


Philosophy of Mathematics







Copyright c© 2017 by Princeton University Press
Published by Princeton University Press,
41 William Street, Princeton, New Jersey 08540
In the United Kingdom: Princeton University Press,
6 Oxford Street, Woodstock, Oxfordshire OX20 1TR

press.princeton.edu

All Rights Reserved

ISBN 978-0-691-16140-2

British Library Cataloging-in-Publication Data is available

This book has been composed in Minion Pro and Archer

Printed on acid-free paper. ∞
Typeset by Nova Techset Pvt Ltd, Bangalore, India
Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://press.princeton.edu


Contents

Acknowledgments vii

Introduction 1

CHAPTER ONE
Mathematics as a Philosophical Challenge 4

CHAPTER TWO
Frege’s Logicism 21

CHAPTER THREE
Formalism and Deductivism 38

CHAPTER FOUR
Hilbert’s Program 56

CHAPTER FIVE
Intuitionism 73

CHAPTER SIX
Empiricism about Mathematics 88

CHAPTER SEVEN
Nominalism 101

CHAPTER EIGHT
Mathematical Intuition 116

CHAPTER NINE
Abstraction Reconsidered 126

CHAPTER TEN
The Iterative Conception of Sets 139

CHAPTER ELEVEN
Structuralism 154

CHAPTER TWELVE
The Quest for New Axioms 170



Contents

Concluding Remarks 183

Bibliography 189

Index 199

vi



Acknowledgments

I am grateful to many people for discussion of material
covered in this book or comments on earlier drafts, in
particular Solveig Aasen, Jens Erik Fenstad, Dagfinn Føllesdal,
Peter Fritz, Leila Haaparanta, Bob Hale, Mirja Hartimo, Richard
Heck, Leon Horsten, Toni Kannisto, Frode Kjosavik, Charles
Parsons, Agustín Rayo, Stewart Shapiro, Wilfried Sieg, Hans
Robin Solberg, James Studd, Mark van Atten, Crispin Wright,
and two anonymous referees. The book has been shaped by
courses on the philosophy of mathematics that I taught at the
universities of Bristol, London, and Oslo. Thanks to all of my
students for their reactions and feedback, which were of great
help when designing and eventually writing the book. Most of
the writing took place during a period of research leave at the
Center for Advanced Study, Oslo, whose support I gratefully
acknowledge.





Philosophy of Mathematics





Introduction

MATHEMATICS RAISES A WEALTH of philosophical questions,
which have occupied some of the greatest thinkers in his-
tory. So when writing this book, some hard choices had to be
made.

Let me begin with the aim of the book. Its target audience are
advanced undergraduates and graduate students in philosophy,
but also mathematicians and others interested in the foundations
of one of the most successful, but also most puzzling, human
endeavors. For the most part, the book does not presuppose
much mathematics. Knowledge of elementary logic, the number
systems from the natural numbers up through the reals, and
some basic ideas from the calculus will be plenty for all except
two late chapters devoted to set theory. While some familiarity
with the philosophical mode of thinking will be a clear ad-
vantage, I have attempted to explain all relevant philosophical
concepts.

I make no attempt to hide my own views concerning what
is important and what works. Accordingly, my discussion has
some general themes that serve to distinguish it from other
introductions to the subject. First, Frege figures prominently
in the book, both through his own views and his criticism of
other thinkers. While my views often differ from Frege’s, I share
his fundamental conviction that mathematics is an autonomous
science. Like other sciences, mathematics uses a meaningful lan-
guage to express truths, ever more of which are discovered. Yet
mathematics differs profoundly from the paradigmatic empirical
sciences concerning the nature of its subject matter and the
methods it employs. Following Frege, I am critical of any kind of
formalism or fictionalism that deprives mathematics of its status
as a body of truths, and of any attempt to assimilate mathematics
to the empirical sciences. Frege famously defended the objectivity
of mathematics. Just as geographers discover continents and
oceans, so mathematicians explore numbers and sets. The two



Introduction

kinds of object are equally “real” and are described by equally
objective truths.

A second theme of the book is how to understand the objects
(such as numbers and sets) that mathematics explores. I pay
more attention than is customary to the question of whether
mathematical objects can be accepted without fully embracing a
so-called platonistic conception of them. So I discuss some less
demanding conceptions of mathematical objects. Might these
objects be explicable in terms of a network of objective mathe-
matical truths? Or might they be constructed by us? Or might
they exist only potentially, not actually?

A final theme concerns mathematical knowledge. This knowl-
edge must be explained in a way that links up with the subject
matter of mathematics. It is not just an accident that our math-
ematical beliefs tend to be true. We would like to know why.
What is it about our ways of forming mathematical beliefs which
ensures that most of the beliefs correctly represent their subject
matter? The answer must draw on an account of mathematical
evidence. So what evidence do we have for our mathematical
beliefs? A variety of answers have been proposed. Perhaps
the evidence is logical or conceptual, or broadly perceptual in
character, or of some indirect form that flows frommathematical
principles’ ability to explain and systematize knowledge already
established. My approach to the question of mathematical ev-
idence will be pluralist and gradualist. That is, one form of
evidence need not exclude another. And evidence may come in
degrees, such that the elementary parts of mathematics enjoy
a higher degree of evidence than the more advanced parts,
especially those of a highly set-theoretic character.

Space considerations have forced me to downplay some
issues to make room for a proper discussion of the themes just
described. There is no systematic discussion of the philosophy of
mathematics before Frege’s pioneering works of the 1880s and
1890s. I give only the briefest of introductions to Plato’s and
Kant’s views on the subject. Traditional geometry receives little
attention. Other important topics receive none. Examples in-
cludeWittgenstein onmathematics, explanation inmathematics,
the philosophy of mathematical practice, the use of experimental2
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and other nontraditional methods in mathematics, and new
developments such as homotopy type theory.1

The first seven chapters cover topics that tend to be included
in any good course in the philosophy of mathematics. The last
five chapters discuss more recent developments. These
chapters are more specialized and somewhat more demanding,
both mathematically and philosophically, but are largely
independent of one another (except for Chapter 12, which
depends on Chapter 10).

1 Useful introductions to these topics can be found in Rodych (2011),
Mancosu (2015, 2008), Baker (2015), and Awodey (2014), respectively. 3



CHAPTER ONE

Mathematics as a Philosophical Challenge

1.1 PROBLEMATIC PLATONISM

Mathematics poses a daunting philosophical challenge, which
has been with us ever since the beginning ofWestern philosophy.

To see why, imagine a community that claims to possess a
wonderful kind of knowledge resulting from some discipline
practiced there. Community members claim that this knowledge
has three distinctive characteristics. First, it is a priori, in the
sense that it doesn’t rely on sense experience or on experimen-
tation. Truths are arrived at by reflection alone, without any
sensory observation. Second, the knowledge is concerned with
truths that are necessary, in the sense that things could not have
been otherwise. It is therefore safe to appeal to these truths when
reasoning not only about how the world actually is but also
when reasoning about how it would have been had things been
otherwise. Third, the knowledge is concerned with objects that
are not located in space or time, and that don’t participate in
causal relationships. Such objects are said to be abstract.

In fact, the knowledge that our imagined community claims
to posses is rather like the knowledge promised by rational
metaphysics, which for centuries professed to deliver insights
into the ultimate nature of reality and ourselves, based solely
on reason and without any reliance on sense experience. Many
people today would dismiss such knowledge claims as incredible.
And in fact, science and philosophy have developed in ways that
now allow this dismissal to proceed fairly smoothly.

The philosophical challenge posed by mathematics is this.
Mathematics seems to deliver knowledge with the three
distinctive characteristics that are claimed by our imagined
community. “The queen of the sciences”—as Gauss famously
called mathematics, usurping a title previously reserved for
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rational metaphysics—seems to be practiced by means of reflec-
tion and proof alone, without any reliance on sense experience or
experimentation; and it seems to deliver knowledge of necessary
truths that are concerned with abstract things such as numbers,
sets, and functions. But in stark contrast to rational metaphysics,
mathematics is a paradigm of a solid and successful science. In
short, by being so different from the ordinary empirical sciences,
mathematics is philosophically puzzling; but simultaneously, it is
rock solid.

This challenge obviously requires closer examination. Let us
begin with mathematics’ strong credentials, before we return,
in the sections that follow, to its three apparent characteris-
tics. Mathematics is an extremely successful science, both in
its own right and as a tool for the empirical sciences. There is
(at least today) widespread agreement among mathematicians
about the guiding problems of their field and about the kinds
of methods that are permissible when attempting to solve these
problems. By using these methods, mathematicians have made,
and continue to make, great progress toward solving these guid-
ing problems. Moreover, mathematics plays a pivotal role in
many of the empirical sciences. The clearest example is physics,
which would be unimaginable without the conceptual resources
offered by modern mathematics; but other sciences too, such as
biology and economics, are becoming increasingly dependent on
mathematics. So a wholesale dismissal of mathematics on the
grounds that it is philosophically puzzling would be sheer
madness. Such a successful discipline cannot be rejected out
of hand but needs to be accommodated within our philosophy
in some way or other, albeit perhaps with changes to our
pretheoretic conception of how the discipline works. Moreover,
unlike rational metaphysics, mathematics permeates our current
scientific world view and hence cannot be excised from it.

In sum, our challenge is to explain how we can make room
within a broadly scientific world view for a science with features
as puzzling as those ofmathematics.We shall encounter two lines
of response. One is to deny some or all of the distinctive features
that appear to set mathematics apart from the ordinary empirical
sciences and thus cause philosophical puzzlement. Another line 5
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of response is to accept that mathematics is more or less as it
appears to be and to explain how this is possible. We shall see
that the need for such explanations has profoundly shaped the
philosophical outlooks of a number of great thinkers.

1.2 APRIORITY

A good way to approach the seeming apriority of mathematics
is to read Plato. And a good place to start is the dialogue
Meno, where Plato describes a slave boy who has been taught no
mathematics but is nevertheless able to discover “out of his own
head” an interesting geometrical truth about squares, namely
that the square of the diagonal is two times the square of each
side. In the dialogue, Socrates asks the slave boy some carefully
chosen questions, which prompt the boy to reflect on geometry
and discover some simple geometrical truths and eventually
reason his way to the mentioned fact about squares.

The story of the slave boy is meant to establish two things.
First, that mathematical concepts are innate; that is, they are
not acquired but form part of the mind’s inborn endowment.
And second, that mathematical truths are a priori and can be
known without relying on experience for one’s justification.
It may be objected that the slave boy relies on experience in
order to understand Socrates’ questions. Of course he does! But
this experience serves only to trigger the process that results in
geometrical knowledge and doesn’t itself constitute evidence for
this knowledge.1

Suppose Plato is right that we possess innate mathematical
concepts and a priorimathematical knowledge. How can this be?
The usual answer from rationalistically inclined philosophers has

1 Plato offers another argument as well for the innateness of mathematical
concepts. For instance, in the Phaedo, we find an argument from the following
two premises. We possess perfectly precise mathematical concepts, e.g., the
concept of a circle. But mathematical concepts are never instantiated in the
physical world in a perfectly precise way. Consequently, these concepts cannot
be derived from experience but must be innate.6
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been that our “faculty of reason” is the source of such concepts
and knowledge. Until more has been said about this faculty and
its workings, however, this answer is little more than a pompous
redescription of what we set out to explain. Plato, to his credit,
recognizes the need to say more. In the Meno, he therefore
proposes—or at least entertains—an explanation.

The soul, then, as being immortal, and having been born again
many times, and having seen all things that exist, whether in
this world or in the world below, has knowledge of them all.
(Meno, 81cd)

The envisaged explanation is as follows. The soul must have pre-
existed the body. In this disembodied existence, the soul has
“seen all things”—including, crucially, the objects with which
geometry is concerned—and acquired “knowledge of them all.”
So when the slave boy—and the rest of us, for that matter—seem
to acquire mathematical concepts and knowledge, this is in fact
nothing but recollection of concepts and truths that our souls
encountered when they existed in a purer, disembodied state and
had direct access to the objects of mathematics (as well as to a
range of abstract, but perfectly real, “forms” or “ideas” that Plato
also postulated).

Of course, this explanation has little appeal today. Plato
nevertheless deserves our highest admiration for identifying a
deep philosophical problem, namely the seeming apriority of
mathematics. The mark of philosophical greatness is as much
to identify good questions as it is to answer them. And as we
shall see throughout the book, Plato’s question has shaped the
philosophical debate about mathematics right up until this day.

1.3 NECESSITY

Consider any truth of pure mathematics, say 2 + 2 = 4. It is part
of the traditional Platonistic conception of mathematics that this
truth is not accidental—as it is accidental that you are currently
reading this book—but that 2 + 2 = 4 is necessarily true, that is,
true not only as things actually are, but true nomatter how things
might have been. 7
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Onemight worry that this necessity claim is idle philosophical
speculation and therefore dispensable. This worry is fueled in
part by the philosophical controversy that the notion of necessity
has generated and the skepticism it has encountered. The neces-
sity claim has real significance, however, despite these genuine
difficulties. Consider the role that mathematics plays in our
reasoning. We often reason about scenarios that aren’t actual.
Were we to build a bridge across this canyon, say, how strong
would it have to be to withstand the powerful gusts of wind?
Sadly, the previous bridge fell down.Would it have collapsed had
its steel girders been twice as thick? This style of reasoning about
counterfactual scenarios—or alternative “possible worlds,” as
philosophers like to call them—is indispensable to our everyday
and theoretical deliberations alike. Now, part of the cash value
of the claim that the truths of pure mathematics are necessary is
that such truths can freely be appealed throughout our reasoning
about counterfactual scenarios. Had you not been reading this
book, or had some girders been twice as thick, 2 + 2 would
still have been 4. Indeed, the truths of pure mathematics can be
trusted even in an investigation of how things would have been
in scenarios where the laws of nature are different.

The great German mathematician and philosopher Gottlob
Frege (1848–1925), who figures prominently in this book, liked
to make a similar point in terms of the “domains” that various
kinds of truth “govern.” The logical and arithmetical truths are
said to govern “the widest domain of all; for to it belongs not
only the actual, not only the intuitable, but everything think-
able” (Frege, 1953, §14).2 Presumably, the domain of “everything
thinkable” includes everything that is possible in the sense
explained above.

Let us pause to note an immediate but important consequence
of the necessity of the truths of pure mathematics. Since such
truths can freely be appealed to throughout our counterfactual
reasoning, it follows that these truths are counterfactually
independent of us humans, and all other intelligent life for that

2 Interestingly, Frege (ibid.) thought the truths of geometry governed the
strictly smaller domain of everything “intuitable.”8
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matter. That is, had there been no intelligent life, these truths
would still have remained the same. Pure mathematics is in
this respect very different from humdrum contingent truths.
Had intelligent life never existed, you would obviously not have
been reading this book. More interestingly, pure mathematics
also contrasts with various social conventions and constructions,
with which it is sometimes compared.3 Had intelligent life never
existed, there would have been no laws, contracts, or marriages—
yet the mathematical truths would have remained the same.
These truths can thus be assumed by us actually existing
intelligent agents when we reason about this sad intelligence-free
scenario.

1.4 ABSTRACT OBJECTS

The final distinctive feature traditionally attributed to mathe-
matics is a concern with abstract objects. An object is said to
be abstract, we recall, if it lacks spatiotemporal location and is
causally inefficacious; otherwise it is said to be concrete. While
this distinction may not be entirely sharp, it suffices for our
present purposes.4

Now, it certainly seems that mathematics is concerned with
abstract objects. Mathematical texts brim with talk about num-
bers, sets, functions, and more exotic objects yet, and these
objects seem nowhere to be found in space and time.5 It is useful
to “factor” the third feature of mathematics into two distinct
claims.

Object realism. There are mathematical objects.
Abstractness. Mathematical objects are abstract.

3 See, e.g., Feferman (2009) and Hersh (1997).
4 See Rosen (2014) for further discussion.
5 According to Maddy (1990), sets of concrete objects are located where

their elements are located and thus qualify as concrete (cf. §8.4). We shall not
take a stand on this. If need be, let us restrict the abstractness claim to “pure”
mathematical objects such as numbers and pure sets. 9
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While object realism was endorsed already by Plato, the first
clear defense of it was due to Frege. Consider the following
sentences:6

(1) Evelyn is prim.
(2) Eleven is prime.

The two sentences seem to have the same logical structure,
namely a simple predication based on a proper name, which
refers to an object, and a predicate, which ascribes some property
to this object. As Frege argued, for a sentence of this simple
subject-predicate form to be true, the proper name must succeed
in referring to an object, and this object must have the property
ascribed by the predicate (cf. §2.3). Moreover, (2) is true, as
anyone who possesses even basic arithmetical competence will
confirm. It follows that ‘Eleven’ must succeed in referring to an
object, and hence there are mathematical objects.

Of course, the argument is not beyond reproach. We shall
encounter various challenges to it throughout the book. Perhaps
the claims of mathematics cannot be taken at face value. Or
perhaps they aren’t true after all. For now, however, it suffices to
observe that the argument has sufficient force to shift the burden
of proof onto opponents, who need to explain where they think
the argument goes wrong.

The claim that mathematical objects are abstract has been
less controversial. It is not hard to see why. If possible, our
philosophical account of mathematics should avoid claims that
would render our ordinary mathematical practice misguided
or inadequate. But if mathematical objects had spatiotemporal
location, then our ordinary mathematical practice would be mis-
guided and inadequate. We would then expect mathematicians
to take a professional interest in the location of their objects, just
as zoologists are interested in the location of animals. By taking
mathematical objects to be abstract, our actual practice becomes
far more appropriate.

In contemporary philosophy, the word “platonism” (typically
with a lowercase ‘p’) is often used in a more general sense than

6 The pair of examples is due to Burgess (1999, p. 288).10
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anything we can ascribe to Plato (and which thus counts as
“Platonistic” with an uppercase ‘P’). The platonist conception of
mathematics does not stop with the claim that there are abstract
mathematical objects. It adds a claim about the robust reality of
these objects:

Reality. Mathematical objects are at least as real as ordinary
physical objects.

Admittedly, this claim is not very precise. Throughout the book,
we shall consider some ways to sharpen the claim and assess their
plausibility.7 Plato defended an extremely strong version of the
claim. He ascribed to mathematical objects a higher degree of
reality or “mode of being” than that of ordinary concrete objects.
An imperfect chalk circle on the board is just a pale metaphysical
shadow of the perfect abstract circle. The latter is ontologically
primary to the former. Few would today follow Plato that far.

There are other interpretations on which Reality is quite
plausible, however. One measure of the reality of mathematical
objects concerns their independence of intelligent agents and
their language, thought, and practices.We have already discussed
a counterfactual analysis of this independence (cf. §1.3). Had
there been no intelligent life, 2 + 2 would still have been 4. The
independence claim can also be cashed out in terms of a contrast
between discovery and invention. It is part of our experience of
doing mathematics that mathematical facts are discovered, not
invented. Assume you set out to solve some hard mathematical
problem and after weeks of hard work finally find the answer.
It seems that the answer was already there, waiting for you. The
answer was discovered, not made up. Frege therefore compares
mathematicians with geographers:

Just as the geographer does not create a sea when he draws
borderlines and says: the part of the water surface bordered by
these lines I will call Yellow Sea, so too the mathematician cannot
properly create anything by his definitions. (2013, I, xiii)

7 Some challenges to Reality that hold on to object realism will be discussed
in §§2.5, 4.4, and 5.2. 11
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The point is even enshrined in U.S. patent law, which permits
one to patent inventions but not mathematical truths or laws of
nature.

Summing up, we shall follow recent philosophical practice
and use the label “platonism” (with a lowercase ‘p’) for the con-
junction of the three claims discussed in this section. As we have
seen, the traditional conception of mathematics inherited from
Plato includes additional claims about apriority and necessity,
which are not included in our definition of ‘platonism’.

1.5 THE INTEGRATION CHALLENGE

Assume we take mathematical language and practice more or
less at face value and accept some version of the platonistic
conception. A philosophical challenge arises. Can we make sense
of a science that works in this way? Can we explain how human
beings in a seemingly a priori way acquire knowledge of neces-
sary truths concerned with abstract objects? As we have seen, this
challenge has been with us since Plato’sMeno.

Let me explain how the challenge is best developed.8 As Quine
(1960) emphasized, our theorizing always begins in medias res,
that is, in the context of science as we find it. And science, as
we find it, obviously includes mathematics. The challenge is to
use science, as we find it, to try to understand our practice of
mathematics. Just as science can be used to study navigation in
birds and primates’ knowledge of their environment, it can also
be used to investigate human knowledge of mathematics.

Our investigation has two parts. First, we need to get clear
on the subject matter of mathematics. What is mathematics
about? Is it really concerned with abstract objects, as the platon-
istic conception would have it? To answer these questions, we
obviously need to listen to what mathematics itself has to say

8 Recent discussions of the challenge often focus on the version developed in
Benacerraf (1973), which requires a causal connection between the knower and
the known. I find this focus unfortunate, for reasons that surface below but are
more fully explained in §7.1.12
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about numbers, sets, and everything else that it studies. As Frege
emphasized, however, the questions are also in part concerned
with language. How should the language of mathematics be
analyzed? Should apparent talk about numbers and sets be taken
at face value? This concern with language means that we shall
also need assistance from linguistics and perhaps also psychol-
ogy. Second, we need to understand how mathematicians and
others with some degree of mathematical competence arrive at
their mathematical beliefs. How do mathematicians settle on
their first principles (or axioms), and how do they use these to
prove mathematical results (or theorems)? In this investigation,
the psychology and history of mathematics will clearly be
relevant.

The challenge is to make our answers to these two sets of
questions mesh. How is it that our ways of forming mathe-
matical beliefs are responsive to what mathematics is about?
How are the practices and mechanisms by which we arrive
at our mathematical beliefs conducive to finding out about
whatever reality mathematics describes? In short, why is it
not just a happy accident that our mathematical beliefs tend
to be true? There must be something about what we do that
keeps us on the right track. Since the challenge is to integrate
the metaphysics of mathematics (namely, what mathemat-
ics is about) with its epistemology (namely, how we form
our mathematical beliefs), we shall call this the integration
challenge.9

Since the questions we are asking are hard and the literature
abounds with misapprehensions, I would like to warn against
three ways in which the challenge can be misunderstood.10
Clearly, the challenge goes beyond any individual branch of
science, and in this sense, it is distinctively philosophical. But
it would be a mistake to think that the challenge is external to
science as a whole, as for instance Descartes’ “first philosophy”
famously aspired to be. The challenge arises within science,
broadly construed, when we decide to investigate not birds’

9 This label is due to Peacocke (1999).
10 A fuller discussion can be found in Linnebo (2006). 13
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navigation or primates’ knowledge of their environment but our
own knowledge of mathematics.

Next, it would be wrong to think that the challenge is preju-
diced against mathematics. True, the challenge would have been
prejudiced if we had insisted on a causal connection between the
subject matter of mathematics and mathematicians’ beliefs: for
such a connection might be inappropriate in mathematics. But
there is no such insistence. The nature of the connection is left
wide open. All we want is to know why it is not an accident that
our mathematical beliefs tend to accurately represent what they
are about. Moreover, we must bear in mind that the challenge
arises in medias res and that mathematics is an important part
of science, as we find it. We are therefore free to use as much
mathematics as we please when trying to answer the challenge.

Finally, one might think the challenge is trivial, given that we
are allowed to use mathematics when trying to answer it. Isn’t it
obvious that mathematics will judge itself to be in good order?
The case seems much like Wittgenstein’s example of a man who
buys a second copy of a newspaper in order to confirm what
the first copy says! This reaction would be mistaken, however.
To see why, a comparison is useful. Assume we are interested
in explaining the nature and role of perception in our belief
formation. We can give an account of how perceptual beliefs
are reliable by explaining how light is reflected from surfaces,
impinges on our retinas, thus triggering nerve endings, and so
on. Of course, this account of the reliability of perception is itself
reliant upon perceptual knowledge: otherwise we could not
appeal to light, surfaces, and retinas. But this mild circularity
is unproblematic. We are proceeding in medias res, not trying
to convince a skeptic. The mild circularity does therefore not
trivialize our project. We are presupposing that our perceptual
beliefs are reliable in order to explain why they are reliable. So
there is some distance between what we are presupposing and
what we are trying to explain. This distance means that success is
not guaranteed.We are not just buying a second copy of the same
newspaper. The same goes for our investigation of the formation
of mathematical knowledge. By allowing the investigation to use
mathematics, we are presupposing that our mathematical beliefs14
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are reliable, at least for the most part. But this does not guarantee
success in our task of explaining why these beliefs are reliable.

In sum, the integration challenge is both legitimate (contrary
to the first two misapprehensions) and substantive (contrary to
the third).

1.6 KANT’S VIEW ON MATHEMATICS

Howmight the philosophical challenge posed by mathematics be
met? Let us for now restrict ourselves to the vast class of views
that take us to possess mathematical knowledge. (We shall return
to some views that deny this.) The obvious question is then:
what sort of knowledge is this? Until fairly recently, answers to
this question tended to be given in terms of Kant’s distinctions
between a priori and a posteriori, and analytic and synthetic.
Although hardly unproblematic, this classification provides a
shared frame of reference, which many of the thinkers we shall
study use in order to located their own views and those of their
interlocutors.

The basic idea of the distinction between a priori and
a posteriori, we recall, is that a justification or piece of knowledge
is a priori if it is independent of experience, and otherwise
a posteriori. Some hard questions immediately arise. What is
the relevant class of experiences? While sense perception clearly
conflicts with apriority, the experience that accompanies the
discovery of amathematical proof does not. Furthermore, what is
the relevant notion of “independence” of experience? As we saw,
even Meno’s slave boy needs the experience of hearing Socrates’
questions in order to trigger the process of mathematical learn-
ing. Kant is aware of this complication and admits that “all
cognition commences with experience.” What he denies is that
all cognition “arise[s] from experience” (Kant, 1997, B1). Instead
he holds that some of our knowledge has its “source” in our own
cognitive faculties, in ways to which we shall return.

Kant defines a judgment as analytic if “the predicate B belongs
to the subject A as something that is (covertly) contained in this
concept A” and synthetic otherwise (ibid., A6/B10). All analytic 15
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judgments are thus a priori, since this conceptual containment
can be established without any substantive reliance on sensory
experience. Analytic judgments are also said to be “explicative,”
while synthetic ones are “ampliative.” For example, Kant holds
that “Bodies are extended” is analytic, whereas “Bodies are heavy”
is synthetic. But it is a problem that his definition works only for
simple subject-predicate judgments of the form “A is B .”
How should the definition be extended to the language of
mathematics, whose statements are typically far more complex?
One option is to rely on another characterization that Kant gives
of the analytic truths, namely as those that are based on the prin-
ciple of contradiction (ibid., A151/B191). This characterization
suggests that all logical truths may qualify as analytic. This idea
is later adopted by Frege (cf. §2.2).

With this two-by-two classification in place, let me provide
a brief sketch of Kant’s own view. In traditional fashion, Kant
insists that mathematical knowledge is a priori. The truly novel
part of his view is that, despite being a priori, mathematical
knowledge is not analytic; in other words, that mathematical
knowledge is synthetic a priori. According to Kant, this form
of knowledge had not previously been identified and was not at
all understood. To say that much of Kant’s theoretical philoso-
phy was shaped by his desire to account for our possession of
synthetic a priori knowledge is no exaggeration.

Why does Kant hold that mathematical knowledge is syn-
thetic? He discusses examples from arithmetic as well as geome-
try. Consider the judgment that 7 + 5 = 12. According to Kant,
“[t]he concept of twelve is by no means already thought merely
by my thinking of that unification of seven and five” (ibid.,
B15). Rather, in order to establish that this judgment is true, we
must go beyond the concepts involved and bring in the aid of
intuitions to represent these concepts, for example, by producing
the relevant numbers of fingers or points. So arithmetical truths
are not grounded in facts about conceptual containment but
are “ampliative” and thus synthetic. The case of geometry is
analogous. To establish that the shortest line between two points
is straight, it is futile to contemplate the concepts involved in this

16
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truth. Instead we need to bring in intuition to draw—perhaps in
“pure imagination”—the shortest line between two points. We
can then perceive that this line is straight.

One of the central philosophical questions, according to Kant,
is how the new form of knowledge that he had identified—
the synthetic a priori—is possible. In particular, how can we
make sense of a science such as mathematics? In order to
answer these questions Kant finds it necessary to undertake his
famous “Copernican turn,” which ushers in his “transcendental
idealism.” Let me explain. On the ordinary, “pre-Copernican”
conception of knowledge, objects have their properties indepen-
dently of us, and our mental representations must conform to
these objects in order to count as knowledge. But according
to Kant, this conception is unable to accommodate synthetic
a priori knowledge. Since the knowledge is synthetic, it is
about objects; but if our representations must conform to their
objects, then these objects must somehow affect us, thus render-
ing the knowledge a posteriori. The only solution is to take the
Copernican turn:

If intuition has to conform to the constitution of the objects, then
I do not see how we can know anything of them a priori; but if the
object . . . conforms to the constitution of our faculty of intuition,
then I can very well represent this possibility to myself. (Ibid.,
Bxvii)

That is, we need to reverse the usual order of epistemic confor-
mity. It is only when we recognize that the world must conform
to “the constitution of our faculty of intuition” that we become
able to explain how arithmetical and geometrical truths can be
simultaneously synthetic and a priori. The claim is thus that, in
order to explain how mathematics is possible, we need to adopt
Kant’s transcendental idealism, which results from this reversed
order of conformity. Convincing or not, this is indisputably
one of the most dramatic episodes in Western thinking about
mathematics, which rivals Plato’s discussion in importance and
influence.
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1.7 AN OVERVIEW OF THE OPTIONS

A brief overview of the accounts of mathematics to be considered
in the book may be useful. Let us begin with views that assume
mathematical knowledge.What kind of knowledge is this? Kant’s
classification enables three possible answers.

One answer is that mathematical theorems are synthetic
a priori. This view can be combined with a “pre-Copernican”
metaphysics, as exemplified by Plato (to describe his view in
patently anachronistic terms), or with a “Copernican” meta-
physics, as exemplified by Kant himself and more recently the
intuitionism of L.E.J. Brouwer.

A second answer is that the theorems of mathematics are
a posteriori (and hence also synthetic, since all analytic truths are
a priori). As we have seen, this view contradicts a long tradition of
taking the epistemology of mathematics to be fundamentally dif-
ferent from that of the ordinary empirical sciences. This has not
prevented adventurous thinkers from exploring and defending
the view. An early example is John Stuart Mill, and a more recent
one, W. V. Quine. As we shall see, however, Quine’s preferred
option is to abandon Kant’s distinction between analytic and
synthetic.

The final option is that mathematical truths are analytic. Kant
regarded this option as hopeless. The concept of 12 is simply not
contained in the concepts of 7, 5, or addition. Kant may well
be right that mathematical truths aren’t analytic—according to
his own definition. But as noted, Kant’s official definition works
only for subject-predicate statements. These simple statements
figure centrally in the Aristotelian logic that still dominated at
Kant’s time and that Kant seems to have regarded as definitive
(1997, Bviii). The next dramatic episode in our story concerns
Frege, who is the father of the modern quantificational logic that
eventually superseded Aristotle’s. Frege’s new logic recognizes a
wealth of statements whose logical structure is far more complex
than those to which Kant’s official definition applies. This opens
up a promising new option. Perhaps some of these statements
should be seen as analytic, although they don’t qualify as such
by Kant’s definition. Perhaps the impoverished logic available at18
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Kant’s time resulted in a dramatic underestimation of the sphere
of analytic knowledge. This is precisely what Frege thought. He
pioneered the influential view known as logicism, which holds
that at least all truths about numbers—the naturals up through
the reals—are reducible to logic and thus analytic.

The following table summarizes our discussion so far.

analytic synthetic

a priori Frege Plato (pre-Copernican)
Kant, Brouwer (Copernican)

a posteriori � Mill, Quine

As mentioned, some views fall outside of this table because
they deny that mathematical theorems are true. The denial is
not quite as desperate as it may seem. No one is claiming
that all mathematical theorems are incorrect. The idea is rather
that mathematics, unlike most other sciences, operates with a
standard of correctness that is less demanding than truth. For
instance, a move in a game such as chess can be correct, although
it would be inappropriate to call it true. Indeed, many formalists
compare mathematics to a game. They deny that mathematical
sentences are meaningful and propose instead to understand
mathematics as the activity of proving pure formal theorems
from purely formal axioms. Moreover, some fictionalists view
mathematics as a useful fiction, where the standard of correctness
isn’t literal truth but truth according to some fiction.

1.8 SELECTED FURTHER READINGS

Shapiro (2000, esp. chaps. 1–4) provides a good general
introduction to philosophy of mathematics; Horsten (2016) is
a good shorter alternative. Plato’s Meno, especially 80a–86c,
and Kant (1997), especially the B-introduction §§I–V and
B740–752, are important historical texts. Parsons (1982) and
Friedman (1985) are influential discussions of Kant’s view of
arithmetic and geometry, respectively. 19
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Finally, let me mention some works that are relevant to
the book as a whole. Benacerraf and Putnam (1983) is an
indispensable collection of classic readings in the philosophy of
mathematics. Shapiro (2005b) contains valuable surveys of all
the main approaches to the subject. Surveys of a huge variety of
philosophical views, concepts, and traditions can also be found
in the excellent online Stanford Encyclopedia of Philosophy.
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CHAPTER TWO

Frege’s Logicism

FREGE’S PHILOSOPHY OF MATHEMATICS combines two tenets.
On the one hand, he was a platonist, who believed that abstract
mathematical objects exist independently of us. On the other
hand, he was a logicist, who took arithmetic to be reducible to
logic. This combination of tenets may seem surprising. It would
certainly have been unheard of to Kant, who insisted that objects
are “given to us” only through perception or intuition, never by
logic or reason alone. The combination also clashes with today’s
dominant conception of logic, which requires that logical truths
be true in all models, including ones devoid of any mathematical
objects. It follows immediately that the existence of mathematical
objects can never be a matter of logic alone.

In another respect, however, Frege’s combination of tenets
should seem quite natural. Although concerned with mathe-
matical objects, mathematical truths are extremely general in
their applicability. For example, things of absolutely any kind—
whether physical, psychological, or abstract—can be counted;
and the laws of arithmetic remain valid in any scenario that
is thinkable at all. As Frege liked to emphasize, the truths of
arithmetic and logic have in common that they govern “the
widest domain of all” (1953, §14).

2.1 RIGOR AND FORMALIZATION

It is useful to consider Frege’s emphasis on the extreme generality
of the truths of arithmetic against the background of mathemat-
ical developments in the nineteenth century. Ever since Euclid
(ca. 300 BCE), mathematics has relied heavily on the axiomatic
method. Some particularly self-evident or fundamental truths are
identified and given the status as axioms, that is, as first principles
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that need no proof but to which we can freely appeal in all
proofs of derived principles, known as theorems. This method
has proved immensely successful and is now an essential part of
mathematical practice.

In light of the axiomatic method, the epistemology of math-
ematics splits into one question about our knowledge of the
axioms and another question about our entitlement to the deduc-
tive reasoning used to derive the theorems. The former question
is at the heart of the philosophy of mathematics. Before the
nineteenth century, axioms were often justified merely on the
grounds that they are intuitively obvious. This intuitive obvi-
ousness was often a matter of some geometrical construction or
observation. A good example is the intermediate value theorem,
which says a continuous function that for some argument has
a value less than some number c and for another argument
has a value greater than c must for some argument have value
exactly c . This important principle of mathematical analysis used
to be regarded as intuitively obvious and requiring no proof.
Surely, any continuous function that begins on one side of some
horizontal line and ends up on the other side must at some point
intersect the line.

In 1817, the great Austrian mathematician, philosopher, and
theologian Bernard Bolzano (1781–1848) published what he
billed as a “purely analytical proof” of the intermediate value
theorem. Instead of regarding the theorem as basic and
adequately justified by an appeal to geometrical intuition,
Bolzano offered a logical analysis of continuity—much like
today’s epsilon-delta analysis—and used this analysis to produce
a proof of the theorem from precise logical assumptions about
the structure of the real numbers.1 This pioneering work was
motivated not by skepticism about geometrical intuition but
by a methodological desire to identify the most fundamental

1 On the epsilon-delta analysis, a function f is said to be continuous at an
argument a iff, loosely speaking, the value of f for arguments around a can be
made arbitrarily close to f (a) by ensuring that the argument is sufficiently close
to a; or, precisely speaking, iff for any ε > 0 there is a δ > 0 such that |x − a| < δ

ensures | f (x) − f (a)| < ε. (As customary, ‘iff’ is short for ‘if, and only if.’)22
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truths from which the theorem follows. The extant justification
could at best give the theorem a geometrical foundation, thus
limiting its range of validity to that of geometry. As Bolzano
realized, however, the theorem has a far greater range of validity.
Continuous functions are not the sole property of geometry but
can be found wherever one quantity depends on another.

Unfortunately, Bolzano’s progressive political and theological
views led to trouble with the authorities, severely curtailing his
ability to publish and thus limiting his influence. But other
nineteenth-centurymathematicians (notably Cauchy andWeier-
strass) proceeded to complete the program of methodological re-
form that Bolzano had inaugurated. The rigorization of analysis,
as the program is known, resulted in precise logical definitions
of the central concepts of continuity and limits, as well as the
now-standard constructions of the systems of rational, real, and
complex numbers. Just as Bolzano had envisaged, the effect was
a gradual elimination of appeals to geometrical intuition in favor
of far more abstract logical and analytical methods. This new
and more abstract foundation ensured a far greater range of
validity of the mentioned number systems and the mathematical
principles that govern them.

Frege’s academic career started at the height of this process of
rigorization, and he contributed to the project in two separate
ways. The first contribution, published in 1879, concerns the
reasoning that takes us from axioms to theorems. Until Frege,
this reasoning was largely informal and conducted in natural lan-
guages (often German or French), augmented withmathematical
symbols. Frege found this informality unacceptable. Even if our
axioms are “purely analytic,” how do we know that our proofs
haven’t tacitly relied on intuitive principles, thus compromising
the “purity” of our theorems and misleading us about the range
of their validity? “So that nothing intuitive could intrude here
unnoticed,” Frege wrote, “everything had to depend on the chain
of inferences being free of gaps” (1879, p. iii). Where there are
gaps, intuitive assumptions may intrude. Frege found it impos-
sible to enforce this requirement of gap-freeness in an informal
natural language. So he invented the first ever formal language,
his Begriffsschrift, or “conceptual writing.” In this language, he 23
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proceeded to lay down precise logical axioms and inference
rules, which take us from axioms or theorems already established
to further theorems. In short, Frege’s aim of gap-free proofs
led him to formulate what is now known as a formal system,
which is an artificial language with clearly formulated axioms and
inference rules, all described with mathematical precision.2 This
is arguably the greatest contribution to the axiomatic method
since Euclid. As we shall see, the notion of a formal system is
also essential to much subsequent theorizing about mathematics,
both philosophical and metamathematical.

The logic that Frege articulated is far stronger than the broadly
Aristotelian logic used by Kant. Frege identified—and laid down
logical principles governing—all the truth-functional connec-
tives and the quantifiers.

