


3D Math Primer for Graphics and
Game Development

Second Edition





3D Math Primer for Graphics and
Game Development

Second Edition

Fletcher Dunn
Ian Parberry

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-1&iName=master.img-000.jpg&w=127&h=65


A K Peters/CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
A K Peters/CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

International Standard Book Number-13: 978-1-4398-6981-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author 
and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders 
of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been 
acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, 
now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the 
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance 
Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For 
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at

http://www.taylorandfrancis.com

and the A K Peters Web site at

http://www.akpeters.com 

http://www.copyright.com
http://www.taylorandfrancis.com
http://www.akpeters.com


To A’me
—F.D.

To Maggie
in the hope that she continues

her interest in math

—I. P.





Contents

Acknowledgments xiii

Introduction xv

1 Cartesian Coordinate Systems 1
1.1 1D Mathematics . . . . . . . . . . . . . . . . . . . . . . 2
1.2 2D Cartesian Space . . . . . . . . . . . . . . . . . . . . . 5
1.3 3D Cartesian Space . . . . . . . . . . . . . . . . . . . . . 12
1.4 Odds and Ends . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Vectors 31
2.1 Mathematical Definition of Vector, and Other Boring Stuff 32
2.2 Geometric Definition of Vector . . . . . . . . . . . . . . 34
2.3 Specifying Vectors with Cartesian Coordinates . . . . . 36
2.4 Vectors versus Points . . . . . . . . . . . . . . . . . . . . 39
2.5 Negating a Vector . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Vector Multiplication by a Scalar . . . . . . . . . . . . . 45
2.7 Vector Addition and Subtraction . . . . . . . . . . . . . 47
2.8 Vector Magnitude (Length) . . . . . . . . . . . . . . . . 51
2.9 Unit Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.10 The Distance Formula . . . . . . . . . . . . . . . . . . . 55
2.11 Vector Dot Product . . . . . . . . . . . . . . . . . . . . . 56
2.12 Vector Cross Product . . . . . . . . . . . . . . . . . . . . 66
2.13 Linear Algebra Identities . . . . . . . . . . . . . . . . . . 70
2.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Multiple Coordinate Spaces 79
3.1 Why Bother with Multiple Coordinate Spaces? . . . . . 80
3.2 Some Useful Coordinate Spaces . . . . . . . . . . . . . . 81
3.3 Basis Vectors and Coordinate Space Transformations . . 86
3.4 Nested Coordinate Spaces . . . . . . . . . . . . . . . . . 106

vii



viii Contents

3.5 In Defense of Upright Space . . . . . . . . . . . . . . . . 108
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Introduction to Matrices 113
4.1 Mathematical Definition of Matrix . . . . . . . . . . . . 113
4.2 Geometric Interpretation of Matrix . . . . . . . . . . . . 124
4.3 The Bigger Picture of Linear Algebra . . . . . . . . . . . 130
4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Matrices and Linear Transformations 137
5.1 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3 Orthographic Projection . . . . . . . . . . . . . . . . . . 148
5.4 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.5 Shearing . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.6 Combining Transformations . . . . . . . . . . . . . . . . 153
5.7 Classes of Transformations . . . . . . . . . . . . . . . . . 154
5.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 More on Matrices 161
6.1 Determinant of a Matrix . . . . . . . . . . . . . . . . . . 161
6.2 Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . 168
6.3 Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . 171
6.4 4 × 4 Homogeneous Matrices . . . . . . . . . . . . . . . 176
6.5 4 × 4 Matrices and Perspective Projection . . . . . . . . 183
6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7 Polar Coordinate Systems 191
7.1 2D Polar Space . . . . . . . . . . . . . . . . . . . . . . . 191
7.2 Why Would Anybody Use Polar Coordinates? . . . . . . 201
7.3 3D Polar Space . . . . . . . . . . . . . . . . . . . . . . . 203
7.4 Using Polar Coordinates to Specify Vectors . . . . . . . 213
7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8 Rotation in Three Dimensions 217
8.1 What Exactly is “Orientation”? . . . . . . . . . . . . . . 218
8.2 Matrix Form . . . . . . . . . . . . . . . . . . . . . . . . 220
8.3 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.4 Axis-Angle and Exponential Map Representations . . . . 244
8.5 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . 246
8.6 Comparison of Methods . . . . . . . . . . . . . . . . . . 273
8.7 Converting between Representations . . . . . . . . . . . 275
8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 291



Contents ix

9 Geometric Primitives 295
9.1 Representation Techniques . . . . . . . . . . . . . . . . . 295
9.2 Lines and Rays . . . . . . . . . . . . . . . . . . . . . . . 297
9.3 Spheres and Circles . . . . . . . . . . . . . . . . . . . . . 303
9.4 Bounding Boxes . . . . . . . . . . . . . . . . . . . . . . . 304
9.5 Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
9.6 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
9.7 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

10 Mathematical Topics from 3D Graphics 343
10.1 How Graphics Works . . . . . . . . . . . . . . . . . . . . 345
10.2 Viewing in 3D . . . . . . . . . . . . . . . . . . . . . . . . 362
10.3 Coordinate Spaces . . . . . . . . . . . . . . . . . . . . . 369
10.4 Polygon Meshes . . . . . . . . . . . . . . . . . . . . . . . 381
10.5 Texture Mapping . . . . . . . . . . . . . . . . . . . . . . 393
10.6 The Standard Local Lighting Model . . . . . . . . . . . 396
10.7 Light Sources . . . . . . . . . . . . . . . . . . . . . . . . 414
10.8 Skeletal Animation . . . . . . . . . . . . . . . . . . . . . 424
10.9 Bump Mapping . . . . . . . . . . . . . . . . . . . . . . . 431
10.10 The Real-Time Graphics Pipeline . . . . . . . . . . . . . 438
10.11 Some HLSL Examples . . . . . . . . . . . . . . . . . . . 457
10.12 Further Reading . . . . . . . . . . . . . . . . . . . . . . 475
10.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

11 Mechanics 1: Linear Kinematics and Calculus 479
11.1 Overview and Other Expectation-Reducing Remarks . . 479
11.2 Basic Quantities and Units . . . . . . . . . . . . . . . . 483
11.3 Average Velocity . . . . . . . . . . . . . . . . . . . . . . 486
11.4 Instantaneous Velocity and the Derivative . . . . . . . . 490
11.5 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . 513
11.6 Motion under Constant Acceleration . . . . . . . . . . . 516
11.7 The Integral . . . . . . . . . . . . . . . . . . . . . . . . . 530
11.8 Uniform Circular Motion . . . . . . . . . . . . . . . . . . 542
11.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

12 Mechanics 2: Linear and Rotational Dynamics 553
12.1 Newton’s Three Laws . . . . . . . . . . . . . . . . . . . . 554
12.2 Some Simple Force Laws . . . . . . . . . . . . . . . . . . 562
12.3 Momentum . . . . . . . . . . . . . . . . . . . . . . . . . 581
12.4 Impulsive Forces and Collisions . . . . . . . . . . . . . . 590
12.5 Rotational Dynamics . . . . . . . . . . . . . . . . . . . . 603
12.6 Real-Time Rigid Body Simulators . . . . . . . . . . . . . 621



x Contents

12.7 Suggested Reading . . . . . . . . . . . . . . . . . . . . . 639
12.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

13 Curves in 3D 645
13.1 Parametric Polynomial Curves . . . . . . . . . . . . . . 646
13.2 Polynomial Interpolation . . . . . . . . . . . . . . . . . . 653
13.3 Hermite Curves . . . . . . . . . . . . . . . . . . . . . . . 665
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Introduction

First things first, but not necessarily in that order.

— Doctor Who from Meglos (1980)

Who Should Read This Book

This book is about 3D math, the geometry and algebra of 3D space. It
is designed to teach you how to describe objects and their positions, ori-
entations, and trajectories in 3D using mathematics. This is not a book
about computer graphics, simulation, or even computational geometry, al-
though if you plan on studying those subjects, you will definitely need the
information here.

This is not just a book for video game programmers. We do assume
that a majority of our readers are learning for the purpose of programming
video games, but we expect a wider audience and we have designed the
book with a diverse audience in mind. If you’re a programmer or interested
in learning how to make video games, welcome aboard! If you meet neither
of these criteria, there’s still plenty for you here. We have made every effort
to make the book useful to designers and technical artists. Although there
are several code snippets in the book, they are (hopefully) easy to read even
for nonprogrammers. Most important, even though it is always necessary
to understand the surrounding concepts to make sense of the code, the
reverse is never true. We use code samples to illustrate how ideas can be
implemented on a computer, not to explain the ideas themselves.

The title of this book says it is for “game development,” but a great
deal of the material that we cover is applicable outside of video games.
Practically anyone who wants to simulate, render, or understand a three-
dimensional world will find this book useful. While we do try to provide
motivating examples from the world of video game development, since that
is our area of expertise and also our primary target audience, you won’t be
left out if the last game you completed was Space Quest.1 If your interests

1Well, you may be left out of a few jokes, like that one. Sorry.
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xvi Introduction

lie in more “grown up” things than video games, rest assured that this book
is not filled with specific examples from video games about head-shots or
severed limbs or how to get the blood spurt to look just right.

Why You Should Read This Book

This book has many unique features, including its topic, approach, authors,
and writing style.

Unique topic. This book fills a gap that has been left by other books on
graphics, linear algebra, simulation, and programming. It’s an introductory
book, meaning we have focused our efforts on providing thorough coverage
on fundamental 3D concepts—topics that are normally glossed over in a
few quick pages or relegated to an appendix in other books (because, af-
ter all, you already know all this stuff). We have found that these very
topics are often the sticking points for beginners! In a way, this book is
the mirror image of gluing together books on graphics, physics, and curves.
Whereas that mythical conglomeration would begin with a brief overview of
the mathematical fundamentals, followed by in-depth coverage of the appli-
cation area, we start with a thorough coverage of the math fundamentals,
and then give compact, high-level overviews of the application areas.

This book does try to provide a graceful on-ramp for beginners, but
that doesn’t mean we’ll be stuck in the slow lane forever. There is plenty
of material here that is traditionally considered “advanced” and taught
in upper-level or graduate classes. In reality, these topics are specialized
more than they are difficult, and they have recently become important
prerequisites that need to be taught earlier, which is part of what has
driven the demand for a book like this.

Unique approach. All authors think that they strike the perfect balance
between being pedantic and being chatty in order to best reach their au-
dience, and we are no exception. We recognize, however, that the people
who disagree with this glowing self-assessment will mostly find this book
too informal (see the index entry for “stickler alert”). We have focused on
perspicuous explanations and intuition, and sometimes we have done this
at the expense of rigor. Our aim is to simplify, but not to oversimplify. We
lead readers to the goal through a path that avoids the trolls and dragons,
so why begin the journey by pointing them all out before we’ve even said
what our destination is or why we’re going there? However, since we know
readers will be crossing the field on their own eventually, after we reach our
goal we will turn around to point out where the dangers lie. But we may
sometimes need to leave certain troll-slaying to another source, especially if
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we expect that your usual path won’t take you near the danger. Those who
intend to be on that land frequently should consult with a local for more
intimate knowledge. This is not to say that we think rigor is unimportant;
we just think it’s easier to get rigor after intuition about the big picture
has been established, rather than front-loading every discussion with defi-
nitions and axioms needed to handle the edge cases. Frankly, nowadays a
reader can pursue concise and formal presentations free on wikipedia.org
or Wolfram MathWorld (mathworld.wolfram.com), so we don’t think any
book offers much worth paying for by dwelling excessively on definitions,
axioms, proofs, and edge cases, especially for introductory material targeted
primarily to engineers.

Unique authors. Our combined experience brings together academic au-
thority with in-the-trenches practical advice. Fletcher Dunn has 15 years
of professional game programming experience, with around a dozen titles
under his belt on a variety of gaming platforms. He worked at Terminal
Reality in Dallas, where as principal programmer he was one of the archi-
tects of the Infernal engine and lead programmer on BloodRayne. He was
a technical director for The Walt Disney Company at Wideload Games in
Chicago and the lead programmer for Disney Guilty Party, IGN’s E3 2010
Family Game of the Year. He now works for Valve Software in Bellevue,
Washington. But his biggest claim to fame by far is as the namesake of
Corporal Dunn from Call of Duty: Modern Warfare 2.

Dr. Ian Parberry has more than a quarter century of experience in re-
search and teaching in academia. This is his sixth book, his third on game
programming. He is currently a tenured full professor in the Department of
Computer Science & Engineering at the University of North Texas. He is
nationally known as one of the pioneers of game programming in higher ed-
ucation, and has been teaching game programming classes at the University
of North Texas continuously since 1993.

Unique writing style. We hope you will enjoy reading this math book (say
what?) for two reasons. Most important, we want you to learn from this
book, and learning something you are interested in is fun. Secondarily, we
want you to enjoy reading this book in the same way that you enjoy reading
a work of literature. We have no delusions that we’re in the same class as
Mark Twain, or that this book is destined to become a classic like, say,
The Hitchhikers Guide to the Galaxy. But one can always have aspirations.
Honestly, we are just silly people. At the same time, no writing style should
stand in the way of the first priority: clear communication of mathematical
knowledge about video games.2

2Which is why we’ve put most of the jokes and useless trivia in footnotes like this.
Somehow, we felt like we could get away with more that way.
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What You Should Know before Reading This Book

We have tried to make the book accessible to as wide an audience as pos-
sible; no book, however, can go back all the way to first principles. We
expect from the reader the following basic mathematical skills:

• Manipulating algebraic expressions, fractions, and basic algebraic laws
such as the associative and distributive laws and the quadratic equa-
tion.

• Understanding what variables are, what a function is, how to graph
a function, and so on.

• Some very basic 2D Euclidian geometry, such as what a point is, what
a line is, what it means for lines to be parallel and perpendicular, and
so forth. Some basic formulas for area and circumference are used in
a few places. It’s OK if you have temporarily forgotten those—you
will hopefully recognize them when you see them.

• Some prior exposure to trigonometry is best. We give a brief review of
trigonometry in the front of this book, but it is not presented with the
same level of paced explanation found most elsewhere in this book.

• Readers with some prior exposure to calculus will have an advan-
tage, but we have restricted our use of calculus in this book to very
basic principles, which we will (attempt to) teach in Chapter 11 for
those without this training. Only the most high-level concepts and
fundamental laws are needed.

Some programming knowledge is helpful, but not required. In several
places, we give brief code snippets to show how the ideas being discussed
get translated into code. (Also certain procedures are just easier to explain
in code.) These snippets are extremely basic, well commented, and require
only the most rudimentary understanding of C language syntax (which has
been copied to several other languages). Most technical artists or level
designers should be able to interpret these snippets with ease.

Overview

• Chapter 1 gets warmed up with some groundwork that it is needed in
the rest of the book and which you probably already know. It reviews
the Cartesian coordinate system in 2D and 3D and discusses how to
use the Cartesian coordinate system to locate points in space. Also
included is a very quick refresher on trigonometry and summation
notation.
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• Chapter 2 introduces vectors from a mathematical and geometric per-
spective and investigates the important relationship between points
and vectors. It also discusses a number of vector operations, how to
do them, what it means geometrically to do them, and situations for
which you might find them useful.

• Chapter 3 discusses examples of coordinate spaces and how they are
nested in a hierarchy. It also introduces the central concepts of basis
vectors and coordinate-space transformations.

• Chapter 4 introduces matrices from a mathematical and geometric
perspective and shows how matrices are a compact notation for the
math behind linear transformations.

• Chapter 5 surveys different types of linear transformations and their
corresponding matrices in detail. It also discusses various ways to
classify transformations.

• Chapter 6 covers a few more interesting and useful properties of matri-
ces, such as affine transforms and perspective projection, and explains
the purpose and workings of four-dimensional vectors and matrices
within a three-dimensional world.

• Chapter 7 discusses how to use polar coordinates in 2D and 3D, why
it is useful to do so, and how to convert between polar and Cartesian
representations.

• Chapter 8 discusses different techniques for representing orientation
and angular displacement in 3D: Euler angles, rotation matrices, ex-
ponential maps, and quaternions. For each method, it explains how
the method works and presents the advantages and disadvantages of
the method and when its use is recommended. It also shows how to
convert between different representations.

• Chapter 9 surveys a number of commonly used geometric primitives
and discusses how to represent and manipulate them mathematically.

• Chapter 10 is a whirlwind lesson on graphics, touching on a few se-
lected theoretical as well as modern practical issues. First, it presents
a high-level overview of “how graphics works,” leading up to the ren-
dering equation. The chapter then walks through a few theoretical
topics of a mathematical nature. Next it discusses two contemporary
topics that are often sources of mathematical difficulty and should
be of particular interest to the reader: skeletal animation and bump
mapping. Finally, the chapter presents an overview of the real-time
graphics pipeline, demonstrating how the theories from the first half
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of the chapter are implemented in the context of current rendering
hardware.

• Chapter 11 crams two rather large topics into one chapter. It in-
terleaves the highest-level topics from first-semester calculus with a
discussion of rigid body kinematics—how to describe and analyze the
motion of a rigid body without necessarily understanding its cause or
being concerned with orientation or rotation.

• Chapter 12 continues the discussion of rigid body mechanics. It starts
with a condensed explanation of classical mechanics, including New-
ton’s laws of motion and basic concepts such as inertia, mass, force,
and momentum. It reviews a few basic force laws, such as grav-
ity, springs, and friction. The chapter also considers the rotational
analogs of all of the linear ideas discussed up to this point. Due
attention is paid to the important topic of collisions. The chapter
ends with a discussion of issues that arise when using a computer to
simulate rigid bodies.

• Chapter 13 explains parametric curves in 3D. The first half of the
chapter explains how a relatively short curve is represented in some
common, important forms: monomial, Bézier, and Hermite. The
second half is concerned with fitting together these shorter pieces
into a longer curve, called a spline. In understanding each system,
the chapter considers what controls the system presents to a designer
of curves, how to take a description of a curve made by a designer and
recreate the curve, and how these controls can be used to construct
a curve with specific properties.

• Chapter 14 inspires the reader to pursue greatness in video games.

• Appendix A is an assortment of useful tests that can be performed on
geometric primitives. We intend it to be a helpful reference, but it
can also make for interesting browsing.

• Appendix B has all the answers.3

Find a Bug in This Book?

We calculated the odds that we could write an 800+ page math book free
of mistakes. The result was a negative number, which we know can’t be
right, but is probably pretty close. If you find a bug in this book, please

3To the exercises, that is.
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visit gamemath.com. Most likely, the error is already listed in the errata, in
which case you have our profound apologies. Otherwise, send us an email,
and you will have (in addition to our profound thanks) everlasting fame via
credit in the errata for being the first to find the mistake.

Careful. We don’t want to learn from this.

— Bill Watterson (1958–) from Calvin and Hobbes



Chapter 1

Cartesian Coordinate Systems

Before turning to those moral and mental aspects of the matter
which present the greatest difficulties, let the inquirer begin by

mastering more elementary problems.

— Sherlock Holmes from A Study in Scarlett (1887)

3D math is all about measuring locations, distances, and angles precisely
and mathematically in 3D space. The most frequently used framework to
perform such calculations using a computer is called the Cartesian coordi-
nate system. Cartesian mathematics was invented by (and is named after)
a brilliant French philosopher, physicist, physiologist, and mathematician
named René Descartes, who lived from 1596 to 1650. René Descartes is
famous not just for inventing Cartesian mathematics, which at the time
was a stunning unification of algebra and geometry. He is also well-known
for making a pretty good stab of answering the question “How do I know
something is true?”—a question that has kept generations of philosophers
happily employed and does not necessarily involve dead sheep (which will
perhaps disturbingly be a central feature of the next section), unless you
really want it to. Descartes rejected the answers proposed by the Ancient
Greeks, which are ethos (roughly, “because I told you so”), pathos (“be-
cause it would be nice”), and logos (“because it makes sense”), and set
about figuring it out for himself with a pencil and paper.

This chapter is divided into four main sections.

• Section 1.1 reviews some basic principles of number systems and the
first law of computer graphics.

• Section 1.2 introduces 2D Cartesian mathematics, the mathematics
of flat surfaces. It shows how to describe a 2D cartesian coordinate
space and how to locate points using that space.

• Section 1.3 extends these ideas into three dimensions. It explains left-
and right-handed coordinate spaces and establishes some conventions
used in this book.

1
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• Section 1.4 concludes the chapter by quickly reviewing assorted pre-
requisites.

1.1 1D Mathematics

You’re reading this book because you want to know about 3D mathematics,
so you’re probably wondering why we’re bothering to talk about 1D math.
Well, there are a couple of issues about number systems and counting that
we would like to clear up before we get to 3D.

Figure 1.1
One dead sheep

The natural numbers, often called the counting numbers, were invented
millennia ago, probably to keep track of dead sheep. The concept of “one
sheep” came easily (see Figure 1.1), then “two sheep,” “three sheep,” but
people very quickly became convinced that this was too much work, and
gave up counting at some point that they invariably called “many sheep.”
Different cultures gave up at different points, depending on their threshold
of boredom. Eventually, civilization expanded to the point where we could
afford to have people sitting around thinking about numbers instead of
doing more survival-oriented tasks such as killing sheep and eating them.
These savvy thinkers immortalized the concept of zero (no sheep), and
although they didn’t get around to naming all of the natural numbers,
they figured out various systems whereby they could name them if they
really wanted to using digits such as 1, 2, etc. (or if you were Roman, M,
X, I, etc.). Thus, mathematics was born.

The habit of lining sheep up in a row so that they can be easily counted
leads to the concept of a number line, that is, a line with the numbers
marked off at regular intervals, as in Figure 1.2. This line can in principle
go on for as long as we wish, but to avoid boredom we have stopped at five
sheep and used an arrowhead to let you know that the line can continue.
Clearer thinkers can visualize it going off to infinity, but historical purveyors
of dead sheep probably gave this concept little thought outside of their
dreams and fevered imaginings.

Figure 1.2. A number line for the natural numbers

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-000.jpg&w=69&h=70
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-001.jpg&w=268&h=74
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Figure 1.3. A number line for integers. (Note the ghost sheep for negative numbers.)

At some point in history, it was probably realized that sometimes, par-
ticularly fast talkers could sell sheep that they didn’t actually own, thus
simultaneously inventing the important concepts of debt and negative num-
bers. Having sold this putative sheep, the fast talker would in fact own
“negative one” sheep, leading to the discovery of the integers, which consist
of the natural numbers and their negative counterparts. The corresponding
number line for integers is shown in Figure 1.3.

The concept of poverty probably predated that of debt, leading to a
growing number of people who could afford to purchase only half a dead
sheep, or perhaps only a quarter. This led to a burgeoning use of fractional
numbers consisting of one integer divided by another, such as 2/3 or 111/27.
Mathematicians called these rational numbers, and they fit in the number
line in the obvious places between the integers. At some point, people
became lazy and invented decimal notation, writing “3.1415” instead of
the longer and more tedious 31415/10000, for example.

After a while it was noticed that some numbers that appear to turn
up in everyday life were not expressible as rational numbers. The classic
example is the ratio of the circumference of a circle to its diameter, usually
denoted π (the Greek letter pi, pronounced “pie”). These are the so-called
real numbers, which include the rational numbers and numbers such as π
that would, if expressed in decimal notation, require an infinite number of
decimal places. The mathematics of real numbers is regarded by many to
be the most important area of mathematics—indeed, it is the basis of most
forms of engineering, so it can be credited with creating much of modern
civilization. The cool thing about real numbers is that although rational
numbers are countable (that is, can be placed into one-to-one correspon-
dence with the natural numbers), the real numbers are uncountable. The
study of natural numbers and integers is called discrete mathematics, and
the study of real numbers is called continuous mathematics.

The truth is, however, that real numbers are nothing more than a polite
fiction. They are a relatively harmless delusion, as any reputable physicist
will tell you. The universe seems to be not only discrete, but also finite.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-002.jpg&w=314&h=69
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If there are a finite amount of discrete things in the universe, as currently
appears to be the case, then it follows that we can only count to a certain
fixed number, and thereafter we run out of things to count on—not only do
we run out of dead sheep, but toasters, mechanics, and telephone sanitizers,
too. It follows that we can describe the universe using only discrete mathe-
matics, and only requiring the use of a finite subset of the natural numbers
at that (large, yes, but finite). Somewhere, someplace there may be an
alien civilization with a level of technology exceeding ours who have never
heard of continuous mathematics, the fundamental theorem of calculus, or
even the concept of infinity; even if we persist, they will firmly but politely
insist on having no truck with π, being perfectly happy to build toasters,
bridges, skyscrapers, mass transit, and starships using 3.14159 (or perhaps
3.1415926535897932384626433832795 if they are fastidious) instead.

So why do we use continuous mathematics? Because it is a useful tool
that lets us do engineering. But the real world is, despite the cognitive
dissonance involved in using the term “real,” discrete. How does that affect
you, the designer of a 3D computer-generated virtual reality? The computer
is, by its very nature, discrete and finite, and you are more likely to run into
the consequences of the discreteness and finiteness during its creation than
you are likely to in the real world. C++ gives you a variety of different forms
of number that you can use for counting or measuring in your virtual world.
These are the short, the int, the float and the double, which can be
described as follows (assuming current PC technology). The short is a 16-
bit integer that can store 65,536 different values, which means that “many
sheep” for a 16-bit computer is 65,537. This sounds like a lot of sheep,
but it isn’t adequate for measuring distances inside any reasonable kind of
virtual reality that take people more than a few minutes to explore. The
int is a 32-bit integer that can store up to 4,294,967,296 different values,
which is probably enough for your purposes. The float is a 32-bit value
that can store a subset of the rationals (slightly fewer than 4,294,967,296 of
them, the details not being important here). The double is similar, using
64 bits instead of 32.

The bottom line in choosing to count and measure in your virtual world
using ints, floats, or doubles is not, as some misguided people would have
it, a matter of choosing between discrete shorts and ints versus continuous
floats and doubles; it is more a matter of precision. They are all discrete
in the end. Older books on computer graphics will advise you to use integers
because floating-point hardware is slower than integer hardware, but this
is no longer the case. In fact, the introduction of dedicated floating point
vector processors has made floating-point arithmetic faster than integer in
many common cases. So which should you choose? At this point, it is
probably best to introduce you to the first law of computer graphics and
leave you to think about it.



1.2. 2D Cartesian Space 5

The First Law of Computer Graphics

If it looks right, it is right.

We will be doing a lot of trigonometry in this book. Trigonometry
involves real numbers such as π, and real-valued functions such as sine and
cosine (which we’ll get to later). Real numbers are a convenient fiction,
so we will continue to use them. How do you know this is true? Because,
Descartes notwithstanding, we told you so, because it would be nice, and
because it makes sense.

1.2 2D Cartesian Space

You probably have used 2D Cartesian coordinate systems even if you have
never heard the term “Cartesian” before. “Cartesian” is mostly just a fancy
word for “rectangular.” If you have ever looked at the floor plans of a house,
used a street map, seen a football1 game, or played chess, you have some
exposure to 2D Cartesian coordinate spaces.

This section introduces 2D Cartesian mathematics, the mathematics of
flat surfaces. It is divided into three main subsections.

• Section 1.2.1 provides a gentle introduction to the concept of 2D
Cartesian space by imagining a fictional city called Cartesia.

• Section 1.2.2 generalizes this concept to arbitrary or abstract 2D
Cartesian spaces. The main concepts introduced are

◦ the origin

◦ the x- and y-axes

◦ orienting the axes in 2D

• Section 1.2.3 describes how to specify the location of a point in the
2D plane using Cartesian (x, y) coordinates.

1This sentence works no matter which sport you think we are referring to with the
word “football.” Well, OK, it works a little better with American football because of
the clearly marked yard lines.
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Figure 1.4. Map of the hypothetical city of Cartesia

1.2.1 An Example: The Hypothetical City of Cartesia

Let’s imagine a fictional city named Cartesia. When the Cartesia city
planners were laying out the streets, they were very particular, as illustrated
in the map of Cartesia in Figure 1.4.

As you can see from the map, Center Street runs east-west through the
middle of town. All other east-west streets (parallel to Center Street) are
named based on whether they are north or south of Center Street, and how
far they are from Center Street. Examples of streets that run east-west are
North 3rd Street and South 15th Street.

The other streets in Cartesia run north-south. Division Street runs
north-south through the middle of town. All other north-south streets
(parallel to Division Street) are named based on whether they are east or

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-004.jpg&w=313&h=313
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west of Division Street, and how far they are from Division Street. So we
have streets such as East 5th Street and West 22nd Street.

The naming convention used by the city planners of Cartesia may not
be creative, but it certainly is practical. Even without looking at the map,
it is easy to find the donut shop at North 4th and West 2nd. It’s also easy
to determine how far you will have to drive when traveling from one place
to another. For example, to go from that donut shop at North 4th and
West 2nd, to the police station at South 3rd and Division, you would travel
seven blocks south and two blocks east.

1.2.2 Arbitrary 2D Coordinate Spaces

Before Cartesia was built, there was nothing but a large flat area of land.
The city planners arbitrarily decided where the center of town would be,
which direction to make the roads run, how far apart to space the roads, and
so forth. Much like the Cartesia city planners laid down the city streets, we
can establish a 2D Cartesian coordinate system anywhere we want—on a
piece of paper, a chessboard, a chalkboard, a slab of concrete, or a football
field.

Figure 1.5 shows a diagram of a 2D Cartesian coordinate system.

As illustrated in Figure 1.5, a 2D Cartesian coordinate space is defined
by two pieces of information:

• Every 2D Cartesian coordinate space has a special location, called
the origin, which is the “center” of the coordinate system. The origin
is analogous to the center of the city in Cartesia.

Figure 1.5
A 2D Cartesian coordinate space

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-005.jpg&w=171&h=171
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• Every 2D Cartesian coordinate space has two straight lines that pass
through the origin. Each line is known as an axis and extends in-
finitely in two opposite directions. The two axes are perpendicular
to each other. (Actually, they don’t have to be, but most of the co-
ordinate systems we will look at will have perpendicular axes.) The
two axes are analogous to Center and Division streets in Cartesia.
The grid lines in the diagram are analogous to the other streets in
Cartesia.

At this point it is important to highlight a few significant differences
between Cartesia and an abstract mathematical 2D space:

• The city of Cartesia has official city limits. Land outside of the city
limits is not considered part of Cartesia. A 2D coordinate space,
however, extends infinitely. Even though we usually concern ourselves
with only a small area within the plane defined by the coordinate
space, in theory this plane is boundless. Also, the roads in Cartesia
go only a certain distance (perhaps to the city limits) and then they
stop. In contrast, our axes and grid lines extend potentially infinitely
in two directions.

• In Cartesia, the roads have thickness. In contrast, lines in an abstract
coordinate space have location and (possibly infinite) length, but no
real thickness.

• In Cartesia, you can drive only on the roads. In an abstract coordinate
space, every point in the plane of the coordinate space is part of the
coordinate space, not just the “roads.” The grid lines are drawn only
for reference.

In Figure 1.5, the horizontal axis is called the x-axis, with positive x
pointing to the right, and the vertical axis is the y-axis, with positive y
pointing up. This is the customary orientation for the axes in a diagram.
Note that “horizontal” and “vertical” are terms that are inappropriate for
many 2D spaces that arise in practice. For example, imagine the coordinate
space on top of a desk. Both axes are “horizontal,” and neither axis is really
“vertical.”

The city planners of Cartesia could have made Center Street run north-
south instead of east-west. Or they could have oriented it at a completely
arbitrary angle. For example, Long Island, New York, is reminiscent of
Cartesia, where for convenience the “streets” (1st Street, 2nd Street etc.)
run across the island, and the “avenues” (1st Avenue, 2nd Avenue, etc.)
run along its long axis. The geographic orientation of the long axis of the
island is an arbitrary result of nature. In the same way, we are free to orient
our axes in any way that is convenient to us. We must also decide for each
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axis which direction we consider to be positive. For example, when working
with images on a computer screen, it is customary to use the coordinate
system shown in Figure 1.6. Notice that the origin is in the upper left-hand
corner, +x points to the right, and +y points down rather than up.

Figure 1.6
Screen coordinate space

Unfortunately, when Cartesia was
being laid out, the only mapmak-
ers were in the neighboring town of
Dyslexia. The minor-level functionary
who sent the contract out to bid ne-
glected take into account that the
dyslectic mapmaker was equally likely
to draw his maps with north pointing
up, down, left, or right. Although he
always drew the east-west line at right
angles to the north-south line, he often
got east and west backwards. When his
boss realized that the job had gone to
the lowest bidder, who happened to live
in Dyslexia, many hours were spent in
committee meetings trying to figure out
what to do. The paperwork had been
done, the purchase order had been is-
sued, and bureaucracies being what they are, it would be too expensive
and time-consuming to cancel the order. Still, nobody had any idea what
the mapmaker would deliver. A committee was hastily formed.

The committee fairly quickly decided that there were only eight possi-
ble orientations that the mapmaker could deliver, shown in Figure 1.7. In

Figure 1.7. Possible map axis orientations in 2D

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-006.jpg&w=142&h=141
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the best of all possible worlds, he would deliver a map oriented as shown
in the top-left rectangle, with north pointing to the top of the
page and east to the right, which is what people usually expect. A subcom-
mittee formed for the task decided to name this the normal
orientation.

After the meeting had lasted a few hours and tempers were beginning
to fray, it was decided that the other three variants shown in the top row of
Figure 1.7 were probably acceptable too, because they could be transformed
to the normal orientation by placing a pin in the center of the page and
rotating the map around the pin. (You can do this, too, by placing this
book flat on a table and turning it.) Many hours were wasted by tired
functionaries putting pins into various places in the maps shown in the
second row of Figure 1.7, but no matter how fast they twirled them, they
couldn’t seem to transform them to the normal orientation. It wasn’t until
everybody important had given up and gone home that a tired intern,
assigned to clean up the used coffee cups, noticed that the maps in the
second row can be transformed into the normal orientation by holding them
up against a light and viewing them from the back. (You can do this, too,
by holding Figure 1.7 up to the light and viewing it from the back—you’ll
have to turn it, too, of course.) The writing was backwards too, but it was
decided that if Leonardo da Vinci (1452–1519) could handle backwards
writing in 15th century, then the citizens of Cartesia, though by no means
his intellectual equivalent (probably due to daytime TV), could probably
handle it in the 21st century.

In summary, no matter what orientation we choose for the x- and y-
axes, we can always rotate the coordinate space around so that +x points to
our right and +y points up. For our example of screen-space coordinates,
imagine turning the coordinate system upside down and looking at the
screen from behind the monitor. In any case, these rotations do not distort
the original shape of the coordinate system (even though we may be looking
at it upside down or reversed). So in one particular sense, all 2D coordinate
systems are “equal.” In Section 1.3.3, we discover the surprising fact that
this is not the case in 3D.

1.2.3 Specifying Locations in 2D Using Cartesian Coordinates

A coordinate space is a framework for specifying location precisely. A
gentleman of Cartesia could, if he wished to tell his lady love where to
meet him for dinner, for example, consult the map in Figure 1.4 and say,
“Meet you at the corner of East 2nd Street and North 4th Street.” Notice
that he specifies two coordinates, one in the horizontal dimension (East 2nd
Street, listed along the top of the map in Figure 1.4) and one in the vertical
dimension (North 4th Street, listed along the left of the map). If he wished
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to be concise he could abbreviate the “East 2nd Street” to “2” and the
“North 4th Street” to “4” and say to his lady love, somewhat cryptically,
“Meet you at (2, 4).”

The ordered pair (2, 4) is an example of what are called Cartesian coor-
dinates. In 2D, two numbers are used to specify a location. (The fact that
we use two numbers to describe the location of a point is the reason it’s
called two-dimensional space. In 3D, we will use three numbers.) The first
coordinate (the 2 in our example (2, 4)) is called the x-coordinate, and the
second coordinate (the 4 in our example (2, 4)) is called the y-coordinate.

Figure 1.8
How to locate a point using 2D Cartesian
coordinates

Analogous to the street names in
Cartesia, each of the two coordinates
specifies which side of the origin the
point is on and how far away the point is
from the origin in that direction. More
precisely, each coordinate is the signed
distance (that is, positive in one direc-
tion and negative in the other) to one
of the axes, measured along a line par-
allel to the other axis. Essentially, we
use positive coordinates for east and
north streets and negative coordinates
for south and west streets. As shown
in Figure 1.8, the x-coordinate desig-
nates the signed distance from the point
to the y-axis, measured along a line
parallel to the x-axis. Likewise, the
y-coordinate designates the signed dis-
tance from the point to the x-axis, measured along a line parallel to the
y-axis.

Figure 1.9 shows several points and their Cartesian coordinates. Notice
that the points to the left of the y-axis have negative x values, and those to
the right of the y-axis have positive x values. Likewise, points with positive
y are located above the x-axis, and points with negative y are below the
x-axis. Also notice that any point can be specified, not just the points at
grid line intersections. You should study this figure until you are sure that
you understand the pattern.

Let’s take a closer look at the grid lines usually shown in a diagram.
Notice that a vertical grid line is composed of points that all have the same
x-coordinate. In other words, a vertical grid line (actually any vertical
line) marks a line of constant x. Likewise, a horizontal grid line marks a
line of constant y; all the points on that line have the same y coordinate.
We’ll come back to this idea in a bit when we discuss polar coordinate
spaces.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-008.jpg&w=139&h=134


12 1. Cartesian Coordinate Systems

Figure 1.9. Example points labeled with 2D Cartesian coordinates

1.3 3D Cartesian Space

The previous sections have explained how the Cartesian coordinate system
works in 2D. Now it’s time to leave the flat 2D world and think about 3D
space.

It might seem at first that 3D space is only “50% more complicated”
than 2D. After all, it’s just one more dimension, and we already had two.
Unfortunately, this is not the case. For a variety of reasons, 3D space ismore
than incrementally more difficult than 2D space for humans to visualize and
describe. (One possible reason for this difficulty could be that our physical
world is 3D, whereas illustrations in books and on computer screens are
2D.) It is frequently the case that a problem that is “easy” to solve in 2D
is much more difficult or even undefined in 3D. Still, many concepts in
2D do extend directly into 3D, and we frequently use 2D to establish an
understanding of a problem and develop a solution, and then extend that
solution into 3D.

This section extends 2D Cartesian math into 3D. It is divided into four
major subsections.

• Section 1.3.1 begins the extension of 2D into 3D by adding a third
axis. The main concepts introduced are

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-009.jpg&w=214&h=214
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◦ the z-axis

◦ the xy, xz, and yz planes

• Section 1.3.2 describes how to specify the location of a point in the
3D plane using Cartesian (x, y, z) coordinates.

• Section 1.3.3 introduces the concepts of left-handed and right-handed
3D coordinate spaces. The main concepts introduced are

◦ the hand rule, an informal definition for left-handed and right-
handed coordinate spaces

◦ differences in rotation in left-handed and right-handed coordi-
nate spaces

◦ how to convert between the two

◦ neither is better than the other, only different

• Section 1.3.4 describes some conventions used in this book.

1.3.1 Extra Dimension, Extra Axis

In 3D, we require three axes to establish a coordinate system. The first
two axes are called the x-axis and y-axis, just as in 2D. (However, it is not
accurate to say that these are the same as the 2D axes; more on this later.)
We call the third axis (predictably) the z-axis. Usually, we set things up so
that all axes are mutually perpendicular, that is, each one is perpendicular
to the others. Figure 1.10 shows an example of a 3D coordinate space.

Figure 1.10
A 3D Cartesian coordinate space

As discussed in Section 1.2.2, it is customary in 2D for +x to point to
the right and +y to point up. (Or sometimes +y may point down, but
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in either case, the x-axis is horizontal and the y-axis is vertical.) These
conventions in 2D are fairly standardized. In 3D, however, the conven-
tions for arrangement of the axes in diagrams and the assignment of the
axes onto physical dimensions (left, right, up, down, forward, back) are
not very standardized. Different authors and fields of study have dif-
ferent conventions. Section 1.3.4 discusses the conventions used in this
book.

As mentioned earlier, it is not entirely appropriate to say that the x-axis
and y-axis in 3D are the “same” as the x-axis and y-axis in 2D. In 3D, any
pair of axes defines a plane that contains the two axes and is perpendicular
to the third axis. For example, the plane containing the x- and y-axes is
the xy plane, which is perpendicular to the z-axis. Likewise, the xz plane is
perpendicular to the y-axis, and the yz plane is perpendicular to the x-axis.
We can consider any of these planes a 2D Cartesian coordinate space in its
own right. For example, if we assign +x, +y, and +z to point right, up,
and forward, respectively, then the 2D coordinate space of the “ground” is
the xz plane, as shown in Figure 1.10.

1.3.2 Specifying Locations in 3D

In 3D, points are specified using three numbers, x, y, and z, which give the
signed distance to the yz, xz, and xy planes, respectively. This distance
is measured along a line parallel to the axis. For example, the x-value is
the signed distance to the yz plane, measured along a line parallel to the
x-axis. Don’t let this precise definition of how points in 3D are located
confuse you. It is a straightforward extension of the process for 2D, as
shown in Figure 1.11.

Figure 1.11
Locating points in 3D

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-011.jpg&w=134&h=160
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1.3.3 Lefthanded versus Righthanded Coordinate Spaces

As we discussed in Section 1.2.2, all 2D coordinate systems are “equal” in
the sense that for any two 2D coordinate spaces A and B, we can rotate
coordinate space A such that +x and +y point in the same direction as
they do in coordinate space B. (We are assuming perpendicular axes.)
Let’s examine this idea in more detail.

Figure 1.5 shows the “standard” 2D coordinate space. Notice that the
difference between this coordinate space and “screen” coordinate space
shown Figure 1.6 is that the y-axis points in opposite directions. How-
ever, imagine rotating Figure 1.6 clockwise 180 degrees so that +y points
up and +x points to the left. Now rotate it by “turning the page” and
viewing the diagram from behind. Notice that now the axes are oriented
in the “standard” directions like in Figure 1.5. No matter how many times
we flip an axis, we can always find a way to rotate things back into the
standard orientation.

Let’s see how this idea extends into 3D. Examine Figure 1.10 once more.
We stated earlier that +z points into the page. Does it have to be this way?
What if we made +z point out of the page? This is certainly allowed, so
let’s flip the z-axis.

Now, can we rotate the coordinate system around such that things line
up with the original coordinate system? As it turns out, we cannot. We
can rotate things to line up two axes at a time, but the third axes always
points in the wrong direction! (If you have trouble visualizing this, don’t
worry. In just a moment we will illustrate this principle in more concrete
terms.)

All 3D coordinate spaces are not equal, in the sense that some pairs of
coordinate systems cannot be rotated to line up with each other. There are
exactly two distinct types of 3D coordinate spaces: left-handed coordinate
spaces and right-handed coordinate spaces. If two coordinate spaces have
the same handedness, then they can be rotated such that the axes are
aligned. If they are of opposite handedness, then this is not possible.

What exactly do “left-handed” and “right-handed” mean? The most
intuitive way to identify the handedness of a particular coordinate system
is to use, well, your hands! With your left hand, make an ‘L’ with your
thumb and index finger.2 Your thumb should be pointing to your right, and
your index finger should be pointing up. Now extend your third finger3 so
it points directly forward. You have just formed a left-handed coordinate
system. Your thumb, index finger, and third finger point in the +x, +y,
and +z directions, respectively. This is shown in Figure 1.12.

2You may have to put the book down.
3This may require some dexterity. The authors advise that you not do this in public

without first practicing privately, to avoid offending innocent bystanders.
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Figure 1.12
Lefthanded coordinate space

Now perform the same experiment with your right hand. Notice that
your index finger still points up, and your third finger points forward. How-
ever, with your right hand, your thumb will point to the left. This is
a right-handed coordinate system. Again, your thumb, index finger, and
third finger point in the +x, +y, and +z directions, respectively. A right-
handed coordinate system is shown in Figure 1.13.

Figure 1.13
Righthanded coordinate space

Try as you might, you cannot rotate your hands into a position such
that all three fingers simultaneously point the same direction on both hands.
(Bending your fingers is not allowed.)

Left-handed and right-handed coordinate systems also differ in the defi-
nition of “positive rotation.” Let’s say we a have line in space and we need
to rotate about this line by a specified angle. We call this line an axis of
rotation, but don’t think that the word axis implies that we’re talking only
about one of the cardinal axes (the x-, y-, or z-axis). An axis of rotation
can be arbitrarily oriented. Now, if you tell me to “rotate 30o about the

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-012.jpg&w=144&h=142
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-013.jpg&w=144&h=142
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Left-hand rule Right-hand rule

Figure 1.14. The lefthand rule and righthand rule define which direction is considered
“positive” rotation.

axis,” how do I know which way to rotate? We need to agree between us
that one direction of rotation is the positive direction, and the other di-
rection is the negative direction. The standard way to tell which is which
in a left-handed coordinate system is called the left-hand rule. First, we
must define which way our axis “points.” Of course, the axis of rotation is
theoretically infinite in length, but we still consider it having a positive and
negative end, just like the normal cardinal axes that define our coordinate
space. The left-hand rule works like this: put your left hand in the “thumbs
up” position, with your thumb pointing towards the positive end of the axis
of rotation. Positive rotation about the axis of rotation is in the direction
that your fingers are curled. There’s a corresponding rule for right-handed
coordinate spaces; both of these rules are illustrated in Figure 1.14.

As you can see, in a left-handed coordinate system, positive rotation
rotates clockwise when viewed from the positive end of the axis, and in a
right-handed coordinate system, positive rotation is counterclockwise. Ta-
ble 1.1 shows what happens when we apply this general rule to the specific
case of the cardinal axes.

Any left-handed coordinate system can be transformed into a right-
handed coordinate system, or vice versa. The simplest way to do this is
by swapping the positive and negative ends of one axis. Notice that if we

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-014.jpg&w=123&h=199
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-015.jpg&w=123&h=199
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When looking towards
the origin from. . .

Positive rotation Negative rotation
Lefthanded: Clockwise Lefthanded: Counterclockwise
Righthanded: Counterclockwise Righthanded: Clockwise

+x +y → +z → −y → −z → +y +y → −z → −y → +z → +y
+y +z → +x → −z → −x → +z +z → −x → −z → +x → +z
+z +x → +y → −x → −y → +x +x → −y → −x → +y → +x

Table 1.1. Rotation about the cardinal axes in left and righthanded coordinate systems

flip two axes, it is the same as rotating the coordinate space 180o about
the third axis, which does not change the handedness of the coordinate
space. Another way to toggle the handedness of a coordinate system is to
exchange two axes.

Both left-handed and right-handed coordinate systems are perfectly
valid, and despite what you might read in other books, neither is “better”
than the other. People in various fields of study certainly have preferences
for one or the other, depending on their backgrounds. For example, some
newer computer graphics literature uses left-handed coordinate systems,
whereas traditional graphics texts and more math-oriented linear algebra
people tend to prefer right-handed coordinate systems. Of course, these
are gross generalizations, so always check to see what coordinate system
is being used. The bottom line, however, is that in many cases it’s just
a matter of a negative sign in the z-coordinate. So, appealing to the first
law of computer graphics in Section 1.1, if you apply a tool, technique, or
resource from another book, web page, or article and it doesn’t look right,
try flipping the sign on the z-axis.

1.3.4 Some Important Conventions Used in This Book

When designing a 3D virtual world, several design decisions have to be
made beforehand, such as left-handed or right-handed coordinate system,
which direction is +y, and so forth. The map makers from Dyslexia had
to choose from among eight different ways to assign the axes in 2D (see
Figure 1.7). In 3D, we have a total of 48 different combinations to choose
from; 24 of these combinations are left-handed, and 24 are right-handed.
(Exercise 3 asks you to list all of them.)

Different situations can call for different conventions, in the sense that
certain tasks can be easier if you adopt the right conventions. Usually,
however, it is not a major deal as long as you establish the conventions
early in your design process and stick to them. (In fact, the choice is most
likely thrust upon you by the engine or framework you are using, because
very few people start from scratch these days.) All of the basic principles
discussed in this book are applicable regardless of the conventions used.
For the most part, all of the equations and techniques given are applicable
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regardless of convention, as well.4 However, in some cases there are some
slight, but critical, differences in application dealing with left-handed versus
right-handed coordinate spaces. When those differences arise, we will point
them out.

We use a left-handed coordinate system in this book. The +x, +y,
and +z directions point right, up, and forward, respectively, as shown in
Figure 1.15. In situations where “right” and “forward” are not appropriate
terms (for example, when we discuss the world coordinate space), we assign
+x to “east” and +z to “north.”

Figure 1.15
The lefthanded coordinate system
conventions used in this book

1.4 Odds and Ends

In this book, we spend a lot of time focusing on some crucial material that
is often relegated to a terse presentation tucked away in an appendix in
the books that consider this material a prerequisite. We, too, must assume
a nonzero level of mathematical knowledge from the reader, or else every
book would get no further than a review of first principles, and so we also
have our terse presentation of some prerequisites. In this section we present
a few bits of mathematical knowledge with which most readers are probably
familiar, but might need a quick refresher.

4This is due to a fascinating and surprising symmetry in nature. You might say that
nature doesn’t know if we are using left- or right-handed coordinates. There’s a really
interesting discussion in The Feynman Lectures on Physics about how it is impossible
without very advanced physics to describe the concepts of “left” or “right” to someone
without referencing some object you both have seen.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-016.jpg&w=180&h=169
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1.4.1 Summation and Product Notation

Summation notation is a shorthand way to write the sum of a list of things.
It’s sort of like a mathematical for loop. Let’s look at an example:

Summation notation
6
∑

i=1

ai = a1 + a2 + a3 + a4 + a5 + a6.

The variable i is known as the index variable. The expressions above and
below the summation symbol tell us how many times to execute our “loop”
and what values to use for i during each iteration. In this case, i will
count from 1 to 6. To “execute” our loop, we iterate the index through
all the values specified by the control conditions. For each iteration, we
evaluate the expression on the right-hand side of the summation notation
(substituting the appropriate value for the index variable), and add this to
our sum.

Summation notation is also known as sigma notation because that cool-
looking symbol that looks like an E is the capital version of the Greek letter
sigma.

A similar notation is used when we are taking the product of a series of
values, only we use the symbol Π, which is the capital version of the letter
π:

Product notation

n
∏

i=1

ai = a1 × a2 × · · · × an−1 × an.

1.4.2 Interval Notation

Several times in this book, we refer to a subset of the real number line using
interval notation. The notation [a, b] means, “the portion of the number
line from a to b.” Or, more formally, we could read [a, b] as “all numbers x
such that a ≤ x ≤ b.” Notice that this is a closed interval, meaning that the
endpoints a and b are included in the interval. An open interval is one in
which the endpoints are excluded. It is denoted using parentheses instead
of square brackets: (a, b). This interval contains all x such that a < x < b.
Sometimes a closed interval is called inclusive and an open interval called
exclusive.

Occasionally, we encounter half-open intervals, which include one end-
point but exclude the other. These are denoted with a lopsided5 notation
such as [a, b) or (a, b], with the square bracket being placed next to the
endpoint that is included. By convention, if an endpoint is infinite, we con-
sider that end to be open. For example, the set of all nonnegative numbers
is [0,∞).

5And confusing to the delimiter matching feature of your text editor.
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Notice that the notation (x, y) could refer to an open interval or a 2D
point. Likewise, [x, y] could be a closed interval or a 2D vector (discussed
in the next chapter). The context will always make clear which is the case.

1.4.3 Angles, Degrees, and Radians

An angle measures an amount of rotation in the plane. Variables repre-
senting angles are often assigned the Greek letter θ.6 The most important
units of measure used to specify angles are degrees (o) and radians (rad).

Humans usually measure angles using degrees. One degree measures
1/360th of a revolution, so 360o represents a complete revolution.7 Math-
ematicians, however, prefer to measure angles in radians, which is a unit
of measure based on the properties of a circle. When we specify the angle
between two rays in radians, we are actually measuring the length of the
intercepted arc of a unit circle (a circle centered at the origin with radius 1),
as shown in Figure 1.16.

Figure 1.16
A radian measures arc length on a
unit circle

6One prerequisite that we do not assume in this book is familiarity with the Greek
alphabet. The symbol θ is the lowercase theta, pronounced “THAY-tuh.”

7The number 360 is a relatively arbitrary choice, which may have had its origin in
primitive calendars, such as the Persian calendar, which divided the year into 360 days.
This error was never corrected to 365 because the number 360 is so darn convenient. The
number 360 has a whopping 22 divisors (not counting itself and 1): 2, 3, 4, 5, 6, 8, 9, 10,
12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, and 180. This means 360 can be divided
evenly in a large number of cases without needing fractions, which was apparently a
good thing to early civilizations. As early as 1750 BCE the Babylonians had devised
a sexagesimal (base 60) number system. The number 360 is also large enough so that
precision to the nearest whole degree is sufficient in many circumstances.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-017.jpg&w=166&h=166
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The circumference of a unit circle is 2π, with π approximately equal to
3.14159265359. Therefore, 2π radians represents a complete revolution.

Since 360o = 2π rad, 180o = π rad. To convert an angle from radians
to degrees, we multiply by 180/π ≈ 57.29578, and to convert an angle from
degrees to radians, we multiply by π/180 ≈ 0.01745329. Thus,

Converting between
radians and degrees

1 rad = (180/π)
o ≈ 57.29578o,

1o = (π/180) rad ≈ 0.01745329 rad.

In the next section, Table 1.2 will list several angles in both degree and
radian format.

1.4.4 Trig Functions

There are many ways to define the elementary trig functions. In this section,
we define them using the unit circle. In two dimensions, if we begin with
a unit ray pointing towards +x, and then rotate this ray counterclockwise
by an angle θ, we have drawn the angle in the standard position. (If the
angle is negative, rotate the ray in the other direction.) This is illustrated
in Figure 1.17.

The (x, y) coordinates of the endpoint of a ray thus rotated have spe-
cial properties and are so significant mathematically that they have been
assigned special functions, known as the cosine and sine of the angle:

Defining sine and cosine
using the unit circle cos θ = x, sin θ = y.

Figure 1.17
An angle in standard
position

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-018.jpg&w=189&h=190
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You can easily remember which is which because they are in alphabetical
order: x comes before y, and cos comes before sin.

The secant, cosecant, tangent, and cotangent are also useful trig func-
tions. They can be defined in terms of the the sine and cosine:

sec θ =
1

cos θ
, tan θ =

sin θ

cos θ
,

csc θ =
1

sin θ
, cot θ =

1

tan θ
=

cos θ

sin θ
.

If we form a right triangle using the rotated ray as the hypotenuse (the
side opposite the right angle), we see that x and y give the lengths of the
legs (those sides that form the right angle). The length of the adjacent leg
is x, and the length of the opposite leg is y, with the terms “adjacent” and
“opposite” interpreted relative to the angle θ. Again, alphabetical order
is a useful memory aid: “adjacent” and “opposite” are in the same order
as the corresponding “cosine” and “sine.” Let the abbreviations hyp, adj ,
and opp refer to the lengths of the hypotenuse, adjacent leg, and opposite
leg, respectively, as shown in Figure 1.18.

Figure 1.18
The hypotenuse and the adjacent and
opposite legs

The primary trig functions are defined by the following ratios:

cos θ =
adj

hyp
, sin θ =

opp

hyp
, tan θ =

opp

adj
,

sec θ =
hyp

adj
, csc θ =

hyp

opp
, cot θ =

adj

opp
.

Because of the properties of similar triangles, the above equations apply
even when the hypotenuse is not of unit length. However, they do not

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-019.jpg&w=157&h=157


24 1. Cartesian Coordinate Systems

Figure 1.19
A more general
interpretation using (x, y)
coordinates rather than side
lengths

apply when θ is obtuse, since we cannot form a right triangle with an
obtuse interior angle. But by showing the angle in standard position and
allowing the rotated ray to be of any length r (Figure 1.19), we can express
the ratios using x, y, and r:

cos θ = x/r, sin θ = y/r, tan θ = y/x,

sec θ = r/x, csc θ = r/y, cot θ = x/y.

Table 1.2 shows several different angles, expressed in degrees and radi-
ans, and the values of their principal trig functions.

1.4.5 Trig Identities

In this section we present a number of basic relationships between the trig
functions. Because we assume in this book that the reader has some prior
exposure to trigonometry, we do not develop or prove these theorems. The
proofs can be found online or in any trigonometry textbook.

A number of identities can be derived based on the symmetry of the
unit circle:

Basic identities related
to symmetry

sin(−θ) =− sin θ, cos(−θ) = cos θ, tan(−θ) =− tan θ,

sin
(π

2
− θ
)

=cos θ, cos
(π

2
− θ
)

=sin θ, tan
(π

2
− θ
)

=cot θ.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-020.jpg&w=189&h=190


1.4. Odds and Ends 25

θo θ rad cos θ sin θ tan θ sec θ csc θ cot θ

0 0 1 0 0 1 undef undef

30 π
6 ≈ 0.5236

√
3
2

1
2

√
3
3

2
√
3

3 2
√
3

45 π
4 ≈ 0.7854

√
2
2

√
2
2 1

√
2

√
2 1

60 π
3 ≈ 1.0472 1

2

√
3
2

√
3 2 2

√
3

3

√
3
3

90 π
2 ≈ 1.5708 0 1 undef undef 1 0

120 2π
3 ≈ 2.0944 − 1

2

√
3
2 −

√
3 −2 2

√
3

3 −
√
3
3

135 3π
4 ≈ 2.3562 −

√
2
2

√
2
2 −1 −

√
2

√
2 −1

150 5π
6 ≈ 2.6180 −

√
3
2

1
2 −

√
3
3 − 2

√
3

3 2 −
√
3

180 π ≈ 3.1416 −1 0 0 −1 undef undef

210 7π
6 ≈ 3.6652 −

√
3
2 − 1

2

√
3
3 − 2

√
3

3 −2 −
√
3

225 5π
4 ≈ 3.9270 −

√
2
2 −

√
2
2 1 −

√
2 −

√
2 −1

240 4π
3 ≈ 4.1888 − 1

2 −
√
3
2

√
3 −2 − 2

√
3

3 −
√
3
3

270 3π
2 ≈ 4.7124 0 −1 undef undef −1 0

300 5π
3 ≈ 5.2360 1

2 −
√
3
2 −

√
3 2 − 2

√
3

3 −
√
3
3

315 7π
4 ≈ 5.4978

√
2
2 −

√
2
2 −1

√
2 −

√
2 −1

330 11π
6 ≈ 5.7596

√
3
2 − 1

2 −
√
3
3

2
√
3

3 −2 −
√
3

360 2π ≈ 6.2832 1 0 0 1 undef undef

Table 1.2. Common angles in degrees and radians, and the values of the principal trig
functions

Perhaps the most famous and basic identity concerning the right tri-
angle, one that most readers learned in their primary education, is the
Pythagorean theorem. It says that the sum of the squares of the two legs of
a right triangle is equal to the square of the hypotenuse. Or, more famously,
as shown in Figure 1.20,

Pythagorean theorema2 + b2 = c2.

By applying the Pythagorean theorem to the unit circle, one can deduce
the identities

Pythagorean identities
sin2 θ + cos2 θ = 1, 1 + tan2 θ = sec2 θ, 1 + cot2 θ = csc2 θ.
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Figure 1.20
The Pythagorean theorem

The following identities involve taking a trig function on the sum or
difference of two angles:

Sum and difference
identities

sin(a+ b) = sin a cos b+ cos a sin b,

sin(a− b) = sin a cos b− cos a sin b, (1.1)

cos(a+ b) = cos a cos b− sin a sin b,

cos(a− b) = cos a cos b+ sin a sin b,

tan(a+ b) =
tan a+ tan b

1− tan a tan b
,

tan(a− b) =
tan a− tan b

1 + tan a tan b
.

If we apply the sum identities to the special case where a and b are the
same, we get the following double angle identities:

Double angle identities sin 2θ = 2 sin θ cos θ,

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ,

tan 2θ =
2 tan θ

1− tan2 θ
.

We often need to solve for an unknown side length or angle in a triangle,
in terms of the known side lengths or angles. For these types of problems
the law of sines and law of cosines are helpful. The formula to use will
depend on which values are known and which value is unknown. Figure 1.21
illustrates the notation and shows that these identities hold for any triangle,
not just right triangles:

Law of sines

sinA

a
=

sinB

b
=

sinC

c
,

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-021.jpg&w=141&h=106
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Figure 1.21
Notation used for the law of sines
and law of cosines

Law of cosinesa2 = b2 + c2 − 2bc cosA,

b2 = a2 + c2 − 2ac cosB,

c2 = a2 + b2 − 2ab cosC.

1.5 Exercises
(Answers on page 745.)

1. Give the coordinates of the following points. Assume the standard 2D
conventions. The darker grid lines represent one unit.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-2&iName=master.img-022.jpg&w=164&h=81
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2. Give the coordinates of the following points:

+x

ʡz

+y

a

b

e

g

c

f

d

h

i

3. List the 48 different possible ways that the 3D axes may be assigned to the
directions “north,” “east,” and “up.” Identify which of these combinations
are left-handed, and which are right-handed.

4. In the popular modeling program 3DS Max, the default orientation of the
axes is for +x to point right/east, +y to point forward/north, and +z to
point up.

(a) Is this a left- or right-handed coordinate space?

(b) How would we convert 3D coordinates from the coordinate system
used by 3DS Max into points we could use with our coordinate con-
ventions discussed in Section 1.3.4?

(c) What about converting from our conventions to the 3DS Max con-
ventions?

5. A common convention in aerospace is that +x points forward/north, +y
points right/east, and z points down.

(a) Is this a left- or right-handed coordinate space?

(b) How would we convert 3D coordinates from these aerospace conven-
tions into our conventions?

(c) What about converting from our conventions to the aerospace con-
ventions?

6. In a left-handed coordinate system:



1.5. Exercises 29

(a) when looking from the positive end of an axis of rotation, is positive
rotation clockwise (CW) or counterclockwise (CCW)?

(b) when looking from the negative end of an axis of rotation, is positive
rotation CW or CCW?

In a right-handed coordinate system:

(c) when looking from the positive end of an axis of rotation, is positive
rotation CW or CCW?

(d) when looking from the negative end of an axis of rotation, is positive
rotation CW or CCW?

7. Compute the following:

(a)

5
∑

i=1

i (b)

5
∑

i=1

2i (c)

5
∏

i=1

2i (d)

4
∏

i=0

7(i+ 1) (e)8
100
∑

i=1

i

8. Convert from degrees to radians:

(a) 30o (b) −45o (c) 60o (d) 90o (e) −180o
(f) 225o (g) −270o (h) 167.5o (i) 527o (j) −1080o

9. Convert from radians to degrees:

(a) −π/6 (b) 2π/3 (c) 3π/2 (d) −4π/3 (e) 2π
(f) π/180 (g) π/18 (h) −5π (i) 10π (j) π/5

10. In The Wizard of Oz, the scarecrow receives his degree from the wizard and
blurts out this mangled version of the Pythagorean theorem:

The sum of the square roots of any two sides of an isosceles
triangle is equal to the square root of the remaining side.

Apparently the scarecrow’s degree wasn’t worth very much, since this
“proof that he had a brain” is actually wrong in at least two ways.9 What
should the scarecrow have said?

8There is a well-known story about the mathematician Karl Friedrich Gauss solving
this problem in only a few seconds while a student in primary school. As the story goes,
his teacher wanted to occupy the students by having them add the numbers 1 to 100
and turn in their answers at the end of class. However, mere seconds after being given
this assignment, Gauss handed the correct answer to his teacher as the teacher and the
rest of the class gazed in astonishment at the young Gauss.

9Homer Simpson repeated the same jibberish after putting on a pair of glasses found
in a toilet. A man in a nearby stall corrected him on one of his errors. So if you saw
that episode of The Simpsons, then you have a headstart on this question, but not the
whole answer.
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11. Confirm the following:

(a) (sin(α)/ csc(α)) + (cos(α)/ sec(α)) = 1

(b) (sec2(θ)− 1)/ sec2(θ) = sin2(θ)

(c) 1 + cot2(t) = csc2(t)

(d) cos(φ)(tan(φ) + cot(φ)) = csc(φ)

People, places, science, odds and ends, and things you should
have learned in school had you been paying attention.

— Categories from Michael Feldman’s
weekend radio show Whaddya know?



Chapter 2

Vectors

Yellow fever vaccine should be administered
10 to 12 days before exposure to the vector.

— The United States Dispensatory (1978)

Vectors are the formal mathematical entities we use to do 2D and 3D
math. The word vector has two distinct but related meanings. Mathe-
matics books, especially those on linear algebra, tend to focus on a rather
abstract definition, caring about the numbers in a vector but not necessar-
ily about the context or actual meaning of those numbers. Physics books,
on the other hand, tend towards an interpretation that treats a vector as a
geometric entity to the extent that they avoid any mention of the coordi-
nates used to measure the vector, when possible. It’s no wonder that you
can sometimes find people from these two disciplines correcting one another
on the finer points of “how vectors really work.” Of course the reality is
that they are both right,1 and to be proficient with 3D math, we need to
understand both interpretations of vectors and how the two interpretations
are related.

This chapter introduces the concept of vectors. It is divided into the
following sections.

• Section 2.1 covers some of the basic mathematical properties of vec-
tors.

• Section 2.2 gives a high-level introduction to the geometric properties
of vectors.

• Section 2.3 connects the mathematical definition with the geometric
one and discusses how vectors work within the framework of Cartesian
coordinates.

1But the perspective taken by physics textbooks is probably the one that’s more
appropriate for video game programming, at least in the beginning.
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• Section 2.4 discusses the often confusing relationship between points
and vectors and considers the rather philosophical question of why it
is so difficult to make absolute measurements.

• Sections 2.5–2.12 discuss the fundamental calculations we can perform
with vectors, considering both the algebra and geometric interpreta-
tions of each operation.

• Section 2.13 presents a list of helpful vector algebra laws.

2.1 Mathematical Definition of Vector,
and Other Boring Stuff

To mathematicians, a vector is a list of numbers. Programmers will rec-
ognize the synonymous term array. Notice that the STL template array
class in C++ is named vector, and the basic Java array container class is
java.util.Vector. So mathematically, a vector is nothing more than an
array of numbers.

Yawn. . . If this abstract definition of a vector doesn’t inspire you, don’t
worry. Like many mathematical subjects, we must first introduce some
terminology and notation before we can get to the “fun stuff.”

Mathematicians distinguish between vector and scalar (pronounced
“SKAY-lur”) quantities. You’re already an expert on scalars—scalar is
the technical term for an ordinary number. We use this term specifically
when we wish to emphasize that a particular quantity is not a vector quan-
tity. For example, as we will discuss shortly, “velocity” and “displacement”
are vector quantities, whereas “speed” and “distance” are scalar quantities.

The dimension of a vector tells how many numbers the vector contains.
Vectors may be of any positive dimension, including one. In fact, a scalar
can be considered a 1D vector. In this book, we primarily are interested in
2D, 3D, and (later) 4D vectors.

When writing a vector, mathematicians list the numbers surrounded
by square brackets, for example, [1, 2, 3]. When we write a vector inline
in a paragraph, we usually put commas between the numbers. When we
write it out in an equation, the commas are often omitted. In either case, a
vector written horizontally is called a row vector. Vectors are also frequently
written vertically:

A 3D column vector





1
2
3



.

A vector written vertically is known as a column vector. This book
uses both notations. For now, the distinction between row and column
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vectors won’t matter. However, in Section 4.1.7 we discuss why in certain
circumstances the distinction is critical.

When we wish to refer to the individual components in a vector, we use
subscript notation. In math literature, integer indices are used to access
the elements. For example v1 refers to the first element in v. However, we
are specifically interested in 2D, 3D, and 4D vectors rather than vectors of
arbitrary dimension n, so we rarely use this notation. Instead, we use x
and y to refer to the elements in a 2D vector; x, y, and z to refer to the
elements in a 3D vector; and x, y, z, and w to refer to the elements in a
4D vector. This notation is shown in Equation (2.1).

Vector subscript
notationa =

[

1
2

]

a1 = ax = 1
a2 = ay = 2

b =





3
4
5





b1 = bx = 3
b2 = by = 4
b3 = bz = 5

c =









6
7
8
9









c1 = cx = 6
c2 = cy = 7
c3 = cz = 8
c4 = cw = 9

(2.1)

Notice that the components of a 4D vector are not in alphabetical order.
The fourth value is w. (Hey, they ran out of letters in the alphabet!)

Now let’s talk about some important typeface conventions that are used
in this book. As you know, variables are placeholder symbols used to stand
for unknown quantities. In 3D math, we work with scalar, vector, and
(later) matrix quantities. In the same way that it’s important in a C++
or Java program to specify what type of data is stored by a variable, it
is important when working with vectors to be clear what type of data is
represented by a particular variable. In this book, we use different fonts for
variables of different types:

• Scalar variables are represented by lowercase Roman or Greek letters
in italics: a, b, x, y, z, θ, α, ω, γ.

• Vector variables of any dimension are represented by lowercase letters
in boldface: a, b, u, v, q, r.

• Matrix variables are represented using uppercase letters in boldface:
A, B, M, R.
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Note that other authors may use different conventions. One common con-
vention used frequently when writing vectors by hand, is to draw an arrow
over the vector, for example, ~a.

Before we go any further, a bit of context is in order concerning the
perspective that we are adopting about vectors. The branch of mathemat-
ics that deals primarily with vectors and matrices is called linear algebra,
a subject that assumes the abstract definition given previously: a vector is
an array of numbers. This highly generalized approach allows for the explo-
ration of a large set of mathematical problems. In linear algebra, vectors
and matrices of dimension n are used to solve a system of n linear equations
for n unknowns, without knowing or caring what physical significance, if
any, is attached to any of the numbers. This is certainly a fascinating and
highly practical study, but it is not of primary interest to our investigation
of 3D math. For 3D math, we are mostly concerned with the geometric
interpretations of vectors and vector operations.

Our focus is geometric, so we omit many details and concepts of linear
algebra that do not further our understanding of 2D or 3D geometry. Even
though we occasionally discuss properties or operations for vectors of an
arbitrary dimension n, we will usually focus on 2D, 3D, and (later) 4D
vectors and matrices. Even when the numbers in a vector do not have any
physical significance, the ability to visualize the linear algebra operations
is of some utility, so learning how to interpret the operations geometrically
is useful even in nonphysical applications. Some more context about how
the topics in this book fit into the bigger picture of linear algebra can be
found in Section 4.3.

2.2 Geometric Definition of Vector

Now that we have discussed what a vector is mathematically, let’s look at a
more geometric interpretation of vectors. Geometrically speaking, a vector
is a directed line segment that has magnitude and direction.

• The magnitude of a vector is the length of the vector. A vector may
have any nonnegative length.

• The direction of a vector describes which way the vector is pointing in
space. Note that “direction” is not exactly the same as “orientation,”
a distinction we will reexamine in Section 8.1.
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Figure 2.1
A 2D vector

Let’s look at a vector. Figure 2.1 shows an illustration of a vector in 2D.
It looks like an arrow, right? This is the standard way to represent a vector
graphically, since the two defining characteristics of a vector are captured:
its magnitude and direction.

We sometimes refer to the head and tail of a vector. As shown in
Figure 2.2, the head is the end of the vector with the arrowhead on it
(where the vector “ends”), and the tail is the other end (where the vector
“starts”).

Figure 2.2
A vector has a head and a tail

Where is this vector? Actually, that is not an appropriate question.
Vectors do not have position, only magnitude and direction. This may
sound impossible, but many quantities we deal with on a daily basis have
magnitude and direction, but no position. Consider how the two statements
below could make sense, regardless of the location where they are applied.

• Displacement. “Take three steps forward.” This sentence seems to
be all about positions, but the actual quantity used in the sentence is
a relative displacement and does not have an absolute position. This
relative displacement consists of a magnitude (3 steps) and a direction
(forward), so it could be represented by a vector.

• Velocity. “I am traveling northeast at 50 mph.” This sentence de-
scribes a quantity that has magnitude (50 mph) and direction (north-
east), but no position. The concept of “northeast at 50 mph” can be
represented by a vector.

Notice that displacement and velocity are technically different from the
terms distance and speed. Displacement and velocity are vector quantities
and therefore entail a direction, whereas distance and speed are scalar quan-
tities that do not specify a direction. More specifically, the scalar quantity
distance is the magnitude of the vector quantity displacement, and the
scalar quantity speed is the magnitude of the vector quantity velocity.

Because vectors are used to express displacements and relative differ-
ences between things, they can describe relative positions. (“My house is
3 blocks east of here.”) However, you should not think of a vector as hav-
ing an absolute position itself, instead, remember that it is describing the
displacement from one position to another, in this case from “here” to “my

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-3&iName=master.img-002.jpg&w=80&h=62
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house.” (More on relative versus absolute position in Section 2.4.1.) To
help enforce this, when you imagine a vector, picture an arrow. Remem-
ber that the length and direction of this arrow are significant, but not the
position.

Since vectors do not have a position, we can represent them on a diagram
anywhere we choose, provided that the length and direction of the vector
are represented correctly. We often use this fact to our advantage by sliding
the vector around into a meaningful location on a diagram.

Now that we have the big picture about vectors from a mathematical and
geometric perspective, let’s learn how to work with vectors in the Cartesian
coordinate system.

2.3 Specifying Vectors with Cartesian Coordinates

When we use Cartesian coordinates to describe vectors, each coordinate
measures a signed displacement in the corresponding dimension. For ex-
ample, in 2D, we list the displacement parallel to the x-axis, and the dis-
placement parallel to the y-axis, as illustrated in Figure 2.3.

Figure 2.3
Vectors are specified by giving the signed displacement in
each dimension.

Figure 2.4 shows several 2D vectors and their values. Notice that the
position of each vector on the diagram is irrelevant. (The axes are conspic-
uously absent to emphasize this fact, although we do assume the standard
convention of +x pointing to the right and +y pointing up.) For example,
two of the vectors in Figure 2.4 have the value [1.5, 1], but they are not in
the same place on the diagram.

3D vectors are a simple extension of 2D vectors. A 3D vector contains
three numbers, which measure the signed displacements in the x, y, and z
directions, just as you’d expect.

We are focusing on Cartesian coordinates for now, but they are not the
only way to describe vectors mathematically. Polar coordinates are also
common, especially in physics textbooks. Polar coordinates are the subject
of Chapter 7.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-3&iName=master.img-003.jpg&w=82&h=88
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Figure 2.4. Examples of 2D vectors and their values

2.3.1 Vector as a Sequence of Displacements

One helpful way to think about the displacement described by a vector is
to break out the vector into its axially aligned components. When these
axially aligned displacements are combined, they cumulatively define the
displacement defined by the vector as a whole.

For example, the 3D vector [1,−3, 4] represents a single displacement,
but we can visualize this displacement as moving 1 unit to the right, 3 units
down, and then 4 units forward. (Assume our convention that +x, +y,
and +z point right, up, and forward, respectively. Also note that we do

Figure 2.5
Interpreting a vector as a sequence of
displacements

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-3&iName=master.img-004.jpg&w=190&h=152
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-3&iName=master.img-005.jpg&w=137&h=167
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not “turn” between steps, so “forward” is always parallel to +z.) This
displacement is illustrated in Figure 2.5.

The order in which we perform the steps is not important; we could
move 4 units forward, 3 units down, and then 1 unit to the right, and
we would have displaced by the same total amount. The different order-
ings correspond to different routes along the axially aligned bounding box
containing the vector. Section 2.7.2 mathematically verifies this geometric
intuition.

2.3.2 The Zero Vector

For any given vector dimension, there is a special vector, known as the zero
vector, that has zeroes in every position. For example, the 3D zero vector is
[0, 0, 0]. We denote a zero vector of any dimension using a boldface zero: 0.
In other words,

The zero vector

0 =











0
0
...
0











.

The zero vector is special because it is the only vector with a magnitude
of zero. All other vectors have a positive magnitude. The zero vector is
also unique because it is the only vector that does not have a direction.

Since the zero vector doesn’t have a direction or length, we don’t draw
it as an arrow like we do for other vectors. Instead, we depict the zero
vector as a dot. But don’t let this make you think of the zero vector as a
“point” because a vector does not define a location. Instead, think of the
zero vector as a way to express the concept of “no displacement,” much as
the scalar zero stands for the concept of “no quantity.”

Like the scalar zero you know, the zero vector of a given dimension is
the additive identity for the set of vectors of that dimension. Try to take
yourself back to your algebra class, and retrieve from the depths of your
memory the concept of the additive identity: for any set of elements, the
additive identity of the set is the element x such that for all y in the set,
y+x = y.2 In other words, when we add the zero vector to any other vector,
we get that vector: 0+ a = a. Section 2.7 deals with vector addition.

2The typeface used here is not intended to limit the discussion to the set of scalars.
We are talking about elements in any set. Also, we request leniency from the abstract
algebra sticklers for our use of the word “set,” when we should use “group.” But the
latter term is not as widely understood, and we could only afford this footnote to dwell
on the distinction.
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Figure 2.6. Locating points versus specifying vectors

2.4 Vectors versus Points

Recall that a “point” has a location but no real size or thickness. In this
chapter, we have learned how a “vector” has magnitude and direction, but
no position. So “points” and “vectors” have different purposes, conceptu-
ally: a “point” specifies a position, and a “vector” specifies a displacement.

But now examine Figure 2.6, which compares an illustration from Chap-
ter 1 (Figure 1.8), showing how 2D points are located, with a figure from
earlier in this chapter (Figure 2.3), showing how 2D vectors are specified. It
seems that there is a strong relationship between points and vectors. This
section examines this important relationship.

2.4.1 Relative Position

Section 2.2 discussed the fact that because vectors can describe displace-
ments, they can describe relative positions. The idea of a relative position
is fairly straightforward: the position of something is specified by describing
where it is in relation to some other, known location.

This begs the questions: Where are these “known” locations? What is
an “absolute” position? It is surprising to realize that there is no such thing!
Every attempt to describe a position requires that we describe it relative
to something else. Any description of a position is meaningful only in
the context of some (typically “larger”) reference frame. Theoretically, we
could establish a reference frame encompassing everything in existence and
select a point to be the “origin” of this space, thus defining the “absolute”
coordinate space. However, even if such an absolute coordinate space were
possible, it would not be practical. Luckily for us, absolute positions in

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-3&iName=master.img-006.jpg&w=139&h=134
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-3&iName=master.img-007.jpg&w=82&h=88
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the universe aren’t important. Do you know your precise position in the
universe right now? We don’t know ours, either.3

2.4.2 The Relationship between Points and Vectors

Vectors are used to describe displacements, and therefore they can describe
relative positions. Points are used to specify positions. But we have just
established in Section 2.4.1 that any method of specifying a position must
be relative. Therefore, we must conclude that points are relative as well—
they are relative to the origin of the coordinate system used to specify their
coordinates. This leads us to the relationship between points and vectors.

Figure 2.7 illustrates how the point (x, y) is related to the vector [x, y],
given arbitrary values for x and y.

Figure 2.7
The relationship between points and vectors

As you can see, if we start
at the origin and move by the
amount specified by the vector
[x, y], we will end up at the lo-
cation described by the point
(x, y). Another way of say-
ing this is that the vector [x, y]
gives the displacement from the
origin to the point (x, y).

This may seem obvious, but
it is important to understand
that points and vectors are con-
ceptually distinct, but mathe-
matically equivalent. This con-
fusion between “points” and
“vectors” can be a stumbling
block for beginners, but it
needn’t be a problem for you.

When you think of a location, think of a point and visualize a dot. When
you think of a displacement, think of a vector and visualize an arrow.

In many cases, displacements are from the origin, and so the distinction
between points and vectors will be a fine one. However, we often deal with
quantities that are not relative to the origin, or any other point for that
matter. In these cases, it is important to visualize these quantities as an
arrow rather than a point.

The math we develop in the following sections operates on “vectors”
rather than “points.” Keep in mind that any point can be represented as
a vector from the origin.

3But we do know our position relative to the nearest Taco Bell.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-3&iName=master.img-008.jpg&w=160&h=154
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Actually, now would be a good time to warn you that a lot of people take
a much firmer stance on this issue and would not approve of our cavalier
attitude in treating vectors and points as mathematical equals.4 Such hard-
liners will tell you, for example, that while you can add two vectors (yielding
a third vector), and you can add a vector and a point (yielding a point),
you cannot add two points together. We admit that there is some value
in understanding these distinctions in certain circumstances. However, we
have found that, especially when writing code that operates on points and
vectors, adherence to these ethics results in programs that are almost always
longer and never faster.5 Whether it makes the code cleaner or easier to
understand is a highly subjective matter. Although this book does not use
different notations for points and vectors, in general it will be clear whether
a quantity is a point or a vector. We have tried to avoid presenting results
with vectors and points mixed inappropriately, but for all the intermediate
steps, we might not have been quite as scrupulous.

2.4.3 It’s All Relative

Before we move on to the vector operations, let’s take a brief philosoph-
ical intermission. Spatial position is not the only aspect of our world for
which we have difficulty establishing an “absolute” reference, and so we use
relative measurements. There are also temperature, loudness, and velocity.

Temperature. One of the first attempts to make a standard temperature
scale occurred about AD 170, when Galen proposed a standard “neutral”
temperature made up of equal quantities of boiling water and ice. On either
side of this temperature were four degrees of “hotter” and four degrees
of “colder.” Sounds fairly primitive, right? In 1724, Gabriel Fahrenheit
suggested a bit more precise system. He suggested that mercury be used
as the liquid in a thermometer, and calibrated his scale using two reference
points: the freezing point of water, and the temperature of a healthy human
being. He called his scale the Fahrenheit scale, and measurements were in
oF. In 1745, Carolus Linnaeus of Uppsala, Sweden, suggested that things
would be simpler if we made the scale range from 0 (at the freezing point
of water) to 100 (water’s boiling point), and called this scale the centigrade
scale. (This scale was later abandoned in favor of the Celsius scale, which is
technically different from centigrade in subtle ways that are not important
here.) Notice that all of these scales are relative—they are based on the
freezing point of water, which is an arbitrary (but highly practical) reference
point. A temperature reading of xoC basically means “x degrees hotter
than the temperature at which water freezes.” It wasn’t until 1848, with

4If you are one of those people, then this is a warning of a slightly different sort!
5Indeed, sometimes slower, depending on your compiler.
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the invention of the Kelvin scale by Lord Kelvin, that mankind finally had
an absolute temperature scale. 0 K is the coldest possible temperature,
corresponding to −273oC.

Loudness. Loudness is usually measured in decibels (abbreviated dB). To
be more precise, decibels are used to measure the ratio of two power lev-
els. If we have two power levels P1 and P2, then the difference in decibels
between the two power levels is

10 log10(P2/P1) dB.

So, if P2 is about twice the level of P1, then the difference is about 3 dB.
Notice that this is a relative system, providing a precise way to measure the
relative strength of two power levels, but not a way to assign a number to
one power level. In other words, we haven’t established any sort of absolute
reference point. (It’s also a logarithmic scale, but that isn’t important here.)
You may have used a mixer board, volume control knob, or digital audio
program that measures volume in dB. Normally, there’s an arbitrary point
marked 0 dB, and then most of the readings have negative values. In other
words, 0 dB is the loudest volume, and all other volume settings are softer.

None of these values are absolute—but how could they be? How could
your digital audio program know the absolute loudness you will experience,
which depends not only on the audio data, but also the volume setting on
your computer, the volume knob on your amplifier, the power supplied by
the amplifier to your speakers, the distance you are from the speakers, and
so on.

Sometimes people describe how loud something is in terms of an abso-
lute dB number. Following in the footsteps of Gabriel Fahrenheit, this scale
uses a reference point based on the human body. “Absolute” dB numbers
are actually relative to the threshold of hearing for a normal human.6 Be-
cause of this, it’s actually possible to have an “absolute” dB reading that
is negative. This simply means that the intensity is below the threshold
where most people are able to hear it.

At this point, we should probably mention that there is a way to devise
an absolute scale for loudness, by measuring a physical quantity such as
pressure, energy, or power, all of which have an absolute minimum value

6About 20 micropascals. However, this number varies with frequency. It also increases
with age. One author remembers that when he was young, his father would never turn
the radio in the car completely off, but rather would turn the volume down below the
(father’s) threshold of hearing. The son’s threshold of hearing was just low enough for
this to be irritating. Today the son owns his own car and car radio, and has realized,
with some degree of embarrassment, that he also often turns the radio volume down
without turning it off. However, he offers in his defense that he turns it all the way

down, below everyone’s threshold of hearing. (The other author wishes to suggest that
clearly even the term “normal human” is relative.)
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of zero. The point is that these absolute systems aren’t used in many
cases—the relative system is the one that’s the most useful.

Velocity. How fast are you moving right now? Perhaps you’re sitting in
a comfy chair, so you’d say that your speed was zero. Maybe you’re in a
car and so you might say something like 65 mph. (Hopefully someone else
is driving!) Actually, you are hurtling through space at almost 30 km per
second ! That’s about the speed that Earth travels in order to make the
939-million-km trek around the sun each year. Of course, even this velocity
is relative to the sun. Our solar system is moving around within the Milky
Way galaxy. So then how fast are we actually moving, in absolute terms?
Galileo told us back in the 17th century that this question doesn’t have an
answer—all velocity is relative.

Our difficulty in establishing absolute velocity is similar to the difficulty
in establishing position. After all, velocity is displacement (difference be-
tween positions) over time. To establish an absolute velocity, we’d need
to have some reference location that would “stay still” so that we could
measure our displacement from that location. Unfortunately, everything in
our universe seems to be orbiting something else.

2.5 Negating a Vector

The previous sections have presented a high-level overview of vectors. The
remainder of this chapter looks at specific mathematical operations we per-
form on vectors. For each operation, we first define the mathematical rules
for performing the operation and then describe the geometric interpreta-
tions of the operation and give some practical uses for the operation.

The first operation we’d like to consider is that of vector negation. When
discussing the zero vector, we asked you to recall from group theory the idea
of the additive identity. Please go back to wherever it was in your brain that
you found the additive identity, perhaps between the metaphorical couch
cushions, or at the bottom of a box full of decade-old tax forms. Nearby,
you will probably find a similarly discarded obvious-to-the-point-of-useless
concept: the additive inverse. Let’s dust it off. For any group, the additive
inverse of x, denoted by −x, is the element that yields the additive identity
(zero) when added to x. Put simply, x+ (−x) = 0. Another way of saying
this is that elements in the group can be negated.

The negation operation can be applied to vectors. Every vector v has
an additive inverse −v of the same dimension as v such that v+(−v) = 0.
(We will learn how to add vectors in Section 2.7.)
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2.5.1 Official Linear Algebra Rules

To negate a vector of any dimension, we simply negate each component of
the vector. Stated formally,

Negating a vector

−















a1
a2
...

an−1

an















=















−a1
−a2
...

−an−1

−an















.

Applying this to the specific cases of 2D, 3D, and 4D vectors, we have

Negating 2D, 3D, and
4D vectors

−
[

x y
]

=
[

−x −y
]

,

−
[

x y z
]

=
[

−x −y −z
]

,

−
[

x y z w
]

=
[

−x −y −z −w
]

.

Figure 2.8. Examples of vectors and their negatives. Notice that a vector and its negative are
parallel and have the same magnitude, but point in opposite directions.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-3&iName=master.img-009.jpg&w=214&h=214
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A few examples are

−
[

4 −5
]

=
[

−4 5
]

,

−
[

−1 0
√
3
]

=
[

1 0 −
√
3
]

,

−
[

1.34 −3/4 −5 π
]

=
[

−1.34 3/4 5 −π
]

.

2.5.2 Geometric Interpretation

Negating a vector results in a vector of the same magnitude but opposite
direction, as shown in Figure 2.8.

Remember, the position of a vector on a diagram is irrelevant—only the
magnitude and direction are important.

2.6 Vector Multiplication by a Scalar

Although we cannot add a vector and a scalar, we can multiply a vector by
a scalar. The result is a vector that is parallel to the original vector, with
a different length and possibly opposite direction.

2.6.1 Official Linear Algebra Rules

Vector-times-scalar multiplication is straightforward; we simply multiply
each component of the vector by the scalar. Stated formally,

Multiplying a vector by
a scalar

k















a1
a2
...

an−1

an















=















a1
a2
...

an−1

an















k =















ka1
ka2
...

kan−1

kan















.

Applying this rule to 3D vectors, as an example, we get

Multiplying a 3D vector
by a scalark





x
y
z



 =





x
y
z



k =





kx
ky
kz



.

Although the scalar and vector may be written in either order, most people
choose to put the scalar on the left, preferring kv to vk.

A vector may also be divided by a nonzero scalar. This is equivalent to
multiplying by the reciprocal of the scalar:

Dividing a 3D vector by
a scalar

v

k
=

(

1

k

)

v =





vx/k
vy/k
vz/k



 for 3D vector v and nonzero scalar k.
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Figure 2.9
A 2D vector
multiplied by
various scalars

Some examples are

2
[

1 2 3
]

=
[

2 4 6
]

,

−3
[

−5.4 0
]

=
[

16.2 0
]

,
[

4.7 −6 8
]

/2 =
[

2.35 −3 4
]

.

Here are a few things to notice about multiplication of a vector by a
scalar:

• When we multiply a vector and a scalar, we do not use any multi-
plication symbol. The multiplication is signified by placing the two
quantities side-by-side (usually with the vector on the right).

• Scalar-times-vector multiplication and division both occur before any
addition and subtraction. For example 3a+b is the same as (3a)+b,
not 3(a+ b).

• A scalar may not be divided by a vector, and a vector may not be
divided by another vector.

• Vector negation can be viewed as the special case of multiplying a
vector by the scalar −1.

2.6.2 Geometric Interpretation

Geometrically, multiplying a vector by a scalar k has the effect of scaling the
length by a factor of |k|. For example, to double the length of a vector we
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would multiply the vector by 2. If k < 0, then the direction of the vector
is flipped. Figure 2.9 illustrates a vector multiplied by several different
scalars.

2.7 Vector Addition and Subtraction

We can add and subtract two vectors, provided they are of the same dimen-
sion. The result is a vector quantity of the same dimension as the vector
operands. We use the same notation for vector addition and subtraction as
is used for addition and subtraction of scalars.

2.7.1 Official Linear Algebra Rules

The linear algebra rules for vector addition are simple: to add two vectors,
we add the corresponding components:

Adding two vectors














a1
a2
...

an−1

an















+















b1
b2
...

bn−1

bn















=















a1 + b1
a2 + b2

...
an−1 + bn−1

an + bn















.

Subtraction can be interpreted as adding the negative, so a − b = a +
(−b):

Subtracting two vectors













a1
a2
...

an−1

an















−















b1
b2
...

bn−1

bn















=















a1
a2
...

an−1

an















+















−















b1
b2
...

bn−1

bn





























=















a1 − b1
a2 − b2

...
an−1 − bn−1

an − bn















.

For example, given

a =





1
2
3



, b =





4
5
6



, c =





7
−3
0



,
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then

a+ b =





1
2
3



+





4
5
6



 =





1 + 4
2 + 5
3 + 6



 =





5
7
9



,

a− b =





1
2
3



−





4
5
6



 =





1− 4
2− 5
3− 6



 =





−3
−3
−3



,

b+ c− a =





4
5
6



+





7
−3
0



−





1
2
3



 =





4 + 7− 1
5 + (−3)− 2
6 + 0− 3



 =





10
0
3



.

A vector cannot be added or subtracted with a scalar, or with a vector
of a different dimension. Also, just like addition and subtraction of scalars,
vector addition is commutative,

a+ b = b+ a,

whereas vector subtraction is anticommutative,

a− b = −(b− a).

2.7.2 Geometric Interpretation

We can add vectors a and b geometrically by positioning the vectors so
that the head of a touches the tail of b and then drawing a vector from

Figure 2.10
2D vector addition
and subtraction
using the triangle
rule.
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the tail of a to the head of b. In other words, if we start at a point and
apply the displacements specified by a and then b, it’s the same as if we
had applied the single displacement a + b. This is known as the triangle
rule of vector addition. It also works for vector subtraction, as shown in
Figure 2.10.

Figure 2.10 provides geometric evidence that vector addition is commu-
tative but vector subtraction is not. Notice that the vector labeled a+b is
identical to the vector labeled b+ a, but the vectors d− c and c−d point
in opposite directions because d− c = −(c− d).

Figure 2.11
Extending the triangle
rule to more than two
vectors

The triangle rule can be extended to more than two vectors. Figure 2.11
shows how the triangle rule verifies something we stated in Section 2.3.1: a
vector can be interpreted as a sequence of axially aligned displacements.

Figure 2.12 is a reproduction of Figure 2.5, which shows how the vector
[1,−3, 4] may be interpreted as a displacement of 1 unit to the right, 3 units
down, and then 4 units forward, and can be verified mathematically by
using vector addition:





1
−3
4



 =





1
0
0



+





0
−3
0



+





0
0
4



.

This seems obvious, but this is a very powerful concept. We will use a
similar technique in Section 4.2 to transform vectors from one coordinate
space to another.
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Figure 2.12
Interpreting a vector as a sequence of
displacements

2.7.3 Displacement Vector from One Point to Another

It is very common that we will need to compute the displacement from
one point to another. In this case, we can use the triangle rule and vector
subtraction. Figure 2.13 shows how the displacement vector from a to b

can be computed by subtracting a from b.

Figure 2.13
Using 2D vector subtraction to compute the
vector from point a to point b

As Figure 2.13 shows, to compute the vector from a to b, we interpret
the points a and b as vectors from the origin, and then use the triangle
rule. In fact, this is how vectors are defined in some texts: the subtraction
of two points.

Notice that the vector subtraction b − a yields a vector from a to b.
It doesn’t make any sense to simply find the vector “between two points,”
since the language in this sentence does not specify a direction. We must
always form a vector that goes from one point to another point.
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2.8 Vector Magnitude (Length)

As we have discussed, vectors have magnitude and direction. However, you
might have noticed that neither the magnitude nor the direction is expressed
explicitly in the vector (at least not when we use Cartesian coordinates).
For example, the magnitude of the 2D vector [3, 4] is neither 3 nor 4; it’s
5. Since the magnitude of the vector is not expressed explicitly, we must
compute it. The magnitude of a vector is also known as the length or norm
of the vector.

2.8.1 Official Linear Algebra Rules

In linear algebra, the magnitude of a vector is denoted by using double
vertical bars surrounding the vector. This is similar to the single vertical
bar notation used for the absolute value operation for scalars. This notation
and the equation for computing the magnitude of a vector of arbitrary
dimension n are shown in Equation (2.2):

Magnitude of a vector of
arbitrary dimension‖v‖ =

√

√

√

√

n
∑

i=1

vi2 =
√

v12 + v22 + · · ·+ vn−1
2 + vn2. (2.2)

Thus, the magnitude of a vector is the square root of the sum of the
squares of the components of the vector. This sounds complicated, but
the magnitude equations for 2D and 3D vectors are actually very simple:

Vector magnitude for 2D
and 3D vectors

‖v‖ =
√

vx2 + vy2 (for a 2D vector v), (2.3)

‖v‖ =
√

vx2 + vy2 + vz2 (for a 3D vector v).

The magnitude of a vector is a nonnegative scalar quantity. An example
of how to compute the magnitude of a 3D vector is

∥

∥

[

5 −4 7
]∥

∥ =

√

52 + (−4)
2
+ 72 =

√
25 + 16 + 49 =

√
90

≈ 9.4868.

Some books use a single bar notation to indicate vector magnitude: |v|
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One quick note to satisfy all you sticklers who already know about vector
norms and at this moment are pointing your web browser to gamemath.com,
looking for the email address for errata. The term norm actually has a very
general definition, and basically any equation that meets a certain set of
criteria can call itself a norm. So to describe Equation (2.2) as the equation
for the vector norm is slightly misleading. To be more accurate, we should
say that Equation (2.2) is the equation for the 2-norm, which is one specific
way to calculate a norm. The 2-norm belongs to a class of norms known as
the p-norms, and the p-norm is not the only way to define a norm. Still,
omitting this level of generality isn’t too harmful of a delusion; because
the 2-norm measures Euclidian distance, it is by far the most commonly
used norm in geometric applications. It is also widely used in situations
even where a geometric interpretation is not directly applicable. Readers
interested in such exotica should check out Exercise 15.

2.8.2 Geometric Interpretation

Figure 2.14
Geometric interpretation of the
magnitude equation

Let’s try to get a better understand-
ing of why Equation (2.3) works. For
any vector v in 2D, we can form a right
triangle with v as the hypotenuse, as
shown in Figure 2.14.

Notice that to be precise we had
to put absolute value signs around the
components vx and vy. The compo-
nents of the vector may be negative,
since they are signed displacements, but
length is always positive.

The Pythagorean theorem states
that for any right triangle, the square
of the length of the hypotenuse is equal
to the sum of the squares of the lengths

of the other two sides. Applying this theorem to Figure 2.14, we have

‖v‖2 = |vx|2 + |vy|2.

Since |x|2 = x2, we can omit the absolute value symbols:

‖v‖2 = vx
2 + vy

2.

Then, by taking the square root of both sides and simplifying, we get
√

‖v‖2 =
√

vx2 + vy2,

‖v‖ =
√

vx2 + vy2,
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which is the same as Equation (2.3). The proof of the magnitude equation
in 3D is only slightly more complicated.

For any positive magnitude m, there are an infinite number of vectors
of magnitude m. Since these vectors all have the same length but different
directions, they form a circle when the tails are placed at the origin, as
shown in Figure 2.15.

Figure 2.15
For any positive magnitude,
there are an infinite number of
vectors with that magnitude

2.9 Unit Vectors

For many vector quantities, we are concerned only with direction and not
magnitude: “Which way am I facing?” “Which way is the surface ori-
ented?” In these cases, it is often convenient to use unit vectors. A unit
vector is a vector that has a magnitude of one. Unit vectors are also known
as normalized vectors.

Unit vectors are also sometimes simply called normals; however, a warn-
ing is in order concerning terminology. The word “normal” carries with it
the connotation of “perpendicular.” When most people speak of a “nor-
mal” vector, they are usually referring to a vector that is perpendicular to
something. For example, a surface normal at a given point on an object
is a vector that is perpendicular to the surface at that location. However,
since the concept of perpendicular is related only to the direction of a vec-
tor and not its magnitude, in most cases you will find that unit vectors are
used for normals instead of a vector of arbitrary length. When this book
refers to a vector as a “normal,” it means “a unit vector perpendicular
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to something else.” This is common usage, but be warned that the word
“normal” primarily means “perpendicular” and not “unit length.” Since it
is so common for normals to be unit vectors, we will take care to call out
any situation where a “normal” vector does not have unit length.

In summary, a “normalized” vector always has unit length, but a “nor-
mal” vector is a vector that is perpendicular to something and by convention
usually has unit length.

2.9.1 Official Linear Algebra Rules

For any nonzero vector v, we can compute a unit vector that points in the
same direction as v. This process is known as normalizing the vector. In
this book we use a common notation of putting a hat symbol over unit
vectors; for example, v̂ (pronounced “v hat”). To normalize a vector, we
divide the vector by its magnitude:

Normalizing a vector v̂ =
v

‖v‖ for any nonzero vector v.

For example, to normalize the 2D vector [12,−5],

[

12 −5
]

∥

∥

[

12 −5
]∥

∥

=

[

12 −5
]

√
122 + 52

=

[

12 −5
]

√
169

=

[

12 −5
]

13
=

[

12

13

−5

13

]

≈
[

0.923 −0.385
]

.

The zero vector cannot be normalized. Mathematically, this is not al-
lowed because it would result in division by zero. Geometrically, it makes
sense because the zero vector does not define a direction—if we normalized
the zero vector, in what direction should the resulting vector point?

Figure 2.16
Normalizing vectors in 2D
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2.9.2 Geometric Interpretation

In 2D, if we draw a unit vector with the tail at the origin, the head of
the vector will touch a unit circle centered at the origin. (A unit circle
has a radius of 1.) In 3D, unit vectors touch the surface of a unit sphere.
Figure 2.16 shows several 2D vectors of arbitrary length in gray, beneath
their normalized counterparts in black.

Notice that normalizing a vector makes some vectors shorter (if their
length was greater than 1) and some vectors longer (if their length was less
than 1).

2.10 The Distance Formula

We are now prepared to derive one of the oldest and most fundamental
formulas in computational geometry: the distance formula. This formula
is used to compute the distance between two points.

First, let’s define distance as the length of the line segment between the
two points. Since a vector is a directed line segment, geometrically it makes
sense that the distance between the two points would be equal to the length
of a vector from one point to the other. Let’s derive the distance formula
in 3D. First, we will compute the vector d from a to b. We learned how to
do this in 2D in Section 2.7.3. In 3D, we use

d = b− a =





bx − ax
by − ay
bz − az



.

The distance between a and b is equal to the length of the vector d,
which we computed in Section 2.8:

distance (a,b) = ‖d‖ =

√

dx
2 + dy

2 + dz
2.

Substituting for d, we get

The 3D distance formuladistance (a,b) = ‖b− a‖ =
√

(bx − ax)2 + (by − ay)2 + (bz − az)2.

Thus, we have derived the distance formula in 3D. The 2D equation is even
simpler:

The 2D distance formuladistance (a,b) = ‖b− a‖ =
√

(bx − ax)2 + (by − ay)2.

Let’s look at an example in 2D:

distance
([

5 0
]

,
[

−1 8
])

=
√

(−1− 5)2 + (8− 0)2

=
√

(−6)2 + 82 =
√
100 = 10.
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Notice that it doesn’t matter which point we call a and which point we
call b. If we define d to be the vector from b to a instead of from a to b,
we will derive a slightly different, but mathematically equivalent, equation.

2.11 Vector Dot Product

Section 2.6 showed how to multiply a vector by a scalar. We can also
multiply two vectors together. There are two types of vector products. The
first vector product is the dot product (also known as the inner product),
the subject of this section. We talk about the other vector product, the
cross product, in Section 2.12.

The dot product is ubiquitous in video game programming, useful in
everything from graphics, to simulation, to AI. Following the pattern we
used for the operations, we first discuss the algebraic rules for computing
dot products in Section 2.11.1, followed by some geometric interpretations
in Section 2.11.2.

The dot product formula is one of the few formulas in this book worth
memorizing. First of all, it’s really easy to memorize. Also, if you under-
stand what the dot product does, the formula makes sense. Furthermore,
the dot product has important relationships to many other operations, such
as matrix multiplication, convolution of signals, statistical correlations, and
Fourier transforms. Understanding the formula will make these relation-
ships more apparent.

Even more important than memorizing a formula is to get an intuitive
grasp for what the dot product does. If there is only enough space in your
brain for either the formula or the geometric definition, then we recommend
internalizing the geometry, and getting the formula tattooed on your hand.
You need to understand the geometric definition in order to use the dot
product. When programming in computer languages such as C++, HLSL,
or even Matlab and Maple, you won’t need to know the formula anyway,
since you will usually tell the computer to do a dot product calculation not
by typing in the formula, but by invoking a high-level function or overloaded
operator. Furthermore, the geometric definition of the dot product does
not assume any particular coordinate frame or even the use of Cartesian
coordinates.

2.11.1 Official Linear Algebra Rules

The name “dot product” comes from the dot symbol used in the notation:
a · b. Just like scalar-times-vector multiplication, the vector dot product
is performed before addition and subtraction, unless parentheses are used
to override this default order of operations. Note that although we usually
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omit the multiplication symbol when multiplying two scalars or a scalar
and a vector, we must not omit the dot symbol when performing a vector
dot product. If you ever see two vectors placed side-by-side with no symbol
in between, interpret this according to the rules of matrix multiplication,
which we discuss in Chapter 4.7

The dot product of two vectors is the sum of the products of corre-
sponding components, resulting in a scalar :

Vector dot product















a1
a2
...

an−1

an















·















b1
b2
...

bn−1

bn















= a1b1 + a2b2 + · · ·+ an−1bn−1 + anbn.

This can be expressed succinctly by using the summation notation

Dot product using
summation notation

a · b =
n
∑

i=1

aibi.

Applying these rules to the 2D and 3D cases yields

2D and 3D dot productsa · b = axbx + ayby (a and b are 2D vectors),

a · b = axbx + ayby + azbz (a and b are 3D vectors).

Examples of the dot product in 2D and 3D are
[

4 6
]

·
[

−3 7
]

= (4)(−3) + (6)(7) = 30,




3
−2
7



 ·





0
4
−1



 = (3)(0) + (−2)(4) + (7)(−1) = −15.

It is obvious from inspection of the equations that vector dot product
is commutative: a · b = b · a. More vector algebra laws concerning the dot
product are given in Section 2.13.

2.11.2 Geometric Interpretation

Now let’s discuss the more important aspect of the dot product: what
it means geometrically. It would be difficult to make too big of a deal

7One notation you will probably bump up against is treating the dot product as an
ordinary matrix multiplication, denoted by aTb if a and b are interpreted as column
vectors, or abT for row vectors. If none of this makes sense, don’t worry, we will repeat
it after we learn about matrix multiplication and row and column vectors in Chapter 4.
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out of the dot product, as it is fundamental to almost every aspect of 3D
math. Because of its supreme importance, we’re going to dwell on it a bit.
We’ll discuss two slightly different ways of thinking about this operation
geometrically; since they are really equivalent, you may or may not think
one interpretation or the other is “more fundamental,” or perhaps you may
think we are being redundant and wasting your time. You might especially
think this if you already have some exposure to the dot product, but please
indulge us.

The first geometric definition to present is perhaps the less common of
the two, but in agreement with the advice of Dray and Manogue [15], we
believe it’s actually the more useful. The interpretation we first consider is
that of the dot product performing a projection.

Assume for the moment that â is a unit vector, and b is a vector of any
length. Now take b and project it onto a line parallel to â, as in Figure 2.17.

Figure 2.17
The dot product as a projection

(Remember that vectors are displacements and do not have a fixed position,
so we are free to move them around on a diagram anywhere we wish.) We
can define the dot product â · b as the signed length of the projection of b
onto this line. The term “projection” has a few different technical meanings
(see Section 5.3) and we won’t bother attempting a formal definition here.8

You can think of the projection of b onto â as the “shadow” that b casts
on â when the rays of light are perpendicular to â.

We have drawn the projections as arrows, but remember that the result
of a dot product is a scalar, not a vector. Still, when you first learned about
negative numbers, your teacher probably depicted numbers as arrows on a
number line, to emphasize their sign, just as we have. After all, a scalar is
a perfectly valid one-dimensional vector.

What does it mean for the dot product to measure a signed length?
It means the value will be negative when the projection of b points in
the opposite direction from â, and the projection has zero length (it is a
single point) when â and b are perpendicular. These cases are illustrated
in Figure 2.18.

8Thus shirking our traditional duties as mathematics authors to make intuitive con-
cepts sound much more complicated than they are.
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Figure 2.18. Sign of the dot product

In other words, the sign of the dot product can give us a rough classifi-
cation of the relative directions of the two vectors. Imagine a line (in 2D)
or plane (in 3D) perpendicular to the vector â. The sign of the dot product
â · b tells us which half-space b lies in. This is illustrated in Figure 2.19.

Figure 2.19
The sign of the dot product gives a
rough classification of the relative
orientation of two vectors.

Next, consider what happens when we scale b by some factor k. As
shown in Figure 2.20, the length of the projection (and thus the value of
the dot product) increases by the same factor. The two triangles have equal
interior angles and thus are similar. Since the hypotenuse on the right is
longer than the hypotenuse on the left by a factor of k, by the properties
of similar triangles, the base on the right is also longer by a factor of k.

Let’s state this fact algebraically and prove it by using the formula:

Dot product is

associative with

multiplication by a scalar

â · (kb) = ax(kbx) + ay(kby) + az(kbz)

= k(axbx + ayby + azbz)

= k(â · b).
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Figure 2.20
Scaling one operand of the dot
product

The expanded scalar math in the middle uses three dimensions as our ex-
ample, but the vector notation at either end of the equation applies for
vectors of any dimension.

We’ve seen what happens when we scale b: the length of its projection
onto â increases along with the value of the dot product. What if we scale
a? The algebraic argument we just made can be used to show that the
value of the dot product scales with the length of a, just like it does when
we scale b. In other words,

Dot product is
associative with

multiplication by a scalar
for either vector

(ka) · b = k(a · b) = a · (kb).

So scaling a scales the numeric value of the dot product. However, this
scale has no affect geometrically on the length of the projection of b onto
a. Now that we know what happens if we scale either a or b, we can write
our geometric definition without any assumptions about the length of the
vectors.

Dot Product as Projection

The dot product a · b is equal to the signed length of the projection of b
onto any line parallel to a, multiplied by the length of a.

As we continue to examine the properties of the dot product, some will
be easiest to illustrate geometrically when either a, or both a and b, are
unit vectors. Because we have shown that scaling either a or b directly
scales the value of the dot product, it will be easy to generalize our results
after we have obtained them. Furthermore, in the algebraic arguments that
accompany each geometric argument, unit vector assumptions won’t be
necessary. Remember that we put hats on top of vectors that are assumed
to have unit length.

You may well wonder why the dot product measures the projection of
the second operand onto the first, and not the other way around. When
the two vectors â and b̂ are unit vectors, we can easily make a geometric
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argument that the projection of â onto b̂ has the same length as the pro-
jection of b̂ onto â. Consider Figure 2.21. The two triangles have equal
interior angles and thus are similar. Since â and b̂ are corresponding sides
and have the same length, the two triangles are reflections of each other.

Figure 2.21
Dot product is commutative

We’ve already shown how scaling either vector will scale the dot prod-
uct proportionally, so this result applies for a and b with arbitrary length.
Furthermore, this geometric fact is also trivially verified by using the for-
mula, which does not depend on the assumption that the vectors have equal
length. Using two dimensions as our example this time,

a · b = axbx + ayby = bxax + byay = b · a. Dot product is
commutative

The next important property of the dot product is that it distributes
over addition and subtraction, just like scalar multiplication. This time
let’s do the algebra before the geometry. When we say that the dot product
“distributes,” that means that if one of the operands to the dot product
is a sum, then we can take the dot product of the pieces individually, and
then take their sum. Switching back to three dimensions for our example,

Dot product distributes
over addition and
subtraction

a · (b+ c) =





ax
ay
az



 ·





bx + cx
by + cy
bz + cz





= ax(bx + cx) + ay(by + cy) + az(bz + cz)

= axbx + axcx + ayby + aycy + azbz + azcz

= (axbx + ayby + azbz) + (axcx + aycy + azcz)

= a · b+ a · c.

By replacing c with −c, it’s clear that the dot product distributes over
vector subtraction just as it does for vector addition. Figure 2.22 shows
how the dot product distributes over addition.

Now let’s look at a special situation in which one of the vectors is the
unit vector pointing in the +x direction, which we’ll denote as x̂. As shown
in Figure 2.23, the signed length of the projection is simply the x-coordinate

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-3&iName=master.img-024.jpg&w=142&h=70


62 2. Vectors

Figure 2.22
The dot product distributes over
addition.

of the original vector. In other words, taking the dot product of a vector
with a cardinal axis “sifts” out the coordinate for that axis.

If we combine this “sifting” property of the dot product with the fact
that it distributes over addition, which we have been able to show in purely
geometric terms, we can see why the formula has to be what it is.

Figure 2.23
Taking the dot product with a cardinal axis sifts
out the corresponding coordinate.

Because the dot product mea-
sures the length of a projection,
it has an interesting relationship
to the vector magnitude calcula-
tion. Remember that the vector
magnitude is a scalar measuring
the amount of displacement (the
length) of the vector. The dot
product also measures the amount
of displacement, but only the dis-
placement in a particular direc-
tion is counted; perpendicular dis-
placement is discarded by the pro-
jecting process. But what if we
measure the displacement in the
same direction that the vector is
pointing? In this case, all of the
vector’s displacement is in the di-
rection being measured, so if we project a vector onto itself, the length of
that projection is simply the magnitude of the vector. But remember that
a · b is equal to the length of the projection of b onto a, scaled by ‖a‖. If
we dot a vector with itself, such as v ·v, we get the length of the projection,
which is ‖v‖, times the length of the vector we are projecting onto, which
is also ‖v‖. In other words,

Relationship between
vector magnitude and

the dot product
v · v = ‖v‖2, ‖v‖ =

√
v · v.
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Before we switch to the second interpretation of the dot product, let’s
check out one more very common use of the dot product as a projection.
Assume once more that â is a unit vector and b has arbitrary length. Using
the dot product, it’s possible to separate b into two values, b‖ and b⊥
(read “b parallel” and “b perp”), which are parallel and perpendicular to
â, respectively, such that b = b‖+b⊥. Figure 2.24 illustrates the geometry
involved.

Figure 2.24
Projecting one vector onto
another

We’ve already established that the length of b‖ will be equal to â · b.
But the dot product yields a scalar, and b‖ is a vector, so we’ll take the
direction specified by the unit vector â and scale it up:

b‖ = (â · b)â.

Once we know b‖, we can easily solve for b⊥:

b⊥ + b‖ = b,

b⊥ = b− b‖,

b⊥ = b− (â · b)â.

It’s not too difficult to generalize these results to the case where a is
not a unit vector.

In the rest of this book, we make use of these equations several times
to separate a vector into components that are parallel and perpendicular
to another vector.

Now let’s examine the dot product through the lens of trigonometry.
This is the more common geometric interpretation of the dot product, which
places a bit more emphasis on the angle between the vectors. We’ve been
thinking in terms of projections, so we haven’t had much need for this angle.
Less experienced and conscientious authors [16] might give you just one of
the two important viewpoints, which is probably sufficient to interpret an
equation that contains the dot product. However, a more valuable skill is
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to recognize situations for which the dot product is the correct tool for the
job; sometimes it helps to have other interpretations pointed out, even if
they are “obviously” equivalent to each other.

Figure 2.25
Interpreting the dot product by using the
trigonometry of the right triangle

Consider the right triangle on the
right-hand side of Figure 2.25. As
the figure shows, the length of the
hypotenuse is 1 (since b̂ is a unit
vector) and the length of the base is

equal to the dot product â · b̂. From
elementary trig (which was reviewed
in Section 1.4.4), remember that the
cosine of an angle is the ratio of the
length of the adjacent leg divided by
the length of the hypotenuse. Plug-
ging in the values from Figure 2.25,
we have

cos θ =
adjacent

hypotenuse
=

â · b̂
1

= â · b̂.

In other words, the dot product of two unit vectors is equal to the cosine
of the angle between them. This statement is true even if the right triangle
in Figure 2.25 cannot be formed, when â · b̂ ≤ 0 and θ > 90o. Remember
that the dot product of any vector with the vector x̂ = [1, 0, 0] will simply
extract the x-coordinate of the vector. In fact, the x-coordinate of a unit
vector that has been rotated by an angle of θ from standard position is one
way to define the value of cos θ. Review Section 1.4.4 if this isn’t fresh in
your memory.

By combining these ideas with the previous observation that scaling
either vector scales the dot product by the same factor, we arrive at the
general relationship between the dot product and the cosine.

Dot Product Relation to Intercepted Angle

The dot product of two vectors a and b is equal to the cosine of the an-
gle θ between the vectors, multiplied by the lengths of the vectors (see
Figure 2.26). Stated formally,

a · b = ‖a‖‖b‖ cos θ. (2.4)
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Figure 2.26
The dot product is related to the
angle between two vectors.

What does it mean to measure the an-
gle between two vectors in 3D? Any two
vectors will always lie in a common plane
(place them tail to tail to see this), and so
we measure the angle in the plane that con-
tains both vectors. If the vectors are par-
allel, the plane is not unique, but the angle
is either 0o or ±180o, and it doesn’t matter
which plane we choose.

The dot product provides a way for us
to compute the angle between two vectors.
Solving Equation (2.4) for θ,

Using the dot product to
compute the angle
between two vectors

θ = arccos

(

a · b
‖a‖‖b‖

)

. (2.5)

We can avoid the division in Equation (2.5) if we know that a and b are
unit vectors. In this very common case, the denominator of Equation (2.5)
is trivially 1, and we are left with

Computing the angle
between two unit vectors

θ = arccos
(

â · b̂
)

(assume â and b̂ are unit vectors).

If we do not need the exact value of θ, and need only a classification of
the relative orientation of a and b, then we need only the sign of the dot
product. This is the same idea illustrated in Figure 2.18, only now we can
relate it to the angle θ, as shown in Table 2.1.

a · b θ Angle is a and b are

> 0 0o ≤ θ < 90o acute pointing mostly in the same direction
0 θ = 90o right perpendicular
< 0 90o < θ ≤ 180o obtuse pointing mostly in the opposite direction

Table 2.1. The sign of the dot product can be used as a rough classification of the angle
between two vectors.

Since the magnitude of the vectors does not affect the sign of the dot
product, Table 2.1 applies regardless of the lengths of a and b. However,
notice that if either a or b is the zero vector, then a · b = 0. Thus, when
we use the dot product to classify the relationship between two vectors, the
dot product acts as if the zero vector is perpendicular to any other vector.
As it turns out, the cross product behaves differently.
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Let’s summarize the dot product’s geometric properties.

• The dot product a ·b measures the length of the projection of b onto
a, multiplied by the length of a.

• The dot product can be used to measure displacement in a particular
direction.

• The projection operation is closely related to the cosine function. The
dot product a · b also is equal to ‖a‖‖b‖ cos θ, where θ is the angle
between the vectors.

We review the commutative and distributive properties of the dot prod-
uct at the end of this chapter along with other algebraic properties of vector
operations.

2.12 Vector Cross Product

The other vector product, known as the cross product, can be applied only
in 3D. Unlike the dot product, which yields a scalar and is commutative,
the vector cross product yields a 3D vector and is not commutative.

2.12.1 Official Linear Algebra Rules

Similar to the dot product, the term “cross” product comes from the symbol
used in the notation a× b. We always write the cross symbol, rather than
omitting it as we do with scalar multiplication. The equation for the cross
product is

Cross product





x1
y1
z1



×





x2
y2
z2



 =





y1z2 − z1y2
z1x2 − x1z2
x1y2 − y1x2



.

For example,





1
3
4



×





2
−5
8



 =





(3)(8)− (4)(−5)
(4)(2)− (1)(8)
(1)(−5)− (3)(2)



 =





24− (−20)
8− 8
−5− 6



 =





44
0

−11



.

The cross product enjoys the same level of operator precedence as the
dot product: multiplication occurs before addition and subtraction. When
dot product and cross product are used together, the cross product takes
precedence: a ·b×c = a ·(b×c). Luckily, there’s an easy way to remember
this: it’s the only way it could work. The dot product returns a scalar,
and so (a ·b)× c is undefined, since you cannot take the cross product of a
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scalar and a vector. The operation a · (b×c) is known as the triple product.
We present some special properties of this computation in Section 6.1.

As mentioned earlier, the vector cross product is not commutative. In
fact, it is anticommutative: a × b = −(b × a). The cross product is not
associative, either. In general, (a × b) × c 6= a × (b × c). More vector
algebra laws concerning the cross product are given in Section 2.13.

2.12.2 Geometric Interpretation

The cross product yields a vector that is perpendicular to the original two
vectors, as illustrated in Figure 2.27.

Figure 2.27
Vector cross product

The length of a× b is equal to the product of the magnitudes of a and
b and the sine of the angle between a and b:

The magnitude of the
cross product is related
to the sine of the angle
between the vectors

‖a× b‖ = ‖a‖‖b‖ sin θ.

As it turns out, this is also equal to the area of the parallelogram formed
with two sides a and b. Let’s see if we can verify why this is true by using
Figure 2.28.

Figure 2.28
A parallelogram with sides a and b
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Figure 2.29
Area of a parallelogram

First, from planar geometry, we know
that the area of the parallelogram is bh,
the product of the base and the height.
(In Figure 2.28, the base is b = ‖b‖.) We
can verify this rule by “clipping” off a tri-
angle from one end and moving it to the
other end, forming a rectangle, as shown
in Figure 2.29.

The area of a rectangle is given by its
length and width. In this case, this area
is the product bh. Since the area of the
rectangle is equal to the area of the par-
allelogram, the area of the parallelogram
must also be bh.

Returning to Figure 2.28, let a and b
be the lengths of a and b, respectively, and

note that sin θ = h/a. Then

A = bh

= b(a sin θ)

= ‖a‖‖b‖ sin θ
= ‖a× b‖.

If a and b are parallel, or if a or b is the zero vector, then a×b = 0. So
the cross product interprets the zero vector as being parallel to every other
vector. Notice that this is different from the dot product, which interprets
the zero vector as being perpendicular to every other vector. (Of course, it
is ill-defined to describe the zero vector as being perpendicular or parallel
to any vector, since the zero vector has no direction.)

We have stated that a×b is perpendicular to a and b. But there are two
directions that are perpendicular to a and b—which of these two directions
does a× b point? We can determine the direction of a× b by placing the
tail of b at the head of a, and examining whether we make a clockwise
or counterclockwise turn from a to b. In a left-handed coordinate system,
a×b points towards you if the vectors a and b make a clockwise turn from
your viewpoint, and away from you if a and b make a counterclockwise
turn. In a right-handed coordinate system, the exact opposite occurs: if a
and b make a counterclockwise turn, a × b points towards you, and if a
and b make a clockwise turn, a× b points away from you.

Figure 2.30 shows clockwise and counterclockwise turns. Notice that to
make the clockwise or counterclockwise determination, we must align the
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Clockwise turn Counterclockwise turn

In a left-handed coordinate sys-
tem, a × b (not shown) points
towards you. In a right-handed
coordinate system, a × b points
away from you.

In a left-handed coordinate sys-
tem, a × b (not shown) points
away from you. In a right-handed
coordinate system, a × b points
towards you.

Figure 2.30. Determining clockwise versus counterclockwise turns

head of a with the tail of b. Compare this to Figure 2.26, where the tails
are touching. The tail-to-tail alignment shown in Figure 2.26 is the correct
way to position the vectors to measure the angle between them, but to
judge whether the turn is clockwise or counterclockwise, the vectors should
be aligned head-to-tail, as shown in Figure 2.30.

Let’s apply this general rule to the specific case of the cardinal axes. Let
x̂, ŷ, and ẑ be unit vectors that point in the +x, +y, and +z directions,
respectively. The results of taking the cross product of each pair of axes are

Cross product of the

cardinal axes

x̂ × ŷ = ẑ, ŷ × x̂ = −ẑ,
ŷ × ẑ = x̂, ẑ × ŷ = −x̂,
ẑ × x̂ = ŷ, x̂ × ẑ = −ŷ.

You can also remember which way the cross product points by using
your hand, similar to the way we distinguished between left-handed and
right-handed coordinate spaces in Section 1.3.3. Since we’re using a left-
handed coordinate space in this book, we’ll show how it’s done using your
left hand. Let’s say you have two vectors, a and b, and you want to figure
out which direction a × b points. Point your thumb in the direction of a,
and your index finger (approximately) in the direction of b. If a and b are
pointing in nearly the opposite direction, this may be difficult. Just make
sure that if your thumb points exactly in the direction of a; then your index
finger is on the same side of a as the vector b is. With your fingers in this
position, extend your third finger to be perpendicular to your thumb and
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index finger, similar to what we did in Section 1.3.3. Your third finger now
points in the direction of a× b.

Of course, a similar trick works with your right hand for right-handed
coordinate spaces.

One of the most important uses of the cross product is to create a vector
that is perpendicular to a plane (see Section 9.5), triangle (Section 9.6), or
polygon (Section 9.7).

2.13 Linear Algebra Identities

The Greek philosopher Arcesilaus reportedly said, “Where you find the
laws most numerous, there you will find also the greatest injustice.” Well,
nobody said vector algebra was fair. Table 2.2 lists some vector algebra
laws that are occasionally useful but should not be memorized. Several
identities are obvious and are listed for the sake of completeness; all of
them can be derived from the definitions given in earlier sections.

Identity Comments

a + b = b + a Commutative property of vector addition

a − b = a + (−b) Definition of vector subtraction

(a + b) + c = a + (b + c) Associative property of vector addition

s(ta) = (st)a Associative property of scalar multiplication

k(a + b) = ka + kb Scalar multiplication distributes over vector addition

‖ka‖ = |k|‖a‖ Multiplying a vector by a scalar scales the magnitude by a factor equal
to the absolute value of the scalar

‖a‖ ≥ 0 The magnitude of a vector is nonnegative

‖a‖2 + ‖b‖2 = ‖a + b‖2 The Pythagorean theorem applied to vector addition.

‖a‖ + ‖b‖ ≥ ‖a + b‖ Triangle rule of vector addition. (No side can be longer than the sum of
the other two sides.)

a · b = b · a Commutative property of dot product

‖a‖ =
√
a · a Vector magnitude defined using dot product

k(a · b) = (ka) · b = a · (kb) Associative property of scalar multiplication with dot product

a · (b + c) = a · b + a · c Dot product distributes over vector addition and subtraction

a × a = 0 The cross product of any vector with itself is the zero vector. (Because
any vector is parallel with itself.)

a × b = −(b × a) Cross product is anticommutative.

a × b = (−a) × (−b) Negating both operands to the cross product results in the same vector.

k(a × b) = (ka) × b = a × (kb) Associative property of scalar multiplication with cross product.

a × (b + c) = a × b + a × c Cross product distributes over vector addition and subtraction.

Table 2.2
Table of vector algebra identities
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2.14 Exercises

(Answers on page 746.)

1. Let

a =
[

−3 8
]

, b =





4
0
5



, c =









16
−1
4
6









.

(a) Identify a, b, and c, as row or column vectors, and give the dimension
of each vector.

(b) Compute by + cw + ax + bz.

2. Identify the quantities in each of the following sentences as scalar or vec-
tor. For vector quantities, give the magnitude and direction. (Note: some
directions may be implicit.)

(a) How much do you weigh?

(b) Do you have any idea how fast you were going?

(c) It’s two blocks north of here.

(d) We’re cruising from Los Angeles to New York at 600 mph, at an
altitude of 33,000 ft.

3. Give the values of the following vectors. The darker grid lines represent
one unit.
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4. Identify the following statements as true or false. If the statement is false,
explain why.

(a) The size of a vector in a diagram doesn’t matter; we just need to draw
it in the right place.

(b) The displacement expressed by a vector can be visualized as a se-
quence of axially aligned displacements.

(c) These axially aligned displacements from the previous question must
occur in order.

(d) The vector [x, y] gives the displacement from the point (x, y) to the
origin.

5. Evaluate the following vector expressions:

(a) −
[

3 7
]

(b)
∥

∥

[

−12 5
]∥

∥

(c)
∥

∥

[

8 −3 1/2
]∥

∥

(d) 3
[

4 −7 0
]

(e)
[

4 5
]

/2

6. Normalize the following vectors:

(a)
[

12 5
]

(b)
[

0 743.632
]

(c)
[

8 −3 1/2
]

(d)
[

−12 3 −4
]

(e)
[

1 1 1 1
]

7. Evaluate the following vector expressions:

(a)
[

7 −2 −3
]

+
[

6 6 −4
]

(b)
[

2 9 −1
]

+
[

−2 −9 1
]

(c)





3
10
7



−





8
−7
4





(d)





4
5
−11



−





−4
−5
11





(e) 3





a
b
c



− 4





2
10
−6
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8. Compute the distance between the following pairs of points:

(a)

[

10
6

]

,

[

−14
30

]

(b)

[

0
0

]

,

[

−12
5

]

(c)





3
10
7



,





8
−7
4





(d)





−2
−4
9



,





6
−7
9.5





(e)









4
−4
−4
4









,









−6
6
6
−6









9. Evaluate the following vector expressions:

(a)

[

2
6

]

·
[

−3
8

]

(b) −7
[

1 2
]

·
[

11 −4
]

(c) 10 +





−5
1
3



 ·





4
−13
9





(d) 3





−2
0
4



 ·









8
−2
3/2



+





0
9
7









10. Given the two vectors

v =





4
3
−1



, n̂ =





√
2/2√
2/2
0



,

separate v into components that are perpendicular and parallel to n̂. (As
the notation implies, n̂ is a unit vector.)

11. Use the geometric definition of the dot product

a · b = ‖a‖‖b‖ cos θ

to prove the law of cosines.

12. Use trigonometric identities and the algebraic definition of the dot product
in 2D

a · b = axbx + ayby

to prove the geometric interpretation of the dot product in 2D. (Hint: draw
a diagram of the vectors and all angles involved.)
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13. Calculate a× b and b× a for the following vectors:

(a) a =
[

0 −1 0
]

,b =
[

0 0 1
]

(b) a =
[

−2 4 1
]

,b =
[

1 −2 −1
]

(c) a =
[

3 10 7
]

,b =
[

8 −7 4
]

14. Prove the equation for the magnitude of the cross product

‖a× b‖ = ‖a‖‖b‖ sin θ.

(Hint: make use of the geometric interpretation of the dot product and try
to show how the left and right sides of the equation are equivalent, rather
than trying to derive one side from the other.)

15. Section 2.8 introduced the norm of a vector, namely, a scalar value asso-
ciated with a given vector. However, the definition of the norm given in
that section is not the only definition of a norm for a vector. In general,
the p-norm of an n-dimensional vector is defined as

‖x‖p ≡
(

n
∑

i=1

|xi|p
)1/p

.

Some of the more common p-norms include:

• The L1 norm, a.k.a. Taxicab norm (p = 1):

‖x‖1 ≡
n
∑

i=1

|xi|.

• The L2 norm, a.k.a. Euclidean norm (p = 2). This is the most
common and familiar norm, since it measures geometric length:

‖x‖2 ≡

√

√

√

√

n
∑

i=1

x2
i .

• The infinity norm, a.k.a. Chebyshev norm (p =∞):

‖x‖∞ ≡ max (|x1|, . . . , |xn|) .

Each of these norms can be thought of as a way to assigning a length or size
to a vector. The Euclidean norm was discussed in Section 2.8. The Taxicab
norm gets its name from how a taxicab would measure distance driving the
streets of a city laid out in a grid (e.g., Cartesia from Section 1.2.1). For
example, a taxicab that drives 1 block east and 1 block north drives a total
distance of 2 blocks, whereas a bird flying “as the crow flies” can fly in
a straight line from start to finish and travel only

√
2 blocks (Euclidean

norm). The Chebyshev norm is simply the absolute value of the vector
component with the largest absolute value. An example of how this norm
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can be used is to consider the number of moves required to move a king in
a game of chess from one square to another. The immediately surrounding
squares require 1 move, the squares surrounding those require 2 moves, and
so on.

(a) For each of the following find ‖x‖1, ‖x‖2, ‖x‖3, and ‖x‖∞:

(1)
[

3 4
]

(2)
[

5 −12
]

(3)
[

−2 10 −7
]

(4)
[

6 1 −9
]

(5)
[

−2 −2 −2 −2
]

*(b) Draw the unit circle (i.e., the set of all vectors with ‖x‖p = 1) centered

at the origin for the L1 norm, L2 norm, and infinity norm.

16. A man is boarding a plane. The airline has a rule that no carry-on item
may be more than two feet long, two feet wide, or two feet tall. He has
a very valuable sword that is three feet long, yet he is able to carry the
sword on board with him.9 How is he able to do this? What is the longest
possible item that he could carry on?

17. Verify Figure 2.11 numerically.

18. Is the coordinate system used in Figure 2.27 a left-handed or right-handed
coordinate system?

19. One common way of defining a bounding box for a 2D object is to specify
a center point c and a radius vector r, where each component of r is half
the length of the side of the bounding box along the corresponding axis.

(a) Describe the four corners pUpperLeft, pUpperRight, pLowerLeft, and
pLowerRight.

(b) Describe the eight corners of a bounding cube, extending this idea
into 3D.

9Please ignore the fact that nowadays this could never happen for security reasons.
You can think of this exercise as taking place in a Quentin Tarantino movie.
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20. A nonplayer character (NPC) is standing at location p with a forward
direction of v.

(a) How can the dot product be used to determine whether the point x
is in front of or behind the NPC?

(b) Let p =
[

−3 4
]

and v =
[

5 −2
]

. For each of the following points
x determine whether x is in front of or behind the NPC:

(1) x =
[

0 0
]

(2) x =
[

1 6
]

(3) x =
[

−6 0
]

(4) x =
[

−4 7
]

(5) x =
[

5 5
]

(6) x =
[

−3 0
]

(7) x =
[

−6 −3.5
]

21. Extending the concept from Exercise 20, consider the case where the NPC
has a limited field of view (FOV). If the total FOV angle is φ, then the
NPC can see to the left or right of its forward direction by a maximum
angle of φ/2.

(a) How can the dot product be used to determine whether the point x
is visible to the NPC?

(b) For each of the points x in Exercise 20 determine whether x is visible
to the NPC if its FOV is 90◦.

(c) Suppose that the NPC’s viewing distance is also limited to a maximum
distance of 7 units. Which points are visible to the NPC then?

22. Consider three points labeled a, b, and c in the xz plane of our left-handed
coordinate system, which represent waypoints on an NPC’s path.

(a) How can the cross product be used to determine whether, when mov-
ing from a to b to c, the NPC makes a clockwise or counterclockwise
turn at b, when viewing the path from above?

(b) For each of the following sets of three points, determine whether the
NPC is turning clockwise or counterclockwise when moving from a to
b to c:

(1) a =
[

2 0 3
]

, b =
[

−1 0 5
]

, c =
[

−4 0 1
]

(2) a =
[

−3 0 −5
]

, b =
[

4 0 0
]

, c =
[

3 0 3
]

(3) a =
[

1 0 4
]

, b =
[

7 0 −1
]

, c =
[

−5 0 −6
]

(4) a =
[

−2 0 1
]

, b =
[

1 0 2
]

, c =
[

4 0 4
]
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23. In the derivation of a matrix to scale along an arbitrary axis, we reach a
step where we have the vector expression

p′ = p+ (k − 1) (p · n)n,

where n is an arbitrary vector [nx, ny, nz] and k is an arbitrary scalar, but
p is one of the cardinal axes. Plug in the value p = [1, 0, 0] and simplify
the resulting expression for p′. The answer is not a vector expression, but
a single vector, where the scalar expressions for each coordinate have been
simplified.

24. A similar problem arises with the derivation of a matrix to rotate about
an arbitrary axis. Given an arbitrary scalar θ and a vector n, substitute
p = [1, 0, 0] and simplify the value of p′ in the expression

p′ = cos θ (p− (p · n)n) + sin θ (n× p) + (p · n)n.

What’s our vector, Victor?

— Captain Oveur in Airplane! (1980)





Chapter 3

Multiple Coordinate Spaces

The boundary lines have fallen for me in pleasant places;
surely I have a delightful inheritance.

— Psalm 16:6 (New International Version)

Chapter 1 discussed how we can establish a coordinate space anywhere we
want simply by picking a point to be the origin and deciding how we want
the axes to be oriented. We usually don’t make these decisions arbitrarily;
we form coordinate spaces for specific reasons (one might say “different
spaces for different cases”). This chapter gives some examples of common
coordinate spaces that are used for graphics and games. We will then
discuss how coordinate spaces are nested within other coordinate spaces.

This chapter introduces the idea of multiple coordinate systems. It is
divided into five main sections.

• Section 3.1 justifies the need for multiple coordinate systems.

• Section 3.2 introduces some common coordinate systems. The main
concepts introduced are

◦ world space

◦ object space

◦ camera space

◦ upright space

• Section 3.3 describes coordinate-space transformations.

◦ Section 3.3.1 exposes a duality between two ways of thinking
about coordinate-space transformations.

◦ Section 3.3.2 describes how to specify one coordinate system in
terms of another.

◦ Section 3.3.3 discusses the very important concept of basis vec-
tors.

79



80 3. Multiple Coordinate Spaces

• Section 3.4 discusses nested coordinate spaces, commonly used for
animating hierarchically segmented objects in 3D space.

• Section 3.5 is a political campaign for more human readable code.

3.1 Why Bother with Multiple Coordinate Spaces?

Why do we need more than one coordinate space? After all, any one 3D
coordinate system extends infinitely and thus contains all points in space.
So we could just pick a coordinate space, declare it to be the “world”
coordinate space, and all points could be located using this coordinate
space. Wouldn’t that be easier? In practice, the answer to this is “no.”
Most people find it more convenient to use different coordinate spaces in
different situations.

The reason multiple coordinate spaces are used is that certain pieces of
information are known only in the context of a particular reference frame.
It might be true that theoretically all points could be expressed using a
single “world” coordinate system. However, for a certain point a, we may
not know the coordinates of a in the “world” coordinate system. But we
may be able to express a relative to some other coordinate system.

For example, the residents of Cartesia (see Section 1.2.1) use a map
of their city with the origin centered quite sensibly at the center of town
and the axes directed along the cardinal points of the compass. The res-
idents of Dyslexia use a map of their city with the coordinates centered
at an arbitrary point and the axes running in some arbitrary directions
that probably seemed a good idea at the time. The citizens of both cities
are quite happy with their respective maps, but the State Transportation
Engineer assigned the task of running up a budget for the first highway
between Cartesia and Dyslexia needs a map showing the details of both
cities, which therefore introduces a third coordinate system that is superior
to him, though not necessarily to anybody else. Each major point on both
maps needs to be converted from the local coordinates of the respective city
to the new coordinate system to make the new map.

The concept of multiple coordinate systems has historical precedent.
While Aristotle (384–322 BCE), in his books On the Heavens and Physics,
proposed a geocentric universe with Earth at the origin, Aristarchus (ca.
310–230 BCE) proposed a heliocentric universe with the sun at the origin.
So we can see that more than two millennia ago the choice of coordinate
system was already a hot topic for discussion. The issue wasn’t settled for
another couple of millennia until Nicolaus Copernicus (1473–1543) observed
in his book De Revolutionibus Orbium Coelestium (On the Revolutions of
the Celestial Orbs) that the orbits of the planets can be explained more
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simply in a heliocentric universe without all the mucking about with wheels
within wheels in a geocentric universe.

In Sand-Reckoner, Archimedes (d. 212 BCE), perhaps motivated by
some of the concepts introduced in Section 1.1, developed a notation for
writing down very large numbers—numbers much larger than anybody had
ever counted at that time. Instead of choosing to count dead sheep, as
in Section 1.1, he chose to count the number of grains of sand it would
take to fill the universe. (He estimated that it would take 8 × 1063 grains
of sand, but he did not, however, address the question of where he would
get the sand.) In order to make the numbers larger, he chose not the
geocentric universe generally accepted at the time, but Aristarchus’ revolu-
tionary new heliocentric universe. In a heliocentric universe, Earth orbits
the sun, in which case the fact that the stars show no parallax means that
they must be much farther away than Aristotle could ever have imagined.
To make his life more difficult, Archimedes deliberately chose the coordi-
nate system that would produce larger numbers. We will use the direct
opposite of his approach. In creating our virtual universe inside the com-
puter we will choose coordinate systems that make our lives easier, not
harder.

In today’s enlightened times, we are accustomed to hearing in the media
about cultural relativism, which promotes the idea that it is incorrect to
consider one culture or belief system or national agenda to be superior to
another. It’s not too great a leap of the imagination to extend this to
what we might call “transformational relativism”—the contention that no
place or orientation or coordinate system can be considered superior to
others. In a certain sense that’s true, but to paraphrase George Orwell
in Animal Farm: “All coordinate systems are considered equal, but some
are more equal than others.” Now let’s look at some examples of common
coordinate systems that you will meet in 3D graphics.

3.2 Some Useful Coordinate Spaces

Different coordinate spaces are needed because some information is mean-
ingful or available only in a particular context. In this section, we give some
examples of common coordinate spaces.

3.2.1 World Space

The authors wrote this book from Chicago, Illinois, and Denton, Texas.
More precisely, their locations are as shown in Table 3.1.

These latitude and longitude values express our “absolute” position in
the world. You don’t need to know where Denton, Chicago, Texas, Illinois,
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Author City Latitude Longitude

Fletcher Chicago 41o57’ North 87o39’ West
Ian Denton 33o11’ North 97o West

Table 3.1. Locations of authors, including a random offset introduced to protect us from our
many obsessive stalker fans.

or even the United States is to use this information because the position is
absolute. The origin, or (0, 0) point, in the world was decided for historical
reasons to be located on the equator at the same longitude as the Royal
Observatory in the town of Greenwich, England.

(The astute reader will note that these coordinates are not Cartesian
coordinates, but rather they are spherical coordinates—see Section 7.3.2.
That is not significant for this discussion. We live in a flat 2D world
wrapped around a sphere, a concept that supposedly eluded most people
until Christopher Columbus verified it experimentally.)

The world coordinate system is a special coordinate system that es-
tablishes the “global” reference frame for all other coordinate systems to
be specified. In other words, we can express the position of other coor-
dinate spaces in terms of the world coordinate space, but we cannot ex-
press the world coordinate space in terms of any larger, outer coordinate
space.

In a nontechnical sense, the world coordinate system establishes the
“biggest” coordinate system that we care about, which in most cases is not
actually the entire world. For example, if we wanted to render a view of
Cartesia, then for all practical purposes Cartesia would be “the world,”
since we wouldn’t care where Cartesia is located (or even if it exists at all).
To find the optimal way to pack automobile parts into a box, we might
write a physics simulation that “jiggles” a box full of parts around until
they settle. In this case we confine our “world” to the inside of a box.
So in different situations the world coordinate space will define a different
“world.”

We’ve said that world coordinate space is used to describe absolute
positions. We hope you pricked up your ears when you heard this, and
you knew we weren’t being entirely truthful. We already discussed in Sec-
tion 2.4.1 that there’s really no such thing as “absolute position.” In this
book, we use the term “absolute” to mean “absolute with respect to the
largest coordinate space we care about.” In other words, “absolute” to us
actually means “expressed in the world coordinate space.”

The world coordinate space is also known as the global or universal
coordinate space.
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3.2.2 Object Space

Object space is the coordinate space associated with a particular object.
Every object has its own independent object space. When an object moves
or changes orientation, the object coordinate space associated with that
object is carried along with it, so it moves or changes orientation too. For
example, we all carry our own personal coordinate system around with us.
If we were to ask you to “take one step forward,” we are giving you an
instruction in your object space. (Please forgive us for referring to you as
an object—you know what we mean.) We have no idea which way you will
move in absolute terms. Some of you will move north, some south, and
those wearing magnet boots on the side of a building might move upward!
Concepts such as “forward,” “back,” “left,” and “right” are meaningful
in object coordinate space. When someone gives you driving directions,
sometimes you will be told to “turn left” and other times you will be told
to “go east.” “Turn left” is a concept that is expressed in object space, and
“go east” is expressed in world space.

Locations as well as directions can be specified in object space. For
example, if I asked you where the muffler on your car was, you wouldn’t
tell me “Cambridge,1 MA,” even if you were Tom or Ray Magliozzi and
your car was actually in Cambridge. In this case, an answer expressed with
a global perspective like this is totally useless;2 I want you to express the
location of your muffler in the object space of your car.

In the context of graphics, object space is also known as model space,
since the coordinates for the vertices of a model are expressed in model
space. Object space is also known as body space, especially in physics con-
texts. It’s also common to use a phrase like “with respect to the body axes,”
which means the same thing as “expressed using body space coordinates.”

3.2.3 Camera Space

One especially important example of an object space is camera space, which
is the object space associated with the viewpoint used for rendering. In
camera space, the camera is at the origin, with +x pointing to the right,
+z pointing forward (into the screen, the direction the camera is facing),
and +y pointing “up.” (Not “up” with respect to the world, “up” with
respect to the top of the camera.) Figure 3.1 shows a diagram of camera
space.

These are the traditional left-handed conventions; others are common.
In particular, the OpenGL tradition is right-handed, with −z pointing into
the screen and +z coming out of the screen towards the viewer.

1Our fair city.
2Come to think of it, this is exactly what Tom or Ray Magliozzi would say.
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Figure 3.1
Camera space using lefthanded
conventions

Note carefully the differences between camera space, which is a 3D
space, and screen space, which is a 2D space. The mapping of camera-
space coordinates to screen-space coordinates involves an operation known
as projection. We’ll discuss camera space in more detail, and this conver-
sion process in particular, when we talk about coordinate spaces used in
rendering in Section 10.3.

3.2.4 Upright Space

Sometimes the right terminology is the key to unlocking a better under-
standing of a subject. Don Knuth coined the phrase “name and conquer”
to refer to the common and important practice in mathematics and com-
puter science of giving a name to a concept that is used frequently. The
goal is to avoid repeating the details of this idea each time it is invoked,
resulting in a reduction of clutter and an easier time focusing on the larger
issue, for which the thing being named is only one part. It has been our
experience that to conquer coordinate space transformations, when com-
municating either to human beings via words or to computers via code, it
is helpful to associate with each object a new coordinate space, which we
call the upright coordinate space of the object. An object’s upright space
is, in a certain sense, “halfway” between world space and its object space.
The axes of upright space are parallel with the axes of world space, but
the origin of upright space is coincident with the origin of object space.
Figure 3.2 illustrates this principle in 2D. (Notice that we have made an
arbitrary choice to place the origin between the robot’s feet, rather than at
her center of mass.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-4&iName=master.img-000.jpg&w=169&h=167
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Figure 3.2
Object, upright, and world
space.

Why is upright space interesting? To transform a point between object
space and upright space requires only rotation, and to transform a point
between upright space and world space requires only a change of location,
which is usually called a translation. Thinking about these two things
independently is easier than trying to cope with them both at once. This is

Figure 3.3
Conversion between world and upright space via translation; upright and object space are
related by rotation

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-4&iName=master.img-001.jpg&w=203&h=174
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-4&iName=master.img-002.jpg&w=406&h=189
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shown in Figure 3.3. World space (on the left) is transformed into upright
space (in the center) by translating the origin. To transform upright space
into object space, we rotate the axes until they align with the object-space
axes. In this example, the robot thinks that her y-axis points from her feet
to her head and that her x-axis points to her left.3 We will return to this
concept in Section 3.3.

The term “upright” is of our own invention and is not (yet!) a standard
you are likely to find elsewhere. But it’s a powerful concept in search of a
good name. In physics, the term “center of mass coordinates” is sometimes
used to describe coordinates expressed in the space that we are calling up-
right space. In the first edition of this book, we used the term “inertial
space” to refer to this space, but we have changed it to avoid confusion
with inertial reference frames in physics, which have some similar connota-
tions but are different. We’ll have a bit more philosophical pleas regarding
upright space at the end of this chapter.

3.3 Basis Vectors and Coordinate Space
Transformations

We said that a major justification for the existence of more than one coor-
dinate space is because certain positions or directions are known only in a
particular coordinate space. Likewise, sometimes certain questions can be
answered only in particular coordinate spaces. When the question is best
asked in one space, and the information we need in order to answer that
question is known in a different space, we have a problem to solve.

For example, suppose that our robot is attempting to pick up a herring
sandwich in our virtual world. We initially know the position of the sand-
wich and the position of the robot in world coordinates. World coordinates
can be used to answer questions like “Is the sandwich north or south of
me?” A different set of questions could be answered if we knew the po-
sition of the sandwich in the object space of the robot—for example, “Is
the sandwich in front of me or behind me?” “Which way should I turn to
face the sandwich?” “Which way do I move my herring sandwich scoop
to get in position to pick up the sandwich?” Notice that to decide how to
manipulate the gears and circuits, the object-space coordinates are the rel-

3Please forgive us for turning the robot around to face you, which caused us to break
from our usual conventions where +x is “right” in object space. In our defense, this
is a 2D diagram, and we’re not really sure if people living in a flat world would have
any concept of “front” and “back” (though they would probably be able to tell between
“regular” and “reflected” states—just as in 3D we have left- and right-handed coordinate
systems). So who’s to say if a 2D robot is really facing away from you or towards you,
or which direction she thinks is her left or right?
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evant ones. Furthermore, any data provided by sensors would be expressed
in object space. Of course, our own bodies work under similar principles.
All of us are capable of seeing a tasty morsel in front of us and putting it
into our mouths without knowing which direction is “north.” (And thank
goodness, too, or many of us would starve to death.)

Further, suppose that we wish to render an image of the robot picking
up the sandwich, and that the scene is illuminated by the light mounted on
her shoulder. We know the position of the light within the robot’s object
space, but to properly light the scene, we must know the position of the
light in world space.

These problems are two sides of the same coin: we know how to express
a point in one coordinate space, and we need to express that point in
some other coordinate space. The technical term for this computation
is a coordinate space transformation. We need to transform the position
from world space to object space (in the example of the sandwich) or from
object space to world space (in the example of the light). Notice that in
this example, neither the sandwich nor the light really move, we are just
expressing their locations in a different coordinate space.

The remainder of this section describes how to perform coordinate space
transformations. Because this topic has such fundamental importance, and
it can be so darn confusing, please allow us to present a very gradual tran-
sition from the warm fluffy high level to the cold hard math. Section 3.3.1
considers transformations in the very context they are often encountered for
beginning video game programmers: graphics. Using the most ridiculous
example we could think of, we show the basic need of transformations, and
also demonstrate the duality between two useful ways of visualizing trans-
formations. Section 3.3.2 makes sure we are clear about what it means to
specify a coordinate space in terms of another space. Finally, Section 3.3.3
presents the key idea of basis vectors.

3.3.1 Dual Perspectives

In our robot example, the discussion was phrased in a way such that the
process of transforming a point didn’t really “move” the point, we just
changed our frame of reference and were able to describe the point using
a different coordinate space. In fact, you might say that we really didn’t
transform the point, we transformed the coordinate space! But there’s
another way of looking at coordinate space transformations. Some people
find it easier in certain situations to imagine the coordinate space staying
still while the point moves from one place to another. When we develop the
math for actually calculating these transformations, this is the paradigm
that is more natural. Coordinate space transforms are such an important
tool, and the confusion that can arise because of an incomplete awareness
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of these two perspectives is so common that we will will take a little bit of
extra space to work through some examples.

Now for that ridiculous example. Let’s say that we are working for a
advertising agency that has just landed a big account with a food manufac-
turer. We are assigned to the project to make a slick computer-generated
ad promoting one of their most popular items, Herring Packets, which are
microwaveable herring food products for robots.

Figure 3.4
One serving contains 100%
of a robot’s recommended
daily allowance of essential
oils.

Of course, the client has a tendency to want
changes made at the last minute, so we might
need models of the product and robot in all pos-
sible positions and orientations. Our first at-
tempt to accomplish this is to request, from the
art department, the robot model and the product
model in every possible configuration of positions
and orientations. Unfortunately, they estimate
that since this is an infinite amount, it will take
all of eternity to produce this many assets, even
after factoring in Moore’s law and the fact that
the product model is just a box. The director sug-
gests increasing the art staff in order to achieve
her vision, but unfortunately, after crunching the
numbers, the producer discovers that this doesn’t
decrease the time required to finish the project.4

In fact, the company can afford resources to pro-
duce only one robot model and one box of mi-
crowaveable herring food product.

Although you may regret spending the past 60 seconds of your life
reading the preceding paragraph, this example does illustrate the funda-
mental necessity of coordinate space transformations. It’s also a relatively
accurate depiction of the creative process. Time estimates are always
padded, project managers will throw more people at a project in despera-
tion, projects must be done by a certain date to meet a quarter, and, most
pertinent to this book, artists will deliver only one model, leaving it up to
us to move it around in the world.

The 3D model we get from the artist is a mathematical representation
of a robot. This description likely includes control points, called vertices,
and some sort of surface description, which tells how to connect the vertices
together to form the surface of the object. Depending on what tools were
used by the artist to create the model, the surface description might be a
polygon mesh or a subdivision surface. We’re not too concerned about the

4Although this is an extreme example, it illustrates a well-known principle that, in
most creative projects, total project time is not simply the amount of work divided by
the number of workers. As the saying goes, “Nine women can’t make a baby in a month.”

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-4&iName=master.img-003.jpg&w=94&h=117
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surface description here; what’s important is that we can move the model
around by moving its vertices around. Let’s ignore for now the fact that the
robot is an articulated creature, and assume we can only move it around
in the world like a chess piece, but not animate it.

The artist who built our robot model decided (quite reasonably) to
create her at the origin of the world space. This is depicted in Figure 3.5.

Figure 3.5
The robot model was
created with the world
origin at her feet.

To simplify the rest of this example, we’re going to look at things from
above. Although this is basically a 2D example, we’re going to use our 3D
conventions, ignoring the y-axis for now. In this book the convention is
for +z to point “forward” in object space and “north” in upright space,
whereas +x points “right” in object space and “east” in upright space.

Figure 3.6
Moving the model into position

For now, because the model is in its home position, object space and
world space (and upright space) are all the same by definition. For all

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-4&iName=master.img-004.jpg&w=214&h=160
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-4&iName=master.img-005.jpg&w=190&h=142
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practical purposes, in the scene that the artist built containing only the
model of the robot, world space is object space.

Original

position

Step 1.

Rotate

Step 2.

Translate

Figure 3.7
Transforming the robot from object space to world
space by rotating, then translating

Back to advertising. Our
goal is to transform the vertices
of the model from their “home”
location to some new location
(in our case, into a make-believe
kitchen), according to the de-
sired position and orientation of
the robot based on the execu-
tive whims at that moment, as
shown in Figure 3.6.

Let’s talk a bit about how
to accomplish this. We won’t
get too far into the mathemati-
cal details—that’s what the rest
of this chapter is for. Conceptu-
ally, to move the robot into po-
sition we first rotate her clock-
wise 120o (or, as we’ll learn in
Section 8.3, by “heading left
120o”). Then we translate 18 ft
east and 10 ft north, which ac-
cording, to our conventions, is
a 3D displacement of [18, 0, 10].
This is shown in Figure 3.7.

At this time, please allow
us a brief digression to answer
a question that some readers
may be asking: “Do we have
to rotate first, and then trans-
late?” The answer to this ques-
tion is basically “yes.” Al-
though it may seem more nat-
ural to translate before rotat-
ing, it’s usually easier to rotate
first. Here’s why. When we ro-
tate the object first, the center
of rotation is the origin. Rota-
tion about the origin and trans-

lation are two primitive tools we have at our disposal, and each is easy.
(Recall our motivation for introducing upright space in Section 3.2.4.) If
we rotate second, then that rotation will occur about a point that is not

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-4&iName=master.img-006.jpg&w=106&h=106
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-4&iName=master.img-007.jpg&w=106&h=106
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-4&iName=master.img-008.jpg&w=106&h=106
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the origin. Rotation about the origin is a linear transform, but rotation
about any other point is an affine transform. As we show in Section 6.4.3,
to perform an affine transformation, we compose a sequence of primitive
operations. For rotation about an arbitrary point, we translate the cen-
ter of rotation to the origin, rotate about the origin, and then trans-
late back. In other words, if we want to move the robot into place by
translating first and rotating second, we likely go through the following
process:

Translating first and
then rotating

1. Translate.

2. Rotate. Because we’re rotating about a point that’s not the origin,
this is a three step process:

a. Translate the center of rotation to the origin. (This undoes
step 1.)

b. Perform the rotation about the origin.

c. Translate to put the center of rotation in place.

Notice that steps 1 and 2a cancel each other out, and we’re left with the
two steps: rotate first, then translate.

So we’ve managed to get the robot model into the right place in the
world. But to render it, we need to transform the vertices of the model
into camera space. In other words, we need to express the coordinates of
the vertices relative to the camera. For example, if a vertex is 9 ft in front
of the camera and 3 ft to the right, then the z- and x-coordinates of that
vertex in camera space would be 9 and 3, respectively. Figure 3.8 shows a

Overhead view Camera’s view

Figure 3.8
The layout of the camera and robot in the scene

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-4&iName=master.img-009.jpg&w=190&h=142
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-4&iName=master.img-010.jpg&w=190&h=142
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particular shot we might want to capture. On the left, we see the layout of
the shot from an external perspective, and on the right is what the camera
sees.

It was easy to visualize transforming the model into world space. We
literally “moved” it into place.5 But how do we transform from world
space to camera space? The objects are both already “in place,” so where
do we “move” them? For situations like this, it’s helpful to think about
transforming the coordinate space rather than transforming the objects, a
technique we’ll discuss in the next section. However, let’s see if we can keep
the coordinate space stationary, and still achieve the desired result by only
“moving objects.”

When we transformed from object space to world space, we were able
to do so because we imagined the robot starting out at the origin in world
space. Of course, the robot never really was at the location in world space,
but we imagined it. Since we transformed from object space to world space
by moving the object, perhaps we can transform from world space to camera
space by moving the world! Imagine taking the entire world, including the
robot, the camera, and the kitchen, and moving everything around. Clearly,
such operations wouldn’t affect what the camera would “see,” because they
don’t change the relative relationship between the camera and the objects
in the world. If we moved the world and camera together, such that the
camera moved to the origin, then world-space coordinates and camera-space
coordinates would be the same. Figure 3.9 shows the two-step process that
we would use to achieve this.

Notice that, in this case, it’s easier to translate before rotating. That’s
because we want to rotate about the origin. Also, we use the opposite
translation and rotation amounts, compared to the camera’s position and
orientation. For example, in Figure 3.9 the coordinates of the camera are
approximately (13.5, 4, 2). (The grid lines represent 10 units.) So to move
the camera to the origin, we translate everything by [−13.5,−4,−2]. The
camera is facing roughly northeast and thus has a clockwise heading com-
pared to north; a counterclockwise rotation is required to align camera-
space axes with the world-space axes.

After picking up and moving around an entire robot in the first step, and
then the entire world6 in the second step, we finally have the coordinates
of the vertices in camera space, and can proceed with rendering. If all this
imaginary heavy lifting has worn you out, don’t worry; in just a moment
we will discuss an alternate way to think about this process.

Before we move on, a few important notes about this example. First,
the world-to-camera transform is usually done in a vertex shader; you can

5OK, since this is all taking place in our imagination, the word literally might be a
bit out of place.

6Yes, including the kitchen sink.
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Original
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Step 1.
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Rotate

Figure 3.9
Transforming everything
from world space to camera
space by translating, then
rotating

leave this to the graphics API if you are working at a high level and not
writing your own shaders. Second, camera space isn’t the “finish line” as
far as the graphics pipeline is concerned. From camera space, vertices are
transformed into clip space and finally projected to screen space. These
details are covered in Section 10.2.3.

So we’ve seen how we can compute world-space coordinates from object-
space coordinates by imagining moving the model from the origin to its
position in the world. Then we could compute camera-space coordinates
from world-space coordinates by shifting the entire world to put the camera
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at the origin. The point to emphasize is that the coordinate space used to
describe the points remained constant (even if we called it different names
at different times), while we imaged the points moving in space. A trans-
formation thus interpreted is sometimes called an active transformation.

Alternatively, we can think of the same process as a passive transfor-
mation. In the passive paradigm, we imagine the points being stationary
while we move the coordinate space used to describe those points. In either
case, the coordinates of the points are the same at each step. It’s all in how
we choose to view the situation. Earlier, our perspective was fixed with the
coordinate space, because we were thinking of the transformation in active
terms. Now we show the dual perspective, which is fixed relative to the
object.

Absolute perspective Local perspective

Robot
object
space

Robot
upright
space

World
space
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Camera
upright
space

Camera
space

Figure 3.10
The same sequence of coordinate space transformations is viewed from two perspectives. On
the left, it appears as if the objects are moving, and the coordinate axes are stationary. On the
right, the objects appear to be stationary, and the coordinate space axes are transformed.

Figure 3.10 reviews the four-step sequence from the robot’s object space
to the camera’s object space from both perspectives. On the left, we repeat
the presentation just given, where the coordinate space is stationary and the
robot is moving around. On the right, we show the same process as a passive
transformation, from a perspective that remains fixed relative to the robot.
Notice how the coordinate space appears to move around. Also, notice that
when we perform a certain transformation to the vertices, it’s equivalent
to performing the opposite transformation to the coordinate space. The
duality between active and passive transformations is a frequent a source
of confusion. Always make sure when you are turning some transformation
into math (or code), to be clear in your mind whether the object or the
coordinate space is being transformed. We consider a classic example of this
confusion from graphics in Section 8.7.1, when we discuss how to convert
Euler angles to the corresponding rotation matrix.

Note that for clarity, the first two rows in Figure 3.10 have the kitchen
and camera mostly transparent. In reality, each individual object—the
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pots, the refrigerator, and so on—could have been made by an artist at
the center of some scene, and conceptually each undergoes its own unique
transform from object space to world space.

We discussed two useful ways of imagining coordinate space transforma-
tions. One way is to fix our perspective with the coordinate space. This is
the active transformation paradigm: the vectors and objects move around
as their coordinates change. In the passive transformation paradigm, we
keep our perspective fixed relative to the thing being transformed, making
it appear as if we are transforming the coordinate space used to measure
the coordinates. Transforming an object has the same effect on the coor-
dinates as performing the opposite transformation to the coordinate space.
Both the active and passive paradigms are quite useful, and an inadequate
appreciation of the difference between them is a common cause of mistakes.

3.3.2 Specifying Coordinate Spaces

We are almost ready to talk about transformations. But there’s actually
one more basic question we should answer first: exactly how do we specify
a coordinate space relative to another coordinate space?7 Recall from Sec-
tion 1.2.2 that a coordinate system is defined by its origin and axes. The
origin defines the position of the coordinate space, and the axes describe
its orientation. (Actually, the axes can describe other information, such as
scale and skew. For the moment, we assume that the axes are perpendic-
ular and the units used by the axes are the same as the units used by the
parent coordinate space.) So if we can find a way to describe the origin and
the axes, then we have fully documented the coordinate space.

Specifying the position of the coordinate space is straightforward. All
we have to do is describe the location of the origin. We do this just like we
do for any other point. Of course, we must express this point relative to the
parent coordinate space, not the local child space. The origin of the child
space, by definition, is always (0, 0, 0) when expressed in child coordinate
space. For example, consider the position of the 2D robot in Figure 3.2. To
establish a scale for the diagram, let’s say the robot is around 5 1/2 feet
tall. Then the world-space coordinates of her origin are close to (4.5, 1.5).

7We imagine that if this chapter were an episode of Elmo’s World, this very obvious
and important question would be the one that Elmo’s goldfish, Dorothy, would have
asked right off the bat.
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Specifying the orientation of a coordinate space in 3D is only slightly
more complicated. The axes are vectors (directions), and can be specified
like any other direction vector. Going back to our robot example, we could
describe her orientation by telling what directions the green vectors labeled
+x and +y were pointing—these are the axes of the robot’s object space.
(Actually, we would use vectors with unit length. The axes in the diagrams
were drawn as large as possible, but, as we see in just a moment, unit vectors
are usually used to describe the axes.) Just as with position, we do not
use the object space itself to describe the object-space axis directions, since
those coordinates are [1, 0] and [0, 1] by definition. Instead, the coordinates
are specified in upright space. In this example, unit vectors in the +x and
+y object-space directions have upright-space coordinates of [0.87, 0.50] and
[−0.50, 0.87], respectively.

What we have just described is one way to specify the orientation of
a coordinate space, but there are others. For example, in 2D, rather than
listing two 2D vectors, we could give a single angle. (The robot’s object axes
are rotated clockwise 30o relative to the upright axes.) In 3D, describing
orientation is considerably more complicated, and in fact we have devoted
all of Chapter 8 to the subject.

We specify a coordinate space by describing its origin and axes. The origin
is a point that defines the position of the space and can be described just
like any other point. The axes are vectors and describe the orientation of
the space (and possibly other information such as scale), and the usual tools
for describing vectors can be used. The coordinates we use to measure the
origin and axes must be relative to some other coordinate space.

3.3.3 Basis Vectors

Now we are ready to actually compute some coordinate space transforms.
We start with a concrete 2D example. Let’s say that we need to know the
world-space coordinates of the light that is attached to the robot’s right
shoulder. We start with the object-space coordinates, which are (−1, 5).
How do we get the world-space coordinates? To do this, we must go back to
the beginning and poke deeper into some ideas that are so fundamental as
to be taken for granted. How do we locate a point indicated by a given set of
Cartesian coordinates? Let’s say we needed to give step-by-step directions
for how to locate the light to somebody who didn’t know how Cartesian
coordinates worked. We would say:
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1. Start at the origin.

2. Move to the right 1 foot.

3. Move up 5 feet.

We assume this person has a tape measure, and understands that when
we say “right” and “up,” we mean the robot’s “right” and “up,” the direc-
tions that we enlightened people know as being parallel to the object-space
axes.

Now here’s the key point: we already know how to describe the ori-
gin, the direction called “the robot’s right,” and the direction called “the
robot’s up” in world coordinates! They are part of the specification of the
coordinate space, which we just gave in the previous section. So all we
have to do is follow our own instructions, and at each step, keep track of
the world-space coordinates. Examine Figure 3.2 again.

1. Start at the origin. No problem, we previously determined that her
origin was at

(4.5, 1.5).

2. Move to the right 1 foot. We know that the vector “the robot’s left” is
[0.87, 0.50], and so we scale this direction by the distance of −1 unit,
and add on the displacement to our position, to get

(4.5, 1.5) + (−1)× [0.87, 0.50] = (3.63, 1).

3. Move up 5 feet. Once again, we know that “the robot’s up” direction
is [−0.50, 0.87], so we just scale this by 5 units and add it to the result,
yielding

(4.5, 1.5) + (−1)× [0.87, 0.50] + 5× [−0.50, 0.87] = (1.13, 5.35).

If you look again at Figure 3.2, you’ll see that, indeed, the world-space
coordinates of the light are approximately (1.13, 5.35).

Now let’s remove the numbers specific to this example, and make some
more abstract statements. Let b be some arbitrary point whose body-space
coordinates b = (bx, by) are known. Let w = (wx, wy) represent the world-
space coordinates of that same point. We know the world-space coordinates
for the origin o and the left and up directions, which we denote as p and
q, respectively. Now w can be computed by

w = o+ bxp+ byq. (3.1)



Basis Vectors and Coordinate Space Transformations 99

Now let’s be even more general. In order to do so, it will help greatly to
remove translation from our consideration. One way to do this is to discard
“points” and think exclusively of vectors, which, as geometric entities, do
not have a position (only magnitude and direction); thus translation does
not really have a meaning for them. Alternatively, we can simply restrict
the object space origin to be the same as the world-space origin.

Remember that in Section 2.3.1 we discussed how any vector may be
decomposed geometrically into a sequence of axially-aligned displacements.
Thus, an arbitrary vector v can be written in “expanded” form as

Expressing a 3D vector
as a linear combination
of basis vectors

v = xp+ yq+ zr. (3.2)

Here, p, q, and r are basis vectors for 3D space. The vector v could have
any possible magnitude and direction, and we could uniquely determine
the coordinates x, y, z (unless p, q, and r are chosen poorly; we discuss
this key point in just a moment). Equation (3.2) expresses v as a linear
combination of the basis vectors.

Here is a common, but a bit incomplete, way to think about basis vec-
tors: most of the time, p = [1, 0, 0], q = [0, 1, 0], and r = [0, 0, 1]; in other
unusual circumstances, p, q, and r have different coordinates. This is not
quite right. When thinking about p, q, and r, we must distinguish between
the vectors as geometric entities (earlier, p and q were the physical direc-
tions of “left” and “up”) and the particular coordinates used to describe
those vectors. The former is inherently immutable; the latter depends on
the choice of basis. Plenty of books emphasize this by defining all vectors
in terms of the “world basis vectors,” which are often denoted i, j, and k

and are interpreted as elemental geometric entities that cannot be further
decomposed. They do not have “coordinates,” although certain axioms are
taken to be true, such as i× j = k. In this framework, a coordinate triple
[x, y, z] is a mathematical entity, which does not have a geometric meaning
until we take the linear combination xi+ yj+ zk. Now, in response to the
assertion i = [1, 0, 0], we might argue that since i is a geometric entity, it
cannot be compared against a mathematical object, in the same way that
the equation “kilometer = 3.2” is nonsense. Because the letters i, j, and k

carry this weighty elemental connotation, we instead use the less presump-
tuous symbols p, q, and r, and whenever we use these symbols to name
our basis vectors, the message is: “we’re using these as our basis vectors
for now, but we might know how to express p, q, r relative to some other
basis, so they aren’t necessarily the ‘root’ basis.”

The coordinates of p, q, and r are always equal to [1, 0, 0], [0, 1, 0],
and [0, 0, 1], respectively, when expressed using the coordinate space for
which they are the basis, but relative to some other basis they will have
arbitrary coordinates. When we say that we are using the standard basis,
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this is equivalent to saying that we are concerning ourselves with only a
single coordinate space. What we call that coordinate space makes no
difference, since we have no way to reference any other coordinate space
without introducing basis vectors. When we do consider any alternative
basis, we have implicitly introduced another coordinate space: the space
used to measure the coordinates of the basis vectors!

The coordinates of basis vectors are measured in terms of a reference frame
that is different from the one for which they are a basis. Thus basis vectors
are intimately linked with coordinate space transformations.

We said earlier that p, q, and r could be chosen “poorly.” This begs the
question: what makes a good basis? We are accustomed to having basis
vectors that are mutually perpendicular. We are also used to them having
the same length: we expect the displacements 5p and 5q to be in different
directions, but we ordinarily would assume that they have the same length.
Finally, when multiple coordinate spaces are involved, we are also used to
them all having the same scale. That is, the vector v has the same numeric
magnitude, no matter what coordinate system we use to measure it. But
as we’re about to see, that isn’t necessarily the case. These properties are
certainly desirable; in fact, we might say that this is the “best basis” in
many cases. But they may not always be immediately available, they are
often not necessary, and there are some situations for which we purposefully
choose basis vectors without these properties.

We briefly mention here two examples, both from the world of graphics.
Imagine we want to animate a squishing or stretching motion of our robot
model. To do so, we would modify the coordinate space used to interpret
the coordinates of our vertices. We would animate the basis vectors of the
robot’s object space, probably in ways that caused them to have different
lengths from one another or to cease to be perpendicular. As we squish
or stretch the object-space vectors, the object-space coordinates of the ver-
tices remain constant, but the resulting camera-space coordinates change,
producing the desired animation.

Another example arises with basis vectors for texture mapping. (We’re
getting a bit ahead of ourselves, since we won’t talk about texture mapping
until Section 10.5; however we are aware that our readers are not a tabula
rasa, and we suspect you have at least heard of these concepts. We are
also aware that many readers’ first introduction to the term basis vector
is in the context of bump mapping; hopefully this example will help place
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that particular usage of the term in the proper context.) It’s often helpful
to establish a local coordinate space on the surface of an object where one
axis (we’ll use +z) is parallel to the surface normal, and the other axes
point in the direction of increasing u and v in the texture. These latter two
basis vectors are sometimes called the tangent and binormal. Motion in 3D
space in the direction of the tangent basis vector corresponds to horizontal
motion in the 2D image space of the texture, while a displacement in 3D
space in the direction of the binormal would correspond to vertical image-
space displacement. The key fact is that the flat 2D texture often must be
warped to wrap it around an irregular surface, and the basis vectors are
not guaranteed to be perpendicular.8

Figure 3.11
Basis vectors don’t have to be
perpendicular.

Figure 3.11 shows a situation in which the
basis vectors p and q have the same length,
but are not perpendicular. Although we’ve
shown only two example vectors, a and b,
the set of vectors that can be described as
a linear combination xp + yq fill an infinite
plane, and for any vector in this plane, the
coordinates [x, y] are uniquely determined.

The set of vectors that can be expressed
as a linear combination of the basis vectors
is called the span of the basis. In the ex-
ample in Figure 3.11, the span is an infinite
2D plane. This might seem at first like it’s
the only possible scenario, but let’s examine
some more interesting situations. First of all,
note that we said that the vectors fill “an” infinite plane, not “the” plane.
Just because we have two coordinates and basis vectors does not mean
that p and q must be 2D vectors! They could be 3D vectors, in which
case their span will be some arbitrary plane within 3D space, as depicted
in Figure 3.12.

Figure 3.12 illustrates several key points. Note that we have chosen
a and b to have the same coordinates from Figure 3.11, at least relative
to the basis vectors p and q. Second, when working within the space of
p and q, our example vectors a and b are 2D vectors; they have only
two coordinates, x and y. We might also be interested in their 3D “world”
coordinates; these are obtained simply by expanding the linear combination
xp+ yq; the result of this expression is a 3D vector.

8Note that it is a common optimization to ignore this possibility and assume that
they are perpendicular, even when they aren’t. This assumption introduces some error
in some cases, but it permits a reduction in storage and bandwidth, and the error is
usually not noticeable in practice. We’ll discuss this in greater detail in Section 10.9.
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Figure 3.12
The two basis vectors p and q
span a 2D subset of the 3D
space.

Consider the vector c, which lies behind the plane in Figure 3.12. This
vector is not in the span of p and q, which means we cannot express it as
a linear combination of the basis. In other words, there are no coordinates
[cx, cy] such that c = cxp+ cyq.

The term used to describe the number of dimensions in the space spanned
by the basis is the rank of the basis. In both of the examples so far, we
have two basis vectors that span a two-dimensional space. Clearly, if we
have n basis vectors, the best we can hope for is full rank, meaning the
span is an n-dimensional space. But is it possible for the rank to be less
than n? For example, if we have three basis vectors, is it possible that the
span of those basis vectors is only 2D or 1D? The answer is “yes,” and this
situation corresponds to what we meant earlier by a “poor choice” of basis
vectors.

For example, let’s say we add a third basis vector r to our set p and q. If
r lies in the span of p and q (for example, let’s say we chose r = a or r = b

as our third basis vector), then the basis vectors are linearly dependent,
and do not have full rank. Adding in this last vector did not allow us to
describe any vectors that could not already be described with just p and
q. Furthermore, now the coordinates [x, y, z] for a given vector in the span
of the basis are not uniquely determined. The basis vectors span a space
with only two degrees of freedom, but we have three coordinates. The
blame doesn’t fall on r in particular, he just happened to be the new guy.
We could have chosen any pair of vectors from p, q, a, and b, as a valid
basis for this same space. The problem of linear dependence is a problem
with the set as a whole, not just one particular vector. In contrast, if our
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third basis vector was chosen to be any other vector that didn’t lie in the
plane spanned by p and q (for example, the vector c), then the basis would
be linearly independent and have full rank. If a set of basis vectors are
linearly independent, then it is not possible to express any one basis vector
as a linear combination of the others.

So a set of linearly dependent vectors is certainly a poor choice for
a basis. But there are other more stringent properties we might desire
of a basis. To see this, let’s return to coordinate space transformations.
Assume, as before. that we have an object whose basis vectors are p, q,
and r, and we know the coordinates of these vectors in world space. Let
b = [bx, by, bz] be the coordinates of some arbitrary vector in body space,
and u = [ux, uy, uz] be the coordinates of that same vector, in upright
space. From our robot example, we already know the relationship between
u and b:

ux = bxpx + byqx + bzrx,

u = bxp+ byq+ bzr, or equivalently, uy = bxpy + byqy + bzry,

uz = bxpz + byqz + bzrz.

Make sure you understand the relationship between these equations and
Equation (3.1) before moving on.

Now here’s the key problem: what if u is known and b is the vector
we’re trying to determine? To illustrate the profound difference between
these two questions, let’s write the two systems side-by-side, replacing the
unknown vector with “?”:

?x = bxpx + byqx + bzrx, ux =?xpx+?yqx+?zrx,

?y = bxpy + byqy + bzry, uy =?xpy+?yqy+?zry,

?z = bxpz + byqz + bzrz, uz =?xpz+?yqz+?zrz.

The system of equations on the left is not really much of a “system” at
all, it’s just a list; each equation is independent, and each unknown quan-
tity can be immediately computed from a single equation. On the right,
however, we have three interrelated equations, and none of the unknown
quantities can be determined without all three equations. In fact, if the ba-
sis vectors are linearly dependent, then the system on the right may have
zero solutions (u is not in the span), or it might have an infinite number
of solutions (u is in the span and the coordinates are not uniquely de-
termined). We hasten to add that the critical distinction is not between
upright or body space; we are just using those spaces to have a specific
example. The important fact is whether the known coordinates of the
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vector being transformed are expressed relative to the basis (the easy situ-
ation on the left), or if the coordinates of the vector and the basis vectors
are all expressed in the same coordinate space (the hard situation on the
right).

Linear algebra provides a number of general-purpose tools for solving
systems of linear equations like this, but we don’t need to delve into these
topics, because the solution to this system is not our primary aim. For
now, we’re interested in understanding one special situation for which the
solution is easy. (In Section 6.2, we show how to use the matrix inverse to
solve the general case.)

The dot product is the key. Remember from Section 2.11.2 that the dot
product can be used to measure distance in a particular direction. As we
observed in that same section, when using the standard basis p = [1, 0, 0],
q = [0, 1, 0], and r = [0, 0, 1], corresponding to the object axes being parallel
with the world axes in our robot example, we can dot the vector with a
basis vector to “sift out” the corresponding coordinate.

bx = u · p = u ·
[

1 0 0
]

= ux

by = u · q = u ·
[

0 1 0
]

= uy

bz = u · r = u ·
[

0 0 1
]

= uz

Algebraically, this is rather obvious. But does this “sifting” action work for
any arbitrary basis? Sometimes, but not always. In fact, we can see that
it doesn’t work for the example we have been using. Figure 3.13 compares
the correct coordinates ax and ay with the dot products a · p and a · q.
(The illustration is completely correct only if p and q are unit vectors.)

Figure 3.13
The dot product doesn’t “sift out”
the coordinate in this case.

Notice that, in each case, the result pro-
duced by the dot product is larger than
the correct coordinate value. To understand
what’s wrong, we need to go back and cor-
rect a little lie that we told in Chapter 1. We
said that a coordinate measures the displace-
ment from the origin in a given direction; this
displacement is exactly what the dot prod-
uct is measuring. While that is the simplest
way to explain coordinates, it works only un-
der special circumstances. (Our lie isn’t that
harmful because these circumstances are very
common!) Now that we understand basis vec-
tors, we’re ready for the more complete de-
scription.
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The numeric coordinates of a vector with respect to a given basis are the
coefficients in the expansion of that vector as a linear combination of the
basis vectors. For example, a = axp+ ayq.

The reason the dot product doesn’t “sift out” the coordinates in Fig-
ure 3.13 is because we are ignoring the fact that yq will cause some dis-
placement parallel to p. To visualize this, imagine that we increased ax
while holding ay constant. As a moves to the right and slightly upwards,
its projection onto q, which is measured by the dot product, increases.

The problem is that the basis vectors are not perpendicular. A set of
basis vectors that are mutually perpendicular is called an orthogonal basis.

When the basis vectors are orthogonal, the coordinates are uncoupled. Any
given coordinate of a vector v can be determined solely from v and the
corresponding basis vector. For example, we can compute vx knowing only
p, provided that the other basis vectors are perpendicular to p.

Although we won’t investigate it further in this book, the idea of or-
thonormal basis is a broadly powerful one with applications outside our
immediate concerns. For example, it is the idea behind Fourier analysis.

If it’s good when basis vectors are orthogonal, then it’s best when they
all have unit length. Such a set of vectors are known as an orthonormal
basis. Why is the unit length helpful? Remember the geometric definition
of the dot product: a · p is equal to the signed length of a projected onto
p, times the length of p. If the basis vector doesn’t have unit length, but it
is perpendicular to all the others, we can still determine the corresponding
coordinate with the dot product; we just need to divide by the square of
the length of the basis vector.

In an orthonormal basis, each coordinate of a vector v is the signed dis-
placement v measured in the direction of the corresponding basis vector.
This can be computed directly by taking the dot product of v with that
basis vector.
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Thus, in the special circumstance of an orthonormal basis, we have a simple
way to determine the body space coordinates, knowing only the world coor-
dinates of the body axes. Thus, assuming p, q, and r form an orthonormal
basis,

bx = u · p, by = u · q, bz = u · r.

Although our example uses body space and upright space for concreteness,
these are general ideas that apply to any coordinate space transformation.

Orthonormal bases are the special circumstances under which our lie
from Chapter 1 is harmless; fortunately they are extremely common. At the
beginning of this section, we mentioned that most of the coordinate spaces
we are “accustomed to” have certain properties. All of these “customary”
coordinate spaces have an orthonormal basis, and in fact they meet an even
further restriction: the coordinate space is not mirrored. That is, p×q = r,
and the axes obey the prevailing handedness conventions (in this book, we
use the left-hand conventions). A mirrored basis where p × q = −r can
still be an orthonormal basis.

3.4 Nested Coordinate Spaces

Each object in a 3D virtual universe has its own coordinate space—its own
origin and its axes. Its origin could be located at its center of mass, for
example. Its axes specify which directions it considers to be “up,” “right,”
and “forward” relative to its origin. A 3D model created by an artist for
a virtual world will have its origin and axes decided by the artist, and the
points that make up the polygon mesh will be relative to the object space
defined by this origin and axes. For example, the center of a sheep could
be placed at (0, 0, 0), the tip of its snout at (0, 0, 1.5), the tip if its tail
at (0, 0,−1.2), and the tip of its right ear at (0.5, 0.2, 1.2). These are the
locations of these parts in sheep space.

The position and orientation of an object at any point in time needs
be specified in world coordinates so that we can compute the interactions
between nearby objects. To be precise, we must specify the location and
orientation of the object’s axes in world coordinates. To specify the city of
Cartesia’s position (see Section 1.2.1) in world space, we could state that
the origin is at longitude po and latitude qo and that the positive x-axis
points east and the positive y-axis points north. To locate the sheep in a
virtual world, it is sufficient to specify the location of its origin and the
orientation of its axes in world space. The world location of the tip of
its snout, for example, can be worked out from the relative position of its
snout to the world coordinates of its origin. But if the sheep is not actually
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being drawn, we can save effort by keeping track of only the location and
orientation of its object space in world space. It becomes necessary to
compute the world coordinates of its snout, tail, and right ear at only
certain times—for example, when it moves into view of the camera.

Since the object space moves around in world space, it is convenient
to view the world space as a “parent” space, and the object space as a
“child” space. It is also convenient to break objects into subobjects and
to animate them independently. A model decomposed into a hierarchy like
this is sometimes called an articulated model. For example, as the sheep
walks, its head swings back and forth and its ears flap up and down. In
the coordinate space of the sheep’s head, the ears appear to be flapping
up and down—the motion is in the y-axis only and so is relatively easy
to understand and animate. In the sheep’s coordinate space its head is
swinging from side to side along the sheep’s x-axis, which is again rela-
tively easy to understand. Now, suppose that the sheep is moving along
the world’s z-axis. Each of the three actions—ears flapping, head swinging,
and sheep moving forwards—involves a single axis and is easy to under-
stand in isolation from the others. The motion of the tip of the sheep’s
right ear, however, traces a complicated path through the world coordinate
space, truly a nightmare for a programmer to compute from scratch. By
breaking the sheep into a hierarchically organized sequence of objects with
nested coordinate spaces, however, the motion can be computed in separate
components and combined relatively easily with linear algebra tools such
as matrices and vectors, as we see in later chapters.

