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PREFACE

The theory of relativity developed by Einstein and his

collaborators is the greatest scientific achievement of our

age. The layman is therefore fully justified in wishing and

asking to know what it is about and in his desire to get at

least a glimpse of the new and broader conception of the

universe and its laws which this theory is giving us and

to understand what fundamental revolution in our scientific

world conception it is causing in bringing order and system

out of the previous chaotic state. Unfortunately, the

relativity theory is intrinsically mathematical, and it is

impossible to give a rigidly correct and complete exposition

of it without the extensive use of mathematics. The best

that can be done, therefore, in explaining the theory of

relativity to the layman, and to the engineer who is not an

expert mathematician, is to give by analogy, example and

comparison a general conception of the theory and its

fascinating deductions and conclusions. Such a conception

must inevitably be approximate only and cannot be

rigidly correct. This must become evident to the mathe-

matical physicist. However, it is the best that can be

done, and I believe it is sufficient to justify fully the little

effort required from the layman to follow the exposition.

After all, the non-mathematician is not interested in

rigidly following the intricacies of the mathematical

reasoning involved. Rather it is his desire to get a general

knowledge and understanding of the new ideas on time

and space, on the laws of nature and the characteristics

of our universe, which the relativity theory has deduced,

and of the wonderful researches into the nature of space

which nearly a century ago were carried out by the great

mathematicians and have now at length become of physical

significance and indeed been the mathematical foundation

on which the theory is built.

10300^



vi PREFACE

It is from this viewpoint that the four following lectures

have been edited in order to adapt the expositions to the

non-mathematical mind, even when thereby some accuracy-

had to be sacrificed.

The first lecture was given before the Laymen's League

of the Unitarian Church of Schenectady and repeated

before the Pittsfield Section of the American Institute of

Electrical Engineers. The other three lectures, which

go more deeply into the conclusions and deductions, and

in the last lecture into the geometry of space, were also

given before the Pittsfield Section of the Institute.

In conformity with the general attitude above explained,

which I consider necessary to make the subject intelligible

to as large a circle of readers as possible, I have introduced

the constancy of the velocity of light as an axiom rather

than by Michelson's experiment, and have referred to the

latter only as corroboration, for the reason that in my
opinion the non-technical man in search of knowledge

prefers to be told the conclusions descriptively rather than

to read through the record of the experimental deductions.

The derivation of Einstein's law of gravitation from

the inertial motion in an accelerated system is explained

by example and shown as a mathematical transformation.

This gives to the layman a general understanding of the

principle, but is not rigidly correct, as it gives the impression

that the derivation involves no arbitrary assumptions.

However, an attempt to explain general coordinates to

non-technical hearers did not appear to me to be justified,

and in the last lecture I tried to explain the assumptions

involved in connection with the metric axiom.

Similar approximations and deviations from mathe-

matical rigidity are found in the discussion of the imaginary

unit as a quadrature vector, in relation to Minkowski's

space, in the comparison of gravitational and centrifugal

force, in the relation of acceleration and velocity in the

derivation of the space curvature in the gravitational field,

and in the explanation of the curvature of three-space by
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analogy with that of two-space, which obviously is limited

by the conditions of the former being more complex. In a

number of other places, too, the mathematical physicist

will find statements and deductions which are not strictly

exact, but which appeared to me justified since they

appeared the only way of giving an approximate conception

of a mathematical subject without mathematics.

In general I have preferred the synthetic method to the

analytic as more intelligible to the non-mathematician.

While most mathematicians are more familiar with the

analytic method and consider it a more powerful tool, the

synthetic method has in the hands of a man like Steiner

proven fully as powerful as the analytic, and it has the

advantage that we see what we are doing and get a physical

conception of it. Thus the general or non-metric geometry

is exemplified by the collinearity between the plane of

points and the bundle of rays, the metric axiom is discussed,

the analytical analogy of which will be obvious to the

mathematicians, etc.

The entire fourth lecture has been devoted to the con-

ception of mathematical space, its curvature, etc. This

is one of the most fascinating subjects of human knowledge,

and the fundamental importance which through the

relativity theory it has assumed in the realm of physics makes

a general understanding of it desirable for the layman, the

more so as some of its conclusions—-as to the finite size

of the universe, etc.— have an interest reaching far beyond

mathematics and physics into the realm of philosophy and

beyond.

Charles P. Steinmetz.
Schenectady, N. Y.

December, 1922.
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FOUR LECTURES ON

RELATIVITY AND SPACE
LECTURE I

GENERAL

A. RELATIVITY OF MOTION, LOCATION AND TIME

The theory of relativity as developed by Einstein and his collaborators

has revohdionized science by sweeping aside many of the limitations which

hitherto fettered the human intellect. But, being essentially mathematical,

a general conception of it can be given to the non-mathematician only by

the use of analogies and illustrations, and this inevitably involves a certain

looseness of argumentation. The following pages therefore may serve

to give a general idea of the theory of relativity and its consequences, but

not to revieiv it critically.

The theory of relativity starts from two premises

:

1. All phenomena of space, time and motion are relative;

that is, there is no absolute motion, etc., but motion,

location and time have a meaning only relative to some

other location, time, etc.

2. The laws of nature are universal ; that is, they apply in

the same form everywhere, whether in a speeding railway

train on earth or in the empty space between the fixed stars.

So far, these two premises appear simple and rather

obvious, but startling and revolutionary ideas appear when

carrying the reasoning from these premises to their ultimate

conclusions, as Einstein has done.

Suppose, for instance, you happen to run your car at

30 miles per hour against a stone wall. There seems

nothing relative about this. The wreck is very real; the

stone wall does not budge, and when a rapidly moving mass
1



2 RELATIVITY AND SPACE

meets an immovable body mechanical energy is set free

destructively. But is the stone wall really immovable?
Is it not a part of the earth, which spins around its axis at

800 miles per hour so that both the stone wall and your car

were moving. And perhaps if you happened to drive the
car in a westward direction—that is, against the rotation

of the earth—your car really was moving more slowly than
the stone wall—was going only 770 miles per hour, and
the stone wall 800. But think further: Is not the stone

wall, as a part of the earth, revolving around the sun at

70,000 miles per hour, and is not the sun, and with it the

earth, and the stone wall, and your car, also moving on an
unknown path among the fixed stars? So that really you
know nothing and can know nothing about the actual or

absolute speed of the car. All you know is that the relative

speed of the car^—^that is, the speed relative to the earth and
thus to the stone wall—was 30 miles per hour. But that

is sufficient to let you understand the effects of the car

meeting the stone wall.

So with location. The room in which you are sitting

while reading appears fixed and definite. But the only way
you can describe its location is by referring it to some other

body or location as reference point, by saying, for instance,

that your room is located x feet north and y feet west and
z feet above the surveyor's markstone on City Hall Square.

Or you can give its latitude, longitude and altitude, stating

that from the starting point of latitude, longitude and
altitude—-that is, where the equator meets the zero meridian

at ocean level—you go so many degrees north (or south),

then so many degrees west (or east) , and then so many feet

up (or down), and thereby reach your room. Three

distances thus are required, measured in three chosen

directions, from a chosen starting point, to locate a point

or an object in space, and therefore we say that space has

three dimensions. But do these three distances really

locate you in your room? Suppose somebody, reading

the directions, should try to locate your room 1000 years
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hence. He would not find it. Thus one more thing must

be given—the time, measured from some arbitrary starting

point, for instance, anno domini. Thus, you see, to locate

anything in this world of ours requires four measurements,

three distances and one time; and we thus can say that the

world and its events have four dimensions, three dimensions

of space and one of time.

But all such location of events in the four-dimensional

world can only be relative to the arbitrarily chosen reference

points in space and time. In bygone ages, when people

thought the earth flat and immovable as the center of the

universe, they could dream of referring location to an

absolute stationary reference point, say the Capitol of Rome.
But when we learned that the earth is a sphere, spinning

around its axis and revolving around the sun, the earth

ceased to offer any fixed and permanent reference point in

space. The sun then was chosen. But the astronomers

found that the sun also is moving among the fixed stars.

And the ''fixed" stars do not stand still, but are moving

"every which way," so that all the attempts to find some-

thing immovable and fixed in the universe have failed,

and thus all motion, all location, can be relative only to

other objects, which are also moving.

B. EFFECT OF RELATIVE MOTION ON LENGTH
AND TIME

Suppose you toss a stone across your room. Observing

the point at which the stone leaves your hand, the direction

in which it leaves, and the speed, the physicists can calcu-

late the path of the stone as it curves downward and finally

comes to rest on the floor of the room. Suppose now you

are on a railway train, moving at constant speed on a

straight, level track, and toss a stone across the car in which

you are riding. From the same three observations—the

point in the moving railway car where the stone leaves your

hand, the direction, and the speed relative to the carat which
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the stone leaves—the physicist by the same laws calculates

the path which the tossed stone traverses in the car.

Whether the car is moving at constant speed on a straight,

level track or standing still makes no difference; the path

of the stone is the same, as the same laws of nature apply

everywhere.

If the laws of nature are the same in the railway train

moving at constant speed on straight, level track as

they are on the "rigid" platform of the earth or in the

empty space among the fixed stars, then the speed of light

must also be the same, 186,000 miles per second, and so

must be the speed with which the electric current travels

in its circuit, which is the speed of light. This is important

because all observations depend on it. Any event is either

observed by seeing it or recorded by some electrical arrange-

ment, and in either case we do not get the exact time when
the event occurs but a time later by the time it takes the

light to reach our eye or the electric current to flow from

the event to the recording device, and to get the exact

time of the event, we therefore have to allow for the time

taken by the light or the electric current. Owing to the

enormous speed of the light, this time difference between the

moment when the event occurs and the moment when we
observe or record it usually is so extremely small as to be

negligible. But not always. For instance, when on ship-

board out on the ocean the chronometer has stopped and

the mariner tries to find the location of his ship from the

stars, he might use the eclipses of the moons of Jupiter for

this purpose. But when he sees the eclipse it has already

passed by from 30 to 50 minutes—^depending on the relative

position of the earth and Jupiter—owing to the time which

it takes the light to go from Jupiter to the earth over the

hundreds of millions of miles of distance.

But if the speed of hght in the moving train must be

the same as on the stationary track, we get some rather

strange conclusions. Suppose we place a lamp on the

track, back of the receding train, so that the light shines
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along the track (for instance, a signal light). The beam of

light travels along the track at 186,000 miles per second.

The train moves along the track, in the same direction, at

100 feet per second. Therefore, relative to the train, we
should expect the beam of light to travel at 186,000 miles

less 100 feet per second. It would be thus with a rifle

bullet. If I shoot a rifle along the track at the receding

train, and the rifle bullet travels along the track at 2000

feet per second, while the train travels in the same direction

at 100 feet per second, then the rifle bullet will catch up
with the train and pass through the train at the relative

speed of 2000 less 100, or 1900, feet per second. But

the constancy of the laws of nature teaches us that if the

beam of light travels along the track at 186,000 miles per

second, and the train in the same direction at 100 feet per

second, the speed of the beam of light measured in the

train (that is, its relative speed to the moving train) cannot

be 186,000 miles less 100 feet, as we would expect, but must

be 186,000 miles per second, the same as its relative speed

to the track. Now, the only way we can explain this con-

tradiction is to say that when we measured the speed of

light on the train our measuring rods were shorter, or,

using the length of the train as measure, the train was

shorter, or the time was slower, or both.

These three possibilities really are one. It can be shown

that if the length of the train is shorter, the time must be

slower in the same proportion. Thus this leads to the

strange conclusions that, when the train is moving, to the

beam of light coming from the outside, and to an outside

observer, the length of the train has shortened and the time

in the train has slowed down. But if we now stop the train

and remeasure it, we find the same length and the same
time as before.

This conclusion from the two premises of the theory of

relativity is so against our accustomed ideas that we would

be inclined to reject it if it could not be verified by experi-

ment, and the experiment has been made repeatedly. It is
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true a difference of 100 feet per second out of 186,000 miles

per second is so extremely small that it could not be

measured. But we can speed up the train and, instead

of 100 feet per second, run it at 100,000 feet, or 20 miles, per

second. We have such a train. The earth on its path
around the sun moves about 20 miles per second, and the

speed of light going with the motion of the earth then should

be 20 miles less, going against the motion of the earth 20 miles

greater. But the experiment shows that it is the same,

and experiment has proven this with an accuracy many
times greater than the difference in the speed of light

which we should expect but do not find, so that the fact

of the constancy of the speed of light is beyond question.

Beyond question, then, also, is it that for an outside

observer motion shortens the length and slows down the

time on the moving body; but not for an observer moving
with the train—for him length and time are the same.

C. RELATIVITY OF LENGTH AND DURATION

What does this mean? The train stands on the track.

I measure it from the outside, you measure it from the

inside, and we find the same length. We compare our

watches and find them to go alike. Now the train starts

and runs at high speed. While it is passing me I measure
its length again and find it shorter than before, while at the

same time, you, traveling with the train, measure it again

from the inside and find the same length we both found

when the train was standing still. But while passing over

it you measure a piece of the track and find it shorter than I

find it when measuring it from the outside. While you pass

me on the train I compare your watch with mine and find

your watch slower than mine. But, at the same time, you,

comparing your watch with mine, while passing me, find my
watch slower. Then the train stops, and both our measure-

ments agree again. What then is the "true" length of the

train and the *'true" time—that which I get when measur-
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ing the train while it passes me at high speed or that which

you get while moving with the train? Both, and neither.

It means that length is not a fixed and invariable property

of a body, but depends on the condition under which it is

observed. The train has one length to the observer stand-

ing still with regard to it, that is, the observer in the train;

a different and a shorter length to the observer whom it

passes at 100 feet per second; and if I could go outside of the

earth and measure the length of the train, while the train

and earth rush by me at 20 miles per second, I would find a

third still shorter length.

Length and time, therefore, are relative properties

of things, depending on the conditions under which they are

observed, particularly the relative speed of the body to the

observer. This really is so startling only because it is

novel, since at all speeds which we find around us, even the

highest speeds of rifle bullets, the change of length and time

is so extremely small as to be inappreciable, and we therefore

are used to finding length and time constant. Appreciable

changes occur only at the speed of 10,000 to 100,000 miles

per second, while the most accurate methods of measure-

ment would fail to show an appreciable shortening of the

railway train going at 60 miles per hour, because the short-

ening is so small. But it is there just the same.

However, the relativity of the length of a body-—^that is,

the dependence of the length on the conditions of observa-

tion—is no more strange than the relativity of the color of a

body. Off-hand we will say that a body has a fixed and
definite color; the grass is green, the snow is white. Never-

theless, when we think of it we know it is not so. The lady

buying material for a dress in the dry-goods store during the

daytime may select a nice heliotrope. But when the dress

is finished, in the ballroom, she finds its color a clear soft

pink. And when, to have a photograph taken, she goes to

a photographer using mercury lamps in his studio, she finds

the dress a clear blue. Which is its "true" color? Helio-

trope, or pink, or blue? Any of the three is the true color
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in the condition under which it is observed. So, Einstein's

theory of relativity proves to us, it is with length and with

time. There is no single length of a body, nor time on the

body, but length and time are relative and vary with the

conditions under which they are observed, with the relative

speed of the observer, just as the color of a body varies with

the kind of light under which it is seen.

D. RELATIVITY OF MASS

If, then, in a body moving rapidly past us, the distance

appears shortened and the time slowed down, the speed,

which is distance divided by time, must also appear slower.

Now, the energy of the moving body depends on its mass

and its speed, and with the same energy put into the body,

if the speed appears slower, the mass must appear larger.

We thus draw the conclusion from Einstein's theory of

relativity that the mass of a moving body is not constant,

but increases with the speed, and the oldest of the great

fundamental laws of nature, the law of conservation of

matter, thus goes into the discard. For nearly two cen-

turies we have accepted the law of conservation of matter

and believed that matter—that is, mass—can neither be

created nor destroyed, and now we find that mass varies

with the speed, so that speed-—that is, energy-—^can create

mass, and mass or matter probably is merely a manifesta-

tion of energy. And this can be and has been verified

experimentally.

The decrease of length, the slowing down of time, the

increase of mass, becomes appreciable only at velocities

approaching that of the light. Thus at ordinary every-

day velocities length, time and mass are constant; but in

the vacuum tubes used in our big wireless stations to pro-

duce electrical vibrations which carry the message through

space across oceans and continents, or to receive the

faint signal arriving from far-distant stations, the current is

carried through the empty space of the tube by minute
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particles, so-called electrons, and measuring the speed

and the mass of these electrons, the physicists find that they

move at speeds of 10,000 and 100,000 miles per second and

that their mass is not constant, but increases with the speed,

in the manner required by Einstein's theory. This was the

first experimental proof of the change of mass, and it was

found before Einstein gave the explanation in his relativity

theory.

E. ACCELERATION AND THE LAW OF GRAVITATION

Suppose you have a billiard table in your house. You
put a ball in the middle of the table. It stays there until

something pushes it, and this something we call " force." Or

you shoot a ball across the billiard table. It moves in a

straight line until it strikes the boundary, rebounds and

again moves in a straight line at constant speed. Suppose

now we have a billiard table in a train, and the train is

running at constant speed on a straight level track. You
again put a ball in the middle of the table and it stays there,

just as was the case in your house, at rest with regard to the

table, though I, standing outside near the track, see that

train and table and ball all three move together at constant

speed. You shoot the ball across the table, and it moves in

a straight line at constant speed, thus in the moving railway

train obeying the same law of nature as in your stationary

house, the law that any body keeps the same state, whether

rest or motion, until something changes its state.

But suppose the train is speeding up, its speed increasing

while you put the ball in the middle of the billiard table in

the train. Now you find that this ball does not remain

at rest, but it begins to move toward the back of the train,

first slowly and then more and more rapidly until it comes

to rest against the back boundary of the table, just as a

stone which I drop does not remain at rest, suspended in

the air, but begins to move downward with increasing

speed—-''falls." So the billiard ball in the speeding train
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"falls" toward the back of the train. You shoot a ball

across the billiard table while the train is speeding up. It

does not move in a straight line, but curves toward the

back of the train, just as a thrown stone, on earth, does not

move in a straight line at constant speed, but curves down-

ward. You say then that in the speeding railway train

some force acts on the billiard ball, pulling it toward the

back of the train, just as the attraction of the earth pulls

downward. You may speculate on this force which

attracts things toward the back of the speeding railway

train and find its laws just as Newton found the laws

governing the force of gravitation. But I, standing on the

embankment, near the track, while the speeding railway

train passes, see that there is no real force acting on the

billiard ball, but when you put it in the middle of the table,

left to itself, it continues to move in a straight line at the

speed which it and the train had when you put it there.

What happens is that the billiard table and train, speeding

up, slide forward under the ball, and the ball thus seems to

fall backward toward the end of the train. So, when you

shoot a ball across the billiard table in the speeding railway

train, I from the outside see the ball move in a straight

line at constant speed, but see billiard table and train slide

forward under it, so giving you, who are moving with the

speeding railway train, the impression of an attracting

force pulling the ball toward the back of the train. You
try to find the laws of this force; that is, the laws obeyed by

the relative motion which you see. But to me these

motions are those of a body left to itself, in a straight line

at constant speed, and, knowing the motion of the speeding

railway train, the mathematician can calculate the motion

which you observe, without any physical assumption,

merely as a mathematical transformation from the straight-

line motion which I see from the outside to the complicated

motion relative to the speeding train which you observe,

and so derive the law of the latter motion—^that is, the law

of the fictitious attracting force—to which you ascribe
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these motions. This Einstein has done, and so has derived

a new and more general expression for the law of gravitation,

in a way which does not depend on any hypothesis con-

cerning the nature of the force. This law is more general

than Newton's law of gravitation, and the latter appears

as the first approximation of Einstein's law of gravitation.

The more general law of gravitation given by Einstein

does not mean that Newton's law of gravitation is wrong.

Both laws give so nearly the same results in almost all

cases, even in the calculation of cosmic motions, that usually

the difference cannot be discovered even by the most

accurate measurements. This is to say that Newton's

law is a very close approximation of Einstein's. There are

a few cases only in the universe as we know it today where

the difference becomes noticeable. Such, for instance, is

the motion of the planet Mercury. This planet has been

observed for thousands of years, but all attempts to calcu-

late its motion accurately by Newton's law have failed,

while the application of Einstein's law has succeeded, thus

once again corroborating his theory of relativity.

To summarize the conclusions at which we have arrived,

the theory of relativity means:

All phenomena of motion, space and time are relative.

The laws of nature, including the speed of light, are the

same everywhere.

From these principles it follows that length, time and

mass are relative also, are not fixed properties of things,

but vary with the relative speed of the observer.

A more general law of gravitation is derived as a mathe-

matical transformation of straight-line inertial motion to

the apparent motion relative to a speeding system (the

railway train in above illustration) and shows that gravi-

tation is not a real force, but a manifestation of inertia,

just as centrifugal force is.



LECTURE II

CONCLUSIONS FROM THE RELATIVITY THEORY

A. INTRODUCTION

The theory of relativity of Einstein and his collaborators

has profoundly revolutionized our conceptions of nature.

Time and space have ceased to be entities and have become

mere forms of conception. The length of a body and the

time on it and the mass have ceased to be fixed properties

and have become dependent on the conditions of obser-

vation. The law of conservation of matter thus had to be

abandoned and mass became a manifestation of energy.

The law of gravitation has been recast, and the force of

gravitation has become an effect of inertial motion, like

centrifugal force. The ether has been abandoned, and the

field of force of Faraday and Maxwell has become the

fundamental conception of physics. The laws of mechanics
^

have been changed, and time and space have been bound'

together in the four-dimensional world space, the dimen-

sions of which are neither space nor time, but a symmetrical

combination of both.

With such profound changes in the laws and conceptions

of nature, it is startling to see that all the numerical results

of calculations have remained the same. With a very few

exceptions, the differences between the results of the old

and of the new conceptions are so small that they usually

cannot be observed even by the most accurate scientific

investigation, and in the few instances where the differences

have been measured, as in the disturbances of Mercury's

orbit, the bending of the beam of light in the gravitational

field, etc., they are close to the limits of observation.

12
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We have seen that the length of a body and the time on it

change with the relative velocity of the observer. The
highest velocities which we can produce (outside of ionic

velocities) are the velocity of the rifle bullet (1000 meters

per second) , the velocity of expansion of high-pressure steam

into a vacuum (2000 meters per second), and the velocity of

propagation of the detonation in high explosives (6000 meters

per second). At these velocities the change of length and

time is one part in 180,000 millions, 22,000 millions and

5000 millions respectively. The highest cosmic velocity

probably is that of a comet passing the sun at grazing

distance, 200 kilometers per second. The shortening of the

length even then would be only one in four millions.

The bending of a beam of light in the gravitational field

of the sun is only a fraction of a thousandth of a degree.

The overrunning of the perihelium of the planet Mercury

is only about 20 miles out of more than a hundred million

miles.

Therefore the principal value of the relativity theory

thus far consists in the better conception of nature and its

laws which it affords. Some of the most interesting illustra-

tions of this will be discussed in the following pages.

