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Preface
The more language applications you build, the more patterns you’ll

see. The truth is that the architecture of most language applications

is freakishly similar. A broken record plays in my head every time I

start a new language application: “First build a syntax recognizer that

creates a data structure in memory. Then sniff the data structure, col-

lecting information or altering the structure. Finally, build a report or

code generator that feeds off the data structure.” You even start see-

ing patterns within the tasks themselves. Tasks share lots of common

algorithms and data structures.

Once you get these language implementation design patterns and the

general architecture into your head, you can build pretty much what-

ever you want. If you need to learn how to build languages pronto, this

book is for you. It’s a pragmatic book that identifies and distills the

common design patterns to their essence. You’ll learn why you need

the patterns, how to implement them, and how they fit together. You’ll

be a competent language developer in no time!

Building a new language doesn’t require a great deal of theoretical com-

puter science. You might be skeptical because every book you’ve picked

up on language development has focused on compilers. Yes, build-

ing a compiler for a general-purpose programming language requires

a strong computer science background. But, most of us don’t build

compilers. So, this book focuses on the things that we build all the

time: configuration file readers, data readers, model-driven code gener-

ators, source-to-source translators, source analyzers, and interpreters.

We’ll also code in Java rather than a primarily academic language like

Scheme so that you can directly apply what you learn in this book to

real-world projects.

    



WHAT TO EXPECT FROM THIS BOOK 13

What to Expect from This Book

This book gives you just the tools you’ll need to develop day-to-day lan-

guage applications. You’ll be able to handle all but the really advanced

or esoteric situations. For example, we won’t have space to cover top-

ics such as machine code generation, register allocation, automatic

garbage collection, thread models, and extremely efficient interpreters.

You’ll get good all-around expertise implementing modest languages,

and you’ll get respectable expertise in processing or translating com-

plex languages.

This book explains how existing language applications work so you

can build your own. To do so, we’re going to break them down into

a series of well-understood and commonly used patterns. But, keep in

mind that this book is a learning tool, not a library of language imple-

mentations. You’ll see many sample implementations throughout the

book, though. Samples make the discussions more concrete and pro-

vide excellent foundations from which to build new applications.

It’s also important to point out that we’re going to focus on building

applications for languages that already exist (or languages you design

that are very close to existing languages). Language design, on the other

hand, focuses on coming up with a syntax (a set of valid sentences) and

describing the complete semantics (what every possible input means).

Although we won’t specifically study how to design languages, you’ll

actually absorb a lot as we go through the book. A good way to learn

about language design is to look at lots of different languages. It’ll help

if you research the history of programming languages to see how lan-

guages change over time.

When we talk about language applications, we’re not just talking about

implementing languages with a compiler or interpreter. We’re talking

about any program that processes, analyzes, or translates an input file.

Implementing a language means building an application that executes

or performs tasks according to sentences in that language. That’s just

one of the things we can do for a given language definition. For exam-

ple, from the definition of C, we can build a C compiler, a translator

from C to Java, or a tool that instruments C code to isolate memory

leaks. Similarly, think about all the tools built into the Eclipse develop-

ment environment for Java. Beyond the compiler, Eclipse can refactor,

reformat, search, syntax highlight, and so on.
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HOW THIS BOOK IS ORGANIZED 14

You can use the patterns in this book to build language applications

for any computer language, which of course includes domain-specific

languages (DSLs). A domain-specific language is just that: a computer

language designed to make users particularly productive in a specific

domain. Examples include Mathematica, shell scripts, wikis, UML,

XSLT, makefiles, PostScript, formal grammars, and even data file for-

mats like comma-separated values and XML. The opposite of a DSL is

a general-purpose programming language like C, Java, or Python. In

the common usage, DSLs also typically have the connotation of being

smaller because of their focus. This isn’t always the case, though. SQL,

for example, is a lot bigger than most general-purpose programming

languages.

How This Book Is Organized

This book is divided into four parts:

• Getting Started with Parsing: We’ll start out by looking at the over-

all architecture of language applications and then jump into the

key language recognition (parsing) patterns.

• Analyzing Languages: To analyze DSLs and programming langu-

ages, we’ll use parsers to build trees that represent language con-

structs in memory. By walking those trees, we can track and iden-

tify the various symbols (such as variables and functions) in the

input. We can also compute expression result-type information

(such as int and float). The patterns in this part of the book explain

how to check whether an input stream makes sense.

• Building Interpreters: This part has four different interpreter pat-

terns. The interpreters vary in terms of implementation difficulty

and run-time efficiency.

• Translating and Generating Languages: In the final part, we will

learn how to translate one language to another and how to gen-

erate text using the StringTemplate template engine. In the final

chapter, we’ll lay out the architecture of some interesting language

applications to get you started building languages on your own.

The chapters within the different parts proceed in the order you’d follow

to implement a language. Section 1.2, A Tour of the Patterns, on page 22

describes how all the patterns fit together.
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What You’ll Find in the Patterns

There are 31 patterns in this book. Each one describes a common data

structure, algorithm, or strategy you’re likely to find in language appli-

cations. Each pattern has four parts:

• Purpose: This section briefly describes what the pattern is for. For

example, the purpose of Pattern 21, Automatic Type Promotion,

on page 208 says “. . . how to automatically and safely promote

arithmetic operand types.” It’s a good idea to scan the Purpose

section before jumping into a pattern to discover exactly what it’s

trying to solve.

• Discussion: This section describes the problem in more detail,

explains when to use the pattern, and describes how the pattern

works.

• Implementation: Each pattern has a sample implementation in

Java (possibly using language tools such as ANTLR). The sam-

ple implementations are not intended to be libraries that you can

immediately apply to your problem. They demonstrate, in code,

what we talk about in the Discussion sections.

• Related Patterns. This section lists alternative patterns that solve

the same problem or patterns we depend on to implement this

pattern.

The chapter introductory materials and the patterns themselves often

provide comparisons between patterns to keep everything in proper

perspective.

Who Should Read This Book

If you’re a practicing software developer or computer science student

and you want to learn how to implement computer languages, this

book is for you. By computer language, I mean everything from data

formats, network protocols, configuration files, specialized math lan-

guages, and hardware description languages to general-purpose pro-

gramming

languages.

You don’t need a background in formal language theory, but the code

and discussions in this book assume a solid programming background.
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HOW TO READ THIS BOOK 16

To get the most out of this book, you should be fairly comfortable with

recursion. Many algorithms and processes are inherently recursive.

We’ll use recursion to do everything from recognizing input, walking

trees, and building interpreters to generating output.

How to Read This Book

If you’re new to language implementation, start with Chapter 1, Lan-

guage Applications Cracked Open, on page 20 because it provides an

architectural overview of how we build languages. You can then move

on to Chapter 2, Basic Parsing Patterns, on page 37 and Chapter 3,

Enhanced Parsing Patterns, on page 65 to get some background on

grammars (formal language descriptions) and language recognition.

If you’ve taken a fair number of computer science courses, you can

skip ahead to either Chapter 4, Building Intermediate Form Trees, on

page 88 or Chapter 5, Walking and Rewriting Trees, on page 116. Even

if you’ve built a lot of trees and tree walkers in your career, it’s still

worth looking at Pattern 14, Tree Grammar, on page 134 and Pattern

15, Tree Pattern Matcher, on page 138.

If you’ve done some basic language application work before, you already

know how to read input into a handy tree data structure and walk it.

You can skip ahead to Chapter 6, Tracking and Identifying Program

Symbols, on page 146 and Chapter 7, Managing Symbol Tables for Data

Aggregates, on page 170, which describe how to build symbol tables.

Symbol tables answer the question “What is x?” for some input symbol

x. They are necessary data structures for the patterns in Chapter 8,

Enforcing Static Typing Rules, on page 196, for example.

More advanced readers might want to jump directly to Chapter 9, Build-

ing High-Level Interpreters, on page 232 and Chapter 12, Generating

DSLs with Templates, on page 323. If you really know what you’re doing,

you can skip around the book looking for patterns of interest. The truly

impatient can grab a sample implementation from a pattern and use it

as a kernel for a new language (relying on the book for explanations).

If you bought the e-book version of this book, you can click the gray

boxes above the code samples to download code snippets directly. If

you’d like to participate in conversations with me and other readers,

you can do so at the web page for this book1 or on the ANTLR user’s

1. http://www.pragprog.com/titles/tpdsl
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list.2 You can also post book errata and download all the source code

on the book’s web page.

Languages and Tools Used in This Book

The code snippets and implementations in this book are written inJava,

but their substance applies equally well to any other general program-

ming language. I had to pick a single programming language for con-

sistency. Java is a good choice because it’s widely used in industry.3,4

Remember, this book is about design patterns, not “language recipes.”

You can’t just download a pattern’s sample implementation and apply

it to your problem without modification.

We’ll use state-of-the-art language tools wherever possible in this book.

For example, to recognize (parse) input phrases, we’ll use aparser gen-

erator (well, that is, after we learn how to build parsers manually in

Chapter 2, Basic Parsing Patterns, on page 37). It’s no fair using a

parser generator until you know how parsers work. That’d be like using

a calculator before learning to do arithmetic. Similarly, once we know

how to build tree walkers by hand, we can let a tool build them for us.

In this book, we’ll use ANTLR extensively. ANTLR is a parser generator

and tree walker generator that I’ve honed over the past two decades

while building language applications. I could have used any similar

language tool, but I might as well use my own. My point is that this

book is not about ANTLR itself—it’s about the design patterns common

to most language applications. The code samples merely help you to

understand the patterns.

We’ll also use a template engine called StringTemplate a lot in Chap-

ter 12, Generating DSLs with Templates, on page 323 to generate out-

put. StringTemplate is like an “unparser generator,” and templates are

like output grammar rules. The alternative to a template engine would

be to use an unstructured blob of generation logic interspersed with

print statements.

You’ll be able to follow the patterns in this book even if you’re not famil-

iar with ANTLR and StringTemplate. Only the sample implementations

use them. To get the most out of the patterns, though, you should walk

2. http://www.antlr.org/support.html

3. http://langpop.com

4. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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through the sample implementations. To really understand them, it’s

a good idea to learn more about the ANTLR project tools. You’ll get a

taste in Section 4.3, Quick Introduction to ANTLR, on page 99. You can

also visit the website to get documentation and examples or purchase

The Definitive ANTLR Reference [Par07] (shameless plug).

One way or another, you’re going to need language tools to implement

languages. You’ll have no problem transferring your knowledge to other

tools after you finish this book. It’s like learning to fly—you have no

choice but to pick a first airplane. Later, you can move easily to another

airplane. Gaining piloting skills is the key, not learning the details of a

particular aircraft cockpit.

I hope this book inspires you to learn about languages and motivates

you to build domain-specific languages (DSLs) and other language tools

to help fellow programmers.

Terence Parr

December 2009

parrt@cs.usfca.edu
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Getting Started with Parsing

    



Chapter 1

Language Applications
Cracked Open

In this first part of the book, we’re going to learn how to recognize com-

puter languages. (A language is just a set of valid sentences.) Every

language application we look at will have a parser (recognizer) compo-

nent, unless it’s a pure code generator.

We can’t just jump straight into the patterns, though. We need to see

how everything fits together first. In this chapter, we’ll get an architec-

tural overview and then tour the patterns at our disposal. Finally, we’ll

look at the guts of some sample language applications to see how they

work and how they use patterns.

1.1 The Big Picture

Language applications can be very complicated beasts, so we need

to break them down into bite-sized components. The components fit

together into a multistage pipeline that analyzes or manipulates an

input stream. The pipeline gradually converts an input sentence (valid

input sequence) to a handy internal data structure or translates it to a

sentence in another language.

We can see the overall data flow within the pipeline in Figure 1.1, on the

next page. The basic idea is that a reader recognizes input and builds

anintermediate representation (IR) that feeds the rest of the application.

At the opposite end, a generator emits output based upon the IR and

what the application learned in the intermediate stages. The interme-

diate stages form the semantic analyzer component. Loosely speaking,
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GeneratorReader

Interpreter

Translator

npu outputgenerate
IRIRrecogn ze

& bu d IR

Semantic analyzer

co ect nfo,

annotate IR,

rewr te IR,

or execute

Figure 1.1: The multistage pipeline of a language application

semantic analysis figures out what the input means (anything beyond

syntax is called thesemantics).

The kind of application we’re building dictates the stages of the pipeline

and how we hook them together. There are four broad application

categories:

• Reader: A reader builds a data structure from one or more input

streams. The input streams are usually text but can be binary

data as well. Examples include configuration file readers, program

analysis tools such as a method cross-reference tool, and class file

loaders.

• Generator: A generator walks an internal data structure and emits

output. Examples include object-to-relational database mapping

tools, object serializers, source code generators, and web page

generators.

• Translator or Rewriter: A translator reads text or binary input and

emits output conforming to the same or a different language. It

is essentially a combined reader and generator. Examples include

translators from extinct programming languages to modern lan-

guages, wiki to HTML translators, refactorers, profilers that in-

strument code, log file report generators, pretty printers, and mac-

ro preprocessors. Some translators, such as assemblers and com-

pilers, are so common that they warrant their own subcategories.

• Interpreter: An interpreter reads, decodes, and executes instruc-

tions. Interpreters range from simple calculators and POP protocol

servers all the way up to programming language implementations

such as those for Java, Ruby, and Python.
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1.2 A Tour of the Patterns

This section is a road map of this book’s 31 language implementation

patterns. Don’t worry if this quick tour is hard to digest at first. The

fog will clear as we go through the book and get acquainted with the

patterns.

Parsing Input Sentences

Reader components use the patterns discussed in Chapter 2, Basic

Parsing Patterns, on page 37 and Chapter 3, Enhanced Parsing Pat-

terns, on page 65 to parse (recognize) input structures. There are five

alternative parsing patterns between the two chapters. Some languages

are tougher to parse than others, and so we need parsers of varying

strength. The trade-off is that the stronger parsing patterns are more

complicated and sometimes a bit slower.

We’ll also explore a little about grammars (formal language specifica-

tions) and figure out exactly how parsers recognize languages. Pattern

1, Mapping Grammars to Recursive-Descent Recognizers, on page 45

shows us how to convert grammars to hand-built parsers. ANTLR1 (or

any similar parser generator) can do this conversion automatically for

us, but it’s a good idea to familiarize ourselves with the underlying

patterns.

The most basic reader component combines Pattern 2, LL(1) Recursive-

Descent Lexer, on page 49 together with Pattern 3, LL(1) Recursive-Des-

cent Parser, on page 54 to recognize sentences. More complicated lan-

guages will need a stronger parser, though. We can increase the recog-

nition strength of a parser by allowing it to look at more of the input at

once (Pattern 4, LL(k) Recursive-Descent Parser, on page 59).

When things get really hairy, we can only distinguish sentences by

looking at an entire sentence or phrase (subsentence) using Pattern

5, Backtracking Parser, on page 71.

Backtracking’s strength comes at the cost of slow execution speed. With

some tinkering, however, we can dramatically improve its efficiency. We

just need to save and reuse some partial parsing results with Pattern

6, Memoizing Parser, on page 78.

For the ultimate parsing power, we can resort to Pattern 7, Predicated

Parser, on page 84. A predicated parser can alter the normal parsing

flow based upon run-time information. For example, input T(i) can mean

1. http://www.antlr.org
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different things depending on how we defined T previously. A predicate

parser can look up T in a dictionary to see what it is.

Besides tracking input symbols like T, a parser can execute actions to

perform a transformation or do some analysis. This approach is usually

too simplistic for most applications, though. We’ll need to make multi-

ple passes over the input. These passes are the stages of the pipeline

beyond the reader component.

Constructing Trees

Rather than repeatedly parsing the input text in every stage, we’ll con-

struct an IR. The IR is a highly processed version of the input text that’s

easy to traverse. The nodes or elements of the IR are also ideal places to

squirrel away information for use by later stages. In Chapter 4, Building

Intermediate Form Trees, on page 88, we’ll discuss why we build trees

and how they encode essential information from the input.

The nature of an application dictates what kind of data structure we use

for the IR. Compilers require a highly specialized IR that is very low level

(elements of the IR correspond very closely with machine instructions).

Because we’re not focusing on compilers in this book, though, we’ll

generally use a higher-level tree structure.

The first tree pattern we’ll look at is Pattern 8, Parse Tree, on page 105.

Parse trees are pretty “noisy,” though. They include a record of the rules

used to recognize the input, not just the input itself. Parse trees are use-

ful primarily for building syntax-highlighting editors. For implementing

source code analyzers, translators, and the like, we’ll buildabstract syn-

tax trees (ASTs) because they are easier to work with.

An AST has a node for every important token and uses operators as

subtree roots. For example, the AST for assignment statement this.x=y;

is as follows:

x

y

=

.

this

The AST implementation pattern you pick depends on how you plan

on traversing the AST (Chapter 4, Building Intermediate Form Trees, on

page 88 discusses AST construction in detail).
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Pattern 9, Homogeneous AST , on page 109 is as simple as you can get.

It uses a single object type to represent every node in the tree. Homoge-

neous nodes also have to represent specific children by position within

a list rather than with named node fields. We call that a normalized

child list.

If we need to store different data depending on the kind of tree node,

we need to introduce multiple node types with Pattern 10, Normalized

Heterogeneous AST , on page 111. For example, we might want different

node types for addition operator nodes and variable reference nodes.

When building heterogeneous node types, it’s common practice to track

children with fields rather than lists (Pattern 11, Irregular Heteroge-

neous AST , on page 114).

Walking Trees

Once we’ve got an appropriate representation of our input in memory,

we can start extracting information or performing transformations.

To do that, we need to traverse the IR (AST, in our case). There are

two basic approaches to tree walking. Either we embed methods within

each node class (Pattern 12, Embedded Heterogeneous Tree Walker, on

page 128) or we encapsulate those methods in an external visitor (Pat-

tern 13, External Tree Visitor, on page 131). The external visitor is nice

because it allows us to alter tree-walking behavior without modifying

node classes.

Rather than build external visitors manually, though, we can auto-

mate visitor construction just like we can automate parser construc-

tion. To recognize tree structures, we’ll use Pattern 14, Tree Grammar,

on page 134 or Pattern 15, Tree Pattern Matcher, on page 138. A tree

grammar describes the entire structure of all valid trees, whereas a tree

pattern matcher lets us focus on just those subtrees we care about.

You’ll use one or more of these tree walkers to implement the next

stages in the pipeline.

Figuring Out What the Input Means

Before we can generate output, we need to analyze the input to extract

bits of information relevant to generation (semantic analysis). Lan-

guage analysis is rooted in a fundamental question: for a given symbol

reference x, what is it? Depending on the application, we might need to

know whether it’s a variable or method, what type it is, or where it’s

defined. To answer these questions, we need to track all input symbols
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using one of the symbol tables in Chapter 6, Tracking and Identifying

Program Symbols, on page 146 or Chapter 7, Managing Symbol Tables

for Data Aggregates, on page 170. A symbol table is just a dictionary

that maps symbols to their definitions.

The semantic rules of your language dictate which symbol table pattern

to use. There are four common kinds of scoping rules: languages with

a single scope, nested scopes, C-style struct scopes, and class scopes.

You’ll find the associated implementations in Pattern 16, Symbol Table

for Monolithic Scope, on page 156, Pattern 17, Symbol Table for Nested

Scopes, on page 161, Pattern 18, Symbol Table for Data Aggregates, on

page 176, andPattern 19, Symbol Table for Classes, on page 182.

Languages such as Java, C#, and C++ have a ton of semantic compile-

time rules. Most of these rules deal with type compatibility between

operators or assignment statements. For example, we can’t multiply

a string by a class name. Chapter 8, Enforcing Static Typing Rules,

on page 196 describes how to compute the types of all expressions

and then check operations and assignments for type compatibility. For

non-object-oriented languages like C, we’d apply Pattern 22, Enforcing

Static Type Safety, on page 216. For object-oriented languages like C++

or Java, we’d apply Pattern 23, Enforcing Polymorphic Type Safety, on

page 223. To make these patterns easier to absorb, we’ll break out some

of the necessary infrastructure in Pattern 20, Computing Static Expres-

sion Types, on page 199 and Pattern 21, Automatic Type Promotion, on

page 208.

If you’re building a reader like a configuration file reader or Java .class

file reader, your application pipeline would be complete at this point. To

build an interpreter or translator, though, we have to add more stages.

Interpreting Input Sentences

Interpreters execute instructions stored in the IR but usually need

other data structures too, like a symbol table. Chapter 9, Building High-

Level Interpreters, on page 232 describes the most common interpreter

implementation patterns, including Pattern 24, Syntax-Directed Inter-

preter, on page 238, Pattern 25, Tree-Based Interpreter, on page 243,

Pattern 27, Stack-Based Bytecode Interpreter, on page 272, and Pattern

28, Register-Based Bytecode Interpreter, on page 280. From a capability

standpoint, the interpreter patterns are equivalent (or could be made

equally powerful). The differences between them lie in the instruction
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set, execution efficiency, interactivity, ease-of-use, and ease of imple-

mentation.

Translating One Language to Another

Rather than interpreting a computer language, we can translate pro-

grams to another language (at the extreme, compilers translate high-

level programs down to machine code). The final component of any

translator is a generator that emits structured text or binary. The out-

put is a function of the input and the results of semantic analysis. For

simple translations, we can combine the reader and generator into a

single pass using Pattern 29, Syntax-Directed Translator, on page 307.

Generally, though, we need to decouple the order in which we com-

pute output phrases from the order in which we emit output phrases.

For example, imagine reversing the statements of a program. We can’t

generate the first output statement until we’ve read the final input

statement. To decouple input and output order, we’ll use a model-

driven approach. (See Chapter 11, Translating Computer Languages,

on page 290.)

Because generator output always conforms to a language, it makes

sense to use a formal language tool to emit structured text. What we

need is an “unparser” called a template engine. There are many excel-

lent template engines out there but, for our sample implementations,

we’ll use StringTemplate.2 (See Chapter 12, Generating DSLs with Tem-

plates, on page 323.)

So, that’s how patterns fit into the overall language implementation

pipeline. Before getting into them, though, it’s worth investigating the

architecture of some common language applications. It’ll help keep

everything in perspective as you read the patterns chapters.

1.3 Dissecting a Few Applications

Language applications are a bit like fractals. As you zoom in on their

architecture diagrams, you see that their pipeline stages are themselves

multistage pipelines. For example, though we see compilers as black

boxes, they are actually deeply nested pipelines. They are so compli-

cated that we have to break them down into lots of simpler components.

Even the individual top-level components are pipelines. Digging deeper,

2. http://www.stringtemplate.org
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Figure 1.2: Bytecode interpreter pipeline

the same data structures and algorithms pop up across applications

and stages.

This section dissects a few language applications to expose their archi-

tectures. We’ll look at a bytecode interpreter, a bug finder (source code

analyzer), and a C/C++ compiler. The goal is to emphasize the architec-

tural similarity between applications and even between the stages in a

single application. The more you know about existing language applica-

tions, the easier it’ll be to design your own. Let’s start with the simplest

architecture.

Bytecode Interpreter

An interpreter is a program that executes other programs. In effect,

an interpreter simulates a hardware processor in software, which is

why we call them virtual machines. An interpreter’s instruction set is

typically pretty low level but higher level than raw machine code. We call

the instructionsbytecodes because we can represent each instruction

with a unique integer code from 0..255 (a byte’s range).

We can see the basic architecture of a bytecode interpreter in Fig-

ure 1.2. A reader loads the bytecodes from a file before the inter-

preter can start execution. To execute a program, the interpreter uses a

fetch-decode-execute cycle. Like a real processor, the interpreter has an

instruction pointer that tracks which instruction to execute next. Some

instructions move data around, some move the instruction pointer

(branches and calls), and some emit output (which is how we get the

program result). There are a lot of implementation details, but this gives

you the basic idea.
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Figure 1.3: Source-level bug finder pipeline

Languages with bytecode interpreter implementations include Java,

Lua,3 Python, Ruby, C#, and Smalltalk.4 Lua uses Pattern 28, Register-

Based Bytecode Interpreter, on page 280, but the others use Pattern

27, Stack-Based Bytecode Interpreter, on page 272. Prior to version 1.9,

Ruby used something akin to Pattern 25, Tree-Based Interpreter, on

page 243.

Java Bug Finder

Let’s move all the way up to the source code level now and crack open

a Java bug finder application. To keep things simple, we’ll look for

just one kind of bug called self-assignment. Self-assignment is when

we assign a variable to itself. For example, the setX( ) method in the

following Point class has a useless self-assignment because this.x and x

refer to the same field x:

class Point {

int x,y;

void setX(int y) { this.x = x; } // oops! Meant setX(int x)

void setY(int y) { this.y = y; }

}

The best way to design a language application is to start with the end in

mind. First, figure out what information you need in order to generate

the output. That tells you what the final stage before the generator

computes. Then figure out what that stage needs and so on all the way

back to the reader.

3. http://www.lua.org

4. http://en.wikipedia.org/wiki/Smalltalk_programming_language
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Figure 1.4: Pipeline that recognizes Java code and builds an IR

For our bug finder, we need to generate a report showing all self-assign-

ments. To do that, we need to find all assignments of the form this.x

= x and flag those that assign to themselves. To do that, we need to

figure out (resolve) to which entity this.x and x refer. That means we

need to track all symbol definitions using a symbol table like Pattern

19, Symbol Table for Classes, on page 182. We can see the pipeline for

our bug finder in Figure 1.3, on the previous page.

Now that we’ve identified the stages, let’s walk the information flow for-

ward. The parser reads the Java code and builds an intermediate rep-

resentation that feeds the semantic analysis phases. To parse Java, we

can use Pattern 2, LL(1) Recursive-Descent Lexer, on page 49, Pattern

4, LL(k) Recursive-Descent Parser, on page 59, Pattern 5, Backtracking

Parser, on page 71, and Pattern 6, Memoizing Parser, on page 78. We

can get away with building a simple IR: Pattern 9, Homogeneous AST ,

on page 109.

The semantic analyzer in our case needs to make two passes over

the IR. The first pass defines all the symbols encountered during the

walk. The second pass looks for assignment patterns whose left-side

and right-side resolve to the same field. To find symbol definitions and

assignment tree patterns, we can use Pattern 15, Tree Pattern Matcher,

on page 138. Once we have a list of self-assignments, we can generate

a report.

Let’s zoom in a little on the reader (see Figure 1.4). Most text readers

use a two-stage process. The first stage breaks up the character stream

into vocabulary symbols calledtokens. The parser feeds off these tokens

to check syntax. In our case, the tokenizer (orlexer) yields a stream of

vocabulary symbols like this:

void setX yint( ) { ......
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As the parser checks the syntax, it builds the IR. We have to build an

IR in this case because we make multiple passes over the input. Reto-

kenizing and reparsing the text input for every pass is inefficient and

makes it harder to pass information between stages. Multiple passes

also support forward references. For example, we want to be able to see

field x even if it’s defined after method setX( ). By defining all symbols

first, before trying to resolve them, our bug-finding stage sees x easily.

Now let’s jump to the final stage and zoom in on the generator. Since

we have a list of bugs (presumably a list of Bug objects), our gener-

ator can use a simple for loop to print out the bugs. For more com-

plicated reports, though, we’ll want to use a template. For example,

if we assume that Bug has fields file, line, and fieldname, then we can

use the following two StringTemplate template definitions to generate

a report (we’ll explore template syntax in Chapter 12, Generating DSLs

with Templates, on page 323).

report(bugs) ::= "<bugs:bug()>" // apply template bug to each bug object

bug(b) ::= "bug: <b.file>:<b.line> self assignment to <b.fieldname>"

All we have to do is pass the list of Bug objects to the report template as

attribute bugs, and StringTemplate does the rest.

There’s another way to implement this bug finder. Instead of doing all

the work to read Java source code and populate a symbol table, we can

leverage the functionality of the javac Java compiler, as we’ll see next.

Java Bug Finder Part Deux

The Java compiler generates .class files that contain serialized versions

of a symbol table and AST. We can use Byte Code Engineering Library

(BCEL)5 or another class file reader to load .class files instead of building

a source code reader (the fine tool FindBugs6 uses this approach). We

can see the pipeline for this approach in Figure 1.5, on the following

page.

The overall architecture is roughly the same as before. We have just

short-circuited the pipeline a little bit. We don’t need a source code

parser, and we don’t need to build a symbol table. The Java compiler

has already resolved all symbols and generated bytecode that refers to

unique program entities. To find self-assignment bugs, all we have to

5. http://jakarta.apache.org/bcel/

6. http://findbugs.sourceforge.net/
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Figure 1.5: Java bug finder pipeline feeding off .class files

do is look for a particular bytecode sequence. Here is the bytecode for

method setX( ):

0: aload_0 // push 'this' onto the stack

1: aload_0 // push 'this' onto the stack

2: getfield #2; // push field this.x onto the stack

5: putfield #2; // store top of stack (this.x) into field this.x

8: return

The #2 operand is an offset into a symbol table and uniquely identifies

the x (field) symbol. In this case, the bytecode clearly gets and puts the

same field. If this.x referred to a different field than x, we’d see different

symbol numbers as operands of getfield and putfield.

Now, let’s look at the compilation process that feeds this bug finder.

javac is a compiler just like a traditional C compiler. The only difference

is that a C compiler translates programs down to instructions that run

natively on a particular CPU.

C Compiler

A C compiler looks like one big program because we use a single com-

mand to launch it (via cc or gcc on UNIX machines). Although the

actual C compiler is the most complicated component, the C compila-

tion process has lots of players.

Before we can get to actual compilation, we have to preprocess C files

to handle includes and macros. The preprocessor spits out pure C

code with some line number directives understood by the compiler.

The compiler munches on that for a while and then spits out assembly

code (text-based human-readable machine code). A separate assem-

bler translates the assembly code to binary machine code. With a few

command-line options, we can expose this pipeline.
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Let’s follow the pipeline (shown in Figure 1.6) for the C function in file

t.c:

void f() { ; }

First we preprocess t.c:

$ cpp t.c tmp.c # preprocess t.c, put output into tmp.c

$

That gives us the following C code:

# 1 "t.c" // line information generated by preprocessor

# 1 "<built-in>" // it's not C code per se

# 1 "<command line>"

# 1 "t.c"

void f() { ; }

If we had included stdio.h, we’d see a huge pile of stuff in front of f( ). To

compile tmp.c down to assembly code instead of all the way to machine

code, we use option -S. The following session compiles and prints out

the generated assembly code:

$ gcc -S tmp.c # compile tmp.c to tmp.s

$ cat tmp.s # print assembly code to standard output

.text

.globl _f

_f: ; define function f

pushl %ebp ; do method bookkeeping

movl %esp, %ebp ; you can ignore this stuff

subl $8, %esp

leave ; clean up stack

ret ; return to invoking function

.subsections_via_symbols

$

To assemble tmp.s, we run as to get the object file tmp.o:

$ as -o tmp.o tmp.s # assemble tmp.s to tmp.o

$ ls tmp.*
tmp.c tmp.o tmp.s

$
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Now that we know about the overall compilation process, let’s zoom in

on the pipeline inside the C compiler itself.

The main components are highlighted in Figure 1.7. Like other lan-

guage applications, the C compiler has a reader that parses the input

and builds an IR. On the other end, the generator traverses the IR, emit-

ting assembly instructions for each subtree. These components (the

front end and back end) are not the hard part of a compiler.

All the scary voodoo within a compiler happens inside the semantic

analyzer and optimizer. From the IR, it has to build all sorts of extra

data structures in order to produce an efficient version of the input

C program in assembly code. Lots of set and graph theory algorithms

are at work. Implementing these complicated algorithms is challenging.

If you’d like to dig into compilers, I recommend the famous “Dragon”

book: Compilers: Principles, Techniques, and Tools [ALSU06] (Second

Edition).

Rather than build a complete compiler, we can also leverage an existing

compiler. In the next section, we’ll see how to implement a language by

translating it to an existing language.

Leveraging a C Compiler to Implement C++

Imagine you are Bjarne Stroustrup, the designer and original imple-

menter of C++. You have a cool idea for extending C to have classes,

but you’re faced with a mammoth programming project to implement it

from scratch.

To get C++ up and running in fairly short order, Stroustrup simply

reduced C++ compilation to a known problem: C compilation. In other
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words, he built a C++ to C translator calledcfront. He didn’t have to build

a compiler at all. By generating C, his nascent language was instantly

available on any machine with a C compiler. We can see the overall C++

application pipeline in Figure 1.8. If we zoomed in on cfront, we’d see

yet another reader, semantic analyzer, and generator pipeline.

As you can see, language applications are all pretty similar. Well, at

least they all use the same basic architecture and share many of the

same components. To implement the components, they use a lot of the

same patterns. Before moving on to the patterns in the subsequent

chapters, let’s get a general sense of how to hook them together into

our own applications.

1.4 Choosing Patterns and Assembling Applications

I chose the patterns in this book because of their importance and

how often you’ll find yourself using them. From my own experience

and from listening to the chatter on the ANTLR interest list, we pro-

grammers typically do one of two things. Either we implement DSLs

or we process and translate general-purpose programming languages.

In other words, we tend to implement graphics and mathematics lan-

guages, but very few of us build compilers and interpreters for full pro-

gramming languages. Most of the time, we’re building tools to refactor,

format, compute software metrics, find bugs, instrument, or translate

them to another high-level language.

If we’re not building implementations for general-purpose programming

languages, you might wonder why I’ve included some of the patterns

I have. For example, all compiler textbooks talk about symbol table

management and computing the types of expressions. This book also

spends roughly 20 percent of the page count on those subjects. The rea-

son is that some of the patterns we’d need to build a compiler are also
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critical to implementing DSLs and even just processing general-purpose

languages. Symbol table management, for example, is the bedrock of

most language applications you’ll build. Just as a parser is the key to

analyzing the syntax, a symbol table is the key to understanding the

semantics (meaning) of the input. In a nutshell, syntax tells us what to

do, and semantics tells us what to do it to.

As a language application developer, you’ll be faced with a number of

important decisions. You’ll need to decide which patterns to use and

how to assemble them to build an application. Fortunately, it’s not as

hard as it seems at first glance. The nature of an application tells us a

lot about which patterns to use, and, amazingly, only two basic archi-

tectures cover the majority of language applications.

Organizing the patterns into groups helps us pick the ones we need.

This book organizes them more or less according to Figure 1.1, on

page 21. We have patterns for reading input (part I), analyzing input

(part II), interpreting input (part III), and generating output (part IV).

The simplest applications use patterns from part I, and the most com-

plicated applications need patterns from I, II, and III or from I, II, and

IV. So, if all we need to do is load some data into memory, we pick

patterns from part I. To build an interpreter, we need patterns to read

the input and at least a pattern from part III to execute commands. To

build a translator, we again need patterns to parse the input, and then

we need patterns from part IV to generate output. For all but the sim-

plest languages, we’ll also need patterns from part II to build internal

data structures and analyze the input.

The most basic architecture combines lexer and parser patterns. It’s

the heart of Pattern 24, Syntax-Directed Interpreter, on page 238 and

Pattern 29, Syntax-Directed Translator, on page 307. Once we recog-

nize input sentences, all we have to do is call a method that executes or

translates them. For an interpreter, this usually means calling some

implementation function like assign( ) or drawLine( ). For a translator,

it means printing an output statement based upon symbols from the

input sentence.

The other common architecture creates an AST from the input (via tree

construction actions in the parser) instead of trying to process the input

on the fly. Having an AST lets us sniff the input multiple times without

having to reparse it, which would be pretty inefficient. For example,

Pattern 25, Tree-Based Interpreter, on page 243 revisits AST nodes all

the time as it executes while loops, and so on.
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The AST also gives us a convenient place to store information that we

compute in the various stages of the application pipeline. For example,

it’s a good idea to annotate the AST with pointers into the symbol table.

The pointers tell us what kind of symbol the AST node represents and, if

it’s an expression, what its result type is. We’ll explore such annotations

in Chapter 6, Tracking and Identifying Program Symbols, on page 146

and Chapter 8, Enforcing Static Typing Rules, on page 196.

Once we’ve got a suitable AST with all the necessary information in it,

we can tack on a final stage to get the output we want. If we’re gener-

ating a report, for example, we’d do a final pass over the AST to collect

and print whatever information we need. If we’re building a transla-

tor, we’d tack on a generator from Chapter 11, Translating Computer

Languages, on page 290 or Chapter 12, Generating DSLs with Tem-

plates, on page 323. The simplest generator walks the AST and directly

prints output statements, but it works only when the input and output

statement orders are the same. A more flexible strategy is to construct

an output model composed of strings, templates, or specialized output

objects.

Once you have built a few language applications, you will get a feel

for whether you need an AST. If I’m positive I can just bang out an

application with a parser and a few actions, I’ll do so for simplicity

reasons. When in doubt, though, I build an AST so I don’t code myself

into a corner.

Now that we’ve gotten some perspective, we can begin our adventure

into language implementation.
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Chapter 2

Basic Parsing Patterns
Language recognition is a critical step in just about any language appli-

cation. To interpret or translate a phrase, we first have to recognize

what kind of phrase it is (sentences are made up of phrases). Once we

know that a phrase is an assignment or function call, for example, we

can act on it. To recognize a phrase means two things. First, it means

we can distinguish it from the other constructs in that language. And,

second, it means we can identify the elements and any substructures

of the phrase. For example, if we recognize a phrase as an assignment,

we can identify the variable on the left of the = and the expression sub-

structure on the right. The act of recognizing a phrase by computer is

called parsing.

This chapter introduces the most common parser design patterns that

you will need to build recognizers by hand. There are multiple parser

design patterns because certain languages are harder to parse than

others. As usual, there is a trade-off between parser simplicity and par-

ser strength. Extremely complex languages like C++ typically require

less efficient but more powerful parsing strategies. We’ll talk about the

more powerful parsing patterns in the next chapter. For now, we’ll focus

on the following basic patterns to get up to speed:

• Pattern 1, Mapping Grammars to Recursive-Descent Recognizers,

on page 45. This pattern tells us how to convert a grammar (for-

mal language specification) to a hand-built parser. It’s used by the

next three patterns.

• Pattern 2, LL(1) Recursive-Descent Lexer, on page 49. This pattern

breaks up character streams into tokens for use by the parsers

defined in the subsequent patterns.
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• Pattern 3, LL(1) Recursive-Descent Parser, on page 54. This is the

most well-known recursive-descent parsing pattern. It only needs

to look at the current input symbol to make parsing decisions. For

each rule in a grammar, there is a parsing method in the parser.

• Pattern 4, LL(k) Recursive-Descent Parser, on page 59. This pat-

tern augments an LL(1) recursive-descent parser so that it can

look multiple symbols ahead (up to some fixed number k) in order

to make decisions.

Before jumping into the parsing patterns, this chapter provides some

background material on language recognition. Along the way, we will

define some important terms and learn about grammars. You can think

of grammars as functional specifications or design documents for par-

sers. To build a parser, we need a guiding specification that precisely

defines the language we want to parse.

Grammars are more than designs, though. They are actually executable

“programs” written in a domain-specific language (DSL) specifically de-

signed for expressing language structures. Parser generators such as

ANTLR can automatically convert grammars to parsers for us. In fact,

ANTLR mimics what we’d build by hand using the design patterns in

this chapter and the next.

After we get a good handle on building parsers by hand, we’ll rely on

grammars throughout the examples in the rest of the book. Grammars

are often 10 percent the size of hand-built recognizers and provide more

robust solutions. The key to understanding ANTLR’s behavior, though,

lies in these parser design patterns. If you have a solid background in

computer science or already have a good handle on parsing, you can

probably skip this chapter and the next.

Let’s get started by figuring out how to identify the various substruc-

tures in a phrase.

2.1 Identifying Phrase Structure

In elementary school, we all learned (and probably forgot) how to iden-

tify the parts of speech in a sentence like verb and noun. We can do the

same thing with computer languages (we call it syntax analysis). Vocab-

ulary symbols (tokens) play different roles like variable and operator. We

can even identify the role of token subsequences like expression.
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Take return x+1;, for example. Sequence x+1 plays the role of an expres-

sion and the entire phrase is a return statement, which is also a kind

of statement. If we represent that visually, we get a sentence diagram

of sorts:

x+1

returnstat

return ;

expr

stat

Flip that over, and you get what we call a parse tree:

return

x + 1

;

stat

returnstat

expr

Tokens hang from the parse tree as leaf nodes, while the interior nodes

identify the phrase substructures. The actual names of the substruc-

tures aren’t important as long as we know what they mean. For a more

complicated example, take a look at the substructures and parse tree

for an if statement:

if x<0 then x = 0 ;

expr

assign

ifstat

stat

stat

expr

ifstat

statexprif then

stat

assignx < 0

expr

0

x ;=

Parse trees are important because they tell us everything we need to

know about the syntax (structure) of a phrase. To parse, then, is to

conjure up a two-dimensional parse tree from a flat token sequence.
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2.2 Building Recursive-Descent Parsers

A parser checks whether a sentence conforms to the syntax of a lan-

guage. (A language is just a set of valid sentences.) To verify language

membership, a parser has to identify a sentence’s parse tree. The cool

thing is that the parser doesn’t actually have to construct a tree data

structure in memory. It’s enough to just recognize the various sub-

structures and the associated tokens. Most of the time, we only need

to execute some code on the tokens in a substructure. In practice, we

want parsers to “do this when they see that.”

To avoid building parse trees, we trace them out implicitly via a function

call sequence (a call tree). All we have to do is make a function for each

named substructure (interior node) of the parse tree. Each function,

say, f, executes code to match its children. To match a substructure

(subtree), f calls the function associated with that subtree. To match

token children, f can call a match( ) support function. Following this

simple formula, we arrive at the following functions from the parse tree

for return x+1;:

/** To parse a statement, call stat(); */

void stat() { returnstat(); }

void returnstat() { match("return"); expr(); match(";"); }

void expr() { match("x"); match("+"); match("1"); }

Function match( ) advances an input cursor after comparing the current

input token to its argument. For example, before calling match("return"),

the input token sequence looks like this:

return x + 1 ;

match("return") makes sure that current (first) token is return and advan-

ces to the next (second) token. When we advance the cursor, we con-

sume that token since the parser never has to look at it again. We can

represent consumed tokens with a dark gray box:

return x + 1 ;

To make things more interesting, let’s figure out how to parse the three

kinds of statements found in our parse trees: if, return, and assignment

statements. To distinguish what kind of statement is coming down the

road, stat( ) needs to branch according to the token under the input
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cursor (the light gray box). We call that token the lookahead token.

Here’s one way to implement stat( ):

void stat() {

if ( «lookahead token is return» ) returnstat();

else if ( «lookahead token is identifier» ) assign();

else if ( «lookahead token is if» ) ifstat();

else «parse error»

}

We call this kind of parser a top-down parser because it starts at the

top of the parse tree and works its way down to the token leaf nodes.

More specifically, we’re using Pattern 3, LL(1) Recursive-Descent Parser,

on page 54. Descent refers to its top-down nature, and recursive refers

to the fact that its functions potentially call themselves. For example, in

Section 2.1, Identifying Phrase Structure, on page 38, the stat substruc-

ture for the assignment statement appears within (under) the stat for

the if statement. Nesting in a parse tree begets recursion in a recursive-

descent parser. The formal designation for a top-down parser that uses

a single lookahead token is LL(1). The first L means “read the input from

left to right.” The second L means “descend into parse tree children

from left to right.” For complicated languages, we can use more looka-

head yielding Pattern 4, LL(k) Recursive-Descent Parser, on page 59.

At this point, we’ve got a parser that can recognize the various sub-

structures using different functions. But, that’s all it does. To exe-

cute application-specific code upon seeing a particular substructure,

we have to add code to the appropriate function. For example, if we

want to print “found return” every time we see a return statement, we

can add the following anywhere in returnstat( ):

System.out.println("found return");

The patterns that follow this introductory material fill in some details,

but that’s really all there is to building parsers: predicting which kind of

phrase approaches, invoking functions to match substructures, match-

ing tokens, and executing application-specific actions (code).

The first few recursive-descent parsers you build are pretty fun. After

a while, though, building them is monotonous. The parsing functions

are so similar and consistent that we can easily generate them auto-

matically. The only problem is describing the structure of our language

to the computer. Since most languages have an infinite number of sen-

tences, we can’t just delineate them. For the same reason, we can’t
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delineate all possible parse trees. What we need is a DSL for specifying

languages.

2.3 Parser Construction Using a Grammar DSL

Building recursive-descent parsers in a general-purpose programming

language is tedious and error-prone. We have to type the same code

templates over and over again. It’s much more productive to use a

DSL specifically designed for describing languages. “Programs” in this

DSL are calledgrammars. Tools that translate grammars to parsers are

called parser generators. Grammars are concise and act like functional

specifications for languages. They are much easier to read than the

equivalent recursive-descent parser implementations.

Substructures in the parse tree and functions in the parser correspond

to rules in a grammar. The children of a substructure become refer-

ences to rules and tokens on the right side of a rule definition. The if-

then-else code template in the parser becomes a | separated list of alter-

native substructures. Here is one way to encode the recursive-descent

parser from the previous section as an ANTLR grammar:

stat : returnstat // "return x+0;" or

| assign // "x=0;" or

| ifstat // "if x<0 then x=0;"

;

returnstat : 'return' expr ';' ; // single-quoted strings are tokens

assign : 'x' '=' expr ;

ifstat : 'if' expr 'then' stat ;

expr : 'x' '+' '0' // used by returnstat

| 'x' '<' '0' // used by if conditional

| '0' // used in assign

;

This example foreshadows much of Pattern 1, Mapping Grammars to

Recursive-Descent Recognizers, on page 45.

Read rule stat as “A stat can be either a returnstat, an assign, or an ifstat.”

We can use a syntax diagram to visualize the control flow within that

rule (using ANTLRWorks):

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=42


TOKENIZING SENTENCES 43

If there is only one alternative, such as in rule returnstat, the syntax

diagram shows just a sequence of elements:

When rules get more complicated, syntax diagrams come in handy. For

example, here is the syntax diagram for rule expr:

Rule expr might look a little funny to you, and it should. It says that

expressions can only be one of three alternative token sequences. Fur-

ther, variables can only be x, and integers can only be 0. This brings

us to the last piece of the language recognition puzzle: combining input

characters into vocabulary symbols (tokens).

2.4 Tokenizing Sentences

Humans unconsciously combine letters into words before recognizing

grammatical structure while reading. As adults, we are so good at it

that we don’t notice it. Beginning readers, on the other hand, move

along with their fingers trying to sound out the words.

Reading Morse code exposes this hidden process nicely by forcing us to

move character by character. Before interpreting a sentence as English,

we have to convert the dots and dashes to letters and then combine the

letters into words. Once we have words, we can apply English gram-

matical structure. For example, here is print 34 in Morse code:

.--. .-. .. -. - ...-- ....-

p r i n t 3 4

Recognizers that feed off character streams are called tokenizers or lex-

ers (see Pattern 2, LL(1) Recursive-Descent Lexer, on page 49). Just as

an overall sentence has structure, the individual tokens have structure.

At the character level, we refer to syntax as the lexical structure.

Grammars describe language structures, and so we can also use them

for lexical specifications.
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For example, here are suitable definitions for numbers and identifiers:

Number : '0'..'9'+ ; // 1-or-more digits (0..9)

ID : ('a'..'z'|'A'..'Z')+ ; // 1-or-more upper or lower case letters

Now we can make a better version of rule expr using generic variable

names and numbers instead of specific ones:

expr : ID '+' Number // used by returnstat

| ID '<' Number // used by if conditional

| Number // used in assign

;

This rule still isn’t general enough, but it demonstrates how lexical and

syntactic rules can interact.

To make things more concrete, let’s look at a real grammar for a simple

language. Say we want to recognize lists of names such as [a,b,c] and

nested lists such as [a,[b,c],d]. We could use the following ANTLR gram-

mar with three syntactic rules and one lexical rule (lexical rules start

with an uppercase letter):

Download parsing/topdown/NestedNameList.g

grammar NestedNameList;

list : '[' elements ']' ; // match bracketed list

elements : element (',' element)* ; // match comma-separated list

element : NAME | list ; // element is name or nested list

NAME : ('a'..'z'|'A'..'Z')+ ; // NAME is sequence of >=1 letter

We can see the parse trees for those two sentences in Figure 2.1, on

the next page. The leaves of the parse tree (highlighted nodes) are the

tokens from the input stream. The interior nodes are rule names from

the grammar. Pattern 2, LL(1) Recursive-Descent Lexer, on page 49 and

Pattern 3, LL(1) Recursive-Descent Parser, on page 54 show how to build

a lexer and parser for this grammar.

When reading the lexer and parser design patterns, you’ll notice that

they are nearly identical. This makes sense given that both patterns

look for structure in input sequences. The only difference lies in the

type of their input symbols, characters or tokens. We can even take this

one step further. Pattern 14, Tree Grammar, on page 134 recognizes

structure in tree node sequences.

With this preparatory grammar and parsing discussion out of the way,

we can define four classic parsing patterns. After looking at them,

we’ll be able to build parsers for lots of languages. Ultimately we’ll

use ANTLR grammars rather than hand-built recursive-descent parsers

because it’s a lot easier. Knowledge of these parsing design patterns still

    

http://media.pragprog.com/titles/tpdsl/code/parsing/topdown/NestedNameList.g
http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=44


MAPPING GRAMMARS TO RECURSIVE-DESCENT RECOGNIZERS 45

list

elements� 	
list

elements� 	element

a

element element

d

element

b

element

c

, ,

,

list

elements
 �
element

a

element

b

element

c

, ,

Figure 2.1: Parse trees for [a,b,c] and [a,[b,c],d] with highlighted token

leaves

matters, though, because grammars are what drive our parser genera-

tors. We still need a good understanding of the underlying mechanism

to build grammars effectively.

21 Mapping Grammars to
Recursive-Descent Recognizers

Purpose

This translates a grammar to a recursive-descent recognizer that matches

phrases and sentences in the language specified by the grammar.

This pattern identifies the core control-flow framework for any re-

cursive-descent lexer, parser, or tree parser.

Discussion

Even when building lexers and parsers by hand, the best starting point

is a grammar. Grammars are a very concise way to express the lan-

guages you intend to recognize. Not only that, but grammars are excel-

lent documentation that can go into a reference manual and into
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parsing code as comments. This pattern gives us a way to build rec-

ognizers directly from grammars.

A word of caution: this pattern works for many but not all grammars.

The most obvious troublesome grammar construct is left recursion (a

rule that invokes itself without consuming a token). Left recursion re-

sults in an infinite method invocation loop. For example, the following

rule yields a parser that does not terminate:

r : r X ;

Using this design pattern, we’d end up with a function that immediately

called itself, leading to an infinite loop:

void r() { r(); match(X); }

Besides left-recursive rules, there are other grammar constructs that

yield nondeterministic recursive-descent recognizers. A nondeterminis-

tic recognizer cannot decide which path to take. The parsers in Pattern

4, LL(k) Recursive-Descent Parser, on page 59 and Pattern 5, Backtrack-

ing Parser, on page 71, use more and more lookahead to increase the

strength of the recognizer. The more powerful the underlying recogni-

tion strategy, the easier it is to write a grammar. That is because more

powerful parsing strategies allow a larger set of grammars.

Implementation

A grammar, G, is a set of rules from which we generate a class definition

(in any object-oriented programming language) containing a method for

each rule:

public class G extends Parser { // parser definition written in Java

«token-type-definitions»

«suitable-constructor»

«rule-methods»

}

Class Parser defines the state a typical parser needs, such as a looka-

head token or tokens and an input stream.

Converting Rules

For each rule, r, defined in a grammar, we build a method of the same

name:

public void r() {

...

}
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The inside of a rule looks exactly like a subrule (a rule embedded within

another rule), as we’ll see shortly.

Rule references to r become method calls: r().

Converting Tokens

Token references for token type T become calls to match(T). match( ) is

a support method in Parser that consumes a token if T is the current

lookahead token. If there is a mismatch, match( ) throws an exception.

Also, we need to define token type T somewhere, either in the parser

object or in our lexer object. For every token T, we write this:

public static final int T = «sequential-integer»;

We’ll also probably need this:

public static final int INVALID_TOKEN_TYPE = 0; // to be explicit

public static final int EOF = -1; // EOF token type

You might wonder why I’m not using the enum functionality in Java to

represent sets of integers. It’s because I always end up wanting to treat

them as simple integers.

Converting Subrules

Alternatives become either a switch or an if-then-else sequence, depend-

ing on the complexity of the lookahead decision. Each alternative gets

an expression that predicts whether that alternative would succeed at

the current input location. Consider the following generic subrule:

(«alt1»|«alt2»|..|«altN»)

The control flow looks like this:

The most general subrule implementation looks like this:

if ( «lookahead-predicts-alt1» ) { «match-alt1» }

else if ( «lookahead-predicts-alt2» ) { «match-alt2» }

...

else if ( «lookahead-predicts-altN» ) { «match-altN» }

else «throw-exception» // parse error (no viable alternative)
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If all of those lookahead expressions only test a single symbol looka-

head, we can generate a switch statement, which is usually more effi-

cient:

switch ( «lookahead-token» ) {

case «token1-predicting-alt1» :

case «token2-predicting-alt1» :

...

«match-alt1»

break;

case «token1-predicting-alt2» :

case «token2-predicting-alt2» :

...

«match-alt2»

break;

...

case «token1-predicting-altN» :

case «token2-predicting-altN» :

...

«match-altN»

break;

default : «throw-exception»

}

As an optimization, we can collapse subrules whose alternatives are

token references such as (A|B|C) into sets. Testing the current symbol

of lookahead against a set is usually much faster and smaller than a

switch.

All recursive-descent recognizers make decisions according to this tem-

plate. To implement a recognizer, we fill in those lookahead prediction

expressions. The nature of the expressions dictates the strength of the

strategy. Pattern 2, LL(1) Recursive-Descent Lexer, on the next page

and Pattern 3, LL(1) Recursive-Descent Parser, on page 54 have LL(1)

decisions, which means their prediction expressions test one symbol of

lookahead. Pattern 4, LL(k) Recursive-Descent Parser, on page 59 has

LL(k) decisions whose prediction expressions test k symbols of looka-

head. Pattern 5, Backtracking Parser, on page 71 and Pattern 7, Pred-

icated Parser, on page 84 augment LL(k) decisions with an arbitrary

amount of lookahead and arbitrary user-defined run-time tests, respec-

tively.

Converting Subrule Operators

Optional subrules are easy to convert because all we have to do is

remove the default error clause from the subrules in the previous sec-
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tion. If the subrule is optional, there is no possibility of an error. For

example, the control flow of optional subrule (T)? looks like this:

In code, these subrules become conditional statements. For example,

(T)? becomes the following:

if ( «lookahead-is-T» ) { match(T); } // no error else clause

The control flow of one or more (...)+ subrules looks like this:

In code, (...)+ subrules become do-while loops:

do {

«code-matching-alternatives»

} while ( «lookahead-predicts-an-alt-of-subrule» );

Zero or more (...)* subrules are like optional one-or-more loops. Their

control flow looks like this:

In code, (...)* subrules become while loops:

while ( «lookahead-predicts-an-alt-of-subrule» ) {

«code-matching-alternatives»

}

This way, the recognizer can skip over the subrule if the lookahead does

not predict an alternative within the subrule.

In the next pattern, we will look at how to build lexers using this

grammar-to-recognizer mapping as scaffolding.
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22 LL(1) Recursive-Descent Lexer

Purpose

Lexers derive a stream of tokens from a character stream by recognizing

lexical patterns.

Lexers are also called scanners, lexical analyzers, and tokenizers. As

a bonus, this pattern can recognize nested lexical structures such as

nested comments (even though languages typically don’t have super-

complicated lexical structure).

Discussion

The goal of the lexer is to emit a sequence of tokens. Each token has two

primary attributes: a token type (symbol category) and the text associ-

ated with it. In the English language, we’ve got categories such as verbs

and nouns as well as punctuation symbols such as commas and peri-

ods. All words within a particular category are said to have the same

token type, though their associated text is different.

Let’s identify the token types from the list language in Section 2.4, Tok-

enizing Sentences, on page 43. The token type NAME represents the

identifier category. Then we need token types for the fixed string vocab-

ulary symbols: COMMA, LBRACK, and RBRACK. Lexers also typically deal

with whitespace and comments. Because the parser ignores these, we

don’t bother defining token types for them. We can just have the lexer

throw out such character sequences if it finds them between tokens.

To build a lexer by hand, we write a method for each token definition

(lexical rule). In other words, token T’s definition becomes method T( ).

These methods recognize the pattern expressed in the associated lexi-

cal rule. In programming languages, for example, there are methods to

match integers, floating-point numbers, identifiers, operators, and so

on. To write the code for the lexer rules, we follow Pattern 1, Mapping

Grammars to Recursive-Descent Recognizers, on page 45.

To make the lexer look like an enumeration of tokens, it’s handy to

define a method called nextToken( ). nextToken( ) uses the lookahead char-

acter (character under the input cursor) to route control flow to the

appropriate recognition method. For example, upon seeing a letter, next-

Token( ) would call a method to recognize the identifier pattern. Here
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is the core of a typical lexer nextToken( ) that skips whitespace and

comments:

public Token nextToken() {

while ( «lookahead-char»!=EOF ) { // EOF==-1 per java.io

if ( «comment-start-sequence» ) { COMMENT(); continue; }

... // other skip tokens

switch ( «lookahead-char» ) { // which token approaches?

case «whitespace» : { consume(); continue; } // skip

case «chars-predicting-T1» : return T1(); // match T1

case «chars-predicting-T2» : return T2();

...

case «chars-predicting-Tn» : return Tn();

default : «error»

}

}

return «EOF-token»; // return token with EOF_TYPE token type

}

To use this lexer pattern, we create an instance of a lexer from an

input string or stream reader. Our parser object then feeds off this

lexer, calling its nextToken( ) method to extract tokens. The code would

look something like this:

MyLexer lexer = new MyLexer("«input-sentence»"); // create lexer

MyParser parser = new MyParser(lexer); // create parser

parser.«start_rule»(); // begin parsing, looking for a list sentence

Implementation

As a sample implementation, let’s build a lexer for the nested list-

of-names grammar shown in Section 2.4, Tokenizing Sentences, on

page 43. Our goal is a lexer that we can treat like an enumeration.

Here is a loop from the test rig that pulls tokens out of the lexer until it

returns a token with type EOF_TYPE:

Download parsing/lexer/Test.java

ListLexer lexer = new ListLexer(args[0]);

Token t = lexer.nextToken();

while ( t.type != Lexer.EOF_TYPE ) {

System.out.println(t);

t = lexer.nextToken();

}

System.out.println(t); // EOF

We’d like output like this from the list argument:

$ java Test '[a, b ]'

<'[',LBRACK>

<'a',NAME>

<',',COMMA>
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<'b',NAME>

<']',RBRACK>

<'<EOF>',<EOF>>

$

To implement this, we’ll need Token objects, an abstract Lexer for support

code, and finally a concrete ListLexer to do the actual work. Let’s start by

defining tokens to have token type and text properties.

Download parsing/lexer/Token.java

public class Token {

public int type;

public String text;

public Token(int type, String text) {this.type=type; this.text=text;}

public String toString() {

String tname = ListLexer.tokenNames[type];

return "<'"+text+"',"+tname+">";

}

}

For now, let’s skip over the support code, Lexer, to focus on the list

language lexer. We need to define token types, and we might as well

define them in our lexer:

Download parsing/lexer/ListLexer.java

public class ListLexer extends Lexer {

public static int NAME = 2;

public static int COMMA = 3;

public static int LBRACK = 4;

public static int RBRACK = 5;

public static String[] tokenNames =

{ "n/a", "<EOF>", "NAME", "COMMA", "LBRACK", "RBRACK" };

public String getTokenName(int x) { return tokenNames[x]; }

public ListLexer(String input) { super(input); }

boolean isLETTER() { return c>='a'&&c<='z' || c>='A'&&c<='Z'; }

The getTokenName( ) method helps us generate good error messages and

generate readable Token.toString( ) output.

Following the nextToken( ) code template, here is the method matching

tokens or routes traffic to the appropriate method:

Download parsing/lexer/ListLexer.java

public Token nextToken() {

while ( c!=EOF ) {

switch ( c ) {

case ' ': case '\t': case '\n': case '\r': WS(); continue;

case ',' : consume(); return new Token(COMMA, ",");

case '[' : consume(); return new Token(LBRACK, "[");
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case ']' : consume(); return new Token(RBRACK, "]");

default:

if ( isLETTER() ) return NAME();

throw new Error("invalid character: "+c);

}

}

return new Token(EOF_TYPE,"<EOF>");

}

To match an identifier, we need to buffer characters while the lookahead

character is a letter:

Download parsing/lexer/ListLexer.java

/** NAME : ('a'..'z'|'A'..'Z')+; // NAME is sequence of >=1 letter */

Token NAME() {

StringBuilder buf = new StringBuilder();

do { buf.append(c); consume(); } while ( isLETTER() );

return new Token(NAME, buf.toString());

}

If nextToken( ) finds a whitespace character, it calls WS( ) to consume all

the whitespace without buffering it up or returning a token. Here is

WS( ):

Download parsing/lexer/ListLexer.java

/** WS : (' '|'\t'|'\n'|'\r')* ; // ignore any whitespace */

void WS() {

while ( c==' ' || c=='\t' || c=='\n' || c=='\r' ) consume();

}

On to the support code in our Lexer base class. Here are the necessary

fields to maintain state:

Download parsing/lexer/Lexer.java

public abstract class Lexer {

public static final char EOF = (char)-1; // represent end of file char

public static final int EOF_TYPE = 1; // represent EOF token type

String input; // input string

int p = 0; // index into input of current character

char c; // current character

The constructor records the input string and primes the lookahead by

loading the first character into lookahead character c.

Download parsing/lexer/Lexer.java

public Lexer(String input) {

this.input = input;

c = input.charAt(p); // prime lookahead

}
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Method consume( ) advances the input pointer and sets lookahead char-

acter c to the next character in the string. This method also detects

when the lexer has run out of input characters, setting the lookahead

character to EOF (-1).

Download parsing/lexer/Lexer.java

/** Move one character; detect "end of file" */

public void consume() {

p++;

if ( p >= input.length() ) c = EOF;

else c = input.charAt(p);

}

/** Ensure x is next character on the input stream */

public void match(char x) {

if ( c == x) consume();

else throw new Error("expecting "+x+"; found "+c);

}

Class Lexer is abstract because it has no code to match tokens. Any con-

crete subclasses, such as our ListLexer, need to implement the following

methods:

Download parsing/lexer/Lexer.java

public abstract Token nextToken();

public abstract String getTokenName(int tokenType);

Related Patterns

There is a great similarity between the structure of this lexer and the

structure of Pattern 3, LL(1) Recursive-Descent Parser. They’re both

instances of recursive-descent recognizers generated using Pattern 1,

Mapping Grammars to Recursive-Descent Recognizers, on page 45.

23 LL(1) Recursive-Descent Parser

Purpose

This pattern analyzes the syntactic structure of the token sequence of a

phrase using a single lookahead token.

This parser belongs to the LL(1) top-down parser class in particular

because it uses a single token of lookahead (hence the “1” in the name).

It’s the core mechanism of all subsequent parsing patterns.
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Discussion

This pattern shows how to implement parsing decisions that use a

single token of lookahead. It’s the weakest form of recursive-descent

parser but the easiest to understand and implement. If you can con-

veniently implement your language with this LL(1) pattern, you should

do so. Pattern 4, LL(k) Recursive-Descent Parser, on page 59 uses mul-

tisymbol lookahead, which is more powerful but has more complicated

infrastructure.

To implement an LL(1) recursive-descent parser, we can start by fill-

ing in the lookahead expressions from the parsing decisions shown

in Pattern 1, Mapping Grammars to Recursive-Descent Recognizers, on

page 45. To make parsing decisions, the parser tests the current looka-

head token against the alternatives’ lookahead sets. A lookahead set

is the set of tokens that can begin a particular alternative. The parser

should attempt the alternative that can start with the current looka-

head token. In the next two sections, we’ll figure out how to compute

lookahead sets and how to detect decisions with more than one viable

path.

Computing Lookahead Sets

Formally, we compute lookahead sets using two computations: FIRST

and FOLLOW. In practice, though, it’s easier to simply ask ourselves,

“What tokens can possibly start phrases beginning at this alternative?”

The exact definition of FIRST is a bit much to chew on for our purposes

here, but if you’re interested, a web search reveals plenty of decent

descriptions.1

Let’s start with the easiest lookahead computation case: an alternative

that begins with a token reference. Its lookahead set is just that token.

For example, here is a programming language statement rule where

each alternative begins with single token reference:

stat: 'if' ... // lookahead set is {if}

| 'while' ... // lookahead set is {while}

| 'for' ... // lookahead set is {for}

;

1. http://www.cs.virginia.edu/~cs415/reading/FirstFollowLL.pdf

    

http://www.cs.virginia.edu/~cs415/reading/FirstFollowLL.pdf
http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=55


LL(1) RECURSIVE-DESCENT PARSER 56

If an alternative begins with a rule reference instead of a token refer-

ence, the lookahead set is whatever begins any alternative of that rule.

Here is a rule whose first alternative invokes stat:

body_element

: stat // lookahead is {if, while, for}

| LABEL ':' // lookahead is {LABEL}

;

The lookahead set for the first alternative is the union of the lookahead

sets from stat. Lookahead computations only get complicated when we

consider empty alternatives. For example, it’s not immediately obvious

what tokens predict the empty alternative in the following rule:

optional_init

: '=' expr

| // empty alternative

;

The lookahead for the first alternative is =. For the empty alternative,

the lookahead is the set of tokens following references to optional_init.

So, let’s add some other rules that invoke optional_init:

decl: 'int' ID optional_init ';' ;

arg : 'int' ID optional_init ;

func_call: ID '(' arg ')' ; // calls arg; ')' included in lookahead

In this case, ; follows optional_init in decl so we know that at least ; is

in the set. Rule arg also references optional_init, but there is no token

following it. This means that we have to include whatever follows arg.

Token ) can follow a reference to arg, so tokens ’;’ and ’)’ can follow a

reference to optional_init.

Don’t worry if you don’t fully understand these lookahead computations

in detail. Most likely you won’t have to compute them yourself; ANTLR

likes nothing better than to compute these for you. With this general

understanding of lookahead computation in mind, let’s consider what

happens when the same token predicts more than one alternative.

Deterministic Parsing Decisions

LL parsing decisions work only when the lookahead sets predicting the

alternatives are disjoint (the sets have no tokens in common).
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For example, here is a rule whose parsing decision is deterministic

because the single lookahead token uniquely predicts which alterna-

tive to choose:

/** Match -3, 4, -2.1 or x, salary, username, and so on */

expr: '-'? (INT|FLOAT) // '-', INT, or FLOAT predicts this alternative

| ID // ID predicts this alternative

;

Upon -, INT, or FLOAT, rule expr knows to predict the first alternative.

Upon ID, it knows to predict the second.

If the lookahead sets overlap, though, the parser is nondeterministic—it

cannot determine which alternative to choose. For example, here’s a

rule that’s nondeterministic for an LL(1) parser:

expr: ID '++' // match "x++"

| ID '--' // match "x--"

;

The two alternatives begin with the same token (ID). The token beyond

dictates which alternative phrase is approaching. In other words, expr

is LL(2). An LL(1) parser can’t see past the left common prefix with only

one symbol of lookahead. Without seeing the suffix operator after the

ID, the parser cannot predict which alternative will succeed. To handle

grammatical constructs like this, either tweak your grammar or use

Pattern 4, LL(k) Recursive-Descent Parser, on page 59. By left-factoring

out the common ID left-prefix, we get an LL(1) grammar that matches

the same language:

expr: ID ('++'|'--') ; // match "x++" or "x--"

If you plan on building lots of parsers by hand, it’s worth spending time

to get good at computing lookahead sets. Otherwise, you can just let a

parser generator do it for you.

To see how the lookahead computations fit into the grammar to parser

mapping, let’s build a parser for the nested list-of-names language in

Section 2.4, Tokenizing Sentences, on page 43.

Implementation

We’re going to build a parser, ListParser, to go with the lexer from Pattern

2, LL(1) Recursive-Descent Lexer, on page 49. Here’s the grammar again:

Download parsing/recursive-descent/NameList.g

list : '[' elements ']' ; // match bracketed list

elements : element (',' element)* ; // match comma-separated list

element : NAME | list ; // element is name or nested list
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Following the grammar-to-parser mapping we’ve established, we arrive

at the following parser:

Download parsing/recursive-descent/ListParser.java

public class ListParser extends Parser {

public ListParser(Lexer input) { super(input); }

/** list : '[' elements ']' ; // match bracketed list */

public void list() {

match(ListLexer.LBRACK); elements(); match(ListLexer.RBRACK);

}

/** elements : element (',' element)* ; */

void elements() {

element();

while ( lookahead.type==ListLexer.COMMA ) {

match(ListLexer.COMMA); element();

}

}

/** element : name | list ; // element is name or nested list */

void element() {

if ( lookahead.type==ListLexer.NAME ) match(ListLexer.NAME);

else if ( lookahead.type==ListLexer.LBRACK ) list();

else throw new Error("expecting name or list; found "+lookahead);

}

}

Rules elements and element use lookahead to make parsing decisions.

In elements, COMMA predicts entering the (...)* subrule. In element, NAME

predicts the first alternative, and LBRACK predicts the second alterna-

tive.

To support this concrete class, we need to build some support code in

an abstract Parser class. First, we need two state variables: an input

token stream and a lookahead buffer. In this case, we can use a single

lookahead variable, token:

Download parsing/recursive-descent/Parser.java

Lexer input; // from where do we get tokens?

Token lookahead; // the current lookahead token

Alternatively, we could use a big token buffer that holds all tokens. In

this way, we could track an index into the token buffer rather than

a token field. For this particular implementation of this pattern, we’ll

assume that we cannot buffer all the input (we might be reading from

a socket).

Next, we need methods to compare expected tokens against the looka-

head symbol and to consume input.
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Download parsing/recursive-descent/Parser.java

/** If lookahead token type matches x, consume & return else error */

public void match(int x) {

if ( lookahead.type == x ) consume();

else throw new Error("expecting "+input.getTokenName(x)+

"; found "+ lookahead);

}

public void consume() { lookahead = input.nextToken(); }

To test our parser, we need a test rig like the following:

Download parsing/recursive-descent/Test.java

ListLexer lexer = new ListLexer(args[0]); // parse command-line arg

ListParser parser = new ListParser(lexer);

parser.list(); // begin parsing at rule list

Upon valid input, the test rig emits nothing because we don’t have any

application-specific code in there. We could easily add actions to track

a list of names, for example. Upon error, we want to throw an exception

like the following:

$ java Test '[a, ]'

Exception in thread "main" java.lang.Error:

expecting name or list; found <']',RBRACK>

at ListParser.element(ListParser.java:24)

at ListParser.elements(ListParser.java:16)

at ListParser.list(ListParser.java:8)

at Test.main(Test.java:6)

$

Building an LL(1) parser is the easiest way to learn about parsers. In

practice, though, we really need more than a single token of lookahead.

The next pattern describes how to build an LL(k) parser for k>1.

Related Patterns

See Pattern 2, LL(1) Recursive-Descent Lexer, on page 49, Pattern 4,

LL(k) Recursive-Descent Parser, and Pattern 5, Backtracking Parser, on

page 71.

24 LL(k) Recursive-Descent Parser

Purpose

This pattern analyzes the syntactic structure of the token sequence of a

phrase using k>1 lookahead tokens.
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An LL(k) parser augments the previous pattern with up to a fixed num-

ber of lookahead tokens, k.

Discussion

The strength of a recursive-descent parser depends entirely on the

strength of its lookahead decisions. A single token of lookahead is

pretty weak in that we usually have to contort grammars to make them

LL(1). By allowing a larger (but still fixed) lookahead buffer, we get a

parser strong enough for most computer languages. This includes con-

figuration files, data formats, network protocols, graphics languages,

and many programming languages. Some programming languages pre-

sent tougher challenges, though, for which we’ll need a more power-

ful recognition pattern. Pattern 5, Backtracking Parser, on page 71

introduces an extension to this fixed-lookahead recursive-descent rec-

ognizer that, in effect, allows arbitrary lookahead.

Having more lookahead is like being able to see farther down multi-

ple paths emanating from a fork in a maze. The farther we can see

ahead, the easier it is to decide which path to take. More powerful pars-

ing decisions make it easier to build parsers. We don’t have to contort

our parsers (or grammars) as much to suit a weak underlying parsing

strategy.

In this Discussion section, we’re going to figure out why we need more

than a single token of lookahead and figure out how to build circular

lookahead buffers. In the Implementation section, we’ll use that looka-

head buffer in an LL(k) parser.

Motivating the Need for More Lookahead

To see why we need k>1 lookahead, let’s augment the list-of-names

grammar from Section 2.4, Tokenizing Sentences, on page 43 to allow

assignments as list elements. For example, we want to recognize input

such as [a, b=c, [d,e]]. To accommodate this change, we can add an

alternative to element that matches assignments:

list : '[' elements ']' ; // match bracketed list

elements : element (',' element)* ; // match comma-separated list

element : NAME '=' NAME // match assignment such as a=b

| NAME

| list

;

The new alternative renders element non-LL(1) since the first two alter-

natives start with the same NAME token. Now, we need two lookahead
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tokens to distinguish the alternatives. The grammar is LL(2). Each time

we look for an element, we need to decide whether it’s an assignment

or just a name. If the lookahead sequence is NAME followed by =, the

parsing decision should predict the first alternative (an assignment).

Otherwise, the parser should predict the second alternative. For exam-

ple, the following diagram represents the lookahead available to the

parsing decision in element for input [a,b=c]:

[ a , b = c ]

ookaheadconsumed

[ a , b = c ]

ookaheadconsumed

If we had only an LL(1) parser, we’d have to rewrite element to look like

this:

element : NAME ('=' NAME)? // match assignment such as a=b or just a

| list

;

This (..)? optional subrule version works but is less clear. There are lots

of similar situations that occur in real grammars.

