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PREFACE

In writing this book we have attempted to produce a textbook
of practical quantum mechanics for the chemist, the experi-
mental physicist, and the beginning student of theoretical
physics. The book is not intended to provide a critical discus-
sion of quantum mechanics, nor even to present a thorough
survey of the subject. We hope that it does give a lucid and
easily understandable introduction to a limited portion of
quantum-mechanical theory; namely, that portion usually
suggested by the name ‘“wave mechanics,” consisting of the
discussion of the Schrodinger wave equation and the problems
which can be treated by means of it. The effort has been made
to provide for the reader a means of equipping himself with a
practical grasp of this subject, so that he can apply quantum
mechanics to most of the chemical and physical problems which
may confront him.

The book is particularly designed for study by men without
extensive previous experience with advanced mathematics, such
as chemists interested in the subject because of its chemical
applications. We have assumed on the part of the reader, in
addition to elementary mathematics through the calculus, only
some knowledge of complex quantities, ordinary differential
equations, and the technique of partial differentiation. It
may be desirable that a book written for the reader not adept
at mathematics be richer in equations than one intended for
the mathematician; for the mathematician can follow a sketchy
derivation with ease, whereas if the less adept reader is to be
led safely through the usually straightforward but sometimes
rather complicated derivations of quantum mechanics a firm
guiding hand must be kept on him. Quantum mechanics is
essentially mathematical in character, and an understanding
of the subject without a thorough knowledge of the mathiematical
methods involved and the results of their application cannot be
obtained. The student not thoroughly trained in the theory
of partial differential equations and orthogonal functions must

it
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learn something of these subjects as he studies quantum mechan-
ics. In order that he may do so, and that he may follow the
discussions given without danger of being deflected from the
course of the argument by inability to carry through some minor
step, we have avoided the temptation to condense the various
discussions into shorter and perhaps more elegant forms.

After introductory chapters on classical mechanics and the
old quantum theory, we have introduced the Schrodingsr wave
equation and its physical interpretation on a postulatory basis,
and have then given in great detail the solution of the wave
equation for important systems (harmonic oscillator, hydrogen
atom) and the discussion of the wave functions and their proper-
lies, omitting none of the mathematical steps except the most
damentszrr: A similarly detailed treatment has been given
in the discussion o1 pertu’vdnion “icury, the variation method,
the structure of simple molecules, and, in general, . .
important section of the book.

In order to limit the size of the book, we have omitted from
discussion such advanced topies as transformation theory and
general quantum mechanics (aside from brief mention in the
last chapter), the Dirac theory of the electron, quantization
of the electromagnetic field, etc. We have also omitted several
subjects which are ordinarily considered as part of elementary
quantum mechanics, but which are of minor importance to the
chemist, such as the Zeeman effect and magnetic interactions in
general, the dispersion of light and allied phenomena, and
most of the theory of aperiodic processes.

The authors are severally indebted to Professor A. Sommerfeld
and Professors E. U. Condon and H. P. Robertson for their
own introduction to quantum mechanics. The constant advice
of Professor R. C. Tolman is gratefully acknowledged, as well
as the aid of Professor P. M. Morse, Dr. L. E. Sutton, Dr.
G. W. Wheland, Dr. L. O. Brockway, Dr. J. Sherman, Dr. S.
Weinbaum, Mrs. Emily Buckingham Wilson, and Mrs. Ava
Helen Pauling.

Linus PavLinG.
E. BricaT WiLsoN, JR.

CAMBRIDGE, Mass.,

PasapeNa, 1AL,
July, 193E
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INTRODUCTION TO QUANTUM
MECHANICS

CHAPTER I
SURVEY OF CLASSICAL MECHANICS

The subjcet of quantum mechanies constitutes the most recent
step in the very old scarch for the general Jaws governing the
motion of matter. For a long time investigators confined their
efforts to studying the dynamics of bodies of macroscopic dimen-
sions, and while the science of mechanics remained in that
stage it was properly considered a branch of physics. Since
the development of atomic theory there has been a change of
emphasis. 1t was recognized that the older laws are not correct
when applied to atoms and electrons, without considcrable
modification. Moreover, the success which has been obtained
in making the necessary modifications of the older laws has also
had the result of depriving physics of sole claim upon them, since
it is now realized that the combining power of atoms and, in
fact, all the chemical properties of atoms and molecules are
explicable in terms of the laws governing the motions of the
electrons and nuclei composing them.

Although it is the modern theory of quantum mechanics in
which we are primarily interested becausc of its applications to
chemical problems, it is desirable for us first to discuss briefly
the background of classical mechanics from which it was devel-
opced. By so doing we not only follow to a certain extent the
historical development, but we also introduce in a more familiar
form many concepts which are retained in the later theory. We
shall also treat certain problems in the first few chapters by the
methods of the older theories in preparation for their later treat-
ment by quantum mechanics. It is for this reason that the
student is advised to consider the exercises of the first few
chapters carefully and to retain for later reference the results

which are secured.
1



2 SURVEY OF CLASSICAL MECHANICS [I-1

In the first chapter no attempt will be made to give any parts
of classical dynamics but those which are useful in the treatment
of atomic and molecular problems. With this restriction, we
have felt justified in omitting discussion of the dynamics of rigid
bodies, non-conservative systems, non-holonomic systems, sys-
tems involving impact, etc. Moreover, no use is made of
Hamilton’s principle or of the Hamilton-Jacobi partial differential
equation. By thus limiting the subjects to be discussed, it is
possible to give in a short chapter a thorough treatment of
Newtonian systems of point particles.

1. NEWTON’S EQUATIONS OF MOTION IN THE LAGRANGIAN
FORM

The earliest formulation of dynamical laws of wide application
is that of Sir Isaac Newton. If we adopt the notation z,, y., z:
for the three Cartesian coordinates of the 7th particle with
mass m;, Newton’s equations for n point particles are

mt; = -Xl,
myi = Y.’, 1= 1: 21 N (N (1_1)
mi; = Zy,

where X, Y., Z; are the three components of the force acting on
the ith particle. There is a set of such equations for each
particle. Dots refer to differentiation with respect to time, so
that
. dzlf.'
x'- = Vdﬁ. (1—2)
By introducing certain familiar definitions we change Equation
1-1 into a form which will be more useful later. We define as
the kinetic energy T (for Cartesian coordinates) the quantity

T = Ygmi( + 93+ 8D + - o + Yma(@h + g + 23)
= 35 Symt + 42 + ). (1-3)

1=1

If we limit ourselves to a certain class of systems, called conserva-
tive systems, it is possible to define another quantity, the potential
energy V, which is a function of the coordinates zy.z; - -

Znyn2s of all the particles, such that the force components acting
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on each particle are equal to partial derivatives of the potential
energy with respect to the coordinates of the particle (with
negative sign); that is,

av

X = —al)
av ,

Yi = _52117." 1 = 1, 2, * , N (1—4)
av

Z; —a;:J

It is possible to find a funetion ¥V which will express in this manner
forces of the types usually designated as mechanical, electrostatic,
and gravitational. Since other types of forces (such as electro-
magnetic) for which such a potential-energy function cannot
be set up are not important in chemical applications, we shall
not consider them in detail.

With these definitions, Newton’s equations become

d oT

a E + ax. y (1—5(1)
d éT |, 3V

G oy~ (1-5b)
d aT a4V

diaz tom =" (1-5)

There are three such equations for every particle, as before.
These results are definitely restricted to Cartesian coordinates;
but by introducing a new function, the Lagrangian function L,
defined for Newtonian systems as the difference of the kinetic
and potential energy,

L =L(Ily Y, 21, ° * ° y Tay Yny 24y rl; T, Zn) =
TV, (1-6)

we can throw the equations of motion into a form which we shall
later prove to be valid in any system of coordinates (Sec. 1lc).
In Cartesian coordinates T is a function of the velocities
£y, + - -, Za Only, and for the systems to which our treatment
is restrlcted V is a function of the coordinates only; hence the
equations of motion given in Equation 1-5 on introduction of
the function L assume the form
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4L oL _,

dt ai.' a:c,- ’

d oL oL .

& 5 o 0, 1=1,2, y B -7
4oL _oL _g

dt 9z, 9z, '

In the following paragraphs a simple dynamical system is
discussed by the use of these equations.

1la. The Three-dimensional Isotropic Harmonic Oscillator.—
As an illustration of the use of the equations of motion in this
form, we choose a system which has played a very important
part in the development of quantum theory. This is the
I’l/rmomc oscillator, a particle bound to an equilibrium position by

a forece which increases in magnitude linearly with its distance
r from the point. In the three-dimensional isotropic harmonic
oscillator this corresponds to a potential function 144r? represent-
ing a force of magnitude kr acting in a negative dlrection; ie.,
from the position of the particle to the origin. k& is called the
Jorce constant or Hooke's-law constant. Using Cartesian coordi-
nates we have

L = 1gm(2? 4+ g% + 2%) — Lgk(2? 4+ y* + 2%), (1-8)
whence
E%(m:b) + kzr = mi + kx =0,
my + ky =0, (1-9)
mz + kz = 0.

Multiplication of the first member of Equation 1-9 by & gives

A& dr
or
1 d(z)? 1 d(xz)
" a T T @ (1-11)
which integrates directly to
14mi? = —1l4kx? + constant. (1-12)

The constant of integration is conveniently expressed as lskz?.
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N LY (1-13)

or, on introducing the expression 4w2mp} in place of the force
constant k,

Hence

dr

@ — %

2’7rl'odt =
which on integration becomes

2wt + 6, = Sin"l-:E
To

or

x = zg sin (2rvet + &5), (1-14)
and similarly

Y = yosin (2rvet + 6,), -

z = zg sin (2rvet + 4.). (1-15)

In these expressions zo, ¥, 20, 8 &, and §, are constants of
integration, the values of which determine the motion in any
given case. The quantity v, is related to the constant of the
restoring force by the equation

4rmy} = k, (1-16)
so that the potential energy may be written as
V = 2rmyirs, (1-17)

As shown by the equations for z, y, and #, v, is the frequency of
the motion. It is seen that the particle may be described as
carrying out independent harmonic oscillations along the z, y,
and z axes, with different amplitudes zo, yo, and 2z, and different
phase angles é., §,, and 8., respectively.

The energy of the system is the sum of the kinetic energy and
the potential energy, and is thus equal to

Ym(#? + §* + ) + 2emid(a? + y? + 2.

On evaluation, it is found to be independent of the time, with the
value 2x2mui(z? + y% + 22) determined by the amplitudes of
oscillation.

The one-dimensional harmonic oscillator, restricted to-motion
along the z axis in accordance with the potential function
V = Ykx* = 2r*mviz?, is seen to carry out harmonic oscillations
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along this axis as described by Equation 1-14. Its total energy
is given by the expression 2z *myjz3.

1b. Generalized Coordinates.—Instead of Cartesian coordi-
nates z1, yi, 21, * * * , Zny Yn, Zn, it is frequently more convenient
to use some other set of coordinates to specify the configuration
of the system. For example, the isotropic spatial harmonic
oscillator already discussed might equally well be described using
polar coordinates; again, the treatment of a system composed of
two attracting particles in space, which will be considered
later, would be very cumbersome if it were necessary to use
rectangular coordinates.

If we choose any set of 3n coordinates, which we shall always
assume to be independent and at the same time sufficient in
number to specify completely the positions of the particies of
the system, then there will in general exist 3n equations, called
the equations of transformation, relating the new coordinates
gx to the set of Cartesian coordinates z,, y., 2,

Zi = fi(qu gy "t Gan),
Y = gi(qu Q2 ~ ", q3n); (1"'18)
z; = hl'(qu qz, © " ", q3ﬂ)'

There is such a set of three equations for each particle ¢. The
functions f;, g;, h: may be functions of any or all of the 3n new
coordinates qx, so that these new variables do not necessarily
split into sets which belong to particular particles. For example,
in the case of two particles the six new coordinates may be the
three Cartesian coordinates of the center of mass together
with the polar coordinates of one particle referred to the other
particle as origin.

As is known from the theory of partial differentiation, it is
possible to transform derivatives from one set of independent
variables to another, an example of this process being

é_ﬁli.' _ ?E: (_11_1 3117.' d(]z .. (913. dq:m
dt — dq, df " 3q, dt + + 3qsn dt (1-190)
This same equation can be put in the much more compact form
3n
. 9z . _
g= > 2 (1-19b)
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This glves the relation between any Cartesian component of
velocity and the time derivatives of the new coordinates. Similar
relations, of course, hold for g; and 2; for any particle. The
quantities ¢;, by analogy with z;, are called generalized velocities,
even though they do not necessarily have the dimensions of
length divided by time (for example, ¢; may be an angle).

Since partial derivatives transform in just the same manner,
we have

9V _ _oVom _oVoy, . _ 9V o
dg;  9z1dg; Iy 9g; 9z, 0g;
O[3V oz aVay: Vo) _
B 2(61; dg; = Iy 3q7. + dz; 6q;-> =Q;. (1-20)
=]

Since Q, is given by an expression in terms of V and ¢; which is
analogous to that for the force X; in terms of V and z;, it is called
a generalized force.

In exactly similar fashion, we have

aT _ 9T 9y , aT dy: , T 9z;
= Dot tma) oW
T=1

1c. The Invariance of the Equations of Motion in the Lagran-
gian Form.—We are now in a position to show that when New-
ton’s equations are written in the form given by Equation 1-7
they are valid for any choice of coordinate system. For this
proof we shall apply a transformation of coordinates to Equa-
tions 1-5, using the methods of the previous section. Multiplica-

tion of Equation 1-5a by a_x_;, of 1-5b by Qy_a, etc., gives
ag; ag;

92, d 9T oV oz,
dq, dt 3%, = 9z, 9g;
dxs d 0T 9V 0z,

T 72 =0,

dq; dt 0zs ' 974 9q; (1-22)

92, d OT | 3V 9za _
aq;dtaa':n ax,.aq,- o

with similar equations in y and z. Adding all of these together
gives :
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n dz; d oT ay;daT éﬁg oT av B
2{3_‘11'3237‘4- ag; dt 9y + dq, dt 3z, + 3 3 =0, (1-23)

i=1

where the result of Equation 1-20 has been used. In order to
reduce the first sum, we note the following identity, obtained by
differentiating a product,

dz; d(OT\ _ d (0T dzs\  OT d(dzy\ (1-24)
dq; di\oz;) ~ di\ 9z, ag; 3i; di\ dq;

From Equation 1-19b we obtain directly

oz, ox;
= 1-25
dg;  9g; ( )

Furthermore, because the order of differentiation is immaterial,
we see that

dt<6q,) E 3f1k<3% ) 2 dq, <aq")
S3Ee-E e

k=1

By introducing Equations 1-26 and 1-25 in 1-24 and using the
result in Equation 1-23, we get

S [(0T 82 | 9T 3ys | 9T 3\ _ (3T 3, 3T 3y,
2 di\ 9; aq‘,- ay. aq, 9% aq',- oL aq, ay; aq;

oT 9z; Vv
+372 q)} + 5 =0 (-2

which, in view of the results of the last section, reduces to

daT oT oV _

disg " aq Tag = 0. (1-28)

Finally, the introduction of the Lagrangian function, = 7 — V,
with V a function of the coordinates only, gives the more compact
form

———_———.=0, j=1:2737"'73n‘ (1_29)
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(It is important to note that L must be expressed as a function
of the coordinates and their first time-derivatives.)

Since the above derivation could be carried out for any value
of j, there are 3n such equations, one for each coordinate g;.
They are called the equations of motion in the Lagrangian form
and are of great importance. The method by which they were
derived shows that they are independent of the coordinate
system.

We have so far rather limited the types of systems considered,
but Lagrange’s equations are much more general than we have
indicated and by a proper choice of the function L nearly all dynam:-
cal problems can be treated with their use. These equations are
" therefore frequently chosen as the fundamental postulates of
classical mechanics instead of Newton’s laws.

1d. An Example: The Isotropic Harmonic Oscillator in Polar
Coordinates.—The example which we have treated in Section la
can equally well be solved by the use of polar coordinates r,
¢, and ¢ (Fig. 1-1). The equations of transformation correspond-
ing to Equation 1-18 are

z = rsind cos g,
y = rsin dsin ¢, (1-30)
2 =rcosd.

With the use of these we find for the kinetic and potential energies
of the isotropic harmonic oscillator the following expressions:

T

_1_ +2 2 52 ...7__'} 2 2,92 2 i 2 9 2
5 m(e® + g +2%) = 5 (7 + 12?4 r?sin? 8 ¢7), (1-31)
V = 2rimyvir?,

and

L=T-V = ’—Z"(fz + 7297 + r2sin? 9¢2) — 2rtmairt. (1-32)

The equations of motion are

%g.g - % = %(mrz sin? d¢) = 0, (1-33)
gzg% - % = gt(mrzd) — mr? sin & cos d¢? = 0, (1-34)

& di,-(mf) — mrd? — mr sin? 96? + 4x’mylr = 0.

(1-35)
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In Appendix II it is shown that the motion takes place in a
plane containing the origin. This conclusion enables us to
simplify the problem by making a change of variables. Let us
introduce new polar coordinates r, ¢/, x such that at the time
¢t = 0 the plane determined by the vectors r and v, the position
and velocity vectors of the particle at ¢ = 0, is normal to the new
2’ axis. This transformation is known in terms of the old set of
coordinates if two parameters 9, and ¢, determining the position
of the axis 2’ in terms of the old coordinates, are given (Fig. 1-2).

z
W
r
and
Fra. 1-1.—The relation of polar coor- F1g. 1-2.—The rotation of axes.

dinates r, ¢, and ¢ to Cartesian axes.

In terms of the new coordinates, the Lagrangian function L
and the equations of motion have the same form as previously,
because the first choice of axis direction was quite arbitrary.
However, since the coordinates have been chosen so that the
plane of the motion is the 2y’ plane, the angle #' is always equal
to a constant, x/2. Inserting this value of & in Equation 1-33
and writing it in terms of x instead of ¢, we obtain

gt-(mr’)'()' =0, (1-36)
which has the solution

mrix = py, & constant. (1-37)

The r equation, ¥quation 1-35, becomes

%(mi‘) ~ mrx? 4+ de'mvir = 0,
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or, using Equation 1-37,

d, . Px drtmyir = 0

Ez(mr) — s T dxmylr =0, (1-38)

an equation differing from the related one-dimensional Cartesian-
coordinate equation by the additional term —p2/mr® which
represents the centrifugal force.
Multiplication by 7 and integration with respect to the time
gives
p2
Pr= = P gpnme g (1-39)

m2r?

27-2

py 14
sothat + = (—m — dr2vkr? + b>

This can be again integrated, to give

bt = rdr
P} "
<_E: + br? — 41r2v§T‘>
4
(a + bz + cz)¥
in which z = r%, a = —p2/m?, b is the constant of integration in
Equation 1-39, and ¢ = —4#%2 This is a standard integral

which yields the equation

- {b + A sin drve(t — to)},

1
8wy
with A given by

A = \/bz _ _16’___;’;57’3.

We have thus obtained the dependence of r on the time, and
by integrating Equation 1-37 we could obtain x as a function of
the time, completing the solution. Elimination of the time
between these two results would give the equation of the orbit,
which is an ellipse with center at the origin. It is seen that the
constant vy again occurs as the frequency of the motion.

le. The Conservation of Angular Momentum.—The example
worked out in the previous section illustrates an important
principle of wide applicability, the principle of the conservation
of angular momentum.
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Equation 1-37 shows that when x is the angular velocity of the
particle about a fixed axis 2’ and r is the distance of the particle
from the axis, the quantity p, = mr?x is a constant of the motion.!
This quantity is called the angular momentum of the particle
about the axis 2’.

It is not necessary to choose an axis normal to the plane of the
motion, as #’ in this example, in order to apply the theorem.
Thus Equation 1-33, written for arbitrary direction z, is at once
integrable to

mr?sin? d¢ = p,, & constant. (1-40)

Here r sin ¢ is the distance of the particle from the axis 2, so that
the left side of this equation is the angular momentum about the
axis 2.2 It is seen to be equal to a constant, p,.

Z
3
ZI
/rsin 6d 14
rd O,
dgz/ ~rdx
2 >y
0)
X ¥ Tdyp

F1a. 1-3.—Figure showing the relation between dx, d&, and de.

In order to apply the principle, it is essential that the axis of
reference be a fixed axis. Thus the angle # of polar coordinates
has associated with it an angular momentum ps = mrzd about
an axis in the zy plane, but the principle of conservation of
angular momentum cannot be applied directly to this quantity
because the axis is not, in general, fixed but varies with ¢. A
simple relation involving ps connects the angular momenta

! The phrase a constant of the motion is often used in referring to a constant
of integration of the equations of motion for a dynamical system.

? This is sometimes referred to as the component of angular momentum
along the axis z.
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px and p, about different fixed axes, one of which, p,, relates
to the axis normal to the plane of the motion. This is

Dxdx = podd + Dede, (1—41)

an equation easily derived by considering Figure 1-3. The
sides of the small triangle have the lengths r sin ddp, rdx, and
rdd. Since they form a right triangle, these distances are
connected by the relation

r*(dx)? = r?sin? 8(de)? + r2(dv)?,

which gives, on introduction of the angular velocities x, ¢, and &
and multiplication by m/dt,

mrixdy = mr?sin® dode + mriddd.
Equation 141 follows from this and the definitions of p,, pe,
and p,.

Conservation of angular momentum may be applied to more
general systems than the one deseribed here. 1t is at once
evident that we have not used the special form of the potential-
energy expression except for the fact that it is independent of
direction, since this function enters into the r equation only.
Therefore the above results are true for a particle moving in
any spherically symmetric potential field.

Furthermore, we can extend the theorem to a collection of
point particles interacting with each other in any desired way
but influenced by external forces only through a spherically
symmetric potential function. If we describe such a system by

using the polar coordinates of each particle, the Lagrangian
function is

L =35 3m(i? + r3? + risin? 0:69) — V. (1-42)

i=1
Instead of ¢i, ¢z - - -, ¢, We now introduce new angular
coordinates @, 8, - - - , « given by the linear equations
pr=a+bf+ - 4k
pr = a+ b+ - - o+ kax,
................. ,
¢n=a+bnﬂ+ e +an-
The vaiues given the constants by, - - -, ks are unimportant so
long as they make the above set of equations mutually independ-

(1-43)
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ent. a is an angle about the axis z such that if « is increased
by Ae, holding 8, - - -, « constant, the effect is to increase each
¢: by Aq, or, in other words, to rotate the whole system of particles
about z without changing their mutual positions. By hypothesis
the value of V is not changed by such a rotation, so that V is
independent of . We therefore obtain the equation

d 9L oL daT
dda 9 " dlag = (1-44)

Moreover, from Equation 1-42 we derive the relation

n n
aT _ aTa@"E 2 s o s
Fyaie 36, 36 m,r? sin? ¢,¢,. (1-45)

i=1 i=1

Hence, calling the distance r, sin &, of the 7th particle from the
z axis p;, we obtain the equation

n
Em;p?«}. = constant. (1-46)
i=1
This is the more general expression of the principle of the con-
servation of angular momentum which we were sccking. In
such a system of many particles with mutual interactions, as,
for example, an atom consisting of a number of electrons and a
nucleus, the individual particles do not in general conserve
angular momentum but the aggregate does.

The potential-energy function V need be only cylindrically
symmetric about the axis z for the above proof to apply,
since the essential feature was the independence of V on the angle
a about z. However, in that case z is restricted to a particular
direction in space, whereas if V is spherically symmetric the
theorem holds for any choice of axis.

Angular momenta transform like vectors, the directions of the
vectors being the directions of the axes about which the angular
momenta are determined. It is customary to take the sense
of the vectors such as to correspond to the right-hand serew rule.

2. THE EQUATIONS OF MOTION IN THE HAMILTONIAN FORM

2a. Generalized Momenta.—In Cartesian coordinates the
momentum related to the direction zy is mu,, which, since V is
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restricted to be a function of the coordinates only, can be written
as

_oT _ oL
= oh ~ od

Dk k=12 ---,3n. (2-1)

Angular momenta can likewise be expressed in this manner.
Thus, for one particle in a spherically symmetric potential field,
the angular momentum about the z axis was defined in Section le
by the expression

D, = mp*p = mr?sin? d¢. (2-2)

Reference to Equation 1-31, which gives the expression for the
kinetic energy in polar coordinates, shows that

T dL
Pe = 5‘5 = a’; (2—3)
Likewise, in the case of a number of particles, the angular
momentum conjugate to the coordinate « is

aT dL
pa - —a—a = 5&] (2—4)
as shown by the discussion of Equation 1-46. By extending
this to other coordinate systems, the gencralized momentum p;
conjugate to the coordinate gy is defined as

aL
pk:é‘q‘k, k=1,2,---,3n. (2—5)
The form taken by Lagrange’s equations (Eq. 1--29) when the
definition of px is introduced is

pe =L ko192 -, 3m (2-6)
aq,,

so that Equations 2-5 and 2-6 form a set of 6n first-order dif-
ferential equations equivalent to the 3n second-order equations
of Equation 1-29.

—gé—; being in general a function of both the ¢’s and ¢’s, the

k

definition of p, given by Equation 2-5 provides 3n relations
between the variables g, ¢x, and ps, permitting the elimination
of the 3n velocities gi, so that the system can now be described
in terms of the 3n coordinates g, and the 3n conjugate momenta



16 SURVEY OF CLASSICAL MECHANICS -3¢

pe. Hamilton in 1834 showed that the equations of motion can
in this way be thrown into an especially simple form, involving
a function H of the py’s and ¢i’s called the Hamiltonian function.

9b. The Hamiltonian Function and Equations.—For con-
servative systems! we shall show that the function H is the total
energy (kinetic plus potential) of the system, expressed in terms
of the pi’s and ¢i’s. In order to have a definition which holds
for more general systems, we introduce H by the relation

3n
H = 3 pd — Lgs, dv)- (2-7)
k=1 R

Although this definition involves the velocities ¢x, H may be made
a function of the coordinates and momenta only, by eliminating
the velocities through the use of Equation 2-5. From the
definition we obtain for the total differential of H tha equation

3n

3n 3n 3n
, s, aL aL .
dH = Epkqu + Zdeifk - za_q,‘ dgx — 23, dgx, (2-8)
k=1 k=1

k=1 k=1

or, using the expressions for p; and px given in Equations 2-5 and
2-6 (equivalent to Lagrange’s equations),
. 3n

dH = 3 (qdpr ~ prdas), (2-9)

k=1

whence, if H is regarded as a function of the g’s and p.'s, we
obtain the equations

oH
.
oH
e

= gk,
k=1,2 - -,3n (2-10)

= —Px,

These are the equations of motion in the Hamiltonian or canonical
form. .

2c. The Hamiltonian Function and the Energy.—Let us con-
sider the time dependence of H for a conservative system. We
have

1 A conservative system is a system for which H does not depend explicitly
on the time ¢. We have restricted our discussion to conservative systems by
assuming that the potential function V does not depend on ¢.
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coordinate but only its derivative. Such a coordinate is caliea a cyeise
coordinate.

3. THE EMISSION AND ABSORPTION OF RADIATION °

The classical laws of mechanical and electromagnetic theory
permit the complete discussion of the emission and absorption of
electromagnetic radiation by a system of electrically charged
particles. In the following paragraphs we shall outline the
results of this discussion. It is found that these results are not
in agreement with experiments involving atoms and molecules;
it was, indeed, just this disagreement which was the principal
factor in leading to the development of the Bohr theory of the
atom and later of the quantum mechanics. Even at the present
time, when an apparently satisfactory theoretical treatment of
dynamical systems composed of electrons and nuclei is provided
by the quantum mechanics, the problem of the.emission and
absorption of radiation still lacks a satisfactory soluti~n, despite
the concentration of attention on it by the most able theoretical
physicists. It will be shown in a subsequent chapten,'hpwever,
that, despite our lack of a satisfactory conception of the flature
of electromagnetic radiation, equations similar to the classical
equations of this section can be formulated which represent
correctly the emission and absorption of radiation by’ atomic
systems to within the limits of error of experiment.

According to the classical theory the rate of emission of radiant
energy by an accelerated particle of electric charge e is

dE _ 2¢%*
@ T 38
in which -—% is the rate at which the energy E of the partiele
is converted into radiant energy, # is the acceleration of the
particle, and ¢ the velocity of light.

Let us first consider a system of a special type, in which a
particle of charge e carries out simple harmonic oscillation
with frequency » along the r axis, according to the equation

T = X¢ CO8 2mwut. (3-2)
Differentiating this expression, assuming that ze is independent
of the time, we obtain for the acceleration the value
b =i = —4x%vize cos 2rul.
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The average rate of emission of radiant energy by such a system
is consequently
_dE _ 16xr*»'e’z}
d — ~ 3¢
inasmuch as the average value cos® 2wyt over a cycle is‘one-half.
As a result of the emission of energy, the amplitude z, of the
motion will decrease with time; if the fractional change in
energy during a cycle of the motion is small, however, this equa-
tion retains its validity.

The radiation emitted by such a system has thefrequency vof the
emitting system. It is plane-polarized, the plane of the electric
vector being the plane which includes the z axis and the direction
of propagation of the light.

In case that the particle carries out harmonic oscillations along
all three axes z, y, and 2z, with frequencies v., », and », and
amplitudes {at a given time) z,, yo, and z,, respectively, the total
rate of emission of radiant energy will be given as the sum of
three terms similar to the right side of Equation 3-4, one giving
the rate of emission of energy as light of frequency », one of
v, and one of v,

If the motion of the particle is not simple harmonie, it can be
represented by a Fourier series or Fourier integral as a sum or
integral of harmonic terms similar to that of Equation 3-2;
light of frequency characteristic of each of these terms will then
be emitted at a rate given by Equation 34, the coefficient of the
Fourier term being introduced in place of z,.

The emission of light by a system composed of several inter-
acting electrically charged particles is conveniently discussed in
the following way. A Fourier analysis is first made of the
motion of the system in a given state to resolve it into harmonic
terms. For a given term, corresponding to a given frequency
of motion », the coeflicient resulting from the analysis (which is a
function of the coordinates of the particles) is expanded as a
power series in the quantities z;/\, - - -, 2z,/\, in which z,,

-+, 2z, are the coordinates of the particles relative to some
origin (such as the center of mass) and A = ¢/v is the wave length
of the radiation with frequency ». The term of zero degree in
this expansion is zero, inasmuch as the electric charge of the
system does not change with time. The term of first degree
involves, in addition to the harmonic function of the time, only

(3—4)
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a function of the coordinates. The aggregate of these first-
degree terms in the coordinates with their associated time factors,
summed over all frequency values occurring in the original
Fourier analysis, represents a dynamical quantity known as the
electric moment of the system, a vector quantity P defined as

P= Ze.-r.-, (3-5)

in which r; denotes the vector from the origin to the position of
the 7th particle, with charge ¢;. Consequently to this degree of
approximation the radiation emitted by a system of several
particles can be discussed by making a Fourier analysis of the
electric moment P. Corresponding to each term of frequency »
in this representation of P, there will be emitted radiation of
frequency » at a rate given by an equation similar to Equation
3-4, with ex, replaced by the Fourier coefficient in the electric-
moment expansion. The emission of radiation by this mechanism
is usually called dipole emission, the radiation itself sometimes
being described as dipole radiation.
The quadratic terms in the expansions in powers of zi/A,
+ , z./X form a quantity @ called the quadrupole moment
of the system, and higher powers form higher moments. Therate
of emission of radiant energy as a result of the change of quadru-
pole and higher moments of an atom or molecule is usually
negligibly small in comparison with the rate of dipole emission,
and in consequence dipole radiation alone is ordinarily discussed.
Under some circumstances, however, as when the intensity of
dipole radiation is zero and the presence of very weak radiation
can be detected, the process of quadrupole emission is important.

4. SUMMARY OF CHAPTER I

The purpose of this survey of classical mechanics is twofold:
first, to indicate the path whereby the more general formulations
of classical dynamics, such as the equations of motion of Lagrange
and of Hamilton, have been developed from the original equations
of Newton; and second, to illustrate the application of these
methods to problems which are later discussed by quantum-
mechanical methods.

In carrying out the first purpose, we have discussed Newton'’s
equations in Cartesian coordinates and then altered their form by



24 SURVEY OF CLASSICAL MECHANICS (I-4

the introduction of the kinetic and potential energies. By
defining the Lagrangian function for the special case of Newtonian
systems and introducing it into the equations of motion, Newton’s
equations were then thrown into the Lagrangian form. Follow-
ing an introductory discussion of generalized coordinates, the
proof of the general validity of the ecquations of motion in the
Lagrangian form for any system of coordinates has been given;
and it has also been pointed out that the Lagrangian form
of the equations of motion, although we have derived it from the
equations of Newton, is really more widely applicable than
Newton’s postulates, because by making a suitable choice of the
Lagrangian function a very wide range of problems can bc
treated in this way.

In the second section there has been derived a third form for
the equations of motion, the Hamiltonian form, following the
introduction of the concept of generalized momenta, and the rela-
tion between the Hamiltonian function and the energy has been
discussed.

In Section 3 a very brief discussion of the classical theory of
the radiation of energy from accelerated charged particles has
been given, in order to have a foundation for later discussions
of this topic. Mention is made of both dipole and quadrupole
radiation.

Finally, several examples (which are later solved by the use of
quantum mechanics), including the three-dimensional harmonic
oscillator in Cartesian and in polar coordinates, have been
treated by the methods discussed in this chapter.
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CHAPTER 1I
THE OLD QUANTUM THEORY

6. THE ORIGIN OF THE OLD QUANTUM THEORY

The old quantum theory was born in 1900, when Max Planck!
announced his theoretical derivation of the distribution law for
black-body radiation which he had previously formulated from
empirical considerations. He showed that the results of experi-
ment on the distribution of energy with frequency of radiation
in equilibrium with matter at a given temperature can be
accounted for by postulating that the vibrating particles of
matter (considered to act as harmonic oscillators) do not emit
or absorb light continuously but instead only in discrete quanti-
ties of magnitude kv proportional to the frequency » of the light.
The constant of proportionality, k, is a new constant of nature;
it is called Planck’s constant and has the magnitude 6.547 X 10?7
erg sec. Its dimensions (energy X time) are those of the old
dynamical quantity called action; they are such that the product
of k and frequency » (with dimensions scc™') has the dimensions
of energy. The dimensions of & are also those of angular momen-
tum, and we shall sce later that just as kv is a quantum of radiant
energy of frequency v, so is h/2x a natural unit or quantum of
angular momentum.

The development of the quantum theory was at first slow. It
was not until 1905 that Einstein? suggested that the quantity
of radiant energy h» was sent out in the process of emission of
light not in all directions but instead unidirectionally, like a
particle. The name light guantum or photon is applied to such a
portion of radiant energy. Einstein also discussed the photo-
electric effect, the fundamental processes of photochemistry,
and the heat capacities of solid bodies in terms of the quantum
theory. When light falls on a metal plate, electrons are emitted
from it. The maximum speed of these photoelectrons, however,

1 M. PrLaNck, Ann. d. Phys. (4) 4, 553 (1901).

2 A. EInNsTEIN, Ann. d. Phys. (4) 17, 132 (1905).
256
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is not dependent on the intensity of the light, as would be
expected from classical electromagnetic theory, but only on its
frequency; Einstein pointed out that this is to be expected from
the quantum theory, the process of photoelectric emission involv-
" ing the conversion of the energy kv of one photon into the kinetic
energy of a photoelectron (plus the energy required to remove
the electron from the metal). Similarly, Einstein’s law of
photochemical equivalence states that one molecule may be
activated to chemical reaction by the absorption of one photon.

The third application, to the heat capacities of solid bodies,
marked the beginning of the quantum theory of material systems.
Planck’s postulate regarding the emission and absorption of
radiation in quanta hv suggested that a dynamical system such
as an atom oscillating about an equilibrium position with fre-
quency vy might not be able to oscillate with arbitrary energy,
but only with energy values which differ from one another by
integral multiples of hv,. From this assumption and a simple
extension of the principles of statistical mechanics it can be
shown that the heat capacity of a solid aggregate of particles
should not remain constant with decreasing temperature, but
should at some low temperature fall off rapidly toward zero.
This prediction of Einstein, supported by the earlier experi-
mental work of Dewar on diamond, was immediately verified
by the experiments of Nernst and Eucken on various substances;
and quantitative agreement between theory and experiment for
simple crystals was achieved through Debye’s brilliant refinement
of the theory.!

ba. The Postulates of Bohr.—The quantum theory had
developed to this stage before it became possible to apply it
to the hydrogen atom; for it was not until 1911 that there
occurred the discovery by Rutherford of the nuclear constitu-
tion of the atom—its composition from a small heavy posi-
tively charged nucleus and one or more extranuclear electrons.
Attempts were made immediately to apply the quantum theory to
the hydrogen atom. The successful effort of Bohr? in 1913,
despite its simplicity, may well be considered the greatest single
step in the development of the theory of atomic structure,

1 P. DEBYE, Ann. d. Phys. (4) 89, 789 (1912); see also M. Bor~ and T. vov
KArMAN, Phys. Z. 18, 297 (1912); 14, 15 (1913).

2N Dheew DL 2. A8 1 /3010
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It was clearly evident that the laws of classical mechanical and
electromagnetic theory could not apply to the Rutherford
hydrogen atom. According to classical theory the electron
in a hydrogen atom, attracted toward the nucleus by an inverse-
square Coulomb force, would describe an elliptical or circular
orbit about it, similar to that of the earth about the sun. {The
acceleration of the charged particles would lead to the emission
of light, with frequencies equal to the mechanical frequency
of the electron in its orbit, and to multiples of this as overtones.
With the emission of energy, the radius of the orbit would
diminish and the mechanical frequency would change. Hence
the emitted light should show a wide range of frequencies.) This
is not at all what is observed—the radiation emitted by hydrogen
atoms is confined to spectral lines of sharply defined frequencies,
and, moreover, these frequencies are not related to one another
by integral factors, as overtones, but instead show an interesting
additive relation, expressed in the Ritz combination principle, and
in addition a still more striking relation involving the squares
of integers, discovered by Balmer. Furthermore, the existence
of stable non-radiating atoms was not to be understood on the
basis of classical theory, for a system consisting of electrons
revolving about atomic nuclei would be expected to emit radiant
energy until the electrons had fallen into the nuclei.

Bohr, no doubt inspired by the work of Einstein mentioned
above, formulated the two following postulates, which to a great
extent retain their validity in the quantum mechanics.

1. The Existence of Stationary States. An atomic system can
exist in certain stationary states, each one corresponding to a
definite value of the energy W of the system; and transition from
one stationary state to another is accompanied by the emission
or absorption as radiant energy, or the transfer to or from
another system, of an amount of energy equal to the difference
in energy of the two states.

II. The Bohr Frequency Rule. The frequency of the radiation
emitted by a system on transition from an initial state of energy
W to a final state of lower energy W (or absorbed on transition
from the state of energy W, to that of energy W,) is given by
the equation!

1 This relation was suggested by the Ritz combination principle, which it
closely resembles. It was found empirically by Rite and others that if
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W, - W,
"

Bohr in addition gave a method of determining the quantized
states of motion—the stationary states—of the hydrogen atom.
His method of quantization, involving the restriction of the
angular momentum of circular orbits to integral multiples of
the quantum &/2x, though leading to satisfactory energy
levels, was soon superseded by a more powerful method, described
in the next section.

(5-1)

y =

Problem 5-1. Consider an electron moving in a circular orbit about a
nucleus of charge Ze. Show that when the centrifugal force is just balanced
by the centripetal force Ze?/r?, the total energy is equal to one-half the
potential energy —Ze?/r. Evaluate the energy of the stationary states for
which the angular momentum equals nh/2r, withn =1, 2, 3, - - - .

6b. The Wilson-Sommerfeld Rules of Quantization.—In
1915 W. Wilson and A. Sommerfeld discovered independently!
a powerful method of quantization, which was soon applied,
especially by Sommerfeld and his coworkers, in the discussion

lines of frequencies v, and », oceur in the spectrum of a given atom it is
frequently possible to find also a line with frequency vy + »a2 or »1 — wa.
This led directly to the idea that a set of numbers, called term values, can
be assigned to an atom, such that the frequencies of all the spectral lines
can be expressed as differcnces of pairs of term values. Term values are
usually given in wave numbers, since this unit, which is the reciprocal
of the wave length expressed in centimeters, is a convenient one for spectro-
scopic use. We shall use the symbol # for term values in wave numbers,
reserving the simpler symbotl » for frequencies in sec™'. The normal state
of the ionized atom is usually chosen as the arbitrary zero, and the term
values which represent states of the atom with lower energy than the ion
are given the positive sign, so that the relation between W and 7 is

- w
P o= e
he

The modern student, to whom the Bohr frequency rule has become common-
place, might consider that this rule is clearly evident in the work of Planck
and Einstein. This is not so, however; the confusing identity of the
mechanical frequencies of the harmonic oscillator (the only system discussed)
and the frequency of the radiation absorbed and emitted by this quantized
system delayed recognition of the fact that a fundamental violation of
electromagnetic theory was imperative.

W. WiLson, Phil. Mag. 29, 795 (1915); A. SoMMERFELD, Ann. d. Phys.
51, 1 (1916).
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of the fine structure of the spectra of hydrogen and ionized
helium, their Zeeman and Stark effects, and many other phe-
nomena. The first step of their method consists in solving the
classical equations of motion in the Hamiltonian form (Sec. 2),
therefore making use of the coordinates ¢, - - - , ¢, and the
canonically conjugate momenta py, - - - , ps, a8 the independent
variables. The assumption is then introduced that only those
classical orbits are allowed as stationary states for which the
following conditions are satisfied:

Fodqe =nehy, k=1,2,- - 3n; n=an integer. (5-2)

These integrals, which are called action integrals, can be calcu-
lated only for conditionally periodic systems; that is, for systems
for which coordinates can be found each of which goes through a
cycle as a function of the time, independently of the others.
The definite integral indicated by the symbol ¢ is taken over
one cycle of the motion. Sometimes the coordinates can be
chosen in several different ways, in which case the shapes of the
quantized orbits depend on the choice of coordinate systems, but
the energy values do not.

We shall illustrate the application of this postulate to the
determination of the energy levels of certain specific problems in
Sections 6 and 7.

6c. Selection Rules. The Correspondence Principle.—The
old quantum theory did not provide a satisfactory method of cal-
culating the intensities of spectral lines emitted or absorbed by
a gystem, that is, the probabilities of transition from one sta-
tionary state to another with the emission or absorption of a
photon. Qualitative information was provided, however, by an
auxiliary postulate, known as Bohr’s correspondence principle,
which correlated the quantum-theory transition probabilities
with the intensity of the light of various frequencies which would
have been radiated by the system according to classical electro-
magnetic theory. In particular, if no light of frequency cor-
responding to a given transition would have been emitted
classically, it was assumed that the transition would not take
place. The results of such considerations were expressed in
selection rules.

For example, the energy values nhyy of a harmonic oscillator
(as given in the following section) are such as apparently to
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permit the emission or absorption of light of frequencies which
are arbitrary multiples (n2 — ni)vo of the fundamental fre-
quency »,. But a classical harmonic oscillator would emit only
the fundamental frequency vo, with no overtones, as discussed
in Section 3; consequently, in accordance with the correspondence
principle, it was assumed that the selection rule An = +1 was
valid, the quantized oscillator being thus restricted totransitions
to the adjacent stationary states.

6. THE QUANTIZATION OF SIMPLE SYSTEMS

6a. The Harmonic Oscillator. Degenerate States.—It was
shown in the previous chapter that for a system consisting of
a particle of mass m bound to the equilibrium position z = 0
by a restoring force —kzr = —4x?myviz and constrained to move
along the z axis the classical motion consists in a harmonic oscilla~
tion with frequency vo, as described by the equation

T = T sin 2mwyel. (6-1)
The momentum p, = mz has the value
P = 2rmvoxy COS 2myol, (6-2)

80 that the quantum integral can be evaludted at once:
ﬁp,dx = J; l/y°m(21rvo:z:o co8 2rvot)2dt = 2xtyomal = nh. (6-3)

The amplitude z, is hence restricted to the quantized values
Zo, = {nh/2x*vym}*. The corresponding energy values are

Wa=T++V = 2r*mvixi (sin® 2rvit + cos? 2rvet) = 2r*myisd ,
or
W, = nhy,, n=012 ---. (64)

Thus we see that the energy levels allowed by the old quantum
theory are integral multiples of hy,, as indicated in Figure 6-1.
The selection rule An = +1 permits the emission and absorption
of light of frequency v, only.

A particle bound to an equilibrium position in a plane by
restoring forces with different force constants in the z and y
directions, corresponding to the potential function

V = 2x'm(viz? + viy?), (6-5)
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is similarly found to carry out independent harmonic oscillations
along the two axes. The quantization restricts the energy to
the values

Won, = nzhv. + nhyy, Neyny =0,1,2, - - -, (6-6)

determined by the two quantum numbers n. and n,. The ampli-
tudes of motion xz, and y, are given by two equations similar to
Equation 6-3.

v,wf

o
X =

Fiag. 6-1.—~Potential-energy function and quantized energy levels for the har-
monic oscillator according to the old quantum theory.

In case that v. = », = »,, the oscillator is said to be isotropic.
The energy levels are then given by the equation

Wa = (n. + ny)hve = nhv,, (6-7)

Different states of motion, corresponding to different sets of values
of the two quantum numbers 7, and n,, may then correspond
to the same energy level. Such an energy level is said to be
degenerate, the degree of degeneracy being given by the number
of independent sets of quantum numbers. In this case the nth
level shows (n + 1)-fold degeneracy. The nth level of the
three-dimensional isotropic harmonic oscillator shows

@.il%’lj'_m -fold degeneracy.

6b. The Rigid Rotator.—The configuration of the system of
a rigid rotator restricted to a plane is determined by a single
angular coordinate, say x. The canonically conjugate angular
momentum, p, = Ix, where I is the moment of inertia,! is a

1 S8ee Section 36a. footnote. for a definition of moment of inertia.
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constant of the motion.! Hence the quantum rule is

_];z'pxdx = 2rp, = Kh

or
_ Kh
Py =gy

Thus the angular momentum is an integral multiple of k/2r, as
originally assumed by Bohr. The allowed energy values are
pi _ K
We =51 = &1
The rigid rotator in space can be
described by polar coordinates of
the figure axis, ¢ and ¢. On apply-
ing the quantum rules it is found
wT k=4 that the total angular momentum is
given by Equation 6-8, and the
component of angular momentum
along the z axis by

K=01,2 . (6-8)

(6-9)

K=5

K=3

Mh
p“’=—2-.;r—’ =——Ky_K+1:
K=2 "',0,"',+K. (6_10)
0 Ef(l) The energy levels are given by

Fig. 6-2.—Energy levels for the Equa’tion 6-9, each level being
rotator according to the old (2K +4 1)-fold degenerate, inas-
quantum theory. much as the quantum number M
does not affect the energy (Fig. 6-2).

6c. The Oscillating and Rotating Diatomic Molecule.—A
molecule consisting of two atoms bonded together by forces
which hold them near to the distance r, apart may be approxi-
mately considered as a harmonic oscillator joined with a rigid
rotator of moment of inertia 7 = ur?, r being the reduced mass.
The quantized energy levels are then given by the equation

K2h2
W,,x = tho + _8—1F2—I’ (6'—11)

v being the oscillational or vibrational quantum number? and K

! Section le, footnote.
* The symbol v is now used by band spectroscopists rather than n for this
quantum number.
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the rotational quantum number. The selection rules for such a
molecule involving two unlike atoms are AK = +1, Av = +1.
Actual molecules show larger values of Av, resulting from devi-
ation cof the potential function from that corresponding to
harmonic oscillation.

The frequency of light absorbed in a transition from the state
with quantum numbers v"', K" to that with quantum numbers
v, K'is

Vorrgri e = (0 — v )ye + (K'2 — K''?)

h
8r2l’
or, introducing the selection rule AK = +1,

h
vorrknarar = (0 = 0")vo + (£2K" 4+ g (6-12)

The lines corresponding to this equation are shown in Figure 6-3
for the fundamental oscillational band v = 0 — v = 1, together

Calculated by equation 6-12

A 1 O I I O A I A A

0+99+808=77166+55+44*33+22+1 1+00~+1 |+22+3 3+44=55-6 67 7+8

wlll i

10>9 98 8>7 71%6 6>5 5>44>33>22> |0 0> |>22»3 45 6>7 89
v —> 3»4 56 778 90

Fi6. 6-3.—The observed rotational fine structure of the hydrogen chloride
fundamental oscillational band v = 0 & ¢ = 1, showing deviation from the
equidistant spacing of Equation 6-12.

Observed

with the experimentally observed absorption band for hydrogen
chloride. It is seen that there is rough agreement; the observed
lines are not equally spaced, however, indicating that our theo-
retical treatment, with its assumption of constancy of the moment
of inertia I, is too strongly idealized.

6d. The Particle in a Box.—Let us consider a particle of mass
m in a box in the shape of a rectangular parallelepiped with
edges a, b, and ¢, the particle being under the influence of no
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forces except during collision with the walls of the box, from
which it rebounds elastically. The linear momenta p., py, and
p. will then be constants of the motion, except that they will
change sign on collision of the particle with the corresponding
walls. Their values are restricted by the rule for quantization
as follows:

§p=dx_—.2ap,=n,h, p,=%z:y n,=0, 1, 2, ey,
h
Dy 'r';Lb" ny 0, 1; 2: T (6_13)
nsh

P. = 5 n,=20,12 ---.

Consequently the total energy is restricted to the values

h2

W =i(p’+p’+pz)=~"3
nemts T gt T By T R T gy

2 2
Srpt %‘—,) (6-14)
6e. Diffraction by a Crystal Lattice.—Let us consider an
infinite crystal lattice, involving a sequence of identical planes
spaced with the regular interval d. The allowed states of motion
of this crystal along the z axis we assume, in accordance with
the rules of the old quantum theory, to be those for which

fptdz = nlh-

For this crystal it is seen that a cycle for the coordinate z is the
identity distance d, so that (p, being constant in the absence of
forces acting on the crystal) the quantum rule becomes

d

J; pdz =nh, or p, = "éh. (6-15)
Any interaction with another system must be such as to leave p,
quantized; that is, to change it by the amount Ap, = Anh/d
or nh/d, in which n = An, is an integer. One such type of
interaction is collision with a photon of frequency », represented
in Figure 64 as impinging at the angle ¢ and being specularly
reflected. Since the momentum of a photon is hvr/c, and its

component along the z axis }—l;:—' sin ¢, the momentum transferred

2hy sing = 2h sin 8. Equating this with the

to the crystal is - X
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allowed momentum change of the crystal nh/d, we obtain the
expression
n\ = 2d sin &, (6-16)

This is, however, just the Bragg equation for the diffraction of
z-rays by a crystal. This derivation from the corpuscular view
of the nature of light was given
by Duane and Compton' in
1923.

Let us now consider a particle,
say an electron, of mass m simi-
larly reflected by the crystal.
The momentum transferred to
the crystal will be 2mv sin 4,
which is equal to a quantum
for the crystal when

z

h . Fia. 6-4.—The reflection of a photon
nﬁ = 2dsin 9. (6-17) by a crystal.

Thus we see that a particle would be scattered by a crystal only
when a diffraction equation similar to the Bragg equation for
z-rays is satisfied. The wave length of light is replaced by the
expression
k

A= po (6-18)
which is indeed the de Broglie expression for the wave length
associated with an electron moving with the speed ». This
simple consideration, which might have led to the discovery of
the wave character of material particles in the days when the
old quantum theory had not yet been discarded, was overlooked
at that time.

In the above treatment, which is analogous to the Bragg treat-
ment of z-ray diffraction, the assumption of specular reflection is
made. This can be avoided by a treatment similar to Laue’s
derivation of his diffraction equations.

The foregoing considerations provide a simple though perhaps
somewhat extreme illustration of the power of the old quantum
theory as well as of its indefinite character. That a formal argu-
ment of this type leading to diffraction equations usually derived

1W. DuaNE, Proc. Nat. Acad. Sci. 9, 158 (1923); A. H. ComproN, tbid.
9, 369 (1923).
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by the discussion of interference and reinforcement of waves
could be carried through from the corpuscular viewpoint with the
old quantum theory, and that a similar treatment could be given
the scattering of electrons by a crystal, with the introduction of
the de Broglie wave length for the electron, indicates that the
gap between the old quantum theory and the new wave mechanics
is not so wide as has been customarily assumed. The indefinite-
ness of the old quantum theory arose from its incompleteness—
its inability to deal with any systems except multiply-periodic
ones. Thus in this diffraction problem we are able to derive
only the simple diffraction equation for an infinite crystal, the
interesting questions of the width of the diffracted beam, the dis-
tribution of intensity in different diffraction maxima, the effect
of finite size of the crystal, etc., being left unanswered.!

7. THE HYDROGEN ATOM

The system composed of a nucleus and one electron, whose
treatment underlies any theoretical discussion of the electronic
structure of atoms and molecules, was the subject of Bohr’s first
paper on the quantum theory.? In this paper he discussed cir-
cular orbits of the planetary electron about a fixed nucleus.
Later? he took account of the motion of the nucleus as well as
the electron about their center of mass and showed that with
the consequent introduction of the reduced mass of the two
particles a small numerical deviation from a simple relation
between the spectral frequencies of hydrogen and ionized helium
is satisfactorily explained. Sommerfeld* then applied his more
general rules for quantization, leading to quantized elliptical
orbits with definite spatial orientations, and showed that the
relativistic change in mass of the electron causes a splitting of
energy levels correlated with the observed fine structure of
hydrogenlike spectra. In this section we shall reproduce the
Sommerfeld treatment, except for the consideration of the rela-
tivistic correction.

7a. Solution of the Equations of Motion.—The system con-
sists of two particles, the heavy nucleus, with mass m, and

1 The application of the correspondence principle to this problem was made
by P. S. Epstein and P. Ehrenfest, Proc. Nat. Acad. Sci. 10, 133 (1924).

2 N. Bonr, Phil. Mag. 26, 1 (1913).

 N. Bong, ibid. 27, 506 (1914).

4 A. SoMMERFELD, Ann. d. Phys. b1, 1 (19186).
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electric charge +Ze, and the electron, with mass m, and charge
—e, between which there is operative an inverse-square attrac-
tive force corresponding to the potential-energy function

V(r) = —Ze?/r,

r being the distance between the two particles. (The gravi-
tational attraction is negligibly small relative to the electro-
static attraction.) The system is similar to that of the sun and a
planet, or the earth and moon. It was solved by Sir Isaac
Newton in his “Philosophiae Naturalis Principia Mathematica,”
wherein he showed that the orbits of one particle relative to the
other are conic sections. Of these we shall discuss only the
closed orbits, elliptical or circular, inasmuch as the old quantum
theory was incapable of dealing with the hyperbolic orbits of the
ionized hydrogen atom. '

The system may be described by means of Cartesian coordi-
nates z;, ¥, #: and z3, ¥2, 22 of the two particles. As shown in
Section 2d by the introduction of coordinates z, y, 2 of the center
of mass and of polar coordinates r, ¥, ¢ of the electron relative
to the nucleus, the center of mass of the system undergoes
translational motion in a fixed direction with constant speed,
like a single particle in field-free space, and the relative motion

mime
mi + ma
the reduced mass of the two particles, about a fixed center to
which it is attracted by the same force as that between the
electron, and nucleus. Moreover, the orbit representing any
state of motion lies in a plane (Sec. 1d).

In terms of variables r and x in the plane of motion, the
Lagrangian equations of motion are

of electron and nucleus is that of a particle of mass u =

_ 2 (7-1)
and

9 () = 0. (7-2)

The second of these can be integrated at once (as in Sec. 1d), to
give
ur*x = p, a constant. (7-3)

This first result expresses Kepler’s area law: The radius vector
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from sun to planet sweeps out equal areas in equal times. The
constant p is the total angular momentum of the system.
Eliminating x from Equations 7-1 and 7-3, we obtain

N t  Ze?
i = ’% - (7-4)

which on multiplication by # and integration leads to

Wt _pt 2 _
5 = 2“7'2+T+W. (7-5)
The constant of integration W is the total energy of the system
(aside from the translational energy of the system as a whole).
Instead of solving this directly, let us eliminate ¢ to obtain an

equation involving r and x. Since
= 228 2 F (7-6)

Equation 7-5 reduces to

Lar)' W
rtdx) p*’
or, introducing the new variable
1
u = ;) (7'—‘7)
du

tdx = 7-8

XT TRaW | 27w . (78)
o7 7 u—u

This can be integrated at once, for W either positive or negative.
In the latter case (closed orbits) there is obtained

1 _ Zew | 1 |[577%% | SuW
r

= + 3\ = + = sin (x = x0). (7-9)
This is the equation of an ellipse with the origin at one focus, as
in Figure 7-1. In terms of the eccentricity ¢ and the semimajor

and semiminor axes a and b, the equation of such an ellipse is

1 _ 2
+;(81m_(’iz) Wkt Ve~ b 5 P s e = 1)

(7-10)

1
U ===
r

with b=av1 —é.
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Thus it is found that the elements of the elliptical orbit are given
by the equations
_Ze b= —P _2Wp*
2w’ TN =W AT
The energy W is determined by the major axis of the ellipse
alone.
As shown in Problem 5-1, the total energy for a circular orbit
is equal to one-half the potential energy and to the kinetic energy
with changed sign. It can be shown also that similar relations

a = 1—¢ = (7-11)

AN

Fi1g. 7-1.—An elliptical electron-orbit for the hydrogen atom according to the
old quantum theory.

hold for the time-average values of these quantities for elliptic
orbits, that is, that
W =34V = -T, (7-12)

in which the barred symbols indicate the time-average values of
the dynamical quantities.

Tb. Application of the Quantum Rules. The Energy Levels.—
The Wilson-Sommerfeld quantum rules, in terms of the polar
coordinates r, ¢, and ¢, are expressed by the three equations

£pdr = nh, (7-13a)
I pedd = nyh, (7-13b)
Fpede = mh. (7-13¢)

Since p, is a constant (Sec. 1e), the third of these can be integrated
at once, giving
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2rp, = mh, or p¢=7;—:~l; m= +1, £2, - -

(7-14)
Hence the component of angular momentum of the orbit along the
2 axis can assume only the quantized values which are integral
multiples of A/2x. The quantum number m is called the mag-
netic quantum number, because it serves to distinguish the
various slightly separated levels into which the field-free energy
levels are split upon the application of a magnetic field to the
atom. This quantum number is closely connected with the
orientation of the old-quantum-theory orbit in space, a question
discussed in Section 7d.

The second integral is easily discussed by the introduction of
the angle x and its conjugate momentum p, = p, the total
angular momentum of the system, by means of the relation,
given in Equation 141, Section le,

Dxdx = psdd + p,de. (7-15)
In this way we obtain the equation
Fpdx = kb, (7-16)

in which p, is a constant of the motion and k is the sum of ns
and m. This integrates at once to

_ kh

2xp = kh, or 5

k=12, ---. (7-17)
Hence the total angular momentum of the orbit was restricted
by the old quantum theory to values which are integral mul-
tiples of the quantum unit of angular momentum h,/2r. The
quantum number k is called the azimuthal quantum number.

To evaluate the first integral it is convenient to transform it
in the following way, involving the introduction of the angle x
and the variable 4 = 1/r with the use of Equation 7-6:

= widr = P(9Yq, — . L[AuY 3
pdr = pidr = r’(dx) dx = p ﬁ(d——x dx. (7--18)

From Equation 7-10 we find on differentiation

du _ ecos (x — xo)

ai = W; (7—19)



II-7b] THE HYDROGEN ATOM 41

with the use of which the » quantum condition reduces to the
form

2x 2
: cos? (x_— xo) _ ~
pe J(; {1 + esin (x — xo)}zdx nh. (7-20)

The definite integral was evaluated by Sommerfeld.! The
resultant equation is

%p(—;t - 1) ~ nh. (7-21)
1 — ¢
This, with the value of p of Equation 7-17 and the relation
b = aV1 — &, leads to the equation
a_ n+k

(7-22)

=D
bk k
In this equation we have introduced a new quantum number n,
called the total quantum number, as the sum of the azimuthal
quantum number k and the radial quantum number n,:

n=mn,+ k. (7-23)

With these equations and Equation 7-11, the energy values
of the quantized orbits and the values of the major and minor
semiaxes can be expressed in terms of the quantum numbers
and the physical constants involved. The energy is seen to
have the value
_Zmuet 2 i, (71-24)

Wo= == =~

being a function of the total quantum number alone. The value
of R, the Rydberg constant, which is given by the equation

_ 2nuet

R = T2, (7-25)

depends on the reduced mass u of the electron and the nucleus.
It is known very accurately, being obtained directly from
spectroscopic data, the values as reported by Birge for hydrogen,
ionized helium, and infinite nuclear mass being

Ry = 109,677.759 + 0.05 em™!,
Ry, = 109,722.403 + 0.05 cm™!,
R, =109,737.42 + 0.06 cm™.

L A. SoMMERFELD, Ann. d. Phys. 51, 1 (1916).
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The major and minor semiaxes have the values

2
a="0 b= %‘“ (7-26)
in which the constant ao has the value
hz
ay = Tt (7-27)

The value of this quantity, which for hydrogen is the distance of
the electron from the nucleus in the circular orbit with n = 1,
k = 1, also depends on the reduced mass, but within the experi-
mental error in the determination of ¢ the three cases mentioned
above lead to the same value?!

ao = 0.52854,

in which 18 =1 X 10~*cm. The energy may also be expressed
in terms of a, as
Ze? Z%e?
W, = “ %2 = " ontay (7-28)
The total energy required to remove the electron from the
normal hydrogen atom to infinity is hence
_ s e?

h’ = Rﬂhc = §'a—o' (7—29)

Wy

This quantity, Wr = 2.1528 X 10~!! ergs, is often expressed in
volt electrons, Wg = 13.530 v.e., or in reciprocal centimeters or
wave numbers, Wy = 109,677.76 cm~! (the factor hc being
omitted), or in calories per mole, Wg = 311,934 cal/mole.

The energy levels of hydrogen are shown in Figure 7-2. It is
seen that the first excitation energy, the energy required to raise
the hydrogen atom from the normal state, with n = 1, to the
first excited state, with n = 2, is very large, amounting to
10.15 v.e. or 234,000 cal/mole. The spectral lines emitted by
an excited hydrogen atom as it falls from one stationary state to
snother would have wave numbers or reciprocal wave lengths #
given by the equation

. 1 1
V= RH(;L-”—Z - -71,—2)! (7“30)

1 The value given by Birge for infinite mass is
0.5281¢s + 0.0004 X 107% cm,
that for hydrogen being 0.0003 larger (Appendix I).
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in which n’" and »n’ are the values of the total quantum number
for the lower and the upper state, respectively. The series of
lines corresponding to n’’ = 1, that is, to transitions to the normal
state, is called the Lyman series, and those corresponding to
n'' =2, 3, and 4 are called the Balmer, Paschen, and Brackett
series, respectively. The Lyman series lies in the ultraviolet
region, the lower members of the Balmer series are in the visible
region, and the other series all lie in the infrared.

WeQ e
n=4
n=4 Ty
Paschen Brackett
series series
=2
" Balmer
series
We=Rhc | n={
Lyman
series

Fra. 7-2.—The energy levels of the hydrogen atom, and the transitions giving
rise to the Lyman, Balmer, Paschen, and Brackett series.

Tc. Description of the Orbits.—Although the allowed orbits
given by the treatment of Section 7b are not retained in the
quantum-mechanical model of hydrogen, they nevertheless
serve as a valuable starting point for the study of the more subtle
concepts of the newer theories. The old-quantum-theory orbits
are unsatisfactory chiefly because they restrict the motion too
rigidly, a criticism which is generally applicable to the results of
this theory.

For the simple non-relativistic model of the hydrogen atom in
field-free space the allowed orbits are certain ellipses whose com-
mon focus is the center of mass of the nucleus and the electron,
and whose dimensions are certain functions of the quantum
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numbers, as we have seen. For a given energy level of the
atom there is in general more than one allowed ellipse, since the
energy depends only on the major axis of the ellipse and not on
its eccentricity or orientation in space. These different ellipses
are distinguished by having different values of the azimuthal

ka3

c
F1a. 7-3a, b, c.—Bohr-Sommerfeld electron-orbits for n = 1, 2, and 3, drawn

to the same scale.
quantum number k, which may be any integer from 1 to n.
When k equals n, the orbit is a circle, as is seen from Equation
7-26. For k less than n, the minor semiaxis b is less than the
major semiaxis a, the eccentricity e of the orbit increasing as k
decreases relative to n. The value zero for k was somewhat
arbitrarily excluded, on the basis of the argument that the
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corresponding orbit is a degenerate line ellipse which would
cause the electron to strike the nucleus.

Figure 7-3 shows the orbits for n = 1, 2, and 3 and for the
allowed values of k. The three different ellipses with n = 3
have major axes of the same length and minor axes which
decrease with decreasing k. Figure 7-3 also illustrates the
expansion of the orbits with increasing quantum number, the
radii of the circular orbits increasing as the square of n.

A property of these orbits which is of particular importance in
dealing with heavier atoms is the distance of closest approach of
the electron to the nucleus. Using the expressions for a and b
given in Equation 7-26 and the properties of the ellipse, we obtain

n(n — Vn? — kz)ao.
VA

for this distance the value This formula

and the orbits drawn in Figure 7-3 show that the most eceentric
orbit for a given m, i.e., that with the smallest value of &, comes
the. nearest to the nucleus. In many-electron atoms, this
causcs a scparation of the cnergics corresponding to these
different elliptical orbits with the same », since the presence of
the other electrons, especially the inner or core electrons, causes a
modification of the field acting on the clectron when it enters
the region near the nucleus.

Since the charge on the nucleus enters the expression for the
radius of the orbit given by Equations 7-26 and 7-27, the orbits
for Het are smaller than the corresponding ones for hydrogen,
the major semiaxis being reduced onc-half by the greater charge
on the helium-ion nucleus.

7d. Spatial Quantization.—So far we have said nothing of
the orientation of the orbits in space. If a weak field, either
electric or magnetic, is applied to the atom, so that the z direction
in space can be distinguished but no appreciable change in
energy occurs, the z component of the angular momentum of
the atom must be an integral multiple of A/2x, as mentioned
in Section 7b following Equation 7-14. This condition, which
restricts the orientation of the plane of the orbit to certain definite
directions, is called spatial quantization. The vector representing
the total angular momentum p is a line perpendicular to the
plane of the orbit (see Sec. le) and from Equation 7-17 has the
length kh/2r. The z component of the angular momentum is
of length k cos w(h/2x), if w is the angle between the vector p and
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the z axis. This results in the following expression for cos w:
cosw = =
k

The value zero for m was excluded for reasons related to those
used in barring k¥ = 0, so that m may be +1, +2, - - -, k.

me+2

medl

me+]

kel e —p(m.0) k=2 (m=0)

me-1

me-2

m=+3

k=3

ms=-3
c

Fig. 7-4a, b, c.—Spatial quantization of Bohr-Sommerfeld orbits withk = 1, 2,
and 3.

For the lowest state of hydrogen, in which k¥ = 1 (and for all orbits
for which k = 1), there are only two values of m, +1 and —1,
which correspond to motion in the zy plane in a counterclockwise
or in a clockwise sense. For k = 2 four orientations are per-
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mitted, as shown in Figure 74. Values *+k for m always cor-
respond to orbits lying in the zy plane.

It can be shown by the methods of classical electromagnetic
theory that the motion of an electron with charge —e and mass

- o kh . . :
me in an orbit with angular momentum 5, gives rise to a magnetic

. - . kh e
field corresponding to a magnetic dipole of magnitude % D
oriented in the same direction as the angular momentum vector.
The component of magnetic moment in the direction of the z axis

is m he The energy of magnetic interaction of the atom with
4drmoc

a magnetic field of strength H parallel to the.z axis is erﬁn%o—cH .
It was this interaction energy which was considered to give rise
to the Zeeman effect (the splitting of spectral lines by a magnetic
field) and the phenomenon of paramagnetism. It is now known
that this explanation is only partially satisfactory, inasmuch as
the magnetic moment associated with the spin of the electron,
discussed in Chapter VIII, also makes an important contribution.

The magnetic moment is called a Bohr magneton.

he
drmoc

Problem 7-1. Calculate the frequencies and wave lengths of the first
five members of thec Balmer scries for the isotopic hydrogen atom whose
mass is approximately 2.0136 on the atomic weight scale, and compare with
those for ordinary hydrogen.

Problem 7-2. Quantize the system consisting of two neutral particles
of masses equal to those of the electron and proton held together by gravita-
tional attraction, obtaining expressions for the axes of the orbits and the
energy levels.

8. THE DECLINE OF THE OLD QUANTUM THEORY

The historical development of atomic and molecular mechanics
up to the present may be summarized by the following division
into periods (which, of course, are not so sharply demarcated as
indicated):

1913-1920. The origin and extensive application of the old

quantum theory of the atom.

1920-1925. The decline of the old quantum theory.

1925~ . The origin of the new quantum mechanics and

its application to physical problems.
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1927~ The application of the new quantum mechanics
to chemical problems.
The present time may well be also the first part of the era of the
development of a more fundamental quantum mechanies, includ-
ing the theory of relativity and of the electromagnetic field; and
dealing with the mechanics of the atomic nucleus as well as of the
extranuclear structure.
he decline of the old quantum theory began with the introduc-
tion of half-integral values for quantum numbers in place of
integral values for certain systems, in order to obtain agreement
with experiment. It was discovered that the pure rotation
spectra of the hydrogen halide molecules are not in accordance
with Equation 6-9 with K =0, 1, 2, - - - , but instead require
K = 14,34, - - - . Similarly, half-integral values of the oscilla-
tional quantum number v in Equation 6-11 were found to be
required in order to account for the observed isotope displace-
ments for diatomic molecules. Half-integral values for the
azimuthal quantum number k were also indicated by observations
on both polarization and penetration of the atom core by a
valence electron. Still more serious were cases in which agree-
ment with the observed energy levels could not be obtained by
the methods of the old quantum theory by any such subterfuge
or arbitrary procedure (such as the normal state of the helium
atom, excited states of the helium atom, the normal state of
the hydrogen molecule ion, etc.), and cases where the methods
of the old quantum theory led to definite qualitative disagreement
with experiment (the influence of a magnetic field on the dielectric
constant of a gas, etc.). Moreover, the failure of the old quan-
tum theory to provide a method of calculating transition probabil-
ities and the intensities of spectral lines was recognized more
and more clearly as a fundamental flaw. Closely related to this
was the lack of a treatment of the phenomenon of the disper-
sion of light, a problem which attracted a great amount of
attention.

This dissatisfaction with the old quantum theory culminated
in the formulation by Heisenberg! in 1925 of his quantum
mechanics, as a method of treatment of atomic systems leading
to values of the intensities as well as frequencies of spectral
lines. The quantum mechanics of Heisenberg was rapidly

1 W. HEisENBERG, Z. f. Phys. 33, 879 (1925).
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developed by Heisenberg, Born, and Jordan' by the introduction
of matrix methods. In the meantime Schrédinger had inde-
pendently discovered and developed his WaVé mechanics,?
stimulated by the earlier attribution of a wave character to the
electron by de Broglie? in 1924. The mathematical identity of
matrix mechanics and wave mechanics was then shown by
Schrodinger! and by Eckart.® The further development of the
quantum mechanics was rapid, especially because of the con-
tributions of Dirac, who formulated® a relativistic theory of the
electron and contributed to the generalization of the quantum
mechanics (Chap. XV).
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CHAPTER Il

THE SCHRODINGER WAVE EQUATION WITH THE
HARMONIC OSCILLATOR AS AN EXAMPLE

In the preceding chapters we have given a brief discussion of
the development of the theory of mechanics before the discovery
of the quantum mechanics. Now we begin the study of the quan-
tum mechanics itself, starting in this chapter with the Schrédinger
wave equation for a system with only one degree of freedom, the
general principles of the theory being illustrated by the special
example of the harmonic oscillator, which is treated in great
detail because of its importance in many physical problems.
The theory will then be generalized in the succeeding chapter
to systems of point particles in three-dimensional space,

9. THE SCHRODINGER WAVE EQUATION:

In the first paragraph of his paper! Quantisierung als Eigen-
wertproblem, communicated to the Annalen der Physik on
January 27, 1926, Erwin Schrédinger stated essentially:

In this communication I wish to show, first for the simplest case of
the non-relativistic and unperturbed hydrogen atom, that the usual
rules of quantization can be replaced by another postulate, in which
there oceurs no mention of whole numbers. Instead, the introduction
of integers arises in the same natural way as, for example, in a vibrating
string, for which the number of nodes is integral. The new conception
can be generalized, and I believe that it penetrates deeply into the true
nature of the quantum rules.

In this and four other papers, published during the first half of
1926, Schrodinger communicated his wave equation and applied
it to a number of problems, including the hydrogen atom, the
harmonic oscillator, the rigid rotator, the diatomiec molecule, and

! E. ScHRUDINGER, Ann. d. Phys. 79, 361 (1926), and later papers referred
to on the preceding page. An English translation of these papers has
appeared under the title E. Schrédinger, ‘“Collected Papers on Wave
Mechanics,” Blackie and Son, London and Glasgow, 1928.

50
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the hydrogen atom in an electric field (Stark effect). For the
last problem he developed his perturbation theory, and for
the discussion of dispersion he also developed the theory of a
_ perturbation varying with the time. His methods were rapidly
adopted by other investigators, and applied with such success
that there is hardly a field of physics or chemistry that has
remained untouched by Schrédinger’s work.

Schrédinger’s system of dynamies differs from that of Newton,
Lagrange, and Hamilton in its aim as well as its method. Instead
of attempting to find equations, such as Newton’s equations,
which enable a prediction to be made of the exact positions and
velocities of the particles of a system in a given state of motion,
he devised a method of calculating a function of the coordinates
of the system and the time (and not the momenta or velocities),
with the aid of which, in accordance with the interpretation
developed by Born,! probable values of the coardinates and
of other dynamical quantities can be predicted for the system.
It was later recognized that the acceptance of dynamical equa-
tions of this type involves the renunciation of the hope of describ-
ing in exact detail the behavior of a system. The degree of
accuracy with which the behavior of a system can be discussed
by quantum-mechanical methods forms the subject of Heisen-
berg’s uncertainty principle,® to which we shall recur in Chapter
XV.