B. THE ETHER AND THE FIELD OF FORCE

Newton's corpuscular theory of light explained radiation

as a bombardment by minute particles projected at

extremely high velocities, in much the same way as the

alpha and the beta rays are explained today. This

corpuscular theory was disproven by the phenomenon of

interference, in the following manner: If the corpuscular

theory is right, then two equal beams of light, when super-

imposed, must always combine to a beam of twice the

intensity. Experience, however, shows that two equal

beams of light when superimposed, may give a beam of

double intensity, or may extinguish each other and give

darkness, or may give anything between these two
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extremes. This can be explained only by assuming light

to be a wave, like an alternating current. Depending on

their phase relation, the combination of two waves (as two

beams of light or two alternating currents) may be anything

between their sum and their difference. Thus the two

alternating currents consumed by two incandescent lamps

add, being in phase; the two alternating currents consumed

respectively by an inductance and by a capacity subtract,

giving a resultant equal to their difference; that is, if they

are equal, they extinguish each other. The phenomenon of

interference thus leads to the wave theory of light.

If light is a wave motion, there must be something to

move, and this hypothetical carrier of the light wave has

been called the ether. Here our troubles begin. The
phenomenon of polarization shows that light is a transverse

wave; that is, the ether atoms move at right angles to the

light beam, and not in its direction as. is the case with

sound waves. In such transverse motion a vibrating ether

atom neither approaches nor recedes from the next ether

atom, and the only way in which in the propagation of the

light wave the vibratory motion of each ether atom can be

transmitted to the next one is by forces acting between the

ether atoms so as to hold them together in their relative

positions. Bodies in which the atoms are held together

in their relative positions are solid bodies. That is, trans-

verse waves can exist only in solid bodies. As the velocity

of light is extremely high, the forces between the ether

atoms which transmit the vibrations must be very great.

That is, the ether is a solid body of very high rigidity,

infinitely more rigid than steel.

At the same time, the ether must be of extremely high

tenuity, since all the cosmic bodies move through it at high

velocities without meeting any friction. In the revolution

of the earth around the sun either the ether stands still and

the earth moves through the ether, at 20 miles per second,

or the earth carries a mass of ether with it (''ether drift").

In the first case there should be friction between the mass
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of the earth and the ether; in the last case there should be
friction between the ether carried along with the earth and
the stationary ether. But in either case the frictional

energy would come from the earth, would slow down the

speed of the earth and show astronomically as a change of

the orbit of the earth, and no

such evidence of ether friction

is observed. g'

Which of the two alter-

native possibilities-—a sta-

tionary ether or an ether

moving with the earth—is

true can be determined ex-

perimentally. Suppose, in

Fig. 1, i^ is a railway train

moving at speed v, and I
p^^ ^

shoot a rifle bullet through

the train, in the direction at right angles to the track, at

velocity c. The bullet enters the train at the point A
of the track and leaves it at the point B of the track. But
while the bullet passes from A to 5 the train has moved
forward and the point B' of the train has come to the

point B of the track. Thus with regard to the train-—that

is, for an observer in the train-—the bullet moves from A to

B' and thus appears to have come not from but from 0'

,

from a direction farther forward by angle a = OAO', where

tan a = v/c.

Now, instead of the train consider the earth; instead of

the bullet, a beam of light from some fixed star. If, then,

the ether stands still, the beam of light from a fixed star,

carried by the ether, would go in a straight line OABC, and

from the moving earth we would see the fixed star, not

where it really is, at 0, but deflected in the direction of the

earth's motion, toward 0', and a half a year later, when the

earth in its orbit around the sun is moving in the opposite

direction, we should see the star deflected in the opposite

direction. During the annual revolution of the earth
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around the sun all the fixed stars thus would describe small

circles. This is the case, and this phenomenon, called

'^ aberration," proves that the ether stands still and is not

carried along by the cosmic bodies.

If the ether stands still and the earth is moving through

it, then by the Newtonian mechanics the velocity of light

relative to the earth—that is, as observed here on earth

—

should in the direction of the earth's motion be 20 miles less,

in the opposite direction 20 miles more, than the veloc-

ity with regard to the stationary ether. If, however, the

ether moves with the earth, then obviously the velocity of

light on earth should be the same in all directions. The

latter is the case, and thus it is proved that the ether

moves with the earth and does not stand still. This is

exactly the opposite conclusion from that given by the

aberration.

Thus the conception of the ether is one of those untenable

hypotheses which have been made in the attempt to

explain some difficulty. The more it is studied and con-

clusions drawn from it, the more contradictions we get, and

the more unreasonable and untenable it becomes. It has

been merely conservatism or lack of courage which has

kept us from openly abandoning the ether hypothesis.

The belief in an ether is in contradiction to the relativity

theory, since this theory shows that there is no absolute

position nor motion, but that all positions and motions are

relative and equivalent. If, however, an ether existed,

then the position at rest with regard to the ether, and the

motion relative to the ether, would be absolute and different

from other positions and motions, and the assumption of an

ether thus leads to the conclusion of the existence of abso-

lute motion and position and so contradicts the relativity

theory.

Thus the hypothesis of the ether has been finally dis-

proven and abandoned. There is no such thing as the

ether, and light and the wireless waves are not wave motions

of the ether.
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What, then, is the fallacy in the wave theory of light

which has led to the erroneous conception of an ether?

The phenomenon of interference proves that light is a

wave, a periodic phenomenon, just like an alternating

current. Thus the wave theory of light and radiation

stands today as unshaken as ever. However, when this

theory was established, the only waves with which people

were familiar were the waves in water and the sound waves,

and both are wave motions. As the only known waves

were wave motions, it was natural that the light wave also

was considered as a wave motion. This led to the question

of what moves in the light wave, and thus to the hypothesis

of the ether, with all its contradictory and illogical attri-

butes. But there is no more reason to assume the light

wave to be a wave motion than there is to assume the

alternating-current wave to be a motion of matter. We
know that nothing material is moving in the alternating-

current or voltage wave, and if the wave theory of light

had been propounded after the world had become familiar

with electric waves^—that is, with waves or periodic phenom-
ena which are not wave motions of matter^—the error of

considering the light wave as a wave motion would never

have been made and the ether theory would never have been

propounded.

Hence the logical error which led to the ether theory is

the assumption that a w^ave must necessarily be a wave
motion. A wave may be a wave motion of matter, as the

water wave and sound wave, or it may not be a wave
motion. Electrical engineering has dealt with alternating-

current and voltage waves, calculated their phenomena and
applied them industrially, but has never considered that

anything material moves in the alternating-current wave
and has never felt the need of an ether as the hypothetical

carrier of the electric wave. When Maxwell and Hertz

proved the identity of the electromagnetic wave and the

light wave, the natural conclusion was that light is an

electromagnetic wave, that the ether was unnecessary also

2
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in optics, and, as it was illogical, to abandon it. But,

curiously enough, we then began to talk about electric

waves in the ether, about ether telegraphy, etc.-—instead of

abandoning it, that is, we dragged the conception of the

ether into electrical en-

\ gineering, where it never

had been found necessary

before.

What, then, is the

mechanism of the light

wave and the electromagnetic wave?
Suppose we have a permanent bar magnet M (Fig. 2) and

bring a piece of iron / near it. It is attracted, or moved;
that is, a force is exerted on it. We bring a piece of copper

near the magnet, and nothing happens. We say the space

surrounding the magnet is a magnetic field. A field, or

field of force, we define as "a condition in space exerting a

force on a body susceptible to this field." Thus, a piece of

iron being magnetizable—that is, susceptible to a magnetic
field^—^will be acted upon; a piece of copper, not being

magnetizable, shows no action. A field is completely

defined and characterized at any point by its intensity and
its direction, and in Faraday's pictorial representation of

the field by the lines of force, the direction of the lines of

force represents the direction of the field, and the density

of the lines of force represents the intensity of the field.

To produce a field of force requires energy, and this

energy is stored in the space we call the field. Thus we can
go further and define the field as ''a condition of energy

storage in space exerting a force on a body susceptible to

this energy.''

The space surrounding a magnet is a magnetic field.

If we electrify a piece of sealing wax by rubbing it, it

surrounds itself by a dielectric or electrostatic field,

and bodies susceptible to electrostatic forces-—such as light

pieces of paper—are attracted. The earth is surrounded

by a gravitational field, the lines of gravitational force
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issuing radially from the earth. If a stone falls to the

earth, it is due to the. stone being in the gravitational

field of the earth and being acted upon by it.

This illustrates the difference between the conception

of the field held by Faraday and Maxwell, in explaining

force action, and the Newtonian theory of action at a

distance. To Newton the earth is attracted by the sun

and therefore revolves around it, because the force of

gravitation acts across the distance between sun and

earth in a manner proportional to the mass and inversely

proportional to the square of the distance. To us the

earth revolves around the sun because it is in the gravi-

tational field of the sun and this field exerts a force on the

earth. The force is proportional to the mass of the

earth and to the intensity of the gravitational field

—

that is, the density of the lines of gravitational force. As

the lines of force issue radially from the sun, their density

decreases with the square of the distance.

Both conceptions, that of action at a distance and that of

the field of force, thus give the same result and in some

respects are merely different ways of looking at the same

thing. But the first, the action at a distance, is logically

repugnant to our ideas, as we cannot conceive how a body

can act across empty space at a place where it is not and

with which nothing connects it.

However, there is something more than mere logical

preference in favor of the conception of the field. We may
illustrate this on the magnetic field (Fig. 2). The old con-

ception, before Faraday, was that the poles of the mag-

net M act across the distance on the magnet poles induced

in the iron I. Accepting this action at a distance, we
should expect that as long as the magnet M and the iron /

remain the same and in the same relative position the force

should be the same, no matter what happens elsewhere in

the space which we called the magnetic field. This, how-

ever, is not the case, but the conditions existing anywhere

in the field, outside of M and /, may affect and greatly
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modify the action of M on I. This is difficult to explain

in a simple manner by the theory of the action at a dis-

tance, but very simple and obvious by the field theory, as

anything done anywhere in the space outside of M and I

which changes the field at / also must change the force

exerted on /. Thus a piece of iron A (Fig. 3) interposed

between M and / increases the force by concentrating the

field on /. A copper disk C inserted between I and M
(Fig. 4) as long as it is at rest has no effect, because copper

is not susceptible to the magnetic field. If, however, the

copper disk C is revolved, the force on / decreases with

increasing speed of C and finally virtually vanishes,

because electric currents induced in C screen off the field

from I. Pieces of iron, like B and C in Fig. 5, may reverse

the force exerted by M on / from an attraction to a repul-

sion by reversing the magnetic field at I.

Thus the theory of the field of force has proven simpler

and more workable than the conception of the action

at a distance, and for this reason it has been generally

accepted.

Suppose now, in Fig. 2, instead of a periuanent magnet

M, we have a bundle of soft iron wires with a coil of insul-

ated copper wire around it and send a constant direct cur-

rent through the latter. We then have an electromagnet,

and the space surrounding M is a magnetic field, character-

ized at every point by an intensity and a direction. If

now we increase the current, the magnetic field increases;

if we decrease the current, the field decreases ; if we reverse

the current, the field reverses; if we send an alternating

current through the coil, the magnetic field alternates

—

that is, is a periodic phenomenon or a wave, an alternating

magnetic field wave.

Similarly, by connecting an insulated conductor to a

source of voltage we produce surrounding it an electro-

static or dielectric field—a constant field if the voltage is

constant, an alternating dielectric field—that is, a periodic

or wave phenomenon^—^if we use an alternating voltage.



CONCLUSIONS FROM RELATIVITY THEORY 21

Magnetic and dielectric fields are usually combined, since

where there is a current producing a magnetic field there

is a voltage producing a dielectric field. Thus the space

surrounding a conductor carrying an electric current is an

electromagnetic field—that is, a combination of a magnetic

field, concentric with the conductor, and a dielectric field,

radial to the conductor.

If the current and voltage ^
are constant, the electro- <^^^^

magnetic field is constant M
or stationary relative to the

conductor, just as the ^°' ^'

gravitational field of the earth is stationary with regard

to the earth. If the current and voltage alternate, the

electromagnetic field alternates—^that is, is a periodic field

or an electromagnetic wave.

Maxwell then has deduced mathematically, and Hertz

demonstrated experimentally, that the alternating electro-

magnetic field—that is, the electromagnetic wave—has the

same speed of propagation as the light wave, and has shown
that the electromagnetic wave and the (polarized) light

wave are identical in all their properties. Hence light is

an electromagnetic wave—that is, an alternating electro-

magnetic field of extremely high frequency.

Electrophysics has been successfully developed to its

present high state, and has dealt with alternating currents,

voltages and electromag-

netic fields, without ever

requiring or considering a

medium such as the ether.

Whatever may be the

mechanism of the electro-

magnetic wave, it certainly

is not a mere transverse wave motion of matter, and
the light, being shown to be a high-frequency electro-

magnetic wave, cannot be considered any more as a

wave motion of the ether. The ether thus vanishes.

M

Fig. 4.
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following the phlogiston and other antiquated physical

conceptions.

The conception of the field of force, or, as we should more
correctly say, the field of energy, thus takes the place of

the conception of action at a distance and of the ether.

The beam of light and the electromagnetic wave (like that

of the radio communication station or that surrounding a

power transmission line) are therefore periodic alternations

of the electromagnetic energy field in space, and the differ-

ences are merely those due to the differences of frequency.

Thus the electromagnetic field of the 60-cycle transmission

line has a wave length of 3 X lO^V^O cm. = 5000 km. Its

extent is limited to the space between the conductors and

their immediate surroundings, being therefore extremely

small compared with the wave length, and under these

conditions the part of the electromagnetic energy which is

radiated into space is extremely small. It is so small that

it may be neglected and that it may be said that all the energy

supplied by the source of power which is consumed in produc-

ing the electromagnetic field is returned to the supply circuit

at the disappearance of the field. In radio communication

wave lengths of 15,000 to 200 meters and less^—that is, fre-

quencies of 20,000 to 1,500,000 cycles and more—are used,

and the circuit is arranged so as to give the electromagnetic

field the greatest possible extent, it being the field which

carries the message.

Then a large part, or

even the major part, of

the energy of the electro-

magnetic field is radiated.

At the frequency of the

light wave, about 600

millions of millions of cycles, the wave length, about 50

micro cm., is an insignificant part of the extent of the

field-—^that is, of the distance to which the beam travels

—

and therefore virtually all the energy of the field is radiated,

none returned to the radiator.

Fig. 5.
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As the electromagnetic field represents energy storage in

space, it cannot extend through space instantaneously, but

must propagate through space at a finite velocity, the rate

at which the power radiated by the source of the field can

fill up the space with the field energy. The field energy is

proportional to the energy radiation of the source of the

field (transmission line, radio antenna, incandescent body)

and to the electromagnetic constants of space (permeability,

or specific inductance, and permittivity, or specific capac-

ity), and the velocity of propagation of the electromagnetic

field—that is, the velocity of light—^thus is:

1
c = ~7E=^ = 3 X IQio cm.,

where L is the inductance, C the capacity per unit space.

As has been seen, the velocity of light has nothing to do

with any rigidity and elasticity constants of matter, but is

merely a function of the electromagnetic field constants of

space.

Lack of familiarity with the conception of the energy field

in space, and familiarity with the conception of matter as

the (hypothetical) carrier of energy, may lead to the

question: What is the carrier of the field energy in space?

Would not the ether be needed as the hypothetical carrier

of the field energy?

All that we know of the world is derived from the percep-

tions of our senses. They are the only real facts; all things

else are conclusions from them. All sense perceptions are

exclusively energy effects. That is, energy is the only real

existing entity, the primary conception, which exists for us

because our senses respond to it. All other conceptions are

secondary, conclusions from the energy perceptions of our

senses. Thus space and time and motion and matter are

secondary conceptions with which our mind clothes the

events of nature—that is, the hypothetical cause of our

sense perceptions. Obviously, then, by carrying the

explanation of light and electromagnetic waves back to the
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energy field^—that is, to energy storage in space^—^we have
carried it back as far as possible, to the fundamental or

primary conceptions of the human mind, the perceptions of

the senses, which give us the entity energy and the form
under which the human mind conceives it, that of space and
time.

C. THE FOUR-DIMENSIONAL TIME-SPACE OF
MINKOWSKI

The relativity theory shows that length is not a constant

property of a body but depends on the conditions under
which it is observed. This does not mean that a body, like

the railway train of our previous instance, has at some time
one length, U, and at another time another length, Zi,

but it means that at the same time the railway train has
different lengths to different observers. It has the length

lo to one observer—for instance, the observer in the railway

train, who is at rest with regard to it^—and at the same time

a different (and shorter) length, U, to another observer—for

instance, the observer standing near the track and watching
the train passing by^—and it would have still another length,

^2, to a third observer having a different relative speed with

regard to the train. The same applies to the time. That
is, the beat of the second-pendulum in the train has the

duration to to the observer in the train, and the same beat of

the same second-pendulum in the train has a different (and

longer) duration, ti, to an observer on the track; and so on.

Thus the length of an object depends on the velocity of

its relative motion to the observer, and as velocity is length

divided by time, this makes the length of an object depen-

dent on the time. Inversely, as the time depends on the

velocity of the relative motion, the time depends on length.

Thus length^—^that is, space dimension—and time become
dependent upon each other.

We always have known that this world of ours is in reality

four-dimensional—that is, every point event in the world is

given by four numerical values, data, coordinates or
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dimensions, whatever we may call them, three dimensions

in space and one dimension in time. But because in the

physics before Einstein space and time were always

independent of each other, we never realized this or found

any object or advantage in considering the world as four-

dimensional, but always considered the point events as

three-dimensional in space and one-dimensional in time,

treating time and space as separate and incompatible

entities. The relativity theory, by interrelating space and
time, thus changes our entire world conception.

The dependence of length and time on the relative veloc-

ity and thus on each other is an inevitable conclusion from

the relativity theory—that is, from the two assumptions.

(1) That all motion is relative, the motion of the railway

train relative to the track being the same as the motion

of the track relative to the train, and (2) that the laws of

nature, and thus the velocity of light, are the same
everywhere.

Consider, in Fig. 6 ; our illustration of a railway train R,

moving with the velocity v, for instance, at 60 miles per

•^ W///y/y/y/////////////'//vy/////////'//^/^^////^>>^

Fig. 6.

hour, relative to the track B. Let us denote the distance

relative to the train—that is, measured in the train^—^by

x', and the time in the train by t'. The distance measured

along the track may be denoted by x and the time on the

track by t. For simplicity we may count distance and
time, in the train and on the track, from the same zero

value—that is, assume x = 0, t = 0, x' = 0, t' = 0,
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(This obviously makes no essential difference, but merely

eliminates unnecessary constant terms in the equations of

transformation from train to track and inversely.)

x' and t\ the coordinates with regard to the train, thus

are moving at velocity v relative to the coordinates x and t

with regard to the track, and by the conventional or

Newtonian mechanics, we would have:

t' = t,

that is, the time is the same on the track and in the train,

and

X = x'-\- vt'

,

that is, the distance along the track x of a point of the train

increases during the time t by vt' , that is, with the velocity

V. These equations do not apply any more in the relativity

theory as they would give different velocities of light rela-

tive to the train and relative to the track. To find the

equations which apply, we start with the most general

relations between x, t and x' , t' , that is:^

x' = ax — bt,

t' = pt — qx,

and then determine the constants a, b, p, q by the three

conditions which must be fulfilled.

1. The relative velocity of the train coordinates x', t'

with regard to the track x, t is v.

2. By the relativity theory, the relative motion of the

track with regard to the train is the same as the relative

motion of the train with regard to the track; that is, x', t' are

related to x, t by the same equations as x, t are related to

x', t'.

3. The velocity of light c on the track, in the x, t coordi-

nates, is the same as in the train, in the x' , t' coordinates.

These three conditions give four equations between the

four constants a, b, p, q, and thereby determine these

constants and give, as the relations between the coordinates

* The relation must be linear, as it is univalent.
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of events (that is, a material point and a time moment)
relative to the moving train, x' and t', and the coordinates

relative to the track, x, t, the equations:^

1 In the most general expressions the train coordinates x', t' are related

to the track coordinates x, t by the coordinate transformation equations

:

x' = ax — bt\

t' = pt - qx j
^"^

(These equations must be linear, as one point of the train can correspond

to one point of the track only, and inversely.)

1. Since x'i' has relative to xi the velocity f, it is, for a;' = 0:ax — bt = 0,

and since x/t = v, it follows

:

b/a = V

= av
j

'

Thus:

x' = ax — avt . .

t' = pt - qx j
^'^^

2. From the conditions of relativity it follows from equation (c):

X — ax' + avt'

t = pt' + qx' '
^^^

where the reversal of the sign is obvious as the track relative to the train

moves in the opposite direction to the relative motion of the train to the

track

:

Substituting (c) into (d) gives:

x(a^ — avq — 1) + avt{p — a) =

tip"^ — avq — 1) — qx{p — a) =

and as these must be identities, the coefficients of x and t must individually

vanish; that is:

p = a
]

^ «" - 1 (e)

av ]

Thus, substituting into (c)

x' = a{x — vt) 1

t = at — X \

av
J

3. From the constancy of the velocity of light it follows, that ,if

:

then it must be:
> _ u (?)

Substituting (gr) into (/) and dividing, t and t' cancel, and an equation in

(d) remains, from which follows:

1

and by substitution into (6) and (e), the values of a, b, p and q are arrived at.
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, X — Vt x' + Vt'
X' = .

X =

^FI "
¥~- (1)

i' =^= or i =^= (2)

From these equations (1) and (2) it follows:

1. One and the same point x' of the train, at two different

times, U and U ^ appears as two different points of the

track

:

_ x' -V vU _ x' ^ vU

This is obvious and merely means that during the time

interval from U to U the point x' of the train has moved
from the point Xi to the point Xi of the track.

2. Two events occurring in the train at one and the

same time t'—that is, simultaneously—^at two different

points Xi and x^ of the train, are not simultaneous as seen

from the track, but occur at two different times:

I' + ^x/ (' + "L ^,'

i\ — —,
and ti =

/
and inversely.

Thus, if X'^> Xx and the two events at X\ and X'l occurred

not simultaneously, but the event at Xi later than that

at X2', but by a time difference less than that between U
and ii, then, seen from the track, the second event would be

the later, the first one the earlier, while seen from the train

the second event would be the earlier and the first one the

later.

In other words, simultaneousness in time and being

earlier or later in time are only relative, and two events may
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be simultaneous to one observer but not simultaneous to

another observer because of a different relative motion;

or one event may be earlier than another one to one observer

and later to another observer.

3. The distance, at a given time, between two points Pi

and F2 of the train, in train coordinates—^that is, as seen

from the train^—is U = X2' — Xi ; in track coordinates

—

that is, as seen from the track^—^the same distance is L =

X2 — Xi. However, by (1)

:

x-i — Xx
Xi — Xi

i-%
or (3)

That is, a length L' in the train appears from the track

shorter by the factor - h (the more, the faster the

speed), and if the train were to move at the velocity of

light, V = c, the length L' in the train would from the track

appear as L = 0, that is, would vanish, while at a velocity

greater than that of light the length L would become
imaginary^—^that is, no velocity greater than that of light

can exist.