Building a Circular Lookahead Buffer

The simplest way to provide lots of parser lookahead is to buffer up

all the input tokens. The input cursor can be an integer index, say,

p into that buffer. We can execute p++ to consume tokens. The next

k tokens of lookahead would be tokens[p]..tokens[p+k-1]. This approach

works for finite and reasonably small input. This obviously doesn’t work

for infinite token streams like network sockets.

When we can’t buffer up all of the input, we need to make a k-sized

buffer of tokens. We’ll have at most k tokens in memory at once. Our

index, p, now moves only through the fixed lookahead buffer. To con-

sume a token, we increment p and add a token to the end of the buffer.

The only complication is that the buffer size is fixed so we have to add

tokens in a circular fashion: p ranges from =0..k-1. A circular buffer is

one where indexes that fall off the end wrap to the beginning. In other

words, in a circular buffer of, say, three tokens, index 2 is the last valid

index. Index p=3 actually wraps to become index 0. Modulo expression

p%3 wraps indexes nicely for a buffer of size 3.
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Graphically, here is how p moves through the lookahead buffer as the

parser consumes tokens from input sentence [a,b=c]:�  ,

1 20

p

b a ,

p

b = ,

p

b = c

p

] = c

p

...

When we start parsing, the lookahead buffer looks like the leftmost

diagram where p=0. The second diagram (where p=1) shows the buffer

after we’ve consumed the first [ token. We add tokens behind p as

we advance. The rightmost diagram shows the state of the lookahead

buffer after we’ve loaded the final ] token. p points at =, and so the

parser needs to consume three more times before running out of input

(those p positions aren’t shown).

Implementation

Let’s implement the list-of-names language augmented with assign-

ments from the previous section. First we’ll build the lookahead infras-

tructure, and then we’ll implement LL(2) rule element.

To support a fixed lookahead buffer, our Parser support class needs the

following fields:

Download parsing/multi/Parser.java

Lexer input; // from where do we get tokens?

Token[] lookahead; // circular lookahead buffer

int k; // how many lookahead symbols

int p = 0; // circular index of next token position to fill

Because different parsers need different amounts of lookahead, the

constructor takes a size argument and initializes the lookahead buffer:

Download parsing/multi/Parser.java

public Parser(Lexer input, int k) {

this.input = input;

this.k = k;

lookahead = new Token[k]; // make lookahead buffer

for (int i=1; i<=k; i++) consume(); // prime buffer with k lookahead

}

To consume a token, the parser advances the token index in a circular

fashion and adds another token to the buffer.
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Download parsing/multi/Parser.java

public void consume() {

lookahead[p] = input.nextToken(); // fill next position with token

p = (p+1) % k; // increment circular index

}

To isolate the lookahead mechanism from the parser, it’s a good idea to

create lookahead methods, LA( ) and LT( ). Method LA( ) returns lookahead

token types up to k symbols ahead starting at k=1. Recall that token

types are integers representing input symbol categories. Method LT( )

returns the actual lookahead token at a particular lookahead depth.

Download parsing/multi/Parser.java

public Token LT(int i) {return lookahead[(p+i-1) % k];} // circular fetch

public int LA(int i) { return LT(i).type; }

public void match(int x) {

if ( LA(1) == x ) consume();

else throw new Error("expecting "+input.getTokenName(x)+

"; found "+LT(1));

}

Only rule element needs more than single token of lookahead in our

case. Its implementation method tests the first two tokens of lookahead,

LA(1) and LA(2), to predict the first alternative:

Download parsing/multi/LookaheadParser.java

/** element : NAME '=' NAME | NAME | list ; assignment, NAME or list */

void element() {

if ( LA(1)==LookaheadLexer.NAME && LA(2)==LookaheadLexer.EQUALS ) {

match(LookaheadLexer.NAME);

match(LookaheadLexer.EQUALS);

match(LookaheadLexer.NAME);

}

else if ( LA(1)==LookaheadLexer.NAME ) match(LookaheadLexer.NAME);

else if ( LA(1)==LookaheadLexer.LBRACK ) list();

else throw new Error("expecting name or list; found "+LT(1));

}

Because the method tests the alternatives in order, the second alterna-

tive prediction expression gets away with looking only a single symbol

ahead. Also note that a single lookahead, [, uniquely predicts the third

alternative. The lookahead depth k in LL(k) is really a maximum not the

exact, fixed amount of lookahead each parsing decision uses.

Our test rig is the same as that in Pattern 3, LL(1) Recursive-Descent

Parser, on page 54 except that we need to pass in the necessary looka-

head depth to the parser constructor.
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Download parsing/multi/Test.java

LookaheadLexer lexer = new LookaheadLexer(args[0]); // parse arg

LookaheadParser parser = new LookaheadParser(lexer, 2);

parser.list(); // begin parsing at rule list

If we pass in a valid list such as [a,b=c,[d,e]], the test rig quietly returns

this:

$ java Test '[a,b=c,[d,e]]'

$

Upon error, however, the parser throws an exception:

$ java Test '[a,b=c,,[d,e]]'

Exception in thread "main" java.lang.Error:

expecting name or list; found <',',,>

at LookaheadParser.element(LookaheadParser.java:25)

at LookaheadParser.elements(LookaheadParser.java:12)

at LookaheadParser.list(LookaheadParser.java:7)

at Test.main(Test.java:6)

$

Related Patterns

This pattern builds on Pattern 3, LL(1) Recursive-Descent Parser, on

page 54 and uses Pattern 2, LL(1) Recursive-Descent Lexer, on page 49

to feed it tokens. Pattern 5, Backtracking Parser, on page 71 extends

this pattern with arbitrary lookahead.

Up Next

At this point, we’ve got the most important parsing patterns down.

To handle really tough language problems, we’ll need to dress up the

recursive-descent parser even further. The next chapter defines pat-

terns for arbitrary lookahead and using semantic information to guide

the parse.
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Chapter 3

Enhanced Parsing Patterns
In the previous chapter, we looked at the fundamental language recog-

nition patterns. They’re sufficient to handle most parsing tasks, but

some languages defy even Pattern 4, LL(k) Recursive-Descent Parser,

on page 59. In this chapter, we’ll explore how to crank up the parsing

power at the cost of some complexity and run-time efficiency. We’ll look

at three important specialized parsing patterns:

• Pattern 5, Backtracking Parser, on page 71. This pattern adds a

speculative parsing facility to recursive-descent parsers. It’s use-

ful to have because sometimes it’s hard to distinguish between

alternatives without simply trying them. A backtracking parser

attempts alternatives in order until one of them matches the cur-

rent input. In effect, this supports arbitrarily deep lookahead as

opposed to the fixed lookahead of Pattern 4, LL(k) Recursive-Des-

cent Parser, on page 59. This pattern is extremely powerful but

can be very expensive at run-time.

• Pattern 6, Memoizing Parser, on page 78. This pattern dramat-

ically increases speculative parsing performance at the cost of a

small amount of memory.

• Pattern 7, Predicated Parser, on page 84. Predicated parsers allow

us to alter parser control-flow with arbitrary boolean expressions

called semantic predicates. We can extend any of the parsing pat-

terns in this book with predicates.

These patterns are tedious to implement by hand, but again, it’s impor-

tant to understand how they work. The code generated by parser gen-

erators like ANTLR make a lot more sense when you’re familiar with

    



PARSING WITH ARBITRARY LOOKAHEAD 66

the underlying pattern. When debugging parsers, for example, stepping

through the code will make much more sense.

You might have seen backtracking and predicated parsers before if you

have a computer science background. It’s OK to skip this chapter in

that case. Memoizing parsers are new enough, though, that you might

want to take a look at them. They really make backtracking parsers

practical.

Let’s begin learning about advanced parsing by figuring out why we

sometimes need arbitrary lookahead.

3.1 Parsing with Arbitrary Lookahead

Differentiating some language constructs is easy. For example, in the

following element rule from the list-of-names language in Section 2.4,

Tokenizing Sentences, on page 43, a single token of lookahead dictates

which alternative to choose:

element : NAME | list ; // element is name or nested list

list : '[' elements ']' ; // match bracketed list

...

Token NAME predicts the first alternative, and [ predicts the second

because list starts with [.

Sometimes, though, the most natural way to express a given language

construct does not fit in Pattern 3, LL(1) Recursive-Descent Parser, on

page 54 or Pattern 4, LL(k) Recursive-Descent Parser, on page 59. Such

language constructs are typically very similar and only differ on the

right side. For example, C++ function definitions and declarations are

identical until the parser sees ; or {:

void bar() {...} // a function definition

void bar(); // a function declaration (forward declaration)

Because C++ function headers can be arbitrarily long, the distinguish-

ing token does not appear at a fixed lookahead position from the left

side of the statement. Consequently, Pattern 4, LL(k) Recursive-Descent

Parser, on page 59 is too weak to distinguish function definitions from

declarations using a natural grammar. The natural grammar rule defin-

ing C++ function definitions and declarations might look like this:

function : def | decl ;

def : functionHead '{' body '}' ; // E.g., "void bar() {}"

decl: functionHead ';' // E.g., "void bar();"

functionHead : ... ; // E.g., "int (*foo)(int *f[], float)"
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To distinguish these two constructs starting at the left edge in function,

we need to scan past the entire function header to the token that fol-

lows. Such constructs have always been a drag to parse. In a parser

with backtracking machinery, however, it’s not too bad (see Pattern 5,

Backtracking Parser, on page 71). We can make a parsing method for

rule function that follows this pseudocode:

void function() {

if ( «speculatively-match-def» ) def();

else if ( «speculatively-match-decl» ) decl();

else throw new RecognitionError("expecting function");

}

The parser can speculatively parse as far ahead as it needs. If the

first parsing conditional in function( ) doesn’t match, the parser simply

rewinds the input and tries the next alternative.

There is a subtle but important point here. Speculatively matching the

alternatives of a rule effectively orders them. The first alternative that

matches wins. This is great because we can use ordering to specify

precedence. For example, in some cases, two alternatives of a rule can

match the same input. With ordered alternatives, there is no ambigu-

ity because the parser consistently chooses the first of two ambiguous

alternatives.

By having the parser pay attention to the order of alternatives, we can

solve a nasty C++ ambiguity. C++ input T(a) can be both a declara-

tion and an expression (see Chapter 12 in The Definitive ANTLR Ref-

erence [Par07] for more details). The C++ reference manual says that

phrases that look like both should be treated as declarations. In a

parser that can backtrack, all we have to do is attempt to match dec-

larations before expressions. Using a syntactic predicate in an ANTLR

grammar to invoke backtracking within a specific rule, we’d say this:

stat: (declaration)=> declaration // if it looks like declaration, it is

| expression // else it's an expression

;

Though speculative parsing has a lot of advantages, there are two draw-

backs. First, it can make debugging more difficult. When the parser

speculatively parses ahead, it’s easy to get lost with all of the scanning

ahead and rewinding. Second, backtracking can be extremely slow.

Fortunately, we can fix the efficiency issue. All we have to do is avoid

redundant parsing.
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3.2 Parsing like a Pack Rat

Until a backtracking parser finds a winning alternative, it might specu-

latively parse the same input with the same rule multiple times. Almost

by definition, we use backtracking parsers only when we need to distin-

guish between similar language constructs. If the constructs are simi-

lar, the associated grammar likely contains repeated references to the

same rule.

In the implementation section of Pattern 5, Backtracking Parser, on

page 71, we’ll augment the list-of-names language to allow parallel

assignments like Python does: [a,b]=[c,d]. The stat rule needs to back-

track because it cannot distinguish the two alternatives with finite

lookahead:

stat: list EOF // try this alternative first

| list '=' list // if 1st alternative fails, try this one

;

Upon input [a,b]=[c,d], stat speculatively parses the first alternative,

which immediately references list. The first alternative will fail, caus-

ing a backtracking parser to rewind the input and attempt the second

alternative. The second alternative immediately calls list again, which is

a waste since we already know it matches.

Memoizing allows us to skip the second parse of list. list can skip ahead

to where it left off the last time and then return immediately to stat.

To make this work, we have to memoize (squirrel away) the result of

invoking the various parsing methods. Pattern 6, Memoizing Parser, on

page 78 explains the exact mechanism.

A backtracking strategy allows us to squeeze the maximum power from

a top-down parser, and memoization allows us to do this efficiently.

In some cases, though, syntax alone won’t let us distinguish between

sentences. The next section explores how to handle cases where the

same phrase means different things depending on its context.

3.3 Directing the Parse with Semantic Information

The parsers we’re working with in this book recognize context-free lan-

guages. A context-free language is a language whose constructs don’t

depend on the presence of other constructs. Unfortunately, some pro-

gramming languages have context-sensitive phrases. To handle context-

sensitive phrases with a context-free parser, we have to predicate alter-
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natives. In effect, a predicate is just a run-time boolean test that says

when it’s OK to match an alternative. The predicates gate the associ-

ated alternatives in and out.

To see why we need predicates, let’s look at a context-sensitive phrase

within a programming language. C++ is the traditional parsing punch-

ing bag, so let’s get our gloves on and limber up a bit.

In C++, the expression T(6) is either a function call or a constructor-

style typecast depending on whether T is a function or type name. A

C++ parser literally does not know how to interpret T(6) without seeing

the definition of T. Such a construct is context sensitive and, in this

case, ambiguous from a purely syntactic point of view. This ambiguity

becomes painfully obvious when you look at the grammar. The following

rule is an idealized representation of a C++ expression rule:

expr: INTEGER // integer literal

| ID '(' expr ')' // function call; AMBIGUOUS WITH NEXT ALT

| ID '(' expr ')' // constructor-style typecast

;

Ambiguous grammars lead to nondeterministic parsers, parsers that

cannot determine which path to take. In this case, the second and third

alternatives are identical—the parser could use either. Using Pattern 3,

LL(1) Recursive-Descent Parser, on page 54, we’d end up with the fol-

lowing method:

void expr() {

// if lookahead is an integer, match an integer

if (LA(1)==INTEGER) match(INTEGER);

else if (LA(1)==ID) «match-function-call»

else if (LA(1)==ID) «match-typecast» // DEAD CODE!

else «error»

}

The last if statement is dead, unreachable code. Worse, the compiler

doesn’t warn us about it. This error would only show up during testing.

To solve the problem, we need to augment the final two if-conditions to

test what kind of thing T is. By introducing two method calls within the

parsing decision itself, we can disambiguate the alternatives:

void expr() {

if ( LA(1)==INTEGER) match(INTEGER);

else if ( LA(1)==ID && isFunction(LT(1).text) ) «match-function-call»

else if ( LA(1)==ID && isType(LT(1).text) ) «match-typecast»

else «error»

}
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This code follows Pattern 7, Predicated Parser, on page 84. Functions

isFunction( ) and isType( ) answer whether an identifier is a function or

type. Their implementation details aren’t important for this discussion

(we’ll learn how to implement them in Chapter 6, Tracking and Identi-

fying Program Symbols, on page 146).

At this point, we’ve covered the four key parsing strategies, so let’s

summarize what we’ve learned:

Pattern When to Apply

Pattern 3, LL(1)

Recursive-Descent

Parser, on page 54

This is the most basic parsing strategy that under-

graduate computer science students learn. Start

out with this pattern since it’ll work for most

DSLs.

Pattern 4, LL(k)

Recursive-Descent

Parser, on page 59

If a single token of lookahead can’t distinguish

between rule alternatives, you need to use this

pattern. A more powerful parsing strategy means

it’s easier to build the parser. You don’t need to

factor the parser as much to suit weaker parsing

decisions.

Pattern 5, Back-

tracking Parser,

on the following

page

Some languages are pretty complex with equally

complicated grammars. At least a few parsing

decisions will be difficult to make with a fixed

amount lookahead. When rule alternatives look

almost the same, we often have to speculatively

parse entire phrases to distinguish them. This is

precisely what a backtracking parser does. Use

Pattern 6, Memoizing Parser, on page 78 to make

backtracking efficient.

Pattern 7, Predi-

cated Parser, on

page 84

Use this pattern when syntax alone is insuffi-

cient to make parsing decisions. For example,

C++ expression T(6) has multiple interpretations

for the same syntax depending on how we defined

T. Semantic predicates let us alter the parse based

upon run-time information (we can direct by look-

ing up T in a dictionary).

Now, let’s learn more about the advanced parsing strategies by diving

into their pattern definitions.

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=70


BACKTRACKING PARSER 71

ANTLR Warns About Dead Code

One of the problems with writing parsers by hand is that we
don’t get warnings about unreachable parser regions. Using a
parser generator, on the other hand, would provide us with a
warning. Here is the ambiguity warning we’d get out of ANTLR
for the idealized C++ expr rule:

Decision can match input such as "ID '(' INTEGER ')'"
using multiple alternatives: 2, 3

As a result, alternative(s) 3 were disabled for that input

25 Backtracking Parser

Purpose

This pattern adds speculative parsing support (arbitrary lookahead) to

any recursive-descent recognizer.

Discussion

As we saw in Pattern 1, Mapping Grammars to Recursive-Descent Rec-

ognizers, on page 45, we can’t map all grammars to recursive-descent

parsers. Only non-left-recursive grammars work (no rule can directly

or indirectly invoke itself without consuming a token). Then Section 3,

Deterministic Parsing Decisions, on page 56 showed that we can’t always

get properly functioning (deterministic) parsers even from non-left-

recursive grammars. The problem is that fixed lookahead LL parsers

need the lookahead sets predicting alternatives to be disjoint.

This pattern overcomes this lookahead issue by allowing arbitrary look-

ahead, which lets us parse much more complicated languages. To look

arbitrarily ahead, we need infrastructure to support backtracking.

Backtracking also gives us a way to specify the precedence of ambigu-

ous rule alternatives (alternatives that can match the same input).

Backtracking parsers, by definition, try the alternatives in order.

The backtracking strategy we’ll explore in this pattern supports any

parsing mechanism or technique that needs to speculatively match
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alternatives. For example, ANTLR supports syntactic predicates that let

you control speculative parsing. Syntactic predicates are grammar frag-

ments that specify the lookahead language predicting an alternative.

Bryan Ford formalized and extended ANTLR’s notion of grammars plus

syntactic predicates, calling them Parsing Expression Grammars (PEGs)

Parsing Expression Grammars: A Recognition-Based Syntactic Founda-

tion [For04]. In the functional language world, syntactic predicates are

called parser combinators; see Parsec.1

Syntactic predicates and speculative parsing are extremely useful when

parsing phrases that look the same from the left edge. Distinguishing

between C++ function definitions and declarations is a prime example,

as we saw in Section 3.1, Parsing with Arbitrary Lookahead, on page 66.

Before diving into the guts of a sample implementation, let’s look at the

basic code templates we need, how to manage the input stream, and

then how to handle application-specific actions.

Backtracking Code Templates

The easiest way to implement a backtracking strategy for a parsing

decision is to speculatively attempt the alternatives in order until we

find one that matches. Upon success, the parser rewinds the input and

parses the alternative normally (we’ll see why we parse it twice when

we discuss actions). Upon failing to match an alternative, the parser

rewinds the input and tries the next one. If the parser can’t find any

matching alternative, it throws a “no viable alternative” exception. Here

is a template in pseudocode that implements that strategy:

public void «rule»() throws RecognitionException {

if ( speculate_«alt1»() ) { // attempt alt 1

«match-alt1»

}

else if ( speculate_«alt2»() ) { // attempt alt 2

«match-alt2»

}

...

else if ( speculate_«altN»() ) { // attempt alt N

«match-altN»

}

// must be an error; no alternatives matched

else throw new NoViableException("expecting «rule»")

}

1. Daan Leijen. Parsec, A Fast Combinator Parser. http://research.microsoft.com/en-us/um/people/daan/download/parsec/pa
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Why Using Exceptions for Parser Control Flow Is OK

There are two common objections to using exceptions to imple-
ment backtracking. First, using exceptions for control flow is usu-
ally a very bad idea because they act like gotos. In the case of
the backtracking parser, however, the parser really is detect-
ing syntax errors. We want it to roll back to where it started
speculating no matter how deeply nested the method calls
are. Exceptions work perfectly for this. Besides, we’re throw-
ing exceptions for errors anyway and might as well keep the
same mechanism for both. The second issue is that exceptions
can be very slow. Fortunately, only the creation of Exception

objects is expensive. Throwing and catching them is approxi-
mately the same cost as unrolling the stack with a sequence of
return instructions. All we need to do is create a single shared
exception for use for backtracking.

The speculation methods amount to syntactic predicates and look like

this:

public boolean speculate_«alt»() {

boolean success = true;

mark(); // mark this spot in input so we can rewind

try { «match-alt» } // attempt to match the alternative

catch (RecognitionException e) { success = false; }

release(); // either way, rewind to where we were before attempt

return success;

}

By using these pseudocode templates, we can reuse code templates

from Pattern 3, LL(1) Recursive-Descent Parser, on page 54. All we need

is some machinery to mark and rewind the input stream. The most

important change to the usual recursive-descent parsing strategy is

that we use syntax errors (thrown exceptions) to guide the parse. In

other words, when speculating, a parser does not report syntax errors.

Instead, it forces the parser to roll back to where it started speculating.

That’s what the try-catch is for in the speculate_«alt»() code template.

Rewinding the Token Stream

The heart of a backtracking parser lies in its token buffer manage-

ment. The buffer must handle an arbitrary amount of lookahead and

support nested mark and release operations. The easiest way to deal

with arbitrary lookahead is simply to buffer up the entire token stream.
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That way, the parser’s current token index would simply step through

the buffer as the parser consumes tokens. This approach works great

unless we need to parse an “infinite” token stream. To support infinite

token streams or simply to reduce the memory footprint of our parser,

we need a lookahead buffer that caches as few tokens as possible.

Our parser can start out with a small fixed buffer size, n. Like Pattern

4, LL(k) Recursive-Descent Parser, on page 59, we’ll use p as the index

of the current token in the lookahead buffer. The difference is that we

need to hold more than (fixed) k tokens in a backtracking parser. Our

goal is to keep n from growing while still holding critical tokens. To do

this, we need to reset p to 0 when it falls off the end of the buffer rather

than stretching the buffer. We also want lookahead operations (via LT( ))

to stay within the confines of the lookahead buffer. Visually these two

situations look like this:

1 �0

p

3 4

consume() resets p=0

consumed

1 20

p

3 4

LT(2) fills 2..3

consumed

If we request a lookahead token beyond the end of the buffer with LT( ),

though, we need to stretch the buffer to make room:

1
�

0

p

3 4�T(8) fills 2..9consumed

grow

9...

We also need to stretch the buffer while speculating. The parser can

never throw out tokens that it speculatively matches. We’ll need to

reparse those tokens.

The speculate_«alt»() code template manages the lookahead buffer with

mark( ) and release( ) methods. mark( ) pushes the current token index

onto a stack. release( ) pops the index back off the stack and rewinds

p to that position. We need a stack of markers to handle nested back-

tracking.
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By rewinding the input, we are sort of undoing the consume( ) operations

that the parser executes. But, things get a lot trickier when program-

mers stick application-specific code into the parser.

Dealing with Actions While Backtracking

Application-specific parser actions can have side effects we can’t undo

such as “launch missiles.” There are three choices. Either we disallow

actions or disallow actions with side effects, or we parse winning alter-

natives twice. We’ll choose the third alternative. It’s the least efficient

but the most flexible since we need those programmer-defined actions.

They are often the easiest way to implement a language application.

A backtracking parser parses the winning alternative once during spec-

ulation and then again during normal alternative matching. To allow

actions with side effects in a backtracking parser, all we have to do is

gate actions with a test to see whether the parser is speculating:

if ( «not-speculating» ) { «arbitrary-action» }

During speculation, all actions are off. Once the parser knows an alter-

native will match, however, it can match the alternative again “with

feeling” to do the actions.

The one caveat to action gating is that there are some actions we must

execute during speculation. Tracking variable and method names is

critical if we need to guide the parse with such information (see Pattern

7, Predicated Parser, on page 84). Actions that must always execute

shouldn’t have the action gate.

Enough generalities. Let’s build a backtracking parser!

Implementation

For this pattern’s example, let’s augment our list-of-names language

to allow parallel assignments like Python does: [a,b]=[c,d]. Here is our

usual grammar with a new start rule, stat, that adds parallel list

assignment:

Download parsing/backtrack/NameListWithParallelAssign.g

stat : list EOF | assign EOF ;

assign : list '=' list ;

list : '[' elements ']' ; // match bracketed list

elements : element (',' element)* ; // match comma-separated list

element : NAME '=' NAME | NAME | list ; //element is name, nested list
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The parallel assignment construct in stat would cause trouble for Pat-

tern 4, LL(k) Recursive-Descent Parser, on page 59. Both alternatives

begin with a call to list. Because list can be arbitrarily long, no fixed-

lookahead recursive-descent parser can distinguish between stat’s

alternatives. We need to parse at least an entire list plus one token before

deciding which alternative will succeed. Following the code templates

from the previous section, stat looks like this:

Download parsing/backtrack/BacktrackParser.java

/** stat : list EOF | assign EOF ; */

public void stat() throws RecognitionException {

// attempt alternative 1: list EOF

if ( speculate_stat_alt1() ) {

list(); match(Lexer.EOF_TYPE);

}

// attempt alternative 2: assign EOF

else if ( speculate_stat_alt2() ) {

assign(); match(Lexer.EOF_TYPE);

}

// must be an error; neither matched; LT(1) is lookahead token 1

else throw new NoViableAltException("expecting stat found "+LT(1));

}

The speculative parsing support methods look like this:

Download parsing/backtrack/BacktrackParser.java

public boolean speculate_stat_alt1() {

boolean success = true;

mark(); // mark this spot in input so we can rewind

try { list(); match(Lexer.EOF_TYPE); }

catch (RecognitionException e) { success = false; }

release(); // either way, rewind to where we were

return success;

}

public boolean speculate_stat_alt2() {

boolean success = true;

mark(); // mark this spot in input so we can rewind

try { assign(); match(Lexer.EOF_TYPE); }

catch (RecognitionException e) { success = false; }

release(); // either way, rewind to where we were

return success;

}

All the other rules follow Pattern 4, LL(k) Recursive-Descent Parser, on

page 59, so we don’t need to look at those here (there’s no point in

speculating in the other rules if LL(k) is sufficient). The only thing left

to do is build the support machinery for managing the lookahead buffer.
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Our Parser base class tracks the input stream, a stack of markers for

mark( ) and release( ), the lookahead buffer itself, and an index for the

current token:

Download parsing/backtrack/Parser.java

Lexer input; // from where do we get tokens?

List<Integer> markers; // stack of index markers into lookahead buffer

List<Token> lookahead; // dynamically-sized lookahead buffer

int p = 0; // index of current lookahead token;

// LT(1) returns lookahead[p]

The token access and testing methods are very similar to the fixed-

lookahead parser versions:

Download parsing/backtrack/Parser.java

public Token LT(int i) { sync(i); return lookahead.get(p+i-1); }

public int LA(int i) { return LT(i).type; }

public void match(int x) throws MismatchedTokenException {

if ( LA(1) == x ) consume();

else throw new MismatchedTokenException("expecting "+

input.getTokenName(x)+" found "+LT(1));

}

The only difference is that LT( ) treats lookahead as a simple list, not a

circular list (there is no modulo operator in the index computation).

That implies that there must always be a valid token at index p+i-1

(i tokens ahead). This is where the call to sync( ) comes in. The sync( )

method makes sure that the lookahead buffer always has valid tokens

from index p to p+i-1:

Download parsing/backtrack/Parser.java

/** Make sure we have i tokens from current position p */

public void sync(int i) {

if ( p+i-1 > (lookahead.size()-1) ) { // out of tokens?

int n = (p+i-1) - (lookahead.size()-1); // get n tokens

fill(n);

}

}

public void fill(int n) { // add n tokens

for (int i=1; i<=n; i++) { lookahead.add(input.nextToken()); }

}

To advance through the input stream, the parser calls consume( ). The

consume( ) method is the same as in the fixed-lookahead parser except

that we clear the lookahead buffer when we hit the end.
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Download parsing/backtrack/Parser.java

public void consume() {

p++;

// have we hit end of buffer when not backtracking?

if ( p==lookahead.size() && !isSpeculating() ) {

// if so, it's an opportunity to start filling at index 0 again

p = 0;

lookahead.clear(); // size goes to 0, but retains memory

}

sync(1); // get another to replace consumed token

}

The marker management methods are simple because all they do is

manage the markers stack:

Download parsing/backtrack/Parser.java

public int mark() { markers.add(p); return p; }

public void release() {

int marker = markers.get(markers.size()-1);

markers.remove(markers.size()-1);

seek(marker);

}

public void seek(int index) { p = index; }

public boolean isSpeculating() { return markers.size() > 0; }

To learn more about backtracking parsers, take a look at Chapter 14

in The Definitive ANTLR Reference [Par07], which explains how ANTLR

implements backtracking. Chapters 11 and 12 in that book provide

examples and discuss how ANTLR optimizes away a lot of backtracking.

Related Patterns

The pattern described here extends Pattern 3, LL(1) Recursive-Descent

Parser, on page 54, with arbitrary lookahead and backtracking support.

Pattern 6, Memoizing Parser shows how to avoid unnecessary reparsing

by recording partial parsing results.

26 Memoizing Parser

Purpose

This pattern records partial parsing results during backtracking to

guarantee linear parsing performance, at the cost of a small amount of

memory.
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Memoizing is a form of dynamic programming and lets us avoid repars-

ing the same input with the same rule. Another name for memoizing

recursive-descent parser is packrat parser, a fabulous term coined by

Bryan Ford in Packrat parsing:: simple, powerful, lazy, linear time, func-

tional pearl [For02].

Discussion

Without memoization to avoid redundant parsing, backtracking can

lead to impractically slow (exponentially complex) parse times. This pat-

tern guarantees linear parse time at the cost of a bit of memory. The

extra memory is well worth the gain in parsing speed. I’ve seen back-

tracking parse times go from hours to seconds with the introduction of

memoization.

Memoization only helps us, though, if we invoke the same rule at the

same input position more than once. For example, upon input (3+4);, a

backtracking parser derived from the following rule invokes expr twice:

s : expr '!' // assume backtracking parser tries this alternative

| expr ';' // and then this one

;

expr : ... ; // match input such as "(3+4)"

Rule s invokes expr to speculatively match the first alternative. expr

succeeds, but s finds that the next input symbol is ; and not !. Rule s

rewinds the input and tries the second alternative. The parser immedi-

ately calls expr again and at the same input position. That’s a waste of

CPU time. To avoid reparsing, all we have to do is remember that expr

succeeded the last time we tried it at this position.

Rule expr can avoid parsing if it succeeded the last time by just pre-

tending to parse. To simulate a successful speculative parse, we skip

ahead to where expr left off the last time and return immediately.

Oddly enough, we can also avoid parsing with expr if it failed the last

time. We know it won’t match, so we can return immediately. The invok-

ing parser rule will rewind the input to try the next alternative, so we

don’t have to adjust the input position.

To record partial results, we need a memoizing dictionary for each

rule that maps an integer token buffer index to a condition value.

There are three possible conditions: unknown, failed, or succeeded. An

unknown dictionary result indicates that the associated rule method

hasn’t parsed at that position before. Failed indicates that the parser
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Why Packrat Parsing Is Fast

Memoization of parsing results guarantees there is no way to
parse the same rule at the same input position more than once.
Therefore, parsing speed is bounded by how many rules and

how many input tokens there are. Because the number of rules
in a grammar is fixed, the dominant component of the speed
function is the number of input tokens. Consequently, pack-
rat parsers are guaranteed to have linear performance, albeit
with some heavy overhead sometimes. As for memory require-
ments, the most we can record is a single integer per rule per
input position leading also to a linear space complexity. In the
worst case, we have to call every rule once for each input posi-
tion (saving an integer for each invocation). In practice, pack-
rat parser generators must do a great deal of optimization to
approach the performance of fixed-lookahead parsers.

failed the last time it tried to parse starting at that input position. Any

other result indicates a previously successful parse.

We can represent the failed condition with a negative number in the

dictionary. The unknown condition happens by default when the dictio-

nary has no entry for that input position. The integers zero and greater

indicate a previously successful parse. The integer also records the

token index one past where the parsing method finished previously.

(The position is an index into the lookahead token buffer, not an abso-

lute token position within the input stream.)

To turn Pattern 5, Backtracking Parser, on page 71 into a packrat

parser, we also need a memoizing method for each rule method. The

memoizing method either avoids reparsing or records the success or

failure of the normal parsing method. The code template looks like this:

/** Map input position to FAILED or previous stop token index.

* Missing value implies we've not parsed this rule at that index.

*/

Map<Integer, Integer> «rule»_memo = new HashMap<Integer, Integer>();

public void «rule»() throws RecognitionException {

boolean failed = false;

int startTokenIndex = index();

if ( isSpeculating() && alreadyParsedRule(«rule»_memo) ) return;

// must not have previously parsed rule at token index; parse it

try { _«rule»(); }
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catch (RecognitionException re) { failed = true; throw re; }

finally {

// succeed or fail, we must record result if backtracking

if (isSpeculating())

memoize(«rule»_memo, startTokenIndex, failed);

}

}

This memoizing method assumes the role of the original rule method.

Other rules that refer to it don’t need to change. We can rename the

original parsing rule method to be _«rule».

Implementation

To demonstrate packrat parsing, let’s memoize the list method from Pat-

tern 5, Backtracking Parser, on page 71. Rule stat invokes rule list mul-

tiple times from its left edge during backtracking:

stat : list EOF // try this alternative first

| list '=' list // if 1st alternative fails, try this one

;

The parser method, _list( ), is the same except for the _ prefix:

Download parsing/memoize/BacktrackParser.java

// match '[' elements ']'

public void _list() throws RecognitionException {

System.out.println("parse list rule at token index: "+index());

match(BacktrackLexer.LBRACK);

elements();

match(BacktrackLexer.RBRACK);

}

To memoize it, we create the following method using the code template

from the previous section:

Download parsing/memoize/BacktrackParser.java

/** list : '[' elements ']' ; // match bracketed list */

public void list() throws RecognitionException {

boolean failed = false;

int startTokenIndex = index(); // get current token position

if ( isSpeculating() && alreadyParsedRule(list_memo) ) return;

// must not have previously parsed list at tokenIndex; parse it

try { _list(); }

catch (RecognitionException re) { failed = true; throw re; }

finally {

// succeed or fail, must record result if backtracking

if (isSpeculating()) memoize(list_memo, startTokenIndex, failed);

}

}
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We also need to augment the support code in Parser. First, we need a

constant to represent failed parsing results:

public static final int FAILED = -1; // parsing failed on last attempt

Then, we need to implementalreadyParsedRule( ) and memoize( ):

Download parsing/memoize/Parser.java

/** Have we parsed a particular rule before at this input position?

* If no memoization value, we've never parsed here before.

* If memoization value is FAILED, we parsed and failed before.

* If value >= 0, it is an index into the token buffer. It indicates

* a previous successful parse. This method has a side effect:

* it seeks ahead in the token buffer to avoid reparsing.

*/

public boolean alreadyParsedRule(Map<Integer, Integer> memoization)

throws PreviousParseFailedException

{

Integer memoI = memoization.get(index());

if ( memoI==null ) return false;

int memo = memoI.intValue();

System.out.println("parsed list before at index "+index()+

"; skip ahead to token index "+memo+": "+

lookahead.get(memo).text);

if ( memo==FAILED ) throw new PreviousParseFailedException();

// else skip ahead, pretending we parsed this rule ok

seek(memo);

return true;

}

/** While backtracking, record partial parsing results.

* If invoking rule method failed, record that fact.

* If it succeeded, record the token position we should skip to

* next time we attempt this rule for this input position.

*/

public void memoize(Map<Integer, Integer> memoization,

int startTokenIndex, boolean failed)

{

// record token just after last in rule if success

int stopTokenIndex = failed ? FAILED : index();

memoization.put(startTokenIndex, stopTokenIndex);

}

public int index() { return p; } // return current input position

One final detail: recall that consume( ) resets lookahead buffer index

p to 0 and clears the lookahead buffer when no longer speculating.

That means that all the indexes in the memoization dictionaries are no

longer valid. We don’t need that data anymore anyway. If the parser

isn’t speculating, then it’s committed to a particular alternative.
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Memoization data for positions earlier in the input are no longer useful.

Here’s the critical part of that method:

Download parsing/memoize/Parser.java

// if so, it's an opportunity to start filling at index 0 again

p = 0;

lookahead.clear(); // size goes to 0, but retains memory

clearMemo(); // clear any rule_memo dictionaries

To convince ourselves that we’re actually avoiding some reparsing, let’s

make a test rig:

Download parsing/memoize/Test.java

BacktrackLexer lexer = new BacktrackLexer(args[0]); // parse arg

BacktrackParser parser = new BacktrackParser(lexer);

parser.stat(); // begin parsing at rule stat

Here is a sample run with input [a,b]=[c,d]:

$ java Test '[a,b]=[c,d]'

attempt alternative 1

parse list rule at token index: 0

attempt alternative 2

parsed list before at index 0; skip ahead to token index 5: =

parse list rule at token index: 6

predict alternative 2

parse list rule at token index: 0

parse list rule at token index: 6

$

Let’s interpret the output. Rule stat attempts its first alternative (a sim-

ple list followed by EOF). It enters memoized list( ), which calls _list( ) and

then records a successful parse at token index 0. The first alternative

ultimately fails, though, because = follows the list, not EOF.

Rule stat therefore attempts the second alternative. It calls memoized

list( ) (via assign) and finds that the dictionary contains token index 5 for

key 0. That means the parser remembers parsing list at index 0. More

important, the dictionary tells us that the parser left off at index 5 the

last time. Instead of parsing, list( ) can just skip ahead. To finish specu-

lative parsing of the second alternative, the parser matches = (index 5)

and then another list (index 6). At this point, the parser has convinced

itself that the second alternative of stat will succeed.

After the speculative parse, the parser knows to match the second alter-

native. It rewinds and matches the second alternative of stat normally

(recall that a backtracking parser rematches the alternative to execute

any application-specific actions). The last two parse list rule. . . lines in
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the output show the parser matching lists on the left and right of the

assignment operator.

So, the output shows that adding memoization prevents the parser from

performing a redundant computation.

Related Patterns

This pattern extends Pattern 5, Backtracking Parser, on page 71 to

make it more efficient.

27 Predicated Parser

Purpose

This pattern augments any top-down parser with arbitrary boolean ex-

pressions that help make parsing decisions.

These boolean expressions are called semantic predicates and specify

the semantic applicability of an alternative. Predicates that evaluate to

false effectively “turn off” a parser decision path. From a grammar point

of view, false predicates make alternatives invisible.

Discussion

We need semantic predicates when the parser cannot use syntax alone

to make parsing decisions, that is, when the parser cannot distinguish

between alternatives without using run-time information. The most

common case is when we need to use symbol table information to guide

the parse. (See Chapter 6, Tracking and Identifying Program Symbols,

on page 146.) As we saw in Section 3.3, Directing the Parse with Seman-

tic Information, on page 68, C++ expression T(6) can be a function call

or typecast depending on whether T is a function or a class.

Predicates are also useful when a parser must recognize multiple ver-

sions of an input language. For example, the GCC C compiler adds a

number of extensions beyond C. Java 5.0 introduced the enum key-

word to support enumerated types. To handle multiple language ver-

sions with the same parser, we can make a core version that matches

the most complete language version. Then, we can predicate parsing

decisions to “turn off” various version-dependent language constructs.
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Predicated parsing decisions look exactly like those in Section 1, Con-

verting Subrules, on page 47. The only difference is the introduction

of arbitrary boolean tests after the lookahead tests. Here is the basic

decision code template:

public void «rule»() throws RecognitionException {

if ( «lookahead-test-alt1» && «pred1» ) { // attempt alt 1

«match-alt1»

}

else if ( «lookahead-test-alt2» && «pred2» ) { // attempt alt 2

«match-alt2»

}

...

else if ( «lookahead-test-altN» && «predN» ) { // attempt alt N

«match-altN»

}

// must be an error; no alternatives matched

else throw new NoViableException("expecting «rule»")

}

Predicated loop decisions for grammar (...)* and (...)+ subrules look like

this:

while ( «lookahead-test-for-loop-alts» && «pred» ) {

«subrule-code-to-match-alts»

}

To see how semantic predicates solve a surprisingly nasty parsing prob-

lem, let’s do battle with C++ again in the Implementation section.

Implementation

C++ allows multiple type specifiers before the variable name, as follows:

volatile unsigned long int x; // lots of type specifiers before x

But an identifier can also be a type name as in const T y;. To see why

that’s a problem, let’s build a simplified C++ grammar to deal with vari-

able declarations. To match the type specifiers before the ID variable

name, let’s loop around rules qualifier and types:

declaration : (qualifier|type)+ ID ';' ; // E.g., "const int x;"

qualifier : 'const' | 'volatile' ;

type : 'int' | 'unsigned' | 'long'| ID ;

Unfortunately, the loop in declaration can’t decide what to do upon see-

ing ID. The loop doesn’t know whether to match ID now or to leave it to

the following ID reference. If the loop matches it, the parser interprets

ID as a type name. By letting the loop exit, the parser interprets ID as

the variable name. For example, upon T in const T y;, the loop doesn’t
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know whether T is a type name or a variable name. The loop decision

will match T no matter what:

while ( LA(1)==CONST || LA(1)==VOLATILE || LA(1)==INT ||

LA(1)==UNSIGNED || LA(1)==LONG || LA(1)==ID ) {

// match qualifier or type;

}

The correct solution is to match ID inside type only if it’s a type name.

In an ANTLR grammar, we can prefix the ID alternative with a semantic

predicate that checks the lookahead token’s status as a type name:

type: 'int' | 'unsigned' | 'long'

| {isTypeName(LT(1).getText())}? ID // type name

;

Assume method isTypeName( ) looks up the lookahead token’s text in a

type table. (LT(1) is the current lookahead token.) To do the same thing

manually, we just add a new clause to the (...)+ loop condition from

declaration:

while ( LA(1)==CONST || LA(1)==VOLATILE || LA(1)==INT ||

LA(1)==UNSIGNED || LA(1)==LONG ||

(LA(1)==ID&&isTypeName(LT(1).getText())) ) {

// match qualifier or type;

}

Now, the parser will only match IDs as part of the type qualifiers if they

are type names. The key lesson here is that we need to predicate the

parsing decision with information that is only available at run-time. In

this case, we need context information (is T a type name?) to figure out

how to parse declarations.

Up Next

We’ve just spent two chapters learning how to build recognizers. We’re

ready to move on to the second part of the book. We’re going to learn

how to build internal data structures from the input, how to walk those

structures, and how to analyze sentences to check for correctness.
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Chapter 4

Building Intermediate Form Trees
Before interpreting or translating an input phrase, we have to fully

understand that phrase. That means we have to verify its syntax and

verify that it makes sense. In the previous part of this book, we learned

how to check phrase syntax. In this part of the book, we’re going to

explore the patterns that help us analyze input phrases.

Only the simplest language applications get away with reading input

and directly generating output. Such applications are calledsyntax-

directed applications because they can generate output as soon as

they recognize a construct. For example, if we wanted to convert a

wiki markup format to HTML, we could translate it almost character

by character. The key characteristic of syntax-directed applications is

that they translate input phrase by phrase using a single pass over the

input.

Most language applications, however, need to build an intermediate rep-

resentation (IR) or intermediate form. The goal of an application’s reader

component is to fill an IR data structure with elements of interest from

the input stream. Some language applications, such as configuration

file readers, stop after building an IR. Usually, though, readers are just

the first stage in a pipeline of components. That’s why the I in IR stands

for intermediate, not internal.

The needs of the intended application dictate the nature of the IR.

For example, if we need to track word occurrences in a document, an

unordered set of words works fine. If the order of word occurrence

is important, we need to construct a list rather than a set. Gener-

ally speaking, though, to get a computer to understand a nontrivial
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sentence, we have to break it down into a series of operations and

operands. That’s just the way computers like to do things.

Once we identify the operators and operands among the input tokens,

we need to build an IR data structure. For most language applica-

tions, that means building a tree data structure. In particular, we’ll

build an abstract syntax tree (AST). ASTs hold the key tokens from the

input stream and record grammatical relationships discovered during

the parse. ASTs are so central to translator and interpreter design that

it’s worth spending an entire chapter on them.

ASTs are the lingua franca spoken by the various stages in a language

application. Each stage performs a computation, rewrites the tree, or

creates another data structure before passing the tree along to the next

stage. To do their work, the stages need to walk the trees and trigger

actions when they encounter specific subtree patterns. As we’ll see in

the next chapter, tree pattern matching is a pain to do by hand. Fortu-

nately, we can automate tree matching just like we do with flat sentence

parsing.

Before we get into tree walking and matching, though, we need to learn

everything we can about ASTs. In this chapter, we’ll discuss:

• Why we build trees in the first place

• How we should structure ASTs and why

• How to implement ASTs in an object-oriented language

• How to enforce tree structure with an implementation language’s

static type system

• How to construct ASTs with ANTLR’s AST operators and rewrite

rules

During our introductory discussion, we’ll explore the four most com-

mon IR tree patterns and then formally define them:

• Pattern 8, Parse Tree, on page 105. Parse trees record how a

parser recognizes an input sentence. The interior nodes are rule

names, and the leaves are tokens. Although parse trees are less

suitable than ASTs for most language applications, parsers can

create them automatically.

• Pattern 9, Homogeneous AST , on page 109. The most important

thing about a tree is its shape, not its node data type. Unless we’re

writing a lot of code by hand, we can get away with a few or even
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Representing Nested Structures with Trees

A tree is a data structure composed of a set of nodes orga-
nized into a hierarchy. Each node has a parent and an ordered
list of zero, one, or multiple children. The children can be simple
nodes or complete subtrees. In computer science, we draw
trees with the root node at the top and the branches descend-
ing below. Root nodes are analogous to the root directory on
a disk. Children are analogous to files and subdirectories.

just one node data type. If all the nodes have the same type, we

say that they are homogeneous. With a single node type, there

can be no specialty fields to reference child subtrees. Nodes track

children with lists of child pointers.

• Pattern 10, Normalized Heterogeneous AST , on page 111. Trees

with a multitude of node types are called heterogeneous trees. Nor-

malized heterogeneous trees use a normalized list of children like

homogeneous trees.

• Pattern 11, Irregular Heterogeneous AST , on page 114. When

we refer to an AST as heterogeneous, we also assume that the

nodes have irregular children. Instead of a normalized child list,

the nodes have named fields, one per child.

4.1 Why We Build Trees

As we saw in Chapter 2, Basic Parsing Patterns, on page 37, being able

to recognize an input phrase means being able to identify and extract

key input elements. For example, recognizing the English phrase

“Rebecca runs to the park” means we know “Rebecca” is the subject,

“runs” is the verb, and “to the park” is the object. Language recogni-

tion is more complicated than simply picking out the parts of speech,

though. The order of those elements counts. In a modern English sen-

tence, for example, the verb usually sits between the subject and the

object. It sounds wrong (despite being intelligible) to say “Rebecca to

the park runs.”1

1. To a Middle English speaker (the language of Geoffrey Chaucer), however, this might

sound more normal, as the main verb could appear at the end of the sentence. We still

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=90


WHY WE BUILD TREES 91

x

0

=

;

statement

assignment

expr

Figure 4.1: x=0; assignment statement parse tree

Order is not the only important sentence recognition issue. Many lan-

guages have subphrases and nested structures. For example, some

object-oriented languages allow nested class definitions. An inner class

definition is a phrase nested within another phrase (the outer class). So,

our IR must record not only the elements of interest but the relation-

ship between them as well. It turns out that trees are the perfect data

structure to represent ordered and nested structures. There are two

general kinds of trees we’re going to look at: parse trees and abstract

syntax trees.

Since we’re already familiar with parse trees from Chapter 2, Basic

Parsing Patterns, on page 37 (sometimes called syntax trees), let’s look

at them first. Parse trees record the sequence of rules a parser applies

as well as the tokens it matches. Interior parse tree nodes represent

rule applications, and leaf nodes represent token matches.

Parsers don’t normally create parse trees, though. Instead, recursive-

descent rule method invocations simply trace out the parse tree during

the parse. Because the rules for constructing parse trees are simple

and regular, though, the parser can automatically construct them in

memory. The parse tree acts like an execution trace. See Pattern 8,

Parse Tree, on page 105.

Given assignment x=0;, our parser might create a parse tree like Fig-

ure 4.1. The tree represents the tokens from the assignment as well

as its grammatical structure. It has everything we need to know about

interpreting the sequence of input symbols as an assignment. The inte-

rior nodes organize and identify what roles their children play.

have some vestiges of this in sentences like “something wicked this way comes” and “with

this ring I thee wed.”

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=91


BUILDING ABSTRACT SYNTAX TREES 92

Parse trees are nice to look at and help us understand how a parser

interpreted an input phrase. But, a parser execution trace isn’t really

the best IR. Certainly we need to pinpoint the various substructures,

but we don’t need to name them explicitly. Surprisingly, we don’t need

the internal rule nodes at all. The next section describes how to con-

struct suitable intermediate form trees using only the tokens.

4.2 Building Abstract Syntax Trees

Rather than simply taking what the parser can give us for free (parse

trees), let’s take a second to design what we actually want in an IR. The

critter that we end up with is called an abstract syntax tree (AST).

To figure out what ASTs should look like, let’s start with a list of design

guidelines. An IR tree should be the following:

• Dense: No unnecessary nodes

• Convenient: Easy to walk

• Meaningful: Emphasize operators, operands, and the relationship

between them rather than artifacts from the grammar

The first two points imply that it should be easy and fast to identify

patterns in the tree. Language applications that use intermediate trees

usually make multiple passes over the trees in order to analyze or build

other data structures. The structure of intermediate trees should be

brain-dead simple.

The last point implies that the tree structure should be insensitive to

changes in the grammar (at least those unrelated to language syntax).

During development and maintenance, grammars change all the time.

We don’t want to let a simple rule name change in the grammar break

other components in our application.

OK, using our design guidelines, let’s build a suitable tree structure

for assignment x=0;. To start, we can strip away the unnecessary nodes

from the parse tree in Figure 4.1, on the previous page. The ; node

disappears because semicolons convey no meaning; they exist only to

help the parser (and us humans) separate statements.

Believe it or not, we can also get rid of the rule nodes. We know that we

fed a statement to the parser so the statement root node is unneces-

sary. What about the assignment node, though? We can drop this too

because we only need to know what kind of statement we fed in, not
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what the grammar calls it. The = operator tells us everything we need

to know. Computers only care about operators and operands.

By condensing the input to its essential elements, we decouple it from

the original syntax. So, for example, assignment syntax boils down to

an assignment operator and two operands. Decoupling does two things.

First, it gets us closer to the operator-operand model of the CPU. Sec-

ond, we can have different languages share a common intermediate

form. Compiler writers often leverage an existing optimizer and code

generator by translating multiple languages to an established IR.

At this point, we’ve removed all but three nodes: x, =, and 0. The only

thing left to figure out is the relationship between those nodes. One

thing is certain: We definitely can’t get rid of the two-dimensional struc-

ture of the tree. A flat tree is a linked list, which is essentially just a

copy of the input stream. In that case, the parser would be throwing

away everything it learned about sentence structure.

The key idea behind AST structure is that tokens representing oper-

ators or operations become subtree roots. All other tokens become

operands (children of operator nodes). Finally, we arrive at the AST

for x=0;:

x 0

=

Let’s examine this AST to see how it fits our design guidelines. There

are no unnecessary nodes; the tree is the smallest possible. Without

all of those interior rule nodes, walking this AST would be much faster

than walking the parse tree. It’s easy to identify subtrees because each

subtree root uniquely identifies what the subtree does; in this case,

the subtree performs an assignment. Lastly, this AST is an abstract

representation of an assignment. No matter what assignment looks like

in a programming language, we could translate it to this AST.

Now that we’ve got the basics down, let’s think about the relationship

between subtrees in more complicated trees.

How ASTs Encode Operator Precedence

There is only one operation in x=0; and, hence, just one subtree in its

AST. Assignment x=1+2;, on the other hand, has two operations: an

assignment and an addition. We know that there should be two sub-

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=93


BUILDING ABSTRACT SYNTAX TREES 94

trees, one for each operation, but we need to figure out how they fit

together.

The answer depends on which operation needs to happen first. The

semantics of assignment dictate that the right-side expression be eval-

uated before the assignment. To encode “x happens before y,” we make

x lower than y in the tree. In this case, we make the addition subtree a

child (an operand) of the assignment subtree:

x

1 2

=

+

To perform the assignment, we first need the value of the right child.

This mirrors the precedence of the = and + operators (+ has higher

precedence).

The same rule applies for operators within the same expression. Oper-

ators with higher precedence appear lower in the AST. For example, in

expression 3+4*5, the * operator has higher precedence than +. The *

subtree is a subtree of the + operator node. If we alter the precedence of

the operators in the expression with parentheses, (3+4)*5, the + subtree

becomes a child of the * node. Here are the two AST representations:

AST for 3+4*5 AST for (3+4)*5

+

3 *

4 5

+

3 4

5

*

Representing Trees in Text

In future chapters, we’ll need a terse, text-based encoding for trees. To

arrive at a suitable notation, let’s look at these trees as nested function

calls:

add(3, mul(4,5)); // 3+4*5

mul(add(3,4), 5); // (3+4)*5

If we move the ( to the left of the function name and replace the function

name with the equivalent operator token, we get the following LISP-

inspired notation:

(+ 3 (* 4 5)) // 3+4*5

(* (+ 3 4) 5) // (3+4)*5
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Notation (a b c) means a is the root with children b and c.

At this point, we know what to do with language constructs dealing

with operator tokens. Now let’s figure out how to create ASTs for nonex-

ecutable language statements such as variable declarations.

Representing Pseudo-operations in ASTs

Not all programming language constructs map directly to executable

code. There are even languages without executable statements. For

example, DOT2 is a purely declarative graphics language. We can only

define nodes and the relationship between nodes. DOT figures out how

to draw the diagram.

To represent such language constructs, we have to invent pseudo-

operations. For example, here is a DOT declaration for a node labeled

car:

node "car" [shape=ellipse, fontsize=14]

Because there is no executable operation for this declaration, we can

use the node token as a “define node” operator. The property assign-

ments for the declaration are the node’s operands. Each property as-

signment is a subtree of the node:

node

car = =

shape ellipse fontsize 14

In some cases, there is no reasonable input token to use as a subtree

root. We must invent an imaginary token, a token for which there is

no corresponding input token. For example, variable declarations in

languages derived from C usually need an imaginary token. We can use

whatever we want, but something like VARDECL works well. The AST for

int i; would have VARDECL at the root and int and i as children. We need

something similar for function declarations, class declarations, formal

argument declarations, and so on.

OK, so now we know what trees look like and how to map input con-

structs to AST subtrees. Let’s figure out how to represent ASTs in mem-

ory. After that, we can build some ASTs using an ANTLR grammar.

2. http://www.graphviz.org
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Implementing ASTs in Java

In our discussion so far, we’ve never mentioned the data type or types of

the AST nodes. That’s because, technically, we need only one data type:

a generic tree node with a list of children. What we really care about is

the tree structure (relationships between nodes), not necessarily the

node implementation type(s) themselves. We could use a single class

like the following to represent every node in the tree:

public class AST {

Token token; // node is derived from which token?

List<AST> children; // operands

public AST(Token token) { this.token = token; }

public void addChild(AST t) {

if ( children==null ) children = new ArrayList<AST>();

children.add(t);

}

}

Trees built from a single data type are called homogeneous trees. See

Pattern 9, Homogeneous AST , on page 109. If there is only one data

type, you might be wondering how we can distinguish between an

addition and an assignment node. We can use a node’s token type:

t.token.getType() for node t. Each node stores the token from which we

created it.

Because there is only a single type, we can use a normalized child list

representation: List<AST>. Again, we don’t care about the type of the chil-

dren, just that they are nodes or subtrees. We don’t even care about

naming the fields really. For a + node, we know that the first child,

children[0],3 is the left operand, and the second child, children[1], is the

right.

By normalizing the references to the children of every node, it’s much

easier to provide tree construction and tree-walking support machin-

ery. Later in this chapter, for example, we’ll try some of ANTLR’s cool

tree construction facilities. To use them, though, our trees must have

normalized children. In Chapter 5, Walking and Rewriting Trees, on

page 116, we’ll see that it’s harder to automatically generate tree visi-

tors for irregular child lists. Just because we use normalized children,

though, doesn’t mean we can’t have different node types.

3. The reader will forgive me for using children[i] instead of children.get(i) everywhere for

clarity.
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In Chapter 8, Enforcing Static Typing Rules, on page 196, we’ll dis-

cuss annotating trees with various bits of information. For example,

we might want to annotate expression trees with result types (expres-

sion 3+4.0 has result type float). With homogeneous tree nodes, however,

adding a evalType field means all nodes (even nonexpression nodes) get

the field. We end up including the union of all fields needed by all nodes

in the homogeneous AST class definition. This costs memory and makes

it hard to figure out which nodes need which fields.

To overcome this weakness, we can build a heterogeneous tree, where

different kinds of nodes have different types. We’ll explore heteroge-

neous tree nodes with normalized children in Pattern 10, Normalized

Heterogeneous AST , on page 111. But, the core idea is to use the homo-

geneous AST class as a base class:

public class ExprNode extends AST { DataType evalType; ... }

public class AddNode extends ExprNode { ... }

public class MultNode extends ExprNode { ... }

public class IntNode extends ExprNode { ... }

...

One objection to heterogeneous trees with normalized children is that

we have to refer to children by position, not by name. For example,

we say children[0] and children[1], not, say, left and right. In many cases,

having irregular, named fields leads to more readable code. We will

explore such trees in more detail later (Pattern 11, Irregular Heteroge-

neous AST , on page 114). In the meantime, here is what ExprNode and

AddNode would look like with irregular children:

public abstract class AST {

Token token;

// missing normalized list of children; subclasses define fields

}

public abstract class ExprNode extends AST { ... }

public class AddNode extends AST {

ExprNode left, right; // irregular, named fields

«fields-specific-to-AddNode»

}

By using heterogeneous node types, we can also enforce a bit of struc-

ture, as we’ll see next.

Enforcing Tree Structure with the Type System

We all make mistakes when writing software. So, if possible, it’s a

good idea to write code in such a way that it compiles only when

we’re doing things properly. To avoid creating improperly structured
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ASTs, we can co-opt the implementation language’s static type system

to enforce structure. For example, we could make the constructor for

heterogeneous type AddNode take two ExprNode arguments:

public AddNode(ExprNode left, ExprNode right) {...}

The types of the constructor’s arguments make it very clear that addi-

tion only works on expressions. We can’t use a statement or declaration

as an addition operand:

// Constructor enforces structure using type system

// COMPILER ERROR: PrintNode is not an ExprNode

a = new AddNode(new IntNode(1), new PrintNode(...));

We can enforce many structures easily this way but not all. The Vec-

torNode is a perfect example. To allow an arbitrary number of vector

elements, we have to pass in a list:

public VectorNode(List<ExprNode> elements) {

for (ExprNode node : elements) { addChild(node); }

}

Unfortunately, this constructor cannot enforce proper structure. We

could pass in an empty list, but the grammar requires a least one vector

element. There is simply no way to specify cardinality (how many there

are) with the type system of commonly used programming languages.

By relying on the implementation language’s type system to represent

structure, the only sure way to determine the exact order and cardinal-

ity of children is to examine how methods use those children. The set of

valid data structure organizations is therefore not explicitly described.

Worse, node functionality is spread across multiple node class defini-

tion files. The data structure organization is not encapsulated into a

single description file. In Chapter 5, Walking and Rewriting Trees, on

page 116, we see how to formally and tersely describe the set of possi-

ble structures with a single tree grammar file. Also note that co-opting a

static type system to specify structure is not even an option for dynam-

ically typed languages such as Ruby and Python.

The best way to create ASTs and to verify their structure is with a formal

mechanism. In Section 4.4, Constructing ASTs with ANTLR Grammars,

on page 101, we’ll see how to create trees explicitly with tree gram-

mar fragments. Then, in Chapter 5, Walking and Rewriting Trees, on

page 116, we’ll see how to enforce structure and do pattern matching

also with tree grammar fragments. But, first, let’s get a taste of ANTLR

to make that discussion clear.
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4.3 Quick Introduction to ANTLR

Once you know how to build lexers and parsers by hand, it’s a good

idea to use a parser generator to make your life easier. This section gets

you started using ANTLR4 and its grammar DSL. (You can skip to the

next chapter if you’re already familiar with it.) We’re going to build a

simple grammar, run it through ANTLR, and write a test rig to exercise

the generated lexer and parser.

Let’s build a grammar for a simple graphics DSL with a single command

for drawing lines. Here’s how we’d draw a box 10 units on a side:

Download parsing/antlr/box

line from 0,0 to 0,10

line from 0,10 to 10,10

line from 10,10 to 10,0

line from 10,0 to 0,0

The syntax of the DSL is a list of line commands:

Download parsing/antlr/Graphics.g

grammar Graphics;

file : command+ ; // a file is a list of commands

command : 'line' 'from' point 'to' point ;

point : INT ',' INT ; // E.g., "0,10"

There are three rules: file, command, and point. The single-quoted

strings are tokens representing the keywords in our language. The ref-

erences to INT are references to integer tokens. Here are the lexical rules

(minus the implicit rules for matching keywords):

Download parsing/antlr/Graphics.g

INT : '0'..'9'+ ; // lexer rule to match 1-or-more digits

/** Skip whitespace */

WS : (' ' | '\t' | '\r' | '\n') {skip();} ;

The WS rule matches whitespace but immediately throws it away so that

the parser doesn’t see those characters. That way, the parser doesn’t

have to check for whitespace between all the rule elements.

4. http://www.antlr.org
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Running ANTLR on the grammar gets us the lexer and parser classes:

GraphicsLexer and GraphicsParser. Make sure antlr-3.2.jar from the main

code directory is in your CLASSPATH environment variable and then say:

$ java org.antlr.Tool Graphics.g

$ ls

Graphics.g GraphicsLexer.java box

Graphics.tokens GraphicsParser.java

$

Or, if you’d prefer to use the JAR file explicitly, invoke Java with the

following -cp option, assuming you’re in the code/parsing/antlr directory:

$ java -cp ../../antlr-3.2.jar org.antlr.Tool Graphics.g

The tokens file contains a list of the token types (which we can ignore it

for our purposes here). If you take a look at the generated parser, you’ll

see that the methods of the class follow Pattern 1, Mapping Grammars

to Recursive-Descent Recognizers, on page 45. For example, here is the

core of the generated method for rule point:

Download parsing/antlr/GraphicsParser.java

// Graphics.g:8:9: INT ',' INT

match(input,INT,FOLLOW_INT_in_point39);

match(input,9,FOLLOW_9_in_point41);

match(input,INT,FOLLOW_INT_in_point43);

The FOLLOW_INT_in_point37 reference is a set of tokens the generated

parser uses to automatically resynchronize after syntax errors.

To test the parser, we can use the following main program:

Download parsing/antlr/Test.java

public static void main(String[] args) throws Exception {

CharStream input = null;

// Pick an input stream (filename from commandline or stdin)

if ( args.length>0 ) input = new ANTLRFileStream(args[0]);

else input = new ANTLRInputStream(System.in);

// Create the lexer

GraphicsLexer lex = new GraphicsLexer(input);

// Create a buffer of tokens between lexer and parser

CommonTokenStream tokens = new CommonTokenStream(lex);

// Create the parser, attaching it to the token buffer

GraphicsParser p = new GraphicsParser(tokens);

p.file(); // launch parser at rule file

}

Since we haven’t inserted actions into the grammar to generate output,

running the test rig appears to do nothing. But, if we give the program

erroneous input, it spits out a syntax error:
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$ javac *.java # or, javac -cp ../../antlr-3.2.jar *.java

$ java Test box # or, java -cp .:../../antlr-3.2.jar Test box

$ java Test

line to 2,3

line 1:5 mismatched input 'to' expecting 'from'

$

Using the DSL of a parser generator saves a huge amount of work. We

wrote a 15-line grammar and ANTLR generated more than 500 lines of

Java code for us. To learn more, you can visit the website or purchase

The Definitive ANTLR Reference [Par07]. In the next section, we’ll see

that ANTLR can also help us build ASTs without resorting to code in a

general-purpose programming language.

4.4 Constructing ASTs with ANTLR Grammars

To learn about ANTLR’s AST construction mechanism, let’s build ASTs

for a simple vector math language with addition, multiplication, and

dot product.

To design our grammar, we need to look at some sample sentences.

Here are some valid vector math statements:

x = 1+2

y = 1*2+3

z = [1, 2] + [3, 4]

a = [1, 2] . [3, 4]

b = 3 * [1, 2]

print x+2

At the coarsest level, that looks like a series of assignment and print

statements. We can express that syntax grammatically as follows:

Download IR/Vec/VecMath.g

statlist : stat+ ; // match multiple statements

stat: ID '=' expr // match an assignment like "x=3+4"

| 'print' expr // match a print statement like "print 4"

;

Within the statements, we find various math operators (+, *, and .) and

operands (integers, identifiers, and vector literals).
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We can describe these expressions grammatically as follows:

Download IR/Vec/VecMath.g

expr: multExpr ('+' multExpr)* ; // E.g., "3*4 + 9"

multExpr: primary (('*'|'.') primary)* ; // E.g., "3*4"

primary

: INT // any integer

| ID // any variable name

| '[' expr (',' expr)* ']' // vector literal; E.g. "[1,2,3]"

;

To build ASTs, we’ve got two options. We can add actions to the gram-

mar to manually build trees, or we can use ANTLR’s AST construction

operators and rewrite rules.

Building trees by hand is easy but tedious. Here are a few rules aug-

mented with tree construction actions (code fragments in curly braces)

to give you the flavor:

expr returns [AST tr] // expr returns a subtree

: a=multExpr {$tr = $a.tr;}

( '+' b=multExpr {$tr = new AddNode($tr, $b.tr);} )*

;

primary returns [AST tr]

: INT {$tr = new IntNode($INT.text);}

...

AST construction is so important, ANTLR has built-in AST construction

support. By setting the output option to AST, ANTLR adds a tree return

value to each rule method (like we just did by hand). The tree return

value from the start rule represents the root of the entire tree created

while parsing. ANTLR also injects code to create an AST node (of type

CommonTree) for each input token matched.

Given no instructions to the contrary, ANTLR builds a flat tree (a linked

list) of these nodes. Here is the start of our grammar file with the output

option set (and the definition of an imaginary token we’ll need after

that):

Download IR/Vec/VecMathAST.g

grammar VecMathAST;

options {output=AST;} // we want to create ASTs

tokens {VEC;} // define imaginary token for vector literal

    

http://media.pragprog.com/titles/tpdsl/code/IR/Vec/VecMath.g
http://media.pragprog.com/titles/tpdsl/code/IR/Vec/VecMathAST.g
http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=102


CONSTRUCTING ASTS WITH ANTLR GRAMMARS 103

The following rules use ANTLR’s AST rewrite notation to specify tree

structure:

Download IR/Vec/VecMathAST.g

statlist : stat+ ; // builds list of stat trees

stat: ID '=' expr -> ^('=' ID expr) // '=' is operator subtree root

| 'print' expr -> ^('print' expr) // 'print' is subtree root

;

We use notation ^(...) for tree patterns not (...) in order to distinguish

them from grammar subrules. The assignment tree has the same struc-

ture we’ve used so far with the = operator at the root.

Aside from its succinctness and expressivity, ANTLR’s formal AST con-

struction mechanism provides another important benefit: this mecha-

nism is language neutral. ANTLR’s code generator can generate code in

a variety of languages, whereas code blocks we add by hand are lan-

guage specific.

Sometimes the rewrite notation is inconvenient, particularly with ex-

pressions. It’s easier to tell ANTLR which tokens are operators using

the ^ suffix operator. All other tokens default to operands. Here are the

expression rules augmented with AST construction operations (except

for the vector literal alternative, which has a rewrite):

Download IR/Vec/VecMathAST.g

expr: multExpr ('+'^ multExpr)* ; // '+' is root node

multExpr: primary (('*'^|'.'^) primary)* ; // '*', '.' are roots

primary

: INT // automatically create AST node from INT's text

| ID // automatically create AST node from ID's text

| '[' expr (',' expr)* ']' -> ^(VEC expr+)

;

The ^(VEC expr+) AST rewrite is particularly satisfying. It says create

a tree with imaginary token VEC at the root and the list of vector ele-

ments as children. ANTLR automatically buffers up the trees returned

from all expr invocations. Referencing expr+ in the tree constructor (tree

pattern to the right of ->) says, “Put all the expr return values here.” To

really dive into AST construction, see Chapter 7 of The Definitive ANTLR

Reference [Par07] or the ANTLR tree construction documentation.5

By default ANTLR builds homogeneous trees of type CommonTree, but

we can easily tell it to create heterogeneous trees. We can suffix any

5. http://www.antlr.org/wiki/display/ANTLR3/Tree+construction
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token reference with a fully qualified node class name. For example,

here is the primary rule augmented with heterogeneous node types:

primary

: INT<IntNode> // create IntNode from INT's text

| ID<VarNode> // create VarNode from ID's text

| '[' expr (',' expr)* ']' -> ^(VEC<VectorNode> expr+)

;

ANTLR generates new IntNode(«INT-token»); from INT<IntNode>. Without the

heterogeneous tree node type, we get adaptor.create(«INT-token»);. The

adaptor is an instance of the TreeAdaptor interface. The interface acts,

in part, as a factory, converting tokens to AST nodes.

The AST constructor to build a subtree representing a vector, ^(VEC

expr+), is an example of a tree pattern. What we’re really doing here

is transforming a linear sequence of tokens into a two-dimensional

AST using a grammar-to-tree-grammar rewrite. The key is that we are

declaring what the AST should look like, not how to build it. It is anal-

ogous to using a grammar to specify syntax rather than building a

parser. We’ll talk more about this in Chapter 5, Walking and Rewrit-

ing Trees, on page 116.

In this chapter, we looked at two different ways to structure interme-

diate representations (parse trees and ASTs) and three different ways

to implement ASTs. Each one is useful in different circumstances. The

following list summarizes all the pros and cons:

• Pattern 8, Parse Tree, on the following page. Pros: Parser gener-

ators can automatically build these for us. Cons: Parse trees are

full of noise (unnecessary nodes). They are sensitive to changes in

the grammar unrelated to syntax. If a parser generator generates

heterogeneous node types, there can be literally hundreds of class

definitions.

• Pattern 9, Homogeneous AST , on page 109. Pros: Homogeneous

trees are very simple. Cons: It’s cumbersome to annotate AST

nodes because the single node type has the union of all needed

fields. There is no way to add methods specific to a particular

kind of node.

• Pattern 10, Normalized Heterogeneous AST , on page 111. Pros: It’s

easy to add operator or operand-specific data and methods. Cons:

Large grammars like Java’s need about 200 class definitions to be

fully heterogeneous. That’s a lot of files to read and write.
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• Pattern 11, Irregular Heterogeneous AST , on page 114. Pros: It’s

easy to add operator- or operand-specific data and methods.

Sometimes code operating on nodes is more readable because

the children (operands) have names rather than positions like

children[0]. Building tree-walking methods for a small set of het-

erogeneous nodes is quick and easy. Cons: As with Pattern 10,

Normalized Heterogeneous AST , on page 111, there are lots of AST

classes to read and write. Having irregular children makes build-

ing external visitors difficult. Most of the time we have to build

tree walkers by hand using Pattern 12, Embedded Heterogeneous

Tree Walker, on page 128.

If you’re in doubt about which is best in your situation, choosing Pat-

tern 10, Normalized Heterogeneous AST , on page 111 is a safe bet. That

said, I tend to use Pattern 9, Homogeneous AST , on page 109 because I

care most about tree structure, not about node types. If I have to anno-

tate trees, though, I add some distinct node types, thus moving toward

a heterogeneous tree.

Now that we’ve got an overall picture of intermediate representations,

let’s look at the tree patterns in more detail. After that, we’ll tackle tree

walking. In future chapters, we’ll make heavy use of tree walking to

extract information and perform computations.

28 Parse Tree

Purpose

A parse tree describes how a parser recognized an input sentence.

A parse tree is sometimes called a syntax tree (as opposed to an abstract

syntax tree). Despite not being that useful for building interpreters and

translators, I’m including this pattern because parse trees are heavily

used by development environments and text rewriting systems.

Discussion

Parse trees record the sequence of rules a parser applies as well as the

tokens it matches. Interior parse tree nodes represent rule applications,

and leaf nodes represent token matches. Parse trees describe sentence

structure by grouping input symbols into subtrees. Subtrees represent
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Figure 4.2: Parse tree for 5*[1,2]

the structure of phrases (sentence fragments). For example, the follow-

ing parse tree clearly identifies the parts of speech in sentence “the cat

runs quickly”:

the cat runs quickly

sentence

subject predicate

article noun verb adverb

By successfully applying a rule to a phrase, the parser identifies the

role it plays in the sentence. So, for example, the parse tree identifies

“cat” as a noun and “the cat” as the sentence subject.

Parse trees are specific to a grammar. Here is the core of the grammar

for that parse tree:

grammar English;

sentence : subject predicate ;

subject : article? noun ;

predicate : verb adverb? ;

...

The interior nodes of computer language parse trees also name lan-

guage substructures. For example, we can see the parse tree for 5*[1,2]

in a vector math language in Figure 4.2.

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=106


PARSE TREE 107

Parse trees are really easy to build by hand and are so regular that tools

like ANTLR can automate the process for us. That’s the good news. The

bad news is that parse trees are extremely inconvenient to walk and

transform. Parse trees are full of noise because of all the interior rule

nodes. They are also very sensitive to changes in the grammar. For

comparison, here is a more appropriate AST structure:

*

5 VEC

1 2

An AST captures just the essential information from the input: all of

the input tokens and the appropriate structure. The interior nodes are

operators or operations rather than rule names.