The Schrodinger wave equation and its auxiliary postulates
enable us to determine certain functions ¥ of the coordinates of a
system and the time. These functions are called the Schridinger
wave functions or probability amplitude functions. The square
of the absolute value of a given wave function is interpreted as
a probability distribution function for the coordinates of the
system in the state represented by this wave function, as will
be discussed in Section 10a. The wave equation has been
given this name because it is a differential equation of the second
order in the coordinates of the system, somewhat similar to the
wave equation of classical theory. The similarity is not close,
however, and we shall not utilize the analogy in our exposition.

Besides yielding the probability amplitude or wave function ¥,
the Schrédinger equation provides a method of calculating values

1 M. Born, Z. f. Phys. 87, 863; 38, 803 (1926).
' W. HEIsENBERG, Z. f. Phys. 48, 172 (1927).
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of the energy of the stationary states of a system, the existence
of which we have discussed in connection with the old quantum
theory. No arbitrary postulates concerning quantum numbers
are required in this calculation; instead, integers enter auto-
matically in the process of finding satisfactory solutions of the
wave equation.

For our purposes, the Schrodinger equation, the auxiliary
restrictions upon the wave function ¥, and the interpretation of
the wave function are conveniently taken as fundamental
postulates, with no derivation from other principles necessary.

This idea may be clarified by a comparison with other branches
of physics. Every department of deductive science must
necessarily be founded on certain postulates which are regarded
as fundamental. Frequently these fundamental postulates are
so closely related to experiment that their acceptance follows
directly upon the acceptance-of the experiments upon which
they are based, as, for example, the inverse-square law of electrical
attraction. In other cases the primary postulates are not so
directly obvious from experiment, but owe their acceptance to the
fact that conclusions drawn from them, often by long chains of
reasoning, agrec with experiment in all of the tests which have
been made. The second law of thermodynamics is representative
of this type of postulate. It is not customary to attempt to
derive the second law for general systems from anything more
fundamental, nor is it obvious that it follows directly from
some simple experiment; nevertheless, it is accepted as correct
because deductions made from it agrce with experiment. It is
an assumption, justified only by the success achieved by its
consequences.

The wave equation of Schrédinger belongs to this latter class
of primary assumption. It is not derived from other physical
laws nor obtained as a necessary consequence of any experiment;
instead, it is assumed to be correct, and then results predicted
by it are compared with data from the laboratory.

A clear distinction must frequently be made between the way
in which a discoverer arrives at a given hypothesis and the
logical position which this hypothesis occupies in the theory when
it has been completed and made orderly and deductive. In
the process of discovery, analogy often plays a very important
part. Thus the analogies between geometrical optics and
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classical mechanics on the one hand and undulatory optics and
wave mechanics on the other may have assisted Schrédinger to
formulate his now famous equation; but these analogies by no
means provide a logical derivation of the equation.

In many cases there is more than one way of stating the funda-
mental postulates. Thus either Lagrange’s or Hamilton’s form
of the equations of motion may be regarded as fundamental for
classical mechanics, and if one is so chosen, the other can be
derived from it. Similarly, there are other ways of expressing
the basic assumptions of quantum mechanics, and if they are
used, the wave equation can be derived from them, but, no
matter which mode of presenting the theory is adopted, some
starting point must be chosen, consisting of a set of assumptions
not deduced from any deeper principles.

It often happens that principles which have served as the basis
for whole branches of theory are superseded by other principles
of wider applicability. Newton’s laws of motion, adopted
because they were successful in predicting the motions of the
planets and in correlating celestial and terrestrial phenomena,
were replaced by Lagrange’s and Hamilton’s equations because
these are more general. They include Newton’s laws as a
special case and in addition serve for the treatment of motions
involving electric, magnetic, and relativistic phenomena. Like-
wise, quantum mechanics includes Newton’s laws for the special
case of heavy bodies and in addition is successful in problems
involving atoms and electrons. A still more general theory
than that of Schrodinger has been developed (we shall discuss
it in Chap. XV), but for nearly all purposes the wave equation is a
convenient and sufficient starting point.

9a. The Wave Equation Including the Time.—Let us first
consider a Newtonian system with one degree of freedom,
consisting of a particle of mass m restricted to motion along a
fixed straight line, which we take as the z axis, and let us assume
that the system is further described by a potential-energy func-
tion V(z) throughout the region — e« <z < 4. For this
system the Schridinger wave equation is assumed to be

h? 0% (z, t)

h o¥(z,t
e BB D 4 G, =~ EBD.

In this equation the function ¥(z,t) is called the Schridinger
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wave function including the time, or the probability amplitude
function. It will be noticed that the equation is somewhat
similar in form to the wave equations occurring in other branches
of theoretical physics, as in the discussion of the motion of a
vibrating string. The student facile in mathematical physics
may well profit from investigating this similarity and also the
analogy between classical mechanics and geometrical optics on
the one hand, and wave mechanics and undulatory optics on the
other.! However, it is not necessary to do this. An extensive
previous knowledge of partial differential equations and their
usual applications in mathematical physics is not a necessary
prerequisite for the study of wave mechanics, and indeed the
study of wave mechanics may provide a satisfactory introduction
to the subject for the more physically minded or chemically
minded student.

The Schrodinger time equation is closely related to the equation
of classical Newtonian mechanics

H(p: z) = T(p) + V(z) = W, (9-2)

which states that the total energy W is equal to the sum of the
kinetic energy T and the potential energy V and hence to the
Hamiltonian function H(p., z). Introducing the coordinate z
and momentum p., this equation becomes

H(ps 2) = 5-pt + V() = W. (9-3)

If we now arbitrarily replace p, by the differential operator
h

i oz
which these operators can operate, this equation becomes

and W by — 2}: 6’ and introduce the function ¥(z, t) on

h 3 S L
H<21n 7z bt/ 27)‘1/(27, t) T.—* + V¥ = ——2—7r—i W, (9—4)

which is identical with Equation 9~1. The wave equation is

18ee, for example, Condon and Morse, ‘‘Quantum Mechanics,” p.
10, McGraw-Hill Book Company, Inc., New York, 1929; Ruark and Urey,
“ Atoms, Molecules and Quanta,” Chap. XV, McGraw-Hill Book Company,
Inc., New York, 1930; E. Schrodinger, Ann. d. Phys. 79, 489 (1926); K. K.
Darrow, Rev. Mod. Phys. 8, 23 (1934); or other treatises on wave mechanics,
listed at the end of this chapter.
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consequently often conveniently written as
HY = WY, (9-5)

h 9

d
and —g o

in which it is understood that the operators or7 2

are to be introduced.

B a Y o

. &k - kY

In replacing p. by the operator 2t 32 P2 is to be replaced by ( 271:) pory
and so on. (In some cases, which, however, do not arise in the simpler
problems which we are discussing in this book, there may be ambiguity
regarding the formulation of the operator.!) It might be desirable to dis-
tinguish between the classical] Hamiltonian function H = H(p,, z) and the

Hamiltonian operator
wen(gh e
27t oz

a8 by writing Hoperstor for the latter. We shall not do this, however, since
the danger of confusion is small. Whenever H is followed by ¥ (or by ¢,
representing the wave functions not including the time, discussed in the
following sections), it is understood to be the Hamiltonian operator. Simi-

. . h @

larly, whenever W is followed by ¥ it represents the operator oot
i

The symbol W will also be used to represent the energy constant (Secs.

9b, 9¢). We shall, indeed, usually restrict the symbol W to this use, and

write —5% :;-1— for the operator.
It must be recognized that this correlation of the wave equation
and the classical energy equation, as well as the utilization
which we shall subsequently make of many other classical
dynamical expressions, has only formal significance. It provides
a convenient way of describing the system for which we are
setting up a wave equation by making use of the terminology
developed over a long period of years by the workers in classical
dynamics. Thus our store of direct knowledge regarding the
nature of the system known as the hydrogen atom consists in the
results of a large number of experiments—spectroscopic, chemical,
ete. It is found that all of the known facts about this system
can be correlated and systematized (and, we say, explained)
by associating with this system a certain wave equation. Our
confidence in the significance of this association increases when
predictions regarding previously uninvestigated properties of
1 B. PoooLskY, Phys. Rev. 83, 812 (1928).
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the hydrogen atom are subsequently verified by experiment.
We might then describe the hydrogen atom by giving its wave
equation; this description would be complete. It is unsatis-
factory, however, because it is unwieldy. On observing that
there is a formal relation between this wave equation and the
classical energy equation for a system of two particles of different
masses and electrical charges, we seize on this as providing a
simple, easy, and familiar way of describing the system, and
we say that the hydrogen atom consists of two particles, the
electron and proton, which attract each other according to
Coulomb’s inverse-square law. Actually we do not know that
the electron and proton attract each other in the same way
that two macroscopic electrically charged bodies do, inasmuch
as the force between the two particles in a hydrogen atom has
never been directly measured. All that we do know is that the
wave equation for the hydrogen atom bears a certain formal
relation to the classical dynamical equations for a system of
two particles attracting each other in this way.

Having emphasized the formal nature of this correlation and
of the usual description of wave-mechanical systems in terms of
classical concepts, let us now point out the extreme practical
importance of this procedure. It is found that satisfactory wave
equations can be formulated for nearly all atomic and molecular
systems by accepting the descriptions of them developed during
the days of the classical and old quantum theory and translating
them into quantum-mechanical language by the methods
discussed above. Indeed, in many cuses the wave-mechanical
expressions for values of experimentally observable properties of
systems are identical with those given by the old quantum theory,
and in other cases only small changes are necessary. Throughout
the following chapters we 'shall make use of such locutions as
““a system of two particles with inverse-square attraction”
instead of ‘“‘a system whose wave equation involves six coordi-
nates and a function e?/r;,” ete.

9b. The Amplitude Equation.—In order to solve Equation 9-1,
let us (as is usual in the solution of a partial differential equation
of this type) first study the solutions ¥ (if any exist) which can
be expressed as the product of two functions, one involving the
time alone and the other the coordinate alone:

‘I’(xy t) = ¢(x)¢(l)-
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On introducing this in Equation 9-1 and dividing through by
Y(x)e(t), it becomes

1 h? d%(z) h 1 de(t)
xp(:c){ 8r'm  dz? + Vi N(z)} —i'm_%t—' (9-6)

The right side of this equation is a function of the time ¢ alone
and the left side a function of the coordinate z alone. It is
consequently necessary that the value of the quantity to which
each side is equal be dependent on neither z nor ¢; that is, that
it be a constant. Let us call it W. Equation 9-6 can then
be written as two equations, namely,

de(t) _ 2mi

&t = "R el
and (9-7)

o VD 4 ) = W@,

The second of these is customarily written in the form

d"’tﬁ 8'n~ m

o+ W = V@) =0, (o-8)

obtained on multiplying by —8x2?m/h? and transposing the term
in W.

Equation 9-8 is often itself called the Schrodinger wave equa-
tion, or sometimes the amplitude equation, inasmuch as y(zx)
determines the amplitude of the function ¥(z, f). It is found
that the equation possesses various satisfactory solutions, cor-
responding to various values of the constant W. Let us indicate
these values of W by attaching the subscript n, and similarly
represent the amplitude function corresponding to W, as y.(z).
The corresponding equation for ¢(t) can be integrated at once
to give

onl) = K. &-9)

The general solution of Equation 9-1 is the sum of all the particu-
lar solutions with arbitrary coefficients, We consequently
write as the general expression for the wave function for this
system

W
Uz, 1) = Sata(z, ) = Jaal@e " H,  (9-10)
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in which the quantities a¢, are constants. The symbol z, is

to be considered as representing the process of summation over
discrete values of W, or integration over a continuous range or
both, according to the requirements of the particular case.

It will be shown later that the general postulates which we
shall make regarding the physical interpretation of the wave
function require that the constant W, represent the energy of
the system in its various stationary states.

9c. Wave Functions. Discrete and Continuous Sets of
Characteristic Energy Values.—The functions ¥.(z) which
satisfy Equation 9-8 and also certain auxiliary conditions, dis-
cussed below, are variously called wave functions or eigenfunctions
(Eigenfunktionen), or sometimes amplitude functions, charac-
teristic functions, or proper functions. It is found that satis-
factory solutions ¥, of the wave equation exist only for certain
values of the parameter W, (which is interpreted as the energy
of the system). These values W, are characteristic energy values
or eigenvalues (Eigenwerte) of the wave equation. A wave
equation of this type is called a characteristic value equation.

Inasmuch as we are going to interpret the square of the absolute
value of a wave function as having the physical significance of a
probability distribution function, it is not unreasonable that the
wave function be required to possess certain properties, such as
single-valuedness, necessary in order that this interpretation be
possible and unambiguous. It has been found that a satisfactory
wave mechanics can be constructed on the basis of the following
auxiliary postulates regarding the nature of wave functions:

To be a satisfactory wave function, a solution of the Schrédinger
wave equation must be continuous, single-valued, and finite' through-

1 The assumption that the wave function be finite at all points in configura-
tion space may be more rigorous than necessary. Several alternative
postulates have been suggested by various investigators. Perhaps the most
satisfying of these is due to W. Pauli (““Handbuch der Physik,” 2d ed., Vol.
XXVI, Part1, p.123). InSection 10 we shall interpret the function ¥ *¥ asa
probability distribution function. In order that this interpretation may be
made, it is necessary that the integral of ¥*¥ over configuration space be a
constant with changing time. Pauli has shown that this condition is satis-
fied provided that ¥ is finite throughout configuration space, but that it is
also satisfied in certain cases by functions which are not finite everywhere.

The exceptional cases are rare and do not oceur in the problems treated ip
this book.
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out the configuration space of the system (that is, for all values of
the coordinate z which the system can assume).

These conditions are those usually applied in mathematical
physics to functions representing physical quantities. For
example, the function representing the displacement of a vibrat-
ing string from its equilibrium configuration would have to
satisfy them.

For a given system the characteristic energy values W, may
occur only as a set, of discrete values, or as a set of values covering
a continuous range, or as both. From analogy with spectroscopy
it is often said that in these three cases the energy values comprise
a discrete spectrum, a continuous spectrum, or both. The way

4

< =

Yy x‘b %o O
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Fia. 9-1.—Potential-energy function for a general system with one degree of
freedom.

in which the above postulates regarding the wave equation and
its acceptable solutions lead to the selection of definite energy
values may be understood by the qualitative consideration of a
simple example. Let us consider, for our system of one degree
of freedom, that the potential-energy function V(z) has the form
given in Figure 9-1, such that for very large positive or negative
values of z, V(z) increases without limit. For a given value of
the energy parameter W, the wave equation is

% - 8—’;;{1‘{1/(1) — W (9-11)

In the region of large z (z > a) the quantity V(z) — W will be
2,
positive. Hence in this region the curvature %ziz will be positive

if ¥ is positive, and negative if ¥ is negative. Now let us assume
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that at an arbitrary point z = ¢ the function y has a certain value
(which may be chosen arbitrarily, inasmuch as the wave equation

is a homogeneous equation') and a certain slope %, as indicated

for Curve 1 in Figure 9-2. The behavior of the function, as it
is continued both to the right and to the left, is completely
determined by the values assigned to two quantities; to wit, the

slope cd%l: at the point z = ¢, and the energy parameter W in the

wave equation, which determines the value of the second deriva-

Fi1Gg. 9-2.—The behavior of ¥ for z > a.

tive. As we have drawn Curve 1, the curvature is determined
by the wave equation to be negative in the region z < a, where
V(z) — W is negative, ¢ being positive, and hence the curve can
be continued to the right as shown. At the point z = a, the
function remaining positive, the curvature becomes positive, the
curve then being concave upward. If the slope becomes positive,
as indicated, then the curve will increcase without limit for
increasing r, and as a result of this “infinity catastrophe’ the
function will not be an acceptable wave function.

! An equation is homogeneous in v, if the same power of ¢ (in our case the
first power) occurs in every term. The function obtained by multiplying
any solution of a homogeneous equation by a constant is also a solution
of the equation.
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We can now make a second attempt, choosing the slope at
z = ¢ as indicated for Curve 3. In this case the curve as drawn
intersects the z axis at a point x = d to the right of a. For
values of x larger than d the function y is negative, and the curva-
ture is negative. The function decreases in value more and more
rapidly with increasing z, again suffering the infinity catastrophe,
and hence it too is not an acceptable wave function in this
region.

Thus we see that, for a given value of W, only by a very careful
selection of the slope of the function at the point x = ¢ can the
function be made to behave properly for large values of x. This
selection, indicated by Curve 2, is such as to cause the wave
function to approach the value zero asymptotically with increas-
ing z.

Supposing that we have in this way determined, for a given
value of W, a value of the slope at z = ¢ which causes the
function to behave properly for large positive values of z, we
extend the function to the left and consider its behavior for large
negative values of z. In view of our experience on the right,
it will not be surprising if our curve on extension to the left
behaves as Curve 1 or Curve 3 on the right, eliminating the
function from consideration; in fact, it is this behavior which
is expected for an arbitrarily chosen value of W. We can now
select another value of W for trial, and determine for it the value
of the slope at £ = ¢ necessary to cause the function to behave
properly on the right, and then see if, for it, the curve behaves
properly on the left also. Finally, by a very careful choice of
the value of the energy parameter W, we are able to choose a
slope at =z = ¢ which causes the function to behave properly
both for very large and for very small values of z. This value
of W is one of the characteristic values of the energy of the
system. In view of the sensitiveness of the curve to the param-
eter W, an infinitesimal change from this satisfactory value will
cause the function to behave improperly.

We conclude that the parameter W and the slope at the point
z = ¢ (for a given value of the function itself at this point) can
have only certain values if ¥ is to be an acceptable wave function.
For each satisfactory value of W there is one (or, in certain
cages discussed later, more than one) satisfactory value of the
slope, by the use of which the corresponding wave function can
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be built up. For this system the characteristic values W,
of the energy form a discrete set, and only a discrete set, inasmuch
as for every value of W, no matter how large, V(z) — W is
positive for sufficiently large positive or negative values of z.

It is customary to number the characteristic energy values for
such a system as indicated in Figure 9-1, W, being the lowest,
W, the next, and so on, corresponding to the wave functions
Yo(z), ¥1(x), etc. The integer n, which is written as a subseript
in W, and v.(z), is called the quantum number. For such a
one-dimensional system it is equal to the number of zeros!
possessed by ¥,. A slight extension of the argument given above

Continuum
of W-yalues — Voo
V(-o00)
v —%
v
W
W
X=~>

Fia. 9-3.—The energy levels for a system with V(—®) or V(+=) finite.

shows that all of the zeros lie in the region between the points
z = b and z = q, outside of which V(z) — W, remains positive.
The natural and simple way in which integral quantum numbers
are introduced and in which the energy is restricted to definite
values contrasts sharply with the arbitrary and uncertain
procedure of the old quantum theory.

Let us now consider a system in which the potential-energy
function remains finite at £ — 4 or at £ — — « or at both
limits, as shown in Figure 9-3. For a value of W smaller than
both V(+ =) and V(— =) the argument presented above is
valid. Consequently the energy levels will form a discrete set
for this region. If W is greater than V(4 =), however, a
similar argument shows that the curvature will be such as always
to return the wave function to the z axis, about which it will

1 A zero of ya(z) i8 a point (z = x;) at which ¥, is equal to zero.
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oscillate. Hence any value of W greater than V(4 ) or
V(— ) will be an allowed value, corresponding to an acceptable
wave function, and the system will have a continuous spectrum
of energy values in this region.

"9d. The Complex Conjugate Wave Function W¥*(x, f).—In
the physical interpretation of the wave equation and its solutions,
as discussed in the following section, the quantity ¥*(z, t),
the complex conjugate of ¥(x, t), enters on an equivalent basis
with ¥(z, f). The wave equation satisfied by ¥* is the complex
conjugate of Equation 9-1, namely,

2 ANy *
S D | yeyue, ) = g OO (g )
The general solution of this conjugate wave equation is the
following, the conjugate of 9-10:

h 9¥*(z, t)

Wa
¥z, ) = Jaivi, ) = Sadi@e b (8-13)

(Some authors have adopted the convention of representing
by the symbol ¥ the wave function which is the solution of
Equation 9-12 and by ¥* that of 9-1. This is only a matter of
nomenclature.)

It will be noticed that in the complex conjugate wave function
the exponential terms containing the time are necessarily different
from the corresponding terms in ¥ itself, the minus sign being
removed to form the complex conjugate. The amplitude
functions ¥.(z), on the other hand, are frequently real, in which

case y(z) = ¥a(z).

10. THE PHYSICAL INTERPRETATION OF THE WAVE FUNCTIONS

10a. w*(x, {)W(x, t) as a Probability Distribution Function.—
Let us consider a given general solution ¥(z, t) of the wave equa-
tion. For a given value of the time ¢, the function ¥*(z, £)¥(z, t),
the product of ¥ and its complex conjugate, is a function defined
for all values of £ between — © and + « ; that is, throughout the
configuration space of this one-dimensional system. We now
make the following postulate regarding the physical significance
of ¥:

The quantity Y*(z, t)¥(z, t)dx 18 the probability that the system
in the physical situation represenied by the wave function ¥(z, t)
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have at the time t the configuration represented by a point in the
region dz of configuration space. In other words, ¥*(z, t)¥(z, t)
is a probability distribution function for the configuration of the
system. In the simple system under discussion, ¥*(z, ) ¥(z, t)dz
is the probability that the particle lie in the region between =z
and z + dz at the time ¢.

In order that this postulate may be made, the wave function
¥(r, t) must be normalized to unity (or, briefly, normalized);
that is, the constants a, of Equation 9-10 must be so chosen as
to satisfy the relation

[ vMa v, vde = 1, (10-1)

inasmuch as the probability that the coordinate z of the particle
lie somewhere between — o and 4 is necessarily unity.
It is also convenient to normalize the individual amplitude
functions y.(z) to unity, so that each satisfies the equation

ff:l#;*(x)wn(x)dx =1. (10-2)

Moreover, as proved in Appendix III, it is found that the
independent solutions of any amplitude equation can always be
chosen in such a way that for any two of them, y.(z) and ¥.(z),
the integral [y*(z)¢.(z)dz over all of configuration space van-
ishes; that is,

[ i@z =0,  mn (10-3)

The functions are then said to be mutually orthogonal. Using
these relations and Equations 9-10 and 9-13, it is found that a

wave function ¥(z, f) = za,.\ll,.(:c, t) is normalized when the

coefficients a, satisfy the relation
Jara, = 1. (10-4)

10b. Stationary States.—Let us consider the probability dis-
tribution function ¥*¥ for a system in the state represented by

W
the wave function ¥(z, t) = zamlz,.(:c)e % and its conjugate

Wm
¥*(z, t) = za,’f, ,’:‘,(:z:)ez’1 » Qn multiplying these series
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together, ¥*V¥ is seen to have the form
V*z, O¥(z, 1) = Y ara i (@Wa(z) +

(Ww— W-)‘

! "(_—_—
S et @@ T

in which the prime on the double-summation symbol indicates
that only terms with m = n are included. In general, then,
the probability function and hence the properties of the system
depend on the time, inasmuch as the time enters in the exponen-
tial factors of the double sum. Only if the coefficients a, are
zero for all except onc value of W, is ¥*¥ independent of .
In such a case the wave function will contain only a single term
War

(with n = n’, say) Va.(z, t) = \lz,.:(x)eﬁz"—"—‘, the amplitude
function ¥..(z) being a particular solution of the amplitude
equation. For such a state the properties of the system as given
by the probability function ¥*¥ are independent of the time, and
the state is called a stationary state.

10c. Further Physical Interpretation. Average Values of
Dynamical Quantities.—If we inquire as to what average value
would be expected on measurement at a given time { of the
coordinate z of the system in a physical situation represented by
the wave function ¥, the above interpretation of ¥*¥ leads to the
answer

= f_+:\ll*(:c, 0¥ (z, t)zde;

that is, the value of z is averaged over all configurations, using
the function ¥*¥ as a weight or probability function. A similar
integral gives the average value predicted for z2% or z?, or any
function F(z) of the coordinate x:

F= f_+:\11*(x, ¥ (z, OF (z)dz. (10-5)

In order that the same question can be answered for a more
general dynamical function G(p., z) involving the momentum p.
as well as the coordinate z, we now make the following more
general postulate:

The average value of the dynamical function G(p,, z) predicted
for a system in the physical situation represented by the wave
function ¥(z, t) is given by the integral
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G f_ _ V*(z, t)G(zm. P :c)\I/(:c, t)dzr, (10-6)

in which the operator @, obtained from G(p., z) by replacing p.
by 2% b%’ operates on the function ¥(z, t) and the integration is
extended throughout the configuration space of the system.!

In general, the result of a measurement of G will not be given
by this expression for . G rather is the average of a very
large number of measurements made on a large number of
identical systems in the physical situation represented by ¥, or
repeated on the same system, which before each measurement
must be in the same physical situation. For example, if ¥ is

A

v /\

X > Xea
F1a. 10-1.—Two types of probability distribution function ¥*¥,

s o8

finite for a range of values of z (Curve 4, Figure 10-1), then a
measurement of z might lead to any value within this range,
the probability being given by ¥*¥. Only if ¥*¥ were zero
for all values of z except z = g, as indicated by Curve B in
Figure 10-1, would the probability of obtaining a particular
value £ = a on measurement of z be unity. In this case the
value a” would be predicted with probability unity to be obtained
on measurement of the rth power of x; so that for such a prob-
ability distribution function z* is equal to (&)". It has also
been shown by mathematicians that the existence of this identity
of G and (G)" for all values of r is sufficient to establish that the
probability distribution function for the dynamical quantity G is
of type B;that is, that the value of @ can be predicted accurately.

1 In some cases further considerations are necessary in order to determine
the exact form of the operator, but we shall not encounter such difficulties.
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Even if the system is in a stationary state, represented by the

Wa
wave function ¥.(z, f) = npn(x)e_zﬂT‘, only an average value
can be predicted for an arbitrary dynamical quantity. The
energy of the system, corresponding to the Hamiltonian funetion
H(p., z), has, however, a definite value for a stationary state
of the system, equal to the characteristic value W, found on
solution of the wave equation, so that the result of a measurement
of the energy of the system in a given stationary state can be
predicted accurately. To prove this, we evaluate H* and (H)".
H is given by the integral

+ = 2 2
q- w;*(x){- M d¥a(z) v<x)¢n<x>}dx,

8rim dx?

the factor involving the time being equal to unity. This trans-
forms with the use of Equation 9-8 into

g = f_*ww:(x)wm(x)dx,

or, since W, is a constant and f_ +:nlx,’:‘(x)nlx,.(a:)dx =1,
H=W, and (H)y = W, (10-7)

By a similar procedure, involving repeated use of Equation 9--8,
it is seen that H" is equal to W7. We have thus shown Hr to
be equal to (H)", in consequence of which, in accordance with the
argument set forth above, the energy of the system has the
definite value W..

Further discussion of the physical significance of wave functions
will be given in connection with the treatment of the harmonic
oscillator in this chapter and of other systems in succeeding
chapters, and especially in Chapter XV, in which the question
of deciding which wave function to associate with a given gystem
under given circumstances will be treated. In the earlier sections
we shall restrict the discussion malnly to the properties of
stationary states.

11. THE HARMONIC OSCILLATOR IN WAVE MECHANICS

11a. Solution of the Wave Equation.—As our first example
of the solution of the Schrédinger wave equation for a dynamical
system we choose the one-dimensional harmonic oscillator, not
only because this provides a good illustration of the methods
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employed in applying the wave equation, but also because this
system is of considerable importance in applications which we
shall discuss later, such as the calculation of the vibrational
energies of molecules. The more difficult problem of the three-
dimensional oscillator was treated by the methods of classical
mechanics in Section la, while the simple one-dimensional
case was discussed according to the old quantum theory in
Section 6a.

The potential energy may be written, as before, in the form
V(z) = 2x?mviz?, in which z is the displacement of the particle
of mass m from its equilibrium position £ = 0. Insertion of this
in the general wave equation for a one-dimensional system
(Eq. 9-8) gives the equation

2
%’ + %L"(W — 2r'myiet)y = 0, (11-1)

or, introducing for convenience the quantities N = 8x*mW /h?
and ¢ = 4r2myy/h,

d2
SV O auy =0, (11-2)

We desire functions y(x) which satisfly this equation throughout
the region of values — « to 4« for z, and which are acceptable
wave functions, i.e., functions which are continuous, single-
valued, and finite throughout the region. A straightforward
method of solution which suggests itself is the use of a power-
series expansion for ¢, the coefficients of the successive powers
of z being determined by substitution of the series for ¢ in the
wave equation. There is, however, a very useful procedure
which we may make use of in this and succeeding problems,
consisting of the determination of the form of ¥ in the regions of
large positive or negative values of z, and the subsequent dis-
cussion, by the introduction of a factor in the form of a power
series (which later reduces to a polynomial), of the behavior of ¥
for |z| small. This procedure may be called the polynomial
method.?

The first step is the asymptotic solution of the wave equation
when |z| is very large. For any value of the energy constant W,
a value of |z| can be found such that for it and all larger values

1 A. SoMMERFELD, “Wave Mechanics,” p. 11.
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of |z|, X is negligibly small relative to a?z?, the asymptotic form
of the wave equation thus becoming

d2

¥ = auy. (11-3)
This equation is satisfied asymptotically by the exponential
functions

a
t5z2
v =e 2 ’

inasmuch as the derivatives of ¥ have the values

d 321

W _ +are”?

dr
and

1%z 1%
=L = oy 2 + ae 2

dz?

and the second term in %’é is negligible in the region considered.

Of the two asymptotic solutions 3_53’ and e+52’, the second is
unsatisfactory as a wave function since it tends rapidly to
infinity with increasing values of |z|; the first, however, leads to a
satisfactory treatment of the problem.

We now proceed to obtain an accurate solution of the wave
equation throughout configuration space (— o <z < + =),
based upon the asymptotic solution, by introducing as a factor
a power series in z and determining its coefficients.by substitution
in the wave equation.

Let ¢ = e—iﬂf(:z:). Then

2y

oy = ¢ ok — of - 20af +17),

2
in which f’ and f”' represent % and d%cl;’ respectively. Equation
11-2 then becomes, on division by e—r’,

"= 2axf' + N — a)f =0, (114)

the terms in a?z¥ cancelling.
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It is now convenient to intreduce a new variable £, related to
z by the equation

£ =Vaz, (11-5)

and to replace the function f(z) by H(¢), to which it is equal.
The differential equation 11-4 then becomes

a°H
@ 2ng + (— —1>H (11-6)

We now represent H(£) as a power series, which we differentiate
to obtain its derivatives,

H(f) = Eavf" =a+ arif + 08" +ast*+ - - -,

»

%}EI = et = o + 20k + a2+ - - -,

‘gg = D —Dap =121+ 2 3ast + - - -

v

On substitution of these expressions, Equation 11-6 assumes the
following form:

1-2a; + 2-3as¢ + 3-4a.8> + 4-5a:83 + - - -
— 2018 — 220,68 — 2-3a38® — - -

R e v
(5—1>a323+ =0,
o

In order for this series to vanish for all values of £ (i.e., for H(§)
to be a solution of 11-6), the coeflicients of individual powers of
£ must vanish separately!:

12a2+<}-— 1)(10 =0,
2.3as 4+ (2 — 1 —2>a1 ~0,
-1 —2.2>a2 =0,

4-5a5 +

(
setact
(

RI> RI>» RI¥>¥

- 1 - 2‘3)(13 =0,

1 8ee footnote, Sec. 23.
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or, in general, for the coeflicient of &,

(w+nu+mm“+<£—1—20m=o

(2 - 2y — 1) '
Ayy2 = —mar (11_7)

This expression is called a recursion formula. It enables the
coefficients a., as, a4, - - - to be calculated successively in
terms of a, and @;, which are arbitrary. If a, is set equal to zero,
only odd powers appear; with a; zero, the series contains even
powers only.

For arbitrary values of the energy parameter A, the above
given series consists of an infinite number of terms and does
not correspond to a satisfactory wave function, because, as we
shall show, the value of the series increases too rapidly as z
increases, with the result that the total function, even though it
includes the negative exponential factor, increases without
limit as z increases. To prove this we compare the series for
H and that for ¥,

EB

54
ity o+

or

Er Er-{- 2

() ()

For large values of ¢ the first terms of these series will be unim-
portant. Suppose that the ratio of the coecfficients of the »th
terms in the expansion of H(¢) and ¢¥ is called ¢, which may be
small or large, i.e., a,/b. = ¢, if b, is the coefficient of £ in the
expansion of e¥’. For large enough values of », we have the
asymptotic relations

+

e =1+ g+ + o

2
a,+2 = -a, and by+2 = _by,
14 14
so that
Qvyr _ G ¢,
br+2 bv

if » is large enough. Therefore, the higher terms of the series for
H differ from those for ¢ only by a multiplicative constant, so
that for large values of |£|, for which the lower terms are unim-
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El
portant, H will behave like e¢* and the product e 2H will behave
El
like ¢ % in this region, thus making it unacceptable as a wave
function.

We must therefore choose the values of the energy parameter
which will cause the series for H to break off after a finite number
of terms, leaving a polynomial. This yields a satisfactory wave

EZ
function, because the negative exponential factor e 2 will cause
the function to approach zero for large values of |§]. The value
of N\ which causes the series to break off after the nth term is
seen from Equation 11-7 to be

A = (2n + Da (11-8)

It is, moreover, also necessary that the value either of a, or of a:
be put equal to zero, according as n is odd or even, inasmuch as a
suitably chosen value of X can cause either the even or the odd
series to break off, but not both. The solutions are thus either
odd or even functions of £ This condition is a sufficient condi-
tion to insure that the wave equation 11-2 have satisfactory
solutions, and it is furthermore a necessary condition; no other
values of X lead to satisfactory solutions. For ecach integral
value 0, 1, 2, 3, - - - of n, which we may call the quantum
number of the corresponding state of the oscillator, a satisfactory
solution of the wave equation will exist. The straightforward
way in which the quantum number enters in the treatment of
the wave equation, as the degree of the polynomial H(§), is
especially satisfying when compared with the arbitrary assump-
tion of integral or half-integral multiples of h for the phase
integral of the old quantum theory.

The condition expressed in Equation 11-8 for the existence
of the nth wave function becomes

W=W.=m+%Y%hno n=012 -, (11-9)

when X\ and « are replaced by the quantities they represent. A
comparison with the result W = nhy, obtained in Section 6a
by the old quantum theory shows that the only difference is
that all the energy levels are shifted upward, as shown in Figure
11-1, by an amount equal to half the separation of the energy
levels, the so-called zero-point energy 14hv,. From this we
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see that even in its lowest state the system has an energy greater
than that which it would have if it were at rest in its equilibrium
position. The existence of a zero-point energy, which leads to
an improved agreement with experiment, is an important feature
of the quantum mechanics and recurs in many problems.!
Just as in the old-quantum-theory treatment, the frequency
emitted or absorbed by a transition between adjacent energy
levels is equal to the classical vibration frequency », (Sec. 40c).

n=5

n=4

n=3

vy v
n-2

n=|

n:0

AN

K ——=

Fia. 11-1.—Energy levels for the harmonic oscillator according to wave me
chanics (see Fig. 6-1).

11b. The Wave Functions for the Harmonic Oscillator and
Their Physical Interpretation.—For each of the characteristic
values W, of the energy, a satisfactory solution of the wave
equation 11-1 can be constructed by the use of the recursion
formula 11-7. Energy levels such as these, to each of which
there corresponds only one independent wave function, are said
to be non-degenerate to distinguish them from degenerate energy
levels (examples of which we shall consider later), to which several

1 The name zero-point energy is used for the energy of a system in its lowest
stationary state because the system in thermodynamie equilibrium with its
environment at a temperature approaching the absolute zero would be in
this stationary state. The zero-point energy is of considerable importance
in many statistical-mechanical and thermodynamic discussions. The
existence of zero-point energy is correlated with the uncertainty principle
(Chap. XV),
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independent wave functions correspond. The solutions of 11-1
may be written in the form

Valz) = N,.e'%'H..(s), (11-10)

in which ¢ = vaz. H.(%) is a polynomial of the nth degree in
¢, and N, is a constant which is adjusted so that ¥, is normalized,
i.e., 80 that ¥, satisfies the relation

[F I n@@ds =1, (11-11)

in which ¢}, the complex conjugate of ¥., is in this case equal to
¥a.  In the next seotion we shall discuss the nature and properties
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Fre. 11-2.—The wave function yo(£) for the normal state of the harmonic
oscillator (left), and the corresponding probability distribution function
[Wo($)]® (right). The classical distribution functiorn for an oscillator with the
same total energy ia shown by the dashed curve.

of these solutions y, in great detail. The first of them, which
corresponds to the state of lowest energy for the system, is

Yolz) = (}'r‘)%e"%f (:—"r)%e_g"- (11-12)

Figure 11-2 shows this function. From the postulate discussed
in Section 10a, ¥3¥, = ¥%, which is also plotted in Figure 11-2,
represents the probability distribution function for the coordinate
z. In other words, the quantity J2(z)dz at any point z gives
the probability of finding the particle in the range dz at that
point. We see from the figure that the result of quantum
mechanics for this case does not agree at all with the probability
function which is computed classically for a harmonic oscillator
with the same energy. Clagsically the particle is most likely to
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be found at the ends of its motion, which are clearly defined points
(the classical probability distribution is shown by the dotted
curve in Figure 11-2), whereas ¢ has its maximum at the origin
of z and, furthermore, shows a rapidly decreasing but nevertheless
finite probability of finding the particle outside the region allowed
classically. This surprising result, that it is possible for a
particle to penetrate into a region in which its total energy is less
than its potential energy, is closely connected with Heisenberg’s
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Fi1a. 11-3.—The wave functions yn(£), n = 1 to 6, for the harmonic oscillator.
For each case the heavy horizontal line indicates the region traversed by the
classical harmonic oscillator with the same total energy.

uncertainty principle, which leads to the conclusion that it is
not possible to measure exactly both the position and the velocity
of a particle at the same time. We shall discuss this phenomenon
further in Chapter XV. It may be mentioned at this point,
however, that the extension of the probability distribution func-
tion into the region of negative kinetic energy will not require
that the law of the conservation of energy be abandoned.

The form of ¢, for larger values of n is shown in Figure 11-3.
Since H, is a polynomial of degree n, ¢, will. have n zeros or
points where ¥, crosses the zero line. The probability of finding
the particle at these points is zero. Insvection of Figure 11-3
shows that all the solutions plotted show a general behavior in



76 THE SCHRODINGER WAVE EQUATION [II-11b

agreement with that obtained by the general arguments of Section
9c; that is, inside the classically permitted region of motion of
the particle (in which V(z) is less than W,) the wave function
oscillates, having n zeros, while outside that region the wave
function falls rapidly to zero in an exponential manner and has
no zeros. Furthermore, we see in this example an illustration
of still another general principle: The larger the value of n, the
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Fi1a. 11-4.—The probability distribution function [¥10(§)])? for the state
n = 10 of the harmonic oscillator. Note how closely the function approximates
in its average value the probability distribution function for the classical har-
monic oacillator with the same total energy, represented by the dashed curve.

more nearly does the wave-mechanical probability distribution
function approximate to the classical expression for a particle
with the same energy. Figure 114 shows ¢%(z) for the state
with n = 10 compared with the classical probability curve for

the harmonic oscillator with the same value 2—21hvo for the energy.

It is seen that, aside from the rapid fluctuation of the wave-
mechanical curve, the general agreement of the two functions
is good. This agreement permits us to visualize the motion of
the particle in a wave-mechanical harmonic oscillator as being
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similar to its classical to-and-fro motion, the particle speeding
up in the center of its orbit and slowing down as it approaches
its maximum displacement from its equilibrium position. The
amplitude of the oscillation cannot be considered to be constant,
as for the classical oscillator; instead, we may picture the particle
as oscillating sometimes with very large amplitude, and some-
times with very small amplitude, but usually with an amplitude
in the neighborhood of the classical value for the same energy.
Other properties of the oscillator also are compatible with this
picture; thus the wave-mechanical root-mean-square value of the
momentum is equal to the classical value (Prob. 11-4).

A picture of this type, while useful in developing an intuitive
feeling for the wave-mechanical equations, must not be taken
too seriously, for it is not completely satisfactory. Thus it
cannot be reconciled with the existence of zeros in the wave
functions for the stationary states, corresponding to points where
the probability distribution function becomes vanishingly
small.

11c. Mathematical Properties of the Harmonic Oscillator
Wave Functions.—The polynomials H,(¢) and the functions

EI
e 2 H.(§) obtained in the solution of the wave equation for the
harmonic oscillator did not originate with Schrodinger’s work
but were well known to mathematicians in connection with other
problems. Their properties have been intensively studied.

For the present purpose, instead of developing the theory of
the polynemials H,(£), called the Hermite polynomials, from the
relation between successive coefficients given in Equation 11-7,
it is more convenient to introduce them by means of another
definition:

H.(§) = (—U"e"‘%i- (11-13)
E‘n
We shall show later that this leads to the same functions as
Equation 11-7. A third definition involves the use of a generating
function, a method which is useful in many calculations and which
is also applicable to other functions. The generating function
for the Hermite polynomials is

S(E’ 3) = b’ (=1 — EIJ":—(‘Q&". (11_14)

n=0
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This identity in the auxiliary variable s means that the function
e#*——6" hag the property that, if it is expanded in a power series
in 8, the coefficients of successive powers of s are just the Hermite
polynomials H,.(¢), multiplied by 1/n!. To show the equivalence
of the two definitions 11-13 and 11-14, we differentiate S n times
with respect to s and then let s tend to zero, using first one and
then the other expression for S; the terms with v < n vanish
on differentiation, and those with » > n vanish for s — 0, leaving
only the term with v = n:

S H,(§)s _ .
<Fs—;>a-- <aS" V' > 0 - H"(E)’
and

anS) anee-——u—e)i) " ane—(a—sn)
98™ /0 - as” 80 a(s - &

—_ es:(_l)"<a"ea—;: U)_m _ ( 1)"651 dE:Ei

Comparing these two equations, we see that we obtain Equation
11-13, so that the two definitions of H,.(£) are equivalent.
Equation 11-13 is useful for obtaining the individual functions,
while Equation 11-14 is frequently convenient for deriving their
properties, such as in the case we shall now discuss.

To show that the functions we have defined above are the
same a8 those used in the solution of the harmonic oscillator
problem, we look for the differential equation satisfied by
H.(¢). It is first convenient to derive certain relations between
successive Hermite polynomials and their derivatives. We
note that since S = e#*—~©* its partial derivative with respect
to s is given by the equation

Q§
as

= —2(s — £)S.

Similarly differentiating the series S = Eli:%s", and equating
the two different expressions for 9S/ds, we obtain the equation
Ha(8)) . _ _ Hn(E)
=) it Che E)E

n

or, collecting terms corresponding to the same power of s,
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2{ n+1(£) +2 .-,( nj(f))! — ognd) ;(!E)} = 0.

Since this equation is true for all values of s, the coeflicients of
individual powers of s must vanish, giving as the recursion
formula for the Hermite polynomials the expression

Hay1(§) — 28Hn(£) + 2rHai(§) = 0. (11-18)

Similarly, by differentiation with respect to {, we derive the
equation

a8
i3
which gives, in just the same manner as above, the equation

S {Hn(‘a H;(!z)sm} ~0

n

= 2s8,

or

a1 = 28 — purr, (o), (11-16)

involving the first derivatives of the Hermite polynomials.
This can be further differentiated with respect to ¢ to obtain
expressions involving higher derivatives.

Equations 11-15 and 11-16 lead to the differential equation for
H.(§), for from 11-16 we obtain

HY(§) = 2nH, \(§) = 4n(n — 1)Haa()), (11-17)
while Equation 11-15 may be rewritten as
H () — 2tH._1(f) + 2(n — 1)H,o(§) =0, (11-18)
which becomes, with the use of Equations 11-16 and 11-17,

Ha®) — Z2H®) + - H () =0

or
HJ(§) — 2EH(E) + 2nHa(§) = 0. (11-19)

This is just the equation, 11-6, which we obtained from the har-
monic oscillator problem, if we put 2n in place of ;);— — 1, as

required by Equation 11-8. Since for each integral value of n
this equation has only one solution with the proper behavior at
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infinity, the polynomials H,(¢) introduced in Section 11a are
the Hermite polynomials.
The functions

[4
¥n(z) = Nnve 2-Hu(8), £=+Vaz, (11-20)

are called the Hermate orthogonal functions; they are, as we
have seen, the wave functions for the harmonic oscillator. The

value of N, which makes f_ +: VYi(z)dzr = 1,i.e., which normalizes

¥, i8
% o]
N, = {(g) 2%,} . (11-21)

The functions are mutually orthogonal if the integral over
configuration space of the product of any two of them vanishes:

f_’ T Va@¥n(@)dz = 0,  n % m. (11-22)

To prove t.he' orthogonality of the functions and to evaluate the
normalization constant given in Equation 11-21, it is convenient
to consider two generating functions:

S(E) 8) = E!{:L#)‘s" = eE"(l-E)’
and "

TE ) = E}—q—%(li)tm = gttt

Using these, we obtain the relations

+w +w
f STetdg = > D sntm f_ | H,(:)'g'm(s)e_e.ds

+w +w
= f e‘"‘"*"“‘"""df = emf e—(e—n—t)'d( E — — t)

2 nonin
\/'ez.:_\/;(1+1!+23t+ .+28t+...>.

n!
Considering coefficients of s"t™ in the two equal series expansions,
we see that f_+:H *(£)H n(£)e¢'dE vanishes for m = n, and has the

value 2*n!\/x for m = n, in consequence of which the functions
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are orthogonal and the normalization constant has the value
given above.
The first few Hermite polynomials are

Ho(f) =1

Hl(f) = 25

Hy(k) =48 -2

Hy(8) = 88 — 12¢

H(®) = 168 — 482 + 12

Hy() = 32¢ — 160£* + 120¢ (11-23)

He(f) = 64%% — 480%* + 72082 — 120

Hi(¥) = 12887 — 1344%° 4 3360%° — 1680¢

Hs(f) = 256%% — 3584£% + 1344084 — 13440% 4 1680

Ho(¥) = 512¢° — 921647 4 483845 — 80640%% + 30240¢

Hio(}) = 1024510 — 230408 + 161280£° — 403200£4 + 30240042
— 30240.

The list may easily be extended by the use of the recursion
formula, Equation 11-15. Figure 11-3 shows curves for the
first few wave functions, i.e., the functions given by Equation
11-20.

By using the generating functions S and 7 we can evaluate
certain integrals involving ¢, which are of importance. For
example, we may study the integral which, as we shall later
show (Sec. 40¢), determines the probability of transition from the
state n to the state m. 'This is

+ = + =
PR [ N—iv—“f H.Hne Pt (11-24)

Using S and T we obtain the relation

+ » + =
STeegd = Em}ﬁ—‘s”t’" HoH ne'tdt

+ = + =
= gt e~ EdE = g2t ekt
— w — ®»

((—s—Dd(§ —s—1)
+ =
+ e?t(s + t)f_ e E(E — 3 — ).

The first integral vanishes, and the second gives v/=. On
expanding the exponential, we obtain
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2o342 nontlin
\/;(s+2s’t+—2;!t FENNNE kg

n!
+t+2st’+22§?a+ S

2unn+l
8"t +>

n!

Hence, comparing coefficients of s"i™, we see that z.. is zero
except for m = n + 1, its values then being

Znnts = | g (11-250)

Tanet = ,/% (11-25b)

It will be shown later that this result requires that transitions
occur only between adjacent energy levels of the harmonic
oscillator, in agreement with the conclusion drawn from the
correspondence principle in Section 5c¢.

Problem 11-1. Show that if V(—~2z) = V(z), with V real, the solutions
¥a(z) of the amplitude equation 9-8 have the property that ya( ~z) = tya(z).
Problem 11-2. Evaluate the integrals

(I’)nm = I‘Pu\bmz!dzy (z.)ﬁﬂ = I\Pn'ﬁmz‘dz, (z‘)nm = J‘\P.\P..Z‘dz,

where ¥, 18 a solution of the wave equation for the harmonic oscillator.

Problem 11-3. Calculate the average values of z, x? z3 and z¢ for a
harmonic oscillator in the nth stationary state. Is it true that 2! = (2)?
or that 72 = (z?)?? What conclusions can be drawn from these results
concerning the results of a measurement of z?

Problem 11-4. Calculate the average values of p, and p? for a harmonic
oscillator in the nth stationary state and compare with the classical values
for the same total energy. From the results of this and of the last problem,
compute the average value of the energy W =T 4+ V for the nth
stationary state.

Problem 11-8. 4. Calculate the zero-point energy of a system consisting
of a mass of 1 g. connected to a fixed point by a spring which is stretched
1 cm. by a force of 10,000 dynes. The particle is constrained to move only
in the z direction.

b. Calculate the quantum number of the system when its energy is about
equal to kT, where k is. Boltzmann’s constant and 7 = 298° A. This corre-
sponds to thermodynamic equilibrium at room temperature (Sec. 49).

and
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CHAPTER 1V

THE WAVE EQUATION FOR A SYSTEM OF POINT
PARTICLES IN THREE DIMENSIONS

12. THE WAVE EQUATION FOR A SYSTEM OF POINT PARTICLES

The Schrodinger equation for a system of N interacting point
particles in three-dimensional space is closely similar to that for
the simple one-dimensional system treated in the preceding
chapter. The time equation is a partial differential equation
in 3N + 1 independent variables (the 3N Cartesian coordinates,
say, of the N particles, and the time) instead of only two inde-
pendent variables, and the wave function is a function of these
3N + 1 variables. The same substitution as that used for the
simpler system leads to the separation of the time equation into
an equation involving the time alone and an amplitude equation
involving the 3N coordinates. The equation involving the time
alone is found to be the same as for the simpler system, so that
the time dependency of the wave functions for the stationary
states of a general system of point particles is the same as for
the one-dimensional system. The amplitude equation, however,
instead of being a total differential equation in one independent
variable, is a partial differential equation in 3N independent
variables, the 3N coordinates. It is convenient to say that this
is an equation in a 3N-dimensional configuration space, meaning
by this that solutions are to be found for all values of the 3N
Cartesian coordinates z; «+ - - zy from — o to 4. The
amplitude function, dependent on these 3N coordinates, is said
to be a function in configuration space. A point in configuration
space corresponds to a definite value of each of the 3N coordi-
natesz, - - - zn, and hence to definite positions of the N particles
in ordinary space, that is, to a definite configuration of the
system.

The wave equation, the auxiliary conditions imposed on the
wave functions, and the physical interpretation of the wave

functions for the general system are closely similar to those for
84
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the one-dimensional system, the only changes being those conse-
quent to the increase in the number of dimensions of configura-
tion space. A detailed account of the postulates made regarding
the wave equation and its solutions for a general system of point
particles is given in the following sections, together with a dis-
cussion of various simple systems for illustration.

12a. The Wave Equation Including the Time.—Let us con-
sider a system consisting of N point particles of masses m,,

me, + - -, my moving in three-dimensional space under the
influence of forces expressed by the potential function V(z,
Y1+ + - 2w, ), 21 - - - zy being the 3N Cartesian coordinates

of the N particles. The potential function V, representing
the interaction of the particles with one another or with an
external field or both, may be a function of the 3N coordinates
alone or may depend on the time also. The former case, with

= V(z\ - - - 2x), corresponds to a conservative system.
Our main interest lies in systems of this type, and we shall soon
restrict our discussion to them.

We assume with Schrédinger that the wave equation for this
system is

PV | O h ov
SR M) ek

1]

This equation is often written as
a h
h? \ v
T8 ZE_V"I’ VY= o
i=1
in which v? is the Laplace operator or Laplacian for the ith
particle.! In Cartesian coordinates, it is given by the expression
62 62 62
The wave function ¥ = ¥(z, + * * 2y, t) is a function of the
3N coordinates of the system and the time.
It will be noted that the Schrédinger time equation for this
general system is formally related to the classical energy equation
in the same way as for the one-dimensional system of the preced-

1 The symbol A is sometimes used in place of V2. The symbol v? is
commonly read as del squared.

v =
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ing chapter. The energy equation for a Newtonian system of
point particles is

Hp: - " pepz - 2wy ) = T(pe, * - - ps) +

V(I1 © 2Ny t) = W, (12—2)
which on explicit introduction of the momenta ps . . . pe,
becomes

H(pz * * " Peyy T * - * 2wy t) = 22%@2. + 9l + i) +

V{z,y - - 2n, 8) = W. (12-3)

We now arbitrarily replace the momenta p., - - - p.,y by
. . h o h @
l a s A T T i

the differential operators i 9z, 9t respectively,
and W by the operator “E}}S%’ and introduce the function
V(z, - - + 2v, 1) on which these operators can operate. The
equation then becomes

h 9 h o
H(Eﬁ'b’:?, omidzy A ‘)‘V

N

Rt~ 1 hoow
’WEEV?‘I’ VY= -5 (129

i=1

which is identical with Equation 12-1. Just as for the one-
dimensional case, the wave equation is often symbolically
written

HY = Wy, (12-5)

The discussion in Section 9a of the significance of this formal
relation is also appropriate to this more general case.

12b. The Amplitude Equation.—Let us now restrict our atten-
tion to.conservative systems, for which V is a function of the 3N
coordinates only. To solve the wave equation for this case,
we proceed exactly as in the simpler problem of Section 9b,
investigating the solutions ¥ of the wave equation which can be
expressed as the product of two functions, one of which involves
only the time and the other only the 3N coordinates: '

V(xy - - - zn, 8) = (@ - - - 2w)e(l). (12-6)
On introducing this expression in Equation 12-1, the wave equa-



IV-13b] WAVE EQUATION FOR A SYSTEM OF PARTICLES 87

tion can be separated into two equations, one for ¢(f) and one

for ¥(z1 - - - zv). These equations are
de(t)  2m
a = "Rl
and
12-7
2——\724/ + VY = Wy
=1
The second of these is often written in the form
21 v + 55 - v =o. (12-8)

=]

This is Schrédinger’s amplitude equation for a conservative
system of point particles.

The auxiliary conditions which must be satisfied by a solution
of the amplitude equation in order that it be an acceptable wave
function are given in Section 9¢c. These conditions must hold
throughout configuration space, that is, for all values between
— o and + « for each of the 3N Cartesian coordinates of the
system. Just as for the one-dimensional case, it is found that
acceptable solutions exist only for certain values of the energy
parameter W. These values may form a discrete set, a con-
tinuous set, or both.

It is usually found convenient to represent the various succes-
sive values of the energy parameter and the corresponding ampli-
tude functions by the use of 3N integers, which represent 3N
quantum numbers n, - - - nay, associated with the 3N coordi-
nates. The way in which this association occurs will be made
clear in the detailed discussion of examples in the following
sections of this chapter and in later chapters. For the present

let us represent all of the quantum numbers n; - - - nsy by
the one letter n, and write instead of Wa, « * - ayandvm, © © * ay
the simpler symbols W, and ¢.. e
; . . . )
The equation for ¢(f) gives on integration >4~
~ 20 ¢ v (129

p(t) =€ M, -
exactly as for the one-dimensional system. The various particu-
lar solutions of the wave equation are hence
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Wn

Vo ) = Valo o ade T FL (12-10)
These represent the various stationary states of the system. The
general solution of the wave equation is

Y(x, -+ - 2w il) = Za,.\ll,.(xl ceizpl) =
n

W

— 2w

zan‘pn(xl ttt ZN)e h‘, (12"11)

in which the quantities a, are constants. The symbol 2 repre-
n
sents summation for all discrete values of W, and integration over

all continuous ranges of values.

12c. The Complex Conjugate Wave Function W*(x, - - - zn,
t).—The complex conjugate wave function ¥*(z, - - - 2w, )
is a solution of the conjugate wave equation

N
2
s 1 AT S

i=]

V*(Il <oz, t)‘I’*(:El < o2zw, t) =
h o,
2; a—t\I’ (1:1 2N, t). (12—‘12)
The general solution of this equation for a conservative system is
Uy - oo ) = DatH(E c c  am ) =

AN

2xt—
za:w:(zl C e zn)e k. (12-13)

12d. The Physical Interpretation of the Wave Functions.—
The physical interpretation of the'wave functions for this general
system is closely analogous to that for the one-dimensional system
discussed in Section 10. We first make the following postulate,
generalizing that of Section 10a:

The quantity ¥*(zy - + « 2x, O)W(x1 + - - 2x, 0)dZ, - - - d2y 18
the probability that the system in the physical situation represented
by the wave function ¥(x, - - - 2x, 1) have at the time t the configura-
tion represented by a point in the volume element dx, - - - dzy of
configuration space. ¥*¥ thusserves as aprobability distribution
function for the configuration of the system.
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The function ¥(x, - - - 2y, ) must then be normalized to
unity, satisfying the equation
f¥*(xy - - - 2w, O¥(x1 * * * 2y, )dr = 1, (12-14)

in which the symbol dr is used to represent the volume element
dz, - - - dzy in configuration space, and the integral is to be
taken over the whole of configuration space. (In the remaining
sections of this book the simple integral sign followed by dr
is to be considered as indicating an integral over the whole of
configuration space.) It is also convenient to normalize the
amplitude functions ¥.(z: - - - 2~), according to the equation

WXy« - - znlalzy - - ¢ 2n)dr = 1. (12-15)

It is found, as shown in Appendix III, that the independent
solutions of any amplitude equation (just as for the one-dimen-
sional case) can be chosen in such a way-that any two of them are
orthogonal, satisfying the orthogonality equation

J¥a(@y - - - zn)¥n(@ - - ¢ 2zw)dr =0, m = n. (12-16)

A wave function ¥(z, - * * 2zw, t) = Ea,.‘ll,‘(:vl - - cozy, ) i8

then normalized if the coefficients a, satisfy the equation

Sata, = 1. (12-17)

An argument analogous to that of Section 10b shows that the
W

wave functions ¥.(z, - * * 2y, ) = Yalzs - - - zN)e_zﬂT‘ give
probability distribution functions which are independent of the
time and hence correspond to stationary states.

A more general physical interpretation can be given the wave
functions, along the lines indicated in Section 10¢, by making
the postulate that the average value of the dynamical function

G(Pz, -+ * Pewy 1+ - - 2w, t) predicted for a system in the
physical situation represented by the wave function ¥(z, « - - 2y,
t) is given by the integral
L a h 9
= * e et 9. 9 ...
¢ f ¥ Gl t)G(21n' 3z i PR il ’)
Y(z, -+ zn, t)dr, (12-18)

in which the operator G, obtained from G(p:, < - * DPuy, 21 - - « 2w,
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. h 9 h 9 .
¢) by replacing p;, « - - Dsy byz—ﬂ.gx—l B Gaw respectively,
operates on the function ¥(z; - - « 2w, f) and the integration is

extended throughout the configuration space of the system.
Further discussion of the physical interpretation of the wave
functions will be found in Chapter XV,

13. THE FREE PARTICLE

A particle of mass m moving in a field-free space provides the
simplest application of the Schrédinger equation in three dimen-
sions. Since V is constant (we choose the value zero for con-
venience), the amplitude equation 12-8 assumes the following
form:

8 2
v+ e WY = 0, (13-1)
or, in Cartesian coordinates,
Y , Y , oY |, Sxtm. ~
3zt + ;972 + FI% + '*};TW‘// =0 (13-2)

This is a partial differential equation in three independent
variables z, ¥, and z. In order to solve such an equation it is
usually necessary to obtain three total differential equations,
one in each of the three variables, using the method of separation
of variables which we have already employed to solve the
Schrédinger time equation (Sec. 9b). We first investigate the
possibility that a solution may be written in the form
vz, y,2) = X() - Y({y) - Z(2), (13-3)

where X (z) is a function of z alone, Y (y) a function of y alone,
and Z(z) a function of z alone. If we substitute this expression
in Equation 13-2, we obtain, after dividing through by ¢, the
equation

1a2X 14 | 1d*Z | 8r'm

X V¥ayp Tzaz T ? -0 (139
Since X is a function only of z, the first term does not change
its value when y and z change. Likewise the second term is
independent of z and z and the third term of z and y. Never-
theless, the sum of these three terms must be equal to the con-
m

2
stant —%—W for any choice of z, y, z. By holding y and 2z
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fixed and varying z, only the first term can vary, since the others
do not depend upon z. However, since the sum of all the
terms is equal to a constant, we are led to the conclusion that
2

51(%% is independent of x as well as of y and 2, and is therefore
itself equal to a constant. Applying an identical argument to
the other terms, we obtain the three ordinary differential
equations

1 d*X 1 d*Y 1d*Z

XW = k,,-, ?W = ky, and ZW = k,, (13"5)
with the condition

8r2m

. . 8rim . . .
It is convenient to put k., = _—ETW” which gives the equation
in z the form

d*X  8r'm

This is now a total differential equation, which can be solved
by familiar methods. As may be verified by insertion in the
equation, a solution is

X(z) = N, sin «{ghlr\/ 2mW (xz — Io)}' (13-8)

Since it contains two independent arbitrary constants N, and z,,
it is the general solution. It is seen that the constant z, defines
the location of the zeros of the sine function. The equations for
Y and Z are exactly analogous to Equation 13-7, and have the
solutions

Y(y) = N, sin {—2}?\/ 2mW, (y — yo)}:
Z(z) = N,sin «{2{\/2mW,(z — 2) }

The fact that we have been able to obtain the functions
X, Y, and Z justifies the assumption inherent in Equation 13-3.
It can also be proved! that no other solutions satisfying the

! The necessary theorems are given in R. Courant and D. Hilbert,

‘““Methoden der mathematischen Physik,” 2d ed., Julius Springer, Berlin,
1931.

(13-9)
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boundary conditions can be found which are linearly independent
of these, i.e., which cannot he expressed as a linear combination
of these solutions.

The function ¥ must now be examined to see for what values of
W =W.+ W, + W, it satisfies the conditions for an acceptable
wave function given in Section 9¢. Since the sine function is
continuous, single-valued, and finite for all real values of its
argument, the only restriction that is placed on W is that W,,
Wy, W, and therefore W be positive. We have thus reached the
conclusion that the free particle has a continuous spectrum of
allowed energy values, as might have been anticipated from the
argument of Section 9.

The complete expression for the wave function corresponding
to the energy value

W=W.4+W,+ W, (13-10)
is

¥(z,y,2) = N sin {%\/ 2mW . (z — zo)}
- 8in {%\/zmw,,(y - yo)} - sin {?hl'vm(z - zo)}, (13-11)

in which N is a normalization constant. The problem of the
normalization of wave functions of this type, the value of which
remains appreciable over an infinite volume of configuration
space (corresponding to a continuous spectrum of energy values),
is a complicated one. Inasmuch as we shall concentrate our
attention on problems of atomic and molecular structure, with
little mention of collision problems and other problems involving
free particles, we shall not discuss the question further, contenting
ourselves with reference to treatments in other books.!

In discussing the physical interpretation of the wave functions
for this system, let us first consider that the physical situation is
represented by a wave function as given in Equation 13-11
with W, and W, equal to zero and W, equal to W. The func-

1 A. SomMerrELD, ‘“Wave Mechanics,” English translation by H. L.
Brose, pp. 203-295, E. P. Dutton & Co., Inc., New York, 1929; RuArk and
Urny, ‘““Atoms, Molecules, and Quanta,” p. 5§41, McGraw-Hill Book Com-
pany, Inc., New York, 1930.
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LS
tion! ¥(z, y, 2, ) = N sin {?}Z—r\/mnW(z — zo)}e % is then a

set of standing waves with wave fronts normal to the z axis.
The wave length is seen to be given by the equation

A = : (13-12)

In classical mechanics the speed v of a free particle of mass m
moving with total energy W is given by the equation 14mv® = W.
A further discussion of this system shows that a similar inter-
pretation of W holds in the quantum mechanics. Introducing
v in place of W in Equation 13-12, we obtain

h
This is the de Broglie expression? for the wave length associated
with a particle of mass m moving with speed ».

It is the sinusoidal nature of the wave functions for the free
particle and the similar nature of the wave functions for other
systems which has caused the name wave mechanics to be applied
to the theory of mechanics which forms the subject of this book.
This sinusoidal character of wave functions gives rise to experi-
mental phenomena which are closely similar to those associated
in macroscopic fields with wave motions. Because of such
experiments, many writers have considered the wavelike char-
acter of the electron to be more fundamental than its corpuscular
character, but we prefer to regard the electron as a particle and
to consider the wavelike properties as manifestations of the
sinusoidal nature of the associated wave functions. Neither
view is without logical difficulties, inasmuch as waves and
particles are macroscopic concepts which are difficult to apply to
microscopic phenomena. We shall, however, in discussing the
results of wave-mechanical calculations, adhere to the particle
concept throughout, since we believe it is the simplest upon
which to base an intuitive feeling for the mathematical results
of wave mechanics.

1Tt can be shown that the factors involving y and z in Equation 13-11
approach a constant value in this limiting case.
* L. oz BroaoLig, Thesis, 1924; Ann. de phys. 8, 22 (1925).



94 WAVE EQUATION FOR A SYSTEM OF PARTICLES [IV-18

The wave function which we have been discussing corresponds
to a particle moving along the z axis, inasmuch as a caleulation

of the kinetic energy T, 21 =—p? associated with this motion

shows that the total energy of the system is kinetic energy of
motion in the z direction. This calculation is made by the
general method of Section 12d. The average value of T, is

T 2mf <2m> var

2mi .
= 2m<2ﬂn> < 7 vV 2mW ) f‘l’ vdr
= W;,
or, since in this case we have assumed W to equal W,

T.=W.

Similarly we find Tr = Wr = (T.)", which shows, in accordance
with the discussion of Section 10¢, that the kinetic ¢nergy of
motion along the z axis has the definite value W, its probability
distribution function vanishing except for this value.

On the other hand, the average value of p, itself is found on
calculation to be zero. The wave function

N sin { V2mW(z — xo)} Wl

hence cannot be interpreted as representing a particle in motion
in either the positive or negative direction along the z axis but
rather a particle in motion along the z axis in either direction,
the two directions of motion having equal probability.

—oxi¥
The wave function N cos {2—:\/ 2mW(x — xn)}e Brigt differs

from the sine function only in the phase, the energy being the
same. The sum and difference of this function and the sine func-
tion with coefficient ¢ are the complex functions

N'e oWz = -2, and N,e—2Tﬂ\/2m_W(z-xo)e—~%%,t
which are also solutions of the wave equation equivalent to the
sine and cosine functions. These complex wave functions
represent physical situations of the system in which the particle
is moving along the z axis in the positive direction with the

)
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definite momentum p. = /2mW or p. = —2mW, the
motion in the positive direction corresponding to the first of
the complex wave functions and in the negative direction to the
second. This is easily verified by calculation of p, and . for
these wave functions,

The more general wave function of Equation 13-11 also
represents a set of standing plane waves with wave length

= h/A/2mW, the line normal to the wave fronts having the
direction cosines /W ./W,\/W,/W,and \/W./W relative to the

z, Y, and z axes.

Problem 13-1. Verify the statements of the next to the last paragraph
regarding the value of p..

14. THE PARTICLE IN A BOX!

Let us now consider a particle constrained to stay inside of a
rectangular box, with edges a, b, and ¢ in length. We can repre-
sent this system by saying that the potential function V(z, y, 2)
has the constant value zero within the region 0 < z < q,
0 <y<b and 0 < z < ¢, and that it increases suddenly in
value at the boundaries of this region, remaining infinitely
large everywhere outside of the boundaries. It will be found
that for this system the stationary states no longer correspond to
a continuous range of allowed energy values, but instead to a
discrete set, the values depending on the size and shape of the
box.

Let us represent a potential function of the type described as

Viz, y,2) = Valz) + Vily) + V:(2), (14-1)

the function V.(z) being equal to zero for 0 < z < a and to
infinity for z < 0 or z > a, and the functions V,(y) and V.(z)
showing a similar behavior. The wave equation

9% 02\0 o 81r2m
az? it g T

922
{W = Viz) = V() — V.9}¥y =0 (14-2)
is separated by the same substitution
¥(z,9,2) = X(2)- Y(y) - Z(2) (14-3)

1 Treated in Section 6d by the methods of the old quantum theory.

+
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as for the free particle, giving three total differential equations,
that in z being

d*X . 8x™m
TR

In the region 0 < r < a the general solution of the wave
equation is a sine function of arbitrary amplitude, frequency, and
phase, as for the free particle. Several such functions are repre-
sented in Figure 14-1. All of these are not acceptable wave

(W, = V.(2)} X = 0. (144)

V)
%
w
Wy
ot - -~
Xe0 X = X=Q

Fig. 14-1.—The potential-energy function V:(z) and the behavior of X(z) near
the point z = a.

functions, however; instead only those sine functions whose
value falls to zero at the two points z = 0 and = = a behave
properly at the boundaries. To show this, let us consider the
behavior of Curve A as r approaches and passes the value a,
using the type of argument of Section 9c. Curve A has a finite
positive value as z approaches a, and a finite slope. Its curvature
is given by the equation

aX 8x2

At the point z = a the value of V(z) increases very rapidly and
without limit, so that, no matter how large a value the constant
W, has, W, — V. becomes negative and of unbounded magni-
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tude. The curvature or rate of change of the slope consequently
becomes extremely great, and the curve turns sharply upward
and experiences the infinity catastrophe. This can be avoided
in only one way; the function X(z) itself must have the value
zero at the point £ = q, in order that it may then remain bounded
(and, in fact, have the value zero) for all larger values of z.
Similarly the sine function must fall to zero at x = 0, as shown
by Curve C. An acceptable wave function X(z) is hence a
sine function with a zero at x = 0 and another zero at z = g,

nyel

)
X (% 3 )(f(n)t
0
X0 nyet
ll g X Xg(”t "1'2
0
X0 )1 . nye3
% s o *

)

{
ne4

x, ot v /\ . npd

0 \/ X (lnT

Q

Fiag. 14-2.—The wave functions Xn_(2) and probability distribution functions
[Xn,(2)]? for the particle in a box.

thus having an integral number of loops in this region. The
phase and frequency (or wave length) are consequently fixed,
and the amplitude is determined by normalizing the wave func-
tion to unity. Introducing the quantum number n. as the
number of loops in the region between 0 and a, the wave length
becomes 2a/n,, and the normalized X(z) function is given by
the expression

X..(x) = \/gsin n,;r:c’ n,.=1,23, ---,
0<z<a, (14-6)

with

252
W = 22 (14-7)
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The first four wave functions X,(z), - - + , Xs(z) are represented
in Figure 14-2, together with the corresponding probability
distribution functions { X,.(z)}2

A similar treatment of the y and z equations leads to similar
expressions for ¥, (y) and Z,,(2) and for W, and W,. The com-

16

15

114

113

12

13§

NxnNyng= 111

; 23— 4l 51
b4 — 4
v

T
Origin
Fic. 14-3.—A geometrical representation of the energy levels for a particle in a
rectangular box,

plete wave function y,,n,».(z, ¥, 2) has the form, for values of z,
¥, and z inside the box,

_ /8 o MT L MY TuWZ 5
Varngn (T, ¥, 2) = b Sin —_— sin == sin — (14-8)

withn, = 1,2,3, -+« ;7, =1,2,3, - + - ;7. =1,2,3, - - - ;
and
_ RYn? | a? | nl
ann,n. = an+Wny+Wn, _8_m<&_2+l}7+c—’) (14—9)

The wave function W¥,,.,., can be described as consisting of
standing waves along the z, y, and z directions, with n, + 1
equally spaced nodal planes perpendicular to the z axis (begin-
ning with £ = 0 and ending with z = «). n., + 1 nodal planes
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perpendicular to the y axis, and n, + 1 nodal planes perpendicular
to the z axis.

The various stationary states with their energy values may be
conveniently represented by means of a geometrical analogy.
Using a system of Cartesian coordinates, let us consider the

Nx Ny Nz
27 P=4 Slletc,333
26 P =6 43letc.
24 p=3 422etc.
22 P=3 332etc.
19 p =3 33letc.
18 P =3 4lletc.
17 p=3 322ete.
8maW
h?

p =6 321,132,213312,231,123

12
I

p=1 222

2] pm———p =6 42l etc.
e p =3 311,131,113
———p =3 221122,212
e p =3 211,124,112

p=1 il

0
Fig. 14-4.—Energy levels, degrees of degeneracy, and quantum numbers for a
particle in a cubic box,

lattice whose points have the coordinates n./a, n,/b, and n./c,
withn,=1,2,---;n=1,2 - -;andn =1,2....
This is the lattice defined in one octant about the origin by the
translations 1/a, 1/b, and 1/¢, respectively; it divides the octant
into unit cells of volume 1/abc (Fig. 14-3). Each point of the
lattice represents a wave function. The corresponding energy
value is-
hZ

8_1;L Ranynel

Wu,n,n. = (14'—10)
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in which l,,n,,, i8 the distance from the origin to the lattice point
nmyN., given by the equation

}nﬁ n2  nl
lu;n,n. = P + 312' + e (14-11)

In case that no two of the edges of the box q, b, and ¢ are in
the ratio of integers, the energy levels corresponding to various
sets of values of the three quantum numbers are all different,
with one and only one wave function associated with each.
Energy levels of this type are said to be non-degenerate. 1If,
however, there exists an integral relation among a, b, and c,
there will occur certain values of the energy corresponding to
two or more distinct sets of values of the three quantum numbers
and to two or more independent wave functions. Such an energy
level is said to be degenerate, and the corresponding state of the
system is called a degenerate state. For example, if the box is a
cube, with a = b = ¢, most of the energy levels will be degener-
ate. The lowest level, with quantum numbers 111 (for =.,
ny,, 7n., respectively) is non-degenerate, with energy 3h?/8ma®
The next level, with quantum numbers 211, 121, and 112 and
energy 6h?/8ma?, is triply degenerate. Successive levels, with
sets of quantum numbers and degrees of degeneracy (represented
by p), are shown in Figure 14-4. The degree of degeneracy
(the number of independent wave functions associated with a
given energy level) is often called the quantum weight of the
level.

15. THE THREE-DIMENSIONAL HARMONIC OSCILLATOR IN
CARTESIAN COORDINATES

Another three-dimensional problem which is soluble in Car-
tesian coordinates is the three-dimensional harmonic oscillator,
a special case of which, the isotropic oscillator, we have treated
in Section la by the use of classical mechanics. The more general
system consists of a particle bound to the origin by a force whose
components along the z, y, and z axes are equal to —k.z, —ky,
and —k,z, respectively, where k., k,, k. are the force constants
in the three directions and z, ¥, z are the components of the
displacement along the three axes. The potential energy
is thus

V = Yka® + Lky® + Yok, (15-1)
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which, on introducing instead of the constants k., ky, k. their
expressions in terms of the classical frequencies v, vy, v, becomes

V = 2r'm(sk? + vyt + vi2?), (15-2)
since
k: = 4x*myl,
k, = 41r2mv3,} (15-3)
k. = 4r’my2.