In fact, Frege recognized several different kinds of quanti-
fiers, which effect different kinds of generalization. First-order
quantifiers generalize into the position occupied by a singular
term or proper name, while the more controversial second-order
quantifiers generalize into the position occupied by a predicate.
Consider, for example, the claim that Socrates is mortal, symbol-
ized as Ms .While first-order logic allows us to infer that there is
someone who is mortal, ∃x Mx, second-order logic allows us to
infer that there is some “concept” (as Frege put it) under which
Socrates falls, ∃F F s .3

2.2 ANALYTICITY EXTENDED

Frege’s second contribution concerns the axioms, rather than
the reasoning from axioms to theorems. All of the earlier con-
structions of number systems took for granted the sequence of
natural number, namely 0, 1, 2, . . . . (This prompted Kronecker’s
famous quip that “God made the integers; all the rest is the work
of man.”) But what are these numbers, and what is the nature

2 Unlike the later formalists, however, Frege took this language to be mean-
ingful. Cf. §3.1.

3 See Shapiro (2005a) for an introduction to higher-order logic.24
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of our knowledge of them? These questions set the agenda for
Frege’s next major work, Foundations of Arithmetic. Motivated
by his conviction that the principles of arithmetic are just as gen-
eral as those of logic, Frege seeks to establish that these principles
are analytic and thus to overturn the influential Kantian view that
they are synthetic a priori.

For this to be so much as an option, Frege needs to extend the
Kantian definition of analyticity. He begins by emphasizing the
role of proof for the classification of knowledge. The classifica-
tion of some piece of knowledge as analytic or synthetic, a priori
or a posteriori, concerns not “the psychological, physiological
and physical conditions” that made it possible for us to grasp the
relevant proposition but rather “the ultimate ground on which
the justification for holding it to be true rests” (Frege, 1953, §3).
As Bolzano had emphasized, we need to find the best possible
proof, or justification, of the proposition and to examine the
nature of the assumptions on which this proof rests. If the proof
relies only on “general logical laws and definitions,” then the
proposition is analytic. But if the proof requires assumptions that
“belong instead to the domain of a particular science, then the
proposition is synthetic” (ibid.). Thus, in order to demonstrate
that arithmetic is analytic, Frege needs to provide proofs of its
principles that rely only on “general logical laws and definitions”
(ibid.).

It may be objected that Frege stacks the cards against Kant
by adopting a more inclusive definition of analyticity. Frege
anticipates the objection and insists that he has merely “stated
accurately” what Kant had inmind (ibid., §3, fn. 1). There is some
basis for the response. Kant sometimes characterized the analytic
truths as those that are based on the principle of contradiction.4
So when we realize that logic extends beyond this principle
and the Aristotelian logic associated with it, this extended logic
should be allowed to ground further analytic truths.

A more serious complaint, to which we shall return, is that
Frege has not told us nearly enough about the nature and extent
of his “general logical laws.”

4 See, e.g., Kant (1997, A151/B191); cf. §1.6. 25
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2.3 THE ANALYSIS OF NUMBER ASCRIPTIONS

How can we prove the principles of arithmetic on the basis of
“general logical laws and definitions”? As we have seen, Kant
denied that the concept of 12 is “contained in” the concepts of 7,
5, or addition. To do better, we need an analysis of the language
of arithmetic that is more discerning than Kant’s. Only then will
we have a chance to establish that the truths of arithmetic are
analytic.

A natural place to start is with number ascriptions, that is,
statements of the form “the number of Fs is so-and-so.” Frege
recognized the importance of the concept F to such number
ascriptions. “[I]n looking at the same external phenomenon,”
he observes, “I can say with equal truth ‘This is a copse’ and
‘These are five trees,’ or ‘Here are four companies’ and ‘Here
are 500 men’ ” (1953, §46). What changes in these examples
is not the “external phenomenon” but the concept—as Frege
calls the objective meaning of a predicate—that specifies what
we are counting. “This suggests . . . that a statement of number
contains an assertion about a concept” (ibid.). When I assert
“These are five trees,” for example, I am saying of the first-
level concept TREE that it is quintuply instantiated. Frege is
particularly pleased that “[t]he extensive applicability of number
can now be explained” as follows. Numbers are ascribed to
concepts, which can apply to absolutely all kinds of object, “the
physical and mental, the spatial and temporal, the non-spatial
and non-temporal” (ibid., §48).

The observation that numbers apply to concepts goes only
part of the way toward an analysis of number ascriptions. One
natural continuation would be to regard numbers as second-
level concepts that ascribe cardinality properties to first-level
concepts. For instance, “These are five trees” might be ana-
lyzed as “5x(TREE(x)),” much like “There is a tree” is analyzed
as “∃x(TREE(x)).” Frege subjects this analysis to a barrage of
objections. The most serious is that “[e]very individual number
is an independent object” and thus not a second-level concept.
As evidence, he points to

26
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the fact that we speak of “the number 1,” where the definite article
serves to class it as an object. In arithmetic this self-subsistence
comes out at every turn, as for example in the identity 1 + 1 = 2.
(Ibid., §57)

This argument has attracted much scholarly attention because of
its unusual mix of linguistic and metaphysical considerations.5
The premises involve linguistic considerations about how we
talk about numbers. But the desired conclusion is metaphysical,
namely that numbers are objects, not second-level concepts. That
is, the conclusion is an instance of what we earlier called “object
realism.”

In fact, we have already outlined how the argument is meant
to work (cf. §1.4). To spell things out further, we need to talk
about semantics, which is the branch of linguistics concerned
with meaning, reference, and truth—in short, with the relation
between language and the world. The Fregean argument, as I shall
call it, relies on the following two premises:

Classical Semantics. The singular terms of the language of
mathematics are supposed to refer tomathematical objects,
and its first-order quantifiers, to range over such objects.

Mathematical Truth.Most sentences accepted as mathemat-
ical theorems are true.

We now reason as follows. Consider sentences that are accepted
as mathematical theorems and that contain one or more math-
ematical singular terms. By Mathematical Truth, most of these
sentences are true. Let S be one such sentence. By Classical
Semantics, the truth of S requires that its singular terms suc-
ceed in referring to mathematical objects. Hence there are
mathematical objects.

In fact, the Fregean argument is far more general than Frege’s
preferred development of it. Frege’s own strategy was to defend
Mathematical Truth by showing mathematical theorems to be

5 Indeed, according to Dummett (1981, p. 14; 1991, pp. 111–12), this
argument initiated “the linguistic turn” in philosophy, which in turn marked the
birth of analytic philosophy. 27
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logical truths. As we shall see, however, alternative defenses of
this premise are possible as well.

2.4 HOW DO WE GRASP MATHEMATICAL OBJECTS?

Frege realizes that his conclusion that numbers are objects will
strike many readers as puzzling. So he goes on to consider some
questions. Some of these are easily answered. For example, the
question “Where is the number 4?” is answered simply by ob-
serving that “[n]ot every objective object [objectives Gegenstand]
has a location” (1953, §61). After all, numbers are abstract, not
concrete. But this answer prompts another, harder question:
“How, then, are numbers to be given to us, if we cannot have any
ideas or intuitions of them?” (§62). This is a version of what we
have called “the integration challenge” (cf. §1.5).6 Since numbers
cannot be perceived or tracked by means of instruments, how do
we manage to refer to them, let alone gain knowledge of them?

Frege’s response to this challenge takes us right to the heart of
his philosophy:

Only in the context of a sentence do words have meaning. We
must, therefore, define the sense of a sentence in which a number-
word occurs. (Ibid., §62)

This requires some unpacking. First, Frege states that the mean-
ings of words need to be explained in the context of complete
sentences. Only complete sentencesmake claims capable of being
true or false, and themeaning of a word is a matter of its potential
to contribute to the expression of such claims. This has become
known as the context principle. Next, Frege applies the context
principle to the question of how the numbers are “given to us.”
This is a semantic question about how number terms come to
refer to numbers. By the context principle, this question cannot

6 These concerns remained high on Frege’s agenda. For example, in Frege
(2013, II, §147) we read: “If there are logical objects at all—and the objects of
arithmetic are such—then there must also be a means to grasp them, to recognise
them.”28
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be answered in isolation, outside of any sentential context. The
question must instead be answered by explaining how sentences
containing number terms come to be meaningful. In this way,
Frege hopes, the context principle will transform the question
about our semantic and epistemic “access” to numbers into an
easier question about the meanings of arithmetical sentences.

Arithmetical identities are particularly important, Frege
thinks. So our first task is to explain their meanings. Frege’s
explanation relies on his view that numbers are ascribed to con-
cepts. This makes identities of the form “the number of F s = the
number of Gs”—or in symbols, “#x F x = #x Gx”—especially
important.7 Putting things together, the original problem of
explaining how the numbers are “given to us” is thus transformed
into the problem of explaining the meanings of identities of
the form “#x F x = #x Gx.” The meanings of other sentences
involving number terms can be explained later.

Frege proposes a brilliant analysis of the mentioned identities.
He proposes that themeaning of “#x F x = #x Gx” be “recarved”
as the claim that the F s and the Gs can be one-to-one correlated.
What it means for the number of knives on a table to be identical
with the number of forks, for example, is that each knife is
correlated with a unique fork and vice versa. This analysis is
attractive. It seems to avoid all use of the number terms whose
meaning we are trying to explain. All that the analysis requires
are the resources to express that the F s and the Gs can be one-to-
one correlated. And these resources are available in pure second-
order logic, where a second-order quantifier can be used to state
that there is a relation that one-to-one correlates the F s and
the Gs. Thus, Frege’s proposed analysis seems both noncircular
and purely logical.

The proposed analysis is encapsulated in the principle

(HP) #x F x = #x Gx ↔ F ≈ G

7 To be precise about the syntax: the operator ‘#x’ applied to any formula
ϕ, binds any free occurrence of ‘x’ in ϕ, thus producing the singular term ‘#x ϕ’
(which may be read as “the number of x’s such that ϕ”). 29
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where ‘F ≈ G ’ abbreviates the mentioned claim about one-to-
one correlations, or, as we shall put it, that the F s and the Gs
are equinumerous. Because Frege claims to be taking a cue from
Hume, this has become known as Hume’s Principle.8

Principles such as Hume’s are known as abstraction principles.
This terminology requires some explanation. According to the
philosophical tradition, to abstract is to “extract” from a class of
things a feature that these things have in common when they are
equivalent in some respect. For instance, we abstract the color
red from a collection of things that are chromatically equivalent.
Hume’s Principle lends itself to an analogous interpretation. One
way in which concepts can be equivalent is by being equinumer-
ous. When we abstract on concepts that are equivalent in this
respect, we obtain their cardinality or number. There are many
other abstraction principles as well. A favorite example of Frege’s
describes how directions can be abstracted from lines:9

(Dir) d(l1) = d(l2) ↔ l1 ‖ l2
That is, a direction is the feature that two lines have in common
just in case they are parallel.

How should we understand the “extraction” of a common
feature that is shared by all the equivalent things? One traditional
account is concerned with the psychology of concept formation.
By perceiving many lines and observing that they are parallel
to one another, we “extract” the concept of their direction.
Frege is hostile to this psychological account, however, and tries
to articulate a purely logical alternative, based on his idea of
“recarving of meaning.” Consider the abstraction principle (Dir).
Each instance of its right-hand side has an antecedently available
meaning. This meaning is “carved up” in a new way by the
corresponding instance of the left-hand side, which refers to a

8 It would have been more appropriate for Frege to cite his contemporary
Georg Cantor, who used the principle in his groundbreaking and profound
analysis of infinite (cardinal) numbers; cf. §4.2.

9 Admittedly, we would obtain a better fit with our ordinary concept of di-
rection by considering instead directed lines or line segments and the equivalence
relation of “co-orientation,” defined as parallelism plus sameness of orientation.
But since all philosophical considerations remain unchanged, we shall not bother.30
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new kind of object—namely directions—that are not mentioned
on the right-hand side.

Since this logical account of abstraction is novel, Frege pro-
ceeds to discuss some objections. First, he reminds us that the
“recarving of meaning” does not assign a new sense to the iden-
tity symbol but uses it in its familiar sense. But as Frege observes,
this sets him up for a second objection. Doesn’t the “recarving”
run the risk of violating the familiar laws of identity? Assume, for
example, that a = b and b = a are “recarved” as two statements
ϕ and ψ , respectively. Since the former two statements are
logically equivalent, so too should be their “recarvings.” This
is ultimately a technical question, which accordingly receives a
technical answer. So long as the relation on which we abstract is
an equivalence, Frege demonstrates, there will be no problems as
far as logic is concerned.10 We shall return to a final and more
philosophical objection in §2.7.

2.5 SOME FORMS OF REALISM

Let us digress briefly to reflect on some different forms of realism
about mathematics. As explained in §1.4, object realism is the
view that there exist mathematical objects. Another form of
realism is concerned, not with the question of what there is, but
with objectivity:

Truth-value realism. Every well-formed mathematical statement
has a unique and objective truth-value which is independent
of whether it can be known by us or proved from our current
mathematical theories.

Frege accepts both forms of realism. As we have seen, he
compares mathematicians with geographers, who discover new
continents whose existence and characteristics are independent
of us.

10 A relation is said to be an equivalence just in case it is reflexive, symmetric,
and transitive. 31
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Is there any relation between object realism and truth-value
realism? In sciences other than mathematics, there certainly is.
Statements about birds and planets, for example, are true or
false because of the objects with which they are concerned and
these objects’ perfectly objective properties. Birds and planets
thus figure in the explanation of the objectivity of statements
concerned with such objects. The objects, in short, underpin the
objectivity of the relevant discourse. What about mathematics?
Platonism, we recall, holds that abstract mathematical objects
are just as real as ordinary physical objects and play analogous
roles in their respective sciences (cf. §1.4). This suggests the
same order of explanation as above, namely that mathematical
objectivity is underpinned by the existence of mathematical
objects, which secure and explain the objective truth-values of
statements concerned with such objects.

Frege rejects this order of explanation. He takes questions
about the meaning of complete sentences to be explanatorily
prior to questions about the reference of singular terms. On this
view, the existence of mathematical objects is to be explained in
terms of the objective truth-conditions of statements concerned
with such objects rather than the other way round. Mathematical
objects are never “given to us” directly, only via meaningful state-
ments about them. A particularly radical form of this alternative
order of explanation is encapsulated in Georg Kreisel’s famous
dictum that “the problem is not the existence of mathematical
objects but the objectivity of mathematical statements.”11

In sum, while Frege endorses both object realism and truth-
value realism about mathematics, he stops short of full-fledged
platonism. He reverses the platonist’s view of the relative ex-
planatory priority of mathematical objects and mathematical
objectivity.12

11 As reported by Dummett (1978b, p. xxxviii; see also 1981, p. 508). The
remark of Kreisel’s to which Dummett is alluding appears to be from a 1958
review (Kreisel, 1958, p. 138, fn. 1, which is rather less memorable than
Dummett’s paraphrase).

12 Two other respects in which object realism can be weaker than platonism
are discussed in §§4.4 and 5.2.32
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2.6 FREGE’S THEOREM

Frege’s logicist project of reducing arithmetic to pure logic
seemed to be going well. With his discovery of modern quantifi-
cational logic, there was reason to think that Kant had underesti-
mated the sphere of analytic truths (cf. §§2.1–2.2). To show that
the truths of arithmetic are analytic, Frege needed first to provide
an analysis of these truths, and next to show that, thus analyzed,
they can be proved from purely logical principles. We have seen
the key elements of the requisite analysis, namely Frege’s analysis
of number ascriptions and his sophisticated account of Hume’s
Principle (cf. §§2.3–2.4). We shall now complete the techni-
cal part of the story, before returning to some philosophical
concerns.

What exactly is the arithmetical theory that Frege wished to
reduce to pure logic? The target theory is what is now known as
second-order Dedekind-Peano arithmetic. This is an arithmetical
theory that is formulated in a second-order language with three
(for now) nonlogical symbols: a constant ‘0’ for the number
zero and predicates ‘P xy’ and ‘Nx,’ stating that x immediately
precedes y and that x is a natural number, respectively. The
theory has the following axioms:13

(1) N0
(2) Nx ∧ P xy → Ny
(3) Nx ∧ P xy ∧ P xy′ → y = y′

(4) Ny ∧ P xy ∧ P x ′y → x = x ′

(5) Nx → ∃y P xy
(6) ∀F (F 0 ∧ ∀x∀y(Nx ∧ F x ∧ P xy → F y) →

∀x(Nx → F x)
)

To reduce this theory to pure logic, Frege’s first task is to pro-
vide a logical analysis of the three symbols still left unanalyzed.
He begins by observing that zero is the number that applies to
concepts under which no objects fall. This suggests that ‘0’ be
defined as ‘#x(x 	= x),’ that is, as the number of objects that are

13 A variant of the theory is presented in §11.2. 33
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distinct from themselves. Next, what about the relation of one
number immediately preceding another? This is simple enough
to explain to a young child. Suppose you have some objects F
and remove one of them, say a. Then the number of things
left immediately precedes the number of things with which you
started. This means that ‘P xy’ can be defined as

∃F ∃a (F a ∧ x = #u(F u ∧ u 	= a) ∧ y = #u F u)

Finally, there is the concept of being a natural number. Infor-
mally, we often say that x is a natural number just in case x = 0,
or x = 1, or . . . . But clearly, the ellipsis ‘. . . ’ would not have
satisfied Frege. So he shows us how to do better. Say that a
concept F is hereditary—abbreviated as Her (F )—just in case it
is inherited under the predecessor relation:

∀x∀y(F x ∧ P xy→ F y)

Frege proposes that ‘Nx’ be defined as

∀F (F 0 ∧ Her (F )→ F x)

In words: x is a natural number just in case it has every hereditary
property had by zero.

Does Frege’s approach to the first task succeed? As we have
seen, his definitions use only logical vocabulary and the number-
of operator ‘#.’ So the answer will depend on whether this
operator can be regarded as purely logical.

The second task is to show that Frege’s definitions transform
all the arithmetical axioms into theorems of logic. Unfortunately,
Frege is not very explicit about how he understands “logic.”
He appears to be attracted to the idea that abstraction prin-
ciples such as Hume’s qualify as logical. Assume this idea is
right. Then Frege does what it takes to complete his logicist
project: he outlines proofs of all the axioms of Dedekind-Peano
arithmetic fromHume’s Principle and the mentioned definitions
(§§74–82). Since his proofs have been spelled out and confirmed,
the result is known as Frege’s theorem. It is an amazing result.
For more than a century now, informal arithmetic has been
given a Dedekind-Peano style axiomatization, where the natural
numbers are characterized in terms of their position in the34
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number sequence. Frege’s theorem shows that an alternative
and conceptually completely different axiomatization is possible,
where the natural numbers are characterized in terms of the
concepts whose numbers they are.14

We conclude that, relative to the assumption that Hume’s
Principle qualifies as logical, Frege’s logicism is a success.

2.7 DISASTER

Once this assumption is probed, however, the sense of success
begins to crumble. One problem surfaces in §66. As we have seen,
Hume’s Principle assigns a meaning to every identity statement
of the form “#x F x = #x Gx.” But it does not assign a meaning
to identities of the form “#x F x = t,” where ‘t’ is a nonarithmeti-
cal singular term such as ‘Julius Caesar’ or a free variable. The
worry may seem pedantic. Isn’t it obvious that Caesar is distinct
from every natural number? Perhaps. But even if so, this isn’t
something that Hume’s Principle tells us. The principle remains
silent on this class of sentences and thus fails to assign meanings
to all sentences involving number terms.

Frege’s fix was to provide an explicit definition of the
numbers. To do so, he followed the lead of contemporary
mathematicians such as Dedekind, who had discovered how to
handle abstraction by equivalence classes rather than abstraction
principles. Consider the case of directions. Instead of accepting
directions as a distinct kind of object, we may identify the
direction of a line l1 with an equivalence class, namely the class
of all lines l2 that are parallel to l1. It is straightforward to show
that the principle (Dir) can now be derived and is thus not
needed as an axiom. Frege suggested we apply the same strategy
to numbers. There is no need to regard Hume’s Principle as
an axiom governing numbers understood as a distinct kind of
object. It suffices to define the numbers as equivalence classes.

14 In the terminology of §4.2, the Dedekind-Peano axiomatization views the
numbers as finite ordinals, while Frege’s approach views them as finite cardinals. 35



Chapter Two

We may for example define #x F x as the class of concepts that
are equinumerous with F :

#x F x = {G | F ≈ G}
Hume’s Principle can now be derived and need not figure as
an axiom. As before, the axioms of Dedekind-Peano arithmetic
follow logically by means of Frege’s theorem.

For Frege’s revised strategy to work, however, we need a
purely logical way to handle equivalence classes. Frege sought
to achieve this by means of an abstraction principle for classes,
namely his “Basic Law V,” which states that two concepts have
the same extension just in case they are coextensive. Let us write
{x | F x} for the extension of the concept F . The law is then
formalized as follows:15

(BLV) {x | F x} = {x |Gx} ↔ ∀x(F x ↔ Gx)

Frege’s logicism had thus developed into a project of reducing
all of arithmetic to Basic Law V, which he regarded as a logical
principle. Whatever its other merits, this reduction has an ap-
pealing generality. Given any abstraction principle, we can define
its abstracts as the appropriate equivalence classes and derive the
principle from Basic Law V, using this definition. Basic Law V
can thus be regarded as “the mother of all abstractions.” Given
this single abstraction principle, all the others follow.

But in 1902 disaster struck. Just as the second volume of his
magnum opus, Grundgesetze, was going to press, Frege received
a letter from the great logician and philosopher Bertrand Russell
(1872–1970), who reported that he had “encountered a difficulty”
with Frege’s theory.16 The “difficulty” is now known as Russell’s
paradox. As Frege knew, a membership predicate “x ∈ y” can be
defined as “∃F (y = {u | F u} ∧ F x).” That is, x is a member of
y when y is the extension of a concept F under which x falls.
Consider now the Russell class r , defined as {x | x 	∈ x}. Is r a
member of itself? The answer is affirmative just in case r satisfies

15 Is this law too subject to a “Caesar problem”? Frege eventually concluded
that it is and proposed a solution (2013, §10).

16 Their correspondence is reprinted in van Heijenoort (1967).36
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the membership criterion, namely not to be a member of oneself.
This yields the contradictory answer that r is a member of itself
just in case it is not. In a hastily written appendix, Frege proposed
a fix, which was later shown to be inconsistent as well, assuming
there are at least two objects. Around 1906, Frege seems to have
given up on the reduction of arithmetic to logic.

After this disappointing turn of events, Fregean logicism lay
dormant for the better part of a century. But there have recently
been attempts to revive parts of it. The leading proposal, due
to Wright (1983), is to revert to the idea of adopting Hume’s
Principle as an axiom with a privileged, if not exactly logical,
status. The fatal appeal to Basic Law V is thus avoided. We shall
return to this proposal in Chapter 9, where we shall also discuss
further Frege’s intriguing idea that abstraction principles effect a
“recarving of content.”

SELECTED FURTHER READING

Relevant texts by Frege include the preface to Begriffsschrift
(1879, available in Beaney (1997)) and Foundations of Arith-
metic (1953, esp. introduction, §§1–4, 55–91, and 106–9). Boolos
(1998) is an accessible general introduction, while Heck (1999)
is a good introduction to Frege’s theorem. Further important
secondary literature includes Dummett (1991, esp. chaps. 10, 11,
and 14), as well as Wright (1983, esp. §§i, ii, iii, v, and viii).
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CHAPTER THREE

Formalism and Deductivism

3.1 A PURELY SYNTACTIC ALTERNATIVE?

As we have seen, Frege revived aspects of the ancient platonistic
conception of mathematics. In stark contrast to Plato, however,
Frege coupled this conception with an attempt to reduce arith-
metic to logic. If successful, this reduction would have made
platonism more defensible, at least as concerns arithmetic. But
Frege’s project ended in disaster. It is time to investigate whether
we can resist the push toward platonism that moved Frege. It
would be nice to give an account of mathematics that avoids all
philosophical speculation and is based solely on its incontrovert-
ible aspects.

One such aspect of mathematics is its concern with proof.
Indisputably, mathematicians prove theorems from axioms.
And since proofs consist of strings of symbols, they can be
described and studied in a purely syntactic way, thus avoiding
all philosophical speculation. Surely, one may think, this would
be preferable to speculation about abstract objects laid out in
“Plato’s heaven.” As Frege’s colleague in Jena, the mathemati-
cian Carl Johannes Thomae, put it, “[t]he formal point of view
elevates us above all metaphysical difficulties” (quoted in Frege
(2013, §89)). This sentiment motivates the approaches to mathe-
matics that will occupy us in this chapter.

Some definitions will be important throughout our discus-
sion. First, we need to distinguish between syntax and semantics.
Syntax is the study of linguistic expressions abstracted from
any meaning they may have. The expressions are understood
as mere strings of characters. Semantics, by contrast, has
meaning as its primary concern. It is the study of the truth,
reference, and linguistic meaning that can attach to linguistic
expressions.
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Frege’s notion of a formal system enables a strictly syntactic
conception of a proof as a string of formulas, which starts
with a formula found on a list of axioms and every step of
which involves either another such formula or else a formula
obtainable from earlier members of the list by means of some
syntactic operation from a list of rules of inference (cf. §2.1).
Thus understood, a proof can be mechanically verified by a
computer that knows nothing about the meaning of the formulas
in question, if any. Reasoning in a formal system is thus like
playing a game with formulas—which, as far as the game is
concerned, might well be meaningless—subject to rules given by
formally characterized axioms and rules of inference.

Formalism is the view that mathematics has no need for
semantic notions, or at least none that cannot be reduced to
syntactic ones. We shall in this chapter consider two versions of
the view, as well as a kindred but more subtle view known as
deductivism, which emphasizes mathematics’ concern with the
deduction of theorems from axioms.

Frege’s relation to formalism is a curious one. He regarded
the view as badly mistaken. Yet any proper articulation of the
view requires Frege’s own notion of a formal system, which
makes available the strictly formal conception of proof. In fact,
there is no tension here. Frege was a proponent of the
axiomatic method and formalization, which make it possible
to assess the logical correctness of a proof without taking into
account the meaning of its formulas. But it is one thing to be able
to abstract from meaning for certain purposes, and quite another
to deny that the formulas are meaningful at all. Frege valued the
former but abhorred the latter. We must distinguish between
an expression’s being meaningful, or “contentful” (from the
German inhaltlich), and its being merely formal, or “empty.” As
Frege understood very clearly, meaningfulness is no obstacle to
formalization.

Three final distinctions are needed. When discussing formal-
ism, it is important to distinguish between use and mention.
For example, ABBA is a pop group, while ‘ABBA’ is a name.
In the former clause, the expression ‘ABBA’ is used to refer
to a nonlinguistic item, while in the latter, the expression is 39
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mentioned to make a claim about this very expression. The
use-mention distinction is particularly important as it applies
to arithmetic. For example, ‘1’ is a numeral (or number sign),
whereas 1 is a number. Last, howmany letters does the expression
‘ABBA’ contain? Depending on how we count, the answer may
be either two or four. The expression contains two letter types,
each of which has two occurrences. But it contains four letter
tokens, that is, four printed characters, each with its distinct
spatial location.

3.2 GAME FORMALISM

One version of formalism latches on to the comparison of a
formal proof with a game played with syntactic expressions.
According to game formalism, this is all there is to mathematics.
That is, mathematics revolves around formal systems, which
are syntactical games played with meaningless expressions. As
Thomae put it:

[A]rithmetic is a game with signs which one may well call empty,
thereby conveying that (in the calculating game) they do not have
any content except that which is attributed to them with respect
to their behaviour under certain combinatorial rules (game rules).
A chess player makes use of his pieces in a similar fashion.
(Quoted in Frege (2013, §88))

If acceptable, this conception of arithmetic would indeed
“elevate us above” most “metaphysical difficulties.” As Frege
observes, “[i]n formal arithmetic, we do not need to justify
the rules of the game; we simply lay them down” (ibid., §89).
There can be a question of justification only where a claim
has been expressed, not where we are dealing with meaningless
expressions.

While its potential advantages are clear, game formalism
faces some serious challenges. The most immediate concern is
that the analogy on which the view is founded is problem-
atic. The language of mathematics appears to be meaningful.
When you read an arithmetical sentence, for example, you seem40
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to understand what it says. And this understanding seems to
guide you when you later attempt to prove the sentence.
Nowhere does the apparent meaningfulness of mathematical
language come across more clearly than in connection with
what we may call “preformalized” mathematics. Arithmetic, for
example, was practiced for millennia before “the rules of the
game” were finally made explicit in the 1880s in the form of
the Dedekind-Peano axioms. The existence of highly developed
mathematical reasoning in the absence of any clear set of “rules”
suggests that mathematicians are often guided by the meaning
of their sentences, not just by formal rules. Indeed, it is often
by reflecting on what they have in mind that mathematicians
are able to formulate and eventually adopt axioms that describe
the relevant structure. For example, it is because the language
of arithmetic is about what we shall later call a “simply infinite
system” that the Dedekind-Peano axioms make sense and were
eventually adopted (cf. §11.2).

Two further objections to game formalism were developed
by Frege. The most famous one concerns how mathematics is
“distinguished from a mere game” (1953, §90). Students are
required to learn mathematics but not chess. And many grown-
ups are paid good money for doing mathematical research,
while few are paid to play chess. Why? Thomae’s answer is
that mathematics “can perform an essential service for us in the
knowledge of nature” (quoted in §88). He is surely right that
mathematical theories have useful applications. However, is this
something that a game formalist is able to explain? Frege thinks
not:

If we do not look beyond [formal arithmetic’s] boundaries, then
its rules seem as arbitrary to us as those of chess. The applicability
cannot, however, be a coincidence; but in formal arithmetic we
spare ourselves any account of why we lay down the rules in
exactly this way and not in any other. (ibid., §89)

As Frege observes, the applicability of arithmetic is not a co-
incidence or something that we stumble upon once the game
is up and running. It is an entirely predictable consequence of
what arithmetical sentences mean. They express thoughts about 41
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cardinality, which is a property that applies to the world via the
concepts that specify what we are counting. As Frege puts it:

Why can one make applications of arithmetical equations? Solely
because they express thoughts. . . .Now, it is applicability alone
which elevates arithmetic above a game to the rank of a science.
(ibid., §91)

A sophisticated game formalist might respond to Frege’s
objection as follows. “Okay, I concede that we have to account
for the applicability of arithmetic. But why should this require
that arithmetical theorems be true? It suffices that the rules
governing the formal game of arithmetic are accompanied by
bridge principles that relate arithmetical formulas to meaningful
statements about the real world, and that these bridge principles
are set up so as to ensure that an appeal to an arithmetical
theorem will never lead us astray concerning the real world.”

A simple example shows how the idea might be developed.1
Assume we have the following:
(1) There is precisely one dog. (That is, ∃x(DOG(x)∧

∀y(DOG(y) → x = y)).)
(2) There is precisely one cat. (That is, ∃x(CAT(x)∧

∀y(CAT(y) → x = y)).)
(3) Nothing is both a dog and a cat. (That is,

¬∃x(DOG(x) ∧ CAT(x)).)
Now we wonder how many things there are that are either a dog
or a cat. A brilliant way to answer this question is by setting up
the applied arithmetic game. First, we introduce bridge principles
that link these zoological assumptions with some purely formal
sentences of applied arithmetic:

(1∗) #x DOG(x) = 1
(2∗) #x CAT(x) = 1
(3∗) #x(DOG(x) ∧ CAT(x)) = 0

Next, we invoke a trivial theorem of formal arithmetic:

(4∗) 1 + 1 = 2

1 The example is due to Putnam (1967b).42
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Finally, we adopt an inference rule that allows us to conclude
from premises #x F x = m, #x Gx = n, and #x(F x ∧ Gx) = 0
that #x(F x ∨ Gx) = m + n. Using this rule, (1∗) through (4∗)
entail

(C∗) #x(DOG(x) ∨ CAT(x)) = 2

We can now use a bridge principle to extract the real content of
our formal conclusion (C∗):

(C) There are precisely two things that are either a dog or a
cat. (That is, ∃x∃y((DOG(x) ∨ CAT(x)) ∧ (DOG(y)∨
CAT(y)) ∧ x �= y ∧ ∀z(DOG(z) ∨ CAT(z) → z =
x ∨ z = y)).)

The sophisticated formalist response can now be expressed
as follows. The arithmetical theorem (4∗) need not be true to
make a useful contribution. All that matters is that (4∗)—and the
rest of the applied arithmetic game—never lead us astray. And
this guarantee can be had. As is well known, (C) follows in first-
order logic from premises (1), (2), and (3). So the detour via the
bridge principles and (4∗) can be eliminated. But this first-order
derivation requires a lot of work. And things get much worse
when the numbers involved are larger. The alternative derivation
of (C)—over the bridge to formal arithmetic, an easy application
of a trivial theorem, and back over the bridge to a claim about
the real world—is far easier. In particular, this alternative strategy
remains easy even when the numbers involved are larger.

How Frege might defend himself against this response is
unclear. He might insist that the bridge principles endow the
arithmetical sentences with some form of meaning, and that the
response therefore goes beyond game formalism. But this does
not go to the heart of the matter. A lethal opponent is no less
dangerous if found to fight under a different flag. Some more
robust defenses will be discussed in Chapter 7, where we shall
examine a generalization (due to Hartry Field) of the response to
Frege.

Frege’s second objection to game formalism concerns the
consistency of the games that mathematicians allegedly play.
Surely, it is part of mathematicians’ responsibility to ensure 43
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that the games they offer to lay people and scientists at the
very least are consistent. Otherwise the games would be useless,
and “the consumers” of mathematics would have a legitimate
complaint against “the producers.” Now, how can mathemati-
cians discharge this responsibility? As Frege observes, just as we
must distinguish between the game of chess and a mathematical
theory of all the ways in which this game might be played, we
must distinguish between a formal game and a mathematical
theory of this game. This mathematical theory might for instance
investigate whether we can derive ‘0 = 1’ in the game, or whether
the game can be extended in certain ways without collapsing to
inconsistency. Frege makes the astute observation that we are
here looking at contentful assertions about the game! That is,
unlike the formal game itself, the mathematical theory of the
game yields contentful theorems about what can and cannot be
done in the game (1953, §93). This leaves game formalism with
a dilemma. Either mathematicians can shirk their responsibility
and refuse to vouch for the consistency of the theories that they
promulgate, or else they can assume this responsibility but must
then admit at least as much contentful mathematics as is required
to develop the mathematical theory of the relevant games.

This is a powerful objection. The most sophisticated de-
scendant of formalism that we shall encounter, namely that of
Hilbert’s program, opts for the second horn of the dilemma (cf.
§4.1). In doing so, pure game formalism has been left behind.

3.3 TERM FORMALISM

As we defined it, formalism seeks either to banish all semantic
notions from mathematics or else to reduce any such notions
to purely syntactic ones. While game formalism pursues the
former alternative, term formalism pursues the latter. Mathe-
matical singular terms are now allowed to denote themselves.2

2 This obliterates the use-mention distinction for mathematical singular
terms because we have 0 = ‘0’ and likewise for the other numerals.44
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The mathematician H. E. Heine (1821–81) expresses the view as
follows.

I take a purely formal point of view by calling certain tangible signs
numbers, so that the existence of these numbers is not in question.
(Quoted in Frege (2013, §87))

Historically, a major motivation for this view was to defend the
existence of the imaginary number i , whose square is −1. If this
number can be identified with a letter, its existence is surely
not in question! But as Frege observes, this has the surprising
consequence that numerals are “no longer external auxiliaries,
like blackboard and chalk; rather, they comprise the essential
components of the theory itself” (ibid).

What about the function symbols of arithmetic, such as ‘+’
and ‘×’? These are defined by means of rewrite rules that allow us
to rewrite numerals in a different way. Write ‘S ’ for the syntactic
operation that rewrites one numeral as the numeral that directly
succeeds it. Thus, ‘S(2)’ can be rewritten as ‘3.’ We formalize
this as S(2)� 3. Next, ‘+’ and ‘×’ are governed by the following
rewrite rules:

m + 0� m
m + S(n)� S(m + n)

m × 0� 0
m × S(n)� (m × n) + m

For example, ‘2 + S(1)’ can be rewritten as ‘S(2 + 1).’ The
rewrite rules enable us to compute with the numerals. We can
for example demonstrate that 2 + 2 = 4:

2 + 2� 2 + S(1)� S(2 + 1)� S(2 + S(0))
� S(S(2 + 0))� S(S(2))� S(3)� 4

Term formalism is better placed than its more playful cousin
to answer the problems discussed in the previous section. First,
there was the problem that arithmetical formulas seemmeaning-
ful. As we have seen, term formalism allows such formulas to
have a kind of content. For instance, ‘2 + 2 = 4’ says that the
former numeral can be reduced to the latter. This insight can
be generalized. An arithmetical equation s = t can be seen as 45
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stating that there is a computation that reduces one of the terms
to the other. Thus interpreted, the truth of the equation consists
in there being such a computation.

The next problem concerns applicability. Let us reflect on
how counting works. When we count, we produce a one-to-one
correlation between the things to be counted and the numerals,
starting with ‘1.’ The numeral correlated with the last thing to be
counted is said to “give the number” of the things in question.
Notice that there is nothing in this account that a term formalist
cannot accept. Next, we observe that each of our three arithmeti-
cal operators corresponds in a natural way to an operation on
the things being counted. The successor operator ‘S ’ corresponds
to the operation of adding one thing to a collection. The reason
is simple. By outputting the next numeral, this operation “gives
the number” of the new and increased collection, on the assump-
tion that the input numeral “gave the number” of the original
collection. The addition sign ‘+’ corresponds to combining two
disjoint collections. To see this, assume that two numerals m̄ and
n̄ “give the number” of two disjoint collections, respectively.3 The
rewrite rules governing ‘+’ have been designed so as to ensure
that ‘m̄ + n̄’ will “give the number” of the new and combined
collection. Finally, the multiplication sign ‘×’ corresponds to a
kind of repeated combination of disjoint collections. Consider
some collections such that m̄ “gives the number” of members of
each of the collections, and n̄ “gives the number” of the collec-
tions themselves. (It is useful to imagine the things as laid out
in n rows, each with m members.) The rewrite rules governing
‘×’ have been designed so as to ensure that ‘m̄ × n̄’ will “give the
number” of the new collection that results from combining all of
the given collections. In short, by granting to arithmetical terms
and equations this simple form of meaning, as concerned with
syntactical signs and operations, the term formalist makes strides
toward an explanation of the applicability of arithmetic.

The term formalist is not yet out of the woods, however.
Several problems remain. One is that the proposed analysis of
the language of arithmetic isn’t obviously correct. Consider for

3 As usual, m̄ is themth numeral in the relevant notation system.
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instance the identity sign ‘=,’ whose meaning is ordinarily such
that an identity statement is true just in case the singular terms
that flank the identity sign refer to one and the same object.
According to a term formalist, however, ‘2 + 2 = 4’ is true
although the two singular terms involved refer to distinct objects,
namely themselves. The term formalist is thus committed to the
view that the identity sign is ambiguous. It means something
different in the context of arithmetic than when talking about
the physical world.

Next, no account has been provided of the quantifiers that
figure in arithmetical language. It might be tempting to rewrite
a universal generalization ∀n ϕ(n) as the infinite conjunction of
instances ϕ(0), ϕ(1), and so on. But this is not an option, given
our finite capacities. And no other rewrite rule is available that
is guaranteed to reduce each quantified formula to some simpler
formula.4 This places severe limits on the potential scope of the
term formalist account.