Nonetheless, parse trees are still very useful as intermediate repre-

sentations for some tools and applications. For example, development

environments use parse trees to good effect for syntax highlighting

and error-checking. A number of text rewriting systems and pretty

printing tools also use parse trees as intermediate representations. For

these tools, it makes sense because we want to express transforma-

tions in the concrete syntax of the language. We want to name the

parts of speech when we transform. For example, informally we might

say, “When you see an assignment, replace = with :=.” Or, in English,

“Find all adjectives within sentence subjects.” We can refer to parts of

speech by using rule names from the grammar if we use parse trees.

Parse trees mirror the function call graphs of a recursive-descent par-

ser, which leads us directly to a construction mechanism.

Implementation

To construct parse trees, we have to add a new interior node to the tree

every time we enter a rule. Here’s a template for a parser rule method:

void «rule»() {

RuleNode r = new RuleNode("«rule»");

if ( root==null ) root = r; // we're the start rule

else currentNode.addChild(r); // add this rule to current node

ParseTree _save = currentNode;

currentNode = r; // "descend" into this rule

«normal-rule-code»

currentNode = _save; // restore node to previous value

}
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We also need to track the overall root of the parse tree and the current

node:

class MyParser extends Parser {

ParseTree root; // root of the parse tree

ParseTree currentNode; // the current node we're adding children to

public void match(int x) { // override default behavior

currentNode.addChild(LT(1)); // add current lookahead token node

super.match(x); // match as usual

}

«rule-methods»

}

We override method match( ) to make it add token leaf nodes as it con-

sumes tokens. The core parsing machinery remains unchanged.

As far as the trees themselves, here is a generic parse tree node:

Download IR/ParseTree.java

import java.util.*;

// Nodes are instances of this class; there's no Node class per se

public abstract class ParseTree {

public List<ParseTree> children; // normalized child list

public RuleNode addChild(String value) {

RuleNode r = new RuleNode(value);

addChild(r);

return r;

}

public TokenNode addChild(Token value) {

TokenNode t = new TokenNode(value);

addChild(t);

return t;

}

public void addChild(ParseTree t) {

if ( children==null ) children = new ArrayList<ParseTree>();

children.add(t);

}

}

You can take a look at its subclasses, TokenNode and RuleNode, in the

sample code. There’s not that much to building parse trees.
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29 Homogeneous AST

Purpose

A homogeneous tree implements an abstract syntax tree (AST) using a

single node data type and a normalized child list representation.

Discussion

The key idea behind an AST is the operator-operand tree structure, not

the node data type. The node data type is really just how we implement

ASTs. An AST contains the essence of the input token stream and the

relationships between operator and operand tokens.

We don’t need to use the type system of our implementation language

to distinguish between nodes. Nodes in any AST derive from tokens,

so we can use the token type to identify nodes. In fact, homogeneous

ASTs are the only convenient choice for non-object-oriented languages

like C. To implement Pattern 10, Normalized Heterogeneous AST , on

page 111, for example, C would have to cut and paste or manually

include a reference to the normalized children definition into each node

struct definition.

Homogeneous ASTs necessarily use a normalized child representation:

List<AST>. This makes it particularly easy to build external visitors (Pat-

tern 13, External Tree Visitor, on page 131), which rely on a uniform

child list for walking.

Implementation

A homogeneous AST has two key fields: the token from which it was

created and a list of children:

Download IR/Homo/AST.java

public class AST { // Homogeneous AST node type

Token token; // From which token did we create node?

List<AST> children; // normalized list of children

public AST() { ; } // for making nil-rooted nodes

public AST(Token token) { this.token = token; }

/** Create node from token type; used mainly for imaginary tokens */

public AST(int tokenType) { this.token = new Token(tokenType); }
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/** External visitors execute the same action for all nodes

* with same node type while walking. */

public int getNodeType() { return token.type; }

public void addChild(AST t) {

if ( children==null ) children = new ArrayList<AST>();

children.add(t);

}

public boolean isNil() { return token==null; }

The isNil( ) method helps us represent flat lists. A list is a subtree without

a root, which we can simulate with a nil root node. A nil node is a node

with token==null.

To print out a tree using a text-based encoding (see Section 4.2, Rep-

resenting Trees in Text, on page 94), we need a recursive toStringTree( )

method. This leaves toString( ) to convert a single node to text. The fol-

lowing toStringTree( ) generates strings of the following form: (root child1

child2 ...).

Download IR/Homo/AST.java

/** Compute string for single node */

public String toString() { return token!=null?token.toString():"nil"; }

/** Compute string for a whole tree not just a node */

public String toStringTree() {

if ( children==null || children.size()==0 ) return this.toString();

StringBuilder buf = new StringBuilder();

if ( !isNil() ) {

buf.append("(");

buf.append(this.toString());

buf.append(' ');

}

for (int i = 0; i < children.size(); i++) {

AST t = (AST)children.get(i); // normalized (unnamed) children

if ( i>0 ) buf.append(' ');

buf.append(t.toStringTree());

}

if ( !isNil() ) buf.append(")");

return buf.toString();

}

The following test code creates and prints the AST for 1+2:

Download IR/Homo/Test.java

Token plus = new Token(Token.PLUS,"+");

Token one = new Token(Token.INT,"1");
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Token two = new Token(Token.INT,"2");

AST root = new AST(plus);

root.addChild(new AST(one));

root.addChild(new AST(two));

System.out.println("1+2 tree: "+root.toStringTree());

AST list = new AST(); // make nil node as root for a list

list.addChild(new AST(one));

list.addChild(new AST(two));

System.out.println("1 and 2 in list: "+list.toStringTree());

Here is a sample session:

$ java Test

1+2 tree: (+ 1 2)

1 and 2 in list: 1 2

$

The next pattern, Pattern 10, Normalized Heterogeneous AST , is an

extension to this pattern that allows multiple node types while retaining

the normalized child list.

Related Patterns

Pattern 10, Normalized Heterogeneous AST uses normalized lists of

children as well but allows nodes to have different class types.

210 Normalized Heterogeneous AST

Purpose

This pattern implements an abstract syntax tree (AST) using more than a

single node data type but with a normalized child list representation.

Discussion

This pattern is a variation on Pattern 9, Homogeneous AST , on page 109.

All we’re doing differently is distinguishing between nodes with our

implementation language’s type system. Because this pattern also uses

a normalized child list, we can derive heterogeneous nodes using AST

from Pattern 9, Homogeneous AST , on page 109 as a base class.

This pattern makes the most sense when we need to store node-specific

data and plan on using Pattern 13, External Tree Visitor, on page 131.

The normalized child list makes it much easier to build external visi-

tors. If you need lots of node-specific methods or plan on using Pattern
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12, Embedded Heterogeneous Tree Walker, on page 128, use Pattern

11, Irregular Heterogeneous AST , on page 114 instead. (An embedded

walker has walking methods distributed across the heterogeneous node

type definitions.)

Let’s flesh out some of the heterogenous node details from Section 4.2,

Implementing ASTs in Java, on page 96. We added a field, evalType, to

track expression type information (see also Pattern 20, Computing Static

Expression Types, on page 199). evalType tracks the type of the value

computed by the expression. For example, the type of 1+2 is integer. We

can put this field into an abstract class:

Download IR/Normalized/ExprNode.java

public abstract class ExprNode extends AST {

public static final int tINVALID = 0; // invalid expression type

public static final int tINTEGER = 1; // integer expression type

public static final int tVECTOR = 2; // vector expression type

/** Track expression type (integer or vector) for each expr node.

* This is the type of the associated value not the getNodeType()

* used by an external visitor to distinguish between nodes. */

int evalType;

public int getEvalType() { return evalType; }

public ExprNode(Token payload) { super(payload); }

/** ExprNode's know about the type of an expresson, include that */

public String toString() {

if ( evalType != tINVALID ) {

return super.toString()+"<type="+

(evalType == tINTEGER ? "tINTEGER" : "tVECTOR")+">";

}

return super.toString();

}

}

Rather than creating a generic node and then adding children to form

a + (addition) subtree, we can use AddNode’s constructor:

Download IR/Normalized/AddNode.java

public class AddNode extends ExprNode {

public AddNode(ExprNode left, Token addToken, ExprNode right) {

super(addToken);

addChild(left);

addChild(right);

}

public int getEvalType() { // ...

Note that it’s still a good idea to track the + token in the AST node.

This helps with a number of things including producing better error

messages.
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Operand node types for integer and vector literals are straightforward

subclasses of ExprNode:

Download IR/Normalized/IntNode.java

public class IntNode extends ExprNode {

public IntNode(Token t) { super(t); evalType = tINTEGER; }

}

Download IR/Normalized/VectorNode.java

import java.util.List;

public class VectorNode extends ExprNode {

public VectorNode(Token t, List<ExprNode> elements) {

super(t); // track vector token; likely to be imaginary token

evalType = tVECTOR;

for (ExprNode e : elements) { addChild(e); } // add as kids

}

}

The following test code creates and prints an AST for 1+2.

Download IR/Normalized/Test.java

Token plus = new Token(Token.PLUS,"+");

Token one = new Token(Token.INT,"1");

Token two = new Token(Token.INT,"2");

ExprNode root = new AddNode(new IntNode(one), plus, new IntNode(two));

System.out.println(root.toStringTree());

Here is a sample session:

$ java Test

(+ 1<type=tINTEGER> 2<type=tINTEGER>)

$

The serialized tree output indicates that the 1 and 2 children have type

tINTEGER. Naturally, the result of the addition operation is also an inte-

ger, so the root should have type tINTEGER. In Chapter 8, Enforcing Static

Typing Rules, on page 196, we’ll figure out how to do this computation

properly. We’ll leave it blank for now.

Related Patterns

This pattern defines node types that subclass AST from Pattern 9, Homo-

geneous AST , on page 109. The next pattern, Pattern 11, Irregular Het-

erogeneous AST , on the next page, uses an irregular child list rather

than a normalized list like this pattern.
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211 Irregular Heterogeneous AST

Purpose

This pattern implements an abstract syntax tree (AST) using more than a

single node data type and with an irregular child list representation.

Discussion

This pattern only differs from Pattern 10, Normalized Heterogeneous

AST , on page 111 in the implementation of its child pointers. Instead of

a uniform list of children, each node data type has specific (named)

child fields. In this sense, the child pointers are irregular. In some

cases, named fields lead to more readable code. For example, methods

can refer to left and right instead of, say, children[0] and children[1].

When building trees from scratch, most programmers follow this pat-

tern. It’s very natural to name the fields of a class, in this case naming

the children of a node. The big downside to using nodes with irregular

children is that it’s much less convenient to build tree walkers (such

as Pattern 13, External Tree Visitor, on page 131). This pattern is fine

for small projects where the extra gain in readability is worth the small

bit of extra work to implement visitors. Larger projects tend to do so

much tree walking, though, that the irregular children prove to be a big

hassle.

To see where the pain comes from, look again at thetoStringTree( ) tree

printing method shown in Pattern 9, Homogeneous AST , on page 109.

Because the children of each node look the same, a single toStringTree( )

works for all nodes. With irregular children, each node has to have its

own toStringTree( ). There is no way to access a node’s children gener-

ically. That means duplicating essentially the same logic just to use

different field names. In the source code directory, you’ll see that both

ListNode.java and AddNode.java have node-specific toStringTree( ) imple-

mentations.

Since each node defines its own child fields, the abstract base class

HeteroAST doesn’t have a normalized list of children:

Download IR/Hetero/HeteroAST.java

public abstract class HeteroAST { // Heterogeneous AST node type

Token token; // Node created from which token?
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Node type AddNode is a typical irregular heterogeneous AST implemen-

tation. It has specific named child fields and node-specific methods.

In this case, there are methods for printing out the tree structure and

computing expression value result types:

Download IR/Hetero/AddNode.java

public class AddNode extends ExprNode {

ExprNode left, right; // named, node-specific, irregular children

public AddNode(ExprNode left, Token addToken, ExprNode right) {

super(addToken);

this.left = left;

this.right = right;

}

public String toStringTree() {

if ( left==null || right==null ) return this.toString();

StringBuilder buf = new StringBuilder();

buf.append("(");

buf.append(this.toString());

buf.append(' ');

buf.append(left.toStringTree());

buf.append(' ');

buf.append(right.toStringTree());

buf.append(")");

return buf.toString();

}

}

The other node type definitions are available in the source directory;

they differ only in the child field definitions. There is also a test file in

Test.java.

Related Patterns

See Pattern 10, Normalized Heterogeneous AST , on page 111.

Up Next

This completes the last tree construction pattern. The next chapter

explores how to build tree walkers for these data structures.
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Chapter 5

Walking and Rewriting Trees
In the previous chapter, we learned how to build ASTs, and in the fol-

lowing chapters, we’ll start extracting information from them. We’re

even going to restructure the trees for simplification and translation

purposes. For example, we might want to simplify x+0 to x or translate

x==y to strcmp(x,y). To support such data extraction and rewriting oper-

ations, we’ll need to know about tree walking. Tree walking is one of

the key processes going on in a large language application.

At first glance, tree walking seems like no big deal. Many of us learned

to write simple recursive functions to walk trees fairly early in our

programming careers. In real applications, though, tree walking gets

surprisingly complicated. There are a number of different variations,

sometimes even within the same application.

The variation we choose depends on whether we have the source code

for our tree nodes, whether the trees have normalized children, whether

the trees are homogeneous or heterogeneous, whether we need to re-

write trees while walking, and even in which order we need to walk the

nodes. In this chapter, we’re going to explore the four key tree-walking

patterns suitable for most language applications:

• Pattern 12, Embedded Heterogeneous Tree Walker, on page 128.

Heterogeneous AST node classes define walking methods that exe-

cute appropriate actions and walk any children. Tree walking code

is distributed across potentially hundreds of class files. This is the

simplest pattern but the least flexible.

• Pattern 13, External Tree Visitor, on page 131. This pattern en-

capsulates tree walking code (for both homogeneous and hetero-

geneous ASTs) into a single class definition. It allows us to alter

tree-walking behavior without altering AST node definitions. Both
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the visitor and embedded walker pattern are straightforward but

tedious to implement manually.

• Pattern 14, Tree Grammar, on page 134. A tree grammar describes

the structure of valid ASTs. Just as we can automate parser con-

struction from grammars, we can automate tree visitor construc-

tion from tree grammars. Tree grammars work on homogeneous or

heterogeneous trees because they rely on node token types rather

than node types (like AddNode). Tree grammars explicitly dictate

node visitation order like the embedded walker and visitor pat-

terns.

• Pattern 15, Tree Pattern Matcher, on page 138. Instead of specify-

ing an entire tree grammar, this pattern lets us focus on just those

subtrees we care about. That’s useful because different phases of

an application care about different parts of the tree. A tree pattern

matcher also decouples the order in which we apply tree patterns

from the tree patterns themselves. Unlike embedded walkers, vis-

itors, and tree grammars, tree patterns don’t specify how to walk

the tree. The pattern matching engine dictates the tree traversal

strategy. In its simplest form, a pattern matcher repeatedly tries

to match patterns against subtrees. When it finds a match, the

pattern matcher triggers an action or tree rewrite.

To decide between these design patterns, we need to know how each

one works and know their strengths and weaknesses. So, before get-

ting into the patterns themselves, we should take a quick tour of tree

walking. It’s instructive to see how the weakness of one pattern inspires

the development of another. Let’s start our tree walking adventure by

figuring out the difference between walking and visiting a tree.

5.1 Walking Trees and Visitation Order

When we talk about visiting a tree, we mean executing some actions on

the nodes of a tree. The order in which we traverse the nodes is impor-

tant because that affects the order in which we execute the actions.

There are three key traversals:

• Preorder traversal or top-down traversal: + 1 2. Visit a (parent)

node before visiting its children.

• Inorder traversal: 1 + 2. Visit a node in between visiting children.

• Postorder traversal or bottom-up traversal: 1 2 +. Visit a node after

visiting its children.

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=117


WALKING TREES AND VISITATION ORDER 118

Humans can pick out tree traversals by looking at a tree and, perhaps,

tapping a pen on the nodes in a particular sequence. To implement

this in code, we typically use a tree-walking algorithm called depth-first

search. A depth-first search starts at the root of a tree or subtree and

then recursively walks the children in order.

When a tree walk reaches node t, we say that itdiscovers that node. In

other words, we discover t when execution of our walk( ) method begins

on node t. When walk( ) finishes processing t and returns, we say that it

has finished with t.

Visiting a node means to execute an action somewhere between discov-

ering and finishing that node. A particular tree-walking mechanism,

such as depth-first search, has a fixed node discovery sequence. But,

that same discovery sequence can generate three different tree traver-

sals (node visitation sequences). It all depends on where we put actions

in walk( ).

Let’s look at a simple example to see the difference between walking and

visiting. With Pattern 11, Irregular Heterogeneous AST , on page 114, we

can build a tree structure to represent integer addition using classes

AddNode and IntNode. For example, here’s the AST for 1+2:

AddNode(+)

IntNode(1) IntNode(2)

In code, we’d have an abstract class, ExprNode, that represents a generic

tree node type and a tree-walking method:

/** Abstract class for heterogeneous AST with irregular children

* (each node defines their child fields) */

public abstract class ExprNode {

Token token; // AST nodes are based on tokens

public void walk(); // a basic walk operation

}

We only have two concrete expression node types in this case: IntNode

and AddNode:

public class IntNode extends ExprNode {

public void walk() { ; } // no children; nothing to do

}

public class AddNode extends ExprNode {

ExprNode left, right; // named, node-specific, irregular children

public void walk() {

left.walk(); // walk the left operand subtree

right.walk(); // walk the right operand subtree

}

}
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Figure 5.1: Tree Node Discovery vs. Traversal Order

Invoking walk( ) on the + root node executes AddNode.walk( ). This meth-

od then invokes walk( ) on each integer operand (executing IntNode.

walk( )) from left to right. We discover nodes in this order: + 1 2, which

corresponds to a preorder traversal.

Let’s analyze how walk( ) discovers nodes in a slightly larger tree. The

AST for expression 1+2+3 appears in the left tree in Figure 5.1, with a

dashed line showing walk( )’s depth-first search path.

The walk( ) method starts at the root of a tree and then recursively walks

its children in order. So, walk( ) discovers the root and then descends

into the children. It discovers the left child (the + subtree) before dis-

covering the right child (node 3). On the way down, it discovers nodes,

and on the way up it finishes nodes. walk( ) discovers and immediately

finishes leaf nodes.

If we look closely at the dashed line, the depth-first search provides

multiple opportunities per node to execute actions. The right tree (in

Figure 5.1) indicates those locations with stars. We can execute an

action upon discovery (the star to the left of the + nodes), in between

child discovery (the star below), or upon finishing (the star to the right).

For leaf nodes, there is only one action execution opportunity. The com-

plete discovery sequence is + + 1 2 3, which corresponds to a preorder

traversal. The finishing sequence is 1 2 + 3 +, which corresponds to a

postorder traversal. Executing actions in between child discovery cor-

responds to an inorder traversal: 1 + 2 + 3.
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To obtain a different traversal, we’d alter AddNode.walk( ) to execute

actions before, during, or after walking its children (depending on the

application, we might do one, two, or all actions):

public void walk() {

«preorder-action»

left.walk();

«inorder-action»

right.walk();

«postorder-action»

}

For example, to print nodes out in postorder, we’d add a print statement

at the end of AddNode’s walk( ).

public void walk() {

left.walk();

right.walk();

System.out.println(token); // print "+" token

}

And then we’d add a print statement in IntNode (which has only one

opportunity to execute an action since it has no children):

public void walk() { System.out.println(token); }

Tree-walking mechanisms such as this that embed walking code in

each heterogeneous node follow Pattern 12, Embedded Heterogeneous

Tree Walker, on page 128. The beauty of the embedded walker is its

simplicity: it’s pretty obvious what’s going on.

Unfortunately, there are a number of disadvantages. For one, the walk-

ing code is distributed across potentially hundreds of node class defini-

tion files. That makes it hard to get a feel for the overall tree structure.

The main problem, though, is that we can’t alter our walking algorithm

or add new walking tasks without modifying the node classes. We might

not even have the source code for the nodes. Lack of source makes

adding new embedded walking methods impossible for most program-

ming languages. A better way is to collect all walking methods into a

separate specification, one that is external to the tree classes.

5.2 Encapsulating Node Visitation Code

By collecting all of the tree walking methods from Pattern 12, Em-

bedded Heterogeneous Tree Walker, on page 128 into a single class

definition, we arrive at Pattern 13, External Tree Visitor, on page 131.

Our primary goal is to separate our tree-walking code from our tree
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node definitions. The key advantage of a visitor is that it’s external to

the objects it walks.

There are a number of ways to achieve this separation, depending

on the programming language we use. Languages such as Ruby and

Python make short work of the visitor pattern because they can add

methods at run-time. Static languages like Java and C++ require some

gymnastics.

The first, and most common solution for Java, is to leave a general visit( )

method in each heterogeneous node definition. But, again, this requires

modification of the source code, which we might not have. Take a look

at the sample code in the Pattern 13, External Tree Visitor, on page 131

for a complete example.

A better solution involves a completely independent visitor that never

has to touch the node class definitions. For example, imagine we want

to mimic the postorder print actions we saw in the previous section.

We could combine the walk( ) methods from AddNode and IntNode into a

single class with a dispatcher method:

/** Completely encapsulated and independent node visitor */

public class IndependentPostOrderPrintVisitor {

/** visitor dispatcher according to argument type */

public void print(ExprNode n) {

if ( n.getClass() == AddNode.class ) print((AddNode)n);

else if ( n.getClass() == IntNode.class ) print((IntNode)n);

else «error-unhandled-node-type»

}

public void print(AddNode n) {

print(n.left); // visit left child

print(n.right); // visit right child

System.out.print(n.token); // action in postorder position

}

public void print(IntNode n) { System.out.print(n.token); }

}

The print( ) dispatcher method figures out which overloaded method to

call according to the run-time argument type (either AddNode or Int-

Node). Such a dispatcher method fakes method argument type poly-

morphism in Java. It’s what gives the visitor its independence from the

node class definition files. For a large number of node classes, the if-

then-else chain would be pretty inefficient, though. It’s more efficient to

have the dispatcher switch on the node’s token type.
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public void print(ExprNode n) {

switch ( n.token.type ) { // switch on token type

case Token.PLUS : print((AddNode)n); break;

case Token.INT : print((IntNode)n); break;

default : «error-unhandled-node-type»

}

}

This visitor pattern is an improvement over the embedded walker, but

it too has weaknesses. First, it cries out for some kind of automation.

Writing the dispatcher method by hand is tedious. Also, many of the

print( ) methods (for example, all binary operators) are similar or identi-

cal. That is just asking for a cut-and-paste error. Fortunately, we can

solve this problem by using a Pattern 14, Tree Grammar, on page 134,

as we’ll see in the next section.

The second weakness is more serious. The mechanisms we’ve described

so far execute actions when they see a node of a particular type. In

practice, we need to match subtree patterns, not just single node types.

We rarely want to match any old ID node. Usually we want to match

ID nodes that are assignment left sides or that are names in method

definition subtrees. Writing tree pattern matching code by hand is error

prone and unpleasant. The good news is that tree grammars make this

easier too.

5.3 Automatically Generating Visitors from Grammars

Rather than writing parsers by hand, we write grammars and have

a parser generator like ANTLR generate parsers automatically for us.

Similarly, ANTLR can automatically generate tree visitors from tree

grammars. That’s great because we get to express ourselves in a DSL

designed to describe trees. We tell ANTLR what the trees look like, and

it figures out how to walk them. The only wrinkle is describing a two-

dimensional tree structure with a grammar.

To parse a two-dimensional structure, we have to serialize the tree to a

one-dimensional list of nodes. Then we can use a conventional parser.

To serialize, we start with the “flat” text-based tree format from Sec-

tion 4.2, Representing Trees in Text, on page 94 and then replace paren-

theses with imaginary UP and DOWN navigation nodes. For example, the

text-based form of the AST for 1+2 is (+ 1 2), a preorder traversal with

subtrees wrapped in parentheses.

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=122


AUTOMATICALLY GENERATING VISITORS FROM GRAMMARS 123

The serialization of (+ 1 2) looks like this:

+ DOWN 1 2 UP

The navigation nodes simulate the up-and-down movement of a tree

walker, forcing a one-dimensional parser to do the same.

Let’s figure out what the grammar for our little addition expression

trees should look like. Nodes are either integers or addition subtrees

whose children are nodes or subtrees. Grammatically we can describe

that structure with a single rule:

expr : ^('+' expr expr) // E.g., "(+ 1 2)" and "(+ (+ 1 2) 3)"

| INT // E.g., 1 and 2

;

The recursion in the first alternative highlights the self-similar nature

of expression trees—the children of an expression operator can also be

expressions. The ^ prefix is necessary to distinguish tree constructs

from normal subrules.

ANTLR automatically translates tree pattern ^(’+’ expr expr) to ’+’ DOWN

expr expr UP. ANTLR generates a parser (following Pattern 3, LL(1) Re-

cursive-Descent Parser, on page 54) from rule expr, which is akin to the

following:

void expr() { // match an expression subtree

if ( LA(1)==Token.PLUS ) { // if next token is +

match(Token.PLUS);

match(DOWN); // simulate down movement

expr();

expr();

match(UP); // simulate up movement

}

else if ( LA(1)==Token.INT ) { // if next token is INT

match(Token.INT); // match single INT node expr

}

else «invalid-tree» // detected malformed tree

}

Looking back at our heterogeneous node definitions now (Pattern 11,

Irregular Heterogeneous AST , on page 114), we see that they actually

say sort of the same thing as rule expr. An ExprNode is an AddNode or

IntNode (because they are subclasses of ExprNode). An AddNode has two

ExprNode children (left and right). Rule expr makes it clearer what the

trees look like, though.

As with any grammar, we can embed actions. To print out a tree in

postorder, we add print statements at the end of the two alternatives.
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expr : ^('+' expr expr) {System.out.println("+");}

| INT {System.out.println($INT.text);}

;

For tree (+ 1 2), the ANTLR-generated tree visitor would print 1 2 +.

Rather than creating a visitor function based upon a node type, we

tell the parser to execute actions when it comes across a particular

tree pattern. Actions at the start of alternative are in node discovery

position. Actions at the end of an alternative are in node finishing posi-

tion. Actions embedded within the alternative happen in between node

discovery and finishing.

A tree grammar specifies the complete “syntax” of all valid ASTs for a

particular application just as a parser grammar specifies a valid set of

sentences. Tree grammars are extremely useful as a form of executable

documentation describing the trees generated by a parser.

Not only does the tree grammar describe the set of valid trees, but

running an ANTLR-generated visitor over a tree checks its structure.

Instead of co-opting the type system to enforce structure during con-

struction like Section 4.2, Enforcing Tree Structure with the Type Sys-

tem, on page 97, we can check it later at run-time. Catching structural

errors at compile time is great, but we have to walk the trees anyway.

We might as well check their structure as we go. Also, the type system

isn’t always sufficient to prevent invalid tree structures. If we’re using

a dynamically typed language, we don’t even have the option. We have

to use a tree grammar to enforce tree structure in that case.

Tree grammars are most useful when we’ve got lots of work to do on

the tree. In other words, they’re most useful when we have actions all

over the grammar. A good example is a final tree-walking phase that

generates source code. (We’ll use a tree grammar to emit a subset of C in

Section 12.5, Using a Tree Grammar to Create Templates, on page 334.)

In that case, the tree grammar provides a terse means of specifying a

complete visitor and associated code generation actions.

But, many of the intermediate tree-walking phases only care about cer-

tain sections or pieces of the tree. It’s a burden to build a complete

tree grammar when all we care about is, say, collecting information at

method and variable definition subtrees. I’ve often created a prototype

tree grammar and then made copies of that grammar for every phase.

Unfortunately, this poses a maintenance problem because AST struc-

ture can change, particularly during development. I’ve had to push

changes to all grammar copies.
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For intermediate tree-walking phases, we need a solution that lets us

focus only on the tree patterns we care about for a particular phase.

To make this work, we need to separate our tree traversal strategy

from pattern matching and action execution. In the next section, we’ll

explore how to do that with tree pattern matchers (based upon tree

grammars).

5.4 Decoupling Tree Traversal from Pattern Matching

Imagine we need to print a list of all assignments to simple variables in

a Python program. It would be overkill to create or use an existing full

Python parser. The pattern we’re looking for is unique. Using regular

expressions and UNIX awk, we could filter Python programs looking for

assignments with a one-liner:

$ awk '/[ \t]+[a-zA-Z]+ =/ {print $1}' < myprog.py # $1 is left of '='

style

x

keymap

pt

...

Don’t worry about the details (which aren’t perfect anyway). The key

is that we made a tool consisting of a just one pattern and associated

action. We left the details of traversing the input to awk. We really don’t

care, in this case, if awk walks the input lines forward, backward, or

randomly. When awk matches a line to a pattern, it triggers the action.

We don’t have to specify traversal instructions in the pattern itself. For

example, the print $1 action doesn’t include code telling awk to walk the

remainder of the file.

If you’re asking yourself why we would ever entangle pattern matching

with traversal, note that embedded walker and external visitor patterns

both do it. Take a look at one of the visitor methods we built earlier:

public void print(AddNode n) {

print(n.left); // visit left child

print(n.right); // visit right child

System.out.print(n.token); // action in postorder position

}

The first two statements specifically tell the visitor to visit the left child

and then the right child. That is clearly encoding the tree traversal

strategy in the method that matches an AddNode. Forget the first print( )

call, and the visitor won’t walk the left operand subtree of any addition

node.
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When we only care about some of the subtrees, building a full tree

grammar or complete external visitor is overkill. But, only specifying

some of the rules or visitor methods won’t work. We need a pattern for

each subtree and node because the pattern code includes the traversal

instructions. We couldn’t visit all nodes without a complete tree speci-

fication.

The way around this is to decouple the tree traversal strategy from pat-

tern matching. In other words, we want to think about pattern match-

ing and actions separately from how and when we apply those patterns.

In fact, we might want to use one set of patterns on the way down the

tree and another on the way up.

For example, on the way down, it makes sense to eliminate unreachable

code so we don’t waste time traversing it. Take the if statement. There

is no point in descending into an if’s statement when the conditional

expression is boolean literal false.

In other cases, it makes more sense to do rewrites on the way up.

Eliminating multiply-by-zero operations is a good example. We’d like

to rewrite expression 4*0*2 to be 0. Its AST looks like this:

*

* 2

04

We need to reduce the 4*0 subtree to 0 before checking the topmost *

node. Otherwise, we won’t see it as 0*2 and replace it with 0.

Repeatedly applying rules to subtrees using a separate (usually bottom-

up) traversal strategy is called term rewriting. A term is just a subtree.

There are a number of nice tools specifically designed to rewrite terms.

ASF+SDF1 is one of the most popular. Eelco Visser took term writing

to a new level by supporting programmable rewriting strategies in his

Stratego/XT2 tool. He also has some useful documentation on Strat-

ego’s website about separating tree traversal from transformation pat-

terns if you’d like to learn more about this topic.

These tools require a pure functional programming style, though, which

is an uphill struggle for many of us. They don’t allow arbitrary actions,

1. http://www.meta-environment.org

2. http://strategoxt.org
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which can make it harder to integrate transformation phases into exist-

ing applications. One term-rewriting tool, Tom,3 though, acts as an

extension to Java.

As we’ll see in Pattern 15, Tree Pattern Matcher, on page 138, ANTLR

can do tree pattern matching also. It uses a depth-first tree walker

that invokes tree grammar rules at each node, looking for a match. If

a tree pattern doesn’t match the current subtree, ANTLR tries another

pattern. If it doesn’t find one, it walks to a new node in the tree and

looks for a matching pattern again.

All the patterns described in this chapter have their place. Which one

we use depends on the nature of our task. The following table summa-

rizes their strengths and weaknesses.

Pattern When to Apply

Pattern 12, Em-

bedded Hetero-

geneous Tree

Walker, on the

following page

Embedding walking methods in tree nodes is the

simplest mechanism for building a tree walker. It

doesn’t work so well with 50 or 100 node types

because walker functionality is distributed across

50 or 100 files.

Pattern 13, Exter-

nal Tree Visitor,

on page 131

Visitors encapsulate tree walkers into a single

class and allow us to change visitors on the fly. Vis-

itors are useful for collecting information or doing

some simple interpretation, such as expression

evaluation. They are not well suited to tree pat-

tern matching applications. Visitors simply walk

the tree node by node.

Pattern 14, Tree

Grammar, on

page 134

Embedded walkers and visitors are hand-built.

ANTLR can generate external tree visitors for

us automatically from tree grammars, which are

smaller and easier to read. Tree grammars specify

the structure of entire trees. They are most effec-

tive when we need to execute actions in many or

most rules. For example, tree-walking code gener-

ators typically need to emit code for every subtree.

There are actions strewn throughout the grammar.

3. http://tom.loria.fr
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Pattern When to Apply

Pattern 15, Tree

Pattern Matcher,

on page 138

If you’re only interested in executing actions on a

few subtree patterns, it’s a burden to fill out an

entire tree grammar (or build a complete visitor,

for that matter). All visitors, automatically gener-

ated or not, entangle tree traversal instructions

with action execution. To walk the entire tree look-

ing for patterns, then, we need to give a complete

tree grammar specification. To operate only on a

specific subset of an AST structures, we can use a

tree pattern matcher.

With this comparison in mind, we’re ready to tackle the details of the

four tree-walking patterns. To keep a common thread, we’ll work with

the little vector math language from Section 4.4, Constructing ASTs with

ANTLR Grammars, on page 101.

212 Embedded Heterogeneous Tree
Walker

Purpose

This pattern walks heterogeneous ASTs using a set of recursive methods

defined within the node class definitions.

Discussion

As object-oriented programmers, it is natural for us to think about

adding tree-walking methods to node definitions. For each task, we’d

add a different set of recursive methods. For example, to print trees

back to text, we could define an abstract print( ) method in the root

class. To evaluate expressions, we could add an abstract eval( ) method

to the abstract expression class.

This is the easiest tree-walking pattern to understand, but, ultimately,

this approach doesn’t scale well. Because it distributes tree-walking

code across all node definitions, it works best when there are only a

few node definitions. More important, we need access to node source

code. If we don’t have source code (or we need to change tree walker
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functionality on the fly), we have to use Pattern 13, External Tree Visi-

tor, on page 131 instead.

Building an embedded walker means adding a walking method like this

(assuming we only need preorder actions):

class «NodeName» extends «common-root» {

public void «walking-method-name»() {

«preorder-action-for-this-node-or-subtree»

«walk-any-children»

}

}

The walking methods serve two purposes: first, to execute an action or

actions per node and second, to guide the walk through the tree. If a

walking method forgets to walk a node’s children, those children won’t

ever be visited.

Implementation

The sample code for this pattern defines heterogeneous AST nodes for

the vector math language from Section 4.4, Constructing ASTs with

ANTLR Grammars, on page 101. The generic root class defines the

token payload:

Download walking/embedded/HeteroAST.java

public class HeteroAST {// Heterogeneous AST node type

Token token; // This node created from which token?

public HeteroAST() { ; }

public HeteroAST(Token token) { this.token = token; }

public String toString() { return token.toString(); }

}

A generic VecMathNode node embeds a walking method called print( ):

Download walking/embedded/VecMathNode.java

/** A generic heterogeneous tree node used in our vector math trees */

public abstract class VecMathNode extends HeteroAST {

public VecMathNode() {;}

public VecMathNode(Token token) { super(token); }

public void print() { // generic print tree-walker method

System.out.print(token != null ? token.toString() : "<null>");

}

}

Our vector math language has two general node categories: statements

(assignment and print) and expressions. We can use StatNode and Expr-

Node to group related nodes. The concrete subclasses override print( ).
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For example, here’s AssignNode:

Download walking/embedded/AssignNode.java

public class AssignNode extends StatNode {

VarNode id;

ExprNode value;

public AssignNode(VarNode id, Token token, ExprNode value) {

super(token); this.id = id; this.value = value;

}

public void print() {

id.print(); // walk left child

System.out.print("="); // print operator

value.print(); // walk right child

System.out.println();

}

}

Notice that print( ) walks the children in addition to printing the assign-

ment operator.

The print( ) method in the AddNode operator node is similar:

Download walking/embedded/AddNode.java

public void print() {

left.print(); // walk left child

System.out.print("+"); // print operator

right.print(); // walk right child

}

The test rig within the source code directory manually builds a tree

holding two statements: an assignment and print statement. For

simplicity, it builds trees with code rather than relying on an AST-

constructing parser. To launch the embedded walker, the rig calls print( )

on the root node:

Download walking/embedded/Test.java

statlist.print(); // Launch embedded walker

Running the test rig prints the statements:

$ java Test

x=3+4

print x*[2, 3, 4]

$

The next pattern collects embedded tree-walking methods into a single,

external class.
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213 External Tree Visitor

Purpose

This pattern encapsulates all tree-walking code associated with a partic-

ular task into a single visitor class.

Visitors combine tree walking and action execution code outside the

AST node definitions. Consequently, we can change the functionality of

the tree walker without having to change the AST class definitions and

can even switch visitors on the fly. An external visitor can walk either

heterogeneous or homogeneous AST nodes.

Discussion

The visitor pattern is the workhorse of choice for tree walking in most

language applications. Ultimately you might get tired of manually build-

ing visitors, though, and you might come to rely on either Pattern 14,

Tree Grammar, on page 134 or Pattern 15, Tree Pattern Matcher, on

page 138. That said, the key to understanding automatically generated

visitors is to know how to build visitors manually.

Visitors use similar code to what we’d find in Pattern 12, Embedded

Heterogeneous Tree Walker, on page 128. The only difference is that

visitors are external to the AST node definitions, giving us a nice sepa-

ration of concerns. The tree-walking methods live within a single visitor

class.

Implementation

There are two ways to implement this pattern. The first is more tradi-

tional and relies on the node types themselves. The second relies on the

node’s token type instead. This section gives examples of both using the

AST nodes from the vector math language in Section 4.4, Constructing

ASTs with ANTLR Grammars, on page 101.

Visitor Switching on Node Type

The traditional implementation of the visitor pattern originally speci-

fied in Design Patterns: Elements of Reusable Object-Oriented Software

[GHJV95] relies on a “double-dispatch” method within each AST node.

The double-dispatch method redirects visit( ) calls on a node to an appro-

priate method in a visitor servicing that node type. The visitor is like a
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set of callback methods. To make this work, we need to define the cru-

cial visit( ) double-dispatch method signature in our generic node:

Download walking/visitor/VecMathNode.java

/** A generic heterogeneous tree node used in our vector math trees */

public abstract class VecMathNode extends HeteroAST {

public VecMathNode() {;}

public VecMathNode(Token t) { this.token = t; }

public abstract void visit(VecMathVisitor visitor); // dispatcher

}

Unfortunately, we need to implement visit( ) in every class (we’ll look at

its argument type, VecMathVisitor, in a second). Surprisingly, every visit( )

method is identical. Here it is in AddNode:

Download walking/visitor/AddNode.java

public void visit(VecMathVisitor visitor) { visitor.visit(this); }

Calling a node’s visit( ) method immediately redirects (which is why it’s

called double-dispatch) to the associated visitor’s method. For exam-

ple, if n points at an AddNode at run-time, then a method dispatch to

n.visit(myVisitor) immediately redispatches to myVisitor.visit((AddNode)n).

Given this double-dispatch mechanism, let’s figure out what the visitor

itself looks like. The only constraint on the visitor objects is that they

implement VecMathVisitor:

Download walking/visitor/VecMathVisitor.java

public interface VecMathVisitor {

void visit(AssignNode n);

void visit(PrintNode n);

void visit(StatListNode n);

void visit(VarNode n);

void visit(AddNode n);

void visit(DotProductNode n);

void visit(IntNode n);

void visit(MultNode n);

void visit(VectorNode n);

}

As a sample implementation, let’s write a visitor that prints out vector

math nodes just like we did in Pattern 12, Embedded Heterogeneous

Tree Walker, on page 128. The output will be the same, but the mech-

anism is different.
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Here is the start of a PrintVisitor with the code for visiting AssignNode:

Download walking/visitor/PrintVisitor.java

public class PrintVisitor implements VecMathVisitor {

public void visit(AssignNode n) {

n.id.visit(this);

System.out.print("=");

n.value.visit(this);

System.out.println();

}

To print a tree, we invoke visit( ) on the root node and pass in a visitor:

Download walking/visitor/Test.java

PrintVisitor visitor = new PrintVisitor();

statlist.visit(visitor); // tell root node to visit with this visitor

This visitor implementation requires heterogeneous nodes and, sadly,

isn’t truly independent of the AST nodes because of the double-dispatch

visit( ) method. The implementation in the next section works on homo-

geneous nodes as well and is completely independent of the AST node

definitions.

Switching on the Token Type to Build Independent Visitors

For language applications, we build trees from tokens. Since we can dis-

tinguish between tokens using the token type, we can also distinguish

between AST nodes using the token type. By switching on the token

type rather than the AST node type, we can avoid the visit( ) method in

each AST node. In its place, we use just one dispatch method inside the

visitor:

Download walking/visitor/IndependentPrintVisitor.java

public void print(VecMathNode n) {

switch ( n.token.type ) {

case Token.ID : print((VarNode)n); break;

case Token.ASSIGN : print((AssignNode)n); break;

case Token.PRINT : print((PrintNode)n); break;

case Token.PLUS : print((AddNode)n); break;

case Token.MULT : print((MultNode)n); break;

case Token.DOT : print((DotProductNode)n); break;

case Token.INT : print((IntNode)n); break;

case Token.VEC : print((VectorNode)n); break;

case Token.STAT_LIST : print((StatListNode)n); break;

default :

// catch unhandled node types

throw new UnsupportedOperationException("Node "+

n.getClass().getName()+ " not handled");

}

}
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The dispatch method invokes the appropriate overloaded method. For

example, here is the visitor method for AddNode:

Download walking/visitor/IndependentPrintVisitor.java

public void print(AddNode n) {

print(n.left); // walk left child

System.out.print("+"); // print operator

print(n.right); // walk right child

}

To walk an AST, we pass an AST node to the visitor instead of pass-

ing the visitor to an AST node. The following snippet from the test rig

creates a visitor and then tells it to visit the root node:

Download walking/visitor/Test.java

IndependentPrintVisitor indepVisitor = new IndependentPrintVisitor();

indepVisitor.print(statlist); // tell visitor to print from root

This implementation has a number of advantages over an embedded

walker. With an external visitor, the method names can be relevant

to the task at hand such as print( ). A traditional visitor has to name

every method visit( ) because the visitors have to follow the interface.

This implementation does not need an interface at all and has a double-

dispatch mechanism that is completely encapsulated within the visitor.

The only disadvantage is that we lose compile-time checking if we forget

a visitor method for a node type. We have to wait until run-time before

throwing an UnsupportedOperationException from the dispatch method.

Related Patterns

This pattern effectively collects the tree-walking methods from the

nodes discussed in Pattern 12, Embedded Heterogeneous Tree Walker,

on page 128 and puts them into a single class. ANTLR can automati-

cally build an external visitor from Pattern 14, Tree Grammar.

214 Tree Grammar

Purpose

Tree grammars are a terse and formal way of building an external visitor.

Visitors generated from tree grammars are usually called tree parsers

because they are the two-dimensional analog of conventional parsers.
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Discussion

In Section 5.3, Automatically Generating Visitors from Grammars, on

page 122, we saw that tree grammars look just like conventional parser

grammars except that we can match subtree patterns as well. As with

parser grammars, we can embed actions to extract information or reor-

ganize the input (a tree, in this case).

In order to convert tree grammars to tree parsers (visitors), we can fol-

low Pattern 1, Mapping Grammars to Recursive-Descent Recognizers, on

page 45. The only extra mapping we need is for tree structures:

// match ^(«root» «children»)

match(«root»);

match(DOWN); // simulate downward movement of a tree walker

«match-children»

match(UP); // simulate upward movement of a tree walker

«root» is usually a token but can be a set of tokens. «children» can be any

token, any rule, or even a nested tree reference.

ANTLR generates tree walkers from tree grammars that literally act like

parsers. For example, the walkers automatically detect tree structure

errors and emit error messages (analogous to syntax errors). If we build

an invalid tree such as ’=’ (x 1) instead of (’=’ x 1), a tree walker might

emit something like this:

Printer.g: node from line 1:0 extraneous input 'x' expecting <DOWN>

Tree grammars do not care about the implementation language

classes used to represent AST nodes (they work with both homoge-

neous and heterogeneous AST nodes). Instead, they rely on token type

differences between AST node token payloads to distinguish different

kinds of nodes. So, the tree walker differentiates between node x and

node 1 by comparing their ID and INT token types (as opposed to, say,

VarNode and IntNode types).

Once you’re comfortable with tree grammars, you’ll find them easier to

write and more robust than hand-built visitors (Pattern 13, External

Tree Visitor, on page 131). Tree grammars and visitors are equally pow-

erful; it’s really the difference between using a grammar and writing a

parser by hand.

Implementation

To compare tree grammars to hand-built visitors, let’s implement the

same printing functionality as PrintVisitor from Pattern 13, External Tree
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Visitor, on page 131. The most obvious difference is that PrintVisitor.java

is 82 lines, but our functionally equivalent tree grammar is only 25

lines.

The header for our tree grammar tells ANTLR that we’ll be using token

types from a VecMath.g parser grammar (provided in the source code

directory) that builds vector math ASTs. It also says we’ll be using

homogeneous tree nodes (the default ANTLR CommonTree).

Download walking/tree-grammar/Printer.g

tree grammar Printer; // this grammar is a tree grammar called Printer

options {

tokenVocab=VecMath; // use token vocabulary from VecMath.g

ASTLabelType=CommonTree; // use homogeneous CommonTree for $ID, etc.

}

@members { void print(String s) { System.out.print(s); } }

Our trees are lists of statement subtrees, and there are two kinds of

statements:

Download walking/tree-grammar/Printer.g

prog: stat+ ; // match list of statement subtrees

// match trees like ('=' x 1) and ('print' ('+' 3 4))

stat: ^('=' ID {print($ID.text+" = ");} expr) {print("\n");}

| ^('print' {print("print ");} expr) {print("\n");}

;

The print actions occur after the immediately preceding grammar ele-

ment and before the following element. So, the newline print at the end

of each alternative occurs after the tree walker prints the statements.

The ANTLR-generated tree walker executes actions as it walks the tree-

matching patterns just like a hand-built visitor.

To print out expressions, we provide a subtree pattern for each operator

and then the three literals (vectors, integers, and identifiers):

Download walking/tree-grammar/Printer.g

expr: ^('+' expr {print("+");} expr)

| ^('*' expr {print("*");} expr)

| ^('.' expr {print(".");} expr)

| ^(VEC {print("[");} expr ({print(", ");} expr)* {print("]");})

| INT {print($INT.text);}

| ID {print($ID.text);}

;
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Our test rig builds trees from vector math statements read from stan-

dard input:

Download walking/tree-grammar/Test.java

// Create lexer/parser to build trees from stdin

VecMathLexer lex = new VecMathLexer(new ANTLRInputStream(System.in));

CommonTokenStream tokens = new CommonTokenStream(lex);

VecMathParser p = new VecMathParser(tokens);

RuleReturnScope r = p.prog(); // launch parser by calling start rule

// get tree result

CommonTree tree = (CommonTree)r.getTree();

System.out.println(tree.toStringTree()); // print out LISP style

The rig then walks the tree it gets back from the parser’s start rule:

Download walking/tree-grammar/Test.java

// serialize tree into node stream

CommonTreeNodeStream nodes = new CommonTreeNodeStream(tree);

Printer tp = new Printer(nodes); // create tree walker

tp.prog(); // launch by calling start rule

You can build this code by running ANTLR on the appropriate gram-

mars and compiling:

$ java org.antlr.Tool VecMath.g

$ java org.antlr.Tool Printer.g

$ javac *.java

$

The output looks like this:

$ java Test < t1 # t1 contains an assignment and print statement

(= x (+ 3 4)) (print (* x (VEC 2 3 4)))

x = 3+4

print x*[2, 3, 4]

$

The tree walker, Printer, emits the last two lines.

The source code directory for this pattern includes two AST-building

parser grammars, one for creating homogeneous trees and one for cre-

ating heterogeneous trees. To support the heterogeneous tree construc-

tion, you’ll also find heterogeneous AST node definitions. Tree grammar

Printer works with either kind of tree.

Related Patterns

We translate tree grammars to tree walkers using Pattern 1, Mapping

Grammars to Recursive-Descent Recognizers, on page 45 as a base. The

resulting walker is a Pattern 13, External Tree Visitor, on page 131. The
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sample code in Pattern 15, Tree Pattern Matcher uses tree grammar

rules to match subtrees.

215 Tree Pattern Matcher

Purpose

This pattern walks trees, triggering actions or tree rewrites as it encoun-

ters tree patterns of interest.

The process of matching and rewriting trees is formally called term

rewriting.

Discussion

Using a tree pattern matcher differs from using a tree grammar in two

important ways:

• We have to specify patterns only for the subtrees we care about.

• We don’t need to direct the tree walk.

As we saw in Section 5.4, Decoupling Tree Traversal from Pattern Match-

ing, on page 125, a tree pattern matcher is analogous to text rewriting

tools such as awk, sed, and perl. We get to focus on input patterns

of interest and what to do when we match those patterns. Whichever

pattern matcher tool we’re using deals with tree walking and when to

apply the patterns. In contrast, a tree grammar needs a pattern for

each subtree. The grammar rules include traversal instructions just

like a hand-built visitor. Without a complete tree specification, a visitor

would not discover every node.

Tree pattern matching makes a lot more sense after looking at an exam-

ple. Let’s take a look at a few Boolean simplification rewrite rules using

two mature rewriting tools, Meta-Environment4 (ASF+SDF) and Strat-

ego/XT.5 Both tools use a slightly different syntax than ANTLR for spec-

ifying subtrees. They use and(x,y), whereas ANTLR uses ^(’and’ x y). In

this case, and is the root (operator); x and y are its children. Using ASF

equations, we can easily specify Boolean simplification rewrites.6

4. http://www.meta-environment.org

5. http://strategoxt.org

6. http://www.meta-environment.org/Meta-Environment/Documentation
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Avoiding Infinite Tree Rewriting Loops

A word of caution about tree rewriting: depending on the tree-
walking strategy and the patterns we specify, we can cause
infinite loops. Imagine a rule that converts x+0 to x and another
rule that converts x to x+0. Repeatedly applying these two pat-
terns would prevent termination of our program.

equations

not(true) = false

not(false) = true

and(X, true) = X

and(true, X) = X

Stratego/XT uses a similar syntax. From the documentation,7 here is

how we’d say the same thing:

rules

E : Not(True) -> False

E : Not(False) -> True

E : And(True, x) -> x

E : And(x, True) -> x

The cool thing about Stratego/XT is that it supports programmable

rewriting strategies. We can explicitly tell it how to traverse the tree

and the order to apply rules. For example, the appropriate strategy for

simplifying Boolean subtrees is as follows:

strategies

eval = bottomup(repeat(E))

That means it should try to match E’s alternatives using a bottom-

up traversal over the entire tree. At each subtree, it should repeatedly

apply E rules until nothing changes.

We can also do tree pattern matching with ANTLR using the filter option

in a tree grammar. Here are the same Boolean simplification rules using

an ANTLR tree grammar rule:

e : ^('!' 'true') -> 'false' // !true -> false

| ^('!' 'false') -> 'true' // !false -> true

| ^('&&' 'true' x=.) -> $x // true && x -> x

| ^('&&' x=. 'true') -> $x // x && true -> x

;

7. http://buildfarm.st.ewi.tudelft.nl/releases/strategoxt/strategoxt-manual-unstable-latest/manual
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This assumes that ’!’ and ’&&’ are the token types for “not” and “logical

and”. The dot element is a wildcard that matches any node or subtree.

The rule specifies a tree pattern to tree pattern mapping. In this case,

we are reducing subtrees to single nodes based upon an understanding

of Boolean logic.

Like Pattern 14, Tree Grammar, on page 134, tree pattern matchers

don’t rely on the implementation language classes used to represent

nodes, so they work on both Pattern 9, Homogeneous AST , on page 109

and Pattern 10, Normalized Heterogeneous AST , on page 111 trees.

They do, however, require normalized children (see Pattern 10, Nor-

malized Heterogeneous AST , on page 111 and Pattern 9, Homogeneous

AST , on page 109). Node-independent tree-walking strategies must access

and descend into a node’s child list using a common interface. It’s

the shape of the tree that really matters, not the node implementation

types.

The next section provides two full tree rewrite examples and discusses

traversal strategy details.

Implementation

Let’s get our heads wrapped around tree pattern matching with a few

concrete examples (that use ANTLR). First, we’ll revisit our vector math

language and convert scalar-vector multiplies to vectors (by distribut-

ing the scalar-multiply across the vector elements). Second, we’ll do a

few expression optimizations that compilers typically do.

Don’t worry if the details, such as the tree pattern syntax, are a bit

much at this point in the book. Your goal is to just to get the gist; you

can revisit these examples if you need to do tree rewrites in the future.

We’ll see plenty of tree pattern matching in future chapters such as

Chapter 6, Tracking and Identifying Program Symbols, on page 146.

There, we’ll match subtrees and execute actions rather than doing

rewrites (which are a little harder to absorb at first).

Rewriting and Simplifying Scalar-Vector Multiplication

Let’s say we want to rewrite the tree for input 4 * [0, 5*0, 3] to be [4*0, 4*5*0,

4*3]. Then, for fun, we want to simplify multiply-by-zero operations,

yielding [0, 0, 4*3]. Refer to the transformation sequence in tree form in

Figure 5.2, on the following page. The original AST on the left in that

figure comes to us courtesy of VecMath.g, an AST-constructing parser

grammar used throughout this chapter.
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4 * [0, 5*0, 3] [4*0, 4*5*0, 4*3] [0, 0, 4*3]

*

4 VEC

0 * 3

5 0

VEC

* * *

4 0 4 *

5 0

4 3

VEC

0 0 *

4 3

Figure 5.2: Simplification of 4 * [0, 5*0, 3] via AST rewriting

Tree rewrites in ANTLR consist of a tree pattern to match and a tree

pattern to generate. They look like tree grammar fragment to fragment

transformations. To multiply a scalar across a vector is a bit tricky,

so let’s break it down. Here is the tree pattern that matches a scalar

multiply whose second operand is a vector subtree:

^('*' INT ^(VEC .+)) // '*' at root with 2nd child as vector

In a complete tree grammar, we’d have to specify what the vector chil-

dren looked like because we have to direct the walk. Tree pattern ^(VEC

.+) matches any number of child nodes or subtrees under a VEC root.

To perform the multiply transformation, we need to track the children

and include them in the new VEC tree (e+=. puts all children into list

$e):

Download walking/patterns/Simplify.g

scalarVectorMult : ^('*' INT ^(VEC (e+=.)+)) -> ^(VEC ^('*' INT $e)+) ;

The tree rewrite fragment to the right of the -> creates a vector whose

children are scalar multiply subtrees. Pattern ^(’*’ INT $e)+ is a one-or-

more loop around a multiply subtree. It makes a new multiply subtree

for each element held in list $e.

When we create new multiply subtrees, we sometimes create “multiply

by zero” subtrees. To simplify things like 5*0 to 0, we need to replace

multiply subtrees where an operand is 0 with 0. Here are the rules we

need:

Download walking/patterns/Simplify.g

zeroX : ^('*' a=INT b=INT {$a.int==0}?) -> $a ; // 0*x -> 0

xZero : ^('*' a=INT b=INT {$b.int==0}?) -> $b ; // x*0 -> 0

The tree patterns themselves match any integer multiply subtree. The

predicates, such as {$a.int==0}?, prevent the alternatives from matching

unless one of the integers has a 0 value.
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The only thing left to specify is which rule to apply on the way down and

which rules to apply on the way up. Rather than add special syntax,

ANTLR asks you to define special rules:

Download walking/patterns/Simplify.g

topdown : scalarVectorMult ; // tell ANTLR when to attempt which rule

bottomup: zeroX | xZero ;

ANTLR does a depth first search, applying topdown rules upon node

discovery and bottomup rules upon node finishing.

If we did the scalar-vector multiply bottom-up, we’d miss multiply-by-

zero opportunities created by distributing the “multiply by 4” across

the vector. In a bottom-up traversal, we’d visit the elements of the vec-

tor first, then the vector itself, and finally the multiplication above the

vector. We would not revisit the vector elements again to reduce 4*0 to 0.

Multiply-by-zero rewrites, on the other hand, can’t be done top-down.

In subtree (* 4 (* 5 0)), we’d only rewrite the (* 5 0), yielding (* 4 0). Instead,

we want reductions to bubble up the expression tree. Using a bottom-

up traversal, (* 5 0) becomes 0, and then we rewrite the resulting (* 4 0)

subtree to be 0.

To test all this, we first need to have the VecMath parser build us

an initial AST from the input. Then, we need to invoke a “down up”

rule application strategy on that AST. The downup( ) method in ANTLR’s

TreeRewriter class launches the tree walk. Here is a test rig:

Download walking/patterns/Test.java

System.out.println("Original tree: "+t.toStringTree());

// Traverse tree down then up, applying rewrite rules

CommonTreeNodeStream nodes = new CommonTreeNodeStream(t);

Simplify s = new Simplify(nodes);

t = (CommonTree)s.downup(t, true); // walk t, trace transforms

System.out.println("Simplified tree: "+t.toStringTree());

Test file t1 contains x = 4 * [0, 5*0, 3]. Running our test rig on it shows the

original tree, the intermediate transformations, and the final tree:

$ java Test < t1 # t1 is "x = 4 * [0, 0*5, 3]"

Original tree: (= x (* 4 (VEC 0 (* 0 5) 3)))

(* 4 (VEC 0 (* 0 5) 3)) -> (VEC (* 4 0) (* 4 (* 0 5)) (* 4 3))

(* 4 0) -> 0

(* 0 5) -> 0

(* 4 0) -> 0

Simplified tree: (= x (VEC 0 0 (* 4 3)))

$
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In this example, we needed to apply only one rule for a given subtree.

Sometimes, though, we need to repeatedly apply rules to a single sub-

tree until nothing changes. In the next example, we’ll look at gradually

morphing expression subtrees to get simpler operations.

Applying Optimizations Repeatedly to a Single Subtree

Compiler optimizers try to reduce operations to simpler equivalents in

an effort to generate faster code. For example, a compiler might reduce

3+3 to the equivalent 3<<1, which is a fast “shift left by one bit” (multiply

by 2). That’s a pretty big jump, though, so it might try to convert 3+3

to 2*3 first. Then, it could rewrite the multiply to be a left shift. We can

also combine contiguous shifts such as x<<1<<2 into x<<3.

To get the ball rolling, let’s provide a rewrite for the addition of identical

operands:

Download walking/patterns/Reduce.g

// x+x -> 2*x (notation INT["2"] creates an INT node with text "2")

xPlusx: ^('+' i=INT j=INT {$i.int==$j.int}?) -> ^(MULT["*"] INT["2"] $j);

The {$i.int==$j.int}? predicate ensures that the pattern matches only when

the operands are the same.

To replace “multiply by 2” subtrees, we match an integer multiply sub-

tree and use a predicate to verify that the integer operand is 2:

Download walking/patterns/Reduce.g

// 2*x to be x<<1

multBy2

: ^('*' x=INT {$x.int==2}? y=.) -> ^(SHIFT["<<"] $y INT["1"])

| ^('*' a=. b=INT {$b.int==2}?) -> ^(SHIFT["<<"] $a INT["1"])

;

Finally, we need to combine adjacent shift operators. The following rule

matches a shift subtree whose left child is also a shift subtree. The

right operands of the shift operators must be integers in order for us to

combine them.

Download walking/patterns/Reduce.g

combineShifts // x<<n<<m to be x<<(n+m)

: ^(SHIFT ^(SHIFT e=. n=INT) m=INT)

-> ^(SHIFT["<<"] $e INT[String.valueOf($n.int+$m.int)])

;

To specify that ANTLR should apply these rules bottom-up, we list them

as alternatives in the bottomup rule (there is nothing to do on the way

down).
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Download walking/patterns/Reduce.g

bottomup // match these rules bottom-up

: xPlusx

| multBy2

| combineShifts

;

By default, ANTLR’s “down then up” strategy repeatedly applies bottom-

up rules until nothing changes. If, for example, we applied the bottomup

rules only once, we’d leave 3+3 as 2*3 rather than 3<<1.

Let’s see our transformations in action using test rig Test2. It differs from

Test only in that calls downup( ) on the tree pattern matcher Reduce.g,

not Simplify.g:

Download walking/patterns/Test2.java

System.out.println("Original tree: "+t.toStringTree());

CommonTreeNodeStream nodes = new CommonTreeNodeStream(t);

Reduce red = new Reduce(nodes);

t = (CommonTree)red.downup(t, true); // walk t, trace transforms

System.out.println("Simplified tree: "+t.toStringTree());

Test file u1 contains x = 2*(3+3). Running Test2 on it shows the origi-

nal tree, the intermediate reductions, and the final tree (with manually

added comments):

$ java Test2 < u1 # u1 is "x = 2*(3+3)"

Original tree: (= x (* 2 (+ 3 3))) # x = 2*(3+3)

(+ 3 3) -> (* 2 3)

(* 2 3) -> (<< 3 1)

(* 2 (<< 3 1)) -> (<< (<< 3 1) 1)

(<< (<< 3 1) 1) -> (<< 3 2)

Simplified tree: (= x (<< 3 2)) # reduced to x = 3 << 2

$

If you’re curious to learn more about how ANTLR implements tree pat-

tern matching on top of tree grammars, please see TreeParser subclasses

TreeFilter and TreeRewriter in package org.antlr.runtime.tree.

Related Patterns

This pattern uses tree grammar fragments (Pattern 14, Tree Grammar,

on page 134) to match subtrees. Chapter 6, Tracking and Identifying

Program Symbols, on page 146 and Chapter 8, Enforcing Static Typing

Rules, on page 196 use tree pattern matchers extensively.
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Up Next

In the next chapter, we’re going to start analyzing sentences by walking

trees using these patterns.
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Chapter 6

Tracking and Identifying
Program Symbols

The previous chapters gave us three critical language implementation

skills. We can now write parsers for input sentences, we can make

parsers build abstract syntax trees, and we can build tree walkers that

visit or rewrite those trees. That means we’re almost ready to tackle

semantic analysis. Semantic analysis is just a fancy way to say we’re

“sniffing a program to see whether it makes sense.” The term semantics

is synonymous with “meaning.”

We’ll explore semantic analysis in Chapter 8, Enforcing Static Typing

Rules, on page 196, but we need to build some infrastructure before

we get there. To enforce language semantics, we need to track symbol

definitions and be able to identify those symbols later. (A symbol is just

a name for a program entity like a variable or method.) It’s like keeping

track of characters in a novel. Novels introduce characters and then

refer to them later. To understand the story, we’ve got to remember each

character and something about their attributes. Killing off a character

means there should be no further references to it. Similarly, computer

language sentences can define and reference symbols in code blocks.

At the end of the code block, the symbols go out of scope.

Language applications track symbols in an abstract data structure

called a symbol table.
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In this chapter, we will define and implement two basic symbol table

patterns:

• Pattern 16, Symbol Table for Monolithic Scope, on page 156. All

symbols exist within a single scope (set of symbols). Simple prop-

erty files and early BASIC are the best examples.

• Pattern 17, Symbol Table for Nested Scopes, on page 161. There

are multiple scopes and scopes can nest inside other scopes. C is

a typical language that has nested scopes. Scopes start and end

at the start and end of language structures such as functions.

Each pattern includes sample code that shows how to populate and

query the symbol table. To get the most out of these patterns, we need

to learn about representing program symbols, grouping symbols into

scopes, and resolving symbols to their definitions.

6.1 Collecting Information About Program Entities

To build a symbol table, we need to formalize what we do implicitly

when we read and write software. First, let’s figure out how to represent

program entities. Take a look at the following C++ code:

class T { ... }; // define class T

T f() { ... } // define function f returning type T

int x; // define variable x of type int

We unconsciously define three symbols (program entities) in our head:

class T, function f, and variable x. To build a language application, we

need to mimic this in software. For those definitions, we need to do

something like the following:

Type c = new ClassSymbol("T"); // define class

MethodSymbol m = new MethodSymbol("f", c); // define method

Type intType = new BuiltInTypeSymbol("int"); // define int type

VariableSymbol v = new VariableSymbol("x", intType); // define var x

Those constructors pretty much tell us what we need to know for each

symbol. But, to be explicit, each of those symbols has at least the fol-

lowing three key properties:

• Name: Symbols are usually identifiers like x, f, and T, but they can

be operators too. For example, in Ruby, we can use operators like

+ as method names.

• Category: That is, what kind of thing the symbol is. Is it a class,

method, variable, label, and so on. To validate method call f(), for
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example, we need to know that f is a method, not a variable or

class.

• Type: To validate operation x+y, for example, we need to know the

types of x and y. Dynamically typed languages like Python track

type information at run-time. Statically typed languages like C++

and Java track type information at compile time. The program-

mer usually has to explicitly identify each symbol’s type (in some

languages, the compiler infers it).

We distinguish program entities via these three parameters. For exam-

ple, function f that returns a string is obviously different from a variable

of type integer called x. In a novel, we might have an elf character (the

category) called Sri (the name) that becomes a soldier (the type).

A symbol table implements each symbol category with a separate class,

holding the name and type as properties. We can factor out those

shared properties into a common Symbol superclass:

public class Symbol {

public String name; // All symbols at least have a name

public Type type; // Symbols have types

}

VariableSymbol is the simplest program entity category and looks like

this:

public class VariableSymbol extends Symbol {

public VariableSymbol(String name, Type type) { super(name, type); }

}

Let’s turn our attention now to user-defined types like classes and

structs. For consistency, let’s represent user-defined types like any other

program symbol. We can derive BuiltInTypeSymbol and ClassSymbol from

Symbol (though they don’t need the type field).

To distinguish between user-defined types and other program symbols,

it’s a good idea to tag types with a Type interface. For example, here’s

the class that represents built-in types like int and float:

public class BuiltInTypeSymbol extends Symbol implements Type {

public BuiltInTypeSymbol(String name) { super(name); }

}

There’s not much to interface Type because we’re using it only as a tag:

public interface Type { public String getName(); }

I like to think of interfaces as roles that classes can play. In this case,

symbols implementing Type can play the role of a type. Here is a typical
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(partial) class hierarchy showing the categories subclassing Symbol and

types implementing Type:

Type

ClassSymbol BuiltInTypeSymbol

Symbol

MethodSymbol VariableSymbol

Representing symbols in our symbol table is not too bad. Things only

get “interesting” when we have to track those symbols and look them

up again.

6.2 Grouping Symbols into Scopes

A scope is a code region with a well-defined boundary that groups sym-

bol definitions (in a dictionary associated with that code region). For

example, class scopes group members; function scopes group parame-

ters and local variables. Scope boundaries usually coincide with begin

and end tokens such as curly braces (sort of like the “hello” and “good-

bye” of a phone conversation). We call this lexical scoping because the

extent of a scope is lexically delimited. Perhaps a better term is static

scoping because we can track scopes just by looking at the source code;

that is, without executing it. Here’s a list of scope characteristics that

often differ between languages:

• Static vs. dynamic scoping: Most languages have static scoping,

but some (like classic LISP and PostScript) have dynamic scoping.

Think of dynamic scoping as allowing methods to see the local

variables of invoking methods.

• Named scopes: Many scopes, like classes and methods have

names, but global and local scopes don’t.

• Nesting: Languages usually allow some form of scope nesting. For

example, nested code blocks enclosed in curly braces often intro-

duce new scopes. C++ and Java allow nested classes. Languages

typically limit nesting to certain combinations. Python allows

function definitions within other functions, but Java does not.

• Contents: Some scopes allow declarations, some allow statements,

and some allow both. C structs only allow declarations. Python’s

global space allows declarations and executable code.
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• Visibility:The symbols in a scope might or might not be visible to

some other code section. The fields in a C struct are visible to any

code section. The fields in a class have visibility modifiers such as

public and private that indicate which code sections can reference

them. Local variables typically aren’t visible to other functions.

To represent a scope, we’ll use an interface so that we can tag entities

like functions and classes as scopes. For example, a function is a kind

of Symbol that also plays the role of a scope. Scopes have pointers to

their enclosing scopes (we’ll talk about this more later) and can have

names. Scopes don’t need to track the code region from which we cre-

ate them. Instead, the AST for the code regions point to their scopes.

This makes sense because we’re going to look up symbols in scopes

according to what we find in the AST nodes.

For now, we only care about the first three methods in interface Scope

(we’ll learn about resolve( ) in the next section):

public interface Scope {

public String getScopeName(); // do I have a name?

public Scope getEnclosingScope(); // am I nested in another?

public void define(Symbol sym); // define sym in this scope

public Symbol resolve(String name); // look up name in scope

}

To get the ball rolling, let’s see what we can do with a single Scope

object.

Monolithic Scopes

Early programming languages such as BASIC had a single global scope.

Today, only simple languages like configuration files have a single

scope. For example, here’s a property file:

host=antlr.org # define properties in single, global scope

port=80 # a set can act as a symbol table

webmaster=parrt@antlr.org

Within a scope, a symbol can only represent a single entity. That means

that redefining a property either overwrites the previous value or is an

error. Tracking symbols for monolithic scope just means maintaining

a set of Symbol objects. As we encounter definitions, we create symbols

and add them to the set. Later, we’ll look them up again by name.

A dictionary that maps symbol names to Symbol objects works best for

this. Pattern 16, Symbol Table for Monolithic Scope, on page 156 defines

the symbol table we’d need to handle languages with a single scope.
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Multiple and Nested Scopes

Having multiple scopes lets us reuse the same name in different code

regions to identify different program entities. For example, variable

name x in the following methods refers to two different variables:

void f() { int x; printf(x); } // this x lives in f's scope

void g() { float x; printf(x); } // this x lives in g's scope

To avoid ambiguity, programming languages use context to figure out

which symbol we’re talking about. Context corresponds to the scope

surrounding the symbol and any enclosing scopes. Within the context

of method f( ), the x argument of printf( ) resolves to the int local variable.

In the context of g( ), x resolves to the float variable. At the close of each

method, the local variables go out of scope (become invisible).

Programming languages also let us nest one scope within another. Nest-

ing a scope is like allowing someone to pop into your office and ask a

question while you’re already in a meeting. We return to the meeting

after answering the question. To track nested scopes, we push and pop

scopes onto a scope stack. As we encounter a new scope, we push it on

the scope stack. The top of the stack is called the current scope. As we

exit a scope, we pop it off the stack, revealing the previous scope as the

current scope.

All symbol definitions occur within the current scope. For example, here

is some C++ code commented with scope information:

Ê // start of global scope

int x; // define variable x in global scope
Ë void f() { // define function f in global scope

int y; // define variable y in local scope of f
Ì { int i; } // define variable i in nested local scope
Í { int j; } // define variable j in another nested local scope

}
Î void g() { // define function g in global scope

int i; // define variable i in local scope of g

}

The numbered icons identify the various scopes. The following diagram

shows what the scope stack looks like after the definition of each new

symbol. The stack grows and shrinks over time (growing upward) as we

push and pop scopes.
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By popping a scope off the scope stack, we’re effectively throwing it

away. In many cases, though, we’re going to need that scope later to

check sentences for correctness, generate output, and so on. To keep

everything around, we want a data structure called ascope tree (a tree

of Scope’s) that can function like a collection of stacks. In Figure 6.1,

we see the scope tree for the previous C++ code. Every path from a node

to the scope tree root represents a stack of scopes. For example, node

Í has implicit scope stack ÍËÊ, and node Î has implicit scope stack

ÎÊ. The levels of the tree correspond to the scope nesting levels. As we

move up a level in the tree, we move out a level in the program scopes.

Instead of pushing a scope onto a stack, we’re going to add a child to a

scope tree.

The tree might look a little funny because the nodes point at their par-

ents instead of the reverse. In practice, though, we’ll look up symbols

by scanning upward toward the root (see the next section).

Building a scope tree boils down to executing a sequence of these oper-

ations: push, pop, and def. All of the patterns in this chapter and the

next populate symbol tables using these core abstract operations.

• push. At the start of a scope, push a new scope on the scope stack.

This works even for complicated scopes like classes. Because we

are building scope trees, push is more like an “add child” tree
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construction operation than a conventional stack push. To make

things more concrete, here’s an implementation preview:

// create new scope whose enclosing scope is the current scope

currentScope = new LocalScope(currentScope); // push new scope

• pop. At the end of a scope, pop the current scope off the stack,

revealing the previous scope as the current scope. pop moves the

current scope pointer up one level in the tree:

currentScope = currentScope.getEnclosingScope(); // pop scope

• def. Define a symbol in the current scope. We’ll always define

symbols like this:

Symbol s = «some-new-symbol»;

currentScope.define(s); // define s in current scope

Let’s look at the sequence of operations we’d need a parser to per-

form in order to build the scope tree in Figure 6.1, on the previous

page. For now, don’t worry about what triggers these actions (the pat-

tern implementations go over the details). The most important thing is

the order of the operations (for example, to get variables into the right

scope, their defs have to appear in between the right push and pop scope

operations):

1. push global scope Ê.

2. def variable x in current scope, Ê.

3. def method f in scope Ê and push scope Ë.

4. def variable y.

5. push local scope Ì.

6. def variable i.

7. pop Ì revealing Ë.

8. push local scope Í.

9. def variable j.

10. pop Í revealing Ë.

11. pop function f scope Ë revealing Ê.

