s i ze   Ob jec tS t ruc tu re  
cmD b x . o f f s e t   O b j e c t L i s t E n d  
j b  ObjectLoop 

; D e l a y   a s   s p e c i f i e d   t o  

i f  SLOWDOWN 
mov cx ,  SLOWDOWN 

1 oop  Del  ayLoop 
Del  ayLoop: 

end i  f 

s low   th ings  down 
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: If a key 's   been  pressed,   we ' re   done,   o therwise  an imate 
; again.  

CheckKey: 
mov ah.1 
i n t  16h 
jz AnimationLoop 
sub  ah.ah 
i n t  16h 

: Back t o   t e x t  mode. 

mov ax.0003h 

i n t  10h 

: Back t o  DOS. 

mov ah.4ch 
i n t  21h 

S t a r t  endp 

: i s  a key   wa i t i ng?  
:no 

: y e s - c l e a r   t h e   k e y  & done 

:AL-O3h means s e l e c t  
: mode 03h 

;DOS t e r m i n a t e   f u n c t i o n  
:done 

Draws a s i n g l e   g r i d   c r o s s - e l e m e n t   a t   t h e   d i s p l a y  memory 
l o c a t i o n   p o i n t e d   t o   b y  E S : D I .  1 h o r i z o n t a l   l i n e   i s  drawn 
ac ross   t he   sc reen .  

I n p u t :  ES:DI p o i n t s   t o   t h e   a d d r e s s  a t  w h i c h   t o   d r a w  

Output :  ES:DI p o i n t s   t o   t h e   a d d r e s s   f o l l o w i n g   t h e  
l i n e  drawn 

R e g i s t e r s   a l t e r e d :  AX,  C X ,  DI 

DrawGridCross  proc  near 
mov a x . 0 f f f f h   : d r a w  a s o l i d   l i n e  
mov cx.SCREEN-WIDTH12-1 
rep  stosw  ;draw a l l   b u t   t h e   r i g h t m o s t  

mov ax,  0080h 
: edge 

s tosw  :d raw  the   r i gh t   edge   o f   t he  

r e t  
: g r i d  

DrawGridCross  endp 

Draws t h e   n o n - c r o s s   p a r t   o f   t h e   g r i d   a t   t h e   d i s p l a y  memory 
l o c a t i o n   p o i n t e d   t o   b y  ES:DI .  15  scan l i n e s   a r e   f i l l e d .  

I n p u t :  ES:D I  p o i n t s   t o   t h e   a d d r e s s   a t   w h i c h   t o   d r a w  

Output :  ES:DI  p o i n t s   t o   t h e   a d d r e s s   f o l l o w i n g   t h e  
p a r t   o f   t h e   g r i d  drawn 

R e g i s t e r s   a l t e r e d :  AX,  C X .  DX. D I  

OrawGridVert   proc  near 
mov ax,  0080h : p a t t e r n   f o r  a v e r t i c a l   l i n e  
mov dx.15 :draw  15  scan l i n e s   ( a l l  o f  

: a g r i d   b l o c k   e x c e p t   t h e  
: s o l i d   c r o s s   l i n e )  
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BackdropRowLoop: 
mov cx.SCREEN_WIDTH/Z 
rep  s tosw ;draw t h i s  scan l i n e ' s   b i t  

; o f   a l l   t h e   v e r t i c a l   l i n e s  
; on the   sc reen  

dec  dx 
j n z  BackdropRowLoop 
r e t  

DrawGridVert  endp 

; D r a w  t h e   s p e c i f i e d  image a t   t h e   s p e c i f i e d   l o c a t i o n .  
; Images a re   d rawn   on   by te   boundar ies   ho r i zon ta l l y ,   p i xe l  
; b o u n d a r i e s   v e r t i c a l l y .  
; The Map Mask reg i s te r   mus t   a l ready   have  been s e t   t o   e n a b l e  
; access t o   t h e   d e s i r e d   p l a n e .  

; I n p u t :  
; C X  - X c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r  
; DX - Y c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r  
; DS:SI - p o i n t e r   t o  draw i n f o   f o r  image 
; ES - d i s p l a y  memory segment 

; Output:  none 

; R e g i s t e r s   a l t e r e d :  A X ,  C X .  D X .  S I .  D I .  BP 

Drawob jec t   p roc   near  
mov  ax.SCREEN-WIDTH 
mu1 dx ; c a l c u l a t e   t h e   s t a r t   o f f s e t   i n  

; d i s p l a y  memory o f   t h e   r o w   t h e  
; image will be  drawn a t  

sh r  cx .1  
s h r  cx .1  
sh r  cx .1  

add ax.cx 

mov d i  ,ax 

1 odsw 
mov dx.ax 
1 odsw 
mov  bp.SCREENKWIDTH 
sub  bp,ax 

DrawLoop: 
mov cx.ax 
rep  movsb 

add  di ,bp 

dec  dx 
j n z  DrawLoop 
r e t  

; d i v i d e   t h e  X c o o r d i n a t e   i n   p i x e l s  
; by 8 t o   g e t   t h e  X c o o r d i n a t e   i n  
; by tes  
; d e s t i n a t i o n   o f f s e t   i n   d i s p l a y  
; memory f o r   t h e  image 
; p o i n t  E S : D I  t o   t h e   a d d r e s s   t o  
; which  the  image will be  copied 
; i n   d i s p l a y  memory 

;# o f   l i n e s   i n   t h e  image 
;# of   by tes   across   the   image 

;# o f   b y t e s   t o  add t o   t h e   d i s p l a y  
; memory o f f s e t   a f t e r   c o p y i n g  a l i n e  
; o f   t h e  image t o   d i s p l a y  memory i n  
: o r d e r   t o   p o i n t   t o   t h e   a d d r e s s  
; where t h e   n e x t   l i n e   o f   t h e  image 
; will go i n   d i s p l a y  memory 

; w i d t h   o f   t h e  image 
; c o p y   t h e   n e x t   l i n e   o f   t h e  image 
; i n t o   d i s p l a y  memory 
; p o i n t   t o   t h e   a d d r e s s  a t  wh ich   t he  
; n e x t   l i n e  will go i n   d i s p l a y  
; memory 
;count  down t h e   l i n e s   o f   t h e  image 
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Drawobject  endp 

Code  ends 
end S t a r t  

For those of  you  who haven’t experienced  the  frustrations of animation  program- 
ming on  a PC, there’s  a wholelot  of animation  going  on  in Listing  43.1.  What’s more, 
the  animation is  virtually flicker-free, partly thanks  to bit-plane animation and partly 
because  images are never  really  erased but  rather are simply  overwritten. (The principle 
behind  the  animation is that of redrawing each image with a blank fringe  around  it 
when it moves, so that  the  blank  fringe erases the  part of the  old image that  the new 
image  doesn’t  overwrite.  For  details on this sort of animation, see the above-mentioned 
PC TechJournaZJuly 1986 article.) Better yet, the  red images  take precedence over the 
green images,  which  take precedence over the  blue images,  which take precedence 
over the white backdrop,  and all obscured images  show through  holes  in  and  around 
the edges of images  in front of them. 
In  short, Listing  43.1 accomplishes everything we wished for  earlier  in  an  animation 
technique. 
If  you  possibly can, run Listing  43.1. The animation may  be a revelation to those  of  you 
who are  used  to weak,  slow animation  on PCs with  EGA or VGA adapters. Bit-plane 
animation makes the PC look an awful lot like-dare I say  it?-a games machine. 
Listing  43.1 was designed to run  at  the absolute fastest speed,  and as I mentioned  it 
puts in a pretty amazing performance  on  the slowest PCs of  all.  Assuming  you’ll  be 
running Listing  43.1 on  an faster computer, you’ll  have to crank up the DELAY equate 
at  the start of Listing  43.1 to slow things down to a  reasonable  pace. (It’s not a very 
good  game where all the pieces are  a  continual  blur!) Even on  something as modest 
as a 286based AT, Listing 43.1 runs much  too  fast  without a substantial  delay (although 
it  does look rather  interesting  at warp speed). We should all  have such problems, eh? 
In fact, we could easily increase  the  number of animated images past 20 on  that old 
AT, and well into  the  hundreds  on a cuttingedge local-bus  486 or Pentium. 
I’m  not  going to  discuss  Listing  43.1  in detail;  the  code is  very thoroughly com- 
mented  and  should speak for itself, and most of the individual components of Listing 
43.1-the  Map  Mask register, mode sets,  word  versus  byte OUT instructions to the 
VGA-have been covered in earlier  chapters. Do notice, however, that Listing  43.1 
sets the  palette exactly  as I described earlier. This is accomplished by passing a  pointer 
to a 1’7-byte array (1 byte for  each of the  16  palette registers, and 1 byte for  the 
border  color) to the BIOS  video interrupt (INT lOH),  function 10H, subfunction 2. 
Bit-plane animation  does have inherent limitations, which  we’ll get  to  in  a  second. 
One  limitation  that is not inherent to bit-plane animation  but simply a  shortcoming 
of  Listing  43.1 is somewhat choppy horizontal  motion.  In  the  interests of both clarity 
and  keeping Listing  43.1 to a  reasonable  length, I decided to byte-align  all  images 
horizontally. This saved the many  tables needed to define the 7 non-byte-aligned 
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rotations of the images, as well as the  code  needed to support  rotation. Unfortu- 
nately, it also meant  that  the smallest possible horizontal movement was 8 pixels (1 
byte  of  display memory), which is far  enough to be noticeable at certain speeds. The 
situation is,  however,  easily correctable with the additional  rotations and code. We’ll 
see an  implementation of  fully rotated images (in this case for Mode X, but  the 
principles generalize nicely) in  Chapter 49. Vertically, where there is no byte-align- 
ment issue, the images  move 4 or 6 pixels at a times, resulting in considerably smoother 
animation. 
The addition of code to support  rotated images would  also open  the  door to support 
for internal  animation, where the  appearance of a given image changes over time to 
suggest that  the image is an active  entity. For example,  propellers  could whirl, jaws 
could  snap, and  jets could flare. Bit-plane animation with bit-aligned images and 
internal  animation can look truly spectacular. It’s a sight worth seeing, particularly 
for those who doubt  the PC’s worth when it comes  to animation. 

Limitations of Bit-Plane Animation 
As I’ve said, bit-plane animation is not perfect. For starters, bit-plane animation can 
only be used in the VGAs planar  modes,  modes ODH, OEH, IOH, and 12H. Also, the 
reprogramming of the palette registers that provides image precedence also reduces 
the available color set from  the  normal 16 colors to just 5 (one color per plane plus 
the  background color). Worse still, each image must consist entirely of only one of 
the  four colors. Mixing colors within an image is not allowed, since the bits for each 
image are limited to a single plane and can therefore select only one color.  Finally, 
all images of the same precedence must be the same  color. 
It is  possible to work around  the color limitations to  some extent by using only one 
or two planes for bit-plane animation, while reserving the  other planes  for multi- 
color drawing. For example, you could use plane 3 for bit-plane animation while 
using planes 0-2 for  normal 8-color drawing. The images in  plane 3 would then ap- 
pear to be in front of the 8-color images. If  we wanted the  plane 3 images to be 
yellow,  we could set up  the palette registers as  shown in Table 43.2. 
As you can see, the color yellow is displayed whenever a pixel’s bit  from  plane 3 is 1. 
This gives the images from  plane 3 precedence, while  leaving  us  with the 8 normal 
low-intensity colors for images drawn across the  other 3 planes, as  shown in Figure 
43.5. Of course, this approach provides only 1 rather  than 3 high-precedence planes, 
but  that  might be a good tradeoff for  being able to draw multi-colored images as a 
backdrop to the high-precedence images.  For the right application, high-speed  flicker- 
free  plane 3 images moving in front of an 8-color backdrop  could be a potent 
combination  indeed. 
Another limitation of bit-plane animation is that it’s best if images stored  in  the same 
plane never cross each other. Why?  Because  when images do cross, the blank fringe 
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around each image can temporarily erase the overlapped parts of the  other image or 
images, resulting in momentary flicker.  While that’s not fatal, it certainly detracts 
from the rock-solid animation effect of bit-plane animation. 
Not allowing images in the same plane to overlap is  actually  less  of a limitation than 
it seems. Run  Listing 43.1 again. Unless you  were looking for  it, you’d never notice 
that images of the same color almost never overlap-there’s plenty of action to dis- 
tract the eye, and  the trajectories of images of the same color are  arranged so that 
they have a full range of motion without running  into  each other. The only excep- 
tion is the chain of green images, which  occasionally doubles back on itself  when it 
bounces directly into a  corner  and reverses direction.  Here, however, the images are 
moving so quickly that  the brief moment  during which one image’s fringe blanks a 
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Bit  from  plane 3 

Bit  from plane 2 

Bit  from  plane 1 

Bit from  plane 0 

t 
&bit palette  register #, which 
selects 1 of 1 6  palette  registers. 
The  selection is  always 1 of the 8 
normal  low-intensi  colors  when 
the bit from  plane !is 0. 

PRO 
PR 1 
PR2 
PR3 
PR4 
PR5 
PR6 
PR7 
PR8 
PR9 

PR10 
PRl  1 
PR12 
PR13 
PR14 
PR15 

8 normal 
low-intensity 
colors 

Pixel  precedence for plane 3 only. 
Figure 43.5 

portion of another image is noticeable only upon close inspection,  and not particu- 
larly unaesthetic even then. 
When a  technique has such tremendous visual and  performance advantages as does 
bit-plane animation, it behooves you to design your animation software so that  the 
limitations of the  animation  technique  don’t get in  the way. For example, you might 
design a  shooting gallery  game  with  all the images in  a given plane  marching  along 
in step  in  a  continuous  band.  The images could never overlap, so bit-plane anima- 
tion  would produce very high image quality. 

Shearing  and  Page  Flipping 
As Listing 43.1 runs, you  may occasionally see an image shear, with the top and bot- 
tom parts of the image briefly offset. This is a  consequence of drawing an image 
directly into memory  as that memory is being  scanned for video data. Occasionally 
the CRT controller scans a given area of  display  memory for pixel data just as the 
program is changing  that same  memory. If the CRT controller scans  memory faster 
than  the CPU can modi+ that memory, then  the CRT controller can scan out  the 
bytes of display  memory that have been already been  changed, pass the  point  in  the 
image that  the CPU is currently drawing, and start scanning  out bytes that haven’t 
yet been  changed. The result: Mismatched upper  and lower portions of the image. 
If the CRT controller scans more slowly than  the CPU can modify memory  (likely 
with a 386, a fast VGA, and narrow images),  then  the CPU can rip  right past the CRT 
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controller, with the same net result of mismatched top  and  bottom  parts of the im- 
age, as the CRT controller scans out first unchanged bytes and  then  changed bytes. 
Basically, shear will occasionally occur unless the CPU and CRT proceed  at exactly 
the same rate, which is most  unlikely. Shear is more  noticeable when there  are fewer 
but  larger images, since it’s more  apparent when a  larger  screen  area is sheared,  and 
because it’s easier to  spot one  out of three  large images momentarily shearing  than 
one  out of twenty  small  images. 
Image shear isn’t  terrible-I’ve written and sold  several games in which  images  occa- 
sionally shear, and I’ve never heard  anyone complain-but neither is it  ideal. One 
solution is page flipping,  in which drawing is done to  a  nondisplayed page of display 
memory while another page of  display memory is  shown on  the  screen. (We  saw 
page flipping back in  Chapter 23, we’ll see it again in  the  next  chapter,  and we’ll use 
it heavily starting  in  Chapter 4’7.) When the drawing is finished,  the newlydrawn 
part of display memory is made  the displayed page, so that  the new screen becomes 
visible  all at once, with no shearing or flicker. The  other page is then drawn to,  and 
when the drawing is complete  the display  is  switched  back to that page. 
Page flipping can be  used in  conjunction with bit-plane animation,  although page 
flipping  does  diminish some of the  unique advantages of bit-plane animation. Page 
flipping  produces  animation of the  highest visual quality whether bit-plane anima- 
tion is used or  not.  There  are a few drawbacks to page flipping, however. 
Page flipping  requires two display memory buffers, one to draw in  and  one to display 
at any  given time. Unfortunately, in mode 12H there  just isn’t enough memory for 
two buffers, so page flipping is not  an  option in that  mode. 
Also, page flipping  requires  that you keep the contents of both buffers up to date, 
which can  require  a  good  deal of extra drawing. 
Finally, page flipping  requires  that you  wait until  you’re  sure  the page has flipped 
before you start drawing to the  other page. Otherwise, you could end  up modifying 
a page while  it’s  still being displayed, defeating  the whole purpose of page flipping. 
Waiting for pages to flip takes  time and can slow overall performance significantly. 
What’s more, it’s sometimes difficult to be sure when the page has flipped, since not 
all VGA clones implement the display adapter status  bits and page  flip  timing  identically. 
To sum up, bit-plane animation by itself is very fast and looks good.  In  conjunction 
with page flipping, bit-plane animation looks a little better  but is  slower, and  the 
overall animation  scheme is more difficult to implement  and  perhaps  a  bit less reli- 
able  on some computers. 

Beating  the Odds in the  Jaw-Dropping  Contest 
Bit-plane animation is neat stuff. Heck, good  animation of any sort is fun,  and  the PC 
is  as good  a place as any  (well, almost any) to make  people’s  jaws drop. (Certainly it’s 
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the place to go if  you want to make a lot of  jaws drop.) Don’t let anyone tell  you that 
you can’t do good animation on the PC. You can--ifyou stretch your mind  to find 
ways to bring the full  power  of the VGA to bear on your applications. Bit-plane  ani- 
mation isn’t for every task; neither  are page flipping, exclusive-ORing,  pixel panning, 
or any  of the many other animation techniques you  have  available. One  or  more 
tricks from that grab-bag should give  you  what  you need,  though, and the bigger 
your  grab-bag, the  better your programs. 
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chapter 44

split screens save the page flipped day



ge Flipped Animation in 64K ... Almost 
t least in horseshoes and maybe a few other things. 
ircles,  where if  you need 12 MB of hard disk to 

ave 10 MB left (a situation that seems to be  some 

u dredge up the gumption to go in there and free 
1 if you  were up against an “almost-but-notquite” 
ached by freeing up something elsewhere? Sup  
plementing a wonderful VGA animation scheme 

creen space, square pixels, smooth motion and  more than 
ry you  have  is  all there is? What  would  you do? 

that won’t break easily. Then you sit  down and 
let your right brain do what it was designed to do. Sure enough, there’s a way, and in 
this chapter I’ll explain how a little VGA secret called page splitting can save the day 
for page flipped animation in 640x480 mode. But to do that, I have to lay a little 
groundwork first. Or maybe a lot of groundwork. 
No horseshoes here. 

A Plethora of Challenges 
In its  simplest terms, computer animation consists  of  rapidly  redrawing  similar  im- 
ages at slightly differing locations, so that  the eye interprets  the successive  images  as 

- 
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a single object in motion over time. The fact that  the world is an  analog realm and 
the images  displayed on a  computer  screen consist  of discrete pixels updated  at  a 
maximum  rate of about 70 Hz is irrelevant; your eye can interpret  both real-world 
images and pixel patterns on the  screen as objects in  motion, and that’s that. 
One of the key problems of computer  animation is that  it takes time to redraw a 
screen, time during which the  bitmap  controlling  the  screen is in an  intermediate 
state, with, quite possibly,  many objects erased and others half-drawn. Even when 
only  briefly  displayed, a partially-updated screen can cause flicker at best, and  at 
worst  can destroy the illusion of motion entirely. 
Another  problem of animation is that  the  screen must update  often enough so that 
motion  appears  continuous. A moving object  that moves just  once every second, 
shifting by hundreds of pixels each time it does move,  will appear to jump,  not to 
move  smoothly. Therefore,  there  are two overriding  requirements  for  smooth ani- 
mation: 1) the  bitmap must be updated quickly (once  per frame-60 to ’70 Hz-is 
ideal,  although 30 Hz will do  fine),  and, 2) the process of redrawing the  screen must 
be  invisible to the user; only the  end result  should ever  be seen. Both of these re- 
quirements  are  met by the  program  presented  in Listings 44.1 and 44.2. 

A Page Flipping Animation  Demonstration 
The listings taken together  form  a sample animation  program,  in which a single 
object  bounces endlessly off other objects, with instructions and a  count of bounces 
displayed at  the bottom of the  screen. I’ll  discuss  various aspects of  Listings 44.1 and 
44.2 during  the  balance of this article. The listings are too complex and involve too 
much VGA and animation knowledge for  for me to discuss it all in exhaustive detail 
(and I’ve covered a  lot of this stuff earlier  in  the  book) ; instead, I’ll cover the major 
elements, leaving it to you to explore  the  finer points-and, I  hope, to experiment 
with and expand on  the code I’ll provide. 

LISTING 44.1 L44-1 .C 
I* S p l i t   s c r e e n  VGA a n i m a t i o n   p r o g r a m .   P e r f o r m s   p a g e   f l i p p i n g   i n   t h e  
t o p   p o r t i o n   o f   t h e   s c r e e n   w h i l e   d i s p l a y i n g   n o n - p a g e   f l i p p e d  
i n f o r m a t i o n   i n   t h e   s p l i t   s c r e e n   a t   t h e   b o t t o m   o f   t h e   s c r e e n .  
Compi led   w i th   Bor land  C++ i n  C c o m p i l a t i o n  mode. *I  

# i n c l u d e   < s t d i o . h >  
# i n c l u d e   < c o n i o . h >  
# i n c l  ude  <dos. h> 
# inc lude   <math .h>  

# d e f i n e  SCREEN-SEG OxAOOO 
# d e f i n e  SCREEN-PIXWIDTH 640 I* i n   p i x e l s  *I  
# d e f i n e  SCREEN-WIDTH 80 I* i n   b y t e s  *I  
# d e f i n e  SPLIT-START-LINE 339 
#define  SPLIT-LINES 141 
# d e f i n e  NONSPLIT-LINES 339 
# d e f i n e  SPLIT-START-OFFSET 0 
# d e f i n e  PAGEO-START-OFFSET (SPLIT-LINES*SCREEN-WIDTH) 
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# d e f i n e  PAGEl-START-OFFSET ((SPLIT-LINES+NONSPLIT-LINES)*SCREEN-WIOTH) 
# d e f i n e  CRTC-INDEX  Ox3D4 /* CRT C o n t r o l l e r   I n d e x   r e g i s t e r  * /  
# d e f i n e  CRTC-DATA  Ox3D5 / *  CRT C o n t r o l l e r   D a t a   r e g i s t e r  * /  
# d e f i n e  OVERFLOW 0x07 /*  i n d e x   o f  CRTC r e g   h o l d i n g   b i t  8 o f   t h e  

# d e f i n e  MAX-SCAN Ox09 /*  i n d e x   o f  CRTC r e g   h o l d i n g   b i t   9   o f   t h e  

# d e f i n e  LINE-COMPARE Ox18 /*  i n d e x   o f  CRTC r e g   h o l d i n g   l o w e r  8 b i t s  

# d e f i n e  NUM-BUMPERS (s i zeof (Bumpers ) /s izeof (bumper ) )  
/ \def ine BOUNCER-COLOR 15 
# d e f i n e  BACK-COLOR 1 /*  p l a y f i e l d   b a c k g r o u n d   c o l o r  * /  

t y p e d e f   s t r u c t  { / *  one s o l i d  bumper t o  be  bounced o f f   o f  * /  

l i n e   t h e   s p l i t   s c r e e n   s t a r t s   a f t e r  * /  

l i n e   t h e   s p l i t   s c r e e n   s t a r t s   a f t e r  * /  

o f   l i n e   s p l i t   s c r e e n   s t a r t s   a f t e r  * /  

i n t  L e f t X . T o p Y . R i g h t X , B o t t o m Y ;  
i n t   C o l o r :  

1 bumper: 

t y p e d e f   s t r u c t  t / *  one b i t   p a t t e r n   t o  be  used f o r   d r a w i n g  */  
i n t  WidthInBytes;  
i n t   H e i g h t :  
uns igned   cha r   *B i tPa t te rn :  

1 image: 

t y p e d e f   s t r u c t  t /* one   bounc ing   ob jec t   t o  move around  the   sc reen */  
i n t  LeftX.TopY; / *  l o c a t i o n  */  
i n t  Width.Height ;  / *  s i z e   i n   p i x e l s  * /  
i n t  DirX.DirY: /*  m o t i o n   v e c t o r s  * /  
i n t  CurrentXC2l.CurrentYC21; /*  c u r r e n t   l o c a t i o n   i n   e a c h  page */  
i n t   C o l o r :  /*  c o l o r   i n   w h i c h   t o   b e  drawn */  
image  *RotationO: / *  r o t a t i o n s   f o r   h a n d l i n g   t h e  8 p o s s i b l e  * /  
image * R o t a t i o n l ;  / *  i n t r a b y t e   s t a r t   a d d r e s s   a t   w h i c h   t h e  */  
image  *Rotat ion2: /* l e f t  edge  can  be *I  
image  *Rotat ion3; 
image  *Rotat ion4: 
image  *Rotat ion5; 
image  *Rotat ion6: 
image  *Rotat ion7; 

1 bouncer: 

vo id   ma in(vo id1 ;  
void  DrawBumperList(bumper *, i n t .   u n s i g n e d   i n t ) ;  
v o i d   D r a w S p l i t S c r e e n ( v 0 i d ) :  
v o i d  E n a b l e S p l i t S c r e e n ( v o i d ) ;  
void  MoveBouncer(bouncer *, bumper *, i n t ) :  
e x t e r n   v o i d  DrawRect ( in t . in t . in t . in t . in t .uns igned i n t . u n s i g n e d   i n t ) :  
e x t e r n   v o i d  ShowPage(unsigned i n t ) ;  
e x t e r n   v o i d   O r a w I m a g e ( i n t . i n t . i m a g e   * * . i n t . u n s i g n e d   i n t . u n s i g n e d   i n t ) :  
extern  void  ShowBounceCount(void):  
e x t e r n   v o i d   T e x t U p ( c h a r   * . i n t . i n t . u n s i g n e d   i n t . u n s i g n e d   i n t ) :  
ex te rn   vo id   SetBIOSBx8Font (vo id ) :  

/ *  All bumpers i n   t h e   p l a y f i e l d  * /  
bumper  Bumpers[] - t 

(0.0.19.339.21.  {0.0.639.19.21.  {620.0.639.339.21. 
{0.320.639.339.21.  I60.48.79.67.121.  ~60.108.79.127.121. 
(60.168.79.187.121.  t60.228.79.247.121.  I120.68.131.131,131, 
{120.188.131.271.131.  I240.128.259.147.141.  {240.192.259.211.141. 
t208.160.227.179.141.  {272.160.291.179.141.  t228.272.231.319.111. 
t192.52.211.55.111.  I302.80.351.99.121.  I320.260.379.267.131. 
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{380.120,387.267.13), {420.60.579.63.11),  {428.110.571,113.11~, 
{420.160.579,163.11}, ~428.210.571.213.11).  (420.260.579.263.11) 1 ;  

/*  Image f o r   b o u n c i n g   o b j e c t  when l e f t  edge i s   a l i g n e d   w i t h   b i t  7 * /  
uns igned   cha r   ~BouncerRo ta t i onOCl  - I 

OxFF.OxOF.OxFO. OxFE.0x07.OxFO. OxFC.OxO3.OxFO.  OxFC.OxO3.OxFO. 
OxFE.0x07,OxFO. OxFF.OxFF.OxFO. 0xCF.OxFF.0~30.  0x87.OxFE.0x10. 
0x07.0x0E.0x00.  0x07.0x0E.0x00.  0x07.0x0E.0x00.  0x07.0x0E.0x00. 
0x87.OxFE.0x10.  0xCF.OxFF.0~30. OxFF.OxFF.OxFO. OxFE.0x07.OxFO. 
OxFC.OxO3.OxFO.  OxFC.OxO3,OxFO. OxFE.0x07.OxFO. OxFF.OxOF.OxFO~; 

image  BouncerRotationO - (3.  20.  -BouncerRotationO}; 

/ *  Image f o r   b o u n c i n g   o b j e c t  when l e f t  edge i s   a l i g n e d   w i t h   b i t  3 * /  
unsigned  char  -BouncerRotat ion4[]  - ( 

OxOF.OxFO.OxFF. 0x0F.OxE0.0x7F. OxOF.OxCO.Ox3F.  OxOF.OxCO.Ox3F. 
0x0F.OxE0.0x7F. 0xOF.OxFF.OxFF.  OxOC.OxFF.OxF3. 0x08.0x7F.OxE1. 
0x00.0x70.0xE0,  0x00.0x70.OxEO.  0x00.0x70.OxEO.  0x00.0x70.OxEO. 
0x08.0x7F.OxE1. OxOC.OxFF.OxF3.  OxOF.OxFF.OxFF. 0x0F.OxE0.0x7F. 
OxOF,OxCO,Ox3F,  OxOF.OxCO,Ox3F. 0x0F.OxE0.0x7F. OxOF.OxFO.OxFF); 

image  BouncerRotat ion4 - {3.  20.  -BouncerRotation4}: 

/ *  I n i t i a l   s e t t i n g s   f o r   b o u n c i n g   o b j e c t .   O n l y  2 r o t a t i o n s   a r e  needed 
because  the   ob jec t  moves 4 p i x e l s   h o r i z o n t a l l y   a t  a t i m e  */  

bouncer  Bouncer - (156,60.20.20.4.4.156.156.60.60.BOUNCER-COLOR, 
&BouncerRotationO,NULL,NULL,NULL,EBouncerRotation4,NULL,NULL,NULL~; 

unsigned i n t   P a g e S t a r t O f f s e t s C 2 1  - 
(PAGEO-START-OFFSET.PAGEl-START-OFFSET); 

unsigned i n t  BounceCount; 

v o i d   m a i n 0  I 
i n t  DisplayedPage.  NonDisplayedPage. Done, i: 
u n i o n  REGS r e g s e t ;  

r e g s e t . x . a x  - 0x0012; / *  s e t   d i s p l a y   t o  640x480  16-co lor  mode * /  
i n t 8 6 ( 0 x 1 0 .   E r e g s e t .   & r e g s e t ) ;  
SetBIOS8x8FontO; / *  s e t   t h e   p o i n t e r   t o   t h e  B I O S  8 x 8   f o n t  * /  
E n a b l e S p l i t S c r e e n O :  /* t u r n  on t h e   s p l i t   s c r e e n  */ 

/*  Disp lay  page 0 above t h e   s p l i t   s c r e e n  */  
ShowPage(PageStartOffsetsC0isplayedPage - 03) :  

/* Clear  both  pages  to  background  and  draw  bumpers i n  each  page */ 
f o r  ( i - 0 :  i < 2 :  i++) ( 

OrawRect~O.O.SCREEN~PIXWIDTH-l,NONSPLIT~LINES-l,BACK~COLOR, 

OrawBumperList~Bumpers,NUM~BUMPERS,PageStar tOf fsets[ i l~ ;  
PageStartOffsets[i].SCREEN-SEG); 

) 

D r a w S p l i t S c r e e n O ;  / *  draw t h e   s t a t i c   s p l i t   s c r e e n   i n f o  * /  
BounceCount - 0; 
ShowBounceCountO; / *  p u t  up t h e   i n i t i a l   z e r o   c o u n t  * /  

/*  D r a w  t h e   b o u n c i n g   o b j e c t   a t   i t s   i n i t i a l   l o c a t i o n  */  
OrawImage(Bouncer.LeftX.Bouncer.TopY,EBouncer.RotationO, 

B o u n c e r . C o l o r . P a g e S t a r t O f f s e t s C D i s p l a y e d P a g e 1 . S C R E E N ~ S E G ~ ;  

/ *  Move t h e   o b j e c t ,  draw i t  i n   t h e   n o n d i s p l a y e d  page,  and f l i p   t h e  

Done - 0;  
do ( 

page u n t i l  Esc i s  p ressed */  

NonDisplayedPage - DisplayedPage A 1: 
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/*  E r a s e   a t   c u r r e n t   l o c a t i o n   i n   t h e   n o n d i s p l a y e d  page *I 
DrawRect(Bouncer.CurrentX[NonDisplayedPagel, 

Bouncer.CurrentY[NonDisplayedPagel. 
Bouncer.CurrentXCNonDisplayedPage3+8ouncer.Width-l ,  
Bouncer.CurrentY[NonDisplayedPagel+Bouncer.Height-l, 
BACK~COLOR.PageStar tOf fse ts [NonDisp layedPage l ,SCREEN~SEG~:  

I* Move the  bouncer  * /  
MoveBouncer(&Bouncer.  Bumpers. NUM-BUMPERS): 
/ *  Draw a t   t h e  new l o c a t i o n   i n   t h e   n o n d i s p l a y e d  page * /  
DrawImage(Bouncer.LeftX.Bouncer.TopY.&Bouncer.RotationO, 

Bouncer.Color.PageStartOffsetsCNonDisplayedPage1, 
SCREEN-SEG): 

/ *  Remember where the   bouncer  i s   i n   t h e   n o n d i s p l a y e d  page */  
Bouncer.CurrentXCNonDisplayedPage1 - Bouncer .Lef tX:  
Bouncer.CurrentY~NonDisplayedPage1 - Bouncer.TopY: 
/ *  F l i p   t o   t h e  page we j u s t  drew i n t o  * /  
ShowPage(PageStartOffsetsCDisp1ayedPage - NonDisplayedPagel):  
I* Respond t o  any k e y s t r o k e  *I  
i f  ( k b h i t 0 )  { 

s w i t c h   ( g e t c h 0 )  I 
case  OxlB: /*  Esc t o  end */  

case 0: / *  branch  on  the  extended  code * I  
Done - 1: b reak :  

s w i t c h   ( g e t c h 0 )  ( 
case  0x48: I* nudge  up */  

case Ox4B: I* nudge l e f t  * /  

case Ox4D: / *  nudge r i g h t  * /  

case  0x50: / *  nudge down */ 

Bouncer.Dit-Y - -abs(Bouncer .Di rY) ;   break:  

Bouncer.DirX - -abs(Bouncer .Di rX) :   break:  

Bouncer.OirX - abs(Bouncer .Di rX) ;   break:  

Bouncer.DirY - abs(Bouncer .Di rY) ;   break:  
I 
break:  

d e f a u l t  : 
break:  

3 
1 

I whi le   ( !Done) :  

/ *  R e s t o r e   t e x t  mode and  done * I  
regse t . x .ax  - 0x0003: 
i n t B 6 ( 0 x 1 0 .   I r e g s e t .   I r e g s e t ) :  

I 

/*  Draws t h e   s p e c i f i e d   l i s t   o f  bumpers i n t o   t h e   s p e c i f i e d  page * I  
void  DrawBumperList(bumper * Bumpers, i n t  NumBumpers. 

{ 
uns igned i n t   P a g e s t a r t o f f s e t )  

i n t  i: 

f o r   ( i - 0 :  i<NumBumpers:  i++.Bumpers++) { 
DrawRect(Bumpers->LeftX.Bumpers->TopY.Bumpers->RightX, 

Bumpers->BottomY.Bumpers->Color.PageStartOffset, 
SCREEN-SEG) : 

3 
1 

/*  D i s p l a y s   t h e   c u r r e n t  bounce  count * I  
v o i d  ShowBounceCountO { 

char  CountASCII[71: 

Split Screens  Save  the  Page  Flipped Day 823 



i toa(BounceCount.CountASCII.10); I* c o n v e r t   t h e   c o u n t   t o  A S C I I  * /  
TextUp(CountASCII.344.64.SPLIT_START_OFFSET.SCREEN_SEG): 

1 

/*  Frames t h e   s p l i t   s c r e e n  and f i l l s  i t  w i t h   v a r i o u s   t e x t  */ 
v o i d   D r a w S p l i t S c r e e n O  [ 

DrawRect~O.O,SCREEN~PIXWIDTH-1.SPLIT~LINES-1.O,SPLIT~START~OFFSET, 

DrawRect~O,l.SCREEN~PIXWIDTH-l~4,15,SPLIT~START~OFFSET, 

DrawRect~O.SPLIT~LINES-4.SCREEN~PIXWIDTH-l,SPLIT~LINES-l,15, 

D~~~R~C~(~.~.~.SPLIT-LINES-~,~~.SPLIT_START-OFFSET.SCREEN_SEG): 
O r a w R e c t ~ S C R E E N ~ P I X W I D T H - 4 . 1 . S C R E E N ~ P I X W I D T H - l , S P L I T ~ L I N E S - l , l 5 ,  

TextUp("This i s   t h e   s p l i t   s c r e e n   a r e a  ...", B.8.SPLIT-START-OFFSET. 

TextUp("Bounces: ".272.64.SPLIT-START-OFFSET.SCREEN-SEG): 
TextUp("\O33:  nudge left".520.78.SPLIT-START-OFFSET.SCREEN-SEG): 
TextUp("\032:  nudge right".520.90.SPLIT-START-OFFSET.SCREEN-SEG); 
TextUp("\031:  nudge down" .520 .102 .SPLIT~START~OFFSET,SCREEN~SEG) ;  
TextUp("\030:  nudge up".520.114.SPLIT_START-OFFSET.SCREEN-SEG); 
TextUp("Esc t o  end",520.126.SPLIT-START-OFFSET.SCREEN-SEG); 

SCREEN-SEG); 

SCREEN-SEG) ; 

SPLIT-START-OFFSET,SCREEN-SEG); 

SPLIT-START-OFFSET,SCREEN-SEG); 

SCREEN-SEG) ; 

1 

/* Turn  on t h e   s p l i t   s c r e e n   a t   t h e   d e s i r e d   l i n e   ( m i n u s  1 because  the  
s p l i t   s c r e e n   s t a r t s   * a f t e r *   t h e   l i n e   s p e c i f i e d   b y   t h e  LINE-COMPARE 
r e g i s t e r )   ( b i t  8 o f   t h e   s p l i t   s c r e e n   s t a r t   l i n e   i s   s t o r e d   i n   t h e  
O v e r f l o w   r e g i s t e r ,   a n d   b i t  9 i s   i n   t h e  Maximum Scan L i n e   r e g )  */ 

outp(CRTC-INDEX, LINE-COMPARE); 
outp(CRTC-DATA.  (SPLIT-START-LINE - 1) & OXFF): 
outp(CRTC-INDEX, OVERFLOW): 
outp(CRTC-DATA. (((((SPLIT-START-LINE - 1) & 0x100) >> 8) << 4 )  I 
outp(CRTC-INDEX. MAX-SCAN); 
outp(CRTC-DATA. (((((SPLIT-START-LINE - 1) & 0x200) >> 9) << 6) I 

v o i d   E n a b l e S p l i t S c r e e n O  { 

(inp(CRTC-DATA) & - 0 ~ 1 0 ) ) ) ;  

(inp(CRTC-DATA) & - 0 ~ 4 0 ) ) ) :  
1 

/* Moves the   bouncer ,   bounc ing  i f  bumpers a r e   h i t  * /  
void  MoveBouncer(bouncer  *Bouncer,  bumper  *BumperPtr. i n t  NumBumpers) I 

i n t  NewLeftX, NewTopY. NewRightX,  NewBottomY. i: 

/* Move t o  new l o c a t i o n ,   b o u n c i n g  i f  necessary */ 
NewLeftX - Bouncer ->Lef tX  + Bouncer->DirX; / *  new coords */  
NewTopY - Bouncer->TopY + Bouncer->DirY; 
NewRightX - NewLeftX + Bouncer->Width - 1; 
NewBottomY - NewTopY + Bouncer->Height - 1 :  
/*  Compare t h e  new l o c a t i o n   t o   a l l  bumpers,   check ing  for   bounce */ 
f o r   ( i - 0 :  i<NumBumpers;  i++.BumperPtr++) { 

/ *  I f  m o v i n g   p u t s   t h e   b o u n c e r   i n s i d e   t h i s  bumper,  bounce */  
i f  ( (NewLeftX <- BumperPtr->RightX) && 

(NewRightX >- BumperPt r ->Lef tX)  && 
(NewTopY <- BumperPtr->BottomY) && 
(NewBottomY >- BumperPtr->TopY) { 

out   which  edge(s)  i t  crossed,  and  bounce a c c o r d i n g l y  */ 
/* The  bouncer  has t r i e d   t o  move i n t o   t h i s  bumper; f i g u r e  

i f  ( ( ( B o u n c e r - > L e f t X  > BumperPtr->RightX) 86 
(NewLeftX <- BumperPt r ->Righ tX) )  1 1  
( ( ( B o u n c e r - > L e f t X  + Bouncer->Width - 1 )  < 
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1 
i f  

1 
I* 
i f  

BumperPt r ->Lef tX)  && 
(NewRightX >- BumperPt r ->Lef tX) ) )  { 

Bouncer->DirX - -Bouncer->DirX; /* bounce h o r i z o n t a l l y  * /  
NewLeftX - Bouncer->LeftX + Bouncer->DirX: 

(((Bouncer->TopY > BumperPtr->BottomY) && 
(NewTopY <- BumperPtr->BottomY)) I I 
( ( (Bouncer->TopY + Bouncer->Height - 1) < 
BumperPtr->TopY) && 
(NewBottomY >- BumperPtr->TopY)))  ( 

Bouncer->DirY - -Bouncer->DirY; /* bounce v e r t i c a l l y  * /  
NewTopY - Bouncer->TopY + Bouncer->DirY; 

Upda te   t he   bounce   coun t   d i sp lay :   t u rn   ove r   a t  10000 */  
(++BounceCount >- 10000) t 
TextUp("0 " .344.64.SPLIT-START~OFFSET,SCREEN_SEG):  
BounceCount - 0:  

I e l s e  t 

I 
ShowBounceCountO: 

1 
1 
Bouncer ->Lef tX  = NewLeftX; / *  s e t   t h e   f i n a l  new c o o r d i n a t e s  */  
Bouncer->TopY - NewTopY: 

1 

LISTING 44.2  L44-2.ASM 
: L o w - l e v e l   a n i m a t i o n   r o u t i n e s .  
: T e s t e d   w i t h  TASM 

SCREEN-WIDTH 
INPUT-STATUS-1 
CRTC-INDEX 
START-ADDRESS-HIGH 
START-ADDRESS-LOW 
GC-INDEX 
SET-RESET 
G-MODE 

80 
03dah 
03d4h 
Och 
Od h 

0 
03ceh 

5 

: s c r e e n   w i d t h   i n   b y t e s  
: I n p u t   S t a t u s  1 r e g i s t e r  
:CRT C o n t r o l l e r   I n d e x   r e g  
: b i t m a p   s t a r t   a d d r e s s   h i g h   b y t e  
; b i t m a p   s t a r t   a d d r e s s   l o w   b y t e  
: G r a p h i c s   C o n t r o l l e r   I n d e x   r e g  
:GC i n d e x   o f   S e t /   R e s e t   r e g  
:GC i n d e x   o f  Mode r e g i s t e r  

.model  small 

.data 
BIOS8x8Ptr  dd ? : p o i n t s   t o  BIOS 8 x 8   f o n t  
: Tables  used t o   l o o k  up l e f t  and r i g h t   c l i p  masks. 
Lef tMask  db  Of fh .   07fh.   03fh.   Ol fh .  OOfh. 007h.  003h. OOlh 
RightMask  db  080h. OcOh,  OeOh, OfOh.  Of8h.  Ofch.  Ofeh.  Offh 

.code 
: Draws t h e   s p e c i f i e d   f i l l e d   r e c t a n g l e   i n   t h e   s p e c i f i e d   c o l o r .  
: Assumes t h e   d i s p l a y   i s   i n  mode 12h. Does n o t   c l i p  and  assumes 
: r e c t a n g l e   c o o r d i n a t e s   a r e   v a l i d .  

: C n e a r - c a l l a b l e   a s :   v o i d   D r a w R e c t ( i n t   L e f t X .   i n t  TopY. i n t  RightX, 
i n t  BottomY. i n t   C o l o r ,   u n s i g n e d   i n t   S c r n D f f s e t .  
unsigned i n t  ScrnSegment); 

DrawRectParms s t r u c  
dw 

L e f t X  
2 dup (? ) :pushed BP and r e t u r n   a d d r e s s  

dw ? 
TopY dw ? 
R igh tX dw 

: X  c o o r d i n a t e   o f   l e f t   s i d e   o f   r e c t a n g l e  
: Y  c o o r d i n a t e   o f   t o p   s i d e   o f   r e c t a n g l e  

? : X  c o o r d i n a t e   o f   r i g h t   s i d e  o f  r e c t a n g l e  
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BottomY dw 
C o l o r  dw 

S c r n O f f s e t  
ScrnSegment 
OrawRectParms 

pub1 i c  

push 
mov 
push 
push 

c l  d 
mov 
mov 
mov 
o u t  
mov 
o u t  
1 es 
mov 
mu1 
add 
mov 
mov 
s h r  
s h r  
sh r  
add 
and 
mov 
mov 
mov 
and 
mov 
mov 
and 
sub 
s h r  
sh r  
s h r  
j n z  
and 

mov 
sub 

push 
mov 
xchg 
i nc 
mov 
dec 
js 
j z  
mov 
r e p  

-0rawRect 

MasksSet: 

F i  11  Loop: 

? 
? 

dw ? 
dw ? 

ends 

:Y c o o r d i n a t e   o f   b o t t o m   s i d e   o f   r e c t a n g l e  
: c o l o r   i n   w h i c h   t o   d r a w   r e c t a n g l e   ( o n l y   t h e  
; lower  4 b i t s   m a t t e r )  
; o f f s e t   o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  
:segment o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  

- DrawRect 
p roc   near  
bP : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
b p s   s p   : p o i n t   t o   l o c a l   s t a c k   f r a m e  
s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
d i  

dx.GC-INDEX 
a1 .SET-RESET 
a h . b y t e   p t r   C o l o r C b p l  
d x ,   a x   : s e t   t h e   c o l o r   i n   w h i c h   t o   d r a w  
ax.G-MODE + (0300h) 
d x ,   a x   : s e t   t o   w r i t e  mode 3 
d i . d w o r d   p t r   S c r n O f f s e t C b p ]   ; p o i n t   t o   b i t m a p   s t a r t  
ax.SCREEN-WIDTH 
TopY Cbpl 
d i  ,ax 
ax.LeftXCbp1 
bx,   ax 
ax.1 
ax.1 
ax. 1 
d i  .ax 
bx.7 
d l   . Le f tMaskCbx l  
bx ,R igh tX [bp l  
s i ,   b x  
bx.7 
dh.RightMaskCbx1 
b x . L e f t X [ b p l  
bx.NOT 7 
s i ,   b x  
s i  .1 
s i  .1 
s i  .1 
MasksSet 
d l  ,dh 

bx.BottomYCbp1 
bx.TopYCbp1 

d i  
a1 , d l  
e s : [ d i l . a l  
d i  
c x . s i  
cx  
L i  neDone 
DrawRightEdge 
a 1  .O f fh  
s t o s b  

; p o i n t   t o   t h e   s t a r t   o f   t h e   t o p   s c a n  
; l i n e   t o  fill 

;/8 - b y t e   o f f s e t   f r o m   l e f t   o f   s c r e e n  

; p o i n t   t o   t h e   u p p e r - l e f t   c o r n e r   o f  fill area 
; i s o l a t e   i n t r a p i x e l   a d d r e s s  
; s e t   t h e   l e f t - e d g e   c l i p  mask 

: i s o l a t e   i n t r a p i x e l   a d d r e s s   o f   r i g h t  edge 
: s e t   t h e   r i g h t - e d g e   c l i p  mask 

; i n t r a p i x e l   a d d r e s s   o f   l e f t  edge 

:# o f   b y t e s   a c r o s s  spanned  by  rectangle - 1 
; i f  t h e r e ' s   o n l y  one b y t e   a c r o s s .  
: combine  the masks 

:P o f  scan l i n e s   t o  fill - 1 

;remember l i n e   s t a r t   o f f s e t  
; l e f t  edge c l i p  mask 
;draw  the l e f t  edge 
: p o i n t  t o  t h e   n e x t   b y t e  
; I  o f   b y t e s   l e f t   t o  do 
;# o f   b y t e s   l e f t   t o  do - 1 
: t h a t ' s  i t  i f  t h e r e ' s   o n l y  1 by te   ac ross  
:no m i d d l e   b y t e s  i f  o n l y  2 by tes   ac ross  
:non -edge   by tes   a re   so l i d  
:draw t h e   s o l i d   b y t e s   a c r o s s   t h e   m i d d l e  
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DrawRightEdge: 
mov a1,dh 
x c h g   e s : [ d i l . a l  

pop d i  
add d i  .SCREEN-WIDTH 
dec  bx 
jns F i  11  Loop 

pop d i  
pop s i  
POP bp 
r e t  

LineDone: 

- DrawRect  endp 

: r i g h t - e d g e   c l i p  mask 
: d r a w   t h e   r i g h t  edge 

: r e t r i e v e   l i n e   s t a r t   o f f s e t  
: p o i n t   t o   t h e   n e x t   l i n e  
; c o u n t   o f f   s c a n   l i n e s  

: r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

: Shows t h e  page a t   t h e   s p e c i f i e d   o f f s e t   i n   t h e   b i t m a p .  Page i s  
: d i s p l a y e d  when t h i s   r o u t i n e   r e t u r n s .  

: C n e a r - c a l l a b l e   a s :   v o i d  ShowPage(unsigned i n t   S t a r t o f f s e t ) ;  

ShowPageParms s t r u c  

S t a r t o f f s e t  dw ? : o f f s e t   i n   b i t m a p   o f  page t o   d i s p l a y  
ShowPageParms ends 

dw 2 dup ( ? I  ;pushed BP and re tu rn   add ress  

p u b l i c  -Showpage 

push   bp   : p rese rve   ca l l e r ' s   s tack   f rame 
mov b p . s p   : p o i n t   t o   l o c a l   s t a c k   f r a m e  

: W a i t  f o r   d i s p l a y   e n a b l e   t o   b e   a c t i v e   ( s t a t u s   i s   a c t i v e   l o w ) .   t o   b e  
: su re   bo th   ha l ves  o f  t h e   s t a r t   a d d r e s s  will t a k e   i n   t h e  same frame. 

- ShowPage proc   near  

mov 
mov 
mov 
mo v 
mov 

i n  
t e s t  
j nz 

mov 
mov 
o u t  
mov 

WaitDE: 

: S e t   t h e   s t a r t  

o u t  

b l  , START-ADDRESS-LOW : p r e l o a d   f o r   f a s t e s t  
bh,byte p t r   S t a r t O f f s e t [ b p l  : f l i p p i n g  once d i s p l a y  
cl.START-ADDRESS-HIGH : enable i s   d e t e c t e d  
c h . b y t e   p t r   S t a r t D f f s e t + l [ b p l  
dx.INPUT-STATUS-1 

a1 .dx 
a1 .Dlh 
Wai t D E  ; d i s p l a y   e n a b l e   i s   a c t i v e   l o w  ( 0  - a c t i v e )  
o f f s e t   i n   d i s p l a y  memory o f   t h e  page t o   d i s p l a y .  
dx.CRTC-INDEX 
ax,  bx 
dx ,   ax   ; s ta r t   add ress   l ow  
ax,   cx  

d x ,   a x   : s t a r t   a d d r e s s   h i s h  
: Now w a i t   f o r   v e r t i c a l  sync, s o  t h e   o t h e r  page will be i n v i s i b l e  when 
: we s t a r t   d r a w i n g   t o  i t . 

Wai t V S :  
mov dx.INPUT-STATUS-1 

i n  a1 .dx 
t e s t  a1 .08h 
j z  W a i t V S  : v e r t i c a l   s y n c   i s   a c t i v e   h i g h  (1 - a c t i v e )  
POP bP : r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

- ShowPage endp 

: D i s p l a y s   t h e   s p e c i f i e d  image a t  t h e   s p e c i f i e d   l o c a t i o n   i n   t h e  
: s p e c i f i e d   b i t m a p ,   i n   t h e   d e s i r e d   c o l o r .  
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; C n e a r - c a l l a b l e   a s :   v o i d   D r a w I m a g e ( i n t   L e f t X .   i n t  TopY. 
image  **Rotat ionTable.  i n t   C o l o r ,   u n s i g n e d   i n t   S c r n O f f s e t .  
uns igned i n t  ScrnSegment); 

DrawImageParms 
dw 

D ILe f tX  
DITopY 
Ro ta t i onTab le  

D ICo lo r  

D I S c r n O f f s e t  
DIScrnSegment 
DrawImageParms 

image s t r u c  
Wid th InBy tes  
H e i g h t  
B i t P a t t e r n  
image  ends 

pub1 i c 

push 
mov 
push 
push 

c l  d 
mov 
mo v 
mov 
o u t  
mov 
o u t  
1 es 
mov 
mu1 
add 
mov 
mov 
s h r  
s h r  

add 
s h r  

and 
s h l  
add 
mov 
mov 
mov 
mov 

push 
mov 

- DrawImage 

DrawImageLoop: 

s t r u c  
2 dup  (?);pushed BP and r e t u r n   a d d r e s s  

dw ? ;X  c o o r d i n a t e   o f   l e f t   s i d e   o f  image 
dw ? :Y c o o r d i n a t e   o f   t o p   s i d e   o f   i m a g e  
dw ? ; p o i n t e r   t o   t a b l e   o f   p o i n t e r s   t o  image 

; r o t a t i o n s  
dw ? ; c o l o r   i n   w h i c h   t o   d r a w  image ( o n l y   t h e  

; lower  4 b i t s   m a t t e r )  
dw ? ; o f f s e t  o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  
dw ? ;segment o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  

ends 

dw ? 
dw ? 
dw ? 

-DrawImage 

bP 
proc   near  

bP.SP ; p o i n t   t o   l o c a l   s t a c k   f r a m e  
s i   ; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
d i  

; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  

dx.GC_INDEX 
a1 .SETPRESET 
ah .by te   p t r   D ICo lo rEbp ]  
d x . a x   ; s e t   t h e   c o l o r   i n   w h i c h   t o   d r a w  
ax.G-MODE + (0300h) 
d x , a x   ; s e t   t o   w r i t e  mode 3 
d i , d w o r d   p t r   D I S c r n O f f s e t [ b p l   ; p o i n t   t o   b i t m a p   s t a r t  
ax.SCREEN-WIDTH 
DITopYCbpl ; p o i n t   t o   t h e   s t a r t   o f   t h e   t o p   s c a n  
d i   , a x  ; l i n e  on  which t o  draw 
ax .D ILe f tX [bp l  
bx,   ax 
ax.1 ; /E  - b y t e   o f f s e t   f r o m   l e f t  o f  screen 
ax.1 
ax.1 
d i   , a x  
bx.7 
bx .1  ;*2 f o r  word   look-up  
b x . R o t a t i o n T a b l e C b p 1   ; p o i n t   t o   t h e   i m a g e   s t r u c t u r e   f o r  
bx.  Cbxl ; t h e   i n t r a b y t e   r o t a t i o n  
dx.Cbx1.WidthInBytes  : image  width 
s i , [ b x l . B i t P a t t e r n   ; p o i n t e r   t o  image p a t t e r n   b y t e s  
bx.Cbx1.Height  ; image  height 

d i  ;remember l i n e   s t a r t   o f f s e t  
cx.dx ;# o f   b y t e s   a c r o s s  

; p o i n t   t o   t h e   u p p e r - l e f t   c o r n e r   o f   d r a w   a r e a  
; i s o l a t e   i n t r a p i x e l   a d d r e s s  

DrawImageLineLoop: 
1 odsb ;ge t   t he   nex t   image   by te  
xchg  es:   [d i ]   .a1 ;draw  the  next   image  byte 
i n c   d i  ; p o i n t   t o   t h e   f o l l o w i n g   s c r e e n   b y t e  
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loop  DrawImageLineLoop 
pop d i   : r e t r i e v e   l i n e   s t a r t   o f f s e t  
add d i  ,SCREEN-WIDTH ; p o i n t   t o   t h e   n e x t   l i n e  
dec  bx  :count o f f  scan l i n e s  
j n z  DrawImageLoop 

pop d i   ; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
pop s i  

r e t  
-DrawImage  endp 

: Draws a 0 - t e r m i n a t e d   t e x t   s t r i n g   a t   t h e   s p e c i f i e d   l o c a t i o n   i n   t h e  
: s p e c i f i e d   b i t m a p   i n   w h i t e .   u s i n g   t h e   8 x 8  B I O S  fon t .   Must  be a t  an X 
: c o o r d i n a t e   t h a t ' s  a m u l t i p l e   o f  8. 

: C n e a r - c a l l a b l e   a s :   v o i d   T e x t U p ( c h a r   * T e x t .   i n t   L e f t X .   i n t  TopY, 
uns igned i n t   S c r n O f f s e t .   u n s i g n e d   i n t   S c r n S e g m e n t ) :  

POP b p   : r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

TextUpParms 

TULeftX 
Tex t  

TUTopY 
TUScrnOffset  
TUScrnSegment 
TextUpParms 

pub1 i c  
-Textup  proc 

push 
mov 
push 
push 

c l  d 
mov 
mov 
o u t  
1 es 
mov 
mu1 
add 
mov 
mov 
s h r  
s h r  
sh r  
add 
mov 

TextUpLoop: 
l o d s b  
and 
j z  
push 
push 
push 
ca t  1 
POP 

s t r u c  
dw 2 dup  (?):pushed BP and r e t u r n   a d d r e s s  
dw 
dw 

? : p o i n t e r   t o   t e x t   t o  draw 
? : X  c o o r d i n a t e   o f   l e f t   s i d e   o f   r e c t a n g l e  

dw ? ;Y c o o r d i n a t e   o f   t o p   s i d e   o f   r e c t a n g l e  
dw ? : o f f s e t   o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  
dw ? :segment o f  base o f   b i t m a p   i n   w h i c h   t o   d r a w  

; (must  be a m u l t i p l e   o f  8) 

ends 

-Textup 
near  
bP : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
bP.SP : p o i n t   t o   l o c a l   s t a c k   f r a m e  

d i  
s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

dx.GC-INDEX 
ax.G-MODE + (0000h) 
dx.ax  :set  t o   w r i t e  mode 0 
d i . d w o r d   p t r   T U S c r n O f f s e t E b p l   : p o i n t   t o   b i t m a p   s t a r t  
ax.SCREEN-WIDTH 
TUTopYCbpl : p o i n t   t o   t h e   s t a r t   o f   t h e   t o p   s c a n  
d i  .ax : l i n e   t h e   t e x t   s t a r t s  on 
ax.TULeftX[bp] 
bx,  ax 
ax.1 : /8 - b y t e   o f f s e t   f r o m   l e f t   o f   s c r e e n  
ax, 1 
ax.1 
d i  .ax : p o i n t   t o   t h e   u p p e r - l e f t   c o r n e r   o f   f i r s t   c h a r  
s i   . T e x t C b p l   : p o i n t   t o   t e x t   t o   d r a w  

: g e t   t h e   n e x t   c h a r a c t e r   t o   d r a w  
a1 .a1 
TextUpDone  :done i f  n u l l   b y t e  

d i  
s i   : p r e s e r v e   t e x t   s t r i n g   p o i n t e r  

ds   : p rese rve   de fau l t   da ta  segment 
CharUp  :draw t h i s   c h a r a c t e r  
ds : r e s t o r e   d e f a u l t   d a t a  segment 

: p r e s e r v e   c h a r a c t e r ' s   s c r e e n   o f f s e t  
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POP 
POP 
i nc 
j mP 

TextUpDone: 
POP 
POP 
POP 
r e t  

CharUp: 
1 ds 
mov 
sub 
shl 
s h l  
s h l  
add 
mov 

CharUpLoop: 
movsb 
add 
1 oop 
r e t  

-Textup  endp 

d i  
s i  
d i  
TextUpLoop 

d i  
s i  
bP 

s i . [B IOSBx8Pt r l  
b l  , a1 
bh,  bh 
bx.1 
bx.1 
bx.1 
s i ,  bx 
cx.8 

d i  .SCREEN-WIDTH-1 
CharUpLoop 

: r e t r i e v e   c h a r a c t e r ' s   s c r e e n   o f f s e t  
: r e t r i e v e   t e x t   s t r i n g   p o i n t e r  
: p o i n t   t o   n e x t   c h a r a c t e r ' s   s t a r t   l o c a t i o n  

: r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

:draws t h e   c h a r a c t e r  i n  AL a t  ES:DI 
: p o i n t   t o   t h e   8 x 8   f o n t   s t a r t  

:*8 t o   l o o k  u p   c h a r a c t e r   o f f s e t   i n   f o n t  
: p o i n t  0S:SI t o   c h a r a c t e r   d a t a   i n   f o n t  
: c h a r a c t e r s   a r e  8 h i g h  

:copy t h e   n e x t   c h a r a c t e r   p a t t e r n   b y t e  
: p o i n t   t o   t h e   n e x t   d e s t   b y t e  

: S e t s   t h e   p o i n t e r   t o   t h e  BIOS 8 x 8   f o n t .  

: C n e a r - c a l l a b l e  as: ex te rn   vo id   Se tB IOSBx8Fon t (vo id ) :  

p u b l i c  -SetBIOSBx8Font 

push   bp   : p rese rve   ca l l e r ' s   s tack   f rame 
push s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
push d i  : and  data  segment  (don' t  assume B I O S  
push  ds : prese rves   any th ing )  
mov a h . l l h  :B IOS c h a r a c t e r   g e n e r a t o r   f u n c t i o n  
mov a l . 3 0 h  :BIOS i n f o r m a t i o n   s u b f u n c t i o n  
mov bh.3 
i n t  10h 
mov word p t r  [B IOS8xBPt r ] . bp   : s to re   t he   po in te r  
mov word p t r  [BIOSBx8Ptr+2].es 

_SetBIOSdx8Font  proc  near 

: r e q u e s t   8 x 8   f o n t   p o i n t e r  
: invoke BIOS v i d e o   s e r v i c e s  

POP ds 
POP d i   : r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
POP s i  
POP bP : r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

_SetBIOSBxBFont  endp 
end 

Listing 44.1 is written  in C .  It  could equally well  have been written in assembly lan- 
guage,  and would then have been somewhat faster.  However, I wanted to  make the 
point (as I've made again and  again)  that assembly language, and,  indeed, optimiza- 
tion  in  general, is needed only in  the most critical portions of any program,  and  then 
only when the  program would otherwise be  too slow. Only in  a highly performance- 
sensitive situation would the  performance  boost  resulting  from  converting Listing 
44.1 to assemblyjustify the time spent  in  coding  and  the bugs that would  likely creep 
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in-and the sample program already updates  the screen at  the maximum possible 
rate of once  per  frame even on  a 1985-vintage 8-MHz AT. In this case, faster perfor- 
mance would result only in a  longer wait for  the page to flip. 

Write Mode 3 
It’s  possible to update  the  bitmap very  efficiently on  the VGA, because the VGA can 
draw up to 8 pixels at once, and because the VGA provides a number of hardware 
features to speed up drawing. This article makes considerable use  of one particularly 
unusual  hardware feature, write mode 3. We discussed  write mode 3 back in Chapter 26, 
but we’ve covered a  lot of ground since then-so I’m  going to run  through a quick 
refresher on write mode 3.  
Some background: In the standardVGA’s high-resolution mode, mode 12H (640x480 
with 16 colors, the  mode  in which this chapter’s sample program runs), each byte of 
display memory controls 8 adjacent pixels on  the screen. (The color of each pixel is, 
in turn,  controlled by 4 bits spread across the  four VGA memory planes, but we need 
not concern ourselves  with that  here.) Now, there will often be times when we want 
to change some but  not all of the pixels controlled by a particular byte  of  display 
memory. This is not easily done,  for  there is no way to write half a byte, or two bits, or 
such to memory; it’s the whole  byte or  none of it at all. 
You might think  that using AND and OR  to manipulate individual bits could solve 
the problem. Alas, not so. ANDing and ORing  would  work if the VGA had only one plane 
of memory (like the original monochrome Hercules Graphics Adapter)  but  the VGA 
has four planes, and ANDing and ORing would  work  only ifwe selected and manipu- 
lated  each plane separately, a process that would  be  hideously  slow. No, with the VGA 
you must use the hardware assist features, or you might as  well forget  about real-time 
screen updates altogether. Write mode 3 will do the trick for  our present needs. 
Write mode 3 is useful when you want to set some but  not all  of the pixels in  a single 
byte of display memory to the same color. That is, if  you want to draw a  number of  pixels 
within a byte in  a single color, write mode 3 is a  good way to do it. 
Write mode 3 works  like this. First, set the Graphics Controller Mode register to 
write mode 3.  (Look at Listing 44.2 for  code  that  does everything described here.) 
Next, set the Set/Reset register to the color with  which  you  wish to draw, in  the  range 
0-15. (It is not necessary to explicitly enable  set/reset via the Enable Set/Reset regis- 
ter; write mode 3 does  that automatically.) Then, to draw individual pixels  within a 
single byte,  simply read display  memory, and  then write a byte  to  display memory 
with  1-bits where you  want the color to be drawn and 0-bits where you  want the 
current  bitmap  contents to be preserved. (Note well that the  data  actually read ly the 
C‘PUdoesn’t m a t t q  the  read  operation latches all four planes’ data, as described way 
back in  Chapter 24.) So, for example, if write mode 3 is enabled and  the Set/Reset 
register is set to 1 (blue),  then  the following sequence of operations: 
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mov dx.Oa000h 
mov es.dx 
mov a1 .es:[O] 
mov byte  ptr es:[O].OfOh 

will change  the first 4 pixels on the  screen (the left nibble of the byte at offset 0 in 
display memory)  to  blue, and will leave the  next 4 pixels (the right  nibble of the byte 
at offset 0)  unchanged. 
Using one MOV to  read  from display memory and  another  to write to display memory 
is not particularly efficient on some processors.  In Listing 44.2, I  instead use XCHG, 
which reads and  then writes a memory location in a single operation, as in: 

mov dx.Oa000h 
mov es.dx 
mov a1 .OfOh 
xchg es: [O] ,a1 

Again, the  actual value that’s read is irrelevant. In  general,  the XCHG approach is 
more  compact  than two MOVs, and is faster on 386 and earlier processors, but slower 
on 486s and Pentiums. 
If all pixels in a byte  of  display memory are to be drawn in a single color, it’s not 
necessary to  read  before writing, because none of  the  information in display memory 
at that byte needs to be preserved;  a simple write of OFFH (to draw  all bits) will set all 
8 pixels to  the  set/reset  color: 

mov dx.Oa000h 
mov es.dx 
mov byte  ptr  es:Cdil.Offh 

rfvou ’re familiar with VGA programming, you ’re no doubt aware that everything p that can be done with write mode 3 can also be accomplished in write mode 0 or 
write mode 2 by using the Bit Mask register.  However, setting the  Bit Mask register 
requires at least one OUTper byte written, in addition to the read  and write of 
display memory, and OUTs are often slower than display memory accesses, espe- 
cially on 386s and 486s. One of the great virtues of write mode 3 is that it requires 
virtually no OUTs and is therefore substantially faster  for masking than the other 
write modes. 

In  short, write mode 3 is a  good  choice  for single-color drawing that modifies indi- 
vidual pixels within display memory bytes. Not coincidentally, the sample application 
draws  only single-color objects within the  animation  area;  this allows  write mode 3 to 
be used  for all drawing, in keeping with our desire  for speedy screen  updates. 

Drawing Text 
We’ll need text  in  the  sample  application; is that also a  good use for write mode 3? 
Sometimes it is, but  not in  this  particular case. 
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Each character  in  a font is represented by a pattern of bits,  with  1-bits representing 
character pixels and 0-bits representing  background pixels. Since we’ll be using the 
8x8 font stored in the BIOS ROM (a  pointer to which can be  obtained by calling a 
BIOS service,  as illustrated by Listing 44.2), each  character is  exactly 8 bits, or 1 byte 
wide.  We’ll further insist that  characters be placed on byte boundaries (that is,  with 
their left  edges  only at pixels  with X coordinates that are multiples of 8); this  means that 
the  character bytes in  the  font  are automatically aligned with  display  memory, and 
no rotation or clipping of characters is needed. Finally,  we’ll  draw  all text in white. 
Given the above assumptions, drawing text is easy; we simply  copy each byte of each 
character to the  appropriate location in display memory, and voila, we’re done. Text 
copying is done in write mode 0, in which the byte written to display memory is 
copied  to all four planes at once;  hence, 1-bits turn  into white (color value OFH, with 
1-bits in all four  planes),  and 0-bits turn  into black (color value 0). This is faster than 
using write mode 3 because write mode 3 requires  a  read/write of display memory 
(or  at least preloading  the latches with the background color), while the write mode 
0 approach  requires only a write to display  memory. 

Is write mode 0 always the best way to do text? Not at all. The write mode 0 
approach described above draws both foreground and background pixels within 
the character box, forcing  the  backgroundpixels to black at the same time that it 
forces the foregroundpixels  to white. Ifyou want to draw transparent text (that is, 
draw only the  characterpixels, not the surrounding background box), write mode 
3 is ideal. Also, matters get far more complicated ifcharacters that aren ’t 8pixels 
wide are drawn, or if characters are  drawn starting at arbitrary pixel locations, 
without the multiple-of-8 column restriction, so that rotation and masking are  re- 
quired. La&, the Map Mask register can be used to draw text in colors other than 
white-but only ifthe background is black. Otherwise, the data remaining in the 
planes protected by the Map Mask will remain  and  can interfere with the colors of 
the text being drawn. 

I’m not going to delve any deeper  into  the considerable issues of drawing VGA text; 
I just want to sensitize  you to the existence of approaches other  than  the ones used 
in Listings 44.1 and 44.2. On the VGA, the rule is: If there’s  something you  want  to 
do,  there probably are 10 ways to do it, each with unique  strengths and weaknesses. 
Your mission, should you decide to accept it, is to figure out which one is best for 
your particular application. 

Page  Flipping 
Now that we know  how to update  the screen reasonably quickly,  it’s time to get on to 
the  fun stuff.  Page flipping answers the second requirement  for  animation, by keep- 
ing bitmap changes off the screen until they’re complete. In other words,  page flipping 
guarantees  that partially updated bitmaps are never seen. 
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How  is it  possible  to update a bitmap without seeing the  changes as they’re made? 
Easy-with page flipping, there  are two bitmaps; the  program shows  you one bitmap 
while it updates  the other. Conceptually,  it’s that simple. In practice, unfortunately, 
it’s not so simple, because  of the design  of the VGA.  To understand why that is, we 
must look at how the VGA turns bytes in display memory into pixels on  the screen. 
The VGA bitmap is a linear 64 K block  of  memory. (True, most adapters nowadays 
are SuperVGAs  with more  than 256 K of  display  memory, but every  make of SuperVGA 
has its own  way  of letting you  access that  extra memory, so going beyond standard 
VGA  is a daunting  and difficult  task. Also, it’s hard to manipulate  the large frame 
buffers  of  SuperVGA modes fast enough for real-time animation.) Normally, the 
VGA picks up the first  byte  of memory (the byte at offset 0) and displays the corre- 
sponding 8 pixels on the  screen, then picks up  the byte at offset 1 and displays the 
next 8 pixels, and so on to the  end of the  screen. However, the offset  of the first  byte 
of  display memory picked up during  each  frame is not fixed at 0, but is rather pro- 
grammable by  way of the  Start Address High and Low registers,  which together  store 
the 16-bit  offset in display memory at which the  bitmap  to  be displayed during  the 
next  frame starts. So, for example, in mode IOH (640~350,16 colors), a large enough 
bitmap to store a complete screen of information can be stored  at display memory 
offsets 0 through 27,999, and another full bitmap  could  be  stored at offsets 28,000 
through 55,999,  as  shown in Figure  44.1. (I’m discussing  640x350 mode  at  the mo- 
ment  for good reason; we’ll get  to 640x480  shortly.) When the Start Address  registers 
are set to 0, the first bitmap (or page) is  displayed; when they are set to 28,000, the 
second  bitmap is  displayed.  Page flipped  animation can be  performed by displaying 

I 

A000 : 0000 
p e t  9 

eclma ] 

A000 : DACO 
( ffset 76,000 
&cima 1 

Memory allocation for mode 1 Oh pageJQping. 
Figure 44.1 
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page 0 and drawing to page 1, then setting the start address to page 1 to  display that 
page and drawing  to page 0, and so on ad infinitum. 

Knowing When to Flip 
There’s a hitch,  though,  and  that hitch is  knowing  exactly when it is that  the page 
has flipped. The page doesn’t flip the  instant that you set the Start Address  registers. 
The VGA loads the  starting offset from  the Start Address  registers once before start- 
ing  each  frame,  then pays those registers no nevermind until the  next  frame comes 
around. This means  that you can set the Start Address  registers  whenever  you want- 
but  the page actually being displayed doesn’t  change until after  the VGA loads that 
new  offset in preparation  for  the  next  frame. 
The potential problem  should  be obvious. Suppose that page 1 is being displayed, 
and you’re updating page 0. You finish  drawing  to page 0, set the Start Address  reg- 
isters  to 0 to  switch to displaying page 0, and start updating page 1, which is no 
longer displayed. Or is it? If the VGA  was in the middle of the  current  frame, display- 
ing page 1, when  you set the  Start Address  registers, then page 1 is going to  be 
displayed for  the rest of the  frame, no matter what  you do with the Start Address 
registers. If you start updating page 1 right away, any changes you  make may  well 
show up  on  the screen, because page 0 hasn’t yet flipped to being displayed in place 
of page 1-and that defeats the whole purpose of page flipping. 
To avoid  this problem, it is mandatory  that you  wait until you’re sure  the page has 
flipped. The Start Address  registers are, according to my tests, loaded  at  the start of 
the Vertical  Sync  signal, although  that may not  be  the case  with  all VGA clones. The 
Vertical  Sync  status is provided as  bit 3 of the  Input Status 1 register, so it  would  seem 
that all  you need to do to flip a page is set the new Start Address  registers, wait for the 
start of the Vertical  Sync  pulse that indicates that  the page has flipped, and be on 
your merry way. 
Almost-but not quite.  (Do I hear  teeth gnashing in the  background?) The problem 
is this: Suppose that, by coincidence, you set one of the Start Address  registers just 
before the start of Vertical  Sync, and  the  other  right after the start of Vertical  Sync. 
Why, then, for one frame  the Start Address High value for one page would be mixed 
with the Start Address Low value for the other page, and,  depending  on  the start 
address values, the whole screen could  appear to  shift  any number of pixels for a 
single, horrible frame. This must nmerhuppen!The solution is to  set the Start Address 
registers  when you’re certain Vertical  Sync is not  about to start. The easiest way to 
know that is to check for  the Display Enable status (bit 0 of the Input Status 1 regis- 
ter)  being active; that means that bitmap-controlled pixels are being scanned onto 
the  screen, and, since  Vertical  Sync happens in the middle of the vertical  non-display 
portion of the  frame, Vertical  Sync  can  never  be  anywhere  nearby  if  Display Enable is 
active. (Note  that one good alternative is to set up both pages  with a start address 
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that’s a  multiple of 256, and  just  change  the  Start Address High register and wait for 
Vertical  Sync,  with no Display Enable wait required.) 
So, to flip pages,  you must complete all drawing to the  nondisplayed  page, wait for 
Display Enable to  be  active, set the new start address, and wait for Vertical  Sync  to  be 
active. At that  point, you can be fully confident  that  the page that you just  flipped off 
the  screen is not displayed and can safely  (invisibly)  be updated. A side benefit of 
page flipping is that your program will automatically have a  constant time base,  with 
the  rate  at which  new screens  are drawn synchronized to the  frame  rate of the dis- 
play  (typically 60 or ’70 Hz). However, complex  updates may take more  than  one 
frame to complete, especially on slower processors; this can be compensated  for by 
maintaining  a  count of  new screens drawn and cross-referencing that to the BIOS 
timer count periodically, accelerating  the overall pace of the  animation (moving 
farther  each time and  the  like) if updates  are  happening too slowly. 

Enter  the Split Screen 
So far, I’ve  discussed page flipping  in 640x350 mode.  There’s  a reason for  that: 
640x350 is the highest-resolution standard  mode  in which there’s enough display 
memory  for two full pages on  a standard VGA. It’s  possible  to program  the VGA to a 
non-standard 640x400 mode  and still  have two full pages, but that’s pretty much  the 
limit. One 640x480 page takes 38,400 bytes  of  display  memory, and clearly there isn’t 
enough  room in 64 K of  display memory  for two of those monster pages. 
And  yet, 640x480 is a wonderful mode in  many ways. It offers a 1 : 1 aspect ratio (square 
pixels), and it  provides by far  the best resolution of  any 16-color mode. Surely there’s 
some way to bring  the visual appeal of page flipping to this mode? 
Surely there is-but it’s an  odd  solution  indeed. The VGA has a  feature, known  as 
the split screen, that allows  you to force  the offset from which the VGA fetches video 
data back to 0 after any desired scan line. For example, you can  program  the VGA to 
scan through display memory as usual until it finishes scan line number 338, and 
then get the first byte  of information  for scan line number 339 from offset 0 in 
display  memory. 
That,  in  turn, allows  us  to  divvy up display memory into  three  areas, as  shown  in 
Figure 44.2. The area from 0 to 11,279 is reserved for  the split screen,  the  area  from 
11,280 to 38,399 is used for page 0, and  the area  from 38,400 to 65,519 is used for 
page I. This allows page flipping to be performed in the  top 339 scan lines (about 70 
percent) of the  screen, and leaves the  bottom 141 scan lines for  non-animation  pur- 
poses, such as  showing  scores, instructions, statuses, and suchlike. (Note  that  the 
allocation of  display memory and  number of scan lines are  dictated by the  desire to 
have  as many page-flipped scan lines as  possible; you  may,  if  you  wish,  have  fewer 
page-flipped lines and reserve part of the  bitmap  for other uses, such as off-screen 
storage for images.) 
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A000 : 0000 
(off set O 
decimal) 
A000: 2C10 
(offset 1 1,280 
decimal) 

A000 : 9600 
(offset 38,400 
decimal) 

A000: FFFO 
(offset 65,520 
decimal) 

Split  Screen 
(always  controls  scan  lines 339-479) 

Page 0 
(controls  scan  lines 0-338 

when  start  address = 1 1,280) 

Page 1 
(controls  scan  lines 0-338 

when  start  address = 38,400) 

Screen animation - 
Memory allocation for mode 12h page  pipping. 
Figure 44.2 

The sample program  for this chapter uses the split screen and page flipping exactly 
as described above. The playfield through which the object bounces is the page- 
flipped portion of the screen, and  the rectangle at  the bottom containing  the  bounce 
count  and  the instructions is the split (that is, not animatable)  portion of the screen. 
Of course, to the user it all looks like one screen. There are no visible boundaries 
between the two unless you choose to create  them. 
Very  few animation applications use the  entire screen for animation. If  you can get 
by  with 339 scan lines of animation, split-screen page flipping gives  you the best 
combination of square pixels and high resolution possible on  a  standard VGA. 
So. Is VGA animation worth all the fuss? Muzs oui. Run the sample program; if  you’ve 
never seen aggressive VGA animation  before, you’ll be amazed at how smooth  it can 
be. Not every square millimeter of every animated screen must be in constant mo- 
tion. Most graphics screens need  a little quiet space to display scores, coordinates, 
file names, or (if  all  else  fails) company logos. If  you don’t tell the user he’s/she’s 
only getting 339 scan lines of animation,  he’ll/she’ll probably never know. 
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Ies on Animation 
We brought our p&s with  us  when we moved to Seattle. At about  the same  time, our 
Golden Retriever, S his third birthday. Sam  is  relatively intelligent, in 
the sense that  he is cf ter than a banana slug, although if he were in the 
same room with  Jeff Du ’s dog Mr.  Byte, there’s a reasonable chance that  he 
would  mistake Mr. B$e for something edible (a category that includes rocks,  socks, 
and  a surprising nuhber of things too disgusting to mention),  and Jeff  would  have 

a of things to write about. 
rtant now. What is important is that-and I am not making this 

anaged to find the one pair of socks  Sam hadn’t chewed  holes 
re important is that after we moved and Sam turned  three, he 

calmed down  amazinkly. We had been waiting for this  magic transformation since 
Sam turned  one, the age at which  most puppies turn  into normal dogs  who  lie around 
a lot, waking up to eat their Science  Diet (motto, “The dog food that costs more than 
the average neurosurgeon makes in a year”) before licking  themselves  in  embarrass- 
ing places and going back to sleep. When  Sam turned  one  and remained hopelessly 
out of control we said, “Goldens take two years to calm down,” as  if  we had a clue. 
When he  turned two and remained undeniably Sam we said, “Any  day  now.” By the 
time he turned  three, we were reduced to figuring that it was only about seven more 
years until he expired, at which point we might be able to take  all the  fur  he had 
shed in his  lifetime and weave  ourselves  some clothes without holes in them, or quite 
possibly a house. 
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But miracle of miracles, we moved, and Sam instantly turned  into  the  dog we thought 
we’d gotten when we forked over $500--calm, sweet, and  obedient. Weeks went by, 
and Sam  was, if anything, better  than ever.  Clearly, the  change was permanent. 
And then we took  Sam  to the vet for his annual check-up and  found that he had an ear 
infection. Thanks to the wonders of modern animal  medicine, a $5 bottle of liquid  re- 
stored  his health in just two days.  And  with  his health, we got, as a bonus, the old Sam. 
You see, Sam hadn’t  changed.  He was just tired  from  being sick. Now he  once again 
joyously  knocks  down  any stranger who  makes the mistake  of  glancing  in  his direction, 
and will, quite possibly, be booked any  day  now on suspicion of homicide by licking. 

Plus cu Change 
Okay,  you  give up. What exactly does this have to do with graphics? I’m glad you 
asked. The lesson  to  be learned  from Sam, The Dog With A Brain The Size  Of A 
Walnut, is that while things may look like  they’ve changed, in fact they often haven’t. 
Take VGA performance. If  you  buy a 486 with a SuperVGA,  you’ll get  performance 
that knocks your socks off, especially if you run Windows. Things are liable to be so 
fast that you’ll figure  the SuperVGA has to deserve some of the  credit. Well,  maybe it 
does if it’s a local-bus VGA. But  maybe it  doesn’t, even if it is local bus-and it cer- 
tainly doesn’t if it’s an ISA bus VGA, because no ISA bus VGA can run faster than 
about 300 nanoseconds per access, and VGAs capable of that  speed have been com- 
mon  for at least a  couple of  years  now. 
Your 486 VGA system is fast almost entirely because it has a 486 in it. (486 systems 
with graphics accelerators such as the AT1 Ultra or Diamond Stealth are  another 
story altogether.)  Underneath it all, the VGA is still painfully slow-and if you  have 
an old VGA or IBM’s original PS/2 motherboard VGA, it’s incredibly slow. The fast- 
est ISA-bus  VGA around is two to  twenty times slower than system  memory, and  the 
slowest VGA around is as much as 100 times  slower. In  the old days, the  rule was, 
“Display memory is slow, and should be avoided.” Nowadays, the  rule is,  “Display 
memory is not  quite so slow, but should still be avoided.” 
So, as I say, sometimes things don’t  change. Of course, sometimes they do change. 
For example, in just 49 dog years, I fully expect to own at least one pair of underwear 
without a single hole in it. Which brings us, deus ex machina and  the creek don’t 
rise,  to  yet another animation  method: dirty-rectangle animation. 

VGA Access Times 
Actually, before we get to dirty rectangles, I’d like to take  you through  a quick re- 
fresher on VGA memory and 1 / 0  access  times. I want  to do this partly because the 
slow access  times of the VGA make dirty-rectangle animation particularly attractive, 
and partly as a public service, because even I was shocked by the results of some 1/0 
performance tests I recently ran. 
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Table 45.1 shows the results of the  aforementioned 1 / 0  performance tests,  as run  on 
two 486/33 SuperVGA  systems under  the Phar Lap  3861DOS-Extender. (The systems 
and VGAs are  unnamed because  this is a not-very-scientific spot test, and I don’t want 
to  unfairly malign, say, a VGA whose only sin is being  plugged  into a lousy 
motherboard, or vice versa.) Under Phar Lap, 32” protected-mode apps run with 
full 1 / 0  privileges, meaning  that  the OUT instructions I measured had  the best 
official  cycle  times  possible on  the 486: 10 cycles. OUT officially  takes 16 cycles  in 
real mode on a 486, and officially takes a mind-boggling 30 cycles in protected mode 
if running without full 1 /0  privileges (as is normally the case for protected-mode 
applications). Basically, 1 / 0  is just plain slow on a 486. 
As slow  as 30 or even 10 cycles is for an OUT, one could only wish that VGA 1 /0  were 
actually that fast. The fastest measured OUT to a VGA in  Table 45.1 is  26  cycles, and 
the slowest is 126“this  for  an  operation that’s supposed to  take 10 cycles. To put this 
in context, MUL takes  only 13 to 42 cycles, and a normal MOV to or from system 
memory takes  exactly one cycle on  the 486. In short, OUTS to VGAs are as much as 
100  times  slower than  normal memory  accesses, and  are generally two to four times 
slower than even  display memory accesses, although  there  are exceptions. 
Of course, VGA display  memory  has  its  own performance problems. The fastest ISA 
bus VGA can, at best, support sustained write  times of about 10 cycles per word-sized 
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write on  a 486/33; 15 or 20 cycles is more  common, even for relatively  fast  SuperVGAs; 
the worst  case I’ve seen is 65 cycles per byte.  However, intermittent writes,  mixed 
with a  lot of register and cache-only code, can effectively execute in one cycle, thanks 
to the  caching design of many VGAs and  the 486’s 4-deep  write  buffer,  which stores 
pending writes  while the CPU continues  executing  instructions. Display memory 
reads  tend to take longer, because coprocessing isn’t possible-one microsecond is a 
reasonable  rule of thumb for VGA reads,  although there’s considerable variation. So 
VGA memory  tends  not to be as bad as VGA I/O,  but lord knows it isn’t good. 

OUTs, in general, are lousy on  the 486 (and to think  they  only took three cycles on 
the 286!). OUTs to VGAs are particularly lousy. Display memory performance is 
pretty pool; especially for reads. The conclusions  are obvious, I would hope. Struc- 
ture your graphics code, and, in general, all 486 code, to avoid OUTs. 

For graphics, this especially means using  write mode 3 rather  than  the bit-mask  reg- 
ister. When you must use the  bit mask, arrange drawing so that you can set the bit 
mask once,  then  do  a  lot of drawing with that mask.  For example, draw a whole edge 
at once,  then  the  middle,  then  the other edge,  rather  than  setting  the bit mask  sev- 
eral times on each scan line to draw the  edge and middle bytes together. Don’t read 
from display memory if you don’t have to. Write each pixel once and only once. 
It is indeed  a  strange  concept:  The key to fast graphics is staying away from  the 
graphics  adapter as much as  possible. 

Dirty-Rectangle Animation 
The relative  slowness  of VGA hardware is part of the  appeal of the  technique  that  I 
call “dirty-rectangle” animation,  in which a  complete copy  of the  contents of  display 
memory is maintained in  offscreen system (nondisplay) memory. All drawing is done 
to this system buffer. As offscreen drawing is done,  a list is maintained of the  bound- 
ing  rectangles  for  the drawn-to areas; these  are the dirty rectangles, “dirty”  in  the sense 
that  that have been  altered and  no longer match the  contents of the  screen. After  all 
drawing for  a  frame is completed, all the dirty rectangles  for  that  frame  are  copied  to 
the  screen  in  a  burst, and  then  the cycle  of off-screen drawing begins again. 
Why,  exactly,  would  we  want to go through all this complication,  rather  than simply 
drawing to  the  screen in the first place? The reason is visual  quality. If  we were to do 
all our drawing directly to the  screen,  there’d be a  lot of flicker as objects were erased 
and  then redrawn. Similarly, overlapped drawing done with the  painter’s  algorithm 
(in which farther objects are drawn first, so that  nearer objects obscure  them) would 
flicker  as farther objects were  visible for  short  periods. With dirty-rectangle anima- 
tion,  only  the  finished  pixels  for any given frame ever appear  on  the  screen; 
intermediate results are never  visible. Figure 45.1 illustrates the visual problems as- 
sociated with  drawing directly to the  screen; Figure 45.2 shows  how dirty-rectangle 
animation solves these problems. 
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So Why Not Use Page Flipping? 
Well, then, if  we want good visual  quality, why not use page flipping? For one thing, 
not all adapters and all modes  support page flipping. The CGA and MCGA don’t, 
and  neither do the VGA’s 640x480 16color  or 320x200  256-color modes, or many 
SuperVGA  modes. In contrast, all adapters support dirty-rectangle animation. Another 
advantage of dirty-rectangle animation is that it’s generally faster.  While it may seem 
strange  that  it would  be faster to draw  off-screen and  then copy the  result  to  the 
screen,  that is often  the case, because dirty-rectangle animation usually reduces  the 
number of  times the VGA’s hardware needs to  be touched, especially  in  256-color  modes. 
This  reduction comes about because when dirty rectangles  are  erased, it’s done in 
system  memory, not in  display  memory, and since most objects move a  good  deal less 
than  their full width (that is, the new and old positions overlap), display memory is 
written to fewer  times than with page flipping. (In 16-color modes, this is not neces- 
sarily the case,  because of the parallelism obtained  from  the VGA’s planar  hardware.) 
Also, read/modify/write  operations  are  performed in  fast  system memory  rather 
than slow  display  memory, so display memory rarely needs to be  read.  This is particu- 
larly good because display memory is generally even  slower for  reads  than  for writes. 
Also, page flipping wastes a  good  deal of time  waiting for  the page to flip at the end 
of the frame. Dirty-rectangle animation never needs to wait for  anything because 
partially  drawn  images are never present  in display  memory.  Actually,  in one sense, 
partially drawn  images are sometimes present because it’s possible for  a  rectangle to 
be partially drawn when the  scanning  raster  beam  reaches  that  part of the  screen. 
This causes the  rectangle to appear partially drawn for one frame,  producing  a  phe- 
nomenon I  call  “shearing.”  Fortunately,  shearing  tends  not  to  be  particularly 
distracting, especially for fairly  small  images, but  it can be  a  problem when copying 
large  areas.  This is one area  in which dirty-rectangle animation falls short of page 
flipping, because page flipping has perfect display  quality,  never  showing anything 
other  than a completely finished  frame. Similarly, dirty-rectangle copying may take 
two or  more frame  times  to  finish, so even if shearing doesn’t happen, it’s still possible to 
have the images in  the various dirty rectangles show up non-simultaneously. In my 
experience, this latter phenomenon is not  a serious problem,  but do be aware of it. 

Dirty Rectangles  in  Action 
Listing  45.1 demonstrates dirty-rectangle animation. This is a very simple implemen- 
tation,  in several respects. For one thing, it’s written entirely in C, and animation 
fairly cries out for assembly language. For another  thing,  it uses far  pointers, which C 
often  handles with  less than  optimal efficiency,  especially because I haven’t  used 
library functions to copy and fill  memory. (I did this so the  code would  work  in  any 
memory  model.) Also, Listing  45.1 doesn’t  attempt to coalesce rectangles so as to 
perform  a  minimum  number of display-memory  accesses; instead,  it copies each 
dirty rectangle to the  screen, even if it overlaps  with another  rectangle, so some 
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pixels are copied multiple times.  Listing 45.1 runs pretty well, considering all of its 
failings; on my 486/33, 10 11x1 1 images animate at a very respectable clip. 

LISTING 45.1  145- 1 .C 
/ *  S a m p l e   s i m p l e   d i r t y - r e c t a n g l e   a n i m a t i o n   p r o g r a m .   D o e s n ' t   a t t e m p t   t o   c o a l e s c e  

r e c t a n g l e s   t o   m i n i m i z e   d i s p l a y  memory accesses .   No t   even   vague ly   op t im ized !  
T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  * /  

# i n c l u d e   < s t d l  i b. h> 
# i n c l u d e   < c o n i o . h >  
#i ncl   ude  <a1 1 oc.  h> 
# i n c l u d e  <memory. h >  
Pi ncl   ude  <dos . h> 

# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-HEIGHT 200 
# d e f i n e  SCREENKSEGMENT  OxAOOO 

/ *  D e s c r i b e s  a r e c t a n g l e  * /  
t y p e d e f   s t r u c t  { 

i n t  Top; 
i n t   L e f t ;  
i n t   R i g h t ;  
i n t  Bottom; 

I Rectang le ;  

/*  D e s c r i b e s   a n   a n i m a t e d   o b j e c t  * /  
t y p e d e f   s t r u c t  { 

i n t  X :  / *  u p p e r   l e f t   c o r n e r   i n   v i r t u a l   b i t m a p  */  
i n t  Y ;  
i n t   X D i r e c t i o n :  / *  d i r e c t i o n  a n d   d i s t a n c e   o f  movement * /  
i n t   Y D i r e c t i o n ;  

1 E n t i t y ;  

/ *  S t o r a g e   u s e d   f o r   d i r t y   r e c t a n g l e s  * /  
# d e f i n e  MAX-DIRTY-RECTANGLES 100 
i n t  NumDi r t y R e c t a n g l e s ;  
R e c t a n g l e  D i  r t y R e c t a n g 1  es[MAX-DIRTY-RECTANGLES] : 

/*  I f  s e t   t o  1. i g n o r e   d i r t y   r e c t a n g l e   l i s t  and  copy   the   who le   sc reen.  * /  
i n t  DrawWholeScreen - 0:  

/ *  P i x e l s   f o r   i m a g e   w e ' l l   a n i m a t e  * /  
#def 
#def 
char  

15 
15 
15 

9 
9. 

ne IMAGE-WIDTH 11 
ne IMAGE-HEIGHT 11 
I m a g e P i x e l s [ l  - [ 
15.15.   9 .   9 .   9 .   9 .   9 ,15,15.15,  
15.   9 .   9 .   9 .   9 .   9 .   9 .   9 .15.15.  

9.  9.14.14.14.14.14.  9.  9.15. 
9.14.14.14.14.14.14.14,  9.  9. 
9.14.14.14.14.14.14.14,  9.   9.  

9.   9.14.14.14.14.14,14.14,  9.   9.  
9.  9.14.14.14.14.14.14.14, 9 ,  9 .  
9.   9.14.14.14.14.14.14.14,  9.   9.  

15.   9.   9.14.14.14.14.14.  9.   9.15. 
15.15,   9 .   9 .   9 ,   9 ,   9 .   9 .   9 .15.15.  
15.15.15.  9.   9.   9.   9.   9.15.15.15. 

} :  
/ *  a n i m a t e d   e n t i t i e s  * /  
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# d e f i n e  NUM-ENTITIES 10 
Ent i ty   Ent i t iesCNUM-ENTITIES] ;  

/ *  p o i n t e r   t o   s y s t e m   b u f f e r   i n t o   w h i c h   w e ' l l   d r a w  */  
c h a r  far * S y s t e m B u f f e r P t r ;  

/ *  p o i n t e r   t o   s c r e e n  * I  
char  far *Sc reenPt r ;  

v o i d   E r a s e E n t i t i e s ( v o i d 1 ;  
v o i d  CopyDi   r tyRectang l   esToScreen(vo id )  ; 
v o i d   D r a w E n t i t i e s ( v o i d ) :  

v o i d   m a i n 0  
I 

i n t  i. XTemp. YTemp; 
u n s i g n e d   i n t   T e m p c o u n t :  
c h a r  far *TempPtr; 
u n i o n  REGS r e g s ;  
/ *  A l l o c a t e  memory f o r   t h e   s y s t e m   b u f f e r   i n t o   w h i c h   w e ' l l   d r a w  */  
i f  ( ! ( S y s t e m B u f f e r P t r  - f a r m a l l o c ( ( u n s i g n e d  int)SCREEN-WIDTH* 

SCREEN-HEIGHT))) I 
p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) ;  
e x i t ( 1 ) ;  

1 
/*  C l e a r   t h e   s y s t e m   b u f f e r  * /  
TempPtr - S y s t e m B u f f e r P t r ;  
f o r  (Tempcount - ((unsigned)SCREEN-WIDTH*SCREENLHEIGHT); Tempcount- - ;  1 I 

1 
/*  P o i n t   t o   t h e   s c r e e n  */  
Sc reenPt r  - MK-FP(SCREEN-SEGMENT. 0 ) ;  

/ *  S e t   u p   t h e   e n t i t i e s   w e ' l l   a n i m a t e ,  a t  r a n d o m   l o c a t i o n s  */  
randomize(  ; 
f o r  (i - 0;  i < NUM-ENTITIES: i++) I 

*TempPtr++ - 0:  

E n t i t i e s C i 1 . X  - random(SCREENKW1DTH - IMAGE-WIDTH); 
E n t i t i e s [ i ] . Y  - random(SCREENKHE1GHT - IMAGE-HEIGHT); 
E n t i t i e s [ i l . X D i r e c t i o n  - 1; 
E n t i t i e s [ i ] . Y D i r e c t i o n  - -1; 

3 
/ *  S e t   3 2 0 x 2 0 0   2 5 6 - c o l o r   g r a p h i c s  mode */  
regs.x .ax - 0x0013; 
i n t 8 6 ( 0 x 1 0 .   & r e g s .   & r e g s ) ;  

I*  Loop  and  draw u n t i l  a key i s   p r e s s e d  */  
do 

/ *  D r a w  t h e   e n t i t i e s   t o   t h e   s y s t e m   b u f f e r   a t   t h e i r   c u r r e n t   l o c a t i o n s ,  

D r a w E n t i t i e s O ;  
u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t  * /  

/*  Draw t h e   d i r t y   r e c t a n g l e s ,  or t h e   w h o l e   s y s t e m   b u f f e r  i f  

CopyDir tyRectanglesToScreenO; 

/ *  R e s e t   t h e   d i r t y   r e c t a n g l e   l i s t   t o   e m p t y  * /  
NumDi r t y R e c t a n g l e s  - 0;  

/ *  E r a s e   t h e   e n t i t i e s   i n   t h e   s y s t e m   b u f f e r   a t   t h e i r   o l d   l o c a t i o n s ,  

E r a s e E n t i t i e s O ;  

a p p r o p r i a t e  * /  

u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t  * /  
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I* Move t h e   e n t i t i e s ,   b o u n c i n g   o f f   t h e   e d g e s   o f   t h e   s c r e e n  *I  
f o r  (i - 0; i < NUM-ENTITIES; i++) I 

XTemp - E n t i t i e s L i 1 . X  + E n t i t i e s [ i l . X D i r e c t i o n :  
YTemp - E n t i t i e s C i 1 . Y  + E n t i t i e s [ i l . Y D i r e c t i o n ;  
i f  ((XTemp < 0 )  1 1  ((XTemp + IMAGE-WIDTH) > SCREEN-WIDTH)) I 

E n t i t i e s [ i ] . X O i r e c t i o n  - -Entities[il.XDirection; 
XTemp - E n t i t i e s C i 1 . X  + E n t i t i e s [ i l . X D i r e c t i o n ;  

I 
i f  ((YTemp < 0 )  1 1  ((YTemp + IMAGE-HEIGHT) > SCREEN-HEIGHT)) { 

E n t i t i e s [ i ] . Y D i r e c t i o n  - -Entities[il.YDirection; 
YTemp - E n t i t i e s C i 1 . Y  + E n t i t i e s [ i l . Y D i r e c t i o n ;  

I 
E n t i t i e s C i 1 . X  - XTemp; 
E n t i t i e s C i 1 . Y  - YTemp; 

3 

} w h i l e   ( ! k b h i t O ) :  
g e t c h 0 ;  I* c l e a r   t h e   k e y p r e s s  */  
/*  Back t o   t e x t  mode */  
regs .x .ax  - 0x0003; 
i n t 8 6 ( 0 x 1 0 .   & r e g s .   & r e g s ) ;  

I 
/*  Draw e n t i t i e s   a t   c u r r e n t   l o c a t i o n s ,   u p d a t i n g   d i r t y   r e c t a n g l e   l i s t .  * I  
v o i d   D r a w E n t i t i e s O  

i n t  i. j ,  k; 
c h a r   f a r   * R o w P t r B u f f e r ;  
c h a r   f a r   * T e m p P t r B u f f e r ;  
cha r   f a r   *TempPt r Image ;  
f o r  (i - 0; i < NUM-ENTITIES; i++) I 

I* Remember t h e   d i r t y   r e c t a n g l e   i n f o   f o r   t h i s   e n t i t y  * /  
i f  (NumDi r t yRec tang les  >- MAX-DIRTY-RECTANGLES) I 

I* Too  many d i r t y   r e c t a n g l e s ;   j u s t   r e d r a w   t h e   w h o l e   s c r e e n  */  
DrawWhol eScreen - 1; 

/*  Remember t h i s   d i r t y   r e c t a n g l e  * /  
DirtyRectanglesCNumDirtyRectangles1.Left - E n t i t i e s C i 1 . X ;  
Dir tyRectangles[NumDir tyRectanglesl .Top - E n t i t i e s C i 1 . Y :  
Dir tyRectangles[NumDir tyRectangles3.Right  - 
DirtyRectangles[NumDirtyRectangles++l.Bottom - 

3 e l s e  I 

E n t i t i e s C i 1 . X  + IMAGE-WIDTH; 

E n t i t i e s E i 1 . Y  + IMAGE-HEIGHT: 
1 
I* P o i n t   t o   t h e   d e s t i n a t i o n   i n   t h e   s y s t e m   b u f f e r  * /  
RowPt rBu f fe r  - S y s t e m B u f f e r P t r  + ( E n t i t i e s C i 1 . Y  * SCREEN-WIDTH) + 

E n t i t i e s C i 1 . X ;  
/ *  P o i n t   t o   t h e   i m a g e   t o   d r a w  *I  
TempPtrImage - ImageP ixe l s ;  
/ *  Copy t h e   i m a g e   t o   t h e   s y s t e m   b u f f e r  *I  
f o r  (j - 0; j < IMAGE-HEIGHT; j++) I 

/*  Copy  a row * I  
f o r   ( k  - 0. TempPt rBu f fe r  - RowPt rBu f fe r ;  k < IMAGE-WIDTH;  k++) I 

*TempPtrBuf fer++ - *TempPtrImage++; 
I 
I* P o i n t   t o   t h e   n e x t   s y s t e m   b u f f e r   r o w  *I  
RowPt rBu f fe r  +- SCREEN-WIDTH; 

3 
l 

/* Copy t h e   d i r t y  
t o   t h e   s c r e e n .  *I  

r e c t a n g l e s ,   o r   t h e   w h o l e   s y s t e m   b u f f e r  i f  a p p r o p r i a t e ,  
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vo id   CopyDi   r tyRectang1  esToScreen(  1 
i 

i n t  i. j. k ,  Rec tWid th .   Rec tHe igh t ;  
u n s i g n e d   i n t   T e m p c o u n t :  
u n s i g n e d   i n t   O f f s e t :  
char   fa r   *TempPt rScreen;  
c h a r   f a r   * T e m p P t r B u f f e r ;  

i f  ( DrawWhol eScreen)  I 
I* J u s t   c o p y   t h e   w h o l e   b u f f e r   t o   t h e   s c r e e n  * I  
DrawWhol eScreen - 0;  
TempPtrScreen - S c r e e n P t r :  
T e m p P t r B u f f e r  - S y s t e m B u f f e r P t r ;  
f o r  (Tempcount - ((unsigned)SCREEN_WIDTH*SCREEN-HEIGHT): Tempcount - - ;  ) 

> 
I e l s e  i 

/* Copy o n l y   t h e   d i r t y   r e c t a n g l e s  * /  
f o r   ( i  = 0;  i < NumDi r tyRectang les :  i++) I 

*TempPtrScreen++ - *TempPtrBuffer++; 

/ *  O f f s e t   i n   b o t h   s y s t e m   b u f f e r   a n d   s c r e e n   o f   i m a g e  */  
O f f s e t  - ( u n s i g n e d  i n t )  ( D i r t y R e c t a n g l e s [ i l . T o p  * SCREENKWIDTH) + 

DirtyRectangles[il.Left; 
I* Dimensions o f   d i r t y   r e c t a n g l e  * I  
RectWid th  - DirtyRectangles[il.Right - DirtyRectangles[il.Left: 
R e c t H e i g h t  - DirtyRectangles[il.Bottom - D i r t y R e c t a n g l e s [ i l . T o p :  
I* Copy a d i r t y   r e c t a n g l e  * /  
f o r  ( j  - 0;  j < R e c t H e i g h t ;  j++) { 

I* P o i n t   t o   t h e   s t a r t   o f   r o w   o n   s c r e e n  * I  
TempPtrScreen - S c r e e n P t r  + O f f s e t :  

/ *  P o i n t   t o   t h e   s t a r t   o f   r o w   i n   s y s t e m   b u f f e r  * I  
T e m p P t r B u f f e r  - S y s t e m B u f f e r P t r  + O f f s e t ;  

/ *  Copy a row * /  
f o r  ( k  - 0;  k < RectWid th ;  k++) i 

I 
/* P o i n t   t o   t h e   n e x t   r o w  * /  
O f f s e t  +- SCREEN-WIDTH; 

*TempPtrScreen++ - *TempPtrBuffer++; 

1 
I 

1 
I 
/*  E r a s e   t h e   e n t i t i e s   i n   t h e   s y s t e m   b u f f e r   a t   t h e i r   c u r r e n t   l o c a t i o n s ,  

v o i d   E r a s e E n t i t i e s O  
i 

u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t .  * /  

i n t  i. j ,  k :  
c h a r   f a r   * R o w P t r ;  
cha r   f a r   *TempPt r :  

f o r  (i - 0; i < NUM-ENTITIES; i++) { 
/ *  Remember t h e   d i r t y   r e c t a n g l e   i n f o   f o r   t h i s   e n t i t y  * I  
i f  (NumDi r tyRectang les  >- MAX-DIRTYLRECTANGLES) I 

/*  Too many d i r t y   r e c t a n g l e s ;   j u s t   r e d r a w   t h e   w h o l e   s c r e e n  * /  
DrawWhol eScreen - 1 : 

/*  Remember t h i s   d i r t y   r e c t a n g l e  * /  
DirtyRectangles[NumDirtyRectanglesl.Left - E n t i t i e s C i 1 . X :  
D i r t yRec tang les [NumDi r t yRec tang les ] .Top  - E n t i t i e s C i 1 . Y ;  

I e l s e  { 
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Di r t yRec tang les [NumDi r t yRec tang les l .R igh t  - 
D i  r t yRec tang les [NumDi   r t yRec tang1  es++l .Bo t tom - E n t i t i e s [ i ] . X  + IMAGELWIDTH: 

E n t i t i e s C i 1 . Y  + IMAGE-HEIGHT; 
1 
/*  P o i n t   t o   t h e   d e s t i n a t i o n   i n   t h e   s y s t e m   b u f f e r  * /  
RowPtr - S y s t e m B u f f e r P t r  + (Entities[i].Y*SCREEN-WIDTH) + E n t i t i e s C i 1 . X :  

/ *  C l e a r   t h e   e n t i t y ‘ s   r e c t a n g l e  * I  
f o r  ( j  - 0;  j < IMAGE-HEIGHT; j++) { 

/ *  C l e a r  a row */  
f o r  ( k  - 0, TempPtr - RowPtr: k < IMAGELWIDTH: k++) { 

1 
I* P o i n t   t o   t h e   n e x t   r o w  * I  
RowPtr +- SCREENCWIDTH: 

*TempPtr++ - 0:  

1 
1 

1 

One  point I’d like to make is that  although  the system-memory buffer in Listing 45.1 
has exactly the same dimensions as the screen bitmap, that’s not a  requirement,  and 
there  are some good reasons not to make the two the same  size. For example, if the 
system buffer is bigger than  the  area displayed on the  screen, it’s possible to pan  the 
visible area  around  the system buffer. Or, alternatively, the system buffer can be just 
the size  of a desired window, representing  a window into  a larger, virtual buffer. We 
could  then draw the  desired  portion of the virtual bitmap  into the system-memory 
buffer, then copy the buffer to the  screen, and  the effect will be of having panned 
the window  to the new location. 

Another  argument in favor of a small viewing window  is  that  it restricts the  amount p of display memory actually drawn  to. Restricting the display memory  used for 
animation reduces the total number of display-memory accesses, which in turn 
boosts overall performance; it also improves  the performance and appearance of 
panning, in which  the  whole  window  has to be  redrawn or copied. 

If  you keep a close  watch,  you’ll notice that many high-performance animation games 
similarly restrict their full-featured animation  area to a relatively  small region. Of- 
ten, it’s hard to  tell that this is the case, because the  animation region is surrounded 
by flashy digitized graphics and by items such as scoreboards and status screens, but 
look closely and see if the  animation  region  in your favorite game isn’t smaller than 
you thought. 

Hi-Res VGA Page Flipping 
On a standard VGA, hi-res mode is mode 12H, which offers 640x480 resolution with 
16 colors. That’s a nice mode, with plenty of pixels, and square  ones at that, but it 
lacks one thing-page flipping. The problem is that  the  mode 12H bitmap is 150 K 
in size, and  the  standard VGA has only 256 K total, too little memory for two of those 
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monster  mode  12H pages.  With  only one page, flipping is obviously out of the ques- 
tion, and without page flipping, top-flight, hi-res animation can’t be implemented. 
The standard fallback is to use the EGA’s hi-res mode,  mode  10H (640x350, 16 col- 
ors)  for page flipping, but this mode is  less than ideal for a couple of reasons: It 
offers sharply lower  vertical resolution, and it’s  lousy for  handling scaled-up CGA 
graphics, because the vertical resolution is a fractional multiple-1.75 times, to be 
exact-of that of the CGA.  CGA resolution may not seem important these days, but 
many images were originally created  for  the CGA, as were  many graphics packages 
and games, and it’s at least convenient to be able to handle CGA graphics easily. 
Then, too, 640x350  is  also a poor multiple of the 200 scan lines of the popular 320x200 
256-color mode  13H of the VGA. 
There  are a couple of interesting, if imperfect, solutions to the  problem of  hi-res 
page flipping. One is to use the split screen to enable page flipping only in the top 
two-thirds  of the screen; see the previous chapter  for details, and for details on  the 
mechanics of page flipping generally. This doesn’t address the CGA problem, but it 
does yield square pixels and a full 640x480 screen resolution,  although not all those 
pixels are flippable and thus  animatable. 
A second solution is to program  the screen to a 640x400 mode. Such a mode uses 
almost every  byte  of  display memory (64,000 bytes,  actually;  you could  add another 
few lines, if you  really wanted to),  and thereby provides the highest resolution pos- 
sible on  the VGA for a fully page-flipped display. It maps well to CGA and  mode 13H 
resolutions, being  either  identical  or  double  in  both dimensions. As an  added  ben- 
efit, it offers an easy-on-the-eyes  70-Hz frame  rate, as opposed to the 60 Hz that is the 
best that  mode  12H can offer, due to the design of standard VGA monitors. Best  of 
all, perhaps, is that 640x400  16-color mode is  easy to set  up. 
The key to 640x400 mode is understanding  that  on a VGA, mode  10H (640x350) is, 
at  heart, a 400-scan-line mode. What I mean by that is that in mode 10H, the Vertical 
Total register, which controls  the total number of  scan lines, both displayed and 
nondisplayed, is set to 44’7, exactly the same as in the VGA’s text modes, which do in 
fact support 400 scan lines. A properly sized and  centered display  is achieved in 
mode  10H by setting  the polarity of the sync pulses to tell the  monitor to scan verti- 
cally at a faster rate (to make fewer lines fill the  screen), by starting the overscan 
after 350 lines, and by setting the vertical sync and blanking pulses appropriately  for 
the faster vertical scanning  rate.  Changing those settings is  all that’s required to turn 
mode  10H  into a 640x400 mode, and that’s easy to do, as illustrated by Listing 45.2, 
which provides mode  set  code  for 640x400 mode. 

LISTING 45.2 L45-2.C 
/*  Mode s e t   r o u t i n e  for VGA 6 4 0 x 4 0 0   1 6 - c o l o r  mode. T e s t e d   w i t h  

B o r l a n d  C++ i n  C c o m p i l a t i o n  mode. * /  

#i n c l  ude <dos . h> 
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v o i d   S e t 6 4 0 x 4 0 0 0  
{ 

u n i o n  REGS r e g s e t :  

I* F i r s t ,   s e t   t o   s t a n d a r d   6 4 0 x 3 5 0  mode (mode  10h) * /  
r e g s e t . x . a x  - 0x0010: 
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  

/ *  M o d i f y   t h e   s y n c   p o l a r i t y   b i t s   ( b i t s  7 & 6) o f   t h e  
M i s c e l l a n e o u s   O u t p u t   r e g i s t e r   ( r e a d a b l e  a t  Ox3CC. w r i t a b l e  a t  
Ox3C2) t o   s e l e c t   t h e   4 0 0 - s c a n - l i n e   v e r t i c a l   s c a n n i n g   r a t e  */ 

outp(Ox3C2,  ( ( inp(Ox3CC) & Ox3F) I 0 x 4 0 ) ) :  

/ *  Now, t w e a k   t h e   r e g i s t e r s   n e e d e d   t o   c o n v e r t   t h e   v e r t i c a l  

outpw(Ox3D4.  Ox9C10): I* a d j u s t   t h e   V e r t i c a l  Sync S t a r t  r e g i s t e r  

ou tpw(Ox3D4.   Ox8El l ) :  I* a d j u s t   t h e   V e r t i c a l  Sync End r e g i s t e r  

outpw(Ox304.  Ox8FlZ); I* a d j u s t   t h e   V e r t i c a l   D i s p l a y  End 

outpw(Ox304,  0x9615):  I* a d j u s t   t h e   V e r t i c a l   B l a n k   S t a r t  

outpw(Ox3D4.  0x6916): / *  a d j u s t   t h e   V e r t i c a l   B l a n k  End r e g i s t e r  

t i m i n g s   f r o m   3 5 0   t o   4 0 0   s c a n   l i n e s  *I  

f o r  4 0 0   s c a n   l i n e s  * /  

f o r  400 s c a n   l i n e s  */  

r e g i s t e r   f o r  4 0 0   s c a n   l i n e s  *I  

r e g i s t e r   f o r   4 0 0   s c a n   l i n e s  * /  

f o r  400  scan l i n e s  *I  
1 

In 640x400, 16-color mode, page 0 runs  from offset 0 to  offset  31,999 (7CFFH), and 
page 1 runs  from offset 32,000 (7DOOH) to 63,999 (OFSFFH). Page 1 is selected by 
programming  the  Start Address registers (CRTC registers OCH, the  high 8 bits, and 
ODH, the low 8 bits)  to 7DOOH. Actually, because the low byte  of the  start  address is 0 
for  both pages, you can page flip simply by writing 0 or 7DH to  the  Start Address 
High register (CRTC register OCH);  this has the  benefit of eliminating  a nasty  class 
of potential  synchronization bugs that  can arise when both registers must be set. 
Listing 45.3 illustrates simple 640x400 page flipping. 

LISTING 45.3 L45-3.C 
/ *  Sample  program t o   e x e r c i s e  VGA 6 4 0 x 4 0 0   1 6 - c o l o r  mode page f l i p p i n g ,  by 

draw ing  a h o r i z o n t a l   l i n e  a t  t h e   t o p   o f   p a g e  0 and   ano the r  a t  b o t t o m   o f   p a g e  1, 
t h e n   f l i p p i n g   b e t w e e n   t h e m   o n c e   e v e r y  30   f rames .   Tes ted   w i th   Bo r land  C++, 
i n  C c o m p i l a t i o n  mode. *I  

#i n c l  ude  <dos . h> 
Pi n c l   u d e   < c o n i  0. h> 

# d e f i n e  SCREEN-SEGMENT  OxAOOO 
# d e f i n e  SCREEN-HEIGHT 400 
# d e f i n e  SCREEN-WIDTH-IN-BYTES 80 
# d e f i n e  INPUT-STATUS-1  Ox3DA /*  c o l o r - m o d e   a d d r e s s   o f   I n p u t   S t a t u s  1 

/*  The  page s t a r t   a d d r e s s e s   m u s t   b e   e v e n   m u l t i p l e s   o f   2 5 6 .   b e c a u s e   p a g e  

# d e f i n e  PAGE-0-START 0 
# d e f i n e  PAGEL-START (400*SCREEN_WIDTHKIN_BYTES) 

r e g i s t e r  * /  

f l i p p i n g   i s   p e r f o r m e d  b y   c h a n g i n g   o n l y   t h e   u p p e r   s t a r t   a d d r e s s   b y t e  *I  
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v o i d   m a i n ( v o i d ) ;  
v o i d   W a i t 3 0 F r a m e s ( v o i d ) ;  
e x t e r n   v o i d   S e t 6 4 0 x 4 0 0 ( v o i d ) ;  

v o i d   m a i n ( )  
{ 

i n t  i; 
u n s i g n e d   i n t   f a r   * S c r e e n P t r :  
u n i o n  REGS r e g s e t ;  

S e t 6 4 0 x 4 0 0 0 ;  / *  s e t   t o  640x400   16 -co lo r  mode */  

/*  P o i n t   t o   f i r s t   l i n e   o f  page 0 and  draw a h o r i z o n t a l   l i n e   a c r o s s   s c r e e n  */  
FP-SEG(ScreenPtr) - SCREEN-SEGMENT; 
FP-OFF(ScreenPtr) - PAGE-0-START; 
f o r   ( i - 0 ;  i<(SCREEN-WIDTH-IN-BYTESlZ) ;  i++) *ScreenPtr++ - OxFFFF; 

/ *  P o i n t   t o   l a s t   l i n e   o f  page 1 and  draw a h o r i z o n t a l   l i n e   a c r o s s   s c r e e n  */  
FP-OFF(ScreenPtr) - 
f o r  ( i -0;  i<(SCREEN_WIDTH_IN_BYTES/2); i++) *ScreenPtr++ - OxFFFF; 

/ *  Now f l i p  pages   once   eve ry   30   f rames   un t i l  a key i s   p r e s s e d  */  
do { 

PAGE-1-START + ((SCREEN_HEIGHT-l)*SCREEN-WIDTH-IN-BYTES); 

Wai t30FramesO;  

I* F1 i p   t o  page 1 */ 
outpw(Ox3D4. OxOC I ((PAGELLSTART >> 8) << 8 ) ) :  

Wai t30FramesO:  

/ *  F l i p   t o  page 0 * I  
outpw(Ox3D4. OxOC I ((PAGE-OKSTART >> 8 )  << 8 ) ) ;  

1 w h i l e   ( k b h i t 0  - 0 ) ;  

g e t c h 0 ;  / *  c l e a r   t h e   k e y   p r e s s  * /  

/*  R e t u r n  t o  t e x t  mode and e x i t  * I  
r e g s e t . x . a x  - 0x0003; / *  AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode */  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  

I 

void  Wait30Frames.O 
t 

i n t  i: 

f o r   ( i - 0 ;   i < 3 0 ;  i++) { 

w h i l e  ((inp(1NPUT-STATUS-1) & 0x08) !- 0 )  ; 
/*  W a i t   u n t i l   w e ’ r e   n o t  i n  v e r t i c a l   s y n c ,  s o  we c a n   c a t c h   l e a d i n g   e d g e  */  

/*  W a i t   u n t i l  we a r e   i n   v e r t i c a l   s y n c  * I  
w h i l e  ((inp(INPUT-STATUS-1) & 0x08) - 0)  : 

I 
I 

After I described 640x400 mode  in a magazine article, Bill  Lindley,  of  Mesa, Arizona, 
wrote me to suggest that when programming  the VGA to a nonstandard  mode of this 
sort, it’s a good  idea to tell the BIOS about  the new screen size, for a couple of 
reasons. For one thing,  pop-up utilities often use the BIOS  variables;  Bill’s memory- 
resident  screen  printer, EGAD Screen Print,  determines  the number of scan lines to 
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print by multiplying the BIOS “number of text rows” variable times the  “character 
height” variable.  For another, the BIOS  itself  may do  a  poorjob of displaying  text if not 
given proper information; the active  text area may not match the screen  dimensions, or 
an  inappropriate  graphics  font may be used.  (Of  course,  the BIOS isn’t going to be 
able  to display text anyway in highly nonstandard  modes  such as Mode X, but it will 
do fine in slightly nonstandard  modes  such as 640x400 16-color mode.) In the case 
of the 640x400 16-color model  described  a little earlier, Bill suggests that  the  code in 
Listing 45.4 be called immediately after  putting  the VGA into  that  mode  to tell the 
BIOS that we’re  working  with 25 rows  of 16-pixel-high text. I think this is an excel- 
lent suggestion; it can’t hurt,  and may  save  you from  getting aggravating tech  support 
calls  down the  road. 

LISTING 45.4 L45-4.C 
I* F u n c t i o n   t o   t e l l   t h e  B I O S  t o   s e t  up p r o p e r l y   s i z e d   c h a r a c t e r s   f o r  25 rows o f  

16 p i x e l   h i g h   t e x t   i n  640x400   g raph ics  mode. C a l l  i m m e d i a t e l y  a f t e r  mode s e t .  
Based  on a c o n t r i b u t i o n   b y  Bill L i n d l e y .  * I  

#i n c l  ude  <dos . h> 

v o i d   S e t 6 4 0 x 4 0 0 0  
I 

u n i o n  REGS regs :  

regs.h.ah - 0x11: I* c h a r a c t e r   g e n e r a t o r   f u n c t i o n  *I  
regs .h .a l  - 0x24; I* use ROM 8 x 1 6   c h a r a c t e r   s e t   f o r   g r a p h i c s  *I  
r e g s . h . b l  - 2: I* 25 rows *I  
i n t 8 6 ( 0 x 1 0 .   & r e g s .  & r e g s ) :  I* i n v o k e   t h e  B I O S  v i d e o   i n t e r r u p t  

1 
t o   s e t  up t h e   t e x t  * I  

The 640x400 mode I’ve described here isn’t exactly earthshaking,  but it can come in 
handy  for page flipping and CGA emulation, and I’m sure  that some of you will find 
it useful at  one time or  another. 

Another  Interesting  Twist  on  Page Flipping 
I’ve spent  a fair amount of time exploring various ways to do animation. I thought I 
had  pegged all the possible ways to do animation: exclusive-OlZing;  simply drawing 
and erasing objects; drawing objects with a blank fringe to erase  them  at  their  old 
locations as they’re drawn; page flipping; and, finally, drawing to local memory and 
copying the dirty (modified) rectangles  to the screen, as I’ve  discussed  in  this chapter. 
To  my surprise,  someone threw me an interesting and useful twist on animation not 
long ago, which turned  out  to be a cross  between page flipping and dirty-rectangle 
animation. That someone was Serge Mathieu of Concepteva  Inc., in Rosemere,  Que- 
bec, who informed  me  that  he designs everything “from a  game point de vue.” 

In normal page  flipping, you  display one page  while  you update the other page. Then 
you  display the new  page  while  you update the other. This works fine, but the need to 
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keep two pages current can make for a lot of bookkeeping and possibly extra draw- 
ing, especially in applications where only some of the objects are redrawn each time. 
Serge didn’t  care to do all that  bookkeeping  in his animation applications, so he 
came up with the following approach, which  I’ve reworded, amplified, and slightly 
modified in the summary here: 
1. 
2. 
3. 

4. 

5 .  

6.  

Set  the  start  address  to  display  page 0. 
Draw  to  page 1. 
Set  the  start  address to display  page 1 (the  newly  drawn  page),  then  wait  for  the  leading 
edge  of  vertical  sync,  at  which  point  the  page  has  flipped  and  it’s  safe  to  modify  page 0. 
Copy,  via  the  latches, from page 1 to  page 0 the  areas  that  changed from the  previous 
screen  to  the  current  one. 
Set  the  start  address  to  display  page 0, which  is  now  identical  to  page 1, then  wait  for 
the  leading  edge of vertical  sync,  at  which  point  the  page  has  flipped  and  it’s  safe  to 
modify  page 1. 
Go to  step 2. 

The  great benefit of Serge’s approach is that  the only page that is  ever  actually drawn 
to (as  opposed to being block-copied to) is page 1. Only one page needs to be main- 
tained, and  the complications of maintaining two separate pages vanish entirely. 
The performance of  Serge’s approach may be better or worse than  standard page 
flipping, depending  on whether a lot of extra work  is required to maintain two pages 
or  not. My guess  is that Serge’s approach will usually be slower,  owing  to the consid- 
erable amount of  display-memory copying involved, and also to the  double page-flip 
per frame. There’s no  doubt, however, that Serge’s approach is simpler, and  the 
resultant display quality is  every bit as good as standard page flipping. Given page 
flipping’s fair degree of complication, this approach is a valuable tool, especially for 
lessexperienced  animation  programmers. 
An interesting variation on Serge’s approach doesn’t  page  flip nor wait for vertical  sync: 
1. Set  the  start  address  to  display  page 0. 
2. Draw  to  page 1. 
3. Copy,  via  the  latches,  the  areas  that  changed from the  last  screen  to  the  current  one 

4. Go to  step 2. 
This  approach totally eliminates page flipping, which can consume a great  deal of 
time. The downside is that images may shear  for one frame if they’re only partially 
copied when the raster beam  reaches  them.  This  approach is  basically a standard 
dirty-rectangle approach,  except  that  the drawing buffer is stored  in display  memory, 
rather  than  in system  memory. Whether this technique is faster than drawing to 
system memory depends  on whether the benefit you get  from the VGA’s hardware, 

from  page 1 to  page 0. 
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such as the Bit  Mask, the &Us, and especially the latches (for copymg the dirty 
rectangles) is sufficient  to  outweigh the extra display-memory  accesses  involved in 
drawing and copying,  since  display memory is notoriously slow. 
Finally, I’d like  to point  out that in any scheme that involves changing  the display- 
memory start address, a clever  trick can potentially reduce  the time spent waiting for 
pages to flip. Normally,  it’s  necessary to wait for display enable to be active, then set 
the two start address registers, and finally  wait for vertical  sync to be  active, so that 
you  know the new start address has  taken  effect. The start-address  registers must 
never be set around  the time  vertical  sync  is  active (the new start address is accepted 
at  either  the  start  or  end of vertical  sync on  the EGAs and VGAs I’m familiar with), 
because  it  would then be  possible to load a half-changed start address (one register 
loaded,  the other  not yet loaded),  and  the screen would jump for a frame. Avoiding 
this condition is the motivation for waiting for display enable, because  display en- 
able is  active  only  when  vertical  sync  is not active and will not become active for a 
long while. 
Suppose, however, that you arrange your page start addresses so that they both have 
a low-byte value  of 0 (page 0 starts at OOOOH, and page 1 starts at 8000H, for ex- 
ample). Page flipping can then be done simply by setting the new high byte of the 
start address, then waiting for  the  leading  edge of  vertical  sync. This eliminates the 
need to wait for display enable (the two bytes of the start address can  never be mis- 
matched) ; page  flipping will often involve  less  waiting,  because  display enable becomes 
inactive long  before vertical  sync becomes active.  Using the above approach reclaims 
all the time  between the  end of  display enable and  the start of vertical  sync for  doing 
useful  work. (The steps I’ve  given for Serge’s animation  approach assume that  the 
single-byte approach is in use; that’s why display enable is never  waited for.) 
In  the  next  chapter, I’ll return to the original dirty-rectangle algorithm presented  in 
this chapter, and goose  it a little  with some assembly, so that we can see what dirty- 
rectangle animation is really made of. (Probably not  dog  hair ....) 
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irty-Rectangle  Animation 
d 
,.- Programming is, ’ large, a linear process. One statement or instruction follows 

equences, with  tiny building blocks strung together to make 
mmers, we  grow adept at this  sort  of  idealized  linear 

thinking, which is, o d Thing. Still,  it’s important to keep in mind that 
n mind that doesn’t work  in a linear fashion. 
tues of nonlinear/right-brain/lateral/what-have- 

ing  tough  programming  problems, such as debugging  or 
. The mind can be an awesome pattern-matching 

tool, if  you let it. For example, the other day I was grinding my  way 
through  a particula?@  difficult bit of debugging. The code had been written by some- 
one else, and, to my hind, there’s nothing worse than debugging someone else’s 
code; there’s always the nasty feeling that you don’t quite know  what’s going on.  The 
overall operation of this code wouldn’t come clear in my head,  no  matter how long 
I stared at it, leaving  me  with a rising  sense of fmstration and  a determination not to 
quit until I got this bug. 
In the midst of this, a coworker poked his head through the door  and told  me he 
had something I had to listen  to.  Reluctantly, I went to his  office, whereupon he 
played a tape of  what  is  surely one of the most bizarre 91 1 calls in history. No doubt 
some of you  have heard this tape, which I will briefly describe as  involving a  deer 
destroying the  interior of a car and biting a man in the neck. Perhaps you found it 
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funny,  perhaps  not-but as for me, it hit me  exactly  right. I started  laughing helplessly, 
tears  rolling  down my face.  When I went  back  to  work-presto!-the  pieces  of the de- 
bugging  puzzle had come together in my head,  and  the work  went  quickly and easily. 
Obviously, my mind  needed  a break from linear, left-brain, push-it-out thinking, so it 
could do the  sort of integrating work it does so well-but that it’s  rarely  willing to  do 
under conscious control.  It was exactly this sort of thinking  I  had in mind when I 
titled my 1989 optimization book Zen ofAssembly Language. (Although I must admit 
that few people seem  to  have gotten  the  connection,  and I’ve had  to field a  lot of 
questions about whether I’m a Zen disciple. I’m  not-actually, I’m more of a Dave 
Barry  disciple. If  you don’t know  who  Dave  Barry  is,  you should; he’s good  for your 
right  brain.) Give  your mind  a  break  once in a while, and I’ll bet you’ll find you’re 
more productive. 
We’re strange  thinking machines, but we’re the best ones yet invented,  and it’s worth 
learning how  to  tap our full potential. And  with that, it’s  back  to  dirty-rectangle 
animation. 

Dirty-Rectangle  Animation,  Continued 
In  the last chapter,  I  introduced  the idea of dirty-rectangle animation. This tech- 
nique is an alternative to  page flipping that’s capable of producing  animation of  very 
high visual  quality, without any help  at all from video hardware, and without the 
need  for any extra, nondisplayed video  memory. This makes dirty-rectangle anima- 
tion more widely usable than page flipping, because many adapters  don’t  support 
page flipping. Dirty-rectangle animation also tends  to be simpler to implement than 
page flipping, because there’s only one bitmap to keep track  of. A final advantage of 
dirty-rectangle animation is that it’s potentially somewhat faster than page flipping, 
because  display-memory  accesses can theoretically be reduced to  exactly one access 
for  each pixel that changes from one frame  to  the  next. 
The speed advantage of dirty-rectangle animation was entirely theoretical in the  pre- 
vious chapter, because the  implementation was completely in C, and because no 
attempt was made to  minimize  display memory accesses. The visual  quality of Chap- 
ter 45’s animation was also  less than ideal, for reasons we’ll explore shortly. The code 
in Listings 46.1 and 46.2 addresses the shortcomings of Chapter 45’s code. 
Listing 46.2 implements  the low-level drawing routines in assembly language, which 
boosts performance  a  good  deal. For maximum performance,  it would  be  worth- 
while  to convert more of Listing 46.1 into assembly, so a call isn’t required  for each 
animated image, and overall performance could be improved by streamlining the  C 
code,  but Listing 46.2 goes a  long way toward boosting animation  speed. This pro- 
gram now supports snappy animation of 15 images (as opposed to 10 for  the software 
presented in the last chapter), and  the images are now two pixels  wider. That level  of 
performance is  all the  more impressive considering  that  for this chapter I’ve con- 
verted the code from using rectangular images  to  using  masked  images. 
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LISTING 46.1  L46- 1 .C 
I* S a m p l e   s i m p l e   d i r t y - r e c t a n g l e   a n i m a t i o n   p r o g r a m ,   p a r t i a l l y   o p t i m i z e d  and 

f e a t u r i n g   i n t e r n a l   a n i m a t i o n ,  masked  images ( s p r i t e s ) .  a n d   n o n o v e r l a p p i n g   d i r t y  
r e c t a n g l e   c o p y i n g .   T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  *I  

#i n c l  ude < s t d l  i b.  h> 
# inc lude   <con io .h>  
#i ncl  ude  <a1 1 oc.  h> 
# i n c l u d e  <memory.  h> 
# inc lude   <dos .  h> 

I* Comment o u t   t o   d i s a b l e   o v e r l a p   e l i m i n a t i o n   i n   t h e   d i r t y   r e c t a n g l e   l i s t .  * I  
# d e f i n e  CHECK-OVERLAP 1 
# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-HEIGHT 200 
# d e f i n e  SCREEN-SEGMENT  OxAOOO 

I* Descr ibes  a d i r t y   r e c t a n g l e  *I  
t y p e d e f   s t r u c t  { 

vo id   *Nex t :  I* p o i n t e r   t o   n e x t   n o d e   i n   l i n k e d   d i r t y   r e c t   l i s t  *I  
i n t  Top: 
i n t   L e f t :  
i n t   R i g h t :  
i n t  Bottom: 

1 D i r t y R e c t a n g l e :  
I* Descr ibes   an   an imated  ob jec t  * I  
t y p e d e f   s t r u c t  { 

i n t  X :  I* upper l e f t   c o r n e r   i n   v i r t u a l   b i t m a p  *I  
i n t  Y :  
i n t   X D i r e c t i o n :  I* d i r e c t i o n  and d i s t a n c e   o f  movement *I 
i n t   Y D i r e c t i o n :  
i n t   I n t e r n a l A n i m a t e C o u n t :  I* t r a c k i n g   i n t e r n a l   a n i m a t i o n   s t a t e  *I 
i n t   I n t e r n a l A n i m a t e M a x :  I* maximum i n t e r n a l   a n i m a t i o n   s t a t e  * /  

1 E n t i t y :  
I* s t o r a g e   u s e d   f o r   d i r t y   r e c t a n g l e s  *I  
# d e f i n e  MAX-DIRTY-RECTANGLES 100 
i n t  NumDirtyRectangles:  
D i r t y R e c t a n g l e  DirtyRectanglesCMAX-DIRTY-RECTANGLES]: 
I* h e a d l t a i l   o f   d i r t y   r e c t a n g l e   l i s t  *I  
D i  r t y R e c t a n g l e  D i  r tyHead; 
I* I f  s e t   t o  1, i g n o r e   d i r t y   r e c t a n g l e   l i s t  and  copy  the  whole  screen.  *I 
i n t  DrawWholeScreen - 0:  
I* p i x e l s  and  masks f o r   t h e   t w o   i n t e r n a l l y   a n i m a t e d   v e r s i o n s  o f  the  image 

w e ' l l   a n i m a t e  *I  
# d e f i n e  IMAGE-WIDTH 13 
# d e f i n e  IMAGE-HEIGHT 11 
char  ImagePixelsOCl - I 

0.  0 .  0 .  9.  9.  9.  9.  9, 0.  0. 0 .  0 .  0 .  
0,  0. 9,  9.  9.  9.  9.  9.  9. 0 .  0 .  0,  0. 
0. 9 .   9 .  0. 0.14.14.14, 9. 9 .  0. 0 .  0 .  
9 .   9 .  0, 0 .  0 .  0.14.14.14.  9.  9. 0,  0. 
9.  9. 0.   0.   0,  0.14.14.14.  9.  9. 0 ,  0 ,  
9.   9.14. 0 .  0.14.14.14.14.  9.  9. 0 .  0 .  
9,  9.14,14.14.14.14.14.14,  9.  9. 0 ,  0 .  
9.  9.14.14.14.14.14.14.14,  9.  9. 0,  0. 
0. 9,  9.14.14.14.14.14.  9.  9, 0 .  0 ,  0 .  
0 , 0 , 9 . 9 . 9 . 9 . 9 . 9 . 9 . 0 . 0 . 0 , 0 .  
0 .  0 .   0 ,  9.  9.  9.  9,  9. 0,  0. 0 .  0 .  0 .  

1 :  
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char  ImageMaskOCl - I 
0 . 0 . 0 . 1 . 1 . 1 . 1 . 1 . 0 . 0 . 0 , 0 . 0 ,  
0 ,   0 .  1. 1. 1. 1, 1. 1, 1. 0. 0 .  0 .   0 .  
0. 1, 1. 0.  0. 1 ,   1 ,  1, 1, 1, 0,  0,  0, 
1 . 1 . 0 . 0 . 0 . 0 . 1 . 1 , 1 . 1 , 1 . 0 , 0 .  
1 , 1 . 0 , 0 . 0 . 0 . 1 . 1 . 1 . 1 . 1 . 0 . 0 .  
1 .  1 .  1 ,  0. 0, 1 .  1. 1 .  1. 1 ,  1 .  0. 0.  
1 . 1 . 1 . 1 . 1 , 1 . 1 , 1 . 1 . 1 . 1 . 0 , 0 .  
1 . 1 , 1 . 1 . 1 . 1 , 1 . 1 , 1 , 1 . 1 . 0 . 0 ,  
0 , 1 . 1 , 1 . 1 , 1 , 1 . 1 . 1 . 1 , 0 . 0 . 0 .  
0 . 0 , 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 .  
o , o . o ,  1 . 1 . 1 .  1 . 1 . 0 . 0 . 0 . 0 . 0 .  

1 ;  
c h a r   I m a g e P i x e l s l [ l  - { 

0. 0. 0 .  9.  9.  9.  9.  9. 0.  0, 0, 0, 9. 
0 . 0 . 9 , 9 . 9 , 9 , 9 . 9 , 9 . 0 . 9 . 9 . 9 .  
0, 9 .   9 .  0 .  0.14.14,14.  9,  9.  9,  9. 0 .  
9 .   9 ,  0 .  0 .  0 .  0.14.14.14. 0, 0. 0. 0 .  
9.  9. 0.   0.   0,  0.14.14, 0,  0.  0.  0.  0, 
9.   9.14. 0 .  0.14.14.14. 0, 0 ,  0.  0. 0. 
9,  9.14,14.14,14.14,14. 0 .  0 .  0 .   0 .  0 .  
9.  9,14.14.14.14.14.14.14, 0.  0,  0.  0, 
0 ,  9,  9.14.14,14,14,14,  9.  9.  9.  9. 0 .  
0 . 0 . 9 . 9 . 9 , 9 . 9 . 9 . 9 , 0 . 9 , 9 . 9 .  
0 . 0 . 0 . 9 . 9 . 9 , 9 . 9 . 0 , 0 . 0 , 9 , 9 .  

char  ImageMasklL]  - I 
1 ;  

0 . 0 . 0 . 1 . 1 . 1 . 1 . 1 . 0 , 0 . 0 . 0 . 1 .  
0 , 0 . 1 . 1 . 1 . 1 , 1 , 1 . 1 . 0 , 1 . 1 , 1 .  
0 . 1 . 1 . 0 . 0 . 1 . 1 . 1 . 1 , 1 . 1 . 1 . 0 .  
1 . 1 . 0 . 0 . 0 . 0 . 1 . 1 . 1 . 0 . 0 . 0 , 0 .  
1 . 1 . 0 . 0 . 0 , 0 . 1 , 1 . 0 . 0 . 0 . 0 . 0 .  
1 . 1 , 1 . 0 . 0 . 1 , 1 . 1 , 0 . 0 . 0 . 0 . 0 .  
1 . 1 . 1 . 1 . 1 , 1 . 1 , 1 , 0 . 0 , 0 , 0 , 0 ,  
1 . 1 , 1 . 1 . 1 . 1 . 1 . 1 , 1 . 0 . 0 . 0 . 0 .  
0 . 1 . 1 , 1 . 1 , 1 . 1 , 1 . 1 . 1 . 1 , 1 . 0 ,  
0.   0 .  1. 1. 1. 1. 1. 1.  1, 0. 1, 1. 1. 
0 . 0 . 0 , 1 . 1 . 1 , 1 . 1 . 0 . 0 . 0 . 1 , 1 .  

1 ;  
/*  P o i n t e r s   t o   p i x e l  and  mask d a t a   f o r   v a r i o u s   i n t e r n a l l y   a n i m a t e d  

cha r  * ImageP ixe lA r ray [ ]  = { ImageP ixe l sO.   ImageP ixe l s l ) ;  
cha r  * ImageMaskArrayC] = {ImageMaskO. ImageMaskl l ;  
/ *  A n i m a t e d   e n t i t i e s  * /  
# d e f i n e  NUM-ENTITIES 15 
E n t i t y  EntitiesCNUM-ENTITIES]; 
/ *  p o i n t e r   t o   s y s t e m   b u f f e r   i n t o   w h i c h   w e ' l l   d r a w  */  
c h a r   f a r   * S y s t e m B u f f e r P t r ;  
/ *  p o i n t e r   t o   s c r e e n  * I  

ve rs ions   o f   ou r   an ima ted   image .  * /  

cha r  
v o i d  
v o i d  
v o i d  
v o i d  
v o i d  
v o i d  
v o i d  

f a r   * S c r e e n P t r :  
E r a s e E n t i t i e s ( v o i d ) ;  
CopyOirtyRectanglesToScreen(void); 
D r a w E n t i t i e s ( v o i d ) :  
A d d O i r t y R e c t ( E n t i t y  *, i n t ,   i n t ) ;  
DrawMasked(char f a r  *, char  *, char  *, i n t ,  i n t ,  i n t ) ;  
F i l l R e c t ( c h a r   f a r  *, i n t .  i n t .   i n t .  i n t ) :  
C o p y R e c t ( c h a r   f a r  *, c h a r   f a r  *, i n t .   i n t .   i n t .   i n t ) ;  
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v o i d   m a i n 0  
r 

i n t  i. XTemp.  YTemp; 
uns igned   i n t   Tempcoun t :  
char  far *TempPtr: 
u n i o n  REGS r e g s :  
/*  A l l o c a t e  memory f o r   t h e   s y s t e m   b u f f e r   i n t o   w h i c h   w e ' l l   d r a w  * I  
i f  ( ! ( S y s t e m B u f f e r P t r  - f a r m a l l o c ( ( u n s i g n e d  int)SCREEN-WIDTH* 

SCREEN-HEIGHT))) { 
p r in t f ( "Cou1dn ' t   ge t   memory \n " ) ;  
e x i t ( 1 ) :  

1 
/* C l e a r   t h e   s y s t e m   b u f f e r  * I  
TempPtr - S y s t e m B u f f e r P t r :  
f o r  (Tempcount - ((unsigned)SCREEN-WIDTH*SCREEN-HEIGHT): Tempcount-- :  ) I 

1 
/* P o i n t   t o   t h e   s c r e e n  */  
ScreenPt r  - MK-FP(SCREEN-SEGMENT. 0): 
/*  S e t   u p   t h e   e n t i t i e s   w e ' l l   a n i m a t e ,  a t  random l o c a t i o n s  */  
randomize( ) ;  
f o r  (i - 0; i < NUM-ENTITIES: i++) C 

*TempPtr++ - 0: 

E n t i t i e s C i 1 . X  - random(SCREEN-WIDTH - IMAGE-WIDTH): 
E n t i t i e s C i 1 . Y  - random(SCREENkHE1GHT - IMAGE-HEIGHT): 
E n t i t i e s C i l . X D i r e c t i o n  - 1: 
E n t i t i e s [ i ] . Y D i r e c t i o n  - -1; 
EntitiesCil.Interna1AnimateCount - i E 1: 
Entities[i].InternalAnimateMax - 2; 

1 
/*  S e t   t h e   d i r t y   r e c t a n g l e   l i s t   t o  empty ,   and  se t   up   the   head/ ta i l   node 

as a s e n t i n e l  * /  
NumDirtyRectangles - 0: 
Dir tyHead.Next  - EDi r tyHead:  
Dir tyHead.Top - Ox7FFF: 
D i r t y H e a d . L e f t -  Ox7FFF: 
D i r tyHead.Bot tom - Ox7FFF; 
D i  r t y H e a d .   R i g h t  - Ox7FFF: 
/* Se t   320x200   256 -co lo r   g raph ics  mode */  
regs.x.ax - 0x0013: 
i n t86 (0x10 .   & regs .   & regs ) :  
/ *  Loop  and  draw u n t i l  a key i s  p ressed */ 
do I 

/*  D r a w  t h e   e n t i t i e s   t o   t h e   s y s t e m   b u f f e r   a t   t h e i r   c u r r e n t   l o c a t i o n s ,  

D r a w E n t i t i e s O :  
/* Draw t h e   d i r t y   r e c t a n g l e s ,  or t h e   w h o l e   s y s t e m   b u f f e r  i f  

CopyDir tyRectanglesToScreenO: 
/ *  R e s e t   t h e   d i r t y   r e c t a n g l e   l i s t   t o  empty * I  
NumDirtyRectangles - 0: 
D i  r tyHead  .Next  - &Di   r tyHead : 
/*  E r a s e   t h e   e n t i t i e s   i n   t h e   s y s t e m   b u f f e r   a t   t h e i r   o l d   l o c a t i o n s ,  

E r a s e E n t i t i e s O :  
/* Move t h e   e n t i t i e s ,   b o u n c i n g   o f f   t h e   e d g e s  o f  t h e   s c r e e n  */ 
f o r  (i - 0: i < NUM-ENTITIES: i++) { 

u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t  * /  

a p p r o p r i a t e  * /  

u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t  * /  

XTemp - E n t i t i e s C i 1 . X  + E n t i t i e s [ i l . X D i r e c t i o n :  
YTemp - E n t i t i e s C i 1 . Y  + E n t i t i e s C i 1 . Y D i r e c t i o n :  
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i f  ((XTemp < 0) I I ((XTemp + IMAGE-WIDTH) > SCREEN-WIDTH)) I 
E n t i t i e s C i l . X D i r e c t i o n  - -EntitiesCil.XDirection: 
XTemp - E n t i t i e s C i 1 . X  + E n t i t i e s C i ] . X D i r e c t i o n :  

I 
i f  ((YTemp < 0) I (  ((YTemp + IMAGE-HEIGHT) > SCREEN-HEIGHT)) { 

E n t i t i e s [ i l . Y D i r e c t i o n  - - E n t i t i e s C i l . Y D i r e c t i o n :  
YTemp - E n t i t i e s C i 1 . Y  + E n t i t i e s C i 1 . Y D i r e c t i o n :  

I 
E n t i t i e s C i 1 . X  - XTemp; 
E n t i t i e s C i 1 . Y  - YTemp: 

I 
1 w h i l e   ( ! k b h i t O ) :  
g e t c h 0 :  / *  c l e a r   t h e   k e y p r e s s  */  

/* R e t u r n   b a c k   t o   t e x t  mode */ 
regs.x .ax - 0x0003: 
i n t 8 6 ( 0 x 1 0 .   & r e g s .   & r e g s ) :  

I 
/*  Draw e n t i t l e s   a t   t h e i r   c u r r e n t   l o c a t i o n s ,   u p d a t i n g   d i r t y   r e c t a n g l e   l i s t .  * /  
v o i d   D r a w E n t i   t i e s ( )  
{ 

i n t  i: 
c h a r   f a r   * R o w P t r B u f f e r :  
char  *TempPtrImage: 
char  *TempPtrMask: 
E n t i t y   * E n t i t y P t r :  

f o r  (i - 0, E n t i t y P t r  - E n t i t i e s :  i < NUM-ENTITIES: i++, Ent i t yP t r++ )  I 
/ *  Remember t h e   d i r t y   r e c t a n g l e   i n f o   f o r   t h i s   e n t i t y  * /  
A d d D i r t y R e c t ( E n t i t y P t r ,  IMAGE-HEIGHT, IMAGE-WIDTH): 
/*  P o i n t   t o   t h e   d e s t i n a t i o n   i n   t h e   s y s t e m   b u f f e r  * /  
RowPt rBu f fe r  - Sys temBuf fe rP t r  + ( E n t i t y P t r - > Y  * SCREEN-WIDTH) + 

/* Advance t h e   i m a g e   a n i m a t i o n   p o i n t e r  * /  
i f  (HEnt i tyPt r -> In terna lAn imateCount  >- 

E n t i t y P t r - > X :  

Ent i tyPt r -> In terna lAn imateMax)  I 
Enti tyPtr->InternalAnimateCount - 0:  

I 
/*  P o i n t   t o   t h e  image  and mask t o  draw *I 
TempPtrImage - ImagePixelArrayCEntityPtr->InternalAnimateCountl: 
TempPtrMask - ImageMaskArrayCEntityPtr->InternalAnimateCountl: 
DrawMasked(RowPtrBuffer. TempPtrImage.  TempPtrMask. IMAGE-HEIGHT. 

IMAGE-WIDTH.  SCREEN-WIDTH): 
1 

1 
/*  Copy t h e   d i r t y   r e c t a n g l e s ,   o r   t h e   w h o l e   s y s t e m   b u f f e r  if a p p r o p r i a t e .  

v o i d  CopyDir tyRectanglesToScreenO 
( 

i n t  i. RectWid th .   Rec tHe igh t :  
u n s i g n e d   i n t   O f f s e t :  
D i  r t y R e c t a n g l e  * D i r t y P t r ;  
i f  (DrawWholeScreen) ( 

t o   t h e   s c r e e n .  */ 

/*  J u s t   c o p y   t h e   w h o l e   b u f f e r   t o   t h e   s c r e e n  * /  
DrawWholeScreen - 0: 
CopyRect (ScreenPt r .   Sys temBuf fe rPt r .  SCREEN-HEIGHT,  SCREEN-WIDTH. 

SCREEN-WIDTH.  SCREEN-WIDTH): 
I e l s e  { 

/ *  Copy o n l y   t h e   d i r t y   r e c t a n g l e s ,   i n   t h e   Y X - s o r t e d   o r d e r   i n   w h i c h  
t h e y ' r e   l i n k e d  */  

866 Chapter 46 



D i  r t y P t r  - D i  r t yHead.   Nex t :  
f o r  (i - 0; i < NumDirtyRectangles:  i++) I 

/ *  O f f s e t   i n   b o t h   s y s t e m   b u f f e r  and  screen o f  image */ 
O f f s e t  - ( u n s i g n e d   i n t )   ( D i r t y P t r - > T o p  * SCREEN-WIDTH) + 

/*  D i m e n s i o n s   o f   d i r t y   r e c t a n g l e  */  
RectWidth - D i r t y P t r - > R i g h t  - D i r t y P t r - > L e f t :  
Rec tHe igh t  - D i r t y P t r - > B o t t o m  - D i r t y P t r - > T o p :  
/ *  Copy  a d i r t y   r e c t a n g l e  * /  
CopyRect(ScreenPtr  + O f f s e t ,   S y s t e m B u f f e r P t r  + O f f s e t .  

/ *  P o i n t   t o   t h e   n e x t   d i r t y   r e c t a n g l e  * /  
D i r t y P t r  - D i r t y P t r - > N e x t :  

D i r t y P t r - > L e f t ;  

RectHeight .   RectWidth.  SCREEN-WIDTH.  SCREEN-WIDTH): 

3 
3 

1 
/*  E r a s e   t h e   e n t i t i e s   i n   t h e   s y s t e m   b u f f e r  a t  t h e i r   c u r r e n t   l o c a t i o n s ,  

v o i d   E r a s e E n t i t i e s O  
u p d a t i n g   t h e   d i r t y   r e c t a n g l e   l i s t .  * /  

{ 
i n t  i; 
char  f a r  *RowPtr: 

f o r  (i - 0:  i < NUM-ENTITIES: i++) { 
/*  Remember t h e   d i r t y   r e c t a n g l e   i n f o   f o r   t h i s   e n t i t y  * /  
A d d D i r t y R e c t ( & E n t i t i e s [ i l ,  IMAGE-HEIGHT.  IMAGE-WIDTH); 
/ *  P o i n t   t o   t h e   d e s t i n a t i o n   i n   t h e   s y s t e m   b u f f e r  * /  
RowPtr - S y s t e m B u f f e r P t r  + ( E n t i t i e s C i 1 . Y  * SCREEN-WIDTH) + 

E n t i t i e s [ i l . X :  
/ *  C l e a r   t h e   r e c t a n g l e  * /  
F i l l R e c t ( R o w P t r .  IMAGELHEIGHT. IMAGE-WIDTH.  SCREEN-WIDTH. 0): 

I 
1 
/ *  Add a d i r t y   r e c t a n g l e   t o   t h e   l i s t .  The l i s t   i s   m a i n t a i n e d   i n   t o p - t o - b o t t o m ,  

l e f t - t o - r i g h t  ( Y X  s o r t e d )   o r d e r ,   w i t h  no p i x e l   e v e r   i n c l u d e d   t w i c e ,   t o   m i n i m i z e  
t h e  number o f   d i s p l a y  memory accesses  and t o   a v o i d   s c r e e n   a r t i f a c t s   r e s u l t i n g  
f r o m  a l a r g e   t i m e   i n t e r v a l   b e t w e e n   e r a s u r e  and  redraw f o r  a g i v e n   o b j e c t   o r  for 
a d j a c e n t   o b j e c t s .  The techn ique  used i s   t o  c h e c k   f o r   o v e r l a p   b e t w e e n   t h e  
r e c t a n g l e  and all r e c t a n g l e s   a l r e a d y   i n   t h e   l i s t .  I f  n o   o v e r l a p   i s   f o u n d ,   t h e  
r e c t a n g l e   i s  added t o   t h e   l i s t .  I f  o v e r l a p   i s   f o u n d ,   t h e   r e c t a n g l e   i s   b r o k e n  
i n t o   n o n o v e r l a p p i n g   p i e c e s ,  and t h e   p i e c e s   a r e  added t o   t h e   l i s t  b y   r e c u r s i v e  
c a l l s   t o   t h i s   f u n c t i o n .  * /  
v o i d   A d d D i r t y R e c t ( E n t i t y  * p E n t i t y ,   i n t   I m a g e H e i g h t .   i n t   I m a g e w i d t h )  

D i r t y R e c t a n g l e  * D i r t y P t r :  
D i  r t yRectang1 e * TempPtr; 
E n t i t y  TempEnti t y :  
i n t  i: 
i f  (NumDi r tyRectang les  >- MAX-DIRTY-RECTANGLES) { 

{ 

/ *  Too many d i r t y   r e c t a n g l e s :   j u s t   r e d r a w   t h e   w h o l e   s c r e e n  * /  
DrawWholeScreen - 1;  
r e t u r n :  

3 
/ *  Remember t h i s   d i r t y   r e c t a n g l e .   B r e a k  up i f  necessary t o   a v o i d  

o v e r l a p   w i t h   r e c t a n g l e s   a l r e a d y   i n   t h e   l i s t ,   t h e n  add  whatever 
r e c t a n g l e s   a r e   l e f t ,   i n  Y X  s o r t e d   o r d e r  * /  

/*  Check f o r   o v e r l a p   w i t h   e x i s t i n g   r e c t a n g l e s  */  
TempPtr - Di r tyHead.Next :  
f o r  (i - 0: i < NumDi r tyRectang les :  i++. TempPtr - TempPtr->Next)  I 

# i f d e f  CHECK-OVERLAP 
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i f  ( ( T e m p P t r - > L e f t  < ( p E n t i t y - > X  + Imagewid th) )  && 
(TempPt r ->Righ t  > p E n t i t y - > X )  && 
(TempPtr->Top < ( p E n t i t y - > Y  + ImageHeigh t ) )  & &  
(TempPtr->Bottom > p E n t i t y - > Y ) )  I 

/*  We've found an o v e r l a p p i n g   r e c t a n g l e .   C a l c u l a t e   t h e  
r e c t a n g l e s .  i f  a n y ,   r e m a i n i n g   a f t e r   s u b t r a c t i n g   o u t   t h e  
OVerlaDDed  areas.  and  add  them t o   t h e   d i r t r   l i s t  

/*  Check f o r  a n o n o v e r l a p p e d   l e f t   p o r t i o n  * /  
i f  ( T e m p P t r - > L e f t  > p E n t i t y - > X )  { 

/ *  T h e r e ' s   d e f i n i t e l y  a n o n o v e r l a p p e d   p o r t i o n  
it, b u t   o n l y   t o   a t   m o s t   t h e   t o p  and  bottom 
r e c t :   t o p  a n d   b o t t o m   s t r i p s   a r e   t a k e n   c a r e  

TempEntity.X - p E n t i t y - > X :  
TempEnt i ty.Y - max(pEnt i ty->Y,   TempPtr ->Top) :  
AddDirtyRect(&TempEntity. 

a t  
o f  
o f  

*/ 

t h e   l e f t ;  add 
the   ove r1   app i   ng  
below */  

m i n ( p E n t i t y - > Y  + ImageHeight.   TempPtr->Bottom) - 
TempEnt i ty.Y, 

TempPt r ->Lef t  - p E n t i t y - > X ) ;  
1 
/*  Check f o r  a n o n o v e r l a p p e d   r i g h t   p o r t i o n  * /  
i f  (TempPt r ->Righ t  < ( p E n t i t y - > X  + Imagewid th) )  I 

/*  T h e r e ' s   d e f i n i t e l y  a n o n o v e r l a p p e d   p o r t i o n   a t   t h e   r i g h t :  add 
i t , b u t   o n l y   t o   a t   m o s t   t h e   t o p   a n d   b o t t o m   o f   t h e   o v e r l a p p i n g  
r e c t ;   t o p  a n d   b o t t o m   s t r i p s   a r e   t a k e n   c a r e   o f   b e l o w  * /  

TempEnt i ty.X - TempPt r ->Righ t :  
TempEnt i ty.Y - max(pEnt i ty ->Y.   TempPt r ->Top) ;  
AddDirtyRect(&TempEntity. 

m i n ( p E n t i t y - > Y  + ImageHeight,   TempPtr->Bottom) - 
TempEnt i ty.Y. 
( p E n t i t y - > X  + Imagewid th)  - TempPt r ->Righ t ) :  

1 
/* Check f o r  a n o n o v e r l a p p e d   t o p   p o r t i o n  */ 
i f  (TempPtr->Top > p E n t i t y - > Y )  I 

/*  T h e r e ' s  a t o p   p o r t i o n   t h a t ' s   n o t   o v e r l a p p e d  * /  
TempEnt i ty.X - p E n t i t y - > X ;  
TempEnt i ty.Y - p E n t i t y - > Y ;  
AddDir tyRect(&TempEnt i ty .  TempPtr->Top - p E n t i t y - > Y .   I m a g e w i d t h ) ;  

1 
/* Check f o r  a n o n o v e r l a p p e d   b o t t o m   p o r t i o n  */ 
i f  (TempPtr->Bottom < ( p E n t i t y - > Y  + ImageHeigh t ) )  I 

/* T h e r e ' s  a b o t t o m   p o r t i o n   t h a t ' s   n o t   o v e r l a p p e d  */  
TempEnt i ty.X - p E n t i t y - > X ;  
TempEnt i ty.Y - TempPtr->Bottom; 
AddDir tyRect (&TempEnt i ty .  

1 
/*  We've  added a l l   n o n - o v e r l a p p e d   p o r t i o n s   t o   t h e   d i r t y   l i s t  * /  
r e t u r n ;  

( p E n t i t y - > Y  + ImageHeight)  - TempPtr ->Bot tom.  Imagewidth) :  

1 
1 

/*  T h e r e ' s   n o   o v e r l a p   w i t h   a n y   e x i s t i n g   r e c t a n g l e ,  so we can j u s t  
add t h i s   r e c t a n g l e   a s - i s  */ 

/*  F i n d   t h e   Y X - s o r t e d   i n s e r t i o n   p o i n t .   S e a r c h e s  will a l w a y s   t e r m i n a t e ,  
b e c a u s e   t h e   h e a d / t a i l   r e c t a n g l e   i s   s e t   t o   t h e  maximum v a l u e s  */  

TempPtr - &Di r tyHead;  
w h i l e   ( ( ( D i r t y R e c t a n g l e   * ) T e m p P t r - > N e x t ) - > T o p  < p E n t i t y - > Y )  I 

1 

# e n d i f  / *  CHECK-OVERLAP * /  

TempPtr - TempPtr->Next:  
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w h i l e   ( ( ( ( D i r t y R e c t a n g l e   * ) T e m p P t r - > N e x t ) - > T o p  -- p E n t i t y - > Y )  && 
( ( ( D i r t y R e c t a n g l e   * ) T e m p P t r - > N e x t ) - > L e f t  < p E n t i t y - > X ) )  { 

TempPtr - TempPtr->Next: 
I 
/*  S e t   t h e   r e c t a n g l e   a n d   a c t u a l l y   a d d  i t  t o   t h e   d i r t y   l i s t  * /  
D i  r t yP t r  - &Di   r tyRectang1 es[NumDi r tyRectangles++l  : 
D i r t y P t r - > L e f t  - p E n t i t y - > X :  
D i r t y P t r - > T o p  - p E n t i t y - > Y :  
D i r t y P t r - > R i g h t  - p E n t i t y - > X  + Imagewidth;  
D i r t y P t r - > B o t t o m  - p E n t i t y - > Y  + ImageHeight ;  
D i r t y P t r - > N e x t  - TempPtr->Next; 
TempPtr->Next - DirtyPtr: 

1 

LISTING 46.2  L46-2.ASM 
: A s s e m b l y   l a n g u a g e   h e l p e r   r o u t i n e s   f o r   d i r t y   r e c t a n g l e   a n i m a t i o n .   T e s t e d   w i t h  
: TASM. 
: F i l l s  a r e c t a n g l e   i n   t h e   s p e c i f i e d   b u f f e r .  
: C - c a l l a b l e   a s :  
: v o i d   F i l l R e c t ( c h a r   f a r  * B u f f e r P t r .   i n t   R e c t H e i a h t .   i n t   R e c t W i d t h .  