Finally, we need infinitely many numerals for the account to
work. Should these numerals be understood as types or tokens?
There is no evidence that infinitely many numeral tokens exist.
As Frege observes, “[w]e have neither an infinite blackboard, nor
infinitelymuch chalk at our disposal” (2013, §123). The numerals
must accordingly be understood as types.5 But linguistic types
are abstract objects. For instance, although the type ‘ABBA’ is
instantiated on the paper or screen that you are currently perceiv-
ing, it is not located there, or anywhere else for that matter. This
abstractness means that some of the philosophical puzzles that
we set out to avoid have not been completely eliminated. There
may nevertheless be progress. Linguistic types are quasi-concrete,
in the sense that they have canonical instantiations in space and
time, in contrast to pure abstract objects, which do not.6 And we
may well get some epistemic handle on quasi-concrete objects via
their canonical instantiations.

4 However, we can get part of the way, as we shall see in §5.4.
5 If not, a further problem arises as well, namely that ‘0 is larger than 1’

threatens to come out true (not false, as it should) on the grounds that the former
numeral token is larger than the latter.

6 See Parsons (1980), to whom the distinction is due, as well as §8.4 below.
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Let us take stock. By granting arithmetical expressions some
form of meaning, term formalism makes some progress. In
particular, it becomes possible to formulate a promising account
of the applicability of at least quantifier-free arithmetic. But the
account has limited scope and leaves some hard semantic and
metaphysical questions unanswered.

3.4 DEDUCTIVISM AND THE STRUCTURAL
APPROACH TO MATHEMATICS

Deductivism (sometimes also known as if-then-ism) is the view
that pure mathematics is the investigation of deductive conse-
quences of arbitrarily chosen sets of axioms in some formal and
uninterpreted language. Just like game formalism, deductivism
grants mathematicians a huge amount of freedom in the choice
of which formal systems to investigate. The liberalism is most
extreme in the case of game formalism, which holds that our
choice is constrained only by a requirement of consistency—
and perhaps by half an eye on which games the consumers
of mathematics find useful when pursuing their various affairs.
Deductivism is less extreme. It agrees that we are completely
free to choose our axioms, subject to the minimal requirement
of consistency. But deductivists deny that we have the same
freedom concerning the rules that allow us to move from axioms
to theorems. Deductivists insist that these rules be deductively
valid. This insistence makes deductivism a far more powerful
view than game formalism. As we shall see, it allows deductivists
to assign some form of meaning to mathematical formulas and
thus to explain their applicability. In order to explain these ad-
vantages of deductivism over game formalism, we first need some
background from the history and methodology of mathematics.

Let us begin with the distinction between an abstract math-
ematical structure and its many realizations. Consider three
playing cards, A, B , and C , and four permissible operations on
these:

• e = do nothing
• α = flip B and C
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• β = flip A and C
• γ = flip A and B

Let x ∗ y denote the result of first carrying out operation y,
followed by operation x. We get the following “multiplication
table,” which describes what mathematicians call a group:

∗ e α β γ

e e α β γ

α α e γ β

β β γ e α

γ γ β α e

In fact, this abstract multiplication table arises in other contexts
as well. Consider for instance the following operations on a globe,
which can be seen to observe exactly the same multiplication
table:

• e = do nothing
• α = rotate 180◦ about the north-south axis
• β = rotate 180◦ about same chosen axis in the equatorial
plane

• γ = rotate 180◦ about the equatorial axis orthogonal to
the previous

This pair of examples shows how two completely different sys-
tems of objects and relations can instantiate one and the same
abstract mathematical structure. This abstract structure has been
shown to have two different realizations.

Some terminological remarks are in order. Let a system be
a collection of objects—known as the domain—on which are
defined certain operations and relations. We leave open whether
the collection, operations, and relations are understood set-
theoretically or in terms of second-order logic (cf. §2.1). Next,
we define what it is for two systems to be isomorphic (literally:
“of the same structure”). The intuitive idea is that each system is a
“mirror image” of the other.More precisely, two systems S and S ′

are isomorphic just in case there is a one-to-one mapping ϕ from
the domain of S to that of S ′ which preserves all the operations
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and relations, in the following sense. Suppose that R and R ′ are
matching dyadic relations of S and S ′, respectively. Then for any
x and y in the domain of S , we have

R(x, y) ↔ R ′(ϕ(x), ϕ(y))

And mutatis mutandis for other relations and for operations.
For example, the two systems described above are easily seen to
be isomorphic. Finally, two systems are said to have (or realize,
or instantiate) the same abstract structure just in case they are
isomorphic.

We have just talked about abstract structures as if these are
entities of some sort. Although immensely natural, this talk
need not be taken literally. To do so would be to prejudge a
controversial question that will occupy us in Chapter 11. For
present purposes, to say that two systems instantiate a common
abstract structure may be understood as merely a shorthand
for saying that the systems are isomorphic. Next, although the
realizations in our two examples are physical, that is clearly
not a requirement. The same abstract structure is also realized
in various systems composed of abstract mathematical objects
(assuming that such exist at all). Mathematicians often talk about
a shared structure as “abstract” and its realizations as “concrete.”
We shall avoid this use of the terms, as it conflicts with our
own definitions, which represent standard philosophical usage
(cf. §1.4). Many realizations are abstract in our sense of this word,
namely, they are nonspatiotemporal and causally inefficacious.
We shall instead talk about the realizations as particular, and
contrast this with the general structure that they instantiate.

Around the turn of the twentieth century, examples such as
the one just described led to a new methodology in mathemat-
ics, pioneered in large part by the great mathematician David
Hilbert (1862–1943). Consider for example geometry. Tradi-
tionally, Euclidean geometry was understood as an axiomatic
theory of physical space, that is, the space in which we live our
lives. With the emergence of non-Euclidean geometries in the
1830s, however, it was no longer obvious that physical space
is Euclidean. If it is not, what would this mean for Euclidean
geometry as a branch of pure mathematics? Nothing whatsoever,
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Hilbert answered. Most other mathematicians agreed. Euclidean
geometry describes a mathematical space, which may or may
not be realized by our physical universe, but whose value and
legitimacy as a piece of pure mathematics is independent of any
such realization. The mathematical study of geometry is thus
disentangled from the physical (and thus empirical) question
about the structure of the space that we inhabit.

To facilitate this division of labor, Hilbert (1899) formu-
lated an axiomatic theory of Euclidean geometry, which can be
investigated independently of its traditional interpretation as
concerned with physical space. The theory still uses the predi-
cates ‘point,’ ‘line,’ and ‘plane,’ but only for heuristic purposes.
There is no longer any requirement that these predicates mean
what they used to mean when employed in theorizing about
physical space. As Hilbert liked to emphasize, in a proper axiom-
atization of geometry, “one must always be able to say, instead of
‘points, straight lines, and planes,’ ‘tables, chairs, and beermugs’ ”
(Hilbert, 1935, p. 403). Less flamboyantly put, Hilbert’s point is
that anything we assume in our proofs must be explicitly licensed
by the relevant axiomatic theory. We may not go beyond what is
so licensed, say by drawing on knowledge we possess about the
extensions of the theory’s atomic expressions on some preferred
interpretation. The interpretation is to be left completely open.

This methodology can obviously be extended to other parts
of mathematics as well. First we formulate axiomatic theories
that describe, partially or completely, the abstract structure that
we wish to study. Then we set out to prove theorems in these
theories. Since the axioms hold for particular realization of the
abstract structure in question, so will all of the theorems. Once
again, this methodology enables a useful division of cognitive
labor. Pure mathematics studies which theorems follow deduc-
tively from various axiomatic theories. And some appropriate
empirical science studies which abstract structures are (approxi-
mately) realized in various natural systems that interest us.

3.5 DEDUCTIVISM ASSESSED

There can be no doubt that the methodology just described has
become a legitimate and important part of mathematics. But the
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philosophical view known as deductivism is so impressed by the
methodology that it takes the huge further step of claiming that
mathematics should be based entirely on this methodology. As
one of the view’s foremost (though erstwhile) advocates put it,
“the essential business of the pure mathematician may be viewed
as deriving logical consequences from sets of axioms” (Putnam,
1975b, p. 41).

Let us begin by explaining how deductivists can ascribe mean-
ing to the formulas of mathematics, which in turn enables an
explanation of their applicability. The idea is that a formula can
be understood as expressing that a certain structural property
holds in any system of the sort described by the relevant set
of axioms. Recall the simple group-theoretic example from the
previous section. Here the formula ∀x(x ∗ x = e) can be under-
stood as expressing (truly) that in any group-theoretic system
whose structure is described by the given multiplication table,
two repeated applications of any operation yields the identity
operation. This is a generalization about the structural properties
of a class of systems, some of which may be found in the physical
world. Thus, by interpreting a mathematical formula in the men-
tioned way, we understand it as expressing an implicit universal
generalization over systems with a certain abstract structure.
Since this abstract structure may well be realized in reality, it is
no surprise that the formula may lend itself to applications.

Does deductivism provide an acceptable philosophy of math-
ematics? Like many other philosophers, I believe the view takes
a good idea too far. To explain some problems that the view
faces, it is useful to distinguish between two different conceptions
of axioms. On the traditional Euclidean conception, axioms are
meaningful assertions, which serve as permissible starting points
for deductive reasoning. By contrast, when a follower of Hilbert
talks about the axioms of geometry or group theory, she means
something completely different. Considered in isolation, the ax-
ioms of group theory are not assertions but comprise an implicit
definition of some abstract structure. For instance, the associative
axiom of group theory, x ∗ (y ∗ z) = (x ∗ y) ∗ z, simply lays
down a condition that a system must satisfy in order to qualify
as a group. Following the eminent logician and philosopher52
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Solomon Feferman (1928–2016), let us call the former type of
axioms foundational, and the latter, structural.7 As mentioned,
no one would today deny the legitimacy of the abstract-structural
methodology or its use of structural axioms. What the objections
to deductivism aim to show is rather that mathematics cannot
be based entirely on this methodology. In addition to structural
axioms, mathematics requires some foundational axioms. We
shall consider two arguments to this effect.

The first argument parallels one of our objections to game
formalism. In addition to formal systems, we require some
contentful metamathematics. We need a safe mathematical place
to stand when reasoning about what does and does not follow
deductively from some theory. In fact, deductive consequence
can be approached in two different, but equivalent, ways.8 On
the semantic approach, a formula ϕ is said to be a consequence
of a theory T just in case (roughly): for any system of objects
and relations of which the axioms of T are true, ϕ is true as
well. On the syntactic approach, ϕ is said to be a consequence
of T just in case there is a proof of the former from the latter
in some appropriate formal system. Either way, some contentful
mathematics is needed to establish facts about deductive conse-
quence and lack thereof. On the syntactic approach, for example,
we require a countable infinity of quasi-concrete linguistic types
and foundational axioms that suffice for reasoning about some
simple syntactic operations on such types. These requirements
are similar to those of arithmetic, which requires a countable
infinity of natural numbers and axioms for reasoning about some
simple arithmetical operations on numbers.

The second argument asks how we can find systems that
realize the various abstract structures we find interesting. The
question is important. For the standard way to show that some
hypothesized abstract structure exists is by specifying a system
that realizes the structure. By doing so, we show that the theory
that characterizes (perhaps only partially) the hypothesized

7 See Feferman (1999).
8 The equivalence holds only for first-order theories (cf. §2.1). See Shapiro

(2005a) for a useful introductory discussion of logical consequence. 53
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structure is in good standing. But how can we find such realizing
systems? Mathematicians typically proceed by “constructing”
appropriate systems or models from some basic “building
blocks,” such as the natural numbers, by means of some oper-
ations, such as the formation of ordered pairs and equivalence
classes. To show that an axiomatic theory of the real numbers
is in good standing, for example, we “construct” a model that
realizes the desired structure. This model typically consists of
certain sets of rational numbers, which in turn are “constructed”
from the natural numbers bymeans of further set-theoretic oper-
ations. But this and related “constructions” require foundational
axioms that describe the “building blocks” and the operations
that can be applied to these. Let us call this the problem of model
existence.

Can the apparent need for foundational axioms be resisted?
One option is to look outside of mathematics and seek realiza-
tions of the relevant abstract structures in the physical world.
This is not what pure mathematicians do, however. And it is not
hard to see why. If realizations of abstract structures had to be
found in the physical world, mathematics would be hostage to
empirical fortune. The reliance on the physical world would also
conflict with the methodology that motivates deductivism, which
seeks to disentangle pure mathematics from empirical questions
and thus make the former independent of the latter.

Another option is to rely on structural axioms “all the way
down.” When the mentioned “constructions” appeal to natural
numbers or sets, for example, perhaps we can regard this as just
setting out certain deductive consequences of the relevant theory
of numbers and sets, taking no stand on whether this theory
in fact has models. But this too is unsatisfactory. The problem
is nicely encapsulated by Putnam, who takes it to show that
“mathematics is not just logic”:

It is a part, and an important part, of the total mathematical pic-
ture that certain sets of axioms are taken to describe presumably
possible structures. It is only such sets of axioms that are used in
appliedmathematics. (Putnam, 1967b, p. 41)

Part of mathematicians’ responsibility is to ensure that their the-
ories are in good standing. If they promulgate theories that don’t
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even describe possible structures, the consumers of mathematics
have a legitimate complaint. But the standard way to ensure that
a theory is in good standing involves the “construction” of a
model for it, which requires foundational axioms that describe
the “building blocks” and permissible “means of construction.”

Throughout the nineteenth century, the task of providing
realizations of various abstract structures was increasingly
assigned to set theory. This development was completed in the
twentieth century. What makes this possible is the tremendous
strength of modern set theory. The theory suffices to produce
realizations of just about any abstract structure of mathematical
interest. The resulting approach to mathematics, which is called
set-theoretic structuralism, celebrates the structural methodology
but supplements it with a strong theory of sets.9 While this
approach solves the problems of contentful metamathematics
and model existence, it obviously gives rise to a new problem of
explaining and justifying modern set theory.

SELECTED FURTHER READINGS

Frege’s classic critique of formalism can be found in Basic
Laws of Arithmetic Frege (2013, §§86–94, 113–14, 118–19, and
123–25). Weir (2015) provides a useful—and sympathetic—
survey of formalism. The emergence of the structural approach
to mathematics is usefully described in Burgess (2015). Putnam
(1967b) provides an important (partial) defense of deductivism,
while this view is criticized in Resnik (1980), pp. 54–75, 119–30.

9 This is also the approach associated with the famous Bourbaki program of
the mid twentieth century. See Bourbaki (1996). 55
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Hilbert’s Program

4.1 DIVIDE AND CONQUER

Let us pick up where the previous chapter left off. We found
that deductivism, which draws much of its inspiration from the
structural methodology pioneered by Hilbert, faces two prob-
lems. First, there is the problem of contentful metamathematics.
In order to study the properties of formal systems or axiomatic
theories, we need a contentful mathematical theory of syntactic
strings and operations, and from a mathematical point of view,
this theory is comparable with arithmetic.1 Then, there is the
problem of model existence. It is true that mathematics inves-
tigates the deductive consequences of axiomatic theories. But
mathematics also needs its own foundational axioms in order to
provide models for its various axiomatic theories, thus showing
them to describe possible abstract structures.

The most sophisticated development of formalist ideas is that
of Hilbert’s program.Hilbert proposes to overcome the twomen-
tioned problems by a brilliant strategy of divide and conquer.
The way forward, he thinks, is to distinguish mathematics into
two parts. Finitary mathematics is a contentful theory of finite
and quasi-concrete syntactic types. Hilbert is particularly fond of
numerals that take the form of strings of strokes; for example,
‘|||’ is the third numeral. Such numerals are sequences of what we
may call Hilbert strokes. Hilbert thinks that finitary mathematics
and its foundational axioms can be accounted for using ideas
from Kant and term formalism. Infinitary mathematics, on the
other hand, is strong enough to describe all of the infinite struc-
tures that modernmathematics studies. This part of mathematics

1 That is, each of the two theories can be “imitated” (or interpreted, to use the
technical term) inside of the other.
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can be regarded as a purely formal theory, Hilbert thinks, and
when so regarded, can be accounted for by drawing on ideas from
game formalism.2

We can now explain how this division of mathematics might
help us overcome the problems that plague deductivism. As
concerns the first problem, Hilbert concedes that we need a
contentful metamathematics. But that is alright, he thinks, since
the requisite metamathematical work can be done by his finitary
mathematics, which has content. So far, so good. The problem
of model existence seems harder, however. Finitary mathematics
cannot possibly produce realizations of the vast, infinite struc-
tures that are studied in modern mathematics. Hilbert proposes
a brilliant alternative. The semantic problem of model existence
can be transformed into a purely syntactic problem about the
formal consistency of the theories purporting to describe the
relevant models. For example, instead of asking whether our
theory of the real numbers has realizations, we ask whether the
theory is formally consistent. And crucially, since the question
of formal consistency turns on the existence of a finite and
quasi-concrete derivation of 0 = 1 or some other absurdity, this
question falls within the range of Hilbert’s finitary mathematics.

Of course, this brief outline of Hilbert’s program raises many
questions. We shall begin with the question of why Hilbert
divides mathematics in the way he does. Given that he accepts
some mathematics as contentful, why not extend this honor
at least to some of the mathematics of the infinite? But that
would be out of the question for Hilbert. While he is a staunch
advocate of infinitary methods in mathematics, he denies that
statements about the infinite can be understood as contentful.
This ambivalence toward the infinite emerges clearly in the
following passage:

2 Arguably, Hilbert’s skepticism about infinitary mathematics, regarded as a
contentful theory, was largely of methodological nature: he sought to show that
there is no need so to regard it. Our discussion will focus on Hilbert’s program
as described in “ On the Infinite” (1926) and related writings. See Sieg (2013) for
a discussion of nuances, such as the one just mentioned, and other Hilbertian
programs. 57
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From time immemorial, the infinite has stirred men’s emotions
more than any other question. Hardly any other idea has stimu-
lated the mind so fruitfully. Yet, no other concept needs clarifica-
tionmore than it does. (Hilbert, 1926, p. 185)

In the next two sections, we shall discuss some of the reasons
Hilbert offers in support of his formal approach to the infinite.

4.2 SET THEORY AND THE PARADOXES

One reason for Hilbert and his contemporaries to be distrustful
of the infinite was that the branch of mathematics that most
explicitly had this as its concern, namely set theory, was threat-
ened by paradoxes.

Modern set theory was developed in the late decades of
the nineteenth century by the eccentric mathematical genius
Georg Cantor (1845–1918). Most pre-Cantorian thinkers shared
Aristotle’s hostility to the actual infinite, that is, to the idea of
infinite collections as somehow completed. Like Aristotle, the
only infinity they accepted was the potentially infinite, where
some process or operation can be repeated any number of times.
For example, to consider the natural numbers as potentially
infinite is to hold that necessarily, for any given natural number,
it is possible to define or construct a larger natural number. It is
a further step to regard the natural numbers as actually infinite,
that is, as a completed collection every member of which already
has a successor in this very collection.

One influential argument against the actual infinite was
Galileo’s paradox. Consider the function that maps a natural
number to its square. This function associates every natural num-
ber with a unique square, and every square with a unique natural
number. Assume for contradiction that the natural numbers can
be regarded as a completed collection. Then our function defines
a one-to-one correspondence between the entire collection of
natural numbers {0, 1, 2, 3, . . .} and the subcollection consisting
of all the squares, {02, 12, 22, 32, . . .}. The latter collection is
obviously smaller than the former, because it leaves out many58
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numbers; in fact, it seems much smaller, for the further we
proceed along the number line, the more thinly distributed the
squares become. Our assumption thus implies that a collection
can be one-to-one correlated with one of its proper subcollec-
tions and thus that a whole can have the same magnitude, or
number, as one of its proper parts. But this contradicts an axiom
recognized by Euclid, namely that a whole is always greater
than its proper parts. We therefore conclude, by reductio ad
absurdum, that the natural numbers cannot be regarded as a
completed collection.

One of Cantor’s boldest innovations was to take seriously the
idea that a collection can have the same number as one of its
proper subcollections. Perhaps the ancient Euclidean “axiom”
is simply invalid for infinite collections.3 Exploring this daring
hypothesis, Cantor found that mathematics proceeds absolutely
fine without this mistaken “axiom.” He thus discovered a beauti-
ful and rich mathematical theory of the infinite.

This theory retains the idea that collections that can be put in
one-to-one correspondence have the same number—or cardinal
number, as Cantor preferred to call it. In fact, this idea is now
regarded as definitional of the notion of cardinal number. Cantor
introduced another kind of number as well, namely what he
called ordinal numbers. These have to do with well orderings,
that is, linear orderings with the property that any subcollection
of the ordering has a unique smallest element. Some exam-
ples will help to convey the idea. Consider first the integers,
Z = {. . . ,−2,−1, 0, 1, 2, . . .}. These are not a well ordering; for
instance, the negative numbers do not have a unique smallest ele-
ment. Next, consider two copies of the natural number structure,
laid out “head to tail”:

0, 1, 2, . . . , 0′, 1′, 2′, . . .

3 In fact, the “axiom” fails for all and only the infinite collections. Say
that a collection is Dedekind infinite just in case it can be put in one-to-one
correspondence with one of its proper subcollections. Given a weak form of the
axiom of choice, Dedekind infinity is equivalent to ordinary infinity, in the sense
of being too large to be counted by a natural number. 59
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This is a well ordering, as any subcollection must have a smallest
element, either in the second copy of the natural number struc-
ture or else in the first. Cantor defines two well orderings to have
the same ordinal number just in case they are isomorphic (that is,
have the same abstract form). Thus, where the cardinal numbers
specify the size or cardinality of collections, the ordinal numbers
specify the order type of well orderings.

The smallest infinite ordinal, ω, is defined as the order type of
the natural numbers. There are larger ordinal numbers as well. By
appending a single object at the end of the sequence of the natural
numbers, for example, we obtain a well ordering of order type
ω + 1; and the well ordering displayed in the previous paragraph
has order type ω + ω. By iterating the operation of addition,
Cantor showed how to define multiplication of ordinals, thus
giving meaning for instance to ω · ω. By iterating multiplication,
he defined exponentiation, and thus for instance the number ωω.
And this is only the beginning.

The cardinal number of the natural numbers was designated
as ℵ0 (“aleph-zero,” after the first letter of the Hebrew alphabet).
This is the smallest infinite cardinal. It might seem obvious
that there are larger infinite cardinals as well. Consider ℵ0 + 1,
defined as the cardinal number of the collection of the natural
numbers and one further thing. Or consider the cardinal number
of the collection of the integers or of the rational numbers—
surely each of these collections is more numerous than that of
the natural numbers! But this line of thought is mistaken in the
same way as Galileo’s paradox. Although the natural numbers
form a proper subcollection of each of the mentioned collections,
Cantor showed that the former can be correlated one-to-one with
each of the latter.4 This means that all of these collections have
the same cardinal number, namely ℵ0.

4 The hardest case concerns the rationals. Here is the key idea of the proof.
Write the positive rationals in a two-dimensional table, with the numerators
increasing step by step along one dimension and the denominators along the
other. Then run through the table along the finite diagonals, beginning with the
origin and “tagging” each new rational with a distinct natural.60
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So are there cardinal numbers larger than ℵ0? Cantor gave an
affirmative answer by examining the powerset of a given set A,
written ℘(A) and defined as {x | x ⊆ A}, that is, as the set of all
subsets of A.

Cantor’s Theorem. For any set A, its powerset ℘(A) has more
members than A itself.

The proof is as simple as it is ingenious. Assume the opposite.
Then there is a function f from A onto its powerset.5 Consider
the diagonal set � = {x ∈ A | x �∈ f (x)}. Since f is onto, there
must be some δ ∈ A such that f (δ) = �. Is δ a member of�? By
the membership criterion for �, the answer is “yes” just in case
δ �∈ f (δ). Since f (δ) = �, this yields

δ ∈ � ↔ δ �∈ �
Since this is a contradiction, the theorem follows by reductio ad
absurdum.

In particular, it follows that the cardinal number of℘(N) is larger
than that of N. Taking a step back, this is pretty shocking. Not
only are there actually infinite sets, but infinite sets come in
different sizes!

As a result of its remarkable strength, set theory provides
realizations of practically all the mathematical structures of
interest. An early but important example is the construction of
the real numbers (as either Dedekind cuts or equivalence classes
of Cauchy sequences of rationals). Based on this construction,
the real numbers can be shown to have the same cardinality
as the powerset of the naturals, that is, an infinity larger than
that of the natural numbers. Cantor tried in vain to prove that
this infinity is the next one after ℵ0. This has become known as
Cantor’s continuum hypothesis and will be a central concern in
our last chapter.

5 A function g from A to B is said to be onto iff for each b ∈ B there is a ∈ A
such that g (a) = b. 61
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Sadly, set theory turned out to be prone to paradox. We
have already encountered Russell’s paradox, communicated to
Frege in 1902 (cf. §2.7). The paradox concerns the set of non-
self-membered sets, r = {x | x �∈ x}. It is easy to prove the
contradiction r ∈ r ↔ r �∈ r . A host of other paradoxes were
discovered around the same time. The paradoxes are fatal to
so-called naive set theory, which is based on the following
principles:

Naive Set Comprehension. Any formula ϕ(x) defines a set
{x |ϕ(x)}.

Extensionality. Coextensive set are identical: ∀z(z ∈ y ↔ z ∈
y) → x = y.

Since Frege and Dedekind were committed to naive set theory,
they were badly affected. By contrast, Cantor denied, with at
least some plausibility, that his approach suffered the same
fate. Regardless of the exact list of casualties, the mathematical
community clearly had a problem. Set theory, which increasingly
had come to be regarded as a foundation for all of mathematics,
had shown itself to be treacherous and fraught with difficulty. So
it was hard not to agree with Hilbert’s assessment that

the present state of affairs where we run up against paradoxes
is intolerable. Just think, the definitions and deductive methods
which everyone learns, teaches, and uses in mathematics, the
paragon of truth and certitude, lead to absurdities! If mathemati-
cal thinking is defective, where are we to find truth and certitude?
(1926, p. 191)

In the 1920s, Hilbert therefore set himself the goal of giving set
theory a secure foundation.

4.3 ARE THERE REALIZATIONS OF THE INFINITE?

One way to show a concept to be in good order is by showing that
it is realized. Hilbert denies that this is an option with the concept
of the infinite. He argues that we have no reason to believe this
concept to be realized either within mathematics or outside.62
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Concerning the former, Hilbert draws inspiration from the
elimination of infinitesimals, which were meant to be infinitely
small quantities. Such quantities seemed to play an important
role in early versions of the calculus. For example, what is the rate
of change of the function f (x) = x2 at x = a? The answer used
to be to add an infinitesimal δ to the argument and investigate
how this affects the slope of the function:

(a + δ)2 − a2

(a + δ) − a
= (a2 + 2aδ + δ2) − a2

δ
= 2a + δ = 2a

As Berkeley famously observed, however, this answer is
problematic. In the first two terms of our calculation, we are
assuming that δ �= 0; otherwise, we would make the blunder of
dividing by zero. But the transition from the third to the fourth
term appears to assume that δ = 0. This apparent doublespeak
prompted Berkeley to mock that the analysts’ δ is “the ghost
of a departed quantity.” The problem was conclusively resolved
only in the work of Karl Weierstrass (1815–97), who let δ be
an ordinary finite number distinct from 0 and considered the
quantity 2a + δ as δ approaches zero. This led Weierstrass to a
precise mathematical definition of the notion of a limit, namely
the epsilon-delta definition, which is used to this day.

As Hilbert observes, however, infinities remain elsewhere in
mathematics:

Nevertheless the infinite still appears in the infinite numerical
series which defines the real number system and in the concept
of the real number system which is thought of as a completed
totality existing all at once. (1926, p. 183)

Don’t these infinities show that the concept is realized? Hilbert
thinks not, on the grounds that the relevant constructions are
thoroughly set-theoretic in character and thus caught up in the
crisis that affected set theory. As a last resort, we might try to find
realizations of the infinite outside of mathematics. But we find no
assurance there either, Hilbert claims. Certainly, no completed
infinities are encountered in our experience. Nor do we have
solid evidence that the physical world contains any completed
infinities. It may be objected that physical space is infinite. 63
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Hilbert admits that physical space is unbounded. However far
we travel, we never reach a boundary that marks the end of
space. But he observes that there are unbounded spaces which
nonetheless are finite, such as a sphere, and that it is compatible
with the general theory of relativity that our universe is such a
space. Finally, appeal to the infinite divisibility of matter would
be futile, since this is denied by quantum physics. Hilbert ends
his fruitless search for realizations of the infinite with a dramatic
conclusion:6

Just as in the limit processes of the infinitesimal calculus, the
infinite in the sense of the infinitely large and the infinitely small
proved to be merely a figure of speech, so too we must realize that
the infinite in the sense of an infinite totality, where we still find
it used in deductive methods, is an illusion. (1926, p. 184)

4.4 HILBERT ON FINITISM AND POTENTIAL INFINITY

If the infinite is “an illusion,” how should mathematics be
developed? Let us begin with those parts of mathematics that
have meaning or content. This content must obviously be con-
cerned only with finite objects. What are these objects? And how
do we come to know them?

As mentioned, Hilbert’s answer draws on both Kant and
earlier term formalism. He claims that “[t]he subject matter
of mathematics is . . . the concrete symbols themselves whose
structure is immediately clear and recognizable” (1926, p. 192).
In particular, arithmetic is concerned with the Hilbert strokes
and their arrangement, where these strokes serve as proxies for
the natural numbers. This answers one of our questions. The
contentful part of mathematics is concerned with quasi-concrete
syntactical objects.

As concerns epistemology, Hilbert attempts to use Kant’s
account of our knowledge of the quasi-concrete objects that are

6 Unlike Putnam (1967a) and Hellman (1989), Hilbert seems not to have
considered whether the concept of the infinite might be shored up by possibly
having realizations (cf. §11.2).64
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the subject matter of finitary mathematics. The basic idea is that
quasi-concrete types can be perceived or intuited in a way that
isn’t obviously empirical and thus doesn’t render the resulting
mathematical knowledge a posteriori. On Kant’s account, this
form of “pure intuition” merely delivers facts about the form of
our own sensibility (cf. §1.6). This account presupposes Kant’s
transcendental idealism, and it is unlikely that Hilbert was pre-
pared to go that far. But there are alternative ways to develop
Hilbert’s basic idea. Some accounts of mathematical intuition
that are broadly Kantian but not idealist will be discussed in §8.4.

What is the scope of Hilbert’s finitary mathematics? The most
widely accepted answer, due to William Tait, is that Hilbert
equates finitary mathematics with primitive recursive arithmetic,
first explicitly formulated by Thoralf Skolem (1887–1963).7

How a finitist such as Hilbert can accept even this elemen-
tary arithmetic theory as contentful may seem puzzling. After
all, he claims that the infinite is “an illusion,” and even this
elementary arithmetical theory is committed to infinitely many
natural numbers! The answer is that Hilbert understands the
natural numbers—or the Hilbert strokes that represent them—as
merely potentially infinite, not as an actually infinite collection,
which would conflict with his finitism. The distinction between
two kinds of infinity cannot be dismissed as empty rhetoric.
For the focus on potential infinity leads Hilbert to disallow
quantifiers that purport to range over all the natural numbers.
Consider Euclid’s theorem that, for every prime number p, there
is another prime that is larger than p but smaller than or equal to
p! + 1 (where p! is defined as 1 · 2 · 3 · . . . · p). This statement is
unproblematic from a finitist point of view. Since the existential
generalization has an upper bound, it can be interpreted as
a finite disjunction of its instances. Things are very different
with unbounded generalizations over the natural numbers, such

7 This theory uses no quantifiers but allows signs for all primitive recursive
functions, such as addition, multiplication, and exponentiation. Its axioms are
those of first-order Dedekind-Peano arithmetic (cf. §11.2), except that the induc-
tion schema is restricted to quantifier-free formulas, but supplemented with all
the recursion equations for the mentioned functions. 65
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as the statement that either p + 1 or p + 2 or p + 3 . . . or
(ad infinitum) . . . has a certain property. This statement involves
“an infinite logical product” (or disjunction), and

[this] extension into the infinite is, unless further explanation
and precautions are forthcoming, no more permissible than
the extension from finite to infinite products in calculus. Such
extensions, accordingly, usually lapse into meaninglessness.
(1926, p. 194)

For an example of the kind of illegitimate extension Hilbert
has in mind, consider (−1)ω. Observe that (−1)ω = (−1)1+ω =
(−1) · (−1)ω. Since x = (−1) · x only when x = 0, this implies
that (−1)ω = 0. But this conclusion is unacceptable because a
product equals 0 only when one of the factors does. So we
are forced to conclude that the infinite product is undefined or
“meaningless.”

It might be objected that arithmetic would be crippled without
the ability to quantify over all the natural numbers. Consider,
for example, the commutative law of addition, which states that
a + b = b + a for any natural numbers a and b. Hilbert
responds by articulating a finitistically acceptable notion of
schematic generality, which allows us to simulate some of the
unavailable quantifications. For example, the mentioned law
can be understood as stating that for any two numerals that
might be produced, the associated instance of the equation is
true; and each of these instances is finitistically acceptable. More
generally, any arithmetical formula with only free variables can
be understood as a schematic generalization over any numerals
that might be produced and serve as values of the variables.

Regrettably, the use of schematic generalities to simulate
quantification is severely limited; for example, we cannot
simulate negated universal quantifications. To see this, consider
a schematic generality ϕ(a), which simulates the universal
generalization ∀n ϕ(n). We would like to simulate its negation,
¬∀n ϕ(n). Our best shot is the negation of the schematic claim,
namely ¬ϕ(a). But this simulates a universally generalized
negation, ∀n¬ϕ(n), not the desired negated universal
generalization, ¬∀n ϕ(n). Hilbert therefore concludes that66
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a schematic generality “is from our finitary perspective incapable
of negation” (1926, p. 194). This has dramatic consequences:

From our finitary viewpoint, therefore, we cannot argue that an
equation like the one just given, where an arbitrary numerical
symbol occurs, either holds for every symbol or is disproved by
a counter example. Such an argument, being an application of
the law of excluded middle, rests on the presupposition that the
statement of universal validity of such an equation is capable of
negation. . . . In short, the logical laws which Aristotle taught and
which men have used ever since they began to think do not hold.
(Ibid.)

This objection to classical logic anticipates a cornerstone of the
intuitionistic conception of mathematics, to be discussed in the
next chapter.

Hilbert’s analysis of the potential infinity of the natural num-
bers illustrates one way in which object realism (which holds
that there exist mathematical objects) is weaker than platonism
(which adds the loosely defined claim that these objects are “just
as real as” physical objects). Suppose we established that each
of some infinite range of physical objects exists. This would
establish that the entire range exists and can serve as a domain for
the quantifiers of classical logic. But Hilbert denies that the same
holds for the natural numbers. Although each number exists,
there is no completed totality of numbers over which classical
quantification is defined. The reason is that the existence of a
natural number is merely potential. The existence of a natural
number is in this respect less robust than that of a physical object.

To make the argument more explicit, let us formalize the
claim that a number exists not by ‘∃n’ but by ‘♦∃n.’8 The claim
that every number has a successor is then formalized as

(4.1) �∀m♦∃n SUCCESSOR(m, n)

Given the existence of zero, this claim ensures that each number
exists—in the potential sense expressed by ‘♦∃.’ By contrast,

8 As usual in philosophy, ‘�’ and ‘♦’ represent necessity and possibility,
respectively. 67
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the existence (in said sense) of a completed totality of numbers
would require

(4.2) ♦∀m∃n SUCCESSOR(m, n)

The key observation is now that (4.1) does not entail (4.2).
Although we can always go on to produce a successor—by
appending another stroke to some given sequence of Hilbert
strokes—it does not follow that it is possible to complete this
infinite process of appending further strokes.9

4.5 THE METHOD OF IDEAL ELEMENTS

The scope of contentful mathematics is severely limited if Hilbert
is right. The right response, one might have thought, is to cut
mathematics down to size. (This is Brouwer’s response, as we
shall see in the next chapter.) Nothing could be further from
Hilbert’s view. He insists that “[n]o one shall drive us out of the
paradise which Cantor created for us” (1926, p. 191). Moreover,
“[t]aking the principle of excluded middle from the mathemati-
cian would be the same, say, as proscribing the telescope to the
astronomer or to the boxer the use of his fists” (Hilbert 1927,
p. 476). Being a mathematical heavyweight himself, Hilbert
speaks with authority. But how can we salvage “Cantor’s par-
adise”? After all, Hilbert believes the paradise to lie beyond the
scope of contentful mathematics. The proposed solution is that
infinitary mathematics need not be contentful in order to be
justified.

This orientation is often known as working realism. Hilbert
undertakes to defend the methods typically associated with a
platonistic outlook, such as reasoning about completed infinite
collections and unrestricted use of classical logic. The defense
must not rely on a platonistic philosophy but must be internal to
mathematics, drawing only on its finitary and contentful parts.

9 It is useful to represent possibilities by possible worlds. The nonentailment
can then be proved by considering a system of possible worlds that contain
arbitrarily large—but always finite—initial segments of the natural numbers.68
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This feat is to be achieved by the method of ideal elements, which
we shall now explain.

Consider the introduction of complex numbers in the
sixteenth century in order to obtain roots of equations that would
not otherwise have any. For example, the imaginary unit i was
introduced as a root of the equation x2 + 1 = 0. These new
numbers caused great controversy. Do such strange numbers
really exist? The method of ideal elements is an attempt to
sidestep this metaphysical question. The new numbers are a form
of useful fiction. We expand our language to allow talk of such
numbers and formulate a theory in this language that describes
them. But this theory need not be true in order to be useful. It
suffices that the theory is precisely specified and doesn’t enable
us to prove any new claims about the “old” numbers that we
accept with full metaphysical earnestness.10 Closer to Hilbert’s
own time, a variety of ideal elements came to be accepted in
this way. In the early nineteenth century, for example, geometers
postulated “points at infinity” as imagined points of intersection
of parallel lines, thus giving rise to a beautiful theory of projective
geometry.

Hilbert’s aim is to treat the infinite in the same manner:

[W]e conceive mathematics to be a stock of two kinds of for-
mulas: first, those to which the meaningful communications of
finitary statements correspond; and secondly, other formulas
which signify nothing and which are the ideal structures of our
theory. (1926, p. 196)

That is, we can formalize the language and theory of infinitary
mathematics and treat it as an ideal superstructure, which can
be studied without regard to its meaning, by means of our
contentful finitary mathematics. As Hilbert reminds us,

[T]here is just one condition . . . connected with the method
of ideal elements. That condition is a proof of consistency, for
the extension of a domain by the addition of ideal elements is

10 Hilbert even compares his ideal elements with Kant’s “ideas of reason,” (e.g.,
at Hilbert (1926, p. 201)). 69
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legitimate only if the extension does not cause contradictions to
appear in the old, narrower domain, or, in other words, only if
the relations that obtain among the old structures when the ideal
structures are deleted are always valid in the old domain. (Ibid.,
p. 199)

The potential payoff that Hilbert envisages is great. The math-
ematical methods typically associated with platonism might be
justified without actually having to be a platonist. This justifica-
tion would take the form of a consistency proof for the infinitary
theories that employ such methods, but where this consistency
proof is carried out in Hilbert’s own contentful finitary mathe-
matics.