For example, let’s say we need to know the world coordinates of the tip
of the ear of the sheep. To compute these coordinates, we might first use
what we know about the relationship of the sheep’s ear relative to its head
to compute the coordinates of that point in “head space.” Next, we use
the position and orientation of the head relative to the body to compute
the coordinates in “body space.” Finally, since we know the position and
orientation of the sheep’s body relative to the world’s origin and axes, we
can compute the coordinates in world space. The next few chapters go
deeper into the details of how to do this.

It’s convenient to think of the sheep’s coordinate space moving relative
to world space, the sheep’s head coordinate space moving relative to the
sheep’s space, and the sheep’s ear space moving relative to the sheep’s head
space. Thus we view the head space as a child of the sheep space, and the ear
space as a child of the head space. Object space can be divided into many
different subspaces at many different levels, depending on the complexity
of the object being animated. We can say that the child coordinate space
is nested in the parent coordinate space. This parent-child relationship
between coordinate spaces defines a hierarchy, or tree, of coordinate spaces.
The world coordinate space is the root of this tree. The nested coordinate
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space tree can change dynamically during the lifetime of a virtual world;
for example, the sheep’s fleece can be sheared and taken away from the
sheep, and thus the fleece coordinate space goes from being a child of the
sheep body’s coordinate space to being a child of the world space. The
hierarchy of nested coordinate spaces is dynamic and can be arranged in
a manner that is most convenient for the information that is important
to us.

3.5 In Defense of Upright Space

Finally, please allow us a few paragraphs to try to persuade you that the
concept of upright space is highly useful, even though the term may not
be standard. Lots9 of people don’t bother distinguishing between world
space and upright space. They would just talk about rotating a vector
from object space to “world space.” But consider the common situation in
code when the same data type, say float3, is used to store both “points”
and “vectors.” (See Section 2.4 if you don’t remember why those terms
were just put in quotes.) Let’s say we have one float3 that represents the
position of a vertex in object space, and we wish to know the position of
that vertex in world space. The transformation from object to world space
must involve translation by the object’s position. Now compare this to a
different float3 that describes a direction, such as a surface normal or the
direction a gun is aiming. The conversion of coordinates of the direction
vector from object space to “world space” (what we would call “upright
space”) should not contain this translation.

When you are communicating your intentions to a person, sometimes
the other person is able to understand what you mean and fill in the blanks
as to whether the translation happens or not when you say “world space.”
This is because they can visualize what you are talking about and implicitly
know whether the quantity being transformed is a “point” or a “vector.”
But a computer does not have this intuition, so we must find a way to be
explicit. One strategy for communicating this explicitly to a computer is
to use two different data types, for example, one class named Point3 and
another named Vector3. The computer would know that vectors should
never be translated but points should be because you would write two dif-
ferent transformation routines. This is a strategy adopted in some sources
of academic origin, but in production code in the game industry, it is not
common. (It also doesn’t really work well in HLSL/Cg, which greatly en-
courages the use of the generic float3 type.) Thus, we must find some
other way to communicate to the computer whether, when transforming

9Here, the word “lots” means “almost everybody.”
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some given float3 from object space to “world space,” the translation
should occur.

What seems to be the norm in a lot of game code is to simply have
vector math details strewn about everywhere that multiplies by a rotation
matrix (or its inverse) and explicitly has (or does not have) a vector ad-
dition or subtraction, as appropriate. We advocate giving a name to this
intermediate space to differentiate it from “world space,” in order to facili-
tate code that uses human-readable words such as “object,” “upright,” and
“world,” rather than explicit math tokens such as “add,” “subtract,” and
“inverse.” It is our experience that this sort of code is easier to read and
write. We also hope this terminology will make this book easier to read
as well! Decide for yourself if our terminology is of use to you, but please
make sure you read the rest of our small crusade for more human-readable
code in Section 8.2.1.

3.6 Exercises

(Answers on page 758.)

1. What coordinate space (object, upright, camera, or world) is the most
appropriate in which to ask the following questions?

(a) Is my computer in front of me or behind me?

(b) Is the book east or west of me?

(c) How do I get from one room to another?

(d) Can I see my computer?

2. Suppose the world axes are transformed to our object axes by rotating them
counterclockwise around the y-axis by 42o, then translating 6 units along
the z-axis and 12 units along the x-axis. Describe this transformation from
the perspective of a point on the object.

3. For the following sets of basis vectors, determine if they are linearly inde-
pendent. If not, describe why not.

(a)





1
0
0



,





0
0
0



,





0
2
0





(b)





1
0
2



,





−1
1
2



,





0
1
2





(c)





1
2
3



,





−1
2
3



,





1
−2
3



,





1
2
−3
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(d)





1
2
3



,





0
1
5



,





−2
−4
−6





(e)





1
1
5



,





0
−5
4



,





1
−4
9





(f)





1
2
3



,





−1
2
3



,





1
−2
3





4. For the following sets of basis vectors, determine if they are orthogonal. If
not, tell why not.

(a)





1
0
0



,





0
0
4



,





0
2
0





(b)





1
2
3



,





−1
2
3



,





1
−2
3





(c)





0
4
1



,





0
−1
4



,





8
0
0





(d)





4
−6
2



,





−4
−2
2



,





−3
−6
−12





(e)





7
−1
5



,





5
5
−6



,





−2
0
1





5. Are these basis vectors orthonormal? If not, tell why not.

(a)





1
0
0



,





0
0
4



,





0
2
0





(b)





1
2
3



,





−1
2
3



,





1
−2
3





(c)





1
0
0



,





0
0
−1



,





0
1
0





(d)





0
1
0



,





0
.707
.707



,





1
0
0





(e)





0
.707
−.707



,





0
.707
.707



,





1
0
0
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(f)





.921

.294
−.254



,





−.254
.951
.178



,





.294
−.100
.951





(g)





.995
0

−.100



,





.840

.810

.837



,





.054
−1.262

.537





6. Assume that the robot is at the position (1, 10, 3), and her right, up, and for-
ward vectors expressed in upright space are [0.866, 0,−0.500], [0, 1, 0], and
[0.500, 0, 0.866], respectively. (Note that these vectors form an orthonormal
basis.) The following points are expressed in object space. Calculate the
coordinates for these points in upright and world space.

(a) (−1, 2, 0)
(b) (1, 2, 0)

(c) (0, 0, 0)

(d) (1, 5, 0.5)

(e) (0, 5, 10)

The coordinates below are in world space. Transform these coordinates
from world space to upright space and object space.

(f) (1, 10, 3)

(g) (0, 0, 0)

(h) (2.732, 10, 2.000)

(i) (2, 11, 4)

(j) (1, 20, 3)

7. Name five examples of nested coordinate-space hierarchies.

Many a small thing has been made large
by the right kind of advertising.

— Mark Twain (1835–1910),
A Connecticut Yankee in King Arthur’s Court





Chapter 4

Introduction to Matrices

Unfortunately, no one can be told what the matrix is.
You have to see it for yourself.

— Morpheus in The Matrix (1999)

Matrices are of fundamental importance in 3D math, where they are primar-
ily used to describe the relationship between two coordinate spaces. They
do this by defining a computation to transform vectors from one coordinate
space to another.

This chapter introduces the theory and application of matrices. Our
discussion will follow the pattern set in Chapter 2 when we introduced
vectors: mathematical definitions followed by geometric interpretations.

• Section 4.1 discusses some of the basic properties and operations of
matrices strictly from a mathematical perspective. (More matrix op-
erations are discussed in Chapter 6.)

• Section 4.2 explains how to interpret these properties and operations
geometrically.

• Section 4.3 puts the use of matrices in this book in context within
the larger field of linear algebra.

4.1 Mathematical Definition of Matrix

In linear algebra, a matrix is a rectangular grid of numbers arranged into
rows and columns. Recalling our earlier definition of vector as a one-
dimensional array of numbers, a matrix may likewise be defined as a two-
dimensional array of numbers. (The “two” in “two-dimensional array”
comes from the fact that there are rows and columns, and should not be
confused with 2D vectors or matrices.) So a vector is an array of scalars,
and a matrix is an array of vectors.

113
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This section presents matrices from a purely mathematical perspective.
It is divided into eight subsections.

• Section 4.1.1 introduces the concept of matrix dimension and de-
scribes some matrix notation.

• Section 4.1.2 describes square matrices.

• Section 4.1.3 interprets vectors as matrices.

• Section 4.1.4 describes matrix transposition.

• Section 4.1.5 explains how to multiply a matrix by a scalar.

• Section 4.1.6 explains how to multiply a matrix by another matrix.

• Section 4.1.7 explains how to multiply a vector by a matrix.

• Section 4.1.8 compares and contrasts matrices for row and column
vectors.

4.1.1 Matrix Dimensions and Notation

Just as we defined the dimension of a vector by counting how many numbers
it contained, we will define the size of a matrix by counting how many rows
and columns it contains. We say that a matrix with r rows and c columns
is an r × c (read “r by c”) matrix. For example, a 4× 3 matrix has 4 rows
and 3 columns:

A 4 × 3 matrix









4 0 12

−5
√
4 3

12 −4/3 −1
1/2 18 0









.

This 4×3 matrix illustrates the standard notation for writing matrices:
the numbers are arranged in a grid enclosed by square brackets. Note
that some authors may enclose the grid of numbers with parentheses rather
than brackets, and other authors use straight vertical lines. We reserve
this last notation for an entirely separate concept related to matrices, the
determinant of a matrix. (We discuss determinants in Section 6.1.)

As we mentioned in Section 2.1, in this book we represent a matrix
variable with uppercase letters in boldface, for example, M, A, R. When
we wish to refer to the individual elements within a matrix, we use subscript
notation, usually with the corresponding lowercase letter in italics. This is
shown below for a 3× 3 matrix:
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Subscript notation for
matrix elements





m11 m12 m13

m21 m22 m23

m31 m32 m33





The notation mij denotes the element in M at row i and column j.
Matrices use 1-based indices, so the first row and column are numbered 1.
For example, m12 (read “m one two,” not “m twelve”) is the element in the
first row, second column. Notice that this is different from programming
languages such as C++ and Java, which use 0-based array indices. A matrix
does not have a column 0 or row 0. This difference in indexing can cause
some confusion if matrices are stored using an actual array data type. For
this reason, it’s common for classes that store small, fixed size matrices of
the type used for geometric purposes to give each element its own named
member variable, such as float m11, instead of using the language’s native
array support with something like float elem[3][3].

4.1.2 Square Matrices

Matrices with the same number of rows and columns are called square
matrices and are of particular importance. In this book, we are interested
in 2× 2, 3× 3, and 4× 4 matrices.

The diagonal elements of a square matrix are those elements for which
the row and column indices are the same. For example, the diagonal ele-
ments of the 3 × 3 matrix M are m11, m22, and m33. The other elements
are non-diagonal elements. The diagonal elements form the diagonal of the
matrix:

The diagonal of a 3 × 3
matrix

If all nondiagonal elements in a matrix are zero, then the matrix is a
diagonal matrix. The following 4× 4 matrix is diagonal:

A diagonal 4 × 4 matrix








3 0 0 0
0 1 0 0
0 0 −5 0
0 0 0 2









.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-5&iName=master.img-000.jpg&w=77&h=39
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A special diagonal matrix is the identity matrix. The identity matrix of
dimension n, denoted In, is the n × n matrix with 1s on the diagonal and
0s elsewhere. For example, the 3× 3 identity matrix is

The 3D identity matrix I3 =





1 0 0
0 1 0
0 0 1



 .

Often, the context will make clear the dimension of the identity matrix
used in a particular situation. In these cases we omit the subscript and
refer to the identity matrix simply as I.

The identity matrix is special because it is the multiplicative identity
element for matrices. (We discuss matrix multiplication in Section 4.1.6.)
The basic idea is that if you multiply a matrix by the identity matrix, you
get the original matrix. In this respect, the identity matrix is for matrices
what the number 1 is for scalars.

4.1.3 Vectors as Matrices

Matrices may have any positive number of rows and columns, including
one. We have already encountered matrices with one row or one column:
vectors! A vector of dimension n can be viewed either as a 1×n matrix, or
as an n× 1 matrix. A 1× n matrix is known as a row vector, and an n× 1
matrix is known as a column vector. Row vectors are written horizontally,
and column vectors are written vertically:

Row and column vectors
[

1 2 3
]





4
5
6





Until now, we have used row and column notations interchangeably.
Indeed, geometrically they are identical, and in many cases the distinction
is not important. However, for reasons that will soon become apparent,
when we use vectors with matrices, we must be very clear if our vector is a
row or column vector.

4.1.4 Matrix Transposition

Given an r × c matrix M, the transpose of M, denoted MT, is the c × r
matrix where the columns are formed from the rows of M. In other words,
MT

ij = Mji. This “flips” the matrix diagonally. Equations (4.1) and (4.2)
show two examples of transposing matrices:



4.1. Mathematical Definition of Matrix 117









1 2 3
4 5 6
7 8 9
10 11 12









T

=





1 4 7 10
2 5 8 11
3 6 9 12



 , (4.1)





a b c
d e f
g h i





T

=





a d g
b e h
c f i



 . (4.2)

Transposing matrices

For vectors, transposition turns row vectors into column vectors and
vice versa:

Transposing converts
between row and column
vectors

[

x y z
]T

=





x
y
z









x
y
z





T

=
[

x y z
]

Transposition notation is often used to write column vectors inline in a
paragraph, such as [1, 2, 3]T.

Let’s make two fairly obvious, but significant, observations regarding
matrix transposition.

• (MT)T = M, for a matrix M of any dimension. In other words, if we
transpose a matrix, and then transpose it again, we get the original
matrix. This rule also applies to vectors.

• Any diagonal matrix D is equal to its transpose: DT = D. This
includes the identity matrix I.

4.1.5 Multiplying a Matrix with a Scalar

A matrix M may be multiplied with a scalar k, resulting in a matrix of the
same dimension as M. We denote matrix multiplication with a scalar by
placing the scalar and the matrix side-by-side, usually with the scalar on
the left. No multiplication symbol is necessary. The multiplication takes
place in a straightforward fashion: each element in the resulting matrix kM
is the product of k and the corresponding element in M. For example,

Multiplying a 4 × 3
matrix by a scalarkM = k









m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43









=









km11 km12 km13

km21 km22 km23

km31 km32 km33

km41 km42 km43









.
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4.1.6 Multiplying Two Matrices

In certain situations, we can take the product of two matrices. The rules
that govern when matrix multiplication is allowed and how the result is
computed may at first seem bizarre.

An r×n matrix A may be multiplied by an n× c matrix B. The result,
denoted AB, is an r × c matrix. For example, assume that A is a 4 × 2
matrix, and B is a 2× 5 matrix. Then AB is a 4× 5 matrix:

If the number of columns in A does not match the number of rows in B,
then the multiplication AB is not defined (although BA may be possible).

Matrix multiplication is computed as follows: let the matrix C be the
r×c product AB of the r×n matrix A with the n×c matrix B. Then each
element cij is equal to the vector dot product of row i of A with column j
of B:

cij =
n
∑

k=1

aikbkj .

This looks complicated, but there is a simple pattern. For each element
cij in the result, locate row i in A and column j in B. Multiply the
corresponding elements of the row and column, and sum the products. cij
is equal to this sum, which is equivalent to the dot product of row i in A

with column j in B.
Let’s look at an example of how to compute c24. The element in row 2

and column 4 of C is equal to the dot product of row 2 of A with the
column 4 of B:

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-5&iName=master.img-001.jpg&w=243&h=124
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-5&iName=master.img-002.jpg&w=319&h=60
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Another way to help remember the pattern for matrix multiplication is
to write B above C. This aligns the proper row from A with a column
from B for each element in the result C:

For geometric applications, we are particularly interested in multiplying
square matrices—the 2 × 2 and 3 × 3 cases being especially important.
Equation (4.3) gives the complete equation for 2× 2 matrix multiplication:

2 × 2 matrix
multiplication

AB =

[

a11 a12
a21 a22

] [

b11 b12
b21 b22

]

=

[

a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]

.

(4.3)

Let’s look at a 2× 2 example with some real numbers:

A =

[

−3 0
5 1/2

]

, B =

[

−7 2
4 6

]

,

AB =

[

−3 0
5 1/2

] [

−7 2
4 6

]

=

[

(−3)(−7) + (0)(4) (−3)(2) + (0)(6)
(5)(−7) + (1/2)(4) (5)(2) + (1/2)(6)

]

=

[

21 −6
−33 13

]

.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-5&iName=master.img-003.jpg&w=190&h=107
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Applying the general matrix multiplication formula to the 3 × 3 case
produces

3 × 3 matrix
multiplication AB =





a11 a12 a13
a21 a22 a23
a31 a32 a33









b11 b12 b13
b21 b22 b23
b31 b32 b33





=

[

a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33

]

.

Here is a 3× 3 example with some real numbers:

A =





1 −5 3
0 −2 6
7 2 −4



 , B =





−8 6 1
7 0 −3
2 4 5



 ;

AB =





1 −5 3
0 −2 6
7 2 −4









−8 6 1
7 0 −3
2 4 5





=

[

1·(−8) + (−5)·7+3·2 1·6 + (−5)·0+3·4 1·1+ (−5)·(−3)+ 3·5
0·(−8) + (−2)·7+6·2 0·6 + (−2)·0+6·4 0·1+ (−2)·(−3)+ 6·5
7·(−8) + 2·7+ (−4)·2 7·6 + 2·0+ (−4)·4 7·1+2·(−3)+ (−4)·5

]

=





−37 18 31
−2 24 36
−50 26 −19



 .

Beginning in Section 6.4 we also use 4× 4 matrices.
A few notes concerning matrix multiplication are of interest:

• Multiplying any matrix M by a square matrix S on either side results
in a matrix of the same size as M, provided that the sizes of the
matrices are such that the multiplication is allowed. If S is the identity
matrix I, then the result is the original matrix M:

MI = IM = M.

(That’s the reason it’s called the identity matrix!)

• Matrix multiplication is not commutative. In general,

AB 6= BA.

• Matrix multiplication is associative:

(AB)C = A(BC).
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(Of course, this assumes that the sizes of A, B, and C are such that
multiplication is allowed. Note that if (AB)C is defined, thenA(BC)
is always defined as well.) The associativity of matrix multiplication
extends to multiple matrices. For example,

ABCDEF = ((((AB)C)D)E)F

= A((((BC)D)E)F)

= (AB)(CD)(EF).

It is interesting to note that although all parenthesizations compute
the correct result, some groupings require fewer scalar multiplications
than others.1

• Matrix multiplication also associates with multiplication by a scalar
or a vector:

(kA)B = k(AB) = A(kB),

(vA)B = v(AB).

• Transposing the product of two matrices is the same as taking the
product of their transposes in reverse order:

(AB)T = BTAT.

This can be extended to more than two matrices:

(M1M2 · · ·Mn−1Mn)
T = Mn

TMn−1
T · · ·M2

TM1
T.

4.1.7 Multiplying a Vector and a Matrix

Since a vector can be considered a matrix with one row or one column, we
can multiply a vector and a matrix by applying the rules discussed in the
previous section. Now it becomes very important whether we are using row
or column vectors. Equations (4.4)–(4.7) show how 3D row and column
vectors may be pre- or post-multiplied by a 3× 3 matrix:

1The problem of finding the parenthesization that minimizes the number of scalar
multiplications is known as the matrix chain problem.
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Multiplying 3D row and
column vectors with a

3 × 3 matrix

[

x y z
]





m11 m12 m13

m21 m22 m23

m31 m32 m33



 = (4.4)

[xm11 + ym21 + zm31 xm12 + ym22 + zm32 xm13 + ym23 + zm33];





m11 m12 m13

m21 m22 m23

m31 m32 m33









x
y
z



 =





xm11 + ym12 + zm13

xm21 + ym22 + zm23

xm31 + ym32 + zm33



; (4.5)





m11 m12 m13

m21 m22 m23

m31 m32 m33





[

x y z
]

= (undefined); (4.6)





x
y
z









m11 m12 m13

m21 m22 m23

m31 m32 m33



 = (undefined). (4.7)

As you can see, when we multiply a row vector on the left by a matrix on
the right, as in Equation (4.4), the result is a row vector. When we multiply
a matrix on the left by a column vector on the right, as in Equation (4.5),
the result is a column vector. (Please observe that this result is a column
vector, even though it looks like a matrix.) The other two combinations
are not allowed: you cannot multiply a matrix on the left by a row vector
on the right, nor can you multiply a column vector on the left by a matrix
on the right.

Let’s make a few interesting observations regarding vector-times-matrix
multiplication. First, each element in the resulting vector is the dot product
of the original vector with a single row or column from the matrix.

Second, each element in the matrix determines how much “weight” a
particular element in the input vector contributes to an element in the
output vector. For example, in Equation (4.4) when row vectors are used,
m12 controls how much of the input x value goes towards the output y
value.

Third, vector-times-matrix multiplication distributes over vector addi-
tion, that is, for vectors v, w, and matrix M,

(v +w)M = vM+wM.

Finally, and perhaps most important of all, the result of the multipli-
cation is a linear combination of the rows or columns of the matrix. For
example, in Equation (4.5), when column vectors are used, the resulting
column vector can be interpreted as a linear combination of the columns of



4.1. Mathematical Definition of Matrix 123

the matrix, where the coefficients come from the vector operand. This is a
key fact, not just for our purposes but also for linear algebra in general, so
bear it in mind. We will return to it shortly.

4.1.8 Row versus Column Vectors

This section explains why the distinction between row and column vectors
is significant and gives our rationale for preferring row vectors. In Equa-
tion (4.4), when we multiply a row vector on the left with matrix on the
right, we get the row vector

[

xm11 + ym21 + zm31 xm12 + ym22 + zm32 xm13 + ym23 + zm33

]

.

Compare that with the result from Equation (4.5), when a column vector
on the right is multiplied by a matrix on the left:





xm11 + ym12 + zm13

xm21 + ym22 + zm23

xm31 + ym32 + zm33



.

Disregarding the fact that one is a row vector and the other is a column
vector, the values for the components of the vector are not the same! This
is why the distinction between row and column vectors is so
important.

Although some matrices in video game programming do represent ar-
bitrary systems of equations, a much larger majority are transformation
matrices of the type we have been describing, which express relationships
between coordinate spaces. For this purpose, we find row vectors to be
preferable for the “eminently sensible” reason [1] that the order of transfor-
mations reads like a sentence from left to right. This is especially important
when more than one transformation takes place. For example, if we wish
to transform a vector v by the matrices A, B, and C, in that order, we
write vABC, with the matrices listed in order of transformation from left
to right. If column vectors are used, then the vector is on the right, and so
the transformations will occur in order from right to left. In this case, we
would write CBAv. We discuss concatenation of multiple transformation
matrices in detail in Section 5.6.

Unfortunately, row vectors lead to very “wide” equations; using column
vectors on the right certainly makes things look better, especially as the
dimension increases. (Compare the ungainliness of Equation (4.4) with the
sleekness of Equation (4.5).) Perhaps this is why column vectors are the
near universal standard in practically every other discipline. For most video
game programming, however, readable computer code is more important
than readable equations. For this reason, in this book we use row vectors
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in almost all cases where the distinction is relevant. Our limited use of
column vectors is for aesthetic purposes, when either there are no matrices
involved or those matrices are not transformation matrices and the left-to-
right reading order is not helpful.

As expected, different authors use different conventions. Many graphics
books and application programming interfaces (APIs), such as DirectX, use
row vectors. But other APIs, such as OpenGL and the customized ports of
OpenGL onto various consoles, use column vectors. And, as we have said,
nearly every other science that uses linear algebra prefers column vectors.
So be very careful when using someone else’s equation or source code that
you know whether it assumes row or column vectors.

If a book uses column vectors, its equations for matrices will be trans-
posed compared to the equations we present in this book. Also, when col-
umn vectors are used, vectors are pre-multiplied by a matrix, as opposed
to the convention chosen in this book, to multiply row vectors by a matrix
on the right. This causes the order of multiplication to be reversed between
the two styles when multiple matrices and vectors are multiplied together.
For example, the multiplication vABC is valid only with row vectors. The
corresponding multiplication would be written CBAv if column vectors
were used. (Again, note that in this case A, B, and C would be transposed
as compared to these matrices in the row vector case.)

Mistakes like this involving transposition can be a common source of
frustration when programming 3D math. Luckily, with properly designed
C++ classes, direct access to the individual matrix elements is seldom
needed, and these types of errors can be minimized.

4.2 Geometric Interpretation of Matrix

In general, a square matrix can describe any linear transformation. In
Section 5.7.1, we provide a complete definition of linear transformation, but
for now, it suffices to say that a linear transformation preserves straight and
parallel lines, and that there is no translation—that is, the origin does not
move. However, other properties of the geometry, however, such as lengths,
angles, areas, and volumes, are possibly altered by the transformation. In
a nontechnical sense, a linear transformation may “stretch” the coordinate
space, but it doesn’t “curve” or “warp” it. This is a very useful set of
transformations, including

• rotation

• scale

• orthographic projection
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• reflection

• shearing

Chapter 5 derives matrices that perform all of these operations. For
now, though, let’s just attempt a general understanding of the relationship
between a matrix and the transformation it represents.

The quotation at the beginning of this chapter is not only a line from a
great movie, it’s true for linear algebra matrices as well. Until you develop
an ability to visualize a matrix, it will just be nine numbers in a box. We
have stated that a matrix represents a coordinate space transformation.
So when we visualize the matrix, we are visualizing the transformation, the
new coordinate system. But what does this transformation look like? What
is the relationship between a particular 3D transformation (i.e. rotation,
shearing, etc.) and those nine numbers inside a 3× 3 matrix? How can we
construct a matrix to perform a given transform (other than just copying
the equations blindly out of a book)?

To begin to answer this question, let’s watch what happens when the
standard basis vectors i = [1, 0, 0], j = [0, 1, 0], and k = [0, 0, 1] are multi-
plied by an arbitrary matrix M:

iM =
[

1 0 0
]





m11 m12 m13

m21 m22 m23

m31 m32 m33



 =
[

m11 m12 m13

]

;

jM =
[

0 1 0
]





m11 m12 m13

m21 m22 m23

m31 m32 m33



 =
[

m21 m22 m23

]

;

kM =
[

0 0 1
]





m11 m12 m13

m21 m22 m23

m31 m32 m33



 =
[

m31 m32 m33

]

.

In other words, the first row of M contains the result of performing the
transformation on i, the second row is the result of transforming j, and the
last row is the result of transforming k.

Once we know what happens to those basis vectors, we know everything
about the transformation! This is because any vector can be written as a
linear combination of the standard basis, as

v = vxi+ vyj+ vzk.
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Multiplying this expression by our matrix on the right, we have

vM =
(

vxi+ vyj+ vzk
)

M

= (vxi)M+ (vyj)M+ (vzk)M (4.8)

= vx(iM) + vy(jM) + vz(kM)

= vx
[

m11 m12 m13

]

+ vy
[

m21 m22 m23

]

+ vz
[

m31 m32 m33

]

.

Here we have confirmed an observation made in Section 4.1.7: the result
of a vector × matrix multiplication is a linear combination of the rows of
the matrix. The key is to interpret those row vectors as basis vectors.
In this interpretation, matrix multiplication is simply a compact way to
encode the operations for coordinate space transformations developed in
Section 3.3.3. A small change of notation will make this connection more
explicit. Remember that we introduced the convention to use the symbols
p, q, and r to refer to a set of basis vectors. Putting these vectors as rows
in our matrix M, we can rewrite the last line of Equation (4.8) as

vM =
[

vx vy vz
]





−p−
−q−
−r−



 = vxp+ vyq+ vzr.

Let’s summarize what we have said.

By understanding how the matrix transforms the standard basis vectors, we
know everything there is to know about the transformation. Since the re-
sults of transforming the standard basis are simply the rows2 of the matrix,
we interpret those rows as the basis vectors of a coordinate space.

We now have a simple way to take an arbitrary matrix and visualize
what sort of transformation the matrix represents. Let’s look at a couple
of examples—first, a 2D example to get ourselves warmed up, and then a
full-fledged 3D example. Examine the following 2× 2 matrix:

M =

[

2 1
−1 2

]

.

2It’s rows in this book. If you’re using column vectors, it’s the columns of the matrix.
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What sort of transformation does this matrix represent? First, let’s extract
the basis vectors p and q from the rows of the matrix:

p =
[

2 1
]

;

q =
[

−1 2
]

.

Figure 4.1 shows these vectors in the Cartesian plane, along with the “orig-
inal” basis vectors (the x-axis and y-axis), for reference.

Figure 4.1
Visualizing the row vectors of a 2D
transform matrix

As Figure 4.1 illustrates, the +x ba-
sis vector is transformed into the vector
labeled p above, and the y basis vector
is transformed into the vector labeled
q. So one way to visualize a matrix in
2D is to visualize the L shape formed
by the row vectors. In this example,
we can easily see that part of the trans-
formation represented by matrix M is
a counterclockwise rotation of approxi-
mately 26.5o.

Of course, all vectors are affected
by a linear transformation, not just the
basis vectors. We can get a very good
idea what this transformation looks like
from the L, and we can gain further in-
sight on the effect the transformation

has on the rest of the vectors by completing the 2D parallelogram formed
by the basis vectors, as shown in Figure 4.2.

Figure 4.2
The 2D parallelogram formed by the
rows of a matrix

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-5&iName=master.img-005.jpg&w=130&h=129
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-5&iName=master.img-006.jpg&w=161&h=152
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Figure 4.3. Drawing an object inside the box helps visualize the transformation

This parallelogram is also known as a “skew box.” Drawing an object
inside the box can also help, as illustrated in Figure 4.3.

Now it is clear that our example matrix M not only rotates the coordi-
nate space, it also scales it.

We can extend the techniques we used to visualize 2D transformations
into 3D. In 2D, we had two basis vectors that formed an L—in 3D, we have
three basis vectors, and they form a “tripod.” First, let’s show an object
before transformation. Figure 4.4 shows a teapot, a unit cube, and the
basis vectors in the “identity” position.

Figure 4.4
Teapot, unit cube, and basis vectors before
transformation

(To avoid cluttering up the diagram, we have not labeled the +z basis
vector [0, 0, 1], which is partially obscured by the teapot and cube.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-5&iName=master.img-007.jpg&w=130&h=130
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-5&iName=master.img-008.jpg&w=130&h=130
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-5&iName=master.img-009.jpg&w=149&h=147
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Now consider the 3D transformation matrix





0.707 −0.707 0
1.250 1.250 0
0 0 1



 .

Extracting the basis vectors from the rows of the matrix, we can visual-
ize the transformation represented by this matrix. The transformed basis
vectors, cube, and teapot are shown in Figure 4.5.

Figure 4.5
Teapot, unit cube, and basis vectors after
transformation

As we can see, the transformation consists of a clockwise rotation of
45o about the z-axis as well as a nonuniform scale that makes the teapot
“taller” than it was originally. Notice that the +z basis vector is unaltered
by the transformation, because the third row of the matrix is [0, 0, 1].

By interpreting the rows of a matrix as basis vectors, we have a tool
for deconstructing a matrix. But we also have a tool for constructing one!
Given a desired transformation (i.e., rotation, scale, and so on), we can
derive a matrix that represents that transformation. All we have to do
is figure out what the transformation does to the basis vectors, and then
place those transformed basis vectors into the rows of a matrix. We use
this tool repeatedly in Chapter 5 to derive the matrices to perform basic
linear transformations such as rotation, scale, shear, and reflection.

The bottom line about transformation matrices is this: there’s nothing
especially magical about matrices. Once we understand that coordinates
are best understood as coefficients in a linear combination of the basis
vectors (see Section 3.3.3), we really know all the math we need to know to
do transformations. So from one perspective, matrices are just a compact
way to write things down. A slightly less obvious but much more compelling
reason to cast transformations in matrix notation is to take advantage of
the large general-purpose toolset from linear algebra. For example, we can

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-5&iName=master.img-010.jpg&w=151&h=141
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take simple transformations and derive more complicated transformations
through matrix concatenation; more on this in Section 5.6.

Before we move on, let’s review the key concepts of Section 4.2.

• The rows of a square matrix can be interpreted as the basis vectors
of a coordinate space.

• To transform a vector from the original coordinate space to the new
coordinate space, we multiply the vector by the matrix.

• The transformation from the original coordinate space to the coordi-
nate space defined by these basis vectors is a linear transformation.
A linear transformation preserves straight lines, and parallel lines re-
main parallel. However, angles, lengths, areas, and volumes may be
altered after transformation.

• Multiplying the zero vector by any square matrix results in the zero
vector. Therefore, the linear transformation represented by a square
matrix has the same origin as the original coordinate space—the
transformation does not contain translation.

• We can visualize a matrix by visualizing the basis vectors of the co-
ordinate space after transformation. These basis vectors form an ‘L’
in 2D, and a tripod in 3D. Using a box or auxiliary object also helps
in visualization.

4.3 The Bigger Picture of Linear Algebra

At the start of Chapter 2, we warned you that in this book we are focus-
ing on just one small corner of the field of linear algebra—the geometric
applications of vectors and matrices. Now that we’ve introduced the nuts
and bolts, we’d like to say something about the bigger picture and how our
part relates to it.

Linear algebra was invented to manipulate and solve systems of linear
equations. For example, a typical introductory problem in a traditional
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course on linear algebra is to solve a system of equations such as

−5x1 + x2 + x3 = −10,

2x1 + 2x2 + 4x3 = 12,

x1 − 3x3 = 9,

which has the solution

x1 = 3,

x2 = 7,

x3 = −2.

Matrix notation was invented to avoid the tedium involved in duplicating
every x and =. For example, the system above can be more quickly written
as





−5 1 1
2 2 4
1 0 −3









x1
x2
x3



 =





−10
12
9



.

Perhaps the most direct and obvious place in a video game where a large
system of equations must be solved is in the physics engine. The constraints
to enforce nonpenetration and satisfy user-requested joints become a sys-
tem of equations relating the velocities of the dynamic bodies. This large
system3 is then solved each and every simulation frame. Another common
place for traditional linear algebra methods to appear is in least squares
approximation and other data-fitting applications.

Systems of equations can appear where you don’t expect them. Indeed,
linear algebra has exploded in importance with the vast increase in com-
puting power in the last half century because many difficult problems that
were previously neither discrete nor linear are being approximated through
methods that are both, such as the finite element method. The challenge
begins with knowing how to transform the original problem into a matrix
problem in the first place, but the resulting systems are often very large and
can be difficult to solve quickly and accurately. Numeric stability becomes
a factor in the choice of algorithms. The matrices that arise in practice are
not boxes full of random numbers; rather, they express organized relation-
ships and have a great deal of structure. Exploiting this structure artfully
is the key to achieving speed and accuracy. The diversity of the types of
structure that appear in applications explains why there is so very much to
know about linear algebra, especially numerical linear algebra.

This book is intended to fill a gap by providing the geometric intuition
that is the bread and butter of video game programming but is left out of

3It’s a system of inequalities, but similar principles apply.
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most linear algebra textbooks. However, we certainly know there is a larger
world out there for you. Although traditional linear algebra and systems of
equations do not play a prominent role for basic video game programming,
they are essential for many advanced areas. Consider some of the tech-
nologies that are generating buzz today: fluid, cloth, and hair simulations
(and rendering); more robust procedural animation of characters; real-time
global illumination; machine vision; gesture recognition; and many more.
What these seemingly diverse technologies all have in common is that they
involve difficult linear algebra problems.

One excellent resource for learning the bigger picture of linear algebra
and scientific computing is Professor Gilbert Strang’s series of lectures,
which can be downloaded free from MIT OpenCourseWare at ocw.mit.edu.
He offers a basic undergraduate linear algebra course as well as graduate
courses on computational science and engineering. The companion text-
books he writes for his classes [67, 68] are enjoyable books aimed at engi-
neers (rather than math sticklers) and are recommended, but be warned
that his writing style is a sort of shorthand that you might have trouble
understanding without the lectures.

4.4 Exercises

(Answers on page 759.)

Use the following matrices for questions 1–3:

A =









13 4 −8
12 0 6
−3 −1 5
10 −2 5









B =





kx 0 0
0 ky 0
0 0 kz



 C =

[

15 8
−7 3

]

D =













a g
b h
c i
d j
f k













E =
[

0 1 3
]

F =









x
y
z
w









G =
[

10 20 30 1
]

H =





α
β
γ





1. For each matrix, give the dimensions of the matrix and identify whether it
is square and/or diagonal.

2. Transpose each matrix.
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3. Find all the possible pairs of matrices that can be legally multiplied, and
give the dimensions of the resulting product. Include “pairs” in which a
matrix is multiplied by itself. (Hint: there are 14 pairs.)

4. Compute the following matrix products. If the product is not possible, just
say so.

(a)

[

1 −2
5 0

] [

−3 7
4 1/3

]

(b)

[

6 −7
−4 5

]

[

3 3
]

(c)
[

3 −1 4
]





−2 0 3
5 7 −6
1 −4 2





(d)
[

x y z w
]









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(e)
[

7 −2 7 3
]

[

−5
1

]

(f)

[

1 0
0 1

] [

m11 m12

m21 m22

]

(g)
[

3 3
]

[

6 −7
−4 5

]

(h)





a11 a12 a13

a21 a22 a23

a31 a32 a33





[

b11 b12 b13
b21 b22 b23

]

5. For each of the following matrices, multiply on the left by the row vector
[5,−1, 2]. Then consider whether multiplication on the right by the column
vector [5,−1, 2]T will give the same or a different result. Finally, perform
this multiplication to confirm or correct your expectation.

(a)





1 0 0
0 1 0
0 0 1





(b)





2 5 −3
1 7 1
−2 −1 4
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(c)





1 7 2
7 0 −3
2 −3 −1





This is an example of a symmetric matrix. A square matrix is sym-
metric if AT = A.

(d)





0 −4 3
4 0 −1
−3 1 0





This is an example of a skew symmetric or antisymmetric matrix. A
square matrix is skew symmetric if AT = −A. This implies that the
diagonal elements of a skew symmetric matrix must be 0.

6. Manipulate the following matrix expressions to remove the parentheses.

(a)
(

(

AT
)T
)T

(b)
(

BAT
)T (

CDT
)

(c)
(

(

DTCT
)

(AB)T
)T

(d)
(

(AB)T (CDE)T
)T

7. Describe the transformation aM = b represented by each of the following
matrices.

(a) M =

[

0 −1
1 0

]

(b) M =

[ √
2
2

√
2
2

−
√
2
2

√
2
2

]

(c) M =

[

2 0
0 2

]

(d) M =

[

4 0
0 7

]

(e) M =

[

−1 0
0 1

]

(f) M =

[

0 −2
2 0

]

8. For 3D row vectors a and b, construct a 3× 3 matrix M such that a×b =
aM. That is, show that the cross product of a and b can be represented
as the matrix product aM, for some matrix M. (Hint: the matrix will be
skew-symmetric.)
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9. Match each of the following figures (1–4) with their corresponding trans-
formations.

(a)

[

1 0
0 −1

]

(b)

[

2.5 0
0 2.5

]

(c)

[

−
√

2
2
−

√
2
2

−
√

2
2

√
2
2

]

(d)

[

1.5 0
0 2.0

]

10. Given the 10×1 column vector v, create a matrix M that, when multiplied
by v, produces a 10× 1 column vector w such that

wi =

{

v1 if i = 1,

vi − vi−1 if i > 1.

Matrices of this form arise when some continuous function is discretized.
Multiplication by this first difference matrix is the discrete equivalent of
continuous differentiation. (We’ll learn about differentiation in Chapter 11
if you haven’t already had calculus.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-5&iName=master.img-012.jpg&w=220&h=205
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11. Given the 10×1 column vector v, create a matrix N that, when multiplied
by v, produces a 10× 1 column vector w such that

wi =

i
∑

j=1

vj .

In other words, each element becomes the sum of that element and all
previous elements.

This matrix performs the discrete equivalent of integration, which as you
might already know (but you certainly will know after reading Chapter 11)
is the inverse operation of differentiation.

12. Consider M and N, the matrices from Exercises 10 and 11.

(a) Discuss your expectations of the product MN.

(b) Discuss your expectations of the product NM.

(c) Calculate both MN and NM. Were your expectations correct?

To be civilized is to be potentially master of all possible ideas,
and that means that one has got beyond being shocked,

although one preserves one’s own moral aesthetic preferences.

— Oliver Wendell Holmes (1809–1894)



Chapter 5

Matrices and Linear
Transformations

It’s time to transform!

— Super WHY!

Chapter 4 investigated some of the basic mathematical properties of ma-
trices. It also developed a geometric understanding of matrices and their
relationship to coordinate space transformations in general. This chapter
continues our investigation of transformations.

To be more specific, this chapter is concerned with expressing linear
transformations in 3D using 3× 3 matrices. We give a more formal defini-
tion of linear transformations at the end of this chapter, but for now, recall
from our informal introduction to linear transformations in Section 4.2 that
one important property of linear transformations is that they do not con-
tain translation. A transformation that contains translation is known as an
affine transformation. Affine transformations in 3D cannot be implemented
using 3× 3 matrices. Section 5.7.2 gives a formal definition of affine trans-
formations, and Section 6.4 shows how to use 4 × 4 matrices to represent
affine transformations.

This chapter discusses the implementation of linear transformations via
matrices. It is divided roughly into two parts. In the first part, Sec-
tions 5.1–5.5, we take the basic tools from previous chapters to derive
matrices for primitive linear transformations of rotation, scaling, ortho-
graphic projection, reflection, and shearing. For each transformation, ex-
amples and equations in 2D and 3D are given. The same strategy will
be used repeatedly: determine what happens to the standard basis vec-
tors as a result of the transformation and then put those transformed
basis vectors into the rows of our matrix. Note that these discussions
assume an active transformation: the object is transformed while the co-
ordinate space remains stationary. Remember from Section 3.3.1 that we
can effectively perform a passive transformation (transform the coordinate

137
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space and keep the object still) by transforming the object by the opposite
amount.

A lot of this chapter is filled with messy equations and details, so you
might be tempted to skip over it—but don’t! There are a lot of important,
easily digested principles interlaced with the safely forgotten details. We
think it’s important to be able to understand how various transform matri-
ces can be derived, so in principle you can derive them on your own from
scratch. Commit the high-level principles in this chapter to memory, and
don’t get too bogged down in the details. This book will not self-destruct
after you read it, so keep it on hand for reference when you need a particular
equation.

The second part of this chapter returns to general principles of trans-
formations. Section 5.6 shows how a sequence of primitive transformations
may be combined by using matrix multiplication to form a more compli-
cated transformation. Section 5.7 discusses various interesting categories
of transformations, including linear, affine, invertible, angle-preserving, or-
thogonal, and rigid-body transforms.

5.1 Rotation

We have already seen general examples of rotation matrices. Now let’s
develop a more rigorous definition. First, Section 5.1.1 examines 2D ro-
tation. Section 5.1.2 shows how to rotate about a cardinal axis. Finally,
Section 5.1.3 tackles the most general case of rotation about an arbitrary
axis in 3D.

5.1.1 Rotation in 2D

In 2D, there’s really only one type of rotation that we can do: rotation about
a point. This chapter is concerned with linear transformations, which do
not contain translation, so we restrict our discussion even further to rotation
about the origin. A 2D rotation about the origin has only one parameter,
the angle θ, which defines the amount of rotation. The standard convention
found in most math books is to consider counterclockwise rotation positive
and clockwise rotation negative. (However, different conventions are more
appropriate in different situations.) Figure 5.1 shows how the basis vectors
p and q are rotated about the origin, resulting in the new basis vectors p′

and q′.
Now that we know the values of the basis vectors after rotation, we can

build our matrix:

2D rotation matrix R(θ) =

[

−p′−
−q′−

]

=

[

cos θ sin θ
− sin θ cos θ

]

.
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Figure 5.1
Rotation about the
origin in 2D

5.1.2 3D Rotation about Cardinal Axes

In 3D, rotation occurs about an axis rather than a point, with the term axis
taking on its more commonplace meaning of a line about which something
rotates. An axis of rotation does not necessarily have to be one of the
cardinal x, y, or z axes—but those special cases are the ones we consider

Figure 5.2
Rotating about the xaxis
in 3D

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-6&iName=master.img-000.jpg&w=217&h=173
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-6&iName=master.img-001.jpg&w=208&h=169
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in this section. Again, we are not considering translation in this chapter, so
we will limit the discussion to rotation about an axis that passes through
the origin. In any case, we’ll need to establish which direction of rotation
is considered “positive” and which is considered “negative.” We’re going
to obey the left-hand rule for this. Review Section 1.3.3 if you’ve forgotten
this rule.

Let’s start with rotation about the x-axis, as shown in Figure 5.2. Con-
structing a matrix from the rotated basis vectors, we have

3D matrix to rotate
about the x-axis Rx(θ) =





−p′−
−q′−
−r′−



 =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 .

Rotation about the y-axis is similar (see Figure 5.3). The matrix to
rotate about the y-axis is

3D matrix to rotate
about the y-axis Ry(θ) =





−p′−
−q′−
−r′−



 =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



 .

Figure 5.3
Rotating about the yaxis
in 3D

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-6&iName=master.img-002.jpg&w=213&h=167
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Figure 5.4
Rotating about the zaxis
in 3D

And finally, rotation about the z-axis (see Figure 5.4) is done with the
matrix

3D matrix to rotate
about the z-axis

Rz(θ) =





−p′−
−q′−
−r′−



 =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 .

Please note that although the figures in this section use a left-handed
convention, the matrices work in either left- or right-handed coordinate
systems, due to the conventions used to define the direction of positive
rotation. You can verify this visually by looking at the figures in a mirror.

5.1.3 3D Rotation about an Arbitrary Axis

We can also rotate about an arbitrary axis in 3D, provided, of course, that
the axis passes through the origin, since we are not considering translation
at the moment. This is more complicated and less common than rotating
about a cardinal axis. As before, we define θ to be the amount of rotation
about the axis. The axis will be defined by a unit vector n̂.

Let’s derive a matrix to rotate about n̂ by the angle θ. In other words,
we wish to derive the matrix R(n̂, θ) such that when we multiply a vector
v by R(n̂, θ), the resulting vector v′ is the result of rotating v about n̂ by
the angle θ:

v′ = vR(n̂, θ).

To derive the matrix R(n̂, θ), let’s first see if we can express v′ in terms
of v, n̂, and θ. The basic idea is to solve the problem in the plane perpen-

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-6&iName=master.img-003.jpg&w=214&h=170
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dicular to n̂, which is a much simpler 2D problem. To do this, we separate
v into two vectors, v‖ and v⊥, which are parallel and perpendicular to n̂,
respectively, such that v = v‖ + v⊥. (We learned how to do this with the
dot product in Section 2.11.2.) By rotating each of these components indi-
vidually, we can rotate the vector as a whole. In other words, v′ = v′

‖+v′
⊥.

Since v‖ is parallel to n̂, it will not be affected by the rotation about n̂. In
other words, v′

‖ = v‖. So all we need to do is compute v′
⊥, and then we

have v′ = v‖ + v′
⊥. To compute v′

⊥, we construct the vectors v‖, v⊥, and
an intermediate vector w, as follows:

• The vector v‖ is the portion of v that is parallel to n̂. Another way
of saying this is that v‖ is the value of v projected onto n̂. From
Section 2.11.2, we know that v‖ = (v · n̂)n̂.

• The vector v⊥ is the portion of v that is perpendicular to n̂. Since
v = v‖ + v⊥, v⊥ can be computed by v − v‖. v⊥ is the result of
projecting v onto the plane perpendicular to n̂.

• The vector w is mutually perpendicular to v‖ and v⊥ and has the
same length as v⊥. It can be constructed by rotating v⊥ 90o about
n̂; thus we see that its value is easily computed by w = n̂× v⊥.

These vectors are shown in Figure 5.5.

Figure 5.5
Rotating a vector about an arbitrary axis

How do these vectors help us
compute v′

⊥? Notice that w and
v⊥ form a 2D coordinate space,
with v⊥ as the “x-axis” and w

as the “y-axis.” (Note that the
two vectors don’t necessarily have
unit length.) v′

⊥ is the result of
rotating v′ in this plane by the
angle θ. Note that this is almost
identical to rotating an angle into
standard position. Section 1.4.4
showed that the endpoints of a
unit ray rotated by an angle θ are
cos θ and sin θ. The only differ-
ence here is that our ray is not a
unit ray, and we are using v⊥ and
w as our basis vectors. Thus, v′

⊥
can be computed as

v′
⊥ = cos θv⊥ + sin θw.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-6&iName=master.img-004.jpg&w=164&h=153
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Let’s summarize the vectors we have computed:

v‖ = (v · n̂) n̂,
v⊥ = v − v‖

= v − (v · n̂) n̂,
w = n̂× v⊥

= n̂×
(

v − v‖
)

= n̂× v − n̂× v‖

= n̂× v − 0

= n̂× v,

v′
⊥ = cos θv⊥ + sin θw

= cos θ (v − (v · n̂) , n̂) + sin θ (n̂× v) .

Substituting for v′, we have

v′ = v′
⊥ + v‖

= cos θ (v − (v · n̂) n̂) + sin θ (n̂× v) + (v · n̂) n̂. (5.1)

Equation (5.1) allows us to rotate any arbitrary vector about any arbitrary
axis. We could perform arbitrary rotation transformations armed only with
this equation, so in a sense we are done—the remaining arithmetic is es-
sentially a notational change that expresses Equation (5.1) as a matrix
multiplication.

Now that we have expressed v′ in terms of v, n̂, and θ, we can compute
what the basis vectors are after transformation and construct our matrix.
We’re just presenting the results here; a reader interested in following each
step can check out Exercise 2.24:

p =
[

1 0 0
]

, p′ =





nx
2 (1− cos θ) + cos θ

nxny (1− cos θ) + nz sin θ
nxnz (1− cos θ)− ny sin θ





T

,

q =
[

0 1 0
]

, q′ =





nxny (1− cos θ)− nz sin θ
ny

2 (1− cos θ) + cos θ
nynz (1− cos θ) + nx sin θ





T

,

r =
[

0 0 1
]

, r′ =





nxnz (1− cos θ) + ny sin θ
nynz (1− cos θ)− nx sin θ
nz

2 (1− cos θ) + cos θ





T

.
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Note that p′ and friends are actually row vectors, we are just writing them
as transposed column vectors to fit on the page.

Constructing the matrix from these basis vectors, we get

3D matrix to rotate
about an arbitrary axis R(n̂, θ) =





−p′−
−q′−
−r′−





=

[

nx
2 (1 − cos θ) + cos θ nxny (1 − cos θ) + nz sin θ nxnz (1 − cos θ) − ny sin θ

nxny (1 − cos θ) − nz sin θ ny
2 (1 − cos θ) + cos θ nynz (1 − cos θ) + nx sin θ

nxnz (1 − cos θ) + ny sin θ nynz (1 − cos θ) − nx sin θ nz
2 (1 − cos θ) + cos θ

]

.

5.2 Scale

We can scale an object to make it proportionally bigger or smaller by a
factor of k. If we apply this scale to the entire object, thus “dilating” the
object about the origin, we are performing a uniform scale. Uniform scale
preserves angles and proportions. Lengths increase or decrease uniformly
by a factor of k, areas by a factor of k2, and volumes (in 3D) by a factor of
k3.

If we wish to “stretch” or “squash” the object, we can apply different
scale factors in different directions, resulting in nonuniform scale. Nonuni-
form scale does not preserve angles. Lengths, areas, and volumes are ad-
justed by a factor that varies according to the orientation relative to the
direction of scale.

If |k| < 1, then the object gets “shorter” in that direction. If |k| > 1,
then the object gets “longer.” If k = 0, then we have an orthographic
projection, discussed in Section 5.3. If k < 0, then we have a reflection,
covered in Section 5.4. For the remainder of this section, we will assume
that k > 0.

Section 5.2.1 begins with the simple case of scaling along the cardi-
nal axes. Then Section 5.2.2 examines the general case, scaling along an
arbitrary axis.

5.2.1 Scaling along the Cardinal Axes

The simplest scale operation applies a separate scale factor along each car-
dinal axis. The scale along an axis is applied about the perpendicular axis
(in 2D) or plane (in 3D). If the scale factors for all axes are equal, then the
scale is uniform; otherwise, it is nonuniform.

In 2D, we have two scale factors, kx and ky. Figure 5.6 shows an object
with various scale values for kx and ky.
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Figure 5.6
Scaling a 2D object
with various factors
for kx and ky

As is intuitively obvious, the basis vectors p and q are independently
affected by the corresponding scale factors:

p′ = kxp = kx
[

1 0
]

=
[

kx 0
]

,

q′ = kyq = ky
[

0 1
]

=
[

0 ky
]

.

Constructing the 2D scale matrix S(kx, ky) from these basis vectors, we get

S(kx, ky) =

[

−p′−
−q′−

]

=

[

kx 0
0 ky

]

. 2D matrix to scale on
cardinal axes

For 3D, we add a third scale factor kz, and the 3D scale matrix is then
given by

3D matrix to scale on
cardinal axesS(kx, ky, kz) =





kx 0 0
0 ky 0
0 0 kz



 .

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-6&iName=master.img-005.jpg&w=214&h=229
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If we multiply any arbitrary vector by this matrix, then, as expected,
each component is scaled by the appropriate scale factor:

[

x y z
]





kx 0 0
0 ky 0
0 0 kz



 =
[

kxx kyy kzz
]

.

5.2.2 Scaling in an Arbitrary Direction

We can apply scale independent of the coordinate system used by scaling
in an arbitrary direction. We define n̂ to be the unit vector parallel to the
direction of scale, and k to be the scale factor to be applied about the line
(in 2D) or plane (in 3D) that passes through the origin and is perpendicular
to n̂. We are scaling along n̂, not about n̂.

To derive a matrix that scales along an arbitrary axis, we’ll use an
approach similar to the one used in Section 5.1.3 for rotation about an
arbitrary axis. Let’s derive an expression that, given an arbitrary vector
v, computes v′ in terms of v, n̂, and k. As before, we separate v into two
values, v‖ and v⊥, which are parallel and perpendicular to n̂, respectively,
such that v = v‖ + v⊥. The parallel portion, v‖, is the projection of v
onto n̂. From Section 2.11.2, we know that v‖ = (v · n̂)n̂. Since v⊥ is
perpendicular to n̂, it will not be affected by the scale operation. Thus
v′ = v′

‖ + v⊥, and all we have left to do is compute the value of v′
‖. Since

v‖ is parallel to the direction of scale, v′
‖ is trivially given by kv‖. This is

shown in Figure 5.7.

Figure 5.7
Scaling a vector along an arbitrary
direction

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-6&iName=master.img-006.jpg&w=156&h=160
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Summarizing the known vectors and substituting gives us

v = v‖ + v⊥,

v‖ = (v · n̂) n̂,

v′
⊥ = v⊥

= v − v‖

= v − (v · n̂) n̂,

v′
‖ = kv‖

= k (v · n̂) n̂,

v′ = v′
⊥ + v′

‖

= v − (v · n̂) n̂+ k (v · n̂) n̂
= v + (k − 1) (v · n̂) n̂.

Now that we know how to scale an arbitrary vector, we can compute the
value of the basis vectors after scale. We derive the first 2D basis vector;
the other basis vector is similar, and so we merely present the results. (Note
that column vectors are used in the equations below strictly to make the
equations format nicely on the page.):

p =
[

1 0
]

,

p′ = p+ (k − 1) (p · n̂) n̂ =

[

1
0

]

+ (k − 1)

([

1
0

]

·
[

nx
ny

])[

nx
ny

]

=

[

1
0

]

+ (k − 1)nx

[

nx
ny

]

=

[

1
0

]

+

[

(k − 1)nx
2

(k − 1)nxny

]

=

[

1 + (k − 1)nx
2

(k − 1)nxny

]

,

q =
[

0 1
]

,

q′ =

[

(k − 1)nxny
1 + (k − 1)ny

2

]

.

Forming a matrix from the basis vectors, we arrive at the 2D matrix to
scale by a factor of k in an arbitrary direction specified by the unit vector n̂:

2D matrix to scale in an
arbitrary direction

S(n̂, k) =

[

−p′−
−q′−

]

=

[

1 + (k − 1)nx
2 (k − 1)nxny

(k − 1)nxny 1 + (k − 1)ny
2

]

.
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In 3D, the values of the basis vectors are computed by

p =
[

1 0 0
]

, p′ =





1 + (k − 1)nx
2

(k − 1)nxny
(k − 1)nxnz





T

,

q =
[

0 1 0
]

, q′ =





(k − 1)nxny
1 + (k − 1)ny

2

(k − 1)nynz





T

,

r =
[

0 0 1
]

, r′ =





(k − 1)nxnz
(k − 1)nynz

1 + (k − 1)nz
2





T

.

A suspicious reader wondering if we just made that up can step through
the derivation in Exercise 2.23.

Finally, the 3D matrix to scale by a factor of k in an arbitrary direction
specified by the unit vector n̂ is

3D matrix to scale in an
arbitrary direction S(n̂, k) =





−p′−
−q′−
−r′−





=





1 + (k − 1)nx
2 (k − 1)nxny (k − 1)nxnz

(k − 1)nxny 1 + (k − 1)ny
2 (k − 1)nynz

(k − 1)nxnz (k − 1)nynz 1 + (k − 1)nz
2



 .

5.3 Orthographic Projection

In general, the term projection refers to any dimension-reducing operation.
As we discussed in Section 5.2, one way we can achieve projection is to use a
scale factor of zero in a direction. In this case, all the points are flattened or
projected onto the perpendicular axis (in 2D) or plane (in 3D). This type of
projection is an orthographic projection, also known as a parallel projection,
since the lines from the original points to their projected counterparts are
parallel. We present another type of projection, perspective projection, in
Section 6.5.

First, Section 5.3.1 discusses orthographic projection onto a cardinal
axis or plane, and then Section 5.3.2 examines the general case.
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Figure 5.8. Projecting a 3D object onto a cardinal plane

5.3.1 Projecting onto a Cardinal Axis or Plane

The simplest type of projection occurs when we project onto a cardinal axis
(in 2D) or plane (in 3D). This is illustrated in Figure 5.8.

Projection onto a cardinal axis or plane most frequently occurs not
by actual transformation, but by simply discarding one of the coordinates
while assigning the data into a variable of lesser dimension. For example,
we may turn a 3D object into a 2D object by discarding the z components
of the points and copying only x and y.

However, we can also project onto a cardinal axis or plane by using a
scale value of zero on the perpendicular axis. For completeness, we present
the matrices for these transformations:

Projecting onto a
cardinal axisPx = S

([

0 1
]

, 0
)

=

[

1 0
0 0

]

,

Py = S
([

1 0
]

, 0
)

=

[

0 0
0 1

]

,

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-6&iName=master.img-007.jpg&w=324&h=208
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Projecting onto a
cardinal plane

Pxy = S
([

0 0 1
]

, 0
)

=





1 0 0
0 1 0
0 0 0



 ,

Pxz = S
([

0 1 0
]

, 0
)

=





1 0 0
0 0 0
0 0 1



 ,

Pyz = S
([

1 0 0
]

, 0
)

=





0 0 0
0 1 0
0 0 1



 .

5.3.2 Projecting onto an Arbitrary Line or Plane

We can also project onto any arbitrary line (in 2D) or plane (in 3D). As
before, since we are not considering translation, the line or plane must pass
through the origin. The projection will be defined by a unit vector n̂ that
is perpendicular to the line or plane.

We can derive the matrix to project in an arbitrary direction by applying
a zero scale factor along this direction, using the equations we developed
in Section 5.2.2. In 2D, we have

2D matrix to project
onto an arbitrary line

P(n̂) = S (n̂, 0) =

[

1 + (0− 1)nx
2 (0− 1)nxny

(0− 1)nxny 1 + (0− 1)ny
2

]

=

[

1− nx
2 −nxny

−nxny 1− ny
2

]

.

Remember that n̂ is perpendicular to the line onto which we are pro-
jecting, not parallel to it. In 3D, we project onto the plane perpendicular
to n̂:

3D matrix to project
onto an arbitrary plane P(n̂) = S (n̂, 0) =





1 + (0− 1)nx
2 (0− 1)nxny (0− 1)nxnz

(0− 1)nxny 1 + (0− 1)ny
2 (0− 1)nynz

(0− 1)nxnz (0− 1)nynz 1 + (0− 1)nz
2





=





1− nx
2 −nxny −nxnz

−nxny 1− ny
2 −nynz

−nxnz −nynz 1− nz
2



 .
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5.4 Reflection

Reflection (also called mirroring) is a transformation that “flips” the object
about a line (in 2D) or a plane (in 3D). Figure 5.9 shows the result of
reflecting an object about the x- and y-axis.

Figure 5.9
Reflecting an object
about an axis in 2D

Reflection can be accomplished by applying a scale factor of −1. Let n̂
be a 2D unit vector. Then the matrix that performs a reflection about the
axis of reflection that passes through the origin and is perpendicular to n̂

is given by

R(n̂) = S (n̂,−1) =

[

1 + (−1− 1)nx
2 (−1− 1)nxny

(−1− 1)nxny 1 + (−1− 1)ny
2

]

=

[

1− 2nx
2 −2nxny

−2nxny 1− 2ny
2

]

.

2D matrix to reflect
about an arbitrary axis

In 3D, we have a reflecting plane instead of axis. For the transformation
to be linear, the plane must contain the origin, in which case the matrix to

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-6&iName=master.img-008.jpg&w=200&h=206
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perform the reflection is

R(n̂) = S (n̂,−1)

=





1 + (−1− 1)nx
2 (−1− 1)nxny (−1− 1)nxnz

(−1− 1)nxny 1 + (−1− 1)ny
2 (−1− 1)nynz

(−1− 1)nxnz (−1− 1)nynz 1 + (−1− 1)nz
2





=





1− 2nx
2 −2nxny −2nxnz

−2nxny 1− 2ny
2 −2nynz

−2nxnz −2nynz 1− 2nz
2



 .

3D matrix to reflect
about an arbitrary plane

Notice that an object can be “reflected” only once. If we reflect it again
(even about a different axis or plane) then the object is flipped back to
“right side out,” and it is the same as if we had rotated the object from its
initial position. An example of this is shown in the bottom-left corner of
Figure 5.9.

5.5 Shearing

Figure 5.10
Shearing in 2D

Shearing is a transformation that “skews”
the coordinate space, stretching it
nonuniformly. Angles are not preserved;
however, surprisingly, areas and volumes
are. The basic idea is to add a multiple
of one coordinate to the other. For ex-
ample, in 2D, we might take a multiple
of y and add it to x, so that x′ = x+ sy.
This is shown in Figure 5.10.

The matrix that performs this shear
is

Hx(s) =

[

1 0
s 1

]

,

where the notation Hx denotes that the
x-coordinate is sheared by the other co-

ordinate, y. The parameter s controls the amount and direction of the
shearing. The other 2D shear matrix, Hy, is

Hy(s) =

[

1 s
0 1

]

.

In 3D, we can take one coordinate and add different multiples of that
coordinate to the other two coordinates. The notation Hxy indicates that

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-6&iName=master.img-009.jpg&w=124&h=124
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the x- and y-coordinates are shifted by the other coordinate, z. We present
these matrices for completeness:

Hxy(s, t) =





1 0 0
0 1 0
s t 1



 ,

Hxz(s, t) =





1 0 0
s 1 t
0 0 1



 ,

Hyz(s, t) =





1 s t
0 1 0
0 0 1



 .

3D shear matrices

Shearing is a seldom-used transform. It is also known as a skew trans-
form. Combining shearing and scaling (uniform or nonuniform) creates a
transformation that is indistinguishable from a transformation containing
rotation and nonuniform scale.

5.6 Combining Transformations

This section shows how to take a sequence of transformation matrices and
combine (or concatenate) them into one single transformation matrix. This
new matrix represents the cumulative result of applying all of the original
transformations in order. It’s actually quite easy. The transformation that
results from applying the transformation with matrix A followed by the
transformation with matrix B has matrix AB. That is, matrix multiplica-
tion is how we compose transformations represented as matrices.

One very common example of this is in rendering. Imagine there is an
object at an arbitrary position and orientation in the world. We wish to
render this object given a camera in any position and orientation. To do
this, we must take the vertices of the object (assuming we are rendering
some sort of triangle mesh) and transform them from object space into
world space. This transform is known as the model transform, which we
denote Mobj→wld. From there, we transform world-space vertices with the
view transform, denoted Mwld→cam, into camera space. The math involved
is summarized by

pwld = pobj Mobj→wld,

pcam = pwld Mwld→cam

= (pobj Mobj→wld)Mwld→cam.
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From Section 4.1.6, we know that matrix multiplication is associative,
and so we could compute one matrix to transform directly from object to
camera space:

pcam = (pobj Mobj→wld)Mwld→cam

= pobj(Mobj→wld Mwld→cam).

Thus, we can concatenate the matrices outside the vertex loop, and have
only one matrix multiplication inside the loop (remember there are many
vertices):

Mobj→cam = Mobj→wld Mwld→cam,

pcam = pobj Mobj→cam.

So we see that matrix concatenation works from an algebraic perspective
by using the associative property of matrix multiplication. Let’s see if we
can get a more geometric interpretation of what’s going on. Recall from
Section 4.2, our breakthrough discovery, that the rows of a matrix contain
the result of transforming the standard basis vectors. This is true even in
the case of multiple transformations. Notice that in the matrix product
AB, each resulting row is the product of the corresponding row from A

times the matrix B. In other words, let the row vectors a1, a2, and a3
stand for the rows of A. Then matrix multiplication can alternatively be
written as

A =





−a1−
−a2−
−a3−



, AB =









−a1−
−a2−
−a3−



B



 =





−a1B−
−a2B−
−a3B−



.

This explicitly shows that the rows of the product of AB are actually the
result of transforming the basis vectors in A by B.

5.7 Classes of Transformations

We can classify transformations according to several criteria. This section
discuss classes of transformations. For each class, we describe the properties
of the transformations that belong to that class and specify which of the
primitive transformations from Sections 5.1 through 5.5 belong to that class.
The classes of transformations are not mutually exclusive, nor do they
necessarily follow an “order” or “hierarchy,” with each one more or less
restrictive than the next.

When we discuss transformations in general, we may make use of the
synonymous terms mapping or function. In the most general sense, a map-
ping is simply a rule that takes an input and produces an output. We
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denote that the mapping F maps a to b by writing F (a) = b (read “F of
a equals b”). Of course, we are primarily interested in the transformations
that can be expressed by using matrix multiplication, but it is important
to note that other mappings are possible.

This section also mentions the determinant of a matrix. We’re getting
a bit ahead of ourselves here, since a full explanation of determinants isn’t
given until Section 6.1. For now, just know that the determinant of a matrix
is a scalar quantity that is very useful for making certain high-level, shall
we say, determinations about the matrix.

5.7.1 Linear Transformations

We met linear functions informally in Section 4.2. Mathematically, a map-
ping F (a) is linear if

Conditions satisfied if F
is a linear mapping

F (a+ b) = F (a) + F (b) (5.2)

and

F (ka) = kF (a). (5.3)

This is a fancy way of stating that the mapping F is linear if it preserves
the basic operations of addition and multiplication by a scalar. If we add
two vectors, and then perform the transformation, we get the same result
as if we perform the transformation on the two vectors individually and
then add the transformed vectors. Likewise, if we scale a vector and then
transform it, we should get the same resulting vector as when we transform
the vector and then scale it.

There are two important implications of this definition of linear trans-
formation. First, the mapping F (a) = aM, where M is any square matrix,
is a linear transformation, because

Matrix multiplication
satisfies Equation (5.2)

F (a+ b) = (a+ b)M = aM+ bM = F (a) + F (b)

and

Matrix multiplication
satisfies Equation (5.3)

F (ka) = (ka)M = k(aM) = kF (a).

In other words:

Any transformation that can be accomplished with matrix multiplication
is a linear transformation.
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Second, any linear transformation will transform the zero vector into
the zero vector. If F (0) = a,a 6= 0, then F cannot be a linear mapping,
since F (k0) = a and therefore F (k0) 6= kF (0). Because of this,

Linear transformations do not contain translation.

Since all of the transformations we discussed in Sections 5.1 through 5.5
can be expressed using matrix multiplication, they are all linear transfor-
mations.

In some literature, a linear transformation is defined as one in which par-
allel lines remain parallel after transformation. This is almost completely
accurate, with two exceptions. First, parallel lines remain parallel after
translation, but translation is not a linear transformation. Second, what
about projection? When a line is projected and becomes a single point, can
we consider that point “parallel” to anything? Excluding these technicali-
ties, the intuition is correct: a linear transformation may “stretch” things,
but straight lines are not “warped” and parallel lines remain parallel.

5.7.2 Affine Transformations

An affine transformation is a linear transformation followed by translation.
Thus, the set of affine transformations is a superset of the set of linear
transformations: any linear transformation is an affine translation, but not
all affine transformations are linear transformations.

Since all of the transformations discussed in this chapter are linear trans-
formations, they are all also affine transformations (though none of them
have a translation portion). Any transformation of the form v′ = vM+ b

is an affine transformation.

5.7.3 Invertible Transformations

A transformation is invertible if there exists an opposite transformation,
known as the inverse of F , that “undoes” the original transformation. In
other words, a mapping F (a) is invertible if there exists an inverse mapping
F−1 such that

F−1(F (a)) = F (F−1(a)) = a

for all a. Notice that this implies that F−1 is also invertible.
There are nonaffine invertible transformations, but we will not consider

them for the moment. For now, let’s concentrate on determining if an affine
transformation is invertible. As already stated, an affine transformation
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is a linear transformation followed by a translation. Obviously, we can
always “undo” the translation portion by simply translating by the opposite
amount. So the question becomes whether the linear transformation is
invertible.

Intuitively, we know that all of the transformations other than projec-
tion can be “undone.” If we rotate, scale, reflect, or skew, we can always
“unrotate,” “unscale,” “unreflect,” or “unskew.” But when an object is
projected, we effectively discard one or more dimensions’ worth of informa-
tion, and this information cannot be recovered. Thus, all of the primitive
transformations other than projection are invertible.

Since any linear transformation can be expressed as multiplication by a
matrix, finding the inverse of a linear transformation is equivalent to finding
the inverse of a matrix. We discuss how to do this in Section 6.2. If the
matrix has no inverse, we say that it is singular, and the transformation is
noninvertible. The determinant of an invertible matrix is nonzero.

In a nonsingular matrix, the zero vector is the only input vector that
is mapped to the zero vector in the output space; all other vectors are
mapped to some other nonzero vector. In a singular matrix, however, there
exists an entire subspace of the input vectors, known as the null space of
the matrix, that is mapped to the zero vector. For example, consider a
matrix that projects orthographically onto a plane containing the origin.
The null space of this matrix consists of the line of vectors perpendicular
to the plane, since they are all mapped to the origin.

When a square matrix is singular, its basis vectors are not linearly in-
dependent (see Section 3.3.3). If the basis vectors are linearly independent,
then they have full rank, and coordinates of any given vector in the span
are uniquely determined. If the vectors are linearly independent, then there
is a portion of the full n-dimensional space that is not in the span of the
basis. Consider two vectors a and b, which differ by a vector n that lies
in the null space of a matrix M, such that b = a + n. Due to the linear
nature of matrix multiplication, M maps a and b to the same output:

bM = (a+ n)M

= aM+ nM (Matrix multiplication is linear and distributes)

= aM+ 0 (n is in the null space of M)

= aM.

5.7.4 AnglePreserving Transformations

A transformation is angle-preserving if the angle between two vectors is not
altered in either magnitude or direction after transformation. Only transla-
tion, rotation, and uniform scale are angle-preserving transformations. An
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angle-preserving matrix preserves proportions. We do not consider reflec-
tion an angle-preserving transformation because even though the magnitude
of angle between two vectors is the same after transformation, the direction
of angle may be inverted. All angle-preserving transformations are affine
and invertible.

5.7.5 Orthogonal Transformations

Orthogonal is a term that is used to describe a matrix whose rows form
an orthonormal basis. Remember from Section 3.3.3 that the basic idea
is that the axes are perpendicular to each other and have unit length.
Orthogonal transformations are interesting because it is easy to compute
their inverse and they arise frequently in practice. We talk more about
orthogonal matrices in Section 6.3.

Translation, rotation, and reflection are the only orthogonal transfor-
mations. All orthogonal transformations are affine and invertible. Lengths,
angles, areas, and volumes are all preserved; however in saying this, we
must be careful as to our precise definition of angle, area, and volume,
since reflection is an orthogonal transformation and we just got through
saying in the previous section that we didn’t consider reflection to be an
angle-preserving transformation. Perhaps we should be more precise and
say that orthogonal matrices preserve the magnitudes of angles, areas, and
volumes, but possibly not the signs.

As Chapter 6 shows, the determinant of an orthogonal matrix is ±1.

5.7.6 Rigid Body Transformations

A rigid body transformation is one that changes the location and orienta-
tion of an object, but not its shape. All angles, lengths, areas, and volumes
are preserved. Translation and rotation are the only rigid body transfor-
mations. Reflection is not considered a rigid body transformation.

Rigid body transformations are also known as proper transformations.
All rigid body transformations are orthogonal, angle-preserving, invertible,
and affine. Rigid body transforms are the most restrictive class of trans-
forms discussed in this section, but they are also extremely common in
practice.

The determinant of any rigid body transformation matrix is 1.

5.7.7 Summary of Types of Transformations

Table 5.1 summarizes the various classes of transformations. In this table,
a Y means that the transformation in that row always has the property
associated with that column. The absence of a Y does not mean “never”;
rather, it means “not always.”
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Transform Linear Affine Invertible
Angles
preserved Orthogonal

Rigid
body

Lengths
preserved

Areas/
volumes
preserved Determinant

Linear
transformations Y Y

Affine
transformations Y 6= 0

Invertible
transformations Y

Anglepreserving
transformations Y Y Y

Orthogonal
transformations Y Y Y ±1

Rigid body
transformations Y Y Y Y Y Y Y 1

Translation Y Y Y Y Y Y Y 1

Rotation1 Y Y Y Y Y Y Y Y 1

Uniform scale2 Y Y Y Y kn 3

Nonuniform
scale Y Y Y

Orthographic
projection4 Y Y 0

Reflection5 Y Y Y Y Y6 Y −1

Shearing Y Y Y Y7 1

1About the origin in 2D or an axis passing through the origin in 3D.
2About the origin in 2D or an axis passing through the origin in 3D.
3The determinant is the square of the scale factor in 2D, and the cube of the scale factor in 3D.
4Onto a line (2D) or plane (3D) that passes through the origin.
5About a line (2D) or plane (3D) that passes through the origin.
6Not considering “negative” area or volume.
7Surprisingly!

Table 5.1. Types of transformations

5.8 Exercises

(Answers on page 763.)

1. Does the matrix below express a linear transformation? Affine?





34 1.7 π√
2 0 18
4 −9 −1.3





2. Construct a matrix to rotate −22o about the x-axis.

3. Construct a matrix to rotate 30o about the y-axis.

4. Construct a matrix to rotate −15o about the axis [0.267,−0.535, 0.802].
5. Construct a matrix that doubles the height, width, and length of an object

in 3D.
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6. Construct a matrix to scale by a factor of 5 about the plane through the
origin perpendicular to the vector [0.267,−0.535, 0.802].

7. Construct a matrix to orthographically project onto the plane through the
origin perpendicular to the vector [0.267,−0.535, 0.802].

8. Construct a matrix to reflect orthographically about the plane through the
origin perpendicular to the vector [0.267,−0.535, 0.802].

9. An object initially had its axes and origin coincident with the world axes
and origin. It was then rotated 30o about the y-axis and then −22o about
the world x-axis.

(a) What is the matrix that can be used to transform row vectors from
object space to world space?

(b) What about the matrix to transform vectors from world space to
object space?

(c) Express the object’s z-axis using upright coordinates.

Upside down
Boy, you turn me

Inside out
And round and round

— Upside Down (1980) by Diana Ross



Chapter 6

More on Matrices

Man’s mind stretched to a new idea
never goes back to its original dimensions.

— Oliver Wendell Holmes Jr. (1841–1935)

Chapter 4 presented a few of the most of the important properties and
operations of matrices and discussed how matrices can be used to ex-
press geometric transformations in general. Chapter 5 considered matri-
ces and geometric transforms in detail. This chapter completes our cov-
erage of matrices by discussing a few more interesting and useful matrix
operations.

• Section 6.1 covers the determinant of a matrix.

• Section 6.2 covers the inverse of a matrix.

• Section 6.3 discusses orthogonal matrices.

• Section 6.4 introduces homogeneous vectors and 4 × 4 matrices, and
shows how they can be used to perform affine transformations in
3D.

• Section 6.5 discusses perspective projection and shows how to do it
with a 4× 4 matrix.

6.1 Determinant of a Matrix

For square matrices, there is a special scalar called the determinant of the
matrix. The determinant has many useful properties in linear algebra, and
it also has interesting geometric interpretations.

As is our custom, we first discuss some math, and then make some
geometric interpretations. Section 6.1.1 introduces the notation for deter-
minants and gives the linear algebra rules for computing the determinant of

161
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a 2×2 or 3×3 matrix. Section 6.1.2 discusses minors and cofactors. Then,
Section 6.1.3 shows how to compute the determinant of an arbitrary n× n
matrix, by using minors and cofactors. Finally, Section 6.1.4 interprets the
determinant from a geometric perspective.

6.1.1 Determinants of 2 × 2 and 3 × 3 matrices

The determinant of a square matrix M is denoted |M| or, in some other
books, as “det M.” The determinant of a nonsquare matrix is undefined.
This section shows how to compute determinants of 2×2 and 3×3 matrices.
The determinant of a general n× n matrix, which is fairly complicated, is
discussed in Section 6.1.3

The determinant of a 2 × 2 matrix is given by

Determinant of a 2 × 2
matrix |M| =

∣

∣

∣

∣

m11 m12

m21 m22

∣

∣

∣

∣

= m11m22 −m12m21. (6.1)

Notice that when we write the determinant of a matrix, we replace the
brackets with vertical lines.

Equation (6.1) can be remembered easier with the following diagram.
Simply multiply entries along the diagonal and back-diagonal, then subtract
the back-diagonal term from the diagonal term.

Some examples help to clarify the simple calculation:

∣

∣

∣

∣

2 1
−1 2

∣

∣

∣

∣

= (2)(2)− (1)(−1) = 4 + 1 = 5;

∣

∣

∣

∣

−3 4
2 5

∣

∣

∣

∣

= (−3)(5)− (4)(2) = −15− 8 = −23;

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad− bc.
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The determinant of a 3× 3 matrix is given by

Determinant of a 3 × 3
matrix

∣

∣

∣

∣

∣

∣

m11 m12 m13

m21 m22 m23

m31 m32 m33

∣

∣

∣

∣

∣

∣

=
m11m22m33 +m12m23m31 +m13m21m32

−m13m22m31 −m12m21m33 −m11m23m32
(6.2)

= m11(m22m33 −m23m32)

+m12(m23m31 −m21m33)

+m13(m21m32 −m22m31).

A similar diagram can be used to memorize Equation (6.2). We write two
copies of the matrix M side by side and multiply entries along the diagonals
and back-diagonals, adding the diagonal terms and subtracting the back-
diagonal terms.

For example,
∣

∣

∣

∣

∣

∣

−4 −3 3
0 2 −2
1 4 −1

∣

∣

∣

∣

∣

∣

=
(−4)

(

( 2)(−1)− (−2)( 4)
)

+(−3)
(

(−2)( 1)− ( 0)(−1)
)

+( 3)
(

( 0)( 4)− ( 2)( 1)
)

=
(−4)

(

(−2)− (−8)
)

+(−3)
(

(−2)− ( 0)
)

+( 3)
(

( 0)− ( 2)
)

=
(−4)( 6)

+(−3)(−2)
+( 3)(−2)

=
(−24)

+( 6)
+( −6)

= −24. (6.3)

If we interpret the rows of a 3 × 3 matrix as three vectors, then the
determinant of the matrix is equivalent to the so-called “triple product” of
the three vectors:

3 × 3 determinant vs. 3D
vector triple product

∣

∣

∣

∣

∣

∣

ax ay az
bx by bz
cx cy cz

∣

∣

∣

∣

∣

∣

=
(aybz − azby) cx
+ (azbx − axbz) cy
+ (axby − aybx) cz

= (a× b) · c.
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6.1.2 Minors and Cofactors

Before we can look at determinants in the general case, we need to introduce
some other constructs: minors and cofactors.

Assume M is a matrix with r rows and c columns. Consider the matrix
obtained by deleting row i and column j fromM. This matrix will obviously
have r − 1 rows and c − 1 columns. The determinant of this submatrix,
denoted M{ij} is known as a minor of M. For example, the minor M{12}

is the determinant of the 2 × 2 matrix that is the result of deleting row 1
and column 2 from the 3× 3 matrix M:

A minor of a 3 × 3
matrix M =





−4 −3 3
0 2 −2
1 4 −1



 =⇒ M{12} =

∣

∣

∣

∣

0 −2
1 −1

∣

∣

∣

∣

= 2.

The cofactor of a square matrix M at a given row and column is the
same as the corresponding minor, but with alternating minors negated:

Matrix cofactor C{ij} = (−1)i+jM{ij}. (6.4)

As shown in Equation (6.4), we use the notation C{ij} to denote the cofactor
ofM in row i, column j. The (−1)(i+j) term has the effect of negating every
other cofactor in a checkerboard pattern:















+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
. . .















.

In the next section, we use minors and cofactors to compute determi-
nants of an arbitrary dimension n×n, and again in Section 6.2 to compute
the inverse of a matrix.

6.1.3 Determinants of Arbitrary n × n Matrices

Several equivalent definitions exist for the determinant of a matrix of arbi-
trary dimension n × n. The definition we consider here expresses a deter-
minant in terms of its cofactors. This definition is recursive, since cofactors
are themselves signed determinants. First, we arbitrarily select a row or
column from the matrix. Now, for each element in the row or column,
we multiply this element by the corresponding cofactor. Summing these
products yields the determinant of the matrix. For example, arbitrarily
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selecting row i, the determinant can be computed by

|M| =
n
∑

j=1

mijC
{ij} =

n
∑

j=1

mij(−1)i+jM{ij}. (6.5)

As it turns out, it doesn’t matter which row or column we choose; they all

Computing an n × n
determinant by using
cofactors of row i

will produce the same result.
Let’s look at an example. We’ll rewrite the equation for 3× 3 determi-

nant using Equation (6.5):

Recursive definition of
determinant applied to
3 × 3 case

∣

∣

∣

∣

∣

∣

m11 m12 m13

m21 m22 m23

m31 m32 m33

∣

∣

∣

∣

∣

∣

= m11

∣

∣

∣

∣

m22 m23

m32 m33

∣

∣

∣

∣

−m12

∣

∣

∣

∣

m21 m23

m31 m33

∣

∣

∣

∣

+m13

∣

∣

∣

∣

m21 m22

m31 m32

∣

∣

∣

∣

.

Now, let’s derive the 4× 4 matrix determinant:

Recursive definition of
determinant applied to
4 × 4 case

∣

∣

∣

∣

∣

∣

∣

∣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

∣

∣

∣

∣

∣

∣

∣

∣

= m11

∣

∣

∣

∣

∣

∣

m22 m23 m24

m32 m33 m34

m42 m43 m44

∣

∣

∣

∣

∣

∣

−m12

∣

∣

∣

∣

∣

∣

m21 m23 m24

m31 m33 m34

m41 m43 m44

∣

∣

∣

∣

∣

∣

+m13

∣

∣

∣

∣

∣

∣

m21 m22 m24

m31 m32 m34

m41 m42 m44

∣

∣

∣

∣

∣

∣

−m14

∣

∣

∣

∣

∣

∣

m21 m22 m23

m31 m32 m33

m41 m42 m43

∣

∣

∣

∣

∣

∣

.

Expanding the cofactors, we have

Determinant of a 4× 4
matrix in expanded form

m11

[

m22(m33m44−m34m43) + m23(m34m42−m32m44) + m24(m32m43−m33m42)
]

− m12

[

m21(m33m44−m34m43) + m23(m34m41−m31m44) + m24(m31m43−m33m41)
]

+ m13

[

m21(m32m44−m34m42) + m22(m34m41−m31m44) + m24(m31m42−m32m41)
]

− m14

[

m21(m32m43−m33m42) + m22(m33m41−m31m43) + m23(m31m42−m32m41)
]

.

As you can imagine, the complexity of explicit formulas for determinants
of higher degree grows rapidly. Luckily, we can perform an operation known
as “pivoting,” which doesn’t affect the value of the determinant, but causes
a particular row or column to be filled with zeroes except for a single element
(the “pivot” element). Then only one cofactor has to be evaluated. Since
we won’t need determinants of matrices higher than the 4×4 case, anyway,
a complete discussion of pivoting is outside the scope of this book.
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Let’s briefly state some important characteristics concerning determi-
nants.

• The determinant of an identity matrix of any dimension is 1:

Determinant of identity
matrix

|I| = 1.

• The determinant of a matrix product is equal to the product of the
determinants:

Determinant of matrix
product

|AB| = |A||B|.

This extends to more than two matrices:

|M1M2 · · ·Mn−1Mn| = |M1||M2| · · · |Mn−1||Mn|.

• The determinant of the transpose of a matrix is equal to the original
determinant:

Determinant of matrix
transpose

∣

∣MT
∣

∣ = |M|.

• If any row or column in a matrix contains all 0s, then the determinant
of that matrix is 0:

Determinant of matrix
with a row/column full

of 0s

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

? ? · · · ?
? ? · · · ?
...

...
...

0 0 · · · 0
...

...
...

? ? · · · ?

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

? ? · · · 0 · · · ?
? ? · · · 0 · · · ?
...

...
...

...
? ? · · · 0 · · · ?

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

• Exchanging any pair of rows negates the determinant:

Swapping rows negates
the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

...
mi1 mi2 · · · min

...
...

...
mj1 mj2 · · · mjn

...
...

...
mn1 mn2 · · · mnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

...
mj1 mj2 · · · mjn

...
...

...
mi1 mi2 · · · min

...
...

...
mn1 mn2 · · · mnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This same rule applies for exchanging a pair of columns.
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• Adding any multiple of a row (column) to another row (column) does
not change the value of the determinant!

Adding one row to
another doesn’t
change the
determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

...
mi1 mi2 · · · min

...
...

...
mj1 mj2 · · · mjn

...
...

...
mn1 mn2 · · · mnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

...
mi1+kmj1 mi2+kmj2 · · · min+kmjn

...
...

...
mj1 mj2 · · · mjn

...
...

...
mn1 mn2 · · · mnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

This explains why our shear matrices from Section 5.5 have a deter-
minant of 1.

6.1.4 Geometric Interpretation of Determinant

The determinant of a matrix has an interesting geometric interpretation. In
2D, the determinant is equal to the signed area of the parallelogram or skew
box that has the basis vectors as two sides (see Figure 6.1). (We discussed

Figure 6.1
The determinant
in 2D is the
signed area of
the skew box
formed by the
transformed
basis vectors.
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how we can use skew boxes to visualize coordinate space transformations
in Section 4.2.) By signed area, we mean that the area is negative if the
skew box is “flipped” relative to its original orientation.

In 3D, the determinant is the volume of the parallelepiped that has the
transformed basis vectors as three edges. It will be negative if the object is
reflected (“turned inside out”) as a result of the transformation.

The determinant is related to the change in size that results from trans-
forming by the matrix. The absolute value of the determinant is related
to the change in area (in 2D) or volume (in 3D) that will occur as a result
of transforming an object by the matrix, and the sign of the determinant
indicates whether any reflection or projection is contained in the matrix.

The determinant of the matrix can also be used to help classify the type
of transformation represented by a matrix. If the determinant of a matrix is
zero, then the matrix contains a projection. If the determinant of a matrix
is negative, then reflection is contained in the matrix. See Section 5.7 for
more about different classes of transformations.

6.2 Inverse of a Matrix

Another important operation that applies only to square matrices is the
inverse of a matrix. This section discusses the matrix inverse from a math-
ematical and geometric perspective.

The inverse of a square matrix M, denoted M−1 is the matrix such
that when we multiply M by M−1 on either side, the result is the identity
matrix. In other words,

Matrix inverse M(M−1) = M−1M = I.

Not all matrices have an inverse. An obvious example is a matrix with
a row or column filled with 0s—no matter what you multiply this matrix
by, the corresponding row or column in the result will also be full of 0s. If
a matrix has an inverse, it is said to be invertible or nonsingular. A matrix
that does not have an inverse is said to be noninvertible or singular. For any
invertible matrix M, the vector equality vM = 0 is true only when v = 0.
Furthermore, the rows of an invertible matrix are linearly independent, as
are the columns. The rows (and columns) of a singular matrix are linearly
dependent.

The determinant of a singular matrix is zero and the determinant of a
nonsingular matrix is nonzero. Checking the magnitude of the determinant
is the most commonly used test for invertibility because it’s the easiest and
quickest. In ordinary circumstances, this is OK, but please note that the
method can break down. An example is an extreme shear matrix with basis
vectors that form a very long, thin parallelepiped with unit volume. This
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ill conditioned matrix is nearly singular, even though its determinant is 1.
The condition number is the proper tool for detecting such cases, but this
is an advanced topic slightly beyond the scope of this book.

There are several ways to compute the inverse of a matrix. The one
we use is based on the classical adjoint, which is the subject of the next
section.

6.2.1 The Classical Adjoint

Our method for computing the inverse of a matrix is based on the classical
adjoint. The classical adjoint of a matrix M, denoted “adj M,” is defined
as the transpose of the matrix of cofactors of M.

Let’s look at an example. Take the 3× 3 matrix M given earlier:

M =





−4 −3 3
0 2 −2
1 4 −1



 .

First, we compute the cofactors of M, as discussed in Section 6.1.2:

C{11} = +
2
4

−2
−1

= 6, C{12} = −
0
1

−2
−1

= −2, C{13} = +
0
1

2
4

= −2,

C{21} = −
−3
4

3
−1

= 9, C{22} = +
−4
1

3
−1

= 1, C{23} = −
−4
1

−3
4

= 13,

C{31} = +
−3
2

3
−2

= 0, C{32} = −
−4
0

3
−2

= −8, C{33} = +
−4
0

−3
2

= −8.

The classical adjoint of M is the transpose of the matrix of cofactors:

The classical adjointadj M =





C{11} C{12} C{13}

C{21} C{22} C{23}

C{31} C{32} C{33}





T

(6.6)

=





6 −2 −2
9 1 13
0 −8 −8





T

=





6 9 0
−2 1 −8
−2 13 −8



 .

6.2.2 Matrix Inverse—Official Linear Algebra Rules

To compute the inverse of a matrix, we divide the classical adjoint by the
determinant: Computing matrix

inverse from classical
adjoint and determinantM−1 =

adj M

|M| .

If the determinant is zero, the division is undefined, which jives with our
earlier statement that matrices with a zero determinant are noninvertible.
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Let’s look at an example. In the previous section we calculated the
classical adjoint of a matrix M; now let’s calculate its inverse:

M =





−4 −3 3
0 2 −2
1 4 −1



 ;

M−1 =
adj M

|M| =
1

−24





6 9 0
−2 1 −8
−2 13 −8



 =





−1/4 −3/8 0
1/12 −1/24 1/3
1/12 −13/24 1/3



 .

Here the value of adj M comes from Equation (6.6), and |M| is from Equa-
tion (6.3).

There are other techniques that can be used to compute the inverse of a
matrix, such as Gaussian elimination. Many linear algebra textbooks assert
that such techniques are better suited for implementation on a computer
because they require fewer arithmetic operations, and this assertion is true
for larger matrices and matrices with a structure that may be exploited.
However, for arbitrary matrices of smaller order, such as the 2×2, 3×3, and
4×4 matrices encountered most often in geometric applications, the classical
adjoint method is generally the method of choice. The reason is that the
classical adjoint method provides for a branchless implementation, meaning
there are no if statements, or loops that cannot be unrolled statically. On
today’s superscalar architectures and dedicated vector processors, this is a
big win.

We close this section with a quick list of several important properties
concerning matrix inverses.

• The inverse of the inverse of a matrix is the original matrix:

(M−1)−1 = M.

(Of course, this assumes that M is nonsingular.)

• The identity matrix is its own inverse:

I−1 = I.

Note that there are other matrices that are their own inverse. For
example, consider any reflection matrix, or a matrix that rotates 180o

about any axis.

• The inverse of the transpose of a matrix is the transpose of the inverse
of the matrix:

(MT)−1 = (M−1)T
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• The inverse of a matrix product is equal to the product of the inverses
of the matrices, taken in reverse order :

(AB)−1 = B−1A−1.

This extends to more than two matrices:

(M1M2 · · ·Mn−1Mn)
−1

= Mn
−1Mn−1

−1 · · ·M2
−1M1

−1.

• The determinant of the inverse is the reciprocal of the determinant of
the original matrix:

∣

∣M−1
∣

∣ = 1/|M|.

6.2.3 Matrix Inverse—Geometric Interpretation

The inverse of a matrix is useful geometrically because it allows us to com-
pute the “reverse” or “opposite” of a transformation—a transformation
that “undoes” another transformation if they are performed in sequence.
So, if we take a vector, transform it by a matrix M, and then transform
it by the inverse M−1, then we will get the original vector back. We can
easily verify this algebraically:

(vM)M−1 = v(MM−1) = vI = v.

6.3 Orthogonal Matrices

Previously we made reference to a special class of square matrices known
as orthogonal matrices. This section investigates orthogonal matrices a bit
more closely. As usual, we first introduce some pure math (Section 6.3.1),
and then give some geometric interpretations (Section 6.3.2). Finally, we
discuss how to adjust an arbitrary matrix to make it orthogonal (Sec-
tion 6.3.3).

6.3.1 Orthogonal Matrices—Official Linear Algebra Rules

A square matrix M is orthogonal if and only if1 the product of the matrix
and its transpose is the identity matrix:

1The notation “P ⇔ Q” should be read “P if and only if Q” and denotes that the
statement P is true if and only if Q is also true. “If and only if” is sort of like an equals
sign for Boolean values. In other words, if either P or Q are true, then both must be
true, and if either P or Q are false, then both must be false. The ⇔ notation is also like
the standard “=” notation in that it is reflexive. This is a fancy way of saying that it
doesn’t matter which is on the left and which is on the right; P ⇔ Q implies Q ⇔ P .
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Definition of orthogonal
matrix

M is orthogonal ⇐⇒ MMT = I. (6.7)

Recall from Section 6.2.2 that, by definition, a matrix times its inverse is
the identity matrix (MM−1 = I). Thus, if a matrix is orthogonal, its
transpose and inverse are equal:

Equivalent definition of
orthogonal matrix

M is orthogonal ⇐⇒ MT = M−1.

This is extremely powerful information, because the inverse of a matrix
is often needed, and orthogonal matrices arise frequently in practice in
3D graphics. For example, as mentioned in Section 5.7.5, rotation and
reflection matrices are orthogonal. If we know that our matrix is orthogonal,
we can essentially avoid computing the inverse, which is a relatively costly
computation.

6.3.2 Orthogonal Matrices—Geometric Interpretation

Orthogonal matrices are interesting to us primarily because their inverse is
trivial to compute. But how do we know if a matrix is orthogonal in order
to exploit its structure?

In many cases, we may have information about the way the matrix was
constructed and therefore know a priori that the matrix contains only ro-
tation and/or reflection. This is a very common situation, and it’s very
important to take advantage of this when using matrices to describe rota-
tion. We return to this topic in Section 8.2.1.

But what if we don’t know anything in advance about the matrix? In
other words, how can we tell if an arbitrary matrix M is orthogonal? Let’s
look at the 3 × 3 case, which is the most interesting one for our purposes.
The conclusions we draw in this section can be extended to matrices of any
dimension.

Let M be an orthogonal 3 × 3 matrix. Expanding the definition of
orthogonality given by Equation (6.7), we have

M MT = I,





m11 m12 m13

m21 m22 m23

m31 m32 m33









m11 m21 m31

m12 m22 m32

m13 m23 m33



 =





1 0 0
0 1 0
0 0 1



 .
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This gives us nine equations, all of which must be true for M to be orthog-
onal:

Conditions satisfied by
an orthogonal matrix

m11m11 +m12m12 +m13m13 = 1, (6.8)

m11m21 +m12m22 +m13m23 = 0,

m11m31 +m12m32 +m13m33 = 0,

m21m11 +m22m12 +m23m13 = 0,

m21m21 +m22m22 +m23m23 = 1, (6.9)

m21m31 +m22m32 +m23m33 = 0,

m31m11 +m32m12 +m33m13 = 0,

m31m21 +m32m22 +m33m23 = 0,

m31m31 +m32m32 +m33m33 = 1. (6.10)

Let the vectors r1, r2, and r3 stand for the rows of M:

r1 =
[

m11 m12 m13

]

,

r2 =
[

m21 m22 m23

]

,

r3 =
[

m31 m32 m33

]

,

M =





−r1−
−r2−
−r3−



.

Now we can rewrite the nine equations more compactly:

Conditions satisfied by
an orthogonal matrix

r1 · r1 = 1, r1 · r2 = 0, r1 · r3 = 0,

r2 · r1 = 0, r2 · r2 = 1, r2 · r3 = 0,

r3 · r1 = 0, r3 · r2 = 0, r3 · r3 = 1.

This notational changes makes it easier for us to make some interpretations.

• First, the dot product of a vector with itself is 1 if and only if the
vector is a unit vector. Therefore, the equations with a 1 on the right-
hand side of the equals sign (Equations (6.8), (6.9), and (6.10)) will
be true only when r1, r2, and r3 are unit vectors.

• Second, recall from Section 2.11.2 that the dot product of two vectors
is 0 if and only if they are perpendicular. Therefore, the other six
equations (with 0 on the right-hand side of the equals sign) are true
when r1, r2, and r3 are mutually perpendicular.

So, for a matrix to be orthogonal, the following must be true:
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• Each row of the matrix must be a unit vector.

• The rows of the matrix must be mutually perpendicular.

Similar statements can be made regarding the columns of the matrix, since
if M is orthogonal, then MT must be orthogonal as well.

Notice that these criteria are precisely those that we said in Section 3.3.3
were satisfied by an orthonormal set of basis vectors. In that section, we also
noted that an orthonormal basis was particularly useful because we could
perform, by using the dot product, the “opposite” coordinate transform
from the one that is always available. When we say that the transpose of
an orthogonal matrix is equal to its inverse, we are just restating this fact
in the formal language of linear algebra.

Also notice that three of the orthogonality equations are duplicates, be-
cause the dot product is commutative. Thus, these nine equations actually
express only six constraints. In an arbitrary 3 × 3 matrix there are nine
elements and thus nine degrees of freedom, but in an orthogonal matrix, six
degrees of freedom are removed by the constraints, leaving three degrees of
freedom. It is significant that three is also the number of degrees of free-
dom inherent in 3D rotation. (However, rotation matrices cannot contain
a reflection, so there is “slightly more freedom” in the set of orthogonal
matrices than in the set of orientations in 3D.)

When computing a matrix inverse, we will usually only take advantage
of orthogonality if we know a priori that a matrix is orthogonal. If we don’t
know in advance, it’s probably a waste of time to check. In the best case,
we check for orthogonality and find that the matrix is indeed orthogonal,
and then we transpose the matrix. But this may take almost as much time
as doing the inversion. In the worst case, the matrix is not orthogonal, and
any time we spent checking was definitely wasted. Finally, even matrices
that are orthogonal in the abstract may not be exactly orthogonal when
represented in floating point, and so we must use tolerances, which have to
be tuned.

One important note is needed here on terminology that can be slightly
confusing. In linear algebra, we describe a set of basis vectors as orthogonal
if they are mutually perpendicular. It is not required that they have unit
length. If they do have unit length, they are an orthonormal basis. Thus the
rows and columns of an orthogonal matrix are orthonormal basis vectors.
However, constructing a matrix from a set of orthogonal basis vectors does
not necessarily result in an orthogonal matrix (unless the basis vectors are
also orthonormal).
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6.3.3 Orthogonalizing a Matrix

It is sometimes the case that we encounter a matrix that is slightly out of
orthogonality. We may have acquired bad data from an external source,
or we may have accumulated floating point error (which is called matrix
creep). For basis vectors used for bump mapping (see Section 10.9), we
will often adjust the basis to be orthogonal, even if the texture mapping
gradients aren’t quite perpendicular. In these situations, we would like to
orthogonalize the matrix, resulting in a matrix that has mutually perpen-
dicular unit vector axes and is (hopefully) as close to the original matrix
as possible.

The standard algorithm for constructing a set of orthogonal basis vectors
(which is what the rows of an orthogonal matrix are) is Gram-Schmidt
orthogonalization. The basic idea is to go through the basis vectors in
order. For each basis vector, we subtract off the portion of that vector
that is parallel to the proceeding basis vectors, which must result in a
perpendicular vector.

Let’s look at the 3 × 3 case as an example. As before, let r1, r2, and
r3 stand for the rows of a 3 × 3 matrix M. (Remember, you can also
think of these as the x-, y-, and z-axes of a coordinate space.) Then an
orthogonal set of row vectors, r′1, r

′
2, and r′3, can be computed according

to the following algorithm:

Gram-Schmidt
orthogonalization of 3D
basis vectors

r′1 ⇐ r1,

r′2 ⇐ r2 −
r2 · r′1
r′1 · r′1

r′1,

r′3 ⇐ r3 −
r3 · r′1
r′1 · r′1

r′1 −
r3 · r′2
r′2 · r′2

r′2.

After applying these steps, the vectors r1, r2, and r3 are guaranteed to
be mutually perpendicular, and thus will form an orthogonal basis. How-
ever, they may not necessarily be unit vectors. We need an orthonormal
basis to form an orthogonal matrix, and so we must normalize the vectors.
(Again, the terminology can be confusing, see the note at the end of the
previous section.) Notice that if we normalize the vectors as we go, rather
than in a second pass, then we can avoid all of the divisions. Also, a trick
that works in 3D (but not in higher dimensions) is to compute the third
basis vector using the cross product:

r′3 ⇐ r′1 × r′2.

The Gram-Schmidt algorithm is biased, depending on the order in which
the basis vectors are listed. For instance, r1 never changes, and r3 is likely
to change the most. A variation on the algorithm that is not biased towards



176 6. More on Matrices

any particular axis is to abandon the attempt to completely orthogonalize
the entire matrix in one pass. We select some fraction k, and instead of
subtracting off all of the projection, we subtract off only k of it. We also
subtract the projection onto the original axis, not the adjusted one. In this
way, the order in which we perform the operations does not matter and we
have no dimensional bias. This algorithm is summarized by

Nonbiased incremental
orthogonalization

algorithm

r′1 ⇐ r1 − k
r1 · r2
r2 · r2

r2 − k
r1 · r3
r3 · r3

r3,

r′2 ⇐ r2 − k
r2 · r1
r1 · r1

r1 − k
r2 · r3
r3 · r3

r3,

r′3 ⇐ r3 − k
r3 · r1
r1 · r1

r1 − k
r3 · r2
r2 · r2

r2.

One iteration of this algorithm results in a set of basis vectors that
are slightly “more orthogonal” than the original vectors, but possibly not
completely orthogonal. By repeating this procedure multiple times, we
can eventually converge on an orthogonal basis. Selecting an appropriately
small value for k (say, 1/4) and iterating a sufficient number of times (say,
ten) gets us fairly close. Then, we can use the standard Gram-Schmidt
algorithm to guarantee a perfectly orthogonal basis.

6.4 4 × 4 Homogeneous Matrices

Up until now, we have used only 2D and 3D vectors. In this section, we
introduce 4D vectors and the so-called “homogeneous” coordinate. There
is nothing magical about 4D vectors and matrices (and no, the fourth co-
ordinate in this case isn’t “time”). As we will see, 4D vectors and 4 × 4
matrices are nothing more than a notational convenience for what are sim-
ple 3D operations.

This section introduces 4D homogeneous space and 4×4 transformation
matrices and their application to affine 3D geometry. Section 6.4.1 discusses
the nature of 4D homogeneous space and how it is related to physical 3D
space. Section 6.4.2 explains how 4×4 transformation matrices can be used
to express translations. Section 6.4.3 explains how 4 × 4 transformation
matrices can be used to express affine transformations.

6.4.1 4D Homogeneous Space

As was mentioned in Section 2.1, 4D vectors have four components, with
the first three components being the standard x, y, and z components.
The fourth component in a 4D vector is w, sometimes referred to as the
homogeneous coordinate.
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To understand how the standard physical 3D space is extended into
4D, let’s first examine homogeneous coordinates in 2D, which are of the
form (x, y, w). Imagine the standard 2D plane as existing in 3D at the
plane w = 1, such that physical 2D point (x, y) is represented in homo-
geneous space (x, y, 1). For all points that are not in the plane w = 1,
we can compute the corresponding 2D point by projecting the point onto
the plane w = 1, by dividing by w. So the homogeneous coordinate
(x, y, w) is mapped to the physical 2D point (x/w, y/w). This is shown in
Figure 6.2.

Figure 6.2
Projecting
homogeneous
coordinates onto the
plane w = 1 in 2D

For any given physical 2D point (x, y) there are an infinite number
of corresponding points in homogeneous space, all of the form (kx, ky, k),
provided that k 6= 0. These points form a line through the (homogeneous)
origin.

When w = 0, the division is undefined and there is no corresponding
physical point in 2D space. However, we can interpret a 2D homogeneous
point of the form (x, y, 0) as a “point at infinity,” which defines a direction
rather than a location. When we make the conceptual distinction between
“points” and “vectors” (see Section 2.4), then the “locations” where w 6= 0
are “points“ and the “directions” with w = 0 are are “vectors.” There is
more on this in the next section.

The same basic idea applies when extending physical 3D space to 4D
homogeneous space (although it’s a lot harder to visualize). The physical
3D points can be thought of as living in the hyperplane in 4D at w = 1.
A 4D point is of the form (x, y, z, w), and we project a 4D point onto this
hyperplane to yield the corresponding physical 3D point (x/w, y/w, z/w).
When w = 0, the 4D point represents a “point at infinity,” which defines a
direction rather than a location.
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Homogeneous coordinates and projection by division by w are interest-
ing, but why on earth would we want to use 4D space? There are two
primary reasons for using 4D vectors and 4× 4 matrices. The first reason,
which we discuss in the next section, is actually nothing more than a no-
tational convenience. The second reason is that if we put the proper value
into w, the homogenous division will result in a perspective projection, as
we discuss in Section 6.5.

6.4.2 4 × 4 Translation Matrices

Recall from Section 4.2 that a 3 × 3 transformation matrix represents a
linear transformation, which does not contain translation. Due to the na-
ture of matrix multiplication, the zero vector is always transformed into
the zero vector, and therefore any transformation that can be represented
by a matrix multiplication cannot contain translation. This is unfortunate,
because matrix multiplication and inversion are very convenient tools for
composing complicated transformations out of simple ones and manipulat-
ing nested coordinate space relationships. It would be nice if we could find
a way to somehow extend the standard 3× 3 transformation matrix to be
able to handle transformations with translation; 4 × 4 matrices provide a
mathematical “kludge” that allows us to do this.

Assume for the moment that w is always 1. Thus, the standard 3D
vector [x, y, z] will always be represented in 4D as [x, y, z, 1]. Any 3 × 3
transformation matrix can by represented in 4D by using the conversion

Extending a 3 × 3
transform matrix into 4D





m11 m12 m13

m21 m22 m23

m31 m32 m33



 =⇒









m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
0 0 0 1









.

When we multiply a 4D vector of the form [x, y, z, 1] by a 4× 4 matrix
of this form, we get the same result as the standard 3 × 3 case, the only
difference being the additional coordinate w = 1:

[

x y z
]





m11 m12 m13

m21 m22 m23

m31 m32 m33





=
[

xm11+ym21+zm31 xm12+ym22+zm32 xm13+ym23+zm33

]

;

[

x y z 1
]









m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
0 0 0 1









=
[

xm11+ym21+zm31 xm12+ym22+zm32 xm13+ym23+zm33 1
]

.
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Now for the interesting part. In 4D, we can also express translation as
a matrix multiplication, something we were not able to do in 3D:

Using a 4 × 4 matrix to
perform translation in
3D

[

x y z 1
]









1 0 0 0
0 1 0 0
0 0 1 0
∆x ∆y ∆z 1









=
[

x+∆x y+∆y z+∆z 1
]

.

(6.11)

It is important to understand that this matrix multiplication is still a
linear transformation. Matrix multiplication cannot represent “translation”
in 4D, and the 4D zero vector will always be transformed back into the 4D
zero vector. The reason this trick works to transform points in 3D is that
we are actually shearing 4D space. (Compare Equation (6.11) with the
shear matrices from Section 5.5.) The 4D hyperplane that corresponds to
physical 3D space does not pass through the origin in 4D. Thus, when we
shear 4D space, we are able to translate in 3D.

Let’s examine what happens when we perform a transformation with-
out translation followed by a transformation with only translation. Let R
be a rotation matrix. (In fact, R could possibly contain other 3D linear
transformations, but for now, let’s assume R only contains rotation.) Let
T be a translation matrix of the form in Equation (6.11):

R =









r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1









, T =









1 0 0 0
0 1 0 0
0 0 1 0
∆x ∆y ∆z 1









.

Then we could rotate and then translate a point v to compute a new point
v′ by

v′ = vRT.

Remember that the order of transformations is important, and since we have
chosen to use row vectors, the order of transformations coincides with the
order that the matrices are multiplied, from left to right. We are rotating
first and then translating.

Just as with 3 × 3 matrices, we can concatenate the two matrices into
a single transformation matrix, which we assign to the matrix M:

M = RT,

v′ = vRT = v(RT) = vM.
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Let’s now examine the contents of M:

M = RT =









r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

















1 0 0 0
0 1 0 0
0 0 1 0
∆x ∆y ∆z 1









=









r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
∆x ∆y ∆z 1









.

Notice that the upper 3×3 portion of M contains the rotation portion, and
the bottom row contains the translation portion. The rightmost column (for
now) will be [0, 0, 0, 1]T.

Applying this information in reverse, we can take any 4× 4 matrix and
separate it into a linear transformation portion, and a translation portion.
We can express this succinctly with block matrix notation, by assigning the
translation vector [∆x,∆y,∆z] to the vector t:

M =

[

R 0

t 1

]

.

For the moment, we are assuming that the rightmost column of a 4 × 4
transformation matrix is always [0, 0, 0, 1]T. We will begin to encounter
situations where this is not be the case in Section 6.5.

Let’s see what happens with the so-called “points at infinity” (those
vectors with w = 0). Multiplying by a “standard” 3 × 3 linear transfor-
mation matrix extended into 4D (a transformation that does not contain
translation), we get

Multiplying a “point at
infinity” by a 4 × 4

matrix without

translation

[

x y z 0
]









r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1









=
[

xr11+yr21+zr31 xr12+yr22+zr32 xr13+yr23+zr33 0
]

.

In other words, when we transform a point-at-infinity vector of the form
[x, y, z, 0] by a transformation matrix containing rotation, scale, etc., the



6.4. 4 × 4 Homogeneous Matrices 181

expected transformation occurs, and the result is another point-at-infinity
vector of the form [x′, y′, z′, 0].

When we transform a point-at-infinity vector by a transformation that
does contain translation, we get the following result:

Multiplying a “point at
infinity” by a 4 × 4
matrix with translation

[

x y z 0
]









r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
∆x ∆y ∆z 1









=
[

xr11+yr21+zr31 xr12+yr22+zr32 xr13+yr23+zr33 0
]

.

Notice that the result is the same—that is, no translation occurs.
In other words, the w component of a 4D vector can be used to selec-

tively “switch off” the translation portion of a 4× 4 matrix. This is useful
because some vectors represent “locations” and should be translated, and
other vectors represent “directions,” such as surface normals, and should
not be translated. In a geometric sense, we can think of the first type of
data, with w = 1, as “points,” and the second type of data, the “points at
infinity” with w = 0, as “vectors.”

So, one reason why 4×4 matrices are useful is that a 4×4 transformation
matrix can contain translation. When we use 4× 4 matrices solely for this
purpose, the right-most column of the matrix will always be [0, 0, 0, 1]T.
Since this is the case, why don’t we just drop the column and use a 4 × 3
matrix? According to linear algebra rules, 4 × 3 matrices are undesirable
for several reasons:

• We cannot multiply a 4× 3 matrix by another 4× 3 matrix.

• We cannot invert a 4× 3 matrix, since the matrix is not square.

• When we multiply a 4D vector by a 4 × 3 matrix, the result is a 3D
vector.

Strict adherence to linear algebra rules forces us to add the fourth col-
umn. Of course, in our code, we are not bound by linear algebra rules. It
is a common technique to write a 4×3 matrix class that is useful for repre-
senting transformations that contain translation. Basically, such a matrix
is a 4× 4 matrix, where the right-most column is assumed to be [0, 0, 0, 1]T

and therefore isn’t explicitly stored.

6.4.3 General Affine Transformations

Chapter 5 presented 3 × 3 matrices for many primitive transformations.
Because a 3 × 3 matrix can represent only linear transformations in 3D,
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translation was not considered. Armed with 4 × 4 transform matrices,
though, we can now create more general affine transformations that contain
translation, such as:

• rotation about an axis that does not pass through the origin,

• scale about a plane that does not pass through the origin,

• reflection about a plane that does not pass through the origin, and

• orthographic projection onto a plane that does not pass through the
origin.

The basic idea is to translate the “center” of the transformation to the
origin, perform the linear transformation by using the techniques developed
in Chapter 5, and then transform the center back to its original location.
We start with a translation matrix T that translates the point p to the
origin, and a linear transform matrix R from Chapter 5 that performs
the linear transformation. The final affine transformation matrix A will
be equal to the matrix product TR(T−1), where T−1 is the translation
matrix with the opposite translation amount as T.

It is interesting to observe the general form of such a matrix. Let’s first
write T, R, and T−1 in the partitioned form we used earlier:

T =









1 0 0 0
0 1 0 0
0 0 1 0

−px −py −pz 1









=

[

I 0

−p 1

]

;

R4×4 =









r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1









=

[

R3×3 0

0 1

]

;

T−1 =









1 0 0 0
0 1 0 0
0 0 1 0
px py pz 1









=

[

I 0
p 1

]

.

Evaluating the matrix multiplication, we get

TR4×4T
−1 =

[

I 0

−p 1

] [

R3×3 0

0 1

] [

I 0

p 1

]

=

[

R3×3 0

−p (R3×3) + p 1

]

.

Thus, the extra translation in an affine transformation changes only the
last row of the 4× 4 matrix. The upper 3× 3 portion, which contains the
linear transformation, is not affected.
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Our use of “homogeneous” coordinates so far has really been nothing
more than a mathematical kludge to allow us to include translation in our
transformations. We use quotations around “homogeneous” because the w
value was always 1 (or 0, in the case of points at infinity). In the next
section, we will remove the quotations, and discuss meaningful ways to use
4D coordinates with other w values.

6.5 4 × 4 Matrices and Perspective Projection

Section 6.4.1 showed that when we interpret a 4D homogeneous vector in
3D, we divide by w. This division is a mathematical tool that we did not
really take advantage of in the previous section, since w was always 1 or 0.
However, if we play our cards right, we can use the division by w to en-
capsulate very succinctly the important geometric operation of perspective
projection.

We can learn a lot about perspective projection by comparing it to an-
other type of projection we have already discussed, orthographic projection.
Section 5.3 showed how to project 3D space onto a 2D plane, known as the
projection plane, by using orthographic projection. Orthographic projec-
tion is also known as parallel projection, because the projectors are parallel.
(A projector is a line from the original point to the resulting projected point
on the plane). The parallel projectors used in orthographic projection are
shown in Figure 6.3.

Figure 6.3
Orthographic projection uses parallel projectors.
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Figure 6.4. With perspective projection, the projectors intersect at the center of projection.

Figure 6.5. Due to perspective foreshortening, the projection of the teapot on the left is larger
than the projection of the teapot on the right. The lefthand teapot is closer to the
projection plane.
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Perspective projection in 3D also projects onto a 2D plane. However,
the projectors are not parallel. In fact, they intersect at a point, known as
the center of projection. This is shown in Figure 6.4.

Because the center of projection is in front of the projection plane, the
projectors cross before striking the plane, and thus the image is inverted.
As we move an object farther away from the center of projection, its ortho-
graphic projection remains constant, but the perspective projection gets
smaller, as illustrated in Figure 6.5. The teapot on the right is further
from the projection plane, and the projection is (slightly) smaller than the
closer teapot. This is a very important visual cue known as perspective
foreshortening.

6.5.1 A Pinhole Camera

Perspective projection is important in graphics because it models the way
the human visual system works. Actually, the human visual system is more
complicated because we have two eyes, and for each eye, the projection
surface (our retina) is not flat; so let’s look at the simpler example of a
pinhole camera. A pinhole camera is a box with a tiny hole on one end.
Rays of light enter the pinhole (thus converging at a point), and then strike
the opposite end of the box, which is the projection plane. This is shown
in Figure 6.6.

Figure 6.6. A pinhole camera.
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In this view, the left and back sides of the box have been removed so
you can see the inside. Notice that the image projected onto the back of
the box is inverted. This is because the rays of light (the projectors) cross
as they meet at the pinhole (the center of projection).

Let’s examine the geometry behind the perspective projection of a pin-
hole camera. Consider a 3D coordinate space with the origin at the pinhole,
the z-axis perpendicular to the projection plane, and the x- and y-axes par-
allel to the plane of projection, as shown in Figure 6.7.

Figure 6.7
A projection plane parallel
to the xyplane

Let’s see if we can’t compute, for an arbitrary point p, the 3D coordi-
nates of p′, which is p projected through the pinhole onto the projection
plane. First, we need to know the distance from the pinhole to the projec-
tion plane. We assign this distance to the variable d. Thus, the plane is
defined by the equation z = −d. Now let’s view things from the side and
solve for y (see Figure 6.8).

By similar triangles, we can see that

−p′y
d

=
py
z

=⇒ p′y =
−dpy
z

.

Notice that since a pinhole camera flips the image upside down, the signs
of py and p′y are opposite. The value of p′x is computed in a similar manner:

p′x =
−dpx
z

.
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Figure 6.8
Viewing the
projection plane
from the side

The z values of all the projected points are the same: −d. Thus, the
result of projecting a point p through the origin onto a plane at z = −d is

Projecting onto the
plane z = −dp =

[

x y z
]

=⇒ p′ =
[

x′ y′ z′
]

=
[

−dx/z −dy/z −d
]

.

In practice, the extra minus signs create unnecessary complexities, and
so we move the plane of projection to z = d, which is in front of the center
of projection, as shown in Figure 6.9. Of course, this would never work for
a real pinhole camera, since the purpose of the pinhole in the first place is

Figure 6.9
Projection plane in
front of the center of
projection
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to allow in only light that passes through a single point. However, in the
mathematical universe inside a computer, it works just fine.

As expected, moving the plane of projection in front of the center of
projection removes the annoying minus signs:

Projecting a point onto
the plane z = d

p′ =
[

x′ y′ z′
]

=
[

dx/z dy/z d
]

. (6.12)

6.5.2 Perspective Projection Matrices

Because the conversion from 4D to 3D space implies a division, we can
encode a perspective projection in a 4 × 4 matrix. The basic idea is to
come up with an equation for p′ with a common denominator for x, y, and
z, and then set up a 4×4 matrix that will set w equal to this denominator.
We assume that the original points have w = 1.

First, we manipulate Equation (6.12) to have a common denominator:

p′ =
[

dx/z dy/z d
]

=
[

dx/z dy/z dz/z
]

=

[

x y z
]

z/d
.

To divide by this denominator, we put the denominator into w, so the 4D
point will be of the form

[

x y z z/d
]

.

So we need a 4× 4 matrix that multiplies a homogeneous vector [x, y, z, 1]
to produce [x, y, z, z/d]. The matrix that does this is

Projecting onto the
plane z = d using a 4 × 4

matrix

[

x y z 1
]









1 0 0 0
0 1 0 0
0 0 1 1/d
0 0 0 0









=
[

x y z z/d
]

.

Thus, we have derived a 4× 4 projection matrix.
There are several important points to be made here:

• Multiplication by this matrix doesn’t actually perform the perspective
transform, it just computes the proper denominator into w. Remem-
ber that the perspective division actually occurs when we convert
from 4D to 3D by dividing by w.

• There are many variations. For example, we can place the plane of
projection at z = 0, and the center of projection at [0, 0,−d]. This
results in a slightly different equation.

• This seems overly complicated. It seems like it would be simpler
to just divide by z, rather than bothering with matrices. So why is
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homogeneous space interesting? First, 4×4 matrices provide a way to
express projection as a transformation that can be concatenated with
other transformations. Second, projection onto nonaxially aligned
planes is possible. Basically, we don’t need homogeneous coordinates,
but 4×4 matrices provide a compact way to represent and manipulate
projection transformations.

• The projection matrix in a real graphics geometry pipeline (perhaps
more accurately known as the “clip matrix”) does more than just
copy z into w. It differs from the one we derived in two important
respects:

◦ Most graphics systems apply a normalizing scale factor such that
w = 1 at the far clip plane. This ensures that the values used
for depth buffering are distributed appropriately for the scene
being rendered, to maximize precision of depth buffering.

◦ The projection matrix in most graphics systems also scales the
x and y values according to the field of view of the camera.

We’ll get into these details in Section 10.3.2, when we show what
a projection matrix looks like in practice, using both DirectX and
OpenGL as examples.

6.6 Exercises
(Answers on page 765.)

1. Compute the determinant of the following matrix:

[

3 −2
1 4

]

2. Compute the determinant, adjoint, and inverse of the following matrix:





3 −2 0
1 4 0
0 0 2





3. Is the following matrix orthogonal?





−0.1495 −0.1986 −0.9685
−0.8256 0.5640 0.0117
−0.5439 −0.8015 0.2484





4. Invert the matrix from the previous exercise.
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5. Invert the 4× 4 matrix








−0.1495 −0.1986 −0.9685 0
−0.8256 0.5640 0.0117 0
−0.5439 −0.8015 0.2484 0
1.7928 −5.3116 8.0151 1









.

6. Construct a 4× 4 matrix to translate by [4, 2, 3].

7. Construct a 4× 4 matrix to rotate 20o about the x-axis and then translate
by [4, 2, 3].

8. Construct a 4× 4 matrix to translate by [4, 2, 3] and then rotate 20o about
the x-axis.

9. Construct a 4×4 matrix to perform a perspective projection onto the plane
x = 5. (Assume the origin is the center of projection.)

10. Use the matrix from the previous exercise to compute the 3D coordinates
of the projection of the point (105,−243, 89) onto the plane x = 5.

An attempt at visualizing the Fourth Dimension:
Take a point, stretch it into a line, curl it into a circle,

twist it into a sphere, and punch through the sphere.

— Albert Einstein (1879–1955)



Chapter 7

Polar Coordinate Systems

First of all, we must note that the universe is spherical.

— Nicolaus Copernicus (1473–1543)

The Cartesian coordinate system isn’t the only system for mapping out
space and defining locations precisely. An alternative to the Cartesian
system is the polar coordinate system, which is the subject of this chapter.
If you’re not very familiar with polar coordinates, it might seem like an
esoteric or advanced topic (especially because of the trig), and you might be
tempted to gloss over. Please don’t make this mistake. There are many very
practical problems in areas such as AI and camera control whose solutions
(and inherent difficulties!) can be readily understood in the framework of
polar coordinates.

This chapter is organized into the following sections:

• Section 7.1 describes 2D polar coordinates.

• Section 7.2 gives some examples where polar coordinates are prefer-
able to Cartesian coordinates.

• Section 7.3 shows how polar space works in 3D and introduces cylin-
drical and spherical coordinates.

• Finally, Section 7.4 makes it clear that polar space can be used to
describe vectors as well as positions.

7.1 2D Polar Space

This section introduces the basic idea behind polar coordinates, using two
dimensions to get us warmed up. Section 7.1.1 shows how to use polar
coordinates to describe position. Section 7.1.2 discusses aliasing of polar
coordinates. Section 7.1.3 shows how to convert between polar and Carte-
sian coordinates in 2D.

191
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7.1.1 Locating Points by Using 2D Polar Coordinates

Remember that a 2D Cartesian coordinate space has an origin, which estab-
lishes the position of the coordinate space, and two axes that pass through
the origin, which establish the orientation of the space. A 2D polar coor-
dinate space also has an origin (known as the pole), which has the same
basic purpose—it defines the “center” of the coordinate space. A polar co-
ordinate space has only one axis, however, sometimes called the polar axis,
which is usually depicted as a ray from the origin. It is customary in math
literature for the polar axis to point to the right in diagrams, and thus it
corresponds to the +x axis in a Cartesian system, as shown in Figure 7.1.

Figure 7.1
A 2D polar coordinate space

It’s often convenient to use different conventions than this, as shown in
Section 7.3.3. Until then, our discussion adopts the traditional conventions
of the math literature.

In the Cartesian coordinate system, we described a 2D point using two
signed distances, x and y. The polar coordinate system uses one distance
and one angle. By convention, the distance is usually assigned to the vari-
able r (which is short for “radius”) and the angle is usually called θ. The
polar coordinate pair (r, θ) specifies a point in 2D space as follows:

Locating the point
described by 2D polar

coordinates (r, θ)

Step 1. Start at the origin, facing in the direction of the polar axis, and
rotate by the angle θ. Positive values of θ are usually interpreted
to mean counterclockwise rotation, negative values mean clockwise
rotation.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-8&iName=master.img-000.jpg&w=150&h=151
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Step 2. Now move forward from the origin a distance of r units. You have
arrived at the point described by the polar coordinates (r, θ).

This process is shown in Figure 7.2.

Figure 7.2. Locating a point using 2D polar coordinates

Figure 7.3
Example points labeled with 2D polar
coordinates

In summary, r defines the dis-
tance from the point to the origin,
and θ defines the direction of the
point from the origin. Figure 7.3
shows several points and their po-
lar coordinates. You should study
this figure until you are convinced
that you know how it works.

You might have noticed that
the diagrams of polar coordinate
spaces contain grid lines, but that
these grid lines are slightly dif-
ferent from the grid lines used
in diagrams of Cartesian coordi-
nate systems. Each grid line in
a Cartesian coordinate system is
composed of points with the same
value for one of the coordinates. A
vertical line is composed of points

that all have the same x-coordinate, and a horizontal line is composed of

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-8&iName=master.img-002.jpg&w=328&h=166
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-8&iName=master.img-003.jpg&w=151&h=151


194 7. Polar Coordinate Systems

points that all have the same y-coordinate. The grid lines in a polar coor-
dinate system are similar:

• The “grid circles” show lines of constant r. This makes sense; after
all, the definition of a circle is the set of all points equidistant from
its center. That’s why the letter r is the customary variable to hold
this distance, because it is a radial distance.

• The straight grid lines that pass through the origin show lines of
constant θ, consisting of points that are the same direction from the
origin.

One note regarding angle measurements. With Cartesian coordinates,
the unit of measure wasn’t really significant. We could interpret diagrams
using feet, meters, miles, yards, light-years, beard-seconds, or picas, and it
didn’t really matter.1 If you take some Cartesian coordinate data, inter-
preting that data using different physical units just makes whatever you’re
looking at get bigger or smaller, but it’s proportionally the same shape.
However, interpreting the angular component of polar coordinates using
different angular units can produce drastically distorted results.

It really doesn’t matter whether you use degrees or radians (or grads,
mils, minutes, signs, sextants, or Furmans), as long as you keep it straight.
In the text of this book, we almost always give specific angular measure-
ments in degrees and use the o symbol after the number. We do this because
we are human beings, and most humans who are not math professors find
it easier to deal with whole numbers rather than fractions of π. Indeed,
the choice of the number 360 was specifically designed to make fractions
avoidable in many common cases. However, computing machines2 prefer
to work with angles expressed using radians, and so the code snippets in
this book use radians rather than degrees.

7.1.2 Aliasing

Hopefully you’re starting to get a good feel for how polar coordinates work
and what polar coordinate space looks like. But there may be some nagging
thoughts in the back of your head. Consciously or subconsciously, you
may have noticed a fundamental difference between Cartesian and polar
space. Perhaps you imagined a 2D Cartesian space as a perfectly even
continuum of space, like a flawless sheet of Jell-O, spanning infinitely in all
directions, each infinitely thin bite identical to all the others. Sure, there

1There might be some employees at NASA who feel otherwise, since the $125 million
Mars Climate Orbiter went astray due to a bug involving confusion between metric and
English units. Perhaps we should say that knowing the specific units of measurement
isn’t necessary to understand the concepts of Cartesian coordinates.

2Such as math professors.
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are some “special” places, like the origin, and the axes, but those are just
like marks on the bottom of the pan—the Jell-O itself is the same there
as everywhere else. But when you imagined the fabric of polar coordinate
space, something was different. Polar coordinate space has some “seams”
in it, some discontinuities where things are a bit “patched together.” In
the infinitely large circular pan of Jell-O, there are multiple sheets of Jell-O
stacked on top of each other. When you put your spoon down a particular
place to get a bite, you often end up with multiple bites! There’s a piece of
hair in the block of Jell-O, a singularity that requires special precautions.

Whether your mental image of polar space was of Jell-O, or some other
yummy dessert, you were probably pondering some of these questions:

1. Can the radial distance r ever be negative?

2. Can θ ever go outside the interval [−180o,+180o]?

3. The value of the angle θ directly “west” of the origin (i.e., for points
where x < 0 and y = 0 using Cartesian coordinates) is ambiguous.
You may have noticed that none of these points are labeled in Fig-
ure 7.3. Is θ equal to +180o or −180o for these points?

4. The polar coordinates for the origin itself are also ambiguous. Clearly
r = 0, but what value of θ should we use? Wouldn’t any value work?

The answer to all of these questions is “yes.”3 In fact, we must face a
rather harsh reality about polar space.

For any given point, there are infinitely many polar coordinate pairs that
can be used to describe that point.

This phenomenon is known as aliasing. Two coordinate pairs are said
to be aliases of each other if they have different numeric values but refer to
the same point in space. Notice that aliasing doesn’t happen in Cartesian
space—each point in space is assigned exactly one (x, y) coordinate pair;
the mapping of points to coordinate pairs is one-to-one.

Before we discuss some of the difficulties created by aliasing, let’s be
clear about one task for which aliasing does not pose any problems: inter-
preting a particular polar coordinate pair (r, θ) and locating the point in
space referred to by those coordinates. No matter what the values of r and
θ, we can come up with a sensible interpretation.

3Even question 3.



196 7. Polar Coordinate Systems

When r < 0, it is interpreted as “backward” movement—displacement
in the opposite direction that we would move if r were positive. If θ is
outside the range [−180o,+180o], that’s not a cause for panic; we can still
determine the resulting direction.4 In other words, although there may be
some “unusual” polar coordinates, there’s no such thing as “invalid” polar
coordinates. A given point in space corresponds to many coordinate pairs,
but a coordinate pair unambiguously designates exactly one point in space.

One way to create an alias for a point (r, θ) is to add a multiple of 360o

to θ. This adds one or more whole “revolutions,” but doesn’t change the
resulting direction defined by θ. Thus (r, θ) and (r, θ+ k360o) describe the
same point, where k is an integer. We can also generate an alias by adding
180o to θ and negating r; which means we face the other direction, but we
displace by the opposite amount.

In general, for any point (r, θ) other than the origin, all of the polar
coordinates that are aliases for (r, θ) can be expressed as

(

(−1)kr, θ + k180o
)

,

where k is any integer.

So, in spite of aliasing, we can all agree what point is described by the
polar coordinates (r, θ), no matter what values of r and θ are used. But
what about the reverse problem? Given an arbitrary point p in space, can
we all agree what polar coordinates (r, θ) should be used to describe p?
We’ve just said that there are an infinite number of polar coordinate pairs
that could be used to describe the location p. Which do we use? The short
answer is: “Any one that works is OK, but only one is the preferred one to
use.”

It’s like reducing fractions. We all agree that 13/26 is a perfectly valid
fraction, and there’s no dispute as to what the value of this fraction is.
Even so, 13/26 is an “unusual” fraction; most of us would prefer that this
value be expressed as 1/2, which is simpler and easier to understand. A
fraction is in the “preferred” format when it’s expressed in lowest terms,
meaning there isn’t an integer greater than 1 that evenly divides both
the numerator and denominator. We don’t have to reduce 13/26 to 1/2,
but by convention we normally do. A person’s level of commitment to this
convention is usually based on how many points their math teacher counted
off on their homework for not reducing fractions to lowest terms.5

4Warning: extremely large values of θ may cause dizziness if step 1 in Figure 7.2 is
followed literally.

5Speaking of math teachers and reduced fractions, one author remembers his middle
school math teacher engaged in a fierce debate about whether a mixed fraction such as
2 3/5 is “simpler” than the corresponding improper fraction 13/5. Luckily, the answer
to this profound mystery isn’t necessary in the context of polar coordinate aliasing.
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For polar coordinates, the “preferred” way to describe any given point is
known as the canonical coordinates for that point. A 2D polar coordinate
pair (r, θ) is in the canonical set if r is nonnegative and θ is in the interval
(−180o, 180o]. Notice that the interval is half open: for points directly
“west” of the origin (x < 0, y = 0), we will use θ = +180o. Also, if r = 0
(which is only true at the origin), then we usually assign θ = 0. If you
apply all these rules, then for any given point in 2D space, there is exactly
one way to represent that point using canonical polar coordinates. We can
summmarize this succintly with some math notation. A polar coordinate
pair (r, θ) is in the canonical set if all of the following are true:

Conditions satisfied by
canonical coordinates

r ≥ 0 We don’t measure distances “backwards.”

−180o < θ ≤ 180o
The angle is limited to 1/2 revolution.
We use +180o for “west.”

r = 0 ⇒ θ = 0 At the origin, set the angle to zero.

The following algorithm can be used to convert a polar coordinate pair
into its canonical form:

Converting a polar
coordinate pair (r, θ) to
canonical form

1. If r = 0, then assign θ = 0.

2. If r < 0, then negate r, and add 180o to θ.

3. If θ ≤ −180o, then add 360o to θ until θ > −180o.

4. If θ > 180o, then subtract 360o from θ until θ ≤ 180o.

Listing 7.1 shows how it could be done in C. As discussed in Sec-
tion 7.1.1, our computer code will normally store angles using radians.

/ / Rad ia l d i s t ance
f l o a t r ;

/ / Angle in RADIANS
f l o a t t h e t a ;

/ / Declare a cons tan t f o r 2∗p i (360 degrees )
const f l o a t TWOPI = 2.0 f∗PI ;

/ / Check i f we are e x a c t l y a t the o r i g i n
i f ( r == 0.0 f ) {

/ / At the o r i g i n − slam t h e t a to zero
t h e t a = 0.0 f ;

} e l s e {

/ / Handle nega t i ve d i s t ance
i f ( r < 0.0 f ) {
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r = −r ;
t h e t a += PI ;

}

/ / Theta out o f range ? Note t h a t t h i s i f ( ) check i s not
/ / s t r i c t l y necessary , but we t r y to avoid doing f l o a t i n g
/ / po in t ope ra t i on s i f they aren ’ t necessa ry . Why
/ / i ncu r f l o a t i n g po in t p r e c i s i o n l o s s i f we don ’ t
/ / need to ?
i f ( f ab s ( t h e t a ) > PI ) {

/ / O f f s e t by P I
t h e t a += PI ;

/ / Wrap in range 0 . . . TWOPI
t h e t a −= f l o o r ( t h e t a / TWOPI ) ∗ TWOPI ;

/ / Undo o f f s e t , s h i f t i n g ang le back in range −PI . . . P I
t h e t a −= PI ;

}
}

Listing 7.1
Converting polar coordinates to canonical form

Picky readers may notice that while this code ensures that θ is in the
closed interval [−π,+π], it does not explicitly avoid the case where θ = −π.
The value of π is not exactly representable in floating point. In fact, because
π is an irrational number, it can never be represented exactly in floating
point, or with any finite number of digits in any base, for that matter!
The value of the constant PI in our code is not exactly equal to π, it’s
the closest number to π that is representable by a float. Using double-
precision arithmetic can get us closer to the exact value, but it is still not
exact. So you can think of this function as returning a value from the open
interval (−π,+π).

7.1.3 Converting between Cartesian and
Polar Coordinates in 2D

This section describes how to convert between the Cartesian and polar
coordinate systems in 2D. By the way, if you were wondering when we were
going to make use of the trigonometry that we reviewed in Section 1.4.5,
this is it.

Figure 7.4 shows the geometry involved in converting between polar and
Cartesian coordinates in 2D.

Converting polar coordinates (r, θ) to the corresponding Cartesian coor-
dinates follows almost immediately from the definitions of sine and cosine:

Converting 2D polar
coordinates to Cartesian x = r cos θ; y = r sin θ. (7.1)



7.1. 2D Polar Space 199

Figure 7.4
Converting between Cartesian and polar
coordinates

Notice that aliasing is a nonissue; Equation (7.1) works even for “weird”
values of r and θ.

Computing the polar coordinates (r, θ) from the Cartesian coordinates
(x, y) is the tricky part. Due to aliasing, there isn’t only one right answer;
there are infinitely many (r, θ) pairs that describe the point (x, y). Usually,
we want the canonical coordinates.

We can easily compute r by using the Pythagorean theorem,

r =
√

x2 + y2.

Since the square root function always returns the positive root, we don’t
have to worry about r causing our computed polar coordinates to be outside
the canonical set.

Computing r was pretty easy, so now let’s solve for θ:

y

x
=
r sin θ

r cos θ
,

y

x
=

sin θ

cos θ
,

y/x = tan θ,

θ = arctan(y/x).

Unfortunately, there are two problems with this approach. The first is
that if x = 0, the division is undefined. The second is that the arctan
function has a range of only [−90o,+90o]. The basic problem is that the
division y/x effectively discards some useful information. Both x and y
can either be positive or negative, resulting in four different possibilities,
corresponding to the four different quadrants that may contain the point.
But the division y/x results in a single value. If we negate both x and y,

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-8&iName=master.img-005.jpg&w=127&h=128
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we move to a different quadrant in the plane, but the ratio y/x doesn’t
change.

Because of these problems, the complete equation for conversion from
Cartesian to polar coordinates requires some “if statements” to handle each
quadrant, and is a bit of a mess for “math people.” Luckily, “computer
people” have the atan2 function, which properly computes the angle θ for
all x and y, except for the pesky case at the origin. Borrowing this notation,
let’s define an atan2 function we can use in this book in our math notation:

The atan2 function used
in this book

atan2(y, x) =







































0, x = 0, y = 0,

+90o, x = 0, y > 0,

−90o, x = 0, y < 0,

arctan(y/x), x > 0,

arctan(y/x) + 180o, x < 0, y ≥ 0,

arctan(y/x)− 180o, x < 0, y < 0.

(7.2)

Let’s make two key observations about Equation (7.2). First, following the
convention of the atan2 function found in the standard libraries of most
computer languages, the arguments are in the “reverse” order: y, x. You
can either just remember that it’s reversed, or you might find it handy to
remember the lexical similarity between atan2(y, x) and arctan(y/x). Or
remember that tan θ = sin θ/ cos θ, and θ = atan2(sin θ, cos θ).

Second, in many software libraries, the atan2 function is undefined at
the origin, when x = y = 0. The atan2 function we are defining for use in
our equations in the text of this book is defined such that atan2(0, 0) = 0.
In our code snippets, we use the library function atan2 and explicitly han-
dle the origin as a special case, but in our equations, we use the abstract
function atan2, which is defined at the origin. (Note the difference in type-
face.)

Back to the task at hand: computing the polar angle θ from a set of
2D Cartesian coordinates. Armed with the atan2 function, we can easily
convert 2D Cartesian coordinates to polar form:

2D Cartesian to polar
coordinate conversion

r =
√

x2 + y2; θ = atan2(y, x).

The C code in Listing 7.2 shows how to convert a Cartesian (x, y) co-
ordinate pair to the corresponding canonical polar (r, θ) coordinates.

/ / Input : C a r t e s i a n coo rd ina te s
f l o a t x , y ;

/ / Output : po l a r r a d i a l d i s t ance , and ang le in RADIANS
f l o a t r , t h e t a ;

/ / Check i f we are a t the o r i g i n
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i f ( x == 0.0 f && y == 0.0 f ) {

/ / At the o r i g i n − slam both po la r coo rd ina te s to zero
r = 0.0 f ;
t h e t a = 0.0 f ;

} e l s e {

/ / Compute va lue s . I s n ’ t the atan2 f u n c t i o n g r e a t ?
r = s q r t ( x∗x + y∗y ) ;
t h e t a = atan2 ( y , x ) ;

}

Listing 7.2
Converting 2D Cartesian coordinates to polar form

7.2 Why Would Anybody Use Polar Coordinates?

With all of the complications with aliasing, degrees and radians, and trig,
why would anybody use polar coordinates when Cartesian coordinates work
just fine, without any hairs in the Jell-O? Actually, you probably use polar
coordinates more often than you do Cartesian coordinates. They arise
frequently in informal conversation.

For example, one author is from Alvarado, Texas. When people ask
where Alvarado, Texas, is, he tells them, “About 15 miles southeast of
Burleson.” He’s describing where Alvarado is by using polar coordinates,
specifying an origin (Burleson), a distance (15 miles), and an angle (south-
east). Of course, most people who aren’t from Texas (and many people who
are) don’t know where Burleson is, either, so it’s more natural to switch to
a different polar coordinate system and say, “About 50 miles southwest of
Dallas.” Luckily, even people from outside the United States usually know
where Dallas is.6 By the way, everyone in Texas does not wear a cowboy
hat and boots. We do use the words “y’all” and “fixin’,” however.7

In short, polar coordinates often arise because people naturally think
about locations in terms of distance and direction. (Of course, we often
aren’t very precise when using polar coordinates, but precision is not really
one of the brain’s strong suits.) Cartesian coordinates are just not our na-
tive language. The opposite is true of computers—in general, when using
a computer to solve geometric problems, it’s easier to use Cartesian coor-
dinates than polar coordinates. We discuss this difference between humans
and computers again in Chapter 8 when we compare different methods for
describing orientation in 3D.

6This is due to Dallas’s two rather unfortunate claims to fame: the assassination
of President Kennedy and a soap opera named after the city, which inexplicably had
international appeal.

7These two facts have nothing to do with math, but everything to do with correcting
misconceptions.
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Perhaps the reason for our affinity for polar coordinates is that each
polar coordinate has concrete meaning all by itself. One fighter pilot may
say to another “Bogey, six o’clock!”8 In the midst of a dogfight, these brave
fighter pilots are actually using polar coordinates. “Six o’clock” means
“behind you” and is basically the angle θ that we’ve been studying. Notice
that the pilot didn’t need to specify a distance, presumably because the
other pilot could turn around and see for himself faster than the other pilot
could tell him. So one polar coordinate (in this case, a direction) is useful
information by itself. The same types of examples can be made for the other
polar coordinate, distance (r). Contrast that with the usefulness of a lone
Cartesian coordinate. Imagine a fighter pilot saying, “Bogey, x = 1000 ft!”
This information is more difficult to process, and isn’t as useful.

In video games, one of the most common times that polar coordinates
arise is when we want to aim a camera, weapon, or something else at some
target. This problem is easily handled by using a Cartesian-to-polar coor-
dinate conversion, since it’s usually the angles we need. Even when angular
data can be avoided for such purposes (we might be able to completely
use vector operations, for example, if the orientation of the object is spec-
ified using a matrix), polar coordinates are still useful. Usually, cameras
and turrets and assassins’ arms cannot move instantaneously (no matter
how good the assassin), but targets do move. In this situation, we usually
“chase” the target in some manner. This chasing (whatever type of control
system is used, whether a simple velocity limiter, a lag, or a second-order
system) is usually best done in polar space, rather than, say, interpolating
a target position in 3D space.

Polar coordinates are also often encountered with physical data acqui-
sition systems that provide basic raw measurements in terms of distance
and direction.

One final occasion worth mentioning when polar coordinates are more
natural to use than Cartesian coordinates is moving around on the sur-
face of a sphere. When would anybody do that? You’re probably doing
it right now. The latitude/longitude coordinates used to precisely describe
geographic locations are really not Cartesian coordinates, they are polar
coordinates. (To be more precise, they are a type of 3D polar coordinates
known as spherical coordinates, which we’ll discuss in Section 7.3.2.) Of
course, if you are looking at a relatively small area compared to the size of
the planet and you’re not too far away from the equator, you can use lat-
itude and longitude as Cartesian coordinates without too many problems.
We do it all the time in Dallas.

8The authors have never actually heard anything like this first-hand. However, they
have seen it in movies.
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7.3 3D Polar Space

Polar coordinates can be used in 3D as well as 2D. As you probably have
already guessed, 3D polar coordinates have three values. But is the third
coordinate another linear distance (like r) or is it another angle (like θ)?
Actually, we can choose to do either; there are two different types of 3D
polar coordinates. If we add a linear distance, we have cylindrical co-
ordinates, which are the subject of the next section. If we add another
angle instead, we have spherical coordinates, which are covered in the later
sections. Although cylindrical coordinates are less commonly used than
spherical coordinates, we describe them first because they are easier to
understand.

Section 7.3.1 discusses one kind of 3D polar coordinates, cylindrical
coordinates, and Section 7.3.2 discusses the other kind of 3D polar coordi-
nates, spherical coordinates. Section 7.3.3 presents some alternative polar
coordinate conventions that are often more streamlined for use in video
game code. Section 7.3.4 describes the special types of aliasing that can
occur in spherical coordinate space. Section 7.3.5 shows how to convert
between spherical coordinates and 3D Cartesian coordinates.

7.3.1 Cylindrical Coordinates

Figure 7.5
Cylindrical coordinates

To extend Cartesian coordinates into
3D, we start with the 2D system, used
for working in the plane, and add a
third axis perpendicular to this plane.
This is basically how cylindrical coordi-
nates work to extend polar coordinates
into 3D. Let’s call the third axis the
z-axis, as we do with Cartesian coor-
dinates. To locate the point described
by the cylindrical coordinates (r, θ, z),
we start by processing r and θ just like
we would for 2D polar coordinates, and
then move “up” or “down” according
to the z coordinate. Figure 7.5 shows
how to locate a point (r, θ, z) by using
cylindrical coordinates.

Conversion between 3D Cartesian
coordinates and cylindrical coordinates
is straightforward. The z coordinate is
the same in either representation, and we convert between (x, y) and (r, θ)
via the 2D techniques from Section 7.1.3.
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We don’t use cylindrical coordinates much in this book, but they are
useful in some situations when working in a cylinder-shaped environment or
describing a cylinder-shaped object. In the same way that people often use
polar coordinates without knowing it (see Section 7.2), people who don’t
know the term “cylindrical coordinates” may still use them. Be aware that
even when people do acknowledge that they are using cylindrical coordi-
nates, notation and conventions vary widely. For example, some people
use the notation (ρ, φ, z). Also, the orientation of the axes and definition
of positive rotation are set according to whatever is most convenient for a
given situation.

7.3.2 Spherical Coordinates

The more common kind of 3D polar coordinate system is a spherical coordi-
nate system. Whereas a set of cylindrical coordinates has two distances and
one angle, a set of spherical coordinates has two angles and one distance.

Let’s review the essence of how polar coordinates work in 2D. A point is
specified by giving a direction (θ) and a distance (r). Spherical coordinates
also work by defining a direction and distance; the only difference is that in
3D it takes two angles to define a direction. There are also two polar axes
in a 3D spherical space. The first axis is “horizontal” and corresponds to
the polar axis in 2D polar coordinates or +x in our 3D Cartesian conven-
tions. The other axis is vertical, corresponding to +y in our 3D Cartesian
conventions.

Different people use different conventions and notation for spherical co-
ordinates, but most math people have agreed that the two angles are named
θ and φ.9 Math people also are in general agreement about how these two
angles are to be interpreted to define a direction. The entire process works
like this:

Locating points in 3D
using polar coordinates

Step 1. Begin by standing at the origin, facing the direction of the horizon-
tal polar axis. The vertical axis points from your feet to your head.
Point your right10 arm straight up, in the direction of the vertical
polar axis.

Step 2. Rotate counterclockwise by the angle θ (the same way that we did
for 2D polar coordinates).

9φ is the Greek letter phi, which is pronounced “fee” by most people. Some people
prefer to make it rhyme with “fly.”

10We mean no prejudice against our left-handed readers; you may imagine using your
left arm if you wish. However, this is a right-handed coordinate system, so you may
feel more official using your imaginary right arm. Save your left arm for later, when we
discuss some left-handed conventions.
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Step 3. Rotate your arm downward by the angle φ. Your arm now points
in the direction specified by the polar angles θ and φ.

Step 4. Displace from the origin along this direction by the distance r.
You’ve arrived at the point described by the spherical coordinates
(r, θ, φ).

Figure 7.6 shows how this works.

Figure 7.6
Spherical coordinates used
by math people

Other people use different notation. The convention in which the symbols θ
and φ are reversed is frequently used, especially in physics. Other authors,
perhaps intent on replacing all Roman letters with Greek, use ρ instead of
r as the name of the radial distance. We present some conventions that are
a bit more practical for video game purposes in Section 7.3.3.

The horizontal angle θ is known as the azimuth, and φ is the zenith.
Other terms that you’ve probably heard are longitude and latitude. Lon-
gitude is basically the same as θ, and latitude is the angle of inclination,
90o−φ. So, you see, the latitude/longitude system for describing locations
on planet Earth is actually a type of spherical coordinate system. We’re
often interested only in describing points on the planet’s surface, and so
the radial distance r, which would measure the distance to the center of
the Earth, isn’t necessary. We can think of r as being roughly equivalent to
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altitude, although the value is offset by Earth’s radius11 in order to make
either ground level or sea level equal to zero, depending on exactly what is
meant by “altitude.”

7.3.3 Some Polar Conventions Useful in 3D Virtual Worlds

The spherical coordinate system described in the previous section is the
traditional right-handed system used by math people, and the formulas for
converting between Cartesian and spherical coordinates are rather elegant
under these assumptions. However, for most people in the video game
industry, this elegance is only a minor benefit to be weighed against the
following irritating disadvantages of the traditional conventions:

• The default horizontal direction at θ = 0 points in the direction of
+x. This is unfortunate, since for us, +x points “to the right” or
“east,” neither of which are the “default” directions in most people’s
mind. Similar to the way that numbers on a clock start at the top, it
would be nicer for us if the horizontal polar axis pointed towards +z,
which is “forward” or “north.”

• The conventions for the angle φ are unfortunate in several respects. It
would be nicer if the 2D polar coordinates (r, θ) were extended into 3D
simply by adding a third coordinate of zero, similar to how we extend
the Cartesian system from 2D to 3D. But the spherical coordinates
(r, θ, 0) don’t correspond to the 2D polar coordinates (r, θ) as we’d
like. In fact, assigning φ = 0 puts us in the awkward situation of
Gimbal lock, a singularity we describe in Section 7.3.4. Instead, the
points in the 2D plane are represented as (r, θ, 90o). It might have
been more intuitive to measure latitude, rather than zenith. Most
people think of the default as “horizontal,” and “up” as the extreme
case.

• No offense to the Greeks, but θ and φ take a little while to get used
to. The symbol r isn’t so bad because at least it stands for something
meaningful: radial distance or radius. Wouldn’t it be great if the
symbols we used to denote the angles were similarly short for English
words, rather than completely arbitrary Greek symbols?

• It would be nice if the two angles for spherical coordinates were the
same as the first two angles we use for Euler angles,12 which are used
to describe orientation in 3D. We’re not going to discuss Euler angles

11Earth’s radius is about 6,371 km (3,959 miles), on average.
12It’s been said that the name Euler is a one-word math test: if you know how to

pronounce it, then you’ve learned some math. Please make the authors of this book
proud by passing this test, and pronouncing it “oiler,” not “yooler.”
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until Section 8.3, so for now let us disagree with Descartes twice-over
by saying “It’d be nice because we told you so.”13

• It’s a right-handed system, and we use a left-handed system (in this
book at least).

Let’s describe some spherical coordinate conventions that are better
suited for our purposes. We have no complaints against the standard con-
ventions for the radial distance r, and so we preserve both the name and
semantics of this coordinate. Our grievances are primarily concerning the
two angles, both of which we rename and repurpose.

Figure 7.7
Heading and pitch angles used in
this book

The horizontal angle θ is renamed h,
which is short for heading and is similar to a
compass heading. A heading of zero indicates
a direction of “forward” or “to the north,” de-
pending on the context. This matches stan-
dard aviation conventions. If we assume our
3D Cartesian conventions described in Sec-
tion 1.3.4, then a heading of zero (and thus
our primary polar axis) corresponds to +z.
Also, since we prefer a left-handed coordinate
system, positive rotation will rotate clockwise
when viewed from above.

The vertical angle φ is renamed p, which
is short for pitch and measures how much we
are looking up or down. The default pitch
value of zero indicates a horizontal direction,
which is what most of us intuitively expect.
Perhaps not so intuitively, positive pitch ro-
tates downward, which means that pitch ac-
tually measures the angle of declination. This might seem to be a bad
choice, but it is consistent with the left-hand rule (see Figure 1.14). Later
we see how consistency with the left-hand rule bears fruit worth suffering
this small measure of counterintuitiveness.

Figure 7.7 shows how heading and pitch conspire to define a direction.

7.3.4 Aliasing of Spherical Coordinates

Section 7.1.2 examined the bothersome phenomenon of aliasing of 2D polar
coordinates: different numerical coordinate pairs are aliases of each other
when they refer to the same point in space. Three basic types of aliasing
were presented, which we review here because they are also present in the
3D spherical coordinate system.

13You read the first part of Chapter 1, right?
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The first sure-fire way to generate an alias is to add a multiple of 360o

to either angle. This is really the most trivial form of aliasing and is caused
by the cyclic nature of angular measurements.

The other two forms of aliasing are a bit more interesting because they
are caused by the interdependence of the coordinates. In other words, the
meaning of one coordinate, r, depends on the values of the other coor-
dinate(s), the angles. This dependency creates a form of aliasing and a
singularity:

• The aliasing in 2D polar space can be triggered by negating the radial
distance r and adjusting the angle so that the opposite direction is
indicated. We can do the same with spherical coordinates. Using the
heading and pitch conventions described in Section 7.3.3, all we need
to do is flip the heading by adding an odd multiple of 180o, and then
negate the pitch.

• The singularity in 2D polar space occurs at the origin, because the
angular coordinate is irrelevant when r = 0. With spherical coordi-
nates, both angles are irrelevant at the origin.

So spherical coordinates exhibit similar aliasing behavior because the
meaning of r changes depending on the values of the angles. However,
spherical coordinates also suffer additional forms of aliasing because the
pitch angle rotates about an axis that varies depending on the heading
angle. This creates an additional form of aliasing and an additional singu-
larity, which are analogous to those caused by the dependence of r on the
direction.

• Different heading and pitch values can result in the same direction,
even excluding trivial aliasing of each individual angle. An alias of
(h, p) can be generated by (h± 180o, 180o − p). For example, instead
of turning right 90o(facing “east”) and pitching down 45o, we could
turn left 90o(facing “west”) and then pitch down 135o. Although we
would be upside down, we would still be looking in the same direction.

• A singularity occurs when the pitch angle is set to ±90o (or any
alias of these values). In this situation, known as Gimbal lock, the
direction indicated is purely vertical (straight up or straight down),
and the heading angle is irrelevant. We have a great deal more to say
about Gimbal lock when we discuss Euler angles in Section 8.3.

Just as we did in 2D, we can define a set of canonical spherical coordi-
nates such that any given point in 3D space maps unambiguously to exactly
one coordinate triple within the canonical set. We place similar restrictions
on r and h as we did for polar coordinates. Two additional constraints
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are added related to the pitch angle. First, pitch is restricted to be on the
interval [−90o,+90o]. Second, since the heading value is irrelevant when
pitch reaches the extreme values in the case of Gimbal lock, we force h = 0
in that case. The conditions that are satisfied by the points in the canonical
set are summarized by the criteria below. (Note that these criteria assume
our heading and pitch conventions, not the traditional math conventions
with θ and φ.)

Conditions satisfied by
canonical spherical
coordinates, assuming
the conventions for
spherical coordinates in
this book

r ≥ 0 We don’t measure distances “backwards.”

−180o < h ≤ 180o
Heading is limited to 1/2 revolution.
We use +180o for “south.”

−90o ≤ p ≤ 90o
Pitch limits are straight up and down.
We can’t “pitch over backwards.”

r = 0 ⇒ h = p = 0 At the origin, we set the angles to zero.

|p| = 90o ⇒ h = 0
When looking directly up or down,
we set the heading to zero.

The following algorithm can be used to convert a spherical coordinate
triple into its canonical form:

Converting a spherical
coordinate triple (r, h, p)
to canonical form

1. If r = 0, then assign h = p = 0.

2. If r < 0, then negate r, add 180o to h, and negate p.

3. If p < −90o, then add 360o to p until p ≥ −90o.

4. If p > 270o, then subtract 360o from p until p ≤ 270o.

5. If p > 90o, then add 180o to h and set p = 180o − p.

6. If h ≤ −180o, then add 360o to h until h > −180o.

7. If h > 180o, then subtract 360o from h until h ≤ 180o.

Listing 7.3 shows how it could be done in C. Remember that computers
like radians.

/ / Rad ia l d i s t ance
f l o a t r ;

/ / Angles i n r ad i an s
f l o a t heading , p i t ch ;

/ / Declare a few cons t an t s
const f l o a t TWOPI = 2.0 f∗PI ; / / 360 degrees
const f l o a t PIOVERTWO = PI / 2 . 0 f ; / / 90 degrees

/ / Check i f we are e x a c t l y a t the o r i g i n
i f ( r == 0.0 f ) {
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/ / At the o r i g i n − slam ang le s to zero
heading = p i t ch = 0.0 f ;

} e l s e {

/ / Handle nega t i ve d i s t ance
i f ( r < 0.0 f ) {

r = −r ;
heading += PI ;
p i t ch = −p i t ch ;

}

/ / P i t c h out o f range ?
i f ( f ab s ( p i t ch ) > PIOVERTWO) {

/ / O f f s e t by 90 degrees
p i t ch += PIOVERTWO;

/ / Wrap in range 0 . . . TWOPI
p i t ch −= f l o o r ( p i t ch / TWOPI ) ∗ TWOPI ;

/ / Out o f range ?
i f ( p i t ch > PI ) {

/ / F l i p heading
heading += PI ;

/ / Undo o f f s e t and a l s o s e t p i t ch = 180−p i t ch
p i t ch = 3.0 f∗PI / 2 . 0 f − p i t ch ; / / p = 270 degrees − p

} e l s e {

/ / Undo o f f s e t , s h i f t i n g p i t ch in range
/ / −90 degrees . . . +90 degrees
p i t ch −= PIOVERTWO;

}
}

/ / Gimbal lock ? Tes t us ing a r e l a t i v e l y sma l l t o l e r a n c e
/ / here , c l o se to the l i m i t s o f s i n g l e p r e c i s i o n .
i f ( f ab s ( p i t ch ) >= PIOVERTWO∗0.9999) {

heading = 0.0 f ;
} e l s e {

/ / Wrap heading , avo id ing math when p o s s i b l e
/ / to p re se rve p r e c i s i o n
i f ( f ab s ( heading ) > PI ) {

/ / O f f s e t by P I
heading += PI ;

/ / Wrap in range 0 . . . TWOPI
heading −= f l o o r ( heading / TWOPI ) ∗ TWOPI ;

/ / Undo o f f s e t , s h i f t i n g ang le back in range −PI . . . P I
heading −= PI ;

}
}

}

Listing 7.3
Converting spherical coordinates to canonical form
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7.3.5 Converting between Spherical and Cartesian Coordinates

Figure 7.8
Spherical and Cartesian coordinates
for math people

Let’s see if we can convert spherical coordi-
nates to 3D Cartesian coordinates. Exam-
ine Figure 7.8, which shows both spherical
and Cartesian coordinates. We first develop
the conversions using the traditional right-
handed conventions for both Cartesian and
spherical spaces, and then we show conver-
sions applicable to our left-handed conven-
tions.

Notice in Figure 7.8 that we’ve intro-
duced a new variable d, which is the hor-
izontal distance between the point and the
vertical axis. From the right triangle with
hypotenuse r and legs d and z, we get

z/r = cosφ,

z = r cosφ.

and so we’re left to compute x and y.
Consider that if φ = 90o, we basically

have 2D polar coordinates. Let’s assign x′ and y′ to stand for the x and y
coordinates that would result if φ = 90o. From Section 7.1.3, we have

x′ = r cos θ, y′ = r sin θ.

Notice that when φ = 90o, d = r. As φ decreases, d decreases, and by
the properties of similar triangles, x/x′ = y/y′ = d/r. Looking at △drz
again, we observe that d/r = sinφ. Putting all this together, we have

Converting spherical
coordinates used by
math people to 3D
Cartesian coordinates

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ.

These equations are applicable for right-handed math people. If we
adopt our conventions for both the Cartesian (see Section 1.3.4) and spher-
ical (see Section 7.3.3) spaces, the following formulas should be used:

Spherical-to-Cartesian
conversion for the
conventions used in this
book

x = r cos p sinh, y = −r sin p, z = r cos p cosh. (7.3)

Converting from Cartesian coordinates to spherical coordinates is more
complicated, due to aliasing. We know that there are multiple sets of spher-
ical coordinates that map to any given 3D position; we want the canoni-
cal coordinates. The derivation that follows uses our preferred aviation-
inspired conventions in Equation (7.3) because those conventions are the
ones most commonly used in video games.
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As with 2D polar coordinates, computing r is a straightforward appli-
cation of the distance formula:

r =
√

x2 + y2 + z2.

As before, the singularity at the origin, where r = 0, is handled as a special
case.

The heading angle is surprisingly simple to compute using our atan2
function:

h = atan2(x, z).

The trick works because atan2 uses only the ratio of its arguments and
their signs. By examining Equation (7.3), we notice that the scale factor
of r cos p is common to both x and z. Furthermore, by using canonical
coordinates, we are assuming r > 0 and −90o ≤ p ≤ 90o; thus, cos p ≥ 0
and the common scale factor is always nonnegative. The Gimbal lock case
is dealt with by our definition of atan2.

Finally, once we know r, we can solve for p from y:

y = −r sin p,

−y/r = sin p,

p = arcsin(−y/r).

The arcsin function has a range of [−90o, 90o], which fortunately coincides
with the range for p within the canonical set.

Listing 7.4 illustrates the entire procedure.

/ / Input C a r t e s i a n coo rd ina te s
f l o a t x , y , z ;

/ / Output r a d i a l d i s t ance
f l o a t r ;

/ / Output ang le s i n r ad i an s
f l o a t heading , p i t ch ;

/ / Declare a few cons t an t s
const f l o a t TWOPI = 2.0 f∗PI ; / / 360 degrees
const f l o a t PIOVERTWO = PI / 2 . 0 f ; / / 90 degrees

/ / Compute r a d i a l d i s t ance
r = s q r t ( x∗x + y∗y + z∗z ) ;

/ / Check i f we are e x a c t l y a t the o r i g i n
i f ( r > 0.0 f ) {

/ / Compute p i t ch
p i t ch = as in (−y / r ) ;
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/ / Check f o r gimbal lock , s i nce the l i b r a r y atan2
/ / f u n c t i o n i s undef ined a t the (2D) o r i g i n
i f ( f ab s ( p i t ch ) >= PIOVERTWO∗0.9999) {

heading = 0.0 f ;
} e l s e {

heading = atan2 ( x , z ) ;
}

} e l s e {

/ / At the o r i g i n − slam ang le s to zero
heading = p i t ch = 0.0 f ;

}

Listing 7.4
Cartesian to spherical coordinate conversion

7.4 Using Polar Coordinates to Specify Vectors

We’ve seen how to describe a point by using polar coordinates, and how to
describe a vector by using Cartesian coordinates. It’s also possible to use
polar form to describe vectors. Actually, to say that we can “also” use polar
form is sort of like saying that a computer is controlled with a keyboard
but it can “also” be controlled with the mouse. Polar coordinates directly
describe the two key properties of a vector—its direction and length. In
Cartesian form, these values are stored indirectly and obtained only through
some computations that essentially boil down to a conversion to polar form.
This is why, as we discussed in Section 7.2, polar coordinates are the local
currency in everyday conversation.

But it isn’t just laymen who prefer polar form. It’s interesting to notice
that most physics textbooks contain a brief introduction to vectors, and
this introduction is carried out using a framework of polar coordinates.
This is done despite the fact that it makes the math significantly more
complicated.

As for the details of how polar vectors work, we’ve actually already
covered them. Consider our “algorithm” for locating a point described by
2D polar coordinates on page 192. If you take out the phrase “start at the
origin” and leave the rest intact, the instructions describe how to visualize
the displacement (vector) described by any given polar coordinates. This
is the same idea from Section 2.4: a vector is related to the point with the
same coordinates because it gives us the displacement from the origin to
that point.

We’ve also already learned the math for converting vectors between
Cartesian and polar form. The methods discussed in Section 7.1.3 were
presented in terms of points, but they are equally valid for vectors.
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7.5 Exercises

(Answers on page 767.)

1. Plot and label the points with the following polar coordinates:

a = (2, 60o) b = (5, 195o)

c = (3,−45o) d = (−2.75, 300o)
e = (4, π/6 rad) f = (1, 4π/3 rad)

g = (−5/2,−π/2 rad)

2. Convert the following 2D polar coordinates to canonical form:

(a) (4, 207o)

(b) (−5,−720o)
(c) (0, 45.2o)

(d) (12.6, 11π/4 rad)

3. Convert the following 2D polar coordinates to Cartesian form:

(a) (1, 45o)

(b) (3, 0o)

(c) (4, 90o)

(d) (10,−30o)
(e) (5.5, π rad)

4. Convert the polar coordinates in Exercise 2 to Cartesian form.

5. Convert the following 2D Cartesian coordinates to (canonical) polar form:

(a) (10, 20)

(b) (−12,−5)
(c) (0, 4.5)

(d) (−3, 4)
(e) (0, 0)

(f) (−5280, 0)

6. Convert the following cylindrical coordinates to Cartesian form:

(a) (4, 120o, 5)

(b) (2, 45o,−1)
(c) (6,−π/6,−3)
(d) (3, 3π, 1)
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7. Convert the following 3D Cartesian coordinates to (canonical) cylindrical
form:

(a) (1, 1, 1)

(b) (0,−5, 2)
(c) (−3, 4,−7)
(d) (0, 0,−3)

8. Convert the following spherical coordinates (r, θ, φ) to Cartesian form ac-
cording to the standard mathematical convention:

(a) (4, π/3, 3π/4)

(b) (5,−5π/6, π/3)
(c) (2,−π/6, π)
(d) (8, 9π/4, π/6)

9. Interpret the spherical coordinates (a)–(d) from the previous exercise as
(r, h, p) triples, switching to our video game conventions.

1. Convert to canonical (r, h, p) coordinates.

2. Use the canonical coordinates to convert to Cartesian form (using the
video game conventions).

10. Convert the following 3D Cartesian coordinates to (canonical) spherical
form using our modified convention:

(a) (
√
2, 2
√
3,−
√
2)

(b) (2
√
3, 6,−4)

(c) (−1,−1,−1)
(d) (2,−2

√
3, 4)

(e) (−
√
3,−
√
3, 2
√
2)

(f) (3, 4, 12)

11. What do the “grid lines” look like in spherical space? Assuming the spher-
ical conventions used in this book, describe the shape defined by the set of
all points that meet the following criteria. Do not restrict the coordinates
to the canonical set.

(a) A fixed radius r = r0, but any arbitrary values for h and p.

(b) A fixed heading h = h0, but any arbitrary values for r and p.

(c) A fixed pitch p = p0, but any arbitrary values for r and h.

12. During crunch time one evening, a game developer decided to get some
fresh air and go for a walk. The developer left the studio walking south
and walked for 5 km. She then turned east and walked another 5 km.
Realizing that all the fresh air was making her light-headed, she decided to
return to the studio. She turned north, walked 5 km and was back at the
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studio, ready to squash the few remaining programming bugs left on her
list. Unfortunately, waiting for her at the door was a hungry bear, and she
was eaten alive.14 What color was the bear?

For the execution of the voyage to the Indies,
I did not make use of intelligence, mathematics or maps.

— Christopher Columbus (14511506)

14We know this scenario is totally impossible. I mean, a game developer taking a walk
during crunch time?!



Chapter 8

Rotation in Three Dimensions

If you do not change direction,
you may end up where you are heading.

— Lao Tzu (600–531 BCE)

This chapter tackles the difficult problem of describing the orientation of
an object in 3D. It also discusses the closely related concepts of rotation
and angular displacement. There are several different ways we can express
orientation and angular displacement in 3D. Here we discuss the three most
important methods—matrices, Euler angles, and quaternions—as well as
two lesser known forms—axis-angle and exponential map. For each method,
we define precisely how the representation method works, and discuss the
peculiarities, advantages, and disadvantages of the method.

Different techniques are needed in different circumstances, and each
technique has its advantages and disadvantages. It is important to know not
only how each method works, but also which technique is most appropriate
for a particular situation and how to convert between representations.

The discussion of orientation in 3D is divided into the following sections:

• Section 8.1 discusses the subtle differences between terms like “orien-
tation,” “direction,” and “angular displacement.”

• Section 8.2 describes how to express orientation using a matrix.

• Section 8.3 describes how to express angular displacement using Euler
angles.

• Section 8.4 describes the axis-angle and exponential map forms.

• Section 8.5 describes how to express angular displacement using a
quaternion.

• Section 8.6 compares and contrasts the different methods.

• Section 8.7 explains how to convert an orientation from one form to
another.

217
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This chapter makes extensive use of the terms object space and upright
space. If you aren’t familiar with these terms, you should flip back to
Section 3.2, where the terms were first introduced.

8.1 What Exactly is “Orientation”?

Before we can begin to discuss how to describe orientation in 3D, let us
first define exactly what it is that we are attempting to describe. The term
orientation is related to other similar terms, such as

• direction

• angular displacement

• rotation.

Intuitively, we know that the “orientation” of an object basically tells us
what direction the object is facing. However, “orientation” is not exactly
the same as “direction.”

For example, a vector has a direction, but not an orientation. The
difference is that when a vector points in a certain direction, you can twist
the vector along its length (see Figure 8.1), and there is no real change
to the vector, since a vector has no thickness or dimension other than its
length.

Figure 8.1
Twisting a vector results in
no appreciable change to
the vector

In contrast to a simple vector, consider an object, such as a jet, facing
a certain direction. If we twist the jet (see Figure 8.2) in the same way

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-9&iName=master.img-001.jpg&w=188&h=123
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that we twisted the vector, we will change the orientation of the jet. In
Section 8.3, we refer to this twisting component of an object’s orientation
as bank.

Figure 8.2
Twisting an object changes
its orientation

The fundamental difference between direction and orientation is seen
concretely by the fact that we can parameterize a direction in 3D with just
two numbers (the spherical coordinate angles—see Section 7.3.2), whereas
an orientation requires a minimum of three numbers (Euler angles—see
Section 8.3).

Section 2.4.1 discussed that it’s impossible to describe the position of
an object in absolute terms—we must always do so within the context of
a specific reference frame. When we investigated the relationship between
“points” and “vectors,” we noticed that specifying a position is actually
the same as specifying an amount of translation from some other given
reference point (usually the origin of some coordinate system).

In the same way, orientation cannot be described in absolute terms. Just
as a position is given by a translation from some known point, an orientation
is given by a rotation from some known reference orientation (often called
the “identity” or “home” orientation). The amount of rotation is known
as an angular displacement. In other words, describing an orientation is
mathematically equivalent to describing an angular displacement.

We say “mathematically equivalent” because in this book, we make a
subtle distinction between “orientation” and terms such as “angular dis-
placement” and “rotation.” It is helpful to think of an “angular displace-
ment” as an operator that accepts an input and produces an output. A
particular direction of transformation is implied; for example, the angu-
lar displacement from the old orientation to the new orientation, or from
upright space to object space. An example of an angular displacement is,
“Rotate 90o about the z-axis.” It’s an action that we can perform on a
vector.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-9&iName=master.img-002.jpg&w=189&h=123
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However, we frequently encounter state variables and other situations in
which this operator framework of input/output is not helpful and a parent/
child relationship is more natural. We tend to use the word “orientation”
in those situations. An example of an orientation is, “Standing upright and
facing east.” It describes a state of affairs.

Of course, we can describe the orientation “standing upright and facing
east” as an angular displacement by saying, “Stand upright, facing north,
and then rotate 90o about the z-axis.” This distinction between orientation
and angular displacement is similar to the distinction between points and
vectors, which are two other terms that are equivalent mathematically but
not identical conceptually. In both cases, the first term is used primarily
to describe a single state, and the second term primarily used to describe
a difference between two states. Of course, these conventions are purely a
matter of preference, but they can be helpful.

You might also hear the word “attitude” used to refer the orientation
of an object, especially if that object is an aircraft.

8.2 Matrix Form

One way to describe the orientation of a coordinate space in 3D is to tell
which way the basis vectors of that coordinate space (the +x, +y, and +z
axes) point. Of course, we don’t measure these vectors in the coordinate
space we are attempting to describe—by definition, they are [1, 0, 0], [0, 1, 0],
and [0, 0, 1] no matter what orientation the coordinate space is in. We must
describe the basis vectors using some other coordinate space. By doing so,
we’ve established the relative orientation of the two coordinate spaces.

When these basis vectors are used to form the rows of a 3×3 matrix, we
have expressed the orientation in matrix form.1 Another way of saying all
this is that we can express the relative orientation of two coordinate spaces
by giving a rotation matrix that can be used to transform vectors from one
coordinate space to the other.

8.2.1 Which Matrix?

We have already seen how a matrix can be used to transform points from
one coordinate space to another. In Figure 8.3, the matrix in the upper
right-hand corner can be used to rotate points from the object space of
the jet into upright space. We’ve pulled out the rows of this matrix to

1Actually, we can put the vectors into the columns of a matrix, too. Certainly this is
true if we are using column vectors—but it turns out to work even if our preference is
to use row vectors. This is because rotation matrices are orthonormal, which means we
can invert them by taking their transpose. We discuss this in Section 8.2.1.



8.2. Matrix Form 221

Figure 8.3
Defining an
orientation using
a matrix

emphasize their direct relationship to the coordinates for the jet’s body
axes. The rotation matrix contains the object axes, expressed in upright
space. Simultaneously, it is a rotation matrix: we can multiply row vectors
by this matrix to transform those vectors from object-space coordinates to
upright-space coordinates.

Legitimate question to ask are: Why does the matrix contain the body
axes expressed using upright-space coordinates? Why not the upright axes
expressed in object-space coordinates? Another way to phrase this is, Why
did we choose to give a rotation matrix that transforms vectors from object
space to upright space? Why not from upright space to object space?

From a mathematical perspective, this question is a bit ridiculous. Be-
cause rotation matrices are orthogonal, their inverse is the same as their
transpose (see Section 6.3.2). Thus, the decision is entirely a cosmetic one.

But practically speaking, in our opinion, it is quite important. At issue
is whether you can write code that is intuitive to read and works the first
time, or whether it requires a lot of work to decipher, or a knowledge of
conventions that are not stated because they are “obvious” to everyone but
you. So please allow us a brief digression to continue a line of thought begun
when we introduced the term “upright space” in Section 3.2.4 concerning
the practical aspects of what happens when the math of coordinate space
transformations gets translated into code. Also please allow some latitude
to express some opinions based on our observations watching programmers

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-9&iName=master.img-003.jpg&w=225&h=220


222 8. Rotation in Three Dimensions

grapple with rotation matrices. We don’t expect that everyone will agree
with our assertions, but we hope that every reader will at least appreciate
the value in considering these issues.

Certainly every good math library will have a 3 × 3 matrix class that
can represent any arbitrary transformation, which is to say that it makes
no assumptions about the value of the matrix elements. (Or perhaps it is a
4×4 matrix that can do projection, or a 4×3 which can do translation but
not projection—those distinctions are not important here.) For a matrix
like this, the operations inherently are in terms of some input coordinate
space and an output coordinate space. This is just implicit in the idea of
matrix multiplication. If you need to go from output to input, then you
must obtain the inverse of the matrix.

It is common practice to use the generic transform matrix class to de-
scribe the orientation of an object. In this case, rotation is treated just like
any other transformation. The interface remains in terms of a source and
destination space. Unfortunately, it is our experience that the following
two matrix operations are by far the most commonly used:2

• Take an object-space vector and express it in upright coordinates.

• Take an upright-space vector and express it in object coordinates.

Notice that we need to be able to go in both directions. We have no
experience or evidence that either direction is significantly more common
than the other. But more important, the very nature of the operations
and the way programmers think about the operations is in terms of “object
space” and “upright space” (or some other equivalent terminology, such as
“parent space” and “child space”). We do not think of them in terms of a
source space and a destination space. It is in this context that we wish to
consider the question posed at the beginning of this section: Which matrix
should we use?

First, we should back up a bit and remind ourselves of the mathemati-
cally moot but yet conceptually important distinction between orientation
and angular displacement. (See the notes on terminology at the end of
Section 8.1.) If your purpose is to create a matrix that performs a specific
angular displacement (for example, “rotate 30 degrees about the x-axis”),
then the two operations above are not really the ones you probably have
in your head, and using a generic transform matrix with its implied direc-
tion of transformation is no problem, and so this discussion does not apply.

2We are measuring frequency of use based on how many times the operation is coded,
not how often it is executed at run time. For example, transforming vertices through the
graphics pipeline is certainly an extremely commonly used matrix operation, but there
are relatively few lines of code that do this operation. This has proven to be true in
a wide variety of game genres, such as racing, combat, 3D board games, and shooters,
although, of course, we cannot speak for everyone’s work environment.
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Right now, we are focusing on the situation in which the orientation of
some object is stored as a state variable.

Let’s assume that we adopt the common policy and store orientation
using the generic transformation matrix. We are forced to arbitrarily pick a
convention, so let’s decide that multiplication by this matrix will transform
from object to upright space. If we have a vector in upright space and we
need to express it in object-space coordinates, we must multiply this vector
by the inverse3 of the matrix.

Now let’s see how our policy affects the code that is written and read
hundreds of times by average game programmers.

• Rotate some vector from object space to upright space is translated
into code as multiplication by the matrix.

• Rotate a vector from upright space to object space is translated into
code as multiplication by the inverse (or transpose) of the matrix.

Notice that the code does not match one-to-one with the high-level in-
tentions of the programmer. It forces every user to remember what the
conventions are every time they use the matrix. It is our experience that
this coding style is a contributing factor to the difficulty that beginning
programmers have in learning how to use matrices; they often end up trans-
posing and negating things randomly when things don’t look right.

We have found it helpful to have a special 3×3 matrix class that is used
exclusively for storing the orientation of an object, not for arbitrary trans-
forms. The class assumes, as an invariant, that the matrix is orthogonal,
meaning it contains only rotation. (We also would probably assume that
the matrix does not contain a reflection, even though that is possible in an
orthogonal matrix.) With these assumptions in place, we are now free to
perform rotations using the matrix at a higher level of abstraction. Our
interface functions match exactly the high-level intentions of the program-
mer. Furthermore, we have removed the confusing linear algebra details
having to do with row vectors versus column vectors, which space is on the
left or right, which way is the regular way and which is the inverse, and so
forth. Or rather, we have confined such details to the class internals—the
person implementing the class certainly needs to pick a convention (and
hopefully document it). In fact, in this specialized matrix class, the oper-
ations of “multiply a vector” and “invert this matrix” really are not that
useful. We would advocate keeping this dedicated matrix class confined to
operations in terms of upright space and object space, rather than multiply
a vector.

3Actually, probably multiplication by the transpose, since rotation matrices are
orthogonal—but that is not the point here.
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So, back to the question posed at the start of this section: Which matrix
should we use? Our answer is, “It shouldn’t matter.” By that we mean
there is a way to design your matrix code in such a way that it can be used
without knowing what choice was made. As far as the C++ code goes,
this is purely a cosmetic change. For example, perhaps we just replace
the function name multiply() with objectToUpright(), and likewise we
replace multiplyByTranspose() with uprightToObject(). The version
of the code with descriptive, named coordinate spaces is easier to read and
write.

8.2.2 Direction Cosines Matrix

You might come across the (very old school) term direction cosines in the
context of using a matrix to describe orientation. A direction cosines matrix
is the same thing as a rotation matrix; the term just refers to a special way
to interpret (or construct) the matrix, and this interpretation is interesting
and educational, so let’s pause for a moment to take a closer look. Each
element in a rotation matrix is equal to the dot product of a cardinal axis in
one space with a cardinal axis in the other space. For example, the center
element m22 in a 3× 3 matrix gives the dot product that the y-axis in one
space makes with the y-axis in the other space.

More generally, let’s say that the basis vectors of a coordinate space are
the mutually orthogonal unit vectors p, q, and r, while a second coordinate
space with the same origin has as its basis a different (but also orthonormal)
basis p′, q′, and r′. (Please allow us to break from convention by dropping
all the hats from the unit vectors in this section, to avoid distracting clutter
in the equations.) The rotation matrix that rotates row vectors from the
first space to the second can be constructed from the cosines of the angles
between each pair of basis vectors. Of course, the dot product of two unit
vectors is exactly equal to the cosine of the angle between them, so the
matrix product is

v





p · p′ q · p′ r · p′

p · q′ q · q′ r · q′

p · r′ q · r′ r · r′



 = v′. (8.1)

These axes can be interpreted as geometric rather than numeric entities,
so it really does not matter what coordinates are used to describe the axes
(provided we use the same coordinate space to describe all of them), the
rotation matrix will be the same.