.model 

.code 
parms s t r u c  

B u f f e r P t r  
Rec tHe igh t  
RectWidth 
B u f f e r w i d t h  
C o l o r  
parms  ends 

- F i  11  Rect 
pub1 i c 

c l  d 
push 
mov 
push 

1 es 
mov 
mov 
sub 

mov 
mov 

mov 
s h r  
r e p  
adc 

add 
dec 
j n z  

POP 
POP 
r e t  

RowLoop: 

r e p  

-Fi  11  Rect  endp 

i n t   B u f f e r w i d t h .   i n t   C o l o r ) :  

smal 1 

dw ? 
dw ? 
dd ? 
dw ? 
dw ? 
dw ? 
dw ? 

;pushed BP 
:pushed r e t u r n   a d d r e s s  
: f a r   p o i n t e r   t o   b u f f e r   i n   w h i c h   t o  fill 
; h e i g h t   o f   r e c t a n g l e   t o  fill 
: w i d t h   o f   r e c t a n g l e   t o  fill 
; w i d t h   o f   b u f f e r   i n   w h i c h   t o  fill 
; c o l o r   w i t h   w h i c h   t o  fill 

- Fi   11   Rec t  
p roc   near  

bp 
bp.sp 
d i  

d i . [ b p + B u f f e r P t r l  
dx. [bp+RectHeight l  
bx , [bp+Bu f fe rWid th l  
bx .Cbp+Rec tWid th l   ; d i s tance   f rom  end   o f   one   des t   scan  

a l . b y t e   p t r   [ b p + C o l o r l  
a h . a l   ; d o u b l e   t h e   c o l o r   f o r  REP STOSW 

cx. [bp+RectWidth l  
cx .1  
s tosw 
c x ,   c x  
s t o s b  
d i   . b x  
dx 
RowLoop 

d i  

: t o   s t a r t   o f   n e x t  

bP 

: p o i n t   t o   n e x t   s c a n   t o  fill 
:count  down rows t o  fill 
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parmse   s t ruc  

B u f f e r P t r 2  
P i x e l s  
Mask 
ImageHeight 
Imagewid th  
B u f f e r W i d t h E  
parmse  ends 

pub1 i c  
-DrawMasked 

c l  d 
push 
mov 
push 
push 

1 es 
mov 
mov 
mov 
mov 
sub 
mov 

RowLoopZ: 
mov 

ColumnLoop: 
1 odsb 
and 
j z  
mov 
mov 

i nc 
i nc 
dec 
j n z  
add 
dec 
j n z  

POP 
POP 
POP 
r e t  

JrawMasked 

S k i p P i x e l  : 

; Draws a m a s k e d   i m a g e   ( a   s p r i t e )   t o   t h e   s p e c i f i e d   b u f f e r .  C - c a l l a b l e   a s :  
: vo id   DrawMasked(char   fa r  * B u f f e r P t r .   c h a r  * P i x e l s ,  c h a r  * Mask, 

i n t  ImageHeight,  i n t  Imagewidth.  i n t   B u f f e r w i d t h ) :  

dw ? 
dw ? 
dd ? 
dw ? 
dw ? 
dw ? 
dw ? 
dw ? 

;pushed BP 
;pushed  re tu rn   address  
; f a r   p o i n t e r   t o   b u f f e r   i n   w h i c h   t o   d r a w  
; p o i n t e r   t o   i m a g e   p i x e l s  
; p o i n t e r   t o   i m a g e  mask 
; h e i g h t   o f   i m a g e   t o   d r a w  
; w i d t h  o f  image t o  draw 
: w i d t h   o f   b u f f e r   i n   w h i c h   t o   d r a w  

JrawMasked 
p roc   nea r  

bp 
bp.  sp 
s i  
d i  

d i   . [ b p + B u f f e r P t r E ]  
s i  .[bp+Mask] 
b x . [ b p + P i x e l s l  
dx. [bp+ImageHeight l  
ax . [bp+Buf fe rWid thEI  
ax.[bp+ImageWidth] 
[bp+Buf fe rWid thZ l .ax  

cx.[bp+ImageWidthl 

a1  .a1 
S k i p P i x e l  
a1 . Cbxl 
e s : [ d i l . a l  

bx 
d i  

Col umnLoop 
d i . [ b p + B u f f e r W i d t h Z l  
dx 
RowLoopZ 

d i  
s i  

c x  

bp 

endp 

:d is tance  f rom  end  o f   one  des t   scan 
; t o   s t a r t   o f   n e x t  

: g e t   t h e   n e x t  mask b y t e  
:draw t h i s   p i x e l ?  
;no 
; y e s .   d r a w   t h e   p i x e l  

; p o i n t   t o   n e x t   s o u r c e   p i x e l  
; p o i n t   t o   n e x t   d e s t   p i x e l  

: p o i n t   t o   n e x t   s c a n   t o  fill 
;count down rows t o  fill 

; Copies a r e c t a n g l e   f r o m  one b u f f e r   t o   a n o t h e r .  C - c a l l a b l e   a s :  
; v o i d   C o p y R e c t ( D e s t B u f f e r P t r .   S r c B u f f e r P t r .  CopyHeight.   Copywidth.  

Oes tBu f fe rWid th .   S rcBu f fe rWid th ) :  

pa rms3   s t ruc  
dw ? ;pushed BP 
dw ? ;pushed r e t u r n   a d d r e s s  

D e s t B u f f e r P t r   d d  ? ; f a r   p o i n t e r   t o   b u f f e r   t o   w h i c h   t o   c o p y  
S r c B u f f e r P t r   d d  ? ; f a r   p o i n t e r   t o   b u f f e r   f r o m   w h i c h   t o   c o p y  
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CopyHeight dw ? ; h e i g h t   o f   r e c t   t o   c o p y  
Copywidth dw ? ; w i d t h   o f   r e c t   t o   c o p y  
D e s t B u f f e r W i d t h  dw ? ; w i d t h   o f   b u f f e r  t o  w h i c h   t o   c o p y  
S r c B u f f e r W i d t h  
parms3  ends 

pub1 i c 
- CopyRect 

c l  d 
push 
mov 
push 
push 
push 

1 es 
I d s  
mov 
mov 
sub 
mov 
sub 

mov 
s h r  

adc 
r e p  
add 
add 
dec 
j n z  

POP 
POP 
POP 
POP 
r e t  

end 

RowLoop3: 

r e p  

JopyRect 

Masked 

dw ? : w i d t h   o f   b u f f e r   f r o m   w h i c h   t o   c o p y  

_CopyRect 
p roc   nea r  

d i . [ b p + D e s t B u f f e r P t r ]  
s i . [ b p + S r c B u f f e r P t r ]  
dx. [bp+CopyHeight l  
bx , [bp+DestBuf fe rWid th l   :d is tance  f rom  end o f  one des t   scan 
bx.Cbp+CopyWidthl : o f   c o p y   t o   t h e   n e x t  
ax . [bp+SrcBuf fe rWid th l   :d is tance  f rom  end  o f   one  source   scan 
ax.Cbp+CopyWidthl ; o f  copy t o   t h e   n e x t  

cx. [bp+CopyWidthl  :# o f   b y t e s   t o   c o p y  
cx.1 
movsw :copy  as many words   as   poss ib le  
cx , c x  
movsb  :copy  odd b y t e ,  i f  any 
s i  , a x   : p o i n t   t o   n e x t   s o u r c e   s c a n   l i n e  
d i  , bx 
dx 
RowLoop3 

ds 
d i  
s i  

: p o i n t   t o   n e x t   d e s t   s c a n   l i n e  
:count  down rows t o  fill 

bP 

endp 

Images 
Masked  images are  rendered by drawing an object’s pixels through a mask;  pixels 
are actually drawn only where the mask specifies that drawing is  allowed. This makes 
it possible to draw nonrectangular objects that  don’t improperly interfere with one 
another when  they overlap. Masked images also  make it possible  to  have transparent 
areas (windows)  within objects. Masked images produce far more realistic animation 
than do rectangular images, and therefore are  more desirable. Unfortunately, masked 
images are also considerably slower  to  draw-however, a good assembly language 
implementation can go a long way toward  making  masked images draw rapidly 
enough, as illustrated by this chapter’s code. (Masked  images are also  known  as spdes; 
some video hardware supports sprites directly, but on the PC it’s  necessary to handle 
sprites in software.) 
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Masked images make it possible to render scenes so that a given image convincingly 
appears  to  be  in  front of or  behind  other images; that is, so images are displayed in z- 
order (by distance). By consistently drawing images that  are  supposed to be  farther 
away before drawing nearer images, the  nearer images will appear  in  front of the 
other images, and because masked images draw  only  precisely the correct pixels (as 
opposed to blank pixels in the  bounding  rectangle), there’s no interference between 
overlapping images to destroy the illusion. 
In this chapter, I’ve used the  approach of having separate,  paired masks and images. 
Another, quite  different  approach to masking is to specify a transparent  color  for 
copying, and copy only those pixels that are  not  the transparent color. This has the 
advantage of not requiring  separate mask data, so it’s more compact, and  the code 
to implement this is a little less  complex than the full masking I’ve implemented. On 
the  other  hand,  the  transparent color approach is  less flexible because it makes one 
color undrawable. Also, with a transparent color, it’s not possible to keep the same 
base image but use different masks, because the mask information is embedded  in 
the image data. 

Internal Animation 
I’ve added  another feature essential to producing convincing animation: internal 
animation, which  is the process of changing the  appearance of a given object over 
time, as distinguished from  changing only the locution of a given object. Internal 
animation makes images look active and alive.  I’ve implemented  the simplest pos- 
sible form of internal animation in Listing  46.1-alternation  between two images-but 
even  this  level  of internal animation greatly  improves the feel of the overall animation. 
You could easily increase the number of  images  cycled through, simply  by increasing the 
value of InternalAnimateMax for a given  entity. You could also implement  more com- 
plex  image-selection  logic  to  produce  more  interesting and less predictable 
internal-animation effects, such as jumping,  ducking,  running, and  the like. 

Dirty-Rectangle  Management 
As mentioned above, dirty-rectangle animation makes it possible to access  display 
memory a minimum number of times. The previous chapter’s code  didn’t do any of 
that; instead, it  copied all portions of  every dirty rectangle to the screen, regardless 
of overlap between rectangles. The code I’ve presented  in this chapter goes to the 
other extreme, taking great pains never to  draw overlapped portions of rectangles 
more  than  once.  This is accomplished by checking for overlap whenever a rectangle 
is to be  added to the dirty list.  When overlap with an existing rectangle is detected, 
the new rectangle is reduced to between zero and  four nonoverlapping rectangles. 
Those rectangles are  then again considered  for  addition to the dirty list, and may 
again be  reduced, if additional overlap is detected. 
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A good deal of code is required to generate  a fully nonoverlapped dirty list. Is it 
worth it? It certainly can be, but  in  the case  of  Listing 46.1, probably not. For one 
thing, you’d need larger, heavily overlapped objects for this approach to pay  off big. 
Besides, this program is mostly in C, and spends  a  lot of time doing things other  than 
actually  accessing  display  memory. It also  takes a fair amount of time just to generate 
the nonoverlapped list; the overhead of all the  looping, intersecting, and calling 
required to generate  the list eats up a lot of the benefits of accessing  display  memory 
less often. Nonetheless, fully nonoverlapped drawing can be useful under  the right 
circumstances, and I’ve implemented it in Listing 46.1 so you’ll  have something to 
refer to should you decide to go this route. 
There  are  a  couple of additional  techniques you might try if you  want to wring  maxi- 
mum performance  out of dirty-rectangle animation. You could try coalescing 
rectangles as you generate  the dirty-rectangle list. That is, you could  detect pairs of 
rectangles that can be joined together  into  larger rectangles, so that fewer, larger 
rectangles would  have to be copied. This would boost the efficiency of the low-level 
copying code, albeit at the cost of some cycles in the dirty-list management  code. 
You might also  try taking advantage of the  natural  coherence of animated graphics 
screens. In particular, because the rectangle used to erase an image at its old loca- 
tion often overlaps the rectangle within  which the image resides at its new location, 
you could just directly generate  the two or  three nonoverlapped rectangles required 
to copy both  the erase rectangle and  the new-image rectangle for any single moving 
image. The calculation of these rectangles could be  very efficient, given that you 
know in advance the direction of motion of your images. Handling this particular 
overlap case  would eliminate most overlapped drawing, at a minimal cost. You might 
then  decide to ignore overlapped drawing between different images, which tends  to 
be both less common and  more expensive to identify and handle. 

Drawing Order and  Visual  Quality 
A final note on dirty-rectangle animation  concerns the quality of the displayed screen 
image. In  the last chapter, we simply stuffed dirty rectangles into  a list in  the  order 
they  became  dirty, and  then copied all of the rectangles in that same order.  Unfortu- 
nately,  this caused all of the erase rectangles to be copied first, followed by all of the 
rectangles of the images at their new locations. Consequently, there was a significant 
delay between the  appearance of the erase rectangle for  a given image and  the ap- 
pearance of the new rectangle. A byproduct was the fact that a partially  complete-part 
old,  part new-image  was visible long  enough to be noticed.  In  short,  although  the 
pixels ended  up correct, they  were in an  intermediate,  incorrect state for  a sufficient 
period of time to  make the  animation look wrong. 
This violated a  fundamental  rule of animation: No pixel should ever be displuyed in a 
perceptibZy incorrect state. To correct  the  problem, I’ve sorted  the dirty rectangles first 
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by Y coordinate,  and secondly by X coordinate.  This means the screen updates  from 
the top down, and from  left  to  right, so the several  nonoverlapping  rectangles  copied to 
draw a given image should  be drawn nearly simultaneously.  Run the  code  from  the 
last chapter  and  then this chapter; you’ll see quite  a  difference  in  appearance. 
Avoid the  trap of thinking  animation is merely a  matter of drawing the  right pixels, 
one after another. Animation is the art of  drawing the rightpwls at  the  right  times so that 
the eye and  brain see  what you want them to see. Animation is a  lot  more challeng- 
ing  than merely cranking out pixels, and  it  sure as heck isn’t a purely linear process. 
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chapter 47

mode x: 256-color vga magic



VGA’s Undocumented 
timal“ Mode 

At a book signing fo? n of Code Optimization, an attractive young woman 
came up to me, holding and said,  ‘You’re  Michael  Abrash, aren’t you?” I con- 
fessed that  I was, prepared to respond  in an appropriately modest yet proud way to 
the compliments I a s  sure would  follow. (It was  my own book signing, after all.) It 
didn’t work out  that way, though. The first thing  out of her  mouth was: 
“‘Mode X’ is a s name  for  a graphics mode.” As my jaw started to drop, she 
added, “ dn’t invent the  mode,  either. My husband  did  it  before you did.” 
And they say there &e no groupies in  programming! 
Well. I never  claimed that I invented the mode (which is a 320x240  256-color mode with 
some very special properties, as  we’ll see shortly).  I  did discover it  independently, 
but so did other people  in the game business, some of them no  doubt before I did. 
The difference is that all those other people  held onto this powerful mode as a  trade 
secret, while I didn’t; instead,  I  spread  the word as broadly as I could in my column 
in 07; DobbSJournaZ, on  the theory that  the  more  people knew about this mode,  the 
more valuable it would be. And I succeeded, as evidenced by the fact that this now 
widely-used mode is  universally  known by the  name  I gave it  in 00) “Mode X.” Nei- 
ther  do I  think that’s a  bad name; it’s short, catchy, and easy to remember, and it 
befits the mystery status of  this mode, which was omitted entirely from IBM’s docu- 
mentation of the VGA. 
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In fact,  when  all is said and  done, Mode X is one of  my favorite accomplishments. I 
remember  reading  that Charles Schultz, creator of “Peanuts,” was particularly proud 
of  having introduced  the  phrase “security blanket” to the English language. I feel 
much  the same way about Mode X; it’s now a firmly entrenched  part of the com- 
puter  lexicon,  and how often do any  of  us get  a  chance to do that? And that’s not to 
mention all the  excellent games that would not have been as good  without Mode X. 
So, in  the  end, I’m  thoroughly pleased with  Mode X; the world is a  better place for it, 
even if it  did cost  me my one potential  female  fan.  (Contrary  to  popular belief, the 
lives  of computer columnists and rock stars are  not,  repeat, not, all that similar.) This 
and  the following two chapters  are based on  the DDJcolumns that  started  it all  back 
in  1991, three columns that  generated  a  tremendous  amount of interest  and spawned 
a  ton of games, and  about which I still regularly get  letters  and e-mail.  Ladies and 
gentlemen,  I give  you ... Mode X. 

What Makes Mode X Special? 
Consider the strange case  of the VGA’s 320x240  256-color  mode-Mode  X-which  is 
undeniably complex to program  and isn’t  even documented by  IBM-but which  is, 
nonetheless, perhaps the single  best  mode the VGA has  to  offer,  especially for animation. 
We’ve seen the VGA’s undocumented 256-color modes, in  Chapters 31 and 32, but 
now  it’s time to delve into  the wonders of  Mode X itself.  (Most  of the  performance 
tips I’ll  discuss for this mode also  apply to the other  nonstandard 256-color modes, 
however.)  Five features set  Mode X apart from other VGA modes.  First, it has a  1:l aspect 
ratio,  resulting in equal pixel  spacing  horizontally and vertically (that is, square  pixels). 
Square pixels  make for  the most attractive displays, and avoid considerable  program- 
ming effort  that would  otherwise  be  necessary to adjust graphics primitives and images 
to match the screen’s  pixel spacing. (For  example, with square pixels, a circle can be 
drawn  as a circle; otherwise, it must be drawn  as an ellipse that  corrects  for  the aspect 
ratio-a  slower and considerably more complicated process.) In  contrast,  mode 13H, 
the only documented 256-color mode, provides a  nonsquare 320x200 resolution. 
Second, Mode X allows page flipping,  a  prerequisite  for  the  smoothest possible ani- 
mation. Mode 13H does not allow page flipping, nor does mode 12H, the VGA’s 
high-resolution 640x480  16-color mode. 
Third, Mode X allows the VGAs plane-oriented hardware to be  used  to process pix- 
els in  parallel, improving performance by up to  four times  over mode  13H. 
Fourth, like mode  13H  but  unlike all other VGA modes, Mode X is a byte-per-pixel 
mode  (each pixel is controlled by one byte  in  display memory),  eliminating  the slow 
read-before-write and bit-masking operations often required in l6-color modes, where 
each byte  of  display memory represents  more  than  a single pixel. In  addition  to 
cutting  the  number of  memory  accesses in half, this is important because the 486/ 
Pentium write FIFO and  the memory caching schemes used by many VGA clones 
speed up writes more  than  reads. 
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Fifth, unlike mode 13H, Mode X has plenty of offscreen memory free for image 
storage. This is particularly  effective in conjunction with the use of the VGA’s latches; 
together, the latches and the off-screen memory allow images to be copied to the 
screen four pixels at a time. 
There’s a sixth feature of Mode X that’s not so terrific: It’s hard to program effi- 
ciently. As Chapters 23 through 30 of this book  demonstrates, 16-color VGA 
programming can  be demanding. Mode X is often as demanding as  16-color  pro- 
gramming, and operates by a set of rules that turns everything you’ve learned in 
16-color mode sideways. Programming Mode X is nothing like programming  the 
nice, flat bitmap of mode  13H, or, for  that matter, the flat, linear (albeit banked) 
bitmap used by 256-color  SuperVGA  modes.  (I’t’s important to remember  that Mode 
X works on all VGAs, notjust SuperVGAs.)  Many programmers I talk to love the flat 
bitmap model, and think that it’s the  ideal  organization  for  display  memory  because  it’s 
so straightforward to program. Here, however, the complexity of Mode X is opportu- 
nity-opportunity for the best combination of performance and appearance the VGA 
has  to  offer. If  you do 256-color programming, and especially if  you  use animation, 
you’re missing the boat if you’re not using  Mode X. 
Although some developers have taken advantage  of  Mode X, its  use is certainly not 
universal, being entirely undocumented; only an experienced VGA programmer 
would  have the slightest inkling that it even  exists, and figuring out how to make it 
perform  beyond the write pixel/read  pixel  level is no mean  feat.  Little other than my 
DDJcolumns  has been  published about it,  although John Bridges  has  widely distributed 
his code for a number of undocumented 256-color resolutions, and I’d  like to ac- 
knowledge the influence of  his code on the mode set routine presented in  this  chapter. 
Given the tremendous advantages of Mode X over the documented  mode 13H, I’d 
very much like to get it into the hands of  as many developers as  possible, so I’m 
going to spend the next few chapters exploring this odd but worthy mode. I’ll  pro- 
vide mode set code, delineate the bitmap organization, and show  how the basic  write 
pixel and read pixel operations work. Then, I’ll  move on to the magic stuE rect- 
angle fills, screen clears, scrolls,  image copies, pixel  inversion, and, yes,  polygon  fills 
(just a different driver for the polygon code), all  blurry  fast;  hardware raster ops; and 
page flipping. In the end, I’ll build a working animation program that shows many 
of the features of Mode X in action. 
The mode set code is the logical  place to begin. 

Selecting 320x240 256-Color Mode 
We could, if  we wished,  write our own mode set code for Mode X from scratch-but 
why bother? Instead, we’ll let the BIOS do most of the work  by having it set up mode 
13H, which  we’ll then turn  into Mode X by changing a few registers.  Listing  47.1 
does exactly that. 

Mode X: 256-Color VGA Magic 879 



The  code in Listing  47.1 has been  around for some time, and  the very first version 
had a bug  that serves up  an interesting lesson. The original DDJversion made images 
roll on IBM’s fixed-frequency VGA monitors, a problem  that  didn’t come to my at- 
tention  until the code was in  print  and shipped to 100,000 readers. 
The bug came about this way: The code I modified to make the Mode X mode set 
code used the VGA’s 28-MHz clock. Mode X should have used the %-MHz clock, a 
simple matter of setting  bit 2 of the Miscellaneous Output register (3C2H) to 0 in- 
stead of 1. 
Alas, I neglected to change  that single bit, so frames were drawn at a faster rate  than 
they should have been; however, both of  my monitors are multifrequency types, and 
they automatically compensated  for the faster frame  rate. Consequently, my clock- 
selection bug was invisible and innocuous-until it was distributed broadly and 
everybody started  banging on it. 
IBM makes  only fixed-frequency VGA monitors, which require very specific frame 
rates; if they don’t  get what you’ve told them  to  expect,  the image rolls. The cor- 
rected version  is the  one shown here as  Listing  47.1; it  does select the 25-MHz clock, 
and works just fine on fixed-frequency monitors. 
Why didn’t I catch this bug?  Neither I nor a single one of  my testers had a fixed- 
frequency monitor! This nicely illustrates how difficult it is these days to test code in 
all the PC-compatible environments  in which it might run.  The problem is particu- 
larly  severe for small  developers,  who can’t afford to buy  every model of  every hardware 
component  from every manufacturer; just imagine trying to test network-aware  soft- 
ware in all  possible configurations! 
When people ask  why software isn’t bulletproof; why it crashes or doesn’t coexist 
with certain programs; why  PC clones aren’t always compatible; why, in  short,  the 
myriad irritations of using a PC  exist-this is a big part of the reason. I guess that’s 
just  the price we  pay for  the  unfettered creativity and vast choice of the PC market. 

LISTING 47.1  L47- 1 .ASM 
; Mode X (320x240.   256  co lors)  mode s e t   r o u t i n e .  Works on a l l  VGAs. 

; * R e v i s e d   6 / 1 9 / 9 1   t o   s e l e c t   c o r r e c t   c l o c k :   f i x e s   v e r t i c a l   r o l l  * 
; * p rob lems   on   f i xed - f requency  ( I B M  8 5 1 X - t y p e )   m o n i t o r s .  * 

; C n e a r - c a l l a b l e   a s :  

; T e s t e d   w i t h  TASM 
; M o d i f i e d   f r o m   p u b l i c - d o m a i n  mode set   code  by  John  Br idges.  

SC-INDEX 
CRTC-INDEX 

equ  03c4h  ;Sequence  Contro l ler   Index 
equ  03d4h ;CRT C o n t r o l l e r   I n d e x  

MIS-OUTPUT 
SCREEN-SEG 

equ  03c2h ; M i s c e l l a n e o u s   O u t p u t   r e g i s t e r  
equ OaOOOh ;segment o f   d i s p l a y  memory i n  mode X 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

vo id  Set320x240Mode(void) :  

.model  small  

. d a t a  

880 Chapter 47 



: I n d e x / d a t a   p a i r s   f o r  CRT C o n t r o l l e r   r e g i s t e r s   t h a t   d i f f e r  between 
: mode 13h  and mode X. 
CRTParms l a b e l   w o r d  

dw 00d06h : v e r t i c a l   t o t a l  
dw 03e07h : o v e r f l o w   ( b i t  8 o f   v e r t i c a l   c o u n t s )  
dw 04109h : c e l l   h e i g h t   ( 2   t o   d o u b l e - s c a n )  
dw OealOh :v  sync s t a r t  
dw O a c l l h  :v sync  end  and p r o t e c t   c r 0 - c r 7  
dw O d f l 2 h  ; v e r t i c a l   d i s p l a y e d  
dw 00014h : t u r n   o f f  dword mode 
dw Oe715h :v b l a n k   s t a r t  
dw 00616h ;v b lank   end 
dw Oe317h : t u r n  on b y t e  mode 

CRT-PARM-LENGTH equ  ((S-CRTParms)/2) 

p u b l i c  -Set320x240Mode 
.code 

- Set320x240Mode  Droc  near 
push 
push 
push 

mov 
i n t  

mov 
mov 
o u t  
mov 
o u t  

mov 
mov 
o u t  

mov 
mov 
o u t  

mov 
mov 
o u t  
i nc 
i n  
and 
o u t  
dec 
c l  d 
mov 
mov 

bP : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  

d i  
s i   : p r e s e r v e  C r e g i s t e r   v a r s  

: ( d o n ' t   c o u n t  on B I O S  p r e s e r v i n g   a n y t h i n g )  

ax.13h : l e t   t h e  BIOS s e t   s t a n d a r d   2 5 6 - c o l o r  
10h : mode ( 3 2 0 x 2 0 0   l i n e a r )  

dx.SC-INDEX 
ax,  0604h 
dx .ax   ; d i sab le   cha in4  mode 
ax.0100h 
dx .ax   : synch ronous   rese t   wh i l e   se t t i ng   M isc   Ou tpu t  

dx.MISC-OUTPUT 
a1  .Oe3h 
d x . a l   : s e l e c t  25 MHz d o t   c l o c k  & 60 Hz s c a n n i n g   r a t e  

dx.SC-INDEX 
ax,  0300h 
dx .ax   : undo   rese t   ( res ta r t   sequencer )  

dx.CRTC-INDEX : rep rog ram  the  CRT C o n t r o l l e r  
a l . l l h  ;VSync End r e g   c o n t a i n s   r e g i s t e r   w r i t e  
dx .a l  : p r o t e c t   b i t  
dx :CRT C o n t r o l  1 e r   D a t a   r e g i s t e r  
a l . d x   : g e t   c u r r e n t  VSync  End r e g i s t e r   s e t t i n g  
a l . 7 f h  :remove w r i t e   p r o t e c t  on v a r i o u s  
d x . a l  : CRTC r e g i s t e r s  
dx :CRT C o n t r o l l e r   I n d e x  

s i . o f f s e t  CRTParms : p o i n t   t o  CRT p a r a m e t e r   t a b l e  
cx.CRT-PARM-LENGTH :# o f   t a b l e   e n t r i e s  

: fo r   sa fe ty ,   even   t hough   c lock   unchanged  

SetCRTParmsLoop: 
1  odsw : g e t   t h e   n e x t  CRT I n d e x / O a t a   p a i r  
o u t   d x . a x   : s e t   t h e   n e x t  CRT I n d e x / O a t a   p a i r  
l o o p  SetCRTParmsLoop 

mov dx.SC-INDEX 
mov ax.OfO2h 
o u t   d x , a x   : e n a b l e   w r i t e s   t o   a l l   f o u r   p l a n e s  
mov  ax.SCREEN-SEG :now c l e a r   a l l   d i s p l a y  memory. 8 p i x e l s  
mov es.ax : a t  a t i m e  
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sub d i , d i   : p o i n t  E S : D I  t o   d i s p l a y  memory 
sub  ax,ax  :c lear  t o   z e r o - v a l u e   p i x e l s  
mov cx.8000h :# o f  words i n   d i s p l a y  memory 
r e p   s t o s w   : c l e a r   a l l   o f   d i s p l a y  memory 

pop d i   : r e s t o r e  C r e g i s t e r   v a r s  
pop s i  
POP bP : r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  
r e t  

end 
- Set320x240Mode  endp 

After setting up mode 13H, Listing  47.1 alters the vertical counts and timings to 
select 480  visible  scan lines. (There’s no  need to alter any horizontal values, because 
mode 13H and Mode X both have  320-pixel horizontal resolutions.) The Maximum 
Scan Line register is programmed to double scan each line (that is, repeat  each scan 
line twice), however, so we get  an effective vertical resolution of  240 scan lines. It is, 
in fact, possible to get 400 or 480 independent scan lines in 256-color mode, as 
discussed in Chapter 31 and 32;  however,  400-scan-line  modes  lack square pixels and 
can’t support simultaneous off-screen  memory and page flipping. Furthermore, 480- 
scan-line modes lack page flipping altogether, due to memory constraints. 
At the same time, Listing 4’7.1 programs  the VGA’s bitmap to a  planar organization 
that is similar to  that used by the 16-color modes, and utterly different  from the 
linear  bitmap of mode 13H. The bizarre bitmap organization of  Mode X is  shown in 
Figure 47.1. The first pixel (the pixel at  the  upper left corner of the  screen) is con- 
trolled by the byte at offset 0 in  plane 0. (The  one thing  that Mode X blessedly has in 
common with mode 13H is that  each pixel is controlled by a single byte, eliminating 
the  need to mask out individual bits of display memory.) The second pixel, immedi- 
ately to the right of the first pixel, is controlled by the byte at offset 0 in plane 1. The 
third pixel comes from offset 0 in plane 2, and  the  fourth pixel from offset 0 in plane 
3. Then,  the fifth pixel is controlled by the byte at offset 1 in  plane 0, and  that cycle 
continues, with each group of four pixels spread across the  four planes at  the same 
address. The offset M of pixel N in display  memory is M = N/4, and  the plane P of 
pixel N is P = N mod 4. For display  memory  writes, the plane is selected by setting bit 
P of the Map  Mask register (Sequence  Controller register 2) to 1 and all other bits to 
0; for display  memory reads, the  plane is selected by setting the Read  Map register 
(Graphics Controller register 4) to P. 
It goes without saying that this is one ugly bitmap organization, requiring  a  lot of 
overhead to manipulate  a single pixel. The write pixel code shown in Listing 47.2 
must determine  the  appropriate  plane  and  perform  a 16-bit OUT to select that  plane 
for  each pixel written, and likewise for  the  read pixel code shown in Listing  47.3. 
Calculating and mapping in a  plane  once  for each pixel written is  scarcely a  recipe 
for  performance. 
That’s all right,  though, because most graphics software spends little time drawing 
individual pixels.  I’ve provided the write and read pixel routines as  basic  primitives, 
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and so you’ll understand how the  bitmap is organized,  but the building blocks of 
high-performance graphics software are fills, copies, and bitblts, and it’s there  that 
Mode X shines. 

LISTING 47.2 L47-2.ASM 
: Mode X (320x240. 256 c o l o r s )   w r i t e   p i x e l   r o u t i n e .  Works  on a l l  VGAs. 
: No c l i p p i n g   i s   p e r f o r m e d .  
; C n e a r - c a l l a b l e   a s :  

; v o i d   W r i t e P i x e l X ( i n t  X .  i n t  Y .  uns igned i n t  PageBase. i n t   C o l o r ) ;  

SC-INDEX 
MAP-MASK 
SCREEN-SEG 
SCREENKWIDTH 

parms s t r u c  
dw 

X dw 
Y dw 
PageBase dw 

C o l o r  dw 
parms ends 

equ  03c4h :Sequence C o n t r o l l e r   I n d e x  
equ  02h : i n d e x   i n  SC o f  Map Mask r e g i s t e r  
equ OaOOOh :segment o f   d i s p l a y  memory i n  mode X 
equ EO ; w i d t h   o f   s c r e e n   i n   b y t e s   f r o m   o n e   s c a n   l i n e  

; t o   t h e   n e x t  

2 dup ( ? )  :pushed BP and r e t u r n   a d d r e s s  
? : X  c o o r d i n a t e   o f   p i x e l   t o  draw 
? : Y  c o o r d i n a t e   o f   p i x e l   t o   d r a w  
? ;base o f f s e t   i n   d i s p l a y  memory o f  page i n  

? ; c o l o r   i n   w h i c h   t o  draw p i x e l  
; w h i c h   t o   d r a w   p i x e l  
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.model 

.code 
p u b l   i c  

-Wri t e P i x e l  X 
push 
mov 

mov 
mu1 
mov 
s h r  
s h r  
add 
add 
mov 
mov 

mov 
and 
mov 
s h l  
mov 
o u t  

mov 
mov 

POP 
r e t  

end 
- W r i t e P i x e l X  

sma l l  

-Wr i teP ixe lX  
p roc   nea r  
bp 
bP*sP 

ax.SCREEN-WIDTH 
C bp+Y 1 
bx.Cbp+XI 
bx.1 
bx.1 
bx,  ax 
bx.[bp+PageBasel 
ax.SCREEN-SEG 
es.ax 

c l . b y t e   p t r  Cbp+Xl 
c l   . O l l b  
ax.0100h + MAP-MASK 
ah .c l  
dx.SC-INDEX 
dx,  ax 

; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
; p o i n t   t o   l o c a l   s t a c k   f r a m e  

; o f f s e t   o f   p i x e l ' s   s c a n   l i n e   i n  page 

;X/4 - o f f s e t   o f   p i x e l   i n   s c a n   l i n e  
; o f f s e t   o f   p i x e l   i n  page 
: o f f s e t   o f   p i x e l   i n   d i s p l a y  memory 

; p o i n t  ES:BX t o   t h e   p i x e l ' s   a d d r e s s  

;CL - p i x e l ' s   p l a n e  
;AL - i n d e x   i n  SC o f  Map Mask r e g  
; s e t   o n l y   t h e   b i t   f o r   t h e   p i x e l ' s   p l a n e   t o  1 
; s e t   t h e  Map Mask t o   e n a b l e   o n l y   t h e  
; p i x e l ' s   p l a n e  

a1 . b y t e   p t r   [ b p + C o l o r ]  
e s : [ b x l . a l   ; d r a w   t h e   p i x e l   i n   t h e   d e s i r e d   c o l o r  

b p   ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

endD 

LISTING 47.3 L47-3.ASM 
: Mode X (320x240. 256 c o l o r s )   r e a d   p i x e l   r o u t i n e .  Works  on a l l  VGAs. 
; No c l i p p i n g   i s   p e r f o r m e d .  
: C n e a r - c a l l a b l e   a s :  

: u n s i g n e d   i n t   R e a d P i x e l X ( i n t  X .  i n t  Y ,  uns igned   i n t   PageBase) ;  

GC-INDEX 
READ-MAP 
SCREEN-SEG 
SCREEN-WIDTH 

parms s t r u c  
dw 

X dw 
Y dw 
PageBase dw 

parms  ends 

03ceh   :Graph ics   Con t ro l l e r   I ndex  
04h  : index i n  GC o f   t h e  Read Map r e g i s t e r  
OaOOOh :segment o f   d i s p l a y  memory i n  mode X 
80 ; w i d t h   o f   s c r e e n   i n   b y t e s   f r o m  one  scan l i n e  

: t o   t h e   n e x t  

.model  smal 1 

.code 
publ  i c  -Readpixel X 

-ReadPixelX p r o c   n e a r  
push bp 
mov bp.sp 

:pushed BP and r e t u r n   a d d r e s s  
; X  c o o r d i n a t e   o f   p i x e l   t o   r e a d  
; Y  c o o r d i n a t e   o f   p i x e l   t o   r e a d  
;base o f f s e t   i n   d i s p l a y  memory o f  page  f rom 
; w h i c h   t o   r e a d   p i x e l  

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
; p o i n t   t o   l o c a l   s t a c k   f r a m e  
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mov 
mu1 
mov 
s h r  
s h r  
add 
add 
mov 
mov 

mov 
and 
mov 
mov 
o u t  

mov 
sub 

POP 
r e t  

- ReadPixel  X 
end 

ax.SCREEN-WIDTH 
[ bp+Y 1 
bx.Cbp+XI 
b x . 1  
bx.1 
bx,  ax 
bx.[bp+PageBasel 
ax.SCREEN-SEG 
es  ,ax 

a h , b y t e   p t r  [bp+X1 
a h . 0 l l b  
a1 , READ-MAP 
dx.GC-INDEX 
dx.ax 

a1 . e s : [ b x l  
ah.ah 

bP 

endp 

; o f f s e t   o f   p i x e l ' s   s c a n   l i n e   i n  page 

;X/4 - o f f s e t   o f   p i x e l   i n  scan l i n e  
; o f f s e t   o f   p i x e l   i n  page 
: o f f s e t   o f   p i x e l   i n   d i s p l a y  memory 

: p o i n t  ES:BX t o   t h e   p i x e l ' s   a d d r e s s  

:AH - p i x e l ' s   p l a n e  
;AL - i n d e x   i n  GC o f   t h e  Read Map r e g  
; s e t   t h e  Read Map t o   r e a d   t h e   p i x e l ' s  
: p l a n e  

; r e a d   t h e   p i x e l ' s   c o l o r  
: c o n v e r t  i t  t o  an u n s i g n e d   i n t  

: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

Designing from a Mode X Perspective 
Listing 47.4 shows Mode X rectangle fill code. The plane is selected for each pixel  in 
turn, with  drawing  cycling from plane 0 to plane 3, then wrapping back to plane 0. 
This is the sort of code that stems from a write-pixel line of thinking; it reflects not a 
whit  of the unique perspective that Mode X demands, and although it looks  reason- 
ably efficient, it is in fact some of the slowest graphics code you  will  ever see.  I've 
provided  Listing 47.4 partly for illustrative purposes, but mostly so we'll  have a point 
of reference for the substantial speed-up that's  possible  with code that's designed 
from a Mode X perspective. 

LISTING 47.4  L47-4.ASM 
: Mode X (320x240.   256  co lo rs )   rec tang le  fill r o u t i n e .  Works  on a l l  
: VGAs. Uses s l o w   a p p r o a c h   t h a t   s e l e c t s   t h e   p l a n e   e x p l i c i t l y   f o r   e a c h  
: p i x e l .   F i l l s  up t o   b u t   n o t   i n c l u d i n g   t h e   c o l u m n   a t  EndX and  the  row 
: a t  EndY. No c l i p p i n g   i s   p e r f o r m e d .  
: C n e a r - c a l l a b l e   a s :  

: v o i d   F i l l R e c t a n g l e X ( i n t   S t a r t X .   i n t  S t a r t Y .  i n t  EndX. i n t  EndY. 
u n s i g n e d   i n t  PageBase. i n t   C o l o r ) :  

SC-INDEX 
MAP-MASK 
SCREEN-SEG 
SCREEN-WIDTH 

parms s t r u c  
dw 

S t a r t X  dw 
S t a r t Y  dw 
EndX dw 

03c4h 
02h 
OaOOOh 
80 

:Sequence C o n t r o l l e r   I n d e x  
: i n d e x   i n  SC o f  Map Mask r e g i s t e r  
:segment o f   d i s p l a y  memory i n  mode X 
: w i d t h   o f   s c r e e n   i n   b y t e s   f r o m  one  scan l i n e  
: t o   t h e   n e x t  

:pushed BP and r e t u r n   a d d r e s s  
: X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
: Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
; X  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e   r o w   a t  EndX i s   n o t   f i l l e d )  
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EndY dw ? 

PageBase dw ? 

C o l o r  dw ? 
parms  ends 

.model  smal 1 

.code 
pub1 i c -Fi   11  Rectangl  eX 

- Fi  11  Rectangl  eX p r o c   n e a r  
push 
mov 
push 
push 

mov 
mu1 
mov 
s h r  
s h r  

add 
add 

mov 
mov 

mov 
mov 
o u t  
i nc 
mov 
and 
mov 
s h l  
mov 
mov 
sub 
j l e  
mov 
sub 
j l e  

push 
push 
mov 

F i  11  RowsLoop: 

bP 
bP.SP 
s i  
d i  

ax.SCREEN-WIDTH 
[ b p + S t a r t Y l  
d i , [ b p + S t a r t X ]  
d i  .1 
d i  .1 

d i   , a x  
di.[bp+PageBasel 

ax.SCREEN-SEG 
es.ax 

dx.SC-INDEX 
a1 .MAP-MASK 
d x . a l  
dx  
c l . b y t e   p t r   [ b p + S t a r t X l  
c l   . D l l b  
a1 .O lh  
a1 . c l  
a h , b y t e   p t r   [ b p + C o l o r l  
bx.[bp+EndYI 
bx . [bp+Star tY I  
F i   11  Done 
s i  , [bp+EndX] 
s i  , [ b p + S t a r t X l  
Fi   11 Done 

ax 
d i  
c x . s i  

F i l l S c a n L i n e L o o p :  
o u t   d x . a l  
mov e s : [ d i l . a h  
s h l   a 1 , l  
and  a1 . O l l l l b  
j nz   AddressSe t  
i n c   d i  
mov al .00001b 

1 oop Fi  11  ScanLi  neLoop 
pop d i  
add d i  .SCREEN-WIDTH 

AddressSet:  

:Y c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e   c o l u m n   a t  EndY i s   n o t   f i l l e d )  
;base o f f s e t   i n   d i s p l a y  memory o f  page i n  
; w h i c h   t o  fill r e c t a n g l e  
; c o l o r   i n   w h i c h   t o   d r a w   p i x e l  

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
; p o i n t   t o   l o c a l   s t a c k   f r a m e  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

; o f f s e t   i n  page o f   t o p   r e c t a n g l e   s c a n   l i n e  

:X/4 - o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  scan 
: l i n e  
: o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  page 
; o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  
: d i s p l a y  memory 

: p o i n t  E S : D I  t o   t h e   f i r s t   r e c t a n g l e   p i x e l ' s  
; address 
; s e t   t h e  Sequence C o n t r o l l e r   I n d e x   t o  
; p o i n t   t o   t h e  Map Mask r e g i s t e r  

; p o i n t  DX t o   t h e  SC D a t a   r e g i s t e r  

;CL - f i r s t   r e c t a n g l e   p i x e l ' s   p l a n e  

; s e t   o n l y   t h e   b i t   f o r   t h e   p i x e l ' s   p l a n e   t o  1 
: c o l o r   w i t h   w h i c h   t o  fill 

;BX - h e i g h t   o f   r e c t a n g l e  
: s k i p  i f  0 or n e g a t i v e   h e i g h t  

:CX - w i d t h   o f   r e c t a n g l e  
: s k i p  i f  0 o r   n e g a t i v e   w i d t h  

;remember t h e   p l a n e  mask f o r   t h e   l e f t  edge 
;remember t h e   s t a r t   o f f s e t   o f   t h e   s c a n   l i n e  
: s e t   c o u n t   o f   p i x e l s   i n   t h i s   s c a n   l i n e  

: s e t   t h e   p l a n e   f o r   t h i s   p i x e l  
: d r a w   t h e   p i x e l  
: a d j u s t   t h e   p l a n e  mask f o r   t h e   n e x t   p i x e l ' s  
: b i t ,  modulo 4 
:advance  address i f  we t u r n e d   o v e r   f r o m  
: p l a n e  3 t o   p l a n e  0 
: s e t   p l a n e  mask b i t   f o r   p l a n e  0 

: r e t r i e v e   t h e   s t a r t   o f f s e t   o f   t h e   s c a n   l i n e  
; p o i n t   t o   t h e   s t a r t  o f  t h e   n e x t   s c a n  
: l i n e   o f   t h e   r e c t a n g l e  
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POP ax 
dec  bx 
j n z   F i  1  1  Rows Loop 

pop d i  
pop s i  

r e t  

end 

F i   1 1  Done: 

POP bp 

- Fi   11   Rec tang l  eX endp 

: r e t r i e v e   t h e   p l a n e  mask f o r   t h e   l e f t  edge 
;count  down s c a n   l i n e s  

; r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  

; r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

The two major weaknesses of Listing 47.4 both result from selecting the  plane on a 
pixel by pixel basis.  First, endless OUTs (which are particularly slow on 386s, 486s, 
and Pentiums, much slower than accesses to display  memory)  must be performed, 
and, second, REP STOS can’t be used. Listing 47.5 overcomes both these problems 
by tailoring the fill technique to the organization of display  memory.  Each plane is 
filled in its entirety in one burst  before  the  next  plane is processed, so only  five OUTs 
are  required in all, and REP STOS can indeed be used; I’ve used REP STOSB in 
Listings 47.5 and 47.6. REP STOSW could  be  used and would  improve performance on 
most VGAs; however, REP STOSW requires extra overhead  to  set up, so it can  be  slower 
for small rectangles,  especially on &bit VGAs. Note that doing an entire plane at  a time 
can produce  a “fading-in” effect for large images, because all columns for one plane 
are drawn before any columns  for  the  next. If this is a  problem, the  four planes can 
be cycled through  once  for  each scan line,  rather  than  once  for  the  entire rectangle. 
Listing 47.5 is 2.5 times faster than Listing 47.4 at clearing the screen on a 20-MHz 
cached 386 with a Paradise VGA. Although Listing 47.5 is  slightly  slower than  an 
equivalent mode 13H fill routine would be, it’s not grievously so. 

p In general, performingplane-at-a-time operations can  make almost any Mode X 
operation, at the worst, nearly as fast as the same operation in mode 13H (al- 
though  this sort of Mode Xprogramming is admittedly fairly complex). In this 
pursuit, it can help to organize data structures with Mode Xin mind. For example, 
icons could be prearranged in system memory with the pixels organized into four 
plane-oriented sets (oy, again, in four sets per scan line to avoid a  fading-in effect) 
to facilitate copying to  the screen a plane at  a time with REP MOVS. 

LISTING 47.5 L47-5.ASM 
; Mode X (320x240. 256 c o l o r s )   r e c t a n g l e  fill r o u t i n e .  Works on a l l  
; VGAs. Uses   med ium-speed  approach  tha t   se lec ts   each  p lane  on ly   once 
; p e r   r e c t a n g l e ;   t h i s   r e s u l t s   i n  a f a d e - i n   e f f e c t   f o r   l a r g e  
; r e c t a n g l e s .   F i l l s   u p  t o  b u t   n o t   i n c l u d i n g   t h e   c o l u m n   a t  EndX and t h e  
; row a t  EndY. No c l i p p i n g  i s  per formed.  
; C n e a r - c a l l a b l e   a s :  

; v o i d   F i l l R e c t a n g l e X ( i n t   S t a r t X .   i n t   S t a r t Y ,   i n t  EndX. i n t  EndY. 
uns igned i n t  PageBase, i n t   C o l o r ) ;  

SC- INDEX equ  03c4h 
MAPLMASK equ  02h  ; index i n  SC o f  Map Mask r e g i s t e r  
SCREEN-SEG equ OaOOOh ;segment o f   d i s p l a y  memory i n  mode X 

;Sequence C o n t r o l l e r   I n d e x  
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SCREEN-WIDTH 

parms s t r u c  
dw 

S t a r t X  dw 
S t a r t Y  
EndX 

dw 
dw 

EndY dw 

PageBase dw 

C o l o r  dw 
parms  ends 

S t a r t o f f s e t  
Width 
H e i g h t  
P l a n e I n f o  

equ 80 

2 dup ( ? )  
? 
? 
? 

? 

? 

? 

equ - 2  
equ - 4  
equ - 6  
equ -8  

STACK-FRAME-SIZE equ 8 

.model  smal 1 

.code 
pub1 i c  - F i  11  Rectangl eX 

- F i  11 Rectangl  eX p r o c   n e a r  
push 
mov 
sub 
push 
push 

c l  d 
mov 
mu1 
mov 
s h r  
s h r  

add 
add 

mov 
mov 
mov 
mov 
mov 
o u t  
mov 
sub 
J l e  
mov 
mov 
mov 
CmP 
J l e  
dec 
and 
sub 
s h r  
s h r  
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bp 
bp.  sp 
sp.STACK-FRAME-SIZE 
s i  
d i  

ax.SCREEN-WIDTH 
[bp+Sta r tY l  
d i  , [bp+Sta r tX l  
d i  .1 
d i  . I  

d i  ,ax 
di.Cbp+PageBasel 

ax.SCREEN-SEG 
es  ,ax 
C b p + S t a r t O f f s e t l , d i  
dx,SC-INDEX 
a1 .MAP-MASK 
d x . a l  
bx, [bp+EndY 1 
bx.Cbp+Star tY l  
F i   1 1  Done 
Cbp+Heightl .bx 
dx.  [bp+EndXI 
cx. [bp+Star tX]  
dx.cx 
F i  11 Done 
dx 
c x . n o t   O l l b  
dx.cx 
dx.1 
dx. 1 

; w i d t h   o f   s c r e e n   i n   b y t e s   f r o m  one  scan l i n e  
: t o   t h e   n e x t  

:pushed BP and r e t u r n   a d d r e s s  
: X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
: Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
; X  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e   r o w   a t  EndX i s   n o t   f i l l e d )  
:Y  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e   c o l u m n   a t  EndY i s   n o t   f i l l e d )  
;base o f f s e t   i n   d i s p l a y  memory o f  page i n  
: w h i c h   t o  fill r e c t a n g l e  
: c o l o r   i n   w h i c h   t o  d r a w   p i x e l  

; l o c a l   s t o r a g e   f o r   s t a r t   o f f s e t   o f   r e c t a n g l e  
: l o c a l   s t o r a g e   f o r   a d d r e s s   w i d t h   o f   r e c t a n g l e  
: l o c a l   s t o r a g e   f o r   h e i g h t   o f   r e c t a n g l e  
:1  oca1 s t o r a g e   f o r   p l a n e  IF and p l a n e  mask 

; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
: p o i n t   t o   l o c a l   s t a c k   f r a m e  
: a l l o c a t e   s p a c e   f o r   l o c a l   v a r s  
; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: o f f s e t   i n  page o f   t o p   r e c t a n g l e   s c a n   l i n e  

;X/4 - o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n   s c a n  
: l i n e  
: o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  page 
: o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  
: d i s p l a y  memory 

: p o i n t  ES:DI  t o   t h e   f i r s t   r e c t a n g l e   p i x e l ' s  
: address 
; s e t   t h e   S e q u e n c e   C o n t r o l l e r   I n d e x   t o  
: p o i n t   t o   t h e  Map Mask r e g i s t e r  

:BX - h e i g h t   o f   r e c t a n g l e  
; s k i p  i f  0 o r   n e g a t i v e   h e i g h t  

; s k i p  i f  0 o r   n e g a t i v e   w i d t h  



i n c   d x  ; I  o f   a d d r e s s e s   a c r o s s   r e c t a n g l e   t o  fill 
mov [bp+Width].dx 
mov word p t r  [bp+PlaneInfo],OOOlh 

F i   1 1  P1 anesLoop: 
mov 
mov 
o u t  
mov 
mov 
mov 
and 
CmP 
j a e  
dec 
j z  
i nc 

mov 
dec 
and 
CmP 
j be 
dec 

I n i t A d d r S e t :  

j z  
WidthSet :  

mov 
sub 

mov 
mov 

mov 

add 
r e  P 

dec 
j n z  

F i  11  RowsLoop: 

F i l l LoopBo t tom:  

: l o w e r   b y t e  - p l a n e  mask f o r   p l a n e  0.  
; u p p e r   b y t e  - p l a n e  # f o r   p l a n e  0 

ax,word p t r   [ b p + P l a n e I n f o ]  
dx.SC-INDEX+l ; p o i n t  DX t o   t h e  SC D a t a   r e g i s t e r  
d x . a l   : s e t   t h e   p l a n e   f o r   t h i s   p i x e l  
d i , [ b p + S t a r t O f f s e t l   ; p o i n t  E S : D I  t o   r e c t a n g l e   s t a r t  
dx.Cbp+Widthl 
c 1 , b y t e   p t r   [ b p + S t a r t X ]  
c l   . O l l b  
ah ,c l  
I n i t A d d r S e t  
d x  
Fi   11  LoopBottom 
d i  

c l . b y t e   p t r  [bp+EndX] 
c l  
c l   . O l l b  
ah .c l  
WidthSet  
dx 
F i  11  LoopBottom 

s i  .SCREEN-WIDTH 
s i  ,dx 

bx.Cbp+Heightl  
a l . b y t e   p t r   C b p + C o l o r l  

cx ,   dx  
s t o s b  
d i   , s i  

bx  
F i  11  RowsLoop 

;p lane  # o f   f i r s t   p i x e l  i n  i n i t i a l   b y t e  
;do we draw t h i s   p l a n e   i n   t h e   i n i t i a l   b y t e ?  
;yes 
;no. so s k i p   t h e   i n i t i a l   b y t e  
: s k i p   t h i s   p l a n e  i f  n o   p i x e l s   i n  i t  

;p lane  # o f   l a s t   p i x e l   i n   f i n a l   b y t e  
;do we draw t h i s   p l a n e  i n  t h e   f i n a l   b y t e ?  
:yes 
;no. s o  s k i p   t h e   f i n a l   b y t e  
; s k i p   t h i s   p l a n e s  i f  n o  p i x e l s   i n  i t  

: d i s t a n c e   f r o m   e n d   o f   o n e   s c a n   l i n e   t o   s t a r t  
; o f   n e x t  
;# o f   l i n e s   t o  fill 
: c o l o r   w i t h   w h i c h   t o  fill 

;# o f   b y t e s   a c r o s s   s c a n   l i n e  
;fill t h e   s c a n   l i n e   i n   t h i s   p l a n e  
: p o i n t   t o   t h e   s t a r t   o f   t h e   n e x t   s c a n  
: 1 i n e   o f   t h e   r e c t a n g l e  
; coun t  down s c a n   l i n e s  

mov ax.word p t r   C b p + P l a n e I n f o l  
s h l  a1 .1 
i n c  ah 
mov word p t r   [ b p + P l a n e I n f o ] . a x  
cmp ah.4  ;have we done a l l   p l a n e s ?  
j n z   F i   1 1  P1 anesLoop ; c o n t i n u e  i f  any  more  planes 

pop d i   ; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
pop s i  
mov sp,  bp 
POP bp 

; d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  

r e t  
; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

-Fi   11  Rectangl  eX endp 
end 

; s e t   t h e   p l a n e   b i t   t o   t h e   n e x t   p l a n e  
; i n c r e m e n t   t h e   p l a n e  # 

F i   1 1  Done: 

Hardware Assist from an Unexpected  Quarter 
Listing 47.5 illustrates  the benefits of designing code from a Mode X perspective; 
this is the  software  aspect of Mode X optimization, which  suffices  to  make  Mode X 
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about as  fast  as mode 13H. That alone makes  Mode X an attractive mode, given its 
square pixels,  page flipping, and offscreen  memory, but superior performance would 
nonetheless be a pleasant addition to that list. Superior performance is indeed pos- 
sible in Mode X, although, oddly enough, it comes  courtesy of the VGA’s hardware, 
which was never designed to be used in  256-color  modes. 
All  of the VGA‘s hardware  assist features are available  in  Mode X, although some are 
not particularly  useful. The VGA hardware feature that’s  truly the key to Mode X 
performance is the ability to process four planes’  worth of data in parallel; this in- 
cludes both  the latches and the capability to fan data out to any or all planes. For 
rectangular fills,  we’ll just  need to fan the  data out to various  planes, so I’ll defer a 
discussion of other hardware features for now.  (By the way, the ALUs, bit mask, and 
most other VGA hardware features are also  available in mode 13H-but parallel 
data processing is not.) 
In planar modes, such as Mode X, a byte  written by the CPU to display memory may 
actually  go to anywhere  between zero and four planes, as  shown in Figure  47.2.  Each 
plane for which the  setting of the  corresponding  bit  in the Map Mask register is 1 re- 
ceives the CPU data, and each  plane for which the corresponding  bit is 0 is not modified. 
In 16-color modes, each plane contains onequarter of each of eight pixels,  with the 
4 bits of each pixel spanning all four planes. Not so in  Mode X. Look at Figure  47.1 
again; each plane contains one pixel in its entirety, with four pixels at any  given 
address, one  per plane. Still, the Map Mask register does the same job in Mode X as 

CPU write of value  The CPU value (41 h) is written  to  offset 0 in  each of 
41 h to  offset 0 in  the two planes  enabled by the Map Mask register, 
display  memory r planes 0 and 2; planes 1 and 3 are not  altered. 

Selectingplanes with the Map Mask register. 
Figure 47.2 
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in 16-color  modes; set it  to OFH (all 1-bits), and all four planes will be written  to by 
each CPU access. Thus, it  would  seem that up to four pixels could be set by a single 
Mode X byte-sized  write to display  memory,  potentially speeding up operations like 
rectangle fills by four times. 
And, as it  turns out, four-plane parallelism  works quite nicely indeed. Listing  47.6  is 
yet another rectangle-fill routine, this  time  using the Map  Mask to set up to  four 
pixels per STOS. The only  trick  to  Listing  47.6 is that any  left or right  edge  that isn’t 
aligned to a multiple-of-four  pixel  column (that is, a column at which one four-pixel 
set ends  and  the  next begins) must be  clipped via the Map  Mask register,  because not 
all  pixels at  the address containing  the  edge  are modified. Performance is as  ex- 
pected; Listing  47.6  is  nearly ten times  faster at clearing the screen than Listing  47.4 
and  just  about four times  faster than Listing 47.5-and also about  four times  faster 
than  the same rectangle fill in mdde 13H. Understanding  the  bitmap organizztion 
and display hardware of  Mode X does  indeed pay. 
Note that  the return from Mode X’s parallelism is not always 4x;  some adapters lack 
the underlying memory bandwidth to  write data  that fast.  However,  Mode X parallel 
access should always be faster than mode 13H  access; the only question on any  given 
adapter is  how much faster. 

LISTING  47.6  147-6.ASM 
: Mode X (320x240. 256 c o l o r s )   r e c t a n g l e  fill r o u t i n e .  Works  on a l l  
: VGAs. Uses f a s t   a p p r o a c h   t h a t   f a n s   d a t a   o u t   t o   u p   t o   f o u r   p l a n e s   a t  
: once t o  draw  up t o   f o u r   p i x e l s   a t   o n c e .   F i l l s  up t o   b u t   n o t  
: i n c l u d i n g   t h e   c o l u m n   a t  EndX and t h e   r o w   a t  EndY. No c l i p p i n g   i s  
: per formed.  
: C n e a r - c a l l a b l e   a s :  
: v o i d   F i l l R e c t a n g l e X ( i n t   S t a r t X .   i n t   S t a r t Y ,   i n t  EndX. i n t  EndY. 

uns igned i n t  PageBase. i n t   C o l o r ) :  

SC-INDEX 
MAP-MASK 
SCREEN-SEG 
SCREEN-WIDTH 

parms s t r u c  
dw 

S t a r t X  dw 
S t a r t Y  dw 
EndX dw 

EndY dw 

PageBase dw 

C o l o r  dw 
parms  ends 

.model 

. da ta  

equ 03c4h 
equ 02h 
equ OaOOOh 
equ  80 

2 dup ( ? )  
? 
? 
? 

? 

? 

? 

sma l l  

;Sequence C o n t r o l l e r   I n d e x  
; i n d e x   i n  SC o f  Map Mask r e g i s t e r  
:segment o f   d i s p l a y  memory i n  mode X 
: w i d t h   o f   s c r e e n   i n   b y t e s   f r o m   o n e   s c a n   l i n e  
: t o   t h e   n e x t  

:pushed BP and r e t u r n   a d d r e s s  
; X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
: Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
: X  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e   r o w   a t  EndX i s   n o t   f i l l e d )  
: Y  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
: ( t h e  column a t  EndY i s   n o t   f i l l e d )  
;base o f f s e t   i n   d i s p l a y  memory o f  page i n  
: w h i c h   t o  fill r e c t a n g l e  
: c o l o r   i n   w h i c h   t o  draw p i x e l  

: Plane  masks f o r   c l i p p i n g   l e f t  and r i g h t  edges o f   r e c t a n g l e .  
L e f t C l  i pP1 aneMask db  00fh,00eh.00ch.008h 
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RightClipPlaneMask  db  00fh.001h.003h.007h 
.code 
pub1 i c Jill Rectangl  eX 

J i l lRec tang leX   Droc   nea r  
push 
mo v 
push 
push 

c l  d 
mov 
mu1 
mov 
s h r  
s h r  
add 
add 

mov 
mov 
mov 
mov 
o u t  
i nc 
mov 
and 
mov 
mov 
and 
mov 

mov 
mov 
CmP 
J l e  
dec 
and 
sub 
s h r  
s h r  
j nz 
and 

MasksSet: 
mov 
sub 
J l e  
mov 
mov 
sub 
dec 

push 
mov 
o u t  
mov 
s t o s b  
dec 
Js 
Jz 

Fi l lRowsLoop:  

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
: p o i n t   t o   l o c a l   s t a c k   f r a m e  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

ax.SCREEN-WIDTH 
[ b p + S t a r t Y l   : o f f s e t   i n   p a g e   o f   t o p   r e c t a n g l e   s c a n   l i n e  
d i   . C b p + S t a r t X l  
d i  .1 :X/4 - o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n   s c a n  
d i  .1 : l i n e  
d i  ,ax : o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  page 
d i . [ b p + P a g e B a s e l   : o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  

ax.SCREEN-SEG 
: d i s p l a y  memory 
: p o i n t  ES:DI  t o   t h e   f i r s t   r e c t a n g l e  

es  ,ax : p i x e l ' s   a d d r e s s  
dx.SC-INDEX : s e t   t h e  Sequence C o n t r o l l e r   I n d e x   t o  
a1 .MAP-MASK : p o i n t   t o   t h e  Map Mask r e g i s t e r  
dx .a l  
d x   : p o i n t  DX t o   t h e  SC D a t a   r e g i s t e r  
s i  .Cbp+StartXl 
s i  ,0003h  : look  up l e f t  edge  p lane mask 
bh.Lef tCl ipP1aneMaskCsi l  : t o   c l i p  6 p u t   i n  BH 
s i  .Cbp+EndXl 
s i  ,0003h  : look   up   r igh t   edge  p lane 
bl.RightClipP1aneMaskCsil : mask t o   c l i p  6 p u t   i n  BL 

cx.Cbp+EndXI 
s i   . C b p + S t a r t X l  
c x . s i  
F i   1 1  Done 

s i   . n o t   O l l b  
c x . s i  
cx .1  
cx .1  
MasksSet 
bh,b l  

cx  

s i  , Cbp+EndYI 
s i   . C b p + S t a r t Y l  
F i   1 1  Done 
a h . b y t e   p t r   [ b p + C o l o r l  
bp.SCREEN-WIDTH 

bp 
bp.cx 

c x  
a1 , bh 
dx .a l  
a1  ,ah 

c x  
F i  11  LoopBottom 
DoRightEdge 

: c a l c u l a t e  # o f   a d d r e s s e s   a c r o s s   r e c t  

: s k i p  i f  0 o r   n e g a t i v e   w i d t h  

:# o f   a d d r e s s e s   a c r o s s   r e c t a n g l e   t o  fill - 1 
: t h e r e ' s   m o r e   t h a n   o n e   b y t e   t o   d r a w  
: t h e r e ' s   o n l y   o n e   b y t e ,  so c o m b i n e   t h e   l e f t -  
: a n d   r i g h t - e d g e   c l i p  masks 

:BX - h e i g h t   o f   r e c t a n g l e  
: s k i p  i f  0 o r   n e g a t i v e   h e i g h t  
: c o l o r   w i t h   w h i c h   t o  fill 
:s tack   f rame  i sn ' t   needed  any   more  
: d i s t a n c e   f r o m   e n d   o f   o n e   s c a n   l i n e   t o   s t a r t  
: o f   n e x t  

:remember w i d t h   i n   a d d r e s s e s  - 1 
: p u t   l e f t - e d g e   c l i p  mask i n  AL 
: s e t   t h e   l e f t - e d g e   p l a n e   ( c l i p )  mask 
: p u t   c o l o r   i n  AL 
: d r a w   t h e   l e f t   e d g e  
: c o u n t   o f f   l e f t  edge b y t e  
: t h a t ' s   t h e   o n l y   b y t e  
: t h e r e   a r e   o n l y   t w o   b y t e s  

892 Chapter 47 



mov 
o u t  
mov 
r e p  

OoRightEdge: 
mov 
o u t  
mov 
s t o s b  

add 
F i  11  LoopBottom: 

a1 .OOfh 
dx .a l  
a1 ,ah 
s t o s b  

a1 . b l  
dx ,a l  
a1 .ah 

d i  . bp 

POP c x  
dec s i  
j nz F i  1  1  Rows Loop 

pop d i  
pop s i  

r e t  
-Fi   11  Rectangl  eX endp 

end 

F i  11  Done: 

POP bp 

;midd le   addresses   a re   d rawn 4 p i x e l s   a t  a pop 
; s e t   t h e   m i d d l e   p i x e l  mask t o  no c l i p  
; p u t   c o l o r  i n  AL 
; d r a w   t h e   m i d d l e   a d d r e s s e s   f o u r   p i x e l s   a p i e c e  

: p u t   r i g h t - e d g e   c l i p  mask i n  AL 
: s e t   t h e   r i g h t - e d g e   p l a n e   ( c l i p )  mask 
; p u t   c o l o r   i n  AL 
; d r a w   t h e   r i g h t   e d g e  

: p o i n t   t o   t h e   s t a r t  o f  t h e   n e x t   s c a n   l i n e   o f  
: t h e   r e c t a n g l e  
; r e t r i e v e   w i d t h   i n   a d d r e s s e s  - 1 
: coun t  down s c a n   l i n e s  

; r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  

; r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

Just so you can see Mode X in action, Listing 47.7 is a sample program  that selects 
Mode X and draws a  number of rectangles. Listing 47.7 links to any of the rectangle 
fill routines I’ve presented. 
And  now, I hope, you’re beginning to see why I’m so fond of Mode X. In  the  next 
chapter, we’ll continue with  Mode X by exploring  the wonders that  the latches and 
parallel plane hardware can work on scrolls, copies, blits, and  pattern fills. 

LISTING 47.7 L47-7.C 
/*  Program t o   d e m o n s t r a t e  mode X ( 3 2 0 x 2 4 0 .   2 5 6 - c o l o r s )   r e c t a n g l e  

fill b y   d r a w i n g   a d j a c e n t   2 0 x 2 0   r e c t a n g l e s   i n   s u c c e s s i v e   c o l o r s   f r o m  
0 on  up  across  and down t h e   s c r e e n  * /  

# i n c l u d e   < c o n i o .  h> 
# inc lude  <dos .  h >  
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s of Animation’s Best Video  Display  Mode 
In the previous chkpter, I  introduced you to what I call Mode X, an  undocumented 

GA. Mode X is distinguished from  mode 13H, the 
documented 320x mode, in that it supports page flipping, makes 
off-screen memo  square pixels, and, above  all, lets you  use the VGA’s 
hardware to incre as much as four times. (Of  course, those four 

x and  demanding  programming, to be sure- 
out results, not how hard  the code was to write, and Mode X 

big way.) In  the previous chapter we  saw  how the VGA’s plane- 
d solid fills. That’s a nice technique, but now 
-the VGA latches. 

4 

The VGA has four  latthes,  one  for each plane of  display  memory. Each latch stores 
exactly one byte, and  that byte is always the last  byte read  from  the  corresponding 
plane of display memory, as  shown in Figure 48.1. Furthermore, whenever a given 
address in display memory is read, all four planes’ bytes at  that address are  read and 
stored  in  the  corresponding latches, regardless of  which plane  supplied  the byte 
returned to the CPU (as determined by the Read  Map register). As with so much else 
about  the VGA, the above will make little sense to VGA neophytes, but  the  important 
point is  this: By reading one display memory byte, 4 bytes-one from  each plane- 
can be loaded into  the latches at once. Any or all  of those 4 bytes can then  be written 
anywhere in display memory with a single byte-sized write, as  shown in Figure 48.2. 
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The value 49, from  plane 1 , is read by the CPU 
A 

t .f 7 All four  latches are  loaded from 
the corresponding  planes by every 

4 4 4 + display memory read 

P 
How the VGA latches are loaded. 
Figure 48.1 

The value OFFh is written by the CPU - The  Latches 

Bit  Mask  r ister; each 1 bit selects corresponding 

A setting  of OOh selects all bits  from  latches 
t bit from C%, each 0 bit selects bit from  latches. 

Map Mask  register;  each 1 
corresponding  plane, each 

bit enables 
0 bit blocks 

writes  to 

Writing 4 bytes to display memory in a single operation. 
Figure 48.2 
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The  upshot is that  the  latches make it possible to copy data  around  from  one  part of 
display memory to another, 32 bits (four pixels) at a time-four times as fast as nor- 
mal. (Recall from  the previous chapter  that in Mode X, pixels are  stored  one  per 
byte, with four pixels in  a row stored  in successive planes at  the same address, one 
pixel per  plane.) However, any one latch  can only be loaded  from  and written to the 
corresponding  plane, so an individual latch  can only work  with  every fourth pixel on 
the screen; the latch for  plane 0 can work  with pixels 0, 4, S.. . ,  the  latch  for  plane 1 
with pixels 1, 5 ,  9 ..., and so on. 
The latches  aren’t intended  for use in 256-color  mode-they were designed to allow 
individual bits of display  memory to be modified  in 16-color mode-but they are 
nonetheless very  useful in Mode X, particularly for patterned fills and  screen-tescreen 
copies, including scrolls. Patterned filling is a  good place to  start, because patterns 
are widely used in windowing environments  for desktops, window backgrounds, and 
scroll bars, and for textures and color  dithering  in drawing and game software. 
Fast  Mode X fills using  patterns  that  are  four pixels in width can be performed by 
drawing the  pattern  once to the  four pixels at any one address  in display  memory, 
reading  that  address  to  load  the  pattern  into  the  latches,  setting  the Bit  Mask register 
to 0 to speciEy that all bits drawn to display  memory should  come  from  the  latches, 
and  then  performing  the fill pretty much as  we did  in  the previous chapter-except 
that  each  line of the  pattern must  be  loaded into  the latches  before the  correspond- 
ing scan line on  the screen is filled. Listings 48.1 and 48.2 together  demonstrate  a 
variety  of fast Mode X four-by-four pattern fills. (The  mode set  function called by 
Listing 48.1 is from  the previous chapter’s listings.) 

LISTING 48.1  148- 1 .C 
/ *  Program t o   d e m o n s t r a t e  Mode X ( 3 2 0 x 2 4 0 .   2 5 6   c o l o r s )   p a t t e r n e d  

r e c t a n g l e   f i l l s  by f i l l i n g   t h e   s c r e e n   w i t h   a d j a c e n t   8 0 x 6 0  
r e c t a n g l e s   i n  a v a r i e t y  o f  p a t t e r n s .   T e s t e d   w i t h   B o r l a n d  C++ 
i n  C c o m p i l a t i o n  mode and  the   smal l   mode l  * /  

# i n c l u d e   < c o n i o . h >  
# i   n c l  ude  <dos.  h> 

v o i d   S e t 3 2 0 ~ 2 4 0 M o d e ( v o i d ) :  
v o i d   F i l l P a t t e r n X ( i n t .   i n t .   i n t .   i n t .   u n s i g n e d   i n t .   c h a r * ) :  

/ *  16 4 x 4   p a t t e r n s  * /  
s t a t i c   c h a r   P a t t 0 [ 1 = ~ 1 0 . 0 . 1 0 , 0 , 0 . 1 0 . 0 . 1 0 . 1 0 . 0 , 1 0 . 0 . 0 , 1 0 , 0 , 1 0 ~ :  
s t a t i c   c h a r  Pa t t l [1 - (9 .0 .0 .0 ,0 ,9 .0 .0 .0 .0 ,9 .0 .0 ,0 ,0 .91 ;  
s t a t i c   c h a r   P a t t 2 [ ] = ~ 5 , 0 . 0 . 0 , 0 , 0 , 5 , 0 , 5 , 0 , 0 . 0 , 0 , 0 , 5 , 0 ~ :  
s t a t i c   c h a r  Pa t t3 [ ]=~14 ,0 .0 ,14 ,0 .14 .14 .0 .0 .14 .14 .0 .14~0~0~141 :  
s t a t i c   c h a r  P a t t 4 ~ ] = ( 1 5 . 1 5 , 1 5 , 1 . 1 5 . 1 5 . 1 . 1 . 1 5 . 1 . 1 . 1 . 1 ~ 1 , 1 , 1 ~ ;  
s t a t i c   c h a r  P a t t 5 [ 1 = ~ 1 2 . 1 2 . 1 2 . 1 2 . 6 . 6 . 6 . 1 2 . 6 . 6 . 6 . 1 2 . 6 ~ 6 , 6 , 1 2 1 :  
s t a t i c   c h a r  Pat t6 [1=~80.80.80.E0,80,80,80,80,80,80,80,E0,80,80,80,15~:  
s t a t i c   c h a r  Pat t7 [ ] - I78 .78 .78 .78 .80 .80 .80 .80 .82 .82 .82 ,82 ,84 ,E4,84 ,84) :  
s t a t i c   c h a r  Patt8[1=~78.80,82,84.80.82.84.78,84,78,82,84,78,80,84,78,80~E2~; 
s t a t i c   c h a r  Pat t9 [1=~78.80.82,84.78,80,82,84.78,80,82,84,78,80,82,84~:  
s t a t i c   c h a r  Patt10[]-(0.1.2.3.4,5.6.7.8.9.10.11.12.13,14,151: 
s t a t i c   c h a r  Pa t t11 [1 -~0 .1 .2 ,3 ,0 ,1 ,2 ,3 ,0 ,1 .2 .3 ,0 ,1 ,2 ,31 :  
s t a t i c   c h a r   P a t t 1 2 [ 1 = [ 1 4 . 1 4 , 9 , 9 , 1 4 ~ 9 , 9 , 1 4 . 9 . 9 . 1 4 . 1 4 . 9 , 1 4 ~ 1 4 , 9 1 :  
s t a t i c   c h a r  Pat t13[ ] - [15.8.8.8,15.15.15.8,15,15,15,8,15,8,8,E~:  
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s t a t i c   c h a r  Patt14[]-{3,3,3.3.3.7.7.3.3.7.7.3.3.3.3.3); 
s t a t i c   c h a r  Patt l5[ l -~O.O.O.O.O.64.0,0.0.0.0.0.0.0.0,89~;  
/* T a b l e   o f   p o i n t e r s   t o   t h e   1 6   4 x 4   p a t t e r n s   w i t h   w h i c h   t o   d r a w  */  
s t a t i c   c h a r *   P a t t T a b l e C l  - (PattO.Pattl.Patt2.Patt3.Patt4.Patt5.Patt6, 
v o i d   m a i n 0  { 

i n t  i . j ;  
u n i o n  REGS r e g s e t ;  

Set320x240ModeO;  
f o r  ( j  - 0;  j < 4;  j++) { 

Patt7,Patt8.Patt9.PattlO.Pattll.Pattl2.Pattl3,Pattl4,Pattl5~; 

f o r  (i - 0;  i < 4;  i++) ( 

1 
} 
g e t c h (  ) ; 
r e g s e t . x . a x  - 0x0003: / *  s w i t c h   b a c k   t o   t e x t  mode and  done */  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  

FillPatternX~i*80.j*60,i*80+8O,j*6O+6O,O,PattTable~j*4+il~; 

} 

LISTING 48.2 L48-2.ASM 
Mode X ( 3 2 0 x 2 4 0 .   2 5 6   c o l o r s )   r e c t a n g l e   4 x 4   p a t t e r n  fill r o u t i n e .  
U p p e r - l e f t   c o r n e r   o f   p a t t e r n   i s   a l w a y s   a l i g n e d   t o  a m u l t i p l e - o f - 4  
row  and  column.  Works  on a l l  VGAs. Uses  approach o f   c o p y i n g   t h e  
p a t t e r n   t o   o f f - s c r e e n   d i s p l a y  m e m o r y ,   t h e n   l o a d i n g   t h e   l a t c h e s   w i t h  
t h e   p a t t e r n   f o r   e a c h   s c a n   l i n e   a n d   f i l l i n g   e a c h   s c a n   l i n e   f o u r  
p i x e l s   a t  a t i m e .   F i l l s   u p   t o   b u t   n o t   i n c l u d i n g   t h e   c o l u m n   a t  EndX 
a n d   t h e   r o w   a t  EndY. No c l i p p i n g   i s   p e r f o r m e d .  All ASM c o d e   t e s t e d  
w i t h  TASM. C n e a r - c a l l a b l e   a s :  

v o i d   F i l l P a t t e r n X ( i n t   S t a r t X .   i n t   S t a r t Y .   i n t  EndX. i n t  EndY. 
u n s i g n e d   i n t   P a g e B a s e .   c h a r *   P a t t e r n ) ;  

SC-INDEX 
MAP-MASK 
GC-INDEX 
BIT-MASK 
PATTERN-BUFFER 

SCREEN-SEG 
SCREEN-WIDTH 

p a r m s   s t r u c  
dw 

S t a r t X  dw 
S t a r t Y  dw 
EndX dw 

EndY dw 

PageBase dw 

P a t t e r n  dw 
parms  ends 

Nex tScanOf fse t  

Rec tAddrWid th  

equ  03c4h 
equ  02h 
equ  03ceh 
equ  08h 
e q u   O f f f c h  

equ OaOOOh 
equ  80 

2 dup ( ? )  

H e i g h t   e q u  
STACK-FRAMELSIZE equ 

; S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
; i n d e x  i n  SC o f  Map Mask r e g i s t e r  
: G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
; i n d e x   i n  GC o f   B i t  Mask r e g i s t e r  
; o f f s e t   i n   s c r e e n  memory o f   t h e   b u f f e r   u s e d  
; t o   s t o r e   e a c h   p a t t e r n   d u r i n g   d r a w i n g  
;segment o f   d i s p l a y  memory i n  Mode X 
; w i d t h   o f   s c r e e n   i n   a d d r e s s e s   f r o m   o n e   s c a n  
; l i n e   t o   t h e   n e x t  

;pushed BP a n d   r e t u r n   a d d r e s s  
;X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
: Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   r e c t  
; X  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
; ( t h e   r o w   a t  EndX i s   n o t   f i l l e d )  
; Y  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   r e c t  
; ( t h e   c o l u m n   a t  EndY i s   n o t   f i l l e d )  
; b a s e   o f f s e t   i n   d i s p l a y  memory o f  page i n  
; w h i c h   t o  fill r e c t a n g l e  
; 4 x 4   p a t t e r n   w i t h   w h i c h   t o  fill r e c t a n g l e  

2 ; l o c a l   s t o r a g e   f o r   d i s t a n c e   f r o m   e n d   o f   o n e  
; s c a n   l i n e   t o   s t a r t   o f   n e x t  

- 4   : l o c a l   s t o r a g e   f o r   a d d r e s s   w i d t h   o f   r e c t a n g l e  
; l o c a l   s t o r a g e   f o r   h e i g h t   o f   r e c t a n g l e  -6 

6 
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.model   smal l  

. d a t a  
: P l a n e   m a s k s   f o r   c l i p p i n g   l e f t   a n d   r i g h t   e d g e s   o f   r e c t a n g l e .  
Le f tC l   i pP laneMask   db   00 fh .00eh .00ch .008h  
R igh tC l i pP laneMask   db   00 fh .001h .003h .007h  

.code 
p u b l i c   - F i l l P a t t e r n X  

_ F i   1 1   P a t t e r n X   p r o c   n e a r  
push 
mov 
sub 
push 
push 

c l  d 
mov 
mov 

mov 
mov 
mov 
mov 
o u t  
i n c  
mov 

bp  
bp .sp  
sp,STACK_FRAMELSIZE 

d i  
s i  

ax.SCREEN-SEG 
es .ax  

s i   . [ b p + P a t t e r n l  
di.PATTERN-BUFFER 
dx.SC-INDEX 
a1 ,MAP..MASK 
d x . a l  
dx  
cx   . 4  

DownloadPat te rnLoop:  
mov 
o u t  
movsb 
dec 
mov 
o u t  
movsb 
dec 
mov 
o u t  
movsb 
dec 
mov 
o u t  
movsb 

1 oop 

mov 
mov 
o u t  

mov 
mov 
and 
add 

mov 
mu1 
mov 
mov 
s h r  
s h r  
add 

a l . 1  
d x , a l  

d i  
a1 .2 
d x . a l  

d i  
a1 ,4  
d x , a l  

d i  
a l . 8  
d x , a l  

DownloadPat te rnLoop 

dx.GC_INDEX 
ax.OOOOOh+BIT-MASK 
dx ,   ax  

ax ,Cbp+Sta r tY l  
s i   , a x  
s i   . O l l b  
s i  ,PATTERNCBUFFER 

dx.SCREEN-WIDTH 
dx  
d i   . [ b p + S t a r t X l  
bx ,d i  
d i  .1 
d i  .1 
d i  ,ax 

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
; p o i n t   t o   l o c a l   s t a c k   f r a m e  
: a l l o c a t e   s p a c e   f o r   l o c a l   v a r s  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: p o i n t  ES t o   d i s p l a y  memory 

: c o p y   p a t t e r n   t o   d i s p l a y  memory b u f f e r  
; p o i n t   t o   p a t t e r n   t o  fill w i t h  
: p o i n t  E S : O I  t o   p a t t e r n   b u f f e r  
: p o i n t   S e q u e n c e   C o n t r o l l e r   I n d e x   t o  
: Map Mask 

: p o i n t   t o  SC D a t a   r e g i s t e r  
: 4   p i x e l   q u a d r u p l e t s   i n   p a t t e r n  

: s e l e c t   p l a n e  0 f o r   w r i t e s  
: c o p y   o v e r   n e x t   p l a n e  0 p a t t e r n   p i x e l  
; s t a y   a t  same a d d r e s s   f o r   n e x t   p l a n e  

: s e l e c t   p l a n e  1 f o r   w r i t e s  
: c o p y   o v e r   n e x t   p l a n e  1 p a t t e r n   p i x e l  
: s t a y   a t  same a d d r e s s   f o r   n e x t   p l a n e  

: s e l e c t   p l a n e  2 f o r   w r i t e s  
: c o p y   o v e r   n e x t   p l a n e  2 p a t t e r n   p i x e l  
; s t a y   a t  same a d d r e s s   f o r   n e x t   p l a n e  

; s e l e c t   p l a n e  3 f o r   w r i t e s  
: c o p y   o v e r   n e x t   p l a n e  3 p a t t e r n   p i x e l  
: and  advance  address 

: s e t   t h e   b i t  mask t o   s e l e c t   a l l   b i t s  
: f r o m   t h e   l a t c h e s   a n d   n o n e   f r o m  
: t h e  CPU.  s o  t h a t  we c a n   w r i t e   t h e  
: l a t c h   c o n t e n t s   d i r e c t l y   t o  memory 
: t o p   r e c t a n g l e   s c a n   l i n e  

: t o p   r e c t   s c a n  1 i n e   m o d u l o  4 
: p o i n t   t o   p a t t e r n   s c a n   l i n e   t h a t  
: maps t o   t o p   l i n e   o f   r e c t  t o  draw 

; o f f s e t   i n   p a g e   o f   t o p   r e c t a n g l e   s c a n   l i n e  

;X /4  - o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n   s c a n  
: l i n e  
: o f f s e t  o f  f i r s t   r e c t a n g l e   p i x e l   i n   p a g e  
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add 

and 
mov 
mov 
and 
mov 
mov 

mov 
mov 
CmP 
j l e  
dec 
and 
sub 
s h r  
s h r  
j n z  
and 

MasksSet:  
mov 
sub 
j l e  
mov 
mov 
sub 
dec  
mov 
mov 
mov 

F i l lRowsLoop :  
mov 
mov 

i nc 
j n z  
sub 

mov 
o u t  
s t o s b  

dec  

NoWrap: 

j s  
j z  
mov 
o u t  
r e p  

OoRightEdge: 
mov 
o u t  
s t o s b  

d i . [bp+PageBase l  

bx  ,0003h 
ah.LeftClipPlaneMaskCbx1 
bx.[bp+EndX] 
bx.0003h 
a1 .R igh tC l i pP laneMask [bx ]  
bx ,ax  

cx.[bp+EndXl 
ax . [bp+Sta r tX l  
cx ,ax  
F i  11  Done 

a x . n o t   O l l b  
c x ,   a x  
cx .1  

MasksSet 
cx .1  

b h , b l  

c x  

ax,[bp+EndY] 
a x . [ b p + S t a r t Y l  
F i  11  Done 
[ b p + H e i g h t l , a x  
ax.SCREEN-WIDTH 
a x ,   c x  
ax  
[bp+Nex tScanOf fse t ]   , ax  
[bp+RectAddrWid th ] .cx  
dx.SC-INDEX+l 

cx , [bp+Rec tAddrWid th l  
a l . e s : [ s i l  

s i  
s h o r t  NoWrap 
s i  . 4  

a1 , bh 
d x . a l  

c x  
F i   1 1   L o o p B o t t o m  
OoRightEdge 
a1  .OOfh 
d x . a l  
s t o s b  

a1 , b l  
d x . a l  

F i   11   LoopBot tom:  
a d d   d i , [ b p + N e x t S c a n O f f s e t l  

; o f f s e t   o f   f i r s t   r e c t a n g l e   p i x e l   i n  
; d i s p l a y  memory 
; l o o k   u p   l e f t  edge  p lane  mask 
; t o   c l i p  

; l o o k  up r i g h t   e d g e   p l a n e  
; mask t o   c l i p  
; p u t   t h e  masks i n  BX 

; c a l c u l a t e  I o f   a d d r e s s e s   a c r o s s   r e c t  

; s k i p  i f  0 o r   n e g a t i v e   w i d t h  

;# o f   a d d r e s s e s   a c r o s s   r e c t a n g l e   t o  fill - 1 
; t h e r e ' s   m o r e   t h a n   o n e   p i x e l   t o   d r a w  
; t h e r e ' s   o n l y   o n e   p i x e l ,  s o  c o m b i n e   t h e   l e f t  
; a n d   r i g h t - e d g e   c l i p  masks 

;AX - h e i g h t   o f   r e c t a n g l e  
; s k i p  i f  0 o r   n e g a t i v e   h e i g h t  

; d i s t a n c e   f r o m   e n d   o f   o n e   s c a n   l i n e   t o   s t a r t  
; o f   n e x t  

remember w i d t h   i n   a d d r e s s e s  - 1 
p o i n t   t o  S e q u e n c e   C o n t r o l l e r   D a t a   r e g  

(SC I n d e x   s t i l l   p o i n t s   t o  Map Mask) 

w i d t h   a c r o s s  - 1 
r e a d   d i s p l a y  memory t o   l a t c h   t h i s   s c a n  

l i n e ' s   p a t t e r n  
p o i n t   t o   t h e   n e x t   p a t t e r n   s c a n   l i n e .   w r a p p i n g  

; b a c k   t o   t h e   s t a r t   o f   t h e   p a t t e r n  i f  
; w e ' v e   r u n   o f f   t h e   e n d  

; p u t   l e f t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   l e f t - e d g e   p l a n e   ( c l i p )  mask 
; d r a w   t h e   l e f t   e d g e   ( p i x e l s  come f r o m   l a t c h e s ;  
; v a l u e   w r i t t e n   b y  CPU d o e s n ' t   m a t t e r )  
; c o u n t   o f f   l e f t   e d g e   a d d r e s s  
; t h a t ' s   t h e   o n l y   a d d r e s s  
; t h e r e   a r e   o n l y   t w o   a d d r e s s e s  
; m i d d l e   a d d r e s s e s   a r e   d r a w n  4 p i x e l s   a t  a pop 
; s e t   t h e   m i d d l e   p i x e l  mask t o  no c l i p  
; d r a w   t h e   m i d d l e   a d d r e s s e s   f o u r   p i x e l s   a p i e c e  
; ( f r o m   l a t c h e s ;   v a l u e   w r i t t e n   d o e s n ' t   m a t t e r )  

; p u t   r i g h t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   r i g h t - e d g e   p l a n e   ( c l i p )  mask 
; d r a w   t h e   r i g h t   e d g e   ( f r o m   l a t c h e s ;   v a l u e  
; w r i t t e n   d o e s n ' t   m a t t e r )  

; p o i n t   t o   t h e   s t a r t   o f   t h e   n e x t   s c a n  
; l i n e   o f   t h e   r e c t a n g l e  
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d e c   w o r d   p t r   [ b p + H e i g h t l  
jnz F i  11  RowsLoop 

mov dx.GC-INDEX+l 
mov a1 . O f f h  
o u t   d x . a l  

p o p   d i  
pop s i  
mov sp.bp 

r e t  
- F i l l   P a t t e r n X   e n d p  

end 

F i  11  Done: 

POP bP 

: c o u n t  down  scan l i n e s  

: r e s t o r e   t h e   b i t  mask t o   i t s   d e f a u l t ,  
: w h i c h   s e l e c t s   a l l   b i t s   f r o m   t h e  CPU 
: a n d   n o n e   f r o m   t h e   l a t c h e s   ( t h e  GC 
: I n d e x   s t i l l   p o i n t s   t o  B i t  Mask) 
: r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  

: d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

Four-pixel-wide patterns  are  more useful than you might  imagine. There  are actually 
2128 possible patterns  (16 pixels, each with  28 possible colors);  that set is certainly 
large enough  for most color-dithering  purposes, and includes many often-used pat- 
terns,  such as halftones,  diagonal stripes, and crosshatches. 
Furthermore, eight-wide patterns, which are widely used,  can  be drawn  with two 
passes, one  for  each half of the  pattern.  This  principle  can  in fact be  extended  to 
patterns of arbitrary multiple-of-four widths. (Widths that  aren’t multiples of four 
are considerably more difficult to  handle, because the latches are  four pixels wide; 
one possible solution is expanding such patterns via repetition  until they are mul- 
tiple-of-four widths.) 

Allocating Memory in Mode X 
Listing 48.2 raises some  interesting  questions  about  the allocation of  display  memory 
in Mode X. In Listing 48.2, whenever a pattern is to  be  drawn, that  pattern is first 
drawn in its entirety at  the very end of display memory; the latches are  then  loaded 
from  that copy  of the  pattern  before  each scan line of the actual fill is drawn. Why 
this double copying process, and why  is the  pattern  stored in  that  particular  area of 
display memory? 
The  double copying process is used because it’s the easiest way to  load the latches. 
Remember,  there’s no way to get  information directly from  the CPU to the latches; 
the  information  must first be written to  some  location  in display  memory, because 
the latches  can  be  loaded only from display  memory. By writing the  pattern  to off- 
screen memory, we don’t have to worry about  interfering with whatever is currently 
displayed on  the  screen. 
As for why the  pattern is stored exactly where  it is, that’s part of a master memory 
allocation  plan that will come to fruition  in  the  next  chapter, when I implement  a 
Mode X animation  program. Figure 48.3  shows this master plan;  the first two pages 
of memory (each 76,800 pixels long,  spanning 19,200 addresses-that  is, 19,200 pixel 
quadruplets-in display memory) are reserved for page  flipping, the  next  page of 
memory (also 76,800 pixels long) is reserved for  storing  the  background (which is 
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Offset O 

Offset 1 9200 

Offset 38400 

Offset 57600 

Offset 65532 

A useful Mode X display memory layout. 
Figure 48.3 

used  to  restore the holes  left  after images move),  the last 16 pixels (four addresses) 
of display memory are  reserved  for the  pattern buffer, and  the  remaining 31,728 
pixels (7,932 addresses) of  display memory  are  free  for  storage of icons, images, 
temporary  buffers,  or whatever. 
This is an efficient organization  for  animation,  but  there  are  certainly many other 
possible setups.  For  example, you might  choose  to have a  solid-colored  background, 
in  which  case  you could  dispense with the  background  page  (instead  using  the solid 
rectangle fill routine  to  replace  the  background  after images move),  freeing  up  an- 
other 76,800 pixels of off-screen storage  for images and buffers. You could even 
eliminate  page-flipping  altogether if you needed to free  up  a  great  deal of display 
memory. For example, with enough  free display memory it is possible in  Mode X to 
create  a virtual bitmap  three  times  larger  than  the  screen, with the screen  becoming 
a  scrolling window onto  that  larger  bitmap. This  technique has been  used  to  good 
effect in a  number of animated games, with and without the use of  Mode X. 
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Copying Pixel Blocks within Display  Memory 
Another  fine use for the latches is copying  pixels from  one place in display memory 
to another.  Whenever  both the source and  the destination  share the same  nibble 
alignment  (that is, their  start addresses modulo  four  are  the  same),  it is not only 
possible but quite easy to use the latches to copy four pixels at a time. Listing 48.3 
shows a routine  that copies via the latches. (When the source and destination do  not 
share the same nibble alignment, the latches cannot be used because the source and 
destination planes for any  given pixel differ. In that case,  you can set the Read  Map 
register to select a source plane and  the Map Mask register to select the  correspond- 
ing destination plane. Then, copy  all  pixels in that plane, repeating for all four planes.) 

Although copying through the latches is, in general, a speedy technique, espe- 1 cially on slower VGAs, it 5 not always a win. Reading video memory tends to be 
quite a bit slower than writing, and on a fast VLB or PCI adaptel; it can  be faster 
to copy from main  memory to display memory  than it is to copy from display memory 
to display memory via the latches. 

LISTING 48.3 L48-3.ASM 
: Mode X ( 3 2 0 x 2 4 0 ,   2 5 6   c o l o r s )   d i s p l a y  memory t o   d i s p l a y  memory copy  
: r o u t i n e .   L e f t   e d g e   o f   s o u r c e   r e c t a n g l e   m o d u l o  4 must   equa l  l e f t  edge 
: o f   d e s t i n a t i o n   r e c t a n g l e   m o d u l o  4. Works  on a l l  VGAs. Uses  approach 
: o f   r e a d i n g  4 p i x e l s   a t  a t i m e   f r o m   t h e   s o u r c e   i n t o   t h e   l a t c h e s ,   t h e n  
: w r i t i n g   t h e   l a t c h e s   t o   t h e   d e s t i n a t i o n .   C o p i e s   u p   t o   b u t   n o t  
: i n c l u d i n g   t h e   c o l u m n   a t   S o u r c e E n d X   a n d   t h e   r o w   a t   S o u r c e E n d Y .  No 
: c l i p p i n g   i s   p e r f o r m e d .   R e s u l t s   a r e   n o t   g u a r a n t e e d  i f  t h e   s o u r c e   a n d  
: d e s t i n a t i o n   o v e r l a p .  C n e a r - c a l l a b l e   a s :  

: v o i d   C o p y S c r e e n T o S c r e e n X ( i n t   S o u r c e S t a r t X .   i n t   S o u r c e S t a r t Y .  
i n t  SourceEndX. i n t  SourceEndY. i n t   D e s t S t a r t X .  
i n t   D e s t S t a r t Y .   u n s i g n e d   i n t   S o u r c e P a g e B a s e .  
u n s i g n e d   i n t   D e s t P a g e B a s e .   i n t   S o u r c e B i t m a p W i d t h ,  
i n t   D e s t B i t m a p W i d t h ) :  

SC-INDEX equ  03c4h : S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
MAP-MASK equ  02h : i n d e x   i n  SC o f  Map Mask r e g i s t e r  
GC- INDEX equ  03ceh : G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
B I T-MAS K equ  08h : i n d e x   i n  GC o f   B i t  Mask r e g i s t e r  
SCREENKSEG equ OaOOOh :segment o f   d i s p l a y  memory i n  Mode X 

p a r m s   s t r u c  

S o u r c e S t a r t X  
S o u r c e S t a r t Y  
SourceEndX 

SourceEndY 

D e s t S t a r t X  
D e s t S t a r t Y  
SourcePageBase 

DestPageBase 

dw 2 dup ( ? )  
dw ? 
dw ? 
dw ? 

dw ? 

dw ? 
dw ? 
dw ? 

dw ? 

:pushed B P  a n d   r e t u r n   a d d r e s s  
: X  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   s o u r c e  
: Y  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   s o u r c e  
: X  c o o r d i n a t e   o f   l o w e r - r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e   r o w   a t   S o u r c e E n d X   i s   n o t   c o p i e d )  
: Y  c o o r d i n a t e   o f   l o w e r - r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e   c o l u m n   a t   S o u r c e E n d Y   i s   n o t   c o p i e d )  
: X  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   d e s t  
: Y  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   d e s t  
: b a s e   o f f s e t   i n   d i s p l a y  memory o f  page i n  
: w h i c h   s o u r c e   r e s i d e s  
: b a s e   o f f s e t   i n   d i s p l a y  memory o f   p a g e   i n  
; w h i c h   d e s t   r e s i d e s  
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SourceBi tmapWidth  dw ? 

Des tB i tmapWid th  dw ? 

parms  ends 

SourceNex tScanOf fse t   equ  

DestNextScanOf fse t   equ 

RectAddrWid th   equ 
H e i g h t  
STACK-FRAME-SIZE 

equ 
equ 

.model   smal l  

. d a t a  
: P l a n e   m a s k s   f o r   c l i p p i n g  
L e f t C l i p P l a n e M a s k   d b  
R i g h t C l i p P l a n e M a s k   d b  

- 2  

- 4  

- 6  
-8 
8 

:# o f   p i x e l s   a c r o s s   s o u r c e   b i t m a p  
: (must   be a m u l t i p l e   o f   4 )  
:# o f   p i x e l s   a c r o s s   d e s t   b i t m a p  
: (must  be a m u l t i p l e   o f   4 )  

: l o c a l   s t o r a g e   f o r   d i s t a n c e   f r o m   e n d   o f  
: o n e   s o u r c e   s c a n   l i n e   t o   s t a r t   o f   n e x t  
: l o c a l   s t o r a g e   f o r   d i s t a n c e   f r o m   e n d   o f  
; one d e s t   s c a n   l i n e   t o   s t a r t   o f   n e x t  
; l o c a l   s t o r a g e   f o r   a d d r e s s   w i d t h   o f   r e c t a n g l e  
; l o c a l   s t o r a g e   f o r   h e i g h t   o f   r e c t a n g l e  

l e f t  and r i g h t   e d g e s   o f   r e c t a n g l e .  
00 fh .00eh.00ch.008h 
00fh,001h.O03h,007h 

.code 
pub l ic   JopyScreenToScreenX 

-CopyScreenToScreenX  proc  near  
push 
mov 
sub 
push 
push 
push 

c l  d 
mov 
mov 
o u t  

mov 
mov 
mov 
s h r  
s h r  
mu1 
mov 
s h r  
s h r  
add 
add 

mov 
s h r  
s h r  
mu1 
mov 
mov 
s h r  
s h r  
add 
add 

and 
mov 
mov 
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bP 
bP.SP 
sp.STACK-FRAME-SIZE 

d i  
s i  

ds 

dx.GC-INDEX 
ax.OOOOOh+BIT-MASK 
dx .ax  

ax.SCREEN-SEG 
e s  ,ax 
ax , [bp+DestB i tmapWid th ]  
a x . 1  
a x . 1  
[ b p + D e s t S t a r t Y l  
d i . C b p + D e s t S t a r t X l  
d i  .1 
d i  .1 
d i  ,ax 
d i . [bp+DestPageBase l  
: i n   d i s p l a y  memory 

ax.[bp+SourceBitmapWidthl 
ax,  1 
ax ,  1 
[bp+SourceSta r tY ]  
s i , [ b p + S o u r c e S t a r t X l  
b x . s i  
s i  .1 
s i  .1 
s i  ,ax 
s i . [bp+SourcePageBase] 

bx.0003h 
ah,LeftClipPlaneMask[bxl 
bx.[bp+SourceEndX] 

: p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
: p o i n t   t o   l o c a l   s t a c k   f r a m e  
: a l l o c a t e   s p a c e   f o r   l o c a l   v a r s  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

; s e t   t h e   b i t  mask t o   s e l e c t   a l l   b i t s  
: f r o m   t h e   l a t c h e s   a n d   n o n e   f r o m  
: t h e  CPU.  s o  t h a t  we c a n   w r i t e   t h e  
: l a t c h   c o n t e n t s   d i r e c t l y   t o  memory 
; p o i n t  ES t o   d i s p l a y  memory 

: c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  

; t o p   d e s t   r e c t   s c a n   l i n e  

:X /4  - o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  
: s c a n   l i n e  
; o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n   p a g e  
; o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l  

: c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  

: t o p   s o u r c e   r e c t   s c a n   l i n e  

;X /4  - o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l   i n  
: s c a n   l i n e  
; o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l   i n   p a g e  
: o f f s e t   o f   f i r s t   s o u r c e   r e c t  
: p i x e l   i n   d i s p l a y  memory 
: l o o k   u p   l e f t   e d g e   p l a n e  mask 
: t o   c l i p  



and 
mov 
mov 

mov 
mov 
cmp 
j l e  
dec  
and 
sub 
s h r  
s h r  
j nz  
and 

MasksSet:  
mov 
sub 
j l e  
mov 
mov 
s h r  
s h r  
sub 
dec 
mov 
mov 
s h r  
s h r  
sub 
dec 
mov 
mov 

bx.0003h 
a1 . R i g h t C l i p P l a n e M a s k [ b x l  
bx ,ax  

cx. [bp+SourceEndX] 
ax . [bp+SourceSta r tX l  
cx .ax  
CopyDone 

ax .no t  O l l b  
cx .ax  
c x . 1  

MasksSet 
c x . 1  

b h ,   b l  

c x  

ax, [bp+SourceEndYI 
ax . [bp+SourceSta r tY l  
CopyDone 
[ b p + H e i g h t l . a x  
ax . [bp+DestB i tmapWid th l  
ax ,  1 
ax ,  1 
ax .cx  
ax 
[bp+DestNextScanOffsetl.ax 
ax.[bp+SourceBitmapWidthl 
ax .1  
ax .1  
ax .cx  
ax  
[bp+SourceNextScanOffsetl.ax 
Cbo+RectAddrWid th l .cx  .""""""""""" - .  

BUG F I X  
mov dx.SC-INDEX 

mov 
o u t  
i nc 

mov 
mov 

mov 
mov 
o u t  
movsb 

dec 
j s  
j z  
mov 
o u t  

....""""" 

CopyRowsLoop: 

r e p  

DoRightEdge: 
mov 
o u t  
movsb 

~~ 

a1 .MAPKMASK 
d x . a l  
dx  

ax ,   es  
ds ,   ax  

cx . [bp+RectAddrWid th l  
a1 .bh 
d x . a l  

. . . . . - - BUG F I X  

c x  
CopyLoopBottom 
DoRightEdge 
a1 .OOfh 
d x . a l  
movsb 

a1 , b l  
d x , a l  

: l o o k   u p   r i g h t - e d g e   p l a n e  
; mask t o  c l i p  
:pu t   t he   masks  i n  BX 

: c a l c u l a t e  # o f   a d d r e s s e s   a c r o s s  
; r e c t  

; s k i p  i f  0 o r   n e g a t i v e   w i d t h  

:# o f   a d d r e s s e s   a c r o s s   r e c t a n g l e   t o   c o p y  - 1 
: t h e r e ' s   m o r e   t h a n   o n e   a d d r e s s   t o   d r a w  
; t h e r e ' s   o n l y   o n e   a d d r e s s ,  s o  c o m b i n e   t h e  
; l e f t -  a n d   r i g h t - e d g e   c l i p  masks 

:AX - h e i g h t   o f   r e c t a n g l e  
; s k i p  i f  0 o r   n e g a t i v e   h e i g h t  

: c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  

; d i s t a n c e   f r o m   e n d   o f   o n e   d e s t   s c a n   l i n e   t o  
; s t a r t   o f   n e x t  

; c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  

; d i s t a n c e   f r o m   e n d   o f   o n e   s o u r c e   s c a n   l i n e   t o  
: s t a r t   o f   n e x t  

;remember w i d t h   i n   a d d r e s s e s  - I 

: p o i n t  SC I n d e x   r e g   t o  Map Mask 
: p o i n t   t o  SC D a t a   r e g  

;DS-ES-screen  segment f o r  MOVS 

: w i d t h   a c r o s s  - 1 
; p u t   l e f t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   l e f t - e d g e   p l a n e   ( c l i p )  mask 
; c o p y   t h e   l e f t   e d g e   ( p i x e l s  g o   t h r o u g h  
: l a t c h e s )  
; c o u n t   o f f   l e f t  edge  address 
: t h a t ' s   t h e   o n l y   a d d r e s s  
; t h e r e   a r e   o n l y   t w o   a d d r e s s e s  
; m i d d l e   a d d r e s s e s   a r e   d r a w n  4 p i x e l s   a t  a pop 
; s e t   t h e   m i d d l e   p i x e l  mask t o  no c l i p  
; d r a w   t h e   m i d d l e   a d d r e s s e s   f o u r   p i x e l s   a p i e c e  
; ( p i x e l s   c o p i e d   t h r o u g h   l a t c h e s )  

; p u t   r i g h t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   r i g h t - e d g e   p l a n e   ( c l i p )  mask 
; d r a w   t h e   r i g h t   e d g e   ( p i x e l s   c o p i e d   t h r o u g h  
; l a t c h e s )  
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CopyLoopBottom: 
add si.[bp+SourceNextScanOffset] 
add di,[bp+DestNextScanOffsetl 
dec  word p t r   [ b p + H e i g h t l  
j n z  CopyRowsLoop 

mov dx.GC-INDEX+l 
mov a1 . O f f h  
o u t   d x . a l  

CopyDone: 

POP ds 
pop d i  
pop s i  
mov sp.bp 
POP bp 
r e t  

end 
-CopyScreenToScreenX  endp 

: p o i n t   t o   t h e   s t a r t   o f  
: n e x t   s o u r c e  & d e s t   l i n e s  
;count  down s c a n   l i n e s  

: r e s t o r e   t h e   b i t  mask t o   i t s   d e f a u l t ,  
: w h i c h   s e l e c t s   a l l   b i t s   f r o m   t h e  CPU 
: a n d   n o n e   f r o m   t h e   l a t c h e s   ( t h e  GC 
: I n d e x   s t i l l   p o i n t s   t o  B i t  Mask) 

; r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  

: d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

Listing  48.3  has an  important limitation: It does not  guarantee  proper  handling when 
the source and destination overlap, as in the case  of a downward scroll, for  example. 
Listing  48.3 performs top-to-bottom, left-to-right copying.  Downward scrolls require 
bottom-to-top copying;  likewise, rightward horizontal scrolls require right-to-left  copy- 
ing. As it happens, my intended use for Listing 48.3 is to copy images between 
off-screen memory and on-screen memory, and to save areas under  pop-up  menus 
and  the like, so I don’t really need overlap handling-and I do really need to keep 
the complexity of this discussion down. However,  you will surely  want  to add overlap 
handling if  you plan to perform arbitrary scrolling and copying in display  memory. 
Now that we have a fast way to copy images around in display  memory, we can draw 
icons and  other images as much as four times faster than in mode 13H, depending 
on  the  speed of the VGAs display  memory. (In case you’re worried about  the nibble- 
alignment limitation on fast copies, don’t be; I’ll address that fully in due time, but 
the secret is to store all four possible rotations in off-screen memory, then select the 
correct  one  for  each copy.)  However, before our fast display memory-to-display 
memory copy routine can do us  any good, we must have a way to get pixel patterns 
from system memory  into display  memory, so that they can then be copied with the 
fast  copy routine. 

Copying to Display Memory 
The final piece of the puzzle  is the system memory to display-memory-copy-routine 
shown in Listing  48.4. This routine assumes that pixels are stored  in system memory 
in exactly the  order in which they will ultimately appear  on  the screen; that is, in the 
same  linear  order that  mode  13H uses. It would be  more efficient to store all the 
pixels for  one  plane first, then all the pixels for the  next plane, and so on  for all four 
planes, because many OUTS could be avoided, but that would make images rather 
hard to create.  And, while it is true  that the  speed of drawing images is, in  general, 
often a critical performance factor, the  speed of copying images from system memory 
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to  display memory is not particularly critical in Mode X. Important images can be 
stored in off-screen  memory and copied to the screen via the latches much faster than 
even the speediest system  memory-to-display memory copy routine  could manage. 
I'm not going  to present a routine to perform Mode X copies from display  memory  to 
system  memory, but such a routine would be a straightforward  inverse of  Listing 48.4. 

LISTING 48.4  L48-4.ASM 
: Mode X ( 3 2 0 x 2 4 0 .   2 5 6   c o l o r s )   s y s t e m  memory t o  d i s p l a y  memory  copy 
: r o u t i n e .  U s e s   a p p r o a c h   o f   c h a n g i n g   t h e   p l a n e   f o r   e a c h   p i x e l   c o p i e d ;  
: t h i s   i s   s l o w e r   t h a n   c o p y i n g   a l l   p i x e l s   i n   o n e   p l a n e ,   t h e n   a l l   p i x e l s  
: i n   t h e   n e x t   p l a n e ,   a n d  so o n ,   b u t  i t  i s   s i m p l e r ;   b e s i d e s ,   i m a g e s   f o r  
: w h i c h   p e r f o r m a n c e   i s   c r i t i c a l   s h o u l d   b e   s t o r e d   i n   o f f - s c r e e n  memory 
: and  cop ied  t o   t h e   s c r e e n   v i a   t h e   l a t c h e s .   C o p i e s   u p   t o   b u t   n o t  
; i n c l u d i n g   t h e   c o l u m n   a t   S o u r c e E n d X   a n d   t h e   r o w   a t   S o u r c e E n d Y .  No 
: c l i p p i n g   i s   p e r f o r m e d .  C n e a r - c a l l a b l e   a s :  

; v o i d   C o p y S y s t e m T o S c r e e n X ( i n t   S o u r c e S t a r t X .   i n t   S o u r c e S t a r t Y .  
i n t  SourceEndX. i n t  SourceEndY. i n t   D e s t S t a r t X .  
i n t   D e s t S t a r t Y .   c h a r *   S o u r c e P t r .   u n s i g n e d   i n t   D e s t P a g e B a s e .  
i n t   S o u r c e B i t m a p W i d t h .   i n t   O e s t B i t m a p W i d t h ) ;  

SC-INDEX equ  03c4h 
MAP-MASK equ  02h 
SCREEN-SEG equ OaOODh 

p a r m s   s t r u c  

S o u r c e S t a r t X  
S o u r c e S t a r t Y  
SourceEndX 

SourceEndY 

D e s t S t a r t X  
D e s t S t a r t Y  
S o u r c e P t r  

DestPageBase 

SourceBi tmapWid th  
Des tB i tmapWid th  

parms  ends 

dw 
dw 
dw 
dw 

dw 

dw 
dw 
dw 

dw 

dw 
dw 

RectWid th   equ 
Le f tMask   equ 
STACK-FRAME-SIZE equ 

.model  smal 1 

.code 

2 dup ( ? )  
? 
? 
? 

? 

- 2  
- 4  
4 

pub l ic   -CopySystemToScreenX 

push  bp 
mov bp .sp  
sub sp.STACK-FRAMELSIZE 
p u s h   s i  
p u s h   d i  

-CopySystemToScreenX  proc  near  

: S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
; i n d e x   i n  SC o f  Map Mask r e g i s t e r  
:segment o f   d i s p l a y  memory i n  Mode X 

;pushed BP and r e t u r n   a d d r e s s  
: X  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   s o u r c e  
:Y  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   s o u r c e  
: X  c o o r d i n a t e   o f   l o w e r - r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e   r o w   a t  EndX i s   n o t   c o p i e d )  
: Y  c o o r d i n a t e   o f   l o w e r - r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e   c o l u m n   a t  EndY i s   n o t   c o p i e d )  
; X  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   d e s t  
; Y  c o o r d i n a t e   o f   u p p e r - l e f t   c o r n e r   o f   d e s t  
; p o i n t e r   i n  DS t o   s t a r t   o f   b i t m a p   i n   w h i c h  
: s o u r c e   r e s i d e s  
; b a s e   o f f s e t  i n  d i s p l a y  memory o f  page i n  
; w h i c h   d e s t   r e s i d e s  
;# o f   p i x e l s   a c r o s s   s o u r c e   b i t m a p  
;# o f   p i x e l s   a c r o s s   d e s t   b i t m a p  
: (must   be a m u l t i p l e   o f  4 )  

; l o c a l   s t o r a g e   f o r   w i d t h   o f   r e c t a n g l e  
; l o c a l   s t o r a g e   f o r   l e f t   r e c t   e d g e   p l a n e  mask 

; p r e s e r v e  
: p o i n t   t o  
: a l l o c a t e  
: p r e s e r v e  

c a l l e r ' s   s t a c k   f r a m e  
l o c a l   s t a c k   f r a m e  
s p a c e   f o r   l o c a l   v a r s  
c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
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c l  d 
mov 
mov 
mov 
mu1 
add 
add 
mov 

mov 
s h r  
s h r  
mov 
mu1 
mov 
mov 
s h r  
s h r  
add 
add 

and 
mov 

s h l  
mov 

mov 
sub 
j l e  
mov 
mov 
sub 
j l e  
mov 
mov 
o u t  
i nc 

mov 
mov 
push 
push 

CopyRowsLoop: 

ax.SCREEN_SEG 
es  ,ax 
ax,Cbp+SourceBitmapWidth] 
[ b p + S o u r c e S t a r t Y l  
ax . [bp+SourceSta r tX ]  
ax . [bp+SourcePt r ]  
s i  ,ax 

ax. [bp+DestBi tmapWidth]  
a x . 1  
a x . 1  
[bp+DestBi tmapWidth] .ax 
[ b p + D e s t S t a r t Y l  
d i . [ b p + D e s t S t a r t X ]  
c x , d i  
d i  .1 
d i  .1 
d i   , a x  
di.Cbp+DestPageBase] 

c l   . O l l b  
a1 . l l h  

a1 . c l  
[bp+Lef tMask]   .a1 

cx.[bp+SourceEndX1 
cx . [bp+SourceSta r tX ]  
CopyDone 
[bp+Rec tWid th l . cx  
bx.[bp+SourceEndY] 
bx . [bp+SourceSta r tY ]  
CopyDone 
dx.SC-INDEX 
a1 .MAP-MASK 
d x . a l  
dx 

ax , [bp+Le f tMask ]  
cx . [bp+Rec tWid th l  

d i  
s i  

CopyScanLineLoop: 
o u t  
movsb 
r o l  
cmc 
sbb 

1 oop 
POP 
add 

POP 
add 

dec 
j n z  

d x . a l  

a l . l  

d i  .O 

d i  
CopyScanLineLoop 

d i . [ b p + D e s t B i t m a p W i d t h l  

s i  
si.[bp+SourceBitmapWidthl 

bx 
CopyRowsLoop 

: p o i n t  ES t o   d i s p l a y  memory 

: t o p   s o u r c e   r e c t   s c a n   l i n e  

: o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l  
: i n  DS 

: c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  

: remember   address   w id th  
; t o p   d e s t   r e c t   s c a n   l i n e  

: s e t   t h e   b i t   f o r   t h e   f i r s t   d e s t   p i x e l ' s  
; p l a n e   i n   e a c h   n i b b l e   t o  1 

X/4 - o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  

o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  page 
o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l  

CL = f i r s t   d e s t   p i x e l ' s   p l a n e  
u p p e r   n i b b l e  comes i n t o   p l a y  when 

p l a n e   w r a p s   f r o m  3 b a c k   t o  0 

scan l i n e  

i n   d i s p l a y  memory 

: c a l c u l a t e  I o f   p i x e l s   a c r o s s  
: r e c t  
: s k i p  i f  0 or n e g a t i v e   w i d t h  

;EX - h e i g h t   o f   r e c t a n g l e  
; s k i p  i f  0 o r   n e g a t i v e   h e i g h t  
; p o i n t   t o  SC I n d e x   r e g i s t e r  

: p o i n t  SC I n d e x   r e g   t o   t h e  Map Mask 
: p o i n t  DX t o  SC D a t a  r e g  

:remember t h e   s t a r t   o f f s e t   i n   t h e   s o u r c e  
;remember t h e   s t a r t   o f f s e t   i n   t h e   d e s t  

; s e t   t h e   p l a n e   f o r   t h i s   p i x e l  
: c o p y   t h e   p i x e l   t o   t h e   s c r e e n  
: s e t  mask f o r   n e x t   p i x e l ' s   p l a n e  
; a d v a n c e   d e s t i n a t i o n   a d d r e s s   o n l y  when 
; w r a p p i n g   f r o m   p l a n e  3 t o   p l a n e  0 
: ( e l s e  undo I N C  D I  done  by M O V S B )  

: r e t r i e v e   t h e   d e s t   s t a r t   o f f s e t  
: p o i n t   t o   t h e   s t a r t   o f   t h e  
: n e x t   s c a n   l i n e   o f   t h e   d e s t  
: r e t r i e v e   t h e   s o u r c e   s t a r t   o f f s e t  
: p o i n t   t o   t h e   s t a r t   o f   t h e  
: n e x t   s c a n   l i n e  o f  t h e   s o u r c e  
: c o u n t  down s c a n   l i n e s  
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CopyDone: 
pop d i  
pop s i  
mov sp.bp 
POP bP 
r e t  

-CopySystemToScreenX  endp 
end 

; r e s t o r e   c a l l e r ’ s   r e g i s t e r   v a r i a b l e s  

; d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

Who Was that Masked  Image  Copier? 
At this point, it’s getting  to be time for us to take all the Mode X tools we’ve devel- 
oped, together with one  more tool-masked image copying-and the  remaining 
unexplored  feature of Mode X, page flipping, and build  an  animation  application. I 
hope that  when we’re done, you’ll agree with me that Mode X is the way to  animate 
on the PC. 
In  truth,  though,  it  matters less whether or  not you think  that Mode X is the best way 
to animate  than  whether or  not your users think it’s the best way based on results; 
end users care only about results, not how  you produced  them. For my writing, you 
folks are  the end users-and notice how remarkably little you care  about how this 
book gets written and  produced. You care  that  it  turned up in the  bookstore, and 
you care  about  the  contents,  but you sure as heck don’t care  about how it got  that  far 
from  a bin of tree  pulp.  When  you’re  a  creator,  the process matters.  When  you’re  a 
buyer, results are everything. All important. Sine qua non. The whole enchilada. 
If you catch my drift. 
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chapter 49
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e the VGA Really Get up and Dance 
rmative anecdotes to kick off this chapter; lotta 

ground to cover, g re impatient, I can smell it. I won’t talk about the 
of loudly saying “$100 bill” during an animated dis- 

cussion while wa ums on Market Street in San Francisco one night, 
context is everything. I can’t spare a word about 

how my daughter thinks my 11-year-old floppy-disk-based CP/M machine is more 
6 with its 100-MB hard disk because the CP/M machine’s word 
runs twice as fast as the 386’s Windows-based word processor, 
rogress is not the neat exponential curve we’d like to think it is, 

and that features and performance are often conflicting notions. And, lord knows, I 
can’t take the time to discuss the habits of small white dogs, notwithstanding that 
such dogs seem to be relevant to just about every aspect of computing, as Jeff 
Duntemann’s writings make manifest. No lighthearted fluff for us; we have real work 
to do, for today we animate with 256 colors in Mode X. 

Masked Copying 
Over the past two chapters, we’ve put together most of the tools needed to imple- 
ment animation in the VGA’s undocumented 320x240 256-color Mode X. We now 
have mode set code, solid and 4x4 pattern fills, system memory-to-display memory 
block copies, and display memory-to-display memory block copies. The final piece 
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of the puzzle  is the ability to copy a nonrectangular image to display  memory. I call 
this masked copying. 
Masked copying is sort of  like drawing through a stencil, in that only certain pixels 
within the destination rectangle are drawn. The objective  is to fit the image seamlessly 
into  the background, without the rectangular fringe that results when nonrectangular 
images are drawn by block copying their  bounding rectangle. This is accomplished 
by using a second  rectangular  bitmap,  separate  from the image but corresponding 
to it  on a pixel-by-pixel  basis, to  control which destination pixels are set from the 
source and which are left unchanged. With a masked copy,  only those pixels prop- 
erly belonging  to  an  image  are  drawn,  and  the  image fits perfectly  into  the 
background, with no rectangular border. In fact, masked copying even  makes it pos- 
sible  to  have transparent  areas within images. 
Note that  another way to achieve this effect is  to implement copying code  that sup- 
ports a transparent color; that is, a color  that  doesn’t  get  copied but  rather leaves the 
destination  unchanged.  Transparent copying makes for  more  compact images, be- 
cause no  separate mask is needed,  and is generally  faster  in a software-only 
implementation. However, Mode X supports masked copying but  not  transparent 
copying in hardware, so we’ll use masked copying in this chapter. 
The system memory to display memory masked copy routine  in Listing 49.1 imple- 
ments masked copying in a straightforward fashion. In  the main drawing loop, the 
corresponding mask  byte is consulted as each image pixel is encountered,  and  the 
image pixel is copied only if the mask  byte is nonzero. As with most of the system-to- 
display code I’ve presented, Listing 49.1 is not heavily optimized,  because it’s 
inherently slow; there’s a better way to go when performance matters, and that’s to 
use the VGA’s hardware. 

LISTING 49.1  L49- 1 .ASM 
Mode X (320x240. 256 c o l o r s )   s y s t e m   m e m o r y - t o - d i s p l a y  memory masked  copy 
r o u t i n e .   N o t   p a r t i c u l a r l y   f a s t :   i m a g e s   f o r   w h i c h   p e r f o r m a n c e  i s  c r i t i c a l  
s h o u l d   b e   s t o r e d   i n   o f f - s c r e e n  memory a n d   c o p i e d   t o   s c r e e n   v i a   l a t c h e s .  Works 
on a l l  VGAs. Copies  up t o   b u t   n o t   i n c l u d i n g   c o l u m n  a t  SourceEndX  and  row a t  
SourceEndY. No c l i p p i n g   i s   p e r f o r m e d .  Mask and  source   image  a re   bo th   by te -  
p e r - p i x e l .   a n d   m u s t   b e   o f  same w i d t h s   a n d   r e s i d e   a t  same c o o r d i n a t e s   i n   t h e i r  
r e s p e c t i v e   b i t m a p s .   A s s e m b l y   c o d e   t e s t e d   w i t h  TASM C n e a r - c a l l a b l e   a s :  

v o i d  CopySystemToScreenMaskedX(int SourceSta r tX .  
i n t   S o u r c e S t a r t Y .   i n t   S o u r c e E n d X .   i n t   S o u r c e E n d Y .  
i n t   D e s t S t a r t X .   i n t   D e s t S t a r t Y .   c h a r  * S o u r c e P t r .  
u n s i g n e d   i n t   D e s t P a g e B a s e .   i n t   S o u r c e B i t m a p W i d t h .  
i n t  Des tB i tmapWid th .   char  * MaskPt r ) :  

SC-INDEX equ  03c4h 
MAP-MASK equ  02h  : index i n  SC o f  Map Mask r e g i s t e r  
SCREEN-SEG equ OaOOOh :segment o f   d i s p l a y  memory i n  mode X 

: S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  

parms s t r u c  

SourceSta r tX  dw ? :X c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   s o u r c e  
dw 2 dup ( ? )  :pushed BP and r e t u r n   a d d r e s s  

: ( s o u r c e   i s   i n   s y s t e m  memory) 
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SourceSta r tY  dw ? 
SourceEndX dw ? 

SourceEndY dw ? 

D e s t S t a r t X  dw ? 

D e s t S t a r t Y  dw ? 
SourcePt r  dw ? 
DestPageBase dw ? 

SourceBi tmapWidth dw ? 

DestBi   tmapWidth dw ? 
MaskPtr  dw ? 

parms  ends 

RectWidth  equ  -2  
Rec tHe igh t   equ   -4  
Lef tMask 
STACK-FRAME-SIZE equ 6 

equ - 6  

.model  smal 1 

.code 

; Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   s o u r c e  
;X c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   s o u r c e  
; ( t h e   c o l u m n   a t  EndX i s   n o t   c o p i e d )  
; Y  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e   r o w   a t  EndY i s   n o t   c o p i e d )  
; X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   d e s t  
; ( d e s t i n a t i o n   i s   i n   d i s p l a y  memory) 
; Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   d e s t  
; p o i n t e r   i n  DS t o   s t a r t   o f   b i t m a p   w h i c h   s o u r c e   r e s i d e s  
:base o f f s e t   i n   d i s p l a y  memory o f  page i n  
; w h i c h   d e s t   r e s i d e s  
;# o f   p i x e l s   a c r o s s   s o u r c e   b i t m a p   ( a l s o   m u s t  
: b e   w i d t h   a c r o s s   t h e   m a s k )  
;# o f   p i x e l s   a c r o s s   d e s t   b i t m a p   ( m u s t   b e   m u l t i p l e   o f   4 )  
; p o i n t e r   i n  DS t o   s t a r t   o f   b i t m a p   i n   w h i c h  mask 
: r e s i d e s   ( b y t e - p e r - p i x e l   f o r m a t ,   j u s t   l i k e   t h e   s o u r c e  

:1 
;1 
:1 

p u b l i c  -CopySystemToScreenMaskedX 
-CopySystemToScreenMaskedX p r o c   n e a r  

push 
mov 
sub 
push 
push 

mov 
mov 
mov 
mu1 
add 
mov 
add 
mov 
add 

mov 
s h r  
s h r  
mov 
mu1 
mov 
mov 
s h r  
s h r  
add 
add 

and 
mo v 

s h l  
mov 

image ;   0 -by tes  mean d o n ' t   c o p y   c o r r e s p o n d i n g   s o u r c e  
p i x e l  , 1 - b y t e s  mean do  copy) 

o c a l   s t o r a g e   f o r   w i d t h   o f   r e c t a n g l e  
o c a l   s t o r a g e   f o r   h e i g h t   o f   r e c t a n g l e  
o c a l   s t o r a g e   f o r   l e f t   r e c t   e d g e   p l a n e  mask 

b p   ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
b P * s P   ; p o i n t   t o   l o c a l   s t a c k   f r a m e  
sp.STACK-FRAME-SIZE ; a l l o c a t e   s p a c e   f o r   l o c a l   v a r s  
s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
d i  

ax.SCREEN-SEG ; p o i n t  E S  t o   d i s p l a y  memory 
es  ,ax 
ax.Cbp+SourceBitmapWidthl 
[ b p + S o u r c e S t a r t Y ]   ; t o p   s o u r c e   r e c t   s c a n   l i n e  
ax . [bp+SourceSta r tX l  
bx,   ax 
a x . C b p + S o u r c e P t r l   ; o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l  
s i  ,ax ; i n  OS 
b x . C b p + M a s k P t r l   : o f f s e t   o f   f i r s t  mask p i x e l   i n  OS 

ax. [bp+DestBi tmapWidth l  
ax, 1 : c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  
ax.1 
[bp+DestBi tmapWidth] .ax  ; remember  address  width 
[bp+Des tS ta r tY l  
d i . [ bp+Des tS ta r tX ]  
c x . d i  
d i  .1 
d i  .1 
d i  ,ax 
di .Cbp+OestPageBasel  

c l   . O l l b  
a1 . l l h  

a1 . c l  
[ bp+Le f tMask l .a l  

: t o p   d e s t   r e c t   s c a n   l i n e  

;X/4 - o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  
; s c a n   l i n e  
; o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  page 
: o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l  
: i n   d i s p l a y  memory 
;CL - f i r s t   d e s t   p i x e l ' s   p l a n e  
: u p p e r   n i b b l e  comes i n t o   p l a y  when p lane   w raps  
; f r o m  3 b a c k   t o  0 
: s e t   t h e   b i t   f o r   t h e   f i r s t   d e s t   p i x e l ' s   p l a n e  
: i n  e a c h   n i b b l e   t o  1 
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mov 
sub 
j l e  
mov 
sub 

mov 
sub 
j l e  
mov 
mov 
mov 
o u t  
i nc 

mov 
mov 
push 

CopyRowsLoop: 

ax . [bp+SourceEndXI   : ca lcu la te  11 o f   p i x e l s   a c r o s s  
ax . [bp+SourceSta r tX l  : r e c t  
CopyDone : s k i p  i f  0 o r   n e g a t i v e   w i d t h  
Cbp+RectWidthl .ax 
word p t r  [bp+SourceBitmapWidthl.ax 

: d i s t a n c e   f r o m   e n d   o f   o n e   s o u r c e   s c a n   l i n e   t o   s t a r t   o f   n e x t  
ax.[bp+SourceEndYI 
ax.Cbp+SourceStar tY l  
CopyDone 
Cbp+RectHeight l .ax 
dx.SC-INDEX 
a1 .MAP-MASK 
d x , a l  
dx 

a1 . [bp+Lef tMaskl  
cx . [bp+Rec tWid th l  
d i  

CopyScani ineLoop:  
CmP 
j z  

o u t  
mov 
mov 

i nc 
i nc 
r o l  
adc 

MaskOff :  

1 oop 
POP 
add 

add 

add 

dec 
j n z  

POP 
POP 
mov 
POP 
r e t  

CopyDone: 

b y t e   p t r   C b x l . 0  
MaskOff  

dx .a l  
a h . [ s i l  
e s : [ d i l . a h  

bx 
s i  
a1 ,1 
d i  .O 

CopyScanLineLoop 
d i  
d i . [ bp+Des tB i tmapWid th l  

si.[bp+SourceBitmapWidthl 

bx.[bp+SourceBitmapWidthl 

word p t r   [ b p + R e c t H e i g h t l  
CopyRowsLoop 

d i  
s i  
sp.bp 
bP 

: h e i g h t   o f   r e c t a n g l e  
: s k i p  i f  0 o r   n e g a t i v e   h e i g h t  

; p o i n t   t o  SC I n d e x   r e g i s t e r  

: p o i n t  SC I n d e x   r e g   t o   t h e  Map Mask 
: p o i n t  DX t o  SC D a t a   r e g  

:remember t h e   s t a r t   o f f s e t   i n   t h e   d e s t  

: i s   t h i s   p i x e l   m a s k - e n a b l e d ?  
;no. s o  d o n ' t   d r a w  i t  
: y e s .   d r a w   t h e   p i x e l  
: s e t   t h e   p l a n e   f o r   t h i s   p i x e l  
: g e t   t h e   p i x e l   f r o m   t h e   s o u r c e  
: c o p y   t h e   p i x e l   t o   t h e   s c r e e n  

:advance  the  mask p o i n t e r  
: a d v a n c e   t h e   s o u r c e   p o i n t e r  
: s e t  mask f o r   n e x t   p i x e l ' s   p l a n e  
: a d v a n c e   d e s t i n a t i o n   a d d r e s s   o n l y  when 
: w r a p p i n g   f r o m   p l a n e  3 t o   p l a n e  0 

: r e t r i e v e   t h e   d e s t   s t a r t   o f f s e t  
: p o i n t   t o   t h e   s t a r t   o f   t h e  
: n e x t   s c a n   l i n e   o f   t h e   d e s t  
: p o i n t   t o   t h e   s t a r t   o f   t h e  
: n e x t   s c a n   l i n e   o f   t h e   s o u r c e  
: p o i n t   t o   t h e   s t a r t   o f   t h e  
: n e x t   s c a n   l i n e   o f   t h e  mask 
: c o u n t  down s c a n   l i n e s  

; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  
: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

- CopySystemToScreenMaskedX endp 
end 

Faster Masked Copying 
In  the previous chapter we  saw  how the VGA's latches can be used  to copy four pixels 
at a time from one  area of display memory to another in Mode X. We've further seen 
that  in Mode X the Map  Mask register  can be used to  select which planes  are  copied. 
That's all we need to know to be able  to  perform fast  masked copies; we can  store an 
image in off-screen display  memory, and set the Map  Mask to  the  appropriate mask 
value  as up to  four pixels at a time are copied. 
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There’s a slight hitch,  though. The latches can only  be used when the source and 
destination left edge coordinates, modulo four, are  the same,  as explained in  the 
previous chapter. The solution is to  copy  all four possible alignments of each image 
to display  memory, each properly positioned for  one of the  four possible destina- 
tion-left-edge-modulo-four  cases. These aligned images must be  accompanied by the 
four possible alignments of the image  mask, stored in system  memory.  Given  all four 
image and mask alignments, masked  copying  is a simple matter of selecting the align- 
ment that’s appropriate  for  the destination’s left edge,  then setting the Map  Mask 
with the 4bit mask corresponding  to each four-pixel set as we copy four pixels at a 
time via the latches. 
Listing 49.2 performs fast  masked  copying. This code expects to  receive a pointer to 
a MaskedImage structure, which in turn points to  four AlignedMaskedImage struc- 
tures that describe the  four possible  image and mask alignments. The aligned images 
are already stored  in display  memory, and  the  aligned masks are already stored  in 
system memory; further,  the masks are predigested into Map  Mask register-compat- 
ible form. Given  all that ready-to-use data, Listing 49.2 selects and works  with the 
appropriate image-mask pair  for  the destination’s left edge  alignment. 

LISTING 49.2  L49-2.ASM 
: Mode X ( 3 2 0 x 2 4 0 .   2 5 6   c o l o r s )   d i s p l a y  memory t o   d i s p l a y  memory  masked  copy 
: r o u t i n e .  Works  on a l l  VGAs. Uses approach o f   r e a d i n g  4 p i x e l s   a t  a t i m e   f r o m  
: s o u r c e   i n t o   l a t c h e s ,   t h e n   w r i t i n g   l a t c h e s   t o   d e s t i n a t i o n ,   u s i n g  Map Mask 
: r e g i s t e r   t o   p e r f o r m   m a s k i n g .   C o p i e s   u p   t o   b u t   n o t   i n c l u d i n g   c o l u m n   a t  
: SourceEndX  and  row a t  SourceEndY. No c l i p p i n g   i s   p e r f o r m e d .   R e s u l t s   a r e   n o t  
: guaranteed i f  s o u r c e   a n d   d e s t i n a t i o n   o v e r l a p .  C n e a r - c a l l a b l e   a s :  

: v o i d  CopyScreenToScreenMaskedX(int S o u r c e S t a r t X .  
i n t   S o u r c e S t a r t Y .   i n t  SourceEndX. i n t  SourceEndY. 
i n t   D e s t S t a r t X ,   i n t   O e s t S t a r t Y .   M a s k e d I m a g e  * Source, 
u n s i g n e d   i n t   D e s t P a g e B a s e .   i n t   D e s t B i t m a p W i d t h ) :  

SC-INDEX 
MAP-MASK 
GC-INDEX 
BIT-MASK 
SCREENKSEG 

parms s t r u c  

S o u r c e S t a r t X  
S o u r c e S t a r t Y  
SourceEndX 

SourceEndY 

D e s t S t a r t X  
D e s t S t a r t Y  
Source 

DestPageBase 

DestBi tmapWidth 
parms  ends 

03c4h 
02h 
03ceh 
08h 
OaOODh 

2 dup ( ? )  
? 
? 
? 

? 

? 
? 
? 

1 

? 

: S e q u e n c e   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
: i n d e x   i n  SC o f  Map Mask r e g i s t e r  
; G r a p h i c s   C o n t r o l l e r   I n d e x   r e g i s t e r   p o r t  
; i n d e x   i n  GC o f  Bit Mask r e g i s t e r  
:segment o f   d i s p l a y  memory i n  mode X 

;pushed B P  and r e t u r n   a d d r e s s  
: X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   s o u r c e  
:Y c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   s o u r c e  
: X  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   s o u r c e  
: ( the   co lumn  a t   SourceEndX i s   n o t   c o p i e d )  
; Y  c o o r d i n a t e   o f   l o w e r   r i g h t   c o r n e r   o f   s o u r c e  
: ( t h e  row  a t   SourceEndY i s   n o t   c o p i e d )  
; X  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r   o f   d e s t  
: Y  c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r  o f  d e s t  
: p o i n t e r   t o  MaskedImage s t r u c t   f o r   s o u r c e  
: w h i c h   s o u r c e   r e s i d e s  
: b a s e   o f f s e t   i n   d i s p l a y  memory o f  page i n  
: w h i c h   d e s t   r e s i d e s  
;# o f   p i x e l s   a c r o s s   d e s t   b i t m a p   ( m u s t   b e   m u l t i p l e   o f  4 )  
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SourceNextScanOf fse t  

Des tNextScanOf fse t  

Rec tAddrWid th  
R e c t H e i g h t  
SourceBi tmapWidthequ 

STACK-FRAME-SIZE 
MaskedImage 

A1 ignments  

MaskedImage  ends 
Al ignedMaskedImage 

Imagewid th  dw 
ImagePt r  dw 
MaskPtr  dw 

equ   -2  

equ  -4  

equ - 6  
equ -8  
- 10 

equ  10 
s t r u c  
dw 4 d u p ( ? )  

s t r u c  
? 
? 
? 
ends 

; l o c a l   s t o r a g e   f o r   d i s t a n c e   f r o m   e n d   o f  
; o n e   s o u r c e   s c a n   l i n e   t o   s t a r t   o f   n e x t  
; l o c a l   s t o r a g e   f o r   d i s t a n c e   f r o m   e n d   o f  
; o n e   d e s t   s c a n   l i n e   t o   s t a r t   o f   n e x t  
; l o c a l   s t o r a g e   f o r   a d d r e s s   w i d t h   o f   r e c t a n g l e  
; l o c a l   s t o r a g e   f o r   h e i g h t   o f   r e c t a n g l e  
; l o c a l   s t o r a g e   f o r   w i d t h   o f   s o u r c e   b i t m a p  
; ( i n   a d d r e s s e s )  

; p o i n t e r s   t o   A l i g n e d M a s k e d I m a g e s   f o r   t h e  
: 4 p o s s i b l e   d e s t i n a t i o n   i m a g e   a l i g n m e n t s  

Al ignedMaskedImage 
.model  small  
.code 
p u b l i c  -CopyScreenToScreenMaskedX 

-CopyScreenToScreenMaskedX p r o c   n e a r  

: image  w id th  i n  a d d r e s s e s   ( a l s o  mask w i d t h   i n   b y t e s )  
; o f f s e t   o f   i m a g e   b i t m a p   i n   d i s p l a y  memory 
: p o i n t e r   t o  mask b i t m a p   i n  DS 

push 
mov 
sub 
push 
push 

c l  d 
mov 
mov 
o u t  

mov 
mov 
mov 
shr 
s h r  
mu1 
mov 
mov 
s h r  
s h r  
add 
add 

and 
mo v 
s h l  
mov 
mov 

mov 
mov 
mu1 
mov 
s h r  
s h r  
add 

b p   ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
b p . s p   ; p o i n t   t o   l o c a l   s t a c k   f r a m e  

s i   ; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
sp.STACK-FRAME-SIZE ; a l l o c a t e   s p a c e   f o r   l o c a l  VarS 

d i  

dx.GC-INDEX ; s e t   t h e   b i t  mask t o   s e l e c t   a l l   b i t s  
ax.OOOOOh+BIT-MASK ; f r o m   t h e   l a t c h e s   a n d   n o n e   f r o m  
dx.ax : t h e  CPU.  so t h a t  we c a n   w r i t e   t h e  

; l a t c h   c o n t e n t s   d i r e c t l y   t o  memory 
ax.SCREEN-SEG : p o i n t  ES t o   d i s p l a y  memory 
es.ax 
ax. [bp+DestBi tmapWidthl  
a x . 1   : c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  
a x . 1  
[ b p + D e s t S t a r t Y l   ; t o p   d e s t   r e c t   s c a n   l i n e  
d i . [ b p + D e s t S t a r t X l  
s i   , d i  
d i  .1 ;X/4 - o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n  
d i  .1 ; scan l i n e  
d i  ,ax ; o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n   p a g e  
d i . [ b p + D e s t P a g e B a s e ]   : o f f s e t   o f   f i r s t   d e s t   r e c t   p i x e l   i n   d i s p l a y  

; memory. now l o o k   u p   t h e   i m a g e   t h a t ' s  
: a l i g n e d   t o   m a t c h   l e f t - e d g e   a l i g n m e n t  
; o f   d e s t i n a t i o n  

s i  . 3  ;Des tStar tX   modu lo  4 
c x , s i  : s e t   a s i d e   a l i g n m e n t   f o r   l a t e r  
s i  .1 ; p r e p a r e   f o r   w o r d   l o o k - u p  
bx.   [bp+Sourcel  ; p o i n t   t o   s o u r c e   M a s k e d I m a g e   s t r u c t u r e  
b x . [ b x + A l i g n m e n t s + s i l  ; p o i n t   t o   A l i g n e d M a s k e d I m a g e  

ax, [bx+ImageWidth l   ; image  width i n  addresses  
[bp+SourceBitmapWidthl.ax ;remember  image w i d t h   i n   a d d r e s s e s  
[ b p + S o u r c e S t a r t Y ]   ; t o p   s o u r c e   r e c t   s c a n   l i n e  
s i ,   [ b p + S o u r c e S t a r t X l  
s i  .1 :X/4 - a d d r e s s   o f   f i r s t   s o u r c e   r e c t   p i x e l   i n  
s i  .1 ; scan l i n e  
s i  ,ax ; o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l   i n   i m a g e  

: s t r u c   f o r   c u r r e n t   l e f t  edge  a l ignment  
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mov 
add 
mov 
add 

mov 
add 
add 
CmP 
j l e  
add 
and 
sub 
s h r  
s h r  
mov 
sub 
j l e  
mov 
mov 
s h r  
s h r  
sub 
mov 
mov 
sub 
mov 
mov 

mov 
mov 
o u t  
i nc 

a x . s i  
s i . [ b x + M a s k P t r l  
bx . [bx+ImagePt r l  
bx.ax 

ax , [bp+SourceStar tX l  
ax ,cx  
cx,[bp+SourceEndX] 
cx .ax  
CopyDone 
cx .3  
a x . n o t   O l l b  
cx .ax  
cx .  1 
c x . 1  
ax.[bp+SourceEndYl 
ax.Cbp+SourceStartYl  
CopyDone 
[bp+RectHe igh t l .ax  

: p o i n t   t o  mask o f f s e t   o f   f i r s t  mask p i x e l   i n  OS 
; o f f s e t   o f   f i r s t   s o u r c e   r e c t   p i x e l  
: i n   d i s p l a y  memory 

: c a l c u l a t e  # o f  add resses   ac ross  
; r e c t .   s h i f t i n g  i f  n e c e s s a r y   t o  
; a c c o u n t   f o r   a l i g n m e n t  

; s k i p  i f  0 o r   n e g a t i v e   w i d t h  

;# o f  a d d r e s s e s   a c r o s s   r e c t a n g l e   t o   c o p y  

:AX - h e i g h t   o f   r e c t a n g l e  
; s k i p  i f  0 o r   n e g a t i v e   h e i g h t  

ax. [bp+DestBi tmapWidthl  
a x . 1   ; c o n v e r t   t o   w i d t h   i n   a d d r e s s e s  
a x . 1  
a x . c x   : d i s t a n c e   f r o m   e n d   o f   o n e   d e s t   s c a n   l i n e   t o   s t a r t   o f   n e x t  
Cbp+DestNextScanOffsetl.ax 
ax.[bp+SourceBitmapWidthl ; w i d t h   i n   a d d r e s s e s  
ax .cx   : d i s tance   f rom  end  o f  s o u r c e   s c a n   l i n e   t o   s t a r t   o f   n e x t  
[bp+SourceNextScanDffsetl.ax 
Cbp+RectAddrWidthl .cx  ; remember  width i n  addresses  

dx.SC-INDEX 
a1 ,MAP"MASK 
d x . a l   ; p o i n t  SC I n d e x   r e g i s t e r   t o  Map Mask 
d x   ; p o i n t   t o  SC D a t a   r e g i s t e r  

CopyRowsLoop: 

CopyScanLineLoop: 
mov cx. [bp+RectAddrWidthl  ; w i d t h   a c r o s s  

l o d s b  : g e t   t h e  mask f o r   t h i s   f o u r - D i x e l   s e t  

o u t  
mov 
mov 
i nc 
i nc 
dec 
j n z  

mov 
add 
add 
add 
dec 
j nz 

mov 
mov 
o u t  

CopyDone: 

POP 
POP 
mov 

: -and   advance   t he  mask p o i n t e r  
d x . a l   : s e t   t h e  mask 
a1 . e s : [ b x l   ; l o a d   t h e   l a t c h e s   w i t h   f o u r - p i x e l   s e t   f r o m   s o u r c e  
e s : [ d i ] . a l   ; c o p y   t h e   f o u r - p i x e l   s e t   t o   t h e   d e s t  
b x   : a d v a n c e   t h e   s o u r c e   p o i n t e r  
d i  ; a d v a n c e   t h e   d e s t i n a t i o n   p o i n t e r  
c x   ; c o u n t   o f f   f o u r - p i x e l   s e t s  
CopyScanLineLoop 

ax,[bp+SourceNextScanOffset] 
s i  , a x   ; p o i n t   t o   t h e   s t a r t   o f  
bx.ax : t h e   n e x t   s o u r c e ,  mask, 
d i . [ bp+Des tNex tScanOf fse t l  : a n d   d e s t   l i n e s  
word p t r   [ b p + R e c t H e i g h t l   : c o u n t  down s c a n   l i n e s  
CopyRowsLoop 

dx.GC-INDEX+l ; r e s t o r e   t h e   b i t  mask t o   i t s   d e f a u l t ,  
a1 . O f f h  ; w h i c h   s e l e c t s   a l l   b i t s   f r o m   t h e  CPU 
d x . a l  : a n d   n o n e   f r o m   t h e   l a t c h e s   ( t h e  GC 

d i   : r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
s i  

; I n d e x   s t i l l   p o i n t s   t o   B i t  Mask) 

s p . b p   ; d i s c a r d   s t o r a g e   f o r   l o c a l   v a r i a b l e s  
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POP b p   : r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

end 
-CopyScreenToScreenMaskedX endp 

It would be handy to have a function  that, given a base image and mask, generates 
the  four image and mask alignments and fills in the MaskedImage structure. Listing 
49.3, together with the  include file in Listing 49.4 and  the system  memory-to-display 
memory block-copy routine  in Listing 48.4 (in  the previous chapter)  does  just  that. 
It would be faster if Listing 49.3 were in assembly language, but there's no reason to 
think  that  generating aligned images needs to be particularly fast; in such cases, I 
prefer to use C, for reasons of coding  speed, fewer bugs, and maintainability. 

LISTING 49.3 L49-3.C 
/* Generates a l l   f o u r   p o s s i b l e  mode X image/mask  a l ignments ,   s to res   image 
a l i g n m e n t s   i n   d i s p l a y  memory. a l l o c a t e s  memory f o r  and  generates mask 
a l i gnmen ts ,   and  f i l l s   o u t  an A l i gnedMasked Image   s t ruc tu re .   Image   and  mask must 
b o t h   b e   i n   b y t e - p e r - p i x e l   f o r m ,   a n d   m u s t   b o t h   b e   o f   w i d t h   I m a g e w i d t h .  Mask 
maps i s o m o r p h i c a l l y   ( o n e   t o   o n e )   o n t o   i m a g e ,   w i t h   e a c h   0 - b y t e   i n  mask masking 
o f f   c o r r e s p o n d i n g   i m a g e   p i x e l   ( c a u s i n g  i t  n o t   t o  be   d rawn) .   and  each  non-0-by te  
a l l o w i n g   c o r r e s p o n d i n g   i m a g e   p i x e l   t o   b e   d r a w n .   R e t u r n s  0 i f  f a i l u r e ,  or # o f  
d i s p l a y  memory a d d r e s s e s   ( 4 - p i x e l   s e t s )   u s e d  i f  success.  For s i m p l i c i t y ,  
a l l o c a t e d  memory i s   n o t   d e a l l o c a t e d   i n   c a s e   o f   f a i l u r e .   C o m p i l e d   w i t h  
B o r l a n d  C++ i n  C c o m p i l a t i o n  mode. * /  

# i n c l u d e   < s t d i o . h >  
#i n c l  ude < s t d l  i b.  h> 
# inc lude  "maskim.h"  

e x t e r n   v o i d  CopySystemToScreenX(int, i n t .   i n t .   i n t .   i n t .   i n t .   c h a r  *, 
u n s i g n e d   i n t ,   i n t .   i n t ) ;  

u n s i g n e d   i n t  CreateAlignedMaskedImage(Masked1mage * ImageToSet. 
u n s i g n e d   i n t   D i s p M e m S t a r t .   c h a r  * Image, i n t  Imagewidth.  
i n t  ImageHeigh t .   char  * Mask) 

i n t   A l i g n ,   S c a n L i n e .   B i t N u m .   S i z e ,   T e m p I m a g e W i d t h ;  
uns igned   cha r  MaskTemp; 
u n s i g n e d   i n t   D i s p M e m O f f s e t  - DispMemStart;  
A1 ignedMaskedImage  *WorkingAMImage; 
char  *NewMaskPtr .   *OldMaskPtr :  
I* G e n e r a t e   e a c h   o f   t h e   f o u r   a l i g n m e n t s   i n   t u r n .  * I  
f o r   ( A l i g n  - 0:  A l i g n  < 4;  Align++) I 

( 

/*  A l l o c a t e   s p a c e   f o r   t h e   A l i g n e d M a s k e d I m a g e   s t r u c t   f o r   t h i s   a l i g n m e n t .  * /  
i f  ((WorkingAMImage - ImageToSet->AlignmentsCAlignl - 

malloc(sizeof(AlignedMasked1mage))) -- N U L L )  
r e t u r n  0; 

WorkingAMImage->Imagewidth - 
WorkingAMImage->ImagePtr - DispMemOffset: I* image  des t  * /  
/*  Download t h i s   a l i g n m e n t   o f   t h e   i m a g e .  * /  
CopySystemToScreenX(0, 0. Imagew id th .   ImageHe igh t ,   A l i gn ,  0. 

/*  C a l c u l a t e   t h e  number o f   b y t e s   n e e d e d   t o   s t o r e   t h e  mask i n  

S i z e  - WorkingAMImage->Imagewidth * ImageHeight :  
i f  ( (WorkingAMImage->MaskPtr - m a l l o c ( S i z e ) )  - NULL) 

( Imagew id th  + A l i g n  + 3 )  / 4; / *  w i d t h   i n   4 - p i x e l   s e t s  * /  

Image,  DispMemOffset.   Imagewidth.  WorkingAMImage->Imagewidth * 4 ) ;  

n i b b l e  (Map M a s k - r e a d y )   f o r m ,   t h e n   a l l o c a t e   t h a t   s p a c e .  * /  

r e t u r n  0; 
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/* G e n e r a t e   t h i s   n i b b l e   o r i e n t e d  (Map M a s k - r e a d y )   a l i g n m e n t   o f  

OldMaskPtr  - Mask: 
NewMaskPtr - WorkingAMImage->MaskPtr:  
f o r   ( S c a n L i n e  - 0:  ScanLine < ImageHeight:   ScanLine++) { 

t h e  mask,  one  scan l i n e   a t  a t i m e .  * /  

Bi tNum - A l i g n :  
MaskTemp - 0:  
TempImageWidth - Imagewidth:  
do { 

/ *  S e t   t h e  mask b i t   f o r   n e x t   p i x e l   a c c o r d i n g   t o   i t s   a l i g n m e n t .  * /  
MaskTemp I- (*OldMaskPtr++ !- 0 )  << BitNum: 
i f  (++BitNum > 3 )  { 

*NewMaskPtr++ - MaskTemp: 
MaskTemp - BitNum - 0:  

1 
1 whi le   ( - -TempImageWidth) :  
/ *  S e t   a n y   p a r t i a l   f i n a l  mask  on t h i s   s c a n   l i n e .  * /  
i f  (B i tNum !- 0 )  *NewMaskPtr++ - MaskTemp: 

1 
DispMemOffset +- S i z e :  / *  mark o f f   t h e  space we j u s t   u s e d  */  

1 
r e t u r n   D i s p M e m O f f s e t  - DispMemStart ;  

1 

LISTING 49.4 MASK1M.H 
/*  MASK1M.H: s t r u c t u r e s   u s e d   f o r   s t o r i n g   a n d   m a n i p u l a t i n g   m a s k e d  

images */  

/* D e s c r i b e s   o n e   a l i g n m e n t   o f  a mask - image   pa i r .  * /  
t y p e d e f   s t r u c t  { 

i n t   I m a g e w i d t h :  / *  i m a g e   w i d t h   i n   a d d r e s s e s   i n   d i s p l a y  memory ( a l s o  

u n s i g n e d   i n t   I m a g e P t r :  / *  o f f s e t   o f  image  b i tmap i n   d i s p l a y  mem */  
char   *MaskPtr ;  / *  p o i n t e r   t o  mask  bi tmap */  

mask w i d t h   i n   b y t e s )  * /  

1 Al ignedMaskedImage; 

/ *  D e s c r i b e s   a l l   f o u r   a l i g n m e n t s   o f  a mask - image   pa i r .  * /  
t y p e d e f   s t r u c t  { 

A l ignedMaskedImage  *Al ignments[41:  / *  p t r s   t o   A l i g n e d M a s k e d I m a g e  
s t r u c t s   f o r   f o u r   p o s s i b l e   d e s t i n a t i o n  
image  a l ignments  * /  

1 MaskedImage: 

Notes on Masked Copying 
Listings 49.1 and 49.2, like  all  Mode X code I’ve presented,  perform no clipping, 
because clipping code would complicate the listings too  much. While clipping can 
be implemented directly in  the low-level Mode X routines (at  the beginning of  List- 
ing 49.1, for  instance),  another, potentially simpler approach would be to perform 
clipping at a  higher level, modifjmg  the  coordinates  and dimensions passed to low- 
level routines such as  Listings 49.1 and 49.2 as  necessary to accomplish the desired 
clipping. It is for precisely this reason that  the low-level Mode X routines  support 
programmable  start  coordinates in the source images, rather  than assuming (0,O) ; 
likewise for  the distinction between the width of the image and  the width  of the  area 
of the image to draw. 
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Also, it would  be more  efficient  to make up  structures  that  describe  the  source and 
destination bitmaps, with dimensions  and  coordinates  built in,  and simply  pass point- 
ers  to  these  structures  to  the low level, rather  than passing  many separate  parameters, 
as  is  now the case. I’ve used separate  parameters  for simplicity and flexibility. 

Be aware that as nijii as Mode X hardware-assisted masked copying is, whether 
or not it’s actually faster than software-only masked or transparent copying de- 
pends upon  the processor and  the video adapter The advantage of Mode Xmasked 
copying is the 32-bit parallelism; the disadvantages are the need  to  read display 
memory  and  the  need to perform an OUT for every four  pixels. (OUT is a slow 
486/Pentium instruction, and  most VGAs respond to OUTS much  more slowly than 
to display memory writes.) 

Animation 
Gosh. There’s just  no way I  can discuss  high-level animation  fundamentals in any 
detail  here;  I  could  spend an  entire  (and entirely  separate)  book on animation tech- 
niques  alone. You might want to have a  look at Chapters 43 through 46 before 
attacking  the  code  in this chapter;  that will  have to do us for  the  present volume. (I 
will return to 3-D animation  in  the  next  chapter.) 
Basically,  I’m going  to  perform page flipped  animation, in which one page (that is, a 
bitmap  large  enough  to  hold  a full screen) of display memory is displayed  while 
another page is drawn to. When the drawing is finished,  the newly modified page is 
displayed, and  the other-now  invisible-page  is  drawn to. The process repeats  ad 
infinitum. For further information, some good places to  start  are Computer  Guphics, 
by Foley and van  Dam  (Addison-Wesley) ; Principles  oflnteructive  Computer  Graphics, by 
Newman and Sproull (McGraw Hill) ; and “Real-Time Animation” by Rahner  James 
(January 1990, Dr. Dobb’s Journal ) . 
Some of the  code  in this chapter was adapted  for Mode X from  the  code in Chapter 
44-yet  another reason  to  read  that  chapter  before  finishing  this one. 

Mode X Animation in  Action 
Listing  49.5  ties together everything I’ve discussed about Mode X so far  in  a  compact 
but surprisingly powerful animation package. Listing 49.5 first uses  solid and pat- 
terned fills and system-memory-to-screen-memory masked copying to draw a static 
background  containing  a  mountain,  a  sun,  a  plain, water, and a  house with  puffs of 
smoke coming out of the chimney, and sets up the  four  alignments of a masked  kite 
image. The background is transferred  to  both display pages, and drawing of 20 kite 
images in  the  nondisplayed page using fast masked  copying begins. After all images 
have been drawn, the page is flipped to  show the newly updated  screen,  and  the kites 
are moved and drawn in  the  other  page, which is no  longer displayed. Kites are 
erased at their  old positions in the  nondisplayed page by block copying from  the 
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background page. (See the discussion in the previous chapter  for  the display memory 
organization used by Listing 49.5.) So far as the displayed image is concerned,  there 
is never any hint of flicker or disturbance of the  background. This continues  at  a  rate 
of up to 60 times a second until Esc is pressed to exit the  program. See Figure 49.1 
for  a screen shot of the resulting image-add the  animation  in your imagination. 

LISTING 49.5 L49-5.C 
/*  Sample mode X VGA a n i m a t i o n   p r o g r a m .   P o r t i o n s   o f   t h i s   c o d e   f i r s t   a p p e a r e d  

i n  P C  T e c h n i q u e s .   C o m p i l e d   w i t h   B o r l a n d  C++ 2.0 i n  C c o m p i l a t i o n  mode. * /  

# i n c l u d e   < s t d i o . h >  
#i nc l   ude   <con i  0. h> 
# inc lude  <dos .   h>  
# inc lude  <math .h> 
# inc lude  "maskim.h"  

# d e f i n e  SCREEN-SEG  OxAOOO 
# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-HEIGHT 240 
# d e f i n e  PAGEO-START-OFFSET 0 
# d e f i n e  PAGE1-START-OFFSET (((long)SCREEN-HEIGHT*SCREEN-WIOTH)/4) 
# d e f i n e  BG-STARTLOFFSET (( ( long)SCREEN_HEIGHT*SCREEN_WIDTH*2) /4)  
# d e f i n e  DOWNLOAD-STARTLOFFSET (((long)SCREENKHEIGHT*SCREEN-WIDTH*3)/4) 

s t a t i c   u n s i g n e d   i n t   P a g e S t a r t O f f s e t s C Z l  - {PAGEOKSTART-OFFSET.PAGEl-START-OFFSET): 
s ta t i c   cha r   GreenAndBrownPat te rnC]  - ( 2 . 6 . 2 . 6 .   6 . 2 . 6 . 2 .   2 . 6 . 2 . 6 .   6 . 2 . 6 . 2 ) ;  
s t a t i c   c h a r   P i n e T r e e P a t t e r n C l  - (2.2.2.2, 2 . 6 . 2 . 6 .   2 . 2 . 6 . 2 .  2.2.2,2): 
s t a t i c   c h a r   B r i c k P a t t e r n C l  - I 6 . 6 . 7 . 6 .   7 . 7 . 7 . 7 .   7 . 6 . 6 , 6 .  7 . 7 , 7 , 7 . } :  
s t a t i c   c h a r   R o o f P a t t e r n C l  - ( 8 . 8 . 8 . 7 ,  7.7 .7 .7 .  8 . 8 . 8 . 7 ,   8 . 8 . 8 . 7 ) ;  

# d e f i n e  SMOKE-WIDTH 7 
# d e f i n e  SMOKE-HEIGHT 7 
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s t a t i c   c h a r   S m o k e P i x e l s C l  - ( 
0. 0.15.15.15. 0. 0. 
0. 7.  7.15.15.15. 0. 
8. 7. 7. 7.15.15.15, 
8. 7. 7. 7.  7.15.15. 
0. 8, 7. 7, 7.  7.15. 
0. 0. 8. 7. 7. 7. 0. 
0. 0. 0. 8.  8.  0. 01: 

s t a t i c   c h a r  SmokeMaskCl - ( 
0. 0. 1. 1. 1. 0. 0. 
0. 1. 1. 1. 1. 1. 0. 
1, 1,  1. 1. 1. 1. 1. 
1. 1. 1. 1. 1. 1. 1. 
1, 1. 1. 1.  1. 1. 1. 
0.1.1.1.1.1.0. 
0. 0. 1. 1. 1. 0. 01: 

# d e f i n e  KITELWIDTH 10 
# d e f i n e  KITELHEIGHT 16 
s t a t i c   c h a r   K i t e P i x e l s C l  - ( 

0. 0. 0. 0.45, 0. 0. 0. 0. 0. 
0. 0. 0.46.46.46, 0. 0. 0. 0. 
0. 0.47.47.47.47.47. 0. 0. 0. 
0.48.48.48,48.48.48.48. 0. 0. 