With this strategy in place, all that remained was the purely
mathematical task of producing a finitary proof of the consis-
tency of ideal mathematics. Since Göttingen under Hilbert was
home to some of the best mathematicians in the world, there was
reason for optimism.

4.6 GÖDEL’S INCOMPLETENESS THEOREMS

This sense of optimism received an unexpected blow in
September 1930, when the 24-year-old Kurt Gödel (1906–78)
announced a theorem at a conference in Königsberg. His result
is now known as the first incompleteness theorem.11 Incorporat-
ing an improvement due to Rosser, the theorem says, roughly
speaking, that any consistent formal system F in which a
certain amount of elementary arithmetic can be carried out is
incomplete. That is, there are statements of the language of F
which can neither be proved nor disproved in F . The philo-
sophical upshot is that no single formal system can prove all
the truths of mathematics. This was surprising and alarming
to mathematicians such as Hilbert, who had great faith in the

11 Our discussion of the incompleteness theorems will be brief, as there are
other good expositions. See, e.g., Boolos et al. (2007) or Raatikainen (2015).70
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power of formal systems to capture our informal mathematical
reasoning.

Two months later, things took a turn for the worse. Gödel
and John von Neumann independently discovered a corollary,
now known as the second incompleteness theorem. Let F be as
above. Then F cannot prove its own consistency. This result
is disastrous for Hilbert’s program. It means that carrying out
the task that remained for Hilbert and his associates is mathe-
matically impossible. Finitary mathematics cannot prove its own
consistency, let alone that of a stronger system. As a result of this
theorem, Hilbert’s program is now almost universally regarded
as dead.

In fairness to Hilbert, I hasten to add that his program has
nevertheless bornemany fruits, even if not the particular one that
Hilbert most desired. His program launched proof theory as a
branch of logic, which continues to provide many deep results
about the relations between formal theories. Even if the second
incompleteness theorem undermines Hilbert’s attempt to use a
weak theory to prove the consistency of a strong one, it is still
possible to prove the consistency of one theory assuming the
consistency of another theory. Such results can be illuminating,
for instance when the two theories enjoy different kinds of
evidence.12

The most important post-Gödelian attempt to revive
formalism is due to Haskell Curry (1900–1982), who insists
that “a proof of consistency is neither a necessary nor a
sufficient condition for acceptability” (1954, p. 205). Curry
thus advocates a kind of formalism without a safety net. The
main problem with this view surfaced already in our discussion
of game formalism and deductivism (cf. §§3.2 and 3.5).
Mathematicians have a professional responsibility to exercise
due care to ensure that their theories are consistent. The various
consumers of mathematics would have a legitimate complaint
if mathematicians were found to peddle damaged goods. True,
the second incompleteness theorem limits mathematicians’
ability to prove consistency without relying on assumptions

12 See Feferman (1988) for an overview of these relative consistency results. 71
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whose consistency can in turn be doubted. But the desired
assurance need not take the form of a proof. Another option
is to abandon strict formalism, recognize that at least some
parts of mathematical language have content, and—drawing on
this content—to argue that the relevant mathematical axioms
are true and thus also consistent. This is what Hilbert does in
his broadly Kantian account of finitary mathematics; a related
attempt will be discussed in the next chapter. More ambitious
attempts to draw on the content of mathematical language to
provide evidence for the truth of its axioms will be considered in
later chapters, especially 8, 10, and 12.

SELECTED FURTHER READINGS

The essential text on Hilbert’s program is “On the Infinite”
(1926), although “The Foundation ofMathematics” (1927) is also
useful. von Neumann (1931) provides an accessible presentation
and defense of Hilbert’s program. Tait (1981) develops a highly
influential analysis of finitism. Two valuable recent discussion
of Hilbert’s program by leading contemporary scholars are the
survey by Zach (2015) and the monograph by Sieg (2013).
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CHAPTER FIVE

Intuitionism

5.1 LIVING WITHIN ONE’S MEANS

The intuitionist approach to mathematics, developed by the
great Dutch mathematician L.E.J. Brouwer (1881–1966), pro-
vides an interesting contrast to Hilbert’s program. Brouwer’s
view of contentful, finitary mathematics has much in common
with Hilbert’s—indeed, the former may well have influenced
the latter.1 As concerns finitary mathematics, Brouwer’s main
complaint is only that Hilbert does not develop this form of
mathematics far enough. But a deep difference between the
two thinkers emerges when we turn to infinitary mathematics.
Brouwer not only rejects Hilbert’s purely formal conception
of these parts of mathematics but in fact goes to the opposite
extreme by claiming that language is utterly irrelevant to mathe-
matics, whose proper concerns are purely mental constructions.

This deep differencemeans that the two thinkers were affected
by Gödel’s second incompleteness theorem in very different
ways. As we have seen, Hilbert sought a great philosophical
bargain, namely infinitary mathematics—albeit formalistically
construed—for the epistemic and metaphysical price of just fini-
tary mathematics. Gödel’s theorem therefore came as a horrible
surprise to Hilbert, as it meant that no such bargain is available.
By contrast, Brouwer seems to have been unsurprised by the
incompleteness phenomenon and may well have relished the
destruction it wrought on Hilbert’s program.2 The moral that
Brouwer drew from the theorem was that we must learn to live
within our means. More precisely, we must develop, as far as
possible, the contentful, finitistic part of mathematics. This is

1 Brouwer certainly thought so. See Brouwer (1928).
2 See van Atten (2014, §3.5).
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the fundamental aim of intuitionism. As Brouwer’s student and
fellow intuitionist Arend Heyting (1898–1980) put it, “[w]e
. . . are interested not in the formal side of mathematics, but
exactly in that type of reasoning which appears in metamathe-
matics; we try to develop it to its farthest consequences” (1956,
p. 68).

As we shall see, Brouwer’s frugal approachmeant a substantial
departure from the classical mathematics that Hilbert helped
shape and whose consistency he unsuccessfully tried to prove.
It would be wrong, however, to think of intuitionism as all
about depriving us of parts of the classical mathematics that
we have come to appreciate. On the contrary, intuitionism is
one of the approaches to the philosophy of mathematics that
has done the most to build up new mathematics, not just to
tear down old. This is perhaps unsurprising, given that Brouwer
was a brilliant mathematician, who made important advances in
classical mathematics before his attention shifted to the develop-
ment of an intuitionistic alternative. Indeed, Brouwer is regarded
as the founder of modern topology, to which he continued to
contribute after his turn to intuitionism.

Because of its combination of frugality and creative innova-
tion, intuitionism combines both reactionary and progressive
elements. Let us begin with the former. Before the nineteenth
century, much of mathematics was concerned with construc-
tions. In geometry, for instance, mathematicians talked about
drawing a line between any two points and extending any given
line as far as one pleases. Following Hilbert’s axiomatization of
geometry, we now use the nonconstructive language of modern
logic to say that for any two points, there exists a line connecting
the points. Since this line is assumed to be infinitely long in each
direction, there is no room for later “extensions.”

Might this shift from the dynamic vocabulary of construction
to the static vocabulary of existence be merely a terminological
change? To think so would be mistaken. The shift had pervasive
consequences for the methodology of mathematics. The dispute
about nonconstructive existence proofs provides a good example.
In order to prove an existential generalization, mathematicians
traditionally needed to construct an instance, or at least provide74
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an algorithm for doing so. This changed in the course of the
nineteenth century. Consider the question of whether there are
irrational numbers a and b such that ab is rational. Now,

√
2

√
2

is either rational or not. If the former, then a = b = √
2 yields

numbers with the desired property. If the latter, then a = √
2
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and b = √
2 yield such numbers, because we have
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What troubled traditionalists is that the proof doesn’t settle
which pair of numbers has the desired property. To settle such
questions, a proof must not rely on the law of excluded middle—
that is, ϕ ∨ ¬ϕ—which is used in the above argument to claim
that

√
2

√
2 is either rational or not.

Another controversial development concerned the use of in-
finitary methods. As we have seen, most mathematicians before
Cantor rejected the idea of the actual infinite and accepted only
the potentially infinite (cf. §4.2). As a result of Cantor’s seminal
work, however, it was widely recognized that actually infinite
sets are extremely useful for proving results about more tra-
ditional mathematical objects. Consider the theorem that there
are transcendental numbers.3 This was painstakingly proved by
Liouville in 1844. Using Cantor’s theory of the infinite, a routine
cardinality argument suffices to show that nearly all real numbers
are transcendental.4 Again, mathematical traditionalists were
troubled, as Cantor’s proof makes extensive use of his theory of
infinite sets.

Might the intuitionists’ criticism be dismissed as merely a
yearning for the return of the ancien regime? To do so would
be rash. The intuitionists buttressed their case by observing
that set theory had been discredited by the paradoxes (cf. §4.2).
After Gödel’s theorems, they could add that the use of infinitary

3 A real number x is said to be transcendental just in case there are no integers
a0, a1, . . . , an such that a0 + a1 · x + . . .+ an · xn = 0.

4 In briefest outline: While there are uncountably many real numbers, there
are only countably many equations with integer coefficients, and thus also only
countably many solutions to such equations. 75
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methods and application of classical logic to the infinite cannot
be justified on finitistic grounds alone but rely on problematic
metaphysical assumptions. In particular, these methods seem to
presuppose a platonistic conception of an objectivemathematical
universe comprising vast infinities of abstract objects.

5.2 BROUWER ON MENTAL CONSTRUCTION

Suppose the intuitionists are right that classical mathematics re-
lies on problematic metaphysical assumptions. To complete their
case, they need to provide an alternative foundation for their
own favored finitistic mathematics, which shows that this form
of mathematics avoids the problematic assumptions. Brouwer’s
alternative foundation is based on the view that “there are no
non-experienced truths” in mathematics (1949, p. 90). Echoing
Berkeley’s famous slogan that “to be is to be perceived,” the intu-
itionists might be seen as claiming that in mathematics to be is to
be constructed. This is a radical departure from platonism known
as antirealism. While there are mathematical objects, these are
our own mental constructions and thus not independently real
in the same way as physical objects.

According to Brouwer, these mental constructions have noth-
ing to do with language. Mathematics is an essentially subjective
activity. Language is immaterial to mathematics and merely an
optional extra for those mathematicians who wish to communi-
cate their mental constructions to others.5

As an avowed antirealist about mathematics, it is no surprise
that Brouwer traces his view back to Kant. But he cannot ac-
cept Kant’s view unmodified. Like most of his contemporaries,
Brouwer took Kant’s view of geometry to be refuted by the
discovery of non-Euclidean geometries. How can the a priori
truths of Euclidean geometry be underwritten by our forms of
sensibility if there are alternative truths about non-Euclidean
geometries, which seem equally a priori? According to Brouwer,
however, it would be wrong to dismiss Kant’s philosophy of

5 See, e.g., Brouwer (1913, p. 81).76
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mathematics entirely. For this philosophy “has recovered by
abandoning Kant’s apriority of space but adhering the more res-
olutely to the apriority of time” (1949, p. 80). More specifically,
we must consider

the falling apart of moments of life into qualitatively different
parts, to be reunited only while remaining separated by time,
as the fundamental phenomenon of the human intellect. . . . This
intuition of two-oneness, the basal intuition of mathematics,
creates not only the numbers one and two, but also all finite
ordinal numbers, inasmuch as one of the elements of the two-
oneness may be thought of as a new two-oneness, which process
may be repeated indefinitely. (ibid.)

So although Kant was wrong about geometry, he was right about
arithmetic. In particular, we can derive from Kant the “basal
intuition” of “two-oneness.” Consider a moment of time and
then wait a little. Now you have another moment of time, distinct
from the original one. This “basal intuition” serves as Brouwer’s
mental analogue of Hilbert’s operation of appending another
Hilbert stroke. Each operation converts a representation of a
natural number into a representation of the next number. For
instance, if you have just observed ten successive fallings apart
of a moment of your life into two, then by waiting a little and
observing the falling apart of the last of these moments as well,
you obtain a representation of the number twelve.

What are we to make of all this? Brouwer’s subjectivist antire-
alism has left many readers exasperated. As even a sympathetic
commentator remarks, Brouwer’s “homespun phenomenology
and ontogenesis may well grate upon some ears” (Posy, 2005,
p. 331). Let us calmly try to identify and assess the problems.
The most pressing question is how to understand the notion
of a mental construction. Brouwer is sometimes taken to be
concerned with constructions in each individual person’s mind.
This interpretation results in a so-called psychologistic view of
arithmetic, which identifies the numbers with representations
in each individual’s mind. And this, in turn, makes Brouwer
vulnerable to one of Frege’s classic objections. On the psychol-
ogistic view, Frege observes, your natural numbers are different 77
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from mine; after all, the former exist only in your mind, and
the latter, only in mine. To explain the fact that mathematicians
communicate successfully and to give mathematics some degree
of objectivity—or at least intersubjective validity—the account
has to be supplemented with an explanation of how you and I
manage to coordinate ourmental constructions. As we have seen,
however, Brouwer is uninterested in how mental constructions
are communicated.

Other commentators deny that Brouwer should be under-
stood as concerned with empirical goings-on in individual
people’s minds. Indeed, Brouwer’s invocation of Kant makes
it reasonably clear that whatever he takes himself to be doing,
it is not empirical psychology. A similar lesson emerges from
Heyting, who qualifies the mind-dependence of mathematics to
avoid the radical subjectivism that Frege deplores: “[e]ven if [the
integers] should be independent of individual acts of thought,
mathematical objects are by their very nature dependent on
human thought” (1931, p. 53). That is, the natural numbers do
not depend on your mind or on mine, although they do depend
on human thought in general. However, this is merely a gesture
toward a desired conclusion, not an argument that takes us there.
Can we do better?

One option is to seek inspiration from the phenomenonology
of Edmund Husserl (1859–1938). Perhaps Brouwer is concerned
with a “transcendental subject” in something like Husserl’s sense,
where this involves “aspects of subjectivity that are the same for
everyone precisely in virtue of being a subject” (van Atten, 2004,
p. 80). An interpretation along these lines would, if defensible,
enable intuitionists to respond to some standard objections.
Consider, for example, a reclusive genius who proves a theorem
but dies before conveying it to anyone else. Are intuitionists
committed to the implausible claim that the theorem ceases to
be true with the death of our genius? Perhaps not, since on
the present interpretation they take mathematical truths to be
independent of “individual acts of thought.”

Some related problems would still remain, however. By mak-
ing mathematics dependent on human thought, even if not on
individual acts thereof, we would still ascribe incorrect temporal78
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and modal properties to mathematical truths. As Frege famously
argued, all mathematical truths now known were true already
before we discovered them, indeed even before the existence of
the human species (cf. §1.3). This is why it is permissible to
apply mathematics, as we now have it, to theorize about not
only the present and future, but also the distant past. It is hard
to see how claims that were true even before the arrival of the
human species can be said to be “dependent on human thought.”
An analogous point applies to modality rather than time. The
truths of mathematics would have been true no matter what had
happened, indeed even if the human species had never existed.
This is why it is permissible to apply mathematics, as we actually
have it, to theorize not only about what is actual but also about
all counterfactual scenarios. It is hard to see how such truth can
be said to depend on “human thought.”

To address these problems, intuitionists appear to have no
choice but to loosen the link between mathematical truth and
actual human possession of a proof. Perhaps it suffices for truth
that the claim in question is humanly provable rather than
actually proved? The critical question is then what is meant by
“humanly provable.” How are we to extrapolate from what we
have actually proved to what we are able to prove? There is
a danger that such an extrapolation will fall back on a realist
conception on which the relevant facts were “there all along,”
waiting to be discovered.

5.3 INTUITIONISTIC LOGIC

As mentioned, intuitionists reject some of the laws of classi-
cal logic. The first systematic investigation of the alternative
intuitionistic logic was undertaken by Heyting. Of particular
importance is the so-called BHK interpretation of the connec-
tives and quantifiers, developed by Heyting and Kolmogorov,
and inspired by Brouwer. This interpretation has proof as its
central notion, rather than truth, as in the standard semantics for
classical logic. The interpretation is based on the following proof
conditions: 79
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• a proof of ¬A is a derivation of a contradiction from the
assumption of A

• a proof of A∨ B is either a proof of A or a proof of B
• a proof of A∧ B is a proof of A and a proof of B
• a proof of A → B is a construction that transforms any
proof of A into a proof of B

• a proof of ∀x A is a construction that for any given object
a yields a proof of A(a)

• a proof of ∃x A is the specification of an object a and a
proof of A(a)

This semantics entails that some classically valid laws must
be abandoned. At the level of propositional logic, the law of
excluded middle, A∨ ¬A, provides a famous example. On the
BHK interpretation, this “law” states that every mathematical
claim can either be proved or refuted, which is clearly unac-
ceptable. So this interpretation opens up some space between
A and¬A, which is not available on the classical interpretation in
terms of two truth-values. A closely related restriction concerns
proof by reductio ad absurdum, which is no longer licensed. To
prove a claim A by reductio, we assume its negation, ¬A, and try
to show that a contradiction ensues. If we succeed, we have on
the BHK interpretation established ¬¬A. But this falls short of
possessing a proof of A. Further examples of laws that are valid
classically, but not intuitionistically, arise with the quantifiers.
For instance, we must abandon the law ¬∀x A(x) → ∃x ¬A(x).
Even if it is contradictory to assume that we can prove ∀x A(x),
we need not be able to construct a counterexample, as the
consequent asserts.6

Our discussion of intuitionistic logic has so far been purely
technical. Let us now consider the philosophical question of
why one might want to abandon classical logic in favor of
intuitionistic. Different answers have been proposed, starting
from different philosophical assumptions. Some of the answers
converge on the BHK interpretation. One example is Brouwer’s

6 However, this law can be derived using intuitionistically valid rules for the
quantifiers and classical propositional logic.80
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antirealist conception of mathematical truth, which holds that to
be true is to be constructed or proved. The classical assumptions
concerning truth are therefore flawed and must be replaced by
valid assumptions concerning constructive proof.

Another example derives from the work of Michael Dummett
(1925–2011) and is based on considerations about language and
the possibility of objective communication. (The argument is
thus unlikely to have appealed to the antilinguistic and subjec-
tivistic Brouwer.) Dummett pitches a proof-conditional seman-
tics against its traditional truth-conditional alternative, which
regards the meaning (or “semantic value”) of an expression as
its contribution to the truth-value of the sentence. As Dummett
observes, many of the resulting truth-conditions are verification-
transcendent, in the sense that there is no effective procedure
for determining whether the condition is satisfied. Examples
include statements about the distant past, unmanifested dispo-
sitions, and especially infinite totalities. So far, so good. The most
controversial part of Dummett’s argument is the contention that
verification-transcendent truth-conditions are problematic. This
contention is defended by means of two challenges. According
to the acquisition challenge, we could never learn such truth-
conditions. Moreover, themanifestation challenge denies that we
could ever manifest our understanding of such truth-conditions,
which calls into question our claim to possess such understand-
ing. Both challenges are controversial and have generated much
debate. Since this is a debate in the philosophy of language, not
specifically about mathematics, we shall not pursue it here.7

Let us instead zoom out a bit. A standard objection to intu-
itionistic logic is that it does violence to our existing inferential
practice. The task of the philosopher ofmathematics, the objector
says, is to account for mathematical practice as we actually find
it, not to revise it. Why “deprive the boxer of the use of his fists”?
The objector is certainly right that philosophers should be wary
of dictating to mathematicians (or any other scientists) how to
go about their business. It takes a good reason to change what
for all intents and purposes is a successful scientific practice.

7 See Dummett (1978a) and, for a survey, Hale (1997). 81
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Even so, it would be a mistake to insist that philosophers must
always “leave everything as it is” (asWittgenstein once put it) and
limit themselves to a humble commentary on existing scientific
methodology. There is ample room for critique of existing scien-
tific practice within science itself, and such critique sometimes
results in powerful reasons for change (cf. §1.5). Moreover, it
is important to bear in mind that this critique may go beyond
the concerns of any individual branch of science. In short: the
intuitionists offer reasons for their rejection of classical logic,
and each such reason needs to be assessed on its own merits
(as we attempted to do in the previous section), not summarily
dismissed on the grounds that it conflicts with existing mathe-
matical practice.

5.4 INTUITIONISM AND POTENTIAL INFINITY

I turn now to a third route to intuitionistic logic. Unlike the
previous two routes, this one avoids any appeal to the BHK
interpretation or an antirealist identification of mathematical
truth with our possession of a proof. Rather, the third route is
based entirely on considerations about potential infinity.8

Consider the claim that the natural numbers are merely
potentially infinite (cf. §4.4). The idea is that for any given
natural number, it is possible to generate its successor, but that
it is impossible to complete this process of generation. As we
have seen, this idea is naturally explicated by the following two
claims:

�∀m♦∃n SUCCESSOR(m, n)(5.1)
¬♦∀m∃n SUCCESSOR(m, n)(5.2)

A strict defender of potential infinity may nevertheless deny
that this goes far enough. The strings �∀m and ♦∃m behave
much like the classical mathematician’s quantifiers ∀m and ∃m:

8 See Linnebo and Shapiro (2016), which expands on the discussion in
this section.82
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they serve as devices for generalizing over absolutely all natural
numbers, not just the ones generated so far, but also all that
could be generated in the future. But arguably, if we are serious
about the mere potential infinity of the natural numbers, it is
not enough to insist that every number be generated after finitely
many steps. Wemust additionally require that every arithmetical
truth be made true after finitely many steps. Since this takes us
beyond the liberal form of potentialism outlined in §4.4, let us
call the resulting view strict potentialism.

For simplicity, let us suppress the modal operators and revert
to the usual quantifiers ∀m and ∃m to range over all natural
numbers—albeit understood as merely potentially infinite. The
question is whether these quantifiers can be made sense of from
a strict potentialist point of view. The existential quantifier poses
no special problem. An existential generalization ∃mϕ(m) is
plausibly seen as made true by a true instance ϕ(n̄), where the
numeral n̄ is generated after finitely many steps. But universal
generalizations are problematic. A strict potentialist cannot
allow a universal generalization to be true merely by virtue of
the totality of all possible constructions of numbers; for there
is no such totality. To be permissible, a universal generalization
has to be made true after finitely many steps. But it is hard to
see how this might be possible, given the formula’s concern with
infinitely many numbers.

We saw that Hilbert grappled with the same problem in his
analysis of finitism (cf. §4.4). His answer was to understand
universal generalizations over the natural numbers as schematic
generalities. For example, the equation a + 1 = 1 + a, where a is
a variable for natural numbers, can be understood schematically
as the claim that for any numeral that might be produced, the
corresponding substitution instance of the equation is true. Our
knowledge of this schematic claim is based not on an ability to
survey the natural numbers in their entirety but on an effective
procedure for proving any instance we may confront; namely,
given any numeral n̄, we know how to reduce the expressions
n̄ + 1 and 1 + n̄ to canonical numerals and observe that these are
identical. But a serious problem remains, namely that a schematic
generality is incapable of negation. For example, a + 1 �= 1 + a 83
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yields a universally generalized negation, not the desired negated
universal generalization.

Fortunately, we can do better. The universal generalization
∀mϕ(m) can be seen as made true by the existence of an effective
procedure which, when applied to any numeral m̄ that might be
generated, yields a “truth maker” for the corresponding instance
ϕ(m̄). Provided we require that the procedure be available (or
generated) at some finite stage, this will satisfy the strict poten-
tialist. For the universal generalization will then be made true at
the finite stage where the procedure that acts as its “truth maker”
becomes available. We do not, however, require that we possess
such a procedure. So there is no reliance on antirealism.

Of course, this talk about effective procedures and “truth
making”must be made precise. One attractive option is to invoke
the realizability interpretation of intuitionistic logic. First, the
notion of an effective procedure is explicated as in computability
theory. Then, a formula is said to be true just in case there
is an effective procedure that acts as its “truth maker”—or
realizer, to use the customary technical term. Equipped with the
resulting definition, we can ask whether we obtain “the right”
truths. A natural measure of what is “right” is provided by the
standard intuitionist theory of arithmetic, known as Heyting
arithmetic, whose axioms are those of first-order Dedekind-
Peano arithmetic (cf. §11.2) but whose logic is intuitionistic,
not classical. It is a pleasing fact that every theorem of Heyting
arithmetic is true according to our precise definition. Indeed, we
have the following theorem.9

Theorem. Assume ϕ is a theorem of Heyting arithmetic. Then
Heyting arithmetic (and thus also Dedekind-Peano arithmetic)
proves that ϕ has a realizer. However, there are theorems of
Dedekind-Peano arithmetic that do not have a realizer.

In sum, we have sketched an account of quantification over the
natural numbers which satisfies the strict potentialist’s require-
ment that every arithmetical truth be made true after some finite

9 See, e.g., Troelstra (1998).84
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number of steps. The account validates all the theorems of intu-
itionistic arithmetic, but not classical. As stressed throughout, the
locomotive of this argument for intuitionistic logic is the strict
potentialist’s insistence that each arithmetical truth be made true
at some finite stage, not an antirealist conception of these truths
as grounded in our possession of a proof.

5.5 INTUITIONISTIC REAL ANALYSIS

The standard intuitionistic and classical theories of first-order
arithmetic share the same mathematical axioms and differ only
concerning the logic that is available. More substantive differ-
ences between intuitionistic and classical mathematics emerge
when we look beyond arithmetic to real analysis.

In classical mathematics, one of the ways to represent the real
numbers is as convergent sequences of rational numbers.10 On
this conception, each individual real number involves the actual
infinite, since the sequence representing it is actually infinite.
So this approach to the real numbers is clearly not available to
intuitionists, who reject the actual infinite. Brouwer developed
an elegant and powerful alternative, which nicely illustrates my
earlier claim that intuitionism isn’t only about taking away
parts of classical mathematics but also about giving back some
beautiful new mathematics. The basic ideas behind Brouwer’s
approach are fairly simple. Let us begin with the notion of
a choice sequence, which is a potentially infinite sequence of
objects. The sequence is thus “forever in the making,” not a
completed list of items. There may be constraints on the choice
of objects to be added to the sequence, but within the limits
set by the constraints, all the choices are free and arbitrary. It
is useful to imagine each choice sequence as associated with an
immortal clerk, who is responsible for selecting objects, one per
second, chosen randomly within the limits set by the constraints.

10 More precisely, a real is represented as a Cauchy sequence, which is a
sequence of rational numbers qi , for i ∈ N, such that for every ε > 0 there is a
number N such that |xi − x j | < ε provided i, j ≥ N . 85



Chapter Five

Brouwer’s brilliant idea is to understand a real number as a
choice sequence of rational numbers, subject to the constraint
that the sequence be convergent.11

To convey the flavor of the real analysis that ensues, consider
functions from reals to reals. In classical mathematics, such
functions are understood as an infinite set of ordered pairs of
real numbers, each pair specifying an argument and the value
that the function takes for this argument. This understanding is
obviously unavailable to intuitionists, who foreswear completed
infinite collections. Brouwer proposes instead to understand a
function of the desired sort as a procedure for computing the
value of the function on the basis of information provided
about the argument. Moreover, each such procedure needs to
be understood in a way that is compatible with the rejection of
actual infinities. In order to approximate the value of the function
to some specified degree of precision, we must never require
more than a finite amount of information about the argument;
otherwise we would have to “wait until the end of time” when
the argument has been fully specified. Let us make this entirely
precise. Suppose we are interested in the value of a function f
on an argument a, which is a choice sequence specifying a real
number. Then, for any positive rational number ε, there must be
some natural number N such that information about the N first
terms of a suffices for the procedure that specifies f to determine
the value f (a) with an error of less than ε. It is not hard to see
that this requirement implies that every function from reals to
reals is continuous.

This theorem of intuitionistic real analysis conflicts with
classical analysis, which makes extensive use of discontinuous
functions. There is, for instance, a “step function” whose value
is 0 for arguments less than π , and 1 thereafter. So the disagree-
ment between intuitionists and classicists is far greater in analysis
than in arithmetic. In arithmetic, the intuitionistic alternative is

11 A sequence {xi } is Cauchy convergent just in case, for any ε > 0, there is a
number N such that |xi − x j | < ε whenever i, j > N .86
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strictly weaker than the classical one,12 whereas in analysis, the
intuitionistic alternative is sometimes weaker than the classical
option but other times contradicts it.13

In light of its radicalism, it is unsurprising that intuitionistic
mathematics has encountered objections. We already discussed
the objection that the intuitionistic approach is too revisionary
vis-à-vis accepted mathematical practice (cf. §5.3). A different,
though related, objection is that intuitionistic mathematics is too
weak for the purposes of empirical science. Whether this charge
is correct is a matter of controversy.14 But even if it is, this need
not be fatal to intuitionism. As the great mathematician and
sometime intuitionist Hermann Weyl (1885–1955) observed,
an intuitionist may well permit classical mathematics to be
used for the purposes of empirical science, where the certainty
and apriority to which pure mathematics aspires is anyway
unattainable.15

SELECTED FURTHER READINGS

Brouwer (1913) is a good introduction to intuitionism by its
founder. Twomore accessible presentations are given by hismost
famous student (Heyting, 1931, 1956). Dummett (1978a) present
a much discussed attempt to revive a form of intuitionism. Two
useful recent texts are the survey by Iemhoff (2015) and a short
and accessible monograph by van Atten (2004) on Brouwer’s
philosophy and mathematics.

12 Classical arithmetic can nevertheless be interpreted in intuitionistic
arithmetic and is thus consistent provided that the latter is. See Moschovakis
(2015, §4.1).

13 These comparisons take the relevant languages at face value. If this assump-
tion is rejected, the two approaches can be taken to have different subject matters,
and the apparent disagreements, to be merely verbal. This affords the possibility
of a pluralistic conception on which the two forms of mathematics live happily
side by side.

14 See McCarty (2005, IV.2) for references and a case that the charge is
incorrect.

15 See Weyl (1949, pp. 61–62). 87



CHAPTER SIX

Empiricism about Mathematics

6.1 MIGHT MATHEMATICS BE EMPIRICAL AFTER ALL?

We have investigated a variety of attempts to make sense of
mathematics. But all the attempts considered so far share Plato’s
conviction thatmathematical knowledge is a priori. The apparent
existence of a priori knowledge has always posed a problem for
empiricists, who hold that all substantive knowledge is based
on sense experience. Particularly offensive to empiricists is the
view that mathematical knowledge is not only a priori but also
synthetic, or nonconceptual. As we have seen, this view is held
by Plato, Kant, and the intuitionists—although only Kant and
perhaps the intuitionists went on to take the Copernican turn
and insist that the objects of mathematical knowledge must
conform to our faculty of intuition, rather than the other way
round. Regardless of the details, the very idea that mathematical
knowledge is synthetic a priori clashes with the empiricist creed
that all substantive knowledge is empirical.

What, then, are empiricists to make of mathematics? From
David Hume up through the logical empiricists of the early
twentieth century, the favored response was to admit that math-
ematical knowledge is a priori but to deny that it is substantive
enough to count as a counterexample to empiricism. Thus,
Hume famously claimed that mathematical knowledge concerns
“relations of ideas” rather than “matters of fact.”1 The game
formalists go even further in their attempt to avoid substantive
mathematical knowledge. By denying that mathematical lan-
guage has any content at all, they reduce mathematics to a purely
formal game.

1 Although this anticipates Frege’s view that arithmetic is analytic, Frege was
certainly no empiricist. He even accepted that geometry gives us synthetic a priori
knowledge.
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There is a more direct response to the challenge that math-
ematics poses to empiricism, however. Instead of maneuvering
to explain why a priori mathematical knowledge is no coun-
terexample to empiricism, why not simply reject the old Platonic
idea that mathematical knowledge is a priori? Surprisingly few
empiricists have attempted this direct response. This chapter is
about some of the brave exceptions. First out was John Stuart
Mill (1806–73), who defended a brand of empiricism thorough-
going enough to include evenmathematics. Amore sophisticated
option was later developed by W. V. Quine (1908–2000), who
first rejected the old Kantian dichotomies in terms of which
philosophical questions about mathematics have traditionally
been posed, and then put in their stead a relaxed and holistic
form of empiricism. This Quinean strategy lives on today in the
form of the so-called indispensability argument, which seeks to
account for mathematics in terms of its indispensable contribu-
tion to empirical science.

6.2 MILL’S EMPIRICIST ACCOUNT OF ARITHMETIC

While our main focus will be on Quine and the indispensability
argument, we begin with a brief exposition of Mill’s radical
empiricism and some problems it encounters. We shall focus on
the case of arithmetic.

Frege famously held that numbers are ascribed to concepts,
not to portions of physical matter (cf. §2.3). This allows him to
say that the cards are 52, while the suits are only 4, although the
physical matter involved in both number ascriptions is the same.
Mill defended the competing view that numbers are ascribed to
“aggregates.” He realizes, however, that each “aggregate” needs
to be articulated into distinct objects in order to handle examples
such as the one just mentioned. Simplifying somewhat, it is useful
to think of a Millian “aggregate” as just one or more things
considered together—or a “plurality,” as I shall often say for
convenience.

The resulting plural discourse receives an attractive analysis
in the form of plural logic. This logic supplements the ordinary 89
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singular variables of first-order logic with special plural vari-
ables.2 As usual, each singular variable has a unique value. But
each plural variable is allowed to have one or more values. On this
interpretation, plural logic does not incur any new commitments
to objects such as classes but encodes irreducibly plural reasoning
about the objects to which we were already committed. In partic-
ular, the many values of a plural variable are no less accessible to
our senses than the single values of ordinary variables.

Mill’s alternative to the Fregean analysis is that a numeral
represents a cardinality property of some things.3 For example,
‘2’ represents the property that some things have just in case there
are two of them, that is, just in case the things in question include
one thing and another thing but no further things. It is important
to notice that this cardinality property is nondistributive. While
some things are cards just in case each of them is a card, it is
not the case that some things are two just in case each of them is
two. That is, being a card is distributive, while being two is not.
Mill’s view is thus that arithmetic is concerned with pluralities
of things and their nondistributive cardinality properties. This
account of the meaning of the numerals is entirely acceptable
to an empiricist. The pluralities in question are just bunches
of things, which may be assumed to be empirically accessible.
And nondistributive properties are no more problematic, from
an empiricist point of view, than distributive ones.

What about the laws of arithmetic? These are laws relating
nondistributive cardinality properties, Mill claims. For example,
2 + 2 = 4 states that the result of combining two disjoint pairs
of things is a quadruple of things. The full extent of Mill’s
radicalism emerges only when we ask how the laws of arithmetic
are known. As a thoroughgoing empiricist, Mill answers that the
laws are known empirically by being inductively confirmed by
their instances. For example, since every observed combination
of two disjoint pairs has been a quadruple, we make the bold

2 See Linnebo (2012) for an overview. The plural variables are often written
xx, yy, etc.

3 Strictly speaking, the numeral “connotes” such a property (or “attribute”),
while it “denotes” the plurality (or “aggregate”).90
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inductive generalization that these cardinality properties will
always continue to be thus related.

Various problems with Mill’s view were identified already
by Frege.4 To begin with, the view bears little resemblance to
actual mathematical practice. It is true that children are taught
arithmetic by being trained to count pluralities of things. But this
is a matter of acquiring the relevant concepts, not of gathering
evidence. Neither beginners nor experts regard a simple equation
such as 2 + 2 = 4 as better confirmed the more of its instances
have been observed. Rather, once we have mastered the concepts,
we can prove that this equation holds without exceptions—or so
it seems.

Furthermore, we have direct empirical confirmation of only a
minute fraction of all true arithmetical equations. So the plurali-
ties we have actually counted are all tiny compared with infinitely
many vastly larger uncounted pluralities. This means that our
“data sample” is strongly biased in favor of small numbers. And
this bias is ineliminable because of our finite capacities and
the infinitude of numbers. How, then, can our empirical data
inductively confirm the general laws of arithmetic, such as the
axioms formulated by Dedekind and Peano? Why should these
general laws continue to hold for truly large numbers, which
for all we know may be importantly different from all the small
numbers to which our data pertain?

Finally, any scientifically respectable use of empirical induc-
tion requires some statistics.5 For instance, we need to know how
many instances have to be observed in order for an experiment
to be statistically significant. But statistics is a branch of mathe-
matics, which stands in need of philosophical justification just as
much as arithmetic does.

All of these problems point to a more general lesson. To
require direct inductive confirmation of each arithmetical fact,
let alone of mathematical facts more generally is hopeless.

4 See Frege (1953, esp. §§7–10 and 23–24). We set aside some of Frege’s
weaker objections that are answered simply by clarifying, as we have just done,
the notions of an “aggregate” and a nondistributive property.

5 See, e.g., Frege (1953, fn. 1 and §10). 91
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Any viable form of empiricism about mathematics has to allow
a theory to be confirmed as a whole and mathematical facts to be
confirmed only indirectly via their contributions to this theory.
This lesson takes us to our next great empiricist, who is a staunch
defender of this form of holistic confirmation.

6.3 QUINE’S HOLISTIC EMPIRICISM

Quine’s empiricism differs sharply from Mill’s. There is no need
to accommodate mathematics within the category of synthetic
a posteriori knowledge, Quine thinks. It is better to reject the
analytic-synthetic dichotomy altogether and use the extra elbow
room that ensues to develop a more relaxed and holistic form of
empiricism that includes mathematics.

The attack on the analytic-synthetic distinction is launched
in one of the greatest classics of twentieth-century philosophy
(Quine, 1953a). The article opens by criticizing various attempts
to define or explain the distinction. A good example is Frege’s
famous definition of a sentence as analytic just in case it can
be transformed into a logical truth by replacing expressions
with synonymous expressions. For instance, “All bachelors are
unmarried” counts as analytic, since it can be transformed to the
logical truth “All unmarried men are unmarried” by replacing
‘bachelor’ with the synonym ‘unmarried man.’ But Quine objects
that Frege’s definition of analyticity offers little progress, as it
relies on the equally problematic notion of synonymy.

The most promising definition, according to Quine, is based
on a verificationist account of meaning, which takes the meaning
of a sentence to be characterized by the collection of (actual and
possible) sensory observations that would confirm the sentence.
On this account, a sentence can be defined as analytic just in case
it will be confirmed “come what may,” that is, by any possible
sensory observation. This definition is meant to improve on
Frege’s by eschewing any notion of meaning, which Quine takes
to stand in equally great need of explanation. Even so, Quine
finds fault with the attempted definition. It ignores the important
phenomenon of confirmational holism, namely that no sentence92
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is confirmed in isolation but only as part of a larger body
of beliefs. Most sentences are only indirectly concerned with
observation and have consequences concerning the observable
only when combined with other sentences. For example, the
universal law of gravitation does not entail that two particles
attract one another until we add that both particles have non-
zero mass. In fact, even sentences that are directly concerned
with observation can be held true “come what may” by making
appropriate changes elsewhere in our “web of beliefs” so as to
dismiss a potentially falsifying observation as a hallucination.
The upshot is that, even if a verificationist account of meaning
is assumed, confirmational holismmakes it impossible to give an
informative definition of analyticity.