For example, let’s say that our axes are described using coordinates
relative to the first basis. Then p, q, and r have the trivial forms [1, 0, 0],
[0, 1, 0] and [0, 0, 1], respectively. The basis vectors of the second space,
p′, q′, and r′ have arbitrary coordinates. When we substitute the trivial
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vectors p, q, and r into the matrix in Equation (8.1) and expand the dot
products, we get





[1, 0, 0] · p′ [0, 1, 0] · p′ [0, 0, 1] · p′

[1, 0, 0] · q′ [0, 1, 0] · q′ [0, 0, 1] · q′

[1, 0, 0] · r′ [0, 1, 0] · r′ [0, 0, 1] · r′



 =





p′x p′y p′z
q′x q′y q′z
r′x r′y r′z



 =





−p′−
−q′−
−r′−



.

In other words, the rows of the rotation matrix are the basis vectors of the
output coordinate space, expressed by using the coordinates of the input
coordinate space. Of course, this fact is not just true for rotation matrices,
it’s true for all transformation matrices. This is the central idea of why a
transformation matrix works, which was developed in Section 4.2.

Now let’s look at the other case. Instead of using coordinates relative
to the first basis, we’ll measure everything using the second coordinate
space (the output space). This time, p′, q′, and r′ have trivial forms, and
p, q, and r are arbitrary. Putting these into the direction cosines matrix
produces





p · [1, 0, 0] q · [1, 0, 0] r · [1, 0, 0]
p · [0, 1, 0] q · [0, 1, 0] r · [0, 1, 0]
p · [0, 0, 1] q · [0, 0, 1] r · [0, 0, 1]



 =





px qx rx
py qy ry
pz qz rz



 =





| | |
pT qT rT

| | |



 .

This says that the columns of the rotation matrix are formed from the basis
vectors of the input space, expressed using the coordinates of the output
space. This is not true of transformation matrices in general; it applies
only to orthogonal matrices such as rotation matrices.

Also, remember that our convention is to use row vectors on the left. If
you are using column vectors on the right, things will be transposed.

8.2.3 Advantages of Matrix Form

Matrix form is a very explicit form of representing orientation. This explicit
nature provides some benefits.

• Rotation of vectors is immediately available. The most important
property of matrix form is that you can use a matrix to rotate vec-
tors between object and upright space. No other representation of
orientation allows this4—to rotate vectors, we must convert the ori-
entation to matrix form.

4It is an often-touted advantage of quaternions that they can be used to perform
rotations through quaternion multiplication (see Section 8.5.7). However, if we examine
the math, we see that this “shortcut” amounts to multiplication by the corresponding
rotation matrix.
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• Format used by graphics APIs. Partly due to reasons in the previous
item, graphics APIs use matrices to express orientation. (API stands
for Application Programming Interface. Basically, this is the code
we use to communicate with the graphics hardware.) When we are
communicating with the API, we are going to have to express our
transformations as matrices. How we store transformations internally
in our program is up to us, but if we choose another representation,
we are going to have to convert them into matrices at some point in
the graphics pipeline.

• Concatenation of multiple angular displacements. A third advantage
of matrices is that it is possible to “collapse” nested coordinate space
relationships. For example, if we know the orientation of object A
relative to object B, and we know the orientation of object B relative
to object C, then by using matrices, we can determine the orientation
of object A relative to object C. We encountered these concepts before
when we discussed nested coordinate spaces in Chapter 3, and then
we discussed how matrices could be concatenated in Section 5.6.

• Matrix inversion. When an angular displacement is represented in
matrix form, it is possible to compute the “opposite” angular dis-
placement by using matrix inversion. What’s more, since rotation
matrices are orthogonal, this computation is a trivial matter of trans-
posing the matrix.

8.2.4 Disadvantages of Matrix Form

The explicit nature of a matrix provides some advantages, as we have just
discussed. However, a matrix uses nine numbers to store an orientation,
and it is possible to parameterize orientation with only three numbers. The
“extra” numbers in a matrix can cause some problems.

• Matrices take more memory. If we need to store many orientations
(for example, keyframes in an animation sequence), that extra space
for nine numbers instead of three can really add up. Let’s take a
modest example. Let’s say we are animating a model of a human
that is broken up into 15 pieces for different body parts. Animation
is accomplished strictly by controlling the orientation of each part
relative to its parent part. Assume we are storing one orientation for
each part, per frame, and our animation data is stored at a modest
rate, say, 15 Hz. This means we will have 225 orientations per second.
Using matrices and 32-bit floating point numbers, each frame will
take 8,100 bytes. Using Euler angles (which we will meet next in
Section 8.3), the same data would take only 2,700 bytes. For a mere
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30 seconds of animation data, matrices would take 162K more than
the same data stored using Euler angles!

• Difficult for humans to use. Matrices are not intuitive for humans
to work with directly. There are just too many numbers, and they
are all between −1 and +1. What’s more, humans naturally think
about orientation in terms of angles, but a matrix is expressed in
terms of vectors. With practice, we can learn how to decipher the
orientation from a given matrix. (The techniques from Section 4.2
for visualizing a matrix help a lot for this.) But still, this is much
more difficult than Euler angles. And going the other way is much
more difficult—it would take forever to construct the matrix for a
nontrivial orientation by hand. In general, matrices just aren’t the
way people naturally think about orientation.

• Matrices can be ill-formed. As we have said, a matrix uses nine num-
bers, when only three are necessary. In other words, a matrix contains
six degrees of redundancy. There are six constraints that must be sat-
isfied for a matrix to be “valid” for representing an orientation. The
rows must be unit vectors, and they must be mutually perpendicular
(see Section 6.3.2).

Let’s consider this last point in more detail. If we take any nine numbers
at random and create a 3 × 3 matrix, it is very unlikely that these six
constraints will be satisfied, and thus the nine numbers will not form a
valid rotation matrix. In other words, matrices can be ill-formed, at least
for purposes of representing an orientation. Ill-formed matrices can be a
problem because they can lead to numerical exceptions, weird stretched
graphics, and other unexpected behavior.

How could we ever end up with a bad matrix? There are several ways:

• We may have a matrix that contains scale, skew, reflection, or pro-
jection. What is the “orientation” of an object that has been af-
fected by such operations? There really isn’t a clear definition for
this. Any nonorthogonal matrix is not a well-defined rotation matrix.
(See Section 6.3 for a complete discussion on orthogonal matrices.)
And reflection matrices (which are orthogonal) are not valid rotation
matrices, either.

• We may just get bad data from an external source. For example, if we
are using a physical data acquisition system, such as motion capture,
there could be errors due to the capturing process. Many modeling
packages are notorious for producing ill-formed matrices.
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• We can actually create bad data due to floating point round off error.
For example, suppose we apply a large number of incremental changes
to an orientation, which could routinely happen in a game or simu-
lation that allows a human to interactively control the orientation
of an object. The large number of matrix multiplications, which are
subject to limited floating point precision, can result in an ill-formed
matrix. This phenomenon is known as matrix creep. We can combat
matrix creep by orthogonalizing the matrix, as we already discussed
in Section 6.3.3.

8.2.5 Summary of Matrix Form

Let’s summarize what Section 8.2 has said about matrices.

• Matrices are a “brute force” method of expressing orientation: we
explicitly list the basis vectors of one space in the coordinates of
some different space.

• The term direction cosines matrix alludes to the fact that each ele-
ment in a rotation matrix is equal to the dot product of one input
basis vector with one output basis vector. Like all transformation
matrices, the rows of the matrix are the output-space coordinates of
the input-space basis vectors. Furthermore, the columns of a rota-
tion matrix are the input-space coordinates of the output-space basis
vectors, a fact that is only true by virtue of the orthogonality of a
rotation matrix.

• The matrix form of representing orientation is useful primarily be-
cause it allows us to rotate vectors between coordinate spaces.

• Modern graphics APIs express orientation by using matrices.

• We can use matrix multiplication to collapse matrices for nested co-
ordinate spaces into a single matrix.

• Matrix inversion provides a mechanism for determining the “oppo-
site” angular displacement.

• Matrices can take two to three times as much memory as other tech-
niques. This can become significant when storing large numbers of
orientations, such as animation data.
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• The numbers in a matrix aren’t intuitive for humans to work with.

• Not all matrices are valid for describing an orientation. Some matrices
contain mirroring or skew. We can end up with a ill-formed matrix
either by getting bad data from an external source or through matrix
creep.

8.3 Euler Angles

Another common method of representing orientation is known as Euler
angles. (Remember, Euler is pronounced “oiler,” not “yoolur.”) The tech-
nique is named after the famous mathematician who developed them, Leon-
hard Euler (1707–1783). Section 8.3.1 describes how Euler angles work and
discusses the most common conventions used for Euler angles. Section 8.3.2
discusses other conventions for Euler angles, including the important fixed
axis system. We consider the advantages and disadvantages of Euler an-
gles in Section 8.3.3 and Section 8.3.4. Section 8.3.5 summarizes the most
important concepts concerning of Euler angles.

This section utilizes many ideas, terms, and conventions from Section 7.3.2
concerning spherical coordinates.

8.3.1 What Are Euler Angles?

The basic idea behind Euler angles is to define an angular displacement
as a sequence of three rotations about three mutually perpendicular axes.
This sounds complicated, but actually it is quite intuitive. (In fact, its ease
of use by humans is one of its primary advantages.)

So Euler angles describe orientation as three rotations about three mu-
tually perpendicular axes. But which axes? And in what order? As it turns
out, any three axes in any order will work, but most people have found it
practical to use the cardinal axes in a particular order. The most common
convention, and the one we use in this book, is the so-called “heading-pitch-
bank” convention for Euler angles. In this system, an orientation is defined
by a heading angle, a pitch angle, and a bank angle.
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Before we define the terms heading, pitch, and bank precisely, let us
briefly review the coordinate space conventions we use in this book. We
use a left-handed system, where +x is to the right, +y is up, and +z is
forward. (Check out Figure 1.15 on page 19 for an illustration.) Also, if you
have forgotten how positive rotation is defined according to the left-hand
rule, you might want to flip back to Figure 1.14 on page 17 to refresh your
memory.

Given heading, pitch, and bank angles, we can determine the orientation
described by these Euler angles using a simple four-step process.

Step 1. Begin in the “identity” orientation—that is, with the object-space
axes aligned with the upright axes.

Figure 8.4
Step 1: An object in its identity orientation

Step 2. Perform the heading rotation, rotating about the y-axis, as shown
in Figure 8.5. Positive rotation rotates to the right (clockwise when
viewed from above).

Figure 8.5
Step 2: Heading is the first rotation and rotates
about the vertical axis

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-9&iName=master.img-006.jpg&w=141&h=142
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-9&iName=master.img-007.jpg&w=141&h=142
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Step 3. After heading has been applied, pitch measures the amount of
rotation about the x-axis. This is the object-space x-axis, not the
upright x-axis. Staying consistent with the left-hand rule, positive
rotation rotates downward. In other words, pitch actually measures
the angle of declination. This is illustrated in Figure 8.6.

Figure 8.6
Step 3: Pitch is the second rotation and rotates
about the object lateral axis

Step 4. After heading and pitch angles have been applied, bank measures
the amount of rotation about the z-axis. Again, this is the object-
space z-axis, not the original upright-space z-axis. The left-hand
rule dictates that positive bank rotates counterclockwise when viewed
from the origin looking towards +z. This is illustrated in Figure 8.7.

Figure 8.7
Step 4: Bank is the third and final rotation and
rotates about the object longitudinal axis

It may seem contradictory that positive bank is counterclockwise,
since positive heading is clockwise. But notice that positive heading
is clockwise when viewed from the positive end of the axis towards
the origin, the opposite perspective from the one used when judging

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-9&iName=master.img-008.jpg&w=142&h=142
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-9&iName=master.img-009.jpg&w=142&h=142
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clockwise/counterclockwise for bank. If we look from the origin to the
positive end of the y-axis, then positive heading does rotate counter-
clockwise. Or if we look from the positive end of the z-axis towards
the origin (looking backward from in front of the object), then posi-
tive bank appears to rotate the object clockwise. In either case, the
left-hand rule prevails.

Now you have reached the orientation described by the Euler angles.
Notice the similarity of Steps 1–3 to the procedure used in Section 7.3.2 to
locate the direction described by the spherical coordinate angles. In other
words, we can think of heading and pitch as defining the basic direction
that the object is facing, and bank defining the amount of twist.

8.3.2 Other Euler Angle Conventions

The heading-pitch-bank system described in the previous section isn’t the
only way to define a rotation using three angles about mutually perpen-
dicular axes. There are many variations on this theme. Some of these
differences turn out to be purely nomenclature; others are more meaning-
ful. Even if you like our conventions, we encourage you to not skip this
section, as some very important concepts are discussed; these topics are
the source of much confusion, which we hope to dispel.

First of all, there is the trivial issue of naming. The most common
variation you will find was made popular by the field of aerospace, the
yaw-pitch-roll method.5 The term “roll” is completely synonymous with
bank, and for all purposes they are identical. Similarly, within the limited
context of yaw-pitch-roll, the term “yaw” is practically identical to the
term heading. (However, in a broader sense, the word “yaw” actually has
a subtly different meaning, and it is this subtle difference that drives our
preference for the term heading. We discuss this rather nit-picky distinction
in just a moment, but for the moment yaw and heading are the same.) So
essentially yaw-pitch-roll is the same system as heading-pitch-bank.

Other less common terms are often used. Heading also goes by the
name azimuth. The vertical angle that we call pitch is also called attitude
or elevation. The final angle of rotation, which we call “bank,” is sometimes
called tilt or twist.

5It’s probably a bit presumptuous of us to refer to yaw-pitch-roll as a variation. After
all, there is a Wikipedia article for yaw-pitch-roll, but none for heading-pitch-bank, so
who’s to say our preference isn’t the variation? We admit this presumption and are
prepared to defend our preference shortly.
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And, of course, there are those perverse mathematicians who (moti-
vated by the need to save space when writing on a chalkboard?) insist on
assaulting your eyeballs with a slew of Greek letters. You may see any of
the following:

It’s all Greek to us(φ, θ, ψ) (ψ, θ, φ)
(Ω, i, ω) (α, β γ).

Of course, these are cosmetic differences. Perhaps more interesting is
that fact that you will often hear these same three words listed in the
opposite order: roll-pitch-yaw. (A quick Google search for “roll pitch yaw”
or “yaw pitch roll” yields plenty of results for both forms, with neither
appearing more predominant.) Considering how the order of rotations is
so critical, are people really that perverse that they choose to list them
in the reverse order? We’re not just dwelling on terminology here; the
distinctions in thinking hinted at by the differences in terminology will
actually become useful when we consider how to convert Euler angles to a
rotation matrix. As it turns out, there is a perfectly reasonable explanation
for this “backwards” convention: it’s the order in which we actually do the
rotations inside a computer!

The fixed-axis system is very closely related to the Euler angle system.
In an Euler angle system, the rotation occurs about the body axes, which
change after each rotation. Thus, for example, the physical axis for the
bank angle is always the longitudinal body space axis, but in general it is
arbitrarily oriented in upright space. In a fixed-axis system, in contrast,
the axes of rotation are always the fixed, upright axes. But as it turns out,
the fixed-axis system and the Euler angle system are actually equivalent,
provided that we take the rotations in the opposite order.

You should visualize the following example to convince yourself this
is true. Let’s say we have a heading (yaw) of h and a pitch of p. (We’ll
ignore bank/roll for the moment.) According to the Euler angle convention,
we first do the heading axis and rotate about the vertical axis (the y-
axis) by h. Then we rotate about the object-space lateral axis (the x-
axis) by the angle p. Using a fixed-axis scheme, we arrive at this same
ending orientation by doing the rotations in the opposite order. First, we
do the pitch, rotating about the upright x-axis by p. Then, we perform
the heading rotation, rotating about the upright y-axis by h. Although
we might visualize Euler angles, inside a computer when rotating vectors
from upright space to object space, we actually use a fixed-axis system.
We discuss this in greater detail in Section 8.7.1, when we show how to
convert Euler angles to a rotation matrix. The fixed-axis conventions are
also called extrinsic, the typical Euler angle conventions being referred to
as intrinsic.
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Euler angles rotate about the body axes, so the axis of rotation for a given
step depends on the angles used in prior rotations. In the fixed-axis sys-
tem, the axes of rotation are always the same—the upright axes. The two
systems are equivalent, provided that the rotations are performed in the
opposite order.

Now we’d like to make a brief but humble campaign for a more precise
use of the term “yaw.” A lot of aeronautical terminology is inherited nau-
tical terminology.6 In a nautical context, the original meaning of the word
“yaw” was essentially the same thing as heading, both in terms of absolute
angle and also a change in that angle. In the context of airplanes and other
freely rotating bodies, however, we don’t feel that yaw and heading are the
same thing. A yawing motion produces a rotation about the object y-axis,
whereas a change in heading produces a rotation about the upright y-axis.
For example, when the pilot of an airplane uses the pedals to control the
rudder, he is performing a yaw rotation, because the rotation caused by
the rudder is always about the object-space y-axis of the plane. Imagine a
plane diving straight down. If the pilot performs a 90o yaw, the plane will
end up “on its ear,” no longer looking downward, but looking towards the
horizon, banked 90o. This is illustrated in Figure 8.8.

Figure 8.8
Heading versus yaw

6The word “aeronautical” is a prime example.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-9&iName=master.img-011.jpg&w=210&h=198
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In contrast, when players navigating a first-person shooter move the
mouse from left to right, they are performing a heading rotation. The
rotation is always about the vertical axis (the upright y-axis). If players are
looking downward and move the mouse horizontally to perform a heading
rotation, they continue to look downward and spin in place. The point
is certainly not that heading is better than yaw because that’s what we
do in first-person shooters. The point is that a yawing motion cannot be
accomplished by adjusting a single Euler angle, but a heading motion can.
That’s why we think “heading” is a better term: it’s the action that results
when you make an incremental change to the first Euler angle.

Alas, the same argument can be leveled against the term “pitch.” If
bank is nonzero, an incremental change to the middle Euler angle does
not produce a rotation about the object’s lateral axis. But then, there
isn’t really a simple, good word to describe the angle that the object’s
longitudinal axis makes with the horizontal, which is what the middle Euler
angle really specifies. (“Inclination” is no good as it is specific to the right-
handed conventions.)

We hope you have read our opinions with the humility we intended,
and also have received the more important message: investigating (seem-
ingly cosmetic) differences in convention can sometimes lead us to a deeper
understanding of the finer points. And then sometimes it’s just plain nit-
picking. Generations of aerospace engineers have been putting men on the
moon and robots on Mars, and building airplanes that safely shuttle the
authors to and from distant cities, all the while using the terms yaw and
roll. Would you believe that some of these guys don’t even know who we
are!? Given the choice to pick your own terminology, we say to use the
word “heading” when you can, but if you hear the word “yaw,” then for
goodness sake don’t make as big of a deal out of it as we have in these
pages, especially if the person you are talking to is smarter than you.

Although in this book we do not follow the right-handed aerospace co-
ordinate conventions (and we have a minor quibble about terminology),
when it comes to the basic strategy of Euler angles, in a physical sense, we
believe complete compliance with the wisdom of the aerospace forefathers
is the only way to go, at least if your universe has some notion of “ground.”
Remember that, in theory, any three axes can be used as the axes of ro-
tation, in any order. But really, the conventions they chose are the only
ones that make any practical sense, if you want the individual angles to be
useful and meaningful. No matter how you label your axes, the first angle
needs to rotate about the vertical, the second about the body lateral axis,
and the third about the body longitudinal axis.

As if these weren’t enough complications, let us throw in a few more.
In the system we have been describing, each rotation occurs about a differ-
ent body axes. However, Euler’s own original system was a “symmetric”
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system in which the first and last rotations are performed around the same
axis. These methods are more convenient in certain situations, such as
describing the motion of a top, where the three angles correspond to pre-
cession, nutation, and spin. You may encounter some purists who object
to the name “Euler angles” being attached to an asymmetric system, but
this usage is widespread in many fields, so rest assured that you outnum-
ber them. To distinguish between the two systems, the symmetric Euler
angles are sometimes called “proper” Euler angles, with the more com-
mon conventions being called Tait-Bryan angles, first documented by the
aerospace forefathers we mentioned [10]. O’Reilly [51] discusses proper Eu-
ler angles, even more methods of describing rotation, such as the Rodrigues
vector, Cayley-Klein parameters, and interesting historical remarks. James
Diebel’s summary [13] compares different Euler angle conventions and the
other major methods for describing rotation, much as this chapter does,
but assumes a higher level of mathematical sophistication.

If you have to deal with Euler angles that use a different convention
from the one you prefer, we offer two pieces of advice:

• First, make sure you understand exactly how the other Euler angle
system works. Little details such as the definition of positive rotation
and order of rotations make a big difference.

• Second, the easiest way to convert the Euler angles to your format
is to convert them to matrix form and then convert the matrix back
to your style of Euler angles. We will learn how to perform these
conversions in Section 8.7. Fiddling with the angles directly is much
more difficult than it would seem. See [63] for more information.

8.3.3 Advantages of Euler Angles

Euler angles parameterize orientation using only three numbers, and these
numbers are angles. These two characteristics of Euler angles provide cer-
tain advantages over other forms of representing orientation.

• Euler angles are easy for humans to use—considerably easier than
matrices or quaternions. Perhaps this is because the numbers in an
Euler angle triple are angles, which is naturally how people think
about orientation. If the conventions most appropriate for the sit-
uation are chosen, then the most practical angles can be expressed
directly. For example, the angle of declination is expressed directly
by the heading-pitch-bank system. This ease of use is a serious ad-
vantage. When an orientation needs to be displayed numerically or
entered at the keyboard, Euler angles are really the only choice.
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• Euler angles use the smallest possible representation. Euler angles use
three numbers to describe an orientation. No system can parameterize
3D orientation using fewer than three numbers. If memory is at a
premium, then Euler angles are the most economical way to represent
an orientation.

Another reason to choose Euler angles when you need to save space
is that the numbers you are storing are more easily compressed. It’s
relatively easy to pack Euler angles into a smaller number of bits
using a trivial fixed-precision system. Because Euler angles are an-
gles, the data loss due to quantization is spread evenly. Matrices
and quaternions require using very small numbers, because the val-
ues stored are sines and cosines of the angles. The absolute numeric
difference between two values is not proportionate to the perceived
difference, however, as it is with Euler angles. In general, matrices
and quaternions don’t pack into a fixed-point system easily.

Bottom line: if you need to store a lot of 3D rotational data in as little
memory as possible, as is very common when handling animation
data, Euler angles (or the exponential map format—to be discussed
in Section 8.4) are the best choices.

• Any set of three numbers is valid. If we take any three numbers at
random, they form a valid set of Euler angles that we can interpret
as an expression of an orientation. In other words, there is no such
thing as an invalid set of Euler angles. Of course, the numbers may
not be correct but at least they are valid. This is not the case with
matrices and quaternions.

8.3.4 Disadvantages of Euler Angles

This section discusses some disadvantages of the Euler angle method of
representing orientation; primarily,

• The representation for a given orientation is not unique.

• Interpolating between two orientations is problematic.

Let’s address these points in detail. First, we have the problem that for
a given orientation, there are many different Euler angle triples that can
be used to describe that orientation. This is known as aliasing and can be
somewhat of an inconvenience. These irritating problems are very similar
to those we met dealing with spherical coordinates in Section 7.3.4. Basic
questions such as “Do two Euler angle triples represent the same angular
displacement?” are difficult to answer due to aliasing.
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We’ve seen one trivial type of aliasing before with polar coordinates:
adding a multiple of 360o does not change the orientation expressed, even
though the numbers are different.

A second and more troublesome form of aliasing occurs because the
three angles are not completely independent of each other. For example,
pitching down 135o is the same as heading 180o, pitching down 45o, and
then banking 180o.

To deal with aliasing of spherical coordinates, we found it useful to
establish a canonical set ; any given point has a unique representation in
the canonical set that is the “official” way to describe that point using
polar coordinates. We use a similar technique for Euler angles. In order
to guarantee a unique Euler angle representation for any given orientation,
we restrict the ranges of the angles. One common technique is to limit
heading and bank to (−180o,+180o] and to limit pitch to [−90o,+90o].
For any orientation, there is only one Euler angle triple in the canonical
set that represents that orientation. (Actually, there is one more irritating
singularity that must be handled, which we describe in just a moment.)
Using canonical Euler angles simplifies many basic tests such as “am I
facing approximately east?”

The most famous (and irritating) type of aliasing problem suffered by
Euler angles is illustrated by this example: if we head right 45o and then
pitch down 90o, this is the same as pitching down 90oand then banking 45o.
In fact, once we chose ±90o as the pitch angle, we are restricted to rotating
about the vertical axis. This phenomenon, in which an angle of ±90o for
the second rotation can cause the first and third rotations to rotate about
the same axis, is known as Gimbal lock. To remove this aliasing from the
canonical set of Euler angle triples, we assign all rotation about the vertical
axis to heading in the Gimbal lock case. In other words, in the canonical
set, if pitch is ±90o, then bank is zero.

This last rule for Gimbal lock completes the rules for the canonical set
of Euler angles:

Conditions satisfied by
Euler angles in the

canonical set

−180o < h ≤ 180o

−90o ≤ p ≤ 90o

−180o < b ≤ 180o

p = ±90o ⇒ b = 0.

When writing C++ that accepts Euler angle arguments, it’s usually
best to ensure that they work given Euler angles in any range. Luckily
this is usually easy; things frequently just work without taking any extra
precaution, especially if the angles are fed into trig functions. However,
when writing code that computes or returns Euler angles, it’s good practice
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to return the canonical Euler angle triple. The conversion methods shown
in Section 8.7 demonstrate these principles.

A common misconception is that, because of Gimbal lock, certain orienta-
tions cannot be described using Euler angles. Actually, for the purposes of
describing an orientation, aliasing doesn’t pose any problems. To be clear,
any orientation in 3D can be described by using Euler angles, and that
representation is unique within the canonical set. Also, as we mentioned
in the previous section, there is no such thing as an “invalid” set of Euler
angles. Even if the angles are outside the usual range, we can always agree
on what orientation is described by the Euler angles.

So for purposes of simply describing orientation, aliasing isn’t a huge
problem, especially when canonical Euler angles are used. So what’s so bad
about aliasing and Gimbal lock? Let’s say we wish to interpolate between
two orientations R0 and R1. In other words, for a given parameter t,
0 ≤ t ≤ 1, we wish to compute an intermediate orientation R(t) that
interpolates smoothly from R0 to R1 as t varies from 0 to 1. This is an
extremely useful operation for character animation and camera control, for
example.

0°

±180°

З90°
З270°
+90°

+270°

R0=720°

R1=45°

Figure 8.9
Naı̈ve interpolation
can cause excessive
rotation
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The näıve approach to this problem is to apply the standard linear
interpolation formula (“lerp”) to each of the three angles independently:

Simple linear
interpolation between

two angles ∆θ = θ1 − θ0,

θt = θ0 + t∆θ.

This is fraught with problems.
First, if canonical Euler angles are not used, we may have large angle

values. For example, imagine the heading of R0, denoted h0, is 720o.
Assume h1 = 45o. Now, 720o = 2 × 360o, which is the same as 0o, so
basically the h1 and h2 are only 45o apart. However, näıve interpolation
will spin around nearly twice in the wrong direction, as shown in Figure 8.9.

Of course, the solution to this problem is to use canonical Euler angles.
We could assume that we will always be interpolating between two sets of
canonical Euler angles. Or we could attempt to enforce this by converting
to canonical values inside our interpolation routine. (Simply wrapping an-
gles within the (−180o,+180o] range is easy, but dealing with pitch values
outside the [−90o,+90o] range is more challenging.)

However, even using canonical angles doesn’t completely solve the prob-
lem. A second type of interpolation problem can occur because of the cyclic
nature of rotation angles. Suppose h0 = −170o and h1 = 170o. Notice that
these are canonical values for heading, both in the range (−180o,+180o].

0°

±180°

З90°
З270°
+90°

+270°

R0=З170° R1=170° Figure 8.10
Naı̈ve interpolation
can rotate the long way
around.
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f l o a t wrapPi ( f l o a t t h e t a ) {

/ / Check i f a l r eady in range . Th i s i s not s t r i c t l y necessary ,
/ / but i t w i l l be a very common s i t u a t i o n . We don ’ t want to
/ / i ncu r a speed h i t and perhaps f l o a t i n g p r e c i s i o n l o s s i f
/ / i t ’ s not necessa ry
i f ( f ab s ( t h e t a ) <= PI ) {

/ / One r e v o l u t i o n i s 2 P I .
const f l o a t TWOPPI = 2.0 f∗PI ;

/ / Out o f range . Determine how many ” r e v o l u t i o n s ”
/ / we need to add .
f l o a t r e v o l u t i o n s = f l o o r ( ( t h e t a + PI ) ∗ ( 1 . 0 f / TWOPPI ) ) ;

/ / Sub t r ac t i t o f f
t h e t a −= r e v o l u t i o n s∗TWOPPI ;

}

re turn t h e t a ;
}

Listing 8.1
Wrapping an angle between ±180o

The two heading values are only 20o apart, but again, näıve interpolation
will not behave correctly, rotating the long way around by a clockwise ro-
tation of 340o instead of taking the shorter counterclockwise path of 20o,
as shown in Figure 8.10.

The solution to this second type of problem is to wrap the differences be-
tween angles used in the interpolation equation in the range (−180o,+180o]
in order to find the shortest arc. To do this, we introduce the notation

Wrapping an angle
between ±180owrapPi(x) = x− 360o⌊(x+ 180o)/360o⌋,

where ⌊·⌋ denotes the floor function.
The wrapPi function is a small, sharp tool that every game programmer

should have in their toolbox. It elegantly handles common situations in
which we must account for the cyclic nature of angles. It works by adding
or subtracting the appropriate multiple of 360o. Listing 8.1 shows how it
would be implemented in C.

Let’s go back to Euler angles. As expected, using wrapPi() makes it
easy to take the shortest arc when interpolating between two angles:

Taking the shortest arc
when interpolating
between two angles

∆θ = wrapPi(θ1 − θ0),

θt = θ0 + t∆θ.

But even with these two Band-Aids, Euler angle interpolation still suf-
fers from Gimbal lock, which in many situations causes a jerky, unnatural
course. The object whips around suddenly and appears to be hung some-
where. The basic problem is that the angular velocity is not constant during
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the interpolation. If you have never experienced what Gimbal lock looks
like, you may be wondering what all the fuss is about. Unfortunately, it is
very difficult to fully appreciate the problem from illustrations in a book—
you need to experience it in real time. Fortunately, though, it’s easy to find
an animation demonstrating the problem: just do a youtube.com search for
“gimbal lock.”

The first two problems with Euler angle interpolation were irritating,
but certainly not insurmountable. Canonical Euler angles and wrapPi pro-
vide relatively simple workarounds. Gimbal lock, unfortunately, is more
than a minor nuisance; it’s a fundamental problem. Could we perhaps
reformulate our rotations and devise a system that does not suffer from
these problems? Unfortunately, this is not possible. There is simply an
inherent problem with using three numbers to describe 3D orientation. We
could change our problems, but not eliminate them. Any system that pa-
rameterizes 3-space orientation using three numbers is guaranteed to have
singularities in the parameterization space and therefore be subject to prob-
lems such as Gimbal lock. The exponential map form (see Section 8.4), a
different scheme for parameterizing 3D rotation with three numbers, man-
ages to consolidate the singularities to a single point: the antipodes. This
behavior is more benign for certain practical situations, but it does not
remove the singularities completely. To do that, we must use quaternions,
which are discussed in Section 8.5.

8.3.5 Summary of Euler Angles

Let’s summarize our findings from Section 8.3 about Euler angles.

• Euler angles store orientation by using three angles. These angles are
ordered rotations about the three object-space axes.

• The most common system of Euler angles is the heading-pitch-bank
system. Heading and pitch tell which way the object is facing—
heading gives a “compass reading” and pitch measures the angle of
declination. Bank measures the amount of “twist.”

• In a fixed-axis system, the rotations occur about the upright axes
rather than the moving body axes. This system is equivalent to Euler
angles, provided that we perform the rotations in the opposite order.

• Lots of smart people use lots of different terms for Euler angles, and
they can have good reasons for using different conventions.7 It’s best

7There are also lots of stupid people who do not have good reasons for the choices
they make—but in the end, the result is the same.
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not to rely on terminology when using Euler angles. Always make
sure you get a precise working definition, or you’re likely to get very
confused.

• In most situations, Euler angles are more intuitive for humans to work
with compared to other methods of representing orientation.

• When memory is at a premium, Euler angles use the minimum amount
of data possible for storing an orientation in 3D, and Euler angles are
more easily compressed than quaternions.

• There is no such thing as an invalid set of Euler angles. Any three
numbers have a meaningful interpretation.

• Euler angles suffer from aliasing problems due to the cyclic nature
of rotation angles and because the rotations are not completely inde-
pendent of one another.

• Using canonical Euler angles can simplify many basic queries on Eu-
ler angles. An Euler angle triple is in the canonical set if heading
and bank are in the range (−180o,+180o] and pitch is in the range
[−90o,+90o]. What’s more, if pitch is ±90o, then bank is zero.

• Gimbal lock occurs when pitch is ±90o. In this case, one degree
of freedom is lost because heading and bank both rotate about the
vertical axis.

• Contrary to popular myth, any orientation in 3D can be represented
by using Euler angles, and we can agree on a unique representation
for that orientation within the canonical set.

• The wrapPi function is a very handy tool that simplifies situations in
which we have to deal with the cyclic nature of angles. Such situations
arise frequently in practice, especially in the context of Euler angles,
but at other times as well.

• Simple forms of aliasing are irritating, but there are workarounds.
Gimbal lock is a more fundamental problem with no easy solution.
Gimbal lock is a problem because the parameter space of orientation
has a discontinuity. This means small changes in orientation can
result in large changes in the individual angles. Interpolation between
orientations using Euler angles can freak out or take a wobbly path.
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8.4 AxisAngle and Exponential Map
Representations

Euler’s name is attached to all sorts of stuff related to rotation (we just
discussed Euler angles in Section 8.3). His name is also attached to Euler’s
rotation theorem, which basically says that any 3D angular displacement
can be accomplished via a single rotation about a carefully chosen axis. To
be more precise, given any two orientations R1 and R2, there exists an axis
n̂ such that we can get from R1 to R2 by performing one rotation about
n̂. With Euler angles, we need three rotations to describe any orientation,
since we are restricted to rotate about the cardinal axis. However, when
we are free to choose the axis of rotation, its possible to find one such that
only one rotation is needed. Furthermore, as we will show in this section,
except for a few minor details, this axis of rotation is uniquely determined.

Euler’s rotation theorem leads to two closely related methods for de-
scribing orientation. Let’s begin with some notation. Assume we have
chosen a rotation angle θ and an axis of rotation that passes through the
origin and is parallel to the unit vector n̂. (In this book, positive rotation
is defined according to the left-hand rule; see Section 1.3.3.)

Taking the two values n̂ and θ as is, we have described an angular
displacement in the axis-angle form. Alternatively, since n̂ has unit length,
we can multiply it by θ without loss of information, yielding the single
vector e = θn̂. This scheme for describing rotation goes by the rather
intimidating and obscure name of exponential map.8 The rotation angle
can be deduced from the length of e; in other words, θ = ‖e‖, and the
axis is obtained by normalizing e. The exponential map is not only more
compact than the axis-angle (three numbers instead of four), it elegantly
avoids certain singularities and has better interpolation and differentiation
properties.

We’re not going to discuss the axis-angle and exponential map forms
in quite as much detail as the other methods of representing orientation
because in practice their use is a bit specialized. The axis-angle format is
primarily a conceptual tool. It’s important to understand, but the method
gets relatively little direct use compared to the other formats. It’s one
notable capability is that we can directly obtain an arbitrary multiple of
the displacement. For example, given a rotation in axis-angle form, we can
obtain a rotation that represents one third of the rotation or 2.65 times the
rotation, simply by multiplying θ by the appropriate amount. Of course,

8The reason for this is that it comes from the equally intimidating and obscure branch
of mathematics known as Lie algebra. (Lie is pronounced “lee,” since it’s named after a
person.) The exponential map has a broader definition in this context, and the space of
3D rotations (sometimes denoted as SO(3)) is just one type of Lie group. More regretful
comments about terminology to come.
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we can do this same operation with the exponential map just as easily.
Quaternions can do this through exponentiation, but an inspection of the
math reveals that it’s really using the axis-angle format under the hood.
(Even though quaternions claim to be using the exponential map under the
hood!) Quaternions can also do a similar operation using slerp, but in a
more roundabout way and without the ability for intermediate results to
store rotations beyond 180 degrees. We look at quaternions in Section 8.5.

The exponential map gets more use than the axis-angle. First of all, its
interpolation properties are nicer than Euler angles. Although it does have
singularities (discussed next), they are not as troublesome as for Euler an-
gles. Usually, when one thinks of interpolating rotations, one immediately
thinks of quaternions; however, for some applications, such as storage of
animation data, the underappreciated exponential map can be a viable al-
ternative [27]. But the most important and frequent use of the exponential
map is to store not angular displacement, but rather angular velocity. This
is because the exponential map differentiates nicely (which is somewhat
related to its nicer interpolation properties) and can represent multiple ro-
tations easily.

Like Euler angles, the axis-angle and exponential map forms exhibit
aliasing and singularities, although of a slightly more restricted and benign
manner. There is an obvious singularity at the identity orientation, or the
quantity “no angular displacement.” In this case, θ = 0, and our choice
of axis is irrelevant—any axis may be used. Notice, however, that the
exponential map nicely tucks this singularity away, since multiplication by
θ causes e to vanish, no matter what rotation axis n̂ is chosen. Another
trivial form of aliasing in axis-angle space can be produced by negating
both θ and n̂. However, the exponential map dodges this issue as well,
since negating both θ and n̂ leaves e = θn̂ unchanged!

The other aliases cannot be dispatched so easily. As with Euler an-
gles, adding a multiple of 360o to θ produces an angular displacement that
results in the same ending orientation, and this form of aliasing affects
both the axis-angle and exponential map. However, this is not always a
shortcoming—for describing angular velocity, this ability to represent such
“extra” rotation is an important and useful property. For example, it’s
quite important to be able to distinguish between rotation about the x-axis
at a rate of 720o per second versus rotation about the same axis at a rate
of 1080o per second, even though these displacements result in the same
ending orientation if applied for an integral number of seconds. It is not
possible to capture this distinction in quaternion format.

As it turns out, given any angular displacement that can be described
by a rotation matrix, the exponential map representation is uniquely deter-
mined. Although more than one exponential map may produce the same
rotation matrix, it is possible to take a subset of the exponential maps
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(those for which ‖e‖ < 2π) and form a one-to-one correspondence with the
rotation matrices. This is the essence of Euler’s rotation theorem.

Now let’s consider concatenating multiple rotations. Let’s say e1 and
e2 are two rotations in exponential map format. The result of performing
the rotations in sequence, for example, e1 and then e2, is not the same as
performing a single rotation e1+e2. We know this cannot be true, because
ordinary vector addition is commutative, but three-space rotations are not.
Assume that e1 = [90o, 0, 0], and e2 = [0, 90o, 0]. With our conventions, this
is a 90o downward pitch rotation, and a 90o heading rotation to the east.
Performing e1 followed by e2, we would end up looking downward with our
head pointing east, but doing them in the opposite order, we end up “on our
ear” facing east. But what if the angles were much smaller, say 2o instead of
90o? Now the ending rotations are more similar. As we take the magnitude
of the rotation angles down, the importance of the order decreases, and at
the extreme, for “infinitesimal” rotations, the order is completely irrelevant.
In other words, for infinitesimal rotations, exponential maps can be added
vectorially. Infinitesimals are important topics from calculus, and they
are at the heart of defining rate of change. We look at these topics in
Chapter 11, but for now, the basic idea is that exponential maps do not
add vectorially when used to define an amount of rotation (an angular
displacement or an orientation), but they do properly add vectorially when
they describe a rate of rotation. This is why exponential maps are perfectly
suited for describing angular velocity.

Before we leave this topic, a regretful word of warning regarding ter-
minology. Alternative names for these two simple concepts abound. We
have tried to choose the most standard names possible, but it was difficult
to find strong consensus. Some authors use the term “axis-angle” to de-
scribe both of these (closely related) methods and don’t really distinguish
between them. Even more confusing is the use of the term “Euler axis”
to refer to either form (but not to Euler angles!). “Rotation vector” is an-
other term you might see attached to what we are calling exponential map.
Finally, the term “exponential map,” in the broader context of Lie algebra,
from whence the term originates, actually refers to an operation (a “map”)
rather than a quantity. We apologize for the confusion, but it’s not our
fault.

8.5 Quaternions

The term quaternion is somewhat of a buzzword in 3D math. Quaternions
carry a certain mystique—which is a euphemismistic way of saying that
many people find quaternions complicated and confusing. We think the way
quaternions are presented in most texts contributes to their confusion, and



8.5. Quaternions 247

we hope that our slightly different approach will help dispel quaternions’
“mystique.”

There is a mathematical reason why using only three numbers to repre-
sent a 3-space orientation is guaranteed to cause the problems we discussed
with Euler angles, such as Gimbal lock. It has something to do with some
fairly advanced9 math terms such as “manifolds.” A quaternion avoids
these problems by using four numbers to express an orientation (hence the
name quaternion).

This section describes how to use a quaternion to define an angular dis-
placement. We’re going to deviate somewhat from the traditional presen-
tation, which emphasizes the interesting (but, in our opinion, nonessential)
interpretation of quaternions as complex numbers. Instead, we will be de-
veloping quaternions from a primarily geometric perspective. Here’s what’s
in store: First, Section 8.5.1 introduces some basic notation. Section 8.5.2
is probably the most important section—it explains how a quaternion may
be interpreted geometrically. Sections 8.5.3 through Section 8.5.11 review
the basic quaternion properties and operations, examining each from a geo-
metric perspective. Section 8.5.12 discusses the important slerp operation,
which is used to interpolate between two quaternions and is one of the pri-
mary advantages of quaternions. Section 8.5.13 discusses the advantages
and disadvantages of quaternions. Section 8.5.14 is an optional digression
into how quaternions may be interpreted as 4D complex numbers. Sec-
tion 8.5.15 summaries the properties of quaternions.

Don’t be scared off by what seems like a lot of hairy math in this section.
The most important things to remember about quaternions are the high-
level concepts that are summarized in Section 8.5.15. The nuts and bolts
of quaternions are given here to show that everything about quaternions
can be derived, and you don’t have to take our word on faith. A detailed
understanding of quaternions is not really needed in order to use them,10

but you need to understand what quaternions can do.

8.5.1 Quaternion Notation

A quaternion contains a scalar component and a 3D vector component. We
usually refer to the scalar component as w. We may refer to the vector

9In this case, the word “advanced” means “outside the authors’ expertise.”
10That is, if your class libraries are designed well.
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component as a single entity v or as individual components x, y, and z.
Here are examples of both notations:

Two types of quaternion
notation

[

w v
]

,
[

w
(

x y z
)]

.

In some cases it will be convenient to use the shorter notation, using v,
and in some cases the “expanded” version is clearer. This chapter presents
most equations in both forms.

We also may write expanded quaternions vertically:








w




x
y
z













.

Unlike regular vectors, there is no significant distinction between “row” and
“column” quaternions. We are free to make the choice strictly for aesthetic
purposes.

We denote quaternion variables with the same typeface conventions used
for vectors: lowercase letters in bold (e.g., q). When vectors and quater-
nions appear together, the context (and the letters chosen for the variables!)
usually make clear which are which.

8.5.2 What Do Those Four Numbers Mean?

The quaternion form is closely related to the axis-angle and exponential
map forms from Section 8.4. Let’s briefly review the notation from that
section, as the same notation will be used here. The unit vector n̂ defines
an axis of rotation, and the scalar θ is the amount of rotation about this
axis. Thus, the pair (θ, n̂) define an angular displacement using the axis-
angle system. You need a left or right hand11 to determine which way is
positive rotation.

A quaternion also contains an axis and angle, but n̂ and θ aren’t simply
stored in the four numbers of the quaternion directly, as they are in axis
angle (that would be too easy!). Instead, they are encoded in a way that at
first might seem weird, but turns out to be highly practical. Equation (8.2)
shows how the values of a quaternion are related to θ and n̂, using both
forms of quaternion notation:

Geometric meaning of
the four values of a

quaternion

[

w v
]

=
[

cos(θ/2) sin(θ/2)n̂
]

, (8.2)
[

w
(

x y z
)]

=
[

cos(θ/2)
(

sin(θ/2)nx sin(θ/2)ny sin(θ/2)nz
)]

.

Keep in mind that w is related to θ, but they are not the same thing.
Likewise, v and n̂ are related, but not identical.

11With apologies to our readers in India, we prefer the left.
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The next several sections discuss a number of quaternion operations
from mathematical and geometric perspectives.

8.5.3 Quaternion Negation

Quaternions can be negated. This is done in the obvious way of negating
each component:

Quaternion negation
−q = −

[

w
(

x y z
)]

=
[

−w
(

−x −y −z
)]

= −
[

w v
]

=
[

−w −v
]

.
(8.3)

The surprising fact about negating a quaternion is that it really doesn’t
do anything, at least in the context of angular displacement.

The quaternions q and −q describe the same angular displacement. Any
angular displacement in 3D has exactly two distinct representations in
quaternion format, and they are negatives of each other.

It’s not too difficult to see why this is true. If we add 360o to θ, it
doesn’t change the angular displacement represented by q, but it negates
all four components of q.

8.5.4 Identity Quaternion(s)

Geometrically, there are two “identity” quaternions that represent “no an-
gular displacement.” They are

Identity quaternions
[

1 0
]

and
[

−1 0
]

.

(Note the boldface zero, which indicates the zero vector.) When θ is an
even multiple of 360o, then cos(θ/2) = 1, and we have the first form. If θ
is an odd multiple of 360o, then cos(θ/2) = −1, and we have the second
form. In both cases, sin(θ/2) = 0, so the value of n̂ is irrelevant. This
makes intuitive sense; if the rotation angle θ is a whole number of complete
revolutions about any axis, then no real change is made to the orientation.

Algebraically, there is really only one identity quaternion: [1,0]. When
we multiply any quaternion q by the identity quaternion, the result is q.
(We present quaternion multiplication in Section 8.5.7.) When we multiply
a quaternion q by the other “geometric identity” quaternion [−1,0], we get
−q. Geometrically, this results in the same quaternion, since q and −q

represent the same angular displacement. Mathematically, however, q and
−q are not equal, so [−1,0] is not a “true” identity quaternion.
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8.5.5 Quaternion Magnitude

We can compute the magnitude of a quaternion, just as we can for vectors
and complex numbers. The notation and formula shown in Equation (8.4)
are similar to those used for vectors:

Quaternion magnitude ‖q‖ =
∥

∥

[

w
(

x y z
)]∥

∥ =
√

w2 + x2 + y2 + z2

=
∥

∥

[

w v
]∥

∥ =

√

w2 + ‖v‖2.
(8.4)

Let’s see what this means geometrically for a rotation quaternion:

Rotation quaternions
have unit magnitude

‖q‖ =
∥

∥

[

w v
]∥

∥ =

√

w2 + ‖v‖2

=

√

cos2(θ/2) + (sin(θ/2)‖n̂‖)2 (substituting using θ and n̂)

=

√

cos2(θ/2) + sin2(θ/2)‖n̂‖2

=

√

cos2(θ/2) + sin2(θ/2)(1) (n̂ is a unit vector)

=
√
1 (sin2 x+ cos2 x = 1)

= 1.

This is an important observation.

For our purposes of using quaternions to represent orientation, all quater-
nions are so-called unit quaternions, which have a magnitude equal to unity.

For information concerning nonnormalized quaternions, see the techni-
cal report by Dam et al. [11].

8.5.6 Quaternion Conjugate and Inverse

The conjugate of a quaternion, denoted q∗, is obtained by negating the
vector portion of the quaternion:

Quaternion conjugate q∗ =
[

w v
]∗

=
[

w −v
]

(8.5)

=
[

w
(

x y z
)]∗

=
[

w
(

−x −y −z
)]

.

The term “conjugate” is inherited from the interpretation of a quaternion
as a complex number. We look at this interpretation in more detail in
Section 8.5.14.
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The inverse of a quaternion, denoted q−1, is defined as the conjugate
of a quaternion divided by its magnitude:

Quaternion inverse
q−1 =

q∗

‖q‖ . (8.6)

The quaternion inverse has an interesting correspondence with the mul-
tiplicative inverse for real numbers (scalars). For real numbers, the mul-
tiplicative inverse a−1 is 1/a. In other words, a(a−1) = a−1a = 1. The
same applies to quaternions. When we multiply a quaternion q by its in-
verse q−1, we get the identity quaternion [1,0]. (We discuss quaternion
multiplication in Section 8.5.7.)

Equation (8.6) is the official definition of quaternion inverse. However,
if you are interested only in quaternions that represent pure rotations, like
we are in this book, then all the quaternions are unit quaternions and so
the conjugate and inverse are equivalent.

The conjugate (inverse) is interesting because q and q∗ represent op-
posite angular displacements. It is easy to see why this is the case. By
negating v, we are negating the axis of rotation n̂. This doesn’t change the
axis in the physical sense, since n̂ and −n̂ are parallel. However, it does
flip the direction that we consider to be positive rotation. Thus, q rotates
about an axis by an amount θ, and q∗ rotates in the opposite direction by
the same amount.

For our purposes, an alternative definition of quaternion conjugate could
have been to negate w, leaving v (and thus n̂) unchanged. This would
negate the amount of rotation θ, rather than reversing what is consid-
ered positive rotation by flipping the axis of rotation. This would have
been equivalent to the definition given in Equation (8.5) (for our geometric
purposes, at least) and provided for a slightly more intuitive geometric in-
terpretation. However, the term conjugate has a special significance in the
context of complex numbers, so let’s stick with the original definition.

8.5.7 Quaternion Multiplication

Quaternions can be multiplied. The result is similar to the cross product
for vectors, in that it yields another quaternion (not a scalar), and it is
not commutative. However, the notation is different: we denote quater-
nion multiplication simply by placing the two operands side-by-side. The
formula for quaternion multiplication can be easily derived based upon the
definition of quaternions as complex numbers (see Exercise 6), but we state
it here without development, using both quaternion notations:
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Quaternion product
q1q2 =

[

w1

(

x1 y1 z1
)][

w2

(

x2 y2 z2
)]

=









w1w2 − x1x2 − y1y2 − z1z2




w1x2 + x1w2 + y1z2 − z1y2
w1y2 + y1w2 + z1x2 − x1z2
w1z2 + z1w2 + x1y2 − y1x2













=
[

w1 v1

][

w2 v2

]

=
[

w1w2 − v1 · v2 w1v2 + w2v1 + v1 × v2

]

.

The quaternion product is also known as the Hamilton product ; you’ll
understand why after reading about the history of quaternions in Sec-
tion 8.5.14.

Let’s quickly mention three properties of quaternion multiplication, all
of which can be easily shown by using the definition given above. First,
quaternion multiplication is associative, but not commutative:

Quaternion
multiplication is

associative, but not
commutative

(ab)c = a(bc),

ab 6= ba.

Second, the magnitude of a quaternion product is equal to the product
of the magnitudes (see Exercise 9):

Magnitude of quaternion
product

‖q1q2‖ = ‖q1‖‖q2‖.

This is very significant because it guarantees us that when we multiply two
unit quaternions, the result is a unit quaternion.

Finally, the inverse of a quaternion product is equal to the product of
the inverses taken in reverse order:

Inverse of quaternion
product

(ab)−1 = b−1a−1,

(q1q2 · · ·qn−1qn)
−1 = qn

−1qn−1
−1 · · ·q2

−1q1
−1.

Now that we know some basic properties of quaternion multiplication,
let’s talk about why the operation is actually useful. Let us “extend” a
standard 3D point (x, y, z) into quaternion space by defining the quater-
nion p = [0, (x, y, z)]. In general, p is not a valid rotation quaternion,
since it can have any magnitude. Let q be a rotation quaternion in the
form we have been discussing, [cos θ/2, n̂ sin θ/2], where n̂ is a unit vector
axis of rotation, and θ is the rotation angle. It is surprising to realize that
we can rotate the 3D point p about n̂ by performing the rather odd-looking
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quaternion multiplication Using quaternion
multiplication to rotate a
3D vectorp′ = qpq−1. (8.7)

We could prove this by expanding the multiplication, substituting in n̂

and θ, and comparing the result to the matrix we derived to rotate about an
arbitrary axis (Equation (5.1.3), page 144), and indeed this is the approach
taken in most texts on quaternions. While this certainly is an effective way
to verify that the trick works, it leaves us wondering how the heck somebody
could have ever stumbled upon it in the first place. In Section 8.7.3, we
derive the conversion from quaternion to matrix form in a straightforward
way, solely from the geometry of the rotations and without referring to
qpq−1. As for how the association was discovered, we cannot say for sure,
but we will offer a train of thought that can lead a person to discover the
connection between this strange product and rotations in Section 8.5.14.
This discussion also explains how a person might have discovered that it
would be fruitful to use half of the rotation angle for the components.

As it turns out, the correspondence between quaternion multiplication
and 3D vector rotations is more of a theoretical interest than a practical one.
Some people (“quaternio-philes?”) like to attribute quaternions with the
useful property that vector rotations are immediately accessible by using
Equation (8.7). To the quaternion lovers, we admit that this compact
notation is an advantage of sorts, but its practical benefit in computations
is dubious. If you actually work through this math, you will find that it
is just about the same number of operations involved as converting the
quaternion to the equivalent rotation matrix (by using Equation (8.20),
which is developed in Section 8.7.3) and then multiplying the vector by
this matrix. Because of this, we don’t consider quaternions to possess
any direct ability to rotate vectors, at least for practical purposes in a
computer.

Although the correspondence between qpq−1 and rotation is not of
direct practical importance, it is of supreme theoretical importance. It
leads us to a slightly different use of quaternion multiplication, and this use
is highly practical in programming. Examine what happens when multiple
rotations are applied to a vector. We’ll rotate the vector p by the quaternion
a, and then rotate that result by another quaternion b:

Concatenating multiple
rotations with
quaternion algebra

p′ = b(apa−1)b−1

= (ba)p(a−1b−1)

= (ba)p(ba)−1.

Notice that rotating by a and then by b is equivalent to performing a single
rotation by the quaternion product ba. This is a key observation.
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Quaternion multiplication can be used to concatenate multiple rotations,
just like matrix multiplication.

We say “just like matrix multiplication,” but in fact there is a slightly
irritating difference. With matrix multiplication, our preference to use row
vectors puts the vectors on the left, resulting in the nice property that
concatenated rotations read left-to-right in the order of transformation.
With quaternions, we don’t have this flexibility: concatenation of multiple
rotations will always read “inside out” from right to left.12

8.5.8 Quaternion “Difference”

Using the quaternion multiplication and inverse, we can compute the dif-
ference between two quaternions, with “difference” meaning the angular
displacement from one orientation to another. In other words, given orien-
tations a and b, we can compute the angular displacement d that rotates
from a to b. This can be expressed compactly as

da = b.

(Remember that quaternion multiplication performs the rotations from
right-to-left.)

Let’s solve for d. If the variables in the equation represented scalars,
we could simply divide by a. However, we can’t divide quaternions; we
can only multiply them. Perhaps multiplication by the inverse will achieve
the desired effect? Multiplying both sides by a−1 on the right (we have
to be careful since quaternion multiplication is not commutative) gives us

The quaternion
“difference”

(da)a−1 = ba−1,

d(aa−1) = ba−1,

d
[

1 0
]

= ba−1,

d = ba−1.

Now we have a way to generate a quaternion that represents the angular
displacement from one orientation to another. We use this in Section 8.5.12,
when we explore slerp.

12Actually, you do have some flexibility if you’re willing to buck the system. Some
crazy authors [16] have gone so far as to provide an alternative definition of the quater-
nion product with the operands reversed. This can lead to code that is easier to un-
derstand, and this option might be worth considering in your own code. However, we’ll
stick with the standard in this book.
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Mathematically, the angular difference between two quaternions is ac-
tually more similar to a division than a true difference (subtraction).

8.5.9 Quaternion Dot Product

The dot product operation is defined for quaternions. The notation and
definition for this operation is very similar to the vector dot product:

Quaternion dot productq1 · q2 =
[

w1 v1

]

·
[

w2 v2

]

= w1w2 + v1 · v2

=
[

w1

(

x1 y1 z1
)]

·
[

w2

(

x2 y2 z2
)]

= w1w2 + x1x2 + y1y2 + z1z2.

Like the vector dot product, the result is a scalar. For unit quaternions a
and b, −1 ≤ a · b ≤ 1.

The dot product is perhaps not one of the most frequently used quater-
nion operators, at least in video game programming, but it does have an
interesting geometric interpretation. In Section 8.5.8, we considered the
difference quaternion d = ba∗, which describes the angular displacement
from orientation a to orientation b. (We assume unit quaternions and re-
place the quaternion inverse with the conjugate.) If we expand the product
and examine the contents of d, we find that the w component is equal to
the dot product a · b!

What does this mean geometrically? Remember Euler’s rotation the-
orem: we can rotate from the orientation a into the orientation b via a
single rotation about a carefully chosen axis. This uniquely determined
(up to a reversal of sign) axis and angle are precisely the ones encoded in
d. Remembering the relationship between the w component and the rota-
tion angle θ, we see that a ·b = cos(θ/2), where θ is the amount of rotation
needed to go from the orientation a to the orientation b.

In summary, the quaternion dot product has an interpretation similar to
the vector dot product. The larger the absolute value of the quaternion dot
product a ·b, the more “similar” are the angular displacements represented
by a and b. While the vector dot product gives the cosine of the angle
between vectors, the quaternion dot product gives the cosine of half of the
angle needed to rotate one quaternion into the other. For the purpose of
measuring similarity, usually we are interested only in the absolute value
of a · b, since a · b = −(a · −b), even though b and −b represent the same
angular displacement.

Although direct use of the dot product is infrequent in most video game
code, the dot product is the first step in the calculation of the slerp function,
which we discuss in Section 8.5.12.
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8.5.10 Quaternion log, exp, and Multiplication by a Scalar

This section discusses three operations on quaternions that, although they
are seldom used directly, are the basis for several important quaternion
operations. These operations are the quaternion logarithm, exponential,
and multiplication by a scalar.

First, let us reformulate our definition of a quaternion by introducing a
variable α to equal the half-angle, θ/2:

Defining a quaternion in
terms of the half-angle α

α = θ/2, q =
[

cosα n̂ sinα
]

.

The logarithm of q is defined as

The logarithm of a
quaternion

logq = log
([

cosα n̂ sinα
])

≡
[

0 αn̂
]

.

We use the notation ≡ to mean equal by definition. In general, logq is not
a unit quaternion. Note the similarity between taking the logarithm of a
quaternion, and the exponential map format (see Section 8.4).

The exponential function is defined in the exact opposite manner. First
we define the quaternion p to be of the form [0, αn̂], with n̂ a unit vector:

p =
[

0 αn̂
]

, (‖n̂‖ = 1).

Then the exponential function is defined as

The exponential function
of a quaternion

expp = exp
([

0 αn̂
])

≡
[

cosα n̂ sinα
]

.

Note that, by definition, expp always returns a unit quaternion.
The quaternion logarithm and exponential are related to their scalar

analogs. For any scalar a,
eln a = a.

In the same way, the quaternion exp function is defined to be the inverse
of the quaternion log function:

exp( logq ) = q.

Finally, quaternions can be multiplied by a scalar, with the result com-
puted in the obvious way of multiplying each component by the scalar.
Given a scalar k and a quaternion q,

Multiplying a quaternion
by a scalar

kq = k
[

w v
]

=
[

kw kv
]

.

This will not usually result in a unit quaternion, which is why multiplication
by a scalar is not a very useful operation in the context of representing
angular displacement. (But we will find a use for it in Section 8.5.11.)
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8.5.11 Quaternion Exponentiation

Quaternions can be exponentiated, which means that we can raise a quater-
nion to a scalar power. Quaternion exponentiation, denoted qt, should not
be confused with the exponential function expq. The exponential function
accepts only one argument: a quaternion. Quaternion exponentiation has
two arguments: the quaternion q and the scalar exponent t.

The meaning of quaternion exponentiation is similar to that of real
numbers. Recall that for any scalar a, besides zero, a0 = 1 and a1 = a.
As the exponent t varies from 0 to 1 the value of at varies from 1 to a. A
similar statement holds for quaternion exponentiation: as t varies from 0
to 1 the quaternion exponentiation qt varies from [1,0] to q.

Quaternion exponentiation is useful because it allows us to extract a
“fraction” of an angular displacement. For example, to compute a quater-
nion that represents one third of the angular displacement represented by
the quaternion q, we would compute q1/3.

Exponents outside the [0, 1] range behave mostly as expected—with one
major caveat. For example, q2 represents twice the angular displacement
as q. If q represents a clockwise rotation of 30o about the x-axis, then q2

represents a clockwise rotation of 60o about the x-axis, and q−1/3 represents
a counterclockwise rotation of 10o about the x-axis. Notice in particular
that the inverse notation q−1 can also be interpreted in this context and
the result is the same: the quaternion that performs the opposite rotation.

The caveat we mentioned is this: a quaternion represents angular dis-
placements using the shortest arc. Multiple spins cannot be represented.
Continuing our example above, q8 is not a 240o clockwise rotation about
the x-axis as expected; it is a 120o counterclockwise rotation. Of course,
rotating 240o in one direction produces the same end result as rotating 120o

in the opposite direction, and this is the point: quaternions really capture
only the end result. In general, many of the algebraic identities concerning
exponentiation of scalars, such as (as)t = ast, do not apply to quaternions.

In some situations, we do care about the total amount of rotation, not
just the end result. (The most important example is that of angular veloc-
ity.) In these situations, quaternions are not the correct tool for the job;
use the exponential map (or its cousin, the axis-angle format) instead.

Now that we understand what quaternion exponentiation is used for,
let’s see how it is mathematically defined. Quaternion exponentiation is
defined in terms of the “utility” operations we learned in the previous sec-
tion. The definition is given by

Raising a quaternion to a
powerqt = exp (t logq) . (8.8)

Notice that a similar statement is true regarding exponentiation of a scalar:

at = e(t ln a).
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It is not too difficult to understand why qt interpolates from identity to
q as t varies from 0 to 1. Notice that the log operation essentially converts
the quaternion to exponential map format (except for a factor of 2). Then,
when we perform the scalar multiplication by the exponent t, the effect is to
multiply the angle by t. Finally, the exp “undoes” what the log operation
did, recalculating the new w and v from the exponential vector. At least
this is how it works academically in an equation. Although Equation (8.8)
is the official mathematical definition and works elegantly in theory, direct
translation into code is more complicated than necessary. Listing 8.2 shows
how we could compute the value of qt in C. Essentially, instead of working
with a single exponential-map-like quantity as the formula tells us to, we
break out the axis and half-angle separately.

/ / Quaternion ( inpu t and output )
f l o a t w, x , y , z ;

/ / Input exponent
f l o a t exponent ;

/ / Check f o r the case o f an i d e n t i t y quate rn ion .
/ / Th i s w i l l p r o t e c t a g a i n s t d i v i d e by zero
i f ( f ab s (w) < .9999 f ) {

/ / E x t r a c t the h a l f ang le alpha ( alpha = t h e t a /2)
f l o a t alpha = acos (w) ;

/ / Compute new alpha va lue
f l o a t newAlpha = alpha ∗ exponent ;

/ / Compute new w value
w = cos ( newAlpha ) ;

/ / Compute new xyz va lue s
f l o a t mult = s i n ( newAlpha ) / s i n ( alpha ) ;
x ∗= mult ;
y ∗= mult ;
z ∗= mult ;

}

Listing 8.2
Raising a quaternion to an exponent

There are a few points to notice about this code. First, the check for
the identity quaternion is necessary since a value of w = ±1 would cause
the computation of mult to divide by zero. Raising an identity quaternion
to any power results in the identity quaternion, so if we detect an identity
quaternion on input, we simply ignore the exponent and return the original
quaternion.

Second, when we compute alpha, we use the arccos function, which
always returns a positive angle. This does not create a loss of generality.
Any quaternion can be interpreted as having a positive angle of rotation,
since negative rotation about an axis is the same as positive rotation about
the axis pointing in the opposite direction.
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8.5.12 Quaternion Interpolation, a.k.a. Slerp

The raison d’être of quaternions in games and graphics today is an op-
eration known as slerp, which stands for Spherical Linear interpolation.
The slerp operation is useful because it allows us to smoothly interpolate
between two orientations. Slerp avoids all the problems that plagued inter-
polation of Euler angles (see Section 8.3.4).

Slerp is a ternary operator, meaning it accepts three operands. The
first two operands to slerp are the two quaternions between which we wish
to interpolate. We’ll assign these starting and ending orientations to the
variables q0 and q1, respectively. The interpolation parameter will be as-
signed to the variable t, and as t varies from 0 to 1, the slerp function
slerp(q0,q1, t) returns an orientation that interpolates from q0 to q1.

Let’s see if we can’t derive the slerp formula by using the tools we have
so far. If we were interpolating between two scalar values a0 and a1, we
could use the standard linear interpolation (lerp) formula:

Simple linear
interpolation

∆a = a1 − a0,

lerp(a0, a1, t) = a0 + t∆a.

The standard linear interpolation formula works by starting at a0 and
adding the fraction t of the difference between a1 and a0. This requires
three basic steps:

1. Compute the difference between the two values.

2. Take a fraction of this difference.

3. Take the original value and adjust it by this fraction of the difference.

We can use the same basic idea to interpolate between orientations. (Again,
remember that quaternion multiplication reads right-to-left.)

1. Compute the difference between the two values. We showed how to
do this in Section 8.5.8. The angular displacement from q0 to q1 is
given by

∆q = q1q0
−1.

2. Take a fraction of this difference. To do this, we use quaternion
exponentiation, which we discussed in Section 8.5.11. The fraction of
the difference is given by

(∆q)t.

3. Take the original value and adjust it by this fraction of the difference.
We “adjust” the initial value by composing the angular displacements
via quaternion multiplication:

(∆q)tq0.
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Thus, the equation for slerp is given by

Quaternion slerp in
theory

slerp(q0,q1, t) = (q1q0
−1)tq0.

This algebraic form is how slerp is computed in theory. In practice, we
use a formulation that is mathematically equivalent, but computationally
more efficient. To derive this alternative formula, we start by interpreting
the quaternions as existing in a 4D Euclidian space. Since all of the quater-
nions of interest are unit quaternions, they “live” on the surface of a 4D
hypersphere. The basic idea is to interpolate around the arc that connects
the two quaternions, along the surface of the 4D hypersphere. (Hence the
name spherical linear interpolation.)

We can visualize this in the plane (see Figure 8.11). Imagine two 2D
vectors v0 and v1, both of unit length. We wish to compute the value of vt,
which is the result of smoothly interpolating around the arc by a fraction
t of the distance from v0 to v1. If we let ω13 be the angle intercepted by
the arc from v0 to v1, then vt is the result of rotating v0 around this arc
by an angle of tω.

Figure 8.11
Interpolating a rotation

We can express vt as a linear combination of v0 and v1. In other words,
there exist nonnegative constants k0 and k1 such that vt = k0v0 + k1v1.
We can use elementary geometry to determine the values of k0 and k1.
Figure 8.12 shows how this can be done.

13This is the Greek letter omega, pronounced “oh-MAY-guh.”

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-9&iName=master.img-018.jpg&w=166&h=155
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Figure 8.12
Interpolating a vector about an arc

Applying some trig to the right triangle with k1v1 as the hypotenuse
(and recalling that v1 is a unit vector), we see that

sinω =
sin tω

k1
,

k1 =
sin tω

sinω
.

A similar technique to solve for k0 yields the following result:

k0 =
sin(1− t)ω

sinω
.

Thus, vt can be expressed as

vt = k0v0 + k1v1 =
sin(1− t)ω

sinω
v0 +

sin tω

sinω
v1.

The same basic idea can be extended into quaternion space, and we can
reformulate the slerp as

Quaternion slerp in
practice

slerp(q0,q1, t) =
sin(1− t)ω

sinω
q0 +

sin tω

sinω
q1.

We just need a way to compute ω, the “angle” between the two quater-
nions. As it turns out, an analogy from 2D vector math can be carried into
quaternion space; we can think of the quaternion dot product as returning
cosω.

There are two slight complications. First, the two quaternions q and
−q represent the same orientation, but may produce different results when

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-9&iName=master.img-019.jpg&w=165&h=158
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used as an argument to slerp. This problem doesn’t happen in 2D or 3D,
but the surface of a 4D hypersphere has a different topology than Euclidian
space. The solution is to choose the signs of q0 and q1 such that the dot
product q0 · q1 is nonnegative. This has the effect of always selecting the
shortest rotational arc from q0 to q1. The second complication is that if
q0 and q1 are very close, then ω is very small, and thus sinω is also very
small, which will cause problems with the division. To avoid this, if sinω
is very small, we will use simple linear interpolation. The code snippet in
Listing 8.3 applies all of this advice to compute the quaternion slerp.

/ / The two inpu t qua te rn ions
f l o a t w0, x0 , y0 , z0 ;
f l o a t w1, x1 , y1 , z1 ;

/ / The i n t e r p o l a t i o n parameter
f l o a t t ;

/ / The output quate rn ion w i l l be computed here
f l o a t w, x , y , z ;

/ / Compute the ” cos ine o f the ang le ” between the
/ / quate rn ions , us ing the dot product
f l o a t cosOmega = w0∗w1 + x0∗x1 + y0∗y1 + z0∗z1 ;

/ / I f nega t i ve dot , negate one o f the inpu t
/ / quate rn ions , to take the s h o r t e r 4D ” arc ”
i f ( cosOmega < 0.0 f ) {

w1 = −w1;
x1 = −x1 ;
y1 = −y1 ;
z1 = −z1 ;
cosOmega = −cosOmega ;

}

/ / Check i f they are very c lo se toge the r , to p r o t e c t
/ / a g a i n s t d iv ide−by−zero
f l o a t k0 , k1 ;
i f ( cosOmega > 0.9999 f ) {

/ / Very c lo se − j u s t use l i n e a r i n t e r p o l a t i o n
k0 = 1.0 f−t ;
k1 = t ;

} e l s e {

/ / Compute the s i n o f the ang le us ing the
/ / t r i g i d e n t i t y s i n ˆ 2 ( omega) + cos ˆ 2 ( omega) = 1
f l o a t sinOmega = s q r t ( 1 . 0 f − cosOmega∗cosOmega ) ;

/ / Compute the ang le from i t s s i n e and cos ine
f l o a t omega = atan2 ( sinOmega , cosOmega ) ;

/ / Compute i n v e r s e o f denominator , so we only have
/ / to d i v i d e once
f l o a t oneOverSinOmega = 1.0 f / sinOmega ;

/ / Compute i n t e r p o l a t i o n parameters
k0 = s i n ( ( 1 . 0 f − t ) ∗ omega ) ∗ oneOverSinOmega ;
k1 = s i n ( t ∗ omega ) ∗ oneOverSinOmega ;
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}

/ / I n t e r p o l a t e
w = w0∗k0 + w1∗k1 ;
x = x0∗k0 + x1∗k1 ;
y = y0∗k0 + y1∗k1 ;
z = z0∗k0 + z1∗k1 ;

Listing 8.3
Quaternion slerp

8.5.13 Advantages and Disadvantages of Quaternions

Quaternions offer a number of advantages over other methods of represent-
ing angular displacement:

• Smooth interpolation. The interpolation provided by slerp provides
smooth interpolation between orientations. No other representation
method provides for smooth interpolation.

• Fast concatenation and inversion of angular displacements. We can
concatenate a sequence of angular displacements into a single angular
displacement by using the quaternion cross product. The same oper-
ation using matrices involves more scalar operations, although which
one is actually faster on a given architectures is not so clean-cut:
single instruction multiple data (SIMD) vector operations can make
very quick work of matrix multiplication. The quaternion conjugate
provides a way to compute the opposite angular displacement very
efficiently. This can be done by transposing a rotation matrix, but is
not easy with Euler angles.

• Fast conversion to and from matrix form. As we see in Section 8.7,
quaternions can be converted to and from matrix form a bit faster
than Euler angles.

• Only four numbers. Since a quaternion contains four scalar values,
it is considerably more economical than a matrix, which uses nine
numbers. (However, it still is 33% larger than Euler angles.)

These advantages do come at some cost, however. Quaternions suffer
from a few of the problems that affect matrices, only to a lesser degree:

• Slightly bigger than Euler angles. That one additional number may
not seem like much, but an extra 33% can make a difference when
large amounts of angular displacements are needed, for example, when
storing animation data. And the values inside a quaternion are not
“evenly spaced” along the [−1,+1] interval; the component values do
not interpolate smoothly, even if the orientation does. This makes
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quaternions more difficult to pack into a fixed-point number than
Euler angles or an exponential map.

• Can become invalid. This can happen either through bad input data,
or from accumulated floating point roundoff error. (We can address
this problem by normalizing the quaternion to ensure that it has unit
magnitude.)

• Difficult for humans to work with. Of the three representation meth-
ods, quaternions are the most difficult for humans to work with di-
rectly.

8.5.14 Quaternions as Complex Numbers

We end our discussion on quaternions in the place that most texts begin:
a discussion of their interpretation as complex numbers. If you are inter-
ested in quaternions solely for rotations, you can safely skip this section. If
you want a bit deeper understanding or are interested in the mathematical
heritage of quaternions and the circumstances that surrounded their inven-
tion, this section will be interesting. We will be following an approach due
to John McDonald of DePaul University [45]. Among other things, this
method is able to explain two peculiarities of quaternions: the appearance
of θ/2 rather than θ and the unusual mathematical form qvq−1:

We begin by considering how we can embed the set of real numbers in
the set of 2×2 matrices. For any given scalar a, we associate it with exactly
one 2 × 2 matrix, namely the matrix that has a on both of the diagonal
elements:

Each real scalar maps to
a 2 × 2 matrix a ≡

[

a 0
0 a

]

.

We have chosen a subset of the 2×2 matrices, and established a one-to-one
correspondence between this smaller set of matrices and the set of all real
numbers. We could have established this one-to-one relationship in other
ways, but this particular way of doing it is important because it preserves
all the ordinary algebra laws of addition, subtraction, and multiplication:
the associative property, distributive property, nonfactorability of zero, and
so on. (We can even include division if we treat division as multiplication
by the inverse.) For example,

Addition, subtraction,
and multiplication work

the same

[

a 0
0 a

]

+

[

b 0
0 b

]

=

[

a+ b 0
0 a+ b

]

,

[

a 0
0 a

]

−
[

b 0
0 b

]

=

[

a− b 0
0 a− b

]

,

[

a 0
0 a

] [

b 0
0 b

]

=

[

ab 0
0 ab

]

.
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Now let’s see if we can create a similar mapping for the set of complex
numbers. You probably already have been introduced to complex numbers;
if so, you should remember that the complex pair (a, b) defines the number
a+bi. The number i is a special number such that i2 = −1. It’s often called
the imaginary number because no ordinary scalar (a “real” number) can
have this property. The word “imaginary” gives one the impression that
the number doesn’t really exist; we’re going avoid this term and instead
stick with the more descriptive one: “complex.”

Complex numbers can be added, subtracted, and multiplied. All we
need to do is follow the ordinary rules for arithmetic, and replace i2 with
−1 whenever it appears. This results in the following identities:

Adding, subtracting, and
multiplying complex
numbers

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

(a+ bi)− (c+ di) = (a− c) + (b− d)i,

(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2

= ac+ (ad+ bc)i+ bd(−1)

= (ac− bd) + (ad+ bc)i.

Now, how can we extend our system of embedding numbers in the space
of 2 × 2 matrices to include complex numbers? Before, we only had one
degree of freedom, a, and now we have two, a and b. The mapping we use is

Mapping each complex
number to a 2 × 2 matrix

a+ bi ≡
[

a −b
b a

]

. (8.9)

We can easily verify that the complex number on the left behaves exactly
the same as the matrix on the right. In a certain sense, they are just two
notations for writing the same quantity:

Addition, subtraction,
and multiplication in
standard notation and
our 2 × 2 form

(a+ bi) + (c+ di) ≡
[

a −b
b a

]

+

[

c −d
d c

]

=

[

a+ c −(b+ d)
b+ d a+ c

]

≡ (a+ c) + (b+ d)i,

(a+ bi)− (c+ di) ≡
[

a −b
b a

]

−
[

c −d
d c

]

=

[

a− c −(b− d)
b− d a− c

]

≡ (a− c) + (b− d)i,

(a+ bi)(c+ di) ≡
[

a −b
b a

] [

c −d
d c

]

=

[

ac− bd −(ad+ bc)
ad+ bc ac− bd

]

≡ (ac− bd) + (ad+ bc)i.
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We also verify that the equation i2 = 1 still holds:

i doesn’t seem quite as
“imaginary” in 2 × 2

form

i2 ≡
[

0 −1
1 0

]2

=

[

0 −1
1 0

] [

0 −1
1 0

]

=

[

−1 0
0 −1

]

≡ −1.

Let’s apply the geometric perspective from Chapter 5. Interpreting the
columns14 [0, 1] and [−1, 0] as the basis vectors of a coordinate space, we
see that this matrix performs a 90o rotation.

We can interpret multiplication by i as a 90o rotation.15

There’s nothing “imaginary” about this. Instead of thinking of i as the
square root of −1, think instead of the complex number a+ bi as a mathe-
matical entity with two degrees of freedom that behaves in particular ways
when multiplied. The part we usually call the “real” part, a, is the main
degree of freedom, and b measures some secondary degree of freedom. The
two degrees of freedom are in some sense “orthogonal” to one another.

Continuing this further, we see that we can represent rotations by any
arbitrary angle θ using this scheme. The basic 2×2 rotation matrix derived
in Section 5.1.1 happens to be in this special set of matrices that we are
mapping to the complex numbers. It maps to the complex number cos θ +
i sin θ:

Unit complex numbers
as rotations

cos θ + i sin θ ≡
[

cos θ − sin θ
sin θ cos θ

]

.

Notice how complex conjugation (negating the complex part) corre-
sponds to matrix transposition. This is particularly pleasing. Remember
that the conjugate of a quaternion expresses the inverse angular displace-
ment. A corresponding fact is true for transposing rotation matrices: since
they are orthogonal, their transpose is equal to their inverse.

How do ordinary 2D vectors fit into this scheme? We interpret the
vector [x, y] as the complex number x + iy, and then we can interpret the

14Our usual convention is to use row vectors, but we are going to use column vectors
here because the right-to-left order of rotations matches quaternions more closely.

15Whether the rotation is clockwise or counterclockwise is a matter of convention and
not inherent to complex numbers. In fact, you probably already noticed that we could
have negated the other b in the matrix from Equation (8.9) and still had a valid way to
map the set of complex numbers to 2 × 2 matrices. Our arbitrary choice will become
useful in just a moment.
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multiplication of two complex numbers

(cos θ + i sin θ)(x+ iy) = x cos θ + iy cos θ + ix sin θ + i2y sin θ

= (x cos θ − y sin θ) + i(x sin θ + y cos θ)

as performing a rotation. This is equivalent to the matrix multiplication
[

cos θ − sin θ
sin θ cos θ

] [

x
y

]

=

[

x cos θ − y sin θ
x sin θ + y cos θ

]

.

While this a not much more that mathematical trivia so far, our goal is to
build up some parallels that we can carry forward to quaternions, so let’s
repeat the key result.

In 2D, we can interpret the vector [x, y] as a complex number x + yi and
rotate it by using the complex multiplication (cos θ + i sin θ)(x+ iy).

A similar conversion from ordinary vectors to complex numbers is nec-
essary in order to multiply quaternions and 3D vectors.

Before we leave 2D, let’s summarize what we’ve learned so far. Complex
numbers are mathematical objects with two degrees of freedom that obey
certain rules when we multiply them. These objects are usually written as
a + bi, but can equivalently be written as a 2 × 2 matrix. When we write
complex numbers as matrices, it begs the geometric interpretation of mul-
tiplication by i as a 90o rotation. The rule i2 = −1 has the interpretation
that combining two 90o rotations yields a 180o rotation, and that leaves us
with a warm fuzzy feeling. More generally, any complex number with unit
length can be written as cos θ+ i sin θ and interpreted as a rotation by the
angle θ. If we convert a 2D vector into complex form and multiply it by
cos θ + i sin θ, it has the effect of performing the rotation.

It’s very tempting to extend this trick from 2D into 3D. Tempting,
but alas not possible in the straightforward way. The Irish mathematician
William Hamilton (1805–1865) apparently fell victim to just this tempta-
tion, and had looked for a way to extend complex numbers from 2D to 3D
for years. This new type of complex number, he thought, would have one
real part and two imaginary parts. However, Hamilton was unable to create
a useful type of complex number with two imaginary parts. Then, as the
story goes, in 1843, on his way to a speech at the Royal Irish Academy,
he suddenly realized that three imaginary parts were needed rather than
two. He carved the equations that define the properties of this new type of
complex number on the Broom Bridge. His original marks have faded into
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legend, but a commemorative plaque holds their place. Thus quaternions
were invented.

Since we weren’t on the Broom Bridge in 1843, we can’t say for certain
what made Hamilton realize that a 3D system of complex numbers was
no good, but we can show how such a set could not be easily mapped
to 3 × 3 matrices and rotations. A 3D complex number would have two
complex parts, i and j, with the properties i2 = j2 = −1. (We would
also need to define the values of the products ij and ji. Exactly what
these rules should be, we’re not sure; perhaps Hamilton realized this was
a dead end. In any case, it doesn’t matter for the present discussion.)
Now, a straightforward extension of the ideas from 2D would mean that
we could somehow associate the numbers 1, i, and j with the set of 3 × 3
matrices, such that all the usual algebra laws hold. The number 1 must
obviously map to the 3D identity matrix I3. The number −1 should map
to its negative, −I3, which has −1s on the diagonal. But now we run into
a problem trying to a find matrices for i and j whose square is −I3. We
can quickly see that this is not possible because the determinant of −I3
is −1. To be a root of this matrix, i or j must have a determinant that
is the square root of −1 because the determinant of a matrix product is
the product of the determinants. The only way this can work is for i and
j to contain entries that are complex. In short, there doesn’t seem to be
a coherent system of 3D complex numbers; certainly there isn’t one that
maps elegantly to rotations analogously to standard complex numbers and
2D rotations. For that, we need quaternions.

Quaternions extend the complex number system by having three imag-
inary numbers, i, j, and k, which are related by Hamilton’s famous equa-
tions:

The rules for 4D
complex numbers that
Hamilton wrote on the

Broom Bridge

i2 = j2 = k2 = −1

ij = k, ji = −k,
jk = i, kj = −i,
ki = j, ik = −j.

(8.10)

The quaternion we have been denoting [w, (x, y, z)] corresponds to the com-
plex number w + xi + yj + zk. The definition of the quaternion product
given in Section 8.5.7 follows from these rules. (Also see Exercise 6.) The
dot product, however, basically ignores all of this complex i, j, k business
and treats the operands as simple 4D vectors.

Now we return to matrices. Can we embed the set of quaternions into
the set of matrices such that Hamilton’s rules in Equation (8.10) still hold?
Yes, we can, although, as you might expect, we map them to 4×4 matrices.
Real numbers are mapped to a matrix with the number on each entry of
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the diagonal as before,

a ≡









a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a









,

and the complex quantities are mapped to the matrices

Mapping the three
complex quantities to
4 × 4 matrices

i ≡









0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0









, j ≡









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









, k ≡









0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0









.

(8.11)

We encourage you to convince yourself that these mappings do preserve all
of Hamilton’s rules before moving on.

Combining the above associations, we can map an arbitrary quaternion
to a 4× 4 matrix as

Encoding quaternions as
4 × 4 matricesw + xi+ yj + zk ≡









w −z y x
z w −x y
−y x w z
−x −y −z w









. (8.12)

Once again, we notice how complex conjugation (negating x, y, and z)
corresponds to matrix transposition.

Everything we’ve said so far applies to quaternions of any length. Now
let’s get back to rotations. We can see that the i, j, k matrices in Equa-
tion (8.11) permute and negate axes, so they bear some similarity to 90o

rotations or reflections. Let’s see if we can carry the simple ideas from 2D
forward with these matrices. Notice how the upper left 2× 2 portion of the
k matrix is the same as the very first 2×2 matrix for i; in other words, part
of k is a 90o rotation about z. By analogy with the 2D case, we might rea-
sonably expect the quaternion cos θ + k sin θ to represent a rotation about
the z-axis by an arbitrary angle θ. Let’s multiply it by the vector [1, 0, 0]
and see what happens. As in the 2D case, we need to “promote” the vector
into the complex domain; what’s different here is that quaternions have an
extra number. We’ll map [x, y, z] to the complex number 0 + xi+ yj + zk,
so the vector [1, 0, 0] is simply i. Expanding the multiplication, we have

(cos θ + k sin θ)i = i cos θ + ki sin θ,

= i cos θ + j sin θ,

which corresponds to [cos θ, sin θ, 0], exactly what we would expect when
rotating the x-axis about the z-axis. So far, all is good. Let’s try a slightly
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more general vector [1, 0, 1], which is represented in the complex domain as
i+ k:

(cos θ + k sin θ)(i+ k) = i cos θ + k cos θ + ki sin θ + k2 sin θ

= i cos θ + j sin θ + k cos θ − sin θ. (8.13)

This result does not correspond to a vector at all, since it has a nonzero
value for w. The rotation in the xy-plane worked as expected, but un-
fortunately, the z component did not come out right. There is unwanted
rotation in the zw-hyperplane. This is made perfectly clear by looking at
how (cos θ + k sin θ) is represented as a 4× 4 matrix:

cos θ + k sin θ ≡









cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ









.

The upper-left 2 × 2 rotation matrix is the one we want; the lower-right
2× 2 rotation matrix is not wanted.

Now we are left wondering if maybe we did something wrong. Perhaps
there are other 4× 4 roots of −1 we could use for i, j, and k—alternative
ways that we could embed the quaternion set within the set of 4×4 matrices.
In fact, there are other alternatives, and this is a hint that something is
a bit different from the 2D case. Unfortunately, all of these alternatives
exhibit variations of what is essentially the same behavior we are seeing
here. Perhaps, instead, our problem is that we did the multiplication in the
wrong order. (After all, multiplication of i, j, and k is not commutative.)
Let’s try putting the vector on the left and the rotation quaternion on the
right:

(i+ k)(cos θ + k sin θ) = i cos θ + ik sin θ + k cos θ + k2 sin θ

= i cos θ − j sin θ + k cos θ − sin θ.

Comparing this to Equation (8.13), when the operands were in the opposite
order, we see that the only difference is the sign of the y-coordinate. At first
glance, it looks like this is actually worse. The rotation in the xz-plane that
we want got inverted; now we have a rotation by −θ. Meanwhile, the extra
rotation we didn’t want is exactly the same as before. But perhaps you can
already see the solution. If we use the opposite rotation, which corresponds
to using the conjugate of the quaternion, we fix both problems:

(i+ k)(cos θ − k sin θ) = i cos θ + j sin θ − k cos θ + sin θ.

So, multiplying on the left by (cos θ + k sin θ) produced the rotation we
wanted, plus some extra rotation we didn’t want, and multiplication on
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the right by the conjugate achieved the same rotation that was desired,
with the opposite undesired rotation. If we combine these two steps, the
unwanted rotation is canceled out, and we are left with only the rotation
we want. Well, not quite, we are left with twice the rotation we want, but
this is easily fixed by using θ/2 instead of θ. Of course, we knew that θ/2
would appear somewhere, but now we see the reason. Let’s summarize our
findings from the preceding paragraphs.

To extend the ideas about complex numbers and rotations from 2D to
quaternions, we first convert the vector [x, y, z] to quaternion form as v =
[0, (x, y, z)]. A straightforward approach to rotate the vector by the angle θ
about the axis n̂ would be to create the quaternion q = [cos θ, sin θ n̂] and
then perform the multiplication qv. This, however, does not work; while
the result contains the rotation we want, it also contains an unwanted
rotation into w. The multiplication vq∗ also produces the rotation we
want plus some unwanted rotation, but in this case the unwanted rotation
is exactly opposite of that produced by qv. The solution is to use the half
angle and set q = [cos(θ/2), sin(θ/2) n̂], and the rotation is accomplished by
performing both multiplications: qvq∗. The first rotation rotates halfway
to the goal, plus some unwanted rotation involving w. The second rotation
completes the desired rotation while also canceling the unwanted rotation.

Before we leave this section, let us go back and clear up one last finer
point. We mentioned that there are other ways we could embed the set of
quaternions within the set of 4× 4 matrices. (Equations (8.11) and (8.12)
aren’t the only way to do it.) McDonald [45] explores this idea in more
detail; here we merely want to note that this is another underlying cause
of the need for qvq−1. Using just a single multiplication, the variations in
the embedding would produce variations in the rotated result. When both
multiplications are present, the change from one style to another produces
a change on the left that is exactly canceled by the matching change on the
right.

8.5.15 Summary of Quaternions

Section 8.5 has covered a lot of math, and most of it isn’t important to
remember. The facts that are important to remember about quaternions
are summarized here.
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• Conceptually, a quaternion expresses angular displacement by using
an axis of rotation and an amount of rotation about that axis.

• A quaternion contains a scalar component w and a vector component
v. They are related to the angle of rotation θ and the axis of rotation
n̂ by

w = cos(θ/2), v = n̂ sin(θ/2).

• Every angular displacement in 3D has exactly two different represen-
tations in quaternion space, and they are negatives of each other.

• The identity quaternion, which represents “no angular displacement,”
is [1,0].

• All quaternions that represent angular displacement are “unit quater-
nions” with magnitude equal to 1.

• The conjugate of a quaternion expresses the opposite angular dis-
placement and is computed by negating the vector portion v. The
inverse of a quaternion is the conjugate divided by the magnitude. If
you use quaternions only to describe angular displacement (as we do
in this book), then the conjugate and inverse are equivalent.

• Quaternion multiplication can be used to concatenate multiple rota-
tions into a single angular displacement. In theory, quaternion mul-
tiplication can also be used to perform 3D vector rotations, but this
is of little practical value.

• Quaternion exponentiation can be used to calculate a multiple of an
angular displacement. This always captures the correct end result;
however, since quaternions always take the shortest arc, multiple rev-
olutions cannot be represented.

• Quaternions can be interpreted as 4D complex numbers, which creates
interesting and elegant parallels between mathematics and geometry.

A lot more has been written about quaternions than we have had the
space to discuss here. The technical report by Dam et al [11] is a good
mathematical summary. Kuiper’s book [41] is written from an aerospace
perspective and also does a good job of connecting quaternions and Eu-
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ler angles. Hanson’s modestly titled Visualizing Quaternions [30] analyzes
quaternions using tools from several different disciplines (Riemannian Ge-
ometry, complex numbers, lie algebra, moving frames) and is sprinkled with
interesting engineering and mathematical lore; it also discusses how to vi-
sualize quaternions. A shorter presentation on visualizing quaternions is
given by Hart et al. [31].

8.6 Comparison of Methods

Let’s review the most important discoveries from the previous sections. Ta-
ble 8.1 summarizes the differences among the three representation methods.

Some situations are better suited for one orientation format or another.
The following advice should aid you in selecting the best format:

• Euler angles are easiest for humans to work with. Using Euler angles
greatly simplifies human interaction when specifying the orientation
of objects in the world. This includes direct keyboard entry of an ori-
entation, specifying orientations directly in the code (i.e., positioning
the camera for rendering), and examination in the debugger. This
advantage should not be underestimated. Certainly don’t sacrifice
ease of use in the name of “optimization” until you are certain that
it will make a difference.

• Matrix form must eventually be used if vector coordinate space trans-
formations are needed. However, this doesn’t mean you can’t store
the orientation in another format and then generate a rotation matrix
when you need it. A common strategy is to store the “main copy” of
an orientation in Euler angle or quaternion form, but also to maintain
a matrix for rotations, recomputing this matrix any time the Euler
angles or quaternion change.

• For storage of large numbers of orientations (e.g., animation data),
Euler angles, exponential maps, and quaternions offer various trade-
offs. In general, the components of Euler angles and exponential
maps quantize better than quaternions. It is possible to store a rota-
tion quaternion in only three numbers. Before discarding the fourth
component, we check its sign; if it’s negative, we negate the quater-
nion. Then the discarded component can be recovered by assuming
the quaternion has unit length.

• Reliable quality interpolation can be accomplished only by using
quaternions. Even if you are using a different form, you can always
convert to quaternions, perform the interpolation, and then convert
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• Rotating points between coordinate spaces (object and upright)

◦ Matrix: Possible; can often by highly optimized by SIMD instructions.
◦ Euler Angles: Impossible (must convert to rotation matrix).
◦ Exponential Map: Impossible (must convert to rotation matrix).
◦ Quaternion: On a chalkboard, yes. Practically, in a computer, not really. You might as well

convert to rotation matrix.

• Concatenation of multiple rotations

◦ Matrix: Possible; can often be highly optimized by SIMD instructions. Watch out for matrix
creep.

◦ Euler Angles: Impossible.
◦ Exponential Map: Impossible.
◦ Quaternion: Possible. Fewer scalar operations than matrix multiplication, but maybe not as

easy to take advantage of SIMD instructions. Watch out for error creep.

• Inversion of rotations

◦ Matrix: Easy and fast, using matrix transpose.
◦ Euler Angles: Not easy.
◦ Exponential Map: Easy and fast, using vector negation.
◦ Quaternion: Easy and fast, using quaternion conjugate.

• Interpolation

◦ Matrix: Extremely problematic.
◦ Euler Angles: Possible, but Gimbal lock causes quirkiness.
◦ Exponential Map: Possible, with some singularities, but not as troublesome as Euler angles.
◦ Quaternion: Slerp provides smooth interpolation.

• Direct human interpretation

◦ Matrix: Difficult.
◦ Euler Angles: Easiest.
◦ Exponential Map: Very difficult.
◦ Quaternion: Very difficult.

• Storage efficiency in memory or in a file

◦ Matrix: Nine numbers.
◦ Euler Angles: Three numbers that can be easily quantized.
◦ Exponential Map: Three numbers that can be easily quantized.
◦ Quaternion: Four numbers that do not quantize well; can be reduced to three by assuming

fourth component is always nonnegative and quaternion has unit length.

• Unique representation for a given rotation

◦ Matrix: Yes.
◦ Euler Angles: No, due to aliasing.
◦ Exponential Map: No, due to aliasing, but not as complicated as Euler angles.
◦ Quaternion: Exactly two distinct representations for any angular displacement, and they are

negatives of each other.

• Possible to become invalid

◦ Matrix: Six degrees of redundancy inherent in orthogonal matrix. Matrix creep can occur.
◦ Euler Angles: Any three numbers can be interpreted unambiguously.
◦ Exponential Map: Any three numbers can be interpreted unambiguously.
◦ Quaternion: Error creep can occur.

Table 8.1. Comparison of matrices, Euler angles, exponential maps, and quaternions
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back to the original form. Direct interpolation using exponential maps
might be a viable alternative in some cases, as the points of singular-
ity are at very extreme orientations and in practice are often easily
avoided.

• For angular velocity or any other situation where “extra spins” need
to be represented, use the exponential map or axis-angle.

8.7 Converting between Representations

We have established that different methods of representing orientation are
appropriate in different situations, and have also provided some guidelines
for choosing the most appropriate method. This section discusses how to
convert an angular displacement from one format to another. It is divided
into six subsections:

• Section 8.7.1 shows how to convert Euler angles to a matrix.

• Section 8.7.2 shows how to convert a matrix to Euler angles.

• Section 8.7.3 shows how to convert a quaternion to a matrix.

• Section 8.7.4 shows how to convert a matrix to a quaternion.

• Section 8.7.5 shows how to convert Euler angles to a quaternion.

• Section 8.7.6 shows how to convert a quaternion to Euler angles.

For more on converting between representation forms, see the paper by
James Diebel [13].

8.7.1 Converting Euler Angles to a Matrix

Euler angles define a sequence of three rotations. Each of these three rota-
tions is a simple rotation about a cardinal axis, so each is easy to convert
to matrix form individually. We can compute the matrix that defines the
total angular displacement by concatenating the matrices for each individ-
ual rotation. This exercise is carried out in numerous books and websites.
If you’ve ever tried to use one of these references, you may have been left
wondering, “Exactly what happens if I multiply a vector by this matrix?”
The reason for your confusion is because they forgot to mention whether
the matrix rotates from object space to upright space or from upright space
to object space. In other words, there are actually two different matrices,
not just one. (Of course, they are transposes of each other, so, in a sense,
there really is only one matrix.) This section shows how to compute both.
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Some readers16 might think that we are belaboring the point. Maybe
you figured out how to use that rotation matrix from that book or website,
and now it’s totally obvious to you. But we’ve seen this be a stumbling
block for too many programmers, so we have chosen to dwell on this point.
One common example will illustrate the confusion we’ve seen.

Consider a typical real-time situation with objects moving around. As-
sume that the orientation of each object is maintained in Euler angle format
as a state variable. One of these objects is the camera, and naturally we
use the same system of Euler angles to describe the orientation of the cam-
era as we do for any other object. Now, at some point we are going to
need to communicate those reference frames to the graphics API. This is
where the confusion occurs: the matrix we use to describe the orientation
of the objects is not the same matrix we use to describe the orientation of
the camera! The graphics API needs two types of matrices. (We’ll discuss
them in more detail in Section 10.3.1.) The model transform is a matrix
that transforms vectors from object space to world space. The view trans-
form transforms vectors from world space to the camera’s object space.
The rotation portion of the model transform matrix is an object-to-upright
matrix, but the rotation portion of the view transform matrix is an upright-
to-object matrix. So to speak of the Euler rotation matrix leaves out some
important practical details.

Now to derive the matrices. We start by deriving the object-to-upright
matrix, which rotates points from object space to upright space. We will
be using the simple rotation matrices developed in Section 5.1.2, and those
were developed using the perspective of active transformation (see Sec-
tion 3.3.1 if you don’t remember the difference between activate and passive
transformations). Thus, to visualize the task at hand, imagine an arbitrary
point on our object. The object starts out in the “identity” orientation, and
the body coordinates for our point, which are the coordinates we know, also
happen to be the upright coordinates at this time because the two spaces
are aligned. We perform the sequence of Euler rotations on the object,
and the point moves in space until, after the third rotation, the object has
arrived in the orientation described by the Euler angles. All the while, our
upright coordinate space used to measure the coordinates remains fixed.
So the final result of these calculations is the upright coordinates for the
point in its arbitrary orientation.

There’s one last catch. The elementary rotation matrices that we wish to
use as building blocks each rotate about a cardinal axis. With Euler angles,
the axes of rotation are the body axes, which (after the first rotation) will
be arbitrarily oriented. So instead of doing the Euler rotations about the

16Probably those who already know this stuff. Hey, what are you doing in the kiddie
pool—don’t you have some backflips off the diving board you should be doing right about
now?
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body axes, we do fixed-axis rotations, where the rotations are about the
upright axes. This means we actually do the rotations in the reverse order:
first bank, then pitch, and finally heading. See Section 8.3.2 if you don’t
remember what fixed-axis rotations are.

In summary, the generation of the object-to-upright rotation matrix is
a straightforward concatenation of three simple rotation matrices,

Mobject→upright = BPH,

where B, P, and H are the rotation matrices for bank, pitch, and heading,
which rotate about the z-, x-, and y-axes, respectively. We learned how to
compute these elementary rotation matrices in Section 5.1.2.

Elementary rotation
matrices for bank, pitch,
and heading

B = Rz(b) =





cos b sin b 0
− sin b cos b 0

0 0 1



 ,

P = Rx(p) =





1 0 0
0 cos p sin p
0 − sin p cos p



 ,

H = Ry(h) =





cosh 0 − sinh
0 1 0

sinh 0 cosh



 .

Putting it all together (and leaving out the messy math to actually do
the matrix multiplications), we have

Object-to-upright
rotation matrix from
Euler angles

Mobject→upright = BPH

=





ch cb+ sh sp sb sb cp −sh cb+ ch sp sb
−ch sb+ sh sp cb cb cp sb sh+ ch sp cb

sh cp −sp ch cp



 ,
(8.14)

where we have introduced the shorthand notation

ch = cosh, cp = cos p, cb = cos b,

sh = sinh, sp = sin p, sb = sin b.

To rotate vectors from upright space to object space, we will use the
inverse of this object-to-upright matrix. We know that since a rotation
matrix is orthogonal, the inverse is simply the transpose. However, let’s
verify this.

To visualize the upright-to-object transform, we imagine the undoing
the fixed-axis rotations. We first undo the heading, and then the pitch,
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and finally the bank. As before, the object (and its points) are moving in
space, and we are using upright coordinates to measure everything. The
only difference is that we are starting with upright coordinates this time.
At the end of these rotations, the objects’ body axes are aligned with the
upright axes, and the resulting coordinates are the object-space coordinates:

Upright-to-object
rotation matrix from

Euler angles

Mupright→object = H−1P−1B−1 = Ry(−h) Rx(−p) Rz(−b)

=





ch cb+ sh sp sb −ch sb+ sh sp cb sh cp
sb cp cb cp −sp

−sh cb+ ch sp sb sb sh+ ch sp cb ch cp



 .

(8.15)

When we compare Equations (8.14) and (8.15), we see that the object-
to-upright matrix is indeed the transpose of the upright-to-object matrix,
as expected.

Also notice that we can think of the rotation matrices H−1, P−1, and
B−1 either as the inverse matrices of their counterparts or as regular rota-
tion matrices using the opposite rotation angles.

8.7.2 Converting a Matrix to Euler angles

Converting an angular displacement from matrix form to Euler angle rep-
resentation entails several considerations:

• We must know which rotation the matrix performs: either object-to-
upright, or upright-to-object. This section develops a technique using
the object-to-upright matrix. The process of converting an upright-
to-object matrix to Euler angles is very similar, since the two matrices
are transposes of each other.

• For any given angular displacement, there are an infinite number
of Euler angle representations, due to Euler angle aliasing (see Sec-
tion 8.3.4). The technique we present here always returns canonical
Euler angles, with heading and bank in the range ±180o and pitch in
the range ±90o.

• Some matrices may be ill-formed, and so we must be tolerant of float-
ing point precision errors. Some matrices contain transformations
other than rotation, such as scale, mirroring, or skew. The technique
described here works only on proper rotation matrices, perhaps with
the usual floating point imprecision but nothing grossly out of or-
thogonality. If this technique is used on a non-orthogonal matrix, the
results are unpredictable.
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With those considerations in mind, we set out to solve for the Euler
angles from the rotation matrix (Equation (8.14)) directly. For your con-
venience, the matrix is expanded below:





cosh cos b+ sinh sin p sin b sin b cos p − sinh cos b+ cosh sin p sin b
− cosh sin b+ sinh sin p cos b cos b cos p sin b sinh+ cosh sin p cos b

sinh cos p − sin p cosh cos p



 .

We can solve for p immediately from m32:

m32 = − sin p,

−m32 = sin p,

arcsin(−m32) = p.

The C standard library function asin() returns a value in the range
[−π/2,+π/2] radians, which is [−90o,+90o], exactly the range of values
for pitch allowed in the canonical set.

Now that we know p, we also know cos p. Let us first assume that
cos p 6= 0. Since −90o ≤ p ≤ +90o, this means that cos p > 0. We can
determine sinh and cosh by dividing m13 and m33 by cos p:

m31 = sinh cos p, m33 = cosh cos p,

m31/ cos p = sinh, m33/ cos p = cosh. (8.16)

Once we know the sine and cosine of an angle, we can compute the value
of the angle with the C standard library function atan2(). This function
returns an angle in the range [−π,+π] radians ([−180o,+180o]), which is
again our desired output range. Knowing just the sine or cosine of angle
isn’t enough to uniquely identify an angle that is allowed to take on any
value in this range, which is why we cannot just use asin() or acos().

Substituting the results from Equation (8.16) yields

h = atan2(sinh, cosh) = atan2(m31/ cos p,m33/ cos p).

However, we can actually simplify this because atan2(y,x) works by taking
the arctangent of the quotient y/x, using the signs of the two arguments to
place the angle in the correct quadrant. Since cos p > 0, the divisions do not
affect the signs of x or y, nor do they change the quotient y/x. Omitting
the unnecessary divisions by cos p, heading can be computed more simply
by

h = atan2(m31,m33).
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Bank is computed in a similar manner from m12 and m22:

m12 = sin b cos p,

m12/ cos p = sin b;

m22 = cos b cos p,

m22/ cos p = cos b;

b = atan2(sin b, cos b) = atan2(m12/ cos p,m22/ cos p)

= atan2(m12,m22).

Now we’ve got all three angles. However, if cos p = 0, then we cannot
use the above trick since it would result in division by zero. But notice that
when cos p = 0, then p = ±90o, which means we are either looking straight
up or straight down. This is the Gimbal lock situation, where heading
and bank effectively rotate about the same physical axis (the vertical axis).
In other words, the mathematical and geometric singularities occur at the
same time. In this case, we will arbitrarily assign all rotation about the
vertical axis to heading, and set bank equal to zero. This means that we
know values of pitch and bank, and all we have left is to solve for heading.
If we take the simplifying assumptions

cos p = 0, b = 0, sin b = 0, cos b = 1,

and plug these assumptions into Equation (8.14), we get





cosh cos b+ sinh sin p sin b sin b cos p − sinh cos b+ cosh sin p sin b
− cosh sin b+ sinh sin p cos b cos b cos p sin b sinh+ cosh sin p cos b

sinh cos p − sin p cosh cos p





=





cosh (1) + sinh sin p (0) (0)(0) − sinh (1) + cosh sin p (0)
− cosh (0) + sinh sin p (1) (1)(0) (0) sinh+ cosh sin p (1)

sinh (0) − sin p cosh (0)





=





cosh 0 − sinh
sinh sin p 0 cosh sin p

0 − sin p 0



 .

Now we can compute h from −m13 and m11, which contain the sine and
cosine of heading, respectively.

Listing 8.4 is C code that extracts the Euler angles from an object-to-
upright rotation matrix, using the technique developed above.
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/ / Assume the ma t r i x i s s t o r ed in these v a r i a b l e s :
f l o a t m11,m12,m13;
f l o a t m21,m22,m23;
f l o a t m31,m32,m33;

/ / We w i l l compute the E u l e r ang le va lues in r ad i an s
/ / and s t o r e them here :
f l o a t h , p , b ;

/ / E x t r a c t p i t ch from m32, being c a r e f u l f o r domain e r r o r s with
/ / a s i n ( ) . We could have va lue s s l i g h t l y out o f range due to
/ / f l o a t i n g po in t a r i t h m e t i c .
f l o a t sp = −m32;
i f ( sp <= −1.0 f ) {

p = −1.570796 f ; / / −p i /2
} e l s e i f ( sp >= 1.0 f ) {

p = 1.570796 f ; / / p i /2
} e l s e {

p = as in ( sp ) ;
}

/ / Check f o r the Gimbal lock case , g i v i n g a s l i g h t t o l e r a n c e
/ / f o r numer ica l imp rec i s i on
i f ( f ab s ( sp ) > 0.9999 f ) {

/ / We are look ing s t r a i g h t up or down .
/ / Slam bank to zero and j u s t s e t heading
b = 0.0 f ;
h = atan2(−m13, m11 ) ;

} e l s e {

/ / Compute heading from m13 and m33
h = atan2 (m31, m33 ) ;

/ / Compute bank from m21 and m22
b = atan2 (m12, m22 ) ;

}

Listing 8.4
Extracting Euler angles from an objecttoupright matrix

8.7.3 Converting a Quaternion to a Matrix

We have a few options for converting a quaternion to a rotation matrix. The
more common way is to expand the quaternion multiplication qvq−1. This
produces the correct matrix, but we are left with no real confidence why the
matrix is correct. (We are, however, left with some experience manipulating
quaternions; see Exercise 10.) We take a different option and stick purely
to the geometric interpretation of the components of the quaternion. Since
a quaternion is essentially an encoded version of an axis-angle rotation, we
attempt to construct the matrix from Section 5.1.3, which rotates about an
arbitrary axis:




nx
2 (1− cos θ) + cos θ nxny (1− cos θ) + nz sin θ nxnz (1− cos θ)− ny sin θ

nxny (1− cos θ)− nz sin θ ny
2 (1− cos θ) + cos θ nynz (1− cos θ) + nx sin θ

nxnz (1− cos θ) + ny sin θ nynz (1− cos θ)− nx sin θ nz
2 (1− cos θ) + cos θ



 .
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Unfortunately, this matrix is in terms of n̂ and θ, but the components of
a quaternion are

w = cos(θ/2),

x = nx sin(θ/2),

y = ny sin(θ/2),

z = nz sin(θ/2).

Let’s see if we can’t manipulate the matrix into a form that we can
substitute in w, x, y, and z. We need to do this for all nine elements of
the matrix. Luckily, the matrix has a great deal of structure, and there
are really only two major cases to handle: the diagonal elements, and the
nondiagonal elements.

This is a tricky derivation, and it is not necessary to understand how the
matrix is derived in order to use the matrix. If you’re not interested in the
math, skip to Equation (8.20).

Let’s start with the diagonal elements of the matrix. We work through
m11 here; m22 and m33 can be solved similarly:

m11 = nx
2 (1− cos θ) + cos θ.

We first perform some manipulations that may seem to be a detour. The
purpose of these steps will become apparent in just a moment:

m11 = nx
2 (1− cos θ) + cos θ

= nx
2 − nx

2 cos θ + cos θ

= 1− 1 + nx
2 − nx

2 cos θ + cos θ

= 1− (1− nx
2 + nx

2 cos θ − cos θ)

= 1− (1− cos θ − nx
2 + nx

2 cos θ)

= 1− (1− nx
2)(1− cos θ).

Now we need to get rid of the cos θ term; and we’d like to replace it
with something that contains cos θ/2 or sin θ/2, since the components of
a quaternion contain those terms. As we have done before, let α = θ/2.
We write one of the double-angle formulas for cosine from Section 1.4.5 in
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terms of α, and then substitute in θ:

cos 2α = 1− 2 sin2 α,

cos θ = 1− 2 sin2(θ/2). (8.17)

Substituting for cos θ in Equation (8.17), we have

m11 = 1− (1− nx
2)(1− cos θ)

= 1− (1− nx
2)
(

1−
(

1− 2 sin2(θ/2)
))

= 1− (1− nx
2)
(

2 sin2(θ/2)
)

.

Now we use the fact that since n̂ is a unit vector, nx
2 +ny

2 +nz
2 = 1, and

therefore 1− nx
2 = ny

2 + nz
2:

m11 = 1− (1− nx
2)
(

2 sin2(θ/2)
)

= 1− (ny
2 + nz

2)
(

2 sin2(θ/2)
)

= 1− 2ny
2 sin2(θ/2)− 2nz

2 sin2(θ/2)

= 1− 2y2 − 2z2.

Elements m22 and m33 are derived in a similar fashion. The results are
presented at the end of this section when we give the complete matrix in
Equation (8.20).

Now let’s look at the nondiagonal elements of the matrix; they are easier
than the diagonal elements. We’ll use m12 as an example:

m12 = nxny (1− cos θ) + nz sin θ. (8.18)

We use the reverse of the double-angle formula for sine (see Section 1.4.5):

sin 2α = 2 sinα cosα,

sin θ = 2 sin(θ/2) cos(θ/2). (8.19)

Now we substitute Equations (8.17) and (8.19) into Equation (8.18) and
simplify:

m12 = nxny (1− cos θ) + nz sin θ

= nxny
(

1−
(

1− 2 sin2(θ/2)
))

+ nz (2 sin(θ/2) cos(θ/2))

= nxny
(

2 sin2(θ/2)
)

+ 2nz sin(θ/2) cos(θ/2)

= 2 (nx sin(θ/2)) (ny sin(θ/2)) + 2 cos(θ/2) (nz sin(θ/2))

= 2xy + 2wz.

The other nondiagonal elements are derived in a similar fashion.
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Finally, we present the complete rotation matrix constructed from a
quaternion:

Converting a quaternion
to a 3 × 3 rotation

matrix





1− 2y2 − 2z2 2xy + 2wz 2xz − 2wy
2xy − 2wz 1− 2x2 − 2z2 2yz + 2wx
2xz + 2wy 2yz − 2wx 1− 2x2 − 2y2



 . (8.20)

Other variations can be found in other sources.17 For example m11 =
−1 + 2w2 + 2z2 also works, since w2 + x2 + y2 + z2 = 1. In deference
to Shoemake, who brought quaternions to the attention of the computer
graphics community, we’ve tailored our derivation to produce the version
from his early and authoritative source [62].

8.7.4 Converting a Matrix to a Quaternion

To extract a quaternion from the corresponding rotation matrix, we reverse
engineer Equation (8.20). Examining the sum of the diagonal elements
(known as the trace of the matrix) we get

tr(M) = m11 +m22 +m33

= (1− 2y2 − 2z2) + (1− 2x2 − 2z2) + (1− 2x2 − 2y2)

= 3− 4(x2 + y2 + z2)

= 3− 4(1− w2)

= 4w2 − 1,

and therefore we can compute w by

w =

√
m11 +m22 +m33 + 1

2
.

The other three elements can be computed in a similar way, by negating
two of the three elements in the trace:

m11 −m22 −m33 = (1−2y2−2z2)− (1−2x2−2z2)− (1−2x2−2y2)

= 4x2 − 1, (8.21)

−m11 +m22 −m33 = −(1−2y2−2z2) + (1−2x2−2z2)− (1−2x2−2y2)

= 4y2 − 1, (8.22)

17Including the first edition of this book [16].
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−m11 −m22 +m33 = −(1−2y2−2z2)− (1−2x2−2z2) + (1−2x2−2y2)

= 4z2 − 1, (8.23)

x =

√
m11 −m22 −m33 + 1

2
, (8.24)

y =

√
−m11 +m22 −m33 + 1

2
, (8.25)

z =

√
−m11 −m22 +m33 + 1

2
. (8.26)

Unfortunately, we cannot use this trick for all four components, since
the square root will always yield positive results. (More accurately, we have
no basis for choosing the positive or negative root.) However, since q and
−q represent the same orientation, we can arbitrarily choose to use the
nonnegative root for one of the four components and still always return a
correct quaternion. We just can’t use the above technique for all four values
of the quaternion.

Another line of attack is to examine the sum and difference of diagonally
opposite matrix elements:

m12 +m21 = (2xy + 2wz) + (2xy − 2wz) = 4xy, (8.27)

m12 −m21 = (2xy + 2wz)− (2xy − 2wz) = 4wz, (8.28)

m31 +m13 = (2xz + 2wy) + (2xz − 2wy) = 4xz, (8.29)

m31 −m13 = (2xz + 2wy)− (2xz − 2wy) = 4wy, (8.30)

m23 +m32 = (2yz + 2wx) + (2yz − 2wx) = 4yz, (8.31)

m23 −m32 = (2yz + 2wx)− (2yz − 2wx) = 4wx. (8.32)

Armed with these formulas, we develop a two-step strategy. We first
solve for one of the components from the trace, using one of Equations (8.21)–
(8.26). Then we plug that known value into Equations (8.27)–(8.32) to solve
for the other three. Essentially, this strategy boils down to selecting a row
from Table 8.2 and then solving the equations in that row from left to right.

The only question is, “Which row should we use?” In other words,
which component should we solve for first? The simplest strategy would be
to just pick one arbitrarily and always use the same procedure, but this is
no good. Let’s say we choose to always use the top row, meaning we solve
for w from the trace, and then for x, y, and z with the equations on the right
side of the arrow. But if w = 0, the divisions to follow will be undefined.
Even if w > 0, a small w will produce numeric instability. Shoemake [62]
suggests the strategy of first determining which of w, x, y, and z has the
largest absolute value (which we can do without performing any square
roots), computing that component using the diagonal of the matrix, and
then using it to compute the other three according to Table 8.2.
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w=

√
m11+m22+m33+1

2
=⇒ x=

m23−m32

4w
y=

m31−m13

4w
z=

m12−m21

4w

x=

√
m11−m22−m33+1

2
=⇒ w=

m23−m32

4x
y=

m12+m21

4x
z=

m31+m13

4x

y=

√
−m11+m22−m33+1

2
=⇒ w=

m31−m13

4y
x=

m12+m21

4y
z=

m23+m32

4y

z=

√
−m11−m22+m33+1

2
=⇒ w=

m12−m21

4z
x=

m31+m13

4z
y=

m23+m32

4z

Table 8.2. Extracting a quaternion from a rotation matrix

Listing 8.5 implements this strategy in a straightforward manner.

/ / Input ma t r i x :
f l o a t m11,m12,m13;
f l o a t m21,m22,m23;
f l o a t m31,m32,m33;

/ / Output quate rn ion
f l o a t w, x , y , z ;

/ / Determine which o f w, x , y , or z has the l a r g e s t abso lu t e va lue
f l o a t fourWSquaredMinus1 = m11 + m22 + m33;
f l o a t fourXSquaredMinus1 = m11 − m22 − m33;
f l o a t fourYSquaredMinus1 = m22 − m11 − m33;
f l o a t fourZSquaredMinus1 = m33 − m11 − m22;

i n t b i gg e s t I nd ex = 0;
f l o a t fourBigges tSquaredMinus1 = fourWSquaredMinus1 ;
i f ( fourXSquaredMinus1 > fourBigges tSquaredMinus1 ) {

fourBigges tSquaredMinus1 = fourXSquaredMinus1 ;
b i gg e s t I nd ex = 1;

}
i f ( fourYSquaredMinus1 > fourBigges tSquaredMinus1 ) {

fourBigges tSquaredMinus1 = fourYSquaredMinus1 ;
b i gg e s t I nd ex = 2;

}
i f ( fourZSquaredMinus1 > fourBigges tSquaredMinus1 ) {

fourBigges tSquaredMinus1 = fourZSquaredMinus1 ;
b i gg e s t I nd ex = 3;

}

/ / Perform square roo t and d i v i s i o n
f l o a t b i g g e s t V a l = s q r t ( fourBigges tSquaredMinus1 + 1.0 f ) ∗ 0.5 f ;
f l o a t mult = 0.25 f / b i g g e s t V a l ;

/ / Apply t a b l e to compute quate rn ion va lues
switch ( b i g ge s t I n dex ) {

case 0:
w = b i g g e s t V a l ;
x = (m23 − m32) ∗ mult ;
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y = (m31 − m13) ∗ mult ;
z = (m12 − m21) ∗ mult ;
break ;

case 1:
x = b i g g e s t V a l ;
w = (m23 − m32) ∗ mult ;
y = (m12 + m21) ∗ mult ;
z = (m31 + m13) ∗ mult ;
break ;

case 2:
y = b i g g e s t V a l ;
w = (m31 − m13) ∗ mult ;
x = (m12 + m21) ∗ mult ;
z = (m23 + m32) ∗ mult ;
break ;

case 3:
z = b i g g e s t V a l ;
w = (m12 − m21) ∗ mult ;
x = (m31 + m13) ∗ mult ;
y = (m23 + m32) ∗ mult ;
break ;

}

Listing 8.5
Converting a rotation matrix to a quaternion

8.7.5 Converting Euler Angles to a Quaternion

To convert an angular displacement from Euler angle form to quaternion, we
use a technique similar to the one used in Section 8.7.1 to generate a rotation
matrix from Euler angles. We first convert the three rotations to quaternion
format individually, which is a trivial operation. Then we concatenate these
three quaternions in the proper order. Just as with matrices, there are
two cases to consider: one when we wish to generate an object-to-upright
quaternion, and a second when we want the upright-to-object quaternion.
Since the two are conjugates of each other, we walk through the derivation
only for the object-to-upright quaternion.

As we did in Section 8.7.1, we assign the Euler angles to the variables h,
p, and b. Let h, p, and b be quaternions that perform the rotations about
the y, x, and z-axes, respectively:

h =









cos(h/2)




0
sin(h/2)

0













, p =









cos(p/2)




sin(p/2)
0
0













, b =









cos(b/2)




0
0

sin(b/2)













.

Now we concatenate these in the correct order. We have two sources of
“backwardness,” which cancel each other out. We are using fixed-axis rota-
tions, so the order of rotations actually is bank, pitch, and lastly heading.
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However, quaternion multiplication performs the rotations from right-to-
left (see Section 8.7.1 if you don’t understand the former source of back-
wardness, and Section 8.5.7 for the latter):

Computing the
object-to-upright

quaternion from a set of
Euler angles

qobject→upright(h, p, b) = hpb

=









cos(h/2)




0
sin(h/2)

0





















cos(p/2)




sin(p/2)
0
0





















cos(b/2)




0
0

sin(b/2)













=









cos(h/2) cos(p/2)




cos(h/2) sin(p/2)
sin(h/2) cos(p/2)
− sin(h/2) sin(p/2)





















cos(b/2)




0
0

sin(b/2)













=









cos(h/2) cos(p/2) cos(b/2) + sin(h/2) sin(p/2) sin(b/2)




cos(h/2) sin(p/2) cos(b/2) + sin(h/2) cos(p/2) sin(b/2)
sin(h/2) cos(p/2) cos(b/2)− cos(h/2) sin(p/2) sin(b/2)
cos(h/2) cos(p/2) sin(b/2)− sin(h/2) sin(p/2) cos(b/2)













.

The upright-to-object quaternion is simply the conjugate:

The upright-to-object
quaternion from a set of

Euler angles

qupright→object(h, p, b) = qobject→upright(h, p, b)
∗

=









cos(h/2) cos(p/2) cos(b/2) + sin(h/2) sin(p/2) sin(b/2)




− cos(h/2) sin(p/2) cos(b/2)− sin(h/2) cos(p/2) sin(b/2)
cos(h/2) sin(p/2) sin(b/2)− sin(h/2) cos(p/2) cos(b/2)
sin(h/2) sin(p/2) cos(b/2)− cos(h/2) cos(p/2) sin(b/2)













. (8.33)

8.7.6 Converting a Quaternion to Euler Angles

To extract Euler angles from a quaternion, we could solve for the Euler
angles from Equation (8.33) directly. However, let’s see if we can take ad-
vantage of our work in previous sections and arrive at the answer without
going through so much effort. We’ve already come up with a technique to
extract Euler angles from a matrix in Section 8.7.2. And we showed how
to convert a quaternion to a matrix. So let’s just take our technique for
converting a matrix to Euler angles and plug in our results from Equa-
tion (8.20).
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Our method from Section 8.7.2 for extracting Euler angles from an
object-to-upright matrix is summarized below.

p = arcsin(−m32) (8.34)

h =

{

atan2(m31,m33)

atan2(−m13,m11)

if cos p 6= 0,
otherwise.

(8.35)

b =

{

atan2(m12,m22)

0

if cos p 6= 0,
otherwise.

(8.36)

For convenience, we repeat the needed matrix elements from Equation (8.20):

m11 = 1− 2y2 − 2z2, m12 = 2xy + 2wz, m13 = 2xz − 2wy, (8.37)

m22 = 1− 2x2 − 2z2, (8.38)

m31 = 2xz + 2wy, m32 = 2yz − 2wx, m33 = 1− 2x2 − 2y2.
(8.39)

Substituting Equations (8.37)–(8.39) into Equations (8.34)–(8.36) and sim-
plifying, we have

p = arcsin(−m32)

= arcsin (−2(yz − wx))

h =















































atan2(m31,m33)

= atan2(2xz + 2wy, 1− 2x2 − 2y2) if cos p 6= 0,

= atan2(xz + wy, 1/2− x2 − y2)

atan2(−m13,m11)

= atan2(−2xz + 2wy, 1− 2y2 − 2z2) otherwise.

= atan2(−xz + wy, 1/2− y2 − z2)

b =































atan2(m12,m22)

= atan2(2xy + 2wz, 1− 2x2 − 2z2) if cos p 6= 0,

= atan2(xy + wz, 1/2− x2 − z2)

0 otherwise.

We can translate this directly into code, as shown in Listing 8.6, which
converts an object-to-upright quaternion into Euler angles.
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/ / Input quate rn ion
f l o a t w, x , y , z ;

/ / Output E u l e r ang le s ( r ad i an s )
f l o a t h , p , b ;

/ / E x t r a c t s i n ( p i t ch )
f l o a t sp = −2.0 f ∗ ( y∗z − w∗x ) ;

/ / Check f o r Gimbal lock , g i v i n g s l i g h t t o l e r a n c e
/ / f o r numer ica l imp rec i s i on
i f ( f ab s ( sp ) > 0.9999 f ) {

/ / Looking s t r a i g h t up or down
p = 1.570796 f ∗ sp ; / / p i /2

/ / Compute heading , slam bank to zero
h = atan2(−x∗z + w∗y , 0.5 f − y∗y − z∗z ) ;
b = 0.0 f ;

} e l s e {

/ / Compute ang le s
p = as in ( sp ) ;
h = atan2 ( x∗z + w∗y , 0.5 f − x∗x − y∗y ) ;
b = atan2 ( x∗y + w∗z , 0.5 f − x∗x − z∗z ) ;

}

Listing 8.6
Converting an objecttoupright quaternion to Euler angles

To convert an upright-to-object quaternion to Euler angle format, we
use nearly identical code, only with the x, y, and z values negated, since
we assume the upright-to-object quaternion is the conjugate of the object-
to-upright quaternion.

/ / E x t r a c t s i n ( p i t ch )
f l o a t sp = −2.0 f ∗ ( y∗z + w∗x ) ;

/ / Check f o r Gimbal lock , g i v i n g s l i g h t t o l e r a n c e
/ / f o r numer ica l imp rec i s i on
i f ( f ab s ( sp ) > 0.9999 f ) {

/ / Looking s t r a i g h t up or down
p = 1.570796 f ∗ sp ; / / p i /2

/ / Compute heading , slam bank to zero
h = atan2(−x∗z − w∗y , 0.5 f − y∗y − z∗z ) ;
b = 0.0 f ;

} e l s e {

/ / Compute ang le s
p = as in ( sp ) ;
h = atan2 ( x∗z − w∗y , 0.5 f − x∗x − y∗y ) ;
b = atan2 ( x∗y − w∗z , 0.5 f − x∗x − z∗z ) ;

}

Listing 8.7
Converting an uprighttoobject quaternion to Euler angles
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Figure 8.13
Sample orientations used for Exercises 1, 2, 4, and 5.

8.8 Exercises

(Answers on page 772.)

1. Match each of the rotation matrices below with the corresponding orien-
tation from Figure 8.13. These matrices transform row vectors on the left
from object space to upright space.

(a)





0.707 0.000 0.707
0.707 0.000 −0.707
0.000 1.000 0.000





(b)





1.000 0.000 0.000
0.000 −0.707 0.707
0.000 −0.707 −0.707





http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-9&iName=master.img-025.jpg&w=430&h=286
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(c)





0.061 0.814 0.578
−0.900 0.296 −0.322
−0.433 −0.500 0.750





(d)





−0.713 −0.450 −0.538
0.091 0.702 −0.706
0.696 −0.552 −0.460





(e)





1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000





(f)





−0.707 0.000 0.707
0.500 0.707 0.500
−0.500 0.707 −0.500





2. Match each of the following Euler angle triples with the corresponding
orientation from Figure 8.13, and determine whether the orientation is in
the canonical set of Euler angles. If not, say why not.

(a) h = 180o, p = 45o, b = 180o

(b) h = −135o, p = −45o, b = 0o

(c) h = 0o, p = −90o, b = −45o

(d) h = 123o, p = 33.5o, b = −32.7o

(e) h = 0o, p = 0o, b = 0o

(f) h = 0o, p = 135o, b = 0o

(g) h = −45o, p = −90o, b = 0o

(h) h = 180o, p = −180o, b = 180o

(i) h = −30o, p = 30o, b = 70o

3. (a) Construct a quaternion to rotate 30o about the x-axis.

(b) What is the magnitude of this quaternion?

(c) What is its conjugate?

(d) Assume the quaternion is used to rotate points from object space to
upright space of some object. What is the orientation, in Euler angles,
of this object?

4. Match each of the following quaternions with the corresponding orientation
from Figure 8.13. These quaternions transform vectors from object space
to upright space. (We told you that quaternions are harder for humans to
use! Try converting these to matrix or Euler angle form and take advantage
of your previous work.)

(a)
[

−1.000
(

0.000 0.000 0.000
)]

(b)
[

0.653
(

−0.653 −0.271 −0.271
)]
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(c)
[

0.364
(

−0.106 0.848 −0.372
)]

(d)
[

0.383
(

0.924 0.000 0.000
)]

(e)
[

1.000
(

0.000 0.000 0.000
)]

(f)
[

−0.364
(

0.106 −0.848 0.372
)]

(g)
[

0.354
(

−0.146 −0.853 −0.354
)]

(h)
[

0.726
(

0.061 −0.348 0.590
)]

(i)
[

−0.383
(

−0.924 0.000 0.000
)]

5. Match each of the following axis-angle orientations with the corresponding
orientation from Figure 8.13. (Hint: this can be quite difficult to visualize.
Try converting the axis and angle to quaternion and then using the results
of your previous results. Then see if you can visualize it.)

(a) 98.4o, [−0.863,−0.357,−0.357]

(b) 0o, [0.707,−0.707, 0.000]

(c) 87.0o, [0.089,−0.506, 0.857]

(d) 137o, [−0.114, 0.910, 0.399]

(e) 135o, [1.000, 0.000, 0.000]

(f) 261.6o, [0.863, 0.357, 0.357]

(g) 139o, [−0.156,−0.912,−0.378]

(h) 7200o, [0.000,−1.000, 0.000]

(i) −135o, [−1.000, 0.000, 0.000]

6. Derive the quaternion multiplication formula, by interpreting quaternions
as 4D complex numbers and applying the rules from Equation (8.10).

7. Compute a quaternion that performs twice the rotation of the quaternion
[

0.965
(

0.149 −0.149 0.149
)]

.

8. Consider the quaternions:

a =
[

0.233
(

0.060 −0.257 −0.935
)]

b =
[

−0.752
(

0.286 0.374 0.459
)]

(a) Compute the dot product a · b.

(b) Compute the quaternion product ab.

(c) Compute the difference from a to b.
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9. Prove the statement made in Section 8.5.7: the magnitude of the product
of two quaternions is the product of the magnitudes.

10. Expand the multiplication qvq−1, and verify that the matrix Equation (8.20)
is correct.

11. Make a survey of some game engines and open source code and figure out
the conventions regarding row/column vectors, rotation matrices, and Euler
angles.

I wear a necklace, cause I wanna know when I’m upside down.

— Mitch Hedberg (1968–2005)



Chapter 9

Geometric Primitives

Triangle man, triangle man.
Triangle man hates particle man.
They have a fight, triangle wins.

Triangle man.

— Particle Man (1990) by They Might Be Giants

This chapter is about geometric primitives in general and in specific.

• Section 9.1 discusses some general principles related to representing
geometric primitives.

• Sections 9.2–9.7 cover a number of specific important geometric prim-
itives, including methods for representing those primitives and some
classic properties and operations. Along the way, we’ll present a few
C++ snippets.

9.1 Representation Techniques

Let’s begin with a brief overview of the major strategies for describing
geometric shapes. For any given primitive, one or more of these techniques
may be applicable, and different techniques are useful in different situations.

We can describe an object in implicit form by defining a Boolean func-
tion f(x, y, z) that is true for all points of the primitive and false for all
other points. For example, the equation

Unit sphere in implicit
form

x2 + y2 + z2 = 1

is true for all points on the surface of a unit sphere centered at the origin.
The conic sections are classic examples of implicit representations of geo-
metric shapes that you may already know. A conic section is a 2D shape
formed by the intersection of a cone with a plane. The conic sections are

295



296 9. Geometric Primitives

the circle, ellipse, parabola, and hyperbola, all of which can be described
in the standard implicit form Ax2 +Bxy + Cy2 +D = 0.

Metaballs [7] is an implicit method for representing fluid and organic
shapes. The volume is defined by a collection of fuzzy “balls.” Each ball
defines a three-dimensional scalar density function based on the distance
from the center of the ball, with zero distance being the maximal value and
greater distances having lower values. We can define an aggregate density
function for any arbitrary point in space by taking the sum of the density
of all the balls at that point. The twist with metaballs is that the volume
of the fluid or organic object is defined to be the region where the density
exceeds some nonzero threshold. In other words, the balls have a “fuzzy”
region around them that extends outside of the volume when the ball is in
isolation. When two or more balls come together, the fuzzy regions interfere
constructively, causing a graceful “bond” of solid volume to materialize in
the region in between the balls, where no such solid would exist if either ball
were in isolation. The marching cubes algorithm [43] is a classic technique
for converting an arbitrary implicit form into a surface description (such as
a polygon mesh).

Another general strategy for describing shapes is the parametric form.
Once again, the primitive is defined by a function, but instead of the spatial
coordinates being the input to the function, they are the output. Let’s begin
with a simple 2D example. We define the following two functions of t:

Unit circle in parametric
form

x(t) = cos 2πt, y(t) = sin 2πt.

The argument t is known as the parameter and is independent of the coor-
dinate system used. As t varies from 0 to 1, the point (x(t), y(t)) traces out

Figure 9.1
Parametric circle

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-000.jpg&w=171&h=172
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the outline of the shape we are describing—in this example, a unit circle
centered at the origin (see Figure 9.1).

It is often convenient to normalize the parameter to be in the range
[0, 1], although we may allow t to assume any range of values we wish.
Another common choice is [0, l], where l is some measure of the length of
the primitive.

When our functions are in terms of one parameter, we say that the func-
tions are univariate. Univariate functions trace out a 1D shape: a curve.
(Chapter 13 presents more about parametric curves.) It’s also possible to
use more than one parameter. A bivariate function accepts two parameters,
usually assigned to the variables s and t. Bivariate functions trace out a
surface rather than a line.

We have dubbed the final method for representing primitives, for lack
of a better term, straightforward forms. By this we mean all the ad-hoc
methods that capture the most important and obvious information directly.
For example, to describe a line segment, we could name the two endpoints.
A sphere is described most simply by giving its center and radius. The
straightforward forms are the easiest for humans to work with directly.

Regardless of the method of representation, each geometric primitive has
an inherent number of degrees of freedom. This is the minimum number
of “pieces of information” that are required to describe the entity unam-
biguously. It is interesting to notice that for the same geometric primitive,
some representation forms use more numbers than others. However, we
find that any “extra” numbers are always due to a redundancy in the pa-
rameterization of the primitive, which could be eliminated by assuming the
appropriate constraint, such as a vector having unit length. For example, a
circle in the plane has three degrees of freedom: two for the position of the
center (xc, yc) and one for the radius r. In parametric form these variables
appear directly:

Parametric circle with
arbitrary center and
radiusx(t) = xc + r cos 2πt, y(t) = yc + r sin 2πt.

However, the general conic section equation (the implicit form) is Ax2 +
Bxy + Cy2 + D = 0, which has four coefficients. A general conic section
can be recognized as a circle if it can be manipulated into the form

Implicit circle with
arbitrary center and
radius

(x− xc)
2 + (y − yc)

2 = r2.

9.2 Lines and Rays

Now for some specific types of primitives. We begin with what is perhaps
the most basic and important one of all: the linear segment. Let’s meet
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the three basic types of linear segments, and also clarify some terminology.
In classical geometry, the following definitions are used:

• A line extends infinitely in two directions.

• A line segment is a finite portion of a line that has two endpoints.

• A ray is “half” of a line that has an origin and extends infinitely in
one direction.

In computer science and computational geometry, there are variations
on these definitions. This book uses the classical definitions for line and
line segment. However, the definition of “ray” is altered slightly:

• A ray is a directed line segment.

So to us, a ray will have an origin and an endpoint. Thus a ray defines a
position, a finite length, and (unless the ray has zero length) a direction.
Since a ray is just a line segment where we have differentiated between the
two ends, and a ray also can be used to define an infinite line, rays are of
fundamental importance in computational geometry and graphics and will
be the focus of this section. A ray can be imagined as the result of sweeping
a point through space over time; rays are everywhere in video games. An
obvious example is the rendering strategy known as raytracing, which uses
eponymous rays representing the paths of photons. For AI, we trace “line
of sight” rays through the environment to detect whether an enemy can
see the player. Many user interface tools use raytracing to determine what
object is under the mouse cursor. Bullets and lasers are always whizzing
through the air in video games, and we need rays to determine what they
hit. Figure 9.2 compares the line, line segment, and ray.

Figure 9.2
Line, line
segment,
and ray

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-001.jpg&w=245&h=142
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The remainder of this section surveys different methods for representing
lines and rays in 2D and 3D. Section 9.2.1 discusses some simple ways to
represent a ray, including the all-important parametric form. Section 9.2.2
discusses some special ways to define an infinite line in 2D. Section 9.2.3
gives some examples of converting from one representation to another.

9.2.1 Rays

Figure 9.3
Defining a ray using the starting and ending
points

The most obvious way to define a
ray (the “straightforward form”)
is by two points, the ray origin
and the ray endpoint, which we
will denote as porg and pend (see
Figure 9.3).

The parametric form of the ray
is only slightly different, and is
quite important:

Parametric definition of
a ray using vector
notationp(t) = p0 + td. (9.1)

The ray starts at the point p(0) =
p0. Thus p0 contains information

about the position of the ray, while the “delta vector” d contains its length
and direction. We restrict the parameter t to the normalized range [0, 1],
and so the ray ends at the point p(1) = p0 + d, as shown in Figure 9.4.

Figure 9.4
Defining a ray parametrically

We can also write out a separate scalar function for each coordinate,
although the vector format is more compact and also has the nice property
that it makes the equations the same in any dimension. For example, a 2D
ray is defined parametrically by using the two scalar functions,

Parametric definition of
a 2D ray

x(t) = x0 + t∆x, y(t) = y0 + t∆y.

A slight variation on Equation (9.1) that we use in some of the intersec-

tion tests is to use a unit vector d̂ and change the domain of the parameter
t to [0, l], where l is the length of the ray.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-002.jpg&w=156&h=86
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-003.jpg&w=137&h=81
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9.2.2 Special 2D Representations of Lines

Now let’s look a bit closer at some special ways of describing (infinite) lines.
These methods are applicable only in 2D; in 3D, techniques similar to these
are used to define a plane, as we show in Section 9.5. A 2D ray inherently
has four degrees of freedom (x0, y0, ∆x, and ∆y), but an infinite line has
only two degrees of freedom.

Most readers are probably familiar with the slope-intercept form, which
is an implicit method for representing an infinite line in 2D:

Slope-intercept form y = mx+ y0. (9.2)

Figure 9.5
The slope and yintercept of a line

The symbol m is the traditional one
used to denote the slope of the line, ex-
pressed as a ratio of rise over run: for
every rise units that we move up, we
will move run units to the right (see
Figure 9.5). The y-intercept is where
the line crosses the y-axis, and is the
value that we have denoted y0 in Equa-
tion (9.2). (We’re bucking tradition and
not using the traditional variable, b, in
order to avoid some confusion later on.)
Substituting x = 0 clearly shows that
the line crosses the y-axis at y = y0.

The slope-intercept makes it easy to
verify that an infinite line does, in fact,
have two degrees of freedom: one degree

for rotation and another for translation. Unfortunately, a vertical line has
infinite slope and cannot be represented in slope-intercept form, since the
implicit form of a vertical line is x = k. (Horizontal lines are no problem,
their slope is zero.)

We can work around this singularity by using the slightly different im-
plicit form

Implicit definition of
infinite line in 2D ax+ by = d. (9.3)

Most sources use the form ax+by+d = 0. This flips the sign of d compared
to our equations. We will use the form in Equation (9.3) because it has fewer
terms, and we also feel that d has a more intuitive meaning geometrically
in this form.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-004.jpg&w=128&h=128
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If we assign the vector n = [a, b], we can write Equation (9.3) using
vector notation as

Implicit definition of
infinite 2D line using
vector notation

p · n = d. (9.4)

Figure 9.6
Defining a line using a perpendicular
vector and distance to the origin

Since this form has three degrees of free-
dom, and we said that an infinite line in
2D has only two, we know there is some
redundancy. Note that we can multiply
both sides of the equation by any con-
stant; by so doing, we are free to choose
the length of n without loss of general-
ity. It is often convenient for n to be a
unit vector. This gives n and d interest-
ing geometric interpretations, as shown
in Figure 9.6.

The vector n is the unit vector or-
thogonal to the line, and d gives the
signed distance from the origin to the
line. This distance is measured perpen-
dicular to the line (parallel to n). By
signed distance, we mean that d is pos-
itive if the line is on the same side of the origin as the normal points. As
d increases, the line moves in the direction of n. At least, this is the case
when we put d on the right side of the equals sign, as in Equation (9.4). If
we move d to the left side of the equals sign and put zero on the right side,
as in the traditional form, then the sign of d is flipped and these statements
are reversed.

Notice that n describes the “orientation” of the line, while d describes
its position. Another way to describe the position of the line is to give a
point q that is on the line. Of course there are infinitely many points on
the line, so any point will do (see Figure 9.7).

Figure 9.7
Defining a line using a perpendicular vector
and a point on the line

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-006.jpg&w=128&h=128
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-007.jpg&w=127&h=127
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One final way to define a line is as the perpendicular bisector of two
points, to which we assign the variables q and r (see Figure 9.8). This
is actually one of the earliest definitions of a line: the set of all points
equidistant from two given points.

Figure 9.8
Defining a line as the perpendicular bisector of a
line segment

9.2.3 Converting between Representations

Now let’s give a few examples of how to convert a ray or line between the
various representation techniques. We will not cover all of the combinations.
Remember that the techniques we learned for infinite lines are applicable
only in 2D.

To convert a ray defined using two points to parametric form:

p0 = porg, d = pend − porg.

The opposite conversion, from parametric form to two-points form, is

porg = p0, pend = p0 + d.

Given a parametric ray, we can compute the implicit line that contains
this ray:

a = dy, b = −dx, d = xorgdy − yorgdx. (9.5)

To convert a line expressed implicitly to slope-intercept form:

m = −a/b, y0 = d/b. (9.6)

Converting a line expressed implicitly to “normal and distance” form:

n̂ =
[

a b
]

/
√

a2 + b2, distance = d/
√

a2 + b2.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-008.jpg&w=108&h=118
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Converting a normal and a point on the line to normal and distance
form:

distance = n̂ · q.

(This assumes that n̂ is a unit vector.)
Finally, to convert perpendicular bisector form to implicit form, we use

a = qy − ry,

b = rx − qx,

d =
q+ r

2
·
[

a b
]

=
q+ r

2
·
[

qy − ry rx − qx
]

=
(qx + rx)(qy − ry) + (qy + ry)(rx − qx)

2

=
(qxqy − qxry + rxqy − rxry) + (qyrx − qyqx + ryrx − ryqx)

2
= rxqy − qxry.

9.3 Spheres and Circles

A sphere is a 3D object defined as the set of all points that are a fixed
distance from a given point. The distance from the center of the sphere to
a point is known as the radius of the sphere. The straightforward repre-
sentation of a sphere is to describe its center c and radius r.

Spheres appear often in computational geometry and graphics because
of their simplicity. A bounding sphere is often used for trivial rejection
because the equations for intersection with a sphere are simple. Also im-
portant is that rotating a sphere does not change its extents. Thus, when
a bounding sphere is used for trivial rejection, if the center of the sphere is
the origin of the object, then the orientation of the object can be ignored.
A bounding box (see Section 9.4) does not have this property.

The implicit form of a sphere comes directly from its definition: the set
of all points that are a given distance from the center. The implicit form
of a sphere with center c and radius r is

Implicit definition of a
sphere using vector
notation

‖p− c‖ = r, (9.7)

where p is any point on the surface of the sphere. For a point p inside the
sphere to satisfy the equation, we must change the “=” to a “≤”. Since
Equation (9.7) uses vector notation, it also works in 2D, as the implicit
definition of a circle. Another more common form is to expand the vector
notation and square both sides:
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Implicit definitions of a
circle and a sphere

(x− cx)
2 + (y − cy)

2 = r2 (2D circle) (9.8)

(x− cx)
2 + (y − cy)

2 + (z − cz)
2 = r2 (3D sphere) (9.9)

We might be interested in the diameter (distance from one point to a
point on the exact opposite side), and circumference (the distance all the
way around the circle) of a circle or sphere. Elementary geometry provides
formulas for those quantities, as well as for the area of a circle, surface area
of a sphere, and volume of a sphere:

D = 2r (diameter)

C = 2πr = πD (circumference)

A = πr2 (area of circle)

S = 4πr2 (surface area of sphere)

V =
4

3
πr3 (volume of sphere)

For the calculus buffs, it is interesting to notice that the derivative of
the area of a circle with respect to r is the circumference, and the derivative
for the volume of a sphere is the surface area.

9.4 Bounding Boxes

Another simple geometric primitive commonly used as a bounding volume
is the bounding box. Bounding boxes may be either axially aligned, or
arbitrarily oriented. Axially aligned bounding boxes have the restriction
that their sides be perpendicular to principal axes. The acronym AABB is
often used for axially aligned bounding box.

A 3D AABB is a simple 6-sided box with each side parallel to one of
the cardinal planes. The box is not necessarily a cube—the length, width,
and height of the box may each be different. Figure 9.9 shows a few simple
3D objects and their axially aligned bounding boxes.

Another frequently used acronym is OBB, which stands for oriented
bounding box. We don’t discuss OBBs much in this section, for two reasons.
First, axially aligned bounding boxes are simpler to create and use. But
more important, you can think about an OBB as simply an AABB with
an orientation; every bounding box is an AABB in some coordinate space;
in fact any one with axes perpendicular to the sides of the box will do. In
other words, the difference between an AABB and an OBB is not in the
box itself, but in whether you are performing calculations in a coordinate
space aligned with the bounding box.
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Figure 9.9. 3D objects and their AABB’s

As an example, let’s say that for objects in our world, we store the
AABB of the object in the objects’ object space. When performing opera-
tions in object space, this bounding box is an AABB. But when performing
calculations in world (or upright) space, then this same bounding box is an
OBB, since it may be “at an angle” relative to the world axes.

Although this section focuses on 3D AABBs, most of the information
can be applied in a straightforward manner in 2D by simply dropping the
third dimension.

The next four sections cover the basic properties of AABBs. Sec-
tion 9.4.1 introduces the notation we use and describes the options we have
for representing an AABB. Section 9.4.2 shows how to compute the AABB
for a set of points. Section 9.4.3 compares AABBs to bounding spheres.
Section 9.4.4 shows how to construct an AABB for a transformed AABB.

9.4.1 Representing AABBs

Let us introduce several important properties of an AABB, and the notation
we use when referring to these values. The points inside an AABB satisfy
the inequalities

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax.

Two corner points of special significance are

pmin =
[

xmin ymin zmin

]

, pmax =
[

xmax ymax zmax

]

.

The center point c is given by

c = (pmin + pmax)/2.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-009.jpg&w=280&h=126
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The “size vector” s is the vector from pmin to pmax and contains the
width, height, and length of the box:

s = pmax − pmin.

We can also refer to the “radius vector” r of the box, which is half of
the size vector s, and can be interpreted as the vector from c to pmax:

r = pmax − c = s/2.

To unambiguously define an AABB requires only two of the five vectors
pmin, pmax, c, s, and r. Other than the pair s and r, any pair may be
used. Some representation forms are more useful in particular situations
than others. We advise representing a bounding box by using pmin and
pmax, since in practice these values are needed far more frequently than s,
c, and r. And, of course, computing any of these three vectors from pmin

and pmax is very fast. In C, an AABB might be represented by using a
struct like in Listing 9.1.

s t r u c t AABB3 {
Vector3 min ;
Vector3 max ;

} ;

Listing 9.1
The most straightforward way to describe an AABB

9.4.2 Computing AABBs

Computing an AABB for a set of points is a simple process. We first reset
the minimum and maximum values to “infinity,” or what is effectively bigger
than any number we will encounter in practice. Then, we pass through the
list of points, expanding our box as necessary to contain each point.

void AABB3 : : empty ( ) {
min . x = min . y = min . z = FLT MAX ;
max . x = max . y = max . z = −FLT MAX ;

}

void AABB3 : : add ( const Vector3 &p ) {
i f ( p . x < min . x ) min . x = p . x ;
i f ( p . x > max . x ) max . x = p . x ;
i f ( p . y < min . x ) min . y = p . y ;
i f ( p . y > max . x ) max . y = p . y ;
i f ( p . z < min . x ) min . z = p . z ;
i f ( p . z > max . x ) max . z = p . z ;

}

Listing 9.2
Two helpful AABB functions
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An AABB class often defines two functions to help with this. The
first function “empties” the AABB. The other function adds a single point
into the AABB by expanding the AABB if necessary to contain the point.
Listing 9.2 shows such code.

Now, to create a bounding box from a set of points, we could use the
following code:

/ / Our l i s t o f p o i n t s
const i n t N;
Vector3 l i s t [N] ;

/ / F i r s t , empty the box
AABB3 box ;
box . empty ( ) ;

/ / Add each po in t i n t o the box
f o r ( i n t i = 0 ; i < N ; ++ i ) {

box . add ( l i s t [ i ] ) ;
}

Listing 9.3
Computing the AABB for a set of points

9.4.3 AABBs versus Bounding Spheres

In many cases, we have a choice between using an AABB or a bounding
sphere. AABBs offer two main advantages over bounding spheres.

The first advantage of AABBs over bounding spheres is that computing
the optimal AABB for a set of points is easy to program and can be run
in linear time. Computing the optimal bounding sphere is a much more
difficult problem. (O’Rourke [52] and Lengyel [42] describe algorithms for
computing bounding spheres.)

Second, for many objects that arise in practice, an AABB provides a
tighter bounding volume, and thus better trivial rejection. Of course, for
some objects, the bounding sphere is better. (Imagine an object that is
itself a sphere!) In the worst case, an AABB will have a volume of just
under twice the volume of the sphere, but when a sphere is bad, it can be
really bad. Consider the bounding sphere and AABB of a telephone pole,
for example.

The basic problem with a sphere is that there is only one degree of
freedom to its shape—the radius of the sphere. An AABB has three degrees
of freedom—the length, width, and height. Thus, it can usually adapt to
differently shaped objects better. For most of the objects in Figure 9.10, the
AABB is smaller than the bounding sphere. The exception is the star in the
upper right-hand corner, where the bounding sphere is slightly smaller than
the AABB. Notice that the AABB is highly sensitive to the orientation of
the object, as shown by the AABBs for the two rifles on the bottom. In each
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Figure 9.10
The AABB and
bounding sphere for
various objects

case, the size of the rifle is the same, and only the orientation is different.
Also notice that the bounding spheres are the same size since bounding
spheres are not sensitive to the orientation of the object. When the objects
are free to rotate, some of the advantage of AABBs can be eroded. There
is an inherent trade-off between a tighter volume (OBB) and a compact,
fast representation (bounding spheres). Which bounding primitive is best
will depend highly on the application.

9.4.4 Transforming AABBs

Sometimes we need to transform an AABB from one coordinate space to
another. For example, let’s say that we have the AABB in object space
(which, from the perspective of world space, is basically the same thing as
an OBB; see Section 9.4) and we want to get an AABB in world space.
Of course, in theory, we could compute a world-space AABB of the object
itself. However, we assume that the description of the object shape (perhaps
a triangle mesh with a thousand vertices) is more complicated than the
AABB that we already have computed in object space. So to get an AABB
in world space, we will transform the object-space AABB.

What we get as a result is not necessarily axially aligned (if the object
is rotated), and is not necessarily a box (if the object is skewed). However,
computing an AABB for the “transformed AABB” (we should perhaps
call it a NNAABNNB—a “not-necessarily axially aligned bounding not-
necessarily box”) is faster than computing a new AABB for all but the
most simple transformed objects because AABBs have only eight vertices.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-010.jpg&w=213&h=192
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To compute an AABB for a transformed AABB it is not enough to
simply transform the original pmin and pmax. This could result in a bogus
bounding box, for example, if xmin > xmax. To compute a new AABB,
we must transform the eight corner points, and then form an AABB from
these eight transformed points.

Depending on the transformation, this usually results in a bounding
box that is larger than the original bounding box. For example, in 2D, a
rotation of 45 degrees will increase the size of the bounding box significantly
(see Figure 9.11).

Figure 9.11
The AABB of a
transformed box

Compare the size of the original AABB in Figure 9.11 (the blue box),
with the new AABB (the largest red box on the right) which was computed
solely from the rotated AABB. The new AABB is almost twice as big.
Notice that if we were able to compute an AABB from the rotated object
rather than the rotated AABB, it is about the same size as the original
AABB.

As it turns out, the structure of an AABB can be exploited to speed up
the generation of the new AABB, so it is not necessary to actually transform
all eight corner points and build a new AABB from these points.

Let’s quickly review what happens when we transform a 3D point by
a 3 × 3 matrix (see Section 4.1.7 if you have forgotten how to multiply a
vector by a matrix):

[

x′ y′ z′
]

=
[

x y z
]





m11 m12 m13

m21 m22 m23

m31 m32 m33



;

x′ = m11x+m21y +m31z,

y′ = m12x+m22y +m32z,

z′ = m13x+m23y +m33z.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-011.jpg&w=205&h=133
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Assume the original bounding box is in xmin, xmax, ymin, etc., and
the new bounding box will be computed into x′min, x

′
max, y

′
min, etc. Let’s

examine how we might more quickly compute x′min as an example. In other
words, we wish to find the minimum value of

m11x+m21y +m31z,

where [x, y, z] is any of the original eight corner points. Our job is to figure
out which of these corner points would have the smallest x value after
transformation. The trick to minimizing the entire sum is to minimize
each of the three products individually. Let’s look at the first product,
m11x. We must decide which of xmin or xmax to substitute for x in order
to minimize the product. Obviously, if m11 > 0, then the smaller of the
two, xmin, will result in the smaller product. Conversely, if m11 < 0, then
xmax gives smaller product. Conveniently, whichever of xmin or xmax we
use for computing x′min, we use the other value for computing x′max. We
then apply this process for each of the nine elements in the matrix.

This technique is illustrated in Listing 9.4. The class Matrix4x3 is a
4 × 3 transform matrix, which can represent any affine transform. (It’s
a 4 × 4 matrix that acts on row vectors, where the right-most column is
assumed to be [0, 0, 0, 1]T.)

void AABB3 : : setToTransformedBox ( const AABB3 &box , const Matrix4x3 &m) {

/ / S t a r t wi th the l a s t row of the mat r i x , which i s the t r a n s l a t i o n
/ / por t ion , i . e . the l o c a t i o n o f the o r i g i n a f t e r t r a n s f o r m a t i o n .
min = max = g e t T r a n s l a t i o n (m) ;

/ /
/ / Examine each of the 9 ma t r i x e lements
/ / and compute the new AABB
/ /

i f (m.m11 > 0.0 f ) {
min . x += m.m11 ∗ box . min . x ; max . x += m.m11 ∗ box . max . x ;

} e l s e {
min . x += m.m11 ∗ box . max . x ; max . x += m.m11 ∗ box . min . x ;

}

i f (m.m12 > 0.0 f ) {
min . y += m.m12 ∗ box . min . x ; max . y += m.m12 ∗ box . max . x ;

} e l s e {
min . y += m.m12 ∗ box . max . x ; max . y += m.m12 ∗ box . min . x ;

}

i f (m.m13 > 0.0 f ) {
min . z += m.m13 ∗ box . min . x ; max . z += m.m13 ∗ box . max . x ;

} e l s e {
min . z += m.m13 ∗ box . max . x ; max . z += m.m13 ∗ box . min . x ;

}

i f (m.m21 > 0.0 f ) {
min . x += m.m21 ∗ box . min . y ; max . x += m.m21 ∗ box . max . y ;

} e l s e {
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min . x += m.m21 ∗ box . max . y ; max . x += m.m21 ∗ box . min . y ;
}

i f (m.m22 > 0.0 f ) {
min . y += m.m22 ∗ box . min . y ; max . y += m.m22 ∗ box . max . y ;

} e l s e {
min . y += m.m22 ∗ box . max . y ; max . y += m.m22 ∗ box . min . y ;

}

i f (m.m23 > 0.0 f ) {
min . z += m.m23 ∗ box . min . y ; max . z += m.m23 ∗ box . max . y ;

} e l s e {
min . z += m.m23 ∗ box . max . y ; max . z += m.m23 ∗ box . min . y ;

}

i f (m.m31 > 0.0 f ) {
min . x += m.m31 ∗ box . min . z ; max . x += m.m31 ∗ box . max . z ;

} e l s e {
min . x += m.m31 ∗ box . max . z ; max . x += m.m31 ∗ box . min . z ;

}

i f (m.m32 > 0.0 f ) {
min . y += m.m32 ∗ box . min . z ; max . y += m.m32 ∗ box . max . z ;

} e l s e {
min . y += m.m32 ∗ box . max . z ; max . y += m.m32 ∗ box . min . z ;

}

i f (m.m33 > 0.0 f ) {
min . z += m.m33 ∗ box . min . z ; max . z += m.m33 ∗ box . max . z ;

} e l s e {
min . z += m.m33 ∗ box . max . z ; max . z += m.m33 ∗ box . min . z ;

}
}

Listing 9.4
Computing a transformed AABB

9.5 Planes

A plane is a flat, 2D subspace of 3D. Planes are extremely common tools
in video games, and the concepts in this section are especially useful. The
definition of a plane that Euclid would probably recognize is similar to
the perpendicular bisector definition of an infinite line in 2D: the set of
all points that are equidistant from two given points. This similarity in
definitions hints at the fact that planes in 3D share many properties with
infinite lines in 2D. For example, they both subdivide the space into two
“half-spaces.”

This section covers the fundamental properties of planes. Section 9.5.1
shows how to define a plane implicitly with the plane equation. Section 9.5.2
shows how three points may be used to define a plane. Section 9.5.3 de-
scribes how to find the “best-fit” plane for a set of points that may not be
exactly planar. Section 9.5.4 describes how to compute the distance from
a point to a plane.
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9.5.1 The Plane Equation: An Implicit Definition of a Plane

We can represent planes using techniques similar to the ones we used to
describe infinite 2D lines in Section 9.2.2. The implicit form of a plane is
given by all points p = (x, y, z) that satisfy the plane equation:

The plane equation ax+ by + cz = d (scalar notation),

p · n = d (vector notation). (9.10)

Note that in the vector form, n = [a, b, c]. Once we know n, we can compute
d from any point known to be in the plane.

Most sources give the plane equation as ax+ by+ cz+ d = 0. This has the
effect of flipping the sign of d. Our comments in Section 9.2.2 explaining
our preference to put d on the left side of the equals sign also apply here:
our experience is that this form results in fewer terms and minus signs and
a more intuitive geometric interpretation for d.

The vector n is called the plane normal because it is perpendicular
(normal) to the plane. Although n is often normalized to unit length, this
is not strictly necessary. We use a hat (n̂) when we are assuming unit
length. The normal determines the orientation of the plane; d defines its
position. More specifically, it determines the signed distance to the plane
from the origin, measured in the direction of the normal. Increasing d slides
the plane forward, in the direction of the normal. If d > 0, the origin is
on the back side of the plane, and if d < 0, the origin is on the front side.
(This assumes we put d on the right-hand side of the equals sign, as in
Equation (9.10). The standard homogenous form with d on the left has the
opposite sign conventions.)

Let’s verify that n is perpendicular to the plane. Assume p and q

are arbitrary points in the plane, and therefore satisfy the plane equation.
Substituting p and q into Equation (9.10), we get

n · p = d,

n · q = d,

n · p = n · q,
n · p− n · q = 0,

n · (p− q) = 0. (9.11)
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Figure 9.12
The front and back sides of a plane

The geometric implication of Equa-
tion (9.11) is that n is perpendicular to
the vector from q to p (see Section 2.11).
This is true for any points p and q in the
plane, and therefore n is perpendicular
to every vector in the plane.

We often consider a plane as having
a “front” side and a “back” side. Usu-
ally, the front side of the plane is the di-
rection that n points; i.e. when looking
from the head of n towards the tail, we
are looking at the front side of the plane
(see Figure 9.12).

As mentioned previously, it’s often
useful to restrict n to have unit length. We can do this without loss of
generality, since we can multiply the entire plane equation by any constant.

9.5.2 Defining a Plane by Using Three Points

Another way we can define a plane is to give three noncollinear points that
lie in the plane. Collinear points (points in a straight line) won’t work
because there would be an infinite number of planes that contain that line,
and there would be no way of telling which plane we meant.

Let’s compute n and d from three points p1, p2, and p3 known to be
in the plane. First, we must compute n. Which way will n point? The
standard way to do this in a left-handed coordinate system is to assume
that p1, p2, and p3 are listed in clockwise order, when viewed from the
front side of the plane, as illustrated in Figure 9.13. (In a right-handed
coordinate system, we usually assume the points are listed in counterclock-
wise order. Under these conventions, the equations are the same no matter
what coordinate system is used.)

Figure 9.13
Computing a plane normal from
three points in the plane

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-013.jpg&w=124&h=117
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-014.jpg&w=175&h=121
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We will construct two vectors according to the clockwise ordering. The
notation e stands for “edge” vector, since these equations commonly arise
when computing the plane equation for a triangle. (The indexing may
seem weird, but bear with us—this is the indexing we’ll use in Section 9.6.1
where triangles are discussed in more detail.) The cross product of these two
vectors yields the perpendicular vector n, but this vector is not necessarily
of unit length. As mentioned earlier, we usually normalize n. All of this is
summarized succinctly by

The normal of a plane
containing three points

e3 = p2 − p1, e1 = p3 − p2, n̂ =
e3 × e1

‖e3 × e1‖
. (9.12)

Notice that if the points are collinear, then e3 and e1 will be parallel, and
thus the cross product will be 0, which cannot be normalized. This math-
ematical singularity coincides with the physical singularity that collinear
points do not unambiguously define a plane.

Now that we know n̂, all that is left to do is compute d. This is easily
done by taking the dot product of one of the points and n̂.

9.5.3 “Best Fit” Plane for More than Three Points

Occasionally, we may wish to compute the plane equation for a set of more
than three points. The most common example of such a set of points
is the vertices of a polygon. In this case, the vertices are assumed to
be enumerated in a clockwise fashion around the polygon. (The ordering
matters because it is how we decide which side is the front and which is the
back, which in turn determines which direction our normal will point.)

One näıve solution is to arbitrarily select three consecutive points and
compute the plane equation from those three points. However, the three
points we choose might be collinear, or nearly collinear, which is almost
as bad because it is numerically inaccurate. Or perhaps the polygon is
concave and the three points we have chosen are a point of concavity and
therefore form a counterclockwise turn (which would result in a normal
that points in the wrong direction). Or the vertices of the polygon may not
be coplanar, which can happen due to numeric imprecision or the method
used to generate the polygon. What we really want is a way to compute
the “best fit” plane for a set of points that takes into account all of the
points. Given n points,

p1 =
[

x1 y1 z1
]

,

p2 =
[

x2 y2 z2
]

,

...
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pn−1 =
[

xn−1 yn−1 zn−1

]

,

pn =
[

xn yn zn
]

,

the best fit perpendicular vector n is given by

Computing the best-fit
plane normal from n
points

nx =(z1 + z2)(y1 − y2) + (z2 + z3)(y2 − y3) + · · ·
· · ·+ (zn−1 + zn)(yn−1 − yn) + (zn + z1)(yn − y1),

ny =(x1 + x2)(z1 − z2) + (x2 + x3)(z2 − z3) + · · ·
· · ·+ (xn−1 + xn)(zn−1 − zn) + (xn + x1)(zn − z1),

nz =(y1 + y2)(x1 − x2) + (y2 + y3)(x2 − x3) + · · ·
· · ·+ (yn−1 + yn)(xn−1 − xn) + (yn + y1)(xn − x1).

(9.13)

This vector must then be normalized if we wish to enforce the restriction
that n be of unit length.

We can express Equation (9.13) succinctly by using summation notation.
Adopting a circular indexing scheme such that pn+1 ≡ p1, we can write

nx =
n
∑

i=1

(zi + zi+1)(yi − yi+1),

ny =
n
∑

i=1

(xi + xi+1)(zi − zi+1),

nz =
n
∑

i=1

(yi + yi+1)(xi − xi+1).

Listing 9.5 illustrates how we might compute a best-fit plane normal for
a set of points.

Vector3 computeBestFi tNormal ( const Vector3 v [ ] , i n t n ) {

/ / Zero out sum
Vector3 r e s u l t = kZeroVector ;

/ / S t a r t wi th the ‘ ‘ p rev ious ’ ’ v e r t e x as the l a s t one .
/ / Th i s avo ids an i f−s ta tement i n the loop
const Vector3 ∗p = &v [ n−1];

/ / I t e r a t e through the v e r t i c e s
f o r ( i n t i = 0 ; i < n ; ++ i ) {

/ / Get s h o r t c u t to the ‘ ‘ c u r r e n t ’ ’ v e r t e x
const Vector3 ∗c = &v [ i ] ;

/ / Add in edge vec to r products a p p r o p r i a t e l y
r e s u l t . x += ( p−>z + c−>z ) ∗ ( p−>y − c−>y ) ;
r e s u l t . y += ( p−>x + c−>x ) ∗ ( p−>z − c−>z ) ;
r e s u l t . z += ( p−>y + c−>y ) ∗ ( p−>x − c−>x ) ;
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/ / Next ve r t ex , p l ea se
p = c ;

}

/ / Normalize the r e s u l t and r e t u r n i t
r e s u l t . normal ize ( ) ;
re turn r e s u l t ;

}

Listing 9.5
Computing the bestfit plane normal for a set of points

The best-fit d value can be computed as the average of the d values for
each point:

Computing the best-fit
plane d value

d =
1

n

n
∑

i=1

(pi · n) =
1

n

(

n
∑

i=1

pi

)

· n.

9.5.4 Distance from Point to Plane

It is often the case that we have a plane and a point q that is not in the
plane, and we want to calculate the distance from the plane to q, or at
least classify q as being on the front or back side of the plane. To do this,
we imagine the point p that lies in the plane and is the closest point in the
plane to q. Clearly, the vector from p to q is perpendicular to the plane,
and thus is of the form an, as shown in Figure 9.14.

Figure 9.14
Computing the
distance between a
point and a plane

If we assume the plane normal n̂ is a unit vector, then the distance
from p to q (and thus the distance from the plane to q) is simply a. This
is a signed distance, which means that it will be negative when q is on the
back side of the plane. What’s surprising is that we can compute a without
knowing the location of p. We go back to our original definition of q and
then perform some vector algebra to eliminate p:

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-015.jpg&w=218&h=124
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Computing the signed
distance from a plane to
an arbitrary 3D point

p+ an̂ = q,

(p+ an̂) · n̂ = q · n̂,
p · n̂+ (an̂) · n̂ = q · n̂,

d+ a = q · n̂,
a = q · n̂− d. (9.14)

9.6 Triangles

Triangles are of fundamental importance in modeling and graphics. The
surface of a complex 3D object, such as a car or a human body, is approx-
imated with many triangles. Such a group of connected triangles forms a
triangle mesh, which is the topic of Section 10.4. But before we can learn
how to manipulate many triangles, we must first learn how to manipulate
one triangle.

This section covers the fundamental properties of triangles. Section 9.6.1
introduces some notation and basic properties of triangles. Section 9.6.2
lists several methods for computing the area of a triangle in 2D or 3D. Sec-
tion 9.6.3 discusses barycentric space. Section 9.6.5 discusses a few points
on a triangle that are of special geometric significance.

9.6.1 Notation

A triangle is defined by listing its three vertices. The order that these points
are listed is significant. In a left-handed coordinate system, we typically
enumerate the points in clockwise order when viewed from the front side of
the triangle. We will refer to the three vertices as v1, v2, and v3.

A triangle lies in a plane, and the equation of this plane (the normal n
and distance to origin d) is important in a number of applications. We just
discussed planes, including how to compute the plane equation given three
points, in Section 9.5.2.

Let us label the interior angles, clockwise edge vectors, and side lengths
as shown in Figure 9.15.

Let li denote the length of ei. Notice that ei and li are opposite vi, the
vertex with the corresponding index, and are given by

Notation for edge
vectors and lengths

e1 = v3 − v2, e2 = v1 − v3, e3 = v2 − v1,

l1 = ‖e1‖, l2 = ‖e2‖, l3 = ‖e3‖.



318 9. Geometric Primitives

Figure 9.15
Labeling triangles

For example, let’s write the law of sines and law of cosines using this
notation:

Law of sines

sin θ1
l1

=
sin θ2
l2

=
sin θ3
l3

,

Low of cosines l1
2 = l2

2 + l3
2 − 2l2l3 cos θ1,

l2
2 = l1

2 + l3
2 − 2l1l3 cos θ2,

l3
2 = l1

2 + l2
2 − 2l1l2 cos θ3.

The perimeter of the triangle is often an important value, and is com-
puted trivially by summing the three sides:

Perimeter of a triangle p = l1 + l2 + l3.

9.6.2 Area of a Triangle

This section investigates several techniques for computing the area of a
triangle. The most well known method is to compute the area from the
base and height (also known as the altitude). Examine the parallelogram
and enclosed triangle in Figure 9.16.

From classical geometry, we know that the area of a parallelogram is
equal to the product of the base and height. (See Section 2.12.2 for an
explanation of why this is true.) Since the triangle occupies exactly one
half of this area, the area of a triangle, is

Area of a triangle A = bh/2.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-016.jpg&w=186&h=151
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Figure 9.16
A triangle enclosed in a
parallelogram

If the altitude is not known, then Heron’s formula can be used, which re-
quires only the lengths of the three sides. Let s equal one half the perimeter
(also known as the semiperimeter). Then the area is given by

Heron’s formula for the
area of a triangles =

l1 + l2 + l3
2

=
p

2
,

A =
√

s(s− l1)(s− l2)(s− l3).

Heron’s formula is particularly interesting because of the ease with which
it can be applied in 3D.

Figure 9.17
The area “beneath” an edge vector

Often the altitude or lengths of
the sides are not readily available
and all we have are the Cartesian
coordinates of the vertices. (Of
course, we could always compute
the side lengths from the coordi-
nates, but there are situations for
which we wish to avoid this rela-
tively costly computation.) Let’s see
if we can compute the area of a
triangle from the vertex coordinates
alone.

Let’s first tackle this problem in
2D. The basic idea is to compute, for
each of the three edges of the trian-
gle, the signed area of the trapezoid
bounded above by the edge and below by the x-axis, as shown in Fig-
ure 9.17. By “signed area,” we mean that the area is positive if the edge
points from left to right, and negative if the edge points from right to left.
Notice that no matter how the triangle is oriented, there will always be at
least one positive edge and at least one negative edge. A vertical edge will

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-017.jpg&w=193&h=88
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-018.jpg&w=128&h=128
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have zero area. The formulas for the areas under each edge are

A(e1) =
(y3 + y2)(x3 − x2)

2
,

A(e2) =
(y1 + y3)(x1 − x3)

2
,

A(e3) =
(y2 + y1)(x2 − x1)

2
.

By summing the signed areas of the three trapezoids, we arrive at the area
of the triangle itself. In fact, the same idea can be used to compute the
area of a polygon with any number of sides.

We assume a clockwise ordering of the vertices around the triangle.
Enumerating the vertices in the opposite order flips the sign of the area.
With these considerations in mind, we sum the areas of the trapezoids to
compute the signed area of the triangle:

A = A(e1) +A(e2) +A(e3)

=
(y3 + y2)(x3 − x2) + (y1 + y3)(x1 − x3) + (y2 + y1)(x2 − x1)

2

=





(y3x3 − y3x2 + y2x3 − y2x2)
+ (y1x1 − y1x3 + y3x1 − y3x3)
+ (y2x2 − y2x1 + y1x2 − y1x1)





2

=
−y3x2 + y2x3 − y1x3 + y3x1 − y2x1 + y1x2

2

=
y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)

2
.

We can actually simplify this just a bit further. The basic idea is to
realize that we can translate the triangle without affecting the area. We
make an arbitrary choice to shift the triangle vertically, subtracting y3 from
each of the y coordinates (in case you were wondering whether the trapezoid
summing trick works if some of the triangle extends below the x-axis, this
shifting properly shows that it does):

Computing the area of a
2D triangle from the

coordinates of the
vertices

A =
y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)

2

=
(y1 − y3)(x2 − x3) + (y2 − y3)(x3 − x1) + (y3 − y3)(x1 − x2)

2

=
(y1 − y3)(x2 − x3) + (y2 − y3)(x3 − x1)

2
.

(9.15)
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In 3D, we can use the cross product to compute the area of a triangle.
Recall from Section 2.12.2 that the magnitude of the cross product of two
vectors a and b is equal to the area of the parallelogram formed on two
sides by a and b. Since the area of a triangle is half the area of the enclosing
parallelogram, we have a simple way to calculate the area of the triangle.
Given two edge vectors from the triangle, e1 and e2, the area of the triangle
is given by

A =
‖e1 × e2‖

2
. (9.16)

Notice that if we extend a 2D triangle into 3D by assuming z = 0, then
Equation (9.15) and Equation (9.16) are equivalent.

9.6.3 Barycentric Space

Even though we certainly use triangles in 3D, the surface of a triangle lies
in a plane and is inherently a 2D object. Moving around on the surface of
a triangle that is arbitrarily oriented in 3D is somewhat awkward. It would
be nice to have a coordinate space that is related to the surface of the
triangle and is independent of the 3D space in which the triangle “lives.”
Barycentric space is just such a coordinate space. Many practical problems
that arise when making video games, such as interpolation and intersec-
tion, can be solved by using barycentric coordinates. We are introducing
barycentric coordinates in the context of triangles here, but they have wide
applicability. In fact, we meet them again in a slightly more general form
in the context of 3D curves in Chapter 13.

Any point in the plane of a triangle can be expressed as a weighted
average of the vertices. These weights are known as barycentric coordi-
nates. The conversion from barycentric coordinates (b1, b2, b3) to standard
3D space is defined by Computing a 3D point

from barycentric
coordinates(b1, b2, b3) ≡ b1v1 + b2v2 + b3v3. (9.17)

Of course, this is simply a linear combination of some vectors. Section 3.3.3
showed how ordinary Cartesian coordinates can also be interpreted as
a linear combination of the basis vectors, but the subtle distinction be-
tween barycentric coordinates and ordinary Cartesian coordinates is that
for barycentric coordinates the sum of the coordinates is restricted to be
unity:

b1 + b2 + b3 = 1.

This normalization constraint removes one degree of freedom, which is why
even though there are three coordinates, it is still a 2D space.

The values b1, b2, b3 are the “contributions” or “weights” that each
vertex contributes to the point. Figure 9.18 shows some examples of points
and their barycentric coordinates.
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Figure 9.18
Examples of barycentric
coordinates

Let’s make a few observations here. First, notice that the three vertices
of the triangle have a trivial form in barycentric space:

(1, 0, 0) ≡ v1, (0, 1, 0) ≡ v2, (0, 0, 1) ≡ v3.

Second, all points on the side opposite a vertex will have a zero for the
barycentric coordinate corresponding to that vertex. For example, b1 = 0
for all points on the line containing e1 (which is opposite v1).

Finally, any point in the plane can be described in barycentric coordi-
nates, not just the points inside the triangle. The barycentric coordinates
of a point inside the triangle will all be in the range [0, 1]. Any point outside
the triangle will have at least one negative coordinate. Barycentric space
tessellates the plane into triangles of the same size as the original triangle,
as shown in Figure 9.19.

There’s another way to think about barycentric coordinates. Discarding
b3, we can interpret (b1, b2) as regular (x, y) 2D coordinates, where the
origin is at v3, the x-axis is v1 −v3, and the y-axis is v1 −v2. This can be
made more explicit by rearranging Equation (9.17):

Interpreting (b1, b2) as
ordinary 2D coordinates

(b1, b2, b3) ≡ b1v1 + b2v2 + b3v3

≡ b1v1 + b2v2 + (1− b1 − b2)v3

≡ b1v1 + b2v2 + v3 − b1v3 − b2v3

≡ v3 + b1(v1 − v3) + b2(v2 − v3).

This makes it very clear that, due to the normalization constraint, al-
though there are three coordinates, there are only two degrees of freedom.
We could completely describe a point in barycentric space using only two of
the coordinates. In fact, the rank of the space described by the coordinates

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-019.jpg&w=182&h=147
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Figure 9.19
Barycentric coordinates tessellate the plane

doesn’t depend on the dimension of the “sample points” but rather on the
number of sample points. The number of degrees of freedom is one less than
the number of barycentric coordinates, since we have the constraint that
the coordinates sum to one. For example, if we have two sample points,
the dimension of the barycentric coordinates is two, and the space that can
be described using these coordinates is a line, which is a 1D space. Notice
that the line may be a 1D line (i.e., interpolation of a scalar), a 2D line, a
3D line, or a line in some higher dimensional space. In this section, we’ve
had three sample points (the vertices of our triangle) and three barycentric
coordinates, resulting in a 2D space—a plane. If we had four sample points
in 3D, then we could use barycentric coordinates to locate points in 3D.
Four barycentric coordinates induce a “tetrahedronal” space, rather than
the “triangular” space we get when there are three coordinates.

To convert a point from barycentric coordinates to standard Cartesian
coordinates, we simply compute the weighted average of the vertices by ap-
plying Equation (9.17). The opposite conversion—computing the barycen-
tric coordinates from Cartesian coordinates—is slightly more difficult, and
is discussed in Section 9.6.4. However, before we get too far into the details
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(which might be skipped over by a casual reader), now that you have the
basic idea behind barycentric coordinates, let us take this opportunity to
mention a few places where barycentric coordinates are useful.

In graphics, it is common for parameters to be edited (or computed) per
vertex, such as texture coordinates, colors, surface normals, lighting values,
and so forth. We often then need to determine the interpolated value of one
of those parameters at an arbitrary location within the triangle. Barycen-
tric coordinates make this task easy. We first determine the barycentric
coordinates of the interior point in question, and then take the weighted
average of the values at the vertices for the parameter we seek.

Another important example is intersection testing. One simple way
to perform ray-triangle testing is to determine the point where the ray
intersects the infinite plane containing the triangle, and then to decide
whether this point lies within the triangle. An easy way to make this
decision is to calculate the barycentric coordinates of the point, using the
techniques described here. If all of the coordinates lie in the [0, 1] range,
then the point is inside the triangle; otherwise at least one coordinate lies
outside this range and the point is outside the triangle. It is common for
the calculated barycentric coordinates to be further used to fetch some
interpolated surface property. For example, let’s say we are casting a ray
to determine whether a light is visible to some point or if the point is in
shadow. We strike a triangle on some model at an arbitrary location. If
the model is opaque, the light is not visible. However, if the model uses
transparency, we may need to determine the opacity at that location to
determine what fraction of the light is blocked. Typically, this transparency
is in a texture map, which is indexed using UV coordinates. (More about
texture mapping is presented in Section 10.5.) To fetch the transparency
at the location of ray intersection, we use the barycentric coordinates at
the point to interpolate the UVs from the vertices. Then we use these UVs
to fetch the texel from the texture map, and determine the transparency
of that particular location on the surface.

9.6.4 Calculating Barycentric Coordinates

Now let’s see how to determine barycentric coordinates from Cartesian co-
ordinates. We start in 2D with Figure 9.20, which shows the three vertices
v1, v2, and v3 and the point p. We have also labeled the three “subtrian-
gles” T1, T2, T3, which are opposite the vertex of the same index. These
will become useful in just a moment.

We know the Cartesian coordinates of the three vertices and the point p.
Our task is to compute the barycentric coordinates b1, b2, and b3. This gives
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Figure 9.20
Computing the barycentric
coordinates for an arbitrary
point p

us three equations and three unknowns:

b1x1 + b2x2 + b3x3 = px,

b1y1 + b2y2 + b3y3 = py,

b1 + b2 + b3 = 1.

Solving this system of equations yields

Computing barycentric
coordinates for a 2D
point

b1 =
(py − y3)(x2 − x3) + (y2 − y3)(x3 − px)

(y1 − y3)(x2 − x3) + (y2 − y3)(x3 − x1)
,

b2 =
(py − y1)(x3 − x1) + (y3 − y1)(x1 − px)

(y1 − y3)(x2 − x3) + (y2 − y3)(x3 − x1)
,

b3 =
(py − y2)(x1 − x2) + (y1 − y2)(x2 − px)

(y1 − y3)(x2 − x3) + (y2 − y3)(x3 − x1)
.

(9.18)

Examining Equation (9.18) closely, we see that the denominator is the
same in each expression—it is equal to twice the area of the triangle, ac-
cording to Equation (9.15). What’s more, for each barycentric coordinate
bi, the numerator is equal to twice the area of the “subtriangle” Ti. In
other words,

Interpreting barycentric
coordinates as ratios of
areas

b1 = A(T1)/A(T ), b2 = A(T2)/A(T ), b3 = A(T3)/A(T ).

Note that this interpretation applies even if p is outside the triangle,
since our equation for computing area yields a negative result if the vertices
are enumerated in a counterclockwise order. If the three vertices of the
triangle are collinear, then the triangle is degenerate and the area in the
denominator will be zero, and thus the barycentric coordinates cannot be
computed.
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Computing barycentric coordinates for an arbitrary point p in 3D is
more complicated than in 2D. We cannot solve a system of equations as we
did before, since we have three unknowns and four equations (one equation
for each coordinate of p, plus the normalization constraint on the barycen-
tric coordinates). Another complication is that p may not lie in the plane
that contains the triangle, in which case the barycentric coordinates are
undefined. For now, let’s assume that p lies in the plane containing the
triangle.

One trick that works is to turn the 3D problem into a 2D problem simply
by discarding one of x, y, or z. This has the effect of projecting the triangle
onto one of the three cardinal planes. Intuitively, this works because the
projected areas are proportional to the original areas.