12. def method g in scope Ê and push scope Î.

13. def variable i.

14. pop function g scope Î revealing Ê.

15. pop global scope Ê.

In the next section, we’ll see how scope trees make it easy to find the

symbols we’ve squirreled away.
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6.3 Resolving Symbols

When we see a reference to symbol x in a program, our brain uncon-

sciously looks for the closest definition. In other words, our brain tries

to resolve (identify) which program entity it refers to. If we’ve only got

one scope, resolving a symbol is easy. Either we find that symbol in

that scope’s Symbol dictionary, or we don’t. In code, that looks like this:

myOnlyScope.resolve(«symbol-name»);

Method resolve( ) does nothing more than look up «symbol-name» in the

scope’s dictionary.

When there is more than one scope, though, resolving a symbol de-

pends on the location of the symbol reference. In other words, the

same symbol could refer to two different program entities depending

on where the symbol appears in the source code. References in two dif-

ferent scopes see two different scope stacks. A reference’s scope stack

is the set of scopes on the path to the root of the scope tree. We call this

stack the semantic context.

So, to resolve a symbol reference, we look for it in its semantic context,

starting with the current scope. If resolve( ) doesn’t find the symbol in

the current scope, it asks the enclosing scope if it can find the symbol.

resolve( ) recursively walks toward the root of the scope tree until it finds

the symbol or runs out of scopes. The algorithm looks like this:

public Symbol resolve(String name) {

Symbol s = members.get(name); // look in this scope

if ( s!=null ) return s; // return it if in this scope

if ( enclosingScope != null ) { // have an enclosing scope?

return enclosingScope.resolve(name); // check enclosing scope

}

return null; // not found in this scope or there's no scope above

}

The enclosingScope variable points to the scope above in the scope tree

(it’s a parent pointer). Don’t let the recursion bother you. It’s just the

most convenient way to express the algorithm. The recursion in resolve( )

is essentially equivalent to a loop walking up the enclosingScope chain.

Here’s the best part about this algorithm and scope tree combination.

No matter how complicated our scope tree gets, we can always resolve

symbols with the same bit of code:

currentScope.resolve(«symbol-name»);
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The enclosingScope pointer tells resolve( ) exactly where to look next.

Rather than making a clever algorithm that implements all of the look-

up rules, we assemble a handy data structure that encodes them.

Let’s see how method resolve( ) gracefully handles two important fea-

tures of nested scopes: we can see symbols in outer scopes, and we can

redefine symbols found in outer scopes. There is a little bit of variability

between languages, but let’s see how resolve( ) works on some C++ code:

Ê // start of global scope

int x; // define variable x in global scope

int y; // define variable y in global space
Ë void f() { // define function f in global scope

float x; // redefine x as local variable, hiding outer x

printf("%f", x); // x resolves to f's local

printf("%d", y); // y resolves to global
Ì {int z;} // local scope nested within f's local scope

printf("%d", z); // z is no longer visible; static analysis ERROR!

}

There are three variable references in f, all in printf calls. The semantic

context for the x, y, and z references in f is ËÊ. That means we should

look up all symbol references starting in scope Ë. To resolve x, resolve( )

immediately finds it in Ë. resolve( ) doesn’t find y in the current scope

but does find it in enclosing scope Ê. We can’t resolve z in the printf,

though, because z is defined in Ì. That scope is not in the z reference’s

semantic context. resolve( ) returns null in this case, signaling an error.

As you can see, the structure of the scope tree reduces the complexity of

symbol resolution to a simple walk up a tree (even when we tackle class

inheritance in Chapter 7, Managing Symbol Tables for Data Aggregates,

on page 170). Throughout the patterns that follow, we’ll refer to this

abstract reference resolution operation as ref. In total, that gives us four

key abstract operations: push, pop, and def to construct scope trees and

ref to resolve references in the scope tree. Armed with these operations

and a good handle on symbol table management, we’re ready to tackle

our first two symbol table patterns. Here’s a summary of when to apply

the patterns:

Pattern When to Apply

Pattern 16, Symbol Table for Mono-

lithic Scope, on the next page

This pattern applies to any lan-

guage that defines symbols all in

one scope.

Pattern 17, Symbol Table for

Nested Scopes, on page 161

If your language allows multi-

ple scopes or even nested scopes,

you’ll need this pattern.
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As we progress through the symbol table and semantic analysis pat-

terns defined in the next few chapters, we should work with a common

language for continuity purposes. Let’s use a subset of C++ and call

it “Cymbol.”1 We’ll start with just variable definition syntax and trivial

expressions. Then, we’ll add functions, structs, and finally classes. To

keep things simple, we’ll avoid pointers until absolutely necessary and

we’ll disregard executable statements (they’re not involved in symbol

definition).

216 Symbol Table for Monolithic
Scope

Purpose

This pattern builds a symbol table for a language with a single, flat

scope.

This pattern is suitable for simple programming languages (without

functions), configuration files, small graphics languages, and other

small DSLs.

Discussion

The primary goal when building a symbol table is to construct a scope

tree. In this case, the scope tree is pretty boring since it’s a single node

(the global scope). The following table indicates how to build the single

scope by responding to input constructs. We technically don’t need to

push and pop scopes for this simple case, but we’ll do so for consistency

with the other patterns.

Upon Action(s)

Start of file push a GlobalScope. def BuiltInType objects for any built-in

types such as int and float.

Declaration x ref x’s type (if any). def x in the current scope.

Reference x ref x starting in the current scope.

End of file pop the GlobalScope.

1. Not to be confused with the Cymbal language (registered trademark) in the AT&T

Daytona project; http://www.research.att.com/~daytona/
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Let’s apply those actions to the following Cymbol declarations:

Download symtab/monolithic/t.cymbol

int i = 9;

float j;

int k = i+2;

We’d execute the following sequence: push global scope, def int, def float,

ref int, def i, ref float, def j, ref int, def k, ref i, pop global scope. The built-in

type definitions are part of symbol table initialization; the parser doesn’t

trigger those actions because of an input statement. In simple terms,

we’re creating the global scope and then defining three variables: i, j,

and k. To define a variable, we have to look up its type. We also have to

look up variables referenced in initialization expressions.

To populate our symbol table, we need objects to represent variables

and built-in types. We’ll tag type symbols with interface Type and then

make our symbol table object play the role of a scope using interface

Scope. The class inheritance and interface implementation hierarchy

looks like this:

Type

BuiltInTypeSymbol

Scope

SymbolTable

Symbol

VariableSymbol

The next section provides a complete Cymbol parser and implementa-

tions for these symbol table objects.

Implementation

Because expressions in this version of Cymbol cannot reference vari-

ables defined later in the file, we can define and properly reference all

symbols in a single pass. We only need a parser and a few actions to

demonstrate symbol table management.

For the Cymbol program shown earlier, we need to generate output that

convinces us we’ve properly managed symbols. So, let’s try to generate

the following (which does not show the def operations for built-in types):

$ java Test < t.cymbol

line 1: ref int

line 1: def i

line 2: ref float

line 2: def j

line 3: ref int

line 3: ref to <i:int> // <i:int> means i has type int
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line 3: def k

globals: {int=int, j=<j:float>, k=<k:int>, float=float, i=<i:int>}

$

As we encounter variable definitions, we’ll add them to the symbol table

and print a message. As we find variable and type references, we’ll

resolve them and also print a message. Right before terminating, we’ll

print out the symbols in the symbol table’s only scope.

To get started, let’s define symbols and then move on to tracking those

symbols. Our generic Symbol object has a name and type properties:

Download symtab/monolithic/Symbol.java

public class Symbol { // A generic programming language symbol

String name; // All symbols at least have a name

Type type;

public Symbol(String name) { this.name = name; }

public Symbol(String name, Type type) {this(name); this.type = type;}

public String getName() { return name; }

public String toString() {

if ( type!=null ) return '<'+getName()+":"+type+'>';

return getName();

}

}

This version of Cymbol only has two kinds of symbols: variables and

built-in types:

Download symtab/monolithic/VariableSymbol.java

/** Represents a variable definition (name,type) in symbol table */

public class VariableSymbol extends Symbol {

public VariableSymbol(String name, Type type) { super(name, type); }

}

Download symtab/monolithic/BuiltInTypeSymbol.java

/** A symbol for built in types such int, float primitive types */

public class BuiltInTypeSymbol extends Symbol implements Type {

public BuiltInTypeSymbol(String name) { super(name); }

}

Now we need a dictionary to hold those symbols (it’s a single-node tree

or a scope stack of depth one). Let’s put it in a SymbolTable object.

Because it holds the sole dictionary (field symbols), we might as well

make SymbolTable itself represent the Scope.
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Download symtab/monolithic/SymbolTable.java

import java.util.*;

public class SymbolTable implements Scope { // single-scope symtab

Map<String, Symbol> symbols = new HashMap<String, Symbol>();

public SymbolTable() { initTypeSystem(); }

protected void initTypeSystem() {

define(new BuiltInTypeSymbol("int"));

define(new BuiltInTypeSymbol("float"));

}

// Satisfy Scope interface

public String getScopeName() { return "global"; }

public Scope getEnclosingScope() { return null; }

public void define(Symbol sym) { symbols.put(sym.name, sym); }

public Symbol resolve(String name) { return symbols.get(name); }

public String toString() { return getScopeName()+":"+symbols; }

}

At this point, we’ve got symbols and a symbol table. Let’s give them a

workout by creating a parser for Cymbol. Cymbol.g defines the Cymbol

language, and we’re going to insert actions that create symbols, sticks

them in the symbol table, and then resolves them.

The details of the grammar aren’t important. The take-away is that

rules recognizing definitions create Symbol objects and call define( ).

Rules referencing identifiers invoke resolve( ) to look them up. Keep in

mind that actions execute according to location in the grammar. For

example, actions at the end of an alternative execute after the parser

matches that construct. Actions use terms like $ID to access the token

matched by an ID token.

First, we need to add a parameter to the start symbol, compilationUnit,

so that we can pass in a symbol table:

Download symtab/monolithic/Cymbol.g

grammar Cymbol; // my grammar is called Cymbol

// define a SymbolTable field in generated parser

@members {SymbolTable symtab;}

compilationUnit[SymbolTable symtab] // pass symbol table to start rule

@init {this.symtab = symtab;} // set the parser's field

: varDeclaration+ // recognize at least one variable declaration

;

SymbolTable defines two built-in types that we can look up during vari-

able definitions. Rule type looks up the type name and returns it as a

Type symbol.
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Download symtab/monolithic/Cymbol.g

type returns [Type tsym]

@after { // $start is the first tree node matched by this rule

System.out.println("line "+$start.getLine()+": ref "+$tsym.getName());

}

: 'float' {$tsym = (Type)symtab.resolve("float");}

| 'int' {$tsym = (Type)symtab.resolve("int");}

;

Then, rule varDeclaration can create a VariableSymbol with that Type:

Download symtab/monolithic/Cymbol.g

varDeclaration

: type ID ('=' expression)? ';' // E.g., "int i = 2;", "int i;"

{

System.out.println("line "+$ID.getLine()+": def "+$ID.text);

VariableSymbol vs = new VariableSymbol($ID.text,$type.tsym);

symtab.define(vs);

}

;

Expression $type.tsym evaluates to the return value from invoking rule

type.

And, finally, we have to resolve symbol references. The only place in the

grammar where we reference variables is in declaration initialization

expressions:

Download symtab/monolithic/Cymbol.g

primary

: ID // reference variable in an expression

{System.out.println("line "+$ID.getLine()+": ref to "+

symtab.resolve($ID.text));}

| INT

| '(' expression ')'

;

To exercise the symbol table management in our Cymbol grammar, we

can use the following test rig:

Download symtab/monolithic/Test.java

CharStream input = null; // read from filename or stdin

if ( args.length>0 ) input = new ANTLRFileStream(args[0]);

else input = new ANTLRInputStream(System.in);

CymbolLexer lex = new CymbolLexer(input); // create lexer

CommonTokenStream tokens = new CommonTokenStream(lex);

CymbolParser p = new CymbolParser(tokens); // create parser

SymbolTable symtab = new SymbolTable(); // create symbol table

p.compilationUnit(symtab); // launch parser

System.out.println("globals: "+symtab.symbols);
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Here’s how to build the rig, run ANTLR on the Cymbol.g grammar, com-

pile, and run sample input t.cymbol into Test:

$ java org.antlr.Tool Cymbol.g

$ javac *.java

$ java Test < t.cymbol

line 1: ref int

...

This pattern is a bare-bones symbol table manager. Although it’s suf-

ficient for simple DSLs, it mostly serves as a good learning tool for

building more realistic symbol tables.

Related Patterns

The next pattern, Pattern 17, Symbol Table for Nested Scopes, adds

functions and nested scopes to our Cymbol C++ subset.

217 Symbol Table for Nested Scopes

Purpose

This pattern tracks symbols and builds a scope tree for languages with

multiple, possibly nested scopes.

Programming language functions are a good example of nested scopes.

Each function has its own scope that is nested within a global or

class scope. Some languages even support nested function definitions

or multiple local scopes. Many DSLs have nested scopes as well. The

DOT2 graphics language, for example, has subgraphs within graphs.

This pattern handles them all gracefully.

Discussion

To discuss nested scopes, let’s add functions to our Cymbol C++ sub-

set. That means we’ll need a function (method) Symbol and scopes for

globals, parameters, and local variables. Let’s take a look at some sam-

ple input and identify the various scopes using numbered icons.

2. http://www.graphviz.org
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Download symtab/nested/t.cymbol

Ê // start of global scope

int i = 9;
Ë float f(int x, float y)
Ì {

float i;
Í { float z = x+y; i = z; }
Î { float z = i+1; i = z; }

return i;

}
Ï void g()
Ð {

f(i,2);

}

We’ll need two more Symbol subclasses to handle functions and local

scopes. The following class inheritance and interface implementation

hierarchy identifies all the symbol table objects:

Type

BuiltInTypeSymbol

Scope

MethodSymbol BaseScope

Symbol

VariableSymbol

GlobalScope LocalScope

MethodSymbol is both a symbol and a scope. Methods have two scopes

actually: one for the parameters (the MethodSymbol itself) and one for

its local variables (a LocalScope whose parent is the MethodSymbol).

Now that we know the class names of our symbol table objects, we can

make more explicit scope trees than we could before. Previous scope

trees (such as Figure 6.1, on page 152) only really showed tree struc-

ture. We can see the scope tree for t.cymbol, mentioned earlier, in Fig-

ure 6.2, on the next page; it identifies some key object properties. The

goal of this pattern is to construct such scope trees.

In Figure 6.3, on the following page, we can see the rules laid out for

building a scope tree from nested scopes and resolving symbols in the

correct semantic context. The sequence of actions for t.cymbol starts

like this: push global scope, def int, def float, ref int, def i, ref float, def f,

push f, ref int, def x, ref float, def y, push local scope of f, ref float, def i, and

so on.

Notice that we’re not making a distinction between global variables,

parameters, and local variables in terms of symbol table logic; they are
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MethodSymbol

name = "f"

orderedArgs = [x, y]

GlobalScope

symbo s = [ nt, float, vo d, , f, g]

LocalScope

symbo s = [ ]

MethodSymbol

name = "g"

orderedArgs = []

SymbolTable

g oba s

LocalScope

symbo s = [z]

LocalScope

symbo s = [z]

LocalScope

symbo s = []

level 0

level 1

level 2

level 3

2

3

4 5

6

7

1

Figure 6.2: Scope tree for global variable and two functions

Upon Action(s)

Start of file push a GlobalScope. def BuiltInType objects for int,

float, void.

Variable declaration x ref x’s type. def x in the current scope.

Method declaration f ref f’s return type. def f in the current scope and

push it as the current scope.

{ push a LocalScope as the new current scope.

} pop, revealing previous scope as current scope.

End of method pop the MethodSymbol scope (the parameters).

Reference x ref x starting in the current scope. If not found,

look in the immediately enclosing scope (if any).

End of file pop the GlobalScope.

Figure 6.3: Rules for building a scope tree for nested scopes and popu-

lating it with symbols
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all VariableSymbol objects. The only difference between them is the scope

in which we define them. For example, we define the parameters for f

by executing def operations after pushing f’s method scope and before

pushing its local scope.

Now that we’ve got the big picture, let’s see how to use these rules in

practice to manage a symbol table for nested scopes.

Implementation

For our particular implementation, we’re going to trigger scope tree con-

struction actions while walking an AST created from the input source

code. We could trigger actions directly in the parser as we did in Pat-

tern 16, Symbol Table for Monolithic Scope, on page 156, but working

on an AST is more flexible. In Pattern 19, Symbol Table for Classes,

on page 182, we’ll need to make multiple passes over the input so we

might as well get used to them now.

Starting from the sample implementation source code in the previous

pattern, we need to do the following to add functions and nested scopes:

1. Augment syntax to support functions. We need to augment gram-

mar Cymbol.g to support function definitions, function calls,

return statements, and nested code blocks.

2. Build an AST. We will use AST construction rules in the parser

grammar.

3. Define new symbol table objects. To support scopes, we’ll need

an abstract BaseScope and two concrete implementations: Glob-

alScope and LocalScope. BaseScope implements interface Scope.

Finally, we’ll need MethodSymbol that plays double duty as a Sym-

bol and a Scope (for parameters).

4. Walk the AST to populate the symbol table and resolve variable and

method references. Using tree pattern matching rules, we’ll trigger

actions according to Figure 6.3, on the previous page.

In this pattern and Pattern 18, Symbol Table for Data Aggregates, on

page 176, we’ll combine symbol definition and resolution into a single

tree walk. In Pattern 19, Symbol Table for Classes, on page 182, we’ll

separate them into two tree-walking phases to support forward refer-

ences. (Methods can call methods defined later in the class.)

Before getting into all the gory details, let’s assume for the moment that

we’ve got everything set up to build ASTs from source code. Because
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METHOD_DECL

float f PARAMETER BLOCK

int x LOCAL_DECL BLOCK

float i LOCAL_DECL =

float z EXPR

+

x y

i EXPR

z

push pop

pop

pop

push

push

def

def

def

def

ref ref

ref

ref

?

  // global scope

  float f(int x)

  { 

      float i; 

      { float z = x+y; i = z; } 

  }

1

2

3

3

2

4

4

Figure 6.4: AST for function with nested scopes

all the magic happens with the AST, let’s look at the AST of a simple

function and annotate it with action execution and scope icons. In Fig-

ure 6.4, we can see where and when in the AST we need to execute push,

pop, def, and ref actions. (Actually, we’re ignoring built-in type lookups

to reduce clutter.) Those actions appearing on the left of an AST node

trigger as we discover nodes (on the way down) and those appearing on

the right trigger as we finish nodes (on the way up). The dotted lines

point from variable reference sites to declaration sites in the AST (note

that the y reference has no corresponding definition).

To create a scope tree then, all we have to do is a depth-first walk of the

AST, executing actions in the pre- and/or postorder position. We push

as we descend and pop as we ascend. When we see a symbol, we define

or resolve it in the current scope.

On to our implementation—the following sections summarize the soft-

ware in the source code directory for this pattern.
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Adding Function Syntax and Building ASTs

To add functions to Cymbol, we’ll add rules methodDeclaration and for-

malParameters to Cymbol.g. Beyond the syntax, we have to add AST con-

struction rules. For example, here is the previous varDeclaration rule

augmented with an AST construction rule:

Download symtab/nested/Cymbol.g

varDeclaration

: type ID ('=' expression)? ';' -> ^(VAR_DECL type ID expression?)

;

The rule now yields VAR_DECL-rooted subtrees with a type, an identifier,

and an optional initialization expression as children. Method declara-

tions yield METHOD_DECL-rooted subtrees:

Download symtab/nested/Cymbol.g

methodDeclaration

: type ID '(' formalParameters? ')' block

-> ^(METHOD_DECL type ID formalParameters? block)

;

Parsing and AST construction are not the primary focus here, so let’s

move on to building the scope tree.

Building the Scope Tree

The rules we defined earlier for building scope trees (in Figure 6.3, on

page 163) are of the form “upon an input construct foo, execute action

bar.” The most direct implementation is a set of tree pattern-action

pairs. For example, at the starting { of a code block, we need to push a

new scope. At the ending } of a block, we need to pop that same scope

off. The phrases “at the start” and “at the end” are synonymous with “on

the way down” and “on the way up” the AST. Here are the tree pattern

matching rules that handle pushing and popping local scopes:

Download symtab/nested/DefRef.g

enterBlock

: BLOCK {currentScope = new LocalScope(currentScope);}// push scope

;

exitBlock

: BLOCK

{

System.out.println("locals: "+currentScope);

currentScope = currentScope.getEnclosingScope(); // pop scope

}

;
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The rules match the same BLOCK node but do different actions (push vs.

pop) depending on whether we are discovering or finishing that node.

We control which rules to execute on the way down vs. on the way up

by listing them in the special topdown or bottomup rules:

topdown : enterBlock | enterMethod | ... ;

bottomup : exitBlock | exitMethod | ... ;

To manage method scopes, we create a method symbol and push it on

the way down. On the way back up, we don’t need to look inside the

method subtree, so we match just the METHOD_DECL root. Here are the

rules that deal with method definition subtrees:

Download symtab/nested/DefRef.g

enterMethod // match method subtree with 0-or-more args

: ^(METHOD_DECL type ID .*)

{

System.out.println("line "+$ID.getLine()+": def method "+

$ID.text);

Type retType = $type.tsym; // rule type returns a Type symbol

MethodSymbol ms = new MethodSymbol($ID.text,retType,

currentScope);

currentScope.define(ms); // def method in globals

currentScope = ms; // set current scope to method scope

}

;

exitMethod

: METHOD_DECL

{

System.out.println("args: "+currentScope);

currentScope = currentScope.getEnclosingScope();// pop arg scope

}

;

You might be wondering where we create the local scopes for methods.

Rule enterBlock creates them automatically for us since method ASTs

contain BLOCK subtrees (see Figure 6.4, on page 165).

Populating the Symbol Table

Now that we’ve got the proper scope tree structure, we just have to fill

the scopes with symbols as we walk the AST. Fortunately, all defini-

tions do the same thing: create the appropriate Symbol and then call

Scope.define( ).
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Here is the rule to define any kind of variable:

Download symtab/nested/DefRef.g

varDeclaration // global, parameter, or local variable

: ^((ARG_DECL|VAR_DECL) type ID .?)

{

System.out.println("line "+$ID.getLine()+": def "+$ID.text);

VariableSymbol vs = new VariableSymbol($ID.text,$type.tsym);

currentScope.define(vs);

}

;

Field currentScope is always set to the current scope. Our tree pattern

matcher always defines symbols within the current scope.

Let’s do the opposite now and find those definitions in the scope tree.

Resolving Variable and Method References

In Chapter 8, Enforcing Static Typing Rules, on page 196, we’ll be look-

ing up symbols all the time to do type checking and so on. To give

you a taste, here is a rule that looks up all identifiers that appear in

expressions:

Download symtab/nested/DefRef.g

idref

: {$start.hasAncestor(EXPR)}? ID

{

Symbol s = currentScope.resolve($ID.text);

System.out.println("line "+$ID.getLine()+": ref "+s);

}

;

The hasAncestor( ) predicate permits rule idref to match an ID only when

it sits somewhere under an EXPR node.

Let’s give it the old smoke test. The test rig in the source code directory

builds an AST from the source code and then walks the AST using

ANTLR’s built-in downup( ) strategy:

Download symtab/nested/Test.java

CommonTree t = (CommonTree)r.getTree(); // get tree result from parser

CommonTreeNodeStream nodes = new CommonTreeNodeStream(t);

nodes.setTokenStream(tokens);

SymbolTable symtab = new SymbolTable(); // make global scope, types

DefRef def = new DefRef(nodes, symtab); // use custom constructor

def.downup(t); // trigger symtab actions upon certain subtrees

System.out.println("globals: "+symtab.globals);
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To build all this, run ANTLR on the grammars and compile:

$ java org.antlr.Tool Cymbol.g DefRef.g

$ javac *.java

$

Here is what the output looks like when we run the test rig against the

Cymbol source code in Figure 6.4, on page 165:

$ java Test < t2.cymbol

line 2: def method f

line 2: def x

line 4: def i

line 5: def z

line 5: ref <x:int>

line 5: ref null // y is not defined, resolves to null

line 5: ref <z:float>

line 5: assign to <i:float>

locals: [z]

locals: [i]

args: method<f:float>:[<x:int>]

globals: [int, float, void, f]

$

Related Patterns

This pattern serves as the foundation for Pattern 18, Symbol Table for

Data Aggregates, on page 176 and Pattern 19, Symbol Table for Classes,

on page 182.

Up Next

Now that you’re comfortable with nested scopes, you could build most

of the symbol table infrastructure to track symbols for C. The only

involved concept we haven’t covered is the struct data aggregate. We’ll

remedy that in the next chapter.
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Chapter 7

Managing Symbol Tables
for Data Aggregates

In the previous chapter, we learned the basics about symbol table man-

agement. We looked at defining symbols, grouping them into scopes,

and organizing those scopes into scope trees. Scope trees are cru-

cial because their structure encodes the rules for looking up symbols.

Resolving a symbol means looking for it in the current scope or any

scope on the path to the root of the scope tree.

In this chapter, we’re going to learn about another kind of scope called

a data aggregate scope. Like any other scope, it contains symbols and

has a place within the scope tree. The difference is that code outside of

a data aggregate scope can access the members inside using an expres-

sion such as user.name. We’re going to cover data aggregate scopes for

both non-object-oriented and object-oriented languages:

• Pattern 18, Symbol Table for Data Aggregates, on page 176. This

pattern tells us how to define and access the fields of simple data

aggregates such as C structs.

• Pattern 19, Symbol Table for Classes, on page 182. This pattern

tells us how to deal with data aggregates that have superclasses

and that allow function definitions as well as fields.

structs and classes are pretty similar in that both are simultaneously

Symbols, user-defined types, and scopes. The biggest difference is that

class scopes have a superclass scope as well as the usual enclosing

scope. To resolve symbols, we’ll need to modify our algorithm slightly

to chase the proper parent pointer in the scope tree. We also need to

make an extra pass over the AST to deal with forward references.
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The reason we’re studying symbol tables so extensively is that they are

the bedrock of most language applications. Almost every nontrivial lan-

guage application needs to resolve symbols to unique program entities.

Even a simple report generator that prints out call sites to a particular

method can’t do so without a proper symbol table. More complicated

applications such as interpreters and translators need to check a pro-

gram’s validity, which involves comparing variable and method types

(as we’ll see in the next chapter). After this chapter, you’ll have all the

tools you need to build a symbol table for everything from simple data

formats to programming languages.

Before jumping into the patterns, though, let’s walk through some

examples and discuss how class inheritance complicates our lives. As

in the previous chapter, we’ll use a subset of C++. Even though we’re

fixated on one specific language, the patterns apply to most program-

ming languages in common use.

7.1 Building Scope Trees for Structs

struct scopes behave just like local scopes from a scope tree construction

point of view. They are just another node in the scope tree. That means

we’ll have StructSymbol nodes as well as LocalScope, MethodSymbol, and

GlobalScope nodes. The scope tree for the following sample program

appears in Figure 7.1, on the next page:

Download symtab/aggr/t.cymbol

Ê // start of global scope
Ë struct A {

int x;
Ì struct B { int y; };

B b;
Í struct C { int z; };

C c;

};

A a;

Î void f()
Ï {
Ð struct D {

int i;

};

D d;

d.i = a.b.y;

}
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g oba s

SymbolTable
level 0

level 1

level 2

2

4

1

symbo s = [ nt, float, vo d, A, a, f]

GlobalScope

name = "A"

symbo s = [x, B, b, C, c]

StructSymbol

name = "C"

symbo s = [z]

StructSymbol

name = "B"

symbo s = [y]

StructSymbol3

5

name = "f"

orderArgs = []

MethodSymbol

name = "D"

symbo s = [ ]

StructSymbol

6

7

symbo s = [D, d]

LocalScope

level 3

Figure 7.1: Scope tree for nested data aggregates

As before, the numbered icons identify scopes in the code with the asso-

ciated node in the scope tree. As you can see, the scope tree looks like

any other tree we’ve seen so far. StructSymbol nodes have symbol dictio-

naries and enclosing scope (parent) pointers.

From within a struct scope, we resolve symbols by scanning upward

in the scope tree like any other nested scope. Because structs have no

embedded executable expressions, the only symbols we can look up are

type names. For example, the first field of A references type int. We look

for int starting in scope Ë. Scope A does not have it so we look to the

enclosing scope, global scope Ê. We do the same thing for the second

field, B b;. Since we define type B right before that field declaration, we

find B in scope A right away.

We also have to resolve symbols within struct scopes from the outside.

In other words, a language application might have to figure out which

field «expr».x refers to. In the previous code, that would mean resolving

expressions d.i and a.b.y in f. The general (recursive) rule for resolving

«expr».x is to determine the type of «expr» and then look up x in that

scope. Looking toward the root from function f’s local scope Ï, the scope

stack is ÏÎÊ. To resolve d.i, we look up d in that semantic context and

find that d has type scope D. D is also the scope in which we resolve i.

Similarly, for a.b.y, we look up a and find its type to be A. Looking up b

in A yields another scope: B. Finally, we look up field y in B.
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symbo s = [ nt, float, vo d, A, B]
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orderArgs = ]
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Figure 7.2: Scope tree for classes A and B

There’s only one complication with the member access operator. We

need to restrict member resolution so it only looks in a specific (struct)

scope. Member access expressions are like scope overrides. They say

exactly in which scope to look for a field. Say we tried to resolve d.a

from within function f. D has no a field, but we shouldn’t look into

D’s enclosing scope. Instead, we should report “no such field.” If we

let it continue looking into D’s enclosing scope (f), d.a would eventually

resolve to global variable a. That’s clearly not right. So, as you’ll see in

Pattern 18, Symbol Table for Data Aggregates, on page 176, we need

two different resolve methods: one for looking up isolated symbols like

d and another for resolving member access expressions like d.i.

7.2 Building Scope Trees for Classes

Classes are like structs that they can inherit members from another

class (the superclass). That means classes have two parent scopes:

the usual enclosing scope (physical location) and a superclass scope.

To resolve symbols, sometimes we’ll chase the enclosing scope pointer,

and sometimes we’ll chase the superclass pointer. Let’s get started by

looking at the scope tree for the following Cymbol code (see Figure 7.2).
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Download symtab/class/AB.cymbol

Ê // start of global scope
Ë class A {

public:

int x;
Ì void foo()
Í { ; }

};
Î class B : public A {

int y;
Ï void foo()
Ð {

int z = x + y;

}

};

The enclosing scope pointers point upward (as in Pattern 18, Symbol

Table for Data Aggregates, on page 176), but the superclass point-

ers point horizontally. They point horizontally because all (non-nested)

classes live at the same scope level. Because there are two pointers

emanating from each ClassSymbol node, classes actually conjure up

multiple scope stacks instead of just one. For example, the local scope

of method foo in class B could use scope stack ÐÏÎËÊ or stack ÐÏÎÊ.

The language definition dictates which stack to use. Per the usual

object-oriented language conventions, we’ll use the first stack. That

choice means we want to look up the inheritance chain before look-

ing in the global scope. In Pattern 19, Symbol Table for Classes, on

page 182, we’ll introduce method getParentScope( ) to Scope that returns

the appropriate scope (enclosing or superclass). Method resolve( ) will

call getParentScope( ) to figure out where to look next.

Resolving Member Access Expressions

As with structs, we also have to resolve member access expressions

differently than isolated symbol lookups. If we don’t find an isolated

symbol in the surrounding class or its superclass(es), we look it up in

the global scope. When referring to members from outside that class,

though, we shouldn’t see global variables. For example, a.g referenced

in main( ) in the following should be illegal because g is a global variable:

int g; // global variable g

class A {

public:

int x;

void foo() { g = 1; } // can see global g

};
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int main() {

A a;

a.x = 3; // no problem; x is the field of A

a.g = 3; // ERROR! Should not see global variable g

So, unadorned g in method foo of class A resolves OK, but a.g makes

no sense. To treat these two situations differently, we need to add a

resolveMember( ) method to ClassSymbol. Isolated symbol references use

resolve( ) as before, but a.g must use resolveMember( ) to look up g in A.

Dealing with Forward References

Classes also allow forward references. A forward reference is a refer-

ence to a method, type, or variable defined later in the input file. For

example, in the next code fragment, method foo references field x that

is defined after the method.

Download symtab/class/forward.cymbol

class A {

void foo() { x = 3; } // forward reference to field x

int x;

};

To handle these forward references, we could try to scan ahead look-

ing for future definitions, but there’s an easier way. We can make two

passes over the input, one to define symbols and another to resolve

them. So, a definition pass would define A, foo, and x. Then a reference

pass would scan the input again, finding x in A’s member dictionary

(scope) without trouble. We’ll use a two-pass approach (over an AST) in

Pattern 19, Symbol Table for Classes, on page 182.

Unfortunately, the two pass approach introduces a problem. We don’t

want to allow forward references outside of classes (at least according

to Cymbol’s semantics since it’s a C++ subset). In the following code, we

don’t want the x and y references in method main to see the definitions

that appear after the assignment statement.

Download symtab/class/global-forward.cymbol

Ê // globals
Ë int main()
Ì {

x = y; // shouldn't see global x or local y; ERROR!

int y;

}

int x;
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To recognize illegal forward references, we can use a trick involving

token indexes. If a symbol reference resolves to a local or global symbol,

the reference’s token index must come after the definition’s token index

(assuming we’re buffering up all tokens from the input string). In this

case, the x and y token references in main appear before the x and y

tokens in the variable declarations. That means we have two illegal

forward references, and we should report an error. If the definition and

reference tokens are in the proper order, all is well.

At this point, we’ve got enough of the big picture to follow the patterns

in this chapter. Here’s a table that summarizes when to apply them.

Pattern When to Apply

Pattern 18, Symbol Table for Data

Aggregates

Use this pattern if you need to

support data aggregates like C

structs or Pascal records or SQL

tables.

Pattern 19, Symbol Table for

Classes, on page 182

Use this pattern to build sym-

bol tables for object-oriented lan-

guages smacking of Java or C++.

OK, let’s dig in and learn about tracking symbols and building scope

trees for data aggregates.

218 Symbol Table for Data
Aggregates

Purpose

This pattern tracks symbols and builds a scope tree for data aggregates

such as C’s structs.

Discussion

To manage struct scopes, we’ll build a scope tree and define symbols just

like we did in Pattern 17, Symbol Table for Nested Scopes, on page 161.

The only difference lies in symbol resolution. Member access expres-

sions like a.b can see fields inside a struct.

In Section 7.1, Building Scope Trees for Structs, on page 171, we exam-

ined the scope tree for some sample Cymbol struct definitions. The goal

of this pattern is to describe the rules and mechanism for building that
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Upon Action(s)

Start of file push a GlobalScope. def BuiltInType objects for

int, float, void.

Variable declaration x ref x’s type. def x as a VariableSymbol object

in the current scope. This works for globals,

struct fields, parameters, and locals.

struct declaration S def S as a StructSymbol object in the current

scope and push it as the current scope.

Method declaration f ref f’s return type. def f as a MethodSymbol

object in the current scope and push it as the

current scope.

{ push a LocalScope as the new current scope.

} pop, revealing the previous scope as the cur-

rent scope. This works for structs, methods,

and local scopes.

Variable reference x ref x starting in the current scope. If not

found, look in the immediately enclosing

scope if any.

Member access «expr».x Compute the type of «expr» using the previ-

ous rule and this one recursively. Ref x only in

that type’s scope, not in any enclosing scopes.

End of file pop the GlobalScope.

Figure 7.3: Rules for building a scope tree for data aggregates, populat-

ing it with symbols, and resolving symbols

scope tree and filling the nodes (scopes) with symbols. To get started,

we need a new kind of scope tree node called StructSymbol to repre-

sent structs. Here’s the complete symbol table class hierarchy for this

pattern:

Symbol

VariableSymbol BuiltInTypeSymbol ScopedSymbol

Type

StructSymbol

Scope

BaseScope

MethodSymbol GlobalScope LocalScope

Now that we’ve got two scoped symbols, it’s a good idea to factor out

their common functionality into ScopedSymbol and derive both Struct-

Symbol and MethodSymbol from it.
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To build the scope tree using those objects and to resolve symbols,

follow the rules in Figure 7.3, on the previous page. The rules tell us

exactly what to do at each significant input construct, but there are a

number of ways to implement the actions. In the next section, we’re

going to build an AST using an ANTLR grammar and then walk it to

define and resolve symbols. If you want, you can leave the sample

implementation until you’re actually in the process of implementing

your own language.

Implementation

The implementation of Pattern 17, Symbol Table for Nested Scopes, on

page 161 provides most of the implementation we need for this pattern,

so we can use it as a foundation. Here is a road map to add structs to

our Cymbol language:

• Add syntax and AST construction rules for struct definitions and

member access expressions. To focus on the symbol table aspects,

we’ll assume that this part just works. Check out Cymbol.g in the

source code directory for AST construction details.

• Define new symbol table objects. We need to add StructSymbol. To do

so, we’ll refactor the class hierarchy, introducing a ScopedSymbol

base class. We’ll derive MethodSymbol from it as well.

• Add pattern matching rules to define struct scopes. As we did for

local and function scopes in Pattern 17, Symbol Table for Nested

Scopes, on page 161, we’ll trigger push and pop scope operations

for struct definitions.

• Add pattern matching rules to resolve member access expressions.

Let’s start with the symbol table objects. The main change to the symbol

table objects is the addition of StructSymbol:

Download symtab/aggr/StructSymbol.java

public class StructSymbol extends ScopedSymbol implements Type, Scope {

Map<String, Symbol> fields = new LinkedHashMap<String, Symbol>();

public StructSymbol(String name,Scope parent) {super(name, parent);}

/** For a.b, only look in fields to resolve b, not up scope tree */

public Symbol resolveMember(String name) { return fields.get(name); }

public Map<String, Symbol> getMembers() { return fields; }

public String toString() {

return "struct "+name+":{"+

stripBrackets(fields.keySet().toString())+"}";

}

}
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struct

A FIELD_DECL FIELD_DECL

int x float y

METHOD_DECL

void f BLOCK

VAR_DECL =

A a . EXPR

a x 1

push popdef pushdefpop

poppush

def def

def
ref

ref

ref

ref

ref

ref

Figure 7.4: AST for struct and function definition

According to the scope tree construction rules, we create a StructSymbol

for each struct we encounter. We’re walking an AST to trigger actions,

so let’s look at a sample AST. The AST for the following Cymbol code

appears in Figure 7.4.

Download symtab/aggr/t2.cymbol

Ê // start of global scope
Ë struct A {

int x;

float y;

};
Ì void f()
Í {

A a; // define a new A struct called a

a.x = 1;

}

Upon seeing the struct node, we create a StructSymbol for A and push it

as the current scope. After processing the entire struct subtree, we pop

that scope off to reveal the global scope as the current scope. Here are

the relevant tree pattern rules from DefRef.g:

Download symtab/aggr/DefRef.g

enterStruct // match as we discover struct nodes (on the way down)

: ^('struct' ID .+)

{

System.out.println("line "+$ID.getLine()+": def struct "+$ID.text);

StructSymbol ss = new StructSymbol($ID.text, currentScope);

currentScope.define(ss); // def struct in current scope

currentScope = ss; // set current scope to struct scope

}

;
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exitStruct // match as we finish struct nodes (on the way up)

: 'struct' // don't care about children, just trigger upon struct

{

System.out.println("fields: "+currentScope);

currentScope = currentScope.getEnclosingScope(); // pop scope

}

;

To access members of a struct like a.x, we trigger two ref operations. The

first ref operation looks up a to figure out what type it is. The second

ref then resolves x within a’s scope (upon seeing the . node). To match

(possibly nested) member access expressions, we can use the following

recursive rule:

member // E.g., "a", "a.b", "a.b.c", and so on

: ^('.' member ID)

| ID

;

The problem is we can’t just ask the pattern matcher to look for that

pattern because a plain ID node like a also matches. We don’t want this

rule to match, say, the ID of a function definition.

To control expression tree walking, we need a tree grammar, not a tree

pattern matcher. But, we need tree pattern matching for other lan-

guage constructs. We can combine the two approaches by using pat-

tern matching to find EXPR root nodes and assignments. From there, we

can invoke tree grammar rule member. In this way, rule member isn’t

triggered as part of the tree pattern matching (we won’t put it in the

special topdown or bottomup rules). We’ll learn more about this in Pat-

tern 20, Computing Static Expression Types, on page 199. Here is the

member rule now fleshed out with actions:

Download symtab/aggr/DefRef.g

member returns [Type type] // expr.x; E.g., "a", "a.b", "a.b.c", ...

: ^('.' m=member ID)

{

StructSymbol scope=(StructSymbol)$m.type;// get scope of expr

Symbol s = scope.resolveMember($ID.text);// resolve ID in scope

System.out.println("line "+$ID.getLine()+": ref "+

$m.type.getName()+"."+$ID.text+"="+s);

if ( s!=null ) $type = s.type; // return ID's type

}

| ID // resolve, return type

{

Symbol s = currentScope.resolve($ID.text);

System.out.println("line "+$ID.getLine()+": ref "+$ID.text+"="+s);

if ( s!=null ) $type = s.type;

}

;
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Rule member’s primary function is to compute the type of member

access expressions. To do so, it needs to resolve all the symbols within

an expression. Given «expr».x, member need’s «expr»’s type because it

must look up x with the scope of «expr». Take a look at the action for the

isolated ID node. It looks up the symbol and returns its type. If that ID

is the child of a member access subtree as in the AST for a.b, then we’ll

use a’s type to look up b. The action for the . member access operator

assumes that the type for a is also a scope. It then looks up b in that

scope. It returns the type of b in case a.b is part of a larger expression

such as a.b.c.

The test rig in the source code directory is the same as in Pattern 17,

Symbol Table for Nested Scopes, on page 161. It builds an AST from the

source code and then walks the AST using DefRef’s downup( ) strategy.

Building the test rig is, again, just a matter of running ANTLR on the

grammars and compiling. Here is the output from the test rig when run

against t2.cymbol:

$ java org.antlr.Tool Cymbol.g DefRef.g

$ javac *.java

$ java Test < t2.cymbol

line 2: def struct A

line 3: def x

line 4: def y

fields: struct A:{x, y}

line 7: def method f

line 9: def a

line 10: ref a=<local.a:struct A:{x, y}>

line 10: ref A.x=<A.x:global.int>

line 10: assign to type int

locals: [a]

args: <global.f():global.void>

globals: [int, float, void, A, f]

$

Now that we know how to handle data aggregates, we’re ready to tackle

classes. The scope trees for classes are a bit more complicated than

for structs because we have to track class inheritance. Also, because of

forward references, we need to split apart the DefRef.g pattern matcher

used in this pattern. We’ll do a definition pass over the AST and then a

resolution pass.

Related Patterns

This pattern builds on Pattern 17, Symbol Table for Nested Scopes, on

page 161. Pattern 19, Symbol Table for Classes, on the following page

extends this pattern to support classes.
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Symbol

VariableSymbol BuiltInTypeSymbol ScopedSymbol

Type

ClassSymbol

Scope

BaseScope

MethodSymbol GlobalScope LocalScope

Figure 7.5: Class hierarchy for a symbol table managing classes

219 Symbol Table for Classes

Purpose

This pattern tracks symbols and builds a scope tree for non-nested

classes with single inheritance.

Discussion

Classes are data aggregates that allow method members and that can

inherit members from superclasses. Methods within classes can see

global variables in the object-oriented version of our Cymbol language

(since Cymbol is a subset of C++). To support these language semantics,

we need to tweak the scope trees we used for structs in Pattern 18, Sym-

bol Table for Data Aggregates, on page 176. We’ll replace StructSymbol

nodes with ClassSymbol nodes and have them point at their superclasses

as well as their enclosing scopes (recall Figure 7.2, on page 173). All the

symbol table objects this pattern needs appear in Figure 7.5.

Object-oriented languages like Cymbol also support forward references

to symbols defined later in the file. Rather than trying to augment our

single AST pass with code to “see into the future,” this pattern uses a

two-pass approach. We’ll define symbols in the first pass and resolve

symbol references in the second pass over the AST.

Unfortunately, separating the two phases introduces a data communi-

cation issue. To resolve symbol references, we need to know the current

scope but that’s computed only in the definition phase. So, we need to

pass information from the definition to the resolution phase. The logi-

cal place to stash information is in the AST representation of the input.

(It’s much more efficient to walk an AST multiple times than the original

token stream.)

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=182


SYMBOL TABLE FOR CLASSES 183

The definition phase tracks the current scope as usual and records it in

the associated AST nodes. For example, a { node records the associated

LocalScope. As we define symbols, we might as well record the resulting

Symbol objects in the AST too. The resolution phase can then look in the

tree for scope information and symbol definitions. As we resolve symbol

references, we’ll also shove that into the AST. Any future tree phases

would most likely use the symbol pointers for analysis or translation.

To make this clearer, let’s carry the following small Cymbol method

through both phases to see what the AST and scope tree look like:

Download symtab/class/t.cymbol

Ê // globals
Ë int main()
Ì {

int x;

x = 3;

}

In Figure 7.6, on the following page, we can see the AST and scope tree

after the definition phase. To avoid cluttering the diagram, the diagram

only shows pointers to and from the AST for x’s definition and reference.

During the definition phase, we create a VariableSymbol and make the

definition’s ID node point at that symbol. We also make a back pointer

from that symbol to the ID node using the VariableSymbol’s def field.

The definition phase also sets a scope field for some of the AST nodes

(shown via numbered icons to avoid cluttering the diagram with more

arrows). It’s crucial that we set the scope for the variable definition’s

type node (int) and the x reference in the assignment. The resolution

phase needs the scope in order to resolve those symbols.

The resolution phase now has everything it needs to properly resolve all

symbol references. During this phase, we update the symbol field of two

AST nodes and update the type field of the VariableSymbol, as shown in

Figure 7.7, on page 185. As we revisit x’s variable declaration subtree,

we resolve its type and make that node point at the BuiltInTypeSymbol.

When we see the x reference in the assignment, we resolve it and make

that node point at the VariableSymbol.

To support checks for illegal forward references, the def field of the

VariableSymbol is important. At the x reference in main’s assignment, we

want to check the relative position of x’s definition. To get x’s position,

we can follow the symbol pointer into the symbol table from the AST.

Then, we can follow the def pointer back into the AST to the defini-
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METHOD_DECL

int main BLOCK

VAR_DECL =

x EXPR

3

int x

AST Scope tree

2

3

symbols = [float, void, main, int]

GlobalScope

name = "main"

orderArgs = []

MethodSymbol

name = "x"

scope = 

type = ??

def

VariableSymbol

symbols = [x]

LocalScope

1

2

3

Scopes map x to its VariableSymbol
int to its Built nTypeSymbol

symbo

3

33

name="int"

BuiltInTypeSymbol

Figure 7.6: AST and scope tree showing links for x after definition phase

tion for that symbol. In this case, the definition for x comes before the

reference, so it’s OK.

Now that we know what the symbol table objects are, what the scope

trees look like, and how to deal with forward references, we can lay out

the rules for the definition and resolution passes. See Figure 7.8, on

page 186, as well as Figure 7.9, on page 187.

The actions in Figure 7.9, on page 187, perform a lot of abstract ref

operations, but the details of symbol resolution aren’t shown. Our basic

strategy remains the same as we saw in Section 6.3, Resolving Symbols,

on page 154. We look for the symbol in the current scope’s dictionary.

If found, we return it. If not found, we recursively look upward in the

scope tree:

public Symbol resolve(String name) {

Symbol s = members.get(name); // look in this scope

if ( s!=null ) return s; // return it if in this scope

if ( getParentScope() != null ) { // do we have a super or enclosing?

return getParentScope().resolve(name); // check super/enclosing

}

return null; // not found in this scope or above

}
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METHOD_DECL

int main BLOCK

VAR_DECL =

x EXPR

3

int x

AST Scope tree

2

3

symbols = [float, void, main, int]

GlobalScope

name = "main"

orderArgs = []

MethodSymbol

name = "x"

scope = 

type =���VariableSymbol symbols = [x]

LocalScope

�
2

3

Scopes map x to its VariableSymbol
int to its Built nTypeSymbol

symbo

3

33

name="int"

BuiltInTypeSymbol

symbo

Figure 7.7: AST and scope tree showing links for x after resolution

phase

The only difference you’ll notice is that we call getParentScope( ), not

getEnclosingScope( ) as we did before. ClassSymbol objects have two par-

ent pointers, one for the superclass and one for the enclosing scope.

Which one we follow on the way up the scope tree depends on what

kind of scope we’re looking at. getParentScope( ) factors out this deci-

sion into the various kinds of symbols that implement Scope. Here are

the relevant methods in Scope that define upward pointers in the scope

tree:

Download symtab/class/Scope.java

/** Where to look next for symbols; superclass or enclosing scope */

public Scope getParentScope();

/** Scope in which this scope defined. For global scope, it's null */

public Scope getEnclosingScope();

For all scopes except ClassSymbol, getParentScope( ) returns the enclosing

scope. getParentScope( ) in classes returns the superclass pointer, so we

follow the superclass chain. If there is no superclass, then we follow the

enclosing scope chain like any other scope.
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Upon Action(s)

Start of file push a GlobalScope. def BuiltInType objects for int,

float, void.

Identifier reference x Set x’s scope field to the current scope (the res-

olution phase needs it).

Variable declaration x def x as a VariableSymbol object, sym, in the cur-

rent scope. This works for globals, class fields,

parameters, and locals (wow). Set sym.def to x’s

ID AST node. Set that ID node’s symbol to sym.

Set the scope field of x’s type AST node to the

current scope.

Class declaration C def C as a ClassSymbol object, sym, in the cur-

rent scope and push it as the current scope.

Set sym.def to the class name’s ID AST node.

Set that ID node’s symbol to sym. Set the scope

field of C’s superclass’ AST node to the current

scope.

Method declaration f def f as a MethodSymbol object, sym, in the cur-

rent scope and push it as the current scope. Set

sym.def to the function name’s ID AST node. Set

that ID node’s symbol to sym. Set the scope field

of f’s return type AST node to the current scope.

{ push a LocalScope as the new current scope.

} pop, revealing previous scope as current scope.

End of file pop the GlobalScope.

Figure 7.8: Definition phase rules for building a scope tree for classes

and populating it with symbols
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Upon Action(s)

Variable decla-

ration x

Let t be the ID node for x’s type. ref t, yielding sym.

Set t.symbol to sym. Set x.symbol.type to sym; in other

words, jump to the VariableSymbol for x via the AST

node’s symbol field and then set its type field to sym.

Class declara-

tion C

Let t be the ID node for C’s superclass. ref t, yielding

sym. Set t.symbol to sym. Set C’s superclass field t sym.

Method decla-

ration f

Let t be the ID node for f’s return type. ref t, yielding

sym. Set t.symbol to sym. Set the type field of the Meth-

odSymbol for f to sym.

Variable refer-

ence x

ref x, yielding sym. Set x.symbol to sym.

this Resolve to the surrounding class scope. Set the symbol

field of this’s ID node to the surrounding class scope.

Member access

«expr».x

Resolve «expr» to a particular type symbol, esym, using

these rules. ref x within esym’s scope, yielding sym. Set

x.symbol (x’s ID node) to sym.

Figure 7.9: Resolution phase rules for updating the AST and symbol

table for classes

The addition of this little “knob” makes resolve( ) work correctly for all

symbol references (types, classes, methods, and variables) in the pres-

ence or absence of classes. In Figure 7.10, on the following page, we see

how the algorithm walks up the scope tree according to reference loca-

tion. The behavior mirrors what we’ve come to expect in object-oriented

languages.

Resolving member access expressions,«expr».x, is almost the same. The

only difference is symbol resolution should stop looking at the root of

the class hierarchy. It shouldn’t look in the global scope. Here is the

algorithm for resolving members:

public Symbol resolveMember(String name) {

Symbol s = members.get(name);

if ( s!=null ) return s;

// if not here, check superclass chain only

if ( superClass != null ) {

return superClass.resolveMember(name);

}

return null; // not found

}
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Symbol Refer-

ence

Resolution Algorithm Scope Tree Walk

x in method Look first in the enclosing local scope(s), then into

the method scope, and then into the enclosing class

scope. If not found in the enclosing class, look up the

class hierarchy. If not found in the class hierarchy,

look in the global scope.

x in field defi-

nition initializa-

tion expression

Look in the surrounding class scope. If not found in

that class, look up the class hierarchy. If not found

in the class hierarchy, look in the global scope.

x in global scope Look in the surrounding global scope.

Figure 7.10: How resolve( ) walks up the scope tree for classes

The rules and resolution algorithms we’ve just gone through tell us

everything we need to know in order to build a symbol table for an

object-oriented language with single inheritance. They also tell us how

to resolve symbols properly, taking into account the class hierarchy and

enclosing scope chains. You can skip the following implementation sec-

tion if you’re primarily interested in the principles behind symbol table

management. Because the sample implementation is complete, the dis-

cussion is a bit long. When you’re ready to really dig into the details of

building an object-oriented language, though, you should read through

it and examine the code in a development tool.

Implementation

For our sample object-oriented Cymbol implementation, we’ll use Pat-

tern 18, Symbol Table for Data Aggregates, on page 176 as a foundation,

so let’s just talk about how this implementation extends that one. The

biggest difference is that we’ll make two passes over the AST per the

pattern discussion. Here’s our implementation road map:

• Extend the Cymbol language grammar to allow class definitions.

We’ll also add the notion of a “main” method. These are more or

less straightforward grammar extensions. We’ll assume that the

grammar correctly builds ASTs for classes.

• Define a custom CymbolAST node that tracks scope and symbol

pointers for each identifier node.
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• Add field def (type CymbolAST) to Symbol that points from the sym-

bol table into the AST. def points at the ID node associated with

the Symbol.

• Add method getParentScope( ) to Scope, and alter resolve( ) methods

to use this instead of getEnclosingScope( ). We still need getEnclos-

ingScope( ) for push and pop operations, though.

• Replace StructSymbol with a suitable ClassSymbol.

• Break the single-pass DefRef.g into two passes, Def.g and Ref.g,

that define symbols and resolve symbol references, respectively.

This is necessary to support forward references.

Let’s start by describing the new properties we’ll need in the various

objects and then look at building scope trees and resolving symbols.

To hold bookkeeping fields for our two pass approach, we need a spe-

cialized AST node. Beyond the properties of the usual ANTLR Common-

Tree object, we need scope and symbol fields (Test.java shows how to cre-

ate a custom TreeAdaptor that tells ANTLR to build CymbolAST nodes):

Download symtab/class/CymbolAST.java

public class CymbolAST extends CommonTree {

public Scope scope; // set by Def.g; ID lives in which scope?

public Symbol symbol; // set by Ref.g; point at def in symbol table

public CymbolAST(Token t) { super(t); }

}

We also need the symbol table objects to point back into the AST at

their definition ID nodes via def:

Download symtab/class/Symbol.java

public class Symbol { // A generic programming language symbol

String name; // All symbols at least have a name

Type type;

Scope scope; // All symbols know what scope contains them.

CymbolAST def; // points at ID node in tree

To represent the Cymbol language class hierarchy, each ClassSymbol

needs a superClass field:

Download symtab/class/ClassSymbol.java

public class ClassSymbol extends ScopedSymbol implements Scope, Type {

/** This is the superclass not enclosingScope field. We still record

* the enclosing scope so we can push in and pop out of class defs.

*/

ClassSymbol superClass;

/** List of all fields and methods */

public Map<String,Symbol> members=new LinkedHashMap<String,Symbol>();
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Per the pattern discussion, we need to define getParentScope( ). By de-

fault, it just returns the enclosing scope:

Download symtab/class/ScopedSymbol.java

public Scope getParentScope() { return getEnclosingScope(); }

For classes, the parent scope depends on whether it has a superclass:

Download symtab/class/ClassSymbol.java

public Scope getParentScope() {

if ( superClass==null ) return enclosingScope; // globals

return superClass; // if not root object, return super

}

With this infrastructure in place, we can build the two tree phases that

define and resolve symbols.

Populating the Symbol Table in Phase 1

The goal of our first tree-walking phase is to build a scope tree and pop-

ulate it with all classes, methods, and variables (globals, fields, param-

eters, and locals). Let’s put our definition tree phase in Def.g.

As in the other patterns, we need both top-down and bottom-up actions

to track the current scope. The source code identifies the scopes with

tokens such as nested curlies. We push and pop the current scope

according to these symbols. The current scope has nothing to do with

the class hierarchy. So, the scope pop action looks just like in the other

patterns:

currentScope = currentScope.getEnclosingScope(); // pop scope

To execute actions upon symbol definitions, tree matcher Def has pat-

terns for classes, methods, and variables. Here is the rule to match and

define classes:

Download symtab/class/Def.g

enterClass

: ^('class' name=ID (^(EXTENDS sup=ID))? .)

{ // def class but leave superclass blank until ref phase

System.out.println("line "+$name.getLine()+

": def class "+$name.text);

// record scope in AST for next pass

if ( $sup!=null ) $sup.scope = currentScope;

ClassSymbol cs = new ClassSymbol($name.text,currentScope,null);

cs.def = $name; // point from symbol table into AST

$name.symbol = cs; // point from AST into symbol table

currentScope.define(cs); // def class in current scope

currentScope = cs; // set current scope to class scope

}

;
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This is analogous to the rule for matching and defining structs but per-

forms two other important operations. First, enterClass sets the scope

for the superclass identifier node (we’ll use this scope to look it up in

the resolution phase). Second, it doubly links the class name’s ID AST

node with the associated ClassSymbol object (using AST field symbol and

ClassSymbol field def). This builds the dashed lines we see in Figure 7.6,

on page 184; these are for the x child of VAR_DECL. There are similar

actions to set the scope for method return types and variable types in

enterMethod and varDeclaration. Otherwise, those rules are the same as

in Pattern 18, Symbol Table for Data Aggregates, on page 176.

We also need to set the scope field for identifiers within expressions so

we can resolve them in the next phase. We can’t just make a rule that

matches identifiers, though. It would trigger the scope setting action at

inappropriate times. For example, if class B derives from A, we want to

look up superclass A starting in the global scope rather than in class

B itself. To limit our scope-setting rule to only those identifiers within

expressions and assignments, we can add a semantic predicate to the

pattern:

Download symtab/class/Def.g

/** Set scope for any identifiers in expressions or assignments */

atoms

@init {CymbolAST t = (CymbolAST)input.LT(1);}

: {t.hasAncestor(EXPR)||t.hasAncestor(ASSIGN)}? ('this'|ID)

{t.scope = currentScope;}

;

The predicate ensures that rule atoms triggers only when the identifier

has an ancestor in the tree of EXPR or ASSIGN.

Now that we’ve built the scope tree and annotated the AST, we can build

the resolution phase.

Resolving Symbol References in Phase 2

The first goal of our second phase is to resolve all type references: vari-

able types, return types, and class superclasses. Once we know the

type, we need to update the associated symbol table objects. In other

words, upon int x, we need to resolve int to get its BuiltInTypeSymbol. Then

we need set the type field of x’s VariableSymbol to that BuiltInTypeSymbol.

These are the dashed lines pointing at the int symbol shown in Fig-

ure 7.7, on page 185.
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The second goal of our resolution phase is to resolve the identifiers

within expressions and on the left side of assignments. To do this, we’ll

use a full tree grammar for expressions rather than simple tree pat-

tern matching. As we’ll see in Pattern 20, Computing Static Expression

Types, on page 199, we need to control tree walking to compute expres-

sion types. To stop the pattern matcher at the root of an expression or

assignment, we use the following rules:

Download symtab/class/Ref.g

assignment : ^( '=' expr expr ) ;

resolveExpr : ^( EXPR expr ) ;

Rules assignment and resolveExpr invoke expr, but the tree pattern

matcher does not try to match expr against subtrees because we don’t

mention rule expr in the topdown or downup rules. Rule expr is a com-

plete tree grammar rule describing the syntax of an expression tree:

Download symtab/class/Ref.g

/** Compute types for identifiers and member access.

* Ignore actions for others; we don't need for this pattern example.

*/

expr returns [Type type]

: member {$type = $member.type;} // E.g., "a.b"

| ^(CALL expr)

| ^('+' expr expr)

| id {$type = $id.type;} // E.g., "a", "this"

| INT

;

Rule expr returns the type of the expression subtree it matched. We

need expression types so that we can resolve member access expres-

sions. To look up b in a.b, we need to know the type (class) of a. Here

is the rule that handles member access operations:

Download symtab/class/Ref.g

member returns [Type type]

: ^('.' m=expr ID) // E.g., "a", "a.b", "a.b.c", ...

{

ClassSymbol scope = (ClassSymbol)$m.type;

Symbol s = scope.resolveMember($ID.text);

$ID.symbol = s;

System.out.println("line "+$ID.getLine()+

": resolve "+$m.text+"."+$ID.text+" to "+s);

if ( s!=null ) $type = s.type;

}

;
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Note that we use resolveMember( ), not the generic resolve( ), because we

only want to look up member references in the class hierarchy. resolve( )

looks in the global scope after the class hierarchy.

To handle isolated identifiers, we have to react to two different patterns,

as shown in the following rule (invoked from expr):

Download symtab/class/Ref.g

id returns [Type type]

: ID

{

// do usual resolve(ID) then check for illegal forward references

$ID.symbol = SymbolTable.resolveID($ID);

if ( $ID.symbol!=null ) $type = $ID.symbol.type;

}

| t='this' {$type = SymbolTable.getEnclosingClass($t.scope);}

;

For ID nodes, we resolve them as usual but then check for illegal for-

ward references. We can factor that code out of the grammar into our

SymbolTable class:

Download symtab/class/SymbolTable.java

public static Symbol resolveID(CymbolAST idAST) {

Symbol s = idAST.scope.resolve(idAST.getText());

System.out.println("line "+idAST.getLine()+": resolve "+

idAST.getText()+" to "+s);

if ( s.def==null ) return s; // must be predefined symbol

// if resolves to local or global symbol, token index of definition

// must be before token index of reference

int idLocation = idAST.token.getTokenIndex();

int defLocation = s.def.token.getTokenIndex();

if ( idAST.scope instanceof BaseScope &&

s.scope instanceof BaseScope &&

idLocation < defLocation )

{

System.err.println("line "+idAST.getLine()+

": error: forward local var ref "+idAST.getText());

return null;

}

return s;

}

Rule id also matches keyword this, which refers to the current object.

So, its type is the surrounding class. Because the this reference could

be buried in a deeply nested local scope, we need to look upward in the

enclosing scope chain until we find the class scope.
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Download symtab/class/SymbolTable.java

/** 'this' and 'super' need to know about enclosing class */

public static ClassSymbol getEnclosingClass(Scope s) {

while ( s!=null ) { // walk upwards from s looking for a class

if ( s instanceof ClassSymbol ) return (ClassSymbol)s;

s = s.getParentScope();

}

return null;

}

There are a few other details in Ref.g, but we’ve covered the important

points.

Finally, let’s give our symbol table manager a workout. The test rig

builds an AST from the source code and then walks it using Def’s and

Ref’s downup( ) strategies:

Download symtab/class/Test.java

CommonTreeNodeStream nodes = new CommonTreeNodeStream(cymbalAdaptor, t);

nodes.setTokenStream(tokens);

SymbolTable symtab = new SymbolTable(); // init symbol table

Def def = new Def(nodes, symtab); // create Def phase

def.downup(t); // Do pass 1

System.out.println("globals: "+symtab.globals);

nodes.reset(); // rewind AST node stream to root

Ref ref = new Ref(nodes); // create Ref phase

ref.downup(t); // Do pass 2

Let’s run the test rig on inherit.cymbol (the numbered icons identify the

various scopes):

Download symtab/class/inherit.cymbol

Ê // start of global scope
Ë // implicit class Object { int hashCode() {...} }
Ì class A {

public:

int x;
Í void foo()
Î { ; }
Ï void bar()
Ð { ; }

};
Ñ class B : public A {

int y;
Ò void foo()
Ó {

this.x = this.y;

bar(); // invoke A::bar()

}

};
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The output we get is as follows:

$ java org.antlr.Tool Cymbol.g Def.g Ref.g

$ javac *.java

$ java Test < inherit.cymbol

line 3: def class A

line 5: def x

line 6: def method foo

locals: []

args: A.foo()

line 8: def method bar

locals: []

args: A.bar()

members: class A:{x, foo, bar}

line 11: def class B

line 12: def y

line 13: def method foo

locals: []

args: B.foo()

members: class B:{y, foo}

globals: [int, float, void, A, B]

line 3: set A

line 5: set var type <A.x:global.int>

line 6: set method type <A.foo():global.void>

line 8: set method type <A.bar():global.void>

line 11: set B super to A

line 12: set var type <B.y:global.int>

line 13: set method type <B.foo():global.void>

line 15: resolve this.x to <A.x:global.int>

line 15: resolve this.y to <B.y:global.int>

line 16: resolve bar to <A.bar():global.void>

$

Notice how, for example, the fields in assignments like this.x = this.y

resolve correctly (to A.x and B.y because of inheritance).

Related Patterns

This pattern extends and alters the source code from Pattern 18, Sym-

bol Table for Data Aggregates, on page 176.

Up Next

This completes a two-chapter sequence on building symbol tables for

the four basic language scoping patterns. At this point, we’ve got the

necessary infrastructure to start asking questions about the source

code. In the next chapter, we’ll figure out how to enforce static typing

rules for languages like C++, Java, and C#.
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Enforcing Static Typing Rules
We derive the meaning of a sentence from both its structure (syntax)

and the particular vocabulary symbols it uses. The structure says what

to do, and the symbols say what to do it to. For example, in phrase print

x, the syntax says to print a value, and the symbol x says which value to

print. Sometimes, though, we write code that make no sense even if the

syntax is correct. Such programs violate a language’s semantic rules.

Languages typically have lots and lots of semantic rules. Some rules are

run-time constraints (dynamic semantics), and some are compile-time

constraints (static semantics). Dynamic semantic rules enforce things

like “no division by zero” and “no array index out of bounds.” Depend-

ing on the language, we can enforce some rules statically such as “no

multiplication of incompatible types.”

Where to draw the line between static and dynamic rules is up to the

language designer. For example, Python is dynamically typed, which

means that programmers do not specify the types of program values

(nor can the compiler infer every type). The Python interpreter enforces

all the semantic rules at run-time. C++ is the opposite extreme. Any-

thing goes at run-time, but C++ is statically typed. We have to spec-

ify the types of all program values. Some languages enforce the same

rule statically and then again dynamically to guard against hostile pro-

grams. For example, Java does type checking at compile-time as well as

at run-time. Both statically and dynamically typed languages are called

type safe if they disallow operations on incompatible types.

Because statically typed languages are so common, we are going to

devote an entire chapter to enforcing static type safety (those readers

interested only in implementing dynamically typed languages such as
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Python and Ruby can skip this chapter). Here are the patterns we’ll

discuss:

• Pattern 20, Computing Static Expression Types, on page 199. To

guarantee type safety, the first thing we’ve got to do is compute

the types of all expressions and expression elements. We assume

that the operands of a binary arithmetic operation have the same

type. There is no automatic promotion of arithmetic values. Most

languages do automatically promote arithmetic values, but tech-

nically type computation and promotion are two different opera-

tions. That’s why we’ll look at them separately in this pattern and

the next.

• Pattern 21, Automatic Type Promotion, on page 208. This pat-

tern demonstrates how to promote operands to have the same or

otherwise compatible types. For example, in the expression 3+4.5,

we expect the language to automatically promote integer 3 to a

floating-point value.

• Pattern 22, Enforcing Static Type Safety, on page 216. Once we

know the types of all expressions, we can enforce type safety. This

amounts to checking for operand-operator and assignment type

compatibility.

• Pattern 23, Enforcing Polymorphic Type Safety, on page 223. The

notion of type compatibility is a little bit looser in object-oriented

languages. We have to deal with polymorphic assignments. We

can, for example, assign a Manager object reference (pointer) to

an Employee reference: e = m;. Polymorphic means that a refer-

ence can point at multiple types. In contrast, assignments in non-

object-oriented languages must be between identical types. This

pattern explains how to check for polymorphic type compatibility.

Before jumping into the patterns, we need to agree on a specific lan-

guage that we can use as a common thread throughout this chapter.

There’s no way we can describe all possible semantic rules for all lan-

guages, so we’ll have to focus on a single language. Using C as a base

is a good choice because it’s the progenitor of the statically typed lan-

guages commonly in use today (C++, C#, and Java). For continuity, we’ll

augment our Cymbol language from Chapter 6, Tracking and Identify-

ing Program Symbols, on page 146 (with some more operators to make

it interesting).
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Cymbol has the following features (when in doubt, assume C++ syntax

and semantics):

• There are struct, function, and variable declarations.

• The built-in types are float, int, char, boolean, and void. Along with

built-in type boolean, we have true and false values.

• There are no explicit pointers (except in Pattern 23, Enforcing Poly-

morphic Type Safety, on page 223), but there are one-dimensional

arrays: int a[ ];. Like C++, we can initialize variables as we declare

them: int i = 3;. Also like C++, we can declare local variables any-

where within a function, not just at the start like C.

• There are if, return, assignment, and function call statements.

• The operators are +, -, *, /, <, >, <=, >=, !=, ==, !, and unary

-. Beyond the usual expression atoms like integers and identi-

fiers, we can use function calls, array references, and struct/class

member accesses.

We’re going to enforce a number of type safety rules. In a nutshell,

all operations and value assignments must have compatible operands.

In Figure 8.2, on page 217, we see the exact list of semantic type

rules. Furthermore, we’re going to check symbol categories. The type

of expressions on the left of the . member access operator must be of

type struct. Identifiers in function calls must be functions. Identifiers in

array references must be array symbols.

Now we just have to figure out how to implement those rules. All the

patterns in this chapter follow the same general three-pass strategy.

In fact, they all share the first two passes. In the first pass, a Cym-

bol parser builds an AST. In the second pass, a tree walker builds a

scope tree and populates a symbol table. Pattern 20, Computing Static

Expression Types, on the following page is the third pass over the AST

and computes the type of each expression. Pattern 21, Automatic Type

Promotion, on page 208 augments this third pass to promote arith-

metic values as necessary. We’ll assume valid input until Pattern 22,

Enforcing Static Type Safety, on page 216. In that pattern, we’ll add

type checking to the third tree pass to enforce our semantic rules.

In practice, you might squeeze the second and third or the first and

second passes into a single pass for efficiency. It might even be possi-

ble to reduce this to a single pass that parses, defines symbols, com-

putes types, and checks type compatibility. Unless run-time speed is
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critical, though, consider breaking complicated language applications

down into as many bite-size chunks as possible.

Here’s a quick summary of when to apply the patterns:

Pattern When to Apply

Pattern 20, Comput-

ing Static Expression

Types

This pattern is a component of any type

safety checker such as Pattern 22, Enforc-

ing Static Type Safety, on page 216 and Pat-

tern 23, Enforcing Polymorphic Type Safety, on

page 223.

Pattern 21, Automatic

Type Promotion, on

page 208

Automatically promoting types is also really

just a component of a type checker. If your

language doesn’t support automatic promo-

tion (like ML), you don’t need this pattern.

Pattern 22, Enforcing

Static Type Safety, on

page 216

You’ll need this pattern if you’re parsing

a non-object-oriented programming language

such as C.

Pattern 23, Enforc-

ing Polymorphic Type

Safety, on page 223

Use this pattern if you’re dealing with an

object-oriented language such as C++ or Java.

OK, let’s get to it. Don’t worry if the process of computing and checking

types seems complicated. We’ll take it slowly, component by compo-

nent. In fact, static type analysis for C and its descendents is not too

bad. The following patterns break the problem down into easy-to-digest

pieces.

220 Computing Static Expression
Types

Purpose

This pattern explains how to statically compute the type of expressions

in languages with explicit type declarations like C.

You’ll be able to extrapolate from this pattern everything you’d need to

build a static type analyzer for C, C++, Java, or C#. Every compiler for
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Subexpression Result Type

true, false boolean.

Character literal char.

Integer literal int.

Floating-point literal float.

id The declared type of the variable identified by id.

!«expr» boolean.

-«expr» The result type is the same as «expr»’s type.

«expr».id The declared type of the field identified by id.

a[«expr»] The declared array element type. For example,

a[i] has type float if a has declaration float a[ ].

f(«args») The declared return type of function f.

«expr» bop «expr» Since both operands have the same type, we can

simply choose the type of the left operand as a

result type; bop is in {+, -, *, /}.

«expr» relop «expr» boolean where relop is in {<, >, <=, >=}.

«expr» eqop «expr» boolean where eqop is in {!=, ==}.

Figure 8.1: Cymbol expression type computation rules

those languages implements an extended version of this pattern. So, do

static bug analyzers such as FindBugs1 and Coverity.2

Discussion

Type computation is an extremely broad topic. To make things more

concrete, we’ll focus on the type computation rules for Cymbol itemized

in Figure 8.1.

Computing the type of an expression is a matter of computing the type

of all elements and the result type of all operations.

1. http://findbugs.sourceforge.net

2. http://coverity.com/html/prevent-for-java.html
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For example, to compute the type of f(1)+4*a[i]+s.x, we proceed as follows:

Subexpression Result Type

1 int

f(1) int

4 int

i int

a[i] int

4*a[i] int

f(1)+4*a[i] int

s struct S

s.x int

f(1)+4*a[i]+s.x int

These computations are pretty dull because we’re assuming the oper-

ands are all the same type. Technically, we could stop computing the

type after encountering first operand: f(1). The entire expression result

type has to be integer because f returns an integer. In practice, though,

two things can happen: we might need to promote a simpler type like

char to int and sometimes programmers make mistakes (operand types

can be incompatible). This pattern just sets up the proper action plan

for the next two patterns. We’ll graft type promotion and type checking

onto this pattern later.