The general wave equation 12-8 thus assumes for this problem
the form

o , o , o |, 8r'm
Fre] + ay° + 3 + T {W — 2r'm(viz? + viy? + v}y = 0,
(154)
which, on introducing the abbreviations
8rim
A= —%2—W, (15-5a)
2
@ = 4—",11"»,, (15-5b)
4,".2
ay = —}—;—nv,,, (15-5¢)
and
2
o = %hmv,, (15-5d)
simplifies to the equation
oW . oW | %W
3zt + W + Frel + (A — a22? — a2y? — ak2)y = 0. (15-6)

To solve this equation we proceed in exactly the same manner
as in the case of the free particle (Sec. 13); namely, we attempt to
separate variables by making the substitution

¥(z, v,2) = X@) Y() - Z(2). (15-7)

This gives, on substitution in Equation 15-6 and division of the
result by v, the equation

1d*X 1d%Y 1d*Z
(3% )+ (a7 o) + (2 — ) +2 -
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It is evident that this equation has been separated into terms
each of which depends upon one variable only; each term is
therefore equal to a constant, by the argument used in Section 13.
We obtain in this way three total differential equations similar
to the following one:

LID 4 0n - X =0, (15-9)

in which X; is a separation constant, such that
M4 A+ A=A (15-10)
Equation 15-9 is the same as the wave equation 11-2 for the
one-dimensional harmonic oscillator which was solved in Section

11. Referring to that section, we find that X (z) is given by the
expression

a:r?

X(z) = Nae % Ho (Vaz) (15-11)
and that A; is restricted by the relation
A = 2ns + Da, (15-12)

in which the quantum number 7, can assume the values 0, 1,
2, - - - . Exactly similar expressions hold for Y(y) and Z(2)

and for A, and A.. The total energy is thus given by the equation
Wann = h{(nz + 28)v: + (ny + 18) vy + (ne + 28) 0},  (15-13)
and the complete wave funetion by the expression

'l’"z"v"-(xy Y, Z) =
Noone H@mttantad J | (\/a,2)H,, (V ogy) Hao(V a:2).  (15-14)

The normalizing factor has the value

_ (ersomyos) ¥ %
Nrun,n. - {7%2"=+""+"'n; ‘m "ﬂ,! . (15—15)

For the special case of the isotropic oscillator, in which
vz = v, = v, = yoand a; = oy = a;, Equation 15-13 for the energy
reduces to the form

W = (n. + n + n. + 38)hve = (n + 34)hv,. (15-16)

n = n. + ny + n, may be called the total quantum number.
Since the energy for this system depends only on the sum of the
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quantum numbers, all the energy levels for the isotropic oscilla-
tor, except the lowest one, are degenerate, with the quantum

. n+ 1D(n+2 .
weight (————)2(———) Figure 15-1 shows the first few energy
I n=4 pelb
300,030,003,
9 n=3 «10 ?,0,02, 102,
2 P*R120/%120,012
111. ’
W o7l nse ___ .g4200,020,002
hv,,‘[ 2 peb {//o’, 101,011,
g-—-'l-"— p=3 100,010,001

%—L p-] n;,ny,n1'000-

0

F16. 15-1.—Energy levels, degrees of degeneracy, and quantum numbers for the
three-dimensional isotropic harmonic oscillator.

levels, together with their quantum weights and quantum
numbers.

16. CURVILINEAR COORDINATES

In Chapter I we found that curvilinear coordinates, such as
spherical polar coordinates, are more suitable than Cartesian
coordinates for the solution of many problems of classical
mechanics. In the applications of wave mechanics, also, it is
very frequently necessary to use different kinds of coordinates.
In Sections 13 and 15 we have discussed two different systems,
the free particle and the three-dimensional harmonic oscillator,
whose wave equations are separable in Cartesian coordinates.
Most problems cannot be treated in this manner, however, since
it is usually found to be impossible to separate the equation into
three parts, each of which is a function of one Cartesian coordi-
nate only, In such cases there may exist other coordinate
systems in terms of which the wave equation is separable, so
that by first transforming the differential equation into the proper
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coordinates the same technique of solution may often be
applied.

In order to make such a transformation, which may be repre-
sented by the transformation equations

z = f(u, v, w), (16-1a)
y = g(u, v, w), (16-1b)
z = h(u, v, w), (16-1c¢)

it is necessary to know what form the Laplace operator V2 assumes

in the new system, since this operator has been defined only in
Cartesian coordinates by the expression

32 9?2 d?

2 = .. — p—

VE= o + dy? ' 0zt

The process of transforming these second partial derivatives is a

straightforward application of the principles of the theory of

partial derivatives and leads to the result that the operator V2

in the orthogonsl coordinate system uvw has the form

1 )9 (9 8> 9 (ququ 8> 9 (9ugs 3)}
V2 = —— {2 (dviw T 2 = B I 5.2 5.
q..q.,q.,{&u( qu Ou + o\ ¢, v +8w gw Ow ’

(16-3)

£ (@) + () 5.
@@

e () +(2) +(2)

Equation 16-3 is restricted to coordinates u, », w which are
orthogonal, that is, for which the coordinate surfaces represented
by the equations # = constant, v = constant, and w = constant
intersect at right angles. All the common systems are of this
type.

The volume element dr for a coordinate system of this type
is also determined when q,, ¢,, and ¢, are known. It is given by
the expression

(16-2)

in which

dr = dzdydz = quq.q.dudvdw. (16-5)

In Appendix IV, q., ¢s, ¢u, and v? itself are given for a number of
important coordinate systems.
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Mathematicians® have studied the conditions under which the
wave equation is separable, obtaining the result that the three-
dimensional wave equation can be separated only in a limited
number of coordinate systems (listed in Appendix IV) and then
only if the potential energy is of the form

V = quq%(u) + qu:'v(v) + qu’w(w),

in which ®,(u) is a function of u alone, ®,(v) of v alone, and
&, (w) of w alone.

17. THE THREE-DIMENSIONAL HARMONIC OSCILLATOR IN
CYLINDRICAL COORDINATES

The isotropic harmonic oscillator in space is soluble by separa-
tion of variables in several coordinate systems, including Car-
z

L ——
7
)
b3
~
~r

<

)

'

)

1

1

1)

N

A [

/(‘P N
X N

Fra. 17-1.—Diagram showing cylindrical coordinates.

tesian, cylindrical polar, and spherical polar coordinates. We
shall use the cylindrical system in this section, comparing the
results with those obtained in Section 15 with Cartesian
coordinates,

Cylindrical polar coordinates p, ¢, 2z, which are shown in
Figure 17-1, are related to Cartesian coordinates by the equations
of transformation

T = pCOoS ¢,
Yy = psin ¢, (17-1)
z2 = 2.

U H. P. RoBERT8ON, Mathematische Annalen 98, 749 (1928); L. P. EisEn-
HART, Ann. Mathematics 85, 284 (1934).
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Reference to Appendix IV shows that V2 in terms of p, ¢, z has
the form

19 1 o2 a2
2 =_ = —- . .
vi= p 3p<pap> p? dp? * o (17-2)

Consequently, the wave equation 154 for the three-dimensional
harmonic oscillator becomes

149f oy 1 % o S7m
;&("Fp)ﬁa‘? 2T
(W — 2e'm(s2p? + »220)}¢ =0, (17-3)

when we make ». = », = v, (only in this case is the wave equa-
tion separable in these coordinates). Making the substitutions

8r2m

A= ~}i2—W’ (17—‘4(1)
2
%hml'o, (17-4b)
and
2
o = 4Lh7—nv., (17-4c¢)
we obtain the equation
19/ @ 1 9%
m(ﬁ%ﬁ) 5t ot O — e =0 (17-5)

Pursuing the method used in Section 15, we try the substitution
v = P(o) - 2(o) - Z(2), (17-6)

in which P(p) depends only on p, ®(¢) only on ¢, and Z(2) only
on z. Introduction of this into Equation 17-5 and division by ¢
leads to the expression

1 df dP 1 d2® 1 d*Z
—P—‘-)(-i—p(p—p)—{—;,—(i)(—i?-{-zd?'*—)\‘“ap _a222—0 (17“7)

The terms of this equation may be divided into two classes:
those which depend only on z and those which depend only on
pand ¢. As before, since the two parts of the equation are func-
tions of different sets of variables and since their sum is constant,
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each of the two parts must be constant. Therefore, we obtain
two equations

d*z
b + A\ — a2)Z =0 (17-8)
and
1 df dP 1 d%
() L wpiv =0, a7
with
N4 =2

The first of these is the familiar one-dimensional harmonle
oscillator equation whose solutions

Z.(2) = Nue 2°H,(\/a2) (17-10)

are the Hermite orthogonal functions discussed in Section 1lc.
As in the one-dimensional problem, the requirement that the
wave function satisfy the conditions of Section 9c restricts the
parameter A to the values
A= (2n, + Da,, n,=0,1,2 ---. (17-11)
Equation 17-9, the second part of the wave equation, is a
function of p and ¢ and so must be further separated. This
may be accomplished by multiplying through by p% The
second term of the resulting equation is independent of p; it is
therefore equal to a constant, which we shall call —m?, The
two equations we obtain are the following:

%: + m2P =0 (17-12)

1df dpP " alp? — f) = -
pd~p<pdp>+<)\ alp e P =0. (17-13)
The first of these is a familiar equation whose normalized solution
is!

and

B(p) = eime. (17-14)

1
A\ 2r
Inasmuch as e is equal to cos me + ¢ sin me, we see that for
arbitrary values of the separation constant m this function is

1 Ingtead of the exponential, the forms ®(¢) = N cos me and N sin me
may be used. See Section 185, Chapter V.
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not single-valued; that is, ® does not have the same value for
¢ = 0 and for ¢ = 2x, which correspond to the same point in
space. Only when m is a positive or negative integer or zero is
& single-valued, as is required in order that it be an acceptable
wave function (Sec. 9c); m must therefore be restricted to such
values. ¢ is called a cyclic coordinate (or ignorable coordinate),
these names being applied to a variable which does not occur
anywhere in the wave equation (although derivatives with respect
to it do appear). Such a coordinate always enters the wave
function as an exponential factor of the type given in Equation
17-14.1
The equation for P(p) may be treated by the same general

method as was employed for the equation of the linear harmonic
oscillator in Section 11la. The first step is to obtain an asymp-
totic solution for large values of p, in which region Equation
17-13 becomes approximately

P _ P =0, (17-15)

dp’ P = ;
The asymptotic solution of this is ¢ 2", since this function
satisfies the equation

de + 3°
dp®

which reduces to 17-15 for large values of p. Following the
reasoning of Section 1la, we make the substitution

1208
— (a?* £ a)e 2 =0,

P(o) = ¢ 7 1(p) (17-16)
in Equation 17-13. From this we find that f must satisfy the
equation

2
I = 2apf" + f' + (N — 20)f — —=f =0. (17-17)
As before, it is convenient to replace p by the variable
= Vap (17-18)
and f(p) by F(¢), a process which gives the equation
d*F 1dF mi\, .
I 25d$ jaEt (— —2— —5—2—>F =0. (17-19)

t Conpon and Monrss, “Quantum Mechanics,” p. 72.



IV-17) THREE-DIMENSIONAL HARMONIC OSCILLATOR 109

We could expand F directly as a power series in £, as in Section
11a. This is not very convenient, however, because the first
few coeflicients would turn out to be zero. Instead, we make
the substitution

F(§) = & Y8 = ak* + a4 - -+, (17-20)

y=0

in which s is an undetermined parameter and a, is not equal
to zero.

This substitution is, indeed, called for by the character of the differential
equation.! Equation 17-19 is written in the standard form
di

F dF
s TPOG TeF =0

awr
the coefficient of d_£’ being unity. The coefficients p and ¢ in Equation

17-19 possess singularities? at ¢ = 0. The singular point ¢ = 0 is a regular
point, however, inasmuch as p(¢) is of order 1/ and ¢(%) of order 1/¢2. Ta
solve a differential equation possessing a regular point at the origin, the
substitution 17-20 is made in general. It is found that it leads to an indicial
equation from which the index s can be determined.

Since we are interested only in acceptable wave functions, we shall ignore
negative values of s. For this reason we could assume F(£) to contain only
positive powers of £ Occasionally, however, the indicial equation leads to
non-integral values of s, in which case the treatment is greatly simplified by
the substitution 17-20.

If we introduce the series 17-20 into Equation 17-19 and group
together coeflicients of equal powers of £, we obtain the equation

(8* — mHaot? + {(s + 1) — m?}a,g!
+ [{(8 + 2)? — m?}a; + {% - 2(s + 1)}00]5‘ + -

14
+ [{(s + )2 — m?la, + {% -2+ v — l)}a,_z]5'+"’
+ -+ =0. (17-21)
Since this is an identity in £, that is, an equation which is true

for all values of £, we can show that the coefficient of each power

1 See the standard treatments of the theory of linear differential equations;
for example, Whittaker and Watson, “ Modern Analysis,” Chap. X.
3 A singularity for a function p(£) is a point at which p(£) becomes infinite.
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of £ must be itself equal to zero. This argument gives the set of
equations

(8* — m?a, = 0, (17-22q)
{(s + 1) — m?a, =0, (17-22b)

’

{(s + »)* — m*a, + {% —2(s+ v — 1)}a,_2 =0, (17-22)

ete.

The first of these, 17-22a, is the indicial equation. From it
we see that s is equal to +m or —m, inasmuch as a, is not equal
to zero. In order to obtain a solution of the form of Equation
17-20 which is finite at the origin, we must have s positive, so
that we choose s = +|m|. This value of s inserted in Equation
17-22b leads to the conclusion that a; must be zero. Since the
general recursion relation 17-22c¢ connects coefficients whose
subscripts differ by two, and since a, is zero, all odd coefficients
are zero. The even coefficients may be obtained in terms of
a by the use of 17-22¢.

However, just as in the case of the linear harmonic oscillator,
the infinite series so obtained is not a satisfactory wave function
for general values of \’, because its value increases so rapidly with
increasing £ as to cause the total wave function to become
infinite as £ increases without limit. In order to secure an
acceptable wave function it is necessary to cause the series to
break off after a finite number of terms. The condition that the
series break off at the term a.-£*+™!, where »’ is an even integer,
is obtained from 17-22¢ by putting n’ 4+ 2 in place of » and equat-
ing the coefficient of a., to zero. This yields the result

N = 2(m| + n' 4+ 1a. (17-23)

Combining the expressions for N\, and N given by Equations
17-11 and 17-23, we obtain the result

A=N 4N =2(m| + 7 + Da+ 20 + B)a., (17-24)
or, on insertion of the expressions for \, «, and a,
Wmn’n‘ = (lml + n, + I)hVO + (nz + %)hl/;. (17"25)

In the case of the isotropic harmonic oscillator, with », = »,,
this becomes
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W, = (n 4+ 38)hv,, n=|m| +n +n,. (17-26)

The quantum numbers are restricted as follows:

m=0,+1, +2, - - -,
n=0,246,- -,
n, =0,1,2, - - -,

These lead to the same quantum weights for the energy levels
as found in Section 15.
The wave functions have the form

‘l’n'mn-(py P Z) = Neim‘oe—EP’Flmlm’(\/;P)e-_32’Hn.(‘\/z.z)y
(17-27)

in which N is the normalization constant and F,,,.l,,.'(\/c_rp) is a
polynomial in p obtained from Equation 17-20 by the use of the
recursion relations 17-22 for the coefficients a,. It contains only
odd powers of p if |m| is odd, and only even powers if |m| is
even,

Problem 17-1. The equation for the free particle is separable in many
coordinate systems. Using cylindrical polar coordinates, set up and
separate the wave equation, obtain the solutions in ¢ and 2, and obtain the
recursion formula for the coefficients in the series solution of the p equation.
Hint: In applying the polynomial method, omit the step of finding the
asymptotic solution.

Problem 17-2. Calculate ;f for a harmonic oscillator in & state repre-
sented by ¥nmn, of Equation 17-27. Shew that p. is zero in the same state.

a . o qe .
Hint: Transform 2 into cylindrical polar coordinates.

Problem 17-3. The equation for the isotropic harmonic oscillator is
separable also in spherical polar coordinates. Set up the equation in these
coordinates and carry out the separation of variables, obtaining the three
total differential equations.



CHAPTER V

THE HYDROGEN ATOM

The problem of the structure of the hydrogen atom is the most
important problem in the field of atomic and molecular structure,
not only because the theoretical treatment of this atom is simpler
than that of other atoms and of molecules, but also because it
forms the basis for the discussion of more complex atomic sys-
tems. The wave-mechanical treatment of polyelectronic atoms
and of molecules is usually closely related in procedure to that
of the hydrogen atom, often being based on the use of hydrogen-
like or closely related wave functions. Moreover, almost without
exception the applications of qualitative and semiquantitative
wave-mechanical arguments to chemistry involve the functions
which occur in the treatment of the hydrogen atom.

The hydrogen atom has held a prominent place in the develop-
ment of physical theory. The first spectral series expressed by a
simple formula was the Balmer series of hydrogen. Bohr’s
treatment of the hydrogen atom marked the beginning of the old
quantum theory of atomic structure, and wave mechanics had
its inception in Schrédinger’s first paper, in which he gave the
solution of the wave equation for the hydrogen atom. Only
in Heisenberg’s quantum mechanics was there extensive develop-
ment of the theory (by Heisenberg, Born, and Jordan) before
the treatment of the hydrogen atom, characterized by its diffi-
culty, was finally given by Pauli. In later developments, beyond
the scope of this book, the hydrogen atom retains its important
position; Dirac’s relativistic quantum theory of the electron
is applicable only to one-electron systems, its extension to
more complicated systems not yet having been made.

The discussion of the hydrogen atom given in this chapter is
due to Sommerfeld, differing in certain minor details from that
of Schrédinger. It is divided into four sections. In the first,
Section 18, the wave equation is separated and solved by the

polynomial method, and the energy levels are discussed. Sec-
112
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tions 19 and 20 include the definition of certain functions, the
Legendre and Laguerre functions, which occur in the hydrogen-
atom wave functions, and the discussion of their properties. A
_detailed description of the wave functions themselves is given
in Section 21.

18. THE SOLUTION OF THE WAVE EQUATION BY THE POLY-
NOMIAL METHOD AND THE DETERMINATION OF
THE ENERGY LEVELS

18a. The Separation of the Wave Equation. The Transla-
tional Motion.—We consider the hydrogen atom as a system of
two interacting point particles, the interaction being that due
to the Coulomb attraction of their electrical charges. Let us
for generality ascribe to the nucleus the charge + Ze, the charge
of the electron being —e. The potential energy of the system,

2
in the absence of external fields, is —gf—, in which r is the distance

between the electron and the nucleus.

If we write for the Cartesian coordinates of the nucleus and
the electron x,, 41, 21 and xs, ¥s, 22, and for their masses m, and
ma, respectively, the wave equation has the form

1/6%r oWr Hr 0%r oWr 0r
7n7<ax§ 2+az2>+ ( ’+ay2+az2>
+ —}‘Lg—(WT - Viyr =0, (18-1)

in which

2
V= — Ze

V(g — z1)? + (Y2 — y1)? + (22 — 21)?

Here the subscript T (signifying total) is written for W and ¢ to
indicate that these quantities refer to the complete system, with
six coordinates.

This equation can be immediately separated into two, one of
which represents the translational motion of the molecule as a
whole and the other the relative motion of the two particles.
In fact, this separation can be accomplished in a somewhat more
general case, namely, when the potential energy V is a general
function of the relative positions of the two particles, that is,
V = V(zz — z1, y2 — Y1, 22 — z1). This includes, for example,
the hydrogen atom in a constant electric field, the potential
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energy due to the field then being eEz; — eEz, = eE (2. — 2,),
in which E is the strength of the field, considered as being in the
direction of the z axis.

To effect the separation, we introduce the new variables
z, ¥, and 2, which are the Cartesian coordinates of the center of
mass of the system, and », 4, and ¢, the polar coordinates of the
second particle relative to the first. These coordinates are
related to the Cartesian coordinates of the two particles by the
equations

myry + MaT2

= T (18-2a)
_ My + My .

Y= T (18~2b)
_ mZy + Moz .

z = ———ml ¥ me ’ (18 20)
rsin ¥ cos ¢ = T2 — Ty, (18-2d)
reindsin ¢ = y2 — ¥, (18-2¢)

recosd = 2z, — 21 (18-2f)

The introduction of these new independent variables in
Equation 181 is easily made in the usual way. The resultant
wave equation is

_ 1 (8 0 0%\ | 1(10( 4
my + mq\ 0x? oy? az? wlrzor\’ or

IO W 7 S W (Sin 0@)}

r’sin?d d¢? | risin & 49 EX
8 2
+ S AWr = V(r, 8, 9)[¥r = 0. (18-3)

In this equation the symbol » has been introduced to represent
the quantity
mmsy 1 1 1

= iz L S ¥ 18-4

e (g =ty s

u is the reduced mass of the system, already discussed in Section
2d in the classical treatment of this problem.

It will be noticed that the quantity in the first set of parentheses

is the Laplacian of yr in the Cartesian coordinates z, y, and 2,

and the quantity in the first set of braces is the Laplacian in the
polar coordinates r, ¢, and ¢ (Appendix IV).
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We now attempt to separate this equation by expressing yr
as the product of a function of z, y, z and a function of
r, ¢, ¢, Writing

!//r(x, Y, 271,49, ¢) = F(I, Y, Z)lll(?', "; ¢)- (18—5)

On introducing this in Equation 18-3 and dividing through by
¥r = FY, it is found that the equation is the sum of two parts,
one of which is dependent only on z, y, and 2z and the other
only on r, 4, and ¢. Each part must hence be equal to a con-
stant. The resulting equations are

a%F oW | 3 | 8r*(mi + ma)

52* + 5? + ;9? + ——‘Tl‘{‘—wtrp = 0, (18—6)

and

2
F 5 ) g s o0 055)

8r2u

+ W - Ve, 0, 0l =0, (18-7)
with

We+ W = Wi (18-8)

Equation 186 is identical with Equation 13-2 of Section 13,
representing the motion of a free particle; hence the translational
motion of the system is the same as that of a particle with mass
m; + m2 equal to the sum of the masses of the two particles.
In most problems the state of translational motion is not impor-
tant, and a knowledge of the translational energy W, is not
required. In our further discussion we shall refer to W, the
energy of the system aside from the translational energy, simply
as the energy df the system.

Equation 18-7 is identical with the wave equation of a single
particle of mass u under the influence of a potential function
V(r, ¢, ¢). This identity corresponds to the classical identity of
Section 2d (Eqs. 2-25).

If we now restrict ourselves to the case in which the potential
function V is a function of r alone,

V= V(T)!
Equation 18-7 can be further separated. We write
¥(r, 9, ) = R(r) - 6(¥) - 2(0); (18-9)
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on introducing this in Equation 18-7 and dividing by RO®, it
becomes

1 df dR 1 d*® 1 df . do
R E;(TZE?) +'1'2 sin? 9 do? + r? gin 96 d—ﬂ(sm 03:9)

8”{W V()] =0. (18-10)

On multiplying through by r%sin? ¢, the remaining part of the
2,
second term, ég——;, which could only be a function of the inde-

pendent variable ¢, is seen to be equal to terms independent of ¢.
Hence this term must be equal to a constant, which we call —m?:

d*®

T = —m. (18-11)

The equation in ¢ and r then can be written as

AR m? 1 d do 8m2ur?
E dr( dr) ~ sn?d T 5in 00 dz?( in "do) T
(W —-V(@} =0.

The part of this equation containing the second and third terms
is independent of r and the remaining part is independent of &,
so that we can equate each to a constant. If we set the & terms
equal to the constant — @3, and the r terms equal to +8, we
obtain the following equations, after multiplication by 6 and
by R/r?, respectively:

1 df ., .d6
sinafi&( d,g) n209+59 0 (18-12)

and

3 dr( ‘filf) LR+ 5w - vO)IR = 0. (18-13)

Equations 18-11, 18-12, and 18-13 are now to be solved
in order to determine the allowed values of the energy.
The sequence of solution is the following: We first find that
Equation 18-11 possesses acceptable solutions only for certain
values of the parameter m. Introducing these in Equation 18-12,
we find that it then possesses acceptable solutions only for
certain values of 8. Finally, we introduce these values of 8
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in Equation 18-13 and find that this equation then possesses
acceptable solutions only for certain values of W. These are the
values of the energy for the stationary states of the system.

It may be mentioned that the wave equation {or the hydrogen
atom can also be separated in coordinate systems other than the
polar coordinates r, &, and ¢ which we have chosen, and for some
purposes another coordinate system may be especially appro-
priate, as, for example, in the treatment of the Stark effect,
for which (as shown by Schrédinger in his third paper) it is
convenient to use parabolic coordinates.

18b. The Solution of the ¢ Equation.—As was discussed in
Section 17, the solutions of Equation 18-11, involving the cyclie
coordinate ¢, are

Bo(e) = \/lgreimv. (18-14)

In order for the function to be single-valued at the point ¢ = 0
(which is identical with ¢ = 2x), the parameter m must be equal
to an integer. The independent acceptable solutions of the ¢
equation are hence given by KEquation 18-14, with m = 0,
+1, +2,---, —1, =2, -+ ; these values are usually
written as 0, +1, +£2, - - -, it being understood that positive
and negative values correspond to distinct solutions.

The constant m is called the magnetic quantum number. It is
the analogue of the same quantum number in the old-quantum-
theory treatment (Sec. 7b).

The factor 1/4/2x is introduced in order to normalize the
functions ®.(¢), which then satisfy the equation

f’a»*(mm(w)dw =1 (18-15)

It may be pointed out that for a given value of jm| (the
absolute value of m), the two functions &,,(¢) and ®_,(¢)
satisfy the same differential equation, with the same value of the
parameter, and that any linear combination of them also satisfies
the equation. The sum and the difference of these two functions
are the cosine and sine functions. It is sometimes convenient
to use these in place of the complex exponential functions as the
independent solutions of the wave equation, the normalized
solutions then being
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Do(p) = \—/%;'
1
—- cos |m| ¢, (18-16)
Pimi(p) = VT

V;Sin me, |ml =123 ---.

There is only one solution for |m| = 0. These functions are
normalized and are mutually orthogonal. ‘

It is sometimes convenient to use the symbol m to represent
the absolute value of the magnetic quantum number as well
as the quantum number itself. To avoid confusion, however,
we shall not adopt this practice but shall write |m| for the
absolute value of m.

18¢. The Solution of the & Equation.—In order to solve the
¢ equation 18-12, it is convenient for us to introduce the new
independent variable

z = cos ¥, (18-17)
which varies between the limits —1 and <41, and at the same time
to replace 6(9) by the function P(z) to which it is equal:

P(z) = 6(d). -(18-18)
Noting that sin? 8 = 1 — 22 and that

do _dPds _ _dP
W &ds T &Y
we see that our equation becomes

%{(1 - zZ)i”-’;_?} + {6 - ’2222}P(z> = 0. (18-19)

On attempting to solve this equation by the polynomial method,
it is found that the recursion formula involves more than two
terms. If, however, a suitable substitution is made, the equa-
tion can be reduced to one to which the polynomial method can
be applied.

The equation has singular points at z = 1, both of which are regular
points (see Sec. 17), so that it is necessary to discuss the indicial equation
at each of these points. In order to study the behavior near z = +1, it is
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convenient to make the substitution z = 1 — z, R(z) = P(z), bringing this
point to the origin of z. The resulting equation is

d dR m?
5{3(2 - :c);;-} + {B - 2@ = z)} R =0.

If we substitute R = z* Ea,z’ in this equation, we find that the indicial

v
equation (see Sec. 17) leads to the value |m|/2 fors. Likewise, if we investi-
gate the point z = —1 by making the substitution ¥y = 1 4 z and similarly

study the indicial equation at the origin of y, we find the same value for the
index there.

The result of these considerations is that the substitution
m| |m| ml
P(z) = xlflyszG(z) = (1 — 2%)2G(2) (18-20)

is required. On introducing this into Equation 18=19, the differ-
ential equation satisfied by G(z)—which should now be directly
soluble by a power series—is found to be
1 — 2@ — 2(lm| + )G’ +
{8 — Im|(Im| +1)}G =0, (18-21)

in which G’ represents ldig and G’’ represents e

This equation we now treat by the polynomial method, the
successive steps being similar to those taken in Section 11 in the
discussion of the harmonic oscillator. Let

G=ar+aiz+ap?+a®+ - - -, (18-22)

with G’ and G"’ similar series obtained from this by differentiation.
On the introduction of these in Equation 18-21, it becomes

1-2a; + 2-3a32 + 3-4a2% + 4 -5as2° + - - -
bl 1'20222— 2'30323— o

—2(jm| 4+ 1)az —2-2(|m| + 1)az2®? —2 - 3(|m| + 1)ase® — - - -
+1{8 — Im|(m| + 1)}a0 + {}aiz + {}a:2®> + {}as® + - - - =0,
in which the braces [} represent {8 — |m|(jm| + 1)}. This
equation is an identity in 2z, and hence the coefficients of indi-
vidual powers of z must vanish; that is,

1 '2(12 + l}ao = 0,

2-3as + ({} — 2(m| + D)a, = 0,

3-dai+ ([} —2-2(ml+1) —1-2)a; =0,

4-5a5 + ({} —2-3(m|+1) —2-3)a; =0,
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or, in general, for the coefficient of 2,

(r+ D + 2)anss + [{8 — [m|(im| + 1)}
— 2u(Im| + 1) — »(v — 1)]a, = V.

This leads to the two-term recursion formula

e IO+ M +1) — 8
AN G+ D0+ 2

between the coefficients a,,, and a, in the series for G.

It is found on discussion by the usual methods! that an infinite
series with this relation between alternate coefficients converges
(for any values of |m| and 8) for —1 < z < 1, but diverges for
2 = +1 or —1, and in consequence does not correspond to an
acceptable wave function. In order to be satisfactory, then,
our series for G must contain only a finite number of terms.
Either the even or the odd series can be broken off at the term
in 2* by placing

B=(V’+|ml)("l+lm|+l)r VI=071121""

a (18-23)

and the other series can be made to vanish by equating a, or a,
to zero. The characteristic values of the parameter 8 are thus
found to be given by the above expression, the corresponding
functions G(z) containing only even or odd powers of z as »'
is even or odd.

It is convenient to introduce the new quantum number

I =3 + |m| (18-24)
in place of »', the allowed values for [ being (from its definition)
{m|, Im| + 1, |m| + 2, -+ - - . The characteristic values of 8
are then .

B=10+1), l=lml|m +1, - . (18-25)

l is called the azimuthal quantum number; it is analogous to the
quantum number %k of the old quantum theory. Spectral states
which are now represented by a given value of I were formerly
represented by a value of k one unit greater, & = 1 corresponding
to ! = 0, and so on.

1 R. CouranT and D. HiLBERT, ‘‘ Methoden der mathematischen Physik,”
2d ed.,Vol. I, p. 281, Julius Springer, Berlin, 1931.
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We have now shown that the allowed solutions of the & equa-
tion are O(8) = (1 — 2)""?G(2), in which G(2) is defined by
the recursion formula 18-23, with 8 = (Il + 1). It will be shown
in Section 19 that the functions O(#) are the associated Legendre
functions. A description of the functions will be given in
Section 21.

18d. The Solution of the r Equation.—Having evaluated § as
I(l + 1), the equation in r becomes

1 d<r2d@>+[_1(z+1) n

ridr\ dr r?
8ru
ﬁriW - V(r)}]R =0, (18-26)
in which V(r) = —Ze?/r, Z being the atomic number of the atom.
It is only now, by the introduction of this expression for the
potential energy, that we specialize the problem to that of the
one-electron or hydrogenlike atom. The discussion up to this
point is applicable to any system of two particles which interact
with one another in a way expressible by a potential function
V(r), as, for example, the two nuclei in a diatomic molecule after
the electronic interactions have been considered by the Born-
Oppenheimer method (Sce. 35a).
Let us first consider the casc of W negative, corresponding to
a total energy insufficient to ionize the atom. Introducing the
symbols
_87rzp.W
h2
and (18-27)
_ 4rtulZe?
T b

at =

2

and the new independent variable
p = 2ar, (18-28)
the wave equation becomes

1 d/f .dS 1 al+1 A
—2—<P2-—)+{“1“ ( e 4 ;}S =0
0<p <o, (18-29)
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in which S(p) = R(r). As in the treatment of the harmonic
oscillator, we first discuss the asymptotic equation. For p
large, the equation approaches the form
as 1
7 = 1>
the solutions of which ‘are

4P .
S=¢2and S =¢ 2

Only the second of these is satisfactory as a wave function.
We now assume that the solution of the complete equation
18-29 has the form

S(p) = e 2F(p). - (18-30)
The equation satisfied by F(p) is found to be
K +<2_ 1)p'+{§_l_(£_'t_9 _l}[«" =0,
P P P p

0<pg w. (1831)

The coefficients of F’ and F possess singularities at the origin,
which is a regular point (cf. Sec. 17), so that we again make the
substitution

F(p) = p'L(p), (18-32)

in which L(p) is a power series in p beginning with a non-vanishing
constant term:

L(p) = Yo, a0 #0. (18-33)

Since
F'(p) = sp~'L + p°L’
and
F"(p) = s(s — 1)p—2L 4- 2sp*—'L’ 4- p!L"’,
Equation 18-31 becomes
p* 2L - 28p*t'L 4- s(s — 1)pL
+ 2p**L" + 2sp’L
—_— p0+2L’ —_ spl+lL
+ AN =1DpHL -l 4+ Dp'L =0. (18-34)



V-18d] THE SOLUTION OF THE WAVE EQUATION 123

Since L begins with the term a,, the coeflicient of p? is seen to be
{s(s = 1) + 2s — I(l + 1)}as, and, since a, does not vanish,
the expression in braces must vanish in order for Equation 18-34
to be satisfied as an identity in p. This gives as the indicial
equation for s:

ss+1)~I0+1) =0, or s=+41 or —(1+1). (18-35)

Of the two solutions of the indicial equation, the solution
s = —(l + 1) does not lead to an acceptable wave function.
We accordingly write

F(p) = p'L(p), (18-36)

and obtain from 18-34 the equation

oL + {20+ 1) — p}L’ + (A —1—1L =0, (18-37)
after substituting I for s and dividing by p*'. We now introduce
the series 18-33 for L in this equation and obtain an equation
involving powers of p, the coefficients of which must vanish
individually. These conditions are successively

(A —=1—1Dag+ 20+ 1a, =0,
AN=I1—-1-Da+{2-20+1)+1-2}a, =0,
AN=1—-1—-2)a+ {3-20+1)+2-3las =0

or, for the coefficient of p*,

A=1—-1=va, +20+1D0+1) +»(»+ D}a,q =0.
(18-38)
It can be shown by an argument similar to that used in Section
11a for the harmonic oscillator that for any values of A and [ the
series whose coefficients are determined by this formula leads to
a function S(p) unacceptable as a wave function unless it breaks
off. For very large values of » the successive terms of an infinite
series given by 18-38 approach the terms of the expansion
of ¢#, which accordingly represents the asymptotic behavior of
the series. This corresponds to an asymptotic behavior of

e e
S(p) = e 2p'L(p) similar to e+§, leading to the infinity catastrophe
with increasing p.
Consequently the series must break off after a finite number
of terms. The condition that it break off after the term in p* is
seen from Equation 18-38 to be
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A—=Il-1—-n"=0
or
A =mn, where n=n"4+1+41 (18-39)

n’ is called the radial quantum number and n the total quantum
number. From its nature it is seen that n’ can assume the values
0,1, 2 3, - -+ . The values of n will be discussed in the next
section.

In this section we have found the allowed solutions of the

P
r equation to have the form R(r) = ¢ 2p'L(p), in which L(p) is
defined by the recursion formula 18-38, with A = n. It will
be shown in Section 20 that these functions are certain associated
Laguerre functions, and a description of them will be given in
Section 21.

18e. The Energy Levels.—Introducing for X its value as given
in Equation 18-27, and solving for W, it is found that Equation
18-39 leads to the energy expression

oIt RheZ* I
W, = —ZARC BN - S W., (18-40)
in which
2 4
R =2Tr  d Wy = Rhe

hic

This expression is identical with that of the old quantum theory
(Eq. 7-24), even to the inclusion of the reduced mass u. It is
scen that the encrgy of a hydrogenlike atom in the state repre-
sented by the quantum numbers »’, [, and m does not depend on
their individual values but only on the value of the total quantum
number n = n’ 4+ ! 4+ 1. Inasmuch as both n’ and ! by their
nature can assume the values 0,.1, 2, - - -, we sec that the
allowed values of n arc 1, 2, 3, 4, - - - , as assumed in the old
quantum theory and verified by experiment (discussed in
Sec. 7b).

Except for n =1, each enecrgy level is degenerate, being
represented by more than one independent solution of the wave
equation. If we introduce the quantum numbers n, I, and m
as subscripts (using n in preference to n’), the wave funections
we have found as acceptable solutions of the wave equation
may be written as

%rm(?', 9, ‘P) = Rnl(r)elm(l’)q)m(‘f’)) (18_41)
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the functions themselves being those determined in Sections
18b, 18¢, and 18d. The wave functions corresponding to distinct
sets of values for n, I, and m are independent. The allowed
values of these quantum numbers we have determined to be

m=0, +1, +2, - - -,
l=[m|,]m|+1,]m]+2,---,
n=lt L, l+2,1+38 .

This we may rewrite as

total quantum number n =1,2,3, - - -,
azimuthal quantum number I =0,1,2, - - - , n — 1,
magnetic quantum number m = -1, —-{ 4+ 1, - - -, -1, 0,
+1, -+, =1, +L

There are consequently 2! + 1 independent wave functions with
given values of n and [, and n? independent wave functions with
a given value of n, that is, with the same energy value. The
2! + 1 wave functions with the same n and [ are said to form a
completed subgroup, and the n? wave functions with the same n a
completed group. The wave functions will be deseribed in the
following sections of this chapter.

A similar treatment applied to the wave equation with W
positive leads to the result that there exist acceptable solutions
for all positive values of the energy, as indicated by the general
discussion of Section 9¢c. It is a particularly pleasing feature of
the quantum mechanics that a unified treatment can be given
the continuous as well as the discrete spectrum of energy values.
Because of the rather complicated nature of the discussion of the
wave functions for the continuous spectrum (in particular their
orthogonality and normalization properties) and of their minor
importance for most chemical problems, we shall not treat them
further.!

19. LEGENDRE FUNCTIONS AND SURFACE HARMONICS

The functions of ¢ which we have obtained by solution of the
# equation are well known to mathematicians under the name of
associated Legendre functions.®? The functions of ¢ and ¢ are

1 See SOMMERFELD, ‘‘ Wave Mechanics,” p. 290.
2 The functions of ¢ for m = 0 are called Legendre functions. The asso-
ciated Legendre functions include the Legendre functions and additional
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called surface harmonics (or, in case cosine and sine functions of
¢ are used instead of exponential functions, tesseral harmonics).
We could, of course, proceed to develop the properties of these
functions from the recursion formulas for the coefficients in the
polynomials obtained in the foregoing treatment. This would
be awkward and laborious, however; it is simpler for us to define
the functions anew by means of differential expressions or
generating functions, and to discuss their properties on this basis,
ultimately proving the identity of these functions with those
obtained earlier by application of the polynomial method.

19a. The Legendre Functions or Legendre Polynomials.—The
Legendre functions or Legendre polynomials P;(cos ¢) = P(z)
may be defined by means of a generating function T'(¢, z) such
that

1

T, 2) = DPlat = ey

=0

(19-1)

As in the case of the Hermite polynomials (Sec. 1llc), we
obtain relations among the polynomials and their derivatives by
differentiating the generating function with respect to ¢ and to z.
Thus on differentiation with respect to {, we write

aT —1 _ 14(—2z 4 2¢)
= Pt = 0 = Za ¥ oy%
1=0

or

(1 — 2t + )YIP# = (z — )3 Pi
1 i

(the right side having been transformed with the use of Equation
19-1), and consequently, by equating coefficients of given powers
of t on the two sides, we obtain the recursion formula for the
Legendre polynomials

I+ DPpa(z) — (2L 4+ 1)2Pi(z) + I1P1_1(2) = 0. (19-2)

Similarly, by differentiation with respect to z, there is obtained
aT _ ‘a !
0z EP‘t T (- 2zt + )%
1

functions (corresponding to |ml > 0) conveniently defined in terms of the
Legendre functions.
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or

(1 — 22t + )3 Pt = t3 Pt
4 il

which gives the relation
Pl11(2) — 22P|(2) + Pi_\(2) — Py(2) = 0 (19-3)

involving the derivatives of the polynomials. Somewhat simpler
relations may be obtained by combining these. From 19-2
and 19-3, after differentiating the former, we find

zPi(2) — Pi_(2) — IP)(2) = 0 (19-4)
and
Ptl+1(z) - ZP;(Z) — (A 4+ 1DPi(z) =0. (19-5)

We can now easily find the differential equation which P,(z)
satisfies. Reducing the subseript ! to I — 1 in 19-5, and sub-
tracting 19—4 after inultiplication by z, we obtain

1 —2)P] + P, — 1P, =0,

which on differentiation becomes

%{(1 2% ’(z)} +IPi2) + EP)Z) — IP,(z) = 0.

The terms in P} and Pj_, may be replaced by [2P,, from 19-4,
and there then results the differential equation for the Legendre
polynomials

{(1 - Z)dP (z)} + I + 1)P.(2) = 0. (19-6)

19b. The Associated Legendre Functions.—We define the
associated Legendre functions of degree I and order |mj (with
values ! =0,1,2, + + - and jm} =0, 1, 2, - - - , 1) in terms of
the Legendre polynomials by means of the equation

Pri(z) = (1 — zz)'""f2 i i(2). (19-7)

[It is to be noted that the order |m| is restricted to positive values
(and zero); we are using the rather clumsy symbol |m| to represent
the order of the associated Legendre function so that we may
later identify m with the magnetic quantum number previously
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introduced.] The differential equation satisfied by these func-
tions may be found in the following way. On differentiating
Equation 19-6 |m| times, there results

Pi(z d'm+1P (2)
a-=z) d‘mm() 2(|m| +1)2w.mlx(—
d=pP,(z
+ {1+ 1) = il + D1EEEE — 0 1o8)
ml
as the differential equation satisfied by (%ulfz) With the
use of Equation 19-7 this equation is casily transformed into
d*P™\(2) dP‘ (z) 2
—_ 2 ! A )\m\
1 -l EE 4 i+ @)
=0, (19-9)

which is the differential equation satisfied by the associated
Legendre function Pj"i(z).

This result enables us to identify! the & functions of Section
18¢ (except for constant factors) with the associated Legendre
functions, inasmuch as Equation 19-9 is identical with Equation
18-19, except that P(z) is replaced by P™(z) and 8 is replaced
by (I + 1), which was found in Section 18¢ to represent the
characteristic values of 8. Hence the wave functions in <
corresponding to given values of the azimuthal quantum number [
and the magnetic quantum number m are the associated Legendre
functions Pi™l(z).

The associated Legendre functions are most easily tabulated by
the use of the recursion formula 19-2 and the definition 19-7,
together with the value Pj(z) = 1 as the starting point. A
detailed discussion of the functions is given in Section 21.

For some purposes the generating function for the associated
Legendre functions is useful. It is found from that for the
Legendre polynomials to be

®

Tim(z, t) = EP'{"'(Z)t‘ =

L=|m|

(2]7",])'(1 — 22)|m|/2t|m|
2m(Im V(1 — 2zt + )=+

(19-10)

! The identification is completed by the fact that both functions are formed
from polynomials of the same degree.
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In Appendix VI it is shown that

+1 0 for I =1,
[Propp@ae =] 2 a4+ im):
- @+ 1) {1~ |m)!
Using this result, we obtain the constant necessary to normalize

the part of the wave function which depends on ¢. The final
form for O(?) is

for ! =1. (19-11)

o) = \/(” DU ) pricos 3). (19-12)

T+ )
Problem 19-1. Prove that the definition of the Legendre polynomials
Py(z) =1, l
Piz) = %”‘”ﬁ?d_zl‘_”’, t=12 (19-13)

is equivalent to that of Equation 19-1.
Problem 19-2. Derive the following relations involving the associated
Legendre functions:

1

(1 = e)HPMHe) = G s PITle) — o PTG, (19-14)
i+ i+ + 1)
(1 - Pl = ""(';l( - 1')’" L+ Dppiy) -
I - I - 1
( 'm(';l( - 1';" L Do, as-15)
and
l 1 - 1
Pirl(z) = E?_—IJZFI—’;";)P‘,Z’I(@ + (—(Z%J%—)Plrkz). (19-16)

20. THE LAGUERRE POLYNOMIALS AND ASSOCIATED LAGUERRE
FUNCTIONS
20a. The Laguerre Polynomials.—The Laguerre polynomials
of a variable p, within the limits 0 € p £ «, may be defined by
means of the generating function
L] U

Up, u) = E%@u =1 (20-1)

1—u

r=0

To find the differential equation satisfied by these polynomials
L.(p), we follow the now familiar procedure of differentiating the
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generating function with respect to u and to p. From %Lu] we

obtain

Lp) ., _el=» p  pu 1
(r—-l)!ul_l—u( 1—u (1—-u)2+1—u>

r

or

0 =2t ) S = (- w0 S,

from which there results the recursion formula

Lita(p) + (p — 1 — 2r)Ly(p) + 7°Lr-a(p) = 0. (20-2)

Similarly from 3y we have

dp
Li(p) , _ __u L.(p) ,
E = l—uE e
or
Li(p) — rL;_,(p) + rL,—1(p) = 0, (20-3)

in which the prime denotes the derivative with respect to p.
Equation 20-3 may be rewritten and differentiated, giving

Ly (p) = (r + 1){Ly(p) — L:(p)}
and

Lii(p) = (r + DILY(p) — Li(p)!,

with similar equations for L; ,(p) and L;},(p). Replacing r by
r + 1 in Equation 20-2 and differentiating twice, we obtain
the equation

L' a(p) + (p — 3 — 2r)L}, (p) + (r + 1)2LY(p) + 2L.,,(p) = 0.

With the aid of the foregoing expressions this is then transformed
into an equation in L,(p) alone,

oLV () + (1 = D)Lio) +7Li(p) =0, (204

which is the differential equation for the rth Laguerre polynomial.

Problem 20-1. Show that L,(p) = e”:—' (o7e™").
"
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20b, The Associated Laguerre Polynomials and Functions.—
The sth derivative of the rth Laguerre polynomial is called the
assoctated Laguerre polynomial of degree r — s and order s:

Lip) = ad;';L,(p). (20-5)

The differential equation satisfied by Li(p) is found by differ-
entiating Equation 204 to be

pL:"(p) + (s + 1 — p)Lt'(p) + (r — 8)L2(p) = 0. (20-6)
If we now replace » by n 4+ ! and s by 2 4+ 1, Equation 206
becomes
oL2H () + {2(1 + 1) — p}LZ4 (o)
+ (0~ U= DLEG) = 0. (20-7)
On comparing this with Equation 18-37 obtained in the treat-
ment of the » equation for the hydrogen atom by the polynomial
method, we see that the two equations are ideutical when
L¥H(p) is identified with L(p) and the parameter \ is replaced
by its characteristic value n. The polynomials obtained in the
solution of the r equation for the hydrogen atom are hence the
associated Laguerre polynomials of degree n — 1 — 1 and of
order 2l 4 1. Moreover, the wave functions in r are, except for
normalizing factors, the functions

-2
o 2L (o).
These functions are called the associated Laguerre functions.
We shall discuss them in detail in succeeding sections.
It is easily shown from Equation 20-1 that the generating
function for the associated Laguerre polynomials of order s is!
pu

U, u)zEL i = iy (@09)

T =g

The polynomials can also be expressed explicitly:

n~1-1
st . {(n +D1}"
L) = E My ey g gy ) R g 537

(20-9)

1 This was given by Schrodinger in his third paper, Ann. d. Phys. 80, 485
(1926).
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In Appendix VII, it is shown that the normalization integral
for the associated Laguerre function has the value

f _ppzl{Lzlle(P) }2p"d 2(7%{(11__'*_1)1').}; (2()_1())

the factor p? arising from the volume elernent in polar coordinates.
From this it follows that the normalized radial factor of the wave
function for the hydrogen atom is

_ (n—-1-—1!
Rulr) = \/<na> ST O PRGN @D
with
Sr2uZer 27
p = 2ar = & ‘;l,e = ot (20-12)

Problem 20-2. Derive relations for the associated Laguerre polynomials
and functions corresponding to those of Equations 20-2 and 20-3.

21. THE WAVE FUNCTIONS FOR THE HYDROGEN ATOM

21a. Hydrogenlike Wave Functions.—We have now found
the wave functions for the discrete stationary states of a one-
electron or hydrogenlike atom. They are

‘l’"lm(r) 4, ‘P) = R,.[(T)ezm(ﬂ)d)m((p), (21—1)

with
Bale) = o™, (21-2)
Om(®) = {%'?D} Pim(cos ¥),  (21-3)

and

3 g o
Rut) = =[(22) St o O e hiane), @io

in which

p = ;l;or (21—5)
and
hZ
dQy = 472;57

aq being the quantity interpreted in the old quantum theory as
the radius of the smallest orbit in the hydrogen atom. The
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functions P{™(cos ¢) are the associated Legendre functions
discussed in Section 19, and the functions L24(p) are the asso-
ciated Laguerre polynomials of Section 20. The minus sign in
Equation 21-4 is introduced for convenience to make the function
positive for small values of r.

The wave functions as written here are normalized, so that
ﬁ) ” ﬁ) " ﬁ) TYE () 8, @ )Wuin(r, 3, @)1t sin Sdedddr = 1. (21-6)

Moreover, the functions in r, 4, and ¢ are separately normalized
to unity:

[ ex@enlo)de = 1,
ﬁ " (O1m(8) ] sin ddd = 1, (21-7)
fo “{Rou(r)}2ridr = 1.

They are also mutually orthogonal, the integral
o Or 2 '
ﬁ j; j:) Vi 3, @ wrm(r, 8, ¢)r? sin ddedddr

vanishing except for n = n’, I = I, and m = m’; inasmuch as if
m = m/, the integral in ¢ vanishes; if m = m/, but { # I, the
integral in # vanishes; and if m = m’ and I = I, but n = 2/,
the integral in r vanishes.

Expressions for the normalized wave functions for all sets of
quantum numbers out to n = 6, [ = 5 are given in Tables 21-1,
21-2, and 21-3.

The functions ®.(¢) are given in both the complex and the
real form, either set being satisfactory. (For some purposes
one is more convenient, for others the other.)

TaBLE 21-1.—THE FUNCTIONS ®,(¢)

1 1
Po(e) = o or Po(p) = 72:
T T
1 1
®i(p) = —5==¢* or Plocale) = —= €08 ¢
Ver V'n

. 1 .
e or Puin(¢) = —=sin ¢

V'

S_a(e) =
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TaBLE 21-1.—THE FUNCTIONS & (). —(Continued)

1 1
Pa(e) = d or  Prwlp) = —=co8 2¢
V'ox \V'x
1 1
$_a{p) = €%  or Pain(p) = —=8in 2p
Ver Vi
Etc.

TaBLE 21-2.—THE WAVE FUNCTIONS 6;,(1)
(The associated Legendre functions normalized to unity)

l = 0, s orbitals:
Bo0(d) =

1 = 1, p orbitals:

6
610(8) = -\24_ cos ¢
3
91&1(!’) = —é‘* sin ¢
! = 2, d orbitals:
10
O3(3) = 4(3 cos?d — 1)
15 |
O2.1(8) = sin ¢ cos &
92-:(0) = sin? ¢
1 = 3, forbitals:
3414
B3(8) = \/ (5 cosd ¢ — cos 0)
42 |
03.1(8) = gin ¢(5 cos? ¥ — 1)
5
O3uz() = gin? ¢ cos ¢

70
O3.3(9) = %~ sin? ¢

I = 4, g orbitals:

9v2

04(9) = -——(géc g9 — 10 cos? ¢ + 1)
Oar(¥) = Q\gﬁ sin ¢ (g cos® ¢ —~ cos o)
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TaBLE 21-2.—THE WAVE FUNCTIONS Oym(9).—(Coniinued)

Oyus(d) = 3\8/3 sin? 9(7 cos? ¥ — 1)
7

64u2(9) = 3\8/_0 sin? ¢ cos ¢
3V 35

O4ui(¥) = —% sint ¢

l = 5, h orbitals:
1522/ 21 14
950(0) = ———’;6/:<—5— cost 9 — ':;‘ COSS J + co8 l’)

4165 |

Os1(8) = T sin #(21 cos* ¢ — 14 cos?2 ¢ + 1)
V11

B5.2(8) = 3 55 sin? (3 cos® ¢ — cos )
A/ 770

Gsus(8) = 32 sin® §(9 cos? ¢ — 1)
31385 .,

O5ui(P) = T sint ¢ cos ¢
34/154

BOsus(d) = ) sin® ¢

TaBLE 21-3.—THE HYDROGENLIEE RADIAL WaveE FuncTioNs
n = 1, K shell:

e
1=0,18 Ru() = (Z/an)*-2¢ 2

n = 2, L shell:
VA ¥ -2
1 =028 Ry(r) = (oia/% 2 —~p)e 2
VA 3% _2
1=12 Rulr) = (—@ipe 2
2\/5
n = 3, M shell:
VA 3% -2
1=0,38 Raul) = (9% (6 — 6p + pte 2
7 /a3 _£
1=13p Rul) = (9/\(1/0)3 (4 ~ p)pe 2
¥ _f
I=23d Rur) =202

91/30
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TaBLE 21-3.—THE HYyDROGENLIKE RapIaL WavE FunNcTioNs.—(Continued)

n = 4, N shell:
=0,48 Ruw(r) =
I = 1’ 4p Ru(T)
I =2 4d Rufr)
1l =3,4 Rl
n = 5, O ghell:
1 =0,55 Rsolr)
l = 1, 5]7 Ru(T)
1 =2,5d Rs(r)
=3, 5f Ry(r)
1 =450 Rulr)
n = 6, P shell:
1 =068 Rolr)
I=1,6p Ra(r) =
l=26d Re(r)
1 =3,6f Res(r)
I =4,60 Ru(r)
1 =25 60 Res(r)

34
(Z /ao) — oY

96
(Z/ao) %
324/15
(Z/ao) 3
965
(Z/ao)Lé

96\/—5

o

(24 — 36p + 12p

Nﬁ'n

(20 — 10p + p?)pe

_P
(6 — p)p%e 2

4
ol 2

(Z/ao)Jé
3001/5
(Z /ay)"
1504,/30
::(;yzm — 14p + p2)p%e
(Z/ao) ¥
300\/—0

(Z/ag)*

9004/70°

=(120 — 240p + 120p*

N}'ﬂ

(120 — 90p + 18p? — p¥)pe

N]‘b

~r
2

(8 — p)ple

2
ple 2

(Z/a())

2160v/6

BTLDiryr
4324/210

(7 /a0)*
864+/105
2;2;(1\0}/—(72 ~ 18p + p?)p%
(Z/ao)
129607

(Z/ao);é

12060\/77

-(720 — 18005 + 1200p% — 30003 + 3

840p + 252p7 — 28p® + pt

(336 — 168p + 24p% — p¥)ple

LIRSS

-2
2

b

(10 — p)pte 2

I

2

5,

I

— 200% + pe

[=13°Y

0Op*

— pbe

©

Jpe 2

£
2
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The wave functions 6;,(#) given in Table 21-2 are the asso-
ciated Legendre functions P{™ (cos ¢) normalized to unity. The
functions Py™ (cos @) as usually written and as defined by
Equations 19-1 and 19-7 consist of the term sin'™# and the
polynomial in cos ¢ multiplied by the factor

G+l (@ + Im| + 1)! ,
2,<l +2l7nl>!<l —2lml>! 2,<l + |7;l + 1>,<(l - 172n| = 1>!

as m + [ is even or odd. Expressions for additional associated
Legendre functions are given in many books, as, for example,
by Byerly.! Numerical tables for the Il.egendre polynomials
are given by Byerly and by Jahnke and Emde.?

Following Mulliken, we shall occasionally refer to one-electron
orbital wave functions such as the hydrogenlike wave functions
of this chapter as orbitals. In accordance with spectroscopie
practice, we shall also use the symbols s, p, d, f, g, - - - to
refer to states characterized by the values 0, 1, 2,3, 4, - - -,
respectively, of the azimuthal quantum number [, speaking, for
example, of an s orbital to mean an orbital with I = 0.

In the table of hydrogenlike radial wave functions the poly-
nomial contained in parentheses represents for each function
the associated Laguerre polynomial L24'(p), as defined by
Equations 20-1 and 20-5, except for the factor

~(+ DY = 1= D),

which has been combined with the normalizing factor and
reduced to the simplest form. It is to be borne in mind that
the variable p is related to r in different ways for different
values of n.

The complete wave functions Yaim(r, ¢, ¢) for the first three
shells are given in Table 21-4. Here for convenience the variable
p = 2Zr/na, has been replaced by the new variable s, such that

n Z

= —7.

Qp Qo

W. E. ByerLy, “Fourier’s Series and Spherical Harmonics,” pp. 151,
159, 198, Ginn and Company, Boston, 1893.
:W. E. Byenvy, ibid., pp. 278-281; Jaunke and Empg, ‘‘Funktionen-
tafeln,” B. G. Teubner, Leipzig, 1933.
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The relation between ¢ and r is the same for all values of tha
quantum numbers. The real form of the ¢ functions is used.
The symbols p., py, P:, Gz1y, dy+sy Azt Aoy, and d, are introduced
for convenience. It is easily shown that the functions y,,,,
Vnp,y aDd Ynp, are identical except for orientation in space, the
three being equivalently related to the z, y, and 2z axes, respec-
tively. Similarly the four functions V.a..,, Vadg.., ¥ede,., and
¥nda,, are identical except for orientation. The fifth d function
Vnd, i8 different.

TaBLE 21-4,—HYDROGENLIEE WAVE FUNcCTIONS

K Shell
n=11=0m=0:
1 Z\ 3
¢l: = ‘\/,r <Go e’
L’Shell
n=21=0m
VA -z
(—) 2 —o)e 2
a
n=21l=1m=0:
Z
Vg, = <—) se 2 cog o
a
n=2101=1m
Z _°
Vap, = <;—> se 28in & cos ¢
Z _ec
Vip, = <a—) ce 28indsing
M Shell
n=31=0m=0 .
1 Z “(27
Va — 18¢ + 203)e 3
¥ 813 (a.,)

n=31l=1m=0:
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TasLE 21-4.—HYDROGENLIEE WAVE Funcrions.—(Conlanued)

¥ \/E 2 ”(6 ) e—g sin ¢ sin
y = —F— — — a)a ]
» 81% Qo

Z\¥» I
—) ate 3(3cos?d — 1)

1
\le: - 81‘\/6_-.—_ (ao

V2 [Z\%, -3
Videy = — — ) o% 3sgin 3 cos ¥ cos e

81‘\/; Qo
N A :
= = — ] o2 s1n ¢ cos & 8In ¢
= 5
n=31=2m= +2:
1 Z\¥ -7
Yad,, = - =) o% 3sin®6 cos 2¢
81\/2_1 o
1 Z\¥» -
Vid,,, = —~ )} o% 3gin® #sin 20
- 81\/2_r(ao>
Y/
withe = —r
@y

21b. The Normal State of the Hydrogen Atom.—The proper-
ties of the hydrogen atom in its normal state (ls, with n = 1,
I = 0, m = 0) are determined by the wave function

The physical interpretation postulated for the wave function
2r

requires that y*¢ = 17‘36_“_0 be a probability distribution function
0

for the electron relative to the nucleus. Since this expression
is independent of ¢ and ¢, the normal hydrogen atom is spheri-
cally symmetrical. The chance that the electron be in the

2r
volume element r2dr sin ddddy is 1—_}1—3(3 aor2dr sin dddde, which
0

is seen to be independent of ¢ and ¢ for a given size of the volume
element. This spherical symmetry is a property not possessed
by the normal Bohr atom, for the Bohr orbit was restricted to a
single plane,
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By integrating over ¢ and ¢ (over the surface of a sphere),
we obtain the expression

4 -
D(r)dr = —r?e odr
a5

as the probability that the electron lie between the distances

r and r + dr from the nucleus. The radial distribution function
2

Dyoo(r) = %r’e_'" is shown in Figure 21-1 (together with ¥4
0

and ¢%,) as a function of r, the distance from the nucleus. It

vy 1

b

=T

4xetpt [ [/

] 1 L 1
0 1.0 20
r —
Fig. 21-1.—The functions ¢, ¥*%, and 4rr* for the normal hydrogen
atom. The dashed curve represents the probability distribution function for a
Bohr orbit.

1

1
302

is seen that the probability that the electron remain within about
1 & of the nucleusis large; that is, the “size’” of the hydrogen atom
is about the same as given by the Bohr theory. Indeed, there is
a close relation; the most probable distance of the electron from
the nucleus, which is the value of r at which D(r) has its maximum
value, is seen from Figure 21-1 to be a, = 0.5294, which is just
the radius of the normal Bohr orbit for hydrogen.
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The distribution function itself is not at all similar to that
for a circular Bohr orbit of radius as, which would be zero every-
where except at the point r = a,. The function ¢3%;, has its
maximum value at r = 0, showing that the most probable
position for the electron is in the immediate neighborhood of
the nuecleus; that is, the chance that the electron lie in a small
volume elemont very near the nucleus is larger than the chance
that it lie in a volume element of the same size at a greater
distance from the nucleus.! It may be pointed out that a Bohr
orbit in the form of a degenerate line ellipse, obtained by giving
the azimuthal quantum number k¥ of the old quantum theory
the value 0 instead of the value 1, leads to a distribution function
resembling the wave-mechanical one a little more closely. This
is shown in Figure 21-1 by the dashed curve. The average
distance of the electron from the nucleus, given by the equation

Frim = [[ ¥ "Wnimridr sin dddde, (21-8)

is found in this case to be equal to 34a,. This is also the value
calculated for the Bohr orbit with k¥ = 0; in fact, it will be shown
in the next section that for any stationary state of the hydrogen
atom the average value of r as given by the quantum mechanics
is the same as for the Bohr orbit with the same value of n and
with k% equal to I(I 4+ 1). It will also be shown in Chapter XV
that the normal hydrogen atom has no orbital angular momen-
tum. This corresponds to a Bohr orbit with & = 0 but not with
k = 1. The root-mean-square linear momentum of the electron
is shown in the next section to have the value 2wue?/h, which is
the same as for the Bohr orbit. We may accordingly form a
rough picture of the normal hydrogen atom as consisting of an
electron moving about a nucleus in somewhat the way cor-
responding to the Bohr orbit with » = 1, k¥ = 0, the motion
being essentially radial (with no angular momentum), the
amplitude of the motion being sufficiently variable to give rise
to a radial distribution function D(r) extending to infinity,
though falling off rapidly with increasing r outside of a radius
of 1 or 23, the speed of the electron being about the same as in
the lowest Bohr orbit, and the orientation of the orbit being

! The difference between the statement of the preceding paragraph and
this statement is the result of the increase in size of the volume element
4xridr for the former case with increasing r.
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sufficiently variable to make the atom spherically symmetrical.
Great significance should not be attached to such a description.
We shall, however, make continued use of the comparison of
wave-mechanical calculations for the hydrogen atom with
the corresponding calculations for Bohr orbits for the sake of

convenience.
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F1a. 21-2.—Hydrogen-atom radial wave functions R,:(r) forn = 1, 2, and 3 and
! =0and 1.

21c. Discussion of the Hydrogenlike Radial Wave Functions.
The radial wave functions R.;(r) forn = 1,2, and 3and =0
and 1 are shown plotted in Figure 21-2. The abscissas represent
values of p; hence the horizontal scale should be increased by the
factor n in order to show R(r) as functions of the electron-nucleus
distance r. It will be noticed that only for s states (with [ = 0)
is the wave function different from zero at r = 0. The wave
function crosses the p axis n — I — 1 times in the region between
p=0andp = =,
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The radial distribution function
Du(r) = r*{Ru(r)}? (21-9)
is represented as a function of p for the same states in Figure
21-3. It isseen from Figures 21-2 and 21-3 that the probability
distribution function ¢*§, which is spherically symmetrical

for s states, falls off for these states from a maximum value at
r = 0. We might say that over a period of time the electron

08

n=1,1-0

04 | /N, -0

04T n=3, 1=0

04 r ne2, 1=

ne=3 =1

) 1 A i 1 1

0 2 4 6 8 10 12 14 18 18 20

9_’

Fia. 21-3.—Electron distribution functions 4xr?[R,;(r)]? for the hydrogen atom.

may be considered in a hydrogen atom in the normal state to
form a ball about the nucleus, in the 2s state to form a ball and
an outer shell, in the 3s state to form a ball and two concentric
shells, etc. The region within which the radial distribution
function differs largely from zero is included between the values
of r at perihelion and aphelion for the Bohr orbit with the same
value of n and with k? = I(l + 1), as is shown by the heavy
horizontal line for each curve in Figure 21-3, drawn between the
minimum and maximum values of the electron-nucleus distance
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for this Bohr orbit in each case. For these s orbits (with k = 0)
the heavy line extends to r = 0, corresponding to a line ellipse
with vanishingly small minor axis, in agreement with the large
value of y*y at r = 0. For states with [ > 0, on the other hand,
¥* vanishes at r = 0, and similarly the minimum value of r

for the Bohr orbits with k& = +/I(l 4 1) is greater than zero.
The average distance of the electron from the nucleus, as given
by Equation 21-8, is found on evaluating the integral to be

. _ nfa, (+1) 3
Falm = [1 + { 3 }] (21-10)

The corresponding values of p are represented by vertical lines in
Figure 21-3. From this expression il is seen that the size of the
atom increases about as the square of the principal quantum
number n, 7um being in fact proportional to n? for the states
with [ = 0 and showing only small deviations from this propor-
tionality for other states. This variation of size of orbit with
quantum number is similar to that of the old quantum theory,
the time-average electron-nucleus distance for a Bohr orbit

being
2
Fax = ’“‘“{1+< %)} (21-11)

which becomes identical with the wave-mechanical expression
if k? is replaced by I(I 4+ 1), as we have assumed in the foregoing
discussion.

Formulas for average values of various powers of r are given
below.! It is seen that the wave-mechanical expressions as a
rule differ somewhat from those of the old quantum theory,
even when k2 is replaced by I(l 4+ 1).

AVERAGE VALUES* oF r*
Wave Mechanics

aoanf 8 _wen-%
i |

* Expressious for 7 are given in Equations 21-10 and 21-11.

1 1
'I. WaLLER, Z. f. Phys. 38, 635 (1926); expressions for <r—5> and (;;)
are given by J. H. Van Vleck, Proc. Roy. Soc. A 143, 679 (1934).
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AVERAGE VALUES oF r*.—(Conlinued)
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To illustrate the use of these formulas, let us calculate the
average potential energy of the electron in the field of the
nucleus. It is

— 2
anm = '—'f I‘f\b:[mzvri\bﬂlmrzdr Sin l?dl?dw

T /Jatm

7%
apn?

(21-12)
Now the total energy W, which is the sum of the average ki-
netic energy T and the average potential energy V, is equal to

—Z%*/2am®. Hence we have shown that the total energy is
just one-half of the average potential energy, and that the average



146 THE HYDROGEN ATOM V-21d

kinetic energy is equal to the total energy with the sign changed,
i.e.,

- Z%?
Totm = ogon®

(21-13)
This relation connecting the average potential energy, the
average kinetic energy, and the total energy for a system of
particles with Coulomb interaction holds also in classical mechan-
ics, being there known as the virial theorem (Sec. 7a).

Now we may represent the kinetic energy as

_i 2 2 2
T - 2#(pz + pu + pz)!

in which p., py, and p. represent components of linear momentum
of the electron and nucleus relative to the center of mass (that
is, the components of linear momentum of the electron alone
if the small motion of the nucleus be neglected). Hence the
average value of the square of the total linear momentum
p? = p: + p2 + p?is equal to 2u times the average value of the
kinetic energy, which is itself given by Equation 21-13 for both
wave mechanics and old quantum theory. We thus obtain

— _ 2uZ%e? _ (21ere’>2

Paim = 2a,n? nh

(21-14)

as the equation representing the average squared linear momen-
tum for a hydrogenlike atom in the wave mechanics as well as in
the old quantum theory. This corresponds to a root-mean-
square speed of the electron of

2nZe?
Vi, = 5 (21-15)

which for the normal hydrogen atom has the value 2.185 X 10®
cm/sec.

Problem 21-1. Using recursion formulas similar to Equation 20-2 (or
in some other way) derive the expression for #um.

21d. Discussion of the Dependence of the Wave Functions on
the Angles 8 and $.—In discussing the angular dependence of
hydrogenlike wave functions, we shall first choose the complex
form of the functions ®(p) rather than the real form. It will be
shown in Chapter XV that there is a close analogy between the
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stationary states represented by these wave functions and the
Bohr orbits of the old quantum theory in regard to the orbital
angular momentum of the electron about the nucleus. The
square of the total angular momentum for a given value of I

is Il + 1) y. ,, and the component of angular momentum along

the z axis is mh/2x, whereas the corresponding values for a Bohr
orbit with quantum numbers nkm are k2h?/4x? and mh/2r,
respectively. We interpret the wave functions with a given
value of ! and different values of m as representing states in which
the total angular momentum is the same, but with different
orientations in space.

It can be shown by a simple extension of the wave equation
to include electromagnetic phenomena (a subject which wili
not be discussed in this book) that the magnetic moment asso-
ciated with the orbital motion of an electron is obtained from the
orbital angular momentum by multiplication by the factor
e/2moc, just as in the classical and old quantum theory (Sec. 7d).
The component of orbital magnetic moment along the z axis is
hence m o eo y and the energy of magnetic interaction of this
moment with a magnetic field of strength H parallel to the z axis
is m—— he —H
4rmc

In the old quantum theory this spatial quantization was sup-
posed to determine the plane of the orbit relative to the fixed
direction of the z axis, the plane being normal to the z axis for
m = +k and inclined at various angles for other values of m.
We may interpret the probability distribution function y*J in a
similar manner. For example, in the states with m = +I
the component of angular momentum along the z axis, mh/2r,
is nearly equal to the total angular momentum, \/1(l + 1)h/2r,
80 that, by analogy with the Bohr orbit whose plane would be
nearly normal to the 2z axis, we expect the probability distribution
function to be large at ¢ = 90° and small at 4 = 0° and 180°.
This is found to be thz case, as is shown in Figure 214, in which
there is represented the function {0;.(#)}? for m = +! and for
1=0,1,2 8,4, and 5. It is seen that as ! increases the prob-
ability distribution function becomes more and more concen-
trated about the zy plane.
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The behavior of the distribution function for other values of m
is similarly shown in Figure 21-5, representing the same function
forl=3andm =0, +1, +2, +3. It is seen that the function
tends to be concentrated in directions corresponding to the
plane of the oriented Bohr orbit (this plane being determined
only to the extent that its angle with the z axis is fixed).

With the complex form of the ¢ functions, these figures
represent completely the angular dependence of the probability
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Fi1a. 21-5.—Polar graphs of the function [0;,(#)]? for | =3 and m =0, £1,
+2, and 3.

distribution function, which is independent of ¢. The alterna-
tive sine and cosine functions of ¢ correspond to probability
distribution functions dependent on ¢ in the way corresponding
to the functions sin? my and cos? m¢. The angular dependence
of the probability distribution function for s and p orbitals in
the real form (as given in Table 21—4) is illustrated in Figure 21-6,
It is seen that, as mentioned before, the function s is spherically
symmetric, and the functions p., py, and p, are equivalent except
for orientation. The conditions determining the choice of wave
functions representing degenerate states of a system will be
discussed in the following chapter.
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A useful theorem, due to Unséld,! states that the sum of the
probability distribution functions for a given value of ! and all
values of m is a constant; that is,

g O 1 (3) P *(¢)O1m(F)Pm() = constant.  (21-16)

A

Px

F16. 21-6.—Polar representation of the absolute values of the angular wave
functions for 8 and p orbitals. The squares of these are the probability distribu-
tion functions.

The significance of this will be discussed in the chapter dealing
with many-electron atoms (Chap. IX).

Problem 21-2. Prove Unstld’s theorem (Eq. 21-186).

! A. UnsbLD, Ann. d. Phys. 83, 355 (1927).



CHAPTER . VI
PERTURBATION THEORY!

In case that the wave equation for a system of interest can be
treated by the methods described in the preceding chapters, or
can be rigorously treated by any amplification of these methods,
a complete wave mechanical discussion of the system can be
given. Very often, however, such a procedure cannot be carried
out, the wave equation being of such a nature as to resist accurate
solution. Thus even the simplest many-electron systems, the
helium atom and the hydrogen molecule, lead to wave equations
which have not been rigorously solved. In order to permit
the discussion of these systems, which more often than not are
those involved in a physical or especially a chemical problem,
various methods of approximate solution of the wave equation
have been devised, leading to the more or less accurate approxi-
mate evaluation of energy values and wave functions. Of these
methods the first and in many respects the most interesting is
the beautiful and simple wave-mechanical perturbation theory,
developed by Schrodinger in his third paper in the spring of 1926.
It is especially fortunate that this theory is very much easier
to handle than the perturbation theory which is necessary for
the treatment of general problems in classical dynamics.

Before we can discuss this method, however, we need certain
mathematical results concerning the possibility of expanding
arbitrary functions in infinite series of normalized orthogonal
functions. These results, which are of great generality and
widespread utility, we shall discuss in the next section without
attempting any complete proof.

22. EXPANSIONS IN SERIES OF ORTHOGONAL FUNCTIONS

The use of power series to represent certain types of functions
is discussed in elementary courses in mathematics, and the
theorems which state under what conditions the infinite series

1 A generalized perturbation theory will be discussed in Section 27a.
151
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obtained by formal methods converge to the functions they are
meant to represent are also well known. An almost equally
useful type of infinite series, which we shall use very frequently,
is a series the terms of which are members of a set of normalized
orthogonal functions each multiplied by a constant coefficient.
If fo(z), fi(x), f2(x), - - - are members of such a set of normal-
ized orthogonal functions, we might write as the series

o(2) = adfo(z) + arfi(z) + asfa(z) + - - -
Ea,q',.(x). (22-1)

n=0

If the series converges and has a definite sum ¢(z), we may express
Equation 22-1 by saying that the infinite series on the right of
the equation represents the function ¢(z) in a certain region of
values of z. We may ask if it is possible to find the coefficients
a, for the series which represents any given function ¢(z). A
very simple formal answer may be given to this question. If
we multiply both sides of Equation 22-1 by fJ(z) and then
integrate, assuming that the series is properly convergent so
that the term-by-term integration of the series is justified,
then we obtain the result

[e@ft@ds = a, (22-2)
since

L "r4(z)fu(z)dz = 0 if n 5 k, (22-3)
=1ifn = k.

a < z £ b defines the orthogonality interval for the functions
fa(x). .