4. The time difference between two events occurring

at a point P in the train, by the time as observed by an

observer in the train—that is, in train coordinates—is

T' = to' — ti ; but seen from the track—that is, for an

observer watching the clock in the train while standing

on the track, or in track coordinates^—the time difference

between the same events is T = to — ti. However, by (2)

:

t -I -->-'-A'
ll — ti —

IL _ v^
~2
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or:

T =
r

(4)

That is, to the observer from the track, comparing the

clock in the train (T') with a clock on the track (T), the

clock in the train appears slow; that is, the time in the train

has slowed down by the factor .

1 -
c-

The straight-line motion of a point (as, for instance, the

front of the railway train) can conveniently be represented

graphically by plotting the distance x as abscissa and the

time t as ordinate. A motion at constant speed then

gives a straight line for path curve, as shown by Pq. .Pi in

Fig. 7, where for convenience we chose t = for x = 0. The
X

velocity then is given by Vo = j = tan PiPqT. An

extended body like our railway train would at time t =
be represented by a length PoPoo, and at any other time

ti by P1P2 parallel to PqPoq, and the motion of the train then

is represented by the area between the lines PoFi—the

path curve of the front of the train—and P00P2—the path
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curve of the back of the train. The horizontal Une P1P2

then gives the distance Xi — Xi occupied by the train at

the time i\\ that is, the length of the train is L = X\— X2.

The vertical line P1P3 gives the time t^ — ti required by the

train to pass a given point Xi at velocity Vq] that is, the

duration of the passage of the train is T = ts — U.

Now, instead of plotting the path curves of the train as

in Fig. 7, with x and t as coordinates, let us plot them in

the coordinates x' , t' (1) and (2), as the train motion would

appear to an observer having the velocity v relative to the

first observer.

The equations relating x, t, to x', t', given by equations (1)

and (2), are very similar to those representing a rotation of

Fig. 8.

the coordinate axes by an angle tan co = v/c. If it were such

a simple rotation, the new axes X' and T" would then form

with the axes X and T of Fig. 7 the angle w, as shown in

Fig. 8. For the new coordinate axes X' and T'—that is,

for the observer at relative velocity v-—the length of the

train would be the width of the path curve parallel to X'—
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that is, would be P1P2, instead of P1P2—or the length of

the train would be shorter, and the duration of the passage

of the train over a given point of the track would be P1P3

instead of PiP^—that is, the time would be longer.

To the second observer P1P2' is the train length, while

to the first observer P1P2 is the train length and P1P2' not

the train length but a combination of length and time.

Inversely, to the second observer P1P2—which is the train

length to the first observer—is not the train length but is

a combination of length and time. Analogously, to the

first observer P1P3 is the time of the train passage, while

r 7'

Fig. 9.

P1P3' is not the time but a combination of time and length.

Inversely, to the second observer P1P3' is the time and

P1P3 a combination of time and length.

Consider, however, two point events in the train, Xi'h'

and x^/W—that is, an occurrence at point Xi and time i/

and an occurrence at point x^ and time t^. Then, from

the track, the same two point events are given by Xi, h and

Consider now these point events Pi and Pi represented

graphically, with the distance as abscissa and the time as

ordinate, as is done in Fig. 9, for both observers, at relative
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velocity v with each other—that is, for coordinate axes X,

T and X' , T' turned against each other by angle w, where

tan CO = v/c.

The distance X2 — Xi (that is, the distance between the

two points as seen from the track) differs from x-i — Xi

(that is, the distance between the same two points as seen

from the train), and the time (2 — U differs from t^ — // simi-

larly, as would be the case if x, t were one set of coordinates

and x', t' a second set of coordinates, rotated with respect

to the first one by angle tan w = v/c] but the distance

between the two points Pi and P2 obviously would be the

same, whatever change of coordinates we apply; that is, it

would be:

s^ = (X2 - x^y + {u -hy = (xo' - xi'Y + {k - uY =s'^

In the relation between the train coordinates x', t' and

the track coordinates x, t, as given by equations (1) and (2),

this, however, is not the case. That is, the relation between

X, t and x', t', as given by equations (1) and (2)-—^that is,

the difference of the viewpoints of the two observers—is

not a simple rotation by angle co as we have assumed above,

but it is:

{X2 - xi)2 - c\U -hy = (x./ - Xi'Y - c\t,' - h'Y, (5)

as easily seen from equations (1) and (2).

The appearance of the factor c^ in equation (5) is merely

due to the choice of the units of x and t.

The disadvantage, leading to complexity of equations

(1) and (2), is that time and distance are given in different

units, and as both equations involve both factors, they

naturally would be different when given in feet and seconds

from their form when given in miles and seconds, or in

feet and minutes, etc., just as we would get differences and
complications, in mere space relations, if, for instance, we
expressed the two horizontal distances in miles and the

vertical distance in feet.
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The first requirement to simplify conditions is therefore

to express time and distance in the same units. That is,

if the distance is given in miles, express the time not in

seconds, but also in miles, namely, by the distance traveled

by light during the time, using the distance traveled by
light in one second as the unit of time. Or, if it is desired

to keep the second as unit of time, express the distance not

in feet or miles, but in time measure—that is, the time

required by the light to go the unit of distance. In other

words, use the distance measure for time or the time meas-

ure for distance. This idea is not new. Astronomers have

for long time, though for other reasons, used a time meas-

ure for large distances, the ''light-year," that is, the

distance traveled by light in one year.^

As in the world of events we have three space coordinates

and one time coordinate, it is simpler to express the time in

space measure—that is, to express it not in seconds (or

minutes, years, etc.), but in miles, or centimeters, or what-

ever unit is used in the distance measurements. That is,

substitute

w = ct (6)

where c is the velocity of light.

1 The value of the use of time measure for the distance, or the distance

measure for the time, may be very great wherever time and distance enter

the same equations, and it is therefore useful in electrical engineering, for

instance, when dealing with transmission line phenomena. Thus in my
paper on the "General Equations of the Electric Circuit" {A.I.E.E.

Transactions, 1907, also "Transient Phenomena," Section IV) the equa-

tions contain exponential and trigonometric functions of time t and distance

I, of the form cos {qt ± kl), etc. By choosing time measure for the distance

(as more convenient in this case, since the time is the dominant term)

:

X = al, where a = s/hC is the reciprocal of the velocity of light, the equa-

tions simplify to the form cos q{t ± X). Introducing now the local time

^ = t ± \, the complex expression of the two variables I and t simplifies

into an expression of a single variable only, the "local" time t?; that is, the

time counted at every point from the moment as stai-ting point where the

wave front reaches this point, in other words, the local time on the moving

wave.
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The transformation equations between train and track

then become:

X' =

w =

V
X w

c
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These are the transformation equations of a rotation of the

coordinates from x, u to x' , u' , by an angle tan w = j v/c,

and it is then:

^2 = {X2 - x,y ^ iu2 - u,y ^ {x^' - xy'y + {u,' - wy
(13)

That is: Expressing the time by the imaginary distance

unit u = jet, the relation between the events as seen from

the observer in the train and the same events as seen from

an observer on the track (or in any other relative motion)

is a rotation of the coordinate system x, u by the imaginary

angle jco, given by tan co = v/c, and all the expressions

are symmetrical in x and in u; that is, there is no difference

between the distance and the time coordinates.

To the observer in the train distance and time are sepa-

rate coordinates of the phenomenon occurring in the

train—that is, a phenomenon regarding which the observer

is at rest; but to any observer in relative motion to the

phenomenon which he observes, what appear to him as

distance and as time are not the same distance and time as

to the observer at rest, but are compounds of distance and

time. Now, physics and engineering deal with motion,

and when investigating motion we obviously cannot

be at rest for every motion; and therefore what we call

distance and time are not absolute and intrinsically different

quantities, but are combinations of the two symmetrical

coordinates x and u.

It is similar to the relation, in mere space, between

horizontal and vertical directions. At a given place on

earth horizontal and vertical directions are intrinsically

different. But, comparing two different places on earth,

the horizontal and vertical directions at one place are not

the same as those at the other place, but differ by a rotation

of coordinates and are related to each other by the same

equations as x, u and x' , u'

.

In the preceding we have for simplicity considered one

space direction x only. This, with the time coordinate
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u = jet, gives us two coordinates, x and u, and thus permits

graphical illustration. In the events of the general world

we have three space coordinates, x, y, z, and the time

coordinate t, and from the relativity theory it thus follows

:

Space, as represented by three dimensions, x, y, z, and

time, as represented by one dimension, t, are not separate

and intrinsically different, but the world and its events are a

four-dimensional system, and all point events are repre-

sented by four symmetrical coordinates: x, y, z, u.

In the special case concerning an event stationary with

regard to the observer, x, y and z are the three space coordi-

nates of the Newtonian mechanics, and u = jet is the time

coordinate. For every event, however, in relative motion

to the observer, x, y, z and u are four symmetrical coordi-

nates, none having a preference or difference from the other,

each involving the space and the time conceptions of

Newtonian mechanics.

The expression of an event in coordinates x, y, z and u
differs from the expression of the same event by another

observer in relative motion with regard to the first, and
therefore represented by coordinates x', y' , z' and u' , by
a rotation of the coordinate system x, y, z, u against the

coordinate system x/, y', z', u', in the four-dimensional

manifold, by an angle tan w = j v/e, where v is the relative

velocity.

The distance between two point events Pi and P^ in the

four-dimensional manifold remains the same whatever

coordinate system may be used^—that is, is independent of

the relative velocity of the observer.

S'- = (x, - x,y + (i/2
- yiY + (22 - z,y + {U2 - u^y =

{x,' - x,'Y + {y,' - y,'Y + {z,' - z,'Y + {u,' - u,'Y.

Thus, if we consider x, y, z as space and t as time distance,

relative motion v changes the space and time distance,

changes the length and duration, but the total distance S
in the four-dimensional manifold remains unchanged.

This four-dimensional manifold is a Euclidean space.
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The equations (6) to (9) appear simpler than those of

Minkowskian space, (10) to (13), as they do not contain the

imaginary unit. But the distance S—equation (9)^—is

not the expression of the EucUdean space, and the effect

of relative velocity is not a mere rotation of the coordinate

system, and thus the point events do not give the same

simplicity of expression as in the Minkowskian space.

Now what does this mean, rotation by an imaginary

angle? It sounds unreal and meaningless. But it is no

more and no less so than rotation by a negative angle.

Physically, rotation by a negative angle means rotation in

opposite direction, and rotation by an imaginary angle

then means rotation in quadrature direction—that is, in

the direction of right angle to the positive and the negative

direction.

Intrinsically, only the absolute integer number has a

meaning^—4 horses, 4 dollars, 4 miles. Already the frac-

tion has no intrinsic meaning; }i horse, for instance,

is meaningless. It acquires a meaning only by defining it

as denoting a relation : }i dollar. So the negative number

intrinsically is unreal and meaningless: —4 horses has

no meaning. But we attribute to it a meaning by conven-

tion, as representing the opposite direction from the positive

number. Thus —4 degrees means 4 degrees below zero

temperature, when +4 means 4 degrees above zero tempera-

ture, and in this relation both are equally real. But just

as the negative number means the opposite direction, so

the imaginary number means the quadrature direction, and

5j miles north of New York is just as reasonable as —10

miles north. The latter means 10 miles in the opposite

direction from the northern direction, that is, south, and

the former 5 miles in the quadrature direction from the

northern direction, that is, west (or east). Thus the

statements: Yonkers is +15 miles, Staten Island —10

miles, Jersey City +3j miles, Brooklyn — 3j miles north of

New York, are equally real and rational. When deahng

with individuals, as when dealing with horses, neither the
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fraction nor the negative nor the imaginary number has

any meaning. When deaUng with divisible quantities

the fraction receives a meaning. When deahng with

directional quantities of one dimension, as time, tempera-

ture, etc., the negative number acquires a meaning as

denoting the opposite direction to the positive. When
dealing with two-dimensional functions, as geographical

location, vector representation of alternating currents,

etc., the imaginary number also acquires a meaning, as

denoting the quadrature direction^—that is, the direction

at right angles to the positive and the negative.

The only difference between the conception of the nega-

tive and the conception of the imaginary number is that

we have been introduced to the negative number in school

and use it in everyday life and thus have become familiar

with it, while this is not the case yet with the imaginary

number. But inherently the imaginary number is no more
and no less unreal than the negative number.

Thus, if by a rotation by angle -fco we mean a counter-

clockwise rotation, a rotation by — co would be a clockwise

rotation, like that shown in Fig. 8, and a rotation by angle

jo) would be a rotation at right angles; that is (in Fig. 8),

out of plane of the paper, for instance a rotation around the

T axis.

If, as is done in Fig. 8, we represent the relation between

the viewpoints of the two observers at relative velocity v

to each other, by a rotation of the coordinates x, t into x,' f

by angle w in clockwise direction (where tan co = v/c),

then we get a shortening of the length, from PiP-z to P1P2

,

and a slowing down of the time, from P1P3 to P\Pz , as

required by the equations (1) and (2) of the relativity theory.

But with increasing v, and thus increasing angle w, the

length as given by the equations (1) and (2) continuously

decreases and becomes zero for v = c, while in the clockwise

rotation of Fig. 8 the length P1P2 decreases, reaches a

minimum and then increases again. Thus Fig. 8 does not

physically represent the rotation given by the equations
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(1) and (2). However, if we assume as representing the

relation (1) and (2) a rotation by angle jw—^that is, a

rotation at right angles, out of the plane of the paper, for

instance around the T axis—^then with increasing w the

length of the train-—that is, the spoor or projection of

P1P2 on the new plane—indefinitely decreases and finally

becomes zero, just as required by the equations (1) and (2).

However, the quadrature rotation, which represents the

relation between x, t and x', t', is not a rotation around the T
axis, as a rotation around the T axis carries us from the

X axis toward the YZ plane, while the quadrature rotation

jui carries us outside of the space coordinates x, y, z into a

direction at right angles to XYZ—that is, a fourth dimen-

sion of the world space of Minkowski^—and therefore cannot

graphically be represented any more in the three-dimen-

sional space manifold.

In this four-dimensional manifold of Minkowski, this

world or time space, which includes symmetrically the

space and the time, with x^ y, z, u as coordinates, we cannot

say that x, y, z are space coordinates and u the time coordi-

nate, but all four dimensions are given in the same units,

centimeters or miles, or, if we wish to use the time unit as

measure, seconds; but all four dimensions are symmetrical,

and each contains the space and time conceptions. Thus
there is no more reason to consider x, ?/, z as space coordinates

and u as time coordinate than there is to consider x and
u as space and y and z as time coordinates, etc.

Only in the special case of an observer at rest with regard

to the phenomenon does x, y, z become identical with the

space coordinates, and u becomes jc^, where i is the time of

the Newtonian mechanics.

But as soon as the observer is in motion relative to the

phenomenon his viewpoint is that of a system x', y' , z' , u'

,

rotated out of the Newtonian space and time, and the dis-

tinction between space and time coordinates then vanishes.

Owing to the extremely limited range of possible veloci-

ties, we cannot get far outside of the Newtonian time space.
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In other words, of the four-dimensional world space of

Minkowski, only a very narrow range is accessible to us,

that near to the Newtonian space within rotation of a small

fraction of a degree. The viewpoint from a comet passing

the sun at grazing distance at 200 km. per second would

differ from the Newtonian only by a rotation into the general

Minkowski space by 0.04 degree.

However, within the three-dimensional timeless space

of Newton the conditions are similar. We can move in the

two horizontal directions x and y to unlimited distance;

but in the third dimension, the vertical z, we are limited to a

very few miles, so that in the Newtonian space we are

practically limited to the two horizontal dimensions, just

as in the general world space we are limited to the range

near the Newtonian time space.

D. MASS AND ENERGY

If a body moves with the velocity v relative to the

observer, from the relativity theory it follows that the

length (in the direction of motion) on the body is shortened

and the time lengthened by the factor . M ^, where c =

velocity of light in vacuum.

T =
r
i-K

For V = c—that is, a body moving with the velocity of

light—by (3) and (4), L = and T = oo. That is, on

a body moving with the velocity of light the length vanishes,

becomes zero, and the time stops.

For v>c—^that is, velocities greater than the velocity of

light^—length and time become imaginary. That is, such

velocities cannot exist. The velocity of light thus is the
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greatest possible physically existing velocity, and no greater

relative velocity can exist or is conceivable.

This conclusion appears at first unreasonable.

Suppose we have a body moving with a velocity 90 per

cent that of light, Vi = 0.9c, and a second body moving
with the same velocity, but in opposite direction, V2 = 0.9c.

The relative velocity between these two bodies thus would

be V = Vi -{- V2 = 1.8c, or greater than the velocity of

light, we would think. However, this is not so, and the

error which we have made is in adding the velocities Vi

and V2 to get the resultant velocity. This is the law of the

Newtonian or pre-Einsteinian mechanics, but does not

apply any more in the relativity theory, since velocity is

distance—that is, length—divided by time, and as the

length varies with the velocity, the velocity Vi for a station-

ary observer, is not Vi any more for an observer moving with

the velocity i'2.

Thus velocities do not add algebraically, even when in the

same direction.

Suppose a body moves with the velocity Vi relative to an

observer (for instance, a railway train relative to the

observer on the track), and a second body moves in the

same direction relative to the first body with the velocity

V2 (for instance, I walk forward in the train with the veloc-

ity ^2) . What is the resultant velocity^—^that is, the relative

velocity of the second body with regard to the observer

(for instance, my velocity relative to the observer on the

track) ?

A point Xiti relative to the train has relative to the track,

by (1) and (2), the coordinates:

Xi + Vih

V^
4 1 ^1
^1 + -o Xl

'= V^.
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If now this point moves relative to the train with the

velocity V2, it is Xi = v^h, and substituting this in the

preceding equations and dividing gives:

„ = 5 = 'llAjH (14)

as the resultant velocity v of the two velocities V\ and Vi.

Equation (14) thus is the law of addition of velocities by
the relativity theory.

If then vx = 0.9c and V2 = 0.9c, v = 1.8c/1.81 = 0.9945c;

that is, two velocities each 90 per cent of the velocity of light

add to a resultant velocity 99.45 per cent of the velocity

of light.

From (14) it follows that as long as Vi and V2 are less than

the velocity of light c, no matter how close they approach

it, their sum v also is less than c.

If one of the velocities equals the velocity of light c,

then, substituting in (14), we get:

Vi + c ^
V =

1+E!
c

That is, adding—or subtracting—^any velocity ^i to or from

the velocity of light c still gives the same velocity c. This

explains why in the previous instance, if a train moves at

the velocity v and the light along the track at the velocity c,

the velocity of light relative to the train is the combination

of c and v, which is again c.

The velocity of light c thus has the characteristic that

any velocity (whether less than, equal to or even greater

than c) may be added to it or any velocity less than

c may be subtracted from it without changing it; that is,

it has the characteristic of the mathematical conception

of infinity : 00

.

Therefore there can be no velocity greater than c, since

whatever velocity may be added to c still leaves it

unchanged at c.
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The kinetic energy of a mass m, moving at velocity v, is,

in the Newtonian mechanics given by

:

2"

In the relativity theory the total kinetic energy of a mass

m moving at the relative velocity v is given by

JllO =

E =

4^-%

and thus becomes infinite, for y = c, the velocity of light.

This energy, for y = 0, or the mass at rest, becomes:

Eoo = wc^,

which may be considered as the ''kinetic energy of mass,"

while m is a constant, similar to permeability or specific

capacity.

The kinetic energy required to give a mass m the relative

velocity v then is given by:

hi =

—

,

— mc^.

This expanded into a series gives:

rp _ mv'^ . 3 my^ . _ mv"^ fi i

3 y^
, |^-"^ +8^+ • • • ""2"r + 8c^+ • • •}

The second term already is negligible for all velocities

except those comparable with the velocity of light. The
first term is the kinetic energy of the Newtonian mechanics.

Mass therefore appears as a form of energy, kinetic

energy, and the "energy equivalent of mass,"or the "kinetic

energy of mass," is £"00 = mc''-.

This is an enormous energy, almost beyond conception.

One kilogram of coal, when burned, is equivalent to about

3,400,000 kgm. (kilogram-meters) or about 10 kw.-hr.

(kilowatt-hours)

.
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The earth revolves in its orbit around the sun at about 20

miles per second; that is, about thirty times as fast as the

fastest rifle bullet. Its kinetic energy, }^mv-, therefore is

enormous; 1 kg. weight on the earth has, owing to this high

velocity, the kinetic energy of 50,000,000 kgm. or about

150 kw.-hr. ; that is, fifteen times as much energy as would

be given as heat by the combustion of the same weight of

coal. (Therefore, if the earth were stopped by a collision

and its kinetic energy converted into heat, its temperature

would be raised by about 500,000 deg. C.)

The kinetic energy of 1 kg. weight of matter, Eq = mc^,

however, is about 9000 millions of millions of kilogram-

meters—or 25 thousand million kilowatt-hours—thousands

of million times larger than the energy of coal.

Estimating the total energy consumed during the year on

earth for heat, light, power, etc., as about 15 millions of

millions of kilowatt-hours, 600 kg., or less than two-thirds

of a ton of dirt, if it could be disintegrated into energy,

mc^, would supply all the heat, light and energy demand of

the whole earth for a year.

Or, the energy equivalent mc- of one pound of dirt would

run all the factories, mills, railroads, etc., and light all

the cities and villages of the United States for a month.

It would supply the fuel for the biggest transatlantic liner

for 300 trips from America to Europe and back. And if this

energy of one pound of dirt could be let loose instanta-

neously, it would be equal in destructive power to over

a million tons of dynamite.



LECTURE III

GRAVITATION AND THE GRAVITATIONAL FLELD

A. THE IDENTITY OF GRAVITATIONAL, CENTRIFUGAL
AND INERTIAL MASS

As seen in the preceding lecture, the conception of the

ether as the carrier of radiation had to be abandoned as

incompatible with the theory of relativity; the conception

of action at a distance is repugnant to our reasoning, and its

place is taken by the conception of the field of force, or,

more correctly, the energy field.

The energy field is a storage of energy in space, character-

ized by the property of exerting a force on any body
susceptible to this energy—that is, a magnetic field on a

magnetizable body, a gravitational field on a gravitational

mass, etc.

Light, or, in general, radiation, is an electromagnetic

wave—^that is, an alternation or periodic variation of the

electromagnetic field^—and the difference between the

alternating fields of our transmission lines, the electro-

magnetic waves of our radio stations, the waves of visible

light and the X-rays are merely those due to the differences

of frequency or wave length.

The energy field at any point of space is determined by
two constants, the intensity and the direction, and the force

exerted by the field on a susceptible body is proportional

to the field intensity and is in the direction of the energy

field.

Thus the force exerted by the magnetic field on a magnetic

material is:

F = HP (1)

46
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where H is the magnetic field intensity and P the magnetic

mass, the same quantity which in the days of action at a

distance was called the magnetic pole strength, and which
is related to the magnetic flux $ by: $ = AtP.