Quine’s attack on the analytic-synthetic distinction has gen-
erated an enormous literature, which we cannot survey here. Let
us rather proceed directly to a powerful alternative conception
of science that Quine proposes, which has no need to distin-
guish between the analytic and the synthetic. The alternative
conception proposes that our beliefs be regarded as a vast and
highly interconnected field. Observation impinges on the field
only at its periphery, where we find sentences directly concerned
with observational matters. Throughout the field, beliefs are
connected by the logical relations in which they stand. This
conception incorporates two central tenets of Quine’s view. One
is his empiricism. The only constraints on scientific theory are
the sensory observations that impinge on the field’s periphery.
There are no analytic truths that serve as constraints. Nor is the
field constrained by any rational insight (as in Plato) or any other
nonempirical form of evidence (such as Kant’s “pure intuition”).
A second tenet is Quine’s confirmational holism, which states that
only science as a whole faces “the tribunal of experience.” When
the web of beliefs entails an observational prediction that is con-
firmed or disconfirmed, the resulting epistemic praise or blame
cannot be assigned to any proper part of the web but accrues to
it only as a whole. In this way, the empirical evidence received at
the periphery permeates the entire the field, all the way to its core.

The resulting holistic empiricism has strong implications
concerningmathematics. As for themetaphysics of mathematics, 93
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Quine agrees with Frege that mathematics is concerned with
abstract objects. After all, we have good reason to take mathe-
matical theorems to be true, and these theorems are, by Quine’s
own criterion, ontologically committed to abstract objects. But
Quine places greater emphasis on “ontological economy” than
Frege did: he seeks to avoid postulating more objects than strictly
necessary in order to do good science. This concern leads Quine
to endorse a form of set-theoretic reductionism, which reduces
all other mathematics objects to sets (cf. §3.5).

The true novelty of Quine’s view emerges only when we turn
to epistemology. Quine attempts to render mathematics scientif-
ically respectable by assimilating it to the theoretical parts of em-
pirical science. Mathematics, he claims, isn’t essentially different
from theoretical physics. Both go beyond what can be observed
by means of our unaided senses. And both are justified by their
contribution to the prediction and explanation of states of affairs
that can be thus observed. As Quine puts it, “the objects of pure
mathematics and theoretical physics are epistemologically on a
par. . . . Epistemologically the primary cleavage is between these
on the one hand and observables on the other” (1986, p. 402).

Why, then, are we so reluctant to revise our mathematical
beliefs? The only reason is their location at the core of our field of
beliefs, Quine claims. This location means that a revision of our
mathematical beliefs would have repercussions throughout the
entire field. It is therefore pragmatically inadvisable to revise a
well-established mathematical belief unless the reasons for doing
so are extremely strong. Like any other part of the field, however,
our mathematical beliefs are in principle open to revision.

6.4 PROBLEMS WITH QUINE’S HOLISTIC EMPIRICISM

Quine’s empiricist account of mathematics is a step forward
compared with Mill’s. There is no need for mathematical truths
to be confirmed in isolation. Mathematical theories can instead
be confirmed holistically by virtue of their indispensable contri-
bution to our overall science. But despite this progress, problems
remain. We shall consider three.94
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According to Charles Parsons, Quine is unable to account
for the obviousness of much of elementary mathematics.6
Basic arithmetical beliefs seem to enjoy a far more direct and
compelling form of justification than the highly indirect and
cumulative evidence that is marshalled in support of our beliefs
about theoretical physics. Our belief that 2 + 2 = 4, for example,
seems to differ radically in epistemological status from our belief
that neutrinos have mass. But as we have seen, Quine insists that
the two beliefs are “epistemologically on a par.” Who is right?
Things certainly seem to be as Parsons says. To be fully con-
vincing, however, this observation must be supplemented with a
worked-out account of the direct and compelling evidence that
elementary mathematics allegedly enjoys. Parsons attempts to
do so by developing a broadly Kantian account of mathematical
intuition. Another option is to appeal to evidence flowing from a
Fregean form of abstraction.7

A second problem with Quine’s approach is that it leaves
large parts of mathematics without scientific justification. The
problem stems from his insistence that mathematical axioms
earn their keep by contributing to empirical science. A mathe-
matical axiom that fails to contribute in this way lacks scientific
justification. As Quine puts it, his view of pure mathematics
is “oriented strictly to application in empirical science” (1986,
p. 400). The question is thus how much abstract mathematics we
really need for the purposes of empirical science. One of themore
accomplished mathematicians to have investigated the matter is
Feferman, who contends that empirical science can live happily
on a surprisingly meager diet, which leaves out vast parts of
contemporary mathematics.8 Certainly, only a tiny fragment of
contemporary set theory is needed for the purposes of empirical
science.

Quine’s response to these considerations is two-pronged.
On the one hand, he reminds us that ontological economy is
not the sole consideration in theory choice; systematicity and

6 See, e.g., Parsons (1980, §III).
7 These two options will be discussed in Chapters 8 and 9, respectively.
8 See, e.g., Feferman (1993). 95
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elegance also matter. This might motivate some “rounding off”
concerning the mathematics that we accept.9 On the other hand,
Quine admits that some widely accepted mathematical axioms
may lack empirical justification, even of the indirect form. His
verdict in such cases is uncompromising: such axioms must be
regarded as “[m]athematical recreation . . .without ontological
rights” (ibid.). Given his empiricism, it is hard to see how he
could have responded differently. However, by holding math-
ematics hostage in this way to the needs of empirical science,
Quine contradicts prevailing mathematical methodology. Math-
ematical axioms tend to be assessed on their own merits, based
on intramathematical considerations. In particular, the concern
with ontological parsimony that goes hand in hand with Quine’s
holistic empiricism appears to play no role whatsoever in con-
temporary mathematics.10

A third problem is that mathematical theories never face
“the tribunal of experience" in the way that empirical theories
do. Rather, mathematical theories play a constitutive role in
providing a framework without which the empirical theories
could not even be formulated. A nice example is due to Michael
Friedman, who argues that, when the theory of relativity was
subjected to empirical tests, the underlying mathematical theory
of Riemannian geometry never faced “the tribunal of experience"
but was presupposed in order to formulate the physical theories
that do. According to Friedman, this points to a deep asymmetry
between the empirical part of the theory of relativity and the
mathematics that this empirical theory employs, where Quine,
by contrast, regards the two as on a par.11

Again, the three problems point to a more general lesson,
namely that mathematics differs from the more theoretical parts
of empirical science in its epistemic status and the nature of its
contribution to science as a whole.

9 For the set-theoretic cognoscenti: Quine (1986) even considers adopting
V=L in this spirit.

10 See Maddy (1997).
11 See, e.g., Friedman (1997) but also Putnam (1975a).96
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6.5 THE INDISPENSABILITY ARGUMENT

Despite these problems, there can be no doubt that Quine
has exercised a strong influence on the philosophy of math-
ematics, especially in North America. Today this influence is
most clearly manifested in the indispensability argument, which
takes its departure from Quine and perhaps also Putnam.12
The argument defends mathematics—understood in a broadly
platonistic manner—by appealing to its indispensable contri-
bution to empirical science. Let us begin by setting out the
argument.

Premise 1. Existential quantifiers incur ontological commitment.
That is, for a statement of the form ∃x ϕ(x) to be true, there must
be some object that satisfies the condition ϕ.

Premise 2. Natural science makes indispensable use of theories
that quantify over abstract mathematical objects.

Premise 3. We have reason to believe what natural science
tells us.

Conclusion. We have reason to believe that there are abstract
mathematical objects.

The reasoning is straightforward and compelling. By Premise 2,
theories that quantify over abstract mathematical objects are
part of the natural science which, by Premise 3, we have reason
to believe. Since these theories by Premise 1 incur ontological
commitment to abstract objects, we have reason to believe that
such objects exist. Thus, the success of the argument turns on the
tenability of the premises. Let us take a closer look.

The first premise is Quine’s theory of ontological
commitment: “To be is to be the value of a bound variable.”

12 See the works by Quine cited in the previous section, as well as Putnam
(1971) (although Putnam (2012, chap. 9) disowns any responsibility for the
indispensability argument). 97
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This premise is closely related to the thesis of Classical Semantics
that we discussed in connection with Frege’s argument that
numbers are objects (cf. §2.3). So its tenability turns on the
same considerations that come up in connection with that
thesis.13

The second premise seems plausible. Even a glance at scien-
tific publications suffices to reveal a heavy reliance on mathe-
matics. But the premise has in fact proved controversial. Let us
begin by clarifying it. It is plausible to understand the premise
as stating that our best current scientific theory of the world
uses mathematics that quantifies over abstract objects, and that
this use cannot be eliminated without thereby compromising the
scientific merits of the resulting theory. This precise statement
of the premise suggests a nominalist response. We can try to
develop an alternative but equally good scientific theory that
eschews all qualification over mathematical objects. This re-
sponse corresponds to one of the two main forms of nominalism
that we discuss in the next chapter (cf. §§7.2–7.4).

The final premise embodies a form of naturalism, by which I
mean an orientation that seeks to reduce, or even eliminate, the
gap between philosophy and natural science. The premise states
that well-established claims of natural science should be believed,
not be trumped by distinctively philosophical considerations.
This claim must be distinguished from a far stronger and more
controversial form of naturalism based on the converse claim
that the natural sciences offer a complete picture of the world and
of our relation to it. The indispensability argument has no need
for this stronger form of naturalism.

Even so, the third premise has encountered opposition. Why
should we believe all the pronouncements of natural science?
Even if we grant that natural science is generally a good guide
to truth, might not some of its widely accepted claims lack
justification? Not all the parts of a machine contribute in the
same way. A machine may even continue to function despite
a broken part. In short: we need to be told why someone who

13 In §11.2 we consider eliminative forms of structuralism which deny
Premise 1 as applied to the language of arithmetic.98
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has general faith in natural science should believe the claims
of mathematics in particular. One response is to reintroduce
Quinean confirmational holism, which the argument has so
far avoided. Natural science is justified as a whole, and this
justification is transmitted to any indispensable part of it. As we
saw in the previous section, however, confirmational holism is
controversial. Moreover, some nominalists argue that the use of
platonistic mathematics in extant science is merely instrumental.
And statements that are used in a purely instrumental way need
not be true for science as a whole to succeed. This response
corresponds to a second form of nominalism, to which we shall
return (cf. §7.5).

I wish to end with a more general concern about the indis-
pensability argument. Even if some version of the argument can
be made to work, it would not follow that the argument provides
our only—or best—reason to believe the claims of mathematics.
Some reasons for doubt surfaced in our discussion of Quine’s
holistic empiricism. Whatever indirect support mathematics
might obtain from its contributions to empirical science looks
very different from the kinds of consideration that are operative
in actual mathematical practice, which pays far less attention
to the usefulness of mathematics in the empirical science. The
problem is particularly serious for aspiring naturalists, who wish
to respect successful sciences. As we observed at the beginning
of the book, mathematics is a successful science par excellence.
It is problematic to set aside methodological norms that are
operative in this successful science in order to accommodate an
empiricist conception of knowledge.14 Beginning in Chapter 8,
we shall therefore investigate some proposed nonempirical forms
of evidence in mathematics.

SELECTED FURTHER READINGS

Skorupski (1989, chap. 5) discusses Mill’s view of mathematics.
Quine’s view is developed in several work (1953b, esp. §§5–6;

14 See Maddy (1997). 99
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1986; 1992, §40; and 1995, chap. 5.) (Colyvan (2015 provides
a useful survey of the indispensability argument. Putnam
(1971, chap. 8), is widely regarded as an early statement of the
argument. Maddy (1992) is an influential critique of the
argument. Baker (2005) attempts to develop an “enhanced”
indispensability argument, which focuses on the alleged
indispensable explanatory role of mathematics in science.
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CHAPTER SEVEN

Nominalism

7.1 BENACERRAF’S DILEMMA

In contemporary philosophy of mathematics, ‘nominalism’
typically refers to the view that there are no abstract objects. The
locus classical for the debate about nominalism in this sense is
Benacerraf’s “Mathematical Truth” (1973).1

Benacerraf’s central contention is that there is a conflict
between two desiderata. On the one hand, we want a plausible
semantics for the language of mathematics. Ever since Frege, the
default option has been what we have called “classical semantics,”
according to which the semantic function of singular terms is to
refer, and that of quantifiers, to range over appropriate domains
of entities (cf. §2.3). This semantics provides a unified account
of mathematical and nonmathematical language, which is widely
felt to be attractive. After all, sentences whose syntactic struc-
ture is the same should presumably receive the same semantic
analysis, regardless of what the sentences are about. As Frege
observed, however, when classical semantics is applied to the
language of mathematics, this naturally leads to the postulation
of mathematical objects. For example, if “2 + 2 = 4” is true and
its singular terms function as described in classical semantics,
there must be objects denoted by the numerals ‘2’ and ‘4.’ This is
just an instance of the Fregean argument for object realism, which
we defined as the view that there exist mathematical objects. And
presumably, these objects are abstract.

On the other hand, we want a plausible epistemology for
mathematics. As Benacerraf put it, “[i]t must be possible to link

1 Throughout most of the history of philosophy, ‘nominalism’ referred to the
different view that there are no universals (i.e., properties that can be instantiated
by many different particulars), only particulars.
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up what it is for p to be true with my belief that p” (1973,
p. 667). Without such a “link,” it would be a cosmic accident
that my methods for forming mathematical beliefs result in
beliefs that are true, at least for the most part. As we have
seen, the apparent need for such a link has been discussed ever
since Plato’s Meno and corresponds to what we have called “the
integration challenge” (cf. §1.5). But Benacerraf goes beyond
his predecessors by taking far greater care to rule out fanciful
accounts, such as Plato’s speculations about prenatal learning
or the rationalists’ postulation of a faculty of reason alleged to
provide the requisite link. Benacerraf requires a naturalistic—or
broadly scientific—account of the link. And such an account, he
believes, has to be based on a causal connection between the agent
in question and what is known.

As Benacerraf observes, there is a conflict between the two
desiderata, at least as he understands them. The first desideratum
leads to an account on which mathematics is concerned with an
ontology of abstract objects. But the second desideratum requires
a causal connection between the knower and the known. Since
abstract objects by definition don’t participate in causal relations,
no such connection is possible. What to do?

Benacerraf remained undecided about which desideratum to
relinquish, but others have expressed strong views. One family
of responses to Benacerraf’s dilemma insists on a naturalistically
acceptable epistemology of mathematics and contends that this
demand can be met only if we avoid all commitment to abstract
objects. How can this avoidance be achieved? Here it is useful to
recall the Fregean argument for the existence of abstract objects
(cf. §2.3). Each of the argument’s three premises can be denied.
One option is to deny that there is any substantive role for truth
in mathematics. This was done by the game formalists and was
recently tried by Hartry Field, as we shall see shortly. Another
option is to deny that the language of mathematics should be
given a classical semantic analysis. This was done by the term
formalists and, more recently, by a modal form of structuralism
to be discussed in §11.2. Last, one may deny that mathematical
objects are abstract. An interesting attempt to do so was made by
Maddy (1990), who argues that sets of concrete objects inherit102
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spatiotemporal location and causal efficacy from their elements
(cf. §8.4).

Another family of responses to Benacerraf rejects the second
horn of the dilemma, at least when this is taken to impose
a causal constraint on knowledge. This too can be done in
different ways. One option is to embrace confirmational holism.
If scientific theories are confirmed only as a whole, not statement
by statement, this lessens the need for a direct “link” between a
knowledgeable belief and the subject matter of this knowledge.
The viability of this approach was discussed in the previous
chapter. Another option—which I and many others prefer—
is to deny that all forms of knowledge are subject to a causal
constraint. Let us therefore examine why Benacerraf insists on
such a constraint.

Benacerraf is, as we saw, keen to ensure that the integration
challenge be answered in a scientifically responsible manner.
What does this mean, however? A natural strategy is to examine
cases of knowledge where the challenge can be met, such as
knowledge based on perception, testimony, and memory. In all
these cases, an appropriate causal relation appears to be required.
Might this suggest that all forms of knowledge require such a
relation? This would be a terrible argument, however! As we
have seen, mathematics is a very successful science, which is also
strikingly different from the paradigmatic empirical sciences.
The proposed generalization would therefore be problematic.
The defender of abstract objects could simply counter that it
is a rash overgeneralization, to which mathematics provides
a counterexample. Unlike the integration challenge, which is
carefully formulated so as not to be biased against any particular
form of knowledge, the demand for a causal connection is biased.

Another possible source of inspiration for Benacerraf’s causal
requirement on knowledge comes from epistemology. Tradition-
ally, knowledge was often defined as justified true belief. Some fa-
mous counterexamples showed this definition to be untenable.2
This discovery sparked the search for a better definition. Many
philosophers sought to add another condition—often thought to

2 See Gettier (1963). 103
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involve causality—to the traditional definition. One influential
example is Alvin Goldman’s causal theory of knowledge, to
which Benacerraf appeals.3 Since then, however, epistemologists
have largely abandoned the causal theory of knowledge. More-
over, in a clash between a philosophical theory of knowledge and
the successful science of mathematics, it seems foolhardy to side
with the former. Mathematics commands far greater confidence
than any philosophical analysis of knowledge.4

To conclude, it has not been established that knowledge
requires a causal connection between the knower and the known.
This undermines the influential epistemological objection to
object realism about mathematics. Yet it would be premature
for object realists to declare victory. It is one thing to reject an
unreasonable demand on knowledge and quite another to pro-
vide a positive account of mathematical knowledge that allows
the integration challenge to be met. Object realists still face a
formidable challenge. And there are other challenges as well.5 So
it remains interesting to examine the prospects for a nominalistic
account of mathematics. This will occupy us in the remainder of
this chapter. In the chapters that follow, we shall change tack and
explore how object realists can attempt to answer the integration
challenge.

7.2 HARTRY FIELD’S STRATEGY FOR NOMINALIZING
SCIENCE

According to Field, “the only serious argument for platonism
depends on the fact that mathematics is applied outside of
mathematics” (1989, p. 8). In order to undermine this single
serious argument, he sets out to show how nominalists too can
explain applications of mathematics to the empirical sciences.6

3 See Goldman (1967). However, Goldman states that his only concern is
empirical knowledge (p. 357).

4 See, e.g., Lewis (1986, pp. 108–15).
5 See, e.g., Linnebo (2013a, §4) for an overview and references.
6 See Field (1982) for an accessible overview and Field (1980) for the full

account.104
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If successful, this explanation will show that mathematics is not,
after all, indispensable to empirical science.

Field’s argumentative strategy is inspired by a toy example
due to Putnam, discussed in connection with game formal-
ism (cf. §3.2). We observed that first-order logic provides an
ontologically innocent way to make finite number ascriptions.
For example, the claim #x F x = 1 (which is “platonistic” be-
cause of its reference to the number 1) can be “nominalized”
as ∃x∀y(F y ↔ x = y).7 We also observed, however, that it is
exceedingly impractical to work with such nominalistic number
ascriptions, as the formulas and derivations quickly become too
long to be surveyable. It is hugely advantageous to allow the
claims of ordinary platonistic arithmetic too, as well as bridge
principles that link these claims with the nominalistically accept-
able number ascriptions. For example, if there is a single F , a
single G , and nothing that is both F and G , we can use the
equation 1 + 1 = 2 to infer that there are precisely two things
that are F -or-G . This means using a detour through discourse
about abstract objects such as numbers to simplify our reasoning
about the concrete. Are such detours safe? Do we know that
they won’t take us from true nominalistic premises to a false
nominalistic conclusion? In the present example, we do. We can
prove that everything that can be established via a platonistic
detour can also be established directly, remaining strictly within
the limits of what is nominalistically acceptable.8 In technical
parlance, we can prove that platonistic arithmetic is conservative
over the mentioned part of nominalistic arithmetic.

In light of this toy example, it is easy to explain the gist of
Field’s strategy for nominalizing science. The idea is simply to ex-
tend the strategy from the toy example to science in general. This
dauntingly ambitious aim involves two separate tasks. First, we
need to do to every scientific theory what we did to finite number

7 In the remainder of the chapter, we shall follow Field in referring to any
claim or theory committed to abstract objects as “platonistic,” although this
convention is somewhat less demanding than our official definition from §1.4.

8 Proof sketch. Since finite cardinality facts are expressible in first-order logic
and the cardinality entailments in question hold in all models, the entailments
are also provable by the completeness of first-order logic. 105
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ascriptions, namely to “nominalize” the theory by reformulating
it in a way that avoids all commitment to abstract objects. Second,
we need to show that the detours via platonistic mathematics are
benign and serve only to simplify reasoning that could in princi-
ple be conducted while remaining at the nominalistic level. That
is, we need to show that the platonistic theory is conservative over
the nominalistic one. Suppose Field is right that the two tasks can
be carried out. Then science can in principle be done in a nomi-
nalistic way (by the first task). It might nevertheless be expedient
to apply mathematics to science as a device that is useful for prac-
tical purposes, although in principle eliminable (by the second
task). In short, a successful execution of the strategy would yield
an elegant and powerful account of “the fact that mathematics is
applied outside of mathematics,” just as Field desires.

7.3 CAN SCIENCE BE NOMINALIZED?

Let us begin by examining the first task. It needs to be made
plausible that every scientific theory can be rewritten to eliminate
all reference to numbers and other abstract objects in favor of
statements solely about the physical world. Field attempts to
make a good start by carrying out the task in the special case of
the Newtonian theory of gravitation. While this theory is much
simpler than today’s best physical theories, its nominalization
is far from straightforward and illustrates many of the general
challenges that the task confronts.

In geometry it is traditional to distinguish between
coordinate-free (or synthetic) and coordinate-based (or
analytic) approaches. Ancient geometry is synthetic: it talks
about points, lines, and planes, but not about numbers. Thanks
largely to Descartes, however, the analytic approach came to
dominate. Each point is now associated with a triple of real
numbers, known as its coordinates. Geometrical objects can thus
be described and investigated indirectly via their coordinates,
which fall within the purview of powerful algebraic techniques.
This development led to the differential calculus, which nicely
illustrates the power and elegance of the analytic approach.106
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When nominalists describe physical space, they have good
reason to prefer the synthetic approach, as this eschews numbers
in favor of points and regions that can arguably be understood
as physical. Thankfully, the synthetic approach too has received
sophisticated modern developments, in particular by Hilbert and
Tarski. Both use two predicates defined on points: B(x, y, z) for
“y lies between x and z” and D(x, y, z, w) for “x is as distant
from y as z is from w.” Using these predicates, axioms for three-
dimensional Euclidean geometry can be stated. How does the
resulting synthetic geometry relate to the more familiar analytic
geometry based on the set R3 of triples of reals? The question
receives a satisfying answer by a representation theorem, which
states that the two geometrical theories agree, in the following
precise sense.9

Theorem. There is an isomorphism f from the set E of spatial
points to the set R3 of coordinates. Thus, f is one-to-one and
onto, and for every x, y, z, and w

B(x, y, z) ↔ B∗( f (x), f (y), f (z))
D(x, y, z, w) ↔ D∗( f (x), f (y), f (z), f (w))

where B∗ and D∗ are standard analytical formulations of the
relevant claims about betweenness and distance, respectively.

As Field explains, the synthetic approach is easily extended
to four-dimensional Newtonian spacetime, where an analogous
representation theorem can be proved.

Next in line are quantities, such as mass and charge. Consider
mass. It is customary to choose somemassive object as a unit, say
the standard kilogram in Paris. The mass of any other object can
now be specified by comparing it with that of our unit. An object
is said to have mass 2 kilograms, for example, just in case it is
twice as massive as our unit. To make things precise, let ‘x � y’
express that x is no more massive than y, and let ‘S(x, y, z)’
express that z is as massive as x and y taken together. Using these

9 See Field (1980, p. 50) for a precise statement. The theorem can be proved
by pooling the synthetic and analytic axioms. 107
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predicates, we can formulate some plausible assumptions
concerning physical objects that allow us to prove another
representation theorem, which loosely speaking says that the
family of mass properties and the operation of concatenation
have a structure that is “mirrored” in that of the nonnegative real
numbers and the operation of addition. The latter can thus be
used to represent the former. More precisely, there is a function
m from physical objects to nonnegative reals such that

x � y ↔ m(x) ≤ m(y)
S(x, y, z) ↔ m(x) + m(y) = m(z)

where m(x) is the mass of an object x in terms of our arbitrarily
chosen unit, whichmmaps to 1.10

Representation theorems such as those just mentioned pro-
vide valuable insight into how numbers are relevant to physical
space and to the various properties of the objects that populate
this space. The theorems also enable us to explain how Field’s
nominalization project proceeds. He develops synthetic theories
not only of space and mass but of any other quantity invoked
in the theory of Newtonian gravitation. Moreover, Field shows
how other relevant notions, such as that of differentiation, can
be defined synthetically, with no reliance on numbers. All this
requires hard work.

Does Field succeed, then, in his first task? I shall briefly
describe four lines of criticism. First, Field quantifies over points
and arbitrary regions of physical space. As he observes, this
assumes a substantivalist view of space according to which these
geometrical objects really exist. This assumption is controversial
in the philosophy of physics. A related assumption of Field’s
is even more controversial, namely that there are completely
arbitrary regions; that is, that every set of real coordinates defines
a region. It is far from obvious that physical space has the
immensely rich structure that is realized by R4 and all of its
arbitrary subsets.11

10 See Krantz et al. (1971, p. 74).
11 See, e.g., Maddy (1997, pp. 143–52).108
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Second, there may be branches of physics that cannot be
nominalized in Field’s way. David Malament claims there are
theories on which Field’s strategy seems not have a chance.
One example is the appeal to all possible dynamical states of a
system in classical mechanics. Another is the pervasive use of
infinite-dimensional vector spaces (so-called Hilbert spaces) in
nonrelativistic quantum mechanics.12

Third, some philosophers see a conflict between Field’s nom-
inalism and the naturalism that motivates his view. As we have
noted, naturalism seeks to minimize the difference between phi-
losophy and natural science; in particular, philosophers should
always respect successful science unless compelling reasons to
do otherwise arise within science itself. Now, physics is surely a
successful science. As currently practiced, however, physics is not
nominalistic but on the contrary is awash in reference to num-
bers and sets. Field is therefore committed to revising a successful
science. Its “official” version must be rewritten to eliminate
these offending forms of reference. Are his reasons for revision
sufficiently weighty? And do the reasons arise within science
itself, or can they be dismissed as illegitimate philosophical
interference?13

A final complaint concerns the status of ordinary scientific
claims involving mathematics. Field regards most such claims as
false.Why, then, is our practice ofmaking such claims so success-
ful? As Yablo (2005) observes, there is “something strangely half-
way” about Field’s project. The project leaves open the question
of how mathematics—which in ordinary science isn’t just a su-
perstructure erected on top of some nominalistic base—manages
to be so useful without being true. Field is more concerned with
the dispensability of mathematics in principle than its successful
applicability in science as we find it. This raises a hard question.
Suppose we manage to explain the applicability of mathematics
in extant science without assuming its literal truth. Why should
we then be so concerned about its dispensability in principle?We
shall return to this question in §7.5.

12 See Malament (1982, pp. 533–34).
13 This line of criticism is developed in Burgess and Rosen (1997) and Maddy

(1997).
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7.4 IS MATHEMATICS CONSERVATIVE OVER
NOMINALISTIC SCIENCE?

Field’s second task is to show that mathematics is conserva-
tive over nominalistic science; that is, that any argument from
nominalistic premises to a nominalistic conclusion that makes
a detour via mathematics can also be given without such a
detour. This rouses two questions. Is the conservativeness claim
true? And if so, are the resources needed to establish the claim
nominalistically acceptable?

Let us begin by giving a precise formulation of the conser-
vativeness claim. Let P (for “platonistic”) be a theory that is
committed to abstract mathematical objects, and let N be a
nominalistic theory. Then P is said to be conservative over N just
in case:

For any sentence A in the language of N , if P + N implies A,
then N implies A.14

However, logical implication can be defined either proof-
theoretically or semantically. The two definitions are equivalent
in first-order logic, which is complete.15 But in second-order
logic, which is incomplete, we obtain either a proof-theoretic
or a semantic notion of conservativeness depending on which
definition of implication we adopt.

Field believes there are general reasons to take mathematics
to be conservative—in both senses—over nominalistic science.16
One may worry that the claim is too sweeping to be true.
For example, let N be second-order logic and P be extant
mathematical physics. Clearly, P is not conservative over N ,
since P proves many nonlogical truths. However, this apparent

14 This slightly simplified definition is equivalent to Field’s on the benign
assumption that all quantifiers in nominalistic statements are restricted to
nonmathematical objects.

15 A logic is said to be complete just in case it has a complete proof procedure;
that is, just in case, when some premises semantically imply a conclusion, there is
a formal proof of this conclusion from these premises. While first-order logic is
complete, second-order logic is not. See, e.g., Boolos (2007).

16 See Field (1980, chap. 1).110
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counterexample is easily dismissed. Field presumably intends his
general claim to be restricted to theories P that consist only of
pure mathematics and bridge principles that link nominalistic
claims with mathematical ones. But a worry still remains. While
we have encountered various examples of bridge principles, Field
provides no general definition. Until a definition is in place,
Field’s general conservativeness claim lacks precise content. We
shall therefore focus on some more restricted conservativeness
claims where P consists of pure mathematics and bridge princi-
ples that Field in fact discusses.

Even these restricted conservativeness claims face a major
stumbling block in the form of Gödel’s incompleteness theo-
rems (cf. §4.6). (This discussion involves some subtle technical
arguments. Readers less interested in such matters may wish
to skip ahead to the next section.) The key is to observe that
arithmetical claims can be expressed in the language of Field’s
synthetic geometry. First we choose an interval to represent
the number 1. Then we let multiples of this interval represent
the other natural numbers; for example, two adjacent copies
of the interval yield a new interval representing the number 2.
Using this representation, we can express a Gödel sentence
G for the nominalistic theory N . As we know from the first
incompleteness theorem, N cannot prove G . Consider now the
platonistic theory P that results from adding set theory to N . As
Stewart Shapiro observes, P enables us to prove G .17 Thus, we
have a counterexample to Field’s conservativeness claim: P can
prove something that N cannot, namely G .

How might Field respond? One option is to exploit the fact
that his nominalistic theory is second-order, which, as we have
seen, means that proof-theoretic and semantic conservativeness
come apart. While the above argument shows a failure of proof-
theoretic conservativeness, it poses no threat to the semantic

17 This last fact assumes that we include among our bridge principles the
claim that every set of points defines a region. When we remove this claim,
conservativeness can be proved after all, but instead we become unable to prove
a representation theorem that Field’s account requires. See Shapiro (1983) and
Burgess (1984, §4) for precise statements and proofs. 111
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conservativeness of mathematics over nominalistic science. So
Field may hold on to the latter as his official conservativeness
claim.18 Another option is to cut the mathematical theory down
to size. The nominalistic Gödel sentence G has never played a
role in any established physical theory. It is thus an option to
formulate a weaker mathematical theory which suffices for the
purposes of mathematical physics, but which (unlike set the-
ory) is proof-theoretically conservative over nominalistic science.
John Burgess has described a candidate for such a theory.19

I shall end with a brief remark on the resources needed to
prove the desired conservativeness claims. For Field’s nominal-
ism to be a stable position and not merely serve as a refutation of
platonism, these resources had better be nominalistically accept-
able. In this connection it matters greatly how our nominalists
choose to respond to the challenge from the incompleteness
theorem. The study of second-order semantic implication re-
quires far stronger mathematical resources than the study of
proof-theoretic implication. Field outlined a modal account of
the notion of logical implication that is meant to enable a
nominalistically acceptable investigation of the conservativeness
claims. Suffice it to say that the nominalistic acceptability of this
account remains controversial, especially as applied to second-
order semantic implication.20

7.5 MATHEMATICAL OBJECTS AS REPRESENTATIONAL AIDS

Field emphasizes the deductive usefulness of mathematics,
as applied to nominalistic base theories. Mathematics greatly
facilitates the derivation of nominalistic conclusions from nom-
inalistic premises. More recently, philosophers such as Joseph
Melia and Stephen Yablo have placed greater emphasis on the
representational usefulness of mathematics. Mathematics allows

18 See Field (1985). The threat is avoided because the incompleteness theorems
apply only to proof-theoretic implication.

19 See Burgess (1984), which draws on work by Tarski and Kripke.
20 See Field (1991) for the account and Shapiro (1993) for criticism.112
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us to express—often in simple and elegant ways—various
nonmathematical claims that would otherwise have been difficult
or downright impossible to express.

Here are some examples that nicely illustrate the idea.21

(3) There are 2.5 planets per star.

This claim can be true in infinitely many different ways, each of
which is nominalistically expressible: there are five planets and
two stars, or there are ten planets and four stars, etc. So when
an astronomer asserts (3), it is reasonable to assume that the
assertion is intended to be entirely about the physical world and
thus nominalistically acceptable. True, the astronomer invokes
the number 2.5. But she does not intend to make any claim about
abstract objects such as numbers. Her intention is merely to
express in a simple and elegant way the mentioned nominalistic
content. Similar examples abound. Consider for instance the
claim that the escape velocity from a body of radius R and mass
M is 2GM/R, where G is the gravitational constant. Here we
quantify over numbers not because of any intrinsic interest in
them but merely as a representational aid that enables a compact
and elegant expression of a family of purely physical facts.

These examples suggest a daring hypothesis. When scien-
tists invoke mathematical objects, perhaps this is done without
ontological seriousness, merely in order to use these objects
as representational aids to facilitate the expression of various
nominalistic claims that they are serious about. If this is right,
perhaps there is no need to go through all the hard work of
Field’s nominalization strategy. Perhaps there is “an easy road
to nominalism” that leaves science just as it is but interprets
its pronouncements in a way that eliminates all commitment
to mathematical objects and thus extracts the real—and purely
nominalistic—content of these pronouncements. This daring
hypothesis has recently been pursued with much fervor and
creativity. Three brief remarks will have to suffice for our present
purposes.

21 See Melia (1995) and Yablo (2005). 113
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First, once we properly understand the representation theo-
rems at the heart of Field’s approach, it is not hard to nominal-
ize the statements from the mentioned examples and to prove
appropriate representation theorems, thus subsuming these ex-
amples under Field’s approach. Consider (3). We first introduce
plural predicates that enable us to define a four-place plural
predicate SAMERATIO(xx, yy, zz, ww), meant to express that
the ratio of yy to xx is the same as that ofww to zz.22 Then we lay
down uncontroversial nominalistic assumptions governing the
newly introduced predicates and assume there are infinity many
objects (say spacetime points). We can now prove that there
is a function r (xx, yy) from two finite pluralities to a positive
rational number such that

SAMERATIO(xx, yy, zz, ww)(7.1)
↔ r (xx, yy) = r (zz, ww)

Of course, r (xx, yy) is the ratio of yy to xx.23
Second, suppose there are cases that resist Field’s approach

because no nominalization is available. It is precisely in such
cases that an easy road to nominalism would make a difference.
Whether an easy road would be available in such cases, however,
is debatable.24 What would it even mean to “extract the purely
nominalistic content” of some mixed physical and mathematical
utterance in a case of the hypothesized sort? The examples from
Malament’s challenge to Field illustrate the concern (cf. §7.3).

22 Recall from §6.2 that ‘xx,’ etc., are plural variables, allowed to have one or
more values.

23 Let me sketch the proof. We first introduce a plural predicate
‘SUCC(xx, yy),’ which intuitively states that the number of yy directly succeeds
that of xx, but officially is defined nominalistically in terms of equinumerosity
of pluralities (which we take as primitive). We next introduce plural predicates
corresponding to addition and multiplication, as well as nominalistic versions of
recursion clauses for these arithmetical relations (cf. §11.2). By a plural (and thus
nominalistic) transposition of the ordinary treatment of ratios, we can now define
the predicate SAMERATIO. We prove (7.1), first in the special case where yy and
ww are “singleton pluralities,” and then extend to the general case by means of
induction.

24 See Colyvan (2010).114
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What would be the purely nominalistic content of some claim
about all possible states of a dynamical system or about Hilbert
spaces in quantum mechanics?

Finally, suppose (if only for the sake of the argument) that
the concern voiced in the previous comment can be addressed
and that mathematics can thus be shown to play a merely
representational and deductive role in empirical science. What
would this discovery show? It would obviously undermine any
version of the indispensability argument, which bases our faith in
mathematics on its allegedly indispensable contributions to the
empirical sciences. It is supremely important, however, to notice
that the discovery would pose no immediate threat to other
defenses of mathematics. The best defense of mathematics might
still turn out to flow, not from its contributions to the empirical
sciences, but from a more distinctively mathematical or logical
source of evidence. This possibility will be explored in the chap-
ters that follow.25

SELECTED FURTHER READINGS

Benacerraf (1973) is the classic presentation of the epistemolog-
ical objection to object realism. Field (1982) provides a useful
introduction to his nominalization program, although Science
without Numbers (1980) remains the canonical presentation.
Shapiro (1993) develops an important objection. Two “easy
roads” to nominalism are developed in Melia (1995) and Yablo
(2005). Colyvan (2010) criticizes these approaches; further dis-
cussion by six philosophers can be found in the October 2012
issue of Mind. Yablo (2014) spells out in greater detail his
interesting (but complex) contribution to this issue.

25 Cf. also the final paragraph of Chapter 6. 115



CHAPTER EIGHT

Mathematical Intuition

8.1 EVIDENCE IN MATHEMATICS

How do we come to know mathematical truths? While it
would be unreasonable to impose a causal requirement on such
knowledge, we still want an informative answer to the question
(cf. §§1.5 and 7.1).

One answer is that mathematical knowledge is broadly
empirical (cf. chap. 6). But this answer struggles to do justice to
mathematics as it is actually practiced. The most sophisticated
form of empiricism about mathematics is Quine’s, which
compares the epistemological status of mathematics to that of
theoretical physics. The comparison is problematic, however.
Elementary mathematics appears to enjoy a far stronger and
more direct form of evidence than the often tenuous and indirect
evidence enjoyed by theoretical physics.

We shall now take a closer look at some accounts of mathe-
matical knowledge that do not assimilate it so strongly to empir-
ical knowledge. One option came up in our discussions of Kant,
Hilbert, and Brouwer, namely that some form of mathematical
intuition provides evidence for certain mathematical truths. This
idea will be our main focus in the present chapter.

There are other options too, to be discussed in later chapters.
A brief overview may be useful. According to Frege and his
followers, logic—or at least broadly conceptual considerations—
provide a source of evidence in mathematics (cf. chap. 9).
Another important issue in the epistemology of mathematics
is that of extrapolation. This issue plays an important role
in our set-theoretic reasoning, where some very natural ideas
about collecting objects are extrapolated from their most secure
home in applications to finite domains and applied to huge
infinite domains (cf. chap. 10). Last, Russell and Gödel seek
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inspiration from the natural sciences, where a theoretical hypoth-
esis can be supported by its capacity to systematize, explain, and
predict more elementary observations. Both thinkers argue that
analogous considerations can serve as evidence in mathematics,
including for its higher reaches (cf. chap. 12).

When discussing the various possible sources of evidence in
mathematics, two points should be kept in mind. First, the avail-
ability of one form of evidence need not preclude the availability
of other forms. As we shall see, Gödel was a pluralist about math-
ematical evidence, defending a role for mathematical intuition,
conceptual analysis, and indirect explanatory evidence. Second,
evidence may come in degrees. While elementary mathematics
may enjoy a particularly strong and direct form of evidence, only
more attenuated forms of evidence may be available for parts
of higher mathematics. For example, Parsons argues that there
is such a thing as intuitive evidence—but that it does not take
us beyond parts of finitary mathematics. In short, we should
take seriously the possibility of a conception of mathematical
evidence that is both pluralist and gradualist.