But which coordinate should we discard? We can’t just always discard
the same one, since the projected points will be collinear if the triangle is
perpendicular to the projection plane. If our triangle is nearly perpendic-
ular to the plane of projection, we will have problems with floating point
accuracy. A solution to this dilemma is to choose the plane of projection
so as to maximize the area of the projected triangle. This can be done
by examining the plane normal, and whichever coordinate has the largest
absolute value is the coordinate that we will discard. For example, if the
normal is [0.267,−0.802, 0.535] then we would discard the y values of the
vertices and p, projecting onto the xz-plane. The code snippet in List-
ing 9.6 shows how to compute the barycentric coordinates for an arbitrary
3D point.

bool computeBarycentr icCoords3d (
const Vector3 v [ 3 ] , / / v e r t i c e s o f the t r i a n g l e
const Vector3 &p , / / po in t t h a t we wish to compute coords f o r
f l o a t b [ 3 ] / / b a r y c e n t r i c coords re tu rned here

) {

/ / F i r s t , compute two c lockwise edge v e c t o r s
Vector3 d1 = v [ 1 ] − v [ 0 ] ;
Vector3 d2 = v [ 2 ] − v [ 1 ] ;

/ / Compute s u r f a c e normal us ing c r o s s product . In many cases
/ / t h i s s t ep could be skipped , s i nce we would have the s u r f a c e
/ / normal precomputed . We do not need to normal ize i t , a l though
/ / i f a precomputed normal was normal ized , i t would be OK.
Vector3 n = c ros sP roduc t ( d1 , d2 ) ;

/ / Locate dominant a x i s o f normal , and s e l e c t plane o f p r o j e c t i o n
f l o a t u1 , u2 , u3 , u4 ;
f l o a t v1 , v2 , v3 , v4 ;
i f ( ( f ab s ( n . x ) >= fabs ( n . y ) ) && ( f ab s ( n . x ) >= fabs ( n . z ) ) ) {

/ / Discard x , p r o j e c t onto yz plane
u1 = v [ 0 ] . y − v [ 2 ] . y ;
u2 = v [ 1 ] . y − v [ 2 ] . y ;
u3 = p . y − v [ 0 ] . y ;
u4 = p . y − v [ 2 ] . y ;
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v1 = v [ 0 ] . z − v [ 2 ] . z ;
v2 = v [ 1 ] . z − v [ 2 ] . z ;
v3 = p . z − v [ 0 ] . z ;
v4 = p . z − v [ 2 ] . z ;

} e l s e i f ( f ab s ( n . y ) >= fabs ( n . z ) ) {

/ / Discard y , p r o j e c t onto xz plane
u1 = v [ 0 ] . z − v [ 2 ] . z ;
u2 = v [ 1 ] . z − v [ 2 ] . z ;
u3 = p . z − v [ 0 ] . z ;
u4 = p . z − v [ 2 ] . z ;

v1 = v [ 0 ] . x − v [ 2 ] . x ;
v2 = v [ 1 ] . x − v [ 2 ] . x ;
v3 = p . x − v [ 0 ] . x ;
v4 = p . x − v [ 2 ] . x ;

} e l s e {

/ / Discard z , p r o j e c t onto xy plane
u1 = v [ 0 ] . x − v [ 2 ] . x ;
u2 = v [ 1 ] . x − v [ 2 ] . x ;
u3 = p . x − v [ 0 ] . x ;
u4 = p . x − v [ 2 ] . x ;

v1 = v [ 0 ] . y − v [ 2 ] . y ;
v2 = v [ 1 ] . y − v [ 2 ] . y ;
v3 = p . y − v [ 0 ] . y ;
v4 = p . y − v [ 2 ] . y ;

}

/ / Compute denominator , check f o r i n v a l i d
f l o a t denom = v1∗u2 − v2∗u1 ;
i f ( denom == 0.0 f ) {

/ / Bogus t r i a n g l e − probably t r i a n g l e has zero area
re turn f a l s e ;

}

/ / Compute b a r y c e n t r i c coo rd ina te s
f l o a t oneOverDenom = 1.0 f / denom ;
b [ 0 ] = ( v4∗u2 − v2∗u4 ) ∗ oneOverDenom ;
b [ 1 ] = ( v1∗u3 − v3∗u1 ) ∗ oneOverDenom ;
b [ 2 ] = 1.0 f − b [ 0 ] − b [ 1 ] ;

/ / OK
re turn t rue ;

}

Listing 9.6
Computing barycentric coordinates in 3D

Another technique for computing barycentric coordinates in 3D is based
on the method for computing the area of a 3D triangle using the cross
product, which is discussed in Section 9.6.2. Recall that given two edge
vectors e1 and e2 of a triangle, we can compute the area of the triangle as
‖e1 × e2‖/2. Once we have the area of the entire triangle and the areas of
the three subtriangles, we can compute the barycentric coordinates.
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There is one slight problem with this: the magnitude of the cross prod-
uct is not sensitive to the ordering of the vertices—magnitude is by defini-
tion always positive. This will not work for points outside the triangle, since
these points must always have at least one negative barycentric coordinate.

Let’s see if we can find a way to work around this problem. It seems like
what we really need is a way to calculate the length of the cross product
vector that would yield a negative value if the vertices were enumerated in
the “incorrect” order. As it turns out, there is a very simple way to do this
with the dot product.

Let’s assign c to be the cross product of two edge vectors of a triangle.
Remember that the magnitude of c will equal twice the area of the triangle.
Assume we have a normal n̂ of unit length. Now, n̂ and c are parallel, since
they are both perpendicular to the plane containing the triangle. However,
they may point in opposite directions. Recall from Section 2.11.2 that the
dot product of two vectors is equal to the product of their magnitudes times
the cosine of the angle between them. Since we know that n̂ is a unit vector,
and the vectors are either pointing in the exact same or the exact opposite
direction, we have

c · n̂ = ‖c‖‖n̂‖ cos θ
= ‖c‖(1)(±1)

= ±‖c‖.

Dividing this result by two, we have a way to compute the “signed area” of
a triangle in 3D. Armed with this trick, we can now apply the observation
from the previous section, that each barycentric coordinate bi is propor-
tional to the area of the subtriangle Ti. Let us first label all of the vectors
involved, as shown in Figure 9.21.

Figure 9.21
Computing barycentric
coordinates in 3D
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As Figure 9.21 shows, each vertex has a vector from vi to p, named di.
Summarizing the equations for the vectors, we have

e1 = v3 − v2, e2 = v1 − v3, e3 = v2 − v1,

d1 = p− v1, d2 = p− v2, d3 = p− v3.

We’ll also need a surface normal, which can be computed by

n̂ =
e1 × e2

‖e1 × e2‖
.

Now the areas for the entire triangle (which we’ll simply call T ) and the
three subtriangles are given by

A(T ) = ((e1 × e2) · n̂)/2,
A(T1) = ((e1 × d3) · n̂)/2,
A(T2) = ((e2 × d1) · n̂)/2,
A(T3) = ((e3 × d2) · n̂)/2.

Each barycentric coordinate bi is given by A(Ti)/A(T ):

Computing barycentric
coordinates in 3D

b1 = A(T1)/A(T ) =
(e1 × d3) · n̂
(e1 × e2) · n̂

,

b2 = A(T2)/A(T ) =
(e2 × d1) · n̂
(e1 × e2) · n̂

,

b3 = A(T3)/A(T ) =
(e3 × d2) · n̂
(e1 × e2) · n̂

.

Notice that n̂ is used in all of the numerators and all of the denomina-
tors, and so it is doesn’t necessarily have to be a unit vector.

This technique for computing barycentric coordinates involves more
scalar math operations than the method of projection into 2D. However, it
is branchless and offers better SIMD optimization.

9.6.5 Special Points

In this section we discuss three points on a triangle that have special geo-
metric significance:

• center of gravity

• incenter

• circumcenter.
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To present these classic calculations, we follow Goldman’s article [25]
from Graphics Gems. For each point, we discuss its geometric significance
and construction and give its barycentric coordinates.

The center of gravity is the point on which the triangle would balance
perfectly. It is the intersection of the medians. (A median is a line from
one vertex to the midpoint of the opposite side.) Figure 9.22 shows the
center of gravity of a triangle.

Figure 9.22
The center of gravity
of a triangle

The center of gravity is the geometric average of the three vertices:

cGrav =
v1 + v2 + v3

3
.

The barycentric coordinates are

(

1

3
,
1

3
,
1

3

)

.

The center of gravity is also known as the centroid.
The incenter is the point in the triangle that is equidistant from the

sides. It is called the incenter because it is the center of the circle inscribed
in the triangle. The incenter is constructed as the intersection of the angle
bisectors, as shown in Figure 9.23.

The incenter is computed by

cIn =
l1v1 + l2v2 + l3v3

p
,

where p = l1+ l2+ l3 is the perimeter of the triangle. Thus the barycentric
coordinates of the incenter are

(

l1
p
,
l2
p
,
l3
p

)

.
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Figure 9.23
The incenter of a
triangle

The radius of the inscribed circle can be computed by dividing the area of
the triangle by its perimeter:

rIn =
A

p
.

The inscribed circle solves the problem of finding a circle tangent to three
lines.

The circumcenter is the point in the triangle that is equidistant from
the vertices. It is the center of the circle that circumscribes the triangle.
The circumcenter is constructed as the intersection of the perpendicular
bisectors of the sides. Figure 9.24 shows the circumcenter of a triangle.

Figure 9.24
The circumcenter of
a triangle

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-024.jpg&w=211&h=128
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-025.jpg&w=214&h=200


332 9. Geometric Primitives

To compute the circumcenter, we first define the following intermediate
values:

d1 = −e2 · e3,
d2 = −e3 · e1,
d3 = −e1 · e2,
c1 = d2d3,

c2 = d3d1,

c3 = d1d2,

c = c1 + c2 + c3.

With those intermediate values, the barycentric coordinates for the circum-
center are given by

(

c2 + c3
2c

,
c3 + c1

2c
,
c1 + c2

2c

)

;

thus, the circumcenter is given by

cCirc =
(c2 + c3)v1 + (c3 + c1)v2 + (c1 + c2)v3

2c
.

The circumradius is given by

rCirc =

√

(d1 + d2)(d2 + d3)(d3 + d1)/c

2
.

The circumradius and circumcenter solve the problem of finding a circle
that passes through three points.

9.7 Polygons

This section introduces polygons and discusses a few of the most important
issues that arise when dealing with polygons. It is difficult to come up with
a simple definition for polygon, since the precise definition usually varies
depending on the context. In general, a polygon is a flat object made up
of vertices and edges. The next few sections will discuss several ways in
which polygons may be classified.

Section 9.7.1 presents the difference between simple and complex poly-
gons and mentions self-intersecting polygons. Section 9.7.2 discusses the
difference between convex and concave polygons. Section 9.7.3 describes
how any polygon may be turned into connected triangles.
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9.7.1 Simple versus Complex Polygons

A simple polygon does not have any “holes,” whereas a complex polygon
may have holes (see Figure 9.25.) A simple polygon can be described by
enumerating the vertices in order around the polygon. (Recall that in a left-
handed world, we usually enumerate them in clockwise order when viewed
from the “front” side of the polygon.) Simple polygons are used much more
frequently than complex polygons.

Figure 9.25
Simple versus complex polygons

We can turn any complex polygon into a simple one by adding pairs of
“seam” edges, as shown in Figure 9.26. As the close-up on the right shows,
we add two edges per seam. The edges are actually coincident, although
in the close-up they have been separated so you could see them. When
we think about the edges being ordered around the polygon, the two seam
edges point in opposite directions.

Figure 9.26
Turning complex
polygons into
simple ones by
adding pairs of
seam edges
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The edges of most simple polygons do not intersect each other. If the
edges do intersect, the polygon is considered a self-intersecting polygon.
An example of a self-intersecting polygon is shown in Figure 9.27.

Figure 9.27
A selfintersecting polygon

Most people usually find it easier to arrange things so that self-intersecting
polygons are either avoided, or simply rejected. In most situations, this is
not a huge burden on the user.

9.7.2 Convex versus Concave Polygons

Non-self-intersecting simple polygons may be further classified as either
convex or concave. Giving a precise definition for “convex” is actually
somewhat tricky because there are many sticky degenerate cases. For most
polygons, the following commonly used definitions are equivalent, although
some degenerate polygons may be classified as convex according to one
definition and concave according to another.

• Intuitively, a convex polygon doesn’t have any “dents.” A concave
polygon has at least one vertex that is a “dent,” which is called a
point of concavity (see Figure 9.28).

• In a convex polygon, the line between any two points in the polygon
is completely contained within the polygon. In a concave polygon,
there is at least one pair of points in the polygon for which the line
between the points is partially outside the polygon.

• As we move around the perimeter of a convex polygon, at each vertex
we will turn in the same direction. In a concave polygon, we will
make some left-hand turns and some right-hand turns. We will turn
the opposite direction at the point(s) of concavity. (Note that this
applies to non-self-intersecting polygons only.)
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As we mentioned, degenerate cases can make even these relatively clear-
cut definitions blurry. For example, what about a polygon with two con-
secutive coincident vertices, or an edge that doubles back on itself? Are
those polygons considered convex? In practice, the following “definitions”
for convexity are often used:

• If my code, which is supposed to work only for convex polygons, can
deal with it, then it’s convex. (This is the “if it ain’t broke, don’t fix
it” definition.)

• If my algorithm that tests for convexity decides it’s convex, then it’s
convex. (This is an “algorithm as definition” explanation.)

For now, let’s ignore the pathological cases, and give some examples of
polygons that we can all agree are definitely convex or definitely concave.
The top concave polygon in Figure 9.28 has one point of concavity. The
bottom concave polygon has five points of concavity.

Figure 9.28
Convex vs. concave
polygons

Any concave polygon may be divided into convex pieces. The ba-
sic idea is to locate the points of concavity (called “reflex vertices”) and
systematically remove them by adding diagonals. O‘Rourke [52] provides
an algorithm that works for simple polygons, and de Berg et al. [12] show
a more complicated method that works for complex polygons as well.

How can we know if a polygon is convex or concave? One method
is to examine the sum of the angles at the vertices. Consider a convex
polygon with n vertices. The sum of interior angles in a convex polygon is
(n− 2)180o. We have two different ways to show this to be true.

First, let θi measure the interior angle at vertex i. Clearly, if the polygon
is convex, then θi ≤ 180o. The amount of “turn” that occurs at each
vertex will be 180o − θi. A closed polygon will of course turn one complete
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revolution, or 360o. Therefore,

n
∑

i=1

(180o − θi) = 360o,

n180o −
n
∑

i=1

θi = 360o,

−
n
∑

i=1

θi = 360o − n180o,

n
∑

i=1

θi = n180o − 360o,

n
∑

i=1

θi = (n− 2)180o.

Second, as we will show in Section 9.7.3, any convex polygon with n
vertices can be triangulated into n − 2 triangles. From classical geometry,
the sum of the interior angles of a triangle is 180o. The sum of the interior
angles of all of the triangles is (n − 2)180o, and we can see that this sum
must also be equal to the sum of the interior angles of the polygon itself.

Unfortunately, the sum of the interior angles is (n−2)180o for concave as
well as convex polygons. So how does this get us any closer to determining
whether or not a polygon is convex? As shown in (see Figure 9.29), the
dot product can be used to measure the smaller of the exterior and interior
angles. The exterior angle of a polygon vertex is the compliment of the

Figure 9.29
Using the dot product to
determine whether a polygon is
convex or concave
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interior angle, meaning they sum to 360o. (It’s not the same as the “turn
angle,” and you might notice that the definition of exterior angle for polygon
vertices is different from the classic one used for triangle vertices.) So, if
we take the sum of the smaller angle (interior or exterior) at each vertex,
then the sum will be (n− 2)180o for convex polygons, and less than that if
the polygon is concave.

Listing 9.7 shows how to determine if a polygon is convex by summing
the angles.

bool isPolygonConvex (
i n t n , / / Number o f v e r t i c e s
const Vector3 v l [ ] , / / p o i n t e r to a r r ay o f o f v e r t i c e s

) {

/ / I n i t i a l i z e sum to 0 rad i an s
f l o a t angleSum = 0.0 f ;

/ / Go around the polygon and sum the ang le a t each v e r t e x
f o r ( i n t i = 0 ; i < n ; ++ i ) {

/ / Get edge v e c t o r s . We have to be c a r e f u l on
/ / the f i r s t and l a s t v e r t i c e s . Also , note t h a t
/ / t h i s could be opt imized c o n s i d e r a b l y
Vector3 e1 ;
i f ( i == 0) {

e1 = v l [ n−1] − v l [ i ] ;
} e l s e {

e1 = v l [ i −1] − v l [ i ] ;
}

Vector3 e2 ;
i f ( i == n−1) {

e2 = v l [ 0 ] − v l [ i ] ;
} e l s e {

e2 = v l [ i +1] − v l [ i ] ;
}

/ / Normalize and compute dot product
e1 . normal ize ( ) ;
e2 . normal ize ( ) ;
f l o a t dot = e1 ∗ e2 ;

/ / Compute s m a l l e r ang le us ing ‘ ‘ s a f e ’ ’ f u n c t i o n t h a t p r o t e c t s
/ / a g a i n s t range e r r o r s which could be caused by
/ / numer ica l imp rec i s i on
f l o a t t h e t a = safeAcos ( dot ) ;

/ / Sum i t up
angleSum += t h e t a ;

}

/ / F i gu r e out what the sum of the ang le s should be , assuming
/ / we are convex . Remember t h a t p i rad = 180 degrees
f l o a t convexAngleSum = ( f l o a t ) ( n − 2) ∗ kPi ;

/ / Now, check i f the sum of the ang le s i s l e s s than i t should be ,
/ / then we ’ re concave . We g ive a s l i g h t t o l e r a n c e f o r
/ / numer ica l imp rec i s i on
i f ( angleSum < convexAngleSum − ( f l o a t ) n ∗ 0.0001 f ) {



338 9. Geometric Primitives

/ / We ’ re concave
re turn f a l s e ;

}

/ / We ’ re convex , w i th in t o l e r a n c e
re turn t rue ;

}

Listing 9.7
3D polygon convexity test using angle sum

Another method for determining convexity is to search for vertices that
are points of concavity. If none are found, then the polygon is convex.
The basic idea is that each vertex should turn in the same direction. Any
vertex that turns in the opposite direction is a point of concavity. We can
determine which way a vertex turns using by the cross product on the edge
vectors. Recall from Section 2.12.2 that in a left-handed coordinate system,
the cross product will point towards you if the vectors form a clockwise turn.
By “towards you,” we assume you are viewing the polygon from the front,
as determined by the polygon normal. If this normal is not available to us
initially, care must be exercised in computing it; because we do not know if
the polygon is convex or not, we cannot simply choose any three vertices to
compute the normal from. The techniques in Section 9.5.3 for computing
the best fit normal from a set of points can be used in this case.

Once we have a normal, we check each vertex of the polygon, computing
a normal at that vertex using the adjacent clockwise edge vectors. We take
the dot product of the polygon normal with the normal computed at that
vertex to determine if they point in opposite directions. If so (the dot
product is negative), then we have located a point of concavity.

In 2D, we can simply act as if the polygon were in 3D at the plane z = 0,
and assume the normal is [0, 0,−1]. There are subtle difficulties with any
method for determining convexity. Schorn and Fisher [60] discuss the topic
in greater detail.

9.7.3 Triangulation and Fanning

Any polygon can be divided into triangles. Thus, all of the operations and
calculations for triangles can be piecewise applied to polygons. Triangulat-
ing complex, self-intersecting, or even simple concave polygons is no trivial
task [12,52] and is slightly out of the scope of this book.

Luckily, triangulating simple convex polygons is a trivial matter. One
obvious triangulation technique is to pick one vertex (say, the first one)
and “fan” the polygon around this vertex. Given a polygon with n vertices,
enumerated v1 . . .vn around the polygon, we can easily form n−2 triangles,
each of the form {v1,vi−1,vi} with the index i going from 3 to n, as shown
in Figure 9.30.
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Figure 9.30
Triangulating a
convex polygon
by fanning

Fanning tends to create many long, thin sliver triangles, which can
be troublesome in some situations, such as computing a surface normal.
Certain consumer hardware can run into precision problems when clipping
very long edges to the view frustum. Smarter techniques exist that attempt
to minimize this problem. One idea is to triangulate as follows: Consider
that we can divide a polygon into two pieces with a diagonal between two
vertices. When this occurs, the two interior angles at the vertices of the
diagonal are each divided into two new interior angles. Thus, a total of four
new interior angles are created. To subdivide a polygon, select the diagonal
that maximizes the smallest of these four new interior angles. Divide the
polygon in two using this diagonal. Recursively apply the procedure to each
half, until only triangles remain. This algorithm results in a triangulation
with fewer slivers.

9.8 Exercises
(Answers on page 774.)

1. Given the 2D ray in parametric form

p(t) =

[

5
3

]

+ t

[

−7
5

]

,

determine the line that contains this ray, in slope-intercept form.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-10&iName=master.img-030.jpg&w=230&h=226
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2. Give the slope and y-intercept of the 2D line defined implicitly by 4x+7y =
42.

3. Consider the set of five points:

v1 = (7, 11,−5), v2 = (2, 3, 8), v3 = (−3, 3, 1),
v4 = (−5,−7, 0), v5 = (6, 3, 4).

(a) Determine the AABB of this box. What are pmin and pmax?

(b) List all eight corner points.

(c) Determine the center point c and size vector s.

(d) Multiply the five points by the following matrix, which we hope you
recognize as a 45o rotation about the z-axis:

M =





0.707 0.707 0
−0.707 0.707 0

0 0 1



 .

(e) What is the AABB of these transformed points?

(f) What is the AABB we get by transforming the original AABB? (The
bounding box of the transformed corner points.)

4. Consider a triangle defined by the clockwise enumeration of the vertices
(6, 10,−2), (3,−1, 17), (−9, 8, 0).

(a) What is the plane equation of the plane containing this triangle?

(b) Is the point (3, 4, 5) on the front or back side of this plane? How far
is this point from the plane?

(c) Compute the barycentric coordinates of the point (13.60,−0.46, 17.11).
(d) What is the center of gravity?

(e) What is the incenter?

(f) What is the circumcenter?

5. What is the best-fit plane equation for the following points, which are not
quite coplanar?

p1 = (−29.74, 13.90, 12.70) p4 = (14.62, 10.64,−7.09)
p2 = (11.53, 12.77,−9.22) p5 = (−3.31, 3.16, 18.68)
p3 = (9.16, 2.34, 12.67)

6. Consider a convex polygon P that has seven vertices numbered v1 . . .v7.
Show how to fan this polygon.
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A square was sitting quietly
Outside his rectangular shack

When a triangle came down–keerplunk!–
“I must go to the hospital,”
Cried the wounded square,
So a passing rolling circle

Picked him up and took him there.

— Shapes (1981) by Shel Silverstein





Chapter 10

Mathematical Topics
from 3D Graphics

I don’t think there’s anything wrong with pretty graphics.

— Shigeru Miyamoto (1952–)

This chapter discusses a number of mathematical issues that arise when
creating 3D graphics on a computer. Of course, we cannot hope to cover
the vast subject of computer graphics in any amount of detail in a single
chapter. Entire books are written that merely survey the topic. This
chapter is to graphics what this entire book is to interactive 3D applications:
it presents an extremely brief and high level overview of the subject matter,
focusing on topics for which mathematics plays a critical role. Just like the
rest of this book, we try to pay special attention to those topics that, from
our experience, are glossed over in other sources or are a source of confusion
in beginners.

To be a bit more direct: this chapter alone is not enough to teach
you how to get some pretty pictures on the screen. However, it should be
used parallel with (or preceding!) some other course, book, or self-study on
graphics, and we hope that it will help you breeze past a few traditional
sticky points. Although we present some example snippets in High Level
Shading Language (HLSL) at the end of this chapter, you will not find
much else to help you figure out which DirectX or OpenGL function calls
to make to achieve some desired effect. These issues are certainly of supreme
practical importance, but alas, they are also in the category of knowledge
that Robert Maynard Hutchins dubbed “rapidly aging facts,” and we have
tried to avoid writing a book that requires an update every other year when
ATI releases a new card or Microsoft a new version of DirectX. Luckily, up-
to-date API references and examples abound on the Internet, which is a
much more appropriate place to get that sort of thing. (API stands for
application programming interface. In this chapter, API will mean the
software that we use to communicate with the rendering subsystem.)

343
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One final caveat is that since this is a book on math for video games,
we will have a real-time bias. This is not to say that the book cannot be
used if you are interested in learning how to write a raytracer; only that
our expertise and focus is in real-time graphics.

This chapter proceeds roughly in order from ivory tower theory to down-
and-dirty code snippets.

• Section 10.1 gives a very high-level (and high-brow) theoretical ap-
proach to graphics, culminating in the rendering equation.

• We then lower our brows somewhat to focus attention on matters of
more direct practical application, while still maintaining our platform
independence and attempt to be relevant ten years from now.

◦ Section 10.2 discusses some basic mathematics related to viewing
in 3D.

◦ Section 10.3 introduces some important coordinate spaces and
transformations.

◦ Section 10.4 looks at how to represent the surfaces of the geom-
etry in our scene using a polygon mesh.

◦ Section 10.5 shows how to control material properties (such as
the “color” of the object) using texture maps.

• The next sections are about lighting.

◦ Section 10.6 defines the ubiquitous Blinn-Phong lighting model.

◦ Section 10.7 discusses some common methods for representing
light sources.

• With a little nudge further away from timeless theory, the next sec-
tions discuss two issues of particular contemporary interest.

◦ Section 10.8 is about skeletal animation.

◦ Section 10.9 tells how bump mapping works.

• The last third of this chapter is the most in danger of becoming irrel-
evant in coming years, because it is the most immediately practical.

◦ Section 10.10 gives an overview of a simple real-time graphics
pipeline, and then descends that pipeline and talks about some
mathematical issues along the way.

◦ Section 10.11 concludes the chapter squarely in the “rapidly ag-
ing facts” territory with several HLSL examples demonstrating
some of the techniques covered earlier.
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10.1 How Graphics Works

We begin our discussion of graphics by telling you how things really work,
or perhaps more accurately, how they really should work, if we had enough
knowledge and processing power to make things work the right way. The be-
ginner student is to be warned that much introductory material (especially
tutorials on the Internet) and API documentation suffers from a great lack
of perspective. You might get the impression from reading these sources
that diffuse maps, Blinn-Phong shading, and ambient occlusion are “The
way images in the real world work,” when in fact you are probably read-
ing a description of how one particular lighting model was implemented in
one particular language on one particular piece of hardware through one
particular API. Ultimately, any down-to-the-details tutorial must choose a
lighting model, language, platform, color representation, performance goals,
etc.—as we will have to do later in this chapter. (This lack of perspective
is usually purposeful and warranted.) However, we think it’s important
to know which are the fundamental and timeless principles, and which are
arbitrary choices based on approximations and trade-offs, guided by tech-
nological limitations that might by applicable only to real-time rendering,
or are likely to change in the near future. So before we get too far into
the details of the particular type of rendering most useful for introductory
real-time graphics, we want to take our stab at describing how rendering
really works.

We also hasten to add that this discussion assumes that the goal is
photorealism, simulating how things work in nature. In fact, this is often
not the goal, and it certainly is never the only goal. Understanding how
nature works is a very important starting place, but artistic and practical
factors often dictate a different strategy than just simulating nature.

10.1.1 The Two Major Approaches to Rendering

We begin with the end in mind. The end goal of rendering is a bitmap,
or perhaps a sequence of bitmaps if we are producing an animation. You
almost certainly already know that a bitmap is a rectangular array of colors,
and each grid entry is known as pixel, which is short for “picture element.”
At the time we are producing the image, this bitmap is also known as the
frame buffer, and often there is additional post-processing or conversion
that happens when we copy the frame buffer to the final bitmap output.

How do we determine the color of each pixel? That is the fundamental
question of rendering. Like so many challenges in computer science, a great
place to start is by investigating how nature works.

We see light. The image that we perceive is the result of light that
bounces around the environment and finally enters the eye. This process is



346 10. Mathematical Topics from 3D Graphics

complicated, to say the least. Not only is the physics1 of the light bouncing
around very complicated, but so are the physiology of the sensing equipment
in our eyes2 and the interpreting mechanisms in our minds. Thus, ignoring
a great number of details and variations (as any introductory book must
do), the basic question that any rendering system must answer for each
pixel is “What color of light is approaching the camera from the direction
corresponding to this pixel?”

There are basically two cases to consider. Either we are looking directly
at a light source and light traveled directly from the light source to our
eye, or (more commonly) light departed from a light source in some other
direction, bounced one or more times, and then entered our eye. We can
decompose the key question asked previously into two tasks. This book
calls these two tasks the rendering algorithm, although these two highly
abstracted procedures obviously conceal a great deal of complexity about
the actual algorithms used in practice to implement it.

The rendering algorithm
• Visible surface determination. Find the surface that is closest to the
eye, in the direction corresponding to the current pixel.

• Lighting. Determine what light is emitted and/or reflected off this
surface in the direction of the eye.

At this point it appears that we have made some gross simplifications,
and many of you no doubt are raising your metaphorical hands to ask
“What about translucency?” “What about reflections?” “What about
refraction?” “What about atmospheric effects?” Please hold all questions
until the end of the presentation.

The first step in the rendering algorithm is known as visible surface
determination. There are two common solutions to this problem. The first
is known as raytracing. Rather than following light rays in the direction
that they travel from the emissive surfaces, we trace the rays backward, so
that we can deal only with the light rays that matter: the ones that enter
our eye from the given direction. We send a ray out from the eye in the
direction through the center of each pixel3 to see the first object in the
scene this ray strikes. Then we compute the color that is being emitted

1Actually, almost everybody approximates the true physics of light by using simpler
geometric optics.

2Speaking of equipment, there are also many phenomena that occur in a camera but
not the eye, or as a result of the storage of an image on film. These effects, too, are often
simulated to make it look as if the animation was filmed.

3Actually, it’s probably not a good idea to think of pixels as having a “center,” as
they are not really rectangular blobs of color, but rather are best interpreted as infinitely
small point samples in a continuous signal. The question of which mental model is best
is incredibly important [33, 66], and is intimately related to the process by which the
pixels are combined to reconstruct an image. On CRTs, pixels were definitely not little
rectangles, but on modern display devices such as LCD monitors, “rectangular blob of
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f o r ( each x , y screen p i x e l ) {

/ / S e l e c t a ray f o r t h i s p i x e l
Ray ray = ge tRayFo rP i xe l ( x , y ) ;

/ / I n t e r s e c t the ray a g a i n s t the geometry . Th i s w i l l
/ / not j u s t r e t u r n the po in t o f i n t e r s e c t i o n , but a l s o
/ / a s u r f a c e normal and some othe r i n f o rma t i on needed
/ / to shade the point , such as an ob jec t re fe rence ,
/ / m a t e r i a l i n fo rmat ion , l o c a l S , T coord ina tes , e tc .
/ / Don ’ t take t h i s pseudocode too l i t e r a l l y .
Vector3 pos , normal ;
Object ∗obj ; Ma t e r i a l ∗mtl ;
i f ( r a y I n t e r s e c t S c e n e ( ray , pos , normal , obj , mtl ) ) {

/ / Shade the i n t e r s e c t i o n po in t . (What l i g h t i s
/ / emi t ted / r e f l e c t e d from t h i s po in t towards the camera ?)
Color c = shadePoin t ( ray , pos , normal , obj , mtl ) ;

/ / Put i t i n t o the frame b u f f e r
wr i t eF rameBu f f e r ( x , y , c ) ;

} e l s e {

/ / Ray missed the e n t i r e scene . J u s t use a gene r i c
/ / background co lo r a t t h i s p i x e l
wr i t eF rameBu f f e r ( x , y , backgroundColor ) ;

}
}

Listing 10.1
Pseudocode for the raytracing algorithm

or reflected from that surface back in the direction of the ray. A highly
simplified summary of this algorithm is illustrated by Listing 10.1.

The other major strategy for visible surface determination, the one used
for real-time rendering at the time of this writing, is known as depth buffer-
ing. The basic plan is that at each pixel we store not only a color value, but
also a depth value. This depth buffer value records the distance from the
eye to the surface that is reflecting or emitting the light used to determine
the color for that pixel. As illustrated in Listing 10.1, the “outer loop” of
a raytracer is the screen-space pixels, but in real-time graphics, the “outer
loop” is the geometric elements that make up the surface of the scene.

The different methods for describing surfaces are not important here.
What is important is that we can project the surface onto screen-space and
map them to screen-space pixels through a process known as rasterization.
For each pixel of the surface, known as the source fragment, we compute
the depth of the surface at that pixel and compare it to the existing value

color” is not too bad of a description of the reconstruction process. Nonetheless, whether
pixels are rectangles or point samples, we still might not send a single ray through the
center of each pixel, but rather we might send several rays (“samples”) in a smart pattern,
and average them together them in a smart way.
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/ / C lea r the frame and depth b u f f e r s
f i l l F r a m e B u f f e r ( backgroundColor ) ;
f i l l D e p t h B u f f e r ( i n f i n i t y ) ;

/ / Outer loop i t e r a t e s over a l l the p r i m i t i v e s ( u s u a l l y t r i a n g l e s )
f o r ( each geometr ic p r i m i t i v e ) {

/ / R a s t e r i z e the p r i m i t i v e
f o r ( each p i x e l x , y in the p r o j e c t i o n o f the p r i m i t i v e ) {

/ / Te s t the depth bu f f e r , to see i f a c l o s e r p i x e l has
/ / a l r eady been w r i t t e n .
f l o a t primDepth = ge tDep thOfP r im i t i veA tP i xe l ( x , y ) ;
i f ( primDepth > readDepthBuf fe r ( x , y ) ) {

/ / P i x e l o f t h i s p r i m i t i v e i s obscured , d i s ca rd i t
continue ;

}

/ / Determine p r i m i t i v e co lo r a t t h i s p i x e l .
Color c = g e t C o l o r O f P r i m i t i v e A t P i x e l ( x , y ) ;

/ / Update the co lo r and depth b u f f e r s
wr i t eF rameBu f f e r ( x , y , c ) ;
wr i t eDep thBu f f e r ( x , y , primDepth ) ;

}
}

Listing 10.2
Pseudocode for forward rendering using the depth buffer

in the depth buffer, sometimes known as the destination fragment. If the
source fragment we are currently rendering is farther away from the camera
than the existing value in the buffer, then whatever we rendered before this
is obscuring the surface we are now rendering (at least at this one pixel),
and we move on to the next pixel. However, if our depth value is closer
than the existing value in the depth buffer, then we know this is the closest
surface to the eye (at least of those rendered so far) and so we update the
depth buffer with this new, closer depth value. At this point we might
also proceed to step 2 of the rendering algorithm (at least for this pixel)
and update the frame buffer with the color of the light being emitted or
reflected from the surface that point. This is known as forward rendering,
and the basic idea is illustrated by Listing 10.2.

Opposed to forward rendering is deferred rendering, an old technique
that is becoming popular again due to the current location of bottlenecks
in the types of images we are producing and the hardware we are using to
produce them. A deferred renderer uses, in addition to the frame buffer
and the depth buffer, additional buffers, collectively known as the G-buffer
(short for “geometry” buffer), which holds extra information about the
surface closest to the eye at that location, such as the 3D location of the
surface, the surface normal, and material properties needed for lighting cal-
culations, such as the “color” of the object and how “shiny” it is at that
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particular location. (Later, we see how those intuitive terms in quotes are
a bit too vague for rendering purposes.) Compared to a forward renderer,
a deferred renderer follows our two-step rendering algorithm a bit more lit-
erally. First we “render” the scene into the G-buffer, essentially performing
only visibility determination—fetching the material properties of the point
that is “seen” by each pixel but not yet performing lighting calculations.
The second pass actually performs the lighting calculations. Listing 10.3
explains deferred rendering in pseudocode.

/ / C lea r the geometry and depth b u f f e r s
c lea rGeomet ryBuf fe r ( ) ;
f i l l D e p t h B u f f e r ( i n f i n i t y ) ;

/ / R a s t e r i z e a l l p r i m i t i v e s i n t o the G−b u f f e r
f o r ( each geometr ic p r i m i t i v e ) {

f o r ( each p i x e l x , y in the p r o j e c t i o n o f the p r i m i t i v e ) {

/ / Te s t the depth bu f f e r , to see i f a c l o s e r p i x e l has
/ / a l r eady been w r i t t e n .
f l o a t primDepth = ge tDep thOfP r im i t i veA tP i xe l ( x , y ) ;
i f ( primDepth > readDepthBuf fe r ( x , y ) ) {

/ / P i x e l o f t h i s p r i m i t i v e i s obscured , d i s ca rd i t
continue ;

}

/ / Fetch in fo rma t i on needed f o r shading in the nex t pass .
M a t e r i a l I n f o m t l I n f o ;
Vector3 pos , normal ;
g e t P r i m i t i v e S h a d i n g I n f o ( mt l In fo , pos , normal ) ;

/ / Save i t o f f i n t o the G−b u f f e r and depth b u f f e r
wri teGeomet ryBuf fe r ( x , y , mt l In fo , pos , normal ) ;
wr i t eDep thBu f f e r ( x , y , primDepth ) ;

}
}

/ / Now perform shading in a 2nd pass , i n screen space
f o r ( each x , y screen p i x e l ) {

i f ( readDepthBuf fe r ( x , y ) == i n f i n i t y ) {

/ / No geometry here . J u s t w r i t e a background co lo r
wr i t eF rameBu f f e r ( x , y , backgroundColor ) ;

} e l s e {

/ / Fetch shading i n f o back from the geometry b u f f e r
M a t e r i a l I n f o m t l I n f o ;
Vector3 pos , normal ;
readGeometryBuf fer ( x , y , mt l In fo , pos , normal ) ;

/ / Shade the po in t
Color c = shadePoin t ( pos , normal , m t l I n f o ) ;

/ / Put i t i n t o the frame b u f f e r
wr i t eF rameBu f f e r ( x , y , c ) ;

}
}

Listing 10.3
Pseudocode for deferred rendering using the depth buffer
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Before moving on, we must mention one important point about why
deferred rendering is popular. When multiple light sources illuminate the
same surface point, hardware limitations or performance factors may pre-
vent us from computing the final color of a pixel in a single calculation, as
was shown in the pseudocode listings for both forward and deferred render-
ing. Instead, we must using multiple passes, one pass for each light, and
accumulate the reflected light from each light source into the frame buffer.
In forward rendering, these extra passes involve rerendering the primitives.
Under deferred rendering, however, extra passes are in image space, and
thus depend on the 2D size of the light in screen space, not on the com-
plexity of the scene! It is in this situation that deferred rendering really
begins to have large performance advantages over forward rendering.

10.1.2 Describing Surface Properties: The BRDF

Now let’s talk about the second step in the rendering algorithm: lighting.
Once we have located the surface closest to the eye, we must determine the
amount of light emitted directly from that surface, or emitted from some
other source and reflected off the surface in the direction of the eye. The
light directly transmitted from a surface to the eye—for example, when
looking directly at a light bulb or the sun—is the simplest case. These
emissive surfaces are a small minority in most scenes; most surfaces do not
emit their own light, but rather they only reflect light that was emitted from
somewhere else. We will focus the bulk of our attention on the nonemissive
surfaces.

Although we often speak informally about the “color” of an object, we
know that the perceived color of an object is actually the light that is en-
tering our eye, and thus can depend on many different factors. Important
questions to ask are: What colors of light are incident on the surface, and
from what directions? From which direction are we viewing the surface?
How “shiny” is the object?4 So a description of a surface suitable for use in
rendering doesn’t answer the question “What color is this surface?” This
question is sometimes meaningless—what color is a mirror, for example?
Instead, the salient question is a bit more complicated, and it goes some-
thing like, “When light of a given color strikes the surface from a given
incident direction, how much of that light is reflected in some other partic-
ular direction?” The answer to this question is given by the bidirectional
reflectance distribution function, or BRDF for short. So rather than “What
color is the object?” we ask, “What is the distribution of reflected light?”

4Further relevant questions that should influence what color we write into the frame
buffer could be asked concerning the general viewing conditions, but these issues have
no bearing on the light coming into our eye; rather, they affect our perception of that
light.
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Symbolically, we write the BRDF as the function f(x, ω̂ωωin, ω̂ωωout, λ).
5

The value of this function is a scalar that describes the relatively likelihood
that light incident at the point x from direction ω̂ωωin will be reflected in
the outgoing direction ω̂ωωout rather than some other outgoing direction. As
indicated by the boldface type and hat, ω̂ωω might be a unit vector, but
more generally it can be any way of specifying a direction; polar angles are
another obvious choice and are commonly used. Different colors of light are
usually reflected differently; hence the dependence on λ, which is the color
(actually, the wavelength) of the light.

Although we are particularly interested in the incident directions that
come from emissive surfaces and the outgoing directions that point towards
our eye, in general, the entire distribution is relevant. First of all, lights,
eyes, and surfaces can move around, so in the context of creating a surface
description (for example, “red leather”), we don’t know which directions
will be important. But even in a particular scene with all the surfaces,
lights, and eyes fixed, light can bounce around multiple times, so we need
to measure light reflections for arbitrary pairs of directions.

Before moving on, it’s highly instructive to see how the two intuitive
material properties that were earlier disparaged, color and shininess, can
be expressed precisely in the framework of a BRDF. Consider a green ball.
A green object is green and not blue because it reflects incident light that
is green more strongly than incident light of any other color.6 For example,
perhaps green light is almost all reflected, with only a small fraction ab-
sorbed, while 95% of the blue and red light is absorbed and only 5% of light
at those wavelengths is reflected in various directions. White light actually
consists of all the different colors of light, so a green object essentially filters
out colors other than green. If a different object responded to green and
red light in the same manner as our green ball, but absorbed 50% of the
blue light and reflected the other 50%, we might perceive the object as teal.
Or if most of the light at all wavelengths was absorbed, except for a small
amount of green light, then we would perceive it as a dark shade of green.
To summarize, a BRDF accounts for the difference in color between two
objects through the dependence on λ: any given wavelength of light has its
own reflectance distribution.

Next, consider the difference between shiny red plastic and diffuse red
construction paper. A shiny surface reflects incident light much more
strongly in one particular direction compared to others, whereas a diffuse
surface scatters light more evenly across all outgoing directions. A perfect
reflector, such as a mirror, would reflect all the light from one incoming

5Remember that ω and λ are the lowercase Greek letters omega and lambda, respec-
tively.

6Here and elsewhere, we use the word “color” in a way that’s technically a bit dodgy,
but is OK under the assumptions about light and color made in most graphics systems.
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direction in a single outgoing direction, whereas a perfectly diffuse surface
would reflect light equally in all outgoing directions, regardless of the di-
rection of incidence. In summary, a BRDF accounts for the difference in
“shininess” of two objects through its dependence on ω̂ωωin and ω̂ωωout.

More complicated phenomena can be expressed by generalizing the
BRDF. Translucence and light refraction can be easily incorporated by
allowing the direction vectors to point back into the surface. We might call
this mathematical generalization a bidirectional surface scattering distribu-
tion function (BSSDF). Sometimes light strikes an object, bounces around
inside of it, and then exits at a different point. This phenomenon is known
as subsurface scattering and is an important aspect of the appearances of
many common substances, such as skin and milk. This requires splitting
the single reflection point x into xin and xout, which is used by the bidirec-
tional surface scattering distribution function (BSSDF). Even volumetric
effects, such as fog and subsurface scattering, can be expressed, by drop-
ping the words “surface” and defining a bidirectional scattering distribution
function (BSDF) at any point in space, not just on the “surfaces.” Taken
at face value, these might seem like impractical abstractions, but they can
be useful in understanding how to design practical tools.

By the way, there are certain criteria that a BRDF must satisfy in
order to be physically plausible. First, it doesn’t make sense for a negative
amount of light to be reflected in any direction. Second, it’s not possible
for the total reflected light to be more than the light that was incident,
although the surface may absorb some energy so the reflected light can be
less than the incident light. This rule is usually called the normalization
constraint. A final, less obvious principle obeyed by physical surfaces is
Helmholtz reciprocity : if we pick two arbitrary directions, the same fraction
of light should be reflected, no matter which is the incident direction and
which is the outgoing direction. In other words,

Helmholtz reciprocity f(x, ω̂ωω1, ω̂ωω2, λ) = f(x, ω̂ωω2, ω̂ωω1, λ).

Due to Helmholtz reciprocity, some authors don’t label the two directions
in the BRDF as “in” and “out” because to be physically plausible the
computation must be symmetric.

The BRDF contains the complete description of an object’s appear-
ance at a given point, since it describes how the surface will reflect light
at that point. Clearly, a great deal of thought must be put into the de-
sign of this function. Numerous lighting models have been proposed over
the last several decades, and what is surprising is that one of the earliest
models, Blinn-Phong, is still in widespread use in real-time graphics today.
Although it is not physically accurate (nor plausible: it violates the normal-
ization constraint), we study it because it is a good educational stepping
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stone and an important bit of graphics history. Actually, describing Blinn-
Phong as “history” is wishful thinking—perhaps the most important reason
to study this model is that it still is in such widespread use! In fact, it’s the
best example of the phenomena we mentioned at the start of this chapter:
particular methods being presented as if they are “the way graphics work.”

Different lighting models have different goals. Some are better at sim-
ulating rough surfaces, others at surfaces with multiple strata. Some focus
on providing intuitive “dials” for artists to control, without concern for
whether those dials have any physical significance at all. Others are based
on taking real-world surfaces and measuring them with special cameras
called goniophotometers, essentially sampling the BRDF and then using
interpolation to reconstruct the function from the tabulated data. The no-
table Blinn-Phong model discussed in Section 10.6 is useful because it is
simple, inexpensive, and well understood by artists. Consult the sources in
the suggested reading for a survey of lighting models.

10.1.3 A Very Brief Introduction to Colorimetry
and Radiometry

Graphics is all about measuring light, and you should be aware of some
important subtleties, even though we won’t have time to go into complete
detail here. The first is how to measure the color of light, and the second
is how to measure its brightness.

In your middle school science classes you might have learned that every
color of light is some mixture of red, green, and blue (RGB) light. This is
the popular conception of light, but it’s not quite correct. Light can take
on any single frequency in the visible band, or it might be a combination of
any number of frequencies. Color is a phenomena of human perception and
is not quite the same thing as frequency. Indeed different combinations of
frequencies of light can be perceived as the same color—these are known
as metamers. The infinite combinations of frequencies of light are sort of
like all the different chords that can be played on a piano (and also tones
between the keys). In this metaphor our color perception is unable to pick
out all the different individual notes, but instead, any given chord sounds
to us like some combination of middle C, F, and G. Three color channels is
not a magic number as far as physics is concerned, it’s peculiar to human
vision. Most other mammals have only two different types of receptors (we
would call them “color blind”), and fish, reptiles, and birds have four types
of color receptors (they would call us color blind).

However, even very advanced rendering systems project the continuous
spectrum of visible light onto some discrete basis, most commonly, the
RGB basis. This is a ubiquitous simplification, but we still wanted to
let you know that it is a simplification, as it doesn’t account for certain
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phenomena. The RGB basis is not the only color space, nor is it necessarily
the best one for many purposes, but it is a very convenient basis because
it is the one used by most display devices. In turn, the reason that this
basis is used by so many display devices is due to the similarity to our own
visual system. Hall [29] does a good job of describing the shortcomings of
the RGB system.

Since the visible portion of the electromagnetic spectrum is continuous,
an expression such as f(x, ω̂ωωin, ω̂ωωout, λ) is continuous in terms of λ. At least
it should be in theory. In practice, because we are producing images for
human consumption, we reduce the infinite number of different λs down to
three particular wavelengths. Usually, we choose the three wavelengths to
be those perceived as the colors red, green, and blue. In practice, you can
think of the presence of λ in an equation as an integer that selects which
of the three discrete “color channels” is being operated on.

Key Points about Color

• To describe the spectral distribution of light requires a continuous
function, not just three numbers. However, to describe the human
perception of that light, three numbers are essentially sufficient.

• The RGB system is a convenient color space, but it’s not the only one,
and not even the best one for many practical purposes. In practice,
we usually treat light as being a combination of red, green, and blue
because we are making images for human consumption.

You should also be aware of the different ways that we can measure
the intensity of light. If we take a viewpoint from physics, we consider
light as energy in the form of electromagnetic radiation, and we use units
of measurement from the field of radiometry. The most basic quantity is
radiant energy, which in the SI system is measured in the standard unit
of energy, the joule (J). Just like any other type of energy, we are often
interested in the rate of energy flow per unit time, which is known as power.
In the SI system power is measured using the watt (W), which is one joule
per second (1 W = 1 J/s). Power in the form of electromagnetic radiation is
called radiant power or radiant flux. The term “flux,” which comes from the
Latin fluxus for “flow,” refers to some quantity flowing across some cross-
sectional area. Thus, radiant flux measures the total amount of energy that
is arriving, leaving, or flowing across some area per unit time.
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Imagine that a certain amount of radiant flux is emitted from a 1 m2

surface, while that same amount of power is emitted from a different surface
that is 100 m2. Clearly, the smaller surface is “brighter” than the larger
surface; more precisely, it has a greater flux per unit area, also known as
flux density. The radiometric term for flux density, the radiant flux per
unit area, is called radiosity, and in the SI system it is measured in watts
per meter. The relationship between flux and radiosity is analogous to
the relationship between force and pressure; confusing the two will lead to
similar sorts of conceptual errors.

Several equivalent terms exist for radiosity. First, note that we can
measure the flux density (or total flux, for that matter) across any cross-
sectional area. We might be measuring the radiant power emitted from
some surface with a finite area, or the surface through which the light
flows might be an imaginary boundary that exists only mathematically
(for example, the surface of some imaginary sphere that surrounds a light
source). Although in all cases we are measuring flux density, and thus the
term “radiosity” is perfectly valid, we might also use more specific terms,
depending on whether the light being measured is coming or going. If the
area is a surface and the light is arriving on the surface, then the term
irradiance is used. If light is being emitted from a surface, the term radiant
exitance or radiant emittance is used. In digital image synthesis, the word
“radiosity” is most often used to refer to light that is leaving a surface,
having been either reflected or emitted.

When we are talking about the brightness at a particular point, we
cannot use plain old radiant power because the area of that point is in-
finitesimal (essentially zero). We can speak of the flux density at a single
point, but to measure flux, we need a finite area over which to measure. For
a surface of finite area, if we have a single number that characterizes the
total for the entire surface area, it will be measured in flux, but to capture
the fact that different locations within that area might be brighter than
others, we use a function that varies over the surface that will measure the
flux density.

Now we are ready to consider what is perhaps the most central quantity
we need to measure in graphics: the intensity of a “ray” of light. We can
see why the radiosity is not the unit for the job by an extension of the ideas
from the previous paragraph. Imagine a surface point surrounded by an
emissive dome and receiving a certain amount of irradiance coming from
all directions in the hemisphere centered on the local surface normal. Now
imagine a second surface point experiencing the same amount of irradiance,
only all of the illumination is coming from a single direction, in a very
thin beam. Intuitively, we can see that a ray along this beam is somehow
“brighter” than any one ray that is illuminating the first surface point. The
irradiance is somehow “denser.” It is denser per unit solid area.
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The idea of a solid area is probably new to some readers, but we can
easily understand the idea by comparing it to angles in the plane. A “reg-
ular” angle is measured (in radians) based on the length of its projection
onto the unit circle. In the same way, a solid angle measures the area as
projected onto the unit sphere surrounding the point. The SI unit for solid
angle is the steradian, abbreviated “sr.” The complete sphere has 4π sr; a
hemisphere encompasses 2π sr.

Figure 10.1
The two surfaces are receiving
identical bundles of light, but
the surface on the bottom has a
larger area, and thus has a
lower irradiance.

By measuring the radiance per unit solid an-
gle, we can express the intensity of light at a
certain point as a function that varies based
upon the direction of incidence. We are very
close to having the unit of measurement that de-
scribes the intensity of a ray. There is just one
slight catch, illustrated by Figure 10.1, which
is a close-up of a very thin pencil of light rays
striking a surface. On the top, the rays strike
the surface perpendicularly, and on the bottom,
light rays of the same strength strike a different
surface at an angle. The key point is that the
area of the top surface is smaller than the area
of the bottom surface; therefore, the irradiance
on the top surface is larger than the irradiance
on the bottom surface, despite the fact that the
two surfaces are being illuminated by the “same
number” of identical light rays. This basic phe-
nomenon, that the angle of the surface causes
incident light rays to be spread out and thus
contribute less irradiance, is known as Lambert’s
law. We have more to say about Lambert’s law
in Section 10.6.3, but for now, the key idea is
that the contribution of a bundle of light to the
irradiance at a surface depends on the angle of
that surface.

Due to Lambert’s law, the unit we use in graphics to measure the
strength of a ray, radiance, is defined as the radiant flux per unit pro-
jected area, per unit solid angle. To measure a projected area, we take
the actual surface area and project it onto the plane perpendicular to the
ray. (In Figure 10.1, imagine taking the bottom surface and projecting it
upwards onto the top surface). Essentially this counteracts Lambert’s law.

Table 10.1 summarizes the most important radiometric terms.
Whereas radiometry takes the perspective of physics by measuring the

raw energy of the light, the field of photometry weighs that same light using
the human eye. For each of the corresponding radiometric terms, there is
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Quantity Units SI unit Rough translation

Radiant energy Energy J Total illumination during
an interval of time

Radiant flux Power W Brightness of a finite area
from all directions

Radiant flux density Power per unit area W/m2 Brightness of a single point
from all directions

Irradiance Power per unit area W/m2 Radiant flux density of
incident light

Radiant exitance Power per unit area W/m2 Radiant flux density of
emitted light

Radiosity Power per unit area W/m2 Radiant flux density of
emitted or reflected light

Radiance Power per unit
projected area, per
unit solid angle

W/(m2 · sr) Brightness of a ray

Table 10.1. Common radiometric terms

a similar term from photometry (Table 10.2). The only real difference is a
nonlinear conversion from raw energy to perceived brightness.

Throughout the remainder of this chapter, we try to use the proper ra-
diometric units when possible. However, the practical realities of graphics
make using proper units confusing, for two particular reasons. It is com-
mon in graphics to need to take some integral over a “signal”—for example,
the color of some surface. In practice we cannot do the integral analyti-
cally, and so we must integrate numerically, which boils down to taking a
weighted average of many samples. Although mathematically we are taking
a weighted average (which ordinarily would not cause the units to change),
in fact what we are doing is integrating, and that means each sample is
really being multiplied by some differential quantity, such as a differential
area or differential solid angle, which causes the physical units to change.
A second cause of confusion is that, although many signals have a finite
nonzero domain in the real world, they are represented in a computer by
signals that are nonzero at a single point. (Mathematically, we say that

Radiometric term Photometric term SI Photometric unit

Radiant energy Luminous energy talbot, or lumen second (lm · s)

Radiant flux Luminous flux, luminous power lumen (lm)

Irradiance Illuminance lux (lx = lm/m2)

Radiant exitance Luminous emittance lux (lx = lm/m2)

Radiance Luminance lm/(m2 · sr)

Table 10.2. Units of measurement from radiometry and photometry
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the signal is a multiple of a Direc delta; see Section 12.4.3.) For example,
a real-world light source has a finite area, and we would be interested in
the radiance of the light at a given point on the emissive surface, in a given
direction. In practice, we imagine shrinking the area of this light down to
zero while holding the radiant flux constant. The flux density becomes infi-
nite in theory. Thus, for a real area light we would need a signal to describe
the flux density, whereas for a point light, the flux density becomes infinite
and we instead describe the brightness of the light by its total flux. We’ll
repeat this information when we talk about point lights.

Key Points about Radiometry

• Vague words such as “intensity” and “brightness” are best avoided
when the more specific radiometric terms can be used. The scale
of our numbers is not that important and we don’t need to use real
world SI units, but it is helpful to understand what the different
radiometric quantities measure to avoid mixing quantities together
inappropriately.

• Use radiant flux to measure the total brightness of a finite area, in all
directions.

• Use radiant flux density to measure the brightness at a single point,
in all directions. Irradiance and radiant exitance refer to radiant flux
density of light that is incident and emitted, respectively. Radiosity
is the radiant flux density of light that is leaving a surface, whether
the light was reflected or emitted.

• Due to Lambert’s law, a given ray contributes more differential irra-
diance when it strikes a surface at a perpendicular angle compared to
a glancing angle.

• Use radiance to measure the brightness of a ray. More specifically,
radiance is the flux per unit projected angle, per solid angle. We use
projected area so that the value for a given ray is a property of a ray
alone and does not depend on the orientation of the surface used to
measure the flux density.

• Practical realities thwart our best intentions of doing things “the right
way” when it comes to using proper units. Numerical integration is
a lot like taking a weighted average, which hides the change of units
that really occurs. Point lights and other Dirac deltas add further
confusion.
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10.1.4 The Rendering Equation

Now let’s fit the BRDF into the rendering algorithm. In step 2 of our
rendering algorithm (Section 10.1), we’re trying to determine the radiance
leaving a particular surface in the direction of our eye. The only way this
can happen is for light to arrive from some direction onto the surface and get
reflected in our direction. With the BRDF, we now have a way to measure
this. Consider all the potential directions that light might be incident upon
the surface, which form a hemisphere centered on x, oriented according to
the local surface normal n̂. For each potential direction ω̂ωωin, we measure the
color of light incident from that direction. The BRDF tells us how much of
the radiance from ω̂ωωin is reflected in the direction ω̂ωωout towards our eye (as
opposed to scattered in some other direction or absorbed). By summing
up the radiance reflected towards ω̂ωωout over all possible incident directions,
we obtain the total radiance reflected along ω̂ωωout into our eye. We add the
reflected light to any light that is being emitted from the surface in our
direction (which is zero for most surfaces), and voila, we have the total
radiance. Writing this in math notation, we have the rendering equation.

The Rendering Equation

Lout(x, ω̂ωωout, λ) = Lemis(x, ω̂ωωout, λ)

+

∫

ΩΩΩ

Lin(x, ω̂ωωin, λ)f(x, ω̂ωωin, ω̂ωωout, λ)(−ω̂ωωin · n̂) dω̂ωωin. (10.1)

As fundamental as Equation (10.1) may be, its development is relatively
recent, having been published in SIGGRAPH in 1986 by Kajiya [37]. Fur-
thermore, it was the result of, rather than the cause of, numerous strategies
for producing realistic images. Graphics researchers pursued the creation of
images through different techniques that seemed to make sense to them be-
fore having a framework to describe the problem they were trying to solve.
And for many years after that, most of us in the video game industry were
unaware that the problem we were trying to solve had finally been clearly
defined. (Many still are.)

Now let’s convert this equation into English and see what the heck it
means. First of all, notice that x and λ appear in each function. The whole
equation governs a balance of radiance at a single surface point x for a
single wavelength (“color channel”) λ. So this balance equation applies to
each color channel individually, at all surface points simultaneously.
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The term Lout(x, ω̂ωωout, λ) on the left side of the equals sign is simply
“The radiance leaving the point in the direction ω̂ωωout.” Of course, if x is the
visible surface at a given pixel, and ω̂ωωout is the direction from x to the eye,
then this quantity is exactly what we need to determine the pixel color.
But note that the equation is more general, allowing us to compute the
outgoing radiance in any arbitrary direction ω̂ωωout and for any given point
x, whether or not ω̂ωωout points towards our eye.

On the right-hand side, we have a sum. The first term in the sum
Lemis(x, ω̂ωωout, λ), is “the radiance emitted from x in the direction ω̂ωωout”
and will be nonzero only for special emissive surfaces. The second term,
the integral, is “the light reflected from x in the direction of ω̂ωωout.” Thus,
from a high level the rendering equation would seem to state the rather
obvious relation
(

Total radiance
towards ω̂ωωout

)

=

(

Radiance emitted
towards ω̂ωωout

)

+

(

Radiance reflected
towards ω̂ωωout

)

.

Now let’s dig into that intimidating integral. (By the way, if you haven’t
had calculus and haven’t read Chapter 11 yet, just replace the word “inte-
gral” with “sum,” and you won’t miss any of the main point of this section.)
We’ve actually already discussed how it works when we talked about the
BRDF, but let’s repeat it with different words. We might rewrite the inte-
gral as

(

Radiance reflected
towards ω̂ωωout

)

=

∫

ΩΩΩ

(

Radiance incident from ω̂ωωin

and reflected towards ω̂ωωout

)

dω̂ωωin.

Note that symbol ΩΩΩ (uppercase Greek omega) appears where we normally
would write the limits of integration. This is intended to mean “sum over
the hemisphere of possible incoming directions.” For each incoming direc-
tion ω̂ωωin, we determine how much radiance was incident in this incoming
direction and got scattered in the outgoing direction ω̂ωωout. The sum of all
these contributions from all the different incident directions gives the total
radiance reflected in the direction ω̂ωωout. Of course, there are an infinite
number of incident directions, which is why this is an integral. In practice,
we cannot evaluate the integral analytically, and we must sample a discrete
number of directions, turning the “

∫

” into a “
∑

.”
Now all that is left is to dissect the integrand. It’s a product of three

factors:
(

Radiance incident from ω̂ωωin

and reflected towards ω̂ωωout

)

= Lin(x, ω̂ωωin, λ) f(x, ω̂ωωin, ω̂ωωout, λ) (−ω̂ωωin · n̂).

The first factor denotes the radiance incident from the direction of ω̂ωωin.
The next factor is simply the BRDF, which tells us how much of the radi-
ance incident from this particular direction will be reflected in the outgoing
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direction we care about. Finally, we have the Lambert factor. As discussed
in Section 10.1.2, this accounts for the fact that more incident light is avail-
able to be reflected, per unit surface area, when ω̂ωωin is perpendicular to
the surface than when at a glancing angle to the surface. The vector n̂

is the outward-facing surface normal; the dot product −ω̂ωωin · n̂ peaks at 1
in the perpendicular direction and trails off to zero as the angle of inci-
dence becomes more glancing. We discuss the Lambert factor once more in
Section 10.6.3.

In purely mathematical terms, the rendering equation is an integral
equation: it states a relationship between some unknown function
Lout(x, ω̂ωωout, λ), the distribution of light on the surfaces in the scene, in
terms of its own integral. It might not be apparent that the rendering
equation is recursive, but Lout actually appears on both sides of the equals
sign. It appears in the evaluation of Lin(x, ω̂ωωin, λ), which is precisely the
expression we set out to solve for each pixel: what is the radiance incident
on a point from a given direction? Thus to find the radiance exiting a
point x, we need to know all the radiance incident at x from all directions.
But the radiance incident on x is the same as the radiance leaving from all
other surfaces visible to x, in the direction pointing from the other surface
towards x.

To render a scene realistically, we must solve the rendering equation,
which requires us to know (in theory) not only the radiance arriving at the
camera, but also the entire distribution of radiance in the scene in every
direction at every point. Clearly, this is too much to ask for a finite, digital
computer, since both the set of surface locations and the set of potential
incident/exiting directions are infinite. The real art in creating software for
digital image synthesis is to allocate the limited processor time and memory
most efficiently, to make the best possible approximation.

The simple rendering pipeline we present in Section 10.10 accounts only
for direct light. It doesn’t account for indirect light that bounced off of
one surface and arrived at another. In other words, it only does “one
recursion level” in the rendering equation. A huge component of realistic
images is accounting for the indirect light—solving the rendering equation
more completely. The various methods for accomplishing this are known
as global illumination techniques.

This concludes our high-level presentation of how graphics works. Al-
though we admit we have not yet presented a single practical idea, we
believe it’s very important to understand what you are trying to approxi-
mate before you start to approximate it. Even though the compromises we
are forced to make for the sake of real-time are quite severe, the available
computing power is growing. A video game programmer whose only expo-
sure to graphics has been OpenGL tutorials or demos made by video card
manufacturers or books that focused exclusively on real-time rendering will
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have a much more difficult time understanding even the global illumination
techniques of today, much less those of tomorrow.

10.2 Viewing in 3D

Before we render a scene, we must pick a camera and a window. That is,
we must decide where to render it from (the view position, orientation, and
zoom) and where to render it to (the rectangle on the screen). The output
window is the simpler of the two, and so we will discuss it first.

Section 10.2.1 describes how to specify the output window. Section 10.2.2
discusses the pixel aspect ratio. Section 10.2.3 introduces the view frustum.
Section 10.2.4 describes field of view angles and zoom.

10.2.1 Specifying the Output Window

We don’t have to render our image to the entire screen. For example, in
split-screen multiplayer games, each player is given a portion of the screen.
The output window refers to the portion of the output device where our
image will be rendered. This is shown in Figure 10.2.

Figure 10.2. Specifying the output window
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The position of the window is specified by the coordinates of the upper
left-hand pixel (winPosx,winPosy). The integers winResx and winResy are
the dimensions of the window in pixels. Defining it this way, using the size
of the window rather than the coordinates of the lower right-hand corner,
avoids some sticky issues caused by integer pixel coordinates. We are also
careful to distinguish between the size of the window in pixels, and the
physical size of the window. This distinction will become important in
Section 10.2.2.

With that said, it is important to realize that we do not necessarily have
to be rendering to the screen at all. We could be rendering into a buffer to
be saved into a .TGA file or as a frame in an .AVI, or we may be rendering
into a texture as a subprocess of the “main” render, to produce a shadow
map, or a reflection, or the image on a monitor in the virtual world. For
these reasons, the term render target is often used to refer to the current
destination of rendering output.

10.2.2 Pixel Aspect Ratio

Regardless of whether we are rendering to the screen or an off-screen buffer,
we must know the aspect ratio of the pixels, which is the ratio of a pixel’s
height to its width. This ratio is often 1:1—that is, we have “square”
pixels—but this is not always the case! We give some examples below, but
it is common for this assumption to go unquestioned and become the source
of complicated kludges applied in the wrong place, to fix up stretched or
squashed images.

The formula for computing the aspect ratio is
Computing the pixel
aspect ratio

pixPhysx
pixPhysy

=
devPhysx
devPhysy

· devResy
devResx

. (10.2)

The notation pixPhys refers to the physical size of a pixel, and devPhys is
the physical height and width of the device on which the image is displayed.
For both quantities, the individual measurements may be unknown, but
that’s OK because the ratio is all we need, and this usually is known. For
example, standard desktop monitors come in all different sizes, but the
viewable area on many older monitors has a ratio of 4:3, meaning it is 33%
wider than it is tall. Another common ratio is 16:9 or wider7 on high-
definition televisions. The integers devResx and devResy are the number

7Monitor manufacturers must have been overjoyed to find that people perceived a
premium quality to these “widescreen” monitors. Monitor sizes are typically measured
by the diagonal, but costs are more directly tied to number of pixels, which is proportional
to area, not diagonal length. Thus, a 16:9 monitor with the same number of pixels as a
4:3 will have a longer diagonal measurement, which is perceived as a “bigger” monitor.
We’re not sure if the proliferation of monitors with even wider aspect ratios is fueled
more by market forces or marketing forces.
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of pixels in the x and y dimensions. For example, a resolution of 1280×720
means that devResx = 1280 and devResy = 720.

But, as mentioned already, we often deal with square pixels with an
aspect ratio of 1:1. For example, on a desktop monitor with a physical
width:height ratio of 4:3, some common resolutions resulting in square pixel
ratios are 640 × 480, 800 × 600, 1024 × 768, and 1600 × 1200. On 16:9
monitors, common resolutions are 1280×720, 1600×900, 1920×1080. The
aspect ratio 8:5 (more commonly known as 16:10) is also very common, for
desktop monitor sizes and televisions. Some common display resolutions
that are 16:10 are 1153 × 720, 1280 × 800, 1440 × 900, 1680 × 1050, and
1920×1200. In fact, on the PC, it’s common to just assume a 1:1 pixel ratio,
since obtaining the dimensions of the display device might be impossible.
Console games have it easier in this respect.

Notice that nowhere in these calculations is the size or location of the
window used; the location and size of the rendering window has no bearing
on the physical proportions of a pixel. However, the size of the window
will become important when we discuss field of view in Section 10.2.4, and
the position is important when we map from camera space to screen space
Section 10.3.5.

At this point, some readers may be wondering how this discussion makes
sense in the context of rendering to a bitmap, where the word “physical”
implied by the variable names pixPhys and devPhys doesn’t apply. In most
of these situations, it’s appropriate simply to act as if the pixel aspect ratio
is 1:1. In some special circumstances, however, you may wish to render
anamorphically, producing a squashed image in the bitmap that will later
be stretched out when the bitmap is used.

10.2.3 The View Frustum

The view frustum is the volume of space that is potentially visible to the
camera. It is shaped like a pyramid with the tip snipped off. An example
of a view frustum is shown in Figure 10.3.

The view frustum is bounded by six planes, known as the clip planes.
The first four of the planes form the sides of the pyramid and are called
the top, left, bottom, and right planes, for obvious reasons. They corre-
spond to the sides of the output window. The near and far clip planes,
which correspond to certain camera-space values of z, require a bit more
explanation.

The reason for the far clip plane is perhaps easier to understand. It
prevents rendering of objects beyond a certain distance. There are two
practical reasons why a far clip plane is needed. The first is relatively easy
to understand: a far clip plane can limit the number of objects that need
to be rendered in an outdoor environment. The second reason is slightly
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Figure 10.3
The 3D view frustum

more complicated, but essentially it has to do with how the depth buffer
values are assigned. As an example, if the depth buffer entries are 16-
bit fixed point, then the largest depth value that can be stored is 65,535.
The far clip establishes what (floating point) z value in camera space will
correspond to the maximum value that can be stored in the depth buffer.
The motivation for the near clip plane will have to wait until we discuss
clip space in Section 10.3.2.

Notice that each of the clipping planes are planes, with emphasis on the
fact that they extend infinitely. The view volume is the intersection of the
six half-spaces defined by the clip planes.

10.2.4 Field of View and Zoom

A camera has position and orientation, just like any other object in the
world. However, it also has an additional property known as field of view.
Another term you probably know is zoom. Intuitively, you already know
what it means to “zoom in” and “zoom out.” When you zoom in, the
object you are looking at appears bigger on screen, and when you zoom
out, the apparent size of the object is smaller. Let’s see if we can develop
this intuition into a more precise definition.

The field of view (FOV) is the angle that is intercepted by the view
frustum. We actually need two angles: a horizontal field of view, and a
vertical field of view. Let’s drop back to 2D briefly and consider just one of
these angles. Figure 10.4 shows the view frustum from above, illustrating
precisely the angle that the horizontal field of view measures. The labeling
of the axes is illustrative of camera space, which is discussed in Section 10.3.

Zoom measures the ratio of the apparent size of the object relative to a
90o field of view. For example, a zoom of 2.0 means that object will appear
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Figure 10.4
Horizontal field of view

twice as big on screen as it would if we were using a 90o field of view. So
larger zoom values cause the image on screen to become larger (“zoom in”),
and smaller values for zoom cause the images on screen to become smaller
(“zoom out”).

Zoom can be interpreted geometrically as shown in Figure 10.5. Using
some basic trig, we can derive the conversion between zoom and field of

Figure 10.5
Geometric interpretation of zoom
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view:

Converting between
zoom and field of view

zoom =
1

tan (fov/2)
, fov = 2 arctan (1/zoom) . (10.3)

Notice the inverse relationship between zoom and field of view. As
zoom gets larger, the field of view gets smaller, causing the view frustum
to narrow. It might not seem intuitive at first, but when the view frustum
gets more narrow, the perceived size of visible objects increases.

Field of view is a convenient measurement for humans to use, but as we
discover in Section 10.3.4, zoom is the measurement that we need to feed
into the graphics pipeline.

We need two different field of view angles (or zoom values), one hori-
zontal and one vertical. We are certainly free to choose any two arbitrary
values we fancy, but if we do not maintain a proper relationship between
these values, then the rendered image will appear stretched. If you’ve ever
watched a movie intended for the wide screen that was simply squashed
anamorphically to fit on a regular TV, or watched content with a 4:3 as-
pect on a 16:9 TV in “full”8 mode, then you have seen this effect.

In order to maintain proper proportions, the zoom values must be in-
versely proportional to the physical dimensions of the output window:

The usual relationship
between vertical and
horizontal zoom

zoomy

zoomx
=

winPhysx
winPhysy

= window aspect ratio. (10.4)

The variable winPhys refers to the physical size of the output window. As
indicated in Equation (10.4), even though we don’t usually know the actual
size of the render window, we can determine its aspect ratio. But how do
we do this? Usually, all we know is the resolution (number of pixels) of
the output window. Here’s where the pixel aspect ratio calculations from
Section 10.2.2 come in:

zoomy

zoomx
=

winPhysx
winPhysy

=
winResx
winResy

· pixPhysx
pixPhysy

=
winResx
winResy

· devPhysx
devPhysy

· devResy
devResx

.

(10.5)

In this formula,

• zoom refers to the camera’s zoom values,

• winPhys refers to the physical window size,

8While it causes videophiles extreme stress to see an image manhandled this way,
apparently some TV owners prefer a stretched image to the black bars, which give them
the feeling that they are not getting all their money’s worth out of their expensive
new TV.
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• winRes refers to the resolution of the window, in pixels,

• pixPhys refers to the physical dimensions of a pixel,

• devPhys refers to the physical dimensions of the output device. Re-
member that we usually don’t know the individual sizes, but we do
know the ratio,

• devRes refers to the resolution of the output device.

Many rendering packages allow you to specify only one field of view
angle (or zoom value). When you do this, they automatically compute the
other value for you, assuming you want uniform display proportions. For
example, you may specify the horizontal field of view, and they compute
the vertical field of view for you.

Now that we know how to describe zoom in a manner suitable for con-
sumption by a computer, what do we do with these zoom values? They go
into the clip matrix, which is described in Section 10.3.4.

10.2.5 Orthographic Projection

The discussion so far has centered on perspective projection, which is the
most commonly used type of projection, since that’s how our eyes perceive
the world. However, in many situations orthographic projection is also use-
ful. We introduced orthographic projection in Section 5.3; to briefly review,
in orthographic projection, the lines of projection (the lines that connect
all the points in space that project onto the same screen coordinates) are
parallel, rather than intersecting at a single point. There is no perspective
foreshortening in orthographic projection; an object will appear the same
size on the screen no matter how far away it is, and moving the camera
forward or backward along the viewing direction has no apparent effect so
long as the objects remain in front of the near clip plane.

Figure 10.6 shows a scene rendered from the same position and orien-
tation, comparing perspective and orthographic projection. On the left,
notice that with perspective projection, parallel lines do not remain par-
allel, and the closer grid squares are larger than the ones in the distance.
Under orthographic projection, the grid squares are all the same size and
the grid lines remain parallel.

Orthographic views are very useful for “schematic” views and other
situations where distances and angles need to be measured precisely. Every
modeling tool will support such a view. In a video game, you might use an
orthographic view to render a map or some other HUD element.

For an orthographic projection, it makes no sense to speak of the “field
of view” as an angle, since the view frustum is shaped like a box, not a
pyramid. Rather than defining the x and y dimensions of the view frustum
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Perspective projection Orthographic projection

Figure 10.6
Perspective versus orthographic projection

in terms of two angles, we give two sizes: the physical width and height of
the box.

The zoom value has a different meaning in orthographic projection com-
pared to perspective. It is related to the physical size of the frustum box:

Converting between
zoom and frustum size in
orthographic projection

zoom = 2/size, size = 2/zoom.

As with perspective projections, there are two different zoom values, one
for x and one for y, and their ratio must be coordinated with the aspect ratio
of the rendering window in order to avoid producing a “squashed” image.
We developed Equation (10.5) with perspective projection in mind, but this
formula also governs the proper relationship for orthographic projection.

10.3 Coordinate Spaces

This section reviews several important coordinate spaces related to 3D view-
ing. Unfortunately, terminology is not consistent in the literature on the
subject, even though the concepts are. Here, we discuss the coordinate
spaces in the order they are encountered as geometry flows through the
graphics pipeline.

10.3.1 Model, World, and Camera Space

The geometry of an object is initially described in object space, which is
a coordinate space local to the object being described (see Section 3.2.2).



370 10. Mathematical Topics from 3D Graphics

The information described usually consists of vertex positions and surface
normals. Object space is also known as local space and, especially in the
context of graphics, model space.

From model space, the vertices are transformed into world space (see
Section 3.2.1). The transformation from modeling space to world space is
often called the model transform. Typically, lighting for the scene is spec-
ified in world space, although, as we see in Section 10.11, it doesn’t really
matter what coordinate space is used to perform the lighting calculations
provided that the geometry and the lights can be expressed in the same
space.

From world space, vertices are transformed by the view transform into
camera space (see Section 3.2.3), also known as eye space and view space
(not to be confused with canonical view volume space, discussed later).
Camera space is a 3D coordinate space in which the origin is at the cen-
ter of projection, one is axis parallel to the direction the camera is facing
(perpendicular to the projection plane), one axis is the intersection of the
top and bottom clip planes, and the other axis is the intersection of the left
and right clip planes. If we assume the perspective of the camera, then one
axis will be “horizontal” and one will be “vertical.”

In a left-handed world, the most common convention is to point +z in
the direction that the camera is facing, with +x and +y pointing “right”
and “up” (again, from the perspective from the camera). This is fairly
intuitive, as shown in Figure 10.7. The typical right-handed convention is
to have −z point in the direction that the camera is facing. We assume the
left-handed conventions for the remainder of this chapter

Figure 10.7
Typical cameraspace conventions
for lefthanded coordinate systems



10.3. Coordinate Spaces 371

10.3.2 Clip Space and the Clip Matrix

From camera space, vertices are transformed once again into clip space, also
known as the canonical view volume space. The matrix that transforms
vertices from camera space into clip space is called the clip matrix, also
known as the projection matrix.

Up until now, our vertex positions have been “pure” 3D vectors—that
is, they only had three coordinates, or if they have a fourth coordinate, then
w was always equal to 1 for position vectors and 0 for direction vectors such
as surface normals. (In some special situations, we might use more exotic
transforms, but most basic transforms are 3D affine transformations.) The
clip matrix, however, puts meaningful information into w. The clip matrix
serves two primary functions:

• Prepare for projection. We put the proper value into w so that the
homogeneous division produces the desired projection. For the typical
perspective projection, this means we copy z into w. We talk about
this in Section 10.3.3.

• Apply zoom and prepare for clipping. We scale x, y, and z so that
they can be compared against w for clipping. This scaling takes
the camera’s zoom values into consideration, since those zoom values
affect the shape of the view frustum against which clipping occurs.
This is discussed in Section 10.3.4.

10.3.3 The Clip Matrix: Preparing for Projection

Recall from Section 6.4.1 that a 4D homogeneous vector is mapped to the
corresponding physical 3D vector by dividing by w:

Converting 4D
homogeneous
coordinates to 3D









x
y
z
w









=⇒





x/w
y/w
z/w



.

The first goal of the clip matrix is to get the correct value into w such that
this division causes the desired projection (perspective or orthographic).
That’s the reason this matrix is sometimes called the projection matrix,
although this term is a bit misleading—the projection doesn’t take place
during the multiplication by this matrix, it happens when we divide x, y,
and z by w.

If this was the only purpose of the clip matrix, to place the correct
value into w, the clip matrix for perspective projection would simply be
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A trivial matrix for

setting w = z, for
perspective projection









1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0









.

Multiplying a vector of the form [x, y, z, 1] by this matrix, and then per-
forming the homogeneous division by w, we get

[

x y z 1
]









1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0









=
[

x y z z
]

=⇒
[

x/z y/z 1
]

.

At this point, many readers might very reasonably ask two questions.
The first question might be, “Why is this so complicated? This seems like
a lot of work to accomplish what basically amounts to just dividing by z.”
You’re right. In many old school software rasterizers, where the projection
math was hand-coded, w didn’t appear anywhere, and there was just an
explicit divide by z. So why do we tolerate all this complication? One
reason for homogeneous coordinates is that they can represent a wider
range of camera specifications naturally. At the end of this section we’ll
see how orthographic projections can be handled easily, without the “if
statement” that was necessary in the old hand-coded systems. But there
are other types of projections that are also useful and are handled naturally
in this framework. For example, the frustum planes do not need to be
symmetric about the viewing direction, which corresponds to the situation
where your view direction does not look through the center of the window.
This is useful, for example, when rendering a very high resolution image
in smaller blocks, or for seamless dynamic splitting and merging of split
screen views. Another advantage of using homogeneous coordinates is that
they make z-clipping (against the near and far clipping planes) identical to
x- and y-clipping. This similarity makes things nice and tidy, but, more
important, on some hardware the vector unit can be exploited to perform
clipping comparison tests in parallel. In general, the use of homogeneous
coordinates and 4 × 4 matrices makes things more compact and general
purpose, and (in some peoples’ minds) more elegant. But regardless of
whether the use of 4 × 4 matrices improves the process, it’s the way most
APIs want things delivered, so that’s the way it works, for better or worse.

The second question a reader might have is, “What happened to d?”
Remember that d is the focal distance, the distance from the projection
plane to the center of projection (the “focal point”). Our discussion of
perspective projection via homogeneous division in Section 6.5 described



10.3. Coordinate Spaces 373

Figure 10.8. In a physical camera, increasing the focal distance d while keeping the size of the
“film” the same has the effect of zooming in.

how to project onto a plane perpendicular to the z-axis and d units away
from the origin. (The plane is of the form z = d.) But we didn’t use d
anywhere in the above discussion. As it turns out, the value we use for d
isn’t important, and so we choose the most convenient value possible for d,
which is 1.

To understand why d doesn’t matter, let’s compare the projection that
occurs in a computer to the projection that occurs in a physical camera.
Inside a real camera, increasing this distance causes the camera to zoom
in (objects appear bigger), and decreasing it zooms out (objects appear
smaller). This is shown in Figure 10.8.

The vertical line on the left side of each diagram represents the film
(or, for modern cameras, the sensing element), which lies in the infinite
plane of projection. Importantly, notice that the film is the same height
in each diagram. As we increase d, the film moves further away from the
focal plane, and the field of view angle intercepted by the view frustum
decreases. As the view frustum gets smaller, an object inside this frustum
takes a larger proportion of the visible volume, and thus appears larger
in the projected image. The perceived result is that we are zooming in.
The key point here is that changing the focal length causes an object to
appear bigger because the projected image is larger relative to the size of the
film.

Now let’s look at what happens inside a computer. The “film” inside
a computer is the rectangular portion of the projection plane that inter-
sects the view frustum.9 Notice that if we increase the focal distance,

9The “film” is in front of the focal point rather than behind the focal point like in a
real camera, but that fact is not significant to this discussion.
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the size of the projected image increases, just like it did in a real cam-
era. However, inside a computer, the film actually increases by this same
proportion, rather than the view frustum changing in size. Because the
projected image and the film increase by the same proportion, there is no
change to the rendered image or the apparent size of objects within this
image.

In summary, zoom is always accomplished by changing the shape of
the view frustum, whether we’re talking about a real camera or inside a
computer. In a real camera, changing the focal length changes the shape
of the view frustum because the film stays the same size. However, in a
computer, adjusting the focal distance d does not affect the rendered image,
since the “film” increases in size and the shape of the view frustum does
not change.

Some software allow the user to specify the field of view by giving a
focal length measured in millimeters. These numbers are in reference to
some standard film size, almost always 35 mm film.

What about orthographic projection? In this case, we do not want to
divide by z, so our clip matrix will have a right-hand column of [0, 0, 0, 1]T,
the same as the identity matrix. When multiplied by a vector of the
form [x, y, z, 1], this will result in a vector with w = 1, rather than w =
z. The homogeneous division still occurs, but this time we are dividing
by 1:

[

x y z 1
]









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









=
[

x y z 1
]

=⇒
[

x y z
]

.

The next section fills in the rest of the clip matrix. But for now, the
key point is that a perspective projection matrix will always have a right-
hand column of [0, 0, 1, 0], and a orthographic projection matrix will always
have a right-hand column of [0, 0, 0, 1]. Here, the word “always” means
“we’ve never seen anything else.” You might come across some obscure
case on some particular hardware for which other values are needed, and it
is important to understand that 1 isn’t a magic number here, it is just the
simplest number. Since the homogeneous conversion is a division, what is
important is the ratio of the coordinates, not their magnitude.

Notice that multiplying the entire matrix by a constant factor doesn’t
have any effect on the projected values x/w, y/w, and z/w, but it will
adjust the value of w, which is used for perspective correct rasterization.
So a different value might be necessary for some reason. Then again, certain
hardware (such as the Wii) assume that these are the only two cases, and
no other right-hand column is allowed.
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10.3.4 The Clip Matrix: Applying Zoom and
Preparing for Clipping

The second goal of the clip matrix is to scale the x, y, and z components
such that the six clip planes have a trivial form. Points are outside the view
frustum if they satisfy at least one of the inequalities:

The six planes of the
view frustum in clip
space

Bottom y < −w,
Top y > w,
Left x < −w,
Right x > w,
Near z < −w,
Far z > w.

So the points inside the view volume satisfy

−w ≤ x ≤ w,
−w ≤ y ≤ w,
−w ≤ z ≤ w.

Any geometry that does not satisfy these equalities must be clipped to the
view frustum. Clipping is discussed in Section 10.10.4.

To stretch things to put the top, left, right, and bottom clip planes in
place, we scale the x and y values by the zoom values of the camera. We
discussed how to compute these values in Section 10.2.4. For the near and
far clip planes, the z-coordinate is biased and scaled such that at the near
clip plane, z/w = −1, and at the far clip plane, z/w = 1.

Let zoomx and zoomy be the horizontal and vertical zoom values, and
let n and f be the distances to the near and far clipping planes. Then
the matrix that scales x, y, and z appropriately, while simultaneously out-
putting the z-coordinate into w, is

Clip matrix for
perspective projection
with z = −w at the near
clip plane









zoomx 0 0 0
0 zoomy 0 0

0 0 f+n
f−n 1

0 0 −2nf
f−n 0









. (10.6)

This clip matrix assumes a coordinate system with z pointing into the
screen (the usual left-handed convention), row vectors on the left, and z
values in the range [−w,w] from the near to far clip plane. This last detail
is yet another place where conventions can vary. Other APIs, (notably,
DirectX) want the projection matrix such that z is in the range [0, w]. In
other words, a point in clip space is outside the clip plane if

Near and far clip planes
in DirectX-style clip
space

near z < 0,
far z > w.
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Under these DirectX-style conventions, the points inside the view frustum
satisfy the inequality 0 ≤ z ≤ w. A slightly different clip matrix is used in
this case:Clip matrix for

perspective projection
with z = 0 at the near

clip plane









zoomx 0 0 0
0 zoomy 0 0

0 0 f
f−n 1

0 0 −nf
f−n 0









. (10.7)

We can easily tell that the two matrices in Equations (10.6) and (10.7) are
perspective projection matrices because the right-hand column is [0, 0, 1, 0]T.
(OK, the caption in the margin is a bit of a hint, too.)

What about orthographic projection? The first and second columns of
the projection matrix don’t change, and we know the fourth column will
become [0, 0, 0, 1]T. The third column, which controls the output z value,
must change. We start by assuming the first set of conventions for z, that is
the output z value will be scaled such that z/w takes on the values −1 and
+1 at the near and far clip planes, respectively. The matrix that does this is

Clip matrix for
orthographic projection

with z = −w at the near
clip plane









zoomx 0 0 0
0 zoomy 0 0
0 0 2

f−n 0

0 0 − f+n
f−n 1









.

Alternatively, if we are using a DirectX-style range for the clip space z
values, then the matrix we use is

Clip matrix for
orthographic projection
with z = 0 at the near

clip plane









zoomx 0 0 0
0 zoomy 0 0
0 0 1

f−n 0

0 0 n
n−f 1









.

In this book, we prefer a left-handed convention and row vectors on
the left, and all the projection matrices so far assume those conventions.
However, both of these choices differ from the OpenGL convention, and we
know that many readers may be working in environments that are similar to
OpenGL. Since this can be very confusing, let’s repeat these matrices, but
with the right-handed, column-vector OpenGL conventions. We’ll only dis-
cuss the [−1,+1] range for clip-space z values, because that’s what OpenGL
uses.

It’s instructive to consider how to convert these matrices from one set
of conventions to the other. Because OpenGL uses column vectors, the
first thing we need to do is transpose our matrix. Second, the right-handed
conventions have −z pointing into the screen in camera space (“eye space”
in the OpenGL vocabulary), but the clip-space +z axis points into the
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screen just like the left-handed conventions assumed earlier. (In OpenGL,
clip space is actually a left-handed coordinate space!) This means we need
to negate our incoming z values, or alternatively, negate the third column
(after we’ve transposed the matrix), which is the column that is multiplied
by z.

The above procedure results in the following perspective projection ma-
trix

Clip matrix for
perspective projection
assuming OpenGL
conventions









zoomx 0 0 0
0 zoomy 0 0

0 0 − f+n
f−n

−2nf
f−n

0 0 −1 0









,

and the orthographic projection matrix is

Clip matrix for
orthographic projection
assuming OpenGL
conventions









zoomx 0 0 0
0 zoomy 0 0

0 0 −2
f−n − f+n

f−n

0 0 0 1









.

So, for OpenGL conventions, you can tell whether a projection matrix is
perspective or orthographic based on the bottom row. It will be [0, 0,−1, 0]
for perspective, and [0, 0, 0, 1] for orthographic.

Now that we know a bit about clip space, we can understand the need
for the near clip plane. Obviously, there is a singularity precisely at the
origin, where a perspective projection is not defined. (This corresponds
to a perspective division by zero.) In practice, this singularity would be
extremely rare, and however we wanted to handle it—say, by arbitrarily
projecting the point to the center of the screen—would be OK, since putting
the camera directly in a polygon isn’t often needed in practice.

But projecting polygons onto pixels isn’t the only issue. Allowing for
arbitrarily small (but positive) values of z will result in arbitrarily large
values for w. Depending on the hardware, this can cause problems with
perspective-correct rasterization. Another potential problem area is depth
buffering. Suffice it to say that for practical reasons it is often necessary
to restrict the range of the z values so that there is a known minimum
value, and we must accept the rather unpleasant necessity of a near clip
plane. We say “unpleasant” because the near clip plane is an artifact of
implementation, not an inherent part of a 3D world. (Raytracers don’t
necessarily have this issue.) It cuts off objects when you get too close
to them, when in reality you should be able to get arbitrarily close. Many
readers are probably familiar with the phenomena where a camera is placed
in the middle of a very large ground polygon, just a small distance above
it, and a gap opens up at the bottom of the screen, allowing the camera to
see through the ground. A similar situation exists if you get very close to
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practically any object other than a wall. A hole will appear in the middle
of the object, and this hole will expand as you move closer.

10.3.5 Screen Space

Once we have clipped the geometry to the view frustum, it is projected
into screen space, which corresponds to actual pixels in the frame buffer.
Remember that we are rendering into an output window that does not
necessarily occupy the entire display device. However, we usually want our
screen-space coordinates to be specified using coordinates that are absolute
to the rendering device (Figure 10.9).

Screen space is a 2D space, of course. Thus, we must project the points
from clip space to screen space to generate the correct 2D coordinates.
The first thing that happens is the standard homogeneous division by w.
(OpenGL calls the result of this division the normalized device coordinates.)
Then, the x- and y-coordinates must be scaled to map into the output
window. This is summarized by

Projecting and mapping

to screen space
screenx =

clipx · winResx
2 · clipw

+winCenterx, (10.8)

screeny = −
clipy · winResy

2 · clipw
+winCentery. (10.9)

A quick comment is warranted about the negation of the y component in
the math above. This reflects DirectX-style coordinate conventions where

Figure 10.9. The output window in screen space



10.3. Coordinate Spaces 379

(0,0) is in the upper-left corner. Under these conventions, +y points up
in clip space, but down in screen space. In fact, if we continue to think
about +z pointing into the screen, then screen space actually becomes
a right-handed coordinate space, even though it’s left-handed everywhere
else in DirectX. In OpenGL, the origin is in the lower left corner, and
the negation of the y-coordinate does not occur. (As already discussed, in
OpenGL, they choose a different place to introduce confusion, by flipping
the z-axis between eye space, where −z points into the screen, to clip space,
where +z points into the screen.)

Speaking of z, what happens to clipz? In general it’s used in some way
for depth buffering. A traditional method is to take the normalized depth
value clipz/clipw and store this value in the depth buffer. The precise
details depend on exactly what sort of clip values are used for clipping,
and what sort of depth values go into the depth buffer. For example, in
OpenGL, the conceptual convention is for the view frustum to contain −1 ≤
clipz/clipw ≤ +1, but this might not be optimal for depth buffering. Driver
vendors must convert from the API’s conceptual conventions to whatever
is optimal for the hardware.

An alternative strategy, known as w-buffering, is to use clipw as the
depth value. In most situations clipw is simply a scaled version of the
camera-space z value; thus by using clipw in the depth buffer, each value has
a linear relationship to the viewing depth of the corresponding pixel. This
method can be attractive, especially if the depth buffer is fixed-point with
limited precision, because it spreads out the available precision more evenly.
The traditional method of storing clipz/clipw in the depth buffer results
in greatly increased precision up close, but at the expense of (sometimes
drastically) reduced precision near the far clip plane. If the depth buffer
values are stored in floating-point, this issue is much less important. Also
note that w-buffering doesn’t work for orthographic projection, since an
orthographic projection matrix always outputs w = 1.

The clipw value is also not discarded. As we’ve said, it serves the im-
portant purpose as the denominator in the homogeneous division to nor-
malized device coordinates. But this value is also usually needed for proper
perspective-correct interpolation of texture coordinates, colors, and other
vertex-level values during rasterization.

On modern graphics APIs at the time of this writing, the conversion of
vertex coordinates from clip space to screen space is done for you. Your
vertex shader outputs coordinates in clip space. The API clips the triangles
to the view frustum and then projects the coordinates to screen space. But
that doesn’t mean that you will never use the equations in this section in
your code. Quite often, we need to perform these calculations in software
for visibility testing, level-of-detail selection, and so forth.
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Figure 10.10. Conversion of vertex coordinates through the graphics pipeline

10.3.6 Summary of Coordinate Spaces

Figure 10.10 summarizes the coordinate spaces and matrices discussed in
this section, showing the data flow from object space to screen space.

The coordinate spaces we’ve mentioned are the most important and
common ones, but other coordinate spaces are used in computer graphics.
For example, a projected light might have its own space, which is essentially
the same as camera space, only it is from the perspective that the light
“looks” onto the scene. This space is important when the light projects an
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image (sometimes called a gobo) and also for shadow mapping to determine
whether a light can “see” a given point.

Another space that has become very important is tangent space, which
is a local space on the surface of an object. One basis vector is the sur-
face normal and the other two basis vectors are locally tangent to the
surface, essentially establishing a 2D coordinate space that is “flat” on
the surface at that spot. There are many different ways we could deter-
mine these basis vectors, but by far the most common reason to establish
such a coordinate space is for bump mapping and related techniques. A
more complete discussion of tangent space will need to wait until after we
discuss texture mapping in Section 10.5, so we’ll come back to this sub-
ject in Section 10.9.1. Tangent space is also sometimes called surface-local
space.

10.4 Polygon Meshes

To render a scene, we need a mathematical description of the geometry in
that scene. Several different methods are available to us. This section fo-
cuses on the one most important for real-time rendering: the triangle mesh.
But first, let’s mention a few alternatives to get some context. Construc-
tive solid geometry (CSG) is a system for describing an object’s shape using
Boolean operators (union, intersection, subtraction) on primitives. Within
video games, CSG can be especially useful for rapid prototyping tools, with
the Unreal engine being a notable example. Another technique that works
by modeling volumes rather than their surfaces ismetaballs, sometimes used
to model organic shapes and fluids, as was discussed in Section 9.1. CSG,
metaballs, and other volumetric descriptions are very useful in particular
realms, but for rendering (especially real-time rendering) we are interested
in a description of the surface of the object, and seldom need to determine
whether a given point is inside or outside this surface. Indeed, the surface
need not be closed or even define a coherent volume.

The most common surface description is the polygon mesh, of which
you are probably already aware. In certain circumstances, it’s useful to
allow the polygons that form the surface of the object to have an arbi-
trary number of vertices; this is often the case in importing and editing
tools. For real-time rendering, however, modern hardware is optimized for
triangle meshes, which are polygon meshes in which every polygon is a tri-
angle. Any given polygon mesh can be converted into an equivalent triangle
mesh by decomposing each polygon into triangles individually, as was dis-
cussed briefly in Section 9.7.3. Please note that many important concepts
introduced in the context of a single triangle or polygon were covered in
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Section 9.6 and Section 9.7, respectively. Here, our focus is on how more
than one triangle can be connected in a mesh.

One very straightforward way to store a triangle mesh would be to use
an array of triangles, as shown in Listing 10.4.

s t r u c t T r i a n g l e {
Vector3 ve r t Po s [ 3 ] ; / / v e r t e x p o s i t i o n s

} ;

s t r u c t TriangleMesh {
i n t t r i C o u n t ; / / number o f t r i a n g l e s
T r i a n g l e ∗ t r i L i s t ; / / a r r ay o f t r i a n g l e s

} ;

Listing 10.4
A trivial representation of a triangle mesh

For some applications this trivial representation might be adequate.
However, the term “mesh” implies a degree of connectivity between adja-
cent triangles, and this connectivity is not expressed in our trivial repre-
sentation. There are three basic types of information in a triangle mesh:

• Vertices. Each triangle has exactly three vertices. Each vertex may
be shared by multiple triangles. The valence of a vertex refers to how
many faces are connected to the vertex.

• Edges. An edge connects two vertices. Each triangle has three edges.
In many cases, each edge is shared by exactly two faces, but there are
certainly exceptions. If the object is not closed, an open edge with
only one neighboring face can exist.

• Faces. These are the surfaces of the triangles. We can store a face as
either a list of three vertices, or a list of three edges.

A variety of methods exist to represent this information efficiently, de-
pending on the operations to be performed most often on the mesh. Here
we will focus on a standard storage format known as an indexed triangle
mesh.

10.4.1 Indexed Triangle Mesh

An indexed triangle mesh consists of two lists: a list of vertices, and a list
of triangles.

• Each vertex contains a position in 3D. We may also store other in-
formation at the vertex level, such as texture-mapping coordinates,
surface normals, or lighting values.
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• A triangle is represented by three integers that index into the vertex
list. Usually, the order in which these vertices are listed is significant,
since we may consider faces to have “front” and “back” sides. We
adopt the left-handed convention that the vertices are listed in clock-
wise order when viewed from the front side. Other information may
also be stored at the triangle level, such as a precomputed normal of
the plane containing the triangle, surface properties (such as a texture
map), and so forth.

Listing 10.5 shows a highly simplified example of how an indexed trian-
gle mesh might be stored in C.

/ / s t r u c t Ve r t e x i s the i n fo rma t i on we s t o r e a t the v e r t e x l e v e l
s t r u c t Ver tex {

/ / 3D p o s i t i o n o f the v e r t e x
Vector3 pos ;

/ / Other i n f o rma t i on could inc lude
/ / t e x t u r e mapping coord ina tes , a
/ / s u r f a c e normal , l i g h t i n g va lues , e tc .

} ;

/ / s t r u c t T r i a n g l e i s the i n fo rma t i on we s t o r e a t the t r i a n g l e l e v e l
s t r u c t T r i a n g l e {

/ / I n d i c e s i n t o the v e r t e x l i s t . In p rac t i ce , 16−b i t i n d i c e s are
/ / a lmost always used r a t h e r than 32−b i t , to save memory and bandwidth .
i n t ve r t ex Index [ 3 ] ;

/ / Other i n f o rma t i on could inc lude
/ / a normal , m a t e r i a l i n fo rmat ion , e tc

} ;

/ / s t r u c t Tr iang leMesh s t o r e s an indexed t r i a n g l e mesh
s t r u c t TriangleMesh {

/ / The v e r t i c e s
i n t ver texCount ;
Ver tex ∗ v e r t e x L i s t ;

/ / The t r i a n g l e s
i n t t r i a n g l e C o u n t ;
T r i a n g l e ∗ t r i a n g l e L i s t ;

} ;

Listing 10.5
Indexed triangle mesh

Figure 10.11 shows how a cube and a pyramid might be represented as
a polygon mesh or a triangle mesh. Note that both objects are part of a
single mesh with 13 vertices. The lighter, thicker wires show the outlines
of polygons, and the thinner, dark green wires show one way to add edges
to triangulate the polygon mesh.
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Figure 10.11. A simple mesh containing a cube and a pyramid

Assuming the origin is on the “ground” directly between the two objects,
the vertex coordinates might be as shown in Table 10.3.

0 (−3, 2, 1) 4 (−3, 0, 1) 8 (2, 2, 0) 12 (1, 0,−1)
1 (−1, 2, 1) 5 (−1, 0, 1) 9 (1, 0, 1)
2 (−1, 2,−1) 6 (−1, 0,−1) 10 (3, 0, 1)
3 (−3, 2,−1) 7 (−3, 0,−1) 11 (3, 0,−1)

Table 10.3. Vertex positions in our sample mesh

Table 10.4 shows the vertex indices that would form faces of this mesh,
either as a polygon mesh or as a triangle mesh. Remember that the order
of the vertices is significant; they are listed in clockwise order when viewed
from the outside. You should study these figures until you are sure you
understand them.

Vertex indices Vertex indices
Description (Polygon mesh) (Triangle mesh)
Cube top {0, 1, 2, 3} {1, 2, 3}, {1, 3, 0}
Cube front {2, 6, 7, 3} {2, 6, 7}, {2, 7, 3}
Cube right {2, 1, 5, 6} {2, 1, 5}, {2, 5, 6}
Cube left {0, 3, 7, 4} {0, 3, 7}, {0, 7, 4}
Cube back {0, 4, 5, 1} {0, 4, 5}, {0, 5, 1}
Cube bottom {4, 7, 6, 5} {4, 7, 6}, {4, 6, 5}
Pyramid front {12, 8, 11} {12, 8, 11}
Pyramid left {9, 8, 12} {9, 8, 12}
Pyramid right {8, 10, 11} {8, 10, 11}
Pyramid back {8, 9, 10} {8, 9, 10}
Pyramid bottom {9, 12, 11, 10} {9, 12, 11}, {9, 11, 10}

Table 10.4. The vertex indices that form the faces of our sample mesh, either as a polygon
mesh or a triangle mesh
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The vertices must be listed in clockwise order around a face, but it
doesn’t matter which one is considered the “first” vertex; they can be cycled
without changing the logical structure of the mesh. For example, the quad
forming the cube top could equivalently have been given as {1, 2, 3, 0},
{2, 3, 0, 1}, or {3, 0, 1, 2}.

As indicated by the comments in Listing 10.5, additional data are almost
always stored per vertex, such as texture coordinates, surface normals, basis
vectors, colors, skinning data, and so on. Each of these is discussed in
later sections in the context of the techniques that make use of the data.
Additional data can also be stored at the triangle level, such as an index that
tells which material to use for that face, or the plane equation (part of which
is the surface normal—see Section 9.5) for the face. This is highly useful
for editing purposes or in other tools that perform mesh manipulations in
software. For real-time rendering, however, we seldom store data at the
triangle level beyond the three vertex indices. In fact, the most common
method is to not have a struct Triangle at all, and to represent the entire
list of triangles simply as an array (e.g. unsigned short triList[]),
where the length of the array is the number of triangles times 3. Triangles
with identical properties are grouped into batches so that an entire batch
can be fed to the GPU in this optimal format. After we review many of
the concepts that give rise to the need to store additional data per vertex,
Section 10.10.2 looks at several more specific examples of how we might feed
that data to the graphics API. By the way, as a general rule, things are a lot
easier if you do not try to use the same mesh class for both rendering and
editing. The requirements are very different, and a bulkier data structure
with more flexibility is best for use in tools, importers, and the like.

Note that in an indexed triangle mesh, the edges are not stored explic-
itly, but rather the adjacency information contained in an indexed triangle
list is stored implicitly: to locate shared edges between triangles, we must
search the triangle list. Our original trivial “array of triangles” format in
Listing 10.4 did not have any logical connectivity information (although
we could have attempted to detect whether the vertices on an edge were
identical by comparing the vertex positions or other properties). What’s
surprising is that the “extra” connectivity information contained in the in-
dexed representation actually results in a reduction of memory usage in
most cases, compared to the flat method. The reason for this is that the
information stored at the vertex level, which is duplicated in the trivial
flat format, is relatively large compared to a single integer index. (At a
minimum, we must store a 3D vector position.) In meshes that arise in
practice, a typical vertex has a valence of around 3–6, which means that
the flat format duplicates quite a lot of data.

The simple indexed triangle mesh scheme is appropriate for many ap-
plications, including the very important one of rendering. However, some
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operations on triangle meshes require a more advanced data structure in
order to be implemented more efficiently. The basic problem is that the ad-
jacency between triangles is not expressed explicitly and must be extracted
by searching the triangle list. Other representation techniques exist that
make this information available in constant time. One idea is to maintain
an edge list explicitly. Each edge is defined by listing the two vertices on
the ends. We also maintain a list of triangles that share the edge. Then
the triangles can be viewed as a list of three edges rather than a list of
three vertices, so they are stored as three indices into the edge list rather
than the vertex list. An extension of this idea is known as the winged-edge
model [22], which also stores, for each vertex, a reference to one edge that
uses the vertex. The edges and triangles may be traversed intelligently to
quickly locate all edges and triangles that use the vertex.

10.4.2 Surface Normals

Surface normals are used for several different purposes in graphics; for
example, to compute proper lighting (Section 10.6), and for backface culling
(Section 10.10.5). In general, a surface normal is a unit10 vector that is
perpendicular to a surface. We might be interested in the normal of a
given face, in which case the surface of interest is the plane that contains
the face. The surface normals for polygons can be computed easily by using
the techniques from Section 9.5.

Vertex-level normals are a bit trickier. First, it should be noted that,
strictly speaking, there is not a true surface normal at a vertex (or an edge
for that matter), since these locations mark discontinuities in the surface of
the polygon mesh. Rather, for rendering purposes, we typically interpret
a polygon mesh as an approximation to some smooth surface. So we don’t
want a normal to the piecewise linear surface defined by the polygon mesh;
rather, we want (an approximation of) the surface normal of the smooth
surface.

The primary purpose of vertex normals is lighting. Practically every
lighting model takes a surface normal at the spot being lit as an input.
Indeed, the surface normal is part of the rendering equation itself (in the
Lambert factor), so it is always an input, even if the BRDF does not depend
on it. We have normals available only at the vertices, but yet we need to
compute lighting values over the entire surface. What to do? If hardware
resources permit (as they usually do nowadays), then we can approximate
the normal of the continuous surface corresponding to any point on a given
face by interpolating vertex normals and renormalizing the result. This
technique is illustrated in Figure 10.12, which shows a cross section of a

10This is not strictly necessary in some cases, but in practice we almost always use
unit vectors.
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cylinder (black circle) that is being approximated by a hexagonal prism
(blue outline). Black normals at the vertices are the true surface normals,
whereas the interior normals are being approximated through interpolation.
(The actual normals used would be the result of stretching these out to unit
length.)

Figure 10.12
A cylinder
approximated with a
hexagonal prism.

Once we have a normal at a given point, we can perform the full lighting
equation per pixel. This is known as per-pixel shading.11 An alternative
strategy to per-pixel shading, known as Gouraud12 shading [26], is to per-
form lighting calculations only at the vertex level, and then interpolate the
results themselves, rather than the normal, across the face. This requires
less computation, and is still done on some systems, such as the Nintendo
Wii.

Figure 10.13 shows per-pixel lighting of cylinders with a different num-
ber of sides. Although the illusion breaks down on the ends of the cylinder,
where the silhouette edge gives away the low-poly nature of the geometry,
this method of approximating a smooth surface can indeed make even a very
low-resolution mesh look “smooth.” Cover up the ends of the cylinder, and
even the 5-sided cylinder is remarkably convincing.

Now that we understand how normals are interpolated in order to ap-
proximately reconstruct a curved surface, let’s talk about how to obtain
vertex normals. This information may not be readily available, depending
on how the triangle mesh was generated. If the mesh is generated pro-
cedurally, for example, from a parametric curved surface, then the vertex
normals can be supplied at that time. Or you may simply be handed the
vertex normals from the modeling package as part of the mesh. However,
sometimes the surface normals are not provided, and we must approximate
them by interpreting the only information available to us: the vertex po-
sitions and the triangles. One trick that works is to average the normals
of the adjacent triangles, and then renormalize the result. This classic
technique is demonstrated in Listing 10.6.

11This technique of interpolating the vertex normals is also sometimes confusingly
known as Phong shading, not to be confused with the Phong model for specular reflection.

12Pronounced “guh-ROH.”
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Figure 10.13. Approximating cylinders with prisms of varying number of sides.

s t r u c t Ver tex {
Vector3 pos ;
Vector3 normal ;

} ;
s t r u c t T r i a n g l e {

i n t ve r t ex Index [ 3 ] ;
Vector3 normal ;

} ;
s t r u c t TriangleMesh {

i n t ver texCount ;
Ver tex ∗ v e r t e x L i s t ;
i n t t r i a n g l e C o u n t ;
T r i a n g l e ∗ t r i a n g l e L i s t ;

void computeVertexNormals ( ) {

/ / F i r s t c l e a r out the v e r t e x normals
f o r ( i n t i = 0 ; i < ver texCount ; ++ i ) {

v e r t e x L i s t [ i ] . normal . zero ( ) ;
}

/ / Now add in the face normals i n t o the
/ / normals o f the ad jacen t v e r t i c e s
f o r ( i n t i = 0 ; i < t r i a n g l e C o u n t ; ++ i ) {
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/ / Get s h o r t c u t
T r i a n g l e & t r i = t r i a n g l e L i s t [ i ] ;

/ / Compute t r i a n g l e normal .
Vector3 v0 = v e r t e x L i s t [ t r i . ve r t ex Index [ 0 ] ] . pos ;
Vector3 v1 = v e r t e x L i s t [ t r i . ve r t ex Index [ 1 ] ] . pos ;
Vector3 v2 = v e r t e x L i s t [ t r i . ve r t ex Index [ 2 ] ] . pos ;
t r i . normal = c r o s s ( v1−v0 , v2−v1 ) ;
t r i . normal . normal ize ( ) ;

/ / Sum i t i n t o the ad jacen t v e r t i c e s
f o r ( i n t j = 0 ; j < 3 ; ++ j ) {

v e r t e x L i s t [ t r i . ve r t ex Index [ j ] ] . normal += t r i . normal ;
}

}

/ / F i n a l l y , average and normal ize the r e s u l t s .
/ / Note t h a t t h i s can blow up i f a v e r t e x i s i s o l a t e d
/ / ( not used by any t r i a n g l e s ) , and in some othe r cases .
f o r ( i n t i = 0 ; i < ver texCount ; ++ i ) {

v e r t e x L i s t [ i ] . normal . normal ize ( ) ;
}

}
} ;

Listing 10.6
Simple method for calculating vertex normals as the average of adjacent face normals

Averaging face normals to compute vertex normals is a tried-and-true
technique that works well in most cases. However, there are a few things
to watch out for. The first is that sometimes the mesh is supposed to
have a discontinuity, and if we’re not careful, this discontinuity will get
“smoothed out.” Take the very simple example of a box. There should
be a sharp lighting discontinuity at its edges. However, if we use vertex
normals computed from the average of the surface normals, then there is
no lighting discontinuity, as shown in Figure 10.14.

Figure 10.14
On the right, the box edges
are not visible because there is
only one normal at each
corner
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Vertices
# Position Normal
0 (−1,+1,+1) [−0.577,+0.577,+0.577]
1 (+1,+1,+1) [+0.577,+0.577,+0.577]
2 (+1,+1,−1) [+0.577,+0.577,−0.577]
3 (−1,+1,−1) [−0.577,+0.577,−0.577]
4 (−1,−1,+1) [−0.577,−0.577,+0.577]
5 (+1,−1,+1) [+0.577,−0.577,+0.577]
6 (+1,−1,−1) [+0.577,−0.577,−0.577]
7 (−1,−1,−1) [−0.577,−0.577,−0.577]

Faces
Description Indices
Top {0, 1, 2, 3}
Front {2, 6, 7, 3}
Right {2, 1, 5, 6}
Left {0, 3, 7, 4}
Back {0, 4, 5, 1}
Bottom {4, 7, 6, 5}

Table 10.5. Polygon mesh of a box with welded vertices and smoothed edges

The basic problem is that the surface discontinuity at the box edges
cannot be properly represented because there is only one normal stored
per vertex. The solution to this problem is to “detach” the faces; in other
words, duplicate the vertices along the edge where there is a true geometric
discontinuity, creating a topological discontinuity to prevent the vertex nor-
mals from being averaged. After doing so, the faces are no longer logically
connected, but this seam in the topology of the mesh doesn’t cause a prob-
lem for many important tasks, such as rendering and raytracing. Table 10.5
shows a smoothed box mesh with eight vertices. Compare that mesh to the
one in Table 10.6, in which the faces have been detached, resulting in 24
vertices.

Vertices
# Position Normal
0 (−1,+1,+1) [0,+1, 0]
1 (+1,+1,+1) [0,+1, 0]
2 (+1,+1,−1) [0,+1, 0]
3 (−1,+1,−1) [0,+1, 0]
4 (−1,+1,−1) [0, 0,−1]
5 (+1,+1,−1) [0, 0,−1]
6 (+1,−1,−1) [0, 0,−1]
7 (−1,−1,−1) [0, 0,−1]
8 (+1,+1,−1) [+1, 0, 0]
9 (+1,+1,+1) [+1, 0, 0]

10 (+1,−1,+1) [+1, 0, 0]
11 (+1,−1,−1) [+1, 0, 0]
12 (−1,+1,+1) [−1, 0, 0]
13 (−1,+1,−1) [−1, 0, 0]
14 (−1,−1,−1) [−1, 0, 0]
15 (−1,−1,+1) [−1, 0, 0]
16 (+1,+1,+1) [0, 0,+1]
17 (−1,+1,+1) [0, 0,+1]
18 (−1,−1,+1) [0, 0,+1]
19 (+1,−1,+1) [0, 0,+1]
20 (+1,−1,−1) [0,−1, 0]
21 (−1,−1,−1) [0,−1, 0]
22 (−1,−1,+1) [0,−1, 0]
23 (+1,−1,+1) [0,−1, 0]

Faces
Description Indices
Top {0, 1, 2, 3}
Front {4, 5, 6, 7}
Right {8, 9, 10, 11}
Left {12, 13, 14, 15}
Back {16, 17, 18, 19}
Bottom {20, 21, 22, 23}

Table 10.6. Polygon mesh of a box with detached faces and lighting discontinuities at the
edges
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An extreme version of this situation occurs when two faces are placed
back-to-back. Such infinitely thin double-sided geometry can arise with
foliage, cloth, billboards, and the like. In this case, since the normals are
exactly opposite, averaging them produces the zero vector, which cannot
be normalized. The simplest solution is to detach the faces so that the
vertex normals will not average together. Or if the front and back sides
are mirror images, the two “single-sided” polygons can be replaced by one
“double-sided” one. This requires special treatment during rendering to
disable backface culling (Section 10.10.5) and intelligently dealing with the
normal in the lighting equation.

A more subtle problem is that the averaging is biased towards large
numbers of triangles with the same normal. For example, consider the
vertex at index 1 in Figure 10.11. This vertex is adjacent to two trian-
gles on the top of the cube, but only one triangle on the right side and
one triangle on the back side. The vertex normal computed by averaging
the triangle normals is biased because the top face normal essentially gets
twice as many “votes” as each of the side face normals. But this topol-
ogy is the result of an arbitrary decision as to where to draw the edges
to triangulate the faces of the cube. For example, if we were to trian-
gulate the top face by drawing an edge between vertices 0 and 2 (this is
known as “turning” the edge), all of the normals on the top face would
change.

Techniques exist to deal with this problem, such as weighing the con-
tribution from each adjacent face based on the interior angle adjacent to
the vertex, but it’s often ignored in practice. Most of the really terrible
examples are contrived ones like this, where the faces should be detached
anyway. Furthermore, the normals are an approximation to begin with,
and having a slightly perturbed normal is often difficult to tell visually.

Although some modeling packages can deliver vertex normals for you,
fewer provide the basis vectors needed for bump mapping. As we see in
Section 10.9, techniques used to synthesize vertex basis vectors are similar
to those described here.

Before we go on, there is one very important fact about surface normals
that we must mention. In certain circumstances, they cannot be trans-
formed by the same matrix that is used to transform positions. (This is
an entirely separate issue from the fact that normals should not be trans-
lated like positions.) The reason for this is that normals are covariant
vectors. “Regular” vectors, such as position and velocity, are said to be
contravariant : if we scale the coordinate space used to describe the vector,
the coordinates will respond in the opposite direction. If we use a coordi-
nate space with a larger scale (for example, using meters instead of feet) the
coordinates of a contravariant vector respond to the contrary, by becoming
smaller. Notice that this is all about scale; translation and rotation are not



392 10. Mathematical Topics from 3D Graphics

Figure 10.15
Transforming normals with nonuniform scale. The light red vectors show the normals multiplied by the
same transform matrix used to transform the object; the dark red vectors are their normalized versions.
The light blue vectors show the correct normals.

part of the discussion. Normals and other types of gradients, known as dual
vectors, do not behave like this.

Imagine that we stretch a 2D object, such as a circle, horizontally, as
shown in Figure 10.15. Notice that the normals (shown in light blue in the
right figure) begin to turn to point more vertically—the horizontal coordi-
nates of the normals are decreasing in absolute value while the horizontal
coordinates of the positions are increasing. A stretching of the object (ob-
ject getting bigger while coordinate space stays the same) has the same
effect as scaling down the coordinate space while holding the object at the
same size. The coordinates of the normal change in the same direction as
the scale of the coordinate space, which is why they are called covariant
vectors.

To properly transform surface normals, we must use the inverse trans-
pose of the matrix used to transform positions; that is, the result of trans-
posing and inverting the matrix. This is sometimes denoted M−T, since it
doesn’t matter if we transpose first, or invert first: (M−1)T = (MT)−1. If
the transform matrix doesn’t contain any scale (or skew), then the matrix
is orthonormal, and thus the inverse transpose is simply the same as the
original matrix, and we can safely transform normals with this transform.
If the matrix contains uniform scale, then we can still ignore this, but we
must renormalize the normals after transforming them. If the matrix con-
tains nonuniform scale (or skew, which is indistinguishable from nonuniform
scale combined with rotation), then to properly transform the normals, we
must use the inverse transpose transform matrix, and then re-normalize the
resulting transformed normals.
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In general, normals must be transformed with the inverse transpose of the
matrix used to transform positions. This can safely be ignored if the trans-
form matrix is without scale. If the matrix contains uniform scale, then all
that is required is to renormalize the normals after transformation. If the
matrix contains nonuniform scale, then we must use the inverse transpose
transform and renormalize after transforming.

10.5 Texture Mapping

There is much more to the appearance of an object than its shape. Different
objects are different colors and have different patterns on their surface.
One simple yet powerful way to capture these qualities is through texture
mapping. A texture map is a bitmap image that is “pasted” to the surface
of an object. Rather than controlling the color of an object per triangle or
per vertex, with texture mapping we can control the color at a much finer
level—per texel. (A texel is a single pixel in a texture map. This is a handy
word to know, since in graphics contexts, there are lots of different bitmaps
being accessed, and it’s nice to have a short way to differentiate between a
pixel in the frame buffer and a pixel in a texture.)

So a texture map is just a regular bitmap that is applied onto the surface
of a model. Exactly how does this work? Actually, there are many different
ways to apply a texture map onto a mesh. Planar mapping projects the
texture orthographically onto the mesh. Spherical, cylindrical, and cubic
mapping are various methods of “wrapping” the texture around the ob-
ject. The details of each of these techniques are not important to us at the
moment, since modeling packages such as 3DS Max deal with these user in-
terface issues. The key idea is that, at each point on the surface of the mesh,
we can obtain texture-mapping coordinates, which define the 2D location in
the texture map that corresponds to this 3D location. Traditionally, these
coordinates are assigned the variables (u, v), where u is the horizontal coor-
dinate and v is the vertical coordinate; thus, texture-mapping coordinates
are often called UV coordinates or simply UV s.

Although bitmaps come in different sizes, UV coordinates are normal-
ized such that the mapping space ranges from 0 to 1 over the entire width
(u) or height (v) of the image, rather than depending on the image dimen-
sions. The origin of this space is either in the upper left-hand corner of
the image, which is the DirectX-style convention, or in the lower left-hand
corner, the OpenGL conventions. We use the DirectX conventions in this
book. Figure 10.16 shows the texture map that we use in several examples
and the DirectX-style coordinate conventions.
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Figure 10.16
An example texture map, with labeled
UV coordinates according to the DirectX
convention, which places the origin in
the upperleft corner.

In principle, it doesn’t matter how
we determine the UV coordinates for a
given point on the surface. However,
even when UV coordinates are calcu-
lated dynamically, rather than edited
by an artist, we typically compute or
assign UV coordinates only at the ver-
tex level, and the UV coordinates at an
arbitrary interior position on a face are
obtained through interpolation. If you
imagine the texture map as a stretchy
cloth, then when we assign texture-
mapping coordinates to a vertex, it’s
like sticking a pin through the cloth at
those UV coordinates, and then pinning
the cloth onto the surface at that ver-
tex. There is one pin per vertex, so the
whole surface is covered.

Figure 10.17
A texturemapped quad, with different UV coordinates assigned to the vertices
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Repeat Clamp

Figure 10.18. Comparing repeating and clamping texture addressing modes

Let’s look at some examples. Figure 10.17 shows a single texture-
mapped quad, with different UV values assigned to the vertices. The bot-
tom of each diagram shows the UV space of the texture. You should study
these examples until you are sure you understand them.

UV coordinates outside of the range [0, 1] are allowed, and in fact are
quite useful. Such coordinates are interpreted in a variety of ways. The
most common addressing modes are repeat (also known as tile or wrap) and
clamp. When repeating is used, the integer portion is discarded and only
the fractional portion is used, causing the texture to repeat, as shown in
the left side of Figure 10.18. Under clamping, when a coordinate outside
the range [0, 1] is used to access a bitmap, it is clamped in range. This has
the effect of streaking the edge pixels of the bitmap outwards, as depicted
on the right side of Figure 10.18. The mesh in both cases is identical:
a single polygon with four vertices. And the meshes have identical UV
coordinates. The only difference is how coordinates outside the [0, 1] range
are interpreted.

There are other options supported on some hardware, such as mirror,
which is similar to repeat except that every other tile is mirrored. (This
can be beneficial because it guarantees that no “seam” will exist between
adjacent tiles.) On most hardware, the addressing mode can be set for
the u- and v-coordinates independently. It’s important to understand that
these rules are applied at the last moment, when the coordinates are used
to index into the texture. The coordinates at the vertex are not limited or
processed in any way; otherwise, they could not be interpolated properly
across the face.

Figure 10.19 shows one last instructive example: the same mesh is tex-
ture mapped two different ways.
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Figure 10.19. Texture mapping works on stuff that’s not just a single quad

10.6 The Standard Local Lighting Model

In the rendering equation, the BRDF describes the scattering distribution
for light of a given frequency and direction of incidence. The differences in
distributions between different surfaces is precisely what causes those sur-
faces (or even different surface points on the same object) to look different
from one another. Most BRDFs are expressed in a computer by some sort
of formula, where certain numbers in the formula are adjusted to match
the desired material properties. The formula itself is often called a lighting
model, and the particular values going into the formula come from the ma-
terial assigned to the surface. It is common for a game engine to use only
a handful of lighting models, even though the materials in the scene may
be quite diverse and there may be thousands of different BRDFs. Indeed,
just a few years ago, almost all real-time rendering was done with a single
lighting model. In fact, the practice is not uncommon today.

This lighting model was so ubiquitous that it was hardwired into the
very rendering APIs of OpenGL and DirectX. Although these older parts
of the API have effectively become legacy features on hardware with pro-
grammable shaders, the standard model is still commonly used in the more



10.6. The Standard Local Lighting Model 397

general framework of shaders and generic constants and interpolants. The
great diversity and flexibility available is usually used to determine the best
way to feed the parameters into the model (for example, by doing multiple
lights at once, or doing all the lighting at the end with deferred shad-
ing), rather than using different models. But even ignoring programmable
shaders, at the time of this writing, the most popular video game console is
the Nintendo Wii,13 which has hardwired support for this standard model.

The venerable standard lighting model is the subject of this section.
Since its development precedes the framework of the BRDF and the ren-
dering equation by at least a decade, we first present this model in the
simplified context that surrounded its creation. This notation and perspec-
tive are still predominant in the literature today, which is why we think we
should present the idea in its own terms. Along the way, we show how one
component of the model (the diffuse component) is modeled as a BRDF.
The standard model is important in the present, but you must understand
the rendering equation if you want to be prepared for the future.

10.6.1 The Standard Lighting Equation: Overview

Bui Tuong Phong [54] introduced the basic concepts behind the standard
lighting model in 1975. Back then, the focus was on a fast way to model
direct reflection. While certainly researchers understood the importance of
indirect light, it was a luxury that could not yet be afforded. Thus while
the rendering equation (which, as we noted previously, came into focus
a decade or so after the proposal of the standard model) is an equation
for the radiance outgoing from a point in any particular direction, the
only outgoing direction that mattered in those days were the directions
that pointed to the eye. Similarly, while the rendering equation considers
incident light from the entire hemisphere surrounding the surface normal,
if we ignore indirect light, then we need not cast about in all incident
directions. We need to consider only those directions that aim at a light
source. We examine some different ways that light sources are modeled in
real-time graphics in more detail in Section 10.7, but for now an important
point is that the light sources are not emissive surfaces in the scene, as
they are in the rendering equation and in the real world. Instead, lights are
special entities without any corresponding geometry, and are simulated as
if the light were emitting from a single point. Thus, rather than including
a solid angle of directions corresponding to the projection of the emissive
surface of each light source onto the hemisphere surrounding x, we only care

13This is a very important lesson. Realistic graphics might be important to hardcore
gamers, but for a more general audience they are not nearly as important as we once
believed. The recent surge in popularity of facebook games further underscores this
point.
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about a single incident direction for the light. To summarize, the original
goal of the standard model was to determine the light reflected back in the
direction of the camera, only considering direct reflections, incident from a
finite number of directions, one direction for each light source.

Now for the model. The basic idea is to classify light coming into the
eye into four distinct categories, each of which has a unique method for
calculating its contribution. The four categories are

• The emissive contribution, denoted cemis, is the same as the rendering
equation. It tells the amount of radiance emitted directly from the
surface in the given direction. Note that without global illumination
techniques, these surfaces do not actually light up anything (except
themselves).

• The specular contribution, denoted cspec, accounts for light incident
directly from a light source that is scattered preferentially in the di-
rection of a perfect “mirror bounce.”

• The diffuse contribution, denoted cdiff , accounts for light incident
directly from a light source that is scattered in every direction evenly.

• The ambient contribution, denoted camb, is a fudge factor to account
for all indirect light.

The letter c is intended to be short for “contribution.” Note the bold
typeface, indicating that these contributions are not scalar quantities rep-
resenting the amount of light of a particular wavelength, but rather they are
vectors representing colors in some basis with a discrete number of compo-
nents (“channels”). As stated before, due to the tri-stimulus human vision
system, the number of channels is almost always chosen to be three. A less
fundamental choice is which three basis functions to use, but in real-time
graphics, by far the most common choice is to make one channel for red, one
channel for blue, and one channel for green. These details are surprisingly
irrelevant from a high-level discussion (they will not appear anywhere in
the equations), but, of course, they are important practical considerations.

The emissive term is the same as in the rendering equation, so there’s not
much more detail to say about it. In practice, the emissive contribution is
simply a constant color at any given surface point x. The specular, diffuse,
and ambient terms are more involved, so we discuss each in more detail in
the next three sections.

10.6.2 The Specular Component

The specular component of the standard lighting model accounts for the
light that is reflected (mostly) in a “perfect mirror bounce” off the sur-
face. The specular component is what gives surfaces a “shiny” appearance.
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Rougher surfaces tend to scatter the light in a much broader pattern of
directions, which is modeled by the diffuse component described in Sec-
tion 10.6.3.

Now let’s see how the standard model calculates the specular contribu-
tion. The important vectors are labeled in Figure 10.20.

• n is a the local outward-pointing surface normal.

• v points towards the viewer. (The symbol e, for “eye,” is also some-
times used to name this vector.)

• l points towards the light source.

• r is the reflection vector, which is the direction of a “perfect mirror
bounce.” It’s the result of reflecting l about n.

• θ is the angle between r and v.

Figure 10.20
Phong model for specular
reflection

For convenience, we assume that all of these vectors are unit vectors.
Our convention in this book is to denote unit vectors with hats, but we’ll
drop the hats to avoid decorating the equations excessively. Many texts
on the subject use these standard variable names and, especially in the
video game community, they are effectively part of the vernacular. It is
not uncommon for job interview questions to be posed in such a way that
assumes the applicant is familiar with this framework.

One note about the l vector before we continue. Since lights are abstract
entities, they need not necessarily have a “position.” Directional lights and
Doom-style volumetric lights (see Section 10.7) are examples for which the
position of the light might not be obvious. The key point is that the position
of the light isn’t important, but the abstraction being used for the light must
facilitate the computation of a direction of incidence at any given shading
point. (It must also provide the color and intensity of incident light.)
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Figure 10.21
Constructing the reflection
vector r

Of the four vectors, the first three are inherent degrees of freedom of
the problem, and the reflection vector r is a derived quantity and must be
computed. The geometry is shown in Figure 10.21.

As you can see, the reflection vector can be computed by
Computing the reflection

vector is a popular job
interview question

r = 2(n · l)n− l. (10.10)

There are many interviewers for whom this equation is a favorite topic,
which is why we have displayed it on a line by itself, despite the fact that
it would have fit perfectly fine inline in the paragraph. A reader seeking a
job in the video game industry is advised to fully digest Figure 10.21, to be
able to produce Equation (10.10) under pressure. Notice that if we assume
n and l are unit vectors, then r will be as well.

Now that we know r, we can compute the specular contribution by using
the Phong model for specular reflection (Equation (10.11)).

The Phong Model for Specular Reflection

cspec = (sspec ⊗mspec) (cos θ)
mgls = (sspec ⊗mspec) (v · r)mgls . (10.11)

In this formula and elsewhere in this book, the symbol ⊗ denotes compo-
nentwise multiplication of colors. Let’s look at the inputs to this formula
in more detail.

First, let’s consider mgls, which is the glossiness of the material, also
known as the Phong exponent, specular exponent, or just as the material
shininess. This controls how wide the “hotspot” is—a smallermgls produces
a larger, more gradual falloff from the hotspot, and a larger mgls produces a
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very tight hotspot with sharp falloff. (Here we are talking about the hotspot
of a reflection, not to be confused with the hotspot of a spot light.) Perfectly
reflective surfaces, such as chrome, would have an extremely high value for
mgls. When rays of light strike the surface from the incident direction l,
there is very little variation in the reflected directions. They are reflected in
a very narrow solid angle (“cone”) surrounding the direction described by r,
with very little scattering. Shiny surfaces that are not perfect reflectors—for
example, the surface of an apple—have lower specular exponents, resulting
in a larger hotspot. Lower specular exponents model a less perfect reflection
of light rays. When rays of light strike the surface at the same incident
direction given by l, there is more variation in the reflected directions. The
distribution clusters about the bounce direction r, but the falloff in intensity
as we move away from r is more gradual. We’ll show this difference visually
in just a moment.

Like all of the material properties that are input to the lighting equation,
the value for mgls can vary over the surface, and the specific value for any
given location on that surface may be determined in any way you wish, for
example with a texture map (see Section 10.5). However, compared to the
other material properties, this is relatively rare; in fact it is quite common
in real-time graphics for the glossiness value to be a constant for an entire
material and not vary over the surface.

Another value in Equation (10.11) related to “shininess” is the mate-
rial’s specular color, denoted mspec. While mgls controls the size of the
hotspot, mspec controls its intensity and color. Highly reflective surfaces
will have a higher value for mspec, and more matte surfaces will have a
lower value. If desired, a specular map14 may be used to control the color
of the hotspot using a bitmap, much as a texture map controls the color of
an object.

The light specular color, denoted sspec, is essentially the “color” of the
light, which contains both its color and intensity. Although many lights will
have a single constant color, the strength of this color will attenuate with
distance (Section 10.7.2), and this attenuation is contained in sspec in our
formulation. Furthermore, even ignoring attenuation, the same light source
may shine light of different colors in different directions. For rectangular
spot lights, we might determine the color from a gobo, which is a projected
bitmap image. A colored gobo might be used to simulate a light shining
through a stained glass window, or an animated gobo could be used to
fake shadows of spinning ceiling fans or trees blowing in the wind. We use
the letter s to stand for “source.” The subscript “spec” indicates that this
color is used for specular calculations. A different light color can be used for

14Unfortunately, some people refer to this map as the gloss map, creating confusion
as to exactly which material property is being specified on a per-texel basis.
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Figure 10.22. Different values for mgls and mspec

diffuse calculations—this is a feature of the lighting model used to achieve
special effects in certain circumstances, but it doesn’t have any real-world
meaning. In practice, sspec is almost always equal to the light color used
for diffuse lighting, which, not surprisingly, is denoted in this book as sdiff .

Figure 10.22 shows how different values of mgls and mspec affect the
appearance of an object with specular reflection. The material specular
color mspec goes from black on the leftmost column to white on the right-
most column. The specular exponent mgls is large on the top row and
decreases with each subsequent row. Notice that the heads in the left-most
column all look the same; since the specular strength is zero, the specular
exponent is irrelevant and there is no specular contribution in any case.
(The lighting comes from the diffuse and ambient components, which are
discussed in Sections 10.6.3 and 10.6.4, respectively.)

Blinn [6] popularized a slight modification to the Phong model that
produces very similar visual results, but at the time was a significant opti-
mization. In many cases, it is still faster to compute today, but beware that
vector operations (which are reduced with this model) are not always the
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performance bottleneck. The basic idea is this: if the distance to the viewer
is large relative to the size of an object, then v may be computed once and
then considered constant for an entire object. Likewise for a light source
and the vector l. (In fact, for directional lights, l is always constant.) How-
ever, since the surface normal n is not constant, we must still compute the
reflection vector r, a computation that we would like to avoid, if possible.
The Blinn model introduces a new vector h, which stands for “halfway” vec-
tor and is the result of averaging v and l and then normalizing the result:

The halfway vector h,
used in the Blinn
specular model

h =
v + l

‖v + l‖ .

Then, rather than using the angle between v and r, as the Phong model
does, the cosine of the angle between n and h is used. The situation is
shown in Figure 10.23.

Figure 10.23
Blinn model for specular reflection

The formula for the Blinn model is quite similar to the original Phong
model. Only the dot product portion is changed.

The Blinn Model for Specular Reflection

cspec = (sspec ⊗mspec) (cos θ)
mgls = (sspec ⊗mspec) (n · h)mgls .

The Blinn model can be faster to implement in hardware than the Phong
model, if the viewer and light source are far enough away from the object
to be considered a constant, since then h is a constant and only needs to be
computed once. But when v or lmay not be considered constant, the Phong
calculation might be faster. As we’ve said, the two models produce similar,
but not identical, results (see Fisher and Woo [21] for a comparison). Both
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are empirical models, and the Blinn model should not be considered an
“approximation” to the “correct” Phong model. In fact, Ngan et al. [48]
have demonstrated that the Blinn model has some objective advantages
and more closely matches experimental data for certain surfaces.

One detail we have omitted is that in either model, cos θ may be less
than zero. In this case, we usually clamp the specular contribution to zero.

10.6.3 The Diffuse Component

The next component in the standard lighting model is the diffuse compo-
nent. Like the specular component, the diffuse component also models light
that traveled directly from the light source to the shading point. However,
whereas specular light accounts for light that reflects preferentially in a
particular direction, diffuse light models light that is reflected randomly in
all directions due to the rough nature of the surface material. Figure 10.24
compares how rays of light reflect on a perfectly reflective surface and on a
rough surface.

To compute specular lighting, we needed to know the location of the
viewer, to see how close the eye is to the direction of the perfect mirror
bounce. For diffuse lighting, in contrast, the location of the viewer is not
relevant, since the reflections are scattered randomly, and no matter where
we position the camera, it is equally likely that a ray will be sent our way.
However, the direction if incidence l, which is dictated by the position of
the light source relative to the surface, is important. We’ve mentioned
Lambert’s law previously, but let’s review it here, since the diffuse portion
of Blinn-Phong is the most important place in real-time graphics that it
comes into play. If we imagine counting the photons that hit the surface
of the object and have a chance of reflecting into the eye, a surface that is
perpendicular to the rays of light receives more photons per unit area than
a surface oriented at a more glancing angle, as shown in Figure 10.25.

Figure 10.24. Diffuse lighting models scattered reflections
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Figure 10.25. Surfaces more perpendicular to the light rays receive more light per unit area

Notice that, in both cases, the perpendicular distance between the rays
is the same. (Due to an optical illusion in the diagram, the rays on the right
may appear to be farther apart, but they are not.) So, the perpendicular
distance between the rays is the same, but notice that on the right side of
Figure 10.25, they strike the object at points that are farther apart. The
surface on the left receives nine light rays, and the surface on the right
receives only six, even though the “area” of both surfaces is the same.
Thus the number of photons per unit area15 is higher on the left, and it
will appear brighter, all other factors being equal. This same phenomenon
is responsible for the fact that the climate near the equator is warmer than
near the poles. Since Earth is round, the light from the sun strikes Earth
at a more perpendicular angle near the equator.

Diffuse lighting obeys Lambert’s law : the intensity of the reflected light
is proportional to the cosine of the angle between the surface normal and
the rays of light. We will compute this cosine with the dot product.

Calculating the Diffuse Component according to Lambert’s Law

cdiff = (sdiff ⊗mdiff) (n · l). (10.12)

As before, n is the surface normal and l is a unit vector that points
towards the light source. The factor mdiff is the material’s diffuse color,
which is the value that most people think of when they think of the “color”
of an object. The diffuse material color often comes from a texture map.
The diffuse color of the light source is sdiff ; this is usually equal to the
light’s specular color, sspec.

15The proper radiometric term is irradiance, which measures the radiant power arriv-
ing per unit area.
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Just as with specular lighting, we must prevent the dot product from
going negative by clamping it to zero. This prevents objects from being lit
from behind.

It’s very instructive to see how diffuse surfaces are implemented in the
framework of the rendering equation.

Diffuse reflection models light that is scattered completely randomly, and
any given outgoing direction is equally likely, no matter what the incoming
light direction. Thus, the BRDF for a perfectly diffuse surface is a constant.

Note the similarity of Equation (10.12) with the contents of the integral
from the rendering equation,

Lin(x, ω̂ωωin, λ)f(x, ω̂ωωin, ω̂ωωout, λ)(−ω̂ωωin · n̂).

The first factor is the incident light color. The material color mdiff is
the constant value of the BRDF, which comes next. Finally, we have the
Lambert factor.

10.6.4 The Ambient and Emmissive Components

Specular and diffuse lighting both account for light rays that travel directly
from the light source to the surface of the object, “bounce” one time, and
then arrive in the eye. However, in the real world, light often bounces off
one or more intermediate objects before hitting an object and reflecting to
the eye. When you open the refrigerator door in the middle of the night,
the entire kitchen will get just a bit brighter, even though the refrigerator
door blocks most of the direct light.

To model light that is reflected more than one time before it enters the
eye, we can use a very crude approximation known as “ambient light.” The
ambient portion of the lighting equation depends only on the properties of
the material and an ambient lighting value, which is often a global value
used for the entire scene. None of the light sources are involved in the com-
putation. (In fact, a light source is not even necessary.) Equation (10.13)
is used to compute the ambient component:

Ambient contribution to
the lighting equation

camb = gamb ⊗mamb. (10.13)

The factormamb is the material’s “ambient color.” This is almost always
the same as the diffuse color (which is often defined using a texture map).
The other factor, gamb, is the ambient light value. We use the notation g for
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“global,” because often one global ambient value is used for the entire scene.
However, some techniques, such as lighting probes, attempt to provide more
localized and direction-dependent indirect lighting.

Sometimes a ray of light travels directly from the light source to the eye,
without striking any surface in between. The standard lighting equation
accounts for such rays by assigning a material an emissive color. For exam-
ple, when we render the surface of a light bulb, this surface will probably
appear very bright, even if there are no other light sources in the scene,
because the light bulb is emitting light.

In many situations, the emissive contribution doesn’t depend on envi-
ronmental factors; it is simply the emissive color of the material:

The emissive
contribution depends
only on the material

cemis = memis.

Most surfaces don’t emit light, so their emissive component is 0. Surfaces
that have a nonzero emissive component are called “self-illuminated.”

It’s important to understand that in real-time graphics, a self-
illuminated surface does not light the other surfaces—you need a light
source for that. In other words, we don’t actually render light sources,
we only render the effects that those light sources have on the surfaces in
the scene. We do render self-illuminated surfaces, but those surfaces don’t
interact with the other surfaces in the scene. When using the rendering
equation properly, however, emissive surfaces do light up their surround-
ings.

We may choose to attenuate the emissive contribution due to atmo-
spheric conditions, such as fog, and of course there may be performance
reasons to have objects fade out and disappear in the distance. However,
as explained in Section 10.7.2, in general the emissive contribution should
not be attenuated due to distance in the same way that light sources are.

10.6.5 The Lighting Equation: Putting It All Together

We have discussed the individual components of the lighting equation in
detail. Now it’s time to give the complete equation for the standard lighting
model.

The standard lighting
equation for one light
source

clit =

cspec
+ cdiff
+ camb

+ cemis

=

(sspec ⊗mspec)max (n · h, 0)mgls

+ (sdiff ⊗mdiff)max (n · l, 0)
+ gamb ⊗mamb

+ memis

Figure 10.26 shows what the ambient, diffuse, and specular lighting
components actually look like in isolation from the others. (We are ignoring
the emissive component, assuming that this particular floating head doesn’t
emit light.) There are several interesting points to be noted:
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Figure 10.26
The visual contribution of each of the components of the lighting equation

• The ear is lit just as bright as the nose, even though it is actually in
the shadow of the head. For shadows, we must determine whether
the light can actually “see” the point being shaded, using techniques
such as shadow mapping.

• In the first two images, without ambient light, the side of the head
that is facing away from the light is completely black. In order to
light the “back side” of objects, you must use ambient light. Placing
enough lights in your scene so that every surface is lit directly is
the best situation, but it’s not always possible. One common hack,
which Mitchell et al. [47] dubbed “Half Lambert” lighting, is to bias
the Lambert term, allowing diffuse lighting to “wrap around” to the
back side of the model to prevent it from ever being flattened out
and lit only by ambient light. This can easily be done by replacing
the standard n · l term with α + (1 − α)(n · l), where α is a tunable
parameter that specifies the extra wraparound effect. (Mitchell et al.
suggest using α = 1/2, and they also square the result.) Although
this adjustment has little physical basis, it has a very high perceptual
benefit, especially considering the small computational cost.

• With only ambient lighting, just the silhouette is visible. Lighting is
an extremely powerful visual cue that makes the object appear “3D.”
The solution to this “cartoon” effect is to place a sufficient number
of lights in the scene so that every surface is lit directly.

Speaking of multiple lights, how do multiple light sources work with the
lighting equation? We must sum up the lighting values for all the lights.
To simplify the notation, we’ll go ahead and make the almost universal
assumption that sspec = sdiff . Then we can let sj denote the color of the
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jth light source, including the attenuation factor. The index j goes from 1
to n, where n is the number of lights. Now the lighting equation becomes

The standard lighting
equation for multiple
lights

clit =
n
∑

j=1

[

(sj ⊗mspec)max (n · hj , 0)
mgls + (sj ⊗mdiff)max (n · lj , 0)

]

+ gamb ⊗mamb +memis. (10.14)

Since there is only one ambient light value and one emissive component
for any given surface, these components are not summed per light source.

10.6.6 Limitations of the Standard Model

Nowadays we have the freedom of programmable shaders and can choose
any lighting model we wish. Since the standard model has some fairly seri-
ous shortcomings, you might very well ask, “Why learn about this ancient
history?” First, it isn’t exactly ancient history; it is alive and well. The rea-
sons that made it a good compromise between realism, usability, and speed
of calculation still apply. Yes, we have more processing power; but we also
want to render more pixels and more lights, and it currently is very common
for the standard lighting model to be the winner when programmers are
deciding whether to spend the cycles on more pixels (higher resolution) or
more accurate pixels (a more accurate lighting model). Second, the current
local lighting model is one that content creators can understand and use.
This advantage is not to be taken lightly. Artists have decades of experi-
ence with diffuse and specular maps. Switching to a lighting model that
replaces those familiar inputs with different ones such as “metalness” (from
Strauss’s model [69]) for which artists do not have an intuitive grasp is a big
price to pay. A final reason to learn the standard lighting model is because
many newer models bear similarities to the standard model, and you cannot
know when to use more advanced lighting models without understanding
the old standard.

If you have read the OpenGL or DirectX documentation for setting
material parameters, you are forgiven for thinking that ambient, diffuse,
and specular are “how light works” (remember our warning at the beginning
of this chapter) as opposed being arbitrary practical constructs peculiar to
a particular lighting model. The dichotomy between diffuse and specular
is not an inherent physical reality; rather, it arose (and continues to be
used) due to practical considerations. These are descriptive terms for two
extreme scattering patterns, and by taking arbitrary combinations of these
two patterns, many phenomena are able to be approximated to a decent
degree.
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Because of the near unanimous adoption of this model, it is often used
without giving it a name, and in fact there is still some confusion as to
exactly what to call it. You might call it the Phong lighting model, be-
cause Phong introduced the basic idea of modeling reflection as the sum of
diffuse and specular contributions, and also provided a useful empirically
based calculation for specular reflection. (The Lambert model for diffuse
reflection was already known.) We saw that Blinn’s computation for spec-
ular reflection is similar but sometimes faster. Because this is the specific
calculation most often used, perhaps we should call it the Blinn model?
But Blinn’s name is also attached to a different microfacet model in which
diffuse and specular are at different ends of a continuous spectrum, rather
than independent “orthogonal” components being mixed together. Since
most implementations use Blinn’s optimization for Phong’s basic idea, the
name Blinn-Phong is the one most often used for this model, and that’s
the name we use.

A huge part of realistic lighting is, of course, realistic shadows. Although
the techniques for producing shadows are interesting and important, alas
we will not have time to discuss them here. In the theory of the render-
ing equation, shadows are accounted for when we determine the radiance
incident in a given direction. If a light (more accurately, an emissive sur-
face) exists in a particular direction, and the point can “see” that surface,
then its light will be incident upon the point. If, however, there is some
other surface that obscures the light source when looking in that direction,
then the point is in shadow with respect to that light source. More gener-
ally, shadows can be cast not just due to the light from emissive surfaces;
the light bouncing off reflective surfaces can cause shadows. In all cases,
shadows are an issue of light visibility, not reflectance model.

Finally, we would like to mention several important physical phenomena
not properly captured by the Blinn-Phong model. The first is Fresnel16

reflectance, which predicts that the reflectance of nonmetals is strongest
when the light is incident at a glancing angle, and least when incident from
the normal angle. Some surfaces, such as velvet, exhibit retroreflection; you
might guess this means that the surface looks like Madonna’s earrings, but
it actually means that the primary direction of reflection is not the “mirror
bounce” as predicted by Blinn-Phong, but rather back towards the light
source. Finally, Blinn-Phong is isotropic, which means that if we rotate the
surface while keeping the viewer and light source stationary, the reflectance
will not change. Some surfaces have anisotropic reflection, due to grooves or
other patterns in the surface. This means that the strength of the reflection
varies, based on the direction of incidence relative to the direction of the
grooves, which is sometimes called the scratch direction. Classic examples

16Pronounced “fre-NELL.”
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of anisotropic materials are brushed metal, hair, and those little Christmas
ornaments made of shiny fibers.

10.6.7 Flat and Gouraud Shading

On modern shader-based hardware, lighting calculations are usually done
on a per-pixel basis. By this we mean that for each pixel, we determine a
surface normal (whether by interpolating the vertex normal across the face
or by fetching it from a bump map), and then we perform the full lighting
equation using this surface normal. This is per-pixel lighting, and the tech-
nique of interpolating vertex normals across the face is sometimes called
Phong shading, not to be confused with the Phong calculation for specu-
lar reflection. The alternative to Phong shading is to perform the lighting
equation less frequently (per face, or per vertex). These two techniques are
known as flat shading and Gouraud shading, respectively. Flat shading is
almost never used in practice except in software rendering. This is because
most modern methods of sending geometry efficiently to the hardware do
not provide any face-level data whatsoever. Gouraud shading, in contrast,
still has some limited use on some platforms. Some important general prin-
ciples can be gleaned from studying these methods, so let’s examine their
results.

Figure 10.27
A flat shaded teapot

When using flat shading, we com-
pute a single lighting value for the
entire triangle. Usually the “posi-
tion” used in lighting computations
is the centroid of the triangle, and
the surface normal is the normal of
the triangle. As you can see in Fig-
ure 10.27, when an object is lit us-
ing flat shading, the faceted nature of
the object becomes painfully appar-
ent, and any illusion of smoothness
is lost.

Gouraud shading, also known as vertex shading, vertex lighting, or in-
terpolated shading, is a trick whereby values for lighting, fog, and so forth
are computed at the vertex level. These values are then linearly interpo-
lated across the face of the polygon. Figure 10.28 shows the same teapot
rendered with Gouraud shading.

As you can see, Gouraud shading does a relatively good job at restor-
ing the smooth nature of the object. When the values being approximated
are basically linear across the triangle, then, of course, the linear inter-
polation used by Gouraud shading works well. Gouraud shading breaks
down when the values are not linear, as in the case of specular highlights.
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Figure 10.28
A Gouraud shaded teapot

Figure 10.29
A Phong shaded teapot

Compare the specular highlights
in the Gouraud shaded teapot with
the highlights in a Phong (per-
pixel) shaded teapot, shown in
Figure 10.29. Notice how much
smoother the highlights are. Except
for the silhouette and areas of ex-
treme geometric discontinuities, such
as the handle and spout, the illu-
sion of smoothness is very convinc-
ing. With Gouraud shading, the in-
dividual facets are detectable due to the specular highlights.

The basic problem with interpolated shading is that no value in the
middle of the triangle can be larger than the largest value at a vertex;
highlights can occur only at a vertex. Sufficient tessellation can overcome
this problem. Despite its limitations, Gouraud shading is still in use on
some limited hardware, such as hand-held platforms and the Nintendo Wii.

One question that you should be asking is how the lighting can be com-
puted at the vertex level if any maps are used to control inputs to the
lighting equation. We can’t use the lighting equation as given in Equa-
tion (10.14) directly. Most notably, the diffuse color mdiff is not usually a
vertex-level material property; this value is typically defined by a texture
map. In order to make Equation (10.14) more suitable for use in an inter-
polated lighting scheme, it must be manipulated to isolate mdiff . We first
split the sum and move the constant material colors outside:

clit =

n
∑

j=1

[

(sj ⊗mspec)max (n · hj , 0)
mgls + (sj ⊗mdiff)max (n · lj , 0)

]

+ gamb ⊗mamb +memis

=
n
∑

j=1

(sj ⊗mspec)max (n · hj , 0)
mgls +

n
∑

j=1

(sj ⊗mdiff)max (n · lj , 0)

+ gamb ⊗mamb +memis
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=





n
∑

j=1

sj max (n · hj , 0)
mgls



⊗mspec +





n
∑

j=1

sj max (n · lj , 0)



⊗mdiff

+ gamb ⊗mamb +memis.

Finally, we make the very reasonable assumption that mamb = mdiff :

A version of the standard
lighting equation more
suitable for vertex-level
lighting computations

clit =





n
∑

j=1

sj max (n · hj , 0)
mgls



⊗mspec

+



gamb +
n
∑

j=1

sj max (n · lj , 0)



⊗mdiff

+memis.

(10.15)

With the lighting equation in the format of Equation (10.15), we can
see how to use interpolated lighting values computed at the vertex level. At
each vertex, we will compute two values: vspec contains the specular portion
of Equation (10.15) and vdiff contains the ambient and diffuse terms:

Vertex-level diffuse and
specular lighting values

vspec =
n
∑

j=1

sj max (n · hj , 0)
mgls vdiff = gamb +

n
∑

j=1

sj max (n · lj , 0).

Each of these values is computed per vertex and interpolated across the
face of the triangle. Then, per pixel, the light contributions are multiplied
by the corresponding material colors and summed:

Shading pixels using
interpolated lighting
values

clit = vspec ⊗mspec + vdiff ⊗mdiff + memis.

As mentioned earlier, mspec is sometimes a constant color, in which case
we could move this multiplication into the vertex shader. But it also can
come from a specular map.

What coordinate space should be used for lighting computations? We
could perform the lighting computations in world space. Vertex positions
and normals would be transformed into world space, lighting would be
performed, and then the vertex positions would be transformed into clip
space. Or we may transform the lights into modeling space, and perform
lighting computations in modeling space. Since there are usually fewer
lights than there are vertices, this results in fewer overall vector-matrix
multiplications. A third possibility is to perform the lighting computations
in camera space.
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10.7 Light Sources

In the rendering equation, light sources produce their effect when we factor
in the emissive component of a surface. As mentioned earlier, in real-time
graphics, doing this “properly” with emissive surfaces is usually a luxury
we cannot afford. Even in offline situations where it can be afforded, we
might have reasons to just emit light out of nowhere, to make it easier to
get control of the look of the scene for dramatic lighting, or to simulate the
light that would be reflecting from a surface for which we’re not wasting
time to model geometry since it’s off camera. Thus we usually have light
sources that are abstract entities within the rendering framework with no
surface geometry to call their own. This section discusses some of the most
common types of light sources.

Section 10.7.1 covers the classic point, directional, and spot lights. Sec-
tion 10.7.2 considers how light attenuates in the real world and how devi-
ations from this reality are common for practical reasons. The next two
sections move away from the theoretically pure territory and into the messy
domain of ad-hoc lighting techniques in use in real-time graphics today. Sec-
tion 10.7.3 presents the subject of Doom-style volumetric lights. Finally,
Section 10.7.4 discusses how lighting calculations can be done offline and
then used at runtime, especially for the purpose of incorporating indirect
lighting effects.

10.7.1 Standard Abstract Light Types

This section lists some of the most basic light types that are supported
by most rendering systems, even older or limited platforms, such as the
OpenGL and DirectX fixed-function lighting pipelines or the Nintendo Wii.
Of course, systems with programmable shaders often use these light types,
too. Even when completely different methods, such as spherical harmonics,
are used at runtime, standard light types are usually used as an offline
editing interface.

A point light source represents light that emanates from a single point
outward in all directions. Point lights are also called omni lights
(short for “omnidirectional”) or spherical lights. A point light has a
position and color, which controls not only the hue of the light, but also its
intensity. Figure 10.30 shows how 3DS Max represents point lights
visually.

As Figure 10.30 illustrates, a point light may have a falloff radius, which
controls the size of the sphere that is illuminated by the light. The intensity
of the light usually decreases the farther away we are from the center of
the light. Although not realistic, it is desirable for many reasons that the
intensity drop to zero at the falloff distance, so that the volume of the
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Figure 10.30
A point light

effect of the light can be bounded. Section 10.7.2 compares real-world
attenuation with the simplified models commonly used. Point lights can be
used to represent many common light sources, such as light bulbs, lamps,
fires, and so forth.

A spot light is used to represent light from a specific location in a specific
direction. These are used for lights such as flashlights, headlights, and of
course, spot lights! A spot light has a position and an orientation, and
optionally a falloff distance. The shape of the lit area is either a cone or a
pyramid.

A conical spot light has a circular “bottom.” The width of the cone
is defined by a falloff angle (not to be confused with the falloff distance).
Also, there is an inner angle that measures the size of the hotspot. A conical
spot light is shown in Figure 10.31.

Figure 10.31
A conical spot
light
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A rectangular spot light forms a pyramid rather than a cone. Rectan-
gular spot lights are especially interesting because they are used to project
an image. For example, imagine walking in front of a movie screen while a
movie is being shown. This projected image goes by many names, includ-
ing projected light map, gobo, and even cookie.17 The term gobo originated
from the world of theater, where it refers to a mask or filter placed over a
spot light used to create a colored light or special effect, and it’s the term
we use in this book. Gobos are very useful for faking shadows and other
lighting effects. If conical spot lights are not directly supported, they can
be implemented with an appropriately designed circular gobo.

A directional light represents light emanating from a point in space
sufficiently far away that all the rays of light involved in lighting the scene
(or at least the object we are currently considering) can be considered as
parallel. The sun and moon are the most obvious examples of directional
lights, and certainly we wouldn’t try to specify the actual position of the
sun in world space in order to properly light the scene. Thus directional
lights usually do not have a position, at least as far as lighting calculations
are concerned, and they usually do not attenuate. For editing purposes,
however, it’s often useful to create a “box” of directional light that can be
moved around and placed strategically, and we might include additional
attenuation factors to cause the light to drop off at the edge of the box.
Directional lights are sometimes called parallel lights. We might also use
a gobo on a directional light, in which case the projection of the image is
orthographic rather than perspective, as it is with rectangular spot lights.

As we’ve said, in the rendering equation and in the real world, lights
are emissive surfaces with finite surface areas. Abstract light types do not
have any surface area, and thus require special handling during integration.
Typically in a Monte Carlo integrator, a sample is specifically chosen to be
in the direction of the light source, and the multiplication by dω̂ωωin is ignored.
Imagine if, rather than the light coming from a single point, it comes instead
from a disk of some nonzero surface area that is facing the point being
illuminated. Now imagine that we shrink the area of the disk down to
zero, all the while increasing the radiosity (energy flow per unit area) from
the disk such that radiant flux (total energy flow) remains constant. An
abstract light can be considered the result of this limiting process in a
manner very similar to a Dirac delta (see Section 12.4.3). The radiosity is
infinite, but the flux is finite.

While the light types discussed so far are the classic ones supported
by fixed-function real-time pipelines, we certainly are free to define light
volumes in any way we find useful. The volumetric lights discussed in

17“Gobo” is short for “go between,” and “cookie” is short for “cucoloris.” The subtle
technical difference between these terms from the world of theater is not relevant for
computer-generated imagery.
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Section 10.7.3 are an alternative system that is flexible and also amenable to
real-time rendering. Warn [71] and Barzel [5] discuss more flexible systems
for shaping lights in greater detail.

10.7.2 Light Attenuation

Light attenuates with distance. That is, objects receive less illumination
from a light as the distance between the light and the object increases. In
the real world, the intensity of a light is inversely proportional to the square
of the distance between the light and the object, as

Real-world light
attenuation

i1
i2

=

(

d2
d1

)2

, (10.16)

where i is the radiant flux (the radiant power per unit area) and d is the
distance. To understand the squaring in real-world attenuation, consider
the sphere formed by all the photons emitted from a point light at the
same instant. As these photons move outward, a larger and larger sphere
is formed by the same number of photons. The density of this photon
flow per unit area (the radiant flux) is inversely proportional to the surface
area of the sphere, which is proportional to the square of the radius (see
Section 9.3).

Let’s pause here to discuss a finer point: the perceived brightness of an
object (or light source) does not decrease with increased distance from the
viewer, ignoring atmospheric effects. As a light or object recedes from the
viewer, the irradiance on our eye decreases for the reasons just described.
However, perceived brightness is related to radiance, not irradiance. Re-
member that radiance measures power per unit projected area per unit
solid angle, and as the object recedes from view, the decrease in irradi-
ance is compensated for by the decrease in solid angle subtended by the
object. It’s particularly educational to understand how the rendering equa-
tion naturally accounts for light attenuation. Inside the integral, for each
direction on the hemisphere surrounding the shading point x, we measure
the incident radiance from an emissive surface in that direction. We’ve
just said that this radiance does not attenuate with distance. However, as
the light source moves away from x, it occupies a smaller solid angle on
this hemisphere. Thus, attenuation happens automatically in the rendering
equation if our light sources have finite area. However, for abstract light
sources emanating from a single point (Dirac delta), attenuation must be
manually factored in. Because this is a bit confusing, let’s summarize the
general rule for real-time rendering. Emissive surfaces, which are rendered
and have finite area, typically are not attenuated due to distance—but they
might be affected by atmospheric effects such as fog. For purposes of calcu-
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lating the effective light color when shading a particular spot, the standard
abstract light types are attenuated.

In practice, Equation (10.16) can be unwieldy for two reasons. First,
the light intensity theoretically increases to infinity at d = 0. (This is a
result of the light being a Dirac delta, as mentioned previously.) Barzel
[5] describes a simple adjustment to smoothly transition from the inverse
square curve near the light origin, to limit the maximum intensity near the
center. Second, the light intensity never falls off completely to zero.

Instead of the real-world model, a simpler model based on falloff distance
is often used. Section 10.7 mentioned that the falloff distance controls the
distance beyond which the light has no effect. It’s common to use a simple
linear interpolation formula such that the light gradually fades with the
distance d:

Typical linear
attenuation model i(d) =















1 if d ≤ dmin,
dmax − d

dmax − dmin
if dmin < d < dmax,

0 if d ≥ dmax.

(10.17)

As Equation (10.17) shows, there are actually two distances used to con-
trol the attenuation. Within dmin, the light is at full intensity (100%). As
the distance goes from dmin to dmax, the intensity varies linearly from 100%
down to 0%. At dmax and beyond, the light intensity is 0%. So basically,
dmin controls the distance at which the light begins to fall off; it is frequently
zero, which means that the light begins falling off immediately. The quan-
tity dmax is the actual falloff distance—the distance where the light has
fallen off completely and no longer has any effect. Figure 10.32 compares
real-world light attenuation to the simple linear attenuation model.

Distance attenuation can be applied to point and spot lights; directional
lights are usually not attenuated. An additional attenuation factor is used
for spot lights. Hotspot falloff attenuates light as we move closer to the
edge of the cone.

10.7.3 Doomstyle Volumetric Lights

In the theoretical framework of the rendering equation as well as HLSL
shaders doing lighting equations using the standard Blinn-Phong model,
all that is required of a light source for it to be used in shading calculations
at a particular point x is a light color (intensity) and direction of incidence.
This section discusses a type of volumetric light, popularized by the Doom
3 engine (also known as id Tech 4 ) around 2003, which specifies these
values in a novel way. Not only are these types of lights interesting to
understand from a practical standpoint (they are still useful today), they
are interesting from a theoretical perspective because they illustrate an
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Figure 10.32. Realworld light attenuation vs. simple linear attenuation

elegant, fast approximation. Such approximations are the essence of the
art of real-time rendering.

The most creative aspect of Doom-style volumetric lights is how they
determine the intensity at a given point. It is controlled through two texture
maps. One map is essentially a gobo, which can be projected by either
orthographic or perspective projection, similar to a spot or directional light.
The other map is a one-dimensional map, known as the falloff map, which
controls the falloff. The procedure for determining the light intensity at
point x is as follows: x is multiplied by a 4 × 4 matrix, and the resulting
coordinates are used to index into the two maps. The 2D gobo is indexed
using (x/w, y/w), and the 1D falloff map is indexed with z. The product
of these two texels defines the light intensity at x.

The examples in Figure 10.33 will make this clear. Let’s look at each of
the examples in more detail. The omni light projects the circular gobo or-
thographically across the box, and places the “position” of the light (which
is used to compute the l vector) in the center of the box. The 4× 4 matrix
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Omni Spot Fake spot

Example

Gobo

Falloff

Projection Orthographic Perspective Orthographic

Bounding box

Figure 10.33
Examples of Doomstyle volumetric lights
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used to generate the texture coordinates in this case is








1/sx 0 0 0
0 −1/sy 0 0
0 0 1/sz 0
1/2 1/2 1/2 1









,

where sx, sy, and sz are the dimensions of the box on each axis. This matrix

Texture coordinate
generation matrix for a
Doom-style omni light

operates on points in the object space of the light, where the position of the
light is in the center of the box, so for the matrix that operates on world-
space coordinates, we would need to multiply this matrix by a 4× 4 world-
to-object matrix on the left. Note the right-most column is [0, 0, 0, 1]T,
since we use an orthographic projection onto the gobo. The translation of
1/2 is to adjust the coordinates from the [−1/2,+1/2] range into the [0, 1]
range of the texture. Also, note the flipping of the y-axis, since +y points
up in our 3D conventions, but +v points down in the texture.

Next, let’s look at the spot light. It uses a perspective projection, where
the center of projection is at one end of the box. The position of the light
used for calculating the l vector is at this same location, but that isn’t
always the case! Note that the same circular gobo is used as for the omni,
but due to the perspective projection, it forms a cone shape. The falloff
map is brightest at the end of the box nearest the center of projection and
falls off linearly along the +z axis, which is the direction of projection of
the gobo in all cases. Notice that the very first pixel of the spot light falloff
map is black, to prevent objects “behind” the light from getting lit; in
fact, all of the gobos and falloff maps have black pixels at their edges, since
these pixels will be used for any geometry outside the box. (The addressing
mode must be set to clamp to avoid the gobo and falloff map tiling across
3D space.) The texture generation matrix for perspective spots is

Texture coordinate
generation matrix for a
Doom-style spot light









sz/sx 0 0 0
0 −sz/sy 0 0

1/2 1/2 1/sz 1
0 0 0 0









.

The “fake spot” on the right is perhaps the most interesting. Here,
projection is orthographic, and it is sideways. The conical nature of the
light as well as its falloff (what we ordinarily think of as the falloff, that is)
are both encoded in the gobo. The falloff map used for this light is the same
as for the omni light: it is brightest in the center of the box, and causes
the light to fade out as we approach the −z and +z faces of the box. The
texture coordinate matrix in this case is actually the same as that for the
omni. The entire change comes from using a different gobo, and orienting
the light properly!
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You should study these examples until you are sure you know how they
work.

Doom-style volumetric lights can be attractive for real-time graphics for
several reasons:

• They are simple and efficient, requiring only the basic functionality
of texture coordinate generation, and two texture lookups. These
are flexible operations that are easily hardwired into fixed-function
hardware such as the Nintendo Wii.

• Many different light types and effects can be represented in the same
framework. This can be helpful to limit the number of different
shaders that are needed. Lighting models, light types, material prop-
erties, and lighting passes can all be dimensions in the matrix of
shaders, and the size of this matrix can grow quite quickly. It can
also be useful to reduce the amount of switching of render states.

• Arbitrary falloff curves can be encoded in the gobo and falloff maps.
We are not restricted to linear or real-world inverse squared attenua-
tion.

• Due to the ability to control the falloff, the bounding box that con-
tains the lighting volume can usually be relatively tight compared to
traditional spot and omni lights. In other words, a large percentage
of the volume within the box is receiving significant lighting, and the
light falls off more rapidly than for traditional models, so the volume
is as small and as tight as possible. Looking at the bottom row of
Figure 10.33, compare the size of the box needed to contain the true
spot light, versus the fake spot light.

This is perhaps the most important feature behind the introduction of
these sorts of lights in Doom 3, which used an accumulated rendering
technique with no lightmaps or precomputed lighting; every object
was fully lit in real time. Each light was added into the scene by
rerendering the geometry within the volume of the light and adding
the light’s contribution into the frame buffer. Limiting the amount of
geometry that had to be redrawn (as well as the geometry that had
to be processed for purposes of the stencil shadows that were used)
was a huge performance win.

10.7.4 Precalculated Lighting

One of the greatest sources of error in the images produced in real time
(those positive thinkers among you might say the greatest opportunity for
improvement) is indirect lighting: light that has “bounced” at least one
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time before illuminating the pixel being rendered. This is an extremely
difficult problem. A first important step to making it tractable is to break
up the surfaces in the scene into discrete patches or sample points. But
even with a relatively modest number of patches, we still have to determine
which patches can “see” each other and have a conduit of radiance, and
which cannot see each other and do not exchange radiance. Then we must
solve for the balance of light in the rendering equation. Furthermore, when
any object moves, it can potentially alter which patches can see which. In
other words, practically any change will alter the distribution of light in
the entire scene.

However, it is usually the case that certain lights and geometry in the
scene are not moving. In this case, we can perform more detailed light-
ing calculations (solve the rendering equation more fully), and then use
those results, ignoring any error that results due to the difference in the
current lighting configuration and the one that was used during the offline
calculations. Let’s consider several examples of this basic principle.

One technique is lightmapping. In this case, an extra UV channel is
used to arrange the polygons of the scene into a special texture map that
contains precalculated lighting information. This process of finding a good
way to arrange the polygons within the texture map is often called atlas-
ing. In this case, the discrete “patches” that we mentioned earlier are the
lightmap texels. Lightmapping works well on large flat surfaces, such as
floors and ceilings, which are relatively easy to arrange within the lightmap
effectively. But more dense meshes, such as staircases, statues, machinery,
and trees, which have much more complicated topology, are not so easily
atlased. Luckily, we can just as easily store precomputed lighting values in
the vertices, which often works better for relatively dense meshes.

What exactly is the precomputed information that is stored in lightmaps
(or vertices)? Essentially, we store incident illumination, but there are many
options. One option is the number of samples per patch. If we have only
a single lightmap or vertex color, then we cannot account for the direc-
tional distribution of this incident illumination and must simply use the
sum over the entire hemisphere. (As we have shown in Section 10.1.3, this
“directionless” quantity, the incident radiant power per unit area, is prop-
erly known as radiosity, and for historical reasons algorithms for calculating
lightmaps are sometimes confusingly known as radiosity techniques, even
if the lightmaps include a directional component.) If we can afford more
than one lightmap or vertex color, then we can more accurately capture
the distribution. This directional information is then projected onto a par-
ticular basis. We might have each basis correspond to a single direction.
A technique known as spherical harmonics [44, 64] uses sinusoidal basis
functions similar to 2D Fourier techniques. The point in any case is that
the directional distribution of incident light does matter, but when saving
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precomputed incident light information, we are usually forced to discard or
compress this information.

Another option is whether the precalculated illumination includes direct
lighting, indirect light, or both. This decision can often be made on a
per-light basis. The earliest examples of lightmapping simply calculated
the direct light from each light in the scene for each patch. The primary
advantage of this was that it allowed for shadows, which at the time were
prohibitively expensive to produce in real time. (The same basic idea is
still useful today, only now the goal is usually to reduce the total number of
real-time shadows that must be generated.) Then the view could be moved
around in real time, but obviously, any lights that were burned into the
lightmaps could not move, and if any geometry moved, the shadows would
be “stuck” to them and the illusion would break down. An identical runtime
system can be used to render lightmaps that also include indirect lighting,
although the offline calculations require much more finesse. It is possible
for certain lights to have both their direct and indirect lighting baked into
the lightmaps, while other lights have just the indirect portion included in
the precalculated lighting and direct lighting done at runtime. This might
offer advantages, such as shadows with higher precision than the lightmap
texel density, improved specular highlights due to the correct modeling of
the direction of incidence (which is lost when the light is burned into the
lightmaps), or some limited ability to dynamically adjust the intensity of
the light or turn it off or change its position. Of course, the presence of
precalculated lighting for some lights doesn’t preclude the use of completely
dynamic techniques for other lights.

The lightmapping techniques just discussed work fine for static geome-
try, but what about dynamic objects such as characters, vehicles, platforms,
and items? These must be lit dynamically, which makes the inclusion of
indirect lighting challenging. One technique, popularized by Valve’s Half
Life 2 [28,47], is to strategically place light probes at various locations in the
scene. At each probe, we render a cubic environment map offline. When
rendering a dynamic object, we locate the closest nearby probe and use
this probe to get localized indirect lighting. There are many variations on
this technique—for example, we might use one environment map for diffuse
reflection of indirect light, where each sample is prefiltered to contain the
entire cosine-weighted hemisphere surrounding this direction, and a differ-
ent cubic map for specular reflection of indirect light, which does not have
this filtering.

10.8 Skeletal Animation

The animation of human creatures is certainly of great importance in video
games and in computer graphics in general. One of the most important
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techniques for animating characters is skeletal animation, although it is
certainly not limited to this purpose. The easiest way to appreciate skeletal
animation is to compare it to other alternatives, so let’s review those first.

Let’s say we have created a model of a humanoid creature such as a
robot. How do we animate it? Certainly, we could treat it like a chess piece
and move it around just like a box of microwavable herring sandwiches or
any other solid object—this is obviously not very convincing. Creatures
are articulated, meaning they are composed of connected, movable parts.
The simplest method of animating an articulated creature is to break the
model up into a hierarchy of connected parts—left forearm, left upper arm,
left thigh, left shin, left foot, torso, head, and so on—and animate this
hierarchy. An early example of this was Dire Straits’ Money for Nothing
music video. Newer examples include practically every PlayStation 2 game,
such as the first Tomb Raider. The common feature here is that each part
is still rigid; it does not bend or flex. Hence, no matter how skillfully the
character is animated, it still looks like a robot.

The idea behind skeletal animation is to replace the hierarchy of parts
with an imaginary hierarchy of bones. Then each vertex of the model is
associated with one or more bones, each of which exert influence over the
vertex but do not totally determine its position. If a vertex is associated
with a single bone, then it will maintain a fixed offset relative to this bone.
Such a vertex is known as a rigid vertex, and that vertex behaves exactly
like any vertex from the first Laura Croft model. However, more generally,
a vertex will receive influence from more than one bone. An artist needs
to specify which bones influence which vertices. This process is known as
skinning,18 and a model thus annotated is known as a skinned model. When
more than one bone influences a vertex, the animator can distribute, per
vertex, differing amounts of influence to each bone. As you can imagine,
this can be very labor intensive. Automated tools exist that can provide a
quick first pass at the skin weights, but a well-skinned character requires
expertise and time.

To determine the animated position of a vertex, we iterate over all the
bones that exert some influence over the vertex, and compute the position
that the vertex would have if it were rigid relative to that bone. The final
vertex position is then taken as the weighted average of those positions.

18You might also hear the term rigging, but this term can imply a wider range of tasks.
For example, often a rigger creates an extra apparatus that assists with animation but
is not used directly for rendering.
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Figure 10.34
Two skinned vertices

Let’s look at an example. Figure 10.34 shows two example skinned
vertices near the elbow of a robot. The blue and green dots show what a
vertex would look like if it were rigid to the corresponding bone, and the
cyan dot is the skinned vertex; notice that it stays attached to the surface
of the mesh.

The vertex on the right, closer to the shoulder, is influenced approxi-
mately 60% by the upper arm bone and 40% by the forearm bone. You
can see that as the arm bends, this vertex stays closer to the blue rigid
vertex. In contrast, the vertex closer to the hand appears to be influenced
approximately 80% by the forearm bone and only 20% by the upper arm
bone, and thus it stays closer to its green rigid vertex.

So a simple strategy for implementing skeletal animation might be as
follows. For each vertex, we keep a list of bones that influence the vertex.
Typically we set a limit on the number of bones that may influence any
one vertex (four is a common number). For each bone, we know the posi-
tion of the vertex relative to the bone’s local axes, and we have a weight
for that bone. To compute the skinned vertex positions for a model in an
arbitrary pose, we need a transform matrix for each bone that tells how to
convert from bone coordinate space into modeling coordinate space. Vary-
ing these transform matrices over time is what makes the character appear
to animate.
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Listing 10.7 illustrates this basic technique. Note that we are also plan-
ning ahead by including vertex normals. These are handled in the same
way as vertex positions, only we discard the translation portion of the ma-
trix. In theory, the same matrix should not be used to transform positions
and normals. Remember that if nonuniform scale or skew is included in the
matrix, we really should use the inverse transpose matrix, as was discussed
in Section 10.4.2. In practice, however, computing and sending two sets
of matrices to the GPU is too expensive, so for the sake of efficiency this
error is ignored, or nonuniform scale is simply avoided. (Uniform scale is
typically OK because the normals have to be renormalized anyway.) Basis
vectors for bump mapping are also commonly part of the process, but they
are handled in a manner very similar to normals, so we will leave those out
for now.

/ / Se t a l i m i t on the max number o f bones t h a t can i n f l u e n c e one v e r t e x
const i n t kMaxBonesPerVertex = 4;

/ / Descr ibes a v e r t e x in a s k e l e t a l model
s t r u c t SkinnedVer tex {

/ / Number o f bones t h a t i n f l u e n c e t h i s v e r t e x
i n t boneCount ;

/ / Which bones i n f l u e n c e the v e r t e x ? These are i n d i c e s
/ / i n t o a l i s t o f bones .
i n t boneIndex [ kMaxBonesPerVertex ] ;

/ / Bone weights . These must sum to 1
f l o a t boneWeight [ kMaxBonesPerVertex ] ;

/ / Ve r t e x p o s i t i o n and normal , i n bone space
Vector3 posInBoneSpace [ kMaxBonesPerVertex ] ;
Vector3 normalInBoneSpace [ kMaxBonesPerVertex ] ;

} ;

/ / Descr ibes a v e r t e x as we w i l l use i t f o r r ende r ing
s t r u c t Ver tex {

Vector3 pos ;
Vector3 normal ;

} ;

/ / Compute sk inned v e r t e x p o s i t i o n s and normals .
void computeSkinnedVer t ices (

i n t ver texCount , / / number o f v e r t s to s k i n
const SkinnedVer tex ∗ i n S k i n V e r t L i s t , / / inpu t v e r t l i s t
const Matrix4x3 ∗boneToModelList , / / Pos / o r i e n t o f each bone
Ver tex ∗ o u t V e r t L i s t / / output goes here

) {

/ / I t e r a t e over a l l the v e r t i c e s
f o r ( i n t i = 0 ; i < ver texCount ; ++ i ) {

const SkinnedVer tex &s = i n S k i n V e r t L i s t [ i ] ;
Ver tex &d = o u t V e r t L i s t [ i ] ;

/ / Loop over a l l bones t h a t i n f l u e n c e t h i s ve r t ex , and
/ / compute weighted average
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d . pos . zero ( ) ;
d . normal . zero ( ) ;
f o r ( i n t j = 0 ; j < s . boneCount ; ++ j ) {

/ / Locate the t r an s fo rm mat r i x
const Matrix4x3 &boneToModel

= boneToModelList [ s . boneIndex [ j ] ] ;

/ / Transform from bone to model space ( us ing
/ / over loaded vec to r ∗ mat r i x ope ra to r which does
/ / ma t r i x m u l t i p l i c a t i o n ) , and sum in t h i s bone ’ s
/ / c o n t r i b u t i o n
d . pos += s . posInBoneSpace [ j ] ∗ boneToModel

∗ s . boneWeight [ j ] ;

/ / ∗Rota te∗ the v e r t e x i n t o body space , i g n o r i n g the
/ / t r a n s l a t i o n po r t i on o f the a f f i n e t r an s fo rm . The
/ / normal i s a ” vec to r ” and not a ” po in t ” , so i t i s not
/ / t r a n s l a t e d .
d . normal += boneToModel . r o t a t e ( s . normalInBoneSpace [ j ] )

∗ s . boneWeight [ j ] ;
}

/ / Make sure the normal i s normal ized
d . normal . normal ize ( ) ;

}
}

Listing 10.7
A simple strategy for skinning vertices

Like all of the code snippets in this book, the purpose of this code is
to explain principles, not to show how things are optimized in practice. In
reality, the skinning computations shown here are usually done in hardware
in a vertex shader; we’ll show how this is done in Section 10.11.5. But
there’s plenty more theory to talk about, so let’s stay at a high level. As it
turns out, the technique just presented is easy to understand, but there’s an
important high-level optimization. In practice, a slightly different technique
is used.

We’ll get to the optimization in just a moment, but for now, let’s back up
and ask ourselves where the bone space coordinates (the member variables
named posInBoneSpace and normalInBoneSpace in Listing 10.7) came
from in the first place. “That’s easy,” you might say, “we just export them
directly from Maya!” But how did Maya determine them? The answer is
they come from the binding pose. The binding pose (sometimes called the
home pose) describes an orientation of the bones in some default position.
When an artist creates a character mesh, he starts by building a mesh
without any bones or skinning data, just like any other model. During this
process, he builds the character posed in the binding pose. Figure 10.35
shows our skinned model in her binding pose, along with the skeleton that
is used to animate her. Remember that bones are really just coordinate
spaces and don’t have any actual geometry. The geometry you see exists
only as an aid to visualization



10.8. Skeletal Animation 429

Figure 10.35
The robot model in the binding pose (left), and the bones used to animate the model (right)

When the mesh is done,19 it is rigged, which means a hierarchy of bones
(a skeleton) is created and the skinning data is edited to associate vertices
with the appropriate bones. During this process, the rigger will bend bones
to various extreme angles to preview how well the model reacts to these
contortions. Is the weighting done properly so that joints don’t collapse?
This is where the skill and experience of both the character modeler and the
rigger come into play. The point for us is that although Maya is constantly
calculating new vertex positions in response to the manipulation of the
bones, it has saved the original modeling space coordinates of each vertex
at the location it had in the binding pose, before it got attached to a
skeleton. Everything starts with that original vertex position.

So, to compute the bone-space coordinates of a vertex, we start with
the modeling-space coordinates of that vertex in the binding pose. We also
know the position and orientation of each bone in the binding pose. We
simply transform the vertex positions from modeling space into bone space
based on those positions and orientations.

That’s the big picture of mesh skinning, in principle. Now let’s get
to the optimization. The basic idea is to store the position of each ver-
tex only in the binding pose, rather than storing it relative to each bone
that exerts influence. Then, when rendering a mesh, rather than having a
bone-to-model transform for each bone, we have a matrix that transforms
coordinates from the original binding space to modeling space in the cur-

19Well, this is the ideal process. In reality, changes to the mesh are often necessary
after the mesh is rigged. The mesh might require adjustments in order to make it bend
better, although an experienced character modeler can anticipate the needs of rigging.
Of course, changes are often needed for aesthetic purposes having nothing to do with
rigging—especially if executives or focus groups are involved.
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rent pose. In other words, this matrix describes the difference between the
bone’s orientation in the binding pose and the bone’s current orientation
in the current pose. This is shown in Listing 10.8.