49.49,49.49.49.49.49.49.49.  0. 
0,50.50.50.50.50.50.50. 0. 0. 
0.51.51.51.51.51,51.51, 0. 0. 
0. 0.52.52.52.52.52. 0.  0. 0. 
0. 0,53.53.53.53.53. 0. 0. 0. 
0, 0, 0.54.54.54. 0. 0, 0. 0. 
0. 0. 0.55.55.55. 0. 0. 0. 0. 
0.  0.  0. 0.58, 0. 0. 0. 0. 0. 
0. 0. 0. 0.59, 0. 0. 0. 0.66. 
0. 0. 0. 0.60, 0. 0.64,  0.65. 
0. 0. 0. 0. 0.61, 0. 0.64. 0. 
0. 0. 0. 0. 0. 0.62.63,  0.641; 

0 . 0 . 0 . 0 , 1 . 0 . 0 . 0 . 0 . 0 .  
0. 0. 0. 1. 1. 1. 0. 0, 0. 0. 
0. 0. 1. 1. 1.  1. 1. 0. 0. 0. 
0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 
1. 1. 1. 1.  1. 1. 1. 1. 1. 0. 
0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . 0 .  
0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 
0. 0. 1. 1, 1. 1. 1. 0. 0. 0, 
0. 0. 1.  1. 1. 1. 1. 0. 0. 0. 
0 . 0 . 0 . 1 . 1 . 1 . 0 . 0 , 0 . 0 .  
0. 0. 0. 1. 1. 1. 0. 0.  0. 0. 
0 . 0 . 0 . 0 . 1 . 0 . 0 . 0 , 0 . 0 .  
0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 
0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 
0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 
0. 0.  0. 0. 0. 0. 1. 1. 0. 11: 

s t a t i c   c h a r   K i t e M a s k C l  - ( 

s t a t i c  MaskedImage  KiteImage: 

# d e f i n e  NUM-OBJECTS 20 
t y p e d e f   s t r u c t  ( 

i n t  X,Y.Width.Height.XDir.YDir.XOtherPage.YOtherPage; 
MaskedImage  *Image: 

1 Animatedobject :  
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An imatedob jec t   An ima tedOb jec tsC l  - I 
[ 0 .  O.KITE-WIDTH.KITE_HEIGHT. 1. 1. 0.  O,&Ki te Image l ,  
{ 10 .  10,KITE-WIDTH.KITE-HEIGHT. 0 .  1, 10 .   lO .&K i te Image I .  
{ 20. 20.KITEKWIDTH.KITEKHEIGHT.-1. 1, 20.   2O.&Ki te Imagej .  
[ 30. 30.KITE~WIDTH.KITE~HEIGHT."1.  30 .   30 .&K i te Image j ,  
( 40. 40.KITE-WIDTH.KITE-HEIGHT. 1;l. 40.   40.&Ki te Image) .  
[ 50,  50.KITEKWIDTH,KITEKHEIGHT. O,-l, 50. 50.&Ki te Image) .  
I 60,  60.KITE-WIDTH.KITE_HEIGHT. 1. 0. 60.   60.&Ki te Image) .  
[ 70. 7O.KITE-WIDTH.KITE-HEIGHT,-l, 0.  70.  7D.&KiteImage).  
[ EO. 80.KITE-WI0TH.KITE-HEIGHT. 1, 2.  EO. EO,&KiteImage).  
{ 90. 90.KITE-WI0TH.KITE-HEIGHT. 0.  2 .   90,   90.&Ki te Image} .  
[100 .100 .K ITE~WIDTH.K ITE~HEIGHT. -1 .  2.100.10D.&KiteImageI.  
~ 1 1 0 . 1 1 0 . K I T E K W I D T H . K I T E H E I G H T . - 1 . - 2 , l l O , l l O . & K i t e I m a ~ e ~ .  
[ 1 2 0 . 1 2 0 . K I T E ~ W I D T H , K I T E ~ H E I G H T ,  1.-2.120.120.&KiteImage). 
[130.130,KITEKWIDTH,KITEKHE1GHT, 0.-2.130.130.&KiteImage). 
(14D.140.KITE~W10TH.KITELHEIGHT. 2,  0.140.140.&KiteImage).  
{150.150,KITE~WIDTH.KITEKHE1GHT,-2. 0.150,150.&KiteImage).  
(160,160,KITEKWIDTH.K1TEKHE1GHT, 2 .   2 ,16D. l60.&Ki te Image) ,  
{170.170.KITE~WIDTH.KITE~HEIGHT.-2, 2.170.170.&KiteImage).  
{1E0.1E0,KITEKWIOTH,KITEKHEIGHT.-2.-2,lEO,lEO,&KiteImage~, 
[190.190,KITE~WIDTH,KITEKHEIGHT, 2.-2.190.190.&KiteImagej. 

I ;  
v o i d   m a i n ( v o i d ) ;  
v o i d   D r a w B a c k g r o u n d ( u n s i g n e d   i n t ) ;  
v o i d  MoveOb jec t (An ima ted0b jec t  * ) ;  
e x t e r n   v o i d   S e t 3 2 0 ~ 2 4 0 M o d e ( v o i d ) ;  
e x t e r n   v o i d   F i l l R e c t a n g l e X ( i n t ,   i n t .   i n t .   i n t .   u n s i g n e d   i n t .   i n t ) :  
e x t e r n   v o i d   F i l l P a t t e r n X ( i n t .   i n t .   i n t .   i n t .   u n s i g n e d   i n t .   c h a r * ) ;  
e x t e r n   v o i d  CopySystemToScreenMaskedX(int. i n t .   i n t .   i n t ,   i n t .   i n t .  

e x t e r n   v o i d  CopyScreenToScreenX(int. i n t .   i n t .   i n t .   i n t .   i n t ,  

e x t e r n   u n s i g n e d   i n t  CreateAlignedMaskedImage(Masked1mage *,  

e x t e r n   v o i d  CopyScreenToScreenMaskedX(int. i n t .   i n t .   i n t .   i n t .   i n t .  

e x t e r n   v o i d   S h o w P a g e ( u n s i g n e d   i n t ) ;  

c h a r  *, u n s i g n e d   i n t .   i n t .   i n t ,   c h a r  * ) ;  

u n s i g n e d   i n t .   u n s i g n e d   i n t .   i n t .   i n t ) ;  

u n s i g n e d   i n t .   c h a r  *, i n t .   i n t .   c h a r  * ) :  

MaskedImage *, u n s i g n e d   i n t .   i n t ) ;  

v o i d   m a i n 0  
I 

i n t   D i sp layedPage .   NonD isp layedPage ,   Done ,  i; 

Set320x240ModeO; 
u n i o n  REGS r e g s e t ;  

/ *  D o w n l o a d   t h e   k i t e   i m a g e   f o r   f a s t   c o p y i n g   l a t e r .  * /  
i f  (CreateAlignedMaskedImage(&KiteImage. DOWNLOADKSTART-OFFSET, 

K i t e P i x e l s .  KITELWIDTH.  KITELHEIGHT, K i teMask)  -- 0 )  { 
r e g s e t . x . a x  - 0 x 0 0 0 3 ;   i n t E 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) :  
p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) :   e x i t ( ) ;  

j 
/*  Draw t h e   b a c k g r o u n d   t o   t h e   b a c k g r o u n d   p a g e .  * /  
DrawBackground(BG-STARTL0FFSET); 
/ *  Copy t h e   b a c k g r o u n d   t o   b o t h   d i s p l a y a b l e   p a g e s .  * /  
CopyScreenToScreenX(0, 0 .  SCREEN-WIDTH,  SCREENKHEIGHT. 0.   0 .  

CopyScreenToScreenX(0, 0 .  SCREENKWIDTH.  SCREEN-HEIGHT. 0.  0. 

/ *  Move t h e   o b j e c t s   a n d   u p d a t e   t h e i r   i m a g e s   i n   t h e   n o n d i s p l a y e d  

Done = Disp layedPage - 0;  
do I 

BG-START-OFFSET,  PAGEO-START-OFFSET,  SCREEN-WIDTH. SCREENKWIDTH); 

BGKSTART-OFFSET.  PAGE1-START-OFFSET,  SCREEN-WIDTH.  SCREEN-WIDTH); 

page,   then f l i p   t h e  page, u n t i l  Esc i s  p ressed.  * /  

NonDisplayedPage - Disp layedPage A 1; 
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I* E r a s e   e a c h   o b j e c t   i n   n o n d i s p l a y e d   p a g e   b y   c o p y i n g   b l o c k   f r o m  

f o r   ( i - 0 :  i<NUM-OBJECTS; i++) ( 
b a c k g r o u n d   p a g e   a t   l a s t   l o c a t i o n   i n   t h a t   p a g e .  *I  

CopyScreenToScreenX~AnimatedObjects~il.XOtherPage, 
AnimatedObjects [ i l .YOtherPage.  
AnimatedObjects[il.XOtherPage + 
AnimatedObjects[il.Width. 
A n i m a t e d O b j e c t s [ i l . Y O t h e r P a g e  + 
AnimatedObjects[il.Height. 
A n i m a t e d O b j e c t s [ i l . X O t h e r P a g e .  
AnimatedObjects [ i l .YOtherPage.  BG-START-OFFSET. 
PageStartOffsetsCNonDisplayedPagel. SCREEN-WIDTH.  SCREEN-WIDTH): 

1 
I* Move and   d raw  each   ob jec t  i n   t h e   n o n d i s p l a y e d   p a g e .  *I  
f o r   ( i - 0 ;  i<NUMLOBJECTS; i++) ( 

M o v e O b j e c t ( & A n i m a t e d O b j e c t s [ i l ) :  
I* Draw o b j e c t   i n t o   n o n d i s p l a y e d   p a g e   a t  new l o c a t i o n  *I  
CopyScreenToScreenMaskedX(0, 0, AnimatedObjects[il.Width, 

A n i m a t e d O b j e c t s [ i l . H e i g h t .  A n i m a t e d O b j e c t s [ i l . X ,  
A n i m a t e d O b j e c t s [ i l . Y .  AnimatedObjectsCil.1mage. 
PageStartOffsets[NonDisplayedPagel, SCREEN-WIDTH): 

I 
/ *  F l i p  t o  t h e   p a g e   i n t o   w h i c h  we j u s t  drew. *I 
ShowPaqe(PaaeStar tOf fse ts rD isD1ayedPage - NonOisplayedPage]) ;  
I* See i f  i t ' s   t i m e   t o  end. * I  
i f  ( k b h i t 0 )  ( 

1 
i f  ( g e t c h 0  - OxlB)  Done - 
" - .  

1 w h i l e   ( ! D o n e ) :  
I* R e s t o r e   t e x t  mode and  done. *I  
r e g s e t . x . a x  - 0x0003 ;   i n t86 (0x10 .  

1 

1; I* Esc t o  end *I  

& r e g s e t .   & r e g s e t ) ;  

vo id   DrawBackground(unsigned i n t   P a g e s t a r t )  
I 

i n t   i . j , T e m p ;  
I* F i l l   t h e   s c r e e n   w i t h   c y a n .  * I  
F i l l R e c t a n g l e X ( 0 ,  0 .  SCREEN-WIDTH.  SCREEN-HEIGHT. P a g e s t a r t .  11); 
I* Draw a g r e e n   a n d   b r o w n   r e c t a n g l e   t o   c r e a t e  a f l a t   p l a i n .  *I  
F i l l P a t t e r n X ( 0 .   1 6 0 ,  SCREEN-WIDTH,  SCREEN-HEIGHT. P a g e S t a r t ,  

I* D r a w   b l u e   w a t e r   a t   t h e   b o t t o m   o f   t h e   s c r e e n .  * I  
F i l l R e c t a n g l e X ( 0 .  SCREENLHEIGHT-30. SCREEN-WIDTH.  SCREEN-HEIGHT. 

I* Draw a b r o w n   m o u n t a i n   r i s i n g   o u t   o f   t h e   p l a i n .  *I  
f o r   ( i - 0 :   i < 1 2 0 :  i++) 

GreenAndBrownPattern):  

P a g e s t a r t ,  1) : 

FillRectangleX(SCREEN~WIDTHl2-30-i. 51+i,  SCREEN-WIDTH/2-30+i+l, 
5 1 + i + l ,   P a g e s t a r t .   6 ) ;  

I* Draw a y e l l o w   s u n   b y   o v e r l a p p i n g   r e c t s   o f   v a r i o u s   s h a p e s .  *I  
f o r   ( i - 0 ;   i < - 2 0 :  i++) ( 

Temp - ( i n t ) ( s q r t ( 2 0 . 0 * 2 0 . 0  - ( f l o a t ) i * ( f l o a t ) i )  + 0 . 5 ) :  
F i l lRec tang leX(SCREEN_WIDTH-25- i .  30-Temp,  SCREEN-WIDTH-25+i+l. 

30+Temp+l. P a g e s t a r t .   1 4 ) ;  
1 
I* Draw  g reen   t rees  down t h e   s i d e  o f   t he   moun ta in .  *I 
f o r   ( i - 1 0 :   i < 9 0 ;  i +- 1 5 )  

f o r   ( j - 0 ;   j < 2 0 ;  j++) 
FillPatternX(SCREENLWIDTH12+i-j13-15, i+ j+51,SCREEN~WIDTH/2+ i+ j I3 -15+1,  

i + j + 5 1 + 1 .   P a g e s t a r t .   P i n e T r e e P a t t e r n ) :  
I* Draw a house on t h e   p l a i n .  *I  
F i l l P a t t e r n X ( 2 6 5 .   1 5 0 .   2 9 5 .   1 7 0 .   P a g e s t a r t .   B r i c k P a t t e r n ) ;  
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F i l l P a t t e r n X ( 2 6 5 ,   1 3 0 .   2 7 0 ,   1 5 0 .   P a g e S t a r t .   B r i c k P a t t e r n ) ;  
f o r   ( i = O :   i < 1 2 ;  i++) 

/* F i n a l l y ,   d r a w   p u f f s   o f  smoke r i s i n g   f r o m   t h e   c h i m n e y .  * I  
f o r   ( i - 0 :   i < 4 ;  i++) 

F i l l P a t t e r n X ( 2 8 0 - i * 2 .   1 3 8 + i .  28O+i*2+1.   138+ i+ l .   Pagestar t .   RoofPat te rn) :  

CopySystemToScreenMaskedX(0, 0 .  SMOKELWIDTH.  SMOKE-HEIGHT. 264, 
110 - i *20 ,   SmokeP ixe l s .   PageSta r t .  SMOKE-WIDTH.SCREEN_WIDTH, SmokeMask): 

1 
/ *  Move t h e   s p e c i f i e d   o b j e c t ,   b o u n c i n g   a t   t h e   e d g e s  o f  t h e   s c r e e n   a n d  

remember ing   where   t he   ob jec t  was b e f o r e   t h e  move f o r   e r a s i n g   n e x t   t i m e .  * I  
v o i d  MoveObject(Animated0bject * ObjectToMove) 

i n t  X ,  Y :  
X - ObjectToMove->X + ObjectToMove->XDir ;  
Y - ObjectToMove->Y + ObjectToMove->YDir :  
i f  ( ( X  < 0 )  1 1  (X > (SCREEN-WIDTH - Ob jec tToMove->Wid th) ) )  [ 

ObjectToMove->XDir  - -0b jec tToMove->XDi r :  
X - ObjectToMove->X + ObjectToMove->XDir :  

1 
i f  ( ( Y  < 0 )  1 1  ( Y  > (SCREEN-HEIGHT - O b j e c t T o M o v e - > H e i g h t ) ) )  { 

ObjectToMove->YDir  - -0b jec tToMove->YDi r :  
Y - ObjectToMove->Y + ObjectToMove->YDir ;  

1 
/*  Remember p r e v i o u s   l o c a t i o n   f o r   e r a s i n g   p u r p o s e s .  * I  
ObjectToMove->XDtherPage - ObjectToMove->X: 
ObjectToMove->YOtherPage - ObjectToMove->Y; 
ObjectToMove->X - X :  / *  s e t  new l o c a t i o n  * /  
ObjectToMove->Y - Y :  

1 

Here’s something worth noting: The animation is extremely smooth on a 20 MHz 
386. It is somewhat more jerky on  an 8 MHz 286, because only 30 frames a second 
can  be  processed. If animation looks jerky on your PC, try reducing the number of  kites. 
The kites  draw perfectly into  the  background, with no  interference  or  fringe,  thanks 
to  masked  copying. In fact, the kites  also  cross  with no interference (the last-drawn 
kite is always  in front), although that’s not readily apparent because they  all look the 
same anyway and  are moving  fast.  Listing  49.5 isn’t inherently limited to kites; create 
your own images and initialize the object list  to  display a mix  of those images and see 
the full power  of  Mode X animation. 
The external  functions called by Listing  49.5 can be found  in Listings  49.1,  49.2, 
49.3, and 49.6, and in the listings for the previous two chapters. 

LISTING 49.6  L49-6.ASM 
: Shows t h e   p a g e   a t   t h e   s p e c i f i e d   o f f s e t   i n   t h e   b i t m a p .  Page i s   d i s p l a y e d  when 
: t h i s   r o u t i n e   r e t u r n s .  

INPUTLSTATUSLl 
: C n e a r - c a l l a b l e   a s :   v o i d   S h o w P a g e ( u n s i g n e d   i n t   S t a r t o f f s e t ) :  

equ  03dah  : Input   S ta tus  1 r e g i s t e r  
CRTC-INDEX equ 03d4h :CRT C o n t r o l l e r   I n d e x   r e g  
START-ADDRESS-HIGH equ Och ; b i t m a p   s t a r t   a d d r e s s   h i g h   b y t e  
START_ADDRESSLLOWequ  Odh : b i t m a p   s t a r t   a d d r e s s   l o w   b y t e  

ShowPageParms s t r u c  

S t a r t o f f s e t  dw ? : o f f s e t   i n   b i t m a p   o f   p a g e   t o   d i s p l a y  
ShowPageParms  ends 

dw 2 dup ( ? )  :pushed BP and r e t u r n   a d d r e s s  
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.model  smal l  

.code 
p u b l i c   3 h o w P a g e  

-Showpage p r o c   n e a r  
push bp  
mov bp.sp 

: p r e s e r v e   c a l l e r ’ s   s t a c k   f r a m e  
; p o i n t   t o   l o c a l   s t a c k   f r a m e  

: W a i t   f o r   d i s p l a y   e n a b l e   t o   b e   a c t i v e   ( s t a t u s   i s   a c t i v e   l o w ) .   t o   b e  
: s u r e   b o t h   h a l v e s   o f   t h e   s t a r t   a d d r e s s  will t a k e   i n   t h e  same frame. 

mov  bl.START-ADDRESS-LOW 
mov b h . b y t e   p t r   S t a r t O f f s e t C b p ]  

: p r e l o a d   f o r   f a s t e s t  

mov  cl.START_ADDRESS-HIGH 
: f l i p p i n g  o n c e   d i s p l a y  

mov c h . b y t e   p t r   S t a r t O f f s e t + l [ b p ]  
: e n a b l e  i s   d e t e c t e d  

mov dx.INPUT-STATUSpl 

i n  a1 .dx 
t e s t  a1  ,Olh 
j n z  WaitDE 

mov  dx.CRTCJNDEX 
mov ax.bx 
o u t   d x . a x   ; s t a r t   a d d r e s s   l o w  
mov ax ,cx  
o u t   d x . a x   ; s t a r t   a d d r e s s   h i g h  

: Now w a i t   f o r   v e r t i c a l   s y n c ,  s o  t h e   o t h e r   p a g e  will b e   i n v i s i b l e  when 
: we s t a r t   d r a w i n g   t o  i t .  

Wai tVS: 

WaitDE: 

: S e t   t h e   s t a r t   o f f s e t   i n   d i s p l a y  memory o f   t h e  page t o  d i s p l a y .  
; d i s p l a y   e n a b l e   i s   a c t i v e   l o w  ( 0  - a c t i v e )  

mov dx.INPUT-STATUS-1 

i n  a1  ,dx 
t e s t  a1 .08h 
j z  WaitVS 
POP bp 
r e t  

-Showpage  endp 
end 

: v e r t i c a l   s y n c   i s   a c t i v e   h i g h  (1 - a c t i v e )  
: r e s t o r e   c a l l e r ’ s   s t a c k   f r a m e  

Works  Fast,  Looks Great 
We now end  our exploration of Mode X, although we’ll  use it again shortly for 3-D 
animation. Mode X admittedly has its complexities; that’s why I’ve provided  a  broad 
and flexible primitive set. Still, so what if it is complex? Take a look at Listing 49.5 in 
action. That sort of colorful,  high-performance  animation is worth jumping  through 
a few hoops  for; drawing 20, or even 10, fair-sized objects at  a  rate of 60 Hz,  with no 
flicker, interference,  or fringe, is no mean  accomplishment, even on  a 386. 
There’s  much  more we could do with animation in general and with  Mode X in 
particular,  but it’s time to move on to new challenges.  In closing, I’d like to  point  out 
that all of the VGA’s hardware  features,  including  the built-in AND, OR, and XOR 
functions,  are available in Mode X, just as they are in the  standard VGA modes. If 
you understand  the VGA’s hardware  in  mode 12H, try applying that knowledge to 
Mode X; you might be surprised at what you find you can  do. 
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Times change, and they seem to do so much faster in  computer technology than  in 
other parts of the universe. A 486 is capable of decent 3-D animation, owing to its 
integrated  math coprocessor; not in  the class of, say, an i860, but pretty good  none- 
theless. A 386 is  less  satisfactory, though;  the 38’7 is no match for  the 486’s coprocessor, 
and most 386  systems  lack coprocessors. However,  all  is not lost;  32-bit registers and 
built-in integer multiply and divide hardware make it possible to do some very inter- 
esting 3-D animation on a 386  with fixed-point arithmetic. Actually,  it’s  possible  to 
do a surprising amount of 3-D animation in real  mode, and even on lesser  x86 pro- 
cessors; in  fact,  the  code in  this  article will perform real-time 3-D animation 
(admittedly very simple, but nonetheless real-time and 3-D) on a 286 without a 287, 
even though  the  code is written in real-mode C and uses floating-point arithmetic. 
In  short,  the  potential  for 3-D animation on  the x86  family  is considerable. 
With this chapter, we kick off an  exploration of some of the sorts of 3-D animation 
that can be performed  on  the x86  family.  Mind  you,  I’m talking about real-time 3-D 
animation, with  all calculations and drawing performed on-the-fly. Generating frames 
ahead of time and playing them back is an excellent technique,  but I’m interested in 
seeing how far we can  push purely real-time animation.  Granted, we’re not going to 
make it to the level  of Terminator 2, but we should have some fun nonetheless. The 
first few chapters  in this final section of the book may seem pretty basic  to those of 
you experienced with 3-D programming,  and, at  the same time, 3-D neophytes will 
inevitably be distressed at  the  amount of material I skip or skim  over. That can’t be 
helped,  but at least there’ll be working code, the references  mentioned later, and 
some explanation;  that  should be enough to start you on your way with  3-D. 
Animating in  three dimensions is a  complex task, so this will be the largest single 
section of the book, with later chapters building on earlier ones; and even  this  first 3-D 
chapter will rely on polygon fill and page-flip code  from  earlier  chapters. 
In  a sense, I’ve  saved the best for last, because, to my mind, real-time 3-D animation 
is one of the most exciting things of any stripe  that can be done with a computer- 
and because, with  today’s hardware, it can in fact be done. Nay, it can be done 
amazingly  well. 

References on 3-D Drawing 
There  are several good sources for  information  about 3-D graphics. Foley and van 
Dam’s Computer Graphics: Principles and Practice (Second Edition, Addison-Wesley, 1990) 
provides a lengthy discussion  of the topic and a  great many references  for further 
study. Unfortunately, this book is  heavy going at times; a  more  approachable discus- 
sion is provided in Principles of Interactive  Computer Graphics, by Newman and Sproull 
(McGraw-Hill, 1979). Although the latter book  lacks the last decade’s worth of graphics 
developments, it  nonetheless provides a  good overview  of  basic  3-D techniques, in- 
cluding many of the  approaches likely  to  work  well in realtime on a PC. 
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A source that you  may or may not find useful is the series of  six  books on C graphics 
by Lee Adams,  as exemplified by High-Performance CAD Graphics in C (Windcrest/ 
Tab, 1986). (I  don’t know if all  six  books  discuss 3-D graphics, but  the  four I’ve seen 
do.) To be  honest, this book has a number of problems, including: Relatively  little 
theory and explanation;  incomplete and sometimes erroneous discussions  of graph- 
ics hardware; use  of nothing  but global  variables,  with  cryptic names like  “array3” 
and “B21;” and-well,  you get  the idea. On  the  other  hand,  the book at least touches 
on a great many  aspects of  3-D drawing, and there’s a lot of C code  to back that  up. 
A number of people have spoken warmly  to  me  of  Adams’  books  as their  introduc- 
tion to 3-D graphics. I wouldn’t recommend these books  as  your  only 3-D references, 
but if you’re just starting out, you might want  to  look at  one  and see if it helps you 
bridge the  gap between the theory and implementation of  3-D graphics. 

The 3-D Drawing Pipeline 
Each 3-D object that we’ll handle will be built out of  polygons that  represent  the 
surface of the object. Figure 50.1 shows the stages a polygon  goes through  enroute 
to  being drawn on the  screen.  (For  the  present, we’ll  avoid complications such  as 
clipping, lighting, and shading.) First, the polygon is transformed from object space, 
the  coordinate system the object is defined  in, to  world space, the  coordinate system 
of the 3-D universe. Transformation may  involve rotating, scaling, and moving the 
polygon.  Fortunately,  applying the desired transformation to each of the polygon 
vertices in  an object is equivalent to transforming the polygon;  in other words,  trans- 
formation of a polygon is  fully defined by transformation of  its  vertices, so it is not 
necessary to transform every point in a polygon, just  the vertices.  Likewise,  transfor- 
mation of  all the polygon  vertices in an object fully transforms the object. 
Once  the polygon is in world space, it must again be  transformed, this  time into view 
space, the space defined such that  the viewpoint is at (O,O,O), looking down the Z 
axis,  with the Yaxis straight up  and  the X axis  off to  the right. Once in view space, the 
polygon can be  perspective-projected  to the  screen, with the projected X and Y coor- 
dinates of the vertices  finally being used to draw the polygon. 
That’s  really  all there is to  basic  3-D  drawing:  transformation  from  object  space  to  world 
space  to view space to the screen.  Next, we’ll  look at the mechanics of transformation. 
One note: I’ll  use a purely right-handed convention for  coordinate systems.  Right- 
handed means that if you hold your right hand with  your fingers curled and  the 
thumb sticking out,  the  thumb points along  the Z axis and  the fingers point  in  the 
direction of rotation  from  the X axis  to the Yaxis,  as  shown in Figure 50.2. Rotations 
about  an axis are counter-clockwise7  as  viewed looking down an axis  toward the ori- 
gin. The handedness of a coordinate system  is just a convention, and left-handed 
would do equally  well;  however, right-handed is generally used for object and world 
space. Sometimes, the  handedness is flipped for view space, so that increasing Z 
equals increasing distance from  the viewer along  the line of sight, but I have chosen 

Adding a Dimension 935 



Polygon  transformed into world space,  the  shared 3-D 
universe. At this  point, (O,O,O) is  the origin of the 3-D 
universe and is not  affected by the locatlon or 
orientation of the polygon, the  viewer, or the  screen. 4 ) World space  to  view 

space transformation 

on  transformed  into  view  space,  the 3-D universe 
from  the  view  oint;  the  viewpoint becomes 

the origin (O,O,O), with tRe viewer  looklng  straight  down 
the Z axis. 

Perspective projection from view 
space  to  the  screen 

V 

The 3-0 drawing pipeline. 
Figure 50.1 

Y 

Direction of positive  rotation 
around  the Z axis, 

from the X axis 
to the Y axis 

1 X 

A right-handed coordinate system. 
Figure 50.2 
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not to do  that  here, to avoid confusion. Therefore, Z decreases as distance along the 
line of sight increases; a view space coordinate of (O,O,-1000) is directly ahead, twice 
as far away  as a  coordinate of (O,O,-500). 

Projection 
Working  backward from  the final image, we want to take the vertices of a polygon, as 
transformed into view space, and project  them to 2-D coordinates on  the screen, 
which, for projection purposes, is assumed to be  centered  on  and  perpendicular to 
the Z axis in view space, at some distance from  the screen. We’re after visual realism, 
so  we’ll want to do a perspective projection, in order that  farther objects look smaller 
than  nearer objects, and so that  the field of  view  will widen  with distance. This is 
done by scaling the X and Y coordinates of each point  proportionately to the Z 
distance of the  point  from  the viewer, a simple matter of similar triangles, as shown 
in Figure 50.3. It doesn’t really matter how far down the Z axis the screen is assumed 
to be; what matters is the  ratio of the distance of the screen from  the viewpoint to the 
width  of the screen. This ratio defines the  rate of divergence of the viewing  pyra- 
mid-the full field of  view-and  is used for  performing all perspective projections. 
Once perspective projection has been  performed, all that remains before calling the 
polygon filler is  to convert the  projected X and Y coordinates to integers, appropri- 
ately clipped and adjusted as  necessary  to center  the origin on  the screen or otherwise 
map  the image into  a window, if desired. 

Translation 
Translation means adding X, E: and Z offsets to a  coordinate to  move it linearly through 
space. Translation is as simple as it seems; it  requires  nothing  more  than  an  addition 

y (UP) 
A 

I 
! TOD ofview 
I 

I 
I ‘ pyramid 

! / 3 - D 1 2  
c proiected 

oint  proiected to screen 

+ $ i x + i o n  
of view) 

Screen 

Bottom  of  view  pyramid 

Perspective projection. 
Figure 50.3 
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for  each axis. Translation is, for  example, used to move objects from object space, in 
which the  center of the object is  typically the origin (O,O,O), into world space, where 
the object may be located anywhere. 

Rotation 
Rotation is the process  of  circularly  moving coordinates around the origin.  For our present 
purposes, it’s  necessary  only to rotate objects about  their  centers in object space, so 
as  to turn them to the desired  attitude  before translating them  into world space. 
Rotation of a point  about  an axis is accomplished by transforming it according to the 
formulas shown in Figure 50.4. These formulas map into  the more generally useful 
matrix-multiplication forms also  shown in Figure 50.4. Matrix representation is more 

(a) 
n e w  = x 
newy = cos(theta) * y - sin(theta) * z 
newz = sin(theta) * y + cos(theta) * z 

Matrix form of rotation  around X axis: 

[i cos(theta) 0 -sin/th:a/] x k] 
(b) 
n e w  = cos(theta) * x + sinltheta) * z 
newy = y 
newz = -sin(theta) * x + cos(theta) * z 

sin(theta) cos  theta 

Matrix form of rotation  around Y axis: 
~ - - _  

(c) 
n e w  = cos(theta) * x - sin(theta) * y 
newy = sin(theta) * x + cos(theta) * y 
newz = z 

Matrix form of rotation  around Z axis: 8 ] x k] 
3 - 0  rotation formulas. 
Figure 50.4 
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useful for two reasons:  First, it is possible  to concatenate multiple rotations  into a 
single matrix by multiplying them  together in the desired order; that single matrix 
can then  be used to  perform  the rotations more efficiently. 
Second, 3x3 rotation matrices  can become the upper-left-hand portions of 4x4 ma- 
trices that also perform translation (and scaling  as  well, but we won't need scaling in 
the  near  future), as  shown  in  Figure 50.5. A 4x4 matrix of this sort utilizes homoge- 
neous coordinates; that's a topic way beyond this book, but, basically, homogeneous 
coordinates allow you to handle  both rotations and translations with 4x4 matrices, 
thereby allowing the same code  to work  with either, and making it possible  to  concat- 
enate a long series  of rotations and translations into a single matrix that  performs 
the same transformation as the  sequence of rotations and transformations. 
There's  much  more to be said about transformations and  the supporting matrix 
math,  but, in the interests of getting  to working code in this chapter, I'll  leave that  to 
be discussed  as the need arises. 

A Simple 3-D Example 
At this point, we know enough to be able to put together a simple  working 3-D ani- 
mation example. The example will do  nothing  more complicated than display a 
single  polygon  as it sits in 3-D space, rotating around  the Y axis.  To  make things a 
little more  interesting, we'll let the user move the polygon around in space  with the 
arrow keys, and with the "A" (away), and "T" (toward) keys. The sample program 
requires two sorts  of  functionality: The ability to transform and project the polygon 
from object space onto  the screen (3-D functionality), and  the ability to draw the 

Rotation of 90' around the Y axis  Translation  (move) of 100 units along the 
X axis  and IO units along the Z axis 

1 -1 """"""""""""- r""- 

0 1 

1 0 $ 0  
' I  I - 1  0 

0 0 1 '  L 9  """"""""""""""" I 
,"""""""""""""""" 

t t 
Not used at the  moment A 3-D point represented in 

homogeneous  coordinates 

A 4x4 Transformation Matrix. 
Figure 50.5 
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projected polygon (complete with clipping) and  handle  the  other details of anima- 
tion (2-D functionality). 
Happily (and  not coincidentally), we put together  a nice 2-D animation framework 
back in  Chapters 4’7,48, and 49, during  our exploratory discussion of Mode X, so we 
don’t have much  to worry about in terms of  non-3-D details. Basically,  we’ll  use  Mode 
X (320x240, 256 colors), and we’ll flip between two display pages, drawing to one 
while the  other is displayed. One new 2-D element  that we need is the ability to clip 
polygons;  while we could avoid this for  the  moment by restricting  the  range of  mo- 
tion of the polygon so that  it stays fully on the  screen, certainly in the  long  run we’ll 
want to  be  able  to  handle partially or fully clipped polygons.  Listing 50.1 is the low- 
level code  for  a Mode X polygon filler that  supports  clipping. (The high-level  polygon 
fill code is mode  independent,  and is the same as that  presented  in  Chapters 38,39, 
and 40, as noted  further on.) The clipping is implemented at the low level, by trim- 
ming  the Y extent of the scan line list up  front,  then clipping  the X coordinates of 
each scan line  in turn. This is not a particularly fast approach  to clipping-ideally, 
the polygon  would be  clipped  before  it was scanned into a  line list, avoiding poten- 
tially  wasted scanning and eliminating  the line-by-line X clipping-but it’s much 
simpler, and, as we shall see, polygon filling performance is the least of our worries at 
the  moment. 

LISTING 50.1 150- 1 .ASM 
; Draws a l l   p i x e l s   i n   t h e   l i s t   o f   h o r i z o n t a l   l i n e s   p a s s e d   i n ,   i n  
: Mode X .  t h e  VGA’s undocumented  320x240  256-co lo r  mode. C l i p s   t o  
: t h e   r e c t a n g l e   s p e c i f i e d   b y  (ClipMinX.ClipMinY).(ClipMaxX.ClipMaxY). 
: Draws t o   t h e   p a g e   s p e c i f i e d   b y   C u r r e n t P a g e B a s e .  
; C n e a r - c a l l a b l e   a s :  

: v o i d  D r a w H o r i z o n t a l L i n e L i s t ( s t r u c t  H L i n e L i s t  * H L i n e L i s t P t r .  
i n t   C o l o r ) ;  

: All a s s e m b l y   c o d e   t e s t e d   w i t h  TASM and MASM 

SCREEN-WIDTH equ  320 
SCREEN-SEGMENT equ OaOOOh 
SC-INDEX equ  03c4h 
MAP-MASK equ 2  :Map Mask r e g i s t e r   i n d e x   i n  SC 

H L i n e   s t r u c  
X S t a r t  dw ? : X  c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   l i n e  
XEnd dw ? : X  c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  
HL ine   ends  

H L i n e L i s t   s t r u c  
L n g t h  dw ? ;I o f  h o r i z o n t a l   l i n e s  
Y S t a r t  dw ? ;Y c o o r d i n a t e   o f   t o p m o s t   l i n e  
H L i n e P t r  dw ? ; p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  
H L i   n e L i   s t   e n d s  

: S e q u e n c e   C o n t r o l l e r   I n d e x  

Parms s t r u c  

H L i n e L i s t P t r  dw ? ; p o i n t e r   t o   H L i n e L i s t   s t r u c t u r e  
dw 2 d u p ( ? )   ; r e t u r n   a d d r e s s  & pushed BP 
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C o l o r  dw ? : c o l o r   w i t h   w h i c h   t o  fill 
Parms  ends 

.model   smal l  

. d a t a  
e x t r n  -CurrentPageBase:word._ClipMinX:word 
e x t r n  -ClipMinY:word.LClipMaxX:word,-ClipMaxY:word 

: P l a n e   m a s k s   f o r   c l i p p i n g   l e f t   a n d   r i g h t   e d g e s   o f   r e c t a n g l e .  
Le f tC l i pP laneMask   db   00 fh .00eh .00ch .008h  
R igh tC l i pP laneMask   db   001h .003h .007h .00 fh  

.code 
a l i g n  2 

jmp F i  11  Done 
p u b l i c   - 0 r a w H o r i z o n t a l L i n e L i s t  
a1 i g n  2 

- D r a w H o r i z o n t a l L i n e L i s t   p r o c  
push  bp 
mov bp .sp  
p u s h   s i  
p u s h   d i  
c l  d 
mov dx.SC-INDEX 
mov a1 .MAPFMASK 
o u t   d x . a l  
mov ax.SCREENLSEGMENT 
mov es ,ax 
mov s i . [ b p + H L i n e L i s t P t r l  
mov b x . [ s i + H L i n e P t r l  

mov c x . [ s i + Y S t a r t l  
mov s i   . [ s i + L n g t h l  
cmp s i . 0  
j 1 e ToFi  11  Done 
cmp c x . [ L C l i p M i n Y I  
j g e   M i n Y N o t C l i p p e d  
neg   cx  
add  cx . [ -C l ipMinYl  
s u b   s i . c x  
j 1 e ToFi  11  Done 
s h l   c x . 1  
s h l   c x . 1  
add  bx.cx 
mov c x .  [LC1 i pMi nY 1 

mov d x . s i  
add  dx,cx 
cmp dx .  [LC1 i pMaxY 1 
j l e  MaxYNotCl ipped 
sub  dx . [ -C l ipMaxYI  
sub s i   . d x  
j l e   T o F i l l O o n e  

mov ax,SCREENlWIDTH/4 
mu1 c x  
add  ax. [ -CurrentPageBasel  
mov dx .ax  
mov a h , b y t e   p t r   [ b p + C o l o r l  

push   bx  

T o F i l   l D o n e :  

M inYNotC l ipped :  

MaxYNotCl ipped:  

F i  11  Loop: 

; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
; p o i n t   t o   o u r   s t a c k   f r a m e  
: p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

;make s t r i n g   i n s t r u c t i o n s   i n c   p o i n t e r s  

: p o i n t  SC I n d e x   t o   t h e  Map Mask 

: p o i n t  ES t o   d i s p l a y  memory f o r  REP STOS 
; p o i n t   t o   t h e   l i n e   l i s t  
: p o i n t   t o   t h e   X S t a r t / X E n d   d e s c r i p t o r  
: f o r   t h e   f i r s t   ( t o p )   h o r i z o n t a l   l i n e  
: f i r s t   s c a n   l i n e   t o   d r a w  
:# o f  s c a n   l i n e s   t o   d r a w  
; a r e   t h e r e   a n y   l i n e s   t o   d r a w ?  
:no. s o  we ' re   done 
: c l i p p e d   a t   t o p ?  
:no 
; y e s .   d i s c a r d   h o w e v e r  many l i n e s   a r e  
: c l i p p e d  
; t h a t  many f e w e r   l i n e s   t o   d r a w  
:no l i n e s   l e f t   t o   d r a w  
: l i n e s   t o   s k i p * 2  
; l i n e s   t o   s k i p * 4  
: a d v a n c e   t h r o u g h   t h e   l i n e   l i s t  
: s t a r t   a t   t h e   t o p   c l i p   l i n e  

; b o t t o m   r o w   t o   d r a w  + 1 
: c l i p p e d   a t   b o t t o m ?  
:no 
:# o f   l i n e s   t o   c l i p   o f f   t h e   b o t t o m  
:# o f   l i n e s   l e f t   t o   d r a w  
: a l l   l i n e s   a r e   c l i p p e d  

: p o i n t   t o   t h e   s t a r t   o f   t h e   f i r s t  
: s c a n   l i n e   o n   w h i c h   t o   d r a w  
: o f f s e t   o f   f i r s t   l i n e  
:ES:DX p o i n t s   t o   f i r s t   s c a n   l i n e   t o   d r a w  
; c o l o r   w i t h   w h i c h   t o  fill 

:remember l i n e   l i s t   l o c a t i o n  
p u s h   d x   : r e m e m b e r   o f f s e t   o f   s t a r t   o f   l i n e  
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p u s h   s i  
mov d i   , [ b x + X S t a r t ]  
cmp d i  , [LC1 i pMi  nX1 
j g e  Mi nXNotCl i pped 
mov d i  , [LC1 i pMi  nX] 

mov s i   . d i  
mov cx.Cbx+XEndl 
cmp c x  , [LC1 i pMaxX] 
jl MaxXNotCl  ipped 
mov c x ,  [LC1  ipMaxX] 
d e c   c x  

M i  nXNotCl i pped: 

MaxXNotCl i pped: 

;remember # o f  1 i n e s   t o   d r a w  
; l e f t   e d g e   o f  fill o n   t h i s   l i n e  
; c l   i p p e d   t o  1 e f t  edge? 
; n o  
; y e s .   c l i p   t o   t h e   l e f t  edge 

; r i g h t   e d g e   o f  fill 
; c l i p p e d   t o   r i g h t   e d g e ?  
;no 
; y e s ,   c l i p   t o   t h e   r i g h t  edge 

CmP 
jl 
s h r  
s h r  
add 
mov 
and 
mov 
mov 
and 
mov 
and 
sub 
s h r  
s h r  
j n z  
and 

MasksSet:  

F i  11  RowsLoop: 
mov 

mov 
o u t  
mov 
s t o s b  
dec  
j s  
j z  
rnov 
o u t  
mov 

DoRightEdge: 
r e p  

mov 
o u t  
mov 
s t o s b  

c x . d i  
L i n e F i l   l D o n e   ; s k i p  i f  n e g a t i v e   w i d t h  
d i  .1 ;X/4  - o f f s e t   o f   f i r s t   r e c t   p i x e l   i n   s c a n  
d i  ,1 
d i  , dx  
d x . s i   ; X S t a r t  
s i  , 0 0 0 3 h   ; l o o k   u p   l e f t - e d g e   p l a n e   m a s k  
bh.LeftClipPlaneMask[si] ; t o   c l i p  & p u t   i n  BH 
s i   . c x  
s i  , 0 0 0 3 h   ; l o o k   u p   r i g h t - e d g e   p l a n e  
bl.RightClipPlaneMask[sil ; mask t o   c l i p  & p u t   i n  BL 

; l i n e  
; o f f s e t   o f   f i r s t   r e c t   p i x e l   i n   d i s p l a y  mem 

d x . n o t   O l l b  
cx .dx  
C X . 1  

MasksSet 
c x . 1  

b h , b l  

dx.SC-INDEX+l 

a1 ,bh 
d x , a l  
a1 .ah 

c x  
F i   1 1   L o o p B o t t o m  
DoRightEdge 
a1 .OOfh 
d x . a l  
a1 ,ah 
s t o s b  

a1 , b l  
d x . a l  
a1 .ah 

F i l l  LoopBottom: 
L i n e F i l l D o n e :  

p o p   s i  
POP dx  
POP b x  
add dx,SCREENLWIDTH/4 
a d d   b x . s i z e   H L i n e  
d e c   s i  
j n z   F i   1 1   L o o p  

; c a l c u l a t e  I o f   a d d r e s s e s   a c r o s s   r e c t  

;# o f   a d d r e s s e s   a c r o s s   r e c t a n g l e   t o  fill - 1 
; t h e r e ' s   m o r e   t h a n   o n e   b y t e   t o   d r a w  
; t h e r e ' s   o n l y   o n e   b y t e ,  so c o m b i n e   t h e   l e f t  
; a n d   r i g h t   e d g e   c l i p  masks 

; a l r e a d y   p o i n t s   t o   t h e  Map Mask r e g  

; p u t   l e f t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   l e f t - e d g e   p l a n e   ( c l i p )  mask 
; p u t   c o l o r   i n  AL 
; d r a w   t h e   l e f t   e d g e  
; c o u n t   o f f   l e f t   e d g e   b y t e  
; t h a t ' s   t h e   o n l y   b y t e  
; t h e r e   a r e   o n l y   t w o   b y t e s  
;m idd le   add resses   a re   d rawn  4 p i x e l s   a t  a pop 
; s e t   t h e   m i d d l e   p i x e l  mask t o  n o  c l i p  
; p u t   c o l o r  i n  AL 
; d r a w   t h e   m i d d l e   a d d r e s s e s   f o u r   p i x e l s   a p i e c e  

; p u t   r i g h t - e d g e   c l i p  mask i n  AL 
; s e t   t h e   r i g h t - e d g e   p l a n e   ( c l i p )  mask 
: p u t   c o l o r   i n  AL 
; d r a w   t h e   r i g h t   e d g e  

; r e t r i e v e  # o f   l i n e s   t o   d r a w  
; r e t r i e v e   o f f s e t   o f   s t a r t   o f   l i n e  
; r e t r i e v e   l i n e   l i s t   l o c a t i o n  
; p o i n t   t o   s t a r t   o f   n e x t   l i n e  
: p o i n t   t o   t h e   n e x t   l i n e   d e s c r i p t o r  
: c o u n t  down l i n e s  
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F i  11  Done: 
pop d i  
pop s i  

r e t  

end 

POP bP 

- D r a w H o r i z o n t a l L i n e L i s t   e n d p  

; r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  

The  other 2-D element we need is some way to erase the polygon at its old location 
before it's moved and redrawn. We'll do that by remembering  the  bounding rect- 
angle of the polygon each time it's drawn, then erasing by clearing that  area with a 
rectangle fill. 
With the 2-D side of the  picture well under control, we're ready to concentrate  on 
the  good stuff.  Listings 50.2 through 50.5 are  the sample 3-D animation  program. 
Listing 50.2 provides matrix multiplication functions in a straightforward fashion. 
Listing 50.3 transforms, projects, and draws  polygons.  Listing 50.4 is the  general 
header file for the program, and Listing 50.5 is the main animation  program. 
Other modules required  are: Listings 47.1 and 47.6 from  Chapter 47 (Mode X mode 
set, rectangle fill); Listing 49.6 from  Chapter 49; Listing 39.4 from  Chapter 39 (poly- 
gon  edge  scan); and  the FillConvexPolygon() function  from Listing 38.1 in  Chapter 
38. All necessary code  modules,  along with a project file, are  present in the 
subdirectory for this chapter  on  the listings  disk, whether they  were presented in this 
chapter  or some earlier chapter. This will be the case for  the  next several chapters as 
well, where listings from previous chapters are, referenced. This scheme may crowd 
the listings diskette a little bit,  but it will certainly reduce confusion! 

LISTING 50.2 150-2.C 
/*  M a t r i x   a r i t h m e t i c   f u n c t i o n s .  

T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  *I  

/*  M a t r i x   m u l t i p l i e s   X f o r m   b y   S o u r c e V e c .   a n d   s t o r e s   t h e   r e s u l t   i n  
D e s t V e c .   M u l t i p l i e s  a 4 x 4   m a t r i x   t i m e s  a 4 x 1   m a t r i x :   t h e   r e s u l t  
i s  a 4 x 1   m a t r i x ,   a s   f o l l o w s :  
.. 

I I 1 4 1   1 4 1  
1 4 x 4  I x 1 x 1  - 1 x 1  
I I I l l   I l l  

" " " .. .. 

" " .. " " " */ 

d o u b l e  * DestVec)  

i n t  i.j; 

f o r   ( i - 0 ;   i < 4 :  i++) I 
D e s t V e c C i l  - 0;  
f o r  (j-0; j < 4 :  j++) 

vo id   X formVec(doub1e  X form[41[41 .   doub le  SourceVec. 

I 

D e s t V e c C i l  +- X f o r m C i l C j l  * SourceVecC j l :  
1 

1 
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/*  M a t r i x   m u l t i p l i e s   S o u r c e X f o r m l   b y   S o u r c e X f o r m Z   a n d   s t o r e s   t h e  
r e s u l t   i n   D e s t X f o r m .   M u l t i p l i e s  a 4 x 4   m a t r i x   t i m e s  a 4 x 4   m a t r i x ;  
t h e   r e s u l t   i s  a 4 x 4   m a t r i x ,   a s   f o l l o w s :  
" " " " " " 

" " " " " .. */ 

doub le   Des tXform[41C41)  

i n t   i , j , k ;  

f o r   ( i - 0 :   i < 4 ;  i++) { 

vo id   ConcatXforms(doub1e  SourceXforml [41 [41 .   doub le   SourceXform2[41[41 ,  

I 

f o r   ( j - 0 ;   j < 4 :  j++) I 
D e s t X f o r m [ i l [ j l  - 0;  
f o r  (k-0:  k<4; k++) 

1 
D e s t X f o r m [ i l [ j l  +- S o u r c e X f o r m l C i l [ k l  * S o u r c e X f o r m 2 ~ k l C j l ;  

1 
1 

LISTING 50.3 150-3.C 
/*  T r a n s f o r m s   c o n v e x   p o l y g o n   P o l y   ( w h i c h   h a s   P o l y L e n g t h   v e r t i c e s ) .  

p e r f o r m i n g   t h e   t r a n s f o r m a t i o n   a c c o r d i n g   t o   X f o r m   ( w h i c h   g e n e r a l l y  
r e p r e s e n t s  a t r a n s f o r m a t i o n   f r o m   o b j e c t   s p a c e   t h r o u g h   w o r l d   s p a c e  
t o   v i e w   s p a c e ) .   t h e n   p r o j e c t s   t h e   t r a n s f o r m e d   p o l y g o n   o n t o   t h e  
screen  and  draws it i n   c o l o r   C o l o r .   A l s o   u p d a t e s   t h e   e x t e n t   o f   t h e  
r e c t a n g l e   ( E r a s e R e c t )   t h a t ' s   u s e d   t o   e r a s e   t h e   s c r e e n   l a t e r .  
T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  * /  

#i nc l   ude   "po l ygon .   h "  

v o i d  XformAndProjectPoly(doub1e X f o r m [ 4 ] [ 4 ] .   s t r u c t   P o i n t 3  * P o l y ,  

( 
i n t   P o l y L e n g t h .   i n t   C o l o r )  

i n t  i; 
s t r u c t   P o i n t 3  XformedPoly[MAX_POLY-LENGTH]; 
s t r u c t   P o i n t  ProjectedPoly[MAX-POLY-LENGTH]; 
s t r u c t   P o i n t L i s t H e a d e r   P o l y g o n :  

/ *  T r a n s f o r m   t o   v i e w   s p a c e ,   t h e n   p r o j e c t   t o   t h e   s c r e e n  */  
f o r   ( i - 0 ;   i < P o l y L e n g t h ;  i++) { 

/*  T r a n s f o r m   t o   v i e w   s p a c e  */  
X f o r m V e c ( X f o r m .   ( d o u b l e   * ) & P o l y [ i l .   ( d o u b l e   * ) & X f o r m e d P o l y [ i l ) ;  
/ *  P r o j e c t   t h e  X & Y c o o r d i n a t e s   t o   t h e   s c r e e n ,   r o u n d i n g   t o   t h e  

n e a r e s t   i n t e g r a l   c o o r d i n a t e s .  The Y c o o r d i n a t e   i s   n e g a t e d   t o  
f l i p   f r o m   v i e w   s p a c e ,   w h e r e   i n c r e a s i n g  Y i s  up. t o   s c r e e n  
s p a c e ,   w h e r e   i n c r e a s i n g  Y i s  down.  Add i n   h a l f   t h e   s c r e e n  
w i d t h   a n d   h e i g h t   t o   c e n t e r  on t h e   s c r e e n  */  

P r o j e c t e d P o l y C i 1 . X  - ( ( i n t )  (XformedPoly[i].X/XformedPoly[i].Z * 

P r o j e c t e d P o l y C i 1 . Y  - ( ( i n t )  (XformedPolyCil.Y/XformedPoly[i].Z * 
P R O J E C T I O N ~ R A T I O * ~ S C R E E N ~ W I D T H / Z . O ~ + O . 5 ~ ~ + S C R E E N ~ W I D T H / Z ;  

-1.0 * PROJECTION-RATIO * (SCREEN-WIDTH / 2 . 0 )  + 0.5)) + 
SCREEN-HEIGHT/Z: 

/ *  A p p r o p r i a t e l y   a d j u s t   t h e   e x t e n t   o f   t h e   r e c t a n g l e   u s e d   t o  
e r a s e   t h i s   p a g e   l a t e r  * /  
i f  ( P r o j e c t e d P o l y C i 1 . X  > EraseRect [NonDisp layedPage] .Right )  
i f  ( P r o j e c t e d P o l y C i 1 . X  < SCREENKWIDTH) 

e l s e  E raseRec t [NonD isp layedPage l .R igh t  - SCREEN-WIDTH; 
EraseRect [NonDisp layedPage] .Right  - P r o j e c t e d P o l y [ i ] . X :  

944 Chapter 50 



i f  ( P r o j e c t e d P o l y [ i l . Y  > EraseRect [NonDisp layedPagel .Bot tom) 
i f  ( P r o j e c t e d P o l y [ i l . Y  < SCREENkHEIGHT) 

e l s e  E r a s e R e c t [ N o n D i s p l a y e d P a g e l . B o t t o m  - SCREEN-HEIGHT: 
i f  ( P r o j e c t e d P o l y [ i l . X  < E raseRec t [NonD isp layedPage l .Le f t )  
i f  ( P r o j e c t e d P o l y C i 1 . X  > 0 )  

e l s e  E raseRec t [NonD isp layedPage l .Le f t  = 0; 

i f  ( P r o j e c t e d P o l y C i 1 . Y  > 0 )  

e l s e  EraseRect[NonDisplayedPagel.Top = 0:  

EraseRect[NonDisplayedPagel.Bottom = P r o j e c t e d P o l y [ i l . Y :  

E raseRec t [NonD isp layedPage l .Le f t  = P r o j e c t e d P o l y C i 1 . X :  

i f  ( P r o j e c t e d P o l y [ i ] . Y  < EraseRect[NonDisplayedPagel.Top) 

EraseRect[NonDisplayedPagel.Top = P r o j e c t e d P o l y [ i l . Y ;  

1 
/*  Draw t h e   p o l y g o n  */  
DRAWlPDLYGON(ProjectedPo1y. P o l y L e n g t h .   C o l o r .  0 .  0 ) ;  

1 

LISTING 50.4 POLYG0N.H 
/*  POLYG0N.H: Header f i l e   f o r   p o l y g o n - f i l l i n g   c o d e ,   a l s o   i n c l u d e s  

a number o f   u s e f u l   i t e m s   f o r   3 - 0   a n i m a t i o n .  * /  

# d e f i n e  MAX-POLY-LENGTH 4 /* f o u r   v e r t i c e s   i s   t h e  max p e r   p o l y  * /  
# d e f i n e  SCREENKWIDTH 320 
# d e f i n e  SCREEN-HEIGHT 240 
# d e f i n e  PAGEDKSTART-OFFSET 0 
# d e f i n e  PAGElLSTART-OFFSET (((long)SCREENKHEIGHT*SCREEN-WIDTH)/4) 
/* R a t i o :   d i s t a n c e   f r o m   v i e w p o i n t   t o   p r o j e c t i o n   p l a n e  / w i d t h   o f  

p r o j e c t i o n   p l a n e .   D e f i n e s   t h e   w i d t h   o f   t h e   f i e l d   o f   v i e w .   L o w e r  
a b s o l u t e   v a l u e s  - w i d e r   f i e l d s  o f  v i e w :   h i g h e r   v a l u e s  = n a r r o w e r  * /  

# d e f i n e  PRDJECTIDN-RATIO - 2 . 0  / *  n e g a t i v e   b e c a u s e   v i s i b l e  Z 

/ *  Draws t h e   p o l y g o n   d e s c r i b e d   b y   t h e   p o i n t   l i s t   P o i n t L i s t   i n   c o l o r  
C o l o r   w i t h   a l l   v e r t i c e s   o f f s e t   b y  ( X . Y )  * /  

# d e f i n e  DRAW-POLYGON(PointList.NumPoints.Co1or.X.Y) \ 
Po lygon .Leng th  - NumPoints;  \ 
P o l y g o n . P o i n t P t r  - P o i n t L i s t ;  \ 
FillConvexPolygon(&Polygon. C o l o r ,  X .  Y): 

c o o r d i n a t e s   a r e   n e g a t i v e  * I  

/* D e s c r i b e s  a s i n g l e   2 - D   p o i n t  * /  
s t r u c t   P o i n t  I 

i n t  X :  / *  X c o o r d i n a t e  * /  
i n t  Y :  / *  Y c o o r d i n a t e  * /  

I :  
/* D e s c r i b e s  a s i n g l e   3 - D   p o i n t   i n  homogeneous  coord ina tes  * /  
s t r u c t   P o i n t 3  { 

d o u b l e  X ;  / *  X c o o r d i n a t e  * /  
d o u b l e  Y :  / *  Y c o o r d i n a t e  * /  
d o u b l e  Z ;  / *  2 c o o r d i n a t e  * /  
d o u b l e  W :  

1 :  
/*  D e s c r i b e s  a s e r i e s   o f   p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t  

d e s c r i b e  a p o l y g o n :   e a c h   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   t w o  
a d j a c e n t   v e r t i c e s ,   a n d   t h e   l a s t   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e  
f i r s t )  * /  

i n t   L e n g t h :  /*  # o f   p o i n t s  * /  
s t r u c t   P o i n t  * P o i n t P t r :  / *  p o i n t e r   t o   l i s t   o f   p o i n t s  * /  

s t r u c t   P o i n t L i s t H e a d e r  I 

1 :  
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I* D e s c r i b e s   t h e   b e g i n n i n g   a n d   e n d i n g  X c o o r d i n a t e s   o f  a s i n g l e  

s t r u c t   H L i n e  I 
h o r i z o n t a l   l i n e  * I  

i n t   X S t a r t :  I* X c o o r d i n a t e   o f   l e f t m o s t   p i x e l  i n  l i n e  *I  
i n t  XEnd; I* X c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  *I  

1 :  

I* D e s c r i b e s  a L e n g t h - l o n g   s e r i e s   o f   h o r i z o n t a l   l i n e s ,   a l l  assumed t o  
be o n   c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t   a n d   p r o c e e d i n g  
downward  (used t o   d e s c r i b e  a s c a n - c o n v e r t e d   p o l y g o n   t o   t h e  
l o w - l e v e l   h a r d w a r e - d e p e n d e n t   d r a w i n g   c o d e )  * /  

i n t   L e n g t h :  I* # o f   h o r i z o n t a l   l i n e s  *I  
i n t   Y S t a r t :  I* Y c o o r d i n a t e   o f   t o p m o s t   l i n e  * I  
s t r u c t   H L i n e  * H L i n e P t r :  I* p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  *I  

s t r u c t   H L i n e L i s t  I 

I :  
s t r u c t   R e c t  { i n t   L e f t ,  Top ,   R igh t ,   Bo t tom:  1 :  

extern   vo id   X formVec(doub1e  X formC43[41.   doub le  * SourceVec. 

e x t e r n   v o i d   C o n c a t X f o r m s ( d o u b 1 e   S o u r c e X f o r m l [ 4 ] [ 4 ] .  

e x t e r n   v o i d  XformAndProjectPoly(doub1e X fo rm[4 ] [4 ] .  

e x t e r n   i n t  FillConvexPolygon(struct P o i n t L i s t H e a d e r  *, i n t .   i n t .   i n t ) ;  
e x t e r n   v o i d   S e t 3 2 0 ~ 2 4 0 M o d e ( v o i d ) :  
e x t e r n   v o i d   S h o w P a g e ( u n s i g n e d   i n t   S t a r t o f f s e t ) :  
e x t e r n   v o i d   F i l l R e c t a n g l e X ( i n t   S t a r t X .   i n t   S t a r t Y .   i n t  EndX, 

i n t  EndY, u n s i g n e d   i n t   P a g e B a s e .   i n t   C o l o r ) :  
e x t e r n   i n t   D i s p l a y e d P a g e .   N o n D i s p l a y e d P a g e :  
e x t e r n   s t r u c t   R e c t   E r a s e R e c t C ] :  

d o u b l e  * Des tVec ) :  

d o u b l e   S o u r c e X f o r m 2 [ 4 ] [ 4 ] .   d o u b l e   D e s t X f o r m [ 4 1 [ 4 1 ) ;  

s t r u c t   P o i n t 3  * P o l y ,   i n t   P o l y L e n g t h ,   i n t   C o l o r ) :  

LISTING 50.5 150-5.C 
I* S i m p l e   3 - D   d r a w i n g   p r o g r a m   t o   v i e w  a po lygon   as  it r o t a t e s   i n  

Mode X .  View  space i s   c o n g r u e n t   w i t h   w o r l d   s p a c e ,   w i t h   t h e  
v i e w p o i n t   f i x e d   a t   t h e   o r i g i n  ( 0 . 0 . 0 )  o f   w o r l d   s p a c e ,   l o o k i n g   i n  
t h e   d i r e c t i o n   o f   i n c r e a s i n g l y   n e g a t i v e  Z.  A r i g h t - h a n d e d  
c o o r d i n a t e   s y s t e m   i s   u s e d   t h r o u g h o u t .  
T e s t e d   w i t h   B o r l a n d  C++ i n   t h e   s m a l l   m o d e l .  * /  

# i n c l u d e   < c o n i o . h >  
# i n c l u d e   < s t d i o . h >  
#i ncl   ude  <dos.   h> 
#i ncl   ude  <math.   h> 
l i n c l  ude "polygon.   h"  
v o i d   m a i n ( v o i d ) :  

I* B a s e   o f f s e t   o f   p a g e   t o   w h i c h   t o   d r a w  *I  
u n s i g n e d   i n t   C u r r e n t P a g e B a s e  = 0 ;  
/*  C l i p   r e c t a n g l e :   c l i p s   t o   t h e   s c r e e n  */  
i n t  C l ipMinX-0 .   C l ipMinY-0 :  
i n t  ClipMaxX-SCREEN-WIDTH.  ClipMaxY-SCREEN-HEIGHT; 
/ *  R e c t a n g l e   s p e c i f y i n g   e x t e n t   t o   b e   e r a s e d   i n   e a c h   p a g e  * /  
s t r u c t   R e c t   E r a s e R e c t C Z ]  - [ IO. 0 .  SCREEN-WIDTH. SCREEN-HEIGHT}. 

I* T r a n s f o r m a t i o n   f r o m   p o l y g o n ' s   o b j e c t   s p a c e   t o   w o r l d   s p a c e .  
[ O ,  0 .  SCREEN-WIDTH,  SCREEN-HEIGHT} } :  

I n i t i a l l y   s e t  up t o   p e r f o r m   n o   r o t a t i o n   a n d   t o  move t h e   p o l y g o n  
i n t o   w o r l d   s p a c e   - 1 4 0   u n i t s  away f r o m   t h e   o r i g i n  down t h e  Z a x i s .  
G i v e n   t h e   v i e w i n g   p o i n t ,   - 1 4 0  down t h e  2 a x i s  means  140 u n i t s  away 
s t r a i g h t  ahead i n   t h e   d i r e c t i o n   o f   v i e w .  T h e   p r o g r a m   d y n a m i c a l l y  
c h a n g e s   t h e   r o t a t i o n   a n d   t r a n s l a t i o n .  * /  
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s t a t i c   d o u b l e   P o l y W o r l d X f o r m [ 4 1 [ 4 1  - I 
{1.0.  0.0,  0.0.  0 . 0 1 ,  
(0 .0.  1.0, 0.0, 0 .0 ) .  
{O.O. 0.0,  1 .0 ,  -140.01. 
{O.O. 0.0,  0.0,  1.0) ) :  

/ *  T r a n s f o r m a t i o n   f r o m   w o r l d   s p a c e   i n t o   v i e w   s p a c e .   I n   t h i s   p r o g r a m .  
t h e   v i e w   p o i n t   i s   f i x e d   a t   t h e   o r i g i n   o f   w o r l d   s p a c e ,   l o o k i n g  down 
t h e  2 a x i s   i n   t h e   d i r e c t i o n   o f   i n c r e a s i n g l y   n e g a t i v e  2. s o  v i e w  
space i s   i d e n t i c a l   t o   w o r l d   s p a c e :   t h i s   i s   t h e   i d e n t i t y   m a t r i x .  * /  

s t a t i c   d o u b l e   W o r l d V i e w X f o r m [ 4 1 [ 4 1  - I 
{1.0. 0 .0,  0.0, 0 .01 .  
t 0 .0 ,  1 . 0 .  0.0, 0 .01 .  
(0 .0 ,  0.0, 1 . 0 ,  0.01. 
(0.0. 0.0, 0.0, 1.01 

):  
s t a t i c   u n s i g n e d   i n t   P a g e S t a r t O f f s e t s [ E l  - 
i n t   D i s p l a y e d P a g e .   N o n D i s p l a y e d P a g e :  

v o i d   m a i n 0  [ 

{PAGEO_START-OFFSET.PAGEl-STARTCOFFSET1: 

i n t  Done - 0:  
doub le   Work ingX fo rm[41 [41 ;  
s t a t i c   s t r u c t   P o i n t 3   T e s t P o l y C l  - 

~t-30.-15.0.11.~0.15.0,11,t10,-5,0,111; 
# d e f i n e  TEST-POLY-LENGTH (sizeof(TestPoly)/sizeof(struct P o i n t 3 ) )  

d o u b l e   R o t a t i o n  = " P I  / 60.0: / *  i n i t i a l   r o t a t i o n  - 3 degrees  */  
u n i o n  REGS r e g s e t ;  

Set320x240ModeO;  
ShowPage(PageStar tOf fse tsCDisp1ayedPage - 0 1 ) ;  
/ *  Keep r o t a t i n g   t h e   p o l y g o n ,   d r a w i n g  i t  t o   t h e   u n d i s p l a y e d   p a g e .  

and f l i p p i n g   t h e   p a g e   t o  show it * /  

Cur ren tPageBase = /*  s e l e c t   o t h e r   p a g e  f o r  d r a w i n g   t o  * /  

/ *  M o d i f y   t h e   o b j e c t   s p a c e   t o   w o r l d   s p a c e   t r a n s f o r m a t i o n   m a t r i x  

PolyWorldXform[O][O] = Po lyWor ldXform[21[Z1 - c o s ( R o t a t i o n ) ;  
Po lyWor ldXform[E] [O]  - - ( P o l y W o r l d X f o r m [ O 1 [ ~ ]  - s i n ( R o t a t i o n ) ) :  
/ *  C o n c a t e n a t e   t h e   o b j e c t - t o - w o r l d   a n d   w o r l d - t o - v i e w  

t r a n s f o r m a t i o n s   t o  make a t r a n s f o r m a t i o n   m a t r i x   t h a t  will 
c o n v e r t   v e r t i c e s   f r o m   o b j e c t   s p a c e   t o   v i e w   s p a c e   i n  a s i n g l e  
o p e r a t i o n  * /  

do 

PageSta r tO f f se ts [NonOisp layedPage  = D isp layedPage  A 11; 

f o r   t h e   c u r r e n t   r o t a t i o n   a r o u n d   t h e  Y a x i s  * /  

ConcatXforms(Wor1dViewXform.  Po lyWor ldX fo rm,   Work ingX fo rm) ;  
/ *  C l e a r   t h e   p o r t i o n   o f   t h e   n o n - d i s p l a y e d   p a g e   t h a t  was drawn 

FillRectangleX(EraseRect[NonDisplayedPagel.Left, 
t o   l a s t   t i m e ,   t h e n   r e s e t   t h e   e r a s e   e x t e n t  * /  

EraseRect [NonDisp layedPage l .Top.  
E raseRec t [NonD isp layedPage l .R igh t .  
EraseRect[NonDisplayedPagel.Bottom. Curren tPageBase.  0 ) ;  

EraseRect [NonDisp layedPage l .Top - Ox7FFF: 
E raseRec t [NonD isp layedPage l .Le f t  - 
EraseRec t [NonD isp layedPage l .R igh t  = 

/*  T r a n s f o r m   t h e   p o l y g o n ,   p r o j e c t  i t  o n   t h e   s c r e e n ,   d r a w  i t  */ 
XformAndProjectPoly(Work ingXform.  T e s t P o l y .  TEST-POLYCLENGTH.9): 
/ *  F l i p   t o   d i s p l a y   t h e   p a g e   i n t o   w h i c h  we j u s t   d r e w  * /  
ShowPage(PageSta r tO f f se ts [D isp layedPage  = NonDisp layedPage l ) :  
/ *  R o t a t e  6 d e g r e e s   f a r t h e r   a r o u n d   t h e  Y a x i s  * /  
i f  ( ( R o t a t i o n  += (M-PI /30 .0) )  >- ( M _ P I * E ) )   R o t a t i o n  -= M-PI*2; 

EraseRect [NonDisp layedPagel .Bot tom - 0; 
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i f  ( k b h i t 0 )  { 
s w i t c h   ( g e t c h 0 )  { 

case  0x16:  / *  Esc t o   e x i t  * /  
Done - 1; b r e a k ;  

case ' A ' :  c a s e   * a ' :  / *  away ( - 2 )  *I  
Po lyWor ldX fo rmCEl [31  -- 3 .0 ;   b reak ;  

case ' T ' :  / *  t o w a r d s  (+2) .  D o n ' t   a l l o w   t o   g e t   t o o  * /  
case ' t ' :  /*  c l o s e ,  so  2 c l i p p i n g   i s n ' t   n e e d e d  *I  

P o l y W o r l d X f o r m ~ 2 1 C 3 1  +- 3 . 0 :   b r e a k ;  
i f  (Po lyWor ldX fo rm[21C31  < -40.0)  

case 0:  / *  ex tended  code */  
s w i t c h   ( g e t c h 0 )  I 

case  0x46: / *  l e f t  ( - X )  * /  

case Ox4D: / *  r i g h t  ( + X )  * /  

case  0x48: / *  up ( + Y )  */ 

case  0x50:  / *  down ( - Y )  */ 

d e f a u l t :  

PolyWor ldXformC01[31 -- 3.0 ;   b reak :  

PolyWor ldXformCO1[31 +- 3 .0 ;   b reak :  

Po lyWor ldX fo rm[11 [31  +- 3 .0 ;   b reak ;  

P o l y W o r l d X f o r m ~ 1 3 [ 3 1  -- 3 .0 ;   b reak :  

b r e a k :  
3 
b r e a k :  

g e t c h 0 :   b r e a k ;  
d e f a u l t :  / *  a n y   o t h e r   k e y   t o   p a u s e  *I  

1 
I 

} w h i l e   ( ! D o n e ) ;  
I* R e t u r n   t o   t e x t  mode and e x i t  * /  
r e g s e t . x . a x  - 0x0003;  / *  AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode */  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t ,   & r e g s e t ) ;  

1 

Notes  on  the 3-D Animation  Example 
The sample  program  transforms  the polygon's vertices from  object space to world 
space to view space to  the  screen, as described  earlier. In this case,  world space and 
view space are congruent-we're looking  right down the negative Z axis of world 
space-so the  transformation  matrix  from world to view  is the  identity  matrix; you 
might want to  experiment with changing this matrix  to  change  the viewpoint. The 
sample  program uses 4x4 homogeneous  coordinate  matrices  to  perform transfor- 
mations, as described above. Floating-point arithmetic is used for all 3-D calculations. 
Setting  the  translation  from  object space to world space is a simple matter of chang- 
ing  the  appropriate  entry  in  the  fourth  column of the object-to-world transformation 
matrix.  Setting  the  rotation around  the Y axis  is almost as simple, requiring only the 
setting of the  four  matrix  entries  that  control  the Y rotation  to  the sines and cosines 
of the  desired  rotation. However, rotations involving more  than one axis require 
multiple  rotation  matrices, one for  each axis rotated  around;  those  matrices  are  then 
concatenated  together  to  produce  the object-to-world transformation.  This  area is 
trickier  than it might initially appear  to be; more  in  the  near  future. 
The maximum translation  along  the Z axis is limited  to 40; this keeps the polygon 
from  extending past the viewpoint to positive Z coordinates.  This would  wreak  havoc 
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with the  projection and 2-D clipping, and would require 3-D clipping, which  is far 
more  complicated  than 2-D. We’ll get  to 3-D clipping at some point,  but, for now,  it’s 
much  simpler just to limit all vertices to negative Z coordinates.  The polygon does 
get mighty  close to  the viewpoint, though; run the  program and use the  “T” key to 
move the polygon as close as  possible-the near vertex swinging  past provides a strik- 
ing sense of perspective. 
The  performance of Listing 50.5 is, perhaps, surprisingly good, clocking in at 16 
frames  per  second on a 20 MHz 386 with a VGA of average speed and  no 387, al- 
though  there is, of course, only one polygon being drawn, rather  than  the  hundreds 
or thousands we’d ultimately like. What’s far  more  interesting is where  the execu- 
tion  time  goes. Even though  the program is working  with  only one polygon, 73 percent 
of the time goes for  transformation  and  projection. An additional 7 percent is spent 
waiting to flip the  screen. Only 20 percent of the  total time is spent in all other 
activity-and only 2 percent is spent actually drawing polygons.  Clearly,  we’ll  want  to 
tackle transformation and projection first when we look  to  speed  things  up.  (Note, 
however, that  a  math  coprocessor would considerably decrease  the time taken by 
floating-point  calculations.) 
In Listing 50.3, when the  extent of the  bounding  rectangle is calculated  for  later 
erasure  purposes,  that  extent is clipped  to  the  screen.  This is due to  the lack of 
clipping in the  rectangle fill code  from Listing 47.5 in  Chapter 47; the  problem 
would more  appropriately be addressed by putting  clipping  into  the fill code,  but, 
unfortunately,  I lack the space to do that  here. 
Finally, observe the  jaggies crawling along  the edges of the polygon  as it  rotates.  This 
is temporal  aliasing at its finest! We won’t address  antialiasing further, realtime 
antialiasing  being  decidedly  nontrivial, but this  should give  you an  idea of why 
antialiasing is so desirable. 

An Ongoing Journey 
In  the  next  chapter, we’ll  assign fronts and backs to polygons, and start drawing only 
those that are facing the viewer. That will enable us to  handle convex polyhedrons, 
such as tetrahedrons  and cubes. We’ll also look at interactively controllable  rotation, 
and  at  more complex  rotations  than  the simple rotation  around  the Y axis that we 
did this time. In time, we’ll use fixed-point  arithmetic  to  speed  things up,  and  do 
some shading and texture  mapping.  The  journey has only begun; we’ll get to all that 
and more  soon. 
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ace Removal to Eliminate 

puter animation isn’t a matter of mathematically 
rowess, but  rather of fooling the eye and  the mind. 

ation, where we’re not only q n g  to convince 
n a screen-when  in truth that screen contains 
els-but  we’re  also trying to create the illusion 
, possessing four dimensions (counting move- 
) of their own. To make  this  magic happen, we 
ly to pick out boundaries, but also to detect 
volves perspective, shading, proper  handling 
th screen updates; the whole deal is consid- 

erably more difficult  to pull off on a PC than 2-D animation. 

In some senses, however, 3 - 0  animation is easier than 2-0. Because  there S more p going on in 3 - 0  animation, the eye and  brain  tend  to  make  more  assumptions,  and 
so are more apt to see what  they expect to see, rather than what 5. actually there. 

If you’re  piloting a (virtual) ship through a field  of  thousands  of  asteroids at high  speed, 
you’re  unlikely  to  notice ifthe more  distant  asteroids  occasionally  seem  to  go  right  through 
each other, or if the topographic detail on the asteroids’  surfaces  sometimes  shifts 
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about  a  bit. You’ll be busy  viewing the  asteroids  in  their primary role, as objects to be 
navigated around,  and  the mere  presence of topographic  detail will suffice; without 
being aware  of it, you’ll fill in  the blanks. Your mind will see the  topography  periph- 
erally, recognize  it  for what it is supposed to be, and, unless the  landscape  does 
something really obtrusive such as vanishing altogether or suddenly  shooting  a spike 
miles into space, you  will see what you expect  to see: a  bunch of nicely detailed 
asteroids  tumbling around you. 
To what extent can you  rely on  the eye and mind  to make up for  imperfections  in  the 
3-D animation process? In some areas,  hardly at all; for  example,  jaggies crawling 
along  edges stick out like red flags, and likewise for flicker. In other areas, though, 
the  human  perceptual system  is more forgiving than you’d think.  Consider this: At 
the end of Return of the Jedi, in the  battle  to end all battles around  the Death Star, 
there is a  sequence of about five seconds  in which  several spaceships are visible in 
the  background. One of those spaceships (and it’s not very far  in  the  background, 
either) looks a  bit  unusual. What it looks like is a sneaker. In fact, it is a sneaker-but 
unless you  know to look for  it, you’ll never notice it, because your mind is  busy 
making simplifylng assumptions  about  the  complex  scene it’s  seeing-and one of 
those  assumptions is that medium-sized  objects  floating in space are spaceships,  unless 
proven  otherwise. (Thanks to Chris  Hecker for pointing this out. I’d never have noticed 
the  sneaker, myself, without  being  tipped off-which  is,  of course,  the whole point.) 
If it’s good  enough  for  George Lucas, it’s good  enough  for us.  And  with that, let’s 
resume our quest  for  realtime 3-D animation on  the PC. 

One-sided Polygons: Backface  Removal 
In  the previous chapter, we implemented  the basic  polygon drawing pipeline, trans- 
forming  a polygon  all the way from its basic definition  in  object space, through  the 
shared 3-D world space, and  into the 3-D space as seen  from  the viewpoint, called 
v i m  space. From view space, we performed  a perspective projection  to  convert  the 
polygon into screen space, then  mapped  the  transformed and projected vertices to 
the  nearest  screen  coordinates and filled the polygon. Armed with code  that  imple- 
mented this pipeline, we were able to watch as a polygon rotated  about its Y axis, and 
were able  to move the polygon around in space freely. 
One of the drawbacks of the previous chapter’s  approach was that  the polygon had 
two visible sides. Why  is that  a drawback? It isn’t, necessarily, but  in  our case we want 
to  use  polygons to  build solid objects with continuous surfaces, and in  that  context, 
only one side of a polygon is visible; the other side always faces the  inside of the 
object, and can never be seen. It would save time and simplify the process of hidden 
surface removal if we could quickly and easily determine  whether  the  inside  or  out- 
side face of each polygon was facing us, so that we could draw each polygon  only if it 
were  visible (that is, had  the  outside face pointing toward the viewer). On average, 
half the polygons in  an  object  could be instantly rejected by a test of this sort.  Such 
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testing  of  polygon  visibility  goes by a number of names in the  literature,  including 
backplane culling, backface  removal, and assorted  variations thereon; I’ll refer to it 
as backface  removal. 
For a single  convex polyhedron, removal  of  polygons that  aren’t facing the viewer 
would  solve  all hidden surface problems. In a convex polyhedron, any  polygon fat- 
ing  the viewer can never be obscured by any other polygon in that  polyhedron; this 
falls out of the definition of a convex polyhedron. Likewise,  any polygon facing away 
from the viewer  can  never  be  visible. Therefore, in order to  draw a convex  polyhe- 
dron, if you  draw  all  polygons facing toward the viewer but  none facing away from 
the viewer,  everything will work out properly,  with no additional checking for over- 
lap and  hidden surfaces needed. 
Unfortunately, backface  removal  completely  solves the  hidden surface problem  for 
convex polyhedrons only, and only if there’s a single  convex polyhedron involved; 
when convex polyhedrons  overlap, other  methods must be used.  Nonetheless, 
backface  removal does instantly  halve the  number of  polygons to  be  handled in ren- 
dering any  particular  scene.  Backface  removal  can  also speed hidden-surface handling 
if objects are built out of  convex polyhedrons. In this chapter,  though, we have  only 
one convex polyhedron to  deal with, so backface  removal alone will do  the trick. 
Given that I’ve  convinced  you that backface  removal  would  be a handy thing to  have, 
how do we actually do  it? A logical approach,  often  implemented in the PC litera- 
ture, would  be to calculate the  plane  equation  for  the  plane in which the polygon 
lies, and see  which way the normal  (perpendicular) vector  to the  plane points. That 
works, but there’s a more efficient way to  calculate the  normal to the polygon:  as the 
cross-product  of two of the polygon’s  edges. 
The cross-product of two vectors is defined as the vector  shown  in  Figure 51.1. One 
interesting  property of the cross-product  vector is that it is perpendicular  to  the 
plane in which the two original vectors  lie. If  we take the cross-product of the vectors 
that  form two edges of a polygon, the result will be a vector perpendicular to the 

The cross-product of two vectors. 
Figure 5 1.1 
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polygon; then, we’ll  know that the polygon  is  visible if and only if the cross-product 
vector points toward the viewer.  We need  one  more thing to make the cross-product 
approach work, though.  The cross-product can actually point  either way, depending 
on which edges of the polygon we choose to work  with and  the  order  in which we 
evaluate them, so we must establish some conventions for  defining polygons and 
evaluating the cross-product. 
We’ll define only  convex polygons, with the vertices defined in clockwise order, as 
viewed from  the outside; that is,  if you’re looking at  the visible side of the polygon, 
the vertices will appear in the polygon definition  in clockwise order. With those as- 
sumptions,  the  cross-product  becomes a  quick and easy indicator of polygon 
orientation with respect to the viewer;  we’ll calculate it as the cross-product of the 
first and last vectors in  a polygon, as  shown in Figure 51.2, and if it’s pointing toward 
the viewer,  we’ll  know that  the polygon  is  visible.  Actually, we don’t even  have to 
calculate the  entire cross-product vector, because the Z component  alone suffices to 
tell  us  which way the polygon is facing: positive Z means visible,  negative Z means 
not.  The Z component can be calculated very  efficiently,  with  only two multiplies 
and a  subtraction. 
The question  remains of the  proper space in which to perform backface removal. 
There’s  a  temptation to perform  it  in view space, which  is, after all, the space defined 
with respect to the viewer, but view space is not a  good choice. Screen space-the 
space in which perspective projection has been performed-is the best choice. The 
purpose of backface removal is to determine  whether  each polygon  is  visible to the 
viewer, and, despite its name, view space does not provide that  information; unlike 
screen space, it  does not reflect perspective effects. 

Vector w 
(polygon  edge #3) 

Polygon  normal = v x w 
(cross-product of v & w) 

Vertex 3 Vertex 1 

Using  the cross product to generate a polygon normal. 
Figure 5 1.2 
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Backface  removal  may  also be  performed using the polygon  vertices in screen coor- 
dinates, which are  integers.  This is  less accurate  than  using  the  screen  space 
coordinates, which are floating point, but is,  by the same token, faster. In Listing 
51.3,  which  we'll  discuss  shortly,  backface  removal is performed  in screen coordi- 
nates in  the interests of speed. 
Backface  removal,  as implemented in Listing  51.3, will not work  reliably if the poly- 
gon is not convex, if the vertices don't  appear in clockwise order, if either  the first or 
last edge in a polygon  has zero length, or if the first and last edges are collinear. 
These  latter two points  are  the reason it's preferable  to work in  screen space rather 
than screen coordinates (which  suffer from  rounding  problems),  speed consider- 
ations aside. 

Backface  Removal in Action 
Listings  51.1 through 51.5 together  form a program  that rotates a solid cube in real- 
time under user control. Listing 51.1 is the main program; Listing  51.2 performs 
transformation and projection; Listing  51.3 performs backface  removal and draws 
visible  faces;  Listing  51.4 concatenates  incremental rotations to  the object-to-world 
transformation matrix; Listing  51.5  is the  general  header file. Also required  from 
previous chapters are: Listings  50.1 and 50.2 from  Chapter 50 (draw clipped line list, 
matrix math  functions); Listings  47.1 and 47.6 from  Chapter 47, (Mode X mode set, 
rectangle fill); Listing  49.6 from  Chapter 49;  Listing  39.4 from  Chapter 39  (polygon 
edge  scan);  and  the FiUConvexPolygon() function  from Listing 38.1 from  Chapter 
38. All necessary modules, along with a project file, will be  present in the subdirectory 
for this chapter  on  the listings diskette, whether they  were presented  in this chapter 
or some earlier chapter. This may crowd the listings diskette a little  bit, but  it will 
certainly reduce confusion! 

LISTING  51.1  151-1.C 
/* 3D a n i m a t i o n   p r o g r a m   t o   v i e w  a cube  as i t  r o t a t e s   i n  Mode X .  The   v iewpo in t  

i s   f i x e d   a t   t h e   o r i g i n  ( 0 . 0 . 0 )  o f  w o r l d   s p a c e ,   l o o k i n g  i n  t h e   d i r e c t i o n  o f  
i n c r e a s i n g l y   n e g a t i v e  Z .  A r i g h t - h a n d e d   c o o r d i n a t e   s y s t e m   i s   u s e d   t h r o u g h o u t .  
All C c o d e   t e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode. * /  

#i nc l   ude   <con i  0. h> 
#i ncl   ude  <dos . h> 
# inc lude  <math .h> 
#i ncl   ude  "po lygon.   h "  

# d e f i n e  ROTATION ("PI / 30.0) / *  r o t a t e   b y  6 d e g r e e s   a t  a t i m e  * /  

/ *  b a s e   o f f s e t  o f  page t o   w h i c h   t o   d r a w  * /  
u n s i g n e d   i n t   C u r r e n t P a g e B a s e  = 0:  
/ *  C l i p   r e c t a n g l e :   c l i p s   t o   t h e   s c r e e n  * /  
i n t  Cl ipMinX-0.  Cl ipMinY-0: 
i n t  ClipMaxX-SCREEN-WIDTH.  ClipMaxY-SCREEN-HEIGHT: 
/ *  R e c t a n g l e   s p e c i f y i n g   e x t e n t   t o   b e   e r a s e d   i n   e a c h   p a g e .  * /  
s t r u c t   R e c t   E r a s e R e c t C E l  .. I IO. 0.  SCREEN-WIDTH,  SCREEN-HEIGHT), 

IO. 0.  SCREEN-WIDTH.  SCREEN-HEIGHT) I :  
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s t a t i c   u n s i g n e d   i n t   P a g e S t a r t O f f s e t s C 2 1  - 
i n t  OisplayedPage.  NonDisplayedPage: 
I* T r a n s f o r m a t i o n   f r o m   c u b e ' s   o b j e c t   s p a c e   t o   w o r l d   s p a c e .   I n i t i a l l y  

s e t   u p   t o   p e r f o r m   n o   r o t a t i o n   a n d   t o  move t h e   c u b e   i n t o   w o r l d  
s p a c e   - 1 0 0   u n i t s  away f r o m   t h e   o r i g i n  down t h e  Z a x i s .   G i v e n   t h e  
v i e w i n g   p o i n t ,   - 1 0 0  down t h e  Z a x i s  means 1 0 0   u n i t s  away i n   t h e  
d i r e c t i o n   o f   v i e w .  The   p rog ram  dynamica l l y   changes   bo th   t he  
t r a n s l a t i o n   a n d   t h e   r o t a t i o n .  *I  

s t a t i c   d o u b l e   C u b e W o r l d X f o r m [ 4 1 [ 4 1  - I 
I 1 . 0 .  0.0, 0.0, 0.0). 
(0.0. 1.0, 0.0, 0.01. 
{O.O. 0.0, 1.0 ,   -100.01 ,  
{O.O. 0.0, 0.0, 1.0) 1 :  

a p p l i c a t i o n   t h e   v i e w   p o i n t   i s   f i x e d   a t   t h e   o r i g i n   o f   w o r l d   s p a c e ,  
l o o k i n g  down t h e  Z a x i s   i n   t h e   d i r e c t i o n   o f   i n c r e a s i n g  Z .  v iew  space i s  
i d e n t i c a l   t o   w o r l d   s p a c e ,  and t h i s   i s   t h e   i d e n t i t y   m a t r i x .  *I  

I 1 . 0 .  0.0, 0.0, 0.0). 
{O.O. 1.0, 0.0, 0.01. 
{O.O. 0.0, 1.0.  0.01.  
{O.O. 0.0, 0.0, 1 .01 

{PAGEO-START-OFFSET.PAGEl-START-OFFSETl: 

/* T r a n s f o r m a t i o n   f r o m   w o r l d   s p a c e   i n t o   v i e w   s p a c e .   B e c a u s e   i n   t h i s  

s t a t i c   d o u b l e   W o r l d V i e w X f o r m [ 4 ] [ 4 1  - { 

1 :  
I* a l l   v e r t - i c e s   i n   t h e   c u b e  *I  
s t a t i c   s t r u c t   P o i n t 3   C u b e V e r t s C l  - { 

~15.15.15.11.{15.15.-15,1)~{15,-15,15,1~,~15,-15,-15,1~, 
{-15.15.15.1).{-15.15,-15,1)~{-15,-15,15,1~,~-15,-15,-15,1~~; 

I* v e r t i c e s   a f t e r   t r a n s f o r m a t i o n  *I  
s t a t i c   s t r u c t   P o i n t 3  

I* v e r t i c e s   a f t e r   p r o j e c t i o n  *I  
s t a t i c   s t r u c t   P o i n t 3  

I* v e r t i c e s   i n   s c r e e n   c o o r d i n a t e s  *I  
s t a t i c   s t r u c t   P o i n t  

I* v e r t e x   i n d i c e s   f o r   i n d i v i d u a l   f a c e s  *I  
s t a t i c   i n t   F a c e l C l  - {1.3,2.0} ;  
s t a t i c   i n t  Face2[1 - {5.7.3,1): 
s t a t i c   i n t  Face3[] - (4.5.1.0): 
s t a t i c   i n t  Face4[] - {3.7.6.2) :  
s t a t i c   i n t  Face5[] - {5.4.6.7) :  
s t a t i c   i n t  Face6[] - {0 ,2 .6 .4 } ;  
I* l i s t   o f  cube  faces  *I  
s t a t i c   s t r u c t  Face  CubeFaces[] - ~ ~ F a c e 1 . 4 . 1 5 1 . ~ F a c e 2 . 4 . 1 4 3 .  

I* m a s t e r   d e s c r i p t i o n   f o r   c u b e  *I  
s t a t i c   s t r u c t   O b j e c t  Cube - {sizeof(CubeVerts)/sizeof(struct P o i n t 3 ) .  

XformedCubeVerts[sizeof(CubeVerts)/sizeof(struct P o i n t 3 ) l ;  

ProjectedCubeVerts[sizeof(CubeVerts)/sizeof(struct P o i n t 3 ) I ;  

ScreenCubeVerts[sizeof(CubeVerts)/sizeof(struct P o i n t 3 ) I :  

~ F a c e 3 . 4 . 1 2 ~ . { F a c e 4 . 4 , 1 1 ~ , ~ F a c e 5 , 4 , 1 0 ~ , ~ F a c e 6 , 4 . 9 1 ~ :  

CubeVerts .   XformedCubeVerts .   Pro jectedCubeVerts .   ScreenCubeVerts .  
sizeof(CubeFaces)/sizeof(struct Face).  CubeFaces); 

v o i d   m a i n 0  I 
i n t  Done - 0. RecalcXform - 1: 
doub le   Work ingXform[41[4 ] :  
u n i o n  REGS r e g s e t :  

I* S e t   u p   t h e   i n i t i a l   t r a n s f o r m a t i o n  *I  
Set320x240ModeO: / *  s e t   t h e   s c r e e n   t o  Mode X * /  
ShowPage(PageStar tOf fsetsCDisp1ayedPage - 0 1 ) :  
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/*  Keep t r a n s f o r m i n g   t h e   c u b e ,   d r a w i n g  i t  t o   t h e   u n d i s p l a y e d   p a g e .  

do t 
and f l i p p i n g   t h e  page t o  show i t  *I  

/*  R e g e n e r a t e   t h e   o b j e c t - > v i e w   t r a n s f o r m a t i o n   a n d  

i f  (Reca lcXform)  I 
r e t r a n s f o r m l p r o j e c t  i f  necessary  *I  

ConcatXforms(Wor1dViewXform. CubeWorldXform.  WorkingXform);  
/ *  T r a n s f o r m   a n d   p r o j e c t   a l l   t h e   v e r t i c e s   i n   t h e   c u b e  *I  
XformAndProjectPoints(WorkingXform,  &Cube); 
Reca lcXform - 0;  

I 
CurrentPageBase - /*  s e l e c t   o t h e r   p a g e   f o r   d r a w i n g   t o  * I  

PageSta r tO f f se tsCNonDisp layedPage  - Disp layedPage A 11; 
I* C l e a r   t h e   p o r t i o n   o f   t h e   n o n - d i s p l a y e d   p a g e   t h a t  was drawn 

FillRectangleX(EraseRect[NonDisplayedPagel.Left, 
t o   l a s t   t i m e ,   t h e n   r e s e t   t h e   e r a s e   e x t e n t  * /  

EraseRect[NonDisplayedPagel.Top. 
EraseRect [NonDisp layedPagel .Right .  
EraseRect[NonDisplayedPagel.Bottom, CurrentPageBase. 0 ) ;  

EraseRect[NonDisplayedPagel.Top - Ox7FFF; 

EraseRect[NonDisplayedPagel.Bottom - 0;  

EraseRect[NonDisplayedPagel.Left - 
EraseRect [NonDisp layedPagel .Right  - 
I* Draw a l l   v i s i b l e   f a c e s  o f  t he   cube  *I  
DrawVisibleFaces(&Cube); 
/*  F l i p   t o   d i s p l a y   t h e  page i n t o   w h i c h  we j u s t   d r e w  * I  
ShowPage(PageStar tOf fsets [Disp layedPage - NonDisp layedPage l ) ;  
w h i l e   ( k b h i t 0 )  ( 

s w i t c h   ( g e t c h 0 )  t 
case  OxlB: I* Esc t o   e x i t  * I  

Done - 1; b r e a k ;  
case ' A * :  c a s e   ' a ' :  I* away ( - 2 )  *I 

CubeWorldXform[2l [31 -- 3.0;   RecalcXform - 1; b r e a k ;  
c a s e   ' T I :  / *  towards  (+Z). D o n ' t   a l l o w   t o   g e t   t o o  * /  
case ' t ' :  I* c l o s e ,  s o  Z c l i p p i n g   i s n ' t  needed * /  

i f  (CubeWorldXform[21[31 < -40.0)  I 
CubeWorldXform[21[31 +- 3.0: 
Reca lcXform - 1; 

1 
b r e a k ;  

case ' 4 ' :  / *  r o t a t e   c l o c k w i s e   a r o u n d  Y *I  
AppendRotationY(CubeWor1dXform. -ROTATION); 
RecalcXform-1;  break; 

AppendRotationY(CubeWor1dXform. ROTATION); 
RecalcXform-1;  break: 

case '8': I* r o t a t e   c l o c k w i s e   a r o u n d  X * /  
AppendRotationX(CubeWor1dXform. -ROTATION); 
RecalcXform-1;  break; 

AppendRotationX(CubeWor1dXform. ROTATION); 
RecalcXform-1;  break; 

s w i t c h   ( g e t c h 0 )  I 

case '6': I* r o t a t e   c o u n t e r c l o c k w i s e   a r o u n d  Y *I  

case '2': I* r o t a t e   c o u n t e r c l o c k w i s e   a r o u n d  X *I  

case 0: I* extended  code *I  

case Ox3B: I* r o t a t e   c o u n t e r c l o c k w i s e   a r o u n d  Z * I  
AppendRotationZ(CubeWor1dXform. ROTATION); 
RecalcXform-1;  break; 

AppendRotationZ(CubeWor1dXform. -ROTATION); 
RecalcXform-1;  break; 

case Ox3C: I* r o t a t e   c l o c k w i s e   a r o u n d  Z * I  
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case Ox4B: I* l e f t  ( - X )  *I  
CubeWorldXform[OIC31 -- 3.0:  

case  0x40: I* r i g h t  ( + X )  *I 
CubeWorldXformCO1[31 +- 3.0;  

case  0x48: I* up ( + Y )  * /  
CubeWorldXform[11[31 +- 3.0; 

case  0x50: I* down ( - Y )  * I  
CubeWorldXformCllC31 --  3.0: 

d e f a u l t :  
b reak :  

1 
b r e a k :  

RecalcXform-1; 

RecalcXform-1: 

RecalcXform-1: 

RecalcXform-1: 

b reak ;  

b reak :  

b reak :  

b reak :  

d e f a u l t :  I* any o t h e r   k e y   t o   p a u s e  *I  
g e t c h 0 :   b r e a k :  

1 
1 

I w h i l e   ( ! D o n e ) ;  
I* R e t u r n   t o   t e x t  mode and e x i t  *I  
r e g s e t . x . a x  - 0x0003; / *  AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode *I  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t ,   & r e g s e t ) :  

1 

LISTING 5 1.2 15 1 -2.C 
I* Trans fo rms  all v e r t i c e s   i n   t h e   s p e c i f i e d   o b j e c t   i n t o   v i e w   s p a c e .   t h e n  

p e r s p e c t i v e   p r o j e c t s   t h e m   t o   s c r e e n   s p a c e   a n d  maps them t o   s c r e e n   c o o r d i n a t e s ,  
s t o r i n g   t h e   r e s u l t s   i n   t h e   o b j e c t .  * /  

# inc lude   <math .  h> 
Ik inc l   ude  "po lygon.   h "1  

v o i d  XformAndProjectPoints(doub1e Xform[4] [4 ] .  

I 
s t r u c t   O b j e c t  * ObjectToXform) 

i n t  i, NumPoints - ObjectToXform->NumVerts: 
s t r u c t   P o i n t 3  * P o i n t s  - ObjectToXform->Ver texL is t ;  
s t r u c t   P o i n t 3  * XformedPoints  - ObjectToXform->XformedVertexList :  
s t r u c t   P o i n t 3  * P r o j e c t e d P o i n t s  - O b j e c t T o X f o r m - > P r o j e c t e d V e r t e x L i s t :  
s t r u c t   P o i n t  * S c r e e n p o i n t s  - ObjectToXform->ScreenVertexList ;  

f o r   ( i - 0 :   i < N u m P o i n t s ;  i++. Poin ts++ .   X fo rmedPo in ts t t .  
Pro jec tedPo in ts++,   ScreenPoin ts++)  { 

I* T r a n s f o r m   t o   v i e w   s p a c e  *I  
X f o r m V e c ( X f o r m .   ( d o u b l e   * ) P o i n t s ,   ( d o u b l e   * ) X f o r m e d P o i n t s ) :  
I* P e r s p e c t i v e - p r o j e c t   t o   s c r e e n   s p a c e  *I  
P r o j e c t e d P o i n t s - > X  - XformedPoints->X I Xfo rmedPo in ts ->Z  * 

P r o j e c t e d P o i n t s - > Y  - XformedPoints->Y I Xfo rmedPo in ts ->Z  * 

P r o j e c t e d P o i n t s - > Z  - Xfo rmedPo in ts ->Z ;  
I* C o n v e r t   t o   s c r e e n   c o o r d i n a t e s .  The Y c o o r d   i s   n e g a t e d   t o  

PROJECTION-RATIO * (SCREENLWIDTH / 2 . 0 ) :  

PROJECTION-RATIO * (SCREEN-WIDTH I 2.0); 

f l i p   f r o m   i n c r e a s i n g  Y b e i n g   u p   t o   i n c r e a s i n g  Y b e i n g  down, 
a s   e x p e c t e d   b y   t h e   p o l y g o n   f i l l e r .  Add i n   h a l f   t h e   s c r e e n  
w i d t h  and h e i g h t   t o   c e n t e r  on t h e   s c r e e n .  *I  

ScreenPo in ts ->X  - ( ( i n t )  floor(ProjectedPoints->X + 0 . 5 ) )  + SCREENLWIOTH/2: 
Sc reenPo in ts ->Y  - ( - ( ( i n t )  f l o o r ( P r o j e c t e d P o i n t s - > Y  + 0 . 5 ) ) )  + 

SCREEN-HEIGHTIE: 
1 

1 
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LISTING 5 1.3 15 1 -3.C 
I* Draws a l l   v i s i b l e   f a c e s   ( f a c e s   p o i n t i n g   t o w a r d   t h e   v i e w e r )   i n   t h e   s p e c i f i e d  

o b j e c t .   T h e   o b j e c t   m u s t   h a v e   p r e v i o u s l y   b e e n   t r a n s f o r m e d   a n d   p r o j e c t e d .  s o  
t h a t   t h e   S c r e e n V e r t e x L i s t   a r r a y   i s   f i l l e d   i n .  * /  

#i ncl   ude  "po lygon.   h "  

v o i d   D r a w V i s i b l e F a c e s ( s t r u c t   O b j e c t  * Objec tToXform)  
I 

i n t  i. j .  NumFaces - ObjectToXform->NumFaces, NumVert ices;  
i n t  * VertNumsPtr:  
s t r u c t  Face * FacePt r  - Ob jec tToXfo rm->FaceL is t :  
s t r u c t   P o i n t  * S c r e e n P o i n t s  - Ob jec tToXfo rm->ScreenVer texL is t ;  
l o n g   v l . v 2 . w l , w 2 :  
s t r u c t   P o i n t  VerticesCMAX-POLYLLENGTHI: 
s t r u c t   P o i n t L i s t H e a d e r   P o l y g o n :  

/ *  Draw  each v i s i b l e   f a c e   ( p o l y g o n )   o f   t h e   o b j e c t   i n   t u r n  * /  
fo r   ( i -0 ;   i<NumFaces;  i++. FacePtr++) I 

NumVert ices - FacePtr->NumVerts:  
/ *  C o p y   o v e r   t h e   f a c e ' s   v e r t i c e s   f r o m   t h e   v e r t e x   l i s t  *I  
f o r  ( j - 0 ,  VertNumsPtr-FacePtr->VertNums: j<NumVert ices:   j++)  

/ *  Draw o n l y  i f  o u t s i d e   f a c e   s h o w i n g  ( i f  t h e   n o r m a l   t o   t h e  
V e r t i c e s C j l  - ScreenPoints[*VertNumsPtr++l: 
p o l y g o n   p o i n t s   t o w a r d   t h e   v i e w e r :   t h a t   i s ,   h a s  a p o s i t i v e  
2 component) *I  

v l  - V e r t i c e s C 1 l . X  - Vert icesCO1.X: 
w l  - Vert icesCNumVert ices- l1 .X  - Vert icesCO1.X: 
v2 - V e r t i c e s C 1 l . Y  - Vert icesCO1.Y; 
w2 - Ver t i cesCNumVer t i ces - l1 .Y  - Vert icesCO1.Y: 
i f  ( ( v l * w 2  - v2*wl )  > 0 )  I 

/*  It i s   f a c i n g   t h e   s c r e e n ,   s o   d r a w  * /  
I* A p p r o p r i a t e l y   a d j u s t   t h e   e x t e n t   o f   t h e   r e c t a n g l e   u s e d   t o  

e r a s e   t h i s   p a g e   l a t e r  * /  
f o r   ( j - 0 :   j < N u m V e r t i c e s :  j++) { 

i f  ( V e r t i c e s C j 1 . X  > EraseRectCNonDisplayedPagel .Right )  
i f  ( V e r t i c e s C j 1 . X  < SCREEN-WIDTH) 

e l s e  EraseRectCNonDisp1ayedPagel.Right - SCREENLWIDTH: 

i f  ( V e r t i c e s C j 1 . Y  < SCREENKHEIGHT) 
EraseRectCNonDisplayedPagel .Bot tom - V e r t i c e s C j 1 . Y :  

e l s e  EraseRect [NonDi~p layedPage] .Bot tom-SCREEN~HEIGHT:  

i f  ( V e r t i c e s C j 1 . X  > 0 )  

e l s e  EraseRectCNonDisp layedPage1.Le f t  = 0:  

i f  ( V e r t i c e s C j 1 . Y  > 0 )  

e lse  EraseRectCNonDisp1ayedPagel .Top - 0:  

EraseRect[NonDisplayedPagel.Right - V e r t i c e s C j 1 . X :  

if ( V e r t i c e s C j 1 . Y  > EraseRect [NonDisp layedPage l .Bot tom)  

if ( V e r t i c e s C j 1 . X  < EraseRect[NonDisplayedPagel.Left) 

EraseRectCNonDisp layedPage3.Le f t  - V e r t i c e s C j 1 . X ;  

i f  ( V e r t i c e s C j 1 . Y  < EraseRectCNonDisplayedPagel.Top) 

EraseRect [NonDisp layedPagel .Top - V e r t i c e s C j 1 . Y :  

1 
/* Draw t h e   p o l y g o n  */  
DRAW-POLYGON(Vertices. NumVer t i ces .   FacePt r ->Co lo r .  0 .   0 ) ;  

The sample program, as  shown in Figure 51.3, places a cube, floating in three-space, 
under  the complete  control of the user. The arrow keys  may be used to  move the 
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cube left, right,  up, and down, and  the A and T keys  may be used to  move the cube 
away from or toward the viewer. The F1 and F2  keys perform  rotation around  the Z 
axis, the axis running from  the viewer straight into  the  screen.  The 4 and 6 keys 
perform  rotation around  the Y (vertical) axis, and  the 2 and 8 keys perform  rotation 
around  the X axis,  which runs horizontally across the screen; the  latter  four keys are 
most conveniently used by flipping  the keypad to the numeric state. 
The  demo involves  six  polygons, one for each side of the cube. Each of the polygons 
must be transformed and projected, so it would seem that 24 vertices (four  for  each 
polygon) must be handled,  but some steps have been taken to improve performance. 
All vertices for  the object have been  stored  in  a single list; the definition of each face 
contains not  the vertices for  that face themselves, but  rather indexes into  the object’s 
vertex  list, as shown  in  Figure 51.4. This reduces the  number of  vertices  to  be manipu- 
lated from 24 to 8, for there  are, after all,  only eight vertices in  a  cube, with three 
faces sharing  each vertex. In this way, the transformation burden is lightened by two- 
thirds. Also,  as mentioned earlier, backface  removal is performed with integers, in 
screen  coordinates,  rather  than with floating-point values in screen space. Finally, 
the RecalcXForm flag is set whenever the user changes  the object-to-world transfor- 
mation. Only when this  flag  is set is the full  object-to-view transformation recalculated 
and  the object’s  vertices  transformed and projected again;  otherwise, the values  already 
stored within the object are  reused.  In  the sample application, this brings no visual 
improvement, because there’s only the  one object, but  the underlying mechanism is 
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n e  object data structure 
Figure 5 1.4 

sound:  In a full-blown 3-D animation application, with multiple objects moving about 
the  screen,  it would help a great  deal to flag  which  of the objects had moved  with 
respect to the viewer, performing a new transformation and projection only for those 
that  had. 
With the above  optimizations, the sample program is certainly  adequately  responsive on 
a 20 MHz 386 (sans 387; I’m sure it’s  wonderfully  responsive  with a math coprocessor). 
Still, it couldn’t  quite  keep up with the keyboard when I modified it to read only one 
key each time through  the loop-and  we’re talking about only eight vertices here. 
This indicates that we’re already near  the limit of animation complexity possible 
with our  current  approach. It’s time to start  rethinking  that  approach; over two- 
thirds of the overall time is spent  in floating-point calculations, and it’s there  that 
we’ll begin to attack the  performance bottleneck we find ourselves up against. 
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Incremental  Transformation 
Listing  51.4 contains three  functions; each concatenates  an  additional  rotation  around 
one of the  three axes to an existing rotation. To improve performance, only the 
matrix  entries  that are affected  in  a  rotation around each  particular axis are recalcu- 
lated  (all but  four of the  entries  in  a single-axis rotation  matrix  are  either 0 or 1, as 
shown in  Chapter 50). This  cuts  the  number of floating-point  multiplies  from  the 64 
required  for  the  multiplication of two 4x4 matrices to  just 12, and floating  point 
adds  from 48 to 6. 
Be aware that Listing 51.4 performs an incremental  rotation  on  top of whatever 
rotation is already in  the matrix. The cube may already have been  turned  left,  right, 
up, down, and sideways; regardless, Listing 51.4just tacks the specified rotation onto 
whatever already exists. In this way, the object-to-world transformation  matrix  con- 
tains a history of all the  rotations ever specified by the user, concatenated one after 
another  onto  the original matrix. Potential loss of precision is a  problem associated 
with using such an  approach  to  represent  a very long  concatenation of transforma- 
tions, especially  with fixed-point  arithmetic;  that's not  a problem  for us  yet, but we'll 
run  into it eventually. 

LISTING 5 1.4 15 1 -4.C 
I* R o u t i n e s   t o   p e r f o r m   i n c r e m e n t a l   r o t a t i o n s   a r o u n d   t h e   t h r e e   a x e s  * I  
#inc lude  <math.h> 
# inc lude   "po l ygon .   h "  

I* C o n c a t e n a t e   a   r o t a t i o n   b y   A n g l e   a r o u n d   t h e  X a x i s   t o   t h e   t r a n s f o r m a t i o n   i n  
X f o r m T o C h a n g e ,   p l a c i n g   r e s u l t   b a c k   i n   X f o r m T o C h a n g e .  * I  
void  AppendRotat ionX(doub1e  XformToChange[41[41.  double  Angle) 

double  TemplO.  Templ l ,   Templ2,  Temp2O. TempEl.  Temp22: 
d o u b l e  CosTemp - cos(Ang1e).   SinTemp - s i n ( A n g 1 e ) ;  
I* C a l c u l a t e   t h e  new v a l u e s   o f   t h e   f o u r   a f f e c t e d   m a t r i x   e n t r i e s  * /  
TemplO - CosTemp*XformToChange[l][Ol+ -SinTemp*XformToChange[2][01: 
T e m p l l  - CosTemp*XformToChangeCll[ll+ -SinTemp*XformToChange[21[1]: 
Temp12 - CosTemp*XformToChangeCll[21+ -SinTemp*XformToChange[21[2]: 
Temp20 - SinTemp*XformToChange[ll[Ol+ CosTemp*XformToChange~21~01:  
Temp21 - SinTemp*XformToChange[ll[ll+ CosTemp*XformToChange~21~11:  
Temp22 - SinTemp*XformToChange[ll[21+ CosTemp*XformToChange~21[21; 
I* P u t   t h e   r e s u l t s   b a c k   i n t o  XformToChange *I  
XformToChange[l][O] - TemplO:   XformToChange~11~11 - T e m p l l :  
XformToChange[l][2] - Templ2:  XformToChange[21[01 - Temp2O: 
XformToChange[21[11 - Temp21; XformToChange[21C23 - Temp22: 

{ 

} 

I* C o n c a t e n a t e   a   r o t a t i o n   b y   A n g l e   a r o u n d   t h e  Y a x i s   t o   t h e   t r a n s f o r m a t i o n  i n  
X f o r m T o C h a n g e .   p l a c i n g   r e s u l t   b a c k   i n   X f o r m T o C h a n g e .  * I  
void  AppendRotat ionY(doub1e  XformToChange[4] [4] .   double  Angle) 

( 
d o u b l e  TempOO. TempOl.  Temp02. Temp2O. Tempel.  Temp22: 
d o u b l e  CosTemp - cos(Ang1e).   SinTemp - s i n ( A n g 1 e ) :  
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/ *  C a l c u l a t e   t h e  new v a l u e s   o f   t h e   f o u r   a f f e c t e d   m a t r i x   e n t r i e s  * /  
TempOO = CosTemp*XformToChange[Ol[Ol+ SinTemp*XformToChange[21[01: 
TempOl - CosTemp*XformToChange[Ol[ll+ SinTemp*XformToChange[2][11: 
Temp02 - CosTemp*XformToChange[OI[21+  SinTemp*XformToChangeC21C21; 
Temp20 - -SinTemp*XformToChange[Ol[Ol+ CosTemp*XformToChange[Zl[Ol; 
Temp21 = -SinTemp*XformToChange[Ol[ll+ CosTemp*XformToChange~21~11: 
Temp22 - -SinTemp*XformToChange[OI[21+ CosTemp*XformToChange~21~21:  
/ *  P u t   t h e   r e s u l t s   b a c k   i n t o   X f o r m T o C h a n g e  * I  
XformToChange[O1[0] - TempOO; XformToChange[0][11 - TempOl: 
XformToChange[Ol[2l  - TempO2: XformToChange[2lC01 - TempEO: 
XformToChange[2][11 - Tempel:  XformToChange[21[2] - Temp22: 

1 

I* C o n c a t e n a t e   a   r o t a t i o n   b v   A n c l l e   a r o u n d   t h e  2 a x i s   t o   t h e   t r a n s f o r m a t i o n   i n  
X f o r m T o C h a n g e .   p l a c i n g   r e s u l i   b a c k   i n   X f o r m T o C h a n g e .  * /  
void  AppendRotat ionZ(doub1e  XformToChange[41C41,  double  Angle) 

d o u b l e  TempOO. TempOl, TempO2. TemplO.  Templl .   TemplE: 
d o u b l e  CosTemp .. cos(Ang1e).  SinTemp - s i n ( A n g 1 e ) :  
/ *  C a l c u l a t e   t h e  new v a l u e s   o f   t h e   f o u r   a f f e c t e d   m a t r i x   e n t r i e s  * /  
TempOO - CosTemp*XformToChange[Ol[Ol+ -SinTemp*XformToChange~ll~Ol: 
TempOl - CosTemp*XformToChange[Ol[ll+  -SinTemp*XformToChange~ll~ll: 
Temp02 - CosTemp*XformToChange[Ol[Zl+ -SinTemp*XformToChange[l1[21; 
TemplO - SinTemp*XformToChange[Ol[Ol+ CosTemp*XformToChange[ll[Ol: 
T e m p l l  - SinTemp*XformToChange[Ol[ll+ CosTemp*XformToChangeC1IC13: 
Temp12 - SinTemp*XformToChange[Ol[Zl+ CosTemp*XformToChange~l1~21: 
/ *  P u t   t h e   r e s u l t s   b a c k   i n t o   X f o r m T o C h a n g e  */  
XformToChange[0][01 - TempOO: XformToChangeCO1~11 - TempOl; 
XformToChange[Ol[Z] - Temp02: XformToChange~11C01 - TemplO: 
X formToChange[ l ] [ l l  .. Templl:   XformToChange[1][21 - TemplZ; 

LISTING 5 1.5 POLYG0N.H 
/*  POLYG0N.H: Header f i l e   f o r   p o l y g o n - f i l l i n g   c o d e ,   a l s o   i n c l u d e s  a  number o f  

# d e f i n e  MAX-POLY-LENGTH 4 / *  f o u r   v e r t i c e s   i s   t h e  max p e r   p o l y  * /  
# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-HEIGHT 240 
# d e f i n e  PAGEO-START-OFFSET 0 
# d e f i n e  PAGE1-START-OFFSET (( ( long)SCREEN-HEIGHT*SCREENKWIDTH)/4)  
/ *  R a t i o :   d i s t a n c e   f r o m   v i e w p o i n t   t o   p r o j e c t i o n   p l a n e  / w i d t h   o f   p r o j e c t i o n  

u s e f u l   i t e m s   f o r  3D a n i m a t i o n .  * /  

p l a n e .   D e f i n e s   t h e   w i d t h   o f   t h e   f i e l d   o f   v i e w .   L o w e r   a b s o l u t e   v a l u e s  - w i d e r  
f i e l d s   o f   v i e w :   h i g h e r   v a l u e s  - n a r r o w e r .  * /  

#def ine  PROJECTION-RATIO -2.0 /* n e g a t i v e   b e c a u s e   v i s i b l e  Z coo rd ina tes   a re   nega t i ve  * I  
/*  Draws t h e   p o l y g o n   d e s c r i b e d   b y   t h e   p o i n t   l i s t   P o i n t L i s t   i n   c o l o r   C o l o r   w i t h  

a l l   v e r t i c e s   o f f s e t   b y  ( X . Y )  * /  
# d e f i n e  DRAW-POLYGON(PointList.NumPoints.Co1or.X.Y) \ 

Po lygon.Length  - NumPoin ts :   Po lygon.Po in tP t r  - P o i n t L i s t :  \ 
FillConvexPolygon(&Polygon. C o l o r ,  X .  Y ) ;  

/ *  D e s c r i b e s   a   s i n g l e  2D p o i n t  * /  
s t r u c t   P o i n t  I 

i n t  X ;  I* X c o o r d i n a t e  * /  
i n t  Y :  I* Y c o o r d i n a t e  * /  

1 :  
/*  D e s c r i b e s   a   s i n g l e  3D p o i n t   i n  homogeneous c o o r d i n a t e s  * /  
s t r u c t   P o i n t 3  { 

d o u b l e  X :  / *  X c o o r d i n a t e  * /  
d o u b l e  Y :  / *  Y c o o r d i n a t e  * /  
d o u b l e  Z: / *  2 c o o r d i n a t e  * /  
d o u b l e  W :  

3 :  
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I* 

I :  
I* 

Descr ibes  a s e r i e s   o f   p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t  
d e s c r i b e  a p o l y g o n :   e a c h   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   t w o   a d j a c e n t  
v e r t i c e s ,  and t h e   l a s t   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   f i r s t )  *I  
s t r u c t   P o i n t L i s t H e a d e r  { 
i n t   L e n g t h :  I* # o f   p o i n t s  * I  
s t r u c t   P o i n t  * P o i n t P t r :  I* p o i n t e r   t o   l i s t  o f  p o i n t s  *I  

D e s c r i b e s   b e g i n n i n g   a n d   e n d i n g  X c o o r d i n a t e s   o f  a s i n g l e   h o r i z o n t a l   l i n e  *I  
s t r u c t   H L i n e  { 

i n t   X S t a r t :  I* X c o o r d i n a t e   o f   l e f t m o s t   p i x e l   i n   l i n e  *I  
i n t  XEnd: I* X c o o r d i n a t e   o f   r i g h t m o s t   p i x e l   i n   l i n e  * I  

I :  
I* D e s c r i b e s  a L e n g t h - l o n g   s e r i e s   o f   h o r i z o n t a l   l i n e s ,   a l l  assumed t o  be  on 

c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t  and  p roceed ing   downward   (descr ibes  
a s c a n - c o n v e r t e d   p o l y g o n   t o   l o w - l e v e l   h a r d w a r e - d e p e n d e n t   d r a w i n g   c o d e )  *I  

i n t   L e n g t h :  I* i o f   h o r i z o n t a l   l i n e s  *I  
i n t   Y S t a r t :  I* Y c o o r d i n a t e   o f   t o p m o s t   l i n e  *I  
s t r u c t   H L i n e  * H L i n e P t r :  I* p o i n t e r   t o   l i s t   o f   h o r z   l i n e s  * I  

s t r u c t   H L i n e L i s t  

I :  
s t r u c t   R e c t  { i n t   L e f t ,  Top,   R igh t ,   Bo t tom:  l :  
I* S t r u c t u r e   d e s c r i b i n g  o n e   f a c e   o f   a n   o b j e c t   ( o n e   p o l y g o n )  *I  
s t r u c t  Face I 

i n t  * VertNums: I* p o i n t e r   t o   v e r t e x   p t r s  * I  
i n t  NumVerts; I* # o f   v e r t i c e s  *I  
i n t   C o l o r :  I* p o l y g o n   c o l o r  * I  

I :  
I* S t r u c t u r e   d e s c r i b i n g  an o b j e c t  *I  
s t r u c t   O b j e c t  { 

i n t  NumVerts: 
s t r u c t   P o i n t 3  * V e r t e x L i s t :  
s t r u c t   P o i n t 3  * X f o r m e d V e r t e x L i s t :  
s t r u c t ' P o i n t 3  * P r o j e c t e d V e r t e x L i s t :  
s t r u c t   P o i n t  * S c r e e n V e r t e x L i s t ;  
i n t  NumFaces: 
s t r u c t  Face * F a c e L i s t ;  

ex te rn   vo id   X formVec(doub1e  X formC41C41.   doub le  * SourceVec.   double * OestVec) :  
1 :  

ex te rn   vo id   Conca tX fo rms(doub1e   SourceXfo rm l [4 ] [41 .  

e x t e r n   v o i d  XformAndProjectPoly(doub1e XformC4lC41. 

e x t e r n   i n t  FillConvexPolygon(struct P o i n t L i s t H e a d e r  *, i n t .   i n t .   i n t ) :  
e x t e r n   v o i d   S e t 3 2 0 ~ 2 4 0 M o d e ( v o i d ) :  
e x t e r n   v o i d   S h o w P a g e ( u n s i g n e d   i n t   S t a r t o f f s e t ) :  
e x t e r n   v o i d   F i l l R e c t a n g l e X ( i n t  S t a r t X .  i n t  S t a r t Y .  i n t  EndX. 

i n t  EndY. u n s i g n e d   i n t  PageBase, i n t   C o l o r ) :  
e x t e r n   v o i d  XformAndProjectPoints(doub1e X f o r m [ 4 1 [ 4 l . s t r u c t   O b j e c t  * Ob jec tToXfo rm) :  
e x t e r n   v o i d   D r a w V i s i b l e F a c e s ( s t r u c t   O b j e c t  * Ob jec tToXfo rm) :  
e x t e r n   v o i d   A p p e n d R o t a t i o n X ( d o u b 1 e  XformToChangeC41C41. d o u b l e   A n g l e ) :  
e x t e r n   v o i d   A p p e n d R o t a t i o n Y ( d o u b 1 e  XformToChangeC41C41. d o u b l e   A n g l e ) ;  
e x t e r n   v o i d   A p p e n d R o t a t i o n Z ( d o u b 1 e  XformToChangeC41C41. d o u b l e   A n g l e ) :  
e x t e r n   i n t   D i s p l a y e d P a g e .   N o n D i s p l a y e d P a g e :  
e x t e r n   s t r u c t   R e c t   E r a s e R e c t C l :  

double  SourceXform2C41C41.   double  DestXformC4lC41) :  

s t r u c t   P o i n t 3  * P o l y ,   i n t   P o l y L e n g t h .   i n t   C o l o r ) :  

A Note  on Rounding Negative Numbers 
In the  previous  chapter, I added 0.5 and  truncated in order  to  round  values  from 
floating-point  to  integer  format. Here, in  Listing 51.2, I've  switched to  adding 0.5 
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and using the floor() function. For positive  values, the two approaches  are equiva- 
lent;  for negative  values,  only the floor() approach works properly. 

Object Representation 
Each object consists  of a list  of  vertices and a list  of  faces,  with the vertices  of each 
face defined by pointers  into  the vertex list; this allows each vertex to be transformed 
exactly once, even though several faces may share a single vertex. Each object con- 
tains the vertices not only in their original, untransformed state, but in  three  other 
forms as  well: transformed to view space, transformed and projected to screen space, 
and converted to screen coordinates. Earlier, we  saw that  it can be convenient to 
store the screen  coordinates within the object, so that if the object hasn’t moved  with 
respect to the viewer, it can be redrawn without the  need  for recalculation, but why 
bother  storing  the view and screen space forms of the vertices  as  well? 
The screen space vertices are useful for some sorts of hidden surface removal. For 
example, to determine  whether two polygons overlap as seen by the viewer,  you must 
first  know  how  they  look  to the viewer, accounting for perspective;  screen  space  provides 
that information. (So do the final  screen  coordinates, but with less  accuracy, and without 
any Z information.) The view space vertices are useful for collision and proximity 
detection; screen space can’t be used here, because objects are  distorted by the per- 
spective projection into screen space. World space would  serve  as well as view space 
for collision detection, but because it’s  possible  to transform directly from object 
space to view space with a single matrix, it’s often preferable to skip  over  world space. 
It’s not mandatory  that vertices be stored  for all these different spaces, but  the coor- 
dinates  in all those spaces have to be calculated as intermediate steps anyway, so we 
might as well keep  them  around  for those occasions when they’re needed. 
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CHAPTER 52

FAST 3-D ANIMATION: MEET X-SHARP



’’. 3-D Anirnahon Package 
Across the lake  fror few miles into upstate New  York, the Ausable  River 
has carved out a fai  ive gorge known  as  “Ausable Chasm.” Impressive for 
the East, anyway;  yo nk of it as the  poor man’s Grand Canyon.  Some  time 
back, I did  the  tour  and five-year-old, and it was fun, although I confess 
that I didn’t loosen,&y grip on my daughter’s hand until we were on the bus and 

;hat gorge is deep,  and  the railings tend to  be  of the single-bar, 

e straight to this  wonder of nature,  but Vermonters must take 
their cars  across on the ferry; the alternative is  driving three  hours  around  the  south 
end of Lake Champlain. No problem;  the ferry ride is an  hour well spent  on a beau- 
tiful  lake.  Or, rather, no problem-once you’re on  the ferry. Getting to New  York  is 
easy, but, as we found  out,  the line of cars  waiting  to  come  back from Ausable  Chasm 
gets lengthy about mid-afternoon. The ferry can hold only so many cars, and we 
wound up spending  an  unexpected hour exploring  the wonders of the ferry  docks. 
Not a big deal, with a good-natured kid and  an entertaining mom; we got ice cream, 
explored  the beach, looked through binoculars, and told stories. It was a fun break, 
actually, and before we knew  it, the ferry was steaming back to pick  us up. 
A friend of mine,  an elementary-school teacher, helped take 65 sixth graders  to 
Ausable  Chasm.  Never mind the potential for  trouble with 65 kids  loose on a ferry. 
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Never mind what it was like  trying to herd  that  group  around  a  gorge  that looks  like 
it was designed  to swallow children and small animals without a trace. The hard  part 
was getting back to the docks and  finding they’d  have  to  wait an  hour  for  the  next 
ferry. As my friend  put it, “Let me tell  you, an  hour is an  eternitywith 65 sixth graders 
screaming  the song ‘You Are My Sunshine.”’ 
Apart from  reminding you  how  lucky  you are to  be  working  in a  quiet, air-condi- 
tioned  room,  in front of a gently humming  computer,  free to think  deep  thoughts 
and  eat Cheetos to your heart’s  content, this story  provides a useful perspective on 
the malleable nature of time. An hour isn’tjust  an hour-it can be forever, or it can 
be the wink  of an eye. Just  think of the last hour you spent working under a  deadline; 
I  bet  it went past in  a flash. Which  is not to say, mind you, that  I  recommend working 
in a bus full of screaming kids in order to make time pass more slowly; there  are 
quality  issues here as  well. 
In  our 3-D animation work so far, we’ve used floating-point  arithmetic. Floating- 
point arithmetic-even  with a  floating-point processor but especially without one-is 
the  microcomputer  animation  equivalent  ofworking  in  a school bus: It takes forever 
to do anything, and you just know you’re never going to accomplish as much as  you 
want to. In this chapter, we’ll address  fixed-point  arithmetic, which will  give us an 
instant order-of-magnitude performance boost. We’ll  also  give our 3-D animation 
code  a  much  more powerful and extensible framework, making it easy to  add new 
and  different sorts of objects. Taken together,  these  alterations will let us start to do 
some really interesting real-time animation. 

This Chapter‘s Demo  Program 
Three-dimensional  animation is a  complicated business, and  it takes an  astonishing 
amount of functionality just  to  get off the  launching  pad: page flipping, polygon 
filling, clipping, transformations, list management, and so forth. I’ve been  building 
toward a critical mass  of animation  functionality over the  course of this book, and 
this chapter’s code builds on  the  code  from  no fewer than five previous chapters. 
The code that’s required  in order to link this chapter’s  animation  demo  program is 
the following: 

Listing 50. I from  Chapter 50 (draw  clipped  line  list); 
Listings  47.1  and 47.6 from  Chapter 47 (Mode X mode set,  rectangle  fill); 
Listing  49.6 from Chapter  49; 
Listing  39.4  from  Chapter  39  (polygon  edge  scan);  and 
The FillConvexPolygon( ) function from Listing  38.1  from  Chapter 38. Note 
that  the struct keywords  in FillConvexPolygon( ) must  be  removed  to  reflect 
the  switch  to  typedefs in the  animation  header file. 

As always, all required files are in this chapter’s subdirectory  on  the CD-ROM. 
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LISTING 52.1 152- 1 .C 
/* 3-0 a n i m a t i o n   p r o g r a m   t o   r o t a t e   1 2   c u b e s .  Uses f i x e d   p o i n t .  All C code 

t e s t e d   w i t h   B o r l a n d  C++ i n  C c o m p i l a t i o n  mode and the   sma l l   mode l .  * /  

#i n c l  ude  <coni  0. h> 
#i n c l  ude  <dos . h> 
# i n c l u d e   " p o l y g o n .   h "  

/ *  b a s e   o f f s e t   o f   p a g e   t o   w h i c h   t o   d r a w  * /  
u n s i g n e d   i n t   C u r r e n t P a g e B a s e  - 0:  
/ *  c l i p   r e c t a n g l e ;   c l i p s   t o   t h e   s c r e e n  */ 
i n t   C l i p M i n X  = 0. C l i pM inY  - 0;  
i n t  ClipMaxX = SCREEN-WIDTH. ClipMaxY - SCREEN-HEIGHT: 
s t a t i c   u n s i g n e d   i n t   P a g e S t a r t O f f s e t s C 2 1  - 
i n t  OisplayedPage.  NonOisplayedPage: 
i n t   R e c a l c A l l X f o r m s  = 1. NumObjects - 0;  
Xform  WorldViewXform: / *  i n i t i a l i z e d   f r o m   f l o a t s  */ 
/*  p o i n t e r s   t o   o b j e c t s  */ 
O b j e c t  *ObjectList [MAX._OBJECTSI:  

{PAGEOpSTART-OFFSET,PAGEl-STARTpOFFSET); 

v o i d   m a i n 0  { 

O b j e c t   * O b j e c t P t r ;  
i n t  Done = 0. i: 

u n i o n  REGS r e g s e t ;  

I n i t i a l i z e F i x e d P o i n t O :  I* s e t   u p   f i x e d - p o i n t   d a t a  * /  
I n i t i a l i z e c u b e s o :  / *  s e t  up  cubes  and  add  them t o   o b j e c t   l i s t :   o t h e r  

o b j e c t s   w o u l d   b e   i n i t i a l i z e d  now, 
Set320x240ModeO: I* s e t   t h e   s c r e e n   t o  mode X *I 
ShowPage(PageStartOffsetsCDisp1ayedPage = 01) :  
/*  Keep t r a n s f o r m i n g   t h e   c u b e ,   d r a w i n g  i t  t o   t h e   u n d i s p l a y e d  

do I 
and f l i p p i n g   t h e   p a g e   t o  show i t  * /  

/* For e a c h   o b j e c t ,   r e g e n e r a t e   v i e w i n g   i n f o ,  i f  necessary 
fo r   ( i - 0 :   i <NurnOb jec ts :  i++) [ 

i f  ( ( O b j e c t P t r  - ObjectListCi1)->RecalcXform I I 
Recal   cAl1  Xforrns)  I 

ObjectPtr->RecalcFunc(ObjectPtr): 
O b j e c t P t r - > R e c a l c X f o r m  = 0; 

1 
1 
R e c a l c A l l X f o r m s  - 0: 

i f  the re   were   any  */ 

CurrentPageBase - /*  s e l e c t   o t h e r   p a g e   f o r   d r a w i n g   t o  * /  

/ *  F o r   e a c h   o b j e c t .   c l e a r   t h e   p o r t i o n   o f   t h e   n o n - d i s p l a y e d   p a g e  

f o r   ( i - 0 :   i < N u r n O b j e c t s ;  i++) [ 

PageSta r tO f f se tsCNonDisp layedPage  - DisplayedPage * 11: 

t h a t  was drawn t o   l a s t   t i m e ,   t h e n   r e s e t   t h e   e r a s e   e x t e n t  * /  

O b j e c t P t r  = O b j e c t L i s t [ i l ;  
FillRectangleX~ObjectPtr->EraseRect[NonDisplayedPagel.Left, 

ObjectPtr->EraseRect[NonDisplayedPagel.Top, 
ObjectPtr->EraseRect[NonDisplayedPagel.Right, 
ObjectPtr->EraseRect[NonDisplayedPagel.Bottom, 
CurrentPageBase. 0 ) ;  

ObjectPtr->EraseRectCNonDisplayedPage].Left - 
Ob jec tP t r ->EraseRec t [NonD isp layedPage l .R igh t  - ObjectPtr ->EraseRect [NonDisp layedPage] .Top - Ox7FFF; 

ObjectPtr->EraseRect[NonDisplayedPagel.Bottom - 0: 
1 
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/* Draw a l l   o b j e c t s  * /  
f o r   ( i - 0 :   i < N u m O b j e c t s :  i++) 

/* F l i p   t o   d i s p l a y   t h e   p a g e   i n t o   w h i c h  we j u s t  drew * I  
ShowPage(PageStartOffsets1DisplayedPage - NonDisplayedPage]) :  
/ *  Move a n d   r e o r i e n t   e a c h   o b j e c t  * /  
f o r  ( i - 0 :  i<NumObjects; i++) 

i f  ( k b h i t 0 )  

Ob jec tL i s tC i l ->DrawFunc(Ob jec tL i s tC i l ) ;  

O b j e c t L i s t C i l - > M o v e F u n c ( 0 b j e c t L i s t C i 3 ) ;  

i f  ( g e t c h 0  - OxlB)  Done - 1: /*  Esc t o   e x i t  */ 
1 w h i l e   ( ! D o n e ) ;  
/ *  R e t u r n   t o   t e x t  mode and e x i t  * /  
r e g s e t . x . a x  - 0x0003; / *  AL - 3 s e l e c t s   8 0 x 2 5   t e x t  mode */  
i n t 8 6 ( 0 x 1 0 .   & r e g s e t .   & r e g s e t ) ;  
e x i t ( 1 ) :  

1 

LISTING 52.2 152-2.C 
/* T r a n s f o r m s   a l l   v e r t i c e s   i n   t h e   s p e c i f i e d   p o l y g o n - b a s e d   o b j e c t   i n t o   v i e w  

s p a c e ,   t h e n   p e r s p e c t i v e   p r o j e c t s   t h e m   t o   s c r e e n   s p a c e   a n d  maps them t o   s c r e e n  
c o o r d i n a t e s ,   s t o r i n g   r e s u l t s   i n   t h e   o b j e c t .   R e c a l c u l a t e s   o b j e c t - > v i e w  
t r a n s f o r m a t i o n   b e c a u s e   o n l y  i f  t rans fo rm  changes   wou ld  we b o t h e r  
t o   r e t r a n s f o r m   t h e   v e r t i c e s .  */ 

# inc lude   <math .h>  
# inc lude   "po1ygon .h "  

v o i d  XformAndProjectPObject(P0bject * ObjectToXform) 
[ 

i n t  i. NumPoints - ObjectToXform->NumVerts: 
P o i n t 3  * P o i n t s  - O b j e c t T o X f o r m - > V e r t e x L i s t :  
P o i n t 3  * XformedPoints  - ObjectToXform->XformedVertexList: 
P o i n t 3  * P r o j e c t e d P o i n t s  - ObjectToXform->Pro jec tedVer texL is t :  
P o i n t  * S c r e e n p o i n t s  - ObjectToXform-XcreenVer texL is t :  

/ *  R e c a l c u l a t e   t h e   o b j e c t - > v i e w   t r a n s f o r m  */ 
ConcatXforms(Wor1dViewXform. ObjectToXform->XformToWorld. 

ObjectToXform->XformToView):  
/*  A p p l y   t h a t  new t r a n s f o r m a t i o n  and p r o j e c t   t h e   p o i n t s  */ 
f o r   ( i - 0 :   i < N u m P o i n t s ;  i++. Points++,  XformedPoints++, 

P r o j e c t e d P o i n t s + + .   S c r e e n P o i n t s t t )  I 
/* T r a n s f o r m   t o   v i e w   s p a c e  * /  
XformVec(0bjectToXform->XformToView. ( F i x e d p o i n t  * )  P o i n t s ,  

( F i x e d p o i n t  * )  X fo rmedPo in ts ) :  
/* P e r s p e c t i v e - p r o j e c t   t o   s c r e e n   s p a c e  * /  
P r o j e c t e d P o i n t s - > X  - 

DOUBLE~TO~FIXED(PROJECTION~RATIO * (SCREEN-WIDTH/Z))); 
FixedMul(FixedDiv(XformedPoints->X. Xfo rmedPo in ts ->Z) .  

O O U B L E ~ T O ~ F I X E O ( P R O J E C T I O N ~ R A T I O  * (SCREEN_WIOTH/E))): 
FixedMul(FixedDiv(XformedPoints->Y, Xfo rmedPo in ts ->Z) ,  

P r o j e c t e d P o i n t s - > Y  - 
P r o j e c t e d P o i n t s - > Z  - XformedPoints->Z:  
/ *  C o n v e r t   t o   s c r e e n   c o o r d i n a t e s .  The Y c o o r d   i s   n e g a t e d   t o  f l i p  f rom 

i n c r e a s i n g  Y b e i n g   u p   t o   i n c r e a s i n g  Y b e i n g  down, as   expec ted   by   po lygon 
f i l l e r .  Add i n  h a l f   t h e   s c r e e n   w i d t h   a n d   h e i g h t   t o   c e n t e r  on  screen. * /  

Sc reenPo in ts ->X  - ( ( i n t )   ( ( P r o j e c t e d P o i n t s - > X  + 

ScreenPo in ts ->Y  - ( - ( ( i n t )   ( ( P r o j e c t e d P o i n t s - > Y  + 
DOUBLE-TO-FIXED(0.5)) >> 1 6 ) )  + SCREEN_WIDTH/2: 

DOUBLE-TO-FIXED(0.5)) >> 1 6 ) ) )  + SCREEN-HEIGHT/Z; 
1 

1 
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LISTING 52.3 152-3.C 
/*  Routines  to  perform  incremental  rotations  around  the  three  axes. */ 

#include  <math.h> 
t i  ncl  ude  "polygon. h" 

/ *  Concatenate  a  rotation  by  Angle  around  the  X  axis  to  transformation  in 

void  AppendRotationX(Xform  XformToChange.  double  Angle) 
I 

XformToChange.  placing  the  result  back  into  XformToChange. */ 

Fixedpoint  TemplO.  Templl.  Templ2.  TempZO.  Tempel.  Temp22: 
Fixedpoint  CosTemp - DOUElLE-TO-FIXED(cos(Angle)); 
Fixedpoint  SinTemp - DOUBLE-TO-FIXED(sin(Angle)): 
/*  Calculate  the  new  values  of  the  six  affected  matrix  entries * /  
TemplO - FixedMul(CosTemp.  XformToChange[ll[O1) + 

FixedMul(-SinTemp.  XformToChange[21[01); 
Templl - FixedMul(CosTemp.  XformToChange[ll[11) + 

FixedMul(-SinTemp, XformToChange[21[1]); 
Temp12 - FixedMul(CosTemp.  XformToChange[ll[2]) + 

FixedMul(-SinTemp.  XformToChange[21[21); 
Temp20 - FixedMul(SinTemp.  XformToChange[ll[OI) + 

FixedMul(CosTemp.  XformToChange[21CO1); 
Temp21 - FixedMul(SinTemp.  XformToChange[ll[ll) + 

FixedMul(CosTemp.  XformToChange[ZlCll): 
Temp22 - FixedMul(SinTemp,  XformToChange[llC21) + 

FixedMul(CosTemp.  XformToChange[Z1[21); 
/*  Put  the  results  back  into  XformToChange */ 
XformToChange[11[0] - TemplO;  XformToChangeC1][11 - Templl; 
XformToChange[l][Z] - TemplE:  XformToChange[2l[Ol - Temp2D; 
XformToChange[21[11 - TempEl:  XformToChange[2][21 - Temp22; 

1 
/* Concatenate  a  rotation  by  Angle  around  the Y axis to transformation  in 

void  AppendRotationY(Xform  XformToChange.  double  Angle) 
{ 

XformToChange.  placing  the  result  back  into  XformToChange. */ 

Fixedpoi  nt  TempOO,  TempOl,  Temp02,  TempZO,  TempLl,  Temp22; 
Fixedpoint  CosTemp - DOUELE-TO_FIXED(cos(Angle)): 
Fixedpoint  SinTemp - DDUBLE_TD_FIXED(sin(Angle)); 
/*  Calculate  the  new  values  of  the  six  affected  matrix  entries */ 
TempOO - FixedMul(CosTemp.  XformToChange[O1CO1) + 

FixedMul  (SinTemp.  XformToChange[21[01); 
TempOl - FixedMul(CosTemp.  XformToChange[Ol[11) + 

FixedMul(SinTemp.  XformToChange[21[11); 
Temp02 - FixedMul(CosTemp.  XformToChangeC01C21) + 

FixedMul(SinTemp.  XformToChange[21[21); 
Temp20 - FixedMul(-SinTemp.  XformToChange[01[01) + 

FixedMul(  CosTemp.  XformToChangeC21[0]); 
Temp21 - FixedMul  (-SinTemp.  XformToChange[Ol[11) + 

FixedMul(CosTemp.  XformToChange[21[11); 
Temp22 - FixedMul(-SinTemp.  XformToChange[Ol[21) + 

FixedMul(CosTemp.  XformToChange[Zl[Z]); 
/*  Put  the  results  back  into  XformToChange */ 
XformToChange[O][O] - TempOO:  XformToChange[O1[11 - TempOl; 
XformToChange[01[2] - TempOZ;  XformToChange[2l[Ol - Temp20; 
XformToChange[2l[ll - Temp21;  XformToChange[21[21 - Temp22; 

I 
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/*  Concatenate  a r o t a t i o n  by   Ang le   a round  the  2 a x i s   t o   t r a n s f o r m a t i o n   i n  

vo id  AppendRotat ionZ(Xform  XformToChange.   double  Angle)  
{ 

X fo rmToChange ,   p lac ing   t he   resu l t   back   i n to   X fo rmToChange .  * /  

F i x e d p o i n t  TempOO. TempOl. TempOZ. TemplO.  Templ l .   Templ2:  
F i x e d p o i n t  CosTemp - DOUBLE-TO-FIXED(cos(Angle)): 
F i x e d p o i n t  SinTemp - DOUBLE-TO-FIXED(sin(Angle)); 
/* C a l c u l a t e   t h e  new v a l u e s   o f   t h e   s i x   a f f e c t e d   m a t r i x   e n t r i e s  * /  
TempOO - FixedMul(CosTemp.  XformToChange[O][Ol) + 

FixedMul( -S inTemp,   XformToChange[ l ] [O]) :  
TempOl - FixedMul(CosTemp.  XformToChange[O1[11) + 

F i x e d M u l ( - S i n T e m p ,   X f o r m T o C h a n g e ~ l l ~ 1 1 ) ;  
Temp02 - FixedMul(CosTemp.  XformToChange[O1[El) + 

FixedMul(-SinTemp.  XformToChange[ l ] [21);  
TemplO - FixedMul(SinTemp.  XformToChange[01~01) + 

FixedMul(CosTernp.  XformToChange[ l l [Ol) :  
T e m p l l  - FixedMul(SinTemp.  XformToChange[O1[1]) + 

FixedMul(CosTernp.  XformToChangeC11[11): 
Temp12 - FixedMul(SinTemp.  XformToChange[O1[El) + 

FixedMul(CosTemp.  XforrnToChange[11[21): 
/ *  P u t   t h e   r e s u l t s   b a c k   i n t o  XformToChange */  
XformToChange[OI[O1 - TempOO; 
XformToChange[O1CE] - TempO2: 
X f o r m T o C h a n g e [ l l [ l l  - T e m p l l ;  

1 

LISTING  52.4  152-4.C 
/ *  F i x e d   p o i n t   m a t r i x   a r i t h m e t i c  

# i n c l u d e   " p o l y g o n .  h" 

XformToChange[0][11 - TempOl: 
XformToChange[l ] [O] - TemplO: 
XformToChange[l ] [E] - TernplZ; 

f u n c t i o n s .  * /  

I *  M a t r i x   m u l t i p l i e s   X f o r m   b y   S o u r c e V e c .  and s t o r e s   t h e   r e s u l t   i n   D e s t V e c .  
M u l t i p l i e s   a   4 x 4   m a t r i x   t i m e s   a   4 x 1   m a t r i x :   t h e   r e s u l t   i s   a   4 x 1   m a t r i x .   C h e a t s  
by   assuming  the  W c o o r d   i s  1 a n d   b o t t o m   r o w   o f   m a t r i x   i s  0 0 0 1. and d o e s n ' t  
b o t h e r   t o   s e t   t h e  W c o o r d i n a t e   o f   t h e   d e s t i n a t i o n .  * /  

vo id   X formVec(Xfor rn   Work ingXfor rn .   F ixedpo in t   *SourceVec.  
F i x e d p o i n t   * D e s t V e c )  

( 
i n t  i: 

f o r   ( i - 0 :   i < 3 :  i++) 
D e s t V e c C i l  - FixedMul  (WorkingXform[i lCOI,   SourceVecCOI) + 

FixedMul(WorkingXform[ilCll, SourceVecCl I )  + 
FixedMul(WorkingXform[iI~21~ SourceVecCEl) + 
Work ingXform[ i ] [3 ] ;  / *  no  need t o   m u l t i p l y  by W  - 1 */ 

1 

/*  M a t r i x   m u l t i p l i e s   S o u r c e X f o r m l   b y   S o u r c e X f o r m E   a n d   s t o r e s   r e s u l t   i n  
D e s t X f o r m .   M u l t i p l i e s   a   4 x 4   m a t r i x   t i m e s   a   4 x 4   m a t r i x ;   r e s u l t   i s   a   4 x 4   m a t r i x .  
C h e a t s   b y   a s s u m i n g   b o t t o m   r o w   o f   e a c h   m a t r i x   i s  0 0 0 1. a n d   d o e s n ' t   b o t h e r  
t o   s e t   t h e   b o t t o m   r o w   o f   t h e   d e s t i n a t i o n .  * /  

Xform  DestXform) 

i n t  i. j: 

f o r   ( i - 0 :   i < 3 ;  i++) ( 

vo id   ConcatXforms(Xform  SourceXforml .   X form  SourceXformE,  

( 

f o r  ( j -0 :  j < 4 ;  j++) 
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D e s t X f o r m C i l [ j l  - 
FixedMul(SourceXforml[il[Ol, SourceXform2[O][ j ] )  + 
FixedMul(SourceXforml[il[ll, S o u r c e X f o r m 2 ~ 1 1 ~ j l )  + 
FixedMul(SourceXforml[ i lC23.  S o u r c e X f o r m 2 [ 2 l [ j l )  + 
S o u r c e X f o r m l [ i l [ 3 1 :  

1 
3 

LISTING 52.5  152-5.C 
/* S e t   u p   b a s i c   d a t a   t h a t   n e e d s   t o   b e   i n   f i x e d   p o i n t ,   t o   a v o i d   d a t a  

d e f i n i t i o n   h a s s l e s .  * /  

#i ncl   ude  "po lygon.   h"  

/ *  All v e r t i c e s   i n   t h e   b a s i c   c u b e  * /  
s t a t i c   I n t P o i n t 3  IntCubeVertsCNUM-CUBE-VERTSI - ( 

(15.15.15}.~15.15.-15~,~15,-15,15~,~15,-15,-153, 
[ - 1 5 . 1 5 . 1 5 ] . ( - 1 5 , 1 5 , - 1 5 ~ ~ ~ ~ 1 5 , ~ 1 5 , 1 5 ~ . ~ ~ 1 5 ~ ~ 1 5 , ~ 1 5 1  1 ;  

/*  T r a n s f o r m a t i o n   f r o m   w o r l d   s p a c e   i n t o   v i e w   s p a c e  (no t r a n s f o r m a t i o n ,  
c u r r e n t l y )  * /  

s t a t i c   i n t   I n t W o r l d V i e w X f o r m [ 3 ] [ 4 1  - ( 
t 1 , O . O . O ) .  to.1.0.01. t 0 . 0 . 1 . 0 ~ 1 :  

v o i d   I n i t i a l i z e F i x e d P o i n t O  
I 

i n t  i. j :  

f o r   ( i - 0 :   i < 3 :  i++) 
f o r   ( j - 0 :   j < 4 :  j++) 

W o r l d V i e w X f o r m [ i l [ j l  - INT~TO_FIXEO(IntWorldViewXform~il[jl): 
f o r  ( i - 0 :  i<NUM-CUBE-VERTS: i++) I 

CubeVer ts [ i ] .X  - INT-TO-FIXED(IntCubeVertsCi1.X); 
CubeVer ts [ i ] .Y  - INT_TO_FIXED(IntCubeVerts[il.Y): 
C u b e V e r t s C i l . 2  - INT-TO-FIXED(IntCubeVerts[il.Z): 

1 
3 

LISTING 52.6  152-6.C 
/*  Rotates  and  moves a p o l y g o n - b a s e d   o b j e c t   a r o u n d   t h e   t h r e e   a x e s .  

Movement i s  i m p l e m e n t e d   o n l y   a l o n g   t h e  2 a x i s   c u r r e n t l y .  * /  

#i ncl   ude  "po lygon.   h "  

vo id   Rota teAndMovePObjec t (P0b jec t  * ObjectToMove) 
( 

i f  (--0bjectToMove->RDelayCount - 0 )  ( /* r o t a t e  * /  
ObjectToMove->RDelayCount - ObjectToMove->RDelayCountBase: 
i f  (ObjectToMove->Rotate.RotateX !- 0.0)  

AppendRotationX(0bjectToMove->XformToWorld, 
Objec tToMove->Ro ta te .Ro ta teX) :  

AppendRotat ionY(0bjectToMove->XformToWorld ,  
Objec tToMove->Ro ta te .Ro ta teY) :  

AppendRotationZ(0bjectToMove->XformToWorld, 
Objec tToMove->Ro ta te .Ro ta teZ) :  

i f  (ObjectToMove->Rotate.RotateY !- 0.0)  

i f  (Ob jec tToMove->Ro ta te .Ro ta teZ  !- 0.0) 

ObjectToMove->RecalcXform - 1: 
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I* Move i n  Z, c h e c k i n g   f o r   b o u n c i n g   a n d   s t o p p i n g  *I  
i f  ( - -0b jectToMove->MDelayCount  - 0 )  { 

ObjectToMove->MDelayCount - ObjectToMove->MDelayCountBase; 
ObjectToMove->XformToWorld[21[31 +- ObjectToMove->Move.MoveZ; 
i f  ~ObjectToMove->XformToWorldC21C33>0bjectToMove->Move.MaxZ) 

ObjectToMove->Move.MoveZ - 0;  I* s t o p  i f  c lose   enough  * I  
ObjectToMove->RecalcXform - 1: 

1 
1 

LISTING 52.7 152-7.C 
I* Draws a l l   v i s i b l e   f a c e s   i n   s p e c i f i e d   p o l y g o n - b a s e d   o b j e c t .   O b j e c t   m u s t   h a v e  

p r e v i o u s l y   b e e n   t r a n s f o r m e d   a n d   p r o j e c t e d ,  s o  t h a t   S c r e e n V e r t e x L i s t   a r r a y   i s  
f i l l e d   i n .  *I  

# inc l   ude   "po l ygon .   h "  

v o i d   D r a w P O b j e c t ( P 0 b j e c t  * Objec tToXform)  

i n t  i. j .  NumFaces - ObjectToXform->NumFaces. NumVer t ices ;  
i n t  * VertNumsPtr;  
Face * FacePt r  - Ob jec tToXfo rm->FaceL is t :  
P o i n t  * S c r e e n p o i n t s  - Ob jec tToXfo rm->ScreenVer texL is t ;  
l o n g   v l ,   v 2 ,  w l .  w2; 
P o i n t  VerticesCMAX-POLY-LENGTH]; 
P o i n t L i s t H e a d e r   P o l y g o n ;  

I* Draw  each v i s i b l e   f a c e   ( p o l y g o n )   o f   t h e   o b j e c t   i n   t u r n  *I  
fo r   ( i -0 ;   i<NumFaces;  i++. FacePtr++) { 

NumVer t i ces  - FacePtr->NumVerts;  
/ *  C o p y   o v e r   t h e   f a c e ' s   v e r t i c e s   f r o m   t h e   v e r t e x   l i s t  *I  
f o r   ( j - 0 ,  Ver tNumsPt r -FacePt r ->Ver tNums;  j<NumVer t i ces ;  j++) 

/*  Draw o n l y  i f  o u t s i d e   f a c e   s h o w i n g  ( i f  t h e   n o r m a l   t o   t h e  

v l  - V e r t i c e s C 1 l . X  - Vert icesCO1.X: 
w l  - Ver t i cesCNumVer t i ces -1 l .X  - Vert icesCO1.X: 
v2 - Vert icesC11.Y - Vert icesCO1.Y: 
w2 - VerticesCNumVertices-l1.Y - Vert icesCO1.Y; 
i f  ( ( v l * w 2  - v2*wl )  > 0 )  ( 

V e r t i c e s C j l  - ScreenPointsC*Ver tNumsPtr++l ;  

p o l y g o n   p o i n t s   t o w a r d   v i e w e r ;   t h a t   i s .   h a s  a p o s i t i v e  Z component) *I  

I* It i s   f a c i n g   t h e   s c r e e n ,  so draw *I  
I* A p p r o p r i a t e l y   a d j u s t   t h e   e x t e n t   o f   t h e   r e c t a n g l e   u s e d   t o  

e r a s e   t h i s   o b j e c t   l a t e r  * /  
f o r   ( j - 0 ;   j < N u m V e r t i c e s ;  j++) { 

i f  ( V e r t i c e s C j 1 . X  > 
ObjectToXform->EraseRectCNonDisplayedPagel .Right~ 

ObjectToXform->EraseRect [NonDisp layedPagel .Right  - 
e l s e  ObjectToXform->EraseRect [NonDisp layedPagel .Right  = 

i f  ( V e r t i c e s C j 1 . X  < SCREEN-WIDTH) 

V e r t i c e s C j 1 . X ;  

SCREEN-WIDTH; 
i f  ( V e r t i c e s C j 1 . Y  > 

Db jec tToXfo rm->EraseRec t [NonD isp layedPage l .Bo t tom~ 

ObjectToXform->EraseRect [NonDisp layedPagel .Bot tom - i f  ( V e r t i c e s C j 1 . Y  < SCREEN-HEIGHT) 

V e r t i c e s C j 1 . Y ;  
e l s e  ObjectToXform->EraseRect [NonDisp layedPagel .Bot tom- 

SCREEN-HEIGHT; 
i f  ( V e r t i c e s C j 1 . X  < 

ObjectToXform->EraseRect[NonDisplayedPagel.Left) 
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i f  ( V e r t i c e s C j 1 . X  > 0 )  
Ob jec tToXfo rm->EraseRec t [NonD isp layedPage l .Le f t  - 

e l s e  O b j e c t T o X f o r m - > E r a s e R e c t [ N o n D i  sp l   ayedPage1.   Lef t -0 :  
V e r t i c e s C j 1 . X ;  

i f  ( V e r t i c e s r j 1 . Y  < 
Ob jec tToXform->EraseRect [NonDisp layedPage l .Top)  

Ob jec tToXform->EraseRectCNonDisp layedPage l .Top - 
e l s e  Objec tToXform->EraseRect [NonDisp layedPage l .Top-O:  

i f  ( V e r t i c e s C j 1 . Y  > 0 )  

V e r t i c e s C j 1 . Y :  

> 
/ *  Draw t h e   p o l y g o n  * /  
DRAW-POLYGON(Vertices. NumVer t i ces .   FacePt r ->Co lo r .  0. 0 ) :  

I 

LISTING 52.8  152-8.C 
/*  I n i t i a l i z e s   t h e  cubes  and  adds  them t o   t h e   o b j e c t   l i s t .  * /  

#i n c l   u d e   < s t d l  i b.  h> 
#i ncl  ude  <math.  h> 
ti ncl   ude  "po lygon.   h"  

# d e f i n e  ROT-6 ("PI / 30 .0)  / *  r o t a t e  6 d e g r e e s   a t  a t i m e  */  
# d e f i n e  ROT-3 ("PI / 60.0) /*  r o t a t e  3 d e g r e e s   a t  a t i m e  */  
# d e f i n e  ROT-2 ("PI / 90.0)  / *  r o t a t e  2 d e g r e e s   a t  a t i m e  */  
# d e f i n e  NUM-CUBES 12 / *  d o f  cubes * /  

P o i n t 3  CubeVertsCNUM-CUBE-VERTSI: /* s e t   e l s e w h e r e ,   f r o m   f l o a t s  * /  
/ *  v e r t e x   i n d i c e s   f o r   i n d i v i d u a l   c u b e   f a c e s  */  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  
s t a t i c  

n t   F a c e l [ ]  = (1.3.2.0}:  
n t  FaceZCl - [5.7.3.11; 
n t  Face3C1 - 14.5.1.01: 
n t  Face4[] - (3.7.6.21: 
n t  Face5C1 - (5.4.6.71; 
n t  Face6CI = I0 .2 .6 .41 :  
n t   *Ver tNumList [ ] - [Facel ,   FaceZ,   Face3.   Face4.   Face5.   Face61:  
n t   V e r t s I n F a c e [ ] - {  sizeof(Facel)/sizeof(int). 

i 
i 
i 
i 
i 
i 
i 
i 

s i z e o f ( F a c e 2 ) / s i z e o f ( i n t ) .  sizeof(Face3)/sizeof(int), 
s i z e o f ( F a c e 4 ) / s i z e o f ( i n t ) .  s i z e o f ( F a c e 5 ) / s i z e o f ( i n t ) .  
s i z e o f ( F a c e 6 ) / s i z e o f ( i n t )  I :  

/* X .  Y .  2 r o t a t i o n s  f o r  cubes * I  
s t a t i c   R o t a t e c o n t r o l  InitialRotateCNUM-CUBES] = I 

{O.O.ROT_6.ROT-6), ~ROT~3,0.O,ROT~3II   [ROT_3.ROT_3.0.0},  
(ROT-3, -ROT-3,0.01  .I-ROT_3.ROT-2,0.01,  (-ROTL6.-ROT-3.0.01, 
~ R O T ~ 3 . 0 . 0 . - R O T ~ 6 ~ . ~ - R O T _ 2 . 0 . O . 0 ~ R 0 T ~ 3 J , ~ - R 0 T ~ 3 , 0 . 0 , - R 0 T ~ 3 1 ,  
[ O . O . R O T _ 2 . - R O T ~ 2 ~ . ( O . O , - R O T _ 3 . R O T ~ 3 } , ~ O . O , - R O T ~ 6 , - R O T ~ 6 ~ , } :  

s ta t ic   MoveContro l   In i t ia lMove[NUM-CUBES] - I 
[0,0.80.0.0.0,0,0,-350J,[0,0,80,0,0,0,0,0,-350J, 
~0 .0 .B0 .0 .0 .0 ,0 .0 . -3501 ,~0 ,0 ,80 ,0 ,0 ,0 ,0 ,0 , -3501 ,  
I0.0.80.0.0.0.0.0.-3501~~0,0~80.0.0.0.0.0,-3501, 
~0.0.80.0.0,0.0.0.-350~,(0,0,80,0,0,0,0,0,-350), 
~0,0.80.0.0.0.0.0,-3501,~0,0.80,0,0.0.0.0;3501, 
~0,0,80,0.0,0,0.0.-350~,~0,0,80.0.0.0.0.0,-3501, I :  

/ *  f a c e   c o l o r s   f o r   v a r i o u s   c u b e s  * /  
s t a t i c   i n t  Colors[NUM-CUBES][NUM_CVBE-FACESI - I 

~15.14.12.11.10.9~.I1,2,3,4,5,61,~35.37,39,41,43,45~, 
(47.49,51.53.55.571.(59.61.63.65.67.691,(71,73,75,77,79,811, 
I83,85.87.89.91,93~.~95.97.99,101,103.105J, 
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(107.109,111.113.115~1171,~119,121,123,125,127,1291, 
{131,133,135.137,139,1411,~143.145.147,149,151~1531 I ;  

/*  s t a r t i n g   c o o r d i n a t e s  for cubes i n   w o r l d   s p a c e  */  
s t a t i c   i n t  CubeStartCoords[NUM-CUBESIC31 - I 

[ 100 .0 . -60001 .   I 100 .70 .~60001 .  I100 , -70 . -60001 ,  (33.0. -6000] .  
133.70, -60001,   I33. -70. -60001.  I -33 .0 . -60001 .  I -33 ,70 . -60001 ,  
~-33.-70.-60001.~-100.0.-6000~, ( -100.70. -6000) ,  I -100 . -70 . -60003) :  

/ *  d e l a y   c o u n t s   ( s p e e d   c o n t r o l )   f o r   c u b e s  */  
s t a t i c   i n t  InitRDelayCountsCNUM_CVBESI - (1.2.1,2.1.1.1.1.1.2.1.1): 
s t a t i c   i n t  BaseRDelayCountsCNUM_CUBESI - (1,2,1,2,2,1,1,1,2,2,2,11; 
s t a t i c   i n t  InitMDelayCountsCNUM_CUBESl - {1,1,1,1,1,1,1,1,1,1,1,11; 
s t a t i c   i n t  BaseMDelayCountsCNUM~CUBESl - ~1.1.1.1.1.1.1.1,1.1,1,11; 

v o i d   I n i t i a l i z e C u b e s O  
I 

i n t  i. j ,  k ;  
PObject   *Workingcube: 

f o r   ( i - 0 :  i<NUM-CUBES; i++) ( 
i f  ( (Work ingcube  - malloc(sizeof(P0bject))) - NULL) I 

p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) :   e x i t ( 1 ) ;  I 
Workingcube->DrawFunc - DrawPObject: 
Work ingcube->RecalcFunc = X fo rmAndPro jec tPOb jec t :  
Workingcube->MoveFunc - RotateAndMovePObject ;  
Workingcube->RecalcXform - 1: 
f o r  (k-0:  k<2: k++) { 

Workingcube->EraseRect[kl.Left - 
Workingcube->EraseRect [k l .Right  - 0;  
Workingcube->EraseRect[kl.Bottom - 0:  

Workingcube->EraseRect[kl.Top - Ox7FFF; 

I 
Workingcube->RDelayCount - I n i t R D e l a y C o u n t s C i l :  
Workingcube->RDelayCountBase - BaseRDelayCountsCi l ;  
Workingcube->MDelayCount - I n i t M D e l a y C o u n t s C i l :  
Workingcube->MDelayCountBase - BaseMDelayCounts[ i l ;  
/ *  S e t   t h e   o b j e c t - > w o r l d   x f o r m   t o   n o n e  * /  
f o r   ( j - 0 ;   j < 3 ;  j++) 

f o r   ( k - 0 ;   k < 4 ;  k++) 
Workingcube->XformToWorld[jl[kl - INT-TOpFIXED(0); 

Workingcube->XformToWorld[Ol[Ol - 
Workingcube->XformToWorld[llCll - 
WorkingCube->XformToWorldC23C21 - 
WorkingCube->XformToWorld[31[3] - INT-TO_FIXED(l): 

/ *  S e t   t h e   i n i t i a l   l o c a t i o n  * /  
f o r   ( j - 0 ;   j < 3 ;  j++) WorkingCube->XformToWorldCjl[31 - 
Workingcube->NumVerts - NUM-CUBE-VERTS: 
W o r k i n g c u b e - > V e r t e x L i s t  - CubeVerts :  
Workingcube->NumFaces - NUM-CUBELFACES: 
Work ingcube->Rotate - I n i t i a l R o t a t e C i l :  
Workingcube->Move.MoveX - INT-TO~FIXED(InitialMove[i].MoveX): 
Workingcube->Move.MoveY - I N T ~ T O ~ F I X E D ( I n i t i a l M o v e C i l . M o v e Y ) ;  
Workingcube->Move.MoveZ - INT~TO~FIXEO(InitialMove[il.MoveZ); 
Workingcube->Move.MinX - INT~TO~FIXEO(InitialMove~il.MinX): 
Workingcube->Move.MinY - INT_TO-FIXED(InitialMoveCil.MinY); 
Workingcube->Move.MinZ - INT-TO-FIXED(InitialMoveCil.MinZ); 
Workingcube->Move.MaxX - INT-TO-FIXED(InitialMove[il.MaxX); 
Workingcube->Move.MaxY - INT-TO-FIXED(InitialMove[il.MaxY); 
Workingcube->Move.MaxZ - INT_TO-FIXED(InitialMove[i].MaxZ); 

I N T ~ T O ~ F I X E D ( C u b e S t a r t C o o r d s C i 1 C j l ) :  
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i f  ( (Workingcube->XformedVertexList  - 
malloc(NUM-CUBE-VERTS*sizeof(Point3))) - NULL) { 

p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) ;   e x i t ( 1 ) ;  ) 
i f  ( ( W o r k i n g c u b e - > P r o j e c t e d V e r t e x L i s t  - 

malloc(NUM-CUBE-VERTS*sizeof(Point3))) - NULL) { 
p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) ;   e x i t ( 1 ) ;  1 

i f  ( (Work ingcube->ScreenVer texL is t  - 
malloc(NUM_CUBE-VERTS*sizeof(Point))) - NULL) { 

p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) ;   e x i t ( 1 ) ;  
i f  ( ( W o r k i n g c u b e - > F a c e L i s t  - 

malloc(NUM-CUBE_FACES*sizeof(Face))) - NULL) { 
p r i n t f ( " C o u 1 d n ' t   g e t   m e m o r y \ n " ) ;   e x i t ( 1 ) ;  1 

/*  I n i t i a l i z e   t h e   f a c e s  */  
f o r   ( j - 0 ;  j<NUM-CUBE-FACES; j++) { 

Work ingcube->FaceLis t [ j l .Ver tNums - V e r t N u m L i s t C j l ;  
Work ingcube->FaceLis tCj l .NumVerts  - V e r t s I n F a c e C j l :  

1 
WorkingCube->FaceList[jl.Color - C o l o r s C i l [ j ] ;  

ObjectListCNumObjects++l - (Object   * )Work ingCube;  
1 

1 

LISTING 52.9 152-9.ASM 
; 3 8 6 - s p e c i f i c   f i x e d   p o i n t   m u l t i p l y  a n d   d i v i d e .  

