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It is generally known that Chapter 4 of the MAT 119 textbook [10]1 is the shakiest of all chapters,
especially sections 4.3 and 4.4, and leaves a lot to be desired when teaching MAT 119. This talk will
put topics like LP Duality and solving Linear Programs not in standard form on firmer ground. No
knowledge other than setting up Linear Programs and using the Simplex Method will be necessary.2

Introduction
When I was putting together my talk (titled “Linear Programming: Beyond The Simplex Method”), I real-
ized that there were a lot of things I could talk about. However, I was only given 50 minutes to talk, and I
wouldn’t be able to provide all the details, or want to, for that matter. So I decided to write up a companion
paper to the talk, including the examples I used on my slides, and providing full details that I could only
allude to. Since there were people who couldn’t make it to the talk but wanted to hear what I had to say,
I decided to expand the “companion” to an expository paper.

Since the author(s)3 of the textbook have put out a new edition, and all of my “complaints” are still
valid, I figured a paper would still be appropriate. I have decided to attempt to re-create the talk in full,
and I came up with the document you are now reading.

Before we continue, there are several abbreviations I will use throughout the paper: LP for Linear Pro-
gram(s), BV for Basic Variable(s), and RHS for Right Hand Side (usually referring to a single entry, which
is in the last column of a tableau). A lot of the material came out of Chvátal’s Linear Programming [2].

We will assume that a LP has n variables and m inequalities, except where explicit examples are given.
This paper is organized as follows: First, the Simplex Method and reasons for its steps will be explained,

along with what operations are vital and which can be altered slightly (issues related to sections 4.1 and
4.2), assuming the LP is in standard form;4 properties of the Simplex Method will be discussed; LP Duality
will be discussed, with emphasis towards proving a solution is correct (an elaboration on the content of 4.3);
proving certain LP’s are unbounded will be mentioned; and finally, solving LP’s not in standard form will
be mentioned (which will clarify some issues brought up in section 4.4).

Geometric Interpretation of the Simplex Method
We start with an explanation of the Simplex Method, look at its steps in detail, and then give some properties.

We define the feasible region, even if there are more than two variables, to be the set of all points which
satisfy all the inequalities in the LP, and a corner point to be a feasible point where at least n inequalities
are equal, where n is the number of variables. Edges are the sets of feasible points for which exactly n − 1
of the inequalities are true; edges connect corner points to each other and corner points to “infinity.”

The geometric interpretation of the Simplex Method is as follows: It starts off at a corner point, the
origin, and looks at the edges incident with that point. Then it chooses one, and moves along an edge
which makes the objective value5 get larger (or stay the same). If the edge goes on forever, then the LP is
unbounded; if the edge does not go on forever, it ends up at another corner point. Then the Simplex Method

1 I have reviewed Chapter 4 of the Ninth Edition, and everything I have to say about the Eighth Edition
is true for this new one as well. I could find nowhere where they made any changes related to content.

2 Last updated: August 2006.
3 One of the authors died since the eighth edition was put out.
4 Briefly, LPs which can be put in standard form are those where the origin (0, 0, . . . , 0) is a feasible point.
5 This is what you are trying to minimize or maximize and is called P in the text.
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does the same thing over and over again, until it stops at a certain point. That point is the place where the
objective value is the largest.

Normally, this would only lead you to a local maximum, instead of the global maximum, but this cannot
happen when solving a LP. This is because the objective values and inequalities are linear in form.6

Analysis of the Simplex Method
The description of the Simplex Method is a combination of essential features and some degrees of freedom.
Briefly, the Simplex Method consists of the following steps:

• Adding slack variables to the LP. This is done for two reasons: (1) Equalities are easier to deal with
than inequalities; for instance, multiplying both sides of an inequality by a negative number reverses the
direction of the inequality, whereas equalities do not have this problem; (2) All the inequalities together
become the statement that “every variable is nonnegative.” This makes no variable more important
than another.7

• Putting the equations into a tableau. This is to make manipulation easier. Chvátal prefers using “dictio-
naries,” which keep the equations as equations, where the BVs are written as a function of the nonbasic
variables.