/ / Se t a l i m i t on the max number o f bones t h a t can i n f l u e n c e one v e r t e x
const i n t kMaxBonesPerVertex = 4;

/ / Descr ibes a v e r t e x in a s k e l e t a l model
s t r u c t SkinnedVer tex {

/ / Number o f bones t h a t i n f l u e n c e t h i s v e r t e x
i n t boneCount ;

/ / Which bones i n f l u e n c e the v e r t e x ? These are i n d i c e s
/ / i n t o a l i s t o f bones .
i n t boneIndex [ kMaxBonesPerVertex ] ;
/ / Bone weights . These must sun to 1
f l o a t boneWeight [ kMaxBonesPerVertex ] ;

/ / Ve r t e x p o s i t i o n and normal i n the b ind ing pose ,
/ / i n model space
Vector3 pos ;
Vector3 normal ;

} ;

/ / Descr ibes a v e r t e x as we w i l l use i t f o r r ende r ing
s t r u c t Ver tex {

Vector3 pos ;
Vector3 normal ;

} ;

/ / Compute sk inned v e r t e x p o s i t i o n s and normals .
void computeSkinnedVer t ices (

i n t ver texCount , / / number o f v e r t s to s k i n
const SkinnedVer tex ∗ i n S k i n V e r t L i s t , / / inpu t v e r t l i s t
const Matrix4x3 ∗boneTrans fo rmLis t , / / From bind ing to c u r r e n t pose
Ver tex ∗ o u t V e r t L i s t / / output goes here

) {

/ / I t e r a t e over a l l the v e r t i c e s
f o r ( i n t i = 0 ; i < ver texCount ; ++ i ) {

const SkinnedVer tex &s = i n S k i n V e r t L i s t [ i ] ;
Ver tex &d = o u t V e r t L i s t [ i ] ;

/ / Loop over a l l bones t h a t i n f l u e n c e t h i s ve r t ex , and compute
/ / a blended ∗mat r i x∗ f o r t h i s v e r t e x
Matrix4x3 blendedMat ;
blendedMat . zero ( ) ;
f o r ( i n t j = 0 ; j < s . boneCount ; ++ j ) {

blendedMat += boneTrans fo rmLi s t [ s . boneIndex [ j ] ]
∗ s . boneWeight [ j ] ;

}

/ / Transform p o s i t i o n and normal us ing blended ma t r i x
d . pos = s . pos ∗ blendedMat ;
d . normal = blendedMat . r o t a t e ( s . normal ) ;
/ / Make sure the normal i s normal ized
d . normal . normal ize ( ) ;

}
}

Listing 10.8
A more optimized strategy for skinning vertices
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This produces a significant reduction in bandwidth to the GPU (due
to the decrease in sizeof(SkinnedVertex)), as well as a reduction in per-
vertex computation, especially when basis vectors are present. It just re-
quires a bit more manipulation of the matrices before handing them to the
GPU.

We have presented the basic idea behind simple skinning. Certainly, in
situations where computing resources (and human resources!) are available
and worth expending to produce the highest fidelity characters possible,
such as in fighting games or sports games, more advanced techniques can
be employed. For example, we might want to make the bicep bulge as
the arm bends up, or squish out the flesh of a dinosaur foot as weight is
transferred and the foot is pressed harder into the ground.

10.9 Bump Mapping

The first use of texture mapping in computer graphics was to define the
color of an object. But texture mapping can be used when we want to
specify any surface property with more granularity than at the vertex level.
The particular surface property that perhaps is closest to controlling its
“texture,” in the sense most laypersons would understand it, is actually
the surface normal.

Bump mapping is a general term that can refer to at least two different
methods of controlling the surface normal per texel. A height map is a
grayscale map, in which the intensity indicates the local “elevation” of the
surface. Lighter colors indicate portions of the surface that are “bumped
out,” and darker colors are areas where the surface is “bumped in.” Height
maps are attractive because they are very easy to author, but they are not
ideal for real-time purposes because the normal is not directly available;
instead, it must be calculated from the intensity gradient. We focus here
on the technique of normal mapping, which is very common nowadays and
what most people usually mean when they say “bump map.”

In a normal map, the coordinates of the surface normal are directly
encoded in the map. The most basic way is to encode x, y, and z in
the red, green, and blue channels, respectively, although certain hardware
supports more optimized formats. The values are usually scaled, biased,
and quantized such that a coordinate value of −1 is encoded as a 0, and +1
is encoded using the maximum color value (usually 255). Now, in principle,
using a normal map is simple. In our lighting calculation, rather than using
the result of interpolating the vertex normals, we fetch a normal out of the
normal map and use it instead. Voila! Ah, if only it were that easy. . .

Complications arise for two primary reasons. First, normal maps are
not intuitive to edit. While a height map (or true displacement map) can
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be easily painted in Photoshop, normal maps are not so easily visualized
and edited. Cut-and-paste operations on normal maps are usually safe, but
for the normal map to be valid, each pixel should encode a vector that is
normalized. The usual technique for making a normal map is for an artist
to actually model a low- and high-res version of the mesh. The low-res
mesh is the one actually used at runtime, and the high-res mesh is solely
to create the bump map,20 using an automated tool that raytraces against
the higher resolution mesh to determine the surface normal for every texel
in the normal map.

The trickier issue is that texture memory is a precious resource.21 In
some simple cases, every texel in the normal map is used at most once on
the surface of the mesh. In this case, we could simply encode the normal
in object space, and our earlier description would work just fine. But
real-world objects exhibit a great deal of symmetry and self-similarity, and
patterns are often repeated. For example, a box often has similar bumps
and notches on more than one side. Because of this, it is currently a more
efficient use of the same amount of memory (and artist time) to increase
the resolution of the map and reuse the same normal map (or perhaps just
portions of it) on multiple models (or perhaps just on multiple places in the
same model). Of course, the same principle applies to any sort of texture
map, not just normal maps. But normal maps are different in that they
cannot be arbitrarily rotated or mirrored because they encode a vector.
Imagine using the same normal map on all six sides of a cube. While
shading a point on the surface of the cube, we will fetch a texel from the
map and decode it into a 3D vector. A particular normal map texel on the
top will produce a surface normal that points in the same direction as that
same texel on the bottom of the cube, when they should be opposites! We
need some other kind of information to tell us how to interpret the normal
we get from the texture, and this extra bit of information is stored in the
basis vectors.

10.9.1 Tangent Space

The most common technique these days is for the normal encoded in the
map to use coordinates in tangent space. In tangent space, +z points out
from the surface; the +z basis vector is actually just the surface normal n̂.
The x basis vector is known as the tangent vector, which we’ll denote û, and
it points in the direction of increasing u in texture space. In other words,
when we move in the direction of the tangent vector in 3D, this corresponds

20And for high-res renders for the box art. Some people also use high-res models to
make disingenuous screen shots of “in-game” footage, sort of like how the hamburger
you get at a fast-food restaurant doesn’t look like the one in the picture on the menu.

21We don’t all have id Tech 5 ’s MegaTexturing yet.
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to moving to the right in 2D in the normal map. (Often, the bump map
shares the same UV coordinates as other maps, but if they differ, it’s the
coordinates used for bump mapping that count.) Similarly, the y basis
vector, known as the binormal22 and denoted here as v̂, corresponds to the
direction of increasing v, although whether this motion is “up” or “down”
in the texture space depends on the conventions for the origin in (u, v)
space, which can differ, as we discussed earlier. Of course, the coordinates
for the tangent and binormal are given in model space, just like the surface
normal. As implied by the hats over the variables, basis vectors are usually
stored as unit vectors.

For example, assume that a certain texel in a normal map has the RGB
triple [37, 128, 218], which is decoded to the unit vector [−0.707, 0, 0.707].
We interpret this to mean that the local surface normal is pointing at about
a 45o angle from a “flat” surface normal defined by the interpolated vertex
normal. It points “to the left,” where “left” is meaningful in the image
space of the normal map and really means “in the direction of decreasing
u.”

In summary, the tangent, binormal, and normal are the axes of a co-
ordinate space known as tangent space, and the coordinates of the per-
texel normal are interpreted by using this coordinate space. To obtain the
model-space normal from a tangent-space normal, we first decode the nor-
mal from the map and then transform it into model space just like any
other vector. Let st = [stx, s

t
y, s

t
z] denote the tangent-space surface normal

and sm = [smx , s
m
y , s

m
z ] denote the model-space surface normal. We can

determine sm simply by taking the linear combination of the basis vectors

sm = stxû+ styv̂ + stzn̂.

By now, we know that this is the same thing as multiplying st by a matrix
whose rows are the basis vectors:

sm = st





−û−
−v̂−
−n̂−



 . (10.18)

Remember that the polygon mesh is just an approximation for a po-
tentially curved surface, so the surface normal we use for lighting varies
continuously over each face in order to approximate the true surface nor-
mal. In the same way, the tangent and binormal basis vectors also vary
continuously over the mesh, since they should be perpendicular to the sur-
face normal and tangent to the surface being approximated. But even on
a flat surface, the basis vectors can change over the surface if a texture is

22The term “bitangent” is probably more correct; but it’s less commonly used.
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squeezed, squashed, or twisted. Two instructive examples can be found in
Figure 10.19 on page 396. The left side shows an example of “squishing.”
In this case, the tangent vector û would be pointing to the right, parallel to
the horizontal polygon edges, while the binormal v̂ would be locally parallel
to the vertical (curving) polygon edges at each vertex. To determine the
basis vectors at any given point in the interior of the face, we interpolate
the basis vectors from the vertices, just like we do with the surface normal.
Compare this with the texture mapping on the right side, where the tex-
ture mapping is planar. In this example, the binormal at every vertex (and
every interior point) points directly down.

Notice that in the texture mapping used in the left side of the figure, the
tangent and binormal vectors are not perpendicular. Despite this possibil-
ity, it’s common to assume the basis vectors form an orthonormal basis (or
to adjust them so that they do), even if the texture is being manhandled.
We make this assumption in order to facilitate two optimizations. The first
optimization is that we can perform our lighting calculations in tangent
space rather than in model space. If we do the lighting in model space,
we must interpolate the three basis vectors across the face, and then in the
pixel shader we must transform our tangent-space normal into model space.
When we do the lighting in tangent space, however, we can instead trans-
form the vectors needed for lighting (l and h) into tangent space once in
the vertex shader, and then during rasterization the interpolation is done
in tangent space. In many circumstances, this is faster. If we have an
orthonormal basis, then the inverse of the transform matrix is simply its
transpose, and we can transform from model space to tangent space just
by using the dot product. (If this isn’t making sense, see Section 3.3.3 and
Section 6.3.) Of course, we are free to rotate vectors into tangent space
by using the dot product even if our basis isn’t orthonormal; in fact, after
interpolating basis vectors and renormalizing them, it’s likely that it will
be slightly out of orthogonality. In this case, our transform is not com-
pletely correct, but usually this doesn’t cause any problems. It’s important
to remember that the whole idea of interpolating surface normals and basis
vectors is an approximation to begin with.

The second optimization we can make by assuming perpendicular basis
vectors is to completely avoid storing one of the two basis vectors (usually
we drop the binormal) and compute it on the fly. This can be faster when
the performance bottleneck is the shuffling around of memory rather than
per-vertex calculations. There’s just one complication: mirrored bump
maps. It is very common on symmetrical objects for texture maps, in-
cluding the bump map, to be used twice; on one side the “regular” way,
and mirrored on the other side. Essentially, we need to know whether the
texture is applied in its regular orientation or mirrored. This is done by
storing a flag that indicates whether the texture is mirrored. A value of +1
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indicates the usual orientation, and −1 indicates the mirrored state. It’s
common to conveniently tuck away this flag in the w component of the one
basis vector we are keeping. Now when we need to compute the dropped
basis vector, we take the appropriate cross product (for example v̂ = n̂×û),
and then multiply by our flag to flip the basis vector if necessary. This flag
is calculated by the triple product n̂× û · v̂, which is the same thing as the
determinant of the transform matrix in Equation (10.18).

10.9.2 Calculating Tangent Space Basis Vectors

Finally, let’s talk about how to compute basis vectors. Our development
follows Lengyel [42]. We are given a triangle with vertex positions p0 =
(x0, y0, z0), p1 = (x1, y1, z1), and p2 = (x2, y2, z2), and at those vertices
we have the UV coordinates (u0, v0), (u1, v1), and (u2, v2). Under these
circumstances, it is always possible to find a planar mapping, meaning the
mapping gradient is constant over the entire triangle.

Looking ahead, the math will be simplified if we shift the origin to p0

by introducing

q1 = p1 − p0, s1 = u1 − u0, t1 = v1 − v0,

q2 = p2 − p0, s2 = u2 − u0, t2 = v2 − v0.

We seek basis vectors that lie in the plane of the triangle, and thus we
can express the triangle edge vectors q1 and q2 as a linear combination of
the basis vectors, where the known u and v displacements on those edges
are the coordinates:

us1 + vt1 = q1

us2 + vt2 = q2.

Normalizing u and v produces the unit vectors we seek. We can write these
equations more compactly in matrix notation as

[

s1 t1
s2 t2

] [

−u−
−v−

]

=

[

−q1−
−q2−

]

,

whence an elegant solution presents itself. By multiplying both sides by
the inverse of the s, t matrix on the left, we have

[

−u−
−v−

]

=

[

s1 t1
s2 t2

]−1 [−q1−
−q2−

]

=
1

s1t2 − s2t1

[

t2 −t1
−s2 s1

] [

−q1−
−q2−

]

.
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Since we are planning on normalizing our basis vectors, we can drop the
leading constant fraction, and we are left with

u = t2q1 − t1q2,

v = −s2q1 + s1q2.

This gives us basis vectors for each triangle. They are not guaranteed
to be perpendicular, but they are usable for our main purpose: determining
basis vectors at the vertex level. These can be calculated by using a trick
similar to computing vertex normals: for each vertex we take the average
of the basis vectors of the adjacent triangles. We also usually enforce an
orthonormal basis. This is done most simply via Gram-Schmidt orthogo-
nalization (Section 6.3.3). Also, if we are dropping one of the basis vectors,
then this is where we need to save the determinant of the basis. Listing 10.9
shows how we might compute vertex basis vectors.

s t r u c t Ver tex {
Vector3 pos ;
f l o a t u , v ;
Vector3 normal ;
Vector3 tangen t ;
f l o a t det ; / / dete rminant o f tangen t t r an s fo rm . (−1 i f mi r ro red )

} ;
s t r u c t T r i a n g l e {

i n t ve r t ex Index [ 3 ] ;
} ;
s t r u c t TriangleMesh {

i n t ver texCount ;
Ver tex ∗ v e r t e x L i s t ;
i n t t r i a n g l e C o u n t ;
T r i a n g l e ∗ t r i a n g l e L i s t ;

void computeBas isVectors ( ) {

/ / Note : we assume v e r t e x normals are v a l i d
Vector3 ∗ tempTangent = new Vector3 [ ver texCount ] ;
Vector3 ∗ tempBinormal = new Vector3 [ ver texCount ] ;

/ / F i r s t c l e a r out the accumulators
f o r ( i n t i = 0 ; i < ver texCount ; ++ i ) {

tempTangent [ i ] . zero ( ) ;
tempBinormal [ i ] . zero ( ) ;

}

/ / Average in the b a s i s v e c t o r s f o r each face
/ / i n t o i t s ne ighbor ing v e r t i c e s
f o r ( i n t i = 0 ; i < t r i a n g l e C o u n t ; ++ i ) {

/ / Get s h o r t c u t s
const T r i a n g l e & t r i = t r i a n g l e L i s t [ i ] ;
const Ver tex &v0 = v e r t e x L i s t [ t r i . ve r t ex Index [ 0 ] ] ;
const Ver tex &v1 = v e r t e x L i s t [ t r i . ve r t ex Index [ 1 ] ] ;
const Ver tex &v2 = v e r t e x L i s t [ t r i . ve r t ex Index [ 2 ] ] ;

/ / Compute i n t e r m e d i a t e va lue s
Vector3 q1 = v1 . pos − v0 . pos ;
Vector3 q2 = v2 . pos − v0 . pos ;
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f l o a t s1 = v1 . u − v0 . u ;
f l o a t s2 = v2 . u − v0 . u ;
f l o a t t1 = v1 . v − v0 . v ;
f l o a t t2 = v2 . v − v0 . v ;

/ / Compute b a s i s v e c t o r s f o r t h i s t r i a n g l e
Vector3 tangen t = t2∗q1 − t1∗q2 ; t angen t . normal ize ( ) ;
Vector3 binormal = −s2∗q1 + s1∗q2 ; binormal . normal ize ( ) ;

/ / Add them i n t o the running t o t a l s f o r ne ighbor ing v e r t s
f o r ( i n t j = 0 ; j < 3 ; ++ j ) {

tempTangent [ t r i . ve r t ex Index [ j ] ] += tangen t ;
tempBinormal [ t r i . ve r t ex Index [ j ] ] += binormal ;

}
}

/ / Now f i l l i n the va lue s i n t o the v e r t i c e s
f o r ( i n t i = 0 ; i < ver texCount ; ++ i ) {

Ver tex &v = v e r t e x L i s t [ i ] ;
Vector3 t = tempTangent [ i ] ;

/ / Ensure tangen t i s pe rpend icu la r to the normal .
/ / (Gram−Schmit ) , then keep normal ized v e r s i o n
t −= v . normal ∗ dot ( t , v . normal ) ;
t . normal ize ( ) ;
v . t angen t = t ;

/ / F i gu r e out i f we ’ re mi r ro red
i f ( dot ( c r o s s ( v . normal , t ) , tempBinormal [ i ] ) < 0.0 f ) {

v . de t = −1.0 f ; / / we ’ re mi r ro red
} e l s e {

v . de t = +1.0 f ; / / not mi r ro red
}

}

/ / Clean up
de le t e [ ] tempTangent ;
de le t e [ ] tempBinormal ;

}
} ;

Listing 10.9
Simple method for calculating basis vectors as the average of adjacent triangle normals

One irritating complication that Listing 10.9 doesn’t address is that
there may be a discontinuity in the mapping, where the basis vectors should
not be averaged together, and the basis vectors must be different across a
shared edge. Most of the time, the faces will have already be detached
from each other (the vertices will be duplicated) along such an edge, since
the UV coordinates or normals will not match. Unfortunately, there is
one particularly common case where this is not true: mirrored textures on
symmetric objects. For example, it is common for character models and
other symmetric meshes to have a line down their center, across which the
texture has been mirrored. The vertices along this seam very often require
identical UVs but an opposite û or v̂. These vertices must be detached in
order to avoid producing invalid basis vectors along this seam.



438 10. Mathematical Topics from 3D Graphics

Section 10.11.4 shows some sample shader code that actually uses the
basis vectors to perform bump mapping. The runtime code is surprisingly
simple, once all the data has been munged into the right format. This illus-
trates a common theme of contemporary real-time graphics: at least 75% of
the code is in the tools that manipulate the data—optimizing, packing, and
otherwise manipulating it into just the right format—so that the runtime
code (the other 25%) can run as fast as possible.

10.10 The RealTime Graphics Pipeline

The rendering equation is the correct way to produce images, assuming you
have an infinite amount of computing power. But if you want to produce
images in the real world on a real computer, you need to understand the
contemporary trade-offs that are being made. The remainder of this chapter
is more focused on those techniques, by attempting to describe a typical
simple real-time graphics pipeline, circa 2010. After giving an overview of
the graphics pipeline, we then descend that pipeline and discuss each section
in more detail, stopping along the way to focus on some key mathematical
ideas. The reader of this section should be aware of several serious flaws in
this discussion:

• There is no such thing as the “typical” modern graphics pipeline.
The number of different rendering strategies is equal to the num-
ber of graphics programmers. Everyone has his or her own pref-
erences, tricks, and optimizations. Graphics hardware continues to
evolve rapidly. As evidence, the use of shader programs is now in
widespread use in consumer hardware such as gaming consoles, and
this technology was in its infancy at the time of the writing of the first
edition of this book. Still, although there is great variance in graph-
ics systems and graphics programmers, most systems do have a great
deal in common.23 We’d like to reiterate that our goal in this chapter
(indeed, this entire book!) is to give you a solid overview, especially
where the mathematics is involved, from which you can expand your
knowledge. This is not a survey of the latest cutting-edge techniques.
(Real-Time Rendering [1] is the best such survey at the time of this
writing.)

• We attempt to describe the basic procedure for generating a single
rendered image with very basic lighting. We do not consider anima-
tion, and we only briefly mention techniques for global illumination
in passing.

23And most programmers have a lot in common, too, even though we might hate to
admit it.
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• Our description is of the conceptual flow of data through the graphics
pipeline. In practice, tasks are often performed in parallel or out of
sequence for performance reasons.

• We are interested in real-time rendering systems which, at the time of
this writing, are primarily geared for rendering triangle meshes. Other
means of producing an image, such as raytracing, have a very different
high-level structure than that discussed here. A reader is warned
that in the future, techniques for real-time and offline rendering could
converge if parallel raytracing becomes a more economical way to keep
up with the march of Moore’s law.

With the above simplifications in mind, the following is a rough outline
of the flow of data through the graphics pipeline.

• Setting up the scene. Before we can begin rendering, we must set
several options that apply to the entire scene. For example, we need
to set up the camera, or more specifically, pick a point of view in the
scene from which to render it, and choose where on the screen to ren-
der it. We discussed the math involved in this process in Section 10.2.
We also need to select lighting and fog options, and prepare the depth
buffer.

• Visibility determination. Once we have a camera in place, we must
then decide which objects in the scene are visible. This is extremely
important for real-time rendering, since we don’t want to waste time
rendering anything that isn’t actually visible. This high-level culling
is very important for real games, but is usually ignored for simple
applications when you’re getting started, and is not covered here.

• Setting object-level rendering states. Once we know that an object is
potentially visible, it’s time to actually draw the object. Each object
may have its own rendering options. We must install these options
into the rendering context before rendering any primitives associated
with the object. Perhaps the most basic property associated with an
object is a material that describes the surface properties of the object.
One of the most common material properties is the diffuse color of
the object, which is usually controlled by using a texture map, as we
discussed in Section 10.5.

• Geometry generation/delivery. Next, the geometry is actually sub-
mitted to the rendering API. Typically, the data is delivered in the
form of triangles; either as individual triangles, or an indexed triangle
mesh, triangle strip, or some other form. At this stage, we may also
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perform level of detail (LOD) selection or generate geometry proce-
durally. We discuss a number of issues related to delivering geometry
to the rendering API in Section 10.10.2.

• Vertex-level operations. Once the rendering API has the geometry
in some triangulated format, a number of various operations are per-
formed at the vertex level. Perhaps the most important such oper-
ation is the transformation of vertex positions from modeling space
into camera space. Other vertex level operations might include skin-
ning for animation of skeletal models, vertex lighting, and texture
coordinate generation. In consumer graphics systems at the time of
this writing, these operations are performed by a user-supplied micro-
program called a vertex shader. We give several examples of vertex
and pixel shaders at the end of this chapter, in Section 10.11.

• Culling, clipping, and projection. Next, we must perform three oper-
ations to get triangles in 3D onto the screen in 2D. The exact order in
which these steps are taken can vary. First, any portion of a triangle
outside the view frustum is removed, by a process known as clipping,
which is discussed in Section 10.10.4. Once we have a clipped poly-
gon in 3D clip space, we then project the vertices of that polygon,
mapping them to the 2D screen-space coordinates of the output win-
dow, as was explained in Section 10.3.5. Finally, individual triangles
that face away from the camera are removed (“culled”), based on the
clockwise or counterclockwise ordering of their vertices, as we discuss
in Section 10.10.5.

• Rasterization. Once we have a clipped polygon in screen space, it is
rasterized. Rasterization refers to the process of selecting which pixels
on the screen should be drawn for a particular triangle; interpolating
texture coordinates, colors, and lighting values that were computed
at the vertex level across the face for each pixel; and passing these
down to the next stage for pixel shading. Since this operation is
usually performed at the hardware level, we will only briefly mention
rasterization in Section 10.10.6.

• Pixel shading. Next we compute a color for the pixel, a process known
as shading. Of course, the innocuous phrase “compute a color” is the
heart of computer graphics! Once we have picked a color, we then
write that color to the frame buffer, possibly subject to alpha blending
and z-buffering. We discuss this process in Section 10.10.6. In today’s
consumer hardware, pixel shading is done by a pixel shader, which is a
small piece of code you can write that takes the values from the vertex
shader (which are interpolated across the face and supplied per-pixel),
and then outputs the color value to the final step: blending.
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• Blending and output. Finally, at the very bottom of the render
pipeline, we have produced a color, opacity, and depth value. The
depth value is tested against the depth buffer for per-pixel visibility
determination to ensure that an object farther away from the camera
doesn’t obscure one closer to the camera. Pixels with an opacity that
is too low are rejected, and the output color is then combined with
the previous color in the frame buffer in a process known as alpha
blending.

The pseudocode in Listing 10.10 summarizes the simplified rendering
pipeline outlined above.

/ / F i r s t , f i g u r e how to view the scene
setupTheCamera ( ) ;

/ / C lea r the z b u f f e r
c l e a r Z B u f f e r ( ) ;

/ / Setup env i ronmenta l l i g h t i n g and fog
se tGloba lL igh t ingAndFog ( ) ;

/ / ge t a l i s t o f o b j e c t s t h a t a re p o t e n t i a l l y v i s i b l e
p o t e n t i a l l y V i s i b l e O b j e c t L i s t = h i g h L e v e l V i s i b i l i t y D e t e r m i n a t i o n ( scene ) ;

/ / Render eve r y th i ng we found to be p o t e n t i a l l y v i s i b l e
f o r ( a l l o b j e c t s in p o t e n t i a l l y V i s i b l e O b j e c t L i s t ) {

/ / Perform lower−l e v e l VSD us ing bounding volume t e s t
i f ( ! ob j ec t . i sBoundingVolumeVis ib le ( ) ) continue ;

/ / Fetch or p rocedu ra l l y genera te the geometry
t r iMesh = ob jec t . getGeometry ( )

/ / C l i p and render the f ace s
f o r ( each t r i a n g l e in the geometry ) {

/ / Transform the v e r t i c e s to c l i p space , and perform
/ / ve r t ex−l e v e l c a l c u l a t i o n s ( run the v e r t e x shader )
c l i p S p a c e T r i a n g l e = t rans fo rmAndL igh t ing ( t r i a n g l e ) ;

/ / C l i p the t r i a n g l e to the view volume
c l i p p e d T r i a n g l e = clipToViewVolume ( c l i p S p a c e T r i a n g l e ) ;
i f ( c l i p p e d T r i a n g l e . i sEmpty ( ) ) continue ;

/ / P r o j e c t the t r i a n g l e onto screen space
sc reenSpaceTr i ang le = c l i p p e d T r i a n g l e . pro jec tToScreenSpace ( ) ;

/ / I s the t r i a n g l e back fac ing ?
i f ( s c reenSpaceTr iang le . i sBackFac ing ( ) ) continue ;

/ / R a s t e r i z e the t r i a n g l e
f o r ( each p i x e l in the t r i a n g l e ) {

/ / S c i s s o r the p i x e l here ( i f t r i a n g l e was
/ / not comple te ly c l ipped to the f rus tum )
i f ( p i x e l i s o f f−sc reen ) continue ;
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/ / I n t e r p o l a t e co lor , z b u f f e r value ,
/ / and t e x t u r e mapping coords

/ / The p i x e l shader t ake s i n t e r p o l a t e d va lues
/ / and computes a co lo r and alpha va lue
co lo r = shadeP ixe l ( ) ;

/ / Perform z b u f f e r i n g
i f ( ! z b u f f e r T e s t ( ) ) continue ;

/ / Alpha t e s t to i gno re p i x e l s t h a t a re ” too
/ / t r a n s p a r e n t ”
i f ( ! a lphaTes t ( ) ) continue ;

/ / Wr i te to the frame b u f f e r and z b u f f e r
w r i t e P i x e l ( color , i n t e r p o l a t e d Z ) ;

/ / Move on to the nex t p i x e l i n t h i s t r i a n g l e
}

/ / Move on to the nex t t r i a n g l e i n t h i s ob j ec t
}

/ / Move on to the nex t p o t e n t i a l l y v i s i b l e ob j ec t
}

Listing 10.10
Pseudocode for the graphics pipeline

It wasn’t too long ago that a graphics programmer would be responsi-
ble for writing code to do all of the steps shown Listing 10.10 in software.
Nowadays, we delegate many tasks to a graphics API such as DirectX or
OpenGL. The API may perform some of these tasks in software on the main
CPU, and other tasks (ideally, as many as possible) are dispatched to spe-
cialized graphics hardware. Modern graphics hardware allows the graphics
programmer (that’s us) very low level control through vertex shaders and
pixel shaders, which are basically microprograms we write that are exe-
cuted on the hardware for each vertex and pixel that is processed. While
performance concerns in the old single processor software rendering days
were addressed with hand-tuned assembly, nowadays the concerns are more
about using the GPU as efficiently as possible, and ensuring that it is never
idle, waiting on the CPU to do anything. Of course, both now and then the
simplest way to speed up rendering something is to simply avoid rendering
it at all (if it isn’t visible) or to render a cheaper approximation of it (if it’s
not large on the screen).

In summary, a modern graphics pipeline involves close cooperation of
our code and the rendering API. When we say “rendering API,” we mean
the API software and the graphics hardware. On PC platforms the API
software layer is necessarily very “thick,” due to the wide variety of under-
lying hardware that must be supported. On console platforms where the
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Figure 10.36. Division of labor between our code and the graphics API

hardware is standardized, the layer can be significantly leaner. A notable
example of this was the PlayStation 2, which allowed programmers direct
access to hardware registers and very low level control over direct memory
access (DMA). Figure 10.36 illustrates the division of labor involved in this
cooperation.

A slightly different summary of the real-time graphics pipeline is illus-
trated in Figure 10.37, this time focusing more on the lower end of the
pipeline and the conceptual flow of data. The blue boxes represent data
that we provide, and blue ovals are our shaders that we write. The yellow
ovals are operations that are performed by the API.

The remainder of this chapter discusses a number of various topics in
computer graphics. We proceed roughly in the order that these topics are
encountered in the graphics pipeline.
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Figure 10.37. Data flow through the graphics pipeline.

10.10.1 Buffers

Rendering involves many buffers. In this context, a buffer is simply a
rectangular region of memory that stores some sort of data per pixel. The
most important buffers are the frame buffer and the depth buffer.

The frame buffer stores one color per pixel—it holds the rendered image.
The color for a single pixel may be stored in a variety of formats; the
variations are not significant for the current discussion. If we’re rendering
a single image, the frame buffer may be in regular RAM, to be saved to
disk.
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A more interesting situation arises in real-time animation. In this case,
the frame buffer is normally located in video RAM. The video card is con-
stantly reading this area of video RAM, converting the binary data into
the appropriate signal to be sent to the display device. But how can the
monitor read this memory while we’re trying to render to it? A technique
known as double buffering is used to prevent an image from being displayed
before it is completely rendered. Under double buffering, there are actually
two frame buffers. One frame buffer, the front buffer, holds the image cur-
rently displayed on the monitor. The back buffer is the off-screen buffer,
which holds the image currently being rendered.

When we have finished rendering an image and are ready for it to be
displayed, we “flip” the buffers. We can do this in one of two ways. If
we use page flipping, then we instruct the video hardware to begin reading
from the buffer that was the off-screen buffer. We then swap the roles of the
two buffers; the buffer that was being displayed now becomes the off-screen
buffer. Or we may blit (copy) the off-screen buffer over the display buffer.
Double buffering is shown in Figure 10.38.

Figure 10.38
Double buffering

The more modern terminology for making visible the image that was
rendered into the back buffer is presenting the image.

The second important buffer used for rendering is the depth buffer, also
known as the z-buffer. Rather than storing a color at each pixel, the depth
buffer stores a depth value per pixel. There are many variations in the
specifics of exactly what value goes into the depth buffer, but the basic
idea is that it is related to the distance from the camera. Often the clip-
space z-coordinate is used as a depth value, which is why the depth buffer
is also known as the z-buffer.

The depth buffer is used to determine which objects occlude which ob-
jects, as follows. As we are rasterizing a triangle, we compute an inter-
polated depth value per pixel. Before rendering a pixel, we compare this
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depth value with the value already in the depth buffer for this pixel. If the
new depth is farther from the camera than the value currently in the depth
buffer, then the pixel is discarded. Otherwise, the pixel color is written
to the frame buffer, and the depth buffer is updated with the new, closer
depth value.

Before we can begin rendering an image, we must clear the depth buffer
to a value that means “very far from the camera.” (In clip space, this value
is 1.0). Then, the first pixels to be rendered are guaranteed to pass the
depth buffer test. There’s normally no need to double buffer the depth
buffer like we do the frame buffer.

10.10.2 Delivering the Geometry

After deciding which objects to render, we need to actually render them.
This is actually a two-step process. First, we must set up the render context.
This involves telling the renderer what vertex and pixel shaders to use, what
textures to use, and setting any other constants needed by the shaders,
such as the transform matrices, lighting positions, colors, fog settings, and
so forth. The details of this process depend greatly on your high-level
rendering strategy and target platform, so there isn’t much more specific we
can say here, although we give several examples in Section 10.11. Instead,
we would like to focus on the second step, which is essentially the top box
in Figure 10.37, where vertex data is delivered to the API for rendering.
Nowadays a programmer has quite a bit of flexibility in what data to send,
how to pack and format each data element, and how to arrange the bits in
memory for maximum efficiency.

What values might we need to supply per vertex? Basically, the answer
is, “whatever properties you want to use to render the triangles.” Ulti-
mately, there are only two required outputs of the vertex and pixel shader.
First, the vertex shader must output a position for each vertex so that the
hardware can perform rasterization. This position is typically specified in
clip space, which means the hardware will do the perspective divide and
conversion to screen space coordinates (see Section 10.3.5) for you. The
pixel shader really has only one required output: a color value (which typ-
ically includes an alpha channel). Those two outputs are the only things
that are required. Of course, to properly determine the proper clip-space
coordinates, we probably need the matrix that transforms from model space
to clip space. We can pass parameters like this that apply to all the vertices
or pixels in a given batch of triangles by setting shader constants. This is
conceptually just a large table of vector values that is part of the render
context and for us to use as needed. (Actually, there is usually one set of
registers assigned for use in the vertex shader and a different set of registers
that can be accessed in the pixel shader.)
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Some typical pieces of information that are stored at the vertex level
include

• Position. This describes the location of the vertex. This can be a 3D
vector or a 2D screen-space position, or it could be a position already
transformed into clip space that is simply passed directly through the
vertex shader. If a 3D vector is used, the position must be transformed
into clip space by the current model, view, and projection transforms.
If 2D window coordinates (ranging according to the resolution of the
screen, not normalized) are used, then they must be converted back
into clip space in the vertex shader. (Some hardware allows your
shader to output coordinates that are already projected to screen
space.)

If the model is a skinned model (see Section 10.8), then the positional
data must also include the indices and weights of the bones that
influence the vertex. The animated matrices can be delivered in a
variety of ways. A standard technique is to pass them as vertex
shader constants. A newer technique that works on some hardware is
to deliver them in a separate vertex stream, which must be accessed
through special instructions since the access pattern is random rather
than streaming.

• Texture-mapping coordinates. If we are using texture-mapped trian-
gles, then each vertex must be assigned a set of mapping coordinates.
In this simplest case, this is a 2D location into the texture map. We
usually denote the coordinates (u, v). If we are using multitexturing,
then we might need one set of mapping coordinates per texture map.
Optionally, we can generate one or more sets of texture-mapping co-
ordinates procedurally (for example, if we are projecting a gobo onto
a surface).

• Surface normal. Most lighting calculations need the surface normal.
Even though these lighting equations are often done per-pixel, with
the surface normal being determined from a normal map, we still
often store a normal at the vertex level, in order to establish the basis
for tangent space.

• Color. Sometimes it’s useful to assign a color input to each vertex.
For example, if we are rendering particles, the color of the particle
may change over time. Or we may use one channel (such as alpha)
to control the blending between two texture layers. An artist can
edit the vertex alpha to control this blending. We might also have
per-vertex lighting calculations that were done offline.

• Basis vectors. As discussed in Section 10.9, for tangent-space normal
maps (and a few other similar techniques) we need basis vectors in
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order to define the local tangent space. The basis vectors and surface
normal establish this coordinate space at each vertex. These vec-
tors are then interpolated across the triangle during rasterization, to
provide an approximate tangent space per pixel.

With all that in mind, let’s give a few examples of C structs that
could be used to deliver vertex data in some situations that might arise in
practice.

One of the most basic vertex formats contains a 3D position, surface
normal, and mapping coordinates. A basic triangle mesh with a simple
diffuse map is stored using this vertex type. We can’t use tangent space
normal maps with this vertex format, since there are no basis vectors:

/ / Untransformed , u n l i t v e r t e x
s t r u c t RenderVertex {

Vector3 p ; / / p o s i t i o n
f l o a t u , v ; / / t e x t u r e mapping coo rd ina te s
Vector3 n ; / / normal

} ;

If we want to use a tangent-space normal map, we’ll need to include
basis vectors:

/ / Untransformed , u n l i t v e r t e x with b a s i s v e c t o r s
s t r u c t RenderVer texBas i s {

Vector3 p ; / / p o s i t i o n
Vector3 n ; / / normal
Vector3 tangen t ; / / 1 s t b a s i s vec to r
f l o a t det ; / / Determinant o f tangen t space

/ / t r an s fo rm ( m i r r o r f l a g )
f l o a t u , v ; / / t e x t u r e mapping coo rd ina te s

} ;

Another common format, used for heads-up displays, text rendering,
and other 2D items, is a vertex with screen space coordinates and pre-lit
vertices (no normal needs to be supplied since no lighting calculations will
take place):

/ / 2D screen−space pre− l i t .
s t r u c t RenderVertex2D {

f l o a t x , y ; / / 2D screen−space p o s i t i o n
unsigned argb ; / / p r e l i t co lo r (0xAARRGGBB)
f l o a t u , v ; / / t e x t u r e mapping coo rd ina te s

} ;

The following vertex is expressed in 3D, but does not need to be lit by
the graphics API’s lighting engine. This format is often useful for particle
effects, such as explosions, flames, and self-illuminated objects, and for
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rendering debugging objects such as bounding boxes, waypoints, markers,
and the like:

/ / Untransformed , l i t v e r t e x
s t r u c t RenderVertexL {

Vector3 p ; / / 3D p o s i t i o n
unsigned argb ; / / p r e l i t co lo r (0xAARRGGBB)
f l o a t u , v ; / / t e x t u r e mapping coo rd ina te s

} ;

The next example is a vertex used for lightmapped, bump-mapped ge-
ometry. It has basis vectors for lightmapping, and two sets of UVs, one
for the regular diffuse texture, and another for the lightmap, which stores
baked-in lighting that was calculated offline:

/ / Lightmapped , bump mapped v e r t e x
s t r u c t RenderVertexLtMapBump {

Vector3 p ; / / p o s i t i o n
Vector3 n ; / / normal
Vector3 tangen t ; / / 1 s t b a s i s vec to r
f l o a t det ; / / Determinant o f tangen t space

/ / t r an s fo rm ( m i r r o r f l a g )
f l o a t u , v ; / / r e g u l a r coo rd ina te s f o r d i f f u s e and bump map
f l o a t lmu , lmv ; / / t e x t u r e coords i n t o l igh tmap

} ;

Finally, here’s a vertex that might be used for skeletal rendering. The
indices are stored in four 8-bit values, and the weights are stored as four
floats:

/ / Lightmapped , bump mapped v e r t e x
s t r u c t RenderVer texSkinned {

Vector3 p ; / / p o s i t i o n
Vector3 n ; / / normal
Vector3 tangen t ; / / 1 s t b a s i s vec to r
f l o a t det ; / / Determinant o f tangen t space

/ / t r an s fo rm ( m i r r o r f l a g )
f l o a t u , v ; / / r e g u l a r coo rd ina te s f o r d i f f u s e and bump map
unsigned boneIndices ; / / bone i n d i c e s f o r up to 4 bones

/ / (8−b i t va lue s )
Vector4 boneWeights ; / / we ights f o r up to 4 bones

} ;

The preceding examples were all declared as structs. As you can see,
the combinations can grow quite quickly. Dealing with this simply but
efficiently is a challenge. One idea is to allocate the fields as a structure of
arrays (SOA) rather than array of structures (AOS):

s t r u c t Ver texLis tSOA {
Vector3 ∗p ; / / p o s i t i o n s
Vector3 ∗n ; / / normals
Vector4 ∗ tangentDet ; / / xyz tangen t + det i n w
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Vector2 ∗uv0 ; / / f i r s t channel mapping coords
Vector2 ∗uv1 ; / / second channel mapping
Vector2 ∗ ltMap ; / / l i gh tmap coords
unsigned ∗boneIndices ; / / bone i n d i c e s f o r up to 4 bones

/ / (8−b i t va lue s )
Vector4 ∗boneWeights ; / / we ights f o r up to 4 bones
unsigned ∗argb ; / / v e r t e x co lo r

} ;

In this case, if a value was not present, the array pointer would simply
be NULL.

Another idea is to use a raw block of memory, but declare a vertex
format class with accessor functions that do the address arithmetic to locate
a vertex by index, based on the variable stride, and access a member based
on its variable offset within the structure.

10.10.3 VertexLevel Operations

After mesh data has been submitted to the API, a wide range of vertex-
level computations are performed. In a shader-based renderer (as opposed
to a fixed-function pipeline), this happens in our vertex shader. The input
to a vertex shader is essentially one of the structs that we described in the
previous section. As discussed earlier, a vertex shader can produce many
different types of output, but there are two basic responsibilities it must
fulfill. The first is that it must output, at the very minimum, a clip-space
(or in some circumstances screen-space) position. The second responsibility
is to provide to the pixel shader any inputs that are needed for the pixel
shader to perform the shading calculations. In many cases, we can simply
pass through vertex values received from the input streams, but other times,
we must perform calculations, such as transforming raw vertex values from
modeling space to some other coordinate space in which we are performing
lighting or generating texture coordinates.

Some of the most common operations that are done in a vertex shader
are

• Transforming model-space vertex positions into clip space.

• Performing skinning for skeletal models.

• Transforming normals and basis vectors into the appropriate space
for lighting.

• Calculating vectors needed for lighting (l and h) and transforming
them into the appropriate coordinate space.

• Computing fog density values from the vertex position.
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• Generating texture mapping coordinates procedurally. Examples in-
clude projected spot lights, Doom-style volumetric light, reflecting a
view vector about the normal for environment mapping, various fake
reflection techniques, scrolling or otherwise animated textures, and so
on.

• Passing through raw vertex inputs without modification, if they are
already in the correct format and coordinate space.

If we are using Gouraud shading, we might actually perform the lighting
calculations here, and interpolate the lighting results. We’ll show some
examples of this later in the chapter.

The transformation from modeling to clip space is the most common
operation, so let’s review the process. We do it with matrix multiplication.
Conceptually, the vertices undergo a sequence of transformations as follows:

• The model transform transforms from modeling space to world space.

• The view transform transforms from world space to camera space.

• The clip matrix is used to transform from camera space to clip space.

Conceptually, the matrix math is

vclip = (vmodel)(Mmodel→world)(Mworld→camera)(Mcamera→clip).

In practice, we don’t actually perform three separate matrix multiplica-
tions. We have one matrix that transforms from object space to clip space,
and inside the vertex shader we perform one matrix multiplication using
this matrix.

10.10.4 Clipping

After vertices have been transformed into clip space, two important tests
are performed on the triangle: clipping and culling. Both operations are
usually performed by the rendering API, so although you won’t usually
have to perform these operations yourself, it’s important to know how they
work. The order in which we discuss these tests is not necessarily the order
in which they will occur on a particular piece of hardware. Most hardware
culls in screen space, whereas older software renderers did it earlier, in 3D,
in order to reduce the number of triangles that had to be clipped.

Before we can project the vertices onto screen space, we must ensure
that they are completely inside the view frustum. This process is known
as clipping. Since clipping is normally performed by the hardware, we will
describe the process with only cursory detail.
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The standard algorithm for clipping polygons is the Sutherland-Hodgman
algorithm. This algorithm tackles the difficult problem of polygon clipping
by breaking it down into a sequence of easy problems. The input polygon
is clipped against one plane at a time.

To clip a polygon against one plane, we iterate around the polygon,
clipping each edge against the plane in sequence. Each of the two vertices
of the edge may be inside or outside the plane; thus, there are four cases.
Each case may generate zero, one, or two output vertices, as shown in
Figure 10.39.

Figure 10.39
Clipping a single edge—the four
cases

Figure 10.40 shows an example of how we can apply these rules to
clip a polygon against the right clip plane. Remember that the clipper
outputs vertices, not edges. In Figure 10.40, the edges are drawn only
for illustration. In particular, the final clip step appears to output two
edges when actually only one vertex was output—the last edge is implicit
to complete the polygon.

At the end of each stage, if there are fewer than three vertices remaining,
then the polygon is rejected as being invisible. (Notice that it is impossible
to output only one or two vertices. The number of vertices output by any
one pass will either be zero, or at least three.)

Some graphics hardware does not clip polygons to all six planes in 3D
(or 4D). Instead, only the near clip is performed, and then scissoring is
done in 2D to clip to the window. This can be a performance win because
clipping is slow on certain hardware. A variation on this technique is to
employ a guard band. Polygons completely outside the screen are rejected,
polygons completely inside the guard band are scissored rather than clipped
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Figure 10.40
Clipping a polygon against the
right clip plane

in 3D, and polygons that are partially on screen but outside of the guard
band are clipped in 3D.

10.10.5 Backface Culling

The second test used to reject hidden surfaces is known as backface culling,
and the purpose of this test is to reject triangles that don’t face the camera.
In standard closed meshes, we should never see the back side of a triangle
unless we are allowed to go inside the mesh. Removal of the backfacing
triangles is not strictly necessary in an opaque mesh—we could draw them
and still generate a correct image, since they will be covered up by a closer,
front-facing triangle. However, we don’t want to waste time drawing any-
thing that isn’t visible, so we usually want to cull backfaces. In theory,
about half of the triangles will be backfacing. In practice, less than half
of the triangles can be culled, especially in static scenery, which in many
cases is created without backfaces in the first place. One obvious example
is a terrain system. Certainly we may be able to eliminate some backfacing
triangles, for example, on the backside of a hill, but in general most trian-
gles will be frontfacing because we are usually above the ground. However,
for dynamic objects that move around in the world freely, roughly half of
the faces will be backfacing.

Backfacing triangles can be detected in 3D (before projection) or 2D
(after projection). On modern graphics hardware, backface culling is per-
formed in 2D based on clockwise or counterclockwise enumeration of ver-
tices in screen space. In a left-handed coordinate system like we use in
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this book, the convention is to order the vertices in a clockwise fashion
around the triangle when viewed from the front side. Thus, as shown in
Figure 10.41, we will normally remove any triangle whose vertices are or-
dered in a counterclockwise fashion on the screen. (Right-handers usually
employ the opposite conventions.)

Figure 10.41
Backface culling of
triangles with
vertices enumerated
counterclockwise in
screen space

The API will let you control backface culling. You may want to turn
backface culling off while rendering certain geometry. Or, if geometry has
been reflected, you may need to invert the culling, since reflection flips the
vertex order around the faces. Rendering using stencil shadows requires
rendering the frontfaces in one pass and the backfaces in another pass.

Figure 10.42
Backface culling in 3D
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The bottlenecks are different in software rendering compared to hard-
ware rendering (notably, the bandwidth required for raw delivery of data to
the hardware), and in software, backface culling is usually done in 3D. The
basic idea with the 3D backfacing test is to determine whether the camera
position is on the front side of the triangle’s plane. To make this deter-
mination quickly, we store a precomputed triangle normal. This is shown
in Figure 10.42, in which the backfacing triangles that could be culled are
drawn in gray. Notice that backface culling doesn’t depend on whether a
triangle is inside or outside the view frustum. In fact, it doesn’t depend
on the orientation of the camera at all—only the position of the camera
relative to the triangle is relevant.

To detect backfacing triangles in 3D, we need the normal of the plane
containing the triangle, and a vector from the eye to the triangle (any
point on the triangle will do—usually we just pick one vertex arbitrarily).
If these two vectors point in basically the same direction (their dot product
is greater than zero), then the triangle is backfacing. A variation on this
theme is to also precompute and store the d value of the plane equation (see
Section 9.5.1). Then the backfacing check can be done with one dot product
and scalar comparison. One quick note about a tempting optimization trick
that doesn’t work: you might try to only use the z-component of the normal
of the triangle in camera (or clip) space. Although it might seem like if the
z value is positive, then the triangle faces away from the camera and could
be culled, an example where this isn’t true is circled in Figure 10.42.

10.10.6 Rasterization, Shading, and Output

After clipping, the vertices are projected and mapped into the screen co-
ordinates of the output window, according to Equations (10.8)–(10.9). Of
course, these coordinates are floating-point coordinates, which are “contin-
uous” (see Section 1.1). But we typically render pixels, which are discrete.
So how do we know which pixels actually get drawn? Devising an algorithm
to answer this question is surprisingly complicated. If we answer wrong,
then gaps can appear between triangles. Rendering a pixel more than once
can be bad, too, if we are using alpha blending. In other words, we must
make sure that when we render a surface represented as triangles, every
pixel is rendered exactly once. Luckily, the graphics hardware takes care of
this for us and we don’t have to sweat the details.

During rasterization, the rendering system may perform scissoring, which
rejects pixels that are outside of the rendering window. This is impossible
if the polygon is clipped to the edge of the screen, but it might be ad-
vantageous for performance reasons to skip that step. The guard band is a
technique that can be used to tune performance trade-offs between clipping
and scissoring (see Section 10.10.4).



456 10. Mathematical Topics from 3D Graphics

Even though we don’t necessarily have to understand exactly how the
graphics hardware decides which pixels to render for a given triangle, we
do need to understand how it determines what to do with a single pixel.
Conceptually, five basic steps are performed:

1. Interpolate. Any quantities computed at the vertex level, such as
texture coordinates, colors, and normals, are interpolated across the
face. The interpolated values for each quantity must be computed for
the pixel before it can be shaded.

2. Depth test. We reject pixels by using the depth buffer (see Sec-
tion 10.10.1) if the pixel we are about to shade would be obscured
by a closer pixel. Note that, in some circumstances, the pixel shader
is allowed to modify the depth value, in which case this test must be
deferred until after shading.

3. Shade. Pixel shading refers to the process of computing a color for
a pixel. On shader-based hardware, this is where your pixel shader
is executed. In a basic forward renderer pass, where we are actually
rendering objects into the frame buffer (as opposed to writing into a
shadow map, or doing some other lighting pass), the pixel is typically
first lit and then fogged if fogging is being used. The output of a pixel
shader consists of not only an RGB color, but also an alpha value,
which is usually interpreted as the “opacity” of the pixel, used for
blending. The next section shows several examples of pixel shaders.

4. Alpha test. This rejects pixels based on the alpha value of the pixel.
All sorts of different alpha tests can be used, but the most common
one is to reject pixels that are “too transparent.” Although such
invisible pixels may not cause any change the frame buffer were we
to write them, we do need to reject them so that they do not cause
us to write into the depth buffer.

5. Write. If the pixel passes the depth and alpha tests, then the frame
buffer and depth buffers are updated.

• The depth buffer is updated simply by replacing the old depth
value with the new one.

• The frame buffer update is more complicated. If blending is not
used, then the new pixel color replaces the old one. Otherwise,
the new pixel color is blended with the old one, with the relative
contributions of the old and new colors controlled by the alpha
value. Other mathematical operations, such as addition, sub-
traction, and multiplication, are also often available, depending
on the graphics hardware.
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10.11 Some HLSL Examples

In this section we will present some examples of HLSL vertex and pixel
shaders that demonstrate many of the techniques discussed in previous
sections. These code snippets are well commented, as we intend for this
code to be read. We are giving examples in HLSL for the same reason that
we show code snippets in C: we expect that it will be applicable to a large
number of our readers, and although we know not every reader will be using
this specific language, we think the language is sufficiently high level that
many of the basic principles can be conveyed and appreciated by almost
everyone.

HLSL is essentially the same language as the shader language developed by
NVIDIA known as “Cg.” HLSL is also very similar, although not identical,
to GLSL, the shading language used in OpenGL.

One aspect of HLSL that we realize introduces an unwanted impediment
to those not interested in real-time rendering is the division of labor between
vertex and pixel shaders.24 Unfortunately, this is where some of the messy
guts cannot be fully hidden. This book is not a book on HLSL, so we don’t
fully explain these details, and some exposure to HLSL is helpful. However,
since the language uses the C syntax, it is relatively approachable, and our
examples should be readable. For those who are unfamiliar with HLSL, the
comments in the examples introduce the HLSL specifics as they come up.

Because these examples are all very basic, they were written targeting
shader model 2.0.

10.11.1 Decal Shading and HLSL Basics

We’ll start with a very simple example to get warmed up and demonstrate
the basic mechanisms of HLSL for declaring constants and passing inter-
polated arguments. Perhaps the simplest type of shading is to just output
the color from a texture map directly, without any lighting at all. This is
sometimes called decal shading. The vertex shader in Listing 10.11 illus-
trates several of the basic mechanisms of HLSL, as explained by the source
comments.

24For example, the RenderMan shading language does not have this property.
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/ / Th i s s t r u c t d e c l a r e s the i n p u t s we r e c e i v e from the mesh .
/ / Note t h a t the order here i s not impor tan t . I npu t s are i d e n t i f i e d
/ / by t h e i r ” semant ic ” , which i s the t h i n g on the r i g h t a f t e r the
/ / colon . When sending the v e r t e x l i s t to the renderer , we must
/ / s p e c i f y the ” semant ic ” o f each v e r t e x element .
s t r u c t I npu t {

f l o a t 4 pos : POSITION ; / / p o s i t i o n in modeling space
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coo rd ina te s

} ;

/ / Th i s i s the data we w i l l output from our v e r t e x shader . These
/ / are matched up with the p i x e l shader i n p u t s based on the semant ic
s t r u c t Output {

f l o a t 4 pos : POSITION ; / / p o s i t i o n in CLIP space
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coord ina te

} ;

/ / Here we dec l a re a g l o b a l v a r i a b l e , which i s a shader cons tan t
/ / t h a t ho lds the model−>c l i p t r an s fo rm mat r i x .
uniform f loa t4x4 modelToClip ;

/ / The body of our v e r t e x shader
Output main ( Inpu t inpu t ) {

Output output ;

/ / Transform v e r t e x p o s i t i o n to c l i p space . The mul ( ) i n t r i n s i c
/ / f u n c t i o n per forms ma t r i x m u l t i p l i c a t i o n . Note t h a t mul ( )
/ / t r e a t s any vec to r passed as the f i r s t operand as a row vec to r .
output . pos = mul ( i npu t . pos , modelToClip ) ;

/ / Pass through the supp l i ed UV coo rd ina te s wi thout m o d i f i c a t i o n
output . uv = inpu t . uv ;

re turn output ;
}

Listing 10.11
Vertex shader for decal rendering

A vertex shader like this could be be used with the pixel shader of
Listing 10.12, which actually does the decal shading. However, to make
things interesting and demonstrate that pixel shader constants work the
same as vertex shader constants, we’ve added a global constant color, which
we consider to be part of the global render context. We have found it very
useful to have a constant such as this, which modulates the color and opacity
of every rendered primitive.

/ / Th i s s t r u c t d e c l a r e s the i n t e r p o l a t e d i n p u t s we r e c e i v e from the
/ / r a s t e r i z e r . They w i l l u s u a l l y match the v e r t e x output s e xac t l y ,
/ / except t h a t we o f t en leave o f f the c l i p−space p o s i t i o n .
s t r u c t I npu t {

f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coo rd ina te s
} ;

/ / Here , j u s t to show how a p i x e l shader cons tan t works , we dec la re
/ / a g l o b a l cons tan t co lo r . The output o f our shader i s m u l t i p l i e d
/ / by t h i s RGBA va lue . One of the most common reasons to have such a
/ / cons tan t i s to add an opac i t y s e t t i n g i n t o the render contex t ,
/ / but i t ’ s very handy to have a f u l l RGBA cons tan t co lo r .
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uniform f l o a t 4 cons tan tCo lo r ;

/ / We are going to do a t e x t u r e lookup . Here we dec la re a ” v a r i a b l e ”
/ / to r e f e r to t h i s t e x t u r e , and annota te i t wi th s u f f i c i e n t i n f o rma t i on
/ / so t h a t our rende r ing code can s e l e c t the app rop r i a t e t e x t u r e i n t o
/ / the rende r ing con tex t be fo re drawing p r i m i t i v e s .
sampler2D di f fuseMap ;

/ / The body of our p i x e l shader . I t only has one output , which f a l l s
/ / under the semant ic ”COLOR”
f l o a t 4 main ( Inpu t inpu t ) : COLOR {

/ / Fetch the t e x e l
f l o a t 4 t e x e l = tex2D ( di f fuseMap , inpu t . uv ) ;

/ / Modulate i t by the cons tan t co lo r and output . Note t h a t
/ / ope ra to r∗ per forms component−wise m u l t i p l i c a t i o n .
re turn t e x e l∗cons tan tCo lo r ;

}

Listing 10.12
Pixel shader for decal rendering

Clearly, the higher-level code must supply the shader constants and the
primitive data properly. The simplest way to match up a shader constant
with the higher-level code is to specifically assign a register number to a
constant by using special HLSL variable declaration syntax, but there are
subtler techniques, such as locating constants by name. These practical
details are certainly important, but they are don’t belong in this book.

10.11.2 Basic PerPixel BlinnPhong Lighting

Now let’s look at a simple example that actually does some lighting cal-
culations. We start with basic per-pixel lighting, although we don’t use a
bump map just yet. This example simply illustrates the Phong shading
technique of interpolating the normal across the face and evaluating the
full lighting equation per-pixel. We compare Phong shading with Gouraud
shading in Section 10.11.3, and we show an example of normal mapping in
Section 10.11.4.

All of our lighting examples use the standard Blinn-Phong lighting equa-
tion. In this example and most of the examples to follow, the lighting envi-
ronment consists of a single linearly-attenuated omni light plus a constant
ambient.

For the first example (Listings 10.13 and 10.14), we do all of the work
in the pixel shader. In this case, the vertex shader is fairly trivial; it just
needs to pass through the inputs to the pixel shader.

/ / Mesh i n p u t s .
s t r u c t I npu t {

f l o a t 4 pos : POSITION ; / / p o s i t i o n in model space
f l o a t 3 normal : NORMAL; / / v e r t e x normal i n model space
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps

} ;
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/ / Ve r t e x shader output . Note t h a t with the except ion o f the output
/ / p o s i t i on , which i s output under the POSITION semat ic , a l l o t he r s go
/ / under the TEXCOORDx semant ic . Desp i te i t s name , t h i s semant ic i s
/ / a c t u a l l y used f o r p r e t t y much ANY i n t e r p o l a t e d vec to r va lue up to 4D
/ / t h a t we want to pass to the p i x e l shader , not j u s t t e x t u r e coords .
s t r u c t Output {

f l o a t 4 c l i pPos : POSITION ; / / c l i p−space p o s i t i o n
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps
f l o a t 3 normal : TEXCOORD1 ; / / v e r t e x normal i n model space
f l o a t 3 modelPos : TEXCOORD2 ; / / p o s i t i o n in model space

} ;

/ / Model−>c l i p t r an s fo rm mat r i x .
uniform f loa t4x4 modelToClip ;

/ / The body of our v e r t e x shader
Output main ( Inpu t inpu t ) {

Output output ;

/ / Transform v e r t e x p o s i t i o n to c l i p space .
output . c l i pPos = mul ( i npu t . pos , modelToClip ) ;

/ / Pass through v e r t e x i n p u t s wi thout m o d i f i c a t i o n
output . normal = inpu t . normal ;
output . uv = inpu t . uv ;
output . modelPos = inpu t . pos ;

re turn output ;
}

Listing 10.13
Vertex shader for perpixel lighting of a single omni plus ambient

Listing 10.14 is the corresponding pixel shader, where all the action
happens. Notice that we are using two different texture maps, one for the
diffuse color and another for the specular color. We assume that the two
maps use the same texture-mapping coordinates.

/ / I n t e r p o l a t e d i n p u t s from the v e r t e x shader .
s t r u c t I npu t {

f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps
f l o a t 3 normal : TEXCOORD1 ; / / v e r t e x normal i n model space
f l o a t 3 modelPos : TEXCOORD2 ; / / model space p o s i t i o n ( f o r l i g h t i n g )

} ;

/ / A g l o b a l cons tan t RGB and opac i t y
uniform f l o a t 4 cons tan tCo lo r ;

/ / Omni l i g h t p o s i t i on , i n MODEL space ,
uniform f l o a t 3 omniPos ;

/ / Rec ip roca l o f omni l i g h t r a d i u s . ( The l i g h t w i l l f a l l o f f
/ / l i n e a r l y to zero a t t h i s r a d i u s ) . Note t h a t i t ’ s common to tuck
/ / t h i s i n t o the w component o f the p os i t i o n , to reduce the number o f
/ / cons tan t s , s i nce each cons tan t u s u a l l y t ake s a f u l l 4D vec to r s l o t .
uniform f l o a t invOmniRad ;
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/ / Unattenuated omni l i g h t co lo r
uniform f l o a t 3 omniColor ;

/ / View p os i t i on , i n MODEL space
uniform f l o a t 3 viewPos ;

/ / Constant ambient l i g h t co lo r
uniform f l o a t 3 ambien tL igh tColor ;

/ / M a t e r i a l g l o s s i n e s s ( phong exponent )
uniform f l o a t specExponent ;

/ / D i f f u s e and specu l a r map samplers . Note we assume t h a t d i f f u s e
/ / and spec maps use the same UV coords
sampler2D di f fuseMap ;
sampler2D specularMap ;

/ / P i x e l shader body
f l o a t 4 main ( Inpu t inpu t ) : COLOR {

/ / Fetch the t e x e l s to ge t the m a t e r i a l c o l o r s
f l o a t 4 matDi f f = tex2D ( di f fuseMap , inpu t . uv ) ;
f l o a t 4 matSpec = tex2D ( specularMap , inpu t . uv ) ;

/ / Normalize i n t e r p o l a t e d v e r t e x normal
f l o a t 3 N = normalize ( i npu t . normal ) ;

/ / Compute vec to r to l i g h t
f l o a t 3 L = omniPos − i npu t . modelPos ;

/ / Normalize i t , and save o f f d i s t ance to use l a t e r
/ / f o r a t t e n u a t i o n
f l o a t d i s t = l eng th ( L ) ;
L /= d i s t ;

/ / Compute view vec to r and hal fway vec to r
f l o a t 3 V = normalize ( viewPos − i npu t . modelPos ) ;
f l o a t 3 H = normalize (V + L ) ;

/ / Compute a t t enua ted l i g h t co lo r .
f l o a t 3 l i g h t C o l o r = omniColor ∗ max (1 − d i s t ∗invOmniRad , 0 ) ;

/ / Compute d i f f u s e and specu l a r f a c t o r s
f l o a t d i f f F a c t o r = max ( dot (N, L ) , 0 ) ;
f l o a t specFac to r = pow ( max ( dot (N,H) , 0 ) , specExponent ) ;

/ / Compute e f f e c t i v e l i g h t c o l o r s
f l o a t 3 d i f f C o l o r = l i g h t C o l o r∗ d i f f F a c t o r + ambien tL igh tColor ;
f l o a t 3 specColor = l i g h t C o l o r∗ specFac to r ;

/ / Sum up c o l o r s . Note t h a t HLSL has a very f l e x i b l e s w i z z l i n g system
/ / which a l lows us to access a po r t i on o f a vec to r as i f were a
/ / ”member” o f the vec to r
f l o a t 4 r e s u l t = matDi f f ; / / RGB and opac i t y from d i f f u s e map
r e s u l t . rgb ∗= d i f f C o l o r ; / / modulate by d i f f u s e +ambient l i g h t i n g
r e s u l t . rgb += matSpec . rgb∗specColor ; / / add spec , i g n o r i n g map alpha

/ / Modulate i t by the cons tan t and output
re turn r e s u l t ∗cons tan tCo lo r ;

}

Listing 10.14
Pixel shader for perpixel lighting of a single omni plus ambient
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Of course, several of the values needed in this calculation could be com-
puted in the vertex shader, and we could use the interpolated results in the
pixel shader. This is usually a performance win because we assume that
most of our triangles fill more than a pixel or two, so that number of pixels
to fill is significantly more than the number of vertices to shade. However,
a precise analysis can be complicated because the number of vertices and
pixels is not the only factor; the number of execution units available for
vertex and pixel shading is also important. Furthermore, on some hard-
ware, a pool of generic execution units are shared between vertex and pixel
shading. There can also be performance implications for increasing the
number of interpolated values. Still, dividing up the labor to do more cal-
culations per vertex is a speedup on most platforms and in most situations.
Listings 10.15 and 10.16 show one way we could shift work up to the vertex
shader.

/ / Mesh i n p u t s .
s t r u c t I npu t {

f l o a t 4 pos : POSITION ; / / p o s i t i o n in model space
f l o a t 3 normal : NORMAL; / / v e r t e x normal i n model space
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps

} ;

/ / Ve r t e x shader output
s t r u c t Output {

f l o a t 4 c l i pPos : POSITION ; / / c l i p−space p o s i t i o n
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps
f l o a t 3 normal : TEXCOORD1 ; / / v e r t e x normal i n model space
f l o a t 3 L : TEXCOORD2 ; / / vec to r to l i g h t
f l o a t 3 H : TEXCOORD3 ; / / hal fway vec to r
f l o a t 3 l i g h t C o l o r : TEXCOORD4 ; / / l i g h t co lo r + a t t e n u a t i o n f a c t o r

} ;

/ / Model−>c l i p t r an s fo rm mat r i x .
uniform f loa t4x4 modelToClip ;

/ / Omni l i g h t p o s i t i on , i n MODEL space ,
uniform f l o a t 3 omniPos ;

/ / Rec ip roca l o f omni l i g h t r a d i u s . ( The l i g h t w i l l f a l l o f f
/ / l i n e a r l y to zero a t t h i s r a d i u s ) . Note t h a t i t ’ s common to tuck
/ / t h i s i n t o the w component o f the p os i t i o n , to reduce the number o f
/ / cons tan t s , s i nce each cons tan t u s u a l l y t ake s a f u l l 4D vec to r s l o t .
uniform f l o a t invOmniRad ;

/ / Unattenuated omni l i g h t co lo r
uniform f l o a t 3 omniColor ;

/ / View p os i t i on , i n MODEL space
uniform f l o a t 3 viewPos ;

/ / The body of our v e r t e x shader
Output main ( Inpu t inpu t ) {

Output output ;

/ / Transform v e r t e x p o s i t i o n to c l i p space .
output . c l i pPos = mul ( i npu t . pos , modelToClip ) ;
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/ / Compute vec to r to l i g h t
f l o a t 3 L = omniPos − i npu t . pos ;

/ / Normalize i t , and save o f f d i s t ance to use l a t e r
/ / f o r a t t e n u a t i o n
f l o a t d i s t = l eng th ( L ) ;
ou tput . L = L / d i s t ;

/ / Compute view and hal fway vec to r .
f l o a t 3 V = normalize ( viewPos − i npu t . pos ) ;
ou tput .H = normalize (V + output . L ) ;

/ / Compute a t t e n u a t i o n f a c t o r . Note t h a t we do NOT clamp
/ / to zero here , we w i l l do t h a t i n the p i x e l shader . Th i s
/ / i s impor tan t i n case the f a l l o f f reaches zero in the middle
/ / o f a l a r g e polygon .
f l o a t a t t e n F a c t o r = 1 − d i s t ∗invOmniRad ;
output . l i g h t C o l o r = omniColor ∗ a t t e n F a c t o r ;

/ / Pass through o the r v e r t e x i n p u t s wi thout m o d i f i c a t i o n
output . normal = inpu t . normal ;
output . uv = inpu t . uv ;

re turn output ;
}

Listing 10.15
Alternate vertex shader for perpixel lighting of a single omni plus ambient

Now the pixel shader has less work to do. According to the DirectX 10
FXC compiler, the pixel shader in Listing 10.16 compiles to approximately
25 instruction slots, compared to 33 instruction slots for Listing 10.14.

/ / I n t e r p o l a t e d i n p u t s from the v e r t e x shader .
s t r u c t I npu t {

f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps
f l o a t 3 normal : TEXCOORD1 ; / / v e r t e x normal i n model space
f l o a t 3 L : TEXCOORD2 ; / / vec to r to l i g h t
f l o a t 3 H : TEXCOORD3 ; / / hal fway vec to r
f l o a t 3 l i g h t C o l o r : TEXCOORD4 ; / / l i g h t co lo r + a t t e n u a t i o n f a c t o r

} ;

/ / A g l o b a l cons tan t RGB and opac i t y
uniform f l o a t 4 cons tan tCo lo r ;

/ / Constant ambient l i g h t co lo r
uniform f l o a t 3 ambien tL igh tColor ;

/ / M a t e r i a l g l o s s i n e s s ( phong exponent )
uniform f l o a t specExponent ;

/ / D i f f u s e and specu l a r map samplers . Note we assume t h a t d i f f u s e
/ / and spec maps use the same UV coords
sampler2D di f fuseMap ;
sampler2D specularMap ;

/ / P i x e l shader body
f l o a t 4 main ( Inpu t inpu t ) : COLOR {

/ / Fetch the t e x e l s to ge t the m a t e r i a l c o l o r s
f l o a t 4 matDi f f = tex2D ( di f fuseMap , inpu t . uv ) ;
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f l o a t 4 matSpec = tex2D ( specularMap , inpu t . uv ) ;

/ / Normalize i n t e r p o l a t e d v e c t o r s
f l o a t 3 N = normalize ( i npu t . normal ) ;
f l o a t 3 L = normalize ( i npu t . L ) ;
f l o a t 3 H = normalize ( i npu t .H ) ;

/ / Compute d i f f u s e and specu l a r f a c t o r s
f l o a t d i f f F a c t o r = max ( dot (N, L ) , 0 ) ;
f l o a t specFac to r = pow ( max ( dot (N,H) , 0 ) , specExponent ) ;

/ / Clamp the l i g h t co lor , ( Note t h a t t h i s max i s app l i ed
/ / component−wize )
f l o a t 3 l i g h t C o l o r = max ( i npu t . l i g h t C o l o r , 0 ) ;

/ / Compute e f f e c t i v e l i g h t c o l o r s
f l o a t 3 d i f f C o l o r = l i g h t C o l o r∗ d i f f F a c t o r + ambien tL igh tColor ;
f l o a t 3 specColor = l i g h t C o l o r∗ specFac to r ;

/ / Sum up c o l o r s . Note t h a t HLSL has a very f l e x i b l e s w i z z l i n g system
/ / which a l lows us to access a po r t i on o f a vec to r as i f were a
/ / ”member” o f the vec to r
f l o a t 4 r e s u l t = matDi f f ; / / RGB and opac i t y from d i f f u s e map
r e s u l t . rgb ∗= d i f f C o l o r ; / / modulate by d i f f u s e +ambient l i g h t i n g
r e s u l t . rgb += matSpec . rgb∗specColor ; / / add spec , i g n o r i n g map alpha

/ / Modulate i t by the cons tan t and output
re turn r e s u l t ∗cons tan tCo lo r ;

}

Listing 10.16
Alternate pixel shader for perpixel lighting of a single omni plus ambient

Finally, we present one last variation on this example. Notice that in
the previous pixel shader, Listing 10.16, the code does not assume that the
lighting is taking place in any particular coordinate space. We have been
performing the lighting calculations in model space, but it is also common
to do it in camera space. The advantage is that we do not need to resend
shader constants for lighting data for each object that is rendered, as we do
when those values are specified in modeling space (which will vary for each
object). Listing 10.17 is a vertex shader that illustrates this technique.

/ / Mesh i n p u t s .
s t r u c t I npu t {

f l o a t 4 pos : POSITION ; / / p o s i t i o n in model space
f l o a t 3 normal : NORMAL; / / v e r t e x normal i n model space
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps

} ;

/ / Ve r t e x shader output
s t r u c t Output {

f l o a t 4 c l i pPos : POSITION ; / / c l i p−space p o s i t i o n
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps
f l o a t 3 normal : TEXCOORD1 ; / / v e r t e x normal i n camera space
f l o a t 3 L : TEXCOORD2 ; / / vec to r to l i g h t i n camera space
f l o a t 3 H : TEXCOORD3 ; / / hal fway vec to r i n camera space
f l o a t 3 l i g h t C o l o r : TEXCOORD4 ; / / l i g h t co lo r + a t t e n u a t i o n f a c t o r

} ;
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/ / Model−>view t rans fo rm mat r i x . ( The ”modelview” ma t r i x )
uniform f loa t4x4 modelToView ;

/ / C l i p ma t r i x . ( The ” p r o j e c t i o n ” ma t r i x ) .
uniform f loa t4x4 viewToClip ;

/ / Omni l i g h t p o s i t i on , i n VIEW space , and r e c i p r o c a l o f
/ / f a l l o f f i n the w component
uniform f l o a t 4 omniPosAndInvRad ;

/ / Unattenuated omni l i g h t co lo r
uniform f l o a t 3 omniColor ;

/ / The body of our v e r t e x shader
Output main ( Inpu t inpu t ) {

Output output ;

/ / Transform v e r t e x p o s i t i o n to view space .
f l o a t 4 vPos = mul ( i npu t . pos , modelToView ) ;

/ / And i n t o c l i p space . Note t h a t the c l i p ma t r i x
/ / o f t en has a s imple s t r u c t u r e which can be e x p l o i t e d
/ / and the number o f vec to r ope ra t i on s can be reduced .
output . c l i pPos = mul ( vPos , viewToClip ) ;

/ / Transform normal to camera space . We ”promote” the normal
/ / to f l o a t 4 by s e t t i n g w to 0 , so i t w i l l r e c e i v e any t r a n s l a t i o n
output . normal = mul ( f l o a t 4 ( i npu t . normal , 0 ) , modelToView ) ;

/ / Compute vec to r to l i g h t
f l o a t 3 L = omniPosAndInvRad . xyz − vPos ;

/ / Normalize i t , and save o f f d i s t ance to use l a t e r
/ / f o r a t t e n u a t i o n
f l o a t d i s t = l eng th ( L ) ;
ou tput . L = L / d i s t ;

/ / Compute view and hal fway vec to r .
/ / Note t h a t the view p o s i t i o n i s the o r i g i n ,
/ / i n view space , by d e f i n i t i o n
f l o a t 3 V = normalize (−vPos ) ;
ou tput .H = normalize (V + output . L ) ;

/ / Compute a t t e n u a t i o n f a c t o r . Note t h a t we do NOT clamp
/ / to zero here , we w i l l do t h a t i n the p i x e l shader . Th i s
/ / i s impor tan t i n case the f a l l o f f reaches zero in the middle
/ / o f a l a r g e polygon .
f l o a t a t t e n F a c t o r = 1 − d i s t ∗omniPosAndInvRad .w;
output . l i g h t C o l o r = omniColor ∗ a t t e n F a c t o r ;

/ / Pass through UV’ s wi thout m o d i f i c a t i o n
output . uv = inpu t . uv ;

re turn output ;
}

Listing 10.17
Vertex shader for perpixel lighting of a single omni plus ambient, calculated in camera space

World space (“upright space”) is an attractive option for lighting calcu-
lations in many circumstances because shadow cube maps or lighting probes
are usually rendered in this orientation; it also has the advantage that we
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do not need to resend lighting-related shader constants due to change of
the model reference frame for each object.

10.11.3 Gouraud Shading

Even modest modern hardware has plenty of beef for Phong shading; in-
deed, the previous examples are relatively cheap shaders. However, it’s very
instructive to consider how to implement Gouraud shading. Even though
the results are inferior to Phong shading, and Gouraud shading precludes
bump mapping, Gouraud shading can still be useful on the PC to emulate
the results of other hardware.

Listing 10.18 is a vertex shader that performs the same lighting calcu-
lations as just demonstrated in Section 10.11.2, only they are done at the
vertex level. Compare this shader code to Equation (10.15).

/ / Mesh i n p u t s .
s t r u c t I npu t {

f l o a t 4 pos : POSITION ; / / p o s i t i o n in model space
f l o a t 3 normal : NORMAL; / / v e r t e x normal i n model space
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps

} ;

/ / Ve r t e x shader output
s t r u c t Output {

f l o a t 4 c l i pPos : POSITION ; / / c l i p−space p o s i t i o n
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps
f l o a t 3 d i f f C o l o r : TEXCOORD1 ; / / d i f f u s e l i g h t i n g RGB
f l o a t 3 specColor : TEXCOORD2 ; / / specu l a r l i g h t i n g RGB

} ;

/ / Model−>c l i p t r an s fo rm mat r i x .
uniform f loa t4x4 modelToClip ;

/ / Omni l i g h t p o s i t i on , i n MODEL space , and r e c i p r o c a l o f
/ / f a l l o f f i n the w component
uniform f l o a t 4 omniPosAndInvRad ;

/ / Unattenuated omni l i g h t co lo r
uniform f l o a t 3 omniColor ;

/ / Constant ambient l i g h t co lo r
uniform f l o a t 3 ambien tL igh tColor ;

/ / View p os i t i on , i n MODEL space
uniform f l o a t 3 viewPos ;

/ / M a t e r i a l g l o s s i n e s s ( phong exponent )
uniform f l o a t specExponent ;

/ / The body of our v e r t e x shader
Output main ( Inpu t inpu t ) {

Output output ;

/ / Transform v e r t e x p o s i t i o n to c l i p space .
output . c l i pPos = mul ( i npu t . pos , modelToClip ) ;

/ / Compute vec to r to l i g h t
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f l o a t L = omniPosAndInvRad . xyz − i npu t . pos ;

/ / Normalize i t , and save o f f d i s t ance to use l a t e r
/ / f o r a t t e n u a t i o n
f l o a t d i s t = l eng th ( L ) ;
L /= d i s t ;

/ / Compute view and hal fway vec to r
f l o a t 3 V = normalize ( viewPos − i npu t . pos ) ;
f l o a t 3 H = normalize (V + L ) ;

/ / Compute a t t enua ted l i g h t co lo r .
f l o a t 3 l i g h t C o l o r = omniColor ∗ max (1 − d i s t ∗omniPosAndInvRad .w, 0 ) ;

/ / Compute d i f f u s e and specu l a r f a c t o r s
f l o a t d i f f F a c t o r = max ( dot ( i npu t . normal , L ) , 0 ) ;
f l o a t specFac to r = pow ( max ( dot ( i npu t . normal ,H) , 0 ) , specExponent ) ;

/ / Compute e f f e c t i v e l i g h t c o l o r s
output . d i f f C o l o r = l i g h t C o l o r∗ d i f f F a c t o r + ambien tL igh tColor ;
output . specColor = l i g h t C o l o r∗ specFac to r ;

/ / Pass through the supp l i ed UV coo rd ina te s wi thout m o d i f i c a t i o n
output . uv = inpu t . uv ;

re turn output ;
}

Listing 10.18
Vertex shader for Gouraud shading of a single omni plus ambient

Now the pixel shader (Listing 10.19) simply takes the lighting results
and modulates by the material diffuse and specular colors, from the texture
maps.

/ / I n t e r p o l a t e d i n p u t s from the v e r t e x shader .
s t r u c t I npu t {

f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps
f l o a t 3 d i f f C o l o r : TEXCOORD1 ; / / d i f f u s e l i g h t i n g RGB
f l o a t 3 specColor : TEXCOORD2 ; / / specu l a r l i g h t i n g RGB

} ;

/ / A g l o b a l cons tan t RGB and opac i t y
uniform f l o a t 4 cons tan tCo lo r ;

/ / D i f f u s e and specu l a r map samplers . Note t h a t we assume t h a t d i f f u s e
/ / and spec maps are mapped the same , and so they use the same UV coords
sampler2D di f fuseMap ;
sampler2D specularMap ;

/ / P i x e l shader body
f l o a t 4 main ( Inpu t inpu t ) : COLOR {

/ / Fetch the t e x e l s to ge t the m a t e r i a l c o l o r s
f l o a t 4 m a t e r i a l D i f f = tex2D ( di f fuseMap , inpu t . uv ) ;
f l o a t 4 mate r i a lSpec = tex2D ( specularMap , inpu t . uv ) ;

/ / Sum up c o l o r s . Note t h a t HLSL has a very f l e x i b l e s w i z z l i n g system
/ / which a l lows us to access a po r t i on o f a vec to r as i f were a
/ / ”member” o f the vec to r
f l o a t 4 r e s u l t = m a t e r i a l D i f f ; / / RGB ∗and∗ opac i t y from d i f f u s e map
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r e s u l t . rgb ∗= inpu t . d i f f C o l o r ; / / modulate by d i f f u s e +ambient l i g h t i n g
r e s u l t . rgb +=

mate r i a lSpec . rgb∗ i npu t . specColor ; / / add spec , i gno re map alpha

/ / Modulate i t by the cons tan t and output
re turn r e s u l t ∗cons tan tCo lo r ;

}

Listing 10.19
Pixel shader for Gouraud shading for any lighting environment

As the caption for Listing 10.19 indicates, this pixel shader does not
depend on the number of lights, or even the lighting model, since all lighting
calculations are done in the vertex shader. Listing 10.20 shows a vertex
shader that could be used with this same pixel shader, but it implements a
different lighting environment: ambient plus three directional lights. This
is a very useful lighting environment in editors and tools, since it’s easy to
create one lighting rig that works decently well for practically any object
(although we would usually use it with per-pixel shading).

/ / Mesh i n p u t s .
s t r u c t I npu t {

f l o a t 4 pos : POSITION ; / / p o s i t i o n in model space
f l o a t 3 normal : NORMAL; / / v e r t e x normal i n model space
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps

} ;

/ / Ve r t e x shader output
s t r u c t Output {

f l o a t 4 c l i pPos : POSITION ; / / c l i p−space p o s i t i o n
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps
f l o a t 3 d i f f C o l o r : TEXCOORD1 ; / / d i f f u s e l i g h t i n g RGB
f l o a t 3 specColor : TEXCOORD2 ; / / specu l a r l i g h t i n g RGB

} ;

/ / Model−>c l i p t r an s fo rm mat r i x .
uniform f loa t4x4 modelToClip ;

/ / Three l i g h t d i r e c t i o n s ( i n MODEL space ) . These po in t
/ / i n the oppos i te d i r e c t i o n t h a t the l i g h t i s s h i n i n g .
uniform f l o a t 3 l i g h t D i r [ 3 ] ;

/ / Three l i g h t RGB c o l o r s
uniform f l o a t 3 l i g h t C o l o r [ 3 ] ;

/ / Constant ambient l i g h t co lo r
uniform f l o a t 3 ambien tL igh tColor ;

/ / View p os i t i on , i n MODEL space
uniform f l o a t 3 viewPos ;

/ / M a t e r i a l g l o s s i n e s s ( phong exponent )
uniform f l o a t specExponent ;

/ / The body of our v e r t e x shader
Output main ( Inpu t inpu t ) {

Output output ;

/ / Transform v e r t e x p o s i t i o n to c l i p space .
output . c l i pPos = mul ( i npu t . pos , modelToClip ) ;
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/ / Compute the V vec to r
f l o a t 3 V = normalize ( viewPos − i npu t . pos ) ;

/ / C lea r accumulators .
output . d i f f C o l o r = ambien tL igh tColor ;
output . specColor = 0 ;

/ / Sum up l i g h t s . Note t h a t the compi le r i s ∗u s u a l l y∗ p r e t t y
/ / good a t u n r o l l i n g sma l l loops l i k e t h i s , but to ensure
/ / the f a s t e s t code , i t ’ s bes t not to depend on the compi ler ,
/ / and u n r o l l the loop y o u r s e l f
f o r ( i n t i = 0 ; i < 3 ; ++ i ) {

/ / Compute lamber t term and sum d i f f u s e c o n t r i b
f l o a t nDotL = dot ( i npu t . normal , l i g h t D i r [ i ] ) ;
ou tput . d i f f C o l o r += max ( nDotL , 0 ) ∗ l i g h t C o l o r [ i ] ;

/ / Compute hal fway vec to r
f l o a t 3 H = normalize (V + l i g h t D i r [ i ] ) ;

/ / Sum specu l a r c o n t r i b
f l o a t nDotH = dot ( i npu t . normal ,H) ;
f l o a t s = pow ( max ( nDotH , 0 ) , specExponent ) ;
ou tput . specColor += s∗ l i g h t C o l o r [ i ] ;

}

/ / Pass through the supp l i ed UV coo rd ina te s wi thout m o d i f i c a t i o n
output . uv = inpu t . uv ;

re turn output ;
}

Listing 10.20
Vertex shader for Gouraud shading, using constant ambient plus three directional lights

10.11.4 Bump Mapping

Next, let’s look at an example of normal mapping. We will be performing
the lighting in tangent space, and we’ll stick with the lighting environment
of a single omni light plus constant ambient to make the examples easier to
compare. In the vertex shader (Listing 10.21), we synthesize the binormal
from the normal and tangent. Then, we use the three basis vectors to rotate
L and H into tangent space, after first computing them as usual in model
space. Notice the use of the three dot products, which is equivalent to mul-
tiplication by the transpose of the matrix. We also perform the attenuation
calculations in the vertex shader, passing the unclamped attenuated light
color, as we have done in previous examples.

/ / Mesh i n p u t s .
s t r u c t I npu t {

f l o a t 4 pos : POSITION ; / / p o s i t i o n in model space
f l o a t 3 normal : NORMAL; / / v e r t e x normal i n model space
f l o a t 4 tangentDet : TANGENT ; / / tangen t i n model space , det i n w
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps

} ;
/ / Ve r t e x shader output
s t r u c t Output {

f l o a t 4 c l i pPos : POSITION ; / / c l i p−space p o s i t i o n
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f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r a l l maps
f l o a t 3 L : TEXCOORD1 ; / / vec to r to l i g h t , i n TANGENT space
f l o a t 3 H : TEXCOORD2 ; / / hal fway vector , i n TANGENT space
f l o a t 3 l i g h t C o l o r : TEXCOORD3 ; / / l i g h t co lo r & a t t e n u a t i o n f a c t o r

} ;

/ / Model−>c l i p t r an s fo rm mat r i x .
uniform f loa t4x4 modelToClip ;

/ / Omni l i g h t p o s i t i on , i n MODEL space , and r e c i p r o c a l o f
/ / f a l l o f f i n the w component
uniform f l o a t 4 omniPosAndInvRad ;

/ / Unattenuated omni l i g h t co lo r
uniform f l o a t 3 omniColor ;

/ / View p os i t i on , i n MODEL space
uniform f l o a t 3 viewPos ;

/ / The body of our v e r t e x shader
Output main ( Inpu t inpu t ) {

Output output ;

/ / Transform v e r t e x p o s i t i o n to c l i p space .
output . c l i pPos = mul ( i npu t . pos , modelToClip ) ;

/ / Compute vec to r to l i g h t ( i n model space )
f l o a t 3 L model = omniPosAndInvRad . xyz − i npu t . pos . xyz ;

/ / Normalize i t , and save o f f d i s t ance to use l a t e r
/ / f o r a t t e n u a t i o n
f l o a t d i s t = l eng th ( L model ) ;
f l o a t 3 L model norm = L model / d i s t ;

/ / Compute view and hal fway vec to r
f l o a t 3 V model = normalize ( viewPos − i npu t . pos ) ;
f l o a t 3 H model = normalize ( V model + L model norm ) ;

/ / Recons t ruc t the t h i r d b a s i s vec to r
f l o a t 3 binormal =

cros s ( i npu t . normal , inpu t . tangentDet . xyz ) ∗ i npu t . tangentDet .w;

/ / Rota te l i g h t i n g−r e l a t e d v e c t o r s i n t o tangen t space
output . L . x = dot ( L model , inpu t . tangentDet . xyz ) ;
ou tput . L . y = dot ( L model , binormal ) ;
ou tput . L . z = dot ( L model , inpu t . normal ) ;

ou tput .H. x = dot ( H model , inpu t . tangentDet . xyz ) ;
ou tput .H. y = dot ( H model , binormal ) ;
ou tput .H. z = dot ( H model , inpu t . normal ) ;

/ / Compute UNCLAMPED co lo r + a t t e n u a t i o n f a c t o r .
f l o a t a t t e n F a c t o r = 1 − d i s t ∗omniPosAndInvRad .w;
output . l i g h t C o l o r = omniColor ∗ a t t e n F a c t o r ;

/ / Pass through mapping coords wi thout m o d i f i c a t i o n
output . uv = inpu t . uv ;

re turn output ;
}

Listing 10.21
Vertex shader for omni lighting of normal mapped object, with lighting done in tangent space
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The pixel shader (Listing 10.22) is quite compact, since most of the
prep work has been done in the vertex shader. We unpack the normal and
normalize the interpolated L and H vectors. Then we perform the Blinn-
Phong lighting equation, just as in the other examples.

/ / I n t e r p o l a t e d i n p u t s from the v e r t e x shader .
s t r u c t I npu t {

f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r a l l maps
f l o a t 3 L : TEXCOORD1 ; / / vec to r to l i g h t , i n TANGENT space
f l o a t 3 H : TEXCOORD2 ; / / hal fway vector , i n TANGENT space
f l o a t 3 l i g h t C o l o r : TEXCOORD3 ; / / l i g h t co lo r + and a t t e n u a t i o n f a c t o r

} ;

/ / A g l o b a l cons tan t RGB and opac i t y
uniform f l o a t 4 cons tan tCo lo r ;

/ / Constant ambient l i g h t co lo r
uniform f l o a t 3 ambien tL igh tColor ;

/ / M a t e r i a l g l o s s i n e s s ( phong exponent )
uniform f l o a t specExponent ;

/ / D i f f u se , spec , and normal map samplers
sampler2D di f fuseMap ;
sampler2D specularMap ;
sampler2D normalMap ;

/ / P i x e l shader body
f l o a t 4 main ( Inpu t inpu t ) : COLOR {

/ / Fetch the t e x e l s to ge t the m a t e r i a l c o l o r s
f l o a t 4 matDi f f = tex2D ( di f fuseMap , inpu t . uv ) ;
f l o a t 4 matSpec = tex2D ( specularMap , inpu t . uv ) ;

/ / Decode the tangent−space normal
f l o a t 3 N = tex2D ( normalMap , inpu t . uv ) . rgb ∗ 2 − 1;

/ / Normalize i n t e r p o l a t e d l i g h t i n g v e c t o r s
f l o a t 3 L = normalize ( i npu t . L ) ;
f l o a t 3 H = normalize ( i npu t .H ) ;

/ / Compute d i f f u s e and specu l a r f a c t o r s
f l o a t d i f f F a c t o r = max ( dot (N, L ) , 0 ) ;
f l o a t specFac to r = pow ( max ( dot (N,H) , 0 ) , specExponent ) ;

/ / Clamp the l i g h t co lo r and a t t e n u a t i o n
f l o a t 3 l i g h t C o l o r = max ( i npu t . l i g h t C o l o r , 0 ) ;

/ / Compute e f f e c t i v e l i g h t c o l o r s
f l o a t 3 d i f f C o l o r = l i g h t C o l o r∗ d i f f F a c t o r + ambien tL igh tColor ;
f l o a t 3 specColor = l i g h t C o l o r∗ specFac to r ;

/ / Sum up c o l o r s .
f l o a t 4 r e s u l t = matDi f f ; / / RGB & opac i t y from the d i f f u s e map
r e s u l t . rgb ∗= d i f f C o l o r ; / / modulate by d i f f u s e +ambient l i g h t i n g
r e s u l t . rgb += matSpec . rgb∗specColor ; / / add spec , i gno re map alpha

/ / Modulate i t by the cons tan t and output
re turn r e s u l t ∗cons tan tCo lo r ;

}

Listing 10.22
Pixel shader for omni lighting of normal mapped object, with lighting done in tangent space
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10.11.5 Skinned Mesh

Now for some examples of skeletal rendering. All of the skinning happens in
the vertex shaders, and so we will not need to show any pixel shaders here;
the vertex shaders here can be used with the pixel shaders given previously.
This is not unusual: skinned and unskinned geometry can usually share the
same pixel shader. We give two examples. The first example (Listing 10.23)
illustrates per-pixel lighting of our omni + ambient lighting rig. We will do
all the lighting in the pixel shader (Listing 10.14), so that we can focus on
the skinning, which is what is new.

/ / Mesh i n p u t s .
s t r u c t I npu t {

f l o a t 4 pos : POSITION ; / / model space p o s i t i o n ( b ind ing pose )
f l o a t 3 normal : NORMAL; / / model space v e r t e x normal ( d i t t o )
byte4 bones : BLENDINDICES ; / / Bone i n d i c e s . Unused e n t r i e s are 0
f l o a t 4 weight : BLENDWEIGHT ; / / Blend weights . Unused e n t r i e s are 0
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps

} ;

/ / Ve r t e x shader output .
s t r u c t Output {

f l o a t 4 c l i pPos : POSITION ; / / c l i p−space p o s i t i o n ( f o r r a s t e r i z a t i o n )
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f u s e , spec maps
f l o a t 3 normal : TEXCOORD1 ; / / v e r t e x normal i n model space
f l o a t 3 modelPos : TEXCOORD2 ; / / p o s i t i o n in model space ( f o r l i g h t i n g )

} ;

/ / Model−>c l i p t r an s fo rm mat r i x .
uniform f loa t4x4 modelToClip ;

/ / Declare an a r b i t r a r y max number o f bones .
#def ine MAX BONES 40

/ / Array o f ‘ ‘ b ind ing pose −> cur ren t ’ ’ pose ma t r i ce s f o r each bone .
/ / These are 4x3 mat r ices , which we i t e r p r e t as 4x4 ma t r i ce s with the
/ / r i g h t m o s t column assumed to be [ 0 , 0 , 0 , 1 ] . Note we are assuming
/ / t h a t column major i s the d e f a u l t s t o r a g e −−− meaning each column
/ / i s s t o r ed in a 4D r e g i s t e r . Thus each ma t r i x t ake s 3 r e g i s t e r s .
uniform f loa t4x3 boneMatrix [MAX BONES ] ;

/ / The body of our v e r t e x shader
Output main ( Inpu t inpu t ) {

Output output ;

/ / Generate a blended ma t r i x . Not ice t h a t we always blend 4 bones ,
/ / even though most v e r t i c e s w i l l use fewer bones . Whether i t s
/ / f a s t e r to use c o n d i t i o n a l l o g i c to t r y to bypass t h i s e x t r a l og i c ,
/ / or i f i t ’ s b e t t e r to j u s t to a l l o f c a l c u l a t i o n s ( which can be
/ / e a s i l y scheduled by the assembler to hide any i n s t r u c t i o n
/ / l a t ency ) w i l l depend on the hardware .
f l oa t4x3 blendedMat =
boneMatrix [ inpu t . bones . x ]∗ i npu t . weight . x

+ boneMatrix [ inpu t . bones . y ]∗ i npu t . weight . y
+ boneMatrix [ inpu t . bones . z ]∗ i npu t . weight . z
+ boneMatrix [ inpu t . bones .w]∗ i npu t . weight .w;

/ / Perform s k i n n i n g to t r an s fo rm p o s i t i o n and normal
/ / from t h e i r b ind ing pose p o s i t i o n i n t o the p o s i t i o n
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/ / f o r the c u r r e n t pose . Note the ma t r i x m u l t i p l i c a t i o n
/ / [1 x3 ] = [1 x4 ] x [4 x3 ]
output . modelPos = mul ( i npu t . pos , blendedMat ) ;
ou tput . normal = mul ( f l o a t 4 ( i npu t . normal , 0 ) , blendedMat ) ;
ou tput . normal = normalize ( ou tput . normal ) ;

/ / Transform v e r t e x p o s i t i o n to c l i p space .
output . c l i pPos = mul ( f l o a t 4 ( ou tput . modelPos , 1 ) , modelToClip ) ;

/ / Pass through UVs
output . uv = inpu t . uv ;

re turn output ;
}

Listing 10.23
Vertex shader for skinned geometry

We have declared the vertices as an array of vertex shader constants, and
sending all these matrices to the hardware can be a significant performance
bottleneck. On certain platforms there are more efficient ways of doing this,
such as indexing into an auxiliary “vertex” stream.

Next, let’s show how to use normal mapping on a skinned mesh. The
vertex shader in Listing 10.24 could be used with the pixel shader in List-
ing 10.22.

/ / Mesh i n p u t s .
s t r u c t I npu t {

f l o a t 4 pos : POSITION ; / / model space posn ( b ind ing pose )
f l o a t 3 normal : NORMAL; / / v e r t e x normal i n model space
f l o a t 4 tangentDet : TANGENT ; / / model space tangent , det i n w
byte4 bones : BLENDINDICES ; / / Bone i n d i c e s . Unused e n t r i e s 0
f l o a t 4 weight : BLENDWEIGHT ; / / Blend weights . Unused e n t r i e s 0
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r d i f f , spec maps

} ;

/ / Ve r t e x shader output
s t r u c t Output {

f l o a t 4 pos : POSITION ; / / c l i p−space p o s i t i o n
f l o a t 2 uv : TEXCOORD0 ; / / t e x t u r e coords f o r a l l maps
f l o a t 3 L : TEXCOORD1 ; / / vec to r to l i g h t , i n TANGENT space
f l o a t 3 H : TEXCOORD2 ; / / hal fway vector , i n TANGENT space
f l o a t 3 l i g h t C o l o r : TEXCOORD3 ; / / l i g h t co lo r + and a t t e n u a t i o n f a c t o r

} ;

/ / Model−>c l i p t r an s fo rm mat r i x .
uniform f loa t4x4 modelToClip ;

/ / Array o f ‘ ‘ b ind ing pose −> cur ren t ’ ’ pose ma t r i ce s f o r each bone .
#def ine MAX BONES 40
uniform f loa t4x3 boneMatrix [MAX BONES ] ;

/ / Omni l i g h t p o s i t i on , i n MODEL space , and r e c i p r o c a l o f
/ / f a l l o f f i n the w component
uniform f l o a t 4 omniPosAndInvRad ;

/ / Unattenuated omni l i g h t co lo r
uniform f l o a t 3 omniColor ;
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/ / View p os i t i on , i n MODEL space
uniform f l o a t 3 viewPos ;

/ / The body of our v e r t e x shader
Output main ( Inpu t inpu t ) {

Output output ;

/ / Generate a blended ma t r i x .
f l oa t4x3 blendedMat =

boneMatrix [ inpu t . bones . x ]∗ i npu t . weight . x
+ boneMatrix [ inpu t . bones . y ]∗ i npu t . weight . y
+ boneMatrix [ inpu t . bones . z ]∗ i npu t . weight . z
+ boneMatrix [ inpu t . bones .w]∗ i npu t . weight .w;

/ / Perform s k i n n i n g to ge t va lue s in model space ,
/ / i n the c u r r e n t pose
f l o a t 3 pos = mul ( i npu t . pos , blendedMat ) ;
f l o a t 3 normal = normalize ( mul ( f l o a t 4 ( i npu t . normal , 0 ) , blendedMat ) ) ;
f l o a t 3 t angen t =

normalize ( mul ( f l o a t 4 ( i npu t . tangentDet . xyz , 0 ) , blendedMat ) ) ;

/ / Transform v e r t e x p o s i t i o n to c l i p space .
output . pos = mul ( f l o a t 4 ( pos , 1 ) , modelToClip ) ;

/ / Compute vec to r to l i g h t ( i n model space )
f l o a t 3 L model = omniPosAndInvRad . xyz − pos ;

/ / Normalize i t , and save o f f d i s t ance to use l a t e r
/ / f o r a t t e n u a t i o n
f l o a t d i s t = l eng th ( L model ) ;
f l o a t 3 L model norm = L model / d i s t ;

/ / Compute view and hal fway vec to r
f l o a t 3 V model = normalize ( viewPos − pos ) ;
f l o a t 3 H model = normalize ( V model + L model norm ) ;

/ / Recons t ruc t the t h i r d b a s i s vec to r
f l o a t 3 binormal = cros s ( normal , t angen t ) ∗ i npu t . tangentDet .w;

/ / Rota te l i g h t i n g−r e l a t e d v e c t o r s i n t o tangen t space
output . L . x = dot ( L model , t angen t ) ;
ou tput . L . y = dot ( L model , binormal ) ;
ou tput . L . z = dot ( L model , normal ) ;

ou tput .H. x = dot ( H model , t angen t ) ;
ou tput .H. y = dot ( H model , binormal ) ;
ou tput .H. z = dot ( H model , normal ) ;

/ / Compute UNCLAMPED co lo r + a t t e n u a t i o n f a c t o r .
f l o a t a t t e n F a c t o r = 1 − d i s t ∗omniPosAndInvRad .w;
output . l i g h t C o l o r = omniColor ∗ a t t e n F a c t o r ;

/ / Pass through mapping coords wi thout m o d i f i c a t i o n
output . uv = inpu t . uv ;

re turn output ;
}

Listing 10.24
Vertex shader for skinned, normalmapped geometry
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10.12 Further Reading

A student seeking a good background in graphics is encouraged to divide his
or her reading across the spectrum, from “ivory tower” theoretical principles
at one end, to “here is some source code that runs on a particular platform
and probably will be obsolete in 5 years” on the other. We have made an
attempt here to select, from the large body of graphics literature, just a
few sources that are especially recommended.

Fundamentals of Computer Graphics [61] by Shirley provides a solid
introductory survey of the fundamentals. Written by one of the field’s
founding fathers, it is used as the first-year textbook for graphics courses at
many universities, and is our recommendation for those near the beginning
of their graphics education.

Glassner’s magnum opus Principles of Digital Image Synthesis [23] has
stood out among the theoretical works for its comprehensive scope and
continued relevance since it was first published in 1995. For a reader wishing
to learn “how graphics really works,” as we described at the start of this
chapter, this masterwork is required reading, even though it is inexplicably
underappreciated in the video game industry. Best of all, both volumes
have recently been made available in electronic form for free (legitimately).
You can find them on books.google.com. A consolidated, corrected PDF
should be available soon.

Phar and Humphreys’ Physically Based Rendering [53] is an excellent
way to learn the proper theoretical framework of graphics. Shorter and
more recent than Glassner’s, this text nonetheless provides a broad the-
oretical foundation of rendering principles. Although this is an excellent
book for theoretical purposes, a unique feature of the book is the source
code for a working raytracer that is woven throughout, illustrating how the
ideas can be implemented.

Real-Time Rendering [1], by Akenine-Möller et al., gives a very broad
survey of issues specific to real-time rendering, such as rendering hardware,
shader programs, and performance. This classic, in its third edition at the
time of this writing, is essential reading for any intermediate or advanced
student interested in real-time graphics.

The OpenGL [49] and DirectX [14] API documentations are certainly
important sources. Not only is such reference material necessary from a
practical standpoint, but a surprising amount of knowledge can be gained
just by browsing. Nearly a generation of OpenGL users have grown up on
the “red book” [50].

The subtleties related to radiometry and color spaces that we glossed
over are explained in more detail by Glassner [23] and also by Phar and
Humphreys [53]. Ashdown [3] and Poynton [55] have written papers that
are approachable and freely available.
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10.13 Exercises

(Answers on page 779.)

1. On the Nintendo Wii, a common frame buffer resolution is 640× 480. This
same frame buffer resolution is used for 4:3 and 16:9 televisions.

(a) What is the pixel aspect on a 4:3 television?

(b) What is the pixel aspect on a 16:9 television?

2. Continuing the previous exercise, assume we are making a split-screen co-
operative game, and we assign one player the left 320× 480, and the other
player the right 320× 480. We always want the horizontal field of view to
be 60o. Assume the system settings tell us that the console is connected to
a 4:3 television.

(a) What is the window aspect?

(b) What should the horizontal zoom value be?

(c) What should the vertical zoom value be?

(d) What is the resulting vertical field of view, in degrees?

Figure 10.43
Texture mapped quads for Exercise 4
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(e) Assume the near and far clip planes are 1.0 and 256.0. What is the
clip matrix, assuming all OpenGL conventions?

(f) What about the DirectX conventions?

3. Repeat parts (a)–(d) from Exercise 2, but assume a 16:9 television.

4. For each set of UV coordinates (a)–(f), match it with the corresponding
texture-mapped quad in Figure 10.43. The upper-left vertex is numbered
0, and the vertices are enumerated clockwise around the quad.

(a) 0 : (0.20,−0.30) 1 : (1.30,−0.30) 2 : (1.30, 1.20) 3 : (0.20, 1.20)

(b) 0 : (5.00,−1.00) 1 : (6.00,−1.00) 2 : (6.00, 0.00) 3 : (5.00, 0.00)

(c) 0 : (1.00, 0.00) 1 : (−0.23,−0.77) 2 : (0.00, 1.00) 3 : (1.24, 1.77)

(d) 0 : (2.00, 0.00) 1 : (1.00, 1.00) 2 : (0.00, 1.00) 3 : (1.00, 0.00)

(e) 0 : (−0.10, 1.10) 1 : (−0.10, 0.10) 2 : (0.90, 0.10) 3 : (0.90, 1.10)

(f) 0 : (0.00,−1.00) 1 : (3.35, 0.06) 2 : (1.00, 2.00) 3 : (−2.36, 0.94)

5. For each entry (a)–(j) in the table on the next page, match the Blinn-
Phong material diffuse color, specular color, and specular exponent with
the corresponding creepy floating head in Figure 10.44. There is a single
white omni light in the scene. Diffuse and specular colors are given as (red,
green, blue) triples.

Figure 10.44
Creepy floating heads for Exercise 5



478 10. Mathematical Topics from 3D Graphics

Diffuse Specular Specular
Color Color Exponent

(a) (210,40,50) (0,0,0) 1

(b) (65,55,200) (150,0,0) 16

(c) (65,55,200) (230,230,230) 2

(d) (50,50,100) (210,40,50) 4

(e) (65,55,200) (210,40,50) 2

(f) (65,55,200) (0,0,0) 64

(g) (0,0,0) (210,40,50) 1

(h) (210,40,50) (100,100,100) 64

(i) (210,40,50) (230,230,230) 2

(j) (210,40,50) (65,55,200) 2

6. How would the following normals be encoded in a 24-bit normal map with
the usual conventions?

(a) [−1.00, 0.00, 0.00] (b) [0.267,−0.535, 0.805]
(c) [0.00, 0.00, 1.00] (d) [0.00, 0.857, 0.514]

7. For each row (a)–(d) in the table below, decode the texel from the normal
map to obtain the tangent-space surface normal. Determine the binormal
from the vertex normal, tangent, and determinant. Then calculate the
model-space coordinates of the per-texel surface normal.

Normal map Vertex Vertex Determinant
texel RGB normal tangent (Mirror flag)

(a) (128,255,128) [0.408,−0.408,−0.816] [0.707,0.707,0.000] 1

(b) (106,155,250) [0.000, 1.000, 0.000] [1.000,0.000,0.000] -1

(c) (128,218,218) [1.000, 0.000, 0.000] [0.000,0.447,-0.894] 1

(d) (233,58,145) [0.154,−0.617, 0.772] [0.986,0.046,-0.161] -1

There are too many special effects in all these movies today.

— Steven Spielberg (1946–)



Chapter 11

Mechanics 1: Linear
Kinematics and Calculus

Always in motion is the future.

— Yoda in Star Wars Episode V: The Empire Strikes Back (1980)

“Ladies and gentlemen, may I direct your attention to the center ring.
Witness before you two ordinary textbooks, one labeled College Physics
and the other Calculus. Their combined 2,500+ pages weigh over 25 lbs.
Yet in this chapter and the next, your brave stunt-authors will attempt a
most death-defying and impossible spectacle of mysticism and subterfuge:
to reduce these two massive books into a mere 150 pages!”

Just like any good circus act, this one is prefaced with a lot of build
up to set your expectations. The difference here is that the purpose of our
preface is to lower your expectations.

11.1 Overview and Other ExpectationReducing
Remarks

OK, there’s no way we can really cover all of physics and calculus in two
chapters. As any politician knows, the secret to effectively communicate
complicated subject matter in a short amount of time is to use lies, both
the omission and commission kind. Let’s talk about each of these kinds of
lies in turn, so you will know what’s really in store.

11.1.1 What is Left Out?

Just about everything—let’s talk about what we are leaving out of physics
first. To put the word “physics” on this chapter would be even more of an
insult to people who do real physics than this chapter already is. We are
concerned only with mechanics, and very simple mechanics of rigid bodies

479
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at that. Some topics traditionally found in a first-year physics textbook
that are not discussed in this book include:

• energy and work

• temperature, heat transfer, thermodynamics, entropy

• electricity, magnetism, light

• gases, fluids, pressure

• oscillation and waves.

A note about energy and work is in order, because even in the limited
context of mechanics, the fundamental concept of energy plays a central
role in traditional presentations. Many problems are easier to solve by
using conservation of energy than by considering the forces and applying
Newton’s laws. (In fact, an alternative to the Newtonian dynamics that we
study in this book exists. It is known as Lagrangian dynamics and focuses
on energy rather than forces. When used properly, both systems produce
the same results, but Lagrangian dynamics can solve certain problems more
elegantly and is especially adept at handling friction, compared to Newto-
nian dynamics.) However, at the time of this writing, basic general purpose
digital simulations are based on Newtonian dynamics, and energy does not
play a direct role. That isn’t to say an understanding of energy is useless;
indeed disobedience of the conservation of energy law is at the heart of
many simulation problems! Thus, energy often arises more as a way to un-
derstand the (mis)behavior of a digital simulation, even if it doesn’t appear
in the simulation code directly.

Now let’s talk about the ways in which this book will irritate calculus
professors. We think that a basic understanding of calculus is really impor-
tant to fully grasp many of the concepts from physics. Conversely, physics
provides some of the best examples for explaining calculus. Calculus and
physics are often taught separately, usually with calculus coming first. It
is our opinion that this makes calculus harder to learn, since it robs the
student of the most intuitive examples—the physics problems for which
calculus was invented to solve! We hope interleaving calculus with physics
will make it easier for you to learn calculus.

Our calculus needs are extremely modest in this book, and we have left
out even more from calculus than we did from physics. After reading this
chapter, you should know:

• The basic idea of what a derivative measures and what it is used for.

• The basic idea of what an integral measures and what it is used for.
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• Derivatives and integrals of trivial expressions containing polynomials
and trig functions.

Of course, we are aware that a large number of readers may already have
this knowledge. Take a moment to put yourself into one of the following
categories:

1. I know absolutely nothing about derivatives or integrals.

2. I know the basic idea of derivatives and integrals, but probably couldn’t
solve any freshman calculus problems with a pencil and paper.

3. I have studied some calculus.

Level 2 knowledge of calculus is sufficient for this book, and our goal is
to move everybody who is currently in category 1 into category 2. If you’re
in category 3, our calculus discussions will be a (hopefully entertaining)
review. We have no delusions that we can move anyone who is not already
there into category 3.

11.1.2 Some Helpful Lies about Our Universe

The universe is commonly thought to be discrete in both space and time.
Not only is matter broken up into discrete chunks called atoms, but there
is evidence that the very fabric of space and time is broken up into discrete
pieces also. Now, there is a difference of opinion as to whether it’s really
that way or just appears that way because the only way we can interact
with space is to throw particles at it, but it’s our opinion that if it looks
like a duck, walks like a duck, quacks like a duck, has webbed feet and a
beak, then it’s a good working hypothesis that it tastes good when put into
eggrolls with a little dark sauce.

For a long time, the mere thought that the universe might not be contin-
uous had not even considered the slightest possibility of crossing anybody’s
mind, until the ancient Greeks got a harebrained and totally unjustified
idea that things might be made up of atoms. The fact that this later
turned out to be true is regarded by many as being good luck rather then
good judgment. Honestly, who would have thought it? After all, everyday
objects, such as the desk on which one of the authors is currently resting his
wrists as he types this sentence, give every appearance of having smooth,
continuous surfaces. But who cares? Thinking of the desk as having a
smooth, continuous surface is a harmless but useful delusion that lets the
author rest his wrists comfortably without worrying about atomic bond
energy and quantum uncertainty theory at all.

Not only is this trick of thinking of the world as continuous a handy
psychological rationalization, it’s also good mathematics. It turns out that
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the math of continuous things is a lot less unwieldy than the math of dis-
crete things. That’s why the people who were thinking about how the world
works in the 15th century were happy to invent a mathematics for a contin-
uous universe; experimentally, it was a good approximation to reality, and
theoretically the math worked out nicely. Sir Isaac Newton was thus able to
discover a lot of fundamental results about continuous mathematics, which
we call “calculus,” and its application to the exploration of a continuous
universe, which we call “physics.”

Now, we’re mostly doing this so that we can model a game world in-
side a computer, which is inherently discrete. There’s a certain amount of
cognitive dissonance involved with programming a discrete simulation of a
continuous model of a discrete universe, but we’ll try not to let it bother
us. Suffice it to say that we are in complete control of the discrete universe
inside our game, and that means that we can choose the kind of physics
that applies inside that universe. All we really need is for the physical laws
to be sufficiently like the ones we’re used to for the player to experience
willing suspension of disbelief, and hopefully say, “Wow! Cool!” and want
to spend more money. For almost all games that means a cozy Newtonian
universe without the nasty details of quantum mechanics or relativity. Un-
fortunately, that means also that there are a pair of nasty trolls lurking
under the bridge, going by the names of chaos and instability, but we will
do our best to appease them.

For the moment, we are concerned about the motion of a small ob-
ject called a “particle.” At any given moment, we know its position and
velocity.1 The particle has mass. We do not concern ourselves with the ori-
entation of the particle (for now), and thus we don’t think of the particle as
spinning. The particle does not have any size, either. We will defer adding
those elements until later, when we shift from particles to rigid bodies.

We are studying classical mechanics, also known as Newtonian mechan-
ics, which has several simplifying assumptions that are incorrect in general
but true in everyday life in most ways that really matter to us. So we can
darn well make sure they are true inside our computer world, if we please.
These assumptions are:

• Time is absolute.

• Space is Euclidian.

• Precise measurements are possible.

• The universe exhibits causality and complete predictability.

1Thanks to Heisenberg, we know that’s not possible on the atomic level, but when
we said “small” we didn’t mean that small.
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The first two are shattered by relatively, and the second two by quan-
tum mechanics. Thankfully, these two subjects are not necessary for video
games, because your authors do not have more than a pedestrian under-
standing of them.

We will begin our foray into the field of mechanics by learning about
kinematics, which is the study of the equations that describe the motion of
a particle in various simple but commonplace situations. When studying
kinematics, we are not concerned with the causes of motion—that is the
subject of dynamics, which will be covered in Chapter 12. For now, “ours
is not to question why,” ours is just to do the math to get equations that
predict the position, velocity, and acceleration of the particle at any given
time t, or die. Well, forget about the last part anyway.

Because we are treating our objects as particles and tracking their po-
sition only, we will not consider their orientation or rotational effects until
Chapter 12. When rotation is ignored, all of the ideas of linear kinematics
extend into 3D in a straightforward way, and so for now we will be limit-
ing ourselves to 2D (and 1D). This is convenient, since the authors do not
know how to design those little origami-like things that lay flat and then
pop up when you open the book, and the publisher wouldn’t let us even
if we were compulsive enough to learn how to do it. Later we’ll see why
treating objects as particles is perfectly justifiable.

11.2 Basic Quantities and Units

Mechanics is concerned with the relationship among three fundamental
quantities in nature: length, time, and mass. Length is a quantity you are
no doubt familiar with; we measure length using units such as centimeters,
inches, meters, feet, kilometers, miles, and astronomical units.2 Time is
another quantity we are very comfortable with measuring, in fact most of
us probably learned how to read a clock before we learned how to measure
distances.3 The units used to measure time are the familiar second, minute,
day, week, fortnight,4 and so on. The month and the year are often not
good units to use for time because different months and years have different
durations.

2An astronomical unit is equal to the average distance between the Earth and the
sun, approximately 150 million kilometers or 93 million miles. That’s a big number, but
I wouldn’t say it’s astronomical.

3In fact, it’s even easier now. Only dinosaurs like the authors know how to read an
analog clock that has hands.

4OK, maybe that one’s not so familiar. It is to one of the authors, but that’s because
he’s British.
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The quantitymass is not quite as intuitive as length and time. The mea-
surement of an object’s mass is often thought of as measuring the “amount
of stuff” in the object. This is not a bad (or at least, not completely terri-
ble) definition, but its not quite right, either [57]. A more precise definition
might be that mass is a measurement of inertia, that is, how much resis-
tance an object has to being accelerated. The more massive an object is,
the more force is required to start it in motion, stop its motion, or change
its motion.

Mass is often confused with weight, especially since the units used to
measure mass are also used to measure weight: the gram, pound, kilogram,
ton, and so forth. The mass of an object is an intrinsic property of an object,
whereas the weight is a local phenomenon that depends on the strength of
the gravitational pull exerted by a nearby massive object. Your mass will be
the same whether you are in Chicago, on the moon, near Jupiter, or light-
years away from the nearest heavenly body, but in each case your weight
will be very different. In this book and in most video games, our concerns
are confined to a relatively small patch on a flat Earth, and we approximate
gravity by a constant downward pull. It won’t be too harmful to confuse
mass and weight because gravity for us will be a constant. (But we couldn’t
resist a few cool exercises about the International Space Station.)

In many situations, we can discuss the relationship between the fun-
damental quantities without concern for the units of measurement we are
using. In such situations, we’ll find it useful to denote length, time, and
mass by L, T , and M , respectively. One important such case is in defining
derived quantities. We’ve said that length, time, and mass are the funda-
mental quantities—but what about other quantities, such as area, volume,
density, speed, frequency, force, pressure, energy, power, or any of the nu-
merous quantities that can be measured in physics? We don’t give any of
these their own capital letter, since each of these can be defined in terms
of the fundamental quantities.

For example, we might express a measurement of area as a number of
“square feet.” We have created a unit that is in terms of another unit. In
physics, we say that a measurement of area has the unit “length squared,”
or L2. How about speed? We measure speed using the units such as miles
per hour or meters per second. Thus speed is the ratio of a distance per
unit time, or L/T .

One last example is frequency. You probably know that frequency mea-
sures how many times something happens in a given time interval (how
“frequently” it happens). For example, a healthy adult has an average
heart rate of around 70 beats per minute (BPM). The motor in a car might
be rotating at a rate of 5,000 revolutions per minute (RPM). The NTSC
television standard is defined as 29.97 frames per second (FPS). Note that
in each of these, we are counting how many times something happens within
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Quantity Notation SI unit Other units

Length L m cm, km, in, ft, mi, light year, furlong

Time T s min, hr, ms

Mass M kg g, slug, lb (pound-mass)

Velocity L/T m/s ft/s, m/hr, km/hr

Acceleration L/T 2 m/s2 ft/s2, (m/hr)/s, (km/hr)/s

Force ML/T 2 N (Newton)
= kg · m/s2

lb (pound-force), poundal

Area L2 m2 mm2, cm2, km2, in2, ft2, mi2,
acre, hectare

Volume L3 m3 mm3, cm3, L (liter), in3, ft3, teaspoon,
fl oz (fluid ounce), cup, pint, quart, gallon

Pressure Force/Area
= (ML/T 2)/L2

= M/(LT 2)

Pa (Pascal)
= N/m2

= kg/(m · s2)

psi (lbs/in2), millibar, inch of mercury,
atm (atmosphere)

Energy Force × Length
= (ML/T 2) · L
= ML2/T 2

J (Joule)
= N · m2

= kg·m

s2
· m

= kg·m2

s2

kW · hr (kilowatt-hour), foot-pound, erg,
calorie, BTU (British thermal unit),
ton of TNT

Power Energy / Time
= (ML2/T 2)/T
= ML2/T 3

W (Watt)
= J/s

= kg·m2

s2
· s−1

= kg·m2

s3

hp (horsepower)

Frequency 1/T = T−1 Hz = 1/s = s−1

= “per second”
KHz = 1, 000 Hz, MHz = 1, 000, 000 Hz,
“per minute”, “per annum”

Table 11.1
Selected physical quantities and common units of measurements

a given duration of time. So we can write frequency in generic units as 1/T
or T−1, which you can read as “per unit time.” One of the most impor-
tant measurements of frequency is the Hertz, abbreviated Hz, which means
“per second.” When you express a frequency in Hz, you are describing the
number of events, oscillations, heartbeats, video frames, or whatever per
second. By definition, 1 Hz = 1 s−1.

Table 11.1 summarizes several quantities that are measured in physics,
their relation to the fundamental quantities, and some common units used
to measure them.

Of course, any real measurement doesn’t make sense without attaching
specific units to it. One way to make sure that your calculations always
make sense is to carry around the units at all times and treat them like
algebraic variables. For example, if you are computing a pressure and your
answer comes out with the units m/s, you know you have done something
wrong; pressure has units of force per unit area, or ML/(T 2L2). On the
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other hand, if you are solving a problem and you end up with an answer
in pounds per square inch (psi), but you are looking for a value in Pascals,
your answer is probably correct, but just needs to be converted to the
desired units. This sort of reasoning is known as dimensional analysis.
Carrying around the units and treating them as algebraic variables quite
often highlights mistakes caused by different units of measurement, and
also helps make unit conversion a snap.

Because unit conversion is an important skill, let’s briefly review it here.
The basic concept is that to convert a measurement from one set of units to
another, we multiply that measurement by a well-chosen fraction that has
a value of 1. Let’s take a simple example: how many feet is 14.57 meters?
Looking up the conversion factor,5 we see that 1 m ≈ 3.28083 ft. This
means that 1 m/3.28083 ft ≈ 1. So let’s take our measurement and multiply
it by a special value of “1:”

14.57 m = 14.57 m× 1 ≈ 14.57 m× 3.28083 ft

1 m
≈ 47.80 ft. (11.1)

Our conversion factor tells us that the numerator and denominator of the
fraction in Equation (11.1) are equal: 3.28083 feet is equal to 1 meter.
Because the numerator and denominator are equal, the “value” of this
fraction is 1. (In a physical sense, though, certainly numerically the fraction
doesn’t equal 1.) And we know that multiplying anything by 1 does not
change its value. Because we are treating the units as algebraic variables,
the m on the left cancels with the m in the bottom of the fraction.

Of course, applying one simple conversion factor isn’t too difficult, but
consider a more complicated example. Let’s convert 188 km/hr to ft/s.
This time we need to multiply by “1” several times:

188
km

hr
× 1 hr

3600 s
× 1000 m

1 km
× 3.28083 ft

1 m
≈ 171

ft

s
.

11.3 Average Velocity

We begin our study of kinematics by taking a closer look at the simple
concept of speed. How do we measure speed? The most common method
is to measure how much time it takes to travel a fixed distance. For example,
in a race, we say that the fastest runner is the one who finishes the race in
the shortest amount of time.

Consider the fable of the tortoise and the hare. In the story, they decide
to have a race, and the hare, after jumping to an early lead, becomes

5By “looking it up,” we mean using the Internet. There isn’t room in this book for
tables of information that are easily found online. We needed the space for all of our
opinions, jokes, and useless footnotes.
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Figure 11.1
Plot of position versus time during the race between the tortoise and the hare

overconfident and distracted. He stops during the race to take a nap, smell
the flowers, or some other form of lollygagging. Meanwhile, the tortoise
plods along, eventually passing the hare and crossing the finish line first.
Now this is a math book and not a self-help book, so please ignore the
moral lessons about focus and perseverance that the story contains, and
instead consider what it has to teach us about average velocity. Examine
Figure 11.1, which shows a plot of the position of each animal over time.

A play-by-play of the race is as follows. The gun goes off at time t0,
and the hare sprints ahead to time t1. At this point his hubris causes him
to slow his pace, until time t2 when a cute female passes by in the opposite
direction. (Her position over time is not depicted in the diagram.) At this
point a different tragic male trait causes the hare to turn around and walk

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-000.jpg&w=430&h=310
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with her, and he proceeds to chat her up. At t3, he realizes that his advances
are getting him nowhere, and he begins to pace back and forth along the
track dejectedly until time t4. At that point, he decides to take a nap.
Meanwhile, the tortoise has been making slow and steady progress, and at
time t5, he catches up with the sleeping hare. The tortoise plods along and
crosses the tape at t6. Quickly thereafter, the hare, perhaps awakened by
the sound of the crowd celebrating the tortoise’s victory, wakes up at time
t7 and hurries in a frenzy to the finish. At t8, the hare crosses the finish
line, where he is humiliated by all his peers, and the cute girl bunny, too.

To measure the average velocity of either animal during any time in-
terval, we divide the animal’s displacement by the duration of the interval.
We’ll be focusing on the hare, and we’ll denote the position of the hare as
x, or more explicitly as x(t), to emphasize the fact that the hare’s position
varies as a function of time. It is a common convention to use the capital
Greek letter delta (“∆”) as a prefix to mean “amount of change in.” For
example, ∆x would mean “the change in the hare’s position,” which is a
displacement of the hare. Likewise ∆t means “the change in the current
time,” or simply, “elapsed time between two points.” Using this notation,
the average velocity of the hare from ta to tb is given by the equation

Definition of average
velocity

average velocity =
displacement

elapsed time
=

∆x

∆t
=
x(tb)− x(ta)

tb − ta
.

This is the definition of average velocity. No matter what specific units we
use, velocity always describes the ratio of a length divided by a time, or to
use the notation discussed in Section 11.2, velocity is a quantity with units
L/T .

If we draw a straight line through any two points on the graph of the
hare’s position, then the slope of that line measures the average velocity of
the hare over the interval between the two points. For example, consider
the average velocity of the hare as he decelerates from time t1 to t2, as
shown in Figure 11.2. The slope of the line is the ratio ∆x/∆t. This slope
is also equal to the tangent of the angle marked α, although for now the
values ∆x and ∆t are the ones we will have at our fingertips, so we won’t
need to do any trig.

Returning to Figure 11.1, notice that the hare’s average velocity from
t2 to t3 is negative. This is because velocity is defined as the ratio of net
displacement over time. Compare this to speed, which is the total distance
divided by time and cannot be negative. The sign of displacement and
velocity are sensitive to the direction of travel, whereas distance and speed
are intrinsically nonnegative. We’ve already spoken about these distinctions
way back in Section 2.2. Of course it’s obvious that the average velocity
is negative between t2 and t3, since the hare was going backwards during
the entire interval. But average velocity can also be negative on an interval
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Figure 11.2
Determining average velocity
graphically

even in situations where forward progress is being made for a portion of the
interval, such as the larger interval between t2 and t4. It’s a case of “one
step forward, two steps back.”

Average velocity can also be zero, as illustrated during the hare’s nap
from t4 to t7. In fact, the average velocity will be zero any time an object
starts and ends at the same location, even if it was it motion during the
entire interval! (“Two steps forward, two steps back.”) Two such intervals
are illustrated in Figure 11.3.

Figure 11.3
Two intervals during which the hare has
no net displacement, and thus his average
velocity is zero

And, of course, the final lesson of the fable is that the average velocity
of the tortoise is greater than the average velocity of the hare, at least from
t0 to t7, when the tortoise crosses the finish line. This is true despite the
fact that the hare’s average speed was higher, since he certainly traveled a
larger distance with all the female distractions and pacing back and forth.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-001.jpg&w=160&h=187
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-002.jpg&w=142&h=106
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One last thing to point out. If we assume the hare learned his lesson and
congratulated the tortoise (after all, let’s not attribute to the poor animal
all the negative personality traits!), then at t = t8 they were standing at
the same place. This means their net displacements from t0 to t8 are the
same, and thus they have the same average velocity during this interval.

11.4 Instantaneous Velocity and the Derivative

We’ve seen how physics defines and measures the average velocity of an
object over an interval, that is, between two time values that differ by some
finite amount ∆t. Often, however, it’s useful to be able to speak of an
object’s instantaneous velocity, which means the velocity of the object for
one value of t, a single moment in time. You can see that this is not a
trivial question because the familiar methods for measuring velocity, such
as

average velocity =
displacement

elapsed time
=

∆x

∆t
=
x(tb)− x(ta)

tb − ta
,

don’t work when we are considering only a single instant in time. What
are ta and tb, when we are looking at only one time value? In a single in-
stant, displacement and elapsed time are both zero; so what is the meaning
of the ratio ∆x/∆t? This section introduces a fundamental tool of calcu-
lus known as the derivative. The derivative was invented by Newton to
investigate precisely the kinematics questions we are asking in this chap-
ter. However, its applicability extends to virtually every problem where
one quantity varies as a function of some other quantity. (In the case of
velocity, we are interested in how position varies as a function of time.)

Because of the vast array of problems to which the derivative can be
applied, Newton was not the only one to investigate it. Primitive appli-
cations of integral calculus to compute volumes and such date back to
ancient Egypt. As early as the 5th century, the Greeks were exploring the
building blocks of calculus such as infinitesimals and the method of ex-
haustion. Newton usually shares credit with the German mathematician
Gottfried Leibniz6 (1646–1716) for inventing calculus in the 17th century,
although Persian and Indian writings contain examples of calculus concepts
being used. Many other thinkers made significant contributions, including
Fermat, Pascal, and Descartes.7 It’s somewhat interesting that many of

6Ian Parberry is conflicted by this. Although he is British and feels that he should
consequently support Newton’s case, his PhD adviser’s adviser’s . . . adviser back 14
generations ago was Leibniz, and hence he feels he owes him some “familial” loyalty.

7Pascal and Descartes are PhD adviser “cousins” of Ian Parberry’s back to the 16th
generation, but nonetheless he can’t help thinking of Monty Python’s Philosopher’s Song
whenever he thinks of Descartes.
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the earlier applications of calculus were integrals, even though most calcu-
lus courses cover the “easier” derivative before the “harder” integral.

We first follow in the steps of Newton and start with the physical ex-
ample of velocity, which we feel is the best example for obtaining intuition
about how the derivative works. Afterwards, we consider several other ex-
amples where the derivative can be used, moving from the physical to the
more abstract.

11.4.1 Limit Arguments and the Definition of the Derivative

Back to the question at hand: how do we measure instantaneous velocity?
First, let’s observe one particular situation for which it’s easy: if an object
moves with constant velocity over an interval, then the velocity is the same
at every instant in the interval. That’s the very definition of constant
velocity. In this case, the average velocity over the interval must be the
same as the instantaneous velocity for any point within that interval. In
a graph such as Figure 11.1, it’s easy to tell when the object is moving
at constant velocity because the graph is a straight line. In fact, almost
all of Figure 11.1 is made up of straight line segments,8 so determining
instantaneous velocity is as easy as picking any two points on a straight-
line interval (the endpoints of the interval seem like a good choice, but
any two points will do) and determining the average velocity between those
endpoints.

But consider the interval from t1 to t2, during which the hare’s over-
confidence causes him to gradually decelerate. On this interval, the graph
of the hare’s position is a curve, which means the slope of the line, and
thus the velocity of the hare, is changing continuously. In this situation,
measuring instantaneous velocity requires a bit more finesse.

For concreteness in this example, let’s assign some particular numbers.
To keep those numbers round (and also to stick with the racing theme),
please allow the whimsical choice to measure time in minutes and distance
in furlongs.9 We will assign t1 = 1 min and t2 = 3 min, so the total
duration is 2 minutes. Let’s say that during this interval, the hare travels
from x(1) = 4 fur to x(3) = 8 fur.10 For purposes of illustration, we will set
our sights on the answer to the question: what is the hare’s instantaneous
velocity at t = 2.5 min? This is all depicted in Figure 11.4.

8Mostly because that’s the easiest thing for lazy authors to create in Photoshop.
9The speed chosen for the hare bears some semblance to reality, but for pedagogical

reasons and to make Figure 11.1 fit nicely on a page, the speed of the tortoise is totally
fudged. Sticklers should remind themselves that this is a story with a talking bunny
rabbit and turtle. Oh, and a furlong is 1/8 of a mile.

10The abbreviation “fur” means “furlongs” and has nothing to do with the fur on the
bunny.
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Figure 11.4
What is the hare’s velocity at t = 2.5 min?

It’s not immediately apparent how we might measure or calculate the
velocity at the exact moment t = 2.5, but observe that we can get a good
approximation by computing the average velocity of a very small interval
near t = 2.5. For a small enough interval, the graph is nearly the same
as a straight line segment, and the velocity is nearly constant, and so the
instantaneous velocity at any given instant within the interval will not be
too far off from the average velocity over the whole interval.

In Figure 11.5, we fix the left endpoint of a line segment at t = 2.5
and move the right endpoint closer and closer. As you can see, the shorter
the interval, the more the graph looks like a straight line, and the better
our approximation becomes. Thinking graphically, as the second endpoint
moves closer and closer to t = 2.5, the slope of the line between the end-
points will converge to the slope of the line that is tangent to the curve
at this point. A tangent line is the graphical equivalent of instantaneous
velocity, since it measures the slope of the curve just at that one point.

Let’s carry out this experiment with some real numbers and see if we
cannot approximate the instantaneous velocity of the hare. In order to do
this, we’ll need to be able to know the position of the hare at any given
time, so now would be a good time to tell you that the position of the hare
is given by the function11

x(t) = −t2 + 6t− 1.

11While it may seem nicely contrived that the hare’s motion is described by a quadratic
equation with whole number coefficients, we’ll see later that it isn’t as contrived as you
might think. Nature apparently likes quadratic equations. But you do have us on the
whole number coefficients, which were cherry-picked.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-003.jpg&w=141&h=196
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Figure 11.5. Approximating instantaneous velocity as the average velocity of a smaller and
smaller interval

Table 11.2 shows tabulated calculations for average velocity over intervals
with a right hand endpoint t+∆t that moves closer and closer to t = 2.5.

The right-most column, which is the average velocity, appears to be
converging to a velocity of 1 furlong/minute. But how certain are we that
this is the correct value? Although we do not have any calculation that will
produce a resulting velocity of exactly 1 furlong/minute, for all practical
purposes, we may achieve any degree of accuracy desired by using this ap-
proximation technique and choosing ∆t sufficiently small. (We are ignoring
issues related to the precision of floating point representation of numbers
in a computer.)

This is a powerful argument. We have essentially assigned a value to an
expression that we cannot evaluate directly. Although it is mathematically
illegal to substitute ∆t = 0 into the expression, we can argue that for

t ∆t t + ∆t x(t) x(t + ∆t) x(t + ∆t) − x(t)
x(t + ∆t) − x(t)

∆t

2.500 0.500 3.000 7.750 8.0000 0.2500 0.5000
2.500 0.100 2.600 7.750 7.8400 0.0900 0.9000
2.500 0.050 2.550 7.750 7.7975 0.0475 0.9500
2.500 0.010 2.510 7.750 7.7599 0.0099 0.9900
2.500 0.005 2.505 7.750 7.7549 0.0049 0.9950
2.500 0.001 2.501 7.750 7.7509 0.0009 0.9990

Table 11.2. Calculating average velocity for intervals of varying durations

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-004.jpg&w=286&h=178
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smaller and smaller values of ∆t, we converge to a particular value. In
the parlance of calculus, this value of 1 furlong/minute is a limiting value,
meaning that as we take smaller and smaller positive values for ∆t, the
result of our computation approaches 1, but does not cross it (or reach it
exactly).

Convergence arguments such as this are defined with rigor in calculus
by using a formalized tool known as a limit. The mathematical notation
for this is

v(t) = lim
∆t→0

x(t+∆t)− x(t)

∆t
. (11.2)

The notation ‘→’ is usually read as “approaches” or “goes to.” So the right
side of Equation (11.2) might be read as

“The limit of
x(t+∆t)− x(t)

∆t
as ∆t approaches zero, ”

or

“The limit as ∆t approaches zero of
x(t+∆t)− x(t)

∆t
.”

In general, an expression of the form lima→k[blah] is interpreted to mean
“The value that [blah] converges to, as a gets closer and closer to k.”

This is an important idea, as it defines what we mean by instantaneous
velocity.

Instantaneous velocity at a given time t may be interpreted as the average
velocity of an interval that contains t, in the limit as the duration of the
interval approaches zero.

We won’t have much need to explore the full power of limits or get
bogged down in the finer points; that is the mathematical field of analysis,
and would take us a bit astray from our current, rather limited,12 objectives.
We are glossing over some important details13 so that we can focus on one
particular case, and that is the use of limits to define the derivative.

The derivative measures the rate of change of a function. Remember
that “function” is just a fancy word for any formula, computation, or proce-
dure that takes an input and produces an output. The derivative quantifies
the rate at which the output of the function will change in response to a
change to the input. If x denotes the value of a function at a specific time t,

12No pun intended. Regretfully.
13Including such things as continuity, limits taken from the left, from the right, etc.
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the derivative of that function at t is the ratio dx/dt. The symbol dx rep-
resents the change in the output produced by a very small change in the
input, represented by dt. We’ll speak more about these “small changes” in
more detail in just a moment.

For now, we are in an imaginary racetrack where rabbits and turtles race
and moral lessons are taught through metaphor. We have a function with
an input of t, the number of minutes elapsed since the start of the race, and
an output of x, the distance of the hare along the racetrack. The rule we use
to evaluate our function is the expression x(t) = −t2+6t−1. The derivative
of this function tells us the rate of change of the hare’s position with respect
to time and is the definition of instantaneous velocity. Just previously, we
defined instantaneous velocity as the average velocity taken over smaller
and smaller intervals, but this is essentially the same as the definition of
the derivative. We just phrased it the first time using terminology specific
to position and velocity.

When we calculate a derivative, we won’t end up with a single number.
Expecting the answer to “What is the velocity of the hare?” to be a single
number makes sense only if the velocity is the same everywhere. In such
a trivial case we don’t need derivatives, we can just use average velocity.
The interesting situation occurs when the velocity varies over time. When
we calculate the derivative of a position function in such cases, we get a
velocity function, which allows us to calculate the instantaneous velocity at
any point in time.

The previous three paragraphs express the most important concepts in
this section, so please allow us to repeat them.

A derivative measures a rate of change. Since velocity is the rate of change
of position with respect to time, the derivative of the position function is
the velocity function.

The next few sections discuss the mathematics of derivatives in a bit
more detail, and we return to kinematics in Section 11.5. This material is
aimed at those who have not had14 first-year calculus. If you already have
a calculus background, you can safely skip ahead to Section 11.5 unless you
feel in need of a refresher.

Section 11.4.2 lists several examples of derivatives to give you a better
understanding of what it means to measure a rate of change, and also to

14The authors define “had” to mean that you passed it, you understood it, and you
remember it.
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back up our claim that the derivative has very broad applicability. Sec-
tion 11.4.3 gives the formal mathematical definition of the derivative15 and
shows how to use this definition to solve problems. We also finally figure out
how fast that hare was moving at t = 2.5. Section 11.4.4 lists various com-
monly used alternate notations for derivatives, and finally, Section 11.4.5
lists just enough rules about derivatives to satisfy the very modest differ-
ential calculus demands of this book.

11.4.2 Examples of Derivatives

Velocity may be the easiest introduction to the derivative, but it is by no
means the only example. Let’s look at some more examples to give you an
idea of the wide array of problems to which the derivative is applied.

The simplest types of examples are to consider other quantities that
vary with time. For example, if R(t) is the reading of a rain meter at
a given time t, then the derivative, denoted R′(t), describes how hard it
was raining at time t. Perhaps P (t) is the reading of a pressure valve
on a tank containing some type of gas. Assuming the pressure reading
is proportional to the mass of the gas inside the chamber,16 the rate of
change P ′(t) indicates how fast gas is flowing into or out of the chamber at
time t.

There are also physical examples for which the independent variable is
not time. The prototypical case is a function y(x) that gives the height
of some surface above a reference point at the horizontal position x. For
example, perhaps x is the distance along our metaphorical racetrack and y
measures the height at that point above or below the altitude at the starting
point. The derivative y′(x) of this function is the slope of the surface at
x, where positive slopes mean the runners are running uphill, and negative
values indicate a downhill portion of the race. This example is not really a
new example, because we’ve looked at graphs of functions and considered
how the derivative is a measure of the slope of the graph in 2D.

Now let’s become a bit more abstract, but still keep a physical dimension
as the independent variable. Let’s say that for a popular rock-climbing
wall, we know a function S(y) that describes, for a given height y, what
percentage of rock climbers are able to reach that height or higher. If we
assume the climbers start at y = 0, then S(0) = 100%. Clearly S(y) is
a nonincreasing function that eventually goes all the way down to 0% at
some maximum height ymax that nobody has ever reached.

Now consider the interpretation of derivative S′(y). Of course, S′(y) ≤
0, since S(y) is nonincreasing. A large negative value of S′(y) is an indi-

15Spoiler alert: we already gave it to you in this section!
16This would be true if we are operating in a range where the ideal gas law is a valid

approximation, and the temperature remains constant.
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cation that the height y is an area where climbers are likely to drop17 out.
Perhaps the wall at that height is a challenging area. S′(y) closer to zero is
an indication that fewer climbers drop out at height y. Perhaps there is a
plateau that climbers can reach, and there they rest. We might expect S′(y)
to decrease just after this plateau, since the climbers are more rested. In
fact, S′(y) might also become closer to zero just before the plateau, because
as climbers begin to get close to this milestone, they push a bit harder and
are more reluctant to give up.18

Figure 11.6
Happiness
versus salary

One last example. Figure 11.6 shows happiness as a function of salary.
In this case, the derivative is essentially the same thing as what economists
would call “marginal utility.” It’s the ratio of additional units of happiness
per additional unit of income. According this figure, the marginal utility
of income decreases, which of course is the famous law of diminishing re-
turns. According to our research,19 it even becomes negative after a certain
point, where the troubles associated with high income begin to outweigh
the psychological benefits. The economist-speak phrase “negative marginal
utility” is translated into everyday language as “stop doing that.”

17So to speak.
18The alert reader may have noticed that, because there are only a finite number

of climbers to sample, S(y) comes from samples data, and therefore has discontinuous
“steps” in it, rather than being a smooth line. At those steps, the derivative isn’t really
defined. For purposes of this illustration, let’s assume that we have fit a smooth curve
through the experimental data in order to yield a continuous function.

19We just made quotes in the air with our fingers as we wrote that word.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-007.jpg&w=238&h=198
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11.4.3 Calculating Derivatives from the Definition

Now we’re ready for the official20 definition of the derivative found in most
math textbooks, and to see how we can compute derivatives using the
definition. A derivative can be understood as the limiting value of ∆x/∆t,
the ratio of the change in output divided by the change in input, taken
as we make ∆t infinitesimally small. Let’s repeat this description using
mathematical notation. It’s an equation we gave earlier in the chapter,
only this time we put a big box around it, because that’s what math books
do to equations that are definitions.

The Definition of a Derivative

dx

dt
= lim

∆t→0

∆x

∆t
= lim

∆t→0

x(t+∆t)− x(t)

∆t
. (11.3)

Here the notation for the derivative dx/dt is known as Leibniz’s notation.
The symbols dx and dt are known as infinitesimals. Unlike ∆x and ∆t,
which are variables representing finite changes in value, dx and dt are sym-
bols representing “an infinitesimally small change.” Why is it so important
that we use a very small change? Why can’t we just take the ratio ∆x/∆t
directly? Because the rate of change is varying continuously. Even within
a very small interval of ∆t = .0001, it is not constant. This is why a limit
argument is used, to make the interval as small as we can possibly make
it—infinitesimally small.

In certain circumstances, infinitesimals may be manipulated like alge-
braic variables (and you can also attach units of measurement to them and
carry out dimensional analysis to check your work). The fact that such
manipulations are often correct is what gives Leibniz notation its intuitive
appeal. However, because they are infinitely small values, they require spe-
cial handling, similar to the symbol ∞, and so should not be tossed around
willy-nilly. For the most part, we interpret the notation dx

dt not as a ratio of
two variables, but as a single symbol that means “the derivative of x with
respect to t.” This is the safest procedure and avoids any chance of the
aforementioned willy-nilliness. We have more to say later on Leibniz and
other notations, but first, let’s finally calculate a derivative and answer the
burning question: how fast was the hare traveling at t = 2.5?

20We use the word “official” here because there are other ways to define the derivative
that lead to improved methods for approximating derivatives numerically with a com-
puter. Such methods are useful when an analytical solution is too difficult or slow to
compute.
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Differentiating a simple function by using the definition Equation (11.3)
is an important rite of passage, and we are proud to help you cross this
threshold. The typical procedure is this:

1. Substitute x(t) and x(t+∆t) into the definition. (In our case, x(t) =
−t2 + 6t− 1).

2. Perform algebraic manipulations until it is legal to substitute ∆t = 0.
(Often this boils down to getting ∆t out of the denominator.)

3. Substitute ∆t = 0, which evaluates the expression “at the limit,”
removing the limit notation.

4. Simplify the result.

Applying this procedure to our case yields

v(t) =
dx

dt
= lim

∆t→0

x(t+∆t)− x(t)

∆t

= lim
∆t→0

[−(t+∆t)2 + 6(t+∆t)− 1]− (−t2 + 6t− 1)

∆t

= lim
∆t→0

(−t2 − 2t(∆t)− (∆t)2 + 6t+ 6(∆t)− 1) + (t2 − 6t+ 1)

∆t

= lim
∆t→0

−2t(∆t)− (∆t)2 + 6(∆t)

∆t

= lim
∆t→0

∆t (−2t−∆t+ 6)

∆t

= lim
∆t→0

−2t−∆t+ 6. (11.4)

Now we are at step 3. Taking the limit in Equation (11.4) is now easy; we
simply substitute ∆t = 0. This substitution was not legal earlier because
there was a ∆t in the denominator:

v(t) =
dx

dt
= lim

∆t→0
−2t−∆t+ 6

= −2t− (0) + 6

= −2t+ 6. (11.5)

Finally! Equation (11.5) is the velocity function we’ve been looking for.
It allows us to plug in any value of t and compute the instantaneous velocity
of the hare at that time. Putting in t = 2.5, we arrive at the answer to our
question:

v(t) = −2t+ 6,

v(2.5) = −2(2.5) + 6 = 1.



500 11. Mechanics 1: Linear Kinematics and Calculus

v(2.0) = −2(2.0) + 6 = 2.0 v(2.4) = −2(2.4) + 6 = 1.2 v(2.5) = −2(2.5) + 6 = 1.0

v(2.6) = −2(2.6) + 6 = 0.8 v(3.0) = −2(3.0) + 6 = 0.0

Figure 11.7
The hare’s velocity and corresponding tangent line at selected times

So the instantaneous velocity of the hare at t = 2.5 was precisely 1 furlong
per minute, just as our earlier arguments predicted. But now we can say it
with confidence.

Figure 11.7 shows this point and several others along the interval we’ve
been studying. For each point, we have calculated the instantaneous veloc-
ity at that point according to Equation (11.5) and have drawn the tangent
line with the same slope.

It’s very instructive to compare the graphs of position and velocity side
by side. Figure 11.8 compares the position and velocity of our fabled racers.

There are several interesting observations to be made about Figure 11.8.

• When the position graph is a horizontal line, there is zero velocity,
and the velocity graph traces the v = 0 horizontal axis (for example,
during the hare’s nap).

• When the position is increasing, the velocity is positive, and when the
position is decreasing (the hare is moving the wrong way) the velocity
is negative.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-009.jpg&w=106&h=106
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-010.jpg&w=106&h=106
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-011.jpg&w=106&h=106
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-012.jpg&w=106&h=106
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-013.jpg&w=106&h=106
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Figure 11.8
Comparing position and velocity

• When the position graph is a straight line, this constant velocity is
indicated by a horizontal line in the velocity graph.

• When the position graph is curved, the velocity is changing contin-
uously, and the velocity graph will not be a horizontal line. In this
case, the velocity graph happens to be a straight line, but later we’ll
examine situations where the velocity graph is curved.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-014.jpg&w=389&h=389
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• When the position function changes slope at a “corner,” the velocity
graph exhibits a discontinuity. In fact, the derivative at such points
does not exist, and there is no way to define the instantaneous veloc-
ity at those points of discontinuity. Fortunately, such situations are
nonphysical—in the real world, it is impossible for an object to change
its velocity instantaneously. Changes to velocity always occur via an
acceleration over a (potentially brief, but finite) amount of time.21

Later we show that such rapid accelerations over short durations are
often approximated by using impulses.

• There are sections on the velocity graph that look identical to each
other even though the corresponding intervals on the position graph
are different from one another. This is because the derivative mea-
sures only the rate of change of a variable. The absolute value of the
function does not matter. If we add a constant to a function, which
produces a vertical shift in the graph of that function, the derivative
will not be affected. We have more to say on this when we talk about
the relationship between the derivative and integral.

At this point, we should acknowledge a few ways in which our explana-
tion of the derivative differs from most calculus textbooks. Our approach
has been to focus on one specific example, that of instantaneous velocity.
This has led to some cosmetic differences, such as notation. But there
were also many finer points that we are glossing over. For example, we
have not bothered defining continuous functions, or given rigorous defini-
tions for when the derivative is defined and when it is not defined. We
have discussed the idea behind what a limit is, but have not provided a
formal definition or considered limits when approached from the left and
right, and the criteria for the existence of a well-defined limit. We feel that
leading off with the best intuitive example is always the optimum way to
teach something, even if it means “lying” to the reader for a short while.
If we were writing a calculus textbook, at this point we would back up and
correct some of our lies, reviewing the finer points and giving more precise
definitions.

However, since this is not a calculus textbook, we will only warn you
that what we said above is the big picture, but isn’t sufficient to handle
many edge cases when functions do weird things like go off into infinity or
exhibit “jumps” or “gaps.” Fortunately, such edge cases just don’t happen
too often for functions that model physical phenomena, and so these details
won’t become an issue for us in the context of physics.

21For all you math sticklers who object to the vertical lines at the discontinuities where
the derivative is mathematically undefined, the engineer’s justification in this and other
similar situations is that the mathematical formula is only a model for what is actually
a physical situation.
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We do have room, however, to mention alternate notations for the
derivative that you are likely to encounter.

11.4.4 Notations for the Derivative

Several different notations for derivatives are in common use. Let’s point
out some ways that other texts might look different from what we’ve said
here. First of all, there is a trivial issue of naming. Most calculus textbooks
define the derivative in very general terms, where the output variable is
named y, the symbol x refers to the input variable rather than the output
variable, and the function is simply named f . In other words, the function
being differentiated is y = f(x). Furthermore, many will assign the shrink-
ing “step amount” to the variable h rather than using the ∆ notation, which
has advantages when solving the equations that result when you work out
derivatives from the definition.22 With these variables, they would define
the derivative as

Definition of a derivative
using variables in most
calculus textbooks

dy

dx
= lim

h→0

y(x+ h)− y(x)

h
. (11.6)

The differences between Equations (11.3) and (11.6) are clearly cosmetic.
A variation on the Leibniz notation we prefer in this book is to prefix

an expression with d/dt to mean “the derivative with respect to t of this
thing on the right.” For example

d

dt
(t2 + 5t)

can be read as “the derivative with respect to t of t2 + 5t.” This is a very
descriptive and intuitive notation. If we call the expression on the right x,
and interpret the juxtaposition of symbols as multiplication, we can pull
the x back on top of the fraction to get our original notation, as in

d

dt
(t2 + 5t) =

d

dt
x =

dx

dt
.

It’s important to interpret these manipulations as notational manipu-
lations rather than having any real mathematical meaning. The notation
is attractive because such algebraic manipulations with the infinitesimals
often work out. But we reiterate our warning to avoid attaching much
mathematical meaning to such operations.

Another common notation is to refer to the derivative of a function
f(x) with a prime: f ′(x). This is known as prime notation or Lagrange’s

22Notice our klunky need for parentheses with (∆t)2 to avoid the potentially confusing
notation ∆t2.
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notation. It’s used when the independent variable that we are differen-
tiating with respect to is implied or understood by context. Using this
notation we would define velocity as the derivative of the position function
by v(t) = x′(t).

One last notation, which was invented by Newton and is used mostly
when the independent variable is time (such as in the physics equations
Newton invented), is dot notation. A derivative is indicated by putting a
dot over the variable; for example, v(t) = ẋ(t).

Here is a summary of the different notations for the derivative you will
see, using velocity and position as the example:

v(t) =
dx

dt
=

d

dt
x(t) = x′(t) = ẋ(t).

11.4.5 A Few Differentiation Rules and Shortcuts

Now let’s return to calculating derivatives. In practice, it’s seldom neces-
sary to go back to the definition of the derivative in order to differentiate
an expression. Instead, there are simplifying rules that allow you to break
down complicated functions into smaller pieces that can then be differen-
tiated. There are also special functions, such as lnx and tanx, for which
the hard work of applying the definition has already been done and written
down in those tables that line the insides of the front and back covers of
calculus books. To differentiate expressions containing such functions, one
simply refers to the table (although we’re going to do just a bit of this
“hard work” ourselves for sine and cosine).

In this book, our concerns are limited to the derivatives of a very small
set of functions, which luckily can be differentiated with just a few simple
rules. Unfortunately, we don’t have the space here to develop the mathe-
matical derivations behind these rules, so we are simply going to accompany
each rule with a brief explanation as to how it is used, and a (mathemati-
cally nonrigorous) intuitive argument to help you convince yourself that it
works.

Our first rule, known as the constant rule, states that the derivative of
a constant function is zero. A constant function is a function that always
produces the same value. For example, x(t) = 3 is a constant function. You
can plug in any value of t, and this function outputs the value 3. Since, the
derivative measures how fast the output of a function changes in response
to changes in the input t, in the case of a constant function, the output
never changes, and so the derivative is x′(t) = 0.
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The Constant Rule

d

dt
k = 0, k is any constant.

The next rule, sometimes known as the sum rule, says that differentia-
tion is a linear operator. The meaning of “linear” is essentially identical to
our definition given in Chapter 5, but let’s review it in the context of the
derivative. To say that the derivative is a linear operator means two things.
First, to take the derivative of a sum, we can just take the derivative of
each piece individually, and add the results together. This is intuitive—the
rate of change of a sum is the total rate of change of all the parts added
together. For example, consider a man who moves about on a train. His
position in world space can be described as the sum of the train’s position,
plus the man’s position in the body space of the train.23 Likewise, his ve-
locity relative to the ground is the sum of the train’s velocity relative to
the ground, plus his velocity relative to the train.

Derivative of a Sum

d

dt
[f(t) + g(t)] =

d

dt
f(t) +

d

dt
g(t). (11.7)

The second property of linearity is that if we multiply a function by some
constant, the derivative of that function gets scaled by that same constant.
One easy way to see that this must be true is to consider unit conversions.
Let’s return to our favorite function that yields a hare’s displacement as
a function of time, measured in furlongs. Taking the derivative of this
function with respect to time yields a velocity, in furlongs per minute.
If somebody comes along who doesn’t like furlongs, we can switch from
furlongs to meters, by scaling the original position function by a factor of
201.168. This must scale the derivative by the same factor, or else the hare
would suddenly change speed just because we switched to another unit.

23Assume that the train tracks are straight, so that the train’s body axes are aligned
with the world axes, and no rotation is needed.
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Derivative of a Function Times a Constant

d

dt
[kf(t)] = k

[

d

dt
f(t)

]

, k is any constant. (11.8)

If we combine Equations (11.7) and (11.8), we can state the linearity rule
in a more general way.

The Sum Rule

d

dt
[af(t) + bg(t)] = a

[

d

dt
f(t)

]

+ b

[

d

dt
g(t)

]

.

The linear property of the derivative is very important since it allows us to
break down many common functions into smaller, easier pieces.

One of the most important and common functions that needs to be
differentiated also happens to be the easiest: the polynomial. Using the
linear property of the derivative, we can break down, for example, a fourth-
degree polynomial with ease:

x(t) = c4t
4 + c3t

3 + c2t
2 + c1t+ c0,

dx

dt
=

d

dt
[c4t

4 + c3t
3 + c2t

2 + c1t+ c0]

= c4

[

d

dt
t4
]

+ c3

[

d

dt
t3
]

+ c2

[

d

dt
t2
]

+ c1

[

d

dt
t

]

+

[

d

dt
c0

]

. (11.9)

The last derivative d
dtc0 is zero by the constant rule, since c0 does not

vary. This leaves us with four simple derivatives, each of which can be
plugged into the definition of a derivative, Equation (11.3), without too
much trouble. Solving each of these four individually is considerably easier
than plugging the original polynomial into Equation (11.3). If you do go
through this exercise (like every first-year calculus student does), you notice
two things. First of all, the algebraic tedium increases as the power of t gets
higher. Second, a quite obvious pattern is revealed, known as the power
rule.
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The Power Rule
d

dt
tn = ntn−1, n is an integer.

This rule gives us the answers to the four derivatives needed above:

d

dt
t4 = 4t3,

d

dt
t3 = 3t2,

d

dt
t2 = 2t1 = 2t,

d

dt
t = 1t0 = 1.

Notice in the last equation we used the identity t0 = 1. However, even
without that identity,24 it should be very clear that d

dt t must be unity.
Remember that the derivative answers the question, “What is the rate of
change of the output, relative to the rate of change of the input?” In the
case of d

dt t, the “output” and the “input” are both the variable t, and so
their rates of change are equal. Thus the ratio that defines the derivative
is equal to one.

One last comment before we plug these results into Equation (11.9) to
differentiate our polynomial. Using the identity t0 = 1, the power rule is
brought into harmony with the constant rule:

Derivative of a constant,
using the power rule

d

dt
k =

d

dt
(kt0) Using t0 = 1,

= k

[

d

dt
t0
]

Linear property of derivative,

= k[0(t−1)] Power rule for n = 0,

= 0.

Let’s get back to our fourth-degree polynomial. With the sum and
power rule at our disposal, we can make quick work of it:

x(t) = c4t
4 + c3t

3 + c2t
2 + c1t+ c0,

dx

dt
= 4c4t

3 + 3c3t
2 + 2c2t+ c1.

Below are several more examples of how the power rule can be used.

24Be careful, t0 is undefined when t = 0.
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Notice that the power rule works for negative exponents as well:

d

dt
(3t5 − 4t) = 15t4 − 4,

d

dt

(

t100

100
+

√
π

)

= t99,

d

dt

(

1

t
+

4

t3

)

=
d

dt

(

t−1 + 4t−3
)

= −t−2 − 12t−4 =
−1

t2
− 12

t4
.

11.4.6 Derivatives of Some Special Functions
with Taylor Series

This section looks at some very special examples of differentiating polyno-
mials. Given any arbitrary function f(x), the Taylor series of f is a way to
express f as a polynomial. Each successive term in the polynomial is deter-
mined by taking a higher order derivative of the function, which is perhaps
the main point of Taylor series that you should learn when you take a real
calculus class, but right now we’re not interested in where Taylor series
come from, just that they exist. The Taylor series is a very useful tool
in video games because it provides polynomial approximations, which are
“easy” to evaluate in a computer, for functions that are otherwise “hard”
to evaluate. We don’t have the space to discuss much of anything about
Taylor series in general, but we would like to look at a few important exam-
ples of Taylor series. The Taylor series for the sine and cosine functions are

Taylor series for sin(x)
and cos(x)

sinx = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
+ · · · ,

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
+ · · · . (11.10)

This pattern continues forever; in other words, to compute the exact value
of sinx would require us to evaluate an infinite number of terms. However,
notice that the denominators of the terms are growing very rapidly, which
means we can approximate sinx simply by stopping after a certain number
of terms, and ignore the rest.

This is exactly the process by which trigonometric functions are com-
puted inside a computer. First, trig identities are used to get the argument
into a restricted range (since the functions are periodic). This is done be-
cause when the Taylor series is truncated, its accuracy is highest near a
particular value of x, and in the case of the trig functions, this point is
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usually chosen to be x = 0.25 Then the Taylor series polynomial with, say,
four terms is evaluated. This approximation is highly accurate. Stopping
at the x7 term is sufficient to calculate sinx to about five and a half decimal
digits for −1 < x < +1.

All this trivia concerning approximations is interesting, but our real
reason for bringing up Taylor series is to use them as nontrivial examples
of differentiating polynomials with the power rule, and also to learn some
interesting facts about the sine, cosine, and exponential functions. Let’s use
the power rule to differentiate the Taylor series expansion of sin(x). It’s not
that complicated—we just have to differentiate each term by itself. We’re
not even intimidated by the fact that there are an infinite number of terms:

Differentiating Taylor
series for sin(x)

d

dx
sinx =

d

dx

(

x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
+ · · ·

)

=
d

dx
x− d

dx

x3

3!
+

d

dx

x5

5!
− d

dx

x7

7!
+

d

dx

x9

9!
+ · · · (Sum rule)

= 1− 3x2

3!
+

5x4

4!
− 7x6

7!
+

9x8

9!
+ · · · (Power rule)

= 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
+ · · · (11.11)

In the above derivation, we first used the sum rule, which says that to
differentiate the whole Taylor polynomial, we can differentiate each term
individually. Then we applied the power rule to each term, in each case
multiplying by the exponent and decrementing it by one. (And also re-
membering that d

dx x = 1 for the first term.) To understand the last step,
remember the definition of the factorial operator: n! = 1× 2× 3× · · · × n.
Thus the constant in the numerator of each term cancels out the highest
factor in the factorial in the denominator.

Does Equation (11.11) the last look familiar? It should, because it’s
the same as Equation (11.10), the Taylor series for cosx. In other words,
we now know the derivative of sinx, and by a similar process we can also
obtain the derivative of cosx. Let’s state these facts formally.26

25In this special case, the Taylor series is given the more specific name of Maclaurin

series.
26We emphasize that we have not proven that these are the correct derivatives, because

we started with the Taylor series expansion, which is actually defined in terms of the
derivatives.
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Derivatives of Sine and Cosine

d

dx
sinx = cosx,

d

dx
cosx = − sinx.

The derivatives of the sine and cosine functions will become useful in later
sections.

Now let’s look at one more important special function that will play
an important role later in this book, which will be convenient to be able
to differentiate, and which also happens to have a nice, tidy Taylor series.
The function we’re referring to is the exponential function, denoted ex. The
mathematical constant e ≈ 2.718282 has many well known and interesting
properties, and pops up in all sorts of problems from finance to signal
processing. Much of e’s special status is related to the unique nature of the
function ex. One manifestation of this unique nature is that ex has such a
beautiful Taylor series:

Taylor series of ex

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · · (11.12)

Taking the derivative gives us

d

dx
ex =

d

dx

(

1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · ·

)

= 0 + 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

= 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

But this result is equivalent to the definition of ex in Equation (11.12); the
only difference between them is the cosmetic issue of when to stop listing
terms explicitly and end with the “· · · ”. In other words, the exponential
function is its own derivative: d/dx ex = ex. The exponential function is
the only function that can boast this unique property. (To be more precise,
any multiple of the exponential function, including zero, has this quality.)
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The Exponential Function Is Its Own Derivative

d

dx
ex = ex.

It is this special property about the exponential function that makes it
unique and causes it to come up so frequently in applications. Anytime
the rate of change of some value is proportionate to the value itself, the
exponential function will almost certainly arise somewhere in the math
that describes the dynamics of the system.

The example most of us are familiar with is compound interest. Let P (t)
be the amount of money in your bank account at time t; assume the amount
is accruing interest. The rate of change per time interval—the amount of
interest earned—is proportional to the amount of money in your account.
The more money you have, the more interest you are earning, and the faster
it grows. Thus, the exponential function works its way into finance with
the equation P (t) = P0e

rt, which describes the amount of money at any
given time t, assuming an initial amount P0 grows at an interest rate of r,
where the interest is compounded continually.

You might have noticed that the Taylor series of ex is strikingly similar
to the series representation of sinx and cosx. This similarity hints at a
deep and surprising relationship between the exponential functions and the
trig functions, which we explore in Exercise 11.

We hope this brief encounter with Taylor series, although a bit out-
side of our main thrust, has sparked your interest in a mathematical tool
that is highly practical, in particular for its fundamental importance to all
sorts of approximation and numerical calculations in a computer. We also
hope it was an interesting non-trivial example of differentiation of a poly-
nomial. It also has given us a chance to discuss the derivatives of the sine,
cosine, and exponential functions; these derivatives come up again in later
sections.

11.4.7 The Chain Rule

The chain rule is the last rule of differentiation we discuss here. The chain
rule tells us how to determine the rate of change of a function when the
argument to that function is itself some other function we know how to
differentiate.

In the race between the tortoise and hare, we never really thought much
about exactly what our function x(t) measured, we just said it was the “po-
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sition” of the hare. Let’s say that the course was actually a winding track
with hills and bridges and even a vertical loop, and that the function that
we graphed and previously named x(t) actually measures the linear dis-
tance along this winding path, rather than, say, a horizontal position. To
avoid the horizontal connotations associated with the symbol x, let’s intro-
duce the variable s, which gives the distance along the track (in furlongs,
of course).

Let’s say that we have a function y(s) that describes the altitude of the
track at a given distance. The derivative dy/ds tells us very basic things
about the track at that location. A value of zero means the course is flat at
that location, a positive value means the runners are running uphill, and a
large positive or negative value indicates a location where the track is very
steep.

Now consider the composite function y(s(t)). You should be able to
convince yourself that this tells us the hare’s altitude for any given time t.
The derivative dy/dt tells us how fast the hare was moving vertically, at a
given time t. This is very different from dy/ds. How might we calculate
dy/dt? You might be tempted to say that to make this determination, we
simply find out where the hare was on the track at time t, and then the
answer is the slope of the track at this location. In math symbols, you
are saying that the vertical velocity is y′(s(t)). But that isn’t right. For
example, while the hare was taking a nap (ds/dt = 0), it doesn’t matter
what the slope of the track was; since he wasn’t moving along it, his vertical
velocity is zero! In fact, at a certain point in the race he turned around and
ran on the track in the wrong direction (ds/dt < 0), so his vertical velocity
dy/dt would be opposite of the track slope dy/ds. And obviously if he
sprints quickly over a place in the track, his vertical velocity will be higher
than if he strolled slowly over that same spot. But likewise, where the track
is flat, it doesn’t matter how fast he runs across it, his vertical velocity will
be zero. So we see that the hare’s vertical velocity is the product of his
speed (measured parametrically along the track) and the slope of the track
at that point.

This rule is known as the chain rule. It is particularly intuitive when
written in Leibniz notation, because the ds infinitesimals appear to “can-
cel.”

The Chain Rule of Differentiation

dy

dt
=
dy

ds

ds

dt
.
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Here are a few examples, using functions we now know how to differen-
tiate:

Examples of the
chain rule

d

dt
sin 3x = 3 cos 3x,

d

dt
sin(x2) = 2x cos(x2),

d

dt
ecos x+3x = (− sinx+ 3)ecos x+3x,

d

dt
esin 3x+sin(x2) = (3 cos 3x+ 2x cos(x2))esin 3x+sin(x2).

We’re going to put calculus from a purely mathematical perspective
on the shelf for a while and return our focus to kinematics. (After all,
our purpose in discussing calculus was, like Ike Newton, to improve our
understanding of mechanics.) However, it won’t be long before we will
return to calculus with the discussion of the integral and the fundamental
theorem of calculus.

11.5 Acceleration

We’ve made quite a fuss about the distinction between instantaneous ve-
locity and average velocity, and this distinction is important (and the fuss
is justified) when the velocity is changing continuously. In such situations,
we might be interested to know the rate at which the velocity is changing.
Luckily we have just learned about the derivative, whose raison d’être is
to investigate rates of change. When we take the derivative of a velocity
function v(t) we get a new function describing how quickly the velocity is
increasing or decreasing at that instant. This instantaneous rate of change
is an important quantity in physics, and it goes by a familiar name: accel-
eration.

In ordinary conversation, the verb “accelerate” typically means “speed
up.” However, in physics, the word “acceleration” carries a more general
meaning and may refer to any change in velocity, not just an increase in
speed. In fact, a body can undergo an acceleration even when its speed
is constant! How can this be? Velocity is a vector value, which means it
has both magnitude and direction. If the direction of the velocity changes,
but the magnitude (its speed) remains the same, we say that the body is
experiencing an acceleration. Such terminology is not mere nitpicking with
words, the acceleration in this case is a very real sensation that would be
felt by, say, two people riding in the back seat of a swerving car who find
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themselves pressed together to one side. We have more to say about this
particular situation in Section 11.8.

We can learn a lot about acceleration just by asking ourselves what sort
of units we should use to measure it. For velocity, we used the generic units
of L/T , unit length per unit time. Velocity is a rate of change of position
(L) per unit time (T ), and so this makes sense. Acceleration is the rate of
change of velocity per unit time, and so it must be expressed in terms of
“unit velocity per unit time.” In fact, the units used to measure velocity
are L/T 2. If you are disturbed by the idea of “time squared,” think of it
instead as (L/T )/T , which makes more explicit the fact that it is a unit of
velocity (L/T ) per unit time.

For example, an object in free fall near Earth’s surface accelerates at a
rate of about 32 ft/s2, or 9.8 m/s2. Let’s say that you are dangling a metal
bearing off the side of Willis Tower.27 You drop the bearing, and it begins
accelerating, adding 9.8 m/s to its downward velocity each second. (We are
ignoring wind resistance.) After, say, 2.4 seconds, its velocity will be

2.4 s× 32
ft

s2
= 76.8

ft

s
.

More generally, the velocity at an arbitrary time t of an object under con-
stant acceleration is given by the simple linear formula

v(t) = v0 + at, (11.13)

where v0 is the initial velocity at time t = 0, and a is the constant ac-
celeration. We study the motion of objects in free fall in more detail in
Section 11.6, but first, let’s look at a graphical representation of accelera-
tion. Figure 11.9 shows plots of a position function and the corresponding
velocity and acceleration functions.

You should study Figure 11.9 until it makes sense to you. In particular,
here are some noteworthy observations:

• Where the acceleration is zero, the velocity is constant and the posi-
tion is a straight (but possibly sloped) line.

• Where the acceleration is positive, the position graph is curved like
⋃

, and where it is negative, the position graph is curved like
⋂

.
The most interesting example occurs on the right side of the graphs.
Notice that at the time when the acceleration graph crosses a = 0,
the velocity curve reaches its apex, and the position curve switches
from

⋃

to
⋂

.

27The building that everybody still calls the Sears Tower.
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Figure 11.9
Plots of position, velocity, and acceleration over time.

• A discontinuity in the velocity function causes a “kink” in the posi-
tion graph. Furthermore, it causes the acceleration to become infinite
(actually, undefined), which is why, as we said previously, such dis-
continuities don’t happen in the real world. This is why the lines in
the velocity graph are connected at those discontinuities, because the
graph is of a physical situation being approximated by a mathematical
model.

• A discontinuity in the acceleration graph causes a kink in the velocity
graph, but notice that the position graph is still smooth. In fact,
acceleration can change instantaneously, and for this reason we have
chosen not to bridge the discontinuities in the acceleration graph.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-023.jpg&w=358&h=295
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The accelerations experienced by an object can vary as a function of
time, and indeed we can continue this process of differentiation, resulting
in yet another function of time, which some people call the “jerk” function.
We stick with the position function and its first two derivatives in this
book. Furthermore, it’s very instructive to consider situations in which
the acceleration is constant (or at least has constant magnitude). This is
precisely what we’re going to do in the next few sections.

Section 11.6 considers objects under constant acceleration, such as ob-
jects in free fall and projectiles. This will provide an excellent backdrop to
introduce the integral, the complement to the derivative, in Section 11.7.
Then Section 11.8 examines objects traveling in a circular path, which ex-
perience an acceleration that has a constant magnitude but a direction that
changes continually and always points towards the center of the circle.

11.6 Motion under Constant Acceleration

Let’s look now at the trajectory an object takes when it accelerates at a
constant rate over time. This is a simple case, but a common one, and
an important one to fully understand. In fact, the equations of motion we
present in this section are some of the most important mechanics equations
to know by heart, especially for video game programming.

Before we begin, let’s consider an even simpler type of motion—motion
with constant velocity. Motion with constant velocity is a special case of
motion with constant acceleration—the case where the acceleration is con-
stantly zero. The motion of a particle with constant velocity is an intuitive
linear equation, essentially the same as Equation (9.1), the equation of a
ray. In one dimension, the position of a particle as a function of time is

x(t) = x0 + vt, (11.14)

where x0 is the position of the particle at time t = 0, and v is the constant
velocity.

Now let’s consider objects moving with constant acceleration. We’ve
already mentioned at least one important example: when they are in free
fall, accelerating due to gravity. (We’ll ignore wind resistance and all other
forces.) Motion in free fall is often called projectile motion. We start out
in one dimension here to keep things simple. Our goal is a formula x(t) for
the position of a particle at a given time.

Take our example of illegal ball-bearing-bombing off of Willis Tower.
Let’s set a reference frame where x increases in the downward direction,
and x0 = 0. In other words, x(t) measures the distance the object has
fallen from its drop height at time t. We also assume for now that initial
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velocity is v0 = 0 ft/s, meaning you merely release the ball bearing and
don’t throw it.

At this point, we don’t even know what form x(t) should take, so we’re
a bit stuck. The “front door” to this solution seems to be locked for us at
the moment, so instead we try to sneak around and enter through the back,
using an approach similar to the one we used earlier to define instantaneous
velocity. We’ll consider ways that we might approximate the answer and
then watch what happens as the approximations get better and better.

Let’s make our example a bit more specific. Earlier, we computed that
after being in free fall for 2.4 seconds, the ball bearing would have a velocity
of v(2.4) = 76.8 ft/s. However, we didn’t say anything about how far it
had traveled during that time. Let’s try to compute this distance, which is
x(2.4). To do this, we chop up the total 2.4 second interval into a number
of smaller “slices” of time, and approximate how far the ball bearing travels
during each slice. We can approximate the total distance traveled as the
sum of the distances traveled during each slice. To approximate how far the
ball bearing travels during one single slice, we first compute the velocity of
the ball bearing at the start of the slice by using Equation (11.13). Then we
approximate the distance traveled during the slice by plugging this velocity
as the constant velocity for the slice into Equation (11.14).

6 Slices,∆t = 0.40

t0 v0 ∆x
0.00 0.00 0.00
0.40 12.80 5.12
0.80 25.60 10.24
1.20 38.40 15.36
1.60 51.20 20.48
2.00 64.00 25.60

Total 76.80

12 Slices,∆t = 0.20

t0 v0 ∆x
0.00 0.00 0.00
0.20 6.40 1.28
0.40 12.80 2.56
0.60 19.20 3.84
0.80 25.60 5.12
1.00 32.00 6.40
1.20 38.40 7.68
1.40 44.80 8.96
1.60 51.20 10.24
1.80 57.60 11.52
2.00 64.00 12.80
2.20 70.40 14.08

Total 84.48

24 Slices,∆t = 0.10

t0 v0 ∆x
0.00 0.00 0.00
0.10 3.20 0.32
0.20 6.40 0.64
0.30 9.60 0.96
0.40 12.80 1.28
0.50 16.00 1.60
0.60 19.20 1.92
0.70 22.40 2.24
0.80 25.60 2.56
0.90 28.80 2.88
1.00 32.00 3.20
1.10 35.20 3.52
1.20 38.40 3.84
1.30 41.60 4.16
1.40 44.80 4.48
1.50 48.00 4.80
1.60 51.20 5.12
1.70 54.40 5.44
1.80 57.60 5.76
1.90 60.80 6.08
2.00 64.00 6.40
2.10 67.20 6.72
2.20 70.40 7.04
2.30 73.60 7.36

Total 88.32

Table 11.3. Values for different numbers of slices
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Table 11.3 shows tabulated values for 6, 12, and 24 slices. For each slice,
t0 refers to the starting time of the slice, v0 is the velocity at the start of the
slice (computed according to Equation (11.13) as v0 = t0 × 32 ft/s2), ∆t is
the duration of the slice, and ∆x is our approximation for the displacement
during the slice (computed according to Equation (11.14) as ∆x = v0∆t).

Since each slice has a different initial velocity, we are accounting for
the fact that the velocity changes over the entire interval. (In fact, the
computation of the starting velocity for the slice is not an approximation—
it is exact.) However, since we ignore the change in velocity within a slice,
our answer is only an approximation. Taking more and more slices, we get
better and better approximations, although it’s difficult to tell to what value
these approximations are converging. Let’s look at the problem graphically
to see if we can gain some insight.

In Figure 11.10, each rectangle represents one time interval in our ap-
proximation. Notice that the distance traveled during an interval is the
same as the area of the corresponding rectangle:

(area of rectangle) = (width of rectangle)× (height of rectangle)

= (duration of slice)× (velocity used for slice)

= (displacement during slice).

Now we come to the key observation. As we increase the number of
slices, the total area of the rectangles becomes closer and closer to the
area of the triangle under the velocity curve. In the limit, if we take an
infinite number of rectangles, the two areas will be equal. Now, since total
displacement of the falling ball bearing is equal to the total area of the
rectangles, which is equal to the area under the curve, we are led to an
important discovery.

The distance traveled is equal to the area under the velocity curve.

We have come to this conclusion by using a limit argument very similar to
the one we made to define instantaneous velocity—we consider how a series
of approximations converges in the limit as the approximation error goes
to zero.

Notice that we have made no assumptions in this argument about v(t).
In the example at hand, it is a simple linear function, and the graph is
a straight line; however, you should be able to convince yourself that this
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Figure 11.10
Graphical representation of Table 11.3

procedure will work for any arbitrary velocity function.28 This limit argu-
ment is a formalized tool in calculus known as the Riemann integral, which
we will consider in Section 11.7. That will also be the appropriate time to
consider the general case of any v(t). However, since there is so much we
can learn from this specific example, let’s keep it simple as long as possible.

Remember the question we’re trying to answer: how far does an object
travel after being dropped at an initial zero velocity and then accelerated
due to gravity for 2.4 seconds at a constant rate of 32 ft/s2? How does
this new realization about the equivalence of distance traveled and the area
under the graph of v(t) help us? In this special case, v(t) is a simple linear
function, and the area under the curve from t = 0 to t = 2.4 is a triangle.
That’s an easy shape for us to compute an area. The base of this triangle

28Well, almost. There are certain limitations we must place on v(t). For example, if it
blows up and goes to infinity, it’s likely, though not certain, that the displacement will
be infinite or undefined. In this book, we are focused on physical phenomena and so we
sidestep these issues by assuming our functions will be well-behaved.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-025.jpg&w=172&h=124
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-026.jpg&w=172&h=124
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-027.jpg&w=171&h=124
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has length 2.4 s, and the height is v(2.4) = 76.8 ft/s, so the area is

base× height

2
=

2.4 s× 76.8 ft/s

2
= 92.16 ft.

Thus after a mere 2.4 seconds, the ball bearing had already dropped more
than 92 feet!

That solves the specific problem at hand, but let’s be more general.
Remember that the larger goal was a kinematic equation x(t) that predicts
an object’s position given any initial position and any initial velocity. First,
let’s replace the constant 2.4 with an arbitrary time t. Next, let’s remove
the assumption that the object initially has zero velocity, and instead allow
an arbitrary initial velocity v0. This means the area under the curve v(t)
is no longer a triangle—it is a triangle on top of a rectangle, as shown in
Figure 11.11.

Figure 11.11
Calculating displacement at
time t, given initial velocity v0
and constant acceleration a

The rectangle has base t and height v0, and its area represents the
distance that would be traveled if there were no acceleration. The triangle
on top of the rectangle also has base t, and the height is at, the difference
in v(t) compared to the initial velocity as a result of the acceleration at the
rate a over the duration of t seconds. Summing these two parts together
yields the total displacement, which we denote as ∆x:

∆x = (Area of rectangle) + (Area of triangle)

=

(

Rectangle
base

)(

Rectangle
height

)

+
1

2

(

Triangle
base

)(

Triangle
height

)

= (t)(v0) + (1/2)(t)(at)

= v0t+ (1/2)at2.

We have just derived a very useful equation, so let’s highlight it so that
people who are skimming will notice it.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-028.jpg&w=177&h=124
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Formula for Displacement Given Initial Velocity and Constant Acceleration

∆x = v0t+ (1/2)at2. (11.15)

Equation (11.15) is one of only a handful of equations in this book that
are worth memorizing. It is very useful for solving practical problems that
arise in physics simulations.29

It’s common that we only need the displacement ∆x, and the absolute
position x(t) doesn’t matter. However, since the function x(t) was our
stated goal, we can easily express x(t) in terms of Equation (11.15) by
adding the displacement to our initial position, which we denote as x0:

x(t) = x0 +∆x = x0 + v0t+ (1/2)at2.

Let’s work through some examples to show the types of problems that
can be solved by using Equation (11.15) and its variants. One tempting
scenario is to let our ball bearing hit the ground. The observation deck
on the 103rd floor of Willis Tower is 1,353 ft above the sidewalk. If it
is dropped from that height, how long will it take to fall to the bottom?
Solving Equation (11.15) for t, we have

Solving for time∆x = v0t+ (1/2)at2

0 = (a/2)t2 + v0t−∆x

t =
−v0 ±

√

v20 − 4(a/2)(−∆x)

2(a/2)
(quadratic formula)

t =
−v0 ±

√

v20 + 2a∆x

a
. (11.16)

Equation (11.16) is a very useful general equation. Plugging in the numbers
specific to this problem, we have

t =
−v0 ±

√

v20 + 2a∆x

a

=
−(0)±

√

(0)2 + 2(32 ft/s
2
)(1 353 ft)

32 ft/s
2

29It comes up frequently in job interviews, too.
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= ±
√

86 592 (ft/s)2

32 ft/s
2

≈ ±294.3 ft/s

32 ft/s
2

≈ ±9.197 s.

The square root in Equation (11.16) introduces the possibility for two so-
lutions. We always use the root that results in a positive value for t.30

Naturally, a person in the business of dropping ball bearings from great
heights is interested in how much damage he can do, so the next logical ques-
tion is, “How fast is the ball bearing traveling when it hits the sidewalk?”
To answer this question, we plug the total travel time into Equation (11.13):

v(t) = v0 + at = 0 ft/s + (32 ft/s
2
)(9.197 s) = 294.3 ft/s.

If we ignore wind resistance, at the moment of impact, the ball bearing is
traveling at a speed that covers a distance of roughly a football field in one
second! You can see why the things we are doing in our imagination are
illegal in real life. Let’s keep doing them.

Now let’s assume that instead of just dropping the ball bearing, we give
it an initial velocity (we toss it up or down). It was our free choice to decide
whether up or down is positive in these examples, and we have chosen +x
to be the downward direction, so that means the initial velocity will be
negative. What must the initial velocity be in order for the ball bearing to
stay in the air only a few seconds longer, say a total of 12 seconds? Once
again, we’ll first manipulate Equation (11.15) to get a general solution; this
time we’ll be solving for v0:

Solving for initial
velocity

∆x = v0t+ (1/2)at2,

−v0t = −∆x+ (1/2)at2,

v0 = ∆x/t− (1/2)at.