8.2 THE NOTION OF INTUITION

“Intuition” is multiply ambiguous. The term is often used simply
in the sense of an immediate or pretheoretic opinion. Philoso-
phers sometimes appeal to intuitions in this sense. Such ap-
peals are more widespread and less controversial in linguistics,
however, where we have immediate reactions concerning
the grammaticality of sentences. Consider, for example, the
following well-known pair (where, as usual, ungrammaticality
is marked by ‘*’):
(4) I wish/hope that John will leave.
(5) I wish/*hope John to leave.

Another notion of intuition is that of an immediate rational
insight. This notion figures prominently in the rationalists, for
instance in Descartes’s appeal to “the natural light of reason,”
which can be trusted and serve as a source of knowledge.We shall
not have anything to say about these two notions of intuition. 117
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We shall instead focus on a notion of intuition employed
by Kant and other thinkers whom he inspired. In particular,
Hilbert argues that we have intuition of what we are now calling
Hilbert strokes (cf. §4.4). Since these strokes are understood
as types, not tokens, they are abstract and thus cannot strictly
speaking be perceived. Hilbert nevertheless contends that we
have a broadly perceptual mode of access to types, provided by
a form of mathematical intuition. We shall discuss some recent
attempts to defend this idea.

8.3 SKEPTICISM ABOUT MATHEMATICAL INTUITION

The idea of intuitive evidence for mathematics has encountered
substantial skepticism in recent philosophy.

One reason is that such evidence may seem irrelevant. True,
mathematicians used to appeal to intuitive evidence. For ex-
ample, the intermediate value theorem used to be regarded as
intuitively obvious. Surely, any continuous function whose value
begins below some number but ends above it must at some point
have this number as its value (cf. §2.1). But Bolzano showed
that a better proof is possible, replacing the appeal to intuition
with a rigorous analytical argument. This development contin-
ued throughout the nineteenth century with the rigorization of
analysis. Appeals to intuition gradually gave way to analytical and
eventually set-theoretic arguments.

Ultimately, however, this development only pushes the episte-
mological question back to set theory. Might intuition play a role
there? Gödel famously thought so:

But, despite their remoteness from sense experience, we do have
something like a perception also of the objects of set theory, as is
seen from the fact that the axioms force themselves on us as being
true. I don’t see any reason why we should have less confidence
in this kind of perception, i.e. in mathematical intuition, than in
sense perception. (1964, pp. 483–84)

However, do we really have something like perceptual access to
the vast infinite sets postulated by modern set theory? And do118
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the set-theoretic axioms really “force themselves on us”? Many
thinkers have dismissed such claims as simply incredible. So a
second reason for skepticism about mathematical intuition is
that this alleged capacity seemsmysterious.

It cannot be denied that some appeals to intuition are merely
“just so” stories, devoid of explanatory power. Russell’s talk of
“acquaintance” with universals provides an example. At one
stage, Russell took mathematical propositions to be concerned
with abstract universals; for example, “the proposition ‘two
and two are four’ [. . . ] states a relation between the universal
‘two’ and the universal ‘four’ ” (1912, p. 103). This raises the
question of how we acquire knowledge of such universals and
their relations to one another. Russell answers that we have
“knowledge by acquaintance” not only of “sensible qualities”
but also of “relations of space and time, similarity, and cer-
tain abstract logical universals” (p. 109). He concludes that “all
our knowledge of truths depends on our intuitive knowledge.”
But Russell offers no account of how this acquaintance works.
Unlike sensible qualities, which he takes to be “exemplified in
sense-data,” the abstract logical universals are not given in
sensation. How, then, do we apprehend them? Is this the work
of some special mental faculty? Instead of giving proper answers,
Russell simply postulates a form of acquaintance with universals
with no real explanation.

In sum, to be convincing, an account of mathematical intu-
ition must explain why such intuition is neither irrelevant nor
mysterious.

8.4 SOME RECENT DEFENSES OF MATHEMATICAL
INTUITION

Penelope Maddy has argued that we can perceive impure sets,
such as the set of twelve eggs in a carton.1 Her argument has
obvious potential relevance to the epistemology of set theory.

1 See Maddy (1990, chap. 2). A set is said to be impure when it has non-sets
in its transitive closure. 119
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And she takes great care to ensure that the form of perception she
describes is scientifically respectable. The central idea is that we
have an ability to represent many objects considered together as a
form of unity. This unity (or set) is located where its constituents
(or elements) are, thus ensuring that sets of concrete objects
are themselves concrete. Maddy even advances some hypotheses
about the neural mechanisms underlying our perception of such
concrete sets.

As noted, Gödel expressed high hopes concerning a form of
perception of sets. Maddy’s account of set perception has far
more limited scope. Since the objects to be considered as a unity
need to be given in perception, there can on her account be no
perception of pure sets, which involve no perceptible objects. It
is not even clear how perception of sets of sets of concrete objects
would work. (What would it be to perceive the powerset of the
mentioned set of eggs?) Nor does Maddy claim that we have
perceptual access to infinite sets, even when these are impure
(and thus concrete).

In contrast to Maddy’s naturalistic approach, Charles Parsons
defends a broadly Kantian conception of mathematical intuition.
Such intuition, he argues, presents us with types of perceptible
tokens in a way that is “strongly analogous” to how ordinary
concrete objects are given in perception; he therefore calls such
intuition quasi-perceptual (Parsons, 1980, p. 162). If correct,
Parsons’ claim has great significance for the epistemology of
finitary mathematics. As Hilbert realized, finitary mathematics
can be understood as concerned with syntactic types, such as
Hilbert strokes, and their basic syntactic properties (cf. §4.4).
An intuitive mode of access to such objects would therefore
provide a particularly strong and direct form of evidence for this
part of elementary mathematics—in stark contrast to the more
attenuated forms of evidence available for set theory, to which
finitary mathematics could otherwise be reduced.

Notice that Parsons goes beyond Maddy by defending a form
of intuition of objects that are not concrete. As we shall see,
however, it is important for his account that the syntactic types
that we intuit be at least “quasi-concrete”—in the sense that they
have canonical instantiations in spacetime.120
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Why believe that we have intuition of types, not just percep-
tion of corresponding tokens? Parsons’s argument seeks to estab-
lish that types play an important role in our sensory experience.
Our identification of a type is often firmer and more explicit
than the identification of the corresponding token. Consider, for
example, episodes of perceiving the word ‘dog’. Very often, we do
not notice the accent with which the token was pronounced, the
font with which it was written, or any other property that would
distinguish one token of the word from another. What registers
most firmly and explicitly in our minds is only a phonetic or
orthographic type. In cases such as these, our experience seems
to be directed at a type, not a token.

This is a plausible description of how things seem to the
subject. One might nevertheless worry that this form of intuition
would be mysterious. Would it not require an entirely new
mode of access to reality in addition to our familiar and fairly
well understood senses? Parsons’s response tries to “dispel the
widespread impression that mathematical intuition is a ‘special’
faculty, which perhaps comes into play only in doing pure math-
ematics” (1980, pp. 154–55). Borrowing an idea fromHusserl, he
proposes that intuition is always “founded” on ordinary sensa-
tions or imaginings. That is, we perceive or imagine something
particular, which is an instance of the more abstract object of our
intuition. By anchoring intuition in this way to capacities that we
indisputably have, there is no need for any mysterious “special
faculty” of intuition.

One difference between mathematical intuition and ordinary
perception is thus that the former is “founded.” This differ-
ence has an important consequence concerning the possible
objects of mathematical intuition. For the required “found-
ing” to be possible, the objects of intuition must be quasi-
concrete. It is this that allows the intuition to be “founded”
on perceptions or imaginings of corresponding tokens. So by
requiring that mathematical intuition be “founded,” Parsons
also limits its scope. We cannot have intuition of abstract
objects that do not have tokens in space and time, such as
numbers or pure sets, which are not quasi-concrete but purely
abstract. 121
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Another difference is that mathematical intuition relies more
heavily on conceptualization than ordinary perception does.
As Parsons observes, “[w]hat is intuited depends on the concept
brought to the situation by the subject” (1980, p. 162). For
example, one cannot intuit linguistic types without having at
least an implicit grasp of the difference between types and tokens
and of how the relevant types are individuated. Mathematical
intuition therefore requires more sophistication and training
than ordinary perception. This observation goes some way to-
ward explaining why our capacity for mathematical intuition
is so much less obvious to us than our capacity for ordinary
perception. Without the training needed to acquire the relevant
concepts, we cannot enjoy the benefits of such intuition.

Where Parsons draws on Kant and Hilbert, Dagfinn Føllesdal
looks to Husserl in an attempt to develop a phenomenological
conception of mathematical intuition.2 Føllesdal first asks us
to consider Jastrow’s famous duck-rabbit drawing, which can
equally well be seen as a duck and a rabbit, depending on what
we focus on. The drawing thus shows that “we can experience
a multitude of different objects when we are in a given sensory
situation: a duck, a rabbit, but also an ear of a rabbit, an eye, or
even the color or the front side of an object” (Føllesdal, 1995,
p. 429). Our perception is an active process, where we choose
what to focus on and are actively involved in interpreting the
sensory information that we receive. This active character of our
perception suggests that we can equally well choose to focus on
an object’s more abstract features, such as its shape. When we
stand in front of a tree with a nice triangular shape, for example,
we can choose to concentrate on its shape. Doing so results in an
intuition of triangularity.

Føllesdal’s account of intuition has much in common with
Parsons’s. Both emphasize that such intuition is “founded” on
acts of perceiving or imagining; both accounts are closely con-
nected with the distinction between types and tokens; and both
acknowledge the reliance of intuition on concepts and concep-

2 He also draws on Gödel, whose view on mathematical intuition he shows to
be influenced by Husserl’s.122
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tualization. But Føllesdal places more emphasis than Parsons
does on our own contribution to the structuring of what we
perceive or intuit. This difference emerges most clearly when we
consider concepts that are more abstract than that of triangu-
larity. Consider the concept of topological genus, which can be
thought of as the number of holes that an object has. An example
will help to convey the idea. A cup with a handle is superficially
far more similar to a glass than to a donut: both the cup and the
glass are shaped so as to serve as drinking vessels. But let us use
our imagination to explore how an object can be transformed
into another in a continuous manner, that is, by compressing,
stretching, and twisting, but with no tearing. Since the cup shares
with the donut the property of having a single hole, we can
imagine the former being continuously transformed into the
latter.3 By contrast, the glass cannot be continuously transformed
to the cup, since a hole would at some point have to be torn in the
glass to make a handle. With some training, we can in this way
become perceptually aware of a highly abstract property that the
cup shares with the donut but not the glass, despite the cup’s far
greater superficial similarity to the glass than to the donut.

Let us take stock. We have found that a strong case can
be made for the existence of a broadly perceptual source of
evidence about mathematical objects that are either concrete
(as Maddy thinks is the case with impure sets) or quasi-concrete
(as Parsons’s types). If defensible, this source of evidence will
play an important role in the epistemology of elementary math-
ematics. However, we have found reasons to doubt that this
broadly perceptual evidence will provide much support for what
Hilbert calls “infinitary mathematics.” In order to find evidence
for higher mathematics, it appears we must look elsewhere. Two
options were mentioned in §8.1. We may analyze our mathe-
matical concepts, such as that of set. Or we may seek indirect
evidence for mathematical axioms via their ability to systematize
and explain more elementary observations. These options will be
explored in Chapters 10 and 12, respectively.

3 Should your imagination fail you, a web search on “animation, cup, donut”
will enable you to perceive the transformation instead. 123
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8.5 MATHEMATICAL INTUITION AND CRITERIA
OF IDENTITY

The accounts of mathematical intuition proposed by Parsons
and Føllesdal seem quite plausible from the point of view of the
perceiving subject. But there is a residual worry. Do the accounts
succeed in explaining our access to abstract objects in a way that
meets the integration challenge (cf. §1.5)?

Let us grant that we can perceive a ball to be round and some
marbles to be five in number. This means that properties and
simple structural features can be present in our perception. But it
does not establish that we can perceive abstract objects. In the
mentioned examples, the proper objects of perception are the
ball and the marbles, respectively. Roundness and “fiveness” are
merely predicated of these objects and are not themselves the
proper objects of perception. The idea of mathematical intuition
promises the existence of quasi-perceptual acts in which such
properties and structural features figure as the proper objects of
perception and thus also as the subjects of other predications. An
example would be an intuition that roundness is distinct from
being cubical.

The required shift from predicables to proper objects of
predication is an instance of what philosophers call reification;
that is, coming to regard an item as an object. Now, wherever
there are objects, it must make sense to ask questions about
identity and distinctness: is this object identical with that? (As
Quine famously put it, there can be “no entity without identity.”)
This marks an important shift. Questions about the identity
and distinctness of properties were not obligatory prior to their
reification, when they were merely put to predicative use. For
example, we can perceive that the ball is round without taking
a stand on whether roundness is identical with some other
property which we perceive another object to have (say being a
good but not perfect approximation of a sphere). This neutrality
is no longer possible when roundness is recognized as an object.

What does a question about the identity and distinctness of
properties turn on? How does the world have to be in order to
make the relevant identity statement true? Criteria of identity124



Mathematical Intuition

are supposed to systematize our answers to such questions.
Cardinality properties, such as “fourness,” provide a nice exam-
ple. Is the cardinality of these things identical with the cardinality
of those? It is plausible to take the answer to be ‘yes’ just in case
the former things can be one-to-one correlated with the latter.
That is, Hume’s Principle is plausibly taken to provide a criterion
of identity for cardinality properties (cf. §2.4).

We are now in a position to connect the above discussion
with another topic that figures prominently in this book, namely
abstraction (cf. §2.4). We began by noting that we perceive and
imagine objects to have various properties and stand in various
relations. We then asked what is required for such properties to
be regarded as objects in their own right. It is widely believed
that we need a criterion of identity to specify when two property
instantiations count as instantiations of the same property. But
to specify when two objects count as instantiating the same prop-
erty is nothing other than to provide an equivalence relation on
objects; that is, a relation that is reflexive, symmetric, and transi-
tive. The discussion in this chapter shows that our handle on this
equivalence relation can be implicit and perceptual, rather than
explicit and conceptual. In cases where we rely on perception to
determine whether two objects stand in the equivalence relation,
it seems reasonable to talk about a quasi-perceptual mode of
access to the ensuing properties. But in other cases, perception
plays little or no role. In the next chapter, we shall therefore
undertake a general examination of how equivalence relations—
serving as criteria of identity—can underlie our apprehension of
abstract objects.

SELECTED FURTHER READING

The approaches tomathematical intuition discussed in this chap-
ter are clearly presented in Maddy (1990, chap. 2); Gödel (1964);
Parsons (1980); and Føllesdal (1995). Parsons (2008, chap. 5) is a
more complete exposition of Parsons’ approach. Tieszen (1989)
provides a fuller development of a Husserlian approach.
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CHAPTER NINE

Abstraction Reconsidered

9.1 A SIMPLE EXAMPLE OF ABSTRACTION

Abstraction appears to play an important role in our
mathematical thought. Whenever we have an equivalence
relation, we appear to be able to talk about the abstract feature
that two entities share just in case they stand in the equivalence
relation. Consider, for example, the equivalence relation that ob-
tains between two pluralities of things just in case the pluralities
are equinumerous (that is, can be correlated one-to-one). We
appear to be able to talk about the abstract feature that any two
equinumerous pluralities share, namely their cardinal number.
Unfortunately, there are dark clouds on the horizon. Frege’s
pioneering work on abstraction ended in paradox (cf. §2.7).

Before preparing for the storm, some reconnaissance will be
useful. We shall therefore begin by taking a closer look at a
family of particularly clear and promising cases of abstraction.
One of Frege’s favorite examples concerns directions. Consider a
domain of lines on which the equivalence relation of parallelism
is defined. This equivalence figures in the criterion of identity for
directions:

d(l1) = d(l2) ↔ l1 ‖ l2(Dir)

where ‘d(l)’ stands for the direction of the line l . I shall say
that two lines specify the same direction just in case they
are parallel. On the plausible assumption that lines and facts
about parallelism are epistemically accessible to us, this criterion
enables us to talk about directions being identical or distinct.
What about other properties and relations? Orthogonality pro-
vides an example. Two directions are regarded as orthogonal
just in case they are specified by two orthogonal lines. Using
⊥ and ⊥∗ as orthogonality predicates for lines and directions,
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respectively, we formalize this as follows:

(9.1) d(l1) ⊥∗ d(l2) ↔ l1 ⊥ l2
The orthogonality of two directions is, as it were, “inherited”
from the orthogonality of any two lines in terms of which these
directions are specified.

Of course, this “inheritance” of properties from lines to the
directions that the lines specify presupposes that it doesn’t matter
which line we choose in order to specify some given direction.
Thankfully, the presupposition is met. Assume that the direction
specified by l1 is also specified by l ′1, because l1 ‖ l ′1. Then, if
one of the two specifications is orthogonal to l2, so is the other.
For the purposes of assessing orthogonality, any line is just as
good as its parallels. Moreover, the example generalizes. For any
predicate P on lines that doesn’t distinguish between parallel
lines, we can introduce an associated predicate P ∗ on directions
by letting P ∗ hold of the directions of some given lines just in
case P holds of the lines themselves.

Where does this leave us? Assume that our discourse about
directions is governed by the mentioned rules and their gen-
eralizations to other predicates. As Frege observes, it is then
precisely as if we are talking about directions as objects. The rules
allow us to talk about directions—just as more familiar objects—
as presented in different ways, as identified and distinguished,
and as objects of various predications. At the very least, this
shows how it can be permissible to talk as if there are abstract
mathematical objects—in this case, directions.

Do directions really exist, however? One may be inclined
to answer “no.” All that we have done, it seems, is to show
how one can legitimately and truthfully speak like a platonist
without actually being one. This impression can be sharpened.
Using thementioned clauses and generalizations, it can be shown
that any statement seemingly about directions can be trans-
lated into a statement concerned only with lines. This suggests
that all we have achieved is to define a manner of speaking
that sounds platonist but in fact is nominalistically acceptable.
All we have secured is the appearance of platonism, not the
reality of it. 127
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Frege and many of his followers see things differently. If
we can legitimately and truthfully speak as if there are abstract
objects such as directions, what more might be required for
such objects to exist? There is no higher standard for the ex-
istence of objects of some sort than that which governs our
discourse about such objects. To require more would be to
hold this discourse to an unreasonable standard, imposed on
it from the outside. Fregeans defend an alternative conception
of what has been achieved. We start with a domain of entities
standing in certain relations. Claims about these entities are then
“reconceptualized” as claims about certain abstract features that
two such entities have in common just in case they stand in some
appropriate equivalence relation.1 For instance, a claim about
parallelism of lines is “reconceptualized” as a claim about identity
of directions. What is required for the existence of the directions
is thus nothing over and above the existence of lines standing in
appropriate relations of parallelism. There is no “metaphysical
distance” between the former fact and the latter. Likewise, the
orthogonality of two directions is nothing over and above the
orthogonality of the two lines in terms of which the directions
are specified.

If defensible, this alternative Fregean conception will explain
our “access” to abstract objects such as directions and thus allow
us to meet the integration challenge (cf. §1.5).2 Directions are
specified by means of lines, which are assumed to be unproblem-
atic. And since all the properties and relations of directions are
“inherited” from corresponding properties and relations of lines,
these don’t pose any additional epistemological problem. There
is no “distance” between the two sets of facts. One is obtained by
a “reconceptualization” of the other.

1 Where Frege talked about “recarving of meaning” (cf. §2.4), I shall now use
the term “reconceptualization,” which I find more apt. This also signals that our
primary aim is now to develop some Fregean ideas, not exegesis.

2 This conception will also fill the gap in accounts of mathematical intuition
that was identified in §8.5.128
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9.2 THE THREAT OF PARADOX

We turn now to the paradoxes that threaten the use of
abstraction. The problem arose, we recall, because Frege sought
to reduce all forms of abstraction to a single form. When two
concepts are coextensive, let us say that they have the same
extension. This yields Frege’s infamous “Basic Law V,” which in
contemporary notation can be written as

(BLV) {x | F x} = {x |Gx} ↔ ∀x(F x ↔ Gx)

As Russell discovered, this “law” gives rise to the paradox now
bearing his name (cf. §2.7). To recall how, it is useful to think of
Frege’s extensions as classes. The “law” then allows us to consider
the Russell class r whose members are each and every object that
is not a member of itself. We now ask whether r is a member of
itself. It is easy to derive the contradiction that r is a member of
itself just in case it is not.

What to do? Given its importance to our mathematical
thought, it would be an overreaction simply to give up on
abstraction, as Frege appears to have done around 1906. In
the next three sections, we shall discuss three more ambitious
responses. All three recognize an indisputable lesson from
Russell’s paradox, namely that it can be dangerous to abstract
on concepts in a way that yields objects. According to the first
approach—advocated by Russell and Alfred North Whitehead—
we need to find an altogether different way of accounting for
abstraction, which avoids the perilous transition from concepts
to objects. A second approach—advocated by the neo-Fregeans
Bob Hale and Crispin Wright—accepts only selected transitions
from concepts to objects. Although Basic LawV is impermissible,
other forms of abstraction are unproblematic. Clearly, an impor-
tant challenge for this approach will be to clarify the distinction
between permissible and impermissible forms of abstraction. A
third and final approach bypasses this challenge by accepting
all forms of abstraction, while avoiding paradox by allowing the
objects obtained by abstraction to lie outside of the domain on
which we abstract—much like the directions, in our motivating
example, lie outside of the domain of lines. 129
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9.3 THE SIMPLE THEORY OF TYPES

After discovering the paradox, Russell, along with his collab-
orator Whitehead, developed an alternative to Frege’s incon-
sistent theory of classes or extensions, resulting in the three-
volume behemoth Principia Mathematica, published in 1910–13.
Their proposed theory is notoriously complex. We shall consider
here only a substantially simplified version known as the simple
theory of types (STT), brought to prominence by the precocious
F. P. Ramsey (1903–30) in his (1931).

STT distinguishes sharply between individuals, classes of
individuals, classes of classes of individuals, etc. As Russell sug-
gests, we may think of these as respectively individuals, families,
clans of families, etc. In fact, the distinction between individuals
and classes of the various levels is so sharp that each level has
its own set of variables and constants, each with a superscript
that indicates its level or type (as it is also called). For example,
variables for individuals and for “clans” are of type 0 and 2, re-
spectively. Furthermore, a membership claim s ∈ t is considered
well-formed only if the type of t is exactly one higher than that
of s . Thus, while it is permissible to say that an individual is a
member of a family, or a family of a clan, it is impermissible to say
that an individual is a member of a clan or of another individual.
It follows that the condition meant to define the Russell set,
namely ‘x �∈ x,’ is ill-formed. Russell’s paradox is thus blocked by
a grammatical prohibition. The same goes for all the other set-
theoretic paradoxes. So at least in this regard, STT is successful.

Another virtue of STT is that it allows us to handle
abstraction in the way that came to dominate among mathemati-
cians toward the end of the nineteenth century, namely by means
of equivalence classes. Consider, for example, the equivalence
relation of two families’ being equinumerous. A cardinal number
is supposed to be some form of property that two families share
just in case they are equivalent in this way. So why not simply
identify the cardinal number of a family with the clan consisting
of all families equinumerous with this given family? This is
mathematically elegant, and it ensures that two families have the
same cardinal number just in case they are equinumerous.130
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As a logicist account of mathematics, however, STT is now
generally regarded as a failure. One problem is that the strict
division into types is cumbersome and needlessly restrictive.3 A
related problem is that its syntactic restrictions on membership
claims block not only the paradoxes but also Frege’s celebrated
bootstrapping argument, which shows that there are infinitely
many numbers. The argument crucially turns on the fact that
numbers too can be counted. Thus, if we have established the
existence of numbers 0 through n, we have at least n + 1 objects
available to count, which enables us to establish the existence of
the number n + 1 as well. This argument is no longer available
when numbers are construed in Russell and Whitehead’s way as
clans of equinumerous families. As a result, we need a separate
axiom of infinity, which states that there are infinitely many
individuals. But it is doubtful that this axiom can be regarded
as a purely logical principle. It certainly does not qualify as
logical on our contemporary conception of logic, which requires
a logical truth to be true in all models. Russell and Whitehead
thus found themselves in need of assumptions with substantive
mathematical content, which is not a happy situation for aspiring
logicists.

The real value of STT, in my opinion, is not the intended
one of providing a purely logical foundation for mathematics but
rather derives from STT’s role as a simple and weak set theory
and as an important steppingstone toward stronger and more
interesting set theories (cf. §10.3).

9.4 NEO-FREGEAN ABSTRACTION

To explain the neo-Fregean view, a brief review of Frege’s
account of arithmetic may be useful (cf. §§2.4 and 2.6). The
account proceeds in two steps.

The first step consists of an account of the applications
and identity conditions of numbers. Frege argues that counting
involves the ascription of numbers to concepts. For instance,

3 An argument of Gödel’s to that effect will be discussed in §10.3. 131
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when we say that there are eight planets, we ascribe the number
eight to the concept “. . . is a planet.” Frege’s claim is that the
number-of operator ‘#’ applies to any concept expression F to
form the expression ‘#x F x,’ meaning “the number of F s.” Next
Frege argues that the number of F s is identical to the number
of Gs if and only if the F s and the Gs can be put in a one-to-
one correspondence. This is known as Hume’s Principle and is
formalized as

(HP) #x F x = #x Gx ↔ F ≈ G

where F ≈ G is a formalization in pure second-order logic of the
claim that the F s and the Gs are equinumerous.

The second step seeks to provide an explicit definition of
terms of the form ‘#x F x.’ In order to do so, Frege uses a theory
consisting of second-order logic and Basic Law V. He defines
#x F x as the extension of the concept “is an extension of some
concept equinumerous with F .”4 It is straightforward to verify
that this definition satisfies (HP).

How should we respond to the well-known fact that Frege’s
approach is inconsistent? A simple but radical answer is pro-
posed by Wright (1983). Why not simply abandon the second
step of Frege’s approach—which introduces the inconsistent
theory of extensions—and make do with the first step? This pro-
posal has sparked a neo-Fregean approach to the philosophy of
mathematics, developed in large part by Wright in collaboration
with Bob Hale.

The neo-Fregean proposal relies on two fairly recent tech-
nical discoveries. The first discovery is that (HP), unlike Basic
Law V, is consistent. More precisely, let Frege Arithmetic be the
second-order theory with (HP) as its sole nonlogical axiom.
Frege Arithmetic can then be shown to be consistent if and
only if second-order Dedekind-Peano Arithmetic is (cf. §2.6).5
The second discovery is that Frege Arithmetic and some very

4 That is, #x F x is defined as {x | ∃G (x = {y |Gy} ∧ F ≈ G )}.
5 Proof sketch: Let the domain D consist of the natural numbers. If a concept

F applies to n objects, let ‘#x F x’ refer to n + 1. If F applies to infinitely many
objects, let ‘#x F x’ refer to 0.132
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natural definitions suffice to derive all the axioms of second-
order Dedekind-Peano Arithmetic. This result is known as
Frege’s theorem. So at least from a technical point of view, the
neo-Fregean approach is a success: it is consistent and strong
enough to prove all of ordinary arithmetic.

What about the philosophical merits of the approach? Let us
begin by asking why Frege insisted on the second of the two
steps described above. One reason may have been the greater
generality of the resulting approach. Extensions enable us to
imitate not only (HP) but any other form of abstraction on
concepts as well. But Frege’s official reason is different. While
(HP) gives us a handle on all identity statements of the form
‘#x F x = #x Gx,’ the principle is silent on mixed identity state-
ments such as ‘#x F x = Julius Caesar.’ Perhaps we know that all
such statements are false; but if so, this is no thanks to (HP). This
is known as the Caesar problem. Frege thought we have a firmer
grasp on extensions, which enables us to distinguish extensions
from Caesar and all other concrete objects.6

If we want to abandon the second step, we need an alternative
solution to the Caesar problem. Hale and Wright propose a
solution based on a simple but powerful idea. When we learn
that a criterion of identity applies to an object, we learn some-
thing about the object, namely that it has a certain property.
So when a criterion of identity applies to one object but not to
another, the former object has a property that the latter lacks.
It follows by Leibniz’s Law that the objects are distinct. While
the details obviously need to be spelled out, this is a promising
beginning.7

A second question concerns the philosophical status of
Hume’s Principle. As a logicist, Frege took Basic Law V to be
a logical truth. But Russell’s paradox proved him wrong. Might
we retreat to the claim that (HP), at least, is logically true? The
problem is that (HP) doesn’t much look like a logical truth.

6 At least this is the impression we get from Frege (1953, §68). However, a
form of the Caesar problem for extensions is recognized in Frege (2013, §10),
thus limiting the advantage of the second step to its greater generality.

7 See Hale and Wright (2001b) for further details. 133
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Our contemporary conception requires a logical truth to be true
in all models. But (HP) is true only in infinite models. The neo-
Fregeans therefore settle for the weaker claim that (HP) is an
a priori principle “whose role is to explain, if not exactly to define,
the general notion of identity of cardinal number” (Hale and
Wright, 2001a, p. 279). Their attempts to defend this weaker
claim are based on two different but related ideas.

One idea has already beenmentioned, namely that the identity
statement on the left-hand side of (HP) is merely a “reconcep-
tualization” of the content of the equinumerosity statement on
its right-hand side (cf. §§2.4 and 9.1). As Frege puts it, the two
statements are just different ways of “carving up” one and the
same content (1953, §64). Many philosophers agree that this is a
tantalizing idea. But the idea has proved difficult to substantiate,
and its prospects are still being debated.8

Another idea is that (HP) serves as an implicit definition of
the number-of operator #.9 More precisely, we have an a priori
entitlement to lay down (HP) as an implicit definition; and
if the definition succeeds, this will give us a priori knowledge
of numbers and their properties. It is clear, however, that not
all implicit definitions offer such substantial epistemological
benefits. Consider the implicit definition of ‘Jack the Ripper’
as the person, whoever he might be, who committed certain
gruesome murders. For the definition to succeed, there must
be a single individual who committed the murders. This is a
substantial presupposition. So at best, the definition may provide
a priori knowledge of the conditional that if the presupposition
is satisfied, then Jack committed the murders. Why should (HP),
understood as an implicit definition, do any better? Shouldn’t
any a priori knowledge flowing from this definition be condi-
tional on the equally substantial presupposition that there is in
fact a function that maps concepts to numbers in accordance
with (HP)? But this highly conditional knowledge falls far short
of outright knowledge of arithmetic.

8 See Field (1984) for a classic criticism and Rayo (2016) for a recent defense.
9 See Hale and Wright (2000).134
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The neo-Fregeans respond that (HP) is free of presupposi-
tions because it serves as a criterion of identity for numbers.
Here is the idea. Since (HP) serves as a criterion of identity, the
statements that flank its biconditional are intimately related. The
equinumerosity F ≈ G is “conceptually sufficient” for the truth
of the identity #x F x = #x Gx. There is “no gap” between the
two statements that some metaphysical assumption is needed
to “plug” (Hale and Wright, 2009, p. 193). Notice, however,
that this response leads us back to the first idea concerning
“reconceptualization.” So when the second idea is developed in
this way, it is not independent of the first.

The third and final question that we shall consider is which
abstraction principles are permissible. The answer will have to
balance two conflicting pressures. On the one hand, the rot repre-
sented by Basic Law V and a wide variety of other impermissible
abstraction principles will have to be excised in a way that is
both definitive and well-motivated. On the other hand, we want
to leave behind not only Hume’s Principle but ideally also other
abstraction principles that can serve as a foundation for analysis
and set theory. This requires a careful balancing act. Thanks to
a flurry of recent activity, substantial progress has been made,
especially on the technical side. Abstractionist approaches that
take us well beyond arithmetic have been developed.10 We also
have a far better understanding of the different ways of excising
the rot and of their respective strengths and weaknesses.11 But
some hard philosophical work still remains before we have an
adequate demarcation of the permissible abstraction principles
from the impermissible. The task of providing such a demarca-
tion is not solely a technical one but should also be integrated
with our philosophical account of how abstraction works. Our
philosophical account should motivate, or at least inform, the
answer to the demarcation problem.

10 See, e.g., Hale (2000) on real analysis and Shapiro (2003) on set theory.
11 See Burgess (2005) and, for an overview, Linnebo (2009). 135



Chapter Nine

9.5 DYNAMIC ABSTRACTION

A recently developed approach to abstraction gives a strikingly
different answer to the demarcation problem.12 Rather than try
to distinguish the good abstraction principles from the bad, this
approach accepts them all—albeit in a special manner. Let me
explain. Consider a domain of entities on which we want to
abstract. These entities can be either objects or Fregean concepts
based on some domain of objects. On the neo-Fregean approach,
the abstract objects obtained by some form of abstraction are
always assumed to belong to the domain of objects with which we
began. Neo-Fregean abstraction is in this sense “static.” It always
takes place relative to some fixed domain of objects.

This static conception is not obligatory. There is, for example,
no need to assume that the directions obtained by abstraction on
lines under the equivalence of parallelism belong to the domain
with which we started (cf. §9.1). There is also a “dynamic”
conception on which abstractionmay result in “new” objects that
lie outside of the “old” domain with which we began. In fact, this
dynamic conception of abstraction is arguablymore congenial to
our paradigm examples of abstraction. The distinctive feature of
these examples is that every question about the objects obtained
by abstraction reduces to—and thus is “reconceptualized” as—a
question about the entities on which we abstract. For example,
the question about the orthogonality of two directions reduces to
a question about the orthogonality of any two lines in terms of
which the directions are specified. But we must be careful. How
do we know that the reductions always lead to simpler questions,
which will thus eventually receive answers? The dynamic concep-
tion offers a simple but powerful assurance. Every question about
the “new” objects reduces to a question about the “old” objects,
which we may thus assume to have been answered.

Basic Law V provides a good illustration. Suppose we ask
whether the extension of one concept is identical with that of
another. The strategy is to reduce this to the question of whether
the two concepts are coextensive. But is the “reduced” question

12 See Linnebo (forthcoming) and Studd (2016).136
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really any simpler than the initial one? On the static concep-
tion, it need not be. The question about the coextensiveness
of concepts may on this conception lead us back to the initial
question about the identity of extensions. For among the ob-
jects with which the “reduced” question is concerned are the
very extensions whose identity or distinctness we set out to
determine.13 By contrast, no such circularity would arise if the
extensions generated by Basic Law V lay outside of the domain
with which we began. An identity question concerning these
“new” extensions would then always reduce to a coextensionality
question relative to the “old” domain, which wemay thus assume
to have been answered.

How do the static and dynamic approaches to abstraction
compare with regard to the development of mathematics? The
dynamic approach is more permissive in some respects. As we
have seen, this approach permits abstraction on any equivalence
relation, including coextensionality, as in Basic Law V. The
dynamic approach also allows iterated application of each form
of abstraction. Consider again Basic Law V. One application of
the law takes us from some initial domain to a larger one. Since
this larger domain gives rise to more Fregean concepts than the
initial one, a second application of the law will give rise to even
more objects. We can continue in this way indefinitely. At limit
stages, we take the union of all the objects generated thus far.
Since each round yields something new—as Russell’s paradox
would otherwise reemerge—the process will never terminate.

In other respects, the dynamic approach appears more restric-
tive than the static one. Hume’s Principle provides an example.
In its familiar static form, this principle supports Frege’s famous
bootstrapping argument (cf. §9.3). By counting the numbers
from 0 to n, we establish the existence of the number n + 1.
We thus prove by mathematical induction that our fixed domain
contains all the natural numbers. Consider now the dynamic
version of the principle. Given the numbers from 0 to n, we can

13 For example, suppose that each of two concepts applies solely to its own
extension. Then the coextensionality of the concepts will depend on the identity
of their extensions. 137
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again establish the existence of the number n + 1—but now this
numbermay lie outside of the domain with which we began. This
means that no finite number of applications of Hume’s Principle
will establish the existence of an infinite domain. The solution is
to iterate applications of the principle. This leads to arbitrarily
large finite domains and eventually also to an infinite domain.

In the next chapter, we shall discuss the iterative conception
of sets, which has much in common with the dynamic approach
to abstraction. On this conception, sets are “formed” in stages
from objects that are “available” at the preceding stages. Some
interesting questions that remain concerning dynamic abstrac-
tion have analogues concerning the iterative conception. How
should we describe and theorize about iterated abstraction? Since
this iterative process never terminates, the objects to which it
gives rise do not form a complete totality. How, then, should we
understand this incomplete totality and quantification over it?

SELECTED FURTHER READING

The further readings listed for Chapter 2 are relevant here too,
especially those on the neo-Fregean approach. The neo-Fregean
conception of mathematical objects is further developed in Hale
and Wright (2009). The collection of essays by Hale and Wright
(2001a) spells out other aspects of the approach and answers
objections; students may find the introduction and Wright
(1997) particularly useful. MacBride (2003) provides a useful
survey of the philosophical debate concerning neo-Fregeanism,
while Burgess (2005) provides a logical and mathematical analy-
sis of various forms of abstraction. Studd (2016) is a good
introduction to the dynamic approach to abstraction.
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The Iterative Conception of Sets

10.1 HOW SETS ARE “FORMED”

According to the iterative conception, sets are formed in stages.
We begin at stage 0 with no objects whatsoever.1 At stage 1 we
form all the sets of objects that are available at stage 0. Since these
newly formed sets are also objects, we now have more objects
available than we did at stage 0. This suggests a repetition of the
operation of forming all sets of objects that are available, which
will take us to an even more populous stage 2. Now we continue
in this way. If at some stage α we have formed a collection Vα
of sets, then at the next stage α + 1 we form all the subsets of
Vα . The domain at stage α + 1 is therefore the union of the
previous domain and its powerset; that is, Vα+1 = Vα ∪ ℘(Vα).2
This leaves only the question of what to do at limit stages, such as
stage ω, which are not immediately preceded by any other stage.
The natural answer is that we simply pool all the collections of
objects already formed. That is, for a limit ordinal λ, we define
Vλ = ⋃γ<λ Vγ .3

The iterative conception of sets brings valuable mathematical
and philosophical insights. We obtain a fairly clear picture of
what set theory is about, namely the cumulative hierarchy that
results from this stagewise formation of sets. And this picture
motivates many of the axioms of today’s most standard set
theory, ZFC, which is adequate for almost all ordinary mathe-
matics. (The theory will be explained shortly.) A simple example
is the Pairing axiom, which says that for any two objects a and b,

1 The account is easily modified to accommodate non-sets (or Urelemente),
which may be available either at stage 0 or themselves be formed in stages.

2 Exercise: Prove that this is equivalent to defining Vα+1 = ℘(Vα).
3 A limit ordinal is an ordinal, such as ω, with no immediate predecessor.



Chapter Ten

there is a pair set {a, b}. Let α and β be the least stages at which
a and b become available, respectively. We may assume without
loss of generality that α ≤ β . Thus, at stage β , both objects are
available. Consequently, their pair set is formed at the next stage,
β + 1. Many of the other axioms are motivated in an analogous
way. The iterative conception thus shows that “there is a thought
behind” our standard set theory ZFC: the theory isn’t just a
ragbag of axioms but describes a natural structure.4 Moreover,
since we have a reasonably clear grasp of this structure, we have
some evidence for the consistency of the theory.

While the iterative conception promises these important
rewards, it also raises some hard questions.