; C n e a r - c a l l a b l e   a s :   F i x e d p o i n t   F i x e d M u l ( F i x e d p 0 i n t  M 1 .  F i x e d p o i n t   M 2 ) ;  
F i x e d p o i n t   F i x e d D i v ( F i x e d p o i n t   D i v i d e n d ,   F i x e d p o i n t   D i v i s o r ) ;  

; T e s t e d   w i t h  TASM 

.model  smal l  

.386 

.code 
pub1 i c -FixedMul  .-Fi  xedDi v 

; M u l t i D l i e s   t w o   f i x e d - p o i n t   v a l u e s   t o g e t h e r .  
FMparms s t r u c  

dw 
M 1  dd 
M2 dd 
FMparms ends 

- FixedMul 
a1 i g n  

push 
mov 
mov 
i mu1 
add 
adc 
s h r  
POP 
r e t  

-Fi  xedMul 

2 d u p ( ? )   ; r e t u r n   a d d r e s s  & pushed BP 
? 
? 

2 

bP 
p r o c   n e a r  

b p . w  
eax.[bp+M11 
dword p t r  Cbp+M2] ; m u l t i p l y  
eax ,   8000h  ; round  by   add ing   2^ ( -16)  
edx, 0 ; w h o l e   p a r t   o f   r e s u l t   i s  i n  OX 
e a x . 1 6   ; p u t   t h e   f r a c t i o n a l   p a r t   i n  AX 
bP 

endp 
; D i v i d e s   o n e   f i x e d - p o i n t   v a l u e   b y   a n o t h e r .  
FDparms s t r u c  

D i v i d e n d   d d  ? 
D i v i s o r   d d  ? 
FDparms  ends 

a l i g n  2 

dw 2 d u p ( ? )   ; r e t u r n   a d d r e s s  & pushed BP 

Fast 3-D Animation: Meet X-Sharp 98 1 



- F i  xedDi v 

F D P l  : 

FDPL: 

FDP3: 

push 
mov 
sub 
mov 
and 
j n s  
i nc 

sub 

r o l  

mov 
sub 
mov 
and 
j n s  
dec 
neg 
d i  v 
s h r  
adc 
dec 
CmP 
adc 

and 
j z  
neg 
mov 

s h r  
POP 
r e t  

neg 

- Fi   xedDi  v 
end 

p r o c   n e a r  
bp 
bp. SP 
c x ,   c x  ;assume p o s i t i v e   r e s u l t  
eax.Cbp+Div idendl  
e a x ,   e a x   ; p o s i t i v e   d i v i d e n d ?  
FDPl  ;yes 
cx  :mark i t ' s  a n e g a t i v e   d i v i d e n d  
eax ;make t h e   d i v i d e n d   p o s i t i v e  
edx,  edx ;make it a 6 4 - b i t   d i v i d e n d ,   t h e n   s h i f t  

: l e f t  16 b i t s  so t h a t   r e s u l t  will be i n  EAX 
e a x ,   1 6   : p u t   f r a c t i o n a l   p a r t   o f   d i v i d e n d   i n  

: h i g h   w o r d   o f  EAX 
d x , a x   : p u t   w h o l e   p a r t   o f   d i v i d e n d   i n  DX 
a x . a x   : c l e a r   l o w   w o r d   o f  EAX 
e b x . d w o r d   p t r   [ b p + D i v i s o r l  
ebx.ebx 
FDPZ 

: p o s i t i v e   d i v i s o r ?  
:yes 

cx  :mark i t ' s  a n e g a t i v e   d i v i s o r  
ebx :make d i v i s o r   p o s i t i v e  
e b x   ; d i v i d e  
e b x . 1   ; d i v i s o r / 2 .   m i n u s  1 i f  t h e   d i v i s o r   i s  
ebx.O : even 
ebx 
ebx ,   edx   ; se t   Car ry  i f  remainder  i s   a t   l e a s t  
eax,  0 ; h a l f  as l a r g e  as t h e   d i v i s o r ,   t h e n  

: u s e   t h a t   t o   r o u n d   u p  i f  necessa ry  
; s h o u l d   t h e   r e s u l t  be made n e g a t i v e ?  
;no 

c x  , c x  
FDP3 
eax  ;yes.   negate i t  
edx , e a x   ; r e t u r n   r e s u l t   i n  D X : A X ;  f r a c t i o n a l  

e d x ,   1 6   : w h o l e   p a r t   o f   r e s u l t   i n  DX 
: p a r t   i s   a l r e a d y   i n  AX 

bp 

endp 

LISTING 52.10 POLYG0N.H 
/ *  POLYG0N.H: Header f i l e   f o r   p o l y g o n - f i l l i n g   c o d e ,   a l s o   i n c l u d e s  

a number o f   u s e f u l   i t e m s   f o r  3-D a n i m a t i o n .  * I  

# d e f i n e  MAX-OBJECTS 100 / *  max s imu l taneous  # o b j e c t s   s u p p o r t e d  */  
# d e f i n e  MAX-POLY-LENGTH 4 I* f o u r   v e r t i c e s   i s   t h e  max p e r   p o l y  * /  
# d e f i n e  SCREEN-WIDTH 320 
# d e f i n e  SCREEN-HEIGHT 240 
# d e f i n e  PAGEO-START-OFFSET 0 
# d e f i n e  PAGE1-START-OFFSET (((long)SCREENLHEIGHT*SCREEN_WIDTH)/4) 
# d e f i n e  NUM-CUBE-VERTS 8 / *  # o f   v e r t i c e s   p e r   c u b e  */  
# d e f i n e  NUM-CUBE-FACES 6 I* # o f   f a c e s   p e r   c u b e  */  
/*  R a t i o :   d i s t a n c e   f r o m   v i e w p o i n t   t o   p r o j e c t i o n   p l a n e  / w i d t h   o f  

p r o j e c t i o n   p l a n e .   D e f i n e s   t h e   w i d t h   o f   t h e   f i e l d   o f   v i e w .  Lower 
a b s o l u t e   v a l u e s  - w i d e r   f i e l d s   o f   v i e w :   h i g h e r   v a l u e s  - nar rower  * /  

# d e f i n e  PROJECTION-RATIO -2 .0  / *  n e g a t i v e   b e c a u s e   v i s i b l e  2 

/ *  Draws t h e   p o l y g o n   d e s c r i b e d   b y   t h e   p o i n t   l i s t   P o i n t L i s t   i n   c o l o r  
C o l o r   w i t h   a l l   v e r t i c e s   o f f s e t  by ( X . Y )  * I  

# d e f i n e  DRAW-POLYGON(PointList.NumPoints.Co1or.X.Y) \ 
Polygon.Length - NumPo in ts :   Po lygon .Po in tP t r  - P o i n t L i s t ;  \ 
FillConvexPolygon(&Polygon. C o l o r ,  X. Y ) ;  

c o o r d i n a t e s   a r e   n e g a t i v e  * /  
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# d e f i n e  INT-TO-FIXED(x) ( ( ( l o n g ) ( i n t ) x )  << 1 6 )  
# d e f i n e  DOUBLE-TO-FIXED(x) ( ( l o n g )   ( x  * 65536.0 + 0.5)) 

t y p e d e f  1 o n g   F i x e d p o i   n t  : 
typede f   F i xedpo in t   X fo rmC31 [41 :  
I* D e s c r i b e s  a s i n g l e  2D p o i n t  *I  
t y p e d e f   s t r u c t  { i n t  X :  i n t  Y ;  1 P o i n t :  
I* D e s c r i b e s  a s i n g l e  3D p o i n t   i n  homogeneous c o o r d i n a t e s :   t h e  W 

t y p e d e f   s t r u c t  I F i x e d p o i n t  X .  Y .  Z; I P o i n t 3 :  
t y p e d e f   s t r u c t  { i n t  X :  i n t  Y :  i n t  Z: I I n t P o i n t 3 :  
I* D e s c r i b e s  a s e r i e s   o f   p o i n t s   ( u s e d   t o   s t o r e  a l i s t   o f   v e r t i c e s   t h a t  

d e s c r i b e  a p o l y g o n :   e a c h   v e r t e x   i s  assumed t o   c o n n e c t   t o   t h e   t w o  
a d j a c e n t   v e r t i c e s :   l a s t   v e r t e x   i s  assumed t o   c o n n e c t   t o   f i r s t )  *I  

c o o r d i n a t e   i s n ' t   p r e s e n t ,   t h o u g h :  assumed t o  be 1 a n d   i m p l i e d  *I  

t y p e d e f   s t r u c t  { i n t   L e n g t h :   P o i n t  * P o i n t P t r :  > P o i n t L i s t H e a d e r ;  
/ *  D e s c r i b e s   t h e   b e g i n n i n g   a n d   e n d i n g  X c o o r d i n a t e s  o f  a s i n g l e  

t y p e d e f   s t r u c t  { i n t  X S t a r t ;   i n t  XEnd: I HLine:  
I* D e s c r i b e s  a L e n g t h - l o n g   s e r i e s   o f   h o r i z o n t a l   l i n e s ,   a l l  assumed t o  

h o r i z o n t a l   l i n e  *I  

be on c o n t i g u o u s   s c a n   l i n e s   s t a r t i n g   a t   Y S t a r t   a n d   p r o c e e d i n g  
downward  (used t o   d e s c r i b e  a s c a n - c o n v e r t e d   p o l y g o n   t o   t h e  
l o w - l e v e l   h a r d w a r e - d e p e n d e n t   d r a w i n g   c o d e ) .  * /  

t y p e d e f   s t r u c t  { i n t   L e n g t h :   i n t   Y S t a r t :   H L i n e  * H L i n e P t r : }   H L i n e L i s t :  
t y p e d e f   s t r u c t  { i n t   L e f t ,   T o p ,   R i g h t ,   B o t t o m :  > Rec t ;  
I* s t r u c t u r e   d e s c r i b i n g   o n e   f a c e  o f  an o b j e c t   ( o n e   p o l y g o n )  * /  
t y p e d e f   s t r u c t  { i n t  * VertNums: i n t  NumVerts; i n t   C o l o r :  } Face: 
t y p e d e f   s t r u c t  I doub le   Ro ta teX .   Ro ta teY .   Ro ta teZ :  1 R o t a t e C o n t r o l ;  
t y p e d e f   s t r u c t  { F i x e d p o i n t  MoveX,  MoveY.  MoveZ. Minx,   MinY.  MinZ. 

MaxX. MaxY. MaxZ; I MoveCont ro l :  
I* f i e l d s  common t o   e v e r y   o b j e c t  * /  
# d e f i n e  BASE-OBJECT \ 

v o i d   ( * D r a w F u n c ) O :  / *  d raws   ob jec t  *I  \ 
v o i d   ( * R e c a l c F u n c ) ( ) :  I* p r e p a r e s   o b j e c t   f o r   d r a w i n g  * /  \ 
vo id   ( *MoveFunc )O:  I* moves o b j e c t  *I  \ 
i n t  Reca lcXform;  I* 1 t o   i n d i c a t e  need t o   r e c a l c  *I  \ 
Rect  EraseRectC21: I* r e c t a n g l e   t o   e r a s e   i n   e a c h   p a g e  * /  

I* b a s i c   o b j e c t  *I  
t y p e d e f   s t r u c t  { BASELOBJECT 1 O b j e c t :  
I* s t r u c t u r e   d e s c r i b i n g  a p o l y g o n - b a s e d   o b j e c t  *I  
t y p e d e f   s t r u c t  I 

BASE-OBJECT 
i n t  RDelayCount.  RDelayCountBase: I* c o n t r o l s   r o t a t i o n   s p e e d  * /  
i n t  MDelayCount,  MDelayCountBase: I* c o n t r o l s  movement  speed * I  
Xform  XformToWorld; / *  t r a n s f o r m   f r o m   o b j e c t - > w o r l d   s p a c e  * /  
Xform  XformToView; / *  t r a n s f o r m   f r o m   o b j e c t - > v i e w   s p a c e  *I  
R o t a t e C o n t r o l   R o t a t e :  I* c o n t r o l s   r o t a t i o n   c h a n g e   o v e r   t i m e  * I  
MoveControl  Move: I* c o n t r o l s   o b j e c t  movement  over  t ime * I  
i n t  NumVerts; / *  # v e r t i c e s   i n   V e r t e x L i s t  * I  
P o i   n t 3  * V e r t e x L i   s t :  I* u n t r a n s f o r m e d   v e r t i c e s  * I  
P o i n t 3  * X f o r m e d V e r t e x L i s t ;  / *  t r a n s f o r m e d   i n t o   v i e w   s p a c e  *I  
P o i n t 3  * P r o j e c t e d V e r t e x L i s t :  I* p r o j e c t e d   i n t o   s c r e e n   s p a c e  */  
P o i n t  * S c r e e n V e r t e x L i s t :  I* c o n v e r t e d   t o   s c r e e n   c o o r d i n a t e s  *I  
i n t  NumFaces : I* # o f   f a c e s   i n   o b j e c t  * /  
Face * F a c e L i s t ;  /*  p o i n t e r   t o   f a c e   i n f o  *I  

I PObjec t :  

e x t e r n   v o i d   X f o r m V e c ( X f o r m .   F i x e d p o i n t  *, F i x e d p o i n t  * ) ;  
ex te rn   vo id   Conca tX fo rms(X fo rm.   X fo rm,   X fo rm) :  
e x t e r n   i n t  FillConvexPolygon(PointListHeader *, i n t .   i n t .   i n t ) :  
e x t e r n   v o i d   S e t 3 2 0 ~ 2 4 0 M o d e ( v o i d ) :  
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e x t e r n   v o i d   S h o w P a g e ( u n s i g n e d   i n t ) :  
e x t e r n   v o i d   F i l l R e c t a n g l e X ( i n t .   i n t .   i n t .   i n t .   u n s i g n e d   i n t .   i n t ) ;  
e x t e r n   v o i d  XformAndProjectPObject (P0bject  * ) ;  
e x t e r n   v o i d   D r a w P O b j e c t ( P 0 b j e c t  *) ;  
extern   vo id   AppendRota t ionX(Xform.   double ) :  
ex tern   vo id   AppendRota t ionY(Xform.   double ) ;  
ex tern   vo id   AppendRota t ionZ(Xform.   double ) :  
e x t e r n   n e a r   F i x e d p o i n t   F i x e d M u l ( F i x e d p o i n t .   F i x e d p o i n t ) ;  
e x t e r n   n e a r   F i x e d p o i n t   F i x e d D i v ( F i x e d p 0 i n t .   F i x e d p o i n t ) ;  
e x t e r n   v o i d  InitializeFixedPoint(void); 
e x t e r n   v o i d  RotateAndMovePObject (P0bject  * ) ;  
e x t e r n   v o i d   I n i t i a l i z e C u b e s ( v o i d ) ;  
e x t e r n   i n t   D i   s p l   a y e d P a g e ,  NonDi spl  ayedPage.  Recal  cAl1  Xforms ; 
e x t e r n   i n t   N u m O b j e c t s ;  
extern  Xform  WorldViewXform; 
e x t e r n   O b j e c t   * O b j e c t L i s t [ l ;  
e x t e r n   P o i n t 3   C u b e V e r t s C ] ;  

A New Animation  Framework:  X-Sharp 
Listings 52.1 through 52.10 shown earlier  represent  not merely faster animation  in 
library form,  but also a nearly complete,  extensible,  datadriven  animation frame- 
work. Whereas much of the  earlier  animation  code I’ve presented  in this book was 
hardwired to demonstrate  certain  concepts, this chapter’s  code is intended to serve 
as the basis for  a solid animation package. Objects are  stored, in their entirety, in 
customizable structures; new structures can be  devised for new sorts of objects. Draw- 
ing,  preparing  for drawing, and moving are all vectored functions, so that variations 
such as shading or texturing, or even  radically different sorts of graphics objects, 
such as scaled bitmaps, could  be  supported. The cube initialization is entirely  data 
driven; more or different cubes, or  other sorts of  convex polyhedrons, could be added 
by simply changing  the initialization data in  Listing 52.8. 
Somewhere along  the way in writing the material that became this section of the 
book, I realized that I had  a generally useful animation package by the tail and gave 
it  a  name: X-Sharp. (Xfor Mode X, sharp because good  animation looks sharp,  and, 
well,  who  would  want a flat animation  package?) 
Note that  the X-Sharp library as presented in this chapter  (and,  indeed,  in this book) 
is not  a fully complete 3-D library.  Movement is supported only along  the Z axis in 
this chapter’s version, and  then  in  a  non-general  fashion. More interesting move- 
ment isn’t supported  at this point because of one of the two missing features in 
X-Sharp: hidden-surface removal. (The  other missing feature is general 3-D clip 
ping.)  Without  hidden surface removal, nothing can  safely overlap. It would  actually 
be easy enough to perform  hidden-surface removal by keeping  the cubes in differ- 
ent Z bands and drawing them back to  front,  but this gets into  sorting and list  issues, 
and is not  a complete solution-and  I’ve crammed as much as will fit into  one chapter’s 
code, anyway. 
I’m working  toward a goal in this last section of the  book, and  there  are many  lessons 
to be  learned  and stories to be told along  the way. So as  X-Sharp  grows,  you’ll find its 
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evolving implementations in the  chapter subdirectories on  the listings diskette. This 
chapter’s  subdirectory,  for  example,  contains  the  self-extracting  archive file 
XSHARP14.EXE, (to extract its contents you  simply run it as though it were a pro- 
gram)  and  the  code  in  that archive is the code I’m speaking of  specifically in this 
chapter, with  all the limitations mentioned above. Chapter 53’s subdirectory, how- 
ever, contains the file XSHARP15.EXE,  which is the  next  step in the evolution of 
X-Sharp, and it is the version that I’ll be specifically talking about in that chapter. 
Later chapters will  have their own implementations  in  their respective chapter 
subdirectories, in files of the  form XSHARPxx.EXE, where xx is an  ascending  num- 
ber  indicating  the version. The final and most recent X-Sharp  version will be present 
in its own subdirectory called XSHARP22.  If you’re intending to  use  X-Sharp in  a 
real project, use the most recent version to be sure  that you  avail  yourself  of  all  new 
features and bug fixes. 

Three  Keys to Realtime Animation Performance 
As of the previous chapter, we were at  the  point where we could rotate, move, and 
draw a solid cube in real time. Not too shabby. ..but the  code I’m presenting  in this 
chapter goes a bit further,  rotating 12 solid cubes at  an  update  rate of about  15 
frames per second (fps)  on  a 20 MHz 386  with a slow VGA. That’s 12 transformation 
matrices, 72 polygons, and 96  vertices being  handled in real time; not Star Wars, 
granted,  but  a  giant  step beyond a single cube. Run the  program if you get  a  chance; 
you  may be surprised  at  just how effective this level  of animation is. I’d like to point 
out, in case anyone missed it,  that this is fully general 3-D. I’m not using any shortcuts 
or tricks,  like prestoring  coordinates or pregenerating bitmaps; if you  were to feed in 
different  rotations or vertices, the animation would change accordingly. 
The keys to the  performance increase manifested in this chapter’s  code  are  three. 
The first key is fixed-point arithmetic.  In  the previous two chapters, we worked  with 
floating-point coordinates and transformation matrices. Those values are now stored 
as  32-bit fixed-point numbers,  in  the  form 16.16 (16 bits of  whole number,  16 bits of 
fraction). 32-bit fxed-point numbers allow sufficient  precision for 3-D animation, but 
can be manipulated with  fast integer  operations,  rather  than by  slow floating-point 
processor operations or excruciatingly slow floating-point emulator operations.  Although 
the  speed advantage of fixed-point varies depending  on  the  operation,  on  the pro- 
cessor, and  on whether or  not a coprocessor is present, fixed-point multiplication 
can be as much as 100 times faster than  the  emulated floating-point equivalent. (I’d 
like  to take a  moment to thank Chris Hecker for his invaluable input in this area.) 
The second performance key is the use of the 386’s  native  32-bit multiply and divide 
instructions. C compilers operating in  real  mode  call  library routines to perform multi- 
plications and divisions  involving  32-bit  values, and those library functions  are fairly 
slow, especially for division. On a 386,32-bit multiplication and division can  be handled 
with the bit of code in Listing 52.9-and  most  of  even that code is only for  rounding. 
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The third  performance key is maintaining and operating on only the relevant  por- 
tions of transformation  matrices and coordinates. The  bottom row  of every 
transformation matrix we’ll  use (in this book) is [0 0 0 11, so why bother using or 
recalculating it when concatenating transforms and transforming points? Likewise 
for the  fourth  element of a 3-D vector in homogeneous coordinates, which is always 
1. Basically, transformation matrices are treated as consisting of a 3x3 rotation ma- 
trix and a 3x1 translation vector, and coordinates are treated as  3x1  vectors. This 
saves a great many multiplications in the course of transforming each point. 
Just for  fun, I reimplemented the animation of  Listings  52.1 through 52.10  with 
floating-point instructions. Together, the preceeding optimizations improve the per- 
formance of the entire animation-including  drawing  time and overhead, and  not 
just math-by more than ten times  over the code that uses the floating-point emula- 
tor.  Amazing  what one can  accomplish  with a few dozen lines of  assembly and a 
switch in number format, isn’t it? Note that no assembly code other than the native 
386  multiply and divide is used in Listings  52.1 through 52.10, although the polygon 
fill code is  of course mostly in assembly;  we’ve achieved  12 cubes animated at  15 fps 
while doing  the 3-D  work almost entirely in Borland C++, and we’re still doing sine 
and cosine via the floating-point emulator. Happily,  we’re  still nowhere near  the 
upper limit on the animation potential of the PC. 

Drawbacks 
The techniques we’ve used to turbocharge 3-D animation are very powerful, but 
there’s a dark side to them as  well.  Obviously,  native  386 instructions won’t  work on 
8088 and 286 machines. That’s rectifiable; equivalent multiplication and division 
routines could be implemented for real mode and performance would  still  be  rea- 
sonable. It sure is nice to be able to plug  in a 32-bit IMUL or DIV and be done with 
it, though. More importantly,  32-bit fixed-point arithmetic has limitations in range 
and accuracy.  Points outside a 64Kx64Kx64K space  can’t  be handled, imprecision 
tends to creep in over the course of multiple matrix concatenations, and it’s quite 
possible to generate the dreaded divide by 0 interrupt if Z coordinates with absolute 
values  less than one are used. 
I don’t have  space to discuss these issues in detail, but  here  are some  brief thoughts: 
The working  64Kx64Kx64Kfixed-point  space  can  be  paged into a larger virtual  space. 
Imprecision of a pixel or two rarely matters in terms of  display  quality, and deteriora- 
tion of concatenated  rotations can be corrected by restoring orthogonality, for 
example by periodically calculating one row  of the matrix as the cross-product of the 
other two (forcing it to be perpendicular to both). Alternatively, transformations 
can  be calculated from scratch each time an object or the viewer  moves, so there’s no 
chance for cumulative error. 3-D clipping with a front clip plane of -1 or less can 
prevent divide  overflow. 
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Where the  Time  Goes 
The distribution of execution time in  the  animation  code is no longer wildly biased 
toward transformation, but sine and cosine are certainly  still  sucking up cycles.  Like- 
wise, the overhead in the calls to FixedMulO and FixedDivO is  costly.  Much of this is 
correctable with a little  carefully crafted assembly language and a lookup table; I’ll 
provide that shortly. 
Regardless,  with  this chapter we have made the critical jump to a usable  level of 
performance and a serviceable general-purpose framework.  From here  on  out, it’s 
the  fun stuff. 
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chapter 53

raw speed and more



uth About Speed in 3-D Animation 
et’s  call  him  Bert-went  to  Hawaii  with three  other 
n from  high  school.  This was an unchaperoned trip, 
responsibly  as  you’d expect four teenagers to  be- 

a story about a rental car that, to  this day, Bert  can’t 
ood time, though, save for one thing: no girls. 
by the pool, but  the boys couldn’t get past the hi- 

they retired to their hotel room to plot a better approach. This 
g slightly  tipsy teenagers with raging hormones 

ned IQ of four eggplants, it took them no time at all to come 
: streaking. The girls had mentioned their room number, so 

ed the button for the girls’  floor,  shucked their 
clothes as fast as they could, and sprinted to the girls’ door. They  knocked on the 
door  and  ran on down the hall. As the girls opened their door, Bert and his crew 
raced  past,  toward the elevator, laughing hysterically. 
Bert was  by far the fastest of them all. He whisked  between the elevator doors just as 
they started to close; by the time  his friends got there, it was too late, and  the doors 
slid shut in their faces. As the elevator  began  to  move,  Bert could hear the frantic 
pounding of  six  fists thudding on the closed doors. As Bert  stood among the clothes 
littering the elevator  floor, the thought of his friends stuck in the hall, naked as 
jaybirds, was just too much, and  he doubled over  with  helpless laughter, tears  stream- 
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ing down  his  face. The universe  had  blessed  him  with one of those  exceedingly rare 
moments of perfect timing and execution. 
The universe wasn’t done with  Bert quite yet, though. He was still contorted with 
laughter-and  still quite thoroughly undressed-when the elevator doors opened 
again. On the lobby. 
And  with that, we come to  this chapter’s topics: raw speed and hidden surfaces. 

Raw Speed, Part 1 : Assembly Language 
I would  like to state, here  and for the record, that I am not an assembly  language 
fanatic.  Frankly, I prefer programming in C; assembly language is hard work, and I 
can get a whole lot  more done with  fewer  hassles in C. However, I am a performance 
fanatic, performance being defined as having programs be as nimble as  possible  in 
those areas where the user wants  fast response. And, in the course of pursuing per- 
formance, there  are times  when a little assembly  language  goes a long way. 
We’re  now four chapters into development of the X-Sharp 3-D animation package. 
In realtime animation, performance is sine qua non (Latin for “Make it fast or find 
another line of work”), so some  judiciously applied assembly language is in order. In 
the previous chapter, we got up to a serviceable performance level by switching to 
fixed-point math, then implementing the fixed-point multiplication and division 
functions in assembly  in order to  take  advantage of the 386’s  32-bit  capabilities. There’s 
another  area of the program that fairly  cries out for assembly  language: matrix math. 
The function to multiply a matrix by a vector (XformVec()) and the function to 
concatenate matrices (ConcatXforms()) both loop heavily around calls to FixedMul(); 
a lot of calling and looping can  be eliminated by converting these functions to pure 
assembly language. 
Listing  53.1  is the  module FIXED.” from  this chapter’s iteration of X-Sharp,  with 
XformVec() and ConcatXforms() implemented in assembly language. The code is 
heavily optimized, to the  extent of completely unrolling the loops via macros so that 
looping is eliminated altogether. FIXED.ASM is highly  effective; the time  taken for 
matrix math is  now  down to the point where  it’s a fairly minor component of execu- 
tion time, representing less than  ten  percent of the total. It’s  time to turn  our 
optimization  sights  elsewhere. 

LISTING 53.1 FIXED.ASM 
; 3 8 6 - s p e c i f i c   f i x e d   p o i n t   r o u t i n e s .  

ROUNDING-ON 
: T e s t e d   w i t h  TASM 

equ 1 :1 f o r   r o u n d i n g ,  0 f o r  no  rounding 
:no r o u n d i n g   i s   f a s t e r .   r o u n d i n g   i s  
; more a c c u r a t e  

ALIGNMENT equ 2 
.model  smal 1 
. 3 8 6  
.code 
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; M u l t i p l i e s   t w o   f i x e d - p o i n t   v a l u e s   t o g e t h e r .  
; C n e a r - c a l l a b l e   a s :  
; F i x e d p o i n t   F i x e d M u l ( F i x e d p 0 i n t  M1.  F i x e d p o i n t  M2); 
: F i x e d p o i n t   F i x e d D i v ( F i x e d p 0 i n t   D i v i d e n d .   F i x e d p o i n t   D i v i s o r ) :  
FMparms s t r u c  

M 1  dd ? 
M2 dd ? 
FMparms ends 

dw 2 dup(? )   : re tu rn   add ress  d pushed BP 

a1 i g n  ALIGNMENT 
p u b l i c  -FixedMul 

- FixedMul p roc   near  
push bp 
mov bp.sp 
mov eax,[bp+Ml] 
imu l  dword p t r  Cbp+M21 

add  eax.8000h 
adc  edx.O 

shr  eax.16 

r e t  

i f  ROUNDING-ON 

e n d i f  ;ROUNDING-ON 

POP bp 

- FixedMul  endp 

; m u l t i p l y  

: round  by  adding  2".(-17) 
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; p u t   t h e   f r a c t i o n a l   p a r t   i n  A X  

: D i v i d e s  one f i x e d - p o i n t   v a l u e   b y   a n o t h e r .  
: C n e a r - c a l l a b l e   a s :  
; F i x e d p o i n t   F i x e d D i v ( F i x e d p 0 i n t   D i v i d e n d .   F i x e d p o i n t   D i v i s o r ) :  
FOparms s t r u c  

dw 2 dup(? )   : re tu rn   add ress  & pushed BP 
D iv idend  dd  ? 
D i v i s o r  dd ? 
FDparms ends 

a1 i g n  ALIGNMENT 
p u b l i c  - F i  xedDi v 

-Fi  xedDi v p roc   near  
push bp 
mov bp.sp 

i f  ROUNDING-ON 
sub 
mov 
and 
j n s  
i nc 
neg 

FDP1: sub 

r o l  

mov 
sub 
mov 
and 
jns 
dec 
neg 

CX .cx ;assume p o s i t i v e   r e s u l t  
eax, [bp+Dividend] 
eax.eax 
F D P l  

; p o s i t i v e   d i v i d e n d ?  
;yes 
;mark i t ' s  a n e g a t i v e   d i v i d e n d  

eax :make t h e   d i v i d e n d   p o s i t i v e  
edx , edx ;make i t  a 6 4 - b i t   d i v i d e n d ,   t h e n   s h i f t  

cx  

: l e f t  16 b i t s  s o  t h a t   r e s u l t  will be 
; i n  EAX 

: h i g h   w o r d   o f  EAX 
e a x .   1 6   ; p u t   f r a c t i o n a l   p a r t  o f  d i v i d e n d   i n  

d x ,   a x   : p u t   w h o l e   p a r t   o f   d i v i d e n d   i n  DX 
ax ,   ax   :c lear   low  word   o f  EAX 
ebx,dword p t r   [ b p + O i v i s o r ]  
ebx,  ebx 
FDP2 ;yes 
cx  ;mark i t ' s  a n e g a t i v e   d i v i s o r  
ebx :make d i v i s o r   p o s i t i v e  

: p o s i t i v e   d i v i s o r ?  
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FDP2: d i v  ebx 
shr   ebx .1  
adc  ebx.O 
dec  ebx 
cmp ebx,  edx 
adc eax.O 

and  cx,cx 
j z  FOP3 
neg  eax 

FDP3: 
e l s e  : !ROUNDING-ON 

mov edx.Cbp+Dividendl 
sub  eax.eax 
shrd  eax.edx.16 
sar  edx,   16 
i d i v  dword p t r   [ b p + D i v i s o r ]  

s h l d  edx.eax.16 
endi  f 

POP bp 
r e t  

- FixedDi  v  endp 

: d i v i d e  
; d i v i s o r / 2 ,   m i n u s  1 i f  t h e   d i v i s o r   i s  
: even 

; s e t   C a r r y  i f  remainder  i s  a t  l e a s t  
; h a l f  as l a r g e  as t h e   d i v i s o r .   t h e n  
; use t h a t   t o   r o u n d  up if necessary 
; s h o u l d   t h e   r e s u l t   b e  made n e g a t i v e ?  
:no 
:yes.   negate i t  

; p o s i t i o n  s o  t h a t   r e s u l t  ends  up 
; i n  EAX 

;ROUNDING-ON 
; w h o l e   p a r t   o f   r e s u l t   i n  D X ;  
; f r a c t i o n a l   p a r t   i s   a l r e a d y   i n  A X  

~~ ~~ ~ ~~ ~ ~~ ~ ~~ 

; R e t u r n s   t h e   s i n e   a n d   c o s i n e   o f  an  angle. 
; C n e a r - c a l l a b l e   a s :  
; v o i d  CosSin(TAng1e  Angle,   Fixedpoint   *Cos.  Fixedpoint  *) :  

~ ~~ 

a1 i g n  ALIGNMENT 
CosTable  1  abel  dword 

i n c l u d e   c o s t a b l e . i n c  

SCparms s t r u c  

Angle dw ? 
cos dw ? 
S i n  dw ? 
SCparms ends 

dw 2 dup(? )  

a1 i g n  ALIGNMENT 
pub1 i c  JosSi  n 

-CosSin p roc   nea r  
push bp 
mov bp.sp 

mov bx.Cbpl .Angle 
and  bx.bx 
j n s  CheckInRange 

add  bx.360*10 
j s  MakePos 
jmp  short  CheckInRange 

a1 i g n  ALIGNMENT 

sub  bx.360*10 

cmp bx,  360*10 
j g  MakeInRange 

MakePos: 

MakeInRange: 

CheckInRange: 

; re tu rn   add ress  & pushed BP 
:ang le  t o  c a l c u l a t e  s i n e  & c o s i n e   f o r  
: p o i n t e r   t o   c o s   d e s t i n a t i o n  
; p o i n t e r   t o   s i n   d e s t i n a t i o n  

;p rese rve   s tack   f rame 
: s e t  up l o c a l   s t a c k   f r a m e  

:make sure  angle 's   between 0 and  2*pi 

; l e s s   t h a n  0, so make i t  p o s i t i v e  

:make s u r e   a n g l e   i s  no more than  2*p i  
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cmp bx.  180*10 
j a  Eot tomHal f  
cmp bx,  90*10 
j a   Q u a d r a n t l  

sh l   bx .2  
mov eax.CosTable[bxl 
neg  bx 
mov edx.CosTable[bx+90*10*41 
jmp  shor t  CSDone 

a l i g n  ALIGNMENT 

neg  bx 
add  bx,  180*10 
sh l   bx.2 
mov eax.CosTable[bx] 
neg  eax 
neg  bx 
mov edx.CosTableCbx+90*10*4] 
jmp s h o r t  CSDone 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.360*10 
cmp bx,  90*10 
j a  Quadrant2 

sh l   bx .2  
mov eax.CosTable[bx] 
neg  bx 
mov edx.CosTable[90*10*4+bx] 
neg  edx 
jmp  shor t  CSDone 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.180*10 
sh l   bx.2 
mov eax.CosTable[bxl 
neg  eax 
neg  bx 
mov edx,CosTable[90*10*4+bxl 
neg  edx 

mov b x ,   [ b p l  .Cos 
mov Cbxl  .eax 
mov bx, [bp l .S in 
mov [bx]  , edx 

Quadran t l :  

Eot tomHal f :  

Quadrant2:  

CSDone: 

POP bP 
r e t  

- CosSin  endp 

: f i g u r e   o u t   w h i c h   q u a d r a n t  
:quadrant  2 o r  3 
:quadrant  0 o r  1 

:quadrant  0 

: l o o k  up s i n e  
: s i n ( A n g l e )  - cos (90 -Ang le )  
: look up  cos ine 

: conve r t   t o   ang le   be tween  0 and  90 

: l o o k  up cos ine  
: n e g a t i v e   i n   t h i s   q u a d r a n t  
: s i n ( A n g l e )  - cos (90 -Ang le )  
: l ook  up cos ine  

:quadrant  2 o r  3 

: conve r t   t o   ang le   be tween  0 and  180 
:quadrant  2 o r  3 

:quadrant  3 

: l o o k  up cos ine  
; s in (Ang le )  - cos(90-Angle)  
: l o o k  up s i n e  
: n e g a t i v e   i n   t h i s   q u a d r a n t  

: conve r t   t o   ang le   be tween  0 and  90 

: look   up   cos ine  
: n e g a t i v e   i n   t h i s   q u a d r a n t  
: s i n ( A n g l e )  - cos (90 -Ang le )  
: l o o k  up s i n e  
:nega t i ve  i n   t h i s   q u a d r a n t  

: r e s t o r e   s t a c k   f r a m e  

: M a t r i x   m u l t i p l i e s   X f o r m  by  SourceVec.   and  s tores  the  resul t  i n  
: O e s t V e c .   M u l t i p l i e s  a 4 x 4   m a t r i x   t i m e s  a 4 x 1   m a t r i x :   t h e   r e s u l t  
: i s  a 4x1  matr ix .   Cheats  by  assuming  the W coord i s  1 and t h e  
: b o t t o m   r o w   o f   t h e   m a t r i x   i s  0 0 0 1. a n d   d o e s n ' t   b o t h e r   t o   s e t  
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: t h e  W c o o r d i n a t e   o f   t h e   d e s t i n a t i o n .  
: C n e a r - c a l l a b l e   a s :  
: void  XformVec(Xform  WorkingXform,  Fixedpoint  *SourceVec, 

F ixedpoint   *DestVec) :  

: This  assembly  code i s  e q u i v a l e n t   t o   t h i s  C code: 
; i n t  i: 

: f o r   ( i - 0 :   i < 3 :  i+) 
DestVecCi] - FixedMul(WorkingXform[il[Ol, SourceVecCOI) + 

FixedMul(WorkingXform[~l[ll, SourceVecCl]) + 
FixedMul(WorkingXformCilC21, SourceVecC21) + 
Work ingXform[ i l [3 ] :  / *  no  need t o   m u l t i p l y  by W - 1 * /  

XVparms s t r u c  

WorkingXform dw ? : p o i n t e r   t o   t r a n s f o r m   m a t r i x  
SourceVec dw ’? : p o i n t e r   t o   s o u r c e   v e c t o r  
DestVec dw ? ; p o i n t e r   t o   d e s t i n a t i o n   v e c t o r  
XVparms ends 

dw 2   dup (? )   : re tu rn   add ress  a pushed BP 

a1 i g n  ALIGNMENT 
pub1 i c  -XformVec 

- XformVec  proc  near 
push bp 
mov bp.sp 
push s i  
push d i  

mov s i . [bp l .Work ingXform 
mov bx.[bpl.SourceVec 
mov di.Cbp1.DestVec 

s o f f - 0  
d o f f - 0  

REPT 3 
mov e a x . [ s i + s o f f l  
imul  dword p t r   [ b x l  

add  eax.8000h 
adc  edx.0 

e n d i f  :ROUNDING-ON 
shrd  eax.edx.16 
mov ecx,  eax 

mov eax . [s i+so f f+41 
imul  dword p t r  [bx+41 

add  eax.8000h 
adc  edx.0 

e n d i f  :ROUNDING-ON 
shrd  eax.edx.16 
add  ecx.eax 

mov eax . [s i+so f f+81 
imul  dword p t r  Cbx+81 

add  eax.8000h 
adc edx.O 

i f  ROUNDING-ON 

i f  ROUNDING-ON 

i f  ROUNDING-ON 

:p reserve   s tack   f rame 
:se t   up   loca l   s tack   f rame 
: p r e s e r v e   r e g i s t e r   v a r i a b l e s  

: S I  p o i n t s   t o   x f o r m   m a t r i x  
:BX p o i n t s   t o   s o u r c e   v e c t o r  
: D I  p o i n t s   t o   d e s t   v e c t o r  

:do  once  each f o r   d e s t  X ,  Y .  and Z 
:column 0 e n t r y  on t h i s  row 
: x fo rm  en t r y   t imes   sou rce  X e n t r y  

: round  by  adding  2A(-17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  OX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
: s e t   r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row 
: x f o r m   e n t r y   t i m e s   s o u r c e  Y e n t r y  

: round  by  adding 2^(-17) 
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: r u n n i n g   t o t a l   f o r   t h i s  row 

:column  2  entry on t h i s  row 
: x f o r m   e n t r y   t i m e s   s o u r c e  Z e n t r y  

: round  by  adding  2^( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  OX 
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e n d i f  ;ROUNDING-ON 
shrd  eax.edx.16 
add  ecx,  eax 

add ecx , [ s i+so f f+ lZ ]  
mov [ d i + d o f f ]   , e c x  

s o f f - s o f f + l 6  
do f f -do f f+4  

ENDM 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
: r u n n i n g   t o t a l   f o r   t h i s  row 

:add i n   t r a n s l a t i o n  
: s a v e   t h e   r e s u l t  i n  t h e   d e s t   v e c t o r  

pop d i   : r e s t o r e   r e g i s t e r   v a r i  ab1 es 
pop s i  

r e t  
-XformVec  endp 

: M a t r i x   m u l t i p l i e s   S o u r c e X f o r m l  by  SourceXformZ  and s t o r e s   t h e  
: r e s u l t  i n  D e s t X f o r m .   M u l t i p l i e s  a 4 x 4   m a t r i x   t i m e s  a 4x4   ma t r i x ;  
: t h e   r e s u l t   i s  a 4x4  matr ix .   Cheats  by  assuming  the  bot tom  row  of  
: each   ma t r i x  i s  0 0 0 1. and d o e s n ' t   b o t h e r   t o   s e t   t h e   b o t t o m  row 
: o f   t h e   d e s t i n a t i o n .  
: C n e a r - c a l l a b l e   a s :  

POP  bP : r e s t o r e   s t a c k   f r a m e  

. """"""Y""p""y.n-. 

void  ConcatXforms(Xform  SourceXforml.  Xform  SourceXformZ. 
Xform  OestXform) 

: This  assembly  code i s   e q u i v a l e n t   t o   t h i s  C code: 
: i n t  i, j :  

: f o r  ( i - 0 :  i < 3 :  i++) { 
f o r   ( j - 0 :   j < 3 ;  j++) 

O e s t X f o r m [ i l C j l  - 
FixedMul(SourceXforml~il[Ol, SourceXformZ[O1Cjl) + 
FixedMul(SourceXforml~il[ll, SourceXfo rmZ[ l ]C j l )  + 
F ixedMu l (SourceXfo rm1Ci l~21 ,  SourceXformE[ZICj l ) :  

DestXformCilC31 - 
F i x e d M u l ( S o u r c e X f o r m l ~ i l ~ O 1 ,  SourceXformZCOIC3]) + 
FixedMul(SourceXform1Ci l~l1,  SourceXform2[11[31) + 
FixedMul(SourceXforml~il~Z1, SourceXform2[21C31) + 
SourceXfo rm l [ i l [ 31 :  

: I  

CXparms s t r u c  

SourceXforml  dw ? 
SourceXformZ dw ? 
DestXform dw ? 
CXparms ends 

dw 2 dup(? )  

a1 i g n  A L I G N M E N T  
publ ic   _ConcatXforms 

-ConcatXforms  proc  near 
push bp 
mov bp.sp 
push s i  
oush d i  

mov bx.Cbpl.SourceXform2 
mov s i .Cbpl .SourceXform1 
mov d i . [ bp l .Des tX fo rm 

: re tu rn   add ress  & pushed BP 
: p o i n t e r   t o   f i r s t   s o u r c e   x f o r m   m a t r i x  
: p o i n t e r  t o  second  source  x form  matr ix  
: p o i n t e r   t o   d e s t i n a t i o n   x f o r m   m a t r i x  

; p rese rve   s tack   f rame 
: s e t  up l o c a l   s t a c k   f r a m e  
: p r e s e r v e   r e g i s t e r   v a r i a b l e s  

;BX p o i n t s   t o   x f o r m 2   m a t r i x  
:SI p o i n t s   t o   x f o r m l   m a t r i x  
:DI p o i n t s   t o   d e s t   x f o r m   m a t r i x  
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r o f f - 0  

c o f f - 0  
REPT 3 

REPT 3 

mov e a x . C s i + r o f f l  
imul  dword p t r   C b x + c o f f l  

add  eax,  8000h 

e n d i f  ;ROUNDING-ON 
adc  edx.O 

shrd  eax.edx.16 
mov ecx,  eax 

mov e a x . [ s i + r o f f + 4 1  
imul  dword p t r   [ b x + c o f f + l 6 1  

add  eax.8000h 
adc edx.O 

e n d i f  ;ROUNDING-ON 
shrd  eax.edx.16 
add ecx,  eax 

mov eax ,   [ s i+ ro f f+81  
imul  dword p t r   [ b x + c o f f + 3 2 ]  

add  eax.8000h 
adc edx.O 

e n d i f  :ROUNDING-ON 
shrd  eax.edx.16 
add  ecx,  eax 

mov [ d i + c o f f + r o f f l . e c x  

ENDM 

i f  ROUNDING-ON 

i f  ROUNDING-ON 

i f  ROUNDING-ON 

c o f f - c o f f + 4  

mov e a x . [ s i + r o f f l  
imul  dword p t r   [ b x + c o f f l  

add  eax.8000h 
adc  edx.O 

e n d i f  ;ROUNDING-ON 
shrd  eax.edx.16 
mov ecx,  eax 

i f  ROUNDING-ON 

mov eax . [s i+ ro f f+41 
imul  dword p t r   [ b x + c o f f + l 6 1  

add  eax.8000h 
adc  edx.O 

e n d i f  ;ROUNDING-ON 
shrd  eax.edx.16 
add  ecx.eax 

i f  ROUNDING-ON 

mov e a x . [ s i + r o f f + 8 ]  
imul  dword p t r   [ b x + c o f f + 3 2 1  

;row o f f s e t  
:once f o r  each  row 
;column o f f s e t  
;once f o r   e a c h   o f   t h e   f i r s t   3   c o l u m n s ,  
; assuming 0 as t h e   b o t t o m   e n t r y   ( n o  
; t r a n s l a t i o n )  
;column 0 e n t r y  on t h i s  row 
; t imes  row 0 e n t r y   i n  column 

; round  by  adding  2^( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
; s e t   r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row 
; t imes  row 1 e n t r y   i n   c o l  

; round  by  adding  2"( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
; r u n n i n g   t o t a l  

;column 2 e n t r y  on t h i s  row 
; t imes  row  2   ent ry  i n   c o l  

; round  by  adding  2"(-17) 
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
r u n n i n g   t o t a l  

save t h e   r e s u l t   i n   d e s t   m a t r i x  
p o i n t   t o   n e x t  col i n  xform2 & d e s t  

now do the   f ou r th   co lumn,   assuming  
; 1 as t h e   b o t t o m   e n t r y ,   c a u s i n g  
; t r a n s l a t i o n   t o  be  performed 
;column 0 e n t r y  on t h i s  row 
; t imes  row 0 e n t r y   i n  column 

: round  by  adding  2^( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
; s e t   r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row 
;times  row 1 e n t r y   i n   c o l  

; round  by  adding  2"( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
; r u n n i n g   t o t a l  

;column  2  entry on t h i s  row 
;t imes  row 2 e n t r y   i n   c o l  
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i f  ROUNDING-ON 
add  eax.8000h 
adc  edx.O 

e n d i f  ;ROUNDING-ON 
shrd  eax.edx.16 
add  ecx.eax 

; round  by  adding 2 ^ ( - 1 7 )  
: w h o l e   p a r t   o f   r e s u l t  i s  i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
; r u n n i n g   t o t a l  

add  ecx . [s i+ ro f f+ l21  :add i n  t r a n s l a t i o n  

mov [ d i + c o f f + r o f f ] . e c x  ;save t h e   r e s u l t  i n  d e s t   m a t r i x  
c o f f - c o f f + 4   : p o i n t   t o   n e x t   c o l  i n  xform‘2 & d e s t  

r o f f - r o f f + l 6  
ENOM 

pop d i  
pop s i  

r e t  

end 

POP bP 

XoncatXforms  endp 

: p o i n t   t o   n e x t   c o l   i n   x f o r m 2  & d e s t  

; r e s t o r e   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   s t a c k   f r a m e  

Raw Speed, Part II: Look it Up 
It’s a funny  thing about Turbo  Profiler:  Time  spent  in  the  Borland  C++ 80x87 emulator 
doesn’t show up directly  anywhere that I can  see in the timing results. The only way 
to detect it is by  way  of the line that reports what percent of total time is represented 
by all the areas that were profiled; if you’re profiling all areas, whatever’s not explic- 
itly accounted for seems  to  be the floating-point emulator time. This quirk fooled 
me for  a while, leading me to think sine and cosine  weren’t  major drags on perfor- 
mance,  because the sin() and cos() functions spend most  of their time  in the emulator, 
and that time  doesn’t show up in Turbo Profiler’s  statistics on those functions. Once 
I figured out what was going on, it turned  out that not only  were sin() and cos() 
major  drags,  they  were  taking up over  half the total execution time by themselves. 
The solution is a lookup table.  Listing  53.1 contains a function called CosSin() that 
calculates both the sine and cosine of an angle, via a lookup table. The function 
accepts angles in tenths of degrees; I decided to use tenths of degrees rather than 
radians because that way  it’s  always possible to look up the sine and cosine of the 
exact angle requested,  rather than approximating, as  would  be required with radi- 
ans. Tenths of degrees should be fine enough control for most purposes; if not, it’s 
easy to alter CosSin() for finer gradations yet.  GENCOS.C, the program used  to gen- 
erate  the lookup table  (COSTABLE.INC), included in  Listing  53.1, can be found in 
the XSHARp22 subdirectory on the listings diskette. GENC0S.C can generate  a co- 
sine table with  any integral number of steps per degree. 
FIXED.ASM (Listing 53.1) speeds X-Sharp up quite a bit, and it changes the perfor- 
mance balance a  great deal. When we started out with  3-D animation, calculation 
time was the dragon we faced; more than 90 percent of the total  time was spent 
doing matrix and projection math. Additional optimizations in the area of math 
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could  still  be  made  (using  32-bit  multiplies  in the backface-removal code,  for  example), 
but fixed-point math, the sine and cosine lookup, and selective  assembly  optimiza- 
tions  have done a pretty good job already. The bulk of the time  taken by X-Sharp is 
now spent drawing  polygons,  drawing rectangles (to erase objects), and waiting for 
the page  to  flip. In other words,  we’ve  slain the dragon of 3-D math, or at least wounded 
it grievously;  now  we’re  back  to the dragon of polygon  filling. We’ll address faster 
polygon  filling soon, but for the  moment, we have more than enough horsepower  to 
have  some fun with.  First, though, we need one more feature: hidden surfaces. 

Hidden  Surfaces 
So far, we’ve made a number of  simplifymg assumptions  in order to get the anima- 
tion to  look good; for example, all  objects  must currently be  convex polyhedrons. 
What’s more, right now, objects  can  never pass behind or in front of each other. 
What that  means is that it’s  time  to  have a look at  hidden surfaces. 
There  are a passel  of  ways to do hidden surfaces. Way off at one  end  (the slow end) 
of the spectrum is  Z-buffering,  whereby each pixel  of each polygon  is checked as  it’s 
drawn  to  see whether it’s the frontmost version of the pixel at those coordinates. At 
the  other  end is the technique of  simply drawing the objects in back-to-front order, 
so that  nearer objects are drawn on top of farther objects. The latter approach, depth 
sorting, is the one we’ll  take  today.  (Actually, true depth sorting involves detecting 
and resolving  possible  ambiguities  when  objects  overlap in 2; in  this chapter, we’ll 
simply sort the objects on Z and leave it  at that.) 
This limited  version of depth sorting is fast but less than perfect. For one thing, it 
doesn’t address the issue  of nonconvex  objects, so we’ll  have to  stick  with  convex 
polyhedrons. For another, there’s the question of  what part of each object to use  as 
the sorting key; the nearest point, the center, and  the farthest point are all  possibili- 
ties-and,  whichever point is used, depth sorting doesn’t handle some  overlap  cases 
properly.  Figure  53.1  illustrates one case in which  back-to-front sorting doesn’t work, 
regardless of what point is  used  as the sorting key. 
For  photo-realistic rendering, these are serious problems. For  fast  PC-based  anima- 
tion, however,  they’re  manageable.  Choose  objects that aren’t too elongated; arrange 
their paths of travel so they don’t intersect in problematic ways; and, if  they do over- 
lap incorrectly, trust that the glitch will be  lost  in the speed of the animation and  the 
complexity of the screen. 
Listing  53.2  shows  X-Sharp  file  OLIST.C,  which includes the key routines for depth 
sorting. Objects are now stored in a linked list. The initial, empty  list, created by 
InitializeObjectList(), consists of a sentinel entry at  either end,  one at  the farthest 
possible z coordinate, and one  at the  nearest. New entries are inserted byAddObject() 
in z-sorted order. Each  time the objects are moved, before they’re  drawn at their new 
locations, Sortobjects0 is  called  to  2-sort the object list, so that drawing will proceed 
from back to front. The Z-sorting is done  on the basis  of the objects’ center points; a 
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I Farthest  points ' \ Middle points 
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Viewer 

why back-to-font sorting doesn 't always workproperly 
Figure 53.1 

center-point field has been added to the  object  structure to support  this,  and  the 
center point for  each  object is now  transformed along with  the  vertices.  That's  really 
all  there is to depth sorting-and  now  we  can  have  objects  that  overlap in X and Y 

LISTING 53.2 0LIST.C 
/*  Object  list-related  functions. */  
#i ncl  ude  <stdi 0. h> 
#include  "polygon, h" 

/* Set  up  the  empty  object  list,  with  sentinels  at  both  ends  to 

void  InitializeObjectListO 
{ 

terminate  searches * /  

0bjectListStart.NextObject - &ObjectListEnd: 
0bjectListStart.PreviousObject - NULL: 
0bjectListStart.CenterInView.Z - INT_TO_FIXED(-32768): 
0bjectListEnd.NextObject - NULL: 
0bjectListEnd.PreviousObject - &ObjectListStart; 
ObjectListEnd.CenterInView.2 - Ox7FFFFFFFL: 
NumObjects - 0: 

1 

/*  Adds  an  object  to  the  object  list,  sorted  by  center 2 coord. */ 
void  AddObject(0bject  *ObjectPtr) 
{ 

Object  *ObjectListPtr - 0bjectListStart.NextObject; 
I* Find  the  insertion  point.  Guaranteed  to  terminate  because  of 

while (ObjectPtr->CenterInView.Z > ObjectL is tPt r ->Center InV iew.Z)  { 

1 

the  end  sentinel */ 

ObjectListPtr - O b j e c t L i s t P t r - > N e x t o b j e c t :  
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/* L i n k   i n   t h e  new o b j e c t  * /  
O b j e c t L i s t P t r - > P r e v i o u s o b j e c t - > N e x t o b j e c t  - O b j e c t P t r ;  
O b j e c t P t r - > N e x t o b j e c t  - O b j e c t L i s t P t r ;  
ObjectPt r ->Prev iousobjec t  - Ob jec tL i s tP t r ->Prev iousOb jec t ;  
O b j e c t L i s t P t r - > P r e v i o u s O b j e c t  - O b j e c t P t r ;  
NumObjects++; 

I 

/ *  R e s o r t s   t h e   o b j e c t s   i n   o r d e r   o f   a s c e n d i n g   c e n t e r  2 c o o r d i n a t e   i n   v i e w   s p a c e ,  
by  moving  each  object  i n   t u r n   t o   t h e   c o r r e c t   p o s i t i o n   i n   t h e   o b j e c t   l i s t .  * /  

v o i d   S o r t O b j e c t s O  
I 

i n t  i; 
Object   *ObjectPtr .   *ObjectCmpPtr .   *NextObjectPtr :  

/ *  S t a r t   c h e c k i n g   w i t h   t h e   s e c o n d   o b j e c t  * /  
ObjectCmpPtr - 0 b j e c t L i s t S t a r t . N e x t O b j e c t ;  
O b j e c t P t r  - ObjectCmpPtr->Nextobject; 
f o r  (i-1; i<NumObjects; i++) ( 

/* See i f  we need t o  move backward   th rough  the  l i s t  * /  
i f  (ObjectPtr->CenterInView.Z < ObjectCmpPtr->CenterInView.Z) [ 

/*  Remember where t o  resume s o r t i n g   w i t h   t h e   n e x t   o b j e c t  * /  
N e x t O b j e c t P t r  - O b j e c t P t r - > N e x t o b j e c t ;  
/ *  Yes. move backward u n t i l  we f i n d   t h e   p r o p e r   i n s e r t i o n  

do ( 

3 w h i l e  (ObjectPtr->CenterInView.Z < 
ObjectCmpPtr->CenterInView.Z); 

p o i n t .   T e r m i n a t i o n   g u a r a n t e e d   b e c a u s e   o f   s t a r t   s e n t i n e l  * /  

ObjectCmpPtr - ObjectCmpPtr ->PreviousObject ;  

/*  Now move t h e   o b j e c t   t o   i t s  new l o c a t i o n  */  
/*  U n l i n k   t h e   o b j e c t   a t   t h e   o l d   l o c a t i o n  */  
ObjectPtr->PreviousObject->Nextobject - 

O b j e c t P t r - > N e x t o b j e c t ;  
ObjectPt r ->Nextob jec t ->Prev iousobjec t  - 

ObjectPtr->PreviousObject: 

/*  L i n k   i n   t h e   o b j e c t   a t   t h e  new l o c a t i o n  * /  
ObjectCmpPtr->Nextobject->Previousobject  - O b j e c t P t r ;  
ObjectPt r ->Prev iousObjec t  - ObjectCmpPtr; 
O b j e c t P t r - > N e x t o b j e c t  - ObjectCmpPtr->Nextobject; 
ObjectCmpPtr->Nextobject - O b j e c t P t r ;  

/ *  Advance t o   t h e   n e x t   o b j e c t   t o   s o r t  */ 
ObjectCmpPtr - NextObjec tPt r ->Prev iousObjec t ;  
O b j e c t P t r  - N e x t O b j e c t P t r ;  

/ *  Advance t o   t h e   n e x t   o b j e c t   t o   s o r t  * /  
ObjectCmpPtr - O b j e c t P t r :  
O b j e c t P t r  - O b j e c t P t r - > N e x t o b j e c t ;  

1 e l s e  ( 

1 
I 

I 

Rounding 
FIXED." contains  the  equate ROUNDING-ON. When  this  equate is 1 , the  re- 
sults of multiplications  and  divisions  are  rounded  to  the  nearest  fixed-point  values; 
when it's 0, the  results  are  truncated. The difference  between  the  results  produced 
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by the two approaches is, at most, 2-16; you  wouldn’t think that would  make much 
difference, now,  would  you?  But it does.  When the animation is run with rounding 
disabled, the cubes  start  to  distort visibly after a few minutes, and after a few minutes 
more they  look  like  they’ve been run over. In contrast, I’ve never  seen  any  significant 
distortion with rounding  on, even after a half-hour or so. I think the difference  with 
rounding is not that it’s so much more accurate, but  rather that the  errors  are evenly 
distributed; with truncation, the errors are biased, and biased errors become very 
visible  when  they’re applied to  right-angle  objects. Even  with rounding,  though,  the 
errors will eventually creep  in,  and reorthogonalization will become  necessary at 
some point. 
The performance cost  of rounding is small, and  the benefits are highly  visible.  Still, 
truncation errors become significant  only  when  they  accumulate  over  time,  as, for 
example,  when  rotation  matrices  are  repeatedly  concatenated  over  the  course of  many 
transformations.  Some  time  could  be saved  by rounding only in such  cases.  For  ex- 
ample,  division is performed only  in the course of projection, and  the results do  not 
accumulate  over  time, so it would  be  reasonable  to  disable rounding for division. 

Having a Ball 
So far  in our exploration of 3-D animation, we’ve had nothing to  look at but tri- 
angles and cubes. It’s time for something a little more visually appealing, so the 
demonstration program now features a 72-sided  ball.  What’s  particularly interesting 
about this ball is that it’s created by the GENBALL.C program in the BALL 
subdirectory of  X-Sharp, and both the size  of the ball and  the  number of bands of 
faces are programmable. GENBALL.C spits out to a file  all the arrays of vertices and 
faces needed to create the ball,  ready for inclusion  in 1NITBALL.C.  Ti-ue, if you 
change the  number of bands, you must change the Colors array  in 1NITBALL.C  to 
match, but that’s a tiny detail; by and large, the process of generating a ball-shaped 
object is now automated. In fact,  we’re not limited  to  ball-shaped  objects;  substitute 
a different vertex and face generation program for GENBALL.C, and you  can  make 
whatever  convex polyhedron you  want;  again,  all  you  have  to do is change the Colors 
array  correspondingly. You can easily create multiple  versions of the base  object,  too; 
1NITCUBE.C is an example of this, creating 11 different cubes. 
What we have here is the first  glimmer of an object-editing  system.  GENBALL.C  is 
the prototype for object definition, and 1NITBALL.C is the prototype for general- 
purpose  object  instantiation.  Certainly,  it  would  be  nice  to  someday  have an interactive 
3-D object editing tool and resource management setup. We have our  hands full  with 
the drawing end of things at  the  moment, though, and for now  it’s enough to  be  able 
to create objects in a semiautomated way. 
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istic  Surfaces on Animated 3-D Objects 
just acquired basic hidden-surface 
oved through the use of fixed-point 
ite a bit more: support for 8088 and 
. That’s an awful lot to  cover  in one 
apter), so let’s get to  it! 

86,  because it uses  32-bit  multiply and 
’t support. I chose  32-bit instructions 
fixed-point arithmetic than any a p  
y’re much easier  to implement than 

any other approach. In short, I was after maximum performance, and I was perhaps 
just a little lazy. 
I should have  known better than to try to  sneak  this one by you. The most common 
feedback I’ve gotten on X-Sharp is that I should make it support  the 8088 and 286. 
Well, I can  take a hint as  well  as the next guy. Listing 54.1 is an improved  version of 
FIXED.ASM, containing  dual 386/8088 versions of CosSinO,  XformVec(), and 
ConcatXforms(), as  well  as FixedMulO and FixedDivO. 
Given the new  version  of  FIXED.“,  with USE386 set  to 0, X-Sharp  will  now run  on 
any  processor. That’s not to say that it will run fast on any  processor, or at least not as 
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fast  as it used to. The switch to 8088 instructions makes  X-Sharp’s fixed-point calcula- 
tions about 2.5  times  slower  overall.  Since a PC  is perhaps 40 times  slower than a 486/33, 
we’re  talking about a hundred-times  speed difference between the low end  and main- 
stream. A 486/33 can animate a 72-sided ball, complete with shading (as discussed 
later),  at 60 frames per second (fps) , with plenty of  cycles to spare; an 8-MHz  AT can 
animate  the same  ball at  about 6 fps.  Clearly, the level  of animation an application 
uses  must be tailored to the available CPU horsepower. 
The implementation of a 32-bit multiply using 8088 instructions is a simple matter of 
adding  together  four partial products. A  32-bit  divide  is not so simple, however. In 
fact, in Listing 54.1 I’ve chosen not to implement a full 32x32 divide, but  rather only 
a 3‘2x16 divide. The reason is simple: performance. A  32x16  divide can be imple- 
mented  on  an 8088 with  two DIV instructions, but a 32x32  divide  takes a great  deal 
more work, so far as I can see. (If anyone has a fast 32x32 divide, or has a faster way 
to handle signed multiplies and divides than  the  approach taken by Listing 54.1, 
please drop me a line care of the publisher.) In X-Sharp,  division is used only to 
divide either X or Y by Z in the process of projecting  from view space to screen space, 
so the cost  of using a 32x16 divide  is  merely  some inaccuracy in calculating screen 
coordinates, especially  when objects get very close to the Z = 0 plane.  This error is 
not cumulative (that is, it  doesn’t carry over to later  frames),  and  in my experience 
doesn’t cause noticeable image degradation;  therefore, given the already slow per- 
formance of the 8088 and 286, I’ve opted  for  performance over precision. 
At any rate, please keep in mind  that the non-386 version of FixedDiv() is not a 
general-purpose 32x32 fixed-point division routine.  In fact, it will generate a divide- 
by-zero error if passed a fixed-point divisor between -1 and 1. As I’ve explained, the 
non-386 version of Fixed-Div() is designed to do  just what X-Sharp needs, and  no 
more, as  quickly  as possible. 

LISTING 54.1 FIXED.ASM 
; F i x e d   p o i n t   r o u t i n e s .  
; T e s t e d   w i t h  TASM 

USE386 equ 1 ;1 f o r   3 8 6 - s p e c i f i c   o p c o d e s .  0 f o r  

MUL-ROUNDING-ON equ 1 ;1 f o r   r o u n d i n g  on m u l t i p l i e s ,  
; 8088 opcodes 

; 0 f o r  no  rounding.   Not   rounding i s   f a s t e r ,  
; rounding i s  more   accura te   and   genera l ly  a 
; good i d e a  

; 0 f o r  no  rounding.   Not   rounding i s   f a s t e r ,  
; rounding i s  more accura te ,   but   because  
; d i v i s i o n   i s   o n l y   p e r f o r m e d   t o   p r o j e c t   t o  
; t h e   s c r e e n ,   r o u n d i n g   q u o t i e n t s   g e n e r a l l y  
; i s n ’ t   n e c e s s a r y  

DIV-ROUNDING-ON equ 0 ;1 f o r   r o u n d i n g  on d i v i d e s ,  

ALIGNMENT equ 2 

.model smal 1 

. 3 8 6  

.code 
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; M u l t i p l i e s   t w o   f i x e d - p o i n t   v a l u e s   t o g e t h e r .  
; C n e a r - c a l l a b l e   a s :  
; F i x e d p o i n t   F i x e d M u l ( F i x e d p 0 i n t  M 1 .  F i xedpo in t   HZ) ;  
FMparms s t r u c  

M 1  
M2 
FMparms ends 

~ ~~~~ 

dw 2   dup (? )   ; re tu rn   add ress  & pushed BP 
dd ? 
dd ? 

a1 i g n  ALIGNMENT 
p u b l i c  F i  xedMul 

- FixedMul p roc   near  
push bp 
mov bp.sp 

i f  USE386 

mov eax.[bp+Ml] 
i m u l   d w o r d   p t r  [bp+M2] 

add  eax,  8000h 
adc  edx.0 

e n d i f  :MUL-ROUNDING-ON 
shr  eax.16 

i f  MUL-ROUNDING-ON 

e l s e  ; !USE386 

push s i  
push d i  

sub  cx.cx 
mov ax.word p t r  [bp+M1+2] 
mov s i . w o r d   p t r  [bp+Ml] 
and  ax.ax 
j n s  CheckSecondOperand 
neg  ax 
neg s i  
sbb  ax.0 
i n c   c x  

CheckSecondOperand: 
mov bx.word p t r  [bp+M2+2] 
mov d i  .word p t r  [bp+M2] 
and  bx.bx 
jns  SaveSignStatus 
neg  bx 
neg d i  
sbb  bx.0 
x o r   c x . 1  

SaveSignStatus: 
push  cx 

push ax 
mu1 bx 
mov cx.ax 

; m u l t i p l y  

; round  by  adding  2^( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  D X  

; p u t   t h e   f r a c t i o n a l   p a r t   i n  AX 

;do f o u r   p a r t i a l   p r o d u c t s  and 
; add  them t o g e t h e r .   a c c u m u l a t i n g  
; t h e   r e s u l t   i n  CX:BX 
; p rese rve  C r e g i s t e r   v a r i a b l e s  

; f i g u r e   o u t   s i g n s ,  so we can  use 
; u n s i g n e d   m u l t i p l i e s  
;assume b o t h   o p e r a n d s   p o s i t i v e  

; f i r s t  operand  negat ive?  
;no 
;yes. s o  negate f i r s t  operand 

;mark t h a t   f i r s t   o p e r a n d   i s   n e g a t i v e  

;second  operand  negat ive? 
;no 
;yes. so negate  second  operand 

;mark t h a t  second  operand i s   n e g a t i v e  

;remember s i g n   o f   r e s u l t ;  1 i f  r e s u l t  
; n e g a t i v e ,  0 i f  r e s u l t   n o n n e g a t i v e  
;remember h igh  word o f  M 1  
;h igh  word M 1  t imes  h igh   word  M2 
; a c c u m u l a t e   r e s u l t   i n  CX:BX ( B X  not   used 
; u n t i l   n e x t   o p e r a t i o n ,   h o w e v e r )  
;assume  no o v e r f l o w   i n t o  DX 

3-D Shading 1009 



mov ax, s i  
mu1 bx 
mov bx.ax 
add cx.dx 
POP ax 
mu1 d i  
add bx.ax 
adc cx.dx 
mov ax, s i  
mu1 d i  

i f  MUL-ROUNDING-ON 
add  ax.8000h 
adc  bx.dx 

e l s e  :!MUL-ROUNDING-ON 
add  bx.dx 

e n d i f  ;MUL-ROUNDING-ON 
adc  cx.0 
mov dx.cx 
mov ax.bx 
POP cx  
and  cx,cx 
j z  F i  xedMul Done 
neg  dx 
neg  ax 
sbb  dx.0 

FixedMulDone: 

pop d i  
pop s i  

e n d i f  :USE386 

POP bP 
r e t  

- FixedMul  endp 

: low  word M 1  t imes  h igh   word  M2 

: a c c u m u l a t e   r e s u l t   i n  CX:BX 
; r e t r i e v e   h i g h   w o r d   o f  M 1  
;h igh  word M 1  t imes  low  word  M Z  

: a c c u m u l a t e   r e s u l t   i n  C X : B X  
: low  word M 1  t imes  low  word M2 

; round  by  adding  2^( -17)  

:don ' t   r ound  

; a c c u m u l a t e   r e s u l t   i n  CX:BX 

: i s   t h e   r e s u l t   n e g a t i v e ?  
; n o .   w e ' r e   a l l   s e t  
;yes. s o  negate  DX:AX 

: r e s t o r e  C r e g i s t e r   v a r i a b l e s  

: D i v i d e s  one f i x e d - p o i n t   v a l u e  by  another.  
: C n e a r - c a l l a b l e   a s :  
; F i x e d p o i n t   F i x e d D i v ( F i x e d p 0 i n t   D i v i d e n d ,   F i x e d p o i n t   D i v i s o r ) ;  
FDparms s t r u c  

dw 2   d u p ( ? )   : r e t u r n   a d d r e s s  & pushed BP 
D iv idend  dd  ? 
D i v i s o r   d d  ? 
FDparms ends 

a1 i gn ALIGNMENT 
p u b l i c  JixedOiv 

JixedDi  v p roc   near  
push bp 
mov bP SSP 

i f  USE386 

i f  DIV-ROUNDING-ON 
sub  cx.cx ;assume p o s i t i v e   r e s u l t  
mov eax.[bp+Oividendl  
and  eax ,eax   ;pos i t i ve   d iv idend? 
j n s  FOP1 :yes 
i n c   c x  :mark i t ' s  a n e g a t i v e   d i v i d e n d  
neg  eax :make t h e   d i v i d e n d   p o s i t i v e  
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FDPl : 

FDPZ: 

FDP3 : 

sub  edx , edx ;make i t  a 6 4 - b i t   d i v i d e n d ,   t h e n   s h i f t  

r o l   e a x , l 6  : p u t   f r a c t i o n a l   p a r t   o f   d i v i d e n d   i n  

mov dx.ax ; p u t   w h o l e   p a r t   o f   d i v i d e n d   i n  DX 
sub   ax .ax   :c lear   low  word   o f  EAX 
mov ebx.dword p t r   [ b p + D i v i s o r l  

: l e f t  16 b i t s  s o  t h a t   r e s u l t  will be i n  EAX 

: h i g h   w o r d   o f  EAX 

and  ebx.ebx 
j n s  FOP2 
dec  cx 
neg  ebx 
d i v  ebx 
sh r   ebx .1  
adc ebx.O 
dec  ebx 
cmp ebx,  edx 
adc  eax.O 

and  cx.cx 
j z  FDP3 
neg  eax 

e l s e  :!DIV-ROUNDING-ON 
mov edx. [bp+Div idendl  
sub  eax,eax 
shrd  eax.edx.16 
sar  edx.16 
i d i v  dword p t r   [ b p + D i v i s o r ]  

e n d i f  :DIV-ROUNDING-ON 
shld  edx.eax.16 

e l s e  

:NOTE!!! Non-386 d i v i s i o n  uses a 

: p o s i t i v e   d i v i s o r ?  
:yes 
;mark i t ' s  a n e g a t i v e   d i v i s o r  
:make d i v i s o r   p o s i t i v e  
: d i v i d e  
; d i v i s o r / 2 .   m i n u s  1 i f  t h e   d i v i s o r   i s  
: even 

: s e t   C a r r y  i f  the  remainder  i s   a t   l e a s t  
: h a l f  as l a r g e  as t h e   d i v i s o r ,   t h e n  
: u s e   t h a t   t o   r o u n d   u p  i f  necessary 
; s h o u l d   t h e   r e s u l t   b e  made n e g a t i v e ?  
:no 
:yes.   negate i t  

: p o s i t i o n  so t h a t   r e s u l t  ends  up 
: i n  EAX 

: w h o l e   p a r t   o f   r e s u l t   i n  D X :  
: f r a c t i o n a l   p a r t   i s   a l r e a d y   i n  A X  

: !USE386 

3 2 - b i t   d i v i d e n d   b u t   o n l v   t h e   u m e r   1 6   b i t s  
: o f   t h e   d i v i s o r :   i n   o t h e r   w o r d s ,   o n l y   t h e   i n t e g e r   p a r t   o f   t h e   d i v i s o r   i s  
: used.   Th is  i s  done s o  t h a t   t h e   d i v i s i o n   c a n   b e   a c c o m p l i s h e d   w i t h   t w o   f a s t  
: h a r d w a r e   d i v i d e s   i n s t e a d   o f  a s low  so f tware   imp lementa t ion ,   and i s   ( i n  my 
: o p i n i o n )   a c c e p t a b l e   b e c a u s e   d i v i s i o n   i s   o n l y   u s e d   t o   p r o j e c t   p o i n t s   t o   t h e  
: s c r e e n   ( n o r m a l l y .   t h e   d i v i s o r   i s  a 2 c o o r d i n a t e ) .  so t h e r e ' s  no c u m u l a t i v e  
: e r r o r ,   a l t h o u g h   t h e r e  will be some e r r o r   i n   p i x e l   p l a c e m e n t   ( t h e   m a g n i t u d e  
: o f   t h e   e r r o r   i s   l e s s   t h e   f a r t h e r  away f r o m   t h e  Z-0 p l a n e   o b j e c t s   a r e ) .   T h i s  
: i s   * n o t *  a g e n e r a l - p u r p o s e   d i v i d e ,   t h o u g h :  i f  t h e   d i v i s o r   i s   l e s s   t h a n  1, 
: f o r   i n s t a n c e ,  a d i v i d e - b y - z e r o   e r r o r  will r e s u l t !   F o r   t h i s   r e a s o n ,   n o n - 3 8 6  
: p r o j e c t i o n   c a n ' t   b e   p e r f o r m e d   f o r   p o i n t s   c l o s e r   t o   t h e   v i e w p o i n t   t h a n  Z-1. 

. .  

sub 
mov ax.word p t r  [bp+Dividend+Z] 

cx ,   cx  

and  ax.ax 
j n s  CheckSecondOperandD  :no 
neg  ax 
neg  word p t r  [bp+Dividend] 
sbb  ax.0 
i nc  cx 

mov bx .word   p t r   [bp+Div isor+El  
and  bx,  bx 
jns  SaveSignStatusD 

CheckSecondOperandD: 

: f i g u r e   o u t   s i g n s .  s o  we can  use 
: u n s i g n e d   d i v i s i o n s  
:assume b o t h   o p e r a n d s   p o s i t i v e  

: f i r s t  operand  negat ive?  

:yes. so n e g a t e   f i r s t   o p e r a n d  

:mark t h a t   f i r s t  operand i s   n e g a t i v e  

;second  operand  negat ive? 
:no 
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neg  bx  :yes. so negate  second  operand 
neg  word p t r   [ b p + D i v i s o r l  
sbb bx.0 
x o r  c x . 1  

push c x  
SaveSignStatusD: 

sub dx.dx 
d i v  bx 

mov cx.ax 
mov ax.word p t r   [ b p + D i v i d e n d l  

d i v   b x  

i f  DIV-ROUNDING-ON EO 0 
s h r  bx.1 
adc bx.0 
dec bx  
cmp bx.dx 
adc ax.0 

e n d i f  :DIV-ROUNDING-ON 
adc  cx.0 

mov dx.cx 
POP cx  
and  cx,cx 
j z F i  xedDi vDone 
neg  dx 
neg  ax 
sbb  dx.0 

FixedDivDone: 

e n d i f  :USE386 

POP bP 

- F i  xedDi  v endp 
r e t  

:mark t h a t  second  operand i s   n e g a t i v e  

:remember s i g n   o f   r e s u l t :  1 i f  r e s u l t  
: n e g a t i v e ,  0 i f  r e s u l t   n o n n e g a t i v e  
: p u t   D i v i d e n d + Z   ( i n t e g e r   p a r t )   i n  DX:AX 
: f i r s t   h a l f   o f  3 2 / 1 6   d i v i s i o n ,   i n t e g e r   p a r t  
: d i v i d e d   b y   i n t e g e r   p a r t  
: s e t   a s i d e   i n t e g e r   p a r t   o f   r e s u l t  
: c o n c a t e n a t e   t h e   f r a c t i o n a l   p a r t   o f  
: t h e   d i v i d e n d   t o   t h e   r e m a i n d e r   ( f r a c t i o n a l  
: p a r t )   o f   t h e   r e s u l t   f r o m   d i v i d i n g   t h e  
: i n t e g e r   p a r t   o f   t h e   d i v i d e n d  
:second h a l f   o f   3 2 / 1 6   d i v i s i o n  

:d i v i so r /Z .   m inus  1 i f  t h e   d i v i s o r   i s  
: even 

: se t   Car ry  i f  t h e   r e m a i n d e r   i s   a t   l e a s t  
: h a l f  as l a r g e  as t h e   d i v i s o r ,   t h e n  
: u s e   t h a t   t o   r o u n d   u p  i f  necessary 

: a b s o l u t e   v a l u e   o f   r e s u l t   i n  DX:AX 

: i s   t h e   r e s u l t   n e g a t i v e ?  
: n o .   w e ' r e   a l l   s e t  
:yes. s o  negate  DX:AX 

: Re tu rns   t he   s ine   and   cos ine   o f  an ang le .  
: C n e a r - c a l l a b l e   a s :  
: void  CosSin(TAng1e  Angle,   F ixedpoint  *Cos. F i x e d p o i n t  * ) ;  

a1 i g n  ALIGNMENT 
CosTabl  e  1  abel  dword 

i n c l u d e   c o s t a b l e . i n c  

SCparms s t r u c  

Angle dw ? 
cos dw ? 
S i n  dw ? 
SCparms ends 

dw 2  dup(?)  

a1 i g n  ALIGNMENT 
pub1 1 c  -CosSi  n 

; re tu rn   add ress  & pushed BP 
: a n g l e   t o   c a l c u l a t e   s i n e  & c o s f n e   f o r  
: p o i n t e r   t o   c o s   d e s t i n a t i o n  
: p o i n t e r   t o   s i n   d e s t i n a t i o n  
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- CosSin proc  near  
push bp 
mov bp.sp 

i f  USE386 

mov bx. [bpJ.Angle 
and  bx.bx 
j n s  CheckInRange 

add  bx.360*10 
j s  MakePos 
jmp s h o r t  CheckInRange 

a l i g n  ALIGNMENT 

sub  bx.360*10 

cmp bx.360*10 
j g  MakeInRange 

Ma kePos : 

MakeInRange: 

CheckInRange: 

cmp bx.  180*10 
j a  BottomHal f 
cmp bx.90*10 
j a   Q u a d r a n t l  

s h l  bx.2 
mov eax.CosTable[bxl 
neg  bx 
mov ed~.CosTable[bx+90*10*4J 
jmp s h o r t  CSDone 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx, 180*10 
sh l   bx .2  
mov eax.CosTable[bxl 
neg  eax 
neg  bx 
mov edx.CosTable[bx+90*lO*4] 
jmp  shor t  CSDone 

a1 i gn ALIGNMENT 

neg  bx 
add  bx.360*10 
cmp bx.90*10 
j a  Quadrant2 

s h l  bx.2 
mov eax.CosTable[bxl 
neg  bx 
mov edx.CosTable[90*10*4+bxl 
neg  edx 
jmp s h o r t  CSDone 

Quadrant l :  

BottomHal f: 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.180*10 

Quadrant2:  

; p rese rve   s tack   f rame 
: s e t   u p   l o c a l   s t a c k   f r a m e  

:make sure  angle 's   between 0 and 2*pi 

: l e s s   t h a n  0. so make i t  p o s i t i v e  

;make s u r e   a n g l e   i s  no  more than  2*p i  

; f i g u r e   o u t   w h i c h   q u a d r a n t  
;quadrant  2 o r  3 
:quadrant  0 o r  1 

:quadrant  0 

: l o o k  up s i n e  
; s i n ( A n g l e )  - cos(90-Angle)  
: look   up   cos ine  

; conve r t   t o   ang le   be tween  0 and  90 

; look   up   cos ine  
; n e g a t i v e   i n   t h i s   q u a d r a n t  
; s i n ( A n g l e )  - cos(90-Angle)  
: l ook   up   cos ine  

;quadrant  2 o r  3 

; conve r t   t o   ang le   be tween  0 and  180 
;quadrant  2 o r  3 

:quadrant  3 

: l ook   up   cos ine  
; s i n ( A n g l e )  - cos (90 -Ang le )  
; l o o k   u p   s i n e  
; n e g a t i v e   i n   t h i s   q u a d r a n t  

; conve r t   t o   ang le   be tween  0 and  90 
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s h l  
mov 
neg 
neg 
mov 
neg 

mov 
mov 
mov 
mov 

CSDone: 

bx.2 
eax.CosTable[bxl  
eax 
bx 
edx.CosTable[90*10*4+bxl 
edx 

bx.[bpl.Cos 
[bx l   . eax  
bx . [bp l .S in  
[bx l   . edx  

e l s e  : !USE386 

mov bx . [bp l .Ang le  
and  bx.bx 
j n s  CheckInRange 

add  bx.360*10 
j s  MakePos 
jmp  short  CheckInRange 

a1 i gn ALIGNMENT 

sub  bx.360*10 

cmp bx.360*10 
j g  MakeInRange 

Ma kePos : 

MakeInRange: 

CheckInRange: 

: l ook  up c o s i n e  
: n e g a t i v e   i n   t h i s   q u a d r a n t  
: s i n ( A n g l e )  - cos(90-Ang le)  
: l ook   up   s ine  
: n e g a t i v e   i n   t h i s   q u a d r a n t  

:make sure   ang le 's   be tween 0 and  2*pi 

: l e s s   t h a n  0,  s o  make i t  p o s i t i v e  

:make s u r e   a n g l e   i s   n o  more  than  2*pi 

bx ,   180*10  ; f igure   ou t   wh ich   quadrant  
BottomHal f :quadrant  2 or   3  
bx,  90*10  :quadrant 0 o r  1 
Q u a d r a n t l  

bx.2 
ax.word p t r  CosTab le [bx l   : look   up   s ine  
dx.word p t r  CosTable[bx+2] 
b x   : s i n ( A n g l e )  - cos(90-Ang le)  
cx.word p t r  CosTable[bx+90*10*4+2]  : look  up  cosine 
bx.word p t r  CosTable[bx+90*10*41 
CSDone 

:quadrant 0 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.180*10  :convert t o   a n g l e  between 0 and 90 
s h l   b x . 2  
mov ax.word p t r  CosTableCbxl   : look up c o s i n e  
mov dx.word p t r  CosTableCbx+21 
neg  dx  :negat ive i n   t h i s   q u a d r a n t  
neg  ax 
sbb  dx.0 
neg  bx  :s in(Angle)  - cos(90-Ang le)  
mov c x . w o r d   p t r  CosTable[bx+90*10*4+21  :look  up  cosine 
mov bx,word p t r  CosTableCbx+90*10*43 
jmp   sho r t  CSDone 

Quadrant l :  

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.360*10 

BottomHal f :  :quadrant  2  or   3 

: c o n v e r t   t o   a n g l e   b e t w e e n  0 and  180 
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cmp bx.90*10 
j a  Quadrant2 

s h l  bx.2 
mov ax.word p t r  CosTableCbx] 
mov dx.word p t r  CosTable[bx+2] 
neg  bx 
mov cx.word p t r  CosTable[90*10*4+bx+2] 
mov bx.word p t r  CosTable[90*10*4+bxl 
neg  cx 
neg  bx 
sbb  cx.0 
jmp  shor t  CSDone 

a1 i g n  ALIGNMENT 

neg  bx 
add  bx.180*10 
sh l   bx .2  
mov ax.word p t r  CosTable[bx] 
mov dx.word p t r  CosTable[bx+P] 
neg  dx 
neg  ax 
sbb dx,O 
neg  bx 
mov cx.word p t r  CosTable[90*10*4+bx+2] 
mov bx.word p t r  CosTable[90*10*4+bx] 
neg  cx 
neg  bx 
sbb  cx.0 

push  bx 
mov bx,  [ b p l  .Cos 
mov [bx]  ,ax 
mov [ bx+2] , dx 
mov bx .   [ bp l   .S in  
POP ax 
mov [bx].ax 
mov Cbx+Zl .cx  

Quadrant2: 

CSDone: 

e n d i f  ;USE386 

POP bP 
r e t  

X o s S i n  endp 

;quadrant  2 o r  3 

:quadrant  3 

: l o o k  up cos ine  

; s i n ( A n g l e )  - cos (90 -Ang le )  
; l ook  ;p s i n e  

; n e g a t i v e   i n   t h i s  

: c o n v e r t   t o   a n g l e  

: look   up   cos ine  

: n e g a t i v e   i n   t h i s  

quadrant  

between 0 and  90 

quadrant  

: s i n ( A n g l e )  - cos (90 -Ang le )  
; l ook  UD s i n e  

: n e g a t i v e   i n   t h i s   q u a d r a n t  

: res to re   s tack   f rame 

; M a t r i x   m u l t i p l i e s   X f o r m  by  SourceVec.  and s t o r e s   t h e   r e s u l t   i n  
; OestVec. M u l t i p l i e s  a  4x4 m a t r i x   t i m e s  a 4 x 1   m a t r i x ;   t h e   r e s u l t  
; i s  a 4x1   mat r ix .   Cheats   by   assuming  the  W coord i s  1 and t h e  
; b o t t o m   r o w   o f   t h e   m a t r i x   i s  0 0 0 1. and d o e s n ' t   b o t h e r   t o   s e t  
: t h e  W c o o r d i n a t e   o f   t h e   d e s t i n a t i o n .  
; C n e a r - c a l l a b l e   a s :  
; void  XformVec(Xform  WorkingXform.  Fixedpoint  *SourceVec. 

F ixedpo in t   *DestVec) ;  

; This  assembly  code i s   e q u i v a l e n t   t o   t h i s  C code: 
; i n t  i; 
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: f o r   ( i - 0 ;   i < 3 ;  i++) 
DestVecCi l  - FixedMul(WorkingXform[il[Ol, SourceVecCO]) + 

FixedMul(WorkingXform~il~l1, SourceVecC11) + 
FixedMul(WorkingXform[ilL?l, SourceVecCZI) + 
WorkingXformCil [3] :  / *  no  need t o   m u l t i p l y  by W - 1 * /  

XVparms s t r u c  

WorkingXform dw ? : p o i n t e r   t o   t r a n s f o r m   m a t r i x  
SourceVec dw ? : p o i n t e r   t o   s o u r c e   v e c t o r  
DestVec dw ? : p o i n t e r   t o   d e s t i n a t i o n   v e c t o r  
XVparms ends 

FIXED-MUL MACRO M 1  ,M2 
; Macro f o r  non-386 m u l t i p l y .  AX,  EX. C X .  DX des t royed.  

dw 2 d u p ( ? )   : r e t u r n   a d d r e s s  & pushed BP 

l o c a l  CheckSecondOperand,SaveSignStatus,FixedMulOone 

sub  cx.cx 
mov bx.word p t r  C&M1&+2] 
and  bx,bx 
j n s  CheckSecondOperand 
neg  bx 
neg  word p t r  C&Ml&I 
sbb  bx.0 
mov word p t r  C&M1&+2].bx 
i n c   c x  

CheckSecondOperand: 
mov bx.word p t r  C&M2&+21 
and  bx.bx 
jns   SaveSignSta tus  
neg  bx 
neg  word p t r  [&M2&1 
sbb bx.0 
mov word p t r  [&M2&+2].bx 
x o r   c x . 1  

SaveSignStatus:  
push 

mov 
mu1 
mov 

mov 
mu1 
mov 
add 
mov 
mu1 
add 
adc 
mov 
mu1 

c x  

ax.word p t r  C&M1&+21 
word p t r  [&M2&+21 
cx.ax 

ax.word p t r  C&M1&+2] 
word p t r  [&MZ&l  
bx,   ax 
cx.   dx 
ax.word p t r   [ & M l & l  
word p t r  [&M2&+21 
bx,  ax 
cx.dx 
ax,word p t r   [ & M l & l  
word p t r  [&M2&1 

i f  MUL-ROUNDING-ON 
add  ax,  8000h 

adc  bx.dx 

:do f o u r   p a r t i a l   p r o d u c t s  and 
; add  them  together ,   accumulat ing 
: t h e   r e s u l t   I n  CX:BX 
: f i g u r e   o u t   s i g n s ,  so we can  use 
: u n s i g n e d   m u l t i p l i e s  
:assume b o t h   o p e r a n d s   p o s i t i v e  

: f i r s t   o p e r a n d   n e g a t i v e ?  
:no 
:yes. so n e g a t e   f i r s t   o p e r a n d  

:mark t h a t   f i r s t  operand i s   n e g a t i v e  

:second  operand  negat ive? 

:yes. s o  negate  second  operand 
:no 

:mark t h a t  second  operand i s   n e g a t i v e  

;remember s i g n   o f   r e s u l t :  1 i f  r e s u l t  
: n e g a t i v e ,  0 i f  r e s u l t   n o n n e g a t i v e  
:h igh   word   t imes  h igh   word  

:assume  no o v e r f l o w   i n t o  DX 
:h igh  word  t imes  low  word 

: low  word  t imes  h igh  word 

: low  word  t imes  low  word 

: round  by  adding Z A ( - 1 7 )  
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e l s e  ;!MUL-ROUNDING-ON 
add  bx.dx 

e n d i f  :MUL-ROUNDING-ON 
adc  cx.0 
mov dx,cx 
mov ax.bx 
POP cx  
and  cx.cx 
jz FixedMulDone 
neg  dx 
neg  ax 
sbb  dx.0 

ENDM 
FixedMulDone: 

a1 i g n  ALIGNMENT 
pub1 i c  -XformVec 

-XformVec proc   near  
push bp 
mov bp.sp 
push s i  
push d i  

i f  USE366 

mov s i . [bp l .Work ingXform 
mov bx.Cbpl.SourceVec 
mov d i  , [ b p l  .DestVec 

so f f -0  
do f f -0  

REPT 3 
mov e a x . [ s i + s o f f l  
i m u l   d w o r d   p t r   [ b x l  

add  eax.8000h 
adc  edx.O 

e n d i f  ;MUL-ROUNDING-ON 
shrd  eax.edx.16 
mov ecx,  eax 

mov eax. [s i+sof f+41 
imul   dword  p t r   [bx+4]  

add  eax.8000h 
adc  edx.0 

e n d i f  ;MUL-ROUNDING-ON 
shrd  eax.edx.16 
add  ecx,  eax 

mov eax. [s i+sof f+61 
imul  dword p t r  [bx+6] 

add  eax.8000h 
adc  edx.O 

e n d i f  :MUL-ROUNDING-ON 
shrd  eax.edx.16 
add  ecx.eax 

add e c x . [ s i + s o f f + l 2 ]  
mov Cd i+do f f l . ecx  

i f  MUL-ROUNDING-ON 

i f  MUL-ROUNDING-ON 

i f  MUL-ROUNDING-ON 

;don’ t   round 

: i s   t h e   r e s u l t   n e g a t i v e ?  
:no.  we’re a l l   s e t  
;yes. s o  negate DX:AX 

: p rese rve   s tack   f rame 
: s e t  u p  l o c a l   s t a c k   f r a m e  
; p r e s e r v e   r e g i s t e r   v a r i a b l e s  

:SI p o i n t s   t o   x f o r m   m a t r i x  
:BX p o i n t s   t o   s o u r c e   v e c t o r  
: D I  p o i n t s   t o   d e s t   v e c t o r  

:do  once  each f o r   d e s t  X .  Y ,  and 2 
:column 0 e n t r y  on t h i s  row 
; x fo rm  en t r y   t imes   sou rce  X e n t r y  

: round  by  adding  2” ( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: s e t   r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row 
; x fo rm  en t r y   t imes   sou rce  Y e n t r y  

; round  by   add ing   2^ ( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
; r u n n i n g   t o t a l   f o r   t h i s   r o w  

;co lumn  2  ent ry  on t h i s  row 
: x fo rm  en t r y   t imes   sou rce  2 e n t r y  

; round  by  adding  2*( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
: r u n n i n g   t o t a l   f o r   t h i s   r o w  

:add i n   t r a n s l a t i o n  
: s a v e   t h e   r e s u l t   i n   t h e   d e s t   v e c t o r  
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s o f f - s o f f + l 6  
d o f f - d o f f + 4  

ENOM 

e l s e  : !USE386 

mov si .Cbp].WorkingXform 
mov di.[bp].SourceVec 
mov bx. [bpl .OestVec 
push  bp 

s o f f - 0  
d o f f - 0  

R E P T  
push 
push 
push 
push 
push 
c a l l  
add 
mov 
mov 

3 
bx 
word p t r   [ s i + s o f f + 2 1  
word p t r   [ s i + s o f f l  
word p t r  Cdi+21 
word p t r   [ d i l  
-FixedMul 
sp.8 
c x , a x   : s e t   r u n n i n g   t o t a l  
bp.dx 

push 
push 
push 
push 
push 
c a l l  
add 
POP 
add 
adc 

push 
push 
push 
push 
push 
c a l l  
add 
POP 
add 
adc 

cx  
word p t r   [ s i + s o f f + 4 + 2 ]  
word p t r   [ s i + s o f f + 4 ]  
word p t r  [di+4+21 
word p t r  [d1+41 
- FixedMul 
sp.8 

cx,  ax 
bp  .dx 

cx  

c x  
word p t r   [ s i + s o f f + 8 + 2 1  
word p t r   [ s i + s o f f + 8 1  
word p t r  Cdi+B+ZI 
word p t r   [ d i + 8 1  
- FixedMul 
sp.8 

cx,  ax 
bp.dx 

cx  

add c x . [ s i + s o f f + l 2 1  
adc  bp. [s i+sof f+ l2+21 
POP bx 
mov [ b x + d o f f l . c x  
mov [bx+doff+El,bp 

s o f f - s o f f + l 6  
d o f f - d o f f + 4  

ENDM 

POP bP 

end i  f ;USE386 

pop d i  
POP s i  

:SI p o i n t s   t o   x f o r m   m a t r i x  
: D I  p o i n t s   t o   s o u r c e   v e c t o r  
:BX p o i n t s   t o   d e s t   v e c t o r  
; p rese rve   s tack   f rame  po in te r  

;do  once  each f o r   d e s t  X. Y .  and 2 
:remember d e s t   v e c t o r   p o i n t e r  

; x fo rm  en t r y   t imes   sou rce  X e n t r y  
:c lear   parameters   f rom  s tack  

: p r e s e r v e   l o w   w o r d   o f   r u n n i n g   t o t a l  

: x f o r m   e n t r y   t i m e s   s o u r c e  Y e n t r y  
:c lear   parameters   f rom  s tack  
; r e s t o r e   l o w   w o r d   o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

: p r e s e r v e   l o w   w o r d   o f   r u n n i n g   t o t a l  

: x fo rm  en t ry   t imes  source  2 e n t r y  
; c lea r   pa ramete rs   f rom  s tack  
; r e s t o r e   l o w   w o r d   o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

:add i n   t r a n s l a t i o n  

: r e s t o r e   d e s t   v e c t o r   p o i n t e r  
: s a v e   t h e   r e s u l t   i n   t h e   d e s t   v e c t o r  

: r e s t o r e   s t a c k   f r a m e   p o i n t e r  

; r e s t o r e   r e g i s t e r   v a r i a b l e s  
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POP bp 
r e t  

-XformVec  endp 

: r e s t o r e   s t a c k   f r a m e  

. ~""~""""""---y"~"""~ 

M a t r i x   m u l t i p l i e s   S o u r c e X f o r m l  by  SourceXformE  and s t o r e s   t h e  
r e s u l t   i n  Oes tX fo rm.   Mu l t i p l i es  a 4x4   ma t r i x   t imes  a 4x4 m a t r i x :  
t h e   r e s u l t   i s  a 4x4  matr ix .   Cheats  by  assuming  the  bot tom  row  of  
e a c h   m a t r i x   i s  0 0 0 1, and d o e s n ' t   b o t h e r   t o   s e t   t h e   b o t t o m   r o w  
o f   t h e   d e s t i n a t i o n .  
C n e a r - c a l l a b l e  as:  

void  ConcatXforms(Xform  SourceXforml.  Xform  SourceXformE. 
Xform  DestXform) 

This  assembly  code i s   e q u i v a l e n t   t o   t h i s  C code: 
i n t  i. j ;  

f o r   ( i - 0 :   i < 3 :  i++) { 
f o r  ( j - 0 :  j<3:  j++) 

O e s t X f o r m [ i l [ j l  - 
FixedMul(SourceXform1Cil[Ol, SourceXfo rm2[01 [ j l )  + 
FixedMul(SourceXforml[il[11. SourceXfo rm2[11 [ j l )  + 
FixedMul(SourceXformlCil~21, S o u r c e X f o r m E ~ E l ~ j l ) :  

OestXformCilC31 - 
FixedMul(SourceXforml[il[Ol, SourceXform2[01[31) + 
FixedMul(SourceXforml[i][ll. SourceXform2[l lC31) + 
FixedMul(SourceXforml~il~21, SourceXform2C21C31) + 
SourceXfo rm lC i l [ 31 :  

} 

CXparms s t r u c  

SourceXforml  dw ? 
SourceXformE dw ? 
OestXform dw ? 
CXparms ends 

dw 2 dup(? )  

a1 i g n  ALIGNMENT 
publ ic   _ConcatXforms 

push bp 
mov bp.sp 
push s i  
Dush d i  

X o n c a t X f o r m s  proc  near 

i f  USE386 

mov bx.[bpl.SourceXform2 
mov s i . [ bp l .SourceXfo rm l  
mov d i . [ bp l .Oes tX fo rm 

r o f f - 0  

c o f f - 0  
REPT 3 

REPT 3 

mov e a x , [ s i + r o f f l  
imul  dword p t r   [ b x + c o f f l  

: r e tu rn   add ress  & pushed BP 
: p o i n t e r   t o   f i r s t   s o u r c e   x f o r m   m a t r i x  
: p o i n t e r   t o  second  source  x form  matr ix  
: p o i n t e r   t o   d e s t i n a t i o n   x f o r m   m a t r i x  

:preserve  s tack  f rame 
: s e t  up l o c a l   s t a c k   f r a m e  
: p r e s e r v e   r e g i s t e r   v a r i a b l e s  

:BX p o i n t s   t o   x f o r m 2   m a t r i x  
:SI p o i n t s   t o   x f o r m l   m a t r i x  
: D I  p o i n t s   t o   d e s t   x f o r m   m a t r i x  

:row o f f s e t  
;once f o r  each  row 
:column o f f s e t  
:once f o r  each o f   t h e   f i r s t  3 columns. 
: assuming 0 as t h e   b o t t o m   e n t r y  (no 
: t r a n s l a t i o n )  
;column 0 e n t r y  on t h i s  row 
:t imes  row 0 e n t r y   i n  column 
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i f  MUL-ROUNDING-ON 
add  eax.8000h 
adc  edx , 0 

shrd  eax.edx.16 
mov ecx,  eax 

e n d i f  :MUL-ROUNDING-ON 

mov eax.[s i+rof f+41 
imul  dword p t r  Cbx+coff+l61 

add  eax.8000h 
adc  edx, 0 

shrd  eax.edx.16 
add  ecx.eax 

i f  MUL-ROUNDING-ON 

e n d i f  :MUL-ROUNDING-ON 

mov eax . [s i+ ro f f+81 
imu l   dword   p t r   [bx+cof f+321 

add  eax.8000h 
adc  edx, 0 

shrd  eax.edx.16 
add  ecx.eax 

i f  MUL-ROUNDING-ON 

e n d i f  ;MUL-ROUNDING-ON 

mov [ d i + c o f f + r o f f ] . e c x  
c o f f - c o f f + 4  

ENDM 

mov e a x . [ s i + r o f f l  
imul   dword p t r   [ b x + c o f f l  

add  eax.8000h 
adc  edx, 0 

shrd  eax.edx.16 
mov ecx,eax 

mov e a x . [ s i + r o f f + 4 1  
imul  dword p t r   [ b x + c o f f + l 6 1  

add  eax,  8000h 
adc  edx, 0 

shrd  eax.edx, l6  
add  ecx.eax 

i f  MUL-ROUNDING-ON 

e n d i f  ;MUL-ROUNDING-ON 

i f  MUL-ROUNDING-ON 

e n d i f  ;MUL-ROUNDING-ON 

mov eax . [s i+ ro f f+8 ]  
imul  dword p t r   [ b x + c o f f + 3 2 1  

add  eax.8000h 
adc  edx.0 

shrd  eax.edx.16 
add  ecx,  eax 

add  ecx ,Cs i+ro f f+ l2 ]  

i f  MUL-ROUNDING-ON 

e n d i f  :MUL-ROUNDING-ON 

: round  by  adding  2"( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: s e t   r u n n i n g   t o t a l  

:column 1 e n t r y  on t h i s  row 
: t imes  row 1 e n t r y  i n  c o l  

: round  by  adding  2*( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: r u n n i n g   t o t a l  

;column 2 e n t r y   o n   t h i s   r o w  
: t imes  row 2 e n t r y   i n   c o l  

: round  by  adding  2"( -17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
: r u n n i n g   t o t a l  

:save t h e   r e s u l t   i n   d e s t   m a t r i x  
: p o i n t   t o   n e x t   c o l   i n   x f o r m 2  & d e s t  

:now do t h e   f o u r t h  column,  assuming 
: 1 as t h e   b o t t o m   e n t r y ,   c a u s i n g  
: t r a n s l a t i o n   t o  be  per formed 
;column 0 e n t r y  on t h i s  row 
:t imes  row 0 e n t r y   i n  column 

: round  by  adding  2^( -17)  
; w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: s e t   r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row 
: t imes  row 1 e n t r y   i n   c o l  

: round  by  adding  ZA(-17)  
: w h o l e   p a r t   o f   r e s u l t   i s   i n  DX 

: s h i f t   t h e   r e s u l t   b a c k   t o   1 6 . 1 6   f o r m  
: r u n n i n g   t o t a l  

:column  2 e n t r y  on t h i s  row 
: t imes  row 2 e n t r y   i n   c o l  

: round  by  adding  2^( -17)  
;who le   pa r t  o f  r e s u l t   i s   i n  DX 

; s h i f t   t h e   r e s u l t   b a c k   t o  16.16  form 
: r u n n i n g   t o t a l  

:add i n   t r a n s l a t i o n  
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mov C d i + c o f f + r o f f l . e c x  
c o f f - c o f f + 4  

r o f f - r o f f + l 6  
ENDM 

e l  se : ! USE386 

mov di. [bp].SourceXformZ 
mov s i . [ bp l .SourceXfo rm l  
mov bx. [bp l .DestXform 
push  bp 

r o f f - 0  

c o f f - 0  
REPT 3 

REPT 3 

push 
push 
push 
push 
push 
c a l l  

add 
mov 
mov 

push 
push 
push 
push 
push 
c a l l  

add 
P O P  
add 
adc 

push 
push 
push 
push 
push 
c a l l  

add 
POP 
add 
adc 

POP 
mov 
mov 

bx 
word p t r   C s i + r o f f + 2 ]  
word p t r   [ s i + r o f f ]  
word p t r   [ d i + c o f f + 2 ]  
word p t r   [ d i + c o f f ]  
- FixedMul 

sp.8 
c x , a x   : s e t   r u n n i n g   t o t a l  
bp.dx 

cx 
word p t r   [ s i + r o f f + 4 + Z ]  
word p t r   [ s i + r o f f + 4 ]  
word p t r   [ d i + c o f f + l 6 + 2 ]  
word p t r   [ d i + c o f f + l 6 ]  
- FixedMul 

sp.8 

cx.ax 
bp.  dx 

cx  

word p t r   [ s i + r o f f + 8 + 2 1  
word p t r   [ s i + r o f f + 8 ]  
word p t r   [ d i + c o f f + 3 2 + 2 ]  
word p t r   [ d i + c o f f + 3 2 ]  
JixedMul 

cx  

sp.8 

cx.ax 
bp.dx 

bx 
Cbx+co f f+ ro f f ] . cx  
[bx+cof f+rof f+21,bp 

cx 

: s a v e   t h e   r e s u l t   i n   d e s t   m a t r i x  
: p o i n t   t o   n e x t   c o l   i n  xform2 & d e s t  

; p o i n t   t o   n e x t   c o l   i n  xform2 & d e s t  

: D I  p o i n t s   t o   x f o r m 2   m a t r i x  
:SI p o i n t s   t o   x f o r m l   m a t r i x  
:BX p o i n t s   t o   d e s t   x f o r m   m a t r i x  
: p r e s e r v e   s t a c k   f r a m e   p o i n t e r  

;row o f f s e t  
:once f o r  each  row 
;column o f f s e t  
;once f o r  each o f   t h e   f i r s t  3 columns, 
: assuming 0 as t h e   b o t t o m   e n t r y  ( n o  
: t r a n s l a t i o n )  
:remember d e s t   v e c t o r   p o i n t e r  

:column 0 e n t r y  on t h i s  row  t imes  row 0 
: e n t r y   i n  column 
: c lea r   pa ramete rs   f rom  s tack  

: p r e s e r v e   l o w   w o r d   o f   r u n n i n g   t o t a l  

:column 1 e n t r y  on t h i s  row  t imes  row 1 
; e n t r y   i n  column 
: c lea r   pa ramete rs   f rom  s tack  
: r e s t o r e   l o w   w o r d   o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

: p r e s e r v e   l o w   w o r d   o f   r u n n i n g   t o t a l  

:column 1 e n t r y  on t h i s  row  t imes  row 1 
: e n t r y   i n  column 
: c lea r   pa ramete rs   f rom  s tack  
; r e s t o r e   l o w  word o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

; r e s t o r e  DestXForm p o i n t e r  
; s a v e   t h e   r e s u l t   i n   d e s t   m a t r i x  
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c o f f - c o f f + 4  
ENDM 

; p o i n t   t o   n e x t   c o l   i n   x f o r m 2  & d e s t  

push 
push 
push 
push 
push 
c a l l  

add 
mov 
mov 

push 
push 
push 
push 
push 
c a l l  

add 
POP 
add 
adc 

push 
push 
push 
push 
push 
c a l l  

add 
POP 
add 
adc 

add 
add 

POP 
mov 
mov 

c o f f - c o f f + 4  

r o f f - r o f f + l 6  
ENDM 

POP 

e n d i f  ;USE386 

POP 
POP 
POP 
r e t  

end 
-ConcatXforms 

bx 
word p t r   [ s i + r o f f + 2 ]  
word p t r   [ s i + r o f f l  
word p t r   [ d i + c o f f + 2 1  
word p t r   [ d i + c o f f l  
- F i  xedMul 

sp.8 
c x . a x   ; s e t   r u n n i n g   t o t a l  
bp.  dx 

cx  
word p t r   [ s i + r o f f + 4 + 2 1  
word p t r   [ s i + r o f f + 4 1  
word p t r   [ d i + c o f f + l 6 + 2 ]  
word p t r   [ d i + c o f f + l 6 ]  
- F i  xedMul 

sp.8 

cx,ax 
bp , dx 

c x  

cx  
word p t r   [ s i + r o f f + 8 + 2 1  
word p t r   [ s i + r o f f + 8 1  
word p t r  [di+coff+32+21 
word p t r   [ d i + c o f f + 3 2 ]  
- FixedMul 

sp,8 

cx,   ax 
bp.dx 

c x . C s i + r o f f + l Z l  
bp . [ s i+ ro f f+ l2+21  

bx 
[ b x + c o f f + r o f f l , c x  
[bx+cof f+rof f+2] .bp 

cx  

bp 

d i  
s i  
bv 

endp 

:now do the   four th   co lumn,   assuming 
: 1 as t h e   b o t t o m   e n t r y ,   c a u s i n g  
; t r a n s l a t i o n   t o  be  performed 
;remember d e s t   v e c t o r   p o i n t e r  

;column 0 e n t r y  on t h i s  row  t imes row 0 
; e n t r y   i n  column 
; c lea r   pa ramete rs   f rom  s tack  

;p reserve   low  word  o f  r u n n i n g   t o t a l  

;column 1 e n t r y  on t h i s  row  t imes row 1 
; e n t r y   i n  column 
; c lea r   pa ramete rs   f rom  s tack  
; r e s t o r e   l o w   w o r d   o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

; p r e s e r v e   l o w   w o r d   o f   r u n n i n g   t o t a l  

:column 1 e n t r y  on t h i s  row  t imes  row 1 
: e n t r y   i n  column 
: c lea r   pa ramete rs   f rom  s tack  
; r e s t o r e   l o w   w o r d   o f   r u n n i n g   t o t a l  
; r u n n i n g   t o t a l   f o r   t h i s  row 

;add i n   t r a n s l a t i o n  

; r e s t o r e  DestXForm p o i n t e r  
; s a v e   t h e   r e s u l t   i n   d e s t   m a t r i x  

; p o i n t   t o   n e x t   c o l   i n   x f o r m 2  & d e s t  

; p o i n t   t o   n e x t   c o l   i n   x f o r m 2  & d e s t  

; r e s t o r e   s t a c k   f r a m e   p o i n t e r  

: r e s t o r e   r e g i s t e r   v a r i a b l e s  

: r e s t o r e   s t a c k   f r a m e  
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Shading 
So far, the polygons out of  which our animated objects have been built have had 
colors of fixed intensities. For example,  a face of a  cube  might be blue, or  green,  or 
white, but whatever color it is, that color never brightens or dims.  Fixed colors are 
easy to implement,  but they don’t make for very realistic animation.  In  the real world, 
the intensity of the color of a surface varies depending  on how brightly it is  illumi- 
nated. The ability  to simulate the illumination of a surface, or shading, is the  next 
feature we’ll add to X-Sharp. 
The overall shading of an object is the sum of several  types of shading  components. 
Ambient shadingis illumination by what  you might think of  as background light, light 
that’s coming  from all directions; all surfaces are equally illuminated by ambient 
light, regardless of their  orientation. Directed lighting, producing diffuse shading, is 
illumination from one or more specific light sources. Directed light has a specific 
direction, and  the angle at which it strikes a surface determines how brightly it lights 
that surface. Specular reJection is the tendency of a surface to reflect light  in a mirror- 
like fashion. There  are  other sorts of shading  components,  including transparency 
and atmospheric effects, but  the ambient and diffuse-shading components  are all 
we’re going to deal with in X-Sharp. 

Ambient  Shading 
The basic model  for  both  ambient and diffuse shading is a simple one. Each surface 
has a reflectivity between 0 and 1, where 0 means  all light is absorbed and 1 means all 
light is reflected. A certain  amount of light energy strikes each surface. The energy 
(intensity) of the light is expressed such that if light of intensity 1 strikes a surface 
with reflectivity 1, then  the  brightest possible shading is displayed for  that surface. 
Complicating this somewhat  is the  need to support color; we do this by separating 
reflectance and shading  into  three  components each-red, green,  and blue-and 
calculating the shading for each color component separately for  each surface. 
Given an ambient-light red intensity of Ured and a surface red reflectance Rred, the 
displayed red  ambient  shading  for  that surface, as a fraction of the maximum red 
intensity, is  simply min(IAredx Rred, 1). The green and blue color components  are 
handled similarly. That’s really  all there is to ambient shading, although of course we 
must design some way to map displayed color components  into  the available palette 
of colors; I’ll do that in the  next  chapter. Ambient shading isn’t the whole shading 
picture,  though.  In fact, scenes tend to look pretty bland without diffuse shading. 

Diffuse Shading 
Diffuse shading is more complicated than  ambient shading, because the effective 
intensity of directed light falling on  a surface depends  on the angle at which it strikes 
the surface. According to Lambert’s law, the light energy from  a  directed  light source 
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striking a surface is proportional to the cosine of the angle at which it strikes the 
surface, with the angle measured relative to a vector perpendicular to the polygon (a 
polygon normal), as  shown in Figure  54.1.  If the red intensity of directed light is 
IDred, the red reflectance of the surface is Rred, and the angle between the incoming 
directed light and the surface’s normal is theta, then  the displayed red diffuse shad- 
ing  for  that  surface, as a fraction of the largest possible red intensity, is min 

That’s easy enough  to calculate-but  seemingly slow. Determining the cosine of an 
angle can be sped up with a table lookup, but there’s  also the task of figuring out  the 
angle, and, all in all, it doesn’t seem that diffuse shading is going to be  speedy enough 
for our purposes. Consider this,  however:  According to the properties of the dot 
product (denoted by the operator “.”, as shown in  Figure  54.2), cos(B)=(vw) / IvI X IwI ) , 
where v and w are vectors, 8 is the angle between v and w, and Ivl is the  length of v. 
Suppose, now, that v and w are  unit vectors; that is,  vectors  exactly one unit long. 
Then the above equation reduces to cos(e)=v.w. In  other words, we can calculate 
the cosine  between N, the unit-normal vector (one-unit-long perpendicular vector) 
of a polygon, and L’, the reverse of a unit vector describing the direction of a light 
source, with just  three multiplies and two adds. (I’ll explain why the  lightdirection 
vector must be  reversed later.) Once we have that, we can easily calculate the red 

(1D,edxRre,xcos(8), ’)* 

Light  from  directed  Polygon  normal  (perpendicular  vector) 
illumination  source 
D, of energy E. 

Illumination by a directed light source. 
Figure 54.1 

For two vectors  v and w, as  follows:  the  dot  product  v w is: 

v w = v,w,+  yw,+ v,w, 

The dot product of two vectors. 
Figure 54.2 
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diffuse shading  from  a  directed  light source as min(1DredxRredx(L'* N), 1) and like- 
wise for the  green  and blue color components. 
The overall red shading for each polygon can  be  calculated by summing the ambient- 
shading  red  component with the diffuse-shading component  from  each  light  source, 
as  in min( (IAredxRred) + (1Drcd,,xRredx(LO' N))  + (IDredlxRredx(L1' N))  +..., 1)  where 
IDredo and Lo' are  the  red intensity and  the reversed unit-direction vector, respec- 
tively, for spotlight 0. Listing 54.2 shows the X-Sharp module DRAWPOBJ.C, which 
performs  ambient and diffuse shading. Toward the  end, you  will find the code  that 
performs  shading exactly  as described by the above equation, first calculating the 
ambient red,  green,  and  blue shadings, then summing that with the diffuse red, 
green,  and  blue shadings generated by each directed light source. 

LISTING 54.2 DRAWP0BJ.C 
/*  Draws a l l   v i s i b l e   f a c e s   i n   t h e   s p e c i f i e d   p o l y g o n - b a s e d   o b j e c t .  The o b j e c t  

must   have  prev ious ly   been  t ransformed and p r o j e c t e d ,  so  t h a t  all v e r t e x  
a r r a y s   a r e   f i l l e d   i n .   A m b i e n t  and d i f f use   shad ing   a re   suppor ted .  * /  

Di ncl   ude  "po lygon.  h" 

vo id   DrawPObjec t (P0b jec t  * ObjectToXform) 
t 

i n t  i. j .  NumFaces - Objec tToXform->NumFaces.  NumVert ices: 
i n t  * VertNumsPtr,  Spot; 
Face * FacePtr - O b j e c t T o X f o r m - > F a c e L i s t :  
P o i n t  * Screenpoints  = Ob jec tToXfo rm->ScreenVer texL is t ;  
Po in tL is tHeader   Po lygon:  
F i x e d p o i n t   D i f f u s i o n :  
Model  Col o r  Col  orTemp: 
M o d e l I n t e n s i t y   I n t e n s i t y T e m p :  
Point3  Uni tNormal ,   *NormalStar tpo int .   *NormalEndpoint :  
l o n g  VI. v2, w l .  w2: 
P o i n t  VerticesCMAX-POLY-LENGTH]; 

/*  D r a w  each v i s i b l e   f a c e   ( p o l y g o n )   o f   t h e   o b j e c t   i n   t u r n  * /  
f o r  (i=O: i<NumFaces; i++. FacePtr++) I 

/*  Remember where we can f i n d   t h e   s t a r t  and  end o f   t h e   p o l y g o n ' s  
u n i t   n o r m a l   i n   v i e w   s p a c e ,  and s k i p   o v e r   t h e   u n i t   n o r m a l   e n d p o i n t  
e n t r y .  The  end  and s t a r t   p o i n t s   o f   t h e   u n i t  normal t o   t h e   p o l y g o n  
must be t h e   f i r s t  and  second e n t r i e s   i n   t h e   p o l g y o n ' s   v e r t e x   l i s t .  
N o t e   t h a t   t h e  second p o i n t   i s   a l s o  an a c t i v e   p o l y g o n   v e r t e x  */  

VertNumsPtr = FacePtr->VertNums: 
NormalEndpoint - &ObjectToXform->XformedVertexLis t [ *Ver tNumsPtr++l :  
N o r m a l S t a r t p o i n t  = &Ob jec tToXfo rm->Xfo rmedVer texL is tC*Ver tNumsPt r l :  
/ *  Copy o v e r   t h e   f a c e ' s   v e r t i c e s   f r o m   t h e   v e r t e x   l i s t  * /  
NumVert ices = FacePtr->NumVerts: 
f o r   ( j - 0 :   j < N u m V e r t i c e s ;  j++) 

I* D r a w  o n l y  i f  ou ts ide   f ace   show ing  ( i f  t h e   n o r m a l   t o   t h e   p o l y g o n  
V e r t i c e s C j l  - ScreenPoin tsC*Ver tNumsPt r++ l :  

i n  s c r e e n   c o o r d i n a t e s   p o i n t s   t o w a r d   t h e   v i e w e r :   t h a t   i s .  has a 
p o s i t i v e  2 component) * /  

v l  - Vert icesC11.X - VerticesCO1.X: 
w l  = Ver t i ces [NumVer t i ces -1 l .X  - VerticesCO1.X: 
v2 = Vert icesC11.Y - VerticesCO1.Y; 
w2 = Ver t i cesCNurnVer t i ces - l1 .Y  - VerticesCO1.Y; 
i f  ( ( v l * w 2  - v2*wl)  > 0 )  [ 

/ *  It i s   f a c i n g   t h e   s c r e e n ,  s o  draw * /  
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/ *  A p p r o p r i a t e l y   a d j u s t   t h e   e x t e n t   o f   t h e   r e c t a n g l e   u s e d   t o  
e r a s e   t h i s   o b j e c t   l a t e r  * /  

f o r   ( j - 0 :   j < N u m V e r t i c e s ;  j++) { 
i f  ( V e r t i c e s 1 j l . X  > 

ObjectToXform->EraseRect[NonOisplayedPagel.Right~ 

ObjectToXform->EraseRectCNonDisplayedPagel.Right - 
e l s e  ObjectToXform->EraseRect [NonDisp layedPagel .Right  = 

i f  (Ver t i cesC j1 .X  < SCREEN-WIDTH) 

Ver t i cesC j1 .X ;  

SCREEN-WIDTH: 
i f  (Ver t i cesC j1 .Y  > 

Ob jec tToXfo rm->EraseRec t [NonOisp layedPage l .Bo t tom~ 

ObjectToXform->EraseRect [NonDisp layedPagel .Bot tom - i f  (Ver t i cesC j1 .Y  < SCREEN-HEIGHT) 

V e r t i c e s [ j ] . Y :  
e l s e  ObjectToXform->EraseRect[NonDisplayedPagel.Bottom- 

SCREEN-HEIGHT; 
i f  (Ver t i cesC j1 .X  < 

ObjectToXform->EraseRect[NonDisplayedPagel.Left) 

ObjectToXform->EraseRect[NonOisplayedPagel.Left - 
e l s e  ObjectToXform->EraseRectCNonOisplayedPagel.Left-O: 

i f  (Ver t i cesC j1 .X  > 0 )  

Ve r t i cesC j1 .X :  

i f  (Ver t i cesC j1 .Y  < 
ObjectToXform->EraseRect[NonDisplayedPagel.Top) 

ObjectToXform->EraseRect [NonDisp layedPagel .Top - 
e l s e  ObjectToXform->EraseRectCNonDisplayedPagel.Top-O: 

i f  (Ver t i cesC j1 .Y  > 0 )  

Ve r t i cesC j1 .Y :  

1 
/*  See i f  t h e r e ' s  any  shading * I  

i f  (FacePtr ->ShadingType - 0 )  { 
I* No shading i n   e f f e c t ,  so j u s t  draw */  
DRAW_POLYGON(Vertices, NumVert ices,   FacePtr ->Color Index.  0 ,   0 ) :  

I* Handle  shading * I  
/* 00 ambient  shading, i f  enabled */  
i f  (Ambienton && (FacePtr ->ShadingType & AMBIENT-SHADING)) I 

} e l s e  { 

/ *  Use the  ambient  shading  component * /  
In tens i t yTemp - A m b i e n t I n t e n s i t y :  

SET-INTENSITY(1ntensityTemp. 0.   0 .  0 ) :  
I e l s e  { 

I* Do d i f f u s e   s h a d i n g ,  i f  enabled * /  
i f  (FacePtr->ShadingType & DIFFUSE-SHADING) { 

/ *  C a l c u l a t e   t h e   u n i t   n o r m a l   f o r   t h i s   p o l y g o n ,   f o r   u s e   i n   d o t  

UnitNorma1.X - NormalEndpoint->X - Norma lS ta r tpo in t ->X ;  
UnitNorma1.Y - NormalEndpoint->Y - Norma lS ta r tpo in t ->Y :  
Uni tNormal .2  - NormalEndpoint ->2 - N o r m a l S t a r t p o i n t - > Z :  
/ *  C a l c u l a t e   t h e   d i f f u s e   s h a d i n g  component f o r  each   ac t i ve  

f o r  (Spot-0: Spot<MAX-SPOTS: Spot++) I 

produc ts  * I  

s p o t l i g h t  * /  

i f  (SpotOnCSpotl !- 0 )  I 
/*  Spot i s  on.  so sum. f o r  each c o l o r  component, t h e  

i n t e n s i t y ,   a c c o u n t i n g   f o r   t h e   a n g l e   o f   t h e   l i g h t   r a y s  
r e l a t i v e   t o   t h e   o r i e n t a t i o n   o f   t h e   p o l y g o n  */  

I* C a l c u l a t e   c o s i n e   o f   a n g l e   b e t w e e n   t h e   l i g h t  and t h e  
po lygon   no rma l :   sk ip  i f  s p o t   i s   s h i n i n g   f r o m   b e h i n d  
the   po l ygon  * /  
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i f  ( ( D i f f u s i o n  - D D T ~ P R O D U C T ( S p o t D i r e c t i o n V i e w [ S p o t l ,  
UnitNorma1 1)  > 0 )  I 

1ntensityTemp.Red += 

1ntensi tyTemp.Green +- 

1ntensi tyTemp.Blue +- 

FixedMul(SpotIntensity[Spotl.Red. D i f f u s i o n ) ;  

FixedMul(SpotIntensity[Spotl.Green, D i f f u s i o n ) ;  

FixedMul(SpotIntensity[Spotl.Blue. D i f f u s i o n ) :  
I 

1 
1 

1 
/*  C o n v e r t   t h e   d r a w i n g   c o l o r   t o   t h e   d e s i r e d   f r a c t i o n   o f   t h e  

IntensityAdjustColor(&ColorTemp. & F a c e P t r - > F u l l C o l o r ,  

I* Draw w i t h   t h e   c u m u l a t i v e   s h a d i n g ,   c o n v e r t i n g   f r o m   t h e   g e n e r a l  

DRAWKPOLYGON(Vertices. NumVert ices,  

b r i g h t e s t   p o s s i b l e   c o l o r  * /  

&In tens i tyTemp) ;  

c o l o r   r e p r e s e n t a t i o n   t o   t h e   b e s t - m a t c h   c o l o r   i n d e x  */  

1 
ModelColorToColorIndex(&ColorTemp). 0. 0): 

1 
I 

I 

Shading:  Implementation  Details 
In  order to calculate the cosine of the angle between an incoming light source and a 
polygon’s unit normal, we must first have the polygon’s unit  normal. This could be 
calculated by generating  a cross-product on two polygon edges to generate  a nor- 
mal, then calculating the normal’s length  and scaling to produce  a  unit  normal. 
Unfortunately, that would require taking a square root, so it’s not a desirable course 
of action. Instead, I’ve made a  change to X-Sharp’s  polygon format. Now, the first 
vertex in a  shaded polygon’s vertex list is the  end-point of a  unit  normal  that starts at 
the second point in the polygon’s vertex list,  as  shown in Figure 54.3. The first point 
isn’t one of the polygon’s vertices, but is used only to generate  a  unit  normal.  The 

Vertex 0 must be the endpoint of a  unit 
starting at vertex 1 .  This point 

is not part of the polygon. 

Vertex 1 must be the  startpoint of 
a  unit normal ending at vertex 0. 
This point is part of the polygon. Polygon I 

The  unit normal in the polygon data structure. 
Figure 54.3 
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Reversed  unit 
vector L’ toward 

Light  from  directed  illumination  source D, directed light Polygon  unit 

the  unit  vector L 
i of energy E, with  direction  expressed by 

I 
Polygon  surface 

The reversed  light  source  vector: 
Figure 54.4 

second point, however,  is a polygon vertex. Calculating the difference vector  be- 
tween the first and  second points yields the polygon’s unit  normal.  Adding a 
unit-normal endpoint to each polygon  isn’t free; each of those end-points has to be 
transformed, along with the rest of the vertices, and that takes time. Still,  it’s faster 
than calculating a  unit normal for each polygon from scratch. 
We also need a  unit vector for each directed light source. The directed light sources 
I’ve implemented in X-Sharp are spotlights; that is, they’re considered to be point 
light sources that are infinitely far away. This allows the simplifylng assumption that 
all light rays from a spotlight are parallel and of equal intensity throughout  the dis- 
played universe, so each spotlight can be represented with a single unit vector and a 
single  intensity. The only  trick is that in order to calculate the desired cos(theta) 
between the polygon unit normal and a spotlight’s unit vector, the direction of the 
spotlight’s unit vector  must be reversed, as  shown in Figure 54.4. This is necessary 
because the dot product implicitly  places  vectors  with their start points at  the same 
location when  it’s  used to calculate the cosine of the angle between two vectors. The 
light vector is incoming to the polygon surface, and the unit normal is outbound, so 
only by reversing one vector or the  other will  we get the cosine of the desired angle. 
Given the two unit vectors,  it’s a piece of cake to calculate intensities, as  shown in 
Listing 54.2. The sample program DEMO1, in the X-Sharp  archive on the listings 
disk (built by running K1 .BAT), puts the shading code to work  displaying a rotating 
ball  with ambient lighting and three  spot lighting sources that  the user can turn on 
and off. What you’ll  see when you run DEMO1 is that the shading is  very  good-face 
colors change very smoothly  indeed-so long as only green lighting sources are  on. 
However, if you combine spotlight two,  which  is blue, with  any other light source, 
polygon  colors will start to shift abruptly and unevenly. As configured in the demo, 
the palette supports a wide range of shading intensities for  a pure version  of  any one 
of the  three primary colors, but  a very limited number of intensity steps (four, in  this 
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case) for each color  component when two or more primary colors are mixed. While 
this situation can be improved, it is fundamentally a result of the restricted capabili- 
ties of the 256-color palette, and  there is only so much that can be done without a 
larger color set. In  the  next chapter, I’ll talk about some ways to improve the quality 
of 256-color shading. 
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's Color Model in an 

Once she turned six, my daughter wanted some fairly sophisticated books read to 
her. Wind in the Willows use on the Prairie. Pretty heady stuff for one so young, 
and sometimes I wondered how much of it she really understood. As an experiment, 
during one reading)! stopped whenever I came to a word I thought she might not 
know, and asked her what it meant. One such word was “mulling.” 

ulling’ means?” I asked. 
r a while, then said, “Pondering.” 
e than a little surprised. 

She smiled and said, “But, Dad, how do you know that I know what ‘pondering’ means?” 
“Okay,” I said, ‘What does ‘pondering’ mean?” 
“Mulling,” she said. 
What does this anecdote tell us about the universe in which we live? Well, it certainly 
indicates that this universe is inhabited by at least one comedian and one good straight 
man. Beyond that, though, it can be construed as a parable about the difficulty of 
defining things properly; for example, consider the complications inherent in the 
definition of color on a 256-color display adapter such as the VGA. Coincidentally, 
VGA color modeling just happens to be this chapter’s topic, and the place to start is 
with color modeling in general. 
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A Color Model 
We’ve been  developing X-Sharp for several chapters now. In  the previous chapter, 
we added  illumination  sources and shading;  that  addition makes it necessary for us 
to have a  general-purpose  color  model, so that we can display the  gradations of color 
intensity necessary to render illuminated  surfaces properly. In other words, when a 
bright  light is shining  straight at a  green  surface, we need  to be able  to display bright 
green,  and as that  light dims or tilts to strike the  surface at a shallower angle, we 
need  to be able to  display  progressively dimmer  shades of green. 
The first thing to do is to  select  a  color  model in which to  perform our shading 
calculations. I’ll use the dot product-based stuff I discussed in the previous chapter. 
The  approach we’ll take is to select an ideal  representation of the full color space 
and do our calculations  there, as if  we really could display  every  possible color; only 
as a final step will  we map each desired color into the limited 25kolor set of the VGA, or 
the color range of  whatever adapter we happen to  be  working with. There  are  a  number 
of color models that we might  choose  to work  with, but I’m going  to go with the one 
that’s  both most familiar and, in my opinion, simplest: RGB (red,  green,  blue). 
In the RGB model,  a given color is modeled as the mix of specific fractions of full 
intensities of each of the  three  color  primaries. For example,  the  brightest possible 
pure blue is O.O*R,  O.O*G, l.O*B. Half-bright cyan is O.O*R, 0.5*G,  0.5*B. Quarter- 
bright gray is 0.25*R,  0.25*G, 0.25”B. You can  think of  RGB color space as being  a 
cube, as  shown in Figure 55.1,  with  any particular  color lying somewhere inside or 
on the  cube. 

Red 

Increasing / 
red  intensity 

I Yellow 

Cyan 

Green 

\ 
Increasing 
green  intensity 

The RGB color cube. 
Figure 55.1 
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RGB  is good  for  modeling colors generated by light sources, because red,  green,  and 
blue are  the additive primaries; that is,  all other colors can be generated by mixing 
red,  green,  and blue light sources. They're also the primaries for color computer 
displays, and  the RGB model maps  beautifully onto the display  capabilities  of  15- 
and  24bpp display adapters, which tend  to  represent pixels  as RGB combinations in 
display  memory. 
How, then,  are RGB colors represented  in X-Sharp?  Each color is represented as an 
RGB triplet, with eight bits each of red,  green,  and  blue resolution, using the struc- 
ture shown in Listing  55.1. 

LISTING 55.1  155- 1 .C 
t y p e d e f   s t r u c t   " o d e l C o l o r  [ 

uns igned   cha r  Red: / *  255  = rnax r e d ,  0 = n o   r e d  * I  
uns igned  char   Green:  / *  255  = rnax g reen ,  0 = no  g reen */  
u n s i g n e d   c h a r   B l u e :  / *  255  = rnax b l u e .  0 = n o   b l u e  * I  

I Model   Co l   o r :  

Here, each color is described by three color components-one each for red,  green, 
and blue-and each primary color component is represented by eight bits.  Zero 
intensity  of a color component is represented by the value 0, and full  intensity is 
represented by the value  255. This gives  us  256  levels  of each primary color compo- 
nent,  and a total  of  16,772,216  possible  colors. 
Holy  cow! Isn't 16,OOO,OOO-plus colors a bit of  overkill? 
Actually, no, it  isn't. At the  eighth Annual Computer Graphics Show in New  York, 
Sheldon Linker, of Linker Systems, related an  interesting tale about color percep- 
tion research at  the  Jet Propulsion Lab  back in the '70s. The JPL color research folks 
had  the capability  to print  more  than 50,000,000 distinct and very  precise colors on 
paper. As a test,  they tried printing out words in various  colors,  with each word printed 
on a background  that differed by only one color index  from  the word's  color. No 
one expected  the  human eye to  be able to differentiate between two colors, out of 
5O,OOO,OOO-plus, that were so similar. It  turned  out,  though,  that everyone could read 
the words  with no trouble  at all; the  human eye  is surprisingly  sensitive  to color 
gradations, and also happens to be wonderful at  detecting edges. 
When the JPL  team  went  to  test the eye's  sensitivity to color on  the  screen, they 
found  that only about 16,000,000 colors could be distinguished, because the color- 
sensing mechanism of the  human eye  is more compatible with  reflective sources 
such as paper  and ink than with  emissive sources such  as CRTs. Still, the  human eye 
can distinguish about 16,000,000  colors on  the  screen. That's not so hard  to believe, 
if you think about it; the eye senses each primary color separately, so we're  really  only 
talking about  detecting 256  levels  of  intensity per primary here. It's the  brain  that 
does  the amazing part;  the 16,OOO,OOO-plus color capability  actually comes not from 
extraordinary sensitivity in the eye, but  rather from the brain's ability to distinguish 
between  all the mixes of  256  levels  of each of three primaries. 
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So it's perfectly reasonable  to  maintain 24 bits of color  resolution, and X-Sharp rep- 
resents  colors  internally as ideal,  device-independent 24bit RGB triplets. All shading 
calculations  are  performed on these  triplets, with 24bit color  precision. It's only 
after  the  final 24bit RGB drawing color is calculated  that  the display adapter's  color 
capabilities come into play,  as the X-Sharp function ModelColorToColorIndex() is 
called to  map  the  desired RGB color to the closest match  the  adapter is capable of 
displaying. Of course,  that  mapping is adapter-dependent.  On  a 24bpp device, it's 
pretty obvious  how the  internal RGB color  format maps to displayed pixel colors: 
directly. On VGAs with 15-bpp Sierra  Hicolor DACS, the  mapping is equally simple, 
with the five upper bits of each  color  component  mapping  straight  to display  pixels. 
But how on  earth do we map  those 16,OOO,OOO-plus  RGB colors into  the 256-color 
space of a  standard VGA? 
This is the "color definition"  problem I mentioned  at  the  start of this chapter. The 
VGA palette is arbitrarily  programmable to  any set of  256 colors, with each  color 
defined by  six bits each of red,  green,  and  blue intensity. In X-Sharp, the  function 
InitializePaletteO can be customized to set up the  palette however we wish; this gives 
us nearly complete flexibility in  defining  the working color set. Even  with infinite 
flexibility,  however,  256 out of 16,000,000 or so possible colors is a  pretty  puny selec- 
tion. It's easy to set up  the palette  to give  yourself a  good  selection of just blue 
intensities, or  ofjust greens; but  for  general color modeling  there's simply not  enough 
palette  to go around. 
One way to  deal with the  limited  simultaneous  color capabilities of the VGA is to 
build an application  that uses  only a  subset of  RGB space, then bias the VGA's palette 
toward that  subspace.  This is the  approach used in the DEMOl sample  program in 
X-Sharp;  Listings  55.2 and 55.3 show the  versions of Initializepalette0 and 
ModelColorToColorIndex() that set up  and perform  the  color  mapping  for  DEMOl. 

LISTING  55.2  155-2.C 
/*  S e t s   u p   t h e   p a l e t t e   i n  mode X ,  t o  a 2 - 2 - 2  g e n e r a l  R - G - B  o r g a n i z a t i o n ,   w i t h  

64 s e p a r a t e   l e v e l s   e a c h   o f   p u r e   r e d ,   g r e e n ,   a n d   b l u e .   T h i s   i s   v e r y   g o o d  
f o r   p u r e   c o l o r s ,   b u t   m e d i o c r e   a t   b e s t   f o r   m i x e s .  

....."""""""""~ 

10 0 I Red lGreen l   B lue  I 

7 6 5 4 3 2 1 0  
"""""""""""" 

"""""""""""" 

10 1 I Red I 
"""""""""""" 

7 6 5 4 3 2 1 0  

"""""""""""" 

11 0 I Green I 

7 6 5 4 3 2 1 0  

""""""".......... 
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_______"_."........... 

I1 1 I B1 ue I 
""""""""""".. 

7 6 5 4 3 2 1 0  

Colors  are  gamma  corrected  for a gamma  of  2.3  to  provide  approximately 
even  intensity  steps on the  screen. 

P i  ncl  ude <dos . h> 
#include  "polygon. h" 

static  unsigned  char  Gamma4Levels[l - { 0.  39. 53,  63 I ;  
static  unsigned  char  Gamma64Levels[] - { 

0 .  10. 14. 17. 19. 21. 23. 24. 26, 27. 28. 29, 31. 32. 33. 34. 
35. 36, 37. 37. 38. 39, 40. 41. 41. 42, 43, 44. 44, 45. 46. 46, 
47. 48, 48. 49. 49. 50. 51. 51. 52, 52, 53, 53, 54. 54. 55. 55. 
56. 56. 57. 57. 58, 58. 59. 59. 60, 60, 61. 61. 62, 62. 63. 63. 

I ;  

static  unsigned  char  PaletteBlock[256][31: I* 256 RGB entries *I  

void InitializePaletteO 
I 

int Red, Green, Blue.  Index: 
union  REGS  regset: 
struct  SREGS  sregset: 

for  (Red-0:  Red<4:  Red++) { 
for  (Green-0: Green<4: Green++) I 

for  (Blue-0:  Blue<4:  Blue++) { 
Index = (Red<<4)+(Green<<Z)+Blue:  
PaletteBlock[Indexl[01 - Gamma4Levels[Redl: 
PaletteBlock[Index][l] - Gamma4Levels[Greenl: 
PaletteBlock[Indexl[21 - Gamma4Levels[Bluel: 

1 
I 

I 

for  (Red-0:  Red<64:  Red++) { 
PaletteBlock[64+Redl[Ol = Gamma64Levels[Redl; 
PaletteBlock[64+Redl[ll - 0: 
PaletteBlock[64+Redl[2] - 0: 

1 

for  (Green-0:  Green<64:  Green++) { 
PaletteBlock[128+Greenl[Ol - 0:  
PaletteBlock[l28+Greenl[ll - Gamma64Levels[Greenl: 
PaletteBlock[l2B+Green1[2] - 0:  

1 

for  (Blue-0:  Blue<64:  Blue++) { 
PaletteBlock[192+Bluel[Ol - 0:  
PaletteBlock[192+Bluel[ll - 0:  
Palette61 ock[  192+B1 uelC21 - Gamma64Level  sCBl  uel : 

1 

I* Now set up the palette * /  
re9set.x.a~ - 0x1012: I* set  block  of  DAC  registers  function *I  
regset.x.bx - 0;  I* first  DAC  location  to  load *I  
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r e g s e t . x . c x  - 256: I* I o f  DAC l o c a t i o n s   t o  1 oad *I  
r e g s e t . x . d x  - ( u n s i g n e d  i n t ) P a l e t t e B l o c k ;  I* o f f s e t   o f   a r r a y   f r o m   w h i c h  

t o   l o a d  RGB s e t t i n g s  *I  
s r e g s e t . e s  - -DS; I* segment o f   a r r a y   f r o m   w h i c h   t o   l o a d   s e t t i n g s  *I  
i n t 8 6 x ( O x l O .   & r e g s e t .   & r e g s e t .   & r e g s e t ) ;  I* l o a d   t h e   p a l e t t e   b l o c k  *I  

1 

LISTING 55.3 155-3.C 
/* C o n v e r t s  a m o d e l   c o l o r   ( a   c o l o r   i n   t h e  RGB c o l o r   c u b e ,   i n   t h e   c u r r e n t  

c o l o r   m o d e l )   t o  a c o l o r   i n d e x   f o r  mode X .  P u r e   p r i m a r y   c o l o r s   a r e  
s p e c i a l - c a s e d ,   a n d   e v e r y t h i n g   e l s e   i s   h a n d l e d   b y  a 2 - 2 - 2  mode l .  *I  

i n t  Model   Col   orToCol   or Index(Mode1  Col   or  * C o l   o r )  
I 

i f  ( C o l o r - > R e d  - 0 )  { 
i f  ( C o l o r - > G r e e n  - 0 )  { 

/ *  P u r e   b l u e  *I  
r e t u r n ( l 9 2 + ( C o l o r - > B l u e  >> 2 ) ) ;  

I* Pure  green *I  
return(l28+(Color->Green >> 2 ) ) ;  

1 e l s e  i f  ( C o l o r - > B l u e  - 0 )  { 

1 

/*  P u r e   r e d  *I 
r e t u r n ( 6 4 + ( C o l o r - > R e d  >> 2 ) ) ;  

1 e l s e  i f  ( ( C o l o r - > G r e e n  - 0) && ( C o l o r - > B l u e  - 0 ) )  { 

1 
I* M u l t i - c o l o r   m i x ;   l o o k   u p   t h e   i n d e x   w i t h   t h e   t w o   m o s t   s i g n i f i c a n t   b i t s  

r e t u r n ( ( ( C o 1 o r - > R e d  & OxCO) >> 2 )  I ( ( C o l o r - > G r e e n  & OxCO) >> 4 )  I 
o f   e a c h   c o l o r   c o m p o n e n t  *I  

( ( C o l o r - > B l u e  & OxCO) >> 6)); 
1 

In DEMOl, threequarters of the  palette is set up with  64 intensity levels  of each of 
the  three  pure  primary colors (red,  green,  and  blue),  and  then most drawing is done 
with  only pure primary  colors.  The  resulting  rendering quality is very good because 
there  are so many  levels  of each primary. 
The downside is that this excellent quality is available for only three colors: red, 
green,  and  blue. What about all the  other colors that  are mixes of the  primaries, like 
cyan or yellow, to say nothing of gray? In  the DEMOl color  model, any RGB color 
that is not  a  pure primary is mapped  into  a 2-2-2 RGB space that  the  remaining 
quarter of the VGA's palette is set up to display; that is, there  are exactly two bits of 
precision  for  each  color  component, or 64 general RGB colors  in all. This is genu- 
inely  lousy color  resolution,  being only 1/64th of the  resolution we really need  for 
each  color  component. In this model,  a  staggering 262,144 colors  from  the 24bit 
RGB cube  map  to each color in the 2-2-2 VGA palette. The results are  not impressive; 
the  colors of mixed-primary surfaces jump abruptly, badly damaging  the illusion of 
real  illumination. To see how poor a 2-2-2 RGB selection  can look, run DEMO1, and 
press the '2' key to  turn  on  spotlight 2, the  blue  spotlight. Because the  ambient 
lighting is green,  turning  on  the  blue  spotlight causes mixed-primary colors to be 
displayed-and the  result looks terrible, because there  just  isn't  enough  color reso- 
lution.  Unfortunately, 2-2-2 RGB is close to  the best general  color  resolution  the 
VGA can display; 3-3-2 is  as good as it gets. 
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Another  approach would  be to set up  the palette with  reasonably good mixes  of two 
primaries but  no mixes  of three primaries, then use  only  two-primary colors in your 
applications (no grays or whites or  other three-primary mixes). Or you could choose 
to shade only selected objects, using part of the palette for a good  range of the colors 
of those objects, and reserving the rest  of the palette for  the fixed colors of the other, 
nonshaded objects.  Jim Kent, author of  Autodesk  Animator,  suggests  dynamically 
adjusting the palette to the  needs of each  frame,  for  example by allocating the colors 
for each frame on a first-come,  first-served  basis. That wouldn’t be trivial  to do in real 
time, but  it would  make for extremely efficient  use of the palette. 
Another widely used solution is to set up a 2-2-2, 3-3-2, or 2.6-2.6-2.6 (6 levels per 
primary) palette, and  dither colors. Dithering is an excellent solution,  but outside 
the scope of this book. Take a look at  Chapter 13 of  Foley and Van Dam (cited  in 
“Further Readings”) for an introduction to color perception and approximation. 
The sad truth is that  the VGAs 256-color palette is an  inadequate resource for  gen- 
eral RGB shading. The good news  is that clever workarounds can make VGA graphics 
look  nearly  as good as 24bpp graphics; but  the  burden falls on you, the program- 
mer, to design  your applications and color mapping to compensate  for  the VGAs 
limitations. To experiment with a different  256color  model in X-Sharp, just change 
InitializePalette() to set up the desired palette and ModelColorToColorIndex() to 
map  24bit RGB triplets into  the palette you’ve set up. It’s that simple, and  the results 
can be striking indeed. 

A Bonus from the BitMan 
Finally, a note  on fast VGA text, which came in from a correspondent who  asked  to 
be  referred to  simply  as the BitMan. The BitMan  passed along a nifty application of 
the VGA’s under-appreciated write mode 3 that is, under  the  proper circumstances, 
the fastest  possible way to draw  text in any  16-color VGA mode. 
The task at hand is illustrated by Figure  55.2. We want  to  draw  what’s  known  as  solid 
text, in which the effect is the same as  if the cell around each character was drawn in 
the  background color, and  then each  character was drawn on top of the  background 
box. (This is in contrast to transparent text,  where each character is drawn in  the 
foreground color without disturbing  the  background.) Assume that each character 
fits in an eight-wide  cell (as is the case  with the  standard VGA fonts),  and that we’re 
drawing text at byte-aligned locations in display  memory. 
Solid text is useful for drawing menus, text areas, and  the like;  basically, it can be 
used  whenever  you  want to display text on a solid-color background. The obvious 
way to  implement solid text is to fill the rectangle representing  the background box, 
then draw transparent text on top of the  background box.  However, there  are two 
problems with doing solid text this way. First, there’s some flicker,  because for a little 
while the box is there  but  the text  hasn’t  yet  arrived.  More important is that  the 
background-followed-by-foreground approach accesses  display memory three times 
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Character  drawn in foreground  color 
I 

I \ I 
\ 

Character cell (background  box) 
drawn in background  color 

Drawing solid text. 
Figure 55.2 

for  each byte  of font data:  once to draw the background box, once to read display 
memory to load  the latches, and  once to  actually  draw the  font  pattern. Display 
memory is incredibly slow, so we’d  like to  reduce  the  number of  accesses  as much as 
possible.  With the BitMan’s approach, we can reduce  the  number of accesses to just 
one  per  font byte, and eliminate flicker, too. 
The keys to fast solid text are  the latches and write mode 3. The latches, as  you  may 
recall from  earlier discussions in this book, are  four  internal VGA registers that  hold 
the last  bytes read  from  the VGA’s four planes; every read  from VGA memory loads 
the latches with the values stored at  that display memory address across the  four 
planes. Whenever a write is performed to VGA memory, the latches can provide 
some, none,  or all  of the bits written to memory, depending  on  the  bit mask,  which 
selects between the latched data  and  the drawing data on a bit-by-bit  basis. The latches 
solve  half our problem; we can fill the latches with the background color, then use 
them to draw the background box. The trick  now is drawing the text pixels in the 
foreground  color  at  the same time. 
This is where it gets a little complicated. In write mode 3 (which incidentally is not 
available on  the EGA) , each byte  value that the CPU writes to the VGA does not  get 
written to  display memory. Instead,  it  turns  into  the bit mask.  (Actually, it’s ANDed 
with the Bit  Mask register, and  the result becomes the  bit mask, but we’ll  leave the Bit 
Mask register set to OxFF, so the CPU value will become the bit mask.) The bit mask 
selects, on a bit-by-bit  basis, between the  data  in  the latches for  each  plane (the 
previously loaded  background color, in this case) and  the  foreground color. Where 
does the  foreground  color come from, if not from the CPU? From the Set/Reset 
register, as  shown in Figure 55.3. Thus,  each byte written by the CPU (font  data, 
presumably) selects foreground  or background  color  for each of eight pixels,  all 
done with a single write to display  memory. 
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I Bit-mask  Register 1 Byte written  to VGA memory by CPU 

1 1 
I AND bit-mask  register and CPU data I 
I I Set/Reset  Register I 

“I I I 

I 

bit-mask is 0; 
set/reset bit 
where  bit-mask 

1 
(Assumes 

written to Map Mask is 
Eight  bits 

memory planes are 
display OXOF, so all 

written.) V 

bit where 

1 
T 

I1 

OxFF; a 0 

J- c 
Selects  latch 
bit where 
bit-mask is 0; 
set/reset bit 
where  bit-mask 
bit is  I .  

1 Eight  bits 
written to 
display 
memory 

bit where 
bit-mask is  0; 
set/reset bit 
where  bit-mask 
bit is  I .  

L 

Eight  bits 
written  to 
display 
memory 

set/reset bit 
where  bit-mask 
bit is  I .  

c J- 

Eight  bits 
written to 
display 
memory 

Memory Memory Memory 

The  data path in write  mode 3. 
Figure 55.3 

I know  this sounds pretty esoteric, but  think of it  this way: The latches hold  the 
background color in a form suitable for writing eight  background pixels (one full 
byte) at a pop. Write mode 3 allows each CPU  byte  to punch holes in the  background 
color provided by the latches, holes through which the  foreground color from  the 
Set/Reset register can flow. The result is that a single  write  draws  exactly the combi- 
nation of foreground  and background pixels described by each font byte  written by 
the CPU. It may help to look at Listing 55.4, which  shows The BitMan’s technique in 
action. And yes,  this technique is absolutely  worth the  trouble; it’s about  three times 
faster than  the fill-then-draw approach described above, and  about twice  as fast  as 
transparent text. So far as I know, there is no faster way to draw text on a VGA. 
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It's  important  to  note  that  the BitMan's technique only  works on full bytes  of  display 
memory. There's no way to clip to  finer  precision;  the  background  color will inevita- 
bly flood all of the  eight  destination pixels that aren't selected as foreground pixels. 
This makes The BitMan's technique most suitable  for  monospaced  fonts with char- 
acters  that  are multiples of eight pixels in width, and for drawing to byte-aligned 
addresses; the  technique can be used in other situations,  but is considerably more 
difficult to apply. 

LISTING 55.4 155-4.ASM 
: D e m o n s t r a t e s   d r a w i n g   s o l i d   t e x t  on t h e  VGA.  u s i n g   t h e   B i t M a n ' s   w r i t e  mode 
: 3 - b a s e d .   o n e - p a s s   t e c h n i q u e .  

CHAR-HEIGHT 
SCREEN-HEIGHT 
SCREENLSEGMENT 
FGLCOLOR 
BG-COLOR 
GC-INDEX 
SETLRESET 
G-MODE 
BIT-MASK 

.model 

. s t a c k  

. d a t a  
L i n e  
CharHe igh t  
MaxL ines  
L ineWid thBy tes  
F o n t P t r  
S a m p l e s t r i n g  

equ 8 
equ  480 
equ OaOOOh 
equ  14  
equ 1 
equ  3ceh 
equ 0 
equ 5 
equ 8 

smal 1 
200h 

dw ? 
dw ? 
dw ? 
dw ? 
dd  ? 
l a b e l   b v t e  

:# o f   s c a n   l i n e s   p e r   c h a r a c t e r   ( m u s t   b e   < 2 5 6 )  
:# o f   s c a n   l i n e s   p e r   s c r e e n  
:where   sc reen  memory i s  
: t e x t   c o l   o r  
: b a c k g r o u n d   b o x   c o l o r  
: G r a p h i c s   C o n t r o l l e r  ( G C )  I n d e x   r e g  1/0 p o r t  
: S e t / R e s e t   r e g i s t e r   i n d e x   i n  GC 
:Graph ics  Mode r e g i s t e r   i n d e x   i n  GC 
: B i t  Mask r e g i s t e r   i n d e x   i n  GC 

: c u r r e n t   l i n e  # 
:# o f   s c a n   l i n e s   i n   e a c h   c h a r a c t e r   ( m u s t   b e   < 2 5 6 )  
:max # o f   s c a n   l i n e s   o f   t e x t   t h a t  will f i t  on  sc reen 
: o f f s e t   f r o m   o n e   s c a n   l i n e   t o   t h e   n e x t  
; p o i n t e r   t o   f o n t   w i t h   w h i c h   t o   d r a w  

db 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'  
db ' a b c d e f g h i j k l m n o p q r s t u v w x y z '  
db ' 0 1 2 3 4 5 6 7 8 9 ! @ ~ ~ S % A & * 0 . < . > / ? ; : ' . 0  

.code 
s t a r t :  

mov 
mov 

mov 
i n t  

mov 
mov 
mov 
i n t  
mov 
mov 

mov 
mov 
mov 
sub 
d i  v 
mu1 
mov 

ax .@data  
ds .ax  

ax,   12h 
10h : s e l e c t   6 4 0 x 4 8 0   1 6 - c o l o r  mode 

a h . l l h  :BIOS c h a r a c t e r   g e n e r a t o r   f u n c t i o n  
a1 .30h :BIOS g e t   f o n t   p o i n t e r   s u b f u n c t i o n  
b h . 3   : g e t   8 x 8  ROM f o n t   s u b s u b f u n c t i o n  
1 0 h   : g e t   t h e   p o i n t e r   t o   t h e  B I O S  8x8 f o n t  
w o r d   p t r   C F o n t P t r 1 . b ~  
w o r d   p t r   C F o n t P t r + E l . e s  

bx.CHAR-HEIGHT 
C C h a r H e i g h t 1 . b ~  :# o f   s c a n   l i n e s   p e r   c h a r a c t e r  
ax.SCREEN-HEIGHT 
dx ,   dx  
b x  
b x  :max # o f   f u l l   s c a n   l i n e s   o f   t e x t   t h a t  
[ M a x L i   n e s l   , a x  : will f i t  on t h e   s c r e e n  

1042 Chapter 55 



mov a h . 0 f h  : B I O S  v i d e o   s t a t u s   f u n c t i o n  
i n t  10h   : ge t  # o f   c o l u m n s   ( b y t e s )   p e r   r o w  
mov a1 , a h   ; c o n v e r t   b y t e   c o l u m n s   v a r i a b l e   i n  
sub  ah.ah : AH t o   w o r d   i n  A X  
mov C L i n e W i d t h B y t e s 1 , a x   : w i d t h   o f   s c a n   l i n e   i n   b y t e s  

: n o w   d r a w   t h e   t e x t  
sub  bx.bx 
mov [ L i n e ] ,   b x   : s t a r t   a t   s c a n   l i n e  0 

s u b   a x . a x   ; s t a r t   a t   c o l u m n  0;  must   be a m u l t i p l e   o f  8 
mov ch ,  FG-COLOR : c o l o r   i n   w h i c h  t o  d r a w   t e x t  
mov c l  .BG-COLOR : c o l o r   i n   w h i c h   t o   d r a w   b a c k g r o u n d   b o x  
mov s i   . o f f s e t   S a m p l e s t r i n g   : t e x t   t o   d r a w  
c a l l   D r a w T e x t S t r i n g   : d r a w   t h e   s a m p l e   t e x t  
mov bx .  I: L i   n e ]  
add  bx . [CharHe igh t ]  :# o f   n e x t   s c a n   l i n e   t o   d r a w   o n  
mov C L i n e 1 . b ~  
cmp bx ,   [MaxL i   nes ]   ; done   ye t?  
j b  L i n e L o o p   : n o t   y e t  

mov ah.7 
i n t  2 1 h   : w a i t   f o r  a k e y   p r e s s ,   w i t h o u t   e c h o  

mov ax.03h 
i n t  10h  :back t o   t e x t  mode 

mov ah .4ch 
i n t  21h ; e x i t   t o  DOS 

L ineLoop:  

: Draws a t e x t   s t r i n g .  
: I n p u t :  AX = X c o o r d i n a t e   a t   w h i c h   t o   d r a w   u p p e r - l e f t   c o r n e r   o f   f i r s t   c h a r  
: BX - Y c o o r d i n a t e   a t   w h i c h   t o   d r a w   u p p e r - l e f t   c o r n e r   o f   f i r s t   c h a r  
: CH = f o r e g r o u n d   ( t e x t )   c o l o r  
: CL - b a c k g r o u n d   ( b o x )   c o l o r  
: D S : S I  - p o i n t e r   t o   s t r i n g   t o   d r a w ,   z e r o   t e r m i n a t e d  
: C h a r H e i g h t   m u s t   b e   s e t   t o   t h e   h e i g h t   o f   e a c h   c h a r a c t e r  
: F o n t P t r   m u s t   b e   s e t   t o   t h e   f o n t   w i t h   w h i c h   t o   d r a w  

: D o n ' t   c o u n t  on a n y   r e g i s t e r s   o t h e r   t h a n  DS. SS.  and S P  b e i n g   p r e s e r v e d .  
: The X c o o r d i n a t e   i s   t r u n c a t e d   t o  a m u l t i p l e   o f  8. C h a r a c t e r s   a r e  

L i n e W i d t h B y t e s   m u s t   b e   s e t   t o   t h e   s c a n   l i n e   w i d t h   i n   b y t e s  

: assumed t o  be 8 p i x e l s   w i d e .  