The force exerted by an electric field on an electrified

body is:

F=KQ, (2)

where K is the dielectric field intensity and Q the electric

mass or electric quantity, also called electrostatic charge,

measured in coulombs.

The force exerted by a gravitational field is

:

F = gN, (3)

where g is the gravitational field intensity and N the sus-

ceptibility of the body to a gravitational field, or the

gravitational mass of the body-—often simply called the

mass.

The force exerted by a centrifugal field is

F = CR, (4)

where C is the centrifugal field intensity and R the centri-

fugal mass.

The force F acting on a body exerts an acceleration a

and thus produces a motion, a velocity v. The acceleration

produced by the force is proportional to the force and
inversely proportional to the resistance of the body against

being set in motion—that is, the ability of the body in

taking up kinetic energy, in other words, the inertial mass

M—which thus is defined by the equation:

W = Mvy2, (5)

where W is the kinetic energy taken up by the mass M to

give it the velocity v.

The acceleration produced by the force thus is

:

a = F/M, (6)
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and, substituting in (6) the expressions of the force, in

equations (1) to (4), we get:

Force: Acceleration:

Magnetic field F = HP a = HP/M
]

Electric field F = KQ a = KQ/M
Gravitational field F = gN a = gN/M
Centrifugal field F = CR a = CR/M

(7)

The acceleration given to a body in a field thus is pro-

portional to the field intensity and to the energy mass
(magnetic mass, electric mass, etc.) and inversely propor-

tional to the inertial mass of the body.

That is, if I bring into the same magnetic field H two
bodies of the same mass M—that is, two bodies which
would require the same kinetic energy W to be given the

same velocity v—and if these two bodies have two different

magnetic masses, as a piece of cast iron and a piece of

wrought iron, then the accelerations a will be different and
the bodies will acquire different velocities. Or, inversely,

two bodies of the same magnetic mass P in the same field

H, but of different inertial masses M, would have different

accelerations and so would be set in motion with different

velocities.

In the same manner in an electric field two identical

bodies^—^that is, bodies of the same mass M-—having differ-

ent electric charges Q would have different accelerations

and so acquire different velocities.

Experience, however, shows that in a gravitational field

as well as in a centrifugal field all bodies have the same
acceleration a and thus acquire the same velocity. That
means that the gravitational mass N is the same as the

inertial mass M, and the centrifugal mass R is the same as

the inertial mass M, in the equations (7).

This is a startling conclusion, as the gravitational mass
A^ is the susceptibility of the body to the action of the gravi-

tational force, just as the magnetic mass P is the suscepti-

bihty to the action of the magnetic force and as such has
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nothing to do with the mass M, which is the storage capac-

ity of the body for kinetic energy. There is no more

reason why the inertial mass M should be the same as the

gravitational mass N than there is that M should be the

same as the magnetic mass P or the electric charge Q.

This strange identity of two inherently uncorrelated

quantities, the inertial mass and the gravitational mass,

usually is not realized, but in writing the equation of the

kinetic energy we write:

W = Mvy2,

and when expressing Newton's law of gravitational force

we write:

F = M.M^/P.

That is, we use the same symbol M, call it mass, and never

realize that there is no reason apparent why the ''mass" in

Newton's law of gravitation should be the same thing as

the ''mass" in the equation of kinetic energy.

If thus the gravitational mass equals the inertial mass,

there must be some relation between the gravitational force

and the inertia of moving bodies.

B. CENTRIFUGAL FORCE AS A MANIFESTATION OF
INERTIA

With regard to the centrifugal force we know this, and

know that the centrifugal force is not a real force, but is

merely the manifestation of the inertia

in a rotating system, and it is natural,

then, that the "mass," which enters

into the equation of centrifugal force

should be the same as the inertial

mass M:

R = M.
Fig. 10.

Let (in Fig. 10) 5 be a body revolving around a point 0.

The fundamental law of physics is the law of inertia.
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"A body keeps the same state as long as there is no

cause to change its state. That is, it remains at rest or

continues the same kind of motion—that is, motion with

the same velocity in the same direction—until some cause

changes it, and such cause we call a 'force.'"

This is really not merely a law of physics, but it is the

fundamental law of logic. It is the law of cause and effect:

"Any effect must have a cause, and without cause there

can be no effect." This is axiomatic and is the fundamental

conception of all knowledge, because all knowledge con-

sists in finding the cause of some effect or the effect of some
cause, and therefore must presuppose that every effect has

some cause, and inversely.

Applying this law of inertial motion to our revolving

body in Fig. 10:

A point P of the periphery, moving with the velocity

of rotation v in tangential direction, would then continue

to move in the same direction, PQ, and thereby move away
from the center 0, first slowly, then more rapidly^—-that is,

move in the manner in which a radial or centrifugal

acceleration a acts on P, or an apparent force F = Ma
—by equation (6)—and this we call the centrifugal force.

It is obvious, then, that all bodies would show the same
centrifugal acceleration, as all would tend to move in the

same manner in the same direction, unless restrained by

a force (as the force of cohesion of the revolving body), and

that for this reason ''centrifugal mass" is identical with the

inertial mass.

C. THE LAW OF GRAVITATION

The identity of the gravitational mass with the inertial

mass then leads to the suspicion that the gravitational

force also is not a real force, but merely a manifestation of

inertia, and Einstein has shown that the laws of the gravi-

tational force are identical with the laws of inertial motion

in an accelerated system.
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Let (in Fig. 11) C be a railway car standing still on a

straight level track and B a billiard table in the train. I

put a billiard ball A on the table, and it stands still until

I push it; then it moves in a straight line at constant speed

—

that is, obeys the laws of inertial motion. To me in the car

and to the observer on the track the behavior of the billiard

ball is the same.

Suppose now (in Fig. 12) the car moves at constant veloc-

ity y on a straight level track. If I, being in the car, put a

ball on the billiard table, it stands still until I push it, then

_Q £ ^ R

c
-^v

T T

Fig. 11. Fig. 12.

it moves at constant speed in a straight line, just as it did

in Fig. 11, when the car stood still. Thus from the inside

of the car I cannot distinguish whether the car is moving or

standing still. The observer from the track sees the billiard

ball standing still relative to the billiard table, but moving

at constant speed together with the billiard table and the

train. To me, in the car, and relative to the car, it

seems to stand still; and when I push it its motion with

reference to the observer on the track is the resultant of the

motion of the ball relative to the train and the motion of

the train, but still the motion is inertial motion to me in

the moving car as well as to the observer on the track.

Now the car reaches a 10 per cent grade and runs up this

grade at constant speed y, as shown in Fig. 13. If I now
put a billiard ball on the table, it does not remain at rest,

but starts moving toward the back of the train, first slowly,

then with increasing velocity, and if I push the ball across

the table, it does not move in a straight line, but curves

backward toward the end of the train; that is, it has an

acceleration due to the force acting on it. This force is a

component of the force of gravity, due to the grade p = 10
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per cent, and the acceleration thus is a = 0.1^ = 2.2 miles

per hour per second.

Suppose now, however, that the train is again running

on a straight level track, not at constant speed, but at an

increasing speed; that is, it is accelerating, at an acceleration

a = 2.2 miles per hour per second, as shown in Fig. 14. If

now I put a ball on the table, it does not remain at rest,

but starts and moves backward with increasing velocity.

If I push the billiard ball across the table, it does not run at

<^-<-r) B

Fig. 14.

constant speed in a straight line, but curves backward, just

as it did in Fig. 13 on a 10 per cent up grade at constant

train speed. That is, an acceleration a, and thus appar-

ently a force, acts on it. In short, from the inside of the

car I cannot distinguish whether the train is climbing

a grade at constant speed or accelerating on a level, because

the effect of the acceleration of the train is identical with

the effect of the force of gravitation as it acts on the billiard

ball on an up grade.

To the observer from the track, however, there is a

difference between the motion of the billiard ball in Fig. 13

and in Fig. 14. In Fig. 14, the observer from the track

does not see any force acting on the billiard ball, and the

ball moves at constant speed in a straight line, in inertia!

motion; but the train, and thus the billiard table, acceler-

ating, slide forward under the ball, so that relative to the

billiard table the ball seems to move with accelerated

motion. Thus there is no acceleration and no force acting

on the biUiard ball for the observer on the track. In Fig.

13, however, on an up grade, the observer on the track

notices the same acceleration acting on the billiard ball

as I do in the train—that is, the same force acts on the ball
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relative to the observer from the track as acts on it relative

to me in the train. This is obvious, since the observer on

the track is in the same gravitational field.

It thus follows that the laws of inertial motion with

regard to an accelerated system are the same as the laws of

motion in a gravitational field. The former, however, are

derived without any physical theory, merely as a mathe-

matical transformation of the laws of inertial motion to an

accelerated system. The law of gravitation thus appears

here as such a mathematical transformation to an acceler-

ated system and has been derived in this manner by
Einstein.

For all velocities which are small compared with the

velocity of light Einstein's law of gravitation and Newton's

law give the same results, and a difference appears only

when the velocity of the moving bodies approaches in

magnitude the velocity of light, as is the case, for instance,

with ionic motions.

Thus the gravitational field is identical with the mani-

festation of inertia in an accelerated system, and the law of

gravitation appears as the mathematical transformation

of the equation of inertial motion in fieldless space to the

equation of the same motion relative to an accelerated

system. The gravitational field thus is identical with an

accelerated system and can be replaced by it, and, inversely,

motion relative to an accelerated system can be replaced

by a gravitational field.

This does not mean that any gravitational field (like

that of the earth) can be replaced by some physically

possible form of acceleration, but merely that the equations

of motion are the same and that any limited gravitational

field^—^for instance, that in a room—can be replaced by an

acceleration in the direction of the lines of gravitational

force.

The force of gravitation thus has followed the centrifugal

force in being resolved into a manifestation of inertial

motion, and an analogy thus exists between the centrifugal
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force as the (apparent) effect of the acceleration in a

rotating system and the gravitational force as the effect

of a rectilinear accelerating system.

If, however, gravitational force is a manifestation of

inertial motion, it becomes obvious that the gravitational

mass is identical with the inertial mass, just as the centrif-

ugal mass is identical with the inertial mass.

D. CENTRIFUGAL FORCE AND GRAVITATIONAL FORCE

It is interesting to follow this analogy somewhat further.

Suppose we consider a revolving body hke the earth.

The equation of the centrifugal force is:

F^ ^ Ma; (8)

that is, mass times acceleration. Or, if v is the tangential

velocity and I the radius of the revolving body:

Fc = Mvyi (9)

The gravitational force is in opposite direction to the

centrifugal force. Thus, if we give the one the positive

sign, we would give the other the negative sign. As the

effect of the centrifugal force is to increase, that of the

gravitational force is to decrease the distance between

the acting bodies, the negative sign may be given to

the latter. The gravitational force, then, is:

F^ = -Ma, (10)

that is, mass times acceleration.

We may give the gravitational force the same form by

introducing a fictitious velocity v, as acceleration is of the

dimension velocity square divided by length, writing:

Fo = -Mvyi (11)

or:

F, = M{-vyi)
= M {jvY/l (12)

= Mvy I
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where Vo = jv is an imaginary velocity, and F^ then has the

same equation as F^.

Gravitation thus appears as the centrifugal force of an

imaginary velocity.

An "imaginary velocity" on first sight appears unreason-

able and meaningless. But it is no more so than, for

instance, a negative force, as in equation (10). A "nega-

tive force" inherently has no meaning, but we give it a

meaning as representing a force in opposite direction. But
just as the negative sign represents the opposite direction,

so the imaginary sign represents the quadrature direction.

That is, an imaginary velocity is a velocity at right angles,

just as a negative velocity would be a velocity in opposite

direction.

As the velocity v in the equation of the centrifugal force

is the tangential velocity, the imaginary velocity ^o = jv in

the equation of the gravitational force is the velocity

at right angles to the tangential velocity—that is, it is the

radial velocity-—and the gravitational force then appears as

the centrifugal force of radial motion, and inversely.

Thus here, by mere mathematical formalism, we get the

same relation between centrifugal and gravitational force as

the effect of inertia in the acceleration due to tangential

and radial motion.

E. DEFLECTION OF LIGHT IN THE GRAVITATIONAL
FIELD

It is interesting to note the difference regarding the

mass M between Newton's law of gravitation and Einstein's

law.

In Newton's law of gravitation the mass cancels. That

is, the force of gravitation is

:

F = cjM,

where g is the gravitational field intensity, M the mass.

The acceleration produced by the force F is

:

a = F/M
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and substituting for F gives

:

a = gM/M = g.

The gravitational acceleration thus equals the gravitational

field intensity.

In Einstein's law of gravitation the mass M does not

enter at all.

Einstein's law of gravitation is the mathematical trans-

formation of the motion of A, in Fig. 14, to an accelerated

system. But whether A is a material body like a billiard

ball, or a mathematical point, or an immaterial thing like a

beam of light, has no effect on the mathematical equations.

Neither does it make any difference whether the body A
belongs to the accelerated system or enters it from the

outside. For instance:

Let (in Fig. 15) i? be a railway car moving at constant

speed y on a straight level track, as seen from the top. I,

C

s,
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the point of the track B where the bullet leaves the car.

Thus, with regard to the car, the bullet moves in the direc-

tion ABi) that is, seems to come from a point Oi,

further forward. As BiB has to A5 the ratio of the velocity

of the car, v, to the velocity of the bullet, fo, the angle

CO of the apparent change of the direction of the bullet is

given by
tan CO = v/vq.

Suppose now the car C, in Fig. 16, is not moving at

constant velocity, but at increasing velocity, so that when
the bullet enters the car, at A, the velocity is Vi, and when it

(

i
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material body like a rifle bullet, or a mathematical point,

or a beam of light. In other words:

A gravitational field acts on a beam of light in the same
manner as it acts on a material body, and a beam of light in

a gravitational field is deflected and curves.

A curvature necessarily means that the velocity at the

inside of the curve is less than at the outside.

Thus in a gravitational field the velocity of light is not

constant, nor does the light move in a straight line, but it is

slowed down and deflected.

At first this seems to contradict our premise, that the

velocity of light is constant and the same everywhere.

However, this applied only to the velocity of light in empty
space. In a material body the velocity of light is less.

This follows from the phenomena of refraction. (In the

same manner the velocity of propagation of electrical energy

in a conductor is slowed down.) We get now a more com-

plete understanding of the meaning of ''empty space";

that is, empty space means a space free from matter and

free from energy—matterless and fieldless space—^and the

law is: ''The velocity of light in empty space, that is, in

space containing no matter and no field of force, is constant,

and its path a straight line, with regard to any system of

reference."

Assume thus (in Fig. 16) a beam of light, of velocity c,

traversing the car, while the velocity of the car increases

from Vy to V2. The light then enters the car at the angle,

relative to the car, of tan wi = Vi/c, and leaves the car at

the angle of tan w^ = v^/c. It is deflected by the accelera-

tion of the car^—that is, by the (apparent) gravitational

field existing in the car—by the angle:

CO = CO 2 — COi. (13)

As V]_ and Vi are small compared with c, we can substitute

the angle co for tan co; that is

coi = Vi/C

C02 = V^/C
(14)
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Thus:

CO = (^2 — Vi)/C. (15)

If, now, t is the time required by the beam of light to

traverse the car, and g the acceleration of the car, it is:

Vi - Vi = gt; (16)

that is, the increase of velocity is acceleration times time.

Substituting (16) into (15) gives:

co= gt/c (17)

In other words, in the gravitational field of intensity g

a beam of light is deflected by angle co, which is proportional

to the gravitational field intensity g, to the time t required

by the light to traverse the gravitational field, and inversely

proportional to the velocity of light c.

Or, in general, in a varying gravitational field, like that

of the sun, the angle of deflection of a beam of light is

:

'^^-
(18)

c
/

F. THE ORBIT OF THE BEAM OF LIGHT

We thus see that in a gravitational field a beam of light

obeys the same laws as a material body. That is, in the

gravitational field of a big mass like that of the sun a beam
of light moves in the same kind of orbit as a comet or planet,

the only difference in the shape of the orbit being that due

to the velocity.

Thus, let (in Fig. 17) *S be the sun. At a distance from

the sun S a body Pi revolves at a certain velocity. At a

certain value Vi of this velocity (about 20 miles per second

at 100,000,000 miles distance) this body describes a circle

(1), as the planets do approximately. If the velocity is

greater, the orbit becomes elongated, taking the form of an

ellipse (2), the more so the higher the velocity, until at

the velocity yiV2 the orbit becomes infinitely elongated,

becoming a parabola (3), as approximated by most comets.

That is, the body moves further and further away and slows
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down until it comes to rest at infinite distance. At still

higher velocity the orbit is a hyperbola (4), and the higher

the velocity the straighter the hyperbola (5) becomes,

until finally, at the extremely high velocity of light, c =

Fig. 17.

186,000 miles per second, the hyperbola (6) becomes almost

a straight line. Even if the beam of light comes very close

to the sun, the angle of its hyperbolic motion is only 1.7

seconds of arc, that is, about one-thousandth of the diam-

eter of the sun. It is, however, still observable during an
eclipse, by the apparent shifting of stars near the sun,

when the glare of that body is cut off. Verification of the

calculation has been made under this condition.

As stated above, the difference between Einstein's and
Newton's laws of gravitation for velocities of the order of

those of the planets and comets is so small that it cannot

be observed except in a few cases, as in the motion of

the planet Mercury. However, with increasing velocity,

the difference increases, and it becomes 100 per cent at the

velocity of light. That is, the orbit of the beam of light

calculated by Newton's theory of gravitation would give

only half the angle given by Einstein's theory, so that it is

possible to determine by observation whether Einstein's or

Newton's theory is correct. Observations during the last

solar eclipses have checked with Einstein's theory of gravi-
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tation, and therefore with the relativity theory, on which

it is based.

G. MATHEMATICAL EFFECTS OF GRAVITATIONAL AND
CENTRIFUGAL FIELD

As has been seen, centrifugal force is the inertial effect of

rotary motion, and the laws of gravitational force are

identical with the inertial effect of radial acceleration. We
have seen, however, in the preceding lectures, that relative

motion affects the length of a body and the time on the

body, shortens the length and slows down the time. There-

fore, in the centrifugal field as well as in the gravitational

field, mathematical effects due to the change of length by
the relative motion, and physical effects due to the slowing

down of time, may be expected.

Suppose we measure a flywheel, first while it is standing

still. We measure its diameter and find it d, and then

measure the circumference with the same measure and find

it C, and we find that the circumference is it times the

diameter

:

C = ird. (19)

Now we again measure the flywheel, but while it is

rapidly revolving. We stand outside and watch it spinning

around while it is being measured. We find the same meas-

ure for the diameter d, because the motion of the flywheel is

tangential—that is, at right angles to the direction of the

measure as it is used in measuring the diameter^—and the

motion thus does not affect the length of the measure.

But when I measure the circumference of the revolving

flywheel, the motion is in the same direction in which I use

the measuring rod, and the length of the measuring rod

thus appears shorter to me outside of the flywheel. In other

words, the measuring rod is shortened and therefore is con-

tained in the circumference a larger number of times than

before; that is, for the circumference C we get a larger

number than before. Hence:
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C>7rd. (20)

As the shortening of the rod is by the factor ^/ i _ ^ >

it thus is, in the centrifugal field

:

p _ ird

Now let us do the same thing in a gravitational field, that

is, a radially accelerated system. We find the circumfer-

ence C to be the same as if no gravitation existed, as the

acceleration is radial and thus does not affect the measuring

rod used in a tangential direction in measuring the circum-

ference. When measuring the diameter, however, the

measuring rod is shortened, and the diameter thus comes
out larger than it would in the absence of a gravitational

field. As the circumference C has remained the same and
the diameter d has increased in measure, the circumference

is not ird any more, but less; that is, in a gravitational field,

it is

C<ird. (22)

That means that in the gravitational field and in the

centrifugal field the laws of mathematics are changed.

The circumference of a circle surrounding a converging

gravitational field like that of the sun is less than tt times

the diameter. Suppose now by the laws of conventional

mathematics we calculate the orbit of the planet Mercury,

which is in an intense gravitational field^—being nearest the

sun. The actual circumference being a little shorter,

owing to C<Trd in the gravitational field, in the time

calculated for the orbit, the planet will make a little more
than a complete orbit, overreach by about 20 miles per

revolution (out of 250,000,000). This amount is small,

but quite noticeable astronomically, and Newton's law of

gravitation cannot account for it, but Einstein's does.

It must be realized that the change of the mathematics of

space in the gravitational field is not due merely to the field
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intensity, but also to the configuration of the gravitational

field. Thus in a convergent gravitational field, like that of

the sun or the earth, the periphery of a circle surrounding

the field is shortening: C<ird. In a divergent gravita-

tional field, which would be the same as a convergent

centrifugal field, the circumference of the circle is length-

ened, C<Td. In a parallel gravitational field, like that of

the accelerating railway car, a circle would be flattened into

an ellipse; that is, the diameter parallel to the direction of

the field would be different from the diameter at right

angles to the field. But the relation of the circumference

to the two diameters would be the same as in the ellipse of

the conventional mathematics.

H. THE FINITE VOLUME OF THE UNIVERSE

All the theorems of mathematics are closely interrelated,

so that if one is changed many others, and some of the

axioms as well, must also be changed.

We have seen that in a gravitational field the relation

between the circumference and the diameter of the circle

is changed, and that the circumference is less than

X times the diameter, the more so the larger the circle, and
becomes equal to ird only for infinitely small circles. From
this change other changes follow. Thus the sum of the

angles in a triangle is not any longer equal to 180 degrees,

but is greater—the more so the larger the triangle—and
becomes equal to 180 degrees only in an infinitely small

triangle. Another conclusion which follows is that we
cannot draw a parallel p any more through a point P to a

straight line I, but every line drawn through P intersects I

at finite distance. From this, however, follows that

there is no infinitely distant point on the line I, and any
straight line thus has a finite length, runs back into itself in

a finite distance. Then, also, every plane has a finite

area, and the total space—^that is, the universe in which

such mathematics apply^—^has a finite volume. The space
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and the plane and the line are limitless, unbounded, but

they are nevertheless finite in length, area or volume. The
ease is somewhat similar to the surface of a sphere, which is

finite in area, but unlimited or boundless.

Inversely, in a centrifugal field, in which the circum-

ference of the circle is larger than w times the diameter,

the sum of the angles in a triangle is less than 180 degrees,

and through a point P to a given line I two lines can be

drawn. Pi and P2, of which the one intersects I at infinite

distance to the left, the other at infinite distance to the

right; and between these two ''parallels" (if we define

parallel as intersecting at infinity) there are an infinite

number of other lines which do not intersect I and thus also

can be called parallels (if we define parallel as not

intersecting)

.

We have then three geometries: the conventional geom-

etry of our school days, of Euclid, which applies in field-

less space, and the two geometries above discussed, and

then we have a more general geometry comprising all

three cases, thus:
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of the space thus is eUiptic in correspondence with the

average mass density in space.