1. Precisely which axioms of ZFC does the conception moti-
vate, and how does it do so?

It would be good to give the conception a formulation that
is precise enough to answer these questions. Next, the usual
explanation of the iterative conception makes extensive use of
temporal and constructive language. The sets are said to be
“formed” in “stages” that are ordered as “before” or “after” one
another. Unless one is a constructivist of some sort, this language
cannot be understood literally.

2. How, then, should the temporal and constructive language
be understood?

Finally:

3. Does the iterative conception single out a unique intended
interpretation of the language for set theory?

One of the chief architects of the conception, Kurt Gödel, appears
to have thought so. But like many of Gödel’s philosophical
beliefs, this thought too is controversial. The first two questions
will be addressed below, and the third, in Chapter 12.

4 See Boolos (1971, p. 219). However, Boolos denies that this structure is fully
described by the iterative conception. Somemore ambitious views on the iterative
conception will be considered below.140
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10.2 ZERMELO-FRAENKEL SET THEORY

The discovery around the turn of the twentieth century that naive
set theory is inconsistent shook the mathematical community
(cf. §4.2). In the decades that followed, confidence was gradually
restored. This period saw the development of two different
schools that aimed to salvage some insights from the shipwreck
of naive set theory. One is the type-theoretic tradition initiated
by Russell and Whitehead (cf. §9.3). Their Simple Theory of
Types relies on a typed language, where we have separate vari-
ables for individuals, classes of individuals, classes of classes of
individuals, and so on. Thus, as Russell observes, we have one
type of variables that range over individuals, another type that
range over families, a third over clans, and so on. For each
type n, the theory has an unrestricted comprehension principle
which says that any formula ϕ(xn) defines a class {xn |ϕ(xn)} of
type n + 1.

Simultaneously, but independently, another school emerged
among mathematicians. This school pursued a strategy that
initially seems diametrically opposite to the type theorists’. They
held on to an untyped language but accepted that set compre-
hension needs to be restricted: not every formula defines a set.
An important early contribution by Zermelo (1908) formulates
principles of set existence—such as Pairing, Powerset, Union—
that are deemed to be both safe from paradox and needed
in order to do ordinary mathematics. With assistance from
Abraham Fraenkel and Thoralf Skolem, this eventually gave rise
to modern set theory and its standard axiomatization ZFC.

It is important to have some familiarity with this theory. It
uses a single nonlogical predicate, ‘∈’ for membership. All other
set-theoretic notions are defined in terms of this predicate. The
axioms are as follows.

Extensionality: Coextensive sets are identical. That is, ∀u(u ∈
x ↔ u ∈ y) → x = y.

Empty set: There is an empty set. That is, ∃x∀u(u �∈ x).
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Pairing: Every two objects have a pair set. That is, ∀x∀y∃z∀u(u ∈
z ↔ u = x ∨ u = y).

Union: For every set z, there is a set y whose elements are
precisely those objects that are an element of some element of
z. That is, ∀z∃y∀x[x ∈ y ↔ ∃w(x ∈ w ∧ w ∈ z)].

Power: Every set has a powerset. That is, ∀z∃y∀x(x ∈ y ↔
x ⊆ z).

Infinity: There is an infinite set, that is, a set with∅ as an element
and such that, whenever x is an element, so too is x ∪ {x}. That
is, ∃y[∅ ∈ y ∧ ∀x(x ∈ y → x ∪ {x} ∈ y)].

Separation: For any set z and any condition ϕ, there is a set of
precisely those elements of z that satisfy ϕ. That is, ∀z∃y∀x(x ∈
y ↔ x ∈ z ∧ ϕ).5

Foundation: Every nonempty set x has an element that is disjoint
from x. That is, ∀x(x �= ∅→ ∃y(y ∈ x ∧ x ∩ y = ∅)).

The set theory based on these axioms is known as Zermelo
set theory, Z. Fraenkel and Skolem argued successfully that we
should add an axiom scheme that we shall now describe, which
results in a theory known as Zermelo-Fraenkel set theory (without
Choice), or ZF.

Replacement: For every set z and functional condition ψ , there is
a set of precisely those objects that are borne ψ by some element
of z.6 That is

Func(ψ) → ∀z∃y∀x[x ∈ y ↔ ∃w(w ∈ z ∧ ψ(w, x))]
This is based on a simple and intuitive idea. Consider any set.
For each of its elements, choose either to keep this element or to

5 This is an axiom scheme, which yields an axiom for each ϕ. The same goes
for Replacement, stated below.

6 ψ is functional just in case for every x there is a unique y such that ψ(x, y).142
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replace it with some other object. Then the resulting collection is
also a set.

ZFC is the result of adding to ZF the axiom of Choice, once highly
controversial but now widely accepted.

Choice: Every set z of nonempty disjoint sets has a choice set, that
is, a set containing precisely one element of each element of z.

Intuitively, given any bag containing some nonempty bags, we
can produce another bag containing precisely one member of
each of the bags contained in the initial bag.

As mentioned, ZFC was formulated as a result of a careful
balancing act between the opposing pressures of guarding against
paradox and satisfying the needs of ordinarymathematics. So it is
natural to worry that the resulting set theory is ad hoc and devoid
of intrinsic appeal. The first person who clearly saw that this isn’t
so was Gödel, who argued that the newly developed set theory
can be motivated by a clear and natural conception, namely what
we now call the iterative conception. Here is one of the earliest
clear statements of the conception.

This concept of set . . . according to which a set is something
obtainable from the integers (or some other well-defined objects)
by iterated application of the operation “set of,” not something
obtained by dividing the totality of all existing things into two
categories, has never led to any antinomy whatsoever. (Gödel,
1964, pp. 474–75)

10.3 FROM TYPE THEORY TO THE ITERATIVE CONCEPTION

Let me digress briefly to describe a related insight of Gödel’s,
namely that the type-theoretic and set-theoretic schools have
far more in common than initially meets the eye. Gödel goes
so far as to claim that set theory is “nothing else but a natural
generalization of the theory of types, or rather, it is what becomes 143



Chapter Ten

of the theory of types if certain superfluous restrictions are
removed” (1933, pp. 45–46).7

One of the “superfluous restrictions” that Gödel has in mind
concerns type theory’s strict division into layers or types. As
we have seen, type theory cannot allow an individual to be a
member of a clan directly but only via some family (cf. §9.3). Set
theory takes a far more relaxed approach by allowing an object
to be a member of a set of any higher level, not just from the
level immediately above. For example, the prohibition against an
individual being a member of a clan is lifted.

Another difference between the two approaches concerns how
the levels are represented. While type theory represents the levels
by means of syntactic types, set theory adopts an untyped lan-
guage and lets the levels be ontological in character. Thus, instead
of using a typed variable, such as x2, to represent a clan, set theory
uses an untyped variable but says of its value that it was “formed”
only at stage 2. Striking though this difference may seem, Gödel
regards it too as superficial. Regardless of how the levels are
represented, they are present on both approaches and play a
crucial role in blocking the set-theoretic paradoxes. Consider
Russell’s paradox. Type theorists deny that the condition used to
define the Russell set, namely non-self-membership, is so much
as meaningful. Set theorists are more relaxed and allow every
membership claim to be meaningful. As Gödel realized, any
claim that the type theorists deem meaningless may instead be
stipulated to be false. Thus, in set theory it is always false to say
of a set of one level that it has elements from the same level or
above. We enforce this idea by requiring that a set have members
from lower levels only. This suffices to block Russell’s paradox.
The mentioned requirement means that every object satisfies the
condition of non-self-membership. So there is no stage at which
all the objects that satisfy this condition are formed and available
to serve as members of a set. Hence, there is no Russell set. The
other paradoxes are blocked in similar ways.

The final difference concerns the height of the two hierarchies.
While type theory has syntactic levels indexed by all and only

7 Linnebo and Rayo (2012) expands on the discussion in this section.144
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the natural numbers, set theory permits infinite ontological levels
indexed by all the ordinal numbers. The process of set formation
should be allowed to continue as far as possible.8

By holding that these three differences are superficial, Gödel
in effect regards the Simple Theory of Types as a weak form of
set theory, developed with a needlessly complicated syntax and
subject to gratuitous restrictions, such as the ban on individuals
being members of what Russell calls “clans.”

10.4 STAGE THEORY

The first of the three questions prompted by the iterative concep-
tion asks which axioms of ZFC the conception motivates. The
question is famously discussed in Boolos (1971). First, Boolos
attempts to make the iterative conception formally precise by
formulating an axiomatic theory aimed to describe how sets are
formed in stages. Then, he proceeds to examine which axioms of
ZFC this “stage theory” supports.

The stage theory is formulated in a language with separate
systems of variables for stages and sets. There are three atomic
predicates. In addition to the usual membership predicate ‘∈,’
we write ‘s < t’ for ‘stage s is earlier than stage t’ and ‘F xs ’
for ‘the set x is formed at stage s .’ The theory itself begins by
describing the structure of the stages. First, the relation < of
‘earlier than’ is a strict linear order.9 Next, there is an initial stage,
and immediately after any stage there is another. Finally, we lay
down that there is a limit stage, that is, a stage other than the
initial one that is not immediately after another stage.

The theory proceeds to describe how the sets are formed in
stages. Every set is formed at some unique stage. Next, because
the elements of a set have to be available before the set is formed,
we lay down that each element of a set has to be formed at an

8 Notice that this liberalization would not have been possible with the type
theorists’ strict layering, as there can be no level immediately below ω.

9 That is, < is irreflexive, transitive, and trichotomous (i.e., for any x and y,
we have x < y, x = y, or y < x). 145
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earlier stage than the set itself. Once the elements of a set are
available, however, we immediately form the set. Thus, we lay
down that every set is formed at the first stage which is after the
stages at which its elements are formed. Next, we would like to
say something about which objects are available at some stage.
The answer is obvious. For any condition ϕ and stage s , the
things that satisfy ϕ and are formed before s are available. Thus,
we lay down that at any stage there is a set of all and only those
things that satisfy ϕ and are formed before that stage. Finally, we
would like to adopt a closure condition to the effect that there are
no sets other than those formed in the aforementioned ways. We
can do this by adopting induction axioms for the membership
relation. That is, if some condition is satisfied by every non-set
and by every set whose elements satisfy the condition, then every
object whatsoever satisfies the condition.

We are now ready to inquire which axioms of ZFC are entailed
by this explication of the iterative conception. It turns out that
many are. The Powerset axiom provides a good illustration.
Consider a set z, which must be formed at some stage s . Every
element of zmust therefore be formed before s . This also ensures
that every element of every subset of z is formed before s . It
follows that every subset of z is formed at or before s . But this
means that all the subsets of z are available at s and that the
desired powerset of z therefore is formed at the next stage. In
fact, it turns out that all but three of the axioms of ZFC can be
proved by this style of reasoning.

One of the exceptions is Extensionality. But Boolos regards
this axiom as “quasi-analytic” and therefore unproblematic. He
finds it more worrisome that neither Replacement nor Choice
follows from the stage theory. Should we be worried? To establish
that these axioms lack support from the iterative conception, it
would first have to be argued that Boolos’s stage theory captures
the full content of the iterative conception. It is far from obvious
that it does. Given the emphasis that the iterative conception
places on the arbitrary nature of the set formation, it is not
implausible to add a version of Choice to the stage theory. As
Boolos shows, the ordinary axiom of Choice can then be derived.
An analogous approach is possible with regard to Replacement,146
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which can be derived if we make sufficiently strong assumptions
about how many stages there are. However, this observation falls
short of an unconditional answer to the question of whether
Replacement follows from the iterative conception.

In my view, this shortcoming highlights an important weak-
ness of Boolos’s stage theory, namely that it fails to provide an
independent handle on how many stages there are. The stages
make up the spine along which the procedure of set formation
unfolds. But on Boolos’s account this spine is simply provided
“from the outside.” If we assume a stage-theoretic version of the
axiom of Infinity, the corresponding set-theoretic axiom follows;
and likewise for Replacement. This means that neither axiom
receives any genuinely independent support from Boolos’s stage
theory.

Can we do better? Might the iterative conception shed light
on the length of the spine? Recall the idea that the process of set
formation should extend “as far as possible.” Gödel had high
hopes for a subtle explication of this idea in terms of the universe
of sets being indistinguishable from its initial segments. Accord-
ing to this explication, any property that might distinguish the
universe fails to do so as it is also had by one of its initial segment.
This motivates a so-called reflection principle:10

∀
x ∃α ∀
y ∈ Vα
(
ϕ(
x, 
y) ↔ ϕ(
x, 
y)Vα)

A verbal gloss may be useful. The idea is that, for any condition
ϕ utilizing parameters 
x, there is an ordinal α such that the
universe and the initial segment Vα look alike with respect
to this condition. Thus, the condition fails to distinguish the
universe from one of its initial segments. It is a pleasing fact
that this reflection principle entails both the axioms of Infinity
and Replacement. So if Gödel is right that the principle is part of
the iterative conception, then this conception will motivate more
axioms than Boolos thought, and in fact do so in a less circular
way.

10 As usual, 
v abbreviates a finite string of variables. And ϕVα is the result of
restricting all quantifiers in ϕ to Vα ; e.g., ‘∀x’ is replaced by ‘(∀x ∈ Vα).’ 147
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10.5 UNDERSTANDING THE GENERATIVE VOCABULARY

Our second question is how to understand the temporal and
constructive vocabulary that is used to describe the iterative
conception. This question receives an influential discussion in
Parsons (1977).

Interpreted literally, the usual explanation of the iterative
conception suggests a view akin to that of constructive mathe-
matics. Perhaps sets are “formed” through a synthetic operation
of the mind that brings such objects into existence. This inter-
pretation is deeply problematic, however. There are of course the
general misgivings about mathematical constructivism discussed
in §5.2. But the application of constructivist ideas to set theory
is particularly problematic because of the daunting size of the
process and the objects in question. As Parsons observes, ordi-
nary time is simply not rich enough to provide a spine along
which the process of constructing sets could take place. This
process would require a “super-time,” and we would need a
“super-mind” to carry out the constructions in this time. These
extreme idealizations would make the analogy with constructive
mathematics far less apt.

It might be better simply to dismiss the constructive
language of the iterative conception as mere rhetorical flourishes,
which can be eliminated without any real loss of content. One
proponent of this view is Boolos (1989), who suggests that the
real content of the iterative conception is summed up in the
observation that the cumulative hierarchy V can be retrieved as
the union of the ranks Vα for each ordinal α. This observation is
just a theorem of ZFC, which in turn is formulated in the austere
language of ordinary set theory, without any of the problematic
vocabulary. As we shall see shortly, however, it is doubtful that
this minimalist version of the iterative conception can deliver all
that the conception promises.

A third answer, due to Parsons, is to give the iterative concep-
tion a more ontological explication. According to him, “[w]hat
we need to do is to replace the language of time and activity by
the more bloodless language of potentiality and actuality” (1977,
p. 293). Here is a useful summary of his proposal:148
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A multiplicity of objects that exist together can constitute a set,
but it is not necessary that they do. . . . However, the converse
does hold and is expressed by the principle that the existence of a
set implies that of all its elements. (pp. 293–94)

This requires some explanation. First, there is the idea that a set
exists potentially relative to its elements. When the elements of
some would-be set exist, we have all that is needed to define or
specify the set in question: it is the set of precisely these things.
Then, there is the related idea that the elements are ontologically
prior to their set. They can exist although it does not—much
like a floor of a building can exist without the higher floors that
it supports. But a higher floor cannot exist without the lower
floors that support it. Likewise, a set cannot exist without its
elements, which are prior to it and on which the set is therefore
ontologically dependent.

Clearly, this ontological explication of the iterative conception
takes us deep into metaphysics. But this need not be problematic.
The relevant metaphysical ideas have a fairly strong intuitive
basis, and they give rise to a theory with substantial explanatory
power—as we shall see in the remainder of this section and in
the next, respectively. Let us begin with the idea of ontological
dependence. Consider some things and one of these things.
These things could not have existed without this one member.
They are ontologically dependent on it. If the one member was
destroyed, for example, then the remaining things would be
distinct from the things with which we began; for some things
cannot be identical with our initial things unless they have the
very same members. Let us now return to the case of sets.
Since a set is the result of applying the “set of” operation to
some things, it is plausible to take the relation of ontological
dependence to obtain also between the set and each of its
elements.

Next, there is the idea of a set as merely potential relative
to its members. This is implicit in Gödel’s talk of a “set of”
operation that is applicable to any “well-defined objects.” First we
pin down some “well-defined objects.” Thenwe apply the “set of”
operation to these objects. Applying this operation corresponds 149
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to a permissible mathematical definition. For whenever we have
pinned down some “well-defined objects,” this suffices to define
their set. This raises a concern, however. Why doesn’t Gödel’s
“set of” operation lead to naive set theory, which is inconsistent?
The concern is nicely articulated by Jonathan Lear:

There are two beliefs associated with the iterative conception of
set that are apparently mutually inconsistent: (i) Given any well-
determined objects, they can be collected together into a set by an
application of the set of operation. (ii) There is no set of all sets.
(1977, p. 86)

The iterative conception is based on repeated application of the
“set of” operation, which can be applied to any “well-determined
objects.” Simultaneously, the iterative conception purports to
describe the cumulative hierarchy that results from this repeated
application. So presumably there are some “well-determined
objects” that make up the hierarchy. We should therefore be able
to apply the “set of” operation to these objects as well. But doing
so would yield a universal set, which is prohibited on the iterative
conception.

10.6 ACTUALISM VERSUS POTENTIALISM

In order to respond to the threat of paradox, we need to distin-
guish between two different philosophical orientations toward
set theory.

On a traditional platonist conception, mathematics is con-
cerned with a fixed and determinate universe of abstract objects.
Indeed, this is part of the analogy between mathematics and the
empirical sciences on which platonism is based (cf. §1.4). Just
as astronomy, say, is concerned with a fixed and determinate
universe of stars, galaxies, and gas clouds, so mathematics is con-
cerned with its own fixed and determinate universe of numbers,
sets, and spaces. Other than lacking spatiotemporal location and
being causally inefficacious, the objects of mathematics exist in
the same way as those of astronomy and are all “available” to
be talked about and quantified over in the same straightforward150
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and unproblematic way as stars and galaxies. Let us call this
orientation actualism.

Other approaches to mathematics reject the actualist concep-
tion of its subject matter. It is impossible to ascribe to mathemat-
ics a fixed and determinate universe of mathematical objects. For
any such universe could be used to define an even larger such
universe, which would be no less legitimate or mathematically
interesting than the previous one. One such alternative approach
derives from the ancient idea of potential infinity, according to
which there are mathematical operations that can be applied
indefinitely but whose applications can never be completed
(cf. §§4.4 and 5.4). Zermelo famously defended an analogous
view of set theory. Although set theory abounds with actual
infinities, a form of incompletability still remains. For any
domain of sets—or indeed model of the axioms of set theory—
can be extended to an even richer such domain or model:

What appears as an ‘ultrafinite non- or super-set’ in one model
is, in the succeeding model, a perfectly good, valid set with both a
cardinal number and an ordinal type, and is itself a foundation
stone for the construction of a new domain. (Zermelo, 1930,
p. 1233)

That is, the hierarchy of sets is “open-ended” and incapable
of being completed. Similar ideas are found in the ontological
explication of the iterative conception, which we discussed in the
previous section. Let us call this orientation potentialism.

Given the potentialists’ acceptance of actually infinite sets, one
may wonder whether the two orientations differ in substance,
not just in their choice of imagery and heuristics. In fact, an
interesting difference emerges when we return to the threat to
the iterative conception articulated by Lear and broached in the
previous section. It turns out that potentialists have a response
to this threat that is not available to actualists. Recall that Gödel
says the “set of” operation can be applied to any “well-defined
objects”; other expositors require that the objects be “available”
or “given.” What do these requirements amount to, however?
Potentialists can offer an appealing explication. To be “available”
or “given” is to possibly co-exist and thus to be capable of 151
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completion.11 As Zermelo observed, the cumulative hierarchy of
sets is not “available” or completable in this way. This assuages
Lear’s concern. Since the cumulative hierarchy lacks the kind of
well-definedness that is required for the “set of” operation to be
applicable, the push toward a universal set is blocked and the
iterative conception is coherent after all.

Things look very different from an actualist point of view. It
is part and parcel of this view that all sets are “available” or “exist
together.” This deprives actualists of the proposed response to
Lear’s concern. In fact, since actualists accept pluralities—or
“finished” multiplicities—that don’t form sets, they are
vulnerable to the charge that they have arbitrarily truncated the
cumulative hierarchy at some point where it might have been
continued to even higher reaches.

Our discussion has made heavy use of modal talk. So it is
reassuring that all of our distinctions and arguments can be
made explicit using the resources of modal logic. At the heart of
this modal explication is a principle concerning the existence of
sets.

(6) Necessarily, given any things, it is possible that these
things form a set.

We may think of this as a potentialist version of the naive
principle of set comprehension (cf. §4.2). The paradoxes show
that the actualist version of the principle is unacceptable: it
is disastrous to assume that any things do form a set. But
the potentialist version states only that any things may form
a set. This principle is consistent, intuitive, and theoretically
useful.

We also need a principle of extensionality that specifies how
sets are individuated. Here is a plausible option:

11 See Parsons (1977) and Linnebo (2010). In fact, this answer harks back to
Cantor’s famous distinction between “consistent” and “inconsistent” multiplici-
ties. Since only the former “can be thought of as finished,” only they give rise to
sets.152
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(7) Necessarily, if x is the set of some things uu and y is the
set of some things vv, then x = y iff uu = vv.

There are other natural ways as well to strengthen the potentialist
set theory. It is, for example, natural to require that a set have
the same elements at every possible world at which it exists; that
the stages of the set formation be well-founded; and that the
subsets of a set be formed no later than the set itself. Properly
explicated, these additions turn out to justify Zermelo set theory
minus the axiom of Infinity, much like Boolos’s stage theory
justifies a similar amount of set theory. Finally, it is natural to add
a reflection principle in order to capture the idea that the process
of set formation is continued as far as possible. Doing so allows
us to justify the axioms of Infinity and Replacement as well, and
thus all of ZF.12

Summing up, the modal explication of the iterative concep-
tion provides an interesting alternative to Boolos’s stage theory.
We have discussed three attractive features of this alternative. It
puts the potentialist conception of the hierarchy to explanatory
use. It makes available a promising response to Lear’s concern.
And it shows that naive set theory contains valuable ideas—
provided that these are developed in a potentialist rather than
actualist setting.

SELECTED FURTHER READING

Boolos (1971) develops the stage-theoretic exposition of the
iterative conception. Paseau (2007) discusses which ZFC axioms
are justified by this exposition. Parsons (1977) is another classic
analysis of the iterative conception, while Potter (2004) is a
useful and quite accessible book-length discussion. An earlier,
but still very valuable, discussion of the ideas and extrapolations
associated with the iterative conception is Bernays (1935).

12 See Linnebo (2013b) for details. 153
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Structuralism

11.1 MATHEMATICS AS CONCERNED WITH
ABSTRACT STRUCTURE

Structuralism is a philosophical view that emphasizes mathemat-
ics’ concern with abstract structures, as opposed to particular
systems of objects and relations that realize these structures.
Consider three children linearly ordered by age and three rocks
linearly ordered by mass. These two systems of objects and
relations realize the same abstract structure, namely that of
three objects in a linear order. All that matters for mathematical
purposes, according to structuralism, is the abstract structure of
some system of objects and relations, not the particular natures
of these objects and relations.

This strong emphasis on abstract structure is not uncontro-
versial. According to the iterative conception of sets, for example,
set theory has as its subject matter the cumulative hierarchy
of sets. This is a particular system of objects, ordered by the
particular relation of membership. While it is uncontroversial
that children, rocks, age, and mass are of no particular concern
to mathematics, it is less clear what to say about sets and the
membership relation as understood on the iterative conception.
We shall examine whether structuralism is merely a method-
ological supplement to set theory or whether there is a genuine
tension between the two.

A methodological form of structuralism emerged in
nineteenth-century mathematics (cf. §3.4). Prior to that,
mathematical notions and theories tended to have very
particular interpretations; for example, geometry was about
physical space, arithmetic about counting, and set theory about
collecting objects. In the course of the nineteenth century, such
particular interpretations became less important. Geometry
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provides a striking example. Following the discovery of non-
Euclidean geometry, the link between geometry and physical
space was abandoned in favor of Hilbert’s more abstract
approach, which regards geometry as the study of any system of
objects structured in some appropriate and loosely “spacelike”
manner. An analogous development took place in algebra, where
theories of algebraic structures such as groups, rings, and fields
were formulated with the explicit aim of not having a particular
interpretation. The aim was instead to characterize some
important classes of structures that have multiple realizations
throughout mathematics and perhaps also in the physical world.
As a final example, consider the “arithmetization” of analysis,
culminating in Dedekind’s entirely abstract characterization of
the structure of the real number line, which was shown to have
multiple realizations.1

The philosophical form of structuralism goes beyond the
methodological one by holding that mathematics is the study
of abstract structures—or patterns, as they are often called. The
view is nicely encapsulated in the claim that “[m]athematics is
simply the catalogue of all possible patterns” (Barrow, 2010).2
Philosophical structuralism gains some of its credibility from
the structuralist methodology that has come to dominate in
mathematics. It also promises progress on various philosophi-
cal questions. A nice example is the question of why abstract
mathematics is applicable to the physical world. If mathematics
is simply the study of “all possible patterns,” as Barrow contends,
“it is inevitable that the world is described by mathematics”:
for whatever abstract patterns that the world instantiates (or
approximates) belong to mathematics, thus understood.

Other philosophical questions require structuralists to clarify
their talk about abstract structures. Recall that two systems
are said to have (or instantiate, or realize) the same abstract

1 For the cognoscenti: The reals are characterized as a complete ordered field,
and two famous realizations are provided by Dedekind cuts and equivalence
classes of Cauchy sequences.

2 Although John Barrow is a mathematical physicist, this is a philosophical
claim about the nature of mathematics. 155
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structure just in case they are isomorphic (cf. §3.4). We left open
whether this talk of abstract structures should be understood
as ontologically committing or merely as an innocent manner
of speaking. This choice has resulted in a great schism within
structuralism. Eliminative structuralists admit that such talk is
heuristically useful but insist that it be understood so as to
avoid genuine commitment to abstract structures or patterns.
Noneliminative structuralists disagree and find it appropriate to
undertake such commitments. As we shall see, both movements
trace their roots back to Richard Dedekind (1831–1916), who can
thus be regarded as the father of mathematical structuralism.

11.2 ELIMINATIVE STRUCTURALISM

How can talk about abstract structures be understood as non-
committal? Reflection on the ancient philosophical debate about
the ontological status of universals suggests an answer. We often
speak as if universals exist, for example, when we say that two
objects instantiate the same color. But opponents of universals
understand this as just stating that the objects are chromati-
cally equivalent. Eliminative structuralists adopt an analogous
strategy. When we informally say that some systems instantiate
the same abstract structure, this should be understood as just
stating that the systems are isomorphic.3

So far, so good. But how can this be turned into a structuralist
account of mathematics? Consider the case of arithmetic. On a
traditional platonistic interpretation, arithmetic is about partic-
ular objects, each with a particular nature. For example, 1 is the
number of any collection with a unique member, and 2 is the
number of any pair-collection. These objects stand in various

3 Harking back to the ancient debate about the ontological status of
universals, eliminative structuralism is also known as in re structuralism, and the
noneliminative, as ante rem; see Shapiro (1997). Following Parsons (1990), I pre-
fer the labels “noneliminative” and “eliminative,” which carry fewer connotations
from the ancient debate.
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arithmetical relations. It turns out to be possible to describe all
these relations in terms of just the successor function s , which
maps each number n to its successor n + 1. LetN(x) mean that x
is a natural number.We now formulate a version, PA2, of second-
order Dedekind-Peano arithmetic.4

(1) N(0)
(2) s (x) �= 0
(3) s (x) = s (y) → x = y
(4) ∀X(X(0)∧∀y(X(y)→ X(s (y)))→∀y(N(y) → X(y)))

That is, 0 is a natural number; 0 is not the successor of anything;
the successor function s is one-to-one; and finally, any collection
X that contains 0 and is closed under s contains all the nat-
ural numbers. This last axiom, known as the induction axiom,
ensures that N is the smallest collection that contains 0 and is
closed under s . Since the axiom quantifies over collections, the
axiomatization counts as second-order.

(Let me digress briefly to explain how first-order Dedekind-
Peano arithmetic (PA) differs from PA2. Since PA uses only first-
order logic, the induction axiom is replaced by an induction
scheme, every instance of which is an axiom:

ϕ(0) ∧ ∀y(ϕ(y) → ϕ(s (y))) → ∀y(N(y) → ϕ(y)))

Next, the language of PA adds two-place function symbols +
and · for addition and multiplication, respectively, as well as
axioms providing the usual recursive characterization of these
two functions:

x + 0 = x x · 0 = x

x + s (y) = s (x + y) x · s (y) = x · y + x

This concludes the digression.)

4 This version differs from that of §2.6 by invoking a successor function rather
than a relation of immediate predecession. The difference is mathematically
unimportant.
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Dedekind showed how to develop a more abstract approach
to arithmetic. We begin by characterizing the relevant abstract
structure. Consider a collection of objects X with a designated
member a and a function f . We would like to state that this
system has the abstract structure described by the theory PA2.
This is easily achieved by means of the conjunction of the
axioms—but with X , a, and f replacingN, 0, and s , respectively.
Let PA2[X, a, f ] abbreviate this conjunction. We now say that
a system 〈X, a, f 〉 is simply infinite just in case PA2[X, a, f ]; in
other words, just in case PA2 holds of the system where X , a, and
f play the roles of N, 0, and s , respectively.
Equipped with this definition, Dedekind (1888) proved his

famous categoricity theorem, which states that any two simply
infinite systems are isomorphic.5 This important result means
that the definition of a simply infinite system succeeds in
uniquely characterizing the intended abstract structure, namely
that of the “true” natural number system 〈N, 0, s 〉. More
generally, a theory is said to be categorical when any two
systems satisfying its axioms are isomorphic. Another famous
example of a categorical theory is that of a complete ordered
field, which uniquely characterizes the structure of the real
number line. We shall continue to focus on the case of
arithmetic.

Simply infinite systems can obviously differ vastly in their
internal constitution. The system can be based on a sequence of
stars, spacetime points, sets, or whatever. Since any two simply
infinite systems are isomorphic, however, they share the same
structural properties. The objects are linearly ordered, for exam-
ple, and this order has a unique initial object but no terminal
object. To make this precise, consider any sentence ϕ of the
language of PA2. Let ϕ[X, a, f ] be the result of substituting X , a,
and f for N, 0, and s , respectively; intuitively, this new sentence

5 The proof rests on a simple idea. Let 〈X, a, f 〉 and 〈Y, b, g 〉 be simply
infinite systems. We define an isomorphism ϕ : X → Y by mapping one initial
object, a, to the other, b, and then stepwise extending ϕ by letting ϕ( f (x)) be
g (ϕ(x)) for any x in X . We use the induction axiom (iii) to show that ϕ is defined
on all of X and is an isomorphism.158
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says of the system 〈X, a, f 〉 what ϕ says of the “true” natural
number system 〈N, 0, s 〉. We can now prove the following.6

Assume 〈X, a, f 〉 and 〈Y, b, g 〉 are simply infinite systems. Then
ϕ[X, a, f ] iff ϕ[Y, b, g ].

This result opens an exciting possibility. So long as we are only
considering structural properties, in the above sense, any simply
infinite system is as good as any other: they all yield the same
answers. There is thus no need to consult the platonist’s preferred
system of “true” natural numbers. This system is exposed as an
idle wheel. A fully structuralist alternative is possible.

To understand the alternative better, consider 1 + 1 = 2,
which can be understood as concerned, not with particular
objects, but with a general fact about simply infinite systems,
namely that objects occupying certain positions bear a certain
relation to one another. As far as arithmetic is concerned, the
nature of the objects occupying the positions is irrelevant; what
matters is only the abstract structure of the system to which the
objects belong. More generally, a sentence ϕ of the language of
PA2 can be analyzed as:

(11.1) ∀X∀a∀ f
(
PA2[X, a, f ] → ϕ[X, a, f ]

)

This analysis works because ϕ is true of one simply infinite
system—say the platonist’s “true” natural numbers—just in case
it is true of all such systems.

There is one catch, however. The proposed analysis assumes
that there is at least one simply infinite system; otherwise, all
instances of (11.1) would be vacuously true, with the disastrous
result that both ϕ and ¬ϕ are translated as truths. This is
a version of what we called the problem of model existence
(cf. §3.5).

Are we entitled to assume there are simply infinite systems?
One option is to appeal to set theory for realizations of this
and other abstract structures. The resulting view is known as
set-theoretic structuralism. The set-theoretic axioms are regarded

6 The proof goes by induction on the syntactic complexity of ϕ. 159
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as foundational (as making assertions), and all other axioms, as
structural (as parts of definitions; cf. §3.5). This is a powerful
view, as evidenced by the fact that this is now fairly standard
mathematical methodology. The view does, however, rely heavily
on set theory, which requires an independent, nonstructuralist
account, perhaps of the sort discussed in the previous chapter.

Can the reliance on set theory be avoided? The question
is particularly important to aspiring nominalists, who need to
solve the model existence problem without appealing to abstract
objects. A nominalist will begin by reminding us that the models
in question need not be set-theoretic but can be characterized
using the resources of second-order logic (cf. §3.4). Even so,
however, it is not clear that the desired models can be found. As
Hilbert observed, we have no guarantee that there are infinitely
many concrete objects (cf. §4.3).

A promising option is known as modal structuralism.7 Con-
sider the case of arithmetic. The idea is that it suffices that there
could be a simply infinite system. Even if Hilbert is right about the
actual universe, this weaker modal assumption seems plausible.
There could, for example, be a simply infinite system of stars.
Modal structuralism next shows that this weaker assumption
suffices for an account of arithmetic. The key is to translate
an arithmetical sentence ϕ as the necessitation of (11.1), thus
ensuring that the translation talks not just about actual but
also about possible simply infinite systems.8 From a technical
point of view at least, the approach works. This suggests that it
might be possible to eliminate abstract mathematical objects—
beginning with the natural numbers—in favor of modal claims
about possibility and necessity.

Would this elimination of abstract objects in favor of modal
claims constitute progress? Are the modal claims less philosoph-
ically problematic than the corresponding ontological claims? A
proper discussion of these controversial questions would take us
far beyond the philosophy of mathematics. What is clear is that
modal structuralism is a philosophically interesting competitor

7 See Hellman (1989).
8 The necessitation of ψ is the claim that ψ is necessary.160
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to platonism. In particular, the view suggests that mathemat-
ical objectivity need not be underpinned by the existence of
mathematical objects. On the modal structuralist account, each
arithmetical statement has an objective, mind-independent
truth-value. The view is thus a version of truth-value realism.
But this realism is achieved without any commitment to
mathematical objects. Modal structuralism thus avoids object
realism. This combination of truth-value realism with object
anti-realism is made possible by adopting a nonclassical seman-
tics for the language of arithmetic, based on the necessitation of
the analysis in (11.1).

11.3 NONELIMINATIVE STRUCTURALISM

Contemporary mathematics often professes to adhere to set-
theoretic structuralism. But in practice, many mathematicians
continue to talk about abstract structures as if these were objects,
such as “the real numbers” or “the cyclic group of order 4,”
as well as about individual mathematical objects, such as the
number 0 and the identity element of the mentioned group.
Noneliminative structuralists believe this kind of talk should be
taken seriously.9 There really are abstract structures, and ordi-
nary mathematical objects are merely positions in these struc-
tures. Noneliminative structuralists typically add that abstract
structures exist in their own right, not in virtue of their particular
instantiations. This would mean that there is no problem of
model existence. For example, the abstract structure described
by arithmetic exists in its own right, independently of any prior
realization by some particular simply infinite system.

What exactly are the abstract structures postulated by
noneliminative structuralists, and how should their objects or
positions be understood? It is particularly important to under-
stand how this form of structuralism differs from traditional
platonism. The usual answer is two-pronged. One distinguishing

9 See, e.g., Resnik (1981), Parsons (1990), and Shapiro (1997). 161
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feature of mathematical objects is said to be their “incomplete-
ness” with respect to their properties. Consider physical objects,
which have intrinsic properties, such as mass, shape, and chem-
ical composition; many of them have an internal composition;
and they stand in (fairly) determinate relations of identity and
distinctness. Noneliminative structuralists take mathematical
objects to be very different. Michael Resnik provides a widely
endorsed statement of the view:

In mathematics, I claim, we do not have objects with an ‘internal’
composition arranged in structures, we have only structures. The
objects of mathematics [. . . ] are structureless points or positions
in structures. As positions in structures, they have no identity or
features outside a structure. (1981, p. 530)

According to this incompleteness claim, as I shall call it, mathe-
matical objects differ from physical objects by having no internal
nature or composition, and no nonstructural properties. In
particular, cross-structural identity statements involving math-
ematical objects have no objective truth-values. There is, for
example, no fact of the matter about whether the natural number
zero is identical with the empty set.

The incompleteness claim has its roots in Dedekind’s work.
Consider the simply infinite system comprising the finite von
Neumann ordinals: ∅, {∅}, {∅, {∅}}, . . .. These ordinals can
obviously play the role of the natural numbers and are indeed
often made to do so. Yet it seems perverse to identify the natural
numbers with the ordinals and thus conclude, for example, that
0 is an element of 1! Numbers stand in arithmetical relations, not
in set-theoretic ones. Moved by such considerations, Dedekind
wishes to purge mathematical object of all such “foreign prop-
erties” (1963, p. 10). So he proposes that the natural numbers
be obtained by erasing “the special character” of the elements
of some given simply infinite system, retaining only their purely
structural relations to one another:

If in the consideration of a simply infinite system X set in order by
a transformation f we entirely neglect the special character of the
elements; simply retaining their distinguishability and taking into162
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account only the relations to one another in which they are placed
by the order-setting transformation f , then are these elements
called natural numbers. (1888, §73)

These ideas conflict with a traditional platonistic outlook, as
expressed, for instance, when Russell writes of the natural
numbers that “[i]f they are to be anything at all, they must be
intrinsically something; they must differ from other entities as
points from instants, or colours from sounds” (1903, p. 249).

The incompleteness claim is deeply problematic, however.
Natural numbers appear to have a wide variety of nonstructural
properties, such as being abstract, being a natural number, being
the number of planets, and being Dedekind’s favorite number.
Moreover, many cross-category identities appear to be false, not
indeterminate. Since 0 is a natural number but ∅ is not, it is
immediate from Leibniz’s law that they are distinct. Indeed,
if mathematical objects are just positions in patterns, it must
presumably be a property of each such object to be a position
in the particular pattern to which it belongs.