In many cases the assumptions involved in carrying out
this formal process are not justified, since the series obtained may
either not converge at all or converge to a function other than
¢(z). Mathematicians have studied in great detail the condi-
tions under which such series converge and have proved
theorems which enable one to make a decision in all ordinary
cagses. For our purposes, however, we need only know that such
theorems exist and may be used to justify all the expansions
which occur in this and later chapters,
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The familiar Fourier series is only one special form of an
expansion in terms of orthogonal functions. Figure 22-1,
which gives a plot of the function

e(z) =lfor0 <z <m, }
e(z) = —1forr < z < 2n, (22-4)

together with the first, third, and fifth approximations of its
Fourier-series expansion

¢(z) = ap + a;sinz + by cos z + a,sin 2z +
bocos2z + - - -, (22-5)

illustrates that a series of orthogonal functions may represent
even a discontinuous function except at the point of discontinuity.

+1

eoat

1}

F1g. 22-1.—The function ¢(z) = +1for0 <z <=, —lform <z < 27, and
the first, third, and fifth Fourier-series approximations to it, involving terms to
ain z, sin 3z, and sin 5z, respectively.

If we had evaluated more and more terms of Equation 22-5,
the series would have approached more and more closely to the
function ¢(x), except in the neighborhood of the discontinuity.

The most useful sets of orthogonal functions for our purposes
are the wave functions belonging to a given wave equation. In
preceding chapters we have shown that the solutions of certain
wave equations form sets of normalized orthogonal functions,
gsuch as for example the Hermite orthogonal functions which
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are the solutions of the harmonic oscillator problem (Sec. 11).
In Appendix III it is shown that the solutions of any wave
equation form such a set of orthogonal functions.

In making expansions in terms of orthogonal functions, it is
necessary to be sure that the set of functions is complete. Thus in
the example of Equations 224 and 22-5, if we had used the set
cos z, cos 2z, - - « , without the sine terms, the series obtained
would have converged, but not to the function ¢(z), because the
set of functions cosz, cos2z, - - - is not complete. This
requirement of completeness necessitates that all the solutions
of the wave equation be included when using these solutions for
an expansion of an arbitrary function. Since many wave equa-
tions lead to a continuous spectrum of energy levels as well as a
discrete spectrum, it is necessary to include the wave functiong
belonging te.the contlnuous levels when makmg an expansion.
The quantum numbers for the continuous spectra do not have
discrete values but may vary continuously, so that the part
of the expansion involving these wave functions becomes an
integral instead of a sum as in Equation 22-1.

However, in many special cases it is easy to see that certain
of the coefficients a, will be zero so that in those cases an expan-
sion is possible in a set of functions which is not complete. Thus
if the function ¢(z) which we are attempting to represent is an
even function® of z, and if the orthogonal set we are using for the
expansion contains both even and odd funections, the coefficients
of all the odd functions fi(z) will vanish, as may be seen from the
consideration of Equation 22-2,

All the ideas which have been discussed in this section can be
generalized without difficulty to systems of several variables.
Normalized orthogonal functions in several variables z,, y,,

, 2y satisfy the condition -

.'. vt jf:(zl’ Yy * ° ° zN)fm(Ily Yy ° "y ZN)dT

= 0if n % m,

LI
in which the integration is carried out over the whole of the
configuration space for the system, and dr is the volume element

1 The function f(zx) is called an even function of z if f(—z) is equal to
J(z) for all values of z, and an odd function of z if f(—z) is equal to —f(z)
for all values of z.
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for the particular coordinate system in which the integral is
expressed. Orthogonal functions in several variables usually
are distinguished by several indices, which may however be
symbolized by a single letter. An example of a three-dimensional
set of normalized orthogonal functions is the set of solutions of
the wave equation for the hydrogen atom. We have obtained in
Chapter V the solutions belonging to the discrete levels; the
quantum numbers nlm provide the indices for these functions.
The solutions for the continuous spectrum of the atom, i.e., the
system resulting when the electron has been completely removed
from the nucleus, must be included if a complete set is desired.!

The coefficients in the expansion of an arbitrary function of
several variables are obtained from an equation entirely analogous
to Equation 22-2,

Ak =f e J.‘P(Il) Yy, - )ZN)f:(Il) Yo = = ZN)dT) (22—7)

in which the limits of integration and the meaning of dr are tne
same as in Equation 22-6.

A function ¢ which is expressed in terms of the normalized
functions of a complete orthogonal set is itself normalized if the

coefficients in the’expansion satisfy the relation Ea:a" =1,

It may be mentioned that in some cases it is convenient to
make use of complete sets of functions which are not mutually
orthogonal. An arbitrary function can be expanded in terms
of the functions of such a set; the determination of the values
of the coefficients is, however, not so simple as for orthogonal
functions. An example of an expansion of this type occurs in
Section 24.

In certain applications of expansions in terms of orthogonal
functions, we shall obtain expressions of the form

"Ea,.f,.(a:) = 0.

By multiplying by f¥(z) and integrating, we see that the coeffi
cient of each term must be zero; i.e., a, = 0 for all values of n.

1t For a discussion of the wave functions for the continuous spectrum of
hydrogen, see Sommerfeld, “ Wave Mechanics,” p. 290.
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Problem 22-1. Obtain the first four coefficients in the expansion ¢(z) =
@+ 2% = Ea,,\[zk ; 1P),(:v), where Pi(z) is the kth Legendre poly-

nomial given in Section 19. This expausion is valid only for [:c] € 1. Plot
#(z) and the approximations to it given by including the first, second, third,
and fourth terms of the expausion. If possible, obtain a general expression
for ax, using the generating function for Pi(z).

r33. FIRST-ORDER PERTURBATION THEORY FOR A
NON-DEGENERATE LEVEL
In discussing many problems which cannot be directly solved, a
solution can be obtained of a wave equation which differs from
the true one only in the omission of certain terms whose effect
on the system is small. Perturbation theory provides a method

of treating such problems, whereby the_approximate equation

as corrections, .
Let us write the true wave equation in the form

Hy — Wy =0, (23-1)

in which H represents the operator

Rt ~Q 1
H=—g5 > vt +V. (23-2)

We assume that it is possible to expand H in terms of some
parameter ), yielding the expression

H=H +)\H' +NH' + - -= (23-3)

in which \ has been chosen in such a way that the equation to
which 23-1 reduces when A — 0,

HY%Y — Wy =0, (23-4)

can be directly solved. This equation is said to be the wave
equation for the unperturbed system, while the terms

MH' 4 NH' + - -

are called the perturbation. As an illustration, we might men-
tion the problem of the Stark effect in atomic hydrogen, in
which an electric field is applied to the atom. In this problem
the field strength E provides a convenient parameter in terms
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of which the Hamiltonian may be expanded. When E is zero,
the problem reduces to that of the ordinary hydrogen atom,
which we have already solved.

The unperturbed equation 23—4 has solutions

8! ?)‘#27"':’#2:""

called the unperturbed wave functions, and corresponding energy
values

0 0 0 0
0 1 2)"'1Wk""

The functions ¥ form a complete orthogonal set as discussed in
Section 22, and, if we assume that they have also been normalized,
they satisfy the equation (Appendix IIT)

Jpigpdr = 0if i J} (23-5)
=1ifqd=7.

Now let us consider the effect of the perturbation. By hypoth-
esis it will be small, and from the continuity proverties of wave
functions! we know that the energy values and wave functions
for the perturbed system will lie near those for the unperturbed
system. In other words, the application of a small perturbation
is not going to cause large changes. With these facts in mind
we can expand the energy W and the wave function ¢ for the
perturbed problem in terms of X and have reasonable assurance
that the expansions will converge, writing

Ve =¥+ M+ N+ - (23-6)
and )

e = W2 AW, + MW + - - - (23-7)
If the perturbation is really a small one, the terms of these series
will become rapidly smaller as we consider the coefficients of
larger powers of \; i.e., the series will converge.

We now substitute these expansions for H, yi, and W, into
the wave equation 23-1, obtaining the result, after collecting
coefficients of like powers of A,

(Ho — WH9 + (H%; + H'Y — Wik — Wz
+ (HY + H'yp + H'Y — W — Wi — WA
+ - =0. (23-8)

1 Discussed, for example, in Courant and Hilbert, ‘‘ Methoden der mathe-

matischen Physik.”



158 PERTURBATION TMEQRY [Vi-28

If this series is properly convergefit, we know that in order for it to
equal zero for all values of X the coefficients of the powers of A
must vanish separately.? e coefficient of A\? when equated to
zero gives Equation 23-4, §o that we were justified in beginning
the expansions 23-6 and 23*7 with the terms ¢° and W° The
coefficient of M gives the equation

H%y — Wiy = (Wi — H')L. (23-9)

To solve this we make use of the expansion theorem discussed
in the last section. We consider that the unknown functions
¥/ can be expanded in terms of the known functions ¢, since the
latter form a normalized orthogonal set, and write

‘= Zl:az‘ﬁ?- (23-10)

(The coefficients a; might be written as ax, but we shall assume
throughout that we are interested only in the state k and there-
fore shall omit the second subscript.) Using this, we obtain the
result

H%;

SaHY = S aWi, (23-11)
1 1
since
HYS = Wiyl
Equation 23-9 therefore assumes the form

SaWs — Wiyg = (Wi — H')p. (23-12)
1 .

If we multiply by ¢2* and integrate over configuration space, we
observe that the expression on the left vanishes:

SR 2l WP — Wildr = Sa(Wi— WD [vi*wdr =0,
i i

since [yf*y)dr vanishes except for ! =k, and for this value
! Thus, if
/e = o) =0,

n

then, assuming that the series is properly convergent, we can write

1{dre
n = —| — =,
@ nl(d)\"))\ -0
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of | the quantity W) — W) vanishes; and hence we obtain the
equation

Y * (WL — Hyr = 0. (23-13)

This solves the problem of the determination of Wy, the first-
order correction to the energy. Since W; is a constant in
Equation 23-13, the integration of the term containing it can be
carried out at once, giving the result, when multiplied by A,

AW = Ny H'YLdr. (23-14)

Since the correction to the energy is AW}, it is convenient to
include the parameter X in the symbols for the first-order pertur-
bation and the first-order energy correction, so that to the
first order it is usual to write the relations

H=H"+ H,
Ve = ¥ + ¥, (23-15)
We= W2+ W,:,
in which
W, = [y *H'dr. (23-16)

This expression for the perturbation energy can be very simply
described: The first-order perturbation energy for a non-degenerate
state of a system is just the perturbation function averaged over the
corresponding unperturbed stale of the system.

We can also evaluate the correction y, for the wave function.
Multiplying each side of Equation 23-12 by y¥*, we obtain, after
integration;,

a;(W) — W) = ~ [Y2*H'Ydr, i#k  (23-17)

where we have utilized the orthogonality and normalization
properties of the y”s. The coefficients a; in the expansion 23-10
of ¥’ in terms of the set ¥¢ are thus given by the relation

[} *H'ldr

S Twr-wr

The value of ax is not given by this process; it is to be chosen
80 as to normalize the resultant ¢, and, if only first-order terms

are considered (terms in A2 neglected), it is equal to zero. It is
convenient to introduce the symbol

Hi = (Y *H'Ydr, (23-19}

i k. (23-18)
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so that the expression for the first-order wave function of the
system, on introducing the above values of the coefficients a;,
becomes

W= Vi - xE T, (23-20)

in which the prime on the summation indicates the omission of
the term with j = k.

As mentioned before, it is customary to include \ in the defini-
tion of H' as indicated in Equation 23-15, so that we get finally
for the first~order energy and the first-order wave function the
expressions

W. =W, 4 H;, (23-21)
and
Ve =¥ — E W},—;j—kﬂlﬁ}’. (23-22)
i=0

23a. A Simple Example : The Perturbed Harmonic Oscillator.
As a simple illustration of first-order perturbation theory we shall
obtain the approximate energy levels of the system whose wave
equation is

2,
‘;I‘ﬁ + Sjlzm(W - -é—kx’ — az® — bx4>¢ =0. (23-23)

We recognize that if a and b were zero this would be the wave
equation for the harmonic oscillator, whose solutions we already
know (Sec. 11). If @ and b are small, therefore, we may treat
these terms as perturbations, writing

H' = az® + bzt (23-24)
We need then to evaluate the integrals

Hy, = af " Tys*avde + [ "v2raide.  (23-25)

Since 3 is an odd function and ¢2 *¢¢ an even function, the first
of these integrals is zero, so that the first-order perturbation due
to ax® is zero. To calculate the second integral we refer back to
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Section 1l¢ for the functions ¥¢ and their properties. Substi-
tuting for ¢ from Equation 11-20 we obtain the integral

® 2
I= f Yo *ryldr = Nq e—E’Hﬁ(E)E‘dE. (23-26)
From Equation 11-15 we see that

EHA(§) = JHnii(§) + nHau(8), (23-27)
so that, after applying Equation 23-27 to ¢H,.4; and ¢H._, and
collecting terms, we obtain the equation
£Ha(§) = VaHnia(8) + (n + 18)HA(£) + n(n — 1) Haa(8).

(23-28)

By this application of the recursion formula for H.(f) we have
expressed £2H.(¢) in terms of Hermite polynomials with constant
coefficients. By squaring this we obtain an expression for
£ H2(t), which enables us to express the integral in Equation
23-26 as a sum of integrals of the form

L”me‘f’H,.(E)Hm(E)dE =0 if m # n,
= 2*nl/7 if m = n,

evaluated in Section 11c. Thus we find for I the expression

Nivxf1

o5

(23-29)

2
1= { %”(+2ﬂ+<n+%)%m+
mm—nwmm—m%
3

when the value of N, given in Equation 11-21 is introduced.
The first-order perturbation energy for this system is therefore

r ! — ﬁ 2
W - Hnn - 4a2(2n + 2n + l)!
so that the total energy becomes (to the first order)

W=W+W=G+gm+mgw+m+n

m22
(23-30)
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In order to calculate the first-order wave function it would
be necessary to evaluate all the quantities H,,. The z® term as
well as the z* term will contribute to these integrals. The
number of non-zero integrals is not, however, infinite in this
case but quite small, only the terms with k =n, n + 1, n £+ 2,
n + 3, and n + 4 being different from zero.

23b. An Example: The Normal Helium Atom.—As another
example of the application of first-order perturbation theory let
us discuss the normal state of the helium atom. Since the term
which we shall use as the perturbation is not particularly small,
we must not expect an answer of very great accuracy. The
potential energy for a system of two electrons and a nucleus of
charge +Ze is

Zer Ze? et
V= o o + - (23-31)
in which r, and r, are the distances of electrons 1 and 2, respec-
tively, from the nucleus, and r,, is the separation of the two
electrons. If we make the approximation of considering the
nucleus at rest, which introduces no appreciable error, the wave
equation (see Equation 12-8) for the two electrons becomes

h? <gzw i I Pk A & aw)

B =~ bt tamtmtapt o

2
+ <_ Zet _ Ze* | 2)¢ - Wy. (23-32)

This equation applies to He, Li*, Be**, etc., with Z = 2, 3, 4, etc.,
respectively. The variables z,, y1, 21 are Cartesian coordinates
of one electron, and z,, ¥, 22 those of the other; m, is the mass
of the electron.

Since if the term e?/ry, is omltted the wave equation which
is obtained can be exactly solved, we choose this term as the
perturbation function,

o =
Ti2

The wave equation which remains, the unperturbed equation,

can then be separated into two equations by the substitutions

Vo(x1, Y1, 21, T2y Ys, 22) = UN(Zy, Y1, 20)U5(Z3, Yo, 22)
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and

WO = W + Wi,
the equation! for u} being

oy ad | 8%l 87r mo

Z
wWmtata t (W%+:>m—0 (23-33)

The equation for u§ is identical except for the changed subscripts.
Equation 23-33 is just the hydrogenlike wave equation discussed
in the preceding chapter, with solutions Y,im(r1, ¢, ¢1) and
energy values —Z*Wyg/n? in which

2mimget

Wa =23

= 13.53 v.e.
The unperturbed wave function for the lowest level of the two-
electron atom is therefore

V300,100 = Y100(T1, T, @1)¥100(rs, 92, @2) =
u(ry, 91, e1)un(rs, &2, ¢2), (23-34)
in which r;, ¢, ¢1 and re, &, ¢, are polar coordinates of the two
electrons relative to axes with the nucleus at the origin. The
corresponding energy value is
W00 = Wi+ W3 = —22°W,. (23-35)

The first-order perturbation energy W’ is the average value of
the perturbation function H' = e?/ry, over the unperturbed
state of the system, with the value

2
W' = f S H g = f = Vonondr. (23-36)

From Table 21-4 of Chapter V we obtain for u,, the expression

73 _°P
Uy, = \l/100 = ;'f(;;e 2’ (23-37)
\]

in which p = 2Zr/a; and ay = h*/4r?mee®.  Using this in Equa-
tion 23-34, we find for V100,100 the expression
3 et _p
=4 73,72
¥100,100 rage e °.

! The symbol u will be used for the wave function for a single electron in a
many-electron atom, with subscripts 1s, 2s, 2p, ete.
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The volume element is

dr = rldr; sin &,dd\de, - ridr, sin §:dd.de,,

so that the integral for W’ becomes

v [T

dt’ldgolpzdpg sin 02d02d¢2, (23“38)

in which py2 = 2Zry/a,.

The value of this integral is easily obtained, inasmuch as it
corresponds to the electrostatic interaction energy of two spheri-
cally symmetrical distributions of electricity, with density
functions e~# and ¢=#, respectively. In Appendix V it is shown?
that

W = 54ZW.. (23-39)
This treatment thus gives for the total energy the value

W = —(22% — 34Z)W,. (23-40)

This may be compared with the experimental values of the total
energy, which are obtained by adding the first and the second
ionization energies. Table 23-1 contains, for He, Li*, Bett,
B3, and C*, the experimental energy W..,, the unperturbed
energy WY, the total energy calculated by first-order perturbation
theory W° 4 W', the differcnce A = W.,,, — W9, the difference
A" = Wy — WO — W, and finally the ratio —A'/A°,

It is seen that the error A’ remains roughly constant in absolute
value as the nuclear charge increases, which means that the
percentage error decreases, since the total energy is larger for
larger Z. This result is to be expected, inasmuch as for large
nuclear charge the contribution of the attraction of the nucleus
is relatively more important than that of the repulsion of the two
electrons. It is pleasing that even in this problem, in which the
perturbation function e?/ry; is not small, the simple first-order
perturbation treatment leads to a value of the total energy of
the atom which is in error by only a small amount, varying from
5 per cent for He to 0.4 per cent for C**,

1 This problem was first treated by A. Unsold, Ann. d. Phys. 82, 355
(1927).
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TaBLE 23-1.—CALCULATED AND OBSERVED VALUES oF THE ENERGY OF
HELIUMLIEKE ATOMS AND lONs

j— 0. !
= Wep,ve —WO ve. u:, e W A% vee. A/, v.e. —A'/A®
He 78.62 108.24 74.42 29.62 —4.20 | 0.142
Li* 197.14 243.54 192.80 46.40 —4.34 .094
Bet+| 369.96 432.96 365.31 63.00 —-4.65 074
B3+ 596.4 676.50 591.94 80.1 —4.5 .056
Ce+ 876.2 974.16 872.69 98.0 -3.5 .036

Problem 28-1. Calculate the first-order energy correction for a one-
dimensional harmonic oscillator upon which the perturbation H'(z) acts,
where H'(z) is zero unless |z| < eand H'(z) = bfor |z < ¢, with ¢ & quantity
which is allowed to approach zero at the same time that b approaches infinity,
in such a way that the product 2eb = ¢. Compare the effect on the odd and
even levels of the oscillator. What would be the effect of a perturbation
which had a very large value at some point outside the classically allowed
range of the oscillator and a zero value elsewhere?

Problem 23-2. The wave functions and energy levels of a particle in a
one-dimensional box are given in Equations 14-6 and 14-7. Calculate the
first-order perturbation energy for such a system with a perturbation H’
such that H' = bfor (a/k) — ¢ £ 7 £ (a/k) + eand H' = 0 elsewhere, with
¢ > 0as b — « in such a way that 2eb = ¢, k being a given integer. With

= 5, determine which energy levels are the most and which are the least
perturbed and explain. With k = 2, give the expression for the perturbed
wave function, to the first order.

Problem 23-3. Let H’ be a perturbation, such that H'(z) = —b for
0<z<a/2 and H'(z) = +b for a/2 £ z £ e, which is applied to a
particle in a one-dimensional box (Eqs. 14-6 and 14-7). Obtain the first-
order wave function. Show qualitatively that this function is such that the
probability of finding the particle in the right-hand half of the box has been
increased and explain in terms of classical theory. (Hint: Use the symmetry
about the point z = a/2.)

24. FIRST-ORDER PERTURBATION THEORY FOR A DEGENERATE
LEVEL

The methods which we have used in Section 23 o obtain the
first-order perturbation energy are not applicable when the energy
level of the unperturbed system is degenerate, for the reason
that in carrying out the treatment we assumed that the perturbed
wave function differs only slightly from one function ¥} which
is the solution of the unperturbed wave equation for a given

energy value whereas now there are several such functions, all
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belonging to the same energy level, and we do not know which
one (if any) approximates closely to the solution of the perturbed
wave equation.

An energy level W, is called a-fold degenerate (see Sec. 14)
when for W = W, there exist « linearly independent wave func-
tions i, i, Yis, - - -, ¥ra satisfying the wave equation.?
Each of these is necessarily orthogonal to all wave functions for
the system corresponding to other values of the energy (see
Appendix III) but is not necessarily orthogonal to the other
functions corresponding to the same value of the energy. Any

linear combination E k3 xiof the wavefunetions of a degenerateset
i=1

such as Yry, ¥z, - - -, Vi« is itself a solution of the wave equa-

tion and is a satisfactory wave function corresponding to the

energy Wi. We might therefore construct o such combinations

X by choosing sets of values for «; such that the different com-

binations thus formed are »l_ip_e;_aﬂx__independent? "The “sct—of

functions so obtained,
-3

Xki = Exii‘pki; 1=123, " ,q (24-1)
i=1

is entirely equivalent to the original set yii, ¥ie, - - -, Yia
This indicates that there is nothing unique about any particular
set of solutions for a degenerate level, since we can always con-
struct an infinite number of other sets, such as xx, + + + , Xta,
which are equally good wave functions. The transformation
expressed by Equation 24-1 is called a linear transformation
with constant coeflicients.

It is usually convenient to deal with wave functions which
are normalized to unity and which are mutually orthogonal
Since the coefficients «;; can always be chosen in such a way as
to make the set xi:; possess these properties, we shall ultimately
assume that this has been done.

Using these ideas, we can now investigate the application of
perturbation theory to degenerate levels. We write the wave
equation in the form

1 The functions ¥si, ¥as, * - * , ¥sa are said to be linearly independent if
there exists no relation of the form awis + asfss + -+ + + Gadia = 0 (in
which a,, as, - + -, aq are constant coefficients) which is satisfied for all
values of the independent variables.
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Hy - Wy =0 (24-2)
with
H = H 4+ H +NH" + - - -

as before. The wave equation for the unperturbed system is

HYo — Wy = 0, (24-3)
the solutions of which are
\l’gl; \082; M ;v/(x)h \ul)z: cer gyt ;wgu\b)?zr Tty
v’ga; cc

corresponding to the energy levels
WG WE - W

Now let us consider a particular wave function for the per-
turbed equation 24-2. It is known, in consequence of the proper-
ties of continuity of characteristic-value differential equations,
that as the perturbation function NH’ + - - - becomes smaller
and smaller the energy value W of Equation 24-2 will approach
an energy level of the unperturbed equation 24-3, W}, say.
The wave function under consideration will also approach more
and more closely a wave function satisfying Equation 24-3.
However, this limiting wave function need not be any one of
the functions ¥2,, - - + , ¥&,; it may be (and generally is) some
linear combination of them. The first problem which must be
solved in the treatment of a degenerate system is the determina-
tion of the set of unperturbed wave functions to which the
perturbed functions reduce when the perturbation vanishes;
that is, the evaluation of the coefficients in the linear transforma-
tion converting the initially chosen wave functions into the
correct zeroth-order wave functions. These correct combinations,
given by

X = 2 Ku'\l/:p, l= 1,2 ---,aq (24—4)
I'=1 ;
provide the first term of the expansion of ¥4; in powers of \, since
by definition they are the functions to which the ¢;’s reduce when
A — 0. Therefore

Y = xb + MWa 4+ ML <o (24-5)
and
W= Wg+ )\Wﬂ, + N ﬁ Ty (24-6)
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where I(= 1, 2, - - . , a) designates the particular one of the «
degenerate wave functions in question, are the equations which
are analogous to Equations 23-6 and 23-7. (As in Equation
23-10 we sometimes omit the subscript k; e.g., we write
for kg it must be borne in mind that throughout we are con-
sidering the kth degenerate level.)

Substituting the expansions for ¢, W, and H into the wave
equation 24-2, we obtain an equation entirely analogous to
Equation 23-8 of the non-degenerate treatment,

(Hoxgz - 2xi’z) + (Ho‘l’llcz + H’Xgl - Wg‘/’l'cz - W:chlgl))\ +
cee =0, (24-T)

from which, on equating the coefficient of N to zero as before,
there results the equation (cf. Eq. 23-9)

HY%y — Wiy = Wi — H'xi (24-8)

So far our treatment differs from the previous discussion of
non-degenerate levels only in the use of xJ instead of ¢%; i.e.,
in the introduction of a general expression for unperturbed
functions instead of the arbitrary set ¢2,. In the next step we
likewise follow the previous treatment, in which the quantities
¥, and H%/, were expanded in terms of the complete set of
orthogonal functions y). Here, however, we must in addition
express x in terms of the set ¢7, by means of Equation 244,
in which the coefficients «;,» are so far arbitrary. Therefore we
introduce the expansions

Vi = Eauk'm/«,‘iw (24-9)
PTy
and
Ho‘llk’[ = Eaklk’l'HOll/ko'll = Eaklk'llwgrlll,?qr (24“‘10)
Py 7
into Equation 24-8 together with the expression for xJ; given by
Equation 24-4. The result is

Eaklk'l’(W;;)’ - W?)'/’I?'l’ = EKU’(WI:I - H’)‘/’l?z'; (24“11)
k'l

Vml

in which the right-hand side involves only functions y§, belonging
to the degenerate level W) while the expansion on the left includes
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all the ¢,’s. If we now multiply both sides of this equation by
¥i* and integrate over configuration space, we obtain the result

Sacwy Wy — WDyiHdr = 3 au (WaJuiiedr ~
kY =1

JrH Y dr).  (24-12)

The left side of this equation is zero because ¥;; and y¥J, are
orthogonal if k = k' and W — W} is zero if k = k. If we
introduce the symbols

H}, = [YrH';dr (24-13)
and
Ajy = N/?‘?‘zﬁ,‘,’ydr, (24-14)

we may express Equation 24-12 in the form
Socu(Hy — ApWi) =0, §=1,23 -, a (2415
r=1

This is a system of & homogeneous linear simultaneous equations
in the « unknown quantities «;1, k12, - - - , ka. Written out in
full, these equations are

(H’u - AUWII:I)K“ + (Hlm - AIZWI,cl)Kﬂ + -+
(Hlla - AlaW]:I)Kla = 0,
(Hy — BaaWidkn + (Hoy — ApeWik + - - - +

(H;a - AZaW]’,[)Kla = 0, (24“16)

(Hea — AaaWi)Kia = 0

Such a set of equations can be solved only for the ratios of the
x’s; i.e., any one x may be chosen and all of the others expressed
in terms of it. For an arbitrary value of W{;, however, the set
of equations may have no solution except the trivial one «;; = 0.
It is only for certain values of Wy, that the set of equations has
non-trivial solutions; the condition that must be satisfied if
such a set of homogeneous linear equations is to have non-zero
solutions is that the determinant of the coefficients of the
unknown quantities vanish; that is, that
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HY,, — AnWy Hjy — AuW, - - - « — AaW,

Hy — AaWy Hyp — 8aWhu - -0 Hae — bW _

Hl’!l - AalW;; Héﬂ - Aazwil e H(’!a - AaaW)Id g
(24-17)

This determinantal equation can be expanded into an algebraic
equation in Wy, which can then be solved for W;;,. For the types
of perturbation functions which arise in most physical and chemi-
cal problems the determinant is either symmetrical about the
principal diagonal, if the elements are real, or else has the property
that corresponding elements on opposite sides of the principal
diagonal are the complex conjugates of each other; that is,
H); = Hi*. In consequence of this property it can be shown
that the determinant possesses a real roots, Wy, W/, - - - , Wi,.
These are the values of the first-order perturbation energy for the
a wave functions which correspond to the o-fold degenerate
unperturbed energy level W{. It may happen, however, that
not all of the roots Wi, etc., are distinct, in which case the
perturbation has not completely removed the degeneracy.

The coeflicients «;;» which determine the correct zeroth-order
wave function x{; corresponding to any perturbed level Wi,
may be determined by substituting the value found for Wi,
into the set of simultaneous equations 24-16 and solving for the
other coefficients in terms of some one of them. This remaining
arbitrary coefficient may be adjusted so as to normalize x};.
This process does net give unique results if two or more roots Wi,
coincide, corresponding to the fact that since there still remains
a certain amount of degeneracy the wave functions for the
degenerate level are not uniquely determined but are to a
certain degree arbitrary.

If the original wave functions ¢f,, + + - , 7, Were normalized
and mutually orthogonal (which we have not hitherto needed
to assume), the function A; is unity for j = I’ and zero other-
wise, so that the determinantal equation 24-17 assumes the
form

H,—-Wy  Hy Hi --- Hi.
H3 2w Wu Hy - H3. =0.
(24-18)
:.1 Ha Ha -+ Huw— Wy
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An equation such as 24-17 or 24-18 is often called a secular
equation, and a perturbation of the.type requiring the solution
of such an equation a secular perturbation.!

It is interesting to note that in case the secular equation has
the form

H, — W}, 0 e e 0
0 Hjy— W, - - 0 =0,
.. (24-19)
0 0 o e . « . H(’xa - W}’d

then the initially assumed functions ¢, ¥, - * - , ¥ia are the

correct zeroth-order functions for the perturbation H’, as is seen
on evaluation of the coefficients x of Equations 24-16. A secular
equation in which all the elements are zero except along the
principal diagonal is said to be in diagonal form. The roots
Wi, are of course immediately obtainable from an equation in
this form, since the algebraic equation equivalent to it is

Hy — W)(Hyy — Wyy) - - - (How — Wi) =0, (24-20)
with the roots Wy, = H},, Hy, - - -, He

1 In this sense secular means ‘‘accomplished in a long period of time”
(Latin saeculum = generation, age). The term secular perturbation was
introduced in classical mechanics to describe a perturbation which produces
a slow, cumulative effect on the orbit. If a system of sun and planet, for
whieh the unperturbed orbits are ellipses of fixed size, shape, and orientation,
were perturbed in such a way as to change the law of force slightly from the
inverse square, as is done, for example, by the relativistic change of mass
with change of speed, the position of the major axis in space would change
by a small amount with each revolution of the planet, and the orbit would
carry out a slow precession in its own plane, with a period which would be
very long if the magnitude of the perturbation were small. 8uch a perturba-
tion of the orbit is called a secular perturbation.

On the other hand we might have a system composed of a wheel in a
gravitational field rotating about a horizontal frictionless axle passing
through its center of mass and perturbed by the addition of a small weight
at some point on its periphery in such a way as to accelerate the motion
as the weight moves down and to decelerate it as the weight moves up.
Such a perturbation, which produces a small effect on the motion with the
high frequency characteristic of the original unperturbed motion of the
system, is not a secular perturbation.

The significance of the use of the word seculer in quantum mechanics
will be seen after the study of the perturbation theory involving the time
(given in Chap. XI).
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This equation 24—19 illustrates, in addition, that the integrals
H] . depend on the set of zeroth-order functions ¢, which is
used to define them. Very often it is possible to guess in advance
which set of degenerate y%’s to use for a given perturbation in
order to obtain the simplest secular equation. In particular,
in case that the perturbation is a function of one variable (z, say)
alone, and each function of the initial set of unperturbed wave
functions can be expressed as the product of a function of z and a
function of the other variables, the individual functions being
mutually orthogonal, then these product functions are correct
zeroth-order wave functions for this perturbation. This situa-
tion arises whenever the unperturbed wave equation can be
separated in a set of variables in which z is included.

It may be pointed out that Equation 24-18 may also be written
in the form

H,-W H,, T Hix
H», Hoyy — W -+ H.
Hal Ha2 ot Haa"" W

in which H; = H,, + H] and W = W} + W,,, inasmuch as
H is equal to W{ for ¢ = j and to zero for ¢ # j. This form is
used in Section 30c.

24a. An Example: Application of a Perturbation to a Hydrogen
Atom.—As an illustration of the application of perturbation
theory to degenerate systems, let us consider a hydrogen atom to
which & perturbation which is a function of z only has been
applied. Since the lowest state of the hydrogen atom is non-
degenerate, the treatment of Section 23 applies to it and we have
the result that

W= f‘l’%uuf(x)dT

with H’ = f(z). For the second energy state, however, we need
to use the treatment for degenerate systems, since for W} = —14
Rhe there are four wave functions,

f 1 - /7
= 0 = 2a| —
¥ Y300 321ra?,e (ao 2);

1 -Zfr
Vap = Y310 = 32""136 2“"(;1—) cos 9,

0
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’ 1 -~/r\1 )

= J0%.: = 2a0 1. Z —ie g

Yap, Y2ii 321ra‘;§e <ao> 2 2e7* gin 9,

Vap,, = Vi = A /-———1 6_2:” r ~1\/§e+“’ sin ¢
e 2 32ra} ay/ 2 ’

as given in Chapter V. In order to set up the secular equation
for this system we need the integrals

Hiymovrm = [Vl f (@ 3rmdr.
Even without specifying the form of the function f(z) further,
we can say certain things about these integrals. Since the com-
plex conjugate of e~% is et* and e~iveti = 1, we see that
B = Héﬁ,zﬁ = H;u,211
regardless of the nature of H', so long as it isreal. By expressing
z in polar coordinates through the equation

z = rsin ¥ ¢os ¢,

we see that f(z) is the same function of ¢’ = 2r — ¢ as it is of ¢,
since cos (2r — ¢) = cos ¢. If we make this substitution in
an integral over ¢ we get the result

[Fotode = = [Lo@@r — ¢)de' = [To(2r — oo’ =
[ater — oo, (24-21)

since it is immaterial what symbol we use for the variable of
integration in a definite integral. This substitution also changes
e~ into e~i*—¢" or ¢+, 80 that by its use we can prove the
identity

D = H;oo.zﬁ = H;oo,zu-

J(z) is also unchanged in form by the substitution ¢ = = — ¢,
since sin (r — &) = sin#. Also, we have the relation

fo "9(9) sin 99 = ﬁfg(‘rr — ') sin 9'd9’ =
j; “g(r — 9) sin 9d9, (24-22)

in which the factor sin ¢ is introduced because it occurs in the
volume element dr of polar coordinates. The substitution
¢ =7 — ¢ does not leave cos ¢ unchanged, however, since
cos (mr — ¢') = — cosd’. By employing this substitution we
can show that
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' - ’ ’ -
Hi10,900 = —H3y0200 or H3 10,900 = 0,

since the integrand is unaltered by the substitution except for
the cosine factor in y3;, which changes sign. Similarly we
find

Hj01 =0 and Hj10.011 = 0.
Finally we have the general rule that
H;lm,Zl’m’ = H;?’m’,ﬂm'

We are now in a position to write down the secular equation for
this perturbation, using the relations we have obtained among

the elements Hj, 5vm. It is (using the order 200, 211, 211, 210
for the rows and columns)

A-WwW D D 0
D B-w E 0
0 0 0 c—-w

The symbols A, B, etc., have the meanings: A = Hj}y, 00;
B = Hyyy011; C = Hypoe D = Hypony and E = Hjyy .
We may obtain one root of this equation at once. Since the
other elements of the row and the column which contains C — W’
are all zero, C — W’ is a factor of the determinant and may be
equated to zero to obtain the root W’ = C. The other three
roots may be obtained by solving the cubic equation which
remains, but inspection of the secular equation suggests a simpler
method. Determinants have the property of being unchanged
in value when the members of any row are added to or sub-
tracted from the corresponding members of any other row. The
same is true of the columns. We therefore have

A-W D D
D B-W E
D E B-w
| A-w 2D 0 .
=-3 D B-W+E B-W —E
D B-W+E E-B+W
A-W 2D 0
=l 2o 2B+E-w) 0 =0,
4 o 0 2B —E-W)| (24-2)
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in which we have first added the last column to the second
column to form a new second column and subtracted the last
column from the second column to form a new third column, and
then repeated this process on the rows instead of the columns.
The result shows that we have factored out another root,
W' = B — E, leaving now the quadratic equation

(A—W)B+E—W)—2Dt=0

which determines the remaining two roots.

The process by which we have factored the secular equation
into two linear factors and a quadratic corresponds to using
the real functions s, Vi,., V25, and i, for the ¥8’s instead
of the set Yu, Yap, ¥2p_, and yap, (see Sec. 18b). In terms of

the real set the secular equation has the form

A—W 2D 0 0
v2D B+ E-W 0 0
0 0 B-E-w o |=0
0 0 0 cC-w

(24-25)

which, aside from the last row and column, differs from the last
determinant of Equation 24-24 only by a constant factor. The
proper zeroth-order wave functions for this perturbation are
therefore Y5, V25, and two linear combinations aa, + Syap.
and BY2, — aysy., in which the constants « and 8 are determined
by solving the quadratic factor of the secular equation, sub-
stituting the roots into the equations for the coeflicients of the
linear combinations, and solving for the ratio «/8. The
normalization condition yields the necessary additional equation.

It is to be noted that in place of ¥, and ¢, any linear com-
binations of these might have been used in setting up the secular
equation 24-25, without changing the factoring of that equation,
so that these linear combinations would also be satisfactory
zeroth-order wave functions for this perturbation.

Problem 24-1. Prove the statement of the last paragraph.
Problem 24-2. Discuss the effect of a perturbation f(y) (in place of f(z)]
on the system of Section 24a.
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25. SECOND-ORDER PERTURBATION THEORY

In the discussion of Section 23 we obtained expressions for
W’ and ¢’ in the series ‘

W =Wo AW + MW"+ - - (25-1)
and
=90+ N A+ (25-2)

In most problems it is either unnecessary or impracticable to
carry the approximation further, but in some cases the second-
order calculation can be carried out and is large enough to be
important. This is especially true in cases in which the first-
order energy W’ is zero, as it is for the Stark effect for a free
rotator, a problem which is important in the theory of the meas-
urement of dipole moments (Sec. 49f).

The expressions for W'’ and ¢/ are obtained from the equation
which results when the coefficient of A? in Equation 23-8 is put
equal to zero and a solution obtained in a manner similar to
that of the first-order treatment. We shall not give the details
of the derivation but only state the results, which are, for the
energy correction,

’

" H, HI "
E = Wl? k_l_ I{V_I; + Hkk, (25—3)
1
in which
Hy = [yi*H'Ydr (25-4)
and ’
H]} = [Yy¥*H'"Ydr (25-5)

and the prime on Z means that the term I = k d4s omitted. All
other values of I must be includéd in the sum, however, including
those corresponding to the continuous spectrum, if there is one.
If the state W} is degenerate and the first-order perturbation
has removed the degeneracy, then the functions to be used in
calculating HJ,, etc., are the correctﬁzeroth—order functions found
by solving the secular equation.

If the energy level for the unperturbed problem is degenerate
and the first-order perturbation does not remove the degeneracy,
the application of the second-order correction will also not remove
the degeneracy unless the term MH' is different from zero, in
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which case the degeneracy may or may not be removed. The
treatment in this case is closely similar to that of Section 24.

26a. An Example: The Stark Effect of the Plane Rotator.—A
rigid body with a moment of inertia I and electric moment! , con-
strained to rotate in a plane about an axis passing through its
center of mass and under the influence of a uniform electric field
E, is characterized by a wave equation of the form?

d 8x2l
T+ BV - uE cos oy = 0,

in which ¢ is the angle of rotation. If we call —uFE cos ¢ the
perturbation term, with E taking the place of the parameter X,
then the unperturbed equation which remains when E = 0 has
the normalized solutions

|
‘P!Dn B me’mp, m = 0; il) izr i37 T (25_6)
and the energy values
m2h2
W = oy (25-7)

In order to calculate the perturbation energy we shall need
integrals of the type

4
H mm’

2r 2x
—#f Vo.*Yo cos pdp = ——if et™=me cos pdp
1] 21r 0

2x 2x
= _ﬁﬁ eim—miDedy, — ﬁr-J; eim—m=Ded,,
Oform' =m + 1,

= —g form" =m + 1. (25-8)

Using this result we see at once that the first-order energy cor-
rection is zero, for

W' = EH!, = 0. (25-9)

1 For a definition of u see Equation 3-5.

2 This equation can be obtained as the approximate wave equation for a
system of two particles constrained by a potential function which restricts
the particles to a plane and keeps them a fixed distance apart by an argu-
ment similar to that used in the discussion of the diatomic molecule men-
tioned in the footnote to Section 35c.
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This problem is really a degenerate one, since W° depends only
on |m| and not on the sign of m, so that there are two wave
functions for every energy level (other than the lowest). It is,
however, not necessary to consider this circumstance in evaluat-
ing W, and W, because neither the first- nor the second-order
perturbation removes the degeneracy, and either the exponential
functions 25-6 or the corresponding sine and cosine functions are
satisfactory zeroth-order wave functions.
The second-order energy, as given by Equation 25-3, is

(Hv'n mf—l)2 (Hv,n m-}-l)2 41TZIM2E2
"o e . 2 , =
Wn = B 25—, + By 2%, = miam® = 1)’
(25-10)
so that the total energy, to the second order, is
2h2 2 252
W = WO 4 AW + newr = TR _ArTWB o os 14

8rfl ' R*(dmE — 1)

It is interesting to point out the significance of this result
in connection with the effect of the electric field on the polariza-
bility of the rotator. The polarizability « is the proportionality
factor between the induced dipole moment and the applied
field E. The energy of an induced dipole in a field is then
—15aF? From this and a comparison with Equation 25-11 we
obtain the relation

8r2lu?
T RHAm® = 1)
which shows that a is positive for m = 0; the induced dipole
(which in this case is due to the orienting effect of the field E on
the permanent dipole u of the rotator) is therefore in the direction
of the field E. For |m| > 0, however, the opposite is true and
the field tends to orient the dipole in the reverse direction.

This is similar to the classical-mechanical result, which is
that a plane rotator with insufficient energy to make a complete
rotation in the field tends to be oriented parallel to the field
while a rotator with energy great enough to permit complete
rotation is speeded up when parallel and slowed down when
antiparallel to the field so that the resulting polarization is
opposed to the field.!

1 An interesting application of perturbation theory has been made to the
Stark effect of the hydrogen atom, the first-order treatment having been

(25-12)

a =
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Problem 26-1. Carry out a treatment similar to the above treatment for
the rigid rotator in space, using the wave equation and wave functions found
in the footnote of Section 35¢c. Discuss the results from the viewpoint of
the last paragraph above. Compute the average contribution to the
polarizability of all the states with givenland withm = -, ~{ 41, « - .|
+ I, assigning equal weights to the states in the averaging.

given independently by Schrodinger, Ann. d. Phys. 80, 437 (1926), and
P. S. Epstein, Phys. Rev. 28, 695 (1926), the second order by Epstein, loc.
cit., G. Wentzel, Z. f. Phys. 88, 518 (1926), and 1. Waller, ibid. 88, 635 (1926),
and the third order by S. Doi, Y. Ishida, and 8. Hiyama, Sct. Papers Tokyo
9, 1 (1928), and M. A. El-Sherbini, Phil. Mag. 13, 24 (1932). See also
Sections 27a and 27e.



CHAPTER VII

THE VARIATION METHOD AND OTHER
APPROXIMATE METHODS

There are many problems of wave mechanics which cannot be
conveniently treated either by direct solution of the wave
equation or by the use of perturbation theory. The helium
atom, discussed in the next chapter, is such a system. No
direct method of solving the wave equation has been found
for this atom, and the application of perturbation theory is
unsatisfactory because the first approximation is not accurate
enough while the labor of calculating the higher approximations
is extremely great.

In many applications, however, there are methods available
which enable approximate values for the energy of certain of the
states of the system to be computed. In this chapter we shall
discuss some of these, paying particular attention to the variation
method, inasmuch as this method is especially applicable to the
lowest energy state of the system, which is the state of most
interest in chemical problems.

26. THE VARIATION METHOD

26a. The Variational Integral and Its Properties.—We shall
show! in this section that the integral

E = [¢*Hedr (26-1)

is an upper limit to the energy W, of the lowest state of a system.
In this equation, H is the complete Hamiltonian operator
H(% (_%, q) for the systex{n'ur}cég‘xv‘ giscussi;on (Sec. 12a) and ¢(q)
is any normalized function of the coordinates of the system
satisfying the auxiliary conditions of Section 9c¢ for a satisfactory
wave function. The function ¢ is otherwise completely unre-

1 C. EckarT, Phys. Rev. 86, 878 (1930).
180
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stricted; its choice may be quite arbitrary, but the more wisely
it is chosen the more closely will E approach the energy W,.

If we used for our function ¢, called the variation function,
the true wave function ¥, of the lowest state, E would equal W;
that is,

E = [YtHyodr = W,, (26-2)
since
H‘Po = WO‘pO-

If ¢ is®ot equal to ¥, we may expand ¢ in terms of the complete
set of normalized, orthogonal functions o, ¥1, + + + , ¥m, + + +,
obtaining

¢ = Daws,  Wwith Sata, =1 o (26-3)

‘ - "

Substitution of this expansion in the integral for E-leads to the
equation

E = 3> atan [Vt Hyudr = > ara.W,, (26-4)

inasmuch as the functions ¥, satisfy the equations

Hyn = Wopn. (26-5)
Subtracting W,, the lowest epergy value, from both sides gives
E—-W,= za,‘:‘a,.(W.. — Wo). (26-6)

Since W, is greater than or equal to W, for all values of n and the
coefficients a¥a, are of course all positive or zero; the right side
of Equation 266 is positive or zero. We have therefore proved
that E is always an upper limit to Wy; that is, '
E > W. i (26-7)
This theorem is the basis of the variation method for the
calculation of the approximate value of the lowest energy level
of a system. If we choose a number of variation functions
1, P2, o3, - - + and calculate the values E,, EQE, - - - cor-
responding to them, then each of these values of ® is greater
than the energy W,, so that the lowest one is the nearast to W,.
Often the functions ¢, ¢s, ¢s - - - are onlyodistinguiw by
having different values of some parameter. The process of
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minimizing F with respect to this parameter may then be carried
out in order to obtain the best approximation to W, which the
form of the trial function ¢ will allow.

If good judgment has been exercised in choosing the trial
function ¢, especially if a number of parameters have been
introduced into ¢ in such a manner as to allow its form to be
varied considerably, the value obtained for E may be very close
to the true energy Wy. In the case of the helium atom, for
example, this method has been applied with great success, as is
discussed in the next chapter.

If E is equal to W, then ¢ is identical! with ¢, (as can be
seen from Eq. 26-6), so that it is natural to assume that if E is
nearly equal to W, the function ¢ will approximate closely to
the true wave function ¢o. The variation method is therefore
very frequently used to obtain approximate wave functions
as well as approximate energy values. From Equation 26-6
we see that the application of the variation method provides
us with that function ¢ among those considered which approxi-
mates most closely to ¥, according to the following criterion:
On expanding ¢ — ¥, in terms of the correct wave functions -,

the quantity Ea,,a,.(W,. — Wy) is minimized; that is, the sum

of the squares of the absolute values of the coefficients of the
wave functions for excited states with the weight factors W, — W,
is minimized. For some purposes (as of course for the calcula-
tion of the energy of the system) this is a good criterion to use:
but for others the approximate wave function obtained in this
way might not be the most satisfactory one.

Eckart? has devised the following way of estimating how
closely a variation function approximates to the true solution ¥
by using E and the experimental values of W, and W,. A very
reasonable criterion of the degree of approximation of ¢ to Yo
(for real functions) is the smallness of the quantity

= [(¢ — yo)2dr = [(¢? — 2¢02a,.¢,. + y2)dr = 2 — 2a,,
n
(26-8)
1If the level W, is degenerate, the equality of E and W, requires thnt

¢ be @ﬁtxcal with one of the wave functions corresponding to W,.
2 Reference on p. 180.
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in which a, is the coefficient of ¥, in the expansion 26-3 of ¢.
From Equation 266 we can write

E—Wo= Y aXWo—Wo) > 3 ai(W— Wo)
n=0 n=l
or
E—W,2 (W, — Wo)(1 — ab).

Therefore if € is small compared to ¢, we may combine this
equation and Equation 26-8, obtaining

E—-W, 1 E—~ W

<W1"‘Wu or 1 —a, < 2W1—Wo

Thus, from a knowledge of the correct energy values W, and W,
for the two lowest levels of the systems and the energy integral E
for a variation function ¢, we obtain an upper limit for the
deviation of ao from unity, that is, of the contribution to ¢ of
wave functions other than ¢,.

The variation method has the great drawback of giving only an
upper limit to the energy, with no indication of how far from the
true energy that limit is. (In Section 26e we shall discuss a
closely related method, which is not, however, so easy to
apply, by means of which both an upper and a lower limit can be
obtained.) Nevertheless, it is very useful because there arise
many instances in which we have physical reasons for believing
that the wave function approximates to a certain form, and this
method enables these intuitions to be utilized in calculating a
better approximation to the energy than can be easily obtained
with the use of perturbation theory.

If we use for ¢ the zeroth-order approximation to the wave
function ¥ discussed under perturbation theory, Chapter VI,
and consider H as equal to H® 4 H’, this method gives for
E a value identical with the first-order perturbation energy
W9 4+ W/. 1If therefore we use for ¢ a variation function con-
taining parameters such that for certain values of the parameters
¢ reduces to ¢§, the value we obtain for E is always at least as
good as that given by the first-order perturbation treatment.
If ¢ is set equal to the first-order wave function, the energy value
E given by the variation method is the same, to the second
power in the parameter A, as the second-order energy obtained
by the perturbation treatment.

(26-9)
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In case that it is not convenient to normalize ¢, the above
considerations retain their validity provided that F is given
by the expression

Jo*Hedr
b= ovedr

26b. An Example: The Normal State of the Helium Atom.—
In Section 23b we treated the normal state of the helium atom
with the use of first-order perturbation theory. In this section
we shall show that the calculation of the energy can be greatly
increased in accuracy by considering the quantity Z which occurs
in the exponent (p = 2Zr/a,) of the zeroth-order function given
in Equations 23-34 and 23-37 as a parameter Z’ instead of as a
constant equal to the atomic number. The value of Z’' is
determined by using the variation method with ¢ given by

(26-10)

Z'3\ -Zn _Zn
¢ = 1y = (m)e Goe 0, (26-11)

0

in which Z’, the effective atomic number, is a variable parameter.
In this problem, the Hamiltonian operator is

h? 1 1 e
H = —m(vﬁ + vi) — Ze’(;1 + —> + =

]

in which Z is the true atomic number. The factors ¢; and ¢,
of ¢ are hydrogenlike wave functions for nuclear charge Z’e,
8o that ¢, satisfies the equation

h2

Z'e
" 8rlm, 8om. Vi ="“‘"¢1 — Z"Wad (26-12)

(W being equal to €2/2a,), with a similar equation for ¢.. Using
these and the expression for H, we obtain

E=4wm+w—mﬂQG+9w+
1 2

f ¢*re_;¢df. (26-13)

The first integral on the right has the value
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1 1 P I
e’fq&"'(;—l + a)(ﬁd‘r = 2¢ f;;dTl =

273 *® (v (*2ry 22’1y /3,2 [~ *® _2Zn
22 f f f l—e a rigin 0d<pd0dr1=8Z,ef rie % dry =
0 o Jo "1 a 0

raj o
27'e?

Qo

=4Z'Wy. (26-14)

The second integral of Equation 26-13 is the same as that of
Equation 23-38 if Z is replaced by Z’. It therefore has the
value

+ € 5,
¢ 7Tl—2<¢>d-r = ZZ W (26-15)

Combining these results, we obtain for E the expression
E ={-22""+ 547" +4Z'(Z' — Z)}Wx.  (26-16)

Minimizing E with respect to Z’ gives

dE , D ,
37 =0 =(—4Z +Z+8Z —4Z>WH
or
Z' =7 — ¥, (26-17)
which leads to
E = "'2(Z - %G)ZW”' (26—18)

As pointed out in Section 29¢, this treatment cuts the error in
the energy of helium to one-third of the error in the first-order
perturbation treatment. In the same section, more elaborate
variation functions are applied to this problem, with very
accurate results.

Problem 26-1. Calculate the energy of a normal hydrogen atom in &
uniform electric field of strength F along the z axis by the variation method,
and hence evaluate the polarizability «, such that the field energy is —%4 aF2,
Use for the variation function the expression!

1 The correct value of « for the normal hydrogen atom, given by the
second-order perturbation theory (footnote at end of preceding chapter) is
a = %a} = 0.667 - 1072 cm3,

A value agreeing exactly with this has been obtained by the variation
method by H. R. Hassé, Proc. Cambridge Phil. Soc. 28, 542 (1930), using the
variation function ¢:.(1 + Az + Bzr). Hassé also investigated the effects
of additional terms (cubic and quartic) in the series, finding them to be
negligible. The same result is given by the treatment of Section 27a.
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Wla(l + AZ),
minimizing the energy with respect to 4, with neglect of powers of F higher
than F2,

a = 4a} = 0.59 - 1072 ¢cm?®. Ans.

26¢c. Application of the Variation Method to Other States.—
The theorem E > W,, proved in Section 26a, may be extended
in special cases to states of the system other than the lowest
one. It is sometimes possible to choose ¢ so that the first few
coeflicients a,, a1, - - - of the expansion 26-3 are zero. If, for
example, @, a1, and a, are all zero, then by subtracting W,
from both sides of Equation 264 we obtain

E~Ws=Yaa*W,~ Wy >0, (26-19)

since, although Wy, — W3, W, — W3, and W, — W; are negative,
their coeflicients are zero. In this case then we find the inequal-

There are several cases in which such a situation may arise.
The simplest illustration is a one-dimensional problem in which
the independent variable z goes from — e« to 4« and the
potential function V i an even function of z, so that

V(—2) = V(+2).

The wave function belonging to the lowest level of such a system
is always an even function; i.e., o —z) = Yo(z); while ¢, is odd,
with ¥,(—x) = —¢(x) (see Sec. 9¢). If we therefore use for ¢
an even function, we can only say that E is greater than or equal
to Wy, but if ¢ is an odd function, a, will be zero (also all a,’s
with n even) and the relation £ > W, will hold. For such a
problem the variation method may be used to obtain the two
lowest energy levels.

The variation method may also be applied to the lowest state
of given resultant angular momentum and of given electron-spin
multiplicity, as will be discussed in the next chapter (Sec. 294d).
Still another method of extending the variation method to levels
other than the lowest is given in the following section.

26d. Linear Variation Functions.!'—A very convenient type of
variation function is one which is the sum of a number of linearly

1 The generalized perturbation theory of Section 27a is closely related
to the treatment discussed here.
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independent functions x:, xz * - -, xm with undetermined
coefficients ¢;, ¢z, - -+ -, ¢m. In other words the variation
function ¢ has the form

¢ =cua1tcxz+ - F CaXm, (26-20)

in which ¢, ¢3, - - -, ¢m are the parameters which are to be
determined to give the lowest value of £ and therefore the best
approximation to W, It is assumed that the functions x;,
Xz, + - * , xm satisfy the conditions of Section 9¢. If we intro-
duce the symbols

Hnn' = anHXn’dT and Ann' = anXn'dT; (26—21)

in which for simplicity we have assumed that ¢ is real, then the
expression for £ becomes

2 CnCn' Hpn!

E = f¢H¢dT — n=1n'=1 (26“22)

[oedr = m

Cncn’Ann’

neml n'=l

E E Ec,.c,.'A,.,.l = E zCnCn’Hnn'-
n n n’

To find the values of ¢y, ¢3, - - - , ¢m Which make E a minimum,
we differentiate with respect to each ¢;:

g—szn:gc,.c,.d&,mf + EE%‘<§§C“C“:Ann:) =
;&(z":?c"c"ﬂ""')'

The condition for a minimum is that gfz =0fork =12 ...,
k

m, which leads to the set of equations

Sien(Hu — AuE) =0, k=12, m (26-23)

or

This is a set of m simultaneous homogeneous linear equations in
the m independent variables ¢, ¢z, + - + , ¢m. For this set of
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equations to have a non-trivial solution it is necessary that the
determinant of the coefficients vanish (cf. Sec. 24); i.e., that

Hy, —AnE Hp— ApE - - - Him — AinE
Hu -~ AnE sz - AuE « o Hypy — Asz 0
Hml - AmlE HmZ - Am2E Hmm - AmmE

(26-24)

This equation is closely similar to the secular equation 24-17 of
perturbation theory. It may be solved by numerical methods,*
or otherwise, and the lowest root £ = E, is an upper limit to

wi

Fi6. 26-1.—Figure showing the interleaving of energy values for linear variation
functions with added terms.

the energy W, Substitution of this value of E, in Equations
26-23 and solution of these equations for ¢z ¢y, - -+, ¢m In
terms of ¢; (which can be used as a normalizing factor) gives the
variation function ¢, corresponding to E,.

The other roots E,, Es - - - , Ea_y of Equation 26-24 are
upper limits for Wy, W, - - -, W,._, respectively.? Further-
more, it is possible to state how'these roots will be changed when
a new trial function ¢’ is used, containing one more function

Xm+1y

¢ =cxi+exat 0+ cmxm + CmprXmpr.  (26-25)
In this case the roots E§, Ej, E;, - - - , E,, will be separated by
the old ones E,, E,, E;, - - - , E, as shown in Figure 26-1.

1 For a convenient numerical method see H. M. James and A. 8. Coolidge,
J. Chem. Phys. 1, 825 (1933).
2]. K. L. MacDonaLp, Phys. Rev. 43, 830 (1933).
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In other words, the relations Ej { Eo,, E| £ E), etc.,, and
E, < E}, E, £ E, etc., are satisfied.

This method has proved to be very useful in practice, as will
be illustrated by examples discussed in Chapters VIII and XII.

The application of the variation method to wave mechanics grew from the
work of Ritz, J. f. reine u. angew. Math. 185, 1 (1909), who considered the
solution of certain differential equations by discussing the equivalent
variation problem. It can be shown that a general normalized function ¢,
which satisfies the boundary conditions of Section 9¢ and which makes the
integral E = [¢FH¢idr & minimum relative to all variations in ¢, is a
solution of the differential equation Hy = Wy, E then being equal to the
corresponding characteristic energy value. A similar minimization of E
with respect to all variations in another general normalized function ¢s
with the added restriction that ¢, is orthogonal to ¢, leads to another solu-
tion ¢ of the wave equation. By the continuation of this process of minimi-
zation, all of the solutions can be found. Ritz proved that in ccrtain cases
a rigorous solution can be obtained by applying a limiting process to the
integral [¢*H ¢dr, in which ¢ is represented as the sum of m functions of a
convenient set of normalized orthogonal functions ¥, ¢3, - - - which satisfy
the boundary conditions, taken with arbitrary coefficients ¢;, ¢z + * + , Cm.
For each value of m the coefficients ¢, are determined so that the integral
f¢*Hedr is a minimum, keeping [¢*¢dr = 1. Ritz found that under
certain restrictions the sequence of functions converges to a true solution
of the wave equation and the sequence of values of the integral converges
to the corresponding true characteristic value. The approximate method
discussed in this section is very closely related to the Ritz method, differing
from it in that the functions ¥ are not nccessarily members of a complete
orthogonal set and the limiting process is not carried out.

Problem 26-2. Using a variation function of the form ¢ = 4 + B cos
# + C sin ¢, obtain an upper limit to the lowest energy level of the plane
rotator in an electric field, for which the wave equation is

da% 8x2/
o + W (W + wE cos ¢)y = 0.

26e. A More General Variation Method.—A method has been
devised! which gives both an upper and a lower limit for an
energy level. If we represent by £ and D the integrals

E = [¢*Hedr and D = [(He¢)*(He)dr, (26-26)

in which ¢ is a normalized trial variation function as before, then
we shall show that some energy level W, satisfies the relation

E+~D—-—E>W:.2E—-~D— E. (26-27)

1 D. H. WEINSTEIN, Proc. Nat. Acad. Sci. 20, 529 (1934); see also J. K. L.
MacDonaLp, Phys. Rev. 468, 828 (1934).
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To prove this we expand ¢ as before (Eq. 26-3), so that
E = za:a,.W,., D = za,’,"a,.Wﬁ, and Za,’,"a,. =1.

n n n

(26-28)
From this we obtain the result

A=D-—F= Za:a,.Wﬁ - 2E2a,’fa,.W,. + Ezza,‘,‘a,. =
Za:an(W,. — E)%.  (26-29)

There will be some energy level W, which lies at least as near
E as any other, i.e., for which

(W, — E): < (W, — E)&.
Therefore A is related to Wi — E by the inequality
A2 (We— E)Yaka,

or
A> (W, — B (26-30)

There are now two possible cases,
Wk Z E a,nd Wk < E.
In the first case we have

VA> W.—E  sothat E+4+A2 W2 E;

and in the second case
VA>E—-W, and E>W.>E-—+A

From this we see that the condition in Equation 26-27 applies
to both cases.

The application of this method to actual problems of the usual
type is more difficult than that of the simple variation method
because, in addition to the'integral E, it is necessary to evaluate
D, which ordinarily is considerably more difficult than E.

It may be pointed out that by varying parameters in a function
in such a way as to make A a minimum the function ¢ is made to
approach some correct wave function ¢ as closely as is permitted
by the form of ¢. This method consequently may be considered
as another type of variation method applicable to any state of a
system.
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27. OTHER APPROXIMATE METHODS

There are a number of other methods which may be used to
obtain approximate wave functions and energy levels. Five of
these, a generalized perturbation method, the Wentzel-Kramers-
Brillouin method, the method of numerical integration, the
method of difference equations, and an approximate second-order
perturbation treatment, are discussed in the following sections.
Another method which has been of some importance is based
on the polynomial method used in Section 1la to solve the
harmonic oscillator equation. Only under special circumstances
does the substitution of a series for ¥ lead to a two-term recursion
formula for the coefficients, but a technique bhas been developed
which permits the computation of approximate energy levels for
low-lying states even when a three-term recursion formula is
obtained. We shall discuss this method briefly in Section 42¢.

27a. A Generalized Perturbation Theory.—A method of
approximate {and in some cases exact) solution of the wave
equation which has been found useful in many problems was
developed by Epstein! in 1926, immediately after the publication
of Schrédinger’s first papers, and applied by him in the complete
treatment of the first-order and second-order Stark effects of the
hydrogen atom. The principal feature of the method is the
expansion of the wave function in terms of a complete set of
orthogonal functions which are not necessarily solutions of the
wave equation for any unperturbed system related to the system
under treatment, nor even necessarily orthogonal functions in
the same configuration space. Closely related discussions of
perturbation problems have since been given by a number of
authors, including Slater and Kirkwood? and Lennard-Jones.3
In the following paragraphs we shall first discuss the method in
general, then its application to perturbation problems and its
relation to ordinary perturbation theory (Chap. VI), and finally
as an illustration its application to the second-order Stark effect
for the normal hydrogen atom.

In applying this method in the discussion of the wave equation

Hy(z) = Wy(2), (27-1)

1 P. 8. EpsTBIN, Phys. Rev. 28, 695 (1926).
1J. C. SLaTER and J. G. Kirkwoob, Phys. Rev. 87, 682 (1931).
3 J. E. LENNARD-JONES, Proc. Roy. Soc. A 129, 598 (1930).
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in which z is used to represent all of the independent variables
for the system, we express y(z) in terms of certain functions
F.(z), writing

¥(z) = D AFu(z). (27-2)

The functions F,(z) are conveniently taken as the members of a
complete set of orthogonal functions of the variables z; it is not
necessary, however, that they be orthogonal in the same con-
figuration space as that for the system under discussion. Instead,
we assume that they satisfy the normalization and orthogonality
conditions
fF,:(I)Fn(I)p(I)dI = Gmn

with

(27-3)

5 = 1form = n,
"™ 710 for m = n,

in which p(z)dz may be different from the volume element dr
corresponding to the wave equation 27-1. p(z) is called the
wetght factor! for the functions F.(z). On substituting the
expression 27-2 in Equation 27-1, we obtain

EAn(H — W)F.(z) =0, (27-4)

which on multiplication by FX(z)p(z)dz and integration becomes

SAn(Hmn — Wona) =0, m =12 -+, (27-5)

in which
Hun = [F2(2)HF u(z)p(2)dz. (27-6)

1In case that the functions F.(zx) satisfy the differential equation

d

;i—{p(z)f} -~ @(x)F + M(@)F =0,
£ dzx

in which A is the characteristic-value parameter, they are known to form
a complete set of functions which are orthogonal with respect to the weight
factor p(x). For a discussion of this point and other properties of differential
equations of the Sturm-Liouville type see, for example, R. Courant and
D. Hilbert, “Methoden der mathematischen Physik,” Julius Springer,
Berlin, 1931.
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For an arbitrary choice of the functions F,(zr) Equation 27-5
represents an infinite number of equations in an infinite number
of unknown coefficients A,. Under these circumstances ques-
tions of convergence arise which are not always easily answered.
In special cases, however, only a finite number of functions
F.(z) will be needed to represent a given function ¥(x); in these
cases we know that the set of simultaneous homogeneous linear
equations 27-5 has a non-trivial solution only when the deter-
minant of the coefficients of the A,’s vanishes; that is, when the
condition

Hu _ W H12 HIS
Hy, Hy - W Hy,y N o
Ha, He  Ha- W =0 @

is satisfied. We shall assume that in the infinite case the mathe-
matical questions of convergence have been settled, and that
Equation 27-7, involving a convergent infinite determinant, is
applicable.

Our problem is now in principle solved: We need only to eval-
uate the roots of Equation 27-7 to obtain the allowed energy
values for the original wave equation, and substitute them in
the set of equations 27-5 to evaluate the coefficients A, and
obtain the wave functions.

The relation of this treatment to the perturbation theory of
Chapter VI can be seen from the following arguments. If the
functions F,.(x) were the true solutions y,.(z) of the wave equation
27-1, the determinantal equation 27-7 would have the form

W, - W 0 0
0 W, — W 0

0 0 Ws—-W =0, (27-8)

with roots W = W,, W = W,, etc. Now, if the functions
F.(z) closely approximate the true solutions ¥,.(z), the non-

diagonal terms in Equation 27-7 will be small, and as an approxi-
mation we can neglect them. This gives

Wi = Hy,
Wi = Ha, .
Ws = Hoo (27-9)

ete.,
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which corresponds to ordinary first-order perturbation theory,
inasmuch as, if H can be written as H° 4 H’, with

HF.(z) = WiF,(x),

then W, = H,, has the value W,, = W 4 [F¥(x)H'F.(z)p(z)dx,
which is identical with the result of ordinary first-order per-
turbation theory of Section 23 when p(z)dz = dr. Equation
27-9 is more general than the corresponding equation of first-
order perturbation theory, since the functions F.{(z) need not
correspond to any unperturbed system. On the other hand,
it may not be so reliable, in case that a poor choice of functions
F.(z) is made; the first step of ordinary perturbation theory is
essentially a procedure for finding suitable zeroth-order functions.

It may happen that some of the non-diagonal terms are large
and others small; in this case neglect of the small terms leads to
an equation such as

HII—W le 0 0
Hy Hyy — W 0 0
0 0 Haa— W 0 oy = 0,
0 0 0 Hy— W

which can be factored into the equations

Hy - W Hy,

Hy  Hyp—-w|="
Hyy — W =0, (27-10)
Hy,—-W =0,

ete.

It is seen that this treatment i analogous to the first-order
perturbation treatment for degenerate states as given in Section
24. The more general treatment now under discussion is espe-
cially valuable in case that the unperturbed levels are not exactly
equal, that is, in case of approximate degeneracy.

A second approximation to the solution of Equation 27-7
can be made in the following manner. Suppose that we are
interested in the second energy level, for which the value Hq;
is found for the energy as a first approximation. We introduce
this expression for W everywhere except in the term Hi, — W,
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and neglect non-diagonal terms except H;, and H,,, thus obtain-
ing the equation

Hy — Hay Hy, 0 0
H, Hyy =W H,; H., N 0
0 Hy, Hy; — Hy, 0 (37_'11)

0 HAZ 0 H“_H22

On multiplying out the determinant, we convert this equation
into the form

(Hopa — W)Y(H 1y — Hy)(Hys — Hag)(Huy — Hae) - - -
- H12H21(H33 - sz)(”u - sz) s
“Hsszs(Hu - sz)(Hu - sz) T e =0.

with the solution

AHQIHIL

W=Ho— 20—,
l

(27-12)

in which the prime indicates that the term with I = 2 is omitted.
This is analogous to (and more general than) the second-order
perturbation treatment of Section 25; Equation 27-12 becomes
identical with Equation 25-3 when H,; is replaced by W} and
sz by H],‘l.

Higher approximations can be carried out by obvious exten-
sions of this method. If Equation 27-7 can be factored into
equations of finite dcgree, they can often be solved accurately by
algebraic or numerical methods.

Let us now consider a simple example,! the second-order
Stark effect of the normal hydrogen atom, using essentially the
method of Epstein (mentioned above). This will also enable
us to introduce and discuss a useful set of orthogonal functions.

The wave equation for a hydrogen atom in an electric field
can be written as

h
8r

2 2
LV~ S+ eFr = WY, (27-13)

in which eFz represents the interaction with an electric field of
strength F along the z axis. In order to discuss this equation we
shall make use of certain functions F,..(¢, ¥, ¢), defined in terms

! The study of this example can be omitted by the reader if desired.
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of the associated Laguerre and Legendre functions (Secs. 19
and 20) as

F’)‘#(E: d, ‘P) = Avk(E)eku(l’)q’u(‘P): (27—14)
in which
D " _£
T A L BT

L3%'(¢) being an associated Laguerre polynomial as defined in
Section 20b. The functions 6,,(¢#) and ®,(¢) are identical with
the functions 6,,(¢) and &,(¢) of Equations 21-2 and 21-3
except for the replacement of ! and m by \ and u. It is found
by the use of relations given in Sections 19 and 20 that F,\.(¢, 9, ¢)
satisfies the differential equation

F  20F v 1 1 oW
W+E£+<E"4>F+ma_w

1 af . OF
The functions are normalized and mutually orthogonal with
weight factor £, satisfying the relations

!
=V

14
J;z'J;'J; “FXF, o £dE sin 0dode = 1 for A

= N
27-1
p=4u @27-17)
= () otherwise.

If we identify § with 2Zr/n’a,, where ao, = h?*/4r%ue?, then
the functions F,., become identical with the hydrogen-atom wave
functions yYni» for the value n = n’ of the principal quantum
number 7, but not for other values of n; the functions F,,, all
contain the same exponential function of r, whereas the hydrogen-
atom wave functions for different values of n contain different
exponential functions of r,
For the problem at hand we place n’ equal to 1 and Z equal to 1,
writing
_ 2 _ h?
e R
The functions F,,, then satisfy the equation

(27-18)

Ve, + G - %)F,M. = —-(—"—;—QF,X,.. (27-19)



VII-27a) OTHER APPROXIMATE METHODS 197

Now let us write our wave equation 27-13 as

vy + (% - %)'P — Afcosdy = By, (27-20)
in which
_aF
fe (27-21)
- Wao 1
B="%a ~ 7

and the operation V? refers to the coordinate ¢ rather than r,
t being given by Equation 27-18. To obtain an approximate
solution of this equation in terms of the functions F,,, we shall
set up the secular equation in the form corresponding to.second-
order perturbation theory for the normal state, as given in
Equation 27-11; we thus obtain the equation

H,—-28 H,, Hyp,
Hy Hy, 0 _ y
H., 0 Hi =0, (27-22)

in which

H;; = fff i (V’+% - i - AEcOSt?)

Fi£%dt sin 9dode, (27-23)

7 and j being used to represent the three indices », N\, u. The
factor 2 before B8 arises from the fact that the functions F,,
are not normalized to unity with respect to the volume element
£2d¢ sin dddde.

It is found on setting up the secular equation 2722 that only
the three functions F 40, F210, and Fs;oneed be considered, inasmuch
as the equation factors into a term involving these three fune-
tions only (to the degree of approximation considered) and terms
involving other functions. The equations

£2 cos OF 100 = 4N/ 2F210 — 2V/2F 310 (27-24)
and

Foauw=—{(v = NE+ N+ DI*F s + 20F 0 —
{(v + Ny — XN — DI¥F, ), (27-25)
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together with Equation 27-17, enable us to write as the secular
equation for these three functions

—-28  —44/24 20/24
—4+/24 -1 0 =0, (27-26)
2424 0 -2

The root of this is easily found to be 3 = 1842, which corresponds
to

[ 62 _— 9 32
W = 230 EGOF y
or
W' =W — W = —9%4aiF2. (27-27)

This corresponds to the value
a = 94a3 = 0.677 - 10-* cm?®
for the polarizability of the normal hydrogen atom.

Problem 27-1. Derive the formulas 27-24 and 27-25.

Problem 27-2. Discuss the first~order and®second-order Stark effects
for the states n = 2 of the hydrogen atom by the use of the functions F,x,.
Note that in this case the term in A can be neglected in calculating

Hyxour proniiure

unless » or »"/ is equal to 2, and that the secular equation can be factored
into terms for g = +1, u = 0, and u = —1, respectively.

27b. The Wentzel-Kramers-Brillouin Method.—For large
values of the quantum numbers or of the masses of the particles
in the system the quantum mechanies gives results closely similar
to classical mechanics, as we have seen in several illustrations.
For intermediate cases it is found that the old quantum theory
often gives good results. It is thercfore pleasing that there
has been obtained! an approximate method of solution of the
wave cquation based on an expansion the first term of which
leads to the classical result, the second term to the old-quantum-
theory result, and the higher terms to corrections which bring
in the effects characteristic of the new mechanics. This method
is usually called the Wentzel-Kramers-Brillouin method. In
our discussion we shall merely outline the principles involved
in it.