• Choosing a column to put a pivot in. It is actually all right to choose any column of a tableau which
has a negative number in the bottom row. However, cycling (visiting a corner point more than once)
is possible if the column is not chosen with care. I call a rule which decides which column to choose
(among two or more possibilities) a tie-breaker rule.

The tie-breaker rule that is used in [10] is to choose the column which has the most negative number
in its column, and if two columns both have the most negative number, choose the one further to the left.
This rule is called the Largest Coefficient Rule. Another tie-breaker rule, called the Least Subscript Rule,
also known as Bland’s Rule, chooses the column furthest to the left, regardless of how big the entries
in the bottom row are. The Least Coefficient Rule can cause cycling; Bland’s Rule prevents cycling [1].

• Choosing a row to put a pivot in. The only requirement for choosing a row is that we choose a row so
that when we turn a specific entry into a pivot,8 that all the entries in the RHS column are nonnegative,
so that the point represented by the tableau is still feasible. This is also why the smallest ratio is chosen.
Once again, if there are two or more rows which work, then the tiebreaking rule needs to be used to
specify which one becomes the pivot row. If two rows have the same minimum ratio, the RHS column
will have a zero in it after pivoting, a situation known as degeneracy . When degeneracy is present, it
means: (1) That corner point satisfies more than n of the inequalities in the original LP with equality,
and (2) In the next iteration, P may not go up at all.

• The row operations used to turn an entry into a pivot. The values of the variables can be read off quickly
from a tableau if there is a pivot in every row; otherwise, a system of linear equations needs to be solved
to determine the values. When turning an entry into a pivot, another pivot will be destroyed,9 but the
specific row operations mentioned will prevent any other pivots from being destroyed.

Properties of the Simplex Method
• It is known to “cycle”. An example of this is provided below, using the Largest Coefficient Rule. After

six iterations, the tableau is the same as the original one; hence the Simplex Method will never terminate
for this LP.

6 This is closely related to the fact that the feasible region is convex : If x and y are in the feasible region,
then so is tx + (1− t)y, for any t between 0 and 1.

7 Because of this reason, I would prefer calling the extra variables xn+1, xn+2, . . . , xn+m instead of s1,
s2, . . . , sm. However, I will stick with the book’s notation in this paper.

8 We do that by dividing that row, the pivot row , by an appropriate constant, then adding/subtracting
multiplies of the pivot to other rows to zero out the entries above and below the pivot.

9 specifically, the one in the same row
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maximize 10x1 − 57x2 − 9x3 − 24x4

1/2 x1 − 11/2 x2 − 5/2 x3 + 9x4 ≤ 0
1/2 x1 − 3/2 x2 − 1/2 x3 + x4 ≤ 0

x1 ≤ 1
x1, x2, x3, x4 ≥ 0


BV P x1 x2 x3 x4 s1 s2 s3 RHS

s1 0 1/2 −11/2 −5/2 9 1 0 0 0
s2 0 1/2 −3/2 −1/2 1 0 1 0 0
s3 0 1 0 0 0 0 0 1 1

P 1 −10 57 9 24 0 0 0 0

 −→


BV P x1 x2 x3 x4 s1 s2 s3 RHS
x1 0 1 −11 −5 18 2 0 0 0
s2 0 0 4 2 −8 −1 1 0 0
s3 0 0 11 5 −18 −2 0 1 1

P 1 0 −53 −41 204 20 0 0 0


x y


BV P x1 x2 x3 x4 s1 s2 s3 RHS
s1 0 −4 8 2 0 1 −9 0 0
x4 0 1/2 −3/2 −1/2 1 0 1 0 0
s3 0 1 0 0 0 0 0 1 1