Implementation

The general strategy we’ll use is to parse a Cymbol program into an AST

and then walk that tree twice. The first tree walk defines symbols, and

the second walk resolves symbols and computes expression types. The

first two passes come from Pattern 18, Symbol Table for Data Aggre-

gates, on page 176, so we can focus on the final type resolution and

computation tree walk.

Once we have an AST and a populated symbol table (courtesy of Cym-

bol.g and Def.g), we can describe the type computation rules as tree

pattern-action pairs. The actions compute types and annotate the AST

with them. Using Pattern 13, External Tree Visitor, on page 131, we

could walk the tree looking for the patterns. We have to be careful,

though, how we match expression elements. For example, we have to

consider isolated identifiers and identifiers in array references differ-

ently. In ANTLR notation, that means we can’t simply make a tree pat-

tern rule like this:

id : ID {«action»} ;
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To encode context information, we need Pattern 14, Tree Grammar,

on page 134 rather than a set of isolated tree patterns. That said, we

don’t want to resort to a full tree grammar because we care only about

expressions in this pattern. To get the best of both worlds, we can use

Pattern 15, Tree Pattern Matcher, on page 138 to look for EXPR root

nodes and then invoke a type computation rule to traverse the expres-

sion subtree:

Download semantics/types/Types.g

bottomup // match subexpressions innermost to outermost

: exprRoot // only match the start of expressions (root EXPR)

;

exprRoot // invoke type computation rule after matching EXPR

: ^(EXPR expr) {$EXPR.evalType = $expr.type;} // annotate AST

;

This way we only have to specify the type computation rules and can

totally ignore the AST structure outside of expressions.

The meat of our implementation is rule expr, which computes the sub-

expression types:

Download semantics/types/Types.g

expr returns [Type type]

@after { $start.evalType = $type; } // do after any alternative

: 'true' {$type = SymbolTable._boolean;}

| 'false' {$type = SymbolTable._boolean;}

| CHAR {$type = SymbolTable._char;}

| INT {$type = SymbolTable._int;}

| FLOAT {$type = SymbolTable._float;}

| ID {VariableSymbol s=(VariableSymbol)$ID.scope.resolve($ID.text);

$ID.symbol = s; $type = s.type;}

| ^(UNARY_MINUS a=expr) {$type=symtab.uminus($a.start);}

| ^(UNARY_NOT a=expr) {$type=symtab.unot($a.start);}

| member {$type = $member.type;}

| arrayRef {$type = $arrayRef.type;}

| call {$type = $call.type;}

| binaryOps {$type = $binaryOps.type;}

;

The first few alternatives encode the type computation rules with in-

line actions for the literals and identifiers. The $ID.scope.resolve($ID.text)

expression deserves some explanation. $ID.text is the text of the identi-

fier that we need to look up with resolve( ). resolve( ) needs the identifier’s

context (surrounding scope), which our definition phase conveniently

stashed as the ID AST node’s scope field. Expression $start refers to the

first node matched by enclosing rule expr.
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The tree grammar handles the more complicated patterns via a few

small helper rules in SymbolTable such as uminus( ) and unot( ):

Download semantics/types/SymbolTable.java

public Type uminus(CymbolAST a) { return a.evalType; }

public Type unot(CymbolAST a) { return _boolean; }

Rule expr also annotates the root of the subexpression subtree with

the type it computes (via $start.evalType = $type;). Because a static type

analyzer is normally just a component of a larger language application,

we need to store type information somewhere rather than throwing it

out. We’ll store the type in field evalType of a customized AST node,

CymbolAST:

Download semantics/types/CymbolAST.java

public class CymbolAST extends CommonTree {

public Scope scope; // set by Def.g; ID lives in which scope?

public Symbol symbol; // set by Types.g; point at def in symbol table

public Type evalType; // The type of an expression; set by Types.g

Continuing on with the type computation rules, here is how to compute

the type of a member access operation:

Download semantics/types/Types.g

member returns [Type type]

: ^('.' expr ID) // match expr.ID subtrees

{ // $expr.start is root of tree matched by expr rule

$type = symtab.member($expr.start, $ID);

$start.evalType = $type; // save computed type

}

;

Notice that the left side of the operation can be any expression accord-

ing to the grammar. This handles cases such as functions that return

struct values as in f().fieldname. The member( ) method in the SymbolTable

looks up the field within the scope of the expression on the left side:

Download semantics/types/SymbolTable.java

public Type member(CymbolAST expr, CymbolAST field) {

StructSymbol scope=(StructSymbol)expr.evalType; // get scope of expr

Symbol s = scope.resolveMember(field.getText());// resolve ID in scope

field.symbol = s; // make AST point into symbol table

return s.type; // return ID's type

}

It retrieves the type of the expression via the evalType AST field. evalType

is set as a side effect of calling rule expr in member and must point at a

StructSymbol.

    

http://media.pragprog.com/titles/tpdsl/code/semantics/types/SymbolTable.java
http://media.pragprog.com/titles/tpdsl/code/semantics/types/CymbolAST.java
http://media.pragprog.com/titles/tpdsl/code/semantics/types/Types.g
http://media.pragprog.com/titles/tpdsl/code/semantics/types/SymbolTable.java
http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=203


COMPUTING STATIC EXPRESSION TYPES 204

The next rule computes types for array references. It also delegates

the type computation to SymbolTable (the actions for these rules will get

bigger in the following patterns; it’s a good idea to tuck them out of the

way as methods in another class):

Download semantics/types/Types.g

arrayRef returns [Type type]

: ^(INDEX ID expr)

{

$type = symtab.arrayIndex($ID, $expr.start);

$start.evalType = $type; // save computed type

}

;

The type of an array reference is just the element type of the array (the

index isn’t needed):

Download semantics/types/SymbolTable.java

public Type arrayIndex(CymbolAST id, CymbolAST index) {

Symbol s = id.scope.resolve(id.getText());

VariableSymbol vs = (VariableSymbol)s;

id.symbol = vs;

return ((ArrayType)vs.type).elementType;

}

Function calls consist of the function name and an optional list of

expressions for the arguments. The call rule collects all this informa-

tion and passes it to a helper in SymbolTable:

Download semantics/types/Types.g

call returns [Type type]

@init {List args = new ArrayList();}

: ^(CALL ID ^(ELIST (expr {args.add($expr.start);})*))

{

$type = symtab.call($ID, args);

$start.evalType = $type;

}

;

The type of a function call is the return type of the function (we’ll ignore

the argument types until we do type promotion and type checking):

Download semantics/types/SymbolTable.java

public Type call(CymbolAST id, List args) {

Symbol s = id.scope.resolve(id.getText());

MethodSymbol ms = (MethodSymbol)s;

id.symbol = ms;

return ms.type;

}
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Finally, we come to the binary operators (binary in the sense that they

have two operands). It turns out that we’ll ultimately need to deal sep-

arately with the arithmetic, relational, and equality operators. For con-

sistency with future patterns, we’ll trigger different helper methods:

Download semantics/types/Types.g

binaryOps returns [Type type]

@after { $start.evalType = $type; }

: ^(bop a=expr b=expr) {$type=symtab.bop($a.start, $b.start);}

| ^(relop a=expr b=expr) {$type=symtab.relop($a.start, $b.start);}

| ^(eqop a=expr b=expr) {$type=symtab.eqop($a.start, $b.start);}

;

Because we assume that the operand types of arithmetic operators are

identical, there is no computation to do. We can just arbitrarily pick

the type of the left operand. The relational and the equality operators

always yield boolean types:

Download semantics/types/SymbolTable.java

public Type bop(CymbolAST a, CymbolAST b) { return a.evalType; }

public Type relop(CymbolAST a, CymbolAST b) { return _boolean; }

public Type eqop(CymbolAST a, CymbolAST b) { return _boolean; }

To put everything together, we need to build an AST and then perform

two tree walks:

Download semantics/types/Test.java

// CREATE PARSER AND BUILD AST

CymbolLexer lex = new CymbolLexer(input);

final TokenRewriteStream tokens = new TokenRewriteStream(lex);

CymbolParser p = new CymbolParser(tokens);

p.setTreeAdaptor(CymbolAdaptor); // create CymbolAST nodes

RuleReturnScope r = p.compilationUnit(); // launch parser

CommonTree t = (CommonTree)r.getTree(); // get tree result

// CREATE TREE NODE STREAM FOR TREE PARSERS

CommonTreeNodeStream nodes = new CommonTreeNodeStream(t);

nodes.setTokenStream(tokens); // where to find tokens

nodes.setTreeAdaptor(CymbolAdaptor);

SymbolTable symtab = new SymbolTable();

// DEFINE SYMBOLS

Def def = new Def(nodes, symtab); // pass symtab to walker

def.downup(t); // trigger define actions upon certain subtrees

// RESOLVE SYMBOLS, COMPUTE EXPRESSION TYPES

nodes.reset();

Types typeComp = new Types(nodes, symtab);

typeComp.downup(t); // trigger resolve/type computation actions
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After the tree walks, we have annotated all nodes within expressions

with two pointers. symbol points at its symbol definition in the symbol

table, and evalType points at the node’s computed type. To print out our

handiwork, we can use Pattern 13, External Tree Visitor, on page 131

to trigger a method calledshowTypes( ) on each expression node. To get a

bottom-up, innermost to outermost traversal, we use a postorder walk:

Download semantics/types/Test.java

// WALK TREE TO DUMP SUBTREE TYPES

TreeVisitor v = new TreeVisitor(new CommonTreeAdaptor());

TreeVisitorAction actions = new TreeVisitorAction() {

public Object pre(Object t) { return t; }

public Object post(Object t) {

showTypes((CymbolAST)t, tokens);

return t;

}

};

v.visit(t, actions); // walk in postorder, showing types

Method showTypes( ) just prints out subexpressions and their types for

nodes with non-null evalType fields:

Download semantics/types/Test.java

static void showTypes(CymbolAST t, TokenRewriteStream tokens) {

if ( t.evalType!=null && t.getType()!=CymbolParser.EXPR ) {

System.out.printf("%-17s",

tokens.toString(t.getTokenStartIndex(),

t.getTokenStopIndex()));

String ts = t.evalType.toString();

System.out.printf(" type %-8s\n", ts);

}

}

Let’s run the following sample Cymbol file through our test rig:

Download semantics/types/t.cymbol

struct A {

int x;

struct B { int y; };

struct B b;

};

int i=0; int j=0;

void f() {

struct A a;

a.x = 1+i*j;

a.b.y = 2;

boolean b = 3==a.x;

if ( i < j ) f();

}
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Here’s how to build the test rig and run it on t.cymbol (it’s the same for

all patterns in this chapter):

$ java org.antlr.Tool Cymbol.g Def.g Types.g

$ javac *.java

$ java Test t.cymbol

0 type int

0 type int

a type struct A:{x, B, b}

a.x type int

1 type int

i type int

j type int

i*j type int

1+i*j type int

a type struct A:{x, B, b}

a.b type struct B:{y}

a.b.y type int

2 type int

3 type int

a type struct A:{x, B, b}

a.x type int

3==a.x type boolean

i type int

j type int

i < j type boolean

f() type void

$

This pattern identifies the basic type computations for expression ele-

ments and operations. It’s fairly restrictive in that operand types within

a single operation must be identical such as integer plus integer. Still,

we’ve created the basic infrastructure needed to support automatic pro-

motion such as adding integers and floats. The next pattern defines the

rules for arithmetic type promotion and provides a sample implemen-

tation. Its implementation builds upon the source code in this pattern.

Related Patterns

This pattern uses Pattern 18, Symbol Table for Data Aggregates, on

page 176 to build a scope tree and populate the symbol table. It uses

Pattern 13, External Tree Visitor, on page 131 to print out type informa-

tion. Pattern 21, Automatic Type Promotion, on the next page, Pattern

22, Enforcing Static Type Safety, on page 216, and Pattern 23, Enforcing

Polymorphic Type Safety, on page 223 build upon this pattern.
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221 Automatic Type Promotion

Purpose

This pattern describes how to automatically and safely promote arith-

metic operand types.

Discussion

The goal of automatic type promotion is to get all operands of a single

operation to be of the same type or compatible types. That’s just how

computer CPU instructions want their operands. Unfortunately, that’s

fairly inconvenient from a programming point of view. We often want

to use a variety of types within the same operation such as 3+’0’. Most

programming languages would, for example, interpret 3+’0’ as 3+(int)’0’.

A language application can convert between types at will as long as

it doesn’t lose information. For example, we can convert 4 to 4.0 but

can’t convert 4.5 to integer 4 without losing information. We call such

automatic conversion promotion because we can widen types without

problem but can’t narrow them in general.

There is a simple formula that expresses the valid type-to-type promo-

tions. First, order and number the arithmetic types from narrowest to

widest. Then, we can automatically promote typei to typej as long as i

< j. In our C++ subset Cymbol language, the ordered arithmetic type

list is as follows: char, int, and float. That means we can automatically

convert char to int and float as well as int to float.

Compiler semantic analyzers use static type analyzers to figure out

which elements and subexpressions to promote. Typically, they mod-

ify an intermediate representation tree to incorporate value promotion

nodes. Translators can usually get away with just annotating their tree

and checking for promotions later during code generation, which is a

lot easier than altering the tree.

Besides expressions, static type analyzers have to promote values in

assignments, return statements, function call arguments, and array

index expressions. For example, in float f = 1;, the programmer shouldn’t

have to manually promote 1 to a floating-point value. Similarly, in a[’z’],

we’d expect a type analyzer to promote ’z’ to an integer.

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=208


AUTOMATIC TYPE PROMOTION 209

To implement arithmetic type promotion, we need two functions. The

first returns the result type given an operator and two operand types.

The second tells us whether we need to promote an operand for a par-

ticular operator and destination type.

To compute operation result types, we need a function that takes two

operand types and an operator as parameters:

resultType(type1, op, type2)

For example, adding a character and an integer yields an integer:

resultType(char, "+", int) == int

The operator is as important as the operand types. Comparing a char

and an int yields a boolean not an int:

resultType(char, "<", int) == boolean

Comparing boolean operands for equality is OK but not for less-than

and the other relational operators:

resultType(boolean, "==", boolean) == boolean

resultType(boolean, "<", boolean) == void

A result type of void indicates the operation is illegal, which we’ll exploit

in Pattern 22, Enforcing Static Type Safety, on page 216.

We need one more function. The resultType function says what the oper-

ation result type is but does not directly tell us whether we need to

promote either of the operands. For that, we need the following func-

tion:

promoteFromTo(type, op, destination-type)

It tells us whether we need to promote an operand type to another type

for a given operator. For example, we know from resultType that adding a

character and an integer yields an integer. An operand type of char and

a destination type of int for addition indicates we need to promote the

char to int:

promoteFromTo(char, "+", int) == int

For the right operand, though, we don’t need a promotion:

promoteFromTo(int, "+", int) == null

A promotion result of null means “no promotion necessary” not “invalid

promotion.”
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Let’s compute the result type and promote operands as necessary for

expression ’a’+3+4.2. If we added type casts to make the promotions

explicit, we’d write (float)((int)’a’+3)+4.2. (Our Cymbol C++ subset doesn’t

have doubles, so we’ll use float.) To store the results of functions result-

Type and promoteFromTo, we annotate the AST nodes:

eva Type: nt

promoteToType: float

+

eva Type: char

promoteToType: nt

'a'

eva Type: nt

promoteToType: nu

3

eva Type: float

promoteToType: nu

+

eva Type: float

promoteToType: nu

4.2

Each node knows its evaluation type and promotion type (if any). For

example, the node for ’a’ evaluates to char but promotes to int for the

addition operation (its parent). The 3 node evaluates to int and doesn’t

need a promotion. The result of the lower addition operation is also int

but needs a promotion to float.

The next section describes exactly how to implement functions resultType

and promoteFromTo in Java and how to fold automatic type promotion

into the sample Cymbol implementation from Pattern 20, Computing

Static Expression Types, on page 199.

Implementation

When confronted with this type promotion problem for the first time, I

wrote out all the type promotion cases with a series of if-statements.

It was slow and fragile. I finally figured out that assigning a type

index would reduce that mess to a few comparisons. Ultimately, I boiled

everything down to a few table lookups using operand types as indexes.

For each operator, I made a table that told me how to map any two

operand types to a result type. Aside from being extremely efficient, the

tables make it easy to see the valid operand types and promotions.
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To implement Cymbol’s result type tables in Java, let’s start with the

type indexes:

Download semantics/promote/SymbolTable.java

// arithmetic types defined in order from narrowest to widest

public static final int tUSER = 0; // user-defined type (struct)

public static final int tBOOLEAN = 1;

public static final int tCHAR = 2;

public static final int tINT = 3;

public static final int tFLOAT = 4;

public static final int tVOID = 5;

Then we need to define the types. For example, here’s the built-in type

for int:

public static final BuiltInTypeSymbol _int =

new BuiltInTypeSymbol("int", tINT);

With those definitions in place, we can flesh out our result type table

for the arithmetic operators. (The type tables for equality and relational

operators are similar except every entry in the table is boolean):

Download semantics/promote/SymbolTable.java

/** Map t1 op t2 to result type (_void implies illegal) */

public static final Type[][] arithmeticResultType = new Type[][] {

/* struct boolean char int float, void */

/*struct*/ {_void, _void, _void, _void, _void, _void},

/*boolean*/ {_void, _void, _void, _void, _void, _void},

/*char*/ {_void, _void, _char, _int, _float, _void},

/*int*/ {_void, _void, _int, _int, _float, _void},

/*float*/ {_void, _void, _float, _float, _float, _void},

/*void*/ {_void, _void, _void, _void, _void, _void}

};

To compute the result of an arithmetic operation on a character and

an integer, evaluate arithmeticResultType[tCHAR][tINT]. The result type is

Type _int. The type promotion table works the same way. promoteFrom-

To[tCHAR][tINT] gives _int, but promoteFromTo[tINT][tINT] gives null. Because of

the semantics of Cymbol, we can get away with a single promotion table.

It works not only for the operators but also for checking parameter

types, array index types, and so on. For example, a[’z’] needs to promote

’z’ to an integer.
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Here’s the table:

Download semantics/promote/SymbolTable.java

/** Indicate whether a type needs a promotion to a wider type.

* If not null, implies promotion required. Null does NOT imply

* error--it implies no promotion. This works for

* arithmetic, equality, and relational operators in Cymbol.

*/

public static final Type[][] promoteFromTo = new Type[][] {

/* struct boolean char int float, void */

/*struct*/ {null, null, null, null, null, null},

/*boolean*/ {null, null, null, null, null, null},

/*char*/ {null, null, null, _int, _float, null},

/*int*/ {null, null, null, null, _float, null},

/*float*/ {null, null, null, null, null, null},

/*void*/ {null, null, null, null, null, null}

};

Let’s fold these type computation tables into the code we built for Pat-

tern 20, Computing Static Expression Types, on page 199. The first thing

we need to do is alter the operator result type support methods in Sym-

bolTable. For a specified type table, the following method computes the

result type. It annotates the AST with operand promotion types as a

side effect.

Download semantics/promote/SymbolTable.java

public Type getResultType(Type[][] typeTable, CymbolAST a, CymbolAST b) {

int ta = a.evalType.getTypeIndex(); // type index of left operand

int tb = b.evalType.getTypeIndex(); // type index of right operand

Type result = typeTable[ta][tb]; // operation result type

// promote left to right or right to left?

a.promoteToType = promoteFromTo[ta][result.getTypeIndex()];

b.promoteToType = promoteFromTo[tb][result.getTypeIndex()];

return result;

}

The three support methods called from rule binaryOps now call getRe-

sultType( ) with the appropriate type table:

Download semantics/promote/SymbolTable.java

public Type bop(CymbolAST a, CymbolAST b) {

return getResultType(arithmeticResultType, a, b);

}

public Type relop(CymbolAST a, CymbolAST b) {

return getResultType(relationalResultType, a, b);

}

public Type eqop(CymbolAST a, CymbolAST b) {

return getResultType(equalityResultType, a, b);

}
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Method arrayIndex( ) is the same as before except we promote the index

to an integer if necessary:

Download semantics/promote/SymbolTable.java

public Type arrayIndex(CymbolAST id, CymbolAST index) {

Symbol s = id.scope.resolve(id.getText()); // resolve variable

VariableSymbol vs = (VariableSymbol)s;

id.symbol = vs; // annotate AST

Type t = ((ArrayType)vs.type).elementType; // get element type

int texpr = index.evalType.getTypeIndex();

index.promoteToType = promoteFromTo[texpr][tINT]; // promote index?

return t;

}

For method calls, we have to promote argument expressions to the type

specified in the function’s formal parameter list:

Download semantics/promote/SymbolTable.java

/** For g('q',10), promote 'q' to int, 10 to float

* Given int g(int x, float y) {...} */

public Type call(CymbolAST id, List args) {

Symbol s = id.scope.resolve(id.getText());

MethodSymbol ms = (MethodSymbol)s;

id.symbol = ms;

int i=0;

for (Symbol a : ms.orderedArgs.values() ) { // for each arg

CymbolAST argAST = (CymbolAST)args.get(i++);

// get argument expression type and expected type

Type actualArgType = argAST.evalType;

Type formalArgType = ((VariableSymbol)a).type;

int targ = actualArgType.getTypeIndex();

int tformal = formalArgType.getTypeIndex();

// do we need to promote argument type to defined type?

argAST.promoteToType = promoteFromTo[targ][tformal];

}

return ms.type;

}

We also need some rules in Types.g to handle variable initialization,

return statements, and assignment:

Download semantics/promote/Types.g

decl: ^(VAR_DECL . ID (init=.)?) // call declinit if we have init expr

{if ( $init!=null && $init.evalType!=null )

symtab.declinit($ID, $init);}

;

ret : ^('return' v=.) {symtab.ret((MethodSymbol)$start.symbol, $v);} ;

assignment // don't walk exprs, just examine types; '.' is wildcard

: ^('=' lhs=. rhs=.) {symtab.assign($lhs, $rhs);}

;
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Those rules delegate to helper methods in SymbolTable:

Download semantics/promote/SymbolTable.java

public void declinit(CymbolAST id, CymbolAST init) {

int te = init.evalType.getTypeIndex(); //promote expr to decl type?

int tdecl = id.symbol.type.getTypeIndex();

init.promoteToType = promoteFromTo[te][tdecl];

}

public void ret(MethodSymbol ms, CymbolAST expr) {

Type retType = ms.type; //promote return expr to function decl type?

Type exprType = expr.evalType;

int texpr = exprType.getTypeIndex();

int tret = retType.getTypeIndex();

expr.promoteToType = promoteFromTo[texpr][tret];

}

public void assign(CymbolAST lhs, CymbolAST rhs) {

int tlhs = lhs.evalType.getTypeIndex(); // promote right to left?

int trhs = rhs.evalType.getTypeIndex();

rhs.promoteToType = promoteFromTo[trhs][tlhs];

}

At this point, we’ve augmented our tree walker to deal with both expres-

sions and statements that might need type promotions. Further, we’ve

annotated our ASTs with these results. To check our work, we need to

see those annotations. Rather than printing out the trees, let’s print the

original source code back out augmented with type casts as necessary.

Our goal is to read in a Cymbol file such as this:

Download semantics/promote/t.cymbol

float a[];

int d[];

int c = 'z'+1; // check variable init (no promote on int)

void f() {

a[0] = 4*'i'; // promote char to int to float

a[1] = d[0]; // promote int element to float

a['x'] = 1; // check array index promotion

g('q',10); // arg promotion

}

int g(int x, float y) { return 'k'; } // promote 'k' to int

and print it back out with explicit casts:

float a[];

int d[];

int c = (int)'z'+1; // check variable init (no promote on int)

void f() {

a[0] = (float)(4*(int)'i'); // promote char to int to float

a[1] = (float)d[0]; // promote int element to float

a[(int)'x'] = (float)1; // check array index promotion

g((int)'q',(float)10); // arg promotion

}

int g(int x, float y) { return (int)'k'; } // promote 'k' to int
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To tweak the original source code, we need a bit of magic. There are two

approaches. One way involves walking the AST with a clever visitor or

tree grammar that knows how to map subtrees to output text. That’s

a lot of work and can’t easily reproduce the original formatting. It’s

simpler to just to insert type casts directly into the original source code

text buffer at the right spot and then print it out.

The only negative is efficiency. It takes a lot of data movement to insert

a string into the middle of the character buffer. For a large buffer and

lots of insertions, that’s prohibitively expensive.

There’s a way to do this efficiently using ANTLR’sTokenRewriteStream.

(We’ll see it again in Section 13.5, Tweaking Source Code, on page 363

and Section 13.6, Adding a New Type to Java, on page 364.) It records

all the insertion commands and then “executes” them as it prints the

buffer back out. Using Pattern 13, External Tree Visitor, on page 131,

the test rig invokes method insertCast( ) for every node with non-null

promoteToType:

Download semantics/promote/Test.java

/** Insert a cast before tokens from which this node was created. */

static void insertCast(CymbolAST t, TokenRewriteStream tokens) {

String cast = "("+t.promoteToType+")";

int left = t.getTokenStartIndex(); // location in token buffer

int right = t.getTokenStopIndex();

Token tok = t.token; // tok is node's token payload

if ( tok.getType() == CymbolParser.EXPR ) {

tok = ((CymbolAST)t.getChild(0)).token;

}

if ( left==right ||

tok.getType()==CymbolParser.INDEX ||

tok.getType()==CymbolParser.CALL )

{ // it's a single atom or a[i] or f(); don't use (...)

tokens.insertBefore(left, cast);

}

else { // need parens

String original = tokens.toString(left, right);

tokens.replace(left, right, cast+"("+original+")");

}

}

Except for error checking, we now have a static type analyzer! In the

next pattern we’ll add type checking and a few other semantic checks

because we can’t assume valid input.
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Related Patterns

Automatic arithmetic type promotion goes hand in hand with result

type computations, Pattern 20, Computing Static Expression Types, on

page 199. Pattern 22, Enforcing Static Type Safety builds upon this

pattern to emit error messages.

222 Enforcing Static Type Safety

Purpose

This pattern statically detects incompatible types in expressions and

statements.

You can extrapolate from this pattern everything you’d need to build

a type safety checker for any statically typed language with explicit

declarations like C. Tools such as compilers that translate or otherwise

analyze a statically typed language need this pattern.

Discussion

A static type checker adds type compatibility checks to Pattern 21,

Automatic Type Promotion, on page 208 (which is, in turn, based upon

Pattern 20, Computing Static Expression Types, on page 199). We’re

going to enforce the type compatibility checks described in Figure 8.2,

on the following page.

In a nutshell, type compatibility means two things:

• An operation must be defined for the operand types it’s applied to.

resultType(operandtype1, op, operandtype2) != void

• If we’re looking for a value of type t, the value must be of type t or

promotable to t.

value-type==destination-type||value-promoted-type==destination-

type.

This ensures that we don’t copy data between incompatible types.

We can call this computation canAssignTo.

While we’re at it, we might as well enforce the following symbol category

rules as well:

• In x.y, x must be a struct.
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1. if conditionals must evaluate to a boolean value.

2. Array reference indexes must be integers.

3. The left and right sides of an assignment must have compatible

types.

4. Function call arguments and formal function declarations must

have compatible types.

5. return expressions and function return types must be compatible.

6. The two operands of a binary arithmetic operation must have com-

patible types.

7. The operand of unary operators must have an appropriate type.

Figure 8.2: The type compatibility rules Cymbol enforces

• In f(), f must be a function symbol.

• In a[...], a must be an array symbol.

To implement type safety, we need to add resultType checks, canAssignTo

checks, or both. In the next section, we’ll add them to the helper meth-

ods of SymbolTable.

Implementation

Adding type checks to Pattern 21 is not particularly difficult, but it

requires widespread changes. To make it easier to digest, we’ll break

the problem down into manageable chunks. Let’s start with the expres-

sion operators.

Checking Expression Operand Types

To check for compatible operand types, all we’ve got to do is watch for

a void result type. The getResultType( ) method is the same except for the

error check:

Download semantics/safety/SymbolTable.java

public Type getResultType(Type[][] typeTable, CymbolAST a, CymbolAST b) {

int ta = a.evalType.getTypeIndex(); // type index of left operand

int tb = b.evalType.getTypeIndex(); // type index of right operand

Type result = typeTable[ta][tb]; // operation result type

if ( result==_void ) {

listener.error(text(a)+", "+

text(b)+" have incompatible types in "+

text((CymbolAST)a.getParent()));

}
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else {

a.promoteToType = promoteFromTo[ta][tb];

b.promoteToType = promoteFromTo[tb][ta];

}

return result;

}

The text( ) method computes the original source code from which we cre-

ated the subtree. getResultType( ) works for relational and equality oper-

ators as well as the binary arithmetic operators like plus and multiply.

The only difference is that the result type of relational and equality

operators is always boolean:

Download semantics/safety/SymbolTable.java

public Type relop(CymbolAST a, CymbolAST b) {

getResultType(relationalResultType, a, b);

// even if the operands are incompatible, the type of

// this operation must be boolean

return _boolean;

}

public Type eqop(CymbolAST a, CymbolAST b) {

getResultType(equalityResultType, a, b);

return _boolean;

}

The unary operators explicitly check for particular types:

Download semantics/safety/SymbolTable.java

public Type uminus(CymbolAST a) {

if ( !(a.evalType==_int && a.evalType==_float) ) {

listener.error(text(a)+" must have int/float type in "+

text((CymbolAST)a.getParent()));

return _void;

}

return a.evalType;

}

public Type unot(CymbolAST a) {

if ( a.evalType!=_boolean ) {

listener.error(text(a)+" must have boolean type in "+

text((CymbolAST)a.getParent()));

return _boolean; // even though wrong, assume result boolean

}

return a.evalType;

}

For member access expressions, we only have to check that the left

operand evaluates to a struct.
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Here is the check from member( ):

Download semantics/safety/SymbolTable.java

Type type = expr.evalType;

if ( type.getClass() != StructSymbol.class ) {

listener.error(text(expr)+" must be have struct type in "+

text((CymbolAST)expr.getParent()));

return _void;

}

Array indexing has two semantic hazards to check. We need to verify

that the identifier is in fact an array and that the index expression is

an integer or promotable to an integer:

Download semantics/safety/SymbolTable.java

public Type arrayIndex(CymbolAST id, CymbolAST index) {

Symbol s = id.scope.resolve(id.getText());

id.symbol = s; // annotate AST

if ( s.getClass() != VariableSymbol.class || // ensure it's an array

s.type.getClass() != ArrayType.class )

{

listener.error(text(id)+" must be an array variable in "+

text((CymbolAST)id.getParent()));

return _void;

}

VariableSymbol vs = (VariableSymbol)s;

Type t = ((ArrayType)vs.type).elementType; // get element type

int texpr = index.evalType.getTypeIndex();

// promote the index expr if necessary to int

index.promoteToType = promoteFromTo[texpr][tINT];

if ( !canAssignTo(index.evalType, _int, index.promoteToType) ) {

listener.error(text(index)+" index must have integer type in "+

text((CymbolAST)id.getParent()));

}

return t;

}

The canAssignTo( ) method determines whether a value is compatible

with a destination type (based upon its evaluated type and promoted

type if needed):

Download semantics/safety/SymbolTable.java

public boolean canAssignTo(Type valueType,Type destType,Type promotion) {

// either types are same or value was successfully promoted

return valueType==destType || promotion==destType;

}

This method is the key type compatibility checker. The following sec-

tions use it a lot to analyze method calls and assignments.
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Checking Method Calls and Return Values

Method calls have three semantic hazards. First, we have to check that

the identifier is a function name, and second, we have to check that the

argument expression types are compatible with the formally declared

function parameters:

Download semantics/safety/SymbolTable.java

public Type call(CymbolAST id, List args) {

Symbol s = id.scope.resolve(id.getText());

if ( s.getClass() != MethodSymbol.class ) {

listener.error(text(id)+" must be a function in "+

text((CymbolAST)id.getParent()));

return _void;

}

MethodSymbol ms = (MethodSymbol)s;

id.symbol = ms;

int i=0;

for (Symbol a : ms.orderedArgs.values() ) { // for each arg

CymbolAST argAST = (CymbolAST)args.get(i++);

// get argument expression type and expected type

Type actualArgType = argAST.evalType;

Type formalArgType = ((VariableSymbol)a).type;

int targ = actualArgType.getTypeIndex();

int tformal = formalArgType.getTypeIndex();

// do we need to promote argument type to defined type?

argAST.promoteToType = promoteFromTo[targ][tformal];

if ( !canAssignTo(actualArgType, formalArgType,

argAST.promoteToType) ) {

listener.error(text(argAST)+", argument "+

a.name+":<"+a.type+"> of "+ms.name+

"() have incompatible types in "+

text((CymbolAST)id.getParent()));

}

}

return ms.type;

}

Finally, we have to check that return expression types are compatible

with the declared function return type. Here is the check from ret( ):

Download semantics/safety/SymbolTable.java

if ( !canAssignTo(exprType, retType, expr.promoteToType) ) {

listener.error(text(expr)+", "+

ms.name+"():<"+ms.type+"> have incompatible types in "+

text((CymbolAST)expr.getParent()));

}

Passing parameters and return statement values are implicit assign-

ments. Let’s deal with explicit assignments next.
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Checking Assignments and Declaration Initializers

To check assignments for type safety, we verify that the right-side ex-

pression is compatible with the type of the left side (we’re copying data

from the right to the left). Here’s the check from assign( ):

Download semantics/safety/SymbolTable.java

if ( !canAssignTo(rhs.evalType, lhs.evalType, rhs.promoteToType) ) {

listener.error(text(lhs)+", "+

text(rhs)+" have incompatible types in "+

text((CymbolAST)lhs.getParent()));

}

Variable declarations with initialization expressions are also assign-

ments. We have to check that the initialization expression type is com-

patible with the declaration type. Here’s the check from declinit( ):

Download semantics/safety/SymbolTable.java

if ( !canAssignTo(init.evalType, declID.symbol.type,

init.promoteToType) ) {

listener.error(text(declID)+", "+

text(init)+" have incompatible types in "+

text((CymbolAST)declID.getParent()));

}

The only thing left to check is that if-conditionals are booleans.

Checking That if-Conditionals Are Booleans

To check if-conditionals, we need to add a rule to our tree pattern

matcher Types.g that triggers helper method ifstat( ) upon if-statement:

Download semantics/safety/Types.g

ifstat : ^('if' cond=. s=. e=.?) {symtab.ifstat($cond);} ;

The helper method ensures that the type of the condition is boolean:

Download semantics/safety/SymbolTable.java

public void ifstat(CymbolAST cond) {

if ( cond.evalType != _boolean ) {

listener.error("if condition "+text(cond)+

" must have boolean type in "+

text((CymbolAST)cond.getParent()));

}

}

With these changes, we get some nice error messages from the test

rig. For example, the following test file exercises the safety checks for

operand types, array indexes, conditionals, function call arguments,

and function return values.
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Download semantics/safety/t.cymbol

void f() {

char c = 4; // <char> = <int> ERROR

boolean b;

int a[];

if ( 3 ) c='a'; // if ( <int> ) ... ERROR

c = 4+1.2; // <char> = <float> ERROR

b = !c; // !<char> ERROR

int i = c < b ; // <char> < <boolean> ERROR

i = -b; // -<boolean> (must be int/float) ERROR

g(9); // g(<int>) but needs <char> ERROR

a[true] = 1; // <array>[<boolean>] = <int> ERROR

}

int g(char c) { return 9.2; } // return <float> needs <int> ERROR

From t.cymbol, we get this output (it’s missing the output related to the

type of each subexpression):

$ java Test t.cymbol

c:<char>, 4:<int> have incompatible types in char c = 4;

if condition 3:<int> must have boolean type in if ( 3 ) c='a';

c:<char>, 4+1.2:<float> have incompatible types in c = 4+1.2;

c:<char> must have boolean type in !c

c:<char>, b:<boolean> have incompatible types in c < b

i:<int>, c < b:<boolean> have incompatible types in int i = c < b ;

b:<boolean> must have int/float type in -b

i:<int>, -b:<void> have incompatible types in i = -b;

9:<int>, argument c:<char> of g() have incompatible types in g(9)

true:<boolean> index must have integer type in a[true]

9.2:<float>, g():<int> have incompatible types in return 9.2;

...

$

Test file u.cymbol checks that we use structs properly and that we use

function symbols in function calls:

Download semantics/safety/u.cymbol

struct A { int x; };

struct B { int y; };

void f() {

struct A a;

struct B b;

a = b; // <struct A> = <struct B> ERROR

int i;

int c = i.x; // <int>.x ERROR

c = a + 3 + a[3]; // <struct> + <int> + <struct>[] ERROR

c(); // <int>() ERROR

}
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We get the following error messages:

$ java Test u.cymbol

a:<struct A:{x}>, b:<struct B:{y}> have incompatible types in a = b;

i:<int> must be have struct type in i.x

c:<int>, i.x:<void> have incompatible types in int c = i.x;

a:<struct A:{x}>, 3:<int> have incompatible types in a + 3

a must be an array variable in a[3]

a + 3:<void>, a[3]:<void> have incompatible types in a + 3 + a[3]

c:<int>, a + 3 + a[3]:<void> have incompatible types in c = a + 3 + a[3];

c must be a function in c()

...

$

The source code for this pattern is a complete static type checker for

our C++ subset. By breaking the problem down into type computation,

type promotion, and type checking, we’ve made things much easier to

understand and implement.

Related Patterns

This pattern requires Pattern 20, Computing Static Expression Types,

on page 199 and Pattern 21, Automatic Type Promotion, on page 208

before it can check for type compatibility. The next pattern alters Cym-

bol to have classes instead of structs and checks polymorphic pointer

assignments.

223 Enforcing Polymorphic Type
Safety

Purpose

This pattern detects type incompatibilities in object pointer assignments

in object-oriented languages like C++.

Discussion

Beyond the type checking done in Pattern 22, Enforcing Static Type

Safety, on page 216, object-oriented languages have one more type

hazard to worry about: polymorphic object pointer assignment. Poly-

morphism means that a pointer can refer to objects of multiple types.

In contrast, C pointer assignments have to be between exact types. The

key difference then between this pattern and the previous lies in the
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definition of type compatibility. Let’s take a look at a C++ example that

demonstrates what we need to handle:

Cat *pCat;

Bengal *pBengal; // assume Bengal subclasses Cat

pCat = pCat; // target types, Cat, are the same, assignment is ok

pCat = pBengal; // Bengal must be a subclass of Cat

Those assignments are OK, but pBengal=pCat is illegal because pCat

could be any kind of cat, not just a bengal. pBengal=pTabby would also

be illegal.

The semantic rule for polymorphic pointer assignment goes like this:

for any assignment p=q, ensure that q’s target type is the same as p’s

target type or that q’s target type is a subclass of p’s target type. The

“target type” is the type of element pointed at by a pointer. This rule

means that q’s target type has to be a kind of p’s target type.

We can check compatibility in one of two ways. Let’s assume P *p; and

Q *q. Then, either we look for Q at or below P in the class hierarchy

or we look for P at or above Q. Pattern 19, Symbol Table for Classes,

on page 182 builds class hierarchy trees with children pointing at their

parents. So, let’s ask Q if it has a P ancestor in the class hierarchy.

Polymorphism is meaningless without pointers, so we need to add them

to the Cymbol language we’ve used throughout this chapter. (We’ve

ignored pointers until now to keep things simple.) To demonstrate type

checking in object pointer assignments, we need to extend Cymbol with

these constructs:

• Classes with single inheritance (we’ll remove structs)

• Pointers to primitive and class types

• The & “address of” operator

• The * “pointer dereference” operator

• The -> “member access through object pointer” operator

To simplify our lives, we can normalize array references to the equiva-

lent pointer arithmetic when building the AST (a[i] becomes *(a+i)). We’ll

do the same for member access through pointers (p->x becomes (*p).x).

This way, the definition and type safety tree passes don’t have to worry

about the new syntax because the AST only has pointer arithmetic.

The next section extends the sample implementation from the previous

pattern to handle classes and object pointer semantic rules.
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Static vs. Dynamic Pointer Compatibility Checking

Static analysis tools and compilers are notoriously picky about
pointer assignments. C++ in particular has to be very careful
because anything goes at run-time. Bad pointer assignments
can lead to incorrect field accesses and even memory viola-
tions. In dynamically typed languages like Python and Ruby, we
don’t even have to check for pointer compatibility at run-time.
If we were to make a pointer assignment between incompati-
ble types, the next member access on that object would gen-
erate an error.

Implementation

This section consists of two main chunks. The first section details

how to implement polymorphic type checking. The second shows how

to support pointers in Cymbol. Adding pointers gets a bit hairy, so you

can skip it if you’re only interested in the type checking part.

Checking for Polymorphism Between Object Pointers

Our implementation is an extension of Pattern 22, Enforcing Static Type

Safety, on page 216 with symbol table support for classes from Pattern

19, Symbol Table for Classes, on page 182. The primary modification is

a change in the definition of type compatibility in method canAssignTo( ).

The non-object-oriented version checks for exact type matches:

Download semantics/safety/SymbolTable.java

public boolean canAssignTo(Type valueType,Type destType,Type promotion) {

// either types are same or value was successfully promoted

return valueType==destType || promotion==destType;

}

whereas, for the object-oriented version, we need something looser.

Because of this looser definition and because we need pointer support

in Cymbol, it’s easier to delegate functionality to the individual types:

Download semantics/oo/SymbolTable.java

public boolean canAssignTo(Type valueType,

Type destType,

Type promotion)

{ // handle both arithmetic types, objects, and object pointers.

// either we can assign the value directly to the destination type or

// it was promoted to the required destination type

return valueType.canAssignTo(destType) || promotion==destType;

}
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This means we need to add a new method to the Type interface for

consistency across type objects in our symbol table:

Download semantics/oo/Type.java

public boolean canAssignTo(Type destType);

The built-in types like int require an exact type match in assignments:

Download semantics/oo/BuiltInTypeSymbol.java

public boolean canAssignTo(Type destType) { return this==destType; }

The same is true for objects such as Point or User. We can only assign

Point objects to Point objects because we are copying an entire object (not

just a pointer):

Download semantics/oo/ClassSymbol.java

public boolean canAssignTo(Type destType) { return this==destType; }

All of the fancy footwork for polymorphic type safety happens in Pointer-

Type’s canAssignTo( ) method. Class PointerType represents a pointer to a

target type. For example, we can represent a pointer to class User with

new PointerType(userClass), assuming userClass points to the ClassSymbol

for User. This is analogous to ArrayType in Pattern 22, Enforcing Static

Type Safety, on page 216.

For pointers to built-in types, the target types must be identical. Point-

ers to objects, on the other hand, only have to be related in the class

hierarchy. The following method answers whether we can copy a pointer

of one type to a destination type:

Download semantics/oo/PointerType.java

/** Can we assign this type to destination type? destType must be

* pointer and to same type unless object ptr. Then, we have to do a

* polymorphic check. [Ha! This method is a perfect example of

* static typing getting in the way. Look at all those type casts!]

*/

public boolean canAssignTo(Type destType) {

// if not a pointer, return false

if ( !(destType instanceof PointerType) ) return false;

// What type is the target pointing at?

Type destTargetType = ((PointerType)destType).targetType;

Type srcTargetType = this.targetType;

// if this and target are object pointers, check polymorphism

if ( destTargetType instanceof ClassSymbol &&

this.targetType instanceof ClassSymbol )

{

ClassSymbol thisClass = (ClassSymbol)srcTargetType;

ClassSymbol targetClass = (ClassSymbol)destTargetType;

// Finally! Here it is: the polymorphic type check :)

return thisClass.isInstanceof(targetClass);

}
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// not comparing object pointers; types we point at must be the same

// For example: int *p; int *q; p = q;

return srcTargetType == destTargetType;

}

The type check for polymorphism asks whether thisClass is the same as

targetClass or is a subclass of targetClass via isInstanceof( ):

Download semantics/oo/ClassSymbol.java

/** Return true if 'ancestor' is this class or above in hierarchy */

public boolean isInstanceof(ClassSymbol ancestor) {

ClassSymbol t = this;

while ( t!=null ) {

if ( t == ancestor ) return true;

t = t.superClass;

}

return false;

}

OK, let’s see what happens if we run the following Cymbol assignments

through our test rig (which is identical to Test.java from the previous

pattern):

Download semantics/oo/t.cymbol

class A { int x; }; // define class A

class B : A { int y; }; // define class B subclass of A

class C : A { int z; }; // define class C subclass of A

void f() {

A a; A a2; B b; C c; // define 4 object instances

a = a2; // a, a2 have same type A, so it's ok

a = b; // b's class is subclass of A but not ptr; NOT ok

b = a; // a's class is not below B so it's NOT ok

b = c; // b and c classes are siblings of A; not compatible

A *pA; B *pB; C *pC; // define 3 object pointers

pA = pB; // pB's points to B: B is a subclass of A so it's ok

pB = pA; // pA's points to class not below B so it's NOT ok

pB = pC; // pB and pC point to sibling classes of A; NOT ok

}

Only the first object assignment and first pointer assignment are valid.

The polymorphic type checker emits errors for the rest:

$ java org.antlr.Tool Cymbol.g Def.g Types.g

$ javac *.java

$ java Test t.cymbol

a:<class A:{x}>, b:<class B:{y}> have incompatible types in a = b;

b:<class B:{y}>, a:<class A:{x}> have incompatible types in b = a;

b:<class B:{y}>, c:<class C:{z}> have incompatible types in b = c;

pB:<class B:{y}*>, pA:<class A:{x}*> have incompatible types in pB = pA;

pB:<class B:{y}*>, pC:<class C:{z}*> have incompatible types in pB = pC;

...

$

    

http://media.pragprog.com/titles/tpdsl/code/semantics/oo/ClassSymbol.java
http://media.pragprog.com/titles/tpdsl/code/semantics/oo/t.cymbol
http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=227


ENFORCING POLYMORPHIC TYPE SAFETY 228

This completes the core of the material for this pattern. For complete-

ness, though, you can read about adding pointers to Cymbol in the next

section. Programming languages have moved away from explicit point-

ers (Java, C#, Ruby, and Python), but C and C++ aren’t going away

anytime soon. If you need to implement a language with pointers, take

a look at the next section.

Adding Pointers to Cymbol

To support pointers, the first thing we need to do is add some syntax

to our language. The following rule adds * as a valid prefix to a declara-

tion’s identifier:

Download semantics/oo/Cymbol.g

varDeclaration

: type ID ('=' expression)? ';'

-> ^(VAR_DECL type ID expression?)

| type ID '[]' ('=' expression)? ';'

-> ^(VAR_DECL ^('*' type) ID expression?)

| type '*' ID ('=' expression)? ';'

-> ^(VAR_DECL ^('*' type) ID expression?)

;

It also normalizes array declarations to be the same as pointer decla-

rations. Within expressions, we simulate array reference a[i] with the

equivalent pointer arithmetic and dereference *(a+i). We also desugar

member access operations such as p->x to (*p).x:

Download semantics/oo/Cymbol.g

postfixExpression

: (primary->primary)

(

( '(' expressionList ')'

-> ^(CALL["CALL"] $postfixExpression expressionList)

| r='[' expr ']' // convert a[i] to *(a+i)

-> ^(DEREF[$r,"*"] ^(ADD["+"] $postfixExpression expr))

| '.' ID

-> ^('.' $postfixExpression ID)

| r='->' ID // convert p->x to (*p).x

-> ^(MEMBER[$r] ^(DEREF $postfixExpression) ID)

)

)*
;

After successfully building an AST, the symbol definition phase needs

the rules to handle class definitions from Pattern 19, Symbol Table for

Classes, on page 182.
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It also replaces array support in rule type with pointer support:

Download semantics/oo/Def.g

type returns [Type type]

: ^('*' typeElement) {$type = new PointerType($typeElement.type);}

| typeElement {$type = $typeElement.type;}

;

In the symbol resolution and type computation phase, the expr rule

invokes a helper method when it sees a pointer dereference:

Download semantics/oo/Types.g

| ^(ADDR a=expr) {$type=new PointerType($a.type);}

| ^(DEREF a=expr) {$type=symtab.ptrDeref($a.start);}

The helper method returns the target type of the dereferenced expres-

sion. For example, *pInt evaluates to int if pInt is a pointer to an int.

Download semantics/oo/SymbolTable.java

public Type ptrDeref(CymbolAST expr) {

if ( !(expr.evalType instanceof PointerType) ) {

listener.error(text(expr)+" must be a pointer");

return _void;

}

return ((PointerType)expr.evalType).targetType;

}

To support pointers in expressions, we need some small but pervasive

changes to our type result tables. First, we need to introduce a new

type index tPTR and increase the dimensions of our type tables by one.

For example, here is the arithmetic result type table:

Download semantics/oo/SymbolTable.java

/** Map t1 op t2 to result type (_void implies illegal) */

public static final Type[][] arithmeticResultType = new Type[][] {

/* struct boolean char int float, void, ptr */

/*struct*/ {_void, _void, _void, _void, _void, _void, _void},

/*boolean*/ {_void, _void, _void, _void, _void, _void, _void},

/*char*/ {_void, _void, _char, _int, _float, _void, _ptr},

/*int*/ {_void, _void, _int, _int, _float, _void, _ptr},

/*float*/ {_void, _void, _float, _float, _float, _void, _void},

/*void*/ {_void, _void, _void, _void, _void, _void, _void},

/*ptr*/ {_void, _void, _ptr, _ptr, _void, _void, _void}

};

The table encodes the fact that we can add characters and integers to

pointers on either side of an arithmetic operator. For example, arith-

meticResultType[tINT][tPTR] is a pointer. But, we can’t add two pointers

together. arithmeticResultType[tPTR][tPTR] is invalid (void). We use _ptr to

represent a generic pointer, but we need exact type results. The fol-
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lowing addition to getResultType( ) returns the actual pointer type of the

incoming pointer operand:

Download semantics/oo/SymbolTable.java

// check for pointer arithmetic; only one operand can be a ptr.

// if result and 'a' are ptrs, then result should be a's type

if ( result==_ptr && ta==tPTR ) result = a.evalType;

else if ( result==_ptr && tb==tPTR ) result = b.evalType;

There is one tricky entry in the promoteFromTo table for pointers. We

need to encode the fact that characters become integers when added to

pointers. In other words, we should interpret ’a’+p as (int)’a’+p. There

is no way to promote a pointer to a character, so the table is not sym-

metric. The entry for adding an integer to a pointer is null, which means

there is no need to promote the integer.

The source code shows a few more details, but you see the important

elements here.

Related Patterns

This pattern is an object-oriented equivalent of Pattern 22, Enforcing

Static Type Safety, on page 216. It incorporates Pattern 20, Computing

Static Expression Types, on page 199 and Pattern 21, Automatic Type

Promotion, on page 208.

Up Next

This pattern concludes our discussion of static type checking. As a

learning tool, we broke down this problem into three pieces: type com-

putation, type promotion, and type checking. The third and fourth pat-

terns demonstrated type checking for non-object-oriented and object-

oriented languages. Once you understand the entire picture, you would

pick either Pattern 22, Enforcing Static Type Safety, on page 216 or this

pattern to implement your own static type checker. The other patterns

are components of the type checkers.

So far, we’ve learned how to write code to recognize sentences, con-

struct AST intermediate representations, walk ASTs, populate symbol

tables, manage nested scopes, construct class hierarchies, and enforce

semantic type rules. In short, we’ve learned how to read in programs

and check them for type safety. Now we need to figure out how to exe-

cute them. The next two chapters catalog the most common patterns

for interpreting and translating programs.
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Chapter 9

Building High-Level Interpreters
We’ve covered a lot of ground in the book so far and have reached an

important milestone. We’re ready to start actually building language

applications. In the previous two parts of this book, we focused on pat-

terns to verify the syntax of an input sentence and make sure that it

follows a set of semantic rules. Now, it’s time to start thinking about

processing input sentences, not just validating them. In this part of the

book, we’re going to learn how to build language interpreters (programs

that execute other programs).

To execute a program not written in machine code, we’ve got to inter-

pret the program or translate it to the equivalent program in a language

that already runs on that machine. We’ll leave translation to Chap-

ter 11, Translating Computer Languages, on page 290 and Chapter 12,

Generating DSLs with Templates, on page 323. In the meantime, we’re

going to look at high-level and low-level interpreters in this chapter and

the next. High-level interpreters directly execute source code instruc-

tions or the AST equivalent. (Low-level interpreters execute instructions

called bytecodes that are close to CPU machine instructions.) Here are

the two high-level interpreters we’ll discuss:

• Pattern 24, Syntax-Directed Interpreter, on page 238: This inter-

preter consists of a parser that triggers interpreter action

methods.

• Pattern 25, Tree-Based Interpreter, on page 243: This pattern trig-

gers action methods by walking an AST created by the parser.

These high-level patterns are best suited to building DSLs rather than

general-purpose programming languages. Usually, simplicity and low-
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cost implementation trump execution efficiency for DSLs.1 Because

it leads to simpler implementations, we’ll also focus on dynamically

typed languages for these patterns. Our goal is the minimal machinery

needed to interpret a high-level language.

An interpreter simulates an idealized computer in software. Such “com-

puters” have a processor, code memory, data memory, and (usually) a

stack. The processor pulls instructions from the code memory, decodes

them, and executes them. An instruction can read or write to the data

memory or onto the stack. Function calls save return addresses so they

can return to the instruction following the function call.

There are three things to consider when building an interpreter: how

to store data, how and when to track symbols, and how to execute

instructions. Let’s investigate them in that order before diving into the

patterns.

9.1 Designing High-Level Interpreter Memory Systems

High-level interpreters store values according to variable names, not

memory addresses (like low-level interpreters and CPUs do). That

means we’ve got to represent memory with a dictionary mapping names

to values.

There are three kinds of memory spaces to worry about for most pro-

gramming languages: global memory, function spaces (for parameters

and locals), and data aggregate instances (structs or objects). For sim-

plicity, we can normalize all these spaces by treating them as dictio-

naries. Even fields are really just variables stored within an instance’s

memory space. To store a value into a space, we map a name to that

value. A memory space is the run-time analog of a scope from static

analysis.

Interpreters have one global memory space but multiple function

spaces (assuming the language we’re interpreting has functions). Each

function call creates a new space to hold parameters and local vari-

ables. The interpreter keeps track of the function spaces by pushing

them onto the stack. Upon returning from a function, the interpreter

pops the top space off the stack. This way, parameters and local vari-

ables pop in and out of existence as we need them.

1. http://ftp.cwi.nl/CWIreports/SEN/SEN-E0517.pdf
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Figure 9.1: Memory space stack after calling g( )

Let’s look at the global and function memory spaces used by the follow-

ing C++ code snippet:

int x = 1;

void g(int x) { int z = 2; }

void f(int x) { int y = 1; g(2*x); }

int main() { f(3); }

In Figure 9.1, we see what the function space stack and global memory

space of a C++ interpreter would look like after executing the assign-

ment to z in g( ). As g( ) returns, the interpreter would pop that function

space. Then it’d pop the function space for the call to f( ) and finally the

function space for main( ).

Just as we can have multiple function memory spaces, we can create

multiple data aggregate instances. Those materialize in response to new

expressions (or the equivalent in the language we’re interpreting). We

store references to those aggregates into a memory space just like any

other variable. The following C++ code creates two struct instances and

assigns them to local (pointer) variables.

struct A { int x; };

int main() {

A *a = new A(); a->x = 1;

A *b = new A(); b->x = 2;

}

In Figure 9.2, on the following page, we see the interpreter’s memory

spaces right before main( ) returns. main( )’s function space has two vari-

ables, a and b, each pointing to a separate struct memory space. To
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Figure 9.2: Two struct instances saved as local variables a and b

implement assignment a->x=1;, the interpreter invokes something like

a.put("x",1); in its implementation language.

To handle class instances instead of structs, the easiest thing to do is

to pack all fields (inherited or direct members) into a single instance

space. Inheritance is really just a glorified include when it comes to

fields. So, even objects are just another memory space.

Now we’ve got to consider which assignments are valid. Depending on

the language, assignment to an unknown variable could be an error

(C++) or could create a local variable (Python). Python can even create

fields at will by assigning values to fields. Regardless of the interpreted

language’s semantics, memory spaces have to know what kind of things

can go into them. The easiest way to do this is to track the program

entity associated with a memory space. For example, function spaces

point at their function definition symbols, and instances point at their

class definition symbols. In the next section, we’ll figure out what kind

of symbol tables we need for interpreters.

9.2 Tracking Symbols in High-Level Interpreters

Given a variable reference x in a program, we need to figure out which

memory space it lives in so we can load or store its value. The inter-

preter figures this out by resolving x and asking for its surrounding

scope. That scope tells the interpreter in what kind of scope the vari-

able belongs: global, function, or data aggregate instance. Once the

interpreter knows the kind of memory space, it can pick the proper

dictionary in physical memory.
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If the symbol table says x is a global variable, the interpreter loads it

from the global space. If resolves to a local variable or parameter, the

interpreter loads it from the function space on the top of the function

space stack.

If x is a field of a class, we know that it’s really this.x (or whatever this is

called in the interpreted language). The interpreter should load this from

the function space on the top of the function space stack and then load

x from the space this points to.

Because symbol table management happens at run-time in an inter-

preter, it’s easy to confuse resolving a variable with loading its value.

Just keep in mind that resolving a variable means figuring out which

program entity it refers to. We can do this without even running the

program for statically typed languages. Loading a variable, on the other

hand, is purely a run-time operation. We resolve a variable to figure

out the space in which its value lives. For a single program entity, such

as a local variable, there can be multiple values (in different function

spaces) at run-time.

Resolving variables at run-time is expensive, so many languages ask

the programmer to indicate each variable’s scope. For example, in Ruby

we say $x to mean x is a global variable, and we say @x to mean that x

is a field of an object. In Python, we say self.x to mean x is a field.

Because dynamically typed languages don’t declare variables and their

types prior to usage, there’s no point in populating a symbol table with

VariableSymbol objects. That doesn’t mean, though, that we can get away

without symbol table management at run-time. Error checking is one

reason. We don’t want to access undefined parameters or fields. This

means that, at the very least, we need some symbol table objects to

track formal parameter lists and field lists.

An interpreter might need to treat parameters and locals differently. For

example, in the following Python function, the interpreter must distin-

guish between parameter x and local variable y:

def f(x):

x = 1 # set parameter value to 1 (don't create local variable)

y = 2 # create a local variable called y and set to 2

Without the formal parameter list in the function definition, Python

couldn’t distinguish between locals and parameters.

Statically typed languages like C++ and Java really need scope trees, so

Pattern 25, Tree-Based Interpreter, on page 243 shows you how to build
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a full scope tree before execution (even though it doesn’t technically

need it).

OK, it’s time to figure out how to execute instructions in an interpreter

now that we know what interpreter memory systems look like.

9.3 Processing Instructions

The basic idea behind executing instructions is called the fetch-decode-

execute cycle. First, we load an instruction from code memory. Then,

we decode the instruction to find the operation and operands. Finally,

we execute the operation. Rinse and repeat. Ultimately the interpreter

runs out of instructions in the main program, or it executes a halt

instruction.

The nature of the processor depends on what the code looks like in

code memory. At the one extreme lies Pattern 24, Syntax-Directed Inter-

preter, on the following page where we directly execute the text of the

source code. At the other extreme, just above machine code, lies the

bytecode interpreters in Chapter 10, Building Bytecode Interpreters, on

page 252. Pattern 25, Tree-Based Interpreter, on page 243 is somewhere

in between. The more highly we process the program before execution,

the faster it will go at run-time.

The processor for Pattern 24, Syntax-Directed Interpreter, on the next

page is a parser augmented with actions that decode and execute in-

structions. The processor for Pattern 25, Tree-Based Interpreter, on

page 243 triggers actions as it walks the tree with Pattern 13, Exter-

nal Tree Visitor, on page 131. Regardless of the pattern, interpret-

ing a program is all about executing a code snippet for each input

instruction.

Here’s a summary of the patterns’ suitability:

Pattern When to Apply

Pattern 24, Syntax-

Directed Interpreter,

on the following

page

This pattern works best for small languages that

are really just lists of instructions or declara-

tions. It’s not super-efficient but has the fewest

components to build.
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Pattern When to Apply

Pattern 25, Tree-

Based Interpreter,

on page 243

Because this pattern performs a preprocessing

pass to build an AST and scope tree, it sup-

ports forward references. Before execution, we

can perform optimizations, squirrel away infor-

mation from analysis, or do rewrites on the AST

like x to this.x. This pattern is typically faster

than a source-level interpreter because it doesn’t

waste time reparsing input. We can skip an entire

subtree by moving a pointer instead of parsing

over it.

224 Syntax-Directed Interpreter

Purpose

This pattern directly executes source code without building an intermedi-

ate representation and without translating it to another language.

The sample implementation for this pattern focuses on building a

syntax-directed interpreter for an SQL subset.

Discussion

A syntax-directed interpreter mimics what we do when we trace source

code manually. As we step through the code, we parse, validate, and

execute instructions. Everything happens in the parser because a

syntax-directed interpreter doesn’t create an AST or translate the

source code to bytecodes or machine code. The interpreter directly feeds

off of syntax to execute statements.

The good news is that there are very few “moving parts” in a syntax-

directed interpreter. There are really only two key components:

• The source code parser: The parser recognizes input construct

and immediately triggers actions. In the sample implementation

for this pattern, that means triggering methods like select( ) and

createTable( ).

• The interpreter: The interpreter maintains state and houses in-

struction implementation methods. Depending on the language,
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the interpreter will have code memory (the input stream) and a

global memory space (to hold name-value pairs for variables).

The bad news is that syntax-directed interpreters are only suitable to

a narrow range of languages. They work best on small DSLs instead of

general-purpose programming languages. More specifically, interpret-

ing if statements, loops, functions, and classes in syntax-directed inter-

preters is extremely awkward. (There is a sample syntax-directed imple-

mentation2 of the Pie language from the next pattern on the ANTLR

wiki.) This awkwardness comes from the fact that the interpreter would

sometimes have to parse statements without triggering interpreter

actions. For example, when an interpreter sees a function definition,

it shouldn’t execute the statements in the function body. It should only

execute the body when another part of the program calls that function.

Use this pattern when your input language looks like a sequence of

instructions or simple declarative statements. Examples include graph-

ics languages, network protocols, text-processing languages, job con-

trol languages, and simple shell scripting languages. This pattern is

not suitable for rule or constraint-based languages such as Prolog or

Object Constraint Language (OCL). Those applications typically need an

internal representation of the rules or constraints. (This pattern does

not create a data structure from the input before interpretation.)

Before looking at a sample implementation, let’s see how the parser

drives the interpreter. To interpret an input construct, the parser trig-

gers a method that implements the appropriate functionality. This

means that the grammar (or hand-built parser) looks like a bunch

of “match this, call that” pairs. So, when we see an assignment, we

want to call an assign( ) or store( ) method in the interpreter. In an ANTLR

grammar-based implementation, we might have rules like this:

assignment : ID '=' expr {interp.assign($ID, $expr.value);} ;

expr returns [Object value] : ... ; // compute and return value

There’s an implementation method for every statement and expression

operation. For example, here’s the algorithm to perform an assignment:

void assign(String id, Object value) { // execute "id = value"

MemorySpace targetSpace = «space-containing-id»;

if «not-found-in-any-space» then targetSpace = currentSpace;

targetSpace[id] = value;

}

2. http://www.antlr.org/wiki/display/ANTLR3/Pie
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After decoding the assignment statement and triggering an action, the

parser continues to the next statement. This is just like a physical pro-

cessor moving onto the next machine instruction. In the next section,

we’ll fill in some details by implementing a subset of SQL suitable for

implementation with this pattern.

Implementation

SQL in its full glory is too complicated for this pattern, but we can

make a nice syntax-directed interpreter demo using an SQL subset.

SQL is a DSL designed to define schemas, insert data, and perform

queries for a relational database. To keep things simple, let’s avoid the

complexity of a real database and build our own in-memory database.

We can represent tables as lists of rows and can represent rows as lists

of column values. This SQL subset could also form the basis of a nice

interface to HBase.3,4 (HBase’s goal is to host massive tables in a cloud

computing environment.)

Our SQL subset can define tables with dynamically typed columns,

query those tables, store values in global variables, and print values.

For example, here’s a sample script:

Download interp/syntax/t.q

create table users (primary key name, passwd);

insert into users set name='parrt', passwd='foobar';

insert into users set name='tombu', passwd='spork';

p = select passwd, name from users; // reverse column order

print p;

The main program in QInterp opens the file and passes it to the inter-

preter for execution. Here’s the output we get:

$ java QInterp t.q

foobar, parrt

spork, tombu

Here’s another sample script that demonstrates how to filter the rows

in a table:

Download interp/syntax/t4.q

create table users (primary key name, passwd, quota);

insert into users set name='parrt', passwd='foobar', quota=99;

insert into users set name='tombu', passwd='spork', quota=200;

insert into users set name='sri', passwd='numnum', quota=200;

3. http://hadoop.apache.org/hbase

4. Thanks to Paul Ambrose for this idea.
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tombuQuota = select quota from users where name='tombu';

print tombuQuota;

names = select name from users where quota=tombuQuota;

print names; // print all names with same quota as tombu

And here’s the output:

$ java QInterp t4.q

200

tombu

sri

$

The where clause only allows the equality operator. If we need complex

conditionals, this pattern won’t work. Conditionals have to execute as

we scan through a table rather than as we parse the select statement

itself. The next pattern would be much more suitable.

The implementation of our persistence layer is just Java code (classes

Table, Row, ResultSet) that manipulates dictionaries and lists. So, let’s

focus on the core of the interpreter: the SQL subset grammar and the

actions it triggers. Each table has a name and a list of columns, where

the first column is the primary key:

Download interp/syntax/Q.g

table

: 'create' 'table' tbl=ID

'(' 'primary' 'key' key=ID (',' columns+=ID)+ ')' ';'

{interp.createTable($tbl.text, $key.text, $columns);}

;

After recognizing the pattern, the ANTLR-generated parser triggers cre-

ateTable( ) in Interpreter to create the new Table and define the columns:

Download interp/syntax/Interpreter.java

public void createTable(String name,

String primaryKey,

List<Token> columns)

{

Table table = new Table(name, primaryKey);

for (Token t : columns) table.addColumn(t.getText());

tables.put(name, table);

}

The Interpreter class tracks the set of tables and space for a global mem-

ory to hold variables:

Download interp/syntax/Interpreter.java

Map<String, Object> globals = new HashMap<String, Object>();

Map<String, Table> tables = new HashMap<String, Table>();
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Storing values in global memory is straightforward. After matching the

assignment, the grammar invokes an implementation method in the

interpreter:

Download interp/syntax/Q.g

assign : ID '=' expr ';' {interp.store($ID.text, $expr.value);} ;

The implementation method maps the variable name to that value in a

dictionary:

Download interp/syntax/Interpreter.java

public void store(String name, Object o) { globals.put(name, o); }

To look up a variable’s value, we reverse the process and look up the

variable name in the dictionary.

To store values in a table rather than in the global memory space, we

use the insert statement. After matching the syntax, rule insert triggers

insertInto( ):

Download interp/syntax/Q.g

insert

: 'insert' 'into' ID 'set' setFields[interp.tables.get($ID.text)] ';'

{interp.insertInto($ID.text, $setFields.row);}

;

Before matching the field assignments, the rule creates a Table and

passes it to rule setFields:

Download interp/syntax/Q.g

setFields[Table t] returns [Row row]

@init { $row = new Row(t.columns); } // set return value

: set[$row] (',' set[$row])*
;

set[Row row] // pass in Row we're filling in

: ID '=' expr {row.set($ID.text, $expr.value);}

;

After matching all the assignments, setFields returns the Row it created.

To get column values, setFields invokes expr:

Download interp/syntax/Q.g

// Match a simple value or do a query

expr returns [Object value] // access as $expr.value in other rules

: ID {$value = interp.load($ID.text);}

| INT {$value = $INT.int;}

| STRING {$value = $STRING.text;}

| query {$value = $query.value;}

;
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Rule expr not only matches the appropriate syntax but also returns the

computed value. The last alternative lets us store the ResultSet computed

by a select:

tombuQuota = select quota from users where name='tombu';

At this point, you’ve seen all the key pieces of a syntax-directed inter-

preter. This type of interpreter is the simplest possible because it does

not construct any internal data structures from the input. But, of

course, this limits the kind of languages it can handle. In the next pat-

tern, we’re going to build an interpreter for a much more complicated

language. To get more power, we’ll build an AST first and then walk it

repeatedly to interpret input programs.

Related Patterns

This pattern is analogous to Pattern 29, Syntax-Directed Translator,

on page 307, which emits output according to input syntax. Actions

embedded within Pattern 4, LL(k) Recursive-Descent Parser, on page 59

drive the interpreter.

225 Tree-Based Interpreter

Purpose

This pattern executes programs by constructing an AST from the source

code and walking the tree.

This tree-based interpreter pattern builds a complete scope tree before

executing a program. That means it can support both statically typed

languages like Java and dynamically typed languages like Python. (It

can resolve all symbols statically before execution.)

Discussion

The previous pattern directly executed source code, without process-

ing it in any way. At the opposite extreme, a compiler translates source

code to machine code, which we can then run natively on the processor.

Per the compiler application pipeline from Chapter 1, Language Appli-

cations Cracked Open, on page 20, a compiler builds an intermediate

representation and ultimately generates optimized machine code from

that IR.
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A tree-based interpreter is like a compiler front end with an interpreter

grafted onto the end instead of a code generator. Conceptually, this

pattern isn’t very different from Pattern 24, Syntax-Directed Interpreter,

on page 238. The biggest difference is that we don’t drive the interpreter

with the parser. Instead, we build an AST with the parser and then drive

the interpreter with a tree visitor.

This structural change to the pipeline leads to a few advantages over a

syntax-directed interpreter:

• We can separate symbol definition from symbol resolution, parti-

tioning the tasks between parsing and execution. This allows for-

ward references.

• Tree-based interpreters are more flexible because we can do sub-

stitutions while building the AST if necessary. For a statically

typed language like Java, we could substitute the subtree for x

with a subtree for this.x. We could also rewrite the tree in a separate

tree pass before execution to perform optimizations and so on.

Building an interpreter for a language like Prolog or LISP is a lot differ-

ent from building one for Python or Java. To narrow the focus of this

pattern, we need to pick a particular language—one that is similar to

the language(s) you’re likely to build. Since this high-level interpreter

works best for dynamically typed programming languages and DSLs,

we’ll invent a Python-like dynamically typed language called Pie.

Defining a Sample High-Level Language

A Pie program consists of a series of function definitions, struct def-

initions, and statements. Function definitions specify the name and

argument list as well as a sequence of instructions followed by a period

on a line by itself:

x = 1 # define global variable x

def f(y): # define f in the global space

x = 2 # set global variable x

y = 3 # set parameter y

z = 4 # create local variable z

. # end of statement list

f(5) # call f with parameter y = 5

The comments on the assignment statements specify the variable cre-

ation semantics. If we don’t see a previous definition in the function

scope or the global scope, we create a local variable. Referencing a vari-

able that doesn’t exist is an error.
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Pie has return, print, if, while, and call statements. Expressions can have

identifiers and the following literals: characters, integers, and strings.

The operators are ==, <, +, -, *, new (create struct instance), and . (member

access).

Pie defines structs in the global or function scopes using C-like syntax

but without the type specifiers. The following program illustrates the

struct definition and member access syntax:

struct Point {x, y} # define a struct symbol in global scope

p = new Point # create a new Point instance; store in global var

p.x = 1 # set the fields of p

p.y = 2

To resolve expression p.x, we resolve p and then look up x within that

memory space. Pie makes sure that x and y exist as fields in p’s struct

definition before allowing the assignment.

Before jumping into a sample implementation of Pie, let’s take a look at

managing symbol tables in a tree-based interpreter and executing code

with a tree walker.

Managing Symbol Table

This pattern doesn’t define function and struct symbols while it executes

the input program. It does all that while parsing and building the AST.

During execution, it can resolve symbols using a conventional scope

tree built during the parse. Because we’re resolving symbols after hav-

ing defined them, this pattern allows forward references. We can call a

function defined later in the file, for example.

Separating symbol table construction from execution significantly sim-

plifies the interpreter. The parser deals with symbol scopes, and the

interpreter deals with memory spaces. Memory spaces don’t do double

duty as scopes. During execution, though, we still need scope informa-

tion to resolve symbols.

To carry scope information forward from the parser to the interpreter,

we can annotate the AST nodes. Let’s look at how a function call in

a Pie program carries through both phases. A call to f( ) results in a

(CALL f) subtree. After creating the subtree, the parser sets the CALL

node’s scope field to the current scope (as we did in Pattern 19, Symbol

Table for Classes, on page 182). Then, during execution, the call( ) action

method can call resolve("f") relative to that scope.
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Executing Code with a Tree Visitor

The interpreter uses Pattern 13, External Tree Visitor, on page 131 to

trigger action methods as it walks the AST created by the parser. The

visitor dispatcher method triggers actions like assign( ), ifstat( ), and call( )

upon seeing subtrees with =, if, and CALL root tokens. The dispatcher is

a giant switch statement, as you’ll see in the next section.

The action methods take a single AST parameter and so must decode

instructions by walking the children. (In a syntax-directed interpreter,

the parser decodes instructions and passes the relevant operands to the

interpreter methods.) Extracting information from subtrees manually is

tedious but straightforward. We also have to be sure that we send the

visitor down the various subtree children. Otherwise, the interpreter

won’t interpret the entire program.

With all the generalities out of the way, let’s implement our first pro-

gramming language interpreter.

Implementation

The first thing we need to do is build a grammar in Pie.g that parses Pie

code, constructs a scope tree, and constructs an AST (Pattern 9, Homo-

geneous AST , on page 109). Then, we’ll write methods in Interpreter that

implement the various Pie instructions and operations. Interpreter also

has the exec( ) dispatcher method for our visitor.