1 G. WENTZEL, Z. f. Phys. 38, 518 (1926); H. A. Kramers, Z. f. Phys. 39,
828 (1926); L. BriLLovIN, J. de phys. 7, 353 (1926); J. L. DuNsaAM, Phys.
Rev. 41, 713 (1932).
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For a one-dimensional problem, the wave equation is

B Lo -V =0, - << 4o
If we make the substitution
2ri
v =i vz (27-28)
we obtain, as the equation for y,
h d
g =2m(W = V) -y =pt -y, (27-29)

in which p = +v2m(W — V) is the classical expression for
the momentum of the particle. We may now expand y in powers
of h/2x1i, considering it as a function of A, obtaining

h 2
y‘yo+21y1+< >yz+ (27-30)

Substituting this expansion in Equation 27-29 and equating the
coefficients of the successive powers of h/2ri to zero, we obtain
the equations

Yo = \/2m(W V , (27-31)

_ yo - P , _
Y = 2y0 21) 4————(W vy (27-32)

Y2 = =152 {5V + 4V"(W — V)}(2m)#(W — V)%, (27-33)
. . , _dv n _ @V
in which ¥’ = Tz and V" = pro

The first two terms when substituted in Equation 27-28 lead
to the expression

VRN — V) i n ) VT

as an approximate wave function, since

1 v’ 1 av 1
fyldx = ‘I WTde = + ;fw—_—v = —z lOg (W - V)

80 that

(27-34)

eflhdz _ (W _ V)__%.

The probability distribution function to this degree of approxima-
tion is therefore

U* = N*(W — V)% = const. 11), (27-35)
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agreeing with the classical result, since p is proportional to the
velocity and the probability of finding a particle in a range dz is
inversely proportional to its velocity in the interval dz.

The approximation given in Equation 27-34 is obviously not
valid near the classical turning points of the motion, at which
W = V. This is related to the fact that the expansion in
Equation 27-30 is not a convergent series but is only an asymp-
totic representation of y, accurate at a distance from the points
at which W =V,

So far nothing corresponding to quantization has appeared.
This occurs only when an attempt is made to extend the wave
function beyond the points W = V into the region with W less
than V. It is found! that it is not possible to construct an
approximate solution in this region satisfying the conditions
of Section 9c¢ and fitting smoothly on to the function of Equation
27-34, which holds for the classically allowed region, unless W
is restricted to certain discrete values. The condition imposed
on W corresponds to the restriction

Fydr =nh, n=0123 ---, (27-36)

in which the integral is a phase integral of the type discussed in
Section 5b. If we insert the first term of the series for y, y = p,
we obtain the old-quantum-theory condition (Sec. 5b)

Fpdz =nh, n=0123""". (27-37)

For systems of the type under discussion, the second term

introduces half-quantum numbers; i.e., with y = yo + %in'yl’
h h
§ydx = fpdz + 2—ﬂ-§y1dx = §pd:c -3 = nkh,
so that .
SFpdz = (n + 14)h (27-38)

to the second approximation. (The evaluation of integrals such
as #'yide is best carried out by using the methods of complex
variable theory, which we shall not discuss here.?)
This method has been applied to a number of problems and
is a convenient one for many types of application. Its main
1 Even in its simplest form the discussion of this point is too involved to

be given in detail here.
3J. L. Duneawm, Phys. Rev. 41, 713 (1932).
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drawback is the necessity of a knowledge of contour integration,
but the labor involved in obtaining -the energy levels is often
considerably less than other methods require.

27c. Numerical Integration.—There exist well-developed meth-
ods! for the numerical integration of total differential equations
which can be applied quite rapidly by a practiced investigator.
The problem is not quite so simple when it is desired to find
characteristic values such as the energy levels of the wave equa-
tion, but the method is still practicable.

Hartree,®2 whose method of treating complex atoms is dis-
cussed in Chapter IX, utilizes the following procedure. For
some assumed value of W, the wave equation is integrated
numerically, starting with a trial function which satisfies the
boundary conditions at one end of the range of the independent
variable z and carrying the solution into the middle of the range
Another solution is then computed for this same value of W,
starting with a function which satisfies the boundary conditions
at the other end of the range of z. For arbitrary values of W
these two solutions will not in general join smoothly when they
meet for some intermediate value of z. W is then changed
by a small amount and the process repeated. After several
trials a value of W is found such that the right-hand and left-
hand solutions join together smoothly (i.e., with the same
slope), giving a single wave function satisfying all the boundary
conditions.

This method is a quantitative application of the qualitative
ideas discussed in Section 9¢. The process of numerical integra-
tion consists of starting with a given value and slope for ¥ at a
point 4 and then calculating the value of ¥ at a near-by point B
by the use of values of the slope and curvature (—;—:—ﬁ at A, the latter
being obtained from the wave equation.

This procedure is useful only for total differential equations in
one independent variable, but there are many problems involving
several independent variables which can be separated into total

1E. P. Apams, “Smithsonian Mathematical Formulae,” Chap. X, The
Smithsonian Institution, Washington, 1922; E. T. WriTTAKER and G.
RoBINsON, “Calculus of Observations,” Chap. X1V, Blackie and Son., Ltd.,
London, 1929,

2 D. R. HARTREE, Proc. Cambridge Phil. Soc. 24, 105 (1928); Mem.
Manchester Phil. Soc. TT, 91 (1932-1933).
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differential equations to which this method may then be applied.
Hartree’s method of treating complicated atoms (Sec. 32) and
Burrau’s calculation of the energy of HY (Sec. 42¢) are illustra-
tions ¢. the use of numerical integration.

27d. Approximation by the Use of Difference Equations.—The
wave equation

2
Worpgr—vw=0, B=""0 @-39)

may be approximated by a set of difference equations,?

Lt — 20+ v) + B - V@) =0, (27-40)

or
Dbty = Wi, (27-41)
i
in which ¢1, ¢, - - -, ¥, - - - are numbers, the values of the
function ¢ at the points z,, z;, - - - , z;, - - - uniformly spaced
L7 A
wi Je
\
v, 7]
X X2 X3 Xs o Xs Xe Xy Xg

Fi1G. 27-1.—The approximation to a wave function ¥ by segments of straight lines.

along the z axis with a separation z; — z;_; = a. To prove this
we consider the approximation to ¢ formed by the polygon of
straight lines joining the points (i, ¥i), (z2, ¥2), - - -,
(zi, Vi), - - - of Figure 27-1. The slope of ¢ at the point
halfway between z,_, and z; is approximately equal to the slope
of the straight line connecting z;_; and z,, which is (y; — ¥.:-1)/a.
The second derivative of ¢ at £ = z; is likewise approximated by
1/a times the change in slope from (z; 4+ zi-1)/2 to (z; + zi11)/2;
that is,

aW _via — 2%+ Y
e 2. : (27-42)

L R. G. D. RicEARDRON, Trans. Am. Math. Soc. 18, 489 (1917); R. CouranT,
K Femnnrena and H Tawv Mathematische Annnlon 100 29 (1Q9R)
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The differential equation 27-39 is the relation between the

2,

curvature g? at a point and the funection k2(W — V)¢ at that

point, so that we may approximate to the differential equation
by the set of equations 2740, there being one such equation for
each point z;. The more closely we space the points z;, the more
accurately do Equations 2740 correspond to- Equation 27-39.

Just as the lowest energy W of the differential equation can be
obtained by minimizing the energy integral £ = [¢*H ¢dr with
respect to the function ¢, keeping [¢*¢dr = 1, so the lowest
value of W giving a solution of Equations 27-40 may be obtained
by minimizing the quadratic form

zb ] ¢‘€¢‘1
E =14 ) (27-43)

Z‘,da?_

in which ¢y, ¢2, - - -, ¢i, - - - are numbers which are varied
until £ is & minimum. (Just as ¢ must obey the boundary
conditions of Section 9¢, so the numbers ¢: must likewise approxi-
mate a curve which is a satisfactory wave function.)

A convenient method! has been devised for carrying out this
minimization. A set of trial values of ¢; is chosen and the
value of E is calculated from them. The true solutions i,
to which the values of ¢; will converge as we carry out the
variation, satisfy Equations 27-40. Transposing one of these
gives

Vio1 + Yin
s = . 4
Ve S 5 (W - V(@) (27-44)
1f the ¢'s we choose are near enough to the true values ¥, then
it ean be shown! that, by putting ¢.—, and ¢4, in place of ¥, ,
and ¢:,, and E in place of W in Equation 27-44, the resulting
expression gives an improved value ¢; for ¢;, namely,

7 ¢1.—1 + ¢1+1 . \

¢ = 2 — a?k*{E — V(zs)} (27-45)

In this way a new set ¢{, ¢3, - - -, ¢, - - - can be built up
from the initial set ¢1, ¢3, - - - , @i, + - - , the new set giving a

1 G. E. KimBaLL and G. H. SHORTLEY, Phys. Rev. 45, 815 (1934).
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lower and therefore a better value of E than the first set. This
process may then be repeated until the best set ¢; is obtained
and the best value of E.

This procedure may be modified by the use of unequal intervals,
and it can be applied to problems in two or more dimensions,
but the difficulty becomes much greater in the case of two
dimensions.

Problem 27-8. Using the method of difference equations with an

interval a = 34, obtain an upper limit to the lowest energy W, and an
approximation to ¢, for the harmonic oscillator, with wave equation

g +AN—z =0 (see Eq. 11-1).
27e. An Approximate Second-order Perturbation Treatment.
The equation for the second-order perturbation energy (Eq. 25-3)
is

14

" H, H,
W, = : W%" + Hy}, (27-46)
with
Hy = [yR*H'Ydr
and

Hy; = fyR*H"Y{dr.
The sum may be rearranged in such a manner as to permit an
approximat,e value to be easily found. On multiplying by

W + W°’ it becomes

AN HLH,
WSZ HuH, EW*’(Wk Wy

Now we can replace? E'H;,H{Lnby (H' ¥ — (H[)? obtaining
1

1 To prove this, we note that Hy? = EH,',,\V} (as is easily verified by
i

multiplication by y¥$* and integration). Hence
@u = fuenia - furmrg = [ ()
i

= > HuHy
1l

’
The sum E = H,,H, differs from this only by the term with ! = k, (HL)%
1
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for W, the expression

o _ (HDu _ (HR | o, ‘Wi HuHh
= T we THR Y 2wy —wp

in which

(2747)

(H' Y = [YL*H Hidr. (2748)

This expression is of course as difficult to evaluate as the
original expression 2746. However, it may be that the sum is
small compared with the other terms. For example, if & repre-
sents the normal state of the system, and the origin for energy
measurements is such that W! is negative, the terms in the sum
will be negative,for W} negative, and positive for W} positive,
and there may be considerable cancellation. It must be empha-
sized that the individual terms in this expression are dependent
on the origin chosen for the measurement of energy (the necessity
for an arbitrary choice of this origin being the main defect of the
approximate treatment we are describing). If this origin were
to be suitably chosen, this sum could be made to vanish, the
second-order perturbation energy then being given by integrals
involving only one unperturbed wave function, that for the
state under consideration. The approximate treatment consists
in omitting the sum.,

As an example let us take the now familiar problem of the
polarizability of the normal hydrogen atom, with H' = eFz.
We know that HY, ,, vanishes. The integral (H'?%),,,, is equal
to eF*(2%) 1,1, and, inasmuch as r? = z? 4 y? 4- 22 and the
wave function for the normal state is spherically symmetrical,
the value of (2?),1, is just one-third that of (r?),,,.., given in
Section 21¢ as 3a2. Thus we obtain

.,  eFal

10 = o
1s
If we use the value —e?/2a, for WY, (taking the ionized atom at

zero energy), we obtain

W' = —2F%,
which corresponds to the value a = 4a} for the polarizability.

This is only 11 per cent less than the true value (Sec. 27a),

being just equal to the value given by the simple treatment of
Problem 26-1.
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It is interesting to note that if, in discussing the normal state
of a system, we take as the zero of energy the first unperturbed
excited level, then the sum is necessarily positive and the approxi-
mate treatment gives a lower limit to W¢. In the problem of the
normal hydrogen atom this leads to

Wi 2 —3%F%,

giving for a the upper limit 164aj, which is 18 per cent larger
than the correct value 34ai. Inasmuch asthe valuea = 4a3 given
by the variation method is a lower limit, these two very simple
calculations fix o to within a few per cent.

It was pointed out by Lennard-Jones! that this approximate
treatment of W) corresponds to taking as the first-order per-
turbed wave function the approximate expression (not normalized)

Ve =1L+ AH + - - -) (27-49)

in which A = 1/W..

This suggests that, when practicable, it may be desirable to
introduce the perturbation function in the variation function
in this way in carrying out a variation treatment. Examples of
calculations in which this is done are given in Sections 29e
and 47.

1], E. Lennarp-Jongs, Proc. Roy. Soc. A129, 598 (1930).



CHAPTER VIII

THE SPINNING ELECTRON AND THE PAULI
EXCLUSION PRINCIPLE, WITH A DISCUSSION OF THE
HELIUM ATOM

28. THE SPINNING ELECTRON!

The expression obtained in Chapter V for the energy levels of
the hydrogen atom does not account completely for the lines
observed in the hydrogen spectrum, inasmuch as many of the
lines show a splitting into several components, corresponding
to a fine structure of the energy levels not indicated by the simple
theory. An apparently satisfactory quantitative explanation
of this fine structure was given in 1916 by the brilliant” work of
Sommerfeld,? who showed that the consideration of the rela-
tivistic change in mass of the electron caused the energy levels
given by the old quantum theory to depend to some extent on
the azimuthal quantum number k as well as on the total quantum
number n, the splitting being just that observed experimentally
not only for hydrogen and ionized helium but also for z-ray
lines of heavy atoms. This explanation was accepted for
several years. Shortly before the development of the quantum
mechanics, however, it became evident that there were trouble-
some features connected with it, relating in particular to the
spectra of alkalilike atoms. A neutral alkali atom consists in
its normal state of an alkali ion of particularly simple electronic
structure {(a completed outer group of two or eight electrons)
and one valence electron. The interaction of the valence electron
and the ion is such as to cause the energy of the atom in various
quantum states to depend largely on the azimuthal quantum
number for the valence electron as well as on its total quantum
number, even neglecting the small relativistic effect, which is
negligible compared with the electron-ion interaction. How-

1 For a more detailed treatment of this subject see L. Pauling and S.
Goudsmit, “The Structure of Line Spectra,” Chap. IV,
1 A. SOMMERFELD, Ann. d. Phys. 51, 1 (1916).
207
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ever, the levels corresponding to given values of these two
quantum numbers were found to be often split into two levels,
and it was found that the separations of these doublet levels are
formally representable by the Sommerfeld relativistic equation.
Millikan and Bowen! and Landé,? who made this discovery,
pointed out that it was impossible to accept the relativistic
mechanism in this case, inasmuch as the azimuthal quantum
number is the same for the two components of a doublet level,
and they posed the question as to the nature of the phenomenon
involved.

The answer was soon given by Uhlenbeck and Goudsmit,?
who showed that the difficulties were removed by attributing to
the electron the new properties of angular momentum and
magnetic moment, such as would be associated with the spinning
motion of an electrically charged body about an axis through
it. The magnitude of the total angular momentum of the

electron is v/s(s +1 %, in which s, the electron-spin quanium

number, i8 required by the experimental data to have the value
14. The component of angular momentum which the electron

spin can possess along any prescribed axis is either +é% or

1A,
22’
quantum number m, can assume only the values +14 and —14.
To account for the observed fine-structure splitting and Zeeman
effects it i8 found that the magnetic moment associated with
the electron spin is to be obtained from its angular momentum
by multiplication not by the factor ¢/2mc, as in the case of
orbital magnetic moment (Sec. 21d), but by twice this factor,
the extra factor 2 being called the Landé g factor for electron spin.
In consequence the total magnetic moment of the electron spin

that is, it i8 given by the expression m.;—r, in which the

1 R. A. MiLuikaN and I. 8. BoweN, Phys. Rev. 24, 223 (1924).

3 A. Lanot, Z. f. Phys. 35, 46 (1024).

3 G. E. UnLENBECK and S. GoupsumiT, Nafurwissenschaflen 18, 953 (1925);
Nature 117, 264 (1926). The electron spin was independently postulated by
R. Bichowsky and H. C. Urey, Proc. Nat. Acad. Sci. 12, 80 (1926) (in whose
calculations there was a numerical error) and had been previously suggested
on the basis of unconvincing evidence by several people.
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.o ¢ h 173 ‘
is 251:705 \3 3 or v/3 Bohr magnetons, and the component along

a prescribed axis is either +1 or —1 Bohr magneton.

It was shown by Uhlenbeck and Goudsmit and others! that the
theory of the spinning electron resolves the previous difficulties,
and the electron spin is now accepted as a property of the electron
almost as well founded as its charge or mass. The doublet
splitting for alkalilike atoms is due purely to the magnetic
interaction of the spin of the electron and its orbital motion.
The fine structure of the levels of hydrogenlike atoms is due to
a particular combination of spin and relativity effects, resulting
in an equation identical with Sommerfeld’s original relativistic
equation. The anomalous Zeeman effect shown by most atoms
(the very complicated splitting of spectral lines by a magnetic
field) results from the interaction of the field with both the
orbital and the spin magnetic moments of the electrons, the
complexity of the effect resulting from the anomalous value 2
for the g factor for electron spin.?

The theory of the spinning electron has been put on a particu-
larly satisfactory basis by the work of Dirac. In striving to
construct a quantum mechanics compatible with the require-
ments of the theory of relativity, Dirac® was led to a set of
equations representing a one-electron system which is very
different in form from the non-relativistic quantum-mechanical
equations which we are discussing. On solving these, he found
that the spin of the electron and the anomalous g factor 2 were
obtained automatically, without the necessity of a separate
postulate. The equations led to the complete expression for
the energy levels for a hydrogenlike atom, with fine structure,
and even to the foreshadowing of the positive electron or positron,
discovered four years later by Anderson.

So far the Dirac theory has not been extended to systems
containing several electrons. Various methods of introducing

L' W. PauLl, Z. f. Phys. 38, 336 (1926); W. HE1sENBERG and P. JORDAN,
Z. f. Phys. 81, 266 (1926); W. GorDON, Z. f. Phys. 48, 11 (1928); C. G.
Darwin, Proc. Roy. Soc. A 118, 654 (1928); A. SoMMERFELD and A. UNsOLD,
Z. f. Phys. 36, 259; 88, 237 (1926).

* For a fuller discussion see Pauling and Goudsmit, ‘“The Structure of
Line Spectra,” Secs. 17 and 27.

3P. A. M. Dirac, Proc. Roy. Soc. A117, 610; A118, 351 (1928).
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the spin in non-relativistic quantum mechanics have been
devised. Of these we shall describe and use only the simplest
one, which is satisfactory so long as magnetic interactions
are neglected, as can be done in treating most chemical and
physical problems. This method consists in introducing a
spin variable w, representing the orientation of the electron,
and two spin wave functions, a(w) and B(w), the former cor-
responding to the value 414 for the spin-component quantum
number m, (that is, to a component of spin angular momentum
along a prescribed axis in space of +144/2r) and the latter to
the value —14 for m,. The two wave functions are normalized
and mutually orthogonal, so that they satisfy the equations

Jat(w)dw =1,
JB(w)dw =1, (28-1)
Ja(w)B(w)dw = 0.

A wave function representing a one-electron system is then
a function of four coordinates, three positional coordinates
such as z, y, and z, and the spin coordinate w. Thus we write
¥z, ¥, 2)a(w) and ¢(z, y, 2)B(w) as the two wave functions cor-
responding to the positional wave function ¥(z, y, 2), which is a
golution of the Schrodinger wave equation. The introduction
of the spin wave functions for systems containing several electrons
will be discussed later.

Various other simplified methods of treating electron spin have
been developed, such as those of Pauli,! Darwin,? and Dirac.?
These are especially useful in the approximate evaluation of
interaction energies involving electron spins in systems containing
more than one electron.

29. THE HELIUM ATOM. THE PAULI EXCLUSION PRINCIPLE

29a. The Configurations 1s2s and 1s2p.—In Section 23b we
applied the first-order perturbation theory to the normal helium
atom. Let us now similarly discuss the first excited states of
this atom,* arising from the unperturbed level for which one

! W. PauLr, Z. f. Phys. 48, 601 (1927).

2 C. G. DARwIN, Proc. Roy. Soc. A116, 227 (1927).

3 P. A. M. Dirac, Proc. Roy. Soc. A128, 714 (1929).

4 This was first done by W. Heisenberg, Z. f. Phys. 89, 499 (1926).
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electron has the total quantum number » = 1 and the other
n = 2. It was shown that, if the interelectronic interaction
term e?/ry; be considered as a perturbation, the solutions of the
unperturbed wave equation are the products of two hydrogen-
like wave functions

4’"1117"1(1) 4’":11#&:(2))

in which the symbol (1) represents the coordinates (r,, #1, ¢1)
of the first electron, and (2) those of the second electron. The
corresponding zeroth-order energy is

1 1
W?.l.,.’ = —-4Rhc<n—% + ;g)
We shall ignore the contribution of electron spin to the wave
function until the next section.

The first excited level, with the energy W° = —5Rhe, is that
for ny =1, n, =2 and n, =2, n, = 1. This is eight-fold
degenerate, the eight corresponding zeroth-order wave functions
being

1s(1) 2s(2),
2s(1) 1s(2),
1s(1) 2pi(2),
2p.(1) 1s(2), (29-1)
1s(1) 2p,(2),
2p,(1) 1s(2),
1s(1) 2p.(2),
2p.(1) 15(2),

in which we have chosen to use the real ¢ functions and have
represented ¥ 100(1) by 1s(1), and so on.

On setting up the secular equation, it is found to have the
form

Jo—W K. 0 0 0 0 0 0
K. JLo—w 0 0 0 0 0 0
0 0 Jy—W Ky 0 0 0 0
0 0 Ky Jop—W O 0 0 0 - 0.
0 0 0 0 J,-W K 0 0
0 0 0 0 Ky Jp—W 0 0
0 0 0 0 0 0 J,-W K,
0 0 0 0 0 0 Ky Jy— W'

(29-2)
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Here the symbols J,, K,, J5, and K, represent the perturbation
integrals

J‘ = ffls(l) 23(2) % 18(1) 28(2) d‘l’ld‘rz,

= 6—2 AT
K, = ffls(l) 23(2) o 2s(1) 1s(2) dridr,, 20-3)

J, = f f 15(1) 294(2) 2 15(1) 2p.(2) dridrs,

K, = f f 15(1) 204(2) - 2p.(1) 15(2) drudrs.

J, and K, also represent the integrals obtained by replacing
2p. by 2p, or 2p,, inasmuch as these three functions differ from
one another only with regard to orientation in space. The
integrals J, and J, are usually called Coulomb integrals; J,,
for example, may be considered to represent the average Coulomb
interaction energy of two electrons whose probability distribution
functions are {1s(1)}® and {2s(2)}2. The integrals K, and K,
are usually called resonance integrals (Sec. 41), and sometimes
exchange inlegrals or interchange inlegrals, since the two wave
functions involved differ from one another in the interchange
of the electrons.

It can be seen from symmetry arguments that all the remaining
perturbation integrals vanish; we shall discuss [[1s(1) 2s(2)

2
:—18(1) 2p.(2) dridr: as an example. In this integral the func-
12

tion 2p.(2) is an odd function of the coordinate z,, and inasmuch
as all the other terms in the integrand are even functions of z,,
the integral will vanish, the contribution from a region with z,
negative canceling that from the corresponding region with z,
positive. '

The solution of Equation 29-2 leads to the perturbation energy
values

W =J,+ K,,
J.— K,,
Jy, + K, (triple root),
J, — K,, (triple root).

(29-4)

The splitting of the unperturbed level represented by these
equations is shown in Figure 28-1.
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One part of the splitting, due to the difference of the Coulomb
integrals J, and J,, can be easily interpreted as resulting from the
difference in the interaction of an inner 1s electron with an
outer 2s electron or 2p electron. This effect was recognized in
the days of the old quantum theory, being described as resulting
from greater penetration of the core of the atom (the nucleus
plus the inner electrons) by the more eccentric orbits of the

n,ny =11

Fi1a. 29-1.—The splitting of energy levels for the helium atom.

outer electron, with a consequent increase in stability, an s orbit
being more stable than a p orbit with the same value of n, and
so on.! (It is this dependence of the energy of an electron on [
as well as n which causes the energy levels of an atom to depend
largely on the electronic configuration, this expression meaning
the n and [ values of all electrons, These values are usually
indicated by writing ns, np, etc., with the number of similar
electrons indicated by a superscript. Thus 1s? indicates two 1s
electrons, 1s?2p these plus a 2p electron, and so on.)

1 PAvLiNG and GoupsMir, “‘ The Structure of Line Spectra,” Chap. IIL
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On the other hand, the further splitting due to the integrals
K, and K, was not satisfactorily interpreted before the develop-
ment of the quantum mechanics. It will be shown in Section 41
that we may describe it as resulting from the resonance phe-
nomenon of the quantum mechanics. The zeroth-order wave
function for the state with W’ = J, + K,, for example, is

Tp1a(1) 25) + 25(1) 1s@)1;

the atom in this state may be described as resonating between the
structure in which the first electron is in the 1s orbit and the
second in the 2s orbit and that in which the electrons have been
interchanged.

A wave function of the type just mentioned is said to be
symmetric in the posttional coordinates of the two electrons, inasmuch
as the interchange of the coordinates of the two electrons leaves
the function unchanged. On the other hand, the wave function

-\i@{ls(l) 25(2) — 2s(1) 1s(2)}
is antisymmetric in the positional coordinates of the electrons,
their interchange causing the function to change sign. It is
found that all wave functions for a system containing two
identical particles are either symmetric or antisymmetric in the
coordinates of the particles.

For reasons discussed in the next section, the stationary states
of two-electron atoms represented by symmetric and by anti-
symmetric positional wave functions are called singlet states
and friplet states, respectively. The triplet state from a given
configuration is in general more stable than the singlet state.

29b. The Consideration of Electron Spin. The Pauli Exclu-
sion Principle.—In reconsidering' the above perturbation prob-
lem, taking cognizance of the spin of the electrons, we must
deal with thirty-two initial spin-orbit wave functions instead of
the eight orbital functions 1s(1) 2s(2), 1s(1) 2p.(2), etc. These
thirty-two functions are obtained by multiplying each of the
eight orbital functions by each one of the four spin functions

a(1) a(2),
«(1) 8(2),
8(1) a(2),
8(1) B(2).
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Instead of using the second and third of these, it is convenient to
use certain linear combinations of them, taking as the four spin
functions for two electrons

] a(l) a(2)’

L {a)) 5@ + 801) «(2)),

Ve
B A@), (25-5)
1

\/E{a(l) 8(2) — (1) a(2)}.
These are normalized and mutually orthogonal. The first
three of them are symmetric in the spin coordinates of the two
electrons, and the fourth is antisymmetric. It can be shown that
these are correct zeroth-order spin functions for a perturbation
involving the spins of the two electrons.

Taking the thirty-two orbit functions in the order

1s(1) 2s(2) a(l) a(2),
25(1) 15(2) (1) «(2),
1s(1) 2p=(2) a(1) a(2),

15(1) 25(2) -:/l_ﬁ{a(l) 8(2) + B(1) «(2)},

obtained by multiplying the eight orbital functions by the first
spin function, then by the second spin function, and so on,
we find that the secular equation has the form
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in which each of the small squares is an eight-rowed determinant
identical with that of Equation 20-2. The integrals outside of
these squares vanish because of the orthogonality of the spin
functions and the non-occurrence of the spin coordinates in the
perturbation function e?/r;;. The roots of this equation are
the same as those of Equation 29-2, each occurring four times,
however, because of the four spin functions.

The correct zeroth-order wave functions are obtained by
multiplying the correct positional wave functions obtained in the
preceding section by the four spin functions. For the con-
figuration 1s2s alone they are

5110 25(2) + 20(1) 15@)} * a1) a(2)
%us(n 25(2) + 2s(1) 15(2)} -%{au) 8(2) + A1) ()]
51150 252) + 250 15(2)] - Q) B2,
1 262) = 250) 152) ' le 8G2) — ) a@),
—lﬁusa) 25(2) — 2s(1) 15(2)} - a(1) a(2),
Tripletd /3 1#(D 252) = 22D 1s(2) -—\}—itau) 82 +
1 8(1) a(@)},
310 202) — 25(1) 152} - 8D 6(2),
Singlet -\iﬁusu) 2(2) +2(0) 1a@)} -—\—lﬁzau) 8(2) —
B(1) ().

Of these eight functions, the first four are symmetric in the
coordinates of the two electrons, the functions being unchanged
on interchanging these coordinates. This symmetric character
results for the first three functions from the symmetric character
of the orbital part and of the spin part of each function. For
the fourth function it results from the antisymmetric character
of the two parts of the function, each of which changes sign on
interchanging the two electrons.
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The remaining four functions are antisymmetric in the two
electrons, either the orbital part being antisymmetric and the
spin part symmetric, or the orbital part symmetric and the spin
part antisymmetric.

Just as for 1s2s, so each configuration leads to some symmetric
and some antisymmetric wave functions. For 1s2, for example,
there are three of the former and one of the latter, obtained by
combining the symmetric orbital wave function of Section 23b
with the four spin functions. For 1s2p there are twelve of each

Symmetric Antisymmetric
XX \
eeoe c0o0ls2p'P

152p.® @@
XX
000 ® © 0s2p%P
oo
XX O ls2sls
Is2s
o) ® @ 0!s2s’S
1s2 e0@ ols?'s

Fig. 29-2.——Levels for configurations ls?, 1s2s, and 182p of the helium atom. g,
spin-symmetric wave functions; O, spin-antisymmetric wave functions

type, nine spin-symmetric and orbital-symmetric, three spin-
antisymmetric and orbital-antisymmetric; nine spin-svmmetric
and orbital-antisymmetrie, and three spin-antisymmetric and
orbital-symmetric. The levels thus obtained for the helium
atom by solution of the wave equation are shown in Figure 29-2,
the completely symmetric wave functions being represented
on the left and the completely antisymmetric ones on the right.

Now it can be shown that if a helium atom is initially in a
symmetric state no perturbation whatever will suffice to cause
it to change to any except symmetric states (the two electrons
being considered to be identical). Similarly, if it is initially
in an antisymmetric state it will remain in an antisymmetric
state. The solution of the wave equation has provided us with
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two completely independent sets of wave functions. To show
that no perturbation will cause the system in a state represented
by the symmetric wave function ¥s to change to a state repre-
sented by the antisymmetric wave function ¥4 we need only
show that the integral
JYxH pdr

vanishes (H’ being the perturbation function, involving the spin
as well as the positional coordinates of the electrons), inasmuch
as it is shown in Chapter XI that the probability of transition
from one stationary state to another as a result of a perturbation
is determined by this integral. Now, if the electrons are identi-
cal, the expression H'ys is a symmetrical function of the coordi-
nates, whereas y* is antisymmetric; hence the integrand will
change sign on interchanging the coordinates of the two electrons,
and since the region of integration is symmetrical in these
coordinates, the contribution of one element of configuration
space is just balanced by that of the element corresponding
to the interchange of the electrons, and the integral vanishes.!

The question as to which types of wave functions actually
occur in nature can at present be answered only by recourse to
experiment. So far all observations which have been made on
helium atoms have shown them to be in antisymmetric states.?
We accordingly make the additional postulate that the wave
function representing an actual state of a system containing two
or more electrons must be completely antisymmetric in the coordinates
of the electrons; that is, on interchanging the coordinates of any
two electrons it must change its sign. This is the statement of
the Pauli exclusion principle in wave-mechanical language.

This is a principle of the greatest importance. A universe
based on some other principle, that is, represented by wave
functions of different symmetry character, would be completely
different in nature from our own universe. The chemical
properties in particular of substances are determined by this
principle, which, for example, restricts the population of the
K shell of an atom to two electrons, and thus makes lithium

! The same conclusion is reached from the following argument: On inter-
changing the subseripts 1 and 2 the entire integral is converted into itself
with the negative sign, and hence its value must be zero.

2 The states are identified through the splitting due to spin-orbit inter-
actions neglected in our treatment.
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an alkali metal, the third electron being forced into an outer
shell where it is only loosely bound.

To show this, we may mention that if A represents a spin-orbit
function for one electron (such that A(1) = 1s(1) «(1), for

example) and B, C, - - - , E others, then the determinantal
function

A1) B(1) ... EQ)

A(2) B2 ... E@2

AN) BW) ... EW®)

is completely antisymmetric in the N electrons, and hence a
wave function of this form for the N-electron system satisfies
Pauli’s principle, since from the properties of determinants the
interchange of two rows changes the sign of the determinant.
Moreover, no two of the functions A, B, - - - , E can be equal,
as then the determinant would vanish. Since the only spin-orbit
functions based on a given one-electron orbital function are the
two obtained by multiplying by the two spin functions « and B8,
we see that no more than two electrons can occupy the same orbital
in an atom, and these two must have their spins opposed; in other
words, no two clectrons in an atom can have the same values of
the four quantum numbers n, I, m, and m, Pauli’s original
statement® of his exclusion principle was in nearly this language;
its name is due to its limitation of the number of electrons in an
orbit.

The equations of quantum statistical mechanics for a system of
non-identical particles, for which all solutions of the wave
equations are accepted, are closely analogous to the equations
of classical statistical mechanics (Boltzmann statistics). The
quantum statistics resulting from the acceptance of only anti-
symmetric wave functions is considerably different. This
statistics, called Fermi-Dirac-statistics, applies to many problems,
such as the Pauli-Sommerfeld treatment of metallic electrons
and the Thomas-Fermi treatment of many-electron atoms.
The statistics corresponding to the acceptance of only the
completely symmetric wave functions is called the Bose-Einstein
statistics. These statistics will be briefly discussed in Section 49.

' W. PauLt, Z. f. Phys. 81, 765 (1925).
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It has been found that for protons as well as electrons the wave
functions representing states occurring in nature are antisym-
metric in the coordinates of the particles, whereas for deuterons
they are symmetric (Sec. 43f).

The stationary states of the helium atom, represented on the
right side of Figure 29~2, are conveniently divided into two sets,
shown by open and closed circles, respectively. The wave
functions for the former, called singlet stales, are obtained by
multiplying the symmetric orbital wave functions by the single
Zla @) —51) a@).
Those for the latter, called triplet staies, are obtained by mul-
tiplying the antisymmetric orbital wave functions by the three
symmetric spin functions.! The spin-orbit interactions which
we have neglected cause some of the triplet levels to be split
into three adjacent levels. Transitions from a triplet to a
singlet level can result only from a perturbation involving the
electron spins, and since interaction of electron spins is small
for light atoms, these transitions are infrequent; no spectral line
resulting from such a transition has been observed for helium.

It is customary to represent the spectral state of an atom by
a term symbol such as 1S, 3S, 3P, etc. Here the superscript on
the left gives the multiplicity, 1 signifying singlet and 3 triplet.
The letters S, P, etc., represent the resultant of the orbital
angular-momentum vectors of all the electrons in the atom.
This is also given by a resultant azimuthal quantum number L,
the symbols S,P,D, F, - - - correspondingtoL =0,1,2,3, - - - .
If all the electrons but one occupy s orbitals, the value of L is
the same as that of [ for the odd electron, so that for helium the
configurations 1s?, 1s2s, and 1s2p lead to the states 'S, 1S and 38,
and 'P and *P. Use is also made of a resultant spin quantum
number S (not to be confused with the symbol S for L = 0),

antisymmetric spin function

1 The electrons are often said to have their spins opposed or antiparallel
in singlet states and parallel in triplet states, the spin function
1

i{a (1) B(2) +8(1) a(2)}

in the latter case representing orientation of the resultant spin with zero
component along the 2 axis.
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which has the value 0 for singlet states and 1 for triplet states,
the multiplicity being equal to 28 + 1.!

The results which we have obtained regarding the stationary
states of two-electron atoms may be summarized in the following
way. The main factors determining the term values are the
values of the principal quantum numbers n, and n, for the
two electrons and of the azimuthal quantum numbers I, and l,,
smaller values of these numbers leading to greater stability.
These numbers determine the configuration of the atom. The
configuration 1s? leads to the normal state, 1s2s to the next most
stable states, then 1s2p, and so on. For configurations with
ml, different from =yl there is a further splitting of the levels
for a given configuration, due to the resonance integrals,
leading to singlet and triplet levels, and to levels with different
values of the resultant azimuthal quantum number L in case
that both I, and [; are greater than zero. The triplet levels may
be further split into their fine-structure components by the
spin-orbit interaction, which we have neglected in our treatment.
It is interesting to notice that these interactions completely
remove the degeneracy for some states, such as 1s2s 'S,
but not for others, such as 1s2s 38, which then show a further
splitting (Zeeman effect) on the application of a magnetic field
to the atom.

Problem 29-1. Evaluate the integrals J and K for 1s2s and 1s2p of
helium, and calculate by the first-order perturbation theory the term values
for the levels obtained from these configurations. Observed term values
(relative to He*) are 1s2s 1S 32033, 1525 %S 38455, 1s2p 1P 27176, and 1s2p 3P
29233 em~L

29c. The Accurate Treatment of the Normal Helium Atom.—
The theoretical calculation of the energy of the normal helium
atom proved to be an effective stumbling block for the old
quantum theory. On the other hand, we have already seen that
even the first attack on the problem by wave-mechanical methods,

! For a detailed discussion of spectroscopic nomenclature and the vector
modecl of the atom see Pauling and Goudsmit, “The Structure of Line
Speetra.”” The triplet levels of helium were long calied doublets, complete
resolution being difficult. Their triplet character was first suggested by
J. C. Slater, Proc. Nat. Acad. Sci. 11, 732 (1925), and was soon verified
experimentally by W. V. Houston, Phys. Rev. 29, 749 (1927). The names
parhelium and orthohelium were ascribed to the singlet and triplet levels,
respectively, before their nature was understood.
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the first-order perturbation treatment given in Section 23b,
led to a promising result, the discrepancy of about 4 v.e. (accept-~
ing the experimental value as correct) being small compared
with the discrepancies shown by the old-quantum-theory
calculations. It is of interest to see whether or not more and
more refined wave-mechanical treatments continue to diminish
the discrepancy with experiment and ultimately to provide a
theoretical value of the ionization potential agreeing exactly
with the experimental (spectroscopic) value 24.463 v.! The
success of this program would strengthen our confidence in our
wave-mechanical equations, and permit us to proceed to the
discussion of many-electron atoms and molecules.

No exact solution of the wave equation has been made, and all
investigators have used the variation method.2 The simplest
extension of the zeroth-order wavefunction =%, with s = (r, + )/
ap, is to introduce an effective nuclear charge Z’e in place of the
true nuclear charge 2¢ in the wave function. This function, e=%*,
minimizes the energy when the atomic number Z’ has the value
274, corresponding to a screening constant of value 3{¢ (Sec.
26b). The discrepancy with the observed energy® (Table 29-1)
is reduced by this simple change to 1.5 v.e., which is one-third the
discrepancy for Unsold’s treatment. This wave function cor-
responds to assuming that each electron screens the other

} Calculated from Lyman’s term value 198298 ¢cm™! corrected by Paschen
to 198307.9 cm~*; T. Lyman, Astrophys. J. 60, 1 (1924); F. Paschen, Sttzber.
preuss. Akad. Wiss. 1929, p. 662.

? The principal papers dealing with the normal helium atom are A. Unséld,
Ann. d. Phys. 82, 355 (1927); G. W. Kellner, Z. f. Phys. 44, 91, 110 (1927);
J. C. Slater, Proc. Nat. Acad. Sci. 18, 423 (1927); Phys. Rev. 32, 349 (1928);
C. Eckart, Phys. Rev. 86, 878 (1930); E. A. Hylleraas, Z. f. Phys. 48, 469
(1928); 54, 347 (1929); 65, 209 (1930). .A summary of his work is given by
Hylleraas in Skrifter det Norske Vid.-Ak. Oslo, 1. Mat.-Naturv. Klasse 1932,
pp. 5-141. For the special methods of evaluating and minimizing the
energy integral, the reader is referred to these papers.

3 The experimental value —78.605 v.e. = —5.8074 Ryu.hc for the energy
of the normal helium atom is obtained by adding to the observed first
ionization energy 24.463 v,e. (with the minus sign) the energy

4Ruche = —54.1416 v.e.
of the helium ion. Hylleraas has shown that the correction for motion of
the nucleus in the neutral helium atom is to be made approximately by

using Ry.; that is, by assigning to each electron the reduced mass with the
helium nucleus.
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from the nucleus in the same way as a charge —3{ge on the
nucleus.

Problem 28-2. (a) Calculate approximately the energy the normal
lithium atom would have if the allowed wave functions were completely
symmetric in the electrons, using for the positional wave function the
product function 18(1) 1s(2) 1s(3), in which 1s contains the effective nuclear
charge Z’ = 3 — 8, and minimizing the energy relative to Z’ or S. From
this and a similar treatment of Li* obtain the first ionization energy. The
observed value is 5.368 v.e. (b) Obtain a general formula for the Nth
ionization energy of an atom with atomic number Z in such a Bose-Einstein
universe, using screening-constant wave functions. Note the absence of
periodicity in the dependence on Z.

We might now consider other functions of the type F(r,)F(rs),
introducing other parameters. This has been done in a general
way by Hartree, in applying his theory of the self-consistent
field (Chap. IX), the function F(r,) being evaluated by special
numerical and graphical methods. The resulting energy value,
as given in Table 29-1, is still 0.81 v.e. from the experimental
value. Even the simple algebraic function

_Zry _Zm _Zm _Zuirs
e Grg G0 +e e G0

leads to as good a value of the energy. (This is function 4 of
the table, there expressed in terms of the hyperbolic cosine.)
This variation function we may interpret as representing one
electron in an inner orbit and the other in an outer orbit, the
values of the constants, Z, = 2.15 and Z, = 1.19, corresponding
to no shielding (or, rather, a small negative shielding) for the
inner electron by the outer, and nearly complete shielding for
the outer electron by the inner. By taking the sum of two
terms the orbital wave function is made symmetric in the two
electrons. It is interesting that the still simpler function
5 leads to a slightly better value for the energy. Various more
complicated functions of s and ¢ were also tried by Kellner and
Hylleraas, with considerable improvement of the energy value.
Then a major advance was made by Hylleraas by introducing
in the wave function the coordinate u = r;2/a,, which occurs
in the interaction term for the two electrons. The simple two-
parameter functions 6 and 7 provide values of the energy of the
atom accurate to 14 per cent. Here again the polynomial in u
is more satisfactory than the more complicated exponential



224 ) THE SPINNING ELECTRON [VIII-29¢

function, suggesting that a polynomial factor containing further
powers of u, ¢, and s be used. The functions 8, 9, and 10 show
that this procedure leads quickly to a value which is only slightly
changed by further terms, the last three terms of 10 being
reported by Hylleraas as making negligible contributions.
The final theoretical value for the energy of the helium atom is
0.0016 v.e. below the experimental value. Inasmuch as this
theoretical value, obtained by the variation method, should
be an upper limit, the discrepancy is to be attributed to a numer-
ical error in the calculations or to expérimental error in the
ionization energy, or possibly to some small effects such as
electron-spin interactions, motion of the nucleus, ete. At
any rate the agreement to within 0.0016 v.e. may be considered
as a triumph for wave mechanies when applied to many-electron
atoms.

TABLE 29-1.—VaARiaTiION FuncTiONs FOR THE NorMaL HeELIiUM AToM!

Symbols: s =r1+r2’t Dz, o ne
Qo Qo ao
Experimental value of W = —5.80736Ru.he
Difference with
Variation function, with best values of anrgy, experiment
. I units
constants —Rphe Units Ve
——Rm,hc e
Loe 2 e 5.50 0.31 4.19
2, e% 7' =27{g = 1.6875.............| 5.6053 0.1120 1.53
3. Fr)F(ra). oo 5.75 0.06 0.81
4. ¢ Z" cosh ct, Z' = 1.67,¢c = 0.48. . . 5.7508 0.0565 | 0.764
B. e 2’ (1 + cat?), Z’ = 1.69, ¢, = 0.142.. .| 5.7536 0.0537 | 0.726
6. e7ZM¢v, Z' =1.86,¢c =0.26...........] 6.7792 0.0281 | 0.380
7. e 21 4 cu), Z' = 1.849, ¢, = 0.364. .| 5.7824 0.0249 | 0.337
8. e 2™l 4+t eCat?). o 5.80488 | 0.00245 0.0332
Z' = 1.816, ¢; = 0.30, c: = 0.13.
9. e Z(1 + ciu + cot? + css + ces? + csu?)| 5.80648 | 0.00085 0 0115
Z' =1.818,¢, = 0.353, c; = 0.128,
¢y = —0.101, ¢4 = 0.033, ¢cs = —0.032
10. e~Z’*(polynomial with fourteen terms)..{ 5.80748 |—0.00012|—0.0016

1 A fow variation functions which have been tried are not included in the table because
they are only slightly better than simpler ones; for example, the function e™*"* (1—cie~2v),
which is scarcely better than function 8. (D. R. HarTreEe and A. L. INoMAN, Mem.
Manchester Phil. Soc. 77, 69 (1932).)

1 The normalization factor is omitted. Of these functions, 1 is due to Unséld, 2 to Kell-
per, 3 to Hartree and Gaunt, 4 to Eckart and Hylleraas, and the remainder to Hylleraas.
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Hylleraas’s masterly attack on the problem of the energy of
normal helium and heliumlike ions culminated in his derivation
of a general formula for the first ionization energy I of these
atoms and ions.! This formula, obtained by purely theoretical
considerations, is

R_hc
mo
1432

0.01752 | 0.00548

I= (22 ~ 27 + 031488 - 22702 QO ) (29-6)

in which M is the mass and Z the atomic number of the atom.
Values calculated by this formula? are given in Table 29-2,
together with experimental values obtained spectroscopically,
mainly by Edlén® and coworkers. It is seen that there is agree-

TaBLE 29-2.—IoN1zaTiON ENERGIES OF TWO-ELECTRON ATOMS

Atom I calculated, v.e.| I observed, v.c.
H- 0.7149

He 24 465 24.463

Lit 75.257 75.279 + 0.012
Bett 153.109 153.09 +0.10
BH++ 258.029 258.1 +0.2
Ce+ 390.020 380.9 +0.4
N+ 549.085

(015 735.222

ment to within the experimental error. Indecd, the calculated
values are now accepted as reliable by spectroscopists.4
Included in the table is the value 0.7149 v.e. for the ionization
energy of the negative hydrogen ion H-. This shows that the
hydrogen atom has a positive electron affinity, amounting to
16480 cal/mole. The consideration of the crystal energy of the
alkali hydrides has provided a rough verification of this value.
29d. Excited States of the Helium Atom.—The variation
method can be applied to the lowest triplet state of helium as
well as to the lowest singlet state, inasmuch as (neglecting

1E. A. HYLLERAAS, Z. f. Phys. 66, 209 (1930).

2 Using 1 v.e. = 8106.31 cm™! and B, = 109737.42 em™2,

3 A. Ericson and B. EpLEN, Nature 124, 688 (1929); Z. f. Phys. 69, 656
(1930); B. EpLEN, Nature 127, 405 (1930).

1B. EpLEN, Z. f. Phys. 84, 746 (1933).
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spin-orbit interactions) the triplet wave functions are anti-
symmetric in the positional coordinates of the two electrons,
and contain no contribution from singlet functions (Sec. 26¢).

A simple and reasonable variation function is

1sz:(1) 252+(2) — 282:/(1) 1sz.(2),

in which 1s;- and 2sz signify hydrogenlike wave functions with
the indicated effective nuclear charges as parameters. We
would expect the energy to be minimized for Z’ = 2and Z" = 1.
Calculations for this function have not been made. However,
Hylleraas® has discussed the function

se~%"* ginh ct, (29-7)

obtaining the energy value —4.3420Ru.hc, not far above the
observed value —4.3504Ryhc. This function is similar to the
hydrogenlike function (containing some additional terms),
and the parameter values found, Z' = 1.374 and ¢ = 0.825,
correspond to the reasonable values Z' = 2.198 and Z' = 1.099.
Hylleraas has also replaced s in 29-7 by s + ¢,u, obtaining the
energy —4.3448Ry,hc, and by s + cif?, obtaining the energy
—4.3484Ry.hec. 1t is probable that the series s 4 c,u 4 cof?
would lead to very close agreement with experiment.

Numerous investigations by Hylleraas and others? have
shown that wave mechanics can be applied in the treatment of
other states of the helium atom. We shall not discuss further
the rather complicated calculations.

29e. The Polarizability of the Normal Helium Atom.—A
quantity of importance for many physical and chemical con-
siderations (indices of refraction, electric dipole moments,
term values of non-penetrating orbits, van der Waals forces,
etc.) is the polarizability of atoms and molecules, mentioned in
Problem 26-1 and Sections 27a and 27e. We may write as the
energy of a system in an electric field of strength F the expression

W =W°— aF? 4 - - (29-8)

1E. A. HYLLERAAS, Z. f. Phys. B4, 347 (1929).

*W. HesenBERG, Z. f. Phys. 39, 499 (1926); A. UnsbLp, Ann. d. Phys.
83, 355 (1927); E. A. HYLLERAAS and B. UNpuEIN, Z. f. Phys. 86, 7569 (1930);
E. A. HYLLERAAS, ibid. 86, 453 (1930); 83, 739 (1933); J. P. SmiTH, Phys.
Rev. 42, 176 (1932); etc.
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in case that the term linear in F vanishes, the permanent electric
moment of the system being zero. The electric moment induced
in the system by the field is aF, the factor of proportionality «
being called the polarizability. The polarizability of the
molecules in a gas determines its index of refraction n (for light
of very large wave length) and its dielectric constant D, according
to the equation

N 3n~-1_3D-1
V " 4rnt+2 4xDF2

in which & is Avogadro’s number and V is the molal volume of
the substance. The mole refraction R is defined as
__‘41rN

R = g = 2.54 - 10%a, (29-10)

(29-9)

The dimensions of R and « are those of volume, and their magni-
tudes are roughly those of molal volumes and molecular volumes,
respectively; for example, for monatomic hydrogen B = 1.69 ¢m3
and o = 0.667 - 10~2¢ ¢m? (Sec. 27a). Values of R and a are
determined experimentally mainly by measurement of indices
of refraction and of dielectric constants,! rough values being
also obtainable from spectral data.?

The value of the polarizability a of an atom or molecule can
be calculated by evaluating the second-order Stark effect energy
—l4aF? by the methods of perturbation theory or by other
approximate methods. A discussion of the hydrogen atom has
been given in Sections 27a and 27¢ (and Problem 26-1). The
helium atom has been treated by various investigators by the
variation method, and an extensive approximate treatment
of many-electron atoms and ions based on the use of screening
constants (Sec. 33a) has also been given.? We shall discuss the
variational treatments of the helium atom in detail.

The additional term in the Hamiltonian due to the electric

1 The total polarization of a gas may be due to polarization of the electrons
in the gas molecules (for fixed nuclear positions), polarization of the nuclei
(with change in the relative positions of the nuclei in the molecules), and
orientation of molecules with permanent electric dipole moments. We are
here discussing only the first of these mechanisms; the second is usually
unimportant, and the third is treated briefly in Section 49f.

1 8ee PavLing and GoupswMir, *The Structure of Line Spectra,” Sec. 11.

3 L. PauLing, Proc. Roy. Soc. A114, 181 (1927).
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field (assumed to lie along the 2z axis) is eF(z; + 2,), 2 and 2,
being the z coordinates of the two electrons relative to the nucleus.
The argument of Section 27¢ suggests that the variation function
be of the form

¥ =¥l + (21 + 22)f(x1, Yy, 21, Ta, Yo, 22)},  (29-11)

in which y° is an approximate wave function for zero field.
Variation functions of this form (or approximating it) have been
discussed by Hassé, Atanasoff, and Slater and Kirkwood,’
whose results are given in Table 29-3.

TABLE 29-3.—VARIATION FUNCTIONS FOR THE CALCULATION OF THB
PorLaArizABILITY OF THE NORMAL HELIUM ATOM
Experimental value: « = 0.205 - 10724 cm?

_ o+ 7
==
Variation function @ References!
1. e 21 + Az F2)} oo 0.150-10"24¢cm3 H
2. e 21 + A(zie %' F 297 %)} ..., ... .| .164 SK
3. {rir) 08820 {1 + A(z2:672""1 + z4e72'r2)} | 222 SK
4, el + A(z1 + z2) + B(zir1 + zor2)} ... .| 182 H
5. e 2'*{1 4 A(z1 + 22) + terms to quartic)}| .183 H
6. e“z"(_l + C1u)l1 + .A(21 +Zz) +
B(ziry + zar2)} .201 H
7. 21 +cu+cod? + Az +22)}...... .. 127 A
8. e Z*{1 +ciu+ o2 + (A + Bs)(z1 + 22)
+ Ct(zl —_ 22)} . 182 A
9. e 2% {1 + ciu + caf? + css + cas? + csu?
+(A + Bs)(z1 + 22) + Ct(zi — z2)
+Du(z; + z2)} ] 194 A
10. e Z'*(1 4+ ciu + eot?) {1 + A(z1 + z2)
+B(zry + zar9)) | 231 H
11. A non-algebraic function. ............... .210 SK

1H = Hassé, A = Atanasoff, SK = Slater and Kirkwood.

Of these functions, 1, 2, 4, and 5 are based on the simple
screening-constant function 2 of Table 29-1; these give low
values of «, the experimental value (from indices of refraction
extrapolated to large wave length of light and from dielectric

1 H. R. Hassg, Proc. Cambridge Phil. Soc. 26, 542 (1930), 27, 66 (1931);

J. V. Aranasorr, Phys. Rev. 86, 1232 (1930); J. C. SvaTER and J. G. Kirk-
woob, Phys. Rev. 87, 682 (1931).
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constant) being about 0.205-10-2¢ ecm? The third function,
supposed to provide a better approximation to the correct wave
function for large values of r; and r; (that is, in the region of the
atom in which most of the polarization presumably ocecurs),
overshoots the mark somewhat. (The fundamental theorem
of the variation method (Sec. 26a) does not require that a
calculation such as these give a lower limit for «, inasmuch as
the wave function and energy value for the unperturbed system
as well as for the perturbed system are only approximate.)
Function 6 is based on 7 of Table 29-1, 7, 8, and 10 on &, and
9on 9. Itisseen that functions of the form 29-11 (6, 10) seem
to be somewhat superior to functions of the same complexity
not of this form (7, 8, 9). Function 11 is based on a helium-
atom function (not given by a single algebraic expression) due to
Slater.!

It is seen that the values of o given by these calculations in
the main lie within about 10 per cent of the experimental value?
0.205-107%% cm3 For Lit, Hassé, using function 6, found the
value @ = 0.0313 - 1024 cm3; the only other values with which
this can be compared are the spectroscopic value?® 0.025 and the
screening-constant value? 0.0291 - 10=2¢ cm?.

Problem 28-8. Using the method of Section 27e¢ and the screening-
constant wave function 2 of Table 29-1, evaluate the polarizability of the
helium atom, taking as the zero point for energy the singly ionized atom.

1], C. SLATER, Phys. Rev. 32, 349 (1928).

2 The rough screening-constant treatment mentioned above gives the
values 0.199 - 1072¢ cm? for He and 0.0291 - 10724 ¢m3 for Lit.

3J. E. Maver and M. G. MaYER, Phys. Rev. 43, 605 (1933).



CHAPTER IX

MANY-ELECTRON ATOMS

Up to the present time no method has been applied to atoms
with more than two electrons which makes possible the computa-
tion of wave functions or energy levels as accurate as those for
helium discussed in Section 29¢. With the increasing complexity
of the atom, the labor of making calculations similar to those
used for the ground state of helium increases tremendously.
Nevertheless, many calculations of an approximate nature have
been carried out for larger atoms with results which have been
of considerable value. We shall discuss some of these in this
chapter.!

30. SLATER’S TREATMENT OF COMPLEX ATOMS

30a. Exchange Degeneracy.—All of the methods which we
shall consider are based on a first approximation in which the
interaction of the electrons with each other has either been
omitted or been replaced by a centrally symmetric field approxi-
mately representing the average effect of all the other electrons
on the one under consideration. We may first think of the prob-
lem as a perturbation problem. The wave equation for an atom
with N electrons and a stationary nucleus is

N N
8r2my Ze? e?
2, p— —_— =
_;_v.-tlf t+ W+ _;_ - o 0, (30-1)
i=1 i=1 N>

in which r; is the distance of the ith electron from the nucleus,
ry; is the distance between the sth and jth electrons, and Z is
the atomic number.

If the terms in r; are omitted, this equation is separable into
N three-dimensional equations, one for each electron, just as
was found to be the case for helium in Section 23b. To this

1 This chapter can be omitted by readers not interested in atomic spectra
and related subjects; however, the treatment is closely related to that for
molecules given in Chapter XIII.

230
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degree of approximation the wave function for the atom may be
built up out of single-electron wave functions; that is, a solution
of the equation for the atom with Ze?/r;; omitted is

¥ = ua(1) up(2) - - - w(N), (30-2)

in which u.(1), etc., are the solutions of the separated single-
electron equations with the three quantum numbers! symbolized
by @ B, - - -, v and the three coordinates symbolized by
1,2 ..., N. With this form for ¢° the individual electrons
retain their identity and their own quantum numbers. How-
ever, an equally good solution of the unperturbed equation cor-
responding to the same energy as Equation 30-2 is

¥ = ua(2) us(1) - - - w,(N), (30-3)

in which electrons 1 and 2 have been interchanged. In general,
the function

Ve = Pua(l) us(2) - - - u(N), (30—4)

in which P is any permutation of the electron coordinates, is an
unperturbed solution for this energy level.

The meaning of the operator P may be illustrated by a simple example.
Let us consider the permutations of the three symbols i, z;, ;. These are
Z1, Tz, Taj T3, Ta, T1} Ts, L1, T2; T2, T1, Ts; Tty Ta, T2 T3y T2, T Any one of these
six may be represented by Pz, zs, z5, in which P represents the operation of
permuting the symbols z,, z,, z; in one of the above ways. The operation P
which yields z, z;, z; is called the identity operation.

Any of the above permutations can be formed from i, 3, ; by successive
interchanges of pairs of symbols. This can be done in more than one way,
but the number of interchanges necessary is either always even or always
odd, regardless of the manner in which it is carried out. A permutation
is said to be even if it is equivalent to an even number of interchanges, and
odd if it is equivalent to an odd number. We shall find it convenient to
use the symbol (—1)P to represent +1 when P is an even permutation and
—1 when P is an odd permutation.

Multiplication of the operators P and P’ means that P and P’ are to be
applied successively. The set of all the permutations of N symbols has the
property that the product PP’ of any two of them is equal to some other
permutation of the set. A set of operators with this property is called a
group, if in addition the set possesses an identity operation and if every
operation P possesses an inverse operation P~! such that PP~!is equivalent
to the identity operation. There are N! permutations of N different
symbols.

1 The symbols @, 8, - + - , » are of course not related to the spin functions
« and 8.
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At this point we may introduce the spin of the electrons into
the wave function (in the same manner as for helium) by multi-
plying each single-electron orbital function by either a(w) or
B(w). For convenience we shall include these spin factors in

the functions u.(1), etc., so that hereafter a, 3, y, - - - represent
four quantum numbers »n, I, m;, and m, for each electron and 1,
2, - - - represent four coordinates r;, &, ¢, and w;. As discussed

in Section 29a for the two-electron case, treatment of this
degenerate energy level by perturbation theory (the electron
interactions being the perturbation) leads to certain combinations

§ = \—/—_—‘ECPPua(I) us(2) - - w(N)  (30-5)

for the correct zeroth-order normalized wave functions. One
of these combinations will have the value +1 for each of the
coefficients cr. Interchange of any pair of electrons in this
function leaves the function unchanged; i.e., it is completely
symmetric in the electron coordinates. For another combina-
tion the coefficients c» are equal to +1 or to —1, according as P
is an even or an odd permutation. This combination is com-
pletely antisymmetric in the electrons; i.e., the interchange of
any two electrons changes the sign of the function without
otherwise altering it. Besides these two combinations, which
were the only ones which occurred in helium, there are for
many-electron atoms others which have intermediate symmetries.
However, this complexity is entirely eliminated by the appli-
cation of the Pauli exclusion principle (Sec. 29b) which says that
only the completely antisymmetric combination

¥ 2( 1)?Pus(l) ua(2) - - - w(N) (30-6)

\/N'

has physical significance. This solution may also be written as a
determinant,

ue(l) wus(@l) ... uQ)
v = 1 u(2) w2 ... w(2) | (30-7)

wN) ws(N) . .. w(N)

as was done in Section 29b. The two forms are identical.
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30b. Spatial Degeneracy.—In the previous section we have
taken care of the degeneracy due to the N'! possible distributions
of the N electrons in a fixed set of N functions u. There still
remains another type of degeneracy, due to the possibility of
there being more than one set of spin-orbit functions correspond-
ing to the same unperturbed energy. In particular there may
be other sets of u’s differing from the first in that one or more of
the quantum numbers m; or m, have been changed. These
quantum numbers, which represent the z components of orbital
and spin angular momentum of the individual electrons, do not
affect the unperturbed energy. It is therefore necessary for
us to construct the secular equation for all these possible func-
tions in order to find the correct combinations and first approxi-
mation to the energy levels.!

Before doing this, however, we should ask if there are any more
unperturbed wave functions belonging to this level. If, in setting
up the perturbation problem, we had called the term Ze?/ry;
the perturbation, then the single-electron functions would have
been hydrogenlike functions with quantum numbers n, I, my,
and m, The energy of these solutions depends only on =,
as we have seen. However, a better starting point is to add and

subtract a term 20(:5;) representing approximately the average

effect of the electrons on each other. If this term is added to
H° and subtracted from H’, the true Hamiltonian H = H° + H'
is of course unaltered and the unperturbed equation is still
separable. The single-electron functions are, however, no longer
hydrogenlike functions and their energies are no longer inde-
pendent of the quantum number I, because it is only with a
Coulomb field that such a degeneracy exists (see Sec. 29a).
Therefore, in considering the wave functions to be combined we
do not ordinarily include any but those involving a single set of
values of n and I; i.e., those belonging to a single configuration.

The consideration of a simple example, the configuration
1s22p of lithium, may make clearer what the different unper-
turbed functions are. Table 30-1 gives the sets of quantum num-

1 The treatment of atoms which we are giving is due to J. C. Slater, Phys.
Rev. 34, 1293 (1929), who showed that this method was very much simpler
and more powerful than the complicated group-theory methods previously
used.
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bers possible for this configuration. The notation (1001%)
meansn = 1,1 =0, m; =0, m, = +14. Each line of the table
n corresponds to a set of functions % - - - », which when
substituted into the determinant of Equation 30-7 gives a satis-
factory antisymmetrical wave function ¢ corresponding to the

TasLE 30-1.—SETs oF QUANTUM NUMBERS FOR THE CONFIGURATION 1522p

1. (10034) (100 —3g) (2113); Imi= +1, Zm, = +3,
2. (100%) (100 —}5) (211 —34); Tm = +1, Em, = -3,
3. (100%) (100 —) (21034); Tm =0,  Zm, = +%,
4. (10035) (100 —%5) (210 —}); Tm =0, Im, = -},
5. (1003) (100 —3g) (21 —1%); Imi = —1, Em, = +%,
6. (10035) (100 —13) (21 —1 —14); Imy = —1, Zm, = ~15.

same unperturbed energy level. No other sets satisfying the
Pauli exclusion principle can be written for this configura-
tion. The order of the expressions =, I, m;, m, in a given row is
unimportant.

This simple case illustrates the idea of completed shells of
electrons. The first two sets of quantum numbers remain the

TaBLE 30-2.—SET8 OoF QUANTUM NUMBERS FOR THE CONFIGURATION np?

my Im,
1. (n1136) (nl11 —1¢) 2 0
2. (nllls) (n1013) 1 +1
3. (nllls) (nl0 — 1) 1 0
4. (n11 —18) (nl0s) 1 0
5. (nl1 =15) (nl0 —15) 1 -1
6. (nlllg) (nl —11) 0 +1
7. (nlllg) (nl ~1-1%) 0 0
8. (nll —14) (nl —113) 0 0
9. (n101) (n10 —13) 0 0
10. (nll —-34) (nl —1 —1) 0 -1
11. (nl —136) (n1013) -1 +1
12. (nl —1 —13) (n1014) -1 0
13. (n1l —11%) (nl0 —14) -1 0
14. (n1l —1 —14) (n10 —13) -1 -1
15. (nl —113) (nl —1'—15) -2 0

same throughout this table because 1s? is a completed shell;
i.e., it contains as many electrons as there are possible sets of
quantum numbers. The shell ns can contain two electrons,
np six electrons, nd ten electrons, etc. In determining the
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number of wave functions which must be combined, it is only
necessary to consider electrons outside of completed shells,
because there can be only one set of functions us - + - u, for the
completed shells.

Table 30-2 gives the allowed sets of quantum numbers for two
equivalent p electrons, i.e., two electrons with the same value
of n and with I = 1.

Problem 30-1. Construct tables similar to Table 30-2 for the configura-
tions np? and nd

30c. Factorization and Solution of the Secular Equation.—We
have now determined the unperturbed wave functions which
must be combined in order to get the correct zeroth-order wave
functions for the atom. The next step is to set up the secular
equation for these functions as required by perturbation theory,
the form given at the end of Section 24 being the most con-
venient. This equation has the form

H,y,-W Hy, - Hy
Ha Hu-Ww - Hau =0, (30-8)
Hy, Hy, o Hy — W
in which
Huom = [YrHYndr. (30-9)

¥, is an antisymmetric normalized wave function of the form of
Equation 30-6 or 30-7, the functions 4 composing it correspond-
ing to the nth row of a table such as Table 30-1 or 30-2. H is
the true Hamiltonian for the atom, including the interactions
of the electrons.

This equation is of the kth degree, £ being the number of
allowed sets of functions 4. - « - u,. Thus for the configura-
tion 1s?2p k is equal to 6, as is seen from Table 30-1. However,
there is a theorem which greatly simplifies the solution of this
equation: the integral H ., is zero unless Y. and ¥, have the same
value of Zm, and the same value of Zm,, these quantities being
the sums of quantum numbers m, and m; of the funclions u making
up ¥m and ¥,. We shall prove this theorem in Section 30d in
connection with the evaluation of the integrals H.,, and in the
meantime we shall employ the result to factor the secular
equation.
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Fxamining Table 30-1, we see that the secular equation for
18?2p factors into six linear factors; i.e.,, no two functions y,
and ym have the same values of Zm, and Zm;. The equation
for np?, as seen from Table 30-2, has the factors indicated by
Figure 30-1, the shaded squares being the only non-zero elements.
A fifteenth-degree equation has, therefore, by the use of this
theorem been reduced to a cubic, two quadratic, and eight
linear factors.

Fra. 30-1.—The secular determinant for the configuration np?, represented
diagrammatically.

By evaluating the integrals H ., and solving these equations,
the approximate energy levels W corresponding to this con-
figuration could be obtained; but a still simpler method is
available, based on the fact that the roots W of the equations of
lower degree will coincide with some of the roots of the equations
of higher degree. The reason for this may bé made clear by the
following argument. The wave functions ¥, ¥, - - «, ¥,
which we are combining, differ from one another only in the
quantum pumbers m, and m; of the single electrons, these
quantum numbers representing the z components of the spin
and orbital angular momenta of the electrons. The energy
of a single electron in a central field does not depend on m; or m,
(neglecting magnetic effects), since these quantum numbers
refer essentially to orientation in space. The energy of an
atom with several electrons does depend on these quantum
pumbers, because the mutual interaction of the “electrons is
influenced by the relative orientations of the angular-momentum
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vectors of the individual electrons. Just as for one-electron
atoms, however, the orientation of the whole atom in space
does not affect its energy and we expect to find a number of states
having the same energy but corresponding to different values
of the z components of the total orbital angular momentum
and of the total spin angular momentum; i.e., to different values
of Zm; and Zm,.

This type of argument is the basis of the vector model! for atoms,
a very convenient method of illustrating and remembering the
results of quantum-mechanical discussions such as the one we
are giving here. In the vector model of the atom the orbital
and spin angular momenta of the individual electrons are con-
sidered as vectors (see Section le) which may be combined to
give resultant vectors for the whole atom, the manner in which
these vectors are allowed to combine being restricted by certain
rules in such a way as to duplicate the results of quantum
mechanics. The vector picture is especially useful in classifying
and naming the energy levels of an atom, the values of the
resultant vectors being used to specify the different levels.

In Chapter XV we shall show that not only is the energy of a
stationary state of a free atom a quantity which has a definite
value (and not a probability distribution of values) but also the
total angular momentum and the component of angular momen-
tum in any one chosen direction (say the z direction) are similar
quantities. Whereas it is not possible to specify exactly both the
energy and the positions of the electrons in an atom, it is possible
to specify the above three quantities simultaneously. If the
magnetic effects are neglected we may go further and specify the
total spin and total orbital angular momenta separately, and
likewise their z components. However, we may not give
the angular momenta of the individual electrons separately,
these being quantities which fluctuate because of the electron
interactions.

It will likewise be shown that when magnetic effects are
neglected the square of the total orbital angular momentum
must assume only the quantized values L(L + 1)(h/2x)? where
L is an integer, while the square of the total spin angular momen-
tum can take on only the values S(S + 1)(h/2x)* where S is
integral or half-integral. (The letter L is usually used for the

1 See PavLiNGg and Goupssrt, “The Structure of Line Spectra.”
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total resultant orbital angular momentum of the atom, and the
letter S for the total spin angular momentum; see Section 295.)
In the approximation! we are using, the states of an atom may
be labeled by giving the configuration and the quantum numbers
L, 8, M. = Zm;, and Ms = Zm,, the last two having no effect
on the energy. Just as for one electron, the allowed values
of My, are L, L -1, ---, —L 41, —L; Msis similarly
restricted to 8, S ~ 1, -+ - -, =8 + 1, -8, all of these values
of Ms and M, belonging to the same degenerate energy level and
corresponding to different orientations in space of the vectors
L and S.

We shall now apply these ideas to the solution of the secular
equation, taking the configuration np? as an example. From
Table 302 we see that H;; — W is a linear factor of the equation,
since ¥, alone has Zm; = 2 and Zm, = 0. A state with M, = 2
must from the above considerations have L > 2. Since 2 is
the highest value of M, in the table, it must correspond to
L =2, Furthermore the state must have S = 0, because
otherwise there would appear entries in the table with M, = 2
and Ms £ 0. This same root W must appear five times in the
secular equation, corresponding to the degenerate states L = 2,
S=0 Ms=0, M, =2,1,0, —1, —2. From this it is seen
that this root (which can be obtained from the linear factors)
must occur in two of the linear factors (M. = 2, —2; Mg = 0),
in two of the quadratic factors (M, =1, —1; Ms = 0), and in
the cubic factor (M = 0, Mg = 0). The linear factor Hyy — W
with M, =1, Ms = 1 must belong to the level L =1, § =1,
because no terms with higher values of M, and M appear in
the table except those already accounted for. This level will
correspond to the nine states with M, = 1,0, —1, and Ms = 1,
0, —1. Six of these are roots of linear factors (M, = +1,
Mg = +1; M, = 0; Ms = +1), two of them are roots of the
quadratic factors (M = 1, Ms = 0), and one is a root of the
cubic factor (M, = 0, Ms = 0).

Without actually solving the quadratic equations or evaluating
the integrals involved in them, we have determined their roots,
since all the roots of the quadratics occur also in linear factors.

1 This approximation, called (LS) or Russell-Saunders coupling, is valid
for light atoms. Other approximations must be made for heavy atoms in
which the magnetic effects are more important.
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Likewise we have obtained two of the three roots of the cubic.
The third root of the cubic can be evaluated without solving the
cubic or calculating the non-diagonal elements of the equation,
by appealing to the theorem that the sum of the roots of a
secular equation (or of one of its factors) is equal to the sum
of the diagonal elements of the equation! (or of the factor).
Since two of the roots of the cubic have been found and the sum
of the roots is given by the theorem, the third may be found.
It corresponds to the state L = 0, S = 0, since this is the only
possibility left giving one state with M, = 0 and M5 = 0.

The three energy levels for np? which we have found are

W=Hy,'DL=2S8=0Ms=0M,=21,0,—1, —2);

W=H22, p (L = 1, S = 1, Ms = il, O, M, = il, O),
W=H7T+H88+H99—'H11—H22, 18 (L=O, S=0,

Ms=0, ML=O).

(30-10)

The term symbols 1D, 3P, 1§ have been explained in Section 29b.

Problem 30-2. Investigate the factorization of the secular equation

for np?, using the results of Problem 30-1, and list terms which belong to
this configuration.

30d. Evaluation of Integrals.—We need to obtain expressions
for integrals of the type

Hun = frﬁ:Hxﬁ,.dr = %22(—1)P+P’fp'u;(1) -

P P’
u*(N)HPu.(1) - - - u,(N)dr. (30-11)

1 To prove this theorem, we expand the secular equation 30-8 and arrange
according to powers of W. The resulting algebraic equation in W will have
k roots, Wy, W3, - - -+, Wi and can therefore be factored into % factors

(W —-W)W — W) -+ - (W—Wi) =0

The coefficient of —W*~1in this form of the equation is seen to be

Wi+Ws+ - + Wy
the coefficient of — W*~1in Equation 30-8 is seen to be
Hu+Hun+ - - - + Hi

These two expressions must therefore be equal, which proves the theorem.
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We may eliminate one of the summations by the following
device:

[Pu¥(1) - - - uWN)HPus(1) - - - u,(N)dr =
P'fPu2(l) - - - u*(N)HPua(l) - - - u,(N)dr =
JP"Pur(1) - - - uMN)HP"Pus(1) - - - u,(N)dr.

the first step being allowed because P’ only interchanges the
names of the variables of a definite integral. If we choose P”
to be P'-1, the inverse permutation to P’, then PP’ = 1; i.e,
PP’ ig the identity operation, while PP is still some member
of the set of permutations, all members of which are summed
over. The integral therefore no longer involves P’ and the
sum over P’ reduces to multiplication by-XN!, the number of
permutations. We thus obtain the equation

Hopo = 3(—=1)7fu(1) - - - ud(N)HPuu(1) - - w(N)dr.
] (30-12)

We shall now prove the theorem that H,, = 0 unless Zm, is
the same for ¥, and ¥.. H does not involve the spin coordinates
s0 that integration over these coordinates yields a product of
orthogonality integrals for the spin functions of the various
electrons. Unless the spins of corresponding electrons in the
two functions uX(1) - - - u*(N) and Pu.(l) - - - u,(N) are
the same, the integral is zero. If Zm, is not the same for ¢m
and ¢, there can be no permutation P which will make such a
matching of the spins possible, because the number of positive
and negative spins is different in the two functions.