D r a w T e x t S t r i n g   p r o c   n e a r  
a l i g n  2 

c l  d 
s h r   a x . 1  
s h r   a x . 1  
s h r   a x . 1  
mov d i   , a x  
mov ax .CL ineWid thBy tes1  
mu1 b x  
add d i   , a x  
mov ax.SCREENKSEGMENT 
mov es .ax  

mov dx,GC-INDEX 
mov a x . ( O f f h  SHL 8 )  + BIT-MASK 
o u t   d x . a x  

; b y t e   a d d r e s s   o f   s t a r t i n g  X w i t h i n   s c a n   l i n e  

; s t a r t   o f f s e t   o f   i n i t i a l  s c a n   l i n e  
; s t a r t   o f f s e t   o f   i n i t i a l  b y t e  

;ES:DI - o f f s e t   o f   i n i t i a l   c h a r a c t e r ' s  
: f i r s t   s c a n   l i n e  
: s e t  up t h e  V G A ' s  hardware  s o  t h a t  we can 
: fill t h e   l a t c h e s   w i t h   t h e   b a c k g r o u n d   c o l o r  

: s e t  B i t  Mask r e g i s t e r   t o  OxFF ( t h a t ' s   t h e  
: d e f a u l t ,   b u t  I ' m  d o i n g   t h i s   j u s t   t o  make s u r e  
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mov ax , (003h  SHL 8 )  + G-MODE 
o u t   d x . a x  
mov a h . c l  
mov a1 .SET-RESET 
o u t   d x . a x  
mov b y t e   p t r   e s : [ O f f f f h l . O f f h  

mov c l   . e s : [ O f f f f h l  

mov ah.ch 
o u t  dx.ax 

DrawTextLoop: 
1 odsb 
and a1 .a1 
j z  DrawTextDone 
push  ds  
p u s h   s i  
p u s h   d i  

mov d x , [ L i n e W i d t h B y t e s l  
dec  dx 
mov cx .CCharHe igh t1  
mu1 c l  
I d s   s i   . C F o n t P t r l  
add s i  ,ax 

DrawCharLoop: 
movsb 

add d i   . d x  
loop  DrawCharLoop 

pop d i  
i n c   d i  
pop s i  
POP ds  
jmp  DrawTextLoop 

a l i g n  2 
DrawTextDone: 

mov dx.GC-INDEX 
mov ax , (000h SHL 8)  + G-MODE 
o u t   d x . a x  
r e t  

D r a w T e x t S t r i n g   e n d p  
e n d   s t a r t  

; y o u   u n d e r s t a n d   t h a t   B i t  Mask r e g i s t e r   a n d  
; CPU d a t a   a r e  ANDed i n   w r i t e  mode 3 )  

; s e l e c t   w r i t e  mode 3 
; b a c k g r o u n d   c o l o r  

; s e t   t h e   d r a w i n g   c o l o r   t o   b a c k g r o u n d   c o l o r  
; w r i t e  8 p i x e l s   o f   t h e   b a c k g r o u n d  
; c o l o r   t o   u n u s e d   o f f - s c r e e n  memory 
; r e a d   t h e   b a c k g r o u n d   c o l o r   b a c k   i n t o   t h e  
; l a t c h e s ;   t h e   l a t c h e s   a r e  now f i l l e d   w i t h  
; t h e   b a c k g r o u n d   c o l o r .   T h e   v a l u e   i n  CL 
; d o e s n ' t   m a t t e r ,  we j u s t   n e e d e d  a t a r g e t  
: f o r   t h e   r e a d ,  s o  we c o u l d   l o a d   t h e   l a t c h e s  
; f o r e g r o u n d   c o l o r  
: s e t   t h e   S e t / R e s e t   ( d r a w i n g )   c o l o r   t o   t h e  
; f o r e g r o u n d   c o l o r  
; w e ' r e   r e a d y   t o   d r a w !  

; n e x t   c h a r a c t e r   t o   d r a w  
;end o f   s t r i n g ?  

;yes 
;remember s t r i n g ' s  segment 
;remember o f f s e t   o f   n e x t   c h a r a c t e r   i n   s t r i n g  
: r e m e m b e r   d r a w i n g   o f f s e t  
; l o a d   t h e s e   v a r i a b l e s   b e f o r e  we w i p e   o u t  DS 
: o f f s e t   f r o m   o n e   l i n e   t o   n e x t  
; c o m p e n s a t e   f o r  STOSB 

; o f f s e t   o f   c h a r a c t e r  i n  f o n t   t a b l e  
; p o i n t   t o   f o n t   t a b l e  
: p o i n t   t o   s t a r t   o f   c h a r a c t e r   t o   d r a w  
; t h e   f o l l o w i n g   l o o p   s h o u l d   b e   u n r o l l e d   f o r  
; maximum per fo rmance !  
;draw a l l   l i n e s   o f   t h e   c h a r a c t e r  
; g e t   t h e   n e x t   b y t e   o f   t h e   c h a r a c t e r   a n d   d r a w  
; c h a r a c t e r ;   d a t a  i s  ANDed w i t h   B i t  Mask 
: r e g i s t e r   t o  become b i t  mask ,   and   se lec ts  
; b e t w e e n   l a t c h   ( c o n t a i n i n g   t h e   b a c k g r o u n d  
; c o l o r )   a n d   S e t / R e s e t   r e g i s t e r   ( c o n t a i n i n g  
; f o r e g r o u n d   c o l o r )  
; p o i n t   t o   n e x t   l i n e   o f   d e s t i n a t i o n  

; r e t r i e v e   i n i t i a l   d r a w i n g   o f f s e t  
; d r a w i n g   o f f s e t   f o r   n e x t   c h a r  
; r e t r i e v e   o f f s e t   o f   n e x t   c h a r a c t e r   i n   s t r i n g  
; r e t r i e v e   s t r i n g ' s  segment 
; d r a w   n e x t   c h a r a c t e r ,  i f  any 

; r e s t o r e   t h e   G r a p h i c s  Mode r e g i s t e r   t o   i t s  
; d e f a u l t   s t a t e   o f   w r i t e  mode 0 

; s e l e c t   w r i t e  mode 0 
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chapter 56

pooh and the space station



exture Mapping to Place Pooh  on a Polygon 
lives: in a space station orbiting Saturn. No, really; 
er, and  an eight-year-old  wouldn’t  make up some- 
? One day she  wondered  aloud, “Where is the 

before I could give one of those boring parental 
ary-but  A.A.  Milne probably imagined it to be 
ghter  announced  that the Hundred Acre  Wood 

’s a very good location for the Hundred Acre  Wood, leading to 
es for Pooh and Piglet. Consider the time  they  went  down to 
(we’re talking centrifugal force here; the station is spinning, 

of course) and nearlykurned into pancakes of the Pooh and Piglet  varieties,  respec- 
tively. Or the time  they drifted out into  the free-fall area  at  the core and had to be 
rescued by humans with  wings strapped on (a tip of the hat to Robert Heinlein here). 
Or the time  they  were caught up by the current in the river through  the Wood and 
drifted for weeks around the circumference of the station, meeting many cultures 
and finding many adventures along the way,  (Yes, Farmer’s Riverworld; no  one said 
the stories  you  tell  your children need to be  purely original, just interesting.) 
(If you think Pooh and Piglet in a space station is a tad peculiar, then I won’t  even 
mention Karla, the woman  who invented agriculture, medicine, sanitation, reading 
and writing, peace, and  just  about everything  else  while  travelling the length of the 

orbiting Saturn, and there you  have it. 
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Americas  with her mountain lion during  the last Ice Age; or  the Mars  Cats and their 
trip  in  suspended  animation to the Lesser  Magellenic Cloud and beyond; or most 
assuredly Little Whale, the baby  Universe Whale that is naughty enough to eat in- 
habited universes.  But I digress.) 
Anyway, I bring up  Pooh  and the space station because the time has come  to discuss 
fast texture  mapping. Texture mapping is the process of mapping  an image (in  our 
case, a  bitmap) onto the surface of a polygon  that’s been  transformed  in  the process 
of 3-D drawing. Up to this point, each polygon  we’ve  drawn in X-Sharp  has been  a 
single, solid  color.  Over the last couple of chapters we added the ability  to shade 
polygons according to lighting,  but  each polygon was still a single color. Thus, in 
order  to  produce any sort of intricate design, a  great many  tiny  polygons  would  have 
to be drawn. That would  be  very  slow, so we need  another  approach.  One such ap- 
proach is texture mapping; that is, mapping  the  bitmap  containing  the  desired image 
onto  the pixels contained within the transformed polygon. Done properly,  this should 
make  it possible to  change X-Sharp’s output from a  bland collection of monocolor 
facets to a lively, detailed, and  much  more realistic scene. 
‘What  sort of scene?” you  may  well  ask. This is where Pooh and the space station 
came in. When I sat  down to think of a sample texture-mapping  application,  it oc- 
curred to me that  the  shaded ball demo we added to X-Sharp recently looked at least 
a bit like a  spinning,  spherical space station, and  that  the single unshaded, yellow 
polygon looked somewhat  like a window  in the space station, and it  might be a nice 
example if someone were standing  in  the window. ... 
The rest is history. 

Principles of Quick-and-Dirty Texture Mapping 
The key to our texture-mapping  approach will be to quickly determine what  pixel 
value to draw for  each pixel in  the  transformed  destination polygon. These polygon 
pixel  values will be determined by mapping each destination pixel  in the transformed 
polygon  back to the image bitmap, via a reverse transformation, and seeing what 
color resides at  the  corresponding  location  in  the image bitmap, as  shown in Figure 
56.1. It might seem more intuitive to map pixels the  other way, from the image bitmap 
to the  transformed polygon, but  in fact it’s crucial that  the  mapping  proceed back- 
ward from  the  destination to avoid gaps in  the final image. With the  approach of 
finding  the  right value for  each  destination pixel  in turn, via a backward mapping, 
there’s no way  we can miss  any destination pixels. On  the  other  hand, with the for- 
ward-mapping method,  some  destination pixels may be skipped or double-drawn, 
because this is not necessarily a one-to-one or one-to-many mapping. Although we’re 
not  going to take advantage of it now, mapping back to the  source makes it possible 
to average  several neighboring image  pixels together to calculate the value for  each 
destination pixel; that is, to antialias the image. This can greatly improve texture 
quality, although  it is slower. 
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Mapping Textures Made Easy 
To understand how  we’re going to  map textures, consider Figure 56.2, which  maps a 
bitmapped image directly onto  an untransformed polygon. Here, we simply map  the 
origin of the polygon’s untransformed  coordinate system somewhere within the im- 
age, then  map  the vertices  to the  corresponding image  pixels. (For simplicity,  I’ll 
assume in this  discussion that  the polygon’s coordinate system  is in units of  pixels, 
but scaling  images  to  polygons  is eminently doable. This will become clearer when 
we look at mapping images onto transformed polygons, next.) Mapping the image 
to the polygon  is then a simple matter of stepping one scan line at a time in  both  the 
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image and the polygon, each time advancing the X coordinates of the  edges  accord- 
ing  to  the slopes of the  lines, just as is normally done when filling a polygon. Since 
the polygon is untransformed,  the  stepping is identical  in  both  the image and  the 
polygon, and  the pixel  mapping is one-to-one, so the  appropriate  part of each scan 
line of the image can simply be block copied  to  the  destination. 
Now, matters  get  more  complicated. What if the  destination polygon is rotated  in 
two dimensions? We no  longer have a neat  direct  mapping  from  image scan lines to 
destination polygon  scan lines. We still  want to draw across each  destination scan 
line,  but  the  proper  source pixels for  each  destination scan line may  now track across 
the  source  bitmap at an  angle, as  shown in Figure 56.3. What can we do? 
The  solution is remarkably simple. We’ll just map  each  transformed vertex to the 
corresponding vertex in the  bitmap; this is  easy, because the vertices are  at the same 
indices  in  the  original and transformed vertex lists.  Each time we select  a new edge 
to  scan for  the  destination polygon, we’ll select  the  corresponding  edge  in  the  source 
bitmap, as  well.  Then-and this is crucial-each time we step  a  destination  edge one 
scan line, we’ll step  the  corresponding  source image edge an equivalent  amount. 
Ah, but what is an  “equivalent amount”?  Think of it this way. If a  destination  edge is 
100 scan lines  high,  it will be stepped 100 times. Then, we’ll divide the SourceXWidth 
and SourceYHeight lengths of the  source  edge by 100, and  add those amounts  to  the 
source edge’s coordinates  each time the  destination is stepped one scan line.  Put 
another way,  we have, as usual, arranged  things so that in the  destination polygon we 
step DestYHeight times, where DestYHeight is the  height of the  destination  edge. 
The  this  approach  arranges  to  step  the  source image edge DestYHeight times also, 
to  match what the  destination is doing. 
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Now we’re able to  track the  coordinates of the polygon edges through  the source 
image in tandem with the destination edges. Stepping across each destination scan 
line uses  precisely the same technique, as  shown in Figure 56.4. In  the  destination, 
we step DestXWidth times  across each scan line of the polygon, once  for  each pixel 
on  the scan line. (DestXWidth is the horizontal distance between the two edges be- 
ing  scanned on any  given  scan line.) To match this, we divide SourceXWidth and 
SourceYHeight (the lengths of the scan line in the source image, as determined by 
the source edge points we’ve been tracking, as just described) by the width of the 
destination scan line, DestXWidth, to produce SourceXStep and SourceYStep. Then, 
we just step DestXWidth times, adding SourceXStep and SourceYStep to SourceX 
and SourceY each time, and choose the  nearest image  pixel  to (SourceX,SourceY) 
to  copy to (DestX,DestY). (Note  that  the names used above,  such  as SourceXWidth, 
are used for descriptive purposes, and  don’t necessarily correspond to the actual 
variable names used in Listing 56.2.) 
That’s a workable approach for 2-D rotated polygons-but  what about 3-D rotated 
polygons, where the visible dimensions of the polygon can vary  with  3-D rotation and 
perspective projection? First, I’d like  to  make  it  clear that  texture  mapping takes 
place  from the source  image  to the destination  polygon  after the destination  polygon  is 
projected to the screen. That is, the image will be  mapped after the destination 
polygon  is in  its  final,  drawable  form.  Given  that,  it  should  be apparent that the above 
approach automatically compensates for all changes in the dimensions of a polygon. 
You see, this approach divides source edges and scan lines into however  many  steps 
the destination polygon requires. If the destination polygon is much narrower than 
the source polygon,  as a result of  3-D rotation and perspective projection, we just 
end  up taking  bigger  steps through  the source image and skipping a lot of source 
image  pixels, as shown in Figure  56.5. The upshot is that  the above approach  handles 

Source image 
(texture to map) 

Transformed (2-D rotated)  destination 
polygon (onto  which texture is mapped) 

Mapping a horizontal destination scan line back to the source image. 
Figure 56.4 
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all transformations and projections effortlessly. It could also be used to scale source 
images up to fit in larger polygons;  all that’s needed is a list  of where the polygon’s 
vertices map  into  the  source image, and everything else happens automatically. In 
fact, mapping  from any  polygonal area of a  bitmap to  any destination polygon will 
work,  given  only that  the two polygons  have the same number of  vertices. 

Notes on DDA Texture Mapping 
That’s all there is to quick-and-dirty texture  mapping.  This  technique basically  uses a 
two-stage digital differential analyzer  (DDA) approach to step  through  the  appropri- 
ate  part of the source image in tandem with the normal scan-line stepping  through 
the  destination polygon, so I’ll call it “DDA texture  mapping.” It’s worth noting  that 
there is no  need  for any trigonometric  functions at all, and only two divides are 
required  per scan line. 
This isn’t a  perfect  approach, of course. For one thing,  it isn’t anywhere near as  fast 
as drawing solid polygons; the  speed is more  comparable to drawing each polygon  as 
a series of lines. Also, the DDA approach results in far from  perfect image quality, 
since source pixels may be skipped or selected twice. I trust, however, that you can 
see how  easy it would be to improve image quality by antialiasing with the DDA 
approach. For example, we could simply average the  four  surrounding pixels  as we 
did  for simple, unweighted antialiasing in Chapters F, G, and  Chapter K on  the com- 
panion CD-ROM. Or, we could take a Wu antialiasing approach (see Chapter 5 7 )  
and average the two bracketing pixels along  each axis according to proximity. If  we 
had cycles to waste (which, given that this is real-time animation on a PC,  we don’t), 
we could improve image quality by putting  the  source pixels through  a low-pass filter 
sized in X and Y according to the ratio of the source and destination dimensions 
(that is,  how much the destination is scaled up  or down from the  source). 
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Even more  important is that  the  sort of texture  mapping I’ll do in X-Sharp doesn’t 
correct  for perspective. That doesn’t  much  matter  for small  polygons or polygons 
that  are nearly parallel to the screen in 3-space, but it can produce very noticeable 
bowing  of textures on large polygons at  an angle to the screen. Perspective texture 
mapping is a complex subject that’s outside the scope of  this book, but you should 
be aware of its existence, because perspective texture  mapping is a key element of 
many games these days. 
Finally, I’d like  to point out that this sort of DDA texture mapping is  display-hardware 
dependent, because the  bitmap  for each image must be compatible with the  num- 
ber of  bits per pixel in the  destination. That’s actually a fairly serious issue. One of 
the nice things about X-Sharp’s  polygon orientation is that,  until now, the only  dis- 
play dependent  part of X-Sharp has been  the transformation from RGB color space 
to the adapter’s color space. Compensation for aspect ratio, resolution, and  the like 
all happens automatically in  the course of projection. Still, we need  the ability  to 
display detailed surfaces, and it’s hard to  conceive  of a fast way to do so that’s totally 
hardware independent. (If you  know of one, let me know care of the publisher.) 
For now,  all we need is fast texture  mapping of adequate quality,  which the straight- 
forward, non-antialiased DDA approach supplies. I’m sure  there  are many other fast 
approaches,  and, as  I’ve said, there  are  more accurate approaches,  but DDA texture 
mapping works  well,  given the constraints of the PC’s horsepower. Next, we’ll look at 
code  that  performs DDA texture  mapping. First, though,  I’d like to take a  moment 
to thank Jim Kent, author of Autodesk Animator and  a  frequent  correspondent,  for 
getting me started with the DDA approach. 

Fast  Texture Mapping: An Implementation 
As you might expect, I’ve implemented DDA texture  mapping in X-Sharp, and  the 
changes are reflected in the X-Sharp archive in this chapter’s subdirectory on  the 
listings  disk.  Listing  56.1  shows the new header file entries, and Listing  56.2  shows 
the actual texture-mapped polygon  drawer. The set-pixel routine  that Listing  56.2 
calls is a slight modification of the Mode X set-pixel routine  from  Chapter 47. In 
addition, 1NITBALL.C has been modified to create  three  texture-mapped polygons 
and define the texture bitmaps, and modifications have been  made to allow the user 
to flip the axis  of rotation. You  will  of course need  the  complete X-Sharp library to 
see texture  mapping in action, but Listings  56.1 and 56.2 are  the actual texture map- 
ping  code in its entirety. 

Here b a major tip: DDA texture mapping look best on fast-moving surfaces, where p the  eye  doesn ’t have  time to pick nits  with  the  shearing  and  aliasing  that’s  an  inevitable 
by-product of such a crude approach. Compile DEMO1 from the X-Sharp archive 
in this chapter b subdirectory of the listings disk, and  run it. The initial display 
looks okay, but certainly not great, because the rotational speed is so slow. Now 
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press the S key a f a y  times to speed up  the rotation and flip between different 
rotation axes. I think you'll  be amazed at how  much better DDA texture mapping 
looks at high speed. This  technique would be greatfor mapping textures onto hur- 
tling asteroids orjets, but would come  up shortfor  slow,finely detailed movements. 

LISTING  56.1  156- 1 .C 
/*  New header f i l e   e n t r i e s   r e l a t e d   t o   t e x t u r e - m a p p e d   p o l y g o n s  */  

/*  Draws t h e   p o l y g o n   d e s c r i b e d   b y   t h e   p o i n t   l i s t   P o i n t L i s t   w i t h  a b i tmap  
t e x t u r e  mapped o n t o  i t  */ 

i d e f i n e  DRAW_TEXTURED-POLYGON(PointList.NumPoints,TexVerts,TexMap) \ 
Polygon.Length - NumPoints ;   Polygon.PointPt r  - P o i n t L i s t ;  \ 
DrawTexturedPolygon(&Polygon. TexVerts.  TexMap): 

# d e f i n e  FIXED-TO-INT(FixedVa1) ( ( i n t )   ( F i x e d V a l  >> 16)) 
# d e f i n e  ROUND-FIXED-TO_INT(FixedVal) \ 

( ( i n t )   ( ( F i x e d V a l  + DOUBLE-TO_FIXED(0.5)) >> 16)) 
/*  R e t r i e v e s   s p e c i f i e d   p i x e l   f r o m   s p e c i f i e d   i m a g e   b i t m a p   o f   s p e c i f i e d   w i d t h .  * /  
# d e f i n e  GET-IMAGE-PIXEL(TexMapBits. TexMapWidth, X .   Y )  \ 

# d e f i n e  NO-SHADING 
/* Masks t o  mark   shad ing   types  i n  Face s t r u c t u r e  * /  

0x0000 
# d e f i n e  AMBIENT-SHADING Ox0001 
# d e f i n e  DIFFUSE-SHADING Ox0002 
i d e f i n e  TEXTURE-MAPPED-SHADING 0x0004 
/*  Desc r ibes  a t e x t u r e  map */  
t y p e d e f   s t r u c t  { 

TexMapBits[(Y * TexMapWidth) + X ]  

i n t  TexMapWidth; / *  t e x t u r e  map w i d t h   i n   b y t e s  */  
char  *TexMapBits;  / *  p o i n t e r   t o   t e x t u r e   b i t m a p  */  

I TextureMap; 

/ *  S t r u c t u r e   d e s c r i b i n g   o n e   f a c e   o f   a n   o b j e c t   ( o n e   p o l y g o n )  * /  
t y p e d e f   s t r u c t  I 

i n t  * VertNums: / *  p o i n t e r   t o   l i s t   o f   i n d e x e s   o f   t h i s   p o l y g o n ' s   v e r t i c e s  
i n   t h e   o b j e c t ' s   v e r t e x   l i s t .  The f i r s t   t w o   i n d e x e s  
m u s t   s e l e c t   e n d   a n d   s t a r t   p o i n t s ,   r e s p e c t i v e l y ,   o f   t h i s  
p o l y g o n ' s   u n i t   n o r m a l   v e c t o r .  Second p o i n t   s h o u l d   a l s o  
b e   a n   a c t i v e   p o l y g o n   v e r t e x  * /  

v e r t e x ,   w h i c h   m u s t   b e   t h e   e n d   o f  a u n i t   n o r m a l   v e c t o r  
t h a t   s t a r t s   a t   t h e   s e c o n d   i n d e x   i n  VertNums */  

i n t  NumVerts; / *  # o f   v e r t s   i n   f a c e ,   n o t   i n c l u d i n g   t h e   i n i t i a l  

i n t   C o l o r I n d e x ;  / *  d i r e c t   p a l e t t e   i n d e x ;   u s e d   o n l y   f o r   n o n - s h a d e d   f a c e s  */  
M o d e l C o l o r   F u l l C o l o r ;  / *  p o l y g o n ' s   c o l o r  * /  
i n t  ShadingType: / *  n o n e ,   a m b i e n t ,   d i f f u s e ,   t e x t u r e  mapped, e t c .  * /  
TextureMap * TexMap; / *  p o i n t e r   t o   b i t m a p   f o r   t e x t u r e   m a p p i n g ,  i f  any */  
P o i n t  TexVer t s ;  / *  p o i n t e r   t o   l i s t   o f   t h i s   p o l y g o n ' s   v e r t i c e s ,   i n  

Tex tu reMap   coo rd ina tes .   I ndex  n must map t o   i n d e x  
n + 1 i n  VertNums. ( t h e  + 1 i s   t o   s k i p   o v e r   t h e   u n i t  
normal   endpo in t  i n  VertNums) * /  

1 Face; 
e x t e r n   v o i d  DrawTex tu redPo lygon(Po in tL i s tHeader  *, P o i n t  *, TextureMap * ) ;  

LISTING 56.2 156-2.C 
/*  Draws a b i tmap .  mapped t o  a convex  po lygon  (draws a t e x t u r e - m a p p e d   p o l y g o n ) .  

"Convex"  means t h a t   e v e r y   h o r i z o n t a l   l i n e   d r a w n   t h r o u g h   t h e   p o l y g o n   a t   a n y  
p o i n t   w o u l d   c r o s s   e x a c t l y   t w o   a c t i v e   e d g e s   ( n e i t h e r   h o r i z o n t a l   l i n e s   n o r  
ze ro - leng th   edges   coun t   as   ac t i ve   edges ;   bo th   a re   accep tab le   anywhere  i n  
t h e   p o l y g o n ) .   a n d   t h a t   t h e   r i g h t  & l e f t  edges  never  cross.   Nonconvex 
p o l y g o n s   w o n ' t   b e   d r a w n   p r o p e r l y .   C a n ' t   f a i l .  * /  
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#i n c l  ude < s t d i  0. h> 
#i n c l  ude  <math.  h> 
# inc lude   "po l ygon .   h "  
/ *  D e s c r i b e s   t h e   c u r r e n t   l o c a t i o n  and  s tepping,  i n   b o t h   t h e   s o u r c e  and 

t h e   d e s t i n a t i o n ,   o f  an edge * /  
t y p e d e f   s t r u c t  I 

i n t  D i  r e c t i  on : 

i n t  Remai n i  ngScans : 
i n t  CurrentEnd: 
F ixedpo in t   SourceX;  
F ixedpo in t   SourceY:  
F ixedpo in t   SourceStepX;  
F ixedpo in t   SourceStepY:  

i n t  DestX: 
i n t   D e s t X I n t S t e p :  
i n t   D e s t X D i r e c t i o n :  
i n t  DestXErrTerm: 
i n t  DestXAdjUp: 
i n t  DestXAdjDown; 

1 EdgeScan: 
i n t  StepEdge(EdgeScan * ) :  

/ *  t h r o u g h   e d g e   l i s t :  1 f o r  a r i g h t  edge ( f o r w a r d  
t h r o u g h   v e r t e x   l i s t ) ,  -1 f o r  a l e f t  edge  (backward 
t h r o u g h   v e r t e x   l i s t )  * /  

I* h e i g h t   l e f t   t o  scan  ou t  i n   d e s t  * I  
/* v e r t e x  # o f  end o f  cu r ren t   edge  */ 
I* c u r r e n t  X l o c a t i o n   i n   s o u r c e   f o r   t h i s  edge * I  
I* c u r r e n t  Y l o c a t i o n  i n  s o u r c e   f o r   t h i s  edge */  
I* X s t e p   i n   s o u r c e   f o r  Y s t e p   i n   d e s t   o f  1 */  
I* Y s t e p   i n   s o u r c e   f o r  Y s t e p   i n   d e s t   o f  1 * I  
/*  v a r i a b l e s   u s e d   f o r   a l l - i n t e g e r   B r e s e n h a m ' s - t y p e  

X s t e p p i n g   t h r o u g h   t h e   d e s t ,   n e e d e d   f o r   p r e c i s e  
p i x e l   p l a c e m e n t   t o   a v o i d   g a p s  * I  

I* c u r r e n t  X l o c a t i o n   i n   d e s t   f o r   t h i s  edge */  
/*  w h o l e   p a r t   o f   d e s t  X s t e p   p e r   s c a n - l i n e  Y s t e p  */  
/* -1 o r  1 t o   i n d i c a t e  way X s t e p s   ( l e f t / r i g h t )  */ 
I* c u r r e n t   e r r o r   t e r m   f o r   d e s t  X s t e p p i n g  * /  
I* amount t o  add t o   e r r o r   t e r m   p e r   s c a n   l i n e  move */  
I* amount t o   s u b t r a c t   f r o m   e r r o r   t e r m  when t h e  

e r r o r   t e r m   t u r n s   o v e r  * /  

i n t  SetUpEdge(EdgeScan *, i n t ) :  
void  ScanOutLine(EdgeScan *, EdgeScan * ) :  
i n t   G e t I m a g e P i x e l ( c h a r  *, i n t .   i n t .   i n t ) ;  
/ *  S t a t i c s   t o   s a v e   t i m e   t h a t   w o u l d   o t h e r w i s e   p a s s   t h e m   t o   s u b r o u t i n e s .  */ 
s t a t i c   i n t   M a x V e r t .   N u m V e r t s .   D e s t Y :  
s t a t i c   P o i n t  * V e r t e x P t r :  
s t a t i c   P o i n t  * T e x V e r t s P t r :  
s t a t i c   c h a r  * TexMapBits:  
s t a t i c   i n t  TexMapWidth; 
/ *  Draws a t ex tu re -mapped   po l ygon ,   g i ven  a l i s t   o f   d e s t i n a t i o n   p o l y g o n  

v e r t i c e s ,  a l i s t   o f   c o r r e s p o n d i n g   s o u r c e   t e x t u r e   p o l y g o n   v e r t i c e s ,  and a 
p o i n t e r   t o   t h e   s o u r c e   t e x t u r e ' s   d e s c r i p t o r .  * /  

TextureMap * TexMap) 

i n t  MinY. MaxY. M i n V e r t .  i: 
EdgeScan Lef tEdge.   RightEdge:  
NumVerts - Polygon->Length :  
V e r t e x P t r  = P o l y g o n - > P o i n t P t r ;  
T e x V e r t s P t r  - TexVer ts :  
TexMapBits - TexMap->TexMapBits; 
TexMapWidth - TexMap->TexMapWidth: 
/ *  N o t h i n g   t o   d r a w  i f  l e s s   t h a n  3 v e r t i c e s  */  
i f  (NumVerts < 3 )  { 

1 
/ *  Scan t h r o u g h   t h e   d e s t i n a t i o n   p o l y g o n   v e r t i c e s  and f i n d   t h e   t o p   o f   t h e  

v o i d  DrawTex tu redPo lygon(Po in tL i s tHeader  * Po lygon ,   Po in t  * TexVer ts ,  

( 

r e t u r n :  

l e f t  and r i g h t  edges, t a k i n g   a d v a n t a g e   o f   o u r   k n o w l e d g e   t h a t   v e r t i c e s   r u n  
i n  a c l o c k w i s e   d i r e c t i o n  ( e l s e  t h i s   p o l y g o n   w o u l d n ' t   b e   v i s i b l e  due t o  
back face   remova l )  * /  

MinY - 32767; 
MaxY - -32768; 
f o r   ( i - 0 :   i < N u m V e r t s :  itc) ( 
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i f  

1 
i f  

1 
1 

( V e r t e x P t r [ i l . Y  < MinY) { 
MinY - Ver texPt rC i1 .Y ;  
M i n V e r t  - i ; 
( V e r t e x P t r C i 1 . Y  > MaxY) { 
MaxY - V e r t e x P t r C i 1 . Y ;  
MaxVert  - i; 

/* R e j e c t  flat ( 0 - p i x e l - h i g h )   p o l y g o n s  */  
i f  (MinY >- MaxY) I 

1 
/*  The d e s t i n a t i o n  Y c o o r d i n a t e   i s   n o t   e d g e   s p e c i f i c ;  i t  a p p l i e s   t o  

DestY - MinY; 
/ *  Set  up t o  s c a n   t h e   i n i t i a l   l e f t  and r i g h t  edges o f   t h e   s o u r c e   a n d  

r e t u r n ;  

bo th   edges ,   s ince  we a lways   s tep  Y by 1 */  

d e s t i n a t i o n   p o l y g o n s .  We a l w a y s   s t e p   t h e   d e s t i n a t i o n   p o l y g o n   e d g e s  
by  one i n  Y .  so c a l c u l a t e   t h e   c o r r e s p o n d i n g   d e s t i n a t i o n  X s t e p   f o r  
each  edge,   and  then  the  corresponding  source  image X and Y s t e p s  */  

L e f t E d g e . D i r e c t i o n  - -1; /* s e t   u p   l e f t  edge f i r s t  * /  
SetUpEdge(&Lef tEdge.   M inVer t ) ;  
R i g h t E d g e . D i r e c t i o n  - 1; /*  s e t  up r i g h t  edge */  
SetUpEdge(&RightEdge.  MinVert) ;  
/ *  Step down d e s t i n a t i o n   e d g e s  one  scan l i n e   a t  a t i m e .  A t  each  scan 

l i n e .   f i n d   t h e   c o r r e s p o n d i n g   e d g e   p o i n t s   i n   t h e   s o u r c e   i m a g e .  Scan 
be tween  the   edge  po in ts  i n   t h e   s o u r c e ,   d r a w i n g   t h e   c o r r e s p o n d i n g  
p i x e l s   a c r o s s   t h e   c u r r e n t   s c a n   l i n e   i n   t h e   d e s t i n a t i o n   p o l y g o n .  (We 
know wh ich  way t h e   l e f t  and r i g h t  e d g e s   r u n   t h r o u g h   t h e   v e r t e x   l i s t  
because v i s i b l e   ( n o n - b a c k f a c e - c u l l e d )   p o l y g o n s   a l w a y s   h a v e   t h e   v e r t i c e s  
i n   c l o c k w i s e   o r d e r  as   seen   f rom  the   v iewpo in t )  * /  

f o r  ( ; : I  
/* 
i f  

/*  
i f  

1 
/*  

i f  

1 
i f  

1 

Done i f  o f f   b o t t o m   o f   c l i p   r e c t a n g l e  * /  
(DestY >- Cl ipMaxY) I 
r e t u r n ;  

Draw o n l y  i f  i n s i d e  Y bounds o f   c l i p   r e c t a n g l e  * /  
(DestY >- C l i p M i n Y )  { 
/ *  Draw t h e   s c a n   l i n e   b e t w e e n   t h e   t w o   c u r r e n t   e d g e s  */  
ScanOutL ine(&Lef tEdge.   &Righ tEdge) ;  

Advance  the   source   and  des t ina t ion   po lygon  edges ,   end ing  i f  we've 
scanned a l l   t h e  way t o   t h e   b o t t o m   o f   t h e   p o l y g o n  */  
( !S tepEdge(&Lef tEdge) )  { 
b reak :  

( !S tepEdge(&RightEdge) )  { 
b reak ;  

I 
DestY++; 

1 
/*  Steps  an  edge  one  scan l i n e   i n   t h e   d e s t i n a t i o n ,  and t h e   c o r r e s p o n d i n g  

d i s t a n c e   i n   t h e   s o u r c e .  I f  an   edge   runs   ou t ,   s ta r t s  a new edge i f  t h e r e  
i s  one.  Returns 1 f o r   s u c c e s s .   o r  0 i f  the re   a re   no   more   edges   t o   scan .  * /  

i n t  StepEdge(EdgeScan * Edge) 
{ 

/ *  Count o f f   t h e   s c a n   l i n e  we s t e p p e d   l a s t   t i m e ;  i f  t h i s  edge i s  

i f  (--Edge->Remaininsscans - 0) { f i n i s h e d ,  t r y  t o   s t a r t   a n o t h e r  one */  
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/* Set  up  the  next  edge;  done i f  t h e r e   i s  no n e x t  edge * I  
i f  (SetUpEdge(Edge.   Edge-XurrentEnd)  -- 0 )  I 

I 
r e t u r n ( 1 ) ;  / *  all s e t   t o   d r a w   t h e  new edge */  

r e t u r n ( 0 ) :  I* no  more  edges:  done  drawing  polygon * /  

1 
I* Step   t he   cu r ren t   sou rce   edge  * I  
Edge->SourceX +- Edge->SourceStepX; 
Edge->SourceY +- Edge->SourceStepY; 
/ *  S tep   des t  X w i t h   B r e s e n h a m - s t y l e   v a r i a b l e s ,   t o   g e t   p r e c i s e   d e s t   p i x e l  

Edge->DestX += Edge->DestXIn tStep ;  / *  w h o l e   p i x e l   s t e p  * /  
/*  Do e r r o r   t e r m   s t u f f   f o r   f r a c t i o n a l   p i x e l  X s t e p   h a n d l i n g  */  
i f  ((Edge->DestXErrTerrn +- Edge->DestXAdjUp) > 0 )  I 

placement a n d  a v o i d  g a p s  */ 

Edge->DestX +- Edge->DestXDi rec t ion :  
Edge->DestXErrTerm -= Edge->DestXAdjDown; 

1 
r e t u r n ( 1 ) ;  

1 
/ *  Sets  up an edge t o  be   scanned;   the   edge  s ta r ts  a t  S t a r t V e r t  and  proceeds 

i n   d i r e c t i o n   E d g e - > D i r e c t i o n   t h r o u g h   t h e   v e r t e x   l i s t .   E d g e - > D i r e c t i o n   m u s t  
be s e t   p r i o r   t o   c a l l ;  -1 t o  scan a l e f t  edge  (backward   th rough  the   ver tex  
l i s t ) .  1 t o  scan a r i g h t  edge ( f o r w a r d   t h r o u g h   t h e   v e r t e x   l i s t ) .  
A u t o m a t i c a l l y   s k i p s   o v e r   0 - h e i g h t   e d g e s .   R e t u r n s  1 f o r   s u c c e s s ,   o r  0 i f  
t h e r e   a r e  no more  edges t o  scan. * /  

i n t  SetUpEdge(EdgeScan * Edge, i n t   S t a r t V e r t )  
I 

i n t   N e x t V e r t .   D e s t X W i d t h ;  
F i x e d p o i n t   D e s t Y H e i g h t ;  
f o r  ( ; ; I  I 

/ *  Done i f  t h i s  edge s t a r t s  a t  t h e   b o t t o m   v e r t e x  * I  
i f  ( S t a r t V e r t  =- MaxVert)  I 

I 
/ *  Advance t o   t h e   n e x t   v e r t e x ,   w r a p p i n g  if we r u n   o f f   t h e   s t a r t   o r  end 

o f   t h e   v e r t e x   l i s t  * /  
N e x t V e r t  - S t a r t V e r t  + E d g e - > D i r e c t i o n ;  
i f  ( N e x t V e r t  >- NumVerts) { 

I e l s e  i f  ( N e x t V e r t  < 0 )  I 

1 
I* C a l c u l a t e   t h e   v a r i a b l e s   f o r   t h i s  edge  and  done i f  t h i s   i s   n o t  a 

i f  ((Edge->RemainingScans = 

r e t u r n ( 0 ) ;  

N e x t V e r t  = 0 ;  

N e x t V e r t  - NumVerts - 1; 

z e r o - h e i g h t  edge * I  

Ver texPt rCNextVer t1 .Y  - V e r t e x P t r C S t a r t V e r t 1 . Y )  !- 0 )  I 
DestYHeight - INT-TO_FIXED(Edge->Remaif l ingscans);  
Edge->CurrentEnd - N e x t V e r t :  
Edge->SourceX = INTLTO-FIXED(TexVertsPtr[StartVert].X); 
Edge->SourceY - INT-TOLFIXED(TexVertsPtr[StartVertl.Y); 
Edge->SourceStepX - F i x e d D i v ( I N T ~ T O L F I X E D ( T e x V e r t s P t r [ N e x t V e r t l . X ~  - 

Edge->SourceStepY = FixedDiv(INT-TOLFIXED(TexVertsPtr[NextVertl.Y) - 

/ *  Set   up   Bresenharn-s ty le   var iab les   fo r   des t  X s t e p p i n g  * /  
Edge->OestX - V e r t e x P t r C S t a r t V e r t 1 . X ;  
i f  ( (OestXWid th  - 

Edge->SourceX.  DestYHeight) :  

Edge->SourceY.  DestYHeight) :  

( V e r t e x P t r [ N e x t V e r t l . X  - Ve r texP t rCSta r tVe r t1 .X ) )  < 0 )  I 
/*  Set  up f o r   d r a w i n g   r i g h t   t o   l e f t  * /  
Edge->DestXDi rec t ion  = -1; 
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DestXWidth - -DestXWidth;  
Edge->DestXErrTerm - 1 - Edge->RemainingScans; 
Edge->DestXIn tStep  - - (DestXWid th  / Edge->RemainingScans): 

/ *  S e t   u p   f o r   d r a w i n g   l e f t   t o   r i g h t  * /  
Edge->DestXDi r e c t i  on - 1; 
Edge->DestXErrTerm - 0; 
Edge->DestXIn tStep  - DestXWidth / Edge->RemainingScans; 

1 e l s e  { 

1 
Edge->DestXAdjUp - DestXWidth % Edge->RemainingScans; 
Edge->DestXAdjDown - Edge->RemainingScans; 
r e t u r n ( 1 ) ;  / *  success */  

1 
S t a r t V e r t  - N e x t V e r t ;  / *  k e e p   l o o k i n g   f o r  a non -0 -he igh t   edge  */  

1 
1 
/*  Tex ture-map-draw  the   scan  l ine   be tween  two  edges .  * /  
void  ScanOutLine(EdgeScan * LeftEdge. EdgeScan * RightEdge) 
{ 

F ixedpo in t   SourceX - LeftEdge->SourceX: 
F ixedpo in t   SourceY - LeftEdge->SourceY; 
i n t  DestX - LeftEdge->DestX; 
i n t  DestXMax - RightEdge->DestX; 
F i xedpo in t   Des tWid th ;  
F ixedpoint   SourceXStep.   SourceYStep;  
/ *  N o t h i n g   t o  do i f  f u l l y  X c l i p p e d  */  
i f  ((DestXMax <- C l i p M i n X )  1 1  (DestX >- C l ipMaxX))  { 

1 
i f  ((DestXMax - DestX) <- 0) { 

1 
I* W i d t h   o f   d e s t i n a t i o n   s c a n   l i n e .   f o r   s c a l i n g .   N o t e :   b e c a u s e   t h i s   i s  an 

i n t e g e r - b a s e d   s c a l i n g ,  i t  can  have a t o t a l   e r r o r   o f  as much as n e a r l y  
one p i x e l .   F o r   m o r e   p r e c i s e   s c a l i n g ,   a l s o   m a i n t a i n  a f i x e d - p o i n t  DestX 
i n  each  edge.  and  use i t  f o r   s c a l i n g .  I f  t h i s   i s  done, i t  will a l s o  
b e   n e c e s s a r y   t o   n u d g e   t h e   s o u r c e   s t a r t   c o o r d i n a t e s   t o   t h e   r i g h t   b y  an 
a m o u n t   c o r r e s p o n d i n g   t o   t h e   d i s t a n c e   f r o m   t h e   t h e   r e a l   ( f i x e d - p o i n t )  
DestX  and  the f i r s t   p i x e l  ( a t  an i n t e g e r  X )  t o  be  drawn) * /  

r e t u r n :  

r e t u r n ;  / *  n o t h i n g   t o   d r a w  * /  

DestWid th  - INT-TO_FIXED(DestXMax - DestX);  
/* C a l c u l a t e   s o u r c e   s t e p s   t h a t   c o r r e s p o n d   t o   e a c h   d e s t  X s t e p   ( a c r o s s  

SourceXStep - FixedDiv(RightEdge->SourceX - SourceX.  DestWidth);  
SourceYStep - FixedDiv(RightEdge->SourceY - SourceY,  DestWidth);  

t h e   s c a n   l i n e )  * /  

/* 
i f  

1 
I* 
i f  

1 
/*  

C l i p   r i g h t  edge i f  necessary  * /  
(DestXMax > Cl ipMaxX) I 
DestXMax - ClipMaxX: 

C l i p   l e f t  edge i f  necssary  * /  
(DestX < C l i p M i n X )  { 
SourceX +- SourceXStep * (C l ipMinX - Des tX) ;  
SourceY +- SourceYStep * (C l ipMinX - Des tX) ;  
DestX - Cl ipMinX;  

Scan   ac ross   t he   des t i na t i on   scan   l i ne ,   upda t ing   t he   sou rce   image  
p o s i t i o n   a c c o r d i n g l y  *I  

f o r  ( ;  DestX<DestXMax;  DestX++) I 
/* Get c u r r e n t l y  mapped p i xe l   ou t   o f   image   and   d raw i t  t o   s c r e e n  * /  
Wr i teP ixe lX(DestX.   Des tY.  

GET-IMAGE-PIXEL(TexMapBits. TexMapWidth. 
FIXED-TO-INT(SourceX).  FIXED_TO-INT(SourceY)) ) ;  
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I* P o i n t  t o  t h e  n e x t  source p i x e l  * I  
SourceX +- SourceXStep: 
SourceY +- SourceYStep: 

1 
1 

No matter how  you  slice it, DDA texture  mapping beats boring, single-color poly- 
gons  nine ways to Sunday. The big downside is that it’s much slower than  a  normal 
polygon fill: move the ball  close  to the screen in DEMO1, and watch things slow 
down when one of those big texture maps comes around. Of course, that’s partly 
because the  code is all in C; some well-chosen optimizations would  work wonders. In 
the  next  chapter we’ll  discuss texture  mapping  further,  crank up  the speed of our 
texture mapper, and  attend to some rough spots that  remain in the DDA texture 
mapping  implementation, most notably in the  area of exactly  which texture pixels 
map to which destination pixels  as a polygon rotates. 
And, in case you’re curious, yes, there is a  bear in DEMO1. I wouldn’t say he looks 
much like a Pooh-type bear, but he’s a  bear nonetheless. He  does  tend to look a little 
startled when you flip the ball around so that he’s zipping by on his head,  but, heck, 
you  would too in the same situation. And remember, when you  buy the  next VGA 
megahit, Bears in Space, you saw it here first. 
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chapter 57

10,000 freshly 
sheared sheep on the 
screen



le of Experience in Implementing 
Mapping 

ning how to shear a sheep. Among other 
the importance of selecting the proper comb for 
who holds the world’s record for sheep sheared in 
serves), and discovered, Lord help me, the many 
Zealand Sheep Shearing Board improves the a p  
ry year. The fellow giving the presentation did his 
n’t very interesting. If you have children, you’ll 

f you don’t, there’s no use explaining. 
one thing that stuck with me, although it may 

not sound particularly profound. (Actually, it sounds pretty silly, but bear with me.) 
He said, ‘You don’t get really good at sheep shearing for 10 years, or 10,000 sheep.” 
I’ll buy that. In fact, to extend that morsel of wisdom to the greater, non-ovine-cen- 
tric universe, it actually takes a good chunk of experience before you get good at 
anything worthwhile-especially graphics, for a couple of reasons. First, performance 
matters a lot in graphics, and performance programming is largely a matter of expe- 
rience. You can’t speed up PC graphics simply by looking in a book for a better 
algorithm; you have to understand the code C compilers generate, assembly lan- 
guage optimization, VGA hardware, and the performance implications of various 
graphics-programming approaches and algorithms. Second, computer graphics is a 

Fast, 

things, I 
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matter of illusion, of convincing the eye to see what you  want it to see, and that’s very 
much a black art based on experience. 

Visual Quality: A Black  Hole .. . Er, Art 
Pleasing the eye  with realtime computer  animation is something less than a science, 
at least at  the PC level, where  there’s a limited  color  palette  and no time for 
antialiasing; in fact, sometimes it can be  more  than a little frustrating. As you  may 
recall, in the previous chapter I implemented  texture  mapping in X-Sharp. There 
was plenty of experience involved there, some of which I didn’t  mention. My first 
implementation was disappointing; the  texture maps shimmied and sheared badly, 
like a loosely affiliated flock  of  pixels, each marching to its own drummer. Then, I 
added a control key to speed up  the rotation; what a difference! The aliasing prob- 
lems were  still there,  but with the faster rotation,  the pixels  moved too quickly for 
the eye to pick up  on  the aliasing; the  rotating  texture maps, and  the  rotating ball  as 
a whole, crossed the threshold  into  being  accepted by the eye  as a viewed object, 
rather  than simply a collection of  pixels. 
The obvious  lesson here is that  adequate  speed is important to convincing anima- 
tion.  There’s  another, less  obvious side to this lesson, though.  I’d  been running  the 
texture-mapping demo  on a 20 MHz 386 with a slow VGA when I discovered the 
beneficial effects  of greater  animation  speed. When, some time later, I ran  the  demo 
on a 33 MHz 486 with a fast VGA, I found that the faster rotation was too fast! The 
ball spun so rapidly that  the eye couldn’t blend successive images together  into con- 
tinuous  motion,  much like watching a badly flickering movie. 

So the second lesson is that either too little or too much speed can destroy the 1 illusion. Unless you ’re antialiasing, you need to tune  the  shifting ofyour images so 
that  they ’re  in  the “sweet spot” of apparent motion, in which  the eye is willing to 
ignore the jumping and aliasing, and  blend  the images together into continuous 
motion. Only experience can give  you a feel  for that sweet spot. 

Fixed-point  Arithmetic,  Redux 
In  the previous chapter I added texture  mapping to X-Sharp, but lacked space to 
explain some of its finer points. I’ll  pick up  the  thread now and cover some of those 
points  here, and discuss the visual and performance  enhancements  that previous 
chapter’s code needed-and  which are now present in the version  of  X-Sharp in this 
chapter’s subdirectory on  the CD-ROM. 
Back in  Chapter 38, I spent a good bit of time explaining exactly  which  pixels  were 
inside a polygon and which  were outside, and how to draw those pixels  accordingly. 
This was important, I said, because only  with a precise, consistent way  of defining 
inside and outside would it  be possible to draw adjacent polygons without either 
overlap or gaps between them. 

1064 Chapter 57 



As a corollary, I  added  that only an all-integer, edge-stepping approach would do for 
polygon  filling.  Fixed-point  arithmetic, although alluring  for  speed and ease  of  use,  would 
be unacceptable because round-off error would result in imprecise pixel placement. 
More than a year then passed between the time I wrote that  statement and  the time 
I implemented X-Sharp’s texture  mapper,  during which time my long-term memory 
apparently suffered at least  partial  failure.  When I went  to implement texture mapping 
for  the previous chapter, I decided  that since transformed destination vertices can 
fall at fractional pixel locations, the cleanest way to do  the texture  mapping would  be 
to  use fxed-point coordinates for both the source texture and the destination  screen 
polygon. That way, there would be a  minimum of distortion as the polygon rotated 
and moved. Theoretically, that made sense; but  there was one small problem: gaps 
between polygons. 
Yes, folks, I had  ignored  the voice  of experience (my own voice, at  that)  at my own 
peril. You can be assured I will not forget this particular lesson again: Fixed-point 
arithmetic is not precise. That’s not to say that it’s impossible to use fixed-point for 
drawing polygons; if all adjacent edges share  common start and  end vertices and 
common edges are always stepped in the same direction, all  polygons should  share 
the same fixed-point imprecision, and edges should fit properly (although polygons 
may not  include exactly the  right  pixels). What you absolutely cannot  do is  mix 
fixed-point and all-integer polygon-filling approaches when drawing, as  shown in 
Figure 57.1. Consequently, I ended  up using an all-integer approach in X-Sharp for 
stepping  through  the destination polygon.  However, I kept  the fixed-point approach, 
which is faster and much simpler, for  stepping  through  the  source. 
Why  was it all right to mix approaches in this  case?  Precise pixel placement only 
matters when drawing; otherwise, we can get gaps, which are very  visible. When se- 
lecting a pixel to copy from the source texture, however, the worst that  happens is 
that we pick the source pixel next to the  one we really want, causing the  mapped 
texture to appear to have shifted by one pixel at  the  corresponding  destination pixel; 
given  all the aliasing and shearing already going on in the texture-mapping process, 
a one-pixel mapping error is insignificant. 
Experience again: It’s the difference between knowing  which flaws (like small  tex- 
ture shifts) can reasonably be ignored, and which (like those that  produce gaps 
between polygons) must be avoided at all  costs. 

Texture Mapping:  Orientation Independence 
The double-DDA texture-mapping  code  presented in the previous chapter worked 
adequately, but there were two things about it that left  me  less than satisfied. One flaw 
was performance; I’ll address that shortly. The  other flaw  was the way textures shifted 
noticeably as the  orientations of the polygons onto which  they  were mapped  changed. 
The previous chapter’s code followed the  standard polygon inside/outside  rule  for 
determining which  pixels in the source texture  map were to be mapped: Pixels that 
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Missed  pixels  (gaps) 

Edge  start  vertex 

Polygon  scanned  with 
fixed-point  approach 

Polygon  scanned  with 
all-integer  approach ..... 

Edge  as  scanned by  precise, 
all-integer  approach ’ Ed \Edge as  scanned by 

ge end  Vertex fixed-point  approach 

Gaps caused by mixingjixed-point and all-integer math. 
Figure 57.1 

mapped exactly  to the left and  top destination edges  were considered to be inside, and 
pixels that mapped exactly  to the  right  and bottom destination edges  were considered to 
be  outside.  That’s  fine  for filling polygons, but when copying texture maps, it causes 
different  edges of the  texture  map  to be omitted, depending  on  the destination 
orientation, because different  edges of the  texture  map  correspond  to  the  right and 
bottom  destination  edges, depending  on  the  current  rotation. Also, the previous 
chapter’s  code  truncated  to  get  integer  source  coordinates. This, together with the 
orientation  problem,  meant  that when a  texture turned upside down, it slowed one 
new  row and  one new column of pixels from  the  next row and column of the  texture 
map.  This asymmetry was quite visible, and  not  at all the  desired effect. 
Listing 57.1 is one solution  to  these  problems.  This  code, which replaces  the equiva- 
lently named  function  presented  in  the previous chapter  (and, of course, is present 
in  the X-Sharp archive in  this  chapter’s  subdirectory of the listings disk), makes no 
attempt to  follow the  standard polygon inside/outside rules when mapping  the source. 
Instead,  it advances a half-step into  the  texture  map  before drawing the first pixel, so 
pixels along all edges  are half included.  Rounding  rather  than  truncation  to  texture- 
map  coordinates is also performed.  The  result is that  the  texture  map stays pretty 
much  centered within the  destination polygon as the  destination  rotates, with a  much- 
reduced level  of orientation-dependent asymmetry. 
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LISTING 57.1 157- 1 .C 
I* T e x t u r e - m a p - d r a w   t h e   s c a n   l i n e   b e t w e e n   t w o   e d g e s .   U s e s   a p p r o a c h   o f  

p r e - s t e p p i n g  112 p i x e l   i n t o   t h e   s o u r c e   i m a g e   a n d   r o u n d i n g   t o   t h e   n e a r e s t  
s o u r c e   p i x e l   a t   e a c h   s t e p ,  s o  t h a t   t e x t u r e  maps will appear 
r e a s o n a b l y   s i m i l a r   a t   a l l   a n g l e s .  * I  

void  ScanOutLine(EdgeScan * LeftEdge.  EdgeScan * Righ tEdge)  

F i xedpo in t   SourceX;  
F i xedpo in t   SourceY:  
i n t  DestX - Lef tEdge->DestX;  
i n t  DestXMax = Righ tEdge->DestX;  
F i x e d p o i n t   D e s t W i d t h :  
F i xedpo in t   SourceStepX.   SourceStepY:  

I* N o t h i n g   t o   d o  i f  f u l l y  X c l i p p e d  * I  
i f  ((DestXMax <- C l i p M i n X )  I I (DestX >- C l ipMaxX))  { 

1 

i f  ((DestXMax - DestX) <= 0 )  { 

1 
SourceX = Lef tEdge->SourceX:  
SourceY = Lef tEdge->SourceY:  

I* W i d t h   o f   d e s t i n a t i o n   s c a n   l i n e ,   f o r   s c a l i n g .   N o t e :   b e c a u s e   t h i s   i s   a n  
i n t e g e r - b a s e d   s c a l i n g ,  i t  can  have a t o t a l   e r r o r   o f  as  much  as n e a r l y  
one p i x e l .   F o r   m o r e   p r e c i s e   s c a l i n g ,   a l s o   m a i n t a i n  a f i x e d - p o i n t  DestX 
i n  each  edge,  and use i t  f o r   s c a l i n g .  I f  t h i s   i s  done, i t  will a l s o  
be  necessary t o  n u d g e   t h e   s o u r c e   s t a r t   c o o r d i n a t e s   t o   t h e   r i g h t   b y  an 
a m o u n t   c o r r e s p o n d i n g   t o   t h e   d i s t a n c e   f r o m   t h e   t h e   r e a l   ( f i x e d - p o i n t )  
DestX  and t h e   f i r s t   p i x e l   ( a t  an i n t e g e r  X) t o  be  drawn).  *I  

r e t u r n :  

r e t u r n :  I* n o t h i n g   t o   d r a w  *I  

DestWid th  = INTCTOCFIXED(OestXMax - Des tX) :  

I* C a l c u l a t e   s o u r c e   s t e p s   t h a t   c o r r e s p o n d   t o   e a c h   d e s t  X s t e p   ( a c r o s s  

SourceStepX - FixedDiv(RightEdge->SourceX - SourceX.   DestWidth) :  
SourceStepY = FixedDiv(RightEdge->SourceY - SourceY.   DestWidth) :  

I* Advance 112 s t e p   i n   t h e   s t e p p i n g   d i r e c t i o n ,   t o   s p a c e   s c a n n e d   p i x e l s  
e v e n l y   b e t w e e n   t h e   l e f t   a n d   r i g h t   e d g e s .   ( T h e r e ' s  a s l i g h t   i n a c c u r a c y  
i n   d i v i d i n g   n e g a t i v e  numbers  by 2 b y   s h i f t i n g   r a t h e r   t h a n   d i v i d i n g ,  
b u t   t h e   i n a c c u r a c y   i s   i n   t h e   l e a s t   s i g n i f i c a n t   b i t ,  and w e ' l l   j u s t  
l i v e   w i t h  i t . )  * /  

t h e   s c a n   l i n e )  *I  

SourceX +- SourceStepX >> 1: 
SourceY +- SourceStepY >> 1: 

I* 
i f  

I* 
i f  

I 
/ *  

C l i p   r i g h t  edge i f  n e c s s a r y  * /  
(DestXMax > Cl ipMaxX) 
DestXMax - Cl ipMaxX; 

C1 i p   l e f t  edge i f  n e c s s a r y  *I  
(DestX < C l i p M i n X )  { 
SourceX +- FixedMul(SourceStepX.  INTCTOCFIXED(Cl ipMinX - O e s t X ) ) :  
SourceY +- FixedMul(S0urceStepY.  INT-TO-FIXED(C1ipMinX - D e s t X ) ) :  
DestX - C l i p M i n X :  

S c a n   a c r o s s   t h e   d e s t i n a t i o n   s c a n   l i n e ,   u p d a t i n g   t h e   s o u r c e   i m a g e  
p o s i t i o n   a c c o r d i n g l y  * I  

10,000 Freshly  Sheared  Sheep on the  Screen 1 067 



f o r  ( ;  DestX<DestXMax;  DestX++) I 
I* G e t   t h e   c u r r e n t l y  mapped p i x e l   o u t  o f  the  image  and  draw it t o  

Wr i teP ixe lX (Des tX .   Des tY .  
t h e   s c r e e n  *I  

GET-IMAGE-PIXEL(TexMapBits. TexMapWidth, 
ROUND-FIXED-TO_INT(SourceX).  ROUND_FIXED_TO_INT(SourceY)) ) :  

I* P o i n t   t o   t h e   n e x t   s o u r c e   p i x e l  *I  
SourceX +- SourceStepX; 
SourceY +- SourceStepY; 

1 
1 

Mapping Textures  across Multiple Polygons 
One of the truly  nifty things about double-DDA texture  mapping is that  it is not 
limited to mapping a texture onto a single polygon. A single texture can be mapped 
across any number of adjacent polygons  simply by having polygons that  share verti- 
ces in 3-space  also share vertices in  the  texture  map.  In fact, the  demonstration 
program DEMOl in the X-Sharp archive maps a single texture across two polygons; 
this is the blue-on-green pattern  that  stretches across two panels of the  spinning ball. 
This capability  makes it easy to produce polygon-based objects with complex sur- 
faces (such as banding and insignia on spaceships, or even human figures). Just  map 
the desired  texture onto  the underlying polygonal framework of an object, and let 
double-DDA texture  mapping do  the rest. 

Fast  Texture Mapping 
Of course, there’s a problem with mapping a texture across many polygons: Texture 
mapping is  slow.  If  you run DEMOl and move the ball up close to the screen, you’ll 
see that  the ball slows considerably whenever a texture swings around  into view. To 
some extent  that can’t be helped, because each pixel of a texture-mapped polygon 
has to be calculated and drawn independently. Nonetheless, we can certainly im- 
prove the  performance of texture  mapping a good  deal over what I presented  in  the 
previous chapter. 
By and large,  there  are two keys to improving PC graphics performance. The first- 
no surprise-is  assembly language. The second, without which  assembly language is 
far less  effective, is understanding exactly where the cycles go in inner loops. In  our 
case, that  means  understanding where the bottlenecks are in Listing  57.1. 
Listing  57.2 is a high-performance assembly language implementation of Listing  57.1. 
Apart from the conversion to assembly language, this implementation improves per- 
formance by focusing on reducing inner loop bottlenecks. In fact, the whole of Listing 
57.2  is nothing  more  than  the  inner  loop  for  texture-mapped polygon drawing; List- 
ing 57.2  is  only the  code to draw a single scan line. Most  of the work in drawing a 
texture-mapped polygon comes in scanning out individual lines, though, so this is 
the  appropriate place to optimize. 
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LISTING 57.2 157-2.ASM 
: Draws a l l   p i x e l s   i n   t h e   s p e c i f i e d   s c a n   l i n e ,   w i t h   t h e   p i x e l   c o l o r s  
: t a k e n   f r o m   t h e   s p e c i f i e d   t e x t u r e  map. Uses  approach o f   p r e - s t e p p i n g  
: 1 / 2   p i x e l   i n t o   t h e   s o u r c e   i m a g e   a n d   r o u n d i n g   t o   t h e   n e a r e s t   s o u r c e  
: p i x e l   a t   e a c h   s t e p ,  s o  t h a t   t e x t u r e  maps will a p p e a r   r e a s o n a b l y   s i m i l a r  
: a t   a l l   a n g l e s .   T h i s   r o u t i n e   i s   s p e c i f i c   t o   3 2 0 - p i x e l - w i d e   p l a n a r  
: ( n o n - c h a i n 4 1   2 5 6 - c o l o r  modes,  such  as mode X ,  w h i c h  i s  a p l a n a r  
: ( n o n - c h a i n 4 1   2 5 6 - c o l o r  mode w i t h  a r e s o l u t i o n   o f   3 2 0 x 2 4 0 .  
: C n e a r - c a l l a b l e   a s :  
: void  ScanOutLine(EdgeScan * LeftEdge.  EdgeScan * Righ tEdge) ;  
: T e s t e d   w i t h  TASM 3.0. 

SC- INDEX equ  03c4h 
MAP-MASK equ  02h 
SCREEN-SEG equ OaOOOh :segment o f   d i s p l a y  memory i n  mode X 
SCREEN-WIDTH equ 80 ; w i d t h   o f   s c r e e n   i n   b y t e s   f r o m   o n e   s c a n   l i n e  

: t o   t h e   n e x t  

; S e q u e n c e   C o n t r o l l e r   I n d e x  
; i n d e x   i n  SC o f  Map Mask r e g i s t e r  

.model  smal l  

. d a t a  
extrn  -TexMapBits:word.  -TexMapWidth:word.  -DestY:word 
ext rn  -CurrentPageBase:word.   -Cl ipMinX:word 
extrn  -Cl ipMinY:word.  -Cl ipMaxX:word.  -Cl ipMaxY:word 

: D e s c r i b e s   t h e   c u r r e n t   l o c a t i o n   a n d   s t e p p i n g ,   i n   b o t h   t h e   s o u r c e   a n d  
: t h e   d e s t i n a t i o n ,   o f  a n   e d g e .   M i r r o r s   s t r u c t u r e   i n  DRAWTEXP.C. 
EdgeScan s t r u c  
D i  r e c t i  on 

RemainingScans 
Cur ren tEnd 
SourceX 
SourceY 
SourceStepX 
SourceStepY 

DestX 
O e s t X I n t S t e p  
D e s t X D i   r e c t i o n  
DestXErrTerm 
DestXAdjUp 
DestXAdjDown 

EdgeScan  ends 

Parms s t r u c  

Le f tEdge 
RightEdge 
Parms  ends 

dw 

dw 
dw 
dd 
dd 
dd 
dd 

dw 
dw 
dw 
dw 
dw 
dw 

dw 
dw 
dw 

? 

? 
? 
? 
? 
? 
? 

? 
? 
? 
? 
? 
? 

: through  edge l i s t :  1 f o r  a r i g h t  edge   ( f o rward  
: t h r o u g h   v e r t e x   l i s t ) .  -1 f o r  a l e f t  edge  (backward 
: t h r o u g h   v e r t e x   l i s t )  
: h e i g h t   l e f t   t o   s c a n   o u t   i n   d e s t  
: v e r t e x  # o f  end o f   c u r r e n t  edge 
; X  l o c a t i o n   i n   s o u r c e   f o r   t h i s  edge 
: Y  l o c a t i o n  i n  s o u r c e   f o r   t h i s  edge 
: X  s t e p   i n   s o u r c e   f o r  Y s t e p  i n  d e s t   o f  1 
: Y  s t e p   i n   s o u r c e   f o r  Y s t e p   i n   d e s t   o f  1 
: v a r i a b l e s   u s e d   f o r   a l l - i n t e g e r   B r e s e n h a m ' s - t y p e  
: X s t e p p i n g   t h r o u g h   t h e   d e s t .   n e e d e d   f o r   p r e c i s e  
: p i x e l   p l a c e m e n t   t o   a v o i d   g a p s  
: c u r r e n t  X l o c a t i o n   i n   d e s t   f o r   t h i s  edge 
: w h o l e   p a r t   o f   d e s t  X s t e p   p e r   s c a n - l i n e  Y s t e p  
: -1  o r  1 t o   i n d i c a t e   w h i c h  way X s t e p s   ( l e f t / r i g h t )  
: c u r r e n t   e r r o r   t e r m   f o r   d e s t  X s t e p p i n g  
:amount t o  add t o   e r r o r   t e r m   p e r   s c a n   l i n e  move 
:amount t o   s u b t r a c t   f r o m   e r r o r   t e r m  when t h e  
: e r r o r   t e r m   t u r n s   o v e r  

2 d u p ( ? )   : r e t u r n   a d d r e s s  & pushed BP 
? ; p o i n t e r   t o  EdgeScan s t r u c t u r e   f o r   l e f t  edge 
? : p o i n t e r   t o  EdgeScan s t r u c t u r e   f o r   r i g h t   e d g e  

; O f f s e t s   f r o m  BP i n   s t a c k   f r a m e   o f   l o c a l   v a r i a b l e s .  
1 SourceX  equ - 4  : c u r r e n t  X c o o r d i n a t e   i n   s o u r c e   i m a g e  
1 SourceY  equ -8  : c u r r e n t  Y c o o r d i n a t e   i n   s o u r c e   i m a g e  
1SourceStepX  equ  -12 ; X  s t e p   i n   s o u r c e   i m a g e   f o r  X d e s t   s t e p   o f  1 
1SourceStepY  equ - 1 6  ;Y s t e p   i n   s o u r c e   i m a g e   f o r  X d e s t   s t e p   o f  1 
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lXAdvanceByOne  equ - 1 8   ; u s e d   t o   s t e p   s o u r c e   p o i n t e r  1 p i x e l  

1XBaseAdvance  equ -20 ;use t o   s t e p   s o u r c e   p o i n t e r  minimum  number o f  

1YAdvanceByOne  equ -22  ;used t o   s t e p   s o u r c e   p o i n t e r  1 p i x e l  

1YBaseAdvance  equ - 2 4   ; u s e   t o   s t e p   s o u r c e   p o i n t e r   m i n i m u m   n u m b e r   o f  

LOCALLSIZE equ 24 : t o t a l   s i z e   o f   l o c a l   v a r i a b l e s  

; i n c r e m e n t a l l y   i n  X 

; p i x e l s   i n c r e m e n t a l l y   i n  X 

; i n c r e m e n t a l l y   i n  Y 

: p i x e l s   i n c r e m e n t a l l y   i n  Y 

.code 
ex t rn   J i xedMu l   : nea r ,   -F i xedD iv :nea r  
a l i g n  2 

jmp ScanDone 
p u b l i c  3 c a n O u t L i n e  
a l i g n  2 

-ScanOutL ine  proc  near  
p u s h   b p   ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; p o i n t   t o   o u r   s t a c k   f r a m e  
sub sp.LOCAL-SIZE : a l l o c a t e   s p a c e   f o r   l o c a l   v a r i a b l e s  
push s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
p u s h   d i  

mov d i . [ b p l . R i g h t E d g e  
mov s i ,  Cdi 1 .DestX 
cmp s i   . [ - C l i p M i n X ]  
jl e  ToScanDone ; r i g h t  edge i s   t o   l e f t   o f   c l i p   r e c t .  so done 
mov b x , [ b p l . L e f t E d g e  
mov dx. [bx l .OestX 
cmp dx,  [LC1 i pMaxXl 
j g e  ToScanDone ; l e f t  edge i s   t o   r i g h t   o f   c l i p   r e c t ,  s o  done 
s u b   s i . d x   ; d e s t i n a t i o n  fill w i d t h  
j l e  ToScanDone ; n u l l   o r   n e g a t i v e   f u l l   w i d t h ,  s o  done 

mov ax.word p t r   [ b x l . S o u r c e X   ; i n i t i a l   s o u r c e  X c o o r d i n a t e  
mov word p t r   [ b p l . l S o u r c e X . a x  
mov ax,word p t r   [ b x ] . S o u r c e X + 2  
mov word p t r  Cbp].lSourceX+Z.ax 

mov a x s w o r d   p t r   C b x l . S o u r c e Y   ; i n i t i a l   s o u r c e  Y c o o r d i n a t e  
mov word p t r   C b p l . 1 S o u r c e Y . a ~  
mov ax .word   p t r   [ bx l .SourceY+Z 
mov word p t r   [ b p l . l S o u r c e Y + 2 . a x  

ToScanDone: 

; N o t h i n g   t o  do i f  d e s t i n a t i o n   i s   f u l l y  X c l i p p e d .  

; C a l c u l a t e   s o u r c e   s t e p s   t h a t   c o r r e s p o n d   t o   e a c h   1 - p i x e l   d e s t i n a t i o n  X s t e p  
: ( a c r o s s   t h e   d e s t i n a t i o n   s c a n   l i n e ) .  

push 
sub 
push 
mov 
sub 
mov 
sbb 
push 
push 
c a l l  
add 
mov 
mov 
mov 
and 

s i  ;push  des t  X w i d t h ,   i n   f i x e d p o i n t   f o r m  
ax,  ax 
ax  ;push 0 as f r a c t i o n a l   p a r t   o f   d e s t  X w i d t h  
ax.word p t r   [ d i ] . S o u r c e X  
ax.word p t r   [ b p ] . l S o u r c e X   ; l o w   w o r d   o f   s o u r c e  X w i d t h  
dx.word p t r   [ d i ] . S o u r c e X + Z  
dx.word p t r   [ b p ] . l S o u r c e X + Z   ; h i g h   w o r d   o f   s o u r c e  X w i d t h  
dx  :push  source X w i d t h ,   i n   f i x e d p o i n t   f o r m  
ax 
- F i x e d D i v   : s c a l e   s o u r c e  X w i d t h   t o   d e s t  X w i d t h  
s p . 8   ; c l e a r   p a r a m e t e r s   f r o m   s t a c k  
word p t r   [bp ] . lSourceStepX.ax   ; remember   source  X s t e p   f o r  
word p t r   [ b p ] . l S o u r c e S t e p X + 2 , d x  ; 1 - p i x e l   d e s t i n a t i o n  X s t e p  
C X . 1  ;assume source  X advances   non -nega t i ve  
dx.dx  :which way does  source X advance? 
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j n s  
neg 
cmp 
j z  
i nc 

SourceXNonNeg: 
mov 

mov 

push 
sub 
push 
mov 
sub 
mov 
sbb 
push 
push 
c a l l  
add 
mov 
mov 
mov 
and 
j n s  
neg 
cmp 
jz 
i n c  

SourceYNonNeg: 
mov 

mov 
i mu1 
mov 

SourceXNonNeg  ;non-negat ive 

a x . 0   : i s   t h e   w h o l e   s t e p   e x a c t l y   a n   i n t e g e r ?  
SourceXNonNeg  :yes 
d x  :no. t r u n c a t e   t o   i n t e g e r   i n   t h e   d i r e c t i o n   o f  

c x   : n e g a t i v e  

: 0.  b e c a u s e   o t h e r w i s e   w e ' l l   e n d   u p   w i t h  a 
: w h o l e   s t e p   o f   1 - t o o - l a r g e   m a g n i t u d e  

Cbpl . 1 XAdvanceByOne,  cx :amount t o  add t o   s o u r c e   p o i n t e r   t o  

Cbpl .1XBaseAdvance.d~ :minimum  amount t o  add t o   s o u r c e  
: move by  one i n  X 

: p o i n t e r   t o  advance i n  X e a c h   t i m e  
: t h e   d e s t   a d v a n c e s  one i n  X 

s i  : push   des t  Y h e i g h t .   i n   f i x e d p o i n t   f o r m  
ax ,   ax  
ax  :push 0 as f r a c t i o n a l   p a r t  o f  d e s t  Y h e i g h t  
ax.word p t r   [ d i l . S o u r c e Y  
ax.word p t r  Cbp]. lSourceY  : low  word o f   s o u r c e  Y h e i g h t  
dx.word p t r  Cdil.SourceY+Z 
dx.word p t r  [ b p l . l S o u r c e Y + E   : h i g h   w o r d   o f   s o u r c e  Y h e i g h t  
dx   :push  source  Y h e i g h t ,   i n   f i x e d p o i n t   f o r m  
ax  
- F i x e d D i v   : s c a l e   s o u r c e  Y h e i g h t   t o   d e s t  X w i d t h  
s p . 8   : c l e a r   p a r a m e t e r s   f r o m   s t a c k  
word p t r   [ b p l . l S o u r c e S t e p Y . a x  ;remember  source Y s t e p   f o r  
word p t r  [bp] . lSourceStepY+2,dx : 1 - p i x e l   d e s t i n a t i o n  X s t e p  
cx.[-TexMapWidth]  :assume  source Y advances   non -nega t i ve  
dx,   dx  :which way does  source Y advance? 
SourceYNonNeg  ;non-negat ive 
c x   : n e g a t i v e  
a x . 0   : i s   t h e   w h o l e   s t e p   e x a c t l y  an i n t e g e r ?  
SourceYNonNeg  :yes 
d x   : n o .   t r u n c a t e   t o   i n t e g e r   i n   t h e   d i r e c t i o n   o f  

: 0 .  b e c a u s e   o t h e r w i s e   w e ' l l   e n d   u p   w i t h  a 
: w h o l e   s t e p   o f   1 - t o o - l a r g e   m a g n i t u d e  

Cbpl . lYAdvanceBy0ne.c~  :amount  t o  add t o   s o u r c e   p o i n t e r   t o  

ax.[-TexMapWidthl : m i n i m u m   d i s t a n c e   s k i p p e d   i n   s o u r c e  
dx  : image  b i tmap when Y s t e p s   ( i g n o r i n g  
C b ~ 1 . l Y B a s e A d v a n c e . a ~  : c a r r y   f r o m   t h e   f r a c t i o n a l   D a r t )  

; move by  one i n  Y 

: Advance  112 s t e p ' i n   t h e   s t e p p i n g   d i r e c t i o n ,  t o  space  scanned  p ixe l ;   even ly  
: b e t w e e n   t h e   l e f t   a n d   r i g h t   e d g e s .   ( T h e r e ' s  a s l i g h t   i n a c c u r a c y   i n   d i v i d i n g  
: nega t i ve   numbers   by  2 b y   s h i f t i n g   r a t h e r   t h a n   d i v i d i n g ,   b u t   t h e   i n a c c u r a c y  
: i s   i n   t h e   l e a s t   s i g n i f i c a n t   b i t ,  and w e ' l l   j u s t   l i v e   w i t h  i t . )  

mov ax,word p t r  Cbpl . lSourceStepX 
mov dx.word p t r  [bp] . lSourceStepX+E 
s a r   d x . 1  
r c r   a x , l  
add  word p t r   [ b p l . l S o u r c e X . a x  
adc  word p t r  [bp] . lSourceX+E.dx 

mov ax.word p t r  [bp] . lSourceStepY 
mov dx.word p t r  [bp] . lSourceStepY+E 
s a r   d x , l  
r c r   a x . 1  
add  word p t r   [ b p ] . l S o u r c e Y . a x  
adc  word p t r  Cbp].lSourceY+Z.dx 

mov s i ,   [ d i  1 .DestX 
: C l i p   r i g h t  edge i f  necessary .  
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cmp s i  , [LC1 i pMaxX1 
jl Righ tEdgeC l ipped  
mov s i  , [LC1 i pMaxXl 

R igh tEdgeC l ipped :  
; C1 i p   l e f t  edge i f  necssa ry  

mov bx.Cbp1.Lef tEdge 
mov d i   . [ b x l   . D e s t X  
cmp d i  , [LC1  ipMinX1 
j g e   L e f t E d g e C l i p p e d  

; L e f t   c l i p p i n g   i s   n e c e s s a r y ;   a d v a n c e   t h e   s o u r c e   a c c o r d i n g l y  
neg 
add 

push 
sub 
push 
push 
push 
c a l l  
add 
add 
adc 

push 
sub 
push 

d i  
d i  , C-Cl i pM inX1  

d i  
ax.ax 
ax 
word p t r   [ b p l .  
word p t r   [ b p l .  
- F i  xedMul 

word p t r  [ b p l .  
word p t r  [ b p l .  

d i  
ax,  ax 
ax 

SP.8 
1 
1 

;C l i pM inX  - DestX 
; f i r s t .  advance  the   source  i n  X 
;push  Cl ipMinX - DestX. i n   f i x e d p o i n t   f o r m  

;push 0 as f r a c t i o n a l   p a r t   o f   C l i p M i n X - D e s t X  
SourceStepX+E 
SourceStepX 

; t o t a l   s o u r c e  X s t e p p i n g   i n   c l i p p e d   a r e a  
; c l e a r   p a r a m e t e r s   f r o m   s t a c k  

SourceX.ax   ; s tep   t he   sou rce  X p a s t   c l i p p i n g  
SourceX+2,dx 

;now advance  the   source  i n  Y 
;push  Cl ipMinX - DestX. i n   f i x e d p o i n t   f o r m  

;push 0 as f r a c t i o n a l   p a r t   o f   C l i p M i n X - D e s t X  
push  word p t r   Cbp ] . lSourceStepY+2  
push  word p t r   [ b p l . l S o u r c e S t e p Y  
c a l l   - F i x e d M u l   ; t o t a l   s o u r c e  Y s t e p p i n g   i n   c l i p p e d   a r e a  
a d d   s p . 8   ; c l e a r   p a r a m e t e r s   f r o m   s t a c k  
add  word p t r   [ b p ] . l S o u r c e Y . a x   : s t e p   t h e   s o u r c e  Y p a s t   c l i p p i n g  
adc  word p t r   [ b p l . l S o u r c e Y + Z . d x  
mov d i  , [LC1 i pMi nX1 ; s t a r t  X c o o r d i n a t e   i n   d e s t   a f t e r   c l i p p i n g  

Le f tEdgeCl   ipped:  
: C a l c u l a t e   a c t u a l   c l i p p e d   d e s t i n a t i o n   d r a w i n g   w i d t h .  

; S c a n   a c r o s s   t h e   d e s t i n a t i o n   s c a n   l i n e ,   u p d a t i n g   t h e   s o u r c e   i m a g e   p o s i t i o n  
; a c c o r d i n g l y  . 
: P o i n t   t o   t h e   i n i t i a l   s o u r c e   i m a g e   p i x e l ,   a d d i n g  0 .5  t o   b o t h  X and Y s o  t h a t  
; we c a n   t r u n c a t e   t o   i n t e g e r s   f r o m  now on b u t   e f f e c t i v e l y   g e t   r o u n d i n g .  

sub s i , d i  

add  word p t r  Cbpl.1SourceY.8000h  ;add 0.5 
mov ax.word p t r   C b p ] . l S o u r c e Y + 2  
adc  ax.0 
mu1 [ L T e x M a p W i d t h l   : i n i t i a l   s c a n   l i n e   i n   s o u r c e   i m a g e  
add  word p t r   [ bp l . lSourceX.8000h   ;add  0 .5  
mov b x . w o r d   p t r   [ b p ] . l S o u r c e X + E   ; o f f s e t   i n t o   s o u r c e   s c a n   l i n e  
a d c   b x . a x   ; i n i t i a l   s o u r c e   o f f s e t   i n   s o u r c e   i m a g e  
add  bx,  [LTexMapBi t s l  ;DS:BX p o i n t s   t o   t h e   i n i t i a l  i m a g e   p i x e l  

; P o i n t   t o   i n i t i a l   d e s t i n a t i o n   p i x e l .  
mov  ax.SCREEN_SEG 
mov es  ,ax 
mov  ax,SCREENLWIDTH 
mu1 [LDestY 1 
mov c x . d i  
s h r   d i . l  
s h r   d i , l  
add d i  ,ax 
add  d i , [ -CurrentPageBasel  

; o f f s e t   o f   i n i t i a l   d e s t   s c a n   l i n e  
; i n i t i a l   d e s t i n a t i o n  X 

;X/4 - o f f s e t   o f   p i x e l   i n   s c a n   l i n e  
: o f f s e t   o f   p i x e l   i n  page 
; o f f s e t   o f   p i x e l   i n   d i s p l a y  memory 
; E S : D I  now p o i n t s   t o   t h e   f i r s t   d e s t i n a t i o n   p i x e l  
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and c l   , O l l b  ;CL = p i x e l ' s   p l a n e  
mov a1 ,MAP_MASK 
mov dx ,  SC-INDEX 
o u t   d x . a l   ; p o i n t   t h e  SC I n d e x   r e g i s t e r   t o   t h e  Map Mask 
mov a l . 1 l h  :one p l a n e   b i t   i n   e a c h   n i b b l e ,  s o  w e ' l l   g e t   c a r r y  

s h l  a1 . c l   : s e t   t h e   b i t   f o r   t h e   f i r s t   p i x e l ' s   p l a n e   t o  1 
: a u t o m a t i c a l l y  when g o i n g   f r o m   p l a n e  3 t o   p l a n e  0 

; If Source X s t e p   i s   n e g a t i v e ,   c h a n g e   o v e r   t o   w o r k i n g   w i t h   n o n - n e g a t i v e  
: v a l u e s .  

cmp word p t r  [bpl.lXAdvanceByOne,O 
jge   SXStepSet  
neg  word p t r   [ b p l . l S o u r c e S t e p X  
n o t   w o r d   p t r   C b p l . l S o u r c e X  

SXStepSet: 

: v a l u e s .  
; I f  s o u r c e  Y s t e p   i s   n e g a t i v e ,   c h a n g e   o v e r   t o   w o r k i n g   w i t h   n o n - n e g a t i v e  

cmp word p t r  Cbpl.lYAdvanceByOne,O 
jge   SYStepSet  
neg  word p t r   [ b p l . l S o u r c e S t e p Y  
n o t   w o r d   p t r   [ b p l . l S o u r c e Y  

SYStepSet: 
: A t  t h i s   p o i n t :  

AL = i n i t i a l   p i x e l ' s   p l a n e  mask 
BX - p o i n t e r   t o   i n i t i a l  i m a g e   p i x e l  
SI  - # o f   p i x e l s   t o  fill 
DI - p o i n t e r   t o   i n i t i a l   d e s t i n a t i o n   p i x e l  
mov dx.SC-INDEX+l 

TexScanLoop: 
: S e t   t h e  Map Mask f o r   t h i s   p i x e l ' s   p l a n e .   t h e n   d r a w   t h e   p i x e l .  

; p o i n t   t o  SC D a t a ;   I n d e x   p o i n t s   t o  Map Mask 

o u t   d x . a l  
mov ah . [bx ]   : ge t   image   p i xe l  
mov e s : [ d i l . a h   ; s e t   i m a g e   p i x e l  

add  bx.[bp]. lXBaseAdvance  ;advance  the  minimum I o f   p i x e l s   i n  X 
mov cx.word p t r   [ b p l . l S o u r c e S t e p X  
add  word p t r   C b p 1 . l S o u r c e X . c ~   ; s t e p   t h e   s o u r c e  X f r a c t i o n a l   p a r t  
j n c  NoExtraXAdvance 
add  bx,[bp].1XAdvanceByOne 

; d i d n ' t   t u r n   o v e r :  no ex t ra   advance  
; d i d   t u r n   o v e r ;   a d v a n c e  X one e x t r a  

add  bx. [bpl . lYBaseAdvance  :advance  the  minimum # o f   p i x e l s   i n  Y 
mov cx.word p t r   [ b p l . l S o u r c e S t e p Y  
add  word p t r   C b p 1 . l S o u r c e Y . c ~   ; s t e p   t h e   s o u r c e  Y f r a c t i o n a l   p a r t  
j n c  NoExtraYAdvance 
add  bx. [bpl . lYAdvanceByOne 

; d i d n ' t   t u r n   o v e r ;   n o   e x t r a   a d v a n c e  
; d i d   t u r n   o v e r ;   a d v a n c e  Y one e x t r a  

; P o i n t   t o   t h e   n e x t   s o u r c e   p i x e l .  

NoExtraXAdvance: 

NoExtraYAdvance: 
: P o i n t   t o   t h e   n e x t   d e s t i n a t i o n   p i x e l ,   b y   c y c l i n g   t o   t h e   n e x t   p l a n e ,   a n d  
: a d v a n c i n g   t o   t h e   n e x t   a d d r e s s  if t h e   p l a n e   w r a p s   f r o m  3 t o  0. 

r o l   a l . 1  
a d c   d i . 0  

dec s i  
j n z  TexScanLoop 

pop d i  
pop s i  
mov s p . b p   ; d e a l l o c a t e   l o c a l   v a r i a b l e s  

r e t  
- ScanOut L i  ne endp 

end 

; C o n t i n u e  i f  t h e r e   a r e   a n y   m o r e   d e s t   p i x e l s   t o   d r a w .  

ScanDone: 
: r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

POP b p   ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
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Within  Listing 57.2, all the  important optimization is in the loop that draws  across 
each destination scan line,  near  the end of the listing. One optimization is  elimina- 
tion of the call to the set-pixel routine used  to  draw each pixel in Listing 57.1. Function 
calls are expensive operations,  to  be avoided  when performance matters. Also, al- 
though Mode X (the  undocumented 320x240 256-color VGA mode X-Sharp runs 
in)  doesn’t  lend itself  well to pixel-oriented operations like line drawing or texture 
mapping, t,he inner loop has been set up to minimize  Mode X’s overhead. A rotating 
plane mask  is maintained in AL, with DX pointing  to  the Map  Mask register; thus, 
only a rotate and  an OUT are  required  to select the  plane to  which to write,  cycling 
from  plane 0 through  plane 3 and wrapping back to 0. Better yet,  because we know 
that we’re simply stepping horizontally  across the destination scan line, we can use a 
clever optimization to both  step  the destination and  reduce  the overhead of main- 
taining the mask. Two copies of the  current plane mask are  maintained, one  in each 
nibble ofAL. (The Map  Mask register pays attention only to the lower nibble.) Then, 
when one copy rotates out of the lower nibble,  the other copy rotates into  the lower 
nibble and is ready  to be used. This approach eliminates the  need to  test for the 
mask wrapping from  plane 3 to  plane 0, all the  more so because a carry is generated 
when wrapping occurs, and that carry can be added to DI to  advance the screen 
pointer.  (Check out  the next  chapter, however, to see the best Map Mask optimiza- 
tion of all-setting it  once  and leaving  it unchanged.) 
In all, the overhead of drawing each pixel is reduced  from a call to  the set-pixel 
routine  and full calculation of the screen address and plane mask  to  five instructions 
and  no branches. This is an excellent example of converting full, from-scratch  calcu- 
lations to  incremental processing,  whereby  only information  that has changed since 
the last operation (the plane mask  moving one pixel, for  example) is recalculated. 
Incremental processing and knowing where the cycles go are  both  important in the 
final optimization in Listing 57.2, speeding up the retrieval  of  pixels from  the tex- 
ture  map. This operation looks  very  efficient in Listing 57.1, consisting  of  only two 
adds and  the macro GET- IMAGE-PIXEL. However, those adds  are fixed-point adds, 
so they  take four instructions apiece, and  the macro  hides not only  conversion from 
fixed-point to integer, but also a time-consuming multiplication. Incremental ap- 
proaches  are excellent at avoiding multiplication, because cumulative additions  can 
often replace multiplication. That’s the case  with stepping  through  the source tex- 
ture in Listing 57.2; ten instructions, with a maximum of two branches, replace all 
the texture calculations  of  Listing 57.1. Listing 57.2 simply detects when the frac- 
tional part of the source x or y coordinate  turns over and advances the source texture 
pointer accordingly. 
As you might  expect, all  this optimization is pretty hard  to  implement, and makes 
Listing 57.2 much  more complicated than Listing 57.1. Is it worth the  trouble?  In- 
deed  it is. Listing 57.2 is more  than twice  as fast  as  Listing 57.1, and  the difference is 
very noticeable when large, texture-mapped areas are  animated.  Whether  more  than 
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doubling  performance is significant is a  matter of opinion, I suppose,  but  imagine 
that  you’re in William  Gibson’s Neuromancer, trying to crack a  corporate  database. 
Which texture-mapping routine would  you rather have interfacing you to Cyberspace? 
I’m always interested  in  getting your feedback on  and  hearing  about  potential im- 
provements  to X-Sharp. Contact me through  the publisher. There is no  truth  to  the 
rumor  that I can be reached under the alias “sheep-shearer,” at least not  for  another 
9,999 sheep. 
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chapter 58

heinlein's crystal ball, 
spock's brain, and the 
9-cycle dare



hole-Brain Approach to Accelerate 

reading several of the works of Robert A. Heinlein, 
a teenager-but in a different way. The first time 
r romance of technology married to powerful sto- 
l by The Master’s remarkable prescience. ‘‘Blowups 
lear power, and their effects on human psychol- 
on had ever happened on this planet. “Solution 

out the unsolvable dilemma-ultimate offense, no defense- 
941. And in Between Planets (1951), consider this 

minor bit of action: 
The doctor’s phone regretted politely that Dr. Jefferson was not at home and 
requested him to leave a message. He was dictating it when a warm voice 
interrupted: ‘I’m at home to you, Donald. Where are you, lad?’ 

Predicting the widespread use of answering machines is perhaps not so remarkable, 
but foreseeing that they would be used for call screening is; technology is much 
easier to extrapolate than are social patterns. 
Even so, Heinlein was no prophet; his crystal ball was just a little less fuzzy than ours. 
The aforementioned call in Between Planets was placed on a viewphone; while that 
technology has indeed come to pass, its widespread use has not. The ultimate weapon 
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in “Solution Unsatisfactory” was radioactive dust, not nuclear bombs, and we have 
somehow survived nearly 50 years  of nuclear weapons without either  acquiring  a 
world dictator or destroying ourselves. Slide rules are all  over the place in Heinlein’s 
works, and in one story (the name now lost to memory),  an  astronaut straps himself 
into a massive integral calculator; computers  are nowhere to be found. 
Most telling, I  think, is that in “Blowups Happen,”  the  engineers  running  the  nuclear 
power  plant-at considerable risk to both body and sanity-are the best of the best, 
highly  skilled in  math and  required to ride  the  nuclear reaction on  a second-to- 
second basis,  with the risk  of an explosion that  might end life on Earth, and would 
surely  kill them, if they slip. Contrast that with our present-day reality  of nuclear 
plants run by generally competent technicians, with the occasional report of shoddy 
maintenance and  bored power-plant employees using drugs, playing games, and fall- 
ing asleep while on duty. Heinlein’s universe makes for  a  better story,  of course, but, 
more  than  that,  it shows the filters and biases through which he viewed the world. At 
least in  print,  Heinlein was an unwavering believer in science, technology, and ratio- 
nality, and in his stories it is  usually the  engineers  and scientists who are  the  heroes 
and push civilization forward, often kicking and screaming. In  the real world, I have 
rarely observed that to be  the case. 
But  of course Heinlein was hardly the only person to have  his or  her perceptions of 
the universe, past, present, or  future,  blurred by his built-in assumptions; you and  I, 
as programmers, are also on  that list-and probably pretty near  the  top,  at  that. 
Performance  programming is basically a process of going  from  the  general to the 
specific,  special-casing the  code so that  it  does just what it has to, and  no more. The 
greatest  impediment to this process is seeing the  problem  in terms of  what the code 
currently does, or what  you already know, thereby ignoring many  possible solutions. 
Put  another way,  how you look at  an optimization problem  determines how  you’ll 
solve it; your assumptions may speed and simplify the process, but they are also your 
limitations. Consider, for example, how a seemingly intractable  problem becomes 
eminently tractable the  instant you learn  that  someone else has solved it. 
As Exhibit #1, I present my experience with speeding up  the texture  mapper  in 
X-Sharp. 

Texture Mapping Redux 
We’ve spent  the previous several chapters  exploring  the X Sharp graphics library, 
something  I built over time as a serious exercise in 3-D graphics. When X-Sharp 
reached  the  point at which we left it at  the  end of the previous chapter,  I was rather 
pleased with it-with one exception. 
My last addition to X-Sharp was a texture mapper, a  routine  that warped and rotated 
any  desired  bitmap  to map onto an arbitrary  convex  polygon.  Texture mappers are criti- 
cal to good 3-D games; just a few texture-mapped polygons, backed with  well-drawn 
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bitmaps, can represent  more detail and look more realistic than dozens or even 
hundreds of solid-color polygons. My X-Sharp texture  mapper was in reasonable 
assembly-pretty good  code, by most  standards!-and I felt comfortable with my 
implementation; but  then I got  a  letter  from John Miles,  who was at  the time getting 
seriously into 3-D and is now the  author of a 3-D game library. (Yes, you can license it 
from  his  company,  Non-Linear  Arts, if you’d  like; John  can  be  reached  at 
70322.2457@compuserve.com.) John wrote me as  follows: “Hmm, so that’s how  tex- 
ture-mapping works. But 3 jumps perpixel! Hmph!” 
It was the  “Hmph”  that really got to me. 

Left-Brain  Optimization 
That was the first shot  ofjuice  for my optimizer (or  at least blow  to my ego, which can 
be just as productive). John went on to say he  had  gotten  texture  mapping down to 
9 cycles per pixel and  one  jump  per scanline on a 486 (all cycle times will be for  the 
486 unless otherwise noted); given that my code took, on average, about 44 cycles 
and 2 taken jumps  (plus 1 not  taken)  per pixel, I  had  a  long way to go. 
The  inner loop of  my original texture-mapping  code is  shown in Listing 58.1. All this 
code does is draw a single texture-mapped scanline, as  shown in Figure 58.1; an 
outer  loop  runs  through all the scanlines in whatever  polygon is being drawn. I im- 
mediately saw that  I could eliminate nearly 10 percent of the cycles  by unrolling  the 
loop; obviously, John  had  done  that, else there’s no way he could  branch only once 
per scanline. (By the way, branching only once  per scanline via a fully unrolled  loop 
is not generally recommended. A branch every  few pixels  costs  relatively little, and 
the  cache effects of  fully unrolled  code are not good.) I quickly came up with  several 

Source  Texture  Bitmap 

Destination  Polygon  on  Screen 

Texture mapping a single horizontal scanline. 
Figure 58.1 

HeinleinO  Crystal  Ball, Spock‘s Brain,  and  the  9-Cycle Dare 1 08 1 



other ways to  speed  up  the  code,  but soon  realized  that all the clever coding  in  the 
world  wasn't going to get me within 100 percent of John's  performance so long as I 
had  to cycle from one  plane to the  next  for every  pixel. 

LISTING  58.1  158- 1 .ASM 
: I n n e r   l o o p   t o   d r a w  a s i n g l e   t e x t u r e - m a p p e d   h o r i z o n t a l   s c a n l i n e   i n  
: Mode X .  t h e  VGA's p a g e - f l i p p e d   2 5 6 - c o l o r  mode. Because  adjacent 
: p i x e l s   l i e   i n   d i f f e r e n t   p l a n e s   i n  Mode X .  an OUT must  be  performed 
: t o   s e l e c t   t h e   p r o p e r   p l a n e   b e f o r e   d r a w i n g   e a c h   p i x e l .  

: A t  t h i s   p o i n t :  
AL - i n i t i a l   p i x e l ' s   p l a n e  mask 
DS:BX - i n i t i a l   s o u r c e   t e x t u r e   p o i n t e r  
DX - p o i n t e r   t o  VGA's Sequencer   Data  reg is ter  
S I  - # o f   p i x e l s   t o  fill 
ES:DI - p o i n t e r   t o   i n i t i a l   d e s t i n a t i o n   p i x e l  

TexScanLoop: 

: S e t   t h e  Map Mask f o r   t h i s   p i x e l ' s   p l a n e ,   t h e n  d r a w   t h e   p i x e l .  

o u t   d x . a l  
mov ah ,   Cbx l   : ge t   t ex tu re   p i xe l  
mov e s : [ d i l . a h   ; s e t   s c r e e n   p i x e l  

; P o i n t   t o   t h e   n e x t   s o u r c e   p i x e l .  

add  bx.  Cbpl.1  XBaseAdvance  :advance t h e  minimum il o f   p i x e l s   i n  X 
mov cx.word p t r   [ bp l . lSourceStepX 

j n c  NoExtraXAdvance 
add  word p t r   [ b p l . l S o u r c e X . c x   ; s t e p   t h e   s o u r c e  X f r a c t i o n a l   p a r t  

; d i d n ' t   t u r n   o v e r :   n o   e x t r a   a d v a n c e  
add  bx.Cbpl.1XAdvanceByOne : d i d   t u r n   o v e r ;   a d v a n c e  X one e x t r a  

NoExtraXAdvance: 

add  bx.[bpl.lYBaseAdvance  :advance  the  minimum # o f   p i x e l s   i n  Y 
mov cx,word p t r  Cbp1.lSourceStepY 
add  word p t r   [ bp l . lSourceY.cx   ; s tep   t he   sou rce  Y f r a c t i o n a l   p a r t  
j n c  NoExt raYAdvance  :d idn ' t   tu rn   over :   no   ex t ra   advance 
add  bx.[bpl.lYAdvanceByOne  :did tu rn   over :   advance Y one e x t r a  

NoExtraYAdvance: 

: P o i n t   t o   t h e   n e x t   d e s t i n a t i o n   p i x e l ,   b y   c y c l i n g   t o   t h e   n e x t   p l a n e ,  and 
: advancing t o   t h e   n e x t   a d d r e s s  i f  the   p lane  wraps   f rom 3 t o  0 .  

r o l  a1 .1 
adc d i . 0  

: Cont inue i f  t h e r e   a r e  any  more d e s t   p i x e l s   t o  draw. 

dec s i  
j n z  TexScanLoop 

Figure 58.2 shows  why this cycling is necessary. In Mode X, the page-flipped 2 5 6  
color  mode of the VGA, each successive pixel across a  scanline is stored  in  a  different 
hardware  plane,  and  an OUT to the VGA's hardware is needed to select the  plane 
being drawn to. (See  Chapters 47, 48, and 49 for details.) An OUT instruction by 
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Pixels on Screen 

Display Memory 

Display memory organization in Mode X. 
Figure 58.2 

itself takes 16 cycles (and in the  neighborhood of 30 cycles  in virtual46  or  non- 
privileged protected mode),  and  an ROL takes 2 more, for a total of 18 cycles, double 
John’s 9 cycles, just to handle plane management. Clearly, getting  plane  control out 
of the  inner  loop was absolutely  necessary. 
I must confess,  with  some embarrassment,  that  at this point I threw myself into  de- 
signing a solution that involved executing the  texture  mapping  code  up to four times 
per scanline, once For the pixels  in each plane. It’s hard to  overstate the complexity 
of  this approach, which  involves quadrupling  the  normal pixel-to-pixel increments, 
adjusting the start value for each of the passes, and dealing with  some  nasty bound- 
ary  cases.  Make no mistake, the  code was perfectly doable, and would  in  fact  have 
gotten plane control out of the inner  loop,  but would  have been very difficult to get 
exactly right, and would  have suffered from substantial overhead. 
Fortunately,  in the last sentence I was able to say “would  have,” not “was,”  because my 
friend Chris Hecker (checker@bix.com) came along to toss a figurative bucket of 
cold  water on my right brain, which was evidently  asleep. (Or possibly stolen by scantily- 
clad, attractive  aliens; remember “Spock’s Brain”?) Chris is the  author of the WinG 
Windows game graphics package,  available from Microsoft via FTP, CompuServe, or 
MSDN  Level 2; if, like me, you  were at  the Game  Developers Conference in  April 
1994, you, along with  everyone  else,  were stunned to see  Id’s megahit DOOM run- 
ning  at full speed in a window, thanks to  WinG. If you  write  games for a living, run, 
don’t walk,  to check WinG out! 
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Chris listened  to my proposed design for all of  maybe  30 seconds, growing visibly 
more  horrified by the  moment,  before  he said, “But why don’t you just draw vertical 
rather than  horizontal  scanlines?” 
W h y  indeed? 

A 90-Degree Shift in Perspective 
As I said earlier, how  you look at an  optimization  problem  defines how  you’ll be able 
to solve it. In order to boost performance,  sometimes it’s necessary to look at things 
from  a  different angle-and for  texture  mapping this was literally as  well  as figura- 
tively true. Chris suggested nothing  more  nor less than  scanning out polygons at  a 
90-degree angle to normal,  starting, say, at the  left  edge of the polygon, and texture- 
mapping vertically along  each  column of pixels,  as  shown in Figure 58.3. That way, 
all the pixels in  each  texture-mapped  column would be in the same plane, and I 
would need to change  planes only  between columns-outside the inner loop. A trivial 
change,  not  fundamental  in any  sense-and yetjust  that  one  change, plus unrolling 
the  loop,  reduced  the  inner  loop  to  the 22-cycles-per-pixel  version  shown in Listing 
58.2. That’s exactly  twice  as fast as Listing 58.1-and  given  how incredibly slow most 
VGAs are  at  completing OUTS, the real-world speedup  should be considerably greater 
still. (The fastest byte OUT I’ve ever measured  for  a VGA is 29  cycles, the slowest 
more  than 60 cycles; in the  latter case, Listing  58.2  would be on the order of four 
times faster  than Listing  58.1 .) 

LISTING 58.2 158-2.ASM 
: I n n e r   l o o p   t o   d r a w  a s i n g l e   t e x t u r e - m a p p e d   v e r t i c a l   c o l u m n ,   r a t h e r  
: t h a n  a h o r i z o n t a l   s c a n l i n e .   T h i s   a l l o w s   a l l   p i x e l s   h a n d l e d  
: by t h i s  code t o   r e s i d e   i n   t h e  same p l a n e ,  so t h e   t i m e - c o n s u m i n g  
: p l a n e   s w i t c h i n g   c a n   b e  moved o u t   o f   t h e   i n n e r   l o o p .  

: A t  t h i s   p o i n t :  
DS:BX - i n i t i a l   s o u r c e   t e x t u r e   p o i n t e r  
D X  - o f f s e t   t o   a d v a n c e   t o   t h e   n e x t   p i x e l   i n   t h e   d e s t   c o l u m n  

SI - # o f   p i x e l s   t o  fill 
E S : D I  - p o i n t e r   t o   i n i t i a l   d e s t i n a t i o n   p i x e l  
YGA s e t  up t o  draw t o   t h e   c o r r e c t   p l a n e   f o r   t h i s   c o l u m n  

( e i t h e r   p o s i t i v e   o r   n e g a t i v e   s c a n l i n e   w i d t h )  

REPT  LOOP-UNROLL 

: S e t   t h e  Map Mask f o r   t h i s   p i x e l ’ s   p l a n e ,   t h e n   d r a w   t h e   p i x e l .  

mov ah.Cbx1 
mov e s : C d i l . a h  

: g e t   t e x t u r e   p i x e l  
: s e t   s c r e e n   p i x e l  

: P o i n t   t o   t h e   n e x t   s o u r c e   p i x e l .  

add  bx. [bpl . lXBaseAdvance  :advance  the  minimum I/ o f   p i x e l s   i n  X 
mov cx.word p t r   Cbp l .1SourceStepX 
add  word p t r   [ b p ] . l S o u r c e X . c x   : s t e p   t h e   s o u r c e  X f r a c t i o n a l   p a r t  
j n c   N o E x t r a X A d v a n c e   : d i d n ’ t   t u r n   o v e r :   n o   e x t r a   a d v a n c e  
add  bx . [bp l . lXAdvanceByOne  :d id   tu rn   over :   advance X one e x t r a  
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NoExtraXAdvance: 

add  bx,[bp].lYBaseAdvance  :advance  the  minimum # o f  p i x e l s   i n  Y 
mov cx.word p t r   [ bp l . lSourceStepY 
add  word p t r   [ b p l . l S o u r c e Y . c x   : s t e p   t h e   s o u r c e  Y f r a c t i o n a l   p a r t  
j n c  NoExtraYAdvance : d i d n ' t   t u r n   o v e r :  no e x t r a  advance 
add  bx.[bpl.lYAdvanceByOne : d i d   t u r n   o v e r :   a d v a n c e  Y one e x t r a  

NoExtraYAdvance: 

: P o i n t   t o   t h e   n e x t   d e s t i n a t i o n   p i x e l ,   w h i c h   i s  on t h e   n e x t   s c a n   l i n e .  

adc   d i ,dx  

ENDM 

I'd like  to emphasize that algorithmically and conceptually, there is no difference 
between scanning out a polygon top to bottom and scanning  it out left to right; it is 
only in conjunction with the hardware organization of Mode X that  the  scanning 
direction matters in the least. 

That k what  Zen programming is all about, though; tying together two pieces of p seemingly unrelated information to good effect-and that's what I had failed  to do. 
Like Robert Heinlein-like all of us-I had  viewed the world through afilter com- 
posed of my ingrained assumptions, and one of those assumptions, based on all 
my past experience, was that pixel  processingproceeds left to right. Eventually, I 
might have come up with Chris k approach; but I would only have come up with it 
when  and if1 relaxed  and stepped back a little, and  allowed myself"a1most dared 
myself-to think of it. When you 're optimizing, be sure to leave quiet, nondirected 
time in which to conjure up those less obvious solutions, and periodically try to 
figure out what assumptions you 're  making-and then question them! 