The most one can hope for is that some qualified version of
the incompleteness claim might be acceptable. Although mathe-
matical objects do have nonstructural properties, perhaps all of
their properties from some important class are purely structural.
Provided that the counterexamples just discussed lie outside of
the mentioned class, this qualified claim might still salvage some
structuralist insight. For this response to be acceptable, however,
the structuralists need to circumscribe the mentioned class of
properties—and to do so in a way that makes the resulting view
both interesting and true. This is not an easy task.10

The second distinguishing feature of mathematical objects,
according to noneliminative structuralists, concerns ontological
dependence (cf. §10.5). Traditional platonism compares math-
ematical objects with physical objects. Both are said to exist
independently of cognizers and typically also of one another.
By contrast, noneliminative structuralists maintain that mathe-

10 See Shapiro (2006), but also Linnebo (2008), which expands on the present
section. 163
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matical objects from the same structure have a special kind of
dependency on each other and on their structure:

The number 2 is no more and no less than the second position in
the natural number structure; and 6 is the sixth position. Neither
of them has any independence from the structure in which they
are positions, and as positions in this structure, neither number is
independent of the other. (Shapiro, 2000, p. 258)

According to this dependence claim, as I shall call it, the “essence”
of a natural number lies in its relations to other natural numbers.
As a mere position in this structure, it would not exist without
the structure; nor could the structure exist without its other
positions. This is an attractive explication of the non-eliminative
structuralist view that mathematical objects are mere positions in
patterns.

Is the dependence claim true, however? My own view is that
the claim has many true instances, but there are also counterex-
amples. On the iterative conception of sets, for example, each set
depends on its elements but not on every other set; in particular,
not on sets formed at the same or later stages (cf. §10.5).

11.4 ABSTRACT STRUCTURES BY ABSTRACTION?

One way to make sense of abstract structures is by understanding
how they are related to the particular systems that realize them.
And it is natural to think that each abstract structure is related to
the particular systems that realize it by some form of abstraction.
So let us take a closer look at how abstraction might help our
present investigation.

As we have seen, Dedekind emphasizes that the elements
of each particular system must be purged of all their “foreign
properties.” We must, however, retain all of their structural
relations to one another, thus ensuring that the abstract structure
that results is isomorphic to the system with which we began.
As Frege joked in a related context, we need a lye that is just
strong enough to wash away all of the unwanted properties, while164
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preserving all of the desired ones.11 What might this metaphys-
ical lye be? Dedekind at times answered that our minds “create”
new objects that have been appropriately purified. Frege rightly
protested that this answer is unhelpful. Whatever positions in
abstract structures are, they are not in any obvious way created by
us. Things that we create, such as buildings and contracts, did not
exist prior to their creation, in sharp contrast to mathematical
structures, which are naturally taken to exist in an atemporal way
(cf. §1.3).12

Might Fregean abstraction be of any help? Some reason for
optimism is provided by Shapiro’s characterization of a structure
as “the abstract form of a system.” He also claims that an
abstract structure stands to the systems that realize it the way
that a type stands to its tokens.13 This suggests an abstraction
principle for structures: two systems instantiate the same abstract
structure just in case they are isomorphic. However, the abstract
structures are supposed to contain abstract positions, just as
a system contains objects. Can the abstract positions too be
obtained by Fregean abstraction? Consider objects a and a ′ from
systems S and S ′, respectively. A natural suggestion is that the
objects occupy the same abstract position just in case there is
an isomorphism of S and S ′ that maps a to a ′. This suggestion
works well in many cases; for example, for any simply infinite
system, we obtain pure positions that are themselves ordered as
a simply infinite system: the 0 position, the 1 position, etc. But
unfortunately, the suggestion has unacceptable consequences for

11 Compare Frege (1894, p. 84).
12 Dedekind’s claims about our creation of mathematical objects might

perhaps be interpreted as merely a clumsy way of saying that we create new
languages for talking about mathematical objects. Consider the eliminative set-
theoretic structuralismmade available by Dedekind’s categoricity theorem. As we
have seen, this approach allows arithmetical truths to be stated in the ordinary
arithmetical language—only that each such sentence is now interpreted as a
generalization over simply infinite systems. As far as this language is concerned,
it is indeed as if “purified” numbers have been created with no properties other
than the structural ones expressible in the language of arithmetic.

13 See Shapiro (1997, p. 74 and p. 84, respectively), as well as Linnebo and
Pettigrew (2014) for discussion. 165
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other structures. Consider, for example, the abstract structure of
the “dumbbell graph”:

Next, consider a particular system that realizes this abstract
structure, say the one based on Romeo, Juliet, and their mutual
love. Clearly, swapping Romeo and Juliet yields an isomorphic
system. So the proposed individuation of abstract positions
implies that Romeo and Juliet occupy one and the same abstract
position! This, in turn, implies that the structure contains only
one position, while in fact it contains two.

An alternative strategy is to understand an abstract structure
as a structured universal, which is instantiated by all and only the
members of some family of pairwise isomorphic systems. The
abstract dumbbell graph, for example, might be the structured
universal instantiated by the system consisting of Romeo, Juliet,
and their mutual love, as well as by any isomorphic system.
Thus, this structured universal has two argument places for
objects and one for dyadic relations. This strategy requires that
the argument places of a structured universal play two separate
roles. First, since a structured universal can be instantiated by
particular systems, its argument places must function as offices
that can be occupied by appropriate entities. Additionally, the
structured universal is supposed to be isomorphic to any system
that realizes it. This requires that its argument places can also be
construed as entities in their own right.14 However, it is not clear
how argument places can play both of these roles. Consider an
argument place that is open to relations. This argument place
must itself be a relation and thus capable of being predicated
of other entities; otherwise the abstract structure could not be
isomorphic to its realizing systems. This is a tall order. We
understand what it is for an argument place to be occupied by
some entity. What it would be for an argument place to be

14 This dual role of the argument places corresponds to Shapiro’s distinction
between places as offices and places as objects. See Shapiro (1997, chap. 3).
Consider the U.S. vice presidency. This office has had many occupants. But it
can also figure as an object in its own right, for example, when we say that the
vice president is the president of the Senate.166
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predicated of something is far less clear. An argument place is
not the sort of thing we ordinarily regard as capable of being
predicated of anything.

11.5 CATEGORY THEORY AND STRUCTURALISM

Category theory is an abstract algebraic tool developed around
the middle of the previous century. One of its main purposes is
to characterize mathematical structures and constructions only
up to isomorphism. Although no proper explanation of category
theory is possible here,15 briefly comments on its significance
for mathematical structuralism are appropriate. The basic idea
is simple enough. Structuralism is the belief that all that matters
in mathematics is preserved under isomorphism. And category
theory characterizes things only up to isomorphism. So the two
seem to be a perfect match.

To elaborate, let us consider an example of the kind of char-
acterization that category theory makes possible. In orthodox set
theory, the Cartesian product of two sets A and B is defined as
the set of all and only those ordered pairs whose first member
belongs to A and whose second member belongs to B—where
ordered pairs in turn are a certain sort of set. Other mathe-
matical structures have Cartesian products as well, for instance,
differentiable manifolds and topological groups; their definitions
require even more excruciating set-theoretic specificities. What
is common to Cartesian products across all these structures?
Category theory provides a beautiful and completely general
answer in terms of what such products allow us to do, rather
than in terms of the messy details of their inner make-up, which
varies from case to case. ACartesian product of A and B is, first, a
set A× B , equipped with projection mappings πA and πB from
A× B to A and B , respectively. Second, the product has the
following minimality property. For any pair of mappings f and
g from C to A and B , respectively, there is a single map f × g :
C → A× B such that f = πA ◦ ( f × g ) and g = πB ◦ ( f × g );

15 See, e.g., Marquis (2015). 167
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and f × g is the only mapping that has this property.16 We
illustrate the situation using a commutative diagram:17

C

f g
f×g

A × B

πA πB

A B

This characterization of Cartesian products is entirely in terms of
their “functional role,” not in terms of the messy details involved
in the realization of this functional role. A Cartesian product
of A and B is any structure with projections onto A and B ,
and which is minimal in the sense that any other structure with
such projections has a unique map into the Cartesian product.
This functional role characterization provides all we need to
know about such products. For example, it implies that any two
constructions that satisfy this role are isomorphic.

Many other mathematical constructions too can be charac-
terized in terms of their functional role. This has been exploited
to develop category-theoretic alternatives to standard set theory.
In these alternatives, all constructions are characterized solely
in terms of their functional roles, not in terms of their inner
make-up. Its proponents claim this provides a better, and more
structuralist, foundation for mathematics.

There can be no doubt that category theory is a powerful
organizational tool, which enables us to do mathematics in a
structuralist fashion in cases where we care about our construc-
tions only “up to isomorphism.” But what exactly are the items
that are studied in this fashion? A conservative answer is that they
are sets in the familiar old sense. If this is right, then the value

16 f ◦ g is the composite function defined by f ◦ g (x) = f (g (x)).
17 A diagram is said to be commutative just in case any two journeys from one

point to another give rise to identical functions.168
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of category theory is entirely of methodological nature. A com-
peting, radical answer is that category theory studies its own sui
generis objects with no more of a nature than what is expressed
in their highly abstract category-theoretic characterizations. This
would be a form of noneliminative structuralism.18

SELECTED FURTHER READING

Benacerraf (1965) is the classic defense of eliminative struc-
turalism. Noneliminative structuralism is defended in articles
by Resnik (1981) and Parsons (1990) and a monograph by
Shapiro (1997). Hellman (2001) and Linnebo (2008) are critical
discussions. Reck (2003) gives a useful exposition and analysis of
structuralist ideas in Dedekind.

18 See McLarty (2004). 169
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The Quest for New Axioms

12.1 THE INCOMPLETENESS PHENOMENON

Does every meaningful mathematical question have an answer?
Hilbert famously thought so, insisting that in mathematics there
is no ignorabimus.1 A good test case is Cantor’s continuum
hypothesis (henceforth, CH), which asserts that the cardinal
number of the reals is the least cardinal number that is larger
than that of the naturals. In other words, there is no cardinal
number strictly between that of the naturals and that of the
reals. Cantor tried hard to prove his hypothesis but failed. We
now know why: the problem is independent of our standard set
theory, ZFC. Assuming this theory is consistent, it provably does
not settle CH oneway or the other! The first half of this important
meta-mathematical result was established in 1939, when Gödel
proved that CH is consistent with ZFC. So ZFC doesn’t prove
the negation of CH (provided ZFC is consistent). Twenty-four
years later, Paul Cohen established the second half by proving
that the negation of CH is also consistent with ZFC. So ZFC
doesn’t prove CH either (provided ZFC is consistent). Many
other independence results are known by now. But we shall use
CH as our main example.

How should we respond to the independence of CH? One
option is to throw up our hands and deny that the problem
has an answer. But that would be rash. Compare Galois’s
famous result that we cannot trisect a given angle by means
of ruler and compass constructions alone. This too is a math-
ematical result that places limits on our ability to solve certain

1 The term is Latin for “we shall not know” and was a slogan of nineteenth-
century thinkers who postulated strict limits to scientific knowledge.
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mathematical problems. But it would be crazy to deny that angles
have trisections just because these cannot be constructed by the
mentioned means alone. Likewise, why shouldn’t CH have an
answer, even though ZFC alone cannot deliver it? This line of
thought receives further support when we reflect on what CH
says. Here is a particularly elementary formulation. Every subset
of the real numbers can be one-to-one correlated either with some
natural numbers or with the real numbers themselves. This seems
a perfectly meaningful statement about mathematical structures
that we know and accept, namely the naturals and the reals.
So it seems that the statement must be either true or false—
whether or not we are clever enough to determine which. These
considerations encourage a bolder response to the independence
result. Since the question has an answer, we must search for
new axioms to supplement those of ZFC such that an answer
can be proved.

These two responses to the independence of CH flow from
two opposing philosophical views of set theory. Theorists of an
antirealist bent believe that ZFC more or less exhausts our con-
ception of sets and what there is to know in set theory.Where this
authority is silent, there is simply no answer to be had. For exam-
ple, Feferman (2014) contends that “CH in its ordinary reading is
essentially indefinite (or ‘inherently vague’) because the concepts
of arbitrary set and function needed for its formulation can’t be
sharpened without violating what those concepts are supposed
to be about.” Theorists of a stronger realist persuasion claim
that the question of CH is posed in a meaningful language all
of whose sentences have objective truth-values. So the question
must have an answer, and the challenge is to find new axioms
that will reveal it. In short, the different philosophical views
give rise to different recommendations concerning mathematical
practice. This is exciting. Our task of determining the limits of
objectivity in mathematics bears on how mathematics should be
practiced.

The greatest defender of the realist view is Gödel. So we
shall investigate his influential, though controversial, view of
mathematical evidence and of how new axioms might be
defended. 171
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12.2 INTUITION AND INTRINSIC EVIDENCE FOR AXIOMS

Gödel had great faith in our mathematical intuition. As we have
seen, he goes so far as to claim that we “have something like a
perception also of the objects of set theory, as is seen from the
fact that the axioms force themselves on us as being true” (1964,
pp. 483–84). If the axioms of ZFC have this ability to “force
themselves on us,” might not further axioms do so as well?

The answer will obviously depend on howmathematical intu-
ition is understood. One option is to understand such intuition
in a broadly perceptual manner. But then its reach will be far
more limited than Gödel seems to have thought (cf. chap. 8).
Thus understood, intuition can provide information about types
that are either instantiated or can be imagined in a clear and
distinct way, but not much more. An alternative is to understand
mathematical intuition as a form of apprehension of conceptual
truths. This is what Gödel has in mind in some of his writings.
For example, he claims we need “a more profound analysis (than
mathematics is accustomed to giving) of the meanings of the
terms occurring in [CH]” (1964, p. 473). Evidence of this form
is known as intrinsic, as it flows from our set-theoretic concepts
alone. Gödel is particularly hopeful that a deeper analysis of the
iterative conception of sets might yield evidence for new axioms.
It is not hard to see why. The conception motivates many of
the axioms of ZFC (cf. chap. 10). So it might well be capable of
motivating further axioms as well.

To explore the prospects for intrinsic evidence, let us first
recall another form of incompleteness, namely that of the Gödel
sentence of one of our foundational theories (cf. §4.6). This
sentence too is left undecided by the theory in question. As Gödel
was well aware, however, the Gödel sentence can be decided in
a perfectly natural way by adopting a stronger theory, which
accepts arbitrary sets of the objects with which this original
theory is concerned. This is an entirely natural extension: we
just consider one layer of sets on top of the objects described by
the original theory. In this extension, the Gödel sentence of the
original theory can be proved. A question that was left open by
the original theory can thus be answered in an entirely natural172
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and nonarbitrary manner. The answer we get is unsurprising.
What the Gödel sentence “says” is true: it cannot be proved in
the original theory. What is surprising is that this answer can
be proved simply by considering one layer of sets on top of the
objects with which we began.

The independence of CH is far more stubborn than that of a
Gödel sentence. It is not sufficient just to “add” one layer of sets.
Gödel is nevertheless hopeful that we might make progress by
adding a vast number of such layers. We should apply the oper-
ation “set of,” which takes us from one level of the cumulative
hierarchy to the next, many more times than what is required
by ZFC alone. Since Gödel takes it to be part of the iterative
conception that this operation should be applied as many times
as possible, he believes that such extensions are motivated by the
iterative conception.

[T]he very concept of set on which [the current axioms] are based
suggests their extension by new axioms which assert the existence
of still further iterations of the operation of “set of.” These axioms
can be formulated also as propositions asserting the existence of
very great cardinal numbers. (1964, p. 476)

In this way, Gödel thinks, large cardinal axioms can be seen as
“only unfold[ing] the concept of set” (ibid., p. 477).

Gödel’s large cardinal program has borne many fruits.
Unfortunately, it has not resolved CH, which appears to be
independent of every extension of ZFC by large cardinal axioms
(provided the extension is consistent).2 To settle CH, we appear
to need some different form of axioms.

12.3 EXTRINSIC EVIDENCE FOR AXIOMS

While disappointing, this later development would not have
stopped Gödel. For he postulates another form of evidence that
is more indirect, but also more far reaching, than the intrinsic
evidence discussed so far. To explain this extrinsic form of

2 See Koellner (2013). 173
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evidence, it is useful first to recall the traditional conception
of mathematical justification, especially in the Euclidean and
rationalist tradition. Here mathematical axioms are regarded as
self-evident and epistemologically fundamental. Gödel’s notion
of extrinsic evidence completely abandons these requirements.

Gödel was not the first to move in this direction. The
traditional conception of axioms came under increasing
pressure throughout the nineteenth century, culminating in two
influential (and nearly contemporary) attacks. As we have seen,
Zermelo (1908) supplements traditional appeals to self-evidence
with considerations about the needs of well-established branches
of mathematics. When an axiom is indispensable to some
established branch of mathematics, this is taken to support
the axiom. The other attack is initiated by Russell (1907), who
defends a “regressive method” in mathematics. He abandons the
requirement that axioms be self-evident and emphasizes instead
how axioms may be less obvious than the proposition they entail.
In what sense, then, are the non-self-evident propositions still
axioms? Russell urges us to look to the empirical sciences. The
fundamental principles of these sciences are far less obvious
than their consequences concerning the observable, but they
are nevertheless justified by their ability to predict, explain, and
systematize what is directly observable. Likewise, Russell claims,
mathematical axioms can be justified by their ability to entail, ex-
plain, and systematize more obvious mathematical propositions.

Gödel writes approvingly of Russell’s analogy between pure
mathematics and the empirical sciences.

[Russell] compares the axioms of logic and mathematics with the
laws of nature and logical evidence with sense perception, so that
the axioms need not necessarily be evident in themselves, but
rather their justification lies (exactly as in physics) in the fact that
they make it possible for these “sense perceptions” to be deduced;
which of course would not exclude that they also have a kind of
intrinsic plausibility similar to that in physics. (1944, p. 449)

The view is summarized by a simple analogy. Mathematical
axioms stand to mathematical data as the laws of nature stand
to sensory observations. The analogy extends to ontology as well.174
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Gödel compares the relation between mathematical objects and
the mathematical data with the relation between physical bodies
and sensory observations: both kinds of object are required to
obtain a satisfactory theory of the relevant form of “data.”3

As should be clear, Russell and Gödel operate with a two-
tiered conception of evidence. In the empirical sciences, there
is direct evidence in the form of sense perception, while in
mathematics, such evidence takes the form of mathematical
intuition or what we are calling “intrinsic” evidence. Then there
is indirect evidence, which need not be obvious or compelling, or,
more generally, enjoy whatever privileged status is enjoyed by the
direct evidence. In mathematics, indirect evidence takes the form
of what we are calling “extrinsic” evidence. An argument based
on extrinsic evidence is thus much like an inference to the best
explanation. We have a certain pool of mathematical data, and
we give credence to those hypotheses that best predict, explain,
and systematize the data.

Gödel’s work offers examples of several different forms of
extrinsic evidence. One form has to do with a proposition’s
having plausible elementary consequences, say in the field of
Diophantine equations (that is, polynomial equations with inte-
ger solutions). As Gödel mentions, some large cardinal axioms
enjoy this sort of evidence. For example, the claim that there
are “strongly inaccessible” cardinals is far richer in elemen-
tary consequences than its negation. Another form of extrinsic
evidence accrues to propositions that have abundant “verifiable”
consequences and perhaps also enable us to simplify their proofs.
A third form has to do with systematicity. In mathematics as
much as in physics, there is a need for hypotheses to systematize
and explain the data. The laws of Newtonian physics systematize
and explain Kepler’s laws, for example, and the same goes for
certain set-theoretic principles. Finally, there may be extrinsic
evidence resulting from the use of broadly inductive methods,
involving the extrapolation from examined instances of a
general claim.4

3 See Gödel (1944, p. 460; 1964, pp. 484–85).
4 See Gödel (1964, pp. 483, 477, 477 again, and 1951, p. 313, respectively). 175
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12.4 THE THREAT OF PLURALISM

Which forms of appeal to extrinsic evidence are permissible?
Might such appeals rest on substantive presuppositions, which
aren’t always satisfied? We shall now describe a pluralist concep-
tion of mathematics and see how such a conception undermines
the legitimacy of certain forms of appeal to extrinsic evidence.

The clearest example of pluralism in mathematics comes
from geometry, which used to be regarded as the mathematical
study of physical space, that is, the space that we inhabit. This
view became untenable as a result of the development of non-
Euclidean geometries in the 1830s (cf. §3.4). There may well be
a single true theory of physical space, but this is for physicists
to tell. The task of mathematical geometers is to investigate the
many kinds of mathematical space that are possible. Different
geometrical theories are not in conflict with one another but are
true of different spaces. Thus, it makes no sense to ask, without
further qualification, whether the parallel postulate is true or
false: it is true of some spaces and false of others.

The pluralist conception of geometry makes it illegitimate
to appeal to extrinsic evidence in at attempt to determine the
properties of a single “true” space. A pluralist can happily accept
that some spaces have properties that set them apart from others,
such as being mathematically simpler, more natural, or more
interesting. For example, the parallel postulate yields a geometry
that is indisputably simpler and arguably more natural. But this
does not impugn non-Euclidean geometries, which exist “side by
side” with Euclidean geometry. What is needed, in connection
with the parallel postulate, is not more factual knowledge but
a semantic decision: which structure are we talking about? The
historical evidence suggests that no such semantic decision has
been made. When the link between geometrical discourse and
physical space was severed, a variety of geometrical spaces came
to be regarded as mathematically on a par.

We can distinguish between a monist and a pluralist
conception of set theory as well. Monists hold that the structure
of the cumulative hierarchy has been singled out uniquely
up to isomorphism. Pluralists deny this. The fact that CH is176
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independent of ZFC is often thought to support set-theoretic
pluralism. Gödel provides an interesting example. In his con-
tribution to the proof of the mentioned fact, Gödel defines a
model of a particularly well-behaved “constructible” hierarchy,
L , within the entire cumulative hierarchy, V . Initially, he appears
to have thought that this model supported a pluralist conception
of set theory:

[T]he consistency of the proposition [V = L] (that every set
is constructible) is also of interest in its own right, especially
because it is very plausible that with [V = L] one is dealing
with an absolutely undecidable proposition, on which set theory
bifurcates into two different systems, similar to Euclidean and
non-Euclidean geometry. (1939, p. 155)

Today, set-theoretic pluralism often takes the form of a “pluri-
verse” view, which holds that there are many universes of sets,
each compatible with our full conception of sets.5 CH is true in
some of these universes and false in others. On this view, CH has
a truth-value only relative to some particular universe, and the
search for a more absolute answer to CH is just as pointless as
the analogous quest concerning the parallel postulate.

Pluralists can point to certain technical facts as relevant
to their view. First, there are results that parallel the famous
nineteenth-century construction of models of non-Euclidean
geometry within a given model of Euclidean geometry. As men-
tioned, Gödel shows how to construct a model of L within V .
A wealth of results are now known about how various “setlike”
structures can be realized within one another. Second, accord-
ing to the completeness theorem (proved in Gödel’s doctoral
dissertation of 1929), every consistent theory has a model. And
much is known about the consistency of various systems of
set theory relative to one another. We know, for example, that
CH is consistent with ZFC just in case its negation is. These
results ensure there is a huge variety of structures of broadly set-
theoretic character in terms of which the language of set theory
could be interpreted. Which of these possible interpretations are

5 See Hamkins (2015) for an accessible presentation. 177
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good interpretations, however, is a separate question. While the
technical results raise the question of pluralism, they don’t on
their own answer it.

Despite his initial flirtation with set-theoretic pluralism,
Gödel later repudiates the view. He claims instead that “the
situation in set theory is very different from that in geometry”
(1964, p. 483). The reason is simple. The pluralist conception
of geometry is a result of our discovery that the original inter-
pretation of geometry in terms of physical space is untenable.
This discovery forced us to abandon what used to be the in-
tended interpretation of the language of geometry. By contrast,
the language of set theory has an intended interpretation in
terms of the iterative conception. And no reason has ever arisen
to abandon this interpretation. Gödel therefore concludes that
“the set-theoretical concepts and theorems describe some well-
determined reality, in which Cantor’s conjecture [CH] must be
either true or false” (ibid., p. 476).

Is Gödel right that the iterative conception specifies a “well-
determined reality”? As a warm-up case, consider the question
of pluralism about arithmetic. Here too there are technical facts
analogous those mentioned in connection with set theory. For
one thing, a wealth of countable structures can be modeled
inside that of the natural numbers. For another, if Dedekind-
Peano arithmetic (PA) is consistent, so is the theory that results
from adding the negation of this consistency claim. Hence by
the completeness theorem, if the former theory has models, so
does the latter. These results mean there is a huge variety of
structures in terms of which the language of arithmetic could be
interpreted. So again, the question of pluralism arises. Have we
singled out one of these candidate interpretations, at least up to
isomorphism? In the case of arithmetic, there are good reasons
to be hopeful that we have. For arguably, our conception of the
natural numbers suffices to winnow down the candidates to a sin-
gle isomorphism class. Consider, for example, the structure that
models PA and the negation of the claim that PA is consistent.
This structure can be ruled out as unintended as soon as we add
to our theory the resources to talk about sets of natural numbers
(cf. §12.2).178
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The case of set theory is harder. If the iterative concep-
tion specifies a “well-determined reality,” then this specification
provides no practical guidance for our attempt to settle CH
(cf. §12.2). Our best hope is that the conception determines an
answer, albeit one that is not straightforwardly accessible to us.

12.5 THE QUESTION OF QUASI-CATEGORICITY

This hope seems to be fulfilled thanks to Zermelo’s quasi-
categoricity theorem of 1930, which concerns a second-order
version of ZF called ZF2 (of which more shortly). Given any two
models of this theory, Zermelo proves that one is isomorphic to
the other or to one of its initial segments. It follows that the only
difference between two models concerns the “height” of their
respective hierarchies, not the structure of their initial segments.
This result is important in connection with CH. As we have seen,
CH concerns the size of the powerset of the natural numbers
relative to its subsets. Its truth is therefore determined by Vω+2,
which contains all of thementioned sets. It follows that all models
of ZF2 settle CH in the same way.

The key to Zermelo’s theorem is that his theory is second-
order: it quantifies not only over sets but also over classes thereof.
Moreover, these second-order quantifiers are interpreted stan-
dardly, that is, as ranging over absolutely all classes from the
given domain of sets.6 In ZF2, we can thus express Separation
and Replacement as single axioms rather than axiom schemes.
Consider Separation:

(Sep 2) ∀x∀Y∃z∀u(u ∈ z ↔ u ∈ x ∧ u ∈ Y)

This ensures that the intersection of any set x with any class Y is
in turn a set. Sep 2 thus captures the maximality idea that at every
stage, we form as many sets as we can.7

6 This is how the result evades the Löwenheim-Skolem theorem, which states
that any first-order theory with an infinite model has models of any infinite
cardinality.

7 The proof of Zermelo’s quasi-categoricity theorem is based on some fairly
intuitive ideas. Consider two models M and N of ZF2. Assume that these 179
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While Zermelo’s theorem is an established mathematical fact,
its philosophical significance is controversial. By relying on the
notion of a standard model, the theorem helps itself to one
of the most problematic notions in set theory, namely that
of an arbitrary subclass of some infinite class of objects. As
the intractability of CH demonstrates, this notion gives rise to
problems that stubbornly resist all of our onslaughts. In light
of this, are we really so sure that we have the requisite grasp
on the notion of an arbitrary subclass? Or might the notion be
“inherently vague,” as Feferman contends? These concerns show
that the theorem’s apparent support for set-theoretic monism
might be undermined by its reliance on a notion whose clarity
pluralists can reasonably dispute.

It is therefore interesting to ask whether the appeal to quasi-
categoricity might be avoided. Might one give an alternative
defense of the belief that the iterative conception describes a
“well-determined reality”? Gödel appears to have thought so,
writing that “[s]uch a belief is by no means chimerical, since it
is possible to point out ways in which the decision of a question,
which is undecidable from the usual axioms, might nevertheless
be obtained” (1964, p. 476). This suggests that a successful search
for new axioms, based in part on extrinsic evidence and abductive

have been shown to be isomorphic up to some level α, such that we have an
isomorphism fα : Mα → Nα of their αth initial segments. If either model is
exhausted by this initial segment, we are done. So let us assume that both models
have height greater than α. We now come to the heart of the proof. We wish
to extend fα to an isomorphism fα+1 of the two extended segments, Mα+1
and Nα+1. It turns out there is a natural and unique way to do so. Consider a
member x of either extended segment, say Mα+1. If x was present already in
the earlier segment, Mα , we let fα+1(x) be fα(x). If x was not present in Mα ,
then at least its elements (according to M) were present there. So fα correlates
these “elements” with some members of the other earlier segment, Nα . Since Nα
forms a set in Nα+1, the maximality idea enshrined in Sep 2 ensures that the
mentioned members of Nα too form a set y in Nα+1. So we let fα+1 map x
to y. It is straightforward to verify that this mapping is one-to-one and onto,
and an isomorphism. Proceeding in this way, we construct isomorphisms of ever
larger initial segments of the two models. At limit stages, we let the extended
isomorphism be the union of all the previous. We continue in this way until we
reach the end of one or both models, which proves the theorem.180
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reasoning, might bolster the case for set-theoretic monism. But
such an argument would be question begging. Just as in the case
of geometry, pluralism about set theory would, if true, make it
illegitimate to appeal to extrinsic evidence in at attempt to deter-
mine the properties of a single “true” universe of sets (cf. §12.4).

A monist might counter that it is always good scientific
methodology to rely on extrinsic evidence and inference to
the best explanation more generally. This methodology needs
no stamp of approval from philosophy, say in the form of an
assurance that a “well-determined reality” has been specified. In
this spirit, Maddy writes that “we needn’t concern ourselves with
whether or not the CH has a determinate truth-value. . . . Instead,
we need to assess the prospects of finding a new axiom that
is well-suited to the goals of set theory and also settles CH”
(Feferman et al., 2000, p. 416). I concede that at the beginning
of any inquiry it is permissible to assume that a “well-determined
reality” has been specified. But this assumption can be under-
mined at a later stage by considerations that arise within science,
broadly construed. This is precisely what pluralists contend has
happened. Using mathematics, we have discovered a range of
possible interpretations of our set-theoretic language. Pluralists
contend that we are unable to give a scientifically acceptable
account of how our set-theoretic thoughts and practices suffice
to winnow down these possible interpretations to a single iso-
morphism class of acceptable interpretations.

We thus face a dilemma. Either we must refute the plural-
ists’ contention. We may, for example, defend the controversial
assumptions on which the quasi-categoricity argument relies.
This would establish monism and thus also legitimize appeals
to extrinsic evidence that presuppose monism. Or else we must
accept pluralism and be wary of the mentioned appeals to extrin-
sic evidence. This is not the place to try to resolve the dilemma.

Instead, I wish to end by returning to the question of what is
at stake. Suppose a community adopts a new set-theoretic axiom
through what appears to be an appeal to extrinsic evidence.
How the community’s mathematical development should be
interpreted, however, is not obvious. There are two options. One
is that the community did in fact rely on extrinsic evidence about 181
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a “true” universe of sets and thus extended their knowledge of
this universe. This option presupposes monism. But there is an
alternative interpretation, which is open to pluralists as well.
Perhaps the community merely refined their conception of sets
as a result of discovering that one extension of their previous
conception has particularly attractive mathematical properties.
In short, the observed mathematical practice seems to permit
two different interpretations. On the first interpretation, the
community’s conception of sets stays fixed, while their knowl-
edge expands. On the second interpretation, it is the conception
that expands, while the (nonsemantic) knowledge stays fixed. So
long as both interpretations are available, mathematical practice
can proceed unaffected by the question of whether monism or
pluralism is right.

These reflections suggest that the question of pluralism
matters less to mathematical practice than one might initially
have thought. After all, monists and pluralists can agree that
there is a plethora of mathematical structures that are worth
exploring, including many of a broadly set-theoretic character.8
Which of these structures correspond to the “real” sets may not
be so important.

SELECTED FURTHER READING

Gödel (1944, 1964) provides two essential texts. Other excellent
texts on the question of new set-theoretic axioms are Maddy
(1990) and Koellner (2006) and the debate between some leading
philosophers and set-theorists is presented in Feferman et al.
(2000). Martin (2001) develops a version of Zermelo’s quasi-
categoricity theorem and defends its philosophical importance.
Hamkins (2015) gives a short and accessible presentation of the
“multiverse” view of set theory.

8 Perhaps all that matters concerning a candidate axiom is that it should
increase the range of mathematical structures that are available. In technical
parlance, the axiom should increase the “interpretability strength” of theories.
This aim is greatly facilitated by the fact that all “natural” theories are linearly
ordered by interpretability strength. See Steel (2014) for a fascinating, though
technically challenging, discussion and defense of this point of view.182
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WE HAVE COVERED A LOT OF GROUND. A huge variety of
philosophical approaches to mathematics have been discussed.
While I have always attempted to be fair to the positions under
discussion, I have (as mentioned in the introduction) made no
attempt to hide my own views. It might be useful to sum-
marize some of the main lessons that have emerged, as well
as themes that I have emphasized and that serve to distin-
guish this introduction to the philosophy of mathematics from
others.

Let us begin with the fundamental question of what mathe-
matics is about. Five characteristics have appeared throughout
the book. Their importance should be widely recognized.

Abstraction. Mathematics is concerned with abstract features of
actual or possible objects or systems of objects. Several different
forms of abstraction have been discussed. Fregean abstraction
(cf. chaps. 2 and 9) is nicely illustrated by Frege’s example of
directions, where we talk about the abstract feature that two lines
share just in case they are parallel. Although it is controversial
whether Fregean abstraction gives us access to independently
existing abstract objects, I have emphasized that this form of
abstraction indisputably defines a permissible and useful way to
talk as if there are abstract objects such as directions.

Next, a form of abstraction is involved in our talk about
quantities. When we say that one object has mass 2 kilograms
and another has charge 2 coulombs, we are using our highly
abstract system of real numbers to express claims about how
massive and charged our two objects are relative to certain other
objects chosen to serve as units of the two quantities (cf. §7.3).
Whether such things as numbers “really exist” is controversial,
but there can be no doubt that our use of abstract representations
of quantities has been a huge success and enabled a vast amount
of good science.
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Finally, structuralism provides a systematic way to talk and
theorize about abstract features of entire systems of objects, as
opposed to individual things (cf. §§3.4–3.5 and chap. 11). This is
the form of abstraction that is most important in contemporary
mathematical practice. The metaphysical significance of this
form of abstraction too is disputed.Whereas the abstract manner
of speaking and theorizing is well defined (as demonstrated by
set-theoretic structuralism), the existence of “pure” structures
whose members have no individual natures but are merely
“positions” in these pure structures remains controversial.

Idealization. As Plato emphasized, geometry is not concerned
with our imperfect drawings of circles but with perfect circles,
each point of which is exactly the same distance from its center.
Likewise, the real number line is assumed to be infinitely divisible
and complete, regardless of whether the physical world contains
any such lines (something Hilbert doubted, as we saw in §4.3).
Huge idealizations are also involved in the assumptions made
by the representation theorems that underlie our talk about
quantities (cf. §7.3).

Computation. By ‘computation,’ we understand algorithmic
operations on syntactic signs or other systems of representations.
As we have seen, computation plays an essential role in connec-
tion with term formalism, Hilbert’s finitism, and intuitionism
(cf. §§3.3, 4.4, and 5.4–5.5, respectively). The mathematical and
philosophical importance of computation is indisputable. The
signs on which we compute can be used to represent objects and
their properties, which makes computation a tool of tremendous
power—as has become abundantly clear far outside of academia.
By contrast, whether our computations on numerals should
be taken to constitute genuine reference to numbers remains
controversial.

Extrapolation and infinity. For every numeral, we know how
to construct its successor (say, by appending one more stroke
to a sequence of Hilbert strokes). So we extrapolate and start to
reason about the entire sequence of numerals (or perhaps even
the entire sequence of natural numbers). Infinity is thus184
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introduced into the heart of mathematics. At first, the infinities
in questionmay be understood asmerely potential. But as Cantor
convincingly argued, it is conceptually coherent and mathemat-
ically fruitful to go further and countenance actual infinities
as well (cf. §4.2). This enables far greater extrapolations, as
illustrated by the iterative conception of sets, where the powerset
operation is iterated transfinitely many times so as to “form” ever
more sets (cf. chap. 10).

Proof. Throughout the book, I have emphasized how proof is
primarily an instrument in our mathematical investigations,
not the object of these investigations. Mathematical language
has some form of meaning, which is typically bestowed on it
by one of the aforementioned characteristics. (Of course, the
exact analysis of this meaning is controversial.) It is on the basis
of this meaning that we are able to recognize an attempted
proof as successful or not. It is only quite late in the history of
mathematics that formal systems were formulated and proofs
could thus become an object of (contentful) metamathematical
investigation (cf. §§2.1–2.2).

I believe all of the above characteristics are important in our an-
swer to the question of what mathematics is about. A philosophy
of mathematics that excludes some of the characteristics would
be one-sided and incomplete.

As adumbrated in the introduction, the book has some main
themes, where some of my own views and preferences become
apparent. Since these themes weave through the entire text in a
way that I hope is fairly unobtrusive, an explicit summary may be
useful.

Frege. Like Frege, I have emphasized that mathematics is an
autonomous science. It is autonomous because it should not
be subsumed under, or unduly assimilated to, the paradigmatic
empirical sciences. This involves a rejection of empiricism about
mathematics (cf. chap. 6 but also §12.3). It is a science be-
cause its statements are meaningful and (at least in elementary
mathematics) have objective truth-values which are often known
by us. This involves a rejection of formalism and of all forms 185
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of antirealism that take mathematical truths to depend on our
proofs or constructions (cf. chaps. 3 and 5, respectively). I have
also followed Frege in emphasizing the mathematical and philo-
sophical importance of abstraction.

Object realism vs. platonism. While an object realist holds that
there are mathematical objects such as numbers and sets, a
platonist goes further by making the (not very precise) claim
that these objects are just as “real” as physical objects (cf. §2.5).
Throughout the book, we have encountered various ways in
which one can be an object realist without being a full-fledged
platonist. One option has already been dismissed, namely that
mathematical objects are mind-dependent in a way that sets
them apart from physical objects. But there are more promising
options. According to Frege, the objectivity of mathematical
statements is explanatorily prior to the existence of mathematical
objects. While the existence of planets contributes to the
explanation of the objectivity of our discourse about planets,
Frege took the reverse explanatory order to be more appropriate
in mathematics (cf. §2.5). Next, perhaps mathematical objects
exist only in a potential manner, which contrasts with the actual
mode of existence of ordinary physical objects. This idea is at the
heart of the ancient notion of potential infinity (cf. §§4.2, 4.4,
5.4–5.5). A version of the idea survives the post-Cantorian em-
brace of actual infinities, namely as the claim that the cumulative
hierarchy of sets is incompletable or merely potential
(cf. §§10.5–10.6). Last, noneliminative structuralists aspire
to a conception of mathematical objects as mere positions
in structures, in contrast to ordinary physical objects, which
exist and have many of their properties independently of the
structures to which they belong (cf. §11.3). For example, the
author of this book is not tied to his departmental structure
as intimately as the number 2 is tied to the natural number
structure.

Epistemology subject to the integration challenge. It is not an
accident that so many of our mathematical beliefs are true. How,
then, are our ways of forming mathematical beliefs connected
with their subject matter (cf. §1.5)? We have explored a va-186
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riety of possible forms of mathematical evidence on the basis
of which we form our mathematical beliefs: a quasi-perceptual
form of intuition, different forms of conceptual evidence, as
well as Gödel’s famous notion of extrinsic evidence (cf. chap. 8;
chaps. 2, 9, §12.2; and §12.3, respectively). My own orientation
has been pluralist and gradualist. There appear to be several
different sources of mathematical evidence, which gradually
become less secure as they take us into the higher reaches of the
subject.
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