In a centrifugal field space would be hyperbolic. How-
ever, where a centrifugal field exists a gravitational field

must simultaneously exist, more intense than the centrif-

ugal force, to hold the revolving mass toward the center;^

otherwise the mass would go out tangentially and no centrif-

ugal force would exist. The effect of the gravitational

field thus must always be greater than that of the centrif-

ugal field, and the resultant effect is thus an elliptic form

of space.

Space, that is, our universe, then must be finite, and any
straight line, indefinitely extended, would finally run back

into itself, close, after a length equal to several hundred

million light-years. (A light-year being the distance

traveled by light in one year, and light traveling 186,000

miles in one second, a light-year is about six millions of

millions of miles). ^ The total volume of the universe,

then, would be equal to about 4 X 10^^ cubic miles.

1 Except in a small scale, as a flywheel, where molecular forces, as the

cohesion of the material, may counteract the centrifugal force and so keep

the revolving mass together. However, then the field intensities are so

low and the centrifugal field is so limited that its hyperbolic nature can

have no effect on the universe as a whole.

2 The "world radius" (see Lecture IV) is given by Einstein as

R^ = 2/Kp,

where p is the average density of the mass throughout the universe, and
2/K = 1.08 X 20" cm.

Assuming the average distance between the fixed stars as 40 light-

years, their average diameter as 1,000,000 miles, and their average density

equal to that of water, or 1, the average mass density of the universe would

be about:

P = 3 X 10-".

Thus
R = 1026 cm.

= 60 X 1020 miles

= 100,000,000 light-years.

The length of the straight line then would be:

I = 4R
= 400,000,000 light-years,

and the volume of the universe would be

V = 2w^R'^

= 4 X 10^3 cubic miles.

5
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The expression 4 X 10*^^ does not look so formidable,

but let us try to get a conception of it-—for instance, as

cents. How long would it take to count 4 X 10^^ cents

in money? To expedite the process we may count not in

cents, nor in dollars, nor hundred-dollar bills, but in

checks, as a check can be made out for a larger amount of

money than any bill. We can count out about two checks

per second. Let us then make these checks as large as

imaginable^—make each out for the total wealth of the

earth^—that is, the total value of all cities and villages,

all fields, forests, mines and factories, all ships and rail-

roads, in short everything existing on earth, hundreds of

thousands of millions of dollars.

Suppose we count out two checks per second, each for

the total wealth of the earth, and count out such checks

continuously, 24 hours per day, weekdays, Sundays and
holidays, and get all the thousand millions of human beings

on earth to help us count out such checks, and do that

from their birth to their death without ever stopping,

and assume that hundreds of thousands of years ago, when
man developed from his apelike ancestors, he had, been put

to work to count such checks, and throughout all its

existence on earth the human race had spent every second

to count checks, each for the total wealth of the earth, then,

the total amount of money counted out, compared with

4 X 10^^ cents, would not be so large as an acorn is compared

with the total earth.

Thus it is impossible to get a conception of 4 X 10'^^; to

the human mind it is infinite.

But, while inconceivable, still it is finite, and one of

the conclusions of the relativity theory is that the universe

is not infinite, but is finite in volume, though unlimited.

The size of the universe is the smaller the larger the mass

contained in it. It thus would follow that if the universe

were entirely filled with mass, say of the density of water,

it would have only a rather limited size—a few hundred

million miles diameter. This puts a limit on the size of
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masses which can exist in the universe. Our sun, though a

miUion times larger than the earth and nearly a million

miles in diameter, is one of the smaller fixed stars. Betel-

geuse (a Orionis) is estimated to have a diameter of more

than 300,000,000 miles—so large that if the sun were

placed in its center. Mercury, Venus and the earth, and

even Mars, would still be inside of it. But if Betelgeuse

had the density of water, it would about fill the whole

universe; that is, the universe would have shrunk to the

size of Betelgeuse. Or, in other words, the eUiptic char-

acter of the universe would be so great that its total

volume would only be about as large as Betelgeuse.^

However, Betelgeuse is one of the innumerable stars in a

universe so large that the enormous size of Betelgeuse

from our earth appears as a mere point without any diam-

eter. From this, then, it follows that the density of

Betelgeuse must be very low, rather more like a thin gas

than a solid.

I. TIME EFFECTS

In a gravitational field length is shortened, thus giving

the changes of the laws of mathematics discussed above.

Moreover, time is slowed down, as we have seen in dis-

cussing the effect of relative motion. That is, if we bring

an accurate clock to the sun-—or better still to one of the

giant stars like Betelgeuse^—when watching it from the

earth, we would see it going slower. Now, this experiment

can be made and offers the possibility of a further check on

the relativity theory. We cannot carry a clock from the

earth to Betelgeuse, but we do not need to do this, since

every incandescent hydrogen atom, for instance, is an

accurate clock, vibrating at a rate definitely fixed by the

1 If the density of the body is p = 1, and this body fills the entire universe,

then the world's radius would be:

R^ = 1.08 X 10" cm.

R = S& X 10>2 cm.

= 225,000,000 miles.
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electrical constants of the hydrogen atom and showing us

the exact rate of its vibration in the spectroscope by the

wave length or frequency of its spectrum lines. Thus in a

strong gravitational field the frequency of luminous

vibrations of the atoms should be found slowed down; in

other words, the spectrum lines should be shifted towards

the red end of the spectrum. The amount of this shift is so

small that it has not yet been possible to prove its existence

beyond doubt, but there seems to be some evidence of it.



LECTURE IV

THE CHARACTERISTICS OF SPACE

A. THE GEOMETRY OF THE GRAVITATIONAL FIELD

The starting point of the relativity theory is that the

laws of nature, including the velocity of light in empty
space, are the same everywhere and with regard to any
system to which they may be referred—whether on the

revolving platform of the earth or in the speeding railway

train or in the space between the fixed stars. From this it

follows that the length of a body is not a fixed property of

it, but is relative, depending on the conditions of obser-

vation—the relative velocity of the observer with regard

to the body. It also is shown that the laws of motion of

bodies in a gravitational field are identical with the laws

of inertial motion with regard to an accelerating system

(as exemplified by the billiard ball in the speeding railway

train, Lecture I). From these two conclusions it follows

that in the gravitational field the circumference of a circle

is not equal to tt times its diameter, as we have learned to

prove in our school geometry, but it is less than w times the

diameter. As the theorems of mathematics depend upon
each other, a change in one theorem involves a change in

others. Thus from the theorem which we found to apply

in a gravitational field, that ''the circumference of the

circle is less than t times the diameter, and this the more so

the larger the diameter," it follows that the ''sum of the

angles in a triangle is greater than 180 degrees, and this

the more so the larger the sides of the triangle." It also

follows that any two lines in a plane intersect each other,

69
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that there exist no parallel lines, and that there exists no
infinitely distant point on a straight line, but that all the

points of a straight line are at finite distance and the total

length of the straight line therefore is finite. Thus, going

along a straight line in one direction, we come back to our

starting point from the opposite direction, after going a

finite distance—just as is the case in describing a circle.

Just as the straight line is finite in length in this geometry

of the gravitational field, so the plane is finite in area, though

unlimited, that is, without boundary^—like the surface of a

sphere^—and the volume of space is finite, though unlimited,

and the conception of infinite distance or length or area or

volume does not exist. By mathematical deduction from

the relativity theory we thus derive the conclusion that our

three-dimensional universe is not infinite, but finite, though

inconceivably large. Although finite, it is limitless, just

as the surface of a sphere is a two-dimensional space which

is finite but limitless.

We have always understood that mathematics is the

most exact of all sciences and its theorems capable of abso-

lute proof, and yet here in the gravitational field we find a

space in which the proven theorems of our school geometry

do not hold good any more.

Mathematics is the most exact science, and its conclu-

sions are capable of absolute proof. But this is so only

because mathematics does not attempt to draw absolute

conclusions. All mathematical conclusions are relative,

conditional. It is not correct to say, ''The sum of the

angles in a triangle is 180 degrees," but the correct state-

ment of the mathematical theorem is: "If certain premises

or assumptions (the 'axioms') are chosen as valid, then the

sum of the angles in a triangle equals 180 degrees." But

whether these premises or axioms are "true"—that is,

whether they are in agreement with physical experience

—

or not is no part of mathematics. The only requirements

are that the number of axioms be sufficiently large to build

conclusions or "theorems" on them and that they be
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consistent with each other, that is, that one does not con-

tradict the other.

Thus we could well imagine the selection of another set

of axioms, different from that of our school geometry, so as

to lead to the theorem that ''the sum of the angles in the

triangle is less than 180 degrees," or "is more than 180

degrees," etc.

Our school geometry is built on a set of axioms which

was selected by Euclid 2000 years ago, and therefore it is

often called Euclidean geometry. Undoubtedly, Euclid

was led by experience when selecting the axioms which he

chose, and therefore the theorems of Euclidean mathe-

matics have been in good agreement with physical experi-

ence. This, however, is no part of mathematics. It

would be a problem of mathematical physics to determine

which set of axioms gives closest agreement between physical

space and the mathematical theorems, in other words,

what are the mathematical characteristics of physical

space. If, then, experience shows that under certain

conditions (in a gravitational field or in a centrifugal

field) the characteristics of physical space do not agree

with the theorems of Euclidean mathematics, it merely

means that the set of axioms on which Euclid based his

geometry does not apply to this physical space, and a

different set of axioms, leading to a different, non-Euclidean

geometry, has to be selected. In the realm of pure mathe-

matics there is nothing new in this. Nearly a hundred

years ago the great mathematicians of the nineteenth

century, the Germans Gauss and Riemann, the Russian

Lobatschewsky, the Hungarian Bolyai and others, investi-

gated the foundations of geometry, which led them to the

development of systems different from the Euclidean and

based on different sets of axioms. Therefore, when finally,

in the relativity theory, physics advanced beyond the

range of Euclidean geometry, the mathematics of the new
space characteristics was already fully developed.
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B. EUCLIDEAN, ELLIPTIC, HYPERBOLIC AND

PROJECTIVE GEOMETRY

Among the axioms of Euclidean geometry, such as:

*'Two points determine a straight Une," "If two straight

lines have two points in common, they have all points in

common," "There are points outside of a straight line,"

*' There are points outside of a plane," etc., there is one

axiom which appears less obvious, the so-called "parallel

axiom." It is:

"Through a point outside of a given straight line one,

and only one, parallel line can be drawn" (the parallel line

being defined as a line in the same plane which, no matter

how far prolonged, never intersects the given line).

The legitimacy of this axiom has always been doubted,

and throughout all the centuries since Euclid numerous
attempts have been made to "prove" this parallel law;

that is, to show that it is not an axiom but a theorem, a

conclusion from the other axioms. All these attempts

failed, and finally the great mathematicians of the nine-

teenth century attacked the problem from another side.

Assuming that the parallel law is not an axiom, but a

conclusion from other axioms, then we should be led to

contradictions by choosing a different parallel law-—-for

instance, assuming that there exist no parallels or that more
than one parallel exists-—and developing the conclusions

from this new assumption. On the other hand, if the par-

allel law is a real axiom, then by assuming a different paral-

lel law and developing the conclusions from it, we should

get just as consistent a system of geometry as Euclid did,

but one different from the Euclidean.

Such systems were derived from the assumption stated,

thus proving that the parallel law is a real axiom and not a

conclusion from other axioms. In addition to the Euclid-

ean geometry, which is based on the axiom of one parallel,

a complete geometry (called the "hyperbolic geometry")

was developed on the axiom that there exist more than one
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parallel, and a complete geometry (the ''elliptic geometry")

on the axiom that no parallel exists. The latter is the

geometry shown by the relativity theory to apply in a

gravitational field; the former applies in a centrifugal field.

Furthermore, by leaving out the parallel axiom altogether

and using only the remaining axioms of Euclid, a consistent

geometry was developed, the ''geometry of position" (Geo-

metrie der Lage) or "projective geometry," which is more
general than the hyperbolic, elliptic and Euclidean geom-
etries and includes these three as special cases. It deals

exclusively with the relative positions of points, lines, fig-

ures, etc., but not with size and measurement. Obviously

it must do thus, since it must simultaneously fit all three

conditions: C = ird, > 7r(iand<7rd.

In the following tabulation I give some of the main char-

acteristics of the four geometries:^

When the mathematicians of the nineteenth century

had shown that Euclid's geometry is not the only possible

one, but that two other geometries existed, the elliptic and
the hyperbolic, fully as consistent as Euclid's, the question

arose which of the three geometries completely represents

the space of physical nature.

The exact measurement of the angles in a triangle would
determine this. If the physical space is non-Euclidean, the

sum of the angles of the triangle would differ from 180

degrees, the more the larger the triangle. But there may
be a slight departure of our space from Euclidean, which

escapes notice, as the size of the triangle which we can meas-

ure is limited to a few hundred million miles. ^ The mathe-

maticians therefore used to speculate whether such a

departure would be discovered if we could measure a tri-

angle between some distant fixed stars with some hundred

light-years as sides.

The answer has now been given indirectly by the rela-

tivity theory, showing that physical space varies between
^ Some of these properties will be explained later on.

^ The diameter of the orbit of the earth.
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Euclidean at great distance from masses and elliptic space

at masses, and that the average space characteristic thus

is not zero, but has a slight positive value, is elliptic.

It is curious that in speculating on the possible departure

of space from Euclidean, in the last century, we expected to

find it slightly hyperbolic. Why, I cannot remember.

C. THE EARTH AS ELLIPTIC 2-SPACE

Living in our physical space, which as far as our sense

perceptions extend is Euclidean or zero-space, we cannot

get outside of it to see how the world would look in an

elliptic or hyperbolic space, and it therefore is difficult to

get a conception of the two non-Euclidean forms of space,

the positive or elliptic and the negative or hyperbolic. The
only way in which we can get a partial conception is by
analogy with two-dimensional spaces, or 2-spaces. We can

produce the two-dimensional analogy of the two non-

Euclidean spaces as surfaces, and, as three-dimensional

beings, looking at these two-dimensional spaces from the

outside, from a higher dimension we can see and compare

their properties and characteristics with those of the

Euclidean 2-space, that is, the plane.

To illustrate: Suppose our earth were surrounded by a

dense mass of clouds through which sun and moon could

never be seen—about as it seems to be on the planet Venus.

There would then be nothing to draw our attention to the

earth being a sphere floating in three-dimensional space,

and our world would practically be two-dimensional, lim-

ited to the surface of the earth. The third dimension, the

vertical, is accessible to us to a very limited extent only,

so that we might forget it and for the moment think our-

selves two-dimensional beings, limited to the surface of the

earth. There would be no evidence to show us that the

earth is not a flat plane. Indeed, in spite of all the evidence

given by our view of the universe around it, by the sun and

moon and stars and their motion, it took man many thou-
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sand years to come to the conclusion that the earth is

round.

On such an earth, cut off by clouds from any view of the

universe, a Euclid might develop a geometry and would

produce the same axioms and theorems as we have learned

in school in plane geometry. That is, the straight line

would still be defined in the same way, as the shortest dis-

tance between two points, the sum of the angles in the

triangle would be proven as 180 degrees, etc. Suppose now
with the passing of time commerce extended on earth and
ships traveled long distances. This would enable us to

measure large triangles, for instance, that between New
York, Rio de Janeiro and Liverpool. We would find that

the sum of the angles of such a large triangle is not 180

degrees, as Euclid proved, but is materially larger. All

the places lying 1000 miles from New York City we would

find lying on a circle with 2000 miles diameter. But when
measuring we would find the circumference of this circle

materially shorter than r times 2000 miles. If we prolong

a straight line on this two-dimensional surface of the earth,

it does not extend into infinity, as Euclid claims, but has

a finite length of 25,000 miles (the circumference of the

earth), and then returns into itself. The surface of the

earth is not infinite, as is that of the Euclidean plane, but

is finite, though it has no limit. ^ If we prolong two paral-

lel lines, we find that they approach nearer and nearer

together and finally, after 6250 miles, intersect each other.

1 When the relativity theory leads to the conclusion that the extent of

our universe is not infinite, but that the volume of the universe is finite,

most people will ask, "What is beyond the finite extent of the universe?"

and find it difficult to conceive that there is no "beyond," but that the

universe, though finite, has no limits, or, in other words, that a finite volume
can be all the universe. Just as for ages it was difficult for man to conceive

that the earth on which we live should not be infinite, but finite in area

and still have no limit or "edge," and kept asking for an "edge" of the world.

We got over this by familiarity and have no difficulty to conceive a surface

like that of the earth, which is finite in area but without boundary. Anal-

ogous thereto is the universe of the relativity theory—finite in volume, but

without limit or boundary.
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In short, we find that the geometry on the surface of the

earth is not the Euclidean geometry, but is the elliptic

geometry of the mathematicians of the nineteenth century,

the same which the relativity theory shows to apply in the

gravitational field. When measuring the surface of the

earth, we therefore cannot use the Euclidean geometry

and the trigonometry corresponding thereto, the plane

trigonometry of our school days, except on a small scale,

as when surveying the lots of a city. When surveying

countries and continents, we have to use the trigonometric

formulas of the elliptic geometry, in which the sum of the

angles of the triangle is greater than 180 degrees.

Thus the non-Euclidean geometry which the relativity

theory introduced into physics, after all, is nothing so very

new. A part of the plane or two-dimensional elliptic

geometry, its trigonometry, is in every day use in sur-

veying the earth and is quite familiar. We all had it in

school under the name of ''spherical trigonometry."

Spherical trigonometry thus is the trigonometry of the

eUiptic plane geometry. However, when studying spherical

trigonometry, we usually take advantage of our being

three-dimensional beings, and so do not limit ourselves to

the surface of the sphere, but project outside of it into the

third dimension. Naturally, in three-dimensional geom-

etry we could not do this, as we have no fourth dimension

beyond it. But, rigidly, we could develop the spherical

trigonometry, and the geometry of the spherical surface,

perfectly well without ever going outside of the surface into

a higher or third dimension. So we have to do in three-

dimensional geometry, where we have no higher dimension

to go to. After all, we apply the same looseness of usage

in plane geometry, for instance, when proving two figures

as congruent by bringing them to coincidence. Sometimes

we can do this by moving the one figure in the plane into

coincidence with the other, but sometimes we cannot do

this without turning the one figure over in the third dimen-

sion—when two figures are symmetrical like the impres-
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sions of the right and the left hand. But, strictly, this is not

permissible in plane geometry, and we should distinguish

between congruent alike and symmetrical. In solid geom-

etry we have to do so. A right-handed and a left-handed

screw may be identical in every part, but still are not alike,

as they cannot be brought into coincidence, because we
cannot turn one over through a fourth dimension.^

The plane or two-dimensional elliptic geometry, therefore,

is the geometry in the surface of a sphere, while the plane

or two-dimensional Euclidean geometry is the geometry in

a plane, and the plane or two-dimensional hyperbolic geom-

etry is the geometry in a so-called pseudo-spherical surface.

(Fig. 24.)

This is rather disappointing. We were led to a new non-

Euclidean geometry, in which the straight line has only a

finite length, the plane a finite area, the angles of the tri-

angles are more than 180 degrees, and other strange features

exist, and then find that this is merely the geometry of the

surface of a sphere, and the straight line of finite length is

merely a largest circle, etc.

We spoke of a straight line on the earth, and large tri-

angles, like that between New York, Liverpool and Rio de

Janeiro, in which the sum of the angles is greater than 180

degrees. But you will say that the path in which a ship

travels from New York to Liverpool is not a straight line,

but is a circle, a ''largest circle" of the earth, and the straight

line between New York and Liverpool passes through the

interior of the earth. The straight line between New York

and Liverpool, which goes through the interior of the earth,

is not a part of the earth's surface, but belongs to a higher

dimensional space. What, then, is the straight line of the

earth's surface? A straight line has been defined physically

as the shortest distance between two points. In the two-

1 Thus, if a magician or spiritist claims the existence of a fovu'th dimension,

ask him to prove it by taking a right-handed glove from some one in the

audience and returning it as a left-handed glove. He would have to turn

it over in the fourth dimension.
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dimensional geometry of the earth's surface the shortest

distance between two points is the largest circle, and this

therefore is the straight line of the spherical surface. Or,

a straight line has been defined as the path of a body mov-
ing without any force acting on it. Such a body in a

spherical surface moves in the largest circle. The mathe-

matical definition of the straight line is 'Hhe line deter-

mined by two points." This probably is the best definition.

Analytically it means that the straight line is the line

defined by an equation of the first degree. In the two-

dimensional elliptic space which we call a spherical surface

the largest circle therefore is the straight line and as seen

fulfills all the characteristics of the straight line, and
within the spherical surface the largest circle has no curva-

ture ; that is, it is the same as our straight line in three-

dimensional space is to us. Nevertheless, looking at the

"straight line" of the spherical surface from the outside,

from higher space, we see it curved, and therefore the

mathematicians often use the term ''the straightest line."

But in this respect it is in no way different from the straight

line of our three-dimensional space which we get, as the

shortest distance, by stretching a string between two points.

We do not know whether what we call a straight line in

our three-dimensional space would still be a straight line

in a four-dimensional space of which our three-dimensional

space was a part (and mathematically we can conceive

such a space). Or, rather, when we speak of a straight

line in our three-dimensional space, because it is determined

by two points and is the shortest distance between these

two points, we know that this line, from a four-dimensional

Euclidean space of which our space is a part, is not always

straight, is not always the shortest distance between two
points, but may be curved, just as the straight line of the

spherical 2-space is curved seen from 3-space. For
instance, when the earth and the planet Mars are nearly at

opposite sides of the sun, the straight line between the

earth and Mars, which passes close to the sun, is straight
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only in our space, but as a line in a Euclidean 4-space,

which contains our 3-space, it is curved^ and another line

is a shorter distance between earth and Mars, but this

other line passes out of our 3-space into 4-space and there-

fore does not exist for us. As seen then, the ''straight

line" has a meaning only with reference to the space in

which it is defined, but a straight line of one space may not

be a straight line for a higher space.

Furthermore, while from and as a part of Euclidean

3-space, the elliptic 2-space appears curved, as a sphere, if

we could look at it as a part of an elliptic 3-space of

the same characteristic constant as the elliptic 2-space, the

latter would not appear curved, as sphere, but flat, and the

straight line of this elliptic 2-space would not appear curved,

as circle, but straight. But an Euclidean plane and a

straight line in it, as a part of elliptic 3-space, would
appear curved (or as much of the plane or line as can be

obtained in elliptic 3-space). Broadly then, any space,

straight line or plane seen from and as part of a higher

space of different characteristic appears curved, and it

appears plane or straight only as part of a higher space of

the same characteristic constant, as will be seen later.