All pixels in this  column are in the  same plane. 
I 

~~~1 ' p $  
Source  Texture  Bitmap 

Destination  Polygon  on  Screen 

Texture mapping a single  vertical  column. 
Figure 58.3 
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There  are a few complications with  Chris’s approach,  not  least  that X-Sharp’s  poly- 
gon-filling convention (top  and left edges included,  bottom  and  right edges excluded) 
is hard  to  reproduce  for  column-oriented  texture  mapping. I solved this in X-Sharp 
version 22 by tweaking the  edge-scanning  code  to allow column-oriented  texture 
mapping  to  match  the current convention. (You’ll find X-Sharp 22 on  the listings 
diskette in the  directory  for this chapter.) 
Chris also illustrated another  important  principle of optimization: A second  pair of 
eyes  is invaluable. Even the best of  us  have blind  spots and get  caught up in  particu- 
lar  implementations; if you bounce  your  ideas off someone, you  may  well find  them 
coming back  with an unexpected-and welcome-spin. 

That’s Nice-But it Sure as Heck Ain‘t 9 Cycles 
Excellent as  Chris’s suggestion was, I still had work to  do: Listing  58.2 is still more 
than twice  as  slow  as John Miles’s code. Traditionally, I start  the  optimization process 
with algorithmic  optimization,  then try to tie the  algorithm and the  hardware to- 
gether  for maximum efficiency, and finish up with instruction-by-instruction, 
take-no-prisoners optimization. We’ve already done  the first two steps, so it’s time to 
get down to  the  bare  metal. 
Listing  58.2 contains  three  functional parts: Drawing the pixel, advancing the desti- 
nation  pointer, and advancing the  source  texture  pointer. Each of the  three  parts is 
amenable  to further acceleration. 
Drawing the pixel is difficult to  speed  up, given that  it consists of only two instruc- 
tions-diffkult,  but  not impossible. True,  the  instructions themselves are  indeed 
irreducible, but if we can  get  rid of the ES: prefix (and, as  we shall see, we can), we 
can  rearrange  the  code  to make it run faster on  the Pentium.  Without  a prefix, the 
instructions  execute as  follows on  the  Pentium: 

MOV AH.CBX1 : c y c l e  1 U - p i p e  

MOV [ D I I . A H  ; c y c l e  2 U - p i p e  

The second MOV, being dependent  on  the value loaded into AH by the first MOV, 
can’t execute until the first MOV is finished, so the Pentium’s second pipe, the V-pipe, 
lies idle  for  a cycle. We can reclaim that cycle  simply by shuffling another instruction 
between the two MOVs. 
Advancing the  destination  pointer is  easy to  speed  up:  Just  build  the offset from one 
scanline  to  the  next  into  each  pixeldrawing  instruction as a  constant, as in 

; c y c l e  1 V - p i p e   i d l e ;  reg c o n t e n t i o n  

MOV [EDI+SCANOFFSETI .AH 

and advance ED1 only once  per  unrolled  loop  iteration. 
Advancing the  source  texture  pointer is more  complex, but correspondingly  more 
rewarding.  Listing 58.2  uses avariant form of  32-bit fixed-point arithmetic to advance the 
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source pointer, with the  source  texture  coordinates and increments  stored in 16.16 
(16 bits of integer, 16 bits of fraction)  format. The source coordinates  are  stored in a 
slightly unusual format, whereby the fractional X and Y coordinates  are  stored  and 
advanced separately, but  a single integer value, the source pointer, is used to reflect 
both  the X and Y coordinates. In Listing 58.2, the  integer and fractional parts are 
added  into  the  current  coordinates with four  separate 16-bit operations, and carries 
from fractional to integer  parts  are  detected via conditional  jumps, as  shown in Fig- 
ure 58.4. There's  quite a lot we can do to improve this. 

J- 
Add integer X increment 

to  source  Dointer I 
Add fractional X increment 
to fractional X coordinate 

J- 
Carry from 

fractional addition? 
I 

Yes 1 No 
Advance source pointer 

one  more pixel in X 

J 
Add integer Y increment 

to  source  pointer 
-I 

.1 
Add fractional Y increment 
to fractional Y coordinate 

J- 
Carry from 

fractional addition? 
A 

I 

Yes 1 No 
Advance  source  pointer 

one  more pixel in Y 

Original method for advancing the source texture pointer: 
Figure 58.4 
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First, we can sum the  X  and Y integer advance amounts outside the  loop,  then  add 
them  both to the source pointer with a single instruction. Second, we can recognize 
that X advances exactly one extra byte when its fractional part carries, and use ADC 
to account  for X carries, as  shown in Figure 58.5. That single ADC can add  in  not 
only  any X carry, but  both  the  X  and Y integer advance amounts as  well, thereby 
eliminating a  good  chunk of the source-advance code  in Listing 58.2. Furthermore, 
we should somehow be able to use 32-bit registers and instructions to help with the 
32-bit fixed-point arithmetic;  true,  the size override prefix (because we’re in  a 16-bit 
segment) will cost a cycle per 32-bit instruction, but that’s better  than  the  3 cycles it 
takes to do 32-bit arithmetic with  16-bit instructions. It isn’t obvious, but there’s a 
nifty  trick we can use here, again courtesy of Chris Hecker (who, as  you can tell, has 
done a fair amount of thinking  about  the complexities of texture mapping). 
We can store  the  current fractional parts of both the X and Y source coordinates  in 
a single 32-bit register, EDX,  as  shown in Figure 58.6. It’s important to note  that  the 
Y fraction is actually  only 15 bits,  with bit 15 of  EDX  always kept at zero; this  allows bit 
15 to store  the carry status from  each Y advance. We can similarly store the fractional 
X and Y advance amounts in ECX, and can store  the sum of the  integer  parts of the 
X and Y advance amounts  in BP. With this arrangement,  the single instruction ADD 
EDX,ECX advances the fractional  parts of both X and y and the following instruction 

J 
Add  fractional X increment 
to  fractional X coordinate I 

4 
increment, and carry from  last 

J- 
Add fractional Y increment 
to  fractional Y coordinate I 

J- 
[ Carry from  fractional  addition? I 

Eficient method for advancing source  texture pointer 
Figure 58.5 
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Fractional Y Carry 
1 

Fractional X 

Bit 15 
Bit 31 Bit 16 Bit 14 Bit 0 

Coordinate (1  5 bits) Coordinate (1 6 bits) 
Fractional Y 

Storing both Xand Y fractional coordinates in one register. 
Figure 58.6 

ADC S1,BP finishes advancing the source pointer in X. That’s a  mere 3 cycles, and all 
that remains is  to finish advancing the source pointer in Y 
Actually,  we also advanced the source pointer by the Yinteger amount back when we 
added BP to  SI;  all that’s left is to detect  whether our addition to the Y fractional 
current coordinate  produced  a carry. That’s easily done by testing bit 15 of  EDX; if 
it’s zero,  there was no carry and we’re done; otherwise, Y carried, so we have to reset 
bit 15  and advance the source pointer by one scanline. The resulting program flow  is 
shown in Figure 58.7. Note that unlike the X fractional addition, we can’t get away 
with just  adding in the carry from  the Y fractional addition, because when the Y 
fraction carries, it indicates a move not from one pixel to the  next  on  a scanline (a 
single byte),  but  rather  from  one scanline to the  next (a full scanline width). 
All  of the above optimizations together  get us to 10 cycles--very close to John Miles, 
but  not  there yet. We have one more trick up our sleeve, though: Suppose we point 
SS to the  segment  containing our textures, and point DS to the  screen?  (This re- 
quires  either setting up a stack in the texture  segment or ensuring  that  interrupts 
and  other stack  activity can’t happen while SS points to that segment.) Then, we 
could swap the  functions of SI and BP; that would let us  use BP, which  accesses SS by 
default, to get at  the textures, and DI to  access the screen-all  with no segment 
prefixes at all. By gosh, that would get us exactly one  more cycle, and would bring us 
down to the same 9 cycles John Miles attained; Listing 58.3 shows that  code. At long 
last, the Holy  Grail attained and  our  honor  defended, we can rest. 
Or can we? 

LISTING 58.3  158-3.ASM 
: I n n e r   l o o p   t o   d r a w  a s i n g l e   t e x t u r e - m a p p e d   v e r t i c a l   c o l u m n ,  
: r a t h e r   t h a n  a h o r i z o n t a l   s c a n l i n e .   M a x e d - o u t   1 6 - b i t   v e r s i o n .  

: A t  t h i s   p o i n t :  
A X  = s o u r c e   p o i n t e r   i n c r e m e n t   t o   a d v a n c e   o n e   i n  Y 
E C X  = f r a c t i o n a l  Y advance i n   l o w e r  1 5  b i t s  o f  C X .  

f r a c t i o n a l  X advance i n   h i g h   w o r d  o f  E C X .  b i t  
1 5  s e t   t o  0 
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Increments  to fractional coordinates 
with a  single X -b i t  ADD 

4 
Add integer X increment,  integer Y 

increment, and carry from  last 
operation to source pointer with ADC 

J- 
Carry from fractional Y addition? 
(Bit 15 of result of X -b i t  ADD) 

1 Advance source pointer 
one  more  Dixel in Y I 

1 
Reset bit 15 of  32-bit fractional 

coordinate accumulator I 
J 

Final method for advancing source texture pointer: 
Figure 58.7 

E O X  = f r a c t i o n a l   s o u r c e   t e x t u r e  Y c o o r d i n a t e   i n   l o w e r  
1 5  b i t s   o f  C X .  f r a c t i o n a l   s o u r c e   t e x t u r e  X c o o r d  
i n   h i g h   w o r d   o f  E C X .  b i t  15  s e t   t o  0 

S I  - sum o f   i n t e g r a l  X & Y s o u r c e   p o i n t e r   a d v a n c e s  
D S : O I  - i n i t i a l   d e s t i n a t i o n   p o i n t e r  
SS:BP = i n i t i a l   s o u r c e   t e x t u r e   p o i n t e r  

SCANOFFSET-0 

REPT LOOP~UNROLL 

mov b l  , [ b p l  
mov [di+SCANOFFSETl,bl 

add  edx.ecx 

a d c   b p , s i  

t e s t  dh,80h 
j z  @F 
add  bp,ax 
and  dh.not  80h 

: g e t   t e x t u r e   p i x e l  
; s e t   s c r e e n   p i x e l  

; a d v a n c e   f r a c  Y i n  D X ,  
; f r a c  X i n   h i g h   w o r d   o f  EDX 
; a d v a n c e   s o u r c e   p o i n t e r   b y   i n t e g r a l  
; X & Y amount, a l s o   a c c o u n t i n g   f o r  
; c a r r y   f r o m  X f r a c t i o n a l   a d d i t i o n  
; c a r r y   f r o m  Y f r a c t i o n a l   a d d i t i o n ?  
:no 
;yes.  advance Y by  one 
; r e s e t   t h e  Y f r a c t i o n a l   c a r r y   b i t  
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@@: 

SCANOFFSET = SCANOFFSET + SCANWIDTH 

ENDM 

Don‘t  Stop  Thinking  about  Those Cycles 
Remember what I said at  the  outset,  that knowing something has been done makes it 
much easier to do? A corollary  is that  pushing past that  point,  once  attained, is very 
difficult.  It’s  only natural to  want  to  relax in the satisfaction  of a job well done;  then, 
too, the very nature of the work changes. Getting from 44  cycles  down  to John’s 9 
cycles  was a huge leap, but we knew it could be  done-therefore the  nature of the 
problem was to figure out how it was done; in cases  like  this, if we’re sharp  enough 
(and of course we are!), we’re guaranteed eventual gratification. Now that we’ve 
reached  John’s level  of performance,  the  problem becomes whether the  code can be 
made faster yet, and that’s a different kettle of  fish altogether, for it may  well be  that 
after thinking  about  it  for a while,  we’ll conclude  that  it can’t. Not only will we have 
wasted  time, but we’ll  also never be sure we were right; we’ll  know  only that wecouldn’t 
find a solution. That way lies  madness. 
And yet-someone has to  blaze the trail  to higher  performance, and that  someone 
might as  well be us.  Let’s look for weaknesses in Listing  58.3. None  are readily appar- 
ent;  the only  cycle that looks  even  slightly  wasted  is the size prefix on ADD EDX,ECX. 
As it  turns out, that cycle  really is wasted, for there’s a way to make the size prefix 
vanish without losing the benefits of  32-bit instructions: Move the  code  into a 32-bit 
segment and make all the instructions 32-bit. That’s what  Listing  58.4 does; this code 
is similar to Listing  58.3, but  runs in 8 cycles per pixel, a 12.5 percent  speedup over 
Listing  58.3. Whether Listing 58.4 actually  draws more pixels per second  than List- 
ing  58.3  depends on whether display  memory  is  fast enough  to  handle pixels  as 
rapidly  as  Listing  58.4 can deliver them.  That  speed, one pixel  every  122 nanosec- 
onds  on a 486/66, is one that ISA adapters can’t hope  to  match,  but fast VLB and 
PC1 adapters can handle with  ease. Be aware, too,  that cache misses when reading 
the source texture will generally reduce  performance below the calculated 8-cycles- 
per-pixel  level,  especially  because textures, which can be  scanned across at any angle, 
are rarely  accessed at consecutive addresses, which is the  arrangement  that would 
make for  the fewest cache misses. 

LISTING  58.4  158-4.ASM 
: I n n e r   l o o p   t o   d r a w  a s i n g l e   t e x t u r e - m a p p e d   v e r t i c a l   c o l u m n ,  
: r a t h e r   t h a n  a h o r i z o n t a l   s c a n l i n e .   M a x e d - o u t   3 2 - b i t   v e r s i o n .  

: A t  t h i s   p o i n t :  
EAX = sum o f  i n t e g r a l  X & Y s o u r c e   p o i n t e r   a d v a n c e s  
E C X  - s o u r c e   p o i n t e r   i n c r e m e n t   t o   a d v a n c e   o n e   i n  Y 
EDX - f r a c t i o n a l   s o u r c e   t e x t u r e  Y c o o r d i n a t e   i n   l o w e r  

15  b i t s   o f  D X ,  f r a c t i o n a l   s o u r c e   t e x t u r e  X c o o r d  
i n   h i g h   w o r d  o f  E D X .  b i t  15 s e t   t o  0 
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E S I  - i n i t i a l   s o u r c e   t e x t u r e   p o i n t e r  
ED1 - i n i t i a l   d e s t i n a t i o n   p o i n t e r  
EBP - f r a c t i o n a l  Y advance i n   l o w e r  15 b i t s   o f  B P .  

f r a c t i o n a l  X advance i n   h i g h   w o r d   o f  EBP.  b i t  
15 s e t   t o  0 

SCANOFFSET-0 

REPT LOOP-UNROLL 

mov b l  , Cesi 3 
add  edx,  ebp 

adc e s i   . e a x  

mov C e d i + S C A N O F F S E T l  , b l  

t e s t  dh.8Oh 
jz s h o r t  @ F  
add e s i   . e c x  

and  dh.not  80h 
@e: 

SCANOFFSET - SCANOFFSET + SCANWIDTH 

; g e t   i m a g e   p i x e l  
:advance f r a c  Y i n  D X ,  
; f r a c  X i n  h i g h   w o r d   o f  EDX 
; a d v a n c e   s o u r c e   p o i n t e r   b y   i n t e g r a l  
; X & Y a m o u n t ,   a l s o   a c c o u n t i n g   f o r  
; c a r r y   f r o m  X f r a c t i o n a l   a d d i t i o n  
; s e t   s c r e e n   p i x e l  
; ( l o c a t e d   h e r e   t o   a v o i d   4 8 6  
; A G I  f r o m   p r e v i o u s   b y t e   o p )  
; c a r r y   f r o m  Y f r a c t i o n a l   a d d i t i o n ?  
;no 
;yes.   advance Y by  one 
; (produces   Pent ium A G I  f o r  MOV B L . [ E S I ] )  
; r e s e t   t h e  Y f r a c t i o n a l   c a r r y   b i t  

ENDM 

And there you  have it: A five  to  10-times speedup of a  decent assembly language 
texture mapper. All it took was some help  from my friends,  a  good,  stiffjolt of right- 
brain  thinking, and some solid left-brain polishing-plus the knowledge that such a 
speedup was possible. Treat every optimization task  as if John Miles has just written 
to inform you that he’s made it faster than your wildest dreams, and you’ll be amazed 
at what you can do! 

Texture Mapping Notes 
Listing 58.3 contains no 486 pipeline stalls; it has Pentium stalls, but  not much can 
be done for  them because of the size prefix on ADD EDX,ECX, which  takes 1 cycle to 
go through  the U-pipe, and shuts down the V-pipe for  that cycle.  Listing 58.4, on  the 
other  hand, has been  rearranged to eliminate all Pentium stalls  save one. When the 
Y coordinate  fractional  part carries and ESI advances, the  code executes as  follows: 

ADD E S I . E C X  ; c y c l e  1 U - p i p e  
AND  DH,NOT 80H ; c y c l e  1 V - p i p e  

MOV B L . C E S I 1  ; c y c l e  3 U - p i p e  
ADD E D X , E B P  ; c y c l e  3 V - p i p e  

However, I don’t see any way to eliminate this last AGI, which happens  about half the 
time; even  with it,  the  Pentium  execution time for Listing 58.4 is 5.5 cycles. That’s 61 

; c y c l e  2 i d l e  A G I  on E S I  

1092 Chapter 58 



nanoseconds-a  highly respectable 16 million texture-mapped pixels per second- 
on  a 90 MHz Pentium. 
The type of texture  mapping discussed in  both this and earlier chapters doesn’t do 
perspective correction when mapping textures. Why that is and how to handle per- 
spective correction is a topic for a whole separate book, but be aware that  the textures 
on some large polygons (not  the polygon edges themselves)  drawn  with the code in 
this chapter will appear to be unnaturally bowed, although small  polygons should 
look fine. 
Finally, we never did  get rid of the last jump in the  texture mapper, yet John Miles 
claimed no  jumps  at all. How did he  do it? I’m not sure,  but I’d  guess that he used a 
two-entry look-up table, based on  the Y carry, to decide how much to advance the 
source pointer  in Y. However, I couldn’t come up with  any implementation of  this 
approach  that  didn’t take 0.5 to 1 cycle more  than  the test-and-jump approach, so 
either I didn’t come up with an adequately efficient implementation of the table, 
John saved a cycle somewhere else, or perhaps John implemented his code in a 32- 
bit  segment, but used the less-efficient table in his fervor to get rid of the final jump. 
The knowledge that  I apparently came up with a  different solution than  John high- 
lights that  the technical aspects of John’s implementation were, in truth, totally 
irrelevant to  my optimization efforts; the only actual effect John’s code  had on me 
was to make me belime a  texture  mapper could run that fast. 
Believe it! And while you’re at it, give both halves of your brain equal time-and 
watch out for aliens in short skirts, 60’s bouffant hairdos,  and  an undue interest in 
either half. 
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The  name was there in my mind, somewhere; I could  feel the shape of it, in that 
same back storeroom, if only I could  figure out how to  retrieve it. 
1 poked and worried at  that memory, trying to  get  it to come  to  the  surface. I concen- 
trated on it as hard as I  could, and even started  going  through  the  alphabet one 
letter  at  a time, trying to  remember if her name  started with each  letter. After 15 
minutes,  I was wide  awake and totally frustrated. I was also farther  than ever from 
answering the  question;  all  the focusing on the memory was beginning  to  blur  the 
original  imprint. 
At this  point, I consciously relaxed and made myself think  about  something com- 
pletely different. Every time my mind returned to the mystery girl, I gently shifted  it 
to  something else. After a while, I began to  drift off to  sleep, and as I did  a  connec- 
tion was made, and  a name  popped,  unbidden,  into my mind. 
Wendy  Tucker. 
There  are many problems  that are amenable to the  straight-ahead, purely conscious 
sort of approach  that I first tried to  use to  retrieve Wendy’s name. Writing code 
(once it’s designed) is often like that, as are some sorts of debugging,  technical writ- 
ing, and balancing your checkbook.  I personally find  these  left-brain activities to be 
very appealing because they’re  finite and controllable; when I start one, I know 1’11 
be able  to  deal with  whatever comes up  and make good  progress, just by plowing 
along.  Inspiration and intuitive leaps are sometimes useful, but  not  required. 
The  problem is, though,  that  neither you nor I will ever do anything  great  without 
inspiration and intuitive leaps, and especially not without  stepping away from what’s 
known and venturing into territories beyond. The way to do that is not by trying harder 
but, paradoxically, by q n g  less hard, stepping back, and giving  your right brain room to 
work, then listening for  and  nurturing whatever comes of that. On  a small scale, 
that’s how I  remembered Wendy’s name, and  on  a larger scale, that’s how program- 
mers come up with products  that  are  more  than me-too, checklist-oriented software. 
Which, for  a  couple of reasons,  brings us neatly to this chapter’s  topic, Binary Space 
Partitioning (BSP) trees. First, games are probably the  sort of  software  in  which the 
right-brain  element is most important-blockbuster games are almost always break- 
throughs  in  one way or another-and some very successful games use BSP trees, 
most notably id  Software’s megahit DOOM. Second, BSP trees  aren’t intuitively easy 
to  grasp, and considerable  ingenuity and inventiveness is required  to  get  the most 
from  them. 
Before we begin, I’d  like to  thank John Carmack, the technical wizard behind DOOM, 
for  generously  sharing his knowledge of BSP trees with me. 

BSP Trees 
A BSP tree is, at  heart,  nothing  more  than  a  tree  that subdivides space in order  to 
isolate features of interest. Each node of a BSP tree splits an area  or  a volume (in 2-D or 
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3-D, respectively) into two parts along a line or a plane;  thus  the  name “Binary  Space 
Partitioning.” The subdivision is hierarchical; the  root  node splits the world into two 
subspaces, then  each of the root’s two children splits one of those two subspaces into 
two more parts. This continues with each subspace being further subdivided, until 
each component of interest  (each line segment or polygon, for  example) has been 
assigned  its own unique subspace. This is,  admittedly, a pretty abstract description, 
but  the workings  of BSP trees will become clearer shortly; it may help to glance 
ahead to this chapter’s figures. 
Building a tree that subdivides  space doesn’t sound particularly profound,  but there’s 
a lot that  can  be done with  such a structure. BSP trees can  be used to represent 
shapes, and operating on those  shapes is a simple matter of combining trees as needed; 
this  makes BSP trees a powerful way to implement Constructive  Solid Geometry 
(CSG). BSP trees can also be used for  hit testing,  line-of-sight determination,  and 
collision detection. 

Visibility Determination 
For the time being, I’m  going to discuss  only one of the many  uses  of BSP trees: The 
ability  of a BSP tree  to allow  you  to  traverse a set of line segments or polygons in 
back-to-front or front-to-back order as seen from any arbitrary viewpoint. This sort of 
traversal can be  very helpful in determining which parts of each line segment or 
polygon are visible and which are occluded from  the  current viewpoint in a 3-D 
scene. Thus, a BSP tree makes  possible an efficient implementation of the painter’s 
algorithm, whereby  polygons are drawn  in  back-to-front order, with  closer  polygons 
overwriting more distant ones  that overlap, as shown  in  Figure 59.1. (The line seg- 
ments in Figure 1 (a)  and in other figures in this chapter,  represent vertical  walls, 
viewed from directly above.) Alternatively,  visibility determination can be  performed 
by front-to-back  traversal  working in conjunction with some method  for  remember- 
ing which  pixels  have  already been drawn. The latter  approach is more  complex,  but 
has the potential benefit of  allowing  you  to  early-out from traversal of the scene 
database when  all the pixels on  the screen have been drawn. 
Back-to-front or front-to-back  traversal  in  itself wouldn’t be so impressive-there are 
many ways to do that-were it  not for one additional detail: The traversal can always 
be  performed in linear time, as  we’ll  see later on. For instance, you  can  traverse, a 
polygon  list  back-to-front from any  viewpoint  simply by walking through  the  corre- 
sponding BSP tree  once, visiting each node  one  and only one time, and performing 
only one relatively  inexpensive  test at each  node. 
It’s hard to get  cheaper sorting than linear time, and BSP-based rendering stacks up 
well against  alternatives  such  as  z-buffering, octrees, z-scan sorting, and polygon  sort- 
ing. Better yet, a scene database represented as a BSP tree can be clipped to  the view 
pyramid  very  efficiently; huge  chunks of a BSP tree can be  lopped off when clipping 
to the view pyramid,  because if the  entire  area or volume  of a node lies entirely 
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The painter 5. algorithm. 
Figure 59.1 

outside  the view volume, then all nodes and leaves that  are  children of that  node 
must likewise  be outside  the view volume, for reasons that will become  clear as we 
delve into  the workings of  BSP trees. 

Limitations of BSP Trees 
Powerful  as  they are, BSP trees  aren’t  perfect. By far  the  greatest limitation of  BSP 
trees is that they’re time-consuming to build,  enough so that,  for all practical pur- 
poses, BSP trees must be precalculated, and  cannot  be  built dynamically at  runtime. 
In fact, a BSP-tree compiler  that  attempts to perform  some optimization (limiting 
the  number of surfaces that  need  to be split, for  example) can  easily  take minutes or 
even hours to process large world databases. 
A fixed world database is fine  for walkthrough or flythrough  applications  (where  the 
viewpoint  moves through  a static scene),  but  not  much use for games or virtual real- 
ity, where objects constantly move  relative  to one another. Consequently, various 
workarounds have been  developed to allow  moving objects to appear  in BSP tree- 
based  scenes. DOOM, for  example, uses 2-D sprites mixed into BSP-based 3-D scenes; 
note,  though,  that this approach  requires  maintaining z information so that  sprites 
can be  drawn and occluded properly. Alternatively,  movable objects could be repre- 
sented as separate BSP trees and  merged anew into the world BSP tree with each 
move.  Dynamic merging may or may not be  fast enough,  depending  on  the  scene, 
but  merging BSP trees tends to  be quicker  than  building  them, because the BSP 
trees  being  merged  are already  spatially sorted. 
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Another possibility  would  be to generate a per-pixel  z-buffer for  each  frame as it’s 
rendered, to allow  dynamically changing objects to  be drawn into  the BSP-based 
world. In this scheme, the BSP tree would  allow  fast  traversal and clipping of the 
complex, static  world, and  the z-buffer  would handle  the relatively  localized  visibility 
determination involving  moving  objects. The drawback of this  is the  need for a 
memory-hungry z-buffer; a typical  640x480  z-buffer requires a fairly appalling 600K, 
with  equally appalling cache-miss implications for  performance. 
Yet another possibility  would  be  to  build the world so that each dynamic object falls 
entirely  within a single  subspace of the static BSP tree,  rather  than  straddling split- 
ting lines or planes. In this  case,  dynamic  objects can be  treated as points, which are 
then  just  sorted  into  the BSP tree on  the fly as they  move. 
The only other drawbacks  of BSP trees that I know  of are  the memory required to 
store  the  tree, which amounts to a few pointers  per  node, and  the relative complex- 
ity  of debugging BSP-tree compilation and usage; debugging a large data set being 
processed by recursive code (which BSP code  tends to be) can  be  quite a challenge. 
Tools  like the BSP compiler I’ll present in the next  chapter, which  visually depicts 
the process  of  spatial  subdivision  as a BSP tree is constructed, 
BSPdebugging: 

Building a BSP Tree 
Now that we know a good bit about what a BSP tree is, how  it 

help a great  dealwith 

telps in visible surface l- 
determination, and what  its strengths and weaknesses are, let’s  take a look at how a 
BSP tree actually  works to provide front-to-back or back-to-front ordering.  This 
chapter’s discussion will be at a conceptual level,  with  plenty  of  figures; in the  next 
chapter we’ll get  into mechanisms and implementation details. 
I’m going to discuss  only 2-D BSP trees from  here on  out, because they’re much 
easier to draw and to grasp than  their 3-D counterparts. Don’t worry, though;  the 
principles of  2-D  BSP trees using line segments generalize directly  to 3-D  BSP trees 
using  polygons. Also, 2-D  BSP trees are quite powerful in  their own right, as evi- 
denced by DOOM,  which  is built around 2-D BSP trees. 
First,  let’s construct a simple BSP tree. Figure 59.2 shows a set of four lines that will 
constitute our sample world.  I’ll refer  to these  as  walls, because that’s one easily- 
visualized context in which a 2-D  BSP tree would be useful in a game. Think of  Figure 
59.2  as depicting vertical walls  viewed from directly  above, so they’re lines for  the 
purpose of the BSP tree. Note that  each wall has a front side, denoted by a normal 
(perpendicular) vector, and a back side. To  make a BSP tree for this sample set, we 
need to split the world in two, then each part  into two again, and so on, until each 
wall resides  in  its own unique subspace. An obvious question,  then, is  how should we 
carve up the world  of  Figure  59.2? 
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A sample set of walls, viewed from above. 
Figure 59.2 

There  are infinitely valid  ways to carve up Figure 59.2, but  the simplest is just to carve 
along  the  lines of the walls themselves,  with each node containing one wall. This is 
not necessarily optimal,  in  the sense of producing  the smallest tree,  but it has  the 
virtue of generating the splitting  lines  without expensive analysis. It also  saves on 
data storage, because the  data  for  the walls can do double duty in describing  the 
splitting  lines as  well. (Putting  one wall on each  splitting  line  doesn’t actually create 
a  unique subspace for  each wall, but  it does  create  a  unique subspace boundary for 
each wall;  as  we’ll see, that spatial organization provides for  the same unambiguous 
visibility ordering as a  unique subspace would.) 
Creating a BSP tree is a recursive  process, so we’ll perform the h t  split and go from there. 
Figure 59.3 shows the world  carved along the line of  wall C into two parts: walls that are 
in  front ofwall C, and walls that are  behind. (Any of the walls  would  have been  an equally 
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BSP tree 

child 

front  lines back lines 

child 

1 

J 

Initial split along the line of wall C. 
Figure 59.3 
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valid choice for the initial  split; we'll return to the issue  of choosing  splitting walls in the 
next chapter.) This  splitting into front and back  is the essential  dualism of BSP trees. 
Next, in Figure 59.4, the  front subspace of wall C is split by  wall D. This is the only 
wall in that subspace, so we're done with wall C's front subspace. 
Figure 59.5  shows the back subspace of wall C being split by  wall B. There's  a differ- 
ence here, though: Wall A straddles the splitting line generated  from wall B. Does 
wall A belong in the  front  or back subspace of  wall B? 

Split of wall C j .  front subspace along the line of wall D. 
Figure 59.4 

BSP tree  

fronl 

Split of wall C's buck subspace along the line of wall B. 
Figure 59.5 
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Both, actually.  Wall A gets  split into two pieces, which I’ll call wall A and wall E; each 
piece is assigned  to the  appropriate subspace and  treated as a  separate wall. As shown 
in  Figure  59.6, each of the split pieces then has a subspace to itself, and each be- 
comes a leaf  of the  tree. The BSP tree is  now complete. 

Visibility Ordering 
Now that we’ve  successfully built  a BSP tree, you might justifiably be a little puzzled 
as to how  any  of this helps with  visibility ordering. The answer is that each BSP node 
can definitively determine which of its child trees is nearer  and which is farther from 
any and all  viewpoints; applied  throughout  the  tree, this principle makes it possible 
to establish visibility ordering  for all the  line segments or planes in a BSP tree, no 
matter what the viewing angle. 
Consider  the world  of Figure 59.2  viewed from an  arbitrary  angle, as  shown  in Figure 
59.7. The viewpoint is in  front of  wall C; this tells us that all  walls belonging to the 
front tree  that  descends  from wall C are  nearer  along every  ray from  the viewpoint 
than wall C is (that is, they can’t be occluded by  wall C) . All the walls in wall C’s back 
tree  are likewise farther away than wall C along any  ray. Thus,  for this  viewpoint, we 
know for  sure  that if we’re  using the  painter’s  algorithm, we want to draw  all the walls 
in the back tree first, then wall C, and  then  the walls in  the  front  tree. If the view- 
point  had  been  on  the back side of  wall C, this order would  have been reversed. 
Of course, we need  more  ordering  information  than wall C alone can give us, but we 
get  that by traversing the  tree recursively, making the same far-near decision at each 
node. Figure 59.8 shows the  painter’s  algorithm  (back-to-front) traversal order of 
the  tree  for  the viewpoint  of Figure 59.7. At each  node, we decide  whether we’re 

BSP tree 

~ _ _ ~ ~  ”~ ~ 

The final BSP tree. 
Figure 59.6 
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Viewing  the  BSP  tree from an arbitrary angle. 
Figure 59.7 

seeing the  front  or back side of that  node’s wall, then visit  whichever  of the wall’s 
children is on the  far side from the viewpoint,  draw the wall, and  then visit the node’s 
nearer  child,  in  that  order. Visiting a child is recursive, involving the same far-near 
visiting order. 
The key is that  each BSP splitting line  separates all the walls in  the  current subspace 
into two groups relative  to the viewpoint, and every single member of the  farther 

Note: ‘F‘ and ‘N‘ indicate  the far and  near  children, 
respectively, of each node from the viewpoint of 
Figure 59.7. 

Back-to-front  traversal  of  the BSP  tree as viewed in Figure 59.7. 
Figure 59.8 
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group is guaranteed  not  to occlude every single member of the nearer. By applying 
this ordering recursively, the BSP tree can be traversed to provide back-to-front or 
front-to-back ordering, with each  node  being visited  only once. 
The type of tree walk used to  produce front-to-back or back-to-front BSP traversal is 
known as an inorderwalk.  More on this very shortly; you’re also  likely to find  a discus- 
sion of inorder walking in any good  data  structures book. The only special aspect of 
BSP walks  is that a decision has to be made at each node  about which way the node’s 
wall  is facing relative to the viewpoint, so we  know which child  tree is nearer  and 
which is farther. 
Listing 59.1 shows a  function  that draws a BSP tree back-to-front. The decision whether 
a node’s wall is facing forward, made by WallFacingForward() in Listing 59.1, can, in 
general, be made by generating  a  normal to the node’s wall in screenspace (perspec- 
tive-corrected  space as seen  from  the viewpoint) and checking  whether  the z 
component of the  normal is positive or negative, or by checking the sign  of the  dot 
product of a viewspace (non-perspective corrected space as seen from  the viewpoint) 
normal and a ray from  the viewpoint to the wall. In 2-D, the decision can be made by 
enforcing  the convention that when a wall is viewed from  the  front,  the  start vertex is 
leftmost; then  a simple screenspace comparison of the  x  coordinates of the left and 
right vertices indicates which way the wall is facing. 

listing  59.1  159-1 .C 
v o i d  WalkBSPTree(N0DE  *pNode) 
I 

i f  (Wal lFacingForward(pNode)  { 
i f  (pNode->Backch i ld )  { 

1 
Draw(pNode); 
i f  ( p N o d e - > F r o n t c h i l d )  I 

I 
J e l s e  { 

i f  ( p N o d e - > F r o n t c h i l d )  { 

1 
Draw(pNode): 
i f  (pNode->Backch i ld )  { 

I 

WalkBSPTree(pN0de->Backchi ld) ;  

WalkBSPTree(pN0de->Frontchi ld) :  

WalkBSPTree(pN0de->Frontchi ld) :  

WalkBSPTree(pN0de->Backchild): 

1 
I 

Be aware that BSP trees can  often be made smaller and  more  efficient by detecting p collinear surfaces (like aligned wall segments) and generating only  one BSP node 
for each collinear set, with  the collinear surfaces stored in, say, a linked list at- 
tached to that  node. Collinear surfacespartition space identically and  can ’t occlude 
one  another, so it  suffices to generate one splitting node for each collinear set. 
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Inorder Walks of BSP Trees 
It was implementing BSP trees  that  got me to  thinking  about inorder tree traversal. 
In inorder traversal, the  left  subtree of each node gets visited first, then  the  node, 
and  then  the  right  subtree. You apply  this sequence recursively to  each node  and its 
children  until  the  entire  tree has been visited, as  shown in Figure 59.9. Walking a 
BSP tree is basically an  inorder  tree walk; the only difference is that with a BSP tree 
a decision is made  before  each  descent as to which subtree  to visit first, rather  than 
simply visiting whatever’s pointed  to by the  left-subtree  pointer. Conceptually, how- 
ever, an  inorder walk is what’s used to traverse a BSP tree;  from now on I’ll discuss 
normal  inorder walking,  with the  understanding  that  the same principles apply to 
BSP trees. 
As I’ve  said again and again in my printed works  over the years, you  have  to dig deep 
below the  surface to real4 understand  something if  you  want to  get  it  right, and 
inorder walking turns out to be an excellent  example of this. In fact, it’s such  a  good 
example  that I routinely use i t  as an interview question for programmer  candidates, 
and, to my astonishment, not  one interviewee has done  a good job with this one yet. 
I ask the  question  in two stages, and I get remarkably consistent results. 
First, I ask for  an  implementation of a  function WalkTree() that visits each node in a 
passed-in tree  in  inorder  sequence. Each candidate  unhesitatingly writes something 
like the perfectly good  code  in Listings 59.2 and 59.3 shown next. 

An inorder walk of a BSP tree. 
Figure 59.9 
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Listing 59.2 159-2.C 
I /  F u n c t i o n   t o   i n o r d e r   w a l k  a t r e e ,   u s i n g   c o d e   r e c u r s i o n  
/ /  T e s t e d   w i t h   3 2 - b i t   V i s u a l  C++ 1.10. 
Pi n c l  ude < s t d l  i b.  h> 
l i n c l  ude  “ t ree .   h ”  
e x t e r n   v o i d   V i s i t ( N 0 D E   * p N o d e ) :  
v o i d  WalkTree(N0DE  *pNode) 
( 

I /  Make s u r e   t h e   t r e e   i s n ’ t   e m p t y  
i f  (pNode !- NULL) 
( 

/ /  T r a v e r s e   t h e   l e f t   s u b t r e e .  i f  t h e r e  i s  one 
i f  ( p N o d e - > p L e f t C h i l d  !- NULL) 
I 

I 
I /  V i s i t   t h i s  node 
V i s i t ( p N o d e ) :  
/ /  T r a v e r s e   t h e   r i g h t   s u b t r e e .  i f  t h e r e   i s  one 
i f  (pNode->pRightCh i ld  !- NULL) 
I 

1 

WalkTree(pNode->pLeftChild): 

WalkTree(pNode->pRightChild); 

I 
1 

listing  59.3 159-3.H 
/ /  Header f i l e  TREE.H f o r   t r e e - w a l k i n g   c o d e .  
t y p e d e f   s t r u c t  -NODE I 

s t r u c t  -NODE * p L e f t C h i l d :  
s t r u c t  -NODE * p R i g h t C h i l d ;  

1 NODE: 

Then I ask  if  they  have  any idea how to make the  code  faster;  some  don’t,  but most 
point  out  that  function calls are  pretty expensive. Either way, I then ask them to 
rewrite the  function  without  code  recursion. 
And then I sit  back and squirm  for  a  minimum of 15 minutes. 
I have  never had anyone write a  functional data-recursion inorder walk function  in 
less  time than  that, and several people have  simply  never gotten  the  code to work at 
all. Even the best of them have fumbled  their way through  the  code, sticking  in a 
push here or a pop there,  then working through sample scenarios in  their  head to 
see  what’s broken,  programming by trial and  error until  the  errors seem to be gone. 
No one is  ever sure they  have it right;  instead,  when they  can’t find any more bugs, 
they  look at me hopefully to see if it’s thumbs-up or thumbs-down. 
And  yet, a data-recursive inorder walk implementation has exactly the same flowchart 
and exactly the same functionality as the code-recursive  version  they’ve  already  writ- 
ten. They  already  have a fully functional  model to follow,  with  all the problems solved, 
but they can’t make the  connection between that  model and  the code  they’re trylng 
to implement. Why  is this? 
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Know it Cold 
The problem is that these people  don't  understand  inorder walking through  and 
through. They understand  the  concepts of  visiting left and right subtrees, and they 
have a  general  picture of how traversal  moves about  the  tree,  but they do  not under- 
stand exactly  what the code-recursive version does. If they really comprehended 
everything that  happens  in  each  iteration of WalkTreeO-how each call  saves the 
state, and what that implies for  the order in which operations  are performed-they 
would  simply and without fuss implement  code like that  in Listing 59.4, working with 
the code-recursive version  as a model. 

Listing 59.4  159-4.C 
/ I  F u n c t i o n   t o   i n o r d e r   w a l k  a t r e e ,   u s i n g   d a t a   r e c u r s i o n .  
/ /  No s t a c k   o v e r f l o w   t e s t i n g   i s   p e r f o r m e d .  
/ /  T e s t e d   w i t h   3 2 - b i t   V i s u a l  C++ 1.10. 
# i n c l u d e   < s t d l i b . h >  
#i n c l  ude " t r e e .  h" 
# d e f i n e  MAX-PUSHED-NODES 100 
ex te rn   vo id   V i s i t (NO0E  *pNode) :  
v o i d  WalkTree(NO0E  *pNode) 
( 

NODE *NodeStack[MAX-PUSHED_NODESI: 
NODE **pNodeStack; 
/ /  Make s u r e   t h e   t r e e   i s n ' t   e m p t y  
i f  (pNode !- NULL) 
I 

NodeStackCOl - NULL: / /  push  "s tack  empty"   va lue 
pNodeStack - NodeStack + 1; 
f o r  ( : : )  
[ 

/ /  I f  the   cu r ren t   node   has  a l e f t   c h i l d ,  push 
I /  t h e   c u r r e n t   n o d e   a n d   d e s c e n d   t o   t h e   l e f t  
/ /  c h i l d   t o   s t a r t   t r a v e r s i n g   t h e   l e f t   s u b t r e e .  
/ I  Keep d o i n g   t h i s   u n t i l  we come t o  a node 
/ /  w i t h   n o   l e f t   c h i l d ;   t h a t ' s   t h e   n e x t  node t o  
I /  v i s i t   i n   i n o r d e r  sequence 
w h i l e   ( p N o d e - > p L e f t C h i l d  !- NULL) 

*pNodeStack++ - pNode: 
pNode - p N o d e - > p L e f t C h i l d ;  

We're a t  a node t h a t  has  no l e f t   c h i l d .  S O  

v i s i t   t h e  n o d e ,   t h e n   v i s i t   t h e   r i g h t  
s u b t r e e  i f  t h e r e  i s  one. o r   t h e   l a s t -  
pushed  node  o therw ise :   repeat   fo r   each 
popped  node u n t i l  one w i t h  a r i g h t  
s u b t r e e   i s   f o u n d  o r  we run   ou t   o f   pushed 
n o d e s   ( n o t e   t h a t   t h e   l e f t   s u b t r e e s   o f  
pushed  nodes  have  a l ready  been  v is i ted.  s o  
t h e y ' r e   e q u i v a l e n t   a t   t h i s   p o i n t   t o   n o d e s  
w i t h   n o   l e f t   c h i l d r e n )  

f o r  ( : : I  
{ 

V i s i t ( p N o d e 1 ;  
I /  I f  the  node  has a r i g h t   c h i l d .  make 
/ /  t h e   c h i l d   t h e   c u r r e n t   n o d e  and s t a r t  
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I !  
/ I  
/ /  
/ /  
/ /  
i f  
I 

t r a v e r s i n g   t h a t   s u b t r e e ;   o t h e r w i s e ,   p o p  
b a c k   u p   t h e   t r e e ,   v i s i t i n g  nodes we 
passed  on  the way down, u n t i l  we f i n d  a 
node w i t h  a r i g h t   s u b t r e e   t o   t r a v e r s e  
or   run   ou t   o f   pushed  nodes   and  a re   done 
(pNode->pRightCh i ld  !- NULL) 

/ /  Current   node  has a r i g h t   c h i l d :  
/ /  t r a v e r s e   t h e   r i g h t   s u b t r e e  
pNode - pNode->pRightCh i ld :  
b r e a k :  

Pop t h e   n e x t   n o d e   f r o m   t h e   s t a c k  so 
we can v i s i t  i t  and  see i f  it has a 
r i g h t   s u b t r e e   t o   b e   t r a v e r s e d  
((pNode - *-pNodeStack) - NULL) 

/ I  S t a c k  i s  empty  and  the  current   node 
/ /  has  no r i g h t   c h i l d :   w e ’ r e   d o n e  
r e t u r n :  

Take a few minutes to look over  Listing 59.4 and relate  it to Listing 59.2. The struc- 
ture is different, but  upon examination  it  becomes clear that  both listings reflect the 
same underlying model: For each  node, visit the  left  subtree, visit the  node, visit the 
right  subtree. And although Listing 59.4 is longer, that’s  mostly  because I  commented 
it heavily to make sure its  workings are  understood;  there  are only 13 lines that actu- 
ally do anything in Listing 59.4. 
Let’s look at  it  another way.  All the  code in  Listing 59.2 does is  say: “Here I am at  a 
node. First  I’ll  visit the  left  subtree if there is one,  then I’ll  visit this node,  then I’ll 
visit the  right  subtree if there is one. While I’m visiting the left subtree, I’ll just push 
a  marker on a stack that tells  me to  come back here when  the left subtree is done. If, 
after visiting a node,  there  are  no  right  children  to visit and  nothing left on  the stack, 
I’m finished. The code  does this at each node-and  that’s allit does.  That’s all  List- 
ing 59.4 does, too,  but  people  tend to get  tangled up in  pushes and pops and while 
loops when  they  use data  recursion.  When  the  implementation  model  changes  to 
one with  which  they are unfamiliar, they abandon the perfectly good  model they 
used before and try to rederive it in the new context by the  seat of their  pants. 

Here S a secret when you ’re faced with a situation like this: Step back  and get a 1 clear picture of what your code has to do. Omit no steps. You should  build a model 
that is so consistent and solid that you can instantly answer any question about 
how  the code should behave in any situation. For example, my intewiavees often 
decide, by trial and  error,  that  there  are two distinct types of right children:  Right 
children visited after popping back  to visit a node after the left subtree has  been 
visited, and right children visited after descending to a node  that  has  no  left child. 
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This makes the traversal code a mass of special cases, each of which has to be 
detected by the programmer by trying out scenarios. Worse, you can never be sure 
with this approach that you 've caught all the special cases. 
The alternative is to develop and apply a  unlfiing model. There  aren  't really two 
types of right children; the rule is that all right children  are visited after their 
parents are visited, period. The presence or absence of a left child is irrelevant. 
The possibility that a right child may be reached via different code paths depend- 
ing on the presence of a left child does not afect the overall model. While this 
distinction may seem trivial it is in fact crucial, because ifyou have the model 
down cold, you can always tell if the implementation is correct by comparing it 
with the model. 

Measure and Learn 
How much difference does all this fuss make, anyway? Listing  59.5  is a sample pro- 
gram that builds a  tree,  then calls WalkTree () to walk it 1,000 times, and times  how 
long this takes.  Using  32-bit  Visual C+t 1.10 running  on Windows NT, with default 
optimization selected, Listing 59.5 reports  that Listing 59.4 is about 20 percent faster 
than Listing  59.2 on a 486/33, a reasonable return for  a little code  rearrangement, 
especially when you consider that  the  speedup is diluted by calling the Visit() func- 
tion and by the  cache miss that  happens  on virtually  every node access. (Listing 59.5 
builds a  rather  unique  tree,  one in which  every node has exactly two children. Differ- 
ent sorts of trees can and  do  produce  different  performance results. Always know 
what you're measuring!) 

listing 59.5 159-5.C 
/ /  Sample  program t o  e x e r c i s e   a n d   t i m e   t h e   p e r f o r m a n c e  of  
I1 imp lemen ta t i ons  o f  Wal k T r e e 0 .  
/ /  T e s t e d   w i t h   3 2 - b i t   V i s u a l  C++ 1.10 under  Windows NT. 
# i n c l u d e   < s t d i o . h >  
# inc lude   <con io .h>  
#i n c l   u d e   < s t d l  i b.   h>  
# inc lude   < t ime .h>  
#i n c l   u d e   " t r e e .  h" 
l o n g   V i s i t c o u n t  - 0;  
v o i d   m a i n ( v o i d 1 ;  
void  Bui ldTree(N0DE  *pNode. i n t  RemainingOepth): 
e x t e r n   v o i d  WalkTree(N0DE  *pRootNode); 
v o i d   m a i n 0  
{ 

NODE RootNode; 
i n t  i; 
l o n g   S t a r t T i m e ;  
I /  B u i l d  a sample t r e e  
Bu i ldTree(&RootNode.   14) ;  
11 Walk t h e   t r e e  1000 t imes  and  see how l o n g  i t  takes  
S t a r t T i m e  - time(NULL); 
f o r   ( i - 0 :  i<lOOO; i++) 
( 

I 
WalkTree(&RootNode); 
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p r i n t f ( " S e c o n d s   e l a p s e d :   % l d \ n " .  
t ime(NULL) - S t a r t T i m e l :  

g e t c h (  1 ; 
1 
/ /  
/ /  F u n c t i o n   t o  add r i g h t  and l e f t   s u b t r e e s  of t h e  
/ /  s p e c i f i e d   d e p t h   o f f   t h e   p a s s e d - i n  node. 
/ I  
vo id   Bu i ldTree(N0DE *pNode, i n t  RemainingDepth) 
r 

i f  (RemainingDepth - 0) 
c 

p N o d e - > p L e f t C h i l d  - NULL; 
pNode->pRightCh i ld  - NULL: 

3 
e l s e  
I 

p N o d e - > p L e f t C h i l d  - m a l l o c ( s i z e o f ( N 0 D E ) ) :  
i f  ( p N o d e - > p L e f t C h i l d  - NULL) 
c 

p r i n t f ( " 0 u t   o f   m e m o r y \ n " ) :  
e x i t ( 1 ) :  

3 
pNode->pRightCh i ld  - m a l l o c ( s i z e o f ( N 0 D E ) ) :  
i f  (pNode->pRightCh i ld  - NULL) 

p r i n t f ( " 0 u t   o f   m e m o r y \ n " ) :  
e x i t ( 1 ) ;  

r 

1 
BuildTree(pNode->pLeftChild. RemainingDepth - 1): 
BuildTree(pNode->pRightChild. RemainingDepth - 1): 

1 
I 
/ /  
/ /  N o d e - v i s i t i n g   f u n c t i o n  so WalkTreeO  has  something t o  
/ /  c a l l .  
/ I  
void  V is i t (N0DE  *pNode)  
{ 

3 
Vi s i  tCount++: 

Things  change when maximum optimization is selected, however: The performance 
of the two implementations becomes virtually identical! How can this be?  Part of the 
answer  is that  the  compiler  does  an amazingly good job with  Listing 59.2. Most  im- 
pressively, when compiling Listing 59.2, the compiler actually converts all right-subtree 
descents from  code recursion to data  recursion, by simply jumping back to the left- 
subtree  handling  code instead of recursively calling WalkTreeO. This means  that 
half the time Listing 59.4 has no advantage over Listing 59.2; in fact, it's at a disad- 
vantage because the  code  that  the  compiler  generates  for  handling right-subtree 
descent in Listing 59.4 is somewhat inefficient, but  the right-subtree code  in Listing 
59.2 is a marvel of code  generation, atjust 3 instructions. 
What's more,  although left-subtree traversal  is more efficient with data recursion 
than with code  recursion,  the advantage is only four instructions, because only one 
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parameter is passed and because the  compiler doesn’t bother setting up an EBP- 
based stack frame, instead it  uses ESP to address the stack. (And, in fact,  this  cost 
could be  reduced still further by eliminating the check for a NULL pNode at all but 
the  top level.) There  are  other interesting aspects to what the  compiler  does with 
Listings  59.2 and 59.4 but that’s enough  to give  you the idea. It’s worth noting  that 
the compiler might not  do as well  with code recursion in a more complex function, 
and  that a good assembly language implementation  could probably speed up Listing 
59.4 enough to make it measurably faster than Listing  59.2, but  not even  close to 
being enough faster to be worth the effort. 
The moral of this  story (apart  from  it being a good  idea to enable compiler optimiza- 
tion) is: 
1. Understand  what  you’re  doing,  through  and  through. 
2. Build a complete  and  consistent  model  in  your  head. 
3. Design  from  the  principles  that  the  model  provides. 
4. Implement  the  design. 
5. Measure  to  learn  what  you’ve  wrought. 
6. Go back  to  step 1 and  apply  what  you’ve just  learned. 

With each iteration you’ll dig deeper,  learn  more, and improve your ability to know 
where and how  to  focus your design and programming efforts.  For example, with 
the C compilers I used five to 10 years ago, back when I learned  about  the relative 
strengths and weaknesses of code and data  recursion, and with the processors then 
in use, Listing  59.4  would  have  blown away Listing  59.2.  While doing this chapter, 
I’ve learned  that given current processors and compiler technology, data recursion 
isn’t going to  get  me any  big  wins; and yes, that was  news to  me. That’s good; this 
information saves me  from wasted effort in the  future  and tells me what to concen- 
trate on when I use recursion. 
Assume nothing,  keep digging deeper, and never stop learning and growing. The 
world  won’t hold still for you, but fortunately you can run fast enough  to  keep up if 
you just keep  at it. 
Depths within depths  indeed! 

Surfing Amidst the Trees 
In  the  next chapter, we’ll build a BSP-tree compiler, and after that, we’ll put together 
a rendering system  built around  the BSP trees the  compiler  generates. If the subject 
of BSP trees really grabs your  fancy (as  it  should if you care at all about  performance 
graphics) there is at this  writing (February 1996) a World  Wide  Web page on BSP 
trees that you must investigate at http://www.qualia.com/bspfaq/. It’s set up in the 
familiar Internet Frequently Asked Questions (FAQ)  style, and is  very good stuff. 
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ees from Concept to Reality 
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As long-time readkrs of  my columns know, I  tend to move  my  family around  the 
country  quite  a bit. &bange  doesn't come out of the blue, so there's some interesting 
history to every move roots of the latest move go back  even farther  than 
usual. To wit: 

om Pennsylvania to California, I started writing a 
I was paid peanuts  for writing it, and I doubt if even 
t issues the columns appeared  in,  but I had a lot of 

By 1991, we were inVermont,  and  I was writing the OraphicsPro~ummingcolumn for 
Dr. Dobb's Journal (a& having a  great time doing it, even though it took all my spare 
nights and weekends $0 stay ahead of the  deadlines).  In those days I received a  lot of 
unsolicited evaluation software, including  a PC shareware game called Commander 
Keen, a side-scrolling game that was every bit as good as the  hot  Nintendo games of 
the day. I loved the way the game looked, and actually drafted  a  column  opening 
about how for years I'd  been claiming that  the PC could be a  great game machine in 
the  hands of great  programmers, and  here, finally, was the  proof, in the  form of 
Commander Keen. In  the  end,  though, I decided  that would be too close  to a  prod- 
uct review, an  area  that I've observed inflames passions in nonconstructive ways, so I 
went with a  different  opening. 

"graphics  for  the EGA and VGA. 
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In 1992, I did a series of columns about my X-Sharp 3-D library, and  hung  out  on 
DDJs bulletin board. There was another guy  who hung  out there who  knew a lot 
about 3-D, a fellow named John Carmack  who was surely the only game  programmer 
I’d  ever heard of who developed under NEXTSTEP. When we moved  to Redmond,  I 
didn’t have  time for BBSs anymore, though. 
In early 1993, I  hired Chris  Hecker. Later that year, Chris  showed  me an alpha copy 
of DOOM, and I nearly  fell out of my chair. About  a year  later,  Chris forwarded me a 
newsgroup post about NEXTSTEP, and said, “Isn’t this the guy  you  used to know on 
the DDJ bulletin board?”  Indeed  it was John Carmack; what’s more, it turned  out 
that John was the guy  who had written DOOM. I sent  him  a congratulatory piece of 
mail, and  he sent back  some thoughts about what he was working on, and some- 
where in there  I asked if he ever  came up my  way. It  turned  out he  had family in 
Seattle, so he stopped in and visited, and we had a  great time. 
Over the next year, we exchanged some fascinating mail, and I became steadily more 
impressed  with John’s company,  id  Software.  Eventually, John asked if I’d be inter- 
ested in joining id, and after a  good bit of consideration I couldn’t think of anything 
else that would be as much fun or teach  me  as much. The upshot is that  here we all 
are in Dallas, our fourth move  of 2,000 miles or more since  I’ve starting writing in 
the computer field, and now  I’m writing  some  seriously  cool 3-D software. 
Now that I’m here, it’s an eye-opener to look  back and see how  events fit together 
over the last decade. You see,  when John started doing PC game programming  he 
learned fast graphics programming from those early Programmer’s Journal articles of 
mine. The copy  of Commander Keen that validated my faith in the PC  as a  game 
machine was the  fruit of those articles, for that was an id game  (although  I  didn’t 
know that  then). When John was hanging out  on the DDJBBS, he had just  done 
Castle  Wolfenstein 3-D, the first great  indoor 3-D game, and was thinking about how 
to do DOOM. (If  only I’d known that then!) And had I  not  hired Chris, or had he 
not somehow remembered me  talking about  that guy  who  used  NEXTSTEP,  I’d never 
have gotten back in touch with John,  and things would  surely be different. (At the 
very least, I wouldn’t be hearing jokes about how  my daughter’s going to grow up 
saying  “y’all”.) 
I think there’s a worthwhile lesson to be learned  from all  this, a lesson that I’ve 
seen hold  true  for many other people, as  well. If you do what  you  love, and do it as 
well  as  you can,  good things will eventually come of it.  Not necessarily  quickly or 
easily, but if you  stick  with it, they will come. There  are threads  that run  through 
our lives, and by the time we’ve been adults for  a while,  practically everything that 
happens has roots that  run  far back in time. The implication should be clear: If 
you  want good things to happen in your future,  stretch yourself and put in the 
extra effort now at whatever  you care passionately about, so those roots will have 
plenty to work  with  down the  road. 
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All this 
John is 
around 

is surprisingly 
the fellow  who 
them.  He also 

closely related to this chapter’s topic, BSP trees,  because 
brought BSP trees  into  the  spotlight by building DOOM 
got  me  started with BSP trees by explaining how DOOM 

worked and getting  me  interested  enough  to want to experiment;  the BSP com- 
piler  in this article is the  direct result. Finally, John has been  an invaluable help 
to me as I’ve learned  about BSP trees, as  will become  evident when we discuss 
BSP optimization. 
Onward  to compiling BSP trees. 

Compiling BSP Trees 
As you’ll  recall  from the previous  chapter,  a BSP tree is nothing  more  than  a  series of 
binary  subdivisions that  partion  space  into  eversmaller  pieces.  That’s  a  simple  data  struc- 
ture, and a BSP compiler is a  correspondingly  simple  tool.  First,  it  groups  all  the  surfaces 
(lines  in 2-D, or polygons  in 3-D) together  into  a  single  subspace  that  encompasses  the 
entire world of the  database. Then, it  chooses one of the surfaces as the  root  node, and 
uses  its line or plane to divide the  remaining  surfaces  into two subspaces,  splitting  surfaces 
into two parts if they  cross the  line or plane of the  root. Each of the two resultant  subspaces 
is then  processed  in  the  same  fashion, and so on, recursively,  until the  point is reached 
where  all  surfaces  have  been  assigned  to  nodes, and each leaf  surface  subdivides  a sub 
space  that is  empty except  for  that  surface.  Put another way, the root node carves  space 
into two parts, and the root’s  children carve each of  those  parts  into two more  parts, and so 
on, with each  surface  carving  ever  smaller  subspaces,  until  all  surfaces have been  used. 
(Actually, there  are many other lines or planes  that  a BSP tree  can use to carve up space, 
but this  is the  approach we’ll  use in  the current discussion.) 
If  you find any of the above confusing (and it  would be  understandable if that were 
the case; BSP trees are  not easy to get the  hang of), you might want  to refer back  to 
the previous chapter. It would  also be a good  idea to get  hold of the visual  BSP 
compiler I’ll  discuss  shortly;  when it comes to  understanding BSP trees, there’s noth- 
ing  quite like seeing one being built. 
So there  are really  only two interesting  operations in building a BSP tree: choosing a 
root  node  for  the  current subspace (a “splitter”) and assigning  surfaces  to one side 
or  another of the  current  root  node, splitting  any that straddle the splitter. We’ll get 
to  the issue  of choosing splitters shortly, but first  let’s look at  the process of splitting 
and assigning. To do that, we need to  understand  parametric lines. 

Parametric Lines 
We’re  all  familiar  with  lines  described  in  slope-intercept form, with y as a  function of x 
y = m x + b  
but there’s another sort of line description that’s very useful for clipping (and for a 
variety  of 3-D purposes, such  as  curved surfaces and texture  mapping): parametric 
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lines. In parametric lines, x and y are decoupled from  one another, and are instead 
described as a function of the parameter t: 

x = Xstart + %nd - x,,,,) 
Y = Ys,t + t(Yend - Y,,,). 

‘ = ‘start + ‘(Lend - ‘start) 

This can be summarized as 

where L = (x, y).  
Figure 60.1 shows  how a parametric line works. The t parameter describes how far 
along a line segment the  current x and y coordinates are. Note that this description 
is valid not only for the line segment, but also for the entire infinite line; however, 
only points with t values  between 0 and 1 are actually on the line segment. 
In  our 2-D BSP compiler (as you’ll  recall from the previous chapter, we’re  working 
with 2-D trees for simplicity, but the principles generalize to 3-D), we’ll represent our 
walls (all vertical) as line segments viewed from above. The segments will be stored 
in parametric form, with the endpoints of the original line segment and two t values 
describing the endpoints of the current (possibly clipped) segment providing a com- 
plete specification for each segment, as  shown in  Figure 60.2. 
What does that do for us?  For one thing, it  keeps clipping errors from creeping in, 
because clipped line segments are always based on the original line segment, not 
derived from clipped versions. Also, it’s potentially a  more compact format, because 
we need to store the endpoints only for  the original line segments; for clipped line 
segments, we can just store pairs of t  values, along with a  pointer to the original line 
segment. The biggest  win,  however, is that it allows  us to use parametric line clip- 
ping, a very clean form of clipping, indeed. 

(1 60,170) ,’ 
i k 1 . 2  

(1 50,150) 

r 1  
(133,117) f k0.67 I Line equations: I 

00)50)/ I y = 50 + t( 150-50) 
x =  100+t(150-100~ 

k 0  
I I 

(80,lO) ). 
ob-0.4 

A sample parametric line. 
Figure 60.1 
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Clipped  segment #1: f=O to M . 2 5  t = 0.25 

Original line  segment: 
(100,50), (150,1501, 
from t=O to 01 

Line segment storage in the BSP compiler: 
Figure 60.2 

Parametric  Line Clipping 
In order to assign a line segment to one subspace or  the  other of a splitter, we must 
somehow figure out whether the line segment straddles the splitter or falls on  one 
side or the other. In order to determine that, we first plug the line segment and 
splitter into  the following parametric line intersection equation 
numer = N (L,,, - SS,,,) (Equation 1) 
denom = -N (Lend - Ls,,) (Equation 2) 
tintersect = numer / denom (Equation 3) 
where N is the normal of the splitter, SSmrt is the start point of the splitting line seg- 
ment in standard (x,y) form, and LSmrt and Lend are  the  endpoints of the line segment 
being split, again  in (x,y) form. Figure 60.3 illustrates the intersection calculation. 
Due  to  lack of space,  I’m just going to present  this  equation and its  implications as fact, 
rather than  deriving them; if you  want  to  know more, there’s an excellent  explanation 
on page 1 17 of Cmputer Graphics: Principb and Practice, by  Foley and van  Dam  (Addison 
Wesley, ISBN 0-201-121 10-7), a book that you should certainly  have in your  library. 
If the denominator is zero, we know that the lines are parallel and don’t intersect, so 
we don’t divide, but rather check the sign of the numerator, which  tells  us  which  side 
of the splitter the line segment is on. Otherwise, we do the division, and the result is 
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1 

Clipped 

Clipped  segment #2: k0.6 to kl Lend 
t =  1 

S: Splitting  line  segment 
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the  t value for  the intersection point, as  shown  in  Figure  60.3. We then simply compare 
the  t value  to the  t values  of the  endpoints of the line segment being split. If it’s be- 
tween them, that’s where we split the line segment, otherwise, we can  tell  which side of 
the splitter the line segment is on by which  side of the line segment’s t range it’s on. 
Simple comparisons do all the work, and there’s no need to do  the work of generating 
actual x and y values. If  you look closely at Listing  60.1, the core of the BSP compiler, 
you’ll see that the parametric clipping code itself is exceedingly short  and simple. 
One interesting point about Listing  60.1 is that it generates normals  to  splitting  surfaces 
simply  by exchanging  the  x and y lengths of the splitting line segment and negating 
the resultant y value, thereby rotating  the  line 90 degrees. In 3-D,  it’s not  that simple 
to come by a  normal; you could calculate the  normal as the cross-product of two of 
the polygon’s edges, or precalculate it when  you build the world database. 

The BSP Compiler 
Listing  60.1 shows the core of a BSP compiler-the code  that actually builds the BSP 
tree. (Note that Listing  60.1 is excerpted from a C++ .CPP file, but in fact  what I show 
here is very close  to straight C .  It may even compile as a .C file, though  I haven’t 
checked.) The compiler begins by setting up  an empty tree,  then passes that  tree 
and  the  complete set of line segments from which a BSP tree is to be generated to 
SelectBSPTree(), which chooses a  root  node  and calls BuildBSPTree() to add  that 
node to the tree and  generate child trees for  each of the node’s two subspaces. 
BuildBSPTree() calls SelectBSPTree() recursively to select a  root  node  for  each of 
those  child  trees, and this continues  until all lines have been assigned nodes. 
SelectBSP() uses parametric clipping to decide on the splitter, as described below, 
and BuildBSPTree() uses parametric clipping to decide which subspace of the split- 
ter each line belongs in, and to split lines, if necessary. 

LISTING  60.1  160-1 .CPP 
# d e f i n e  MAX-NUM-LINESEGS 1000 
# d e f i n e  MAX-INT Ox7FFFFFFF 
# d e f i n e  MATCH-TOLERANCE 0.00001 
/ /  A v e r t e x  
t y p e d e f   s t r u c t  _VERTEX 
I 

double  x :  
d o u b l e   y :  

1 VERTEX: 
/ /  A p o t e n t i a l l y   s p l i t   p i e c e   o f  a l i n e  segment,   as  processed  f rom  the 
/ /  base l i n e  i n  t h e   o r i g i n a l   l i s t  
t y p e d e f   s t r u c t  -LINESEG 
{ 

- LINESEG *pnex t l i neseg :  
i n t   s t a r t v e r t e x :  
i n t   e n d v e r t e x :  
doub le   wa l l   t op :  
doub le   wa l l   bo t tom:  
d o u b l e   t s t a r t :  
doub le   tend:  
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int  color; 
- LINESEG  *pfronttree; 
LINESEG  *pbacktree; 

1 LINESEG. *PLINESEG: 
static  VERTEX  *pvertexlist; 
static  int  NumCompiledLinesegs - 0: 
static  LINESEG  *pCompiledLinesegs: 
/ /  Builds  a  BSP  tree  from  the  specified  line  list.  List  must  contain 
/ /  at  least  one  entry.  If  pCurrentTree  is  NULL,  then  this is the  root 
/ /  node,  otherwise  pCurrentTree  is  the  tree  that's  been  build so far. 
/ /  Returns  NULL  for  errors. 
LINESEG * SelectBSPTree(L1NESEG * plineseghead. 
( 

LINESEG * pCurrentTree,  LINESEG ** pParentsChildPointer) 

LINESEG  *pminsplit; 
int  minsplits: 
int  tempsplitcount; 
LINESEG  *prootline: 
LINESEG  *pcurrentline: 
double nx. ny. numer,  denom.  t; 
/ /  Pick a line  as  the root. and  remove  it  from  the  list o f  lines 
/ /  to  be  categorized.  The  line we'll select is the  one  of  those  in 
/ /  the  list  that  splits  the  fewest  of  the  other  lines in the  list 
mi nspl its - MAX-INT: 
prootline - plineseghead; 
while  (prootline !- NULL) ( 

pcurrentline - plineseghead; 
tempsplitcount - 0; 
while  (pcurrentline !- NULL) I 

/ /  See how  many  other  lines  the  current  line  splits 
nx - pvertexlist[prootline->startvertex].y - 

pvertexlist[prootline->endvertexl.y; 
ny - -(pvertexlist[prootline->startvertex].x - 

pvertexlist[prootline->endvertexl.x); 
/ /  Calculate  the  dot  products we'll need  for  line 
/ /  intersection  and  spatial  relationship 
numer - (nx * (pvertexlist[pcurrentline->startvertexl.x - 

p v e r t e x l i s t [ p r o o t l i n e - > s t a r t v e r t e x 3 . x ) )  + 
(ny * (pvertexlist[pcurrentline->startvertexl.y - 
pvertexlist[prootline->startvertexl.y)); 

denom - ( ( - n x )  * (pvertexlist[pcurrentline->endvertexl.x - 

pvertexlist[pcurrentline->startvertexl.x)) + 
((-fly) * (pvertexlist[pcurrentline->endvertexl.y - 
pvertexlist[pcurrentline->startvertexl.y)); 

/ /  Figure  out  if  the  infinite  lines  of  the  current  line 
/ /  and  the  root  intersect;  if so, figure  out  if  the 
/ /  current  line  segment  is  actually  split,  split  if so, 
/ /  and  add  front/back  polygons  as  appropriate 
if  (denom - 0.0) I 

/ /  No intersection.  because  lines  are  parallel: no 
/ /  split, s o  nothing  to  do 

/ /  Infinite  lines  intersect:  figure  out  whether  the 
/ /  actual  line  segment  intersects  the  infinite  line 
/ /  of  the  root,  and  split  if so 
t - numer / denom; 
if ((t > pcurrentline->tstart) I& 

I else ( 

(t < pcurrentline->tend)) ( 
I /  The  root  splits  the  current  line 
tempspl i tcounttt: 

1 else ( 
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/ /  Intersection  outside  segment  limits, s o  no 
/ /  split,  nothing  to  do 

I 
I 
pcurrentline = pcurrentline->pnextlineseg: 

1 
if  (tempsplitcount < minsplits) ( 

pminsplit = prootline; 

3 
minsplits = tempsplitcount; 

prootline = prootline->pnextlineseg: 
I 
/ /  For now,  make  this  a  leaf  node so  we can  traverse  the  tree 
/ /  as  it is at  this point. BuildBSPTreeO will add  children  as 
I /  appropriate 
pminsplit->pfronttree = NULL: 
pminsplit->pbacktree = NULL: 
/ /  Point  the parent's child  pointer  to  this  node, so we  can 
/ /  track  the  currently-build  tree 
*pParentsChildPointer = pminsplit; 

I 
return BuildBSPTree(p1ineseghead. pminsplit.  pCurrentTree); 

/ /  Builds  a BSP tree  given  the  specified  root, by creating  front  and 
/ /  back  lists  from  the  remaining  lines, and  calling  itself  recursively 
LINESEG * BuildBSPTree(L1NESEG * plineseghead.  LINESEG * prootline. 

t 
LINESEG * pCurrentTree) 

LINESEG  *pfrontlines; 
LINESEG  *pbacklines; 
LINESEG  *pcurrentline: 
LINESEG  *pnextlineseg; 
LINESEG  *psplitline; 
double nx.  ny. numer,  denom. t; 
int  Done; 
/ /  Categorize all non-root  lines as  either in front  of  the root's 
/ /  infinite  line,  behind  the  root's  infinite  line,  or  split by the 
/ /  root's infinite  line,  in  which  case  we  split  it  into  two  lines 
pfrontlines = NULL: 
pbacklines = NULL; 
pcurrentline = plineseghead; 
while  (pcurrentline != NULL) 

/ /  Skip  the  root  line  when  encountered 
if  (pcurrentline == prootline) 

1 else { 
pcurrentline = pcurrentline->pnextlineseg: 

nx = pvertexlist[prootline->startvertexl.y - 
pvertexlist[prootline->endvertexl.y; 

ny = -(pvertexlist[prootline->startvertexl.x - 
pvertexlist[prootline->endvertexl.x); 

/ /  Calculate  the  dot  products we'll need  for  line  intersection 
/ /  and spatial  relationship 
numer = (nx * (pvertexlist[pcurrentline->startvertexl.x - 

(ny * (pvertexlist[pcurrentline->startvertexl.y - 
pvertexlist[prootline->startvertexl.x)) + 

pvertexlist[prootline->startvertexl.y)); 
denom = ((-nx) * (pvertexlist[pcurrentline->endvertexl.x - 

pvertexlist[pcurrentline->startvertex].x)) + 
(-(ny) * (pvertexlist[pcurrentline->endvertexl.y - 
pvertexlist[pcurrentline->startvertexl.y)); 

Compiling BSP Trees 1 125 



/ /  Figure  out  if  the  infinite  lines  of  the  current  line  and 
/ /  the  root  intersect; if so. figure  out if the  current  line 
/ /  segment  is  actually  split,  split  if s o .  and  add front/back 
/ I  polygons  as  appropriate 
if (denom -- 0.0 )  { 

/ /  No intersection,  because  lines  are  parallel:  just  add 
/ /  to  appropriate  list 
pnextlineseg - pcurrentline->pnextlineseg; 
if  (numer < 0.0) I 

/ /  Current  line  is  in  front  of  root  line;  link  into 
/ /  front  list 
pcurrentline->pnextlineseg - pfrontlines; 
pfrontlines - pcurrentline: 
/ /  Current  line  behind  root line: link  into  back  list 
pcurrentline->pnextlineseg - pbacklines; 
pbacklines - pcurrentline; 

1 else ( 

1 
pcurrentline - pnextlineseg; 

1 else I 
/ /  Infinite  lines  intersect;  figure  out  whether  the actual 
/ /  line  segment  intersects  the  infinite  line  of  the  root, 
/ /  and split  if s o  
t - numer / denom; 

> pcurrentline->tstart) && 

The  line  segment  must be split; add one  split 
segment  to  each  list 
(NumCompiledLinesegs > (MAX-NUM-LINESEGS - 1)) ( 

(t < pcurrentline->tend)) { 

DisplayMessageBox("0ut of  space  for  line  segs; " 

return  NULL; 
"increase MAX-NUM-LINESEGS") : 

Make a new  line  entry  for  the  split  Dart  of  line 
pspl i tl i ne - &pCompi  ledLi nesegs[NumCompi 1 edLi nesegsl ; 
NumCompiledLinesegs++; 
*psplitline - *pcurrentline; 
psplitline->tstart - t; 
pcurrentline->tend - t; 
pnextlineseg - pcurrentline->pnextlineseg: 
if  (numer < 0.0) { 

I /  Presplit  part  is in front  of  root  line:  link 
/ /  into  front  list  and put postsplit  part in back 
/ f  list 
pcurrentline->pnextlineseg - pfrontlines; 
pfrontlines - pcurrentline; 
psplitline->pnextlineseg - pbacklines; 
pbackl ines - pspl i tl ine: 
/ /  Presplit  part  is  in  back  of  root line: link 
/ /  into  back  list  and  put  postsplit  part  in  front 
I /  list 
psplitline->pnextlineseg - pfrontlines; 
pfrontlines - psplitline: 
pcurrentline->pnextlineseg - pbacklines: 
pbacklines - pcurrentline; 

1 else ( 

> 
pcurrentline - pnextlineseg: 

1 else ( 
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/ /  Intersection  outside  segment  limits, s o  no  need  to 
/ I  split;  just add to  proper  list 
pnextlineseg - pcurrentline->pnextlineseg: 
Done - 0;  
while (!Done) { 

if (numer < -MATCHTOLERANCE) 
I /  Current  line is in  front  of  root  line; 
/ I  link  into  front  list 
pcurrentline->pnextlineseg - pfrontlines; 
pfrontlines - pcurrentline: 
Done - I ;  

/ /  Current  line i s  behind  root  line:  link 
/ /  into  back  list 
pcurrentline->pnextlineseg - pbacklines; 
pbacklines - pcurrentline; 
Done - 1: 
I /  The  point on the  current  line  we picked to 
I /  do  frontlback  evaluation  happens  to  be 
/ /  collinear  with  the  root, s o  use  the  other 
/ /  end  of  the  current  line and  try  again 
numer - 

1 else  if  (numer > MATCH-TOLERANCE) [ 

1 else I 

(nx * 
(pvertexlist[pcurrentline->endvertexl.x - 
pvertexlist[prootline->startvertexl.x))+ 

(pvertexlist[pcurrentline-hndvertex1.y - 
pvertexlist[prootline->startvertexl.y)); 

(ny * 

I 
I 
pcurrentline - pnextlineseg; 

> 
I 

1 
I 
/ I  Make a node  out  of  the  root  line,  with  the  front and  back trees 
/ I  attached 
if  (pfrontlines - NULL) { 

1 else I 
prootline->pfronttree - NULL: 
if (!SelectBSPTree(pfrontlines. pCurrentTree, 

&prootline->pfronttree)) I 
return NULL: 

1 
I 
if  (pbacklines -- NULL) ( 

1 else { 
prootline->pbacktree - NULL: 
if (!SelectBSPTree(pbacklines. pCurrentTree. 

&prootline->pbacktree)) { 

I 
return NULL: 

1 
return(proot1ine); 

1 

Listing 60.1 isn’t  very long or complex, but it’s  somewhat more complicated than  it 
could be because it’s structured  to allow  visual  display of the  ongoing compilation 
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process. That’s because  Listing 60.1 is actuallyjust a  part of a BSP compiler for Win32 
that visually depicts the progressive  subdivision of space as the BSP tree is built. (Note 
that Listing 60.1 might not compile as printed;  I may  have  missed copying  some 
global  variables that it uses.) The complete code is too large to print  here in its 
entirety, but it’s on the CD-ROM in  file DDJBSP.ZIP. 

Optimizing the BSP Tree 
In the previous chapter, I promised that I’d discuss  how  to  go about deciding which 
wall to use  as the splitter at each node in constructing a BSP tree. That turns  out to 
be a far more difficult problem than one might think, but we can’t ignore it, because 
the choice of splitter can make a  huge difference. 
Consider, for example, a BSP in which the  line or plane of the  splitter  at  the  root 
node splits  every single other surface in the world, doubling  the total number of 
surfaces to be dealt with. Contrast that with a BSP built from the same surface set 
in which the initial splitter doesn’t split anything. Both trees provide a valid order- 
ing,  but one tree is much larger than  the other, with  twice  as  many  polygons after 
the selection ofjust  one  node. Apply the same difference again to each node,  and 
the relative difference in size (and, correspondingly, in  traversal and  rendering 
time) soon balloons astronomically. So we need to do something to optimize the 
BSP tree-but what? Before we can try to answer that, we need to know  exactly 
what we’d like to optimize. 
There are several  possible optimization objectives  in BSP compilation. We might 
choose to balance the tree as  evenly  as  possible, thereby reducing the average depth 
to which the  tree must be traversed.  Alternatively, we might try to approximately 
balance the area or volume on either side of each splitter. That way  we don’t  end  up 
with huge chunks of  space  in  some tree branches and tiny  slivers in others, and the 
overall  processing  time will be more consistent. Or, we might choose to select planes 
aligned  with  the  major  axes,  because  such  planes  can help speed up our BSP traversal. 
The BSP metric that seems  most  useful to me, however, is the number of  polygons 
that  are split into two polygons  in the course of building a BSP tree. Fewer  splits  is 
better; the tree is smaller  with  fewer  polygons, and drawing will go faster with  fewer 
polygons to draw, due to per-polygon overhead. There’s a problem with the fewest- 
splits metric, though: There’s no sure way to achieve it. 
The obvious approach to minimizing  polygon  splits  would  be to try all  possible trees 
to find the best one. Unfortunately, the order of that particular problem is N!,  as I 
found to my dismay  when I implemented brute-force optimization in the first ver- 
sion  of my  BSP compiler.  Take a moment to calculate the number of operations for 
the 20-polygon  set I originally tried brute-force optimization on. I’ll  give  you a  hint: 
There  are 19 digits  in  20!, and if each operation takes  only one microsecond, that’s 
over 70,000 years (or, if  you prefer, over 500,000 dog years). Now consider that  a 
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single game level might have 5,000 to 10,000 polygons; there  aren’t anywhere near 
enough dog years in the lifetime of the universe to handle that. We’re going to have 
to  give up  on optimal compilation and come up with a  decent heuristic approach, 
no matter what optimization objective we select. 
In Listing 60.1, I’ve applied the popular heuristic of choosing as the splitter at each 
node the surface that splits the fewest  of the other surfaces that are being consid- 
ered for that  node.  In  other words, I choose the wall that splits the fewest  of the walls 
in the subspace it’s subdividing. 

BSP Optimization:  an  Undiscovered  Country 
Although BSP trees have been  around for at least 15 years now, they’re still only 
partially understood and are a  ripe area for applied research and general ingenuity. 
You might want to try your hand  at inventing new BSP optimization approaches; it’s 
an interesting problem, and you might strike  paydirt. There  are many things that 
BSP trees can’t do well, because it takes so long to build them-but  what  they do, 
they do exceedingly  well, so a better compilation approach that allowed BSP trees to 
be used for more purposes would be valuable, indeed. 
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k 

entals of the Math behind 3-D Graphics 
,‘ Several  years ago,  \,opened a column  in Dr. DobbSJournaZwith a story about singing 

my daughter  to sle les’ songs. Beatles’ songs, at least the earlier  ones, 
tend to be  bouncy t, which makes them suitable goodnight  fodder- 
and  there  are a lot of eful  hedge against terminal  boredom. So for many 
good reasons, “Ca  ve ”and “A Hard Day’s Night” and  “Help!”  and  the 
rest were evening shples for years. 

. You see, I got my  wife some Beatles tapes for Christmas, and 
ning  to  them in the car, and now that my daughter has heard 
$an barely stand  to  be  in  the same room,  much less fall asleep, 

when I sing  those sbngs. 
What’s noteworthy is that  the only  variable  involved in this change was  my daughter’s 
frame of reference. My singing hasn’t gotten any  worse  over the last four years. (I’m 
not sure it’s possibkfor my singing to get worse.) All that  changed was  my daughter’s 
frame of reference  for those songs. The rest of the universe stayed the same; the 
change was in her mind, lock, stock, and  barrel. 
Often,  the key to solving a  problem, or to working on a  problem efficiently, is having 
a  proper  frame of reference. The model you  have  of a  problem you’re tackling often 
determines how deeply you can understand  the  problem,  and how flexible and in- 
novative  you’ll be able to be in solving it. 

F 
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An excellent example of this, and  one that I’ll discuss  toward the  end of this chapter, 
is that of 3-D transfomzation-the process of converting coordinates  from one coordi- 
nate space to another,  for example from worldspace to viewspace. The way this is 
traditionally explained is functional, but  not particularly intuitive, and fairly hard to 
visualize.  Recently,  I’ve come across another way  of looking at transforms that seems 
to me to  be far easier to grasp. The two approaches  are technically equivalent, s o  the 
difference is purely a  matter of  how we choose to view things-but sometimes that’s 
the most important sort of difference. 
Before we can talk about transforming between coordinate spaces, however, we need 
two building blocks: dot products and cross products. 

3-D Math 
At this point in the book, I was originally going to present  a BSP-based renderer, to 
complement the BSP compiler  I  presented in the previous chapter. What changed 
my plans was the considerable amount of  mail about 3-D math that I’ve gotten in 
recent months. In every  case, the writer  has bemoaned his/her lack  of expertise with 3-D 
math, and has  asked  what  books about 3-D math I’d recommend, and how  else he/she 
could  learn  more. 
That’s  a  commendable  attitude, but  the  truth is, there’s not all that  much to 3-D 
math,  at least not when it comes to  the sort of polygon-based, realtime 3-D that’s 
done  on PCs.  You really need only two basic math tools beyond simple arithmetic: 
dot products and cross products, and really  mostly just  the former. My friend Chris 
Hecker  points out  that this is an oversimplification; he notes  that lots more  math- 
related stuff, like BSP trees, graphs, discrete math for  edge  stepping, and affine and 
perspective texture mappings, goes into  a  productionquality game. While  that’s  surely 
true,  dot  and cross products,  together with matrix math  and perspective projection, 
constitute the bulk of what most people  are asking about when they inquire  about 
“3-D math,”  and, as  we’ll see, are key tools for  a  lot of  useful 3-D operations. 
The  other thing the mail made clear was that  there  are  a  lot of people out  there who 
don’t  understand  either type  of product,  at least insofar as  they apply to 3-D. Since 
much or even most advanced 3-D graphics machinery relies to a  greater  or lesser 
extent  on  dot  products  and cross products (even the line intersection formula  I 
discussed in the last chapter is actually a  quotient of dot  products),  I’m  going to 
spend this chapter  examining these basic tools and some of their 3-D applications. If 
this is old hat to you, my apologies, and I’ll return to BSP-based rendering in the 
next chapter. 

Foundation  Definitions 
The  dot  and cross products themselves are straightforward and  require almost no 
context to understand, but  I  need to define some terms I’ll  use  when  describing  applica- 
tions of the  products, so I’ll do that now, and  then  get  started with dot products. 
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I’m going to have  to  assume  you  have some math  background, or we’ll never get to 
the  good stuff. So, I’m just going to quickly define  a vector as a  direction and a mag- 
nitude,  represented as a  coordinate pair (in 2-D) or triplet (in 3-D),  relative to the 
origin. That’s a pretty sloppy definition, but it’ll do for our purposes; if you  want the 
Real  McCoy, I suggest  you check out Calculus  and  Analytic Geometry, by Thomas and 
Finney (Addison-Wesley: ISBN 0-201-52929-7). 
So, for  example, in 3-D, the vector V = [5 0 51 has a length,  or  magnitude, by the 
Pythagorean theorem, of 

(where vertical double bars denote vector length),  and a  direction in the  plane of 
the  x and z axes,  exactly halfway between those two axes. 
I’ll be working in a  left-handed  coordinate system,  whereby if you  wrap the fingers of 
your left hand  around  the z axis  with your thumb  pointing  in  the positive z direction, 
your fingers will curl  from  the positive x axis to the positive y axis. The positive x axis 
runs left to right across the  screen, the positive y axis runs bottom to top across the 
screen, and  the positive z axis runs  into  the  screen. 
For our purposes, projection is the process of mapping coordinates onto  a line or sur- 
face. Perspectiveprojection projects 3-D coordinates onto a viewplane,  scaling coordinates 
according to their z distance from the viewpoint  in order to provide proper perspec- 
tive. Objectspace is the coordinate space in which an object is defined,  independent of 
other objects and the world  itself. Worldspace is the absolute  frame of reference for a 3-D 
world;  all  objects’ locations and orientations are with respect to  worldspace, and this is 
the frame of reference around which the viewpoint and view direction move. Viewspace 
is worldspace as seen from the viewpoint, looking in the view direction. Screenspace is 
viewspace after perspective projection and scaling  to the screen. 
Finally, transformation is the process of converting points from one coordinate space 
into  another;  in  our case, that’ll mean  rotating and translating (moving) points from 
objectspace or worldspace to viewspace. 
For additional  information, you might want to check out Foley & van  Dam’s Com- 
puter Graphics (ISBN 0-201-12110-’7), or  the  chapters in this book dealing with my 
X-Sharp 3-D graphics library. 

The Dot Product 
Now we’re ready to move on to the  dot  product. Given  two vectors U = [u, u, u,] and 
V = [v, v, v,] , their  dot  product,  denoted by the symbol 0, is calculated as: 
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As you can  see,  the  result is a  scalar value (a single  real-valued number), not 
another vector. 
Now that we know  how to  calculate  a dot  product, what does  that  get us? Not much. 
The  dot  product isn’t of much use for  graphics  until you start  thinking of it this way 

u v = cos(8) IPII llvll (eq. 3) 
where q is the  angle between the two vectors, and  the  other two terms  are the lengths 
of the vectors, as  shown in Figure 61 .l. Although it’s not immediately obvious, equa- 
tion 3 has a wide  variety of applications in 3-D graphics. 

Dot  Products of Unit Vectors 
The simplest  case  of  the dot product is when both vectors are unit vectars; that is, when  their 
lengths are  both  one, as calculated as in Equation 1. In this  case, equation 3 simplifies  to: 

u v = cos(e) (eq. 4) 

In  other words, the dot  product of two unit vectors is the cosine of the  angle between 
them. 
One obvious  use of this is to  find  angles between unit vectors, in  conjunction with an 
inverse cosine function or lookup  table. A more useful application  in 3-D graphics 

llull l lvl l 

The dot product. 
Figure 6 1 . 1 
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lies in lighting surfaces, where the cosine of the angle between incident light and  the 
normal  (perpendicular vector) of a surface determines  the fraction of the light’s full 
intensity at which the surface is illuminated, as in 

where Is is the intensity  of illumination of the surface, I, is the intensity  of the light, 
and q is the angle between -D, (where Dl is the light direction vector) and  the  surface 
normal. If the inverse light vector and  the surface normal  are  both  unit vectors, then 
this calculation can be  performed with four multiplies and  three additions-and no 
explicit  cosine  calculations-as 

I, = I& ”), (eq. 6) 

where Ns is the surface unit  normal and D, is the  light  unit direction vector,  as  shown 
in Figure 61.2. 

Cross  Products  and the Generation of Polygon  Normals 
One question equation 6 begs is where the surface unit  normal comes from. One 
approach is to  store  the end of a surface normal as an  extra  data  point with each 
polygon  (with the  start  being some point that’s  already in the  polygon), and trans- 
form it along with the rest of the points. This has the advantage that if the  normal 
starts out as a unit normal, it will end  up that way too, if only rotations and transla- 
tions (but  not scaling and shears) are performed. 
The problem with  having an explicit normal is that it will remain a normal-that  is, 
perpendicular to the surface-only through viewspace. Rotation, translation, and 

The dot  product as used in calculating lighting intensity. 
Figure 61.2 
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scaling preserve right angles, which is why normals are still normals in viewspace, but 
perspective projection does not preserve angles, so vectors that were surface normals 
in viewspace are  no  longer normals in screenspace. 
Why does this matter? It matters because, on average, half the polygons in any scene 
are facing away from  the viewer, and  hence  shouldn’t be drawn. One way to identify 
such polygons  is to see whether they’re facing toward or away from  the viewer; that 
is, whether  their normals have negative z values (so they’re visible) or positive z Val- 
ues (so they should be culled). However,  we’re talking about screenspace normals 
here, because the perspective projection can shift a polygon  relative  to the viewpoint 
so that  although its  viewspace normal has a negative z, its screenspace normal has a 
positive z, and vice-versa,  as  shown in Figure 61.3.  So we need screenspace normals, 
but those can’t readily be generated by transformation from worldspace. 

viewpoint in viewspace 

x, 

viewplane in screenspace  after  perspective  projection 

A problem with  determining front/back visibi1iQ. 
Figure 61.3 
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The solution is to use the cross product of two of the polygon's edges to generate  a 
normal. The formula  for  the cross product is: 

u x v = [u2v3 -u3v2 u3v1 - q v 3  y v 2  - U 2 V 1 ]  (eq. 7) 

(Note  that  the cross product  operation is denoted by an X.) Unlike the  dot  product, 
the result of the cross product is a vector. Not just any  vector, either;  the vector gen- 
erated by the cross product is perpendicular to both of the  original vectors. Thus, 
the cross product can  be  used to generate  a  normal to  any surface  for which you 
have two vectors that lie  within the surface. This  means  that we can generate  the 
screenspace normals we need by taking the cross product of two adjacent polygon 
edges, as  shown in Figure 61.4. 

In fact, we can cull with  only one-third the work  needed to generate  a full cmss p product;  because we  're  interested only in the sign of the z component  of the nor- 
mal, we can skip entirely calculating the x and y components.  The  only  caveat is  to 
be  careful that neither edge you choose is zero-length and that the edges aren 't 
collineal: because the dot  product  can  ?produce  a  normal in those cases. 

How the cross product of polygon edge vectors generates a polygon normal. 
Figure 6 1.4 

Frames of Reference 1 1 39 



Perhaps  the most often asked question  about cross products is ‘Which way do normals 
generated by cross products go?” In  a  left-handed  coordinate system, curl  the  fingers 
of your left hand so the  fingers  curl  through  an  angle of less than 180 degrees  from 
the first vector in the cross product to the  second vector. Your thumb now points  in 
the  direction of the  normal. 
If  you take the cross product of  two orthogonal  (right-angle)  unit vectors, the  result 
will be a  unit vector that’s  orthogonal  to  both of them.  This  means  that if you’re 
generating  a new coordinate space-such  as a new  viewing frame of reference-you 
only need to  come up with unit vectors for two  of the axes for  the new coordinate 
space, and can then use their cross product  to  generate  the  unit vector for  the  third 
axis.  If  you need  unit  normals,  and  the two vectors being crossed aren’t  orthogonal 
unit vectors, you’ll  have to  normalize  the  resulting vector; that is, divide each of the 
vector’s components by the  length of the vector, to make it  a  unit  long. 

Using the Sign of the Dot Product 
The  dot  product is the cosine of the angle between two vectors,  scaled by the magni- 
tudes of the vectors.  Magnitudes are always positive, so the sign  of the cosine determines 
the sign  of the result. The  dot  product is positive if the  angle between the vectors is less 
than 90 degrees, negative if it’s greater  than 90 degrees, and zero if the  angle is exactly 
90 degrees. This means thatjust the sign  of the  dot  product suffices for tests  involving 
comparisons of angles to 90 degrees, and there  are  more of those than you’d think. 
Consider, for  example,  the process of backface culling, which we discussed  above in 
the  context of using screenspace  normals  to  determine polygon orientation relative 
to  the viewer. The problem with that  approach is that  it  requires  each polygon to be 
transformed  into viewspace, then perspective projected  into  screenspace,  before  the 
test can be performed,  and  that involves a  lot of time-consuming calculation.  In- 
stead, we can  perform culling way back in worldspace (or even earlier, in objectspace, 
if we transform  the viewpoint into  that  frame of reference) , given  only a vertex and 
a  normal  for  each polygon and a  location  for  the viewer. 
Here’s  the trick: Calculate the vector from  the viewpoint to any vertex in  the polygon 
and take its dot  product with the polygon’s normal, as  shown in Figure 61.5. If the 
polygon is facing  the viewpoint, the  result is negative, because the  angle between the 
two vectors is greater  than 90 degrees. If the polygon is facing away, the  result is 
positive, and if the polygon is edge-on,  the  result is 0. That’s all there is to it-and 
this  sort of backface culling  happens  before any transformation or projection at all is 
performed, saving a  great  deal of  work for  the half of all polygons, on average, that 
are  culled. 
Backface culling with the  dot  product is just  a special  case  of determining which side of 
a  plane any point (in this  case, the viewpoint) is on.  The same  trick can be applied 
whenever you  want  to determine  whether  a  point is in front of or behind  a  plane, 
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viewpoint  in  viewspace 

Bacyace culling with the dot product. 
Figure 61.5 

where a plane is described by any point that's on  the plane (which I'll call the plane 
origin), plus a plane normal. One such application is in clipping a line (such as a 
polygon edge) to a plane. Just do a dot  product between the plane normal  and  the 
vector from one line endpoint to the plane origin, and  repeat for the  other line end- 
point. If the signs  of the  dot products are  the same, no clipping is needed; if they  differ, 
clipping is needed. And  yes, the  dot  product is also the way to do the actual clipping; 
but before we can talk about that, we need to understand  the use of the dot product 
for projection. 

Using the Dot Product  for  Projection 
Consider Equation 3 again, but this time make one of the vectors, say V, a unit vector. 
Now the  equation  reduces to: 

In  other words, the result is the cosine of the angle between the two vectors, scaled 
by the  magnitude of the  non-unit vector. Now, consider that cosine is really just  the 
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How  the dot product with a unit vector performs a projection. 
Figure 61.6 

length of the  adjacent leg of a  right  triangle, and think of the  non-unit vector as the 
hypotenuse of a  right  triangle, and  remember  that all  sides of similar triangles scale 
equally. What it all  works out to is that  the value  of the  dot  product of any vector with 
a  unit vector is the  length of the first vector projected onto the  unit vector, as shown 
in Figure 61.6. 
This unlocks all sorts of neat stuff.  Want to know the  distance  from  a  point  to  a 
plane?  Just dot the vector from the  point P to the  plane origin 0, with the  plane  unit 
normal N,, to project  the vector onto  the normal,  then take the  absolute value 

distance = I p - $) . Elp[ 

as  shown  in Figure 61.7. 
Want to clip a  line to a  plane? Calculate the  distance  from one  endpoint to the 
plane, as just described, and  dot the whole line  segment with the  plane  normal, to 
get  the full length of the  line  along  the  plane  normal. The ratio of the two dot 
products is then how far  along  the  line  from  the  endpoint  the  intersection  point is; 
just move along  the  line  segment by that  distance from the  endpoint,  and you're at 
the  intersection  point, as  shown in Listing 61.1. 

LISTING 61.1  161-l.C 
11 Given  two  line  endpoints, a point on a  plane,  and a unit  normal 
I !  for  the  plane,  returns  the  point  of  intersection  of  the  line 
11 and  the  plane i n  intersectpoint. 
#define  DOT-PROOUCT(x,y) CxCOl*yCOl+x[ll*yC1l+x[21*yC2l) 
void  LineIntersectPlane  (float  *linestart.  float  *lineend. 

{ 
float  *planeorigin.  float  *planenormal,  float  *intersectpoint) 

float  veclC31.  projectedlinelength,  startdistfromplane.  scale; 
veclCO] - linestart[Ol - planeoriginC01; 
vecl[ll - linestartCl] - planeoriginC11; 
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veclC2l - linestartC21 - planeoriginC21: 
startdistfromplane - OOT-PROOUCT(vec1.  planenormal): 
if (startdistfromplane - 0 )  
I 

/ /  point  is  in  plane 
intersectpointC01 - linestartC01: 
intersectpointC11 - linestartC11; 
intersectpointCZ1 - linestartC11: 
return: 

I 
veclCO1 - linestartCO1 - lineendC01: 
veclCll - linestartcll - lineendC11: 
vecl[21 - linestartC21 - lineendC21: 
projectedlinelength - DOT-PRODUCT(vec1,  planenormal): 
scale - startdistfromplane / projectedlinelength: 
intersectpointC01 - 1inestartCOl - vecl[Ol * scale; 
intersectpoint[l] - linestartCl] - vecl[ll * scale: 
intersectpointC21 - 1inestartCll - veclC21 * scale; 

1 

Rotation by Projection 
We can use the  dot product’s projection capability to look at  rotation in an interest- 
ing way.  Typically, rotations  are  represented by matrices. This is certainly a workable 
representation  that encapsulates all aspects of transformation in a single object, and 
is ideal for  concatenations of rotations and translations. One problem with matrices, 
though, is that many people, myself included, have a hard time looking at a matrix of 
sines and cosines and visualizing  what’s  actually going on. So when two 3 D  experts, John 

Using the dot product to get the distance from a point to a plane. 
Figure 61.7 
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Carmack and Billy Zelsnack, mentioned  that they think of rotation differently, in  a 
way that  seemed  more intuitive to  me, I thought  it was worth passing on. 
Their  approach is this: Think of rotation as projecting  coordinates onto new axes. 
That is,  given that you  have points  in, say, worldspace, define  the new coordinate 
space  (viewspace, for example) you  want  to rotate to by a set of three  orthogonal  unit 
vectors defining the new  axes, and  then project each point  onto each of the three axes to 
get  the  coordinates  in  the new coordinate  space, as  shown for  the 2-D case in Figure 
61.8. In 3-D, this involves three  dot  products  per  point,  one  to  project  the  point  onto 
each axis. Translation  can be done separately from  rotation by simple addition. 

Rotation by projection is exactly the same as rotation via matrix multiplication; in 
fact, the rows of a rotation matrix are the orthogonal unit vectors pointing along 
the new axes. Rotation byprojection buys us no technical advantages, so that b not 
what b important here; the key is that  the concept of rotation by projection, to- 
gether with a separate translation step, gives us a new  way to look at transformation 
that I, for one, find easier to visualize and experiment with. A new frame of refer- 
ence for how we think about 3-0 frames of reference, f y o u  will. 

Three things I’ve learned over the years are  that  it never hurts  to  learn  a new way of 
looking at things,  that it helps  to have a  clearer,  more intuitive model  in your head of 
whatever it is you’re working on,  and  that new tools, or new  ways to use old tools, are 
Good  Things. My experience  has  been  that  rotation by projection, and  dot  product 
tricks in general, offer those sorts of benefits  for 3-D. 

y axis 

Rotation  to  a new coordinate space by projection  onto new axes. 
Figure 6 1.8 
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and a bsp renderer
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As I’ve noted before,B&‘m working on Quake, id Software’s  follow-up to DOOM. A 
flipping to Quake, and  made  the startling discov- 
twice  as fast with page  flipping as it  did with the 
whole frame to system  memory, then copying it to 
his, but baffled. I did  a few tests and came up with 
ding slow writes through  the  external  cache,  poor 
che misses  when copying the  frame  from system 

each of these  can indeed affect performance, 
none  seemed to accaunt  for  the  magnitude of the  speedup, so I assumed there was 
some hidden hardware  interaction  at work. Anyway,  “why”  was secondary; what  really 
mattered was that we had a way to double  performance, which meant I had  a  lot of 
work to do to support page  flipping as  widely  as possible. 
A few  days ago, I was using the Pentium’s built-in performance  counters to seek out 
areas  for  improvement  in  Quake  and,  for no particular  reason,  checked the  number 
of writes performed while copying the frame  to the screen in non-page-flipped mode. 
The answer was 64,000. That  seemed  odd, since there were 64,000 byte-sized pixels 
to copy, and I was calling memcpyo, which  of course  performs copies a dword at  a 
time whenever possible. I thought maybe the Pentium  counters  report  the  number 
of bytes written rather  than  the  number of writes performed,  but fortunately, this 
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time I tested my assumptions by writing an ASM routine to copy the  frame a  dword at 
a time, without the  help of memcpy(). This time the  Pentium  counters  reported 
16,000  writes. 
whoops. 
As it  turns out,  the memcpy() routine in the DOS  version  of our  compiler (gcc) 
inexplicably copies memory  a byte at a time. With my  new routine,  the non-page- 
flipped approach suddenly became slightly faster than page flipping. 
The first relevant rule is pretty obvious: Assume  nothing. Measure early and often. 
Know what’s  really going  on when your program  runs, if you catch my drift. To do 
otherwise is to risk looking mighty foolish. 
The  second rule: when you do look foolish (and trust me, it will happen if you do 
challenging work) have a  good  laugh  at yourself, and use it as a reminder of  Rule #l. 
I  hadn’t done any extra page-flipping work  yet, so I didn’t waste  any time due to my 
faulty assumption that memcpy() performed a  maximum-speed copy, but  that was 
just luck. I  should have done  experiments until I was sure I knew what was going  on 
before drawing any conclusions and acting on  them. 

P In general, make it apoint not to fall into a tightly focused rut; stay loose and  think 
of alternative possibilities and  new approaches, and always,  always, always keep 
asking questions. It ’llpay off big in  the long run. IfI hadn ’t indulged my curiosity 
by running  the  Pentium counter test on  the copy to the screen, even though  there 
was no specific reason to do so, I would never have discovered the memcpyo 
problem-and by so doing I doubled the performance of  the entire program in five 
minutes, a rare accomplishment indeed. 

By the way, I have found  the Pentium’s performance  counters to be very useful in 
figuring out what my code really does and where the cycles are going. One useful  source 
of information on  the  performance  counters  and  other aspects of the  Pentium is 
Mike  Schmit’s  book, Pentium  Processor  Optimization Tools, AP Professional, 
ISBN 0-1 2-627230-1. 
Onward to rendering  from a BSP tree. 

BSP-based Rendering 
For the last  several chapters I’ve been discussing the  nature of BSP (Binary Space 
Partitioning) trees, and in Chapter 60  I presented a  compiler  for 2-D  BSP trees. Now 
we’re ready to use those compiled BSP trees to do realtime rendering. 
As you’ll recall, the BSP compiler took a list  of  vertical  walls and built a 2-D  BSP tree 
from  the walls,  as  viewed from above. The result is shown in Figure 62.1. The world is 
split into two pieces by the line of the  root wall, and  each half of the world is then 
split again by the root’s children, and so on, until the world is carved into subspaces 
along  the lines of  all the walls. 
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Vertical walls and a BSP tree to represent them. 
Figure 62.1 

Our objective is to draw the world so that  whenever walls overlap we see the  nearer 
wall at  each overlapped pixel. The simplest way to do that is with the painter’s algo- 
rithm;  that is, drawing the walls in  back-to-front order,  assuming  no polygons 
interpenetrate  or  form cycles.  BSP trees guarantee that no polygons interpenetrate 
(such polygons are automatically split),  and make it easy to walk the polygons in 
back-to-front (or front-to-back) order. 
Given a BSP tree, in order to render a view of that  tree, all we have  to do is descend 
the  tree,  deciding  at each node  whether we’re seeing the  front  or back of the wall at 
that node  from  the  current viewpoint. We use that knowledge  to first recursively 
descend  and draw the  farther subtree of that node,  then draw that node,  and finally 
draw the  nearer subtree of that  node. Applied recursively from  the  root of our BSP 
trees, this approach  guarantees  that overlapping polygons will  always be drawn in 
back-to-front order. Listing  62.1  draws a BSP-based  world in this fashion. (Because of 
the constraints of the  printed page, Listing  62.1 is only the core of the BSP renderer, 
without the  program framework, some  math  routines, and  the polygon rasterizer; 
but,  the  entire  program is on  the CD-ROM  as  DDJBSP2.ZIP. Listing 62.1 is in a  com- 
pressed format, with  relatively little whitespace; the full version on  the CD-ROM is 
formatted normally.) 

LISTING 62.1  162- 1 .C 
/ *  C o r e   r e n d e r e r   f o r   W i n 3 2   p r o g r a m   t o   d e m o n s t r a t e   d r a w i n g   f r o m  a 2-D 

BSP t r e e :   i l l u s t r a t e   t h e   u s e   o f  BSP t r e e s   f o r   s u r f a c e   v i s i b i l i t y .  
Upda teWor ldO i s   t h e   t o p - l e v e l   f u n c t i o n   i n   t h i s   m o d u l e .  
F u l l   s o u r c e   c o d e  f o r  t h e   B S P - b a s e d   r e n d e r e r ,   a n d   f o r   t h e  
accompanying BSP c o m p i l e r ,  may be d o w n l o a d e d   f r o m  
ftp.idsoftware.com/mikeab. i n   t h e   f i l e   d d j b s p 2 . z i p .  
T e s t e d   w i t h  VC++ 2 .0  running  on  Windows NT 3 .5 .  * /  

#def ine  FIXEDPOINT(x)  ((FIXEDPOINT)(((long)x)*((long)OxlOOOO))~ 
# d e f i n e   F I X T O I N T ( x )   ( ( i n t ) ( x  >> 1 6 ) )  

One Story, Two Rules, and a BSP Renderer 1 149 



l d e f  i ne 
# d e f i n e  
# d e f  i ne 
i d e f  i ne 
# d e f i n e  
# d e f i n e  
# d e f i n e  
P d e f  i ne 
# d e f i n e  
# d e f i n e  
# d e f  i ne 
l d e f i  ne 

t y p e d e f  
t y p e d e f  

ANGLE(x) ( ( 1 o n g ) x )  
STANDARD-SPEED (FIXEDPDINT(20))  
STANDARD-ROTATION (ANGLE(4))  
MAX-NUM-NODES 2000 
MAX-NUM-EXTRA-VERTICES 2000 
WORLD-MIN-X (FIXEDPOINT(-16000))  
WORLD-MAX-X (FIXEDPOINT(16000))  
WORLD-MIN-Y (F IXEDPOINT(-16000) )  
WORLD-MAX-Y (FIXEDPOINT(16000))  
WORLD-MIN-Z (FIXEDPOINT(-16000))  
WORLD-MAX-Z (FIXEDPDINT(16000))  
PROJECTION-RATIO (2 .011.0)  11 c o n t r o l s   f i e l d   o f   v i e w :   t h e  

I1 b i g g e r   t h i s   i s ,   t h e   n a r r o w e r   t h e   f i e l d   o f   v i e w  
l o n g  FIXEDPOINT; 
s t r u c t  -VERTEX ( . .  

FIXEDPOINT x .   z .   v i e w x ,   v i e w z :  
1 VERTEX, *PVERTEX; 
t y p e d e f   s t r u c t  -POINT2 { FIXEDPOINT x ,  z :  1 POINTE.  *PPOINT2; 
t y p e d e f   s t r u c t  -POINTZINT ( i n t  x :   i n t  y :  1 POINTLINT.  *PPOINTZINT; 
t y p e d e f   l o n g  ANGLE: 11 a n g l e s   a r e   s t o r e d  i n  degrees  
t y p e d e f   s t r u c t  -NODE ( 

VERTEX * p s t a r t v e r t e x .   * p e n d v e r t e x :  
FIXEDPOINT w a l l t o p .   w a l l b o t t o m .   t s t a r t .   t e n d :  
FIXEDPOINT c l i p p e d t s t a r t .   c l i p p e d t e n d :  
s t r u c t  -NODE * f r o n t t r e e .   * b a c k t r e e ;  
i n t   c o l o r ,   i s v i s i b l e :  
FIXEDPOINT s c r e e n x s t a r t .   s c r e e n x e n d ;  
FIXEDPOINT s c r e e n y t o p s t a r t ,   s c r e e n y b o t t o m s t a r t ;  
FIXEDPOINT sc reeny topend .   sc reenybo t tomend :  

1 NODE. *PNDDE; 
c h a r  * pDIB: / I  p o i n t e r   t o  D I B  s e c t i o n   w e ' l l   d r a w   i n t o  
HBITMAP hDIBSec t ion :  / I  h a n d l e   o f  DIB s e c t i o n  
HPALETTE hpa lD IB ;  
i n t   i t e r a t i o n  - 0.  Wor ld I sRunn ing  - 1; 
HWND hwndou tpu t ;  
i n t  D IBWid th .   D IBHe igh t .   D IBP i t ch .   numver t i ces ,   numnodes :  
FIXEDPOINT f x H a l f D I B W i d t h .   f x H a l f O I B H e i g h t ;  
VERTEX * p v e r t e x l i s t ,   * p e x t r a v e r t e x l i s t :  
NODE * p n o d e l i s t :  
POINT2 c u r r e n t l o c a t i o n .   c u r r e n t d i r e c t i o n .   c u r r e n t o r i e n t a t i o n :  
ANGLE c u r r e n t a n g l e :  
FIXEDPOINT c u r r e n t s p e e d .   f x V i e w e r Y .   c u r r e n t Y S p e e d :  
FIXEDPOINT F r o n t C l i p P l a n e  - FIXEDPOINT(10); 
FIXEDPOINT FixedMul  (FIXEDPOINT  x.  FIXEDPOINT y ) :  
FIXEDPOINT  FixedDiv(FIXEDPD1NT  x.  FIXEDPOINT y ) :  
FIXEDPOINT  FixedSin(ANGLE  angle).   FixedCos(ANGLE  angle):  
e x t e r n   i n t  FillConvexPolygon(POINT2INT * V e r t e x P t r .   i n t   C o l o r ) :  
11 R e t u r n s   n o n z e r o  i f  a w a l l   i s   f a c i n g   t h e   v i e w e r ,  0 e l s e .  
i n t  Wal lFac ingViewer (N0DE * p w a l l )  
( 

FIXEDPOINT v i e w x s t a r t  - pwall->pstartvertex->viewx: 
FIXEDPOINT v i e w z s t a r t  - pwall->pstartvertex->viewz: 
FIXEDPOINT v iewxend  - pwall->pendvertex->viewx: 
FIXEDPOINT v iewzend  - pwall->pendvertex->viewz: 
i n t  Temp; 

i f  ( (  ((pwall->pstartvertex->viewx >> 1 6 )  * 
I* I /  e q u i v a l e n t  C code 

((pwall->pendvertex->view2 - 

((pwall->pstartvertex->viewz >> 1 6 )  * 
pwall->pstartvertex->viewz) >> 1 6 ) )  + 
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((pwall->pstartvertex->viewx - 
pwall->pendvertex->viewx) >>  1 6 ) )  1 

< 0) 
r e t u r n ( 1 ) :  

r e t u r n ( 0 ) :  
e l s e  

* I  
I 

rnov eax .v iewzend 
s u b   e a x . v i e w z s t a r t  
i m u l   v i e w x s t a r t  
rnov ecx,   edx 
mov ebx .eax  
rnov e a x . v i e w x s t a r t  
sub   eax .v iewxend 
i m u l   v i e w z s t a r t  
add  eax.ebx 
adc  edx.ecx 
mov eax.O 
jns  s h o r t  WFVDone 
i n c   e a x  

mov Temp, eax 
WFVDone: 

I 
r e t u r n ( T e m p ) :  

1 
/ /  U p d a t e   t h e   v i e w p o i n t   p o s i t i o n  as  needed. 
v o i d   U p d a t e v i e w P o s o  
I 

i f  ( c u r r e n t s p e e d  != 0) { 
c u r r e n t 1 o c a t i o n . x  += FixedMul(currentdirection.x. 

i f  ( c u r r e n t 1 o c a t i o n . x  <= WORLDLMINKX) 
c u r r e n t l o c a t i o n . ~  = WORLDLMIN-X: 

i f  ( c u r r e n t l o c a t i o n . ~  >- WORLD-MAXLX) 
c u r r e n t 1 o c a t i o n . x  = WORLDLMAXLX - 1: 

c u r r e n t 1 o c a t i o n . z  += FixedMul(currentdirection.z. 

i f  ( c u r r e n t 1 o c a t i o n . z  <= WORLDLMINLZ) 
c u r r e n t 1 o c a t i o n . z  = WORLD-MIN-2: 

i f  ( c u r r e n t 1 o c a t i o n . z  >= WORLDLMAXLZ) 
c u r r e n t l o c a t i o n . ~  = WORLDLMAXKZ - 1; 

c u r r e n t s p e e d ) :  

c u r r e n t s p e e d ) :  

} 
i f  (cu r ren tYSpeed  != 0) { 

f xV iewerY  += cu r ren tYSpeed :  
i f  ( f x V i e w e r Y  <= WORLDLMINKY) 

f xV iewerY  = WORLO_MIN_Y: 
i f  ( f x V i e w e r Y  >= WORLD-MAX-Y) 

f xV iewerY  = WORLDLMAXKY - 1; 
I 

I 
/ /  T r a n s f o r m   a l l   v e r t i c e s   i n t o   v i e w s p a c e .  
v o i d   T r a n s f o r m v e r t i c e s 0  
( 

VERTEX * p v e r t e x :  
FIXEDPOINT  tempx.  tempz: 
i n t   v e r t e x :  
p v e r t e x  = p v e r t e x l i s t :  
f o r   ( v e r t e x  = 0 :  v e r t e x  < n u m v e r t i c e s ;   v e r t e x + + )  1 

I /  T r a n s l a t e   t h e   v e r t e x   a c c o r d i n g   t o   t h e   v i e w p o i n t  
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tempx - p v e r t e x - > x  - c u r r e n t 1 o c a t i o n . x :  
tempz - p v e r t e x - > z  - c u r r e n t 1 o c a t i o n . z ;  
11 R o t a t e   t h e   v e r t e x  s o  v i e w p o i n t   i s   l o o k i n g  down z a x i s  
p v e r t e x - > v i e w x  - FixedMul(F ixedMul( tempx.  

current orientation.^) + 
F i x e d M u l ( t e m p z .   - c u r r e n t o r i e n t a t i o n . x ) .  
F IXEDPOINT(PROJECTION_RATIO) ) :  

p v e r t e x - > v i e w 2  = F ixedMu l ( tempx .  current orientation.^) + 
F i x e d M u l ( t e m p z .   c u r r e n t o r i e n t a t i o n . z ) :  

pvertex++: 
I 

1 
/ I  3 - 0  c l i p   a l l   w a l l s .  If a n y   p a r t   o f   e a c h   w a l l   i s   s t i l l   v i s i b l e ,  
/ I  t r a n s f o r m   t o   p e r s p e c t i v e   v i e w s p a c e .  
v o i d   C l i p w a l l s o  
I 

NODE * p w a l l  : 
i n t   w a l l :  
FIXEDPOINT t e m p s t a r t x .   t e m p e n d x .   t e m p s t a r t z .   t e m p e n d z :  
FIXEDPOINT t e m p s t a r t w a l l t o p .   t e m p s t a r t w a l l b o t t o m :  
FIXEDPOINT tempendwa l l t op .   t empendwa l lbo t tom;  
VERTEX * p s t a r t v e r t e x .   * p e n d v e r t e x :  
VERTEX * p e x t r a v e r t e x  - p e x t r a v e r t e x l i s t :  
p w a l l  - p n o d e l i s t :  
f o r   ( w a l l  - 0: w a l l  < numnodes;  wall++) I 

I /  Assume t h e   w a l l   w o n ' t   b e   v i s i b l e  
p w a l l - > i s v i s i b l e  - 0:  
11 G e n e r a t e   t h e   w a l l   e n d p o i n t s ,   a c c o u n t i n g   f o r  t va lues   and  
I /  c l  i p p i   n g  
/ I  C a l c u l a t e   t h e   v i e w s p a c e   c o o r d i n a t e s   f o r   t h i s   w a l l  
p s t a r t v e r t e x  - p w a l l - > p s t a r t v e r t e x :  
p e n d v e r t e x  - p w a l l - > p e n d v e r t e x ;  
I /  L o o k   f o r  z c l i p p i n g   f i r s t  
/ I  C a l c u l a t e   s t a r t   a n d   e n d  z c o o r d i n a t e s   f o r   t h i s   w a l l  
i f  ( p w a l l - > t s t a r t  -- FIXEDPOINT(0))  

e l s e  
t e m p s t a r t z  - p s t a r t v e r t e x - > v i e w z :  

t e m p s t a r t z  - p s t a r t v e r t e x - > v i e w 2  + 
FixedMul((pendvertex->viewz-pstartvertex->viewz), 
p w a l l - > t s t a r t ) ;  

i f  ( p w a l l - > t e n d  -- FIXEDPOINT(1))  

e l s e  
tempendz - p e n d v e r t e x - > v i e w z :  

tempendz - p s t a r t v e r t e x - > v i e w 2  + 
FixedMul((pendvertex->viewz-pstartvertex->viewz), 
p w a l l - > t e n d ) :  

I /  C l i p   t o   t h e   f r o n t   p l a n e  
i f  ( tempendz < F r o n t C l i p P l a n e )  I 

i f  ( t e m p s t a r t z  < F r o n t C l i p P l a n e )  [ 
/ I  F u l l y   f r o n t - c l i p p e d  
g o t o   N e x t w a l l :  

p w a l l - > c l i p p e d t s t a r t  = p w a l l - > t s t a r t :  
/ I  C l i p   t h e   e n d   p o i n t   t o   t h e   f r o n t   c l i p   p l a n e  
p w a l l - k l i p p e d t e n d  - 

1 e l s e  { 

F i x e d D i v ( p s t a r t v e r t e x - > v i e w 2  - F r o n t C l i p P l a n e ,  
pstartvertex->viewz-pendvertex->viewz): 

tempendz - p s t a r t v e r t e x - > v i e w z  + 
FixedMul((pendvertex->viewz-pstartvertex->viewz), 
p w a l l - > c l i p p e d t e n d ) :  

1 
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1 else { 
pwall->clippedtend - pwall->tend; 
if (tempstartz < FrontClipPlane) t 

/ /  Clip  the  start  point  to  the  front  clip  plane 
pwall->clippedtstart - 

FixedDiv(FrontClipP1ane - pstartvertex->viewz, 
pendvertex->viewz-pstartvertex->viewz): 

tempstartz - pstartvertex->view2 + 
FixedMul((pendvertex->viewz-pstartvertex->viewz), 
pwall->clippedtstart): 

1 else t 

} 
pwall->clippedtstart - pwall->tstart; 

1 
/ /  Calculate  x  coordinates 
if (pwall-hlippedtstart - FIXEDPOINT(0)) 
else 

tempstartx - pstartvertex->viewx; 
tempstartx - pstartvertex->viewx + 

FixedMul((pendvertex->viewx-pstartvertex->viewx), 
pwall->clippedtstart); 

if  (pwall->clippedtend - FIXEDPOINT(1)) 
else 

tempendx - pendvertex->viewx; 
tempendx - pstartvertex->viewx + 

FixedMul((pendvertex->viewx-pstartvertex->viewx). 
pwall  ->cl  ippedtend) ; 

/ /  Clip in  x  as  needed 
if  ((tempstartx > tempstartz) 1 1  (tempstartx < -tempstartz)) I 

/ /  The  start  point  is  outside  the  view  triangle  in x: 
/ /  perform  a  quick  test  for  trivial  rejection by seeing  if 
/ /  the  end  point  is  outside  the  view  triangle on the  same 
/ /  side  as  the  start  point 
if (((tempstartx>tempstartz) && (tempendx>tempendz)) I I 

((tempstartx<-tempstartz) && (tempendx<-tempendz))) 
/ /  Fully  clipped-trivially  reject 
goto  NextWall ; 

/ /  Clip  the  start  point 
if  (tempstartx > tempstartz) { 

/ /  Clip  the  start  point on the  right  side 
pwall-klippedtstart - 

FixedDiv(pstartvertex->viewx-pstartvertex->viewz, 
pendver tex ->v iewz-pstar tver tex ->v iewz  - 
pendvertex->viewx+pstartvertex->viewx): 

tempstartx - pstartvertex->viewx + 
FixedMul((pendvertex->viewx-pstartvertex->viewx), 

pwall->clippedtstart): 
tempstartz - tempstartx: 
/ /  Clip  the  start  point on the  left  side 
pwall ->clippedtstart - 

} else { 

FixedDiv(-pstartvertex->viewx-pstartvertex->viewz, 
pendvertex->viewx+pendvertex->view2 - 
pstartvertex->viewz-pstartvertex->viewx); 

tempstartx - pstartvertex->viewx + 
FixedMul((pendvertex->viewx-pstartvertex->viewx), 

pwall->clippedtstart); 

> 
tempstartz - -tempstartx: 

} 
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I1 See  if  the  end  point  needs  clipping 
if ((tempendx > tempendz) I I (tempendx < -tempendz)) { 

I1 Clip  the  end  point 
if (tempendx > tempendz) { 

I1 Clip  the  end  point  on  the  right  side 
pwall ->cl  ippedtend - 

FixedDiv(pstartvertex->viewx-pstartvertex->viewz, 
pendver tex ->v iewz-pstar tver tex ->v iew2 - 

pendvertex->viewx+pstartvertex->viewx); 
tempendx - pstartvertex->viewx + 

FixedMul((pendvertex->viewx-pstartvertex->viewx), 
pwall-klippedtend): 

tempendz - tempendx: 
I /  Clip  the  end  point  on  the  left  side 
pwall ->cl  ippedtend - 

1 else { 

FixedDiv(-pstartvertex->viewx-pstartvertex->viewz, 
pendvertex->viewx+pendvertex->view2 - 
pstartvertex->viewz-pstartvertex->viewx): 

tempendx - pstartvertex->viewx + 
FixedMul((pendvertex->viewx-pstartvertex->viewx), 

pwall-klippedtend): 

1 
tempendz - -tempendx: 

1 
tempstartwall  top - FixedMul ((pwall ->wall  top - fxViewerY 1, 

tempendwalltop - tempstartwalltop: 
tempstartwall  bottom - FixedMul ((pwall ->wall  bottom-fxViewerY) , 

tempendwallbottom - tempstartwallbottom: 
I1 Partially  clip  in  y  (the  rest  is  done  later  in  2D) 
I /  Check  for  trivial  accept 
if  ((tempstartwalltop > tempstartz) I I 

F IXEDPOINT(PROJECTION_RATIO) ) :  

F IXEDPOINT(PROJECTION_RATIO) ) :  

(tempstartwallbottom < -tempstartz) 1 I 
(tempendwalltop > tempendz) I I 
(tempendwallbottom < -tempendz)) { 
I1 Not  trivially  unclipped:  check  for  fully  clipped 
if ((tempstartwallbottom > tempstartz) && 

(tempstartwalltop < -tempstartz) && 
(tempendwallbottom > tempendz) && 
(tempendwalltop < -tempendz)) { 
I /  Outside  view  triangle.  trivially  clipped 
goto  NextWall : 

1 
I 1  Partially  clipped  in Y:  we'll do Y  clipping  at 
/ I  drawing  time 

1 
I1 The wall  is  visible:  mark  it  as  such  and  project  it. 
I1 +1 on scaling  because  of  bottomlright  exclusive  polygon 
I1 filling 
pwall->isvisible - 1: 
pwall->screenxstart - 

( F i x e d M u l D i v ( t e m p s t a r t x .  fxHalfDIBWidth+FIXEDPOINT(O.5). 
tempstartz) + fxHalfDIBWidth + FIXEDPOINT(0.5)): 

(FixedMulDiv(tempstartwal1top. 
fxHalfDIBHeight + FIXEDPDINT(0.5). tempstartz) + 
fxHalfDIBHeight + FIXEDPOINT(0.5)); 

(FixedMulDiv(tempstartwal1bottom. 

pwall->screenytopstart - 

pwall->screenybottomstart - 
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/ I  
/ I  
/ I  
/ I  
/ I  
/ I  
/ I  
if 

fxHalfDIBHeight + FIXEOPOINT(0.5). tempstartz) + 
fxHalfDIBHeight + FIXEDPOINT(O.5)); 

(FixedMulDiv(tempendx. fxHalfDIBWidth+FIXEDPOINT(O.5). 
tempendz) + fxHalfDIBWidth + FIXEDPOINT(0.5)): 

(FixedMulDiv(tempendwal1top. 
fxHalfDIBHeight + FIXEDPOINT(0.5). tempendz) + 
fxHalfDIBHeight + FIXEDPOINT(0.5)): 

(FixedMulDiv(tempendwallbottom, 
fxHalfOIBHeight + FIXEDPOINT(0.5). tempendz) + 
fxHalfOIBHeight + FIXEDPOINT(0.5)): 

pwall->screenxend - 
pwall-hcreenytopend - 

pwall->screenybottomend - 

NextWall : 
pwa11++; 

I 
I 
I /  Walk  the  tree  back  to  front:  backface cull whenever  possible, 
11 and  draw  front-facing  walls in back-to-front  order. 
void  DrawWallsBackToFrontO 
( 

NODE  *pFarChildren.  *pNearChildren.  *pwall: 
NODE *pendingnodes[MAX-NUM-NODES]: 
NODE  **pendingstackptr: 
POINTLINT  apointC41; 
pwall - pnodelist: 
pendingnodesCO1 - (NODE *)NULL: 
pendingstackptr - pendingnodes + 1; 
for ( : : )  { 

for ( : : )  { 
Descend  as  far  as  Dossible  toward  the  back, 
remembering  the nodes we  pass  through  on  the  way. 
Figure  whether  this wall is  facing  frontward  or 
backward: do  in  viewspace  because  non-visible  walls 
aren't projected  into  screenspace.  and  we  need  to 
traverse all walls  in  the BSP tree,  visible  or  not, 
i n  order  to  find all the  visible  walls 
(WallFacingViewer(pwal1)) { 
I /  We're on the  forward  side  of  this  wall,  do  the  back 
/ /  children  first 
DFarChildren - pwall->backtree: 

j e i s e  I 
/ /  We're on the  back  side  of  this  wall,  do  the  front 
/ /  children  first 
pFarChildren - pwall->fronttree: 

1 
if (pFarChildren - NULL) 
*pendingstackptr - pwall: 
pendingstackptr++: 
pwall - pFarChildren: 

break: 

1 
for ( : : I  ( 

/ /  See if  the wall is  even  visible 
if  (pwall->isvisible1 { 

I /  See if we  can  backface cull this wall 
if  (pwall->screenxstart < pwall->screenxend) { 

/ /  Draw  the wall 
apointC0l.x - FIXTOINT(pwal1->screenxstart): 
apointC1l.x - FIXTOINT(pwal1->screenxstart): 
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1 
/ /  
/ /  
/ /  
/ /  
/ /  
/ /  
/ /  

i f  

a p o i n t C 2 l . x  - FIXTOINT(pwal1->screenxend): 
a p o i n t C 3 l . x  - FIXTOINT(pwal1->screenxend); 
a p o i n t C 0 l . y  - F IXTOINT(pwa l1 ->sc ree f l y tops ta r t ) :  
a p o i n t C l 1 . y  - FIXTOINT(pwal1->screenybottomstart): 
a p o i n t C 2 l . y  - FIXTOINT(pwal1->screenybottomend): 
a p o i n t C 3 l . y  - FIXTOINT(pwal1->screenytopend): 
FillConvexPolygon(apoint. p w a l l - > c o l o r ) ;  

1 

I f  t h e r e ' s  a n e a r   t r e e   f r o m   t h i s   n o d e .   d r a w  i t : 
o t h e r w i s e ,   w o r k   b a c k   u p   t o   t h e   l a s t - p u s h e d   p a r e n t  
node o f   t h e   b r a n c h  we j u s t   f i n i s h e d :   w e ' r e   d o n e  i f  
t h e r e   a r e  no p e n d i n g   p a r e n t   n o d e s .  
F i g u r e   w h e t h e r   t h i s   w a l l   i s   f a c i n g   f r o n t w a r d   o r  
backward:  do i n  v i e w s p a c e   b e c a u s e   n o n - v i s i b l e   w a l l s  
a r e n ' t   p r o j e c t e d   i n t o   s c r e e n s p a c e ,   a n d  we need t o  
/ /  t r a v e r s e  all w a l l s   i n   t h e  BSP t r e e ,   v i s i b l e   o r   n o t ,  
/ /  i n   o r d e r   t o   f i n d  all t h e   v i s i b l e   w a l l s  
(WallFacingViewer(pwal1)) { 
/ /  We're on t h e   f o r w a r d   s i d e   o f   t h i s   w a l l ,  d o   t h e  
/ /  f r o n t   c h i l d r e n  now 
p N e a r C h i l d r e n  - p w a l l - > f r o n t t r e e :  

3 e l s e  { 
/ /  We're on t h e   b a c k   s i d e   o f   t h i s  w a l l ,  do t h e   b a c k  
/ /  c h i l d r e n  now 

1 
p N e a r C h i l d r e n  - p w a l l - > b a c k t r e e ;  

/ /  Walk t h e   n e a r   s u b t r e e   o f   t h i s  w a l l  
i f  ( p N e a r C h i l d r e n  !- NULL) 

/ /  Pop t h e   l a s t - p u s h e d   w a l l  
p e n d i n g s t a c k p t r - ;  
p w a l l  - * p e n d i n g s t a c k p t r :  
i f  ( p w a l l  - NULL) 

g o t o  NodesDone: 

g o t o  Wal kNearTree;  

1 
Wal kNearTree:  

p w a l l  - p N e a r C h i l d r e n :  
1 

NodesDone: 

1 
/ /  R e n d e r   t h e   c u r r e n t   s t a t e  o f  t h e   w o r l d   t o   t h e   s c r e e n .  
v o i d   U p d a t e w o r l d 0  
{ 

HPALETTE h o l d p a l :  
HDC hdcScreen.   hdcDIBSect ion :  
HBITMAP h o l d b i t m a p ;  
/ /  D r a w  t h e   f r a m e  
Upda teV iewPosO;  
memset(pD1B. 0 .  D I B P i t c h * D I B H e i g h t ) :  / /  c l e a r   f r a m e  
T r a n s f o r m V e r t i c e s O ;  
C l i p W a l l s O :  
D r a w W a l l s B a c k T o F r o n t O ;  
/ /  We've  drawn  the  f rame:   copy i t  t o   t h e   s c r e e n  
hdcScreen - GetDC(hwnd0u tpu t ) :  
h o l d p a l  - S e l   e c t P a l   e t t e (   h d c S c r e e n .   h p a l  O IB .  FALSE) : 
RealizePalette(hdcScreen): 
hdcDIBSec t ion  - CreateCompatibleDC(hdcScreen); 
h o l d b i t m a p  - SelectObject(hdcD1BSection. h D I B S e c t i o n ) :  
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B i t B l t ( h d c S c r e e n .  0 .  0.  D I B W i d t h .   D I B H e i g h t .   h d c D I B S e c t i o n .  

SelectPalette(hdcScreen. h o l d p a l .  FALSE):  
Re leaseDC(hwnd0utpu t .   hdcScreen) :  
S e l e c t O b j e c t ( h d c D 1 B S e c t i o n .  h o l d b i t m a p ) :  
Re leaseDC(hwnd0utpu t .   hdcDIBSect ion) :  
i t e r a t i o n + + :  

0 .  0.  SRCCOPY); 

I 

The Rendering  Pipeline 
Conceptually rendering  from a BSP tree really  is that simple, but  the implementa- 
tion is  a bit  more complicated. The full rendering  pipeline, as  coordinated by 
Updateworld(), is  this: 

Update  the  current  location. 
Transform  all  wall  endpoints  into  viewspace  (the  world  as  seen  from  the  current 

Clip  all  walls  to  the  view  pyramid. 
Project  wall  vertices  to  screen  coordinates. 
Walk  the  walls  back  to front,  and  for  each  wall  that  lies  at  least  partially  in  the 
view  pyramid,  perform  backface  culling  (skip  walls  facing  away from the  viewer), 
and  draw  the  wall if it’s  not  culled. 

Next, we’ll look at  each  part of the pipeline more closely. The pipeline is too com- 
plex for  me to be able to discuss each part in complete  detail.  Some sources for 
further reading are Computer  Graphics, by Foley and van  Dam  (ISBN  0-201-121  10-’7), 
and  the DDJEssential Books on Graphics  Programming CD. 

location  with  the  current  viewing  angle). 

Moving the  Viewer 
The sample BSP program  performs first-person rendering;  that is, it renders the 
world  as seen  from  your eyes  as  you  move about.  The  rate of movement is controlled 
by key-handling code that’s not shown in Listing  62.1;  however, the variables set by 
the key-handling code  are used in UpdateViewPosO to bring  the  current location 
up to date. 
Note that  the view position can  change  not only in x and z (movement around  the 
plane upon which the walls are  set),  but also  in y (vertically). However, the view direction 
is  always horizontal; that is, the code in  Listing  62.1 supports moving  to any  3-D point, 
but only viewing  horizontally. Although the BSP tree is  only  2-D, it is quite possible to 
support  looking up  and down to at least some extent, particularly if the world dataset 
is restricted so that,  for  example,  there  are never two rooms stacked on  top of each 
other, or any tilted walls. For simplicity’s  sake, I have chosen not to implement  this  in 
Listing  62.1, but you  may find  it  educational  to add it to  the  program yourself. 
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Transformation  into  Viewspace 
The viewing angle (which controls direction of movement as  well  as  view direction) 
can sweep through  the full 360 degrees around  the viewpoint, so long as it remains 
horizontal. The viewing angle is controlled by the key handler, and is used to define 
a unit vector stored in currentorientation that explicitly defines the view direction 
(the z axis of viewspace), and implicitly defines the x axis  of  viewspace, because that 
axis  is at right angles to the z axis, where  x increases to the right of the viewer. 
As I discussed in the prekious chapter,  rotation to a new coordinate system can be 
performed by using the  dot  product to project points onto  the axes  of the new coor- 
dinate system, and that’s  what TransformVertices() does,  after first translating 
(moving) the coordinate system  to  have its origin at the viewpoint. (It’s necessary to 
perform  the translation first so that  the viewing rotation is around  the viewpoint.) 
Note  that this operation can equivalently be viewed  as a matrix math  operation,  and 
that this is in fact the  more  common way to handle transformations. 
At the same time, the points are scaled in  x  according to PROJECTION-RATIO to 
provide the desired field of  view. Larger scale  values result in narrower fields of  view. 
When this is done  the walls are in viewspace, ready to be clipped. 

Clipping 
In viewspace, the walls  may be anywhere  relative to the viewpoint: in  front,  behind, 
off  to the side. We only want to draw those parts of  walls that properly belong  on  the 
screen; that is, those parts  that lie in the view pyramid (view frustum), as  shown in 
Figure 62.2. Unclipped walls-walls that lie entirely in the frustum-should be drawn 
in  their entirety, fully clipped walls should  not be drawn, and partially clipped walls 
must be trimmed  before  being drawn. 
In Listing  62.1, Clipwalk() does this in three steps for  each wall in turn. First, the z 
coordinates of the two ends of the wall are calculated. (Remember, walls are vertical 
and  their  ends go straight up  and down, so the  top  and  bottom of each  end have the 
same  x and z coordinates.) If both  ends  are  on  the  near side of the  front clip plane, 
then  the polygon is fully clipped, and we’re done with it. If both  ends  are  on  the far 
side, then  the polygon isn’t z-clipped, and we leave it unchanged. If the polygon 
straddles the  near clip plane, then  the wall is trimmed to stop at  the  near clip plane 
by adjusting the t value  of the nearest endpoint appropriately; this calculation is a 
simple matter of scaling by z, because the  near clip plane is at  a  constant z distance. 
(The use of t  values for  parametric lines was discussed in Chapter 60.) The process is 
further simplified because the walls can be treated as lines viewed from above, so we 
can perform 2-D clipping in z; this would not  be  the case if  walls sloped or  had 
sloping edges. 
After clipping in z, we clip by viewspace x  coordinate, to ensure  that we draw  only 
wall portions  that lie between the left and right edges of the screen. Like  z-clipping, 
x-clipping can be done as a 2-D clip, because the walls and  the left and right sides of 
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x == z clip  plane 

-x == z clip plane z near  clip  plane 

Note: Solid lines are visible (unclipped) parts of walls, viewed from above. 

Clipping  to  the view pyramid. 
Figure 62.2 

the frustum are all vertical. We compare  both  the start and  endpoint of each wall  to 
the left and right sides of the frustum, and reject, accept, or clip each wall’s t values 
accordingly. The test for x clipping is very simple, because the edges of the frustum 
are defined as the planes where x==z and -x==z. 
The final clip stage is clipping by y coordinate, and this is the most complicated, 
because vertical walls can be clipped at an angle in y, as  shown in Figure 62.3, so true 
3-D clipping of  all four wall vertices is involved. We handle this in ClipWalls() by 
detecting trivial rejection in y, using y==z and -y==z as the y boundaries of the frus- 
tum. However, we leave partial clipping to be handled as a 2-D clipping problem; we 
are able to do this only because our earlier z-clip  to the  near clip plane  guarantees 
that no  remaining polygon point can have z<=O, ensuring  that  when we project we’ll 
always  pass valid,  y-clippable screenspace vertices to the polygon  filler. 

Projection  to  Screenspace 
At this point, we have  viewspace  vertices for each wall that’s at least partially visible. 
All we have to do is project these vertices according to z distance-that is, perform 
perspective projection-and  scale the results to the width  of the screen, then we’ll 
be ready to  draw. Although this step is logically separate  from clipping, it is per- 
formed as the last step  for visible  walls in Clipwalk(). 
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Z clip plane I 

-y == z clip plane I 
Why y clipping is more  complex than x or z clipping. 
Figure 62.3 

Walking the  Tree,  Backface  Culling and Drawing 
Now that we have  all the walls clipped to the frustum, with  vertices projected  into 
screen  coordinates, all we have to do is draw them back to front; that's the  job of 
DrawWallsBackToFront(). Basically, this routine walks the BSP tree,  descending re- 
cursively from  each  node to draw the  farther  children of each  node first, then  the 
wall at  the  node,  then  the  nearer  children.  In  the interests of  efficiency, this particu- 
lar  implementation  performs  a data-recursive walk  of the  tree,  rather  than  the  more 
familiar code recursion. Interestingly, the  performance  speedup  from data recur- 
sion turned  out to be more  modest  than  I  had  expected, based on past experience; 
see Chapter 59 for further details. 
As it comes to each wall, DrawWallsBackToFront() first descends to  draw the  farther 
subtree. Next, if the wall  is both visible and pointing toward the viewer, it is drawn as 
a solid polygon. The polygon filler (not shown in Listing 62.1) is a modification of 
the polygon filler I  presented in Chapters 38 and 39. 
It's worth noting how  backface culling and  front/back wall orientation testing are 
performed.  (Note  that walls are always one-sided, visible  only from  the  front.)  I dis- 
cussed  backface culling in general in the previous chapter, and  mentioned two possible 
approaches:  generating  a screenspace normal  (perpendicular vector) to the poly- 
gon  and seeing which way that points, or taking the world or screenspace dot  product 
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between the vector from  the viewpoint  to  any  polygon point  and  the polygon’s nor- 
mal and checking the sign.  Listing  62.1 does both,  but because our BSP tree is 2-D 
and  the viewer is always upright, we can save some work. 
Consider this: Walls are stored so that  the left end, as  viewed from  the  front side of 
the wall, is the start vertex, and  the right end is the  end vertex. There  are only two 
possible ways that  a wall can be positioned in screenspace, then: viewed from  the 
front, in which  case the start vertex is to the left of the  end vertex, or viewed from  the 
back, in which  case the start vertex is to the right of the  end vertex, as shown in 
Figure 62.4. So we can tell  which side of a wall  we’re seeing, and thus backface cull, 
simply by comparing  the screenspace x  coordinates of the start and  end vertices, a 
simple 2-D version  of checking the direction of the screenspace normal. 
The wall orientation test  used for walking the BSP tree, performed in WaUFacingViewer(), 
takes the  other  approach,  and checks the viewspace  sign  of the  dot  product of the 
wall’s normal with a vector from  the viewpoint to the wall.  Again, this code takes 
advantage of the 2-D nature of the tree to generate  the wall normal by swapping x 
and z and altering signs. We can’t use the quicker screenspace x test here that we 
used for backface culling, because not all walls can be projected  into screenspace; 
for  example, trying  to project  a wall at z==O would result in division by zero. 
All the visible, front-facing walls are drawn  into  a buffer by DrawWallsBackToFront(), 
then Updateworld() calls  Win32 to copy the new frame to the screen. The  frame of 
animation is complete. 

start  vertex end  vertex 

end  vertex  start  vertex 

Fast backspace culling test in screenspace. 
Figure 62.4 
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Notes on the BSP Renderer 
Listing 62.1 is far  from  complete  or  optimal.  There is no such  thing as a tiny BSP 
rendering  demo, because 3D rendering, even when based on  a 2-D BSP tree, re- 
quires  a  substantial amount of code  and complexity. Listing 62.1 is reasonably close 
to  a  minimum rendering  engine,  and is specifically intended to  illuminate basic BSP 
principles, given the space limitations of one  chapter  in  a book that’s already  larger 
than  it  should  be.  Think of Listing 62.1  as a  learning  tool  and  a  starting  point. 
The most obvious lack in Listing 62.1 is that  there is no  support  for  floors  and ceil- 
ings; the walls float  in  space,  unsupported. Is it necessary to go to 3-D BSP trees  to  get 
a  normal-looking  world? 
No. Although 3-D BSP trees offer many advantages in that they  allow arbitrary  datasets 
with  viewing  in  any arbitrary  direction  and,  in  truth,  aren’t  much  more  complicated 
than 2-D BSP trees  for back-to-front drawing, they do tend  to  be  larger  and  more 
difficult to  debug,  and they aren’t necessary for  floors and ceilings. One way to  get 
floors and ceilings out of  a 2-D BSP tree is to  change  the  nature of the BSP tree so 
that polygons are  no  longer  stored in the splitting  nodes.  Instead,  each leaf of the 
tree-that is, each  subspace carved out by the tree-would store  the polygons for  the 
walls, floors, and ceilings that lie on  the  boundaries of that space and face into  that 
space. The subspace would be convex, because all BSP subspaces are automatically 
convex, so the polygons in  that subspace  can  be drawn in any order.  Thus,  the s u b  
spaces in  the BSP tree would each be drawn in  turn as convex sets, back to front,  just 
as Listing 62.1  draws polygons back to front. 
This  sort of BSP tree,  organized  around volumes rather  than polygons, has  some 
additional  interesting  advantages  in  simulating physics, detecting collisions, doing 
line-of-sight determination,  and  performing volume-based operations  such as  dy- 
namic  illumination  and  event  triggering. However, that discussion will  have to wait 
until  another day. 
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hen to Hurl Conventional Math Wisdom 
,/ 

@id 

ow 
t to go with the first solution that comes into your head- 

but  not very often. 
When I turned 16 her  had  an aging, three-cylinder Saab-not one of the 

e late  OS, but a blunt-nosed, ungainly little wagon 
sardine-like comfort, with two of them perched  on 

as the car I learned to drive on,  and  the  one I took whenever I 
mother  didn’t  need it. 
, was a Volvo sedan, only a  couple of  years old and 

easily the classiest carfny family had ever owned. To the best of my recollection, as  of 
New  Year’s  of  my senior year, I had never driven that car.  However, I was going to a 
New  Year’s  party-in fact, I was going to chauffeur four  other people-and for rea- 
sons lost in the mists  of time, I was allowed  to  take the Volvo. So, one crystal  clear, 
stunningly cold night, I picked up my passengers, who included Robin Viola,  Kathy 
Smith, Jude Hawron ... and Alan,  whose  last name I’ll omit in case he wants to run for 
president someday. 
The party was at Craig Alexander’s house, way out in the middle of nowhere,  and it 
was a  good one. I heard Al Green  for  the first time, much beer was consumed (none 
by me, though),  and  around 2 a.m., we decided it was time to head  home. So we 
piled into  the Volvo, cranked  the  heat up to the max, and set  off. 
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We had  gone  about five miles when I sensed Alan was t y n g  to  tell me something. As 
I turned toward him, he said, quite expressively, “BLEARGH!” and deposited  a  con- 
siderable volume of  what had  until recently been  beer  and chips into his lap. 
Mind you, this wasn’t just any car Alan was tossing  his cookies in-it  was  my father’s 
prized Volvo. My reactions were up to the task; without a moment’s hesitation, I 
shouted, “Do it out  the window! Open  the window!”  Alan  obligingly rolled the win- 
dow  down and, with  flawless aim, sent some more erstwhile beer  and chips on its way. 
And it was here  that I learned  that fast decisions are  not necessarily good decisions. 
A second after the liquid flew out  the window, there was a  loud smacking sound,  and 
a yelp from Robin, as the  sodden mass hit  the slipstream and splattered  along  the 
length of the car. At that point,  I  did what I  should have done in the first place; I 
stopped  the car so Alan could  get out  and finish being sick in peace, while I assessed 
the full dimensions of the disaster. Not only was the  rear half of the car on  the pas- 
senger side-including Robin’s window, accounting  for  the yelp-covered,  but  the 
noxious substance had frozen solid. It looked like someone  had  melted an enor- 
mous candle, or possibly put cake frosting on  the car. 
The next  morning, my father was remarkably good-natured  about  the whole thing, 
considering, although I don’t  remember ever actually driving the Volvo again. My 
penance consisted of cleaning the car, no small punishment  considering  that I had 
to take a  hair dryer out to our  unheated garage and melt and clean the  gunk  one 
small piece at a time. 
One thing I learned  from this debacle is to pull over very,  very quickly if anyone 
shows signed of being ill, a bit of  wisdom that has proven useful a suprising number 
of times over the years. More important,  though, is the lesson that  it almost always 
pays to take at least a few seconds to size up a crisis situation and choose an effective 
response, and that’s served me well more times than I can count. 
There’s  a surprisingly close analog to this in programming.  Often, when faced with a 
problem  in his or  her code,  a  programmer’s response is to come up with a solution 
as  quickly  as  possible and immediately hack it  in. For all but  the simplest problems, 
though,  there  are side effects and design issues  involved that  should be thought 
through  before any coding is done. I try to think of bugs and  other problem situa- 
tions as opportunities to reexamine how  my code works,  as  well  as chances to detect 
and correct  structural defects I  hadn’t previously suspected; in  fact,  I’m  often able to 
simplify code as I fix a bug, thanks to the  understanding I gain in the process. 
Taking that  a  step  farther, it’s useful to reexamine assumptions periodically even if 
no bugs are involved. You might be surprised at how  quickly assumptions that  once 
were completely valid can deteriorate. 
For example, consider floating-point math. 
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Not Your  Father’s  Floating-point 
Until last  year, I  had never done any serious floating-point (FP) optimization, for  the 
perfectly good reason that FP math  had never been fast enough  for any  of the code 
I  needed to  write. It was an article of faith that FP, while undeniably convenient, 
because of its automatic support  for  constant precision over an  enormous  range of 
magnitudes, was just  not fast enough  for real-time programming, so I, like pretty 
much everyone else doing 3-D, expended a lot of time and effort in making fixed- 
point  do  the  job. 
That article of faith was true up  through  the 486, but all the old assumptions are  out 
the window on  the Pentium,  for  three reasons: faster FP instructions, a  pipelined 
floating-point unit (FPU) , and  the magic  of a parallel FXCH.  Taken together, these 
mean  that FP addition  and subtraction are nearly  as  fast  as integer  operations, and 
FP multiplication and division  have the  potential to be much faster-all  with the 
range and precision advantages of FP. Better yet, the FPU has its own set of eight 
registers, so the use of floating-point can help relieve pressure on  the x86’s integer 
registers, as  well. 
One effect of  all this is that with the  Pentium, floating-point on  the x86 has gone 
from  being irrelevant to real-time 3-D to being a key element. Quake uses FP all the 
way down into  the  inner  loop of the  span rasterizer, performing several FP opera- 
tions every 16 pixels. 
Floating-point has not only become important  for real-time 3-D on  the PC, but will 
soon become even more crucial. Hardware accelerators will take care of texture 
mapping and will increase feasible scene complexity, meaning  the CPU  will do less 
bit-twiddling and will have far more vertices to transform and project, and far more 
motion physics and line-of-sight calculations and  the like  as  well. 
By way of getting you started with floating-point for real-time 3-D, in this chapter I’ll 
examine the basics  of Pentium FP optimization, then look at how some key math- 
ematical  techniques  for 3-D-dot product, cross product,  transformation,  and 
projection-can be accelerated. 

Pentium  Floating-Point Optimization 
I’m going  to  assume  you’re  already  familiar  with  x86 FP code in general; for additional 
information, check out Intel’s Pentiurn Processor User’s Munuul (order #241430-001; 
1-800-548-4725), a book that you should have if you’re doing  Pentium  programming 
of any sort. I’d also recommend taking a look around http://www.intel.com. 
I’m going to focus on six core  instructions in this section: FLD,  FST, FADD, FSUB, 
FMUL, and FDIV. First,  let’s look at cycle times for these instructions. FLD takes 1 
cycle; the value  is pushed onto  the FP stack and ready for use on  the  next cycle.  FST 
takes 2 cycles, although when storing to  memory, there’s a  potential  extra cycle that 
can be lost, as  I’ll describe shortly. 
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FDIV is a painfully slow instruction, taking 39 cycles at full precision and 33 cycles at 
double precision, which is the default precision for Visual Ct+ 2.0. While FDIV ex- 
ecutes, the FPU  is occupied, and can’t process subsequent FP instructions  until FDIV 
finishes. However, during  the cycles  while FDIV  is executing (with the  exception of 
the  one cycle during which FDIV starts),  the  integer  unit can simultaneously execute 
instructions other  than IMUL.  (IMUL  uses the FPU, and can only overlap with  FDIV 
for  a few cycles.) Since the  integer  unit can execute two instructions per cycle, this 
means it’s  possible to have three instructions, an FDIV and two integer instructions, 
executing at  the same time. That’s exactly  what happens,  for  example,  during the 
second cycle  of this code: 

F D I V   S T ( O ) . S T ( l )  
ADD  EAX.ECX 
I N C  EDX 

There’s an  important limitation, though; if the instruction stream following the FDIV 
reaches  a FP instruction (or  an IMUL),  then  that  instruction and all subsequent 
instructions, both  integer and FP, must wait  to execute  until FDIV has finished. 
When a FADD,  FSUB, or FMUL instruction is executed,  it is 3 cycles before  the result 
can  be  used by another instruction. (There’s an exception: If the instruction that at- 
tempts to use the result is an FST to memory, there’s  an  extra cycle  lost, so it’s 4 cycles 
from  the  start of an arithmetic  instruction  until  an FST of that value can begin, so 

FMUL ST(O),ST(l) 
F S T  [ temp]  

takes 6 cycles in all.) Again, it’s  possible to execute integer-unit instructions  during 
the 2 (or 3, for FST)  cycles after one of these FP instructions starts. There’s  a  more 
exciting possibility here,  though: Given properly structured  code,  the FPU is capable 
of averaging 1 cycle per FADD,  FSUB, or FMUL. The secret is pipelining. 

Pipelining, Latency, and Throughput 
The Pentium’s FPU is the first pipelined x86  FPU. Pipehingmeans  that  the FPU is 
capable of starting an instruction every  cycle, and can simultaneously handle several 
instructions in various stages  of completion. Only certain x86 FP instructions allow 
another instruction to start on the  next cycle, though: FADD,  FSUB, and FMUL are 
pipelined, but FST and FDIV are  not. (FLD executes in a single cycle, so pipelining 
is not  an issue.) Thus, in the  code  sequence 

FADD, 
FSUB 
FADD, 
FMUL 

FADD, can start on cycle N, FSUB can start on cycle N+1, FADD, can start on cycle 
N+2, and FMUL can start on cycle N+3. At the start of  cycle N+3, the result of  FADD, 

1 168 Chapter 63 



is  available in the  destination  operand, because it’s been 3 cycles since the instruc- 
tion started; FSUB  is starting the final cycle  of calculation; FADD,  is starting its second 
cycle,  with one cycle  yet to go after this; and FMUL is about to be issued. Each of the 
instructions takes 3 cycles to produce  a result from  the time it starts, but because 
they’re simultaneously processed at  different pipeline stages, one instruction is  is- 
sued  and  one  instruction  completes every cycle. Thus,  the  latency of these 
instructions-that is, the time until  the result is  available-is 3 cycles, but  the  through- 
put-the rate at which the FPU can start new instructions-is 1 cycle. An exception 
is that  the FPU is capable of starting an FMUL only  every 2 cycles, so between these 
two instructions 

FMUL S T ( l ) . S T ( O )  
F M U L   S T ( E ) . S T ( O )  

there’s  a l-cycle  stall, and  the following three instructions execute just as  fast  as the 
above pair: 

FMUL ST(l),ST(O) 
F L D   S T ( 4 )  
FMUL ST(O).ST(l) 

There’s  a caveat here, though: A FP instruction can’t be issued until its operands  are 
available. The FPU can reach  a  throughput of 1 cycle per  instruction on this code 

FADD ST(l).ST(O) 
F L D  [temp] 
FSUB ST(l).ST(O) 

because neither  the FLD nor  the FSUB needs  the result from  the FADD. Consider, 
however 

FADD S T ( O ) . S T ( 2 )  
FSUB ST(O).ST(l) 

where the  ST(0)  operand to FSUB  is calculated by  FADD. Here, FSUB can’t start 
until FADD has completed, so there  are 2 stall  cycles between the two instructions. 
When dependencies like this occur, the FPU runs  at latency rather  than  throughput 
speeds, and performance can drop by as much as  two-thirds. 

FXCH 
One piece of the puzzle is still  missing.  Clearly, to get maximum throughput, we 
need to interleave FP instructions, such that at any one time ideally three instruc- 
tions are in the pipeline at once.  Further, these instructions must not  depend  on  one 
another for  operands. But ST(0) must always be one of the  operands; worse, FLD 
can only push into  ST(0) , and FST can only store  from ST(0). How, then, can we 
keep  three  independent instructions going? 
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The easy  answer  would be for  Intel  to  change  the FP registers from  a stack to  a  set of 
independent registers. Since they couldn’t do that,  thanks  to compatibility issues, 
they did  the  next best thing: They made  the FXCH instruction, which swaps ST(0) 
and any other FP register, virtually free.  In  general, if FXCH  is both  preceded  and 
followed by  FP instructions,  then  it takes no cycles to  execute.  (Application  Note 500, 
“Optimizations  for  Intel’s 32-bit Processors,” February 1994, available from http:// 
www.intel.com, describes all the  conditions under which FXCH  is free.)  This allows 
you to move the  target of a  pending  operation  from  ST(0)  to  another register, at  the 
same time bringing another register  into ST(0) where  it  can be used, all at  no cost. 
So, for  example, we can start  three  multiplications,  then use  FXCH  to  swap back to 
start  adding  the results of the first two multiplications,  without  incurring any  stalls, 
as  shown in Listing 63.1. 

LISTING  63.1  163- 1 .ASM 
: u s e   o f   f x c h   t o   a l l o w   a d d i t i o n  o f  f i r s t   t w o :   p r o d u c t s   t o   s t a r t   w h i l e   t h i r d  
: m u l t i p l i c a t i o n   f i n i s h e s  

f l d  [ v e c 0 + 0 ]   ; s t a r t s  & ends on c y c l e  0 
fmu l   [ vec l+O l  
f 1  d [ vec0+4] 

; s t a r t s  on c y c l e  1 
; s t a r t s  & ends on c y c l e  2 

fmu l   [ vec l+41 
f l d  [vecO+dl 

: s t a r t s  on c y c l e  3 

fmu l   [ vec l+81 
: s t a r t s  & ends  on c y c l e  4 
; s t a r t s  on c y c l e  5 

f x c h   s t ( 1 )  : n o   c o s t  
f a d d p   s t ( 2 ) . s t ( O )   : s t a r t s  on c y c l e  6 

The Dot Product 
Now we’re ready to look at fast FP for  common 3-D operations; we’ll start by looking 
at how to speed up the  dot  product. As discussed in  Chapter 30, the  dot  product is 
heavily used in 3-D to calculate cosines and to project  points  along vectors. The  dot 
product is calculated as d = ulvl + u2v2 + usv3;  with three  loads,  three multiplies, two 
adds, and  a store,  the  theoretical  minimum time for  this  calculation is 10 cycles. 
Listing  63.2  shows a  straightforward dot  product  implementation.  This version  loses 
7 cycles  to  stalls.  Listing  63.3 cuts the loss to 5 cycles  by doing all three FMULs first, 
then using FXCH to  set  the  third FXCH aside to  complete while the results of the 
first two FMULs, which  have completed,  are  added. Listing  43.3  still  loses 50 percent 
to stalls, but unless some other code is available to  be  interleaved with the dot prod- 
uct  code,  that’s all we can do to speed  things up. Fortunately, dot products  are  often 
used  in  contexts where there’s plenty of interleaving  potential, as  we’ll see when we 
discuss transformation. 

LISTING  63.2  1163-2.ASM 
; u n o p t i m i z e d   d o t   p r o d u c t ;  17 c y c l e s  

f l d  [vec0+0] : s t a r t s  & ends on c y c l e  0 
fmu l   [ vec l+Ol  ; s t a r t s  on c y c l e  1 
f l d  [vec0+41 : s t a r t s  & ends on c y c l e  2 
fmu l   [ vec l+41 ; s t a r t s  on c y c l e  3 
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f l d  [vecO+81 
fmul  [ vec l+8 ]  

f addp  s t ( l ) . s t ( O )  

faddp  s t ( l ) . s t ( O )  

s t a r t s  & ends on c y c l e  4 
s t a r t s  on c y c l e  5 
s t a l l s   f o r   c y c l e s   6 - 7  
s t a r t s  on c y c l e  8 
s t a l l s   f o r   c y c l e s   9 - 1 0  
s t a r t s  on c y c l e  11 
s t a l l s   f o r   c y c l e s   1 2 - 1 4  

f s t p   C d o t l   : s t a r t s  on c y c l e   1 5 .  
: ends on c y c l e   1 6  

LISTING 63.3 L63-3.ASM 
: o p t i m i z e d   d o t   p r o d u c t :   1 5   c y c l e s  

f l d  [vec0+01 : s t a r t s  & ends   on   cyc le  0 
fmu l   [ vec l+Ol  : s t a r t s  on c y c l e  1 
f l d  [vec0+41 : s t a r t s  & ends   on   cyc le  2 
fmu l   [ vec l+41 : s t a r t s  on c y c l e  3 
f l d  [vec0+8] ; s t a r t s  & ends on c y c l e  4 
fmu l   [ vec l+81 ; s t a r t s  on c y c l e  5 
f x c h   s t ( 1 )  ;no c o s t  
f a d d p   s t ( Z ) . s t ( O )  ; s t a r t s  on c y c l e  6 

f a d d p   s t ( l ) . s t ( O )   ; s t a r t s  on c y c l e  9 

f s t p   [ d o t ]   : s t a r t s  on c y c l e   1 3 .  

: s t a l l s   f o r   c y c l e s   7 - 8  

: s t a l l s   f o r   c y c l e s   1 0 - 1 2  

: ends  on   cyc le   14  

The Cross Product 
When  last  we looked at  the  cross  product,  we found that  it’s  handy  for  generating  a 
vector  that’s  normal  to two other  vectors. The cross  product  is  calculated as  [u2v3;u3v2 
u3vl-u1vs ulv2-u2vl]. The theoretical  minimum  cycle count for  the  cross  product 1s 21 
cycles.  Listing 63.4 shows a  straightfornard  implementation  that  calculates  each  com- 
ponent of the  result  separately,  losing 15 cycles  to  stalls. 

LISTING 63.4  L63-4.ASM 
; u n o p t i m i z e d   c r o s s   p r o d u c t :  36 c y c l e s  

f l d  [vec0+41 : s t a r t s  & ends  on c y c l e  0 
fmu l   [ vec l+8 ]  : s t a r t s  on c y c l e  1 
f l d  [vec0+8] : s t a r t s  & ends   on   cyc le  2 
fmul  [vec1+4] ; s t a r t s  on c y c l e  3 

f s u b r p   s t ( l ) . s t ( O )   ; s t a r t s  on c y c l e  6 

f s t p   [ v e c 2 + 0 ]   : s t a r t s  on c y c l e   1 0 .  

f l d  [vecO+8] : s t a r t s  & ends on c y c l e   1 2  
fmul  [vecl+O] : s t a r t s  on c y c l e   1 3  
f l d  [vec0+0] : s t a r t s  & ends   on   cyc le   14  
fmu l   [ vec l+8 ]  ; s t a r t s  on c y c l e   1 5  

f s u b r p   s t ( l ) . s t ( O )   ; s t a r t s  on c y c l e   1 8  

f s t p  [ v e c 2 + 4 1   ; s t a r t s  on c y c l e   2 2 .  

: s t a l l s   f o r   c y c l e s   4 - 5  

: s t a l l s   f o r   c y c l e s   7 - 9  

: ends on c y c l e  11 

; s t a l l s   f o r   c y c l e s   1 6 - 1 7  

: s t a l l s   f o r   c y c l e s   1 9 - 2 1  

: ends on c y c l e  23 

Floating-point for  Real-Time 3-D 1 171 



f l d  Cvec0+01 : s t a r t s  & ends   on   cyc le   24  
fmul  [vec1+4] : s t a r t s   o n   c y c l e  25 
f l d  [vec0+4] : s t a r t s  & ends on c y c l e   2 6  
fmul   [vec l+O]  : s t a r t s   o n   c y c l e  27 

f s u b r p   s t ( l ) . s t ( O )   : s t a r t s   o n   c y c l e   3 0  

f s t p  Cvec2+8] : s t a r t s  on c y c l e   3 4 .  

: s t a l l s   f o r   c y c l e s   2 8 - 2 9  

: s t a l l s   f o r   c y c l e s   3 1 - 3 3  

: ends  on   cyc le   35  

We couldn’t  get rid of  many  of the stalls in  the  dot  product  code because with  six 
inputs  and  one  output,  it was impossible to interleave all the operations. However, 
the cross product, with three outputs, is much  more  amenable to optimization. In 
fact, three is the magic number; because we have three calculation streams and  the 
latency of FADD,  FSUB, and FMUL is 3 cycles, we can eliminate almost every single 
stall in the cross-product calculation, as  shown in Listing 63.5. Listing 63.5 loses  only 
one cycle to a stall, the cycle before the first FST; the relevant FSUB has just finished 
on  the preceding cycle, so we run  into  the extra cycle of latency associated with FST. 
Listing 63.5 is more  than 60 percent faster than Listing 63.4, a striking illustration of 
the power of properly managing the Pentium’s FP pipeline. 

LISTING 63.5 L63-5.ASM 
: o p t i m i z e d   c r o s s   p r o d u c t :   2 2   c y c l e s  

f l d  Cvec0+41 : s t a r t s  & ends   on   cyc le  0 
fmu l  
f l d  

Cvec1+8] : s t a r t s  on c y c l e  1 
Cvec0+8] : s t a r t s  & ends   on   cyc le  2 

fmu l  
f l  d 

C v e c l + O l   : s t a r t s  on c y c l e  3 
Cvec0+01 : s t a r t s  & ends on c y c l e  4 

fmu l  
f l d  

C v e c l + 4 1   : s t a r t s  on c y c l e  5 
Cvec0+81 : s t a r t s  & ends on c y c l e  6 

fmu l  
f l d  

Cvec1+41 : s t a r t s  on c y c l e  7 
Cvec0+01 : s t a r t s  & ends on c y c l e  8 

fmu l  
f l d  

C v e c l + 8 I   : s t a r t s  on c y c l e  9 
Cvec0+41 : s t a r t s  & ends on c y c l e   1 0  

fmu l   [ vec l+Ol  : s t a r t s  on c y c l e  11 
f x c h   s t ( 2 )  : no   cos t  
f s u b r p   s t ( 5 ) . s t ( O )  : s t a r t s  on c y c l e   1 2  
f s u b r p   s t ( 3 ) . s t ( O )  : s t a r t s  on c y c l e   1 3  
f s u b r p   s t ( l ) . s t ( O )  : s t a r t s  on c y c l e   1 4  
f x c h   s t ( 2 )  : n o   c o s t  

: s t a l l s   f o r   c y c l e   1 5  

: ends on c y c l e   1 7  

: ends   on   cyc le   19  

: ends on c y c l e   2 1  

f s t p  [vecE+O] : s t a r t s  on c y c l e   1 6 .  

f s t p  Cvec2+41 : s t a r t s  on c y c l e   1 8 .  

f s t p  [vec2+81 : s t a r t s  on c y c l e   2 0 .  

Transformation 
Transforming a  point,  for example from worldspace to viewspace, is one of the most 
heavily used FP operations  in realtime 3-D. Conceptually, transformation is nothing 
more  than  three dot products and  three  additions, as I will discuss in Chapter 61. 
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(Note  that  I'm talking about  a subset of a  general 4x4 transformation matrix, where 
the  fourth row is always implicitly [0 0 0 11. This limited form suffices for common 
transformations, and does 25 percent less  work than  a full 4x4 transformation.) 
Transformation is calculated as: 

m31 m32 m33 m34 
0 0 0 1 1  

-I 

" 

U1 

U, 

u3 
1 
" 

'1 = mllul + m12u2 + m13u3 + m14 

'2 = m21u1 + m22u2 + m23u3 + m24 

'3 = m31u1 + m32u2 + m33u3 + m34. 

When it comes to implementation, however, transformation is quite  different  from 
three  separate dot products and additions, because once again the magic number 
three is  involved. Three separate dot products and additions would take 60 cycles if 
each were calculated using the  unoptimized  dot-product  code of Listing 63.2, and 
would  take 54 cycles  if done  one after the  other using the faster dot-product  code of 
Listing 63.3, in each case  followed by the a final addition per  dot  product. 
When fully interleaved, however,  only a single cycle is lost (again to the extra cycle  of 
FST latency), and  the cycle count  drops to 34, as  shown in Listing 63.6. This means 
that on a 100 MHz Pentium, it's theoretically possible  to do nearly 3,000,000 trans- 
forms per second,  although that's a purely hypothetical number, due to cache effects 
and set-up costs.  Still, more  than 1,000,000 transforms per second is certainly fea- 
sible; at a  frame  rate of 30 Hz, that's an impressive  30,000 transforms per frame. 

LISTING  63.6  163-6.ASM 
: o p t i m i z e d   t r a n s f o r m a t i o n :   3 4   c y c l e s  

f l d  [vecO+01 
fmu l  [ m a t r i x + O l  
f l d  [vec0+01 
fmu l  [ m a t r i x + l 6 1  
f l d  Cvec0+0] 
fmul  [mat r i x+321 
f l d  [vec0+41 
fmu l  [ m a t r i x + 4 1  
f l d  [vec0+41 
fmu l  [mat r i x+20]  
f l d  [vec0+43 
fmu l  [mat r i x+361 
f x c h  s t ( 2 )  
f a d d p  s t ( 5 ) , s t ( O )  
faddp s t ( 3 ) , s t ( O )  
faddp s t ( l ) , s t ( O )  
f l d  [vecO+81 

: s t a r t s  & ends on c y c l e  0 
; s t a r t s  on c y c l e  1 
; s t a r t s  & ends on c y c l e  2 
: s t a r t s  on c y c l e  3 
: s t a r t s  & ends   on   cyc le  4 
; s t a r t s  on c y c l e  5 
: s t a r t s  & ends on c y c l e  6 
: s t a r t s  on c y c l e  7 
; s t a r t s  & ends  on c y c l e  8 
: s t a r t s  on c y c l e  9 
; s t a r t s  & ends   on   cyc le   10  
: s t a r t s  on c y c l e  11 
:no c o s t  
: s t a r t s   o n   c y c l e   1 2  
; s t a r t s  on c y c l e   1 3  
: s t a r t s  on c y c l e   1 4  
: s t a r t s  & ends on c y c l e  15  

Floating-point for Real-Time 3-D 1 173 



fmul 
fl d 
fmul 
fld 
fmul 
fxch 
faddp 
faddp 
faddp 
fxch 
f add 
fxch 
fadd 
fxch 
fadd 
fxch 
fstp 

fstp 

fstp 

[rnatrix+E] 
[vecO+El 
[matrix+241 
[vecO+81 
[matrix+40] 
st(2) 
st(5),st(O) 
st(3).st(O) 
st(l).st(O) 
st(2) 
[matrix+lEl 
st(1) 
[matrix+28] 
st(2) 
[matrix+441 
st(1) 
[vecl+Ol 

[vecl+81 

[vecl+41 

;starts on cycle 16 
;starts & ends on cycle 17 
:starts  on  cycle 18 
;starts & ends on cycle 19 
;starts on cycle 20 
:no cost 
:starts  on  cycle  21 
;starts on cycle 22 
;starts on cycle  23 
;no cost 
;starts on cycle 24 
;starts on cycle  25 
;starts on cycle  26 
;no  cost 
:starts  on  cycle 27 
:no cost 
;starts on cycle 28, 
; ends  on  cycle  29 
;starts on cycle 30. 
: ends on cycle 31 
;starts on cycle 32, 
; ends  on  cycle 33 

Projection 
The final optimization we’ll look at is projection  to  screenspace.  Projection itself is 
basically nothing  more  than  a divide (to  get l / z ) ,  followed by two multiplies (to  get 
x/z and y/z), so there wouldn’t seem to  be  much  in  the way  of  FP optimization 
possibilities there. However, remember  that  although FDIV has a latency of up to 39 
cycles, it can overlap with integer  instructions  for all but  one of those cycles. That 
means  that if  we can  find  enough independent  integer work to do before we need 
the l / z  result, we can effectively reduce  the cost of the FDIV to one cycle. Projection 
by itself doesn’t  offer  much with  which to overlap, but  other work such as clamping, 
window-relative adjustments, or 2-D clipping  could  be  interleaved with the FDIV for 
the  next  point. 
Another  dramatic  speed-up is possible by setting  the  precision of the FPU down to 
single precision via  FLDCW, thereby  cutting  the time FDIV takes to  a  mere 19 cycles. 
I don’t have the space to discuss reduced  precision  in  detail  in this book,  but  be 
aware that  along with potentially  greater  performance,  it  carries  certain risks,  as  well. 
The  reduced  precision, which  affects FADD,  FSUB,  FMUL,  FDIV, and FSQRT, can 
cause subtle  differences  from  the  results you’d get using compiler  defaults. If  you 
use reduced  precision, you should be on the  alert  for  precision-related  problems, 
such as clipped values that vary more  than  you’d  expect  from  the precise clip point, 
or  the  need for using larger  epsilons  in  comparisons  for  point-on-plane tests. 

Rounding Control 
Another useful area  that I can  note only in passing here is that of leaving the FPU in 
a  particular  rounding  mode while performing bulk operations of some sort. For 

- 
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example, conversion to int via the FIST instruction  requires  that  the FPU be in chop 
mode. Unfortunately, the FLDCW instruction must be used to get  the FPU into  and 
out of chop  mode,  and  each FLDCW takes 7 cycles, meaning  that compilers often 
take at least 14 cycles for each float->int conversion. In assembly,  you can just set the 
rounding state (or, likewise, the precision, for faster FDIVs) once  at  the start of the 
loop, and save all those FLDCW  cycles each time through  the  loop. This is even 
more  true  for ceil(), which  many compilers implement as horrendously inefficient 
subroutines, even though  there  are  rounding modes for both ceil() and floor(). Again, 
though, be aware that results of  FP calculations will be  subtly different  from com- 
piler default behavior while chop, ceil, or floor  mode is in effect. 
A final note:  There  are some speed-ups to be had by manipulating FP variables  with 
integer instructions. Check out Chris Hecker’s column in the February/March 1996 
issue  of Game Developer for details. 

A Farewell to 3-D Fixed-point 
As with  most optimizations, there  are  both benefits and hazards to floating-point 
acceleration, especially pedal-to-the-metal optimizations such as the last few  I’ve 
mentioned. Nonetheless, I’ve found floating-point to be generally both  more  robust 
and easier to  use than fixed-point even  with those maximum optimizations. Now 
that floating-point is fast enough  for real time, I  don’t expect to be doing  a whole lot 
of fixed-point 3-D math  from  here  on  out. 
And I won’t miss it a bit. 
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quake's visible-
surface 
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eparating All Things Seen from 

Years ago,  I was  wor anished video adapter manufac- 
clone. The fellow  who was designing Video  Seven’s 
ked around  the clock for  months to make his VGA 
nfident  he  had pretty much maxed out its perfor- 
ishing touches on his chip  design, however,  news 
r, Paradise, had  juiced  up  the  performance of the 

about what sort of FIFO, or how 
much it helped,  or ahything else. Nonetheless, Tom, normally an affable, laid-back 
sort,  took on  the wide-awake, haunted look of a man with too  much caffeine in him 
and  no answers to show for it, as he tried to figure out,  from hopelessly thin  informa- 
tion, what Paradise had  done. Finally, he  concluded  that Paradise must have put a 
write FIFO between the system bus  and  the VGA, so that when the CPU wrote to 
video memory, the write immediately went into  the FIFO, allowing the CPU to keep 
on processing instead of stalling each time it wrote to display  memory. 
Tom couldn’t  spare  the gates or  the time to do a full FIFO, but  he could implement  a 
onedeep FIFO, allowing the CPU to get one write ahead of the VGA. He wasn’t sure 
how  well it would work, but it was all he could do, so he  put it in and taped out  the  chip. 
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The  one-deep FIFO turned  out to work astonishingly well; for  a  time, Video Seven’s 
VGAs were the fastest around, a  testament  to Tom’s ingenuity and creativity under 
pressure. However, the truly remarkable part of this  story is that Paradise’s FIFO design 
turned  out to bear not the slightest resemblance  to Tom’s, and didn’t work as well. 
Paradise had stuck a read FIFO between  display  memory and the video output stage of 
the VGA, allowing the video output to  read  ahead, so that  when  the CPU wanted to 
access  display  memory, pixels could  come  from  the FIFO while the CPU  was serviced 
immediately. That did indeed help performance-but not as much as Tom’s  write FIFO. 

What  we  have here is  as  neat  a  parable  about  the  nature of creative  design  as  one p could  hope  to find. The scrap of news  about Paradise j .  chip  contained  almost no 
actual  information,  but  it  forced Tom to push  past the  limits  he had unconsciously 
set  in  coming  up  with  his  original  design.  And,  in  the  end, I think  that  the  single 
most  important  element of great  design,  whether  it  be hardware, software,  or  any 
creative  endeavor,  is  precisely  what  the  Paradise  news  triggered  in Tom: the  abil- 
ity  to  detect  the  limits  you  have  built  into  the  way you think  about your design,  and 
then  transcend  those  limits. 

The problem, of course, is  how to go about  transcending limits you don’t even  know 
you’ve imposed.  There’s no formula  for success, but two principles  can  stand you in 
good  stead: simplify and keep on trylng new things. 
Generally, if you find your code  getting more complex, you’re fine-tuning  a  frozen 
design, and it’s  likely  you can get more of a  speed-up, with  less code, by rethinking 
the  design. A really good design should  bring with it a moment of immense satisfac- 
tion in which everything falls into place, and you’re amazed at how little  code is 
needed  and how all the  boundary cases just work properly. 
As for how  to rethink  the  design, do it by pursuing whatever ideas  occur  to you, no 
matter how  off-the-wall  they seem. Many  of the truly brilliant design ideas I’ve heard 
of over the years sounded like nonsense at first, because they didn’t  fit my precon- 
ceived view  of the world. Often,  such  ideas  are  in  fact off-the-wall, butjust as the news 
about Paradise’s chip  sparked Tom’s imagination, aggressively pursuing seemingly 
outlandish ideas can open  up new design possibilities for you. 
Case in  point: The evolution of Quake’s 3-D graphics  engine. 

VSD: The  Toughest 3-0 Challenge of All 
I’ve spent most of my waking hours  for  the last  several months working on Quake,  id 
Software’s  successor to DOOM, and I  suspect I have a few more  months to go. The 
very best things don’t  happen easily, nor quickly-but when they happen, all the 
sweat becomes worthwhile. 
In terms of graphics, Quake is to DOOM as DOOM was to its predecessor, Wolfenstein 
3-D. Quake  adds  true,  arbitrary 3-D (you can look up  and down, lean, and even fall 
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on your side), detailed  lighting and shadows, and 3-D monsters and players in place 
of  DOOM’S sprites. Someday I hope to talk about how all that works, but  for  the  here 
and now I want to talk about what  is, in my opinion,  the toughest 3-D problem of  all: 
visible surface determination (drawing the  proper surface at each pixel), and its  close 
relative, culling (discarding non-visible  polygons  as  quickly as possible, a way  of accelerat- 
ing visible surface determination).  In  the interests of  brevity, I’ll use the  abbreviation 
VSD to mean  both visible surface  determination  and  culling  from now on. 
Why do I think VSD  is the toughest 3-D challenge?  Although  rasterization issues 
such as texture  mapping  are fascinating and  important, they are tasks  of  relatively 
finite  scope, and  are being moved into hardware as  3-D accelerators  appear; also, 
they only scale with increases in  screen  resolution, which are relatively modest. 
In contrast, VSD  is an  open-ended  problem,  and  there  are  dozens of approaches 
currently  in use. Even more significantly, the  performance of VSD, done  in  an unso- 
phisticated  fashion, scales directly with scene complexity, which tends  to  increase as 
a  square  or  cube  function, so this very rapidly becomes  the  limiting  factor  in  render- 
ing realistic worlds. I expect VSD to be the increasingly dominant issue in  realtime 
PC  3-D over the  next few years, as  3-D worlds become increasingly detailed. Already, 
a good-sized Quake level contains on  the  order of 10,000 polygons, about  three times 
as  many polygons as a  comparable DOOM level. 

The Structure of Quake Levels 
Before  diving into VSD, let me note that each Quake level  is stored as a single  huge 3-D 
BSP tree. This BSP tree, like  any BSP, subdivides  space, in this case along the planes of 
the polygons.  However, unlike the BSP tree I presented  in  Chapter 62, Quake’s BSP tree 
does  not  store polygons in the  tree  nodes, as part of the splitting  planes, but  rather 
in the empty (non-solid) leaves,  as  shown in  overhead view in Figure 64.1. 
Correct drawing order can be  obtained by drawing the leaves in front-to-back or 
back-to-front BSP order, again as discussed in  Chapter 62.  Also, because BSP leaves 
are always convex and  the polygons are  on  the  boundaries of the BSP leaves, facing 
inward, the polygons in a given  leaf can never obscure one  another  and can be drawn 
in any order.  (This is a  general  property of convex polyhedra.) 

Culling and Visible Surface Determination 
The process of  VSD  would  ideally  work  as  follows:  First,  you  would cull  all  polygons that 
are completely outside the view frustum (view pyramid), and would  clip away the irrel- 
evant portions of  any  polygons that are partially outside. Then, you  would  draw  only 
those  pixels  of each polygon that are actuallyvisible  from the  current viewpoint, as shown 
in overhead view in Figure  64.2,  wasting no time  overdrawing  pixels multiple times; note 
how little of the polygon  sets in Figure  64.2  actually need to  be drawn. Finally, in a per- 
fect world, the tests to figure out what parts of which  polygons are visible  would be free, 
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and the processing  time  would be the same for all  possible  viewpoints,  giving the game a 
smooth visual  flow. 
As it happens,  it is  easy to determine which polygons are outside the frustum or 
partially clipped, and it’s quite possible to figure out precisely  which  pixels need to  be 
drawn. Alas, the world  is far from perfect, and those tests are far from free, so the real 
trick is how to accelerate or skip various tests and still produce  the desired  result. 
As I discussed at  length in Chapter 62, given a BSP, it’s easy and inexpensive to walk 
the world in front-to-back or back-to-front order. The simplest VSD solution, which I 
in  fact  demonstrated  earlier, is to simply  walk the  tree back-to-front, clip each poly- 
gon to  the  frustum,  and draw it if it’s facing forward and  not entirely  clipped (the 
painter’s  algorithm). Is that  an  adequate  solution? 
For  relatively simple worlds, it is perfectly acceptable. It doesn’t scale very  well, though. 
One  problem is that as  you add  more polygons in the world, more transformations 
and tests have to be performed  to cull polygons that  aren’t visible; at some  point, 
that will bog considerably performance down. 

Nodes Inside and Outside the View Frustum 
Happily, there’s  a  good  workaround  for this particular  problem. As discussed earlier, 
each leaf of a BSP tree  represents  a convex subspace, with the  nodes  that  bound  the 
leaf delimiting the space. Perhaps less obvious is that  each node in  a BSP tree also 
describes a subspace-the subspace composed of all the node’s  children, as shown 
in Figure 64.3. Another way  of thinking of this is that  each node splits the subspace 