And now plugging in the numbers for our specific problem, we have

v0 = ∆x/t− (1/2)at

= (1 353 ft)/(12.0 s)− (1/2)(32 ft/s
2
)(12.0 s)

= 112.8 ft/s− 192 ft/s

= −79.2 ft/s.

30The negative root tells us the other point where the infinite parabola containing the
ball bearing’s trajectory crosses the sidewalk.
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Notice that the result is negative, indicating an upwards velocity. If
we give the ball bearing this initial velocity, we might wonder how long
it takes for the bearing to come back down to its initial position. Using
Equation (11.16) and letting ∆x = 0, we have

t =
−v0 ±

√

v20 + 2a∆x

a

=
−(−79.2 ft/s)±

√

(−79.2 ft/s)2 + 2(32 ft/s
2
)(0 ft)

32 ft/s
2

=
79.2 ft/s±

√

(−79.2 ft/s)2

32 ft/s
2

=
79.2 ft/s± 79.2 ft/s

32 ft/s
2

= 0 or 4.95 s.

It’s no surprise that t = 0 is a solution; we were solving for the time values
when the ball bearing was at its initial position.

Examine the graph in Figure 11.12, which plots the position and veloc-
ity of an object moving under constant velocity a with an initial velocity
v0, where v0 and a have opposite signs. Let’s make three key observations.
Although we use terms such as “height,” which are specific to projectile
motion, similar statements are true anytime the signs of v0 and a are op-
posite.

Figure 11.12
Projectile motion

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-030.jpg&w=147&h=172
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The first observation is that the projectile reaches its maximum height,
denoted xmax, when the acceleration has consumed all of the velocity and
v(t) = 0. It’s easy to solve for the time when this will occur by using
Equation (11.13), v(t) = v0 + at:

Time to reach apex v(t) = 0,

v0 + at = 0,

t = −v0/a.

Right now we are in one dimension and considering only the height. But
if we are in more than one dimension, only the velocity parallel to the
acceleration must vanish. There could be horizontal velocity, for example.
We discuss projectile motion in more than one dimension in just a moment.

The second observation is that the time it takes for the object to travel
from its maximum altitude to its initial altitude, denoted te in Figure 11.12,
is the same as the time taken to reach the maximum. In other words, the
projectile reaches its apex at te/2.

The third and final observation is that the velocity at t = te, which we
have denoted ve, has the same magnitude as the initial velocity v0, but the
opposite sign.

Before we look at projectile motion in more than one dimension, let’s
summarize the formulas we have derived in this section. The first two are
the only ones worth memorizing; the others can be derived from them.

Summary of Kinematics Equations Dealing with Constant Acceleration

v(t) = v0 + at,

∆x = v0t+ (1/2)at2,

x(t) = x0 +∆x = x0 + v0t+ (1/2)at2,

v0 = ∆x/t− (1/2)at,

t =
−v0 ±

√

v20 + 2a∆x

a
, (11.17)

a = 2
∆x− v0t

t2
.

Extending the ideas from the previous section into 2D or 3D is mostly
just a matter of switching to vector notation; x, v, and a become p, v, and
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a, respectively.31 Of course, the time t remains a scalar:

Equations for motion
under constant
acceleration, in
vector form

v(t) = v0 + ta,

∆p = v0t+ (t2/2)a, (11.18)

p(t) = p0 +∆p = p0 + tv0 + (t2/2)a, (11.19)

v0 = ∆p/t− (1/2)at,

a = 2
∆p− tv0

t2
.

Note that we didn’t make a vector version of Equation (11.17); we’ll get to
that in a moment.

This seemingly trivial change in notation is actually hiding two rather
deep facts. First, in the algebraic sense, the vector notation is really just
shorthand for sets of parallel scalar equations for x, y, and z. The important
point is that the three (Cartesian) coordinates are completely independent
of one another. For example, we can make calculations regarding y and
completely ignore the other dimensions, provided that the hypothesis of
constant acceleration is met for the object’s motion. If it were not for
the independence of the coordinates, we could not make this change in
notation. The second fact hidden in this notation is that, when we view the
vectors in the equations above as geometric rather than algebraic entities,
the particular coordinate system used to describe those vectors is irrelevant.
We don’t even need to specify one. Of course, this is a basic principle
of physics: Mother Nature doesn’t know what coordinate system you are
using.

We were able to leap from 1D to 3D mostly just by bolding a few letters
due to the independence of the coordinates. However, there is a bit more
to say about projectile motion in multiple dimensions because there are
situations where we need to consider the effects of all the coordinates at the
same time. One situation has already been alluded to by the lack of a vector
equation corresponding to Equation (11.17). In other words, how could we
solve for time t given a displacement ∆p, acceleration a, and initial velocity
v0? In one dimension, the projectile is “confined” and basically cannot help
but hitting the target implied by ∆x.32 But in two or more dimensions, the
situation is more complicated. The increase in complexity that attends the
increase in dimensions is analogous to computing the intersection of two
rays (see Section A.8). In 2D, any two rays must intersect unless they are
parallel, whereas in 3D, the possibility exists for skew rays, which are not
parallel but do not intersect.

31We use p, which is short for “position,” rather than x, to avoid the assumption that
the x-coordinate is special compared to y or z.

32With one exception—see Exercise 8.
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For example, earlier we computed how long it would take for a ball
bearing dropped from a great height to hit the sidewalk below, which is
a one-dimensional problem. The corresponding three-dimensional problem
would be to try to drop the ball bearing into a bucket which is free to move
around on the sidewalk. Let’s say that the bucket is off to our left. Our
initial velocity had better have some leftward component then, or else the
ball bearing won’t land in the bucket. Another indication that the multi-
dimensional case is more complicated than 1D is that a direct translation
of Equation (11.17) into vector form results in nonsensical operations of
taking the square root of a vector and dividing one vector by another.

The key to solving this problem is to realize that any horizontal changes
(either to the bucket’s position or the initial velocity of the ball bearing) do
not affect how long it takes the ball bearing to reach the sidewalk. This is
because the coordinates are independent from one another. The horizontal
velocity and acceleration do not interact with the vertical velocity and
acceleration. To be specific, let’s switch to our standard 3D coordinate
system, which has +y pointing up and x and z in the horizontal plane. The
time it takes the ball bearing to reach the altitude of the bucket depends
only on the equations having to do with y; the x- and z-coordinates can
be ignored for this purpose.33 In other words, calculating the time when a
projectile will reach a target is still a one-dimensional calculation—we just
need to chose which direction to use. We can apply Equation (11.17) to
solve for a time of impact t. But this solution is just a proposal. We know
that if the projectile were to hit the target, it would do so at this time. To
make sure we really did hit the target, we must plug this time of alleged
impact into Equation (11.19) to see where the projectile will be at that
location, and verify that the position of the projectile is within appropriate
tolerances.

Let’s talk a bit more about exactly what it means to “chose which
direction to use,” as was stated in the previous paragraph. In cases of simple
projectile motion, such as the ball-bearing example, where gravity is the
constant acceleration, the direction to choose is obvious: use the direction
of gravity. Furthermore, because coordinate systems are chosen such that
“up” is one of the cardinal axes, the process of solving a one-dimensional
problem in that direction is a trivial matter of plucking out the appropriate
Cartesian coordinate and discarding the others. In general, however, the
situation can be more complicated. But before we discuss the details of
the general case, there are a few more things we can say about this very
important and common special situation.

33This is all assuming ideal projectile motion, which ignores wind resistance. Of course
we can’t crash into an adjacent building, or else the horizontal motion certainly would
be relevant.
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v0 = pǈ 0 = (xǈ 0,yǈ0)
s0 = ̝v0̝

+x

+y

p(t)=(x(t), y(t))

d

h

ȅ

Figure 11.13
Projectile motion

To study projectile mo-
tion where acceleration is
solely due to gravity, which
is a constant and acts along
a cardinal axis, let’s estab-
lish a 2D coordinate space
where +y is up and x is
the horizontal axis. With-
out loss of generality we can
rotate our plane such that
it contains the initial veloc-
ity, and thus the entire tra-
jectory of the particle. We
choose +x in the horizontal
direction of the initial veloc-
ity. We also simplify things
by setting the origin at the object’s initial position. This notation (along
with a few other items that we’ll need in a moment) are illustrated in
Figure 11.13.

Reviewing the notation in Figure 11.13, we see that we can express the
position of the particle as a function of time either as p(t), or we can refer
to an individual coordinate with x(t) and y(t). Instantaneous velocity (not
shown on the diagram), can be denoted in vector form either as v(t) or
using derivative notation as ṗ(t). The scalar velocity components will be
denoted using derivative notation as ẋ(t) and ẏ(t). The initial position and
velocity will be denoted by adding a subscript 0 (ẏ0 is the initial vertical
velocity). We denote the acceleration due to gravity as either g or g.

Let’s state the equations for velocity and position using the notation
just described:

ṗ(t) = v0 + tg, ẋ(t) = ẋ0, ẏ(t) = ẏ0 + gt, (11.20)

p(t) = tv0 + (t2/2)g, x(t) = tẋ0, y(t) = tẏ0 + (1/2)gt2. (11.21)

The distances labeled h and d in Figure 11.13 are often of interest; they
are the apex height and horizontal travel distance, respectively. As dis-
cussed earlier in a one-dimensional context, the maximum height is reached
when all of the initial velocity in the upwards direction has been consumed
by gravity, in other words when ẏ(t) = 0. This occurs at time

Time to reach apexta = −ẏ0/g,
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and at this time, the height is equal to

Altitude at apex h = y(ta) = taẏ0 + (1/2)gt2a

= (−ẏ0/g)ẏ0 + (1/2)g(−ẏ0/g)2

= (−ẏ20/g) + (1/2)(ẏ20/g)

= −ẏ20/2g.

We stated earlier that the time for the object to come back down to its
initial height (which we denoted te) was twice the time needed to reach its
apex; however, at that time we merely appealed to a diagram. This time,
let’s verify it algebraically:

Time to return to
initial altitude.

y(t) = tẏ0 + (1/2)gt2,

0 = teẏ0 + (1/2)gt2e, (initial position is at the origin)

−(1/2)gt2e = teẏ0,

te = −2ẏ0/g. (divide by −(1/2)gte)

As expected, the flight time te is twice the time needed to reach the apex.
Now, let’s compute d, the horizontal distance traveled:

Horizontal travel
distance

d = x(te) = teẋ0 = −2ẏ0ẋ0/g.

Of course, te and d are based on the assumption that we want to know
when the projectile returns to its initial altitude. This is important when
launching a projectile from a flat ground plane. If the projectile isn’t
launched from the ground, or if the ground isn’t flat, then we’ll need to
consider where the parabola intersects the ground plane.

We often wish to specify the initial velocity in terms of an angle and
speed, rather than velocities along each axes. In other words, we wish to
use polar coordinates rather than Cartesian. As shown in Figure 11.13, we
denote the initial launch speed as s0 (which is equal to the magnitude of v0)
and the launch angle as θ. Converting the initial velocity from Cartesian
to polar coordinates (see Section 7.1.3 if you don’t remember how), we get

ẋ0 = s0 cos θ, ẏ0 = s0 sin θ.

Plugging this into our kinematics Equations (11.20) and (11.21), we get the
equations of motion for a projectile in terms of its launch angle and speed:

ẋ(t) = s0 cos θ, ẏ(t) = s0 sin θ + gt,

x(t) = ts0 cos θ, y(t) = ts0 sin θ + (1/2)gt2.
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We can also express te, h, and d in terms of s0 and θ:

Important quantities in
projectile motion,
expressed in terms of
launch angle and speed

ta = −ẏ0/g = −(s0 sin θ)/g = −s0(sin θ)/g,
te = −2ẏ0/g = −2(s0 sin θ)/g = −2s0(sin θ)/g,

d = −2ẏ0ẋ0/g = −2(s0 sin θ)(s0 cos θ)/g = −2s20(sin θ)(cos θ)/g,

h = −(1/2)ẏ20/g = −(1/2)(s0 sin θ)
2/g = −s20(sin2 θ)/ 2g.

These equations are highly practical because they directly capture the re-
lationship between the “user-friendly” quantities of launch speed, launch
angle, flight time, and flight distance.

At this point, let’s pause to make an interesting observation about the
relationship between the initial speed s0 and the horizontal distance trav-
eled d. It’s a quadratic relationship, meaning when we increase s0 by a
factor of k, we increase d by a factor of k2. It might seem more natural for
the relationship to be linear, meaning that d would increase by the same
factor k. We can understand the quadratic relationship by breaking the
initial velocity into its horizontal and vertical components, denoted earlier
as ẋ0 and ẏ0, respectively. It’s not difficult to see that increasing ẋ0 will
increase d by the same factor. Less obvious is that the same is true for ẏ0.
This is true because the duration that the object is airborne is proportional
to ẏ0. So if we increase the vertical velocity, we give the object more time
to travel. Thus any scale factor we apply to s will affect the distance twice,
once as a result of the increased ground velocity due to ẋ0, and again as
a result of the increased travel time due to ẏ0. This produces a quadratic
relationship between s and d.

Now let’s return to a question we put on hold from earlier: how might
we determine the point of impact for any arbitrary vectors ∆p, a, and v0?
We said before that the key was to “choose a direction” and solve a one-
dimensional problem in that direction. If a cardinal direction is chosen, we
just throw out the other coordinates. For an arbitrary direction, we project
the problem onto a line in that direction. Any component of displacement,
velocity, or acceleration perpendicular to that line is discarded during the
projection. We learned how to project onto a line and measure displace-
ment in a particular direction by using the dot product in Section 2.11. All
that is left is to select a direction.

Assuming the projectile hits the target, we will get the same value for
t no matter what direction we choose. But that doesn’t mean the choice is
irrelevant. For example, in the ball-bearing example, it would be a disaster
to chose the +x or +z directions, since there is no acceleration in either
of those directions and application of Equation (11.17) would result in a
division by zero. This suggests the strategy of simply using a itself as the
direction of projection. To do this, we dot each vector quantity with a,
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making the substitutions ∆x = ∆p · a, v = v · a, and a = a · a. Then
these scalar quantities can be plugged into Equation (11.17). Exercise 10
explores this in more detail.

11.7 The Integral

We have just showed that the total displacement of an object in a time
interval is equal to the area under the plot of the object’s velocity. We used
the example of constant acceleration, which has a simple graph, and the
area was easy to solve geometrically. We did not pursue in further generality
the limit argument that led us to the surprising equivalence, because this
special case has such compelling applications. Now we are ready to discuss
more general cases. The need to compute a “continuous summation,” where
the rate of growth is a known function, is a common concept in engineering
and science. The calculus tool used to compute these sums is the integral.

If you have already studied integral calculus and have a good intuition
about what the integral is used for, then you can safely skip ahead to
Section 11.8, when our focus returns to the subject of mechanics. However,
if you’ve never had integral calculus or if your intuition about the integral
is a bit shaky, keep reading.

There are two important ways of approaching the integral. The first
way is essentially to make the notion of “summing up many tiny elements”
a bit more precise and introduce some mathematical formalism. The other
way is to compare the integral to the derivative. It’s important to under-
stand both interpretations. The integral is a bit more difficult to grasp
than the derivative, but for reasons that become apparent later, it plays
a much greater role in physics simulations and many other areas of video
game programming. Understanding what the integral does is very impor-
tant, even if the vast assortment of pen-and-paper techniques to compute
integrals analytically is not very useful in our case, being replaced instead
by techniques of numerical integration.

Let’s turn our informal summation into mathematics notation, in which
we compute the area under the curve f(x) in the interval a ≤ x ≤ b. We
partition this interval into n slices, each having the width ∆x = (b− a)/n.
The ith rectangle will have a left-hand coordinate xi, a height equal to
f(xi), and an area of f(xi)∆x. Using summation notation, we add up all
these rectangles:

Area ≈
n
∑

i=1

f(xi)∆x.

The error in this approximation decreases as we increase the number
of slices n, and by now, unless you’re the new kid in town, you know that
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we need to take it to the limit one more time.34 By taking the limit as n
increases without bound and the slices become infinitesimally small, we get
our definition of the definite integral.

Definite Integral

∫ b

a

f(x) dx = lim
n→∞

n
∑

i=1

f(xi)∆x. (11.22)

In this equation,

∆x = (b− a)/n,

xi = a+ i∆x.

Equation (11.22) is read as “The integral from a to b of f(x) dx.” Some
people read dx as “with respect to x.” The great similarity in notation
between the left- and right-hand sides of Equation (11.22) is by design. Just
like with the derivative, the finite step size ∆x becomes the infinitesimal
dx. The sigma symbol

∑

used for discrete summations is replaced with
the symbol

∫

, which is an elongated S that Leibniz intended to stand for
“summation.”35 The a and b are known as the “limits of integration” and
define the starting and ending points. The function being integrated is
called the integrand.

An integral defined as a sum of “vertical slices” like this is known as a
Riemann integral. It’s the most common definition, but not the most gen-
eral. In fact, our definition is not quite as general as the typical definition
of a Riemann integral. The astute reader may notice that ∆x is a constant,
and could be pulled in front of the summation, making it ∆x

∑n
i=1 f(xi).

That works in this case because we are using a regular partition, and all the
slices are the same width. In general, however, this restriction is not neces-
sary. The traditional definition of the Riemann integral takes the limit as
the width of the largest slice goes to zero. Our definition is certainly pow-
erful enough for well-behaved functions we deal with, but more powerful
definitions are needed to integrate more esoteric functions. Furthermore,

34A shout out to all the Eagles fans out there who got that joke. The rest of you will
find out in the long run. Just take it easy, get over it, and you’ll get a peaceful, easy
feeling.

35Actually, “summierung” since he spoke German; we’re just lucky it works in English,
too.
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you may wonder why we calculate the area of the rectangle by using the
function value at the left-hand side of the rectangle, instead of, say the
center point. Surely that would be more accurate. For theoretical pur-
poses of defining the Riemann integral, these choices become identical in
the limit and so we are free to make any choice we want. However, when
approximating integrals numerically, it is useful to consider such options.

11.7.1 Examples of Integrals

At this point, we have introduced just enough notation and terminology
that we can look at some examples of integrals. We would like to do this
before going any deeper into the mathematical details. Many applications
of the integral in video game programming (and many other engineering
disciplines) are more directly thought of not as an area under the curve, but
as a “running total.” Think of an electric meter. At any given time, the
meter is increasing at a rate that is determined by the amount of electricity
being used at that instant. The meter is a continuous running total, and
we say that it integrates the consumption rate. When the air-conditioner
kicks in, the consumption rate increases, and the meter counts up faster;
at night, when all the lights are out and the windows are open because
the weather is nice outside, the consumption is lowest and the meter turns
slowly. The consumption rate is a function that varies with time and is the
function being integrating. A definite integral of this function between two
time values a and b would give us the total amount of energy consumed
during that time interval:

Calculating electricity
usage

(

Total energy
used

)

=

∫ End time

Start time

(

Instantaneous
consumption rate

)

dt. (11.23)

Although it’s not important for our discussion here, we might as well
mention what the proper physics terms and units are. Going back to our
dimensional analysis from Section 11.2, energy is a derived quantity; it is the
product of force and length. Chapter 12 shows that force is itself a derived
quantity that has units ML/T 2 and is measured in the SI system using the
Newton (N). Thus, energy has abstract units ML2/T 2, a combination of
fundamental units that truly boggles the mind. In the SI system, energy
is measured in Joules (J), and 1 J = 1 N m = 1 kg m2/s2. The proper
physics term for “rate of energy transfer per unit time” is power, and the
SI unit for power is the watt (W), which is equal to one joule per second.

Denoting the total energy consumption as E and the instantaneous
consumption rate as P (t), we can rewrite Equation (11.23) as

Calculating electricity
usage, this time with

more dignified notation

E =

∫ End time

Start time

P (t) dt. (11.24)
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Although the details of how to quantify energy are not core to our discus-
sion, there is one very important observation to make: Equation (11.24)
is dimensionally consistent. On the left, the quantity measured is energy,
which in the SI system is measured in joules. But on the right, the con-
sumption rate is measured in watts. How can this be? Remember that the
integral represents a summation, and the infinitesimal items being summed
are the product of the integrand (in this case, P (t)) and a infinitesimal bit of
the domain of integration (in this case, dt). In terms of a Riemann integral,
the former determines the height of each slice, and the latter determines its
width. Here, dt represents an infinitesimally small step in time, measured
in seconds, so the units on the right are W × s = (J/s) × s = J. Thus, the
left- and right-hand sides of Equation (11.24) are measured in joules.

We can extend this example by calculating the electricity bill, rather
than just the total usage. Of course, if the price for energy is fixed, then we
simply multiply the consumption by the price. But what if the price varied
on a moment-by-moment basis? (This shouldn’t be too hard to imagine
nowadays.) In this case, we would be integrating the cost rather than
the energy. We determine how to calculate the cost of a single interval
of duration dt (a “differential” slice of time) and then sum over all the
intervals:

Calculating electricity
cost

(

Total
cost

)

=

∫ End time

Start time

RateOfExpendature(t) dt

=

∫ End time

Start time

ConsumptionRate(t) Price(t) dt.

Moving on to another example of the integral, imagine a man using
a sewing machine with a foot pedal that has variable-speed response. If
he depresses the pedal just a bit, the sewing machine advances the fabric
slowly, and if he “puts the pedal to the metal,” the sewing machine moves at
its fastest rate. Now, imagine his daughter sitting under the table watching
her father sew. She can only see the pedal, but not the sewing machine
or the fabric. The only information available to the girl is the amount of
depression of the pedal, and we assume that, based on her knowledge of
sewing machines and foot pedals, she can infer a function f(t) that describes
the rate that the fabric is moving at time t. The girl watches the pedal
for a minute or so, and then her father stops and asks her, “How far have
I traveled along the fabric?” Let’s say this girl is particularly bright and
knows some integral calculus, so she integrates the function f(t), to yield
the total amount of fabric that has passed under the needle. As we see
later, this sort of question is actually quite close to the types of mechanics
problems that are solved with integrals in video games!
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One last helpful analogy: think of a derivative as a speedometer that
tells you an instantaneous rate of change, and the integral as an odometer
describing the continuous summation of this rate of change. Notice that
the reading on the speedometer does not depend on that road trip last
summer, or even what happened two seconds ago. The speedometer reading
is only affected by what is happening at that instant. The odometer, on
the other hand, is a running tally, and the entire history since the car was
first driven off the lot is included in its reading. Our girl under the sewing
table must pay attention to the pedal the entire time if she is going to make
an accurate estimate of the total amount of fabric consumed at any given
time.

Many types of engineering problems solved with integrals are couched in
terms of continuous summations such as these: What is the total displace-
ment, when I know the velocity function v(t)? What is the total amount
of water in the bathtub, given the history of the deflection angle of the
faucet? How much fuel is remaining, given the burn rate as a function of
time? To set up the integral for problems like these, we can first imagine
approximating the value we wish to calculate by using a finite sum (

∑

)
and a finite step size (∆x). We then use a limit argument to replace the
∑

with a
∫

, and the ∆x with a dx (review Equation (11.22)). This is the
essence of what is meant by a “continuous summation.”

Of course, we can use the integral to calculate the area under a curve, as
calculus textbooks are so fond of pointing out. As we sweep a line from left
to right, the function being integrated determines the rate at which we are
accumulating area. Where the function has a large value, our total area is
adding up more rapidly, because the “slices” in that area are tall. However,
from the viewpoint of a video game programmer, calculus textbooks seem
to focus on this particular application of the integral in great disproportion
to its application to real world problems.

11.7.2 The Relationship between the Derivative
and the Integral

Let’s see how we calculate integrals now that the purpose of an integral is
(we hope) firmly grounded in your mind. Looking at the definition Equa-
tion (11.22), one wonders how in the world you can evaluate this limit. For
the derivative, we were able to manipulate the expression being taken to
the limit such that we could simply substitute ∆t = 0, but this doesn’t
seem possible in Equation (11.22). As it turns out, Equation (11.22) is
mostly useful as a way to recognize when the problem you have is an in-
tegral, and is helpful to properly turn that problem into integral notation.
It’s also used when we approximate integrals numerically, where instead
of taking the slice width down to zero, we just stop at some small but
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finite ∆x. But this definition is not used to solve integrals with pen and
paper.

Let’s poke around with Equation (11.15), the integral we were able
to solve through a simple geometric argument. Since this is a function
that describes position as a function of time, we should be able to take its
derivative and get a function describing the velocity function v(t), and then
take the derivative again to get the acceleration function a(t). Let’s make
sure this is true:

x(t) = x0 + v0t+ (1/2)at2, (11.25)

ẋ(t) = v(t) = v0 + at, (taking the derivative)

ẍ(t) = v̇(t) = a(t) = a. (taking the derivative again)

OK, that turned out as expected. No surprises here, but it’s comforting
to confirm that math and physics do actually work. We knew that the
derivative of the position function is the velocity function. The question is:
why didn’t we use this knowledge earlier? Remember that we knew v(t) and
were trying to figure out what x(t) was. We were able to get at the answer
through a graphical argument, but it seems like there may be another way.
Instead of looking for a function to calculate the area under the curve,
we could have instead looked for a position function whose derivative was
the velocity function we already knew. Such a function is known as an
antiderivative.

Let’s investigate this idea of “integration as an antiderivative” a bit fur-
ther. To do so, essentially all we need to do is apply the rules of differenti-
ation, including the small subset we learned in Section 11.4.5, in reverse.36

Assume that we start with the velocity function v(t) = v0 + at, and we
are looking for an x(t) whose derivative is v(t). Pretend for the moment
that you don’t already know the answer. To find x(t), we break up v(t)
into its terms (using the sum rule in reverse), then take the antiderivative
of each term (using the power rule in reverse). Remember that the power
rule of differentiation basically says, “Multiply by the exponent, and then
decrease the exponent by one.” So the power rule for antidifferentiation
is “Increase the exponent by one, and then divide by the new exponent.”
Applying these two rules to v0 + at leads us to write

v(t) = ẋ(t) = v0 + at,

x(t) = v0t+ (1/2)at2.

But compare this result to Equation (11.25); you’ll notice that it’s missing
an x0 term. What happened? There is a certain amount of “information

36This statement applies more generally than is usually acknowledged. For example, if
you’ve had some calculus, notice that the technique of integration known as “integration
by parts” is actually just the product rule of differentiation in reverse!
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loss” that occurs when we take the derivative. If we know how fast we were
going, we can always figure out how far we traveled. However, we cannot
know where we ended up unless we know where we started. This extra
term x0 is the “starting point” that the derivative throws out, because any
constant value has a derivative of zero. For this reason, it’s not entirely
accurate to refer to “the” antiderivative of v(t), since there is not a unique
function whose derivative is v(t), but infinitely many. All the different
antiderivatives are really just copies of one another, shifted on the graph
vertically according to their particular value of x0.

We’ve stated in a general way that there is some relationship between
the (definite) integral and the antiderivative. So we know that in a certain
sense the operations of integration and differentiation are inverse opera-
tions. The theorem of calculus that summarizes these relationships pre-
cisely goes by an important-sounding name: the fundamental theorem of
calculus. The theorem actually consists of two parts. (Sources don’t always
list them in the same order.)

The first part shows how a definite integral may be computed by using
an antiderivative.

Fundamental Theorem of Calculus, Part 1

Let f(t) = F ′(t). (In other words, F (t) is any antiderivative of f(t).) Then

the definite integral
∫ b

a
f(x) dx can be computed as

∫ b

a

f(t) dx = F (b)− F (a). (11.26)

Equation (11.26) can seem a bit mystifying in abstract terms, but when
we replace the generic F (t) and f(t) with notation specific to position and
velocity, the first part of the fundamental theorem of calculus seems to state
the obvious:

∫ b

a

v(t) dt = x(b)− x(a).

This says that the cumulative effect of velocity from time a to time b (the
net displacement during that interval), is equal to the difference in the
position at time b and the position at time a.

Notice how any antiderivative will work—it doesn’t matter which one.
That’s because the constant offset x0 inside of x(t) cancels itself out when
we do the subtraction x(b)−x(a). To see this, consider the metaphor of the
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electric meter. You can think of the raw numeric readout on the meter as
an antiderivative of your consumption rate. The readings on the dial at the
beginning and end of the month correspond to F (a) and F (b), respectively.
Note that the raw numeric value of the reading is mostly irrelevant. It could
contain data that was influenced by somebody who lived in the house before
you. The difference between the two readings, however, is quite relevant.
It corresponds to the definite integral, and will determine how much your
electric bill is for the month.

Or consider the odometer on a car. Let’s say you wanted to measure
the length of a particular journey. To do so, at the start of the trip you
would reach over to the dedicated trip odometer that every car has had
since about 1980 and press the reset button, and then at the end of the trip
you just read off the value of the trip odometer. Then you would rejoice in
not having to exercise your brain one iota or utilize a single principle from
calculus. But what if the trip odometer was broken and all you had was
the master odometer? This cannot be easily reset.37 In this case, armed
with the calculus knowledge you gleaned from this book (or maybe just
common sense you could have picked up anywhere), you would subtract the
odometer reading at the end of the journey from the reading at the start of
the journey to obtain the distance of the journey. The actual readings of the
odometer are F (a) and F (b), the values of the antiderivative. Just as with
the electric meter, the raw values are not useful38—only their difference
matters.

The first part of the fundamental theorem of calculus is very important
because it’s how we actually compute integrals, at least with a pen and
paper. Remember that we defined the definite integral as a sum of a large
number of slices in the limit as the number of slices approached infinity and
the slices became infinitesimally thin. This definition is not amenable to
algebraic manipulation, like the definition of the derivative was. The first
part of the fundamental theorem of calculus says that although we may
formulate problems using the definition of the integral, we compute definite
integrals by finding an antiderivative of the function being integrated (with
pen-and-paper, at least).

The second part of the fundamental theorem of calculus is the flip side of
the first part. The first part said that definite integrals can be calculated by
using antiderivatives; the second part shows how to define an antiderivative
in terms of a definite integral.

37Nor, as we learned from Ferris Bueller’s Day Off, can it be easily rolled back.
38At least not for this purpose. When the timing chain breaks 5 miles past your

warranty expiration, those raw values are very important.
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Fundamental Theorem of Calculus, Part 2

Let F (t) be defined by

F (t) =

∫ t

t0

f(u) du. (11.27)

Then the derivative of F (t) is given by

F ′(t) = f(t).

It can take some effort to decipher this terse elegance, so let’s restate it
in English. We start with a given function f . We then form a new func-
tion F , whose value is determined by taking the definite integral of f from
any arbitrary starting point t0, and an ending point t. Note that the ar-
gument to F is used to define when to stop the integration of f . The
variable u is a notational dummy variable of integration; it is not seen
outside of the integral. The second fundamental theorem of calculus says
that if we take the derivative of this new function F , the result is our orig-
inal function f . In this sense, integration and differentiation are inverse
operations.

It can be difficult to grasp the reason why t ends up in what may seem
to be an odd location, defining the upper limit of the integration, but that
is the essential point. The second theorem is saying that a function defined
as an integral such as Equation (11.27) will grow at a rate determined by
the integrand. If we adjust the upper limit of integration a tiny bit, the
change in the result of the overall sum will be proportional to the value
of integrand. Thinking of an integral as calculating an area, the upper
limit of integration, t, determines the right-hand boundary. If we push this
boundary to the right a bit, the increase in the amount of area will depend
on the height of the function at t.

Let’s rewrite the theorem using notation particular to displacements
and velocities:

x(t) =

∫ t

t0

v(u) du,

x′(t) = v(t).

Now we see that, to define the displacement x(t) in terms of v(t), there’s
really only one logical place we could put t. The velocity before t is relevant
to the displacement that had occurred by time t, and the history after t
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is not relevant. We use t to define the stopping point of the time range of
velocities to integrate.

Where does t0 come from? It is an arbitrary starting point, reflecting
a degree of uncertainty (or freedom) very similar to the unknown (or irrel-
evant) starting position x0. We can pick t0 to be whatever we want our
measurements to be relative to. The value of t0 defines the point where
x(t) = 0. It’s probably more precise to say that x(t) describes our relative
position. Relative to where? Wherever we were at time t0.

Now we’re ready to clear up the sometimes confusing relationship be-
tween the definite and indefinite integral. The adjective “definite” in “def-
inite integral” comes from the fact that we have specified the limits of
integration. Because of this, the “answer” to a definite integral can be a
single number. When we evaluate a definite integral, such as

∫ tend

tstart

v(t) dt,

the t gets “integrated out” and does not appear in the result. The meaning
of the above is “the continuous summation of the velocity during the time
interval tstart to tend.” It wouldn’t make sense for the result to contain t—
which t would we be talking about? Thus, if all the other variables in v(t)
are known, and the limits tstart and tend are known, we can boil down the
answer to a simple number. If, however, v(t) contains some other unknown
quantities (perhaps some variable density ρ), or the limits of integration
themselves are parameters, then the result will be function in terms of
those variables. In any case, in a definite integral the t will not be part of
the result. If you’re a programmer, then you can think of the t as a “local
variable” to the definite integral.

An indefinite integral, on the other hand, since it is an antiderivative,
will have an “answer” that is function, not a single number. It is denoted
simply by dropping the limits of integration, such as

∫

v(t) dt.

Again, we stress that while this may look very similar to the notation used
to denote a definite integral, its meaning is actually quite different. The
result of evaluating this integral should not be a number, but an antideriva-
tive of v(t); that is, we should get a function of t. Furthermore, a proper
result will have some arbitrary constant added, known as the constant of in-
tegration, which reminds us that there is a whole family of functions whose
derivative is v(t). Thus, the meaning of the indefinite integral above is
“some function that expresses the continuous summation of the velocity as
a function of time, from some unknown starting point.” We have been de-
noting this constant offset as x0, but in a more general setting it is typically
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written with a capital C. For example,

Constant of integration

∫

v(t) dt = x(t) + x0 (displacement and velocity notation),

∫

f(t) dt = F (t) + C (common abstract notation).

We do not need to write the limits of integration in an indefinite integral
because they are implicit. As we saw in the second part of the fundamental
theorem of calculus, the interpretation of an antiderivative in terms of a
definite integral is to use the argument of the antiderivative as the upper
limit of the range of integration. In other words, an indefinite integral is
simply a definite integral with implied limits of integration of the form in
Equation (11.27). The degree of freedom in Equation (11.27) connecting
the set of possible antiderivatives was captured by the unknown lower limit
of integration (t0). In an indefinite integral we don’t write the limits of
integration, and instead the uncertainty is contained in the constant of
integration (x0 or C). We can summarize this (written using both naming
schemes) by

The indefinite integral

∫

v(t) dt =

∫ t

t0

v(u) du = x(t) + x0, x0 = −x(t0),

∫

f(t) dt =

∫ t

t0

v(u) du = F (t) + C, C = −F (t0).

11.7.3 Summary of Calculus

We have completed our main presentation of calculus in this book, aside
from a few small bits that come up in later sections. Our goal has been
to take a reader with absolutely no knowledge of calculus to a point where
that reader understands the big picture of what derivatives and integrals
are used for. We have whizzed right past the many, many details and
techniques that arise in practical situations—these details fill up thousands
of pages in calculus textbooks.

Let’s summarize the important points that you need to know about
calculus to fully utilize the remainder of this book.

• The basic purpose of a derivative is to measure a rate of change.

• The derivative is defined by using a limit argument. We form an
approximation of the result, and then watch what happens as we take
better and better approximations in the limit as our error approaches
zero.
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• We presented just a few pen-and-paper rules for differentiation. Dif-
ferentiation is a linear operator, which allows us to differentiate sums.
The power rule tells us how to evaluate expressions of the form d

dt t
n.

Together, these rules allow us to take derivatives of polynomials. We
also presented the derivatives for the sine, cosine, and exponential
function. The chain rule tells us how to differentiate a function of the
form f(g(t)).

• An integral is a “continuous summation,” or “running total.” These
sums are also equivalent to the area under the graph of the function
being summed.

• A Riemann integral defines an integral using a limit argument. We
take the sum of a large number of small elements, which in general
is an approximation to the true sum when the number of elements is
finite. The true sum is obtained by considering what happens as we
increase the number of elements to infinity, causing the error in our
approximation to vanish.

• Riemann integrals are usually not directly solvable in the same way
that derivatives are. They are used to recognize when the problem
we are solving is an integral, and to help set up the integral properly.
It’s also how we solve them numerically (we have not yet discussed
the details of how to do this).

• The fundamental theorem of calculus says that integration and dif-
ferentiation are inverse operations. On paper, definite integrals are
computed by looking for an antiderivative, not by evaluating the Rie-
mann integral at the limit. A function whose argument defines the
upper limit of integration will be an antiderivative of the integrand.

• An indefinite integral is a function that is an antiderivative of the
integrand. A definite integral produces a number representing the
continuous summation of the integrand over the interval identified
by the limits of integration. A definite integral can be calculated by
evaluating any antiderivative at the starting and ending points, and
taking the difference between these two values (by subtracting the
value at the start of the interval from the value at the end of the
interval). An indefinite integral is actually a definite integral where
the limits of integration are implied.
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11.8 Uniform Circular Motion

Enough calculus—let’s get back to physics. This section studies the motion
of a particle moving in a circle at a constant speed. We study the motion
of a particle because many physics calculations can be simplified by repre-
senting a rigid body as a point mass at its so-called center of mass. Since
a circular path is inherently restricted to a plane, Section 11.8.1 begins our
investigation in two dimensions. After establishing the basic relations, Sec-
tion 11.8.2 shows how to apply these in a world where the plane of orbit is
arbitrarily oriented in three dimensions.

11.8.1 Uniform Circular Motion in the Plane

A particle traveling in a circle with constant speed does not have constant
velocity; if it did, it would travel in a straight line. Since the object’s ve-
locity is changing over time, it must be under some sort of acceleration.
Let’s see if we can determine what that is. Consider an object moving at
constant speed s in a circular path of radius r. To make our calculations
easier, and without loss of generality, we establish a two-dimensional refer-
ence frame that lies in the plane of motion and has its origin at the center
of the circle. Remember that the instantaneous velocity v(t) of a particle
is always tangent to its trajectory, so the velocity vector at any given point
will always be tangent to the circle at that point. Also, from the definition
of speed, we know that ‖v(t)‖ = s.

v(t)

p(t + Ǣt)

v(t + Ǣt)

p(t)

p(t + Ǣt)
Ǣp = p(t + Ǣt) ʡ p(t)

r

p(t)

v(t + Ǣt)

Ǣv = v(t + Ǣt) ʡ v(t)

ǢЅ

ǢЅ

rǢЅ

v(t)

Figure 11.14. Uniform circular motion
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On the left side of Figure 11.14 we see a particle moving in uniform
circular motion during a finite time step ∆t. The figure examines the state
of the particle at time t and also at a later time t+∆t.

Let’s consider instantaneous velocity and acceleration, starting with
a geometric tack. Examine the triangles on the right-hand side of Fig-
ure 11.14. The triangle on the top shows the change in position over some
time interval ∆t, as a result of the angular change ∆θ. It is an isosceles
triangle in which the legs have length r, the radius of the circle, and the
base is ∆p, which is the net change in position during the interval. The
bottom triangle depicts the change in velocity over this same interval, and
it is also an isosceles triangle. The legs of the bottom triangle have length
s, since we are hypothesizing that the velocity has constant magnitude,
and the base is ∆v. The two triangles are similar, since both triangles are
isosceles with the included angle ∆θ, so we can write

‖∆v‖
s

=
‖∆p‖
r

.

In general, the length of ∆p measures a “shortcut” through the circle,
rather than the actual distance traveled around the perimeter of the circle,
which is r∆θ = s∆t. But consider what happens as ∆t and ∆θ become
very small, as shown in Figure 11.15.

Figure 11.15
A small rotation.

Notice that as ∆θ grows smaller and smaller, the length of ∆p ap-
proaches the true distance, and in the limit, the two distances are equal:

lim
∆t→0

‖∆p‖ = s∆t.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-036.jpg&w=103&h=157
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Plugging this into our result from similar triangles, we have

‖∆v‖
s

=
‖∆p‖
r

,

lim
∆t→0

‖∆v‖
s

=
s∆t

r
,

lim
∆t→0

‖∆v‖
∆t

=
s2

r
. (11.28)

The left-hand side of Equation (11.28) is a change in velocity over an in-
terval as the length of the interval approaches zero. This is the defini-
tion of instantaneous acceleration! Thus the magnitude of the acceleration
is s2/r.

Of course, acceleration is a vector quantity, and all we have determined
so far is its (constant) magnitude. What is the direction? To see this, com-
pare the vectors p(t) and ∆v in Figure 11.15. Notice that they point in
opposite directions. In fact, in the limit as ∆θ goes to zero, they point in ex-
actly the opposite direction. That is, the acceleration is always towards the
center of the circle, which is why it is called centripetal (“center-seeking”)
acceleration.

Velocity and Acceleration of Uniform Circular Motion

When an object moves with constant speed s in a circular path with radius
r, the velocity v is tangent to the circle. The acceleration at any instant is
pointed towards the center of the circle and has magnitude

a = s2/r. (11.29)

By combining some elementary geometry with some ideas of calculus,
we have obtained the most important facts about uniform circular motion.
A slightly different combination of geometry and calculus will yield the
actual kinematics equations. To this end, it will be helpful to refer to θ(t),
the angle that the vector p makes with with +x axis using the traditional
mathematical conventions, as shown in Figure 11.16.

Previously, we were concerned with the ∆θ, the change in this angle,
but now we consider its value as a function of time. We denote the initial
angle as θ(0) = θ0. We also define the angular frequency as ω = s/r, which
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r

p

v

Ѕ

Figure 11.16
The position of the particle can be
identified by the angle θ

is measured in radians per second.39 Thus, we can express the angle at any
given time as

θ(t) = θ0 + ωt.

We’ve seen the parametric equation for a circle before in Section 9.1, so we

Angle as a function of
time

know how to express the kinematics equations for the particle’s position in
terms of the radius r and the angle θ(t), as

Position as a function of
time

x(t) = r cos(θ(t)) = r cos(θ0 + ωt),

y(t) = r sin(θ(t)) = r sin(θ0 + ωt).

Since the velocity function is the derivative of the position function, we
can differentiate these equations to obtain the velocity equations. Luckily,
we learned the derivatives of the sine and cosine functions in Section 11.4.6
and the chain rule in Section 11.4.7. Differentiating gives us

Velocity as a function of
time

ẋ(t) =
d

dt
(r cos(θ0 + ωt)) = −rω sin(θ0 + ωt),

ẏ(t) =
d

dt
(r sin(θ0 + ωt)) = rω cos(θ0 + ωt).

39Omega (ω) is the traditional letter for angular frequency. To see where the cal-
culation s/r comes from, consider that the circumference of the circle is 2πr, and this
distance is traversed at a speed of s. Therefore the angular frequency is 2πr/s revolu-
tions per second. But one revolution is equal to 2π radians, so the factor of 2π cancels
out. This is an example of why the use of radians is often so convenient (provided we
are working symbolically and aren’t concerned with the numeric values of any angles).
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Differentiating once more to get the acceleration, we have

Acceleration as a
function of time

ẍ(t) =
d

dt
(−rω sin(θ0 + ωt)) = −rω2 cos(θ0 + ωt),

ÿ(t) =
d

dt
(rω cos(θ0 + ωt)) = −rω2 sin(θ0 + ωt).

These results agree with our earlier findings. Comparing the acceleration
functions to the position, we confirm that they do indeed point in opposite
directions. Furthermore, recalling that ω = s/r, we note that, as predicted,
acceleration has a length of s2/r.

Sometimes ω is more immediately accessible than s. In these situations,
it’s useful to be able to express the magnitude of the centripetal acceleration
just in terms of ω and r. Solving ω = s/r for s gives us s = rω. Plugging
this in to Equation (11.29), we have

Acceleration in terms of
angular speed ω and

radius r
a = s2/r = (rω)2/r = rω2. (11.30)

Let’s work through an interesting example, the results of which will be
useful in later sections. All of us are aboard a spinning centrifuge right
now: Earth! Earth’s rotation creates an apparent centrifugal force, which
tends to throw us away from the Earth’s center. Luckily, Earth’s gravity is
strong enough to keep us here. Given that Earth’s mean radius is 6,371 km,
what is the centripetal acceleration experienced at the equator?

To answer this question, we use Equation (11.30). The radius was given
as r = 6, 371 km, and the rotation rate is ω = 2π/day.

Centripetal acceleration
at the equator due to

Earth’s rotation
a = rω2 = (6 371 km)(2π/day)2 = (6.371× 106 m)(2π/(86 400 s))2

≈ (6.371× 106 m)(5.2885× 10−9 s−2) ≈ 0.03369 m/s2.

What about the magnitude of the centripetal acceleration at the poles? Is
it the same? Keep this question in mind; we return to it in Section 12.2.1.

11.8.2 Uniform Circular Motion in Three Dimensions

So far, we’ve essentially been working in two dimensions, operating “in the
plane” and not concerning ourselves with how this plane might be oriented
in three dimensions. Now let us consider the more general case. We wish
to describe the position, velocity, and acceleration of the particle as three-
dimensional vectors, where the axis of rotation (which is perpendicular to
the plane containing the circular path) is arbitrarily oriented.

Suppose a particle at position p is moving in a circular path around
point o. Since there are many different circular paths that contain both o

and p, we must also specify an axis of rotation perpendicular to the plane.
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As we’ve done in earlier chapters (see Section 5.1.3 and Section 8.4), we
describe the direction of the axis by using a unit vector n̂, and, as before,
the sign of n̂ tells us which direction is considered positive rotation using
the left-hand rule. The scalar ω defines the rate of rotation, in radians per
unit time. The question we want to answer is this: What is the velocity v

of the particle at that instant?

Figure 11.17
Uniform circular motion in three dimensions

Let’s review what we already
know. First of all, from the rela-
tionship between speed and an-
gular frequency observed earlier,
we know that the speed s = ‖v‖
must be ωr, where r is the radius
of the circle, or the distance be-
tween o and p. Second, v must
be perpendicular to n̂, or else the
particle will stray from the plane
containing the circular path, and
v must also be tangent to this
path. Thus, we know both the
magnitude and direction of the
velocity v, we just need a way
to express it algebraically. To
do so, let’s introduce the vector
r = p − o, the radial vector from o to p. Note that r lies in the plane
of rotation and has a constant length, the radius of the circular path, as
shown in Figure 11.17.

Now, v is perpendicular to both r (since it’s tangent to the path) and n̂

(since it lies in the plane of orbit). You may remember that we have a tool
that can compute a vector that is perpendicular to two other given vectors:
the cross product. Perhaps n̂×r = v? The direction works out correctly,40

but let’s consider the length. Remember from Section 2.12.2 that the length
of the cross product is equal to the product of the magnitudes of the inputs,
times the sine of the angle between the two vectors. Well n̂ is a unit vector
by assumption, and n̂ and r are perpendicular, so the sine of the angle
between them is unity. Thus the length of the cross product n̂×r is simply
‖r‖. The correct speed is ωr = ω‖r‖, so we are just missing a factor of ω.

40Don’t just trust Figure 11.17, use your left hand to verify this. Your thumb is
the first argument, n̂; index finger is the second argument, r; and middle finger is the
result, v. Look at your hand with your thumb pointing at you (it’s the axis of rotation,
remember), and rotate your hand in the direction of v (your middle finger), performing
the rotation about your thumb. (The particle is at the end of your index finger.) Your
hand will rotate clockwise from your perspective, which is the definition of positive
rotation according to the left-hand rule.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-12&iName=master.img-038.jpg&w=171&h=142
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Putting this all together, we have the formula for the velocity of a
particle with radial vector r = p − o rotating about the axis n̂ at an
angular rate of ω radians per unit time:

Calculating linear point
velocity from angular

velocity
v = ωn̂× r.

As we discussed in Section 8.4, angular velocity is often described in expo-
nential map form by a single vector ωωω = ωn̂ (note the boldface ωωω to indicate
a vector quantity). In this case, the formula is even simpler.

Calculating Linear Point Velocity from Angular Velocity

v = ωωω × r. (11.31)

Now let’s consider the opposite problem. Assume we know p and v, and
we wish the measure the angular velocity relative to o. Again, we can use
the cross product, but this time, we need a division to get the right length:

Angular velocity of a
particle relative to an

arbitrary point

ωωω =
r× v

‖r‖2
. (11.32)

To understand the division by ‖r‖2, consider two points on a rigid disk
that is rotating around its center. Assume that angular velocity is measured
relative to this center. One point has the radial vector r, and another point
has a radial vector kr, which is in the same direction from the center, but at
a distance scaled by the factor k. These two points (indeed, all the points on
the disk) should have the same angular velocity. Thus one division by ‖r‖
is necessary to compensate for the change in r as we adjust the radius. The
extra division is necessary because the outer points have a higher velocity;
if we move on the disk by scaling r by k, the new point will have a velocity
that also is scaled by k.

Although thus far we have been assuming that p is actually rotating
about o, it may not be. It might be rotating about some other point,
or moving in a straight line. However, we can still calculate the angular
velocity of p relative to o. Essentially, what Equation (11.32) tells us is
what the angular velocity would be if p were indeed orbiting around o, in
the plane containing both r and v. The axis of rotation, which is parallel
to ωωω, is perpendicular to this plane. Actually, there is one slight wrinkle—r

and v might not be perpendicular, which, of course, they would be if the
particle were orbiting around o. The cross product in Equation (11.32)
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essentially discards any velocity parallel to r; only velocity perpendicular
to r contributes to the results.

If the particle p is indeed orbiting o at constant speed, then the an-
gular velocity computed by Equation (11.32) will be constant. In general,
however, the angular velocity measured relative to any arbitrary point is
not constant. For example, consider a particle moving with constant linear
velocity. The angular velocity measured relative to a stationary point o

will grow as the particle approaches o, reaches a maximum at the point
of closest approach, and then decreases. Furthermore, even if the particle
is moving in an orbital path, the angular velocity will be a constant only
when measured relative to the center of the orbit.

One extremely important example of orbital motion in 3D is a particle
attached to a rigid body rotating about an axis. Let’s choose o to be at
the intersection of the axis of rotation and the plane that contains the cir-
cular orbit of p; This causes r to be perpendicular to the axis of rotation.
Under these assumptions, the orbital angular velocity computed by Equa-
tion (11.32) is the same for every particle, and it’s also the same as the spin
angular velocity of the rigid body. We have more to say about this in the
next chapter.

We don’t often need to calculate angular velocity of a point relative to
some point that isn’t the center of the orbit. (However, Equation (11.31)
is used frequently to compute a linear point velocity based on its orbital
velocity.) So why do we talk about this? Because the computation is similar
to the way we measure torque (see Section 12.5) for a force applied at an
arbitrary direction at an arbitrary location.

11.9 Exercises

(Answers on page 781.)

1. The Pascal is a unit of measurement for pressure, defined as one Newton
per square meter. One Pascal is equal to how many psi? (The psi is one
pound of force per square inch.)

2. The 1D position of a particle is described piecewise by

x(t) =



















2t− t2 0 ≤ t < 2,

0 2 ≤ t < 4,

sin(πt) 4 ≤ t < 7,

7− t 7 ≤ t.

Plot a graph of the particle’s motion.
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3. What is the average velocity of the particle from Exercise 2, over the fol-
lowing intervals?

(a) t = 0 . . . 1?

(b) t = 1 . . . 2?

(c) t = 0 . . . 2?

(d) t = 5.5 . . . 6.5?

(e) t = 0 . . . 9?

4. Write a similar piece-wise function v(t) that describes the velocity of the
the particle from Exercise 2 at time t. In this case, the velocity is not
defined at the “junctions” between the pieces, so only worry about what
happens in the middle of each piece. (This is unfortunately one of those
finer points we had to skip over.)

5. What is the instantaneous velocity of the particle from Exercise 2 at the
following times?

(a) t = 0.1

(b) t = 1.0

(c) t = 1.9

(d) t = 4.1

(e) t = 5

(f) t = 6.5

(g) t = 8

(h) t = 9

6. Write a similar piece-wise function a(t) that describes the acceleration of
the particle from Exercise 2 at time t. Once again, don’t worry about what
happens at the junction points.

7. What is the particle’s acceleration at the following times?

(a) t = 0.1

(b) t = 1.0

(c) t = 1.9

(d) t = 4.1

(e) t = 5

(f) t = 6.5

(g) t = 8

(h) t = 9

8. What physical situation is signified by a negative discriminant in Equa-
tion (11.16), resulting in complex solutions? What if the discriminant is
zero and there is only one solution?
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9. A projectile is launched with an initial speed of 150 ft/s, with an angle of
inclination of 40o from the initial position p0 = (0 ft, 10 ft).

(a) What is the initial velocity in vector form?

(b) At what time will the projectile reach its apex?

(c) What are the coordinates of the projectile at the apex?

(d) How long will it take the projectile to come back to an altitude of
y = 10?

(e) What will the horizontal displacement be at this time?

10. At the end of our projectile discussion in Section 11.6, we posed the problem
of solving for the time of intersection when the acceleration is an arbitrary
vector a. Take Equation (11.18) and dot both sides with a, and then solve
for t. (Use the quadratic formula, as before.)

11. Complex exponentials such as eix (were i is the imaginary number such
that i2 = −1) are very important in differential equations, control systems,
and signal processing. Although it seems odd to put a complex number
into the exponent, Euler’s formula gives a meaningful interpretation. To
find this interpretation, you could just go to wikipedia.com and look it up
(which is why the answer is in the back of the book, anyway). But before
you do, expand the Taylor series of eix and see whether you can figure it
out for yourself. (Then go online and read about the surprising importance
of this expression.)

12. The International Space Station orbits Earth at approximately 340 km
above Earth’s surface. (The orbit is actually elliptical, but ignore that and
assume it moves with uniform circular motion.) Given that the average
speed is about 27,740 km/hr, what is the orbital period? What is the
centripetal acceleration in m/s2? Think carefully!

Of course the mathematicians know how to write all those
numbers. You can read someday in a mathematics book how to
write them all in a high-class and elegant form, but it is first a
good idea to know in a rough way what it is that you are trying

to write about.

— Richard Feynman (1918–1988) from
The Feynman Lectures on Physics





Chapter 12

Mechanics 2: Linear and
Rotational Dynamics

The Force is what gives a Jedi his power.
It’s an energy field created by all living things.

It surrounds us and penetrates us.
It binds the galaxy together.

— ObiWan Kenobi in
Star Wars Episode IV: A New Hope (1977)

Chapter 11 was about linear kinematics—how to describe the motion of
object, without concerning ourselves with the “cause” of the motion, its
orientation, or how we might go about simulating that object on a com-
puter. The main goals of this chapter are to address those three topics.

• Section 12.1 identifies and quantifies the “cause” of motion, force, and
presents three physical laws formalized more than 400 years ago by
Isaac Newton in his masterwork the Principia.

• Section 12.2 discusses a few particularly important and simple types
of forces.

• Section 12.3 introduces momentum and presents the important rela-
tionship between force and momentum.

• Section 12.4 is about collisions and impulses, which are large forces
that act for short durations.

• Section 12.5 considers the rotation of objects and the angular analogs
of the linear concepts introduced up to this point.

• Section 12.6 turns to matters of implementation, looking at some
basic problems that a digital simulation needs to address. It gives an
overview of how contemporary real-time rigid body simulations solve
them.
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12.1 Newton’s Three Laws

Sir Isaac Newton established three simple laws that provide a framework,
commonly known as Newtonian mechanics, for understanding such diverse
physical systems as an apple falling from a tree, the motion of the planets,
and the physical interactions that happen in a video game. Newtonian
mechanics is also called classical mechanics, and that name should alert
you to the fact that the laws we are about to study are wrong, in the
sense that they do not agree with the result of experiments conducted at
very high speed (which require relativistic mechanics) or at very small scale
(which require quantum mechanics).1 For everyday phenomena (and for the
phenomena we need to simulate in a video game), the discrepancy between
the results predicted by Newtonian mechanics and the correct results (as
correctly predicted by quantum-relativistic mechanics) is generally less than
can be detected with the most accurate instruments. The differences in the
predictions become significant only at speeds very close to the speed of light
and at scales approaching the size of an atom; otherwise, all the theories
are in great agreement with each other and with experimental results. It
was precisely because Newtonian mechanics has such a long and decorated
history of accurate predictions that it was so shocking to find out that the
laws were in need of correction. It should be clear that these laws, having
been sufficient to describe the motions of the heavenly bodies to a great
deal of accuracy, will also be quite sufficient for our purposes here.

12.1.1 Newton’s First Two Laws: Force and Mass

Chapter 11 noted that mass measures the degree to which an object re-
sists being accelerated. This resistance is called inertia, and the physical
quantity needed to overcome it and create an acceleration is called force.
In other words, all of those “causes of motion” that we so scrupulously
avoided mentioning in the previous chapter actually go by the collective
name force.

The idea that objects resist acceleration is summarized by Newton’s
first law.

Newton’s First Law

Every body persists in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by
force impressed.

1Some of these experiments took place in the imaginations of physicists.
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This seems like quite a simple statement, even in the anachronistic trans-
lation of Newton’s original Latin. But consider how audacious it was for
Newton to assert this, when it so clearly is at odds with the commonsense
observations we all have from our daily lives! A more “commonsense” way
to think about force is to assume that force is needed not only to start an
object in motion, but also to maintain its motion. (This is the rule under
so-called Aristotelian dynamics.) After all, once we stop applying the force,
eventually the object will stop moving, right? According to Newton, once
an object is set in motion, it does not require any force to continue this
motion. In fact, Newton claims that the force is required to stop the object,
and absent this stopping force, the object will continue on indefinitely.

Of course, the reason Newton’s first law seems counterintuitive is that
in our everyday experience, when we set objects in motion, they are always
brought to a stop by the ubiquitous force of friction. But we can argue
that Newton’s law is correct, even though objects always come to a stop
through friction, with a simple thought experiment. Imagine we apply a
certain amount of force and set an object in motion across a surface. The
object will travel a certain distance and eventually come to a stop. Did it
stop due the lack of continued pushing force, or due to some force that acted
to slow it down? If we perform the same experiment on different surfaces,
performing the initial push in the same manner in each case, we find that
the object travels farther on a smoother surface, and less distance on a
rougher surface. You probably aren’t surprised at these ”commonsense”
results, but notice how they actually contradict the notion that a force is
required to keep the object in motion and validate Newton’s laws.

Newton clarified the precise relationship among mass, acceleration, and
net force in his second law.

Newton’s Second Law

The acceleration of a body is proportional to (and in the same direction
as) the net external force acting on the body, and inversely proportional to
the mass of the body:

f = ma. (12.1)

This simple equation is the most important one in this chapter. You
should certainly memorize it. It basically says that whenever a particle
with mass m is seen accelerating at a rate a, you can be sure that there
is a net force f acting on the particle. Likewise, whenever there is a net
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force, the object will accelerate, because net force and acceleration always
go together. There are no exceptions to this rule. The acceleration of an
object is always proportional to the net force acting on it at that moment.

Now this does not mean that when there are any forces on an object,
it will necessarily accelerate. Nor does it mean that if an object is not
accelerating, then there are no forces acting on it. The f in f = ma is
the net force. Consider the tremendous forces exerted on the beams at the
bottom of a skyscraper. Clearly there is a force that wants to accelerate
the beam downward. However, since the beams do not in fact accelerate
downward, we know by Newton’s second law that this downward force must
be exactly opposed by some other force acting in the opposite direction.

What sort of quantity is force? First of all, force has magnitude and
direction, and so it is a vector quantity, just like acceleration (although at
times it is easier to study force in a one-dimensional setting, just like we did
with acceleration). And force must have the same dimensions (1D, 2D, or
3D, depending on the “world” in which we are working) as the acceleration
a for Equation (12.1) to make sense, because m is a scalar quantity.

Let’s use dimensional analysis to determine the physical units that we
should use to measure force. Mass is one of our fundamental quantities,
denoted M , and from the previous chapter we know that acceleration has
units L/T 2. Therefore (dropping the bold to indicate vector quantities),
force must have units

Dimensional analysis of
force

f = ma = (M)(L/T 2).

When measuring with the SI units—mass in kilograms, length in meters,
and time in seconds—force has the units of “kilogram meter per second
squared.” This is quite a mouthful, so it goes by a special name, the
Newton, denoted N:

The Newton is an SI
unit of force

1 N = 1 kg
m

s2
.

If you’re having trouble grasping just what a “kilogram meter per second
squared” is, just remember that a Newton is the amount of force required
to accelerate a mass of 1 kg at a rate of 1 m/s2.

There’s a common misunderstanding that we’d like to cut off as early as
possible. Force creates an acceleration on a body, and it acts over time. For
example, the question, “How much force does it take to get a 100 lb object
to go 100 mi/hr?” does not make sense. Force doesn’t produce velocity
directly, it causes the velocity to change over time. This can be especially
confusing when you consider collisions, such as a ball bouncing on the floor
or being struck by a bat. Although the velocity appears to have changed
instantaneously, what is really happening is that a very large force is acting
for a very short (but finite) duration. We study collisions in more detail in
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Section 12.3. Typically in digital simulations impulsive forces are handled
differently from more persistent forces that act over several simulation steps,
so for now, don’t think of a force as an impact; instead, think of it as more
of a gradual push or pull that could be provided by, for example, a spring,
the wind, or gravity.

We said that Equation (12.1) is the traditional way to express the rela-
tionship among force, mass, and acceleration. However, written in that way,
with force on the left-hand side, you might get the idea that the common
situation is for us to know the mass and acceleration, and use Newton’s
laws to compute the force. In fact, especially in digital simulations, the
more common scenario is that we have calculated the forces acting on a
body, and we wish to predict the body’s response to those forces. In other
words, we’ll usually use Newton’s second law in the form

We usually use this form
of Newton’s second lawa = f/m. (12.2)

Most physics textbooks teach the important conceptual tool known as
a free-body diagram. Newton’s second law, especially as expressed in Equa-
tion (12.2), is at the heart of this exercise. The basic procedure is as follows,
starting with a representation of the object.

1. Draw and label all the forces acting on it.

2. Sum up those forces (using vector addition) to compute the net force.

3. Use Newton’s second law (Equation (12.2)) to compute the accelera-
tion of the object.

4. Integrate the acceleration to determine the motion of the object.
When solving problems analytically, this means solving differential
equations. We don’t use any differential equations in this book be-
cause there are only a few simple cases that we will look at analyt-
ically. Numerical methods of integration must be used. Later, we
examine Euler integration, which is the most simple method imagin-
able, but also the one used by most real-time rigid body simulators.

The above procedure is a very important tool that we use several times
in Section 12.2; it’s also essentially how most digital physics simulations
work inside a computer. Of course, the simplicity with which we’ve de-
scribed this 4-step process hides many troublesome difficulties. The forces
in Equation (12.2) may vary continuously over time; be dependent on time,
position, and velocity; exhibit nonlinearities or discontinuities; and in gen-
eral be difficult to compute exactly or express and integrate in closed form.
Section 12.6 deals with physics simulations, but for now the key point that
we want to emphasize is that Newton’s second law is the fundamental driv-
ing equation.
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12.1.2 Inertial Reference Frames

If we take the special case where f = 0, then according to Newton’s sec-
ond law, a = 0. This is a restatement of his first law. So we see that
if Newton had been just a bit more clever, he could have said the same
thing in only two laws instead of three. Of course, Newton not only broke
through the barrier of “common sense” to create elegant formulas that ex-
plain the workings of every physical system in the entire universe, he also
simultaneously invented a complete branch of the mathematics needed to
fully explore these ideas—calculus. So perhaps he was a clever guy after
all. We assume he had a good reason for keeping his first law; we interpret
it as a statement about reference frames.

The vectors a and f are specified in some reference frame, and if we
choose a bad reference frame, the equation does not hold. Reference frames
in which the basic mechanical laws hold (especially f = ma) are known as
inertial reference frames. Coordinate spaces for which this law does not
hold unless we invent fictional forces are called noninertial frames.

Figure 12.1
A robot in a falling elevator
is in a noninertial frame.
He must invent a fictitious
upward force to counteract
gravity to explain why his
herring sandwich doesn’t
fall.

For example, imagine a robot eating a herring
sandwich in an elevator. Someone cuts the ele-
vator cables, and the elevator, robot, and sand-
wich begin to fall. Now, this robot has been
programmed with the knowledge that it likes to
eat herring sandwiches,2 but without any general
sense of self-preservation, so it does not panic. It
looks at the herring sandwich floating in mid-air
instead of falling to the elevator floor, as it would
reasonably expect. The robot, having also been
programmed with an incomplete understanding of
Newton’s laws, thinks to itself, “My goodness, this
is quite unusual! I know gravity must be pulling
this sandwich downwards and I know f = ma, and
since the sandwich is not accelerating downwards,
the net force acting on it must be zero. There-
fore, there must be some upward force acting on
this sandwich. Quite fascinating! What might be
the source of this force? Now, if I calculate. . . ”
CRASH!

2You will, of course, recall the herring-sandwich-loving robot from Section 3.3. This
robot is a newer model with improved programming that allows him to pick up the
sandwich without a scoop—a major innovation in the herring-sandwich-eating robot
business.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-002.jpg&w=87&h=141
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Figure 12.2. An alien watching the elevator fall as Earth moves past will not see anything to
contradict Newton’s three laws, assuming the time period is short enough so that
Earth’s rotation and curved path are not significant factors.

A viewer on the ground would not see any need to invent a fictitious
force to explain the sandwich’s behavior. Using a reference frame with the
origin fixed at the bottom of the building, the viewer sees the sandwich as
accelerating downward, and has no reason to think anything is amiss.3 The
person driving by in a car also doesn’t see any problems. In the reference
frame of the car, the sandwich appears to travel in a parabolic motion.
But the relation f = ma seems to hold, and so the driver observes that
Newton’s laws are valid in her reference frame. Likewise for the advanced
alien civilization watching from their cloaked spaceship as Earth whizzes
past (see Figure 12.2). From their4 perspective, everything seems to be
obeying Newton’s laws. To the alien, Earth is moving with a constant
linear velocity and the elevator’s trajectory is parabolic, just as we would
predict using the projectile equations developed in Section 11.6. (Actually,
we are ignoring some finer points, such as Earth’s rotation, the curved path
it takes as it orbits the sun, and the do-si-do it does with the moon. These
deviations from constant linear velocity are the exceptions that prove the

3Aside from a falling elevator that is about to crash to the ground.
4His/her/its. . . since aliens are just as likely to have three genders as two, the limita-

tions of the English language are not up to the demands of interstellar political correct-
ness. If there are any aliens reading this book, please note that we tried, and therefore
do not atomize our planet. We are quite fond of it.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-003.jpg&w=346&h=189


560 12. Mechanics 2: Linear and Rotational Dynamics

rule: they are the reason why a reference frame fixed to Earth’s surface is
not quite an inertial frame. Experiments such as Foucault’s pendulum can
detect the difference, even though it is slight.)

In summary, if a reference frame is accelerating or rotating, the motion
of objects described using that reference frame will not be consistent with
mechanical laws. An inertial reference frame must be stationary or moving
at a constant linear velocity.

12.1.3 Newton’s Third Law

Newton’s third law is often misunderstood in spite of being the one most
often quoted. It has a certain zen-like justice to it.5

Newton’s Third Law

To every action there is always an equal and opposite reaction. Or, the
forces of two bodies on each other are always equal and are directed in
opposite directions.

This law basically says that there is no such thing as a single unilateral
force. If object A pushes or pulls on object B, then object B always pushes
or pulls back on object A with a force of the same magnitude but opposite
direction. If gravity is pulling me towards Earth, it’s also pulling Earth
towards me! A force is always part of an interaction between two bodies.

In diagrams, we often draw a force as an arrow, since it is a vector. But
really, these diagrams would be more accurate if both ends of the arrow had
arrowheads. When we leave off the other side of the arrow, it’s because it
is acting on an object in which we have no interest. When you see a single-
sided arrow that represents a force in a diagram, you can always fill in the
other half in your mind.

One source of misunderstanding of Newton’s third law is the word “re-
action.” The purpose of this word is to describe the forces as being in
opposition to one another. It is not meant to imply a causal link between
them; neither force is a “cause” or “effect.” The two opposing forces act
simultaneously and, so far as the laws of physics are concerned, have equal
status.

But aside from this mistaken inference of cause and effect, the third
law is just plain counterintuitive. Let’s say a guy named Moe pushes a

5One could easily imagine Yoda saying “To every action, always an equal and opposite
reaction, there is.”
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box forward on the ground. The box weighs twice as much as Moe, and
he has placed it on a cart that rolls with very little friction. According to
Newton’s third law, the box pushes back on Moe. But then why does the
box accelerate and Moe doesn’t? It doesn’t look like there are “equal and
opposite actions” happening here.

Conundrums such as these are always resolved by considering all the
forces acting on both bodies. In the example just discussed, Moe is not
floating in midair, or else he would have been accelerated backwards just
as Newton’s third law predicts he would. (Consider what would happen
if Moe and the box were on ice.) No, Moe is standing on the ground.
Through the force of friction, Moe pushes against the Earth and the Earth
pushes back on Moe. In fact, if we assume that Moe makes some forward
progress instead of just being stuck there grunting, then the force of the
Earth pushing against him must exceed the force of the box pushing back
against him, and he accelerates forward. This is illustrated in Figure 12.3.

Figure 12.3
The four forces
involved in Moe
pushing the box

An inquisitive reader might wonder about the previous scenario, “Why
doesn’t the Earth then accelerate?” The short answer is, “It does!” A
medium-length answer is, “It does, in the short run.” For the full length
answer, we have to wait until Section 12.3, which tells us a little bit about
momentum.

Of course, these theoretical questions are certainly interesting to pon-
der, but what practical application is there for Newton’s third law? The
most important application, for our purposes, is the justification to sim-
plify a rigid body and treat it as a single particle. For example, earlier we
considered the forces acting on a large beam in a skyscraper. What if the

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-005.jpg&w=228&h=176


562 12. Mechanics 2: Linear and Rotational Dynamics

beam is not a single solid piece, but instead it is really two beams that
have been bolted together? Then really what is happening is that forces
push down on the top part of the beam, which pushes down on the bottom
part of the beam, which pushes down on the Earth. Likewise, the Earth is
pushing back up on the bottom part of the beam, which pushes up on the
top part of the beam.

But why stop there? Isn’t any object actually composed of not just two
or three pieces, but trillions of molecules? How can we possibly calculate
all these complicated quantum-electrical forces? This is where Newton’s
third law comes in. We are justified in the treatment of this spliced beam
as a single rigid body, and we can ignore all the internal forces, provided
that the body stays rigid, which means that all pairs of points within the
object maintain a fixed distance from each other. In this situation, the
parts are not accelerating relative to each other, and this means that the
internal forces must be exactly balanced. In other words, all the internal
forces cancel each other out and thus make no contribution to the net force,
which is why we can ignore them. Of course, to the extent that the pieces
do accelerate relative to each other, any calculations we make ignoring the
internal forces will be inaccurate. If the bending or compression of the
object is very slight, then our calculations will not be perfect, but they
will be very close; if the object breaks apart, then our calculations will be
meaningless.

We can generalize arguments such as this even further to the case where
the parts are moving relative to each other. Of course, an object with
moving internal parts is the opposite of a rigid body; however, we’ll see
that in many respects we are still able treat these complicated systems as
“particles.” Section 12.3 discusses this idea and how it allows us to resolve
the conundrum of Moe and his box.

12.2 Some Simple Force Laws

Many different types of forces are at work in our universe.6 In a real-time
simulation, we often ignore certain forces, make approximations to them,
and even invent fictional7 forces to achieve a desired effect (such as forcing
a trajectory to obey an animator’s constraints, or helping the AI or the

6Actually, this is not true. At the time of this writing, physicists believe that there are
four fundamental forces. Almost all forces caused by matter bumping up against other
matter are essentially electrical because it is electrical forces that keep atoms separated
from one another. However, the situations in which matter pushes away from other
matter are so diverse that at the macroscopic level it is useful to have many different
force laws to describe the behavior.

7As opposed to frictional.
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player hit the target). Although our guiding principle is always f = ma,
the methods used to define f can vary greatly.

This section discusses three important forces that exist in the real world
and are often used in physics simulations. Gravity, friction, and springs are
the subjects of Section 12.2.1, Section 12.2.2, and Section 12.2.3, respec-
tively. Of course, a computer simulation may need to consider many more
real-world forces, such as buoyancy, drag, or lift. The goal of this book is
to give an overview of the most important topics and not to be exhaustive;
however, sources that cover these types of forces are listed in the suggested
reading in Section 12.7.

One other extremely important force that appears in physics simulations
is the contact force, also known as a normal force. This is the force that
prevents objects from penetrating each other. When a box is resting on
a table, the force the table exerts on the box, counteracting the force of
gravity and preventing the box from accelerating downwards, is called a
contact force. Contact forces in a physics engine are inherently tied up
with the engine’s method for resolving collisions and are usually handled in
a way that forms a compromise between the stability of the simulation and
physical reality. As such, the details for how contact forces are computed
can vary from one physics engine to another; indeed, resolving collisions is
a very active area of research.

12.2.1 Gravitational Force

In Principia, Newton stated all sorts of laws in addition to the three for
which he is the most famous. One such law, which he discovered through
analysis of the motions of the planets, is the law of universal gravitation,
which states that all objects in the universe feel an attractive force to
each other. This force is proportionate to the product of their masses and
inversely proportionate to the square of the distance between the objects
and can be calculated by Equation (12.3).

Law of Universal Gravitation

f = G
m1m2

d2
. (12.3)

In this equation, f is the magnitude of the force, m1 and m2 are the masses
of the two objects, and d is the distance between their centers of mass.
(We’ll have more to say about exactly what the center of mass is in Sec-
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tion 12.3.2.) G is a physical constant of the universe, approximately equal
to 6.673× 10−11 N m2 kg−2.

The law of universal gravitational attraction is very helpful if you want
to understand planetary motion or the tides, or just need a cheesy pick-
up line.8 However, most simulations are confined to a fairly small region
close to Earth’s surface. When we make the typical assumption that one
Cartesian axis points “down,” we are ignoring the curvature of Earth and
also locking in the direction of the force of gravity to a constant. It’s also
common to ignore the slight decrease in the strength of gravity that occurs
at higher altitudes, and assume a constant value for d. Thus, if we let m1

stand for Earth’s mass, then the only variable in Equation (12.3) is m2,
the mass of the object being simulated. In most video games, the force of
gravity is computed using Equation (12.4).

Video Game Gravity
f = mg. (12.4)

In Equation (12.4), m is the mass of the object and g is a constant vector
pointing in the downward direction. Notice that the force of gravity is pro-
portional to the mass, but Newton’s second law says that the acceleration
due to any force is inversely proportional to mass. Therefore, g specifies the
acceleration due to gravity for all objects in free fall. (Notice the similarity
between Equation (12.4) and Newton’s second law, f = ma.)

Chapter 11 told you what the magnitude of g is in the real world, but
let’s see if we can derive it from the universal law of gravitation. Earth’s
mass is approximatelym1 = 5.98×1024 kg, and its mean radius is 6,371 km:

Calculating the force of
gravity near Earth’s

surface from the law of
universal gravitation

f = G
m1m2

d2
=

(

6.673× 10−11N m2

kg2

)

(5.98× 1024 kg)m2

(6.371× 106 m)2

≈ (9.83 N)
m2

kg
≈
(

9.83
m

s2

)

m2.

But wait, this value is larger than the value of 9.81 quoted earlier! The
reason for the difference is that, while Earth’s gravity provides a centripetal
force, its rotation creates an apparent centrifugal force, which partly coun-
teracts gravity. We calculated the magnitude of the acceleration required to
keep objects from spinning out into space in Section 11.8. At the equator,

8Hint: make sure and work in the phrase “heavenly body” while you’re at it.
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Earth’s rotation requires that gravity provide a centripetal acceleration of
0.03369 m s−2. Thus a small part of the force of gravity that makes objects
feel heavy is being counteracted by the spinning of Earth, which makes
them feel lighter.

Subtracting this apparent centrifugal force from the force of gravity
gives us 9.83 − 0.03369 ≈ 9.796, but now the value is too small, not the
9.81 we were looking for. The reason is that gravity exhibits variations in
magnitude over Earth’s surface. The biggest source of this variation is the
centripetal acceleration we have just calculated; it varies with latitude. We
computed its magnitude assuming r was Earth’s radius; the resulting value
for gravity of 9.796 is actually the correct strength of gravity at the equator.
As the latitude increases and we move towards the poles, the radius r of
the circular path (which has constant latitude) decreases. At the poles,
the radius shrinks to zero, and objects rotate but do not move in a circular
path. Thus there is no apparent centrifugal force at the poles, and the force
of gravity is equal to the 9.83 value we computed above. The value 9.81 is
known as the “standard value,” and is the average force of gravity at sea
level at a latitude of about 45o.

Now that we’ve discussed at some length the strength of gravity in the
real world, let’s talk about how this number is often completely irrelevant in
video games. In certain genres, such as racing or flight simulators, realism
is important. However, in most other video games, the first law of video
game physics applies. (Hey, Newton made up some laws, so why can’t we?)

First Law of Video Game Physics

Reality is overrated.

For example, first-person shooters are notorious for poor jumping me-
chanics. The most important reason is probably the fundamental fact that
you cannot see your feet, yet some first-person games have for some reason
added jumping puzzles. But even many third-person shooters that adopt an
over-the-shoulder camera also have jumping mechanics that just don’t feel
right. Why? In most first-person shooters, when you jump, you are given
an initial burst of upward velocity, and then your position is simulated just
like every other airborne object in the world, using gravity, which causes
your motion to be parabolic. Compare this to the jump mechanic in most
third-person action games. Most of these games do not simulate jumps us-
ing a constant acceleration. Instead, your character will spring up almost
instantaneously after you hit the button, and reach a maximum height very
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quickly. In many games, the character will hover at that maximum height
for a duration, and then slam back down on the ground as quickly as it rose
up, perhaps leaving a crater behind. This is clearly not physically accurate,
but then again, neither is being able to jump two or three times your own
height, steer in midair, or double jump. When it comes to jumping in video
games, reality is not just overrated, it’s completely ignored. It just doesn’t
feel right.

If simulating a jump mechanic using gravity makes for a bad jump
mechanic, simulating a jump mechanic using a value of 9.8 m/s2 is even
worse. The basic problem is that most players expect a jump to take
a certain amount of time but also expect to be capable of jumping to
unrealistic heights. When real-world gravity is used to attain these heights,
the player is in the air too long, and it feels “floaty.” Many arcade racing
games also increase gravity to get the car back on the ground more quickly.
Whether it be racing games or character games, the player wants to be in
full control again as quickly as possible, and waiting for real-world gravity
to get them back down usually takes too long. And then there are other
racing games that use a value of gravity that is less than the real world
value, to facilitate unrealistic jumps at realistic vehicle speeds.

There are also reasons to fiddle with gravity for non-player-character
objects as well. Sometimes real-world gravity can create an “objects made
of styrofoam” feeling for simulated objects in general,9 so gravity is in-
creased to get an object to tip over and come to rest more quickly. In
other situations, an artificially low value of gravity can make a large object
seem even more massive (especially when accompanied by the right sound
effects), because acceleration on Earth is constant and is one of a few cues
humans instinctively use to establish an absolute scale for objects in the
distance.10

Hopefully, while reading the preceding design discussion you absorbed a
general message rather than focusing on our specific opinions. What “feels
right” is a subjective matter; furthermore—and this is the key point—it is
based more on player expectation than physical reality. In the end, what
matters most in a video game is not what’s going on in the CPU or even on
the screen, but what is going on in the player’s mind. And the human mind
is highly susceptible to suggestion. When creating video games, always
remember that the quest for realism should never be an end unto itself,
but rather a successful video game will harness realism only where it serves
the ultimate goal, which is entertainment. In fact, realism is quite often
opposed to this goal. Video game makers (especially programmers!) often

9This is often caused by excessive damping in the physics system used to help mask
instability.

10Fletch: I like to call this technique “Lord of the Rings gravity.” It reminds me of
the giant staircases that get destroyed during the escape from the Mines of Moria.
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get these priorities confused and end up creating an impressive technical
demo that isn’t any fun.

12.2.2 Frictional Forces

If we take an object such as a bowl of petunias and slide it along a surface,
we know that it will eventually come to a stop. We also know that if we
place this bowl on a surface that isn’t quite level, it won’t necessarily slide
downhill unless the angle of inclination exceeds a certain threshold. These
two phenomena are slightly different aspects of the force of friction. We are
accustomed to thinking of friction as an onerous enemy of productivity, the
evil cause of wear on machines and more frequent trips to the gas station.
But keep in mind that without friction, we wouldn’t be able to walk across
a room or pick up a child (or a bowl of petunias). Without friction, our
cars might have better fuel efficiency, but the transmission wouldn’t work
and the tires would spin in place instead of propelling the car forward.

Here we consider the two modes of the standard dry friction model,
which is sometimes called Coulomb friction. Although several thinkers
contributed to our understanding of friction, Charles-Augustin de Coulomb
(1736–1806) is the guy who got his name to stick. When an object is at
rest on top of another object, a certain amount of force is required to get
it unstuck and set it in motion. If any less force is applied to the object,
the force of friction will push back with a counteracting force up to some
maximum amount. This type of friction is known as static friction, and it
prevents bowls of petunias sitting on slightly inclined tables from sliding off.
Once static friction is overcome and the object is moving, friction continues
to push against the relative motion of the two surfaces, but the magnitude
of this force, known as kinetic friction, is less than that of static friction.
Kinetic friction is what causes a bowl of petunias to eventually come to a
stop after we set it in motion.

Friction is the result of complicated interactions at the microscopic level,
and so it is somewhat surprising that its macroscopic behavior can be de-
scribed by relatively simple equations. Let’s consider static friction first.
Like any force, static friction is a vector. The direction of static friction is
always in the direction that opposes any forces that would otherwise cause
objects to move relative to each other. This might seems a bit like cheating
(“How does the friction always know the correct direction to push?”), but
remember that the force is actually the aggregate result of many electrical
forces acting at the microscopic level. The forces are the result of molecular
bonds that have formed between the objects as they came in contact, and
these bonds need a force to pull them apart.

A good approximation for the maximum magnitude of static friction is
computed with Equation (12.5).
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Static Friction
fs = µsn. (12.5)

The dimensionless constant µs is known as the coefficient of static friction,
and n is the magnitude of the normal force. Let’s talk about each of these
in more detail.

From our perspective, µs is certainly the easier of the two to deal with:
just look it up in a table! Table 12.1 shows just such a table. Note that we
are jumping ahead a bit and showing coefficients for both static and kinetic
friction. Ignore the kinetic friction column for now.

Of course, somebody actually has to fill out these tables! The methods
for obtaining these data are interesting and rather elegant but they are
not our primary concern here. What is very important for us is that the
coefficients of static and kinetic friction depend on the properties of both
interacting surfaces. In other words, Table 12.1 is indexed not by a single
surface type, but by a pair of interacting surfaces. So, for example, although
using this table we can find the coefficient of static friction for rubber
against asphalt, we cannot use this information to say anything about, for
example, rubber against ice, or wood against asphalt. The coefficient of
static friction for each pair of surfaces has to be measured experimentally
because of the complexity of the microscopic interactions.

Also, note that Equation (12.5) tells us the maximum strength of the
static friction force. The actual force exerted at any instant will meet the

Material 1 Material 2 µs (Static) µk (Kinetic)
Aluminum Steel 0.61 0.47
Copper Steel 0.53 0.36
Leather Metal 0.4 0.2
Rubber Asphalt (dry) 0.9 0.5–0.8
Rubber Asphalt (wet) 0.25–0.75
Rubber Concrete (dry) 1.0 0.6–0.85
Rubber Concrete (wet) 0.30 0.45–0.75
Steel Steel 0.80
Steel Teflon 0.04
Teflon Teflon 0.04
Wood Concrete 0.62
Wood Clean metal 0.2–0.6
Wood Ice 0.05
Wood Wood 0.25–0.5
Wood (waxed) Dry snow 0.04

Table 12.1. Static and kinetic coefficients of friction
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magnitude of any forces acting on the objects that tend to induce lateral
relative motion, up to this maximum. Once this maximum is exceeded, the
static friction ceases to operate, and kinetic friction takes over.

The other factor in Equation (12.5) is the magnitude of the normal
force, which is the force acting perpendicular to the surfaces that prevent
them from penetrating each other. One common situation occurs when an
object (such as a bowl of petunias) is resting on top of another object (such
as a table). The normal force in this case is simply the force required to
counteract gravity. To be more precise, it is the force required to counteract
the component of gravity that acts perpendicular to the surfaces and wants
to smash them together. If the table is at an incline, then we can separate
gravity into a normal component and a lateral component, as shown in
Figure 12.4. (Inside a computer, we’d probably describe the orientation of
the table with a normal vector, and use the dot product to separate gravity
into the relative and normal components, as we described in Section 2.11.2.)
Since the bowl and the table do not accelerate relative to each other, we
know that the normal force of the table pushing against the bowl must be
exactly equal to the normal component of the force of gravity pulling the
bowl towards the table.

Figure 12.4. Freebody diagrams of a bowl of petunias on a table at various angles of
inclination.

Figure 12.4 shows several free-body diagrams of identical bowls of petu-
nias resting on tables at various angles of inclination. Notice that in each
figure, the force of gravity acting on the bowl, labeled g, is the same. The
normal and lateral components of gravity have been broken out in blue.
The actual force of static friction is the black vector labeled fs. On the
left, the maximum amount of friction available is labeled “max fs,” in the
middle and right-hand images the maximum amount of friction is being
applied.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-010.jpg&w=216&h=129
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In the first scenario, there is more friction available than necessary to
stop the sliding. However, as the angle of inclination increases, the nor-
mal component of gravity decreases, which reduces the amount of friction
available. Meanwhile, as the perpendicular component of gravity is de-
creasing, the lateral component is increasing, which makes the bowl want
to slide. The force of static friction must counter this lateral component
if the bowl is to remain in equilibrium. The center image shows the crit-
ical angle at which the lateral force of gravity is exactly equal to the to
the maximum amount of friction. On the right, we imagine that we have
tilted the table while holding the bowl in place, and then let go of the
bowl. The maximum available friction is being applied, but it’s less than
was available in the center picture due to the decrease in the normal force
and isn’t enough to overcome the increased lateral component of gravity.
Just after this picture was taken, friction switched from static mode into
kinetic mode, the bowl slid off the table and shattered, and a cartoon
cleaning robot scurried in through a little door in the wall to clean up the
mess.

Calculating kinetic friction is essentially identical to static friction. The
only difference is that we replace the subscript s with a k.

Kinetic Friction
fk = µkn. (12.6)

The direction of the force of kinetic friction is always opposed to the relative
motion of the surfaces. (Remember, according to Newton’s third law, there
are actually two forces, one pushing against the bowl, and the other against
the table, and they are in opposite directions.) As we said earlier, the
coefficient of kinetic friction is usually less than the coefficient of static
friction. Thus, if we increase the angle of the table ever so slowly so that
static friction is just overcome, the petunias will begin to accelerate, based
on this difference between kinetic and static friction. Coulomb’s primary
contribution to the theory, sometimes called Coulomb’s law of friction, was
that the force of kinetic friction does not depend on the relative velocities
of the surfaces, so, unlike static friction, there is no distinction between the
effective force and the maximum force.

Notice that the amount of area that the two objects are in contact does
not appear in Equations (12.5) or (12.6). For example, let’s say we repot the
petunias in a taller bowl with a smaller footprint but the same weight. We
have reduced the surface area where the bowl and table are in contact, but
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all of the forces depicted in the free-body diagrams in Figure 12.4 remain
the same. Doing this would not change the angle at which the bowl would
begin to slide! Although it might seem like a larger surface area would give
the objects more to “grab” with, this is offset by the decrease in pressure,
since the same total normal force is now distributed over a smaller contact
area. Now, a very tall bowl may begin to tip over before it begins to slide.
But this is a matter of rotation, the increase in the tendency to rotate being
caused by an increase in the lever arm resulting in a greater torque. We
cover these issues in Section 12.5.

12.2.3 Spring Forces

There’s one more class of force that is important enough to discuss in its
own section: the forces exerted by a spring disturbed from its equilibrium
position. Why do we discuss this admittedly peculiar class of force? Have
springs suddenly become prominent features in video games and their accu-
rate simulation an important gameplay feature? Actually, yes. Even if you
don’t see very many literal springs in a video game, there are likely very
many “virtual springs” at work. Springs exhibit a general behavior that is
very useful for enforcing constraints, preventing objects from penetrating,
and the like.

This section presents the classic equations of motion for damped and un-
damped oscillation. It covers undamped oscillation first, and then damped.
It’s often the case in a video game that programmers use a virtual spring
(often in the form of a spring-damper system) when really what they are
using is a control system. There are certain advantages to be had when
the physical nature of the problem is dropped and we think of it purely
in mathematical terms. (Indeed, many times the problem was never really
physical to begin with, and was only recast in physical terms so that the
spring-damper apparatus could be applied.)

Like the friction law, the force law for springs is a surprisingly accurate
approximation to the macroscopic behavior that is the result of complicated
microscopic interactions. Consider a spring with one end fixed and the other
end free to move in one dimension. When the spring is at equilibrium with
no external forces on it, it has a natural length, called the rest length. If
we stretch the spring, then it will pull back to try to regain its rest length.
Likewise, if we compress the spring, it will push back. But how do we know
the strength of the force in each case? That’s what the force law tells us.

The force law for springs is known as Hooke’s law, and it basically says
that the magnitude of the restorative force is proportional to the difference
from the current length and the rest length (provided the force does not
exceed a value called the elastic limit, which varies with the material used
to construct the spring). If we let l be the current length of the spring and
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lrest denote the rest length, then the magnitude of the restoring force fr is
calculated by Equation (12.7).

Hooke’s Law for Spring Forces

fr = k(lrest − l). (12.7)

The constant k is known as the spring constant and essentially describes
how “stiff” the spring is. The constant is not dimensionless. In order for
Equation (12.7) to make sense, we must have

[ML/T 2] = k[L],

[ML/T 2]/[L] = k,

[M/T 2] = k,

or you can just think of k as having units of “unit force per unit length.”
The really interesting thing about springs is how they behave over time.

To see this, let’s restate Hooke’s law in a way that focuses on the kinemat-
ics of a particle that is being acted on by restorative forces. Specifically,
we’re interested in functions for the position, velocity, and acceleration of
a particle.

Things get easier if we adopt a reference frame where the position x = 0
designates the “rest” position, where there are no restorative forces. Fur-
thermore, since we are interested in the acceleration of the particle rather
than the forces acting on it, we will introduce a constant K = k/m, and
since K contains both the spring constant k and the mass of the particle m,
it measures the spring’s ability to accelerate the specific particle of interest
to us. With those notational changes, we can rewrite Equation (12.7) as

Acceleration due to
Hooke’s law a(t) = −Kx(t). (12.8)

You should convince yourself that this is equivalent to Equation (12.7)
before continuing.

Equation (12.8) makes a statement about the relationship between the
position function and the acceleration function; but what we really want is
the function x(t) itself. Equations like this are called differential equations;
they describe the relationship between some unknown function (in this case,
x(t)) and one or more of its derivatives (remember that acceleration is the
second derivative of position). To “solve” a differential equation is to find
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the unknown function x(t) that satisfies the equation. We have been able
to just barely scratch the surface of basic differential and integral calculus
in this book, so we’re not going to be able to cover the techniques of solving
differential equations. Luckily, you don’t need to know differential equations
in order to verify that a proposed function x(t) is a solution—that requires
only the ability to differentiate the function x(t). As it turns out, this
will be sufficient in the few cases in which we bump up against differential
equations in this book.

We can make a pretty good guess at the form of x(t) by looking at a
graph. We are not engaging in circular logic here; we don’t need to know
x(t) in order to get a graph, all we need is a spring with some sort of
marking device attached to it.11 Such a graph is shown in Figure 12.5.

Figure 12.5
The graph of the motion of a spring. Hey,
that looks familiar. . .

This function ought to look familiar to you: it’s the graph of the cosine
function. Let’s see what happens if we just try x(t) = cos(t) as our position
function. Differentiating twice to get the velocity and acceleration functions
(remember, we learned about the derivative of the sine and cosine functions
in Section 11.4.6), we get

Close, but not quite rightx(t) = cos(t),

ẋ(t) = − sin(t),

ẍ(t) = − cos(t),

which is very close, but we’re missing the factor of K.
To understand whereK should appear in x(t), consider what happens to

the graph of x(t) when we change the value of K. In other words, we repeat
our physical experiment and vary the stiffness of the spring or the mass of
the marking device attached to the end of the spring. The result is that
larger values of K (stiffer springs or less massive marking devices) result

11Professor Walter Lewin does this classroom demonstration in his physics class at
MIT. All of the lectures can be downloaded free through MIT OpenCourseWare at
http://ocw.mit.edu.

http://ocw.mit.edu
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-013.jpg&w=142&h=96
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in a graph that is horizontally “compressed”: the frequency of oscillation
is increased. Likewise, smaller values of K cause the spring to oscillate
more slowly, and the graph is expanded. Furthermore, we observe that
the frequency is proportional to the square root of K—when we increase
K by a factor of four, the frequency doubles. This gives us a hint as to
where K should appear, since all we are doing is scaling the time axis.

A solution, but is it the
only one?

x(t) = cos(
√
K t),

ẋ(t) = −
√
K sin(

√
K t),

ẍ(t) = −K cos(
√
K t).

One verifies that this is a solution to the differential equation by plugging
it into Equation (12.8). Remembering that a(t) = ẍ(t), we have

a(t) = −Kx(t),
−K cos(

√
K t) = −K(cos(

√
K t)).

The quantity
√
K is the angular frequency and comes up often enough that

we find it helpful to introduce the notation

Angular frequency ω =
√
K =

√

k/m,

and we can write the solution as

x(t) = cos(ωt); (12.9)

hence the reason for the name “angular frequency” becomes apparent.
So we have found the kinematics equation for the spring. Or, perhaps

we should say that we have found a solution to the differential equation.
There are some degrees of freedom inherent in the motion of the spring that
are not accounted for in Equation (12.9). First, we are not accounting for
the maximum displacement, known as the amplitude of the oscillations and
denoted A. Our equation always has an amplitude of 1. Second, we are
assuming that x(0) = A, meaning the spring was initially stretched to the
maximum displacment A and released with zero initial velocity. However,
in general, we could have pulled it to some displacement x0 6= A and then
given it a shove so it has some initial velocity v0.

It would appear that we have three more variables which need to be
somehow accounted for in our equation if it is going to be completely gen-
eral. As it turns out, the three variables we have just discussed—the ampli-
tude, initial position, and initial velocity—are interrelated. If we pick any
two, the value for the third is locked in. We’ll keep A as is, but we’ll replace
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x0 and v0 with the phase offset θ0, which describes where in the cycle the
spring is at t = 0. Adjustments to the phase offset have the simple effect
of shifting the graph horizontally on the time axis. Adding these two vari-
ables, we arrive at the general solution, the equations of simple harmonic
oscillation.

Simple Harmonic Motion

x(t) = A cos(ωt+ θ0), (12.10)

ẋ(t) = −Aω sin(ωt+ θ0),

ẍ(t) = −Aω2 cos(ωt+ θ0).

Now let’s make some observations. First, remember that the sine and
cosine functions are just shifted versions of each other: sin(t+π/2) = cos(t).
Thus we could have written x(t) using sine instead of cosine, the choice
being mostly a matter of preference and an adjustment in the phase by
π/2. The term “sinusoidal” can be used to refer to the shape of the sine
and cosine functions, and we use it when either function will do.

Second, consider the frequency of oscillation. The sine and cosine func-
tions have a period of 2π; thus the oscillator will complete one cycle in the
time it takes for ωt to increase by 2π. The angular frequency ω is measured
in radians per unit time, but we can also measure the frequency F , which
is in cycles per unit time, as

Frequency of simple
harmonic motion

F =
ω

2π
=

√
K

2π
=

1

2π

√

k

m
.

Notice that the frequency of oscillation depends only on ratio of the spring
stiffness to the mass. In particular, it does not depend on the initial dis-
placement x0: if we stretch the spring farther before letting it go, the
amplitude increases, but the frequency will not change.

In many situations, the frequency is the important number we wish to
control. This is especially the case for “virtual springs,” which are really
control systems in disguise. In these situations, we don’t need to bother
with spring constants or masses, and we can write the equation of motion
directly in terms of frequency, as

Simple harmonic motion
in terms of frequencyx(t) = A cos(2πFt+ θ0).
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So far, we have been studying a physically nonexistent situation in which
the restorative force is the only force present, and the spring will oscillate
forever. In reality, there are usually at least two more interesting forces.
The first of these forces is an external force, sometimes called the driving
force, that acts as the “input” to the system and causes the motion to begin
in the first place. The other force is the friction that any real spring experi-
ences, which eventually causes the motion to cease. The general term used
to describe any effect that tends to reduce the amplitude of an oscillatory
system is damping, and we call oscillation where the amplitude decays over
time damped oscillation. Damping forces are particularly important for our
purposes, so let’s discuss them in more detail.

The most common model for the damping force is a simple one that
acts proportional to velocity but in the opposite direction, similar to the
friction law. (Unlike the friction laws from the previous section, we don’t
have any of the business concerning the normal force.) The force is simply

Damping force fd = −cẋ,
where fd indicates the instantaneous magnitude and direction of the damp-
ing force, ẋ is the instantaneous velocity, and c is a constant that describes
the viscosity, roughness, etc.

The damping force has an extremely simple form, but just as with the
restorative force, things get interesting when we study the motion over
time. Qualitatively, we can make some basic predictions about how damped
oscillation of a spring would differ from undamped oscillation of the same
spring. The more obvious prediction is that we would expect the amplitude
of oscillation to decay over time, meaning the maximum displacement at
the crest of each cycle is a bit less than the previous one. Like the force
of friction, damping tends to remove energy from the system. The second
observation is only slightly less obvious: since damping in general slows the
velocity of the mass on the end of the spring, we would expect the frequency
of oscillation to be reduced compared to undamped oscillation. Those two
intuitive predictions turn out to be correct, although, of course, to be more
specific we will need to analyze the math.

Combining the restorative and damping forces, the net force can be
written as

fnet = fr + fd = −kx− cẋ.

To derive the equation of motion, we will need accelerations, not forces.
Applying Newton’s second law and dividing both sides by the mass, we
have

ẍ =
fnet
m

= − k

m
x− c

m
ẋ, (12.11)
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Next we rewrite this in terms of two new quantities. The first quantity,
ω0, is the undamped angular frequency and is not really new. It is identical
to the ω =

√

k/m introduced earlier; we are adding the zero subscript just
to emphasize that it is the frequency that would occur without the damping
rather than the actual frequency. (Remember, our prediction is that the
actual frequency will be slower in some way.)

The second quantity is called the damping ratio, not to be confused with
the damping coefficient c. The damping ratio is traditionally denoted by ζ,
the Greek letter zeta, which looks weird and takes some practice to write
by hand. The damping ratio is related to the damping coefficient, mass,
and undamped angular frequency by the formula

Damping ratioζ =
c

2
√
mk

=
c

2mω0
.

In just a moment, when we explain the qualitative meaning of ζ, the utility
in using this arbitrary formula will become apparent.

Substituting the undamped frequency ω0 and damping ratio ζ into
Equation (12.11), we have

Differential equation for
damped harmonic
oscillation

ẍ = −ω2
0x− 2ζω0ẋ. (12.12)

Readers with training in differential equations should recognize Equa-
tion (12.12) as a second-order linear homogenous differential equation with
constant coefficients, which is one of the very nicest differential equations
we could hope for, meaning we can actually solve it with pencil and paper.
Readers without this training shouldn’t worry, because it won’t be needed to
understand the answer, to which we now fast forward, skipping the deriva-
tion. There are three distinct cases: underdamping, critical damping, and
overdamping.

When 0 ≤ ζ < 1, we say that the system is underdamped. In this case,
as we have been predicting, the motion will continue to oscillate indefinitely
with an amplitude that decays exponentially over time. The equation that
describes this motion is

Kinematic equation for
underdamped systemx(t) = (k1 cos(ωdt) + k2 sin(ωdt)) e

−ζω0t, (12.13)

where ωd is the actual frequency of the damped oscillation and is related
to the undamped frequency ω0 by

Damped angular
frequencyωd = ω0

√

1− ζ2. (12.14)

The constants k1 and k2 are determined by the initial position and velocity:

k1 = x(0), k2 =
ζω0x(0) + ẋ(0)

ωd
.
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Using ζ = 0 produces undamped oscillation, and Equation (12.13) is equiv-
alent to Equation (12.10).

Your common sense tells you that as we increase the damping ratio, the
frequency of oscillation decreases; consulting Equation (12.14), we see that
at ζ = 1 the frequency completely vanishes. At this threshold, known as
critical damping, the behavior of the system changes qualitatively. The sys-
tem no longer oscillates, but instead decays exponentially. The kinematic
equation in this situation is

Equation of motion at
critical damping x(t) = (k1 + k2t) e

−ω0t, (12.15)

where k1 and k2 are again determined by the initial conditions:

k1 = x(0), k2 = ω0x(0) + ẋ(0).

Critical damping is just the right amount such that the system decays
as quickly as possible without oscillation. If the damping is decreased, the
system is underdamped, as previously described, and will oscillate. If the
damping is increased, the system is overdamped ; it will not oscillate, and the
rate of decay will be slower than the rate at critical damping. Figure 12.6
shows how the damping value affects the behavior of a system.

Now that we’ve reviewed the classic equations that may be found in
any physics textbook or on wikipedia.org, let’s say a few words about how
spring-damper systems are used in video games as control systems. In

Figure 12.6. Undamped, underdamped, and critically damped systems.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-015.jpg&w=268&h=160
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general, a control system12 takes as input a function of time that represents
some target value. For example, our camera code might compute a desired
camera position based on the player’s position each frame; some AI code
might determine an exact targeting angle for an enemy; we may have a
desired player character velocity based on the instantaneous amount of
control stick deflection; or we might have a desired screen-space position
for some highlight effect, based on the currently selected choice in a menu.
In any case, the current value of the input signal is known as the set point
in control system terminology. The set point is essentially the rest position
of the spring, and the input signal is like somebody taking the other end of
the spring and yanking it around. (So it’s similar to a driving force, only
usually what we have is a function describing a position rather than a force
or acceleration.)

The job of any control system is to take this input signal and produce
an output signal. To go back to our earlier examples, the output signal
might be the actual camera position to use for each frame, or the actual
animated targeting angle the enemy will use to aim the weapon, the ac-
tual player character velocity, or the actual screen-space position of the
highlight. For many control systems, the actual position and set point are
not used; rather, only the error is needed. Of course, an obvious question
is, if we know the “desired” value, why don’t we just use that directly?
Because it’s too jerky. In the same way that the shocks and springs on
a car (a classic example of a spring-damper system) don’t just pass along
the elevation of the road directly to the car, a control system in a video
game is often designed to “smooth out the bumps” caused by sudden state
changes that might make the camera snap to a new position or the player
jerk into motion. The camera or screen-space highlight are nonphysical
examples in which the quantity of “mass” is not really appropriate and
is dropped. But the differential equations are still the same, and they
have the same solution. Stripped of the spring metaphor, we are left with
what is known as a PD controller. The P stands for proportional, and
this is the spring part of the controller, since it acts proportional to the
current error. The damper is the D part, which stands for derivative, be-
cause the action of the damper at any given instant is proportional to the
derivative (the velocity). PD controllers (and their more robust cousin,
the PID controller, where the I stands for integral and is used to remove
steady-state error) are broadly applicable tools; they have been standard
engineering tools for decades (centuries?) and are well understood. Never-
theless, they are one of the most frequently reinvented wheels in video game
programming.

12This is not the broadest possible definition of “control system,” but it is the most
common one.
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In practice, the simulation code is a very simple Euler integration of
Equation (12.11). As shown in Section 12.6.3, this is a fancy way of de-
scribing code that looks like Listing 12.1.

s t r u c t SprintDamper {
f l o a t value ; / / c u r r e n t va lue
f l o a t s e t P o i n t ; / / ” de s i r ed ” va lue
f l o a t v e l o c i t y ; / / c u r r e n t ‘ ‘ v e l o c i t y ’ ’ ( d e r i v a t i v e o f va lue )
f l o a t c ; / / damping c o e f f i c i e n t
f l o a t k ; / / s p r i n g cons tan t

/ / Update the c u r r e n t va lue and v e l o c i t y , s t epp ing forward
/ / i n t ime by the g iven t ime s tep
void update ( f l o a t dt ) {

/ / Compute a c c e l e r a t i o n
f l o a t e r r o r = value − s e t P o i n t ;
f l o a t acce l = −e r r o r∗k − c∗ v e l o c i t y ;

/ / E u l e r i n t e g r a t i o n
v e l o c i t y += acce l∗dt ;
value += v e l o c i t y∗dt ;

}
} ;

Listing 12.1
A simple springdamper control system

Different cars have suspensions that are tuned differently; sports cars are
“tighter” and the cars retirees like to drive are smoother. In the same way,
we tune our control systems to get the response we like. Notice that the
simulation uses the k and c from Equation (12.11). However, most people
don’t find those to be the most intuitive dials to have for tweaking. Instead,
the damping ratio and frequency of oscillation are used for the designer
interface, while k and c are computed as derived quantities. To tune the
frequency, we might adjust either the damped or undamped version, using
either angular frequency or simply Hertz; the units and absolute value are
often not important because the value that feels good will be determined
experimentally anyway. For many systems in video games, oscillation is
undesirable, so it’s common to assume a critically damped system and fix
ζ = 1, leaving just the “frequency” (we put it in quotes since the system
doesn’t oscillate) as the only tunable value. A higher frequency is the sports
car (more responsive, but jerkier), and a lower frequency is smoother, but
can feel “laggy.”

Notice that the kinematic equations (12.13) and (12.15) are not needed
directly by the simulation, nor do we need to explicitly distinguish between
underdamped, critically damped, or overdamped.

Before we leave this discussion, we must mention that the second-order
systems we have described here are certainly not the only type of control
system, nor even the simplest, but they do behave nicely under a very
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broad set of circumstances and are easy to implement and tune. Another
commonly used control system is a simple first order lag, ẋ = kx, under
which the error decays exponentially. This is similar to a critically damped
second-order system, but with a bit jerkier response to a sudden change
in the set point. Another important and common technique is to “chase”
the set point at a fixed velocity. A filter is another broad class of control
system, in which the output is computed by taking some linear combination
of set points or values on previous frames.

12.3 Momentum

Let’s say that Moe’s box from Section 12.1.3 has a mass m, and at a certain
instant we observe it moving with a velocity v. Coming in late to the story,
we cannot tell what magnitude of forces were used to achieve that motion,
or how long the forces were applied, or what the history of the box’s velocity
was. For example, it could have been that the box was accelerated as a
result of a constant net force f being applied over a duration ∆t. But we
have no way of knowing the values of f and ∆t. Was a large force used for
a small duration, or a small force for a longer duration? In fact, we have no
reason to assume that the force was constant at all! Moe could have given
the box a good shove and set it in motion, and then gave it another shove
to speed it up.

While we don’t know the exact history of Moe’s pushes, we do know
what the “total” was, in the sense about to be described. Assume that
Moe did make one push with a constant force f applied for a duration ∆t.
Then according to Newton’s second law, the acceleration was a = f/m.
Assuming the initial velocity was zero, we know that

v = a∆t.

Substituting a = f/m and rearranging, we get

Two ways to think of
momentum

v = (f/m)∆t,

mv = f ∆t. (12.16)

The left- and right-hand sides of Equation (12.16) illustrate two different
ways of thinking about the important concept of momentum. Momentum
is the correct quantity to track in order to quantify the “total amount of
pushing.”

Let’s do dimensional analysis on Equation (12.16), first just to verify
that it makes physical sense—it isn’t intuitively obvious that these two
products would bear the same physical meaning—and also to see what the
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units of momentum should be:

mv = f ∆t,

M(L/T ) = (ML/T 2)T,

ML/T =ML/T.

Note that momentum is a vector quantity, having both magnitude and
direction.

To understand what momentum is, let’s look at the two sides of Equa-
tion (12.16). First consider the left side, which interprets momentum as a
product of mass and velocity. In fact, somewhere in almost every physics
textbook you can find Equation (12.17).

Momentum as Product of Mass and Velocity

P = mv. (12.17)

The variable P is the traditional variable used to represent momentum.
(Despite the capital letter, P is a vector quantity. We use capital P to
avoid confusion with the notation p, which we sometimes use to refer to
the position of a particle.)

Equation (12.17) makes it clear that the momentum of an object is an
instantaneous property of an object. By saying this, we mean that we
can define its value knowing only its instantaneous state, without worrying
about how it got into that state. Furthermore, if you think of momentum
as the “total amount of pushing” required to stop a moving object, then
it certainly is intuitively appealing that it should be the product of mass
and velocity. If the object is small and moving slowly (a pencil rolling on a
desktop), only a small total force will suffice. If it’s fast (a bullet) or heavy
(a car that somebody left parked on an incline without the emergency brake
set), a larger amount will be needed. If it’s fast and heavy (an airplane
coming in for a landing), then you’d better get out of the way. The equation
P = mv quantifies the idea of “hard to stop.”

Although the memorable equation P = mv from the left-hand side of
Equation (12.16) is perhaps the more common way of explaining momen-
tum, the right-hand side actually provides the most insight. The relation
P = f ∆t shows that momentum, as the product of force and time, is what
results when force acts over time. This is what was meant by the sloppy
phrase “total amount of pushing.” We don’t mean that the magnitude of
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the force pushing itself is changing or accumulating, but rather that the
continued application of a net force always results in a buildup of momen-
tum (or a reduction of momentum, when the directions of the force and
momentum are opposed).

In fact, if we generalize the equation P = f ∆t, we can discover an
even deeper relationship between force and momentum. What if, instead
of pushing the box with a constant force, Moe pushed it with a force that
varied over time? Then we can express the acceleration at any given time
t as

a(t) = f(t)/m, (12.18)

which is just Newton’s second law to which we’ve added the notation “(t)”
to be more explicit that a and f vary with time. We learned in Chapter 11
that if we integrate acceleration over time, we get the velocity as a function
of time:

Velocity is the time
integral of acceleration,
remember?

v(t) =

∫

a(t) dt. (12.19)

Substituting Equation (12.18) into Equation (12.19), assuming that the
mass does not vary over time, we have

v(t) =

∫

f(t)/m dt,

mv(t) =

∫

f(t) dt.

Finally, if we let P(t) be the momentum of a body as a function of time,
then by substituting P(t) = mv(t), we arrive at the important relation

Momentum as force
accumulated over timeP(t) =

∫

f(t) dt. (12.20)

Since integration is a “summing up” process, Equation (12.20) confirms our
interpretation of momentum as the result of continued application of force
over time. (Note: in the preceding integrals we omitted the constant of
integration, essentially assuming the initial velocity was zero.)

Remember that integration and differentiation are inverse operations.
By taking the derivative of both sides with respect to t, we state the flip
side of the relationship between momentum and force.
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Force as the Derivative of Momentum

d

dt
P(t) = f(t). (12.21)

The net external force on a system is equal to the rate of change of mo-
mentum of the system.

Equation (12.21) is not just an interesting observation about force and
momentum, it’s a completely valid way to define force. In fact, although the
modern presentation of Newton’s laws is in terms of forces and masses, when
Newton himself first expressed the laws, he wrote in terms of momentum.
He used the word “motion,” but from his writings we understand that
he used that word in a very particular sense, and he really was talking
about momentum. (The word momentum hadn’t been attached to that
concept yet. Remember, he was the guy laying down all the ground rules.)
Newton’s second law was originally expressed in a form that more closely
resembles Equation (12.21) than the f = ma form you will more commonly
see.

12.3.1 Conservation of Momentum

Let’s return to our investigation into what happens when Moe pushes
against the Earth to get his box moving. Newton’s law tells us that the
Earth, not having anything else to push back on, receives a net force, and
thus an acceleration (and a torque, which we discuss later). Yes, you cause
the Earth to accelerate when you push boxes as well as when you take
each and every step! Of course, the Earth’s mass is so large compared
to Moe’s force that this acceleration is small. Not only that, but Moe’s
force pushing the box to the east might be canceled out by Joe’s force in
North Dakota pushing his box to the west at the same time. An issue
even more important than these two facts involves the “accounting laws”
of physics: “there is no such thing as free momentum.” Moe doesn’t need
Joe to balance out his force; as it turns out, he can’t help but do it all by
himself!

Observe that once Moe sets the box in motion, he will need to eventually
stop it. According to Newton’s first law, the only way to stop a moving
box is through a force, and according to the third law, this can happen
only if there is some other object involved to receive the opposite force.
Perhaps the box bumps into a tree and comes to a stop. (We consider the
tree to be part of the Earth. Remember that Newton’s third law justifies
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our treatment of connected objects as a single object, provided that they
remain rigidly connected.) To stop the box, the Earth must push against
it with a force that is in the opposite direction that Moe pushed to start
it moving. However, we know that the “total amount” of pushing must be
the same, meaning the Earth must push back with a strong enough force,
or for a long enough duration (perhaps Moe’s box rolls into a patch of tall
grass) to bring the momentum of the box down to zero. So you see that
whatever acceleration the Earth received as a result of getting Moe’s box
in motion must always be exactly canceled by the force required to bring
the box to a stop.

But perhaps Moe’s box does not come to a stop by pushing directly
against the Earth. Let’s say it bumps up against Joe’s box. Voila! We
have stopped Moe’s box, and no force has been applied to the Earth. But
now, by Newton’s third law, Joe’s box must begin accelerating, and we are
back to where we started with a moving box that will continue moving
unless it receives a force to bring it to a stop. Eventually, the only way we
can stop this chain reaction started by Moe’s push against his box is for
something, eventually, to push against the Earth.

We can generalize this idea even further. We are justified in treating
the entire Earth, and all of its moving parts, as a single particle with all
of its mass centered at some location known as the center of mass. (We
talk more about this special point in Section 12.3.2.) The pushing against
the Earth of people like Moe results in transfers of momentum between
the objects in the system. Each part will move around within this very
complicated system relative to the other parts and relative to the center of
mass of the system. However, the total amount of momentum of the entire
system is always a constant, unless there are external forces acting on the
system. This is known as the law of conservation of momentum.

The Law of Conservation of Momentum

The momentum of a system is constant unless external forces act on that
system.

The conservation of momentum is precisely what Equation (12.21)
is saying. It’s certainly an experimentally verified fact, but it also fol-
lows naturally as a result of Newton’s laws. Section 12.4 discusses how
to use this important law to simulate the collision of objects. However,
before we get to that, we need to take a closer look at the center of
mass.
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Figure 12.7
Experimentally measuring the center of mass of a oddshaped piece of particle board

12.3.2 The Center of Mass

Our discussion of momentum has led us to consider the center of mass of
an object. Let’s say a few more words concerning this important concept.
For everyday purposes, the center of mass is equivalent to the center of
gravity, which is essentially the point around which the object is perfectly
balanced. If we balance an object on the tip of a very thin rod or hang it
from a wire, then the rod or wire will be in a line that contains the center
of mass.

Before we discuss how to compute the center of mass mathematically,
let’s see how we can measure it experimentally. Imagine that we have some
object with an odd shape, or of an irregular density. We can determine
its center of gravity by hanging the object from any arbitrary point on the
surface of the object. This defines a vertical line upon which the center
of gravity must lie. By repeating the experiment with a different point on
the object and finding the intersection of those two lines, we can locate the
center of gravity.

The authors performed this experiment on a piece of particle board,
as shown in Figure 12.7. First, the board was cut into a purposefully
asymmetric shape. Next, we chose three arbitrary locations from which
to hang the board, and when the board had finished swinging around, we
drew a heavy line on it, coincident with the string by which the board
was suspended. Sure enough, physics worked, and the third line passed
right through the intersection of the first two lines, at the board’s center of
mass.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-019.jpg&w=394&h=166
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To compute the center of mass mathematically, we imagine the object
being divided up into a very large number of small “mass elements.” If
there are n such elements, and we denote the mass and position of the ith
element as mi and ri, respectively, then the center of mass rc is simplify
the weighted average of the positions of all the mass elements.

Calculating the Center of Mass

rc =
1

M

n
∑

i

miri. (12.22)

In Equation (12.22), M is the total mass of the object

M =
n
∑

i

mi.

For our purposes, the most important property of the center of mass is that
if the object rotates, it will rotate about its center of mass. This assumes,
of course, that the object is freely rotating and there isn’t a constraint
compelling it to rotate about some other point.

As an example, consider a sledge hammer. Clearly, the center of mass
of the sledge hammer is close to the heavy end of the sledge, not in the
middle of the handle. Assume we throw the hammer across the room. As
it tumbles through space, any arbitrary point on the hammer will trace out
a complicated spiraling shape. The center of mass, however, moves in a
parabola, in perfect agreement with the kinematics equations we learned in
Chapter 11.

The authors couldn’t resist the opportunity to chuck big objects around,
so we verified this hypothesis experimentally, and you can, too.13 We
started with the odd-shaped piece of particle board, whose center of mass
had been experimentally located and clearly marked. Next, the fun part:

13If you do decide to do this, take this advice: (1) Please be safe. Seriously, we assume
no liability for people being dumb. (Speaking of dumb, one author had to replace his
father’s lawn mower wheel, which was found to have a perfectly parabolic trajectory,
but alas unable to withstand the landing impact.) (2) We took still pictures at about
4 Hz, but using a nicer camera capable of taking more frames per second, or perhaps
extracting frames from video might work better. (3) Please send us your pictures at
gamemath.com!
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Figure 12.8
The center of mass is the special point that obeys the simple kinematic equations from Chapter 11. Any
other point traces out a spiraling path as the object rotates.

we threw it in the air and took a series of pictures of its trajectory with a
camera mounted on a tripod. Finally, we merged these frames together into
a single image, and used least-squares to fit a parabola through the points
marking the center of mass. The result of the experiment is Figure 12.8.

One small note: When fitting the parabola, we did not include the first
frame in the data set. As you can see, on the first frame the board is still
in the assistant’s hand, and thus has not yet begun its (parabolic) free fall
trajectory.

Because an object will rotate about its center of mass when allowed to
rotate freely, in a physics simulation is it highly advantageous to select the
origin of your object to be at its center of mass. Of course, you may have
good reasons to put the origin of the object elsewhere. For example, you
may have a graphical representation of an object with the origin placed
somewhere that made sense to the artist who made that model. In general,
if you place the origin somewhere other than the center of mass, then you
will likely have to deal with two “positions” of the object: one position
within the physics system that describes the world coordinates of the center
of mass, and another, perhaps in the rendering system, for the origin of your

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-021.jpg&w=360&h=217
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-021.jpg&w=360&h=217
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-021.jpg&w=360&h=217
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graphical model. The code that translates between these two conventions
is likely to be found either in the interface with the physics engine (for
example, the code that updates the position of the objects after the physics
simulation has run), or the code that sets up the reference frame for the
object during rendering.

The center of mass is fixed for a rigid body such as a sledge hammer; this
assumption has been implicit in the whole discussion; otherwise, it wouldn’t
make sense to advise setting the origin at the center of mass. However, for
a general system with moving parts, such as Earth, the center of mass is a
dynamic property, not a constant. The center of mass shifts around within
the object as the parts are reconfigured.

For example, imagine if all of the people in the world decided to visit
the North Pole at the same time. Assuming we would all fit and there
were enough earmuffs to go around, the Earth’s center of mass would shift
towards the North Pole. This new center of mass, however, would trace out
the exact same trajectory as the old one would have. In other words, while
the trajectory of the Earth’s geometric center would be slightly “southward”
from where it would have been if we all stayed at home, the trajectory traced
out by the center of mass is the same in either case.

Or, let’s say that instead of visiting the North Pole, we all decided to go
to the Galapagos Islands, which is very near the equator. Would Earth’s
rotation suddenly get all “wobbly” like an out-of-balance ceiling fan? No!
Instead, the center of mass would shift towards the Galapagos Islands, and
the Earth would rotate about this new center of mass. So although the
rotation, when viewed from above, might appear asymmetrical, since the
rotation would not be about the center of the spherical Earth (assuming
the Earth were perfectly spherical), the rotation would be smooth. An
unbalanced ceiling fan is wobbly because it is not free to choose its axis of
rotation, and so it must be balanced in order to align the center of mass with
the fixed axis of rotation. Earth, however, is not connected to anything,
and it is free to rotate about its center of mass, wherever that center of
mass may be.

Of course, all the people on Earth put together have less mass than
our moon, so our discussion has been misleading. The point that traces an
ellipse as we orbit the sun isn’t the Earth’s center of mass at all! It is the
center of mass of the entire Earth-moon system. This point isn’t really close
to Earth’s geometric center, although it is beneath the surface, but only
because Earth is so much more massive than the moon. As the moon orbits
the Earth, the center of mass of the system shifts around within Earth. It
is this imaginary point that orbits the sun, not the center of mass of Earth
itself.
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12.4 Impulsive Forces and Collisions

In video games, things are always ramming into each other, so it seems
appropriate for us to spend some time talking about collisions. As we’ve
mentioned, in the real world, momentum does not change instantaneously;
rather, a large force acts over a very small period of time. However, despite
reality (remember the first law of video game physics), it is frequently the
case that the interval during which these forces act is below the resolution of
our physics time step, and for practical purposes we can consider the change
in momentum to have happened instantaneously. The most important and
common scenario is when the object is involved in a collision. Since the
mass of most objects is constant, an instantaneous change in momentum
usually boils down to an instantaneous change in velocity.

Consider two objects traveling towards each other in one dimension,
with masses m1 and m2 and velocities v1 and v2, as illustrated in Fig-
ure 12.9.

m1 m2
v2v1

m2
m1

v'1 v'2

Figure 12.9
A collision

Using the momentum relation p = mv, we can calculate the momentum
of the two objects (denoted p1 and p2) and the system as a whole (denoted
as simply p) before and after the collision. We assume that the masses
remain constant and put primes on the symbols that refer to the values
after the collision:

p1 = m1v1, p2 = m2v2, p = p1 + p2 = m1v1 +m2v2,

p′1 = m1v
′
1, p′2 = m2v

′
2, p′ = p′1 + p′2 = m1v

′
1 +m2v

′
2.

The change in momentum of each object, according to the law of conser-
vation of momentum, is actually the result of a force acting over time. How-
ever, we think of the collision here as producing an instantaneous change
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in momentum of the two objects. A force that is treated in this way is
known as an impulsive force, or more simply, an impulse. Since an impulse
is an immediate change in momentum, it has the same units as momentum:
ML/T . Note that an impulse is a very different beast from a regular force,
which has units ML/T 2. It is very common programmer mistake to use
impulses and forces incorrectly, so be sure to watch your units.

When two objects collide, many things can happen, even if we assume
they remain intact. A likely scenario is for them to bounce off of each
other, changing the signs of both v1 and v2. Or they may stick together.
The former is known as an elastic collision and the latter an inelastic col-
lision. (Actually, only a “perfect bounce” is considered truly elastic. The
terms “perfectly inelastic” and “perfectly elastic” are used to refer to the
two extremes, while an intermediate collision is described as simply “inelas-
tic.” Section 12.4.2 defines these terms a bit more precisely by using the
coefficient of restitution, but to fully understand the distinction requires
an understanding of kinetic energy. As we mentioned at the beginning of
Chapter 11, energy is certainly an important concept in physics, but it ac-
tually doesn’t play a central role in the Newton-Euler dynamics used by
most real-time simulations, and it isn’t discussed much in this book.) The
velocity (and momentum) of each object is likely to change, but the law of
conservation of momentum says that the total momentum of the system of
both objects must remain constant. That is, p = p′.

In general, we cannot predict the individual velocities v1 and v2 using
just the law of conservation of momentum, since the conservation of mo-
mentum law gives us one equation (p = p′) and there are two unknowns.
Before we consider what other bit of information we need, let’s look at some
simpler cases of collisions and conservation of momentum. Assume for the
moment that the collision is perfectly inelastic, that is, the objects stick
together upon impact. This gives us the other equation we needed to solve
the system of equations: v′1 = v′2.

12.4.1 Perfectly Inelastic Collisions

A classic example of an inelastic collision is a gun firing a bullet into a block.
Assume that, as illustrated in Figure 12.10, a block of wood weighing 2.00 kg
is at rest, hanging from a wire whose mass is neglected. We fire a gun at
the block, and the bullet, which has a mass of 10 g, strikes the block with
a speed of 350 m/s. The bullet remains stuck in the block. What is the
horizontal speed of the block immediately after the impact?

First, we compute the initial momentum of the system, which is all
contained in the bullet:

p = m1v1 +m2v2 = (2.00 kg)(0) + (10.0 g)(350 m/s) = 3.50 kg m/s.
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Figure 12.10
A bullet fired into a block suspended
by a wire (in other words, a typical
episode of MythBusters)

Now we look for the resulting common velocity, which we’ll denote simply as
v′, using the law of conservation of momentum, p = p′, and the knowledge
that this is an inelastic collision, v′ = v′1 = v′2:

p′ = m1v
′
1 +m2v

′
2,

3.50 kg m/s = (2.00 kg)v′ + (10.0 g)v′,

3.50 kg m/s = (2.00 kg + 10.0 g)v′,

(3.50 kg m/s)/(2.01 kg) = v′,

1.74 m/s = v′.

Let’s look at one more example of an inelastic collision, this time in
2D. Consider a driver who runs a red light and crashes into a car crossing
the intersection. Let’s say that Grant is the safe driver, and at the time
of the collision, Grant and his fuel-efficient hybrid have a combined mass
of 1,500 kg and are traveling west at 35 km/hr. Kari,14 who is not paying
attention, sees Grant’s car too late, and swerves to the left. She and her car
have a combined mass of 2,500 kg. At impact, she is traveling at 65 km/hr,
heading 25o west of north, as shown in Figure 12.11. Assume that we can
treat the collision as inelastic. What is the velocity of the crash just after
the collision?15

To solve this problem, let’s set up a 2D coordinate space where +x is
east and +y is north. We compute the total momentum before the crash

14We choose to make Kari the bad driver not because of gender bias or because she’s
a redhead, but on the assumption that there are fewer Karis than Grants out there to
offend.

15Another MythBusters moment.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-024.jpg&w=156&h=132
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v2

v1 m1

m2

+x

+y

Figure 12.11
A car crash

as

P = m1v1 +m2v2 = (1, 500 kg)(35 km/hr)

[

−1
0

]

+ (2, 500 kg)(65 km/hr)

[

cos 115o

sin 115o

]

= (52, 500 kg km/hr)

[

−1
0

]

+ (162, 500 kg km/hr)

[

−0.423
0.906

]

=

([

−52, 500
0

]

+

[

−68, 700
147, 000

])

kg km/hr =

[

−121, 200
147, 000

]

kg km/hr.

The resulting velocity of the glob of two cars is simply the momentum we
have just computed divided by the total combined mass:

v′ = P′/(m1 +m2) =

([

−121, 200
147, 000

]

kg km/hr

)

/(1, 500 kg + 2, 500 kg)

=

([

−121, 200
147, 000

]

kg km/hr

)

/(4, 000 kg) =

[

−30.3
36.8

]

km/hr.

12.4.2 General Collision Response

Simple inelastic collisions can be solved by using the principle of conserva-
tion of momentum, but how do we compute the velocities in the general
case? Before we can fully answer that question, we need to consider the
context in which it is asked. Dealing with collisions is typically a two-
step process. First, we must detect that a collision has occurred, meaning
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the objects are already penetrating, or that a collision is about to occur
in this time step. The second step is to take measures to resolve or pre-
vent the collision. The former task is known as collision detection, and
the latter as collision response. Our purpose at this time is to discuss
collisions in theoretical terms (we touch on a few practical issues related
to how physics simulations really work in Section 12.6), so for now let us
merely attempt a general explanation of how the momentum of rigid bod-
ies changes in response to collision. We assume that we already know that
two objects have collided, and we wish to predict their behavior after the
collision.

To do this, either in the abstract in a physics problem, or in collision
response code in a digital simulation, we typically need to know not just
that two objects have collided, but also where they collided, and how the
two objects were oriented relative to each other at the point of contact.
For example, in the car crash between Grant and Kari, we need to know
that Grant’s car was hit near the left door, and Kari’s in her right front
fender. Of course, a collision doesn’t necessarily happen at a single point.
Often an edge of one object may touch a surface of another, or perhaps
entire surfaces are in contact. At the time of this writing, most real-time
collision detection systems do not return collisions in such a descriptive
manner, nor are collision response systems really capable of making use of
that extra information. The closest we get is for the detection system to
locate several points of contact (or penetration) and then to process that
list in some way (for example, by finding their convex hull or looking for
an average surface normal). In any case, the best way to do this quickly
is very much at the forefront of research, and as such doesn’t belong in an
introductory book like this. Here we just consider the principles involved
in a single point of contact. More advanced techniques build upon these
principles.

Figure 12.12 shows some example collision results that might be re-
turned from a collision detection system. Note that each collision result
(black arrow) has a point of contact (at the tail of the arrow), and a sur-
face normal, usually assumed to be a unit vector. An arbitrary convention
is chosen for which way the normal will point; in Figure 12.12 it points away
from the “first” object. Furthermore, the two objects may be arbitrarily
assigned the roles of “first” and “second” objects, perhaps by the luck of the
draw that the objects happened to be in some space-partitioning structure.
These assignments can even vary frame-by-frame, so the response calcula-
tion must be symmetric. What is not depicted in the diagram is that a
penetration depth is often returned if the objects are already penetrating.

And always, we should bear in mind the first law of video game physics.
Not all collisions in video games must be between “real” objects, meaning
those objects that are represented in the physics system. For example,
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m1

m2

m1

m2

m1

m2

m1

m2

Figure 12.12
Examples of the types of results returned
by collision detection.

consider a game with a kick mechanic. It may be helpful to treat a kick
as a “collision” with an object, even if the character’s foot is not in the
physics system or if this collision was determined by simple proximity tests
or raycasting that were designed based on gameplay goals and not reality.
(The player character may have been too far away or too close for the kick to
really have hit the target; but that is irrelevant.) It might be highly useful
for the response to this action to be handled in a manner similar to ordinary
collisions. For example, a sound and particle effect plays, the object receives
a reduction in hit points, and its visual appearance changes, etc. In this
case, in order to use the same collision response code for both ordinary
collisions and “virtual” collisions such as player kicks (even if it is just to
get the cosmetic effects right), you may need to synthesize values ordinarily
provided by the collision detection system for your “virtual” collisions, such
as the mass and velocity of the foot, and the point of contact and surface
normal.

One final caveat is that we are concerned only with linear momentum
for now; our objects do not rotate. This means that the explanation we
give in this section will be incomplete. However, it will be helpful to cover
the general principles here in a context free of the extra complexity that
comes with rotation.

Now to the heart of the matter. Assuming we have somehow detected a
collision and obtained a position and normal, how do we determine the re-
sulting velocities for the collision response? Here we show the usual method,
following an article by Chris Hecker [34]. We start by reviewing our guiding
principles.
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Our first guiding principle is that, although we know that in reality a
very large force acts for a short period of time, the period of time is so short
relative to our time step that we will consider the collision response to occur
instantaneously. That is, we will not be calculating a force, but rather an
impulse, which will result in an instantaneous change in momentum of the
objects.

The second guiding principle is given to us by Newton’s third law: what-
ever (impulsive) force is applied to one object, the opposite force must be
applied to the other object. The conservation of momentum law essentially
says the same thing: if we change the momentum of one object, we must
make the opposite change in momentum to the other object so that the
total momentum of the system after the collision is the same as the total
momentum before the collision.

Thus, to resolve a collision between two objects, the game plan is to
compute an impulse with the proper magnitude and apply that impulse to
both objects, but in opposite directions. An impulse is a vector quantity,
and so we need to know its magnitude and direction. The direction is given
to us already: it is the surface normal provided by the collision detection
system. The details of selecting a surface normal is a matter of collision
detection, not response, and will not be discussed here. But notice that
if the objects move parallel to this normal, they are either making the
problem worse (penetrating further) or better (moving apart and resolving
the penetration). In contrast, if we assume the penetration distance is
relatively small and the surfaces are locally flat and perpendicular to the
normal near the point of contact, then any motion perpendicular to the
surface normal does not cause the penetration distance to change. So the
surface normal is really the only direction that matters.

In summary, our task is to determine the proper magnitude of an im-
pulse that will be directed along the surface normal and will resolve (or
prevent) the penetration. To merely prevent a penetration that has not yet
occurred, we need only remove any relative velocity acting parallel to the
surface normal. This portion of the relative velocity is the velocity that, if
applied to move the objects forward in time, would result in penetration.
Any relative velocity acting perpendicular to the normal is OK and does
not need to be counteracted, according to our assumption that the surfaces
are locally flat near the point of contact. As illustrated in Figure 12.13, the
velocity of m1 relative to m2 is computed as vrel = v1−v2, and the length
of this projection onto the normal is given by n · vrel.

Canceling the relative velocity will prevent penetration, but it’s not al-
ways the correct response. When objects collide, they don’t just come to
a stop next to each other—they bounce off each other. So we’re missing
an ingredient that describes the difference in the collision responses of a
dropped beanbag and a dropped SuperBall. A simple and popular collision
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m1

m2

n

n(nОv rel
)

v2

v1

v rel 
= v1 - v2

-v2

Figure 12.13
Computing the amount of relative velocity
acting parallel to the surface normal

law (though not the only one) that can be used to discriminate between
these cases is Newton’s collision law. This law introduces the coefficient of
restitution, denoted e, which is a fractional number that relates the mag-
nitude of the relative velocity along the surface normal after the collision
with the same value measured just before the collision. When e = 0, the
post-collision velocity along the normal is zero, and we have a perfectly
inelastic collision. Using e = 1 produces a perfectly elastic collision, where
the relative velocity along the normal has the same magnitude (but op-
posite sign) as before the collision. Dropping a beanbag onto carpet is a
close example of an inelastic collision, whereas dropping a SuperBall is a
highly elastic collision. Using the formulas from Section 11.6, we can also
show that, if an object is dropped and allowed to bounce multiple times,
the coefficient of restitution gives the ratio of apex heights at successive
bounces.

Let’s denote the magnitude of the collision response impulse as k. The
first mass, m1, will receive the (vector) impulse −kn, while m2 undergoes
the opposite change in momentum of kn. The signs are based on our ar-
bitrary choice of the direction of the surface normal. Now that we know
what we want, calculating the proper k to cancel the relative velocity is a
straightforward algebraic exercise. As before, we denote the post-collision
values with primes. An impulse is an instantaneous change of momentum,
so the post-collision momentum of the first object is P′

1 = P1 − kn. Divid-
ing by the mass and remembering P = mv, we express the post-collision
velocities as

Post-collision velocitiesv′
1 = v1 − kn/m1, v′

2 = v2 + kn/m2.

The post-collision relative velocity is simply their difference, v′
rel = v′

1−v′
2.

We solve for k by expressing the resulting relative velocity along the normal
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as the desired multiple of the relative velocity along the normal before
impact.

Solving for k, the
magnitude of the impulse

v′
rel · n = −evrel · n,

(v′
1 − v′

2) · n = −evrel · n,
[(v1 − kn/m1)− (v2 + kn/m2)] · n = −evrel · n,
[(v1 − v2)− (kn/m1 + kn/m2)] · n = −evrel · n,

[vrel − k(1/m1 + 1/m2)n] · n = −evrel · n,
vrel · n− k(1/m1 + 1/m2)n · n = −evrel · n,

k(1/m1 + 1/m2)n · n = (e+ 1)vrel · n,

k =
(e+ 1)vrel · n

(1/m1 + 1/m2)n · n . (12.23)

Equation (12.23) can be simplified slightly in the common case that n is
known to have unit length. If n is not a unit vector, then the change to k
as a result of the length of n is balanced by the calculation of the (vector)
impulse kn. Thus k is the true magnitude of the impulse only when n is a
unit vector.

Let’s work through a few examples of Equation (12.23). First, let’s
see how the coefficient of restitution can be used to describe the difference
between dropping a beanbag and a SuperBall. We’ll be dropping these
objects onto a concrete floor, which is an enlightening example because it
shows how immovable objects can be easily handled in most physics engines
by acting as if they have infinite mass. As it turns out, the inverse mass
is the quantity we usually work with in calculations involving such special
objects (as illustrated in Equation (12.23)). Furthermore, the inverse mass
(and its analog, the inverse inertia tensor, to be discussed later) are derived
quantities that are needed so frequently that they are often precomputed.
This means that physics code can often work with immovable16 objects
without treating them as a special case, simply by setting the inverse mass
equal to zero. When one of the inverse masses is zero, we could actually
deal directly with velocities and bypass Equation (12.23), since k will be
proportional to the mass but the velocity change as a result of applying k is
inversely proportional to the mass. Later, we solve a general case example
where no such simplifications are possible.

16Actually, an object don’t necessarily have to be stationary to be “special” like this.
Consider a platform that moves along a spline path created by a level designer, or some
other hand-animated object that is not allowed to deviate from its prescribed trajectory.
These so-called kinematically controlled objects do move around in the world and must
be known to the physics engine if other (nonkinematically controlled!) objects need to
interact with them, but such objects do not respond to forces, and their position is not
updated by the physics engine. Although the mass of these objects is treated as infinite,
proper collision response requires knowledge of the (kinematically determined) velocity.
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Let’s say we have one SuperBall and one beanbag, each weighing 50 grams.
To avoid making the solution to our example completely obvious without
Equation (12.23), we will arrange for the point of impact to occur on an
inclined surface, so that n is not a trivial cardinal axis. Since we are not
bound to use a unit vector, let’s say that n = [1, 3]. In our imagination, we
throw both objects in exactly the same way, such that the impact velocity
in both cases is v2 = [−4,−4]. This is illustrated in Figure 12.14.

n=[1,3]

v2=[̚4,̚4]

m2=50 g

v1=0
m1=У

Figure 12.14
Bouncing a beanbag
or SuperBall off of an
inclined surface

To determine the resulting velocity, we first solve for k, the scale factor
for the impulse. To do this, we must choose a coefficient of restitution.
For the SuperBall collision, we’ll use e = 0.9, which is near the advertised
value. Solving for k (remember that vrel = v1 − v2) we get

Calculating the impulse
multiplier k for the
SuperBall

k =
(e+ 1)vrel · n

(1/m1 + 1/m2)n · n

=

(0.9 + 1)

[

4 m/s
4 m/s

]

·
[

1
3

]

(0 + 1/(50 g))

[

1
3

]

·
[

1
3

] =
1.9 (16 m/s)

10/(50 g)
= 152 g m/s.

To compute the post-collision velocity, we add an impulse of kn to the
momentum of the SuperBall. Since momentum is mass times velocity, the
change in velocity is equal to this impulse divided by m2, the mass of the
SuperBall:
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Calculating the
post-impulse velocity for

the SuperBall

v′
2 = v2 +

kn

m2
=

[

−4 m/s
−4 m/s

]

+

(152 g m/s)

[

1
3

]

50 g

=

[

−4 m/s
−4 m/s

]

+

[

3.04 m/s
9.12 m/s

]

=

[

−0.96 m/s
5.12 m/s

]

.

Before we show this velocity graphically, let’s look at the beanbag. We
treat the beanbag collision as almost completely inelastic and use e = 0.01.
Other than the change to e, the procedure is the same as for the SuperBall:

Calculating the impulse
multiplier k and

post-impulse velocity for
the beanbag

k =
(e+ 1)vrel · n

(1/m1 + 1/m2)n · n =
1.01 (16 m/s)

10/(50 g)
= 80.8 g m/s,

v′
2 = v2 +

kn

m2
=

[

−4 m/s
−4 m/s

]

+

(80.8 g m/s)

[

1
3

]

50 g
=

[

−2.38 m/s
0.85 m/s

]

.

Notice that the reduced coefficient of restitution caused the beanbag to
receive a smaller impulse scale, and the resulting bounce velocity was also
lower. This difference is shown graphically in Figure 12.15. For comparison,
we’ve also included a perfectly inelastic collision (e = 1). The perfectly
inelastic collision (e = 0) is very close to the beanbag result and is not
depicted.

n=[1,3]

m2=50 g

v1=0
m1=У

e=0.01

e=0.9

e=1

v2=[̚4,̚4]

Figure 12.15
Postimpact
velocities for
different values of e,
the coefficient of
restitution

It is obvious from the beanbag trajectory in Figure 12.15 that an impor-
tant aspect of collisions is not captured by the model: friction. The velocity
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perpendicular to the normal is the same before and after the collision. We
would expect an object like a beanbag to scrub off a great deal of horizontal
velocity as a result of the collision—in fact, it might come to a stop com-
pletely. The correct thing to do is to add in a perpendicular component to
the impulse. However, correct handling of friction is, in general, a tricky
business, and it remains at the forefront of real-time simulation research.
Many current methods for calculating the horizontal impulse (especially for
sliding contact) fall under the category of “completely fudged.”

In the previous example, we only had one “live” object and the other
object was inert. This is a special case, and the equations could be sim-
plified. (As we mentioned earlier, the mass of the projectile cancels itself
out and is not needed.) In Exercise 9, we ask you to consider what would
happen if Grant and Kari’s collision were not perfectly inelastic; the full
power of this law is needed in this case. We show how to handle collisions
where the objects are free to rotate in Section 12.5.4.

We have been assuming thus far that the objects are in contact, but are
not yet penetrating. This might not be the case, depending on the overall
strategy used to resolve collisions. One technique is to attempt to reverse
the simulation in time back to the point of contact. This can be difficult
to do efficiently because there are frequently many, many collisions that
happen at different times within a single time step. Furthermore, defining
“exactly in contact” is difficult when using floating point math. Another
strategy is to simply allow penetration, and apply the impulse to objects
that are already penetrating. In this case, the impulse must do more than
remove the relative velocity to prevent (further) penetration. The resulting
relative velocity must be sufficiently large to separate the objects by the
end of the time step, after it has been integrated into the position. In other
words, the positions of the objects will be advanced at a rate according
to the calculated velocities; after this update, the penetration needs to
be resolved. Or at least it needs to be mostly resolved. There are some
advantages to allowing some small penetration. All of these issues are a bit
outside the realm of established principles and fall more under the heading
of current research,17 and they will not be discussed here.

12.4.3 The Dirac Delta

Before we leave linear dynamics and talk about rotational dynamics, let’s
mention briefly one bit of mathematical notation you might see, especially
in the context of impulses. As we’ve said, many natural phenomena (such
as momentum) do not change instantaneously in theory, but for practical
purposes we treat them as changing instantaneously. Furthermore, it is

17As Werner von Braun, who really was a rocket scientist, said, “Research is what I’m
doing when I don’t know what I’m doing.”



602 12. Mechanics 2: Linear and Rotational Dynamics

often the case where a body of mathematical tools exists to handle con-
tinuous functions (or, equivalently, “signals”), and we wish to apply those
tools to signals with discontinuities. There is a handy mathematical kludge
that can be used to encode a discontinuity in a function such that it can
be integrated. It is known as the Dirac delta, and is usually denoted with
the lowercase letter delta, for example δ(a).

The symbol δ(t) is a special sort of function, which is a spike, or impulse.
Its value is zero everywhere except at t = 0, where it is infinite. But the
actual values of the Dirac delta are not to be taken too literally—what is
more important is that its integral (the “area” of this infinite spike) is equal
to 1. The best way to think about the Dirac delta is as a box centered at
0 with width w and height 1/w. (Other shapes may be chosen, but the
important point is that the shape must have unit area.) The Dirac delta is
defined as the limit of such a function, as the width approaches zero, and
the height approaches infinity, all the while maintaining the unit area. We
like the advice of Bracewell [9], which is to avoid using the term “function”
when referring to special, uh, functions such as the Dirac delta, and instead
use the word “symbol.” This is because whenever we see the Dirac delta
symbol, the entire surrounding expression should be interpreted as a limit.
We are considering the limit as the width approaches zero of some shape
with unit area centered at the origin.

Armed with the Dirac delta, we can differentiate functions with discon-
tinuities. For example, let’s say the velocity of a baseball being struck by
a bat at time t = 2 is approximated by the discontinuous function

v(t) =

{

−130 ft/s t < 2,

130 ft/s t ≥ 2.

We can differentiate this expression by using the Dirac delta as

v′(t) = 260 δ(t− 2),

which can be read as “an impulse of magnitude 260 at 2.” Remember that
the δ symbol is not an ordinary function, and so we interpret the above as
“the limit of a total change in velocity of 260 ft/s that takes place over an
interval of duration ∆t surrounding the time t = 2, as ∆t approaches zero.”

The Dirac delta comes up in a variety of contexts where tools from
continuous math are applied to discontinuous signals. For example, in
graphics, the screen-space image is a signal with inherent discontinuities,
and we need to sample this signal and reconstruct it. The user’s input
via the controller is another signal that exhibits discontinuities. The Dirac
delta and other related symbols (such as the ramp function and Heaviside’s
step function) are helpful in discussing and manipulating such signals.
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12.5 Rotational Dynamics

We are now ready to extend the ideas we have learned about particles to
rigid bodies. Particles have position, but until now we have not concerned
ourselves with orientation. Likewise, particles have mass, but until now
we have not thought about the size or shape of a particle and how that
mass was distributed. The key linear quantities and laws each have ro-
tational analogs, and there is a certain beautiful correspondence between
them. This correspondence is certainly pedagogically convenient and will
be leveraged in our discussion. As we did for linear dynamics, we first
define the basic kinematics quantities and consider those issues related to
describing the rotation without worrying about the causes of the rotation.
We then examine the rotational analogs to mass, force, and momentum,
although we will discuss these topics in a different order.

You might notice that this section is surprisingly brief, both compared
to our discussion of linear matters, and also similar presentations of other
sources. There are two reasons for this. First, we spent considerable time
in the previous chapter building up intuition about derivatives and linear
dynamics, and these ideas need not be repeated here—though there will be
some important differences concerning integration of angular displacement.
Second, there are certain prerequisites that are usually bundled in this
discussion in traditional physics books; in this book, it has been more
appropriate to place these prerequisites elsewhere. You should make sure
you have read and understood these prerequisites before reading the rest of
this section. In particular, we use the cross product, which we covered in
Section 2.12, and basic methods for describing rotation in three dimensions,
which were the subject of Chapter 8.

12.5.1 Rotational Kinematics

Chapter 11 was about linear kinematics: we considered a function p(t) that
described the position of a particle as a function of time. We also considered
its first and second derivatives, the velocity and acceleration functions,
which we denoted v(t) = ṗ(t) and a(t) = p̈(t), respectively. The rotational
analog of position is, of course, orientation. Several methods can be used
to describe the orientation of a body. A considerable number of pages
were spent explaining and comparing these methods in Chapter 8, and in
this chapter we assume you are familiar with the basics. In a rigid body
simulator, it’s common to keep on hand redundant copies of the orientation
in alternate formats. Typically, both a quaternion and rotation matrix are
maintained. We will adopt a similar policy here with our notation. We let
R(t) be the object-to-upright rotation matrix at time t; it is the orientation
of the body expressed in matrix form. We also use q(t) to refer to that same
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rotation as a quaternion. Although both functions express the same value,
they are different “data types.”

The analog of linear velocity and acceleration are called angular ve-
locity and angular acceleration. We denote them as ωωω(t) and ααα(t), re-
spectively, and both of these quantities are 3D vectors, or infinitesimal
exponential maps (see Section 8.4) if you will. We were able to define lin-
ear velocity as the time derivative of position, but things are a bit more
complicated with orientation. In general, ωωω(t) is not the derivative of the
orientation in any format (even exponential map). We have more to say
on this when we look at what the derivatives of angular values really are
in Section 12.6.4.

So our first order of business is to understand how to express and mea-
sure angular velocity. This is tricky, not just because rotation in 3D is more
complicated than position, but also because there are two slightly different
types of angular velocity. The first is known as spin angular velocity, and
the second is orbital angular velocity. Spin angular velocity describes the
rate of change of orientation of an object and is not affected by translation
of the object. Orbital angular velocity is actually not concerned with ori-
entation at all; instead, it measures the rate at which the position of an
object traces out an orbit around some other point. We already introduced
orbital angular velocity in Section 11.8.2, so if you skipped that section,
now would be a good time to review it.

To see the relationship between spin angular velocity and orbital angular
velocity, let’s look at an example. Consider an object that is rotating about
its center of mass c, which is fixed in space. To describe this rotation, we
must specify two things. First, we describe the direction of the rotation; we
choose to do this by naming n̂, a unit vector parallel to the axis of rotation
whose sign (in combination with the left hand rule) establishes a direction
of positive rotation. Note that n̂ tells us only the direction of the axis;
the position comes from our assumption that the axis passes through the
center of mass c. The other element necessary to describe the rotation is,
of course, the rate of rotation, which we measure in radians per unit time
and denote by the scalar ω. Now, we can define the spin angular velocity of
the rigid body by the angular velocity vector ωωω (note the boldface), which
is simply the multiplication of the rotation rate with the axis:

ωωω = ωn̂.

These ideas should be familiar to you, if you read Section 8.4, which talked
about exponential maps, and Section 11.8.2, which discussed uniform cir-
cular velocity of a particle and defined orbital velocity. If so, then you
can probably already see the connection between spin angular velocity and
orbital angular velocity.
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Spin and Orbital Angular Velocity

The spin angular velocity of a rigid body is equal to the orbital angular
velocity of every point on the rigid body.

When talking about orbital angular velocity, we must be clear about
what point o we are measuring the angular velocity relative to. We do not
measure the orbital angular velocity relative to the center of mass c! We
measure the orbital angular velocity relative to the point that is actually
being orbited, and only those points on the “equator” of the object are
actually orbiting around c. Given any other arbitrary point, it will orbit a
point o that lies on the axis of rotation, as shown in Figure 12.16.

Figure 12.16
The spin angular velocity of the robot
is the same as the orbital velocity of
every point on the robot, provided
that we choose o carefully.

Now, the astute reader may have noticed some circularity in the defini-
tions just given. We said that the spin angular velocity of the rigid body is
equal to the orbital angular velocity of each and every point, provided that
the orbital velocity is measured relative to the closest point on the axis of
rotation. But how did we know the axis of rotation in the first place? The
question is typically moot because, both in analytical kinematics equations
and in a digital simulation in a computer, the angular velocity vector ωωω is
simply one of the fundamental state variables that we track, so we do not
need to infer it from the point velocities. Still, it is worth pointing out that
this axis is uniquely determined (up to the reversal of signs). Remember
that the axis of rotation is perpendicular to the velocity an orbiting parti-
cle. (We must measure the velocity of the particle relative to the center of

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-026.jpg&w=171&h=171
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mass of the rigid object, if the center of mass is moving.) There is only one
direction that is simultaneously perpendicular to all the velocities of all the
particles, and this direction is the axis of rotation.

We started with “a simple example” of an object rotating about an
axis that passes through its center of mass, but, as it turns out, this is
the general case, at least if we consider instantaneous velocity. The only
simplification we made is to fix the center of mass, but, in general, an object
can translate as well as rotate. It is somewhat surprising to realize, when
you imagine an object tumbling through space, that it will always rotate
about an axis passing through the center of mass (though the axis can be
arbitrarily oriented). When an object receives a force that induces rotation
(known as a torque, to be discussed shortly), the induced rotation will
always occur about the center of mass. In fact, to rotate an object about
an axis that does not pass through the center of mass requires continual
application of some sort of constraint force. In the absence of any external
torque (say, the constraint force is removed), the object will rotate about
an axis passing through its center of mass, and the angular velocity will
be constant—the axis of rotation will not change direction, and the rate of
rotation will not change. We are getting a bit ahead of ourselves talking
about torques, but we wanted to make it clear that this situation of angular
velocity is, in fact, the only situation we need to understand.

Of course, if torques are acting on the object, then the axis and rate of
rotation will change over time. This leads us to consider angular accelera-
tion, which is a vector quantity that we denote ααα. Angular velocity was not
simply the derivative of orientation, as one might näıvely expect by analogy
with the linear counterparts. However, the analogy does work for angular
acceleration, which is the vector time derivative of angular velocity:

ααα(t) = ω̇ωω(t).

The analogy to the linear equation a(t) = v̇(t) is clear.

12.5.2 2D Rotational Dynamics

Now that we’ve defined the simple kinematics quantities involved—which
was primarily an exercise in notation and reusing the ideas developed
elsewhere—let’s consider the dynamics of rotation. We first simplify the
situation to the case of rotation in the plane (or alternatively, we can think
about this as fixing the axis of rotation). In this situation, the angular ve-
locity and acceleration are scalar rather than vector quantities, since there
is only one degree of freedom. After we develop some basic ideas in two
dimensions in this section, we extend these ideas into three dimensions in
Section 12.5.3.
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Imagine a point with massm that is attached to a rigid disk whose mass
is neglected. The center of the disk is fixed at a pivot, and this constrains
the mass to a circular path. Let r be the vector from the pivot to the mass.
Thus the orbital radius of the mass is r = ‖r‖. We draw a line on the
disk outward from its center, and we assume that we can affix the mass to
the disk at any distance r along this line. Note that the radius of the disk
itself (being massless) is not relevant, so try to shut off your intuition that a
really big disk would be hard to rotate. The only source of resistance to the
rotation—the only source of inertia—is the point mass. We are neglecting
the inertia of the disk.

Consider what happens when a force f is applied directly at m. Accord-
ing to Newton’s second law, the mass wants to accelerate in the direction of
f . However, any portion of f parallel to r will be repelled by a contact force
from the disk and will have no effect on the mass. In contrast, the portion
of f perpendicular to r, tangential to the orbit of the mass, will cause the
point mass to accelerate. Let F denote the magnitude of f , and F⊥ denote
the amount of f that is perpendicular r. This is depicted in Figure 12.17.

Figure 12.17
A disk is constrained to rotate about o. A
mass m is attached to the disk at a radius r,
and a force f is applied on the mass.

With a bit of trig, we can compute F⊥ from φ, which is the angle
between f and r:

F⊥/F = sin(π − φ), (π − φ is the interior angle)

F⊥/F = sinπ cosφ− cosπ sinφ, (using Equation (1.1))

F⊥/F = (0) cosφ− (−1) sinφ,

F⊥ = F sinφ.

By applying Newton’s second law, we can compute the magnitude of the
tangential acceleration as

a⊥ = F⊥/m.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-027.jpg&w=134&h=124
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(Don’t confuse tangential acceleration, which causes a change in the rate
of rotation, with centripetal acceleration, which is created by contact force
with the disk and maintains the orbital path.)

By definition, the linear tangential acceleration a = p̈ is simultaneously
an angular acceleration α = θ̈ about the pivot, and they are related by

α = a⊥/r.

To understand where this comes from, remember from Section 11.8.1 the
relationship between linear speed and angular velocity: v⊥ = s = rω.

Figure 12.18
Applying a force at an arbitrary point on
the disk with lever arm l.

Now imagine that we keep the mass
fixed at r, but instead of applying our
force directly onto the mass, we push
against a peg that sticks up out of
the disk at some other location, at a
distance l = ‖l‖. The vector l goes
from the fulcrum o to the point where
the force is applied and is known as
the lever arm. This is shown in Fig-
ure 12.18.

Allow us to clarify a point which is
potentially confusing. Earlier, in Fig-
ure 12.17, the vectors r and l were
the same, since we were applying the
force directly onto the (one and only)
point mass. But in general, mass is dis-
tributed around the disk, so there are
many m’s and r’s. The portion of the applied force that is effective at
rotating the disk is perpendicular to the lever arm, not the radius vector r,
as you might infer from Figure 12.17.

Let’s consider how changes to the lever arm affect the resulting acceler-
ations. First, we note that if we apply the force anywhere on the circle with
the same radius as the mass, meaning l = r, then the whole apparatus gains
angular momentum, just as if we had pushed against the mass directly. In
other words, the only thing that matters about l is the distance from the
fulcrum l = ‖l‖ and the angle φ between the lever arm and the applied
force. Rotating both the lever arm and the applied force does not change
the resulting angular acceleration.

If the peg is closer to the fulcrum than the mass (l < r), then we must
push harder in order to produce the same acceleration of the mass. If
l > r, a smaller force will accomplish the job. Thus, increasing the lever
arm l has a proportionate effect on the tangential acceleration a⊥ of the
mass. This is the basic principle of mechanical advantage of a lever, which

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-028.jpg&w=134&h=124
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Archimedes discovered. But what effect does changing l have on α, the
angular acceleration of the apparatus? It, too, is directly proportional: if
we push on the disk at a point twice as far out, the angular acceleration is
twice as much. This is clear from the relation α = a⊥/r. If this seems too
obvious to bother pointing out, then keep reading.

Let’s summarize what we’ve found out. When a force is applied to an
object, it has a tendency to rotate that object. This “cause” of angular
acceleration is known as torque, which we denote by using the Greek letter
tau:18 τττ . Although the linear acceleration of a body as a result of an applied
force does not depend on where the force is applied, the amount of torque
that results from an applied force depends on how effectively the force is
applied. The effectiveness of the force to create rotational acceleration—the
magnitude of the torque—depends on several factors:

• It is proportional to the magnitude of the applied force f .

• It is proportional to the length of the lever arm l, which is the vector
from the fulcrum to the point of application of the force.

• Only the portion of the force perpendicular to the lever arm counts.
Equivalently, the torque is proportional to sinφ, where φ is the angle
between f and l.

In two dimensions, we can state this succinctly by
Torque in two
dimensionsτ = Fl sinφ. (12.24)

The dimensions of torque are not the same as force. Torque has units
of “force times length.” The SI unit for torque is the Newton meter.
(This is dimensionally equivalent to the joule, but torque and energy are
distinct concepts, and the joule is not really the proper unit to use for
torque.)

In might not be intuitively obvious that torque increases with the length
of the lever arm. For example, your intuition might be inclined to tell you
that it would be more difficult to push at an increased radius because you
have to push faster just to keep up. If so, your intuition is wrong, but
don’t feel bad. Our experience with force is often via an everyday type of
physical push like we might make with our hands against some object. But
this is not necessarily a good example because the push must move faster
and faster as the object accelerates in order to maintain contact. But the
speed of some source of force has nothing to do with the magnitude of the
force itself. So try replacing the physical push with either a gust of wind or
a quick “thump” (an impulse). You can conduct this experiment on a door.

18It rhymes with “cow”
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Figure 12.19. On the left, the line of action passes through the center of mass, resulting in
linear acceleration but no torque. On the right, a couple produces a torque but
no linear acceleration.

If you blow on the door or whack it close to the hinge (shorter lever arm),
your action won’t cause the door to rotate as easily if you do the same thing
nearer to side with the handle (longer lever arm). That’s exactly why we
put door handles on the side opposite the hinge: to make it easier to open
the door!

The relationship between torque and force is an important one to under-
stand. Any force applied to a body can produce both a linear acceleration
and a torque. Of course, it is the net force and torque that determine the
acceleration(s) of the body. Two key examples in Figure 12.19 illustrate
this point. On the left, a force is acting along a line that passes through
the center of mass, resulting in no torque. In this case, sinφ = 0 since the
line of action of the force is parallel to the lever arm. The right side of Fig-
ure 12.19 shows a different extreme case: two forces with equal magnitudes
but opposite directions are acting on opposite lever arms. A pair of forces
coordinated like this are known as a couple, and they result in a net torque,
but zero net linear force. When you turn a bolt with a wrench, what you
are really doing is supplying two or more contact forces. The direction and
lever arms of these contact forces are coordinated in a circular pattern to
produce torque, but (nearly) zero net linear force.

In a digital simulation, torques can come from multiple sources. One
common source is an applied (linear) force at some lever arm, with collisions
being the most common source of torques of all. An impulsive force ap-
plied to an object can result in an angular impulse (also known as impulsive
torque). Similar to a linear impulse, an angular impulse is an instantaneous
change in angular momentum, and we can think of this as the result of a
large torque acting for a small duration. We might also instruct the physics
engine to automatically apply torques (perhaps limited to some maximum
magnitude) on an object in order to enforce some angular constraint. Angu-
lar springs and motors are examples of this. Finally, we might have a reason
to add a torque at will to any object without there being any corresponding
linear force.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-029.jpg&w=233&h=89
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Back to our thought experiment with the mass attached to the rotating
disk. What if we fix the lever arm l, and instead vary r, the radial distance
between the mass and the pivot? The same principle of the lever is at work,
but in reverse. The force (and therefore the tangential acceleration a⊥)
experienced by the mass will be inversely proportional to r. Said another
way, the effective inertia of the mass—its resistance to linear acceleration—
is proportional to r. But what about the ability of the apparatus to resist
angular acceleration? How does its moment of inertia change as we vary r?
The moment of inertia is not proportional to r, it is proportional to r2! To
see why, consider that if we increase l and r by the same factor, then the
tangential acceleration a⊥ experienced by the mass is unchanged. However,
at this increased radius, the same tangential acceleration now corresponds
to a reduced angular acceleration, due to the relation α = a⊥/r.

In summary, the moment of inertia of an object, which must be mea-
sured relative to some particular pivot (in this case, it’s the fixed pivot
point, but for a rigid body we usually measure it relative to its center
of mass), quantifies the degree to which the object will resist angular ac-
celeration about that pivot. The moment of inertia J of a point mass is
proportional to its mass and proportional to the square of the distance from
the mass to the pivot.

Moment of Inertia of a Point Mass in the Plane

J = mr2.

Now imagine that the disk in our thought experiment has multiple
masses placed on it. Each of these masses contributes to the disk’s re-
sistance to rotation, and their contribution is the same, regardless of where
any force is applied. To compute the moment of inertia of an arbitrary
rigid body, we break up the object into “mass elements” such that for each
element we know the mass mi and radial distance to the center of mass ri.
We then sum up the moments of inertia of each individual mass element:

Moment of inertia of a
rigid body

J =
∑

i

Ji =
∑

i

mir
2
i . (12.25)

Let’s work through a few instructive examples.
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Figure 12.20. Distribution of mass can affect the moment of inertia. Each of the examples
above has the same total mass.

Consider the four disks in Figure 12.20. Since each disk has three
masses, we start by expanding the sum in Equation (12.25) to J = m1r1

2+
m2r2

2 +m3r3
2:

(a) J = 2 · 32 + 2 · 22 + 2 · 12 = 18 + 8 + 2 = 28;

(b) J = 2 · 32 + 2 · 32 + 2 · 32 = 18 + 18 + 18 = 54;

(c) J = 3 · 32 + 2 · 22 + 1 · 12 = 27 + 8 + 1 = 36;

(d) J = 1 · 32 + 2 · 22 + 3 · 12 = 9 + 8 + 3 = 20.

Aside from the rote practice this example provides, it highlights a crucial
fact: the distribution of mass within the object can have a profound effect
on the moment of inertia. Notice the widely differing moments of inertia,
despite the fact that each of these disks has a total mass of 6. Compare



12.5. Rotational Dynamics 613

this to linear inertia, where shifting the mass around will not make the
object any easier or harder to accelerate. The only thing that matters for
linear acceleration is the total mass. Furthermore, in three dimensions,
although linear mass can still be quantified with a scalar, the moment of
inertia cannot be described by a single number, due to its dependence on
the distribution of mass.

When we take the limit as the number of mass elements reaches infinity,
Equation (12.25) turns into an integral. Luckily, formulas for the moments
of inertia for many common shapes, such as spheres, cylinders, rings, and
so forth, can be found on the Internet.

Newton’s second law, F = ma, has a straightforward rotational equiv-
alent.

Rotational Equivalent of Newton’s Second Law

τ = Jα. (12.26)

For rotation in a plane, all of the variables in Equation (12.26) are scalars.
In three dimensions, however, τ and α become vector quantities, and J
becomes a matrix. Section 12.5.3 discusses this.

We’ve considered torque, the rotational analog to linear force. Now
let’s turn our attention to momentum. Remember that linear momentum
is the “quantity of motion” contained in an object. Its analog, angular
momentum, has a similar interpretation. Intuitively, angular momentum
describes how hard it will be to stop the rotation of the object. If the
angular momentum is large, then the magnitude of the applied torque, or
the duration for which it is applied, or both, must be large.

In our discussion of linear momentum, we encountered two ways of
thinking about momentum. The first was to interpret momentum in an
“instantaneous respect” as the product of mass and velocity by using P =
mv. The rotational equivalent is shown in Equation (12.27).

Spin Angular Momentum

Angular momentum (L) is the product of the moment of inertia J and
angular velocity (ω):

L = Jω. (12.27)



614 12. Mechanics 2: Linear and Rotational Dynamics

Alternatively, we can compute the angular momentum for an individual
point mass directly from its linear momentum by

Relationship between
linear and angular

momentum
L = rP sinφ, (12.28)

where P is the linear momentum. The purpose of the sinφ term is the
same as in the computation of torque: it isolates the tangential motion. If
the trajectory is known to be orbital, this term can be omitted since it will
always be unity. Notice that since Equation (12.28) contains a factor r,
it really is only for orbital angular momentum. Equation (12.27) can also
be used for orbital angular momentum, provided that J and ω are both
measured relative to the same pivot, but Equation (12.27) is probably more
appropriate for spin angular momentum of a rigid body, where J measures
the moment of inertia of the entire body. In any case, the spin angular
momentum of a rigid body can be computed by breaking the object into
mass elements and taking the sum of the orbital angular momenta of these
elements. Here are several ways in which the sum could be accomplished:

Spin angular momentum
of a rigid body

L = ωJ = ω

(

∑

i

Ji

)

=
∑

i

Jiω =
∑

i

(ri
2mi)ω

=
∑

i

rimi(riω) =
∑

i

rimivi =
∑

i

riPi =
∑

i

Li.

Here the subscripted variables refer to values for a particular particle. Note
that we dropped the sinφ term under the assumption that each particle is
in an orbital trajectory.

The second interpretation of linear momentum that we discussed is that
of momentum as the time integral of force. When we apply force over time,
linear momentum is accumulated. A similar relationship exists between
angular momentum and torque. As torque is applied over time, it builds
up angular momentum; equivalently, torque is equal to the rate of change
(derivative) of angular momentum. As with linear momentum, this can be
interpreted as a conservation law.

Torque and the Conservation of Angular Momentum

L =

∫

τ dt, τ =
dL

dt
.

In the absence of external torque, angular momentum is conserved.
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12.5.3 3D Rotational Dynamics

Now let’s extend the basic principles developed in Section 12.5.2 into three
dimensions. First, let’s review the 3D rotational kinematics quantities.
The single angle θ is replaced by a rotation tensor of some kind, with a
rotation matrix R or a quaternion q being the most common methods
of describing orientation in general rigid body simulations. The angular
velocity ω and acceleration α become vector quantities and get bolded as
ωωω and ααα, respectively.

To extend the dynamics principles into three dimensions, we start with
torque. Not surprisingly, torque becomes a vector quantity denoted τττ , and
the direction of this vector indicates the axis about which the torque is
tending to induce rotation. (Later we consider what happens if the object
is already rotating about a different axis.) The formula for computing the
torque for an applied force f and lever arm l is actually simpler in 3D than
the corresponding 2D formula!

Torque in Three Dimensions

τττ = l× f . (12.29)

Compare Equation (12.29) to τ = Fl sinφ (Equation (12.24)), and notice
that the cross product has the magnitude and sinφ terms built in.

Angular momentum likewise becomes a vector L, with a similar formula
for its relation to the linear quantity:

Orbital angular
momentum of a particle
in three dimensions with
radial vector r

L = r×P.

Compare this to Equation (12.28).

A reader who is paying attention might note that Equation (12.28) is
only one of two equations we gave for angular momentum in the plane—
the one we deemed to be more appropriate for orbital angular velocity of a
particle—and wonder about the other formula, Equation (12.27), which was
more appropriate for spin angular velocity. That formula was L = Jω, and
to get its three-dimensional equivalent, we must understand how to extend
J , the moment of inertia, into three dimensions. Luckily, the link between
the two momentum equations is an excellent way to get this understanding.
Let’s start by expanding L = r × P, with the goal of ending up with
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something that looks like L = Jω:

L = r×P = r× (mv) = (mr)× v = (mr)× (ω × r)

= m





rx
ry
rz



×





ωyrz − ωzry
ωzrx − ωxrz
ωxry − ωyrx



 = m





ry(ωxry − ωyrx)− rz(ωzrx − ωxrz)
rz(ωyrz − ωzry)− rx(ωxry − ωyrx)
rx(ωzrx − ωxrz)− ry(ωyrz − ωzry)





= m





ryωxry − ryωyrx − rzωzrx + rzωxrz
rzωyrz − rzωzry − rxωxry + rxωyrx
rxωzrx − rxωxrz − ryωyrz + ryωzry





= m





(r2y + r2z)ωx − ryrxωy − rzrxωz

−rxryωx + (r2z + r2x)ωy − rzryωz

−rxrzωx − ryrzωy + (r2x + r2y)ωz





=



m





r2y + r2z −ryrx −rzrx
−rxry r2z + r2x −rzry
−rxrz −ryrz r2x + r2y













ωx

ωy

ωz



.

The key point is in the last line, which bears a striking resemblance to
L = Jω. In fact, the quantity in parenthesis is the three-dimensional
moment of inertia.

Inertia Tensor

The inertia tensor of a mass m with radial vector r is

J = m





r2y + r2z −ryrx −rzrx
−rxry r2z + r2x −rzry
−rxrz −ryrz r2x + r2y



 . (12.30)

Notice that this quantity is a matrix, not a vector. In recognition of this,
in three dimensions we sometimes refer to the moment of inertia as the
inertia tensor. This mathematical artifact is a result of the physical fact
that an object’s resistance to rotational acceleration is anisotropic: it can
be easier to rotate an object about one axis compared to another. For
example, compare the torque required to spin a piece of rebar around like
a helicopter versus rolling it about its lengthwise axis.

Notice that J is a symmetric matrix. One trivial (but thankful) conse-
quence of this is that we can be sloppy with row and column vectors, while
ordinarily we must be very careful in order to avoid transposed results.19

19Remember, our convention in this book is to use row vectors, since the majority of
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Before we look at some other properties of J, let’s finish extending the basic
formulas in three dimensions with perhaps the most important one.

In the plane, the rotational equivalent of Newton’s second law, F = ma,
is τ = Jα. Extending this into three dimensions is straightforward.

3D Rotational Analog of Newton’s Second Law

τττ = αααJ.

As we’ve said before, in computer simulations it’s often the case that the
force and mass are known, and we compute the acceleration using a = F/m.
A similar situation exists for rotational dynamics, where division by m is
replaced with multiplication by J−1:

ααα = τττJ−1.

As it turns out, the inverse inertia tensor is needed more frequently in
digital simulations than is J, and it is usually precomputed and stored.

Equation (12.30) tells us how to compute the inertia tensor for a point
mass, but what about more complicated shapes? In a manner similar to
how we computed the center of mass, we can imagine breaking up a com-
pound object into a large number of mass elements and taking the sum
of their individual moments of inertia. Taking the limit as the volume of
the largest element approaches zero, this sum becomes a multidimensional
integral. Such integrals are typically difficult or impossible to solve analyti-
cally, except for abstract primitives such as boxes, disks, cylinders, spheres,
cones, and the like. Fortunately, such primitives arise commonly in prac-
tice and can make adequate approximations. Even more fortunate for us is
the fact that the hard work of solving the integral has already been done
for a large variety of primitives. For such primitives, the best method for
obtaining the moment of inertia is to look up the formula in a table. (At
the time of this writing, such a table can be found on wikipedia.org under
“List of moment of inertia tensors.”)

More complicated objects are typically approximated by breaking down
the object into primitives with known formulas, calculating their moments

matrices encountered in 3D interactive applications are transformation matrices, and the
left-to-right reading order is a useful advantage. In the derivation above, we used column
vectors for pedagogical and aesthetic purposes (the inertia tensor is not a transform
matrix), but shame on us for being inconsistent. From here on out, we’ll stick with our
convention and put the vectors on the left.
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of inertia individually, and then summing together the results. There is
just one complication. The formulas for these primitives assume the origin
of the coordinate space is at some auspicious location, such as at the center
of the sphere. But imagine we are computing the moment of inertia of a
human body and approximating the head by a sphere. Odds are low that
we chose to place the origin in the center of the head. Luckily the parallel
axis theorem tells us how the moment of inertia changes if we translate a
mass.

Assume that Jcm is the inertia tensor of some object with mass m,
measured relative to its center of mass. The inertia tensor J′ of the mass
measured relative to some arbitrary pivot that has a displacement [x, y, z]
from this center of mass is given by Equation (12.31).

Parallel Axis Theorem

J′ = Jcm +m





y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2



 . (12.31)

12.5.4 Collision Response with Rotations

Now let us complete the collision response calculation we started in Sec-
tion 12.4.2. At that time we did not consider rotational effects, but now
we know better. We continue, following Hecker [35].

Remember the basic strategy:

1. Compute the relative velocities at the point of contact.

2. Project the relative velocities onto the surface normal. This is the
velocity that must be counteracted in order to prevent (further) pen-
etration.

3. Compute k, the magnitude of an impulse, such that when we apply
the impulse to both objects (in opposite directions) parallel to the
surface normal, the post-collision velocities, measured along the sur-
face normal, have the desired magnitude according to some collision
law. This discussion will be based upon Newton’s collision law and
the coefficient of restitution e.

4. Apply the impulse kn to one object and −kn to the other.
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Dealing with objects that can rotate adds a few complications. First,
we earlier referred to “the” velocity of an object. But when an object is
rotating, the different points on the object have different linear velocities.
The velocity we need is not the velocity of the object’s center of mass, but
rather the velocity at the point of contact. So we must extend our velocity
calculation to account for the angular velocity. Likewise, our prediction
of the post-impulse velocities at the points of impact must also take into
consideration rotational effects. Application of an impulse at the point
of contact will create an angular impulse, which will change the rate of
rotation. In general, when objects are free to rotate, a smaller impulse will
suffice to resolve the collision, since the impulse has two ways by which to
reduce the point velocities. The change in angular velocity will cause the
points of contact to move away from each other faster than their centers
of mass do. Indeed, the centers of mass may still be moving towards each
other after the collision.

In Section 12.4.2, we started with the equation

v′
rel · n = −evrel · n

and then expanded the math and solved for k, the magnitude of the impulse.
(It’s hidden in the left hand side.) The same strategy works here, only we
need to derive new expressions for the point velocities before and after the
impulse that take into consideration the rotational effects. First, let’s check
the notation. We use ri to denote the position of the point of impact on
object i relative to its center of mass, ωωωi for the angular velocity of the
object, mi for the mass, and Ji for the inertia tensor. For linear velocity,
we need to introduce some new notation to distinguish between the linear
velocities at the point of contact, which we denote as ui, and the linear
velocities of the center of mass, denoted vi. As before, primes on the
quantities refer to their values after the collision.

With this notation, we compute the point velocity of each object by
adding the velocity due to the motion of the center of mass, plus that
portion caused by the rotation, according to Equation (11.31):

Computing the point
velocitiesu1 = v1 +ωωω1 × r1, u2 = v2 +ωωω2 × r2.

The velocities after the collision depend on the change in linear velocity
of the center of mass, and also the change in angular velocity. These are
computed by

Post-impulse linear and
angular velocities of the
bodies

v′
1 = v1 − kn/m1, v′

2 = v2 + kn/m2,

ωωω′
1 = ωωω1 − (r1 × kn)J−1

1 , ωωω′
2 = ωωω2 + (r2 × kn)J−1

2 ,

where the sign conventions are determined by our arbitrary choice to have
the collision normal n point from the first object to the second. Combining
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the equations above, we get the post-impulse point velocities:

u′
1 = v′

1 +ωωω′
1 × r1

= v1 − kn/m1 + (ωωω1 − (r1 × kn)J−1
1 )× r1

= v1 − kn/m1 +ωωω1 × r1 − k((r1 × n)J−1
1 )× r1

= (v1 +ωωω1 × r1)− kn/m1 − k((r1 × n)J−1
1 )× r1

= u1 − kn/m1 − k((r1 × n)J−1
1 )× r1,

u′
2 = u2 + kn/m2 + k((r2 × n)J−1

2 )× r2.

Defining urel = u1 − u2 as the relative point velocity, we are now ready to

Post-impulse velocities
at the point of contact

grind through the algebra:

−eurel · n = u′
rel · n,

−eurel · n = (u′
1 − u′

2) · n,

−eurel · n = [ (u1 − kn/m1 − k((r1 × n)J−1
1 )× r1)

− (u2 + kn/m2 + k((r2 × n)J−1
2 )× r2) ] · n,

−eurel · n = [ (u1 − u2)− kn/m1 − kn/m2

− k((r1 × n)J−1
1 )× r1)− k((r2 × n)J−1

2 )× r2) ] · n,

−eurel · n = urel · n− k[ (1/m1 + 1/m2)n+ ((r1 × n)J−1
1 )× r1)

+ ((r2 × n)J−1
2 )× r2) ] · n,

−(e+1)urel · n = −k[ (1/m1 + 1/m2)n+ ((r1×n)J−1
1 )× r1)

+ ((r2×n)J−1
2 )× r2) ] · n.

With one more step, we have the formula we’re seeking.

Collision Response with Rotation

The magnitude of the collision impulse can be calculated from the relative
point velocity, masses, moments of inertia, surface normal, and coefficient
of restitution, by

k =
(e+1)urel · n

[(1/m1 + 1/m2)n+ ((r1×n)J−1
1 )× r1) + ((r2×n)J−1

2 )× r2)] · n
.

(12.32)
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Equation (12.32) assumes that all vectors are measured in the same co-
ordinate space and that the inverse inertia tensors operate on vectors in
that same space. However, the inverse inertia tensor is a constant only in
body space, and the same matrix in world space may not be updated con-
tinually as the object rotates. Our convention is to describe the orientation
of the object by using R, a rotation matrix that transforms row vectors
on the left from body space to upright space. Under these assumptions, in
Equation (12.32) we would replace J−1 with RTJ−1R.

12.6 RealTime Rigid Body Simulators

This section presents an overview of real-time rigid body simulators such
as PhysX, Havok, Bullet Physics, and the Open Dynamics Engine. Few
game programmers will work directly on the physics engine, and certainly
far fewer will write one from scratch. Most of us just need to know how
to use the thing. Luckily, in this regard the physics engines previously
listed have much in common. However, a physics engine is like many other
programming tools: even if you don’t intend to write one, you can use it
more effectively if you have a basic understanding of how things work under
the hood.

We regret that we won’t be able to go into great detail, for a few reasons.
First, any attempt to describe “how a physics engine works” is complicated
by the fact that currently there is still great diversity and rapid innovation
in the field. Second, the math quickly becomes more advanced than is
appropriate for this introductory book. Frankly, your authors simply do
not have enough expertise to succinctly summarize the state of the art
from top to bottom. However, from a user’s perspective, there are many
similarities between physics engines that can be covered in an introductory
manner, so we start with an overview of a typical physics engine interface.
There are also a few choice mathematics that are discussed near the end of
this chapter.

12.6.1 Physics Engine State Variables

An old computer science adage attributed to Fred Brooks says, “Show
me your flow charts and conceal your tables, and I shall continue to be
mystified. Show me your tables, and I won’t usually need your flowcharts;
they’ll be obvious.” Despite the image of a banner printed on Z-fold paper
using The Print Shop that is evoked by the arcane terminology, the essence
of the message is still true today: to write or understand software, a good
place to start is a description of the data that are being operated on. From
the perspective of the user of a physics engine, there are three main types of
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data objects within a rigid body simulator: the dynamics bodies, collision
geometry data, and constraints. Let’s examine each of these in turn.

Dynamics body state. Perhaps the most fundamental type of data object
within a real-time rigid-body simulator is the dynamics body. You can
think of the dynamics body as the “soul” of a rigid body: it tells it where
to go, but it has no outward appearance, so you can see it only indirectly
via the effects it has. The collision geometry (to be discussed later) is
what gives a rigid body its “earthly form,” meaning its shape. The part
of a rigid body that we see is usually some sort of graphical model, which
doesn’t have anything to do with the physics engine and is not discussed
here.

At this point, it’s probably important to discuss the relationship be-
tween a dynamics body and an “object” in the nontechnical (and nonpro-
gramming) sense of the word. A simple rigid object, such as the ubiquitous
video game crates Old Man Murray was so fond of reporting sighting, can
be simulated by using a single dynamics body. A more complicated object
with moving parts, such as a car or human body, is not a rigid body and
thus cannot be simulated with a single dynamics body. Instead, the object
must be broken down into rigid parts, and then the dynamics bodies cor-
responding to those parts connected via joint constraints, to be discussed
later. Of course, the graphical representation for such a compound ob-
ject like this need not be “rigid,” but within the physics simulation, each
dynamics body is a rigid body.

Another way that a dynamics body is like a soul is that it’s easier to
just list its properties rather that attempt a precise definition. So let’s
enumerate the variables that comprise a dynamics body. We classify these
variables by their life cycle, meaning when those variables are initialized and
how often their values change. Certain properties are (mostly) constant,
some change continuously over the life of the object, and some are working
variables, coming into existence (or reset) at the start of a simulation time
step and being thrown away at the end of the time step.

The first class of properties are those that are initialized when the body
is instantiated by the application, and typically (but not necessarily) remain
constant during the simulation.

• The mass and inertia tensor are certainly critical properties of a rigid
body, and often these do not change over the course of the simulation,
although there is no inherent reason why they cannot be changed by
the application over time, for example, to simulate a car burning
fuel. As stated earlier, it’s frequently the inverse mass and tensor
that are actually needed by a simulation, so these are often kept on
hand as additional derived quantities so that they do not need to
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be recomputed every time they are needed. Also, the inertia tensor,
being a rotation, is a constant only if it operates on vectors expressed
relative to the body axes of the rigid body. Relative to the world
axes, the inertia tensor varies continuously as the body rotates.

• Sometimes the physics engine can store an offset of the center of
mass of the object (which, like the inertia tensor, is constant only
in the body space of the object). We noted earlier that for reasons
of numeric stability and simplicity, internally a physics engine might
prefer to assume the origin of the body space is its center of mass,
and this center of mass offset is taken into consideration in the client
interface routines.

• Each body is associated with one or more collision geometry objects,
the union of which defines the shape of the rigid body, as discussed
below.