D. THE CHARACTERISTIC OR CURVATURE OF SPACE

There is only one physical space for us, the space in

which we are living, which is practically a Euclidean

3-space. We cannot go beyond this space, and therefore

find it difficult to get a conception of the two non-Euclidean

spaces, the elliptic and the hyperbolic, as we cannot look

at them from the outside and see their characteristics and

properties. The only way to get a partial conception of

these non-Euclidean spaces is by analogy with the corre-

sponding two-dimensional spaces, that is, surfaces. Just as

the plane is the 2-space corresponding to our physical

* Because it passes through the gravitational field of the sun, that is, a

region of elliptic 3-space.
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3-space, and as in school we first studied the geometry of

the 2-space, or plane geometry, and then advanced to the

geometry of the 3-space, or solid geometry, so we can

construct and produce the elliptic and the hyperbolic

2-space, which correspond to the elliptic and hyperbolic

3-space in the same way as the Euclidean plane corresponds

to the Euclidean or physical 3-space.

These Euclidean, elhptic and hyperbolic 2-spaces we can,

as three-dimensional beings, see from the outside and so

get a complete conception of their characteristics and of

the elliptic and hyperbolic plane geometry which corre-

sponds to the Euclidean plane geometry.

It is characteristic of the three types of 2-space or surface

that the circumference of the circle is equal, larger or smaller

than T times the diameter. That is, the quantity Cjl-rr

(where C is the circumference of a circle with radius r)

equals one in Euclidean space, is less than one in elliptic

and more than one in hyperbolic space. Thus the quantity

1 - C/27rr (1)

equals zero in Euclidean space, is positive in elliptic and

negative in hyperbolic space, and therefore to a certain

extent characterizes the space. However, as the circum-

ference of the circle differs from li^r the more the larger the

diameter, the quantity (1) is not constant, but depends on

the radius r. It can be shown, however, that the quantity^

- - K^ - 2^)
(2)

is independent of the numerical value of the radius r and is

constant for each kind of space. It therefore is called the

characteristic constant of the space, or sometimes, for reasons

which we will see later, the curvature of the space.

In Euclidean space the characteristic constant K is zero,

and the Euclidean space therefore also is called zero space,

or plane space, or parabolic space.

1 In this expression higher terms have been neglected, and it therefore

is an approximation only, which holds when (1 — C/2irr) is a small quantity.

6



82 RELATIVITY AND SPACE

In elliptic space the characteristic constant K is positive,

and the larger the more the elliptic space differs from Eucli-

dean. Elliptic space therefore may also be called positive

space; that is, space with positive constant.

In hyperbolic space the characteristic constant K is

negative, and the larger the more the hyperbolic space

differs from Euclidean. Hyperbolic space, therefore, may
also be called negative space; that is, space with negative

constant.

Let a straight line be drawn through two points of the

curve shown in Fig. 18 and these two points be brought

Fig. 18. Fig. 19.

infinitely near together. The line then becomes the

tangent T of the curve and represents the direction of the

curve at the point p where it touches.

Let now a circle be drawn through three points of the

curve and these three points be brought infinitely near

together. The circle then osculates the curve, as seen in

Fig. 19-—that is, touches it at three successive points—and

therefore has at these points the same curvature as the

curve. That is, it represents the curvature of the curve at

its contact point p, and the radius R of this circle is the

radius of curvature of the curve, and its reciprocal.

/vi = 1/R, (3)

is called the curvature of the curve. (The reciprocal of the

radius is called the curvature, as a curve is called the more
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curved the smaller its radius. Radius R = co gives zero

curvature or the straight line.)

When we come to surfaces, that is, two-dimensional

spaces, we find that we have at every point of the surface an

infinite number of tangents, in different directions, which

all lie in a tangent plane. We also find that in every point

we have an infinite number of osculating circles and there-

fore radii of curvatures, which all lie in the normal to the

surface at the point. Among this infinite number of

radii are two radii at right angles to each other, Ri and

R2, which are extremes, either one the shortest and the

other the longest or both the shortest, but in opposite

directions. The curvature of the surface at the point is

measured by the product of the two main radii of curva-

ture, and as the curvature of the surface is denoted the value:

A% = I/R1R2. (4)

It can be shown that the characteristic constant (2) of

the 2-space, K, is equal to Ko (4) ; that is, is the curvature of

the 2-space. That is:

V " 2Tj)^RJf.^R'' ^^^

is the characteristic constant of the 2-space or the curvature

of the surface which represents this 2-space.

Instead of speaking of the characteristic constant of the

space, we therefore often speak of the "curvature of space.'^

The Euclidean space thus is a space of zero curvature.

The elliptic space is a space of positive curvature.

The hyperbolic space is a space of negative curvature.

Characteristic of all three spaces is constancy of

curvature.

R = VR1R2 = -^ (6)

then may be called the radius of the space.

In elliptic space,

I = 27rR (7)

7
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is the length of the straight line.

A = 4x7^2 (8)

is the area or surface of the plane.

V = 4.ir'R'/S
'

(9)

is the volume of the 3-space.

In Euclidean space, K = 0, thus R = co
] that is, the

radius of the Euclidean space is infinity.

In the hyperbolic space K is negative, and R thus

becomes imaginary; that is, the radius of the hyperbolic

space is imaginary.

Elliptic 2-space, therefore, is a surface having constant

curvature of radius R; that is, it is a sphere, and the

elliptic geometry is the geometry on a sphere of radius

R = l/VK. (10)
m

In Euclidean 3-space the equation of a 2-space of con-

stant curvature K is given by

;, |,. + ,. + (,_ _l.y
1

= 1. („)

For K = this gives

:

z = 0; (12)

that is, the xy plane, or a Euclidean 2-space.

For K differing from zero, shifting the coordinate center

by l/^K gives:

K {x' + y' + 2^) = 1. (13)

For positive value of K this is a sphere of radius

:

R = l/VK. (14)

For negative value of K,

K = -l/R\
it is:

x2 H- ^2 _^ ^2 - -R^;

that is, all points x, y, z are imaginary.

Thus in Euclidean 3-space no real (complete) hyperbolic
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2-space exists, but the hyperbolic 2-space appears as a

sphere with imaginary radius:

R = j/VK. (15)

Fig. 20.

E. THE STRAIGHT LINE AND THE ELLIPTIC 2-SPACE

In a surface or 2-space, as a plane, a line may be bent to

the right, as a in Fig. 20, or to the left, as z. We can imag-

ine the line gradually changed from a to b, c, etc., to z.

In a it is bent to the right, in z to the

left, and when changing from a to s it

therefore must sometime pass through

a position s, where it is not bent to

the right any more, nor yet bent to

the left—that is, where it is straight

;

in other words, where it has no bend
in the 2-space or as line or element

of the 2-space and hence is a straight

line of the 2-space, whatever the

2-space may be, whether a zero-

space, that is, a Euclidean plane, or an elliptic 2-space,

which seen from our Euclidean 3-space appears as a sphere

etc. This straight line may be bent into a direction at

right angles to the 2-space, out of the 2-space into a third

dimension, for instance into the Euclidean 3-space (our

physical space), from which we see the 2-space, and then

would appear as a circle. Or it may appear straight even

from the 3-space, this depending on whether the character-

istic of the 3-space is the same or different from that of the

2-space.

I may have a straight line L in an elliptic 2-space S,

which is contained in our Euclidean 3-space (that is, a

largest circle L on sphere S in Euclidean 3-space). I can

put a Euclidean 2-space—that is, a Euclidean plane P—
through the line L. For the elliptic 2-space >S, L is a straight

line. For the Euclidean 2-space P, L is a circle. I may
put another elliptic 2-space S\ of lesser characteristic
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constant^—^that is, a sphere of larger radius—through

L. On S\ L will be curved, but less than on P. (But I

could not put an elliptic 2-space of greater curvature

through L; that is, seen from Euclidean 3-space, put

through a circle a sphere of smaller radius than that of the

circle, so that the circle lies on the sphere.)

The elliptic 2-space S, as part of the Euclidean 3-space,

appears curved, as sphere. But I could, at least mathe-

matically, consider S as an elliptic 2-space contained in an

elliptic 3-space of the same constant, and seen from this

elliptic 3-space, S would not be curved, but would appear

plane, as a flat plane, of finite area. The elliptic 2-space

S would then be in common to the Euclidean 3-space

and the eUiptic 3-space, and in the Euclidean 3-space S

would be a sphere, but in the elliptic 3-space S would

be a flat plane of finite area. Any straight line on S

would also be a straight line for the elliptic 3-space, but

would be a circle for the Euclidean 3-space, a "largest

circle" of the sphere S. I may consider S as contained

in an elliptic 3-space of lesser curvature than that of S.

In this 3-space S would still appear curved, but less so than

it appears in the Euclidean 3-space; that is, it would

appear as a sphere of larger radius. But we could not

consider the elliptic 2-space *S as a part of an elliptic

3-space of greater curvature than S. If we could con-

sider the elliptic 2-space >S as a part of an elliptic 3-space

of greater curvature than that of ^S, S would again appear

curved, but not as sphere, but now with hyperbolic or

negative curvature, and that would make it an imaginary

sphere, as we have seen above. S could not as a whole be

contained in the elhptic 3-space of greater curvature.

The reason is that the straight lines in the 3-space are

finite in length and shorter than the straight lines on the

2-space S, when the latter has a lesser curvature, and the

latter therefore cannot be contained in the 3-space. Thus

only a distorted part of S could find room in the 3-space,

as pseudo-sphere.
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In other words, a 2-space can be contained in a 3-space of

lesser curvature, but not in a 3-space of greater curvature.

Thus a hyperbohc 3-space can contain eUiptic 2-spaces and

EucUdean 2-spaces and hyperbohc 2-spaces of lesser

negative curvature; a Euclidean 3-space can contain

only Euclidean and elliptic 2-spaces, but no complete

hyperbolic 2-space, and an elliptic 3-space can contain

only elliptic 2-spaces of the same or greater curvature, the

former appearing as planes, the latter as spheres.

It thus follows that, absolutely, there exists no such thing

as a ''straight line," but "straight line" is relative only,

with reference to the space in which it is defined. Any
straight line with regard to a space of higher dimension

than the space in which it is a straight line may not be a

straight line; it is a straight line if the higher space has the

same curvature, but is curved in a higher space of different

curvature.

This is exactly the case in our physical space, which as

the relativity theory shows, has a slight positive curvature.

If we could imagine our three-dimensional space as con-

tained in and as a part of a four-dimensional Euclidean

space (and mathematically there is no difficulty in this),

then from this four-dimensional Euclidean space we would

see that the straight lines of our space are really circles

with about 100,000,000 light-years' radius. But the center

of the circle and its curvature are outside of our 3-space,

in the fourth dimension, exactly as the straight line of the

elliptic 2-space is a circle seen from the Euclidean 3-space

containing the elliptic 2-space as sphere, but a circle of

which the center and the curvature are outside of the 2-

space, and within the 2-space it has no curvature.

Thus, also, what we see as a plane in our space, from the

four-dimensional Euclidean space in which our space is

contained, would be seen as a sphere with 100,000,000 light-

years' radius, and our entire three-dimensional space would

be a three-dimensional hypersurface, finite but unlimited,

in the Euclidean 4-space. But while we mathematically
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can conceive of such a "hyper surface," physically we
cannot.

F. BENDING OF SPACE

Suppose in a Euclidean 2-space—that is, a plane like the

sheet of paper on which is printed Fig. 21—we have two
points, Pi and P^. Through these two points we can put

one, and only one, straight line, Lq. This is the shortest

distance between the two points Pi and Po, and any other

line between them, as Li or L2—shown dotted in Fig. 21

—

Fig. 21.

is longer. Suppose we have a straight line L in the plane

Fig. 21 and a point P outside of L. Any line drawn in the

plane through point P, as Li, Lo, L3, etc. (shown dotted),

intersects the line L, except one line Lo, which no matter

how far it is produced does not intersect L and is called the

parallel. From this it follows that in a triangle ABC the

sum of the angles equals 180 degrees, and that in any circle

the circumference C is tt times the diameter DOE of the

circle.
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Suppose now we take the plane of Fig. 21-—-the sheet of

paper—and bend it in any desired manner, but without

stretching it. We may bend it into a cylinder or a cornu-

copia—that is, a cone—^or into a corrugated sheet as shown
in Fig. 22.1 Looking at it now, from outside space, the

lines L, Lo, Li, the sides of the triangle ABC, etc., are not

straight any more, but curved. But within the plane of

the paper the dimensions all remain the same, and if we
measure the sides of the triangle or the circumference of the

circle, the angles, areas, etc., with a rule or measure con-

tained within the plane of the paper (that is, within the

2-space, the rule therefore in the 3-space bending with the

paper) , we then find exactly the same measurements as before

we bent the plane into a cylinder or corrugated shape. The
lineLo, though not appearing straight anymore from the out-

side, still is, within the sheet of paper, shorter than the lines

Li and L2 and still is the shortest path between the points

Pi and Pi—that is, still is the ''straight line" of the 2-

space-—^and Lo still never intersects L—^that is, remains the

parallel. Thus all the geometry which we derived and
proved in the Euclidean plane (Fig. 21) still holds just

the same in a cylinder, a cone, a corrugated sheet or any
other 2-space which we may produce by bending this

Euclidean plane, and there is no way and no possibility to

show and prove from the inside of the 2-space (Figs. 21 and

22) whether we have bent it out of shape or not. Indeed,

there is no such thing as bending the 2-space per se

out of shape, but we have bent it only with regard to its

location with respect to the 3-space from which we look

at it.

The same thing applies to an elliptic or hyperbolic 2-

space. We may take a piece of a sphere (Fig. 23 or 27) and
bend it—always without stretching—into a spindle, as in

* This figure and some of the following ones are printed stereoscopically,

so that the reader may take them out and look at them through a stereo-

scope to see the curvature. With a little practice it is possible to see

stereoscopically without a stereoscope.
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Fig. 28. All dimensions measured within the surface have

remained the same, and a two-dimensional being living

within the surface could never find out whether he was in

the surface of a sphere, or of a spindle, or of some other

shape produced by bending. The straight lines of the

sphere—that is, seen from the outside, its largest circles

—

also are the straight lines of the spindle—that is, the short-

est lines between two points; the angles are the same, etc.

Thus the characteristic constant, or the curvature of the

space, remains unchanged by the bending of the space.

Euclidean 2-space thus is the plane and any surface

made by bending it or a part of it in any desired manner—

•

into cylinder, cone, wave surface, etc; elliptic 2-space is the

sphere and any surface made by bending a piece of the

sphere into some other shape, as a spindle; hyperbolic

2-space is the pseudo-sphere—^not existing in Euclidean

3-space—or any surface which can be considered as made
by bending a piece of the pseudo-sphere into some other

shape as shown in Fig. 24.

But it must be bending without stretching. If, for

instance, in bending the plane Fig. 21 I stretch it at some

places, contract it at others, the line Lq between P1P2 of

Fig. 21 may be stretched and so may become longer than

lines Li or L2, and therefore will cease to be the shortest

line—that is, the straight line of the bent space^—^and the

geometry of this space would not remain the same.

This illustrates the relativity of the conception ''straight

line." The shortest path between two points Pi and P2

of the cylinder or cone looks very different to us from a

straight line, and still it is geometrically identical with the

straight line of our plane geometry; and it becomes like it in

looks on simply um-olling the cone or cylinder—an opera-

tion which makes no change whatever within the surface,

but merely changes its relation to a higher dimensional

space.

However, when we bend a 2-spacc into some other shape

we may get ''kinks" or "singular points" into it, and at
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these singular points conditions may become indefinite;

and in the geometry on a surface with such singular points

we have to take care to arrange our figures so that they keep

away from the singular points. For instance, w^e can bend

a plane into a cone, and the geometry on the cone therefore

is identical with the plane geometry of our school days, but

when drawing figures on the cone—^straight lines like the

lines traced by a string stretched on the cone—we must keep

away from the point of the cone. So the geometry on the

spindle is the geometry on the sphere, but while on the

sphere we may draw the figures anyw-here, on the spindle

we have to keep the lines of the figure away from the two

points of the spindle, as singular points.

This possibility of bending a space into some other form

without change of its constant permits us to illustrate

hyperbolic geometry on a real surface. As has been seen,

a complete hyperbolic 2-space cannot exist in Euclidean

3-space. But in Fig. 24 is shown a picture of a hyperbolic

2-space which bears to the complete hyperbolic 2-space

about the same relation as the cone in Euclidean 2-space

bears to the plane. It is Beltrami's pseudo-sphere, the

rotation surface of the tractrix^ as meridian curve.

As seen, Beltrami's pseudo-sphere has a singular point at

infinity-—that is, the surface points into infinity in two

opposite directions (the lower side is cut shorter in the

model)—and a singular line, a circular knife edge. Taking

the precaution to draw the figures on the pseudo-sphere so

that they do not run into the singular line and the singular

point, we can study the hyperbolic geometry on it.

1 The tractrix is the curve described by a weight at one end of a rod

when the other end of the rod is dragged along a straight line. That is,

it is the curve given by the condition, that tlie length of the tangent of the

curve is constant. Its equation is:

, , fc + V/c- - a;2 ,-

y = k log V fC^ — x^
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G. MATHEMATICAL SPACE AND PHYSICAL SPACE

We must sharply distinguish between physical space and

mathematical space. Mathematical space is the concep-

tion of a dimensional continuous manifold, and an infinite

number of different mathematical spaces, of any number of

dimensions, can be conceived and have the same reality

in the science of mathematics as philosophical conceptions.

Physical space is the form of conception in which our mind
clothes the (supposed) extraneous cause of our sense per-

ceptions. There is therefore only one physical space, and

it exists only as a form of something acting on our senses

;

that is, exists only as far as there is something filling space,

and ''empty space" in this respect has no meaning. As
physical space is a dimensional continuous manifold, it is

of interest thus to ask which of the innumerable con-

ceivable mathematical spaces agrees best with the proper-

ties of physical space. Mathematical space itself has

nothing to do with nature and things in nature, but is

entirely conceptional.

The only characteristic required and assumed for the

"point" as the element of mathematical space is the

property of continuity. That is, to any point you can

get other points infinitely close and can thus go con-

tinuously from one point to another. Such is for instance,

the case with the instances of time, with the temperatures,

colors, etc.

The "straight line" then is defined by the axiom:

"Two points a and b determine one and only one straight

line L."

The straight line contains an infinite number of points,

which are given by:

p, ^ ^^. (1)

Each point pi is determined by a ratio x -f- y, and this

ratio is called its coordinate.
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We extend beyond the straight line by the axiom:

''There are points outside of the straight line."

Any such point c with any point pi of the line L gives

again a line, and any point on this line is given by

:

^ x'c + tj'yi ^ xa -\- yb + zc . .

^' x' + y' x + y + z' ^^^

The ratios x ^ y -^ z, then, are called the coordinates of

the point p^- The infinite number of points pi of the first

straight line L give an infinite number of straight lines, and
as each of these straight lines has an infinite number of

points p2, the number of points p^ thus is infinitely larger

than that of the points pi. The totality of the points po,

therefore, is called a two-dimensional manifold, or a mathe-

matical 2-space, or a mathematical plane.

We extend beyond the plane by the axiom:

"There are points outside of the plane."

Any such point d with any of the 0° ^ points p^ gives oo 2

lines, and each of these lines contains an infinite number of

points ps, given by:

_ x"d + y"p2 ^ xa + yh -{- zc + ud ,^.
P'- x" -f- y" xTT-f-2 + u ^^

so that infinite times as many points pz exist as points p2,

and the points pz thus constitute a three-dimensional mani-

fold or mathematical 3-space. Each of these points pz

is given by its coordinates, the three ratios : x ^ y -^ z -^ u.

Mathematically, we extend in the same manner beyond
the 3-space by the axiom:

"There are points outside of the 3-space."^

Any such point e again gives a straight line with any of

the 00 3 points, and so leads to 0° ^ points,

xa -\- yh -\- cz -[- ud -\- ve ,..

P4 = r—I

1 1

'

(4)x-{-y-\-z + u-\'V

given by the coordinates x^y-^z-iru^v and constitut-

ing a four-dimensional manifold or mathematical 4-space.

' This axiom disagrees with physical experience, therefore all the mathe-
matical spaces from here on have no physical representation.
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In this manner we can build up to any number of dimen-

sions, and as a mathematical conception the n-dimensional

manifold, or n-space, is just as real as the 3-space or 2-space.

The mathematical n-space merely is the continuous mani-

FiG. 25.

fold of oo« elements which are given by the n ratios: x : y :

z : u . . . Xn as coordinates.

As the physical space is a three-dimensional manifold of

physical points^—that is, positions in space—^it could be

represented by some mathematical 3-space, while the

surface of a physical body could be represented by some
mathematical 2-space, etc.

As in these mathematical spaces we have defined points,

lines and planes, etc., we can deal with triangles, polygons,

space figures, etc., and so can construct a geometry of
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mathematical 2-space, or plane geometry, a geometry of

mathematical 3-space, or solid geometry, of mathematical

n-space, etc. These geometries, however, would be entirely

geometries of position, or projective geometries (the case

4 of page 74) ; that is, they would deal only with the location

of points and lines, etc., to each other, but not with the

sizes and metric relations, with equality, etc. Thus, they

contain theorems like Fig. 25.

''If the three lines connecting corresponding corners of

two triangles meet in one point, the three points of inter-

section of corresponding sides lie in a straight line."

But we could not have a theorem reading

:

"Two triangles are congruent if their corresponding sides

are equal,"

or:

''The sum of the squares of the two sides of a right-angled

triangle equals the square of the hypotenuse."

All metric relations, comparison of sizes, measurements,

etc., are based on bringing figures into coincidence, for

instance, the measuring rod with the measured length, etc.

We prove the congruence of two triangles by moving one

into coincidence with the other. Before this is possible

in the mathematical spaces defined above we must add an

axiom specifying that:

"A figure can be moved in space without changing."

This is by no means obvious. It is the case, for instance,

in the surface of a sphere, but it is not the case in the surface

of an egg-shaped figure. We can thus have a theorem of

two congruent triangles in the sphere and prove it by
moving the one triangle into coincidence with the other.

But we could not have two congruent triangles in the sur-

face of an egg, because we could not move one triangle

from a part of the egg's surface to another one, where the

curvature is different, without distorting it, stretching

some dimensions and contracting others, and thereby

changing the dimensions. Thus measurements on the
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surface of the egg and theorems on metric relations, as the

Phythagorean theorem, are impossible.

It is not possible to move figures from one space to

another space of different curvature, for instance, from a

sphere into a plane, without stretching and thereby chang-

ing and distorting the dimensional relations. Thus figures

in one space cannot be represented in correct dimension in

another space. (Hence the difficulty in map making: to

represent a part of the earth's surface, of a sphere, on a

plane map with the least possible distortion of dimensions.)

This axiom of metric relations expressed mathematically

means that the characteristic or curvature of space K is

constant.

Thus, not all spaces are metric spaces^—that is, spaces

in which measurements are possible and in which we can

speak of and compare the sizes of figures, deal with

equality, congruence, infinity, etc. The general space is

projective—that is, merely positional relations exist in it

—

and a special condition or axiom is required, that of con-

stancy of curvature, to establish metric relations.