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into two pieces created by the  nodes above it in the tree, and  the node’s children 
then  further carve that subspace into all the leaves that  descend  from  the  node. 
Since a node’s subspace is bounded  and convex, it is  possible to test whether  it is 
entirely outside the frustum. If it is, all of the node’s children are certain to be fully 
clipped and can be rejected without any additional processing. Since most of the 
world is typically outside the frustum, many of the polygons in the world can be 
culled almost for  free, in huge, node-subspace chunks. It’s  relatively expensive to 
perform a  perfect test for subspace clipping, so instead bounding spheres or boxes 
are often  maintained  for  each  node, specifically for culling tests. 
So culling to the frustum isn’t a problem,  and  the BSP can be used to draw back-to- 
front. What, then, is the  problem? 

Overdraw 
The  problem  John Carmack, the driving technical force behind DOOM and  Quake, 
faced when he designed Quake was that in a  complex world, many scenes have an 
awful lot of  polygons in the frustum. Most of those polygons are partially or entirely 
obscured by other polygons, but  the painter’s algorithm described earlier  requires 
that every pixel of  every polygon in the  frustum  be drawn, often only to be over- 
drawn. In a 10,000-polygon Quake level, it would be easy to get a worst-case  overdraw 
level  of 10 times or  more;  that is, in some frames each pixel could  be  drawn 10 times 
or  more,  on average. No rasterizer is  fast enough to compensate  for  an  order of such 
magnitude  and  more work than is  actually  necessary to show a  scene; worse  still, the 
painter’s algorithm will cause a vast difference between best-case and worst-case  per- 
formance, so the  frame  rate can vary  wildly  as the viewer  moves around. 
So the  problem  John faced was  how to keep overdraw down to a  manageable level, 
preferably drawing each pixel exactly once, but certainly no  more  than two or  three 
times in the worst  case. As with frustum culling, it would be ideal if he could elimi- 
nate all  invisible  polygons in the frustum with  virtually no work. It would  also be a 
plus if he  could  manage to  draw only the visible parts of  partially-visible  polygons, 
but  that was a balancing act in  that it had to be a lower-cost operation  than  the 
overdraw that would otherwise result. 
When I arrived at id at  the  beginning of March 1995, John already had  an  engine 
prototyped  and a plan in mind,  and I assumed  that our work was a simple matter of 
finishing and optimizing that  engine. If I had  been aware of id’s  history,  however, I 
would  have known better. John  had  done  not only DOOM, but also the  engines  for 
Wolfenstein 3-D and several earlier games, and  had actually done several different 
versions of each  engine in the course of development  (once  doing  four  engines  in 
four weeks), for a total of perhaps 20 distinct engines over a four-year period.  John’s 
tireless pursuit of  new and better designs for Quake’s engine,  from every angle he 
could  think of, would end only when we shipped  the  product. 
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By three  months after I arrived, only one  element of the original VSD design was 
anywhere in sight, and  John  had taken the dictum of “try new things” farther  than 
I’d  ever seen it taken. 

The  Beam  Tree 
John’s original Quake design was to draw front-to-back, using a second BSP tree to 
keep track of what parts of the screen were already drawn and which  were  still empty 
and therefore drawable by the  remaining polygons.  Logically,  you can think of this 
BSP tree as being  a 2-D region describing solid and empty areas of the screen, as 
shown in Figure 64.4, but in fact it is a 3-D tree, of the sort known  as a beam tree. A 
beam  tree is a collection of 3-D wedges (beams),  bounded by planes, projecting out 
from  some center  point, in this case the viewpoint,  as  shown in Figure 64.5. 
In  John’s design, the  beam  tree started out consisting of a single beam  describing 
the  frustum; everything outside  that  beam was marked solid (so nothing would 
draw there),  and  the inside of the  beam was marked empty. As each new polygon 
was reached while  walking the world BSP tree front-to-back, that polygon was con- 
verted to a  beam by running planes  from its edges  through  the viewpoint, and any 
part of the  beam  that  intersected empty  beams in the  beam  tree was considered 
drawable and  added to the  beam  tree as a solid beam.  This  continued until either 
there were no  more polygons or  the  beam  tree  became entirely solid. Once  the 
beam  tree was completed,  the visible portions of the polygons that  had  contrib- 
uted to the  beam  tree were drawn. 
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Beams as wedges projecting from the viewpoint to polygon edges. 
Figure 64.5 

The advantage  to  working with a 3 D  beam tree, rather than a 2-D region, is that deter- 
mining which  side  of a beam plane a polygon  vertex is on involves  only checking the sign 
of the dot product of the ray to the vertex and the plane normal, because  all beam planes 
run through the origin (the viewpoint). Also, because a beam plane is completely  de- 
scribed by a single normal, generating a beam from a polygon edge requires only a 
crossproduct of the edge and  a ray from the edge to the viewpoint.  Finally, bounding 
spheres of BSP nodes can  be  used  to do the aforementioned bulk  culling  to the frustum. 
The early-out feature of the beam tree-stopping when the beam tree becomes solid- 
seems appealing, because it  appears to cap worst-case performance. Unfortunately, 
there  are still scenes where it’s  possible to see all the way to the sky or  the back wall  of 
the world, so in the worst case, all  polygons in the frustum will still  have to be tested 
against the beam  tree. Similar problems can arise from tiny  cracks due to numeric 
precision limitations. Beam-tree clipping is fairly time-consuming, and in scenes with 
long view distances, such as views across the top of a level, the total cost of beam 
processing slowed Quake’s frame  rate to a crawl. So, in the  end,  the beam-tree ap- 
proach proved to suffer from  much the same  malady  as the painter’s algorithm: The 
worst  case was much worse than  the average case, and it didn’t scale well  with in- 
creasing level  complexity. 

3-D Engine du lour 
Once  the  beam  tree was working, John relentlessly worked at  speeding  up  the 3-D 
engine, always t y n g  to  improve the design, rather than tweaking the implementation. 
At least once a week, and often every  day, he would walk into my office and say 
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“Last night I couldn’t  get to sleep, so I was thinking ...” and  I’d know that I was 
about  to  get my mind  stretched yet again. John  tried many ways to  improve the 
beam  tree, with some success, but  more  interesting was the  profusion of  wildly 
different  approaches  that  he  generated, some of which  were merely  discussed, oth- 
ers of which  were implemented in  overnight or weekend-long  bursts of coding,  in 
both cases ultimately  discarded or  further evolved when they turned  out  not  to 
meet  the design  criteria well enough.  Here  are some of those  approaches,  pre- 
sented in  minimal  detail  in  the  hopes  that, like Tom  Wilson  with the Paradise FIFO, 
your  imagination will be  sparked. 

Subdividing Raycast 
Rays are cast in  an 8x8 screen-pixel grid; this is a highly efficient operation because 
the first intersection with a  surface  can be found by simply clipping the ray into  the 
BSP tree,  starting at  the viewpoint, until  a solid leaf is reached. If adjacent rays don’t 
hit  the  same  surface,  then  a ray  is cast halfway between, and so on until all adjacent 
rays either  hit  the same surface or  are  on  adjacent pixels; then  the block around 
each ray  is drawn from the polygon that was hit. This scales  very  well, being  limited 
by the  number of pixels, with no overdraw. The  problem is dropouts; it’s quite pos- 
sible for small polygons to fall between rays and vanish. 

Vertex-Free  Surfaces 
The world is represented by a set of surface  planes. The polygons are implicit in the 
plane  intersections, and  are  extracted  from  the planes as a final step  before drawing. 
This makes for fast clipping and a very small data set (planes  are  far  more  compact 
than polygons), but it’s time-consuming to extract polygons from  planes. 

The Draw-Buffer 
Like a z-buffer, but with 1 bit  per  pixel,  indicating  whether  the pixel  has been 
drawn yet. This  eliminates overdraw, but  at  the cost of an  inner-loop  buffer  test, 
extra writes and  cache misses, and, worst of all,  considerable complexity. Varia- 
tions  include  testing  the draw-buffer  a byte at a  time and completely  skipping 
fully-occluded bytes, or  branching off each draw-buffer byte to one of  256 un- 
rolled  inner  loops  for drawing 0-8 pixels, in  the process possibly taking  advantage 
of the ability of the x86 to  do  the perspective  floating-point  divide  in  parallel 
while 8 pixels are  processed. 

Span-Based Drawing 
Polygons are rasterized into spans, which are  added to a global span list and clipped 
against that list so that only the  nearest  span  at  each pixel remains. Little sorting is 
needed with front-to-back walking, because if there’s any overlap, the span already in 
the list is nearer.  This  eliminates overdraw, but  at  the cost of a  lot of span  arithmetic; 
also, every polygon still has to be  turned  into spans. 
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Portals 
The holes where polygons are missing on surfaces are tracked, because it’s  only 
through such portals that line-of-sight can extend. Drawing goes front-to-back, and 
when  a  portal is encountered, polygons and portals behind it are clipped to its  lim- 
its, until no polygons or portals remain visible. Applied recursively,  this  allows drawing 
only the visible portions of  visible  polygons, but at the cost  of a considerable amount 
of portal clipping. 

Breakthrough! 
In  the  end,  John  decided  that  the  beam  tree was a  sort of second-order  structure, 
reflecting information already implicitly contained in the world BSP tree, so he 
tackled the  problem of extracting visibility information directly from  the world 
BSP tree.  He  spent a week on this, as a  byproduct devising a perfect DOOM (2-D) 
visibility architecture, whereby  a  single,  linear walk  of a DOOM BSP tree  produces 
zero-overdraw 2-D visibility. Doing the  same in 3-D turned  out to be a much  more 
complex  problem,  though,  and by the  end of the week John was frustrated by the 
increasing complexity and persistent  glitches in the visibility code.  Although  the 
direct-BSP approach was getting closer to working, it was taking more  and  more 
tweaking, and a  simple,  clean design didn’t  seem to be falling out.  When  I left 
work one Friday, John was preparing to try to get  the direct-BSP approach working 
properly over the  weekend. 
When  I  came  in on Monday, John  had  the look of a  man who had  broken  through to 
the  other side-and  also the look of a  man who hadn’t  had  much sleep. He  had 
worked all weekend on  the direct-BSP approach,  and  had  gotten it working reason- 
ably  well,  with insights into how to finish it off. At 3:30 Monday morning, as he lay in 
bed, thinking about portals, he  thought of precalculating and storing in each leaf a 
list  of  all  leaves  visible from  that leaf, and  then  at  runtime  just drawing the visible 
leaves back-to-front for whatever  leaf the viewpoint happens to be in,  ignoring all 
other leaves entirely. 
Size was a concern; initially, a raw, uncompressed potentially visible set (PVS) was 
several  megabytes  in  size.  However, the PVS could be stored as a bit vector, with 1 bit 
per leaf, a structure  that  shrunk a great  deal with simple zero-byte compression. 
Those steps, along with changing  the BSP heuristic to generate fewer  leaves (choos- 
ing as the  next splitter the polygon that splits the fewest other polygons appears to 
be the best  heuristic) and sealing the outside of the levels so the BSPer can  remove 
the outside surfaces, which can never be seen, eventually brought  the PVS down  to 
about 20  Kb for  a good-size level. 
In  exchange  for  that 20  Kb, culling leaves outside the  frustum is speeded  up (be- 
cause only leaves in the PVS are  considered),  and culling  inside the  frustum costs 
nothing  more  than a little overdraw (the PVS for a leaf includes all leaves  visible 
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from  anywhere in  the leaf, so some overdraw, typically on  the  order of 50 percent 
but  ranging  up  to 150 percent, generally occurs).  Better yet, precalculating  the 
PVS results  in  a leveling of performance; worst case is no  longer  much worse than 
best  case,  because there’s  no  longer  extra VSD processing-just more polygons 
and  perhaps some extra overdraw-associated with complex  scenes. The first  time 
John showed  me his working  prototype, I went  to the most  complex  scene I knew 
of, a  place  where the  frame  rate used  to grind down into  the single digits, and  spun 
around smoothly, with no perceptible slowdown. 
John says precalculating  the PVS  was a logical evolution of the  approaches  he  had 
been  considering,  that  there was no  moment when he said “Eureka!”  Nonetheless, 
it was clearly a breakthrough  to a  brand-new, superior  design, a  design  that, to- 
gether with a  still-in-development  sorted-edge  rasterizer that completely  eliminates 
overdraw, comes  remarkably close to  meeting  the “perfect-world’’ specifications we 
laid out  at  the start. 

Simplify, and Keep on Trying New Things 
What  does  it all mean? Exactly what  I  said up  front: Simplify, and  keep  trying new 
things. The  precalculated PVS is simpler  than any of the  other  schemes  that  had 
been  considered (although precalculating the PVS  is an  interesting task that I’ll dis- 
cuss another  time).  In  fact,  at  runtime  the  precalculated PVS is just a constrained 
version of the  painter’s  algorithm. Does that  mean it’s not particularly  profound? 
Not  at all. All really great designs  seem  simple and even obvious-once they’ve 
been  designed. But the process of getting  there  requires  incredible  persistence 
and a willingness to try lots of different  ideas  until  the  right  one falls into  place, as 
happened  here. 

p My  friend Chris  Hecker  has a theory that all approaches work out to  the same 
thing in  the  end,  since  they all reflect the  same underlying state and functionali@. 
In terms  of underlying theory, I’ve  found  that  to be true; whether you do  perspec- 
tive texture mapping  with a divide or with incremental hyperbolic calculations, 
the numbers do exactly the  same thing. When  it  comes to implementation, however, 
my  experience  is that simply time-shifting an approach, or matching hardware 
capabilities better, or caching can make  an astonishing difference. 

My friend Terje Mathisen likes to say that “almost all programming  can  be viewed  as 
an exercise in  caching,”  and that’s exactly what John  did. No matter how fast he 
made his VSD calculations, they could never be as fast as precalculating and looking 
up  the visibility, and his most inspired move was to yank himself out of the “faster 
code”  mindset  and realize that  it was in fact possible to precalculate (in effect, cache) 
and look up  the PVS. 
The  hardest  thing in the world is to step  outside  a familiar, pretty  good  solution to a 
difficult problem  and look  for  a  different, better solution. The best ways I know to do 
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that  are  to  keep trying new,  wacky things, and always,  always,  always try to simplify. 
One of John’s goals is to have  fewer lines of code  in  each 3-D game  than  in  the 
previous game, on  the assumption that as he  learns  more,  he  should  be  able  to do 
things  better with  less code. 
So far, it seems to have worked out pretty well for  him. 

Learn Now, Pay  Forward 
There’s one  other thing-I’d like  to mention  before  I close  this chapter. Much  of  what 
I’ve learned,  and  a  great  deal of what  I’ve written, has been  in  the pages of Dr: Dobb’s 
Journal. As far back  as I can remember, DDJhas epitomized  the  attitude  that  sharing 
programming  information is A Good Thing.  I know a  lot of programmers who  were 
able to leap  ahead in their  development because of Hendrix’s Tiny C, or Stevens’ D- 
Flat, or simply by browsing  through DDJs annual  collections.  (Me,  for  one.) 
Understandably, most companies  understandably view sharing  information in a very 
different way,  as potential  profit lost-but that’s what  makes DDJso valuable to  the 
programming community. 
It is in that spirit  that id  Software is allowing  me to  describe  in  these pages (which 
also appeared  in  one of the DDJspecial issues)  how Quake works,  even before  Quake 
has shipped.  That’s also why id has placed the full source  code  for Wolfenstein 3-D 
on ftp.idsoftware.com/idstuff/source; and  although you can’tjust  recompile  the  code 
and sell it, you can  learn how a full-blown, successful game works. Check wolfsrc.txt 
in  the  above-mentioned  directory  for details on how the  code may be  used. 
So remember, when it’s  legally possible, sharing  information  benefits us  all in  the 
long  run. You can pay forward the  debt  for  the  information you gain here  and else- 
where by sharing what you  know whenever you can, by writing an article or book or 
posting on  the Net.  None of us learns in a vacuum; we all stand  on  the  shoulders of 
giants  such as Wirth and Knuth and  thousands of others.  Lend your shoulders  to 
building  the  future! 
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chapter 65

3-d clipping and other thoughts



hat’s Inside Your Field of View 
is changing, and I’m concerned. By  way of explanation,  three 

anecdotes. 
Anecdote the first: In 

ii ” : ;n k ”&, 
on to one of his  books,  Frank Herbert,  author of 
proached by a friend who  claimed he  (the friend) 

d offered  to  tell  it  to  Herbert.  In return, Herbert had  to 
a story, he’d split the money from the story  with  this 

nse was that ideas  were a dime a dozen; he  had  more story  ideas 
me. The  hard  part was the writing, not  the ideas. 
ogramming micros for 15 years, and writing about 
until about a year ago, I had never-not  once!- 

had anyone offer to sell me a technical idea.  In  the last  year,  it’s happened multiple 
times,  generally via unsolicited email along  the lines of Herbert’s tale. 
This trend toward  selling  ideas is one symptom  of an  attitude  that I’ve noticed more 
and  more  among programmers over the past few  years-an attitude of which  soft- 
ware patents  are  the most  obvious  manifestation-a desire to  think  something up 
without breaking a sweat, then  let  someone else’s hard work  make  you  money.  It’s an 
attitude  that says, “I’m so smart  that my ideas alone set me apart.” Sorry,  it doesn’t 
work that way in  the real world. Ideas are a dime a dozen in programming, too; I 
have a lifetime’s  worth  of  article and software ideas written  neatly in a notebook, and 
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I know  several  truly original thinkers who have far  more yet.  Folks,  it’s not  the ideas; 
it’s design, implementation, and especially hard work that make the difference. 
Virtually  every idea I’ve encountered in 3-D graphics was invented  decades ago. You 
think you  have a clever graphics idea?  Sutherland, Sproull, Schumacker, Catmull, 
Smith, Blinn, Glassner, Kajiya, Heckbert, or Teller probably thought of your idea 
years ago. (I’m serious-spend a few  weeks reading  through  the  literature on 3-D 
graphics, and you’ll be amazed at what’s already been invented and published.) If 
they thought it was important  enough, they wrote a  paper  about  it,  or  tried to com- 
mercialize it, but what  they didn’t  do was try  to charge  people  for  the  idea itself. 
A closely related  point is the astonishing lack  of gratitude some programmers show 
for the  hard work and sense of community that went into building the knowledge 
base  with  which  they  work.  How about this? Anyone  who thinks they have a  unique 
idea  that they want to “own” and milk for money can do so-but first they  have to 
track down and appropriately  compensate all the  people who made possible the 
compilers, algorithms, programming courses, books, hardware, and so forth  that 
put  them in  a position to have their  brainstorm. 
Put  that way, it  sounds like a silly idea, but  the  idea  behind software patents is pre- 
cisely that eventually everyone will own parts of our communal knowledge base, and 
that  programming will become in large part  a process of properly identifylng and 
compensating  each and every owner of the  techniques you use. All I can say is that if 
we do go down that  path,  I  guarantee  that it will be a  poorer profession for all  of us- 
except the  patent attorneys, I guess. 
Anecdote the  third: A while  back, I  had  the  good  fortune to have lunch down by 
Seattle’s waterfront with  Neal Stephenson,  the  author of Snow Crash and The Diu- 
mond Age (one of the best SF books I’ve come across in  a  long time). As he talked 
about  the  nature of networked technology and what he  hoped to see emerge, he 
mentioned  that  a  couple of  blocks  down the  street was the pawn shop where Jimi 
Hendrix  bought his first guitar. His point was that if a  cheap  guitar  hadn’t  been 
available, Hendrix’s unique  talent would never have emerged. Similarly, he views the 
networking of  society  as a way to get affordable creative tools to many people, so as 
much  talent as  possible can be unearthed  and developed. 
Extend that to programming. The way it should work is that  a steady  flow  of informa- 
tion circulates, so that everyone can do  the best work they’re capable of. The idea is 
that I don’t gain by intellectually impoverishing you, and vice-versa;  as we both com- 
pete and (intentionally or otherwise) share ideas, both our products  become better, 
so the market grows larger and everyone benefits. 
That’s the way things have worked with programming  for  a  long time. So far as I can 
see it has worked remarkably well, and  the  recent signs  of change make me con- 
cerned  about  the  future of our profession. 
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Things aren’t  changing everywhere, though; over the past  year,  I’ve circulated a good 
bit of info about 3-D graphics, and plan to keep on  doing  it as long as I can. Next, 
we’re going to  take a look at 3-D clipping. 

3-D Clipping Basics 
Before I  got deeply into 3-D, I  kept  hearing how  difficult 3-D clipping was, so I was 
pleasantly surprised when I actually got around to  doing it and  found that it was 
quite straightforward, after all. At heart, 3-D clipping is nothing  more  than evaluat- 
ing whether and where a line  intersects a plane; in this context, the plane is considered 
to  have an “inside” (a side on which points are to be  kept) and an “outside” (a side 
on which points are to be removed or clipped). We can  easily extend this  single 
operation to  polygon clipping, working  with the line segments that form the edges 
of a polygon. 
The most common application of 3-D clipping is as part of the process  of hidden 
surface removal. In this application, the  four planes that make up  the view volume, 
or view frustum,  are used  to  clip away parts of  polygons that  aren’t visible. Sometimes 
this  process includes clipping to near and far plane, to restrict the depth of the 
scene. Other applications include clipping to splitting planes while building BSP 
trees, and clipping moving  objects to convex  sectors  such  as BSP leaves. The clipping 
principles I’ll  cover  apply to any sort of 3-D clipping task, but clipping to the frustum 
is the specific context  in which  I’ll  discuss clipping below. 
In a commercial application, you  wouldn’t  want  to  clip  every  single  polygon in the 
scene database individually. As I mentioned in the last chapter,  the use  of bounding 
volumes  to  cull chunks of the scene database that fall entirely outside the  frustum, 
without having  to consider each polygon  separately, is an important  performance 
aspect  of scene rendering.  Once that’s done, however, you’re still left  with a set of 
polygons that may be entirely inside, or partially or completely outside, the frustum. 
In this chapter, I’m going to  talk about how  to  clip those remaining polygons. 1’11 
focus on the basics  of 3 D  clipping, the stuff I wish I’d known when I started doing 3-D. 
There  are plenty  of ways to speed up clipping under various circumstances, some of 
which  I’ll mention,  but  the material covered  below will  give  you the tools  you need to 
implement  functional 3-D clipping. 

Intersecting a Line  Segment with a Plane 
The fundamental 3-D clipping operation is clipping a line segment to a plane. There 
are two parts to  this operation:  determining if the line is clipped by (intersects) the 
plane at all and, if it is clipped, calculating the  point of intersection. 
Before we can  intersect a line  segment with a plane, we must  first  define  how  we’ll  repre- 
sent the line segment and  the plane. The segment will be represented in the obvious 
way by the (x,y,z) coordinates of its two endpoints; this extends well to  polygons, 
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where each vertex is an (x,y,z) point. Planes can  be described in  many ways, among 
them  are  three  points  on  the  plane, a point  on  the  plane  and  a  unit  normal,  or  a  unit 
normal and a distance  from  the  origin  along  the  normal; we’ll use the  latter defini- 
tion.  Further, we’ll define  the  normal to point to the inside (unclipped  side) of the 
plane. The structures  for  points, polygons, and planes are shown  in  Listing 65.1. 

LISTING 65.1 165-1 .h 
t y p e d e f   s t r u c t  I 

doub le  vC31; 
1 p o i n t - t ;  

t y p e d e f   s t r u c t  I 

I po in t2D- t :  

t y p e d e f   s t r u c t  { 

d o u b l e   x .   y ;  

i n t   c o l   o r :  
i n t   n u m v e r t s  ; 
p o i n t - t  verts[MAX-POLY-VERTSl; 

1 po lygon- t :  

t y p e d e f   s t r u c t  I 
i n t   c o l o r ;  
i n t  
po in t2D- t  vertsCMAX-POLY-VERTSI; 

numver ts ;  

1 polygon2D-t; 

t y p e d e f   s t r u c t   c o n v e x o b j e c t L s  { 
s t r u c t   c o n v e x o b j e c t - s  *pnex t ;  
p o i n t - t  c e n t e r ;  
doub le  v d i   s t ;  
i n t  numpolys : 
po lygon- t  * p p o l y ;  

1 c o n v e x o b j e c t - t :  

t y p e d e f   s t r u c t  I 
d o u b l e   d i s t a n c e ;  
p o i n t - t   n o r m a l  ; 

1 p l a n e - t ;  

Given a  line  segment, and  a plane  to which to clip the  segment,  the first question is 
whether  the  segment is entirely on the inside or  the  outside of the  plane,  or  inter- 
sects the  plane. If the  segment is on the inside, then  the  segment is not clipped by 
the  plane, and we’re done. If it’s on the  outside,  then it’s entirely  clipped, and we’re 
likewise done. If it  intersects  the  plane,  then we have to remove the  clipped  portion 
of the  line by replacing  the  endpoint on the  outside of the  plane with the  point of 
intersection between the  line and the  plane. 
The way to answer  this question is to find out which  side  of the  plane  each  endpoint 
is on,  and  the  dot  product is the  right tool for  the job. As you  may recall from Chap- 
ter 61, dotting any vector with a  unit  normal  returns  the  length of the  projection of 
that vector onto the  normal.  Therefore, if  we take  any point  and  dot  it with the  plane 
normal we’ll find out how far from the origin the  point is,  as measured  along  the 
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plane  normal.  Another way to think of this is to say that  the dot  product of a point 
and  the  plane  normal  returns how far from  the origin along  the  normal  the  plane 
would  have  to  be in order to have the  point lie  within the  plane, as  if  we slid the 
plane  along the normal until it touched  the  point. 
Now, remember  that our definition of a plane is a unit  normal and a distance along 
the  normal. That means that we have a distance for  the  plane as part of the  plane 
structure, and we can get  the distance at which the  plane would  have to be to touch 
the  point from the dot  product of the  point  and  the normal; a simple comparison of 
the two values  suffices to tell  us  which  side  of the  plane the  point is on. If the dot 
product of the  point  and  the plane  normal is greater  than  the  plane distance, then 
the  point is in front of the  plane (inside the volume being clipped to); if  it’s  less, 
then  the  point is outside the volume and should  be clipped. 
After we do this  twice, once  for each line endpoint, we know  everything  necessary to 
categorize our line segment. If both  endpoints  are  on  the same  side  of the  plane, 
there’s  nothing  more  to do, because the line is either completely inside or com- 
pletely outside; otherwise,  it’s on to  the  next  step, clipping the  line  to  the  plane by 
replacing the outside vertex  with the  point of intersection of the line and  the plane. 
Happily,  it turns out that we already  have  all  of the information we need to do this. 
From our earlier tests, we already know the  length  from  the  plane,  measured  along 
the  normal, to the inside endpoint; that’s just  the distance,  along the  normal, of 
the inside endpoint from the origin (the  dot  product of the  endpoint with the 
normal), minus the  plane  distance, as  shown in Figure 65.1. We also  know the 
length of the line  segment, again measured as projected onto  the  normal; that’s 
the difference between the distances along the  normal of the inside and outside 
endpoints  from  the  origin.  The  ratio of these two lengths is the  fraction of the 
segment that remains  after  clipping. If  we scale the  x, y, and z lengths of the  line 
segment by that  fraction,  and  add  the results to the inside endpoint, we get a new, 
clipped endpoint  at  the  point of intersection. 

Polygon  Clipping 
” . .  - 

Line clipping is fine for wireframe rendering,  but what we really  want to do is  poly- 
gon rendering of  solid  models,  which  requires  polygon  clipping. As with  line  segments, 
the clipping process  with  polygons is to determine if they’re inside, outside, or par- 
tially inside the clip volume, lopping off  any  vertices that  are outside the clip  volume 
and substituting vertices at  the intersection between the polygon and  the clip plane, 
as  shown in Figure 65.2. 
An easy  way to  clip a polygon  is  to decompose it into a set of edges, and clip each edge 
separately  as a line segment. Let’s define a polygon  as a set of  vertices that wind  clock- 
wise around  the outside  of the polygonal area, as  viewed from the  front side of the 
polygon; the edges are implicitly defined by the  order of the vertices. Thus,  an edge is 
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the line segment described by the two adjacent vertices that form its endpoints. We’ll 
clip a polygon by clipping each edge individually, emitting vertices for the resulting 
polygon as appropriate,  depending  on  the clipping state of the edge. If the start point 
of the edge is inside, that point is added to the  output polygon. Then, if the start and 
end points are in different states (one inside and  one  outside), we clip the edge to the 
plane, as described above, and  add  the  point  at which the line intersects the clip plane 
as the next polygon  vertex,  as  shown  in  Figure 65.3. Listing 65.2 shows a polygon- 
clipping function. 

LISTING 65.2 165-2.c 
i n t   C l i p T o P l a n e ( p o 1 y g o n - t   * p i n .   p l a n e - t   * p p l a n e .   p o l y g o n - t   * p o u t )  
I 

i n t  i, j .  n e x t v e r t .   c u r i n .   n e x t i n :  
d o u b l e   c u r d o t .   n e x t d o t ,   s c a l e :  
p o i n t - t   * p i n v e r t .   * p o u t v e r t :  

p i n v e r t  = p i n - > v e r t s ;  
p o u t v e r t  = p o u t - > v e r t s ;  

c u r d o t  = D o t P r o d u c t ( p i n v e r t .   & p p l a n e - > n o r m a l ) :  
c u r i n  = ( c u r d o t  >= p p l a n e - > d i s t a n c e ) :  

f o r  (i=O : i < p i n - > n u m v e r t s  : i++) 
I 

n e x t v e r t  = (i + 1) % p i n - > n u m v e r t s :  

/ /  Keep t h e   c u r r e n t   v e r t e x  i f  i t ’ s   i n s i d e   t h e   p l a n e  
i f  ( c u r i n )  

*poutver t++ = * p i n v e r t ;  

n e x t d o t  = D o t P r o d u c t ( & p i n - > v e r t s [ n e x t v e r t l ,  & p p l a n e - > n o r m a l ) :  
n e x t i n  = ( n e x t d o t  >= p p l a n e - > d i s t a n c e ) ;  

Add a c l i p p e d   v e r t e x  i f  one  end o f   t h e   c u r r e n t   e d g e   i s  
i n s i d e   t h e   p l a n e   a n d   t h e   o t h e r   i s   o u t s i d e  
( c u r i n  != n e x t i n )  

s c a l e  = ( p p l a n e - > d i s t a n c e  - c u r d o t )  / 

f o r  ( j = O  : j < 3  : j++) 
I 

( n e x t d o t  - c u r d o t ) :  

p o u t v e r t - > v [ j l  = p i n v e r t - > v [ j l  + 
((pin->verts[nextvertl.v[jl - p i n v e r t - > v C J l )  * 

1 
poutver t++:  

s c a l e ) :  

c u r d o t  = n e x t d o t ;  
c u r i n  = n e x t i n ;  
p i n v e r t + + :  

I 

p o u t - > n u m v e r t s  = p o u t v e r t  - p o u t - > v e r t s ;  
i f  ( p o u t - > n u m v e r t s  < 3 )  

r e t u r n  0:  
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p o u t - > c o l o r  - p i n - > c o l o r :  
return 1; 

I 

Believe it or  not, this technique,  applied  in turn to each  edge, is  all  that’s needed to 
clip a polygon to a  plane. Better yet, a polygon can be clipped to multiple planes by 
repeating  the above process once  for  each clip plane, with each  interation trimming 
away any part of the polygon that’s clipped by that  particular  plane. 
One particularly useful aspect of  3-D clipping is that if you’re drawing texture  mapped 
polygons, texture  coordinates can be clipped in exactly the same way as  (x,y,z) coor- 
dinates. In fact, the very  same fraction that’s used to advance x, y, and z from the 
inside point to the  point of intersection with the clip plane can be used to advance 
the  texture  coordinates as  well, so only one extra multiply and  one extra  add  are 
required  for  each  texture  coordinate. 

Clipping to the Frustum 
Given a polygon-clipping function, it’s  easy to clip to the  frustum: set up  the  four 
planes for  the sides  of the  frustum, with another  one  or two planes for  near  and far 
clipping, if desired;  next, clip each potentially visible  polygon to each  plane  in  turn; 
then draw  whatever  polygons emerge  from  the clipping process. Listing 65.3 is the 
core  code  for  a simple 3-D clipping example that allows  you to move around  and 
look at polygonal models from any angle. The full code  for this program is available 
on  the CD-ROM in the file DDJCLIP.ZIP. 
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LISTING 65.3 165-3.c 
i n t  DIBWidth.   DIBHeight :  
i n t   D I B P i t c h :  
d o u b l e   r o l l ,   p i t c h ,  yaw: 
d o u b l e   c u r r e n t s p e e d ;  
p o i n t - t   c u r r e n t p o s ;  
d o u b l e   f i e l d o f v i e w ,   x c e n t e r .   y c e n t e r :  
d o u b l e   x s c r e e n s c a l  e ,  ysc reensca le .   maxsca l  e :  
i n t   n u m o b j e c t s :  
doub le   speedsca le  - 1 . 0 ;  
p l a n e - t  frustumplanesCNUM-FRUSTUM_PLANESl: 
double  mro l lC31C31 - ((1.  0 .  01, CO. 1. 01. (0 .  0 .  111: 
double  mpitchC31C31 = I { l ,  0 .  0 1 ,  IO, 1. 0) .  IO, 0, 111: 
d o u b l e  myawC31C31 = (11. 0.  01 ,  IO, 1. 01, IO, 0. 111: 
p o i n t - t   v p n .   v r i g h t .   v u p :  
p o i n t - t   x a x i s  - 11. 0 .   0 ) :  
p o i n t - t   z a x i s  = (0,  0 .  1): 
c o n v e x o b j e c t - t   o b j e c t h e a d  = {NULL. t O . O . O j .  -999999.01; 

11 P r o j e c t   v i e w s p a c e   p o l y g o n   v e r t i c e s   i n t o   s c r e e n   c o o r d i n a t e s .  
I /  N o t e   t h a t   t h e  y ax is   goes   up  i n  wor ldspace  and  v iewspace.   bu t  
11 goes down i n  screenspace. 
vo id   P ro jec tPo lygon   (po l ygon- t   *ppo ly ,   po l ygon2D- t   *ppo ly2D)  

i n t  i: 
d o u b l e   z r e c i p :  

f o r   ( i - 0  : i < p p o l y - > n u m v e r t s  : i++) 
I 

z r e c i p  - 1.0  I p p o l y - > v e r t s [ i ] . v [ Z ] :  
p p o l y Z D - > v e r t s [ i  1 . x  - 
p p o l y Z D - > v e r t s [ i l . y  = DIBHeigh t  - 

p p o l y - > v e r t s ~ i I . v [ 0 1  * z r e c i p  * maxsca le  + x c e n t e r :  

( p p o l y - > v e r t s [ i l . v [ 1 1  * z r e c i p  * maxsca le  + y c e n t e r ) :  
I 
p p o l y 2 D - > c o l o r  - p p o l y - > c o l o r ;  
ppo ly2D->numver ts  - p p o l y - > n u m v e r t s :  

/ /  S o r t   t h e   o b j e c t s   a c c o r d i n g   t o  z d i s t a n c e   f r o m   v i e w p o i n t .  
v o i d   Z S o r t O b j e c t s ( v o i d )  
I 

i n t  
d o u b l e   v d i   s t :  
c o n v e x o b j e c t - t   * p o b j e c t ;  
p o i n t - t   d i s t :  

o b j e c t h e a d . p n e x t  - & o b j e c t h e a d :  
f o r   ( i - 0  : i < n u m o b j e c t s  : i++) 
t 

f o r   ( j - 0  : j < 3  : j++) 

o b j e c t s [ i ] . v d i s t  = s q r t ( d i s t . v C 0 1  * d i s t . v [ O l  + 
d i s t . v C 1 1  * d i s t . v C 1 1  + 
d i s t . v [ Z ]  * d i s t . v C 2 1 ) :  

i. j: 

d i s t . v [ j ]  = o b j e c t s C i l . c e n t e r . v [ j l  - c u r r e n t p o s . v [ j ] ;  

p o b j e c t  = & o b j e c t h e a d :  
v d i s t  - o b j e c t s [ i l . v d i s t ;  
I1 V i e w s p a c e - d i s t a n c e - s o r t   t h i s   o b j e c t   i n t o   t h e   o t h e r s .  
11 Guaranteed t o   t e r m i n a t e   b e c a u s e   o f   s e n t i n e l  
w h i l e   ( v d i s t  < p o b j e c t - > p n e x t - > v d i s t )  

p o b j e c t  = p o b j e c t - > p n e x t :  
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o b j e c t s [ i l . p n e x t  - p o b j e c t - > p n e x t :  
p o b j e c t - > p n e x t  - & o b j e c t s [ i l :  

1 
1 

/ /  Move t h e   v i e w   p o s i t i o n  and s e t   t h e   w o r l d - > v i e w   t r a n s f o r m .  
vo id   Upda teV iewPosO 
{ 

i n t  i; 
p o i n t - t   m o t i o n v e c ;  
d o u b l e  s .  c,  mtemplC31C31, mtempZC31C31: 

/ /  Move i n   t h e   v i e w   d i r e c t i o n ,   a c r o s s   t h e   x - y   p l a n e ,  as if 
I /  w a l k i n g .   T h i s   a p p r o a c h  moves s lower  when l o o k i n g  up or 
I /  down a t  more o f  an a n g l e  
mot ionvec.vC01 - D o t P r o d u c t ( & v p n .   & x a x i s ) :  
m o t i o n v e c . v [ l l  - 0.0: 
m o t i o n v e c . v [ Z l  - D o t P r o d u c t ( & v p n .   & z a x i s ) :  
f o r   ( i - 0  : i < 3  ; i++) 
{ 

c u r r e n t p o s . v [ i ]  +- m o t i o n v e c . v [ i l  * c u r r e n t s p e e d :  
i f  ( c u r r e n t p o s . v [ i l  > MAXKCOORD)  

c u r r e n t p o s . v C i 1  - MAX-COORD: 
i f  ( c u r r e n t p o s . v [ i l  < -MAX-COORD) 

c u r r e n t p o s . v C i 1  = -MAXLCOORD:  
1 
11 S e t   u p   t h e   w o r l d - t o - v i e w   r o t a t i o n .  
/ /  Note:  much o f   t h e   w o r k   d o n e   i n   c o n c a t e n a t i n g   t h e s e   m a t r i c e s  
/ /  c a n   b e   f a c t o r e d   o u t ,   s i n c e  i t  c o n t r i b u t e s   n o t h i n g   t o   t h e  
/ I  f i n a l   r e s u l t :   m u l t i p l y   t h e   t h r e e   m a t r i c e s   t o g e t h e r  on paper  
/ /  t o   g e n e r a t e  a m i n i m u m   e q u a t i o n   f o r   e a c h   o f   t h e  9 f i n a l   e l e m e n t s  
s - s i n ( r o l 1 ) :  
c - c o s ( r o l 1 ) :  
m r o l l [ O l [ O 1  - c :  
m r o l l [ 0 ] [ 1 1  - s ;  
m r o l l [ 1 1 C O l  = - s :  
m r o l l [ l l [ l l  - c ;  
s - s i n ( p i t c h 1 :  
c = c o s ( p i t c h 1 :  
m p i t c h C l l C l 1  - c :  
m p i t c h C l ] [ Z l  - s ;  
mpi tch [21 [11  - - s ;  
m p i t c h [ Z l [ Z l  - c :  
s - s i n ( y a w ) ;  
c - cos (yaw) ;  
myaw[Ol[Ol - c ;  
myaw[O1[21 - - s :  
myaw[Zl[O] - s :  
myawCEl[Zl - c :  
MConcat(mrol1.  myaw. mtemp l ) ;  
MConcat(mpitch.   mtempl,   mtempz);  
/ /  B r e a k   o u t   t h e   r o t a t i o n   m a t r i x   i n t o   v r i g h t .   v u p ,  and  vpn. 
/ /  We c o u l d   w o r k   d i r e c t l y   w i t h   t h e   m a t r i x :   b r e a k i n g  i t  o u t  
/ /  i n t o   t h r e e   v e c t o r s   i s   j u s t   t o  make t h i n g s   c l e a r e r  
f o r   ( i - 0  : i < 3  : i++) 
{ 

v r i g h t . v C i 1  - mtempZCOlCi1: 
v u p . v [ i l  - mtempZC11Cil: 
v p n . v [ i l  - mtempZC21Cil: 

1 
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/ /  S i m u l a t e   c r u d e   f r i c t i o n  
i f  ( c u r r e n t s p e e d  > (MOVEMENT-SPEED * speedsca le  I 2.0))  

e l s e  i f  ( c u r r e n t s p e e d  < -(MOVEMENT-SPEED * speedsca le  I 2.0)) 

e l s e  

c u r r e n t s p e e d  -- MOVEMENT-SPEED * speedsca le  I 2.0;  

c u r r e n t s p e e d  +- MOVEMENT-SPEED * speedscale / 2.0; 

c u r r e n t s p e e d  - 0.0: 
3 

/ /  R o t a t e  a v e c t o r   f r o m   v i e w s p a c e   t o   w o r l d s p a c e .  
v o i d  B a c k R o t a t e V e c t o r ( p o i n t - t  * p i n .   p o i n t - t   * p o u t )  
{ 

i n t  i: 

11 R o t a t e   i n t o   t h e   w o r l d   o r i e n t a t i o n  
f o r   ( i - 0  ; i < 3  : it+) 

p o u t - > v [ i l  - p i n - > v [ 0 1  * v r i g h t . v [ i l  + 
p i n - > v [ 1 1  * v u p . v [ i l  + 
p i n - > v [ 2 1  * v p n . v [ i ] :  

3 

/ I  Trans fo rm a p o i n t   f r o m   w o r l d s p a c e   t o   v i e w s p a c e .  
v o i d   T r a n s f o r m P o i n t ( p o i n t - t   * p i n ,   p o i n t - t   * p o u t )  
{ 

i n t  i: 
p o i   n t - t   t v e r t  : 

/ /  T r a n s l a t e   i n t o  a v i e w p o i n t - r e l a t i v e   c o o r d i n a t e  
f o r   ( i - 0  : i < 3  : i++) 

t v e r t . v [ i l  - p i n - > v [ i l  - c u r r e n t p o s . v [ i l :  
/ /  R o t a t e   i n t o   t h e   v i e w   o r i e n t a t i o n  
pout->v[O]  - D o t P r o d u c t ( & t v e r t .   & v r i g h t ) ;  
p o u t - > v [ I ]  - O o t P r o d u c t ( & t v e r t .   L v u p ) :  
p o u t - > v [ 2 ]  - D o t P r o d u c t ( & t v e r t .   b v p n ) ;  

1 

/ /  T rans fo rm a p o l y g o n   f r o m   w o r l d s p a c e   t o   v i e w s p a c e .  
v o i d  TransformPolygon(po1ygon-t * p i n p o l y ,   p o l y g o n - t   * p o u t p o l y )  
{ 

i n t  i: 

f o r  ( i - 0  : i < p i n p o l y - > n u m v e r t s  : i++) 

p o u t p o l y - > c o l o r  - p i n p o l y - > c o l o r ;  
p o u t p o l y - > n u m v e r t s  - p i n p o l y - > n u m v e r t s ;  

T r a n s f o r m P o i n t ( & p i n p o l y - > v e r t s [ i l .  L p o u t p o l y - > v e r t s ~ i l ) ;  

3 

/ I  R e t u r n s   t r u e  i f  p o l y g o n   f a c e s   t h e   v i e w p o i n t ,   a s s u m i n g  a c l o c k w i s e  
/ /  w i n d i n g   o f   v e r t i c e s  a s   s e e n   f r o m   t h e   f r o n t .  
i n t  PolyFacesViewer(po1ygon-t * p p o l y )  
I 

i n t  i: 
p o i n t - t   v i e w v e c ,  

f o r   ( i - 0  : i < 3  : 
{ 

v i e w v e c . v [ i l  
e d g e l . v C i 1  - 
edge2 .vE i l  - 

3 

edgel ,   edge2.   normal :  

i ++) 

- p p o ~ y - > v e r t s [ 0 l . v ~ i l  - c u r r e n t p o s . v [ i l :  
p p o l y - > v e r t s [ 0 ] . v C i l  - p p o l y - > v e r t s ~ l l . v ~ i l ;  
p p o l y - > v e r t s [ 2 ] . v [ i l  - p p o l y - > v e r t s ~ l l . v ~ i l ;  
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CrossProduct(&edgel.  &edge2. &normal): 
if (DotProduct(&viewvec.  &normal) > 0 )  

else 
return 1: 

return 0:  
1 

/ I  Set up  a clip  plane  with  the  specified  normal. 
void SetWorldspaceClipPlane(point-t *normal,  planect *plane) 
{ 

I /  Rotate  the  plane normal into  worldspace 
BackRotateVector(norma1.  &plane->normal); 
plane->distance - DotProduct(&currentpos. &plane->normal) + 

CLIP-PLANELEPSILON; 
1 

/ /  Set up the  planes  of  the  frustum,  in  worldspace  coordinates. 
void  SetUpFrustum(void) 
t 

double  angle, s, c; 
point-t normal ; 

angle - atan(2.0 I fieldofview * maxscale / xscreenscale); 
s - sin(ang1e): 
c - cos(ang1e): 
11 Left  clip  plane 
normal .v[O1 - s: 
normal.vC11 - 0:  
normal .v[21 - c; 
SetWorldspaceClipPlane(&normal. &frustumplanes[Ol): 
/ /  Right  clip  plane 
normal.v[Ol - - s :  
SetWorldspaceClipPlane(&normal. &frustumplanes[ll): 
angle - atan(2.0 I fieldofview * maxscale / yscreenscale); 
s - sin(ang1e); 
c - cos(ang1e); 
11 Bottom  clip  plane 
normal.v[Ol - 0;  
normal .v[11 - s ;  
normal.vC21 - c; 
SetWorldspaceClipPlane(&normal. &frustumplanes[2]); 
I /  Top  clip  plane 
normal.v[lI - - s ;  
SetWorldspaceClipPlane(&normal, &frustumplanes[31); 

1 

I /  Clip a  polygon  to  the  frustum. 
int ClipToFrustum(po1ygon-t  *pin,  polygon-t  *pout) 
t 

i nt i ,  curpoly; 
polygon-t tpolyC21.  *ppoly; 

curpoly - 0; 
ppoly - pin; 
for (i-0 : i< (NUM-FRUSTUM-PLANES- l ) ;  i++) 
t 

if (!ClipToPlane(ppoly. 
&frustumpl anes[i 3 ,  
&tpolyCcurpolyl) 1 

return 0; 
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p p o l y  = & t p o l y [ c u r p o l y l ;  
c u r p o l y  1; 

1 
r e t u r n   C l i p T o P l a n e ( p p o 1 y .  

&frustumplanes[NUMKFRUSTUM_PLANES-ll, 
p o u t )  : 

1 

11 R e n d e r   t h e   c u r r e n t   s t a t e   o f   t h e   w o r l d   t o   t h e   s c r e e n .  
v o i d   U p d a t e W o r l d O  
I 

HPALETTE h o l   d p a l  : 
HDC hdcScreen.   hdcOIBSect ion;  
HBITMAP h o l d b i t m a p :  
polygon2D-t  s c r e e n p o l y :  

c o n v e x o b j e c t - t  * p o b j e c t :  
i n t  i, j .  k: 

UpdateViewPosO;  
memset(pDIBBase, 0, OIBWid th*OIBHeigh t ) :  / /  c l e a r   f r a m e  
SetUpFrus tumO:  
Z S o r t O b j e c t s O :  
/ I  Draw a l l   v i s i b l e   f a c e s   i n   a l l   o b j e c t s  
p o b j e c t  = o b j e c t h e a d . p n e x t ;  
w h i l e   ( p o b j e c t  != & o b j e c t h e a d )  
t 

p p o l y  = p o b j e c t - > p p o l y :  
f o r   ( i - 0  ; i < p o b j e c t - > n u m p o l y s  ; i++) 
{ 

p o l Y g o n K t   * p p o l y .   t p o l y 0 .   t p o l y l .   t p o l y 2 :  

/ I  Move t h e   p o l y g o n   r e l a t i v e   t o   t h e   a b j e c t   c e n t e r  
t p o l y 0 . c o l o r  = p p o l y - > c o l o r :  
tpoly0.numvert .s - p p o l y - > n u m v e r t s :  
f o r  ( j = O  : j < t p o l y O . n u m v e r t s  : j++) 
t 

f o r  (k=O ; k<3 ; k++) 
t p o l y O . v e r t s [ j l . v [ k l  - p p o l y - > v e r t s [ j l . v [ k l  + 

I 
i f  (PalyFacesViewer(&tpalyO)) 
t 

p o b j e c t - > c e n t e r . v [ k l ;  

i f  ( C l i p T o F r u s t u m ( & t p o l y O .   & t p o l y l ) )  
I 

T r a n s f o r m P o l y g o n   ( & t p o l y l ,   & t p o l y 2 ) :  
P r o j e c t P o l y g o n   ( & t p o l y 2 .   & s c r e e n p o l y ) :  
F i l l P o l y g o n E D   ( & s c r e e n p o l y ) ;  

I 
1 
ppoly++: 

1 
p o b j e c t  - p o b j e c t - > p n e x t :  

> 
/ I  We've  drawn the   f rame:   copy  i t  t o   t h e   s c r e e n  
hdcScreen - GetDC(hwnd0utput) :  
h o l d p a l  - S e l e c t P a l e t t e ( h d c S c r e e n ,  hpalDIB.  FALSE): 
R e a l i z e P a l e t t e ( h d c S c r e e n ) :  
hdcDIBSect ion  = CreateCompat ib leDC(hdcScreen) ;  
h o l d b i t m a p  - SelectObject(hdc0IBSection. hOIBSect ion) :  
B i t B l t ( h d c S c r e e n .  0. 0. DIBWidth.   DIBHeight .   hdcDIBSect ion.  

0. 0,  S R C C O P Y ) :  
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SelectPalette(hdcScreen. holdpal. F A L S E ) :  
ReleaseDC(hwnd0utput.  hdckreen): 
SelectObject(hdcD1BSection. holdbitmap): 
ReleaseDC(hwnd0utput.  hdcDIBSection): 

I 

The Lessons of Listing 65.3 
There  are several interesting  points to Listing 65.3. First, floating-point  arithmetic is 
used throughout  the  clipping process. While it is possible to use fixed-point, doing 
so requires  considerable  care  regarding  range and precision. Floating-point is much 
easier-and,  with the  Pentium  generation of processors, is generally comparable  in 
speed.  In fact, for  some  operations, such as multiplication in  general and division 
when the floating-point unit is in single-precision mode,  floating-point is much faster. 
Check out Chris Hecker’s column  in  the February 1996 Game Deueloperfor an  inter- 
esting discussion along these lines. 
Second,  the planes that  form  the  frustum  are shifted ever so slightly  inward from 
their  proper positions at  the  edge of the field of  view. This  guarantees  that it’s  never 
possible  to generate a visible  vertex  exactly at  the eyepoint,  averting the divide-by-zero 
error  that such a vertex would  cause when projected and  at  no performance cost. 
Third,  the  orientation of the viewer  relative to the world is specified via  yaw, pitch, and 
roll  angles, successively applied in that order. These angles are accumulated from frame 
to frame according to user input,  and  for each frame are used to rotate  the view up, 
view right, and viewplane normal vectors,  which define  the world coordinate system, 
into  the viewspace coordinate system;  those transformed vectors in turn define  the 
rotation from worldspace  to  viewspace.  (See Chapter 61 for a discussion  of coordinate 
systems and  rotation,  and take a look at Chapters 5 and 6 of Complter Graphics, by  Foley 
and van  Dam, for  a  broader overview.) One attractive  aspect of accumulating angular 
rotations  that  are  then applied to the  coordinate system  vectors  is that  there is no 
deterioration of the rotation  matrix over  time.  This  is  in  contrast  to my XSharp package, 
in  which I accumulated rotations by keeping a cumulative  matrix of  all the  rotations 
ever performed; unfortunately, that  approach caused roundoff error to accumulate, 
so objects began to  warp  visibly after many rotations. 
Fourth, Listing 65.3 processes each input polygon into  a  clipped polygon, one line 
segment  at a time. It would  be more efficient to process all the vertices, categorizing 
whether and how they’re  clipped, and  then  perform a test such as the  Cohen- 
Sutherland  outcode test to detect trivial acceptance (the polygon  is entirely inside) 
and sometimes trivial rejection (the polygon  is  fully outside) without ever dealing 
with the edges, and to identify which planes actually need to be clipped against, as 
discussed  in  “Line-Segment Clipping Revisited,”Dr. DobbkJournaZ, January 1996. Some 
clipping  approaches also  minimize the number of intersection calculations when a 
segment is clipped by multiple planes. Further, Listing 65.3 clips a polygon against 
each  plane in turn,  generating  a new output polygon for  each  plane; it is possible 
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and can be more efficient to generate  the final, clipped polygon without any inter- 
mediate representations. For further reading on advanced clipping techniques, see 
the discussion starting on page 271 of  Foley and van  Dam. 
Finally, clipping in Listing 65.3 is performed in worldspace, rather  than in viewspace. 
The frustum is backtransformed from viewspace (where it is defined, since it exists 
relative  to the viewer)  to worldspace for this purpose. Worldspace clipping allows  us 
to transform only those vertices that  are visible, rather  than transforming all  vertices 
into viewspace, then  clipping  them. However, the decision  whether to clip  in 
worldspace or viewspace is not clear-cut and is affected by several factors. 

Advantages of Viewspace Clipping 
Although viewspace clipping requires transforming vertices that may not be drawn, it 
has potential performance advantages.  For example, in worldspace, near  and far clip 
planes are  just additional planes that have  to  be  tested and clipped to, using dot  prod- 
ucts. In viewspace, near  and  far clip planes are typically planes with constant z 
coordinates, so testing whether a vertex is near or far-clipped can be performed with a 
single z compare, and  the fractional distance along a line segment to a  near or far clip 
intersection can be calculated with a couple of z subtractions and  a divide; no  dot 
products are  needed. 
Similarly, if the field of view is  exactly  90 degrees, so the frustum planes go out at 45 
degree angles relative to the viewplane, then x==z and y==z along  the clip planes. 
This means that the clipping status of a vertex can be determined with a simple 
comparison,  far  more quickly than  the  standard  dot-product test. This lends itself 
particularly well to outcode-based clipping algorithms, since each compare can set 
one outcode bit. 
For a game, 90 degrees is a pretty good field of  view, but can we get the same sort of 
efficient clipping if we need some other field  of view? Sure. All  we  have to do is scale 
the x and y results of the world-to-view transformation to account for the field of  view, 
so that  the coordinates lie in a viewspace that’s normalized such that the frustum planes 
extend along lines of  x==z and y==z. The resulting visible projected points span the 
range -1 to 1 (before scaling up to get pixel coordinates),  just as  with a 90degree field 
of  view, so the rest  of the drawing  pipeline  remains unchanged. Better  yet, there is no cost 
in performance because the adjustment can  be added to the transformation matrix. 
I  didn’t  implement normalized clipping in Listing 65.3 because I wanted to illustrate 
the  general 3-D clipping mechanism without additional complications, and because 
for many applications the  dot  product (which, after all,  takes  only 10-20 cycles on  a 
Pentium) is sufficient. However, the  more frustum clipping you’re doing, especially 
if most of the polygons are trivially  visible, the  more attractive the performance ad- 
vantages  of normalized clipping become. 
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Further Reading 
You now  have the basics of 3-D clipping, but because fast clipping is central to high- 
performance 3-D, there’s a lot more to be learned. One good place for further  reading 
is  Foley and van Dam; another is Procedural  Elements of Computer  Graphics, by David F. 
Rogers.  Read and  understand  either of these books, and you’ll  know everything you 
need  for world-class clipping. 
And, as  you read, you might take a  moment to consider how wonderful it is that 
anyone who’s interested can tap into so much  expert knowledge for  the  price of a 
book-or, on  the  Internet,  for free-with no strings attached. Our  part of the world 
is a pretty good place right now, isn’t it? 
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chapter 66

quake's hidden-surface removal



ed of  classic rock. Admittedly,  it’s been  a while, about 
to hear anything by the Cars or Boston, and I was 

e first place about Bob Seger or  Queen, to say noth- 
n’t  changed. But I knew something was up when I 
n on  the Allman Brothers and Steely Dan and Pink 
atles (just stuff  like “Hello Goodbye” and “I’ll Cry 

“Ticket to Ride” or “A Day in the Life”; I’m not that far gone). 
figure out what the  problem was; I’d  been  hearing  the same 

songs for  a quarter-ckntury, and I was bored. 
I tell  you this by  way of explaining why it was that when my daughter  and  I drove back 
from dinner  the  other  night,  the radio in my car was tuned,  for  the first time ever, to 
a station whose slogan is “There is no alternative.” 
Now, we’re talking here  about a 10-year-old  who  worships the Beatles and has been 
raised on a steady diet of oldies. She loves melodies, catchy songs, and good singers, 
none of which you’re likely  to find on  an alternative rock station. So it’s no surprise 
that when I turned  on  the radio,  the first word out of her  mouth was  “Yuck!” 
What did surprise me was that after listening for a while, she said, “You know, Dad, 
it’s  actually kind of interesting.” 
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Apart  from giving me  a  clue as to what sort of music I  can expect  to  hear blasting 
through  our  house when  she’s  a  teenager, her quick uptake  on  alternative rock 
(versus my decades-long  devotion  to the music of my youth)  reminded me of 
something  that it’s  easy to  forget as we become  older  and  more  set  in  our ways. It 
reminded  me  that it’s essential  to  keep an  open  mind,  and  to  be willing, better 
yet, eager,  to try new things.  Programmers  tend to become  attached  to familiar 
approaches,  and  are  inclined  to stick with whatever is currently  doing  the  job 
adequately well, but in programming  there  are always alternatives, and I’ve found 
that they’re often worth  considering. 
Not that  I  should have needed any reminding,  considering the ever-evolving nature 
of Quake. 

Creative Flux and Hidden Surfaces 
Back in  Chapter 64, I described the creative  flux that led to John Carmack’s  decision 
to  use a precalculated  potentially  visible  set  (PVS)  of  polygons for each  possible  viewpoint 
in Quake, the game we’re  developing here  at id Software. The precalculated PVS meant 
that instead of  having to spend  a  lot of time searching through  the world database to 
find out which  polygons  were  visible from the  current viewpoint, we could simply  draw 
all the polygons  in the PVS from back-to-front (getting the  ordering courtesy  of the 
world BSP tree)  and  get  the  correct scene drawn  with no searching at all; letting the 
back-to-front  drawing perform  the final stage of hidden-surface removal (HSR) . This 
was a terrific idea, but it was far from the  end of the road for Quake’s design. 

Drawing Moving Objects 
For one thing,  there was still the question of  how to sort and draw  moving objects 
properly; in fact, this is the single technical question I’ve been asked most often in 
recent  months, so I’ll take a  moment to address it  here.  The primary problem is that 
a moving model can span multiple BSP leaves,  with the leaves that  are  touched vary- 
ing as the model moves; that,  together with the possibility  of multiple models in one 
leaf, means there’s no easy  way to use BSP order to draw the models in correctly 
sorted  order. When I wrote Chapter 64, we were drawing sprites (such as explo- 
sions), moveable BSP models (such as doors),  and polygon models (such as monsters) 
by clipping  each  into all the leaves it  touched,  then drawing the  appropriate  parts as 
each BSP leaf was reached in back-to-front traversal.  However, this didn’t solve the 
issue  of sorting multiple moving models in  a single leaf against each  other, and also 
left some ugly sorting  problems with complex polygon models. 
John solved the  sorting issue for sprites and polygon models in a startlingly low-tech 
way:  We  now z-buffer them. (That is, before we draw each pixel, we compare its 
distance, or z, value  with the z value  of the pixel currently on  the screen, drawing 
only if the new pixel is nearer  than  the  current  one.) First, we draw the basic world, 
walls, ceilings, and  the like. No z-buffer testing is  involved at this point  (the world 
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visible surface determination is done in a different way,  as  we’ll see soon) ; however, 
we do fill the z-buffer  with the z values  (actually, l / z  values,  as  discussed  below) for 
all the world  pixels.  Z-filling is a much faster  process than z-buffering the  entire 
world  would be, because no reads or compares are involved, just writes  of z values. 
Once  the drawing and z-filling  of the world is done, we can simply  draw the sprites 
and polygon models with  z-buffering and get  perfect sorting all around. 

Performance Impact 
Whenever a z-buffer is involved, the questions  inevitably are: What’s the memory  foot- 
print and what’s the performance impact? Well, the memory footprint  at 320x200 is 
128K, not trivial but  not a big deal for a game that requires 8 MB to run.  The perfor- 
mance impact is about 10 percent for z-filling the world, and roughly 20 percent (with 
lots  of  variation) for drawing  sprites and polygon  models. In return, we get a perfectly 
sorted world, and also the ability  to do additional effects,  such  as  particle  explosions 
and smoke,  because the z-buffer  lets  us  flawlessly sort such  effects into  the world. All in 
all, the use of the z-buffer  vastly  improved the visual quality and flexibility  of the Quake 
engine, and also  simplified the code quite a bit, at an acceptable  memory and perfor- 
mance  cost. 

Leveling and Improving Performance 
As I said  above, in the Quake architecture,  the world  itself  is  drawn  first, without z- 
buffer reads or compares, but filling the z-buffer  with the world  polygons’ z values, 
and  then  the moving  objects are drawn atop  the world,  using  full  z-buffering. Thus 
far,  I’ve  discussed  how  to  draw  moving  objects.  For the rest of this chapter, I’m going 
to talk about  the  other  part of the drawing equation;  that is,  how  to  draw the world 
itself, where the  entire world is stored as a single BSP tree and never  moves. 
As you  may  recall from  Chapter 64, we’re concerned with both raw performance and 
level performance.  That is, we want the drawing code to run as  fast  as  possible, but 
we also  want the difference in drawing speed between the average scene and  the 
slowest-drawing scene to  be as  small  as  possible. 

It does  little good to average 30 frames  per second if1 Opercent of  the  scenes draw p at 5 fps, because  the  jerkiness  in  those  scenes will be extremely obvious  by  com- 
parison  with  the average scene, and  highly  objectionable.  It  would  be  better to 
average I5 f p s  100percent  of  the  time, even though  the average  drawing  speed is 
only halfas much. 

The precalculated PVS was an  important step toward both faster and  more level 
performance, because it  eliminated  the  need to identify visible  polygons, a relatively 
slow step  that  tended  to be at its  worst in the most complex scenes. Nonetheless, in 
some  spots  in  real  game  levels the precalculated PVS contains five times more polygons 
than  are actually  visible; together with the back-to-front HSR approach, this created 
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hot spots in which the  frame  rate  bogged down  visibly  as hundreds of polygons are 
drawn  back-to- front, most of those immediately getting overdrawn by nearer poly- 
gons. Raw performance  in  general was also reduced by the typical 50% overdraw 
resulting  from drawing everything in  the PVS. So, although drawing the PVS back-to- 
front as the  final HSR stage worked and was an  improvement over previous designs, 
it was not ideal. Surely, John  thought, there’s  a  better way to leverage the PVS than 
back-to-front drawing. 
And indeed  there is. 

Sorted Spans 
The ideal  final HSR stage for Quake  would reject all the polygons  in the PVS that  are 
actually  invisible, and draw  only the visible  pixels  of the remaining polygons,  with no 
overdraw, that is,  with  every  pixel  drawn  exactly once, all at  no performance cost, of 
course. One way to do  that  (although certainly not  at zero cost)  would  be  to  draw the 
polygons from front-to-back, maintaining a region  describing the currently occluded 
portions of the screen and clipping each polygon  to that region before drawing it. That 
sounds promising, but it is in fact nothing more or less than the beam tree approach I 
described in Chapter 64, an  approach  that we found to  have considerable  overhead and 
serious  leveling  problems. 
We can do much  better if  we  move the final HSR stage from  the polygon  level to  the 
span level and use a  sorted-spans  approach.  In essence, this approach consists of 
turning  each polygon into  a  set of spans, as  shown in Figure 66.1, and  then  sorting 

polygon A spans 

Span generation. 
Figure 66.1 
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and clipping the spans  against  each other until  only the visible portions of  visible spans 
are left  to  be  drawn,  as  shown  in  Figure  66.2. This may sound a lot like  z-buffering 
(which is simply too slow for use in drawing the world, although it’s fine for smaller 
moving  objects,  as described earlier),  but  there are crucial differences. 
By contrast with  z-buffering,  only  visible portions of  visible  spans are  scanned out 
pixel by pixel (although all  polygon edges must still be  rasterized). Better yet, the 
sorting that z-buffering does at each pixel becomes a per-span operation with sorted 
spans, and because of the  coherence implicit in a span list, each edge is sorted only 
against some of the spans on the same line and is clipped only to  the few spans that 
it overlaps  horizontally. Although complex scenes  still  take longer to  process than 
simple  scenes, the worst  case  isn’t  as bad as  with the beam tree or back-to-front  ap- 
proaches,  because  there’s no overdraw or scanning of hidden pixels, because 
complexity is limited to  pixel resolution and because  span coherence  tends to  limit 
the worst-case sorting in  any one  area of the  screen. As a bonus, the  output of sorted 
spans is in precisely the  form  that a low-level rasterizer needs, a set of span descrip- 
tors, each consisting  of a start coordinate and a length. 
In short,  the  sorted spans approach meets our original criteria pretty  well; although 
it isn’t  zero-cost,  it’s not horribly expensive,  it  completely eliminates both overdraw 
and pixel scanning of obscured portions of polygons and it tends to  level  worst-case 
performance. We wouldn’t want to rely on sorted spans alone as our hidden-surface 
mechanism, but  the precalculated PVS reduces  the number of  polygons  to a level 
that  sorted spans can handle  quite nicely. 
So we’ve found  the  approach we need; now  it’s just a matter of writing some code 
and we’re on  our way, right? Well,  yes and no. Conceptually, the sorted-spans ap- 
proach is simple, but it’s  surprisingly  difficult  to implement, with a couple of major 
design  choices to  be  made, a subtle mathematical element,  and some tricky gotchas 
that I’ll  have  to defer until Chapter 67. Let’s look at  the design choices first. 

Edges versus Spans 
The first  design choice is whether to sort spans or edges (both of which  fall into  the 
general category of “sorted spans”). Although the results are  the same both ways, a 
list  of  spans  to be drawn, with no overdraw, the  implementations and performance 
implications are  quite  different, because the  sorting and clipping are  performed 
using very different  data structures. 
With span-sorting, spans are  stored in x-sorted, linked list buckets, typically  with one 
bucket per scan line. Each  polygon in turn is rasterized into spans, as  shown in Fig- 
ure 66.1, and each span is sorted and clipped into  the bucket for  the scan line the 
span is on, as  shown in Figure 66.2, so that at any  time each bucket contains the 
nearest spans encountered  thus far, always  with no overlap. This approach involves 
generating all spans for each polygon in turn, with each span immediately being 
sorted,  clipped, and  added to  the  appropriate bucket. 
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polygon A spans 
I I I I I I  

1 x = 22, y = 0, count = o I 
I x = 2 2 , v =  1,count=0 I 
I x=21.v=2,count=1 I 
I x = 20. v = 3. count = 2 I 

A and B composited 

I , , , , ,  

visible spans 
A: x = 20, y = 0, count = 0 B: x = 22, y = 0, count = 0 

A : x = 2 0 , y = l , c o u n t = l  B:x=22,y=l ,count=O 

A x = 1 9 , y = 2 , c o u n t = 2  B:x=21,y=2,count=l  

Two sets of spans sorted and clipped against one another: 
Figure 66.2 
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With edge-sorting, edges are  stored  in x-sorted, linked list buckets according to their 
start scan line. Each polygon in  turn is decomposed  into edges, cumulatively build- 
ing a list  of  all the edges in the scene. Once all edges for all  polygons in the view 
frustum have been  added to the  edge list, the whole  list is scanned out in a single 
top-to-bottom, left-to-right pass. An active edge list  (AEL)  is maintained. With each 
step to a new  scan line, edges that end  on that scan line are removed from the AEL, 
active edges are  stepped to their new x  coordinates, edges starting on  the new  scan 
line are added to the AEL, and  the edges are  sorted by current x  coordinate. 
For each scan line,  a z-sorted active  polygon  list  (APL) is maintained. The x-sorted 
AEL is stepped  through in order. As each new edge is encountered  (that is, as each 
polygon starts or  ends as we move left to right),  the associated polygon is activated 
and sorted into  the APL,  as  shown in Figure 66.3, or deactivated and removed from 
the APL,  as  shown in Figure 66.4, for  a  leading or trailing edge, respectively. If the 
nearest polygon has changed (that is, if the new  polygon is nearest, or if the  nearest 
polygon just  ended) , a  span is emitted  for  the polygon that  just  stopped  being  the 
nearest, starting at  the  point where the polygon first because nearest and  ending  at 
the  x  coordinate of the  current edge, and  the  current  x  coordinate is recorded in 
the polygon that is  now the nearest. This saved coordinate  later serves  as the  start of 
the span emitted when the new nearest polygon  ceases to be in front. 
Don’t  worry if you didn’t follow  all  of that;  the above  is just a quick overview  of edge- 
sorting to help make the rest of this chapter  a little clearer. My thorough discussion 
of the topic will be in Chapter 6’7. 
The spans that  are  generated with edge-sorting are exactly the same spans that ulti- 
mately emerge  from span-sorting; the  difference lies in the  intermediate  data 
structures  that are used to sort  the spans in  the scene. With edge-sorting, the spans 
are  kept implicit in the edges until  the final set of  visible spans is generated, so the 
sorting, clipping, and span emission is done as each edge adds or removes a polygon, 
based on  the span state implied by the  edge and  the set of active  polygons.  With 
span-sorting, spans are immediately made explicit when each polygon is rasterized, 
and those intermediate spans are  then  sorted  and  clipped against other  the spans on 
the scan line to generate  the final spans, so the states of the spans are explicit at all 
times, and all  work  is done directly with spans. 
Both span-sorting and edge-sorting work  well, and  both have been employed suc- 
cessfully in commercial projects. We’ve chosen to use edge-sorting in Quake  partly 
because it seems inherently  more efficient, with excellent horizontal coherence  that 
makes for minimal time spent  sorting,  in contrast with the potentially costly sorting 
into linked lists that span-sorting can involve. A more  important  reason,  though, is 
that with edge-sorting we’re able to share edges between adjacent polygons, and  that 
cuts the work  involved in sorting, clipping, and rasterizing edges nearly in half, while 
also shrinking the world database quite  a bit due to the sharing. 
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I . 
I 

Current  edge;  since it's a 

M into  the  active polygon. 
leading edge,  sort polygon 

+ trail edge polygon M; x = lo0  

Active  Polygon List 

polygon M 

I I 

Polygon M has a nearer z at x=l8 
than  any  polygon in the APL, so put 
polygon M at the top of the APL; it is 
the nearest  surface at this pixel, 
hence  visible.  Emit a span  for 
olygon J, starting at x where J 

gecame  visible and  ending at x=l8. 
x=l8 is the  start  coordinate  for the 
span  that will be  emitted  for polygon M 
when it ends  on this scan line or 
becomes  occluded. 

polygon J 
zatx=18 is 100 

1 
za tx= l8  is 125 

1 
If polygon M had not  been the nearest polygon L 
polygon  at x=l8, it would have  been z at x=l8 is 500 
inserted  into  the APL at the proper z- 
sorted  location, and  nothing  more  would 
have  been  done. 

Activating a polygon when a leading edge is  encountered in the AEL. 
Figure 66.3 

One final advantage of edge-sorting is that  it makes no distinction between convex 
and concave  polygons. That's not  an  important consideration  for most graphics  en- 
gines,  but  in  Quake,  edge  clipping,  transformation,  projection, and sorting have 
become  a major bottleneck, so we're  doing everything we can to get  the polygon and 
edge  counts down, and concave  polygons help  a  lot in that  regard. While it's possible 
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Remove polygon M from  the APL. 
Polygon M is on top of the APL, 
meaning it’s  currently  visible  (the 
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pixel), so we emit  a  span  starting  at 
the coordinate  at  which  polygon M 
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that  polygon J became  visible  at 
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If polygon M had not  been  on  top  of 
the APL, we wouldn’t  have  done 
anything  except  removing it from 
the APL. 

nearest at x=l8 

polygon J 

polygon L 

Deactivating a polygon when a trailing edge is encountered in the AEL. 
Figure 66.4 

to handle concave  polygons  with span-sorting, that can involve  significant perfor- 
mance penalties. 
Nonetheless, there’s no cut-and-dried answer  as  to  which approach is better. In  the 
end, span-sorting and edge-sorting amount to the same  functionality, and  the choice 
between them is a matter of  whatever  you  feel  most comfortable with. In Chapter 67, 
I’ll go into considerable  detail about edge-sorting,  complete with a full implementation. 
I’m going the  spend  the rest of this chapter laying the  foundation  for  Chapter 67 by 
discussing sorting keys and l / z  calculation. In the process, I’m going  to have  to 
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make a few forward references to aspects of edge-sorting that  I haven’t  yet covered in 
detail; my apologies, but it’s unavoidable, and all should become clear by the  end of 
Chapter 6’7. 

Edge-Sorting Keys 
Now that we know  we’re going to sort edges, using them to emit spans for  the poly- 
gons nearest the viewer, the  question becomes: How can we tell  which  polygons are 
nearest? Ideally,  we’d just store  a  sorting key in each polygon, and whenever a new 
edge came along, we’d compare its surface’s key to the keys  of other currently active 
polygons, and could easily  tell  which  polygon was nearest. 
That sounds too good to be true,  but it is possible.  If, for example, your world data- 
base  is stored as a BSP tree, with  all  polygons clipped into  the BSP leaves, then BSP 
walk order is a valid drawing order. So,  for  example, if you  walk the BSP back-to- 
front, assigning each polygon an incrementally higher key  as  you reach it, polygons 
with higher keys are  guaranteed to be in front of  polygons  with  lower  keys. This is the 
approach  Quake used for  a while, although  a  different  approach is now being used, 
for reasons I’ll explain shortly. 
If  you don’t  happen to have a BSP or similar data  structure handy, or if you  have lots 
of  moving  polygons (BSPs don’t  handle moving  polygons  very efficiently), another 
way to accomplish your objectives  would be to sort all the polygons against one an- 
other before drawing the scene, assigning appropriate keys based on their spatial 
relationships in viewspace. Unfortunately, this is generally an extremely slow  task, 
because every  polygon must be compared to every other polygon. There  are tech- 
niques to improve the  performance of  polygon sorts, but I  don’t know  of anyone 
who’s doing  general polygon sorts of complex scenes in realtime on a PC. 
An alternative is to sort by z distance from  the viewer in screenspace, an  approach 
that dovetails  nicely  with the excellent spatial coherence of edge-sorting. As each 
new edge is encountered  on  a scan line,  the  corresponding polygon’s z distance can 
be calculated and compared to the  other polygons’ distances, and  the polygon can 
be sorted into  the APL accordingly. 
Getting z distances can be tricky,  however. Remember that we need to be  able  to 
calculate z at any arbitrary point  on a polygon, because an  edge may occur  and 
cause its polygon to  be  sorted  into  the APL at any point  on  the screen. We could 
calculate z directly from the screen  x and y coordinates  and  the polygon’s plane 
equation,  but  unfortunately this can’t be done very  quickly, because the z for  a 
plane  doesn’t vary linearly in  screenspace; however, l / z  does vary linearly, so we’ll 
use that instead.  (See Chris Hecker’s 1995 series of columns on texture  mapping 
in Game Developer magazine for a discussion of screenspace linearity and  gradients 
for l /z . )  Another advantage of using l / z  is that its resolution  increases with de- 
creasing  distance,  meaning that by using l / ~ ,  we’ll  have better  depth resolution 
for  nearby  features,  where  it  matters most. 
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The obvious way to get  a l / z  value at any arbitrary point  on a polygon  is to calculate 
l / z  at  the vertices, interpolate it down both edges of the polygon, and  interpolate 
between the edges to get  the value at  the  point of interest. Unfortunately, that re- 
quires  doing  a lot of  work along  each  edge,  and worse, requires division to calculate 
the l / z  step per pixel across each span. 
A better solution is to calculate l / z  directly from  the  plane  equation and  the screen 
x and y of the pixel of interest. The equation is 
l / z  = (a/d)x’ - (b/d)y’ + c/d 
where z is the viewspace z coordinate of the point on the plane that projects  to  screen 
coordinate (x’,y’) (the origin for this  calculation  is the center of projection, the point on 
the screen straight ahead of the viewpoint), [a  b c] is the  plane  normal in viewspace, 
and d is the distance from  the viewspace origin to the  plane along the  normal. Divi- 
sion is done only once  per  plane, because a, b, c, and d  are per-plane constants. 
The full l / z  calculation requires two multiplies and two adds, all of which should be 
floating-point to  avoid range  errors. That much floating-point math  sounds  expen- 
sive but really isn’t, especially on  a  Pentium, where a plane’s l / z  value at any point 
can be calculated in as little as  six  cycles in assembly language. 

Where That 1 /Z Equation Comes  From 
For those who are  interested, here’s a quick derivation of the l / z  equation. The 
plane equation  for  a  plane is 
= + b y + c z - d = O  
where x and y are viewspace coordinates,  and a,  b, c, d,  and z are  defined above. If we 
substitute x=x’z and y=-y’z (from  the definition of the perspective projection, with y 
inverted because y increases upward in viewspace but downward in screenspace), 
and  do some rearrangement, we get: 
z = d /  (=”by’+c) 
Inverting and  distributing yields: 
l / z  = ax’/d - by’/d + c/d 
We’ll see l / z  sorting in action in Chapter 67. 

Quake and Z-Sorting 
I mentioned earlier that Quake no longer uses BSP order as the sorting key; in fact, 
it uses l / z  as the key  now. Elegant as the  gradients  are, calculating l / z  from  them is 
clearly  slower than just doing a compare on  a BSP-ordered key, so why  have  we switched 
Quake to l / z ?  
The primary  reason is to reduce the number of  polygons.  Drawing  in  BSP order means 
following  certain  rules, including the rule that polygons  must  be  split if they  cross  BSP 
planes. This splitting increases the  numbers of  polygons and edges considerably. By 
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sorting on l / z ,  we’re able to leave  polygons unsplit but still get  correct drawing 
order, so we have far fewer edges to process and faster drawing  overall, despite  the 
added cost  of l / z  sorting. 
Another advantage of l / z  sorting is that  it solves the  sorting issues I mentioned  at 
the  start involving  moving models that  are themselves  small BSP trees. Sorting in 
world BSP order wouldn’t work here, because these models are  separate BSPs, and 
there’s no easy  way to work them  into  the world BSP’s sequence  order. We don’t want 
to use z-buffering for  these models because they’re often large objects such as doors, 
and we don’t want to lose the overdraw-reduction benefits that closed doors provide 
when drawn through  the  edge list.  With sorted spans, the edges of  moving BSP mod- 
els are simply placed in  the  edge list (first  clipping polygons so they don’t cross  any 
solid  world surfaces, to  avoid complications associated  with interpenetration),  along 
with  all the world edges, and l / z  sorting takes care of the rest. 

Decisions Deferred 
There is, without  a  doubt,  an awful lot of information  in  the  preceding pages, and it 
may not all connect  together yet  in  your mind. The code and accompanying expla- 
nation in the  next  chapter should help; if you  want to peek ahead,  the  code is available 
on the CD-ROM  as  DDJZSORT.ZIP in  the  directory  for  Chapter 67. You  may also 
want  to  take a look at Foley and van  Dam’s Computer Graphics or Rogers’ Procedural 
Elements fm Computer Graphics. 
As I write this, it’s unclear  whether  Quake will end  up sorting edges by BSP order  or 
l / z .  Actually, there’s no guarantee  that  sorted  spans  in any form will be  the  final 
design. Sometimes it seems  like we change  graphics  engines as often as they  play 
Elvis on  the ‘50s oldies stations (but,  one would hope, with more aesthetically pleas- 
ing results!) and  no  doubt we’ll  be considering  the alternatives right up until  the day 
we ship. 
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chapter 67

sorted spans in action



g Independent  Span  Sorting  for 
hout Overdraw 

g into  the intricacies of hidden surface removal by 
ted) spans. At the  end of that  chapter,  I  noted  that 

we were curre  d spans in Quake, but  it was unclear  whether we’d 
switch  back to e time after that writing, it’s become clear: We’re 

’s wonderful story “The Man Who Sold the  Moon,”  the chief 
rocket project tries to figure out how to get  a payload  of three 

e starts out with a four-stage rocket design, but 
finds that it won’t dokhe  job, so he adds  a fifth stage. The fifth stage helps, but  not 
quite enough, “Because,” he explains, “I’ve had to add in too much  dead weight, 
that’s why.” (The dead weight is the  control and safety equipment  that goes with the 
fifth stage.) He  then tries adding yet another stage, only to find  that  the sixth stage 
actually results in a net slowdown. In  the  end,  he has to give up  on  the three-person 
design and build a one-person spacecraft instead. 
l/z-sorted spans in Quake turned  out pretty much  the same way,  as we’ll  see in a 
moment. First, though,  I’d like  to note  up  front that this chapter is very technical 
and builds heavily on material I covered earlier in this section of the  book; if you 
haven’t already read  Chapters 59 through 66, you  really should. Make no mistake 
about it, this is commercial-quality stuff; in fact, the code in this chapter uses the 
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same sorting  technique as the test version of Quake, QTESTl.ZIP, that  id Software 
placed on the Internet in early  March 1996. This  material is the Real McCoy, true 
reports  from  the  leading  edge,  and I trust  that you’ll be patient if careful  rereading 
and some occasional catch-up  reading of earlier  chapters are  required  to  absorb 
everything contained  herein. Besides, the  ultimate  reference  for any design is  work- 
ing  code, which  you’ll find, in part, in Listing 67.1, and in its entirety  in  the file 
DDJZSORT.ZIP on  the CD-ROM. 

Quake and Sorted  Spans 
As you’ll recall from  Chapter 66, Quake uses sorted  spans  to  get  zero overdraw  while 
rendering  the world, thereby  both improving overall performance and leveling frame 
rates by speeding up scenes that would otherwise experience heavy overdraw. Our 
original design used spans  sorted by  BSP order; because we traverse the world BSP 
tree  from front-to-back relative to  the viewpoint, the order in which BSP nodes  are 
visited is a  guaranteed front-to-back sorting  order. We simply  gave each node  an 
increasing BSP sequence  number as it was visited, set each polygon’s sort key to  the 
BSP sequence  number of the node (BSP splitting  plane)  it lay on,  and used  those 
sort keys when generating spans. 
(In  a change  from  earlier designs, polygons  now are stored on nodes,  rather  than 
leaves,  which are  the convex subspaces carved out by the BSP tree. Visits to  poten- 
tially  visible  leaves are  used only to  mark  that  the polygons that  touch  those leaves 
are visible and  need to be drawn, and each marked-visible  polygon is then drawn 
after everything in front of its node has  been drawn. This  results  in less BSP splitting 
of polygons,  which is A Good  Thing, as explained below.) 
This worked flawlessly for  the world, but  had  a  couple of downsides. First, it  didn’t 
address  the issue of sorting small,  moving BSP models such as doors;  those models 
could be clipped  into  the world BSP tree’s leaves and assigned sort keys correspond- 
ing  to  the leaves into which  they fell, but  there was still the  question of  how to  sort 
multiple BSP models in the same world  leaf against each  other.  Second,  strict BSP 
order requires  that polygons be split so that every  polygon  falls entirely within a 
single leaf. This  can be stretched by putting polygons on nodes, allowing for  larger 
polygons on average, but even then, polygons  still need  to be split so that every 
polygon  falls  within the bounding volume for the node  on which it lies. The  end result, 
in either case, is more and smaller  polygons than if BSP order weren’t  used-and that, in 
turn, means lower performance, because more polygons must be clipped,  trans- 
formed,  and  projected,  more  sorting must be done,  and more  spans must be drawn. 
We figured  that if only we could avoid those BSP splits, Quake would get  a  lot faster. 
Accordingly, we switched from  sorting on BSP order to  sorting on l / z ,  and left our 
polygons unsplit.  Things  did  get  faster  at first, but  not as much as we had  expected, 
for two reasons. 
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First,  as the world BSP tree is descended, we clip each node’s bounding box in turn 
to see if it’s inside or outside each plane of the view frustum. The clipping results can 
be remembered,  and often allow the avoidance of some or all clipping for  the node’s 
polygons.  For example, all  polygons in  a  node  that has a trivially accepted  bounding 
box are likewise guaranteed to be unclipped and in the  frustum, since they  all lie 
within the node’s volume and  need no  further clipping. This efficient clipping mecha- 
nism vanished as soon as we stepped out of BSP order, because a polygon was no 
longer necessarily confined to its node’s volume. 
Second, sorting on l / z  isn’t as cheap as sorting on BSP order, because floating-point 
calculations and comparisons are involved, rather  than  integer compares. So Quake 
got faster but, like Heinlein’s fifth rocket stage, there was clear evidence of diminish- 
ing  returns. 
That wasn’t the  bad  part; after all, even a small speed increase is A Good Thing. The 
real problem was that  our initial l / z  sorting proved to be unreliable. We first ran 
into problems when two forward-facing polygons started at a  common  edge, because 
it was hard to  tell  which one was really in front (as discussed below), and we had to 
do additional floating-point calculations to  resolve these cases. This fixed the  prob- 
lems for a while, but  then  odd cases started  popping up where just  the  right 
combination of polygon alignments caused new sorting errors. We tinkered with 
those too, adding  more  code  and  incurring  additional slowdowns in the process. 
Finally,  we had everything working smoothly again, although by this point Quake 
was back  to pretty much  the same speed  it  had  been with BSP sorting. 
And then yet another  crop of sorting errors  popped up. 
We could have fixed those errors too; we’ll  take a quick look at how to deal with such 
cases  shortly.  However,  like the sixth rocket stage, the fixes  would  have made Quake 
slower than  it  had  been with BSP sorting. S o  we  gave up  and went back  to BSP order, 
and now the  code is simpler and  sorting works  reliably. It’s too bad our  experiment 
didn’t work out,  but it wasn’t  wasted time because in trying  what we did we learned 
quite  a bit. In particular, we learned  that  the  information provided by a simple, reli- 
able world ordering mechanism, such as a BSP tree, can do  more good  than is 
immediately apparent, in terms of both  performance and solid code, 
Nonetheless,  sorting on l / z  can  be a valuable  tool,  used  in the right context;  drawing a 
Quake  world just doesn’t happen to be  such a case.  In  fact, sorting on l / z  is  how  we’re 
now handling  the  sorting of multiple BSP models that lie within the same  world  leaf 
in Quake. In this case, we don’t have the  option of using BSP order (because we’re 
drawing multiple independent  trees), so we’ve set restrictions on  the BSP models to 
avoid running  into  the types of l / z  sorting errors we encountered drawing the Quake 
world. Next, we’ll look at  another application in which sorting on l / z  is quite useful, 
one where objects move  freely through space. As is so often the case in 3-D, there is 
no  one “right”  technique,  but  rather  a  great many different  techniques, each one 
handy in the  right situations. Often,  a  combination of techniques is beneficial; for 
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example, the  combination  in  Quake of BSP sorting  for  the world and l / z  sorting  for 
BSP models in the same  world  leaf. 
For the  remainder of this chapter,  I'm  going to look at  the  three main  types  of l / z  
span  sorting,  then discuss a sample 3-D app built  around l / z  span  sorting. 

Types of 1 /z Span Sorting 
As a quick refresher: With l / z  span  sorting, all the polygons in  a  scene  are  treated as 
sets of screenspace pixel spans, and l / z  (where z is distance  from  the viewpoint  in 
viewspace,  as measured along  the viewplane normal) is used to  sort  the  spans so that 
the  nearest  span  overlapping  each pixel is drawn. As I discussed in  Chapter 66, in  the 
sample program we're actually going to do all our sorting with  polygon edges, which 
represent spans in  an implicit form. 
There  are  three types  of l / z  span  sorting,  each  requiring  a  different  implementa- 
tion.  In order of increasing  speed and decreasing complexity,  they are:  intersecting, 
abutting, and  independent.  (These  are  names of my  own devising; I  haven't  come 
across  any standard  nomenclature  in  the  literature.) 

Intersecting  Span  Sorting 
Intersecting span sorting occurs when polygons  can interpenetrate.  Thus, two spans 
may cross such that  part of each  span is  visible, in which  case the  spans have to be 
split and drawn appropriately, as  shown in Figure 6'7.1. 

invisible  portion 
of polygon B 

invisible  portion 
of polygon A 
l..--* -" ". 

-I -. "."" ...I ". -. "" 
"" *.-- 

visible of polygon  portion h A visible  portion 
span  split  point of polygon B 

viewpoint 

Note: Polygons A and B are viewed from above. 

Intersecting span sorting. 
Figure 67.1 
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Intersecting is the slowest and most complicated type  of span sorting, because it is 
necessary  to compare l / z  values at two points in order to detect  interpenetration, 
and additional work must be done to split the spans as  necessary. Thus,  although 
intersecting span sorting certainly works, it’s not  the first choice for  performance. 

Abutting Span Sorting 
Abutting  span  sorting  occurs  when  polygons that are not  part of a continuous surface 
can butt up against one another, but don’t interpenetrate, as  shown  in  Figure  67.2.  This 
is the sorting  used in Quake, where  objects  like doors often abut walls and floors, and 
turns out to be more complicated than you might  think. The problem is that when 
an abutting polygon starts on  a given  scan line, as  with  polygon B in Figure 67.2, it 
starts at exactly the same l / z  value  as the polygon it abuts, in this case,  polygon A, so 
additional  sorting is needed when these ties happen. Of course,  the two-point sort- 
ing used for  intersecting polygons  would  work, but we’d  like  to find  something faster. 
As it turns  out,  the  additional  sorting  for  abutting polygons is actually quite simple; 
whichever  polygon  has a  greater l / z  gradient with respect to screen x (that is, which- 
ever  polygon  is heading fastest  toward the viewer along the scan line) is the  front 
one.  The  hard  part is identifylng when ties-that  is, abutting polygons-occur; due 
to floating-point imprecision, as  well as fixed-point edge-stepping imprecision that 
can move an  edge slightly on  the  screen, calculations of l / z  from  the  combination 
of screen  coordinates and l / z  gradients (as discussed  last time) can be slightly off, so 

invisible  portion 
of polygon  A 

visible  portion I visible  portion 
of polygon  A Polygone B starts  here, of polygon B 

abutting  polygon A. 
At this  location,  both  polygons 
have  the  same 1 /z value. 

‘0’ 
viewpoint 

Note: Polygons A and B are viewed  from  above. 

Abutting span sorting. 
Figure 67.2 
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most tie cases  will  show up as near matches, not exact matches. This imprecision 
makes it necessary to perform two comparisons, one with an adjust-up by a small 
epsilon and  one with an adjust-down, creating  a  range in which near-matches are 
considered matches. Fine-tuning this epsilon to catch all  ties, without falsely report- 
ing close-but-not-abutting edges as ties, proved to be troublesome in Quake, and  the 
epsilon calculations and extra comparisons slowed things down. 
I do think  that  abutting l / z  span  sorting could have been  made reliable enough  for 
production use in Quake, were it not  that we share edges between adjacent polygons 
in Quake, so that  the world  is a large polygon mesh. When a polygon ends  and is 
followed by an  adjacent polygon that shares the  edge  that  just ended, we simply 
assume that the adjacent polygon sorts relative to other active  polygons in  the same 
place as the  one  that  ended (because the mesh  is continuous and there’s no inter- 
penetration),  rather  than  doing a l / z  sort  from scratch. This speeds things up by 
saving a  lot of sorting, but it means that if there is a  sorting  error,  a whole string of 
adjacent polygons can be sorted incorrectly, pulled  in by the  one missorted polygon. 
Missorting  is a very real hazard when a polygon  is  very nearly perpendicular to the 
screen, so that  the l / z  calculations push the limits of numeric precision, especially 
in single-precision floating point. 
Many caching schemes are possible  with abutting span sorting, because any  given 
pair of polygons, being  noninterpenetrating, will sort  in  the same order  throughout 
a scene. However, in Quake at least, the benefits of caching  sort results were out- 
weighed by the additional overhead of maintaining  the caching information, and 
every caching variant we tried actually  slowed Quake down. 

Independent  Span  Sorting 
Finally, we come to independent span  sorting,  the simplest and fastest of the  three, 
and  the type the sample code  in Listing 67.1 uses. Here, polygons never intersect 
or  touch any other polygons except  adjacent polygons with which they form  a  con- 
tinuous mesh. This  means that when a polygon starts on a scan line,  a single l / z  
comparison between that polygon and  the polygons it overlaps on  the screen is 
guaranteed to produce  correct  sorting, with no extra  calculations or tricky  cases to 
worry about. 
Independent span  sorting is ideal for scenes with  lots  of  moving objects that never 
actually touch  each  other, such as a space battle. Next, we’ll look at  an  implementa- 
tion of independent l / z  span sorting. 

1 / z  Span  Sorting in Action 
Listing  67.1  is a  portion of a  program  that  demonstrates independent l / z  span sort- 
ing. This  program is based on  the sample 3-D clipping program  from  Chapter 65; 
however, the earlier  program did hidden surface removal (HSR) by simply z-sorting 
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whole  objects and drawing them back-to-front,  while  Listing 67.1 draws  all  polygons 
by  way of a l/z-sorted  edge list.  Consequently, where the  earlier  program worked 
only so long as object centers correctly described sorting order, Listing 67.1 works 
properly for all combinations of non-intersecting and non-abutting polygons. In 
particular, Listing 67.1 correctly handles concave polyhedra; a new  L-shaped object 
(the  data for which is not included in  Listing 67.1) has been added to  the sample 
program to illustrate this  capability. The ability to  handle complex shapes makes 
Listing 67.1 vastly more useful for real-world applications than the 3-D clipping demo 
from  Chapter 65. 

LISTING  67.1  167-1 .C 
/ /  P a r t   o f  Win32  program t o   d e m o n s t r a t e   z - s o r t e d   s p a n s .   W h i t e s p a c e  
/ /  removed f o r   s p a c e   r e a s o n s .   F u l l   s o u r c e   c o d e ,   w i t h   w h i t e s p a c e ,  
/ /  a v a i l a b l e   f r o m  ftp.idsoftware.com/mikeab/ddjzsort.zip. 

Wdef i ne MAX-SPANS 10000 
C d e f i  ne MAXLSURFS 1000 
# d e f i n e  MAXKEDGES 5000 

t y p e d e f   s t r u c t   s u r f - s  { 
s t r u c t   s u r f - s  * p n e x t .   * p p r e v :  
i n t  c o l o r ,   v i   s x s t a r t ,   s t a t e :  
d o u b l e  z i n v 0 0 .   z i n v s t e p x .   z i n v s t e p y :  

1 s u r f - t :  

t y p e d e f   s t r u c t  edge-s t 
i n t  
s u r f - t  

x .   x s t e p .   l e a d i n g :  
* p s u r f :  

s t r u c t  edge-s *pnex t .   *pp rev .   *pnex t remove :  
I edge-t :  

/ /  Span.   edge,   and  sur face l i s t s  
span-t  spans[MAX_SPANSl: 
edge-t  edgesCMAX-EDGES]: 
s u r f - t  surfsCMAXLSURFS1: 

/ I  Bucke t  l i s t   o f  new edges t o  add  on  each  scan l i n e  
edge-t  newedgesrMAX-SCREEN-HEIGHT]: 

/ /  B u c k e t   l i s t   o f  edges t o  remove  on  each  scan l i n e  
edge- t  *removeedges[MAX_SCREEN~HEIGHTl; 

/ /  Head  and tail f o r   t h e   a c t i v e   e d g e   l i s t  
edge- t   edgehead .   edge ta i l :  

/ I  Edge used as  s e n t i n e l  o f  new edge l i s t s  
edge-t  maxedge = tOx7FFFFFFFl: 

/ /  Head/tail/sentinel/background s u r f a c e   o f   a c t i v e   s u r f a c e   s t a c k  
s u r f - t   s u r f s t a c k :  

/ /  p o i n t e r s   t o   n e x t   a v a i l a b l e   s u r f a c e   a n d   e d g e  
s u r f - t   * p a v a i l s u r f :  
edge- t   *pavai  1 edge: 
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I1 Returns  true  if  polygon  faces  the  viewpoint,  assuming a clockwise 
/ /  winding  of  vertices  as  seen  from  the  front. 
int PolyFacesViewer(po1ygon-t *ppoly. plane-t *pplane) 
I 

int  i; 
point-t viewvec; 

for (i-0 ; i < 3  : i++) 

11 Use an  epsilon  here s o  we don't get  polygons  tilted s o  
/ /  sharply  that  the  gradients  are  unusable  or  invalid 
if  (OotProduct (&viewvec. &pplane->normal) < -0.01) 

return 0; 

viewvec.v[il - ppoly->verts[Ol.v[il - currentpos.v[i]; 

return 1: 

1 

/ /  Add  the  polygon's  edges  to  the  global  edge  table. 
void  AddPolygonEdges (plane-t  *plane.  polygon2D-t  *screenpoly) 
I 

double  distinv,  deltax,  deltay.  slope: 
int i ,  nextvert,  numverts.  temp,  topy.  bottomy,  height; 
edge-t *pedge; 

numverts - screenpoly->numverts; 
/ /  Clamp  the polygon's vertices  just  in  case  some  very  near 
I1 points  have  wandered  out o f  range  due  to  floating-point 
/ /  imprecision 
for (i-0 ; i<numverts ; i++) { 

if (screenpoly->verts[il.x < -0.5) 
screenpoly->verts[i].x - -0.5; 

if (screenpoly->verts[i].x > ((doub1e)OIBWidth - 0 . 5 ) )  
screenpoly->verts[i].x - (doub1e)DIBWidth - 0 . 5 ;  

if (screenpoly->verts[il.y < - 0 . 5 )  
screenpoly->verts[il.y - - 0 . 5 ;  

if (screenpoly->verts[il.y > ((doub1e)DIBHeight - 0 . 5 ) )  
screenpoly->verts[i].y - (doub1e)OIBHeight - 0.5; 

I 

I /  Add  each  edge  in  turn 
for (i-0 : i<numverts ; i++) { 

nextvert - i + 1; 
if  (nextvert >- numverts) 

nextvert - 0; 
topy - (int)ceil(screenpoly->verts[il.y); 
bottomy - (int)ceil(screenpoly->verts[nextvertl.y): 
height - bottomy - topy: 
if  (height -- 0)  

if (height < 0 )  { 
continue; / /  doesn't cross  any  scan  lines 

/ /  Leading  edge 
temp - topy; 
topy - bottomy; 
bottomy - temp; 
pavailedge->leading - 1; 
deltax - screenpoly->verts[il.x - 

deltay - screenpoly->verts[i].y - 

slope - deltax / deltay: 

screenpoly->verts[nextvert].x: 

screenpoly->verts[nextvertl.y: 

1232 Chapter 67 



/ /  Edge  coordinates  are  in  16.16  fixed  point 
pavailedge->xstep - (int)(slope * (float)Ox10000): 
pavailedge->x - (int)((screenpoly->verts[nextvert].x + 

slope) * (f1oat)OxlOOOO): 
((floatltopy - s c r e e n p o l y - > v e r t s [ n e x t v e r t ] . y )  * 

I else I 
/ /  Trailing  edge 
pavailedge->leading - 0:  
deltax - screenpoly->verts[nextvert].x - 

screenpoly->verts[i].x; 
deltay - screenpoly->verts[nextvertl.y - 

screenpoly->verts[i].y: 
slope - deltax f deltay; 
/ /  Edge  coordinates  are  in 16.16 fixed  point 
pavailedge->xstep - (int)(slope * (f1oat)OxlOOOO): 
pavailedge->x - (int)((screenpoly->verts[il.x + 

((floatltopy - screenpoly->verts[i].y) * slope) * 
(f1oat)OxlOOOO): 

I 

I /  Put  the  edge on the  list  to  be  added on top  scan 
pedge - &newedges[topyl: 
while  (pedge->pnext->x < pavailedge->x) 

pavailedge->pnext - pedge->pnext: 
pedge->pnext - pavailedge: 
/ I  Put  the  edge on the  list  to  be  removed  after  final  scan 
pavailedge->pnextremove - removeedgesCbottomy - 11; 
removeedges[bottomy - 13 - pavailedge: 
/ I  Associate  the  edge  with  the  surface we'll create  for 
/ I  this  polygon 
pavailedge->psurf - pavailsurf: 
I /  Make  sure  we don't overflow  the  edge  array 
if  (pavailedge < &edges[MAX-EDGES]) 

pedge - pedge->pnext; 

1 

/ /  Create  the  surface, so we'll know  how  to  sort  and  draw  from 
I /  the  edges 
pavailsurf->state - 0: 
Davai 1 surf  ->col  or - currentcol  or: 

pavai 1 edge++: 

/ /  Set  up  the l/z gradients  from  the  polygon,  calculating  the 
I1 base  value  at  screen  coordinate 0.0 s o  we  can  use  screen 
I /  coordinates  directly  when  calculating l l z  from  the  gradients 
distinv - 1.0 / plane->distance: 
pavailsurf->zinvstepx - plane->normal.v[O] * distinv * 

maxscreenscaleinv * (fieldofview / 2 .0 ) :  
pavailsurf->zinvstepy - -plane->normal.vClI * distinv * 

maxscreenscaleinv * (fieldofview / 2.0):  
pavailsurf->zinv00 - plane->normal.v[Z] * distinv - 

xcenter * pavailsurf->zinvstepx - 
ycenter * pavailsurf->zinvstepy: 

/ /  Make  sure  we don't overflow  the  surface  array 
if  (pavailsurf < &surfs[MAX-SURFS]) 

pavailsurfce: 
1 
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/ /  Scan all the  edges  in  the  global  edge  table  into  spans. 
void  ScanEdges  (void) 
{ 

int x. y ;  
double  fx.  fy,  zinv,  zinv2; 
edge-t *pedge.  *pedge2.  *ptemp; 
span-t *pspan; 
surf-t *psurf,  *psurf2; 

pspan - spans; 
/ /  Set  up  the  active  edge  list  as  initially  empty,  containing 
/ /  only  the  sentinels  (which  are  also  the  background fill). Most 
/ /  of  these  fields  could  be  set  up  just  once  at  start-up 
edgehead.pnext - &edgetail: 
edgehead.pprev - NULL; 
edgehead.x - -0xFFFF; / /  left  edge  of  screen 
edgehead.leading - 1; 
edgehead.psurf - &surfstack: 
edgetail.pnext - NULL; / /  mark  edge  of  list 
edgetail.pprev - &edgehead; 
edgetai1.x - DIBWidth << 16; / I  right  edge  of  screen 
edgetai1.leading - 0; 
edgetail.psurf - &surfstack; 
/ /  The  background  surface  is  the  entire  stack  initially,  and 
/ /  is  infinitely  far  away, s o  everything  sorts  in  front  of  it. 
/ /  This  could  be  set  just  once  at  start-up 
surfstack.pnext - surfstack.pprev - &surfstack; 
surfstack.color - 0; 
surfstack.zinv00 - -999999.0; 
surfstack.zinvstepx - surfstack.zinvstepy - 0.0: 
for (y-0 ; y<OIBHeight : y++) { 

fy - (doub1e)y; 
/ /  Sort  in  any  edges  that  start on this  scan 
pedge - newedges[yl.pnext: 
pedge2 - &edgehead; 
while  (pedge !- &maxedge) ( 

while  (pedge->x > pedge2->pnext->x) 

ptemp - pedge->pnext; 
pedge->pnext - pedge2->pnext; 
pedge->pprev - pedge2; 
pedge2->pnext->pprev - pedge; 
pedgeZ->pnext - pedge: 
pedge2 - pedge: 
pedge - ptemp; 

pedge2 - pedgeZ->pnext; 

1 

/ /  Scan  out  the  active  edges  into  spans 
/ /  Start  out  with  the  left  background  edge  already  inserted, 
/ /  and  the  surface  stack  containing  only  the  background 
surfstack.state - 1; 
surfstack.visxstart - 0; 
for  (pedge-edgehead.pnext ; pedge : pedge-pedge->pnext) I 

psurf - pedge->psurf; 
if (pedge->leading) ( 

/ /  It's a  leading  edge.  Figure  out  where  it  is 
/ /  relative  to  the  current  surfaces  and  insert in 
/ /  the  surface  stack; if it's on top,  emit  the  span 
/ /  for  the  current top. 
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/ I  F i r s t ,  make s u r e   t h e   e d g e s   d o n ' t   c r o s s  
i f  ( t t p s u r f - > s t a t e  - 1) ( 

f x  - (doub1e)pedge->x  * (1 .0  / (doub le)Ox10000) :  
/ I  C a l c u l a t e   t h e   s u r f a c e ' s  l l z  v a l u e   a t   t h i s   p i x e l  
z i n v  - p s u r f - > z i n v 0 0  + p s u r f - > z i n v s t e p x  * f x  + 

I /  See i f  t h a t  makes i t  a new t o p   s u r f a c e  
p s u r f 2  - s u r f s t a c k . p n e x t ;  
z i n v 2  - p s u r f 2 - > z i n v 0 0  + p s u r f 2 - > z i n v s t e p x  * f x  + 

i f  ( z i n v  >- z i n v 2 )  { 

p s u r f - > z i n v s t e p y  * f y ;  

p s u r f Z - > z i n v s t e p y  * f y :  

/ I  I t ' s  a new t o p   s u r f a c e  
/ I  e m i t   t h e   s p a n   f o r   t h e   c u r r e n t   t o p  
x - (pedge->x  + OxFFFF) >> 16: 
pspan->coun t  - x - p s u r f 2 - > v i s x s t a r t :  
i f  (pspan->coun t  > 0) ( 

pspan->y  - y :  
pspan->x  - p s u r f 2 - > v i s x s t a r t ;  
p s p a n - > c o l o r  - p s u r f 2 - > c o l o r :  
/ I  Make s u r e  we d o n ' t   o v e r f l o w  
I /  t h e   s p a n   a r r a y  
i f  (pspan < &spansCMAX-SPANS]) 

pspan++: 
1 
p s u r f - > v i s x s t a r t  - x :  
/ I  Add t h e   e d g e   t o   t h e   s t a c k  
p s u r f - > p n e x t  - p s u r f 2 :  
p s u r f 2 - > p p r e v  - p s u r f :  
s u r f s t a c k . p n e x t  - p s u r f :  
p s u r f - > p p r e v  - & s u r f s t a c k ;  

/ I  Not  a new t o p :   s o r t   i n t o   t h e   s u r f a c e   s t a c k .  
/ I  Guaranteed t o   t e r m i n a t e   d u e   t o   s e n t i n e l  
/ I  b a c k g r o u n d   s u r f a c e  
do { 

1 e l s e  { 

p s u r f 2  - p s u r f 2 - > p n e x t :  
z i n v 2  - p s u r f Z - > z i n v 0 0  + 

p s u r f 2 - > z i n v s t e p x  * f x  + 
p s u r f 2 - > z i n v s t e p y  * f y ;  

1 w h i l e   ( z i n v  < z i n v 2 ) :  
/ I  I n s e r t   t h e   s u r f a c e   i n t o   t h e   s t a c k  
p s u r f - > p n e x t  - p s u r f 2 :  
p s u r f - > p p r e v  - p s u r f Z - > p p r e v :  
p s u r f 2 - > p p r e v - > p n e x t  - p s u r f :  
p s u r f 2 - > p p r e v  - p s u r f :  

1 
1 

1 e l s e  { 
I /  I t ' s  a t r a i l i n g   e d g e :  i f  t h i s  was t h e   t o p   s u r f a c e .  
I /  emi t   t he   span   and   remove  it. 
I /  F i r s t ,  make s u r e   t h e   e d g e s   d i d n ' t   c r o s s  
i f  ( - p s u r f - > s t a t e  - 0 )  { 

i f  ( s u r f s t a c k . p n e x t  - p s u r f )  { 
/ I  I t ' s  on t o p ,   e m i t   t h e   s p a n  
x - ( (pedge->x  + OxFFFF) >> 16 ) :  
pspan->coun t  - x - p s u r f - > v i s x s t a r t :  
i f  (pspan->coun t  > 0 )  { 

pspan->y  - y: 
pspan->x  - p s u r f - > v i s x s t a r t :  
p s p a n - > c o l o r  - p s u r f - > c o l o r :  

Sorted Spans in Action 1 235 



/ /  Make s u r e  we d o n ' t   o v e r f l o w  
/ /  t h e   s p a n   a r r a y  
i f  (pspan < &spans[MAX-SPANSl) 

p s p a n t c ;  
I 

1 
p s u r f - > p n e x t - > v i s x s t a r t  - x;  

/ /  Remove t h e   s u r f a c e   f r o m   t h e   s t a c k  
p s u r f - > p n e x t - > p p r e v  - p s u r f - > p p r e v ;  
p s u r f - > p p r e v - > p n e x t  - p s u r f - > p n e x t ;  

} 

/ /  Remove e d g e s   t h a t   a r e   d o n e  
pedge - removeedgesCy1; 
w h i l e   ( p e d g e )  { 

p e d g e - > p p r e v - > p n e x t  - pedge->pnex t ;  
p e d g e - > p n e x t - > p p r e v  - pedge->pprev ;  
pedge - pedge->pnextremove:  

1 

/ /  S t e p   t h e   r e m a i n i n g   e d g e s   o n e   s c a n   l i n e .   a n d   r e - s o r t  
f o r   ( p e d g e - e d g e h e a d . p n e x t  ; pedge !- & e d g e t a i l  ; 1 { 

ptemp - p e d g e - > p n e x t ;  
/ /  S t e p   t h e   e d g e  
pedge->x  +- p e d g e - > x s t e p ;  
/ /  Move t h e   e d g e   b a c k   t o   t h e   p r o p e r   s o r t e d   l o c a t i o n .  
/ /  i f  n e c e s s a r y  
w h i l e   ( p e d g e - > x  < p e d g e - > p p r e v - > x )  I 

pedge2 - pedge->pprev ;  
pedge2->pnex t  - pedge->pnex t :  
p e d g e - > p n e x t - > p p r e v  - pedge2: 
p e d g e 2 - > p p r e v - > p n e x t  - pedge; 
pedge->pprev  - pedgeZ->pprev :  
p e d g e - > p n e x t  - pedge2; 
pedge2->pprev  - pedge: 

1 
pedge - ptemp; 

I 
1 
pspan->x  - -1: / /  m a r k   t h e   e n d   o f   t h e   l i s t  

/ /  D r a w  a l l   t h e   s p a n s   t h a t   w e r e   s c a n n e d   o u t .  
v o i d  DrawSpans ( v o i d )  
I 

span-t   *pspan; 
f o r  (pspan-spans ; pspan->x  !- -1 ; pspan++) 

memset  (pDIB + ( D I B P i t c h  * p s p a n - > y )  + p s p a n - > x .  
p s p a n - > c o l   o r ,  
p s p a n - > c o u n t ) :  

1 

/ /  C l e a r   t h e   l i s t s   o f   e d g e s   t o   a d d   a n d   r e m o v e  on e a c h   s c a n   l i n e .  
v o i d   C l e a r E d g e L i s t s ( v o i d 1  
( 

i n t  i: 
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f o r  (i=O ; i < D I B H e i g h t  ; i++) { 

n e w e d g e s [ i l . p n e x t  = &maxedge; 
removeedges [ i ]  = NULL; 

} 
1 

/ /  R e n d e r   t h e   c u r r e n t   s t a t e   o f   t h e   w o r l d  
v o i d   U p d a t e W o r l d O  
{ 

HPALETTE h o l d o a l  : 

t o  t h e   s c r e e n .  

HDC 
HBITMAP 
polygon2D-t  
po l ygon- t  
c o n v e x o b j e c t - t  
i n t  
p l   a n e - t  
p o i   n t L t  

hdcScreen.   hdcDIBSect ion ;  
h o l   d b i   t m a p :  
s c r e e n p o l y ;  
* p p o l y .   t p o l y 0 .   t p o l y l .   t p o l y 2 ;  
* p o b j e c t ;  
i. j .  k ;  
p l a n e ;  
t n o r m a l  : 

U p d a t e v i e w P o s o ;  
S e t U p F r u s t u m O :  
C l e a r E d g e L i s t s O ;  
p a v a i l s u r f  = s u r f s :  
p a v a i l e d g e  = edges;  

I /  Draw a l l   v i s i b l e   f a c e s   i n   a l l   o b j e c t s  
p o b j e c t  = o b j e c t h e a d . p n e x t ;  
w h i l e   ( p o b j e c t  != & o b j e c t h e a d )  [ 

p p o l y  = p o b j e c t - > p p o l y ;  
f o r  (i=O : i < p o b j e c t - > n u m p o l y s  : i++) { 

I /  Move t h e   p o l y g o n   r e l a t i v e   t o   t h e   o b j e c t   c e n t e r  
tpo ly0.numver t .s  = p p o l y [ i l . n u m v e r t s ;  
f o r  ( j = O  ; j < t p o l y O . n u m v e r t s  ; j++) { 

f o r  (k=O ; k<3 ; k++) 
t p o l y O . v e r t s [ j l . v [ k l  = p p o l y [ i l . v e r t s [ j l . v [ k l  + 

p o b j e c t - > c e n t e r . v [ k l ;  
I 
i f  ( P o l y F a c e s V i e w e r ( & t p o l y O .  & p p o l y [ i l . p l a n e ) )  { 

i f  ( C l i p T o F r u s t u m ( & t p o l y O .   & t p o l y l ) )  t 
c u r r e n t c o l o r  = p p o l y [ i l . c o l o r ;  
T r a n s f o r m P o l y g o n   ( & t p o l y l .   & t p o l y 2 ) ;  
P r o j e c t P o l y g o n   ( & t p o l y 2 .   & s c r e e n p o l y ) :  

/ I  Move t h e   p o l y g o n ' s   p l a n e   i n t o   v i e w s p a c e  
/ /  F i r s t  move i t  i n t o   w o r l d s p a c e   ( o b j e c t   r e l a t i v e )  
t n o r m a l  = p p o l y [ i l . p l a n e . n o r m a l ;  
p l a n e . d i s t a n c e  = p p o l y [ i ] . p l a n e . d i s t a n c e  + 

D o t P r o d u c t   ( & p o b j e c t - > c e n t e r .   & t n o r m a l ) ;  

/ /  Now t r a n s f o r m  i t  i n t o   v i e w s p a c e  
/ I  D e t e r m i n e   t h e   d i s t a n c e   f r o m   t h e   v i e w p o n t  
p l a n e . d i s t a n c e  -= 

D o t P r o d u c t   ( & c u r r e n t p o s .   & t n o r m a l  

I /  R o t a t e   t h e   n o r m a l   i n t o   v i e w   o r i e n t a t  
p lane.norma1  .v [O]  = 

D o t p r o d u c t   ( & t n o r m a l .   & v r i g h t ) :  
p l a n e . n o r m a 1   . v [ l l  = 

D o t p r o d u c t   ( & t n o r m a l .   & v u p ) ;  

1 ;  

i o n  
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p lane.norma1  .v [21  - 
AddPo lygonEdges   (&p lane ,   &sc reenpo ly ) :  

D o t P r o d u c t   ( & t n o r r n a l .   & v p n ) :  

1 
1 

1 
p o b j e c t  = p o b j e c t - > p n e x t ;  

1 
ScanEdges 0 ;  
DrawSpans 0 ;  

/ /  We’ve  drawn  the  f rame;   copy i t  t o   t h e   s c r e e n  
hdcScreen - GetDC(hwndOutput1: 
h o l d p a l  - SelectPalette(hdcScreen. hpalDIB.   FALSE);  
RealizePalette(hdcScreen): 
hdcDIBSec t ion  - CreateCompatibleDC(hdcScreen): 
h o l d b i t m a p  - SelectObject(hdcD1BSection. h D I B S e c t i o n ) ;  
B i t B l t ( h d c S c r e e n ,  0 .   0 ,  D IBWid th .   D IBHe igh t .   hdcDIBSec t ion .  

S e l   e c t P a l   e t t e (   h d c S c r e e n ,   h o l d p a l  , FALSE) ; 
ReleaseDC(hwndDutput ,   hdcscreen) ;  
SelectObject(hdcD1BSection. h o l d b i t m a p ) :  
D e l e t e D C ( h d c D 1 B S e c t i o n ) ;  

0.  0. S R C C O P Y ) :  

By the same token, Listing  67.1 is quite  a  bit  more  complicated  than  the  earlier  code. 
The earlier code’s HSR consisted of a z-sort  of objects, followed by the drawing of the 
objects in back-to-front order, one polygon at a time. Apart  from  the simple object 
sorter, all that was needed was backface culling and a polygon rasterizer. 
Listing 6’7.1 replaces  this  simple  pipeline with a  three-stage HSR process. After 
backface culling,  the  edges of each of the polygons in  the  scene are  added to the 
global edge list, by  way  of AddPolygonEdges(). After  all edges have been  added,  the 
edges  are turned  into spans by ScanEdgesO, with each pixel on the  screen  being 
covered by one  and only one span (that is, there’s no overdraw). Once all the  spans 
have been  generated,  they’re drawn by Drawspans(), and rasterization is complete. 
There’s  nothing tricky aboutAddPolygonEdges(), and Drawspans(), as implemented 
in Listing 6’1.1, is very straightforward as  well. In an implementation  that  supported 
texture  mapping, however,  all the  spans  wouldn’t  be put  on  one global span list and 
drawn at once, as  is done in Listing  67.1, because that would result  in drawing spans 
from all the  surfaces in no particular  order. (A surface is a drawing object  that’s 
originally described by a polygon, but  in ScanEdgesO there is no polygon in  the 
classic sense of a  set of vertices bounding  an  area,  but  rather  just  a  set of edges and a 
surface  that  describes how to draw the  spans  outlined by those  edges.) That would 
mean constantly skipping  from one texture  to  another, which in  turn would hurt 
processor  cache  coherency  a  great  deal, and would  also incur  considerable  overhead 
in  setting up  gradient  and perspective calculations  each time a  surface was drawn. In 
Quake, we have a  linked list of spans  hanging off each  surface, and draw all the  spans 
for one surface  before moving on to  the  next  surface. 
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The  core of Listing 67.1, and  the most complex  aspect of l/z-sorted spans, is 
ScanEdgesO, where the global edge list  is converted into  a set of spans describing 
the  nearest surface at each pixel. This process is  actually pretty simple, though, if 
you think of it as  follows: 
For each scan line,  there is a  set of  active edges, which are those edges that  intersect 
the scan line. A good  part of S c d d g e s ( )  is dedicated to adding any edges that first 
appear  on  the  current scan line (scan lines are processed from  the  top scan line on 
the  screen to the  bottom), removing edges that  reach their bottom on the current 
scan line, and x-sorting the active edges so that  the active edges for  the  next scan can 
be processed from left to right. All this is  per-scan-line maintenance, and is basically 
just linked list insertion,  deletion, and sorting. 
The heart of the action is the loop in ScanEdges() that processes the edges on the cur- 
rent scan line  from left to right,  generating spans as needed.  The best way to think of 
this loop is as a surface  event  processor,  where each edge is an event  with an associated 
surface.  Each leading edge is an event  marking the start of its surface on that scan  line; if 
the surface is nearer than the  current nearest surface, then a span ends for the nearest 
surface, and a  span starts for  the new surface. Each trailing edge is an event marking 
the  end of its surface; if its surface is currently  nearest, then a span ends for that surface, 
and a span starts for  the next-nearest surface (the surface with the next-largest l / z  at 
the  coordinate where the  edge intersects the scan line).  One handy aspect of this 
event-oriented processing is that  leading and trailing edges do  not  need to be explic- 
itly paired, because they are implicitly paired by pointing to the same surface. This 
saves the memory and time that would otherwise be needed to track edge pairs. 
One  more  element is required in order  for ScanEdges() to work  efficiently.  Each 
time a  leading or trailing edge occurs, it must be determined  whether its surface is 
nearest (at a  larger l / z  value than any currently active surface).  In  addition,  for 
leading edges, the currently topmost surface must be known, and  for trailing edges, 
it may be necessary  to  know the  currently next-to-topmost surface. The easiest way to 
accomplish this is  with a surface stuck that is, a linked list  of  all currently active  sur- 
faces, starting with the  nearest surface and progressing toward the  farthest surface, 
which, as described below,  is  always the  background surface. (The operation of this 
sort of edge event-based stack was described and illustrated in Chapter 66.) Each 
leading  edge causes  its surface to be l/z-sorted  into  the surface stack, with a  span 
emitted if necessary.  Each trailing edge causes its surface to be removed from the 
surface stack, again with a span emitted if necessary. As you can  see from Listing  67.1, 
it takes a fair bit of code to implement this, but all  that’s  really going on is a surface 
stack driven by edge events. 

Implementation Notes 
Finally, a few notes  on Listing  67.1.  First,  you’ll notice that  although we clip all  poly- 
gons to the view frustum in worldspace, we nonetheless  later clamp them to  valid 
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screen coordinates  before  adding  them to the  edge list. This catches any  cases where 
arithmetic imprecision results in clipped polygon  vertices that  are  a bit outside the 
frustum. I’ve only found such imprecision to be significant at very  small z distances, 
so  clamping would probably be unnecessary if there were a  near clip plane,  and 
might not even be needed in Listing  67.1, because of the slight nudge inward that we 
give the frustum planes, as described in Chapter 65.  However, my experience has 
consistently been  that relying on worldspace or viewspace clipping to produce valid 
screen coordinates 100 percent of the time  leads  to  sporadic and  hard-todebug errors. 
There is no separate  routine to clear the  background in Listing  67.1. Instead,  a spe- 
cial background surface at  an effectively infinite distance is added, so whenever no 
polygons are active the  background color is drawn. If desired, it’s a simple matter to 
flag the  background surface and draw the  background specially. For example,  the 
background  could be drawn as a starfield or a cloudy sky. 
The edge-processing code  in Listing  67.1 is fully capable of handling concave  poly- 
gons as  easily  as  convex polygons, and can handle  an  arbitrary  number of  vertices 
per polygon, as  well. One change is needed  for  the  latter case: Storage for  the maxi- 
mum  number of vertices per polygon must be allocated in the polygon structures. In 
a fully polished implementation, vertices  would be linked together or pointed to, 
and would be dynamically allocated from  a vertex pool, so each polygon wouldn’t 
have to contain enough space for  the maximum possible number of vertices. 
Each surface has a field named state, which is incremented when a  leading  edge  for 
that surface is encountered,  and  decremented when a trailing edge is reached. A 
surface is activated by a  leading  edge only if state increments to 1, and is deactivated 
by a trailing edge only if state decrements to 0. This is another  guard against arith- 
metic problems, in this  case quantization during  the conversion ofvertex  coordinates 
from floating point to fixed point. Due to this conversion, it is possible, although 
rare,  for  a polygon that is viewed nearly edge-on to  have a trailing edge  that occurs 
slightly before the  corresponding  leading  edge, and  the span-generation code will 
behave badly if it tries to emit  a span for  a surface that hasn’t yet started.  It would 
help  performance if this sort of fix-up could  be  eliminated by careful arithmetic, but 
I haven’t yet found  a way to do so for  l/z-sorted spans. 
Lastly, as  discussed in Chapter 66, Listing  67.1  uses the  gradients  for l / z  with respect 
to changes in screen  x and y to calculate l / z  for active surfaces each time a  leading 
edge  needs to be sorted  into  the surface stack. The natural origin for  gradient calcu- 
lations is the  center of the  screen, which is (x,y) coordinate (0,O) in viewspace. 
However, when the  gradients  are calculated in AddPolygonEdges(), the origin value 
is calculated at the upper-left corner of the screen. This is done so that  screen x and 
y coordinates can be used directly to calculate l / z ,  with no  need to adjust the coordi- 
nates to be relative to the  center of the screen. Also, the  screen  gradients grow more 
extreme as a polygon is viewed closer to edge-on. In  order to keep the  gradient 
calculations from becoming meaningless or generating  errors,  a small epsilon is ap- 
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plied to  backface culling, so that polygons that are very nearly edge-on are culled. 
This calculation would be more accurate if it were based directly on the viewing 
angle, rather  than  on  the  dot  product of a viewing  ray to the polygon  with the poly- 
gon  normal, but that would require a square  root, and in my experience  the epsilon 
used in Listing 6’7.1 works fine. 
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quake's lighting model



Different  Approach  to Lighting Polygons 
ollege that  I discovered computer games. Not Wiz- 

cause none of those existed yet-the game that 
Trek game, in which  you navigated from one 8x8 

of starbases, occasionally firing phasers or  photon 
than  it sounds; after  each move, the  current quad- 
atch,  along with the  current stats-and the  output 

tball console. A typical game took over an hour, during which 
mulating ever happened (Klingons appeared periodically, but 
your next move before attacking, and your photon  torpedoes 

never in doubt),  but  none of that  mattered;  noth- 
hrill of being in a computer-simulated universe. 

Then  the college got  a PDP-11 with four CRT terminals, and suddenly Star Trek 
could redraw in a second instead of a  minute. Better yet, I  found  the source code  for 
the Star Trek program  in the recesses of the new  system, the first time I’d ever seen 
any  real-world code  other  than my own, and excitedly  dove into it. One evening, as I 
was looking through  the  code,  a really cute girl at  the  next  terminal asked me  for 
help  getting  a  program to run. After I had  helped her, eager to get to know her 
better, I said, ‘Want to see something? This is the actual source for  the Star Trek 
game!” and proceeded to page through  the code, describing each  subroutine. We 
got to talking, and eventually I worked up the nerve to ask her  out. She said sure, and 
we ended  up having a  good time, although things soon fell apart because of her two 
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or  three  other boyfriends (I never  did  get  an  exact count).  The interesting  thing, 
though, was her response when I finally got  around to asking her  out. She  said, “It’s 
about time!”  When  I asked what she  meant,  she said, “I’ve been trying to get you to 
ask me out all  evening-but it took you forever! You didn’t actually think  I was inter- 
ested  in that Star Trek program,  did  you?” 
Actually,  yes, I  had  thought  that, because Iwas interested  in it. One thing I learned 
from  that  experience,  and have had  reinforced  countless times since, is that we- 
you,  me,  anyone who programs  because they love it, who would do it  for  free if 
necessary-are a  breed  apart. We’re different,  and luckily so; while everyone else is 
worrying about downsizing, we’re in one of the  hottest  industries  in  the world. And, 
so far as I  can  see, the biggest reason we’re in  such a good  situation  isn’t  intelligence, 
or  hard work, or  education,  although  those  help; it’s that we actually like this stuff. 
It’s important to  keep it that way.  I’ve seen  far  too many people  start to treat  pro- 
gramming like a  job,  forgetting  the joy  of doing  it,  and  burn  out. So keep  an eye on 
how  you feel about  the programming  you’re  doing, and if it’s getting  stale, it’s time 
to  learn  something new; there’s  plenty of interesting  programming of  all sorts  to be 
done. Follow your interests-and don’t  forget to have fun! 

The Lighting Conundrum 
I spent  about two years working with John Carmack on Quake’s 3-D graphics  engine. 
John faced several fundamental  design issues  while architecting  Quake. I’ve written 
in  earlier  chapters  about  some of those issues, including  eliminating non-visible  poly- 
gons quickly via a  precalculated  potentially visible  set (PVS), and  improving 
performance by inserting  potentially visible polygons into  a global  edge list and scan- 
ning  out only the  nearest polygon at  each pixel. 
In this chapter, I’m going  to talk about  another, equally crucial  design issue: how we 
developed our lighting  approach  for  the part of the Quake  engine  that draws the 
world itself, the static walls and floors and ceilings. Monsters and players are drawn 
using  completely  different rendering  code, with speed  the  overriding  factor. A pri- 
mary goal  for the world, on  the  other  hand, was to be as precise as possible, getting 
everything right so that polygons, textures, and sophisticated lighting would be pegged 
in  place, with no visible shifting or distortion under all  viewing conditions, for maxi- 
mum player immersion-all  with good  performance, of course. As I’ll discuss, the 
twin goals of performance  and rock-solid, complex  lighting  proved  to  be difficult to 
achieve with traditional  lighting  approaches; ultimately, a dramatically different  ap- 
proach was required. 

Gouraud Shading 
The traditional way to do realistic lighting  in polygon pipelines is Gouraud  shading 
(also known  as smooth  shading). Gouraud  shading involves generating  a  lighting value 
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at  each polygon vertex by applying all relevant world lighting, linearly interpolating 
between lighting values  down the  edges of the polygon, and  then linearly interpolat- 
ing between the  edges of the polygon across each  span. If texture  mapping is desired 
(and all polygons are  texture  mapped in Quake),  then  at each pixel in  each  span, 
the pixel’s corresponding  texture  map  location  (texel) is determined,  and  the inter- 
polated lighting is applied to the texel to generate a final, lit pixel. Texels are generally 
taken from  a 32x32 or 64x64 texture that’s tiled repeatedly across the polygon, for 
several reasons: performance (a 64x64 texture sits  nicely in  the 486 or Pentium cache), 
database size, and less artwork. 
The  interpolated  lighting can consist of either a  color intensity value or  three sepa- 
rate  red,  green,  and blue values. RGB lighting  produces more sophisticated results, 
such as colored lights, but is  slower and best  suited  to RGB modes. Games like Quake 
that  are  targeted  at palettized 256-color modes generally use intensity lighting;  each 
pixel is lit by looking up  the pixel color  in  a  table, using the texel color and  the 
lighting intensity as the look-up indices. 
Gouraud  shading allows for  decent lighting effects with a relatively small amount of 
calculation and a  compact  data set that’s a simple extension of the basic polygon 
model. However, there  are several important drawbacks to Gouraud  shading, as  well. 

Problems with  Gouraud  Shading 
The quality of Gouraud  shading  depends heavily on  the average size  of the polygons 
being drawn. Linear  interpolation is used, so highlights  can only occur  at vertices, 
and color  gradients  are  monotonic across the face of each polygon. This can make 
for  bland  lighting effects if polygons are  large, and makes it difficult to do spotlights 
and  other detailed or dramatic  lighting effects. After John  brought  the initial, primi- 
tive Quake  engine  up using Gouraud  shading  for  lighting, the first thing  he  tried to 
improve lighting quality was adding  a single vertex and  creating new polygons wher- 
ever a  spotlight was directly overhead  a polygon, with the new vertex added directly 
underneath  the light, as  shown in Figure 68.1. This produced fairly attractive high- 
lights, but simultaneously made  evident several problems. 
A primary  problem with Gouraud  shading is that it requires  the vertices used  for 
world geometry to serve as lighting  sample  points as  well, even though  there isn’t 
necessarily a close relationship between lighting and geometry. This artificial cou- 
pling often forces the subdivision of a single polygon into several polygons purely for 
lighting  reasons, as with the  spotlights  mentioned above; these extra polygons in- 
crease the world database size, and  the  extra transformations and projections  that 
they induce  can  harm  performance considerably. 
Similar problems  occur with overlapping lights, and with shadows, where additional 
polygons are  required  in  order to approximate  lighting  detail well. In particular, 
good shadow edges need small polygons, because otherwise the  gradient between 
light and  dark gets spread across too wide an  area. Worse still, the  rate of lighting 
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Wall is a single  polygon  before adding  a 
light  vertex 

Wall becomes four polygons  after  adding a 
light  vertex  directly  beneath a  light 

Adding an  extra vertex directly beneath a light. 
Figure 68.1 

change across a  shadow  edge can vary considerably as a  function of the geometry the 
edge crosses;  wider  polygons stretch and diffuse the transition between light and 
shadow. A related  problem is that lighting discontinuities can be  very  visible at t- 
junctions  (although ultimately we had to add edges to eliminate tjunctions anyway, 
because otherwise dropouts can occur  along polygon edges).  These  problems can 
be eased by adding  extra edges, but that increases the rasterization load. 

Perspective  Correctness 
Another  problem is that  Gouraud  shading isn’t perspective-correct. With Gouraud 
shading, lighting varies linearly across the face of a polygon, in equal  increments  per 
pixel-but unless the polygon is parallel to the screen, the same  sort of perspective 
correction is needed to step lighting across the polygon properly as is required for 
texture  mapping. Lack  of perspective correction is not as  visibly wrong  for lighting 
as it is for  texture  mapping, because smooth  lighting  gradients can tolerate consider- 
ably more warping than can the detailed bitmapped images used in texture  mapping, 
but it nonetheless shows up in several ways. 
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First, the  extent of the mismatch between Gouraud  shading  and perspective lighting 
varies  with the  angle and orientation of the polygon being lit. As a polygon turns to 
become  more  on-edge,  for example, the lighting warps more  and therefore shifts 
relative  to the perspective-texture mapped texels  it’s shading, an effect I’ll call view- 
ing vam’ance. Lighting can similarly shift as a result of clipping, for example if one  or 
more polygon edges are completely clipped; I’ll refer to this as clipping vam’ance. 
These are fairly subtle effects; more  pronounced is the rotational variance that occurs 
when  Gouraud  shading any  polygon  with more  than three vertices. Consistent light- 
ing for  a polygon is fully defined by three lighting values; taking four or more vertices 
and interpolating between them, as Gouraud shading does, is  basically a hack, and 
does not reflect any consistent underlying model. If you  view a Gouraud-shaded quad 
head-on, then rotate it like a pinwheel, the lighting will shift as the  quad turns, as 
shown in Figure 68.2. The  extent of the lighting shift can be quite drastic, depend- 
ing on how different the colors at the vertices are. 
It was rotational variance that finally brought  the lighting issue to a head for  Quake. 
We’d look at the floors, which  were Gouraud-shaded quads; then we’d  pivot, and  the 
lighting  would  shimmy and shift,  especially  where there were  spotlights and shadows. 
Given the goal of rendering  the world  as accurately and convincingly  as possible, this 
was unacceptable. 
The obvious solution to rotational variance is to use  only triangles, but  that brings 
with it a new set of problems. It takes twice as  many triangles as quads to describe the 
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How Gouraud shading varies with polygon screen orientation. 
Figure 68.2 
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same scene, increasing the size  of the world database and requiring extra rasterization, 
at  a performance cost. Triangles still don’t provide perspective lighting; their light- 
ing is rotationally invariant, but it’s still wrong-just wrong in a more consistant way. 
Gouraud-shaded triangles still result in  odd lighting patterns, and require lots of 
triangles to support shadowing and  other lighting detail. Finally, triangles don’t solve 
clipping or viewing variance. 
Yet another  problem is that while it may  work  well to add extra geometry so that 
spotlights and shadows  show up well, that’s feasible only for static lighting. Dynamic 
lighting-light  cast by sources that move-has to work  with  whatever geometry the 
world has to  offer, because its needs  are constantly changing. 
These issues led us to conclude  that if  we were going to use Gouraud  shading, we 
would  have to build Quake levels from many  small triangles, with  sufficiently  finely 
detailed  geometry so that  complex lighting could be supported  and  the inaccuracies 
of Gouraud  shading wouldn’t be too  noticeable. Unfortunately, that line of thinking 
brought us back to the  problem of a  much larger world database and a  much heavier 
rasterization load (all the worse because Gouraud  shading  requires  an  additional 
interpolant, slowing the inner rasterization loop), so that not only  would the world  still 
be less than totally  solid,  because of the limitations of Gouraud shading, but the engine 
would  also be too slow to support  the complex worlds we had  hoped for in Quake. 

The  Quest for Alternative Lighting 
None of  which is to say that  Gouraud  shading isn’t useful in  general. Descent uses it 
to excellent effect, and in fact Quake uses Gouraud  shading  for moving entities, 
because these consist of  small triangles and  are always in  motion, which helps hide 
the relatively  small lighting errors. However, Gouraud  shading  didn’t  seem capable 
of meeting  our design goals for rendering quality and  speed for drawing the world  as 
a whole, so it was time to look for alternatives. 
There  are many alternative lighting approaches, most  of them higher-quality than 
Gouraud, starting with Phong shading,  in which the surface normal is interpolated 
across the polygon’s surface, and  going all the way up to ray-tracing lighting tech- 
niques in  which full illumination calculations are  performed  for all direct  and 
reflected paths  from  each  light source for  each pixel. What all these approaches 
have in  common is that they’re slower than  Gouraud  shading, too slow for  our pur- 
poses in Quake. For weeks, we kicked around  and rejected various possibilities and 
continued working with Gouraud  shading  for lack of a better alternative-until the 
day John came  into work and said, “You know, I have an idea .... ” 

Decoupling  Lighting  from  Rasterization 
John’s  idea  came to him while was looking at  a wall that had  been carved into several 
pieces because of a spotlight, with an ugly lighting glitch due to a t-junction. He 
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thought to  himself that if only there were some way to treat it as one surface, it would 
look better  and draw  faster-and then  he realized that there was a way to do that. 
The insight was to split lighting and rasterization into two separate steps. In a  normal 
Gouraud-based rasterizer, there’s first an off-line preprocessing step  when the world 
database is built, during which  polygons are added to support additional lighting 
detail as needed,  and lighting values are calculated at  the vertices  of  all  polygons. At 
runtime,  the lighting values are modified if dynamic lighting is required,  and  then 
the polygons are drawn  with Gouraud shading. 
Quake’s approach, which I’ll call surface-based lighting, preprocesses differently, 
and adds an extra rendering step. Duri,ng  off-line preprocessing, a  grid, called a 
light map, is calculated for each polygon in the world, with a lighting value  every 16 
texels horizontally and vertically. This lighting is done by casting light from all the 
nearby lights in the world to each of the grid points on  the polygon, and summing 
the results for each grid point. The Quake preprocessor filters the values, so shadow 
edges don’t have a stair-step appearance  (a  technique suggested by Billy Zelsnack) ; 
additional preprocessing could be done, for  example  Phong  shading to make sur- 
faces appear smoothly curved. Then,  at  runtime,  the polygon’s texture is tiled into a 
buffer, with each texel lit according to the weighted average intensities of the  four 
nearest light map points, as  shown in Figure 68.3. If dynamic lighting is needed,  the 
light map is modified accordingly before the buffer,  which I’ll call a surface, is built. 
Then  the polygon  is drawn with perspective texture  mapping, with the surface serv- 
ing as the  input texture, and with no lighting performed  during  the  texture mapping. 
So what does surface-based lighting buy us? First and foremost, it provides  consis- 
tent, perspective-correct lighting, eliminating all rotational, viewing, and clipping 
variance, because lighting is done in surface space rather than in screen space. By 
lighting in surface space, we bind  the lighting to the texels in an invariant way, and 
then  the lighting gets a  free  ride through  the perspective texture  mapper and  ends 
up perfectly matched to the texels. Surface-based lighting also supports good, al- 
though  not perfect, detail for overlapping lights and shadows. The 16-texel grid has 
a resolution of two feet in the Quake  frame of reference, and this relatively fine 
resolution,  together with the filtering performed  when  the light map is built, is suf- 
ficient to support  complex shadows with smoothly  fading  edges. Additionally, 
surface-based lighting eliminates lighting glitches at t-junctions, because lighting is 
unrelated to  vertices. In short, surface-based lighting meets  all of Quake’s visual  quality 
goals,  which  leaves  only one question: How does it perform? 

Size  and Speed 
As it turns  out, the raw speed of surface-based lighting is pretty good. Although an 
extra  step is required to build the surface, moving lighting and tiling into  a  separate 
loop  from  texture  mapping allows each of the two loops to be optimized very  effec- 
tively, with almost all  variables kept in registers. The surface-building inner  loop is 
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Light map 
0 32 64  96  128 
0 0 0 0 0  
32 64 96  128  160 

0 0 0 0 0  
64 96  128  160  192 
0 0 0 0 0  

Texture  tile 

0 0 0 0 0  
96  128  160  192  224 

0 0 0 0 0  
128  160  192  224  255 

/ 
The  texture is tiled  across the surface, 
with each texel  lit  according  to  the 
weighted  averages of the  four  nearest 
light  map  values.  (The  black dots on 
the  surface  show  where  the  light  map 
points  fall  for  illustrative  purposes, 
and  are not  actually drawn.) 

I 
Surtace 

nd lighting the texels from the  light map. 
Figure 68.3 
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particularly efficient, because it consists  of nothing  more  than interpolating  inten- 
sity, combining it with a texel and using the result to look up a lit texel color, and 
storing the results with a  dword write  every four texels. In assembly language, we got 
this code down to 2.25 cycles per lit texel in Quake. Similarly, the texture-mapping 
inner loop, which overlaps an FDIV for floating-point perspective correction with 
integer pixel drawing in 16-pixel bursts, has been squeezed down to 7.5 cycles per 
pixel on a  Pentium, so the  combined  inner  loop times for building and drawing a 
surface is roughly in the  neighborhood of 10 cycles per pixel. It’s certainly possible 
to write a Gouraud-shaded perspectivecorrect  texture  mapper that’s  somewhat faster 
than 10 cycles, but 10 cycles/pixel is fast enough to do 40 frames/second  at 640x400 
on a  Pentium/100, so the cycle counts of surface-based lighting are acceptable. It’s 
worth noting  that it’s possible to write a one-pass texture  mapper  that  does approxi- 
mately perspective-correct lighting. However, I have  yet  to hear of or devise such an 
inner  loop that isn’t complicated and full of special cases,  which  makes it hard to 
optimize; worse,  this approach  doesn’t work  well  with the  procedural  and post-pro- 
cessing techniques I’ll discuss  shortly. 
Moreover, surface-based lighting tends to spend  more of its time in inner loops, 
because  polygons  can  have  any number of sides and don’t need to be split into multiple 
smaller polygons for lighting purposes; this reduces  the  amount of transformation 
and projection that are required, and makes  polygon spans longer. So the perfor- 
mance of surface-based lighting stacks up very  well indeed-except for caching. 
I mentioned earlier  that  a 64x64 texture tile fits nicely in the processor cache. A 
typical surface doesn’t. Every texel in every surface is unique, so even at 320x200 
resolution, something  on  the  rough  order of 64,000 texels must be read in order to 
draw a single scene. (The  number actually  varies quite  a bit, as  discussed  below, but 
64,000 is in the ballpark.) This means  that  on  a  Pentium, we’re guaranteed to miss 
the cache once every 32 texels, and  the  number can be considerably worse than  that 
if the texture access patterns are  such  that we don’t use every texel in  a given cache 
line  before  that  data gets thrown out of the cache. Then, too,  when  a surface is built, 
the surface buffer won’t  be in  the  cache, so the writes will be uncached writes that 
have to go to main memory, then get  read back from  main  memory  at  texture  map- 
ping  time, potentially slowing things  further still. All this together makes the 
combination of surface building and unlit  texture  mapping  a  potential  performance 
problem,  but that never posed a  problem  during  the development of Quake, thanks 
to surface caching. 

Surface Caching 
When he thought of  surface-based  lighting, John immediately  realized that surface  build- 
ing  would  be  relatively expensive. (In fact, he assumed  it would be considerably more 
expensive than it actually turned out to  be  with  full  assembly-language optimization.) 
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Consequently,  his  design included the concept of caching  surfaces, so that if the same 
surface  were  visible  in the next frame, it could  be reused without  having  to be rebuilt. 
With surface rebuilding needed only rarely, thanks to surface  caching, Quake's 
rasterization speed is generally the  speed of the  unlit, perspective-correct texture- 
mapping  inner  loop, which  suffers from  more cache misses than  Gouraud-shaded, 
tiled texture mapping, but doesn't have the overhead of Gouraud shading, and allows 
the use of larger polygons. In  the worst case, where everything in a  frame is a new 
surface, the  speed of the surface-caching approach is somewhat slower than  Gouraud 
shading, but generally  surface  caching  provides  equal or better performance, so once 
surface caching was implemented in Quake,  performance was no longer  a  prob- 
lem-but  size became  a concern. 
The  amount of memory required for surface  caching  looked forbidding at first.  Surfaces 
are large relative to texture tiles, because every texel of  every surface is unique. Also, 
a surface can contain many texels  relative to the  number of pixels  actually drawn on 
the screen, because due to perspective foreshortening,  distant polygons  have  only a 
few pixels  relative to the surface size in texels. Surfaces associated with partly hidden 
polygons must be fully built, even though only part of the polygon is visible, and if 
polygons are drawn back to front with  overdraw, some polygons won't even be vis- 
ible, but will still require surface building and caching. What all  this meant was that 
the surface cache initially looked to be very large, on  the  order of several megabytes, 
even at 32Ox200"too much  for  a  game  intended to run  on  an 8 MB machine. 

Mipmapping To The  Rescue 
Two factors combined to solve this problem. First,  polygons are drawn through  an 
edge list  with no overdraw,  as I discussed a few chapters back, so no surface is ever 
built unless at least part of it is  visible. Second, surfaces are built at  four  mipmap 
levels, depending  on distance, with each  mipmap level having one-quarter as many 
texels  as the  preceding level,  as  shown in Figure 68.4. 
For those whose heads haven't been basted in 3-D technology for  the past several 
years, mipmuppingis  3-D graphics jargon for  a process that normalizes the  number of 
texels  in a surface  to be approximately equal to the number of  pixels, reducing calcula- 
tion  time for distant surfaces containing only a few pixels. The mipmap level for a given 
surface is selected to result in a texe1:pixel ratio approximately between 1:l and 1:2, 
so texels map roughly  to  pixels, and  more distant surfaces are correspondingly smaller. 
As a result, the  number of surface texels required to draw a scene at 320x200 is on 
the  rough  order of 64,000; the  number is actually somewhat higher, because of por- 
tions of surfaces that are  obscured  and viewspace-tilted polygons, which  have high 
texel-to-pixel ratios along one axis, but  not a whole lot higher. Thanks to mipmapping 
and  the  edge list,  600K has proven to be plenty for  the surface cache  at 320x200, 
even in the most  complex scenes, and  at 640x480, a little more than 1 MB suffices. 

1254 Chapter 68 



o o o e e e  
Mipmap level 0 texels 

\ I /  
0 e Corresponding  mipmap 

level 1 texels 

How mipmapping  reduces  surface  caching  requirements. 
Figure 68.4 

All mipmapped  texture tiles are  generated as a  preprocessing  step, and  loaded  from 
disk at runtime. One interesting point is that a key to  making  mipmapping  look  good 
turned  out to be box-filtering  down  from one level to the next by averaging four adjacent 
pixels, then using error diffusion dithering to generate  the  mipmapped texels. 
Also, mipmapping is done  on a per-surface basis; the  mipmap level for  a whole sur- 
face is selected based on  the distance  from  the viewer  of the  nearest vertex. This  led 
us to limit surface size to a maximum of 256x256. Otherwise, surfaces such as floors 
would extend  for  thousands of texels, all at  the  mipmap level  of the  nearest vertex, 
and would require  huge  amounts of surface  cache space while displaying a  great 
deal of aliasing in distant  regions due to a  high texe1:pixel ratio. 

Two Final  Notes  on  Surface  Caching 
Dynamic lighting  has  a significant impact on the  performance of surface  caching, 
because whenever the lighting on a  surface  changes,  the  surface has to be  rebuilt. In 
the worst case, where the lighting  changes on every  visible surface, the surface  cache 
provides no benefit,  and  rendering  runs  at  the  combined  speed of surface  building 
and  texture  mapping. This worst-case  slowdown  is tolerable but certainly noticeable, 
so it’s best to design games that use surface  caching so only some of the surfaces 
change  lighting  at any one time. If necessary, you could  alternate  surface  relighting 
so that half  of the surfaces change on even frames, and half on  odd frames, but 
large-scale, constant  relighting is not surface caching’s strongest suit. 
Finally, Quake barely begins to tap  surface caching’s potential. All sorts of proce- 
dural  texturing  and post-processing effects are possible. If a wall  is shot,  a  sprite of 
pockmarks could be attached to the wall’s data  structure,  and  the  sprite  could be 
drawn into  the  surface  each time the surface is rebuilt. The same could be done for 
splatters, or graffiti, with translucency easily supported.  These effects would then  be 
cached  and drawn  as part of the  surface, so the  performance cost would be  much 
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less  than  effects done by on-screen overdraw  every frame. Basically, the  surface is a 
handy repository for all  sorts of  effects, because multiple techniques can be 
composited, because  it  caches  the  results  for  reuse  without  rebuilding,  and  because 
the  texels  constructed  in a surface  are  automatically drawn  in perspective. 
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are-Assisted  Surfaces and Fast 
n Without Sprites 

In  the late  OS, I sp summer  doing  contract  programming  at  a government- 
funded installation c theast Solar Energy Center  (NESEC).  Those were 
heady times for solar ith the oil shortages, and  there was lots of money 
being thrown at pla#s  like  NESEC,  which was growing  fast. 

e  street  from MIT, which made for good access to resources. 
meant  that NESEC  was in  a severely parking-impaired part of 
he  student  population  and Boston’s chronic parking shortage. 
did have its own parking lot, but it wasn’t nearly big enough, 

because students  parked  in  it at every opportunity. The lot was posted, and cars peri- 
odically got towed, but King Canute stood a better  chance against the tide than 
NESEC did against the  student hordes, and late arrivals to work often had to park 
blocks away and hike to work, to their considerable displeasure. 
Back then,  I drove an aging Volvo sedan that was sorely  in need of a ring job. It ran fine 
but  burned a quart of oil  every 250 miles, so I  carried  a case of oil in the  trunk,  and 
checked the level frequently. One day,  walking to the  computer  center a couple of 
blocks away, I cut  through  the parking lot and checked the oil in my car. It was low, so 
I  topped it off, left the empty oil can next to the car so I would see it and  remember 
to pick it up to throw out  on my  way back, and  headed toward the  computer center. 

i’ ; 
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I’d  gone only a few hundred  feet when I heard  footsteps and shouting  behind  me, 
and a wild-eyed man in a business suit  came running  up to me, screaming. “It’s bad 
enough you park  in our lot,  but now you’re leaving your garbage lying around!”  he 
yelled. “Don’t you people have  any sense of decency?”  I  told  him I worked at NESEC 
and was going to  pick up the can on my  way back, and  he  shouted, “Don’t give me 
that!”  I  repeated my statements, calmly, and told him who I worked for  and where 
my office was, and  he said, “Don’t give me  that” again,  but with a  little less certainty. 
I kept  adding  detail  until  it was obvious that  I was telling  the truth,  and  he suddenly 
said, “Oh, my God,” turned  red,  and started  to apologize profusely. A few  days later, 
we passed in  the hallway, and  he didn’t look me in the eye. 
The interesting  point is that  there was really no useful outcome  that  could have 
resulted  from his outburst.  Suppose  I  had  been  a student-what  would he have  ac- 
complished by yelling at  me?  He  let his emotions  overrule his common  sense, and as 
a  result,  did  something  he  later wished he  hadn’t. I’ve seen many programmers do 
the same thing, especially  when  they’re  working long  hours and  not  feeling adequately 
appreciated. For example,  some time back I got mail from  a  programmer who com- 
plained bitterly that  although  he was critical to his company’s  success, management 
didn’t  appreciate his hard work and talent, and asked if I could  help  him  find  a 
betterjob. I suggested several ways that  he  might look for anotherjob,  but also  asked 
if he  had tried working his problems out with  his employers; if he really was that 
valuable, what did he have to lose? He  admitted he hadn’t, and recently  he wrote 
back and said that he  had talked to his boss, and now he was getting paid a  lot  more 
money, was getting  credit for his  work, and was just flat-out happy. 
We programmers  think of ourselves  as rational  creatures,  but most of us get angry at 
times, and when we do, like everyone else, we tend  to be driven by our emotions 
instead of our minds. It’s my experience  that  thinking rationally under those cir- 
cumstances can be difficult, but  produces  better  long-term results every  time-so  if 
you find yourself in that situation, stay cool and think your way through  it,  and  odds 
are you’ll be happier down the  road. 
Of course, most of the time programmers really are rational  creatures, and  the  more 
information we have, the  better.  In that spirit, let’s look at  more of the stuff that 
makes  Quake tick, starting with what I’ve recently  learned  about  surface  caching. 

Surface  Caching  with Hardware Assistance 
In  Chapter 68, I discussed in  detail  the  surface  caching  technique  that  Quake uses to 
do detailed, highquality lightingwithout lots  of  polygons.  Since  writing that chapter, I’ve 
gone further, and spent  a considerable amount of  time  working on the  port of Quake  to 
Rendition’s Verite 3-D accelerator  chip. So let  me  start off this chapter by discussing 
what I’ve learned  about using surface  caching  in  conjunction with hardware. 
As you’ll recall, the key to surface  caching is that  lighting  information and polygon 
detail  are  stored separately, with lighting not tied  to polygon vertices, then com- 
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bined  on  demand  into what I call surfaces: lit, textured rectangles that are used  as the 
input to the texture  mapper. Building surfaces takes time, so performance is en- 
hanced by caching  the surfaces from one frame to the next. As I pointed  out in 
Chapter 68, 3-D hardware accelerators are designed to optimize Gouraud  shading, 
but surface caching can also  work on hardware accelerators, with some significant 
quality advantages. 
The surface-caching architecture of the Verite version of Quake (which we call 
VQuake)  is  essentially the same as in the software-only  version of Quake: The CPU 
builds surfaces on  demand, which are  then downloaded to the accelerator’s memory 
and cached there. There  are  a couple of  key differences,  however: the need to download 
surfaces, and  the  requirement  that  the surfaces be in 16-bit-per-pixel (bpp) format. 
Downloading surfaces to the accelerator is a  performance  hit  that doesn’t exist in 
the software-only version. Although Verite  uses DMA to download surfaces, DMA 
does in fact steal performance  from  the CPU. This cost is increased by the require- 
ment for 16-bpp surfaces, because twice  as much  data  must be downloaded. Worse 
still, it takes about twice  as long to build 16-bpp surfaces as 8-bpp surfaces, so the cost 
of  missing the surface cache is  well  over  twice  as expensive in VQuake as in  Quake. 
Fortunately, there’s 4 MB of memory on Verite-based adapters, so the surface cache 
doesn’t miss very often and VQuake runs fine (and looks  very good, thanks to bilinear 
texture filtering, which by itself is pretty much worth the cost of 3-D hardware),  but 
it’s nonetheless  true  that  a completely straightforward port of the surface-caching 
model is not as appealing  for hardware as for software. This is especially true  at high 
resolutions, where the  needs of the surface cache increase due to more detailed 
surfaces but available memory decreases due to frame buffer size. 
Does my recent  experience indicate that as the PC market moves to hardware, there’s 
no choice but to move  to Gouraud  shading, despite the quality issues? Not  at all. 
First  of  all, surface caching does still work  well, just  not as  relatively  well compared to 
Gouraud  shading as is the case in software. Second,  there  are  at least two alternatives 
that preserve the advantages of surface caching without many of the disadvantages 
noted above. 

Letting the Graphics  Card  Build  the  Textures 
One obvious solution is to have the accelerator  card build the textures, rather  than 
having the CPU build and then  download  them. This eliminates downloading com- 
pletely, and lets the accelerator, which should be faster at such things, do  the texel 
manipulation.  Whether this is  actually faster depends  on  whether  the CPU or the 
accelerator is doing  more of the work  overall, but it eliminates download time, which 
is a big help.  This  approach retains the ability  to composite other effects, such as 
splatters and dents, onto surfaces, but by the same token retains the high memory 
requirements  and  dynamic lighting performance impact of the surface cache.  It also 
requires  that the 3-D API and accelerator being used allow drawing into  a  texture, 
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which  is not universally true.  Neither do all APIs or accelerators allow applications 
enough control over the texture heap so that an efficient surface cache can be imple- 
mented, a point  that favors non-caching approaches. (A similar option  that wasn’t 
open to us due to time limitations is downloading 8-bpp surfaces and having the 
accelerator expand them to l6bpp surfaces as it stores them in  texture memory. 
Better yet, some accelerators support 8-bpp palettized hardware textures  that are 
expanded to IGbpp  on  the fly during texturing.) 

The Light Map as Alpha Texture 
Another appealing non-caching approach is doing unlit texture-mapping in one pass, 
then lighting from  the light map as a second pass, using the light map as an  alpha 
texture. In  other words, the textured polygon  is drawn first, with no lighting, then 
the light map is textured on top of the polygon, with the light map intensity used as 
an  alpha value to determine how brightly to light each texel. The hardware’s tex- 
ture-mapping  circuitry is used  for  both  passes, s o  the  lighting  comes  out 
perspective-correct and consistent under all  viewing conditions, just as with the sur- 
face  cache. The lighting polygons don’t even  have to match the texture polygons, so 
they can represent dynamically changing lighting. 
Two-pass lighting not only  looks good,  but has no memory footprint  other  than tex- 
ture  and  light  map  storage,  and  provides level performance,  because it’s not 
dependent  on surface cache hit  rate. The primary downside to two-pass lighting is 
that  it  requires at least twice  as much  performance  from  the accelerator as  single- 
pass drawing. The  current  crop of 3-D accelerators is not particularly fast, and few  of 
them  are  up to the task of doing two  passes at high resolution, although  that will 
change soon. Another potential  problem is that  some accelerators don’t  implement 
true alpha blending. Nonetheless, as accelerators get better, I expect two-pass  draw- 
ing (or three-or-more-pass, for adding splatters and  the like by overlaying sprite 
polygons) to be widely used. I also expect  Gouraud  shading to be widely used; it’s 
easy to  use and fast. Also, speedier CPUs and accelerators will enable much  more 
detailed geometry to be used, and  the smaller that polygons become, the  better 
Gouraud  shading looks compared to surface caching and two-pass lighting. 
The  next graphics engine you’ll see from  id Software will be oriented heavily  toward 
hardware accelerators, and  at this point it’s a tossup whether  the  engine will use 
surface caching,  Gouraud shading, or two-pass lighting. 

Drawing  Triangle  Models 
Most of the last group of chapters  in this book discuss how Quake works.  If  you look 
closely, though, you’ll see that almost all  of the  information is about drawing the 
world-the static walls, floors, ceilings, and such. There  are several reasons for this, 
in  particular that it’s hard to get a world renderer working  well, and that the world is the 
base on which everything else  is drawn. However,  moving entities, such as monsters, 
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are essential to a useful  game engine. Traditionally, these have been  done with sprites, 
but when we set out 1.0 build Quake, we knew that it was time to move on to polygon- 
based models. (In  the case of Quake,  the  models  are  composed of triangles.) We 
didn’t know exactly how we were going to make the drawing of these  models fast 
enough,  though,  and went through  quite a bit of experimentation  and  learning  in 
the process of doing so. For the rest of this chapter 1’11 discuss  some interesting 
aspects of our triangle-model architecture,  and  present  code  for  one useful approach 
for the  rapid drawing of triangle models. 

Drawing  Triangle Models fast 
We would have liked one  rendering  model,  and  hence  one graphics  pipeline,  for all 
drawing in  Quake; this would  have simplified the  code  and tools, and would  have 
made it much  easier to focus our optimization efforts. However, when we tried adding 
polygon models to  Quake’s  global edge table, edge processing slowed  down unaccept- 
ably. This isn’t that surprising, because the  edge table was designed to handle 200 to 300 
large polygons, not  the 2,000 to 3,000 tiny triangles that a  dozen  triangle  models  in 
a  scene  can add. Restructuring the  edge list  to  use trees rather  than linked lists  would 
have helped with the larger  data sets, but  the basic problem is that  the  edge table 
requires  a  considerable amount of overhead per  edge  per scan line,  and  triangle 
models have too few pixels per  edge to justify that  overhead. Also, the  much  larger 
edge table generated by adding triangle  models  doesn’t fit well in the CPU cache. 
Consequently, we implemented  a  separate drawing pipeline  for  triangle  models, as 
shown in Figure 69.1. Unlike the world pipeline,  the  triangle-model  pipeline is in 
most respects a traditional one, with a few exceptions, noted below. The  entire world 
is drawn first, and  then  the triangle  models are drawn, using z-buffering for  proper 
visibility. For each  triangle  model, all vertices are  transformed and projected first, 
and  then each  triangle is drawn separately. 
Triangle models  are  stored  quite differently from the world itself.  Each model  con- 
sists  of front  and back skins stretched  around  a triangle mesh,  and  contains a full set 
of vertex coordinates  for  each  animation  frame, so animation is performed by sim- 
ply using the  correct  set of coordinates  for  the  desired  frame. No interpolation, 
morphing, or other  runtime vertex calculations are  performed. 
Early on, we decided to  allow lower drawing quality for  triangle  models  than  for the 
world, in the interests of speed. For example,  the triangles in the  models are small, 
and usually  distant-and generally part of a quickly  moving monster  that’s trying its 
best to do you in-so the quality benefits of perspective texture  mapping would add 
little value. Consequently, we chose  to draw the triangles with affine texture  map- 
ping,  avoiding  the work required  for  perspective.  Mind  you,  the  models  are 
perspective-correct at the vertices; it’s just  the pixels between the vertices that suffer 
slight warping. 
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Quake 5 triangle-model drawing pipeline. 
Figure 69.1 
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Trading Subpixel  Precision for Speed 
Another sacrifice at the  altar of performance was subpixel  precision. Before each 
triangle is drawn, we snap its vertices to  the  nearest  integer  screen  coordinates,  rather 
than  doing  the  extra calculations to handle  fractional vertex coordinates.  This causes 
some jumping of triangle edges, but again, is not a  problem  in  normal gameplay, 
especially for  the  animation of figures  in  continuous  motion. 
One  interesting benefit of integer  coordinates is that they let us do backface culling 
and rejection of degenerate triangles in one  operation, because  the  cross-product z 
component used  for backface culling returns zero  for degenerate triangles. Conve- 
niently, that  cross-product component is also the  denominator  for  the lighting and 
texture gradient calculations used in drawing each  triangle, so as soon as  we check 
the cross-product z value and  determine  that  the triangle is drawable, we immedi- 
ately start the FDIV to calculate the reciprocal. By the time we get around to calculating 
the  gradients,  the FDIV has  completed  execution, effectively taking only the  one 
cycle required to issue it, because the  integer  execution  pipes  can process indepen- 
dently while FDIV executes. 
Finally, we decided  to  Gouraud-shade the triangle  models,  because this makes them 
look considerably more 3-D. However, we can’t  afford to calculate where all the rel- 
evant  light  sources  for  each  model are in each  frame,  or even  which is the primary 
light  source.  Instead, we select each model’s lighting level based on how brightly the 
floor point  it was standing on is lit, and use that  lighting level for both  ambient 
lighting (so all parts of the model have some  illumination)  and  Gouraud shading- 
but  the  lighting vector for  Gouraud  shading is a fixed vector, so the  model is  always 
lit from  the same direction. Somewhat surprisingly, in  practice this looks consider- 
ably better  than  pure  ambient lighting. 

An  Idea that Didn‘t Work 
As we implemented  triangle  models, we tried several ideas  that  didn’t work out.  One 
that’s notable because it seems so appealing is caching  a model’s image from  one 
frame and reusing  it in the  next  frame as a  sprite. Our thinking was that  clipping, 
transforming,  projecting, and drawing a several-hundred-triangle model was going 
to be a  lot  more expensive than drawing a  sprite, too expensive to allow  very  many 
models to be visible at  once. We wanted to be  able  to display at least a  dozen simulta- 
neous  models, so the  idea was that for all but  the closest models, we’d draw into a 
sprite, then reuse that sprite  at the model’s new locations for  the  next two or  three 
frames,  amortizing  the 3-D drawing cost over several frames and boosting overall 
model-drawing performance. The  rendering wouldn’t be exactly right when the  sprite 
was reused, because the view  of the model would change  from  frame  to  frame as the 
viewer and  model moved, but  it  didn’t seem likely that  that slight inaccuracy would 
be noticeable for any but  the nearest and largest models. 
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As it  turns out,  though, we were wrong: The  repeated frames were sometimes pain- 
fully  visible, looking like jerky  cardboard cutouts. In fact they looked a lot like the 
sprites used in DOOM-precisely the effect we were  trying to avoid. This was espe- 
cially true if  we reused them  more  than once-and if we reused them only once, 
then we had to do  one full 3-D rendering plus two sprite renderings every two frames, 
which  wasn’t much faster than simply doing two 3-D renderings. 
The sprite  architecture also introduced considerable  code complexity, increased 
memory footprint because of the  need to cache  the sprites, and  made it difficult to 
get hidden surfaces exactly right because sprites are unavoidably 2-D. The perfor- 
mance of drawing the sprites dropped sharply as models  got closer, and that’s also 
where the sprites looked worse when they were reused, limiting sprites to use at a 
considerable distance. All these problems could have been worked out reasonably 
well  if necessary, but  the sprite  architecture just  had  the feeling of being fundamen- 
tally not  the  right  approach, so we tried thinking  along  different lines. 

An Idea  that Did Work 
John Carmack had  the  notion  that it was just way too much effort per pixel to do all 
the work  of scanning  out  the tiny triangles in  distant models. After all, distant  mod- 
els are  just indistinct blobs of pixels, suffering heavily from effects such as texture 
aliasing and pixel quantization,  he  reasoned, so it  should  workjust as  well if we could 
come up with another way  of drawing blobs of approximately equal quality. The trick 
was to come up with such an alternative approach. We tossed around half-formed 
ideas like flood-filling the model’s image within its silhouette, or  encoding  the  model 
as a set of deltas, picking a visible seed point, and working around  the visible side of 
the  model  according to the deltas. The first approach  that  seemed practical enough 
to try was drawing the pixel at each vertex replicated to form  a 2x2 box,  with  all the 
vertices together forming the approximate shape of the model. Sometimes  this  worked 
quite well, but  there were gaps where the triangles were large, and  the quality was 
very erratic. However, it did point  the way to something  that in the  end  did  the trick. 
One  morning I  came  in to the office to find that overnight (and well into  the  morn- 
ing),  John  had designed and  implemented  a  technique I’ll  call subdivision rusterizution. 
This  technique scans out approximately the right pixels for each triangle, with  al- 
most no overhead, as  follows.  First,  all vertices in the  model  are drawn. Ideally,  only 
the vertices on  the visible side of the  model would be drawn, but  determining which 
vertices those are would take time, and  the occasional error  from a visible  back  ver- 
tex is  lost in the noise. 
Once  the vertices are drawn, the triangles are processed one at  a time. Each triangle 
that  makes  it through backface culling is then drawn with recursive subdivision. If 
any of the triangle’s sides is more  than  one pixel long in  either x or y-that  is, if the 
triangle contains any  pixels that  aren’t  at vertices-then that side is split in half  as 
nearly as  possible at given integer coordinates, and a new vertex is created  at  the 
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split, with texture and screen coordinates  that are halfway between those of the ver- 
tices at  the endpoints. (The same splitting could be done for lighting, but we found 
that  for small  triangles-the sort  that subdivision works well  on-it  was adequate  to 
flat-shade each triangle at the light level of the first vertex, so we didn’t  bother with 
Gouraud  shading.) The halfway  values can be calculated very quickly  with  shifts. 
This vertex is drawn, and  then each of the two resulting triangles is then processed 
recursively in  the  same way,  as shown in Figure 69.2. There are  some  additional de- 
tails, such as the fill rule  that  ensures  that  each pixel is drawn only once  (except for 
backside vertices, as noted  above), but basically  subdivision rasterization boils  down 
to taking a triangle, splitting a side that has at least one undrawn pixel and drawing 
the vertex at  the split, and repeating the process for  each of the two new triangles. 
The code to do this, shown in Listing 69.1, is  very simple and easily optimized, espe- 
cially  by comparison with a generalized triangle rasterizer. 
Subdivision rasterization introduces considerably more  error  than affine texture 
mapping,  and  doesn’t draw  exactly the  right triangle shape,  but  the difference is 
very hard to detect  for triangles that  contain only a few pixels. We found that the 
point at which the difference between the two rasterizers becomes noticeable was 
surprisingly close: 30 or 40 feet  for  the Ogres, and  about 12 feet  for the Zombies. 
This means  that most  of the triangle models that are visible in  a typical Quake scene 
are drawn  with  subdivision rasterization, not affine texture  mapping. 
How much  does subdivision rasterization help  performance?  When  John originally 
implemented it, it more  than  doubled triangle-model drawing speed, because the 
affine texture mapper was not yet optimized. However, I took it upon myself to see 
how  fast I could  make  the mapper, so now affine texture  mapping is only about 20 
percent slower than subdivision rasterization. While 20 percent may not  sound im- 
pressive, it includes clipping, transform,  projection, and backface-culling time, so 
the rasterization difference alone is more than 50 percent. Besides, 20 percent over- 
all means  that we can have 12 monsters now where we could only  have had 10 before, 
so we count subdivision rasterization as a clear success. 

LISTING 69.1 169- 1 .C 
Quake‘s r e c u r s i v e   s u b d i v i s i o n   t r i a n g l e   r a s t e r i z e r :   d r a w s   a l l  
p i x e l s   i n  a t r i a n g l e   o t h e r   t h a n   t h e   v e r t i c e s   b y   s p l i t t i n g  an 
edge t o   f o r m  a new v e r t e x .   d r a w i n g   t h e   v e r t e x ,   a n d   r e c u r s i v e l y  
p rocess ing   each  o f   the   two new t r i a n g l e s   f o r m e d  by u s i n g   t h e  
new v e r t e x .   R e s u l t s   a r e  l e s s  accura te   t han   f rom a p r e c i s e  
a f f i n e   o r   p e r s p e c t i v e   t e x t u r e   m a p p e r ,  and  drawing  boundar ies 
a r e   n o t   i d e n t i c a l   t o   t h o s e   o f  a p rec ise   po lygon  d rawer ,   a l though 
t h e y   a r e   c o n s i s t e n t   b e t w e e n   a d j a c e n t   p o l y g o n s   d r a w n   w i t h   t h i s  
techn ique .  

I nven ted  and  implemented  by  John Carmack o f   i d   S o f t w a r e .  

v o i d  D-PolysetRecursiveTriangle ( i n t   * I p l .   i n t   * l p 2 ,   i n t   * l p 3 )  
( 

i n t  *temp: 
i n t  d; 
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Original triangle 

(vertices have 

already been drawn) 

t 
Split vertex 

id rawn as soon 

as it’s identified) 

Two new triangles, 

each of which is recursively 

processed the same way 

One recursive subdivision triangle-drawing step. 
Figure 69.2 
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i n t  newC61: 
i n t  z ;  
s h o r t  * zbu f ;  

I /  t r y   t o   f i n d  an  edge t h a t ' s  more   than  one  p ixe l   long  i n  x or  y 
d - lp2CO1 - 1p lCOl :  
i f  ( d  < -1 I (  d > 1) 

g o t o   s p l  i t  : 
d - lp2C11 - l p l [ l l  
i f  ( d  < -1 ) I  d > 1 

d - lp3CO1 - lp2CO1 
i f  ( d  < -1 ( 1  d > 1 

d - 1 ~ 3 1 1 1  - l p2111  
i f  ( d  < -1 1 1  d > 1 

g o t o   s p l  i t  : 

g o t o   s p l i t 2 :  

a o t o   s o l i   t 2 :  
d - 1piCOl -' lp3CO1: 
i f  ( d  < -1 ( 1  d > 1) 

g o t o   s p l i t 3 :  
d - l p l C l l  - lp3C11; 
i f  ( d  < -1 1 )  d > 1) 
I 

s p l  i t 3 :  
/ /  s h u f f l e   p o i n t s  s o  f i r s t  edge i s  edge t o   s p l i t  

temp - l p l :  
l p l  - l p 3 :  
l p 3  - l p 2 :  
l p 2  - temp: 
g o t o   s p l  i t  : 

1 

r e t u r n :  / /  n o   p i x e l s   l e f t   t o  fill i n   t r i a n g l e  

s p l  i t 2 :  
/ I  s h u f f l e   p o i n t s  so f i r s t  edge I s  edge t o   s p l i t  

temp - l p l :  
l p l  - l p 2 :  
1pZ - l p 3 ;  
l p 3  - temp: 

s p l i t :  
/ /  s p l i t   f i r s t  edge  screen  x.   screen y .  t e x t u r e  s .  t e x t u r e  t , and z 
/ I  t o   f o r m  a new v e r t e x .   L i g h t i n g   ( i n d e x  4 )  i s   i g n o r e d :   t h e  
/ I  d i f f e r e n c e   b e t w e e n   i n t e r p o l a t i n g   l i g h t i n g  and u s i n g   t h e  same 
/ /  shading f o r  t h e   e n t i r e   t r i a n g l e   i s   u n n o t i c e a b l e   f o r   s m a l l  
/ /  t r i a n g l e s ,  so we j u s t  u s e   t h e   l i g h t i n g   f o r   t h e   f i r s t   v e r t e x  o f  
/ I  t h e   o r i g i n a l   t r i a n g l e   ( w h i c h  was u s e d   d u r i n g   s e t - u p   t o   s e t  
/ I  d-colormap.  used  below t o   l o o k  up lit t e x e l s )  

newCOl - ( l p l C 0 1  + 1pZCOl) >> 1: / /  s p l i t   s c r e e n  x 
newCl l  - ( 1 p l C l l  + lpZC11) >> 1: / /  s p l i t   s c r e e n  y 
new[,?] - ( l p l C 2 1  + lp2 [21 )  >> 1; / I  s p l i t   t e x t u r e  s 
new[Jl - ( l p l C 3 1  + lp2 [31 )  >> 1: / I  s p l i t   t e x t u r e  t 
newC51 - ( l p 1 [ 5 1  + l p 2 [ 5 1 )  >> 1: / I  s p l i t  2 

I1 d r a w   t h e   p o i n t  i f  s p l i t t i n g  a l e a d i n g  edge 
i f  ( l p 2 C l l  > l p l C 1 1 )  

i f  ( ( l p2C11  - l p 1 [ 1 ] )  && (1p2COI < l p lCO1) )  
goto  nodraw; 

goto  nodraw: 
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z - newC51>>16: 