The nodes of the AST are of type PieAST and extend ANTLR’s CommonTree

with a scope field. InterPie has the code that tells ANTLR to build PieAST

nodes instead of CommonTree nodes.

The scope tree created by our parser consists of a variety of scope

objects per Pattern 18, Symbol Table for Data Aggregates, on page 176.

The scopes holds VariableSymbol (for fields and parameters), Function-

Symbol, and StructSymbol objects. Here’s the complete symbol table class

hierarchy for this pattern:

Symbol

ScopedSymbol  VariableSymbol

Scope

BaseScope

FunctionSymbol StructSymbol  GlobalScope LocalScope

Technically, we don’t need a full symbol table to execute Pie code. A full

symbol table and scope tree makes this implementation more general,
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though. Some of you will want to build interpreters for statically typed

languages.

Other than the implementation methods and visitor dispatcher, our

Interpreter object houses a pointer to the AST root (our code memory),

the global memory, the function memory space stack, and a pointer to

the global scope:

Download interp/tree/Interpreter.java

GlobalScope globalScope; // global scope is filled by the parser

MemorySpace globals = new MemorySpace("globals"); // global memory

MemorySpace currentSpace = globals;

Stack<FunctionSpace> stack = new Stack<FunctionSpace>();// call stack

PieAST root; // the AST represents our code memory

TokenRewriteStream tokens;

PieLexer lex; // lexer/parser are part of the processor

PieParser parser;

Because we’ve already seen parsing (Chapter 2, Basic Parsing Patterns,

on page 37), AST construction (Chapter 4, Building Intermediate Form

Trees, on page 88), and scope tree construction before (Chapter 7, Man-

aging Symbol Tables for Data Aggregates, on page 170), we can focus on

fusing a visitor onto our implementation methods. The most important

method is the visitor dispatcher, exec( ). The goal of the dispatcher is to

invoke a method to handle each kind of subtree found in the tree. We

can implement that with a switch that looks like this:

/** visitor dispatch according to node token type */

public Object exec(PieAST t) {

switch ( t.getType() ) {

case PieParser.BLOCK : block(t); break;

case PieParser.ASSIGN : assign(t); break;

case PieParser.RETURN : ret(t); break;

case PieParser.PRINT : print(t); break;

case PieParser.IF : ifstat(t); break;

case PieParser.CALL : return call(t);

case PieParser.NEW : return instance(t);

case PieParser.ADD : return add(t);

case PieParser.INT : return Integer.parseInt(t.getText());

case PieParser.DOT : return load(t);

case PieParser.ID : return load(t);

...

default : «error» // catch unhandled node types

}

}

“Handling” a subtree means executing the appropriate interpreter ac-

tion and walking the subtree nodes. The combined visitor-action meth-

ods take a single parameter: the root of the subtree it should handle.
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It’s up to the method to extract operands from the subtree’s children.

For example, here is how to handle assignment subtrees:

Download interp/tree/Interpreter.java

public void assign(PieAST t) {

PieAST lhs = (PieAST)t.getChild(0); // get operands

PieAST expr = (PieAST)t.getChild(1);

Object value = exec(expr); // walk/evaluate expr

if ( lhs.getType()==PieParser.DOT ) {

fieldassign(lhs, value); // field ^('=' ^('.' a x) expr)

return;

}

// var assign ^('=' a expr)

MemorySpace space = getSpaceWithSymbol(lhs.getText());

if ( space==null ) space = currentSpace; // create in current space

space.put(lhs.getText(), value); // store

}

The left child of the = root will be either a ID node or a member access

expression with a . root node. In either case, we need to evaluate the

expression on the right side of the assignment. We grab the second

child (the expression) and evaluate it by recursively calling exec( ).

The semantic rules for creating local variables are the same as in Py-

thon. If a variable on the left of an assignment isn’t in the current

function space or the global space, we create a new variable. Here’s

how to figure out whether a variable already exists:

Download interp/tree/Interpreter.java

/** Return scope holding id's value; current func space or global. */

public MemorySpace getSpaceWithSymbol(String id) {

if (stack.size()>0 && stack.peek().get(id)!=null) { // in top stack?

return stack.peek();

}

if ( globals.get(id)!=null ) return globals; // in globals?

return null; // nowhere

}

Assigning to a struct field is like assigning to a variable in a StructSpace

instead of FunctionSpace or global MemorySpace. The main difference is

that we want to ensure the field is defined instead of creating a new

field. Here is the core of fieldload( ) that stores to «expr».fieldname:

Object a = load(«expr»);

StructInstance struct = (StructInstance)a;

if ( struct.def.resolveMember(fieldname) == null ) {

listener.error("can't assign; "+struct.name+" has no "+fieldname+

" field", f.token);

return;

}

struct.put(fieldname, value);
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Finally, let’s turn our attention to functions. To call a Pie function, we

make sure the function exists and then create a FunctionSpace to hold

parameter values:

Download interp/tree/Interpreter.java

String fname = t.getChild(0).getText();

FunctionSymbol fs = (FunctionSymbol)t.scope.resolve(fname);

if ( fs==null ) {

listener.error("no such function "+fname, t.token);

return null;

}

FunctionSpace fspace = new FunctionSpace(fs);

MemorySpace saveSpace = currentSpace;

currentSpace = fspace;

Before storing parameters into that space, we have to make sure that

there is no mismatch in the number of parameters. The number of

actual parameters passed to the function has to be the same as in the

formal parameter list:

Download interp/tree/Interpreter.java

int argCount = t.getChildCount()-1;

// check for argument compatibility

if ( fs.formalArgs==null && argCount>0 || // args compatible?

fs.formalArgs!=null && fs.formalArgs.size()!=argCount ) {

listener.error("function "+fs.name+" argument list mismatch");

return null;

}

Then, we assign the actual parameters to the formal parameter names

in the order given by the formal parameters:

Download interp/tree/Interpreter.java

int i = 0; // define args according to order in formalArgs

for (Symbol argS : fs.formalArgs.values()) {

VariableSymbol arg = (VariableSymbol)argS;

PieAST ithArg = (PieAST)t.getChild(i+1);

Object argValue = exec(ithArg);

fspace.put(arg.name, argValue);

i++;

}

At that point, we’re ready to execute the body of the target function with

exec( ). The FunctionSymbol knows the AST for the function’s body (field

blockAST). To execute it, though, we’ve got an issue.

We have to get the return statement in the called function to pop back

out of multiple method calls in our implementation. The return state-
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ment should make the interpreter return to the statement following

the calling statement. Clearly, though, we can’t map return in the inter-

preted language to return in our implementation language:

void ret() { return; } // oops; improper return mechanism

We need to unroll the ret( ) and exec( ) implementation methods all the

way back to the call( ) method. That’s exactly what exceptions do. So, all

we’ve got to do is wrap the execution of the function body in a try-catch:

Download interp/tree/Interpreter.java

Object result = null;

stack.push(fspace); // PUSH new arg, local scope

try { exec(fs.blockAST); } // do the call

catch (ReturnValue rv) { result = rv.value; } // trap return value

stack.pop(); // POP arg, locals

currentSpace = saveSpace;

return result;

Method ret( ) throws a ReturnValue exception (or whatever you want to

call it). If there is a return value, we can store it in the exception object.

This mechanism isn’t slow if we share the same exception object. Only

creating exceptions is expensive; throwing them is no big deal. So, no

matter how deep our implementation’s method call stack is, ret( ) will

always get us back to the statement following the function body execu-

tion.

Because we define all functions and structs during parsing, function

calls and new operations during execution can see any definition in

the program. For example, the following Pie code works with this pat-

tern but not in the syntax-directed interpreter because of forward ref-

erences:

Download interp/tree/forward.pie

print f(4) # references definition on next line

def f(x) return 2*x

print new User # references definition on next line

struct User { name, password }

The interpreter sees the definitions with no problem:

$ java InterPie forward.pie

8

{name=null, password=null}

$
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Here’s a program that tests the interpreter’s error handling:

Download interp/tree/structerrors.pie

struct User { name, password }

u = new User

u.name = "parrt" # make u.name a string

u.name.y = "parrt" # u.name is a string not a struct

u.x = 3 # x isn't a field of User; can't write to it

print u.x # check for unknown field in expr as well

The interpreter correctly identifies the three errors:

$ java InterPie structerrors.pie

line 4: u.name is not a struct in u.name.y

line 5: can't assign; User instance has no x field

line 6: User instance has no x field

null

$

Related Patterns

This pattern implements an interpreter for our dynamically typed Pie

language just like Pattern 24, Syntax-Directed Interpreter, on page 238.

It uses the following patterns: Pattern 4, LL(k) Recursive-Descent Parser,

on page 59, Pattern 9, Homogeneous AST , on page 109, Pattern 13,

External Tree Visitor, on page 131, and Pattern 18, Symbol Table for

Data Aggregates, on page 176.

Up Next

This pattern concludes our chapter on high-level interpreters. These

interpreters are best suited to implementing DSLs rather than general-

purpose programming languages. They are not too hard to build and

are very flexible. (We can add new instructions without much trou-

ble.) But, they are not particularly efficient at run-time. To squeeze

memory resources down and to accelerate execution speed, we need to

process the input source code more. In the next chapter on bytecode

interpreters, we’ll do exactly that. The upcoming patterns are useful for

making efficient DSL and general-purpose language interpreters.
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Building Bytecode Interpreters
In the previous chapter, we explored interpreters that operate on high-

level programs with little to no preprocessing before execution. Those

interpreters are great for implementing DSLs because they are the

fastest path to getting a language up and running. Their only drawback

is run-time efficiency. If we really care about efficiency for a particu-

lar DSL or need to implement a more general programming language,

those interpreters aren’t appropriate.

In this chapter, we’ll explore another category of interpreters that is

much more efficient. Unfortunately, the efficiency comes at the cost of

a more complicated implementation. In essence, we need a tool that

translates the high-level source code down into low-level instructions

called bytecode instructions (instructions whose operation code fits in

an 8-bit byte). Then, we can execute those bytecodes on an efficient

interpreter called a virtual machine1 (VM). (We’re conjuring up an imag-

inary machine.) Most of the currently popular languages are VM-based

(Java, JavaScript, C#, Python, Ruby 1.9).

The interpreter patterns in this chapter are real in the sense that they

resemble the core of most industrial-strength language implementa-

tions. In practice, the industrial-strength implementations are a lot

faster because they’re implemented in C or hand-tuned machine code,

not Java. Many of them even translate bytecode instructions to native

machine code on the fly. They also would have many more instructions

to deal with the complete set of arithmetic operators, arrays, classes

instead of structs, switches, and so on. The sample implementations in

1. These machines are to be distinguished from the virtual machines that run one oper-

ating system inside another.
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this chapter don’t include those instructions for simplicity reasons, but

we’d implement them in much the same way.

If we’re translating source code to low-level bytecodes, you might ask

why we don’t compile all the way down to machine code and skip the

interpreter altogether. Raw machine code would be even more efficient.

Bytecode interpreters have a number of useful characteristics including

portability. (Machine code is specific to a CPU, whereas bytecodes run

on any computer with a compatible interpreter.) But, the biggest reason

we avoid generating machine code is that it’s pretty hard.

CPU instructions have to be very simple so that we can implement them

easily and efficiently in hardware. The result is often an instruction set

that is quirky, irregular, and far removed from high-level source code.

Bytecode interpreters, on the other hand, are specifically designed to be

easy to target (generate code for). At the same time, instructions have

to be low-level enough that we can interpret them quickly.

In this chapter, we’re going to explore the instruction sets and imple-

mentations for the two most common bytecode interpreter patterns,

starting with useful assembler pattern:

• Pattern 26, Bytecode Assembler, on page 265. To avoid hav-

ing to program our interpreters in binary, this pattern provides

a general bytecode assembler. It translates (assembles) human-

readable bytecode assembly code down to bytecode machine code.

• Pattern 27, Stack-Based Bytecode Interpreter, on page 272. This

pattern simulates a stack machine, a machine that holds all tem-

porary values such as operation results on an operand stack.

Stack-based interpreters go back a long, long way. One of the most

influential was the UCSD p-code2 interpreter (partly because of its

influence on James Gosling’s Java interpreter).

• Pattern 28, Register-Based Bytecode Interpreter, on page 280.

This pattern simulates a register machine very much like the

underlying hardware. Rather than pushing and popping operands

from a stack, it uses simulated general-purpose registers. (A reg-

ister is a memory cell within a processor that the processor can

access much faster than going off-chip to the main memory.)

2. http://en.wikipedia.org/wiki/UCSD_Pascal
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Rather than programming a bytecode interpreter by hand, we prefer to

program in a high-level language. That means we need a bytecode com-

piler that can translate it to bytecodes. We’ll focus on the interpreters

themselves here, though. The next two chapters provide the translation

and generation background you’d need to build a bytecode compiler.

There’s also a sample compiler on the ANTLR wiki that generates an

intermediate representation very similar to bytecode.3

Before dissecting the guts of a bytecode interpreter, let’s figure out how

to program these critters.

10.1 Programming Bytecode Interpreters

Programming a bytecode interpreter is very much like programming a

real processor. The biggest difference is that bytecode instruction sets

are much simpler and slightly higher-level. For example, we don’t have

to worry about running out of registers in a register-based interpreter.

(We can assume there are an infinite number of registers.)

Like the assembly language for a physical processor, each instruction

only does a tiny amount of work. For example, it takes four instructions

to say print 1+2 in the assembly language syntax of Pattern 28, Register-

Based Bytecode Interpreter, on page 280:

iload r1, 1 ; load int 1 into register one: r1 = 1

iload r2, 2 ; r2 = 2

iadd r1, r2, r3 ; r3 = r1 + r2

print r3 ; print value in r3

These instructions are similar to other register-based interpreters such

as Lua’s4 and the Dalvik VM’s.5 Operands and operation results go into

registers.

Stack code, on the other hand, works like the old HP calculators that

used Reverse Polish Notation6 (RPN). We push operands onto a stack

and then execute the operation:

iconst 1 ; push int 1 onto operand stack

iconst 2 ; push int 2 onto operand stack

iadd ; pop and add top 2 elements on stack, push result

print ; pop and print top value on stack

3. http://www.antlr.org/wiki/display/ANTLR3/LLVM

4. http://www.tecgraf.puc-rio.br/~lhf/ftp/doc/jucs05.pdf

5. http://source.android.com

6. http://h41111.www4.hp.com/calculators/uk/en/articles/rpn.html
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The biggest difference between the two is that stack code doesn’t have

to figure out which register to use for which value; instructions have

implicit operands (the top of the stack).

Notice that the arithmetic operation instructions are all typed. That is,

the instruction encodes the type of the operands. For example, iadd is

“integer add,” but we can define fadd (“floating-point add”) or even sadd

(“string add”). The idea is that we want to do as little thinking as possi-

ble at run-time. Figuring out whether to do an integer or floating-point

add at run-time costs time. For statically typed languages like Java, we

can figure out the appropriate type using the patterns in Chapter 8,

Enforcing Static Typing Rules, on page 196. We can’t figure out types

in general for dynamically typed languages like Python, so we’d use

generic bytecodes like add instead of iadd.

Bytecode interpreters do not execute these examples in assembly lan-

guage (text) form as we’ve written them. The interpreter actually needs

those instructions in machine code. Pattern 26, Bytecode Assembler,

on page 265 reads assembly programs and fills a byte array with byte-

codes and operands. For example, here’s the byte array memory for-

mats for an instruction with no operands, one operand, and two

operands:

op

�� �� �� �� ��
3a a� a� a�op

��
op

�� �� �� �� ��
3a a� a� a� �� �� �� ��

3b b� b� b�
Operands a and b are always 4-byte integers and stored from high byte

(a3) to low byte (a0) sequentially in memory. Here is a code memory

dump (in decimal) for the stack code snippet for print 1+2:

0000: 19 0 0 0 1 19 0 0

0008: 0 2 1 28

Values 19, 1, and 28 are the bytecodes for instructions iconst, iadd, and

print, respectively. Pattern 26, Bytecode Assembler, on page 265 also

provides adisassembler, which converts machine code back to assem-

bly code. This is what the disassembled stack code looks like:

0000: ICONST 1 ; bytes = 19 0 0 0 1

0005: ICONST 2 ; bytes = 19 0 0 0 2

0010: IADD ; bytes = 1

0011: PRINT ; bytes = 28

When debugging bytecode programs or even the bytecode interpreter

itself, an instruction trace is extremely useful. It shows the relevant state

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=255


DEFINING AN ASSEMBLY LANGUAGE SYNTAX 256

of the interpreter as it encounters instructions. Here is the instruction

trace for our stack code example:

0000: ICONST 1 stack=[ ] calls=[ main ]

0005: ICONST 2 stack=[ 1 ] calls=[ main ]

0010: IADD stack=[ 1 2 ] calls=[ main ]

0011: PRINT stack=[ 3 ] calls=[ main ]

The stack shows the state of the machine before the execution of the

instruction on that line. You can see the stack grow (to the right) and

shrink according to the instructions. (We’ll see what the call stack is

for when we discuss function calls in a moment.) The two interpreter

patterns in this chapter provide three command-line options to access

these features: -dump, -dis, and -trace.

With these examples in mind, let’s get a little bit more formal. The next

section describes the general assembly language syntax that we’ll use

for our interpreters.

10.2 Defining an Assembly Language Syntax

A bytecode assembly language program defines globals as well as a

sequence of functions and instructions:

.globals «number-of-global-variable-slots»

«function-definitions»

.def main: args=0, locals=«num-locals-or-registers»: ; begin exec here

...

halt

For each function, we define the name, how many parameters it has,

and how much local space it needs:

.def «function-name»: args=«num-args», locals=«num-locals-or-registers»

...

ret

Execution begins in function main( ) or at code address 0 if you don’t

specify one.

The instructions themselves have a bytecode and up to three parame-

ters:

op operand1, operand2, . . . , operandn

Rather than hard-coding the instruction names (like ret and store), the

implementation provided below in Pattern 26, Bytecode Assembler, on

page 265, lets us specify them with an array of instruction descriptors.
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Instruction Set Design Affects Interpreter Speed

Even within the same kind of interpreter, there’s considerable
freedom in terms of what instructions we define. The first DSL I
implemented was a language called Karel for controlling indus-
trial robots (using Pattern 27, Stack-Based Bytecode Interpreter ,
on page 272). After defining a basic instruction set to support
the high-level robot control instructions, I focused on a few spe-
cialized instructions to make the interpreter faster.

Oddly enough, adding instructions increased its speed dramat-
ically. For example, I created a special iconst0 instruction to get
0 onto the stack using a single byte in code memory (instead of
the general-purpose integer load, iconst n). The general instruc-
tion required 3 bytes (bytecode plus a 2-byte integer) in code
memory vs. 1 byte for iconst0. Avoiding those memory fetches
and operand decodes saved quite a bit. I also squashed the
four instructions necessary to increment a variable into a sin-
gle inc instruction. Adding specialized instructions for common
operations is the easiest way to speed up an interpreter.

That way, we can use the assembler for both interpreter patterns in

this chapter.

To label code memory addresses, use an identifier followed by a colon.

Instructions can refer to labels defined previously or below in the as-

sembly file. For example, in the following code, start and done are code

labels used by branch instructions:

start: ; start of the loop

... ; check loop termination condition

brt done ; br out if condition met (true)

...

br start ; branch back to top of loop

done: ; end of the loop

The only real difference between a register and a stack machine is in the

way we program them. We either load operands into registers or push

them onto the stack; the difference is as simple as that. Syntactically,

register code is a minor superset of stack code because of its register

operands. Their architecture and implementations are almost identi-

cal as well. The next section describes general bytecode architecture,

leaving register and stack machine specifics to the individual patterns.
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10.3 Bytecode Machine Architecture

A bytecode interpreter simulates a computer with the following compo-

nents:

• Code memory: This byte array holds a program’s bytecode instruc-

tions (bytecodes plus operands). Addresses are integers.

• ip register: The instruction pointer is a special-purpose “register”

that points into code memory at the next instruction to execute.

• Global memory: Global memory holds a fixed number of slots for

variables. The memory slots can point at Integer, Float, String, and

struct instances. Unlike the high-level interpreters from the previ-

ous chapter, we access variables by integer address rather than

name.

• CPU : To execute instructions, the interpreter has a simulated CPU

that amounts to a loop around a giant “switch on bytecode” state-

ment. This is called the instruction dispatcher.

• Constant pool: Anything that we can’t store as a 4-byte integer

operand goes into the constant pool. This includes strings,

floating-point numbers, and function symbols. Instructions like

sconst and fconst use an index into the constant pool instead of the

actual operand.

• Function call stack: The interpreter has a stack to hold function

call return addresses as well as parameters and local variables.

• fp register: A special-purpose register called the frame pointer that

points to the top of the function call stack. StackFrame represents

the information we need to invoke functions.

In addition to those elements, Pattern 27, Stack-Based Bytecode Inter-

preter, on page 272 has the following:

• Operand stack: Rather than loading values into registers, the in-

terpreter pushes temporary values onto the operand stack. All

instruction operands are either in code memory or on the stack.

• sp register: A special-purpose register called the stack pointer that

points to the top of the operand stack.

Instead of an operand stack, Pattern 28, Register-Based Bytecode Inter-

preter, on page 280 register machine has the following:

• An infinite and regular register set per function call. Functions can

access any element in the register array, whereas a stack can only
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access elements at the end. Our sample register machine imple-

mentation reserves register 0 to hold function return values.

It’s worth zooming in on the processor and the constant pool. Then we

can look at how function calls work.

Bytecode Processors

The processor is the heart of an interpreter and has a simple job: it

loops around a fetch-decode-execute mechanism. The processor fetches

a bytecode and then jumps to a code fragment that executes that

instruction:

void cpu() {

short bytecode = code[ip];

while ( «bytecode-not-halt» && ip < code.length ) {

ip++; //jump to next instruction or first byte of operand

switch (bytecode) {

case «bytecode1» : «exec-bytecode1»; break;

case «bytecode2» : «exec-bytecode2»; break;

...

case «bytecodeN» : «exec-bytecodeN»; break;

}

bytecode = code[ip];

}

}

The CPU stops when it hits a halt instruction or runs out of instructions

to execute at the end of the code memory.

The cases in the switch statement execute the code fragment necessary

to simulate the instructions. For example, here is how we execute the

br instruction (branch to a new code memory address):

case BR : // branch to instruction's address operand

int addr = «convert-4-bytes-at-code[ip]-to-int»;

ip = addr; // jump

break;

If the instruction has an operand (which is always right next to the

bytecode), the code fragment pulls the operand from code memory and

bumps the instruction pointer by four bytes. As another example, here

is the code to execute the stack-based iconst instruction (push an inte-

ger constant onto the operand stack):

case ICONST :

int word = «convert-4-bytes-at-code[ip]-to-int»;

ip += 4; // jump over integer constant operand in code memory

«push-word-onto-operand-stack»

break;
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Some instructions take data not code address operands. These instruc-

tions can access globals, parameters, locals, and struct instances. We’ll

worry about parameters and locals in the specific patterns. Now, let’s

see how instructions manipulate global memory and data aggregates.

The gstore instruction (for both interpreters) stores a value into global

memory. To implement that, we can treat the global memory space as

an array of objects:

globals[«address»] = «value»;

The gload instruction does the opposite. It loads a value from global

memory into a register or pushes it onto the operand stack.

The fields of a struct look just like a small memory space. The operands

of the fload and fstore instructions are field indexes into the structure.

Given a value, a structure, and a field index, the fstore instruction exe-

cutes as follows:

«struct».fields[«field-index»] = «value»;

We can get data values either from memory or from an instruction

operand. Some of these operands, though, won’t fit in the 4-byte slot

following a bytecode. We’ve got to stick them in the constant pool.

Storing Large Constants in the Constant Pool

All instruction operands must be integers or convertible to an integer.

(Characters convert to an integer.) Strings obviously don’t fit in a 4-byte

integer, so we’ve got to store them outside of code memory. Bytecode

interpreters store strings and other noninteger constants in a constant

pool. Instead of the actual object, the instruction operand is an index

into the constant pool. The constant pool is just an array of objects and

is commonly used by bytecode interpreters (like the Java VM). Besides

strings, there are two other items we’ve got to store in the constant pool:

floating-point numbers and function descriptors.

The float type in Java is 32 bits and could fit in code memory no prob-

lem. But, let’s store floating-point operands in the constant pool like the

Java VM does. In Figure 10.1, on the next page, we can see the relation-

ship between (stack) bytecode instruction operands and the constant

pool for the following code snippet. The assembler converts the sconst

and fconst operands to indexes into the constant pool.

sconst "hi"

fconst 3.4

iconst 10

cconst 'c'
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3.4

"hi"

Constant pool

1

0
0000:SCONST   #0 ; "hi"  

0005:FCONST   #1 ; 3.4  

0010:ICONST   10  

0015:CCONST   99 ; ascii 'c'  

Disassembly

Figure 10.1: Bytecode operand and constant pool relationship

0000:SCONST   #0 ; "hi"  

0005:CALL     #1 ; f()@11

0010:HALT      

0011:PRINT     

0012:RET

FunctionSymbol:

name="f", args=1,

locals=0, addr=11

Constant pool

0

Disassembly

"hi"

1

Figure 10.2: Function symbols in constant pool

The last kind of object you’ll see in the constant pool is a FunctionSymbol.

The call instruction needs to know how many parameters and local

variables each function needs. It looks at the constant pool entry for

the function to get this information. In Figure 10.2, we can see how the

assembler converts the call operand to an index into the constant pool

for the following program:

sconst "hi" ; start by getting parameter onto operand stack

call f()

halt

.def f: args=1, locals=0

load 0 ; get 1st parameter

print ; print

ret ; return no value

Function calls involve more than the constant pool. They also use the

call stack (and, for the stack-based interpreter, the operand stack), as

we’ll see in the next section.
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Calling Functions

The mechanism for calling a function and returning is the same for

both Pattern 27, Stack-Based Bytecode Interpreter, on page 272 and

Pattern 28, Register-Based Bytecode Interpreter, on page 280. The only

difference lies in how they handle parameters, locals, and return val-

ues. We’ll leave the details of how those temporary values work to the

individual interpreter patterns. In this section, we’ll focus on the gen-

eral mechanism for calling and returning from a function. Let’s start

with a simple program that has two functions:

.def main: args=0, locals=0 ; void main()

call f()

halt

.def f: args=0, locals=0 ; void f()

call g()

ret

.def g: args=0, locals=0 ; void g()

ret

The main program calls f( ), which calls g( ). Right before g( ) returns,

the interpreter has pushed three StackFrame objects onto the call stack.

Astack frame is an object that tracks information about a function call.

For both interpreters, stack frames store parameters, local variables,

and the return address. In Figure 10.3, on the next page, we can see

the call stack with the fields of the stack frames filled in. (The locals

array is called registers in a register machine.) The frames point at the

appropriate function symbol held in the constant pool. The first stack

frame is from the implicit call to main( ) from the interpreter. The other

two frames are for the explicit calls to f( ) and g( ).

The easiest way to see what’s going on is to look at the instruction trace

because it shows how the stacks grow and shrink for each instruction:

0000: CALL #1; f()@6 stack=[] calls=[ main ]

0006: CALL #2; g()@12 stack=[] calls=[ main f ]

0012: RET stack=[] calls=[ main f g ]

0011: RET stack=[] calls=[ main f ]

The stacks grow to the right and indicate the state before each instruc-

tion executes. After each call instruction, the call stack grows by one

stack frame. The call stack shrinks by one at each ret instruction.

At this point, we know what bytecode programs look like and how byte-

code interpreters represent them in simulated code memory and in a

constant pool. We also looked at interpreter architecture to see how

interpreters execute instructions. This material, along with the patterns
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0000:CALL  #1 ; f()@6  

0005:HALT      

0006:CALL  #2 ; g()@12  

0011:RET       

0012:RET       

Disassembly

FunctionSymbol:

name="f", args=0,

locals=0, addr=6

Constant pool

0

FunctionSymbol:

name="g", args=0,

locals=0, addr=12

1

StackFrame:

sym = 

ret-address =

locals = []

StackFrame:

sym = 

ret-address = 5

locals = []

0

1

Call stack

FunctionSymbol:

name="main", args=0, 

locals=0, addr=0

StackFrame:

sym = 

ret-address = 11

locals = []

2

2

Figure 10.3: Function call stack right before ret in g( )

that follow, is enough to help you build a bytecode interpreter for a DSL.

Unfortunately, a lot more is going on in a general-purpose programming

language interpreter than what we’ve discussed here. (These bytecode

interpreters rely heavily on the Java VM.) The next section gives you a

taste of what’s involved in building a more general and more efficient

interpreter.

10.4 Where to Go from Here

In this chapter, we had to completely ignore garbage collection, exe-

cuting code from more than one source file (linking), classes, libraries,

and debuggers. But, we’d need all of that to build an interpreter for a

general-purpose programming language. The best way to figure out how

all that works is to dig into the source for an existing interpreter. Inter-

preter source code is available for just about every common language,

both dynamically typed and statically typed. You can also read the lit-

erature on the Smalltalk and Self interpreters as well as garbage collec-

tion and dynamic method dispatch. A good paper to read on register-

based bytecode machines is The Implementation of Lua 5.0 [IdFC05].

One of the things you’ll discover quickly when reading source code or

building your own interpreter is that making an interpreter go really
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Comparing Interpreter Speed

Out of curiosity, I compared the speed of the two bytecode
interpreters in this chapter. For a simple “count to 100 mil-
lion” loop, I found that hand-optimized register code was about
twice as fast as stack code (5.9 seconds vs. 12). The stack
machine is still a substantial 4.5 times faster than Pattern 25,
Tree-Based Interpreter , on page 243, which clocks in at a pokey
54 seconds.

fast is not that easy. Every CPU clock cycle and memory access counts.

For that reason, Java is not the best implementation language since

we have no control over the underlying hardware (but I didn’t want to

switch to C++ on you in the middle of the book). In fact, the core of

most fast interpreters is some hand-tuned assembly code. Knowledge

of computer architecture, such as cache memory and CPU pipelines, is

essential.

In January 2009, I spoke with Dan Bornstein, the guy who designed the

Dalvik7 VM (a register-based VM that runs Java programs on Google’s

Android mobile platform, though with a different bytecode). He de-

scribed the amazing gymnastics he and the VM team went through to

squeeze every last drop of efficiency out of the phone’s ARM,8 CPU, and

flash memory. (Flash memory is much slower than dynamic memory

but doesn’t get amnesia when you lose power.) Aside from being slow,

there isn’t much flash memory on the phone device. The Dalvik VM

tries to share data structures and compress them whenever possible.

On average, the Dalvik VM uses a bit more code memory than the Java

VM’s stack-based instruction set for a given method. But, as Bornstein

explains, the trade-off is totally worth it. The Dalvik VM executes many

fewer instructions to achieve the same result. (It can reuse registers

to avoid unnecessary operand stack pushes and pops.) Because of the

overhead to execute each instruction, fewer instructions means much

less overhead and higher performance.

7. http://source.android.com

8. http://www.arm.com
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The Dalvik VM implementation details are beyond the scope of this

intermediate-level book, but you can learn more by looking at the Dal-

vik VM source code. (You can also learn some of the underlying princi-

ples by doing a web search for threaded interpreter.)

Let’s finish up this introductory material with a summary of when to

use our bytecode patterns:

Pattern When to Apply

Pattern 26, Bytecode

Assembler

Both bytecode interpreters need this unless

we want to program in raw binary machine

code.

Pattern 27, Stack-

Based Bytecode Inter-

preter, on page 272

A stack machine is more or less the traditional

bytecode interpreter. Some people prefer a

stack over registers purely for style reasons.

It’s suitable for efficiently executing DSLs and

general purpose programming languages.

Pattern 28, Register-

Based Bytecode Inter-

preter, on page 280

Register machines can often execute high-

level programs faster than stack machines.

Generating register code is as easy as gen-

erating stack code, but the generated code

could be bigger and slower. To attain their

full potential, either the compiler or the inter-

preter has to massage code blocks to reuse

registers and do other optimizations.

Get your spelunking gear on. It’s time to explore bytecode interpreter

patterns.

226 Bytecode Assembler

Purpose

This pattern translates a text-based human-readable assembly language

program into binary bytecode instructions.

The assembly language instruction set accepted by this pattern is

reprogrammable (it isn’t fixed) and handles both stack-based and

register-based instructions.
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Discussion

Bytecode interpreters feed off low-level byte arrays full of bytecodes

(operation codes that fit into a byte) and integer operands. Generat-

ing raw bytecodes from a bytecode compiler is an extra burden on an

already complex compiler. It’s easier to generate text-based assembly

code and then have an assembler convert that to machine code. In

other words, rather than generating bytes 14, 0, 0, 0, 0, and 21, it’s

easier to generate the following equivalent (stack machine) assembly

code that prints “hi”:

sconst "hi" ; push a string constant onto the stack

print ; print the object on the top of the stack

From a text-based assembly program, an assembler yields the following

four key elements:

• Global data space size: How many variable slots to reserve in

global memory.

• Code memory: This byte array contains the instruction stream

derived from the assembly program. It contains bytecodes and any

instruction operands.

• Main program address: The code memory address at which the

interpreter should start executing the program. This is the address

associated with the main( ) function, or address zero if it’s not spec-

ified.

• Constant pool: This table keeps noninteger operands out of code

memory. It tracks strings, floating-point numbers, and function

descriptors. Instruction operands can refer to constant pool ele-

ments via an integer index (see Section 10.3, Storing Large Con-

stants in the Constant Pool, on page 260).

We’re going to start our discussion by looking at the basic architec-

ture of an assembler and how to generate machine code from assembly

code. Then, we’ll look at how to fill the constant pool with operands

that don’t fit in code memory. Finally, we’ll look at assembly code sym-

bol table management. At that point, we’ll be ready to tackle a sample

implementation.

Generating Bytecodes into Code Memory

The basic idea behind an assembler is to trigger appropriate action

methods upon seeing the various input constructs. (Later, we’ll recog-

nize this as Pattern 29, Syntax-Directed Translator, on page 307.)

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=266


BYTECODE ASSEMBLER 267

Here are some of the methods in the assembler’s interface:

protected void gen(Token instrToken) {;}

protected void gen(Token instrToken, Token operandToken) {;}

...

protected void defineFunction(Token idToken, int nargs, int nlocals) {;}

protected void defineLabel(Token idToken) {;}

We clearly need a parser to read in the text assembly code, but that

parser shouldn’t directly implement the assembler functionality. It

should contain the minimal actions necessary to call the code genera-

tion and symbol table management methods. We can isolate the method

implementations in a subclass. (This is a generically useful pattern

whereby we separate functionality from language syntax.) For example,

here’s a grammar rule that handles instructions with two operands:

instr2 : ID operand ',' operand {gen(«instr-name»,«opnd1»,«opnd2»);}

The operand rule would match the various kind of operands such as

labels, registers, functions, integers, and so on. The action invokes the

gen( ) method with information obtained while parsing the instruction.

As the assembler reads instructions, it writes bytecodes and operands

to a code array. To keep its place, it moves along an ip (instruction

pointer). ip is always the next write address. For instructions with no

arguments, the assembler writes a single byte to the code array and

bumps ip by one. Instructions with one argument are 5 bytes long, 1

for the bytecode and 4 bytes for the operand. We write the bytecode and

the operand, bumping ip by 5 bytes as we go. All bytecode operands are

4-byte integers, so we’ve got to do something fancy with nonintegers,

as we’ll see next.

Filling the Constant Pool

As we saw in Section 10.3, Storing Large Constants in the Constant Pool,

on page 260, any operand we can’t store or convert to an integer goes

into the constant pool. The operand is then an index into the constant

pool. We can store characters as integers, but we have to store strings,

floats, and function symbols in the constant pool. (We’ll look at function

symbols in the next section.) Here is the algorithm for writing bytecode

operands:

switch ( «kind-of-operand» ) {

case «int-or-char» : v = «int-value»;

case «float-or-string» : v = «get-constant-pool-index»;

case «func-ref» : v = «get-constant-pool-index»;

case «label» : v = «label-address»;

case «register» : v = «register-number»;

}

«write-v-to-code-memory»
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To compute a constant pool index, this code returns the index of an

existing pool entry or adds the object to the pool (and returns the new

index):

int «get-constant-pool-index»(Object o) {

if ( «constant-pool-contains-o» ) return «its-index»;

else { «add-to-pool»; return «index-of-o»; }

}

Every reference to the same floating-point number or string results in

the same constant pool index. In that sense, the constant pool is like a

flat scope (Pattern 16, Symbol Table for Monolithic Scope, on page 156)

for operand values. That scope also contains function symbols for use

as operands of the function call instruction.

Tracking and Referencing Functions

Bytecode interpreters don’t know anything about symbols. For speed

reasons, they only deal with code addresses, data addresses, and con-

stant pool indexes. Bytecode assembly language, on the other hand,

knows about two kinds of symbols: functions and code labels. Both live

in their own private Pattern 16, Symbol Table for Monolithic Scope, on

page 156. We’ll look at functions here and then check out code labels

in the next section.

Function information from the assembly code must survive the assem-

bly process. Bytecode interpreters need function parameter and local

variable information at run-time. We can tuck this information into the

constant pool along with the strings and floats. That means adding

a FunctionSymbol using the «get-constant-pool-index» algorithm from the

previous section. The assembler stores the constant pool index as the

operand for the call instruction. At execution time, the interpreter finds

the function’s code start address by looking in the constant pool using

that index. Here’s the algorithm for defining a function:

void defineFunction(Token idToken, int args, int locals) {

fs = «new-FunctionSymbol-based-upon-args»;

if ( «function-referred-to-before-definition» )

«replace-element-in-constant-pool-with-fs-at-same-index»;

else «save-fs-into-constant-pool»;

}

If the assembly program refers to a function before it’s defined, the

algorithm adds a dummy FunctionSymbol and fills in the details later

when it sees the definition.

Assembly language code labels work almost the same way, as we’ll see

next.
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Handling Labels and Forward References

To jump around an assembly language program, branch instructions

use code label operands. A code label is just a symbol that marks

a location in code memory and saves the programmer from having

to manually compute addresses. During execution, though, the inter-

preter expects branch operands to be integers, not symbols.

In a sense, the assembler needs to “erase” labels during translation to

bytecodes by converting label operands to code addresses. After assem-

bling the program, the assembler can toss out the scope of labels. If a

branch instruction refers to a label defined earlier in the program, the

assembler can just look it up in the label scope (Pattern 16, Symbol

Table for Monolithic Scope, on page 156).

But, forward references are a bit trickier to handle. If a label is not yet

defined, we have to remember the branch instruction operand address.

Later, when we see the label definition, we can update that operand to

have the correct value (that’s called backpatching). Let’s see how this

works by looking at two forward references in the following assembly

program:

br end ; tracks operand code addr 1 in forward ref list

br end ; adds addr 6 to forward ref list of "end"

end: ; label address is 10

halt

At the first br instruction, we create a LabelSymbol and add it to the label

scope. The operand address is the second byte in code memory (address

1). We set flag isForwardRef to true and isDefined to false in the symbol.

We do the same thing at the second br except that we add address 6 to

the list of operands to resolve later.

At the label definition, we resolve forward references by walking the

list of forward references for that symbol to patch br operands. The

disassembly shows the patched forward code labels:

0000: BR 10 ; patched operand points at "end"

0005: BR 10 ; patched operand points at "end"

0010: HALT

After reading the entire program, the assembler makes sure that all

forward references have an associated definition.

In summary, an assembler consists of a parser that triggers code gen-

eration and symbol table management actions. All of the work happens
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in a subclass of the parser that implements methods such as gen( ) and

defineFunction( ). In the next section, we’ll look at a sample implementa-

tion to tease out the remaining details.

Implementation

To complete our discussion of bytecode assemblers, let’s build an as-

sembler that we can use for the two bytecode interpreter patterns that

follow. We need to build an assembly language grammar in Assembler.g,

create a flexible instruction definition mechanism, and implement the

code generation and symbol table management functions in Bytecode-

Assembler.

Let’s start with the goal: filling in the code memory and constant pool,

which we can represent as fields in our main class:

Download interp/asm/BytecodeAssembler.java

public class BytecodeAssembler extends AssemblerParser {

public static final int INITIAL_CODE_SIZE = 1024;

protected Map<String,Integer> instructionOpcodeMapping =

new HashMap<String,Integer>();

protected Map<String, LabelSymbol> labels = // label scope

new HashMap<String, LabelSymbol>();

/** All float and string literals have unique int index in constant

* pool. We put FunctionSymbols in here too. */

protected List<Object> constPool = new ArrayList<Object>();

protected int ip = 0; // Instruction pointer; used to fill code[]

protected byte[] code = new byte[INITIAL_CODE_SIZE]; // code memory

protected int dataSize; // set via .globals

protected FunctionSymbol mainFunction;

To use the assembler, we create a lexer and parser and then call the

start rule (program) as we’ve done throughout the book:

AssemblerLexer assemblerLexer =

new AssemblerLexer(new ANTLRInputStream(input));

CommonTokenStream tokens = new CommonTokenStream(assemblerLexer);

BytecodeAssembler asm = new BytecodeAssembler(tokens, «instructions»);

asm.program(); // start parsing at program rule

The only difference here is that we create a subclass of AssemblerParser

(from Assembler.g) called BytecodeAssembler that houses our implemen-

tation functions.
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One of the key rules in the grammar is instr, which recognizes instruc-

tions and calls the code generation methods:

Download interp/asm/Assembler.g

instr

: ID NEWLINE {gen($ID);}

| ID operand NEWLINE {gen($ID,$operand.start);}

| ID a=operand ',' b=operand NEWLINE {gen($ID,$a.start,$b.start);}

| ID a=operand ',' b=operand ',' c=operand NEWLINE

{gen($ID,$a.start,$b.start,$c.start);}

;

It calls the appropriate version of gen( ) according to the number of

operands. Expressions such as $operand.start evaluate to the starting

token matched by rule operand. Here’s the code to generate an instruc-

tion that has no operands:

Download interp/asm/BytecodeAssembler.java

protected void gen(Token instrToken) {

String instrName = instrToken.getText();

Integer opcodeI = instructionOpcodeMapping.get(instrName);

if ( opcodeI==null ) {

System.err.println("line "+instrToken.getLine()+

": Unknown instruction: "+instrName);

return;

}

int opcode = opcodeI.intValue();

ensureCapacity(ip+1);

code[ip++] = (byte)(opcode&0xFF);

}

The assembler learns about the instruction set from field instructionOp-

codeMapping. That dictionary maps instruction names to integer byte-

codes. If you look in the BytecodeDefinition classes in the interpreter pat-

terns, you’ll see the instruction definitions. To get this generic assem-

bler to compile, we can define a fake set of instruction descriptors:

Download interp/asm/BytecodeDefinition.java

public static Instruction[] instructions = new Instruction[] {

null, // <INVALID>

new Instruction("iadd",REG,REG,REG), // index is the opcode

};

This Instruction array is what we pass into the assembler constructor:

BytecodeAssembler asm = new BytecodeAssembler(tokens, «instructions»);
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For instruction operands, the assembler writes 32-bit values to the code

memory using genOperand( ) in BytecodeAssembler. To write 32-bit inte-

gers into a byte array, the assembler breaks them up into bytes using

writeInt( ). It writes them highest to lowest byte, sequentially in memory.

There are two assembly language instructions that don’t result in code

memory elements. First is the global memory definition instruction

.globals, which we can recognize with the following rule:

Download interp/asm/Assembler.g

globals : NEWLINE* '.globals' INT NEWLINE {defineDataSize($INT.int);} ;

Second is the function declaration instruction:

Download interp/asm/Assembler.g

functionDeclaration

: '.def' name=ID ':' 'args' '=' a=INT ',' 'locals' '=' n=INT NEWLINE

{defineFunction($name, $a.int, $n.int);}

;

Without an actual instruction set definition, this assembler can’t really

do anything. So, we’ll leave building and testing it to the interpreter

patterns that use it.

Related Patterns

Pattern 27, Stack-Based Bytecode Interpreter and Pattern 28, Register-

Based Bytecode Interpreter, on page 280 use this assembler to read in

assembly programs.

227 Stack-Based Bytecode
Interpreter

Purpose

This pattern executes bytecode instructions that store temporary values

on an operand stack.

Discussion

A stack-based bytecode interpreter simulates a hardware processor

with no general-purpose registers. That means that bytecode instruc-

tions must use an operand stack to hold temporary values. Temporary
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values include arithmetic operands, parameters, and return values.

Because the introductory material for this chapter explained general

bytecode interpreter architecture, we can focus on the details specific

to stack machines.

Let’s look at the operand stack first, since it’s the key identifying fea-

ture. Any time we want to load a value from memory or compute a

result, we push the result onto the operand stack. For efficiency, we’ll

use a simple object array with a special-purpose register called sp to

indicate the top of stack. To push a value, we increment sp and store

the value:

operands[++sp] = «value»;

For example, here’s how to push a value from global memory:

operands[++sp] = globals[«address»];

To pop a value, we do the opposite by decrementing sp:

Object value = operands[sp--]; // pop, sp-- decrements sp after index

In Figure 10.4, on the following page, and Figure 10.5, on page 275,

we can see a sample instruction set for a stack machine. (The sam-

ple code in the source directory implements this instruction set.) Just

about all of those instructions expect values on the operand stack. The

instruction set is pretty minimal but good enough for demonstration

purposes. In reality, we’d need at least a few more instructions to han-

dle the other arithmetic operators. Function calls also make heavy use

of the operand stack for parameters and local variables so we need to

investigate them in detail.

Passing Function Parameters

The call instruction expects parameters to be on the operand stack,

which is where we compute all expression values. When call pushes

a stack frame, the frame constructor creates space for the parameters

and local variables. Both parameters and locals go into a single locals

object array field, parameters first. call knows how much space to create

because of the FunctionSymbol in the constant pool. Before transferring

control to the function’s starting address, call moves the parameters

from the operand stack into the stack frame:

void call(int functionConstPoolIndex) {

FunctionSymbol fs = constPool[functionConstPoolIndex];

StackFrame f = new StackFrame(fs, «return-address»);

calls[++fp] = f;

for (int a=«num-args»-1; a>=0; a--) f.locals[a]=operands[sp--];

ip = fs.address; // jump to the start address

}
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Instruction Description

iadd, isub, imul Arithmetic operators for integers. Pop two operands,

perform operation, and push result back on stack.

fadd, fsub, fmul Arithmetic operators for floating-point.

ilt, ieq, flt, feq Equality operators for integers and floating-point.

Pop two operands, perform operation, and push

result back on stack.

itof Convert top of stack integer to floating-point.

cconst n, iconst n Push character or integer constant operand onto the

operand stack. operands[++sp]=n.

sconst s, fconst f Push constant string s or floating-point number

f from the constant pool onto the operand stack.

operands[++sp]=constPool[«index-of-s-or-f »].

Figure 10.4: Stack-based arithmetic bytecode instructions

Let’s see how this works when we call a function with two parameters

and one local variable:

.def main: args=0, locals=0

; print f(10,20)

iconst 10 ; push first argument

iconst 20 ; push second argument

call f()

print ; print return value

halt

.def f: args=2, locals=1 ; int f(int x, int y)

; x is at locals[] index 0, y at 1, and z at 2

; int z = x + y

load 0 ; push first argument x

load 1 ; push second argument y

iadd

store 2 ; store into local z

; return z

load 2

ret

In Figure 10.6, on page 276, we can see the stack frame zoomed in for

the call to f( ) from main( ). The call needs three slots to hold parameters

and locals. Parameters come first and locals come next, so the local

variable’s index is 2.

The trace shows that, right before the call to f( ), the operand stack has

two parameters:

0010: CALL #0 ; f()@17 stack=[ 10 20 ] calls=[ main ]

0017: LOAD 0 stack=[ ] calls=[ main f ]
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Instruction Description

call f () Call function f (via f ’s constant pool entry). Push

new stack frame onto call stack, move parameters

from operand stack to stack frame, and branch to

function start address.

ret Return from function call. Any return value is on

the operand stack. Pop the top stack frame off and

return to return address stored in that stack frame.

br a, brt a, brf a Branch to a always, if operands[sp] is true, or is false.

gload a, gstore a operands[++sp]=globals[a], globals[a]=operands[sp--].

load i, store i operands[++sp]=calls[fp].locals[i] where fp is the

frame pointer and i is the local value index,

calls[fp].locals[i]=operands[sp--].

fload i, fstore i Pop struct address s off the operand stack then do

operands[++sp]=s.fields[i] where i is the field index from

0, s.fields[i]=operands[sp--].

print Pop from the operand stack and print to standard

output.

struct n Create a struct with n fields slots and push it onto the

operand stack.

null Push a null pointer onto the operand stack.

pop Throw away the top of the operand stack.

halt Halt program execution.

Figure 10.5: Stack-based general bytecode instructions

After the call, the parameters are in the stack frame’s locals space, not

the operand stack. The function can manipulate locals and parameters

with load and store. load, for example, pulls a value from the locals field

and pushes it onto the operand stack:

operands[++sp] = calls[fp].locals[«address-operand»];

When the function is done, it executes a ret instruction to return. ret

doesn’t have to clean up the stack because call removes parameters at

the start of the function. It only has to pop a stack frame off the call

stack and jump to the return address found in that frame:

StackFrame fr = calls[fp--]; // pop stack frame

ip = fr.returnAddress; // branch to ret addr
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StackFrame:

sym =

ret-address = 15

locals = 10 20 30

local

1

Call stack

FunctionSymbol:

name="f", args=2,

locals=1, addr=17

Constant pool

1

10 2

args

StackFrame:

sym =

ret-address =

locals =

FunctionSymbol:

name="main", 

args=0, locals=0,

addr=0

00

Figure 10.6: Stack frame for call to f( ) with two arguments

To return a value, a function pushes a value onto the operand stack

and then executes the ret instruction.

Returning Function Values

After executing a function call, the calling code expects any return value

to be on the operand stack. Here’s a trace until after the call to f( ):

0033: LOAD 2 stack=[ ] calls=[ main f ]

0038: RET stack=[ 30 ] calls=[ main f ]

0015: PRINT stack=[ 30 ] calls=[ main ]

The ret instructions pops the stack frame for f( ) off the call stack and

jumps to the return address (15) in main( ).

If a function returns a value that the calling code does not use, the

calling code must pop that value off the operand stack anyway. For

example, the following program throws away the value returned from

f( ).

.def main: args=0, locals=0

call f() ; assume f() has return value

pop ; drop top of stack

halt

Now that we know how to use the operand stack, it’s time to look at the

implementation details for a stack-based interpreter.

Implementation

The bulk of our bytecode interpreter lives in Interpreter. Other than

that, we’ll need a few support classes: StackFrame, BytecodeDefinition,
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and StructSpace (holds the fields of a struct). We’ll use Pattern 26, Byte-

code Assembler, on page 265 to assemble programs before execution.

(BytecodeDefinition defines the instruction set.) The assembler pattern

also provides a suitable FunctionSymbol that we’ll need for our constant

pool.

The Interpreter contains the processor (in cpu( )) that we discussed in

the introductory material and the fields that represent our simulated

memory, stacks, and special-purpose registers:

Download interp/stack/Interpreter.java

int ip; // instruction pointer register

byte[] code; // byte-addressable code memory.

int codeSize;

Object[] globals; // global variable space

protected Object[] constPool;

/** Operand stack, grows upwards */

Object[] operands = new Object[DEFAULT_OPERAND_STACK_SIZE];

int sp = -1; // stack pointer register

/** Stack of stack frames, grows upwards */

StackFrame[] calls = new StackFrame[DEFAULT_CALL_STACK_SIZE];

int fp = -1; // frame pointer register

FunctionSymbol mainFunction;

The main( ) method creates an Interpreter object, loads and assembles the

bytecode program, and then executes starting at the main function:

Download interp/stack/Interpreter.java

Interpreter interpreter = new Interpreter();

load(interpreter, input);

interpreter.trace = trace;

interpreter.exec();

if ( disassemble ) interpreter.disassemble();

if ( dump) interpreter.coredump();

Loading and assembling the input program is a matter of creating an

assembler and calling the program rule. After it returns, we can ask the

assembler for the code memory and any other goodies we need:

Download interp/stack/Interpreter.java

AssemblerLexer assemblerLexer =

new AssemblerLexer(new ANTLRInputStream(input));

CommonTokenStream tokens = new CommonTokenStream(assemblerLexer);

BytecodeAssembler assembler =

new BytecodeAssembler(tokens, BytecodeDefinition.instructions);

assembler.program();

interp.code = assembler.getMachineCode();

interp.codeSize = assembler.getCodeMemorySize();

interp.constPool = assembler.getConstantPool();
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interp.mainFunction = assembler.getMainFunction();

interp.globals = new Object[assembler.getDataSize()];

interp.disasm = new DisAssembler(interp.code,

interp.codeSize,

interp.constPool);

To begin execution, the interpreter calls the bytecode program’s main

method and invokes cpu( ):

Download interp/stack/Interpreter.java

public void exec() throws Exception {

// SIMULATE "call main()"; set up stack as if we'd called main()

if ( mainFunction==null ) {

mainFunction = new FunctionSymbol("main", 0, 0, 0);

}

StackFrame f = new StackFrame(mainFunction, ip);

calls[++fp] = f;

ip = mainFunction.address;

cpu();

}

OK, let’s start looking at some instructions. (Interestingly, the frag-

ments look very much like the code we’d write in a hardware description

language such as Verilog.)9 Here’s the implementation of the integer add

instruction (a case of the switch in cpu( )):

Download interp/stack/Interpreter.java

case BytecodeDefinition.INSTR_IADD :

a = (Integer)operands[sp-1]; // 1st opnd 1 below top

b = (Integer)operands[sp]; // 2nd opnd at top of stack

sp -= 2; // pop both operands

operands[++sp] = a + b; // push result

break;

The floating-point version is the same except that we treat the top two

operands on the stack as floats:

Download interp/stack/Interpreter.java

case BytecodeDefinition.INSTR_FADD :

e = (Float)operands[sp-1];

f = (Float)operands[sp];

sp -= 2;

operands[++sp] = e + f;

break;

The call instruction’s operand is an index into the constant pool for

the target function. It calls support method getIntOperand( ) to pull a

9. http://en.wikipedia.org/wiki/Verilog
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4-byte integer out of the code memory at location ip and then delegates

functionality to the call( ) method we saw earlier in this pattern:

Download interp/stack/Interpreter.java

case BytecodeDefinition.INSTR_CALL :

int funcIndexInConstPool = getIntOperand();

call(funcIndexInConstPool);

break;

call pushes a stack frame that holds the return address space for para-

meters and locals (in a single field, locals):

Download interp/stack/StackFrame.java

public class StackFrame {

FunctionSymbol sym; // associated with which function?

int returnAddress; // the instruction following the call

Object[] locals; // holds parameters and local variables

public StackFrame(FunctionSymbol sym, int returnAddress) {

this.sym = sym;

this.returnAddress = returnAddress;

locals = new Object[sym.nargs+sym.nlocals];

}

}

OK, that should give you a taste of the relevant implementation details.

Let’s get this to build. All we’ve got to do is run ANTLR on the assembler

grammar file and compile the Java code:

$ java org.antlr.Tool Assembler.g

$ javac *.java

$

Let’s try this on an sample program that stores a value into two global

variables and prints one of them:

Download interp/stack/t.pcode

; int x,y

.globals 2

.def main: args=0, locals=0

; x = 9

iconst 9

gstore 0

; y = x

gload 0

gstore 1

; print y

gload 1

print

halt
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To run t.pcode into Interpreter and dump out all the relevant memory

spaces, we can use option -dump:

$ java Interpreter -dump t.pcode

9

Constant pool:

0000: FunctionSymbol{name='main', args=0, locals=0, address=0}

Data memory:

0000: 9 <Integer>

0001: 9 <Integer>

Code memory:

0000: 18 0 0 0 9 25 0 0

0008: 0 0 22 0 0 0 0 25

0016: 0 0 0 1 22 0 0 0

0024: 1 27 31

$

Looking at the code memory, only 7 out of the 26 bytes are bytecodes—

the rest are operands. The first step in making this pattern more effi-

cient would be to create a denser instruction set (loading and decod-

ing those operands repeatedly gets expensive). For example, we could

define instructions that used 2-byte operands instead of 4-byte oper-

ands (or even 1-byte operands). Most of the time, addresses and con-

stants fit in one or two bytes.

The biggest speed impediment for a stack-based interpreter, though, is

the extra work involved in constantly flogging the operand stack. In the

next pattern, we’ll look at a bytecode interpreter that avoids a lot of

unnecessary traffic to and from memory by using registers.

Related Patterns

This pattern reuses Pattern 26, Bytecode Assembler, on page 265 and

is extremely similar to Pattern 28, Register-Based Bytecode Interpreter.

228 Register-Based Bytecode
Interpreter

Purpose

This pattern executes bytecode instructions that store function parame-

ters, local variables, and temporary values in simulated registers.
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Instruction Description

iadd ri, rj, rk

isub ri, rj, rk

imul ri, rj, rk

Arithmetic operators for integers. rk=ri op rj

fadd ri, rj, rk

fsub ri, rj, rk

fmul ri, rj, rk

Arithmetic operators for floating-point numbers.

rk=ri op rj

ilt ri, rj, rk

ieq ri, rj, rk

flt ri, rj, rk

feq ri, rj, rk

Equality operators for integers and floating-point: less-

than and equal. Save boolean result in rk. rk=ri op rj

itof ri, rj Convert integer in ri to floating-point and save in rj.

cconst ri, c Load character into ri. ri=c.

iconst ri, n Load integer into ri. ri=n.

sconst ri, s Load string into ri. ri=constPool[«index-of-s»].

fconst ri, f Load floating-point value into ri. ri=constPool[«index-of-f »].

Figure 10.7: Register-based arithmetic bytecode instructions

Discussion

A register-based bytecode interpreter is identical to a stack-based inter-

preter except for the instruction set and where it keeps local variables,

parameters, return values, and any temporary values. The instructions

use registers instead of an operand stack. Our simulated machine gives

each stack frame an “infinite” set of registers.

Let’s reserve the first element of the register array to hold return values.

(This is just one possible strategy.) The parameters and locals are then

at index 1 and greater:

p+1

parameters locals, temp valuesreturn value

... ...r 0 r 1 r p r rp+tr 2 p+2r

That image shows the registers for a function definition with p param-

eters and t locals and temporaries (n=1+p+t):

.def foo: args=p, locals=t
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As you can see in the sample instruction set for this pattern (Fig-

ure 10.7, on the preceding page, and see Figure 10.8, on page 284), all

the instructions manipulate registers. (The sample code in the source

directory implements this instruction set.) To get the ball rolling, we’ll

look at how basic instructions and data aggregate instructions use

registers. Then, we’ll explore function calls in detail. It’s important to

understand exactly how the call and ret instructions shuffle registers

around between stack frames on the call stack. Otherwise, you’ll find it

hard to read the sample implementation.

Implementing Basic Instructions

To access a register, an instruction has to know where the current

registers are. The current registers are in the stack frame on the top

of the call stack, calls[fp]. So, we can define a shortcut to the current

registers like this:

Object r[] = calls[fp].registers; // shorthand for "current registers"

Then, instructions like iconst (integer load) can save values into the r

shortcut array (this code snippet lives in our fetch execute loop cpu( )):

case BytecodeDefinition.INSTR_ICONST : // E.g., iconst r1, 99

i = «get-register-number-operand»;

v = «get-integer-operand»;

r[i] = v;

break;

Once we pull the register number and integer value operands from the

code memory, the iconst instruction stores the value into the appropri-

ate register.

The iadd integer add mechanism is pretty similar. Once we know the

three register numbers, we can access their values, cast them to inte-

gers, perform the operation, and store the result in a register:

case BytecodeDefinition.INSTR_IADD : // E.g., iadd r1, r2, r3

i = «get-register-number-operand»;

j = «get-register-number-operand»;

k = «get-register-number-operand»;

r[k] = r[i] + r[j];

break;

OK, now that we know how to access registers, let’s look at accessing

the fields of a data aggregate.
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Creating and Accessing Data Aggregates

To create a data aggregate, the struct instruction needs a target register

and how many fields to create:

case BytecodeDefinition.INSTR_STRUCT :

i = «get-register-number-operand»;

int nfields = «get-integer-operand»;

r[i] = new StructSpace(nfields); // save struct in r[i]

break;

A StructSpace object has a fields array that we can access with the fload

and fstore instructions. Both instructions take two register operands

and one integer operand. The first register is the target of the load or

the value to write. The second register is the base address of the data

aggregate. The integer is the field index. For example, here is the mech-

anism for loading a field:

case BytecodeDefinition.INSTR_FLOAD : // E.g., fload r1, r2, 0

i = «get-register-number-operand»; // r[i] is target register

j = «get-register-number-operand»; // r[j] is the struct

fieldIndex = «get-integer-operand»; // which field?

r[i] = r[j].fields[fieldIndex];

break;

All the instructions we’ve seen so far only deal with the registers in a

single stack frame. To perform a function call, though, we have to copy

registers between frames (since all nonglobal variables and all tempo-

rary values live in registers).

Passing Data During Function Calls

The mechanism for passing parameters to functions and returning val-

ues is a bit tricky. Let’s see how it works by looking at the relationship

between a sample program and its call stack. Take a look at the flow of

control in the following program. It goes from main( ) to f( ) to g( ).

.def main: args=0, locals=1 ; void main() { print f(10); }

iconst r1, 10 ; put 10 into r1

call f(), r1 ; call f, argument is in r1

print r0 ; print return value

halt

.def f: args=1, locals=3 ; int f(int x) { return g(2*x, 30); }

iconst r2,2 ; get int 2 into 1st non-arg register

imul r1,r2,r3 ; mult arg by 2

iconst r4,30 ; get int 30 into a reg

call g(), r3 ; leave result in r0; args=[r3,r4]

ret ; return value in r0

.def g: args=2, locals=0 ; int g(int x, int y) { return x+y; }

iadd r1, r2, r0 ; return x+y

ret ; return value in r0
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Instruction Description

call f (), ri Call function f (via f ’s constant pool entry). For n param-

eters, registers ri..ri+n−1 contain the parameter values.

Use r0 if there are no parameters. Push new stack frame

onto call stack, and move parameters from previous

stack frame to this stack frame. Branch to function start

address.

ret Return from function call. Any return value is in r0. Pop

the top stack frame off, and return to the return address

stored in that stack frame.

br a

brt ri, a

brf ri, a

Branch to a always, if ri is true, or ri is false.

gload ri, a

gstore ri, a

ri=globals[a] and globals[a]=ri.

fload ri, rj, n

fstore ri, rj, n

ri=rj [n] and rj [n]=ri.

move ri, rj rj=ri.

print ri Print ri to standard output.

struct ri, n ri=new struct with n field slots.

null ri ri=null.

halt Halt program execution.

Figure 10.8: Register-based general bytecode instructions

In Figure 10.9, on the following page, we can see the state of the call

stack at the ret instruction in g( ). If we ignore the registers, it looks

like the general stack frame shown in the introductory material (see

Figure 10.3, on page 263). The first stack frame on the call stack is for

the simulated call to main( ) from the interpreter. The next stack frame

is for the call to f( ). The top of the call stack is the stack frame for the

call to g( ).

The dashed arrows indicate register copying. The downward arrows

indicate parameter passing, and the upward arrows indicate values

returning to the invoking function. The call to f( ) has one parameter,

which is stored in r[1] (courtesy of main( )’s first iconst instruction). The

call to f( ) copies r[1] in main( )’s stack frame to r[1] in f( )’s stack frame.

The r[1] in main( )’s stack frame is a temporary value (since it has no

parameters), whereas r[1] is a parameter in f( )’s stack frame.
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Figure 10.9: Register transfers and state of call stack at ret in g( )

The execution trace illustrates how the registers for the various stack

frames change over time (the | character separates r[0] from the param-

eters and the parameters from the locals in the register array):

0000: ICONST r1, 10 main.registers=[?||?] calls=[main]

0009: CALL #1:f(), r1 main.registers=[?||10] calls=[main]

0024: ICONST r2, 2 f.registers=[?|10|? ? ?] calls=[main f]

0033: IMUL r1, r2, r3 f.registers=[?|10|2 ? ?] calls=[main f]

0046: ICONST r4, 30 f.registers=[?|10|2 20 ?] calls=[main f]

0055: CALL #2:g(), r3 f.registers=[?|10|2 20 30] calls=[main f]

0065: IADD r1, r2, r0 g.registers=[?|20 30] calls=[main f g]

0078: RET g.registers=[50|20 30] calls=[main f g]

0064: RET f.registers=[50|10|2 20 30] calls=[main f]

0018: PRINT r0 main.registers=[50||10] calls=[main]

As g( ) hits the ret at code address 78, it moves its r[0], 50, to f( )’s r[0].

When the call to f( ) returns, it moves r[0] to main( )’s r[0]. The print instruc-

tion in main( ) can then print out its r[0].

The operands of the call instruction are a little weird, so it’s worth

exploring them in more detail. Once we’ve done that, we’ll be ready

to look at our sample implementation.

Decoding the call Instruction Operands

The call instruction knows how many parameters to pass because its

first operand refers to a FunctionSymbol sitting in the constant pool. The
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second operand is a register number and tells the instruction where the

parameters are. That register number indicates which register holds

the first parameter. Any other parameters live in the next contiguous

registers. An operand of r0 indicates there are no parameters.

Since f( ) has one parameter, the call in main( ) knows to copy just r[1]

to the parameter register in the stack frame it creates. g( ) takes two

parameters that live that r[1] and r[2] in its stack frame. f( ) computes

the first parameter to g( ) in r[3] and the second in r[4]. That’s why, in

Figure 10.9, on the preceding page, we see interframe dashed lines

from r[3] to r[1] and from r[4] to r[2]. The following algorithm fills in the

rest of the details for the call instruction:

void call(int functionConstPoolIndex, int baseRegisterIndex) {

FunctionSymbol fs = constPool[functionConstPoolIndex];

StackFrame f = new StackFrame(fs, «return-address»);

StackFrame callingFrame = calls[fp];

calls[++fp] = f; // push new stack frame

// copy arguments from calling stack frame to new stack frame

for (int a=0; a<«num-args»; a++) {

f.registers[a+1] = callingFrame.registers[baseRegisterIndex+a];

}

ip = fs.address; // jump to the start address

}

The details of the ret instruction are much simpler. ret just copies r[0] of

the current frame to r[0] in the calling frame and pops off the current

stack frame:

case BytecodeDefinition.INSTR_RET :

StackFrame f = calls[fp--]; // pop stack frame

calls[fp].registers[0] = f.registers[0]; // copy r0

ip = f.returnAddress; // jump back to calling instruction

break;

At this point, we’ve hit the highlights of how to implement register

machine instructions. In the next section, we’ll take a quick peek at

a sample implementation.

Implementation

Register machines are nearly identical to stack machines. In fact, the

implementation for this pattern differs from Pattern 27, Stack-Based

Bytecode Interpreter, on page 272 in only two spots. First, the locals

field in StackFrame is now called registers:

Download interp/reg/StackFrame.java

// Allocate space for registers; 1 extra for r0 reserved reg
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registers = new Object[sym.nargs+sym.nlocals+1];

Second, the switch statement inside cpu( ) has implementations for the

register-based instructions rather than stack-based instructions:

Download interp/reg/Interpreter.java

protected void cpu() {

int i=0, j=0, k=0, addr=0, fieldIndex=0;

short opcode = code[ip];

while (opcode!= BytecodeDefinition.INSTR_HALT && ip < codeSize) {

if ( trace ) trace();

ip++; //jump to next instruction or first byte of operand

Object r[] = calls[fp].registers; // shortcut to current registers

switch (opcode) {

case BytecodeDefinition.INSTR_IADD :

i = getRegOperand();

j = getRegOperand();

k = getRegOperand();

r[k] = ((Integer)r[i])+((Integer)r[j]);

break;

// ...

Although the instruction sets for the stack-based and register-based

machines look very different, we’re able to reuse Pattern 26, Bytecode

Assembler, on page 265 verbatim for both. For example, here’s a sample

register-based assembly program the assembler readily translates to

bytecodes:

Download interp/reg/t.rcode

; int x,y

.globals 2

.def main: args=0, locals=3

; x = 9

iconst r1, 9

gstore r1, 0

; y = x

gload r2, 0

gstore r2, 1

; print y

gload r3, 1

print r3

halt

To build and execute that file, we run ANTLR on the assembler gram-

mar file, compile all the Java code, and run t.rcode into Interpreter:

$ java org.antlr.Tool Assembler.g

$ javac *.java

$ java Interpreter t.rcode
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9

$

This implementation isn’t the fastest in town (when compared to Sun’s

Java VM in pure interpreter mode, -Xint). My design goals for this book

were simplicity and readability rather than bytecode execution speed

and memory efficiency. That said, it wouldn’t be that hard to get this

interpreter to perform within a factor of two or three of Sun’s inter-

preter. Basically, we just need to introduce a few dense instructions

for common operations. For example, pushing zero on the stack is

extremely common; we can represent that with a single-byte iload0

instruction instead of the general iload instruction that takes 5 bytes

(including the 4-byte operand).

Related Patterns

This pattern uses Pattern 26, Bytecode Assembler, on page 265 to read

in bytecode assembly language programs. The source code for this pat-

tern is remarkably similar to that of Pattern 27, Stack-Based Bytecode

Interpreter, on page 272.

Up Next

Building an interpreter is one way to implement a language, but we can

also build a translator from the new language to an existing language.

In the next chapter, we’re going to look at code generation, the final

stage of a source-to-source translator.
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Chapter 11

Translating Computer Languages
So far, we’ve focused on reading in programs and other structured text

in this book. Previously, we built input models (usually ASTs) of the

input and then analyzed or even executed that input by scanning the

model. In this next part of the book, we’re going to reverse the process

and build text-to-text translators and generators that emit structured

text. Translators let us implement new DSLs and programming lan-

guages quickly by translating them to existing languages. For example,

the first C++ implementation (cfront) translated C++ to C. Translators

are also heavily used for migrating legacy code and data formats.

A translator is a program that maps input constructs to output con-

structs. Sometimes we can do this purely with syntax. For example,

translating a scalar multiply like a x b in a mathematics DSL to a*b

in Java doesn’t require semantic information. If that DSL has matri-

ces (2D arrays), though, we need to alter the translation based on type

information. For example, to translate matrix multiply A x B, we need to

generate a nested for loop in Java. Things can get really tricky when we

need lots of semantic information spread across an entire project. For

example, doing a static field move from one class to another forces a

refactoring engine to find all uses of it.

Translators vary in difficulty depending on a number of factors includ-

ing the relative order of input and output constructs, the presence of

forward references, whether we need to preserve comments and format-

ting, sheer input file size, and so on.1 But, regardless of the translation

strategy, we need to keep an important design principle in mind.

1. http://www.antlr.org/wiki/pages/viewpage.action?pageId=1773
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Translation involves fully understanding each input phrase, picking an

appropriate output construct, and filling it with elements from the input

model. Trying to cleverly replace input symbols with output symbols

rarely works well. You end up with what we call aliteral translation in

a natural language.2 For example, faire un canard in French means

literally “to make a duck.” The real translation, though, is “to hit a

wrong note.”

In a computer translator, to “understand” a phrase means to syntac-

tically and semantically analyze it. We usually have to create an input

model like an AST because we can’t always do semantic analysis prop-

erly as we parse. As we did in Chapter 8, Enforcing Static Typing Rules,

on page 196, we have to create symbol tables and compute expression

types from the input model. According to the needs of the task at hand,

we compute everything we need to know about the input and then make

a decision about mapping an input phrase to an output phrase.

Translation is a huge topic, and we can devote only one chapter to it, so

we’re going to focus on overall strategies and a few of the most common

patterns:

• Pattern 29, Syntax-Directed Translator, on page 307: This trans-

lator consists of a parser (or grammar) with embedded actions

that immediately generate output. The key distinguishing feature

is that syntax-directed translators don’t build an internal repre-

sentation. They have to do everything in one pass.

• Pattern 30, Rule-Based Translator, on page 313: Rule-based

translators use the DSL of a particular rule engine to specify a

set of “this goes to that” translation rules. Combined with a gram-

mar describing the input syntax, a rule engine can automatically

perform translations.

• Model-driven translation: There are lots of variations within the

model-driven translator strategy, but they all have one thing in

common: an internal representation of the input. From the input

model, a translator can emit output directly, build up strings,

build up templates (documents with “holes” in them where we can

stick values), or build up specialized output objects (Pattern 31,

2. I’ll never forget trying to learn French by reading comic books. It took me forever to

figure out why the cartoons had “Bread! Bread!” stamped all over them during action

scenes. It turns out that “Pain! Pain!” sounds like “Bang! Bang!” and is the way to say it

in French.
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Figure 11.1: Syntax-directed translator

Target-Specific Generator Classes, on page 319). Depending on the

complexity of the translation, the translator might need multiple

passes over the input model before the generation phase.

Because most industrial translators use the model-driven approach,

we’ll spend most of our time talking about mapping input to output

models. Then, as part of the patterns, we’re going to implement a make

build tool, a wiki to HTML translator, and a simple SQL CREATE TABLE

statement generator. Let’s get the ball rolling by looking at the simplest

possible translator design.

11.1 Syntax-Directed Translation

A syntax-directed translator reads input and immediately emits output

as it goes. In Figure 11.1, we see the one-stage application pipeline.

Even though it has few moving parts, we can use this for a surprising

number of DSLs.

Syntax-directed translators consist of a grammar (or equivalent hand-

built parser) and output actions. For example, here is a rule that trans-

lates a scalar multiply, such as a x b, to Java:

mult : a=ID 'x' b=ID {System.out.println($a.text+"*"+$b.text);} ;

Because syntax-directed translators make only one pass through the

input, they can’t deal with forward references. For example, we needed

multiple passes in Pattern 19, Symbol Table for Classes, on page 182 to

handle forward references to methods and fields. They also can’t per-

form very sophisticated translations because their application pipeline

is only one stage deep. It has no opportunity to analyze an input model,

which is typically required for complex translations.