Positionally, there is no difference between finite and
infinitely distant elements of space, and the geometry of

position, or projective geometry, thus does not contain the

conception of the infinitely distant. The distinctions

based on the relation to the infinitely distant—for instance,

the differences between the ellipsis, which is all finite, and
the hyperbola, which runs into infinity—are thus absent in

it. This does not mean that infinitely distant elements

may not exist in the geometry of position and that all the

elements of projective geometry are finite (as all the ele-

ments of the elliptic geometry are finite). But it means
that in their projective properties infinitely distant ele-

ments differ in no way from finite elements. All the differ-

ence between finite and infinitely distant elements is metric,

and the conception of infinitely distant elements as differ-

ent from finite elements is introduced only by the metric

axioms.
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While mathematical spaces may be conceived as of any
number of dimensions and have equal reality as mathe-
matical conceptions, physical space is limited by experience

to three dimensions-—that is, any point in physical space is

determined by three data or coordinates, for instance, the

three distances x, y, z from some arbitrarily chosen coor-

dinate axes.

It must be realized, however, that the three-dimensional

character of physical space is in reality not entirely

empirical, but also is conceptional. Physical space is three-

dimensional when considering the point as the element of

physical space; that is, any point in physical space is

determined by three coordinates, x, y, z. But in the real

physical space of our experience there are no points, but

bodies, and the point is a mere mathematical conception,

an abstraction, but not a physically existing thing. Thus
the three-dimensional physical point-space also is a mere
abstraction and is no more a physical reality than its

element, the mathematical point, is. What is real is the

physical body. But the location of a (rigid) body in

physical space is not fixed by three coordinates, but requires

six coordinates. Three coordinates, Xi, yi, Zi, would
fix one point. Pi, of the body, for instance, its center of

mass. This would not fix the body, for the body could

still have an infinite number of positions in turning around
its center point. Pi. We must thus fix a second point, P2.

With point Pi fixed, P2 can move anywhere on the surface

of a sphere with Pi as center and P1P2 as radius. As the

surface of the sphere is two-dimensional, two data or

coordinates, X2, ^2, thus are necessary to fix point P2 on this

sphere. Fixing the two points Pi andP2, however, does not

yet locate the body ; it still can turn around the axis P1P2. A
third point, P3, thus has still to be fixed. As P3 could move
on a circle around P1P2 as axis, one coordinate, X3, is sufficient

to fix point P3 and thereby locate the body in space.

Thus six data or coordinates, Xi, yi, Zi, Xo, yo, X3, are

required to locate the position of the rigid body in physical



xi, yi, zi,
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the statement of the three dimensions of physical space is

not direct experience but already includes a mathematical

abstraction.

Thus by choosing something else than the mathematical

point as space element we can consider physical space as of

a different number of dimensions.

For instance, any point in physical space can be con-

sidered as center of an infinite number of spheres, of differ-

ent radii r. As there are oo ^ points in space, given by their

coordinates x, y, z, and each as center gives rise to oo spheres,

given by their radii r, there are therefore existing in our

physical space » ^ spheres, represented by their coordinates

X, y, z, r. That is, with the sphere as element, physical

space is four-dimensional, and a four-dimensional geometry

—at least a projective or non-metric geometry—^can be

constructed in physical space with the sphere as element or

''point." This has been done.^

Following our outline as above:

Let Si, S2, S3, S4, Ss be five spheres in space. Then any

of the CO 4 spheres is given by

:

with four coordinates, the four ratios:

Xi "T" X2 "^ X^ ~v X4 ~r' Xq

Three linear equations between the x then give a ''line,"

just as two equations in the three Cartesian coordinates

give a line in three-dimensional point space. This "line"

in 4-space consists of all the spheres which intersect in a

circle, etc.

As has been seen, therefore, in spite of all our conviction

of the three-dimensionality of space, in reality space and
the number of dimensions of space are relative, dependent

on the condition of the observer^—that is, on the thing

chosen as element of the space^—and physical space with

the point as element may be three-dimensional. With the

sphere as element it is four-dimensional, with the rigid

1 Reye, "Geometrie der Kugelii."
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body as element six-dimensional. Thus space and time

^,nd dimension are relative.^

H. THE BUNDLE AS ELLIPTIC 2-SPACE

We try to get a conception of non-Euclidean space, as

the elliptic space of the gravitational field and the hyper-

bolic space of the centrifugal field, by considering the

corresponding two-dimensional spaces. These we can

construct as surfaces in our physical 3-space, and so can

study them, by looking at them from a higher dimension as

part of our 3-space, The disadvantage, however, is that

we can look at these various 2-spaces from one 3-space

only, our physical space, which is essentially Euclidean, and

then it is difficult to abstract and realize which of the

properties and characteristics of the 2-space are inherent

in the 2-space and which are merely incidental to the

relation of the 2-space with our particular 3-space and

would not be the same when seen from some other 3-space,

and therefore are not essentially characteristic of the 2-

space. Thus we have seen that the elliptic 2-space, or

''elliptic plane," appears from our Euclidean 3-space as a

spherical surface, and the straight line of the elliptic

2-space appears as a circle in the Euclidean 3-space ; that is,

as curved. We realize that this line has no curvature, is

straight, in the elliptic 2-space. But still, it is curved into

the Euclidean 3-space, and as we look at it from the

Euclidean 3-space, it is difficult to avoid the feeling that,

after all, it is not a straight line but a curve, and only

appears straight in the elliptic 2-space because from this

space we cannot see the curvature. The same applies to

1 The fallacy of the magician's or spiritist's four-dimensional space is

not in the conception of a four-dimensional space in general, but in the

conception of a four-dimensional 'point space—in claiming a dimension

higher than shown by experience. Physical space is a three-dimensional

point space, and attributing to it a higher dimension with the point as space

element, therefore, is against experience. But not so with something

else as element. On the contrary, with something else chosen as ele-

ment of physical space, we may expect to find it with a different number

of dimensions.
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the elliptic 2-space as a whole; from within we can notice

no curvature, and it is an elliptic plane, but from Euclidean

3-space we plainly see it curved, as sphere, and so cannot

entirely avoid the feeling that after all it is not plane but is

curved, and that it appears plane from within merely

because from within we cannot see the curvature. We
may explain that from an elliptic 3-space of the same
curvature the elliptic 2-space would not appear curved

but as a plane of finite area; but as we cannot look at it

from an elliptic 3-space, this is not entirely convincing—
the less so as it has to some extent become customary to

speak of the characteristic constant of the space as its

"curvature," because of its appearance from a Euclidean

higher space. In reality this is incorrect, as the elliptic

2-space and the lines in it are not curved inherently and
their appearance to us as sphere and as circle is merely the

appearance of their relation to the Euclidean 3-space from
which we view them. As already brought out, the same
2-space and its lines would appear differently curved from a
different 3-space, and would not appear curved from a
3-space of the same characteristic constant as that of the

2-space. Unfortunately we have no such elliptic 3-space.

However, the idea can be grasped by viewing an elliptic

2-space under conditions where we do not have a
Euclidean 3-space from which to look at the 2-space, but
where we view the elliptic 2-space by itself, in comparison
with a Euclidean 2-space. We see then that there is noth-

ing curved about the former any more than about the

latter.

Mathematical space is a dimensional continuous mani-
fold. The elements of it, while we may call them points,

have nothing to do with the physical point^—^that is, the

position in physical space—but may be any continuously

changeable quantity, for instance, color, composition of a

gas mixture, forces in physical space. ^ Physical space is a

1 Thus for instance, all the forces in physical space form a six-dimen-

sional manifold.
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three-dimensional manifold with the point^—^that is, the

location in space^—as element, and therefore when com-

paring it with mathematical space we generally choose the

point as the element of mathematical space. This, how-

ever, is not essential, and we could just as well conceive of

a mathematical space with the line as element or the plane

as element, etc. This is commonly done in projective

geometry, and it leads to valuable results.

Suppose, then, we have a Euclidean plane or 2-space of

zero characteristic E; that is, the two-dimensional manifold

of points p and lines L contained in the plane E. From a

point outside of E we can project E. Every point p of

E then is projected by a line through (usually called a

"ray"). I = Op, and every line L of £' is projected from

by a plane P = OL. To the points p of E thus corre-

spond the lines or rays I through 0, and to the lines L of

E correspond the planes P through 0. All these lines I

and planes P through thus form a two-dimensional con-

tinuous manifold-—that is, a 2-space—which corresponds

element for element to the points and lines p and L of the

Euclidean 2-space E.

Such a 2-space, consisting of all the lines and planes

through the point 0, is called a "bundle." Every figure

consisting of points and lines in the Euclidean plane E is

projected by and gives a figure consisting of lines and

planes in the bundle ; every angle between two lines in

E is projected by an angle between the two corresponding

planes in 0; every triangle in E is projected by a triside in

0, that is, a three-sided pyramid; every curve in £' by a

cone in 0, etc., and to the geometry of the plane E thus

corresponds a geometry of the bundle 0, by projection.

We can directly read off the theorems of the geometry of

the bundle from the theorems of the geometry of the

plane E by saying, in the bundle, "line" or "ray" for

"point" in the plane, and saying in the bundle "plane"

for "line" in plane E. Thus, for instance, the theorem of

plane geometry of Fig. 25:



THE CHARACTERISTICS OF SPACE 103

"If the three lines connecting corresponding corners of

two triangles meet in one point, the three points of inter-

section of corresponding sides lie in a straight line,"

would be in the geometry of the bundle:

"If the three planes connecting corresponding edges of

two trisides intersect in a line, the three lines of intersection

of corresponding side planes lie in a plane."

The latter is derived from the former by projecting it

from point 0.

Two congruent triangles in E are projected by two tri-

sides in 0, but these two trisides are not congruent. Two
congruent trisides in (that is, two trisides of which the

one can be moved into coincidence with the other) give

two triangles in E, but these two triangles are not congru-

ent. Thus, while all the theorems dealing with the relative

position of the elements-—points and lines in E, lines and

planes in 0-—remain the same in the two 2-spaces, the

Euclidean plane E and the bundle 0, the theorems dealing

with metric relations, such as congruent, equal, etc., do not

transfer. That is, the geometry which E and have in

common is the geometry of position, or projective geometry

(column 4 on page 74), but not the metric geometry. In

other words, the characteristic constant of the 2-space is

different from that of the plane E.

"Length" or "distance" we call the part of the line

between two points. To the line L oi E corresponds the

plane P projecting the line L from 0, and to the two points

J) I and p2 on the line L in E correspond two lines ^i and U
in the plane P (the lines projecting the two points from 0).

To the distance, as the part jpipi of the line L in E, thus

corresponds in the part of the plane P between the lines

liU] that is, the angle ^1^2. Thus "distance" or "length"

in our new 2-space, the bundle 0, is the angle between the

two lines or rays, which are the "points" or elements of

the 2-space 0.

The length of the straight line L in the Euclidean plane

E is infinite. That is, starting from a point p of this line L
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and moving along this line in one direction, I have to go into

infinity and then come back from infinity on the other side

of the line before I again reach point p. If in the ''line"

of the bundle —that is, the plane P which corresponds to

the line L of E—I start from a "point"-—that is, the ray or

line I corresponding to the point p of E—and follow the

motion of p along line L, the corresponding ray I moves
through the plane P; that is, turns around the point 0.

But while the point p on L in the plane E traverses an

infinite distance before it returns, the corresponding ray I

on P in returns after one complete revolution; that is,

after traversing the angle 27r, Since the "length" in our

2-space is measured by the angle, it thus follows that the

"length" of the straight line P in the 2-space is 27r.

In other words, the length of the straight line in 2-space

is finite, and this 2-space, the bundle, thus is an elliptic

2-space.

The length of a straight line in an elliptic 2-space is 2TrR,

where R is the "radius" of the 2-space, and is given by the

characteristic constant K = 1/R^. As in the bundle the

length of the straight line is 27r, it follows that in this

bundle it is i^ = 1; thus K = 1. That is, the bundle is

an elliptic 2-space of characteristic constant or curvature 1.

An area in E, like that of a triangle, is projected from

by a spherical angle.
'

' Area " or " volume '

' in the 2-space

thus is measured as a spherical angle. The total area of E
is projected by the total spherical angle at 0. But while

the area of E is infinite, the total spherical angle of —
that is, the total area or "volume" of the 2-space—is

finite.

Every angle between two lines LiLo in E is projected by

an angle between the two planes Pi and Po, which corre-

spond to the lines Li and Lo. The angle between the planes

of the bundle differs from the angle between the lines

of the plane E, to which it corresponds. It is larger if the

perpendicular form on to E falls inside of the angle,

smaller if the perpendicular falls outside of the angle.
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Every triangle in E is projected by a triside in —that

is, a three-sided pyramid, which is the ''triangle" of the

2-space called the bundle. If the triside and the corre-

sponding triangle are situated so that the perpendicular

from onE falls inside of the triside, then each angle of the

triside is larger than the corresponding angle of the triangle,

as seen above, and as the sum of the angles in the triangle

in E equals 180 degrees, the sum of the angles in the triside

is thus larger than 180 degrees. If the triside is situated

so that the perpendicular from on E falls outside of the

triside, the bundle and with it the triside can be turned so

that the perpendicular falls inside of it. (The correspond-

ing triangle obviously then has changed in shape and posi-

tion on E, but the sum of its angles is still 180 degrees.)

Thus in any triside the sum of the angles is greater than 180

degrees, and the bundle thus is an elliptic 2-space.

A curve in the Euclidean plane E gives a cone in the

bundle 0, and inversely. Suppose we have a circle in the

2-space 0; that is, a circular cone. We may move it so

that its center line is perpendicular to E. It then will

project on £" by a circle, and if C is the circumference, r

the radius of the circular cone (both in angular measure, as

''length" in 2-space is measured as angle), then from the

relation between the circular cone and its projecting circle

it follows:

C = 2t sin r,

and as sin r always is less than r, it is

:

C<27rr,

and the circumference of the circle is less than tt times the

diameter, the more so the larger the circle.

The largest circle which can exist in the 2-space has the

radius 7r/2, or diameter x, and its circumference is 27r. It is

the straight line of the 2-space 0. The straight line of the

elliptic 2-space thus can be considered as a circle with

radius ir/2, just as the straight line of the Euclidean 2-space

can be considered as a circle with radius 0°

.
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Thus we have here, by projection from a Euclidean plane

E, produced an elliptic 2-space of unit curvature, in the

bundle 0, by using the ray—that is, the line-—-as element

instead of the point, and thus have a chance to study

the characteristics of the elliptic 2-space on the bundle 0,

with the advantage that now we do not look at it from a

higher space of different characteristic constant, but from

an entirely unrelated space; that is, a space of different

elements. We see now that in this 2-space 0, while it is

elliptic, of characteristic constant or ''curvature" 1, there is

nothing curved about it. Its straight line is the plane P.

It has a finite length 27r, but there is nothing curved about

P, and we see thus that while the elliptic 2-space in the

Euclidean 3-space appears curved, as sphere, and the

straight lines in it appear curved, as circles, this is not a

feature of the elliptic 2-space, but of its relation to the

Euclidean 3-space, since when unrelated to an Euclidean

3-space there is nothing curved in the elliptic 2-space, as

the bundle 0.

In the Euclidean plane E we have parallels. But two

parallels of E project from by two planes as ''lines" of

the bundle, which intersect in a line or ray—that is, a

"point" of —and this is just as finite and real as any

other. Any two planes of intersect; thus there are no

parallels in 0. The infinitely distant points of E project

from by rays, which are parallel to the plane E, but in

are just like any other rays, are finite. Thus there is no

infinity in the elliptic 2-space 0.

The elliptic 2-space is finite; the length of any straight

line in it is 2t; its total volume or area is 47r. And still

there is nothing outside or beyond it in 2-space, but it is all

the space, and so shows how a finite volume—-or "area"

in 2-space, here measured by the spherical angle from —
can fill all the space.

In many respects this elliptic 2-space, derived by using

the line or "ray" as element instead of the point, is more

convenient and illustrative than the point space on the
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spherical surface for realizing the characteristics of elliptic

space.

I. PROJECTIVE GEOMETRY

By eliminating the metric axioms we limit the general

geometry, or projective geometry, to mere relations of

position, but exclude all theorems dealing with equality,

congruence, proportionality and similarity, with numerical

relations and measurement, with parallels and the effect

of infinitely distant elements, as the distinction between

ellipsis, hyperbola, circle and parabola, etc. It might be

thought that very little is left then for consideration, and a

few theorems of the general or projective geometry may
therefore be given to illustrate the wide and interesting field

of geometrical research outside of the metric axioms.

Theorems of geometry of position, or projective geom-

etry, which hold on the sphere and pseudo-sphere, and in

the bundle as well as in the Euclidean plane, are

:

1

.

If the three lines connecting corresponding corners of

two triangles meet in a point, then the three points of

intersection of corresponding sides of these two triangles lie

on a straight line.

This theorem is shown in Fig. 25 on a Euclidean plane, in

Fig. 26 on corrugation as Euclidean 2-space, in Fig. 27 on a

sphere, and in Fig. 28 on a spindle as elliptic 2-space. We
have mentioned it already in the bundle as elliptic 2-space

with a different element.

2. In a plane (Fig. 29) are given two lines, Li andLa, and
three points, po, pi, p^, outside of these two lines. From the

point Po lines are drawn intersecting the lines Li and L2 in

the respective points ai and a2, &i and 62, Ci and C2, etc.

Then the points of intersection, a of the lines piai and p2a2,

b of pihi and pobo, c of piCi and P2C2, etc., lie on a conic sec-

tion. On this conic also lie the points pi and p^, the point

of intersection q of the lines Li and L2 with each other, and
the points of intersection Si of the line Li with pop2 and S2

of L2 with popi.



108 RELATIVITY AND SPACE

It is interesting to note that the conic is an element of

projective geometry, defined as a curve of second order;

that is, by the feature that a straight fine can intersect it in

a maximum of two points. The classifications of the conic,

however, are no part of projective geometry, as they are

Fig. 29.

made by its relation to infinity and therefore are metric in

character : The hyperbola has two infinitely distant points,

the parabola has one infinitely distant point, the ellipsis

has no infinitely distant point; that is, its two infinitely

distant points are imaginary, and the circle is the ellipsis

in which the two imaginary infinitely distant points are at

right angles to each other. This classification of conies

applies only in the Euclidean plane, but not on the sphere

or in the bundle, as in the elliptic space there is no infinity.

3. If from a point p (Fig. 30) two lines are drawn inter-

secting a conic (as, for instance, a circle) in the points ai

and a2 and 6i and 62 respectively, and the points of inter-

section, p' of aihi and 0062 and p" of ^162 and a-^bi, are con-

nected by a straight line P, and pi and p2 are the points of
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intersection of this line P with the conic, then ppi and pp2

are tangents of the conic at the point pi and p2 respectively.

The line P is called the polar of the point p.

Any line through p intersects the polar F in a point po,

which is the fourth harmonic point to p with respect to the

two intersections of ppo with the conic.

If Pi and P2 are the polars of the two points pi and p^

with regard to a conic, then the line connecting the points

Fig. 30.

pi and P2 is the polar of the point of intersection of Pi and

P2, and inversely.

This gives a means to construct the tangents on a conic;

for instance, a circle.

As has been seen, the harmonic relation between four

points exists in projective geometry. This shows that this

relation, while usually considered as metric and introduced

as such, in its nature is not a metric relation but a positional

relation.
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4. If we have, in Fig. 31, four points a, b, c, d, in a

plane, and draw the six Unes through them, ah, ac, ad, he,

bd, cd, and denote the three additional points of intersection

of these six lines by e = ah, cd;f = ac, hd; g = ad, he, and

Fig. 31.

draw the three additional lines ef, eg and fg, we get a total

of nine lines and four points on each of these nine lines.

Each of these nine groups of points is composed of four

harmonic points.

This shows the positional nature of the four harmonic

points.

J. THE METRIC AXIOM AND THE LAW OF GRAVITATION

In Lecture I, and more completely in Lecture III, we
have seen that the laws of the motion in a gravitational

field are identical with the laws of inertial motion in an

accelerated system, and that the former—that is, the law

of gravitation^—can be derived as the equations of mathe-

matical transformation to an accelerated system without
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making any assumption on the physical nature of the gravi-

tational force. In this manner Einstein has derived his

law of gravitation. This transformation, however, which

leads to the law of gravitation, is not entirely without

arbitrary assumption, as it would appear to be at first.

The law of gravitation is a metric relation. We have seen,

however, in the preceding that metric relations do not exist

in general space, but space in general is projective, involv-

ing only relations of position, and that a particular char-

acteristic of space, a metric axiom, is necessary to give

relations of size and measurement between figures in a

space, or between two spaces, such as the elliptic space of

the gravitational field and the Euclidean characteristic of

fieldless space. Einstein's derivation of the law of gravita-

tion, however, assumes the possibility of a mathematical

transformation to the accelerated system, which is of

metric nature; that is, assumes the existence of metric rela-

tions and therefore requires the selection of a metric axiom.

Any axiom which establishes metric relations would obvi-

ously fulfill the conditions of permitting the transformation

to the accelerated system, and thus give a law of gravita-

tion. Thus many different forms of the law of gravitation

could be derived, since different forms of metric axioms

could be chosen and the form of the metric axiom is arbi-

trary. Einstein chose the metric axiom which gives the

simplest formulation of the physical and mathematical

laws. This is it: ''Whatever may be the characteristic or

curvature of the space, and however it may vary from

point to point or remain constant, an element of space

—

that is, an infinitely small part of it—is plane or Euclidean."

The general geometry of space (whether 2-space, that is,

plane geometry, or 3-space, that is, solid geometry) is pro-

jective or non-metrical; that is, it deals with problems of

position only, and its space is merely a dimensional con-

tinuous manifold, as discussed before. Metric relations,

such as equality of length, area, volume, congruence, the

relation of smaller or larger, proportionality, the distinction
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between finite and infinitely distant, etc., are foreign to

general space, but require an additional property of space

beyond that of being a continuous manifold, namely, the

property, that measurement^—that is, comparison of sizes

of figures—can be carried out. Measurement is carried out

by bringing figures into coincidence—that is, the measuring

rule with the length to be measured, the area to be measured

with the unit area used as measure, the triangles which are

to be proven as congruent with each other, etc. To make
this possible it is necessary that figures can be moved in

space without changing. Obviously, if moving a figure, as

a triangle, would change its size, we could not prove or

discuss the equality or congruence of two figures by moving

one into coincidence with the other, since when we moved it

it would not be the same figure any more. Metric space is,

therefore, characterized, in distinction to general space, by

the additional axiom:

"Figures can be moved in space without change of their

size or of the size of their component parts."

This metric axiom leads to the condition that the charac-

teristic, or curvature, of the space must be constant. Thus

there are only three spaces in which complete metric rela-

tions are possible, the Euclidean or plane, the elliptic and

the hyperbolic space. Complete metric relations, such as

congruence of figures, etc., exist only within a space of

constant curvature or between different spaces of the same

curvature, as between the plane and the conical surface

(zero 2-space) or between the sphere and the surface of a

spindle of the same curvature as the sphere. They do not

exist, for instance, between the plane and the sphere

—

2-spaces of different curvature. A triangle in the plane and

a triangle on a sphere can never be congruent and can never

be made to coincide. If the sides of the two triangles were

equal and I try to make them coincide, I have to stretch or

contract the area of one to make it fit the other, and this

changes its area, its angles, etc., so that it is not the same

triangle any more. The same thing is true with two spheri-
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cal triangles of different curvature, as, for instance, located

at two different parts of an egg-shaped surface, a 2-space of

varying positive curvature. The metric relation of con-

gruence, or proportionality, etc., does not exist in a space

of varying curvature, as figures cannot be moved to bring

them into coincidence without changing their shape by
stretching or contracting.