To prove the theorem concerning Zm, it is necessary to specify
further the nature of H. We write

H = Efl + Egiiy

1i>4
where
_ R, Ze? e?
o= mV.-“T‘ and 9-’:‘—;.;
The functions u,(1) - - - are solutions of
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From this we see that
faug (@) = f(r)u(3),

where f(r;) is a function of r; alone. The integral of the first
term in H thus reduces to

S~ 3 fut(DPua(l)dry - - - [uf@f(r)Pu(@)dr -+ - -
P i
Ju$(N)Pu,(N)dry, (30-13)

in which Pu;(7) is used as a symbol for u.(j) in which electron j
has replaced 7 as a result of the permutation P. Because of the
orthogonality of the ’s, this is zero unless Pu;(z) = () except
perhaps for j equal to the one value 7. In addition, since

ur(?) = Ru(ri) - Oum(ds) - €™ %, (30-14)

the factor [uf(?)f(ri)Pu;(f)dr; will be zero unless u;(f) and
Py;(7) have the same quantum number m;. We thus see that
this integral will vanish, unless all the «’s but one pair match and
the members of that pair have the same value of m,.

Similar treatment of the term Zg,;; shows that all but perhaps
two pairs must match. The factor containing these unmatched
functions is

f“?(i)u?(j)gPur(i)Pue(j)d‘rdin- (30-15)

It can be shown! that
E =MD 7% pioi(eos 3 Piri(cos 3)eimeivr, (3016
_kT[m—!r»+1 IPI(cos dy)eminrer,  (30-16)

in which r, is the smaller of r; and r; and r,is the greater.
Pji(cos ¥) is an associated Legendre function, discussed in
Section 19b. Using this expansion we obtain for the ¢ part of

. 2r 2% . [ . .
the above integral j; j; et (Pmy—mtm)e o ilPm—mi—me;ds do . in which

my is associated with u;(3), m; with ug(j), Pm; with Pu.(7), and
Pm} with Pug(j). This vanishes unless Pm; — m; +m =0
and Pm; — m; — m = 0; ie., unless Pm; + Pm] = m; + m].

1 For a proof of this see J. H. Jeans, ““Electricity and Magnetism,” 5th ed.,
Equations 152 and 196, Cambridge University Press, 1927,
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This completes the proof of the theorem that H,, = 0 unless
Zm, is the same for ¢, and ¥p.

Of the non-vanishing elements H ., only certain of the diagonal
ones need to be evaluated in order to calculate the energy levels,
as we have seen in the last section. Because of the orthogonality
of the u’s, Equation 30-13 vanishes unless P = 1 (the identity
operation) when a diagonal element H,. is being considered.
Since the u’s are also normalized, this expression reduces to

2 ut @@ = 3T, (30-17)

a relation which defines the quantities I,.

Similarly, the orthogonality of the u’s restricts P in Equation
30-15 to P =1 and P = (¢j), the identity operation and the
interchange of ¢ and j, respectively. The first choice of P
contributes the terms

. el . .
> f wt G ud () Sur Duei)dradry = Do, (30-18)
if
ig>i $9>i

while the second yields

N g€ .
-~ E uf (Dug () —ue(u; (j)dridr; = — EK.':'- (30-19)
.o, - v . - 3
1I>1 W>1
The integral K;; vanishes unless the spins of u;(7) and u:(j) are
parallel, i.e., unless m,, = m,,.
The functions I; reduce to integrals over the radial part of

u(1),
Ii = [RY(r)f(ri) Rui(ri)drs. (30-20)

We shall not evaluate these further.
The functions J;; and K;; may be evaluated by using the
expansion for 1/r;; given in Equation 30-16. For J;; the ¢,

part of the integral has the form j; 2fe""“"-'d¢.~, which vanishes

unless m = 0. The double sum in the expansion 30-16 thus
reduces to a single sum over k, which can be written

Jii = 2 at(lma; Um)FH(nl; n'l), (30-21)
k

in which nlm; and n'l'm} are the quantum numbers previously
represented by n; and n;, respectively. a* and F* are given by
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e @QUEDA = [ m)! @Y+ D = |m)!
ak(lmi; Umy) =~ |m,|)x' 30 + D!

j; "{P™(cos 8.,)} 2P (cos ©;) sin Sidd;
j; " (P (cos 9;) | 2PY(cos ;) sin dydd;, (30-22)

and

F¥(nl;n'l') = (h)?e?ﬁ L R,’.,(r;)R,’,/y(r,-);hr,?r}dr.-dr,-. (30-23)
b

The a’s are obtained from the angular parts of the wave functions,
which are the same as for the hydrogen atom (Tables 21-1 and
21-2, Chap. V). Some of these are given in Table 30-3, taken

TaBLE 30-3.—VALUES oF a*(Im; I'm])
(In cases with two = signs, the two can be combined in any of the four
possible ways)

Electrons | 1 m U my a® a? at
88 0 0 0 0 1 0 0
sp 0 0 1 +1 1 0 0
0 0 1 0 1 0 0
pp 1 11 1 11 1 155 0
1 11 1 0 1 —%45 \
1 0 1 0 1 445 0
ad 0 0 2 +2 1 0 0
0 0 2 +1 1 0 0
0 0 2 0 1 0 0
pd 1 +1 2 +2 1 24 0
1 +1 2 +1 1 -%s 0
1 +1 2 0 1 — 345 0
1 0 2 +2 1 —34y 0
1 0 2 +1 1 45 0
1 0 2 0 1 445 0
dd 2 +2 2 +2 1 449 Yaa
2 +2 2 +1 1 -3 —%4
2 +2 2 0 1 ~%49 %4
2 +1 2 +1 1 14 18441
2 +1 2 0 1 29 —2%4
2 0 2 0 1 $%9 3%a
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from Slater’s paper. The F’s, on the other hand, depend on the
radial parts of the wave functions, which for the best approxima-
tion are not hydrogenlike.

K;; may be similarly expressed as

K = Db+ (Im; Ump)GH(nl; m'l), (30-24)
k

in which
b (lmy; Im)) =
(k — Jmi — mDU2L + D) — |[ma) 12" + 1T — |my))!
4k + [mi — I + [mal) (7 + [mg])!
3 j; "Pimi(cos 9)Plr (cos 8)Pjm—mil(cos ¢) sin mw} ? (30-25)

and
GH(nl;n'l') = 62(41)21; ”.L “Rut(r)Rurte (r Rus(r) Rarv (7))
e r¥rédridr;.  (30-26)

,-k+1 i3

The functions b* are given in Table 30-4. The functions G*
are characteristic of the atom.

30e. Empirical Evaluation of Integrals. Applications.—We
have now carried the computations to a stage at which the
energy levels may be expressed in terms of certain integrals
I;, F¥, and G* which involve the radial factors of the wave
functions. One method of proceeding further would be to assume
some form for the central field »(r;), determine the functions
R,i(r;), and use them to evaluate the integrals. However,
another and simpler method is available for testing the validity
of this approximation, consisting in the use of the empirically
determined energy levels to evaluate the integrals, a check on
the theory resulting from the fact that there are more known
energy levels than integrals to be determined.

For example, if we substitute for Hy,, etc., for the configuration
np? the expression in terms of I;, F*, and G*, using the results of
the previous section and Equation 30-10, we obtain for the
energies of the terms 1D, 3P, and 'S the quantities

1D: W = 2I(n, 1) + FO + %5F?,
P W = 2I(n, 1) + FO — 24,F* — 34,G?,
1S: W = 2I(n, 1) + F° + T4sF? + 344G
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TasLE 30-4.—VALUES OF bé(lmy; I'm;)
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(In cases where there are two + signs, the two upper, or the two lower,
signs must be taken together)

Electrons | 1 my U my; | bo bt b2 b be
88 0 0] 0 0 1 0 0 0 0
8p 0 0 1 +1 0 14 0 0 0

0 0} 1 0| 0 | 3% 0 0 0
P 1 [ 21 1 | £1] 1 | 0 |34 0 0

1 +1 1 0 0 0 3% 0 0

1 +1 1 F1| O 0 | 8 0 0

1 0] 1 0| 1 | 0 |44 0 0
sd 0 0 2 +2 0 0 1€ 0

0 0 2 | +1| 0 | 0 | % 0

0 0 2 0 0 0 1 0
pd 1 1 2 +2| 0 | 2% 0 345 0

1 | +1| 2 | +1] 0 |35 | O %45 0

1 | +£1| 2 0| 0 |3s| O 184,45 0

1 | £1] 2 | F1] 0 | 0 | 0 | 39, 0

1 +1 | 2 F2{ 0 0 0 45445 0

1 0] 2 | 22| 0 | 0 | 0o | 1354 0

1 0| 2 | £1| 0 |3 | 0 | 285, 0

1 0| 2 01 0 | %s| 0 | 2% 0
dd 2 +2( 2 +2 | 1 0 49 0 Y41

2 | 2] 2 | £1| 0 | 0 | % 0 Y1

2 +2 | 2 0 0 0 | %49 0 15401

2 +2 | 2 F1| 0 0 0 0 35441

2 +2 2 F2 0 0 0 0 79441

2 +1 2 +1 1 0 Y49 0 16741

2 +1 2 0 0 0 Yo 0 30441

2 +1 2 F1 0 0 849 0 49441

2 0 2 0 1 0 449 0 36441

Examination of Equations 30-18 and 30-19 shows that for
equivalent electrons F is equal to G (with the same index). We

therefore have for the separations of the levels for np?

1D — 3P = 64.F%nl; nl),
18 — 1D = %45F%(nl; nl).

The theory therefore indicates that, if the approximations which
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have been made are valid, the ratio of these intervals should be
2:3, a result which is obtained without the evaluation of any
radial integrals at all. In addition, since F? is necessarily
positive, this theory gives the order of the terms, 3P lying lowest,
ID next, and 'S highest. This result is in agreement with
Hund’s empirical rules, that terms with largest multiplicity
usually lie lowest, and that, for a given multiplicity, terms
with largest L values usually lie lowest.!

Slater gives the example of the configuration? 1s°2s?2p®
3s23p? of silicon, for which the observed term values?® are

3P = 65615 cm™!,
1D = 59466 ¢cm™!,
1S = 50370 em™Y,

so that the ratio !D — 3P to S — 'D is 2:2.96, in excellent
agreement with the theory. In other applications, however,
large deviations have been found, most of which have been
explained by considering higher approximations based on the
same general principles.*

81. VARIATION TREATMENTS FOR SIMPLE ATOMS

The gencral discussion of Section 30, which is essentially a
perturbation calculation, is not capable of very high accuracy,
especially since it is not ordinarily practicable to utilize any
central field except the coulombic one leading to hydrogenlike
orbital functions. In this section we shall consider the applica-
tion of the variation method (Sec. 26) to low-lying states
of simple atoms such as lithium and beryllium. This type of
treatment is much more limited than that of the previous
section, but for the few states of simple atoms to which it has
been applied it is more accurate. ~

1t PavLing and GoupsMir, “ The Structure of Line Spectra,” p. 166.

2 This configuration gives the same interval ratios as np? only the absolute
energy being changed by the presence of the closed shells.

3 As mentioned in Section 5a, term values are usually given in em~! and
are measured downward from the lowest state of the ionized atom. Hence
the largest term value represents the lowest energy level.

¢ There have been many papers on this subject; a few are: C. W. Ufford,
Phys. Rev. 44, 732 (1933); G. H. Shortley, Phys. Rev. 43, 451 (1933); M. H.
Johnson, Jr., Phys. Rev. 48, 632 (1933); D. R. Inglis and N. Ginsburg,
Phys. Rev. 43, 194 (1933). A thorough treatment is given by E. U. Condon
and G. H. Shortley, “The Theory of Atomic Spectra,” Cambridge, 1935.
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The principles involved are exactly the same as those discussed
in Section 26 and applied to helium in Section 29¢, so we shall
not discuss them further but instead study the different types of
variation functions used and the results achieved.

31a. The Lithium Atom and Three-electron Ions.—Table 31-1
lists the variation functions which have been tried for the
lowest state of lithium, which has the configuration 1s22s. All
these functions are of the determinant type given in Equation
30-7 and in all of them the orbital part of u,,(7) is of the form

T8

e " @, in which Z’, the effective atomic number for the K shell,
is one of the parameters determined by the variation method.
The table gives the expressions for b, the orbital part of u(),
the function for the 2s electron. In addition, the upper limit
to the total energy of the atom is given, and also the value of the
first ionization potential calculated by subtracting the value of
the energy calculated for Lit from the total energy calculated
for Li. The Li* calculation was made with the use of the same
type of 1s function used in Li for the K shell, in order to cancel
part of the error introduced by this rather poor K function.
The table also gives the differences between these calculated
quantities and the experimental values.

TaBLE 31-1.—VARIATION FUNCTIONS FOR THE NORMAL LiTHiUM ATOM

Units: R_he
Experimental total energy: —14.9674; experimental ionization potential:
0.3966
. Total Differ- | Ionization | Differ-
2s function! .
energy ence potential ence
ozl
1. b=e¢ %\ 9— —1]....... |—14.7844| 0.1830 0.3392 0.0674
Qo
.
2. b=re ... . ... ...... —14.8358| .1316 .3906 .0060
Ly
3. b=¢ Ma— —1])...... —14.8366| 1308 .3912 .0054
[
A 7
4 b =a—-e 90— G .. —14.8384] .1290 .3930 .0036
221

1 The function 1 was used by C. Eckart, PAys. Rev. 86, 878 (1930), 2and 3 by V.G ille-
min and C. Zencr, Z. f. Phys. €1, 199 (1930), and 4 by E. B. Wilson, Jr., J. Chem. Phys. 1,
211 (1933). The last paper includes similar tables for the ions Be*, B++, and C*+++.,
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Table 31-2 lists the best values of the parameters for these
lithium variation functions. Figure 381-1 shows the total
electron distribution funetion 4xr2%p for lithium, caleulated using

TaBLE 31-2.—PARAMETER VALUES FOR LiTHiUM VaAriaTioN Funcrions

_Zr
ull = e 40
Function z’ ] a ! ¢
r
—nf r
1. b=c¢e a“(ﬂa— — 1) .......... 2 686 0.888
1]
ot
2. b=re . .. ... . . . . 2.688 .630
ol
3. b=e¢e °°<oz— - 1) .. .. 2.688 .630 5 56
Qo
ro—n- ¢
4. b=cxa—e @B ¢ G0 .. 2.69 .665 1.34 1.5
0

the best of these functions. p is the electron density, which can
be calculated from y in the following manner:

p = 3[yMdr.dr.,. (31-1)

y*drdr.drs gives the probability of finding electron 1 in the
volume element dri, electron 2 in dry, and electron 3 in dr;.
Integration over the coordinates of electrons 1 and 2 gives the
probability of finding electron 3 in drs, regardless of the positions
of 1 and 2. Since ¢*¢ is symmetric in the three electrons, the
probability of finding one electron in a volume element dzdydz in
ordinary three-dimensional space is three times the probability of
finding a particular one. Figure 31-1 shows clearly the two shells
of electrons in lithium, the well-marked K shell and the more
diffuse I shell. Due to the equivalence of the three electrons,
we cannot say that a certain two occupy the K shell and the
remaining one the L shell, but we can say that on the average
there are two electrons in the K shell and one in the L shell.
The next step to be taken is to apply a variation function to
lithium which recognizes explicitly the instantaneous, instead
of just the average, influence of the electrons on each other.
Such functions were found necessary to secure really accurate
results for helium (Sec. 29c), but their application to lithium
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involves extremely great complications. This work has been
begun (by James and Coolidge at Harvard?).

31b. Variation Treatments of Other Atoms.—Few efforts have
been made to treat more complicated atoms by this method.
Beryllium has been studied by several investigators but the
functions which give good results for lithium are not nearly so
accurate for heavier atoms. Hydrogenlike funections with
variable effective nuclear charges (function 1 of Table 31-1 is
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Fig. 31-1.—The electron distribution function D = 47r?p for the normal lithium
atom.

such a function for » = 2, I = 0) have been applied to the case
of the carbon atom,? the results being in approximate agreement
with experiment. Functions of the types 2 and 3 of Table 31-1
have also been tried® for Be, B, C, N, O, F, and Ne. A more
satisfactory attack has been begun by Morse and Young,* who
have prepared numerical tables of integrals for wave functions
dependent on four parameters (one for 1s, two for 2s, and one

! Private communication to the authors; see H. M. James and A. S.
Coolidge, Phys. Rev. 47, 700 (1935), for a preliminary report.

1 N. F. BeArpsLEY, Phys. Rev. 89, 913 (1932).

3 C. ZuNER, Phys. Rev. 86, 51 (1930).

4P. M. MorsE and L. A. Young, unpublished calculations (available a
the Massachusetts Institute of Technology).
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for 2p one-electron functions) for the treatment of the K and L
shells of atoms.

The analytical treatment of complicated atoms by this method
is at present too laborious for the accuracy obtained, but it may
be possible to find new forms for the variation funection which will
enable further progress to be made.

32. THE METHOD OF THE SELF-CONSISTENT FIELD

The previous sections give some indication of the difficulty
of treating many-electron atoms in even an approximate manner.
In this section we shall discuss what is probably the most success-
ful effort which has yet been made in attacking this problem,
at least for those atoms which are too complicated to treat by
any satisfactory variation function. Both the principle and
the difficult technique involved are due to Hartree,! who, with the
aid of his students, has now made the numerical computations
for a number of atoms. In Section 32b we shall show the
connection between this method and those previously discussed.

32a. Principle of the Method.—In Section 30b we have
pointed out that the wave equation for a many-electron atom
can be separated into single-electron wave functions not only
when the mutual interactions of the electrons are completely
neglected but also when a central field »(z,) for each electron is
added to the unperturbed equation and subtracted from the
perturbation term. KEach of the resulting separated unper-
turbed wave equations describes the motion of an electron in a
central field which is independent of the coordinates of the
other electrons. The perturbation treatment considered in
Section 30 was based on the idea that a suitable choice could be
made of these central fields for the individual electrons so that
they would represent as closely as possible the average effect
upon one electron of all the other electrons in the atom.

The important step in the application of such a method of
treatment is the choice of the potential-energy functions repre-
senting the central fields. The assumption made by Hartree
is that the potential-energy function for one electron due to a
second electron is determined approximately by the wave
function for the second electron, ug(2), say, being given by the

! D. R. HARTREE, Proc. Cambridge Phil. Soc. 24, 89, 111, 426 (1928).
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potential corresponding to the distribution of electricity deter-
mined by the probability distribution function u3(2) wus(2).
This is equivalent to assuming that the wave function for the
second electron is independent of the coordinates of the first
electron. The complete central-field potential-energy function
for the first electron is then obtained by adding to the potential-
energy function due to the nucleus those potential-energy
functions due to all the other electrons, calculated in the way
just described. The wave function for the first electron can
then be found by solving the wave equation containing this
complete potential-energy function.

It is seen, however, that in formulating a method of calculating
the functions w (k) for an atom we have assumed them to be
known. In practice there is adopted a method of successive
approximations, each cycle of which involves the following
steps:

1. A potential-energy function due to the nucleus and all of
the electrons is estimated.

2. From this there is subtracted the estimated contribution
of the kth electron, leaving the effective potential-energy function
for this electron.

3. The resulting wave equation for the kth electron is then
solved, to give the wave function wu.(k). Steps 2 and 3 are
carried out for all of the electrons in the atom.

4. Using the functions w:(k) obtained by step 3, the potential-
energy functions due to the various electrons are calculated,
and compared with those initially assumed in steps 1 and 2.

In general the final potential-energy functions are not identical
with those chosen initially. The cycle is then repeated, using
the results of step 4 as an aid in the estimation of new potential-
energy functions. Ultimately a cycle may be carried through
for which the final potential-energy functions are identical
(to within the desired accuracy) with the initial ones. The
field corresponding to this cycle is called a self-consistent field
for the atom.

It may be mentioned that the potential-energy function due
to an s electron is spherically symmetrical, inasmuch as the
probability distribution function u}u,, is independent of ¢ and #.
Moreover, as a result of the theorem of Equation 21-16 the
potential-energy function due to a completed shell of electrons
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is also spherically symmetrical. Spherical symmetry of the
potential function greatly increases the ease of solution of the
wave equation.

Hartree employs the method of numerical integration sketched
in Section 27¢ to solve the single-electron wave equations.
In addition he makes the approximation of considering all
contributions to the field as spherically symmetrical. Thus
if some electron (such as a p electron) gives rise to a charge
distribution which is not spherically symmetrical, this is averaged
over all directions. Finally, the simple product of Equation
30-2 is used for the wave function for the whole atom. As we
have seen, this does not have the correct symmetry required by
Pauli’s principle. The error due to this involves the interchange
energies of the electrons (Sec. 32¢).

32b. Relation of the Self-consistent Field Method to the
Variation Principle.—If we choose a variation function of the
form

¢ = ua(l) up(2) - - - u(N) (32-1)

and determine the functions u;(¢) by varying them individually
until the variational integral in Equation 26~1 is a minimum,
then, as shown in Section 26q, these are the best forms for the
functions u;(z) to use in a wave function of this product type for
the lowest state. Neglecting the fact that Hartree averages
all fields to make them spherically symmetrical, we shall now
show?! that the variation-principle criterion is identical, for this
type of ¢, with the criterion of the self-consistent field. If
we keep each u;(2) normalized, then [¢*¢dr = 1 and

E = [¢*H¢dr. (32-2)

The operator H may be written as -

o =S+ 2:;: (32-3)

Hi= -

with
vi- 2 (32-4)
0

1J. C. SLATER, Phys. Rev. 35, 210 (1930); V. Fock, Z. f. Phys. 61, 126
(1930).
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Using this and the expression for ¢ in Equation 32-1, we obtain

B = E J‘ wp () H aup () dri +

S| [wouoiuoubian. 625

1,i>1

The variation principle can now be applied. This states that
the best form for any function u;(z) is the one which makes E
a minimum (keeping the function normalized). For this mini-
mum, a small change 8u;(7) in the form of u;(z) will produce no
change in E; that is éE = 0.

The relation between 8u;(z) and 8F is

bE = 8 f w6 H g (8)drs +
’ 2
S's[ [wronoiuuina, 62
t7
j
in which the prime on the summation sign indicates that the

term with j = 7 is not included. Let us now introduce the new
symbol F,, defined by the equation

o "L (N
F; H; + 2 fut (J)r‘l_uE(J)dTu (32-7)
J
or
Fi = Hi + Vi;
in which
14 2
Vi = (1) Zue(G)dr ;. 32-8
S [ ut (32-8)
2

F; is an effective Hamiltonian function for the 7th electron, and
V: the effective potential-energy function for the ith electron
due to its interaction with the other electrons in the atom.
Using the symbol F;, we obtain as the condition that E be sta-
tionary with respect to variation in u;(z) the expression (Eq.
32-6)

8E = sful(t)F au; (d)dr; = 0. 329
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A similar condition holds for each of the N one-electron functions
uﬂ(l)y et )u"(N)'

Let us now examine the criterion used in the method of the
self-consistent field. In this treatment the wave function
(%) is obtained as the solution of the wave equation

87r2m0

2
viu (i) + -hg—<e.- + —Z;e— - V;>u;(z') =0, (32-10)
or, introducing the symbol F,,
F,‘U;(’L.) = é;u;(i). (32—11)

We know, however, that a normalized function u:(7) satisfying
this equation also satisfies the corresponding variational equation
Sfuf(D)F u(d)dr, = 0. (32-12)
Equations 32-9 and 32-12 are identical, so that by using the
variation method with a product-type variation function we
obtain the same single-electron functions as by applying the
criterion of the sclf-consistent field.
32¢. Results of the Self-consistent Field Method.—Hartrce
and others have applied the method of the self-consistent field
to a number of atoms and ions. In one series of papers! Hartree
has published tables of values of single-electron wave functions
for Cl-, Cu*, K+, and Rb*. These wave functions, as given,
are not normalized or mutually orthogonal, but values of the
normalizing factors are reported. For these atoms the total
energy has not been calculated, although values of the individual
e;’s are tabulated. (The sum of these is not equal to the total
energy, even if interchange is neglected.) For O, O+, O+, and
O+++ Hartree and Black? have given not only the wave functions
but also the total energies calculated by inserting these single-
electron wave functions into a determinant such as Kquation
30-7 and evaluating the integral ¥ = [y*Hdr.
Several other applications?® have been made of this method and
a considerable number are now in progress. Slater? has taken
Hartree’s results for certain atoms and has found analytic expres-

1 D. R. HARTREE, Proc. Koy. Soc. A 141, 282 (1933); A 143, 506 (1933).

2 D. R. Hartree and M. M. Brack, Proc. Roy. Soc. A 139, 311 (1933).

3F. W. BrRowN, Phys. Rev. 44, 214 (1933); F. W. Browx, J. H. BARTLETT,
Jr., and C. G. DunN, Phys. Rev. 44, 296 (1933); J. McDovaaLy, Proc. Roy.
Soc. A 138, 550 (1932); C. C. TorraNcE, Phys. Rev. 46, 388 (1934).

4J. C. SLaTER, Plys. Rev. 42, 33 (1932).
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sions for the single-electron wave functions which fit these results
fairly accurately. Such functions are of course easier to use than
numerical data.

The most serious drawback to Hartree’s method is probably
the neglect of interchange effects, i.e., the use of a simple product-
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Fis. 32-1.—The electron distribution function D for the normal rubidium
atom, as calculated: I, by Hartree’s method of the sclf-consistent field; II, by the
screening-constant method; and III, by the Thomas-Fermi statistical method.
type wave function instead of a properly antisymmetric one.
This error is partially eliminated by the procedure of Hartree
and Black described above, but, although in that way the energy
corresponding to a given set of functions u;(k) is ‘properly calcu-
lated, the functions u;(k) themselves are not the best obtainable
because of the lack of antisymmetry of ¢. Fock! has considered
this question and has given equations which may be numerically
solved by methods similar to Hartree’s, but which include inter-
change. So far no applications have been made of these, but
several computations are in progress.?

Figures 32-1, from Hartree, shows the electron distribution
function for Rb+* calculated by this method, together with those
given by other methods for comparison.

1V, Fock, Z. f. Phys. 61, 126 (1930).
1See D. R. HarTreB and W. HARTREE, Proc. Roy. Soc. A 150, 9 (1936).
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Problem 82-1. (a) Obtain an expression for the potential due to an
electron in a hydrogenlike ls orbital with effective atomic number Z’ =
27{4. (b) Using this result, set up the wave equation-for one electron in a
helium atom in the field due to the nucleus and the other electron (assumed
to be represented by the wave function mentioned above). Solve the wave
equation by the method of difference equations (Sec. 27d), and compare
the resultant wave function with that chosen initially.

83. OTHER METHODS FOR MANY-ELECTRON ATOMS

Besides the methods discussed in the previous sections there
are others yielding useful results, some of which will be briefly
outlined in the following sections. Several methods have been
proposed which are beyond the scope of this book, notably the
Dirac!-Van Vleck? vector model, which yields results similar to
those given by the method of Slater of Section 30.

33a. Semi-empirical Sets of Screening Constants.—One of the
methods mentioned in Section 31b consists in building up an
approximate wave function for an atom by the use of hydrogen-
like single-electron functions with effective nuclear charges
determined by the variation method. Instead of giving the
effective atomic number Z’, it is convenient to use the difference
between the true atomic number and the effective atomic num-
ber, this difference being called the screening constant. Pauling?
has obtained sets of screening constants for all atoms, not by
the application of the variation method (which is too laborious),
but by several types of reasoning based in part on empirical
considerations, involving such quantities as z-ray term values
and molecular refraction values. It is not, to be expected
that wave functions formed in this manner will be of very great
accuracy, but for many purposes they are sufficient and for many
atoms they are the best available. The results obtained for
Rb* are shown in Figure 32-1.

Slater* has constructed a similar table, based, however, on
Zener’s variation-method calculations for the first ten elements
(Sec. 31b). His screening constants are meant to be used in

tP. A. M. Dirac, ““The Principles of Quantum Mechanics,” Chap. XI.

1J. H. VAN VLECK, Phys. Rev. 45, 405 (1934).

#1L. PavLiNg, Proc. Roy. Soc. A 114, 181 (1927); L. PavriNg and J.
SHERMAN, Z. f. Krist. 81, 1 (1932).

4]J. C. SLATER, Phys. Rev. 86, 57 (1930).
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functions of the type rVe %" instead of in hydrogenlike func-
tions, the exponent n’ being an effective quantum number.

A discussion of an approximate expression for the wave func-
tion in the outer regions of atoms and ions and its use in the
treatment of various physical properties (polarizability, ioniza-
tion potentials, ionic radii, etc.) has been given by Wasastjerna.!

33b. The Thomas-Fermi Statistical Atom.—In treating a
system containing a large number of particles statistical methods
are frequently applicable, so that it is natural to see if such
methods will give approximate results when applied to the
collection of electrons which surround the nucleus of a heavy
atom. Thomas? and Fermi® have published such a treatment.
In applying statistical mechanies to an electron cloud, it was
recognized that it is necessary to use the Fermi-Dirac quantum
statistics, based on the Pauli exclusion principle, rather than
classical statistics, which is not even approximately correct for
an electron gas  The distinctions between these have been men-
tioned in Section 29b and will be further discussed in Section 49.

The statistical treatment of atoms yields electron distributions
that are surprisingly good in view of the small number of electrons
involved. These results have been widely used for calculating
the scattering power of an atom for z-rays and for obtaining an
initial field for carrying out the self-consistent-field computations
described in the previous scction. However, the Thomas-Fermi
electron distribution does not show the finer features, such as
the concentration of the electrons into shells, which are character-
istic of the more refined treatments. Figure 32-1 shows how the
Thomas-Fermi results compare with Hartree’s and Pauling’s
calculations for Rb*.

General References on Line Spectra

Introductory treatments:

L. PavLinG and S. GoupsmMiT: “ The Structure of Line Spectra,” McGraw-
Hill Book Company, Inc., New York, 1930.

H. E. Wurre: “Introduction to Atomic Spectra,” McGraw-Hill Book
Company, Inc., New York, 1934.

1], A. WASASTIERNA, Soc. Sctent. Fennica Comm. Phys.-Math., vol. 6,
Numbers 18-22 (1932).

21,. H. TuoMmas, Proc. Cambridge Phil. Soc. 28, 542 (1927).

3E, FerMi, Z. f. Phys. 48, 73; 49, 550 (1928).
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A. E. Ruark and H. C. Urey: ‘“Atoms, Molecules and Quanta,”

McGraw-Hill Book Company, Inc., New York, 1930.

A thorough quantum-mechanical treatment:

E. U. Conpon and G. H. SsHorTLEY: ‘‘The Theory of Atomic Spectra,”
Cambridge University Press, 1935.

Tabulation of term values:

R. F. BaceER and 8. GoupsmMIT: ‘“Atomic Energy States,” McGraw-
Hill Book Company, Inc., New York, 1932.



CHAPTER X
THE ROTATION AND VIBRATION OF MOLECULES

The solution of the wave equation for any but the simplest
molecules (some of which are discussed in Chap. X1I) is a very
difficult problem. However, the empirical results of molecular
spectroscopy show that in many cases the energy values bear a
simple relation to one another, such that the energy of the
molecule (aside from translational energy) can be conveniently
considered to be made up of several parts, called the electronic
energy, the wvibrational energy, and the rotational energy.
This is indicated in Figure 34-1, showing some of the energy
levels for a molecule of carbon monoxide, as calculated from the
observed spectral lines by the Bohr frequency rule (Sec. 5a),
It is seen that the energy levels fall into widely separated
groups, which are said to correspond to different electronic states
of the molecule. For a given electronic state the levels are
again divided into groups, which follow one another at nearly
equal intervals. These are said to correspond to successive
states of vibration of the nuclei. Superimposed on this is the
fine structure due to the different states of rotation of the mole-
cule, the successive rotational energy levels being separated by
larger and larger intervals with increasing rotational energy.
This simplicity of structure of the energy levels suggests that it
should be possible to devise a method of approximate solution
of the wave equation involving its separation into three equa-
tions, one dealing with the motion of the electrons, one with
the vibrational motion of the nuclei, and one with the rotational
motion of the nuclei. A method of this character has been
developed and is discussed in the following section. The
remaining sections of this chapter are devoted to the detailed
treatment of the vibrational and rotational motion of molecules
of various types.

84. THE SEPARATION OF ELECTRONIC AND NUCLEAR MOTION

By making use of the fact that the mass of every atomic nucleus
is several thousand times as great as the mass of an electron,
259
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Born and Oppenheimer* were able to show that an approximate
solution of the complete wave equation for a molecule can be
obtained by first solving the wave equation for the electrons
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F1a. 3¢-1.—Energy levels for the carbon monoxide molecule. On the left are
shown various electronic levels, with vibrational fine structure for the normal
state, and on the right, with one hundred fold increase of scale, the rotational
fine structure for the lowest vibrational level.

alone, with the nuclei in a fixed configuration, and then solving

a wave equation for the nuclei alone, in which a characteristic

energy value of the electronic wave equation, regarded as a
! M. BorN and J. R. OprENERIMER, Ann. d. Phys. 84, 457 (1927).
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function of the internuclear distances, occurs as a potential
function. Even in its simplest form the argument of Born and
Oppenheimer is very long and complicated. On the other
hand, the results of their treatment can be very simply and
briefly described. Because of these facts, we shall content
ourselves with describing their conclusions in detail.

The complete wave equation for a molecule consisting of r
nuclei and s electrons is

2
S+ =S+ 5w - v =0, @e)
jal i=]1
in which M; is the mass of the jth nucleus, m, the mass of each
electron, y? the Laplace operator in terms of the coordinates
of the jth nucleus, and y? the same operator for the <th electron.
V is the potential energy of the system, of the form

e? Z,'Z,‘te2 Z,-e"’
V= + T ,
Tiee Tiir i
7’

(R (%]

the sums including each pair of particles once. Here Z; is the
atomic number of the jth nucleus.

Let us use the letter £ to represent the 3r coordinates of the
r nuclei, relative to axes fixed in space, and the letter z to repre-
sent the 3s coordinates of the s electrons, relative to axes deter-
mined by the coordinates of the nuclei (for example, as described
in Section 48). Let us also use the letter » to represent the
quantum numbers associated with the motion of the nuclei,
and n to represent those associated with the motion of the
electrons. The principal result of Born and Oppenheimer’s
treatment is that an approximate solution ., (z, £) of Equation
34-1 can be obtained of the form

\Ln.r(z; f) = #’n(z; E)#’n.r(g)- (34—2)

The different functions y.(x, &), which may be called the
electronic wave functions, correspond to different sets of values
of the electronic quantum numbers n only, being independent
of the nuclear quantum numbers ». On the other hand, each of
these functions is a function of the nuclear coordinates ¢ as
well as the electronic coordinates z. These functions are
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obtained by solving a wave equation for the electrons alone, the
nuclet being restricted to a fired configuration. This wave equation
is

szx O + ST ~ Vs, Olalz, § =0. (343)

i=1

It is obtained from the complete wave equation 34~1 by omitting
the terms involving v}, replacing ¢ by ¢a.(z, £), and writing
Ua(f) in place of W. The potential function V(z, £) is the
complete potential function of
Equation 34-1. It is seen that
for any fixed set of values of
the s nuclear coordinates £ this
| equation 34-3, which we may
// call the electronic wave equation,
U(')T \ is an ordinary wave equation for
\ the s electrons, the potential-
energy function V being depend-
\ ent on the values selected for the
nuclear coordinates £.  In con-
' sequence the characteristic elec-
Fxo.. 34—2.:—A typical function U(T) for tronic energy values U” and the
a diatomic molecule (Morse function). . .
electronic wave functions ¥,
will also be dependent on the values selected for the nuclear
coordinates; we accordingly write them as U.(§) and ¢a(z, £),
The first step in the treatment of a molecule is to solve this
electronic wave equation for all configurations of the nuclei,
It is found that the characteristic values U,(£) of the electronic
energy are continuous functions of the nuclear coordinates £.
For example, for a free diatomic molecule the electronic energy
function for the most stable electronic state (n = 0) is a function
only of the distance r between the two nuclei, and it is a con-
tinuous function of r, such as shown in Figure 34-2.

Having evaluated the characteristic electronic energy Ua(£)
as a function of the nuclear coordinates £ for a given set of
values of the electronic quantum numbers n by solving the
wave equation 34-3 for various nuclear configurations, we next
obtain expressions for the nuclear wave functions ¥a.(§). It
was shown by Born and Oppenheimer that these functions are
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the acceptable solutions of a wave equation in the nuclear
coordinates ¢ in which the characteristic electronic energy
function U.(¢) plays the role of the potential energy; that is,
the nuclear wave equation is

2

SO + G War = Us@Ward) =0, (34-4)

i=1
There is one such equation for each set of values of the electronic
quantum numbers n, and each of these equations possesses an
extensive set of solutions, corresponding to the allowed values
of the nuclear quantum numbers ». The values of W, , are the
characteristic encrgy values for the entire molecule; they depend
on the electronic and nuclear quantum numbers n and ».

The foregoing treatment can be formally justified by a pro-
cedure involving the expansion of the wave functions and
other quantities entering in the complste wave equation 34-1
as power series in (mg/M)%, in which M is an average nuclear
mass. The physical argument supporting the treatment is
that on account of the disparity of masses of electrons and nuclei
the electrons carry out many cycles of their motion in the time
required for the nuclear configuration to change appreciably,
and that in consequence we are allowed to quantize their motion
for fixed configurations (by solving the electronic wave equation),
and then to use the electronic energy functions as potential energy
functions determining the motion of the nuclei.

When great accuracy is desired, and in certain cases when
only ordinary accuracy is required, it is necessary to consider the
coupling between electronic and nuclear motions, and especially
between the electronic angular momentum (either spin or
orbital) and the rotation of the molecule. We shall not discuss
these questions,! but shall treat only the simplest problems in
the complex field of rolecular structure and molecular spectra
in the following sections. Some further discussion is also
given in Chapter XII and in Section 48 of Chapter XIV.

86. THE ROTATION AND VIBRATION OF DIATOMIC MOLECULES

In the previous section we have stated that an approximate
wave function for a molecule can be written as a product of two

18ee the references at the end of the chapter.
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factors, one a function of the electronic coordinates relative to
the nuclei and the other a function of the nuclear coordinates.
In this section we shall consider the nuclear function and the
corresponding energy levels for the simplest case, the diatomic
molecule, assuming the electronic energy function U,(r) to be
known.

3ba. The Separation of Variables and Solution of the Angular
Equations.—The wave cquation for the rotation and vibration
of a diatomic molecule (Eq. 34—4) has the form

Low, + Lowe, + 0w, - U, =0, (35-1)
M] 1¥Yn,» M2 2y B,» h2 n,y n n,» y

in which ¥n,, = ¥u. (21, ¥1, 21, Zs, ¥s, 22) is the wave function for
the nuclear motion, M, and M, are the masses of the two nuclei,
and

g% 92 .
Vi g + Atay i-L% (35-2)

z,, ¥, and 2 being the Cartesian coordinates of the ¢th nucleus
relative to axes fixed in space. Equation 35-1 is identical with
the wave equation for the hydrogen atom, the two particles
here being the two nuclei instead of an electron and a proton,
We may therefore refer to the treatment which has already
been given of this equation in connection with hydrogen. All
the steps are the same until the form for U,(r) is inserted into
the radial equation.

In Section 18a we have seen that Equation 35-1, expressed in
terms of the Cartesian coordinates of the two particles, can be
separated into two equations, one describing the translational
motion of the molecule and the other its internal motion. The
latter has the form

14/, 1 3y 1 o9
r? ar( ar> T osn g 72 sin & 60<Sm 060) + r¥sin? ¢ 9p? +

81rp.

{(W—-U®}y =0, (353)

in which p, the reduced mass, is given by the equation

MM,

M] + M-2 (35_4)

uo=
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and r, 4, ¢ are polar coordinates of the second nucleus relative to
the first as origin. In Section 18a¢ it was also shown that this
equation can be separated into three equations in the three
variables ¢, 3, and r, respectively. The solutions of the ¢ and #
equations, which are obtained in Sections 18b, 18¢, and 19, are

‘bu(ﬁa) =

lzwefw (35-5)

and

Oxu(d) = {(ZK 2_{(~K1)-$-Klﬂ;l)|'M l)!}”P',gﬂ (cos 9), (35-6)

in which P¥!(cos &) is an associated Legendre function (Sec. 19b)
$ and © are the ¢ and ¢ factors, respectively, in the product
function

¥(r, 3, ¢) = R(rO®)2(e). (35-7)

Instead of the azimuthal quantum number I, used for the hydro-
gen atom, we have here adopted the letter K, and for the magnetic
quantum number m we here use M, in agreement with the usual
notation for molecular spectra. Both M and K must be integers,
for the reasons discussed in Sections 185 and 18¢, and, as there
shown, their allowed values are

K=0,12---;M=—-K, —-K+1,---,K—-1,K.
(35-8)

Just as in the case of hydrogen, the quantum numbers M and K
represent angular momenta (see also Sec. 52), the square of the
total angular momentum due to the rotation of the molecule!
being

h2

4x?’

KK +1) (35-9)

while the component of this angular momentum in any specially
chosen direction (taken as the z direction) is

h
M- (35-10)

In Section 40d it will be shown that dipole radiation is emitted
or absorbed only for transitions in which the quantum number

! There may be additional angular momentum due to the electrons,
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K changes by one unit; i.e., the selection rule for K is
AK = 1.
Likewise, the selection rule for M is
AM =0or t1.

The energy of the molecule does not depend on M (unless there
is a magnetic field present), so that this rule is not ordinarily
of importance in the interpretation of molecular spectra.

The equation for RB(r) (Eq. 18-26) is

1d{ dR K(K +1) | 8% B
PEG%»*{"TT" ﬁ*W“U@dR-Q
(35-11)

in which for simplicity we have omitted the subscripts n and ».
This may be simplified by the substitution

R() = 1S0), (35-12)

which leads to the equation

dS K(K +1 8w
=+ [__(_;jﬁ) +%{W - U(r)}]S =0. (35-13)

36b. The Nature of the Electronic Energy Function.—The
solution of the radial equation 35-13 involves a knowledge of
the electronic energy function U(r) discussed in Section 34. The
theoretical calculation of U(r) requires the solution of the wave
equation for the motion of the electrons, a formidable problem
which has been satisfactorily treated only for the very simplest
molecules, such as the hydrogen molecule (Sec. 43). It is
therefore customary to determine U(r) empirically by assuming
some reasonable form for it involving adjustable parameters
which are determined by a comparison of the observed and calcu-
lIated energy levels.

From the calculations on such simple molecules as the hydrogen
molecule and from the experimental results, we know that
U(r) for a stable diatomic molecule is similar to the function
plotted in Figure 34—2. When the atoms are very far apart
(r large), the energy is just the sum of the energies of the two
individual atoms. As the atoms approach one another there
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is for stable states a slight attraction which increases with
decreasing r, as is shown by the curvature of U in Figure 34-2.
For stable molecules, U must have a minimum value at the
equilibrium separation r = r,. For smaller values of r, U rises
rapidly, corresponding to the high repulsion of atoms ““in contact.”

For most molecules in their lower states of vibration it will be
found that the wave function has an appreciable value only in a
rather narrow region near the equilibrium position, this having
the significance that the amplitude of vibration of most molecules
is small compared to the equilibrium separation. This is impor-
tant because it means that for these lower levels the nature of
the potential function near the minimum is more important than
its behavior in other regions.

However, for higher vibrational levels, that is, for larger ampli-
tudes of vibration, the complete potential function is of impor-
tance. The behavior of U in approaching a constant value for
larger values of r is of particular significance for these higher
levels and is responsible for the fact that if sufficient energy is
transferred to the molecule it will dissociate into two atoms.

In the following sections two approximations for U(r) will be
introduced, the first of which is very simple and the second
somewhat more complicated but also more accurate.

36c. A Simple Potential Function for Diatomic Molecules.—
The simplest assumption which can be made concerning the force
between the atoms of a diatomic molecule is that it is proportional
to the displacement of the internuclear distance from its equilib-
rium value r,. This corresponds to the potential function

U@r) = Yek(r — 1.)?, (35-14)

which is plotted in Figure 35-1. k is the force constant for the
molecule, the value of which can be determined empirically from
the observed energy levels. A potential-energy function of this
type is called a Hooke’s-law potential energy function.

It is obvious from a comparison of Figures 34-2 and 35-1
that this simple function is not at all correct for large internuclear
distances. Nevertheless, by a proper choice of k a fair approxi-
mation to the true U(r) can be achieved in the neighborhood
of r = r,. This approximation corresponds to expanding the
true U(r) in a Taylor series in powers of (r — r.) and neglecting
all powers above the second, a procedure which is justified only
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for small values of r — r,, The coeficient of (r — r,)° (that is,
the constant term) in this expansion can be conveniently set
equal to zero without loss of generality so far as the solution
of the wave equation is concerned. The linear term in the

u(r)

1
fe
r—>

Fra. 35-1.—Hooke's-law potential function as an approximation to U(r).

expansion vanishes, inasmuch as U(r) has a minimum at r = r,,
2

and so the series begins with the term %(‘%) (r — 1)

Comparison with Equation 35-14 shows that the force constant

. axy
k is equal to. (317),_,,
Insertion of this form for U(r) into the radial equation 35-13

yields the equation

e [ oo

dr? r?
- (35-15)

which may be transformed by the introduction of the new inde-
pendent variable p = r — r, (the displacement from the equilib-
rium separation) into the equation

28 | 8x% 1 Rt KK+ D)o
dp? 72‘{“’ B =i carae Ty w}s = 0.

Since the approximation which we have used for U(r) is good only
for p small compared to r,, it is legitimate to introduce the
expansion
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1 _ 1 o gt .
m‘?.%(l RS I )

a step which leads to the result

d:*S | 8x%u

T {W K(K + 1) + 2K(K + 1)7p -

3K(K + l)r—2p2 - ikpz}S =0, (35-16)

in which powers of p/r, greater than the second have been
neglected, and the symbol ¢ has been introduced, with

h? h?

8m2ur? = 8t (35-17)

T =

and I, = ur. I, is called the equilibrium moment of inertia of
the molecule.

By making a suitable transformation p = { 4+ a, we can
eliminate the term containing the first power in the independent
variable, obtaining thereby an equation of the same form as
Equation 11-1, the wave equation for the harmonic oscillator,
which we have previously solved. It is easily verified that the
proper value for a is

K(K + 1)or,

T 3KE + Do + L4kr?

and that the introduction of this transformation info Equation
35-16 yields the equation

a8 8
i ’,;,*‘{[W K(K + 1o +

{K(K + 1)a}* ]
AR(K + D)o + Ykr?

— [%k + 3K(K + 1)},];2}3 0. (35-18)

We seek the solutions of this equation which make ¢(r, ¢, ¢) of
Equation 35-7 a satisfactory wave function. This requires
that S vanish forr = 0 and r = o, the former condition entering

because of the relation B = ;S. We know the solutions of tha

equation which vanish for { = — « and ¢ = 4 =, since for these
boundary conditions the problem is analogous to that of the
linear harmonic oscillator (Sec. 11). Because of the rapid
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decrease in the harmonic oscillator functions outside of the
classically permitted region (see Fig. 11-3), it does not introduce
a serious error to consider that the two sets of boundary conditions
are practically equivalent, so that as an approximation we may
use the harmonic oscillator wave functions for the functions S.

The energy levels are, therefore, using the results of Section
1la,

~ (KK + 1)e}? LY
Wor = KK + o ~ spg t 1o + 56 T (v + E)hy"
(35-19)
in which
14
v = 27r{k7‘ + 615:2]( + 1)”} (35-20)

and v is the vibrational quantum number (corresponding to the
quantum number n for the harmonic oscillator), which can take
on the values 0, 1, 2, - - - . The functions S(¢) are (Sec. 11)

s =4(2) o T FROE), @

in which ¢ =4r?wi/hand { =p—a=r—-7r,— @a, and I{, is
the vth Hermite polynomial.

The values of %, r., and o for actual molecules are of such
magnitudes that the expression far W can be considerably simpli-
fied without loss of accuracy by the use of the expansions

1 1 {1 6K(I7C 'f 1)o + - }

3K(K + 1)o + gkrt — lgkr?

,_i{kr3+6K(K+ )1,‘
T\ wt

1/k 3A(K+1)¢r
o) S

Introducing these into Equation 35-19, we obtain for W the
expression

Wox = (v + D)o+ K 4 1y — KU Db,

in which only the first terms of the expansions have been used
and the symbol », is given by
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-1k
“2rNu
Replacing & by its expression in terms of », and introducing

the value of Equation 35-17 for ¢, we finally obtain for W the
expression

Ve

(35-22)

h? K*(K + 1)%h*
8,  128x%2%

The first term is evidently the vibrational energy of the mole-
cule, considered as a harmonic oscillator. The second term is
the energy of rotation, assuming that the molecule is a rigid
body,! while the third term is the correction which takes account
of the stretching of the actual, non-rigid molecule due to the
rotation. The terms of higher order are unreliable because
of the inaccuracy of the assumed potential function.

The experimental data for most molecules fit Equation 35-23
fairly well. For more refined work additional correction terms
are needed, one of which will be obtained in the next section.

3bd. A More Accurate Treatment. The Morse Function.—
The simple treatment which we have just given fails to agree
with experiment in that it yields equally spaced levels, whereas
the observed vibrational levels show a convergence for increasing
valuecs of ». In order to obtain this feature a potential function
U(r) is required which is closer to the true U(r) described in

Wos = (s 5o + KK +1) (35-23)

1This is seen by allowing %k to become infinite, causing the third term to
vanish (because v.— ). A rigid molecule would have no vibrational
encrgy, so the first term would become an additive constant. The rigid
rotator is often discussed as a separatc problem, with the wave equation

1 af . 0a¢ n 1 az¢+81r=IW 0 (35-24)
—| sin 9— — 4 —= =
sing oo\ a9 sin? 9 9¢? ht J ’ .
the solutions of which are ¢ = @ (¢)Oxa(?), in which ® and © are given by
hZ
Equations 35-5 and 35-6. The cnergy levels are Wx = K(K + 1)8 e
T

The rigid rotator is of course an idealization which does not oceur in nature.
Another idealized problem is the rigid rotator in a plane, for which the
wave equation is
dyy  8x2]
— +
de? h?

Wy = 0. (35-25)

The solutions are ¢y =sin My and ¢ =cos Mo, M =0, 1,2, - - -, and
the energy levels are Wy = M2h?/8r2I (Sec. 25a).
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Section 35b, especially with regard to its behavior for large
values of r.
Morse! proposed a function of the form

U(r) = D{1 — eerT}2 (35-26)

which is plotted in Figure 34-2. It has a minimum value of
zero at r = r, and approaches a finite value D for r large. It
therefore agrees with the qualitative considerations of Section 356
except for its behavior at r = 0. At this point the true U(r)
is infinite, whereas the Morse function is finite. However, the
Morse function is very large at this point, and this deficiency
is not a serious one.

With the introduction of this function, the radial equation
35-13 becomes

%2§ + { K(K + 1) + h2#(W D — De—za(r—r.) +

2Deatr—r ’)}S =0, (35-27)
If we make the substitutions
h2
= p—alr—r,) - R
y=c=e and 4 = K(K + 1)-—81r2/urf (35-28)

the radial equation becomes

d28 1dS8 | 8x%u(W — D _An
The quantity r2/72 may be expanded in terms of ¥ in the following
way:?

n_ 1 __2__‘__ 1 3
P_<1_l_llg>2_l+a7‘e(y 1)+< 57.,+aTrf)(y_1)2
ar,

the series being the Taylor expansion of the second expression
in powers of (y — 1). Using the first three terms of this expan-
sion in Equation 35-29 we obtain the result

+ -+, (35-30)

1 P. M. MogrsE, Phys. Rev. 84, 57 (1929).
*This treatment is due to C. L. Pekeris, Phys. Rev. 46, 98 (1934). Morse
solved the equation for the case K = 0 only.
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d:S  1dS SWzy/W—D—-co 2D — ¢, _
R A LR )
(35-31)
in which
3 3
Co = A<1 - ar, + a2—rf>’
4 6
C = A(E;’; — W), (35"32)
1 3
o= Ao+ 35)
The substitutions
z b
S@y) =e % (2),
2 = 2dy,
8 2
dz = a":hg(D + ¢, (35-33)
2
b= ~32 G — D ~ )

simplify Equation 35-31 considerably, yielding the equation

diF b+1 dF v
in which
p= 30 on ey~ o+ 1) (35-35)
a?h?d Vo2 :

Equation 35-34 is closely related to the radial equation 18-37
of the hydrogen atom and may be solved in exactly the same
manner. If this is done, it is found that it is necessary to
restrict v to the values 0, 1, 2, . - - in order to obtain a poly-
nomial solution.! If we solve for W by means of Equations 35-35
and the definitions of Equations 35-33, 35-32, and 35-28, we
obtain the equation

(D — Ye)? | ah(D — Y01) ( N 1) _

WK,1)=D+CO_ 2

a®h? 1\?
—tv4+z].
81r2y.< + 2)
! The solutions for v integral satisfy the boundary conditions F — 0 as
r — — » instead of as r — Q (Sec. 36¢).

D +c) " 2v/2avVD + ¢ 2
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By expanding in terms of powers of ¢;/D and c¢;/D, this relatior
may be brought into the form usually employed in the study o
observed spectra; namely,

";;‘-" - m(» + %) _ x,a,(u + 21—) +K(K + 1)B. +
DEYK + 1) — au(v + WK(K + 1), (35-36)

in which ¢ is the velocity of light, and?

_a [2D
Ve = Trc _;T}
x 3 .hi;_ec
4D’
h
B, = ) (35-37)
h?
b, = T 128n%u3tcrt

s (11
% = {6r?ur:D\ar,  a’r?

For nearly all molecules this relation gives very accurate
values for the energy levels; for a few molecules only is it neces-
sary to consider further refinements.

We shall not discuss the wave functions for this problem.
They are given in the two references quoted.

Problem 36-1. Another approximate potential function which has beer
used for diatomic molecules? is

B Ze

r? T

e -

Obtain the energy levels for a diatomic molecule with such a potential func
tion, using the polynomial method. (Hint: Follow the procedure of Sec. 1¢
closely.) Expand thec expression for the energy so obtained in powers of

82
(K + 1)2% and compare with Equation 35-23. Also obtain the positior

of the minimum of U(r) and the curvature of U(r) at the minimum.
Problem 86-2. Solve Equation 35-35 for the energy levels.

1 The symbol w. is often used in place of 7..
t E. Fues, Ann. d. Phys. 80, 367 (1926).



X-36a] THE ROTATION OF POLYATOMIC MOLECULES 276

86. THE ROTATION OF POLYATOMIC MOLECULES

The straightforward way to treat the rotational and vibrational
motion of a polyatomic molecule would be to set up the wave
equation for ¥, .(§) (Eq. 34-4), introducing for U,(¢) an expres-
sion obtained either by solution of the electronic wave equation
34-3 or by some empirical method, and then to solve this nuclear
wave equation, using some approximation method if necessary.
This treatment, however, has proved to be so difficult that it is
customary to begin by making the approximation of neglecting
all interaction between the rotational motion and the vibrational
motion of the molecule.! The nuclear wave equation can then
be separated into two equations, one, called the rotational wave
equation, representing the rotational motion of a rigid body.
In the following paragraphs we shall discuss this equation,
first for the special case of the so-called symmetrical-top molecules,
for which two of the principal moments of inertia are equal
(Sec. 36a), and then for the unsymmetrical-fop molecules, for
which the three principal moments of inertia are unequal (Sec.
36b). The second of the two equations into which the nuclear
wave equation is separated is the wibrational wave equation,
representing the vibrational motion of the non-rotating molecule.
This equation will be treated in Section 37, with the usual
simplifying assumption of Hooke’s-law forces, the potential
encrgy being expressed as a quadratic function of the nuclear
coordinates.

36a. The Rotation of Symmetrical-top Molecules.—A rigid
body in which two of the three principal moments of inertia?

1 See, however, C. Ecrart, Phys. Rev. 47, 552 (1935); J. H. VAN VLECK,
ibid. 47, 487 (1935); D. M. DEnNisoN and M. JouNsoN, bid. 47, 93 (1935).
z Every body has three axes the use of which permits the kinetic cnergy
to be expressed in a particularly simple form. These are called the principal
azes of inertia. The moment of inertia about a principal axis is defined by
the expression [pridr, in which p is the density of matter in a given volume
clement dr, r is the perpendicular distance of this element from the axis in
question, and the integration is over the entire volume of the solid. For a
discussion of this question see J. C. Slater and N. II. Frank, “ Introduction
to Theorctical Physics,” p. 94, McGraw-Hill Book Company, Inc., New
York, 1933.
In case that a molecule possesses an n-fold symmetry axis with n greater
than 2 (such as ammonia, with a three-fold axis), then two principal moments
of inertia about axes perpendicular to this symmetry axis are equal, and the
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are equal is called a symmetrical top. Its position in space is
best described by the use of the three Eulerian angles 9, ¢, and x
shown in Figure 36-1. ¥ and ¢ are the ordinary polar-coordinate
angles of the axis of the top while x (usually called y) is the
angle measuring the rotation about this axis.

Since we have considered only assemblages of point particles
heretofore, we have not given the rules for setting up the wave
equation for a rigid body. We shall not discuss these rules
here! but shall take the wave equation for the symmetrical top

>y

F1a. 36-1.—Diagram showing Eulerian angles.

from the work of others.? Using C to represent the moment of
inertia about the symmetry axis and A the two other equal
moments of inertia, this wave equation is

molecule is a symmetrical top. A two-fold axis does not produce a symmet-
rical-top molecule (example, water). If the molecule possesses two or more
symmetry axes with n greater than 2, it is called a spherical-top molecule,
all three moments of inertia being equal.

1 Since the dynamics of rigid bodies is based on the dynamics of particles,
these rules must be related to the rules given in Chapter 1V. For a dis-
cussion of & method of finding the wave equation for a system whose Hamil-
tonian is not expressed in Cartesian coordinates, see B. Podolsky, Phys.
Rev. 82, 812 (1928), and for the specific application to the symmetrical
top see the references below.

:F. Reicae and H. RapEMAcHER, Z. f. Phys. 39, 444 (1926); 41, 453
(1927); R. oE L. Kronig and I. I. Ras1, Phys. Rev. 29, 262 (1927). D. M.
DEeNnNisoN, Phys. Rev. 28, 318 (1926), was the first to obtain the energy
levels for this system, using matrix mechanics rather than wave mechanics.
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1 . OV 1 oy cos?d %
sin o ao( sin "a&) + e agf T (sin2 3t C>ax

_2cosd oW 8x AW
sin? ¢ 9xde h?

=0. (36-1)

The angles x and ¢ do not occur in this equation, although
derivatives with respect to them do. They are therefore cyclic
coordinates (Sec. 17), and we know that they enter the wave
function in the following manner:

¥ = B(9)eMeeiFx, (36-2)

in which M and K have the integral values 0, +1, +2, - - - .
Substitution of this expression in the wave equation confirms
this, yielding as the equation in ¢

1 df. .,do M? cos*d | A\,
sin ¢ 31—9(5"1 1’35) - {sin2 s T (s—in2 5T 6>K
cos ¢ 8m2A
- Zsz 0KM - —hT-W}G = 0. (36-3)
We see that 4 = 0 and & = = are singular points for this equation
(Sec. 17). It is convenient to eliminate the trigonometric
functions by the change of variables

z = 14(1 — cos 9),
o) = T(@), (36-4)
at the same time introducing the ahbreviation
8w AW A,
A= R 6K (36-5)

the result being

The singular points, which are regular points, have now been
shifted to the points 0 and 1 of z, so that the indicial equation
must be obtained at each of these points. Making the sub-
stitution T'(z) = 2°G(z), we find by the procedure of Section 17
that s equals }4]K — M|, while the substitution

T(x) = (1 - z2)HQ1 — 1)
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yields a value of }5|K + M| for §'. Following the method of
Section 18¢ we therefore make the substitution

o) = T(zx) = HEM(1 — g)HKHMEF(7), (36-7)
which leads to the equation! for F

2

21 = DTE 4 (a~ )T +F =0, (36-8)
in which
a=|K~—- M +1,
B=|K+M+I|K—-M+2
and
y =N+ K?— (4K + M| + 5|K — MI)(/|K+M! +

14K — M| +1).

We can now apply the polynomial method to this equation by
substituting the series expression

F(z) = ia,x’

r=0
in Equation 36-8. The recursion formula which results is
JG=1)+8—, 36-9)

HETGH DG+
For this to break off after the jth term (the series is not an
acceptable wave function unless it terminates), it is necessary
for the numerator of Equation 36-9 to vanish, a condition which
leads to the equation for the energy levels

hyJ(J + 1) . 1
Wik = 8#2{ A + K (6 - Z)} (36-10)

J =7+ KK+ M|+ KK - M|, (36-11)

that is, J is equal to, or larger than, the larger of the two quan-
tities |[K| and |[M]. The quantum number J is therefore zero or a
positive integer, so that we have as the allowed values of the
three quantum numbers

in which

M=0,+1, +2, - - -, +J.

! This equation is well known to mathematicians as the hypergeometric

equation.

J =012 :
K=0, 41, £2, - - -, iJ,} (36-12)
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h* .

It can be shown that J(J + 1) s the square of the total
angular momentum, while Kh/2x is the component of angular
momentum along the symmetry axis of the top and Mh/2r the
component along an arbitrary axis fixed in space.
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F1a. 36-2.—Energy-level diagram for symmetrical-top molecule, with 4 = 2C
and with A = 34C. Values of the quantum numbers J and K are given for
each level.

When K is zero, the expression for W reduces to that for the
simple rotator in space, given in a footnote in Section 35¢. The
energy does not depend on M or on the sign of K, and hence
the degeneracy of alevel with given J is2J + 1 or4J + 2, depend-
ing on whether K is equal to zero or not. The appearance® of
the set of energy levels depends on the relative magnitudes of
A and C, as shown in Figure 36-2.

! For a discussion of the nature of these energy levels and of the spectral
lines arising from them, see D. M. Dennison, Rev. Mod. Phys. 8, 280 (1931).
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The wave functions can be constructed by the use of the
recursion formula 36-9. In terms of the hypergeometric
functions! F(a, b; c; x), the wave function is

ll/JKM(l’, @, X) — NJKMx%IK-—Ml(l —_ x)%IK+MIei(Mp+Kx)
F(—J + %48 —1,J +1%48; 1+ |K — M|;2), (36-13)

in which z = 14(1 — cos ¢) and

N _{ _____ @I +1)(J+ 24K+ M| +15|K—M]|)!
TSR (T -1 K+ M| = 151K — M) (K~ M])*
(J—28|K+M|+15|K—M))!
(J+12|lK+M|- 251K - M|)!

In case that all three principal moments of inertia of a molecule
are equal, the molecule is called a spherical-top molecule (examples:
methane, carbon tetrachloride, sulfur hexafluoride). The energy
levels in this case assume a particularly simple form (Problem
36-2).

It has been found possible to discuss the rotational motion of
molecules containing parts capable of free rotation relative to
other parts of the molecule. Nielsen? has treated the ethane
molecule, assuming the two methyl groups to rotate freely
relative to one another about the C-C axis, and La Coste® has
similarly discussed the tetramethylmethane molecule, assuming
free rotation of each of the four methyl groups about the axis
connecting it with the central carbon atom.

34
} (36-14)

Problem 36-1. Using Equation 36-9, construct the polynomial F(z)
for the first few sets of quantum numbers.

Problem 36-2. Sct up the expression for the rotational energy levels for
a spherical-top molecule, and discuss the degeneracy of the levels. Calcu-
late the term values for the six lowest levels for the methane molecule,
assuming the C-H distance to be 1.06 A.

36b. The Rotation of Unsymmetrical-top Molecules.—The
treatment of the rotational motion of a molecule with all three
principal moments of inertia different (called an unsymmetrical-
top molecule) is a much more difficult problem than that of the
preceding gection for the symmetrical top. We shall outline a

! The hypergeometric function is discussed in Whittaker and Watson,
‘‘Modern Analysis,”’ Chap. XIV.

* H. H. Ni1ELSEN, Phys. Rev. 40, 445 (1932).

3L. J. B. La CostE. Phuys. Rev. 46. 718 (1934).
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procedure which has been used with success in the interpretation
of the spectra of molecules of this type.
Let us write the wave equation symbolically as

Hy = Wy. (36-15)

Inasmuch as the known solutions of the wave equation for a
symmetrical-top molecule form a complete set of orthogonal
functions (discussed in the preceding section), we can expand
the wave function ¢ in terms of them, writing

Vo= 2 bl (36-16)
JKM
in which we use the symbol 9, to represent the symmetrical-top
wave functions for a hypothetical molecule with moments of
inertia Ao, Bo(= Ay), and C,. If we now set up the secular
equation corresponding to the use of the series of Equation 3616
as a solution of the unsymmetrical-top wave equation (Sec. 27a),
we find that the only integrals which are not zero are those
between functions with the same values of J and M, so that
the secular equation immediately factors into equations corre-
sponding to variation functions of the type!
+J
Vi = 2 aJKM'l’gKM' (36—17)
K==J
On substituting this expression in the wave equation 36-15,
we obtain the equation

SaxHY = W axdl, (36-18)
K K

in which for simplicity we have omitted the subscripts J and M,
the argument from now on being understood to refer to definite
values of these two quantum numbers. On multiplication by
Y2 * and integration, this equation leads to the following set of
sir ultaneous homogeneous linear equations in the coefficients ax:

S ax(Hix—8:xW) =0, =—J,~J+1, - - - ,+J, (36-19)
K

in which 8.x has the value 1 for L = K and 0 otherwise, and H .«

1 The same result follows from the observation that J and M correspond
to the total angular momentum of the system and its component along a
fixed axis in space (see Sec. 52, Chap. XV).
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represents the integral [y*Hy%dr. This set of equations has a
solution only for values of W satisfying the secular equation

H—J,—J - W H——J.—J+1 T H-—-J.J
H—-J+l,—l H—J+l.—l+l -w - H——J+I.J = 0.
. (36-20)
HJ,_J HJ,_J+1 e HJ,J - W

These values of W are then the allowed values for the rotational
energy of the unsymmetrical-top molecule. Wang! has evaluated
the integrals Hrpx and shown that the secular equation can
be further simplified. The application in the interpretation
of the rotational fine structure of spectra has been carried
out in several cases, including water,? hydrogen sulfide,® and
formaldehyde.*

87. THE VIBRATION OF POLYATOMIC MOLECULES

The vibrational motion of polyatomic molecules is usually
treated with an accuracy equivalent to that of the simple dis-
cussion of diatomic molecules given in Section 35¢, that is, with
the assumption of Hooke’s-law forces between the atoms. When
greater accuracy is needed, perturbation methods are employed.

Having made the assumption of Hooke’s-law forces, we employ
the method of normal coordinates to reduce the problem to soluble
form. This method is applicable whether we use classical
mechanics or quantum mechanics. Inasmuch as the former
provides a simpler introduction to the method, we shall consider
it first.

3Ta. Normal Coordinates in Classical Mechanics.—Let the
positions of the n nuclei in the molecule be described by giving
the Cartesian coordinates of each nucleus referred to the
equilibrium position of that nucleus as origin, as shown in Figure
37-1. Let us call these coordinates g}, ¢, - + - , ¢3,. In terms
of them we may write tlie kinetic energy of the molecule in the
form

18, C. WaNG, Phys. Rev. 84, 243 (1929). See also H. A. KrRAMERS and
G. P. Irruany, Z. f. Phys. 68, 553 (1929); 68, 217 (1929); 60, 663 (1930);
O. Kumin, Z. f. Phys. 68, 730 (1929); E. E. WiTMER, Proc. Nal. Acad. Sci.
18, 60 (1927); H. H. NieLsEN, Phys. Rev. 38, 1432 (1931).

* R. Mucks, Z. f. Phys. 81, 313 (1933).

3P, C. Cross, Phys. Rev. 47, 7 (1935).

¢ G. H. Diexe and G. B. KisTiAkowsky, Phys. Rev. 45, 4 (1934).
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3n
T = 34 3 M7, (37-1)

i=1

in which M, is the mass of the nucleus with coordinate ¢i. By
changing the scale of the coordinates by means of the relation

g = VMg, t=12 .-, 3n, (37-2)
we can eliminate the masses from the kinetic energy expression,
obtaining

T =153 4 (37-3)

The potential energy V depends on the mutual positions of
the nuclei and therefore upon the coordinates ¢;. If we restrict

Origin
.7 . -
F1a. 37-1.—Coordinates gi . . . ¢, of atoms measured relative to equilibrium

positions.

ourselves to a discussion of small vibrations, we may expand
V as a Taylor series in powers of the ¢’s,

d 1
Viggs - - ) = Vo + 2(3_})0‘1‘ +§2bfiQi9i +
3 i

(374)
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in which b;; is given by

- (22)
iy = rores 1
! 89:9¢:/0

and the subscript 0 means that the derivatives are evaluated
at the point ¢; = 0, ¢» = 0, etc. If we choose our zero of energy
so that V equals zero when g, ¢, etc. are zero, then V, is zero.
Likewise the second term is zero, because by our choice of coordi-
nate axes the equilibrium position is the configuration ¢; = 0,
g2 = 0, etec., and the condition for equilibrium is

av .
<6q,~>o = 0, i=1,2 , 3n. (87-5)
Neglecting higher terms, we therefore write
V(gige © *  @sn) = Y5 buigig, (37-6)
i

Using the coordinates ¢;, we now set up the classical equations
of motion in the Lagrangian form (Sce. 1¢). In this case the
kinetic energy T is a function of the velocities ¢; only, and the
potential energy V is a function of the coordinates ¢; only, and
in consequence the Lagrangian equations have the form

dfaeT 1%
m(@) + &0, k=128 @D

On introducing the above expressions for 7" and V we obtain the
equations of motion

G+ 2pagi =0, k=12 3 (378

In case that the potential-energy function involves only squares
¢% and no cross-products ¢,g; with ¢ # j; that is, if b;; vanishes
for © = j, then these equations of motion can be solved at once.
They have the form

g + b"qu =0, k = 1,2 ---,3n, (37-9)
the solutions of which are (Sec. 1a)
o = ¢fsin (Vhut +8), k=1,2---,3n, (37-10)

in which the ¢¥’s are amplitude constants and the &.’s phase
constants of integration. In this special case, then, each of the
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coordinates ¢; undergces harmonic oscillation, the frequency
being determined by the constant by,

Now it is always possible by a simple transformation of
variables to change the equations of motion from the form
37-8 to the form 37-9; that is, to eliminate the cross-products
from the potential energy and at the same time retain the form
37-3 for the kinetic energy. Let us call these new coordinates

Ql=1,2,---,3n). Interms of them the kinetic and the
potential energy would be written
T = %EQ,ﬂ (37-11)
1
and
V =143 M8 (37-12)
1

and the solutions of the equations of motion would be

Qu=@Qsin (VNt+6), 1=12 - -,3n (37-13)
Instead of finding the equations of transformation from the
¢’s to the @’s by the consideration of the kinetic and potential
energy functions, we shall make use of the equations of motion.
In case that all of the amplitude constants ) are zero except one,
QY say, then @, will vary with the time in accordance with
Equation 37-13, and, inasmuch as the ¢’s are related to the
@Q’s by the linear relation

3n
¢ = 2 BuQy, (37-14)
i=1

cach of the ¢’s will vary with the time in the same way, namely,
@ = Arsin (WA +8), k=12 +--,3n (37-15)

In these equations A, represents the product BuQ3, and A the
quantity Aq, inasmuch as we selected ), as the excited coordinate;
the new symbols are introduced for generality. On substituting
these expressions in the equations of motion 37-8, we obtain the
set of equations

3n
—Mi+ D badi =0, k=12 - ,3n (37-16)
i=1

This is a set of 3n simultaneous linear homogeneous equations
in the 3n unknown quantities 4;. As we know well by this time
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(after Secs. 24, 26d, etc.), this set of equations possesses a solution
other than the trivial one 4, = A, =+ + - = 0 only when the
corresponding determinantal equation (the secular equation of
perturbation and variation problems) is satisfied. This equa-
tion is

bu—X b bus
R L B NG IS
bant Dsn 2 ©+ bgngn — A

In other words, Equation 37-15 can represent a solution of the
equations of motion only when M\ has one of the 3n values which
satisfy Equation 37-17. (Some of these roots may be equal.)
Having found one of these roots, we can substitute it in Equation
37-16 and solve for the ratios! of the A’s. If we put

A = BuQ), (37-18)
and introduce the extra condition

2Bu=1, (37-19)

k

in which the subscript [ specifies which root A\, of the secular
equation has been used, then we can determine the values of
the B,/’s, QY being left arbitrary.

By this procedure we have obtained 3n particular solutions
of the equations of motion, one for each root of the secular
equation. A general solution may be obtained by adding all
of these together, a process which yields the equations

3n
g = 2,QIBu sin (VAL + 8). (37-20)
=1 N

This solution of the equations of motion contains 6x arbitrary
constants, the amplitudes Q) and the phases §;, which in
any particular case are determined from a knowledge of the
initial positions and velocities of the n nuclei.

We have thus solved the classical problem of determining the
positions of the nuclei as a function of the time, given any set
of initial conditions. Let us now discuss the nature of the

! These equations are homogeneous, so that only the ratios of the A’s can

be determined. The extra condition 37-19 on the By’s then allows them
to be completely determined.
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golution. As mentioned above, if we start the molecule vibrating
in such a way that all the Q¥s except one, say Q%, are zero, the
solution is

@ = Q3Busin (V/\it + 3), k=12 ---,3n (37-21)

which shows that each of the nuclei carries out a simple harmonic
oscillation about its equilibrium position with the frequency

\/5‘—‘- (37-22)
2m
All of the nuclei move with the same frequency and the same
phase; that is, they all pass through their equilibrium positions
at the same time and reach
their positions of maximum
amplitude at the same time.
These amplitudes, however,
are not the same for the differ-
ent nuclei but depend on the
values of the Bu’s and upon the
initial amplitude, which is
determined by Q. A vibration
governed by Equation 37-21
and therefore having these prop-
erties is called a normal mode  F'6-37-2—One of the normal modes
of vibration of a symmetrical triatomic

of vibration of the system (see molecule. Each of the atoms moves in
Fig 37_2) and out along a radial direction as shown
S : . by the arrows. All the atoms move with

It is not reqmred, however, the same frequency and phase, and in this

that the nuclei have initial special case with the same amplitude.
amplitudes and velocities such that the molecule undergo such a
special motion. We can start the molecule off in any desired man-
ner, with the general result that many of the constants Q% will be
different from zero. In such a case the subsequent motion of
the nuclei may be thought of as corresponding to a superposition
of normal vibrations, each with its own frequency +/A;/2r and
amplitude @3. The actual motion may be very complicated,
although the normal modes of vibration themselves are fre-
quently quite simple.