Syntax-directed translators also break down when the order of input

and output constructs differs significantly. For example, imagine a
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translation that negates a list of integers and spits them out in reverse

order. A syntax-directed translator would negate the first number and

immediately spit it out. Without buffering up the negated integers, we

can’t deal with radically different input and output orders.

Building a syntax-directed translator means writing a lot of informal

code by hand. To understand what such a translator implements, we’ve

got to imagine the emergent behavior of all those actions. We’ll explore

the details in Pattern 29, Syntax-Directed Translator, on page 307. Let’s

move on to DSLs designed to make translation easier and less ad hoc.

11.2 Rule-Based Translation

To build a translator, we have to define an input-to-output mapping (a

set of “this goes to that” rules) no matter what translator architecture

we use. Instead of coding them with a general-purpose programming

language, we can use a translation DSL. There are a number of excel-

lent rule-based systems available such as ASF+SDF,3 Stratego/XT,4

and TXL.5 The ANTLR project also has a simple rule engine called

ANTLRMorph.6

To use these engines, we feed them an input language grammar and

a set of translation rules, as shown in Figure 11.2, on the following

page. From the grammar, the engine builds a parse tree from the input

and then applies the rules to get the output. As we saw in Section 5.4,

Decoupling Tree Traversal from Pattern Matching, on page 125, a rule-

based approach has a number of advantages. We get to focus on the

input constructs (subtrees) we care about, and we don’t have to specify

tree-walking details.

To demonstrate the rule-based approach with a simple translation DSL,

let’s look at an awk script that extracts class names by looking for the

class keyword:

/^public\ class/ {print $3} # In "public class foo", foo is 3rd element

/^class/ {print $2} # In "class foo", foo is 2nd element

3. http://www.meta-environment.org

4. http://strategoxt.org

5. http://www.txl.ca

6. http://www.antlr.org/wiki/display/Morph/Home
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Figure 11.2: Rule-based translator

awk scripts are a series of patterns (regular expressions in /.../) and

actions (in {...}). awk walks an input file line by line, executing actions

associated with patterns that match the current line.

Notice that we don’t have to specify an entire Java grammar to make

this work. Of course, this is a simple transformation. In general, we

need complete syntactic and semantic analysis like any other trans-

lation approach. Still, it’s amazing what we can build with just a few

pattern-action rules. For example, we’re going to build a wiki-to-HTML

translator in Pattern 30, Rule-Based Translator, on page 313.

All of these tools allow multiple translation and information-gathering

passes using different sets of rules. For example, it’s extremely common

to have a symbol definition pass and then a symbol resolution pass. We

might also need a type computation pass. All of this has to happen

before we can apply the translation rules.

Rule-based systems are particularly good at legacy code conversions

because we want the translated code to be natural. For example, If

we see a nested loop implementation for a matrix multiply in Java, we

want to recognize that pattern and convert it to a simple A x B in a

mathematics DSL (not another nested loop). Rule-based systems let us

just lay out all the input-output transformations we want. We can add

new ones easily as we think of them.

I took advantage of this fact when writing this book. The publisher has

an excellent proprietary DSL for writing books, but to reduce the strain

on my hands, I designed a really terse DSL and built a translator from

my language to their internal format. As I write this book, I think of new

timesaving commands and add them to my list of translation rules.
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This all sounds great. These rule engines let us say what to do, not

how to do it. They are powerful, implementation-language indepen-

dent, expressive, formal, and beautiful. It might surprise you, then,

that these pure rule-based translation systems don’t enjoy widespread

usage in industry.

From what I can tell, developers have a number of objections. These

systems tend to be complex beasts. With a large number of translation

rules, translations can be slow (though we might not care). Some also

find the rule engines’ functional programming style too different from

the imperative programming style they’re used to. The rule engines

themselves are black boxes, which can make it hard to understand

what’s gone wrong in a translation. Some of these systems were also

designed to be the center of the universe, making them tricky to inte-

grate into applications.

If you need sophisticated pattern matching that integrates well with

Java, take a look at Tom7 (Tom also supports C, Python, C++, and C#)

and the Scala8 programming language (which looks like Java + ML).

Next we’re going to look at the translator architecture used most often

in industry. It’s a hybrid approach that glues together components from

different formal tools. As you’d expect, as we reduce the level of abstrac-

tion, we’ve got more work to do. In compensation, we get to work with

simpler tools and use familiar programming languages. We also get

greater control over efficiency.

11.3 Model-Driven Translation

In a model-driven translator, everything centers around an input model

created by the parser. In its simplest form, a model-driven transla-

tor creates an AST input model and then walks it to generate output

with print statements.9 The only difference between this and a syntax-

directed translator is that we generate text while walking a tree instead

of while parsing a token stream.

The advantage of creating an AST first is that we can do semantic anal-

ysis before generating output. Most of the time, we’ll need to annotate

7. http://tom.loria.fr

8. http://www.scala-lang.org/

9. The figures in this section use the more general term intermediate representation (IR),

instead of AST.
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Figure 11.4: Model-driven translator with tree rewriting

the AST with symbol and type information before generating output. In

Figure 11.3, we can see the overall architecture. From a software engi-

neering point of view, it’s also nice to keep output-language specific

actions out of the parser. Sequestering them in a separate tree walker

lets us reuse the parser for other tasks.

Once we’ve got an AST, we can also restructure it as part of the trans-

lation, as shown in Figure 11.4. The role of tree rewriting in translator

design is a pretty big topic and too much to go into here. Unless you

have a lot of experience building translators, I’d avoid rewriting the tree

unless you’re doing some simple optimizations like we did in Pattern

15, Tree Pattern Matcher, on page 138. The majority of (noncompiler)

translators skip tree writing and go directly to output generation.

From the AST input model, we’re going to learn how to derive an appro-

priate output model instead of immediately generating output. Sim-

ple print statements fall flat when the input and output phrase orders

don’t line up. We really need to buffer up the translated phrases and

arrange them later in the proper order. As we walk the input model,

we’ll match subtrees and create output objects to represent translated
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Figure 11.6: Nested output model for Java file

phrases (as summarized by Figure 11.5). These output objects can be

mindless strings, templates, or custom-built objects. The key is orga-

nizing them into a proper output model.

The structure of an output model is always a nested arrangement of

output objects. For example, in Figure 11.6, we see a hypothetical out-

put model for a specific Java program. The overall File object embeds

Class objects, which embed Field and Method objects, and so on. For

large Java programs, this data structure can be deeply nested.

Personally, I like to think of these nested structures as trees. In Fig-

ure 11.7, on the following page, we see the equivalent tree structure,

which should look familiar. It’s a syntax (parse) tree. As we learned

in Chapter 2, Basic Parsing Patterns, on page 37, a syntax tree repre-

sents the underlying syntactic structure of a phrase. My point is that

using a hierarchy of output objects to represent the output makes sense

because it’s equivalent to a syntax tree.

In this section, we’re going to learn about the different kinds of out-

put objects and why we need to create those objects in the first place.

After that, we’ll dig into the mechanics of constructing output model

hierarchies.
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Fi e

C ass C ass

Fie d Fie d Method Method... ... ...

... ...

Figure 11.7: Hierarchy view of nested output model for Java file

Creating Target-Specific Generator Classes

Because we’re programmers, we tend to write classes to solve problems.

For example, to generate SQL CREATE TABLE statements, it seems like a

good idea to design a Table class (see Pattern 31, Target-Specific Gener-

ator Classes, on page 319). We can then render it to text by calling its

toString( ) method. This approach works and feels very comfortable.

The problem is that it’s often a huge pain to create such output data

structures manually. It’s easier just to emit the output directly while

walking the input model. For example, let’s say we want to generate the

Java bytecodes for a “hello world” main( ) method. To create a bytecode

output model for main( ), we can use the Byte Code Engineering Library

(BCEL). Here is the sample code from the BCEL manual10 to create the

method definition object:

MethodGen mg =

new MethodGen(ACC_STATIC | ACC_PUBLIC, // access flags

Type.VOID, // return type

new Type[] { // argument types

new ArrayType(Type.STRING, 1) },

new String[] { "argv" }, // arg names

"main", "HelloWorld", // method, class

«an InstructionList», «a ConstantPoolGen»);

That seems like a lot of work just to define a method. All of these

constructor calls really add up quickly to a very large code generator.

Rather than using these target-specific generator classes, it’s easier to

use a few print statements to generate a method definition in a byte-

10. http://jakarta.apache.org/bcel/manual.html
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code DSL. For example, using the Jasmin11 bytecode assembler, here’s

what main( ) looks like:

.method public static main([Ljava/lang/String;)V

...

.end method

This is much more clear. Of course, we have to learn a tiny bit of syntax,

but that’s easier than learning the vagaries of a library such as BCEL.

The only strange bits are the [Ljava/lang/String; and V strings, which are

Java type encodings12 representing an array of String objects and void,

respectively.

Aside from being a hassle, it’s usually not worth the development and

run-time cost to create a data structure when the input model itself is

close enough to be workable. If we have an AST subtree, for example,

that represents the main( ) method, there’s no point in writing a class

like MethodGen. Here’s a sample AST (Pattern 11, Irregular Heteroge-

neous AST , on page 114) node for a method definition:

class MethodNode extends StatNode {

String name;

Type returnType;

List<String> modifiers; // public, static, final, ...

List<ArgNode> args;

BlockNode body;

...

}

From that, we can directly generate the Jasmin code, letting Jasmin do

all of the work to emit the .class file:

void gen(MethodNode m) { // method node visitor

System.out.print(".method ");

«print m.modifiers»

System.out.print(m.name+"(");

for (ArgNode a : m.args) gen(a); // visit the arguments

System.out.print(")");

«println m.returnType»

gen(m.body); // visit the method body

System.out.println(".end method");

}

This principle also applies when we are generating high-level source

code, not bytecodes. For example, rather than building up objects that

11. http://jasmin.sourceforge.net

12. http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#1169
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represent Java program phrases such as WhileStatement and AssignState-

ment, we can just spit out Java code by walking the AST. Here is how

we could generate code for Java assignments using Pattern 13, External

Tree Visitor, on page 131:

class AssignNode extends ExprNode { String id; ExprNode valueExpr; }

...

void gen(AssignNode n) {

System.out.println(n.id+"="); // emit left-hand-side and '='

gen(n.valueExpr); // walk right-hand-side expression

System.out.println(";"); // emit final ';'

}

OK, so we can save some work by generating text on the fly while walk-

ing a suitable input model instead of creating an output model. The bad

news is that print statements don’t always work.

Print Statements Are Easy but Inflexible

Visitors that directly emit text with print statements work fine as long

as the order of input and output constructs is very similar. The order

in which we visit input model nodes has to match the order in which

we need to generate output.

This turns out to be pretty restrictive. Take Java to C translation, for

example. Because C doesn’t allow forward references, we need to gen-

erate a list of function declarations at the top of the output C file:

extern int f(float y); // f declaration

extern void g(); // g declaration

int f(float y) { g(); } // f definition; forward reference to g()

void g() { ... } // g definition

Without the extern declaration of g( ), a C compiler would complain

about the call to g( ) inside f( ). So, for each function, we need to emit

both a declaration and a definition. Our first attempt might look like

this:

void gen(MethodNode m) {

«compute and emit extern C declaration»

«translate Java body and emit C function»

}

Unfortunately, this won’t work. The output would interleave the decla-

rations and definitions:

extern int f(float y); // f declaration

int f(float y) { g(); } // f definition; forward reference to g()

extern void g(); // g declaration; TOO LATE!

void g() { ... } // g definition
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Oops. We need all the declarations first. Somehow, we have to separate

when we translate phrases from when we spit them out.

Decoupling Input Model Traversal from Output Order

There are two ways to solve input-output ordering mismatches. First,

we can walk the tree twice, once for declarations and again for defini-

tions using two visitor methods:

void genDecl(MethodNode m) {«compute and emit extern C declaration»}

void genDef(MethodNode m) {«translate Java body and emit C function»}

This works but is inefficient because we have to walk the (potentially

very large) tree twice. This is an output-driven approach because it

“pulls” information from the input model according to the output order.

The second choice is to walk the input model a single time, collecting

the declarations and definitions in lists instead of directly emitting text:

void gen(MethodNode m) {

«compute and add extern C declaration to a list»

«translate Java body and add C function to a list»

}

Once we’ve got those two lists, we can emit the proper C file by printing

the lists one after the other. This input-driven approach lets us decouple

the input and output order, albeit at the cost of buffering up the various

output pieces. It’s totally worth it, though. One of the most important

lessons I’ve learned over the years is that we should compute informa-

tion and translate phrases when it’s convenient and efficient to do so,

not when the output order demands it.

Let’s see what the input-driven approach looks like. Instead of printing

on the fly, we’ll create strings. Here’s a visitor method that returns a

string representing an assignment:

String gen(AssignNode n) {

String e = gen(n.valueExpr); // walk right-hand-side expression

return n.id + "=" + e + ";";

}

Or, instead of writing the AST visitor manually, we could use Pattern

14, Tree Grammar, on page 134:

assign returns [String s]

: ^('=' ID e=expression) {$s = $ID.text + "=" + $e.s + ";";}

;

expression returns [String s] : ... ;
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Chess Analogy for Input- vs. Output-Driven Generation

Setting up a chessboard involves putting the chess pieces in
specific locations on the board. We can think of the jumble
of chess pieces as the input model (an unsorted list of pieces).
The output is a 2x8 matrix, assuming we’re setting up only one
player’s side. The output-driven approach marches through the
output matrix position by position. At each spot, it scans through
the input model looking for the right piece. In contrast, the
input-driven approach simply places pieces in the right spot as
it encounters them:

Input-driven

Wa k chess p eces and p ace them n the r ght spot

Output-driven

Wa k chessboard and find proper p ece for each pos t on

The dashed lines signify the output-driven generator searching
for the right piece.

The point is that we’ve created the same text as we did in the previ-

ous section. We just aren’t emitting it as we compute it. Whoever calls

method gen( ) or rule assign can decide what to do with the translated

text.

Let’s review what we’ve learned so far. We know that the translation

process is about creating an input model, enriching it with semantic

information, and then creating an appropriate output model. Target-

specific generator classes are familiar and well-structured, but building

them is a lot of work, and they’re often a hassle to use. Visitors that

generate text directly are much more convenient. Unfortunately, print

statements lock the order of the output elements to the input model
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traversal order. Besides, computing output strings in a general-purpose

programming language ain’t exactly pretty.

All is not lost, though. We can use templates, which are the best of

both worlds. A template is a text document with “holes” that we can

fill in. Templates are specialized generator objects that support a DSL

designed for generating structured text. We’ll explore templates in great

detail in the next chapter.

In the meantime, let’s finish off our discussion of the translation pro-

cess. We need to learn some of the engineering details involved in cre-

ating output models.

11.4 Constructing a Nested Output Model

To build a translator, we need to look at the mechanics of matching an

input construct and creating the right output object. Then, we have

to figure out how to organize all those translated pieces into a nested

hierarchy.

Creating Output Objects from Input Phrase Components

Translating an individual input phrase means creating the appropri-

ate output model object and injecting it with elements from the input

phrase. Here’s what the assignment node example from the previous

section looks like using an AST visitor and a target-specific generator

object:

Statement gen(AssignNode n) {

Expression e = gen(n.valueExpr); // walk right-hand-side expression

return new AssignmentStatement(n.id, e);

}

Notice that we’re not specifying the actual output literals. That would

hard-code the translation. It would also make our translator hard to

read because we’d be mixing the syntax of two languages (that of the

implementation language and that of the output language). When using

such explicit generator classes, the “pipe” between input and output

model is usually the constructor arguments.

Mapping an assignment subtree to an assignment output object is rea-

sonably clear, so let’s try something a little harder: translating scalar

and matrix multiplication. The syntax is the same for both, but seman-

tically, they are very different. So, our translation method has to test

the type of these subexpressions in order to create the proper output

object.

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=303


CONSTRUCTING A NESTED OUTPUT MODEL 304

// Match scalar a x b and matrix A x B multiplies for a math DSL

// Assume nodes contain result types. match ^('x' expression expression)

Expression gen(MultiplyNode n) {

Expression a = gen(n.left);

Expression b = gen(n.right);

if ( «subexpressions have matrix types» )

return new MatrixMultiply(a, b);

else

return new ScalarMultiply(a, b);

}

The «subexpressions have matrix types» conditional would test the subex-

pression types stored in the AST nodes like we did in Pattern 22, Enforc-

ing Static Type Safety, on page 216.

To move things around locally within a phrase, all we have to do is

change some parameters. For example, we can change the order of

scalar multiplication operands by swapping the order of constructor

parameters: ScalarMultiply(b, a). To send a translated phrase to a radi-

cally different spot in the output, though, we need to figure out how to

organize the overall output model.

Organizing Translated Phrases into a Nested Model

To create an output model, we have to build up a nested data struc-

ture composed of output objects. (For the purposes of this discussion,

we’ll continue using specialized generator objects.) Let’s start with the

easiest case where the input and output element orders match up.

Let’s say we’ve got a Java method AST input model and want to cre-

ate a C# output model. Using a visitor, we could have all the methods

return an output object. An invoking visitor method would incorpo-

rate the return value into its own output object. For example, given a

MethodNode, the following visitor method returns a Method object rep-

resenting a C# method.

Method gen(MethodNode m) { return Method(m.id, gen(m.bodyBlock)); }

This visitor method injects the name and translated body returned from

gen(m.bodyBlock) into the Method instance. The following visitor method

handles the body translation:

Block gen(BlockNode b) {

List<Statement> stats = new ArrayList<Statement>();

for (StatementNode s : b.stats) stats.add( gen(s) );

return new Block(stats);

}
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Whetting Your Appetite for Templates

As a teaser for the next chapter, here’s how we’d use a tem-
plate and an ANTLR tree grammar to map input patterns to
output constructs:

assign:
^('=' ID e=expression) -> assign(id={$ID.text}, e={$e.st}) ;

The rule matches an input assignment tree and creates an
instance of the template called assign. The assign template def-
inition might look like this:

assign(id, e) ::= "<id> = <e>;"

The names inside angle brackets are the “holes” we can fill in.
Templates are like generator classes except that we only use a
single class called StringTemplate.

For mapping a x b to the appropriate output constructs, we
could use the following tree grammar rule with template con-
structors and a predicate:

// Match scalar a x b and matrix A x B multiplies in a math DSL
// Assume each node knows its result type. Each
// rule also implicitly returns a template output model object.
mult: ^('x' a=expression b=expression)

-> {«subexpressions have matrix types»}?
matrixMult(a={$a.st}, b={$b.st})

-> scalarMult(a={$a.st}, b={$b.st})
;

It queues up the translated statements and injects them into the Block

return value. Among the statement subtree visitor methods, we’d have

something like the following to translate assignments:

AssignStatement gen(AssignNode a) {

return new AssignStatement(a.id, gen(a.expr));

}

Now let’s deal with the situation where the output element order differs

from the input order. As we saw in Section 11.3, Decoupling Input Model

Traversal from Output Order, on page 301, translating Java to C code

requires that we generate a declaration for each function definition.

Most important, those declarations must appear before all the function

definitions. To translate a Java class to C, we need to generate the

following strict sequence.
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CFile cfile = new CFile();

void gen(ClassNode c) {

    cfile.struct = new Struct(c.name);

    «foreach member m in c.members»

        gen(m);

}

void gen(FieldNode f) {

    Variable v = «C var def from f»;

    cfile.struct.fields.add(v);

}

void gen(MethodNode m) {

    cfile.declarations.add(«C function d

    cfile.definitions.add(«C function from Java method»);

}

 

 

 

fields

function declarations

{

};

Figure 11.8: Assembling a C file model using Java AST visitor

#include <stdio.h>

«struct» // has all fields extracted from Java class

«declarations» // function declarations from Java methods

«definitions» // function definitions from Java methods

The output model is shown graphically in Figure 11.8, which also

shows how visitor methods would fill the model. One of the key ele-

ments of the code fragment is the “global” cfile variable. In general,

translators need to track a few locations in the output model. These

locations are typically things such as the current file object, the cur-

rent class object, or the current method object. It’s like remembering

where the refrigerator and spice cabinets are in your kitchen. They tell

you where to put things and effectively organize your kitchen.

The visitor method for ClassNodes indirectly triggers the other two visi-

tor methods for field and method nodes. Those methods need to inject

data into the model starting at the root (the outermost output object).

The visitor methods don’t bother returning output objects because they

can directly inject elements. (In my experience, you’ll have some visitor

methods that return output objects and some that don’t.)

When the visitor finishes walking the input model, we can generate

code by calling toString( ) on the root, cfile. That, in turn, renders its

embedded objects with toString( ), and so on, recursing down the output

object hierarchy. And with that toString( ) call, we finish the story of how

we translate text using the model-driven approach.
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At this point, you’re familiar with the three translation strategies. You’ve

also learned a lot about the model-driven approach. We learned that

print statements aren’t always powerful enough but that they are much

easier to use than writing specific output classes. In the next chap-

ter, we’ll see that templates are often a good compromise between the

two. They let us construct the nested output models we need without

having to define a new class for every output construct. Before we get

there, though, let’s formally define the patterns we’ve talk about in this

chapter:

Pattern When to Apply

Pattern 29, Syntax-

Directed Translator

This pattern is the simplest mechanism

because it uses print statements to generate

output rather than creating an output model.

Use this pattern if you can get away with it.

In other words, if you don’t need information

appearing later in the input, syntax-directed

translation works. These translators also can-

not generate output in a radically different

order from the input.

Pattern 30, Rule-

Based Translator, on

page 313

Rule-based systems are elegant but often dif-

ficult to learn. They are also black boxes,

which can make it difficult to debug trans-

lators. At the very least, it makes some pro-

grammers uncomfortable. In the hands of pro-

grammers with very strong theoretical back-

grounds, these systems often prove extremely

powerful.

Pattern 31, Target-

Specific Generator

Classes, on page 319

This pattern represents the final output model

for a model-driven translator. Each output

language construct corresponds to a specific

class. The fields of an output object track any

embedded output objects.

229 Syntax-Directed Translator

Purpose

This pattern generates text using a grammar, or equivalent hand-built

parser, embedded with actions.
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Discussion

Syntax-directed translators are little more than grammars salted with

actions (code snippets). They don’t build internal models and then walk

them to generate output.

Putting actions directly in a grammar sometimes makes the grammar

difficult to read. It also locks the grammar into a single bit of trans-

lator functionality. It’s often a good idea to disentangle actions from

the grammar by following what we did in Pattern 26, Bytecode Assem-

bler, on page 265 (another example of a syntax-directed translator).

The assembler grammar defined placeholder methods that describe the

translator functionality:

protected void gen(Token instrToken) {;}

protected void gen(Token instrToken, Token operandToken) {;}

protected void defineFunction(Token idToken, int nargs, int nlocals) {;}

...

Then, the actions in the grammar invoked these methods to trigger

translation:

instr

: ID NEWLINE {gen($ID);}

| ID operand NEWLINE {gen($ID,$operand.start);}

...

;

To implement the translation, we created a subclass that defined the

concrete methods:

/** Subclass the AssemblerParser to actually implement the necessary

* symbol table management and code generation functions. */

public class BytecodeAssembler extends AssemblerParser {...}

If we wanted to make it easier to change the behavior of the translator

on the fly, we could pass in a strategy object. We’d move the placeholder

methods into an interface such as AssemblerBehavior. The actions would

then look like this: behavior.gen($ID) instead of just gen($ID). We’d pass

behavior in from the object using the assembler. In the next section,

we’ll follow this approach for our sample implementation.

Implementation

Let’s now implement a make-like build dependency DSL that translates

input like the following to an equivalent Java program:

«target-file» : «dependencies»

«action(s) that create target-file»
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For example, here are some rules from the sample makefile included in

the source directory:

t.o : t.c

gcc -c -o t.o t.c

go: t.o u.o

gcc -o go t.o u.o

echo done

Our goal is to generate makefile.java from file makefile. The entire process

looks like this:

$ javac *.java # build translator tool

$ java Maker makefile # translate makefile to makefile.java

$ javac makefile.java

$

Once we’ve got an executable version of makefile, we can ask it to build

the targets. By asking it to make target go, it has to first build the t.o

and u.o dependencies. Then it can create the go file:

$ java makefile go # build target "go"

build(t.o): gcc -c -o t.o t.c

build(u.o): gcc -c -o u.o u.c

build(go): gcc -o go t.o u.o

build(go): echo done

done

$

If we run the same target again, it gives no output because go now

exists and is newer than its dependencies:

$ java makefile go # nothing to do now

$ java makefile clean # wipe out all files

build(clean): rm t.o u.o go

$ java makefile clean # oops, files are already cleaned up

build(clean): rm t.o u.o go

rm: t.o: No such file or directory

rm: u.o: No such file or directory

rm: go: No such file or directory

$ java makefile go # build again

build(t.o): gcc -c -o t.o t.c

...

$

As you can see, makefile collects and emits any standard output and

standard error from the actions (processes) it executes.

Building Support Code and Defining the Translation

There are two key components to implementing this DSL: the translator

itself and the run-time support. Before we can figure out how to build
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the translator component, we need to create the run-time support and

manually translate a make file to Java code.

Let’s create an object to represent a make target, with all of its depen-

dencies and actions:

Download trans/make/Target.java

public class Target {

String name;

List<String> actions = new ArrayList<String>();

List<String> dependencies = new ArrayList<String>();

Then we need a dictionary that maps target names to Target objects

and a build( ) method to build a particular target. Let’s stick all of this

in MakeSupport. The details of walking the dependency list and check-

ing file system timestamps aren’t important here. We can assume the

support code just works.

Now, let’s figure out the translation. We can get away with a syntax-

directed translator because we can generate appropriate Java code as

we read the build instructions. Let’s start by mapping a sample target

to Java code. Given the t.o target rule, we need to generate something

like this:

target = new Target("t.o");

target.addDependency("t.c");

target.addAction("gcc -c -o t.o t.c");

targets.put("t.o", target);

We also need to wrap that in a method within a class like this:

import java.io.IOException;

class «makefile-name» extends MakeSupport {

public «makefile-name»() throws IOException {

Target target = null;

«code-for-targets»

}

}

The name of the class is the same as the input file, such as makefile.

Also in that class, we need to make a main( ) that creates an instance of

the generated object. Then, we can ask it to build a target specified on

the command line:

makefile m = new makefile(); // create Target dictionary

int r = m.build(args[0]); // build the target

System.exit(r); // exit with code from target build

So, that’s what the translation looks like. Now we have to build a gram-

mar that automates it by triggering code generation actions.
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Building the Translator

With some foresight, we can spec out the list of actions to trigger and

put them into an interface:

Download trans/make/MakeGenerator.java

public interface MakeGenerator {

public void start();

public void finish();

public void target(String t);

public void dependency(String d);

public void action(String a);

public void endTarget(String t);

}

This means we have to pass a MakeGenerator object into the ANTLR-

generated parser:

Download trans/make/Make.g

@members {

MakeGenerator gen;

public MakeParser(TokenStream input, MakeGenerator gen) {

super(input);

this.gen = gen;

}

}

Let’s write a grammar for our make-like DSL. A make file looks like a

series of rules:

Download trans/make/Make.g

rules

: {gen.start();} rule+ {gen.finish();}

;

To generate the header and trailer of the Java class, we trigger start( )

and finish( ) methods.

Each rule has a target file name, an optional list of file dependencies,

and at least one action:

Download trans/make/Make.g

rule

: target=ITEM ':' {gen.target($target.text);}

(i=ITEM {gen.dependency($i.text);})* '\n'

(ACTION {gen.action($ACTION.text);})+

{gen.endTarget($target.text);}

| '\n' // ignore blank lines

;
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Once we match the target name, we trigger target( ). Then, we trigger

dependency( ) for each file dependency and action( ) for each action we

find. The endTarget( ) trigger gives us the hook to generate the put( ) to

the targets dictionary.

The code generation implementations are messy (without templates)

but straightforward. For example, here is what we generate upon the

start( ) trigger:

Download trans/make/JavaGenerator.java

public void start() {

out.println(

"import java.io.IOException;\n" +

"class "+makefile+" extends MakeSupport {\n" +

" public "+makefile+"() throws IOException {\n" +

" Target target = null;\n");

}

The majority of the methods are much smaller. Here’s how we respond

to target( ):

Download trans/make/JavaGenerator.java

public void target(String t) {

t = t.trim();

out.println("\ttarget = new Target(\""+t+"\");");

}

The translator main( ) program lives in Maker. It creates the ANTLR-

generated parser and lexer as usual but passes in a JavaGenerator:

Download trans/make/Maker.java

JavaGenerator gen = new JavaGenerator(makefileName);

MakeParser p = new MakeParser(tokens, gen);

try { p.rules(); } // parse, triggering code generation actions

Other than support code, that’s all there is to it. Our parser directly

generates Java code that implements a make DSL. We compile it and

run it like any other Java program.

Related Patterns

This pattern is sort of a degenerate version of a model-driven translator.

We can think of the tokens as the input model and the generated text

as the output model.
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Building an Interpreted Version

Some of you might be wondering how we could interpret rather
than translate a makefile. The idea would be to create a dic-
tionary full of Target objects as an internal model. We’d need
grammar actions to create Target objects and set dependen-
cies and actions:

rule: target=ITEM ':'
{Target t = new Target($target.text);}
(i=ITEM {t.addDependency($i.text);})* '\n'
(ACTION {t.addAction($ACTION.text);})+
{targets.put(t.name, t);}

| '\n' // ignore blank lines
;

230 Rule-Based Translator

Purpose

A rule-based translator expresses a translation with a set of “x becomes

y” rules, written in the DSL of a pattern-matching engine.

Discussion

To use a rule-based system, we have to feed it two things: a grammar

that describes input sentences and a set of translation rules. The rea-

son we need the grammar is to get a Pattern 8, Parse Tree, on page 105.

The parse tree concretely defines what the various phrases and sub-

phrases are. That’s how they can avoid applying transformations inside

comments in the input stream, for example. Although it looks like we’re

doing text-to-text transformations, the underlying engine is actually

doing tree rewrites.

For complicated translators, we need to build a lot of ancillary data

structures beyond trees such as symbol tables and control-flow graphs

(that tell us which statements can get to other statements). We can do

all of that and then have the engine execute our transformation rules

based upon these data structures.

In practice, I use rule-based translators when I don’t have or don’t need

a full grammar. Most of the time I’m extracting or translating just some
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Syntax Description

«first-line-of-file» The first line of text in the file is the title of the page.

*«text»* Bold «text».

_«text»_ Italics «text».

@«url»@ Link to «url».

@«url»|«text»@ Link to «url» and make the link text be «text».

### «title» <h1> header.

## «title» <h2> header.

# «title» <h3> header.

* «item» A <ul> bullet list item. The * must start at the left edge.

[«rows»] A table full of rows, separated by -- on a line by itself.

Separate columns with |.

Figure 11.9: A simple wiki syntax

of the input phrases. To work without a full grammar describing the

entire input, the elements have to be easy to identify lexically (with

special characters) or with a simple grammatical structure. For exam-

ple, the ANTLR website has an example fuzzy Java parser that extracts

class, method, variable definitions, and method call sites.13

Since we’ve already looked at tree transformations, let’s see what we

can do with a set of lexical rules.

Implementation

Let’s translate the syntax of a simple wiki to HTML. This is actually sort

of tricky, which you might not expect. Translating *foo* to <b>foo</b>

doesn’t seem that hard. But, bullet lists and tables take some thought.

Defining a Wiki Syntax

Let’s start by defining some wiki syntax in Figure 11.9; then we’ll look

at a sample translation. File t.wiki in the source directory exercises the

various wiki features. With a little help from a CSS file, our translator

generates HTML that renders like the image in Figure 11.10, on the

next page.

13. http://www.antlr.org/download/examples-v3.tar.gz
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Figure 11.10: HTML translated from t.wiki

Our translator treats the first line of text as the title of the page. Within

the file, we need to put a blank line before paragraphs, bullet lists,

sections, and tables. Here’s a sample bullet list:

* E pluribus unum

* Emeritus

* Ergo

A blank line terminates the list. Tables live inside square brackets. The

-- row separator has to be on a line by itself to make it more obvious. |

is the column separator. Here’s a sample table:

[

row 1 col 1 | row 1 col 2

--

row 2 col 1 | row 2 col 2

]

You can take a look at the t.wiki file to see a nested table and examples of

italics elements, and so on. Any text other than the wiki syntax should

pass through unchanged. That’s one of the benefits of this method. We

don’t have to specify the syntax of the entire file, just the parts we care

about.

This isn’t the most sophisticated wiki in the world, but it’s complicated

enough to give the rule-based approach a workout. This example is
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highly ANTLR-specific, but any rule-based solution will have to deal

with the DSL and details of a particular tool.

Defining the Translation Rules and Main Program

Our implementation consists of only two files: a grammar full of lexical

rules and a main program that sets things up. Here’s the core of the

main program:

Download trans/wiki/WikiToHTML.java

header(out);

Wiki lex = new Wiki(new ANTLRReaderStream(fr), out);

try {

Token t = lex.nextToken();

while ( t.getType() != Token.EOF ) t=lex.nextToken();

}

finally { fr.close(); }

trailer(out);

Since this is still a lexer, we need to loop around a call to nextToken( ).

This forces the lexer to consume all the input. Before and after this

loop, we call header( ) and trailer( ) to spit out the HTML file header and

trailer. The grammar will be an ANTLR lexer grammar with option filter

turned on. This tells ANTLR to try the rules in order. So, if an input

chunk matches more than one rule, it will match to the first rule. As a

catchall, we’ve got an ELSE rule at the end that copies the input character

to the output:

Download trans/wiki/Wiki.g

ELSE: c=. {out.print((char)$c);} ; // match any char and emit

There’s a number of interesting things going on in this grammar:

• We’re using semantic predicates to turn rules on and off depend-

ing on the line number or character position within a line. Syntax

{«expr»}? is a semantic predicate that provides extra information

about the viability of a rule. Since ANTLR uses semantic predi-

cates only if syntax alone is insufficient, we need to use a special

version of a semantic predicate: {«expr»}?=>. The extra => forces

ANTLR to always test the predicate when choosing viable rules.

• We need to keep some state information like “we’re in a bullet list.”

• We use recursion (in a lexer) to allow nested tables. Rule TABLE calls

ROW, which calls COL, which matches a bunch of TABLE_CONTENT.

Rule TABLE_CONTENT matches everything up until the end of a col-

umn. Within that text, it looks for nested tables and bold or italics

items.
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Our first rule matches the title by matching a single line of text as long

as it occurs on the first line of the file:

Download trans/wiki/Wiki.g

TITLE

: {getLine()==1}?=> TAIL

{out.println("<title>"+$TAIL.text+"</title>");}

;

Rule TAIL is a helper (fragment) rule that matches any character other

than a newline:

Download trans/wiki/Wiki.g

fragment

TAIL : ~'\n'+ ;

ANTLR tries only the nonfragment rules when looking for a match. Nor-

mal (nonfragment) rules have to call fragment rules explicitly. TAIL is in

a separate rule because it’s convenient to say $TAIL.text in TITLE.

Since both the bold and bullet list items start with *, we have to distin-

guish them. According to our syntax, bullet list items have to start at

the left edge. So, rule BOLD is only applicable when it’s not on the left

edge:

Download trans/wiki/Wiki.g

BOLD: {getCharPositionInLine()>0}?=>

'*' {out.print("<b>");}

(c=~'*' {out.print((char)$c);})+

'*' {out.print("</b>");}

;

This rule matches * followed by any non-* characters followed by a

terminating * character. As it matches characters, it spits them to the

output stream.

Many of our wiki constructs have to appear after a blank line (bullet

lists, sections, tables, and regular paragraphs):

Download trans/wiki/Wiki.g

BLANK_LINE

: '\n\n' {out.println("\n"); closeList(); }

( UL

| SECTION

| TABLE

| /* paragraph */ {out.println("<p>");}

)

;

    

http://media.pragprog.com/titles/tpdsl/code/trans/wiki/Wiki.g
http://media.pragprog.com/titles/tpdsl/code/trans/wiki/Wiki.g
http://media.pragprog.com/titles/tpdsl/code/trans/wiki/Wiki.g
http://media.pragprog.com/titles/tpdsl/code/trans/wiki/Wiki.g
http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=317


RULE-BASED TRANSLATOR 318

The call to closeList( ) makes sure that any prior lists have their ter-

minating </ul> tag. We can easily generate the starting <ul> tag when

we match the first bullet list item after a blank line. Rule BLANK_LINE

invokes UL after matching \n\n. Here’s UL:

Download trans/wiki/Wiki.g

fragment

UL: '* ' {out.print("<ul>\n<li>"); context.push("ul");} ;

The rules track context using a context stack. We only need to worry

about bullet list context, but we could add numbered lists and so on.

When the stack is empty, we’re not in a special context. A blank line

after a bullet list item terminates the list. At that blank line, then, we

need to check for unterminated lists, which is the reason for the call

to closeList( ) in BLANK_LINE. That method pops the top context and ends

that element by emitting the proper HTML tag:

Download trans/wiki/Wiki.g

Stack<String> context = new Stack<String>();

void closeList() {

if ( context.size()==0 ) return;

String list = context.pop();

out.println("</"+list+">");

}

The bullet items beyond the first one can emit <li> tags without worrying

about context:

Download trans/wiki/Wiki.g

LI: {getCharPositionInLine()==0}?=>'* ' {out.print("<li>");} ;

Now let’s figure out how nested tables work. We need recursive rules,

which ANTLR fortunately supports even among lexical rules. The overall

table structure looks like this:

Download trans/wiki/Wiki.g

fragment

TABLE

: '[' {out.print("<table border=1>\n");}

ROW ('\n--\n' ROW)* '\n'

']' {out.print("\n</table>");}

;

Eventually, TABLE invokes TABLE_CONTENT, which can include another

(nested) table.
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Download trans/wiki/Wiki.g

fragment

TABLE_CONTENT

: TABLE

| BOLD

| ITALICS

| {!upcomingEndOfCol()}?=> c=. {out.print((char)$c);}

;

The last alternative matches anything not matched by the other alter-

natives. The predicate !upcomingEndOfCol() ensures that we match

characters only until we see the end of a column or table coming.

upcomingEndOfCol( ) manually checks up to three characters ahead to

make sure we don’t consume too much in TABLE_CONTENT:

Download trans/wiki/Wiki.g

boolean upcomingEndOfCol() {

return input.LA(1)=='|' ||

(input.LA(1)=='\n'&&

(input.LA(2)=='-'&&input.LA(3)=='-')||input.LA(2)==']');

}

This sample implementation illustrates what a rule-based system looks

like, but it’s nowhere near as sophisticated as the rule engines we men-

tioned in the introductory material for this chapter. That said, this lex-

ical filter mechanism is easier to learn and still very useful.

Related Patterns

This pattern lets us specify only those patterns we care about, just like

we did with trees in Pattern 15, Tree Pattern Matcher, on page 138. Most

rule-based translation engines internally use Pattern 8, Parse Tree, on

page 105. The sample implementation for this pattern uses an LL(k)

version of Pattern 2, LL(1) Recursive-Descent Lexer, on page 49.

231 Target-Specific Generator
Classes

Purpose

This pattern describes a class library whose sole purpose is to represent

and generate output constructs in a particular language.
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Discussion

Rather than use print statements to generate programs or data, gen-

erator classes let us insulate application code from the exact syntax

of an output language. In that sense, they are similar to templates.

The difference is, we’re defining a special class for each output ele-

ment, whereas, with templates, we use a single StringTemplate class. In

both cases, the objects hold the data necessary to generate the associ-

ated output constructs. The only (minor) advantage to using specialized

generator classes is that we can name the data fields.

Each generator class has a method, usually toString( ), that renders the

object to text in the right format. The typical generator class look some-

thing like this:

class «OutputConstruct» {

«field1»

«field2»

...

«fieldN»

public «OutputConstruct»(«field args») { «set fields» }

public String toString() { «compute string from fields» }

}

Let’s think about generating HTML. We could build a library with

classes such as Document, Head, Title, Table, ListItem, and so on. Title

instances would hold a title string, for example. Its toString( ) method

would emit <title>«a-title»</title>.

It’s reasonable to make generator classes handle slight differences in

the output language, such as different versions of HTML. But, it’s best

not to think of these generator classes as generating radically differ-

ent output according to some parameter. These classes are part of the

output model. Their job is simply to emit text in the right format, not

perform a translation.

Implementation

To demonstrate generator classes, let’s build Table and Column classes

to represent SQL table creation statements. An SQL table needs to

know the table name and the list of columns:

public class Table {

String name; // SQL table name

List<Column> columns = new ArrayList<Column>();

public String toString() {

StringBuffer buf = new StringBuffer();

buf.append("CREATE TABLE "+ name+" (\n");
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int i = 0;

for (Column c : columns) {

if ( i>0 ) buf.append(",\n");

buf.append(" "); // indent a bit

buf.append(c);

i++;

}

buf.append(");\n");

return buf.toString();

}

}

For each column, we need to know its name, its type, and the list of

attributes like NOT NULL and UNIQUE:

public class Column {

String name; // SQL column name

String type; // SQL column type

List<String> attrs; // SQL column attributes

public String toString() {

StringBuffer attrBuf = new StringBuffer();

int i = 0;

for (String a : attrs) {

if ( i>0 ) attrBuf.append(", ");

attrBuf.append(a);

i++;

}

return name+" "+type+" "+attrBuf.toString();

}

}

To use these classes, we create a Table and then Column instances for

each column and fill in their fields. To generate text, we’d print the

result of calling toString( ) on the Table instance.

Instead of creating strings in toString( ), we could use templates. In that

case, though, we might as well avoid the special generator classes and

just use templates all by themselves.

Related Patterns

These generator classes are sort of like hard-coded templates.

Up Next

This chapter gives you the big picture on computer language trans-

lation. In the next chapter, we’re going to drill down further into the

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=321


TARGET -SPECIFIC GENERATOR CLASSES 322

model-driven approach. We’ll learn how to use templates to generate a

number of DSLs and programming languages. The examples feed off of

a variety of input models to create template-based output models.

Before we move on, let me highlight the two important lessons from this

chapter. First, to properly translate an input phrase, we can’t just clev-

erly replace input symbols with output symbols. We have to fully under-

stand the input syntactically and semantically and then pick the proper

output construct. Second, when using the model-driven approach, we

need to decouple input model traversal order from the order dictated

by the output language. This input-driven approach lets us compute

information and translate phrases when it’s convenient and efficient to

do so.

    

http://books.pragprog.com/titles/tpdsl/errata/add?pdf_page=322


Chapter 12

Generating DSLs with Templates
Unlike the other chapters in this book, this chapter doesn’t have any

patterns. Instead, we’re going to learn by example. We’re at the point

where we need to look at some bigger problems and start applying the

patterns we’ve learned. In this chapter, we’re going to build a number

of template-driven generators to demonstrate the model-driven strat-

egy from the previous chapter. In the previous chapter, we’ll see how

language patterns apply to some interesting problems. The implemen-

tations are up to you, but I’ll get you started by laying out the basic

application architectures.

We’re going to use a template engine called StringTemplate1 (ST)

throughout this chapter. There are lots of other template engines (such

as Velocity, XText, Ruby’s RGEN, and Microsoft T4), but only ST strictly

enforces model-view separation.2 In a nutshell, that means we keep all

the logic in code and all the output text in the templates. By doing so,

we can reuse templates with different generators and generate different

languages from a single model.

Though we’ll use ST in these examples to generate output, this chapter

is really about using template engines in general to generate structured

text. Remember, when learning to fly, there’s no getting around pick-

ing an airplane. Later, you can transfer these techniques to another

template engine.

1. http://www.stringtemplate.org

2. http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf
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Here are the examples we’re going to build with ST:

• Webpage link visualizer: From a list of links between pages, this

example generates DOT graphics files for Graphviz.3 We’ll create a

simple input model and then walk that model to create a nested

tree of templates. It demonstrates the basic principle of walking

an input model to create templates.

• AST visualizer: This example walks ASTs to generate DOT descrip-

tions. It demonstrates that we can reuse templates with a com-

pletely different input model (an AST this time). While walking the

AST, though, it doesn’t match any subtrees. It just generates DOT

code to show ASTs visually.

• C code generator: We’ll generate Cymbol code from a Cymbol

AST using Pattern 14, Tree Grammar, on page 134. The exam-

ple matches subtrees and maps them to appropriate templates.

It’s the kind of generator we really need to perform a translation.

We’ll encode “this goes to that” transformation rules in a general-

purpose programming language.

• SQL schema generator: Using Java’s reflection API as an input

model, this example generates SQL CREATE TABLE statements. The

SQL describes a schema suitable to store simple Java objects.

We’ll get familiar with a key ST principle: applying a template to a

list of data elements (ST doesn’t have a foreach loop).

• Combined SQL and Java code generator: This final example puts a

lot of things together and explains how to build a retargetable code

generator. The sample code can generate both the SQL schema

from the previous example and the associated Java serialization

methods. The generator uses the same input model but different

templates to create different output hierarchies.

Before diving into the examples, we should build a trivial code generator

to get familiar with the ST engine.

12.1 Getting Started with StringTemplate

ST templates are chunks of text and expressions enclosed in angle

brackets: <expression>. (You can also tell it to use $expression$.) ST

ignores everything outside the expressions, treating it as just text to

spit out. ST is a lightweight library (not a tool or server) with two key

3. http://www.graphviz.org
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classes: StringTemplate and StringTemplateGroup. We can create StringTem-

plate objects using a string literal in code or load them from a template

group file using StringTemplateGroup.

The basic idea behind constructing output is that we create a template

and inject it with attributes (any Java object). The expressions within

a template feed on these attributes to compute text values. We create

nested template hierarchies by injecting templates as attributes into

other templates.

To try out ST, the first thing we have to do is make sure that Java

can see the ST library. For your convenience, the main code direc-

tory includes an uber-JAR called antlr-3.2.jar that contains ST as well as

all the ANTLR stuff. Otherwise, you can download ST4 and its depen-

dent library ANTLR v2.7.7.5 (It’s currently written in an older version of

ANTLR than the v3 we’re using in the rest of the book.) It’s a good idea

to add these JARs to your CLASSPATH environment variable.

Here’s a simple example that generates an assignment statement (see

the code/trans/intro directory):

import org.antlr.stringtemplate.*;

import org.antlr.stringtemplate.language.*;

...

String assign = "<left> = <right>;";

StringTemplate st = new StringTemplate(assign,

AngleBracketTemplateLexer.class);

st.setAttribute("left", "x"); // attribute left is a string

st.setAttribute("right", 99); // attribute right is an integer

String output = st.toString(); // render template to text

System.out.println(output);

Creating a template is as simple as passing a string to the StringTemplate

constructor. In this case, we’re also making sure that ST uses angle

brackets for expression delimiters. Once we’ve got a template, we can

inject left and right attributes and ask ST to evaluate the template by

calling toString( ).

To try this example, jump into the right directory, compile Test.java, and

run Test:

$ cd root-code-dir/trans/intro

$ ls

Test.java antlr-2.7.7.jar stringtemplate-3.2.jar

4. http://www.stringtemplate.org/download.html

5. http://www.antlr2.org/download//antlr-2.7.7.jar
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$ javac -cp ".:antlr-2.7.7.jar:stringtemplate-3.2.jar" Test.java

$ java -cp ".:antlr-2.7.7.jar:stringtemplate-3.2.jar" Test

x = 99;

$

If you have the JARs in your CLASSPATH, you don’t need the -cp option.

Now that we’ve got some idea of what a template looks like and how to

execute it, let’s take a look at ST’s four fundamental operations:

• Attribute references such as <user>: ST evaluates this expression

by looking up user in the attribute dictionary for this template and

calling its toString( ) method. If the attribute has multiple values (an

array, List, Map, and so on), ST calls toString( ) on each value.

• Template references: Referencing another template acts like an

#include or macro expansion. It embeds the referenced template

within the surrounding template, adding another level to the tem-

plate hierarchy. When generating Java code, we might factor out a

bunch of import statements into a separate template called imports.

In the main Java file template, for example, we could include the

imports with expression <imports()>.

• Conditional includes: ST can conditionally include subtemplates

based upon the presence or absence of an attribute. For exam-

ple, the following conditional emits one of two strings depending

on whether attribute retValue exists (it’s non-null in the attribute

dictionary):

<if(retValue)>return <retValue>;<else>return;<endif>

The one special case is that ST tests the value of Boolean objects,

not their presence or absence.

• Template application: Instead of a foreach loop, ST applies (maps)

templates to multivalued attributes. For example, <strings:def()>

applies template def to the list of elements in attribute strings. The

colon is the “apply” operator. ST automatically creates an instance

of def for each element in attribute strings, passes in strings[i], and

renders the template to text.

Sometimes it’s easier to in-line a template. If we have a list of

function names, for example, we can generate a call to each one

of them with the following expression:

<names:{n | <n>();}> // parameter n iterates through names

If names contains f and g, the expression evaluates to f();g();.
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As we’ll see in the examples, building an overall template means build-

ing a template tree. The overall template contains subtemplates that

themselves contain subsubtemplates, and so on. Let’s say we wanted

to generate a C code file. We’d build the overall template from a list

of function templates. We’d build the function templates from state-

ment templates. We’d build those statement templates from expression

templates.

A template hierarchy is the dual of a parse tree. We want to create an

“unparse tree,” you might say. A parse tree has rules as internal nodes

and tokens as leaves. A nested template tree has templates for internal

nodes and attributes as leaves. Once we’ve got the tree, we can convert

it to text with a recursive walk. Calling toString( ) on the root template

triggers a call to toString( ) on each child template, and so on, until it

reaches the attribute leaves.

ST has some interesting features and characteristics that distinguish it

in many ways from other template engines. Let’s take a quick look at

them.

12.2 Characterizing StringTemplate

ST is a dynamically typed, pure functional language with dynamic scop-

ing and lazy evaluation. Those fancy terms highlight some important

characteristics, so let’s define them:

• Dynamically typed: ST uses toString( ) to convert attributes to string

values. Since all Java objects answer this method, ST works with

any Java object. Also, if you ask for property b of attribute a (with

a.b), it’s up to you to make sure attribute a has that property at

run-time. Python and Ruby programmers should feel very much

at home.

• Pure functional: All expressions are side-effect free. There’s no

direct way for ST to alter data values or data structures that we

pass in. (Well, you could code a toString( ) method to erase the hard

drive, but there’s no way ST can prevent that.) The end result is

that ST is free to evaluate template expressions in any order it

wants.

• Dynamic scoping: In most programming languages, if function f( )

calls g( ), g( ) cannot see the local variables of f( ). Most languages

are statically scoped. For a DSL such as ST, though, dynamic
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scoping makes more sense. Imagine an overall file template that

contains a number of embedded method templates. Dynamic scop-

ing means that method can reference file’s attributes, such as the

filename attribute.

• Lazy evaluation: Lazy evaluation means two things. First, ST only

evaluates the expressions that it has to. This is just like the famil-

iar if statement where the then clause executes only if the condition

is true. Second, lazy evaluation allows us to defer execution until

all attributes and embedded templates are available. This is like

building up a string in Python before execution using eval. We can

reference any variable we want in the strings without fear Python

will prematurely evaluate them. All we have to do is make sure

that they’re defined before we call eval( ). Here’s a sample Python

session:

>>> e = 'x'+'*'+'10' # ref x before it's defined

>>> x=3 # must define x before evaluating expression "x*10"

>>> print eval(e)

30

Lazy evaluation in templates means we can construct our template

tree and inject attributes in any order we want without fear of pre-

mature evaluation. We just have to make sure we set all attribute

values before calling toString( ) on the root template. Some of the

templates in Section 12.7, Building Retargetable Translators, on

page 347 rely on lazy evaluation.

All right, now that we know a little bit about ST, we’ll focus on building

examples for the rest of the chapter.

12.3 Generating Templates from a Simple Input Model

There are many cases where we have an internal data structure, such

as a tree or network graph, that we’d like to visualize for documentation

or debugging purposes. This is a perfect opportunity to flex our code

generation muscles. We can generate graphical descriptions using the

DOT DSL of Graphviz, an open source graph visualization tool.

As an example application, let’s visualize the link interconnections be-

tween web pages. It’ll teach us the basics of creating output templates

from an input model. From a list of Link objects, we’ll generate a series of

from->to edge definitions in a DOT file surrounded by some bookkeeping

definitions.
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index.html

login.html about.html

news.html

logout.html

error.html

Figure 12.1: Web viz

digraph testgraph {

node [shape=plaintext, fontsize=12, fontname="Courier", height=.1];

ranksep=.3;

edge [arrowsize=.5]

"index.html" -> "login.html"

"index.html" -> "about.html"

...

}

You can ignore the node, ranksep, and edge definitions if you want.

They only affect how big the elements of the graph are. The key to this

example is how we generate output, not exactly what we’re generating.

For convenience, let’s create a LinkViz class whose toString( ) method uses

ST to generate a proper DOT file. Then we can add a series of page links

and print out the DOT:

Download trans/web/GenDOT.java

LinkViz viz = new LinkViz();

viz.addLink("index.html", "login.html");

viz.addLink("index.html", "about.html");

viz.addLink("login.html", "error.html");

viz.addLink("about.html", "news.html");

viz.addLink("index.html", "news.html");

viz.addLink("logout.html", "index.html");

viz.addLink("index.html", "logout.html");

System.out.println(viz.toString());

In Figure 12.1, we see the graph we get after running the generated

DOT output through Graphviz.
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LinkViz is just a list of Link objects:

Download trans/web/LinkViz.java

List<Link> links = new ArrayList<Link>();

public static class Link {

String from;

String to;

public Link(String from, String to) {this.from = from; this.to = to;}

}

LinkViz’s toString( ) method walks these links to create edge templates and

embeds them within the overall file template:

Download trans/web/LinkViz.java

public String toString() {

StringTemplate fileST = templates.getInstanceOf("file");

fileST.setAttribute("gname", "testgraph");

for (Link x : links) {

StringTemplate edgeST = templates.getInstanceOf("edge");

edgeST.setAttribute("from", x.from);

edgeST.setAttribute("to", x.to);

fileST.setAttribute("edges", edgeST);

}

return fileST.toString(); // render (eval) template to text

}

To inject an attribute value, we use setAttribute( ) with a name-value pair.

Calling setAttribute( ) more than once with the same attribute name, such

as edges, builds up a list—it doesn’t replace the previous value (that

method should really be called addAttribute( )). Before we can execute

toString( ), we have to load our template library from a group file. Our

constructor can handle this for us:

Download trans/web/LinkViz.java

public LinkViz() throws IOException {

FileReader fr = new FileReader("DOT.stg");

templates = new StringTemplateGroup(fr);

fr.close();

}

Moving on to the templates now, let’s look at the overall file template:

Download trans/web/DOT.stg

file(gname,edges) ::= <<

digraph <gname> {

node [shape=plaintext, fontsize=12, fontname="Courier", height=.1];

ranksep=.3;

edge [arrowsize=.5]

<edges; separator="\n">

}

>>
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It accepts two attributes: a graph name and a list of edge templates.

The first ST expression, <gname>, references the gname attribute. It

evaluates to the attribute we sent in via setAttribute( ). The <edges; sepa-

rator="\n"> expression spits out the results from calling toString( ) on each

element of edges. The separator option says to put a newline in between

the edges so we get each one on its own line.

The edge template also has two attribute parameters that we inject

from LinkViz’s toString( ):

Download trans/web/DOT.stg

edge(from,to) ::= <<"<from>" -> "<to>">>

This code generator, then, is just a small input model, a bit of code

to walk that data structure, and two templates. We create templates

and inject attributes as we walk (the input-driven approach). We don’t

evaluate or emit anything until we’ve created the entire template tree.

You might be wondering why we go through the trouble of using tem-

plates for this simple generation problem. We could fairly easily gen-

erate the appropriate output with print statements or by building up

a string buffer. Print statements aren’t the best solution because we

might want to include the DOT output in another data structure. Piec-

ing together a string buffer isn’t the most flexible solution either, as we

saw in the previous chapter. It totally cements the output fragments

into our input model’s Java code.

In the next section, we’ll see that we can reuse templates for a totally

different application using a different input model.

12.4 Reusing Templates with a Different Input Model

We’ve done a lot with ASTs in this book, and it’s nice to see them visu-

ally. Rather than build all the tree diagrams in this book by hand, for

example, I used an AST walker to generate DOT scripts. The templates I

used are similar to those from the previous section. Because they aren’t

tied to the web link model, we can reuse them to build an AST visualizer

in this section.

For simplicity, let’s assume our trees follow Pattern 9, Homogeneous

AST , on page 109. Given a tree like (VAR int x (+ 3 3)), we want to generate

DOT that gives us a visualization like the tree on the top of the next

page.
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VAR

int x +

3 3

We need to generate DOT with the usual list of edges. But in this case,

we have to define the nodes before we reference them in the edge list.

DOT needs different tree nodes to have unique names. Since we have

two 3 nodes in the tree, DOT wants us to give them different node

names. The output looks like this:

...

node4 [label="+"];

node5 [label="3"];

node6 [label="3"];

...

node4 -> node5

node4 -> node6

...

We’ve already seen the templates, so we can focus on the differences.

We need to add a line to the file template:

file(gname,nodes,edges) ::= <<

digraph <gname> {

...

<nodes; separator="\n"> <! new !>

<edges; separator="\n">

}

That extra expression spits out all the nodes separated by a newline,

just as it does for edges. (Comments appear in between <!...!>.) The other

thing we need is a node template:

Download trans/ast/DOT.stg

node(name,text) ::= <<

<name> [label="<text>"];

>>

Our visualizer object will inject a unique name for each node so we can

associate it with the tree node text strings:

Download trans/ast/ASTViz.java

protected StringTemplate getNodeST(Tree t) {

StringTemplate nodeST = templates.getInstanceOf("node");

String uniqueName = "node"+counter++; // use counter for unique name

nodeST.setAttribute("name", uniqueName);

nodeST.setAttribute("text", t.payload);

return nodeST;

}
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Like we did in the previous section, we’ll use a visualizer object whose

toString( ) method creates a file template and renders it to text. The only

problem is that our input model is a tree. We don’t have a convenient

list of Link objects. We have two choices. We can walk the tree and create

a list of links as we did in the previous example. Or, we can walk the

tree, creating edge template instances as we go. If we stuff them into

the file template’s edges attribute, ST automatically makes a list for us.

Here’s the code to do a recursive depth-first walk:

Download trans/ast/ASTViz.java

/** Fill fileST with nodes and edges; return subtree root's ST */

protected StringTemplate walk(Tree tree, StringTemplate fileST) {

StringTemplate parentST = getNodeST(tree);

fileST.setAttribute("nodes", parentST); // define subtree root

if ( tree.getChildCount()==0 ) return parentST;

// for each child, create nodes/edges and inject into fileST

for (Tree child : tree.children) {

StringTemplate childST = walk(child, fileST);

Object from = parentST.getAttribute("name");

Object to = childST.getAttribute("name");

StringTemplate edgeST = getEdgeST(from, to);

fileST.setAttribute("edges", edgeST);

}

return parentST;

}

It starts out by creating a node template for the current node and

inserts it into the overall file template. Then, it recursively walks that

node’s children (if any). walk( ) returns the node template it creates for

parameter tree.

To create edge templates from parent to child, we have to know the

child’s unique name. To get its name, we call getAttribute( ). We can

set and read template attributes all the way up until we render the

templates to text. Once walk( ) creates the edge template, it embeds it

within the file template by injecting it via setAttribute( ).

This example generates DOT visualizations for any AST, regardless of

its structure. It can’t generate something different depending on a sub-

tree’s structure or contents. For translation purposes, though, we need

to distinguish between subtrees such as variable declarations and as-

signment statements. The next section demonstrates how to construct

different templates for different subtrees and assemble them together

into a template tree.
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12.5 Using a Tree Grammar to Create Templates

A surprising number of translators spit out the same language that they

read in. There are lots of useful things we can do such as refactoring,

reformatting, instrumenting, or simplifying source code. In this section,

we’re going to build a translator that reads in some Cymbol code (the

C++ subset from Pattern 19, Symbol Table for Classes, on page 182)

and spits it back out in more or less the same shape. For example,

here’s a sample Cymbol file:

Download trans/ast-st/s.cymbol

void f(int a[], int x) {

if ( x>0 ) return;

else x = 10;

a[3] = 2;

}

We want to read that in and send it back out using our translator pro-

gram:

$ java Test s.cymbol

void f(int *a, int x) { // "int a[]" becomes "int *a"

if ( (x > 0) ) return ;

else x = 10;

a[3] = 2;

}

$

The translator we’re going to build epitomizes the most common archi-

tecture. It has three core components: a parser grammar (Cymbol.g)

that builds the AST, a tree grammar (Gen.g) that constructs the tem-

plate output model, and the actual templates themselves (Cymbol.stg).

Each rule in the tree grammar yields a template representing a single

translated phrase. The tree traversal builds up the template hierarchy

by embedding the templates returned from one rule in the template

result of another. So, the input model traversal dictates the structure

of the output model. The templates just say what the output looks like.

This approach makes it pretty easy to adapt a generator to another

application. The tree grammar only cares about the name and attri-

butes of the templates. It doesn’t depend on what’s inside the tem-

plates. To change the output language, then, all we have to do is swap

out one group of templates for another. A lot of compilers use this

approach to generate machine code for lots of different processors.

(They use a tree grammar to map IR expression subtrees to assembly

code patterns.)
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For radically different output languages, though, sometimes we need

a totally different hierarchy rather than just different text in the tem-

plates. In Section 12.7, Building Retargetable Translators, on page 347,

we’ll move control of the hierarchy into the templates.

Since we already know how to build ASTs, we’re going to focus on the

generator component in this section. That means exploring the tree

grammar and the templates. So that we don’t get overwhelmed right

away by the full tree grammar, let’s start with something simple.

Comparing Visitors and Tree Grammars

To make it easier to understand how tree grammar rules construct tem-

plates, let’s compare them to visitor methods. Here’s a tree grammar

rule that matches an assignment subtree and returns an assign tem-

plate:

assign : ^('=' ID e=expression) -> assign(a={$ID.text}, b={$e.st})

The template argument list is the interface between the grammar and

the template. It injects attributes into the assign template: a={$ID.text}

sets attribute a to the identifier’s text, and b={$e.st} sets attribute b to

the template returned from the call to rule expression. The template itself

looks like this:

Download trans/ast-st/Cymbol.stg

assign(a,b) ::= "<a> = <b>;"

If we were building this by hand, we’d make a visitor method that looks

something like the following (assuming ANTLR’s homogeneous Com-

monTree nodes):

StringTemplate genAssign(CommonTree n) { // match ^('=' ID expression)

CommonTree idAST = (CommonTree)n.getChild(0);

String id = idAST.getText();

CommonTree exprAST = (CommonTree)n.getChild(1);

StringTemplate exprST = gen( exprAST );

StringTemplate st = templates.getInstanceOf("assign");

st.setAttribute("a", id);

st.setAttribute("b", exprST);

return st;

}

As you can see, building the visitor manually is a lot more work and

a lot more verbose. With this comparison in mind, let’s go through the

full Pattern 14, Tree Grammar, on page 134 now. It’s our first big one.
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Creating Templates with a Tree Grammar

Our tree grammar uses two important options. The tokenVocab options

says which parser grammar created our trees, and the output option

indicates that we want to build a template hierarchy:

Download trans/ast-st/Gen.g

tree grammar Gen;

options {

tokenVocab = Cymbol;

ASTLabelType = CommonTree;

output = template;

}

As we move into the rules now, notice that there are no output literals

in the tree grammar. Everything dealing with the output language is

encapsulated in the templates. Conversely, there’s no model logic in

the templates. This model-view separation is the linchpin supporting

retargetable code generators.

OK, let’s start with the highest-level rule, compilationUnit, which matches

all the various declarations:

Download trans/ast-st/Gen.g

compilationUnit

: ( d+=classDeclaration | d+=methodDeclaration | d+=varDeclaration )+

-> file(defs={$d})

;

The rule collects a list of the templates returned by the declaration

rules using the += list label operator. When using the output=template

option, each rule returns an st property. The -> operator indicates which

template to create for that rule. ANTLR looks for templates in the String-

TemplateGroup that we pass into the generated tree walker via setTem-

plateLib( ).

The rule injects data into the template via the attribute assignments in

the template argument list. In this case, it sets attribute defs to the list

we collect while matching the trees for this rule.

Aside from matching multiple elements, it’s common for grammars to

match optional items. For example, to match a class definition, we

might have to match a superclass.
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Download trans/ast-st/Gen.g

classDeclaration

: ^('class' name=ID (^(':' sup=ID))? m+=classMember+)

-> class(name={$name.text}, sup={$sup.text}, members={$m})

;

We can attach a label, sup, to the optional element and refer to it in

the template argument list. Label reference $sup is null when the rule

doesn’t match a superclass. ANTLR automatically prevents null pointer

exceptions when we reference known properties such as $sup.text.

Sometimes a rule does nothing but invoke another rule. Or, it needs to

create a template from a single node. The type rule demonstrates both

of these situations:

Download trans/ast-st/Gen.g

type: primitiveType -> {$primitiveType.st}

| ID -> {%{$ID.text}}

;

The first alternative says to match rule primitiveType and return its tem-

plate. The -> {...} syntax returns the template specified by the arbi-

trary expression in the curly braces. The second alternative matches

an ID node and then creates a template again using the -> {...} arbitrary

expression notation. In this case, it creates a template using a short-

hand available to any ANTLR action. ANTLR translates %{x} to some-

thing like new StringTemplate(x). The overall expression, {%{$ID.text}}, then

creates a template from the ID node’s text.

That shorthand is also useful when you have a whole list of single node

alternatives as we do in rule primitiveType:

Download trans/ast-st/Gen.g

primitiveType

@after {$st = %{$text};}

: 'float'

| 'int'

| 'char'

| 'boolean'

| 'void'

;

The @after action sets the return template property st to the text

matched for the rule. That way, we don’t have to use a -> template

action on each alternative.
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There’s one final complication we should look at before turning to the

templates. The following op rule matches any of the binary operators

including the < and <= relational operators:

Download trans/ast-st/Gen.g

op

// Text of operator is $start.getText(); $start is root token for op

@after {$st = %operator(o={$start.getText()});}

: bop | relop | eqop

;

As in primitiveType, we use the @after action to set the return template.

But, in this case, we can’t use %{$text} to create the return template

from the single node it matches. There are two problems. First, we have

an issue related to the < template expression delimiter characters. If

we try to create template with new StringTemplate("<="), StringTemplate

won’t like it because < starts a template expression. We need to create a

template with a single hole into which we can inject the operator string.

That’s why we need the operator template:

Download trans/ast-st/Cymbol.stg

operator(o) ::= "<o>"

The second problem is that we need to create a template from the text

of the operator node alone. In a tree grammar, $text evaluates to the

input text from which the parser built the entire subtree. This is nor-

mally what you want. For example, if you’re in a rule that matches a

while statement, you want $text to mean the entire original while state-

ment, not just the five characters while. Here, though, we don’t want

the original text for the expression since we might be translating it to

something else. In other words, if we have input 3+4, the parser creates

a tree that looks like ^(+ 3 4). If we asked for $text in op, we’d get 3+4,

not +. That’s why we create the template using $start.getText() instead of

$text.

There’s nothing else to point out in the tree grammar. The other rules

don’t introduce anything new, so let’s move on to the templates now.

Defining Cymbol Templates

At the top level, our Cymbol output file looks like a list of definitions.

We can emit them with a newline separator using template file:

Download trans/ast-st/Cymbol.stg

file(defs) ::= <<

<defs; separator="\n">

>>
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The class definition template has to deal with optional superclasses:

Download trans/ast-st/Cymbol.stg

class(name, sup, members) ::= <<

class <name> <if(sup)>: <sup><endif> {

<members>

};

>>

The ST expression <if(sup)>: <sup><endif> says to emit the superclass if it

exists and prefix it with the “: ” character sequence. In the method def-

inition template, we use the familiar separator option on the argument

list so that the arguments come out with a comma separator:

Download trans/ast-st/Cymbol.stg

method(name, retType, args, block) ::= <<

<retType> <name>(<args; separator=", ">) <block>

>>

The method body comes in as a block template (because tree grammar

rule methodDeclaration calls rule block, which returns a block template):

Download trans/ast-st/Cymbol.stg

block(stats) ::= <<

{

<stats; separator="\n">

}

>>

Since the parser strips the curly braces, we have to manually put them

back in. This is sometimes overly cautious for the if statement, but it’s

necessary to ensure we group all statements associated with a block.

As you can see in rule if, there aren’t any curly braces around the stat1

and stat2 statement attributes:

Download trans/ast-st/Cymbol.stg

if(cond, stat1, stat2) ::= <<

if ( <cond> ) <stat1>

<if(stat2)>else <stat2><endif>

>>

The next template of interest is call. It doesn’t use anything fancier

than what we’ve seen so far, but we need to look at how its attribute

list interacts with an invoking template:

Download trans/ast-st/Cymbol.stg

call(name, args) ::= <<

<name>(<args; separator=", ">)

>>
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This template handles method calls inside expressions as well as meth-

od calls as statements. The only thing we need for a method call state-

ment is a semicolon at the end:

Download trans/ast-st/Cymbol.stg

callstat(name, args) ::= "<call(...)>;" // call() inherits name,args

Having template callstat reuse call makes sense. The only strange thing

is the ellipsis “...” in the argument list. That means we want callstat’s

attributes to flow through automatically to call when we invoke it. In

general, when template x calls template y, the formal arguments of y

hide any x arguments of the same name because the formal parameters

force you to define values. This prevents surprises and makes it easy to

ensure any parameter value is empty unless you specifically set it for

that template.

Here are a few more rules where it’s easier to have parameters passed

through rather than manually passing them down:

Download trans/ast-st/Cymbol.stg

decl(name, type, init, ptr) ::=

"<type> <if(ptr)>*<endif><name><if(init)> = <init><endif>"

var(name, type, init, ptr) ::= "<decl(...)>;"

arg(name, type, init, ptr) ::= "<decl(...)>"

Templates var and arg embed decl and use the ellipsis to pass through

the attributes of the same name.

The rest of the templates are reasonably straightforward or similar to

those we’ve already seen.

Exercising the Translator

Let’s put together a test rig now so that we can try our translator:

Download trans/ast-st/Test.java

// LOAD TEMPLATES (via classpath)

FileReader fr = new FileReader("Cymbol.stg");

StringTemplateGroup templates = new StringTemplateGroup(fr);

fr.close();

// CREATE TREE NODE STREAM FOR TREE PARSERS

CommonTreeNodeStream nodes = new CommonTreeNodeStream(tree);

nodes.setTokenStream(tokens); // where to find tokens

Gen gen = new Gen(nodes);

gen.setTemplateLib(templates);

Gen.compilationUnit_return ret = gen.compilationUnit();

System.out.println(ret.getTemplate());
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As usual, we start by loading a group of templates, Cymbol.stg, using a

StringTemplateGroup. Then, using the AST (variable tree) returned from

the parser, we create the tree parser. In order for it to create templates,

we have to tell it about the group we loaded via setTemplateLib( ). The

template we get back from compilationUnit is the root of the template

tree, which we can print.

Here’s how we build the software:

$ java org.antlr.Tool Cymbol.g Gen.g

«a warning you can ignore from ANTLR»

$ javac *.java

$ java Test s.cymbol

void f(int *a, int x) {

...

$

At this point, we’ve created templates by traversing some fairly simple

input models. We started out walking a list of links and then moved

on to ASTs. We didn’t even have to worry about symbol table and type

information in the ASTs. Further, although there were lots of templates

to look at in this example, they weren’t very big. To learn how to build

more complicated translators, we need to look at some bigger and more

complicated templates. In the next two examples, we’ll get the chance.

We’re going to generate the SQL and Java code necessary to build an

object-relational database mapping tool. We’ll use Java’s reflection API

as an input model, which is essentially a symbol table that’s available

at run-time.

12.6 Applying Templates to Lists of Data

Building an object-relational database mapping is an excellent use of

code generation. In this section, we’re going to build one component

of such a mapping by generating SQL schemas from Java class defi-

nitions. To keep things simple, we’ll restrict ourselves to fields whose

Java types maps easily to SQL types (such as integers, strings, floats,

doubles, and Date objects).

To build this generator, we’re going to use Java’s reflection API as an

input model and create a nested template hierarchy as we did in the

previous section. This application is going to require some new skills,

though. We have to get comfortable sifting and filtering the input model

and then applying templates to that data. Since ST is a high-level DSL,

it doesn’t have a foreach or any other looping construct. We “apply” or
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“map” templates to multivalued attributes, as we saw in Section 12.1,

Getting Started with StringTemplate, on page 324.

We’ll attack this problem in three stages. First, we’ll figure out how to

represent Java objects using table rows and columns. Then, we’ll filter

the input model to get lists of array and nonarray fields. Finally, we’ll

use those lists in the templates to create the appropriate SQL table

definitions.

Representing Objects in a Relational Database

The basic idea in an object-to-relational database mapping is to trans-

late classes to tables and fields to columns in the corresponding table.

Objects then map to rows in tables. For example, let’s say we want to

serialize objects of the following type:

Download trans/sql/Person.java

public class Person {

public String name; // single-valued fields:

public String SSN;

public Date birthDay;

public int age;

public String[] roles; // multi-valued fields:

public Date[] vacation;

The single-valued fields become columns in a Person database table. The

multivalued array fields, though, don’t map directly to columns. That

means we have to create a subordinate table for these fields. The rows

in a subordinate table store the multiple values of an array field from

the object. Each row has a foreign key that indicates the owner from

the main table. In Figure 12.2, on the next page, we can see how sub-

ordinate tables for the roles and vacation fields point back into the main

table for Person. The Person_ID fields are the foreign keys. Looking at the

tables, we can piece together that Ter’s Person object has two roles (mgr

and coder) and no vacation. (There’s no entry in table Person_vacation

for column Person_ID==1.)