P 1 −22 93 21 0 0 −24 0 0




BV P x1 x2 x3 x4 s1 s2 s3 RHS

x1 0 1 0 1/2 −4 −3/4 11/4 0 0
x2 0 0 1 1/2 −2 −1/4 1/4 0 0
s3 0 0 0 −1/2 4 3/4 −11/4 1 1

P 1 0 0 −29/2 98 27/4 53/4 0 0


x y


BV P x1 x2 x3 x4 s1 s2 s3 RHS

x1 0 −2 4 1 0 1/2 −9/2 0 0
x4 0 −1/2 1/2 0 1 1/4 −5/4 0 0
s3 0 1 0 0 0 0 0 1 1

P 1 20 9 0 0 −21/2 141/2 0 0

 ←−


BV P x1 x2 x3 x4 s1 s2 s3 RHS
x3 0 2 0 1 −8 −3/2 11/2 0 0
x2 0 −1 1 0 2 1/2 −5/2 0 0
s3 0 1 0 0 0 0 0 1 1

P 1 29 0 0 −18 −15 93 0 0



• It can wander. This means that it can visit a large number, even all, of the corner points. Klee and
Minty [8] provided a family of examples of this, again with the Largest Coefficient Rule:

maximize
n∑

j=1

10n−jxj

2
i−1∑
j=1

10i−jxj

 + xi ≤ 100i−1, i = 1, . . . , n

x1, x2, . . . , xn ≥ 0

For n = 4, this gives the LP:

maximize 1,000x1 + 100x2 + 10x3 + x4

x1 ≤ 1
20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10,000
2,000x1 + 200x2 + 20x3 + x4 ≤ 1,000,000

x1, x2, x3, x4 ≥ 0
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The feasible region for this LP is a 4-dimensional cube which had had some of its (3-dimensional) faces
pushed in at different angles. The Simplex Method will visit all 24 = 16 vertices, using the Largest
Coefficient Rule.

Why do we use the Simplex Method, if it has these flaws? First, it will usually find a solution quickly.10

Second, it is the easiest LP solution method to describe. Third, it was the first one discovered, by G. B.
Dantzig in 1947 [3]. Fourth, it terminates unless it cycles.

Some alternatives are the interior point methods, where the current point moves through the interior of
the feasible region, instead of around its boundary. One of these is called the Ellipsoid Method [7].11 There
are also the Primal-Dual algorithms,12 which approach the maximum value of P from above and below.

LP Duality
Motivation

The book provides no motivation for LP duality, other than the fact that a LP and its dual both have the
same value (i.e., the minimimum when trying to minimize, or the maximum when trying to maximize). In
fact, there is much more here on a theoretical level. So we will movtivate LP duality here, with a very
practical problem.

Consider the LP:
maximize 2x1 + 3x2

x1 + x2 ≤ 3
x1 ≤ 2
x2 ≤ 2

x1, x2 ≥ 0

(P)

We solve this LP by using the Simplex Method (putting it into a tableau, and performing pivoting
operations). After two iterations, we get the final tableau


BV P x1 x2 s1 s2 s3 RHS
x1 0 1 0 1 0 −1 1
s2 0 0 0 −1 1 1 1
x2 0 0 1 0 0 1 2

P 1 0 0 2 0 1 8


which represents an optimal solution: x1 = 1, x2 = 2, and P = 8. The proof that is given for optimality is
that the bottom row, turned into an equation and solved for P , yields P = 8− 2s1 − s3,13 which means the
maximum is 8, since s1 and s3 are bigger than or equal to 0, and the only way to guarantee optimality is to
have s1 = 0 and s3 = 0 (which means x1 + x2 = 3 and x2 = 2, i.e., (x1, x2) = (1, 2)).

But we’ve forgotten one thing: What if I made a mistake during the pivoting?

Simple Error Checking

There are a few ways to check whether you have made any mistakes during pivoting. Most of them are quick
checks:

• Test your final answer for feasibility. This is along the lines of the “Check your answer whenever possi-
ble” philosophy. In fact, at least n of the inequalities (which include the nonnegativity conditions xi ≥ 0)
must actually be equalities; this is because the Simplex Method moves from corner point to corner point.