The normal coordinates of the system are the coordinates Q,,
which we introduced in Equation 37-14. These coordinates
specify the configuration of the system just as definitely as the
original coordinates ¢..

Vv, =
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The expansion of V given in Equation 374 is not valid except
when the nuclei stay near their equilibrium positions. That is,
we have assumed that the molecule is not undergoing transla-
tional or rotational motion as a whole. Closely related to this
is the fact, which we shall not prove, that zero occurs six! times
among the roots A; of the secular equation. The six normal
modes of motion corresponding to these roots, which are not
modes of vibration because they have zero frequency, are the
three motions of translation in the z, y, and 2z directions and
the three motions of rotation about the z, y, and z axes.

37b. Normal Coordinates in Quantum Mechanics.—It can be
shown? that when the coefficients By, of liquation 37-14 are
determined in the manner described in the last section, the
introduction of the transformation 37-14 for the ¢:’s into the
expression for the potential energy yields the result

V = 163buqa = 16D NQF; (37-23)
] 1

that is, the transformation to normal coordinates has eliminated

the eross-products from the expression for the potential energy.

In addition, this transformation has the property of leaving the

expression for the kinetic energy unchanged in form;3 i.e.,

T =143 = 14200 (37-24)
i l

These properties of the normal coordinates enable us to treat the
problem of the vibrations of polyatomic molecules by the
methods of quantum mechanics.

The wave equation for the nuclear motion of a molecule is

1 82
E-EV]?-// +5 W — Vg =0, (37-25)

i=1
in which ¢ represents the nuclear wave function ¢, .(£) of Equa-

! This becomes five for linear molecules, which have only two degrees of
rotational freedom.

*For a proof of this see E. T. Whittaker, ‘“Analytical Dynamics,”
Sec. 77, Cambridge University Press, 1927.

3 A transformation which leaves a simple sum of squares unaltered is
called an orthogonal transformation.
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tion 34—4. In terms of the Cartesian coordinates ¢} previously
described (Fig. 37— 1), we write

2 T = 2 All %ﬂ (37-26)

t=1
By changing the scale of the coordinates as indicated by Equation
37-2 we eliminate the M’s, obtaining for the wave equation the

expression
3n

2 * hz W — Vg = 0. (37-27)

.'=1

We now introducc the normal coordinates @;. The reader can
easily convince himself that an orthogonal transformation will
leave the form of the first sum in the wave equation unaltered,
so that, using also Equation 37-23, we obtain the wave equation

in the form
;’Q‘ﬁ h2< 2Ex,Q ) 0. (37-28)
-1

This equation, however, is 1mmed1ately separable into 3n
one-dimensional equations. We put

Y= ¥u(Q¥2(Q2) * * ¢ ¥5a(Qsn), (37-29)
and obtain the equations

d 1

dgzk (Wk - ékaf)% =0, (37-30)

each of which is identical with the equation for the one-dimen-
sional harmonic oscillator (Sec. 11a). The total energy W is
the sum of the energies W associated with each normal coordi-

nate; that is,
3n

W= 3 W (37-31)
k=1
The energy levels of the harmonic oscillator were found in
Section 1la to have the values (v 4+ 14)hv,, where v is the quan-
tum number and », the classical frequency of the oscillator.
Applying this to the problem of the polyatomic molecule, we
see that



290 THE ROTATION AND VIBRATION OF MOLECULES [X-38

W = EW}; = E(vk + 14)hyy, (37-32)
% %
in which »; is the quantum number (v = 0, 1,2, - - - ) and ».is

the classical frequency of the kth normal mode of vibration.
We have already seen (from Eq. 37-22) that
VN

Vi = _ﬁ— (37“33)

The energy-level diagram of a polyatomic molecule is therefore
quite complex. If, however, we consider only the fundamental
frequencies emitted or absorbed by such a molecule; that is, the
frequencies due to a change of only one quantum number w;
by one unit, we see that these frequencies are vy, vy, + + « , van;
that is, they are the classical frequencies of motion of the
molecule.

This type of treatment has been very useful as a basis for the
interpretation of the vibrational spectra of polyatomic molecules.
Symmetry considerations have been widely employed to simplify
the solution of the secular equation and in that connection the
branch of mathematics known as group theory has been very
helpful.?

38. THE ROTATION OF MOLECULES IN CRYSTALS

In the previous sections we have discussed the rotation and
vibration of free molecules, that is, of molecules in the gas phase.
There is strong evidence? that molecules and parts of molecules
in many crystals can rotate if the temperature is sufficiently
high. The application?? of quantum mechanics to this problem
has led to a clarification of the nature of the motion of a molecule
within a crystal which is of some interest. The problem is
closely related to that dealing with the rotation of one part of a
molecule relative to the other parts, such as the rotation of
methyl groups in hydrocarbon molecules.*

1C. J. BRESTER, Z. f. Phys. 24, 324 (1924); E. WIGNER, Géttinger Nachr.
133 (1930); G. Praczex, Z. f. Phys. 70, 84 (1931); E. B. WiLsoN, Jr.,
Phys. Rev. 45, 706 (1934); J. Chem. Phys. 2, 432 (1934); and others.

2 L. PauLniNGg, Phys. Rev. 36, 430 (1930). This paper discusses the
mathematics of the plane rotator in a crystal as well as the empirical evidence
far rotation.

3T. E. 8TBRN, Proc. Roy. Soc. A 180, 551 (1931).

‘E. TeuLer and K. WEIGERT, Gotitnger Nachr. 218 (1933); J. E.
LeENNARD-JONEs and H. H. M. Pikg, Trans. Faraday Soc. 80, 830 (1934).
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The wave equation for a diatomic molecule in a crystal, con-
sidered as a rigid rotator, obtained by introducing V into the
equation for the free rotator given in a footnote of Section 35¢, is

1 o 1 oy 8
sin ¢ 60( in 9 60) + Sin? 9 3¢? + 72 (W -V =0, (38-1)

in which ¢ and ¢ are the polar coordinates of the axis and I is
the moment of inertia of the molecule. The potential function V
is introduced as an approximate description of the effects of the
other molecules of the crystal upon the molecule in question.

-

\"
0
0 P 2n
e -
F1a. 38-1.—Idealized potential function for a symmetrical diatomic molecule in
a crystal.

If the molecule being studied is made up of like atoms, such as
is O, or H,, then a reasonable form to assume for V is

V = Vo(l — cos 28), (38-2)

which is shown in Figure 38-1. Turning a symmetrical molecule
end for end does not change V, as is shown in the figure by the
periodicity of V with period =.

The wave equation 38-1 with the above form for V has been
studied by Stern,! who used the mathematical treatment given
by A. H. Wilson.2 We shall not reproduce their work, although
the method of solution is of some interest. The first steps are
exactly the same as in the solution of the equation discussed in
Section 18¢c except that a three-term recursion formula is obtained.
The method of obtaining the energy levels from this three-term
formula is then similar to the one which is discussed in Section
42¢, where a similar situation is encountered.

‘We have referred to the case of free rotation of methyl groups at the end of
Section 36a.

1 T. E. STERN, loc. cit.

t A. H. WiLsoN, Proc. Roy. Soc. A 118, 628 (1928).
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The results obtained may best be described by starting with
the two limiting cases. When the energy of the molecule is
small compared with V, (i.e., at low temperatures), then the
potential function can be regarded as parabolic in the neighbor-
hood of the minima and we expect, as is actually found, that the
energy levels will be those of a two-dimensional harmonic
oscillator and that the wave functions will show that the molecule
oscillates about either one of the two positions of equilibrium,
with little tendency to turn end over end. When the molecule
is in a state with energy large compared with V, (i.e., at high
temperatures), the wave functions and energy levels approximate
those of the free rotator (Sec. 35¢, footnote), the end-over-end
motion being only slightly influenced by the potential energy.
In the intermediate region, the quantum-mechanical treatment
shows that there is a fairly sharp but nevertheless continuous
transition between oscillation and rotation. In other words, for
a given energy there is a definite probability of turning end over
end, in sharp contrast with the results of classical mechanics,
which are that the molecule either has enough energy to rotate
or only enough to oscillate.

The transition between rotation and oscillation takes place
roughly at the temperature T' = 2V /k, where & is Boltzmann’s
constant. This temperature lies below the melting point for a
number of crystals, such as hydrogen chloride, methane,
and the ammonium halides, and is recognizable experimentally
as a transition point in the heat-capacity curve. For solid
hydrogen even the lowest energy level is in the rotational region,
a fact which is of considerable significance in the application of
the third law of thermodynamics.

Problem 38-1. Considering the above system as a perturbed rigid rota-
tor, study the splitting of the rotator levels by the field, indicating by an
energy-level diagram the way in which the components of the rotator levels
begin to change as the perturbation is increased.
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CHAPTER XI

PERTURBATION THEORY INVOLVING THE TIME, THE
EMISSION AND ABSORPTION OF RADIATION, AND
THE RESONANCE PHENOMENON

39. THE TREATMENT OF A TIME-DEPENDENT PERTURBATION
BY THE METHOD OF VARIATION OF CONSTANTS

There have been developed two essentially different wave-
mechanical perturbation theories. The first of these, due to
Schrodinger, provides an approximate method of calculating
energy values and wave functions for the stationary states of a
system under the influence of a constant (time-independent)
perturbation. We have discussed this theory in Chapter VI.
The second perturbation theory, which we shall -treat in the
following paragraphs, deals with the time behavior of a system
under the influence of a perturbation; it permits us to discuss such
questions as the probability of transition of the system from one
unperturbed stationary state to another as the result of the
perturbation. (In Section 40 we shall apply the theory to
the problem of the emission and absorption of radiation.) The
theory was developed by Dirac.! It is often called the theory
of the variation of constants; the reason for this name will be
evident from the following discussion.

Let us consider an unperturbed system with wave equation
including the time

h 0w
HY = —5= 20 (39-1)

the normalized general solution of which is

\IIO = Ea"\ll'o" (39‘-2)

n=0_0

tP. A. M. Dirac, Proc. Roy. Soc. A 112, 661 (1926); A 114, 243 (1927).
Less general discussions were also given by Schrédinger in his fourth 1926
paper and by J. C. Slater, Proc. Nat. Acad. Sci. 13, 7 (1927).

294
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in which the a,’s are constants, with Ea,’fa,. =1, and the
n

Vs are the time-dependent wave functions for the stationary
states, the corresponding energy values being W§, W9, - - -,
WS¢, - - - . Now let us assume that the Hamiltonian for the
actual system contains in addition to H° (which is independent
of t) a perturbing term H’, which may be a function of the time
as well as of the coordinates of the system.! (For example,
H’ might be zero except during the period ¢, < ¢ < 3, the
perturbation then being effective only during this period.)
Since we desire to express our results in terms of the unperturbed
wave functions including the time, we must consider the Schrod-
inger time equation for the system. This equation is

Ny k0¥
(H° + H)Y = ~omi ol (39-3)
A wave function satisfying this equation is a function of the
time and of the coordinates of the system. For a given value
of t, say ¢/, ¥(') is a function of the coordinates alone. By
the general expansion theorem of Section 22 it can be represented
as a series involving the complete set of orthogonal wave functions

for the unperturbed system,
Y(zy, - - - ) BNy ') = Ean‘ll?n(xly Ct oty 2N t,)) (39—4)

the symbol ¥2(z,, - « -, 2y, t') indicating that ¢’ is introduced
in place of ¢ in the exponential time factors. The quantities
an, are constants. For any other value of ¢ a similar expansion
can be made, involving different values of the constants a.,.
A general solution of the wave equation 39-3 can accordingly
be written as
(o, -y am t) = D an®¥zy, -, 2w b), (39-5)
n

the quantities a,(f) being functions of £ alone, such as to cause ¥
to satisfy the wave equation 39-3.

The nature of these functions is found by substituting the
expression 39-5 in the wave equation 39-3, which gives

1 H’ might also be a function of the momenta p,,, - - - , which would then

h 9
be replaced by 2:‘3—2:1, e e
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e OHO¥ + D an)H'¥E =

n

AN, neo  h A
“omi a2 — 5o a5

The first and last terms in this equation cancel (by Eqgs. 39-1 and
39-2), leaving

*2%'2"’»(‘)‘1’?. = Ea"(t)H'wg.

If we now multiply by ¥2* and integrate over configuration space,
noting that all terms on the left vanish except that for n = m
because of the orthogonality properties of the wave functions,
we obtain

o

dm(t) = ﬁz_;zr%za"(t)f‘llg'.H,\yng: m=0,1,2, .. -
n=0
(39-6)

This is a set of simultaneous differential equations in the functions
an(t), by means of which these functions can be evaluated in
particular cases.

39a. A Simple Example.—As an illustration of the use of the
set of equations 39-6, let us consider that at the time ¢ = 0
we know that a system in which we are interested is in a particular
stationary state, our knowledge perhaps having been obtained
by a measurement of the energy of the system. The wave func-
tion representing the system is then ¥, in which [ has a particular
value. If a small perturbation H’ acts on the system for a short
time ¢/, H' being independent of ¢ during this period, we may
solve the equations 39-6 by neglccting all terms on the right side
except that with n = I; that is, by assuming that only the term
in a;(t) need be retained on the right side of these equations.
It is first necessary for us to discuss the equation for a; itself.
This equation (Eq. 396 with m =l and a, = 0 forn = [) is

da;(t 2mi
a®) - 2w,

in which Hj, = [y?*H'YJdr, which can be integrated at once to
give

ailt) = e~tmiHn 0<tg, 39-7
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the assumption being made that a; = 1 at the time { = 0,

This expression shows the way that the coefficient a; changes
during the time that the perturbation is acting. During this
time the wave function, neglecting the terms with m = [, is

_ 2w
—-(We+Hpt
az(t)‘I’O = [06 » !

It will Le observed that the time-dependent factor contains the
first-order energy W° + Hj,, as given by the Schrodinger per-
turbation theory; this illustrates the intimate relation of the
two perturbation theories.

Now let us consider the remaining equations of the set 39-6,
determining the behavior of the coeflicients an(t) with m = I.
Replacing a; on the right side of 39-6 by its initial value!
a;(0) = 1, and neglecting all other a,’s, we obtain the set of
approximate equations

d_aé"tg) 2;7 VORI Oy
This can be written as
o 2w (W= Wit
dan(t) = % i€ LA 0<tgt,m#=l
in which

= [yprH"Ydr, (39-8)

and H,, is independent of t, since we have considered H' to be
independent of ¢ during the period 0 < ¢ < ¢/, and have replaced
the time-containing wave functions ¥2* and ¥¢ by the amplitude
functions ¢3* and ¢ and the corresponding time factors, the
latter being now represented explicitly by the exponential
functions. These equations can be integrated at once; on intro-
ducing the limits, and noting that a.(0) = 0 for m = [, we
obtain

2rt{Wm— Wit
h
ant) = L uf —w  mEb (39-9)

in which, it is remembered, the subscript ! refers to the state
initially occupied and m to other states. In case that the time
t’ is small compared with the time 2/(W,, — W), the expression
can be expanded, giving

! The expression for a;(t) given by Equation 39-7 could be introduced in
place of @;(0) = 1, with, however, no essential improvement in the result.
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an(t) = —%H;,t', m 5 1. (39-10)

At the time ¢’ the wave function for the system (which was
¥? at time { = 0) is approximately

V(') = ai(t")¥) + E'am(t')ws’,. (39-11)

(the prime on the summation sign indicating that the term

= [ is omitted), in which a; is nearly equal to 1 and the ¢.’s
are very small. This wave function continues to represent the
system at times later than ¢/, so long as it remains isolated. We
could now carry out a measurement (of the energy, say) to deter-
mine the stationary state of the system. The probability that
the system would be found in the mth stationary state is aXa..

This statement requires the extension of the postulates regarding the
physical interpretation of the wave equation given in Sections 10¢ and 12d.
It was shown there that an average value could be predicted for a dynamical
function for a system at time ¢ from a knowledge of the wave function
repregenting the system. The average value predicted for the energy of a

system with wave function ¥ = Ea..\lf s W = Ea a,W?. However, an

actual individual measurement of the energy must give one of the values
W3, W3, W3, etc., inasmuch as it is only for wave functions corresponding
to stationary states that the energy has a definite value (Sec. 10c). Hence

when a measurement of the energy has been made, the wave function

representing the system is no longer ¥ = Ean\lff,, but is one of the functions
n
v, w9, ¥, ete.

This shows how a wave function does not really represent the system
but rather our knowledge of the system. At time ¢{ = 0 we knew the energy
of the system to be W?¢, and hence we write ¥} for the wave function. (We
do not know everything about the system, however; thus we do not know
the configuration of the system but only the probability distribution func-
tion ¥}*¥{.) At time ¢’ we know that at time ¢ = Q the wave function was
¥, and that the perturbation H’ was acting between times ¢ = 0 and ¢'.
From this information we obtain the wave function of Equations 39-11,
39-10, and 39-8 as representing our knowledge of the system. With it we
predict that the probability that the system is in the mth stationary state
is a*a,. So long as we leave the system isolated, this wave function repre-
sents the system. If we allow the system to be affected by a known pertur-
bation, we can find a new wave function by the foregoing methods. If we
now further perturb the system by an unknown amount in the process of
making a measurement of the energy, we can no longer apply these methods;
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instead, we assign to the system a new wave function compatible with our
new knowledge of the result of the experiment.
A more detailed discussion of these points will be given in Chapter XV.
Equation 39-10 shows that in case ¢’ is small the probability of
finding the system in the stationary state m as a result of transi-
tion from the original state [ is

47|'2
ata, = —h—zH’,,,";Hj,,,t’ 2, (39-12)
being thus proportional to the square of the time ¢’ rather than
to the first power as might have been expected. In most cases
the nature of the system is such that experiments can be designed
to measure not the probability of transition to a single state but
rather the integrated probability of transition to a group of
adjacent states; it is found on carrying out the solution of the
fundamental equations 39-6 and subsequent integration that for
small values of ¢ the integrated probability of transition is pro-
portional to the first power of the time ¢. An example of a
calculation of a related type will be given in Section 40b.

40. THE EMISSION AND ABSORPTION OF RADIATION

Inasmuch as a thoroughly satisfactory quantum-mechanical
theory of systems containing radiation as well as matter has not
yet been developed, we must base our discussion of the emission
and absorption of radiation by atoms and molecules on an
approximate method of treatment, drawing upon classical electro-
magnetic theory for aid. The most satisfactory treatment of
this type is that of Dirac,® which leads directly to the formulas
for spontaneous emission as well as absorption and induced
emission of radiation. Because of the complexity of this theory,
however, we shall give a simpler one, in which only absorption
and induced emission are treated, prefacing this by a general
discussion of the Einstein coefficients of emission and absorption
of radiation in order to show the relation that spontaneous
emission bears to the other two phenomena.

40a. The Einstein Transition Probabilities.—According to
classical electromagnetic theory, a system of accelerated electri-
cally charged particles emits radiant energy. In a bath of

1P. A. M. Dirac, Proc. Roy. Soc. A112, 661 (1926); A114, 243 (1927);
J. C. SLATER, Proc. Nat. Acad. Sci. 18, 7 (1927).
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radiation at temperature T it also absorbs radiant energy, the
rates of absorption and of emission being given by the classical
laws. These opposing processes might be expected to lead to a
state of equilibrium. The following treatment of the correspond-
ing problem for quantized systems (atoms or molecules) was
given by Einstein' in 1916.

Let us consider two non-degenerate stationary states m and »
of a system, with energy values W, and W, such that W, is
greater than W,. According to the Bohr frequency rule, transi-
tion from one state to another will be accompanied by the
emission or absorption of radiation of frequency

o Wn— Wa
mn h
We assume that the system is in the lower state n in a bath of
radiation of density p(vm.) in this frequency region (the energy
of radiation between frequencies » and » 4+ dv in unit volume
being p(v)dv). The probability that it will absorb a quantum
of energy of radiation and undergo transition to the upper state
in unit time is
Bn—»mp("mn)-
B, .n is called Einstein’s coefficient of absorption. The proba-
bility of absorption of radiation is thus assumed to be propor-
tional to the density of radiation. On the other hand, it is
necessary in order to carry through the following argument to
postulate? that the probability of emission is the sum of two
parts, one of which is independent of the radiation density and
the other proportional to it. We therefore assume that the
probability that the system in the upper state m will undergo
transition to the lower state with the emission of radiant energy
is
Am—m + Bm—mp(l’mn)-

Amon i8 Einstein’s coefficient of spontaneous emission and B,
is Einstein’s coefficient of induced emission.

1 A. EinstrIN, Verh. d. Deutsch. Phys. Ges. 18, 318 (1916); Phys. Z. 18,
121 (1917).

2 This postulate is of course closely analogous to the classical theory,
according to which an oscillator interacting with an electromagnetic wave
could either absorb energy from the field or lose energy to it, depending
oun the relative phases of oscillator and wave.
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We now consider a large number of identical systems of this
type in equilibrium with radiation at temperature T. The
density of radiant energy is known to be given by Planck’s
radiation law as

8rhv? 1

pv) = == (40-1)

M- 1
in which % is the Boltzmann constant. Let the number of sys-
tems in state m be N ,,, and that in state n be N,. The number of
systems undergoing transition in unit time from state n to state
m is then
Nan—bmp(an);
and the number undergoing the reverse transition is
Nm{A mon + Bm—»nP(an) } .
At equilibrium these two numbers are equal, giving

__Af_n _ Am—»n + Bm—»nP(an).
Nm - Bn—»mP(an)
The equations of quantum statistical mechanics (Sec. 49)
require that the ratio N,/N . be given by the equation

(40-2)

N _(WamWw
Ni =e kT = ghvmn/kT (4()“3)
From Equations 40-2 and 40-3 we find for p(v...) the expression
Apn

P(an) = B,._.,,.e"’"'"/” - B (40—4)

In order for this to be identical with Equation 40-1, we must
assume that the three Einstein coefficients are related by the
equations

Bn—»m = Bm—»n (40—5‘1)
and
8xhvl,
Am—-on = 03 Bm—bn; (40’_5b)

that is, the coefficients of absorption and induced emission are
equal and the coefficient of spontaneous emission® differs from
them by the factor 8xhvd,./c’.

hvam
k log 2
bilities of spontaneous emission and induced emission are equal.

1Tt is interesting to note that at the temperature ' = the proba-
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40b. The Calculation of the Einstein Transition Probabilities
by Perturbation Theory.—According to classical electromagnetic
theory, the density of energy of radiation of frequency v in space,
with unit dielectric constant and magnetic permeability, is
given by the expression

o) = BT, (40-6)

in which E%(») represents the average value of the square of the
electric field strength corresponding to this radiation. The
distribution of radiation being isotropic, we can write

YE) = EX) = Ej() = EX(v), (40-7)

E.(v) representing the component of the electric field in the
z direction, etc. We may conveniently introduce the time
variation of the radiation by writing

E.(») = 2EX(») cos 2mvt = EY(»)(e?™ + e2t),  (40-8)

the complex exponential form being particularly convenient for
calculation. Since the average value of cos?2myt is 14, we see
that

o6) = 3 I0) = SBI0) = B0, (409

Let us now consider two stationary states m and n of an
unperturbed system, represented by the wave functions ¥ and
¥, and such that W, is greater than W,. Let us assume that
at the time { = 0 the system is in the state n, and that at this
time the system comes under the perturbing influence of radiation
of a range of frequencies in the neighborhood of vn,, the electric
field strength for each frequency being given by Equation 40-8.
We shall calculate the probability of transition to the state m
as a result of this perturbation, using the method of Section 39.
The perturbation energy for a system of electrically charged
particles in an electric field £, parallel to the  axis is

H' = E.Y e, (40-10)
i

in which e; represents the charge and z; the z coordinate of the
jth particle of the system. The expression Ee;xf (the sum being
i
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taken over all particles in the system) is called the component of
electric dipole moment of the system along the z axis and is often
represented by the symbol .. We now make the approximation
that the dimensions of the entire system (a molecule, say) are
small compared with the wave length of the radiation, so that
the electric field of the radiation may be considered constant over
the system. In the case under consideration the field strength E,
is given by the expression

‘EV= = ng(V) (e2tl'vt + e—2t|'rl)dy.

Let us temporarily consider the perturbation as due to a single
frequency ». Introducing a..(0) = 0 and @,(0) = 1 in the right
side of Equation 396 (a. being the coefficient of a particular
state and all the other coefficients in the sum being zero), this
equation becomes

2m

N 27
dm(t) = _'_h—f‘l’,e.*lll‘l’gdf = —?—}?f¢£.*eh W"'Eg(y)(ehiut +
2xi
9_2"'"')261'2,'%% A W.th.
i

If we now introduce the symbol u..,. to represent the integral

B = fwz*jze]wsdf = f 0% 0dr, (40-11)

we obtain the equation

. 2 2x%
m = (Wn— Wat+hv = (Wm— Wa—h»
dadt(t) _ —2;:1#:“1'72(”) {e BT et K )t}’

which gives, on integration,

B W= Wat kot
0 1—e
a,,.(t) = ﬂ:mnEz(V){ Wm . Wn + hy +

2
= (Wm—Wa—h»)
1 —¢h

3
Wm - Wn i hV }. (40—12)

Of the two terms of Equation 40-12, only one is important,
and that one only if the frequency » happens to lie close to
Vmn = (Wm — W,)/h. The numerator in each fraction can vary
in absolute magnitude only between 0 and 2, and, inasmuch as
for a single frequency the term u...E%(v) is always small, the
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expression will be small unless the denominator is also very
small; that is, unless hv is approximately equal to W, — W,.
In other words, the presence of the so-called resonance denomina-
tor Wm — W, — hv causes the influence of the perturbation
in changing the system from the state n to the higher state m
to be large only when the frequency of the light is close to that
given by the Bohr frequency rule. In this case of absorption, it
is the second term which is important; for induced emission of
radiation (with W. — W, negative), the first term would play
the same role.

Neglecting the first term, we obtain for a}(t)a,(t), after slight
rearrangement, the expression

sin? {%(W,,. - W, — hv)t}
(Wm — W, — hy)?

(If p.,, is complex, the square of its absolute value is to be used
in this equation.) This expression, however, includes only the
terms due to a single frequency. In practice we deal always
with a range of frequencies. It is found, on carrying through
the treatment, that the effects of light of different frequencies are
additive, so that we now need only to integrate the above
expression over the range of frequencies concerned. The
integrand is seen to make a significant contribution only over the
region of v near vm,, so that we are justified in replacing E3(»)
by the constant E2(vms), obtaining

an®)an@®) = 4(us..)E2(v)

sin? {%(W,,. — W, - hv)t}
B2Dan) = 4 B2 ) | gy 5

This integral can be taken from — « to + «, inasmuch as the
value-of the integrand is very small except in one region; and

. t *sin? z .
making use of the relation pov dzr = w, we can obtain the
equation ,

4,".2
Un@)an(t) = 37 (B2n) B2 (rma)t. (40-13)

It is seen that, as the result of the integration over a range of
values of », the probability of transition to the state m in time ¢
is proportional to ¢, the coeflicient being the transition probability
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as usually defined. With the use of Equation 40-9 we may now
introduce the energy density p(vm»), obtaining as the probability
of transition in unit time from state n to state m under the
influence of radiation polarized in the z direction the expression

83
;‘hg(#zm)zp(”mn)-

The expressions for the ¥ and z directions are similar. Thus we
obtain for the Einstein coefficient of absorption B..,. the
equation

Bun = o (teu)? + (n)? + (en)?] (40-140)

By a completely analogous treatment in which the values
a,(0) = 0, a,(0) = 1 are used, the Einstein coeflicient of induced
emission Bm_,» is found to be given by the equation

Bun = 5 (en)® o (rn® + ()7}, (40-14D)

a8, indeed, is required by Equation 40-5a.

Our treatment does not include the phenomenon of spontaneous
emission of radiation. Its extension to include this is not easy;
Dirac’s treatment is reasonably satisfactory, and we may hope
that the efforts of theoretical physicists will soon provide us with
a thoroughly satisfactory discussion of radiation. For the
present we content ourselves with using Equation 40-5b in
combination with the above equations to obtain

4,3
84rs3,,

A = 28288 ((42,)* + ()7 + ()7 (40-15)

as the equation for the Einstein coeflicient of spontaneous
emission,

As a result of the foregoing considerations, the wave-mechanical
calculation of the intensities of spectral lines and the determina-
tion of selection rules are reduced to the consideration of the
electric-moment integrals defined in Equation 40-11. We shall
discuss the results for special problems in the following sections.

It is interesting to compare Equation 40-15 with the classical
expression given by Equation 34 of Chapter I. Recalling that
the energy change associated with each transition is Av,,, we
see that the wave-mechanical expression is to be correlated with



306 PERTURBATION THEORY INVOLVING THE TIME [XI-404

the classical expression for the special case of the harmonie
oscillator by interpreting u... as one-half the maximum value
exo of the electric moment of the classical oscillator.

40c. Selection Rules and Intensities for the Harmonic Oscil-
lator.—The electric dipole moment for a particle with electric
charge e carrying out harmonic oscillational motion along the
z axis (a neutralizing charge —e being at the origin) has the
components ex along this axis and zero along the y and z axes.
The only non-vanishing dipole moment integrals p;., = €Zma
have been shown in Section 11¢ to be those with m = n 4 1 or
m = n — 1. Hence the only transitions which this system can
undergo with the emission or absorption of radiation are those
from a given stationary state to the two adjacent states.! The
selection rule for the harmonic oscillator is therefore An = +1,
and the only frequency of light emitted or absorbed is »,.. The
expression for z,,.. in Equation 11-25a corresponds to the
value
64riviet n

3he® 20’

An—m—-l - (40"16}
with a = 4x®my,/h, for the coefficient of spontanecus emission,
with similar expressions for the other coefficients. An applica~
tion of this formula will be given in Section 40e.

Problem 40-1. Show that for large values of » Equation 40-16 reduces
to the classical expression for the same energy.

Problem 40-2. Discuss the selection rules and intensities for the threa
dimensional harmonic oscillator with characteristic frequencies »:, wy,
and »,.

Problem 40-3. Using first-order perturbation theory, find perturbed
wave functions for the anharmonic oscillator with V = 2x?muiz? 4 a2b,
and with them discuss selection rules and transition probabilities.

40d. Selection Rules and Intensities for Surface-harmonic
Wave Functions.—In Section 18 we showed that the wave
functions for a system of two particles interacting with one
another in the way corresponding to the potential function

! This statement is true only to within the degree of approximation of our
treatment. A more complete discussion shows that transitions may also
occur as a result of interactions corresponding to quadrupole terms and still
higher terms, as mentioned in Section 3, and as a result of magnetic
interactions.



X1-40d] EMISSION AND ABSORPTION OF RADIATION 307

V(r), in which r is the distance between the two particles, are
of the form
Rnl(r)elm(ﬂ)q)fr»(ﬂo);

in which the ¢,¢ functions 6,,(3)®n(¢) are surface harmonics,
independent of V(r). We can hence discuss selection rules and
intensities in their dependence on ! and m for all systems of
this type at one time.

The components of electric dipole moment along the z, y,
and z axes are

pe = p(r) sin & cos ¢,

gy = u(r) sin & sin ¢,
and

pe = u(r) cos 9,

in which u(r) is a function of r alone, being equal to er for two
particles with charges 4-¢ and —e. Each of the dipole moment
integrals, such as

By = JITRI(N)OL(9)27(0)(r) sin 9 cos ¢

R (1)81 m (8)® ()12 sin ddpdddr,
can accordingly be written as the product of three factors, one

involving the integral in 7, one the integral in ¢, and one the
integral in ¢:

Bz, rme #nln'l’fz,m,,n,gz,m,)
Byt Fnln'l’fu,m,,,‘,gum,;} (40-17)
ﬂ:n,m,,,m, = ﬂnln'l’fﬂzml,m,gzmm,,
in which
poiwr = [ "RAWEI R (r)rdr, (40-18)
Sapn, sin ¢
Joppnr o = j;' 9,,.,(0){sin 0}9,,,,,,(0) sin 9d9,  (40-19)
PR cos ¢
and
g=_ or coS ¢
Onp = |, Em(@){sin oo Pm(0)de. (40-20)
g:_.. 1

(In Equations 40-19 and 40-20 the subscripts z, y, and z are
respectively associated with the three factors in braces.)

Tet us first discuss the light polarized along the z axis, cor-
responding to the dipole moment g,. From the orthogonality
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and normalization integrals for &(¢) we see that
gs,, = 0form’ > m
and
Fomm = 1.
In discussing f. =~ we consequently need consider only the

integrals with m’ = m. It is found with the use of the recursion
formula (Prob. 19-2)

ml _(+|m)p.,
cos 9P (cos ) @+ 1)Pl_l(cos 4) +
(L~ [m] + D),
(2l + 1) +1
that f,  vanishes except when !’ is equal to l + 1 or [ — 1.

(cos &) (40-21)

A similar treatment of the integrals for z and y shows that
light polarized along these axes is emitted only when m changes
by 41 or —1, and [ changes by +1 or —1.

We have thus obtained the selection rules Am = 0, +1, or —1
and Al = 41 or —1. The selection rule for [ is discussed in
the following sections. That for m can be verified experimentally
only by removing the degeneracy, as by the application of a
magnetic field; it is found, in agreement with the theory, that
in the Zeeman effect the light corresponding to Am =0 is
polarized along the z axis (the axis of the magnetic field), and that
corresponding to Am = +1 is polarized in the zy plane.

The values of the products of the factors f and g are

ooy _ 10+ mD@ + Im] — DV*
(fg)tlllm[_,_l'l,,',l Z(jg)ﬂ = §{ (2l + 1)(2l . 1) } ’

ooy 1= m)@ = m| + DY
(fg)zl.lml-u—l-]m - z(fg)ll - 5{ (2l + 1)(2l — 1) } * (40—22)
_ J@+ Imh@ ~ [m1*
(fg)‘l,lml.l—l.lml = { @I+ 1)@= 1)} ’

with similar expressions for the transitions I to I + 1, etc.

Problem 40-4. Using Equation 40-21, obtain selection rules and
intensities for u,.

Problem 40-5. Similarly derive the other formulas of 40-22.

Problem 40-6. Calculate the total probability of transition from one
level with given value of I to another, by summing over m. By separate
summation for uz, p,, and p, show that the intensity of light polarized along
these axes is the same.
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40e. Selection Rules and Intensities for the Diatomic Mole-
cule. The Franck-Condon Principle.—A very simple treatment
of the emission and absorption of radiation for the diatomic
molecule can be given, based on the approximate wave functions
of Section 35¢. For the complex system of two nuclei and several
electrons the electric dipole moment u(r) can be expanded as a
series in r — 7o,

p() = po+er—mr) + - - -, (40~23)
in which ¢ is a constant. The permanent dipole moment yq is
the quantity which enters in the theory of the dielectric constant
of dipole molecules; its value is known from dielectric constant
measurements for many substances.

Introducing this expansion in Equation 40-18, we find as a
first approximation that n may change by 0 of by +1. In the
former case the emission or absorption of radiation is due to
the constant term uo, and in the latter case to the term e(r — 7o),
the integrals being then similar to the harmonic oscillator
integrals. The values of u,.. are

fan = Mo (40-24aq)

n
Mn,n—_1 = QJ;';’ (40—24b)

in which a = 47%urg/h (p being here the reduced mass for the
molecule). The selection rules and intensity factors for [ and
m are as given in the preceding section.

It is found experimentally that dipole molecules such as the
hydrogen halides absorb and emit pure rotation and oscillation-
rotation bands in accordance with these equations. In all
these bands the selection rule Al = +1 is obeyed, and Zeeman-
effect measurements have shown similar agreement with the
selection rule for m. The intensities of lines in the pure rotation
bands show rough quantitative agreement with Equation
40-24a, using the dielectric constant value of y,, although because
of experimental difficulties in the far infrared the data are as
yet not very reliable. Measurements of absorption intensities
for An = 1 have been used to calculate e. As seen from the
following table, ¢ is of the order of magnitude of po/rs, so that
these molecules may be considered roughly as equivalent to two
particles of charges +¢ and —e.

and
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TaBLE 40-1
o (dielectric constant) To Ho/7o €t
HC! | 1.034 X 107 e.s.u. 1.28 A 0.169 ¢ 0.086 ¢
HBr 0.788 1.42 116 075
HI 0.382 1.62 .049 .033

1 E. BantaoLoms, Z. phys. Chem. B 38, 131 (1933).

It is also observed that oscillation-rotation bands with
An = 2, 3, ete. occur; this is to be correlated with the deviation
of the potential function V(r) from a simple quadratic function.

In the foregoing discussion we have assumed the electronic
state of the molecule to be unchanged by the transitions. The
selection rule for n and the intensities are different in case thereis a
change in the electronic state, being then determined, according
to the Franck-Condon principle,! mainly by the nature of the
electronic potential functions for the two electronic states. As
we have seen in Section 34, there is little interaction between the
electronic motion and the nuclear motion in a molecule, and
during an electronic transition the internuclear distance and
nuclear velocities will not change very much. Let us consider
the two electronic states A and B, represented by the potential
curves of Figure 40-1, in which the oscillational levels are also
shown. If the molecule is in the lowest oscillational level
n’ = 0 of the upper state, the probability distribution function
for r is large only for r close to r,,. We would then expect an
electronic transition to state B to leave the molecule at about the
point P; on the potential curve, the nuclei having only small
kinetic energy; these eonditiens correspond to the levels n'’ = 7
or 8 for the lower state.

This simple argument is justified by wave-mechanical con-
siderations. Let us consider that the wave functions for the
upper electronic state may be written as ¥,,:, in which ¥,
represents the nuclear oscillational part of the wave function,
described by the quantum number »’, and y,- the rest of the wave
function (electronic and nuclear rotational), the symbol o
representing all other quantum numbers. Similarly, we write
V> ¥arr for the wave functions for the lower electronic state,

1J. Franck, Trans. Faraday Soc., 21, 536 (1926); E. U. Conpon, Phys.
Rev. 28, 1182 (1926); 32, 858 (1928).
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The electric dipole moment integrals u.,__.., by SRR 1|
Hs, ... . are of the form

Bz 0 prve = f'l’:'l’:’ﬂz'l’a”'l’»”d?'. (40—25)

g'n'e’'n

We assume that in this case, when there is a change in the
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f1G6. 40~1.—Energy curves for two electronic states of a molecule, to illustrate
the Franck-Condon principle.

¢lectronic state, the dipole moment function u changes only
slowly with change in the internuclear separation r, being deter-
mined essentially by the electronic coordinates. Neglecting the
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dependence of u on r, we can then integrate over all coordinates
except 7, obtaining

Mz

S I | 0 ', (40-26)
The integral in r, determining the relative intensities of the
various n'n’’ bands, is seen to have the form of an orthogonality
integral in r. Hence if the two potential functions V4 and V,
were identical except for an additive constant the integral would
vanish except for n’ = n’/, the selection rule for n then being
An = 0. In the case represented by Figure 40-1, the wave func-
tion ¥, with ' = 0 is large only in the neighborhood of r = r,,.
The wave functions ¥, with n”/ = 7 or 8 have large values in
this region, so that the bands #’ = 0 —»" =7 or 8 will be
strong. The intensity of the bands for smaller or larger values
of n'’ will fall off. For smaller values of n’’ the functions Yy
show the rapid exponential decrease in the region near r,,
(corresponding to the fact that the classical motion of the nuclei
would not extend into this region); whereas for larger values
of n'’ the functions y,.» show a rapid oscillation between positive
and negative values, causing the integral with the positive
function ¥, with n’ = 0 to be small (the oscillation of ¥y
between positive and negative values corresponding to large
nuclear velocities in the classical motion).

Similarly the transitions from the level with »’ = 5, the wave
function for which has its maximum values near the points
P, and P; will occur mainly to the levels n/ = 2 or 3 and
n' =11 or 12}

40f. Selection Rules and Intensities for the Hydrogen Atom.—
The selection rule for I, discussed in Section 40d, allows only
transitions with Al = +1 for the hydrogen atom. The lines of
the Lyman series, with lower state that with n = 1 and [ = 0,
are in consequence due to transitions from upper states with
1 = 1. The radial electric dipole moment integral

bnrnre = [RE(rYrRurp (r)ridr
has been evaluated by Pauli® for several special cases. For

! For a more complete discussion of this subject the reader is referred to
the papers of Condon and to the discussions in Condon and Morse, “Quan-
tum Mechanics,” Chap. V, and Ruargk and Urky, “ Atoms, Molecules and
Quanta,’” Chap. XII.

! Communicated in Schrédinger’s third 1926 paper.
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n"” =1, I” = 0 its value corresponds to the total intensity,
aside from a constant factor, of
t o 2n’—1
1oy = (n 1)

This has a non-vanishing value for all values of n’ greater than 1.
Hence there is no selection rule for » for the Lyman series, all
transitions being allowed. It is similarly found that there is no
selection rule for n for spectral series in general.

For the Balmer series, with lower state that with n = 2 and

= 0 or 1, the selection rule for [ permits the transitions 0 — 1,
1—0, and 2 > 1. The total intensity corresponding to these
transitions from the level n = n’ ton = 2is, except for a constant
factor,

[ 2n’—-3
le = %%_ljz‘%“)m}@n'z — 4)(5n'% — 4).

The operation of the selection rule for I for hydrogen and
hydrogenlike ions can be seen by the study of the fine structure
of the lines. The phenomena are complicated, however, by the
influence of electron spin.! In alkali atoms the levels with given
n and varying [ are widely separated, and the selection rule for I
plays an important part in determining the nature of their
spectra. Theoretical calculations have also been made of the
intensities of lines in these spectra with the use of wave functions
such as those described in Chapter 1X, leading to results in
approximate agreement with experiment.

40g. Even and Odd Electronic States and Their Selection
Rules.—The wave functions for an atom can all be classified as
either even or odd. An even wave function of N electrons is
one such that (1, y1, 21, &2, » + + , 2x) i equal to Y(—z1, —y1,
—2y, —Z2, * * *, —2n); that is, the wave function is unchanged
on changing the signs of all of the positional coordinates of the
electrons. An odd wave funclion is one such that y(xi, 7,
21, Tz, -+ - ,2n) 8 equal to —¢(—zy, —y1, —21, —Tq, * + + , —2N).

Now we can show that the only transitions accompanied by the
emission or absorption of dipole radiation which can occur are
those between an even and an odd state (an even state being one
represented by an even wave function, etc.). The electric

1 See PauLiNG and GoupsuiT, “The Structure of Line Spectra,” Sec. 18.
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N

moment component functions zea:.-, etc. change sign in case
i=1

that the electronic coordinates are replaced by their negatives.

Consequently an electric-moment integral such as [ \V,':rzex.-\p,.udr

will vanish in case that both ¢, and ¢, are either even or odd,
but it is not required to vanish in case that one is even and the
other odd. We thus have derived the very important selection
rule that transitions with the emission or absorpiion of dipole
radiation are allowed only between even and odd states. Because of
the practical importance of this selection rule, it is customary to
distinguish between even and odd states in the term symbol, by
adding a superscript ° for odd states. Thus various even states
are written ag 18, 3P, 2D, etc., and odd states as 18°, ?P°, 2D°, etc.

In case that the electronic configuration underlying a state is
known, the state can be recognized as even or odd. The one-
electron wave functions are even for I = 0, 2, 4, etc. (s, d, g, etc.,
orbitals) and odd for I =1, 3, 5, etc. (p, f, h, etc., orbitals).
Hence the configuration leads to odd states if it contains an
odd number of electrons in orbitals with [ odd, and otherwise to
even states. For example, the configuration 1s?2s?2p? leads to the
even states 'S, !'D, and 3P, and the configuration 1s°2p3d to
the odd states 'P°, 1D°, 'F°, 3P° ¢D° and °F°.

Even and odd states also occur for molecules, and the selection
rule is also valid here. A further discussion of this point will be
given in Section 48.

Problem 40-7. Show that the selection rules forbid a hydrogen atom

in a rectangular box to radiate its translational kinetic energy. Extend the
proof to any atom in any kind of box.

41. THE RESONANCE PHENOMENON

The concept of resonance played an important part in the dis-
cussion of the behavior of certain systems by the methods of
classical mechanics. Very shortly after the discovery of the
new quantum mechanics it was noticed by Heisenberg that a
quantum-mechanical treatment analogous to the classical
treatment of resonating system can be applied to many problems,
and that the results of the quantum-mechanical discussion in these
cases can be given a simple interpretation as corresponding to a
quantum-mechanical resonance phenomenon. It is not required
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that this interpretation be made; it has been found, however,
that it is a very valuable aid to the student in the development
of a reliable and productive intuitive understanding of the
equations of quantum mechanics and the results of their applica-
tion. In the following sections we shall discuss first classical
resonance and then resonance in quantum mechanics.

41a. Resonance in Classical Mechanics.—A striking phe-
nomenon is shown by a classical mechanical system consisting of
two parts between which there is operative a small interaction,
the two parts being capable of executing harmonic oscillations
with the same or nearly the same frequency. It is observed
that the total oscillational energy fluctuates back and forth
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Fig. 41-1.—A system of coupled pendulums, illustrating the phenomenon of

regonance.

between the two parts, one of which at a given time may be
oscillating with large amplitude, and at a later time with small
amplitude, while the second part has changed jn the opposite
direction. It is customary to say that the two parts of the
system are resonating. A familiar example of such a system is
composed of two similar tuning forks attached to the same base.
After one fork is struck, it gradually ceases to oscillate, while at
the same time the other begins its oscillation, Another example
is two similar pendulums connected by a weak spring, or attached
to a common support in such a way that interaction of the two
occurs by way of the support (Fig. 41-1). It is observed that if
only one pendulum is set to oscillating, it will gradually die down
and stop, while the other begins to oscillate, ultimately reaching
the amplitude of oscillation initially given the first (neglecting the
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frictional dissipation of energy); and that this process of transfer
of energy from one pendulum to the other is repeated over and
over.,

It is illuminating to consider this system in greater detail.
Let z, and z; be the coordinates for two oscillating particles each
of mass m (such as the bobs of two pendulums restricted to
small amplitudes, in order that their motion be harmonic),
and let »o be their oscillational frequency. We assume for the
total potential energy of the system the expression

V(zy, z2) = 2r?mrviz} 4 2n2medzd + dximAziz,, (41-1)

in which 4x?m\z,z, represents the interaction of the two oscil-
lators. This simple form corresponds to a Hooke’s-law type of
interaction. The solution of the equations of motion is easily
accomplished by introducing the new variables!

7—(901 + z2),
1
.\/‘

——2(11 - Iz).

(41-2)
1” ==

In terms of these, the potential energy becomes
V(¢ n) = 2e'm(vf + N § + 2r°m(vf — Nn?,
while the kinetic energy has the form
T = Ygmat + dgmai = Jgmé® + Logma?.

These expressions correspond to pure harmonic oscillation of the
two variables £ and 7 (Sec. 1la), each oscillating with eonstant
amplitude, ¢ with the frequency +/»2 + » and 7 with the
frequency Vv — M, according to the equations
£ = & cos (2rVv + Nt + 55):} (41-3)
7 = nocos (2rV/¥F — Nt + §,).

From these equations we obtain the equations
0 cos (2rVvE 4+ N t) 4+ —= cos (2r\V/vE — A P),
\/" 0 \/ )
Ty = 57 cos (2rV/ 38 + N b) — L. cos (2rV/¥E = N 1),

r, =

(41-4)
V2

1 These are the normal coordinates of the system, discussed in Section 37.
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for z, and z,, in which we have put the phase constants & and 3,
equal to zero, as this does not involve any loss in generality.
It is seen that for A/v? small the two cosine functions differ only
slightly from one another and both z, and 2, carry out approxi-
mate harmonic oscillation with the approximate frequency wo,
but with amplitudes which change slowly with the time. Thus
at t =2 0 the cosine terms are in phase, so that z, oscillates with
the amplitude (£ + n0)/+/2 and z, with the smaller amplitude

(¢80 — 10)/V/2. At the later time ¢ = ¢, such that
VAt =Vl -+

the cosine terms are just out of phase, z, then oscillating with the

amplitude (£ — 70)/4/2 and 2 with the amplitude (£ + 70)/V/2-
Thus we see that the period 7 of the resonance, the time required
for z, to change from its maximum to its minimum amplitude
and then back to the maximum, is given by the equation

VR AT =Vt = Ar+1

or
- 1 ~ %,
TVATA -
It is also seen that the magnitude of the resonance depends on
the constants of integration & and 7, the amplitudes of motion
of z; and z, varying between the limits \/2¢, and 0 in case that
70 = £o, and retaining the constant value &/4/2 (no resonance!)
in case that 5, = 0.

The behavior of the variables z; and z; may perhaps be
followed more clearly by expanding the radicals 4v/»2 4+ A and
Vv{ — N in powers of A/»? and neglecting terms beyond the
first power. After simple transformations, the expressions
obtained are

T

(41-5)

x, = g_z_'i__;;_") cos 21rzl:—0t cos 2rvol — (ﬁ\__/_;") 8in %%t 8in 2wyl
and
Tq = (———~£°\;§"°) cos 21rylot cos 2xrvet — &’%‘Q sin 21rvlot sin 2yl

It is clear from this treatment that we speak of resonance only
because it is convenient for us to retain the coordinates z, and
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zs in the description of the system; that is, to speak of the motion
of the pendulums individually rather than of the system as a
whole. We can conceive of an arrangement of levers whereby
an indicator in an adjacent room would register values of £ and
another values of 7. An observer in this room would say that
the system was composed of two independent harmonic oscillators
with different frequencies and constant amplitudes, and would
not mention resonance at all.

Despite the fact that we are not required to introduce it, the
concept of resonance in classical mechanical systems has been
found to be very useful in the description of the motion of sys-
tems which are for some reason or other conveniently described
as containing interacting harmonic oscillators. It is found
that a similar state of affairs exists in quantum mechanies.
Quantum-mechanical systems which are conveniently considered
to show resonance occur much more often, however, than
resonating classical systems, and the resonance phenomenon
has come to play an especially important part in the applications
of quantum mechanics to chemistry.

41b. Resonance in Quantum Mechanics.—In order to illus-
trate the resonance phenomenon in quantum mechanics, let us
continue to discuss the system of interacting harmonic oscil-
lators.! Using the potential function of Equation 411, the wave
equation can be at once separated in the coordinates £ and ¢
and solved in terms of the Hermite functions. The energy
levels are given by the expression

Waen, = (e + 2)RV0E + X + (ny + 1AV — X, (41-6)
which for A small reduces to the. approx mate expression

~ BN (n 4+ AN
Wnan".—‘-‘(n"l' l)hvo+(n5 —7&,,)570——_—8;2__+ SR

(41-7)

in which n = n¢ + n,. The energy levels are shown in Figure
41-2; for a given value of n there are n 4+ 1 approximately
equally spaced levels.

This treatment, like the classical treatment using the coordi-
nates ¢ and %, makes no direct reference to resonance. Let us

1 This example was used by Heisenberg in his first papers on the resonance
phenomenon, Z. f. Phys. 88, 411 (1926); 41, 239 (1927).



XI-41b] THE RESONANCE PHENOMENON 319

now apply a treatment in which the concept of resonance enters,
retaining the coordinates x; and z, because of their familiar
physical interpretation and applying the methods of approximate
solution of the wave equation given in Chapters VI and VII;
indeed, if the term in X\ were of more complicated form, it would
be necessary to resort to some approximate treatment. This
term is conveniently considered as the perturbation function in
applying the first-order perturbation theory. The unperturbed

Ng-nN.
£'n
3
4hy, ne3 _:
3
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w  N—
2h ppf—— T 1
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0

F1a. 41-2.—Energy levels for coupled harmonic oscillators; left, with A = 0;
right, with A = »§/6.

wave equation has as solutions products of Hermite functions
in z; and z,,
1

Van Ty 22) = ¥3(2)¥] (22) =

N.H.(Vaz)e 2Ny Ha(Vazde 2, (41-8)
corresponding to the energy values
W, = (ni+ ne+ Dhve = (n 4+ DAy,
with n = n, + n,, (41-9)
the nth level being (n 4+ 1)-fold degenerate.
The perturbation energy for the non-degenerate level n = 0 is

zero. For the level n = 1 the secular equation is found to be
(Sec. 24)

1%y



320 PERTURBATION THEORY INVOLVING THE TIME [XI-41b

hA

— ’ —
W 2V0 _0
5Y AT

3y, -Ww

giving W = +hN/2v,. A similar treatment of the succeeding
degenerate levels shows that the first-order perturbation theory
leads to values for the energy expressed by the first two terms
of Equation 41-7.

The correct zeroth-order wave functions for the two levels
with n = 1 are found to be

Vs = \/%{w(zlwm) WY )

and

ba = NG — HEED),

s corresponding to the lower of the two levels and ¥4 to the
upper. The subscripts S and A are used to indicate that the
functions are respectively symmetric and antisymmetric in
the coordinates z; and r,. We see that we are not justified in de-
scribing the system in either one of these stationary states as con-
sisting of the first oscillator in the state n, = 1 and the sccond in
the state n, = 0, or the reverse. Instead, the wave functions
n, = 1,n, = 0 and n, = 0, n, = 1 contribute equally to cach of
the stationary states. It will be shown in Seetion 41c that if the
perturbation is small we are justified in saying that there is reso-
nance between these two states of motion analogous to classical
resonance, one oscillator at a given time oscillating with large
amplitude, corresponding to n; = 1, and at a later time with
small amplitude, corresponding to n; = 0. The frequency with
which the oscillators interchange their oscillational states, that
is, the frequency of the resonance, is found to be \/»;, which
is just equal to the separation of the two energy levels divided
by h. This is also the frequency of the classical resonance
(Eq. 41-5).

In discussing the stationary states of the system of two inter-
acting harmonic oscillators we have seen above that it is con-
venient to make use of certain wave functions ¥, (z1), etc. which
are not correct wave functions for the system, the latter being
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given by or approximated by linear combinations of the initially
chosen functions, as found by perturbation or variation methods;
and various points of analogy between this treatment and the
classical treatment of the resonating system have been indicated
(see also the following section). In discussing more complicated
systems it is often convenient to make use of similar methods of
approximate solution of the wave equation, involving the forma-
tion of linear combinations of certain initially chosen functions.
The custom has arisen of describing this formation of linear
combinations in certain cases as corresponding to resonance in
the system. In a given stationary state the system is said to
resonate among the states or structures corresponding to those
initially chosen wave functions which contribute to the wave
function for this stationary state, and the difference between
the energy of the stationary state and the energy corresponding
to the initially chosen wave functions is called resonance energy.!
It is evident that any perturbation treatment for a degenerate
level in which the initial wave functions are not the correct
zeroth-order wave functions might be described as involving
the resonance phenomenon. Whether this description would
be applied or not would depend on how important the initial
wave functions seem to the investigator, or how convenient this
description is in his discussion.?

The resonance phenomenon, restricted in classical mechanics
to interacting harmonic oscillators, is of much greater importance
in quantum mechanies, this being, indeed, one of the most striking
differences between the old and the new mechanics. It arises,
for example, whenever the system under discussion contains two
or more identical particles, such as two electrons or two protons;
and it is also convenient to make use of the terminology in
describing the approximate treatment given the structure of
polyatomic molecules. The significance of the phenomenon for
many-electron atoms has been seen from the discussion of the
structure of the helium atom given in Chapter VIII; it was there
pointed out (Sec. 29a) that the splitting of levels due to the K

1 There i8 no close classical analogue of resonance energy.

2 The same arbitrariness enters in the use of the word resonance in describ-
ing classical systems, inasmuch as if the interaction of the classical oscillators
is increased the motion ultimately ceases to be even approximately repre-
gented by the description of the first paragraph of Section 41a.
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integrals was given no satisfactory explanation until the develop-
ment of the concept of quantum-mechanical resonance. The
procedure which we have followed of delaying the discussion
of resonance until after the complete treatment of the helium
atom emphasizes the fact that the resonance phenomenon does
not involve any new postulate or addition to the equations of
wave mechanics but rather only a convenient method of classify-
ing and correlating the results of wave mechanics and a basis ‘or
the development of a sound intuitive conception of the theory.

41c. A Further Discussion of Resonance.—It is illuminating
to apply the perturbation method of variation of constants in
order to discuss the behavior of a resonating system. Let us
consider a system for which we have two wave functions, say ¥9
and ¥J, corresponding to an energy level of the unperturbed
system with two-fold degeneracy. These might, for example,
correspond to the sets of quantum numbers n; = 1, ny = 0 and
ny = 0,n = 1 for the system of two coupled harmonic oscillators
treated in the previous section. If the perturbation were small,
we could carry out an experiment at the time { = 0 to determine
whether the system is in state A or in state B; for example, we
could determine the energy of the first oscillator with sufficient
accuracy to answer this question. Let us assume that at the
time { = O the system is found to be in the state A. We now ask
the following question: On carrying out the investigating experi-
ment at a later time ¢, what is the probability that we would
find that the system is in state A, and what is the probability
that we would find it in state B? In answering this question
we shall see that the physical interpretation of quantum-mechani-
cal resonance is closely similar to that of classical resonance.

If the perturbation is small, with all the integrals H},,(m # n)
small compared with W3 — W2 except H,, and H}, (for which
W9 = W), we may assume as an approximation that the
quantities a.(¢) remain equal to zero except for a, and aj.
From Equation 39-6 we see that these two are given by the
equations

. 2, ..,
as = —""":}(HAAGA + H/zas),

i (41-10)

dy = _"h—(H,.uaA + Hj,as),

in which we have taken Hy, equal to H',, and H}, equal to H/,
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(the system being assumed to consist of two similar parts).
The equations are easily solved by first forming their sum and
difference. The solution which makes a4 = 1 and as = 0 at

t=0is
i /
a; =e¢ h fast os (LH'“’t)
h
_2xi 4 /
as = —ie b gin (gw—lz—‘“—’t)

The probabilities afa, and a}a, of finding the system in state
A and state B, respectively, at time ¢ are hence

(41-11)

alfa, = cos? (%@t)
o (41-12)
aja, = sin2<—h—“3t)-

We see that these probabilities vary harmonically between the
values 0 and 1. The period of a cycle (from afe, = 1 to 0 and
back to 1 again) is seen to be h/2H’,,, and the frequency 2H',, /h,
this being, as stated in Section 41b, just 1/k times the separation
of the levels due to the perturbation.

Let us now discuss in greater detail the sequence of conceptual
experiments and calculations which leads us to the foregoing
interpretation of our equations. Let us assume that we have a
system composed of iwo coupled harmonic oscillators with
coordinates z; and z,, respectively, such that we can at will (by
throwing a switch, say) disengage the coupling, thus causing
the two oscillators to be completely independent. Let us now
assume that for a period of time previous to ¢ = 0 the oscillators
are independent. During this period we carry out a set of two
experiments consisting in separate measurements of the energy
of the oscillators and in this way determine the stationary state
of each oscillator. Suppose that by one such set of experiments
we have found that the first oscillator is in the state n; = 1
and the second in the state n, = 0. The complete system is
then in the physical situation which we have called state A in
the above paragraphs, and so long as the system is left to itself
it will remain in this state.

Now let us switch in the coupling at the time ¢ = 0, and then
switch it out again at the time ¢ = /. We now, at times later
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than ', investigate the system to find what the values of the
quantum numbers n; and n; are. The result of this investigation
will be the same, in a given case, no matter at what time later
than ¢’ the set of experiments is carried out, inasmuch as the
two oscillators will remain in the definite stationary states in
which they were left at time ¢’ so long as the system is left
unperturbed.

This sequence of experiments can be repeated over and over,
each time starting with the system in the state ny, = 1, ny = 0
and allowing the coupling to be operative for the length of time ¢’.
In this way we can find experimentally the probability of finding
the system in the various states n; = 1, n, = 0; n, =0, n, = 1;
ny = 0, ny = 0; etc.; after the perturbation has been operative
for the length of time ¢

The same probabilities are given directly by our application of
the method of variation of constants. The probability of
transition to states of considerably different energy as the result
of a small perturbation acting for a short time is very small,
and we have neglected these transitions. Qur calculation shows
that the probability of finding the system in the state B depends
on the value of ¢’ in the way given by Equation 41-12, varying
harmonically between the limits 0 and 1.

Now in case that we allow the coupling to be operative con-
tinuously, the complete system can exist in various stationary
states, which we can distinguish from one another by the measure-
ment of the energy of the system. Two of these stationary
states have energy values very close to the energy for the
states n; = 1, ny = 0 and n; = 0, n, = 1 of the system with
the coupling removed. It is consequently natural for us to
draw on the foregoing argument and to describe the coupled
system in these stationary states as resonating between states
A and B, with the resonance frequency 2H ,,/h.

Even when it is not possible to remove the coupling inter-
action, it may be convenient to use this description. Thus in
our discussion of the helium atom we found certain stationary
states to be approximately represented by wave functions
formed by linear combination of the wave functions 1s(1) 2s(2)
and 2s5(1) 1s(2). These we identify with states A and B above,
saying that each electron resonates between a 1s and a 2s orbit,
the two electrons changing places with the frequency 1/h times
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the separation of the energy levels 1s2s 1S and 1s2s3S. It is
obvious that we cannot verify this experimentally, for three
reasons: we cannot remove the coupling, we cannot distinguish
electron 1 from electron 2, and the interaction is so large that
our calculation (based on neglect of all other unperturbed states)
is very far from accurate. These limitations to the physical
verification of resonance must be borne in mind; but they need
not prevent us from making use of the nomenclature whenever
it is convenient (as it often is in the discussion of molecular
structure given in the following chapter).



CHAPTER XII
THE STRUCTURE OF SIMPLE MOLECULES

Of the various applications of wave mechanics to specific
problems which have been made in the decade since its origin,
probably the most satisfying to the chemist are the quantitatively
successful calculations regarding the structure of very simple
molecules. These calculations show that we now have at hand
a theory which can be confidently applied to problems of molec-
ular structure. They provide us with a sound conception of the
interactions causing atoms to be held together in a stable mole-
cule, enabling us to develop a reliable intuitive picture of the
chemical bond. To a considerable extent the contribution of
wave mechanics to our understanding of the nature of the
chemical bond has consisted in the independent justification of
postulates previously developed from chemical arguments, and
in the removal of their indefinite character., In addition,
wave-mechanical arguments have led to the development of many
essentially new ideas regarding the chemical bond, such as the
three-electron bond, the increase in stability of molecules by
resonance among several electronic structures, and the hybridi-
zation of one-electron orbitals in bond formation. Some of
these topics will be discussed in-this chapter and the following
one.

In Sections 42 and 43 we shall describe the accurate and
reliable wave-mechanical treatments which have been given the
hydrogen molecule-ion and hydrogen molecule. These treat-
ments are necessarily rather complicated. In order to throw
further light on the interactions involved in the formation of
these molecules, we shall preface the accurate treatments by a
discussion of various less exact treatments. The helium mole-
cule-ion, He¥, will be treated in Section 44, followed in Section 45
by a general discussion of the properties of the one-electron bond,

the electron-pair bond, and the three-electron bond.
326
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42. THE HYDROGEN MOLECULE-ION

The simplest of all molecules is the hydrogen molecule-ion, H{,
composed of two hydrogen nuclei and one electron. This mole-
cule was one of the stumbling blocks for the old quantum theory,
for, like the helium atom, it permitted the treatment to be carried
through (by Pauli! and Niessen?) to give results in disagreement
with experiment. It was accordingly very satisfying that within
a year after the development of wave mechanics a discussion
of the normal state of the hydrogen molecule-ion in complete
agreement with experiment was carried out by Burrau by
numerical integration of the wave equation. This treatment,
together with somewhat more refined treatments due to Hylleraas

-e
A B
@ +e

A *AB B
Fig. 42-1.—Coordinates used for the hydrogen molecule-ion,

and Jaffé, is described in Section 42c. Somewhat simpler and
less accurate methods are described in Sections 42a and 42b,
for the sake of the ease with which they can be interpreted.
42a. A Very Simple Discussion.*—Following the discussion of
Section 34, the first step in the treatment of the complete wave
equation is the solution of the wave equation for the electron
alone in the field of two stationary nuclei. Using the symbols
of Figure 42-1, the electronic wave equation js
2 2 2
v + iﬁ'-h—"‘—(w +E 42 —)w =0,  (42-1)
A AB
in which v? refers to the three coordinates of the electron and m,
is the mass of the electron.*

t'W. PavuLl, Ann. d. Phys. 68, 177 (1922).

? K. F. NiessEN, Dissertation, Utrecht, 1922,

3 L. PauLiNg, Chem. Rev. b, 173 (1928).

¢ We have included the mutual energy of the two nuclei e3/H 45 in this
equation. This is not necessary, inasmuch as the term appears unchanged
in the final expression for W, and the same result would be obtained by
omitting it in this equation and adding it later.
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If ras is very large, the normal state of the system has the
energy value W = Wgx = —Rhe, the corresponding wave
functions being ui, or ui,, hydrogen-atom wave functions

about nucleus A or nucleus B (Sec. 21), or any two independent
linear combinations of these. In other words, for large values
of r45 the system in its normal state is composed of a hydrogen
ion A and a normal hydrogen atom B or of a normal hydrogen
atom A and a hydrogen ion B.

This suggests that as a simple variation treatment of the
system for smaller values of r4z we make use of the same wave
functions wuy,, and Us,y forming the linear combinations given by
solution of the secular equation as discussed in Section 26d.

The secular equation is
Hua—- W Hp — AW
How — AW Hpp —W | =% (42-2)

in which
Haa = furs Huy, dr,
Hip = fure Huy, dr,
and
A = fuy, u, dr.

A represents the lack of orthogonality of ui,, and ui,,. Because
of the equivalence of the two functions, the relations Hax = Hps
and H,s = Hgp, hold. The solutions of the secular equation are

hence
_ Hus+ Hus

Ws = 1A (42-3)
and .
_Hus — Hyp
Wi= 1A (42—4)
These correspond respectively to the wave functions
1
= ————(Uy, Uy 42-5
¥s \/2+2A(1‘+ 1e,) ( )
and
1
= (U, — U ). 42-6
Va R 2A( 1, 1s,) ( )

The subscripts 8 and A represent the words symmetric and
antisymmetric, respectively (Sec. 29a); the wave function ¢s is
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symmetric in the positional coordinates of the two nuclei 4 and B,
and Y. is antisymmetric in these coordinates.
Introducing W by use of the equation
h2 2

€
= 2 _— =
87r2mov UL, rAuIaA W U1,

(which is the wave equation for ui, ), we obtain for the integral
H 44 the expression

Hi = fula <W" ——+ TAB>u1' dr = WH + J +

in which

J = ful, (—'6—2>U,1, dr = 62{ + 6_2D<1 + >}' (42“8)
4 Ts 4 ay

In this expression we have introduced in place of r,, the variable

 (42-7)

D == (42-9)
Qo

Hps and H,p are similarly given by the expression

A 2
HBA = f‘ul, <WH _ + TAB)u“ dr = AWH + K + oeD

(42-10)

in which A is the orthogonality integral, with the value
A = e (1 + D + 14D?), (42-11)
and K is the integral

el et
K = fula (—_>ula dr = ——B_D(l + D). (42"12)
B TB A aO

It is seen that J represents the Coulomb interaction of an
electron in a 1ls orbital on nucleus 4 with nucleus B. K may
be called a resonance or exchange integral, since both functions
Uis, and uy,_ occur in it.

Introducing these values in Equations 42-3 and 42-4, we

obtain
J+K

Ws = Wu+ D +517a (42-13)
and
e? J—K
Wa=Wu+ TD + 1=-A (42—14)
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Curves showing these two quantities as functions of s are given
in Figure 42-2. It is seen that ;s corresponds to attraction, with
the formation of a stable molecule-ion, whereas y 4 corresponds to
repulsion at all distances. There is rough agreement between
observed properties of the hydrogen molecule-ion in its normal
state and the values calculated in this simple way. The dis-
sociation energy, calculated to be 1.77 v.e., is actually 2.78 v.e.,
and the equilibrium value of 745, calculated as 1.32 A, is observed
to be 1.06 &.

The nature of the interactions involved in the formation of
this stable molecule (with a one-

® electron bond) is clarified by the
09 \ A discussion of a hypothetical case.

! \ N ~ Let us assume that our system is
w0 L composed of a hydrogen atom
11 { A and a hydrogen ion B, and
that even for small values of 74

1257773 3 a4 5 6 the electron remains attached to
T4B/Go— nucleus 4, the wave function

Fig. 42-2.—Energy curves for the .
hydrogen molecule-ion (in units bemg ul!A' The energy of the

e?/2ad), calculated for pndistorted system would then be HAA, and
hydrogen atom wave functions. the difference between this and

2
Wy, namely Z—e'”(l + -;—), would be the energy of interaction
(]

of a normal hydrogen atom and a hydrogen ion. The curve
representing this energy function, which before the discovery
of the resonance phenomenon was supposed to correspond fo
the hydrogen molecule-ion, is shown in Figure 42-2 with the
symbol N. It is seen that it does not correspond to the formation
of a stable bond but instead to repulsion at all distances. The
difference between this curve and the other two is that in this
case we have neglected the resonance of the electron between
the two nuclei 4 and B. It is this resonance which causes
the actual hydrogen molecule-ion to be stable—the energy of the
one-electron bond is in the main the energy of resonance of the
electron between the two nuclei. (Other interactions, such as
polarization of the atom in the field of the ion, also contribute
to some extent to the stability of the bond. An attempt to
answer the question of the magnitude of this contribution will
be given in the next section.)
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It is seen from the figure that the resonance interaction sets
in at considerably larger distances than the Coulomb interaction
of atom and ion. This results from the exponential factor
e~ 22 in H 44, a8 compared with e~? in the resonance integral K.
For values of r,z larger than 2 A& the energy functions Wsand W4
are closely approximated by the values Wy + K and Wy — K,
respectively. In accordance with the argument of Section
41b, the resonance energy + K corresponds to the electron’s
jumping back and forth between the nuclei with the frequency

2K /h.

Problem 42-1. Verify the expressions given for Has, Hap, and A in
Equations 42-7 to 42-12.

42b. Other Simple Variation Treatments.—We can easily
improve the preceding treatment by introducing an effective
nuclear charge Z’¢ in the hydrogenlike 1s wave functions Uy,
and u,,. This was done by Finkelstein and Horowitz.! On

minimizing the energy Ws relative to Z’ for various values of
Tas, they obtained a curve for Wy similar to that of Figure 42-2,
but with a lower minimum displaced somewhat to the left. They
found for the equilibrium value of r45 the value 1.06 A, in com-
plete agreement with experiment. The value of the effective
atomic number Z’ at this point is 1.228, and the energy of the sys-
tem (neglecting oscillational and rotational energy) is —15.78 v.e.,
as compared with the correct value —16.31 v.e.; the value
of the dissociation energy D, = 2.25 v.e. differing from the cor-
rect value 2.78 v.e. by 0.53 v.e. The variation of the effective
atomic number from the value 1 has thus reduced the error
by one-half.

The energy of the bond for this function too is essentially
resonance energy. Dickinson? introduced an additional term,
dependent on two additional parameters, in order to take
polarization into account. He wrote for the (not yet normalized)
variation function

¥y = uhA(Z,) + uh,(zl) + O'{uh‘(zn) + u2pB(Z")})

in which the first two terms represent as before 1s hydrogenlike
wave functions with effective nuclear charge Z’¢ and the remain-

1 B. N. FiNnkeLsTEIN and G. E. Horowirz, Z. f. Phys. 48, 118 (1928).
1 B. N. DickinsoN, J. Chem. Phys. 1, 317 (1933).
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ing two terms functions such as 2p. as described in Section 21,

’

1 VAN I A _2£"” s

Ugp, = ——=[—) -— a0
21, 4\/27r< o > ” 74 cos ¢,

in which ¢ is taken relative to a z axis extending from nucleus

A toward nucleus B (and the reverse for u,, ). The parameter

o determines the extent to which these functions enter. The
interpretation of the effect of these functions as representing
polarization of one atom by the other follows from their nature.
The function ui,, + ous,, differs from u,, by a positive amount
on the side nearer B and a negative amount on the farther side,
in this way being concentrated toward B in the way expected for
polarization.!

On minimizing the energy relative to the three parameters and
to mjs, Dickinson found for the equilibrium distance the value
1.06 ,&, and for the energy —16.26 v.e., the parameters having
the values Z’' = 1.247, Z" = 2.868, and o = 0.145.2 The
energy calculated for this function differs by only 0.05 v.e.
from the correct value, so that we may say, speaking somewhat
roughly, that the energy of the one-electron bond is due almost
entirely to resonance of the electron between the two nuclei and
to polarization of the hydrogen atom in the field of the hydrogen
ion, with resonance making the greater contribution (about
2.25 v.e., as given by Finkelstein and Horowitz’s function) and
polarization the smaller (about 0.5 v.e.).

It was found by Guillemin and Zener?® that another variation
function containing only two parameters provides a very good
value for the energy, within 0.01 v.e. of the correct value, the
equilibrium separation of the nuclei being 1.06 ,&, as for all
functions discussed except the simple one of the preceding
section. This function is

_gTA gt _gnTA _giT8

e g a0 + e e ao,

1 The introduction of such a function to take care of polarization was
first made (for the hydrogen molecule) by N. Rosen, Phys. Rev. 38, 2099
(1931).

1 It will be noted that Z” is approximately twice Z’. Dickinson found
that the error in the energy is changed only by 0.02 v.e. by placing Z"’
equal to 2Z’, the best values of the parameters then being Z' = 1.254,
o = 0.1605.

3 V. GuiLLeMIN, JR., and C. ZeNER, Proc. Nal. Acad. Sci. 15, 314 (1929).
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the best values of the parameters being Z’ = 1.13, Z” = 0.23.
The interpretation of this function is not obvious; we might say,
however, that each of the two terms of the function represents
a polarized hydrogen atom, the first term, for example, being
large only in the neighborhood of nucleus A, and being there

»T8
polarized in the direction of nucleus B by the factor Py

A

multiplying the hydrogenlike function e Z;‘, the entire wave
function then differing from Dickinson’s mainly in the way in
which the polarization is introduced. The value of the principal
effective atomic number Z’ = 1.13 is somewhat smaller than
Dickinson’s value 1.247.