To create our schema, we need to generate some SQL. First, we need a

table to hold the single-valued fields:

CREATE TABLE Person (

ID INTEGER NOT NULL UNIQUE PRIMARY KEY,

name TEXT,

SSN TEXT,

birthDay DATETIME,

age INTEGER

);
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name SSN birthDay age

ID va ue Person ID ID va ue Person ID

Person vacationPerson ro es

Person

1 Ter 111 1964- 45

2 Tom 111 1965- 44

3 Mary 111 1970- 39

1 mgr 1 1 2008-01-01 2

2 coder 1 2 2008-02-09 3

3 ceo 3

Figure 12.2: Mapping Person objects to database using foreign keys

Then, we need a new table for each multivalued field. For example, here

is the subordinate table that handles array field roles:

CREATE TABLE Person_roles (

ID INTEGER NOT NULL AUTO_INCREMENT UNIQUE PRIMARY KEY,

roles TEXT,

Person_ID INTEGER NOT NULL

);

Knowing the details of SQL is not really important here. We’re focusing

on how to generate this SQL. Let’s get started with our generator by

looking at how we extract data from the model and inject it into the

templates.

Extracting Data from the Input Model

To trigger the schema generation, our test rig program creates an in-

stance of GenSchema and then invokes genSchema( ) with Person’s class

definition object.

Download trans/sql/GenSchema.java

GenSchema gen = new GenSchema();
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StringTemplate schemaST = gen.genSchema(Person.class);

System.out.println(schemaST.toString());

According to the schema from the last section, we need to deal with

array and nonarray fields differently. This means that we need to ex-

tract data by walking the model:

Download trans/sql/GenSchema.java

protected void filterFields(Class c, List<Field> fields,

List<Field> arrayFields)

{

for (Field f : c.getFields()) {

if (f.getType().isArray()) arrayFields.add(f);

else fields.add(f);

}

}

Given a Class object, filterFields( ) fills two data structures according to the

kinds of fields in the class definition object. Notice that we’re following

the input-driven approach here. We walk the input model once collect-

ing data. The output-driven approach would force two complete walks

of the input model, once to get the nonarray fields and then again to

get the array fields.

Once we have the data we need, we can stuff it into the overall object-

Tables template via method genSchema( ):

Download trans/sql/GenSchema.java

public StringTemplate genSchema(Class c) {

List<Field> fields = new ArrayList<Field>();

List<Field> arrayFields = new ArrayList<Field>();

filterFields(c, fields, arrayFields);

StringTemplate classST = templates.getInstanceOf("objectTables");

classST.setAttribute("class", c);

classST.setAttribute("fields", fields);

classST.setAttribute("arrayFields", arrayFields);

return classST;

}

So, that’s how all the attributes arrive at the templates. Now, let’s see

how those templates use the attributes.

Generating SQL with Templates

Once the main program injects the data into the overall objectTables

template, its job is done. That root template directly or indirectly creates

every other template in our template hierarchy output model. It begins
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Java Objects Know Their Type

Before we can generate SQL, we have to figure out how to
get information about an object at run-time such as a Person.
We could build a parser for Java and extract the list of fields
from Person.java, but that’s a lot of work. Instead, let’s ask Java
itself. Through the reflection API, Java gives us access to its
symbol table at run-time. There are two key classes we need:
Class and Field. Yep, there is a class called Class. Each Class

instance contains information about a single class, including
the list of fields. Field knows, among other things, its name and
type (a Class instance). If that field is an array, getComponent-

Type( ) returns the array element type. We can test whether a
type is an array using isArray( ). These reflection objects are sim-
ilar to our ClassSymbol and VariableSymbol classes from Pattern
19, Symbol Table for Classes, on page 182.

by creating the primary table that holds the single-valued fields and

then includes a subordinate table for multivalue fields:

Download trans/sql/SQL.stg

objectTables(class, fields, arrayFields) ::= <<

CREATE TABLE <class.simpleName> (

ID INTEGER NOT NULL UNIQUE PRIMARY KEY,

<fields:columnForSingleValuedField(); separator=",\n">

);

<arrayFields:tableForMultiValuedField()>

>>

Template expression <class.simpleName> calls getSimpleName( ) on the

incoming Class object. The simple name does not include any surround-

ing package name. For example, the fully qualified name of Date is

java.util.Date, but the simple name is just Date.

To emit the columns, we apply the columnForSingleValuedField template to

each Field object in the list of single-valued fields: <fields:columnForSingle-

ValuedField()>. That expression creates and embeds a new template in-

stance for each Field in fields. Finally, the objectTables template includes

subordinate tables by walking over the arrayFields. This time, though, it

applies template tableForMultiValuedField to each field. Before we get to

that template, let’s look at single-valued fields.
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To emit a column, template columnForSingleValuedField includes template

column:

Download trans/sql/SQL.stg

columnForSingleValuedField(f)::="<column(name=f.name, javaType=f.type)>"

If we didn’t need to translate Java to SQL types, column would look

something like this:

column(name,javaType) ::= "<name> <javaType>"

To generate correct SQL, we need to map int to INTEGER and String to TEXT,

for example. To sequester all output literals in the templates instead of

the input model and Java code, we can specify the mapping in ST:

Download trans/sql/SQL.stg

javaToSQLTypeMap ::= [

"int":"INTEGER", // "int" maps to "INTEGER"

"String":"TEXT",

"float":"DOUBLE",

"double":"DOUBLE",

"Date":"DATETIME",

default : key // If not found, yield key; don't map

]

We can access this map as if the key were a property of the map. For

example, <javaToSQLTypeMap.int> evaluates to string INTEGER. The int is

taken as the key to look up in the map. In our case, we need to look up

a Java type’s name, not a constant. Parentheses around an expression

in ST evaluates the expression to a string. We can then ask ST to look

up that string. <m.(x)> means to evaluate x to a string and then use

that as the key to look up in map m. So, the column template has the

rather complicated-looking ST expression for the type:

Download trans/sql/SQL.stg

column(name,javaType)::="<name> <javaToSQLTypeMap.(javaType.simpleName)>"

OK, we have the main table; now we have to generate the subordinate

tables that hold our multivalued fields. For each array field of the class,

we need to apply template tableForMultiValuedField:

Download trans/sql/SQL.stg

tableForMultiValuedField(f) ::= <<

CREATE TABLE <class.simpleName>_<f.name> (

ID INTEGER NOT NULL AUTO_INCREMENT UNIQUE PRIMARY KEY,

<column(name=f.name, javaType=f.type.componentType)>,

<class.simpleName>_ID INTEGER NOT NULL

);<\n>

>>
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Each subordinate table has three columns: a unique identifier (ID), a

column for the array field, and a foreign key. Since we have template

column handy, we can reuse it by passing in the appropriate values.

To test it, we can run the main program in GenSchema to see what it

generates:

$ java GenSchema

CREATE TABLE Person (

ID INTEGER NOT NULL UNIQUE PRIMARY KEY,

name TEXT,

...

);

...

$

Now that we can generate a schema, let’s walk the reflection API again

to generate Java code that reads and writes objects in the database.

12.7 Building Retargetable Translators

If we can easily make a translator generate different output, we say

that it’s retargetable. As we mentioned in Section 12.5, Using a Tree

Grammar to Create Templates, on page 334, altering or swapping in new

templates is one way to do this. The template hierarchy stays the same,

just the contents of those templates change. This retargeting approach

is really useful if you need to generate different SQL to suit different

database vendors, for example. (Alas, we often do.)

In this section, we’re going to learn another retargeting strategy that

changes the output language by changing the template hierarchy. The

interesting thing is that we assemble different hierarchies using the

templates themselves, not using Java code. As before, all we have to

do is switch template groups to switch targets. The difference here is

that we don’t have to change a tree grammar to create a different out-

put model structure. With either strategy, retargetable code generators

consist of a collection of templates and some code that traverses the

input model to compute attributes.

To illustrate the approach, we’re going to build a translator that can

generate both the SQL from the previous section and some Java object

serializer and deserializer methods. As we go along, we’ll learn some

advanced ST features such as dynamic scoping, lazy evaluation, and

attribute renderers (that give ST special instructions about converting
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objects to text). If you can get through the majority of this example,

you’ll be ready to tackle most translation problems that come your way.

Let’s start by looking at the code we need to generate.

Generating Java Code

We already know what SQL we need to generate, so let’s work on the

Java code output. (Warning: this section contains a lot of Java-specific

code that talks to the database.) We want to generate PersonSerializer.java

from the sample Person class from the previous section. For example,

here’s the method we need that saves the nonarray fields of the object

into the primary table:

class PersonSerializer {

...

public static void savePerson(Connection con, Person o)

throws SQLException

{

PreparedStatement prep = con.prepareStatement(

"INSERT into Person SET ID=?, "+

"name=?, SSN=?, birthDay=?, age=?;");

int Person_ID = ID++;

prep.setInt(1, Person_ID);

prep.setString(1+1, o.name);

prep.setString(2+1, o.SSN);

prep.setDate(3+1, new java.sql.Date(o.birthDay.getTime()));

prep.setInt(4+1, o.age);

save_Person_roles(con, o.roles, Person_ID);

save_Person_vacation(con, o.vacation, Person_ID);

if (prep.executeUpdate () != 1) {

System.err.println("couldn't save "+o);

}

}

Given a database connection and a Person object to store, savePerson( )

writes the fields out to the main Person table. Then, we’ll need some

helper methods like the following to save the array fields in subordinate

tables:

static void save_Person_roles(Connection con,

String[] roles,

int Person_ID)

throws SQLException { ... }

You can take a look at the details in PersonSerializer.java. Since loading

objects doesn’t introduce any new generation concepts, we’ll focus on

saving objects.
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Now that we have a goal in mind, let’s extract data from the input model

and inject it into the overall root template.

Injecting Data into the Root Template

To build a retargetable code generator, we need a common interface to

the templates. Just like any library, we need to “publish” the templates

and attributes available to our generator. In our case, we’ll reference a

common template called output, which then accesses the target-specific

templates within. Here’s what they look like in both the SQL and Java

templates:

Download trans/sql/SQL2.stg

/** Common interface to templates for this target "*/

output(class, fields, arrayFields, nonPrimitiveTypes) ::=

"<objectTables()>" // objectTables defines no args; no need for ... arg

Download trans/sql/persist.stg

output(class, fields, arrayFields, nonPrimitiveTypes) ::=

"<serializerClass()>" // no need for ... "pass through" parameter

To make a common interface, the list of attributes has to be the same

even if that target doesn’t need every attribute. For example, the SQL

target doesn’t need the nonPrimitiveTypes attribute. (To generate Java

code, we need a list of nonprimitive types so we can generate some

import statements.) The easiest thing to do is to compute all possible

attributes so we don’t have to worry about which target we’re generat-

ing on a particular run. Or, if the computations are expensive, we can

limit ourselves to computing attributes needed by a particular target

(passing in null instead).

Let’s put our retargetable generator in DBGen.java. The main program

decides which target to generate according to the command-line argu-

ment (-java or -sql):

Download trans/sql/DBGen.java

if ( args[0].equals("-sql") ) groupFile = "SQL2.stg";

else if ( args[0].equals("-java") ) groupFile = "persist.stg";

else {System.err.println("java DBGen [-sql|-java]"); return;}

To switch targets, we simply change template group files. Once we have

the group file, we can load those templates into memory and then call a

generic gen( ) method to build the template hierarchy from our sample

Person class.
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Download trans/sql/DBGen.java

// LOAD TEMPLATES

FileReader fr = new FileReader(groupFile);

StringTemplateGroup templates = new StringTemplateGroup(fr);

fr.close();

templates.registerRenderer(Class.class, new TypeRenderer());

// GEN OUTPUT

StringTemplate output = gen(templates, Person.class);

System.out.println(output.toString());

(We’ll look at the registerRenderer( ) method in the next section.)

The gen( ) method computes the set of attributes with filterFields( ) and

injects them into the output common root template:

Download trans/sql/DBGen.java

filterFields(c, fields, arrayFields, nonPrimitiveTypes);

StringTemplate classST = templates.getInstanceOf("output");

classST.setAttribute("class", c);

classST.setAttribute("fields", fields);

classST.setAttribute("arrayFields", arrayFields);

classST.setAttribute("nonPrimitiveTypes", nonPrimitiveTypes);

Method filterFields( ) is the same as before except that it computes the

extra nonPrimitiveTypes set of fields. So, all we need is this little bit of

(shared) Java code to drive both targets.

Before we get to the templates, though, we need to look at how ST

supports different renderings of the same data value.

Altering How ST Renders Attributes

ST (deliberately) has almost no built-in functionality to manipulate the

attributes we inject. To maintain proper separation of concerns, we

don’t want the templates to become part of the program. And, if they’re

modifying data, they’re part of the program. In practice, though, we

sometimes do need to alter data to suit the display requirements of the

output language. In this case, we need to capitalize some words.

The main program in DBGen calls registerRenderer( ) and passes in an

instance of TypeRenderer. Our goal is to override ST’s default behavior

for rendering attributes to text. Without instructions to the contrary,

ST calls toString( ) on objects to render them to text. But, before doing

that, ST checks to see whether there’s an attribute renderer registered

for that type of object. A renderer has two versions of toString( ), one to

convert an object to text and one to convert an object to text with a

specific format.
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For example, from type int, we need to generate a call to setInt( ), which

means we need to capitalize type names. The second version lets us

alter the conversion with a parameter specified in a template:

set<type; format="capitalized">(«args»);

The renderer gives us a way to hook in a snippet of formatting code for

a particular type (in this case, Class) without forcing ST to support arbi-

trary code. Allowing arbitrary code allows model-view entanglement. ST

passes the format option to the following method:

Download trans/sql/TypeRenderer.java

public String toString(Object o, String formatName) {

if ( formatName.equals("capitalized") ) {

return capitalize(((Class)o).getSimpleName());

}

return toString(o);

}

While we’re at it, we might as well make our lives a little bit easier.

We’re going to reference the simpleName property of Class objects a lot.

So, instead of having to say <class.simpleName>, let’s make it just <class>.

Because of the renderer we’ve registered, ST renders that as the simple

name for the class via the following method.

Download trans/sql/TypeRenderer.java

public String toString(Object o) { return ((Class)o).getSimpleName(); }

OK, we’ve built everything except for the templates. Our Java code cre-

ates an overall template and injects all the data we need. Now it’s time

to figure out how to create the template hierarchy for the serializer and

deserializer methods.

Constructing the Template Hierarchy

At this point, we’ve seen quite a few templates, some with fairly com-

plicated attribute expressions. So, let’s focus on the new and interest-

ing bits in template group file persist.stg: dynamic scoping of attributes,

implicit use of attribute renderers, and lazy evaluation.

First, let’s see how dynamic scoping makes it easy to share attributes

between templates. The main program, DBGen, creates a single instance

of template output. That “interface” template then has to invoke all the

other templates necessary to create the proper template hierarchy. For

example, output immediately invokes serializerClass but without parame-

ters. serializerClass can automatically see the attributes of any invoking
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template (a template higher up in the template hierarchy). So, serial-

izerClass can see attributes class, fields, arrayFields, and nonPrimitiveTypes

without us having to pass them down manually. (If serializerClass defined

those attributes as formal parameters, though, we’d need to use the

pass-through ellipsis, calling serializerClass(...) in output.)

For deeply nested templates, dynamic scoping is very convenient. Note

that the attributes of output are not global variables. Only templates

that output invokes can see its attributes. Here’s the start of template

serializerClass:

Download trans/sql/persist.stg

/** Inherit class, fields, arrayFields, nonPrimitiveTypes

* from output template that invokes me. */

serializerClass() ::= <<

// This file automatically generated by "java DBGen -java"

<imports()>

public class <class>Serializer { <! class inherited from above !>

Just so those comments are clear, the /**...*/ comment is an ST com-

ment outside a template definition. The //... is literal text that goes in

the output. The <!. . . !> comment is an ST comment inside the template

that doesn’t appear in the output.

Dynamic scoping works no matter how deep the template hierarchy.

Notice that serializerClass invokes imports, which uses output’s nonPrimi-

tiveTypes attribute to generate imports:

Download trans/sql/persist.stg

/** Inherit attribute 'class' from serializerClass */

imports() ::= <<

<nonPrimitiveTypes:{t | import <t.name>;<\n>}>

import java.util.ArrayList; <! used by support code !>

import java.util.List;

import java.sql.*;

>>

The templates in persist.stg make much more sense when you’re familiar

with ST’s dynamic scoping.

Now, let’s take a look at the saveObjectMethod template, which implicitly

uses our TypeRenderer attribute renderer. ST renders attribute expres-

sion <class> using the renderer’s toString( ), not Class’ toString( ), for exam-

ple. This template also uses the format option and so ST invokes the

renderer’s other toString( ) method.
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Download trans/sql/persist.stg

saveObjectMethod() ::= <<

public static void save<class; format="capitalized">(Connection con,

Person o)

throws SQLException

{

PreparedStatement prep = con.prepareStatement(

"INSERT into <class> SET ID=?, "+

"<fields:{f | <f.name>=?}; separator=", ">;");

int <class>_ID = ID++;

prep.setInt(1, <class>_ID);

<fields:saveField(); separator="\n">

<arrayFields:saveArrayField(); separator="\n">

if (prep.executeUpdate () != 1) {

System.err.println("couldn't save "+o);

}

}

>>

If there’s one really complicated part of this example, it’s the lazy eval-

uation. As with SQL generation, we have to worry about conversion

between Java and SQL types. To save objects in the database, we have

to generate code to set the elements of a PreparedStatement (which is

like a built-in SQL template language that uses question marks as the

“holes”). For injecting strings into the PreparedStatement, we can call

setString( ) and pass in the appropriate string:

PreparedStatement prep = con.prepareStatement(

"INSERT into Person SET ID=?, name=?, SSN=?, birthDay=?, age=?;");

prep.setString(3, o.SSN);

For Date objects, though, we need to convert them to SQL dates like

this:

prep.setDate(4, new java.sql.Date(o.birthDay.getTime()));

We can encode this “switch on type” string mapping with an ST map:

Download trans/sql/persist.stg

javaToSQLValueMap ::= [

"Date":"new java.sql.Date(<value>.getTime())",

default : "<value>"

]

It has the same form as the int to INTEGER conversion we saw in the SQL

example, but these map values are templates, not mindless strings. As

you can see, they reference attribute value even though there’s no obvi-

ous definition for it. Fortunately, that’s no big deal because of lazy eval-

uation. Templates that look up values in this map will define attribute
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value. Once ST embeds the map result into the calling template, value

will magically become visible. For example, here’s a template that ref-

erences the map:

Download trans/sql/persist.stg

fieldValue(type, value="o") ::= "<javaToSQLValueMap.(type.simpleName)>"

The assignment in the parameter list is a default parameter value as-

signment (like C++ default parameters). Attribute value is string o if

nobody sets it explicitly.

This template hides all the complicated map lookup from the other tem-

plates. First, it evaluates type.simpleName to get a string like int or Date

and then looks it up in the map. If it’s a Date, the map returns the

java.sql.Date instance creator template. If it’s anything else, the map

returns a template that evaluates to attribute value (the default case).

So, template fieldValue returns either the value we pass in or that value

wrapped in a new expression.

We can then use this template to save fields in both saveObjectMethod

and saveForeignObjectMethod via saveField:

Download trans/sql/persist.stg

saveField(f) ::= <<

prep.set<f.type; format="capitalized">(<i>+1,

<fieldValue(type=f.type, value={o.<f.name>})>);

>>

This template passes attribute value as an anonymous template {o.

<f.name>}. Because of lazy evaluation, ST doesn’t evaluate that tem-

plate until template fieldValue references it. Because of dynamic scop-

ing, fieldValue can see saveField’s f attribute because saveField calls that

template. fieldValue doesn’t explicitly reference f, but {o.<f.name>} does,

and it’s evaluated inside fieldValue.

The <i>+1 attribute expression computes the prepared statement “hole”

to fill. Attribute i iterates from 1, but we need indexes starting at 2. (ID

is index 1.) Since there’s no way in ST to add values, we can use the

generated Java code to compute the proper index.

OK, now that we have the templates to go with the code generator Java

code, let’s give the generator a try.

Testing Code Generation

First, let’s have our generator spit out an SQL schema.Using command-

line option -sql gets us the SQL for Person.
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$ java DBGen -sql

CREATE TABLE Person (

ID INTEGER NOT NULL UNIQUE PRIMARY KEY,

name TEXT,

...

$

Using -java gets us the Java code:

$ java DBGen -java

// This file automatically generated by "java DBGen -java"

import java.util.Date;

import java.lang.String;

import java.util.ArrayList;

import java.util.List;

import java.sql.*;

public class PersonSerializer {

...

$

Ultimately, we need to shove that Java code into a file and compile:

$ java DBGen -java > PersonSerializer.java

$ javac PersonSerializer.java

$

If you’re curious, you can continue on into the next section to see

the generated code serialize and deserialize a Person with a MySQL

database.

Testing Object Serialization

To verify that the code we generate is valid, we have to compile it, but

we should also see whether it communicates properly with a database.

Test.java in the source code directory creates a Person object, serializes it

to a MySQL database, reads it back in, and prints it out. You don’t need

to go through this section if you’re interested only in the translation

mechanism. It’s here just for completeness. The following code is the

core of the test rig:

Download trans/sql/Test.java

// CREATE PERSON AND SERIALIZE

PersonSerializer.init(con);

GregorianCalendar cal = new GregorianCalendar(2000,10,5);

Person p = new Person("ter","555-11-2222",cal.getTime(), 9);

p.roles = new String[] {"ceo", "janitor"};

PersonSerializer.savePerson(con, p); // SAVE Person TO DB

// READ PERSON BACK IN

String q="SELECT * FROM Person WHERE ID=1"; // GET FIRST Person
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Statement stat = con.createStatement();

ResultSet rs = stat.executeQuery(q);

rs.next();

Person back = PersonSerializer.nextPerson(con, rs);

System.out.println("read back: "+back);

To get this to execute, we need to download the MySQL Connector/J

5.16 JDBC database driver and get the mysql-connector-java-5.1.8-bin.jar

file from that distribution into our CLASSPATH environment variable.

Once we’re set up, we can invoke the test rig using a particular server,

user, password, and database (via command-line arguments):

$ java Test sql.cs.usfca.edu parrt parrt parrt

read back: Person{name='ter', SSN='555-11-2222', birthDay=2000-11-05,

age=9, roles=[ceo, janitor], vacation=[]}

OK

$

The test rig connects to my (private) MySQL instance at sql.cs.usfca.edu.

After the program executes, we find data in the main and subordinate

tables:

mysql> select * from Person;

+----+------+-------------+---------------------+------+

| ID | name | SSN | birthDay | age |

+----+------+-------------+---------------------+------+

| 1 | ter | 555-11-2222 | 2000-11-05 00:00:00 | 9 |

+----+------+-------------+---------------------+------+

1 row in set (0.00 sec)

mysql> select * from Person_roles;

+----+---------+-----------+

| ID | roles | Person_ID |

+----+---------+-----------+

| 19 | ceo | 1 |

| 20 | janitor | 1 |

+----+---------+-----------+

2 rows in set (0.00 sec)

mysql> select * from Person_vacation;

Empty set (0.00 sec)

Since the Person object had no vacation elements, the corresponding

subordinate table has no data.

6. http://dev.mysql.com/downloads/connector/j/5.1.html
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Up Next

With the conclusion of this example, we have the skills necessary to

build all sorts of generators. The primary lesson is that generators con-

sist of a collection of templates and some code to traverse the model.

The traversal code trawls for data, creates and combines templates,

injects them with attributes, and builds up a template tree. Sometimes

the input model traversal code is responsible for the entire template

hierarchy, sometimes the templates do all the work, and sometimes

they share this responsibility. In the end, we call toString( ) on the tem-

plate tree root to generate text.

We’re nearing the end of our adventure. We’ve learned a lot about lan-

guage implementation by exploring and applying the common language

design patterns. We know how to build readers, interpreters, gener-

ators, and translators. In the next chapter, we’re going to lay out a

number of sample projects to help you continue learning on your own.
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Chapter 13

Putting It All Together
We began this book by looking at the different kinds of language appli-

cations and then cracking a few of them open to see what their pipelines

looked like. We then spent the majority of this book going through the

common language design patterns and their implementations. In the

previous chapter, we looked at a few larger examples (generating DSLs).

In this final chapter, we’re going to walk through some sample applica-

tions and outline the strategies and language pattern ingredients you’d

need to implement them.

Now that you’ve gone through all the patterns in this book, you’re ready

to venture out on your own. My intention in this last chapter is to

inspire you and to expose you to a variety of language applications.

You’ll have to build these “projects” yourself, but I’ll give you a nudge

in the right direction by pointing you to some appropriate patterns.

Let’s start with a DSL from biology and then look at progressively more

complicated applications.

13.1 Finding Patterns in Protein Structures

To get you thinking about nontraditional uses of languages, let’s break

out of our normal programming world. You might be surprised how

many biologists (and other scientists) use parsers for pattern recogni-

tion and analysis. For example, there are DSLs for describing DNA/RNA

sequences, chemical molecules, molecular formulas (such as H2O), and

so on. Just as with language examples from our world, scientists want

to trigger actions upon recognizing various structures.

As an example, let’s look at a DSL that molecular biologists use to

describe RNA sequences. RNA sequences are chains of nucleotide units:
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Adenine (A), Cytosine (C), Guanine (G), or Uracil (U). You can think of

those letters as the language vocabulary or token set. We can break up

the chains into tokens with Pattern 2, LL(1) Recursive-Descent Lexer, on

page 49. Let’s pick one linguistic structure within RNA sequences. In

The Language of Genes [Sea02], Searls says that “. . . a folded RNA sec-

ondary structure entails pairing between nucleotide bases.” For exam-

ple, in sequence GAUC, G creates a dependency for a C down the line,

and an A creates a dependency for a future U.

Say we wanted to look at a sequence of nucleotide bases and deter-

mine whether it was a “folded RNA secondary structure.” It turns out

that this notion of dependence between bases is exactly like match-

ing parentheses and square brackets in a programming language. We

built something similar in the implementation section of Pattern 3, LL(1)

Recursive-Descent Parser, on page 54. Assuming only the G-C and A-

U dependencies, we could use the following grammar to match RNA

sequences:

rna : 'G' rna 'C'

| 'A' rna 'U'

| // allow an empty RNA sequence

;

If we needed to process sequences instead of just detecting them, we

could either add actions to the grammar or build an AST (Chapter 4,

Building Intermediate Form Trees, on page 88).

Directly processing pairs as we see them follows Pattern 29, Syntax-

Directed Translator, on page 307. If we created an AST, we could walk

it (Chapter 5, Walking and Rewriting Trees, on page 116) one or more

times to extract information.

This parsing application is fairly simple, so let’s move on to an applica-

tion with a more complicated language.

13.2 Using a Script to Build 3D Scenes

Let’s say we wanted to build an English-like scripting language to draw

3D scenes. The language might look something like this:

x = Cube

y = Sphere

y.radius = 20

draw x

draw y to the left of x and behind x
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The fastest way to get this running is probably with Pattern 24, Syntax-

Directed Interpreter, on page 238. Most likely we wouldn’t care about

speed. Issuing commands is a lot faster than rendering objects in 3D,

so parsing and interpreting would not be the bottleneck. The interpreter

would need Pattern 2, LL(1) Recursive-Descent Lexer, on page 49 and

Pattern 3, LL(1) Recursive-Descent Parser, on page 54 or Pattern 4, LL(k)

Recursive-Descent Parser, on page 59. To go beyond recognition, we’d

need to add actions to the parser that respond to the different kinds of

statements.

Further, our interpreter needs run-time support. In this case, we could

use a hash table to represent global memory. For example, in response

to assignment statement x=Cube, we’d create an internal representation

of a cube and map x to that object in the hash table. Statement draw x

would then look up x in the global memory to find which object to draw.

Note the similarity with defining and resolving symbols from Pattern

16, Symbol Table for Monolithic Scope, on page 156.

Instead of building custom parsers for custom languages, some pro-

grammers lean heavily on XML as a universal format. We’ll take a look

at parsing and extracting information from XML in the next section.

13.3 Processing XML

The minute my students hear the term XML, they reach for a full XML

parser. But, when we’re facing a small lizard, there’s no point in reach-

ing for a dinosaur-crushing asteroid. XML parsers are big and slow, and

if they build a tree in memory, they can’t handle files bigger than the

computer’s memory or infinite streams from sockets. Remember that

we can view even complicated files like English text in multiple ways:

as sequences of characters, words, or sentences. If we can get away

with inspecting tokens instead of sentences, we’ve got a much easier

problem to solve.

Let’s say we needed a list of all target tags from some XML file. grep

makes short work of that without writing any code:

$ grep '<target' config.xml

<target name="init">

<target name="war" depends="clean, compile">

...

$
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A tiny bit of code (or awk and sed) would clean that up into a simple list

of target names. (We’re assuming here that each target tag is on a line

by itself.) This strategy follows Pattern 29, Syntax-Directed Translator,

on page 307 where we recognize constructs and immediately process or

emit output, which is how a full Simple API for XML (SAX) XML parser

works. A SAX parser avoids creating a large tree in memory by trigger-

ing callbacks when it recognizes certain input nodes.

Sometimes solving the opposite of the problem at hand simplifies our

task significantly. Take the problem of extracting all nontag text from

an HTML file, which is useful if you’re building a search engine or

something similar. We could parse the HTML file into a tree and then

print out all the leaf nodes. Building a Pattern 9, Homogeneous AST ,

on page 109 in memory follows the Document Object Model (DOM) XML

strategy. There’s an easier way, though.

Recognizing the text between tags is tough because it really has no

syntax. On the other hand, recognizing tags is straightforward because

we can just look for anything in between angle brackets (using Pattern

2, LL(1) Recursive-Descent Lexer, on page 49). Strip away the tags, and

we’re left with the text.

Once we’re recognizing tags, we can extract lots of information without

having to really parse the XML. Let’s say we want to extract all rect tags

from a file in the SVG graphics format. Since the rect has a number

of attributes like x and y, it might spill over multiple lines. We need a

real XML tag lexer, but we can scan the list of tags looking for rect with

a simple loop, not a parser. This approach is analogous to Pattern 15,

Tree Pattern Matcher, on page 138 because we focus on just the pattern

of interest. ANTLR users will recognize this approach as filter mode for

lexer grammars.

Let’s take this one step further to verify that an XML document is well

formed. We can solve this with a stack and a loop around “get next

token” as we just did to extract rect tags. When we see an open tag,

we push it onto the stack. When we see a close tag, we pop a tag from

the top of the stack and check that it goes with the current close tag.

</book> must match a previous <book>.

Many applications come with XML configuration files these days. In the

next section, we’ll look at a configuration DSL we can use instead.
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13.4 Reading Generic Configuration Files

We use configuration files to set initial parameters and create initial

data structures for applications. That means humans have to read and

write those files. The problem is that XML is a generic data format, not

a specialized DSL for initializing applications. Being good DSL-o-philes,

we can do a lot better than XML for this niche.

What we want is a simple C-like notation that lets us build a list of

objects with properties such as strings, ints, lists, and references to

other configuration objects. Here’s a simple example:

Site jguru {

port = 80;

answers = "www.jguru.com";

aliases = ["jguru.com", "www.magelang.com"];

}

To begin, we need Pattern 2, LL(1) Recursive-Descent Lexer, on page 49

and Pattern 3, LL(1) Recursive-Descent Parser, on page 54 to recognize

the various structures. Rather than build a tree or some other inter-

mediate representation, we want to turn configuration files into object

instances. For example, in this case, we want to create an object of type

Site and set its three fields: port, answers, and aliases. We need to use Java

reflection to do this just as we did in Chapter 12, Generating DSLs with

Templates, on page 323. The difference is that we’re going to convert

text to objects using reflection rather than the other way around.

Beyond the syntax, we need to add actions into the grammar to build

the list of configured objects. To keep the grammar clean, though, it’s

a good idea to move all the “new instance” and “set object property”

functionality into a separate class. The actions then just trigger the

appropriate method call in our support code. You can see an entire

implementation on the ANTLR wiki.1

Instead of just converting input sentences into internal data structures,

let’s look at translating input to output with some slight modifications.

1. http://www.antlr.org/wiki/display/ANTLR3/Fig+-+Generic+configuration+language+interpreter
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13.5 Tweaking Source Code

Let’s say we want to tweak some source code, perhaps deleting the

method bodies of all methods within a particular class file. We also

don’t want to mess up the formatting of the file.

First, let’s see whether we can get away with using simple tools like awk

or sed. Unfortunately, these tools aren’t so good at matching patterns

across lines and the starting { and ending } are most likely on different

lines. Worse, it’s hard to distinguish between the curlies of a method

and the curlies of a class body or a statement block. We need context

information because those curlies mean different things depending on

the surrounding text. The minute we say “context,” we know that purely

lexical tools and Pattern 2, LL(1) Recursive-Descent Lexer, on page 49

aren’t powerful enough. We just can’t scan the input symbols for curly

braces.

That means we need a parser for the input language. Depending on

the language and depending on how we write the grammar or parser,

we will need Pattern 3, LL(1) Recursive-Descent Parser, on page 54,

Pattern 4, LL(k) Recursive-Descent Parser, on page 59, or Pattern 5,

Backtracking Parser, on page 71. Naturally, we need Pattern 2, LL(1)

Recursive-Descent Lexer, on page 49 to feed one of these parsers.

To actually modify the source code, we need to record the token or

character index of the method body curly braces. Once we’ve got that,

we’ve got two choices. One way is to strip that text region from the

file. Or, we can print out all tokens (including whitespace tokens) as

they come in unless they are in a method body region. ANTLR has a

particularly handy and efficient class, TokenRewriteStream, for “editing”

the token stream. (Pattern 21, Automatic Type Promotion, on page 208

has sample code that uses this class.) The grammar and associated

editing action might look like this:

methodBody : a='{' statement+ b='}' {tokens.delete($a,$b);} ;

We might have a more difficult problem, though. If we want to strip the

method body only if no one else calls it (dead code elimination), we need

to examine all code in the project looking for references. We need to

resolve every method call, f() and o.f(), to compute class-method pairs.

Once we have the set of all invoked methods, we can invert that to get

the list of “dead” methods. As we scan for method bodies, then, we can

delete any method in that set. We’ll need the symbol table management

from Pattern 19, Symbol Table for Classes, on page 182 and the type
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inference algorithms from Chapter 8, Enforcing Static Typing Rules, on

page 196 to resolve method calls.

Although deleting bits of text is a form of translation, it’s more com-

mon to translate an input construct to an output construct instead of

deleting it. In the next example, we’ll look at reducing (translating) an

augmented version of Java down to pure Java.

13.6 Adding a New Type to Java

Java doesn’t have a built-in vector math type (java.util.Vector is not

meant for mathematics and isn’t a built-in type). Let’s say we wanted

to add type vec so that we can do things like this:

vec x = [1, 2, 3];

vec y = [2, 9, 10];

vec z = x * y;

First, we need a strategy to execute this code. The easiest thing to do

is to translate this down to raw Java. That means we have to figure

out a mapping from input to output. Most of the input is pure Java,

so we can just leave that stuff alone. The best way to change a few

things and leave everything else alone is to “edit” the token stream

(TokenRewriteStream if you’re using ANTLR). We know the start and stop

tokens ([ and ]), so we can replace everything in between yielding some-

thing like this:

vec x = new vec (new int[] {1, 2, 3});

Replacing the vector multiplication is a little trickier. We need Pattern

19, Symbol Table for Classes, on page 182 and Pattern 20, Computing

Static Expression Types, on page 199 to differentiate simple scalar mul-

tiplication from vector multiplication. To support all that machinery, we

need to build an AST (Chapter 4, Building Intermediate Form Trees, on

page 88). Once we’ve computed all the types, we need to walk the AST

with Pattern 15, Tree Pattern Matcher, on page 138, looking for multi-

plication subtrees that result in a vec. To figure out the complete text

for the multiplication expression, the parser needs to store token index

information into the AST. The tree pattern matcher can then replace

the appropriate token region with a method call. For example, x*y would

become vec.mult(x,y).

To get started, grab an existing Java grammar, and add ’vec’ to the type

rule in the parser grammar. Also add [...] notation to primaryExpression or

some other low-level expression rule. Don’t forget to add a subclass
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of BuiltInTypeSymbol called vec for use with the symbol table and type

computations.

In the next section, we’re going to look at another translation task,

one that’s unusual because it changes the whitespace, not the input

symbols.

13.7 Pretty Printing Source Code

Building a pretty printer even for a specific language is surprisingly dif-

ficult. It’s even harder to build a general pretty printing engine. For

an interesting research framework, take a look at the pretty printing

language called BOX described by Merijn de Jonge in Pretty-Printing for

Software Reengineering [Jon02]. General pretty printers require some

serious voodoo, and language-specific pretty printers tend to be messy

ad hoc code blobs. Let’s see whether we can design a more formal

language-specific pretty printer as a compromise.

We can make the problem dramatically easier if we relax it a little bit.

Most pretty printers consider the right column a “do not exceed” hard

limit. They must wrap everything before that edge. But, that’s not what

programmers do. We step over that right column occasionally to get a

better-looking bit of code. Programmers have a few templates in their

head for each language construct. For example, I personally use a few

versions of varying width for the if statement. As I get closer and closer

to the right edge, I use a narrower and narrower template to write out

the code.

By mimicking what programmers do naturally, we can whip up a decent

pretty printer. The basic idea is to create an AST from the input as

usual and then walk the tree bottom-up to create a “pretty” output

template for each node. In a template group file, we can create one or

more templates for each kind of node using special template names:

name_i. The larger the value of i, the narrower the template. So, for

example, we could make two different templates, if_1 and if_2, to express

a single-line and multiline version of an if.

The key to solving this pretty-printing problem lies in how we choose

the templates. We’re going to shuffle through the different template

versions looking for one that plays nicely with the other templates we

choose. To format a particular node, n, in the AST, we format n’s chil-

dren and then choose a template for n. If the template for n yields a

line that blows past the right column, we reformat the entire subtree
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at and below n. To reformat a subtree, we look for a narrower and nar-

rower template for n until either we find one that fits or we run out

of templates for that construct. If the template for n is still too wide,

we reformat n’s children and use the narrowest template we have for n

itself. It might still be too wide, but it’s the best we can do. By accepting

a few of these right column border violations, we end up with a much

simpler pretty printer.

In the next section, we’re going to step it up a notch and figure out how

to build a compiler that translates source code down to machine code.

13.8 Compiling to Machine Code

Although few people build compilers for full programming languages,

you might find yourself in a position where you need maximum run-

time performance. For example, you might have a scripting or small

programming language that executes on a small device like a phone.

Because of battery life issues, phone processors run slowly compared

to desktops. It might make sense to translate your language all the way

down to the machine code to wrench the most speed from the slow CPU.

In Section 1.3, C Compiler, on page 31, we looked at the typical com-

piler application pipeline. There are many stages and a whole lot of

tricky stuff going on. In a nutshell, we need patterns and techniques

from Chapter 2, Basic Parsing Patterns, on page 37, Chapter 4, Build-

ing Intermediate Form Trees, on page 88, Chapter 3, Enhanced Pars-

ing Patterns, on page 65, Chapter 7, Managing Symbol Tables for Data

Aggregates, on page 170, Chapter 8, Enforcing Static Typing Rules,

on page 196, and Chapter 11, Translating Computer Languages, on

page 290. But, that’s not all.

To make things more concrete, let’s compile a C subset down to ma-

chine code. We’ve covered everything except optimization and machine

code generation (the “back end”) in this book. For example, we could

use the following patterns to build the “front end:” Pattern 2, LL(1)

Recursive-Descent Lexer, on page 49, Pattern 4, LL(k) Recursive-Descent

Parser, on page 59, Pattern 9, Homogeneous AST , on page 109, Pattern

15, Tree Pattern Matcher, on page 138, Pattern 17, Symbol Table for

Nested Scopes, on page 161, Pattern 22, Enforcing Static Type Safety,

on page 216. That gets us to the point where we’ve verified the syn-

tactic and semantic validity of the input. Unfortunately, optimizing and
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generating machine code from an AST (or any other intermediate rep-

resentation) is really hard.

Low Level Virtual Machine2 (LLVM) to the rescue. LLVM is a com-

piler infrastructure and, quite simply, one of the finest pieces of open

source software available. Among other things, LLVM provides a virtual

instruction set that’s reminiscent of the instructions for Pattern 28,

Register-Based Bytecode Interpreter, on page 280. From this intermedi-

ate representation, LLVM can generate highly optimized machine code

for any of several processors (such as x86, ARM, MIPS, and SPARC).

That is great news because we can generate that intermediate repre-

sentation from an AST using Pattern 14, Tree Grammar, on page 134.

So, to build a compiler, we combine the patterns mentioned earlier and

then let LLVM do all of the heavy lifting. Please see my sample imple-

mentation3 for more details. You can also think of this front end as a

bytecode compiler suitable for use with the interpreters in Chapter 10,

Building Bytecode Interpreters, on page 252.

Well, we’ve reached the end of a long road. You’ve just gotten a huge

dose of language implementation technology. As you can see from the

sample implementations in this book, being a language implementer

means becoming familiar with lots of language tools. If you choose

to use ANTLR and StringTemplate, I encourage you to join us on the

friendly support lists.4,5 There are a lot of nice people who can help you

solve tricky language problems.

The patterns in this book and these sample applications will get you

started building your own language applications. You’re well on your

way to being a solid language implementer. I encourage you to share

ideas with other developers on this book’s forum.6 If you develop a nice

grammar or application you’d like to share, please feel free to add it to

the grammar list7 or showcase8 on http://antlr.org.

2. http://www.llvm.org

3. http://www.antlr.org/wiki/display/ANTLR3/LLVM

4. http://www.antlr.org/mailman/listinfo/antlr-interest

5. http://www.antlr.org/mailman/listinfo/stringtemplate-interest

6. http://forums.pragprog.com/forums/110

7. http://www.antlr.org/grammar/list

8. http://www.antlr.org/showcase/list
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Index
A
abstract syntax tree structure, see tree

grammars

abstract syntax trees (ASTs), 23, 36,

90, 93–99

AST visualizer (example), 325,

332–334

creating with ANTLR grammars,

102–105

enforcing type structure, 98–99

heterogeneous ASTs, irregular, 24,

91, 115–116

when to apply, 106

heterogenous ASTs, normalized, 24,

91, 112–114

when to apply, 105

homogeneous ASTs, 24, 29, 90,

110–112

implementation of, 110–112

when to apply, 105

implementing in Java, 97–98

for model-driven translation, 296

operator precedence, 94–95

representing in text, 95–96

representing pseudo-operations, 96

summary of, 90, 105

action gating (backtracking parsers), 76

addresses for code memory, labeling,

258

alreadyParsedRule() method, 83

analyzing input phrases, see

intermediate representations; tree

patterns

ANTLR parser generator, 17, 100–102

automatically generating visitors

with, 123–126

constructing ASTs with, 102–105

warnings about dead code, 72

antlr-3.2.jar file, 101

application examples, 359–368

adding new Java type, 365–366

building 3D scenes, 360–361

compiling to machine code, 367–368

finding patterns in protein

structures, 359–360

pretty printing source code, 366–367

processing XML, 361–362

reading generic configuration files,

363

tweaking source code, 364–365

arbitrary lookahead, 67–68, 72–79

implementation of, 76–79

ordering alternatives for precedence,

68

see also backtracking parsers

arithmetic type promotion, see

automatic type promotion

array indexing, type checking of, 220

assembly language syntax, defining,

257–258

assignments, type checking, 222

AST visualizer (example), 325, 332–334

ASTs, see abstract syntax trees

attribute references (StringTemplate),

327

attributes, 326

automatic type promotion, 25, 198,

209–217

implementation of, 211–216

when to apply, 200

B
back-end, compiler, 33

backpatching, 270

backtracking parsers, 22, 29, 66–68,

72–79

implementation of, 76–79

    



BCEL (BYTE CODE ENGINEERING LIBRARY) CONTEXT -SENSITIVE PHRASES

ordering alternatives for precedence,

68

when to apply, 71

BCEL (Byte Code Engineering Library),

30, 299

Bornstein, Dan, 265

bottom-up traversal, 118

buffer management (backtracking

parsers), 74

Byte Code Engineering Library (BCEL),

30, 299

bytecode assemblers, 254, 266–273

filling constant pool, 268

generating bytecodes into memory,

267

implementation of, 271–273

labels and forward references, 270

tracking and referencing functions,

269

when to apply, 266

bytecode instructions, 253

bytecode interpreters, 25, 28, 253–289

architectural components, 259–264

calling functions, 263–264

storing large constants, 261–262,

268

architecture of (example), 27–28

defining assembly language syntax,

257–258

performance, instruction set design

and, 258, 265

programming, 255–257

register-based bytecode interpreters,

254, 281–289

decoding call instruction

operands, 286–287

implementation of, 287–289

implementing basic instructions,

283

managing data aggregates, 284

passing data during function

calls, 284–286

stack-based bytecode interpreters,

254, 273–281

implementation of, 277–281

passing function parameters,

274–277

returning function values, 277

when to apply, 266

bytecode object model, creating, 299

bytecodes, 27, 233

generating into code memory, 267

C
C code generator (example), 325,

335–342

C compilers

architecture of, 31–34

leveraging to implement C++, 34–35

C-style struct scopes, see data

aggregates, symbol tables for

call trees, 41

calling functions in bytecode machines,

263–264

canAssignTo() method, 220, 227

category property (symbols), 148

cfront translator, 35

circular lookahead buffers, 62

.class files, 30

class instances, memory spaces for,

236

tracking symbols in interpreters, 237

classes, about, 171

classes, symbol tables for, 25, 29, 171,

174–177, 183–196

forward references, 176, 184

implementation of, 189–196

definition phase, 184, 191–192

resolution phase, 184, 192–195

resolving member access

expressions, 175

when to apply, 177

code memory (bytecode machines),

259, 267

generating bytecodes into, 267

code memory addresses, labeling, 258

compilers, 244

compiling to machine code (example),

367–368

conditional includes (StringTemplate),

327

conditionals, type checking, 222

configuration files, reading (example),

363

constant pool (bytecode machines),

259, 261–262, 267, 268

filling, 268

consume() method, 55, 78, 83

consuming tokens, 41

contents of scopes, 150

context-free languages, 69

context-sensitive phrases, 69

    



CONTROL FLOW FAILED DICTIONARY RESULTS

control flow, exceptions for, 74

CPU (bytecode machines), 259

CPU instructions, about, 254

current scope, defined, 152

Cymbol code generator (example), 325,

335–342

D
Dalvik VM, 265

data aggregate instances, memory

spaces for, 234

tracking symbols in interpreters, 236

data aggregate scope, 171

data aggregates

in register-based bytecode

interpreters, 284

symbol tables for, 25, 171–174,

177–182

implementation of, 179–182

when to apply, 177

data types for AST nodes, 97

dead code, ANTLR warnings about, 72

declarations, type checking, 222

defining symbols in scopes, 154

definition phase, symbol tables for

classes, 184, 191–192

depth-first search, 119

deterministic parsing decisions, 57

dictionary, memoizing, 80

disassemblers, 256

discovering tree nodes, defined, 119

domain-specific languages (DSLs), 14

generating with templates, 306,

324–358

applying templates to data lists,

342–348

building retargetable translators,

348–357

characterizing StringTemplate

(ST), 328–329

creating templates using tree

grammars, 335–342

generating templates, 329–332

reusing templates, 332–334

working with StringTemplate (ST),

325–328

parser construction using, 43–44

DOT language, 96

DOT visualizations for ASTs (example),

332–334

double-dispatch mechanism, 132

downup() method, 143

DSLs, see domain-specific languages

dynamic pointer compatibility

checking, 226

dynamic scoping, 150, 328

dynamic typing, 328

dynamically typed languages, 197

tracking symbols in interpreters, 237

E
embedded heterogeneous tree walkers,

24, 117, 121, 129–131

implementation of, 130–131

when to apply, 128

encapsulating node visitation code,

121–123

enforcing static typing rules, 197–231

automatic type promotion, 209–217

implementation of, 211–216

computing static expression types,

200–208

implementation of, 202–208

patterns for, 25, 198, 217–224

implementation of, 218–224

object-oriented languages,

224–231

when to apply, 200

example applications, 359–368

adding new Java type, 365–366

building 3D scenes, 360–361

compiling to machine code, 367–368

finding patterns in protein

structures, 359–360

pretty printing source code, 366–367

processing XML, 361–362

reading generic configuration files,

363

tweaking source code, 364–365

exceptions for parser control flow, 74

execution trace, parse tree as, 92

expression type computation, see static

expression types, computing

external tree visitors, 24, 117, 121,

132–135

implementation of, 132–135

in tree-based interpreters, 247

when to apply, 128

F
failed dictionary results, 80

    



FETCH-DECODE-EXECUTE CYCLE HOMOGENEOUS ABSTRACT SYNTAX TREES (ASTS)

fetch-decode-execute cycle, 27, 238,

260

finishing with tree nodes, defined, 119

fixed-lookahead parsers, see LL(k)

recursive-descent parsers

forward references, 176, 184

forward references (bytecode

assembler), 270

fp register (bytecode machines), 259

front-end, compiler, 33

function call stack (bytecode

machines), 259

function spaces (memory), 234

tracking symbols in interpreters, 237

functional calls in bytecode machines,

263–264

G
generating for translators, 297

generating output (translation), 26

order of, decoupling from tree

traversal, 302–303

generator classes, 299–301, 320–322

implementation of, 321–322

when to apply, 308

generators, 21

C code generator (example), 325,

335–342

input- vs. output-driven generation,

302, 303

patterns for, 23–24

SQL and Java code generator

(example), 325, 348–357

altering rendering of attributes,

351

constructing template hierarchy,

352–355

generating Java code, 349

injecting data into root template,

350

testing code generation, 355

testing object serialization, 356

SQL schema generator (example),

325, 342–348

extracting data from input model,

344–345

generating SQL with templates,

345–348

representing relational database

objects, 343–344

template-driven, 324–358

applying templates to data lists,

342–348

building retargetable translators,

348–357

characterizing StringTemplate

(ST), 328–329

creating templates using tree

grammars, 335–342

generating templates, 329–332

reusing templates, 332–334

working with StringTemplate (ST),

325–328

generic configuration files, reading

(example), 363

getParentScope() method, 186, 191

getTokenName() method, 53

gload instruction, 261

global memory (bytecode machines),

259, 261, 267

global memory space, 234

tracking symbols in interpreters, 237

grammar rules, 43

grammar translation, see translators

grammars, 43, 46

grammars with code snippets, see

syntax-directed translators

GraphicsLexer class, 101

GraphicsParser class, 101

grouping symbols into scopes, 150–154

gstore instruction, 261

H
heterogeneous abstract syntax trees

(ASTs)

irregular, 24, 91, 115–116

when to apply, 106

heterogeneous tree walkers, 24, 117,

121, 129–131

implementation of, 130–131

when to apply, 128

heterogeneous trees, defined, 98

heterogenous abstract syntax trees

(ASTs)

normalized, 24, 91, 112–114

when to apply, 105

high-level interpreters, see interpreters

high-level languages, inventing, 245

homogeneous abstract syntax trees

(ASTs), 24, 29, 90, 110–112

implementation of, 110–112

when to apply, 105

    



HOMOGENEOUS TREES LABELING CODE MEMORY ADDRESSES

homogeneous trees, defined, 97

I
if conditionals, type checking, 222

ifstat() method, 222

imaginary tokens, 96

incompatible type detection, see type

safety patterns

infinite token streams, backtracking

parsers and, 75

inner class definitions, 92

inorder traversal, 118

input phrase analysis, see intermediate

representations; tree patterns

input sentences, parsing, see

tokenizing sentences

backtracking parsers, 22, 29

LL(1) recursive-descent lexers, 29

LL(1) recursive-descent parsers, 29

LL(k) recursive-descent parsers, 22

memoizing parsers, 22, 29

predicated parsers, 22

input tokens, see entries at token

input-driven generation, 302, 303

instruction processing, interpreters,

238

instruction trace, 256

intermediate form trees, see abstract

syntax trees; parse trees

intermediate representations (IRs), 20,

89

constructing trees, 23

traversing (walking) trees, 24,

117–146

automatic visitor generation,

123–126

decoupling from output order,

302–303

decoupling from pattern

matching, 126–129

encapsulating node visitation

code, 121–123

patterns for, when to apply, 128

visitation order, 118–121

why we build trees, 91–93

see also abstract syntax trees; parse

trees

interpreters, 21, 25, 27, 28, 233–252

bytecode interpreters, 253–289

architectural components,

259–264

architecture of (example), 27–28

defining assembly language

syntax, 257–258

performance, instruction set

design and, 258, 265

programming, 255–257

when to apply, 266

high-level interpreter memory

systems, 234–236

processing instructions, 238

syntax-directed, 233, 239–244

implementation of, 241–244

tracking symbols in, 236–238

tree-directed, 233, 244–252

executing code with tree visitors,

247

implementation of, 247–252

managing symbol table, 246

when to apply, 238

interpreting make files, 314

ip register (bytecode machines), 259

irregular homogeneous abstract syntax

trees (ASTs), 24, 91, 115–116

when to apply, 106

irregular trees, defined, 98

IRs, see intermediate representations

isFunction() method, 71

isNil() method, 111

isType() method, 71

isTypeName() method, 87

J
Java and SQL code generator

(example), 325, 348–357

altering rendering of attributes, 351

constructing template hierarchy,

352–355

generating Java code, 349

injecting data into root template, 350

testing code generation, 355

testing object serialization, 356

Java bug finders, architecture of, 28–31

Java language, 17

adding new type to (example),

365–366

implementing ASTs in, 97–98

reflection API, 346

L
LA() method, 64

labeling code memory addresses, 258

    



LABELS MULTIPLY-BY-ZERO REWRITES

labels, handling in bytecode

assemblers, 270

language analysis, 24

language applications

architecture of (examples), 26–35

bytecode interpreter, 27–28

C compilers, 31–35

Java bug finders, 28–31

assembling, 35–37

components of, 20–21

syntax-directed, 89

language design, 13

language interpreters, see interpreters

language recognition, see intermediate

representations; tree patterns

languages, 41

large constants, storing in constant

pool, 261–262, 268

lazy evaluation, 329

left recursion, 47

legacy code conversions, 295

lexers, 29, 44

LL(1) recursive-descent lexers, 22,

29, 38, 51–55

implementation of, 52–55

rule-based translator, 317

lexical analyzers, see lexers

lexical scoping, 150

lexical structure, 44

link visualizer (example), 325, 329–332

lists of data, applying templates to,

342–348

extracting data from input model,

344–345

generating SQL with templates,

345–348

representing relational database

objects, 343–344

literal translations, 292

LL(1) recursive-descent lexers, 22, 29,

38, 51–55

implementation of, 52–55

rule-based translator, 317

LL(1) recursive-descent parsers, 22, 39,

55–60

implementation of, 58–60

when to apply, 71

LL(k) recursive-descent parsers, 22, 29,

39, 42, 60–65

implementation of, 63–65

when to apply, 71

lookahead tokens, 42

circular lookahead buffers, 62

prediction expressions for, 49, 56, 61

lookahead, arbitrary, see backtracking

parsers

LT() method, 64

M
machine code, compiling to (example),

367–368

main program address (bytecode

assembler), 267

make files, interpreting, 314

mapping grammars to recognizers, see

recursive-descent recognizers

mark() method, 75, 78

member access expressions, resolving,

174, 175, 188

memoize() method, 83

memoizing parsers, 22, 29, 66, 69,

79–85

implementation of, 82–85

why fast, 81

memory spaces, 234

tracking symbols in interpreters,

236–238

memory systems for interpreters,

234–236

Meta-Environment rewriting tool, 139

method calls, type checking, 221

model-driven translators, 292,

296–303, 320–322

building nested output model,

304–307

objects from input phrase

components, 304–305

organizing translated phrases,

305–307

creating generator classes, 299–301

decoupling transversal from output

order, 302–303

implementation of, 321–322

print statements, 301–302

when to apply, 308

monolithic scope, symbol tables for, 25,

148, 151–152, 157–162

implementation of, 158–162

when to apply, 156

multiply-by-zero rewrites, 143
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N
name property (symbols), 148

named scopes, 150

nested class definitions, 92

nested output model (translation),

304–307

objects from input phrase

components, 304–305

organizing translated phrases,

305–307

nested scopes, symbol tables for, 25,

148, 152–154, 162–170

implementation of, 165–170

adding function syntax, 167

building scope tree, 167

populating symbol table, 168

resolving references, 169

when to apply, 156

nesting of scopes, 150, 152

nextToken() method, 51

nodes, see tree patterns

nondeterministic parsers, 58, 70

recursive-descent recognizers as, 47,

70

normalized child lists, 24, 97

normalized heterogeneous abstract

syntax trees (ASTs), 24, 91,

112–114

when to apply, 105

notation for trees, 95–96

O
object pointer assignments, see

polymorphic type safety

operand stack (bytecode interpreter),

259

operand types, checking, 218–220

operator precedence in ASTs, 94–95

order of sentence elements, 89

outer class definitions, 92

output generation (translation), 26, 297

order of, decoupling from tree

traversal, 302–303

output option (ANTLR), 103

output-driven generation, 302, 303

P
packrat parsers, see memoizing parsers

parse trees, 23, 40, 90, 92–93, 106–109

identifying, 41

implementation of, 108–109

template hierarchies and, 328

when to apply, 105

parser combinators, see semantic

predicates

parser component (syntax-directed

interpreter), 239, 240

parser generators, 17, 43

automatically generating visitors

with, 123–126

see also ANTLR parser generator

parsers, nondeterministic, 47, 58, 70

parsing, 38–65

deterministic parsing decisions, 57

exceptions for control flow, 74

recursive-descent parsers, 41–43

tokenizing sentences

backtracking parsers, 22, 29

LL(1) recursive-descent lexers, 29

LL(1) recursive-descent parsers,

29

LL(k) recursive-descent parsers,

22

memoizing parsers, 22, 29

predicated parsers, 22

Parsing Expression Grammars (PEGs),

73

parsing input, see tokenizing sentences

parsing phase structure, see phrase

structure analysis; tree patterns

pattern matching, decoupling from tree

traversal, 126–129

patterns, 22–26, 38–65

choosing, 35–37

for constructing trees, 23

recursive-descent parsers, 41–43

symbol tables, 25

for classes, 174–177, 183–196

for data aggregates (structs),

172–174, 177–182

for monolithic scope, 148,

151–152, 156–162

for nested scopes, 148, 152–154,

156, 162–170

when to apply, 177

tokenizing sentences

backtracking parsers, 22, 29

LL(1) recursive-descent lexers, 29

LL(1) recursive-descent parsers,

29

    



PATTERNS FOR INPUT ANALYSIS RECURSIVE-DESCENT RECOGNIZERS FOR SPECULATIVE PARSING

LL(k) recursive-descent parsers,

22

memoizing parsers, 22, 29

predicated parsers, 22

for traversing trees, 24, 117–146

automatic visitor generation,

123–126

decoupling from output order,

302–303

decoupling from pattern

matching, 126–129

encapsulating node visitation

code, 121–123

visitation order, 118–121

when to apply, 128

patterns for input analysis, see

tokenizing sentences; translators

patterns for input interpretation, see

interpreters

patterns for phase structure analysis,

see tree patterns

patterns for type safety, see static type

safety

PEGs (Parsing Expression Grammars),

73

phrase structure analysis, 39–40

see also tree patterns

Pie language, inventing, 245

pointer assignments, see polymorphic

type safety

polymorphic type safety, 25, 198,

224–231

implementation of, 226–231

when to apply, 200

popping scopes, 153, 154

populating symbol tables for nested

scopes, 168

postorder traversal, 118

precedence, operator, in ASTs, 94–95

predicated parsers, 22, 66, 69–71,

85–87

implementation of, 86–87

when to apply, 71

preorder traversal, 118

pretty printing source code (example),

366–367

print statements, 301–302

private scopes, 151

processing instructions in interpreters,

238

promotion, type, see automatic type

promotion

properties of symbols, 148

protein structures, finding patterns in

(example), 359–360

pseudo-operations (ASTs), 96

public scopes, 151

pure functional, StringTemplate as,

328

pushing scopes, 153

R
readers, 21

tokenizing sentences

backtracking parsers, 22, 29

LL(1) recursive-descent lexers, 29

LL(1) recursive-descent parsers,

29

LL(k) recursive-descent parsers,

22

memoizing parsers, 22, 29

predicated parsers, 22

reading generic configuration files

(example), 363

recognizers, see tokenizing sentences

recognizing input phrases, see

intermediate representations; tree

patterns

recursive-descent lexers, 22, 29, 38,

51–55

implementation of, 52–55

rule-based translator, 317

recursive-descent parsers, 41–43

constructing with grammar DSL,

43–44

LL(1) parsers, 22, 39, 55–60

implementation of, 58–60

when to apply, 71

LL(k) parsers, 22, 29, 39, 42, 60–65

implementation of, 63–65

when to apply, 71

monotony of building, 42

parse tree as execution trace, 92

strength of, 61

recursive-descent recognizers, 22, 38,

46–50

implementation, 47–50

nondeterministic, 47, 70

recursive-descent recognizers for

speculative parsing, see

backtracking parsers

    



REFERENCING FUNCTIONS (BYTECODE ASSEMBLER) SQL SCHEMA GENERATOR (EXAMPLE)

referencing functions (bytecode

assembler), 269

reflection API (Java), 346

register machines, 254

difference from stack machines, 258

register-based bytecode interpreters,

25, 28, 254, 281–289

decoding call instruction operands,

286–287

implementation of, 287–289

implementing basic instructions,

283

managing data aggregates, 284

passing data during function calls,

284–286

speed of, 265

when to apply, 266

registers, defined, 254

relational database objects,

representing, 343–344

release() method, 75, 78

resolution phase, symbol tables for

classes, 184, 192–195

resolving member access expressions,

174, 175, 188

resolving symbols, 155–156, 161

within class scope, 192–195

within struct scope, 173

retargetable translators, building,

348–357

altering rendering of attributes, 351

constructing template hierarchy,

352–355

generating Java code, 349

injecting data into root template, 350

testing code generation, 355

testing object serialization, 356

return values, type checking, 221

reusing templates, 332–334

Reverse Polish Notation (RPN), 255

rewrite notation for ASTs (ANTLR), 104

rewriters, see translators

rewriting trees, 127

see also tree pattern matchers

rule-based translators, 294–296,

314–320

implementation of, 315–320

defining the syntax, 315–317

translation rules and main

program, 317–320

when to apply, 308

rule-directed translators, 292

rules, grammar, 43

S
scalar-vector multiplication, 141

scanners, see lexers

scope trees, 153

for tree-based interpreters, 244

scopes, 25

data aggregate scopes, 171

dynamic scoping, 328

grouping symbols into, 150–154

self-assignment, 28

semantic analysis, 147

see also language analysis

semantic analyzer, 20

semantic context, 155

semantic predicates, 66, 85

see also predicated parsers

semantics, defined, 21, 147

sentences, tokenizing, see tokenizing

sentences

sequencing of sentence elements, 89

showTypes() method, 207

single-scope languages, see monolithic

scope

source code

pretty printing (example), 366–367

tweaking (example), 364–365

source code parser (syntax-directed

interpreter), 239, 240

sp register (bytecode interpreter), 259,

274

speculative parsing, see backtracking

parsers

SQL and Java code generator

(example), 325, 348–357

altering rendering of attributes, 351

constructing template hierarchy,

352–355

generating Java code, 349

injecting data into root template, 350

testing code generation, 355

testing object serialization, 356

SQL schema generator (example), 325,

342–348

extracting data from input model,

344–345

generating SQL with templates,

345–348

    



STACK FRAME SYMBOLS

representing relational database

objects, 343–344

stack frame, 263

stack machines, 254

differences from register machines,

258

stack-based bytecode interpreters, 25,

28, 254, 273–281

implementation of, 277–281

passing function parameters,

274–277

returning function values, 277

speed of, 265

when to apply, 266

static expression types, computing, 25,

198, 200–208

implementation of, 202–208

when to apply, 200

static pointer compatibility checking,

226

static scoping, 150, 328

static type analyzers, 209

static type safety, 197–231

automatic type promotion, 209–217

implementation of, 211–216

computing static expression types,

200–208

implementation of, 202–208

patterns for, 25, 198, 217–224

implementation of, 218–224

object-oriented languages,

224–231

when to apply, 200

statically typed languages, 197

tracking symbols in interpreters, 237

storing large constants in constant

pool, 261–262, 268

Stratego/XT rewriting tool, 139

StringTemplate (ST) engine, 17

altering how renders attributes, 351

applying templates to data lists,

342–348

extracting data from input model,

344–345

generating SQL with templates,

345–348

representing relational database

objects, 343–344

building retargetable translators,

348–357

altering rendering of attributes,

351

constructing template hierarchy,

352–355

generating Java code, 349

injecting data into root template,

350

testing code generation, 355

testing object serialization, 356

characterizing, 328–329

creating templates using tree

grammars, 335–342

vs. visitor methods, 336

generating templates, 329–332

getting started, 325–328

reusing templates, 332–334

struct scopes, see data aggregates,

symbol tables for

structs, about, 171

structs, memory spaces for, 234

tracking symbols in interpreters, 236

structs, symbol tables for, 25, 172–174,

177–182

implementation of, 179–182

structs, symbol tables for

when to apply, 177

succeeded dictionary results, 80

symbol tables, 25, 35, 147–196

for classes, 174–177, 183–196

forward references, 176, 184

implementation of, 189–196

resolving member access

expressions, 175

for data aggregates (structs), 172–174,

177–182

implementation of, 179–182

grouping symbols into scopes,

150–154

for monolithic scope, 148, 151–152,

156–162

implementation of, 158–162

for nested scopes, 148, 152–154,

156, 162–170

implementation of, 165–170

representing program entities,

148–150

resolving symbols, 155–156, 161

within class scope, 192–195

within struct scope, 173

when to apply, 156, 177

symbols

    



SYNC() METHOD TOKENIZING SENTENCES

defined, 147

defining in scopes, 154

grouping into scopes, 150–154

properties of, 148

representing, 148–150

resolving, 155–156, 161

within struct scope, 173

tracking in interpreters, 236–238

sync() method, 78

syntactic predicates, 73

syntax analysis, 39

syntax diagrams, 43

syntax trees, see parse trees

syntax trees, abstract, see abstract

syntax trees

syntax-directed applications, 89

syntax-directed interpreters, 25, 36,

233, 239–244

implementation of, 241–244

when to apply, 238

syntax-directed translators, 26, 36,

292–294, 308–313

implementation of, 309–313

building support code, 310–311

building translator, 312–313

when to apply, 308

T
template applications (StringTemplate),

327

template engines, 26

see also StringTemplate engine

template references (StringTemplate),

327

templates to generate DSLs, 306,

324–358

applying to data lists, 342–348

extracting data from input model,

344–345

generating SQL with templates,

345–348

representing relational database

objects, 343–344

building retargetable translators,

348–357

altering rendering of attributes,

351

constructing template hierarchy,

352–355

generating Java code, 349

injecting data into root template,

350

testing code generation, 355

testing object serialization, 356

characterizing StringTemplate (ST),

328–329

creating using tree grammars,

335–342

vs. visitor methods, 336

generating from simple input model,

329–332

reusing from different input model,

332–334

working with StringTemplate (ST),

325–328

term rewriting, 127

text representations of ASTs, 95–96

3D scenes, building with scripts

(example), 360–361

token types, 51

tokenizers, see lexers

tokenizing sentences, 22–23, 44–45

backtracking parsers, 22, 29, 66–68,

72–79

implementation of, 76–79

ordering alternatives for

precedence, 68

when to apply, 71

LL(1) recursive-descent lexers, 22,

29, 38, 51–55

implementation of, 52–55

rule-based translator, 317

LL(1) recursive-descent parsers, 22,

29, 39, 42, 55–60

implementation of, 58–60

when to apply, 71

LL(k) recursive-descent parsers, 22,

39, 60–65

implementation of, 63–65

when to apply, 71

memoizing parsers, 22, 29, 66, 69,

79–85

implementation of, 82–85

why fast, 81

predicated parsers, 22, 66, 69–71,

85–87

implementation of, 86–87

when to apply, 71

recursive-descent recognizers, 22,

38, 46–50

implementation, 47–50

    



TOKENREWRITESTREAM CLASS TREE PATTERNS

TokenRewriteStream class, 216

tokens, 29, 39

buffer management (backtracking

parsers), 74

consuming, 41

imaginary tokens, 96

lookahead tokens, 42

circular lookahead buffers, 62

prediction expressions for, 49, 56,

61

top-down parsers, 42

top-down traversal, 118

toStringTree() method, 111, 115

tracking functions (bytecode

assembler), 269

tracking symbols in interpreters,

236–238

translators (rewriters), 21, 24, 26,

291–323

bytecode assemblers, 254, 266–273

filling constant pool, 268

generating bytecodes into

memory, 267

implementation of, 271–273

labels and forward references, 270

tracking and referencing

functions, 269

when to apply, 266

model-driven, 292, 296–303,

320–322

creating generator classes,

299–301

decoupling transversal from

output order, 302–303

implementation of, 321–322

print statements, 301–302

nested output model, building,

304–307

objects from input phrase

components, 304–305

organizing translated phrases,

305–307

retargetable, building with

templates, 348–357

altering rendering of attributes,

351

constructing template hierarchy,

352–355

generating Java code, 349

injecting data into root template,

350

testing code generation, 355

testing object serialization, 356

rule-based, 292, 294–296, 314–320

implementation of, 315–320

syntax-directed, 26, 36, 292–294,

308–313

implementation of, 309–313

when to apply, 308

traversing trees, 24, 117–146

automatic visitor generation,

123–126

decoupling from output order,

302–303

decoupling from pattern matching,

126–129

encapsulating node visitation code,

121–123

patterns for, when to apply, 128

visitation order, 118–121

tree, defined, 91

tree grammars, 24, 45, 118, 125,

135–139

automatically generating visitors

from, 123–126

creating templates using, 335–342

vs. visitor methods, 336

generating DSLs with templates,

324–358

applying templates to data lists,

342–348

building retargetable translators,

348–357

characterizing StringTemplate

(ST), 328–329

creating templates using tree

grammars, 335–342

generating templates, 329–332

reusing templates, 332–334

working with StringTemplate (ST),

325–328

implementation of, 137–138

mapping patterns to output

constructs, 306

when to apply, 128

tree pattern matchers, 24, 29, 118,

128, 139–145

implementation of, 141–145

when to apply, 129

tree patterns, 90–99

abstract syntax trees (ASTs), 23, 36,

90, 93–99

    



TREE STRUCTURES VISITATION ORDER (WALKING TREES)

creating with ANTLR grammars,

102–105

enforcing type structure, 98–99

heterogeneous, irregular, 24, 91,

106, 115–116

heterogeneous, normalized, 24,

91, 105, 112–114

homogeneous, 24, 29, 90, 105,

110–112

implementing in Java, 97–98

operator precedence, 94–95

representing in text, 95–96

representing pseudo-operations,

96

heterogeneous, defined, 98

homogeneous, defined, 97

irregular, defined, 98

parse trees, 23, 40, 90, 92–93,

106–109

identifying, 41

implementation of, 108–109

when to apply, 105

pros and cons, 105

tree structures, importance of, 91–93

tree walkers

embedded heterogeneous, 24, 117,

121, 129–131

implementation of, 130–131

external tree visitors, 24, 117, 121,

132–135

implementation of, 132–135

in tree-based interpreters, 247

when to apply, 128

tree-based interpreters, 25, 28, 36

speed of, 265

tree-directed interpreters, 233,

244–252

executing code with tree visitors, 247

implementation of, 247–252

managing symbol table, 246

when to apply, 239

trees

constructing, 23

rewriting, 127

traversing (walking), 24, 117–146

automatic visitor generation,

123–126

decoupling from output order,

302–303

decoupling from pattern

matching, 126–129

encapsulating node visitation

code, 121–123

patterns for, when to apply, 128

visitation order, 118–121

tweaking source code (example),

364–365

type compatibility, defined, 217

type computation, see static expression

types, computing

Type interface, 149

type promotion, automatic, 25, 198,

209–217

implementation of, 211–216

when to apply, 200

type property (symbols), 149

type safety patterns, 25, 198, 217–224

implementation of, 218–224

assignments and declaration

initializers, 222

expression operand types,

218–220

if conditionals, 222

method calls and return values,

221

object-oriented languages, 224–231

implementation of, 226–231

when to apply, 200

type system for AST structure, 98–99

type-safe languages, defined, 197

types for AST nodes, 97

U
unknown dictionary results, 80

unparse trees, 328

user-defined types, 149

V
variable declarations, type checking,

222

virtual machines (VMs), 27, 253

visibility, symbols, 151

visitation order (walking trees),

118–121

automatic visitor generation,

123–126

decoupling from output order,

302–303

decoupling from pattern matching,

126–129

encapsulating node visitation code,

121–123

    



VISITING TREES (TREE NODES) XML PROCESSING (EXAMPLE)

visiting trees (tree nodes), 118, 119

W
walking trees, 24, 117–146

automatic visitor generation,

123–126

decoupling from output order,

302–303

decoupling from pattern matching,

126–129

encapsulating node visitation code,

121–123

patterns for, when to apply, 128

visitation order, 118–121

webpage link visualizer (example), 325,

329–332

wiki syntax, translating to HTML,

315–320

defining the syntax, 315–317

translation rules and main program,

317–320

WS() method, 54

X
XML processing (example), 361–362
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