• Make sure P = 2x1 + 3x2. In other words, plug x1 and x2 into the original objective value.

10 within O(n lnm) iterations
11 Chvátal describes this algorithm in an appendix of his textbook [2].
12 developed by Ford and Fulkerson [5], from earlier contributions by J. Egerváry [4] and H. W. Kuhn [9]
13 This is a consequence of P being 2x1 + 3x2, and the equalities in the LP; it is an equivalent expression.
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• The first column always stays the same. This can be proven by induction, and the fact that a new pivot
never is in the bottom row.14

• The numbers in the RHS column are always nonnegative. This is of course assuming you’re not using
the “alternate pivoting strategy” for LPs which can’t be put into standard form. Negative numbers in
the RHS column indicate a bad choice of pivot row and/or arithmetic errors.

• You should always have exactly one pivot in each row. Unless you’re in the middle of turning an entry
into a pivot, that is. In which case every row other than the pivot row should have a pivot in it.

More Sophisticated Error Checking
Since the inequalities restrict what values the variables can have, shouldn’t they be able to provide a bound
on how big P can get? The answer to this question is a resounding yes.

For instance, our LP named (P)15 requires that x1 and x2 be at most 2. If we multiply the first in-
equality (x1 ≤ 2) by 2 on both sides, and multiply the second inequality (x2 ≤ 2) by 3 on both sides, and
then add them together, we get the following inequality:

x1 ≤ 2 → 2x1 ≤ 4
x2 ≤ 2 → 3x2 ≤ 6

P = 2x1 + 3x2 ≤ 10

So P ≤ 10. We can do even better. Since x1 + x2 ≤ 3, we also can deduce that

P = 2x1 + 3x2 ≤ 3x1 + 3x2 ≤ 3 · 3 = 9.

So we do not necessarily need to end up with 2x1 +3x2 on the left-hand side, in order to get an upper bound
on P ; a larger coefficient is good enough.

Enough messing around. Let’s get organized, and try to find the best possible upper bound. What we
will do is associate with each inequality a variable yi, which will end up being a dual variable, and multiply
both sides of the ith inequality by yi. To make sure that the inequality stays the same, we will require that
yi ≥ 0, for all i. Using our LP (P) as an example,

( x1 + x2 ≤ 3 ) · y1

( x1 ≤ 2 ) · y2

( x2 ≤ 2 ) · y3

Adding the inequalities together results in:

x1y1 + x2y1 + x1y2 + x2y3 ≤ 3y1 + 2y2 + 2y3,

or
x1(y1 + y2) + x2(y1 + y3) ≤ 3y1 + 2y2 + 2y3.

Now, to say something about 2x1 + 3x2, we need to have

y1 + y2 ≥ 2
y1 + y3 ≥ 3

Since we want the best lower bound, we want to make 3y1 + 2y2 + 2y3 as small as possible. Thus, we
need to solve the following problem:

minimize 3y1 + 2y2 + 2y3

y1 + y2 ≥ 2
y1 + y3 ≥ 3

y1, y2, y3 ≥ 0

(D)

14 The entry in the pivot column in the last row is negative, by definition.
15 P is for “primal”, synonym for “original.”
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This is the dual LP (of (P)).
It is possible to show that the dual LP of (D) is (P),16 so the name “dual” is well-earned. Note that

the dual LP of a maximization problem is a minimization problem, and vice versa.
Clearly, the value (the minimum) of the dual LP can be no less than the value (maximum) of the primal,

since the optimum solution to the primal problem is feasible. But can there be a gap? The answer, happily,
is no:

Von Neumann’s Duality Theorem17. If a LP has a maximum value of v, then its dual LP has
a minimum value of v.