The second class of variables that define the state of the dynamics body
are those that evolve over time, and contain some “history” in them and
must be carried forward from one frame to the next. If we need to save the
complete state of the simulation and resume it later (for example, in a save
game), these variables cannot be derived from any other source and must
be serialized:

• position,

• orientation,

• linear velocity,

• angular velocity.

This list reflects a choice to make velocities the primary state variables,
in which case the momentums are easily derived quantities. An alternate
strategy is to use the momentum as the primary state variable and ve-
locity as the derived quantity. The former approach has an advantage in
dealing with kinematically controlled objects, whose inertia (and therefore
momentum) is considered infinite. The latter can more elegantly deal with
the situation in which the mass changes over time, since conservation of
momentum is automatically enforced.

Finally, each dynamics body has certain properties that are stored in
working variables. These quantities change over time but do not inherently
have “history” integrated into them. These sorts of variables are often reset
at some point within the simulation step. If we wanted to save the state of
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the simulation and resume it later, it is usually not necessary20 to include
these variables in the state description:

• force and torque accumulators,

• linear and angular impulse accumulators,

• list of current contact constraints.

We use the word “accumulators” here to reflect what often happens in
practice. These values are often reset to zero at some point within the
frame, and then different sources of external forces are polled, and the net
result stored in these variables.

Listing 12.2 is a structure that summarizes the essentials of a dynamics
body state and hints at how it might be implemented in C++. These vari-
able names are used in the pseudocode later in this chapter. You should
compare this to the corresponding class in a real physics engine implemen-
tation to see what additional data that engine chose to keep on hand, or
what different choices were made.

s t r u c t DynamicsBody {

/ /
/ / Pr imary q u a n t i t i e s
/ /

/ / P o s i t i o n o f cen te r o f mass
Vector3 pos ;

/ / O r i e n t a t i o n in quate rn ion format
Quaternion rotQuat ;

/ / Mass
f l o a t mass ;

/ / Moment o f i n e r t i a , expressed in body space .
Matrix3x3 jBody ;

/ / V e l o c i t i e s
Vector3 l i n V e l ;
Vector3 angVel ;

/ /
/ / Derived q u a n t i t i e s
/ /

/ / Or i en ta t i on , i n ma t r i x form
Matrix3x3 rotMat ;

/ / I n v e r s e mass and i n e r t i a t en s o r
f l o a t oneOverMass ;
Matr ix3x3 invJBody ;

20The precise details depend on the method of numerical integration. Some methods
of integration utilize historical values in order to approximate higher derivatives.
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/ /
/ / Temporary / working v a r i a b l e s
/ /

/ / Force accumulators . Cleared to zero each t ime s tep
Vector3 fo r ce ;
Vector3 torque ;
Vector3 l i n Impu l s e ;
Vector3 angImpulse ;

/ /
/ / C o l l i s i o n and c o n s t r a i n t l i s t s
/ /
vec tor<Use rCons t r a in t∗> u s e r C o n s t r a i n t s ;
vec tor<Col l i s ionShape∗> c o l l i s i o n S h a p e s ;

} ;

Listing 12.2
Dynamics body state variables

Collision Geometry. If the dynamics body is the soul of a rigid object, the
collision geometry is its earthly manifestation. The collision geometry is
used to define the shape of dynamics bodies, and also of other “soulless” or
static objects. Typically, a physics engine will support a number of different
primitives. In order of complexity, these are

• basic abstract primitives such as spheres, boxes, planes, cylinders,
cones, and the like;

• convex polyhedra;

• arbitrary collision mesh, sometimes called a “triangle soup.”

The simpler shapes have advantages in both speed and stability, which
is why it’s often best to build up a concave or complicated shape from
multiple primitives. These primitives are allowed to penetrate each other;
only their union matters, since two geometry objects attached to the same
dynamics body will not collide with each other. Indeed, it’s important for
the physics engine to provide flexibility in deciding which pairs of geometry
objects collide; for example, on a character, the thigh part might not collide
with the connected torso and shin parts, but it might collide against every
other part in the body. Or, under the auspices of the first law of video
game physics, we might create a barrier that enemies can pass through but
the player character cannot.

A collision geometry object either will be associated with a single dy-
namics body, to which it has a fixed relative position and orientation, or
will not be associated with any dynamics body and is part of the static
“world.”
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Constraints. The third and final main type of object within a rigid body
simulator is a constraint. Constraints are used to enforce relationships be-
tween pairs of rigid bodies, or between a rigid body and the world. Appli-
cations can create two types of user constraints: joints and motors. A third
type of constraint is the contact constraint, which is involved in collision
response.

User constraints are the “regular” kind of constraints that are specified
by the application in order to maintain some desired relationship. The
more common and easily understood type of constraint maintains a spatial
relationship between two parts and is known as a joint. Some examples
of the types of joints that come built-in to most physics engines are the
following.

• A ball-and-socket joint constrains two objects such that a shared point
maintains a fixed position relative to each set of body axes. Alterna-
tively, you can think of one object having a ball at a fixed location
in its body space, and the other as having a socket in its body space,
and the constraint attempts to force those points to be coincident.

• A hinge joint is a ball-and-socket joint with an additional constraint
that two axes, one connected to the ball and the other to the socket,
must be collinear. Thus the two objects can rotate about the shared
axis like a hinge. Additionally, limits may be set on the hinge rotation
angle.

• A slider joint or prismatic joint operates on two axes that are fixed
relative to the body space of the two objects, constraining them to be
collinear. The objects may only slide back and forth along this axis,
or perhaps twist along it. Limits may be applied to the range of the
translation.

• A universal joint is similar to a ball and socket joint, but allows for
limits to be specified on the angles of rotation. The angular limits
are Euler angles (think heading and pitch), resulting in a rectangular
range of motion. Limits on the twisting (“bank”) can also be enforced.

• A conical joint is similar to a universal joint, but the rotation limits
are conical rather than rectangular.

As an example, in a human skeleton, each “bone” may be simulated as a
separate rigid body, with constraints used to attach each bone to its parent.
Hinge joints might be used at the knees, with limits set up to prevent the
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knee from bending backwards. Conical joints or perhaps universal joints
might be used for the hips and shoulders.

Whereas a joint constraint is concerned with the position and orienta-
tion of the bodies, a motor is a type of constraint that attempts to enforce
a requested relative velocity between two bodies. For example, by using
the proper kind of motor, an application can instruct the physics engine:
“Body A should maintain an angular speed ω, relative to the axis n̂, which
is fixed in the reference frame of body B.”

Most physics engines have a variety of constraints, and even mechanisms
for adding your own types of constraints. Furthermore, constraints need not
be absolute, but the physics engine can be given instructions to limit the
force that may be applied to enforce the constraint. Most physics engines
provide a mechanism by which a constraint may be queried for the amount
of force that was applied in the attempt to satisfy the constraint. This query
can be quite useful, for example, to play a sound if a motor is straining,
or perhaps destroy a joint if some threshold is exceeded. Joints and their
limits can also be “soft.” For example, in the Open Dynamics Engine,
values known as the error reduction parameter (ERP) and constraint force
mixing (CFM) parameter can be tuned to cause the joint to behave like a
spring-damper system.

Although application constraints don’t necessarily have any “memory”
and can be created and destroyed at will by the application—for example
to detach a wheel from a car or an arm from a body—they typically persist
across time steps. Contact constraints, in contrast, are instantiated by the
physics engine and are always destroyed within the same physics time step.
(Conceptually, at least. They may survive internally for performance or
stability reasons.) They are used to enforce nonpenetration between the
collision geometry of two bodies (or of a body and some static geometry).
These constraints are the primary output of the collision detection system
and the mechanism by which collision response is performed.

Although contact constraints are created by the physics engine during
collision detection, that doesn’t mean the application cannot be involved
in the process. Physics engines provide numerous hooks to customize the
creation of these contact points and notify the application when contact
constraints are applied to a dynamics body. These hooks are a powerful
means for fine-grained customization of how particular pairs of objects in-
teract, and collision notifications are essential for implementing feedback
such as sound and particle effects or a reduction in hit points.

This section presented the three main “tables” of data in a physics
engine. The next section covers the “flowcharts”—and we hope that you
and Fred Brooks don’t think they are too “obvious.”
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12.6.2 HighLevel Overview

The APIs presented by modern physics engines, through which you can
manipulate the “tables” from the previous section, show significant simi-
larity. However, their inner workings are more diverse. This is the point at
which we must really begin using generalities and waving our hands. This
section starts by presenting some high-level pseudocode of how a physics
engine fits into the game loop. Afterwards, we briefly discuss a few general
strategies for what happens inside of the heart of the physics engine.

We begin with the game loop itself, which is summarized by Listing 12.3.

void gameLoop ( ) {
getReady ( ) ;
while ( ! gameOver ) {

s imPrePhys ic s ( ) ;
phys icsEngine−>update ( ) ;
s imPos tPhys i c s ( ) ;
render ( ) ;

}
}

Listing 12.3
A very simple game loop

Let’s describe the physics-related work that goes on in each of the “func-
tions” in this listing. First, in getReady(), along with the usual loading
of textures and models, we also create objects within the physics system of
the three main types discussed in Section 12.6.1. The world will likely have
a large amount of collision geometry. Each simple simulated object might
have one dynamics body and one or a few collision shapes. A complex
articulated model might require several dynamics bodies, linked together
with joint constraints, and collision geometry for each body. For the player
character, we might set up a carefully tuned constraint used to pull the
character towards a desired position each frame.

Inside the game loop, we have broken the simulation into three steps.
First, there is a glob of activities we do before calling the physics engine,
which we have lumped together under simPrePhysics(). Here we prepare
the inputs to physics processing. We might process kinematically controlled
objects and notify the physics system of their new positions and velocities.
We would read the player input; determine where those controls indicate
the player should be; and update the constraints, forces, or torques used by
the physics engine to attempt to move the player character into position. In
a network game, we might poll the network for objects for which the local
host is not the authority, and update a constraint that tells the physics
engine, “Try to get the object to go here.” Also, the physics objects do
not all need to be created once in getReady() and live forever. We can
certainly add and remove objects from the physics universe at any time.
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Next, we invoke the physics engine to do its thing. Although most of
this code is in the physics engine itself, it will communicate back with the
game code for several purposes, either just for notification, or perhaps to
provide customization opportunities to the application. We review a few
different approaches that are used by physics engines later in this section.

When the physics engine is complete, some miscellaneous steps need
to happen that we have grouped together under the function simPost

Physics(). Perhaps the most important step is to update our game objects
with the new positions and orientations that have been determined by the
physics engine. We might do this by looping through all the objects and
polling the physics engine for the updated position. Or we might receive
notification in the form of a callback. The updated object positions are
not the only output of the physics update. We might also be interested in
the forces that were required to maintain constraints, or the list of colli-
sions that occurred. Depending on the game design, and how the camera
is simulated, we often update the camera after the physics has completed,
so that it moves in response to the player movement.

Finally, of course, at some point we need to draw the scene, as indicated
by the presence of the function render().

In our pseudocode, physicsEngine->update() represents the heart of
the physics engine. As we’ve mentioned, no two physics engines work ex-
actly the same, but there are some common themes. Here we briefly out-
line a few strategies, summarizing the more in-depth survey of Erleben et
al. [19].

Penalty Methods. Penalty methods resolve collisions with a spring-like
mechanism. The collision detection provides a list of penetrating collision
shapes. For each pair, we locate the dynamics bodies that own these shapes
and apply a repulsive force to each, where the magnitude of this force is pro-
portionate to the penetration depth. In other words, the penalty method
does not attempt to resolve collisions on the same time step that they are
detected; rather, over time the force will cause the objects to separate.
Of course, we must tune our “springs” carefully; for stacked objects, the
spring force will balance with gravity when the objects are in equilibrium,
so in general the penalty method does not attempt to completely eliminate
penetration, but rather just to limit it to an acceptable level. Listing 12.4
shows a simplified version of how this could be done.

void Phys ic sEng ine : : update ( ) {

/ / Gather up e x t e r n a l f o r c e s a c t i n g on the dynamics bodies
/ / ( i . e . g r a v i t y , sp r i ng s , e tc )
computeForces ( ) ;

/ / Locate p e n e t r a t i n g c o l l i s i o n geometry , and t h e i r owner bodies
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s t r u c t C o l l i s i o n {
DynamicsBody ∗body1 , ∗body2 ; / / the bodies invo lved
Vector3 p ; / / l o c a t i o n o f c o l l i s i o n
Vector3 n ; / / con tac t normal
f l o a t pene t ra t ionDepth ;

} ;
vec tor<C o l l i s i o n> c o l l i s i o n s = c o l l i s i o n D e t e c t i o n ( ) ;

/ / T r ea t each c o l l i s i o n as a s p r i n g
f o r ( each c o l l i s i o n ) {

/ / C a l c u l a t e a f o r ce based on the p e n e t r a t i o n depth
Vector3 f = c a l c u l a t e F o r c e ( c o l l i s i o n s [ i ] ) ;

/ / Add t h i s f o r ce to the two bodies
c o l l i s i o n s [ i ] . body1−>addForceAtPoin t ( c o l l i s i o n s [ i ] . p , f ) ;
c o l l i s i o n s [ i ] . body2−>addForceAtPoin t ( c o l l i s i o n s [ i ] . p , −f ) ;

}

/ / I n t e g r a t e the f o r c e s ( a c c e l e r a t i o n s ) i n t o v e l o c i t y , and
/ / v e l o c i t i e s i n t o p o s i t i on , to move the s i m u l a t i o n forward
i n t e g r a t e F o r c e s ( ) ;

}

Listing 12.4
Pseudocode for a physics simulation based on the penalty method

Sequential impulse simulations. These methods were popularized by Mir-
tich [46]. Both resting and colliding contact are modeled as (possibly very
high frequency) collisions. When a collision is detected between two objects
A and B, a collision law (such as the simple Newton collision model shown
in Section 12.5.4) is used to calculate an impulse that will prevent pene-
tration. However, this might result in a different collision, either elsewhere
between A and B, or perhaps between B and C, so the process must be
repeated until all of the relative velocities at the contacts are resting or
separating. Listing 12.5 illustrates the basic idea.

void Phys ic sEng ine : : update ( ) {

/ / Gather up e x t e r n a l f o r c e s a c t i n g on the dynamics bodies
/ / ( i . e . g r a v i t y , sp r i ng s , e tc )
computeForces ( ) ;

/ / I n t e g r a t e f o r ce ( a c c e l e r a t i o n ) i n t o v e l o c i t i e s , but don ’ t ye t
/ / update p o s i t i o n s
u p d a t e V e l o c i t i e s ( ) ;

/ / Locate c o l l i d i n g bodies
s t r u c t C o l l i s i o n {

DynamicsBody ∗body1 , ∗body2 ; / / the bodies invo lved
Vector3 p ; / / l o c a t i o n o f c o l l i s i o n
Vector3 n ; / / con tac t normal
f l o a t pene t ra t ionDepth ;

} ;
vec tor<C o l l i s i o n> c o l l i s i o n s = c o l l i s i o n D e t e c t i o n ( ) ;

/ / Keep app ly ing impul ses u n t i l a l l
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/ / r e l a t i v e con tac t v e l o c i t y i s r e so l ved
f o r ( ; ; ) {

/ / F ind a c o l l i s i o n where the r e l a t i v e po in t v e l o c i t i e s a t
/ / the po in t o f con tac t a re such t h a t the bodies are moving
/ / towards each o the r a long the normal . ( C o l l i d i n g contact ,
/ / r a t h e r than r e s t i n g or s e p a r a t i n g contac t )
C o l l i s i o n ∗c = nex tUnre so lvedCo l l i s i on ( c o l l i s i o n s ) ;
i f ( c == NULL ) break ;

/ / C a l c u l a t e an impulse us ing a c o l l i s i o n law
Vector3 impulse = c a l c u l a t e C o l l i s i o n I m p u l s e ( c ) ;

/ / Apply the impulse to the two bodies . ( Th i s produces an
/ / immediate change in the l i n e a r and angu la r v e l o c i t i e s )
c−>body1−>addImpulseAtPoint ( c−>p , impulse ) ;
c−>body2−>addImpulseAtPoint ( c−>p , −impulse ) ;

/ / Keep loop ing u n t i l a l l c o l l i s i o n v e l o c i t i e s a re r e s t i n g
/ / or s e p a r a t i n g

}

/ / Now s tep the p o s i t i o n s forward based on the v e l o c i t i e s
i n t e g r a t e V e l o c i t i e s ( ) ;

}

Listing 12.5
Pseudocode for a sequential impulse physics simulation

The first difficulty is that the order that the contacts are processed
(which are often an arbitrary artifact of collision detection) can cause dif-
ferent simulation results. A second is that the simulation can get caught in
an infinite loop, so care must be taken to ensure termination.

Velocitybased simulations. These techniques currently represent the state
of the art in real-time simulations. Preventing penetration and resolving
collisions is viewed as a constraint to be satisfied. As mentioned earlier,
these constraints are treated in a standardized way with user constraints
such as joints and motors. For each constraint, the simulation examines the
ratio of the rate of change of satisfaction of the constraint versus changes
in linear and angular velocity. Using this information (a matrix of partial
derivatives is known as a Jacobian matrix), the simulator solves for the
velocities that satisfy the constraints. This is illustrated in Listing 12.6.

void Phys ic sEng ine : : update ( ) {

/ / Gather up e x t e r n a l f o r c e s a c t i n g on the dynamics bodies
/ / ( exc lud ing those from the c o n s t r a i n t s )
computeForces ( ) ;

/ / T e n t a t i v e l y apply fo rce s , to compute proposed
/ / ( uncons t ra ined ) p o s i t i o n s and v e l o c i t i e s
i n t e g r a t e F o r c e s T e n t a t i v e l y ( ) ;

/ / Bu i ld up l i s t o f c o n s t r a i n t s . These come from two
/ / sources : c o l l i s i o n de t ec t i on ( con tac t c o n s t r a i n t s ) and



632 12. Mechanics 2: Linear and Rotational Dynamics

/ / the use r c o n s t r a i n t s .
vec tor<ConstraintRow> cons t ra in tRows ;
c o l l i s i o n D e t e c t i o n ( cons t ra in tRows ) ;
p r o c e s s A p p l i c a t i o n C o n s t r a i n t s ( cons t ra in tRows ) ;

/ / So lve f o r v e l o c i t i e s which s a t i s f y the c o n s t r a i n t s
s o l v e C o n s t r a i n t s ( cons t ra in tRows ) ;

/ / Now r e a l l y update the p o s i t i o n s , based on the computed
/ / v e l o c i t i e s t h a t s a t i s f i e d the c o n s t r a i n t s
i n t e g r a t e V e l o c i t i e s ( ) ;

}

Listing 12.6
Pseudocode for a velocitybased physics simulation

The resulting matrix problem is not a standard system of linear equa-
tions; rather, it is a system of inequalities. For example, if a collision law
predicts that two objects should bounce away with a certain velocity, that
velocity is interpreted as a minimum velocity. If some other constraint (say
one object is being pulled away by a spring) causes the objects to bounce
away faster than predicted by the collision law, this is not considered a
violation of the contact constraint. This type of system can be put into a
standard form, known as the linear complimentary problem (LCP).

Various implementations of velocity-based methods borrow ideas from
penalty and sequential impulse simulations, so it can sometimes be difficult
to classify a simulation as strictly one or the other. The incremental ma-
trix solvers that are used to solve the linear complimentary problem make
small adjustments to the velocity of the bodies; these adjustments can be
physically interpreted as a series of impulses. Thus, there are some similar-
ities between a velocity-based solver and a sequential impulse solver. The
distinction is that in a sequential impulse solver, the collision law is applied
multiple times. In a velocity-based simulation, the collision law is applied
once in order to determine the ideal relative velocity, and then this velocity
is treated as a goal or constraint. Some velocity-based solvers, notably the
Open Dynamics Engine, allow constraints to be treated as “soft,” using
techniques similar to penalty-based methods.

12.6.3 Euler Integration

Every physics engine needs to be able to “step forward” in time. We assume
that we know the position and velocity values (both linear and angular) at
some time t, and we want to determine their values at some future time
t+∆t. The outcome will depend on the net forces experienced by the object,
and, of course, the initial velocity at time t. The forces themselves may vary
depending on the position or the velocity of the body. For example, a body
connected to a fixed point by a spring experiences forces that vary based
on the position of the body, and a body moving through a fluid such as air
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experiences a drag force that has some (potentially nonlinear) relationship
with the relative velocity of the body and the fluid. Furthermore, the forces
can be the result of interactions between bodies (e.g., four bodies connected
by springs forming a tetrahedron, with one corner submerged in water). In
short, the problem is not trivial.

The mathematical term for this is numerical integration. There are two
main parts to our discussion. This section ignores rotation and discusses
the basic concepts of integration in terms of linear acceleration and velocity.
Section 12.6.4 considers how to integrate angular acceleration and velocity.

Recall that integration is the process of determining a function from
its derivative. In our case, we are working with three different functions
of time: position, velocity, and acceleration. A reader who was not asleep
will remember that velocity is the derivative of position and acceleration
is the derivative of velocity. We are dealing with numerical integration
because we are not symbolically solving the differential equations. Instead,
the derivative function that we know (the acceleration, determined using
Newton’s second law from the force) is being sampled only at a discrete
number of time values. To appreciate the difficulties, we begin with a näıve
approach and see where it fails.

Let h denote our step size in seconds (1/h is the simulation frequency,
so, for example, if we were running at 60 Hz, h would be 1/60). The
simplest method of integration is to assume that the derivative is constant
during the step. Assume that the current time step is the kth time step.
Then the position for the next time step, k + 1, is determined by

Euler integration of
velocity into position

pk+1 = pk + hvk.

This strategy is known as Euler integration. Although numerical integration
may be an “advanced” subject often taught after calculus, Euler integration
is easier for most people to understand than true (analytic) integration. It is
common practice to use Euler integration to introduce analytic integration,
which is exactly what we did in Figure 11.10 to determine the movement of
a rabbit, although we didn’t call the technique by its name. The key point
that was brought out was that simple Euler integration ignores changes in
the derivative during the time step, and this is the source of error. As we
saw, the most obvious way to reduce the error in the answer is to decrease
the step size h. In some cases, we can decrease it to the limit through
symbolic manipulations and arrive at a perfect answer (i.e., we use analytic
integration). But sometimes we have a complicated function and all we can
do is evaluate (“sample”) the function.

Consider three different simulations currently of interest in video games:
hair, cloth, and fluid. In each case, we break up the thing being simulated
into pieces (“discretize” the problem), and then simulate each piece using
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a simplified set of force laws. A basic strategy for cloth is to model the
cloth as a set of vertices, where each vertex is connected to nearby vertices
by “springs” and is affected by drag. The forces experienced by a given
vertex in this simulation depend on both the position and velocity of the
vertex and its neighbors. Although it is not difficult to calculate the ac-
tive forces at any given instant, the result cannot be directly integrated
because of the dependence on position and velocity. This is what makes it
a problem of differential equations rather than simple integration. These
differential equations are usually not vulnerable to the frontal assault of
analytic solution; we must use numerical integration.

Suppose we express the velocity of a single cloth vertex as a function
of time, approximated as a polynomial (by using its Taylor series expan-
sion; see Section 11.4.6). Assume we know the value at time tk and are
interested in only a small interval surrounding tk. Then we could write our
approximation in the form

v(tk + h) = v(tk) + hc1 + h2c2 + h3c3 + · · · . (12.33)

Euler integration is known as a first-order method of numerical integration
because it matches only up to the first-degree term in this expression, hc1,
which in this case is simply the acceleration ha(tk). It is true that h is on
the order of 1/60 and in general the higher-order terms decrease rapidly, but
we don’t know anything about the magnitude of the c’s, so the more terms
we can match, the better accuracy can be obtained.21 If the acceleration is
constant, then Euler integration would calculate the velocity exactly, but
if the forces depended on the position or velocity, then the higher order
terms in the expansion, which are ignored by Euler integration, would be
nonzero.

In order to improve our results, we will need to use a higher-order
method of numerical integration that is able to match more of the terms in
Equation (12.33). One common and important technique is Runge-Kutta,
and the idea is to take one or more trial steps and sample the forces at
different locations. Then the samples from the trial steps are combined in
a smart way. The field of numerical integration is a mature one with a large
amount of literature and many different well-studied techniques. It would
be appropriate to discuss several of these methods in an introductory book
that focused only on physics simulation, but we regret that it is just beyond
what we can squeeze into a few chapters in this broad introductory book.
However, we want to stress two important lessons concerning numerical
integration.

21Usually. Press et al. [56] make a point of stressing that higher order does not always
guarantee higher accuracy.
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The first message has already been delivered: we simply want you
to appreciate the shortcomings in Euler integration and be aware that
other methods exist that offer different trade-offs among accuracy, sta-
bility, and performance. Some integrators are better suited for different
purposes. Almost any integrator will work better than Euler integration
for the simulations people are currently interested in solving in real-time:
cloth, hair, fluid, and soft body simulation, combining dynamic physics
and pre-generated animation for articulated (especially humanoid) charac-
ters, and others. Anyone interested in these more advanced simulations
will find an understanding of integration methods to be a prerequisite.
The sources listed in the suggested reading in Section 12.7 are a good
start.

The second message is that although the higher-order methods are bet-
ter choices for the “high class” simulations we have named, for simulation
of rigid bodies, the trivial Euler integration is still often used. Why? In a
word: constraints. In some simulations, the force is a continuous function
of time or position, and has a nice Taylor series expansion that is well met
by the higher-order integration methods. Simulations based on spring-like
connections or those that deal with collisions in a soft, penalty-method-like
fashion behave like this. For such simulations, using a higher-order inte-
grator (which increases the number of “inner loop” trial steps and samples
per time step) offers a better reduction in error for a given amount of CPU
time, compared to reducing h (which takes more “outer loop” iterations).
However, the constraints in rigid-body simulations are often discontinuous
and inherently require an LCP-based approach. When these discontinu-
ous functions are approximated by Hooke’s law, the spring constant must
be very large, and this leads to instability. In fact, the resulting differ-
ential equations are referred to as “stiff” equations, which are known to
require implicit rather than explicit integration. Unfortunately, velocity-
based constraint solvers—as we mentioned, these are currently a popular
type of simulation—operate by adjusting the velocities to satisfy the con-
straints, and essentially they need to be able to “see into the future” to
know how changes to the proposed adjusted velocity will affect the inte-
grated position and thus the satisfaction of the constraint. More sophisti-
cated methods of integration make this fortune-telling more complicated.
(The implicit integration methods used to solve stiff equations essentially
operate by “seeing into the future.”) In short, due to the current meth-
ods of resolving contact and joint constraints, decreasing the stepsize h
offers a more attractive use of CPU time than higher-order integrators,
at least according to the votes cast by designs of the more popular real-
time rigid-body simulators in use in video games right now. Perhaps put
more bluntly: stability is currently valued more than accuracy in real-time
simulation.
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Having brought up numerous complications and then promptly set them
aside, we are now ready to present the basic equations for Euler integration
of position, velocity, and acceleration.

Euler Integration of Acceleration and Velocity

ak = fk/m (Newton’s second law),

vk+1 = vk + hak (integrate acceleration),

pk+1 = pk + hvk+1 (integrate velocity).

These are key operations, so let’s see how they might get implemented
in C++. The code in Listing 12.7 is a bit easier to read than the equations,
since the order of operations makes the subscripting unnecessary.

s t r u c t P a r t i c l e {
Vector3 pos ; / / world p o s i t i o n o f cen te r o f mass
Vector3 l i n V e l ; / / v e l o c i t y
Vector3 fo r ce ; / / c u r r e n t f o r c e s
f l o a t mass ; / / mass o f ob j ec t

/ / Take a s imple E u l e r s t ep forward in t ime by the t ime s tep dt
void e u l e r I n t e g r a t e ( f l o a t dt ) {

Vector3 a c c e l e r a t i o n = f o r ce / mass ;

l i n V e l += a c c e l e r a t i o n ∗ dt ;
pos += l i n V e l ∗ dt ;

}
}

Listing 12.7
Simple Euler integration

12.6.4 Integration of Rotation

Now let’s say a few words about integration of 3D rotational data. What
is the equivalent of pk+1 = pk +hvk for rotation? First, let’s present some
well-known results from mechanics concerning the relationship between an-
gular velocity and the derivative of orientation values.

Consider an arbitrary point r fixed on a body that is rotating about
its center of mass at an instantaneous angular velocity ωωω. We assume the
coordinate space used to describe r has its origin at the body’s center of
mass, but the axes do not rotate with the body. (In this book, we say
that we are expressing the coordinates of the point in “upright space.”
These coordinates are also sometimes called “center of mass coordinates.”)
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Section 11.8.2 showed how to compute the velocity of this vector: v = ωωω×r.
This can be written equivalently as

ṙ = ωωω × r. (12.34)

Section 11.8 stated that is it a basic feature of uniform circular motion
that the velocity varies continuously due to centripetal acceleration. Since
the velocity is not constant, as we’ve just seen, a simple Euler-step is not
accurate: r(t+h) 6= r(t)+hṙ. However, if we zoom in close enough, a small
segment of the circular path starts to look very much like a straight line,
and the Euler step isn’t that bad. In other words, with a small enough h, or
a slow enough angular velocity ωωω, the approximation might be acceptable:
r(t+ h) ≈ r(t) + hṙ.

Everything we’ve said so far works for any vector r, so let’s apply these
ideas to the body axes themselves. Remember that the rotation matrix
R describes the orientation of the object and rotates row vectors on the
left from body space to upright space. The rows of R are formed by the
body axes expressed in upright space. What we want to do is apply Equa-
tion (12.34) to each body axis (i.e., take the cross product of ωωω with each
row). Luckily, we can write the cross product operation as a matrix multi-
plication (see Exercise 4.8) as

ṙ = ωωω × r = r





0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0



 .

Now, the derivative of the rotation matrix can be expressed as the matrix
product

Derivative of orientation
matrix R for an object
with angular velocity ωωωṘ = R





0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0



 .

What does this mean? Just as with a single vector r and its derivative ṙ,
each element in Ṙ gives the derivative of the corresponding element in R.
In reality, any particular element of the matrix function R(t) will oscillate
within the range [−1, 1]. But as before, for small values of h (and small
angular velocities ωωω!), a small section of this curved, oscillatory pattern
looks like a straight line, and the simple Euler step Rk+1 ≈ Rk+hṘk might
be acceptable. However, with rotation matrices, a new wrinkle is present:
the resulting matrix is unlikely to be orthonormal. In essence, we are taking
Euler steps on each component in isolation, ignoring their interdependence.
The solution is to re-orthogonalize the matrix (see Section 6.3.3) after each
step.

If the orientation of the body is specified by using a quaternion rather
than a rotation matrix, the same basic technique can still be used: find the
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(component-wise) derivative of the orientation, take a simple Euler step
on each component independently, and then correct the orientation. With
quaternions, the derivative is given by

Derivative of orientation
quaternion q for an
object with angular

velocity ωωω

q̇ =
1

2
ωωωq,

where the 3D angular velocity vector ωωω has been extended into quaternion
space with w = 0. (Eberly [17, Section 10.6] derives this result; we will
not prove it here.) Note that we do not expect q̇ to be a rotation (unit)
quaternion. Neither do we expect the result of Euler integration, qk+1 ≈
qk + hq̇k to have unit length, and thus it must be normalized.

The technique of integration of orientation just described is a standard
one. When using this technique, there are two sources of error. The first
is caused by the Euler integration itself, in which we ignore angular ac-
celeration (and higher derivatives) and proceed as if the angular velocity
were constant. This error existed with linear data as well as angular; but
when integrating linear quantities it was the only source of error. The sec-
ond source of error is due to the use of component-wise derivatives, which
does not take into consideration the interdependence of the components of
the rotation matrix or quaternion. This type of error is unique to angular
data, since the components of positional data are independent (at least
when Cartesian coordinates are used). Fortunately, this source of error can
be eliminated.

Assume for the moment that the object whose orientation is described
by the rotation matrix R or quaternion q is rotating with constant angular
velocity ωωω. In this common case, no accuracy is lost by ignoring angular
acceleration, but there is a loss in accuracy, which increases with larger hωωω.
The solution is straightforward: determine the finite rotation that would oc-
cur in this time step, and then apply the appropriate angular displacement.
We already have the tools at our disposal. We convert the rotation hωωω from
exponential map form into axis-angle form (see Section 8.4). This angular
displacement can then be converted to a rotation matrix (see Section 5.1.3)
or quaternion (see Section 8.5.2), and concatenated with the current ro-
tation. Essentially, what we have done is to choose a better coordinate
system in which to perform the Euler integration.

Since it is slightly more expensive to perform the second method, a valid
question is: Is it worth it? In the common situation of constant angular
velocity, the second method is exact for any step size h, ignoring errors due
to floating-point roundoff. In this case, if the angular velocity is high, or
the accuracy required is high (e.g., the hands of a clock), then switching to
this alternative method will probably be a win. However, the error intro-
duced by Euler integration can interfere with the error introduced by the
component-wise derivative method either constructively or destructively,
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so there is no guarantee that reducing one source of error will actually im-
prove the accuracy of the final result in all cases. This is why the method
of integrating angular displacement is an option in some physics engines.

12.7 Suggested Reading

Our discussion has been necessarily compact, and we cringe at the deri-
sion actual physics experts must feel towards our presentation. Clearly, a
student with a serious interest in computer simulation will need a more
thorough background in physics than was provided here. The basics of
mechanics are usually covered in the first semester of a traditional physics
course, for which there are numerous textbooks of high quality. In prepar-
ing this book, we used Resnick and Halliday’s venerable textbook [57],
which has a distinct advantage of being incredibly inexpensive, and also a
textbook by Knight [38]. No one should ever learn this material without
in-class demonstrations; a student engaged in self-study (or stuck with a
lame physics teacher) need not miss out, as many demonstrations can be
found online. We recommend Professor Walter Lewin’s lectures, available
from MIT OpenCourseWare at ocw.mit.edu.

Three books are recommended for their discussion of physics simulation
tailored to the needs of video games. Bourg’s Physics for Game Devel-
opers [8] is an introductory text, with good coverage of the basics and a
unique presentation of numerous force laws applied towards different types
of vehicle simulations. Physics-Based Animation [19] contains a wealth of
information for both rigid-body and continuous simulations, including a
survey of several different approaches to multibody simulation; this text is
your best bet for filling in the gaps left by the vague hand-waving we’ve
had to do here. Eberly’s Game Physics [17] considers physics engines for
games in a slightly more academic and mathematically oriented manner.
It contains good discussions on techniques of numerical integration and a
unique section concerning the potential (currently unrealized) advantages
of Lagrangian dynamics. For Bourg’s book, the calculus covered in this
book is sufficient, but exposure to differential equations is recommended
before tackling the two more advanced books.

Another excellent way to learn about a real-time physics simulation
is to study the code of one. Two well-designed and documented open
source physics engines that have been used in commercial video games were
influential in the writing of this book and are worth mentioning. Russell
Smith’s Open Dynamics Engine [65], available online at http://ode.org/, is
slightly older and is not under active development, but has been influential
in the industry and is a useful resource. A newer collaboration by various
industry experts called Bullet Physics (http://bulletphysics.org/) is actively

http://ode.org/
http://bulletphysics.org/
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maintained and has been used in many games and even some Dreamworks
movies. The engine and the website are both useful resources.

Collision detection is a large portion of any physics engine, both in terms
of lines of code and CPU time consumed. Unfortunately, it’s difficult to say
“a little” about collision detection, and we haven’t had the space to do it
justice in this book. Ericson’s Real-Time Collision Detection [18] is our top
recommendation, but van den Bergen’s text [70] is also useful. A significant
amount of material on collision detection material can be found in Eberly’s
books on physics engines [17] and geometric tools for games [59].

Many of the mathematical problems that arise in computer simulation
fall under the broad category of scientific computing. (Older names for this
same basic subject area are “applied mathematics” and “numerical analy-
sis.”) Numerical Recipes in C [56] is a classic work for engineers, with clear
explanations and a large toolkit of source code. Several good textbooks ex-
ist on the subject; we can recommend Scientific Computing by Heath [32].
Strang’s textbook [67] has the compelling feature that an entire course of
accompanying lectures are available free from MIT OpenCourseWare at
ocw.mit.edu.

Chris Hecker has a collection of resources for real-time physics at
http://chrishecker.com/Physics References.

12.8 Exercises
(Answers on page 784.)

1. In a cartoon universe, a sailboat can be propelled by placing a fan in the
sailboat and pointing it at the sail. Explain why this doesn’t work in the
real world, by using Newton’s laws.

2. A boy and a girl are playing tug of war. The girl begins to win. Name
all of the important forces involved, and describe which force imbalance is
causing the girl to begin winning.

3. True or false: Lighter objects fall faster than heavier ones because the force
of gravity is a constant near Earth’s surface.

4. The International Space Station orbits Earth at approximately 340 km
above Earth’s surface at a speed of approximately 27,740 km/hr. (The
orbit is actually elliptical, but ignore that for now.) What is the acceleration
caused by Earth’s gravity in this “zero gravity” environment? Also, if the
Earth’s gravity still has a significant effect, why are astronauts in the space
station “weightless”? (Note: see also Exercise 11.12.)

5. A concrete block is placed on a wooden ramp. According to Table 12.1,
what is the critical angle of inclination of the ramp at which the block will
begin to slide? If we conducted the experiment on the moon, would the
critical angle increase, decrease, or stay the same?

http://chrishecker.com/
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6. (a) A weight with mass m is hung from a spring with a stiffness of k,
causing the spring to increase in length by a distance x0. What is the
formula that relates m, x0, and k?

(b) A 5.00 kg object is suspended from a spring, causing the spring to
increase in length by 10.0 cm. What is the spring constant k? (Make
sure to include the proper units.)

(c) A different object is hung from the same spring, this time causing the
spring to lengthen by 17.0 cm. What is the mass of this other object?

(d) Later, in a different environment, a 1.00 kg weight is hung from this
same spring, this time causing an increase in length of 8.0 cm. What
can you say about this environment that is different from the original
environment? What are some possible explanations for these differ-
ences?

7. A horizontal spring with stiffness 1.00× 102 N/m is fixed at one end, and
a 5.00 kg mass is connected on the other end, such that the mass slides
back and forth on a frictionless surface. The spring is extended from its
rest position by a distance of 14.7 cm.

(a) What is the frequency of the oscillation?

(b) What is the amplitude of the oscillation?

(c) What is the speed of the mass as it crosses the rest position?

8. A man weighing 75.0 kg is standing at one end of a train car. The car
weighs 1.00 × 103 kg, is 20.0 m long, and is from the future, where they
have invented a special type of wheel that rolls over the tracks with zero
friction. Use a coordinate space where the forward direction is +x. The
man walks from the back end of the car to the front end at a rate of
1.25 m/s.

(a) What are velocities of the man and the car, relative to Earth, during
the man’s walk?

(b) When the man reaches the end of the car, how far have the man and
the car moved, in world coordinates?

(c) What if, rather than walking at a constant velocity, the man builds
up as much speed as he can and then comes to an abrupt stop at
the end of the car. What would change about the motion of the car?
What about the final positions?

The experiment is repeated (the man walks with a constant velocity), only
this time the car and man have an initial velocity of +5.00 m/s.

(d) What are velocities of the man and the car, relative to Earth, during
the man’s walk?

(e) At the moment the man reaches the end of the car, how far have the
man and the car been displaced relative to Earth?
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9. Consider the car crash between Grant and Kari in Section 12.4.1. Calculate
the magnitude of the collision impulse, only this time instead of assuming
a perfectly inelastic collision, use a coefficient of restitution of e = 0.1.
(Assume a contact normal of 20o west of south.) What are the resulting
velocities of the two cars?

10. How does the monkey in Figure 12.21 stay balanced on the tightrope? How
does the bend in the bar help?

Figure 12.21
How does this monkey stay
balanced?

11. Two cylinders have the same shape and mass. One is hollow, and the other
is solid with uniform density. Which do you expect would be harder to
roll?

12. The mass distribution of a truck is approximated by using three boxes for
the body and four cylinders for the wheels, as shown in Figure 12.22.

Figure 12.22
Using primitives to approximate the
distribution of mass in a truck

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-040.jpg&w=176&h=133
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-13&iName=master.img-041.jpg&w=142&h=106
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Description Mass (kg) Center of mass (cm) Dimensions (cm, x × y × z)
Body front 1000 (0, 100, 225) 200 × 80 × 150
Body middle 600 (0, 125, 75) 200 × 130 × 150
Body rear 400 (0, 100,−120) 200 × 80 × 240
Front left wheel 50 (−100, 35, 230) 20 × 70 × 70
Front right wheel 50 (100, 35, 230) 20 × 70 × 70
Rear left wheel 50 (−100, 35,−150) 20 × 70 × 70
Rear right wheel 50 (100, 35,−150) 20 × 70 × 70

Table 12.2. Primitives used to approximate the mass of a truck

The position, mass, and dimensions of these primitives are given by Ta-
ble 12.2.

(a) What are the coordinates of the center of mass of the truck?

(b) Calculate the inertia tensor for each primitive, relative to its cen-
ter of mass. Assume all the primitives have uniform density. (You
will need to find the appropriate formulas online.) Hint: convert the
measurements to meters first.

(c) Use the parallel axis theorem to compute the inertia tensor of the
truck relative to its center of mass.

We love force and we care very little how it is exhibited.

— Ralph Waldo Emerson (1808–1882)





Chapter 13

Curves in 3D

I didn’t discover curves; I only uncovered them.

— Mae West (1892–1980)

This chapter talks about how to represent curves mathematically in 3D.
Recreating a curve from its mathematical definition is relatively easy; the
tricky part is obtaining a curve with desired properties, or alternatively,
making a tool that designers can use to draw such curves. Our goal in this
chapter is to provide a graceful and intuitive introduction to the mathemat-
ics of curves. In comparison with most of the other books on the subject,
our aim is to hit the most important points, without stopping every other
paragraph to prove that what we are saying is true. (We will, however, stop
periodically to discuss correct pronunciation, which is probably appropriate
considering that most of the people who developed the math we’ll be using
in this chapter were French.) Curves and splines are very useful for all sorts
of reasons. There are obvious applications such as moving objects around
on curved trajectories. But then the coordinates of our curve need not have
a spatial interpretation; essentially, any time we wish to fit a function for a
color, intensity, or other property to given data points, we have a potential
application for curves and splines.

The chapter is divided roughly into two parts. The first part is about
simple, “short” curves that can be described by one equation.

• Section 13.1 introduces the specific type of curve we focus on almost
exclusively: the parametric polynomial curve. (It pays special atten-
tion to cubic polynomials.)

• Section 13.2 describes polynomial interpolation, whereby a curve is
threaded through specified control points.

• Section 13.3 discusses Hermite form, which describes a curve in terms
of its endpoints and the derivatives at those endpoints.

645
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• Section 13.4 shows how the Bézier form specifies the curve endpoints,
plus interior control points that influence the shape of the curve but
are not interpolated.

• Section 13.5 shows how to subdivide a curve into smaller pieces.

The second half of the chapter covers splines, which are longer curves
created by joining together multiple curves in succession.

• Section 13.6 introduces some basic notation, terminology, and con-
cepts.

• Section 13.7 discusses how to join together Hermite or Bézier curves
into a spline.

• Section 13.8 considers continuity (smoothness) conditions for splines.

• Section 13.9 ends the discussion on splines by considering various
methods for automatically determining the tangents of a spline at
the control points.

13.1 Parametric Polynomial Curves

We focus here almost exclusively on one particular type of curve, the para-
metric polynomial curve. It’s important to understand what the two adjec-
tives parametric and polynomial mean, so Section 13.1.1 and Section 13.1.2.
discuss them in detail. Section 13.1.3 reviews some useful alternate nota-
tion. Section 13.1.4 examines the straight line, which is a particularly
instructive example of a parametric polynomial curve. Section 13.1.5 con-
siders the relationship between the endpoints of the curve and polynomial
coefficients. Section 13.1.6 discusses derivatives, such as velocity and ac-
celeration, and shows how they are related to tangent vectors and local
curvature.

13.1.1 Parametric Curves

The word parametric in the phrase “parametric polynomial curve” means
(not altogether surprisingly) that the curve can be described by a function
of an independent parameter, which is often assigned the symbol t. This
curve function is of the form p(t), taking a scalar input (the parameter t)
and returning the point on the curve corresponding to that parameter value
as a vector output. The function p(t) traces out the shape of the curve as
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t varies. For example, consider the classic parametric description of a unit
circle,

x(t) = cos(2πt),

y(t) = sin(2πt).
(13.1) Parametric description

of a circle

We briefly introduced parametric representation of geometric primitives
in Section 9.1. Let’s take a moment to review some of the alternative forms
from that section so we can understand ways of describing a curve that
are not parametric. An implicit representation is a relation that is true
for all points in the shape being described; for example, the unit circle
can be described implicitly as the set of points satisfying x2 + y2 = 1.
Another alternative to parametric form is the functional form, in which one
coordinate is expressed as a function of the other coordinate or coordinates;
for example, the top half of a unit circle can be described in functional form
as y =

√
1− x2.

The curve p(t) could be infinite, particularly if we place no limits on the
range of t. Often it’s useful to select a finite segment by restricting t to a
particular bounded domain, most commonly the domain [0, 1]. It’s natural
to designate the “forward” direction as the direction of increasing t, so the
curve “starts” at t = 0, “ends” at t = 1, and consists of all of the points
between.

Sometimes we think of the position function p(t) as a single function
that yields a vector result; other times it will be helpful to extract the
function for a specific coordinate. For example, the scalar function x(t)
specifies the x-coordinate of p(t), so in two dimensions p(t) = (x(t), y(t)).
Notice that each coordinate is specified by a function that depends only on
the parameter value so that each coordinate is independent of the others.
We work in the plane for the majority of this chapter because almost every
important aspect of parametric curves can be demonstrated in 2D and, in
general, extension into three dimensions is straightforward.

13.1.2 Polynomial Curves

Now that we know what the adjective parametric means, let’s turn our
attention to the second important word, polynomial. A polynomial para-
metric curve is a parametric curve function p(t) that can be written as a
polynomial in t:

Polynomial parametric
form of arbitrary
degree n

p(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1 + cnt
n.

The number n is called the degree of the polynomial. Higher degree poly-
nomials are more flexible in the sense that they can describe curves with
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more “wiggles.” However, sometimes extra “wiggles” come in that we don’t
want;1 more on this in Section 13.6.

We’ve already seen an example of a curve function that is parametric
but not polynomial—the parametric circle given by Equation (13.1). The
expressions for x(t) and y(t) are not polynomials because they use trig func-
tions. A complete circle can’t be described in parametric polynomial form,
although a circular arc can be described by a rational curve. A rational
curve is essentially the result of dividing one curve by another, sort of like
the projective geometry of homogeneous coordinates (see Section 6.4.1).
The curve in the denominator is a 1D curve. Rational curves are not as
common in video games as simple polynomial curves and are not discussed
in this book.

Of most interest to us are the parametric polynomial curves of degree 3,
known as cubic curves. Cubic curves are those that can be expressed in the
form shown in Equation (13.2).

Cubic Curve in Monomial Form

p(t) = c0 + c1t+ c2t
2 + c3t

3. (13.2)

This method of describing curves is often called the monomial form or the
power form, to emphasize the fact that the curve is specified by listing the
coefficients of the powers of t. Sections 13.2–13.4 discuss other methods of
describing a curve with more direct geometric data, such as a list of control
points that the curve is to pass through or nearby. These other forms are
still polynomial curves in the sense that they can be converted to monomial
form.

Once we have the coefficients, it’s easy to reconstruct the curve by
evaluating the function p(t) for different values of t. For example, let’s say
we wish to move a platform along a path in a video game. Our platform
actor would have a state variable to remember its parametric position t
along the path, and at each simulation time step, we would update t and
set the position of the platform to p(t).

Suppose we need to render a curve. One simple way to do this is to
approximate it with, say, 10 line segments, sampling the curve at t =
0, 1

10 ,
2
10 , . . . ,

9
10 , 1 and drawing line segments between consecutive sample

points. We can reduce the error in the approximation to any desired

1This is not intended as a comment on a certain Australian children’s musical group,
but may be misinterpreted as such.
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threshold simply by using more sample points. We can do much better
than this näıve approach by adaptively subdividing the curve, using more
segments in the “curvier” parts and fewer in the “straighter” parts.

But where do the coefficients c0, c1, c2, c3 come from? How can we
set them to design a particular curve? In general, the monomial form
is particularly ill-suited to this task, so we use other forms and convert
to monomial form when appropriate. (In many cases, we don’t need the
monomial form at all!) Before we discuss these other forms, however, we
need to introduce some more notation and concepts about curves.

13.1.3 Matrix Notation

We can rewrite the monomial form (Equation (13.2)) in several different
ways. It’s useful to be able to refer to a coefficient for a particular coordi-
nate. For example, in 2D let’s use the notation ci =

[

c1,i c2,i
]

so we have
one polynomial per coordinate:

2D cubic curve in
expanded monomial form

x(t) = c1,0 + c1,1t+ c1,2t
2 + c1,3t

3,

y(t) = c2,0 + c2,1t+ c2,2t
2 + c2,3t

3.

Some books are fond of writing this more compactly by using matrix nota-
tion. Let’s put the coefficients into a matrix C and create a column vector
t from the powers of t, such that ti = ti−1:

C =

[

c1,0 c1,1 c1,2 c1,3
c2,0 c2,1 c2,2 c2,3

]

, t =









t0

t1

t2

t3









=









1
t
t2

t3









.

Now we can express our curve function p(t) as a single matrix product:

2D cubic curve in
monomial form,
expressed as a matrix
product

p(t) = Ct =

[

c1,0 c1,1 c1,2 c1,3
c2,0 c2,1 c2,2 c2,3

]









1
t
t2

t3









.

Don’t try to apply any geometric interpretations just yet. The vector t is
not to be interpreted as a point in space, and the matrix C is not a trans-
formation matrix. Although we’re about to learn how to extract geometric
meaning from C, the techniques are very different from those learned in
previous chapters. For now, let’s just be happy to use matrix notation
purely for sake of compactness.
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The matrix C must be as “tall” as the number of dimensions the data
have; for example, three if we have 3D data. However, we don’t need to
refer to specific x, y, or z coordinates much in this chapter because most
of the ideas work the same in 3D or 2D (or 1D!). We can just leave each
coefficient ci in vector form and assume that it is a vector of the appropriate
dimension, so that each ci corresponds to a single column of C:

Coefficients as column
vectors

C =





| | | |
c0 c1 c2 c3
| | | |



 , p(t) = Ct =





| | | |
c0 c1 c2 c3
| | | |













1
t
t2

t3









.

When dealing with a higher degree polynomial, the matrix C is wider
and the power vector t is taller, since we have more coefficients and more
powers of t. This not only makes sense, it’s the law: for the product Ct

to be legal according to linear algebra rules, the number of columns in C

must match the number of rows in t.

13.1.4 Two Trivial Types of Curves

Although you’re reading this section because you want to learn how to draw
a curve, allow a brief digression to mention two trivial types of “curves”: a
straight line segment and a point.

We showed how to represent a line segment parametrically in Section 9.2
when we discussed rays. Consider a ray from the point p0 to the point p1. If
we let d be the delta vector p1−p0, then the ray is expressed parametrically
as

Parametric line segment p(t) = p0 + dt. (13.3)

Observe that this is a polynomial of the type we’ve been considering, where
c0 = p0, c1 = d, and the other coefficients are zero. In other words, this
linear curve is a polynomial curve of degree 1.

As boring as lines are, there’s an even less interesting shape that can be
represented in parametric polynomial form: the point. Lowering the degree
of the polynomial from 1 to 0 results in a so-called constant curve. In this
case, the function p(t) = c0 always returns the same value, resulting in a
“curve” that is a single stationary point.

13.1.5 Endpoints in Monomial Form

Clearly, one of the most basic properties of a curve that we want to control
are the locations of its start and end, p(0) and p(1), respectively. Let’s
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see what p(t) looks like at the endpoints. We’ll use the cubic case as our
example. At t = 0, we have

c0 specifies the start
pointp(0) = c0 + c1(0) + c2(0)

2 + c3(0)
3 = c0.

In other words, c0 specifies the start point of the curve. Now let’s see what
happens at the end of the curve at t = 1:

The endpoint is the sum
of the coefficientsp(1) = c0 + c1(1) + c2(1)

2 + c3(1)
3 = c0 + c1 + c2 + c3.

So the endpoint of the curve is given by the sum of the coefficients.

13.1.6 Velocities and Tangents

We can think of curves as being either static or dynamic. In the static
sense, a curve defines a shape. We operate in this mode of thinking when
we use a curve to describe the cross section of an airplane wing or a portion
of the letter “S” in the Times Roman font. In the dynamic sense, a curve
can be a trajectory or path of an object over time, with the parameter t as
“time” and the position function p(t) describing the position of a particle
at time t as it moves along the path.

If we consider only the static shape of the curve, then the timing of
the curve doesn’t matter and our task is a bit easier. For example, when
defining a shape, it doesn’t matter which endpoint is considered the “start”
and which is the ”end”; but if we are using the curve to define a path
traversed over time, then it matters very much where the path starts and
where it ends.

Using the dynamic mental framework and thinking about curves as
paths and not just shapes, some natural questions to ask are, “In what
direction is the particle moving at a given point in time?” “How fast is it
moving?” These questions can be answered if we create another function
v(t) that describes the instantaneous velocity of the particle at time t.

The phrase “instantaneous velocity” implies that the velocity changes
over time. So the next logical step is to ask, “How fast is the velocity
changing?” Thus it is also helpful to define an instantaneous acceleration
function a(t) that describes the rate at which the velocity of the particle is
changing at time t.

If you’ve had at least a semester of calculus, or if you read Chapter 11,
you should recognize that the velocity function v(t) is the first derivative
of the position function p(t) because velocity measures the rate of change
in position over time. Likewise, the acceleration function a(t) is the deriva-
tive of the velocity function v(t) because acceleration measures the rate of
change of velocity over time.
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We’re considering curves where p(t) is a polynomial of t here, so the
derivatives are trivially obtained. The position, velocity, and acceleration
functions for polynomials of arbitrary degree n are

Velocity and acceleration
are the first and second
derivatives, remember?

p(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1 + cnt
n,

v(t) = ṗ(t) = c1 + 2c2t+ · · ·+ (n− 1)cn−1t
n−2 + ncnt

n−1,

a(t) = v̇(t) = p̈(t) = 2c2 + · · ·+ (n− 1)(n− 2)cn−1t
n−3 + n(n− 1)cnt

n−2.

The derivatives of cubic curves are especially notable and appear several
times in this chapter.

Velocity and Acceleration of Cubic Monomial Curve

p(t) = c0 + c1t+ c2t
2 + c3t

3, (13.4)

v(t) = ṗ(t) = c1 + 2c2t+ 3c3t
2, (13.5)

a(t) = v̇(t) = p̈(t) = 2c2 + 6c3t. (13.6)

Now let’s examine velocity and acceleration in the special case of a
parametric ray. Applying the velocity and acceleration functions of Equa-
tions (13.5) and (13.6) to the original parameterization of a ray from Equa-
tion (13.3) yields

Velocity and acceleration
of a ray

p(t) = p0 + dt,

v(t) = c1 + 2c2t+ 3c3t
2 = d,

a(t) = 2c2 + 6c3t = 0.

As we’d expect, the velocity is constant; there is no acceleration.
Sometimes two curves define the same shape but different paths (see

Figure 13.1). We’ve already mentioned one example of this: if we traverse
the path backwards it still traces out the same shape. A more general way to
generate alternate paths that trace out the same shape is to reparameterize
the curve. For example, let’s reparameterize our line segment p(t) = p0 +
dt. We’ll make a new function s(t) = t2 and see what p(s(t)) looks like:

p(s(t)) = p(t2) = p0 + dt2.

Notice that both curves in Figure 13.1 define the same static shape, but
different paths. On the left, the particle moves with constant velocity, but
on the right it starts out slowly and accelerates to the finish.
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Figure 13.1. Two curves that define the same “shape,” but not the same “path”

If we are using a curve as a shape and not a path, then this repa-
rameterization doesn’t have a visible effect. But that doesn’t mean that
the derivatives of the curve are irrelevant in the context of shape design.
Imagine that we are creating a font using a curve to define a segment of
the letter S. In this instance, we might not care about the velocity at any
point, but we would care very much about the tangent of the line at any
given point. The tangent at a point is the direction the curve is moving at
that point, the line that just touches the curve. The tangent is basically
the normalized velocity of the curve. Let’s formally define the tangent of a
curve to be the unit vector pointing in the same direction as the velocity:

The tangent vectort(t) = v̂(t) =
v(t)

‖v(t)‖ .

Higher derivatives also have geometric meaning. The second derivative
is related to curvature, which is sometimes denoted κ, the lowercase Greek
letter kappa. We can define a measure of curvature by considering a circle
of a given radius. A circle with radius r has curvature equal to κ = 1/r
everywhere on the circle. A straight portion of a curve has zero curvature,
which can be interpreted as the curvature of a circle with infinite radius.
The curvature is computed by the formula

Curvatureκ(t) =
‖v(t)× a(t)‖

‖v(t)‖3
.

13.2 Polynomial Interpolation

You are probably already familiar with linear interpolation. Given two
“endpoint” values, create a function that transitions at a constant rate
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(spatially, in a straight line) from one to the other. We say that the function
interpolates the two control points, meaning that it passes through the
control points and can be used to compute intermediate values.

Polynomial interpolation is similar. Given a series of control points, our
goal is to construct a polynomial that interpolates them. The degree of
the polynomial depends on the number of control points. A polynomial of
degree n can be made to interpolate n + 1 control points. For example,
linear interpolation is simply first-degree polynomial interpolation. We’re
primarily interested in cubic (third-degree) curves in this chapter, so we are
creating polynomials that interpolate four control points.

In the context of curve design, to say that a curve interpolates con-
trol points is to place specific emphasis on the fact that the curve passes
through the control points. This is to be contrasted with a curve that
merely approximates the control points, meaning it doesn’t pass through the
points but is attracted to them in some way. We use the word
“knot” to refer to control points that are interpolated, invoking the meta-
phor of a rope with knots in it. It would seem at first glance that the avail-
ability of an interpolation scheme would make any approximation scheme
obsolete, but we’ll see that approximation techniques do have their advan-
tages.

Polynomial interpolation is a classic problem with several well-studied
solutions. Since this is a book on 3D math we cast the discussion primarily
in geometric terms, but be aware that most of the literature on polynomial
interpolation adopts a more general view, because the task of fitting a
function to a set of data points has broad applicability.

To facilitate the discussion we use a particular example curve, shown
in Figure 13.2. It’s somewhat like an S turned on its side. We’ve marked
the four control points on the curve that we are attempting to interpolate.
We’ve chosen to place the y coordinates on the interval [2, 3] for reasons
that will be useful later.

Notice that we must specify not only the position of each control point
(the x and y coordinates), but the time when we want the curve to reach
that control point (the t value). We use the notation that the independent
value (the “time values”) of the control points are named t1, t2, . . . , tn and
the dependent variables (the spatial coordinate values at those times) are
y1, y2, . . . , yn. The symbol P stands for the polynomial function that we
seek: yi = P (ti).

The array of time values t1 . . . tn is known in other contexts as the knot
vector or knot sequence. The word “vector” indicates that the sequence of t
values is an array of numbers, not that these numbers form a vector in the
geometric sense of the word. If the ts are spaced evenly like they are in our
example, then we have a uniform knot vector; otherwise, we say that the
knot vector is nonuniform. (Because it might be confusing, let us clarify



13.2. Polynomial Interpolation 655

t x(t) y(t)
0 0 2
1/3 1/3 3
2/3 2/3 2
1 1 3

Figure 13.2. An example curve and four control points. Can we draw this shape?

that the knot vector is the sequence of t values, not the sequence of control
points.)

What about the x-coordinate? Because the x and y coordinates are
independent of one another, a general 2D curve-fitting application involves
two separate one-dimensional problems. Aside from the fact that the two
problems use the same knot vector, the coordinates are otherwise unrelated.
Even though Figure 13.2 may look like a 2D curve, it is more properly
interpreted as a graph of one coordinate (the y-coordinate) as a function of
time. We chose as the example curve an S turned on its side, rather than
an S in its regular orientation, since the latter is not the graph of a function
(technically it’s called a relation because it associates more than one value
of y with each value of x).

With that said, there are two ways of interpreting Figure 13.2. We can
interpret it either as a 1D function of y(t), or as a 2D curve, where one of the
coordinates has a trivial form x = t. This is a common source of confusion
when looking at diagrams of curves in this book and elsewhere. Make sure
you pay special attention to the horizontal axis to make sure you know
whether it is a graph of one coordinate over time or a plot of the 2D curve
that includes the behavior of both spatial coordinates. The traditional
literature on polynomial interpolation is mostly in abstract terms of any
function of the form y = f(x). In this context, x would be the independent
variable rather than a dependent value as it is for us. The notation we have
chosen avoids the symbol x and its associated baggage.

Now we are ready to answer a question some readers might be think-
ing: “I don’t care what time the curve reaches the points, I just want a
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smooth shape that goes through the points.” Unfortunately, this doesn’t
unambiguously define a curve—we need to provide some other criteria to
nail down the shape, and one way to do this is to associate time values with
each control point. In typical applications of polynomial interpolation, we
want to be able to specify the values of the dependent variable, because
we are trying to fit a function to some known data points. There are some
reasonable ways we can synthesize this information if we don’t have it—for
example, by making the difference between adjacent t values proportional
to the Euclidian distance between the corresponding control points. How-
ever, the general fact that polynomial interpolation needs us to provide the
t values when we often don’t have a good way to decide what they should
be is a harbinger of later discoveries.

Now that we’ve set the ground rules, let’s try to create this curve. We
first take a geometric approach in Section 13.2.1. Then, in Section 13.2.2, we
look at the problem from a slightly more abstract mathematical perspective.

13.2.1 Aitken’s Algorithm

Our first approach to polynomial interpolation is a recursive technique due
to Alexander Aitken (1895–1967). Like many recursive algorithms, it works
on the principle of divide and conquer. To solve a difficult problem, we
first divide it into two (or more) easier problems, solve the easier problems
independently, and then combine the results to get the solution to the
harder problem. In this case, the “hard” problem is to create a curve
that interpolates n control points. We split this curve into two “easier”
curves: (1) one that interpolates only the first n − 1 points, disregarding
the last point; and (2) another that interpolates the last n−1 points without
worrying about the first point. Then, we blend these two curves together.

Let’s take the important cubic (third-degree) case as an example. A
cubic curve has four control points y1 . . . y4 that we wish to interpolate at
the corresponding times t1 . . . t4. Applying the “divide-and-conquer” ap-
proach, we split this up into two smaller problems: one curve to interpolate
y1 . . . y3, and another curve to interpolate y2 . . . y4. Since each of these
curves has three control points, they are quadratic (second-degree) curves.
Of course, quadratic curve-fitting is still a “hard” problem for us, and so
each curve must be further subdivided.

Consider the first quadratic curve, between y1, y2, and y3. We further
divide this curve into two parts, the first part between y1 and y2 and the
other part between y2 and y3. These two curves have only two control
points each; they are straight line segments. Finally, a problem that is
truly “easy”!

Since we have lots of curves at this point, we should invent some notation
for them. We let y1i (t) denote the linear curve between yi and yi+1, the
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notation y2i (t) denote the quadratic curve between yi and yi+2, and so on.
In other words, the superscript indicates the recursion level in the divide-
and-conquer algorithm (and also the degree of the polynomial), and the
subscript indexes along the length of the curve.

Take a look at the first quadratic curve y21(t) that interpolates y1, y2,
and y3. It is formed by blending together the two lines containing the first
two linear segments. An example of such blending is shown in Figure 13.3.
(This figure doesn’t use the data from our S example; it’s a less symmetric
case that better illustrates the blending process.) Notice that each curve
segment is an interval from an infinite curve that is defined for any value
of t.

Figure 13.3
Creating a quadratic curve as a
blend of two linear segments
according to Aitken’s algorithm

Now let’s look at the math behind this. It’s all linear interpolation. The
easiest are the linear segments, which are defined by linear interpolation
between the adjacent control points:

Linear interpolation
between two control
points

y11(t) =
(t2 − t)y1 + (t− t1)y2

t2 − t1
, y12(t) =

(t3 − t)y2 + (t− t2)y3
t3 − t2

.

The quadratic curve is only slightly more complicated. We just linearly
interpolate between the line segments:

Linear interpolation of
lines yields a quadratic
curve

y21(t) =
(t3 − t)

[

y11(t)
]

+ (t− t1)
[

y12(t)
]

t3 − t1
.

Hopefully you can see the pattern—each curve is the result of linearly
interpolating two curves of lesser degree. Aitken’s algorithm can be sum-
marized succinctly as a recurrence relation.
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Aitken’s Algorithm

y0i (t) = yi,

yji (t) =
(ti+j − t)

[

yj−1
i (t)

]

+ (t− ti)
[

yj−1
i+1 (t)

]

ti+j − ti
.

Aitken’s algorithm works because, at each level both curves being blended
already touch the middle control points. The two outermost control points
are touched by only one curve or the other, but for those values of t, the
blend weights reach their extreme values and all the weight is given to the
curve that touches the control point.

Now that we have the basic idea, let’s apply it to our sideways S. Fig-
ure 13.4 shows Aitken’s algorithm at work with our four data points. On
the left, the three linear segments are blended to form two quadratic seg-
ments. On the right, the two quadratic curves are blending, yielding the
final result that we’ve been seeking: a cubic spline that interpolates all four
control points.

So we’ve successfully interpolated the four control points, and accom-
plished the goal set out at the start of this section, right? Well, not exactly.

Figure 13.4
Two levels of Aitken’s algorithm
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Although our curve does pass through the control points, it isn’t really the
curve we wanted. If we compare the curve on the right side of Figure 13.4
with the curve we set out to create at the start of this section in Fig-
ure 13.2, we see that the curve produced by Aitken’s algorithm overshoots
the y value of the two middle control points. We have discovered an incon-
venient truth.2

Polynomial interpolation doesn’t really give us the type of control we want
for curve design in geometric settings.

But don’t despair! We’ve learned several important ideas that will be
helpful when we discuss Bézier curves in Section 13.4 and splines in Sec-
tion 13.6. In fact, we’re going to beg your patience to allow us to extend
the discussion on polynomial interpolation just a bit further. It’s sort of
like watching the movie Titanic; even though you know that the journey
will end tragically, you still might find something useful along the way. We
promise that the other techniques in this chapter will have practical as well
as educational value.

By the way, you might have noticed that we didn’t actually compute
the polynomial P that produces the curve. Working through this math
is straightforward, but a bit tedious and not all that enlightening. The
important point is that Aitken’s algorithm is a recursive process of blending
curves together and works by repeated linear interpolation. Besides, why
bother with the details when we have computers to solve algebra problems
for us?3 However, you needn’t feel short-changed by lazy authors. If you
really want to know what the polynomial is (or just want to feel like you’re
getting your money’s worth), keep reading. We’ll discover it in the next
section by using a different method that’s less tedious mathematically.

13.2.2 Lagrange Basis Polynomials

Section 13.2.1 applied geometric intuition to the problem of polynomial
interpolation and came up with Aitken’s algorithm. Now we approach the
subject from a more abstract mathematical point of view.

One mathematical approach to the interpolation problem comes from
linear algebra.4 Each control point gives us one equation, and each coeffi-

2Aitken’s Al Gore rhythm, if you will.
3Don’t try this excuse with your professor, but it’s been known to work in job inter-

views.
4We’re talking about real linear algebra, not the geometry-focused subset of it we

study in this book.
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cient gives us one unknown. This system of equations can be put into an
n×n matrix,5 which can be solved by standard techniques such as Gaussian
elimination or LU decomposition. Such techniques are outside the scope of
this book, but you can learn about them in practically any good book on
linear algebra or numerical methods.

Solving a matrix is a relatively time-consuming computational process,
requiring O(n3) time for an n× n matrix in the worst case. Luckily there
are more efficient approaches. As we did with Aitken’s algorithm, we solve
a large complicated problem by dividing it into a series of smaller, simpler
problems, and then combining those results. Aitken’s algorithm is a recur-
sive procedure, but here we will make one “simple” problem per control
point.

Let’s ignore the y’s for now and think only about the t’s. What if
we could create a polynomial for each knot ti such that the polynomial
evaluates to unity at that knot, but for all the other knots it evaluates to
zero? If we denote the ith polynomial as ℓi, then this idea can be expressed
in mathspeak: ℓi(ti) = 1, and ℓi(tj) = 0 for all j 6= i. For example, let’s
assume n = 4. Then our polynomials would have the following values at
the knots:

ℓ1(t1) = 1, ℓ1(t1) = 0, ℓ3(t1) = 0, ℓ4(t1) = 0,

ℓ1(t2) = 0, ℓ2(t2) = 1, ℓ3(t2) = 0, ℓ4(t2) = 0,

ℓ1(t3) = 0, ℓ2(t3) = 0, ℓ3(t3) = 1, ℓ4(t3) = 0,

ℓ1(t4) = 0, ℓ2(t4) = 0, ℓ3(t4) = 0, ℓ4(t4) = 1.

If we were able to create polynomials with the above properties, we would
be able to use them as basis polynomials. We would scale each basis poly-
nomial ℓi by the corresponding coordinate value yi, and add all the scaled
polynomials together:

Interpolating polynomial
in Lagrange basis form P (t) =

n
∑

i=1

yiℓi(t) = y1ℓ1(t)+ y2ℓ2(t)+ · · ·+ yn−1ℓn−1(t)+ ynℓn(t). (13.7)

You might want to take a moment to convince yourself that this polynomial
actually interpolates the control points, meaning P (ti) = yi.

Notice that the basis polynomials depend only on the knot vector (the
t’s) and not on the coordinate values (the y’s). Because of this, a set of
basis polynomials can be used to quickly construct multiple curves with the
same knot vector. This is precisely the situation we find ourselves in when

5This type of matrix, in which each row or column is a geometric series of the powers
of some term, is known as a Vandermonde matrix, after the French mathematician
Alexandre-Théophile Vandermonde (1735-1796).
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dealing with a 3D curve, which is really three one-dimensional curves that
share the same knot sequence.

Of course, all of this would work only if we knew the basis polynomials,
and finding ℓi is itself a problem of polynomial interpolation. However,
the “data points” we wish ℓi to interpolate are all either 0 or 1, so ℓi can
be expressed in a simple form. Such basis polynomials are called Lagrange
basis polynomials.6 A Lagrange7 basis polynomial ℓi for knot vector t1 . . . tn
looks like Equation (13.8):

Lagrange Basis Polynomial

ℓi(t) =
∏

1≤j≤n,

j 6=i

t− tj
ti − tj

=
t− t0
ti − t0

· · · t− ti−1

ti − ti−1

t− ti+1

ti − ii+1
· · · t− tn

ti − tn
. (13.8)

This trick works because at the knot ti, all the terms in the product equal
1, causing the entire expression to evaluate to 1, and at any other knot,
one of the terms in the product is 0, which causes the entire expression to
evaluate to 0.

Let’s apply this to our example S curve. Recall that it used the uniform
knot vector (0, 13 ,

2
3 , 1). Here, we work through the first basis polynomial

and just present the results for the others:

ℓ1(t) =

(

t− t2
t1 − t2

)(

t− t3
t1 − t3

)(

t− t4
t1 − t4

)

=

(

t− 1/3

0− 1/3

)(

t− 2/3

0− 2/3

)(

t− 1

0− 1

)

=

(

3t− 1

−1

)(

3t− 2

−2

)(

t− 1

−1

)

=
(3t− 1)(3t− 2)(t− 1)

−2

= −(9/2)t3 + 9t2 − (11/2)t+ 1,

6Although they are named for Joseph Louis Lagrange (1736–1813), Lagrange basis
polynomials were discovered in 1779 by Edward Waring (1736–1798). It may be inter-
esting to some readers that Lagrange is Ian Parberry’s PhD adviser’s PhD adviser’s,. . . ,
PhD adviser back 10 iterations.

7It’s important to pronounce the name of this French mathematician “luh-
GRAWNGE”. Otherwise, people might think you are talking about the small Texas town
of La Grange (pronounced “luh-GRAYNGE”). To the authors’ knowledge, La Grange,
Texas is not the namesake of any basis polynomials, although ZZ Top did name a song
after the town in honor of a nearby brothel.
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Figure 13.5. Cubic Lagrange basis polynomials for uniform knot vector

ℓ2(t) = (27/2)t3 − (45/2)t2 + 9t,

ℓ3(t) = −(27/2)t3 + 18t2 − (9/2)t,

ℓ4(t) = (9/2)t3 − (9/2)t2 + t.

Figure 13.5 shows what these basis polynomials look like.
Now that we have the Lagrange basis polynomials for the knot vector,

let’s plug in the y values from our example S curve (Figure 13.2) into
Equation (13.7) to get the complete interpolating polynomial:

P (t) = y1ℓ1(t) + y2ℓ2(t) + y3ℓ3(t) + y4ℓ4(t)

= 2[−(9/2)t3 + 9t2 − (11/2)t+ 1] + 3[(27/2)t3 − (45/2)t2 + 9t]

+ 2[−(27/2)t3 + 18t2 − (9/2)t] + 3[(9/2)t3 − (9/2)t2 + t]

= −9t3 + 18t2 − 11t+ 2 + (81/2)t3 − (135/2)t2 + 27t

− 27t3 + 36t2 − 9t+ (27/2)t3 − (27/2)t2 + 3t

= 18t3 − 27t2 + 10t+ 2.

Let’s show these results graphically. First, we scale each basis polyno-
mial by the corresponding coordinate value, as shown in Figure 13.6.

Finally, adding the scaled basis vectors together yields the interpolating
polynomial P , the blue curve at the top of Figure 13.7.
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Figure 13.6. Scaling each Lagrange basis polynomial by the corresponding coordinate value

Figure 13.7. The interpolating curve is the sum of the scaled basis polynomials
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We use the word basis in basis polynomial to emphasize the fact that we
can use these polynomials as building blocks to reconstruct absolutely any
polynomial whatsoever, given the values of the polynomial at the knots. It’s
the same basic concept as a basis vector (see Section 3.3.3): any arbitrary
vector can be described as a linear combination of the basis vectors. In our
case, the space being spanned by the basis is not a geometric 3D space,
but the vector space of all possible polynomials of a certain degree, and the
scale values for each curve are the known values of the polynomial at the
knots.

But there’s an alternate way to understand the multiplication and sum-
ming that’s going on. Instead of thinking about the polynomials as the
building blocks and the control points as the scale factors, we can view
each point on the curve as a result of taking a weighted average of the con-
trol points, where the basis polynomials provide the blending weights. So
the control points are the building blocks and the basis polynomials provide
the scale factors, although we prefer to be more specific and call these scale
factors barycentric coordinates. We introduced barycentric coordinates in
the context of triangles in Section 9.6.3, but the term refers to a general
technique of describing some value as a weighted average of data points.

We can think of basis polynomials as functions yielding barycentric coor-
dinates (blending weights).

Notice that some values are negative or greater than 1 on certain in-
tervals, which explains why direct polynomial interpolation overshoots the
control points. When all barycentric coordinates are inside the [0, 1] range,
the resulting point is guaranteed to lie inside the convex hull of the con-
trol points. (The convex hull is the smallest polygon that contains all the
control points. It “shrink wraps” the control points, sort of like if you were
to stretch a rubber band around the control points and then release it.)
But when we have any one coordinate outside this interval, the resulting
point could extend outside the convex hull. For purposes of geometric curve
design, the convex hull guarantee is a very nice one to have. Section 13.4
shows that Bézier curves do provide this guarantee through the Bernstein
basis.

13.2.3 Polynomial Interpolation Summary

We’ve approached polynomial interpolation from two perspectives. Aitken’s
algorithm is a geometric approach based on repeated linear interpolation,
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and with it we can compute a point on the curve for a given t without
knowing the polynomial for the curve. Lagrange interpolation works by
creating basis functions that depend only on the knot vector. We can view
the use of the basis polynomials in two ways. Either we can think about
scaling each basis polynomial by the corresponding coordinate value and
then adding them all together, or we can think about the polynomials as
functions that compute barycentric coordinates that are used as blending
weights in a simple weighted average of the coordinate points.

Both methods yield the same curve when given the same data. Further-
more, this polynomial is unique—no other polynomial of the same degree
interpolates the data points. An informal argument for why this is true
goes like this: A polynomial of degree n has n + 1 degrees of freedom,
corresponding to the n + 1 coefficients in monomial form. Therefore, the
degree n polynomial that interpolates n+1 control points must be unique.
(Farin [20, Section 6.2] gives a more rigorous argument.)

For purposes of curve design, polynomial interpolation is not ideal, pri-
marily because of our inability to control the overshoot. The overshoot is
guaranteed by the fact that the underlying Lagrange basis polynomials are
not restricted to the unit interval [0, 1], and the curve escapes the convex
hull of the control points.

Direct polynomial interpolation finds limited application in video games,
but our study has introduced the themes of repeated linear interpolation
and basis polynomials. We’ve also seen a bit of the beautiful duality be-
tween the two techniques.

13.3 Hermite Curves

Polynomial interpolation tries to control the interior of the curve by thread-
ing the curve through specified knots. This doesn’t work as well as we would
like, because of the tendency to oscillate and overshoot, so let’s try a differ-
ent approach. We’re still going to want to specify the endpoint positions,
of course. But instead of specifying the interior positions to interpolate,
let’s control the shape of the curve through the tangents at the endpoints.
A curve thus specified is said to be a Hermite curve or a curve in Hermite
form, named in honor of Charles Hermite8 (1822–1901).

The Hermite form specifies a curve by listing its starting and ending
positions and derivatives. A cubic curve has only four coefficients, which
allows for the specification of just the first derivatives, the velocities at the

8He’s another French guy, and his mother probably pronounced his name “air-
MEET.” But many English speakers, even some we know with PhDs, pronounce it
“HUR-mite,” so you can probably do the same.
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endpoints. So describing a cubic curve in Hermite form boils down to the
following four pieces of information:

• The start position at t = 0,

• The first derivative (initial velocity) at t = 0,

• The end position at t = 1,

• The first derivative (final velocity) at t = 1.

Let’s call the desired start and end positions p0 and p1 and the start
and end velocities v0 and v1. Figure 13.8 shows some examples of cubic
Hermite curves. Please note that the velocity vectors v0 and v1 have been
drawn at one-third their actual length. One reason for doing this is to save
space, and another will make sense later once we learn about Bézier curves
in Section 13.4.

Determining the monomial coefficients from the Hermite values is a rel-
atively straightforward algebraic process of combining equations previously
discussed in this chapter. The four Hermite values can be translated into

Figure 13.8. Some cubic Hermite curves
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the following system of equations:

p(0) = p0 =⇒ c0 = p0, (13.9)

v(0) = v0 =⇒ c1 = v0, (13.10)

v(1) = v1 =⇒ c1 + 2c2 + 3c3 = v1, (13.11)

p(1) = p1 =⇒ c0 + c1 + c2 + c3 = p1. (13.12)

Equations (13.9) and (13.12), which specify the endpoints, just repeat what

System of equations for
Hermite conditions

we said in Section 13.1.5. Equations (13.10) and (13.11), which specify
velocities, follow directly from the velocity equations for a cubic polynomial
(Equation (13.5) on page 652). The order in which these equations are listed
is a convention used in other literature on curves, and the utility of this
convention will become apparent later in this chapter.

Solving this system of equations results in a method to compute the
monomial coefficients from the Hermite positions and derivatives:

Converting Hermite
form to monomial form

c0 = p0, (13.13)

c1 = v0, (13.14)

c2 = −3p0 − 2v0 − v1 + 3p1, (13.15)

c3 = 2p0 + v0 + v1 − 2p1. (13.16)

We can also write these equations in the compact matrix notation in-
troduced in Section 13.1.2. Remember that when we put the coefficients as
columns in a matrix C, and the powers of t into the column vector t, we
can express a polynomial curve as the matrix product Ct,

We can write monomial
form using matrix
notation, remember?

p(t) = Ct =





| | | |
c0 c1 c2 c3
| | | |













1
t
t2

t3









,

where p(t) and each of the coefficient vectors ci are column vectors whose
height matches the number of geometric dimensions (1D, 2D, or 3D). The
height of t matches the number of c’s, which depends on the degree of the
curve.

The coefficient matrix C may be expressed as a matrix product by
putting the Hermite positions and velocities as columns in a matrix P and
multiplying by a conversion matrix H:

Cubic Hermite curve
using matrix notation

p(t) = Ct = PHt =





| | | |
p0 v0 v1 p1

| | | |













1 0 −3 2
0 1 −2 1
0 0 −1 1
0 0 3 −2

















1
t
t2

t3









.
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We can interpret the product PHt in two ways. If we group it like
P(Ht), then the matrix product Ht can be interpreted as Hermite basis
functions; we’ll have more to say about this basis shortly. Or, we can think
about C = PH, in which case, multiplication by H can be considered
a conversion from the Hermite basis to the monomial basis, essentially a
restatement of Equations (13.13)–(13.16).

We emphasize that the adjectives “monomial,” “Hermite,” and “Bézier”
refer to different ways of describing the same set of polynomial curves; they
are not different sets of curves. We convert a curve from Hermite form
to monomial form by using Equations (13.13)–(13.16), and from monomial
form to Hermite form with Equations (13.9)–(13.12).

Let’s take a closer look at the Hermite basis and hopefully gain some
geometric intuition as to why it works. Remember that we can interpret
basis functions as functions of t yielding barycentric coordinates. For cubic
Hermite curves, four values are being blended: the two positions and the
two velocity vectors.9 Thus, we have four basis functions that are the
elements of the column result of the matrix product Ht. Expanding the
product, we have

p(t) = P(Ht)

=





| | | |
p0 v0 v1 p1

| | | |





















1 0 −3 2
0 1 −2 1
0 0 −1 1
0 0 3 −2

















1
t
t2

t3

















=





| | | |
p0 v0 v1 p1

| | | |













1− 3t2 + 2t3

t− 2t2 + t3

−t2 + t3

3t2 − 2t3









.

Next, we name these basis functions (the rows of Ht) as H0(t) . . . H3(t)
(you may see these same functions indexed with different subscripts in
other sources):

The cubic Hermite basis
functions

H0(t) = 1− 3t2 + 2t3,

H1(t) = t− 2t2 + t3,

H2(t) = −t2 + t3,

H3(t) = 3t2 − 2t3.

9If you’re one of those purists who objects to the idea of “blending” points with
vectors (see Section 2.4), don’t worry. It’s possible to interpret the equations such that
the offensive comingling does not occur.
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Now, expanding the matrix multiplication makes it explicit that these
functions serve as blending weights:

Interpreting the Hermite
basis functions as
blending weightsp(t) =





| | | |
p0 v0 v1 p1

| | | |













H0(t)
H1(t)
H2(t)
H3(t)









= H0(t)p0 +H1(t)v0 +H2(t)v1 +H3(t)p1.

Figure 13.9 shows a graph of the Hermite basis functions.

Figure 13.9
The Hermite basis functions

Now let’s make a few observations. First, notice that H0(t)+H3(t) = 1,
so those who object to the idea of adding “points” together can breath
a sigh of relief, as we can interpret the situation as a proper barycentric
combination of the points.

The curve H3(t) deserves special attention. It is also is known as the
smoothstep function and is truly a gem that every game programmer should
know. This function is found in many places, including the Renderman
shading language and HLSL. To remove the rigid, robotic feeling from any
linear interpolation (especially camera transitions), simply compute the
normalized interpolation fraction t as usual (in the range 0 ≤ t ≤ 1), and
then replace t with 3t2 − 2t3. Voila! Everything will suddenly feel more
polished. The reason for this is that the smoothstep function eliminates
the sudden jump in velocity at the endpoints: H ′

3(0) = H ′
3(1) = 0.
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Smoothstep is Your Friend

The Hermite basis function H3(t) is also known as the smoothstep function.
Almost any transition based on linear interpolation, especially a camera
transition, feels better when replaced with the smoothstep function.

One final word about Hermite curves. Like the other forms for polyno-
mial curves, it’s possible to design a scheme for Hermite curves of higher
degree, although the cubic polynomial is the most commonly used in com-
puter graphics and animation. With the cubic spline, we specified the
position (the “0th” derivative) and velocities (first derivatives) at the end
points. A quintic (fifth-degree) Hermite curve happens when we also specify
the accelerations (second derivatives).

13.4 Bézier Curves

This chapter has so far discussed a number of ideas about curves that were
enlightening, but it has yet to describe a fully practical way to design a
curve. All of that will change in this section.10 Bézier curves were invented
by Pierre Bézier (1910–1999), a French11 engineer, while he was working
for the automaker Renault. Bézier curves have many desirable properties
that make them well suited for curve design. Importantly, Bézier curves
approximate rather than interpolate: although they do pass through the
first and last control points, they only pass near the interior points. For
this reason, the Bézier control points are called “control points” rather than
“knots.” Some example cubic Bézier curves are shown in Figure 13.10.

Recall from Section 13.2 that the problem of polynomial interpolation
had two solutions that produced the same result. Aitken’s algorithm was a
recursive construction technique that appealed to our geometric sensibili-
ties, and a more abstract approach yielded the Lagrange basis polynomials.
Bézier curves exhibit a similar duality. The counterpart of Aitken’s algo-
rithm for Bézier curves is the de Casteljau algorithm, a recursive geometric
technique for constructing Bézier curves through repeated linear interpola-
tion; this is the subject of Section 13.4.1. The analog to the Lagrange basis
is the Bernstein basis, which is discussed in Section 13.4.2. After consider-

10Well, just some of that is going to change—we hope your reading will still be en-
lightening. You know what we mean.

11See, we told you a lot of these guys were French! By the way, it’s pronounced
“BEZ-ee-ay.”
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Figure 13.10
Some cubic Bézier curves

ing both sides of this coin, Section 13.4.3 investigates the derivatives12 of
Bézier curves and reveals the relationship to Hermite form.

We’ve seen some beautiful cooperation between math and geometry in
this book, but the convergence is particularly elegant for Bézier curves. It
seems as if almost every important property of Bézier curves was indepen-
dently discovered multiple times by researchers in different fields. Rogers’
book [58] includes an interesting look at this story.

13.4.1 The de Casteljau Algorithm

The de Casteljau algorithm defines a method for constructing Bézier curves
through repeated linear interpolation. It was created in 1959 by physicist
and mathematician Paul de Casteljau (1910–1999).13 We show how the
algorithm works for the important cubic case as our example. First, a bit
of notation is necessary. A cubic curve is defined by four control points,
b0 . . .b3. Notice that Bézier control points traditionally are indexed start-

12“Rate of exchange,” if you will pardon the pun.
13Yep, he’s French, too, and that means you’d better pronounce his name correctly:

“duh CAS-tul-jho.” He worked for Renault’s rival, Citroen.
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ing at zero (which will appeal to the C programmers amongst us). Also,
as with Aitken’s algorithm, we add a superscript to indicate the level of
recursion. The original control points are assigned level 0, thus b0

i = bi.

With that out of the way, let’s consider a specific parameter value t from
0 to 1. The de Casteljau algorithm geometrically constructs the correspond-
ing point on the curve p(t) as follows. Between each pair of consecutive
control points, we interpolate according to the fraction t to obtain a new
point. So, starting with the original four control points b0

0 . . .b
0
3, we derive

three new points b1
0, b

1
1, and b1

2. Another round of interpolation between
each pair of these three points gives us two points b2

0 and b2
1, and a final

interpolation yields the point b3
0 = p(t) we’re looking for. Figure 13.11

shows the de Casteljau algorithm applied to the same curve at t = .25,
t = .50, and t = .75.

t = .25 t = .50 t = .75

b0
0

b0
1

b0
2

b0
3 b0

0

b0
1

b0
2

b0
3 b0

0

b0
1

b0
2

b0
3

b1
0

b1
1

b1
2 b1

0

b1
1

b1
2

b1
0

b1
1

b1
2

b2
0

b2
1 b2

0 b2
1

b2
0

b2
1

b3
0

b3
0

b3
0

Figure 13.11
The de Casteljau algorithm applied to a cubic curve
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It’s helpful to write out all the bs in a triangular fashion, as shown in
Figure 13.12. Each intermediate point is the result of linearly interpolating
between two points on the row above.

b0
0 b0

1 b0
2 b0

3

ց ւ ց ւ ց ւ
b1
0 b1

1 b1
2

ց ւ ց ւ
b2
0 b2

1

ց ւ
b3
0

Figure 13.12
Hierarchical relationships in the
de Casteljau algorithm for a cubic curve

If we combine these recursive relationships with the basic linear inter-
polation formula, we obtain the de Casteljau recurrence relation.

De Casteljau Recurrence Relation

b0
i (t) = bi,

bn
i (t) = (1− t)[bn−1

i (t)] + t[bn−1
i+1(t)].

Listing 13.1 illustrates how the de Casteljau algorithm could be imple-
mented in C++ to evaluate a Bézier curve for a specific value of t. The
caller passes in the original control points in an array, which is also used as
a temporary working space as the operation is performed in place. Each it-
eration of the outer loop performs one round of interpolation, replacing the
points at one level with the points at the next higher numbered superscript.
This process is continued until there is one point remaining, the desired re-
sult p(t). This example is intended to illustrate how the algorithm works,
not how to do anything particularly fast or provide a clean interface.

Vector3 deCas t e l j au (
i n t n , / / order o f the curve , the number o f p o i n t s
Vector3 p o i n t s [ ] , / / a r r ay o f p o i n t s . Overwr i t ten , as

/ / the a l go r i t hm works in p lace
f l o a t t / / parameter va lue we wish to eva lua t e

) {

/ / Perform the convers ion in p lace
while ( n > 1) {

−−n ;

/ / Perform the nex t round of i n t e r p o l a t i o n , reduc ing the
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/ / degree o f the curve by one .
f o r ( i n t i = 0 ; i < n ; ++ i ) {

p o i n t s [ i ] = p o i n t s [ i ]∗ ( 1 . 0 f−t ) + p o i n t s [ i +1]∗ t ;
}

}

/ / R e s u l t i s now in the f i r s t s l o t .
re turn p o i n t s [ 0 ] ;

}

Listing 13.1
Evaluating a point on a Bézier curve using de Casteljau’s algorithm

This gives us a method for locating a point at any given t through re-
peated interpolation, but it doesn’t directly give us a closed form expression
to calculate the point in terms of the control points. We emphasize that
such a closed form expression is often not needed, but let’s derive it in
monomial form anyway. We’re looking for a polynomial grouped by powers
of t. We’ll work our way up from the linear and quadratic cases to the cu-
bic. Section 13.4.2 presents a general pattern leading us to the expression
for arbitrary degree curves.

The linear case comes straight from the recurrence relation without any
real work:

b0
i (t) = bi,

b1
i (t) = (1− t)[b0

i(t)] + t[b0
i+1(t)]

= (1− t)bi + tbi+1

= bi + t(bi+1 − bi).

Applying one more level gives us a quadratic polynomial:

b2
i (t) = (1− t)[b1

i(t)] + t[b1
i+1(t)]

= (1− t)[bi + t(bi+1 − bi)] + t[bi+1 + t(bi+2 − bi+1)]

= [bi + t(bi+1 − bi)]− t[bi + t(bi+1 − bi)]

+ t[bi+1 + t(bi+2 − bi+1)]

= bi + t(bi+1 − bi)− tbi − t2(bi+1 − bi)

+ tbi+1 + t2(bi+2 − bi+1)

= bi + t(2bi+1 − 2bi) + t2(bi − 2bi+1 + bi+2).

In other words, quadratic Bézier curves, which have three control points,
can be expressed in monomial form as

Quadratic Bézier curve
in monomial form

p(t) = b2
0(t) = b0 + t(2b1 − 2b0) + t2(b0 − 2b1 + b2). (13.17)

Before we do the last round of interpolation to get the cubic curve, let’s
take a closer look at the quadratic expression in Equation (13.17). This
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conversion from Bézier form to monomial basis can be written with fewer
letters by using the matrix form introduced earlier in this chapter. After
putting the control points b0, b1, b2 as columns into a matrix B, we can
write

Quadratic Bézier curve
using matrix notation

p(t) = Ct = BMt =





| | |
b0 b1 b2

| | |









1 −2 1
0 2 −2
0 0 1









1
t
t2



. (13.18)

As we saw in Section 13.3 with Hermite curves, the two different ways to
group the product BMt lead to two different interpretations. If we perform
the multiplication BM first, we get the matrix of monomial coefficients C,
meaning M is a conversion matrix from Bézier form to monomial form.
Direct evaluation of the monomial form is faster than implementing the
de Casteljau algorithm, and so this form might be preferable in situations
where we need to evaluate the same curve for many different values of t,
for example, when moving an object over time along a path described by a
Bézier curve. (However, one must be aware of issues related to precision.
For example, we can ensure that performing de Casteljau using t = 1.0
produces a result that matches the last control point exactly. However,
substituting t = 1.0 into the polynomial in monomial form, the coefficients
might not sum exactly to this value due to floating point representation.)

The other way to group the product BMt is to perform the right-
hand multiplication first: B(Mt). When we plug in a specific value of t,
the product Mt yields a column vector of barycentric coordinates. If we
perform this multiplication leaving t as a variable, we get a column vector
of polynomials that can be interpreted as a basis. The basis polynomials
for Bézier curves are the Bernstein basis, discussed in Section 13.4.2.

Back to repeated interpolation. One last round gives us the cubic poly-
nomial:

One last iteration of
de Casteljau iteration
yields the cubic
polynomial.

Whew, expanding it all
out like this is pretty
exhausting!

b3
i (t) = (1− t)[b2

i(t)] + t[b2
i+1(t)]

= (1− t)[bi + t(2bi+1 − 2bi) + t2(bi − 2bi+1 + bi+2)]

+ t[bi+1 + t(2bi+2 − 2bi+1) + t2(bi+1 − 2bi+2 + bi+3)]

= [bi + t(2bi+1 − 2bi) + t2(bi − 2bi+1 + bi+2)]

− t[bi + t(2bi+1 − 2bi) + t2(bi − 2bi+1 + bi+2)]

+ t[bi+1 + t(2bi+2 − 2bi+1) + t2(bi+1 − 2bi+2 + bi+3)]

= bi + t(2bi+1 − 2bi) + t2(bi − 2bi+1 + bi+2)

− tbi − t2(2bi+1 − 2bi)− t3(bi − 2bi+1 + bi+2)

+ tbi+1 + t2(2bi+2 − 2bi+1) + t3(bi+1 − 2bi+2 + bi+3)
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= bi + t(3bi+1 − 3bi) + t2(3bi − 6bi+1 + 3bi+2)

+ t3(−bi + 3bi+1 − 3bi+2 + bi+3).

Writing the last line again, but this time assuming the cubic level is the
final level of recursion, we have

Cubic Bézier curve in
monomial form

p(t) = b3
0(t) = b0 + t(3b1 − 3b0) + t2(3b0 − 6b1 + 3b2)

+ t3(−b0 + 3b1 − 3b2 + b3).
(13.19)

Just to make sure you didn’t miss it, Equation (13.19) tells us how to
convert a cubic Bézier curve to monomial form. Since this is important,
let’s write it a bit more deliberately as

Cubic monomial
coefficients from Bézier

control points

c0 = b0,

c1 = −3b0 + 3b1,

c2 = 3b0 − 6b1 + 3b2,

c3 = −b0 + 3b1 − 3b2 + b3.

We can now put this conversion into a matrix like we did with the quadratic
case in Equation (13.18). The cubic equation for a specific point on the
curve p(t) is written in matrix notation as

Cubic Bézier curve using
matrix notation p(t) = Ct = BMt =





| | | |
b0 b1 b2 b3

| | | |













1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

















1
t
t2

t3









.

We can also invert this process, meaning we can convert any polynomial
curve from monomial form to Bézier form. Given any polynomial curve,
the Bézier control points that describe the curve are uniquely determined:

Computing Bézier
control points from

monomial coefficients

b0 = c0, (13.20)

b1 = c0 + (1/3)c1, (13.21)

b2 = c0 + (2/3)c1 + (1/3)c2, (13.22)

b3 = c0 + c1 + c2 + c3. (13.23)

And, of course, we can write this in matrix form:

Converting from
monomial to Bézier

form, in matrix notation





| | | |
b0 b1 b2 b3

| | | |



 =





| | | |
c0 c1 c2 c3
| | | |













1 1 1 1
0 1/3 2/3 1
0 0 1/3 1
0 0 0 1









.
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13.4.2 The Bernstein Basis

Section 13.4.1 ended with a bit of algebra to calculate the polynomial for
a curve from the Bézier control points. This polynomial was expressed in
monomial form, meaning the coefficients were for the powers of t. We can
also write the polynomial in Bézier form by collecting the terms on the
control points rather than the powers of t. When written this way, each
control point has a coefficient that represents the barycentric weight as a
function of t that the control point contributes to the curve.

Let’s repeat the algebra exercise from Section 13.4.1, only this time
we’ll be writing things in a slightly different way that will lead us to some
observations. As we did before, we start with the linear case (remember,
b0
i = bi):

b1
i (t) = (1− t)[b0

i(t)] + t[b0
i+1(t)]

= (1− t)bi + tbi+1.

Next comes the quadratic:

b2
i (t) = (1− t)b1

i(t) + tb1
i+1(t)

= (1− t)[(1− t)bi + tbi+1] + t[(1− t)bi+1 + tbi+2]

= (1− t)2bi + t(1− t)bi+1 + t(1− t)bi+1 + t2bi+2

= (1− t)2bi + 2t(1− t)bi+1 + t2bi+2.

And finally, we have the cubic case:

b3
i (t) = (1− t)[b2

i(t)] + t[b2
i+1(t)]

= (1− t)[(1− t)2bi + 2t(1− t)bi+1 + t2bi+2]

+ t[(1− t)2bi+1 + 2t(1− t)bi+2 + t2bi+3]

= (1− t)3bi + 2t(1− t)2bi+1 + t2(1− t)bi+2

+ t(1− t)2bi+1 + 2t2(1− t)bi+2 + t3bi+3

= (1− t)3bi + 3t(1− t)2bi+1 + 3t2(1− t)bi+2 + t3bi+3.

You might see a pattern emerging, but just to make it even more clear,
let’s show the curves up to degree 5 (we’ll skip over the algebra; it’s similar
to what we did above):

Bézier curves of
degree 1–5

b1
0(t) = (1− t)b0 + tb1, (13.24)

b2
0(t) = (1− t)2b0 + 2t(1− t)b1 + t2b2, (13.25)

b3
0(t) = (1− t)3b0 + 3t(1− t)2b1 + 3t2(1− t)b2 + t3b3, (13.26)
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b4
0(t) = (1− t)4b0 + 4t(1− t)3b1 + 6t2(1− t)2b2

+ 4t3(t− 1)b3 + t4b4,
(13.27)

b5
0(t) = (1− t)5b0 + 5t(1− t)4b1 + 10t2(1− t)3b2

+ 10t3(1− t)2b3 + 5t4(1− t)b4 + t5b5.
(13.28)

Now the pattern is more clear. Each term has a constant coefficient, a power
of (1 − t), and a power of t. The powers of t are numbered in increasing
order, so bi has a coefficient ti. The powers of (1 − t) follow the opposite
pattern and are numbered in decreasing order.

The pattern for the constant coefficients is a bit more complicated.
Please permit a brief, but hopefully interesting, detour into combinatorics.
Let’s write out the first eight levels in a triangular form to make the pattern
a bit easier to see:

Pascal’s triangle
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

With the exception of the 1s on the outer edge of the triangle, all other
numbers are the sum of the two numbers above it. You are looking at a
very famous number pattern that has been studied for centuries, known as
the binomial coefficients because the nth row gives the coefficients when
expanding the binomial (a+b)n. The compulsion to organize these numbers
in a triangular manner like this has struck many people, including the
mathematician and physicist Blaise Pascal (1623–1662).14 This triangular
arrangement of the binomial coefficients is known as Pascal’s triangle.15

Binomial coefficients have a special notation. We can refer to the kth
number on row n in Pascal’s triangle (where the indexing starts at 0 for
both n and k) using binomial coefficient notation as

Binomial coefficient
notation

(

n

k

)

.

14Yes, he was French, too. He appears in Ian Parberry’s PhD adviser tree somewhat
off to the left back 16 generations.

15In addition to his triangle, Pascal has an SI unit of pressure, a law, a programming
language, and a wager named after him, although the latter two are no longer in serious
use.
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For example,
(

6
2

)

= 15. We read
(

n
k

)

as “n choose k,” because the value

of
(

n
k

)

also happens to be the number of subsets of k objects that can be
chosen from a set of n objects, disregarding the order.

Now let’s look at the general formula for computing binomial coeffi-
cients. (We emphasize that this formula is primarily for entertainment
purposes, since our use of binomial coefficients in this chapter on curves
will be restricted to the first few lines of Pascal’s triangle.) Remember
from Section 11.4.6 the factorial operator, denoted n!, which is the prod-
uct of all the whole numbers up to and including n:

Factorial operator

n! =
n
∏

i=1

i = 1× 2× 3× · · · × n.

Using factorials, and defining 0! ≡ 1, we compute a binomial coefficient as

Binomial coefficient

(

n

k

)

=
n!

k!(n− k)!
.

Binomial coefficients arise frequently in applications dealing with com-
binations and permutations, such as probability and analysis of algorithms.
Because of their importance, and the amazingly large number of patterns
that can be found in them, they have been the subject of quite a large
amount of study. A very thorough discussion of binomial coefficients, es-
pecially regarding their use in computer algorithms, is presented by Knuth
[39].

Back to curves. We’ve analyzed the pattern of the barycentric weights.
Now let’s rewrite a Bézier curve, replacing each control point weight with
a function Bn

i (t), and using the cubic curve formula (Equation (13.26)) as
our example:

b3
0(t) = (1− t)3b0 + 3t(1− t)2b1 + 3t2(1− t)b2 + t3b3

= [B3
0(t)]b0 + [B3

1(t)]b1 + [B3
2(t)]b2 + [B3

3(t)]b3.

More generally, we can write a Bézier curve of degree n (having n+1 control
points) as

Bézier curve of arbitrary
degree

bn
0(t) =

n
∑

i=0

[Bn
i (t)]bi.



680 13. Curves in 3D

The function Bn
i (t) is a Bernstein polynomial, named after Sergei Bern-

stein (1880–1968).16 We’ve already figured out the pattern of these poly-
nomials, but here’s the precise formula:

Bernstein polynomial Bn
i (t) =

(

n

i

)

ti(1− t)n−i , 0 ≤ i ≤ n.

Figure 13.13 shows the graphs for the Bernstein polynomials up to the
quartic case.

The properties of the Bernstein polynomials tell us a lot about how
Bézier curves behave. Let’s discuss a few properties in particular.

Sum to one. The Bernstein polynomials sum to unity for all values of t,
which is nice because if they didn’t, then they wouldn’t define proper
barycentric coordinates. This fact is not immediately obvious, neither from
visual inspection of Figure 13.13 nor from a cursory examination of the
equations, but it can be proven. If you relish the idea of working through
such a proof for the quadratic case, check out Exercise 4.

Convex hull property. The range of the Bernstein polynomials is 0 . . . 1 for
the entire length of the curve, 0 ≤ t ≤ 1. Combined with the previous
property, this means that Bézier curves obey the convex hull property: the
curve is bounded to stay within the convex hull of the control points. Com-
pare this with the Lagrange basis polynomials, which do not stay within
the [0, 1] interval, causing polynomial interpolation to not obey the convex
hull property. One manifestation of this is the undesirable “overshooting”
witnessed in Figure 13.4.

Endpoints interpolated. The first and last polynomials attain unity when
we need them to. Because Bn

0(0) = 1 and Bn
n(1) = 1, the curve touches the

endpoints. Notice that t = 0 and t = 1 are the only places where any of the
basis polynomials reach 1, which is why the other control points are only
approximated and not interpolated.

Global support. All the polynomials are nonzero on the open interval (0, 1)—
that is, the entire curve excluding the endpoints. The region where the
blending weight for a control point is nonzero is called the support of the
control point. Wherever the control point has support, it exerts some in-
fluence on the curve.

Bézier control points have global support because the Bernstein poly-
nomials are nonzero everywhere other than the endpoints. The practical
result is that when any one control point is moved, the entire curve is af-
fected. This is not a desirable property for curve design. Once we have a

16Russian, not French.
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B1
0(t) = 1− t B2

0(t) = (1− t)2

B1
1(t) = t B2

1(t) = 2(1− t)t
B2

2(t) = t2

B3
0(t) = (1− t)3 B4

0(t) = (1− t)4

B3
1(t) = 3t(1− t)2 B4

1(t) = 4t(1− t)3

B3
2(t) = 3t2(1− t) B4

2(t) = 6t2(1− t)2

B3
3(t) = t3 B4

3(t) = 4t3(1− t)
B4

4(t) = t4

Figure 13.13
Bernstein polynomials of degrees 1–4
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section of the curve that looks how we want, we would prefer that editing
of some other distant control point not disturb the section that was shaped
the way we liked it. This envious situation, known as local support, occurs
when we move a particular control point and only the part of the curve
near that control point is affected, for some definition of “near.”

Local support means that the basis function is nonzero only in some
interval, and outside this interval it is zero. Unfortunately, such a ba-
sis function cannot be described as a polynomial, and thus no polynomial
curve can achieve local control. However, local support is possible by piec-
ing together small curves that fit together just right to form a spline, as
Section 13.6 discusses.

One local maximum. Although each control point exercises influence over
the entire curve, each exerts the most influence at one particular point
along the curve. Each Bernstein polynomial Bn

i (t), which serves as the
blend weight for the control point bi, has one maximum at the auspicious
time t = i/n. Furthermore, at that time, bi exerts more weight than any
other control point.

Thus, although every point on the interior of the curve is influenced to
some degree by all the control points (because Bézier control points have
global support), the nearest control point has the most influence.

13.4.3 Bézier Derivatives and Their Relationship
to the Hermite Form

Let’s take a look at the derivatives of a Bézier curve. Since we like to use
the cubic curve as our example, we’re talking about the velocity and accel-
eration of the curve. Remember that the velocity is related to the tangent
(direction) of the curve, and the acceleration is related to its curvature.

Section 13.1.6 showed how to get the velocity function of a curve from
the monomial coefficients:

Position and velocity of a
cubic curve

p(t) = c0 + c1t+ c2t
2 + c3t

3,

v(t) = ṗ(t) = c1 + 2c2t+ 3c3t
2. (13.29)

And Section 13.4.1 showed how to extract the monomial coefficients from
a cubic Bézier curve:

c0 = b0,

c1 = 3b1 − 3b0,

c2 = 3b0 − 6b1 + 3b2,

c3 = −b0 + 3b1 − 3b2 + b3.
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Plugging these coefficients into the velocity formula (Equation (13.29)), we
obtain a formula for the instantaneous velocity of a curve in terms of the
Bézier control points:

First derivative
(velocity) of a cubic
Bézier curve

v(t) = c1 + 2c2t+ 3c3t
2

= (3b1 − 3b0) + 2(3b0 − 6b1 + 3b2)t+ 3(−b0 + 3b1 − 3b2 + b3)t
2.

Now consider the velocity at the endpoints t = 0 and t = 1:

Velocity at the endpoints
of a cubic Bézier curve

v(0) = (3b1 − 3b0) + 2(3b0 − 6b1 + 3b2)(0)

+ 3(−b0 + 3b1 − 3b2 + b3)(0)
2

= 3(b1 − b0), (13.30)

v(1) = (3b1 − 3b0) + 2(3b0 − 6b1 + 3b2)(1)

+ 3(−b0 + 3b1 − 3b2 + b3)(1)
2

= 3b1 − 3b0 + 6b0 − 12b1 + 6b2 − 3b0 + 9b1 − 9b2 + 3b3

= 3(b3 − b2). (13.31)

This is interesting. Observe that b1 − b0 gives us the vector from the first
control point to the second control point, and b3 − b2 is the vector from
the third control point to the last control point. So the tangent at the
start of the curve at t = 0 is “aimed towards” the first control point, and
the tangent at the end of the curve at t = 1 is “aimed towards” the third
control point. (Actually, the tangent at t = 1 points directly away from
the third control point, if we think about moving along the curve in the
direction of increasing t). This is a key point.

The first edge of the Bézier control polygon completely determines the
tangent at the start of the curve, and the last edge determines the tangent
at the end of the curve.

Another way to illustrate the role of the middle control points in a cubic
Bézier curve is to examine the relationship between the Bézier and Hermite
forms. Remember that the cubic Hermite form contains the initial position
p0 and velocity p1 and the final position p1 and velocity v1. Now that
we know the relationship between the Bézier control points and the curve
velocity, it’s easy to convert from Bézier to Hermite form:
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Converting cubic curve
from Bézier form to

Hermite form

p0 = b0, (13.32)

v0 = 3(b1 − b0), (13.33)

v1 = 3(b3 − b2), (13.34)

p1 = b3. (13.35)

Or, we can convert from Hermite to Bézier:

Converting cubic curve
from Hermite form to

Bézier form

b0 = p0,

b1 = p0 + (1/3)v0,

b2 = p1 − (1/3)v1,

b3 = p1.

Thus, Hermite and Bézier forms are very closely related, and it is very
easy to convert between them. Their relationship is depicted graphically in
Figure 13.14.

Figure 13.14
Relationship between Bézier and Hermite
forms

We’ve said that the first derivative at either endpoint is completely de-
termined by the nearest two Bézier control points. We can actually make a
more general statement. The nth derivative at either endpoint is completely
determined by the nearest n+ 1 control points. The “0th derivative” (the
position of the curve) is completely determined by the interpolated con-
trol point. The first derivative has been discussed. The second derivative
(acceleration) at the end of the curve is determined by the closest three
control points. In fact, let’s see exactly what the acceleration is in terms
of the Bézier control points for a cubic curve. Converting the accelera-
tion function (Equation (13.6)) from monomial to Bézier form, we get
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Acceleration of a cubic
Bézier curve

a(t) = 2c2 + 6c3t

= 2(3b0 − 6b1 + 3b2) + 6(−b0 + 3b1 − 3b2 + b3)t

= (6b0 − 12b1 + 6b2) + (−6b0 + 18b1 − 18b2 + 6b3)t.

At the endpoints, the acceleration is given by

Acceleration of a cubic
Bézier curve at the
endpoints

a(0) = (6b0 − 12b1 + 6b2) + (−6b0 + 18b1 − 18b2 + 6b3)0

= 6b0 − 12b1 + 6b2,

a(1) = (6b0 − 12b1 + 6b2) + (−6b0 + 18b1 − 18b2 + 6b3)1

= 6b1 − 12b2 + 6b3.

As expected, the acceleration at the start is completely determined by the
first three control points, and the acceleration at the end is determined by
the last three control points.

Let’s define di = bi+1−bi as shorthand for the delta between consecu-
tive control points, the vector of the ith edge of the Bézier control polygon.
With this notation, the acceleration formulas bear a striking resemblance
to the velocity formulas:

Acceleration of a cubic
Bézier curve at the
endpoints, in terms of
the delta between
consecutive control
points

a(0) = 6b0 − 12b1 + 6b2 = 6b0 − 6b1 − 6b1 + 6b2

= 6 ((b2 − b1)− (b1 − b0))

= 6(d1 − d0), (13.36)

a(1) = 6b1 − 12b2 + 6b3 = 6b1 − 6b2 − 6b2 + 6b3

= 6 ((b3 − b2)− (b2 − b1))

= 6(d2 − d1). (13.37)

The above discussion applies to Bézier curves of any degree. In general,
the pattern is this: if we move control point bi, we affect the ith derivative
and higher at the start of the curve, but not lower-numbered derivatives.
(Similar statements apply at the end of the curve, regarding control point bi

and the derivative n−i and higher.) Of course, for a cubic spline that’s just
about the end of the story, since we cannot move any control point without
potentially changing the third derivative at every point on the spline, since
the third derivative is constant for a cubic, and all higher derivatives are
zero. We come back to these ideas in Section 13.8.1 when we talk about
the continuity conditions of two or more Bézier curve segments joined in a
spline.

13.5 Subdivision

Beginning with Section 13.6, this chapter addresses the topic of joining
together curves into a spline, which we can make as long and as complex as
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we want. Before we do that, this section considers the opposite problem:
how to take a curve and chop it up into smaller pieces.

Why would we ever want to do this? There are a couple of reasons.

• Curve refinement. In the process of designing a curve interactively,
we may find that we almost have the shape we want, but one curve
can’t quite give us the flexibility that we need. So we cut the curve
into two pieces (forming a spline), which gives us greater flexibility.

• Approximation techniques. Another reason to subdivide a curve is
that a piece of a curve is generally simpler than the whole curve,
where “simpler” means “more like a straight line.” So we can cut
it into a sufficiently large number of pieces, and then do something
with those pieces as if they were straight line segments, such as render
them or raytrace them. In this way, we can approximate the result we
would get if we were able to render or raytrace the curve analytically.

Strictly speaking, we don’t need subdivision to do piecewise linear
approximation—we already discussed one simple technique that eval-
uates the curve at fixed-size intervals and draws lines between those
sample points. But subdivision allows us to choose the number of line
segments adaptively by using fewer line segments on the straighter
parts of the curve and more line segments on the curvier parts.

So that’s the “why” of curve subdivision. Before we learn the “how,”
let’s be a bit more precise about the “what.” Consider a parametric polyno-
mial curve P defined by the function p(t), adopting the usual conventions
that the curve starts at t = 0 and ends at t = 1. Now consider a segment Q
that starts at an arbitrary time t = a and ends at t = b. This is illustrated
in Figure 13.15.

Figure 13.15. Extracting a segment of a curve by using subdivision

The goal of subdivision is a mathematical description for Q in some form
(monomial, Hermite, or Bézier). But don’t we already have that? After
all, we assume that have a mathematical description of P in some form,
and so it’s perfectly valid to define Q by saying, “Take the curve defined



13.5. Subdivision 687

by P , but instead of starting at 0 and ending at 1, start at a and end at b.”
That’s not really what we want. We want Q to be a fully independent and
“regular” curve that makes no reference to P , not subordinate or qualified
in some way. For example, if we are using Bézier form, then we want new
Bézier control points that define Q.

The following sections present two different methods for subdividing
curves. Section 13.5.1 presents a straightforward algebraic approach in
monomial form. Section 13.5.2 considers Bézier curve subdivision, which
is geometrically based and lends itself towards rather elegant and efficient
implementations.

Hermite form doesn’t lend itself naturally to subdivision. If we wish
to subdivide a Hermite form, we first convert the curve to another form
(probably Bézier) and do the subdivision in that form.

13.5.1 Subdividing Curves in Monomial Form

Extracting a segment from a curve in monomial form is a straightforward
algebraic task. Remember that monomial form is just an explicit poly-
nomial on t. Although we are typically interested only in the part where
0 ≤ t ≤ 1, the polynomial is defined for all values of t and so it actually
defines an infinite curve. The smaller segment Q that we wish to extract
is just a different subsection of the same infinite curve.

With this in mind, we realize that the problem of subdivision can easily
be viewed as a simple problem of reparameterization. Rather than trying
to muck directly with the monomial coefficients, we perform some algebra
on the parameter value. Let’s introduce a local parameter s that varies
from 0 to 1 as q(s) traces out the curve Q. Given this, we can define the
curve q(s) in terms of p(t) as

t = F (s), q(s) = p(t) = p(F (s)),

where the function F (s) is our reparameterization function that returns
the global parameter t corresponding to the local parameter s. It’s not too
hard to see what form F should be, since we wish to satisfy the endpoint
conditions F (0) = a and F (1) = b. Adopting a straightforward linear
relation between t and s yields

t = F (s) = a+ s(b− a).

You might want to verify that this does behave correctly at the endpoints.
Of course, all we have really accomplished is to define Q in terms of

P , which is precisely what we said was not sufficient at the start of this
section. The difference is that if we continue working through the math, and
substitute for p(t) and eliminate t, we can get a direct equation for q(s),
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which is a “regular” and independent curve satisfying the goals outlined at
the start of this section.

However, the ensuing algebra gruntwork produces a messy result with-
out revealing any insight. The main thing we wish to communicate here is
that subdivision of a curve in monomial form is a simple matter of reparam-
eterization, which can be accomplished algebraically. Furthermore, because
we can convert between monomial forms and other forms, we now have a
surefire method for subdividing any polynomial curve in any format.

But we need not be satisfied with this “brute force” approach; as it
turns out, in Bézier form, we can do better.

13.5.2 Subdividing Curves in Bézier Form

Subdivision of a Bézier curve can be done geometrically through a variant of
the de Casteljau algorithm. The full algorithm of extracting any subsection
for arbitrary endpoint parameters a and b is not immediately grasped, so
we follow Farin [20, Section 7.2ff] and start off with a simple case.

We begin by restricting ourselves to extracting only the “left side” of a
curve. In other words, we fix a = 0. Clearly, the first Bézier control point
on the smaller curve (at s = 0) is the same as the first control point on
the larger curve (at t = 0). Equally clear is that the endpoint at t = b
is obtainable by the basic de Casteljau algorithm from Section 13.4.1. An
example situation with b = 0.75 is illustrated in Figure 13.16.

Figure 13.16
Locating the interior
endpoint using the
de Casteljau
algorithm

We have the endpoints—now for those tricky interior points. Surpris-
ingly, if you look closely at Figure 13.16, you’ll notice that we already
constructed them! As it turns out, each round of de Casteljau interpola-
tion produces one of our Bézier control points. Figure 13.17 makes this
clearer, showing the selected Bézier points and the control polygon.

Why does this work? Recall the relationship between the Bézier form
and the Hermite form from Section 13.4.3. The first interior control point
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Figure 13.17
The de Casteljau
algorithm gives us all
the Bézier control
points of the
extracted curve
segment

b1 completely determines the first derivative (the velocity) at t = 0. Now,
the subcurve that we are extracting is part of the same infinite curve, and
thus its position and derivatives match everywhere, in a geometric sense.
However, the derivative is a rate of change relative to the rate of change
of the parameter. By subdividing, we have made the parameter t move
“faster,” since it goes from 0 to 1 over a smaller spatial interval. Thus,
the derivative of the subcurve is in the same direction, but it is shorter
according to the fraction of the curve that we are extracting, in our case
the value b.

Let’s summarize our findings. To extract the left half of a curve, 0 ≤
t ≤ b, we perform de Casteljau subdivision as if we were trying to locate the
endpoint at t = b. The first control point from each round of interpolation
gives us another control point for our subdivided curve. Extracting the
right half of a curve is analogous, so we won’t go into detail here.

There is one important special case of Bézier subdivision that we can do
armed only with what we know so far: subdividing a curve “in half” at t =
1/2. This computation makes possible rather elegant recursive algorithms
for adaptive subdivision. Let’s use our standard notation bi for the original
Bézier control points. For the two halves, we pick two letters at random
and call the control points for the left and right halves of the curve qi and
ri, respectively. The seven control points are given by

Subdividing a Bézier
curve at t = 1/2

q0 = b0,

q1 = b0/2 + b1/2,

q2 = b0/4 + b1/2 + b2/4,

q3 = r0 = b0/8 + 3b1/8 + 3b2/8 + b3/8,

r1 = b1/4 + b2/2 + b3/4,
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r2 = b2/2 + b3/2,

r3 = b3.

The general case is obtained through blossoming, which is a general
term referring to a number of techniques involving repeated de Casteljau
steps taken with different interpolation fractions. To determine each control
point, we take three de Casteljau steps (for a cubic curve, at least). For
each control point bi we take i of those steps using t = b, and the rest using
t = a. As it turns out, it doesn’t matter which of the interpolation steps
use a and which use b, but the number of steps using a or b is important.
Let’s consider each point on the cubic curve to make this clear. To compute
b0, at each round we use t = a as the interpolation fraction. For b1, we
use t = a for two of the rounds, and t = b for one round. To calculate b2,
we use t = a for the interpolation fraction in only one round, and t = b for
the other two. And of course, for the last control point b3, we use t = b for
all three rounds, exactly as we described at the start of this section.

13.6 Splines

So far we have been focusing on cubic curves, and for good reason; they
are the most commonly used type of curves in 3D. Such curves inherently
have four degrees of freedom, whether we are using Bézier curves with four
control points, monomial curves with four coefficients, or Hermite curves
with two ending points plus two derivatives. Because there are only four
degrees of freedom, the set of curves that can be represented by using only
the techniques of cubic curves is sharply limited.

Additional freedom is obtained by joining smaller curves together in
a spline, which is the subject of the remainder of this chapter. Before we
discuss splines, let’s pause for a moment to discuss one potential alternative:
using a higher degree polynomial. Obviously any degree n curve can be
converted to a degree n + 1 curve; such a conversion is known as degree
elevation. In monomial form, of course, this is trivial, we just add a new
leading coefficient of zero.

In Bézier form, degree elevation adds a new control point and, as you
might have guessed, the positions of the new control points can be con-
structed geometrically by using linear interpolation. Given a curve of degree
n, which has n + 1 control points denoted bi, degree elevation produces a
degree n+1 curve with n+2 control points, denoted b′

j . To determine these
new control points, we linearly interpolate using an interpolation fraction
proportional to the index of the control point:

Degree elevation in
Bézier form

b′
j =

j

n+ 1
bj−1 +

(

1− j

n+ 1

)

bj , 0 ≤ j ≤ n+ 1. (13.38)
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(Note that the computation of b′
j will “blend” the nonexistent point b′

−1

with a weight of zero.)
For Hermite curves, we usually are interested only in odd values for n,

so that we have the same number of derivatives at each endpoint.
A higher degree polynomial has the ability to describe a curve with

more “wiggles,” but, unfortunately, in general it suffers from several short-
comings:

• The curve has global support. Each control point exerts some nonzero
weight on every point along the curve, with the exception of the
endpoints.

• The curve has extraneous “wiggles” that sometimes show up in places
we don’t want, oscillating back and forth between the control points.
This is known as the Runge17 phenomenon.

• Somewhat related to the extra wiggles is the fact that higher degree
curves are very sensitive. Due to the curve’s global support, a change
to any one of the control points will result in a change over the entire
curve; due to the high sensitivity, this response can be very large.

• Having ruled out polynomial interpolation as a viable curve design
tool, we cannot directly specify a point that we want the curve to
interpolate, other than the endpoints.

The basic problem is that we are asking too much from a single polynomial.
Splines do not have these shortcomings.

Here’s what’s in store. First, to facilitate the discussion, we must expand
our notation and introduce a level of indirection between the local and
global parameterization, which we do in Sections 13.6.1 and 13.6.2. Then,
in Section 13.7, we talk about Hermite and Bézier splines, which are used
in many software packages, such as Adobe Photoshop and Autodesk 3DS
Max. From there, our focus naturally gravitates towards deciding what to
do at the “seams.” The first hurdle is to define the criteria that must be
met so that the curve is smooth at these junction points. Such continuity
conditions are the subject of Section 13.8. Once we understand these issues,
we will have finally reached our goal set at the start of this chapter, a spline
system that provides an intuitive means to define a curved shape.

Having developed a flexible design tool where the user can specify the
position and tangent at each control point, Section 13.9 then investigates
methods by which the designer need specify only the positions of the control
points, and the tangents are computed automatically based on a set of
intuitive user controls.

17Pronounced “RUN-guh.”
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13.6.1 Rules of the Game

Our spline is composed of n segments, denoted q0, q1, . . . , qn−1. The ith
segment qi is a function that accepts a local parameter, named si, which
is normalized to vary from 0 to 1 over the length of the segment. In other
words, for each segment there is a curve function qi(si) exactly like the
ones we studied in the first part of this chapter; the only differences are the
cosmetic renaming of the function from p to qi and the argument from t
to si.

We use two different notations to refer to the entire spline. One way is
to just drop the subscripts from the notation above, so the function q(s)
refers to the entire spline, and the parameter s (without subscript) is a
global parameter. As s varies from 0 to n, the function q(s) traces out the
entire spline.

The composite function q(s) is very simple. Basically we take the integer
portion of s to get the index i, describing which segment we are on, and
then the fractional portion is used as si and plugged into the segment qi.
So the first segment q0(s0) defines the spline on the interval between q(0)
and q(1), the second segment defines the spline from q(1) to q(2), and so
on. More formally,

A composite curve with
a simple global

parameterization

i = ⌊s⌋, (select segment by using the floor function)

si = s− i, (calculate local parameter)

q(s) = qi(si). (evaluate segment)

Note that, given a particular value for s, we can unambiguously iden-
tify the point q(s) along the spline. However, a particular value of si is
meaningful only within the context of segment i; this is emphasized by the
subscript.

If we are not concerned with the timing of our curve, then this notation
may be all we need. However, when defining an animation path, we usually
need a level of indirection. We introduce the notation p(t) to refer to the
final curve, a function that returns our position at a given “time” t. It’s
just a different parameterization of the same curve; p(t) and q(s) trace out
the same shape, but the s and t values for a particular point along the path
are usually not be the same. We can parameterize the curve so that some
sections are traversed quickly and others more slowly. The range of s is
fixed by the number of knots, but we are free to assign the range of t, the
total duration of the curve, to anything we wish.

In general, we can define p(t) in terms of q(s) by creating a function that
maps a time value t to a parameter value s. When we want to be explicit
that s is a function of t, we use the notation s(t), and this function is called
the time-to-parameter function. If you’re a computer programmer, you can
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think of p(t) as the public interface, and q(s) as an internal implementation
detail. We are engaging in a fundamental practice of computer science:
breaking down complexity by introducing a level of indirection.

With the above notation established, the basic game plan for evaluating
p(t) is as follows:

1. Map the time value t into a value of s by evaluating the time-to-
parameter function s(t).

2. Extract the integer portion of s as i, and the fractional portion as si.

3. Evaluate the curve segment qi(si).

Of course, if we don’t care about the timing of the spline (perhaps we only
care about its shape), then we have no need of the first step, and we can just
use the trivial mapping of s(t) = t. Unfortunately, due to space constraints,
this is precisely what we’re going to do in this book. We don’t discuss the
subtleties of dealing with the timing.

With the assumption for now that s = t, the first step is trivial. The
second step is also easy, and we devoted the first part of this chapter to the
third step. So we really already know how to evaluate a spline; let’s look
at how we might create one.

13.6.2 Knots

Think about the juncture between two segments. For the curve to be
continuous, clearly the ending point of one segment must be coincident with
the starting point of the next segment. (Section 13.8 addresses additional
desirable criteria.) These shared control points that are interpolated by the
spline are called the knots of the spline. The knot at index i is denoted ki,
and since there is one more knot than the number of segments, the knots
are numbered k0 . . .kn.

We assume that the segments are connected at the knots. In other
words, q(s) passes through the knots at integer values of s. With this as-
sumption, there’s no need for separate notation (or separate storage space
in a computer program) for the beginning point and ending point of each
segment. Instead, each interior knot ki serves a dual role as the start-
ing point of segment qi and the ending point of segment qi−1. Thus, we
establish the following relations:

q(i) = ki, qi(0) = ki, qi(1) = ki+1.

Note that ki specifies a single point, whereas the notation qi refers to an
entire segment, which is a function of a local parameter si that yields a
point. All of this notation is depicted in Figure 13.18.
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Figure 13.18. A spline with n segments has n+ 1 knots, named k0 . . .kn.

In animation contexts, the knots are sometimes called keys. This is
a reference to the old-school animation methods where a master animator
would create the key frames, or frames where the characters reached impor-
tant poses. The in-between frames would be filled in by a less experienced
(and less expensive) apprentice. In computer animation, a key can be any
position, orientation, or other piece of data whose value at a particular
time is specified by a human animator (or any other source). The role of
the apprentice to “fill in the missing frames” is played by the animation
program, using interpolation methods such as the ones being discussed in
this chapter. As we’ve noted before, most of the early research on splines
was aimed at defining static shapes, not animated trajectories, and so the
term “knot” is more prevalent.

13.7 Hermite and Bézier Splines

A spline is made by patching together curve segments so that they fit to-
gether smoothly. What sorts of curve segments? For reasons that will soon
become apparent, it is most convenient for us to use the Hermite represen-
tation for the individual segments. When we say convenient “for us,” we
mean the people writing the code for an animation system or carrying out
the mathematical discussion in the following sections. When it comes to
depicting or manipulating splines graphically, the Bézier form is typically
preferred. Of course, the Hermite and Bézier forms are closely related, and
it is easy to convert between the two forms. If you don’t remember this
relationship, we review it in just a moment.
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Remember that a Hermite curve segment is defined by its starting and
ending positions and velocities. When we were focused on a single segment,
we denoted the positions by p0 and p1, and the velocities by v0 and v1. In
the context of a spline, we use a notation organized around a knot rather
than a segment. For positions, we don’t use the ps because, as we’ve said
earlier, the knot ki, which is the starting position of the segment qi(0),
also serves as the ending position of the previous segment at qi−1(1). For
velocities, the notation vout

i refers to the outgoing velocity at knot i and
defines the starting velocity for the segment qi. Likewise, the incoming
velocity from the left side of ki is denoted vin

i and defines the ending velocity
of the previous segment qi−1. We also refer to these velocity vectors as
tangents.

Figure 13.19 shows a spline with five Hermite segments. All of the
knots, segments, and tangents are labeled according to the notation just
described.

Be warned that the tangents in Figure 13.19—and all the figures of
Hermite curves in this chapter—are drawn at one-third scale. Officially
we’d like to tell you that this was done so that the diagrams would be
smaller and this book would consume less of the Earth’s natural resources.
A more accurate reason is that we draw the tangents at one-third length
so the tangents will be the same as the edges of the Bézier control polygon.
Matching the Bézier control polygon has some educational benefits, but,
more importantly, it facilitates laziness on the part of the authors: the
tools we used to create the curves in the diagrams are based on Bézier
splines.

The splines in the diagrams in this book were created in Adobe Photo-
shop by making a path and then “stroking” the path. The arrows for the
tangent vectors were drawn by putting one end at a knot and the other end

Figure 13.19. Our notation for splines with segments in Hermite form
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Figure 13.20
Creating Figure 13.19 with Adobe Photoshop.

at the “handle” used to control the shape of the curve, which is essentially
the same as the Bézier control point. (Photoshop calls the knots the “an-
chor points” and refers to the interior Bézier control points that are not
interpolated as “control points.”)

For example, Figure 13.20 is a screen capture taken while one author
was hard at work creating Figure 13.19. (The opacity of the actual figure
has been decreased to make it easier to see the Photoshop controls.)

While we’re on the subject of Bézier curves, let’s take this opportunity
to introduce the notation we use for Bézier splines. When we were dealing
with only a single Bézier segment, we referred to the ith control point on
that segment as bi. Here we use the notation fi to refer to the control point
“in front” of the ith knot, and ai for the control point “after” it.18 This
notation is illustrated in Figure 13.21.

The important relationship between Hermite and Bézier forms was in-
troduced in Section 13.4.3. Let’s restate it here in the newly-introduced

18Note that by using knot-centric notation and assigning different letters to the control
points (based on handy mnemonic memory aids!), we are locking in the degree of the

segments to cubic. In other sources you’ll find notation such as bj
i to refer to the ith

point on segment j, or just refer to all the points on the polygon as bi, where the knots
are b0, b3, b7. This notation has the advantage of being more general, but to read it
requires more mental effort—something we definitely want to minimize.
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Figure 13.21. A spline with its Bézier control polygon, and the notation we use for Bézier
splines

spline notation:

Converting between
Bézier and Hermite
forms

vin
i = 3(ki − fi), fi = ki − vin

i /3,

vout
i = 3(ai − ki), ai = ki + vout

i /3.

13.8 Continuity

For a few sections now we’ve been promising to tell you how you can piece
together segments into a spline such that they fit together smoothly. All
this lead-up may have given the impression that it’s a mysterious secret.
But if you take a closer look at Figure 13.19, you’ll see that the criterion is
relatively obvious: if the incoming and outgoing velocity vectors are equal
at a knot, as they are at k1 and also k2, then the curve will be smooth.
Notice that at k3, the tangents are not equal, and the curve has a kink in
it. Pretty obvious, eh? Actually, as it turns out, there’s quite a bit more
to say on this subject.

Consider the curve near k4 in Figure 13.19. Notice that the curve is
“smooth,” yet the incoming velocity vector vin

4 is much longer than vout
4 .

Now, you might be thinking, “That curve isn’t smooth there! If you were
traveling along the curve, you would slam on the brakes just as you crossed
the key.” But take the tangent vectors out of the diagram and just look
at the shape of the curve. It’s a smooth shape, right? We’re back to
a recurring theme: animation paths are more “demanding” than static
shapes. (Notice that in the objection you just raised, you used animation-
oriented terminology when you said “key” instead of “knot.” You’re really
catching on fast!)
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Speaking of smooth animations, we just said that the curve is smooth at
k1 and k2. But is it? We can see that the shape is smooth, but we’ve just
pointed out how there is a difference between a smooth shape and a smooth
animation. In general, we cannot tell if the animation is smooth without
knowing more about the time-to-parameter function s(t). If the shape is
not smooth, the animation will not be smooth (with one exception to be
discussed momentarily). But even if the shape is smooth, discontinuities
in s(t) can result in discontinuities in the animation. When s(t) = t, no
discontinuities are introduced by this trivial mapping, so if the tangents are
equal, the motion will be smooth.

Finally, consider a knot for which the incoming and outgoing velocities
are both zero. In this case, even though the tangents are continuous, most
people would agree that the shape is not smooth at this knot. What about
the motion? Is the motion smooth when we come to a complete stop and
then accelerate away in a potentially different direction? That will depend
on your needs.

It looks like the answer to the question “Is it smooth?” is a bit fuzzy.
This is a mathematics book, and it’s really bad form to be putting quotation
marks around vague words such as “smooth.” We really need some more
precise terminology. In the context of curves, the most important smooth-
ness criteria are parametric continuity and the closely related geometric
continuity. Let’s look at each of these in turn, starting with parametric
continuity, which is easier to define mathematically.

13.8.1 Parametric Continuity

A curve is said to have Cn continuity if its first n derivatives are continuous.
A C0 curve is one in which the position (the “0th derivative”) is continuous.
C0 continuity means that we can draw a shape on a piece of paper in one
stroke without lifting our pencil, or we can move along an animation path
without “teleporting.”19 A C1 curve has a continuous first derivative, which
means the velocity doesn’t jump instantaneously. This doesn’t mean the
velocity cannot change rapidly, but it never jumps from a velocity at one
instant to a different velocity at the next instant without passing through
velocities in between. For example, the curve in Figure 13.19 forms one
connected line, so it is C0 continuous everywhere. It is C1 continuous
everywhere except at k3 and k4, where the velocity jumps suddenly.

Higher numbers for n just mean the curve’s higher-order derivatives
are continuous. A curve is C2 if its second derivative (acceleration) is
continuous. Continuity conditions beyond C1 are not that important for
our purposes in this book. The lack of C1 continuity (a sudden change in

19Oops, there are the quotation marks that we just said were bad form in a math
book!
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velocity) corresponds to an infinite acceleration, and this can create many
problems. If the path is used to control a physical object, such as a robot
or cutting tool, then we are asking for the motors driving the object to do
something that is physically impossible. Even if the animation is taking
place entirely inside of the virtual world of a computer, when such paths
are observed by humans, they are usually perceived as “jerky.” Thus it’s
usually desirable to avoid (or at least control) velocity discontinuities. In
contrast, a sudden change in acceleration does not create such a jarring
sensation and for most purposes is perfectly acceptable.

Any individual polynomial curve segment by itself has C∞ continuity,
since we can take the derivative of a polynomial as many times as we want
and we always get a real-valued, continuous function. (Eventually, the
derivatives become the constant zero function.) This is why the question
of continuity didn’t arise earlier in the chapter—the only places we have to
worry about continuity are at the knots.

One last comment regarding higher derivatives. When we say that a
curve is Cn continuous, this implies continuity for all lower derivatives as
well. For example, if the acceleration is continuous, then the velocity and
position must also be continuous. A discontinuity in a function means that
the function’s derivative is undefined where the discontinuity occurs.

Now that we’ve discussed parametric continuity informally, let’s define
the criteria mathematically for Hermite and Bézier curves. To do so, we
make use of some observations concerning the derivatives of Bézier curves
from Section 13.4.3; our findings from that section are summarized here.

• The nth derivative at an endpoint of a Bézier curve segment is com-
pletely determined by the endpoint and the nearest n control points.

• The velocity at an endpoint is proportional to the vector between
the endpoint and the adjacent control point (Equations (13.30) and
(13.31)).

• The acceleration at an endpoint is proportional to the difference of the
delta vectors along the nearest two segments of the control polygon
(Equations (13.36) and (13.37)).

Let’s start with C0, which is a no-brainer due to our choice of notation.
In our scheme, the ending point of one segment is the same as the starting
point of the next segment by definition. Moving on to C1 continuity, we’ve
said that it occurs when the tangents are equal at a key. This translates
directly to Hermite form as

C1 continuity condition
for Hermite splines

vin
i = vout

i ,
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and with just a little effort we can also express it in Bézier form as

C1 continuity condition
for cubic Bézier splines ki − fi = ai − ki.

With a quick application of algebra, we see that geometrically this means
that the knot is at the midpoint of the line between fi and ai:

ki − fi = ai − ki,

2ki = fi + ai,

ki = (fi + ai)/2.

Most curve design tools will automatically enforce this rule for you. For
example, when you move a control point in Photoshop, it automatically
moves the opposing control point like a seesaw, and if you pull the control
point away from the anchor point (the knot), the opposing control point
will mirror your movements to maintain the C1 continuity relationship. (If
you want to force a corner in the curve, you can hold a modifier key to tell
Photoshop not to do this).

Now let’s look at C2 continuity. It’s is easier to visualize in Bézier form
than Hermite. We just need to apply what we learned in Section 13.4.3 to
make the ending acceleration of one segment (the left side of the equations
below) match the starting acceleration of the next segment (on the right
side):

C2 continuity condition
for cubic Bézier splines

6ai−1 − 12fi + 6ki = 6ki − 12ai + 6fi+1,

ai−1 − 2fi + ki = ki − 2ai + fi+1

2fi − ai−1, = 2ai − fi+1,

fi + (fi − ai−1) = ai + (ai − fi+1).

The geometric interpretation of this is as follows: Take the two Bézier
control polygon segments that are not direct neighbors of the knot, but one
segment away, and “double” them. If they meet at a common point, the
curve is C2 continuous. To visualize this, compare the two Bézier curves in
Figure 13.22. Both have C1 continuity, since the knot ki is on the midpoint
of the line between fi and ai for both curves. However, the top curve is C2

continuous because the extensions of the neighboring control polygon lines
meet at the common point; the curve on the bottom is not C2 continuous.

13.8.2 Geometric Continuity

Geometric continuity is a broader criterion of continuity. Different authors
use different definitions for geometric continuity, but a very general one is
that a curve has Gn continuity if there exists some way to parameterize
the curve such that the curve has Cn continuity. Let’s look at an example.
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Figure 13.22
Continuity conditions for
cubic Bézier splines.

In Figure 13.19 the curve is not C1 continuous at k4 because the tan-
gents are not equal. However, the curve is G1 continuous at this location.
The hint, of course, is that the tangents are parallel at the knot. If the
tangents at a knot are not parallel, then there’s no way to move along the
curve in a smooth way. However, if the tangents are parallel, then the dis-
continuity is purely a change in speed, not a change in direction. We could
remove this discontinuity by carefully introducing an offsetting discontinu-
ity in the time-to-parameter function s(t) that exactly “undoes” the jump
in speed.

Higher-order geometric continuity extends this idea, although it is a
bit more difficult to visualize. We say that a curve is G2 continuous if its
curvature changes continuously.

13.8.3 How Smooth Can a Curve Be?

We end our discussion on continuity by asking an important question:
what’s the highest level of continuity we can expect from a polynomial
spline? We said earlier that any particular curve segment has C∞ conti-
nuity, because we can differentiate it as many times as we want and the
result is always a continuous function. Can we achieve this same level of
smoothness with a spline?

Consider two adjacent cubic Bézier segments. Let’s fix the first segment
and consider what happens to the second segment as we demand higher and
higher levels of continuity at the knot. When we demand C0 continuity, we
lock in the first Bézier control point. Clearly, the first endpoint must match
the last endpoint of the first segment for the spline to be C0 continuous.
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What about C1 continuity? Remember that the velocity at an endpoint
is completely determined by the endpoint and the adjacent control point.
This means if we want to match the velocity, we are locking in the position
of the second control point as well.

Continuing this pattern, we see that for a Bézier segment to match n
derivatives requires us to “lock in” n+ 1 control points. For a cubic curve,
if we ask for C4 continuity or higher, we can get it, but only by making
every segment be a piece of the same infinite polynomial. We have gained
continuity, but we have lost the flexibility that was the very reason we used
splines in the first place!

The bottom line is that, practically speaking, a polynomial curve of
degree n (a Bézier curve with n+ 1 control points) can really achieve only
Cn−1 continuity. For example, a piecewise linear (degree 1) polynomial can
only achieve C0 continuity. We can make a curve which is connected, but
with straight lines, we cannot match the tangents. A quadratic (degree 2)
polynomial can match tangents (C1), but not accelerations. A cubic curve,
the type of curve we have been focusing on in this book, can achieve C2

continuity by reducing the number of degrees of freedom per segment to
one. Continuity beyond C2 can be achieved only by eliminating all degrees
of freedom (other than the curve timing), and setting each segment to be
a section of the same polynomial.

13.9 Automatic Tangent Control

At the start of this chapter, we began our investigation into curves with
the plan of defining a curve just by listing points that we wanted the curve
to pass through. We tried basic polynomial interpolation in Section 13.2,
but found that it didn’t give us what we wanted. We then developed
the Bézier forms, which require the user to specify two endpoints, which
are interpolated, and two (in the case of a cubic Bézier) interior control
points, which are not interpolated but instead define the derivatives at the
endpoints. So far in this chapter, we’ve learned how to piece together those
Bézier segments in a smooth spline.

This section investigates various methods whereby a spline can be de-
termined by just the knots, without the need for the user to specify any
additional criteria. This is useful to generate a curve that looks “natural”
and passes through some points, or any other time we wish to smoothly
interpolate some data points.

For the moment, let’s ignore the first and last knots and focus our
attention on the interior knots. The problem at hand is to compute an
appropriate vin

i and vout
i using only the positions of the knots. Notice that

we are posing the problem in Hermite form, which turns out to be the easiest
form to use for this problem. The situation is depicted in Figure 13.23,
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Figure 13.23
Three different choices of tangents for the middle knot, leading to three different interpolating
splines

which shows three control points and three different choices we could use
for the tangents.

The following sections discuss a family of techniques that can be used
to pick tangents that result in “good” interpolating splines. First, Sec-
tion 13.9.1 discuss the Catmull-Rom spline, which is a simple and straight-
forward technique. Then Section 13.9.2 considers TCB splines, a gener-
alization of the Catmull-Rom form and a hybrid that exposes additional
“sliders” to the user to adjust the shape of the curve in a (hopefully) more
intuitive manner without resorting to direct geometric specification of the
tangents. Finally, Section 13.9.3 lists a few options for dealing with the
endpoints.

When reading the following sections, keep in mind that all of these
splines are still Hermite splines. We are just introducing various techniques
for autocalculating the tangents. Once the tangents have been determined,
the spline is no different than any other Hermite spline.

13.9.1 CatmullRom Splines

Looking at Figure 13.23, it seems obvious which of the three choices of
tangents is the most natural: the one in the middle. Why is this? The
vector from the previous knot ki−1 to the next knot ki+1 is a horizontal
line, and therefore it makes sense that our tangents should be horizontal.
So it looks like one heuristic we could use to pick good tangents would be to
make the tangents at a knot be parallel to the line between the previous and
next knot. (Note that our example is slightly contrived in that the middle
knot happens to be halfway between its neighbors, which is a special case.
However, the fact that the neighbors lie on a horizontal line is not a special
case, since we can always rotate our perspective to view the points in this
configuration.)
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But how long should the tangents be? Perhaps we should again use
the vector between the previous and next knots as our guide. It seems as
though the farther apart our neighbors are, the larger the curve, and so
making our tangents be a constant multiple of this vector would be a good
idea. In other words, we would set vin

i = vout
i = a(ki+1 − ki−1). But what

should we use for the value of a?

One way would be just to experiment and find a nice round number that
seems to give results that are aesthetically pleasing. The constant a = 1/2
is a nice round number and works moderately well, so let’s go with that.
Figure 13.24 shows a spline loop generated by this technique.

Figure 13.24
A CatmullRom spline

Although a = 1/2 gives “medium” results, there’s definitely an argu-
ment to be made that it is a matter of preference. Sometimes we want a
“tighter” curve, which would correspond to smaller values of a, and some-
times we want a “looser” curve. This is a good idea, but let’s put it on
ice for a moment to say two more quick things about the method we’ve
stumbled upon.

First, let’s give a formal definition and name to this technique. A spline
with the tangents derived according to the relation

Tangent computation for
the Catmull-Rom spline

and its Bézier control
polygon

vin
i = vout

i =
ki+1 − ki−1

2
(13.39)

is known as a Catmull-Rom spline. The name comes from the two people
who invented it, one of whom is Edwin Catmull (1945–). He later went
on to become the president of Walt Disney Animation Studios and Pixar
Animation Studios.



13.9. Automatic Tangent Control 705

The other thing we’d like to discuss is an alternative way to derive
Equation (13.39). Just a bit of algebraic manipulation yields

Catmull-Rom spline as
average of adjacent delta
vectors

vin
i = vout

i =
ki+1 − ki−1

2

=
ki+1 − ki + ki − ki−1

2

=
(ki+1 − ki) + (ki − ki−1)

2
.

The geometric interpretation of the last line states that to compute a tan-
gent at a knot, we take the two neighboring difference vectors of the control
polygon and average them.

13.9.2 TCB Splines

Section 13.9.1 showed that the tangent at a knot can be computed by
multiplying the vectors of the adjacent edges of the control polygon by an
appropriate constant, which we called a, and adding the result. By varying
a, we had an intuitive “dial” we could turn to adjust the shape of the curve.
We can generalize this idea further by having not just one scaling factor,
but two. In other words, we can take an arbitrary linear combination of the
adjacent edge vectors. Taking the straightforward approach of assigning one
“dial” for each of the two scale factors doesn’t quite work out as an intuitive
system. Instead, a standard technique is to provide three intuitive dials,
known as tension, continuity, and bias, and derive the two scale factors
from these dials. A spline with the tangents thus derived is known as
Kochanek-Bartels spline, often called a TCB spline for obvious reasons.20

Kochanek and Bartels [40] designed the equations so that if we turn all
three dials to zero, we get the standard Catmull-Rom curve. The typical
useful range for all of the parameters is [−1,+1], although there’s no prob-
lem in going outside this range. Thus, you can think of each setting as a
way to start with a Catmull-Rom curve and tweak it in a particular direc-
tion. First, let’s show how each of these settings could be implemented by
itself, and then let’s present the full formulas that combine all three settings
together.

The tension setting is related to the a value we discovered in the previous
section. We the symbol t to refer to tension, and luckily there won’t be
any situations where this will be confused with the other meaning of t, the
time parameter. Like all the TCB settings, a value of t = 0 corresponds
to the regular Catmull-Rom curve. As we increase the tension, the curve
“tightens”—essentially the same effect we got by decreasing the value of a in

20The most important for us is that TCB is easier to pronounce than koh-CHAN-ick.
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Figure 13.25
A TCB spline with different values for continuity.
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the previous section. Figure 13.25 shows the effect of the tension parameter.
In each curve, the continuity and bias values are zero. Compare this with
the standard Catmull-Rom curve in Figure 13.24, corresponding to t = 0.

Note that t = 1 results in vin
i = vout

i = 0, causing the velocity to come
to a stop at the knot, creating a cusp in the shape. If we increase t further,
the velocities point in the “wrong direction,” which creates a loop at the
knots. At the other extreme, the value t = −1 results in a curve that is
“twice as loose” as a Catmull-Rom curve. There’s nothing special about
this particular value; you can easily make the curve even looser by making
t more negative.

We incorporate tension into the Catmul-Rom tangent formula as follows:

Catmull-Rom formula
extended to allow
tension adjustments

vin
i = vout

i =
(1− t)(ki+1 − ki−1)

2

=
(1− t)

2
(ki − ki−1) +

(1− t)

2
(ki+1 − ki).

Next let’s turn to the continuity setting, which can be used to break
the smoothness of the curve and force a corner at the knot. The value of
zero will result in equal tangent (no matter what values for tension and
bias are used), thus ensuring C2 parametric continuity, as discussed in
Section 13.8.1. As we decrease the continuity value, each tangent begins
to turn towards its adjacent knot. At c = −1, each tangent will point
directly to the neighboring knot, causing the “spline” to be composed of
linear segments. Figure 13.26 illustrates the effect that different continuity
values have on the spline.

One important observation to note is that setting c = −1 appears to
have an effect on the shape of the curve similar to that of t = 1; both result
in segments that are shaped like straight line segments. However, they are
very different when viewed from an animation perspective. A spline with
100% tension comes to a stop at each key, and reaches a maximum value
in the middle of the segment. (This is the Hermite smoothstep velocity
profile, observable in the nonuniform spacing of the dots in each segment.)
Notice that Bézier control points for the t = 1 spline in Figure 13.25 are not
visible as they are coincident with the knots. Compare this to the c = −1
spline in Figure 13.26, where the Bézier control points are spaced equally
along each linear segment. We observed earlier that this produces a curve
with constant velocity, as evidenced by the equal spacing of the smaller
black dots used to draw the curve.
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Figure 13.26
A TCB spline with different values for continuity.
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Figure 13.27
A TCB spline with different values for bias.
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The math behind TCB continuity is written as

Catmull-Rom formula
extended to allow

continuity adjustments

vin
i =

(1− c)

2
(ki − ki−1) +

(1 + c)

2
(ki+1 − ki),

vout
i =

(1 + c)

2
(ki − ki−1) +

(1− c)

2
(ki+1 − ki).

Finally, the bias argument can be used to turn the tangents towards one
or the other adjacent knots, rather than being parallel to the line between
the adjacent knots, as the Catmull-Rom curve does. Consider a sequence
of three knots. A negative bias causes the curve to “anticipate” the third
knot, turning the curve in the direction of the third knot a bit before the
middle knot is reached. In contrast, a positive bias value causes the curve
to wait to make the turn towards the third knot, causing some “overshoot”
through the middle knot. Figure 13.27 shows our example spline with
several different bias values.

The bias value works by scaling the relative weights that the two control
polygon edges have on the resultant tangent:

Catmull-Rom formula
extended to allow bias

adjustments

vin
i = vout

i =
(1 + b)

2
(ki − ki−1) +

(1− b)

2
(ki+1 − ki).

The equations presented thus far have isolated each setting to make it
easier to understand the math behind each one. Now let’s put all three
settings together:

Computing Tangents for TCB Splines

vin
i =

(1−t)(1+b)(1−c)
2

(ki − ki−1) +
(1−t)(1−b)(1+c)

2
(ki+1 − ki),

vout
i =

(1−t)(1+b)(1+c)
2

(ki − ki−1) +
(1−t)(1−b)(1−c)

2
(ki+1 − ki).

One last note. The examples in this section used the same values at
each knot in the spline, but that need not be the case. The TCB values are
often adjusted on a per-knot basis.
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13.9.3 Endpoint Conditions

The Catmull-Rom methods rely on the previous and next knots to compute
the tangent at a given knot. What should we do at an endpoint when there
is no “previous” or “next” knot? Several solutions to this problem have
been proposed.

One obvious answer would be to just throw our hands in the air and
set the tangent to zero at an endpoint. While this seems like surrendering
before the first shot is fired, it actually can be a good choice if the spline is
to be used for animation, since it’s often natural to want the object being
animated to start and end “at rest.”

Another idea is to create extra knots k−1 and kn+1, which are used
for tangent computations but are not interpolated. Where should we place
these so-called phantom points? One idea is to duplicate the neighboring
endpoint, which produces zero tangents and is equivalent to the “surrender”
spline of the previous paragraph. Another idea is simply to ask the user to
place the phantom point. When this method is used, the spline is known
as a Cardinal spline.

One final method is to fit the first (or last) three knots to a quadratic,
and use the endpoint tangent of this curve. The curve fitting is an example
of polynomial interpolation and can thus be done by using the techniques
from earlier in this chapter, such as Aitken’s algorithm.

13.10 Exercises
(Answers on page 792.)

1. Compute the Lagrange basis polynomials for the knot sequence t1 = 0,
t2 = 1, t3 = 2.

2. The motion of a projectile (see Section 11.6) can be described by the
quadratic function

p(t) = p0 + tv0 + t2(a/2),

where p0 is the initial position, v0 is the initial velocity, and a is the
constant acceleration (typically due to gravity).

Imagine you want to animate the path of a projectile—say, a herring sand-
wich. Assume you are working in our standard 3D coordinate space (see
Section 1.3.4) and the object is launched from the origin, reaches a max-
imum at t = 1 when its position is p(1) = (0, h, d/2), and finally lands
at t = 2 at the position p(2) = (0, 0, d). Derive an expression for p(t) in
monomial form, in terms of the variables h and d.
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3. Consider the Bézier curve in the figure below.

(a) Use de Casteljau to determine the position on the curve at t = 0.40.

(b) Convert the curve to Hermite form.

(c) Convert the curve to monomial form.

(d) Check your work on part (a) by substituting t = 0.40 into the poly-
nomial computed in part (c).

(e) What is the velocity polynomial function v(t)?

(f) What is the velocity at t = 0.40, t = 0.00, and t = 1.00?

4. Prove that the quadratic Bernstein basis polynomials sum to 1 for any value
of t.

5. Where should we put the Bézier control points to get a “constant curve”
where p(t) always returns the same point?

6. Where should we put the Bézier control points to get a linear “curve,”
which is a straight line segment with constant velocity?

7. Where should we put the Bézier control points to get a straight line shape,
but this time the velocity of the curve follows the smoothstep pattern: it
starts at zero, accelerates to a maximum velocity at the middle, and then
decelerates to end with zero velocity?

8. Describe the motion of a particle that moves along the Bézier curve where
b0 = b2 and b1 = b3.

9. Consider the projectile herring sandwich from Exercise 2. Assume you
need to animate this sandwich, and the only tools available to you are
cubic Bézier curves. Where should you put the four Bézier control points
to get physically realistic motion, which is quadratic? Don’t worry about
the total duration the sandwich is airborne; consider only the shape of the
trajectory.

10. To plot the shape of the parabola in Figure 12.8 (page 588), the authors
tabulated a list of x, y image-space coordinates of the center of the mass of
the board, and then did a least-squares fit to arrive at the equation for the
parabola y = −0.364x2+1.145x+2.110. The pen tool in Adobe Illustrator,
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which was used to draw the parabola, is based on cubic Bézier curves. The
starting and ending x-coordinates for our curve were −0.9683 and 4.2253,
respectively. What were the (x, y) coordinates for all four control points?

11. Returning to the curve in Exercise 3:

(a) Compute the Bézier control points for the segment of the curve from
0.2 to 0.5.

(b) Split this curve into two halves at t = 1/2. What are the Bézier
control points of the curve on each side?

(c) Perform degree elevation on this curve to the quartic case. What are
the five control points?

My curves are not crazy.

— Henri Matisse (1869–1954)





Chapter 14

Afterword

If you are interested in stories with happy endings
you would be better off reading some other book.

— Lemony Snicket,
A Series of Unfortunate Events: The Bad Beginning

14.1 What Next?

You have reached the end of the book. Where to go from here? Well,
if you’ve stayed with us up to this point, then you probably understand
enough to get started with some real code, and you’re probably itching to
put all this new knowledge to work, right? We’ve found that the best way
to learn is by doing. So don’t just sit there, start making something!

As our final act, we leave you with these last few exercises. Some of
them might be applicable only for those readers interested in making video
games, but we wish you good luck wherever this knowledge takes you.
We’ve learned a lot, worked very hard, and had a lot of fun writing this
book, and we hope the same can be said of your experience reading it.

14.2 Exercises
(Answers on page 799.)

1. Download a game engine and make a mod for it.

2. Learn about what makes video games fun. Take three of your favorite
games and make a detailed analysis of their mechanics. What makes them
fun?

3. Complete a large and challenging project that implements an advanced
technique or an experimental gameplay feature.

4. Pick a particular aspect of video game programming that you find inter-
esting and delve deeply into that area.

715
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5. Get a job working for a company that makes the kinds of games you will
be proud of. (Hint: This is greatly facilitated by taking advantage of your
answers to Exercises 1–4. Also, see the index entry for “job interview.”)

6. Learn how to get along with other people, work on a team, and use version
control and task tracking software. Nobody succeeds alone.

7. Make some great video games. Always use technology as a means to an
end, and never lose sight of the end product.

8. Never stop learning.

I’m very well acquainted, too, with matters mathematical,
I understand equations, both the simple and quadratical,
About binomial theorem I’m teeming with a lot o’ news,

With many cheerful facts about the square of the hypotenuse.
I’m very good at integral and differential calculus;

I know the scientific names of beings animalculous:
In short, in matters vegetable, animal, and mineral,

I am the very model of a modern Major-General.

— MajorGeneral Stanley from The Pirates of Penzance



Appendix A

Geometric Tests

Chapter 9 discussed a number of calculations that can be performed on
a single primitive. Here, we present a number of useful calculations that
operate on more than one primitive. This appendix is a collection of various
geometric calculations that are sometimes useful. It is also instructive to
browse these tests, because many illustrate general principles.

A more comprehensive list of fast intersection methods can be found at
http://www.realtimerendering.com/intersections.html.

A.1 Closest Point on 2D Implicit Line

Consider an infinite line L in 2D defined implicitly by all points p such that

p · n̂ = d,

where n̂ is a unit vector. Our goal is to find, for any point q, the point
q′ that is the closest point on L to q. This is the result of projecting q

onto L. Let us draw a second line M through q, parallel to L, as shown in
Figure A.1.

Figure A.1
Finding the closest point on a 2D implicit line
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Let n̂M and dM be the normal and d value, respectively, of the line
equation for M ; since L and M are parallel, they have the same normal:
n̂M = n̂. Since q is on M , dM can be computed as q · n̂.

Now the signed distance from M to L measured parallel to n̂ is simply

d− dM = d− q · n̂.

This distance is obviously the same as the distance from q to q′. (If we
need only the distance and not the value of q′, then we can stop here.) To
compute the value of q′, we can simply take q and displace it by a multiple
of n̂:

Computing the closest
point on a 2D implicit

line

q′ = q+ (d− q · n̂)n̂. (A.1)

A.2 Closest Point on a Parametric Ray

Consider the parametric ray R in 2D or 3D defined by

p(t) = porg + td̂,

Figure A.2
Finding the closest point
on a ray

where d̂ is a unit vector, and the parameter t varies
from 0 to l, where l is the length of R. For a given
point q, we wish to find the point q′ on R that is
closest to q.

This is just a simple matter of projecting one
vector onto another, which was presented in Sec-
tion 2.11.2. Let v be the vector from porg to q. We

wish to compute the result of projecting v onto d̂—
in other words, the portion of q parallel to d̂. This
is illustrated in Figure A.2.

The value of the dot product v · d̂ is the value t
such that p(t) = q′:

Computing the closest
point on a parametric

ray

t = d̂ · v = d̂ · (q− porg),

q′ = p(t) = porg + td̂ = porg + (d̂ · (q− porg))d̂.
(A.2)

Actually, Equation (A.2), for p(t) computes the
point closest to q on the infinite line containing R. If t < 0 or t > l, then
p(t) is not within the ray R, in which case, the closest point to q on R will
be the ray origin (if t < 0) or endpoint (if t > l).

If the ray is defined where t varies from 0 to 1 and d is not necessarily
a unit vector, then we must divide by the magnitude of d to compute the

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-001.jpg&w=78&h=116
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t value:

t =
d · (q− porg)

‖d‖ .

A.3 Closest Point on a Plane

Consider a plane P defined in the standard implicit manner as all points p
that satisfy

p · n̂ = d,

where n̂ is a unit vector. Given a point q, we wish to find the point q′,
which is the result of projecting q onto P . Point q′ is the closest point to
q on P .

We showed how to compute the distance from a point to a plane in
Section 9.5.4. To compute q′, we simply displace q by this distance, parallel
to n̂.

Computing the closest
point on a planeq′ = q+ (d− q · n̂)n̂

Notice that this is the same as Equation (A.1), which computes the closest
point to an implicit line in 2D.

A.4 Closest Point on a Circle or Sphere

Figure A.3
Finding the closest point on a circle

Imagine a 2D point q and a cir-
cle with center c and radius r.
(The following discussion also
applies to a sphere in 3D.) We
wish to find q′, which is the
closest point on the circle to q.

Let d be the vector from q

to c. This vector intersects the
circle at q′. Let b be the vec-
tor from q to q′, as shown in
Figure A.3.

Now, clearly, ‖b‖ = ‖d‖−r.
Therefore,

b =
‖d‖ − r

‖d‖ d.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-002.jpg&w=162&h=88
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Adding this displacement to q to project onto the circle, we get
Computing the closest

point on a circle or
sphere

q′ = q+ b

= q+
‖d‖ − r

‖d‖ d.

If ‖d‖ < r, then q is inside the circle. What should we with this
situation? Should q′ = q, or should we project q outwards onto the surface
of the circle? Particular circumstances might call for either behavior. If we
decide we wish to project the points onto the surface of the circle, then we’ll
be forced to make an arbitrary decision on what to do in the degenerate
case where q = c.

A.5 Closest Point in an AABB

Let B be an axially aligned bounding box (AABB) defined by the extreme
points pmin and pmax. For any point q we can easily compute q′, the closest
point in B to q. This is done by “pushing” q into B along each axis in
turn, as illustrated in Listing A.1. Notice that if the point is already inside
the box, this code returns the original point.

i f ( x < minX ) {
x = minX ;

} e l s e i f ( x > maxX ) {
x = maxX ;

}

i f ( y < minY ) {
y = minY ;

} e l s e i f ( y > maxY ) {
y = maxY ;

}

i f ( z < minZ ) {
z = minZ ;

} e l s e i f ( z > maxZ ) {
z = maxZ ;

}

Listing A.1
Computing the closest point in an AABB to a point

A.6 Intersection Tests

The remaining sections of this chapter present an assortment of intersec-
tion tests. These tests are designed to determine whether two geometric
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primitives intersect, and (in some cases) to locate the intersection. We will
consider different two types of intersection tests: static and dynamic.

• A static test checks two stationary primitives and detects whether
the two primitives intersect. It is a Boolean test—that is, it usually
returns only true (there is an intersection) or false (there is no in-
tersection). If the test returns more details about the intersection,
this extra information usually has the purpose of describing where
the intersection occurred.

• A dynamic test checks two moving primitives and detects if and when
two primitives intersect. Usually, the movement is expressed paramet-
rically, and therefore the result of such a test is not only a Boolean
true/false result but also a time value (the value of the parameter t)
that indicates when the primitives intersect. For the tests that we
consider here, the movement value is a simple linear displacement—a
vector offset by which the primitive moves as t varies from 0 to 1.

Although each object may have its own displacement over the time in-
terval under consideration, it will be often easier to view the problem
from the point of view of one of the primitives, considering that prim-
itive to be “still” while the other primitive does all of the “moving.”
We can easily do this by combining the two displacement vectors to
get a single relative displacement vector that describes how the two
primitives move in relation to each other. Thus, the dynamic tests will
usually involve one stationary primitive and one moving primitive.

Notice that many important tests involving rays are actually dynamic
tests, since a ray can be viewed as a moving point.

A.7 Intersection of Two Implicit Lines in 2D

Finding the intersection of two lines defined implicitly in 2D is a straightfor-
ward matter of solving a system of linear equations. We have two equations
(the two implicit equations of the lines) and two unknowns (the x- and y-
coordinates of the point of intersection). Our two equations are

a1x+ b1y = d1,

a2x+ b2y = d2.

Solving this system of equations yields

Computing the
intersection of two lines
in 2D

x =
b2d1 − b1d2
a1b2 − a2b1

,

y =
a1d2 − a2d1
a1b2 − a2b1

.

(A.3)
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Just as for any system of linear equations, there are three solution pos-
sibilities (as illustrated in Figure A.4):

• There is one solution. In this case, the denominators in (A.3) will be
nonzero.

• There are no solutions. This indicates that the lines are parallel and
not intersecting. The denominators are zero.

• There are an infinite number of solutions. This is the case when the
two lines are coincident. All the numerators and denominators are
zero in this case.

Figure A.4
Intersection of two lines in
2D—the three cases

A.8 Intersection of Two Rays in 3D

Given two rays in 3D defined parametrically by

r1(t1) = p1 + t1d1,

r2(t2) = p2 + t2d2,

we can solve for their point of intersection. For a moment, let us not restrict
the range of t1 and t2; therefore, we consider the infinite lines that contain
the rays. The delta vectors d1 and d2 do not necessarily have to be unit
vectors. If the rays lie in a plane, then we have the same three cases possible
as in the previous section:

• The rays intersect at exactly one point.

• The rays are parallel, and there is no intersection.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-003.jpg&w=192&h=139
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• The rays are coincident, and there are an infinite number of solutions

However, in 3D we have a fourth case, where the rays are skew and
do not share a common plane. An example of skew lines is illustrated in
Figure A.5.

Figure A.5
Skew lines in 3D do not share a
common plane or intersect.

We can solve for t1 and t2. At the point of intersection,

r1(t1) = r2(t2),

p1 + t1d1 = p2 + t2d2,

t1d1 = p2 + t2d2 − p1,

(t1d1)× d2 = (p2 + t2d2 − p1)× d2,

t1(d1 × d2) = (t2d2)× d2 + (p2 − p1)× d2,

t1(d1 × d2) = t2(d2 × d2) + (p2 − p1)× d2,

t1(d1 × d2) = t20+ (p2 − p1)× d2,

t1(d1 × d2) = (p2 − p1)× d2,

t1(d1 × d2) · (d1 × d2) = ((p2 − p1)× d2) · (d1 × d2),

t1 =
((p2 − p1)× d2) · (d1 × d2)

‖d1 × d2‖2
.

We obtain t2 in a similar fashion:

t2 =
((p2 − p1)× d1) · (d1 × d2)

‖d1 × d2‖2
.

If the lines are parallel (or coincident), then the cross product of d1 and
d2 is the zero vector, and therefore the denominator of both equations is
zero. If the lines are skew, then r1(t1) and r2(t2) are the points of closest
approach. To distinguish between skew and intersecting lines, we examine
the distance between r1(t1) and r2(t2). Of course, in practice, an exact
intersection rarely occurs due to floating point imprecision, and therefore a
tolerance must be used.

This discussion has assumed that the range of the parameters t1 and t2
were not restricted. If the rays have finite length (or extend in only one

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-004.jpg&w=177&h=74
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direction), then, of course, the appropriate boundary tests would be applied
after computing t1 and t2.

A.9 Intersection of a Ray and Plane

A ray intersects a plane in 3D at a point. Let the ray be defined paramet-
rically by

p(t) = p0 + td.

The plane will be defined in the standard implicit manner, by all points p
such that

p · n = d.

Although we often restrict the plane normal n and the ray direction vector
d to be unit vectors, in this case neither restriction is necessary.

Figure A.6
Intersection of a ray and plane in 3D

Let us solve for t at the point of intersection, assuming an infinite ray
for the moment:

Parametric intersection
of a ray and a plane

(p0 + td) · n = d,

p0 · n+ td · n = d,

td · n = d− p0 · n,

t =
d− p0 · n

d · n . (A.4)

If the ray is parallel to the plane, then the denominator d · n is zero and
there is no intersection. If the value for t is out of range, then the ray does
not intersect the plane. We may also wish to intersect only with the front
of the plane. In this case, we say there is an intersection only if the ray
points in a direction opposite to the normal of the plane (i.e., d · n < 0).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-005.jpg&w=144&h=115
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A.10 Intersection of an AABB and Plane

Consider a 3D axially aligned bounding box defined by extreme points pmin

and pmax, and a plane defined in the standard implicit manner by all points
p that satisfy

p · n = d,

where n is not necessarily a unit vector. The plane must be expressed in
the same coordinate space as the AABB.

One obvious implementation strategy for a static test would be to clas-
sify each corner point as being on either the front or back side of the plane.
We do this by taking the dot products of the corner points with n and
comparing these dot products with d. If all of the dot products are greater
than d, then the box is completely on the front side of the plane. If all of
the dot products are less than d, then the box is completely on the back
side of the plane.

As it turns out, we don’t have to check all eight corner points. We’ll use
a trick similar to the one used in Section 9.4.4 to transform an AABB. For
example, if nx > 0, then the corner with the minimal dot product has x =
xmin and the corner with the maximal dot product has x = xmax. If nx < 0,
then the opposite is true. Similar statements apply to ny and nz. We
compute the minimum and maximum dot product values. If the minimum
dot product value is greater than d, or if the maximum dot product is less
than d, then there is no intersection. Otherwise, two corners were found
that are on opposite sides of the plane, and therefore an intersection is
detected. This strategy is implemented in Listing A.2.

/ / Perform s t a t i c AABB−plane i n t e r s e c t i o n t e s t . Re turns :
/ /
/ / <0 Box i s complete ly on the BACK s id e o f the plane
/ / >0 Box i s complete ly on the FRONT s id e o f the plane
/ / 0 Box i n t e r s e c t s the plane
i n t AABB3 : : c l a s s i f y P l a n e ( const Vector3 &n , f l o a t d ) const {

/ / I n spec t the normal and compute the minimum and maximum
/ / D va lues .
f l o a t minD , maxD;

i f ( n . x > 0.0 f ) {
minD = n . x∗min . x ; maxD = n . x∗max . x ;

} e l s e {
minD = n . x∗max . x ; maxD = n . x∗min . x ;

}

i f ( n . y > 0.0 f ) {
minD += n . y∗min . y ; maxD += n . y∗max . y ;

} e l s e {
minD += n . y∗max . y ; maxD += n . y∗min . y ;

}

i f ( n . z > 0.0 f ) {
minD += n . z∗min . z ; maxD += n . z∗max . z ;
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} e l s e {
minD += n . z∗max . z ; maxD += n . z∗min . z ;

}

/ / Check i f comple te ly on the f r o n t s i d e o f the plane
i f ( minD >= d ) {

re turn +1;
}

/ / Check i f comple te ly on the back s i d e o f the plane
i f (maxD <= d ) {

re turn −1;
}

/ / We s t r a d d l e the plane
re turn 0;

}

Listing A.2
Detecting static intersection of AABB and plane

A dynamic test is just one step further. Let’s consider the plane to be
stationary (recall from Section A.6 that it is simpler to view the test from
the frame of reference of one of the moving objects). The displacement of
the box will be defined by a unit vector d and a length l. As before, we first
locate the corner points with the minimum and maximum dot products and
check for an intersection at t = 0. If the box is not initially intersecting the
plane, then it must first strike the plane at the corner point closest to the
plane. This will be one of the two corner points identified in the first step.
If we are interested only in colliding with the “front” of the plane, then we
can always use the corner with the minimum dot product value. Once we
have determined which corner will strike the plane, we use the ray-plane
intersection test in Section A.9.

A.11 Intersection of Three Planes

In 3D, three planes intersect at a point, as shown in Figure A.7.
Let the three planes be defined implicitly as

p · n1 = d1, p · n2 = d2, p · n3 = d3.

Although we usually use unit vectors for the plane normals, in this case it
is not necessary that ni be of unit length. These three plane equations give
us a system of linear equations with three equations and three unknowns
(the x-, y-, and z-coordinates of the point of intersection). Solving this
system of equations yields the following result, from Goldman [24]:

Three planes intersect at
a point

p =
d1(n2 × n3) + d2(n3 × n1) + d3(n1 × n2)

(n1 × n2) · n3
.
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Figure A.7
Three planes intersect at a point
in 3D

If any pair of planes is parallel, then the point of intersection either does not
exist or is not unique. In either case, the triple product in the denominator
is zero.

A.12 Intersection of Ray and a Circle or Sphere

This section discusses how to compute the intersection of a ray and a circle
in 2D. This also works for computing the intersection of a ray and a sphere
in 3D, since we can operate in the plane that contains the ray and the center
of the circle and turn the 3D problem into a 2D one. (If the ray lies on a
line that passes through the center of the sphere, the plane is not uniquely
defined. This not a problem, however, because any of the infinitely many
planes that pass through the ray and the center of the sphere can be used.)

We will use a construction inspired by Hultquist [36]; see Figure A.8.
The sphere is defined by its center c and radius r, and the ray is defined by

p(t) = p0 + td̂.

In this case, we use a unit vector d̂ and vary t from 0 to l, where l is the
length of the ray.

We are solving for the value of t at the point of intersection. Clearly,
t = a− f . We can compute a as follows. Let e be the vector from p0 to c:

e = c− p0.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-006.jpg&w=160&h=184
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Figure A.8
Intersection of a ray and sphere

Now we project e onto d̂ (see Section 2.11.2). The length of this vector is
a, and can be computed by

a = e · d̂.
Now all that remains is to compute f . First, by the Pythagorean theo-

rem, we clearly see that
f2 + b2 = r2.

We can solve for b2 by using the Pythagorean theorem on the larger triangle:

a2 + b2 = e2,

b2 = e2 − a2,

where e is the distance from the origin of the ray to the center, that is, the
length of the vector e. Thus, e2 can be computed by

e2 = e · e.

Substituting and solving for f , we get

f2 + b2 = r2,

f2 + (e2 − a2) = r2,

f2 = r2 − e2 + a2,

f =
√

r2 − e2 + a2.

Finally, solving for t, we have

Parametric intersection
of a ray and a circle or

sphere

t = a− f

= a−
√

r2 − e2 + a2.

If the argument to the square root (r2 − e2 + a2) is negative, then the
ray does not intersect the sphere.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-007.jpg&w=174&h=124
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The origin of the ray could be inside the sphere. This is indicated by
e2 < r2. Appropriate behavior in this case would vary, depending on the
purpose of the test.

A.13 Intersection of Two Circles or Spheres

Figure A.9
Intersection of two spheres

Detecting the static intersection of two
spheres is relatively easy. (The dis-
cussion in this section also applies to
circles—in fact, we use circles in the di-
agrams.) Consider two spheres defined
by centers c1 and c2 and radii r1 and
r2, as shown in Figure A.9. Let d be the
distance between their centers. Clearly,
the spheres intersect if d < r1 + r2.
In practice, we can avoid the square
root involved in the calculation of d by
checking that d2 < (r1 + r2)

2.
Detecting the intersection of two

moving spheres is slightly more difficult. Assume, for the moment, that
we have two separate displacement vectors d1 and d2, one for each sphere,
which describe how the spheres will move during the period of time under
consideration. This is shown in Figure A.10.

Figure A.10
Two moving spheres

We can simplify the problem by viewing it from the point of view of
the first sphere, considering that sphere to be “stationary” while the other
sphere is the “moving” sphere. This gives us a single displacement vector
d, computed as the difference of the two movement vectors d2 − d1. This
is illustrated in Figure A.11.

Let the stationary sphere be defined by its center cs and radius rs. The
radius of the moving sphere is rm. The center of the moving sphere is cm
at t = 0. Rather than varying t from 0 to 1 as described previously, we
normalize d̂ and vary t from 0 to l, where l is the length of the total relative
displacement. So the position of the center of the moving sphere at time t

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-008.jpg&w=127&h=89
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-009.jpg&w=127&h=75
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Figure A.11
Combining displacement vectors so that one
sphere is considered stationary

is given by cm + td̂. Our goal is to find t, the time at which the moving
sphere touches the stationary sphere. The geometry involved is illustrated
in Figure A.12.

Figure A.12
Dynamic intersection of
circles or spheres

To solve for t, we begin by calculating an intermediate vector e as the
vector from cm to cs, and set r equal to the sum of the radii:

e = cs − cm,

r = rm + rs.

According to the law of cosines (see Section 1.4.5), we have

r2 = t2 + ‖e‖2 − 2t‖e‖ cos θ.

By applying the geometric interpretation of the dot product (see Sec-
tion 2.11.2) and simplifying, we get

r2 = t2 + ‖e‖2 − 2t‖e‖ cos θ,
r2 = t2 + e · e− 2t(e · d̂),
0 = t2 − 2(e · d̂)t+ e · e− r2.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-010.jpg&w=127&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-011.jpg&w=192&h=114
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Finally, by applying the quadratic formula, we have

0 = t2 − 2(e · d̂)t+ e · e− r2,

t =
2(e · d̂)±

√

(

−2(e · d̂)
)2

− 4(e · e− r2)

2
,

t =
2(e · d̂)±

√

4(e · d̂)2 − 4(e · e− r2)

2
,

t = e · d̂±
√

(e · d̂)2 + r2 − e · e.

Which root do we pick? The lower number (the negative root) produces
the t value when the spheres begin intersecting. The greater number (the
positive root) is the point where the spheres cease to intersect. We are
interested in the first intersection:

t = e · d̂−
√

(e · d̂)2 + r2 − e · e.

If ‖e‖ < r, then the spheres are intersecting at t = 0. If t < 0 or
t > l, then the intersection does not occur within the period of time being
considered. If the value inside the square root is negative, then there is no
intersection.

A.14 Intersection of a Sphere and AABB

To detect the static intersection of a sphere and an AABB, we first find
the point on the box that is closest to the center of the sphere by using
the techniques from Section A.5. We compute the distance from this point
to the center of the sphere and compare this distance with the radius.
(Actually, in practice we compare the distance squared against the radius
squared to avoid the square root in the distance computation.) If the
distance is smaller than the radius, then the sphere intersects the AABB.

Arvo [2] discusses this technique, which he uses for intersecting spheres
with “solid” boxes. He also discusses some tricks for intersecting spheres
with “hollow” boxes.

Unfortunately, the dynamic test is more complicated than the static
one. For details, see Lengyel [42].
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A.15 Intersection of a Sphere and a Plane

Detecting the static intersection of a sphere and a plane is relatively easy—
we simply compute the distance from the center of the sphere to the plane
by using Equation (9.14). If this distance is less than the radius of the
sphere, then the sphere intersects the plane. We can actually make a more
robust test, which classifies the sphere as being completely on the front,
completely on the back, or straddling the sphere. A code snippet is given
in Listing A.3.

/ / Given a sphere and plane , determine which s i d e o f the plane
/ / the sphere i s on .
/ /
/ / Return va lue s :
/ /
/ / < 0 Sphere i s complete ly on the back
/ / > 0 Sphere i s complete ly on the f r o n t
/ / 0 Sphere s t r a d d l e s plane

i n t c l a s s i f y S p h e r e P l a n e (
const Vector3 &planeNormal , / / must be normal ized
f l o a t planeD , / / p ∗ planeNormal = planeD
const Vector3 &sphereCenter , / / cen te r o f sphere
f l o a t sphereRadius / / r a d i u s o f sphere

) {

/ / Compute d i s t ance from cen te r o f sphere to the plane
f l o a t d = planeNormal ∗ sphereCenter − planeD ;

/ / Completely on the f r o n t s i d e ?
i f ( d >= sphereRadius ) {

re turn +1;
}

/ / Completely on the back s i d e ?
i f ( d <= −sphereRadius ) {

re turn −1;
}

/ / Sphere i n t e r s e c t s the plane
re turn 0;

}

Listing A.3
Determining which side of a plane a sphere is on

The dynamic situation is only slightly more complicated. We consider
the plane to be stationary, assigning all relative displacement to the sphere.

We define the plane in the usual manner by a normalized surface normal
n̂ and distance value d such that all points p in the plane satisfy the equation
p · n̂ = d. The sphere is defined by its radius r and the initial position of
the center, c. The displacement of the sphere is given by a unit vector
d̂ specifying the direction, and a distance l. As t varies from 0 to l, the
motion of the center of the sphere is given by the line equation c+ td̂. This
situation is shown, viewing the plane edge-on, in Figure A.13.
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Figure A.13
A sphere moving towards a plane

The problem is greatly simplified by realizing that no matter where on
the surface of the plane the intersection occurs, the point of contact on the
surface of the sphere is always the same. That point of contact p0 is given
by c− rn̂, as shown in Figure A.14.

Figure A.14
Point of contact between a sphere and a plane

Now that we know which point on the sphere first contacts the plane,
we can use a simple ray-plane intersection test from Section A.9. We start
with our solution to the ray-plane intersection test from (A.4) and then
substitute c− rn̂ for p0:

Dynamic intersection of
a sphere and plane

t =
d− p0 · n̂

d̂ · n̂
,

=
d− (c− rn̂) · n̂

d̂ · n̂
,

=
d− c · n̂+ r

d̂ · n̂
.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-012.jpg&w=129&h=115
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734 A. Geometric Tests

A.16 Intersection of a Ray and a Triangle

The ray-triangle intersection test is very important in graphics and com-
putational geometry. In the absence of a special raytrace test against a
given complex object, we can always represent (or at least approximate)
the surface of an object as a triangle mesh and then raytrace against this
triangle mesh representation.

Here we use a simple strategy from Badouel [4]. The first step is to com-
pute the point where the ray intersects the plane containing the triangle.
Section A.9 showed how to compute the intersection of a plane and a ray.
Then we test to see whether that point is inside the triangle by computing
the barycentric coordinates of the point, as discussed in Section 9.6.4.

To speed up this test, we use a few tricks:

• Detect and return a negative result (no collision) as soon as possible.
This is known as “early out.”

• Defer expensive mathematical operations, such as division, as long
as possible. This is done for two reasons. First, if the result of the
expensive calculation is not needed (for example, if we took an early
out), then the time we spent performing the operation was wasted.
Second, it gives the compiler plenty of room to take advantage of
the operator pipeline in modern processors. If an operation such as
division has a long latency, then the compiler may be able to look
ahead and generate code that begins the division operation early. It
then generates code that performs other tests (possibly taking an early
out) while the division operation is under way. Then, at execution
time, if and when the result of the division is actually needed, the
result will be available or at least partially completed.

• Only detect collisions where the ray approaches the triangle from the
front side. This allows us to take a very early out on approximately
half of the triangles. Intersecting with both sides is slightly slower.