It is not possible, therefore, to represent an elliptic 2-

space—like the surface of the earth—on a plane 2-space

—

as in a plane map^—without distorting the dimensions,

getting the different parts out of proportion with each

other.

Nevertheless, a partial metric relation is possible in spaces

of varying curvature or between spaces of different curva-

ture. For instance, we measure the length of a curve, like

the circumference of a circle, by comparing it with a straight

line.^ We measure the area of a sphere or a part of it (as

the surface of the earth or that of a country) by comparing

it with a flat or plane unit area-—for instance, a square mile

—though this can be done only indirectly and there is no

possibility of physically carrying out such measurement,

as we can never make a flat unit area coincide with a curved

surface or a part of it. We can do it, however, by compar-

ing the two, the curved line and the straight line, or the

curved area and the flat unit area, element by element.

If we desired to measure the circumference of a circle

three feet in diameter by a straight rule one foot in length,

we should get very inaccurate results, as a rule one foot in

length cannot be made to coincide with the curved peri-

phery of the circle. If, however, we were to use a straight

rule one inch in length, we should get much more accurate

results in measuring a circle three feet in diameter, as the

^ It appears to us obvious now that the length of a curved line can be
measured, that is, compared with the length of a straight measuring rod;

but this is not at all so obvious, and it was a matter of serious discussion by
the great mathematicians of ancient time whether there could be such a

thing as a "measurement" of the circumference of a circle.

8
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one-inch straight rule could be made almost to coincide

with a part of the periphery. The shorter the straight rule

we use, the more accurately it will coincide with the curved

periphery of the circle and the more accurate will be the

measurement, and if it were possible to use an infinitely

short rule in measuring the length of a curved line, we
should get perfect accuracy. This means, in other words,

that the shorter a part of a curved line is the straighter it is,

and that an infinitely short part of a curved line is

straight.

The same applies with areas or surfaces. The smaller

a part of a curved surface is the planer it is, and an infinitely

small part of a curved surface is plane.

This makes it possible to measure the length of curved

lines, the area of curved surfaces, the volume of curved

spaces, etc. The characteristics are:

"A piece of a curved line is the straighter the shorter it is,

and an infinitely short piece of a curved line is straight."

"A piece of a curved surface is the planer the smaller it is,

and an infinitely small piece of a curved surface is plane."

''A piece of a curved space is the planer the smaller it is,

and an infinitely small piece of a curved (or non-Euclidean)

space is plane, that is, Euclidean."

This, however, is not an inherent property of space. It

does not hold for the general or non-metric space, but it is a

special condition imposed upon space. It is a metric

axiom, the adoption of which gives to space characteristics

beyond those of general space, namely, the property that

measurements can be made in space.

For instance, at the point of the cone, or at the singular

line of the pseudo-sphere, this axiom does not hold, and no

matter how small a piece at the point of the cone or the

singular line of the pseudo-sphere we take, it never is plane

or Euclidean. This condition that the space element is

Euclidean applies to all spaces of constant curvature, and
therefore, in describing the characteristics of these spaces,

we said, for instance, referring to elliptic space: ''The sum
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of the angles in a triangle is greater than 180 degrees, the

more so the larger the triangle." In an infinitely small

triangle of elliptic space the sum of the angles is 180

degrees, because an infinitely small piece of elliptic space is

Euclidean.

However, the spaces of constant curvature are more
special than the space with the Euclidean element. For

instance, an egg-shaped surface does not have constant

curvature, but its element is Euclidean.

We thus have here three successive gradations of the

conception of mathematical space:

1. The general space, as a continuous manifold, in which

a geometry of position exists, but no metric geometry.

2. The differential metric space, that is, the general space

with the differential metric axiom added, the axiom that an
element of the space is Euclidean. This permits those metric

relations which can be derived by segregation into elements

(line elements, surface elements, etc.) and permits measure-

ment of lengths and areas, but not comparison of figures,

such as congruence, as motion of figures in the space is not

possible without change.

3. The completely metric space—that is, the differential

metric space with the integral metric axiom added, the

axiom that figures can be moved in space without change

of shape. This gives the space of constant curvature,

Euclidean, elliptic or hyperbolic.

The differentially metric space, established by the axiom
that the element of the space is plane or Euclidean, is not

the most general metric space, but the most general metric

space would be established by the differential metric axiom
that all the elements of the space are of the same character-

istic. But whether this characteristic of the space element

is Euclidean or of any other form is arbitrary. That is

:

2o. The general differential metric space is the general

space with the axiom added that all the elements of the

space have the same characteristic. That is, if ds is a line

element and dxi an element of the coordinate Xi (where
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i = 1 and 2 for 2-space, 1, 2 and 3 for 3-space, 1.2 — n for

7i-space), it is:

^§2 _ p{dx^ = independent of Xi]

that is, dsMs a constant quadratic function of the coordinate

element dXi.

For the special differential metric space, in which the ele-

ments are Euclidean, it is:

ds"^- = Hdxi"^,

while in general, for differential metric 3-space, it is:

ds^ = Qidxi^ + g2dx2^ + gsdx^^ + giidxidx^ + g^zdxidxz +

As the elliptic space of the gravitational field and the

Euclidean space of fieldless regions have a different curva-

ture, complete metric relations, such as congruence of fig-

ures in the two spaces, cannot exist between them. Since,

however, both spaces are differentially metric spaces

—

that is, their elements are Euclidean-—such metric relations

as exist in differentially metric spaces-—that is, comparison

of the length of lines, areas of surfaces, volumes of bodies

—

exist between elliptic and Euclidean space. In the trans-

formation to an accelerated system, which leads to his

formulation of the law of gravitation, Einstein therefore

makes the assumption of the existence of the differentially

metric axiom. This is necessary, as without it no metric

relations could be established, but nevertheless it is an

arbitrary feature, justified only by the simplicity of the

results.

K. VISUAL APPEARANCE OF CURVED SPACE

The distance of an object we estimate by the difference

in the direction in which we see it from the two eyes. Thus,

if, in Fig. 32, is an object and Ai and A2 the two eyes,

the difference in the two lines of sight AiO and AoO gives

us the distance of 0. If is further away, the lines AiO

and A2O differ less in direction, and finally, when is
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infinitely far away, the two lines of sight A^O and AiO
have the same direction. That an object is infinitely dis-

tant (that is, very far distant) we thus recognize by the

Fig. 32.

two lines of sight from our eyes to the object having the

same direction.

This is in Euclidean space.

How would elliptic and hyperbolic space look to us?

In elliptic space there is no infinite distance, and the

straight line is finite in length. Thus, if there were no

obstructions and no light-absorbing medium, the line of

sight from the eye should return into itself; that is, every-

where where the view is free we should see the back of our

head covering all open space^—because all lines of vision,

in whatever direction we look, return into themselves

through the back of our head. However, this is meaning-

less in our universe, since, though finite, it is so enormously

large—the length of the straight line being equal to about

400,000,000 light-years^—that light would have been

absorbed long before it had completed the closed path.

In elliptic space there is no infinite distance and the

straight line is finite in length. We would estimate the

distance of an object in the same manner as in Fig. 32,

by the difference in the direction of the two lines of vision

from the two eyes to the object, and the further the object

is away the less is the difference in this direction, until

finally, when the object is at the distance of one-quarter

the length of the line (one quadrant of the circle as which

the straight line of the elliptic space appears to us from a

higher Euclidean space), the two lines of vision AiO and

A2O have the same direction; that is, the object appears

at infinite distance. Thus, though elliptic space is finite

in extent, every object at a quarter-line length from our
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eyes appears infinitely distant. When we move toward it,

it comes into finite distance, and finally we reach it in a

finite distance, while other objects beyond it now have

come into quarter-line distance and appear infinitely

distant.

Thus, visually, infinity exists in the finite elliptic space,

and we see objects apparently at infinite distance, but can

reach them in finite distance.

In the hyperbolic space each line L (Fig. 33) has two

parallels Li and Lo through a point P—that is, two lines

Fig. 33.

which intersect L at infinity—and these tvv^o parallels Li

and L2 make an angle L1PL2 with each other. Thus L]

differs in direction from L at the point P, though parallel,

that is, intersecting it at infinity. Thus, if I look at a

receding object in hyperbolic space, the difference in the

direction of the two lines of vision from the two eyes, AiO
and A2O (Fig. 32) gets the less the further the object is

away. But even when the object is infinitely far away,

the two lines of sight toward it still differ in direction by
the angle by which two parallels differ in hyperbolic space,

and the object therefore appears to be at finite distance.

Visually there is no infinite distance in hyperbolic space,

but all objects appear at finite distance, even infinitely dis-

tant objects. But such infinitely distant objects, though

appearing at finite distance to the view, never get any

nearer, no matter how far we move toward them. Wc
may estimate their (apparent) distance and move toward

them by this distance and more, and still they appear just

as far, at the same apparently finite distance. (This

reminds us of the similar characteristic of the velocity of

light c in the relativity theory, which is finite, c = 3 X 10^''

cm., but still inapproachable, as no combination or addi-
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tion of lesser velocities can ever add to a sum equal to c.)

Helmholtz has shown that we can get a view of hyper-

bolic space by looking at our space through a large, slightly

concave lens which covers both eyes.

We thus find:

Euclidean space is infinite in extent, appears infinite

visually and is unbounded.

Elliptic space is finite in extent, but appears infinite

visually and is unbounded. Objects at a quarter-line

distance appear infinitely distant.

Hyperbolic space is infinite in extent, but appears finite

visually and is unbounded.

L. THE TWO-DIMENSIONAL ANALOGUE OF THE UNI-
VERSE, AND THE MATHEMATICAL CONCEPTION

OF IT

The relativity theory has reconfirmed the law of con-

servation of energy, but has denied the law of con-

servation of matter by showing matter as kinetic energy,

moc^, where c = velocity of light and mo is a constant.

Mass then is represented by:

moC^ + Em
_ v^

where v is the relative velocity and E the non-kinetic energy

of the body.

The constancy of the mass then is approximate only as

long as V is small compared with c and E small compared
with WqC^. This is the case at all but ionic velocities and
energies.

The gravitational field of matter, then, is of the character

of an accelerated system, and in the gravitational field the

laws of the Euclidean geometry cease to hold and space

shows a positive or elliptic curvature.

Space, then, and its characteristic or curvature are

functions of matter and thus of energy. That is, space is
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plane or Euclidean in the absence of matter and becomes
elliptic or positively curved in the presence of matter, the

more so the larger the amount of matter present ; that is, the

greater the gravitational field, as we say.

The universe, as we know, consists of isolated huge
masses, the fixed stars, which are surrounded by their

gravitational fields, but separated from each other by
enormous distances of empty or practically empty and
therefore essentially Euclidean space. At the masses of

the fixed stars the curvature of the universe thus is positive;

in their gravitational fields it gradually tapers down to zero

in the fieldless space between the fixed stars. Geometric-

ally, we may thus picture for ourselves a two-dimensional

analogy of our universe by replacing the fixed stars with

very shallow spherical segments—^positive 2-space—which

continue as very shallow conical surfaces^—^the gravitational

fields-—^into the flat Euclidean planes of fieldless space, as

shown in the reproduction of such a model in Fig. 34.^

As has been seen, owing to the curvature of the spherical

segments (the masses), if we traverse the model in a straight

line, we gradually curve in a direction at right angles to the

plane of the model^—that is, into the third dimension-—

•

so that we return to our starting point after passing about

twelve masses. This shows how the existence of positively

curved regions (masses) makes the total universe of finite

extent.

However, this analogy of a two-dimensional model with

our universe must not be carried too far, as it is deficient in

an essential feature. In the 2-space we have either positive

or negative or zero curvature, depending on whether the

two radii of curvature of the surface are in the same direc-

tion or in opposite direction, or whether one is zero. In

' This Fig. 34 shows the two-dimensional analogy of our universe about

one million times exaggerated. That is, the actual curvature is about one-

millionth as much as shown, or, instead of twelve, about twelve million

masses are passed before a straight line returns into itself in the physical

universe.
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3-space, however, there are three radii of curvature, and

combinations exist which have no analogy in 2-space and

therefore cannot be illustrated by analogy with it. This

limits the completeness of the 2-space analogies with 3-

space relations, so that the preceding can be considered

only as giving a rather crude conception of the 3-space

characteristics.

Physical space, we have seen, is not a space of constant

curvature, but of a curvature which varies from point to

point with the distribution of matter. From what we

have discussed, therefore, it follows that the metric axioms

do not rigidly hold in physical space, and figures cannot

be moved in space without stretching or contracting when

passing from a point of space to a point of different curva-

ture. Measurements and dimensional relations, therefore,

are not rigidly possible in physical space, and strictly, we

cannot speak of the length or the size of a body, as we can-

not measure it by bringing the measure to it, because the

length and shape of the measure change when it is moved
through space. Thus length and size are not fixed proper-

ties of a body, but depend on the conditions under which

they are determined, and this brings us back to the conclu-

sions of the first lecture on the relativity of length and time.

Instead of the physical conception of mass as a kinetic

energy which causes a curvature, a deformation or ''kink"

in space, we may start from the mathematical side and

consider mass and its gravitational field as the manifesta-

tion or physical representation of a curvature of space.

We may consider physical space as varying in curvature

between zero and positive values. In other words, space,

though in general of zero curvature, or Euclidean, contains

singular points, or rather regions of positive curvature,

which we call ''masses." In a region surrounding a region

of positive curvature or ''mass" the curvature of the space

gradually changes from the positive values in the mass to

zero at distance from the mass, and such a region we call

the gravitational field of the mass. Energy then becomes
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space curvature, and the characteristic constant of space

is the measure of energy.

The hmitations of this mathematical conception of the

physical universe are that the electromagnetic energy and
the electromagnetic field do not yet satisfactorily fit into it.
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Aberration of light, 15

Absolute number, meaning, 38

Accelerated motion, and gravitation,
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Acceleration, 9, 47

Action at distance, 19

Alternating current, 14

dielectric field, 20

Analogue, 2 dimensional, of uni-

verse, 119

Axioms of mathematics, 70

metric, of space, 95, 110

B

Beltrami's pseudosphere, 91

Bending of space, 88

Betelgeuse, 67

Bolyai, 71

Bullet velocity, 13

C

Capacity and wave velocity, 23

Centrifugal field, 47

force and inertia, 49

mass, 47

Characteristic of space, 69

constant of space, 81

Charge, electrostatic, 47

Circle, in centrifugal and gravita-

tional field, 62

circumference and diameter, 61

Color, relatively, 7

Combination of velocities in rela-

tivity, 42

Comet, orbits, 60

velocity, 13

Completely metric space, 115

Cone, as Euclidean 2-space, 90

Conic in projective geometry, 107

Constant, characteristic, of space, 81

Coordinates of space elements, 92
Corpuscular theory of light, 13

Curvature of bundle as 2-space, 102

of curve, 82

of space, 80, 81, 83

Cylinder, as Euclidean 2-space, 90

D

Deflection of light in gravitational

field, 55

angle and equation, 59

Detonation velocity, 13

Dielectric field, 18

intensity, 47

Differential metric space, 115

Dimensions of physical space, 97

Direction of curve, 82

Distance between two events, 32

measure of time, 33

E

Earth as elliptic 2-space, 75

Einstein, law of gravitation, 11

Electric field, 47

quantity, 47

Electricity, constancy of speed, 4

Electromagnet, 20

Electromagnetic field, 21

wave, 17, 21

frequency, 22

Electron velocity, 8

Electrostatic charge, 47

field, 18

ElUptic geometry, 64, 72, 74

trigonometry, 77

Energy equivalent of mass, 44

field, 22, 46

kinetic, 47

and mass, 41

of wave, 22
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Entity energy, 24

Equations of transformation to

moving system, 25, 27

Ether, 12, 14

as solid, 14

drift, 14

fallacy of conception, 16

illogical, 18

unnecessary, 17

waves, 18

Euclid, 71

Euclidean geometry, 64, 72, 74

F

Fallacy of ether conception, 16

Faraday, 12, 17

Field, centrifugal, 47

dielectric, 18

electromagnetic, 21

electrostatic, 18

gravitational, 18, 46, 47

magnetic, 18

of energy, 22

of force, 12, 18

Finite volume of universe, 63

Force, magnetic, 46

Four-dimensional space with sphere

as element, 99

Fraction, meaning of, 38

Frequencies of electromagnetic

waves, 22

Friction of ether, 14

G
Gauss, 71

General differential space, 115

geometry, 64

or projective geometry space, 115

Geometry, 64

of gravitational field, 69

Gravitation, 46

as accelerated motion, 52

as centrifugal force of radial

acceleration, 55

as inertia of accelerated system,

53

laws of, 9, 11, 50

and metric axiom, 110

Gravitational field, 18, 21, 47

and deflection of light, 55, 59

as space curvature, 121

its geometry, 69

intensity, 47

shifting of spectrum lines, 68

Gravitational force as centrifugal

force of imaginary velocity, 55

and inertia, 53

Gravitational mass, 47

H

in projectiveHarmonic relation

geometry, 108

as non-metric, 110

Hertz, 17, 21

Hyperbolic geometry, 64, 72, 74

Hypersurface, 88

Hypothesis of ether abandoned, 16

Imaginary number, meaning, 38

rotation, meaning, 39

representing relativity, 35

Inductance and wave velocity, 23

Inertial mass, 47

Infinitely distant elements in geom-

etry, 96

Intensity of dielectric field, 47

of gravitational field, 47

of magnetic field, 47

Interference of light, 13

K

Kinetic energy, 44, 47

Kinks, in space, 90

Law of gravitation, 50

Length, relativity, 6

of straight line, 87

shortening by motion, 5, 28

transformation by motion, 26
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Light, constancy of speed, 4

as wave, 13

deflection in gravitational field,

55, 59

orbit of beam, 59, 60

-year, 34

Limit velocity, that of light, 42

Lines of force, 18

as space element in bundle, 100

Lobatschewsky, 71

Lorentz transformation, 26

M

Magnet, permanent, 18

Magnetic field, 18, 48

intensity, 47

Magnetic pole strength, 47

Manifold, continuous dimensional,

92

Mass, centrifugal, 47

and energy, 41

as space curvature, 121

gravitational, 47

inertial, 47

relativity, 8

Mathematical conception of mass,

121

space and physical space, 92

Mathematics, relative and not abso-

lute, 70

Matter, law of conservation, 8

Maxwell, 12, 17, 21

Mercury, planet, 13

Metric axiom, differential, 115

and law of gravitation, 110

of space, 95, 110

Metric relations in space, 95

partial, 113

Minkowski's four-dimensional space,

24

N

Negative number, meaning, 38

Newton, law of gravitation, 10

theory of light, 13

7i-space, 93

O

Orbit of beam of light in gravita-

tional field, 59

cosmic, 59

Parabolic geometry {See Euclidean

geometry)

Parallels, 64

axiom, 72

Partial metric relations, 113

Pathcurve of train, 30

Periodic phenomenon or wave, 20

Phase of wave, 14

Physical space, dimensions, 97

and mathematical, 92

Plane geometry (See Euclidean

geometry).

Planet, orbit, 59

Point as element of space, 92

Polar, 108

Polarization, 14

Pole and polar, 108

strength, magnetic, 47

Position geometry (See General

geometry or Projective geom-

etry).

Projective geometry, 72, 74, 107

Pseudosphere, Beltrami's, 91

Pseudospherical or hyperbolic geom-

etry

Q

Quantity, electric, 47

R

Radius of curv^ature, 82

of space, 83

of world, 65

Ray as space element in bundle, 100

Riemann, 71

Rigidity of ether, 14

Rotation, imaginary, meaning, 39

representing relativity, 35

Rotation of pathcurve of train, 31
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Sense perceptions as primary, 23

Simultaneousness of events, 28

Singular points and lines in space, 90

Six-dimensional physical space, 97
Space, bending of, 88

characteristic, 69

curved, visional appearance, 116

general, 95

mathematical and physical, 92

Spectrum lines, shift in gravitational

field, 68

Speed, length and time, 8 (See

velocity).

Sphere as element of four-dimen-

sional space, 99

Spherical or elhptic geometry, 74

trigonometry as plane trigonom-

etry of elliptic 2-space, 77

Spindle as elliptic 2-space, 89

Steam velocity, 13

Straightest line, 79

Straight line in curved space, 85

definition, 79

length, 87

on earth, 76, 78

relativity of, 79, 87
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Time effects of gravitational field, 67
measure of length, 33

relativity, 6

slowing down by motion, 5, 28
transformation by motion, 26

Track coordinates and train coordi-

nates, 26

Tractrix, 91

Train coordinates and track coordi-

nates, 26

pathcurve, 30

Transverse wave motion of light, 14

Triangle, sum of angles, 63

U

Universe, finite volume, 63

two-dimensional analogue of, 119

V

Velocity combination in relativity

theory, 42

factor of shortening of length and
slowing down of time, 29

of electromagnetic wave, 23
of light, 23

Visual appearance of curved space,

116

Volume, finite, of universe, 63, 65

W
Tenuity of ether, 14

Theorems in bundle as elliptic Wave, electromagnetic, 17

2-space, 103 - and wave motion, 17

of mathematics, 70 theory of light, 13, 17
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INSTRUCTIONS FOR OBSERVING THE ILLUS-

TRATIONS STEREOSCOPICALLY

By a little practice, one can throw these illustrations into

stereoscopic vision without the use of a stereoscope. This is

done by the use of a black cardboard barrier to constrain the

left eye to see only the left image, and the right eye, the right.

Hold a piece of black cardboard, 3>^ by 8 inches, perpendicular

to the page, with the Z}4 inch end resting on the page midway

between the two images. Hold the page so that both images are

equally illuminated and no shadows on them, and with the end

of the cardboard touching the nose and forehead. You will

thus see only one image, which at first may appear unsteady and

somewhat blurred, both because the image is too close for the

eyes properly to adjust themselves in focus, and also the angle

at which the eyes are now required to set themselves is unnatural.

Slowly move the page and cardboard (the latter held always

perpendicular to the page) away from the face, concentrating

persistently on this image and on some single feature of the image,

su:h as a line intersection, until the page is at the ordinary reading

distance from the eyes. The lines will then be in focus, the

single image will stand out in perfect stereoscopic effect, and

attention can now be turned from the particular feature to the

image as a whole. The surface of the ball and the lines on it

will appear curved, as in an actual sphere, and the corrugations

of the paper surfaces will stand out in relie^, so that the proper

curvature of the lines can be observed.

However, to get stereoscopic vision, it is necessary that both

eyes have the same focal length, or to wear glasses correcting for

the same focal length.