A version of this is also true if the primal LP does not have a solution. If the primal LP is unbounded,
then the dual LP must be infeasible; a feasible point for the dual LP would provide an upper bound. If
the primal LP has no feasible points, then the dual LP can be unbounded (having a minimum of −∞ or a
maximum of +∞) or infeasible; however, in this case, the dual LP cannot have a finite minimum, because
Von Neumann’s Duality Theorem also applies to minimization problems.

The Dual Variables

Where are y1, y2, and y3? Do we need to solve another LP to find them? Fortunately not. They’re in the
bottom row of the final tableau, under the columns corresponding to the slack variables:


BV P x1 x2 s1 s2 s3 RHS
x1 0 1 0 1 0 −1 1
s2 0 0 0 −1 1 1 1
x2 0 0 1 0 0 1 2

P 1 0 0 2 0 1 8


If we multiply both sides of the first inequality of P (the one which we added s1 to, in order to get

an equality) by y1, multiply both sides of the second inequality by y2, etc., and add these new inequalities
together, we get:

x1 + x2 ≤ 3 → 2x1 + 2x2 ≤ 6
x1 ≤ 2 → 0 ≤ 0
x2 ≤ 2 → x2 ≤ 2

P = 2x1 + 3x2 ≤ 8,

which means that P ≤ 8. Also, it is easy to check that (x1, x2) = (1, 2) is feasible, and P = 8 for this point.
Thus (1, 2) must be a maximum, because P cannot be made any bigger than 8, QED, even if we did make
mistakes elsewhere.18

Let us look again at the final tableau.19 If yi 6= 0, then there cannot be a pivot in the si column (since
the only pivot in the bottom row is in the P column), and so si = 0. Conversely, if si is nonzero, then si

must be a Basic Variable, and so there must be a pivot in the si column, which is not in the bottom row,
and hence yi = 0.

Thus, in either case, we have siyi = 0, for all i. If we consider solving the dual LP, we can introduce
more slack variables t1, t2, . . . , tn, to turn those inequalities into equalities. By analogy, we must also have
tixi = 0, for all appropriate values i. These two sets of conditions are known as the complementary slackness
conditions, and they help tremendously in solving LPs:

16 We leave this as an exercise for the overzealous reader.
17 Originally proven by John von Neumann and George Bernard Danzig, formalized in [6] by Gale, Kuhn,

and Tucker.
18 If we did, they don’t matter; we’ve solved the problem in spite of them.
19 not mentioned during the talk, due to time constraints
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Necessary and Sufficient Conditions for Optimality. If (x1, x2, . . . , xn) is a feasible point of
a LP, and (y1, y2, . . . , ym) is a feasible point of that LP’s dual, then the following are equivalent:
(1) These points are optima of their respective LPs;
(2) The objective value of the primal LP at x is the same as the objective value of the dual LP at

y; and
(3) yisi = 0 for all i = 1, 2, . . . ,m, and xiti = 0 for all i = 1, 2, . . . , n.

Dual variables come in handy in other situations as well. For instance, suppose you solved (P), like
your boss told you to, but when you’re presenting your results at a meeting, your boss says, “That inequality
x2 ≤ 2 should actually have been x2 ≤ 2.1. I hope that doesn’t change your answer too much.”

What can you do?20 Fortunately, dual variables can help you out here. If you have solved P, then you
can approximate the solution to the modified LP:

maximize 2x1 + 3x2

x1 + x2 ≤ 3 + ε1

x1 ≤ 2 + ε2

x2 ≤ 2 + ε3

x1, x2 ≥ 0

It turns out that P = 8 + ε1y1 + ε2y2 + ε3y3, if ε1, ε2, and ε3 are “small enough.”21 If you consider 0.1
to be “small enough”, you can say that the optimum is approximately 8 + 0.1(1) = 8.1.