Listing A.4 implements these techniques. Although it is commented
in the listing, we have chosen to perform some floating point comparisons
“backwards” since this behaves better in the presence of invalid floating
point input data and NaNs (Not a Number).

f l o a t r a y T r i a n g l e I n t e r s e c t (
const Vector3 &rayOrg , / / o r i g i n o f the ray
const Vector3 &rayDel ta , / / ray l eng th and d i r e c t i o n
const Vector3 &p0 , / / t r i a n g l e v e r t i c e s
const Vector3 &p1 , / / .
const Vector3 &p2 , / / .
f l o a t minT / / c l o s e s t i n t e r s e c t i o n found so f a r .

/ / ( S t a r t wi th 1 .0)
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) {

/ / We ’ l l r e t u r n t h i s huge number o f no i n t e r s e c t i o n i s de tec ted
const f l o a t kNo In t e r s ec t i on = FLT MAX ;

/ / Compute c lockwise edge v e c t o r s .
Vector3 e1 = p1 − p0 ;
Vector3 e2 = p2 − p1 ;

/ / Compute s u r f a c e normal . ( Unnormalized )
Vector3 n = c ros sP roduc t ( e1 , e2 ) ;

/ / Compute g rad ien t , which t e l l s us how s teep of an ang le
/ / we are approaching the ∗ f r o n t∗ s i d e o f the t r i a n g l e
f l o a t dot = n ∗ r ayDel ta ;

/ / Check f o r a ray t h a t i s p a r a l l e l to the t r i a n g l e , or not
/ / p o i n t i n g towards the f r o n t face o f the t r i a n g l e .
/ /
/ / Note t h a t t h i s a l s o w i l l r e j e c t degenerate t r i a n g l e s and
/ / r ay s as we l l . We code t h i s i n a very p a r t i c u l a r
/ / way so t h a t NANs w i l l b a i l here . ( I . e . t h i s does NOT
/ / behave the same as ‘ ‘ dot >= 0.0 f ’ ’ when NANs are invo lved )
i f ( ! ( dot < 0.0 f ) ) {

re turn kNo In t e r s ec t i on ;
}

/ / Compute d va lue f o r the plane equat ion . We w i l l
/ / use the plane equat ion with d on the r i g h t s i d e :
/ / Ax + By + Cz = d
f l o a t d = n ∗ p0 ;

/ / Compute pa ramet r i c po in t o f i n t e r s e c t i o n with the plane
/ / con ta i n i ng the t r i a n g l e , checking a t the e a r l i e s t
/ / p o s s i b l e s t a g e s f o r t r i v i a l r e j e c t i o n
f l o a t t = d − n ∗ rayOrg ;

/ / I s ray o r i g i n on the backs ide o f the polygon ? Again ,
/ / we phrase the check so t h a t NANs w i l l b a i l
i f ( ! ( t <= 0.0 f ) ) {

re turn kNo In t e r s ec t i on ;
}

/ / C lo se r i n t e r s e c t i o n a l r eady found ? (Or does
/ / ray not reach the plane ?)
/ /
/ / s i nce dot < 0:
/ /
/ / t / dot > minT
/ /
/ / i s the same as
/ /
/ / t < dot∗minT
/ /
/ / (And then we i n v e r t i t f o r NAN checking . . . )
i f ( ! ( t >= dot∗minT ) ) {

re turn kNo In t e r s ec t i on ;
}

/ / OK, ray i n t e r s e c t s the plane . Compute a c t u a l pa ramet r i c
/ / po in t o f i n t e r s e c t i o n
t /= dot ;
a s s e r t ( t >= 0.0 f ) ;
a s s e r t ( t <= minT ) ;



736 A. Geometric Tests

/ / Compute 3D po in t o f i n t e r s e c t i o n
Vector3 p = rayOrg + rayDel ta∗ t ;

/ / F ind dominant a x i s to s e l e c t which plane
/ / to p r o j e c t onto , and compute u ’ s and v ’ s
f l o a t u0 , u1 , u2 ;
f l o a t v0 , v1 , v2 ;
i f ( f ab s ( n . x ) > f ab s ( n . y ) ) {

i f ( f ab s ( n . x ) > f ab s ( n . z ) ) {
u0 = p . y − p0 . y ;
u1 = p1 . y − p0 . y ;
u2 = p2 . y − p0 . y ;

v0 = p . z − p0 . z ;
v1 = p1 . z − p0 . z ;
v2 = p2 . z − p0 . z ;

} e l s e {
u0 = p . x − p0 . x ;
u1 = p1 . x − p0 . x ;
u2 = p2 . x − p0 . x ;

v0 = p . y − p0 . y ;
v1 = p1 . y − p0 . y ;
v2 = p2 . y − p0 . y ;

}
} e l s e {

i f ( f ab s ( n . y ) > f ab s ( n . z ) ) {
u0 = p . x − p0 . x ;
u1 = p1 . x − p0 . x ;
u2 = p2 . x − p0 . x ;

v0 = p . z − p0 . z ;
v1 = p1 . z − p0 . z ;
v2 = p2 . z − p0 . z ;

} e l s e {
u0 = p . x − p0 . x ;
u1 = p1 . x − p0 . x ;
u2 = p2 . x − p0 . x ;

v0 = p . y − p0 . y ;
v1 = p1 . y − p0 . y ;
v2 = p2 . y − p0 . y ;

}
}

/ / Compute denominator , check f o r i n v a l i d
f l o a t temp = u1 ∗ v2 − v1 ∗ u2 ;
i f ( ! ( temp != 0.0 f ) ) {

re turn kNo In t e r s ec t i on ;
}
temp = 1.0 f / temp ;

/ / Compute b a r y c e n t r i c coords , checking f o r out−of−range
/ / a t each s tep
f l o a t alpha = ( u0 ∗ v2 − v0 ∗ u2 ) ∗ temp ;
i f ( ! ( a lpha >= 0.0 f ) ) {

re turn kNo In t e r s ec t i on ;
}

f l o a t beta = ( u1 ∗ v0 − v1 ∗ u0 ) ∗ temp ;
i f ( ! ( be ta >= 0.0 f ) ) {

re turn kNo In t e r s ec t i on ;
}
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f l o a t gamma = 1.0 f − alpha − beta ;
i f ( ! ( gamma >= 0.0 f ) ) {

re turn kNo In t e r s ec t i on ;
}

/ / Return paramet r i c po in t o f i n t e r s e c t i o n
re turn t ;

}

Listing A.4
Raytriangle intersection test

There is one more significant strategy, not illustrated in Listing A.4,
for optimizing expensive calculations: precompute their results. If values
such as the polygon normal can be computed ahead of time, then different
strategies may be used.

Because of the fundamental importance of this test, programmers are al-
ways looking for ways to make it faster. The technique we have given here
is a standard one that is easy to understand and produces the barycen-
tric coordinates, often a useful byproduct, as a side effect. It is not the
fastest. See Tomas Akenine-Möller’s collection of intersection tests on the
web page for Real-Time Rendering at http://www.realtimerendering.com/
intersections.html.

A.17 Intersection of Two AABBs

Detecting the static intersection of two AABBs is an extremely important
operation. Luckily, it’s rather trivial.1 We simply check for overlapping
extents on each dimension independently. If there is no overlap on a par-
ticular dimension, then the two AABBs do not intersect. This technique is
used in Listing A.5.

bool aabbsOverlap ( const AABB3 &a , const AABB3 &b ) {

/ / Check f o r a s e p a r a t i n g a x i s .
i f ( a . min . x >= b . max . x ) re turn f a l s e ;
i f ( a . max . x <= b . min . x ) re turn f a l s e ;
i f ( a . min . y >= b . max . y ) re turn f a l s e ;
i f ( a . max . y <= b . min . y ) re turn f a l s e ;
i f ( a . min . z >= b . max . z ) re turn f a l s e ;
i f ( a . max . z <= b . min . z ) re turn f a l s e ;

/ / Overlap on a l l t h r ee axes , so t h e i r
/ / i n t e r s e c t i o n must be non−empty
re turn t rue ;

}

Listing A.5
AABB–AABB overlap test

1This is one of Fletcher’s favorite interview questions. It’s surprising how many
programmers do not know how to perform this very simple operation. Don’t be one of
those applicants!

http://www.realtimerendering.com/
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This strategy is actually an instance of a more general strategy known
as the separating axis test. If two convex polyhedra do not overlap, then
there exists a separating axis upon which, if we project the two polyhedra,
their projections will not overlap. (In 3D, it’s easier to visualize a plane
perpendicular to the separating axis that can be placed between the two
polyhedra.) The key to the separating axis method is that only a finite
number of axes need to be tested: the normals of the faces and certain
cross products; for details, see Ericson [18]. If the projections of the poly-
hedra onto those axes overlap in all cases, then it is safe to assume that no
separating axis can be found. In the case of two AABBs, only the three
cardinal axes need to be tested. Furthermore, these “projections” simply
extract the appropriate coordinate.

The dynamic intersection of AABBs is only slightly more complicated.
Consider a stationary AABB defined by extreme points smin and smax, and
a moving AABB, which has extreme points mmin and mmax in the initial
position at t = 0. The moving AABB displaces by an amount given by the
vector d, as t varies from 0 to 1.

Our task is to compute t, the parametric point in time where the mov-
ing box first collides with the stationary box. (We assume that the boxes
are not initially intersecting.) To do this, we will attempt to determine the
first point in time when the boxes have overlap on all dimensions simultane-
ously. Since this applies in 2D or 3D, we illustrate the problem here in 2D;
extending the technique into 3D is straightforward. We analyze each co-
ordinate separately, solving two (or three, in 3D) separate one-dimensional
problems, and then combining these results to give the answer.

The problem is now one-dimensional. We need to know the interval of
time when the two boxes overlap on a particular dimension. Imagine pro-
jecting the problem onto the x-axis (for example), as shown in Figure A.15.

Figure A.15
Projecting the
dynamic AABB
intersection
problem onto
one axis

As we advance in time, the line segment representing the moving box
will slide along the number line. In the illustration in Figure A.15, at t = 0

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-014.jpg&w=228&h=121
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the moving box is completely to the left of the stationary box, and at t = 1,
the moving box is completely to the right of the stationary box. There is
a point tenter where the boxes first begin to overlap, and a point tleave
where the boxes cease to overlap. For the dimension we are considering, let
mmin(t) and mmax(t) be the minimum and maximum values, respectively,
of the moving box at time t, given by

mmin(t) = mmin(0) + td,

mmax(t) = mmax(0) + td,

where mmin(0) and mmax(0) are the initial extents of the moving box and
d is the component of the displacement vector d for this axis. Let smin

and smax have similar definitions for the stationary box. (Of course, these
values are independent of t since the box is stationary.) The time tenter is
the t value for which mmax(t) = smin. Solving, we get

mmax(tenter) = smin,

mmax(0) + tenterd = smin,

tenterd = smin −mmax(0),

tenter =
smin −mmax(0)

d
.

Likewise, we can solve for tleave:

mmin(tleave) = smax,

mmin(0) + tleaved = smax,

tleaved = smax −mmin(0),

tleave =
smax −mmin(0)

d
.

Three important points are noted here:

• If the denominator d is zero, then boxes either always overlap or never
overlap.

• If the moving box begins on the right side of the stationary box and
moves left, then tenter > tleave. We handle this scenario by swapping
their values to ensure that tenter < tleave.

• The values for tenter and tleave may be outside the range [0,1]. To
accommodate t values outside this range, we can think of the moving
box as moving along an infinite trajectory parallel to d. If tenter > 1
or tleave < 0, then there is no overlap in the period of time under
consideration.
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We now have a way to find the interval of time, bounded by tenter and
tleave, when the two boxes overlap on a single dimension. The intersection
of these intervals on all dimensions gives us the interval of time where the
boxes intersect with each other. This is illustrated in Figure A.16 for two
time intervals in 2D.

Figure A.16
Intersecting two
intervals of time

Don’t confuse Figure A.16 with Figure A.15. In Figure A.16, the axis is
the time axis; in Figure A.15 the axis is the x-axis.

If the interval is empty, then the boxes never collide. If the interval lies
completely outside the range 0 ≤ t ≤ 1, then there is no collision over the
period of time of interest. Actually, the interval during which the boxes
overlap is more information than we wanted, since we are interested only in
the point in time when the boxes begin intersecting, not when they cease
to intersect. Still, we need to maintain this interval, mainly to determine
whether it is empty.

Unfortunately, in practice, bounding boxes for objects are rarely axially
aligned in the same coordinate space. However, because this test is rela-
tively fast, it is useful as a preliminary trivial rejection test, to be followed
by a more specific (and usually more expensive) test.

A.18 Intersection of a Ray and an AABB

Computing the intersection of a ray with an AABB is an important calcu-
lation because the result of this test is commonly used for trivial rejection
on more complicated objects. (For example, if we wish to raytrace against
multiple triangle meshes, we can first raytrace against the AABBs of the
meshes to trivially reject entire meshes at once, rather than having to check
each triangle.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-16&iName=master.img-015.jpg&w=210&h=70
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Woo [72] describes a method that first determines which side of the
box would be intersected and then performs a ray-plane intersection test
against the plane containing that side. If the point of intersection with the
plane is within the box, then there is an intersection; otherwise, there is no
intersection. This is implemented in Listing A.6.

/ / Return paramet r i c po in t o f i n t e r s e c t i o n 0 . . . 1 , or a r e a l l y huge
/ / number i f no i n t e r s e c t i o n i s found
f l o a t AABB3 : : r a y I n t e r s e c t (

const Vector3 &rayOrg , / / o rg i n o f the ray
const Vector3 &rayDel ta , / / l eng th and d i r e c t i o n o f the ray
Vector3 ∗ re turnNormal / / o p t i o n a l l y , the normal i s r e tu rned

) const {

/ / We ’ l l r e t u r n t h i s huge number i f no i n t e r s e c t i o n
const f l o a t kNo In t e r s ec t i on = FLT MAX ;

/ / Check f o r po in t i n s i d e box , t r i v i a l r e j e c t , and
/ / determine paramet r i c d i s t ance to each f r o n t face
bool i n s i d e = t rue ;

f l o a t xt , xn ;
i f ( rayOrg . x < min . x ) {

x t = min . x − rayOrg . x ;
i f ( x t > r ayDel ta . x ) re turn kNo In t e r s ec t i on ;
x t /= rayDel ta . x ;
i n s i d e = f a l s e ;
xn = −1.0 f ;

} e l s e i f ( rayOrg . x > max . x ) {
x t = max . x − rayOrg . x ;
i f ( x t < r ayDel ta . x ) re turn kNo In t e r s ec t i on ;
x t /= rayDel ta . x ;
i n s i d e = f a l s e ;
xn = 1.0 f ;

} e l s e {
x t = −1.0 f ;

}

f l o a t yt , yn ;
i f ( rayOrg . y < min . y ) {

y t = min . y − rayOrg . y ;
i f ( y t > r ayDel ta . y ) re turn kNo In t e r s ec t i on ;
y t /= rayDel ta . y ;
i n s i d e = f a l s e ;
yn = −1.0 f ;

} e l s e i f ( rayOrg . y > max . y ) {
y t = max . y − rayOrg . y ;
i f ( y t < r ayDel ta . y ) re turn kNo In t e r s ec t i on ;
y t /= rayDel ta . y ;
i n s i d e = f a l s e ;
yn = 1.0 f ;

} e l s e {
y t = −1.0 f ;

}

f l o a t zt , zn ;
i f ( rayOrg . z < min . z ) {

z t = min . z − rayOrg . z ;
i f ( z t > r ayDel ta . z ) re turn kNo In t e r s ec t i on ;
z t /= rayDel ta . z ;
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i n s i d e = f a l s e ;
zn = −1.0 f ;

} e l s e i f ( rayOrg . z > max . z ) {
z t = max . z − rayOrg . z ;
i f ( z t < r ayDel ta . z ) re turn kNo In t e r s ec t i on ;
z t /= rayDel ta . z ;
i n s i d e = f a l s e ;
zn = 1.0 f ;

} e l s e {
z t = −1.0 f ;

}

/ / Ray o r i g i n i n s i d e box?
i f ( i n s i d e ) {

i f ( re turnNormal != NULL ) {
∗ re turnNormal = −r ayDe l ta ;
returnNormal−>normal ize ( ) ;

}
re turn 0.0 f ;

}

/ / S e l e c t f a r t h e s t plane − t h i s i s
/ / the plane o f i n t e r s e c t i o n .
i n t which = 0;
f l o a t t = x t ;
i f ( y t > t ) {

which = 1;
t = y t ;

}
i f ( z t > t ) {

which = 2;
t = z t ;

}
switch ( which ) {

case 0: / / i n t e r s e c t with yz plane
{

f l o a t y = rayOrg . y + rayDel ta . y∗ t ;
i f ( y < min . y | | y > max . y ) re turn kNo In t e r s ec t i on ;
f l o a t z = rayOrg . z + rayDel ta . z∗ t ;
i f ( z < min . z | | z > max . z ) re turn kNo In t e r s ec t i on ;

i f ( re turnNormal != NULL ) {
returnNormal−>x = xn ;
returnNormal−>y = 0.0 f ;
returnNormal−>z = 0.0 f ;

}

} break ;

case 1: / / i n t e r s e c t with xz plane
{

f l o a t x = rayOrg . x + rayDel ta . x∗ t ;
i f ( x < min . x | | x > max . x ) re turn kNo In t e r s ec t i on ;
f l o a t z = rayOrg . z + rayDel ta . z∗ t ;
i f ( z < min . z | | z > max . z ) re turn kNo In t e r s ec t i on ;

i f ( re turnNormal != NULL ) {
returnNormal−>x = 0.0 f ;
returnNormal−>y = yn ;
returnNormal−>z = 0.0 f ;

}

} break ;
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case 2: / / i n t e r s e c t with xy plane
{

f l o a t x = rayOrg . x + rayDel ta . x∗ t ;
i f ( x < min . x | | x > max . x ) re turn kNo In t e r s ec t i on ;
f l o a t y = rayOrg . y + rayDel ta . y∗ t ;
i f ( y < min . y | | y > max . y ) re turn kNo In t e r s ec t i on ;

i f ( re turnNormal != NULL ) {
returnNormal−>x = 0.0 f ;
returnNormal−>y = 0.0 f ;
returnNormal−>z = zn ;

}

} break ;
}

/ / Return paramet r i c po in t o f i n t e r s e c t i o n
re turn t ;

}

Listing A.6
Raybox intersection





Appendix B

Answers to the Exercises

I believe that every human has a finite number of heart-beats.
I don’t intend to waste any of mine running around doing exercises.

— Buzz Aldrin (1930–)

B.1 Chapter 1

(Page 27.)

1. a = (−2.5, 3) b = (1, 2) c = (2.5, 2)

d = (−1, 1) e = (0, 0) f = (2,−0.5)
g = (−0.5,−1.5) h = (0,−2) i = (−3,−2)

2. a = (1, 2, 4) b = (−3,−3,−5) c = (−3, 6, 2.5)
d = (3, 0,−1) e = (0, 0, 0) f = (0, 0, 3)

g = (−3.5, 4, 0) h = (5,−5,−1.5) i = (4, 1, 5)

3. See the table below.

Left-handed Right-handed

East Up North East Up North East Up North East Up North

+x +y +z −x −y +z −x −y −z +x +y −z
+x −y −z −x +y −z −x +y +z +x −y +z
+x +z −y −x −z −y −x −z +y +x +z +y
+x −z +y −x +z +y −x +z −y +x −z −y
+y +z +x −y −z +x −y −z −x +y +z −x
+y −z −x −y +z −x −y +z +x +y −z +x
+y +x −z −y −x −z −y −x +z +y +x +z
+y −x +z −y +x +z −y +x −z +y −x −z
+z +x +y −z −x +y −z −x −y +z +x −y
+z −x −y −z +x −y −z +x +y +z −x +y
+z +y −x −z −y −x −z −y +x +z +y +x
+z −y +x −z +y +x −z +y −x +z −y −x

745
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4. (a) Right-handed. (b) Swap y and z. (c) Swap y and z.

5. (a) Right-handed.

(b) xus ← yaero, yus ← −zaero, zus ← xaero

(c) xaero ← zus, yaero ← xus, zaero ← −yus
6. (a) CW (b) CCW (c) CCW (d) CW

7. (a) 15 (b) 30 (c) 3840 (d) 2016840 (e) 5050

8. (a) π/6 (b) −π/4 (c) π/3 (d) π/2 (e) −π
(f) 5π/4 (g) −3π/2 (h) 2.923 (i) 9.198 (j) −6π

9. (a) −30o (b) 120o (c) 270o (d) −240o (e) 360o

(f) 1o (g) 10o (h) −900o (i) 1800o (j) 36o

10. The scarecrow should have said:

The sum of the squares of the legs of a right triangle is equal to the square of
the remaining side.

since the Pythagorean theorem is c2 = a2 + b2, where a and b are the legs of the right
triangle and c is the hypotenuse.

11. (a) (sin(α)/ csc(α)) + (cos(α)/ sec(α)) = sin2(α) + cos2(α) = 1

(b) (sec2(θ)− 1)/ sec2(θ) = 1− (1/ sec2(θ)) = 1− cos2(θ) = sin2(θ)

(c) 1+ cot2(t) = 1+ (cos2(t)/ sin2(t)) = (sin2(t)/ sin2(t))+ (cos2(t)/ sin2(t)) = (sin2(t)+
cos2(t))/ sin2(t) = 1/ sin2(t) = csc2(t)

(d) cos(φ)(tan(φ) + cot(φ)) = sin(φ) + (cos2(φ)/ sin(φ)) = (sin2(φ) + cos2(φ))/ sin(φ) =
1/ sin(φ) = csc(φ)

B.2 Chapter 2
(Page 71.)

1. (a) a is a 2D row vector. b is a 3D column vector. c is a 4D column vector.

(b) by + cw + ax + bz = 0 + 6 + (−3) + 5 = 8

2. (a) “How much do you weigh?” Your weight is a scalar quantity. But the force of gravity,
which pulls you downwards, is a vector, and so if you said that weight was a vector
for that reason, you are also correct. (“My weight is 150 lbs of force in the downward
direction.”)

(b) “Do you have any idea how fast you were going?” The officer is probably referring
to the speed of your vehicle, which is a scalar quantity.

(c) “It’s two blocks north of here.” Vector quantity.

(d) “We’re cruising from Los Angeles to New York at 600 mph, at an altitude of 33,000 ft.”
The speed “600 mph” is a scalar quantity. Since New York is east of Los Angeles,
you could reasonably infer an eastward direction, so “600 mph eastward” is a veloc-
ity, which is a vector quantity. Likewise, “33,000 ft” is a scalar quantity, although
if you’re a stickler, you might say that a direction of “up” is implied, in which case
“33,000 ft up” is a vector quantity.
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3. a = [0, 2] b = [0,−2] c = [0.5, 2]

d = [0.5, 2] e = [0.5,−3] f = [−2, 0]
g = [−2, 1] h = [2.5, 2] i = [6, 1]

4. (a) The size of a vector in a diagram doesn’t matter; we just need to draw it in the right
place. False. This is reversed; for vectors, size matters (meaning the length of the
vector), position doesn’t.

(b) The displacement expressed by a vector can be visualized as a sequence of axially
aligned displacements. True.

(c) These axially aligned displacements from the previous question must occur in order.
False. We can apply them in any order and get the same end result.

(d) The vector [x, y] gives the displacement from the point (x, y) to the origin. False.
This is reversed; the vector [x, y] gives the displacement from the origin to the point
(x, y).

5. (a) −
[

3 7
]

=
[

−3 −7
]

(b)
∥

∥

[

−12 5
]∥

∥ =
√

(−12)2 + 52 =
√
169 = 13

(c)
∥

∥

[

8 −3 1/2
]∥

∥ =
√

82 + (−3)2 + (1/2)2 =
√

64 + 9 + (1/4)

=
√

293/4 ≈ 8.56

(d) 3
[

4 −7 0
]

=
[

(3)(4) (3)(−7) (3)(0)
]

=
[

12 −21 0
]

(e)
[

4 5
]

/2 =
[

2 5/2
]

6. (a)
[

12 5
]

norm
=

[

12 5
]

∥

∥

∥

[

12 5
]∥

∥

∥

=

[

12 5
]

13
=
[

12

13

5

13

]

≈
[

0.923 0.385
]

(b)
[

0 743.632
]

norm
=

[

0 743.632
]

∥

∥

∥

[

0 743.632
]∥

∥

∥

=

[

0 743.632
]

√
02+743.6322

=

[

0 743.632
]

743.632
=
[

0 1
]

(c)
[

8 −3 1/2
]

norm
=

[

8 −3 1/2
]

∥

∥

∥

[

8 −3 1/2
]∥

∥

∥

≈
[

8 −3 1/2
]

8.56

≈
[

0.935 −0.350 0.058
]
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(d)
[

−12 3 −4
]

norm
=

[

−12 3 −4
]

∥

∥

∥

[

−12 3 −4
]∥

∥

∥

=

[

−12 3 −4
]

√
(−12)2+32+(−4)2

=

[

−12 3 −4
]

13
=
[−12

13

3

13

−4
13

]

(e)
[

1 1 1 1
]

norm
=

[

1 1 1 1
]

∥

∥

∥

[

1 1 1 1
]∥

∥

∥

=

[

1 1 1 1
]

√
12+12+12+12

=

[

1 1 1 1
]

2
=
[

0.5 0.5 0.5 0.5
]

7. (a)
[

7 −2 −3
]

+
[

6 6 −4
]

=
[

7 + 6 −2 + 6 −3 + (−4)
]

=
[

13 4 −7
]

(b)
[

2 9 −1
]

+
[

−2 −9 1
]

=
[

2 + (−2) 9 + (−9) −1 + 1
]

=
[

0 0 0
]

(c)





3
10
7



−





8
−7
4



 =





3− 8
10− (−7)

7− 4



 =





−5
17
3





(d)





4
5
−11



−





−4
−5
11



 =





4− (−4)
5− (−5)
−11− 11



 =





8
10
−22





(e) 3





a
b
c



− 4





2
10
−6



 =





3a
3b
3c



−





8
40
−24



 =





3a− 8
3b− 40
3c+ 24





8. (a) distance

([

10
6

]

,

[

−14
30

])

=
√

(10− (−14))2 + (6− 30)2

=
√

242 + (−24)2 =
√
576 + 576

=
√
1152 ≈ 33.94

(b) distance

([

0
0

]

,

[

−12
5

])

=
√

(0− (−12))2 + (0− 5)2

=
√

122 + (−5)2 =
√
144 + 25

=
√
169 = 13

(c) distance









3
10
7



,





8
−7
4







 =
√

(3− 8)2 + (10− (−7))2 + (7− 4)2

=
√

(−5)2 + 172 + 32 =
√
25 + 289 + 9

=
√
323 ≈ 17.97
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(d) distance









−2
−4
9



,





6
−7
9.5







 =
√

(6− (−2))2 + (−7− (−4))2 + (9.5− 9)2

=
√

82 + (−3)2 + (0.5)2 =
√
64 + 9 + 0.25

=
√
73.25 ≈ 8.56

(e) distance

















4
−4
−4
4









,









−6
6
6
−6

















=
√

(−6− 4)2 + (6− (−4))2 + (6− (−4))2 + (−6− 4)2

=
√

(−10)2 + (10)2 + (10)2 + (−10)2

=
√
100 + 100 + 100 + 100

=
√
400 = 20

9. (a)

[

2
6

]

·
[

−3
8

]

= (2)(−3) + (6)(8) = −6 + 48 = 42

(b) −7
[

1 2
]

·
[

11 −4
]

=
[

−7 −14
]

·
[

11 −4
]

= (−7)(11) + (−14)(−4)
= −21

(c) 10 +





−5
1
3



 ·





4
−13
9



 = 10 + ((−5)(4) + (1)(−13) + (3)(9))

= 10 + (−20 + (−13) + 27)

= 10 + (−6) = 4

(d) 3





−2
0
4



 ·









8
−2
3/2



+





0
9
7







 =





−6
0
12



 ·





8
7

17/2





= (−6)(8) + (0)(7) + (12)(17/2) = 54

10. v‖ = n̂ v·n̂
‖n̂‖2 = n̂v·n̂

1
= n̂ (v · n̂)

=





√
2/2√
2/2
0













4
3
−1



 ·





√
2/2√
2/2
0







 =





√
2/2√
2/2
0





(

2
√
2 + 3

√
2

2
+ 0
)

=





√
2/2√
2/2
0





7
√
2

2
=





7/2
7/2
0
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v⊥ = v − v‖

=





4
3
−1



−





7/2
7/2
0



 =





4− 7/2
3− 7/2
−1− 0



 =





1/2
−1/2
−1





11. Define a triangle using the vectors a, b, and a− b, and let θ be the angle between a and
b. Then the squared length of the edge a− b is:

‖a− b‖2 = (a− b) · (a− b)

= a · a− 2a · b+ b · b
= a · a+ b · b− 2a · b
= ‖a‖2 + ‖b‖2 − 2‖a‖‖b‖ cos θ

which is the law of cosines.

12. First, let’s obtain some information about the vector components.

From the figure, we have

ax = ‖a‖ cos θa, ay = ‖a‖ sin θa,
bx = ‖b‖ cos θb, by = ‖b‖ sin θb.

Now we can proceed with the algebraic definition of the dot product and the cosine differ-
ence identity:

a · b = axbx + ayby

= ‖a‖ cos θa‖b‖ cos θb + ‖a‖ sin θa‖b‖ sin θb
= ‖a‖‖b‖ (cos θa cos θb + sin θa sin θb)

= ‖a‖‖b‖ cos (θb − θa)

= ‖a‖‖b‖ cos θ.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-17&iName=master.img-000.jpg&w=174&h=190
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13. (a)





0
−1
0



×





0
0
1



 =





(−1)(1)− (0)(0)
(0)(0)− (0)(1)
(0)(0)− (−1)(0)



 =





−1− 0
0− 0
0− 0



 =





−1
0
0









0
0
1



×





0
−1
0



 =





(0)(0)− (1)(−1)
(1)(0)− (0)(0)
(0)(−1)− (0)(0)



 =





0− (−1)
0− 0
0− 0



 =





1
0
0





(b)





−2
4
1



×





1
−2
−1



 =





(4)(−1)− (1)(−2)
(1)(1)− (−2)(−1)
(−2)(−2)− (4)(1)



 =





−4− (−2)
1− 2
4− 4



 =





−2
−1
0









1
−2
−1



×





−2
4
1



 =





(−2)(1)− (−1)(4)
(−1)(−2)− (1)(1)
(1)(4)− (−2)(−2)



 =





−2− (−4)
2− 1
4− 4



 =





2
1
0





(c)





3
10
7



×





8
−7
4



 =





(10)(4)− (7)(−7)
(7)(8)− (3)(4)

(3)(−7)− (10)(8)



 =





40− (−49)
56− 12
−21− 80



 =





89
44
−101









8
−7
4



×





3
10
7



 =





(−7)(7)− (4)(10)
(4)(3)− (8)(7)

(8)(10)− (−7)(3)



 =





−49− 40
12− 56

80− (−21)



 =





−89
−44
101





14. Let a =





ax

ay

az



 and b =





bx
by
bz



. Then a · b = ‖a‖‖b‖ cos θ and a× b =





aybz − azby
azbx − axbz
axby − aybx



. From ‖a× b‖, we have:

‖a× b‖ =
√

(aybz − azby)2 + (azbx − axbz)2 + (axby − aybx)2

=
√

a2
yb2z − 2ayazbybz + a2

zb2y + a2
zb2x − 2axazbxbz + a2

xb2z + a2
xb2y − 2axaybxby + a2

yb2x.

If we now consider ‖a‖‖b‖ sin θ, we find that:

‖a‖‖b‖ sin θ = ‖a‖‖b‖
√

1− cos2 θ

=
√

a2
x + a2

y + a2
z

√

b2x + b2y + b2z

√

√

√

√1−
(

axbx + ayby + azbz
√

a2
x + a2

y + a2
z

√

b2x + b2y + b2z

)2
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=

√

√

√

√

(

a2
x + a2

y + a2
z

) (

b2x + b2y + b2z
)

(

1− (axbx + ayby + azbz)2
(

a2
x + a2

y + a2
z

) (

b2x + b2y + b2z
)

)

=
√

(

a2
x + a2

y + a2
z

) (

b2x + b2y + b2z
)

− (axbx + ayby + azbz)2

=
√

a2
yb2z − 2ayazbybz + a2

zb2y + a2
zb2x − 2axazbxbz + a2

xb2z + a2
xb2y − 2axaybxby + a2

yb2x.

Starting from both ends, we have met in the middle, proving that

‖a× b‖ = ‖a‖‖b‖ sin θ.

15. (a) (1)
∥

∥

[

3 4
]∥

∥

1
= |3|+ |4| = 7

∥

∥

[

3 4
]∥

∥

2
=
√

|3|2 + |4|2 = 5

∥

∥

[

3 4
]∥

∥

3
= 3

√

|3|3 + |4|3 = 3
√
91 ≈ 4.498

∥

∥

[

3 4
]∥

∥

∞ = max (|3|, |4|) = 4

(2)
∥

∥

[

5 −12
]∥

∥

1
= |5|+ |−12| = 17

∥

∥

[

5 −12
]∥

∥

2
=
√

|5|2 + |−12|2 = 13

∥

∥

[

5 −12
]∥

∥

3
= 3

√

|5|3 + |−12|3 = 3
√
1853 ≈ 12.283

∥

∥

[

5 −12
]∥

∥

∞ = max (|5|, |−12|) = 12

(3)
∥

∥

[

−2 10 −7
]∥

∥

1
= |−2|+ |10|+ |−7| = 19

∥

∥

[

−2 10 −7
]∥

∥

2
=
√

|−2|2 + |10|2 + |−7|2 =
√
153 ≈ 12.369

∥

∥

[

−2 10 −7
]∥

∥

3
= 3

√

|−2|3 + |10|3 + |−7|3 = 3
√
1351 ≈ 11.055

∥

∥

[

−2 10 −7
]∥

∥

∞ = max (|−2|, |10|, |−7|) = 10

(4)
∥

∥

[

6 1 −9
]∥

∥

1
= |6|+ |1|+ |−9| = 16

∥

∥

[

6 1 −9
]∥

∥

2
=
√

|6|2 + |1|2 + |−9|2 =
√
118 ≈ 10.863

∥

∥

[

6 1 −9
]∥

∥

3
= 3

√

|6|3 + |1|3 + |−9|3 = 3
√
946 ≈ 9.817

∥

∥

[

6 1 −9
]∥

∥

∞ = max (|6|, |1|, |−9|) = 9

(5)
∥

∥

[

−2 −2 −2 −2
]∥

∥

1
= |−2|+ |−2|+ |−2|+ |−2| = 8

∥

∥

[

−2 −2 −2 −2
]∥

∥

2
=
√

|−2|2 + |−2|2 + |−2|2 + |−2|2 = 4

∥

∥

[

−2 −2 −2 −2
]∥

∥

3
= 3

√

|−2|3 + |−2|3 + |−2|3 + |−2|3 = 3
√
32 ≈ 3.175

∥

∥

[

−2 −2 −2 −2
]∥

∥

∞ = max (|−2|, |−2|, |−2|, |−2|) = 2



B.2. Chapter 2 753

(b) (1) The unit circle for the L1 norm is a square with sides of length
√
2 rotated by

45◦.

(2) The unit circle for the L2 norm is the well-known unit circle we all know and
love.

(3) The unit circle for the infinity norm is a square with sides of length 2.

Note that all three unit circles include the vectors [1, 0], [0, 1], [−1, 0], [0,−1].
16. The man buys a box or has a piece of luggage that is 2 feet long, 2 feet wide, and 2 feet

tall. If the object is very thin, such as a sword, then he can put the object diagonally in
the box or luggage. The longest such object he could carry on is

√
22 + 22 + 22 ≈ 3.46 feet.

17. Let s = a+ b+ c+ d+ e+ f . From inspection of Figure 2.11 we see that

s =

[

−5
3

]

.

We confirm this numerically using the above equation and the values of the other vectors,
also obtained from inspection of Figure 2.11:

s = a+ b+ c+ d+ e+ f

=

[

−1
3

]

+

[

1
3

]

+

[

3
−2

]

+

[

−1
−2

]

+

[

−6
4

]

+

[

−1
−3

]

=

[

(−1) + 1 + 3 + (−1) + (−6) + (−1)
3 + 3 + (−2) + (−2) + 4 + (−3)

]

=

[

−5
3

]

18. Left-handed.

19. (a) Let c =

[

cx
cy

]

and r =

[

rx
ry

]

. Then

pUpperLeft =

[

cx − rx
cy + ry

]

, pUpperRight =

[

cx + rx
cy + ry

]

,

pLowerLeft =

[

cx − rx
cy − ry

]

, pLowerRight =

[

cx + rx
cy − ry

]

.

(b) Let c =





cx
cy
cz



 and r =





rx
ry
rz



. Then

pFrontUpperLeft =





cx − rx
cy + ry
cz + rz



, pFrontUpperRight =





cx + rx
cy + ry
cz + rz



,

pFrontLowerLeft =





cx − rx
cy − ry
cz + rz



, pFrontLowerRight =





cx + rx
cy − ry
cz + rz



,
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pBackUpperLeft =





cx − rx
cy + ry
cz − rz



, pBackUpperRight =





cx + rx
cy + ry
cz − rz



,

pBackLowerLeft =





cx − rx
cy − ry
cz − rz



, pBackLowerRight =





cx + rx
cy − ry
cz − rz



.

20. (a) Use the sign of the dot product between v and x−p to determine whether the point
x is in front of or behind the NPC. This follows from the geometric interpretation of
the dot product,

v · (x− p) = ‖v‖‖x− p‖ cos θ,

where θ is the angle between v and x− p.

Both ‖v‖ and ‖x− p‖ are always positive, leaving the sign of the dot product entirely
up to the value of cos θ. If cos θ > 0 then θ is less than 90◦ and x is in front of the
NPC. Similarly, if cos θ < 0 then θ is greater than 90◦ and x is behind the NPC.

The special case of v · (x−p) = 0 means that x lies either directly to the left or right
of the NPC. If this case does not need to be handled explicitly, it can arbitrarily be
assigned to mean either in front of or behind.

(b) (1) x is in front of the NPC.
[

5
−2

]

·
([

0
0

]

−
[

−3
4

])

=

[

5
−2

]

·
[

3
−4

]

= (5)(3) + (−2)(−4) = 23

(2) x is in front of the NPC.
[

5
−2

]

·
([

1
6

]

−
[

−3
4

])

=

[

5
−2

]

·
[

4
2

]

= (5)(4) + (−2)(2) = 16

(3) x is behind the NPC.
[

5
−2

]

·
([

−6
0

]

−
[

−3
4

])

=

[

5
−2

]

·
[

−3
−4

]

= (5)(−3) + (−2)(−4)

= −7

(4) x is behind the NPC.
[

5
−2

]

·
([

−4
7

]

−
[

−3
4

])

=

[

5
−2

]

·
[

−1
3

]

= (5)(−1) + (−2)(3) = −11

(5) x is in front of the NPC.
[

5
−2

]

·
([

5
5

]

−
[

−3
4

])

=

[

5
−2

]

·
[

8
1

]

= (5)(8) + (−2)(1) = 38

(6) x is in front of the NPC.
[

5
−2

]

·
([

−3
0

]

−
[

−3
4

])

=

[

5
−2

]

·
[

0
−4

]

= (5)(0) + (−2)(−4) = 8
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(7) x can be either in front of or behind the NPC, depending on how we’ve decided
to handle this special case.

[

5
−2

]

·
([

−6
−3.5

]

−
[

−3
4

])

=

[

5
−2

]

·
[

−3
−7.5

]

= (5)(−3) + (−2)(−7.5) = 0

21. (a) To determine whether the point x is visible to the NPC, compare cos θ to cos(φ/2).
If cos θ ≥ cos(φ/2), then x is visible to the NPC.

The value of cos(φ/2) can be obtained from the FOV angle. To get cos θ use the dot
product

cos θ =
v · (x− p)

‖v‖‖x− p‖ .

(b) The NPC’s FOV is 90◦, so the value we are interested in is cos(45◦) ≈ 0.707.

(1) x is visible to the NPC.

cos θ =

[

5
−2

]

·
([

0
0

]

−
[

−3
4

])

∥

∥

∥

∥

[

5
−2

]∥

∥

∥

∥

∥

∥

∥

∥

[

0
0

]

−
[

−3
4

]∥

∥

∥

∥

=
23

(
√
29)(

√

(25)
≈ 0.854 ≥ 0.707

(2) x is not visible to the NPC.

cos θ =

[

5
−2

]

·
([

1
6

]

−
[

−3
4

])

∥

∥

∥

∥

[

5
−2

]∥

∥

∥

∥

∥

∥

∥

∥

[

1
6

]

−
[

−3
4

]∥

∥

∥

∥

=
16

(
√
29)(
√
20)
≈ 0.664 < 0.707

(3) x is not visible to the NPC.

cos θ =

[

5
−2

]

·
([

−6
0

]

−
[

−3
4

])

∥

∥

∥

∥

[

5
−2

]∥

∥

∥

∥

∥

∥

∥

∥

[

−6
0

]

−
[

−3
4

]∥

∥

∥

∥

=
−7

(
√
29)(
√
25)

≈ −0.260 < 0.707

(4) x is not visible to the NPC.

cos θ =

[

5
−2

]

·
([

−4
7

]

−
[

−3
4

])

∥

∥

∥

∥

[

5
−2

]∥

∥

∥

∥

∥

∥

∥

∥

[

−4
7

]

−
[

−3
4

]∥

∥

∥

∥

=
−11

(
√
29)(
√
10)
≈ −0.646 < 0.707

(5) x is visible to the NPC.

cos θ =

[

5
−2

]

·
([

5
5

]

−
[

−3
4

])

∥

∥

∥

∥

[

5
−2

]∥

∥

∥

∥

∥

∥

∥

∥

[

5
5

]

−
[

−3
4

]∥

∥

∥

∥

=
38

(
√
29)(
√
65)
≈ 0.875 ≥ 0.707
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(6) x is not visible to the NPC.

cos θ =

[

5
−2

]

·
([

−3
0

]

−
[

−3
4

])

∥

∥

∥

∥

[

5
−2

]∥

∥

∥

∥

∥

∥

∥

∥

[

−3
0

]

−
[

−3
4

]∥

∥

∥

∥

=
8

(
√
29)(
√
16)
≈ 0.371 < 0.707

(7) x is not visible to the NPC.

cos θ =

[

5
−2

]

·
([

−6
−3.5

]

−
[

−3
4

])

∥

∥

∥

∥

[

5
−2

]∥

∥

∥

∥

∥

∥

∥

∥

[

−6
−3.5

]

−
[

−3
4

]∥

∥

∥

∥

=
0

(
√
29)(
√
65.25)

= 0 < 0.707

(c) The NPC can see a distance of only 7 units, so only those points that are both within
the FOV and within this distance will be visible.

(1) x is visible to the NPC.
∥

∥

∥

∥

[

0
0

]

−
[

−3
4

]∥

∥

∥

∥

=

∥

∥

∥

∥

[

3
−4

]∥

∥

∥

∥

=
√
25 = 5 < 7

(2) x is not visible to the NPC; it is outside the FOV.

(3) x is not visible to the NPC; it is outside the FOV.

(4) x is not visible to the NPC; it is outside the FOV.

(5) x is not visible to the NPC.
∥

∥

∥

∥

[

5
5

]

−
[

−3
4

]∥

∥

∥

∥

=

∥

∥

∥

∥

[

8
1

]∥

∥

∥

∥

=
√
65 ≈ 8.062 > 7

(6) x is not visible to the NPC; it is outside the FOV.

(7) x is not visible to the NPC; it is outside the FOV.

22. (a) Let vab = b− a and vbc = c− b. Since the three points lie in the xz-plane, the two
vectors also lie in the xz-plane and we have

vab =





xab

0
zab



, vbc =





xbc

0
zbc



.

Taking the cross product of the vectors in the order that the points are traversed
gives.

vab × vbc =





0
xbczab − xabzbc

0





The sign of xbczab−xabzbc can then be used to determine the NPC’s turning direction.
Because we are working in a left-handed coordinate system, if the value is negative,
the NPC is turning counterclockwise; if it’s positive he’s turning clockwise. The
special case of 0 signifies that the NPC is either walking forward in a straight line or
walks forward and then back along the same line.
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(b) (1) vab = [−3, 0, 2 ]. vbc = [−3, 0, −4 ]. xbczab − xabzbc = (−3)(2) − (−3)(−4) =
−18 < 0. Thus, the NPC is turning counterclockwise.

(2) vab = [ 7, 0, 5 ]. vbc = [−1, 0, 3 ]. xbczab−xabzbc = (−1)(5)− (7)(3) = −26 < 0.
Thus, the NPC is turning counterclockwise.

(3) vab = [ 6, 0, −5 ]. vbc = [−12, 0, −5 ]. xbczab− xabzbc = (−12)(−5)− (6)(−5) =
90 > 0. Thus, the NPC is turning clockwise.

(4) vab = [ 3, 0, 1 ]. vbc = [ 3, 0, 2 ]. xbczab − xabzbc = (3)(1) − (3)(2) = −3 < 0.
Thus, the NPC is turning counterclockwise.

23. p′ = p+ (k − 1) (p · n)n

=





1
0
0



+ (k − 1)









1
0
0



 ·





nx

ny

nz













nx

ny

nz





=





1
0
0



+ (k − 1) (nx)





nx

ny

nz





=





1
0
0



+





(k − 1)nx
2

(k − 1)nxny

(k − 1)nxnz





=





1 + (k − 1)nx
2

(k − 1)nxny

(k − 1)nxnz





24. p′ = cos θ (p− (p · n)n) + sin θ (n× p) + (p · n)n

= cos θ









1
0
0



−









1
0
0



 ·





nx

ny

nz













nx

ny

nz







+sin θ









nx

ny

nz



×





1
0
0







+









1
0
0



 ·





nx

ny

nz













nx

ny

nz





= cos θ









1
0
0



− nx





nx

ny

nz







+ sin θ





0
nz

−ny



+ nx





nx

ny

nz





= cos θ





1− nx
2

−nxny

−nxnz



+ sin θ





0
nz

−ny



+





nx
2

nxny

nxnz





=





cos θ − nx
2 cos θ

−nxny cos θ
−nxnz cos θ



+





0
nz sin θ
−ny sin θ



+





nx
2

nxny

nxnz





=





cos θ − nx
2 cos θ + nx

2

−nxny cos θ + nz sin θ + nxny

−nxnz cos θ − ny sin θ + nxnz





=





nx
2 (1− cos θ) + cos θ

nxny (1− cos θ) + nz sin θ
nxnz (1− cos θ)− ny sin θ
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B.3 Chapter 3
(Page 109.)

1. (a) Object space.

(b) We could compare my world-space x-coordinate with the book’s world-space x-coordinate.
Or, we just examine the sign of the upright-space x-coordinate.

(c) World space.

(d) Object space. Or you might say that we could take a dot product with our facing
direction vector—which is equivalent to extracting the object-space z-coordinate.

2. First translate the point by [−12, 0, 6] relative to the axes, and then rotate clockwise around
the y-axis 42o.

3. (a) Linearly dependent. The middle basis vector is the zero vector, which cannot belong
to a linearly independent set because it can be expressed as a product of any other
basis vector and 0.

(b) Linearly independent.

(c) Linearly dependent. For 3D vectors, the largest linearly independent set we could
hope for is three vectors, but this set has four.

(d) Linearly dependent. The last vector is a multiple of the first.

(e) Linearly dependent. The last vector is the sum of the first two.

(f) Linearly independent.

4. (a) Orthogonal.

(b) Not orthogonal. All of the pairs of vectors have nonzero dot products.

(c) Orthogonal.

(d) Orthogonal.

(e) Not orthogonal. The first pair of vectors is perpendicular, but [7,−1, 5] · [−2, 0, 1] =
−9, and [5, 5,−6] · [−2, 0, 1] = −16.

5. (a) No. The second and third basis vectors clearly do not have unit length.

(b) No. None of the basis vectors have unit length.

(c) Yes, they are orthonormal.

(d) No. The first and second basis vectors are not perpendicular.

(e) Yes, they are orthonormal.

(f) Yes, they are orthonormal.

(g) No. The second and third basis vectors do not have unit length.

6. (a) Upright: (−0.866, 2.000, 0.500); World: (0.134, 12.000, 3.500)

(b) Upright: (0.866, 2.000,−0.500); World: (1.866, 12.000, 2.500)

(c) Upright: (0, 0, 0); World: (1, 10, 3)

(d) Upright: (1.116, 5.000,−0.067); World: (2.116, 15.000, 2.933)
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(e) Upright: (5.000, 5.000, 8.660); World: (6.000, 15.000, 11.660)

(f) Upright: (0.000, 0.000, 0.000); Object: (0.000, 0.000, 0.000)

(g) Upright: (−1.000,−10.000,−3.000); Object: (0.634,−10.000,−3.098)
(h) Upright: (1.732, 0.000,−1.000); Object: (2.000, 0.000, 0.000)

(i) Upright: (1.000, 1.000, 1.000); Object: (0.366, 1.000, 1.366)

(j) Upright: (0.000, 10.000, 0.000); Object: (0.000, 10.000, 0.000)

B.4 Chapter 4
(Page 132.)

1. See the table below.
Matrix Rows × Columns Square Diagonal

A 4 × 3 No No
B 3 × 3 Yes Yes
C 2 × 2 Yes No
D 5 × 2 No No
E 1 × 3 No No
F 4 × 1 No No
G 1 × 4 No No
H 3 × 1 No No

2. AT =









13 4 −8
12 0 6
−3 −1 5
10 −2 5









T

=





13 12 −3 10
4 0 −1 −2
−8 6 5 5





BT =





kx 0 0
0 ky 0
0 0 kz





T

=





kx 0 0
0 ky 0
0 0 kz





CT =

[

15 8
−7 3

]T

=

[

15 −7
8 3

]

DT =













a g
b h
c i
d j
f k













T

=

[

a b c d f
g h i j k

]

ET =
[

0 1 3
]T

=





0
1
3



 FT =









x
y
z
w









T

=
[

x y z w
]

GT =
[

10 20 30 1
]T

=









10
20
30
1









HT =





α
β
γ





T

=
[

α β γ
]
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3. AB = (4×3)(3×3) = 4×3 AH = (4×3)(3×1) = 4×1
BB = (3×3)(3×3) = 3×3 BH = (3×3)(3×1) = 3×1
CC = (2×2)(2×2) = 2×2 DC = (5×2)(2×2) = 5×2
EB = (1×3)(3×3) = 1×3 EH = (1×3)(3×1) = 1×1
FE = (4×1)(1×3) = 4×3 FG = (4×1)(1×4) = 4×4
GA = (1×4)(4×3) = 1×3 GF = (1×4)(4×1) = 1×1
HE = (3×1)(1×3) = 3×3 HG = (3×1)(1×4) = 3×4

4. (a)

[

1 −2
5 0

] [

−3 7
4 1/3

]

=

[

(1)(−3)+(−2)(4) (1)(7)+(−2)(1/3)
(5)(−3)+(0)(4) (5)(7)+(0)(1/3)

]

=

[

−3+(−8) 7+(−2/3)
−15+0 35+0

]

=

[

−11 19/3
−15 35

]

(b) Not possible; cannot multiply a 2 × 2 matrix by a 1 × 2 vector on the right.

(c)
[

3 −1 4
]





−2 0 3
5 7 −6
1 −4 2





=
[

(3)(−2)+(−1)(5)+(4)(1) (3)(0)+(−1)(7)+(4)(−4) (3)(3)+(−1)(−6)+(4)(2)
]

=
[

−6+(−5)+4 0+(−7)+(−16) 9+6+8
]

=
[

−7 −23 23
]

(d)
[

x y z w
]









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









=
[

x y z w
]

(e) Not possible; cannot multiply a 1× 4 vector by a 2× 1 vector.

(f)

[

1 0
0 1

] [

m11 m12

m21 m22

]

=

[

m11 m12

m21 m22

]

(g)
[

3 3
]

[

6 −7
−4 5

]

=
[

(3)(6) + (3)(−4) (3)(−7) + (3)(5)
]

=
[

18 + (−12) −21 + 15
]

=
[

6 −6
]

(h) Not possible; cannot multiply a 3× 3 matrix by a 2× 3 matrix on the right.

5. (a)
[

5 −1 2
]





1 0 0
0 1 0
0 0 1





=
[

(5)(1)+(−1)(0)+(2)(0) (5)(0)+(−1)(1)+(2)(0) (5)(0)+(−1)(0)+(2)(1)
]

=
[

5 −1 2
]





1 0 0
0 1 0
0 0 1









5
−1
2



 =





(1)(5) + (0)(−1) + (0)(2)
(0)(5) + (1)(−1) + (0)(2)
(0)(5) + (0)(−1) + (1)(2)



 =





5
−1
2
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(b)
[

5 −1 2
]





2 5 −3
1 7 1
−2 −1 4





=
[

(5)(2)+(−1)(1)+(2)(−2) (5)(5)+(−1)(7)+(2)(−1) (5)(−3)+(−1)(1)+(2)(4)
]

=
[

10+(−1)+(−4) 25+(−7)+(−2) −15+(−1)+8
]

=
[

5 16 −8
]





2 5 −3
1 7 1
−2 −1 4









5
−1
2



 =





(2)(5)+(5)(−1)+(−3)(2)
(1)(5)+(7)(−1)+(1)(2)

(−2)(5)+(−1)(−1)+(4)(2)



 =





10+(−5)+(−6)
5+(−7)+2
−10+1+8



 =





−1
0
−1





(c)
[

5 −1 2
]





1 7 2
7 0 −3
2 −3 −1





=
[

(5)(1)+(−1)(7)+(2)(2) (5)(7)+(−1)(0)+(2)(−3) (5)(2)+(−1)(−3)+(2)(−1)
]

=
[

5+(−7)+4 35+0+(−6) 10+3+(−2)
]

=
[

2 29 11
]





1 7 2
7 0 −3
2 −3 −1









5
−1
2



 =





(1)(5)+(7)(−1)+(2)(2)
(7)(5)+(0)(−1)+(−3)(2)
(2)(5)+(−3)(−1)+(−1)(2)



 =





5+(−7)+4
35+0+(−6)
10+3+(−2)



 =





2
29
11





(d)
[

5 −1 2
]





0 −4 3
4 0 −1
−3 1 0





=
[

(5)(0)+(−1)(4)+(2)(−3) (5)(−4)+(−1)(0)+(2)(1) (5)(3)+(−1)(−1)+(2)(0)
]

=
[

0 + (−4) + (−6) (−20) + 0 + 2 15 + 1 + 0
]

=
[

−10 −18 16
]





0 −4 3
4 0 −1
−3 1 0









5
−1
2



 =





(0)(5)+(−4)(−1)+(3)(2)
(4)(5)+(0)(−1)+(−1)(2)
(−3)(5)+(1)(−1)+(0)(2)



 =





0+4+6
20+0+(−2)
−15+(−1)+0



 =





10
18
−16





6. (a)
(

(

AT
)T
)T

= AT

(b)
(

BAT
)T (

CDT
)

=
(

(

AT
)T

(B)T
)

(

CDT
)

=
(

ABT
) (

CDT
)

= ABTCDT

(c)
(

(

DTCT
)

(AB)T
)T

=

(

(

(AB)T
)T
(

DTCT
)T
)

= (AB)
(

(

CT
)T (

DT
)T
)

= (AB) (CD) = ABCD

(d)
(

(AB)T (CDE)T
)T

=

(

(

(CDE)T
)T (

(AB)T
)T
)

= (CDE) (AB)

= CDEAB

7. For each of the matrices M, interpret the rows of M as basis vectors after transformation.

(a) The basis vectors [ 1, 0 ] and [ 0, 1 ] are transformed to [ 0, −1 ] and [ 1, 0 ], respectively.
Thus, M performs a 90◦ clockwise rotation.

(b) The basis vectors [ 1, 0 ] and [ 0, 1 ] are transformed to [
√

2
2
,

√
2
2

] and [−
√
2
2
,

√
2

2
],

respectively. Thus, M performs a 45◦ counterclockwise rotation.
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(c) The basis vectors [ 1, 0 ] and [ 0, 1 ] are transformed to [ 2, 0 ] and [ 0, 2 ], respectively.
Thus, M performs a uniform scale, scaling both the x and y dimensions by 2.

(d) The basis vectors [ 1, 0 ] and [ 0, 1 ] are transformed to [ 4, 0 ] and [ 0, 7 ], respectively.
Thus, M performs a nonuniform scale, scaling the x dimension by 4 and the y di-
mension by 7.

(e) The basis vectors [ 1, 0 ] and [ 0, 1 ] are transformed to [−1, 0 ] and [ 0, 1 ], respectively.
Thus, M performs a reflection across the y axis, negating x values and leaving y values
untouched.

(f) The basis vectors [ 1, 0 ] and [ 0, 1 ] are transformed to [ 0, −2 ] and [ 2, 0 ], respectively.
Thus, M is performing a combination of transformations: it is rotating clockwise by
90◦ and scaling both dimensions uniformly by 2. This can be confirmed by multiplying
the appropriate matrices from parts (a) and (c), which perform these transformations
individually:

[

0 −1
1 0

] [

2 0
0 2

]

=

[

0 −2
2 0

]

.

8. M =





0 −bz by
bz 0 −bx
−by bx 0



 This matrix is skew symmetric, as desired, since MT = −M.

9. (a) 3 (b) 1 (c) 4 (d) 2

10. The result vector element wi is the product of the ith row of M multiplied by the column
vector v. To have wi = vi − vi−1, the ith row of M needs to capture the ith element of v,
as well as the negative of the (i− 1)th element, but exclude all others. This means that

mij =











1 if j = i,

−1 if j = i− 1,

0 otherwise.

Thus,

M =

































1 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 −1 1

































.
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11. The result vector element wi is the product of the ith row of N multiplied by the column
vector v. To have wi =

∑i
j=1 vj , the ith row of N needs to capture all elements of v up

to and including the ith element, but exclude all others. This means that

nij =

{

1 if j ≤ i,

0 otherwise.

Thus,

N =

































1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

































.

12. (a) Note that the structure of M causes the ith row of MN to be equivalent to the
difference between the ith and (i− 1)th rows of N.

(b) Note that the structure of N causes the ith row of NM to be equivalent to the sum
of the first i rows of M.

(c) MN = NM = I10×10 =

































1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

































.

B.5 Chapter 5
(Page 159.)

1. Yes, any matrix expresses a linear transformation. Furthermore, because all linear trans-
formations are also affine transformations, the transform is also an affine transformation.
(There just isn’t any translation in the affine transform, or equivalently, the translation
portion is zero.)

2.





1 0 0
0 cos(−22o) sin(−22o)
0 − sin(−22o) cos(−22o)



 =





1.000 0.000 0.000
0.000 0.927 −0.375
0.000 0.375 0.927
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3.





cos 30o 0 − sin 30o

0 1 0
sin 30o 0 cos 30o



 =





0.866 0.000 −0.500
0.000 1.000 0.000
0.500 0.000 0.866





4.





0.968 −0.212 −0.131
0.203 0.976 −0.084
0.146 0.054 0.988





5.





2 0 0
0 2 0
0 0 2





6.





1.285 −0.571 0.857
−0.571 2.145 −1.716
0.857 −1.716 3.573





7.





0.929 0.143 −0.214
0.143 0.714 0.429
−0.214 0.429 0.356





8.





0.857 .286 −0.428
0.286 .428 0.858
−0.428 .858 −0.286





9. (a)

Mobj→wld = Ry(30
o)Rx(−22o) =





0.866 0.000 −0.500
0.000 1.000 0.000
0.500 0.000 0.866









1.000 0.000 0.000
0.000 0.927 −0.375
0.000 0.375 0.927





=





0.866 −0.187 −0.464
0.000 0.927 −0.375
0.500 0.324 0.803





(b) Here, we need to take the opposite rotations, in the opposite order.

Mwld→obj = Rx(22
o)Ry(−30o) =





1.000 0.000 0.000
0.000 0.927 0.375
0.000 −0.375 0.927









0.866 0.000 0.500
0.000 1.000 0.000
−0.500 0.000 0.866





=





0.866 0.000 0.500
−0.187 0.927 0.324
−0.464 −0.375 0.803





Or, you might have already known that the result would be the transpose of the
answer from the previous problem. If so, good for you.

(c) Convert the z-axis from object space to upright space:

[

0 0 1
]





0.866 −0.187 −0.464
0.000 0.927 −0.375
0.500 0.324 0.803



 =
[

0.500 0.324 0.803
]

.

Of course, this is just the same thing as extracting the last row of the matrix.
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B.6 Chapter 6

(Page 189.)

1.

∣

∣

∣

∣

3 −2
1 4

∣

∣

∣

∣

= 3 · 4− (−2) · 1 = 14

2. The determinant is

∣

∣

∣

∣

∣

∣

3 −2 0
1 4 0
0 0 2

∣

∣

∣

∣

∣

∣

= 3(4 · 2− 0 · 0) + (−2)(0 · 0− 1 · 2) + 0(1 · 0− 4 · 0) = 28.

We compute the cofactors

C{11} = +

∣

∣

∣

∣

4 0
0 2

∣

∣

∣

∣

= 8, C{12} = −
∣

∣

∣

∣

1 0
0 2

∣

∣

∣

∣

= −2, C{13} = +

∣

∣

∣

∣

1 4
0 0

∣

∣

∣

∣

= 0,

C{21} = −
∣

∣

∣

∣

−2 0
0 2

∣

∣

∣

∣

= 4, C{22} = +

∣

∣

∣

∣

3 0
0 2

∣

∣

∣

∣

= 6, C{23} = −
∣

∣

∣

∣

3 −2
0 0

∣

∣

∣

∣

= 0,

C{31} = +

∣

∣

∣

∣

−2 0
4 0

∣

∣

∣

∣

= 0, C{32} = −
∣

∣

∣

∣

3 0
1 0

∣

∣

∣

∣

= 0, C{33} = +

∣

∣

∣

∣

3 −2
1 4

∣

∣

∣

∣

= 14,

and put them into the classical adjoint:

adj





3 −2 0
1 4 0
0 0 2



 =





C{11} C{21} C{31}

C{12} C{22} C{32}

C{13} C{23} C{33}



 =





8 4 0
−2 6 0
0 0 14



 .

Dividing by the determinant gives us the inverse:





3 −2 0
1 4 0
0 0 2





−1

=
1

28





8 4 0
−2 6 0
0 0 14



 =





2/7 1/7 0
−1/14 3/14 0

0 0 1/2



 .

3. The matrix is orthogonal within the appropriate tolerance.

4. Because the matrix is orthogonal, its inverse is simply its transpose:





−0.1495 −0.1986 −0.9685
−0.8256 0.5640 0.0117
−0.5439 −0.8015 0.2484





−1

=





−0.1495 −0.1986 −0.9685
−0.8256 0.5640 0.0117
−0.5439 −0.8015 0.2484





T

=





−0.1495 −0.8256 −0.5439
−0.1986 0.5640 −0.8015
−0.9685 0.0117 0.2484



 .
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5. This matrix is a standard affine transform matrix with a right-most column of [0, 0, 0, 1]T,
as discussed in Section 6.4.3. Thus, it can be decomposed into a linear portion and a
translation portion:

M =









−0.1495 −0.1986 −0.9685 0
−0.8256 0.5640 0.0117 0
−0.5439 −0.8015 0.2484 0
1.7928 −5.3116 8.0151 1









=









−0.1495 −0.1986 −0.9685 0
−0.8256 0.5640 0.0117 0
−0.5439 −0.8015 0.2484 0

0 0 0 1

















1 0 0 0
0 1 0 0
0 0 1 0

1.7928 −5.3116 8.0151 1









.

Now taking the inverse is easy, especially when we realize that the linear portion is the
same matrix as the previous exercise. The only real work is to multiply the translation
row by the inverse of the linear portion:

M−1 =

















−0.1495 −0.1986 −0.9685 0
−0.8256 0.5640 0.0117 0
−0.5439 −0.8015 0.2484 0

0 0 0 1

















1 0 0 0
0 1 0 0
0 0 1 0

1.7928 −5.3116 8.0151 1

















−1

=









1 0 0 0
0 1 0 0
0 0 1 0

1.7928 −5.3116 8.0151 1









−1 







−0.1495 −0.1986 −0.9685 0
−0.8256 0.5640 0.0117 0
−0.5439 −0.8015 0.2484 0

0 0 0 1









−1

=









1 0 0 0
0 1 0 0
0 0 1 0

−1.7928 5.3116 −8.0151 1

















−0.1495 −0.8256 −0.5439 0
−0.1986 0.5640 −0.8015 0
−0.9685 0.0117 0.2484 0

0 0 0 1









=









−0.1495 −0.8256 −0.5439 0
−0.1986 0.5640 −0.8015 0
−0.9685 0.0117 0.2484 0
6.976 4.382 −5.273 1









.

6. T([4, 2, 3]) =









1 0 0 0
0 1 0 0
0 0 1 0
4 2 3 1









7. First, calculate the rotation matrix:

Rx(20
o) =









1 0 0 0
0 cos(20o) sin(20o) 0
0 − sin(20o) cos(20o) 0
0 0 0 1









=









1.000 0.000 0.000 0.000
0.000 0.940 0.342 0.000
0.000 −0.342 0.940 0.000
0.000 0.000 0.000 1.000









.



B.7. Chapter 7 767

Now concatenate this with the translation matrix from the previous exercise. We know
this will simply copy the rotation portion into the upper 3×3, and the translation into the
bottom row.

Rx(20
o)T([4, 2, 3]) =









1.000 0.000 0.000 0.000
0.000 0.940 0.342 0.000
0.000 −0.342 0.940 0.000
0.000 0.000 0.000 1.000

















1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
4.000 2.000 3.000 1.000









=









1.000 0.000 0.000 0.000
0.000 0.940 0.342 0.000
0.000 −0.342 0.940 0.000
4.000 2.000 3.000 1.000









8. This time we concatenate the matrices in the opposite order, and the translation portion
gets rotated.

T([4, 2, 3])Rx(20
o) =









1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
4.000 2.000 3.000 1.000

















1.000 0.000 0.000 0.000
0.000 0.940 0.342 0.000
0.000 −0.342 0.940 0.000
0.000 0.000 0.000 1.000









=









1.000 0.000 0.000 0.000
0.000 0.940 0.342 0.000
0.000 −0.342 0.940 0.000
4.000 0.853 3.503 1.000









9.









1 0 0 1/5
0 1 0 0
0 0 1 0
0 0 0 0









10.
[

105 −243 89 1
]









1 0 0 1/5
0 1 0 0
0 0 1 0
0 0 0 0









=
[

105 −243 89 105
5

]

⇒
[

5 −81
7

89
21

]

B.7 Chapter 7
(Page 214.)

In some places in this section, we use the notation (x, y)c to indicate Cartesian coordinates, and
(r, θ)p to indicate polar coordinates. If plain (a, b) coordinates are used, then the context will
make it clear whether the coordinates are Cartesian or polar.
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1.

2. (a) (4, 207o) ≡ (4, 207o − 360o) ≡ (4,−153o)

(b) (−5,−720o) ≡ (−5, 0o) ≡ (5, 180o)

(c) (0, 45.2o) ≡ (0, 0o)

(d) (12.6, 11π/4 rad) ≡ (12.6, 11π/4 rad− 2π rad) ≡ (12.6, 3π/4 rad)

3. (a) (1, 45o)p ≡ (1 cos 45o, 1 sin 45o)c ≈ (1 · 0.707, 1 · 0.707)c = (0.707, 0.707)c

(b) (3, 0o)p ≡ (3 cos 0o, 3 sin 0o)c = (3 · 1, 3 · 0)c = (3, 0)c

(c) (4, 90o)p ≡ (4 cos 90o, 4 sin 90o)c = (4 · 0, 4 · 1)c = (0, 4)c

(d) (10,−30o)p ≡ (10 cos(−30o), 10 sin(−30o))c ≈ (10·0.866, 10·(−0.500))c = (8.66,−5.00)c

(e) (5.5, π rad)p ≡ (5.5 cos(π rad), 5.5 sin(π rad))c = (5.5 · (−1), 5.5 · (0))c = (−5.5, 0)c

4. (a) (4, 207o)p ≡ (4 cos 207o, 4 sin 207o)c ≈ (4 · −.891, 4 · −.454)c ≈ (−3.56,−1.82)c

(b) (−5,−720o)p ≡ (−5 cos(−720o),−5 sin(−720o))c = (−5 · 1,−5 · 0)c = (−5, 0)c

(c) (0, 45.2o)p ≡ (0, 0)c. No credit will be awarded if you actually bothered to calculate
the sine and cosine of 45.2o.

(d) (12.6, 11π/4 rad)p ≡ (12.6 cos(11π/4 rad), 12.6 sin(11π/4 rad))c ≈ (12.6 · −.707, 12.6 ·
707)c ≈ (−8.91, 8.91)c

Notice that it really isn’t any different or more difficult to convert noncanonical polar
coordinates to Cartesian.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-17&iName=master.img-002.jpg&w=202&h=202
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5. (a) (10, 20)c:

r =
√

102 + 202 =
√
100 + 400 =

√
500 ≈ 22.36

θ = atan2(20, 10) = arctan(20/10) ≈ 63.43o

(10, 20)c ∼= (22.36, 63.43o)p

(b) (−12,−5)c:

r =
√

(−12)2 + (−5)2 =
√
144 + 25 =

√
169 = 13

θ = atan2(−5,−12) = arctan(5/12)− 180o

≈ 22.62o − 180o ≈ −157.38o

(−12,−5)c ∼= (13,−157.38o)p

(c) (0, 4.5)c:

r =
√

02 + 4.52 = 4.5

θ = atan2(0, 4.5) = 90o

(4.5, 0)c ≡ (4.5, 90o)p

(d) (−3, 4)c:

r =
√

(−3)2 + 42 =
√
9 + 16 =

√
25 = 5

θ = atan2(4,−3) = arctan(4/3) + 180o

≈ −53.13o + 180o ≈ 126.87o

(−3, 4)c ≡ (5, 126.87o)p

(e) (0, 0)c ≡ (0, 0)p

(f) (−5280, 0)c

r =
√

(−5280)2 + 02 = 5280

θ = atan2(0,−5280) = 180o

(−5280, 0)c ≡ (5280, 180o)p

6. (a) x = r cos(θ) = 4 cos(120o) = 4(−1/2) = −2
y = r sin(θ) = 4 sin(120o) = 4(

√
3/2) = 2

√
3

so (x, y, z) = (−2, 2
√
3, 5)

(b) x = r cos(θ) = 2 cos(45o) = 2(
√
2/2) =

√
2

y = r sin(θ) = 2 sin(45o) = 2(
√
2/2) =

√
2

so (x, y, z) = (
√
2,
√
2,−1)
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(c) x = r cos(θ) = 6 cos(−π/6) = 6 cos(π/6) = 6(
√
3/2) = 3

√
3

y = r sin(θ) = 6 sin(−π/6) = −6 sin(π/6) = −6(−1/2) = −3
so (x, y, z) = (3

√
3,−3,−3)

(d) x = r cos(θ) = 3 cos(3π) = 3 cos(π) = 3(−1) = −3
y = r sin(θ) = 3 sin(3π) = 3 sin(π) = 3(0) = 0

so (x, y, z) = (−3, 0, 1)
7. (a) r =

√
12 + 12 =

√
2

θ = arctan(1/1) = 45o

so (r, θ, z) = (
√
2, 45o, 1)

(b) r =
√

02 + (−5)2 = 5

θ = −90o, since x = 0 and y < 0

so (r, θ, z) = (5,−90o, 2)
(c) r =

√

(−3)2 + 42 = 5

θ = arctan(4/(−3)) = 126.87o

so (r, θ, z) = (5, 126.87o,−7)
(d) r =

√
02 + 02 = 0

θ = 0, since x = 0 and y = 0

so (r, θ, z) = (0, 0,−3)
8. (a) x = r sin(φ) cos(θ) = 4 sin(3π/4) cos(π/3) = 4(

√
2/2)(1/2) =

√
2

y = r sin(φ) sin(θ) = 4 sin(3π/4) sin(π/3) = 4(
√
2/2)(

√
3/2) =

√
6

z = r cos(φ) = 4 cos(3π/4) = 4(−
√
2/2) = −2

√
2

so (x, y, z) = (
√
2,
√
6,−2

√
2)

(b) x = r sin(φ) cos(θ) = 5 sin(π/3) cos(−5π/6) = 5(
√
3/2)(−

√
3/2) = −15/4

y = r sin(φ) sin(θ) = 5 sin(π/3) sin(−5π/6) = 5(
√
3/2)(−1/2) = −5

√
3/4

z = r cos(φ) = 5 cos(π/3) = 5(1/2) = 5/2

so (x, y, z) = (−15/4,−5
√
3/4, 5/2)

(c) x = r sin(φ) cos(θ) = 2 sin(π) cos(−π/6) = 2(0)(
√
3/2) = 0

y = r sin(φ) sin(θ) = 2 sin(π) sin(−π/6) = 2(0)(−1/2) = 0

z = r cos(φ) = 2 cos(π) = 2(−1) = −2
so (x, y, z) = (0, 0,−2)

(d) x = r sin(φ) cos(θ) = 8 sin(π/6) cos(9π/4) = 8(1/2)(
√
2/2) = 2

√
2

y = r sin(φ) sin(θ) = 8 sin(π/6) sin(9π/4) = 8(1/2)(
√
2/2) = 2

√
2

z = r cos(φ) = 8 cos(π/6) = 8(
√
3/2) = 4

√
3

so (x, y, z) = (2
√
2, 2
√
2, 4
√
3)

9. (a1) (4, π/3, 3π/4) =⇒ (4, 4π/3, π/4) =⇒ (4,−2π/3, π/4)
(a2) x = r cos p sinh = 4 cos(π/4) sin(−2π/3) = 4(

√
2/2)(−

√
3/2) = −

√
6

y = −r sin p = −4 sin(π/4) = −4(
√
2/2) = −2

√
2

z = r cos p cosh = 4 cos(π/4) cos(−2π/3) = 4(
√
2/2)(−1/2) = −

√
2

so (x, y, z) = (−
√
6,−2

√
2,−
√
2)
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(b1) (5,−5π/6, π/3) is already in the canonical set.

(b2) x = r cos p sinh = 5 cos(π/3) sin(−5π/6) = 5(1/2)(−1/2) = −5/4
y = −r sin p = −5 sin(π/3) = −5(

√
3/2) = −(5

√
3)/2

z = r cos p cosh = 5 cos(π/3) cos(−5π/6) = 5(1/2)(−
√
3/2) = −(5

√
3)/4

so (x, y, z) = (−5/4,−(5
√
3)/2,−(5

√
3)/4)

(c1) (2,−π/6, π) =⇒ (2, 5π/6, 0)

(c2) x = r cos p sinh = 2 cos(0) sin(5π/6) = (2)(1)(1/2) = 1

y = −r sin p = −2 sin(0) = (−2)(0) = 0

z = r cos p cosh = 2 cos(0) cos(5π/6) = (2)(1)(−
√
3/2) = −

√
3

so (x, y, z) = (1, 0,−
√
3)

(d1) (8, 9π/4, π/6) =⇒ (8, π/4, π/6)

(d2) x = r cos p sinh = 8 cos(π/6) sin(π/4) = 8(
√
3/2)(

√
2/2) = 2

√
6

y = −r sin p = −8 sin(π/6) = −8(1/2) = −4
z = r cos p cosh = 8 cos(π/6) cos(π/4) = 8(

√
3/2)(

√
2/2) = 2

√
6

so (x, y, z) = (2
√
6,−4, 2

√
6)

10. (a) r =
√

x2 + y2 + z2 =
√

(
√
2)2 + (2

√
3)2 + (−

√
2)2 =

√
2 + 12 + 2 =

√
16 = 4

h = arctan(x/z) = arctan(−
√
2/
√
2) = arctan(−1) = 135o, given the location of

(x, z)

p = arcsin(−y/r) = arcsin(−(2
√
3)/4) = arcsin(−

√
3/2) = −60o

so (r, h, p) = (4, 135o,−60o)

(b) r =
√

x2 + y2 + z2 =
√

(2
√
3)2 + 62 + (−4)2 =

√
12 + 36 + 16 =

√
64 = 8

h = arctan(x/z) = arctan(−(2
√
3)/4) = arctan(−

√
3/2) = 139.11o, given the loca-

tion of (x, z)

p = arcsin(−y/r) = arcsin(−6/8) = arcsin(−3/4) = −48.59o
so (r, h, p) = (8, 139.11o,−48.59o)

(c) r =
√

x2 + y2 + z2 =
√

(−1)2 + (−1)2 + (−1)2 =
√
1 + 1 + 1 =

√
3

h = arctan(x/z) = arctan((−1)/(−1)) = arctan(1) = −135o, given the location of
(x, z)

p = arcsin(−y/r) = arcsin(1/
√
3) = 35.26o

so (r, h, p) = (
√
3,−135o, 35.26o)

(d) r =
√

x2 + y2 + z2 =
√

22 + (−2
√
3)2 + 42 =

√
4 + 12 + 16 =

√
32 = 4

√
2

h = arctan(x/z) = arctan(2/4) = arctan(1/2) = 26.57o, given the location of (x, z)

p = arcsin(−y/r) = arcsin((2
√
3)/(4

√
2)) = arcsin(

√
3/(2
√
2)) = 37.76o

so (r, h, p) = (4
√
2, 26.57o, 37.76o)

(e) r =
√

x2 + y2 + z2 =
√

(−
√
3)2 + (−

√
3)2 + (2

√
2)2 =

√
3 + 3 + 8 =

√
14

h = arctan(x/z) = arctan(−
√
3/(2
√
2)) = −31.48o, given the location of (x, z)

p = arcsin(−y/r) = arcsin(
√
3/
√
14) = 27.58o

so (r, h, p) = (
√
14,−31.48o, 27.58o)
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(f) r =
√

x2 + y2 + z2 =
√
32 + 42 + 122 =

√
9 + 16 + 144 = 13

h = arctan(x/z) = arctan(3/12) = arctan(1/4) = 14.04o

p = arcsin(−y/r) = arcsin(−4/13) = −17.92o

so (r, h, p) = (13, 14.04o,−17.92o)

11. (a) A sphere with radius r0.

(b) A vertical plane, obtained by rotating the plane x = 0 clockwise about the y axis by
the angle h0.

(c) A “right circular conical surface” (two vertical circular cones meeting tip-to-tip at
the origin). The interior angle of the cone is 2p0.

12. She was at the north pole, so the bear was white.1

B.8 Chapter 8

(Page 291.)

1. (a) 5 (b) 3 (c) 6 (d) 1 (e) 2 (f) 4

2. (a) 3. Yes, they are canonical Euler angles.

(b) 4. Yes, they are canonical Euler angles.

(c) 5. No, this orientation is in Gimbal lock, and in the canonical set, bank should be
zero.

(d) 1. Yes, they are canonical Euler angles.

(e) 2. Yes, they are canonical Euler angles.

(f) 3. No, the pitch angle is outside the legal range.

(g) 5. Yes, they are canonical Euler angles.

(h) 2. No, the pitch angle is outside the legal range.

(i) 6. Yes, they are canonical Euler angles.

3. (a)









cos(30o/2)




1 · sin(30o/2)
0 · sin(30o/2)
0 · sin(30o/2)













=









0.966




.259
0.000
0.000













(b) All rotation quaternions have a magnitude of 1!

1It was polar bear. Get it?! Polar!
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(c)
[

0.966
(

−.259 0.000 0.000
)]

(d) This corresponds to a pitch of +30o.

4. (a) 2 (b) 5 (c) 1 (d) 3 (e) 2 (f) 1 (g) 4 (h) 6 (i) 3

5. (a) 5 (b) 2 (c) 6 (d) 1 (e) 3 (f) 5 (g) 4 (h) 2 (i) 3

6. (w1 + x1i+ y1j + z1k)(w2 + x2i+ y2j + z2k)
= w1w2 + w1x2i+ w1y2j + w1z2k
+ x1w2i+ x1x2i

2 + x1y2ij + x1z2ik
+ y1w2j + y1x2ji+ y1y2j

2 + y1z2jk
+ z1w2k + z1x2ki+ z1y2kj + z1z2k

2

= w1w2 + w1x2i+ w1y2j + w1z2k
+ x1w2i+ x1x2(−1) + x1y2k + x1z2(−j)
+ y1w2j + y1x2(−k) + y1y2(−1) + y1z2i
+ z1w2k + z1x2j + z1y2(−i) + z1z2(−1)

= w1w2 − x1x2 − y1y2 − z1z2
+ (w1x2 + x1w2 + y1z2 − z1y2)i
+ (w1y2 + y1w2 + z1x2 − x1z2)j
+ (w1z2 + z1w2 + x1y2 − y1x2)k

7. First, we extract the half-angle and axis of rotation:

α = θ/2 = arccosw = arccos 0.965 ≈ 15.0o,

n̂ = normalize(
[

0.149 −0.149 0.149
]

) ≈
[

0.577 −0.577 0.577
]

.

Now we form a new quaternion using the new half-angle, α′ = 2α ≈ 30.0o:









cosα′




nx sinα
′

ny sinα
′

nz sinα
′













=









0.867




0.577 · 0.500
−0.577 · 0.500
0.577 · 0.500













=









0.867




0.288
−0.288
0.288













.

8. (a) a·b =









0.233




0.060
−0.257
−0.935













·









−0.752




0.286
0.374
0.459













= (0.233)(−0.752)+(0.060)(0.286)+(−0.257)(0.374)

+ (−0.935)(0.459) = −0.683

(b) ab =









0.333




0.253
−0.015
0.906













(c) d = ba−1 =









−0.752




0.286
0.374
0.459





















0.233




0.060
−0.257
−0.935













∗

=









−0.683




0.343
−0.401
−0.500
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9. ‖q1q2‖ =
∥

∥

[

w1

(

x1 y1 z1
)][

w2

(

x2 y2 z2
)]∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥









w1w2 − x1x2 − y1y2 − z1z2




w1x2 + x1w2 + y1z2 − z1y2
w1y2 + y1w2 + z1x2 − x1z2
w1z2 + z1w2 + x1y2 − y1x2













∥

∥

∥

∥

∥

∥

∥

∥

=

√

√

√

√

√

√

√

(w1w2 − x1x2 − y1y2 − z1z2)
2

+ (w1x2 + x1w2 + y1z2 − z1y2)
2

+ (w1y2 + y1w2 + z1x2 − x1z2)
2

+ (w1z2 + z1w2 + x1y2 − y1x2)
2

After expanding these products and then canceling terms (a step that we have omitted
because it is very messy), we then factor:

‖q1q2‖ =

√

√

√

√

√

√

√

w1
2w2

2 + x1
2x2

2 + y1
2y2

2 + z1
2z2

2

+ w1
2x2

2 + x1
2w2

2 + y1
2z2

2 + z1
2y2

2

+ w1
2y2

2 + y1
2w2

2 + z1
2x2

2 + x1
2z2

2

+ w1
2z2

2 + z1
2w2

2 + x1
2y2

2 + y1
2x2

2

=

√

√

√

√

√

√

√

w1
2(w2

2 + x2
2 + y2

2 + z2
2)

+ x1
2(w2

2 + x2
2 + y2

2 + z2
2)

+ y1
2(w2

2 + x2
2 + y2

2 + z2
2)

+ z1
2(w2

2 + x2
2 + y2

2 + z2
2)

=
√

(w1
2 + x1

2 + y12 + z12)(w2
2 + x2

2 + y22 + z22)

=

√

‖q1‖2‖q2‖2

= ‖q1‖‖q2‖

B.9 Chapter 9
(Page 339.)

1. First, we convert the ray to implicit form by using Equation (9.5):

a = dy = 5,

b = −dx = 7,

d = xorgdy − yorgdx = 5 · 5− 3 · (−7) = 46.

Then, we convert this to slope-intercept form according to Equation (9.6):

m = −a/b = −5/7,
y0 = d/b = 46/7.

So the equation of the line is y = −(5/7)x+ 46/7.
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2. 4x+ 7y = 42
7y = −4x+ 42
y = −(4/7)x+ 6

The slope is −4/7 and the y-intercept is 6.

3. (a) pmin = (−5,−7,−5), pmax = (7, 11, 8)

(b) (xmin, ymin, zmin) = (−5,−7,−5) (xmin, ymin, zmax) = (−5,−7, 8)
(xmin, ymax, zmin) = (−5, 11,−5) (xmin, ymax, zmax) = (−5, 11, 8)
(xmax, ymin, zmin) = (7,−7,−5) (xmax, ymin, zmax) = (7,−7, 8)
(xmax, ymax, zmin) = (7, 11,−5) (xmax, ymax, zmax) = (7, 11, 8)

(c) c = (pmin + pmax)/2 = (1, 2, 1.5)
s = (pmax − pmin) = (12, 18, 13)

(d) v′
1 = (−2.828, 12.728,−5.000) v′

2 = (−0.707, 3.5355, 8.000)
v′
3 = (−4.243, 0.000, 1.000) v′

4 = (1.414,−8.485, 0.000)
v′
5 = (2.121, 6.364, 4.000)

(e) pmin = (−4.243,−8.485,−5), pmax = (2.121, 12.728, 8)

(f) First, we determine which products to take by using the technique from Listing 9.4:

x′
min = m11 · xmin x′

max = m11 · xmax (m11 > 0)

+m21 · ymax +m21 · ymin (m21 < 0)

+ 0 + 0 (m31 = 0)

y′
min = m12 · xmin y′

max = m12 · xmax (m12 > 0)

+m22 · ymin +m22 · ymax (m22 > 0)

+ 0 + 0 (m32 = 0)

z′min = 0 z′max = 0 (m13 = 0)

+ 0 + 0 (m23 = 0)

+ zmin + zmax (m33 = 1)

Summing the appropriate products, we have

x′
min = m11 · xmin +m21 · ymax + 0 = 0.707 · −5 + (−0.707) · 11 + 0 = −11.312,

y′
min = m12 · xmin +m22 · ymin + 0 = 0.707 · −5 + 0.707 · −7 + 0 = −8.484,
z′min = zmin = −5,
x′
max = m11 · xmax +m21 · ymin + 0 = 0.707 · 7 + (−0.707) · −7 + 0 = 9.898,

y′
max = m12 · xmax +m22 · ymax + 0 = 0.707 · 7 + 0.707 · 11 + 0 = 12.726,

z′max = zmax = 8.

Notice how much larger this box is than the one of the transformed points!
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4. (a) First, let’s find the normal by using Equation (9.12):

e3 = p2 − p1 =





3
−1
17



−





6
10
−2



 =





−3
−11
19



,

e1 = p3 − p2 =





−9
8
0



−





3
−1
17



 =





−12
9
−17



,

e3 × e1 =





(−11)(−17)− (19)(9)
(19)(−12)− (−3)(−17)
(−3)(9)− (−11)(−12)



 =





187− 171
−228− 51
−27− 132



 =





16
−279
−159



.

Let’s normalize it:

‖e3 × e1‖ =
√

162 + (−279)2 + (−159)2 =
√
103378 ≈ 321.5,

n̂ =
e3 × e1

‖e3 × e1‖
≈
[

16 −279 −159
]

321.5

≈
[

.04976 −.8677 −.4945
]

.

Just for kicks, we’ll verify that we get the same result with Equation (9.13) from
Section 9.5.3:

nx = (z1 + z2)(y1 − y2) + (z2 + z3)(y2 − y3) + (z3 + z1)(y3 − y1)

= ((−2) + 17)(10− (−1)) + (17 + 0)((−1)− 8) + (0 + (−2))(8− 10)

= 16,

ny = (x1 + x2)(z1 − z2) + (x2 + x3)(z2 − z3) + (x3 + x1)(z3 − z1)

= (6 + 3)((−2)− 17) + (3 + (−9))(17− 0) + ((−9) + 6)(0− (−2))
= −279,

nz = (y1 + y2)(x1 − x2) + (y2 + y3)(x2 − x3) + (y3 + y1)(x3 − x1)

= (10 + (−1))(6− 3) + ((−1) + 8)(3− (−9)) + (8 + 10)((−9)− 6)

= −159,

n̂ =

[

16 −279 159
]

√

162 + (−279)2 + 1592
≈
[

16 −279 159
]

321.5
≈
[

.04976 −.8677 −0.4945
]

.

Now that we have n̂, we can compute d. We’ll arbitrarily use p1:

d = n · p1 ≈
[

.04976 −.8677 −.4945
]

·
[

6 10 −2
]

≈ (.04976)(6) + (−.8677)(10) + (−.4945)(−2) ≈ −7.389.

The plane equation for this triangle is

.04976x− .8677y − .4945z = −7.389.
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(b) To answer both questions, we compute the signed distance by Equation (9.14) from
Section 9.5.4:

a = q · n̂− d

≈
[

3 4 5
]

·
[

.04976 −.8677 −.4945
]

− (−7.389)
≈ (.04976)(3) + (−.8677)(4) + (−.4945)(5) + 7.389

≈ 1.595

Since this value is positive, we conclude that the point is on the front side of the
plane.

(c) Let’s first solve this problem by using the 2D projection method. The dominant axis
of the normal is y, and so we’ll discard the y coordinates of the vertices and project
onto the xz plane. Applying notation from Listing 9.6 (but using 1-based subscripts):

u1 = z1 − z3 u2 = z2 − z3 u3 = pz − z1 u4 = pz − z3

= −2− 0 = 17− 0 = 17.11− (−2) = 17.11− 0

= −2 = 17 = 19.11 = 17.11

v1 = x1 − x3 v2 = x2 − x3 v3 = px − x1 v4 = px − x3

= 6− (−9) = 3− (−9) = 13.60− 6 = 13.60− (−9)
= 15 = 12 = 7.60 = 22.60

denom = v1u2 − v2u1 = (15)(17)− (12)(−2) = 279
(b1)(denom) = v4u2 − v2u4 = (22.60)(17)− (12)(17.11) = 178.9

b1 = 178.9/279 = 0.641
(b2)(denom) = v1u3 − v3u1 = (15)(19.11)− (7.60)(−2) = 301.85

b2 = 301.85/279 = 1.082
b3 = 1− b1 − b2 = 1− 0.641− 1.082 = −0.723

(d) cGrav =
v1 + v2 + v3

3
=

[

6 10 −2
]

+
[

3 −1 17
]

+
[

−9 8 0
]

3

=

[

(6 + 3− 9) (10− 1 + 8) (−2 + 17 + 0)
]

3
=

[

0 17 15
]

3
=
[

0 17/3 5
]

≈
[

0 5.66 5
]

(e) First, we calculate the side lengths.

l1 =
∥

∥

[

−9 8 0
]

−
[

3 −1 17
]∥

∥ =
∥

∥

[

−12 9 −17
]∥

∥ ≈ 22.67

l2 =
∥

∥

[

6 10 −2
]

−
[

−9 8 0
]∥

∥ =
∥

∥

[

15 2 −2
]∥

∥ ≈ 15.26

l3 =
∥

∥

[

3 −1 17
]

−
[

6 10 −2
]∥

∥ =
∥

∥

[

−3 −11 19
]∥

∥ ≈ 22.16
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cIn =
l1v1 + l2v2 + l3v3

p

=
22.67

[

6 10 −2
]

+ 15.26
[

3 −1 17
]

+ 22.16
[

−9 8 0
]

22.67 + 16.22 + 22.16

=

[

136.02 226.70 −45.34
]

+
[

45.78 −15.26 259.42
]

+
[

−199.44 177.28 0
]

60.09

=

[

−17.64 388.72 214.08
]

60.09
=
[

−0.294 6.47 3.56
]

(f) e1 =





−9
8
0



−





3
−1
17



 =





−12
9
−17





e2 =





6
10
−2



−





−9
8
0



 =





15
2
−2





e3 =





3
−1
17



−





6
10
−2



 =





−3
−11
19





d1 = −e2 · e3 = −





15
2
−2



 ·





−3
−11
19



 = −((15 · −3) + (2 · −11) + (−2 · 19)) = 105

d2 = −e3 · e1 = −





−3
−11
19



 ·





−12
9
−17



 = −((−3 · −12) + (−11 · 9) + (19 · −17)) = 386

d3 = −e1 · e2 = −





−12
9
−17



 ·





15
2
−2



 = −((−12 · 15) + (9 · 2) + (−17 · −2)) = 128

c1 = d2d3 = 386 · 128 = 49408

c2 = d3d1 = 128 · 105 = 13440

c3 = d1d2 = 105 · 386 = 40530

c = c1 + c2 + c3 = 49408 + 13440 + 40530 = 103378

cCirc =
(c2 + c3)v1 + (c3 + c1)v2 + (c1 + c2)v3

2c

=

(13440 + 40530)





6
10
−2



+ (40530 + 49408)





3
−1
17



+ (49408 + 13440)





−9
8
0





2(103378)
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=
53970

206756





6
10
−2



+
89938

206756





3
−1
17



+
62848

206756





−9
8
0





= 0.261





6
10
−2



+ 0.435





3
−1
17



+ 0.304





−9
8
0





=





1.566
2.610
−0.522



+





1.305
−0.435
7.395



+





−2.736
2.432
0



 =





0.135
4.607
6.873





5. Using Equation (9.13):

nx =(12.70 + (−9.22))(13.90− 12.77) + (−9.22 + 12.67)(12.77− 2.34)

+ (12.67 + (−7.09))(2.34− 10.64) + (−7.09 + 18.68)(10.64− 3.16)

+ (18.68 + 12.70)(3.16− 13.90) = −256.73
ny =(−29.74 + 11.53)(12.70− (−9.22)) + (11.53 + 9.16)(−9.22− 12.67)

+ (9.16 + 14.62)(12.67− (−7.09)) + (14.62 + (−3.31))(−7.09− 18.68)

+ (−3.31 + (−29.74))(18.68− 12.70) = −871.27
nz =(13.90 + 12.77)(−29.74− 11.53) + (12.77 + 2.34)(11.53− 9.16)

+ (2.34 + 10.64)(9.16− 14.62) + (10.64 + 3.16)(14.62− (−3.31))
+ (3.16 + 13.90)(−3.31− (−29.74)) = −437.40

Normalizing this result, we have

n̂ = [−0.255,−0.864,−0.434].

Now the best-fit d value is computed by

d = n̂ · (p1 + p2 + p3 + p4 + p5)/5

= [−0.255,−0.864,−0.434] · [2.26, 42.81, 27.74]/5 = −9.92.

6. The seven-sided polygon is fanned into five triangles. One possible way to fan the polygon,
based on the simple strategy given in Section 9.7.3, is

{v1,v2,v3}, {v1,v3,v4}, {v1,v4,v5}, {v1,v5,v6}, {v1,v6,v7}.

B.10 Chapter 10

(Page 476.)

1. This is a straightforward application of Equation (10.2).

(a)
pixPhysx
pixPhysy

=
devPhysx
devPhysy

· devResy
devResx

=
4

3
· 480
640

= 1
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(b)
pixPhysx
pixPhysy

=
devPhysx
devPhysy

· devResy
devResx

=
16

9
· 480
640

=
4

3
(width greater than height)

2. (a)
winPhysx
winPhysy

=
winResx
winResy

· pixPhysx
pixPhysy

=
320

480
· 1 =

2

3
(width less than height)

(b) Using the left side of Equation (10.3), we have

zoomx =
1

tan (fovx/2)
=

1

tan (60o/2)
≈ 1.732.

(c) Using Equation (10.4),

zoomy

zoomx
=

winPhysx
winPhysy

,

zoomy

1.732
=

2

3
,

zoomy = 1.155.

(d) Using the right side of Equation (10.3), we have

fovy = 2 arctan (1/zoomy) = 2 arctan (1/1.155) = 81.77o.

(e) The correct formula is given by Equation (10.3.4).









zoomx 0 0 0
0 zoomy 0 0

0 0 − f+n
f−n

−2nf
f−n

0 0 −1 0









=









1.732 0 0 0
0 1.155 0 0

0 0 − 256.0+1.0
256.0−1.0

−2(1.0)(256.0)
256.0−1.0

0 0 −1 0









=







1.732 0 0 0
0 1.155 0 0
0 0 −1.00784 −2.00784
0 0 −1 0







(f) This time we use Equation (10.7).









zoomx 0 0 0
0 zoomy 0 0

0 0 f
f−n

1

0 0 −nf
f−n

0









=









1.732 0 0 0
0 1.155 0 0
0 0 256

256−1 1

0 0
−(1)(256)

256−1 0









=







1.732 0 0 0
0 1.155 0 0
0 0 1.00392 1
0 0 −1.00392 0







3. (a)
winPhysx
winPhysy

=
winResx
winResy

· pixPhysx
pixPhysy

=
320

480
· 4
3
=

8

9

(b) Same as before, 1.732.

(c)
zoomy

zoomx
=

winPhysx
winPhysy

zoomy

1.732
=

8

9
,

zoomy = 1.540

(d) fovy = 2 arctan (1/zoomy) = 2 arctan (1/1.540) = 66.00o

4. (a) 2 (b) 1 (c) 4 (d) 6 (e) 3 (f) 5
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5. (a) 7 (b) 3 (c) 1 (d) 10 (e) 4 (f) 2 (g) 9 (h) 6 (i) 8 (j) 5

6. Here we encode each component by multiplying by 127, adding 128, and then rounding to
an integer. If any answer is off by 1 pixel, that’s probably OK. (It’s best to make sure −1
gets encoded as zero.)

(a) R=0, G=128, B=128 (b) R=162, G=60, B=230

(c) R=128, G=128, B=255 (d) R=128, G=237, B=193

7. Tangent-space Model-space
normal Binormal normal

(a) [0.000, 1.000, 0.000] [0.577,−0.577, 0.577] [0.577,−0.577, 0.577]
(b) [−0.172, 0.211, 0.953] [0.000, 0.000, 1.000] [−0.172, 0.953, 0.211]
(c) [0.000, 0.703, 0.703] [0.000, 0.894, 0.447] [0.703, 0.628, 0.314]

(d) [0.820,−0.547, 0.133] [−0.064,−0.786,−0.615] [0.864, 0.386, 0.307]

B.11 Chapter 11

(Page 549.)

1. 1
lb

in2 ≈ 1
lb

in2 ×
4.448 N

1 lb
×
(

1 in

0.0254 m

)2

≈ 6.89× 103
N

m2

2.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-17&iName=master.img-003.jpg&w=276&h=209
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3. (a)
x(1)− x(0)

1− 0
=

1− 0

1
= 1

(b)
x(2)− x(1)

2− 1
=

0− 1

1
= −1

(c)
x(2)− x(0)

2− 0
=

0− 0

2
= 0

(d)
x(6.5)− x(5.5)

6.5− 5.5
=

1− (−1)
1

= 2

(e)
x(9)− x(0)

9− 0
=

(−2)− 0

9
= −2

9

4. v(t) =



















2− 2t 0 < t < 2

0 2 < t < 4

π cos(πt) 4 < t < 7

−1 7 < t

5. (a) v(0.1) = 2− 2(0.1) = 1.8

(b) v(1.0) = 2− 2(1.0) = 0.0

(c) v(1.9) = 2− 2(1.9) = −1.8

(d) v(4.1) = π cos(4.1π) = 2.988

(e) v(5) = π cos(5π) = −π

(f) v(6.5) = π cos(6.5π) = 0

(g) v(8) = −1

(h) v(9) = −1

6. a(t) =



















−2 0 < t < 2

0 2 < t < 4

−π2 sin(πt) 4 < t < 7

0 7 < t

7. (a) a(0.1) = −2

(b) a(1.0) = −2

(c) a(1.9) = −2

(d) a(4.1) = −π2 sin(4.1π) = −3.050

(e) a(5) = −π2 sin(5π) = 0

(f) a(6.5) = −π sin(6.5π) = −9.870

(g) a(8) = 0

(h) a(9) = 0
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8. A negative discriminant indicates that the apex of the movement (the farthest displacement
in the direction of the initial velocity) is not large enough to reach the desired displacement
∆x. Thus, there is no value of t for which the sought-after displacement will be reached.
If the discriminant is zero, then there is exactly one solution to Equation (11.16), and the
displacement is equal to the maximum displacement at the apex.

Note that if the acceleration and the displacement have the same sign, then the discriminant
can never be positive, and there will always be two solutions except in the trivial case where
all the values are zero.

9. (a) v0 = 150[cos 40o, sin 40o] ft/s ≈ [114.9, 96.4] ft/s

(b) t = −(v0)y/ay = −(96.4 ft/s)/(−32.0 ft/s2) = 3.01 s

(c) p(t) =

[

0 ft
10 ft

]

+

[

114.9 ft/s
96.4 ft/s

]

t+ 1
2

[

0 ft/s2

−32.0 ft/s2

]

t2

p(3.01 s) =

[

0 ft
10 ft

]

+

[

114.9 ft/s
96.4 ft/s

]

(3.01 s) + 1
2

[

0 ft/s2

−32.0 ft/s2

]

(3.01 s)2

=

[

0 ft
10 ft

]

+

[

345.8 ft
290.2 ft

]

+

[

0 ft
−145.0 ft

]

=

[

345.8 ft
155.2 ft

]

(d) It’s twice the time to reach the apex, 2(3.01 s) = 6.02 s.

(e) x(t) = (0 ft) + (114.9 ft/s)t+ (1/2)(0 ft/s2)t2

x(6.02 s) = (114.9 ft/s)(6.02 s) = 691.7 ft

10. ∆p = v0t+ (1/2)at2

∆p · a = (v0t+ (1/2)at2) · a
∆p · a = (v0 · a)t+ (1/2)(a · a)t2

0 = (a · a/2)t2 + (v0 · a)t−∆p · a

t =
−(v0 · a)±

√

(v0 · a)2 − 4(a · a/2)(∆p · a)
2(a · a/2)

t =
−(v0 · a)±

√

(v0 · a)2 − 2(a · a)(∆p · a)
a · a

11. Expanding the Taylor series for eix:

eix = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+

(ix)7

7!
+

(ix)8

8!
+ · · ·

Substituting the powers of i (i2 = −1, i3 = −i, i4 = 1, etc.):

eix = 1 + ix− x2

2!
− ix3

3!
+

x4

4!
+

ix5

5!
− x6

6!
− ix7

7!
+

x8

8!
+ · · ·

Now we separate the real and imaginary terms:

eix =

(

1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

)

+ i

(

x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

)
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The sums can be recognized as the Taylor series expansion for cosine and sine; therefore,

eix = cosx+ i sinx.

This equation is known as Euler’s formula. Substituting x = π and moving everything to
the left hand side gives us Euler’s identity, a beautiful equation that links together five
important mathematical constants:

eiπ + 1 = 0.

12. This one has a few tricks. First, we need to compute the actual radius of the orbit, taking
into account Earth’s (average) radius of 6,371 km, as

r = 6, 371 km + 340 km = 6, 711 km.

Now the length of the circular orbit is just the circumference of a circle with this radius,
which can be computed using elementary geometry:

C = 2πr = 2π(6, 711 km) = 4.217× 104 km.

Finally, we divide this distance by the average speed to get the orbital period:

P = C/s = (4.217× 104 km)/(27, 740 km/hr) = 1.520 hr = 91.21 min.

The centripetal acceleration can be computed by Equation (11.29):

a =
s2

r
=

(

27, 740
km

hr
× 1 hr

3, 600 s

)2

6, 711 km
=

(

7.706
km

s

)2

6, 711 km
= 0.008849

km

s2
= 8.849

m

s2
.

B.12 Chapter 12
(Page 640.)

1. We must consider all the forces acting on the fan, the air, and the boat. As the fan rotates,
a force exists between the fan and the air, which wants to push the air forward and the
fan backwards. Since the fan does not accelerate backwards, we know that there must
be some force opposing it, and this force comes from the force of friction provided by the
boat. But then this means the boat is receiving a backwards force, and this backwards
force counteracts any force eventually received by the wind hitting the sail.

2. First, we identify four bodies: the girl, the boy, the rope, and Earth. Next, we identify the
active tension and friction forces:

Tg,r Girl pulls on rope Tr,g Rope pulls on girl

Fg,e Girl pushes on Earth Fe,g Earth pushes on girl

Tb,r Boy pulls on rope Tr,b Rope pulls on boy

Fb,e Boy pushes on Earth Fe,b Earth pushes on boy
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By Newton’s third law, we assume that each force on the left is equal in magnitude but
opposite in direction to the corresponding force on the right. Next, since we assume that
the stretching of the rope is negligible, the tension at one end must be equal to the tension
at the other end, so all the T forces have equal magnitude. Since the children are both
accelerating, there must be a net force on each of them causing their displacement. Earth
is pushing the girl harder than the rope is pulling her, so she accelerates backwards. For
the boy, the opposite is true, and the directions of the forces cause him to move forwards.
So the reason that the children, as a system, accelerate relative to Earth is because the
girl’s pushing force is larger than the boy’s pushing force, resulting in a net force on the
children in the direction of the girl.

3. False. The acceleration due to gravity is constant, but the force due to gravity increases
proportionately with mass.

4. This is a straightforward application of Newton’s law of universal gravitation with the
distance equal to the radius of Earth plus the orbit altitude.

d = 6, 371 km + 340 km = 6, 711 km.

Plugging this value and the mass of Earth into Equation (12.3), we have

f = G
m1m2

d2
=

(

6.673× 10−11N m2

kg2

)

(5.98× 1024 kg)m2

(6.711× 106 m)2

= (8.86 N)
m2

kg
=
(

8.86
m

s2

)

m2

We observe a few things about this result. First, it most definitely is not zero; in fact, it is
only about 10% less than the acceleration due to gravity at Earth’s surface. Although the
term “zero gravity” is often used to describe the environment of objects orbiting in space,
we see that this term is a bit of a misnomer, since gravity is quite alive and well, even at
340 km above Earth’s surface. In fact, it is gravity that supplies the necessary centripetal
acceleration to maintain the orbit.

Second, we compare this answer to our results from Exercise 11.12, and we see that the
numbers are the same. (Well, almost exactly the same. The discrepancy of 0.1% is a
result of some slight simplifications to the problem and rounding.) This match leads us
to answer the second part of the problem. The apparent weightlessness exists because the
space station and all the objects in it are in free fall. Apparent weightlessness occurs in any
free-fall situation, no matter what the force of gravity and even if the object isn’t orbiting
(for example, in a falling elevator or amusement park ride or in NASA’s “vomit comet”
aircraft).

The difference between a falling elevator and an object orbiting Earth is that the free fall
in the space station continues indefinitely. The orbit speed and altitude are selected such
that the acceleration due to gravity is exactly the same as the centripetal acceleration, and
unlike a falling elevator, the space station never gets any closer to the ground. The space
station keeps “falling over the horizon” and never hits bottom.

5. At the critical angle, the force of static friction fs exactly balances the lateral component
of the force of gravity, g‖. The maximum friction is equal to the magnitude n of the
normal force times the coefficient of static friction µs. The normal force is equal to g⊥, the
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component of gravity perpendicular to the surface, and from Table 12.1, the coefficient of
static friction between concrete and wood is 0.62. Thus, we have

fs = g‖,

(µsn) = g‖,

(0.62g⊥) = g‖.

The normal and lateral components of gravity can be expressed in terms of the angle of
inclination θ as

g⊥ = ‖g‖ cos θ,
g‖ = ‖g‖ sin θ,

where ‖g‖ is the total magnitude of the force of gravity on the block. Plugging in these
values and solving this for θ, we have

0.62g⊥ = g‖,

0.62‖g‖ cos θ = ‖g‖ sin θ,

0.62 =
‖g‖ sin θ
‖g‖ cos θ ,

0.62 =
sin θ

cos θ
,

0.62 = tan θ,

arctan 0.62 = θ,

32o ≈ θ.

Notice that neither the weight of the block nor the acceleration due to gravity was relevant
in this experiment. Thus, if you were to conduct this experiment on the moon, you would
get the same critical angle.

6. (a) Hooke’s law tells us f = kx0. The force in this case is gravity, which is proportional
to the mass and given by f = mg. Thus, the relation is

mg = kx0.

(b) Substituting into the equation obtained in part (a), we have

mg = kx0,

(5.00 kg)(9.8 m/s2) = k(10.0 cm),

49 N

0.100 m
= k,

4.9× 102 N/m = k.

(c) mg = kx0

m(9.8 m/s2) = (4.9× 102 N/m)(17.0 cm)

m =
(4.9× 102 N/m)(0.170 m)

9.8 m/s2
= 8.5 kg
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(d) Assuming the spring and environment had not changed, we would expect a 1 kg
mass to cause an extension of 2 cm. Since the actual change in length was 8 cm,
there are only two explanations.2 Either the spring constant has been reduced or the
apparent force of gravity has increased (or both). Maybe the spring was worn out?
The increase in gravity could be caused by conducting the experiment on a larger
planet or in a noninertial reference frame that is accelerating upwards.

7. (a) F =
1

2π

√

k

m
=

1

2π

√

1.00× 102 (kg m/s2)/m

5.00 kg
=

√
20.0 s−2

2π
= 0.712 Hz

(b) The amplitude is simply the initial displacement, 14.7 cm.

(c) We know that the motion of the mass must be of the form A cos(ωt + θ0). We
already determined the amplitude A = 14.7 cm, and we know the angular frequency
ω = 2πF = 4.47 Hz.

When the mass crosses the rest position, cos(ωt + θ0) = 0. Therefore, at this time,
sin(ωt+ θ0) = ±1, and the velocity is

v(t) = −Aω sin(ωt+ θ0)

= ±(14.7 cm)(4.47 s−1) = ±65.7 cm/s

Since speed is always positive, we can discard the “±”.
8. Since there are no external forces, the center of mass of the man + car system does not

move, and the total momentum of this system must remain zero throughout. We’ll let vm
and vc refer to the velocity of the man and car, respectively, relative to Earth.

(a) The relative velocity of the man and car is expressed by

vm − vc = 1.25 m/s,

vm = vc + 1.25 m/s,

and we also know that the combined momentum of the system must remain at zero,

Pm + Pc = mmvm +mcvc = 0.

Plugging the first equation into the second, we have

(75.0 kg)(vc + 1.25 m/s) + (1.00× 103 kg)vc = 0,

(75.0 kg)vc + 93.8 kg m/s + (1.00× 103 kg)vc = 0,

(1.08× 103 kg)vc = −93.8 kg m/s,

vc = −0.0869 m/s.

So we obtain the inertial velocity of the man as

vm = vc + 1.25 m/s = −0.0869 m/s + 1.25 m/s = 1.16 m/s.

2No credit is given for suggesting “physics stopped working.” However, if you answered “we are inside
of a video game,” give yourself 20 points extra credit.
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(b) First, we compute the duration of the journey by considering the man’s motion in
the coordinate space fixed to the car, as

∆t = ∆x/v = (20.0 m)/(1.25 m/s) = 16.0 s.

We then multiply the velocities of the car and man by this duration to obtain their
displacements.

∆xm = vm∆t = (1.16 m/s)(16.0 s) = 18.6 m

∆xc = vc∆t = (−0.0869 m/s)(16.0 s) = −1.39 m

An alternate approach is to recognize that the center of mass of the system does
not move, since there are no external forces, and treat the man and the car as point
masses. Since the man walked the length of the car,

∆xm = ∆xc + 20.0 m.

Now the movement of the man must be offset by the movement of the car, such that
the center of gravity does not shift.

∆xmmm +∆xcmc = 0

One again, the system of equations is solved by plugging the first equation into the
second.

(∆xc + 20.0 m)mm +∆xcmc = 0

(∆xc + 20.0 m)(75.0 kg) + ∆xc(1.00× 103 kg) = 0

∆xc(75.0 kg) + (1.50× 103 kg m) + ∆xc(1.00× 103 kg) = 0

∆xc(1.08× 103 kg) = −1.50× 103 kg m

∆xc = −1.39 m

(c) The car’s velocity would also increase in proportion to the man’s. At all times, the
total momentum and total displacement of the center of mass would be zero. The
ending configuration of the car and the man would be the same as before.

(d) Here all we must do is add +5.00 m/s to our earlier results.

vc = −0.0869 m/s + 5.00 m/s = 4.91 m/s

vm = 1.16 m/s + 5.00 m/s = 6.16 m/s

(e) ∆xm = vm∆t = (6.16 m/s)(16.0 s) = 98.6 m
∆xc = vc∆t = (4.91 m/s)(16.0 s) = 78.6 m

9. First, we must compute the contact normal n as

n =

[

cos−110o
sin−110o

]

≈
[

−0.342
−0.940

]

,
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and the relative velocity vrel as

vrel = v1 − v2 = (35 km/hr)

[

−1
0

]

− (65 km/hr)

[

cos 115o

sin 115o

]

≈
[

−7.505
−58.890

]

km/hr.

Now we plug these values, along with masses and coefficient of restitution, into Equa-
tion (12.23), to determine k, the magnitude of the collision impulse. (Note that we also
assume n is a unit vector, so n · n = 1.)

k =
(e+ 1)vrel · n

(1/m1 + 1/m2)n · n
=

(1 + 0.1)

([

−7.505
−58.890

]

km/hr

)

·
[

−0.342
−0.940

]

(1/1, 500 kg + 1/2, 500 kg)

=
63.716 km/hr

0.00107 kg−1 = 59, 533 kg km/hr

The vector impulse received by Kari (who is m2) is

kn = (59, 533 kg km/hr)

[

−0.342
−0.940

]

=

[

−20, 360
−55, 961

]

kg km/hr.

Finally, computing the velocities after the impact, we have

v′
1 =

P′
1

m1
=

P1 − kn

m1
=

([

−52, 500
0

]

−
[

−20, 360
−55, 961

])

kg km/hr

1, 500 kg
=

[

−21.43
37.31

]

km/hr

v′
2 =

P′
2

m2
=

P2 + kn

m2
=

([

−68, 700
147, 000

]

+

[

−20, 360
−55, 961

])

kg km/hr

2, 500 kg
=

[

−35.62
36.42

]

km/hr

10. Because the force of gravity is always directly downwards, the bend in the balance bar
causes the lever arm of each side to change depending on the angle of the monkey. For
example, if the monkey begins to lean to the left, this rotates the weight on the right end
of the pole upwards. In this situation, the force of gravity acts more perpendicular to the
bar on the right (the lever arm), and the torque is increased. At the same time, the mass
on the opposite end rotates downwards, causing the bar to become more parallel with the
force of gravity, thus decreasing the torque. In other words, the restorative torque is always
greater than the torque that would tend to tip him over, and when he is upright, they are
in equilibrium.

11. The hollow cylinder will be harder to roll, because the moment of inertia will be larger.
Imagine that the cylinders are made of a compressible substance. Now imagine taking an
individual mass element from the center of the solid center and pushing it outwards. As
the radius increases, the moment of inertia of this element will increase. This is essentially
the difference between the two cylinders, the hollow one has a denser outer ring, with more
of its mass pushed outwards.



790 B. Answers to the Exercises

12. (a) First we determine the total mass, which is 2200 kg. Then we take a weighted average
of the mass centers according to Equation (12.22).

rc =
1

M

n
∑

i

miri =
1

2200









1000 · (0, 100, 225) + 600 · (0, 125, 75)
+ 400 · (0, 100,−120) + 50 · (−100, 35, 230)
+ 50 · (100, 35, 230) + 50 · (−100, 35,−150)
+ 50 · (100, 35,−150)









= (0, 101, 105)

(b) At the time of this writing, all the formulas are available on the Wikipedia article
List of moment of inertia tensors.
Body front:

J =
1000 kg

12





(0.80 m)2 + (1.50 m)2 0 0
0 (2.00 m)2 + (1.50 m)2 0
0 0 (2.00 m)2 + (0.80 m)2





=





241 0 0
0 521 0
0 0 387



 (kg m
2
)

Body middle:

J =
600 kg

12





(1.30 m)2 + (1.50 m)2 0 0
0 (2.00 m)2 + (1.50 m)2 0
0 0 (2.00 m)2 + (1.30 m)2





=





197 0 0
0 313 0
0 0 285



 (kg m
2
)

Body rear:

J =
400 kg

12





(0.80 m)2 + (2.40 m)2 0 0
0 (2.00 m)2 + (2.40 m)2 0
0 0 (2.00 m)2 + (0.80 m)2





=





213 0 0
0 325 0
0 0 155



 (kg m
2
)

Each wheel:

J = (50 kg)





1
2 (0.35 m)2 0 0

0 1
12 (3(0.35 m)2 + (0.20 m)2) 0

0 0 1
12 (3(0.35 m)2 + (0.20 m)2)





=





3.06 0 0
0 1.70 0
0 0 1.70



 (kg m
2
)

(c) We apply the parallel axis theorem (Equation (12.31)) to each part. We must first
compute the position of each part relative to the center of mass of the truck, which
we denote as r′.
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Body front:

r
′

= (0, 1.00, 2.25) − (0, 1.01, 1.05) = (0,−0.01, 1.20)

J
′

=





241 0 0
0 521 0
0 0 387



 + 1000





(−0.01)2 + 1.202 −0 · (−0.01) −0 · 1.20
−0 · (−0.01) 02 + 1.202 −(−0.01) · 1.20
−0 · 1.20 −(−0.01) · 1.20 02 + (−0.01)2



 (kg m
2
)

=





1680 0 0
0 1960 12.0
0 12.0 387



 (kg m
2
)

Body middle:

r
′

= (0, 125, 75) − (0, 1.01, 1.05) = (0, 0.24,−0.30)

J
′

=





197 0 0
0 313 0
0 0 285



 + 600





0.242 + (−0.30)2 −0 · 0.24 −0 · (−0.30)
−0 · 0.24 02 + (−0.30)2 −0.24 · (−0.30)

−0 · (−0.30) −0.24 · (−0.30) 02 + 0.242



 (kg m
2
)

=





286 0 0
0 367 43.2
0 43.2 320



 (10
2
kg m

2
)

Body rear:

r
′

= (0, 1.00,−1.20) − (0, 1.01, 1.05) = (0,−0.01,−2.25)

J
′

=





213 0 0
0 325 0
0 0 155



 + 400





(−0.01)2 + (−2.25)2 −0 · (−0.01) −0 · (−2.25)
−0 · (−0.01) 02 + (−2.25)2 −(−0.01) · (−2.25)
−0 · (−2.25) −(−0.01) · (−2.25) 02 + 0.012



 (kg m
2
)

=





22.4 0 0
0 23.5 −0.09
0 −0.09 1.55



 (10
2
kg m

2
)

Front left wheel:

r
′

= (−1.00, 0.35, 2.30) − (0, 1.01, 1.05) = (−1.00,−0.66, 1.25)

J
′

=





3.06 0 0
0 1.70 0
0 0 1.70



 (kg m
2
)

+ 50





(−0.66)2 + 1.252 −(−1.00) · (−0.66) −(−1.00) · 1.25
−(−1.00) · (−0.66) (−1.00)2 + 1.252 −(−0.66) · 1.25
−(−1.00) · 1.25 −(−0.66) · 1.25 (−1.00)2 + (−0.66)2



 (kg m
2
)

=





103 −33.0 62.5
−33.0 130 41.3
62.5 41.3 73.5



 (kg m
2
)

Front right wheel:

r
′

= (1.00, 0.35, 2.30) − (0, 1.01, 1.05) = (1.00,−0.66, 1.25)

J
′

=





3.06 0 0
0 1.70 0
0 0 1.70



 (kg m
2
)

+ 50





(−0.66)2 + 1.252 −(1.00) · (−0.66) −(1.00) · 1.25
−(1.00) · (−0.66) (1.00)2 + 1.252 −(−0.66) · 1.25
−(1.00) · 1.25 −(−0.66) · 1.25 (1.00)2 + (−0.66)2



 (kg m
2
)

=





103 33.0 −62.5
33.0 130 41.3
−62.5 41.3 73.5



 (kg m
2
)
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Rear left wheel:

r
′

= (−1.00, 0.35,−1.50) − (0, 1.01, 1.05) = (−1.00,−0.66,−2.55)

J
′

=





3.06 0 0
0 1.70 0
0 0 1.70



 (kg m
2
)

+ 50





(−0.66)2 + (−2.55)2 −(−1.00) · (−0.66) −(−1.00) · (−2.55)
−(−1.00) · (−0.66) (−1.00)2 + (−2.55)2 −(−0.66) · (−2.55)
−(−1.00) · (−2.55) −(−0.66) · (−2.55) (−1.00)2 + (−0.66)2



 (kg m
2
)

=





350 −33.0 −128
−33.0 377 −84.2
−128 −84.2 73.5



 (kg m
2
)

Rear right wheel:

r
′

= (1.00, 0.35,−1.50) − (0, 1.01, 1.05) = (1.00,−0.66,−2.55)

J
′

=





3.06 0 0
0 1.70 0
0 0 1.70



 (kg m
2
)

+ 50





(−0.66)2 + (−2.55)2 −(1.00) · (−0.66) −(1.00) · (−2.55)
−(1.00) · (−0.66) (1.00)2 + (−2.55)2 −(−0.66) · (−2.55)
−(1.00) · (−2.55) −(−0.66) · (−2.55) (1.00)2 + (−0.66)2



 (kg m
2
)

=





350 33.0 128
33.0 377 −84.2
128 −84.2 73.5



 (kg m
2
)

Total:





5110 0 0
0 5690 −40
0 −40 1150



 (kg m
2
)

B.13 Chapter 13

(Page 711.)

1. ℓ1(t) =

(

t− t2
t1 − t2

)(

t− t3
t1 − t3

)

=

(

t− 1

0− 1

)(

t− 2

0− 2

)

= (t− 1)(t− 2)/2

= (t2 − 3t+ 2)/2

ℓ2(t) =

(

t− t1
t2 − t1

)(

t− t3
t2 − t3

)

=

(

t− 0

1− 0

)(

t− 2

1− 2

)

= −t(t− 2)

= −t2 + 2t

ℓ3(t) =

(

t− t1
t3 − t1

)(

t− t2
t3 − t2

)

=

(

t− 0

2− 0

)(

t− 1

2− 1

)

= t(t− 1)/2

= (t2 − t)/2
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2. We can solve this exercise several ways, but since this is a chapter on curves, we wanted
you to use the polynomial interpolation techniques from Section 13.2 to fit a parabola
through the “control points” given in the problem. Those control points just happen to
share the knot sequence from the previous exercise, and we were hoping you would take
advantage of that work. The math starts by multiplying each Lagrange basis polynomial
by the corresponding control point.

p(t) = p1ℓ1(t) + p2ℓ2(t) + p3ℓ3(t)

=

[

0
0

]

(t2 − 3t+ 2)/2 +

[

d/2
h

]

(−t2 + 2t) +

[

d
0

]

(t2 − t)/2

=

[

d/2
h

]

(−t2 + 2t) +

[

d
0

]

(t2 − t)/2

=

[

−d/2
−h

]

t2 +

[

d
2h

]

t+

[

d/2
0

]

t2 +

[

−d/2
0

]

t

=

[

0
−h

]

t2 +

[

d/2
2h

]

t

3. (a) Starting with t = 0.4. The first round of interpolation:

b1
0 = 0.60b0

0 + 0.40b0
1 = 0.60 · (3, 5) + 0.40 · (6, 1) = (4.20, 3.40)

b1
1 = 0.60b0

1 + 0.40b0
2 = 0.60 · (6, 1) + 0.40 · (0, 3) = (3.60, 1.80)

b1
2 = 0.60b0

2 + 0.40b0
3 = 0.60 · (0, 3) + 0.40 · (5, 5) = (2.00, 3.80)

Round two:

b2
0 = 0.60b1

0 + 0.40b1
1 = 0.60 · (4.20, 3.40) + 0.40 · (3.60, 1.80) = (3.96, 2.76)

b2
1 = 0.60b1

1 + 0.40b1
2 = 0.60 · (3.60, 1.80) + 0.40 · (2.00, 3.80) = (2.96, 2.60)

And the final round:

b3
0 = 0.60b2

0 + 0.40b2
1 = 0.60 · (3.96, 2.76) + 0.40 · (2.96, 2.60) = (3.56, 2.70)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-17&iName=master.img-004.jpg&w=138&h=111
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(b) Applying Equations (13.32)–(13.35):

p0 = b0 = (3, 5)

v0 = 3(b1 − b0) = 3[(6, 1)− (3, 5)] = [9,−12]
v1 = 3(b3 − b2) = 3[(5, 5)− (0, 3)] = [15, 6]

p1 = b3 = (5, 5)

(c) Using Equation (13.19):

p(t) = b0 + t(3b1 − 3b0) + t2(3b0 − 6b1 + 3b2) + t3(−b0 + 3b1 − 3b2 + b3)

=

[

3
5

]

+ t

(

3

[

6
1

]

− 3

[

3
5

])

+ t2
(

3

[

3
5

]

− 6

[

6
1

]

+ 3

[

0
3

])

+ t3
(

−
[

3
5

]

+ 3

[

6
1

]

− 3

[

0
3

]

+

[

5
5

])

=

[

3
5

]

+ t

[

9
−12

]

+ t2
[

−27
18

]

+ t3
[

20
−6

]

(d) p(t) =

[

3
5

]

+ 0.40

[

9
−12

]

+ 0.402
[

−27
18

]

+ 0.403
[

20
−6

]

=

[

3.00
5.00

]

+

[

3.60
−4.80

]

+

[

−4.32
2.88

]

+

[

1.28
−0.38

]

=

[

3.56
2.70

]

(e) Using Equation (13.5):

v(t) = c1 + 2c2t+ 3c3t
2 =

[

9
−12

]

+ 2t

[

−27
18

]

+ 3t2
[

20
−6

]

=

[

9
−12

]

+ t

[

−54
36

]

+ t2
[

60
−18

]

(f) v(0.40) =

[

9
−12

]

+0.40

[

−54
36

]

+0.402
[

60
−18

]

=

[

9
−12

]

+

[

−21.6
14.4

]

+

[

9.60
−2.88

]

=

[

−3.00
−0.48

]

v(0.00) =

[

9
−12

]

+ 0.00

[

−54
36

]

+ 0.002
[

60
−18

]

=

[

9.00
−12.00

]

v(1.00) =

[

9
−12

]

+ 1.00

[

−54
36

]

+ 1.002
[

60
−18

]

=

[

15.00
6.00

]

4. 1 = B2
0(t) +B2

1(t) +B2
2(t)

= (1− t)2 + 2(1− t)t+ t2

= (1− 2t+ t2) + (2t− 2t2) + t2

= 1

5. All four control points should be in the same place.
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6. It’s obvious that b0 is the starting point of the line, and b3 is the ending point, but what
to do with the interior points b1 and b2 is not quite as obvious. One way to solve it is to
write out the equation of the ray in monomial form.

p(t) = p0 + (p1 − p0)t

Now, if we extract the monomial coefficients

c0 = p0,

c1 = p1 − p0,

c2 = 0,

c3 = 0,

we can use Equations (13.20)–(13.23) to convert to Bézier form:

b0 = c0 = p0

b1 = c0 + (1/3)c1 = p0 + (1/3)(p1 − p0)
b2 = c0 + (2/3)c1 + (1/3)c2 = p0 + (2/3)(p1 − p0)
b3 = c0 + c1 + c2 + c3 = p0 + (p1 − p0) = p1

Note that b0 and b3 are mapped to the endpoints, as expected. To achieve a constant
velocity, we divide the ray into thirds and place the two intermediate points at the division
between these thirds.

This makes sense when you think about what a constant velocity curve looks like in Hermite
form. The difference vector p1 − p0 must be traversed over the unit time interval, so the
desired velocity vectors v0 and v1 are both equal to this difference vector. Recalling the
relationship between the Bézier control points and the Hermite vectors (Equations (13.32)–
(13.35)) leads us to the same conclusion obtained above.

It also makes sense when you think about the Bernstein basis. Remember that each basis
function Bn

i (t) has one local maximum at t = i/n where the corresponding control point
bi exerts the most influence over the curve.

7. We hope you were able to get this one just by thinking about it. We know that the starting
and ending velocities of the curve are zero, and so in Hermite form the vectors v0 and v1

are zero. Since the interior Bézier control points are offset from the endpoints by one-third
of the velocity, that means the second control point must be the same as the first, and the
third control point should be the same as the last:

b1 = b0 + (1/3)v0 = b0 + (1/3)0 = b0,

b2 = b3 − (1/3)v1 = b3 − (1/3)0 = b3.

8. To solve this one, let’s convert to Hermite form and examine the starting and ending
velocities:

v0 = 3(b1 − b0) = 3(b3 − b0),

v1 = 3(b3 − b2) = 3(b3 − b0).

We know from Exercise 6 that if the interior points are distributed equally, dividing the
interval into thirds, then the resulting curve has a constant velocity. But now, the interior
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control points are farther away from their neighboring endpoint than one-third of the total
interval; the distance is equal to the total interval length. So the starting and ending
velocities are three times as fast. This means we are starting off “too fast” and will have
to slow down in the middle somewhere, and then accelerate back up to the high velocity
at the end. How slow do we have to go? Let’s plot the curve to see.

Here the control points are spaced evenly on the x-axis, and so it moves at constant
horizontal velocity. The y-coordinates are distributed according to the description for this
exercise, and as you can see, the initial vertical velocity is large, it slows down to a minimum
at t = 1/2, and then accelerates to a high final velocity. Judging from the diagram, the
slope is horizontal at the midpoint t = 1/2, which means that the vertical velocity is zero.

9. We can solve this algebraically. First, we need to convert our answer from Exercise 2 into a
curve in monomial form with a normalized parameter. Remember that the curve is traced
out as t varies from 0 to 2, but all of our curves have been using an argument that varies
from 0 to 1. So we’ll set s = t/2 and come up with a new curve in terms of s:

p(t) =

[

0
−h

]

t2 +

[

d/2
2h

]

t,

p(s) =

[

0
−h

]

(2s)2 +

[

d/2
2h

]

(2s),

=

[

0
−4h

]

s2 +

[

d
4h

]

s.

Writing out the monomial coefficients, we get

c0 = 0, c1 =

[

d
4h

]

, c2 =

[

0
−4h

]

, c3 = 0.

Now we can convert to Bézier form by using Equations (13.20)–(13.23):

b0 = c0 = 0,

b1 = c0 + (1/3)c1 = (1/3)

[

d
4h

]

=

[

d/3
4h/3

]

,

b2 = c0 + (2/3)c1 + (1/3)c2

= (2/3)

[

d
4h

]

+ (1/3)

[

0
−4h

]

=

[

2d/3
8h/3

]

+

[

0
−4h/3

]

=

[

2d/3
4h/3

]

,

b3 = c0 + c1 + c2 + c3 =

[

d
4h

]

+

[

0
−4h

]

=

[

d
0

]

.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11152-17&iName=master.img-005.jpg&w=142&h=106
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10. Our first task is to convert the curve from functional the form y = f(x) into parametric
form (x(t), y(t)). We will assume that x is a linear function of t, so we solve x(t) = mt+ b
given x(0) = −0.9683 and x(1) = 4.2253. This gives us x(t) = 5.1936t − 0.9683. The x-
coordinates of the Bézier control points are easily determined using the results of Exercise 6.
We chose x to be a linear function of t because we assumed it had constant horizontal
velocity, so the x-coordinates of the control points are spaced evenly at t = 1/3 and
t = 2/3. Summarizing all four control points, we have

x0 = x(0) = −0.968,
x1 = x(1/3) = 5.1936(1/3)− 0.9683 = 0.763,

x2 = x(2/3) = 5.1936(2/3)− 0.9683 = 2.494,

x3 = x(1) = 4.225.

The x-coordinates were trivial in this problem; all the real work was in the y-coordinates.
Plugging x(t) into our functional form, we have

y = −0.364x2 + 1.145x+ 2.110

= −0.364(5.1936t− 0.9683)2 + 1.145(5.1936t− 0.9683) + 2.110

= −9.818t2 + 9.608t+ 0.660,

which is a perfectly valid 1D cubic curve in monomial form. We convert this to Bézier form
by using Equations (13.20)–(13.23):

y0 = c0 = 0.660,

y1 = c0 + (1/3)c1 = 0.660 + (1/3)(9.608) = 3.863,

y2 = c0 + (2/3)c1 + (1/3)c2 = 0.660 + (2/3)(9.608) + (1/3)(−9.818) = 3.793,

y3 = c0 + c1 + c2 + c3 = 0.660 + 9.608 + (−9.818) + 0 = 0.450.

Notice that the two middle y-coordinates are nearly equal, since the starting and ending
points we have chosen make our parabola slightly asymmetric.

Putting all this together, our four Bézier control points are

b0 = (−0.968, 0.660), b1 = (0.763, 3.863), b2 = (2.494, 3.793), b3 = (4.225, 0.450).

11. (a) For the first control point, we do regular de Casteljau using 0.2 for each round.

b1
0 = 0.80b0

0 + 0.20b0
1 = 0.80 · (3, 5) + 0.20 · (6, 1) = (3.60, 4.20)

b1
1 = 0.80b0

1 + 0.20b0
2 = 0.80 · (6, 1) + 0.20 · (0, 3) = (4.80, 1.40)

b1
2 = 0.80b0

2 + 0.20b0
3 = 0.80 · (0, 3) + 0.20 · (5, 5) = (1.00, 3.40)

b2
0 = 0.80b1

0 + 0.20b1
1 = 0.80 · (3.60, 4.20) + 0.20 · (4.80, 1.40) = (3.84, 3.64)

b2
1 = 0.80b1

1 + 0.20b1
2 = 0.80 · (4.80, 1.40) + 0.20 · (1.00, 3.40) = (4.04, 1.80)

b′
0 = 0.80b2

0 + 0.20b2
1 = 0.80 · (3.84, 3.64) + 0.20 · (4.04, 1.80) = (3.88, 3.27)
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For the second control point, we do the last round using the fraction 0.5.

b2
0 = (3.84, 3.64)

b2
1 = (4.04, 1.80)

b′
1 = 0.50b2

0 + 0.50b2
1 = 0.50 · (3.84, 3.64) + 0.50 · (4.04, 1.80) = (3.94, 2.72)

For the third control point, we do the last two rounds using the fraction 0.5.

b1
0 = (3.60, 4.20)

b1
1 = (4.80, 1.40)

b1
2 = (1.00, 3.40)

b2
0 = 0.50b1

0 + 0.50b1
1 = 0.50 · (3.60, 4.20) + 0.50 · (4.80, 1.40) = (4.20, 2.80)

b2
1 = 0.50b1

1 + 0.50b1
2 = 0.50 · (4.80, 1.40) + 0.50 · (1.00, 3.40) = (2.90, 2.40)

b′
2 = 0.50b2

0 + 0.50b2
1 = 0.50 · (4.20, 2.80) + 0.50 · (2.90, 2.40) = (3.55, 2.60)

For the final control point, we do all the rounds using 0.5 as the fraction.

b1
0 = 0.50b0

0 + 0.50b0
1 = 0.50 · (3, 5) + 0.50 · (6, 1) = (4.50, 3.00)

b1
1 = 0.50b0

1 + 0.50b0
2 = 0.50 · (6, 1) + 0.50 · (0, 3) = (3.00, 2.00)

b1
2 = 0.50b0

2 + 0.50b0
3 = 0.50 · (0, 3) + 0.50 · (5, 5) = (2.50, 4.00)

b2
0 = 0.50b1

0 + 0.50b1
1 = 0.50 · (4.50, 3.00) + 0.50 · (3.00, 2.00) = (3.75, 2.50)

b2
1 = 0.50b1

1 + 0.50b1
2 = 0.50 · (3.00, 2.00) + 0.50 · (2.50, 4.00) = (2.75, 3.00)

b′
3 = 0.50b2

0 + 0.50b2
1 = 0.50 · (3.75, 2.50) + 0.50 · (2.75, 3.00) = (3.25, 2.75)

(b) q0 = b0 = (3.0, 5.0)

q1 = b0/2 + b1/2 = (3, 5)/2 + (6, 1)/2 = (4.5, 3.0)

q2 = b0/4 + b1/2 + b2/4 = (3, 5)/4 + (6, 1)/2 + (0, 3)/4 = (3.75, 2.5)

q3 = r0 = b0/8 + 3b1/8 + 3b2/8 + b3/8
= (3, 5)/8 + 3 · (6, 1)/8 + 3 · (0, 3)/8 + (5, 5)/8 = (3.25, 2.75)

r1 = b1/4 + b2/2 + b3/4 = (6, 1)/4 + (0, 3)/2 + (5, 5)/4 = (2.75, 3.0)

r2 = b2/2 + b3/2 = (0, 3)/2 + (5, 5)/2 = (2.5, 4.0)

r3 = b3 = (5.0, 5.0)

(c) Using Equation (13.38) with n = 3:

b′
0 =

0

4
b−1 +

(

1− 0

4

)

b0 = 0

[

?
?

]

+ 1

[

3
5

]

=

[

3.00
5.00

]

b′
1 =

1

4
b0 +

(

1− 1

4

)

b1 =
1

4

[

3
5

]

+
3

4

[

6
1

]

=

[

5.25
2.00

]
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b′
2 =

2

4
b1 +

(

1− 2

4

)

b2 =
1

2

[

6
1

]

+
1

2

[

0
3

]

=

[

3.00
2.00

]

b′
3 =

3

4
b2 +

(

1− 3

4

)

b3 =
3

4

[

0
3

]

+
1

4

[

5
5

]

=

[

1.25
3.50

]

b′
4 =

4

4
b3 +

(

1− 4

4

)

b4 = 1

[

5
5

]

+ 0

[

?
?

]

=

[

5.00
5.00

]

B.14 Chapter 14
(Page 715.)

If only it were that easy!

For every complex problem
there is an answer that is clear, simple, and

wrong.

— H. L. Mencken
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3DS Max , 393, 414, 691
conventions, 28

AABB, 304–311
closest point, 720
computing, 306
intersection with plane, 725
intersection with sphere, 731
representing, 305
transforming, 308–311
vs. bounding sphere, 307

absolute measurements, 41
absolute position, 39
acceleration, 513–530

angular, see angular acceleration
constant, 516–530
derivative, 516
due to gravity, 564
is due to force, 555
of curve, 651

active transformation, 94, 137
Adams, Douglass, xiii
addition

of vectors, see vector, addition
additive identity, 38
additive inverse, 43
addressing mode (texture mapping), 395
adjacent triangle leg, 23
adjoint, see classical adjoint
Adobe Photoshop, see Photoshop

advertising, 88, 363
aerospace

conventions, 28
terminology, 234

affine transformation, 91, 137, 156, 181
airplane security, 75
Airplane!, 77
Aitken’s algorithm, 656–659, 670, 711
Aitken, Alexander, 656
Aldrin, Buzz, 745
algorithm as definition, 335
aliasing

of Euler angles, 237
of exponential map, 245
of polar coordinates, 194–198
of quaternion, 249
of spherical coordinates, 207–210

alpha blending, 441, 456
alpha test, 441, 456
altitude, 205
altitude of triangle, 318
Alvarado, Texas, 201
ambient light, 398, 406
amplitude, 574
analysis, 494
anamorphic stretching, 364, 367
angle

in standard position, 22
measuring in 2D, 21
measuring in 3D with dot product,

65
units, 21

angle-preserving transformation, 157
angular acceleration, 604, 609, 613
angular displacement, 218
angular frequency, 544, 574

undamped, 577
angular impulse, 610
angular momentum, 608, 610, 613–615

in 3D, 615
spin vs. orbital, 615

angular velocity, 241, 604
and exponential map, 245, 548
integration of, 636
spin, see spin angular velocity
spin vs. orbital, 604, 615
vs. linear velocity, 548

Animal Farm, 81
anisotropic reflection, 410
anticommutative

cross product, 67
antiderivative, 535
apex, 523, 527
Arcesilaus, 70
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Archimedes, 81
area

and integral, 518, 530, 534
measuring with cross product, 67
of circle, 304
of parallelogram, 67, 318
of triangle, 318

Aristarchus, 80
Aristotelian dynamics, 555
Aristotle, 80
array

compared to vector, 32
array of structures (AOS), 449
articulated model, 107
aspect ratio

of display device, 363
of pixel, see pixel, aspect ratio
of render window, 367

associative
cross product isn’t, 67
dot product is, 59
matrix multiplication is, 120
quaternion multiplication is, 252
vector laws, 70

astronomical unit, 483
atan2, 200, 212, 279
atlas, 423
attenuation, light, see light attenuation
attitude, 220, 232
authors, xvii

ignorance, 247
fallibility, xx
ignorance, 483, 621, 639
laziness, 491, 659, 695, 696
stunt, 479

Autodesk 3DS Max , see 3DS Max

average velocity, 486–490
axis

of coordinate space, 7
of rotation, 16, 139, 546, 589, 604
z, 13

axis-angle (orientation), 244–246, see also

exponential map
azimuth, 205, 232

Babylonians, 21
back buffer, 445
backface culling, 440, 453–455
ball-and-socket joint, 626
bank, 218, 229
barycentric coordinates

Bernstein basis, 675, 679
calculating, 324–329
conversion to Cartesian, 323

degrees of freedom, 321, 322
Hermite basis, 668
intro using triangles, 321
normalization constraint, 321
polynomial interpolation, 664
ray-triangle intersection, 737
use in interpolation, 324

base of triangle, 318
basis polynomial, 660

Hermite, see Hermite basis
Lagrange, see Lagrange polynomials
vs. basis vector, 662

basis vectors
define coordinate frame, 97–106
for bump mapping, 100, 432–438
orthogonal, 105
orthonormal, 105
rank of, 102
span of, 101
transformation of, 125
vs. basis polynomials, 662

bear
developer-eating, 215

Bernstein basis, 675, 677–682
best fit plane, 314
Bézier curve, 670–685

and Hermite form, 683
degree elevation, 690
subdivision, 688–690

Bézier spline, 694–697
Bézier, Pierre, 670
bias (TCB spline), 710
billboard, 390
binding pose, 428
binomial coefficients, 678
binormal vector, 100, 433
bitmap, 345
Blinn specular model, 402–404
Blinn-Phong, 352, 396–411

equation, 407
Gouraud shading, 412
HLSL example, 459
limitations, 409–411
multiple lights, 408

blossoming, 690
body space, see object space
bogey, 201
bone, see skeletal animation
bone space, 429
bounding box, 303–311

axially aligned, see AABB
oriented, see OBB
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bounding sphere, 303
calculating, 307
vs. AABB, 307

BRDF, 350–353, 396
accounting for color, 351
accounting for shininess, 351
Blinn-Phong, see Blinn-Phong
diffuse reflector, 406
in the rendering equation, 360
normalization constraint, 352

Broom Bridge, 267
buffer (rendering), 444
bugs, xx
Bullet Physics, 621, 639
bump mapping, 431–438, see also normal

mapping
computing basis vectors, 435–438
HLSL example, 469
mirrored texture maps, 437
tangent space, 432–435
vertex format, 448

Burleson, Texas, 201

Cn continuity, see parametric continuity
calculus

derivative, see derivative
integral, see integral
prior knowledge of, xviii
what’s left out, 480

Calvin and Hobbes, xxi
Cambridge, MA, 83
camera space, 83–84, 370, 451
canonical coordinates

Euler angles, 238
polar, 196
spherical, 208

canonical view volume, 371
Captain Oveur, 77
Car Talk, 83
Cardinal spline, 711
Cartesia, city of, 6, 80, 82
Cartesian coordinates

2D, 5–11
3D, 12–19

Catmull, Edwin, 704
Catmull-Rom spline, 703–705
Cayley-Klein parameters, 236
Celsius, 41
center of gravity, 586, see also center of

mass
of triangle, 330

center of mass, 586–589
calculating, 587

measuring experimentally, 586
of dynamics body, 623

center of mass coordinates, 86, 636
center of projection, 183
centigrade, 41
centrifugal force, 546

Earth’s rotation, 564
centripetal acceleration, 544, 551

gravity, 564
centroid, of triangle, 330
Cg (shading language), 457
chain rule (differentiation), 511–513
Chebyshev norm, 74
Chicago, IL, 81
circle, 303–304

closest point, 719
inscribed in triangle, 330
through three points, 332
unit circle, see unit circle

circular motion, 542–549
2D, 542–546
3D, 546–549

circumcenter of triangle, 331
circumference, 304
circumradius of triangle, 332
Citroen, 671
clamp addressing mode, 395, 421
classical adjoint, 169
classical dynamics, see Newtonian

dynamics
clip matrix, 189, 371–378

projection, 371–378
zoom, 375–378

clip plane
view frustum, 364

clip space, 93, 371–378, 440, 451
clipping, 440, 451–453
closed intervals, see interval notation
closest point

on AABB, 720
on circle, 719
on line, 717
on plane, 719
on ray, 718

closest point tests, 717–720
coefficient of friction, 567
coefficient of restitution, 597, 618
cofactor, 164
collision, 590–601

elastic, see elastic collision
elastic vs. inelastic, 591
inelastic, see inelastic collision

collision detection, 563, 594, 627
collision geometry, 623, 625
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collision law, see Newton’s collision law
collision response, 563, 593–601, 618–621
color, 353–354
color blindness, 353
Columbus, Christopher, 82, 216
commutative

cross product isn’t, 67
matrix multiplication isn’t, 120
quaternion multiplication isn’t, 252
vector laws, 70

complex exponentials, 551
complex number

basic laws, 265
in exponent, 551
quaternion, 264

complex polygon, 333
compound interest, 511
concatenation

of exponential map rotations, 246
of quaternion rotations, 253
of rotation matrices, 226
of transformations, 153

concave polygon, 334
condition number, 169
conic section, 295
conical joint, 626
conical spot light, 415
conjugate

of complex number, 266
of quaternion, 250

conservation of momentum, 584–585
angular, 614
in collision, 591, 596

constant color, 458
constant curve, 650
constant rule (differentiation), 504
constraint (physics), 625–627
constraint force mixing (CFM), 627
constructive solid geometry (CSG), 381
contact constraint, 626, 627
contact force, 563, 607, see also normal

force
continuity (spline), 697–702

geometric, see geometric continuity
parametric, see parametric

continuity
continuity (TCB spline), 707
continuous vs. discrete, 3, 481
contravariant vector, 391
control point (curve)

vs. knot, 654, 670
control system

first-order, 580
second-order, 578

convex hull, 664, 680
convex polygon, 334
cookie, 416
coordinate space

axes, 7
bone, see bone space
camera, see camera space
clip, see clip space
commonly used, 81–86
defined by basis vectors, 97–106
establishing, 7
handedness, see handedness
hierarchy, 106–108
left- vs. right-handed, see

handedness
obect, see object space
origin, 7
screen, see screen space
specifying, 96–97
tangent, see tangent space
transformation, see transformation
upright, see upright space
used in graphics, 369–381
why multiple, 80–81
world, see world space

coordinates
Cartesian, see Cartesian coordinates
polar, see polar coordinates

Copernicus, Nicolaus, 80, 191
cosecant, 23
cosine

definition using unit circle, 22
derivative, 510
related to dot product, 64
Taylor series, 508

cotangent (trigonometric function), 23
Coulomb friction, see friction
Coulomb’s law of friction, 570
Coulomb, Charles-Augustin, 567
counting numbers, see numbers, natural
couple, 610
covariant vector, 391
critical damping, 578
cross product, 66–70

angular velocity, 547
area of triangle, 321
formula, 66
hand rule, 69
magnitude related to area, 67
quaternion, 251

CRT, 346
crunch time, 215
cubic mapping, 393
cubic polynomial curve, 648
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cucoloris, 416
culling, see backface culling
curvature, 653
curve fitting, see polynomial interpolation
cylindrical coordinates, 203–204
cylindrical mapping, 393

Dallas, Texas, 201
damped oscillation, 576

critically damped, 578
overdamped, 578
underdamped, 577

damping, 566, 576
damping ratio, 577
da Vinci, Leonardo , 10
de Casteljau algorithm, 671–676

subdivision, 688–690
de Casteljau, Paul, 671
de La Rochefoucauld, Francois, xiii
decal shading, 457
decibels, 42
declination, 207
deferred rendering, 348
definite integral, 530

and antiderivative, 536
vs. indefinite integral, 539

degree elevation, 690
degree of polynomial, 647
degrees, 194

converting to radians, 22
Denton, TX, 81
depth buffer, 347, 441, 445

values in, 365, 377, 379
depth test, 441, 456
derivative, 490, 494

and integral, 535
definition, 498
examples, 496–497
graph of, 500
laws, 504–508
notation, 503–504
of acceleration, 516
of altitude, 496
of Bézier curve, 682–685
of composite function, 512
of constant, 504
of exponential function, 511
of Hermite curve, 665
of monomial curve, 651
of polynomial, 506–507
of position, 495
of rotating frame, 637
of sine and cosine, 510

of sum, 505
of velocity, 513

derived quantities, 484
Descartes, René, 1, 207, 490
destination fragment, 348
detaching faces, 390
determinant, 161–168, 268

2× 2, 162
3× 3, 163
4× 4, 165
arbitrary size, 164
geometric interpretation, 167
identities, 165

diagonal matrix, 115
diameter, 304
differential equation, 572

second-order, 577
diffuse color, 405, 439
diffuse map, 412, 439
diffuse reflection, 398, 404–407, see also

Lambert’s law
BRDF, 406

dimensional analysis, 486, 581
diminishing returns, 497
Dirac delta, 358, 416, 601–602
Dire Straits, 425
direction cosines matrix, 224–225
direction vs. orientation, 218
directional light, 416
DirectX, 124, 343, 396, 409, 414, 475

clip matrix, 375
screen space conventions, 378
UV conventions, 393

discrete vs. continuous, 3, 481
displacement

in particular direction, 62
is a vector quantity, 35
vs. distance, 35, 488

displacment
between points, 50

display device
aspect ratio, 363
resolutions, 363
RGB color space, 354
widescreen, 363

distance
between point and plane, 316
between two points, 55
is a scalar quantity, 35
signed, see signed distance
vs. displacement, 35

divide and conquer, 656, 660
Doctor Who, xv
Doom 3 engine, 418
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Doom-style light, see volumetric light
dot notation, 504
dot product, 56–66, 104

and magnitude formula, 62
as projection, 58
formula, 57
matrix notation, 57
polygon convexity test, 335
quaternion, 255
related to cosine, 64
sign of, 65

double, 4
double angle identities (trig), 26
double buffering, 445
driving force, 575, 579
dry friction, see friction
dual vector, 392
Dunn, Riley, xiii
dynamic intersection test, 721
dynamics, 479–551

vs. kinematics, 483
dynamics body, 622–625
Dyslexia, city of, 80

Eagles, 531
earmuffs, 589
edge of triangle mesh, 382
edge vector (triangle), 317
eggrolls, 481
Einstein, Albert, 190
elastic collision, 591
elastic limit, 571
elevation, 232
Elmo’s World, 96
Emerson, Ralph Waldo, 643
emissive surface, 350, 398, 407
energy, 480, 532

radiant, see radient energy
engineer vs. mathematician, 502
errata, xx
error (control system), 579
error reduction parameter (ERP), 627
Euclidian norm, 74
Euler angles, 206, 229–243

advantages, 236–237
aliasing, 237
and spherical coordinates, 232
canonical set, 238, 278
conventions, 232–236
converting to matrix, 275–278
converting to quaternion, 287–288
definition, 229
disadvantages, 237–242
from matrix, 278–281

from quaternion, 288–291
interpolating, 239–242
joint, 626
proper, 235
symmetric, 235
vs. fixed-axis, 233

Euler axis, 246
Euler integration, 557, 579, 632–639
Euler’s formula, 551, 784
Euler’s identity, 784
Euler’s rotation theorem, 244, 245, 255
Euler, Leonard, 229, 244
exponential function

derivative, 511
quaternion, 256
Taylor series, 510

exponential map, 244–246, 548
aliasing, 245
and angular velocity, 245
and quaternion logarithm, 256
vector addition, 246

exponentiation of quaternion, 257
exterior angle at polygon vertex, 335
extrinsic rotations, 233
eye space, see camera space

fable, 486
face of triangle mesh, 382
factorial (!), 509, 679
Fahrenheit, Gabriel, 41
fake spot light, 421
falloff angle (spot light), 415
falloff distance, see light attenuation,

linear
falloff map, 419
falloff radius, see light attenuation, linear
fanning of polygon, 338
far clip plane, 364
Feldman, Michael, 30
Fermat, Pierre, 490
Ferris Bueller’s Day Off , 537
The Feynman Lectures on Physics, 551
Feynman, Richard, 551
field of view, 365–368, 374, see also zoom

orthographic projection, 368
fighter pilot, 201
filter, 581
first law of computer graphics, 5
first law of video game physics, 565
first-order control system (lag), 580
fixed-axis rotations, 233, 276, 287
fixed-function pipeline, 414, 416, 422, 450
“fixin’ ”, 201
flat shading, 411
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float, 4
floating point numbers, 4
flux density, 355
focal distance, see focal length
focal length, 372
footnotes, xvii, 486
force, 554, see also Newton’s laws

acts on two bodies, 560
acts over time, 556
and torque, 610
causes acceleration, 555
derivative of momentum, 583
friction, see friction
gravity, see gravity
impulsive, see impulse
spring, see spring
units, 556

fortnight, 483
forward rendering, 348, 456
Foucault’s pendulum, 560
fractions, 196
frame buffer, 345, 441, 444
Fred Brooks, 621, 627
free fall, 516, 527
free-body diagram, 557
frequency, 484

of harmonic oscillator, 574, 575
of light, 353

Fresnel reflectance, 410
friction, 567–571

common sense, 555
damping, 576
kinetic, 567, 570
static, 567

front buffer, 445
frustum, see view frustum
fun vs. realism, 566
function, 494
functional form (curve), 647
fundamental theorem of calculus, 536–540
furlong, 491

G (gravitational constant), 564
G-buffer, 348
Galapagos Islands, 589
Galen, 41
Galileo, 43
game loop, 628
Gauss, Karl Friedrich, 29
Gaussian elimination, 170, 660
geocentric universe, 80
geometric continuity, 700–701
geometric optics, 346
Gimbal lock, 206, 208, 238, 241, 247, 280

global illumination, 361
global parameter (curve), 692
global space, see world space
global support, 680, 691
gloss map, 401
glossiness, see specular exponent
GLSL, 457
gobo, 381, 401, 416, 419
goniophotometer, 353
Gouraud shading, 387, 411–413, 451

Blinn-Phong, 412
HLSL example, 466

Gram-Schmidt orthogonalization, 175, see
orthogonalizing a matrix

graphics pipeline, see real-time rendering
pipeline

gravitational constant, 564
gravity, 484, 516, 527, 546, 563–567

fiddling with, 565
on Earth, 564
universal, 563
video game, 564

Greenwich, England, 82
grid lines, 11, 193, 215
guard band, 452

h vector (lighting), see halfway vector
half Lambert, 408
half-open intervals, see interval notation
halfway vector, 403, 450
Hamilton product, 252
Hamilton, William, 267
Hamlet , 828
handedness, 15–18

axis of rotation, 139, 547, 604
cross product, 69
polar coordinates, 204, 229

happiness vs. salary, 497
hare, see tortoise and hare
harmonic oscillator, 573, see also spring

damped, see damped oscillation
frequency, 574, 575
kinematics equations, 575

Havok, 621
head of vector, 35
heading, 207, 229

vs. yaw, 234
heading-pitch-bank, 229
Hedberg, Mitch, 294
height map, 431
height of triangle, 318
Heisenberg, 482
heliocentric universe, 80
Helmholtz reciprocity, 352



814 Index

Hermite basis, 668
Hermite curve, 665–670

and Bézier curve, 683
Hermite spline, 694–697
Hermite, Charles, 665
Heron’s formula, 318
herring sandwich, xiii, 86, 425, 558

microwavable, 88
projectile, 711

Hertz (Hz), 485
hierarchy of coordinate spaces, 106–108
hinge joint, 626
Hitchhiker’s Guide to the Galaxy, xiii
hither clip plane, see near clip plane
HLSL, 343

examples, 457–474
vs. Cg and GLSL, 457

hole (polygon), 333
Holmes, Oliver Wendell, 136, 161
home pose, 428
homogenous coordinates, 176–183

used by clip matrix, 371
Hooke’s law, 571
Horatio, 828
hotspot (specular), 400
hotspot falloff (spot light), 418
human vs. mathematician, 21
Hutchins, Robert Maynard, 343
hypersphere, 260
hypotenuse, 23

id Tech 4 , 418
id Tech 5 , 432
ideal gas law, 496
identities

trigonometry, see trigonometry,
identities

vector algebra, 70
identity matrix, 116
identity quaternion, 249
ignorance, of authors, see authors,

ignorance
ill conditioned matrix, 169
ill-formed matrix, 227, 278
imaginary number, see complex number
implicit form, 295

2D line, 300
circle and sphere, 303
curve, 647
plane, see plane equation

impulse, 502, 590
angular, see angular impulse
in collision response, 595

impulsive force, see impulse

impulsive torque, see angular impulse
incenter of triangle, 330
indefinite integral

as antiderivative, 539
vs. definite integral, 539

indexed triangle mesh, 382–386, see also

triangle mesh
inelastic collision, 591–593
inertia, 484, 554
inertia tensor, 616–618, see also moment

of inertia
of dynamics body, 622

inertial reference frame, 558
inertial space, 86
infinitesimal, 498
infinitesimal rotation, 246
infinity norm, 74
inner product, see dot product
instantaneous velocity, 490–503

approximating, 491
definition, 494
tangent line, 492

int, 4
integers, 3
integral, 530–540

and area, 518, 530, 534
antiderivative, 535
definite, see definite integral
definite vs. indefinite, 539
definition, 531
examples, 532
indefinite, see indefinite integral

integral equation, 361
integrand, 531
integration

Euler, see Euler integration
numerical, see numerical integration
of rotation, 636
physics simulation, 632

integration by parts, 535
intensity of light, see radiometry
interior angle

at polygon vertex, 335
at triangle vertex, 317

International Space Station, 551, 640
Internet, assumed availability of, 486, 551,

617
interpolation

of Euler angles, 239–242
of exponential map, 245
of lighting values, 411
of quaternions, see slerp
of texture mapping coordinates, 394
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of vertex normals, see per-pixel
shading

polynomial, see polynomial
interpolation

rasterization, 456
using barycentric coordinates, 324

intersection
of AABB and plane, 725
of AABB and sphere, 731
of plane and sphere, 732
of ray and plane, 724
of ray and sphere, 727
of ray and triangle, 734
of three planes, 726
of two 2D lines, 721
of two 3D rays, 722
of two spheres, 729

intersection test, 717, 720–743
static vs. dynamic, 721

interval notation, 20–21
intrinsic rotations, 233
inverse of matrix, 168–171, 226

definition and identities, 169–171
geometric interpretation, 171

inverse of quaternion, 251
inverse transpose of matrix, 392
invertible matrix, 168
invertible transformation, 156
irradiance, 355
isotropic reflection, 410

Jacobian matrix, 631
Jell-O, 194
jerk, 516
job interview

AABB intersection, 737
BRDF vectors, 399
projectile motion, 521
vector reflection, 400

joint (physics), 622, 625–627
jokes

in footnotes, xvii
take up space, 486
that aren’t funny, xv

joule (J), 354, 532
vs. Newton meter, 609

jumping (game mechanic), 565

Kelvin, 42
key (spline), 693
kinematically controlled object, 598, 623
kinematics, 486–491, 513–530

circular motion, 542–549
of harmonic oscillator, 572–578

projectile motion, 516–530
rotational, 603–606
vs. dynamics, 483

kinetic friction, see friction, kinetic
knot, 693–694

vs. control point, 654, 670
knot vector, 654, 660, 662
Knuth, Donald, 84
Kochanek-Bartels spline, see TCB spline

l vector (lighting), 399, 450
La Grange (song), 661
La Grange, TX, 661
lag (control system), 580
Lagrange basis, 659–664, 670
Lagrange’s notation, 503
Lagrange, Joseph Louis, 661
Lagrangian dynamics, 480, 639
Lambert factor, 386, 406

in rendering equation, 361
Lambert’s law, 356, 405
Lao Tzu, 217
latitude, 81, 205
launch angle, 528
launch speed, 528
Laura Croft, 425
law of cosines, 27, 318
law of sines, 26, 318
law of universal gravitation, 563
LCD monitor, 346
left hand rule, 15, see also handedness
Leibniz notation, 498, 512
Leibniz, Gottfried, 490, 531
Lemony Snicket, 715
length

fundamental quantity, 483
lerp (linear interpolation), 239, 259
level of detail, 440
lever arm, 571, 608, 615
Lewin, Walter, 573, 639
libido, 487
Lie algebra, 244, 246
lies

commision, 481
during introductions, 502
omission, 479

light attenuation, 417–418
in rendering equation, 417
linear, 414, 418
realistic inverse-squared, 417
via falloff map, 422

light diffuse color, 405
light intensity, see radiometry
light probes, 424
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light source, 414–424
attenuation, see light attenuation
Dirac delta, 358, 416
directional, see directional light
Doom-style, see volumetric light
omni, see point light
point, see point light
spot, see spot light
volumetric, see volumetric light

light specular color, 401
lighting model, 396, see also BRDF
lightmap, 423
limit, 493
limiting value, 493
limits of integration, 531, 539
line, 297–303, see also ray

closest point, 717
infinite 2D, 300–302
intersection in 2D, 721

line segment, 297
linear algebra, 104, 130

vs. this book, 34, 659
linear complimentary problem (LCP), 632
linear curve, 650
linear independence, 102
linear interpolation, 653

in Aitken’s algorithm, 657
in the de Casteljau algorithm, 672

linear operator, see also linear
transformation

derivative is, 505–506
linear transformation, 124, 137

definition, 155
doesn’t translate the origin, 156, 178

linear velocity, see velocity
vs. angular velocity, 548

Linnaeus, Carolus, 41
local parameter (curve), 692
local space, see object space
local support, 680, 691
logarithm of quaternion, 256
longitude, 81, 205
Lord of the Rings, 566
loudness, 42
LU decomposition, 660

Maclaurin series, 509
Madonna, 410
Magliozzi, Tom and Ray, 83
magnitude

of cross product, 67
of quaternion, 250

Major-General Stanley, 716
manifold, 247

marching cubes algorithm, 296
marginal utility, 497
Mars Climate Orbiter, 194
mass, 484

in Newton’s laws, 554
of dynamics body, 622

mass element, 587, 613, 617
material, 396, 439

ambient color, 406
diffuse color, see diffuse color
emissive color, 407
specular color, see specular color

mathematician
vs. engineer, 502
vs. human, 21

MathWorld, Wolfram, xvii
Matisse, Henri, 713
matrix

clip, see clip matrix
determinant, see determinant
diagonal, 115
inverse transpose, 392
multiplication, see matrix

multiplication
multiplication by scalar, 117
notation, 114
projection, see clip matrix
rank, see basis vectors
span, see basis vectors
transpose, 116

The Matrix (movie), 113
matrix chain problem, 121
matrix creep, 175, 227
matrix form (orientation), 220–229

advantages, 225
code interface, 222
conventions, 220
converting to Euler angles, 278–281
converting to quaternion, 284–287
disadvantages, 226
from Euler angles, 275–278
from quaternion, 281–284

matrix multiplication
geometric interpretation, 124
linear algebra rules, 118–123

matrix notation for curve, 649, 667, 674,
676

Maya, 428
mechanics

dynamics, see dynamics
kinematics, see kinematics
vs. physics, 479

median of triangle, 330
MegaTexturing, 432
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Mencken, H. L., 799
metaballs, 296, 381
metalness, 409
metamer, 353
Mines of Moria, 566
minor of matrix, 164
mirror addressing mode, 395
mirrored texture maps, 437
mistakes, xx
MIT OpenCourseWare

linear algebra, 132
physics, 573, 639
scientific computing, 640

Miyamoto, Shigeru, 343
model space, 370, 451, see also object

space
model transform, 153, 276, 370, 451
moment of inertia, 611, 613

3D, see inertia tensor
momentum, 581–585

angular, see angular momentum
conservation of, see conservation of

momentum
definitions, 581
in collisions, see collision
integral of force, 583
linear vs. angular, 613
units, 581

money can’t buy happiness, 497
Money for Nothing, 425
monitor, see display device
monomial form (curve), 648

endpoints, 650
subdivision, 687

Monte Carlo integration, see numerical
integration

Monty Python, 490
moon, 589
Moore’s law, 88
Morpheus, 113
motor, 626, 627
multiplicative identity

identity matrix, 116
identity quaternion, 249

Mythbusters, 592

n vector (lighting), 399
NASA, 194, 785
natural numbers, see numbers, natural
near clip plane, 364

reason for, 377
negation

of quaternion, see quaternion,
negation

of vector, see vector, negation
Newton (N) (unit of force), 485, 532, 556
Newton meter (unit of torque), 609
Newton’s collision law, 597, 618, 630
Newton’s laws, 554–562, see also force

and momentum, 584
conservation of momentum, 584
rotational analog, 613, 617

Newton, Isaac, 482, 490, 504, 553, 554
degree of cleverness, 558

Newtonian dynamics, see also Newton’s
laws

vs. Lagrangian, 480
Nintendo Wii, see Wii
nonuniform knot vector, 654
norm (of vector), 74
normal, see also unit vector

in triangle mesh, 386
is dual vector, 392
of plane, 312
of triangle, 317
surface, see surface normal
terminology, 53
transforming, 391, 427

normal force, 563, 569, see also contact
force

normal map, 431
normalization constraint

of barycentric coordinates, 321
of BRDF, 352

normalized device coordinates, 378
normalized quaternion, 250
normalized vector, see unit vector
North Pole, 589
NTSC television standard, 484
null space, 157
numbers

computer representation, 4–5
floating point, see floating point

numbers
integers, see integers
natural, 2
rational, 3
real, 3

numerical differentiation, 498
numerical integration, 416, 532, 557, 624,

633, see also Euler integration
in graphics, 357, 360

nutation, 236

O’Rourke, P. J., 805
OBB (oriented bounding box), 304
Obi-Wan Kenobi, 553
object space, 83, 218, 369
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odometer, 534, 537
Old Man Murray, 622
omni light, see point light
opacity, 456, 458
Open Dynamics Engine, 621, 627, 632,

639
open intervals, see interval notation
OpenCourseWare, see MIT

OpenCourseWare
OpenGL, 83, 124, 343, 378, 396, 409, 414,

475
clip matrix, 376
screen space conventions, 378
UV conventions, 393

opposite triangle leg, 23
orbital angular momentum, see angular

momentum
orbital angular velocity, see angular

velocity
orbital motion, see circular motion
orientation

in 3D, 217–291
vs. direction, rotation, angular

displacement, 218
origin, 7
orthogonal basis vectors, 105
orthogonal matrix, 158, 171–176

geometric interpretation, 172
math definition, 171

orthogonalizing a matrix, 175–176, 227,
436

orthographic projection, 144, 148–150
clip matrix, 374, 376
viewing in 3D, 368
vs. perspective projection, 368
zoom, 369

orthonormal basis, 105, 158, 174
orthonormal basis vectors, 436
orthonormal matrix, 392
Orwell, George, 81
oscillation, see harmonic oscillator
overdamping, 578

page flipping, 445
parabolic motion, see projectile motion
parallel axis theorem, 618
parallel light, 416
parallel projection, see orthographic

projection
parallel vector using dot product, 63
parallelepiped, 168
parallelogram, 318

area of, 67
parameterization (curve), 652, 687, 692

parametric continuity, 698–700
parametric curve, 646–647
parametric form, 296

ray, 299
particle, 562
Particle Man, 295
Pascal (unit of pressure), 486, 549
Pascal’s triangle, 678
Pascal, Blaise, 490, 678
passive transformation, 94, 137
PD controller, 579
penalty method, 629
per-face shading, 411
per-pixel shading, 387, 411

HLSL example, 459
per-vertex shading, see Gouraud shading
perimeter of triangle, 318
perpendicular bisector, 301
perpendicular vector using dot product,

63
perspective foreshortening, 185
perspective projection, 183–189

clip matrix, 371, 375
vs. orthographic projection, 368

petunias, xiii, 567, 569–571
phantom point, 711
phase offset, 575
PhD adviser, 490, 661, 678
philosophy, 1
Phong exponent, see specular exponent
Phong shading, see per-pixel shading
Phong specular model, 399–404
photometry, 356
Photoshop, 432, 491, 691, 695, 700
physics

dynamics, see dynamics
kinematics, see kinematics
vs. mechanics, 479
what’s left out, 479

physics engine, 621, 628, 639
PhysX, 621
Pi (π), 21, 198

continuous vs. discrete, 4
pick-up line, cheesy, 564
PID controller, 579
pinhole camera, 185
pipeline, see real-time rendering pipeline
The Pirates of Penzance, 716
pitch, 207, 229, 232
pivoting, 165
Pixar Animation Studios, 704
pixel, 345

aspect ratio, 363–364, 367
coordinates of, 346
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not a rectangle of color, 346
square pixels, 363

pixel shader, 440, 442, 456
HLSL examples, 457–474

planar mapping, 393, 435
plane, 311–317

best fit, 314
closest point, 719
defined by three points, 313
distance to point, 316
front and back side, 313
implicit form, see plane equation
intersection in 3D, 726
intersection with AABB, 725
intersection with ray, 724
intersection with sphere, 732
normal, 312

plane equation, 312–313
backface culling, 455
from three points, 313
geometric interpretation, 312

PlayStation 2, 425, 443
point

locating in 2D, 10
locating in 3D, 14
vs. vector, 39–41

point at infinity, 177, 180
point light, 414
point of concavity, 334
point velocity, 548
point vs. vector, 177, 219
polar axis, 192
polar coordinates, 191–213

2D, 192–201
3D, 203–213
3D cylindrical, see cylindrical

coordinates
3D spherical, see spherical

coordinates
converting to/from Cartesian,

198–201
vector, 213
why bother using, 201

pole, 192
polygon, 332–339

convex vs. concave, 334–338
fanning, 338
hole, 333
self-intersecting, 334
simple vs. complex, 333–334
triangulation, 338

polygon mesh, 381, see also triangle mesh
polynomial curve, 647–649

polynomial interpolation, 653–665
position

of vector, 35
relative vs. absolute, 35, 82

power, 354, 532
radiant, see radiant flux

power form (curve), see monomial form
(curve)

power rule (differentiation), 507
pre-lit vertices, 448
precession, 236
prerequisites, xviii
presenting the back buffer, 445
prime notation, 503
Principia, 553, 563
prismatic joint, 626
product notation, 20
product rule, 535
projected area, 356
projected light map, 416
projectile motion, 516, 520–530, 559
projection

matrix, see clip matrix
orthographic, see orthographic

projection
perspective, see perspective

projection
to screen space, 83
using dot product, 58

proofs, see stickler alert
proper Euler angles, 235
proper transformation, 158
Pythagorean identities, 25
Pythagorean theorem, 25, 199

quadratic equation, xviii, 521, 551
quantization, 273
quantum mechanics, 554
quaternion, 246–273

“difference”, 254
advantages, 263
aliasing, 249
as complex number, 264–271
conjugate, 250
converting to Euler angles, 288–291
converting to matrix, 281–284
derivative, 637
disadvantages, 263
dot product, 255
exponential function, 256
exponentiation, 257
from Euler angles, 287–288
from matrix, 284–287
geometric interpretation, 248–249
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identity, 249
interpolation, see slerp
inverse, 251
logarithm, 256
lore, 267
magnitude, 250
multiplication, 251
multiplication by scalar, 256
negation, 249
notation, 247–248
slerp, see slerp

r vector (lighting), 399
radiance, 356
radians, 194, 545

converting to degrees, 22
radiant emittance, 355
radiant energy, 354
radiant exitance, 355
radiant flux, 354
radiant power, see radiant flux
radiometry, 354–358
radiosity (unit of flux density), 355
radiosity techniques, 423
radius vector of AABB, 306
rank

and barycentric coordinates, 322
of basis vectors, 102

rasterization, 347, 440, 455–456
rational curve, 648
rational numbers, see numbers, rational
ray, 297–303

3D intersection, 722
as curve, 650
closest point, 718
intersection with plane, 724
intersection with sphere, 727
intersection with triangle, 734
parametric form, 299

raytracing, 346
real numbers, see numbers, real
Real-Time Rendering (book), 438, 475,

717, 737
real-time rendering pipeline, 438–456
realism vs. fun, 566
rectangular spot light, 416
recurrence relation, 657, 673
reference frame, 558
reflectance model, see BRDF
reflection (transformation), 144, 151–152
reflection vector, 399
reflex vertex, 335
regular partition, 531
relative displacement, 219

relative measurements, 41
relative position, 35, 39
relativity, 554
Renault, 670, 671
render context, 446
render target, 363
rendering algorithm, 346
rendering equation, 359–362

light attenuation, 417
shadows, 410

Renderman, 457
repeat addressing mode, 395
resolution

of display device, 363
of render window, 367

rest length of spring, 571
retroreflection, 410
RGB color space, 353–354, 398
Riemann integral, 519, 531
rigging, 425, 429
right hand rule, 16, see also handedness
rigid body, 562
rigid body transformation, 158
Rodrigues vector, 236
roll, 232
roll-pitch-yaw, 233
Ross, Diana, 160
rotation

about arbitrary axis, 141–144
about cardinal axis, 139–141
in 2D, 138
in 3D, 217–291
integration of, 636
vs. orientation, 218

rotation matrix, see also matrix form
converting to Euler angles, 278–281
converting to quaternion, 284–287
derivative, 637
from Euler angles, 275–278
from quaternion, 281–284

rotation vector, 246, see also exponential
map

rotational inertia, see inertia tensor,
moment of inertia

Runge phenomenon, 691
Runge-Kutta integration, 634

Sand-Reckoner, 81
scalar vs. vector, 32
scale (transformation), 144–148

along cardinal axis, 144–146
arbitrary direction, 146–148
nonuniform, 144

scientific computing, 640
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scissoring, 452, 455
scratch direction, 410
screen space, 9, 83, 93, 378–379, 440
seam edge, 333
Sears Tower, see Willis Tower
secant, 23
second-order system, see damped

oscillation
self-illuminated surface, see emissive

surface
self-intersecting polygon, 334
semiperimeter, 319
sequential impulse method, 630
set point (control system), 579
sewing machine, 533
sexagesimal number system, 21
shader constant, 446, 459
shadows, 410, 424
Shapes (poem), 341
shearing, 152–153, 179
Sherlock Holmes, 1
shininess, see specular exponent
short, 4
SI system, 354, 485, 532, 556, 609
sigma notation, see summation notation
signed area, 319, 328
signed displacement, 36
signed distance, 11, 192, 301, 316
silliness of authors, xvii
Silverstein, Shel, 341
simple harmonic motion, see harmonic

oscillator
simple polygon, 333
simulation, 621
sine

definition using unit circle, 22
derivative, 510
Taylor series, 508

singular matrix, 157, 168
sinusoidal, 575
size vector of AABB, 305
skeletal animation, 424–431, 447

HLSL example, 472
joint, 626
vertex format, 449

skew box, 127, 167
skinning, 425, see also skeletal animation
slerp, 255, 259–263

example code, 262
formal definition, 260
practical definition, 261

slider joint, 626
sliver triangle, 338
slope and velocity, 488

slope-intercept form, 300
smoothstep, 669, 712
SO(3), 244
solid angle, 355
source fragment, 347
Space Quest , xv
space station, see International Space

Station
span

of basis polynomials, 662
of basis vectors, 101

specular color, 401
specular exponent, 400
specular map, 401
specular reflection, 398–404
speed, see also velocity

and average velocity, 486
is a scalar quantity, 35
vs. velocity, 35, 488

speedometer, 533
sphere, 303–304

intersection in 3D, 729
intersection with AABB, 731
intersection with plane, 732
intersection with ray, 727

spherical coordinates, 204–213
and Euler angles, 232
converting to/from Cartesian,

211–213
traditional conventions, 204
video game conventions, 206–207

spherical harmonics, 423
spherical light, see point light
spherical linear interpolation, see slerp
spherical mapping, 393
Spielberg, Steven, 478
spin (angle), 236
spin angular momentum, see angular

momentum
spin angular velocity, 549, see also

angular momentum
spline, 690–711

Bézier, 694–697
continuity, see continuity
Hermite, 694–697
knot, 693–694
notation, 692–693

spot light, 415
spring, 571–581, see also harmonic

oscillator
penalty method, 629
restorative force, 571

spring constant, 572
spring-damper, see damped oscillation
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square matrix, 115
square pixels, 363
standard lighting model, see Blinn-Phong
standard position (of angle), 22
state variables (physics engine), 621–627
static friction, see friction, static
static intersection test, 721
steradian (sr), 356
stickler alert

4× 3 matrix, 181
derivative at discontinuity, 502
group theory, 38
integrability requirements, 519
limit, 494
limits and derivatives, 502
norms, 51
points vs. vectors, 40, 668
proofs omitted, xvii, 504
Riemann integral, 531
Taylor series, 509

stiffness, spring, 572
Strang, Gilbert, 132
structure of arrays (SOA), 449
styrofoam, 566
subdivision (curve), 685–690

Bézier form, 688–690
monomial form, 687–688

subsurface scattering, 352
sum and difference (trig) identities, 26
sum rule (differentiation), 505–506
summation notation, 20
Super WHY!, 137
SuperBall, 596
support, 680, 691
surface area of sphere, 304
surface normal, 53, 386–393, 399, see also

normal
in collision, 594
in rendering equation, 386

surface-local space, see tangent space
suspension (vehicle), 579, 580
Sutherland-Hodgman algorithm, 451
symmetric Euler angles, 235

Taco Bell, 40
tail of vector, 35
Tait-Bryan angles, 235
tangent

of curve, 652, 700, see also velocity,
curve

of spline, 695
tangent (trigonometric function), 23
tangent basis, see tangent space

tangent line and instantaneous velocity,
492

tangent space, 100, 381, 432–435
tangent vector (bump mapping), 100, 432
Tarantino, Quentin, 75
Taxicab norm, 74
Taylor series, 508–511, 551, 634

exponential function, 510
sine and cosine, 508

TCB spline, 705–710
television, see display device
temperature, 41
tension (TCB spline), 705
ternary operator, 259
texel, 393
texture map, 439
texture mapping, 393–395
texture-mapping coordinates, see UV

coordinates
The Print Shop, 621
They Might Be Giants, 295
tilt, 232
time, 483
time-to-parameter function, 692, 697
Titanic, 659
Tomb Raider , 425
torque, 549, 571, 609, 613

2D, 609
3D, 615
and force, 610
impulsive, see angular impulse

tortoise and hare, 486, 495
transformation, 86–108

active vs. passive, 87–96, 137
computing using basis vectors,

97–106
model, see model transform
view, see view transform

transforming normals, 391
translation matrix, 178
transposition, of matrix, 116
triangle, 317–332

area, 318–321
barycentric space, 321–324
intersection with ray, 734
normal, 317
notation, 317
plane containing, 317
special points, 329–332

triangle mesh, 381–386
indexed, 382

triangle rule of vector addition, 49
triangle soup, 625
triangulation of polygon, 338
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trigonometry, 22–27
identities, 24–27

trip odometer, 537
triple product, 163
truth, philosophy of, 1
turning an edge, 391
Twain, Mark, xvii
twist, 218, 232
typeface conventions, 33

undamped angular frequency, 577
underdamping, 577
uniform circular motion, see circular

motion
uniform knot vector, 654
unit circle, 22
unit conversion, 486
unit quaternion, 250
unit vector, 53–55, see also normal
United States, 81
universal gravitation, 563
universal joint, 626
universal space, see world space
Unreal engine, 381
upright space, 84–86, 218

defense of, 108–109
Upside Down, 160
user constraint (physics), 625–627
UV coordinates, 393, 447

v vector (lighting), 399
valence, 382, 385
Vandermonde matrix, 660
vector

addition, 47–50
and Cartesian Coordinates, 36
as matrix, 116
as sequence of displacements, 37, 49,

75
cross product, see cross product
dimension, 32
direction, 34
dot product, see dot product
examples, 36
geometric definition, 34
in polar form, 213
magnitude, 34, 51–53, 74
mathematical definition, 32
multiplication by scalar, 45–47
negation, 43–45
normalized, see unit vector
notation, 32
row vs. column, 32, 116, 117,

123–124

subtraction, see vector, addition
vs. point, 39–41
vs. scalar, 32

Vector (container class), 32
velocity

angular, see angular velocity
angular vs. linear, 548
average, see average velocity
constant, 516
derivative, 513
derivative of position, 495
instantaneous, see instantaneous

velocity
is a vector quantity, 35
of curve, 651–653, see also velocity,

curve
of spline, 702–711
relative, 43
vs. speed, 35

velocity-based simulation, 631
vertex

common graphics formats, 448
of polygon, 332
of triangle, 317
of triangle mesh, 382
pre-lit, 448
rendering data, 446
skinned, 425, 447, 449
valence of, see valence

vertex normal, 386, 447
calculating, 387
interpolating, see per-pixel shading

vertex shader, 440, 442, 450–451
HLSL examples, 457–474

vertex shading, see Gouraud shading
view frustum, 364–365, 374

clip planes, 375
field of view, 367

view space, see camera space
view transform, 153, 276, 370, 451
visible surface determination, 346
volume (loudness), 42
volume of sphere, 304
volumetric light, 418–422, 451
vomit comet, 785
von Braun, Werner, 601

w-buffering, 379
Walt Disney Animation Studios, 704
Waring, Edward, 661
watt (W), 354, 532
Watterson, Bill, xxi
wavelength of light, 353
weight, 484
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West, Mae, 645
Whaddya know?, 30
widescreen monitors, 363
wiggles, 648, 691
Wii, 374, 387, 397, 412, 414, 422, 476
Wikipedia, xvii, 232, 551, 578, 617, 790
Willis Tower, 514, 516, 521
Willy Wonka, xi
window, rendering, 362

aspect ratio, 367
resolution, 367

winged-edge model, 386
Wolfram MathWorld, xvii
work (physical quantity), 480
world space, 81–82, 451
wrap addressing mode, 395
wrapPi, 241

“y’all”, 201
y-intercept, 300
yaw, 232

vs. heading, 234
yaw-pitch-roll, 232, 233
yellow fever, 31
Yoda, 479, 560
yon clip plane, see far clip plane

z-axis, 13
Z-fold paper, 621
zenith, 205
zero gravity, 640, 785
zero vector, 38
zoom, 365, 374, see also field of view

orthographic projection, 369
ZZ Top, 661

What is it ye would see?

If aught of woe or wonder, cease your search.

— Horatio in Hamlet, Act V, scene II
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