/ /  p o i n t   t o   t h e   p i x e l ’ s   z - b u f f e r   e n t r y .   l o o k i n g  up t h e   s c a n l i n e   s t a r t  
/ I  address  based on screen y and  adding i n   t h e   s c r e e n  x c o o r d i n a t e  

z b u f  - zspantable[new[111 + newCO1; 

/ /  d r a w   t h e   s p l i t   v e r t e x  i f  i t ’ s   n o t   o b s c u r e d   b y   s o m e t h i n g   n e a r e r ,  as 
/ /  i n d i c a t e d   b y   t h e   z - b u f f e r  

i f  ( z  >- * z b u f )  
{ 

i n t   p i x :  

11 s e t   t h e   z - b u f f e r   t o   t h e  new p i x e l ’ s   d i s t a n c e  
*zbu f  - z:  

/ /  g e t   t h e   t e x e l   f r o m   t h e   m o d e l ’ s   s k i n   b i t m a p ,   a c c o r d i n g   t o  
/ I  t h e  s and t t e x t u r e   c o o r d i n a t e s ,  and t r a n s l a t e  i t  th rough  
/ I  t h e   l i g h t i n g   l o o k - u p   t a b l e   s e t   a c c o r d i n g   t o   t h e   f i r s t  
/ I  v e r t e x   f o r   t h e   o r i g i n a l   ( t o p - l e v e l )   t r i a n g l e .   B o t h  s and 
/ /  t a r e   i n  16.16  format  

p i x  = d~pco1ormap[sk in tab1e[new[31>>161Cnew~2]>>1611;  

I /  d r a w   t h e   p i x e l ,   l o o k i n g  up t h e   s c a n l i n e   s t a r t   a d d r e s s  
/ I  based on screen y and a d d i n g   i n   t h e   s c r e e n  x c o o r d i n a t e  

I 
d~viewbuffer[d~scantable~new[lll + new[O]l - p i x :  

nodraw: 
/ I  r e c u r s i v e l y  draw the   two  new t r i a n g l e s  we c r e a t e d  by  adding  the 
/ /  s p l i t   v e r t e x  

D-PolysetRecursiveTriangle ( l p 3 .  I p l ,  new): 
D-PolysetRecursiveTriangle ( l p 3 ,  new, l p 2 ) :  

1 

More Ideas that Might Work 
Useful  as  subdivision rasterization proved to be, we  by no  means think  that we’ve 
maxed out triangle-model drawing, if only because we spent  far less design and de- 
velopment time on subdivision than  on  the affine rasterizer, so it’s  likely that there’s 
quite  a bit more  performance to be found for drawing small triangles. For example, 
it could be faster to precalculate drawing masks or even precompile drawing code 
for all  possible  small triangles (say, up to 4x4 or 5x5), and  the memory footprint 
looks reasonable. (It’s worth noting  that  both precalculated drawing and subdivision 
rasterization are only  possible because we snap to integer coordinates; none of this 
stuff  works  with fixed-point vertices.) 
More interesting still is the stack-based rendering described in the article “Time/ 
Space Tradeoffs for Polygon  Mesh Rendering,” by Bar-Yehuda and Gotsman, in the 
April, 1996 ACM Transactions  on  Graphics. Unfortunately, the article is highly abstract 
and slow going, but  the  bottom line is that it’s  possible  to represent a triangle mesh 
as a stream of commands  that place vertices in  a stack, remove them  from  the stack, 
and draw triangles using the vertices in the stack. This results in excellent CPU cache 
coherency, because rather  than indirecting all  over a vertex pool to retrieve vertex 
data, all  vertices reside in  a tiny  stack  that’s guaranteed to be in the cache. Local 
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variables used while drawing can  be  stored  in  a small block next to the stack, and  the 
stream of commands  representing  the  model is accessed sequentially from  start to 
finish, so cache utilization should be very high. As processors speed up  at a much 
faster  rate  than main memory access, cache  optimizations of this sort will become 
steadily more import.ant in improving drawing performance. 
As with so many aspects of 3-D, there is no  one best approach to drawing triangle 
models, and  no such thing as the fastest code. In a way, that’s frustrating, but  the 
truth is,  it’s these nearly infinite possibilities that make 3-D so interesting; not only is 
it an endless, varied challenge, but there’s almost always a  better  solution waiting to 
be  found. 
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I’ve talked about Quake’s technology elsewhere in this book, However, those chap- 
ters focused on specific areas, not overall structure. Moreover, Quake  changed in 
significant ways between the writing of those chapters and  the final shipping. Then, 
after shipping, Quake was ported to 3-D hardware.  And the postQuake engine, code- 
named Trinity,  is already in  development  at this writing (Spring 1997), with some 
promising results. So in wrapping up this book, I’ll recap Quake’s  overall structure 
relatively  quickly, then bring you up to date  on  the latest developments. And in the 
spirit of Frederik Pohl’s quote, I’ll point  out that we implemented  and discarded at 
least half a  dozen 3-D engines in the course of developing Quake (and all  of  Quake’s 
code was written from scratch, rather  than using Doom code),  and almost switched 
to another  one in the final month, as I’ll describe later. And even at this early stage, 
Trinity  uses almost no Quake technology. 
In fact, I’ll take this opportunity to coin Carmack’s Law,  as  follows:  Fight code entropy. 
If  you  have a new fundamental assumption, throw away your old code  and rewrite it 
from scratch. Incremental  patching  and modifying seems easier at first, and is the 
normal course of things in software development,  but  ends up being  much  harder 
and  producing bulkier, markedly inferior  code in the  long  run, as  we’ll see when we 
discuss the  net  code for  Quakeworld.  It may seem safer to  modify working code, but 
the nastiest bugs arise from  unexpected side effects and incorrect assumptions, which 
almost always arise in patched-over code,  not in code designed from  the  ground  up. 
Do the  hard work up  front to make your code simple, elegant, great-and just plain 
right-and it’ll pay  off many times  over in the  long  run. 
Before I begin,  I’d like to remind you that all  of the Doom and  Quake material I’m 
presenting in this book is presented  in  the spirit of sharing  information to make our 
corner of the world a better place for everyone. I’d like to thank  John Carmack, 
Quake’s architect and lead  programmer,  and id Software for allowing me to share 
this technology with you, and I  encourage you  to share your own insights by posting 
on  the  Internet  and writing books and articles whenever you  have the opportunity 
and  the right to do so. (Of  course, check with your employer first!) We’ve all ben- 
efited greatly from  the  shared wisdom of people like Knuth, Foley and van Dam,  Jim 
Blinn, Jim Kajiya, and  hundreds of others-are  you ready to take a shot  at making 
your own contribution to the  future? 

Preprocessing  the World 
For the most part, I’ll discuss  Quake’s 3-D engine in this chapter, although I’ll touch 
on  other areas of interest. For 3-D rendering purposes, Quake consists  of two basic 
sorts of objects: the world, which is stored as a single BSP model  and never changes 
shape  or position; and potentially moving objects, called entities, which are drawn in 
several different ways. I’ll discuss each separately. 
The world is constructed  from  a set of brushes, which are n-sided  convex polyhedra 
placed in a level by a  designer using a map  editor, with a selectable texture on  each 
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face. When a level  is completed,  a  preprocessing  program  combines all brushes to 
form  a skin around  the solid areas of the world, so there is no interpenetration of 
polygons, just a  continuous  mesh  delineating solid and empty areas. Once this is 
done,  the  next  step is generating  a BSP tree  for  the level. 
The BSP consists of splitting planes aligned with  polygons, called nodes, and of  leaves, 
which are  the convex subspaces into which  all the  nodes carve space. The  top  node 
carves the world into two subspaces, and divides the  remaining polygons into two 
sets, splitting any polygon that spans the  node  into two pieces. Each subspace is then 
similarly  split by one  node each, and so on until all  polygons  have been used  to create 
nodes. A node’s subspace is the total space occupied by all its children:  the subspace 
that  the  node splits into two parts, and  that its children  continue to subdivide. When 
the only polygon in  a  node’s subspace is the polygon that splits the subspace-the 
polygon whose plane  defines the node-then the two child subspaces are called 
leaves, and  are  not divided any further. 
The BSP tree is built using the polygon that splits the fewest  of the polygons in the 
current node’s subspace  as the heuristic for choosing splitters,  which is not  an optimal 
solution-but an  optimal  solution is NP-complete, and  our heuristic  adds only 10% 
to 15% more polygons  to the level  as a result of  BSP splits.  Polygons are  not split all the 
way into leaves; rather, they are placed on  the  nodes with  which they are  coplanar 
(one set on the front  and  one  on  the back,  which  has the advantage of letting us reuse 
the BSP-walking dot  product  for backface culling as well), thereby  reducing  splitting 
considerably, because polygons are split only by parent  nodes,  not by child  nodes  (as 
would be necessary  if  polygons  were split into leaves). Eliminating polygon  splits, thus 
reducing  the total number of polygons per level, not only shrinks Quake’s memory 
footprint,  but also reduces  the  number of polygons that  need  to be processed by the 
3-D pipeline,  producing  a speedup of about 10% in  Quake’s overall performance. 
Getting proper  front-toback drawing order is a little more complicated with  polygons 
on nodes. As we  walk the BSP tree front-to-back, in  each leaf we mark the polygons 
that  are  at least partially in that leaf, and  then after we’ve recursed  and processed 
everything in front of a node, we then process all the  marked polygons on  that  node, 
after which we recurse  to process the polygons behind  the  node. So putting  the 
polygons on  the  nodes saves memory and improves performance significantly, but 
loses the simple approach of  simply recursing the tree and processing the polygons 
in  each leaf  as we come to  it,  in favor of recursing and marking  in front of a node, 
processing marked polygons on  the  node,  then recursing behind  the  node. 
After the BSP  is built, the  outer surfaces of the level,  which no  one can ever see 
(because levels are sealed spaces),  are  removed, so the  interior of the level, contain- 
ing all the empty space through which a player can move, is completely surrounded 
by a solid region.  This  eliminates  a  great many irrelevant polygons, and  reduces  the 
complexity of the  next  step,  calculating  the potentially visible set. 
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The Potentially Visible Set (PVS) 
After the BSP tree is built, the potentially visible set (PVS) for each leaf  is calculated. 
The PVS for a leaf  consists  of  all the leaves that can  be  seen from anywhere  in that leaf, 
and is used  to reduce to a near-minimum the polygons that have  to be considered for 
drawing  from a given  viewpoint, as well as the entities that have to  be updated over the 
network (for multiplayer games) and drawn. Calculating the PVS  is expensive; Quake 
levels take 10 to 30 minutes to process on a four-processor Alpha, and even  with 
speedup tweaks to the BSPer (the most effective  of  which was replacing many  calls to 
malloc() with  stack-based  structures-beware  of malloc() in performance-sensitive 
code),  Quake 2 levels are taking up to an  hour to process. (Note, however, that  that 
includes BSPing, PVS calculations, and radiosity lighting, which I’ll discuss later.) 
Some  good news, though, is that in the nearly two years since we got the Alpha, 
Pentium Pros have become as  fast  as that  generation of Alphas, so it is now  possible 
to calculate the PVS on  an affordable machine. On  the  other  hand, even 10 minutes 
of  BSPing does  hurt designer productivity. John has always been a big advocate of 
moving code  out of the  runtime  program  into utilities, and of preprocessing for 
performance  and  runtime simplicity, but even he thinks that in Quake, we  may have 
pushed that to the point where it interfered too much with  workflow. The real problem, 
of course, is that even a huge  amount of money  can’t buy orders of magnitude  more 
performance than commodity computers; we are getting an eight-R10000 SGI compute 
server, but that’s  only about twice as fast as an off-the-shelf  four-processor Pentium Pro. 
The size  of the PVS for  each leaf is manageable because it is stored as a  bit vector, 
with a 1-bit for the position in the overall  leaf array of each leaf that’s visible from  the 
current leaf. Most  leaves are invisible from any one leaf, so the PVS for  each leaf 
consists  mostly  of zeros, and compacts nicely  with run-length  encoding. 
There  are two further interesting points about  the PVS. First, the  Quake PVS does 
not exclude quite as  many  leaves from  potential visibility  as it  could, because the 
surfaces that precisely describe leaf-to-leaf  visibility are quadratic surfaces; in the 
interests of speed  and simplicity, planar surfaces with some slope are used instead. 
Second,  the PVS describes visibility from anywhere in  a leaf, rather  than  from a spe- 
cific  viewpoint;  this can cause two or  three times  as  many  polygons  as are actually 
visible to be considered. John has been  researching the possibility  of an EVS-an 
exactly visible set-and has concluded  that  a 6-D BSP  with hyperbolic separating planes 
could  do  the  job;  the  problem now is that  he doesn’t know  how  to get the  math to 
work, at least at any reasonable speed. 
An interesting extension of the PVS is what John calls the potentially hearable set (PHs)- 
all the leaves  visible from  a given leaf, plus all the leaves  visible from those leaves-in 
other words, both  the directly visible  leaves and  the  one-bounce visible  leaves. Of 
course, this is not exactly the hearable space, because sounds could echo  or carry 
further than  that, but it does serve quite nicely  as a potentially relevant  space-the set 
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of  leaves that have any interest to the player. In  Quake, all sounds  that  happen any- 
where  in  the world are  sent  to  the  client,  and  are  heard, even through walls, if they’re 
close enough;  an explosion around  the  corner could be well within hearing  and very 
important to hear, so the PVS can’t  be used to reject  that sound,  but  unfortunately 
an explosion on  the  other side of a solid wall will sound exactly the same. Not only is 
it confusing  hearing  sounds through walls, but in  a  modem  game, the bandwidth 
required to send all the  sounds  in  a level can slow things down considerably. In a 
recent version of Quakeworld,  a specifically multiplayer variant of Quake I’ll d’ lSCUSS 

later, John uses the PHS to determine which sounds  to  bother  sending,  and  the 
resulting  bandwidth  improvement has made it possible to bump  the maximum num- 
ber of  players from 16 to 32. Better yet, a  sound  on  the  other side of a solid wall won’t 
be  heard unless there’s  an  opening  that  permits  the  sound to come through.  (In  the 
future,  John will use the PVS to determine fully audible  sounds, and  the PHS to 
determine  muted  sounds.) Also, the PHS can  be used for events like explosions  that 
might not have their  center  in  the PVS, but have portions  that  reach  into  the PVS. In 
general,  the PHS is useful as an  approximation of the space in which the  client  might 
need  to be notified of events. 
The final preprocessing  step is light map  generation. Each light is traced out  into 
the world to see what polygons it strikes, and  the cumulative effect of all lights on 
each  surface is stored as a  light map, a  sampling of light values on a lf5texel grid.  In 
Quake 2, radiosity lighting-a considerably more expensive process, but  one  that 
produces highly realistic lighting-is performed,  but I’ll save that  for later. 

Passages:  The  Last-Minute Change  that  Didn’t  Happen 
Earlier, I mentioned  that we almost changed 3-D engines again in  the last month of 
Quake’s development.  Here’s what happened:  One of the alternatives to  the PVS  is 
.the use of portals, where the focus is on  the places where polygons don’t exist along 
leaffaces, rather  than  the  more usual focus on the polygons  themselves. These “empty” 
places are themselves polygons, called portals,  that  describe all the places that visibil- 
ity can pass from  one leaf to  another.  Portals  are  used by the PVS generator to 
determine visibility, and  are used in other 3-D engines as the primary mechanism  for 
determining leaf or  sector visibility. For example,  portals  can  be  projected  to 
screenspace, then used as a 2-D clipping  region to restrict drawing of more distant 
polygons to only those that are visible through  the portal. Or, as in Quake’s  preprocessor, 
visibility boundary  planes can be constructed  from  one  portal to the  next,  and 3-D 
clipping  to  those  planes  can  be used to determine visible polygons or leaves.  Used 
either way, portals  can support  more  changeable worlds than  the PVS, because,  un- 
like the PVS, the portals themselves can easily be changed on the fly. 
The  problem with portal-based visibility  is that it tends to perform  at its  worst in 
complex scenes, which can have  many,  many portals. Since those  are  the most ex- 
pensive scenes to draw, as well, portals  tend to worsen the worst  case.  However, late 
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in Quake’s development,  John realized that the  approach of storing portals them- 
selves in the world database could readily be improved upon. (To be clear, Quake 
wasn’t using portals at  that  point,  and  didn’t  end up using them.) Since the afore- 
mentioned sets  of 3-D visibility clipping planes between portals-which he  named 
pussuge+were what  actually got used for visibility,  if he stored those, instead of gen- 
erating  them dynamically from  the portals, he would be able to do visibility much 
faster than with standard portals. This would give a significantly tighter polygon set 
than  the PVS, because it would  be based on visibility through  the passages from  the 
viewpoint, rather  than  the PVS’s approach of  visibility from anywhere in the leaf, 
and  that would be a considerable help, because the level designers were running 
right up against performance limits, partly because of the PVS’s relatively loose poly- 
gon set. John immediately decided  that passages-based  visibility was a sufficiently 
superior approach  that if it  worked  out, he would  switch Quake to it, even at  that late 
stage, and within a weekend, he  had  implemented  it  and  had  it working-only to 
find  that, like portals, it  improved best cases but worsened worst  cases, and overall 
wasn’t a win for Quake. In  truth, given  how  close we were to shipping, John was  as 
much  thankful as disappointed  that passages didn’t work out,  but  the possibilities 
were too great for us not to have taken a shot at it. 
So why even bother  mentioning this? Partly to show that not every interesting  idea 
pans  out; I tend to  discuss those that did pan  out,  and it’s instructive to point  out  that 
many ideas don’t.  That doesn’t  mean you shouldn’t try promising ideas, though. 
First, some do  pan  out,  and you’ll never know  which unless you try. Second, an idea 
that  doesn’t work out in one case can still be filed away for another case.  It’s quite 
likely that passages will be useful in  a  different  context in a future engine. 
The  more  approaches you  try, the larger your toolkit and  the  broader your under- 
standing will be when you  tackle your next project. 

Drawing the World 
Everything described so far is a preprocessing step. When Quake is actually running, 
the world  is drawn as  follows:  First, the PVS for  the view leaf is decompressed,  and 
each leaf flagged as  visible is marked as being in the  current frame’s PVS. (The mark- 
ing is done by storing the  current frame’s number in the leaf; this avoids having to 
clear the PVS marking each frame.) All the  parent  nodes of each leaf in the PVS are 
also marked; this information  could have been  stored as additional PVS flags, but to 
save space is bubbled up  the BSP from each visible leaf. 
After the PVS is marked,  the BSP is walked front-to-back. At each  node,  the  bound- 
ing  box of the node’s subspace is clipped against the view frustum; if the  bounding 
box is  fully clipped, then that node  and all its children  are ignored. Likewise, if the 
node is not in the PVS for  the  current viewpoint leaf, the  node  and all its children 
are ignored. If the  bounding box is partially clipped or  not clipped  at all, that infor- 
mation is passed to the children so that any unnecessary clip tests can be avoided. 
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The  children  in  front of the  node  are  then processed recursively. When a leaf is 
reached, polygons that  touch  that leaf are  marked as potentially drawable. When 
recursion  in front of a node is finished, all polygons on  the  front side of the  node 
that  are  marked as potentially drawable are  added to the  edge list, and  then  the 
children on  the back side of that  node  are similarly processed recursively. 
The  edge list is a special, intermediate  step between polygons and drawing. Each 
polygon is clipped,  transformed,  and  projected,  and its non-horizontal  edges are 
added to a global list of potentially drawable edges. After all the potentially drawable 
edges  in the world have been  added,  the global edge list is scanned  out all at  once, 
and all the visible spans (the  nearest spans, as determined by sorting  on BSP-walk 
order) in  the world are  emitted  into  span lists linked off the respective surface  de- 
scriptors  (for now,  you can  think of a  surface as being  the same  as a  polygon). Taken 
together, these spans cover every pixel on the screen once  and only once, resulting 
in  zero overdraw; surfaces that  are completely hidden by nearer surfaces generate 
no spans at all. The spans are then drawn; all the spans for one surface are drawn, and 
then all the spans for the next, so that there’s texture coherency between spans, which  is 
very helpful  for  processor  cache  coherency, and also to  reduce  setup  overhead. 
The primary purpose of the edge list is to make  Quake’s performance as  level-that  is,  as 
consistent-as  possible. Compared  to simply  drawing  all  potentially  drawable  polygons 
front-to-back, the  edge list certainly slows down the best case, that is,  when there’s no 
overdraw.  However,  by eliminating overdraw, the worst  case  is helped considerably; in 
Quake, there’s a ratio of perhaps 4:l between  worst and best case  drawing time, versus 
the 1 O : l  or  more  that  can  happen with straight polygon drawing. Leveling is  very 
important, because cases where  a  game slows  down to  the  point of being unplayable 
dictate game and level design, and the fewer constraints placed on design, the better. 

A corollary is that best  case  performance can  be  seductively misleading;  itk a 
great  feeling  to  see a scene running at 30 or even 60 frames  per  second,  but  ifthe 
bulk of the  game runs at ISfPs,  those best cases are just going  to  make  the rest of 
the  game  look worse. 

The  edge list  is an atypical technology for  John; it’s an  extra stage in the  engine, it’s 
complex,  and  it  doesn’t scale well. A Quake level might have a maximum of 500 
potentially drawable polygons that  get  placed  into  the  edge list, and  that  runs  fine, 
but if you were to try to put 5,000 polygons into  the  edge list, it would  quickly bog 
down due to edge  sorting, link following, and dataset size. Different  data  structures 
(like using a  tree to store the edges rather  than a  linear  linked list) would help  to 
some degree,  but basically the  edge list has  a relatively  small  window of applicability; 
it was appropriate technology for  the  degree of complexity possible in a  Pentium- 
based game (and even then, only with the  reduction  in polygons made possible by 
the PVS) , but will probably be poorly suited  to more complex scenes. It served well 
in the Quake  engine,  but  remains  an  inelegant  solution,  and,  in  the  end, it feels like 
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there’s something  better we didn’t hit on. However, as John says, “I’m pragmatic 
above  all else’’-and the  edge list did the  job. 

Rasterization 
Once  the visible spans are  scanned  out of the  edge list,  they must still be  drawn, with 
perspective-correct texture  mapping and lighting. This involves hundreds of lines of 
heavily optimized assembly language, but is fundamentally pretty simple. In  order to 
draw the spans for  a given surface, the screenspace equations  for l/z, s/z, and t/z 
(where s and t are  the texture  coordinates and z is distance) are calculated for the 
surface. Then  for  each span, these values are calculated for the points at  each  end of 
the span, the reciprocal of l / z  is calculated with a divide, and s and t are  then calcu- 
lated as (s/z)*z and (t/z) *z.  If the  span is longer  than 16 pixels, s and t are likewise 
calculated every 16 pixels along  the span. Then  each stretch of up to 16 pixels  is 
drawn by linearly interpolating between these correctly calculated points. This intro- 
duces  some slight error, but this is almost never visible, and even then is only a small 
ripple, well worth the  performance  improvement  gained by doing  the perspective- 
correct  math only once every 16 pixels. To speed things up a little more,  the FDIV to 
calculate the reciprocal of l / z  is overlapped with drawing 16 pixels, taking advan- 
tage of the Pentiurn’s ability to  perform floating-point  in  parallel with integer 
instructions, so the FDIV effectively  takes  only one cycle. 

Lighting 
Lighting is less simple to explain. The traditional way of doing polygon lighting is to 
calculate the correct light at  the vertices and linearly interpolate between those points 
(Gouraud  shading),  but this has several disadvantages; in particular, it makes it hard 
to get detailed lighting without creating  a  lot of extra polygons, the lighting isn’t 
perspective correct, and  the lighting varies  with  viewing angle  for polygons other 
than triangles. To address these problems, Quake uses surface-based lighting instead. 
In this approach, when it’s time to draw a surface (a world polygon),  that polygon’s 
texture is tiled into a  memory buffer. At the same time, the texture is lit according to 
the surface’s  light map, as calculated during preprocessing.  Lighting  values are linearly 
interpolated  between the light map’s lGtexel  grid  points, so the lighting  effects are smooth, 
but slightly blurry. Then,  the polygon is drawn to the screen using the perspective- 
correct  texture  mapping described above, with the prelit surface buffer being  the 
source texture, rather  than  the original texture tile. No additional lighting is per- 
formed  during texture mapping; all lighting is done when the surface buffer is created. 
Certainly it takes longer to build a surface buffer and  then texture  map from it than 
it does to do lighting and texture  mapping in a single pass.  However, surface buffers 
are  cached  for reuse, so only the texture  mapping stage is  usually needed.  Quake 
surfaces tend to be big, so texture  mapping is slowed by cache misses;  however, the 
Quake approach doesn’t need to interpolate lighting on a pixel-by-pixel  basis,  which 
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helps  speed  things up,  and it doesn’t  require  additional polygons to provide sophis- 
ticated lighting. On balance, the  performance of surface-based drawing is roughly 
comparable to tiled, Gouraud-shaded texture mapping-and  it  looks  much better, be- 
ing perspective correct, rotationally invariant, and highly detailed. Surface-based  drawing 
also has the potential to support some  interesting effects, because anything  that  can 
be drawn into  the  surface  buffer  can be cached as  well, and is automatically drawn in 
correct perspective. For instance,  paint  splattered on a wall could  be handled by 
drawing the splatter image  as a  sprite into  the  appropriate  surface buffer, so that 
drawing the  surface would  draw the splatter as  well. 

Dynamic  Lighting 
Here we come  to a feature  added  to  Quake  after last year’s Computer Game 
Developer’s Conference (CGDC) . At that  time,  Quake  did not  support dynamic light- 
ing;  that is, explosions and such didn’t  produce  temporary  lighting effects. We hadn’t 
thought dynamic lighting would add  enough  to  the game to  be  worth  the  trouble; 
however, at CGDC Billy Zelsnack  showed  us a demo of his latest 3-D engine, which 
was far  from  finished  at  the  time,  but  did have impressive dynamic lighting effects. 
This caused us to move  dynamic lighting up  the priority list, and when I got back to 
id,  I  spent several days  making the surface-building code as fast as possible (winding 
up  at 2.25 cycles per texel in the  inner  loop) in  anticipation of adding dynamic 
lighting, which  would  of course cause dynamically lit surfaces to constantly be re- 
built as the lighting  changed. (A significant drawback of dynamic lighting is that  it 
makes surface  caching worthless for dynamically lit surfaces, but if most of the sur- 
faces in  a  scene are  not dynamically lit at any one time, it works out  fine.)  There 
things stayed for several weeks, while more critical work  was done,  and it was uncer- 
tain whether dynamic lighting would, in  fact, make it into Quake. 
Then,  one Saturday, John suggested that I take a  shot  at  adding  the high-level dy- 
namic  lighting  code, the  code  that would take the dynamic light  sources and project 
their  sphere of illumination into  the world, and which  would then  add  the dynamic 
contributions  into  the  appropriate  light maps and rebuild the affected surfaces. I 
said I would  as soon as I finished up  the stuff I was working on,  but  it might  be  a day 
or two. A little while later, he said, “I bet I can  get dynamic lighting working in less 
than  an  hour,”  and dove into  the  code.  One  hour  and  nine minutes later, we had 
dynamic lighting, and it’s  now hard to imagine  Quake  without it. (It sure is easier to 
imagine the impact of features  and  implement  them  once you’ve seen  them done by 
someone else!) 
One  interesting  point  about Quake’s dynamic lighting is  how inaccurate  it is. It is 
basically a  linear  projection,  accounting  properly  for  neither  surface  angle  nor light- 
ing falloff with distance-and yet that’s  almost  impossible to notice  unless you 
specifically look for it, and has no negative impact on gameplay  whatsoever.  Motion 
and fast action  can surely cover for  a  multitude of graphics sins. 
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It’s well worth pointing out that because Quake’s lighting is perspective correct and 
independent of  vertices, and because the rasterizer is both subpixel and subtexel 
correct,  Quake worlds are visually  very solid and stable. This was an  important design 
goal from  the  start,  both as a point of technical pride and because it greatly improves 
the player’s sense of immersion. 

Entities 
So far, all we’ve drawn  is the static, unchanging  (apart  from dynamic  lighting) world. 
That’s an  important  foundation,  but it’s certainly not a game; now we need to add 
moving objects. These objects fall into  four very different categories: BSP models, 
polygon models, sprites, and particles. 

BSP Models 
BSP models are  just like the world, except  that they can move. Examples  include 
doors, moving bridges, and  health  and  ammo boxes. The way these are  rendered is 
by clipping their polygons into  the world BSP tree, so each polygon fragment is in 
only one leaf. Then these fragments  are  added to the  edge list, just like  world  poly- 
gons, and scanned out, along with the rest  of the world, when the edge list  is processed. 
The only  trick here is front-to-back ordering. Each BSP model polygon fragment is 
given the BSP sorting order of the leaf in which it resides, allowing it to sort properly 
versus the world  polygons. If two or  more polygons from  different BSP models are in 
the same leaf,  however, BSP ordering is no  longer useful, so we then sort those poly- 
gons by l / z ,  calculated from  the polygons’ plane  equations. 
Interesting  note: We originally tried to sort all  world  polygons on l / z  as  well, the 
reason being  that we could  then avoid splitting polygons except  when they  actually 
intersected, rather  than having to split them  along  the lines of parent nodes. This 
would result in fewer edges, and faster edge list processing and rasterization. Unfor- 
tunately, we found  that precision errors  and special cases such as  seamlessly abutting 
objects made  it difficult to get global l / z  sorting to work completely reliably, and  the 
code  that we had to add to work around these problems slowed things up to the 
point where we were getting no extra performance for all the extra  code complexity. 
This is not to say that l / z  sorting can’t work  (especially in something like a flight sim, 
where objects never abut),  but BSP sorting order can be a  wonderful  thing, partly 
because it always  works perfectly, and partly because it’s simpler and faster to sort on 
integer node  and leaf orders  than  on floating-point l / z  values. 
BSP models take some  extra time because of the cost  of clipping them  into  the world 
BSP tree, but  render  just as  fast  as the rest of the world, again with no overdraw, so 
closed doors,  for  example, block drawing of whatever’s on  the  other side (although 
it’s  still  necessary to transform, project, and  add to the  edge list the polygons the 
door occludes, because they’re still in the PVS-they’re potentially visible if the  door 
opens). This makes BSP models most suitable for fairly simple structures, such as 
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boxes, which have relatively few polygons to clip, and cause relatively few edges to be 
added  to  the  edge list. 

Polygon Models and Z-Buffering 
Polygon models, such as monsters, weapons, and projectiles, consist of a  triangle 
mesh  with front  and back skins stretched over the  model. For speed,  the triangles 
are drawn  with affine texture  mapping; the triangles are small enough,  and  the mod- 
els are generally distant enough,  that affine distortion isn’t visible. (However, it is 
visible on  the player’s weapon; this caused a lot of extra work for  the artists, and we 
will probably implement  a perspective-correct polygon-model rasterizer in  Quake 2 
for this specific purpose.)  The triangles are also Gouraud  shaded; interestingly, the 
light vector used to  shade  the  models is  always from  the same direction,  and has no 
relation  to any actual lights in the world (although  it  does vary in intensity, along 
with the model’s ambient  lighting, to match the brightness of the  spot  the player is 
standing above in the  world). Even this highly inaccurate  lighting works  well, though; 
the  Gouraud  shading makes models  look  much more three-dimensional, and vary- 
ing  the  lighting  in even so crude a way  allows hiding  in shadows and illumination by 
explosions and muzzle flashes. 
One issue with polygon models was  how to handle occlusion issues; that is,  what 
parts of models were visible, and what surfaces they were in front of. We couldn’t  add 
models  to  the  edge list, because the  hundreds of polygons per  model would  over- 
whelm the  edge list. Our initial occlusion solution was to sort polygon-model polygons 
into  the world BSP, drawing the  portions  in  each leaf at  the  right points as  we drew 
the world in BSP order.  That worked reasonably well  with respect to the world (not 
perfectly, though, because it would have been  too expensive to clip all the polygon- 
model polygons into  the world, so there was some occlusion error),  but  didn’t  handle 
the case  of sorting polygon models  in the same leaf against each  other, and also 
didn’t  help  the polygons in  a given polygon model  sort  properly against each  other. 
The solution to this turned  out to be z-buffering. After all the spans  in the world are 
drawn, the z-buffer is filled in  for  those spans. This is a write-only operation,  and 
involves no comparisons or overdraw (remember,  the spans cover  every pixel on  the 
screen exactly once), so it’s not  that expensive-the performance cost is about 10%. 
Then polygon models  are drawn  with z-buffering; this involves a z-compare at  each 
polygon-model pixel, but  no complicated  clipping or sorting-and occlusion is ex- 
actly right  in all respects. Polygon models tend to occupy a small portion of the 
screen, so the cost of z-buffering is not  that  high, anyway. 
Opinions vary as to the desirability of  z-buffers; some  people who  favor more analyti- 
cal approaches to hidden surface removal claim that  John has  been  seduced by the 
z-buffer. Maybe so, but there’s  a  lot there to be seduced by, and  that will be all the 
more  true as hardware rendering becomes the  norm.  The  addition of  particles- 
thousands of  tiny colored rectangles-to Quake  illustrated just how seductive the 
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z-buffer can be; it would  have been very difficult to get all those rectangles to draw 
properly using any other occlusion technique. Certainly z-buffering by itself can’t 
perform well enough to serve for all hidden surface removal; that’s why  we have the 
PVS and  the  edge list (although for hardware rendering  the PVS would suffice), but 
z-buffering pretty much  means  that if you can figure out how  to  draw an effect, you 
can readily insert  it  into the world  with proper occlusion, and that’s a powerful capa- 
bility indeed. 
Supporting scenes with a  dozen or  more models of 300 to 500 polygons each was a 
major performance challenge in  Quake,  and  the polygon-model drawing code was 
being optimized right up until the last  week before it shipped. One  help in allowing 
more models per scene was the PVS;  we only  drew those models that were in the PVS, 
meaning  that levels could have a hundred  or  more models without requiring  a lot of 
work  to eliminate most  of those that were occluded. (Note that this is not  unique to 
the PVS; whatever  high-level culling scheme we had  ended  up using for world  poly- 
gons would have provided  the  same  benefit  for polygon models.) Also, model 
bounding boxes were used to trivially clip those that weren’t in the view pyramid, 
and to identify those that were unclipped, s o  they could be sent  through a special 
fast path. The biggest breakthrough,  though, was a very different  sort of rasterizer 
that John came up with for relatively distant models. 

The Subdivision Rasterizer 
This rasterizer, which we call the subdivision rasterizer, first draws  all the vertices in the 
model. Then it takes each front-facing triangle, and  determines if it has a side that’s 
at least two pixels long. If it  does, we split that side into two pieces at  the pixel nearest 
to the middle (using  adds and shifts  to average the  endpoints of that  side), draw the 
vertex at the split point,  and process each of the two split triangles recursively, until 
we get down to triangles that have  only one-pixel sides and  hence have nothing left 
to draw. This approach is hideously slow and quite ugly (due to inaccuracies from 
integer  quantization)  for 100-pixel  triangles-but  it’s  very  fast  for,  say,  five-pixel  tri- 
angles, and is indistinguishable from  more  accurate rasterization when  a  model is 25 
or 50 feet away. Better yet, the subdivider is  ridiculously simple-a  few dozen lines of 
code, far simpler than  the affine rasterizer-and was implemented in an evening, 
immediately making the drawing of distant models about  three times  as fast, a very 
good  return for  a bit of conceptual work. The affine rasterizer got fairly  close  to the 
same  performance with further optimization-in the  range of 10% to 50% slower- 
but that took weeks  of difficult programming. 
We switch between the two rasterizers based on  the model’s distance and average 
triangle size, and in almost any scene,  most models are far enough away so subdivi- 
sion rasterization is used. There  are  undoubtedly faster ways yet to rasterize distant 
models adequately well, but  the subdivider was clearly a win, and is a  good  example 
of  how thinking in a radically different  direction can pay  off handsomely. 
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Sprites 
We had  hoped to be able to eliminate  sprites completely, making Quake 100% 3-D, 
but sprites-although sometimes very  visibly  2-D-were used for  a few purposes, most 
noticeably the cores of explosions. As of  CGDC last year, explosions consisted of an 
exploding spray of particles (discussed below),  but there  just wasn’t enough visual 
punch with that  representation;  adding  a series of sprites  animating  an explosion 
did  the trick. (In  hindsight, we probably should have made  the explosions polygon 
models rather  than sprites; it would  have looked about as good, and the few sprites 
we used  didn’t  justify  the  considerable  amount of code  and  programming time re- 
quired to support  them.) Drawing a  sprite is similar to drawing a  normal polygon, 
complete with perspective correction,  although of course the  inner  loop must  detect 
and skip over transparent pixels, and must also perform z-buffering. 

Particles 
The last drawing entity type  is particles. Each particle is a solid-colored rectangle, 
scaled by distance  from the viewer and drawn  with z-buffering. There can be up to 
2,000 particles in  a  scene,  and they are used  for  rocket trails, explosions, and  the 
like. In one sense, particles are very primitive technology, but they allow effects that 
would be extremely difficult to do well  with the  other types  of entities, and they work 
well in  tandem with other entities, as, for  example, providing a trail of fire behind a 
polygon-model lava ball that flies into  the air, or  generating an expanding  cloud 
around a  sprite explosion core. 

How We Spent Our Summer Vacation: 
After  Shipping Quake 
Since shipping  Quake  in  the  summer of 1996, we’ve extended  it in several ways: 
We’ve worked  with Rendition to port  it  to  the Verite accelerator  chip, we’ve ported it 
to OpenGL, we’ve ported it to Win32, we’ve done  Quakeworld,  and we’ve added 
features  for  Quake 2. I’ll discuss each of these briefly. 

Verite Quake 
Verite Quake  (VQuake) was the first hardware-accelerated version of Quake.  It looks 
extremely good,  due to bilinear texture filtering, which eliminates most pixel aliasing, 
and because it provides good  performance  at  higher  resolutions such as 512x384 
and 640x480. Implementing VQuake proved to be an  interesting task, for two rea- 
sons: The Verite chip’s fill rate was marginal  for Quake’s needs,  and Verite contains 
a  programmable RISC chip,  enabling  more  sophisticated processing than most 3-D 
accelerators. The  need to squeeze as much  performance as possible out of Verite 
ruled  out  the use of a  standard API such as Direct 3D or  OpenGL; instead, VQuake 
uses Rendition’s  proprietary API, Speedy3D, with the  addition of some special calls 
and custom Verite code. 
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Interestingly, VQuake is very similar to software Quake;  in  order to  allow  Verite to 
handle  the high pixel processing loads of high-res, VQuake uses an  edge list and 
builds span lists on  the CPU, just as in software Quake,  then Verite DMAs the  span 
descriptors to onboard memory and draws them. (This was only  possible because 
Verite  is  fully programmable; most accelerators wouldn’t be able to support this ar- 
chitecture.) Similarly, the CPU builds lit, tiled surfaces in system R A M ,  then Verite 
DMAs them to an  onboard surface cache,  from which  they are  texture-mapped.  In 
short, VQuake is  very much like normal  Quake,  except  that  the drawing of the spans 
is done by a specialized processor. 
This approach works  well, but some of the drawbacks  of a surface cache become 
more noticeable when hardware is involved.  First, the DMAing is an extra  step that’s 
not necessary in software,  slowing things down. Second, onboard memory is a rela- 
tively limited resource (4 MB total),  and textures must be 16-bpp (because hardware 
can only do filtering in RGB modes), thus  eating up twice  as much  memory as the 
software  version’s 8-bpp textures-and memory  becomes progressively scarcer at 
higher resolutions, especially  given the  need  for a z-buffer and two 16-bpp pages. 
(Note  that using the  edge list helps here, because it filters out spans from polygons 
that  are in the PVS but fully occluded,  reducing the  number of surfaces that have to 
be  downloaded.) Surface caching in VQuake usually  works just fine, but response 
when  coming  around  corners  into complex scenes or when  spinning can be more 
sluggish than in software Quake. 
An alternative to surface caching would  have been to do two  passes across each  span, 
one tiling the texture, and  the  other  doing  an  alpha  blend using the light map as a 
texture, to light the texture (two-pass alpha  lighting). This approach  produces ex- 
actly the same  results  as the surface cache, without requiring downloading and caching 
of large surfaces, and has the advantage of  very  level performance. However, this 
approach  requires at least twice the fill rate of the surface cache  approach,  and Verite 
didn’t have enough fill rate  for  that at  higher resolutions. It’s  also worth noting that 
two-pass alpha lighting doesn’t have the same  potential  for  procedural  texturing 
that surface caching does. In fact, given MMX and ever-faster  CPUs, and  the ability 
of the CPU and  the accelerator to process in parallel, it will become increasingly 
tempting to use the CPU to build surfaces with procedural  texturing such as bump 
mapping, shimmers, and warps; this sort of procedural  texturing has the potential to 
give accelerated games highly distinctive visuals. So the choice between surface cach- 
ing and two-pass alpha lighting for hardware accelerators depends  on a game’s needs, 
and it seems most likely that  the two approaches will be mixed together, with surface 
caching used for special surfaces, and two-pass alpha lighting used for  most drawing. 

GLQuake 
The second (and, according to current plans, last) port of Quake to a hardware 
accelerator was an  OpenGL version, GLQuake,  a native  Win32 application.  I have 
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no intention of getting  into  the 3-D MI wars currently  raging; the observation I want 
to make here is that GLQuake uses two-pass alpha  lighting, and  runs very  well on fast 
chips such as the SDfx, but  rather slowly on most of the  current  group of accelera- 
tors. The accelerators  coming out this year should all run GLQuake fine, however. 
It’s also worth noting  that we’ll be using two-pass alpha lighting in  the N64 port of 
Quake;  in  fact, it looks like the N64’s hardware is capable of performing  both tex- 
ture-tiling  and  alpha-lighting  in a  single  pass,  which is pretty  much  an  ideal 
hardware-acceleration  architecture: It’s as good  looking and generally faster than 
surface  caching,  without the  need  to  build, download, and cache surfaces, and  much 
better  looking and  about as fast as Gouraud  shading. We hope to see similar capabili- 
ties implemented  in PC accelerators and exposed by  3-D MIS in the  near  future. 
Dynamic lighting is done differently in GLQuake than  in software Quake.  It  could 
have been  implemented by changing  the  light maps, as usual, but  current  OpenGL 
drivers are  not very fast at  downloading  textures  (when the  light maps are  used as in 
GLQuake);  also, it takes  time to identify and change  the affected light maps. Instead, 
GLQuake  simply alpha-blends an  approximate  sphere  around  the  light  source.  This 
requires very little calculation and  no  texture downloading, and as a  bonus allows 
dynamic lights to be colored, so a  rocket,  for  example,  can cast a yellowish light. 
Unlike  Quake or VQuake,  GLQuake does not use the edge list and draws  all  polygons in 
the potentially visible set.  Because  OpenGL  drivers are  not currentlyvery fast at selecting 
new textures, GLQuake sorts polygons by texture, so that all polygons that use a 
given texture  are drawn together. Once  texture selection is faster, it might be worth- 
while to draw back-to-front with  z-fill, because some  hardware  can do z-fill faster  than 
z-compare, or to draw front-to-back, so that z-buffering can  reject as  many pixels as 
possible, saving display-memory writes.  GLQuake also avoids having to do z-buffer 
clearing by splitting the z range  into two parts, and  alternating between the two parts 
from  frame  to  frame;  at  the same time,  the z-compare polarity is switched (from 
greater-than-or-equal to less-than-or-equal) , so that  the previous frame’s z values are 
always considered  more  distant  than  the  current frame’s. 
GLQuake was  very  easy to  develop,  taking only a  weekend  to  get up  and  running, 
and  that leads to  another  important point:  OpenGL is also an excellentAP1 on which 
to build tools. QuakeEd, the tool we use to build levels, is written for  OpenGL  run- 
ning  on Win32, and when John  needed a 3-D texture  editing tool for modifymg 
model skins, he was able  to write it  in one  night by building  it on  OpenGL. After we 
finished  Quake, we realized that  about half our  code  and half our time was spent  on 
toals, rather  than  on  the game engine itself, and  the artists’ and level designers’ 
productivity is heavily dependent  on  the tools they have to  use;  considering all that, 
we’d be foolish not  to use OpenGL, which is  very  well suited to such tasks. 
One  good illustration of  how much easier a  good 3-D AF’I can make development is 
how  quickly John was able to add two eye-candy features to GLQuake:  dynamic shad- 
ows and reflections. Dynamic  shadows were implemented by projecting a model’s 
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silhouette onto  the  ground plane, then alpha-blending that  silhouette  into the world. 
This doesn’t always  work  properly-for example, if the player is standing at  the  edge 
of a cliff, the shadow sticks out in the air-but it was added in a few hours, and most 
of the time looks terrific. Implementing  it properly will take only a day or two more 
and  should  run adequately fast; it’s a simple matter of projecting the silhouette  into 
the world, and  onto  the surfaces it encounters. 
Reflections are a bit more complex, but again were implemented  in  a day. A special 
texture is designated as a mirror surface; when this is encountered while drawing, a 
hole is left. Then  the z-range is changed so that everything drawn next is considered 
more distant than  the scene just drawn, and a second scene is drawn, this time from 
the reflected viewpoint behind  the mirror; this causes the  mirror to be behind any 
nearer objects in the  true scene. The only  drawback to this approach  (apart  from  the 
extra processing time to  draw two scenes) is that because of the z-range change,  the 
mirror must be against a sealed wall,  with nothing in the PVS behind it, to ensure 
that  a  hole is left into which the reflection can be drawn. (Note  that  an  OpenGL 
stencil  buffer  would be ideal here, but while OpenGL accelerators  can  be  relied upon to 
support z-buffering and alpha-blending  in hardware, the same is not yet true of sten- 
cil buffers.) As a final step, a  marbled  texture is blended  into  the  mirror surface, to 
make the surface itself  less than perfectly reflective and visible enough to seem real. 
Both  alpha-blending and z-buffering are relatively  new  to PC games, but  are stan- 
dard  equipment  on accelerators, and it’s a  lot of fun seeing what sorts of  previously 
very difficult effects can now be up  and working in a  matter of hours. 

WinQuake 
I’m  not going to spend  much time on  the Win32 port of Quake;  most of  what I 
learned  doing this consists of tedious details that are doubtless well covered else- 
where, and frankly it wasn’t a particularly interesting task and was harder  than I 
expected, and I’m pretty much  tired of the whole thing. However, I will  say that 
Win32 is clearly the  future, especially  now that NT is coming on strong, and like it or 
not, you had best learn to  write games  for Win32. Also, Internet gaming is becoming 
ever more  important,  and Win32’s built-in TCP/IP support is a big advantage over 
DOS; that  alone was enough to convince us we had to port  Quake. As a last  com- 
ment, I’d say that it is nice to  have  Windows take care of  device configuration and 
interfacing-now if only we could  get  manufacturers to write drivers for those de- 
vices that actually worked reliably! This will come as no surprise to veteran Windows 
programmers, who have suffered through years  of  buggy 2-D Windows drivers, but if 
you’re new to Windows programming, be prepared to run  into  and learn to work 
around-or  at  least document in your readme  files-driver bugs on a  regular basis. 
Still, when you get down to it, the  future of gaming is a networked Win32 world, and 
that’s that, so if  you haven’t already moved to Win32, I’d say it’s time. 
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Qua keWorld 
Quakeworld is a native Win32 multiplayer-only version of Quake, and was done as a 
learning  experience;  it is not a  commercial product,  but is freely distributed on  the 
Internet. The idea behind it was to try to improve the multiplayer experience, especially 
for people linked by modem, by reducing actual and perceived  latency.  Before I discuss 
Quakeworld, however, I should discuss the evolution of Quake’s multiplayer code. 
From the  beginning,  Quake was conceived as a client-server app, specifically so that 
it would be possible to have persistent servers always running  on  the  Internet,  inde- 
pendent of whether  anyone was playing on  them  at any particular  time, as a  step 
toward the long-term goal of persistent worlds. Also, client-server architectures  tend 
to be  more flexible and robust than peer-to-peer, and  it is much easier to have  play- 
ers  come  and  go  at will  with client-server. Quake is client-server from  the  ground  up, 
and even in single-player mode, messages are passed through buffers between the 
client  code and  the server code; it’s quite likely that  the  client  and server would have 
been two processes, in  fact, were it  not  for  the  need  to  support DOS. Client-server 
turned  out to be  the  right decision, because Quake’s ability to support persistent, 
come-and-go-as-you-please Internet servers with up to 16 people  has  been  instru- 
mental  in the game’s high visibility in the press, and its lasting popularity. 
However, client-server is not without  a cost, because, in its pure  form, latency for 
clients consists of the  round  trip  from  the client to the server and back. (In Quake, 
orientation  changes instantly on  the client,  short-circuiting the trip to the server, but 
all other events, such as motion and firing,  must make the  round  trip  before they 
happen  on  the client.)  In  peer-to-peer games, maximum latency can  be just  the cost 
of the one-way trip, because each  client is running a  simulation of the game, and 
each  peer sees its own actions instantly. What all this means is that latency is the 
downside of client-server, but in many other respects client-server is  very attractive. 
So the big task  with client-server is to  reduce latency. 
As of the release of QTestl,  the first and last prerelease of Quake,  John  had  smoothed 
net play considerably by actually keeping  the client’s virtual time a  bit  earlier than 
the time of the last server packet, and  interpolating events between the last two pack- 
ets to the client’s virtual time. This meant  that events didn’t  snap  to whatever packet 
had arrived last, and  got  rid of considerable jerking  and stuttering.  Unfortunately,  it 
actually increased latency, because of the  retarding of time needed to make the in- 
terpolation possible. This illustrates a common tradeoff, which is that  reduced latency 
often makes for  rougher play. 

Reduced latency  also o f en  makes for  more frustrating  play. It’s actually  not hard p to reduce the  latency  perceived  by  the  player, but many of the  approaches that 
reduce latency introduce the  potential for paradoxes  that  can  be quite  distracting 
and annoying. For example, a player  may  see a rocket go by, and think they’ve 
dodged it, only toJind themselves exploding a second later as the d@erence of opinion 
between his  simulation and the  other  simulation  is resolved to  his detriment. 
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Worse, QTestl was prone to frequent hitching over  all but the best connections, because 
it was built around reliable packet delivery (TCP) provided by the operating system. 
Whenever  a packet didn’t arrive, there was a long pause waiting for the retransmis- 
sion. After QTestl, John realized that this was a fundamentally wrong assumption, 
and  changed  the  code to use unreliable packet delivery (UDP),  sending  the relevant 
portion of the full state every time (possible only because the PVS can be used to cull 
most events in a level), and letting the game logic  itself deal with packets that  didn’t 
arrive. A reliable sideband was used as  well, but only for events like scores, not  for 
gameplay state. However, this was a  good  example of  Carmack’s Law: John did not 
rewrite the  net  code to reflect this new fundamental assumption, and wound up with 
8,000 lines of  messy code  that took right up until  Quake  shipped to debug. For 
Quakeworld,  John did rewrite the  net  code  from scratch around  the assumption of 
unreliable packet delivery, and it  wound up as just 1,500 lines of clean, bug-free code. 
In  the  long  run, it’s cheaper to rewrite than to patch and modify! 
So as  of shipping Quake, multiplayer performance was quite  smooth,  but latencywas 
still a major issue, often in the 250 to 400 ms range  for  modem players. Quakeworld 
attacked this in two  ways. First, it reduced latency by around 50 to 100  ms  with a 
server change.  The  Quake server runs 10 or 20 times a  second,  batching up inputs  in 
between ticks, and  sending  out results after the tick. By contrast, Quakeworld serv- 
ers run immediately whenever  a client sends input, knocking up to 50 or 100 ms  off 
response time, although  at  the cost of a  greater server processing load. (A similar 
anti-latency idea  that wasn’t implemented in Quakeworld is having a separate thread 
that can send  input off to the server as soon as it happens, instead of incurring  up to 
a  frame of latency.) 
The  second way in which Quakeworld attacks latency is  by not interpolating. The 
player  is  actually predicted well ahead of the latest server packet (after all, the client 
has all the information needed to move the player, unless an outside  force  inter- 
venes), giving  very responsive control. The rest of the world  is drawn as  of the latest 
server packet; this is jerkier  than  Quake, again showing that smoothness is often a 
tradeoff for latency. The player’s prediction may,  of course, result in  a minor para- 
dox; for  example, if an explosion turns out  to have knocked the player  sideways, the 
player’s location may suddenly jump without warning as the server packet arrives 
with the correct  location. In  the latest version  of Quakeworld,  the  other players are 
predicted as  well,  with consequently more  frequent paradoxes, but smoother, more 
convincing motion. Platforms and  doors  are still not predicted, and consequently 
are still pretty jerky. It is, of course, possible to predict  more and  more objects into 
the future; it’s a tradeoff of smoothness and perceived low latency for the frustration 
of paradoxes-and that’s the way it’s going to stay until  most  people are  connected 
to the  Internet by something  better  than  modems. 

1 292 Chapter 70 



Quake 2 
I  can’t talk in  detail about Quake 2 as a  game, but I  can  describe some interesting 
technology features. The Quake 2 rendering  engine isn’t going  to  change  that  much 
from Quake; the improvements are largely in areas such as physics,  gameplay,  artwork, 
and overall  design. The most interesting graphics change is in the preprocessing, where 
John has added  support for radiosity lighting; that is, the ability to put a light source into 
the world and have the light bounced  around  the world  realistically. This is sometimes 
terrific-it  makes for great glowing light around lava and hanging light panels-but  in 
other cases  it’s  less spectacular than the effects that designers can get by placing  lots of 
direct-illumination light sources in a room, so the two methods can be used as needed. 
Also, radiosity is very computationally expensive, approximately as  expensive  as  BSPing. 
Most  of the radiosity demos I’ve seen have been  in  one  or two rooms, and  the  order 
of the  problem  goes  up  tremendously  on whole  Quake  levels. Here’s another case 
where the PVS is essential; without it, radiosity processing time would be 0 (polygons2), 
but with the PVS it’s 0 (po1ygons”average-potentially-visible-polygons) , which  is  over 
an  order of magnitude less (and increases approximately linearly, rather  than as a 
squared  function, with greater-level complexity). 
Also, the moving sky texture will probably be gone  or will change.  One likely replace- 
ment is an  enclosing  texture-mapped box around  the world, at  a virtually infinite 
distance; this will allow open vistas, much like Doom,  a welcome change  from  the 
claustrophobic  feel of Quake. 
Another likely change  in  Quake 2 is a shift from  interpreted Quake-C code  for game 
logic to compiled DLLs. Part of the incentive here is performance-interpretation 
isn’t  cheap-and part is debugging, because the standard debugger can be used  with 
DLLs. The drawback, of course, is portability; Quake-C program files are completely 
portable to any platform  Quake runs  on, with no modification or recompilation, but 
DLLs compiled  for Win32 require  a  real  porting  effort to run anywhere else. Our 
thinking  here is that  there  are almost no non-console  platforms other  than  the PC 
that  matter  that  much  anymore,  and  for  those few that do (notably the Mac and 
Linux),  the DLLs can be ported  along with the  core  engine  code.  It  just  doesn’t 
make sense for easy portability to tiny markets to impose a significant development 
and  performance cost on  the  one  huge market. Consoles will  always require  serious 
porting  effort anyway, so going to Win32-specific  DLLs for  the PC version won’t make 
much  difference  in the ease of doing console  ports. 
Finally, Internet  support will improve in Quake 2. Some  of the  Quakeworld latency 
improvements will doubtless  be added,  but  more  important,  there will be  a new 
interface, especially for  monitoring  and  joining  net games, in the  form of an HTML 
page. John has always been  interested  in moving  as much  code as possible out of the 
game  core,  and  letting  the browser take care of most of the UI makes it possible to 
eliminate  menuing and such from the Quake 2 engine.  Think of being  able to browse 
hundreds of Quake servers from a single Web page (much as  you can today with 
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QSpy, but with the advantage of a  standard, familiar interface and easy extensibility), 
and I  think you’ll see why John considers this the game  interface of the  future. 
By the way, Quake 2 is currently  being developed as a native  Win32 app only; no DOS 
version  is planned. 

Looking Forward 
In my address to the  Computer Game Developer’s Conference  in 1996, I said that  it 
wasn’t a  bad time to start up a  game  company  aimed at hardware-only rasterization, 
and trying to make  a  game  that leapfrogged the competition. It looks like I was 
probably a year  early, because hardware took longer to ship than I  expected, al- 
though  there was a  good living to be made writing games  that hardware vendors 
could  bundle with their boards. Now, though, it clearly is time. By Christmas 1997, 
there will be several million fast accelerators out  there,  and by Christmas 1998, there 
will be tens of millions. At the same  time, vastly more  people  are  getting access  to the 
Internet,  and it’s from  the convergence of these two trends  that  I  think the technol- 
ogy for the  next  generation of breakthrough real-time games will emerge. 
John is already working on id’s next graphics engine,  code-named Trinity and tar- 
geted around Christmas of  1998.  Trinity  is not only a hardware-only engine, its  baseline 
system  is a  Pentium  Pro 200-plus  with MMX, 32 MB, and  an accelerator capable of at 
least 50 megapixels and 300 K triangles per second with alpha  blending  and z-buffer- 
ing. The goals  of  Trinity are quite  different  from those of Quake. Quake’s primary 
technical goals  were  to do high-quality,  well-lit, complex indoor scenes with 6 de- 
grees of freedom,  and to support client-server Internet play. That was a  good start, 
but only that. Trinity’s goals are to have much less-constrained, better-connected 
worlds than Quake. Imagine seeing through  open landscape from  one server to the 
next, and seeing the action on adjacent servers in  detail, in real time, and you’ll  have 
an idea of where things are  heading  in  the  near  future. 
A huge graphics challenge for the  next  generation of games is level  of detail (LOD) 
management. If we’re  to  have larger, more  open worlds, there will inevitably be more 
geometry visible at  one time. At the same time, the push for greater detail that’s 
been in progress for the past four years or so will continue;  people will start expect- 
ing to see real cracks and  bumps when they get close to a wall, not  just a  picture of 
cracks and  bumps painted on a flat wall. Without LOD, these two trends are in direct 
opposition; there’s no way you can make the world larger and make all  its surfaces 
more  detailed  at the same time, without bringing the  renderer to its knees. 
The solution is to  draw nearer surfaces with more detail than farther surfaces. In itself, 
that’s not so hard,  but doing it without popping and snapping being visible as you  move 
about is quite  a challenge. John has implemented fractal landscapes with constantly 
adjustable level  of detail, and has made it so new  vertices appear as needed  and 
gradually morph to their final positions, so there is no  popping. Trinity is already 
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capable of displaying oval pillars that have four sides when  viewed from  a  distance, 
and  add vertices and polygons smoothly as  you get closer, such that  the change is 
never visible, and  the pillars look oval at all times. 
Similarly, polygon models, which maxed out  at  about 5,000 polygon-model polygons 
total-for  all  models-per scene  in  Quake, will probably reach 6,000 or 7,000 per 
scene in Quake 2 in the absence of LOD. Trinity will surely have  many more moving 
objects, and those objects will look far more detailed when viewed up close, so LOD 
for moving polygon models will definitely be needed. 
One  interesting side effect of morphing vertices as part of LOD is that  Gouraud 
shading  doesn’t work  very  well  with this approach.  The  problem is that  adding a new 
vertex causes a major shift in  Gouraud  shading, which  is, after all, based on lighting 
at vertices. Consequently, two-pass alpha  lighting and surface  caching  seem  to be 
much  better matches  for smoothly changing LOD. 
Some people worry that  the widespread use of hardware  acceleration will mean  that 
3-D programs will all look the same, and  that  there will no longer be much  challenge 
in 3-D programming. I hope  that this brief discussion of the tightly interconnected, 
highly detailed worlds toward which we’re rapidly heading will help you realize that 
both  the challenge and  the  potential of 3-D programming  are  in fact greater  than 
they’ve ever been.  The trick is that  rather  than  getting stuck in the  rut of established 
techniques, you must constantly strive to “do  better with  less, in  a  different way”; 
keep  learning  and  changing  and trying new  approaches-and working your rear 
end off-and odds  are you’ll be part of the wave  of the  future. 
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Afterword 

If you’ve followed me this far, you might  agree  that we’ve come through some  rough 
country. Still, I’m of the  opinion  that hard-won knowledge is the best knowledge, 
not only because  it sticks to you better, but also because winning  a hard race makes it 
easier to win the  next  one. 
This is an  unusual book in  that sense: In  addition to being  a  compilation of much of 
what I know about fast computer graphics, it is a journal  recording some of the 
process by which I discovered and  refined  that knowledge. I didn’tjust sit down one 
day to write this book-I wrote it over a  period of years and published its component 
parts  in many places. It is ajournal of my successes and frustrations, with side glances 
of  my life  as it happened  along  the way. 
And there is yet another remarkable  thing about this book: You, the reader,  helped 
me write it. Perhaps not you personally, but many people who  have read my articles 
and columns over the years sent me notes asking me  questions, suggesting improve- 
ments (occasionally by daring me  to  beat  them  at the  code  performance  game!) or 
sometimes just  dumping remarkable  code  into my lap.  Where it seemed  appropri- 
ate, I dropped in the  code  and sometimes even the words of  my correspondents,  and 
the book is much  the  richer  for it. 
Here  and  there, I  learned  things  that  had  nothing  at all to do with  fast graphics. 
For example:  I’m not a doomsayer  who thinks American education lags hopelessly 
behind  the rest of the Western world, but now and  then  something  happens  that 
makes me wonder. Some time back, I received a letter  from  one Melvyn J. Lafitte 
requesting  that  I  spend  some time in my columns  describing fast 3-D animation 
techniques. Melvyn hoped  that I would be so kind as to discuss, among  other things, 
hidden surface removal and perspective projection,  performed  in real time, of course, 
and preferably  in Mode X. Sound familiar? 
Melvyn shared with  me a hidden surface approach  that  he  had developed. His tech- 
nique involved defining polygon vertices in clockwise order, as  viewed from  the visible 
side. Then,  he explained, one can use the cross-product equations  found  in any 
math  book to determine which way the  perpendicular to the polygon is pointing. 
Better yet, he  pointed  out, it’s necessary to calculate only the Z component of the 
perpendicular,  and only the sign of the Z component  need actually be  tested. 
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What Melvyn described is,  of course, backface removal, a key hidden-surface tech- 
nique that  I used heavily in X-Sharp. In general, other  hidden surface techniques 
must be used in  conjunction with  backface removal, but backface removal is none- 
theless important  and highly efficient. Simply put, Melvyn had devised for himself 
one of the  fundamental techniques of 3-D drawing. 
Melvyn  lives in Moens, France. At the time he wrote me, Melvyn  was 1’7 years old. Try 
to imagine any American 17-year-old  of your acquaintance inventing backface  re- 
moval.  Try to imagine any teenager you  know  even  using the phrase “the cross-product 
equations found in any math book.” Not to mention  that Melvyn  was able to write a 
highly technical letter  in English; and if Melvyn’s English was something less than 
flawless, it was perfectly understandable,  and, in my experience, vastly better  than  an 
average, or even well-educated, American’s French. Please understand, I believe we 
Americans excel in  a wide  variety  of  ways, but I worry that  when  it  comes to math  and 
foreign languages, we are becoming a nation of tEtes depomme  de t m e .  

Maybe I worry too  much. If the glass  is  half  empty,  well,  it’s  also  half full. Plainly, 
something  I wrote inspired Melvyn to do  something  that is wonderful,  whether he 
realizes it or not.  And  it has been tremendously gratifylng to sense in the letters I 
have received the same  feeling of remarkably smart  people  going  out  there  and 
doing amazing things just  for  the  sheer  unadulterated  fun of it. 
I  don’t think I’m  exaggerating too much (well,  maybe a little) when I say that this sort of 
fun is  what I live for. I’m glad to see that so many of  you share  that  same passion. 
Good luck. Thank you for your input, your code, and all your kind words.  Don’t be 
afraid to attempt  the impossible. Simply  knowing  what is impossible is useful  knowl- 
edge-and  you  may  well find, in the wake  of some  unexpected success, that  not half 
of the things we call impossible have  any right at all to wear the label. 

-Michael Abrash 
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Index 

Numbers 
l/z sorting 

abutting span sorting, 1229-1230 
AddPolygonEdges function, 1232- 

vs. BSP-order sorting, 1226-1227 
calculating l/z value, 1220-1222 
ClearEdgeLists function, 1236-1237 
Drawspans function, 1236 
independent  span sorting, 1230, 1231- 

intersecting span sorting, 1228-1229 
PolyFacesViewer function, 1232 
reliability,  1227 
ScanEdges function, 1234-1236, 

Updateworld function, 1237-1238 

See also Hidden surface removal; 3-D 

1233, 1238 

1238, 1239-1241 

1238-1239 

3-D animation 

drawing; 3-D polygon rotation 
demo program; X-Sharp  3-D 
animation package. 

solid cube rotation program, 957- 

3-D polygon rotation program, 939, 

12-cube rotation program, 972, 973- 

demo programs 

961, 962-963, 964-966, 967 

940-945, 948-949 

984, 985-987 
depth sorting, 1000, 1001-1002 
rotation 

ConcatXforms function, 944 
matrix representation, 938-939 
multiple axes of rotation, 948 
XformVec function, 943 

rounding vs. truncation, 1002-1003 
translation of objects, 937-938 

3-D clipping 
arithmetic imprecision, handling, 1240 
line segments, clipping to planes, 

overview, 1195 
polygon clipping 

1195-1197 

BackRotateVector function, 1203 
clipping to frustum, 1200, 1201- 

ClipToFrustum function, 1204 
ClipToPlane function, 1199 
optimization, 1207 
overview, 1197-1200 
PolyFacesViewer function, 1203 
ProjectPolygon function, 1201 
SetUpFrustum function, 1204 
SetWorldspace function, 1204 
TransformPoint function, 1203 
TransformPolygon function, 1203 
Updateworld function, 1205 
viewspace clipping, 1207 
ZSortObjects function, 1201 

1206, 1206-1207 

3-D drawing 
See also BSP (Binary Space 

Partitioning) trees; Hidden surface 
removal; Polygons, filling; Shading; 
3-D animation. 

backface removal 
BSP tree rendering, 1160-1161 
calculations, 955-957 
motivation for, 9 54-9 j j 
and sign of dot  product, 1140 
solid cube rotation demo program, 

957-961, 962-963, 964-966, 967 
background surfaces, 1240 
draw-buffers, and beam trees, 1187 
and dynamic objects, 1100-1101 
Gouraud shading, 1246-1250 
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lighting 
Gouraud  shading, 1246-1250 
overlapping lights,  1247 
perspective correctness, 1248-1250 
rotational variance, 1247 
surface-based lighting, 1250-1256, 

viewing variance, 1249 

1212-1222 

1260-1262 

moving models in  3-D drawings, 

painter's algorithm, 1099,  1104-1105 
perspective correctness problem, 

portals, and beam trees, 1188 
projection 

dot products, 1141-1  142 
overview, 937,  948 

1248-1250 

raycast,  subdividing,  and  beam  trees,  1187 
reference materials, 734-935 
rendering BSP trees 

clipping, 1158-1159 
Clipwalls function, 1152-1155, 

DrawWahBackToFront function, 
1155-1156, 1160-3161 

overview, 1149 
reference materials, 1157 
TransformVertices function, 1151- 

UpdateViewPos function, 1151, 1157 
Updateworld function, 

viewspace,  transformation of 

wall orientation testing, 1160-1  161 
WallFacingViewer function, 1150- 

1158-1157 

1152, 1158 

1156-1157, 1157 

objects to, 1158 

1151, 1161 
span-based  drawing,  and  beam 

transformation of objects, 935-936 
triangle model  drawing 

fast triangle drawing, 1263-1265 
overview, 1262-1263 
precision, 1265 
subdivision rasterization, 1266-1267, 

trees, 1187 

1267-1270 
vertex-free surfaces, and beam 

visibility determination, 1097-1  106 
trees, 1187 

visible surface determination (VSD) 
beam trees, 1185-1189 
culling to frustum, 1181-1184 
overdraw  problem, 1184-1 185 
potentially visible set (PVS), 

precalculating, 1188-1189 
3-D engine,  Quake 

BSP trees, 1276-1277 
lighting, 1282-1283 
model  overview, 1276-1277 
portals, 1279-1280 
potentially visible set (PVS), 1278-1279 
rasterization, 1282 
world,  drawing, 1280-1281 

cross products, 1139-1 140 
dot  products 

calculating, 1135-1137 
calculating light intensity, 1137 
projection, 1141-1142 
rotation, 1143-1144 
sign of, 1140-1141 
of unit vectors, 1136 
of vectors, 1135-1136 

assembly routines, 992, 996-999 
C-language  implementations, 974-976 
normal vectors, calculating, 955-956 
rotation of  3-D objects, 738-939, 

transformation, optimized, 1172- 

3-D  math 

matrix  math 

943-944, 948 

1173, 1173-1174 
vector length, 1135 

matrix  multiplication functions, 943- 
944,748 

overview, 937 
performance, 949 
polygon filling  with clipping support, 

transformation and projection, 

3-D polygon rotation demo  program 

940-943 

944-945, 948 
3-D solid cube rotation demo  program 

basic implementation, 957-961, 962-963 
incremental transformations, 964-966 
object representation, 967 

8-bit bus cycle-eater 
286 and 386 processors, 210 
8088 processor 



effects on performance, 82 
optimizing for,  83-85 
overview, 79-82 
and registers, 85 

12-cube rotation demo  program 
limitations of, 986 
optimizations in, 985-986 
performance, 986 
X-Sharp animation  package, 972, 973- 

984, 984-985 
16-bit checksum  program 

See also TCP/IP checksum  program. 
assembly implementation, 10-12,  17-18 
C language  implementation, 8-9,  15-16 
overview, 8 
redesigning, 9 

color paging, 628-629 
DAC (DigitaVAnalog  Converter),  626-628 
palette RAM, 626 

16-color VGA modes 

24-byte hi/lo function, 292-293 
32-bit addressing  modes, 256-258 
32-bit division, 181-184,  1008 
32-bit fixed-point arithmetic, optimizing, 

32-bit instructions, optimizing, 1091 
32-bit  registers 

See also Registers; VGA registers. 
adding with LEA, 131 
BSWAP instruction, 252 
multiplying with LEA, 132-133 
386 processor, 222 
time  vs. space tradeoff, 187 
using as two 16-bit registers, 253-254 

See also 320x400  256-color mode. 
DAC settings, 629 
mapping RGB model to, 1036, 1037- 

resolution, 360x480  256-color mode, 

1086-1089, 1090-1091, 1092-1093 

256-color modes 

1038, 1039 

619-620 
286 processor 

CMP instruction, 161,  306 
code  alignment, 215-218 
cycle-eaters, 209-210 
data alignment, 213-215 
data transfer rates, 212 
display adapter cycle-eater,  219-221 
display memory  wait states, 220 
DRAM refresh cycle-eater, 219 

effective address calculations, 

instruction fetching, 215-218 
LEA vs. ADD instructions, 130 
lookup tables, vs. rotating or 

shifting, 145-146 
LOOP instruction vs. DEC/JNZ 

sequence, 139 
memory access, performance, 223-225 
new features, 221 
POPF instruction, and interrupts, 226 
protected  mode, 208-209 
stack pointer  alignment, 218-219 
system wait states, 210-212 

320x240  256-color mode. See Mode X. 
320x400  256-color mode 

advantages of, 590-591 
display memory organization, 591-593 
line drawing, 600 
page flipping demo  program, 600-605 
performance, 599-600 
pixel drawing  demo  program, 593- 

129, 223-225 

598, 599-600 
360x480  256-color mode 

display memory, accessing, 621-622 
Draw360~480Dot subroutine, 613-614 
drawing speed, 618 
horizontal resolution, 620 
line drawing  demo  program, 615-618, 

mode set routine Qohn  Bridges),  609, 

on VGA clones, 610-611 
Read36Ox48ODot subroutine, 614-615 
256-color resolution, 619-620 
vertical resolution, 619 

618-619 

612, 620-621 

386 native mode, 32-bit displacements, 187 
386 processor 

alignment, stack pointer, 218-219 
CMP instruction, 161, 306 
cycle-eaters, 209-210 
data alignment, 213, 218 
and display adapter cycle-eater,  107 
display adapter cycle-eater,  219-221 
doubleword  alignment, 218 
DRAM refresh  cycle-eater,  219 
effective address calculations, 

LEA instruction, 130-133,  172 
LODSD vs. MOV/LEA sequence, 171 

129, 223-225 



lookup tables, vs. rotating or shifting, 

LOOP instruction vs. DEC/JNZ 

memory access, performance, 223-225 
MUL and IMUL instructions, 173-174 
multiplication operations, increasing 

new instructions and features, 222 
Pentium  code,  running on, 411 
protected  mode, 208-209 
rotation instructions, clock 

system  wait states, 210-212 
32-bit addressing  modes, 256-258 
32-bit multiply and divide 

using 32-bit  register as  two 16-bit 

XCHG vs. MOV instructions, 377, 832 
386SX processor,  16-bit  bus  cycle-eater, 81 
486 processor 

145-146 

sequence, 139 

speed of, 173-174 

cycles, 185-186 

operations, 985 

registers, 253-254 

AX register, setting to absolute 
value, 172 

byte registers and lost cycles, 242-245 
CMP instruction 

operands,  order of, 306 
vs. SCASW, 161 

copying  bytes  between registers, 172 
and display adapter cycle-eater, 107 
indexed addressing, 237-238 
internal cache 

effect on  code timing, 246 
optimization, 236 

LAHF and S A H F  instructions, 148 
LEA instruction, vs. ADD, 131 
LODSB instruction, 304 
LODSD instruction, vs. MOV/LF,A 

lookup tables, vs. rotating or shifting, 

LOOP instruction, vs. DEC/JNZ 

MOV instruction, vs. XCHG, 377 
n-bit  vs.  1-bit  shift and rotate 

Pentium  code,  running on, 411 
pipelining 

sequence, 171 

145-146 

sequence, 139 

instructions, 255-256 

address calculation, 238-240, 250 

stack addressing, 241-242 

cycles, 185-186 
rotation instructions, clock 

stack-based variables, 184-184 
32-bit addressing  modes, 256-258 
timing code, 245-246 
using 32-bit register as two 16-bit 

registers, 253-254 
XCHG instruction, vs. MOV, 377, 832 

640x400 mode, mode  set  routine, 852-853 
640x480 mode,  page flipping, 836-837 
8086 processor vs. 8088 processor, 79-81 
8088 processor 

CMP instruction, 161, 306 
cycle-eaters 

8-bit bus cycle-eater, 79-85 
display adapter cycle-eater, 101-108 
DRAM refresh  cycle-eater, 95-99 
overview, 78-79,  80 
prefetch queue cycle-eater, 86-94 
wait states, 99-101 

display memory access, 220 
effective  address  calculation  options, 129 
vs. 8086 processor, 79-81 
U H F  and SAHF instructions, 148 
LEA vs. ADD, 130 
LODSB instruction, 304 
lookup tables, vs. rotating or shifting, 

LOOP instruction vs. DEC/JNZ 

memory variables, size of, 83-85 
stack-based variables, placement of, 

145-146 

sequence, 139 

184-184 
8253 timer chip 

and DRAM refresh, 95 
reference material, 72 
resetting, 43 
system clock inaccuracies 

long-period Zen  timer, 53, 54 
Zen  timer, 43,  45-46,  48 

operation, 44 
stopping, 54, 65 

timer modes, 44, 45 
timer operation, 43-45 
undocumented features, 54,  65 

timer 0 



A 
Absolute value, setting AX register, 171 
Abstraction, and optimization, 330-332, 

Abutting span sorting, 1229-1230 
AC (Attribute Controller), VGA 

addressing, 427-428 
Color  Select  register, 628-629 
Index register, 443, 555 
Mode  Control  register, 575 
Mode register 

color paging, 628-629 
256-color modes, 629 

palette RAM registers, setting, 631-632 
Pel Panning register, 574 
registers, setting and reading, 583 
screen blanking demo program, 

345-346 

556-557 
Active edge table (AET), 744 
Adapters, display. See Display adapter 

cycle-eater. 
ADD instruction 

and Carry flag, 147-148 
VS. INC, 147-148, 219 
VS. LEA, 130, 170-171 

AddDirtyRect function, 867-869 
Addition, using LEA, 130, 131 
Addobject function, 1001-1002 
AddPolygonEdges function, 1232- 

1233, 1238 
Addressable memory, protected 

mode, 221 
Addressing modes 

486 processor 
indexed addressing, 237-238 
32-bit addressing modes, 256-258 

386 processor, 130-133. 222 
VGA, internal indexing, 427-428 

Addressing pipeline penalty 
See also Pipeline stalls. 
486 processor, 238-240, 250 
Pentium processor, 400-403 

complex polygons, 748-749 
monotone-vertical polygons, 769 

AET (active edge  table), 744 
AGIs (Address Generation Interlocks), 

AdvanceAET function 

400-403 

See also Addressing pipeline penalty; 
Pipeline stalls. 

Algorithms In C (book), 192, 196 
Alignment 

Pentium processor 
non-alignment penalties, 376 
TCP/IP checksum program, 409 

REP STOS instruction, 735 
386 processor, 218 
286 processor 

code alignment, 215-218 
data alignment, 213-215 
stack pointer alignment, 218-219 

ALU and latch demo program, 453-457, 

ALUs (Arithmetic Logic Units), VGA 
458-460 

ALU and latch demo program, 453- 

logical functions, 458 
operational modes, 458 
overview, 451-452 

457, 458-460 

Ambient shading, 1023, 1025-1027 
AND instruction, Pentium processor 

AGIs (Address Generation Interlocks), 
401-402 

vs. TEST, 377 

See also Animation demo programs; 

apparent motion, 1064 
ball animation demo program, 431- 

challenges in, 819-820 
on PCs, 795-796 
page flipping, flicker-free animation, 

speed, importance of, 1064 
Animation demo programs 

Mode X animation, 924-925, 925-930 
page flipping animation 

Animation 

Mode X; 3-D animation. 

441 

444-446 

assembly code, 825-830 
C code, 820-825 
split screen and page flipping, 

830-837 
3-D polygon rotation 

matrix multiplication functions, 943- 
944, 948 

overview, 939 
performance, 949 



polygon filling with clipping 

transformation  and projection, 944- 

3-D solid cube rotation demo program 

support, 940-943 

945, 948 

basic implementation, 957-961, 

incremental  transformations, 964-966 
object representation, 967 

962-963 

Animation techniques 
bit-plane animation 

assembly  implementation, 

limitations, 811-813 
page flipping, 814 
palette registers, 799-801 
principles, 796-798 
shearing, 813 

dirty-rectangle animation 
C implementation, 847-851, 863-869 
description, 844-845 
ordering rectangles, 873 
overlapping rectangles, 872-873 
vs. page flipping, 846, 862 
performance, 873 
system  memory buffer size, 851 
writing to display memory, 856-857 

801-809, 810 

internal animation, 872 
masked  images, 871-872 

Antialiasing,  Wu’s algorithm, 776-779, 

Apparent  motion, in animation, 1064 
AppendRotationX function, 964, 975 
AppendRotationY function, 964-%5,975 
AppendRotationZ function, 965,  976 
Appropriate  technology, 775-776 
Arithmetic  flags. See Flags. 
Arrays, sorting, 180-181 
Aspect ratio, Mode X, 878 
Assemblers 

780-791, 791-792 

MASM (Microsoft  Assembler), 187 
optimizing  assemblers, 71-72 
TASM (Turbo  Assembler), 71-72 

Assembly language  optimization 
See also Clock  cycles;  Local 

optimization; Optimization. 
data, placing  limitations on, 274 
instruction size vs. execution time, 90- 

multi-bit rotations, 23-24 
92 ,93  

objectives, 28 
optimizing instructions, 23-24 
programmer’s responsibilities, 27-29 
rearranging instructions, 418-419 
reducing size of code, 416-418 
stack addressing, 420 
understanding data, importance of, 122 

compilers, 154-155 

issues, 25-26 

display adapter cycle-eater, 107 
286 processor, data transfer rates, 212 

Attribute  Controller, VGA. See AC 
(Attribute  Controller), VGA. 

Automatic variables, 184-185 
AX register, setting to absolute value, 171 

Assembly language  programmers, vs. 

Assembly language,  transformation 

AT computer 

B 
Backface culling. See Backface  removal. 
Backface  removal 
See also Hidden surface removal; 

Visible surface determination. 
BSP tree rendering, 1160-1161 
calculations, 955-957 
motivation  for, 954-955 
and sign of dot product, 1140 
solid cube rotation demo program, 

957-961, 962-963, 964-966, 967 
Background surfaces, 1240 
BackRotateVector function, 1203 
Ball animation demo program, 431-441 
Barrel  shifter, VGA, 463-464 
Beam trees 

improvement,  attempts  at, 1187-1188 
overview, 1185 
performance, 1186 
potentially visible set (PVS), 

precalculating, 1188-1 189 
Benchmarks, reliability of, 729 
Biased perceptions, and optimization, 

Big endian format, 252 
BIOS. See EGA  BIOS;  VGA  BIOS. 
Bit mask 

1080, 1085 

bitmapped text demo program, 466- 
469, 470-471 



and latches, 470 
overview, 464-466 

bit mask, controlling,  465 
drawing solid text, 1040 
setting inside a loop, 429 
vs.  write mode  3, 832,  844 

BitMan,  1039-1041, 1042-1044 
Bitmap organization, Mode X, 882-883 
Bitmapped text 

demo program using bit mask, 466- 

reference material,  471 

Bit  Mask register 

469, 470-471 

Bitmapped text demo program, 466-469, 

Bitmaps 
470-471 

chunky, converting to planar, 504- 505, 

relocating, 516-517 
transient color effects, 509 

assembly  implementation, 801-809, 810 
limitations,  811-813 
overview, 796 
page flipping, 814 
palette registers,  799-801 
principles,  796-798 
shearing, 813 

“Black box”  approach, and future of 
programming, 725-726 

Blocks. See Restartable blocks. 
Borders (overscan), 55 5-556 
BOUND instruction, 221 
Boundary pixels, polygons 

rules  for selecting, 712 
texture mapping, 1049-1052,  1065- 

505-508 

Bit-plane animation 

1066, 1067 
Bounding volumes, 1184 
Boyer-Moore  algorithm 

assembly implementations, 271-274, 

C language implementation, 269 
overview, 263-265 
performance, 266-268 
test-bed program, 270 

377-378 

See also Branch prediction. 
286 and 386 processors 

274-277 

Branch prediction, Pentium processor, 

Branching  instructions 

non-word-alignment penalty, 216 
and prefetch queue cycle-eater, 210 

eliminating,  312-313 
Pentium processor 

branches within loops, 378 
pairing in U-pipe,  405 

x86  family CPUs, performance, 140 

basic  algorithm 
Bresenham’s line-drawing  algorithm 

assembly implementation, 6 j 5-6 56, 

C language implementation, 661- 

description, 657-660 
strengths and weaknesses, 660-661 

run-length  slice  algorithm 
assembly implementation, 698-704 
C-language implementations, 688- 

description, 683-684 
implementation details, 685-687 
integer-based implementation, 

potential optimizations, 70 j 

See Run-length  slice  algorithm. 

mode set routine, 360x480  256-color 

256-color modes, undocumented, 879 

671-677 

665, 665-671 

692, 692-693 

685-687 

Bresenham’s  run-length  slice  algorithm. 

Bridges, John 

mode, 609, 612, 620-621 

Brute-force solutions, 193 
BSP (Binary Space Partitioning)  trees 

2-D line representation, 1120 
3-D rendering, 1162 
beam trees 

improvement,  attempts at, 1187-1  188 
overview, 118 j 
performance, 1186 
potentially  visible  set (PVS), 

precalculating,  1188-1189 
BSP compiler 

BuildBSPTree function, 1125-1127 
SelectBSPTree function, 1124-1125 

BuildBSPTree function, 1125-1127 
building,  1101-1104 
BuildTree function, 1112 
data  recursion vs. code recursion, 

description, 1098-1099, 1119 
and dynamic objects, 1100-1101 

1108-1113 



edge sorting for hidden surface 

inorder traversal, 1107-1113 
leaves, storing polygons in, 1181 
multiple BSP trees, sorting, 1227 
optimizations, 1128-1129 
performance, 1100,  1111-1113 
potentially visible set (PVS) 

precalculating, 1188-1189 
world,  drawing, 1280-1281 

removal, 1220,  1226 

reference materials, 11 14 
rendering recursively 

backface  removal, 1160-1161 
clipping, 1158-1 159 
Clipwalls function, 1152-1155, 

DrawWaUsBackToFront function, 

overview, 1149 
reference materials, 1157 
TransformVertices function, 1151- 

UpdateWewI” function, 1151,1157 
Updateworld function, 

viewspace,  transformation of 

wall orientation testing, 1160-1161 
WfiacingViewer function, 1150- 

1158-1159 

1155-1156, 1160-1161 

1152, 1158 

1156-1157, 1157 

objects to, 1158 

1151, 1161 
SelectBSPTree function, 1124-1125 
splitting heuristic, 1128-1129 
3-D engine,  Quake 

overview, 1276-1277 
potentially visible set (PVS) 

management, 1278-1279 
visible surface determination (VSD) 

beam trees, 1185-1189 
culling to frustum, 1181-1184 
overdraw  problem, 1184-1 185 
painter’s algorithm, 1099-1 106 
polygon culling, 1181-1  184 
PVS, precalculating, 1188-1189 

WalkBSPTree function, 1106 
WalkTree function, 1109-1110 

BuildBSPTree function, 1125-1127 
overview, 11 23 
SelectBSFT’ree function, 1124-1125 

BSP compiler 

BSP models,  Quake 3-D engine, 1284 

BSWAP instruction, 486 processor 
32-bit registers, using  as two 16-bit 

registers, 253-254 
rotating pixel bits, 252 

Bubble sort, 755 
Buffer-filling routine, optimizations 

rearranging instructions, 418-419 
reducing size of code, 416-418 
stack addressing, 420 

in  16-bit checksum  program, 15-16 
in search  engine, 114-1  15 

BuildBSPTree function, 1125-1127 
BuildGET function, 768-769 
BuildGETStructure function, 747-748 
BuildMaps function, 353-355 
BuildTree function, 11 12 
Bus access 

Buffers, internal 

8088 processor, 81, 99-101 
Pentium processor, 377 

Byte registers, 486 processor, 242-245 
Byte-OUT instruction, 429 
Byte-per-pixel mode. See Mode X. 

C 
C library functions 

getco function, 12, 14 
m e m c w  function, 116 
memcmpo function, 116 
memcpy0 function, 1147-1148 
memsea function, 727 
optimization, 15 
read0 function, 12, 121 
strsts() function, 11 5 

Cache, internal. See Internal cache. 
Cache lines, Pentium processor, 374 
Calculations, redundant,  and 

optimization, 682-683 
Calculus and Analytic Geometry 

(book), 1135 
CALL instruction 

486 processor, 241-242 
Pentium processor, 404 

and id Software, 1118 
overdraw, 1184-1186 
subdivision rasterization, 1266-1267, 

Carmack, John 

1267-1270 



Carry  flag 
DEC instruction, 148 
INC vs. ADD instructions, 147-148 
LOOP instruction, 148 
rotating bits through, 185 
in word count program (David 

Cats, shipping via air freight, 697-698 
cellmap class, 325-329,  333-335,  341-345 
Cellmap wrapping, Game of  Life,  331- 

Cell-state method, 327,  334,  344 
CGA (Color/Graphics Adapter) 

display adapter cycle-eater, 104 
VGA compatibility with, 430 

Game of  Life 

Stafford),  317-319 

332, 333-335,  336, 337-338 

Challenges 

rules, 346, 350 
3-cell-per-word implementation 

(David  Stafford),  351-352, 353- 
363, 363-365 

ScanBuffer routine, 30 5 ,  307-319 
Change list, in Game of  Life,  363-366 
Chaplin, Michael,  776 
Charactedattribute map, VGA mode 3, 517 
Chartreuse moose story, 399 
Checksum programs. See 16-bit 

checksum program; TCP/IP checksum 
program. 

program, 505-508 
Chunky bitmap conversion demo 

Chunky bitmaps, converting to planar, 

Circular linked lists. 288-292 
Clear-cell method, 327,  334,  343 
ClearEdgeLists function, 1236-1237 
Clements, Willem, 313-315 
Client-server architecture, and 

Clipping 

504-505, 505-508 

Quakeworld, 1291 

See also Hidden surface removal 
(HSR); Visible surface determination 
(VSD). 

arithmetic imprecision, handling, 1240 
in BSP tree rendering, 1158-1159 
line segments, clipping to  planes, 

masked copying, Mode X, 923 
overview, 1195 

1195-1197 

polygon clipping 
BackRotateVector function, 1203 
clipping to frustum, 1200, 1201- 

ClipToFrustum function, 1204 
ClipToPlane function, 1199 
optimization, 1207 
overview, 1197-1200 
PolyFacesViewer function, 1203 
ProjectPolygon function, 1201 
SetUpFrustum function, 1204 
SetWorldspace function, 1204 
TransformPoint function, 1203 
TransformPolygon function, 1203 
UpdateViewPos function, 1202 
Updateworld function, 1205 
viewspace clipping, 1207 
ZSortObjects function, 1201 

1206, 1206-1207 

ClipToFrustum function, 1204 
ClipToPlane function, 1199 
Clock  cycles 

See also Cycle-eaters. 
address calculation pipeline, 238-240 
branch prediction, 377-378 
byte registers and lost cycles, 242-245 
cross product floating point 

optimization, 1171, 1172 
and data alignment, 213-215 
data transfer rates, 81, 82 
dot product floating point 

optimization, 1170 
dual-pipe  execution, 405 
effective address calculations 

286 and 386 processors, 223-225 
Pentium processor, 375-376 

data transfer rates, 81, 82 
memory access, 82, 83-85 

8088 processor 

floating point instructions, 1167-1170 
486 processor 

address calculation pipeline, 238- 
240,  250 

byte registers and lost cycles, 

indexed addressing, 237-238 
stack addressing, 241-242 
32-bit addressing modes, 256-258 

242-245 

EXCH instruction, 1170 
indexed addressing, 237-238 



instruction execution times, 86-93 
lockstep  execution, 390-394, 400-403 
matrix  transformation  optimization, 1173 
memory access, 82, 83-85 
non-alignment penalties, 376 
non-word-alignment penalty, 217 
l /z value of planes, calculating, 1221 
OUT instructions, 843, 1082-1083 
Pentium  processor 

branch prediction, 377-378 
cross product floating point 

optimization, 1171, 1172 
dot  product floating point 

optimization, 1170 
effective  address  calculations, 375-376 
floating  point  instructions, 1167-1168 
FXCH instruction, 1170 
initial pipe, effect of, 405 
lockstep execution, 390-394, 400-403 
matrix transformation 

optimization, 1173 
non-alignment penalties, 376 
pipelining, 1168-1170 
prefix bytes, 376, 395, 407 

prefix bytes, 376, 395, 407 
vs. program size, 28 
projection, floating point 

optimization, 1174 
stack addressing, 241-242 
string instructions, 82 
system  wait states, 211 
32-bit addressing  modes, 256-258 
386 processor, effective address 

286 processor 
calculation, 223-225 

effective address calculation, 223-225 
system wait states, 211 

CMP instruction 
operands,  order of, 306 
vs. S M W ,  161 

processor, 378 

386 processor, 218 
286 processor, 215-218 

Code generator, for Game of Life (David 
Stafford), 351-352, 353-363, 363-365 

Code  recursion 
vs. data recursion, 1108-1 110 

CMPXCHGSB instruction, Pentium 

Code  alignment 

Euclid’s algorithm, 198-199 

program, 531-534 

adapter-dependent  mapping, IO36 
color perception research, 1035 
reflective vs. emissive, 1035 

Collision detection demo 

Color 

Color Compare register, 531 
Color  cycling 

bit-by-bit loading of  DAC, 650-651 
demo  program, 643, 644-648, 648-649 
interleaved loading of  DAC, 649-650 
loading DAC, 640-643 
overview, 639-640 
using page flipping, 650 
using  subset of  DAC, 649 

Color  cycling demo program, 643, 644- 

Color  Don’t  Care  register, 534 
Color Don’t Care  register demo program, 

Color mapping demo program, EGA, 

Color models. See RGB (red, green, 
blue) color model. 

Color paging, 628-629 
Color path, VGA 

648, 648-649 

535-537, 535 

551-555 

color paging, 628-629 
DAC (DigitaYAnalog 

Converter), 626-628 
palette R A M ,  626 

Color planes. See Planes, VGA. 
Color  Select  register, 628-629 
Color selection 

EGA 
overscan, 555-556 
palette registers, 548-551, 551-555 
screen  blanking, 556-557 

ColorBarsUp subroutine, 604 
Color-forcing demo program, 474-476 
Color-patterned lines demo program, 

Compiled DLLs, Quake 2, 1293 
Compiler-based  optimization 

VGA, 557 

509-515 

cautions for use of, 9 
data recursion vs. code recursion, 

in FindIDAverage function, 159 
1112-1113 



Compilers 
vs. assembly  language  programmers, 

avoiding thinking like, 152,  154-155 
bitblt compiler for Game of  Life 

154-155 

(David  Stafford),  351-352, 353-363, 
363-365 

handling of segments, 154 
Complex polygons 

defined, 710, 742 
edges,  keeping track of, 742-744,  753, 

polygon-filling  programs, 745-752,  754 
Computational  Geomety, An 

Introduction (book), 759-760 
Computer  Graphics: Princaples and 

Practice (book), 660,  934,  1121 
Computer  Graphics (book), 1135,  1157 
ConcatXforms function 

assembly  implementation, 997-999, 

C-language implementation, 944, 976 
CONSTAN'-TO-INDEXED_REGISTER 

macro, 594 
Coordinate systems 

left-handed, 1140 
right-handed, 935-937 

755,  756 

1019-1022 

Copy-cells method, 327, 333 
CopyDirtyRectangles function, 850 
CopyDirtyRectangleToScreen 

Copying 
function, 866-867 

bytes  between registers, 172 
pixels, using latches (Mode X), 905- 

907, 908, 909-911 
CopyRect subroutine, 871 
CopyScreenToScreenMaskedX 

subroutine, 918, 919-921 
CopyScreenToScreenX subroutine, 

CopySystemToScreenMakedX 

CopySystemToScreenX subroutine, 

CosSin subroutine, 994-996, 

Count-neighbors method, 334-335 
CPU reads from VGA memory, 526 
CPUID instruction, Pentium 

905-907, 908 

subroutine, 916-918 

908, 909-911 

999, 1013-1015 

processor, 378 
CreateAlignedMaskedImage function, 

Cross products 
922-923 

calculating, 955-956,  1139-1140 
floating  point  optimization,  1171, 1172 

CRT Controller, VGA. See CRTC  (CRT 
Controller), VGA. 

CRTC  (CRT Controller), VGA 
addressing, 427-428 
Line Compare register, 565 
Overflow register, 565 
shearing, 813-814 
start address registers, setting, 583 

286 and 386 processors 
Cycle-eaters 

data alignment cycle-eater, 

display adapter cycle-eater, 219-221 
DRAM refresh  cycle-eater, 219 
overview, 209-210 
prefetch queue cycle-eater, 211-212 
system  wait states, 210-212 

data alignment cycle-eater 
386 processor, 218 
286 processor, 213-215 

display adapter cycle-eater 
286 and 386 processors, 219-221 
8088 processor, 101-108 

286 and 386 processors, 219 
8088 processor, 95-99,  108 

8-bit bus cycle-eater,  79-85,  108 
8088 processor 

213-215,  218 

DRAM refresh cycle-eater 

display adapter cycle-eater,  101-108 
DRAM refresh  cycle-eater,  95-99,  108 
8-bit bus cycle-eater, 79-85,  108 
prefetch queue cycle-eater,  86-94,  108 
wait states, 99-101 

286 and 386 processors, 209-210 
8088 processor, 78-79,  80 

286 and 386 processors, 211-212 
8088 processor, 86-94,  108 

overview 

prefetch queue cycle-eater 

system  wait states, 210-212 
wait states, 99-101 

Cycles. See Clock cycles; Cycle-eaters. 



D 
DAC (DigitaVAnalog Converter) 

color cycling 
bit-by-bit loading, 650-651 
color cycling demo program, 643, 

interleaved loading, 649-650 
problems, 640-643 
using subset of, 649 

Data register, 642-643 
index  wrapping, 651 
loading 

644-648, 648-649 

bit-by-bit loading, 650-651 
directly, 642-643 
interleaved loading, 649-650 
via VGA BIOS, 641-642,  648 
and Write Index register, 642-643, 651 

Mask register, blanking screen, 651 
Read Index register, 651-652 
reading, 651-652 
setting registers, 630, 631-632 
in VGA color path, 626-628 
Write Index register 

DAC index wrapping, 651 
loading DAC, 642-643 

DAC registers demo program, 632-635 
Data alignment cycle-eater 

386 processor, 218 
286 processor, 213-215 

Data bus, 8-bit 
See also 8-bit bus cycle-eater. 

Data manipulation instructions, and 
flags, 147 

Data recursion 
vs. code recursion, 1108 
Euclid’s algorithm, 200 
inorder tree traversal, 1108, 1109- 

Data register, loading DAC, 642-643 
Data  Rotate register 

barrel shifter, controlling, 463 
vs. CPU-based rotations, 489 
effect on ALUs, 452 

Data rotation, VGA 
barrel shifter, 463-464 
bit mask, 464-471 
CPU vs. Data  Rotate register, 489 

1110,1110 

Data transfer rates 
display adapters, 220 
8088 processor  vs. 8086 processor, 81,82 
286 processor, 212 

texture mapping 
assembly implementation, 

C implementation, 1053-1058 
disadvantages, 1052-1053, 1059 
DrawTexturedPolygon, 1055-1056 
hardware dependence, 1053 
multiple adjacent polygons, 1068 
optimized implementation, 1069- 

1073, 1074 
orientation independence, 

1065-1067, 1067 
performance, 1074 
ScanOutLine function, 1058-1059, 

SetUpEdge function, 1057-1058 
StepEdge function, 1056-1057 
techniques, 1048-1051 

Programming (CD), 1157 

and Carry flag, 148 
memory accesses, 83 
vs. SUB, 219 

DEC/JNZ sequence, 139 
Delay sequences 

DDA (digital differential analyzer) 

1069-1073, 1074 

1067, 1069-1073, 1074 

DDJ Essential Books on Graphics 

DEC instruction 

loading palette RAM or DAC 

VGA programming, 558 
registers, 632 

DeleteNodeAfter function, 284 
Depth sorting of nonconvex objects, 

Diffuse shading, 1023-1025, 1025-1027 
Digital differential analyzer. See DDA 

(digital differential analyzer). 
Direct  far jumps, 186 
Direct memory access. See DMA. 
Directed  lighting, and shading, 1023, 1028 
Directives 

1000, 1001-1002 

EVEN, 214 
NOSMART, 72 

demo program, C implementation, 
Dirty-rectangle animation 

847-851, 863-869 



description, 844-845 
ordering rectangles, 873 
overlapping rectangles, 872-873 
vs. page flipping, 846, 862 
performance, 873 
system memory buffer size, 851 
writing to display memory, 856-857 

Disk caches, 19 
Display adapter cycle-eater 

286 and 386 processors, 219-221 
data transfer rates, 220 
8088 processor 

graphics routines, impact on, 106 
optimizing for,  107 
overview, 101-104 
performance, impact on, 104 
read/write/modify operations, 107 
wait states, 99-101 

Display memory 
See also Bit mask; Display 

Mode X 
memory access. 

copying between memory locations, 

copying from system memory, 908, 

masked copy from system memory, 

masked copying between locations, 

memory allocation, 903-904 

905-907, 908 

909-911 

916-918, 916 

918-919, 919-921 

running code from, 104 
start address, changing, 857 
VGA 

access times, 842-844 
360x480 256-color mode, 621-622 
320 x 400 256-color mode, 

591-593,  605 
Display memory access 

See also Display memory; 

display adapter cycle-eater, 101-103, 

and string instructions, 107 
VGA access times, 842-844 
wait states, 101-103,  220,  733 

See Planes, VGA. 

81-184,  1008 

Memory access. 

105, 107 

Display memory planes. 

DIV instruction, 32-bit division, 1 

Divide By Zero interrupt, 181 
Divide-by-N  timer mode, 45 
Division, 32-bit,  181-184,  1008 
DMA (direct memory access), and DRAM 

“Don’t  care” planes, 535 
DOS function calls 

refresh, 95 

overhead, 9 
and restartable blocks, 123 

calculating, 1135-1137 
calculating light intensity, 1137 
floating  point optimization, 1170, 1171 
line segments, clipping to planes, 

projection, 1141-1142 
rotation, 1143-1144 
sign of, 1140-1141 
of unit vectors, 1136 
of vectors, 1135-1136 

(digital differential analyzer) 
texture mapping. 

Dot products 

1196-1197 

Double-DDA texture mapping. See DDA 

D-PolysetRecursiveTriangle function, 

Dr. Dobbs Journal, 1190 
DRAM (dynamic RAM) refresh 

cycle-eater 
286 and 386 processors, 219 
8088 processor 

1267-1270 

impact on performance, 97-98 
optimizing for,  98-99 
overview, 95-97 
vs.  wait states, 100 

and 8253 timer chip, 95 
and Zen  timer, 99 

Draw360~480Dot subroutine, 613-614 
DrawBackground function, 928 
Draw-buffers, and beam trees, 1187 
DrawBumperList function, 823 
DrawEntities function, 849, 866 
DrawGridCross subroutine, 808 
DrawGridVert subroutine, 808-809 
DrawHorizontalLineList function 

monotone-vertical  polygons,  filling, 765 
non-overlapping convex polygon 

assembly implementation, 734 
C implementation, 717, 720-721 
using memseto function, 727, 729 



DrawHorizontdLineList subroutine, 

DrawHorizontdLineSeg function 
assembly  implementation, 754 
C implementation, 750-751 

DrawHorizontalRun function, 692 
DrawImage subroutine, 828 
Drawing 

941-943 

See also Line-drawing algorithms; 

fill patterns, using latches, 453 
pixel drawing 

Lines; 3-D drawing. 

EVGADot function, 6 1 - 6 2 ,  669-670 
optimization, 1074, 1086 
painter’s algorithm and overdraw 

single-color drawing  with write mode 

speeding  up, 727-729 
text 

problem, 1184 

3, 831-832 

bitmapped text using bit mask, 466- 

bitmapped text  using write mode 3, 

solid text  using latches, 1039-1041, 

using write mode 0,  832-833 

469, 470-471 

484-489, 489-490, 490-496 

1042-1044 

DrawLine function, 785 
DrawMasked subroutine, 870 
DrawObject subroutine, 809-810 
Draw-pixel function, 328, 330 
DrawPObject function, 978-979, 

DrawRect subroutine, 826-827 
Drawspans function, 1236 
Drawsplitscreen function, 824 
DrawTextString subroutine, 1043-1044 
DrawTexturedPolygon function, 

DrawVerticalRun function, 692 
DrawVisibleFaces function, 961 
DrawWuLine function 

1025-1027 

1055-1056 

assembly  implementation, 787-791 
C implementation, 780-781 

Duntemann, Jeff, 127-128 
Dynamic lighting 

in  GLQuake, 1289-1290 
in Quake 3-D engine, 1282-1283 

Dynamic  objects, and BSP trees, 1100-1 101 

Dynamic palette adjustment, 1039 
Dynamic RAM. See DRAM (dynamic 
RAM) refresh. 

E 
EA (effective address) calculations 

286 and 386 processors, 223-225 
8088 processor, 129 
486 processor 

address calculation pipeline, 238-240 
stack addressing, 241-242 

Pentium processor, 375-376 
320x400 256-color mode, 599-600 

EBP register, 257 
Edge  tracing 

overview, 711-713 
ScanEdge function 

assembly  implementation, 

floating-point C implementation, 

integer-based C implementation, 

735-738, 735 

716-717 

730-732 
Edge triggered devices, 316 
Edges  vs. spans, sorted span hidden 

surface removal, 1215-1220 
EGA BIOS, video  function 10H, 

EGA (Enhanced  Graphics Adapter) 
550-551, 555 

color mapping, 548-551, 551-555 
and display adapter cycle-eater, 104-108 
mode 10H, 515-517, 518-521 
palette registers, 549-550 
registers, and high-level languages, 548 
screens, capturing  and restoring, 541- 

split screens 
542, 543-547, 547-548 

EGA bug, 573-574 
horizontal panning, 574-575, 575- 

overview, 563-565 
registers, setting, 573 
safety of, 585 
split screen demo program, 565, 

text mode, 584 
turning on  and off, 565 

582, 583 

566-572, 572 



8-bit bus cycle-eater 
286 and 386 processors, 210 
8088 processor 

effects on performance, 82 
optimizing for, 83-85 
overview, 79-82 
and registers, 85 

8086 processor vs. 8088 processor, 79-81 
8088 processor 

CMP instruction, 161, 306 
cycle-eaters 

8-bit bus cycle-eater, 79-85 
display adapter cycle-eater, 101-108 
DRAM refresh cycle-eater, 95-99 
overview, 78-79, 80 
prefetch queue cycle-eater, 86-94 
wait states, 99-101 

display memory access, 220 
vs. 8086 processor, 79-81 
effective  address  calculation  options, 129 
LAHF and SAHF instructions, 148 
LEA vs. ADD, 130 
LODSB instruction, 304 
lookup tables, vs. rotating or  shifting, 

LOOP instruction vs. DEC/JNZ 

memory variables, size of, 83-85 
stack-based variables, placement of, 

14 5-146 

sequence, 139 

184-184 
8253 timer chip 

and DRAM refresh, 95 
reference material, 72 
resetting, 43 
system clock inaccuracies 

long-period Zen  timer, 53, 54 
Zen  timer, 43, 45-46, 48 

operation, 44 
stopping, 54, 65 

timer modes, 44, 45 
timer operation, 43-45 
undocumented features, 54, 65 

timer 0 

Emissive  color, vs. reflective  color, 1035 
Enable  Set/Reset  register 

setting drawing color, 666 
specifying plane, 474 

EnableSplitScreen function, 824 
ENTER instruction 

486 processor, 241-242 

Pentium processor, 377 
286 processor, 221 

Enter-display-mode function, 328, 362 
Entities, Quake 3-D engine 

BSP models, 1284 
particles, 1287 
polygon  models, 1285-1286 
sprites, 1287 
subdivision rasterization, 1286 
z-buffering, 1285-1286 

EraseEntities function, 850, 867 
Error accumulation, Wu antialiasing 

EU (Execution  Unit) 
algorithm, 778-779,  792 

286 and 386 processors 
instruction execution times, 223-225 
and prefetch queue, 210 

8-bit bus cycle-eater, 80 
prefetch queue cycle-eater, 86 
wait states, 101 

8088 processor 

Euclid’s algorithm 
algorithm, 197 
optimized  assembly  implementation, 

200-202 
recursive implementations, 198, 200 

EVEN directive, 214 
EVGADot function, 661-662, 669-670 
EVGALine function 

Bresenham’s  algorithm 
assembly  implementation, 671, 

C-language implementation, 664- 

360x480 256-color mode line drawing 

675-677 

665, 665-668,  670-671 

program, 616-617 
Execution times. See Clock  cycles; 

Instruction execution time. 
Exit-display-mode function, 

328,  329, 362 

F 
FADD instruction, Pentium processor, 

Far jumps, to absolute addresses, 186-187 
FDIV instruction, Pentium processor, 

1167-1170 

1167-1170 



Fetch  time 
See also Instruction fetching. 
286 and 386 processors, 210,  211 
8088 processor, 86-93 

reading from 
Files 

getco function, 12,  14 
read0 function, 12 

restartable blocks, 16 
text, searching for. See Search engine. 

Fill patterns, drawing  using latches, 453 
FillConvexPolygon function, 714-716, 

FillMonotoneVerticalPolygon 

FillPatternX subroutine, 899, 900-903, 

FillPolygon function 

720-721 

function, 763-764 

903-904 

complex  polygons, 746 
monotone-vertical  polygons, 767 

FillRect subroutine, 869-870 
FillRectangleX subroutine 

four-plane parallel processing, 888- 

pixel-by-pixel plane selection, 885-887 
plane-by-plane processing, 887-889 

assembly  implementations 

891, 891-893 

FindIDAverage function 

based on compiler optimization, 160 
data structure reorganization, 163, 

unrolled loop, 161, 162 
C language  implementation, 158 
compiler optimization, 159 

FindNodeBeforeValue function, 289 
FindNodeBeforeValueNotLess 

function, 286,  287 
F inatr ing  function 

Boyer-Moore algorithm, 269,  271-274, 

overview, 175 
scan-on-first-character approach, 176 
s c a n - o n - s p e c i c t e r  approach, 178 

165-166 

274-277 

FirsWass function, 355-358 
Fix function, 358, 365 
FixedDiv subroutine, 982,  993, 

FIXED-MUL macro, 1016-1017 
FtvedMul subroutine, 981,  993-994, 

1010-1012 

1009-1010 

Fixed-point arithmetic 
vs.  floating point, 985,  1206 
vs. integer arithmetic, 730,  1065 
32-bit fixed-point arithmetic, 1086- 

1089, 1090-1091, 1092-1093 
Flags 

and BSWTAP instruction, 254 
Carry  flag,  147-148, 185, 317-319 
INC vs. ADD, 147-148 
and LOOP instruction, 148 
and NOT instruction, 146-147 

FLD instruction, Pentium processor, 
1167-1  170 

Floating point  optimization 
clock cycles, core instructions, 

cross product optimization, 1171, 1172 
dot  product optimization, 1170, 1171 
FXCH instruction, 1169-1170 
interleaved instructions, 1169-1170 
matrix transformation optimization, 

overview, 1167-1170 
pipelining, 1168-1170 
projection to  screen  space, 1174 
rounding control, 1174-1175 

vs. fixed-point calculations, 985,  1206 
vs. integer calculations, 730 

486 processor, 236 
Pentiurn processor, 1167-1170 

AX register,  setting to absolute  value, 172 
byte registers and lost cycles, 242-245 
CMP instruction 

1167-1 168 

1172-1173, 1173-1174 

Floating-point calculations 

FMUL instruction 

486 processor 

operands,  order of, 306 
vs. SCASW, 161 

copying  bytes  between registers, 172 
and display adapter cycle-eater, 107 
indexed addressing, 237-238 
internal cache 

effect on  code timing, 246 
optimization, 236 

LAHF and S A H F  instructions, 148 
LEA instruction, vs. ADD, 131 
LODSB instruction, 304 
LODSD instruction, vs. MOVLEA 

sequence, 171 



lookup tables, vs.  rotating or shifting, 

LOOP instruction, vs. DEC/JNZ 

MOV instruction, vs. XCHG, 377 
n-bit  vs.  1-bit  shift and rotate 

Pentium code, running on, 411 
pipelining 

145-146 

sequence, 139 

instructions, 255-256 

address calculation, 238-240, 250 
stack addressing, 241-242 

cycles, 185-186 
rotation instructions, clock 

stack-based variables, 184-184 
32-bit addressing  modes, 256-258 
timing code, 245-246 
using  32-bit  register as two 16-bit 

registers, 253-254 
XCHG instruction, vs. MOV, 377, 832 

clock  cycles,  core  instructions, 1167-1168 
cross product optimization, 1171, 1172 
dot  product optimization, 1170, 1171 
FXCH instruction, 1169-1170 
interleaved instructions, 1169-1 170 
matrix transformation optimization, 

overview, 1167-1 170 
pipelining, 1168-1170 
projection to  screen  space, 1174 
rounding control, 1174-1175 

FPU, Pentium  processor 

1172-1173, 1173-1174 

Frustum, clipping to, 1200, 1201-1206, 

FST instruction, Pentium processor, 

FSUB instruction, Pentium processor, 

Function 13H, VGA BIOS, 459 
Function calls, performance, 153 
Fundamentals of Interactive  Computer 

FXCH instruction, Pentium processor, 

1206-1207 

1167-1170 

1167-1170 

Graphics (book). 660 

1169-1170 

G 
Game of Life 

abstraction and  performance, 330-332, 
345-346 

byte-per-cell implementation, 339-340, 

C++ implementation 
341-345 

basic, 324, 325-328 
optimized, 336, 337-338 

cellmap-wrapped  implementation, 

challenge to readers 
rules, 346, 350 
3-cell-per-word implementation 

331-332, 333-335, 336, 337-338 

(David  Stafford), 351-352, 353- 
363, 363-365 

change list, 363-366 
performance analysis, 329-330, 332, 

338,  340, 350 
re-examining  problem, 338-339, 363 
rules, 324 
3-cell-per-word implementation 

discussion, 363-365 
listing, 352-363 
overview, 351-352 

GC (Graphics Controller), VGA 
addressing, 427-428 
architecture 

ALUS, 451-452 
barrel shifter, 463-464 
bit mask, 464-471 
latches, 452-453 
set/reset circuitry, 471-479 

bit mask, controlling, 465 
drawing solid text, 1040 
setting inside a  loop, 429 
vs. write mode 3,  832, 844 

Color Compare register, 531 
Data  Rotate  register 

Bit  Mask register 

barrel shifter, controlling, 463 
vs. CPU-based rotations, 489 
effect on ALUs, 452 

Enable  Set/Reset  register 
setting drawing color, 666 
specifying plane, 474 

Graphics Mode  register 
read  mode 0 ,  selecting, 525 
read  mode 1 ,  selecting, 531 

plane, selecting, for CPU reads, 526 
planes, specifying to  be read, 542 

Read  Map  register 

Set/Reset  register, 666 



Gcdo function 
brute-force approach, 195 
Euclid’s  algorithm 

code recursive approach, 198 
data recursion  approach, 200 

GCD (Greatest Common Denominator) 
subtraction approach, 196 

problem 
brute-force approach, 193-196 
Euclid’s algorithm, 197-200 
subtraction approach, 196-197 

Gcd-recurs0 function, 199 
Generality, vs. performance, 335 
Gerrold, David,  298 
GET (global edge table), 744 
GetcO function 

overhead, 14 
vs. read0 function, 12 

GetNextKey subroutine, 598, 605 
GetUphdDown function, 355 
Global  edge table (GET),  744 
GLQuake,  1288-1290 
Gouraud  shading 

overview, 1246-1247 
perspective correction, 1248-1250 
problems with, 1247-1250 

Graphics cards, and surface caching, 

Graphics Controller, VGA. See GC 
(Graphics Controller), VGA. 

Graphics Mode  register 
read  mode 0,  selecting, 525 
read  mode 1, selecting, 531 

543-545 

545-547 

1261-1262 

Graphics  screen  capture demo program, 

Graphics  screen restore demo  program, 

Graphics-to-text demo program, 518-521 
Great  Buffalo  Sauna  Fiasco,  137-138 
GUIs, and  future of programming 

profession, 725-726 

H 
Hardware  dependence, DDA (digital 

differential analyzer) texture 
mapping, 1053 

texture mapping insight, 1083 
Hecker, Chris 

underlying functionality of different 
approaches, 1189 

Heinlein, Robert A., 1079-1080 
Herbert, Frank, 1193 
HGC (Hercules  Graphics Card), 104 
Hidden surface removal (HSR) 

backface  removal, 954-957 
depth sorting, 1000, 1001-1002 
sorted spans  approach 

abutting span sorting, 1229-1230 
AdclPolygonEdges function, 1232- 

BSP order vs. l/z order, 1220, 1226 
ClearEdgeUsts function, 1236-1237 
Drawspans function, 1236 
edge sorting, 1220-1222 
edges vs. spans, 1215-1220 
independent  span sorting, 1230, 

intersecting span sorting, 1228-1229 
l/z sorting, 1220-1222,  1227-1231, 

overview, 1214-1215 
PolyFacesViewer function, 1232 
rotation instructions, clock cycles, 

ScanEdges function, 1234-1236, 

Updateworld function, 1237-1238 
High school  graduates in  Hawaii,  991-992 
Horizontal Pel Panning register, 442 
Horizontal resolution, 360x480 256-color 

Horizontal  smooth  panning. See Panning. 

1233, 1238 

1231-1238, 1239-1241 

1231-1238, 1239-1241 

185-186 

1238-1239 

mode, 620 

I 
id  Software, 1118, 1190 
Ideas, selling, 1193-1194 
Illowsky, Dan, 187,  315 
Image  precedence. See 

Bit-plane animation. 
DluL instruction 

486 processor, 236 
on 386 processor, 173-174 

INC instruction 
VS. ADD, 147-148,  219 
and Carry  flag,  147-148 



Incremental  transformations of 3-D 

Independent  span sorting 
objects, 964 

AddPolygonEdges function, 1232- 

ClearEdgeLists function, 1236-1237 
Drawspans function, 1236 
overview, 1230 
PolyFacesViewer function, 1232 
ScanEdges function, 1234-1236, 

texture mapping, 1238 
Updateworld function, 1237-1238 

Index registers, VGA 
AC Index register,  443 
overview, 427-428 

Indexed addressing, 237-238 
Indirect far jumps, 186 
Information, sharing, 1190,  1194 
Initcellmap function, 361 
Initializecubes function, 980-981 
InitializeFixedPoint function, 977 
InitializeObjecUist function, 1001 
IniWePalette function, 1037 
IniWedList function, 289 
Inorder tree traversal 

1233, 1238 

1238-1  239 

code  recursion vs. data recursion, 

data recursive implementation, 1108, 

performance, 11 11-1 113 

1107-1108 

1109-1110, 1110 

INS instruction, 221 
InsertNodeSorted assembly routine, 290 
InsertNodeSorted function, 289 
Instruction execution times 

See also Clock  cycles;  Zen  timer. 
DRAM refresh cycle-eater,  97,  99 
8-bit bus cycle-eater,  82-85 
estimating, 93 
and instruction fetching, 225 
vs. instruction size, 90-92,  93,  211 
memory-addressing vs. register-only 

prefetch queue cycle-eater,  86-93 

See also Prefetch queue cycle-eater. 
code  alignment, 215-218 
8088 processor, 86-93 
and instruction execution times, 225 

instructions, 223-225 

Instruction fetching 

Pentium processor, 374 
and system  wait states, 211 
286 processor, 215-218 
and wait states, 101 

modes, 257 

optimizing, 23-24 
Pentium  processor 

Instruction size, 32-bit addressing 

Instructions, assembly language 

pairable instructions, 388,  390-394 
V-pipe-capable instructions, 386-387 

Integer calculations, vs. fixed-point, 730, 

Integers, sorting, 180-181 
Interleaved color cycling,  649-650 
Interleaved operations, Pentium 

size vs. execution time, 90-92, 93 

1065 

processor 
FXCH instruction and floating point 

matrix transformation, 1172-1173, 

overview, 394-395 
TCPAP checksum  program, 408 

Internal animation, 872 
Internal buffering 

operations, 1169-1170 

1173-1174 

See also Restartable blocks. 
in  16-bit checksum  program, 15-16 
in search  engine, 114-115 

486 processor 
Internal cache 

effect on optimization, 236 
timing code, 246 

Pentium  processor 
instruction fetching, 374 
organization, 374-375 
paired instructions, 391,  396 

Internal indexing, VGA,  427-429 
Internet support 

Quake 2, 1293 
Quakeworld, 1291 

DAC, loading, 643,  648 
Divide By Zero interrupt, 181 
and IRET instruction, 227 
and  long-period Zen  timer,  53, 66 
and page flipping, 446 
and POPF instruction, 226 
and Zen  timer,  43,  45-46 

Interrupts 

Index 



Intersecting lines, 1121-1123 
Intersecting span sorting, 1228-1229 
Intuitive leaps, 1098 
IRET instruction, vs. POPF instruction, 

IRQO interrupts, and Zen  timer, 45 
IS-VGA equate, 572,  575 

226-231 

J 
Jet Propulsion Lab, color perception 

JMP $+2 instructions, 558, 632 
JMP DWORD PTR instruction, 186-187 
Jumps,  to  absolute addresses, 186-187 

research, 1035 

K 
Kennedy, John, 171-172 
Kent,  Jim 

dynamic palette adjustment, 1039 
monotone-vertical  polygons, filling, 

760-761 
Kissing, learning to, 

Kitchen floor story, 261-262 
Klerings, Peter, 350 
Knuth,  Donald, 323 

281-282 

L 
UHF instruction, 148 
Large code  model 

linking Zen timer,  71 
optimizing assemblers, 71-72 

and bit mask, 470 
and Color Don’t Care  register, 535- 

and CPU reads, 530 
drawing solid text, 1039-1041, 

Mode X 

Latches 

537, 535 

1042-1044 

copying pixels, 905-907, 908, 

loading, with  double  copying 
909-911 

process, 903 

masked  copying, 918-919, 919-921, 

pattern fills, 899, 900-903, 903-904 
922-923 

overview, 452-453,  897-898 
Latency,  in Quakeworld, 1291-1292 
LEA instruction 

VS. ADD, 130,  170-171 
multiplication operations, 132-133, 

172,  375-376 
32-bit  registers 

addition, 131 
multiplication, 132-133 

LEAVE instruction 
486 processor, 241-242 
Pentium processor, 377 
286 processor, 221 

Level performance, 1213-1214 
Life, Game of. See Game of  Life. 
Lighting 

See also Shading. 
Gouraud  shading 

overview, 1246-1  247 
perspective correction, 1248-1250 
problems with, 1247-1250 

intensity, calculating, 1137 
overlapping lights, 1247 
perspective correctness, 1248-1250 
in Quake 3-D engine, 1282-1283 
rotational variance, 1249 
surface-based lighting 

description, 1250-1251 
mipmapping, 1254-1255 
performance, 1251-1253 
surface  caching,  1253-1256,  1260-1262 

two-pass  approach, 1262 
viewing variance, 1249 

Limits, transcending, in creative design, 

Lindley,  Bill,  854-855 
LINE1 macro, 672-674 
LINE2 macro, 674-675 
Line Compare register,  565 
Line segments 

1179-1180 

clipping to planes, 1195-1197 
representation, 1195, 1196 

Linear addressing, VGA, 430 
Linear-time sorting, 1099 
LineDraw function 

assembly  implementation, 699-704, 



704-706 
C-language implementation, 688-691 

accumulated pixels approach (Jim 

Bresenham’s  algorithms 

Line-drawing  algorithms 

Mackraz),  678 

basic  line-drawing  algorithm, 655- 

run-length  slice algorithm, 683-693, 
661, 661-665, 665-671, 671-677 

698-704, 705 
characteristics of, 656-657 
run-length slice  algorithm,  683-693, 

Wu antialiasing algorithm, 776-779, 

Line-drawing demo program, 615-618, 

LineIntersectPJane function, 1142-1143 
Lines 

698-704, 705 

780-791, 791-792 

618-619 

drawing 
See also Line-drawing  algorithms. 
color-patterned lines demo 

32OSee also Restartable  blocks.400 

write mode 2, 509 
intersecting,  1121-1123 
parametric  lines 

program, 509-515 

256-color mode, 600 

clipping,  1121-1123 
overview, 1119-1120 

Linked  lists 
basic implementation, 283-285 
circular lists, 288-292 
dummy nodes, 285-287 
head pointers, 284,  285 
InsertNodeSorted assembly 

routine, 290 
overview, 282 
sentinels, 285-287 
sorting techniques, 755 
tail nodes, 286 
test-bed program, 291 

Little endian format, 252 
Local optimization 

See also Assemhly language 
optimization; Optimization. 

bit  flipping and flags, 146-147 
defined, 140 
incrementing and decrementing, 

147-148 

lookup tables, 145-146 
unrolling loops, 143-145,  305,  312, 

377-378,  410 
LOCK instruction, 377 
Lockstep execution, Pentium processor, 

LODSB instruction, 304, 312 
LODSD instruction,  171 
LODSW instruction, 312 
Logical functions, ALU, 458 
Logical height, virtual screen, 442 
Logical width, virtual screen, 442 
Long-period  Zen  timer 

See also Zen  timer. 
calling  from C code, 69-72 
and interrupts, 53 
LZTEST.ASM listing, 66-67 
LZTIME.BAT listing, 67-68 
LZTIMER.ASM listing, 55-65 
overview, 53 
PS2 equate, 65-66 
system  clock  inaccuracies,  43, 

test-bed program, 66-69 
TESTCODE listing, 69 
ZTimerOff subroutine, 59-63 
ZTimerOn subroutine, 58-59 
ZTimerReport subroutine, 63-65 

CosSin subroutine, 994-996, 999 
vs. rotating or shifting,  145-146 
3-cell-per-word implementation, Game 

word  count program 

390-394,  400-403 

45-46,  48 

Lookup  tables 

of Life,  365 

author’s implementation, 303, 304 
David  Stafford’s implementation, 

WC50  (Terje  Mathisen),  307 
309-311, 317-319 

LOOP instruction 
See also Loops. 
vs. DEC/JNZ sequence, 139, 140-141 
and flags,  148 

See also LOOP instruction. 
avoiding, 140 
and branch prediction, Pentium 

unrolling, 143-145,  305, 312, 

Loops 

processor, 377-378 

377-378, 410 



M optimization of, 986, 1172-1173, 1173- 

3-D rotation, representation of, 938-939 

assembly routines, 992, 996-999 
C-language implementations, 974-976 
normal vectors, calculating, 955-956 
rotation of 3-D objects, 938-939, 943- 

transformation, optimized, 1172-1  173, 

MDA (Monochrome  Display  Adapter), 104 
MemchrO function, 116 
MemcmpO function, 116 
MemcpyO function, 1147-1 148 
Memory access 

1174 

Matrix  math 

944, 948 

1173-1174 

See also Display memory access. 
clock  cycles,  bytes  vs. words, 82, 83-85 
DEC instruction, 83 
and DRAM refresh, 98 
8-bit bus cycle-eater, 82 
performance, 286 and 386 processors, 

prefetch queue cycle-eater, 86 
system wait states, 210-213 
and wait states, 100 

Memory addressing, 221 
Memory addressing  modes, and 

arithmetic operations, 130-133 
Memory allocation 

display memory, 903-904 
page flipping, 834 

223-225 

Mackraz, Jim, 678 
Map  Mask register 

demo program, 472-473 
drawing text, 833 
optimizing Mode X, 1074 
vs. Read  Map  register,  526 
selecting planes for CPU writes, 443- 

444,  471-472 
with  sedreset circuitry, 474 
write mode 1, 443 

Map  Mask register demo  program, 

Mask register, blanking  screen, 651 
Masked copying, Mode X 

472-473 

clipping, 923 
between display memory locations, 

image and mask alignments, 

performance, 924 
system memory to display memory, 

918-919, 919-921 

generating, 922-923 

916-918, 916 
Masked images, 871-872 
MASM (Microsoft  Assembler),  187 
Math, 3-D 

cross products, 1139-1140 
dot  products 

calculating, 1135-1137 
calculating light intensity, 1137 
projection, 1141-1142 
rotation, 1143-1  144 
sign of, 1140-1141 
of unit vectors, 1136 
of vectors, 1135-1136 

assembly routines, 992, 996-999 
C-language  implementations, 974976 
normal vectors, calculating, 955-956 
rotation of 3-D objects, 938-939, 

transformation, optimized, 1172- 

matrix  math 

943-944, 948 

1173, 1173-1174 
vector length, 1135 

Mathiew,  Serge,  855-857 
Mathisen,  Terje,  250-252,  306,  319 
Matrices 

incremental transformations, 964 

Memory locations, pushing and  popping, 
254-255 

Memory variables 
data  alignment, 213-215 
8088 processor, optimization, 83-85 

Memory-addressing instructions, 223-225 
MemsetO C library function, 727 
Miles, John, 1081, 1093 
Mipmapping, 1254-1255 
Mode  12H (hi-res mode), 851-855 
Mode  13H,  515, 590 
Mode  Control  register,  575 
Mode  register 

color paging, 628-629 
256-color modes, 629 

See also X-Sharp 3-D animation 
Mode X 

package. 



animation  demo  programs 
page-flipped  animation, 924-925, 

3-D polygon rotation, 939, 

bitmap organization, 882-883 
features, 878-879 
FillRectangleX subroutine 

925-930 

940-945, 943 

four-plane parallel processing, 888- 

pixel-by-pixel plane selection, 

plane-by-plane processing, 887-889 

891, 891-893 

885-887 

four-plane parallel processing, 888- 

latches 
891, 891-893 

copying pixels, 905-907, 908, 
909-91 1 

loading, with double  copying 
process, 903 

overview, 897-898 
pattern fills, 899, 900-903, 903-904 

animation  demo  program, 924-925, 

clipping, 923 
between display memory locations, 

image and mask alignments, 

performance, 924 
system memory to display memory, 

masked  copying 

925-930 

918-919, 919-921 

generating, 922-923 

916-918, 916 
memory allocation, 903-904 
mode set routine, 880-881, 882 
optimization, 1074 
pattern fills, 899, 900-903, 903-904 
pixel  access and  hardware planes, 1082 
ReadPixelX subroutine, 884-885 
vertical scanlines vs. horizontal, 

WritePixelX subroutine, 883-884 
ModelColor structure, 1035 
ModelColofloColorIndex function, 

1036, 1038 
Mod-WM byte, 257 
Modular code 

1084-1086 

and future of programming 

optimizing, 153 
profession, 725-726 

Monotone-vertical polygons, filling, 760- 

MOV instruction, 236, 377, 832 
MoveBouncer function, 824-825 
Moveobject function, 929 
MoveXsortedToAET function 

complex  polygons, 749 
monotone-vertical  polygons, 770 

MOVSD instruction, 222, 386 
MUL instruction, 97, 173-174 
Multiplication 

761, 761-771, 771 

increasing speed of, 173-174 
using LEA, 132-133, 172 

Multi-word arithmetic. 147-148 

N 
NEG EAX instruction, 222 
Negation, two’s complement, 171 
Next1 function, 353 
Next2 function, 353 
Nextseneration method, 327-328, 

335, 336, 337-338, 344 
Nonconvex objects, depth sorting, 1000, 

1001-1002 
Normal vectors 

building BSP trees, 1106 
calculating, 955-956 
direction of, 1140 

Normals. See Normal vectors. 
NOSMART assembler directive, 72 
NOT instruction, 146-147, 147 

0 
Object collisions, detecting, 531-534 
Object space, 935, 1135 
Object-oriented  programming, 725-726 
Octant0 function 

360x480 256-color mode line drawing 

Bresenham’s line-drawing algorithm, 
demo program, 615 

662, 668-669 
Octant1 function 

360x480 256-color mode line drawing 

Bresenham’s  line-drawing algorithm, 
demo program, 616 

663, 668-669 



Octants, and line orientations, 666-667 
l /z sorting 

abutting span sorting, 1229-1230 
AddPolygonEdges function, 1232- 

vs. BSP-order sorting, 1226-1227 
calculating l/z value, 1220-1222 
ClearEdgeLists function, 1236-1237 
DrawSpans function, 1236 
independent  span sorting, 1230, 1231- 

intersecting span sorting, 1228-1229 
PolyFacesViewer function, 1232 
reliability,  1227 
ScanEdges function, 1234-1236, 

Updateworld function, 1237-1238 
On-screen object collisions, detecting, 

531-534 
OpenGL MI, GLQuake,  1288-1290 
Operands,  order of, 173-174 
OPT2.ASM listing, 313-315 
Optimization 

1233, 1238 

1238, 1239-1241 

1238-1239 

See also Assembly language 

32-bit registers, 187 
and abstraction, 330-332,  345-346 
and application parameters, 122 
assemblers, optimizing, 71-72 
avoiding  thinking like a compiler, 152, 

and  biased perceptions, 1080,  1085 
breakthrough level, 316 
BSP trees, 1128-1129 
buffer-filling routine, 416-420 
C library functions, 15 
compiler-based 

optimization; Local optimization. 

154-155 

data recursion vs. code recursion, 

on vs.  off,  9 
1112-1113 

data recursion, 1108-1113 
data structures, 155-166 
disk caches, 19 
display adapter cycle-eater, 107 
DRAM refresh, 98-99 
8-bit bus cycle-eater, 83-85 
fine-tuning existing code, 312-313 
floating point  operations 

clock cycles, core instructions, 
1167-1168 

cross product optimization, 

dot product  optimization, 1170,1171 
FXCH instruction, 1169-1  170 
interleaved instructions, 1169-1 170 
matrix transformation optimization, 

overview, 1167-1170 
pipelining, 1168-1170 
projection to screen  space, 1174 
rounding control, 1174-1175 

addressing pipeline penalty, 238- 

internal cache, 236 
vs. Pentium processor, 378-379 
pushing  and  popping, 254-255 
reference materials, 236 
shift and rotate instructions, 255-256 
single cycle, importance of, 238 
stack addressing, 241-242 

1171, 1172 

1172-1173, 1173-1174 

486 processor 

240,  243,  250-252 

general rules, 223 
generality, decreasing, 335 
hardware efficiency,  1084-1086 
knowing when  to  stop, 735 
local optimization, 138-148 
Mode X, 1074 
modular code, 153 
objectives and rules, 7-19,  156 
pattern matching, 191-192, 202 
Pentium  processor 

and branch prediction, 378 
code size and performance, 390 
floating point operations, 1167-1175 
interleaving operations, 394-395 
pairing instructions, 390-394 
pixel-drawing  code, 1086 
prefix bytes, 376,  395,  407 
reference material, 374 
superscalar execution, 384-396 
vs.  386 and 486 processors, 

378-379,  384 
perspective on problem,  changing, 

pixel drawing, 1074 
pointer  advancement optimization, 

prefetch queue cycle-eater, 93 
problem definition, changing, 332 
rearranging instructions, 418-419 

315-316, 1084 

1086-1089, 1090-1091, 1092-1093 



reducing size of code, 416-418 
redundant calculations, 682-683 
re-examining  problem, 338-339 
register variables, 338 
restartable blocks, 118 
sorting techniques, 755 
stack addressing, 420 
sufficient, 312 
superscalar execution 

initial pipe, effect of, 405 
overview, 384-386 
pairable instructions, 388 
V-pipe-capable instructions, 386-387 

texture-mapping  optimization 
inner-loop optimizations, 1069- 

instruction-by-instruction 
optimizations, 1086-1092 

pointer  advancement optimization, 
1086-1089, 1090-1091 

vertical scanlines, 1084-1086 
%bit fixed-point arithmetic, 1086- 

32-bit instructions, 1091 
386 processor, 378-379 
time vs. space tradeoff, 187 
transformation inefficiencies, 2 5-26 
transformation matrices, 986 
understanding  data,  importance of, 

understanding  how things work, 726 
unifying model,  developing, 11 10-1 11 1 
unrolling loops, 143-145, 410 
using restartable blocks, 118 
and VGA memory speed, 704-705 

1073, 1074, 1081-1084 

1089, 1090-1091, 1092-1093 

122, 175,  180, 305 

Optimized searching, 174-180 
Optimizing assemblers, 71-72 
OR instruction, 377 
Orientation-independent texture 

mapping, 1065-1066, 1067 
OUT instruction 

clock  cycles, 1082-1083 
loading DAC, 640, 642-643 
loading palette KAM or DAC 

performance, 444, 843 
word-OUT vs. byte-OUT, 429, 479 
vs. write mode 3, 483-484 

registers, 632 

OUTS instruction, 221 

OUT-WORD macro, 566, 594 
Overdraw  problem, VSD 

and  beam trees, 1185-1186 
painter’s algorithm, 1184-1 185 
sorted spans, 1215 

operation, 565 

DOS function calls 

Overflow register,  split screen 

Overhead 

in  16-bit checksum  program, 12 
in search  engine, 121 

memcmpo function, 116 
strstm function, 115 
of Zen  timer,  timing, 46, 72 

Overlapping rectangles, in  dirty- 
rectangle animation, 872-873 

Overscan, 555-556, 641 

P 
Page flipping 

and bit-plane animation, 814 
color cycling, 650 
vs. dirty-rectangle animation, 846,  862 
display memory start address, 

mechanics of, 833-836 
memory allocation, 834, 903-904 
overview, 444-446 
single-page  technique, 855-857 
640x480 mode, 836-837 
with split screen, 836-837 
320x400 256-color mode, 600-605 
timing updates, 835-836 
VGA mode 12H (hi-res mode), 851-855 

Page flipping animation  demo  programs 
Mode X, 924-925, 925-930 
split screen and page flipping, 820- 

320x400 256-color mode, 600-605 

See also 3-D animation; 3-D drawing. 
and BSP trees, 1099, 1104-1105 
overdraw  problem, 1184-1 18 j 
potentially visible set (PVS), 

precalculating, 1188-1189 
Pairable instructions, Pentium 

changing, 857 

825, 825-830, 836-837 

Painter’s algorithm 

processor, 388 



Palette adjustment,  dynamic, 1039 
Palette RAM 

See also Palette registers. 
color paging, 628-629 
setting registers, 629-630,  631-632 
VGA color path, 626 

See also Palette R A M .  

setting for bit-plane animation, 799- 

Palette registers 

EGA, 549-550 

801, 811-813 
Panning 

byte-by-byte vs. pixel-by-pixel, 574 
overview, 441-442 
in  split screens, 574-575, 575-582, 

in  text mode, 442 
582-583 

PanRight subroutine, 582 
Parametric lines 

clipping, 1121-1123 
overview, 1119-1120 

Particles, Quake 3-D engine, 1287 
Pattern fills, 899, 900-903, 903-904 
Pattern matching, 191-192, 202 
PC compatibility, Zen  timer, 48-49 
Pel panning. See Panning. 
Pel Panning register, 574, 583 
Pentium  processor 

AGIs (Address Generation Interlocks), 

alignment, 376 
branch instructions, pairing, 404-405 
branch prediction, 377-378 
bus, locking, 377 
cache lines, 374 
code size and  performance, 390 
data cache  and  paired instructions, 391 
display adapter cycle-eater, 107 
EA (effective address) calculations, 

floating point  optimization 

400-403 

375-376 

clock cycles, core instructions, 

cross product optimization, 

dot  product optimization, 

FXCH instruction, 1169-1170 
interleaved instructions, 1169-1170 

1167-1168 

1171, 1172 

1170, 1171 

matrix transformation optimization, 

overview, 1167-1170 
pipelining, 1168-1170 
projection to  screen  space, 1174 
rounding control, 1174-1175 

1172-1173, 1173-1174 

FPU pipelining, 1168-1170 
instruction fetching, 374 
internal cache, 374-375, 396 
LAHF and SAHF instructions, 148 
LEA vs. ADD instructions, 131 
LODSB instruction, 304 
LOOP instruction vs. DEC/JNZ 

MOV vs. XCHG instructions, 377 
optimization 

pairing instructions, 390-394 
pixel-drawing  code, 1086 
reference material, 374 

sequence, 139 

overview, 373-375 
pipeline stalls 

FPU, 1168-1170 
overview, 375 
texture-mapping  code, 1092 

prefix bytes, 376,  395, 407 
running  Pentium code  on 

386 or 486, 411 
superscalar execution 

initial pipe, effect of, 405 
interleaving operations, 394-395 
internal cache, 396 
lockstep  execution, 390-394, 

overview, 384-386 
pairable instructions, 388 
prefix bytes, 395 
register contention, 403-405 
registers, small set, 395 

U-pipe, 385-386 
V-pipe, 385-386, 386-387 
XCHG vs. MOV instructions, 377,  832 

(book), 1148 

See also Assembly language 

400-403 

Pentium  Processor  Optimization Tools 

Performance 

optimization; Clock  cycles;  Cycle- 
eaters; Local optimization; 
Optimization; Zen  timer. 

and abstraction, 330-332, 345-346 



beam trees, 1186 
Boyer-Moore algorithm, 266-268 
branching, 140 
BSP (Binary Space Partitioning) trees, 

bubble  sort, 755 
complex polygons, filling, 753 
dirtyrectangle animation, 873 
display adapter cycle-eater, 221 
DRAM refresh, 97 
function calls, 153 
Game of Life 

1100, 1111-1113 

byte-per-cell implementation, 340 
cellmap-wrapped implementation, 

challenge results, 351 
general analysis, 329-330 

and generality, 335 
level performance, 1213-1214 
lookup tabies, vs. rotating or shifting, 

masked copying, Mode X, 924 
measuring, importance of, 34, 396 
memory access, 223-225 
OUT instruction, 444 
OUT instructions, 843 
PC-compatible computers, 48-49 
polygon-filling implementations, 728 
precalculated potentially visible set 

profiling and 80x87 emulator, Borland 

stack frames, 153 
SuperVGA,  with 486 processor, 842-844 
texture mapping, 1074-1074 
3-D polygon rotation demo 

360x480 256-color mode, 618 
320x400 256-color mode, 599-600 
time-critical code, 13 
vertical scanlines in texture mapping, 

video performance, 104 
Wu antialiasing algorithm, 777-778 
z-buffers, 1213 

Perspective correction in texture 
mapping, 1093 

Perspective correctness problem, 
Gouraud shading, 1248-1250 

332, 338 

145-146 

(PVS), 1213-1214 

C++, 999 

programs, 949 

1084 

Perspective projection, 937, 1135 

Pipeline stalls, Pentium processor, 375 
See also Projection. 

See also Addressing pipeline penalty; 
AGIs (Address Generation 
Interlocks). 

486 processor 

240, 250 

Pipelining 

addressing pipeline penalty, 238- 

stack addressing, 241-242 
FPU, Pentium processor, 1168-1170 

Pitch angle, in polygon clipping, 1206 
Pixel bits, rotating, 252 
Pixel drawing 

See also Pixels. 
EVGADot function, 661-662, 669-670 
optimization, 1074, 1086 
painter’s algorithm and overdraw 

problem, 1184 
Pixel intensity calculations, Wu’s 

antialiasing algorithm, 778-779 
Pixel values, mapping to colors, 548-551, 

Pixels 
551-555 

See also Boundary pixels, polygons; 

copying, using latches (Mode X), 905- 

reading (320x400 256-color mode), 599 
redrawing, display adapter 

rotating bits, 252 
writing (320x400 256-color mode), 

Pixel drawing. 

907, 908, 909-911 

cycle-eater, 102 

599,  600 
Plane mask, 1074 
Plane-manipulation demo program, 

Planes 
476-478 

clipping line segments to, 1195-1 197 
l /z value, calculating, 1221 
representation, 1196 

See also Bit-plane animation. 
ALUs and latches, 451-453 
and bit mask, 465 
capturing and restoring screens, 541- 

and Color Don’t Care  register, 534-535, 

Planes, VGA 

542, 543-547, 547-548 

535-537 



fonts, in  text modes, 516 
manipulating, 443-444,  476-478 
and Map  Mask register, 471-472 
Mode X 

bitmap organization, 882-883 
four-plane parallel processing, 888- 

pixel-by-pixel plane selection, 

plane-by-plane processing, 887-889 

891, 891-893 

885-887 

Mode X pixel access, 1082 
overview, 430 
and Read  Map  register, 542 
read  mode 0, 525-526 
and set/reset circuitry, 471-478 
setting all to single color, 473-474 
single-color drawing  with write mode 

write mode 2, 502-504, 509 
3, 831-832 

Pohl, Frederick, 1275 
Pointer  advancement optimization, 1086- 

Pointer arithmetic, 171 
Points, representation of, 1196 
PolyFacesViewer function, 1203, 1232 
Polygon clipping 

BackRotateVector function, 1203 
clipping to frustum, 1200, 1201-1206, 

ClipToFrustum function, 1204 
ClipToPlane function, 1199 
optimization, 1207 
overview, 1197-1200 
PolyFacesViewer function, 1203 
ProjectPolygon function, 1201 
SetUpFrustum function, 1204 
Setworldspace function, 1204 
TransformPoint function, 1203 
TransformPolygon function, 1203 
Updateviewpos function, 1202 
Updateworld function, 1205 
viewspace clipping, 1207 
ZSortObjects function, 1201 

complex  polygons, 751 
monotone-vertical  polygons, 

non-overlapping  convex  polygons, 

1089, 1090-1091, 1092-1093 

1206-1207 

POLYG0N.H header file 

filling, 771 

719-720 

texture mapped  polygons, 1054 
3-D polygon rotation, 945-946 
3-D solid cube rotation program, 965 
X-Sharp 3-D animation  package, 

Polygon models,  Quake 3-D engine, 

Polygon-filling programs 

982-984 

1285-1286 

See also Polygons, filling. 
complex  polygons, 742-744, 745-752, 

monotone-vertical  polygons, 760, 

non-overlapping  convex  polygons 

753, 754, 755-756 

761-771 

assembly  implementations, 732-733, 

C-language  implementations, 713- 
733-734,  735-739 

720, 720-721, 729-732 
PolygonIsMonotoneVertical 

Polygons 
function, 761 

See also Texture  mapping. 
adjacent, and l/z span sorting, 1230 
backface  removal, 954-957, 1160-1161 
categories of, 710,  742, 759-760 
clipping, 1158-1159 
Gouraud  shading, 1247 
hidden surface removal, 1214-1222 
normal vector, calculating, 955-956 
projection in 3-D space, 937, 

representation, 1196 
3-D polygon rotation demo  program 

944-945,948 

matrix multiplication functions, 943- 

overview, 939 
performance, 949 
polygon filling with clipping 

transformation and projection, 944- 

944,948 

support, 940-943 

945, 948 
transformation to 3-D space, 935 
unit normal, calculating, 1027-1028, 

visibility, calculating, 955-956 
visible surface determination (VSD) 

beam trees, 1185-1189 
overdraw  problem, 1184-1 185 

1137-1140 



polygon culling, 1181-1184 
potentially visible set (PVS), 

precalculating, 1188-1189 
visible surface determination 

wall orientation testing, BSP tree 
(VSD)culling to frustum, 1181-1184 

rendering, 1160-1161 
Polygons, filling 

See also Polygon-filling programs; 
Polygons; Texture mapping. 

active edges, 742-744,  753,  755,  756 
boundary pixels, selecting, 712 
with clipping support, 940-943 
complex polygons, 742 
drawing, speeding up, 727-729 
edge tracing 

overview, 711-713 
ScanEdge function, 716-717, 720- 

721, 730-732,  735-738 
fitting adjacent polygons, 712-713 
flat  vs. pointed  top, 720 
integer vs. fixed-point arithmetic, 1065 
in  Mode X, 940-943 
monotone-vertical polygons, 

nonconvex polygons, 755 
non-overlapping convex polygons, 

performance, comparison of 

rasterization, 710-712 
scan conversion, 710,  720-721 

760-761,  771 

720-721 

implementations, 728 

active edges, 721, 742-744,  753, 

C-language implementation, 713- 

defined, 710 
zero-length segments, 721 

755, 756 

717, 720-721 

Polyhedrons 
hidden surfaces, 955, 1000, 1001-1002 
representation of, 962 
3-D solid cube rotation demo program 

basic implementation, 957-961, 

incremental  transformations, 964-966 
object representation, 967 

962-963 

POP instruction, 241-242,  404 
POPA instruction, 221 

POPF instruction, 226,  226-231 
Popping, memory locations vs. registers, 

Portable code,  and future of 

Portals 

254-255 

programming profession, 725-726 

and beam trees, 1188 
in Quake 3-D engine, 1279-1280 

Potentially visible set (PVS) 
vs. portals, 1279-1280 
precalculating, 1188-1189,  1213-1214 
Quake 3-D engine, 1278-1279 

BSP trees and potentially visible set 

lookup tables, 146 

long-period Zen  timer, 53 
rounding vs. truncation, 1002-1003 
Zen timer, 48, 52 

286 and 386 processors, 225 

286 and 386 processors, 210 
instruction execution times, 87-93 
optimizing for, 93 
overview, 86 
system wait states, 210 
and Zen timer, 88, 92 

Pentium processor, 376,  395, 407 
and stack-based variables, 184 

Prefixes. See Prefix bytes. 
Principles of Interactive  Computer 

Graphics (book), 934 
Problems, quick responses  to, 1166 
Profiling, and 80x87 emulator, Borland 

Program size vs. clock cycles, 28 
Programmer’s  Guide to PC Video Systems 

Projection 

Precalculated results 

(PVS), 1188-1189 

Precision 

Prefetch queue 

Prefetch queue cycle-eater 

Prefix bytes 

c++, 999 

(book), 651 

defined, 1135 
floating point optimization, 1174 
LineIntersectPlane function, 

overview, 937,  948 
1142-1143 

XformAndProjectPoly function, 
944-945 



rotation without matrices, 1143-1144 
using  dot product, 1141-1142 

ProjectPolygon function, 1201 
Proportional text, 489 
Protected  mode 

addressable  memory, 221 
486 processor 

addressing calculation pipeline, 239 
indexed addressing, 237-238 

general tips, 140 
overview, 208-209 
32-bit addressing  modes, 256-258 

PS2 equate,  long-period Zen  timer,  65-66 
Ps/2 computers, 54, 66 
PUSH instruction, 222, 241-242,  404 
PUSHA instruction, 221 
Pushing,  memory locations vs. registers, 

PZTEST.ASM listing,  Zen  timer, 49 
PZTIME.BAT listing,  Zen  timer, 51 
PZTIMER.ASM listing, Zen  timer, 35-42 

254-255 

Q 
QLife program, 352-363 
QSCAN3.ASM listing, 309-311 
Quake 2, 1293 
Quake 

surface caching, 1253-1256,  1260-1262 
surface-based lighting 

description, 1250-1251 
mipmapping, 1254-1255 
performance, 1251-1253 
surface  caching, 1253-1256, 

texture mapping, 1261-1262 

BSP trees, 1276-1277 
lighting, 1282-1283 
model  overview, 1276-1277 
portals, 1279-1280 
potentially  visible  set (PVS), 1278-1279 
rasterization, 1282 
world,  drawing, 1280-1281 

(VSD), 1181 

1260-1262 

3-D engine 

and visible surface determination 

Quakeworld, 1291-1292 

R 
Radiosity lighting, Quake 2, 1293 
Rasterization of polygons 

See also Polygons, filling. 
boundary pixels, selecting, 712 
efficient implementation,  71 1 
in Quake 3-D engine, 1282 

Rate of divergence, in 3-D drawing, 937 
Raycast,  subdividing, and beam  trees, 1187 
RCL instruction, 185-186 
RCR instruction, 185-186 
Read360x480Dot subroutine, 614-615 
Read0 C library function 

vs. getco function, 12 
overhead, 121 

Read Index register,  651-652 
Read  Map  register 

demo program, 526-530 
planes, specifying to be read, 542 
read  mode, 0,  526 

Read  Map  register demo program, 526-530 
Read mode, 0,  521 
Read mode 1 

Color  Don’t  Care  register, 534 
overview, 525-526 
vs. read  mode 0, 521 
selecting, 525 

Read/write/modify operations, 107 
Read-after-write  register contention, 404 
ReadPixel subroutine, 598, 599 
ReadPixelX subroutine, 884-885 
Real mode. See 386 processor. 
Real mode 

addressing calculation pipeline, 239 
32-bit addressing  modes, 256-258 

four-plane parallel processing, 888- 

pixel-by-pixel plane selection, 

plane-by-plane processing, 887-889 

BSP trees 

Rectangle fill, Mode X 

891, 891-893 

885-887 

Recursion 

building BSP trees, 1101-1104 
data recursive inorder traversal, 

visibility ordering, 1104-1  106 
1107-1113 



code recursion 
vs. data recursion, 1108-1110 
Euclid’s algorithm, 198-199 

compiler-based optimization, 

data recursion 
1112-1113 

vs. code recursion, 1108-1  110 
compiler-based optimization, 

Euclid’s algorithm, 200 
inorder tree traversal, 1108-1110 
performance, 11 11-1 113 

1112-1113 

performance, 1111-1113 
Reference  materials 

3-D drawing, 934-935 
3-D math, 1135 
bitmapped text, drawing, 471 
Bresenham’s  line-drawing 

algorithm, 660 
BSP trees, 1114,  1157 
circle drawing, 626 
color perception, 625 
8253  timer chip, 72 
486 processor, 236 
parametric line clipping, 1121 
Pentium processor, 374,  1148 
SVGA programming, 626 
VGA registers,  583 

ReferenceZTimerOff subroutine, 41 
ReferenceZTimerOn subroutine, 40 
Reflections,  in  GLQuake,  1290 
Reflective  color, vs. emissive color, 1035 
Register contention, Pentium processor, 

Register-only instructions, 223-225 
Registers 

403-405 

See also 32-bit registers; VGA registers. 
AX register,  171 
copying  bytes  between, 172 
EGA palette registers,  549-550 
8-bit bus cycle-eater, 85 
486 processor 

240, 250 

cycles, 242-245 

addressing pipeline penalty, 238- 

byte registers and lost 

indexed addressing, 237-238 
pushing  or  popping, vs.  memory 

locations, 254-255 

scaled, 2 56-2 58 
stack addressing, 241-242 
32-bit addressing  modes, 256-258 

prefetch queue cycle-eater, 94 
and split screen operations, 573 
and stack frames, 153 
VGA architecture, 427-429 

Relocating bitmaps, 516-517 
Rendering BSP trees 

backface  removal, 1160-1161 
clipping, 1158-1159 
Clipwalls function, 1152-1155, 

DrawWallsBackToFront function, 

overview, 1149 
reference materials, 1157 
TransformVertices function, 1151- 

UpdateViewPos function, 1151, 1157 
Updateworld function, 1156- 

viewspace,  transformation of objects 

wall orientation testing, 1160-1161 
WallFacingViewer function, 1150- 

1158-11 59 

1155-1156, 1160-1161 

1152, 1158 

1157, 1157 

to, 1158 

1151, 1161 
RenderMan  Companion (book), 742 
REP  MOVS instruction, 148 
REP  MOVSW instruction, 82, 105, 220 
REP  SCASW instruction, 166 
REP  STOS instruction, 727,  735 
REPNZ  SCASB instruction 

vs. Boyer-Moore algorithm, 267-268, 

in  string searching  problem, 121-122, 
271, 274 

174-175,  262-263 
REPZ  CMPS instruction 

vs. Boyer-Moore algorithm, 267-268, 

in  string searching  problem, 121-122, 
271, 274 

174-175,  262-263 
Restartable blocks 

in  16-bit checksum  program, 16 
optimizing file processing, 118 
performance, 122 
in search  engine, 117-118 
size of, 114, 121 



Results, precalculating 
See also lookup tables. 
BSP trees and potentially visible set 

(PVS), 1188-1189 
RET instruction, 241-242 
Reusable code,  and future of 

programming profession, 725-726 
RGB (red, green,  blue) color model 

mapping to 256-color mode, 1036, 

overview, 1034-1035 
1037-1038, 1039 

Richardson, John, 316 
Right-handed coordinate  system, 935-937 
ROL instruction, 185-186 
Roll angle, in polygon clipping, 1206 
ROR instruction, 185-186 
Rotate instructions 

hand  assembling, 255-256 
n-bit  vs. 1-bit, 255-256 
286 processor, 222 

RotateAndMovePObject 
function, 977-978 

Rotation, 3-D animation 
Concatxforms function, 944 
matrix representation, 938-939 
multiple axes of rotation, 948 
using  dot  product, 1143-1144 
XformVec function, 943 

Rotational variance, 1249 
Rotations, bitwise 

vs. lookup tables, 145-146 
multi-bit vs. single-bit, 185-186 

in 3-D animation, 1002-1003 
floating point optimization, 1174-1 175 
texture mapping, 1066-1067 

assembly  implementation, 698-704 
C-language implementations, 688-692, 

description, 683-684 
implementation details, 685-687 
integer-based  implementation, 685-687 
potential optimizations, 705 

Rounding vs. truncation 

Run-length  slice algorithm 

692-693 

Ruts, mental, staying out of, 1147-1148 

S 
SAHF instruction, 148 
Sam the Golden Retriever, 841-842 
SC (Sequence Controller), VGA 

addressing, 427-428 
Map  Mask  register 

CPU writes, selecting planes, 443- 

drawing text, 833 
optimizing Mode X, 1074 
vs.  Read  Map  register, 526 
with set/reset circuitry, 474 
write mode 1, 444 

Scaled registers, 256-258 
Scan conversion,  polygons 

444, 471-472 

active edges, 721, 742-744, 

C-language  implementation, 713-717, 

defined, 710 
zero-length segments, 721 

redefining length of, 442 
in  split screens, 564-565, 573 
360x480 256-color mode, 619 
vertical,  in  texture mapping, 1084-1086 

author’s implementation, 301-302, 

hand-optimized 

753,  755,  756 

720-721 

Scan lines 

ScanBuffer assembly routine 

303-304 

implementation(Wil1em  Clements), 
313-315 

lookup table implementation (David 
Stafford), 309-311, 317-319 

ScanEdge function 
assembly  implementation, 735-738, 735 
floating-point C implementation, 716- 

integer-based C implementation, 
717, 720-721 

730-732 
ScanEdges function, 1234-1236, 

ScanOutAET function 
1238-1239 

complex  polygons, 749-750 

Index 



monotone-vertical polygons, 770 

assembly implementation, 

C-language implementation, 1058- 

ScanOutLine function 

1069-1073, 1074 

1059, 1067-1069 
SCASW instruction, 161 
Screen blanking 

demo program, 556-557 
using DAC  Mask register, 651 

Screen blanking demo program, 
556-557 

Screen capture programs, 541-548 
Screen redraws, and display adapter 

cycle-eater, 101, 102 
Screen refresh rate, 619 
Screenspace 

defined, 1135 
and normals of polygons, 1137-1138 
projecting to, BSP tree rendering, 1159 
uses for,  967 

SEARCH.C listing, 118-121 
Search engine 

See also Searching. 
Boyer-Moore algorithm, 263-277 
design considerations, 114 
execution profile, 121 
Findstring function, 175, 176, 

optimization, 174-180 
restartable blocks, 117-1 18 
search space  and optimization, 

search techniques, 115-116,  175 

178, 269 

122, 175 

SearchForString function, 118 
Searching 

See also Search engine. 
Boyer-Moore algorithm, 263-277 
in linked list of arrays, 156-166 
for specified byte in  buffer,  141-145 
using REP SCASW, 166 

SecondPass function, 358-360 
Sedgewick, Robert (Algorithms), 192, 196 
Segments 

compiler handling of, 154 
and far jumps, 186 
protected mode, 208-209 
386 processor, 222 

SelectBSPTree function, 1124-1125 

Selling ideas, 1193-1194 
Sentinels, in linked lists, 286 
Sequence Controller, VGA. See SC 

(Sequence Controller), VGA. 
Set320x400Mode subroutine, 593, 596- 

Set320x240Mode subroutine, 881-882 
Set360x480Mode subroutine, 

Set64ox400 function, 855 
Set/reset circuitry, VGA 

color-forcing demo program, 474-476 
and CPU data, 474 
emulating write mode 3, 490 
overview, 471-472,  478-479 
plane-manipulation demo program, 

planes, setting all to single 

and write mode 2, 501-502,  509,  515 

597, 599, 602-604 

612, 620-621 

476-478 

color, 473-474 

Set/Reset register, 666 
SetBIOSSxSFont subroutine, 830 
Set-cell method, 327,  334,  342 
SETGC macro, 454, 475 
Setpalette function, 783-784 
SetPelPan subroutine, 580 
SETSC macro, 474 
SetSplitScreenScanLine subroutine, 

SetStartAddress subroutine, 570, 580 
SetUpEdge function, 1057-1058 
Setworldspace function, 1204 
Shading 

570-571,  581 

See also Lighting;  3-D drawing. 
ambient shading, 1023 
diffuse shading, 1023-1024 
directed light sources, 1028 
effects, 360x480  256-color mode, 618 
overall shading, calculating, 1025 
of polygons, 1025-1026, 1027-1029 

cause of, 813 
in dirty-rectangle animation, 846 
page flipping, 814 
sheep, 1063 

Shearing 

Shift instructions, 222, 255-256 
Shifting bits, vs. lookup tables, 145-146 
SHL instruction, 376 
ShowBounceCount function, 823-824 



Showpage subroutine 
masked  copying  animation, Mode X, 

page flipping animation, 827 
Show-text function, 329, 363 
SHR instruction, 88-91,  97 
SIB byte, 257 
640x400 mode,  mode set routine, 

640x480 mode,  page flipping, 836-837 
16-bit checksum  program 

See also TCP/IP checksum  program. 
assembly  implementation, 

C language  implementation, 

overview, 8 
redesigning, 9 

color paging, 628-629 
DAC (DigitaVAnalog 

Converter), 626-628 
palette R A M ,  626 

Small code  model, linking  Zen  timer, 70 
Software patents, 1194 
Sorted span  hidden surface removal 

abutting span sorting, 1229-1230 
AddPolygonEdges function, 1232- 

BSP order vs. l / z  order, 1220,  1226 
ClearEdgeLists function, 1236-1237 
DrawSpans function, 1236 
edge sorting, 1220-1222 
edges vs. spans, 1215-1220 
independent  span sorting, 1230, 1231- 

intersecting span sorting, 1228-1229 
l / z  sorting, 1220-1222,  1227-1231, 

overview, 1214-1215 
PolyFacesViewer function, 1232 
ScanEdges function, 1234-1236, 

Updateworld function, 1237-1238 
Sorting techniques 

25-byte sorting routine, 180-181 
BSP trees, 1099 
moving models in  3-D 

drawings, 1212-1222 

929-930 

852-853 

10-12, 17-18 

8-9, 15-16 

16-color VGA modes 

1233, 1238 

1238, 1239-1241 

1231-1238, 1239-1241 

1238-1239 

l /z sorting for hidden surface 
removal, 1220-1222 

and optimization, 755 
z-buffers, 1212-1213 

Sortobjects function, 1002 
Span-based  drawing,  and 

Specular reflection, 1023 
Split screens 

beam trees, 1187 

EGA bug, 573-574 
horizontal panning, 574-575, 

overview, 563-565 
page flipping, 640x480 mode, 836-837 
registers, setting, 573 
safety of, 585 
split screen  demo  program, 565, 566- 

572, 572 
text mode, 584 
turning on  and off, 565 

575-582, 583 

SplitScreenDown subroutine, 572 
SplitScreenUp subroutine, 572 
Spotlights 

Gouraud  shading, 1247 
shading  implementation, 1028 

masked  images, 871-872 
Quake 3-D engine, 1287 

Square  wave timer mode, 44 
Stack addressing 

Sprites 

address pipeline effects, 241-242 
assembly  language optimization, 420 

Stack frames, performance,  153 
Stack pointer  alignment, 218-219 
Stack-based variables, placement 

Stacks, POPF vs. IRET, 226-231 
Stafford,  David 

of, 184-185 

25-byte sorting routine, 180-181 
Game of  Life implementation, 351-352, 

ScanBuffer assembly routine, word 
count  program, 309-311, 317-319 

24-byte hi/lo function, 292-293 

353-363, 363-365 

Start  Address  High and Low registers, 

State machines 
834-836 

3-cell-per-word implementation,  Game 
of Life, 363-366 



word  count  program, 315 
StepEdge function, 1056-1057 
STOSB instruction, 236 
String instructions, 107 
String searching. See Search 

engine; Searching. 
StrstrO function, 11 5 
SUB instruction, 219 
Subdivision rasterization, 1266-1267, 

Superscalar  execution 
1267-1270, 1286 

initial pipe, effect of, 405 
interleaving operations, 394-395 
lockstep  execution, 390-394, 400-403 
overview, 384-386 
register contention, 403-405 
V-pipe-capable instructions, 386-387 

SuperVGA, 104, 107, 842-844 
Surface caching 

hardware interactions, 1260-1262 
surface-based lighting, 1253-1256 
in VQuake, 1288 

Surface-based lighting 
description, 1250-1251 
mipmapping, 1254-1255 
performance, 1251-1253 
surface caching, 1253-1256,  1260-1262 
texture mapping, 1261-1262 

inaccuracies 
System  clock 

long-period Zen  timer, 53, 54 
Zen  timer, 43, 45-46, 48 

timer 0,  8253 chip, 44, 54 

copying to display memory, 908, 909- 

masked  copy  to display memory, 916- 

System memory, Mode X 

911 

918, 916 
System  wait states, 210-213 

T 
Table-driven state machines, 316-319 
Tail nodes, in linked lists, 286 
TASM (Turbo Assembler), 71-72 
TCPAP checksum  program 

basic implementation, 406 
dword  implementation, 409 

interleaved implementation, 408 
unrolled  loop  implementation, 410 

Test function, 358, 365 
TEST instruction, 377, 401-402 
Texels 

Gouraud  shading, 1247 
mipmapping, 1254-1255 

bitmapped text demo  program 
Text, drawing 

using  bit mask, 466-469, 470-471 
using write mode 3, 484-489, 489- 

high-speed text demo  program, using 

solid text demo program,  using 

using write mode 0, 832-833 

display adapter cycle-eater, 104 
horizontal resolution, 620 
panning, 443 
split screen operations, 584-585 

Text pages, flipping from graphics  to 
text, 517 

TEm-UP  macro, 454, 459 
TextUp subroutine, 829 
Texture  mapping 

490, 490-496 

write mode 3, 490-496 

latches, 1039-1041, 1042-1044 

Text mode 

See also DDA (digital  differential 
analyzer) texture mapping. 

boundary pixels, polygons, 1049-1052, 
1066, 1067 

C implementation, 1053-1058 
independent  span sorting, 1238 
onto 2-D transformed  polygons, 1050 
onto 3-D transformed  polygons, 1051 
onto  untransformed  polygon, 1049 
optimization 

inner-loop optimizations, 1069- 

instruction-by-instruction 

pointer  advancement optimization, 

vertical scanlines, 1084-1086 

1073, 1074, 1081-1084 

optimizations, 1086-1092 

1086-1089, 1090-1091 

orientation independence, 

overview, 1048 
Pentium pipeline stalls, 1092 
perspective correction, 1093 

1065-1066, 1067 



surface-based lighting, 1261-1262 
vertical scanlines, 1084-1086 

32-bit addressing  modes, 256-258 
32-bit division, 181-184,  1008 
32-bit fixed-point arithmetic, optimizing, 

32-bit instructions, optimizing, 1091 
32-bit  registers 

See also Registers; VGA registers. 
adding  with LEA, 131 
BSWAP instruction, 252 
multiplying with LEA, 132-133 
386 processor, 222 
time vs. space tradeoff, 187 
using  as two 16-bit registers, 253-254 

See also Hidden surface removal; 3-D 

1086-1089, 1090-1091, 1092-1093 

3-D animation 

drawing; 3-D polygon rotation 
demo program; X-Sharp  3-D 
animation  package. 

solid cube rotation program, 957- 

3-D polygon rotation program, 939, 

12-cube rotation program, 972, 973- 

demo  programs 

961, 962-963, 964-966, 967 

940-945, 948-949 

984, 985-987 
depth sorting, 1000, 1001-1002 
rotation 

ConcatXforms function, 944 
matrix representation, 938-939 
multiple axes of rotation, 948 
Xformvec function, 943 

rounding vs. truncation, 1002-1003 
translation of objects, 937-938 

arithmetic imprecision, handling, 1240 
line segments, clipping to planes, 

overview, 1195 
polygon clipping 

3-D clipping 

1195-1  197 

BackRotateVector function, 1203 
clipping to frustum, 1200, 1201- 

ClipToFrustum function, 1204 
ClipToPlane function, 1199 
optimization, 1207 

1206, 1206-1207 

overview, 1197-1200 
PolyFacesViewer function, 1203 
ProjectPolygon function, 1201 
SetUpFrustum function, 1204 
SetWorldspace function, 1204 
TransformPoint function, 1203 
TransformPolygon function, 1203 
updateviewpos function, 1202 
Updateworld function, 1205 
viewspace clipping, 1207 
ZSortObjects function, 1201 

3-D drawing 
See also BSP (Binary Space 

Partitioning) trees; Hidden surface 
removal;  Polygons, filling; Shading; 
3-D animation. 

backface removal 
BSP tree rendering, 1160-1161 
calculations, 955-957 
motivation for, 954-955 
and sign of dot product, 1140 
solid cube rotation demo  program, 

957-961, 962-963, 964-966, 967 
background surfaces, 1240 
draw-buffers, and beam trees, 1187 
and dynamic objects, 1100-1101 
Gouraud  shading, 1246-1250 
lighting 

Gouraud  shading, 1246-1250 
overlapping lights, 1247 
perspective correctness, 1248-1250 
rotational variance, 1249 
surface-based lighting, 1250-1256, 

viewing variance, 1249 
moving models in  3-D 

drawings, 1212-1222 
painter’s algorithm, 1099,  1104-1105 
perspective correctness problem, 

portals, and  beam trees, 1188 
projection 

dot products, 1141-1142 
overview, 937, 948 

raycast, subdividing, and 
beam trees, 1187 

reference materials, 934-935 

1260-1262 

1248-1250 

Index 



rendering BSP trees 
backface removal, 1160-1161 
clipping, 1158-1159 
Clipwalls function, 1152-1155, 

DrawWaUsBackToFront function, 
1155-1156, 1160-1161 

overview, 1149 
reference materials, 11  57 
TransformVertices function, 

UpdateViewPos function, 

Updateworld function, 

viewspace, transformation of 

wall orientation testing, 1160-1161 
WallFacingViewer function, 1150- 

1158-1159 

1151-1152, 1158 

1151, 1157 

1156-1157, 1157 

objects to, 1158 

1151, 1161 
span-based drawing, and 

beam trees, 1187 
transformation of objects, 935-936 
triangle model drawing 

fast triangle drawing, 1263-1265 
overview, 1262-1263 
precision, 1265 
subdivision rasterization, 1266-1267, 

1267-1270 
vertex-free surfaces, and 

visibility determination, 1099-1  106 
visible surface determination (VSD) 

beam trees, 1185-1189 
culling to frustum, 1181-1184 
overdraw problem, 1184-1185 
polygon culling, 1181-1184 
potentially visible set (PVS), 

precalculating, 1188-1189 

beam trees, 1187 

3-D engine,  Quake 
BSP trees, 1276-1277 
lighting, 1282-1283 
model overview, 1276-1277 
portals, 1279-1280 
potentially visible set (PVS), 1278-1279 
rasterization, 1282 
world, drawing, 1280-1281 

cross products, 1139-1140 
3-D math 

dot products 
calculating, 1135-1137 
calculating light intensity, 1137 
projection, 1141-1142 
rotation, 1143-1144 
sign of, 1140-1141 
o f  unit vectors, 1136 
of vectors, 1135-1136 

assembly routines, 992, 996-999 
C-language implementations, 

normal vectors, calculating, 955-956 
rotation of  3-D objects, 938-939, 

transformation, optimized, 1172- 

matrix  math 

974-976 

943-944, 948 

1173, 1173-1174 
vector length, 1135 

3-D polygon rotation demo program 
matrix multiplication functions, 

overview, 939 
performance, 949 
polygon filling with clipping 

transformation and projection, 

943-944, 948 

support, 940-943 

944-945, 948 
3-D solid cube rotation demo program 

basic implementation, 957-961, 

incremental transformations, 964-966 
object representation, 967 

386 native mode, 32-bit 
displacements, 187 

386 processor 
alignment, stack pointer, 218-219 
CMP instruction, 161,  306 
cycle-eaters, 209-210 
data alignment, 213, 218 
and display adapter cycle-eater, 107 
display adapter cycle-eater, 219-221 
doubleword alignment, 218 
DRAM refresh cycle-eater, 219 
effective address calculations, 129, 

LEA instruction, 130-133, 172 
LODSD vs. MOV/LEA sequence, 171 
lookup tables, vs. rotating or shifting, 

962-963 

223-225 



145-146 

sequence, 139 
LOOP instruction vs.  DEC/JNZ 

memory access, performance, 223-225 
MUL and I"L instructions, 173-174 
multiplication operations, increasing 

new instructions and features, 222 
Pentium  code,  running on, 411 
protected  mode, 208-209 
rotation instructions, clock 

system  wait states, 210-212 
32-bit addressing  modes, 256-258 
32-bit  multiply and divide 

operations, 985 
using 32-bit  register as two 16-bit 

registers, 253-254 
XCHG  vs. MOV instructions, 377,  832 

386SX processor, 16-bit bus 
cycle-eater, 81 

360x480  256-color mode 
display memory, accessing, 621-622 
Draw360x480Dot 

subroutine, 613-614 
drawing speed, 618 
horizontal resolution, 620 
line drawing demo program, 

mode set routine (John Bridges),  609, 

on VGA clones, 610-611 
Read360x480Dot 

subroutine, 614-615 
256-color resolution, 619-620 
vertical resolution, 619 

320x400  256-color mode 
advantages of, 590-591 
display memory organization, 591-593 
line drawing, 600 
page flipping demo  program, 600-605 
performance, 599-600 
pixel drawing  demo  program, 593- 

320x240  256-color mode. See Mode X. 
Time perception, subjectivity of, 972 
Time-critical code,  13 

speed of, 173-174 

cycles,  185-186 

615-618, 618-619 

612, 620-621 

598, 599-600 

Timer 0, 8253  timer chip 
operation, 44 
stopping, 54, 65 

Timer modes, 44, 45 
TIMERJNT BIOS routine, 44 
Timers 

See also 8253  timer chip; Long-period 

divide-by-N mode, 45 
square  wave  mode, 44 

Zen timer; Zen  timer. 

Timeslicing delays, 446 
Timing  intervals 

long-period Zen  timer,  53 
Zen  timer, 45 

Transformation inefficiencies, 25-26 
Transformation matrices. See Matrices; 

Transformation of 3-D objects 
Matrix math. 

defined, 1135 
floating point optimization, 1172-1173, 

1173-1174 
incremental transformations, 964 
steps  in, 935-936 

TransformPolygon function, 1203 
Translation  in 3-D space, 937-938 
Treuenfels, Anton, 756 
Triangle model  drawing 

fast triangle drawing, 1263-1265 
overview, 1262-1263 
precision, 1265 
subdivision rasterization, 1266-1267, 

1267-1270 
Triangles, and rotational 

variance, 1249-1250 
Trinity,  1294 
Truncation errors, in  3-D animation, 

Truncation vs. rounding 
1002-1003 

floating point optimization, 1174-1175 
texture mapping, 1066-1067 

TSRs, and DAC, loading, 643,  648 
Turbo Profiler, and 80x87 emulator, 

12-cube rotation demo program 
Borland C++, 999 

limitations of, 986 
optimizations in, 985-986 
performance, 986 

Index 



X-Sharp  animation package, 972, 973- 
984, 984-985 

24-byte  hi/lo function, 292-293 
286 processor 

CMP instruction, 161, 306 
code alignment, 215-218 
cycle-eaters, 209-210 
data alignment, 213-215 
data transfer rates, 212 
display adapter cycle-eater,  219-221 
display  memory  wait states, 220 
DRAM refresh  cycle-eater, 219 
effective address calculations, 

instruction fetching, 215-218 
LEA vs. ADD instructions,  130 
lookup tables, vs. rotating or shifting, 

145-146 
LOOP instruction  vs. DEC/JNZ 

sequence, 139 
memory access, performance, 223-225 
new features, 221 
POPF instruction, and interrupts, 226 
protected mode, 208-209 
stack pointer alignment, 218-219 
system  wait states, 210-212 

See also 320x400  256-color mode. 
DAC settings,  629 
mapping RGB model to, 1036, 1037- 

1038, 1039 
resolution, 360x480  256-color mode, 

619-620 

129, 223-225 

256-color modes 

Two-pass lighting, 1262 
Two’s complement negation, 171 

U 
Unifying models, and optimization, 

Unit normal of polygons, calculating, 

Unit vectors, dot product, 1136-1137 
Unrolling loops, 143-145,  305,  312,  377- 

Updateviewpos function, 1202 

1110-1111 

1027-1028,  1137-1140 

378, 410 

Updateworld function, 1205,  1237-1238 
U-pipe,  Pentium processor 

branch instructions,  404-405 
overview, 385-386 
pairable instructions,  388 

V 
Variables, word-sized vs. byte-sized, 

Vectors 
82, 83-85 

cross product, 1139-1140 
cross-products, calculating,  955-956 
dot product, 1135-1137 
length equation, 1135 
optimization of, 986 
unit vectors, dot product, 1136-1137 

Bresenham’s  line-drawing  algorithm, 

360x480  256-color mode line drawing 

Vectorsup function 

664-665 

program, 617-618 
Verite Quake, 1287-1280 
Vertex-free  surfaces, and beam trees, 1187 
Vertical blanking, loading DAC, 641 
Vertical resolution, 360x480  256-color 

Vertical scanlines, in texture mapping, 

Vertical  sync pulse 

mode, 619 

1084-1086 

loading DAC, 641,  648 
and page flipping, 444-446,  835-836 
split screens, 573 

DAC (Digital/Analog  Converter) 
loading, 641-642,  648 
setting  registers,  630, 631-632 

programming, 458-459 

VGA BIOS 

vs. direct hardware 

function 13H, 459 
and nonstandard modes, 854-855 
palette RAM, setting  registers,  629-630, 

reading  from DAC,  652 
text routines, in  320x400  256-color 

631-632 

mode, 592 

Index 



and VGA registers, 458 

potential incompatibilities, 446-447 
360x480 256-color mode, 610-611 

color paging, 628-629 
DAC (Digital/Analog Converter), 626- 

628,  630, 631-632 
palette RAM, 626,  629-630,  631-632 

VGA clones 

VGA color path 

VGA compatibility, 446-447,  610-611 
VGA memory 

Color  Don’t  Care  register, 535-537, 535 
CPU reads, 520, 526 

bit-plane animation, 81 1 
color compare  mode, 531-534, 531 
mode 0, set/reset circuitry, 471-472, 

mode 12H (hi-res mode),  page 

mode 13H 

VGA modes 

474-479 

flipping, 851-855 

converting  to 320x400 256-color 
mode, 593 

overview, 515 
resolution, 590 

bitmap organization, 882-883 
copying pixels  using latches, 905- 

features, 878-879 
four-plane parallel processing, 888- 

masked  copying, 916-918, 916, 

memory allocation, 903-904 
mode set routine, 880-881, 882 
pattern fills, 899, 900-903, 903-904 
pixel-by-pixel plane 

plane-by-plane processing, 887-889 
ReadpixelX subroutine, 884-885 
WritePixelX subroutine, 883-884 

Mode X 

907, 908, 909-911 

891, 891-893 

918-919, 919-921 

selection, 885-887 

and page flipping, 444-445 
read  mode 1 

Color Don’t Care  register, 534 
overview, 525-526, 531 
selecting, 525 

and  sedreset circuitry, 478 

640x400 mode set routine, 852-853 
split screen operations, 584-585 
text mode,  panning, 443 
320x400 256-color mode 

advantages, 590-591 
converting  mode 13H to, 593 
display  memory  organization, 591-593 
page  flipping demo program, 600-605 

and virtual screens, 441 
write mode 0, drawing text, 832-833 
write mode 1, overview, 444 
write mode 2 

chunky  bitmaps,  converting to 
planar, 504-505, 505-508 

mechanics, 502 
overview, 501-502 
selecting, 504 

vs. Bit  Mask register, 844 
drawing  bitmapped text, 484-489, 

overview, 483-484,496 
single-color drawing, 831-832 
vs. write mode 0, 490 

write mode 3 

489-490, 490-496 

VGA registers 
AC Index register,  bit 5 settings, 443 
Bit  Mask register 

bit mask, controlling, 465 
drawing solid text, 1040 
setting inside a loop, 429 
vs. write mode 3,  832, 844 

Color Compare register, in read 
mode 1, 531 

Color Don’t Care  register,  in read 
mode 1, 534 

Color  Select  register, color paging, 
628-629 

Data register, loading DAC, 642-643 
Data  Rotate  register 

barrel shifter, controlling, 463 
vs.  CPU-based rotations, 489 
effect on ALUs, 452 

Enable  Set/Reset  register 
setting drawing color, 666 
specifying plane, 474 

Graphics Mode  register 
read  mode 0,  selecting, 525 
read  mode 1, selecting, 531 

and high-level languages, 548 



Horizontal  Pel Panning register, 442 
internal indexing, 427-429 
Line Compare register,  split screen 

operation, 565 
Map  Mask register 

drawing text, 833 
optimizing Mode X, 1074 
vs.  Read  Map  register, 526 
selecting planes for CPu writes, 

with set/reset circuitry, 474 
write mode 1, 444 

443-444,  471-472 

Mask register, blanking screen, 651 
Mode  Control  register, pel panning in 

Mode  register 
split screen, 575 

color paging, 628-629 
256-color modes, 629 

operation, 565 
Overflow  register,  split screen 

palette RAM registers, setting, 631-632 
Pel Panning register, 574,  583 
Read Index register, 651-652 
Read  Map  register 

plane, selecting, for CPU reads, 526 
planes, specifying to be read, 542 

Set/Reset  register, setting drawing 
color, 666 

setting, 504,  558 
setting and reading, 582 
Start  Address  High and Low registers, 

and VGA BIOS, 458 
Write Index register 

834-836 

DAC index  wrapping, 651 
loading DAC, 642-643 

VGA (Video Graphics Adapter) 
ALU and latch demo  program, 453- 

architecture, 426-429 
457, 458-460 

ALUS, 451-452 
barrel  shifter, 463-464 
bit mask, 464-471 
latches, 452-453 
set/reset circuitry, 471-479 

ball  animation demo  program, 431-441 
CGA compatibility, 430 
delay  sequences, 558 
and display adapter cycle-eater, 104-108 

display memory, 446 
fill patterns, drawing, 453 
GC (Graphics Controller), architecture, 

I/O access times, 842-844 
linear addressing, 430 
memory access times, 842-844 
overview, 426 
page flipping, 444-446 
panning, 441-443 
performance, with 486 

processor, 842-844 
potential incompatibilities, 446-447 
registers, internal indexing, 426-429 
screens, capturing  and restoring, 541- 

split screens 

451-453, 463-479 

542, 543-547, 547-548 

horizontal panning, 574-575, 575- 

overview, 563-565 
registers, setting, 573 
safety of, 585 
split screen demo program, 565, 

text mode, 584 
turning on  and off, 565 

25 MHz clock and 28 MHz clock, 
switching  between, 620-621 

virtual screens 
overview, 430 
panning, 441-443 

582, 583 

566-572, 572 

Video function  10H, EGA BIOS, 

Viewing angle, and BSP tree rendering, 

Viewing variance, 1249 
Viewspace 

550-551,  555 

1157-1158 

defined, 1135 
and  normals of polygons, 1137-1138 
in 3-D transformation, 935 
transformation  to, BSP rendering, 1158 
uses for, 967 

Viewspace clipping, 1207 
Virtual screens 

overview, 430 
panning, 441-443 

Visibility determination 
See also Visible surface determination. 
and BSP trees, 1099-1106 



Visibility  of polygons, calculating,  955-956 
Visible surface determination (VSD) 

beam trees, 1185-1189 
culling to frustum, 1181-1184 
overdraw  problem, 1184-1185 
polygon culling, 1181-1184 
and portals, 1279-1280 
potentially visible set (PVS), 

precalculating, 1188-1  189 

branch instructions, 404-405 
overview, 385-386 
V-pipe-capable instructions, 386-387 

VQuake, 1287-1280 
VSD. See Visible surface determination 

V-pipe, Pentium  processor 

(VSD). 

W 
Wait30Frames function, 854 
Wait states 

display memory wait states 
8088 processor, 101-103 
286 processor, 220 

vs. DRAM refresh, 100 
overview, 99 
system memory wait states, 210-213 

WaitForVerticaLSyncEnd subroutine, 
569,  579-580 

WaitForVerticaLSyncStart subroutine, 

WalkBSPTree function, 1106 
WalkTree function 

569, 579 

code recursive version, 1108 
data recursive version, 1109-1110 

Wall orientation testing, BSP tree 
rendering, 1160-1161 

WC word  counting  program (Terje 
Mathisen), optimization, 250-252, 
306,  319 

Williams,  Rob,  174 
Winnie the Pooh orbiting Saturn, 1047 
WinQuake, 1290 
Word alignment, 286 processor 

code  alignment, 215-218 
data alignment, 213-215 
stack pointer  alignment, 218-219 

Word count  program 

edge triggered device, 316 
fine-tuning optimization, 312-313 
initial C  implementation, 299 
lookup table, 303, 304,  317-319 
ScanBuffer assembly routine 

author’s implementation, 301-302 
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