Proofs of Unboundedness22

It is also possible to prove that a LP (which is being maximizied) is unbounded, i.e., that the maximum is +∞.
To see how, consider the LP

maximize 2x1 + x2 + x3

−2x1 + x2 − 2x3 ≤ 4
2x1 − 2x2 + x3 ≤ 4

x1, x2, x3 ≥ 0

After setting up the initial tableau and pivoting twice, the following table results:


BV P x1 x2 x3 s1 s2 RHS
s1 0 0 −1 −1 1 1 8
x1 0 1 −1 1/2 0 1/2 2

P 1 0 −3 0 0 1 4


The Simplex Method says that this LP is unbounded, because all entries in the x2 column are nonpos-

itive. But once again, how do we know we didn’t make a mistake?
Here’s how we can check our answer: Let all nonbasic variables except for x2 be 0, let x2 = t, and

convert the rows of the tableau above to equations:

−t + s1 = 8
x1 − t = 2
P − 3t = 4.

20 Other than supressing the urge to kill your boss, of course.
21 How small is “small enough”? It’s along the line of: small enough to make

f(x + h)− f(x)
h

close to f ′(x).
22 Not given during the talk, due to time constraints.
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This means that (x1, x2, x3) = (2 + t, t, 0), because x3 = 0, as x3 is not a Basic Variable. These points are
feasible for all t ≥ 0, because

−2x1 + x2 − 2x3 = −2(2 + t) + 1 · t− 2 · 0 = −4− t ≤ 4, and
2x1 − 2x2 + x3 = 2(2 + t)− 2 · t + 0 = 4 ≤ 4.

Furthermore, P = 2x1 +x2 +x3 = 2(2+ t)+ t+0 = 4+3t, so P →∞ as t→∞; hence the LP is unbounded,
QED.

Mixed Constraints
Problems Not In Standard Form

Up until now, we have assumed that the LP is in standard form. For LPs which are not in standard form,
the Simplex Method cannot be used right away, because the initial point (the origin) is infeasible. So a
feasible point needs to be found, whereupon the Simplex Method can take over and work towards a solution.

The “alternative pivoting strategy” mentioned in section 4.4 moves from one “pseudo-corner” to an-
other. (I’m definining a pseudo-corner to be a point where n of the LP’s inequalities are equal, without any
condition on feasibility. A feasible pseudo-corner is thus a corner point.) Its progress is best described as
“stumbling around in the dark.” According to Sultan [11], this “stumbling” will eventually reach a corner
point, unless there are no feasible points at all.

An alternative is the Two-Phase Simplex Method . To solve the LP23

maximize 3x1 + x2

x1 − x2 ≤ −1
x1 + x2 ≥ 3

2x1 + x2 ≤ 4
x1, x2 ≥ 0

we first solve
maximize − x0

x1 − x2 − x0 ≤ −1
x1 + x2 − x0 ≤ −3

2x1 + x2 − x0 ≤ 4
x1, x2, x0 ≥ 0

to get a corner point for the Simplex Method to work with. Note that we are trying to minimize x0, and if
this minimum is equal to zero, we can find a point where the Simplex Method can continue with the original
problem.

The new LP has an initial tableau of the form


BV P ′ x0 x1 x2 s1 s2 s3 RHS
s1 0 −1 1 −1 1 0 0 −1
s2 0 −1 −1 −1 0 1 0 −3
s3 0 −1 2 1 0 0 1 4

P ′ 1 1 0 0 0 0 0 0

.

This tableau represents an infeasible “pseudo-corner,” but we can create a feasible solution by putting a
pivot in the x0 column, in the second row (the row with the smallest entry in the RHS column):


BV P ′ x0 x1 x2 s1 s2 s3 RHS
s1 0 0 2 0 1 −1 0 2
x0 0 1 1 1 0 −1 0 3
s3 0 0 3 2 0 −1 1 7

P ′ 1 0 −1 −1 0 1 0 −3


23 This is not the example I used during the talk. I didn’t go into details, so I don’t feel that I need to

keep the same problem.
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Now we can perform the Simplex Method as usual. We get a final tableau of:


BV P ′ x0 x1 x2 s1 s2 s3 RHS
x1 0 0 1 0 1/2 −1/2 0 1
x2 0 1 0 1 −1/2 −1/2 0 2
s3 0 −2 0 0 −1/2 3/2 1 0

P ′ 1 1 0 0 0 0 0 0


We can see that x0 = 0 for this tableau, since x0 is not a BV, and so the original problem is feasible. (If the
second, auxiliary LP stopped with a nonzero entry in the lower right-hand corner, that would say that the
original LP is infeasible—that it has no feasible points whatsoever.) We now take this tableau, remove the
P ′ and x0 columns, and the final row, and insert it into the tableau for the original LP:


BV P x1 x2 s1 s2 s3 RHS
x1 0 1 0 1/2 −1/2 0 1
x2 0 0 1 −1/2 −1/2 0 2
s3 0 0 0 −1/2 3/2 1 0

P 1 −3 −1 0 0 0 0


The x1 and x2 columns no longer have a pivot in them, but that can be fixed by adding multiples of rows
1 and 2 to row 4: 

BV P x1 x2 s1 s2 s3 RHS
x1 0 1 0 1/2 −1/2 0 1
x2 0 0 1 −1/2 −1/2 0 2
s3 0 0 0 −1/2 3/2 1 0

P 1 0 0 1 −2 0 0


Now we have found a corner point and can continue with the Simplex Method to find the solution (x1, x2) =
(1, 2), with P = 5.24

Linear Programs With Equalities

The book handles an equation like
x1 + x2 + x3 = 10

by replacing it with the inequalities
x1 + x2 + x3 ≤ 10
x1 + x2 + x3 ≥ 10

and adding a slack variable to each, resulting in two equalities:

x1 + x2 + x3 + s1 = 10
−x1 − x2 − x3 + s2 = −10

This is silly, since we must obviously have s1 = s2 = 0.
An alternative is to put the original equality into the tableau, without adding a slack variable to it, and

turn one of the entries in that row into a pivot. The simplex method works as usual from here on.25

For example, consider Example 3 from Section 4.4 of [10]:

24 We leave the rest of this exercise to the overzealous reader.
25 It may not be possible to put the LP in standard form, so the Two-Phase Simplex Method or the

alternate pivoting strategy must be used. Note that if you have to use the Two-Phase Simplex Method, then
you would have to use the alternate pivoting strategy (if you use the book’s method), so you are not making
the procedure needlessly long.
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minimize 7x1 + 5x2 + 6x3

x1 + x2 + x3 = 10
x1 + 2x2 + 3x3 ≤ 19

2x1 + 3x2 ≥ 21
x1, x2, x3 ≥ 0

Putting it into a tableau, we get:26


BV P x1 x2 x3 s1 s2 RHS

0 1 1 1 0 0 10
s1 0 1 2 3 1 0 19
s2 0 −2 −3 0 0 1 −21

P 1 7 5 6 0 0 0


This is not a valid tableau, because there is no pivot in the first row. However, we can put a pivot in that
row, in the column of the variable with the same sign as the RHS27 and smallest subscript, and put a pivot
in its (x1’s) column and the first row.28 We now get:


BV P x1 x2 x3 s1 s2 RHS
x1 0 1 1 1 0 0 10
s1 0 0 1 2 1 0 9
s2 0 0 −1 2 0 1 −1

P 1 0 −2 −1 0 0 −70


There is a negative sign in the RHS column, which we can fix with the Two-Phase Simplex Method, or the
alternate pivoting strategy; the latter only requires one pivoting operation, in the third row and x2 column:


BV P x1 x2 x3 s1 s2 RHS
x1 0 1 0 3 0 1 9
s1 0 0 0 4 1 1 8
x2 0 0 1 −2 0 −1 1

P 1 0 0 −5 0 −2 −68


The standard Simplex Method can now be used. After two pivoting operations, the final answer is reached:
(x1, x2, x3) = (1, 9, 0), with P = −52, indicating that the minimum is 52.29 This was done with one fewer
pivoting operation than in the book, on a tableau which had one less row and two fewer columns.

Multiple Solutions30

The Simplex Method will only supply one solution to the LP; however, there are situations where all solu-
tions are sought. In general, if ~x1, . . . , ~xk are the corner points where the optimum value is attained, then
any convex combination of these corner points will be solutions; that is, every solution is of the form

k∑
i=1

λi~xi, where λi ≥ 0 and
k∑

i=1

λi = 1,

26 The third inequality has been reversed, and the minimization of 7x1 + 5x2 + 6x3 turned into the max-
imization of P = −7x1 − 5x2 − 6x3.

27 If all the signs in the pivot row—except for the one in the RHS column—are different from the one in the
RHS column, then the LP has no feasible points, using the same logic as for the alternate pivoting strategy.

28 a la the alternate pivoting strategy, or Bland’s Rule
29 A LP with an equality does have a dual LP, except with one noteworthy difference: The dual variable

corresponding to the equality can be positive, negative, or zero.
30 This section was added August 2006 and is based on e-mail conversations with Frederic Ferrero.
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for some real values of λi, and every point which can be written in this form is an optimal solution. Thus
the geometric method solves this version of the problem; with some work, the Simplex Method (along with
the complimentary slackness conditions) can do the same.

Specifically, let’s consider the following LP:

maximize x1 + x2 + x3

x1 + x2 + 3x3 ≤ 1
x1 + x2 ≤ 1

2x2 − 5x3 ≤ 1
x1, x2, x3 ≥ 0

whose dual is
minimize y1 + y2 + y3

y1 + y2 ≥ 1
y1 + y2 + 2y3 ≥ 1

3y1 − 5y3 ≥ 1
y1, y2, y3 ≥ 0

A dual solution (obtained by solving the Primal LP with the Simplex Method) is (y1, y2, y3) = (1, 0, 0).
According to the Necessary and Sufficient Conditions for Optimality, any optimal solution (x1, x2, x3) to the
Primal LP has

x1 + x2 + 3x3 = 1, (E1)

since dual variable y1 is not zero. (The other inequalities may be strict, since y2 = y3 = 0.)
We also need to check the inequalities in the Dual LP and see which are strict; the corresponding primal

variable has to be 0. In this case, the first two inequalities are actually equal for the dual solution (1, 0, 0),
and the third is strict (3 > 1). That means we must have

x3 = 0. (E2)

Now we solve the system of linear equations consisting of (E1) and (E2), and find the restrictions on
the free variables to make (x1, x2, x3) feasible. In our case, we have

x1 = 1− t

x2 = t

x3 = 0
, where t is a free variable.

The conditions on t to make (x1, x2, x3) feasible are

x1 + x2 + 3x3 ≤ 1
x1 + x2 ≤ 1

2x2 − 5x3 ≤ 1
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

, so

(1 + t) + t + 0 ≤ 1
(1− t) + t ≤ 1
2t− 5 · 0 ≤ 1

1− t ≥ 0
t ≥ 0
0 ≥ 0

, or

1 ≤ 1 (always true)
1 ≤ 1
t ≤ 1/2
t ≤ 1
t ≥ 0
0 ≥ 0

.

So t must be in
[
0,

1
2

]
. This, along with the equations for x1, x2, and x3, parameterizes all optimal

solutions to the LP.

To parameterize all solutions to the Dual LP, you exchange the roles of the primal and dual solutions.
You use the Simplex Method to find a solution to the Primal LP, use the complementary slackness conditions
to deduce which inequalities of the Dual LP should be equalities and which dual variables should be zero.
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Conclusion
The subject of Linear Programming extends beyond the Simplex Method algorithm, much as Linear Alge-
bra extends beyond Gaussian Elimination, and the theory behind it has enough substance to make study
worthwhile. This theory helps to explain why the Simplex Method proceeds as it does, suggests alternate
approaches to solving LPs, and can be used to formally prove that a certain solution is an optimum. It is
hoped that this paper has introduced people to this young (50-year old) field, and that further results can
follow with its study.
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