A still more simple variation function giving better results
has been recently found by James.! This function is

e (1 + cn?),

in which £ and 5 are the confocal elliptic coordinates defined in
the following section (Eq. 42-15), and § and ¢ are parameters,
with best values § = 1.35 and ¢ = 0.448. The value of the
dissociation energy given by this function is D, = 2,772 v.e.,
the correct value being 2.777 v.e.

42c. The Separation and Solution of the Wave Equation.—It
was pointed out by Burrau? that the wave equation for the
hydrogen molecule-ion, Equation 42-1, is separable in confocal
elliptic coordinates # and n and the azimuthal angle ¢. The
coordinates ¢ and 5 are given by the equations

£ = T"_+f_3,
T4z (42-15)
Ta — 7s
1’ R ——
TaB

On introduction of these coordinates (for which the Laplace
operator is given in Appendix IV), the wave equation becomes

3 awl , of 0¥ 1 1 \ow
52{(52 B l)tﬁ} 5771(1 - )377} T <£2 -1 + 1-— n2>6<p2 +
81!'21774)7'38

—7;2“—{%,-(52 -7 + %5}4« =0, (42-16)

1 H. M. JaMEs, private communication to the authors.
* @yvinp Burrav, Det. Kgl. Danske Vid. Selskab. T, 1 (1927).
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in which we have made use of the relation

et et 4e%t

ra 18 T4a(E — 9%

" rie(8? — 1% :
and have multiplied through by Ji——r-— The quantity

W', given by

W =W - -, (42-17)
is the energy of the electron in the field of the two nuclei, the
mutual energy of the two nuclei being added to this to give the

total energy W.
It is seen that on replacing ¥(#, 1, ¢) by the product function

v, 9) = E(OH()®(e) (42-18)
this equation is separable! into the three differential equations
d*® .
ij _ ndH 2 M ) = _
d"’l(l ﬂ)dn}‘f‘()\ﬂ 1__7’2 M H——O, (42 20)
and
4 _ )32 g __m ): —
(E{(z 1)d£} +( Mgt 2DE - g +u)E =0, (42-21)
in which
2 2 4
A = ﬁlﬁ%&ﬂ (42-22)
and
D =1 (42-23)
[24]

The range of the variable £ is from 1 to «, and of 4 from —1 to
+4-1. The surfaces £ = constant are confocal ellipsoids of revolu-
tion, with the nuclei at the foci, and the surfaces n = constant
are confocal hyperboloids. The parameters m, A, and u must
assume characteristic values in order that the equations possess
acceptable solutions. The familiar ¢ equation possesses such
solutions for m = 0, +1, £2, - - - . The subsequent procedure
of solution consists in finding the relation which must exist

1 The equation is also separable for the case that the two nuclei have
different charges.
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between A and g in order that the 5 equation possess a satis-
factory solution, and, using this relation, in then finding from the
¢ equation the characteristic values of A and hence of the energy-

This procedure was carried out for the normal state of the
hydrogen molecule-ion by Burrau in 1927 by numerical integra-
tion of the ¢ and 5 equations. More accurate treatments have
since been given by Hylleraas' and by Jaffé.2 (The simple
treatment of Guillemin and Zener, described in the preceding
fection, approaches Burrau’s

in accuracy.) We shall not o
describe these treatments in -09
detail but shall give a brief dis- wi
cussion of one of them (that 0
of Hylleraas) after first pre- T
senting the results. - pd
The energy values calculated \ /
by the three authors are given 12 P
in Table 42-1 and shown graph-
ically in Figure 42-3. Itisseen .3

that the curve is qualitatively 0 ! 2‘"AB /a3 - 4 5
Q

s?milar to that given by tbevery Fie. 42-3—The ocnergy of the
simple treatment of Section 424 normal hydrogen molecule-ion (in units
(Fig. 42-2). The three treat- ¢’/260) as a function of r45.

ments agree in giving for the equilibrium value? of r.s 2.00 g or
1.06 A, as was found for the variation functions of the preceding
section also. This is in complete agreement with the band-
spectral value. Spectroscopic data have not been obtained for
the hydrogen molecule-ion itself but rather for various excited
states of the hydrogen molecule. It is believed that these are
states involving a normal hydrogen molecule-ion ds core, with a
highly excited outer electron in a large orbit, having little effect

VE. A. HYLLERAaS, Z. f. Phys. T1, 739 (1931).

® G. JarFE, Z. f. Phys. 87, 535 (1934).

3 The average value of r4s for various oscillational states as determined
from band-spectral data is found to be a function of the vibrational quantum
number v, usually increasing somewhat with increasing v. The value
for v = 0 is represented by the symbol 7o, and the extrapolated value corre-
sponding to the minimum of the electronic energy function by the symbol
r. The vibrational frequencies are similarly represented by v, and »,
(or by ws and w., which have found favor with band spectroscopists) and
the energies of dissociation by D¢ and D,.
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on the potential function for the nuclei; this belief being supported
by the constancy of the values of r, and ». (the oscillational
frequency) shown by them. The values of r. were extrapolated
by Birge! and Richardson? to give 1.06 A for the molecule-ion.

TasLE 42-1.—ELEcTRONIC ENERGY VALUES For THE HYDROGEN

MOLECULE-ION
Wi (in units Rhe)
ras/as Guillemin
Burrau Hylleraas Jaffé
and Zener

0 0 0 o o
0.5 | .o ] i 0.5302 0 5300
1.0 —0.896 —0.903 —0.9046 —0.9035
1.25 | ... oo —1.0826
1.5 [ oo —1.1644
1.75 —1 195* —1.198¢% —1.1980
2.00 —1 204 —1.205 —1.20527 —1.20528
2.25 —1.198* —1.197¢ —1.1998
2.5 b oo —1.1878
275 | ... L. -1.1716
3.0 ... —1 154 —1.1551 —1.1544

© —1.000 —1 000 —1.0000 —1 0000

* Interpolated between adjacent values calculated by Burrau, who estimated his accu-
racy in the neighborhood of the minimum as +0.002 Rhe.

t Interpolated values.

The value —1.20528Rhc for the energy of the molecule-ion is
also substantiated by experiment; the discussion of this com-
parison is closely connected with that for the hydrogen molecule,
and we shall postpone it to Section 43d. The behavior of the
minimum, however, can be compared with experiment by way
of the vibrational energy levels. By matching a Morse curve
to his calculated points and applying Morse’s theory (Sec. 35d),
Hylleraas found for the energy of the molecule ion in successive
vibrational levels given by the quantum number v the expression
W, = —1.20527 + 0.0206(v + 14) — 0.00051(v + 15)?, (42-24)
in units Rhe. This agrees excellently with the expressions
obtained by Birge! and Richardson? by extrapolation of the
observed vibrational levels for excited states of thé hydrogen

1R. T. BirGE, Proc. Nat. Acad. Sct. 14, 12 (1928).
2 0. W. RicHARDSON, Trans. Faraday Soc. 26, 686 (1929).
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molecule, their coefficients in these units being 0.0208 and
—0.00056, and 0.0210 and —0.00055, respectively.

The value W, = —1.20527Ryhc corresponds to an electronic
energy of the normal hydrogen molecule-ion of —16.3073 v.e.
(using Byhc = 13.5300 v.e.) and an electronic dissociation energy
into H 4 H* of D, = 2.7773 v.e., this value being shown to be
accurate to 0.0001 v.e. by the agreement between the calculations
of Hylleraas and Jaffé. The value of D, the dissociation eneigy
of the molecule-ion in its lowest vibrational state, differs from
this by the correction terms given in Equation 42-24. These

Fra. 42-4.—The electron distribution function for the normal hydrogen
molecule-ion (Burrau). The upper curve shows the value of the function along
the line passing through the two nuclei, and the lower figure shows contour
lines for values 0.9, 0.8, - - - , 0.1 times the maximum value.
terms are not known so accurately, either theoretically or
experimentally. Hylleraas’s values lead to a correction of
0.138 v.e., Birge’s to 0.139 v.e., and Richardson’s to 0.140 v.e.
If we accept the theoretical value 0.138 + 0.002 v.e. we obtain

Dy = 2.639 £ 0.002 v.e.

as the value of the dissociation energy of the normal hydrogen
molecule-ion.

The wave function for the normal molecule-ion as evaluated by
Burrau corresponds to the electron distribution function repre-
sented by Figure 42—4. It is seen that the distribution is
closely concentrated about the line between the two nuclei,
the electron remaining most of the time in this region.

Let us now return to a brief discussion of one of the accurate
treatments of this system, that of Hylleraas, which illustrates
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the method of approximate solution of the wave equation dis-
cussed in Section 27a.

The variable n extends through the range —1 to 41, which
is the range traversed by the argument z = cos & of the associated
Legendre functions P™ of Section 19. With Hylleraas we
expand the function H(n) in terms of these functions, writing

H(m) = 3, aPi"(n), (42-25)
L= |m)
in which the coefficients c; are constants. Substituting this
expression in Equation 42-20, and simplifying with the aid of the
differential equation satisfied by the associated Legendre func-
tions, Equation 19-9, we obtain the equation

2yalht —u =10+ DIPfm) =0, (42-26)

l=|m}
We can eliminate the factor #? by the use of the recursion formula
RO = @y

@2+ 12+ 3) @ -1+ ¢("

@+ m){ + Im{ — Dp,,
te-n@+n e

(42-27)

which is easily obtained by successive application of the ordinary
recursion formula 19-16. On introducing this in Equation
42-26, it becomes a simple series in the functions P"(y) with
coefficients independent of 7. Because of the orthogonality of
these functions, their coefficients must vanish independently in
order that the sum vanish (Sec. 22). This gives the condition

@~ |ml = 1) — |m) (= ml + D + |m| + 1)
@-na-1n ot [{ @A+ D@ T3

(@ — [m))( 4 Im|)
tE-n@ ) }" el 1)]“'

+ &+ Im| +2)d + [m| +1)
QL +3)2+5)

which is a three-term recursion formula in the coefficients c;.

)\Cz.;.z = 0, (42—28)
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We now consider the set of equations 42-28 for different values
of { as a set of simultaneous linear homogeneous equations in the
unknown quantities ¢;. In order that the set may possess a non-
trivial solution, the determinant formed by the coefficients of
the ¢/s must vanish. This gives a determinantal equation
involving A and g, from which we determine the relation between
them.

We are interested in the normal state of the system, withm = 0
and [ even. The determinantal equation for this case is

1 2

2 11 4
gx ﬁ)\ - 6 - M Q—i)\ 0 MR ~0
12 39 i
ot 2\ — - e (e2-29
0 T k= 20 — 4 ( )
0 0 0

The only non-vanishing terms are in the principal diagonal and
the immediately adjacent diagonals. As a rough approximation
(to the first degree in \) we can neglect the adjacent diagonals;
the roots of the equation are then pu = I\, p = 114\ — 6,
p = 39\ — 20, etc. We are interested in the first of these.
In order to obtain it more accurately, we solve the equation again,
including the first two non-diagonal terms, and replacing p in
the second diagonal term by Y4\. This equation,

1 2

gh e B .
2, 11 1 (=%
) g — 6 = A

has the solution

po= 2N + 2435M + 485050%
in which powers of A higher than the third are neglected. Hyller-
aas carried the procedure one step farther, obtaining

g = Y4\ + 2{35\% + 46505\ — 0.000013\¢ — 0.0000028)¢.

This equation expresses the functional dependency of x on A
for the normal state, as determined by the 5 equation. The
next step is to introduce this in the ¢ equation, eliminating g,
and then to solve this equation to obtain the characteristic
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values of X and hence of the energy as a function of r.s. Because
of their more difficult character, we shall not discuss the methods
of solution of this equation given by Hylleraas and Jaffé.

42d. Excited States of the Hydrogen Molecule-ion.—We
have discussed (Sec. 42a) one of the excited electronic states of
the hydrogen molecule-ion, with a nuclear-antisymmetric wave
function formed from normal hydrogen-atom funetions. This
is not a stable state of the molecule-ion, inasmuch as the potential
function for the nuclei does not show a minimum.

Calculations of potential functions for other excited states,
many of which correspond to stable states of the molecule-ion,
have been made by various investigators,! among whom
Teller, Hylleraas, and Jaffé deserve especial mention.

43. THE HYDROGEN MOLECULE

43a. The Treatment of Heitler and London.—The following
simple treatment of the hydrogen molecule (closely similar to
that of the hydrogen molecule-ion described in Section 42a)
does not differ essentially from that given by Heitler and London?
in 1927, which marked the inception (except for Burrau's earlier
paper on the molecule-ion) of the application of wave mechanics
to problems of molecular structure and valence theory. Heitler
and London’s work must be considered as the greatest single contri-
bution to the clarification of the chemist’s conception of valence
which has been made since G. N. Lewis’s suggestion in 1916 that
the chemical bond between two atoms consists of a pair of
electrons held jointly by the two atoms.

Let us first consider our problem with neglect of the spin of
the electrons, which we shall then discuss toward the end of the
section. The system comprises two hydrogen nuclei, A and B,
and two electrons, whose coordinates we shall designate by the
symbols 1 and 2. Using the nomenclature of Figure 43-1, the
wave equation for the two electrons corresponding to fixed posi-
tions of the two nuclei is

1P. M. MorsE and E. C. G. STUBECKELBERG, Phys. Rev. 83, 932 (1929);
E. A. HYLLERAAS, Z. f. Phys. 51, 150 (1928); 71, 739 (1931); J. E. LENNARD-
Jongs, Trans. Faraday Soc. 24, 668 (1929); E. TeLLER, Z. f. Phys. 61, 458
(1930); G. JAFFE, Z. f. Phys. 87, 535 (1934).

*'W. Herrper and F. LoNpoN, Z. f. Phys. 44, 455 (1927).



XI1-43a] THE HYDROGEN MOLECULE 341

87I'2mo{

2
A AR AT

Ta1 1 Ta2 Tg2 T12

v+ vy + %

For very large values of 745 we know that in its normal state the
system consists of two normal hydrogen atoms. Its wave func-
tions (the state having two-fold degeneracy) are then w,, (1)

ul,B(Z) and ul,B(l) u,,A(Z) or any two independent linear com-
binations of these two (the wave function u1,,(1) representing a
hydrogenlike 1s wave function for electron 1 about nucleus 4,

A -} B
Fi1a. 43-1.—Coordinates used for the hydrogen molecule, represented diagram-
matically.

etc., as given in Section 21). This suggests that for smaller
values of r4s we use as variation function a linear combination of
these two product functions. We find as the stcular equation
corresponding to this linear variation function (Sec. 26d)

HI]_W HI][""'AZW
Hui— AW Huu—W |~ (43-2)
in which
Hy, = ffll’lel’ldede,
HI iu = ff'l’IH\t/udTlde,
and
A?

I

ff'/’ll/’ud’r 1d7'2,
with
ll/[ = ul,A(l)ux,n(2) and wu = ul,B(l)ul,A(2).
It is seen that A is the orthogonality integral introduced in Section

42a, and given by Equation 42-11. With H;y; = Hyu and
Hi u = Hy i, the equation can be immediately solved to give
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Hii+ Hin

Ws =~ (43-3)
and
H,,.—H
Wa= —if——_—-f;—n: (43—4)

corresponding to the wave functions

1
¥s BV e 2Az{“"..(1)“"a(2) + uy,, (Duy, (2)} (43-5)
and
1
Ya = Vie 2A2{u1.‘(1)u1.,(2) ~ w1, (Dune, ()} (43-6)

Vs is symmetric in the positional coordinates of the two electrons
and also in the positional coordinates of the two nuclei, whereas
Y4 is antisymmetric in both of these sets of coordinates.

On evaluation we find for H;, the expression

Hyy = fful.‘(l)u,,n(2)<2WH ¢ ey fi)
TB1 Ta2 T12 TaB

ul,A(l)u,,B(Z)dndfz
2
=W+ + T+ (43-7)

in which J is the integral of Equation 42-8 and J’ is

ff Ui, (12":' ACUN dridrs

ao{z‘) - e—w(1§ +3+9p+ D’)} (43-8)

with D as before equal to r4s/a,.
Similarly we find for H, ; the expression

2
Hin = f f w1, (D (2)<2w,, —L-f4
~ )ul. (1)u1.‘(2)d71d72

= W, + 2K + K’ + 225, (43-9)
AB

in which K is the integral of Equation 42-12 and K’ is
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fful. (D1, (2, (D2, (2)

T2

drydry

- —[—e—w( -2 43D 30 4 %D')

5ao
+ Tg{A’('y + log D) + A™Ei(—4D) — 2AA'Ei(—2D) }],
(43-10)
in which ¥ =0.5772 - - -+ is Euler's constant and
A = ¢?(1 — D + 4D?).

Ei is the function known as the integral logarithm.! (The
integral K' was first evaluated by Sugiura,® after Heitler and
London had developed an approximate expression for it.) J'
represents the Coulomb interaction of an electron in a 1s orbital
on nucleus A with an electron in a 1s orbital on nucleus
B, and K’ is the corresponding resonance or exchange integral.

Substituting these values in Equations 43-3 and 434, we
obtain

B & | 2] +J + 20K + K’
We = 2Wu + 2 + A2 (43-11)
and
Wa=2Wy+ & 4 AL BE =K (4549

Curves representing W and W 4 as functions of 745 are shown in
Figure 43-2. It is seen that W4 corresponds to repulsion at all
distances, there being no equilibrium position of the nuclei.
The curve for Wy corresponds to attraction of the two hydrogen
atoms with the formation of a stable molecule, the equilibrium
value calculated for r,.z being 0.80 A, in rough agreement with
the experimental value 0.740 A, The energy of dissociation of
the molecule into atoms (neglecting the vibrational energy of the
nuclei) is calculated to be 3.14 v.e., a value somewhat smaller
than the correct value 4.72 v.e. The curvature of the potential
function near its minimum corresponds to a vibrational frequency
for the nuclei of 4800 cm~), the band-spectral value being
4317.9 cm™L,

It is seen that even this very simple treatment of the problem
leads to results in approximate agreement with experiment.

1 8ee, for example, Jahnke and Emde, ‘Funktionentafeln.”

3Y. SuGLURA, Z. f. Phys. 46, 484 (1927).
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It may be mentioned that the accuracy of the energy calculation
is greater than appears from the values quoted for D,, inasmuch
as the energy of the electrons in the field of the two nuclei
(differing from Wy by the term e?/r4p) at r4s = 1.5a,is calculated
to be 2Wy — 18.1 v.e., and the error of 1.5 v.e. is thus only a
few per cent of the total electronic interaction energy.

It is interesting and clarifying for this system also (as for
the hydrogen molecule-ion) to discuss the energy function for a
hypothetical case. fLet us suppose that the wave function for
the system were yr = ui, (1) u1,,(2) alone. The energy of the
system would then be H,;, which is shown as curve N in Figure
43-2. {1t is seen that this curve

. \ gives only a small attraction
-16 \ between the two atoms, with a

\ \‘\ bond energy at equilibrium only

4-18 AN a few per cent of the observed
w-zo N I~ value. The wave function g
] r differs from this function in the

-22 S interchange of the coordinates
of the electrons, and we conse-

245 7 5 4 s quently say that the energy
"ABfa, = of the bond in the hydrogen

Fre. 43-2.—Energy curves for the molecule is in the main reso-
hydrogen molecule (in units e%/2a.). - . -
nance or interchange energy.
So far we have not taken into consideration the spins of the
electrons. On doing this we find, exactly as for the helium
atom, that in order to make the complete wave functions anti-
symmetric in the electrons, as required by Pauli’s principle, the
orbital wave functions must be multiplied by suitably chosen
spin functions, becoming

1
%"\75{&(1) B(2) — (1) «(2)}

Ya- a(l) 0(2):
{a(1) B(2) + B(1) «(2)},
va-B(1) B(2).

There are hence three repulsive states A for one attractive
state S; the chance is 14 that two normal hydrogen atoms

and

1

'h.\/ﬁ
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will interact with one another in the way corresponding to the
formation of a stable molecule. It is seen that the normal state
of the hydrogen molecule is a singlet state, the spins of the
two electrons being opposed, whereas the repulsive state A is &
triplet state.

43b. Other Simple Variation Treatments.—The simple step
of introducing an effective nuclear charge Z’¢ in the 1s hydrogen-
like wave functions of 43—-5 was taken by Wang,* who found that
this improved the energy somewhat, giving D, = 3.76 v.e,,
and that it brought the equilibrium internuclear distance r,
down to 0.76 A, only slightly

greater than the experimental °
value 0.740 A. The effective T
nuclear charge at the equilib- e L~
rium distance was found to be wh /
Z e = 1.166e. 10
There exists the possibility /
that wave functions correspond- 15 .
ing tothe ionicstructures H-H+ o v 2z 3 4 5A

X T'AB —_—
and H*H- might also make g 43-3—The mutual Coulomb
an appreciable contribution to onorgy of tvv}o jons wifth charges +e
. - ti .
the wave function for the nor- *"¢ ~¢ 2 & funchion ol r4z

mal state of themolecule. These ionicfunctions are ul,A(l) Uss, (2)
and  wuy, (1) u,,(2), the corresponding spin function allowed

by Pauli’s principle being —\;E{a(l) B(2) — (1) (2)}, as for

¥s. It is true that for large values of 745 the energy of the ionic
functions is 12.82 v.e. greater than that for the atomic functions,
this being the difference of the ionization potential and the
electron affinity (Sec. 29¢) of hydrogen; but, as r,s is decreased,
the Coulomb interaction of the two ions causes the energy for the
ionic functions to decrease rapidly, as shown in Figure 43-3,
the difference of 12.82 v.e. being counteracted at 1.12 A. This
rough calculation suggests that the bond in the hydrogen molecule
may have considerable ionic character, the structures H-H* and
H+H- of course contributing equaily. The wave function

Usg, (1) %10,(2) + w1, (1) e, (2) + cfus,, (1) uy (2) +
uy, (1) un,(2)} (43-13)
18. C. WaNG, Phys. Rev. 81, 579 (1928).
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was considered by Weinbaum,! using an effective nuclear charge
Z'e in all the 1s hydrogenlike functions. On varying the param-
eters, he found the minimum of the energy curve (shown in
Figure 43-4) to lie at r4p = 0.77 A, and to correspond to the
value 4.00 v.e. for the dissociation energy D, of the molecule.
This is an appreciable improvement, of 0.24 v.e., over the value
given by Wang’s function. The parameter values minimizing
the energy? were found to be

2o Z' = 1.193 and ¢ = 0.256.
/ It may be of interest to
220 V' | consider the hydrogen-mole-
\ / cule problem from another
WT‘?-Q“ \ e point of view. 8o far we have
N B Q/ attempted to build a wave func-
-298 tion for the molecule from
atomic orbital functions, a pro-
239 cedure which is justified as a

100 r"w SO frst approximation when r4p
AB/ao—

Fig. 43-4.—Energy curves for the 18 largt.a. This procedure, as
hydrogen molecule (in units e?/2a0): A, generalized to complex mole-

for an extreme molecular-orbital wave .
function; B, for an extreme valence- CUIes’ is called the method Of

bond wave function; and C. for a walence-bond wave functions, the
e rerioon with partial ioni¢ pame sometimes being used in

the restricted sense of implying
neglect of the ionic terms. Another way of considering the
structure of complex molecules, called the method of molecular
orbitals,® can be applied to the hydrogen molecule in the following
way. Let us consider that for small values of 7,5 the interaction
of the two electrons with each other is small compared with their
interaction with the two nuclei. Neglecting the term e?/r;,
in the potential energy, the wave equation separates into equa-
tions for each electron in the field of the two nuclei, as in the
hydrogen-molecule-ion problem, and the unperturbed wave
function for the normal state of the molecule is seen to be the

18, WEINBAUM, J. Chem. Phys. 1, 593 (1933).

? Weinbaum also considered a more general function with different
effective nuclear charges for the atomic and the ionic terms and found that
this reduced to 43-13 on variation.

3F. Hunp, Z. f. Phys. 61, 759 (1928); 73, 1 (1931); etc.; R. S. MULLIKEN,
Phys. Rev. 32, 186, 761 (1928); 41, 49 (1932); ete.; M. DUNKEL, Z. f. phys.
Chem. BT, 81; 10, 434 (1930); E. HtckEL, Z. f. Phys. 60, 423 (1930); etc.
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product of normal hydrogen-molecule-ion wave functions for the
two electrons. Inasmuch as the function uy,, (1) + uy,, (1)

is a good approximation to the wave function for the electron
in the normal hydrogen molecule-ion, the molecular-orbital
treatment corresponds to the wave function

{ulaA(l) + ultB(l)} {ulaA(z) + ulns(z)} (43—14)

for the normal hydrogen molecule. It is seen that this is identical
with Weinbaum’s function 43-13 with ¢ = 1; that is, with the
ionic terms as important as the atomic terms.

If the electric charges of the nuclei were very large, the inter-
electronic interaction term would actually be a small perturba-
tion, and the molecular-orbital wave function 43-14 would be a
good approximation to the wave function for the normal state
of the system. In the hydrogen molecule, however, the nuclear
charges are no larger than the electronic charges, and the mutual
repulsion of the two electrons may well be expected to tend to
keep the electrons in the neighborhood of different nuclei, as
in the simple Heitler-London-Wang treatment. It would be
difficult to predict which of the two simple treatments is the
better. On carrying out the calculations! for the molecular-
orbital function 43-14, introducing an effective atomic number
Z’', the potential curve A of Figure 43— is obtained, correspond-
ing to 7, = 0.73 A, D, = 3.47 v.e, and 2’ = 1.193. It is seen
that the extreme atomic-orbital treatment (the Wang curve) is
considerably superior to the molecular-orbital treatment for the
hydrogen molecule.? This is also shown by the results for the
more general function 43-13 including ionic terms with a coeffi-
cient ¢; the value of ¢ which minimizes the energy is 0.256,
which is closer to the atomic-orbital extreme (¢ = 0) than to the
molecular-orbital extreme (¢ = 1).

For the doubly charged helium molecule-ion, Hej+, a treatment
vased on the function 43-13 has been carried through,® leading
to the energy curve shown in Figure 43-5. It is seen that at
large distances the two normal Het ions repel each other with the
force e2/r?. At about 1.3 & the effect of the resonance integrals

1 For this treatment we are indebted to Dr. S. Weinbaum.

2 Similar conclusions are reached also when Z’ is restricted to the value
1 (Heitler-London treatment).

3L. PavLiNg, J. Chem. Phys. 1, 56 (1933).
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becomes appreciable, leading to attraction of the two ions and a
minimum in the energy curve at the predicted internuclear
equilibrium distance r, = 0.75 X (which is very close to the value
for the normal hydrogen molecule). At this distance the values
of the parameters which minimize the energy are Z' = 2.124
and ¢ = 0.435. This increase in the value of ¢ over that for the
hydrogen molecule shows that as a result of the larger nuclear
charges the ionic terms become more important than for the
hydrogen molecule.

20
15
e
r
g He
t 0
2 ‘\
5
0 2Het
0 05 10 15 20A
FAB™

F1a. 43-5.—The energy curve for normal He;*.

We have discussed the extension of the extreme atomic-orbital
treatment by the inclusion of ionic terms. A further extension
could be made by adding terms corresponding to excited states
of the hydrogen atoms. Similarly the molecular-orbital treat-
ment could be extended by adding terms corresponding to
excited states of the hydrogen molecule-ion. With these
extensions the treatments ultimately become identical.! In
the applications to complex molecules, however, it is usually
practicable to carry through only the extremely simple atomic-
orbital and molecular-orbital treatments; whether the slight
superiority indicated by the above considerations for the atomic-

1 8ee J. C. SLATER, Phys. Rev. 41, 255 (1932).
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orbital treatment is retained also for molecules containing
atoms of larger atomic number remains an open question.

So far we have not considered polarization of one atom by the
other in setting up the variation function. An interesting
attempt to do this was made by Rosen,! by replacing u,,,(1) in
the Heitler-London-Wang function by wy, (1) + ouszp,(1) (with
a similar change in the other functions), as in Dickinson’s
treatment of the hydrogen molecule-ion (which was suggested
by Rosen’s work). The effective nuclear charges Z’e in u,,
and Z'’¢ in uy, were assumed to be related, with Z” = 2Z'.
It was found that this leads to an improvement of 0.26 v.e. in
the value of D, over Wang’s treatment, the minimum in the
energy corresponding to the values r. = 0.77 A, D, =4.02v.e,
Z' =1.19, and o = 0.10.

A still more general function, obtained by adding ionic terms
(as in 43-13) to the Rosen function, was discussed by Weinbaum,
who obtained D, = 4.10v.e., Z/ = 1.190,0 = 0.07,and ¢ = 0.176.

The results of the various calculations desecribed in this section
are collected in Table 43-1, together with the final results of
James and Coolidge (see following section).

TaBLE 43-1.—RESULTS OF APPROXIMATE TREATMENTS OF THE NORMAL
HYDROGEN MOLECULE

D, Te Ve Al
Heitler-London-Sugiura.......... 3.14 v.e.| 0.80 & | 4800 cm—?
Molecular-orbital treatment......| 3.47 0.73 | ... 1.193
Wang............oooiiii 3.76 0.76 4900 1.166
Weinbaum (jonic)............... 4.00 0.77 4750 1.193
Rosen (polarization)........ .. 4.02 0.77 4260 1.19
Weinbaum (1omc-p01arlzat10n) 4.10 | ..o e 1.190
James-Coolidge................. 4.722 0.74
Experiment. ................... 4.72 0.7395 | 4317.9

43c. The Treatment of James and Coolidge.—In none of the
variation functions discussed in the preceding section does the
interelectronic interaction find suitable expression. A major
advance in the treatment of the hydrogen molecule was made
by James and Coolidge? by the explicit introduction of the

I N. RoseN, Phys. Rev. 88, 2099 (1931).
3 H. M. James and A. S. Coovngg, J. Chem. Phys. 1, 825 (1933).
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interelectronic separation r;; in the variation function (the
similar step by Hylleraas having led to the ultimate solution
of the problem of the normal helium atom). Using the elliptic
coordinates (Sec. 42¢)

£ = Ta1 + a1 £ = Taz + Tg2
e TaB ’ e Tas ’

_Tar — Tm __Taz — Tp2

m = *——“B ’ N2 = ”’——“B 2

and the new coordinate
2T12
= 212

TaB

James and Coolidge chose as the variation funetion the expression

1 ; ;
Y = g D (T + EEprr), (43-15)

m
mnjkp
the summation to include zero and positive values of the indices,
with the restriction that j 4+ & be even, which is required to make
the function symmetric in the coordinates of the nuclei.

Calculations were first made for r4s = 1.40a, (the experi-
mental value of r,) and § = 0.75; with these fixed values the
variation of the parameters can be carried out by the solution
of a determinantal equation (Sec. 26d). It was found that
five terms alone lead to an energy value much better than any
that had been previously obtained,! the improvement being due
in the main to the inclusion of one term involving u (Tables
43-2 and 43-3). It is seen from Table 43—-2 that the eleven-term
and thirteen-term functions lead to only slightly different energy
values, and the authors’ estimate that the further terms will
contribute only a small amount, making D, = 4.722 + 0.013 v.e.,
seems not unreasonable.

Using the eleven-term function, James and Coolidge investi-
gated the effects of varying & and 74, concluding that the
values previously assumed minimize the energy, corresponding
to agreement between the theoretical and the experimental
value of 7., and that the energy depends on r4s in such a way as to
correspond closely to the experimental value of »..

11t is of interest that the best value found by including only terms with
p =01is D, = 4.27 v.e., which is only slightly better than the best values
of the preceding section.
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This must be considered as a thoroughly satisfactory treat-
ment of the normal hydrogen molecule, the only improvement
which we may look forward to being the increase in accuracy by
the inclusion of further terms.

TABLE 43-2.-—SUCCESSIVE APPROXIMATIONS WITH THE JAMEs-COOLIDGE
Wave FoncrioNn ror THE HYDROGEN MOLECULE

Number of terms| Total energy D,
1 —2.189 Ryhe 2.56 v.e.

5 —2.33290 4,504

11 —~2.34609 4.685

13 —2.34705 4.698

TapLE 43-3.—VALUES OF COEFFICIENTS Cmnji; FOR NORMALIZED WAVE
Funcrions ror THE HYDROGEN MoOLECULE*

Values of cmnikp
Term mnjkp

1 term b terms 11 terms 13 terms
00000 1.69609 2.23779 2.29326 2.22350
00020 | ....... 0.80483 1.19526 1.19279
10000 e —0.60985 —0.86693 —0.82767
00110 | ... .. —0.27997 —0.49921 —0.45805
00001 | ... .. . 0.19917 0.33977 0.35076
10200 | ....... | ..... ... —0.13656 —-0.17134
10110 | ... ... L.l . 0.14330 0.12394
10020 | ... ] L.l —0.07214 —0.12101
20000 N . 0.06621 0.08323
00021 e 0.07090
10001 . T ~—0.03987
00002 . . —0.02456 ~0.01197
00111 . ~0.03143 —0.01143

*In a later note, J. Chem. Phys. 8, 120 (1935), James and Coolidge state that these
values are about 0.05 per cent too large.

43d. Comparison with Experiment.—The theoretical values
for the energy of dissociation of the hydrogen molecule and mole-
cule-ion discussed in the preceding sections can be compared with
experiment both directly and indirectly. The value

Dy = 2.639 + 0.002 v.e.

for H{ is in agreement with the approximate value 2.6 + 0.1 v.e.
found from the extrapolated vibrational frequencies for excited
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states of Hy. For the hydrogen molecule the energy calculations
of James and Coolidge with an estimate of the effect of further
terms and corrections for zero-point vibration (using a Morse
funetion) and for the rapid motion of the nuclei (corrésponding
to the introduction of a reduced mass of electron and proton)
lead to the value! 4.454 + 0.013 v.e. for the dissociation energy
9. This is in entire agreement with the most accurate experi-

H+H'+E~
De (H2+) Do( H;)
HY+E™—
2 )
l'li}'l'))e(l'i;;")
1(H)
1(H,)
H+H
De(Hz) Do(Hy)
H, Ve Y

Lhwe (Hy)

F16. 43-6.—Energy-level diagram for a system of two electrons and two protons.

mental value, 4.454 + 0.005 v.e., obtained by Beutler? by the
extrapolation of observed vibrational levels.

Another test of the values can be made in the following way.
From the energy-level diagram for a system of two electrons and

1H. M. James and A. 8. CooLingE, J. Chem. Phys. 8, 129 (1935). Weare
indebted to Drs. James and Coolidge for the personal communication of this
and other results of their work.

3 H. BEUTLER, Z. phys. Chem. B2T, 287 (1934), A direct thermochemical
determination by F. R. Bichowsky and L. C. Copeland, Jour. Am. Chem.
Soc. B0. 1315 (1928), gave the value 4.55 + 0.15 v.e.
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two protons shown in Figure 43-6 we see that the relation
I(Hs) + Do(H3) = I(H) + Do(Ha,) (43-16)

holds between the various ionization energies and dissociation

energies. With the usc of the known values of I(H) and Do(H?)

(the latter being the theoretical value) and of the extrapolated
spectroscopic value of I(Hz), Do(H,) is determined? as

4.448 + 0.005 v.e.,

again in excellent agrecment with the value given by James
and Coolidge.

43e. Excited States of the Hydrogen Molecule.—Scveral
excited states of the hydrogen molecule have been treated by
perturbation and variation methods,? with results in approximate
agreement with experiment.

Instead of discussing these results, let us consider the simple
question as to what wave functions for the hydrogen molecule
can be built from 1s hydrogenlike functions u, and uy alone,
There are four product functions of this type, w4(1)us(2),
us(1) ua(2), ua(1)ua(2), and wuy(1)us(2). The equivalence of
the two electrons and of the two nuclei requires that the wave
functions obtained from these by solution of the secular equation
be either symmetric or antisymmetric in the positional coordi-
nates of the two electrons and also either symmetric or antisym-
metric in the two nuclei. These functions are

}{uA(l)ua(z) + us(1) ua(2)}, {ua(l) ua(2) + us(l) us(2)}

SNSE' 1 E;—
{SNSE 15},

I
11

III  wa(l) ua(2) — us(l)ua(2),A¥AE3ZY,
IV uA(l)uA(2) b u,B(l)uB(2),ANSE12:’,

functions I and II being formed by linear combination of the two
indicated functions. One of these (I, say) represents the

! Personal communication to Dr. James from Prof. O. W. Richardson.

2 E. C. KemsLE and C. ZENER, Phys. Rev. 83, 512 (1929); C. ZENER and
V. GuiLLeMIN, Phys. Rev. 34, 999 (1929); E. A. HvLLERAAS, Z. f. Phys. T1,-
739 (1931); E. MAJORANA, Atlt Accad. Lincei 13, 58 (1931); J. K. L. Mac
DonaLp, Proc. Roy. Soc. A136, 528 (1932). The method of James and
Coolidge has been applied to several excited states of the hydrogen molecule
by R. D. Present, J. Chem. Phys. 8, 122 (1935), and by H. M. James, A. S.
Coolidge, and R. D. Present, in a paper to be published soon.



354 THE STRUCTURE OF SIMPLE MOLECULES (XII-43e

normal state of the molecule (Sec. 43b, Weinbaum), and the other
an excited state. The term symbol !Z} for these states contains
the letter = to show that there is no component of electronic
orbital angular momentum along the nuclear axis; the superscript
1 to show that the molecule is in a singlet state, as shown also
by the symbol S%, meaning symmetric in the positional coordi-
nates of the two electrons, Pauli’s principle then requiring that
the electron-spin function be the singlet function

a(1) B(2) — (1) a(2);

and the superscript 4 to show that the electronic wave function
is symmetric in the two nuclei, as shown also by S¥ In
addition the subscript ¢ (German gerade) is given to show that
the electronic wave function is an even function of the electronic
coordinates. Functions IIT and IV are both antisymmetric in
the nuclei, as indicated by the symbol A¥ and the superscript —,
and are odd functions, as shown by the subscript « (German
ungerade), III being a triplet and IV a singlet function. A
further discussion of these symmetry properties will be given in
the next section and in Section 48.

Function III represents the repulsive interaction of two
normal hydrogen atoms, as mentioned in Section 43a. Function
II is mainly ionic in character and function IV completely so,
representing the interaction of H* and H~. Of these IV cor-
responds to a known state, the first electronically excited state
of the molecule. As might have been anticipated from the
ionic character of the wave function, the state differs in its prop-
erties from the other known excited states, having r, = 1.29
and v, = 1358 cm~!, whereas the others have values of r, and »,
close to those for the normal hydrogen molecule-ion, 1.06 &
and 2250 cm~!. The calculations of Zener and Guillemin and
of Hylleraas have shown that at the equilibrium distance the
wave function for this state involves some contribution from
wave functions for one normal and one excited atom (with
n = 2,1 = 1), and with increase in r .5 this contribution increases,
the molecule in this state dissociating into a normal and an
excited atom.

The state corresponding to II has not yet been identified.

Problem 43-1. Construct a wave function of symmetry type ANS®
from 1s and 2p functions,
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43f. Oscillation and Rotation of the Molecule. Ortho and
Para Hydrogen.—In accordance with the discussion of the pre-
ceding sections and of Chapter X, we can represent the complete
wave function for the hydrogen molecule as the product of
five functions, one describing the orbital motion of the electrons,
the second the orientation of electron spins, the third the oscilla~
tional motion of the nuclei, the fourth the rotational motion of
the nuclei, and the fifth the orientation of nuclear spins (assuming
them to exist):

electromc electronic- nuclear-
. nuclear nuclear .
orbital spin . spin
. . oscﬂlatlon rotatlon . .
motion orientation orientation

For the normal electronic state the first of these is symmetric
in the two electrons, the second antisymmetric, and the remaining
three independent of the electrons (and hence symmetric),
making the entire function antisymmetric in the two electrons,
as required by Pauli’s principle. Let us now consider the sym-
metry character of these functions with respect to the nuclei.
The first we have seen to be symmetric in the nuclei. The
second is also symmetric, not being dependent on the nuclear
coordinates. The third is also symmetric for all oscillational
states, inasmuch as the variable » which occurs in the oscilla-
tional wave function is unchanged by interchanging the nuclei.
The rotational function, however, may be either symmetric or
antisymmetric. Interchanging the two nuclei converts the
polar angle ¢ into r — ¢ and ¢ into # + ¢; the consideration of
the rotational wave functions (Secs. 35a and 21) shows that
this causes a change in sign if the rotational quantum number K
is odd, and leaves the function unchanged if K is even. Hence
the rotational wave function is symmetric in the nuclei for even
rotational states and antisymmetric for odd rotational states.
The nuclear-spin function can be either symmetric or antisym-
metric, providing that the nuclei possess spins.

*By an argument identical with that given in Section 29b for
the electrons in the helium atom we know that a system con-
taining two identical protons can be represented either by wave
functions which are symmetric in the protons or by waye funec-
tions which are antisymmetric in the protons. Let us assume
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that the protons possessed no spins and that the symmetric
functions existed in nature. Then only the even rotational
states of the normal hydrogen molecule would occur (and only
the odd rotational states of the A¥ electronic state IV of the
preceding section). Similarly, if the antisymmetric functions
existed in nature, only the odd rotational states of the normal
molecule would occur. If, on the other hand, the protons
possessed spins of 14 (this being the value of the nuclear-spin
quantum number I), both even and odd rotational states would
occur, in the ratio of 3 to 1 if the complete wave function were
symmetric or 1 to 3 if it were antisymmetric, inasmuch as there
are for I = 14 three symmetric nuclear-spin wave functions,

a(4) a(B),

1
—ﬁ{a(A) B(B) + B(4) a(B)},
and
8(4) B(B),
and one antisymmetric one,
1
W{Q(A) B(B) — B(4) «(B)}.

In this case, then, we would observe alternating intensities in
the rotational fine structure of the hydrogen bands, with the
ratio of intensities 3:1 or 1:3, depending on the symmetry char-
acter of protons. Similar alternating intensities result from
larger values of I, the ratio being! I + 1 to I. It is seen that

! Thus for I = 1 there are three spin functions for one particle, «, 8, and v,
say, corresponding to m; = +1, 0, —1. From these we can build the
following wave functions for two particles, giving the ratio 2:1.

Symmetrie Antisymmetric

a(A) «(B)

8(A) 8(B)

v(A) v(B)
\%{a(A) B(B) + B(A) a(B)} \—}_EMA) B(B) — B(4) «(B)}
%{a(li) v(B) + v(4) a(B)} é—zla(A) v(B) — v(4) a(B)}

1 1

—={B(A) v(B) + v(A) B(B ——1{B(A) v(B) — v(A) B(B
NG ¥{ v(4) B(B)} \/E{ﬂ( ) ¥(B) — v(4) B(B)}
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from the observation and analysis of band spectra of molecules
containing two identical nuclei the symmetry character and the
spin of the nuclei can be determined.

It was found by Dennison?! (by a different method-—the study
of the heat capacity of the gas, discussed in Section 49¢) that
protons (like electrons) have a spin of one-half, and that the
allowed wave functions are completely antisymmetric in the
proton coordinates (positional plus spin). This last statement
is the exact analogue of the Pauli exclusion principle.?

Each of the even rotational wave functions for the normal
hydrogen molecule is required by this exclusion principle to be
combined with the antisymmetric spin function, whereas each
of the odd rotational wave functions can be associated with the
three symmetric spin functions, giving three complete wave
functions. Hence on the average there are three times as many
complete wave functions for odd rotational states as for even, and
at high temperatures three times as many molecules will be in
odd as in even rotational states (Sec. 49¢). Moreover, a molecule
in an odd rotational state will undergo a transition to an even
rotational state (of the normal molecule) only extremely rarely,
for such a transition would result only from a perturbation involv-
ing the nuclear spins, and these are extremely small in magnitude.
Hence (as was assumed by Dennison) under ordinary circum-
stances we can consider hydrogen as consisting of two distinct
molecular species, one, called para hydrogen, having the nuclear
spins opposed and existing only in even rotational states (for
the normal electronic state), and the other, called ortho hydrogen,
having the nuclear spins parallel and existing only in the odd
rotational states. Ordinary hydrogen is one-quarter para and
three-quarters ortho hydrogen.

On cooling to liquid-air temperatures the molecules of para
hydrogen in the main go over to the state with X = 0 and
those of ortho hydrogen to the state with K = 1, despite the
fact that at thermodynamic equilibrium almost all molecules
would be in the state with K = 0, this metastable condition
being retained for months. It was discovered by Bonhoeffer

1D. M. DENNISON, Proc. Roy. Soc. A116, 483 (1927).

2 The spins and symmetry nature for other nuclei must at present be
determined experimentally; for example, it is known that the deuteron has
I = 1 and symmetric wave functions.
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and Harteck,! however, that a catalyst such as charcoal causes
thermodynamic equilibrium to be quickly reached, permitting
the preparation of nearly pure para hydrogen. It is believed
that under these conditions the ortho-para conversion is due to
& magnetic interaction with the nuclear spins,? and not to dis-
sociation into atoms and subsequent recombination, inasmuch as
the reaction H; + D; =2 2HD is not catalyzed under the same
conditions. The conversion is catalyzed by paramagnetic sub-
stances? (oxygen, nitric oxide, paramagnetic ions in solution), and
8 theoretical discussion of the phenomenon has been published.*
At higher temperatures the conversion over solid catalysts seems
to take place through dissociation and recombination.

44. THE HELIUM MOLECULE-ION He; AND THE INTERACTION
OF TWO NORMAL HELIUM ATOMS

In the preceding sections we have discussed systems of two
nuclei and one or two electrons. Systems of two nuclei and three
or four electrons, represented by the helium molecule-ion Hef
and by two interacting helium atoms, respectively, are treated
in the following paragraphs. A discussion of the results obtained
for systems of these four types and of their general significance
in regard to the nature of the chemical bond and to the structure
of molecules will then be presented in Section 45.

44a. The Helium Molecule-ion He}.—In treating the system
of two helium nuclei and three electrons by the variation method
let us first construct electronic wave functions by using only
hydrogenlike 1s orbital wave functions for the two atoms, which
we may designate as ux and ug, omitting the subscripts 1s for
the sake of simplicity. Four completely antisymmetric wave
functions can be built from these and the spin functions « and 8.
These are (before normalization)

ua(l) a(1)  ua(l) (1) us(1) (1)
Vi = | ua(2) a(2) ua(2) B(2) ua(2) «(2) (44-1)
ua(3) «(3)  ua(3) B(3) us(3) «(3)

1 K. F. BonroerrFER and P. HARTBCK, Z. f. phys. Chem. B4, 113 (1929).

1 K. F. BoNBOEFFER, A. FaRkas, and K. W. Rummew, Z. f. phys. Chem.
B21, 225 (1933).

*L. Farkas and H. 8acnssp, Z. f. phys. Chem. B33, 1, 19 (1033).

$E. WIGNER, Z. f. phys. Chem. B28, 28 (1933).



XIT-44a] THE HELIUM MOLECULE-ION 359

and
us(1) a(1) us(1) B(1) ua(l) a(1)
Vu = |us(2) a(2) us(2) B(2) ua(2) «(2)}, (44-2)
us(3) a(3) us(3) BB) ua(3) a(3)

and two other functions, yi; and y.v, obtained by replacing
a by 8 in the last column of these functions. It is seen that the
function y; represents a pair of electrons with opposed spins on
nucleus A (as in the normal helium atom) and a single electron
with positive spin on nucleus B; this we might write as He:
-Het. Function ¢y similarly represents the structure He-+ :He,
the nuclei having interchanged their roles. It is evident that
this system shows the same degeneracy as the hydrogen molecule-
ion, and that the solution of the secular equation for y¥; and ¥
will lead to the functions ys and ¢4, the nuclear-symmetric and
nuclear-antisymmetric combinations of ¢y and ¢y (their sum
and difference), as the best wave functions given by this approxi-
mate treatment. The other wave functions Yy and yv lead
to the same energy levels.

The results of the energy calculation' (which, because of its
similarity to those of the preceding sections, does not need to be
given in detail) are shown in Figure 44-1. It is seen that the
nuclear-antisymmetric wave function Y4 corresponds to repulsion
at all distances, whereas the nuclear-symmetric function ¢s
leads to attraction and the formation of a stable molecule-ion.
That this attraction is due to resorance between the structures
He: -He* and He-* :He is shown by comparison with the energy
curve for ¥y or ¥y alone, given by the dashed line in Figure 44-1.
We might express this fact by writing for the normal helium
molecule-ion the structure He---Het, and saying that its stabil-
ity is due to the presence of a three-eleciron bond between the
two atoms.

The function ¥s composed of 1s hydrogenlike orbital wave
functions with effective nuclear charge 2¢ leads to a minimum
in the energy curve at r, = 1.01 & and the value 2.9 v.e. for the
energy of dissociation D, into He + Het. A more accurate
treatment? can be made by minimizing the energy for each value

1 L. PavLiNg, J. Chem. Phys. 1, 56 (1933).
* L. PAULING, loc. cit. The same calculation with Z’ given the fixed value
1.8 was made by E. Majorana, Nuovo Cim. 8, 22 (1931).
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of sz with respect to an effective nuclear charge Z’e. This
leads to 7. = 1.085 .&, D, = 2.47 v.e, and the vibrational
frequency v, = 1950 cm~*, with Z’ equal to 1.833 at the equilib-
rium distance. A still more reliable treatment can be made
by introducing two effective nuclear charges Z’e and Z'’e, one for
the helium atom and one for the ion, and minimizing the energy
with respect to Z’ and Z”’, This has been done by Weinbaum,?
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Fi16. 44-1.—Energy curves for attractive and repulsive states of He}d. The

dashed curve corresponds to a non-exnstent state, resonance between He: -He™*
and He-* :He being excluded.

who obtained the values 7, = 1.097 A, D, = 2.22v.e.,Z' = 1.734,
and Z” = 2.029. The results of these calculations are in good
agreement, with the experimental values given by excited states
of the diatomic helium molecule (consisting of the normal mole-
cule-ion and an outer electron), which are r, = 1.09 4, D, = 2.5
v.e., and v, = 1650 cm—.

It is of interest that the system of a helium nucleus and
a hydrogen nucleus and three electrons does not show the
degeneracy of functions y; and 5, and that in consequence the
interaction of a normal helium atom and a normal hydrogen

1S. WEINBAUM, J. Chem. Phys. 8, 547 (19385).



XII-44b] THE HELIUM MOLECULE-ION 361

atom corresponds to repulsion, as has been verified by approxi-
mate calculations.!

44b. The Interaction of Two Normal Helium Atoms.—We may
write for the wave function for the normal state of a system
consisting of two nuclei and four electrons the expression

uAEI; agl) ua(1) (1) us(1) (1)  us(1) B(1)

= ua(2) @(2) wa(2) B(2) us(2) @(2) wus(2) B(2) B

v =N u4(3) a(3) u4(3) 6(3) uB(3) a(3) uB(3) 6(3) ’ (44 3)
ua(4) a(4) us(4) B@A) us(4) «(4) us(4) B(4)

in which %, and us represent 1ls wave functions about nuclei
A and B, respectively, and N is a normalizing factor. This wave
function satisfies Pauli’s principle, being completely anti-
symmetric in the four electrons. It is the only wave function
of this type which can be constructed with the use of the one-
electron orbital functions u, and uz alone.

It was mentioned by Heitler and London in their first paper!
that rough theoretical considerations show that two normal
helium atoms repel each other at all distances. The evaluation
of the cnergy for the wave function ¢ of Equation 44-3 with
us and uz hydrogenlike 1s wave functions with effective atomic
number Z’ = 27{s was carried out by Gentile.2 A more
accurate calculation based on a helium-atom wave function not
given by a single algebraic expression has been made by Slater,?
who found that the interaction energy is given by the approxi-
mate expression

2.43R

W — W° =7.70.10-1% o ergs. (44-4)

This represents the repulsion which prevents the helium atoms
from approaching one another very closely. The weak attrac-
tive forces which give rise to the constant a of the van der Waals
equation of state cannot be treated by a calculation of this type
based on unperturbed helium-atom wave functions. It will
be shown in Section 47b that the van der Waals attraction is

5 6
given approximately by the energy term — 1.41e2%; or —0.607%

1 W. HeitLER and F. LonpoN, Z. f. Phys. 44, 455 (1927).
2 G. GENTILE, Z. f. Phys. 63, 795 (1930).
3J. C. SLATER, Phys. Rev. 32, 349 (1928).
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ergs. The equilibrium interatomic distance corresponding to
this attraction term and the repulsion term of Equation 44—4
is 3.0 A, in rough agreement with the experimental value of
about 3.5 A for solid helium, showing that the theoretical calcu-
lations are of the correct order of magnitude.

45. THE ONE-ELECTRON BOND, THE ELECTRON-PAIR BOND,
AND THE THREE-ELECTRON BOND

In the preceding sections we have discussed systems containing
two nuclei, each with one stable orbital wave function (a 1s
function), and one, two, three, or four electrons. We have found
that in each case an antisymmetric variation function of the
determinantal type constructed from atomic orbitals and
spin functions leads to repulsion rather than to attraction
and the formation of a stable molecule. For the four-electron
system only one such wave function can be constructed, so that
two normal helium atoms, with completed K shells, interact with
one another in this way. For the other systems, on the other
hand, more than one function of this type can be set up (the two
corresponding to the structures H- H+ and H* -H for the hydro-
gen molecule-ion, for example); and it is found on solution
of the secular equation that the correct approximate wave
functions are the sum and difference of these, and that in each
case one of the corresponding energy curves leads to attraction
of the atoms and the formation of a stable bond. We cal]
the bonds involving two orbitals (one for each nucleus) and one,
two, and three electrons the one-electron bond, the electron-pair
bond, and the three-electron bond, respectively.

The calculations for the hydrogen molecule-ion, the hydrogen
molecule, and the helium molecule-ion show that for these
systems the electron-pair bond is about twice as strong a bond
(using the dissociation energy as a measure of the strength of a
bond) as the one-electron bond or the three-electron bond.! This
fact alone provides us with some explanation of the great impor-
tance of the electron-pair bond in molecular structure in general
and the subsidiary roles played by the one-electron bond and the
three-electron bond.?

! 8ee, however, the treatment of Li%, by H. M. James, J. Chem. Phys. 8,
9 (1935).
t L. PavLiNg, J. Am. Chem. Soc. 88, 3225 (1931).
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There is a still more cogent reason for the importance of the
electron-pair bond. This is the nature of the dependence of the
energy of the bond on the similarity or dissimilarity of the two
nuclei (or the two orbitals) involved. Using only two orbitals,
ua and up, we can construct for the one-electron system only the
two wave functions

¥ = ua(l) (1)

Yu = us(l) «(l)

(together with two others involving 8(1) which do not combine
with these and which lead to the same energy curves). These
correspond to the electronic structures A- Bt and A+ B. If
A and B are identical (or if yr and yu correspond to the same
energy because of an accidental relation between the orbitals
and the nuclear charges) there is degeneracy, and the interaction
of ¢1 and ¥ causes the formation of a stable one-electron bond.
If this equality of the energy does not obtain, the bond is weak-
ened, the bond energy falling to zero as the energy difference for
Y1 and Yy becomes very large.

The three-electron bond behaves similarly. The wave func-
tions (Eqs. 44-1 and 44-2) are closely related to those for the
one-electron system, and the bond energy similarly decreases
rapidly in magnitude as the energy difference for the two wave
functions increases. Hence, in general, we expect strong one-
electron bonds and three-electron bonds not to be formed
between unlike atoms.

The behavior of the electron-pair bond is entirely different.
The principal degeneracy leading to bond formation is that
between the wave functions

ua(l) a(1) us(1) B(1)

]

and

V= 0@ o) us(@) B(2)
and

o = |1 D) us(1) a(l)

T ua(2) B(2) us(2) «(2)

These correspond to the same energy value even when A and B
are not identical; hence there is just the same resonance stabiliz-
ing an electron-pair bond between unlike atoms as between like
atoms. Moreover, the influence of the ionic terms is such as to
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introduce still greater stability as the nuclei become more unlike.
One of the ionic wave functions

_ a(1) g(1)
Vi = ua(l) ua(2) | 09 gio)
and
~ a(l) B(1)
Yiv = up(1) us(2) a(2) 8(2) |

corresponding to the ionic structures A:~ B+ and A* :B—, becomes
more and more important (contributing more and more to the
normal state of the molecule) as one of the atoms becomes more
electronegative than the other, in conscquence of the lowering
of the energy for that ionic function. This phenomenon causes
electron-pair bonds between unlike atoms to be, in general,
somewhat stronger than those between like atoms. The dis-
cussion of this subject has been in the main empirical.!

It has been found possible to apply quantum-mechanical
methods such as those described in this chapter in the detailed
discussion of the electronic structure of polyatomic molecules
and of valence and chemical bond formation in general. Only
in a very few cases has the numerical treatment of polyatomic
molecules been carried through with much accuracy; the most
satisfactory calculation of this type which has been made is
that of Coolidge? for the water molecule. General arguments
have been presented® which provide a sound formal justification
for the postulates previously made by the chemist regarding the
nature of valence. It can be shown, for example, that one bond
of the types discussed in this section can be formed by an atom
for each stable orbital of the atom. Thus the first-row elements
of the periodic system can form as many as four bonds, by using
the four orbitals of the L shell, but not more. This result and
other results! regarding the relative orientation of the bond
axes provide the quantum-mechanical basis for the conception
of the tetrahedral carbon atom. Special methods for the

tL. PavriNg, J. Am. Chem. Soc. 54, 3570 (1932).

* A. S. CooLIDGE, Phys. Rev. 42, 189 (1932).

' W. HerrLEr, Z. f. Phys. 47, 835 (1928), ete.; F. LonpoN, Z. f. Phys.
60, 24 (1928), ete.; M. BornN, Z. f. Phys. 64, 729 (1930); J. C. SLATER, Phys.
Rev. 38, 1109 (1931).

4J. C. SLATER, Phys. Rev. 34, 1293 (1929); L. PavLiNg, J. Am. Chem. Soc.
58, 1367 (1931); .} H. Van ViECK, J. Chem. Phys. 1,177 (1933), ete.
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approximate treatment of the stability of very complex molecules
such as the aromatic hydrocarbons! have also been developed
and found to be useful in the discussion of the properties of these
substances. The already very extensive application of wave
:nechanics to these problems cannot be adequately discussed
in the small space which could be allowed it in this volume.

1 E. HtickEL, Z. f. Phys. 70, 204 (1931), ete.; G. RuMmer, Gittinger Nachr.
p. 337, 1932; L. Pavuing, J. Chem. Phys. 1, 280 (1933); L. PauLiNG and
G. W. WHELAND, ¢bid. 1, 362 (1933); L. PauriNG and J. SHERMAN, ibid. 1,
679 (1933), ete.



CHAPTER XIII
THE STRUCTURE OF COMPLEX MOLECULES

In carrying out the simple treatments of the hydrogen mole-
cule-ion, the hydrogen molecule, the helium molecule-ion,
and the system composed of two normal helium atoms discussed
in the last chapter, we encountered no difficulty in constructing a
small number of properly antisymmetric approximate wave
functions out of one-electron orbital functions for the atoms of
the molecule. The same procedure can be followed for more
complex molecules; it is found, however, that it bccomes so
complicated as to be impracticable for any but the simplest
molecules, unless some method of simplifying and systematizing
the treatment is used. A treatment of this type, devised by
Slater,! is described in the following sections, in conjunction
with the discussion of a special application (to the system of
three hydrogen atoms). Slater’s treatment of complex mole-
cules has been the basis of most of the theoretical work which has
been carried on in this field in the last three years.

46. SLATER’S TREATMENT OF COMPLEX MOLECULES

In the last chapter we have seen that a good approximation
to the wave function for a system of atoms at a considerable
distance from one another is obtained by using single-electron
orbital functions u.(1), etc., belonging to the individual atoms,
and combining them with the electron-spin functions « and B
in the form of a determinant such as that of Equation 44-3.
Such a function is antisymmetric in the elcctrons, as required by
Pauli’s principle, and would be an exact solution of the wave
equation for the system if the interactions between the electrons
and those between the electrons of one atom and the nuclei
of the other atoms could be neglected. Such determinantal

1J. C. SuaTER. Phys. Rev. 88, 1109 (1931).
368
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functions are exactly analogous to the functions! used in Section
30a in the treatment of the electronic structure of atoms.

It may be possible to construct for a complex molecule many
such functions with nearly the same energy, all of which would
have to be considered in any satisfactory approximate treatment.
Thus if we consider one atom to have the configuration 1s?2s%2p,
we must consider the determinantal functions involving all three
2p functions for that atom. A system of this type, in which
there are a large number of available orbitals, is said to involve
orbital degeneracy. Even in the absence of orbital degeneracy,
the number of determinantal functions to be considered may be
large because of the variety of ways in which the spin functions
a and B8 can be associated with the orbital functions. This
spin degeneracy has been encountered in the last chapter; in the
simple treatment of the hydrogen molecule we considered the
two functions corresponding to associating positive spin with
the orbital u4 and negative spin with us, and then negative spin
with u, and positive spin with u,; (Sec. 45). The four wave
functions described in Section 44a for the helium molecule-ion
might be represented by the scheme of Table 46-1. The plus

TapLE 46-1.—Wave Funcrions ror THE Hrruium Morecure-ioN, Hed

Function ug un zm,
1 + — + +3%4
1I + + - +4
III + - - -3
v - + - -4

and minus signs show which spin function « or g8 is to be asso-
ciated with the orbital functions u, and uz (in this case 1s func-
tions on the atoms A and B, respectively) in building up the
determinantal wave functions. Thus row 1 of Table 46-1
corresponds to the function y; given in Equation 44-1.

The column labeled m, has the same meaning as in the atomic
problem; namely, it is the sum of the z-components of the spin
angular momentum of the electrons (with the factor h/2x),
Just as in the atomic case, the wave functions which have different

1 In Section 30a the convention was adopted that the symbol ua(z) should

include the spin function «(f) or 8(i). In this section we shall not use the
convention, instead writing the spin function « or 8 explicitly each time.
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values of Zm, do not combine with one another, so that we were
justified in Section 44a in considering only ¢, and ;.

Problem 48-1. Set up tables similar to Table 46-1 for the hydrogen
molecule using the following choices of orbital functions: (a) 1s orbitals
on the two atoms, allowing only one electron in each. (b) The same
orhitals but allowing two electrons to occur in a single orbital also; 1.e.,
allowing ionic¢ functions. (¢) The same as (a) with the addition of func-
tions 2p, on each atom. (d) The molecular orbital (call it u) obtained by
the accurate treatment of the normal state of the hydrogen molecule-ion.

46a. Approximate Wave Functions for the System of Three
Hydrogen Atoms.—In the case of three hydrogen atoms we can
set up a similar table, restricting ourselves to the three ls funec-
tions s, w, and u. on threc atoms a, b, and ¢, respectively, and
neglecting ionic structures (Table 46-2).

TaBLE 46-2.—WavE FUuNCTIONS FOR THUE SYSTEM OF THREE HyDpROGEN

AtoMs
Function Us us Ue Zm,
I + + + +34
13 + + - +5
I + - + +34
v - + + +3
v + - - -4
VI - + - —14
VII - - + -4
VIII - - - —34

The wave function corresponding to row II of Table 46-2 is, for
illustration,

ua(1) a(l)  wy(l) a(l) u.(1) (1)
¥n = :/—3—'%(2) a(2) w(2) a(2) u(2) B(2)]. (46-1)
14a(3) @(3)  ws(3) a(3) u(3) B(3)

Each of the functions described in Table 46-2 is an approxi-
mate solution of the wave equation for three hydrogen atoms;
it is therefore reasonable to consider the sum of them with
undetermined coefficients as a linear variation function. The
determination of the coefficients and the energy values then
requires the solution of a secular equation (Sec. 26d) of eight
rows and columns, a typical element of which is

Hin — &uW (46-2)
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where

H, n = f‘//i'H‘/*ndT; (46"3)
and

At = f‘/’ft‘/‘udﬂ (46—4)

H being the complete Hamiltonian operator for the system.

Problem 46-2. Make a table similar to Table 46-2 but including all
ionic functions that can be made with the use of ua, us, and ue..

46b. Factoring the Secular Equation.—In the discussion of the
electronic structure of atoms (Sec. 30c¢) we found that the
secular equation could be factored to a considerable extent
because integrals involving wave functions having different
values of £m, or different values of Zm, (the.quantum numbers
of the components of spin and orbital angular momentum,
respectively) are zero. In the molecular case the orbital angular
momentum component is no longer a constant of the motion
(Sec. 52), so that only the spin quantum numbers are useful
in factoring the secular equation.

In the case of the system under discussion, we see from Table
46-2 that the secular equation factors into two linear factors

¥m, = 35 and —34) and two cubic factors (Zm, =15

and —14). On the basis of exactly the s$ame reasoning as used
in Section 30c¢ for the atomic case, we conclude that the roots of
the two linear factors will be equal to each other and also to
one of the roots of each of the cubic factors.® The four cor-
responding wave functions are therefore associated with a quartet
energy level, which on the vector picture corresponds to the
parallel orientation of the three spin vectors, the four states
differing only in the orientation of the resultant vector.

The two remaining cnergy levels will occur twice, once in
each of the cubic factors. Each of them is, therefore, a doublet
level. The straightforward way of obtaining their energy values
would be to solve the cubic equation; but this is unnecessary,
inasmuch as by taking the right linear combinations of 1I, III,
and IV it is possible to factor the cubic equation into a linear
factor and a quadratic factor, the linear factor yielding the
energy of the quartet level. Such combinations are

! These statements can easily be verified by direct comparison of the
roots obtained, using the expressions for the integrals given in Section 46¢.
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A= %(11 _ 1D, (46-5)

B = %(111 — IV, (46-6)

C = —\—/Li(IV — 1), (46-T)
and

D= \/Lg(u + III + 1IV). (46-8)

Since these four functions are constructed from only three linearly
independent functions II, III, and IV, they cannot be linearly
independent; in fact, it is seen that A + B+ C =0. The
factoring of the secular equation will be found to occur when it
is set up in terms of D and any two of the functions 4, B, and C.

The energy of the quartet level can be obtained from either of
the linear factors; it is given by the relation

ity
AII

The values of the energy of the two doublet levels are obtained
from the quadratic equation

Hus = BuaW Has — BusW | _
HBA - ABAW HBB - ABBW

(46-9)

0, (46-10)

in which

AAB = fA*BdT, (46—11)

Hu = [A *HBdr,}

Problem 468-8. Indicate how the secular equation for each of the cases
of Problem 46-1 will factor by drawing a square with rows and columns
labeled by the wave functions which enter the secular equation, and indi-
cating by zeros in the proper places in the square the vanishing matrix
elements.

46¢c. Reduction of Integrals.—Before discussing the conclusions
which can be drawn from these equations, let us reduce somewhat
further the integrals Hy u;, etc. The wave function II can be
written in the form (Sec. 30a)

b = g S (I PLDau@e@u@5E), (1612
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in which P represents a permutation of the functions u.e, etc.,
among the electrons. A typical integral can thus be expressed
in the form

Hum = 3, ) S(=1r+ f Pu2(a(l)ud(2)a(2u*(3)8@3)H
I d

Pl
Pu,()e(1)up(2)8(2)u.(3)a(3)dr. (46-13)
Following exactly the argument of Section 30d for the atomic
case, we can reduce this to the form

Hym = 3 (—1)7[ud(1)a(1)u(2)a(2)ul(3)8(3) HPud(1)al)
P
up(2)B(2)uc(3)a(d)dr. (46-14)

As in the atomic case, the integral vanishes unless the spins
match, and there can be no permutation P which matches the
spins unless ZIm, is the same for II and III. In this case we
see that the spins are matched for the permutations P which
permute 123 into 132 or 231 so that only these terms contribute
to thesum. Wlen the spins match in an integral, the integration
over the spin can be carried out at once, yielding the factor
unity. We thus have the result

Jur (1) a(1) w'(2) a(2) v} (3) BQ) Hua(1) a(1) uy(3) B(3) u.(2) «(2)
dr = [ul(1) u(2) u}(3) Hua(1) uc(2) us(3) dr = (abc|H|ach),
(46-15)

in which we have introduced a convenient abbreviation,
(abc|H|ach).
In this way we obtain the following expressions:

Hyy = (abc|H|abc) — (abc|H|bac) — (abe|H|ach)
— (abe|H|cba) + (abe|H bea) + (abe|H|cab),
Hux = (abc|H|abc) — (abc|H |bac),
Hiu 1w = (abc|H|abe) — (abe|H |cba),
Hiw = (abc|H|abc) — (abc|H|ach), (46-16)
Hn m = (abc[H[cab) - (abc[H[acb),
H;u v = (abc]chab) - (abclHIbac),
How = (abclH]bca) - (abclchba)

The expressions for the A’s are the same with H replaced by
unity. The integral (abc|H|abc) is frequently called the Coulomb
tntegral, because it involves the Coulomb interaction of two



372 THE STRUCTURE OF COMPLEX MOLECULES (XIII-46d

distributions of electricity determined by u,, us, and u.. The
other integrals such as (abc|H|bac) are called exchange integrals.
If only one pair of orbitals has been permuted, the integral is
called a single exchange integral; if more than one, a mulliple
exchange integral. If the orbital functions u,, us, and u, were
mutually orthogonal, many of these integrals would vanish, but
it is seldom convenient to utilize orthogonal orbital functions in
molecular calculations. Nevertheless, the deviation from orthog-
onality may not be great, in which case many of the integrals
can be neglected.

46d. Limiting Cases for the System of Three Hydrogen Atoms.
The values of the integrals Hy i, ete., depend on the distances
between the atoms a, b, and ¢, and thercfore the energy values
and wave functions will also depend on these distances. It is
interesting to consider the limiting case in which a is a large dis-
tance from b and ¢, which are close together. It is clear that the
wave function u, will not overlap appreciably with either u, or
U, so that the products u,u, and u,u. will be essentially zero for
all values of the coordinates. Such integrals as (abc/H|bac)
will therefore be practically zero, and we can write

Hun = Hum = (abc[H{abc),
Huw = Huw = 0,
Hyy v (abclH!abc) - (abc]H}acb),

and
Hn i = - (abcIHlacb),

thus obtaining the further relations,
H 4 = (abc|H|abc) + (abc|H|ach),

Hss = (abc|H|abc) — 14 (abc|H|ach),
and
H,s = —Y4(abe|H|abc) — 14 (abc|H|ach).

If we insert these values into the secular equation 46-10 we obtain
as one of the roots the energy value
W — HAA

- b
Aug

(46-17)

and we find that the corresponding wave function is just the
function A itself.

It is found on calculation that exchange integrals involving
orbitals on different atoms are usually negative in sign. In
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case that such an integral occurs in the energy expression with a
positive coefficient, it will contribute to stabilizing the molecule
by attracting the atoms toward one another. Thus the expres-
sion for H,, includes the Coulomb integral (abc|H|abc) and the
exchange integral (abc|H|ach) with positive cocfficient. Hence
atoms b and ¢ will attract one another, in the way corresponding
to the formation of an electron-pair bond between them (exactly
as in the hydrogen molecule alone). Similarly the function B
represents the structure in which atoms a and ¢ are bonded, and
C that in which a and b are bonded.

When we bring the three atoms closer together, so that all the
interactions are important, none of these functions alone is the
correct combination; they must be combined to give a wave
function which rcpresents the state of the system. Therefore
when three hydrogen atoms are near together, it is not strictly
correct to say that a certain two of them are bonded, while the
third is not.

We can, however, make some statements regarding the
interaction of a hydrogen molecule and a hydrogen atom on the
basis of the foregoing considerations. We have seen that when
atom a is far removed from atoms b and ¢ (which form a normal
hydrogen molecule), the wave function for the system is function
A. As a approaches b and ¢ the wave function will not differ
much from 4, so long as the ab and ac distances are considerably
larger than the be distance. An approximate value for the
interaction energy will thus be H ,4/A44, with

Hus = Y5(Huu + Huue — 2Hum)
(abc|H|abe) + (abc|H|acb)
—14(abe|H|bac) — 14(abc|H|cba) — (abc|H|cab),

and a similar expression for As.. It is found by calculation that
in general the single exchange integrals become important at
distances at which the Coulomb integral and the orthogonality
integral have not begun to change appreciably, and at which
the multiple exchange integrals [(abc|H |cab) in this case] are still
negligible. Thus we see that the interaction energy of a hydro-
gen atom and a hydrogen molecule at large distances is

—14(abc|H|bac) — 14(abclH|cba).

Each of these terms corresponds to repulsion, showing that the
molecule will repel the atom.
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Approximate discussions of the interaction of a hydrogen atom
and hydrogen molecule have been giver by Eyring and Polanyi,!
and a more accurate treatment for some configurations has been
carried out by Coolidge and James.?

46e. Generalization of the Method of Valence-bond Wave
Functions.—The proccdure which we have described above for
discussing the interaction of three hydrogen atoms can be
generalized to provide an analogous treatment of a system con-
sisting of many atoms. Many investigators have contributed to
the attack on the problem of the electronic structure of complex
molecules, and several methods of approximate treatment have
been devised. In this section we shall outline a method of treat-
ment (due in large part to Slater) which may be called the
method of valence-bond wave functions, without giving proofs of
the pertinent theorems. The method is essentially the same as
that used above for the three-hydrogen-atom problem.

Let us now restrict our discussion to the singlet states of
molecules with spin degeneracy only. For a system involving
2n electrons and 2n stable orbitals (such as the 1s orbitals in 2n
hydrogen atoms), there are (2n)!/2"n! different ways in which
valence bonds can be drawn between the orbitals in pairs. Thus
for the case of four orbitals a, b, ¢, and d the bonds can be drawn
in three ways, namely,

a b a b a b
A4
N
d—-——c d c d ¢
A B ‘ C
(2n)!

There are, however, only independent singlet wave

al(n + 1)1
functions which can be constructed from the 2n orbitals with
one electron assigned to each orbital (that is, with neglect of
ionic structures). It was shown by Slater that wave funections
can be set up representing structures 4, B, and C, and that only
two of them are independent. The situation is very closely
analogous to that described in Section 46b.

'H. Evrine and M. Poranyi, Naturwissenschaften, 18, 914 (1930);
Z. f. phys. Chem. B12, 279 (1931).
3 A. 8. CooLipGE and H. M. JamEs, J. Chem. Phys., 2, 811 (1934).
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The very important observation was made by Rumer® that
if the orbitals @, b, etc. are arranged in a ring or other closed
concave curve (which need have no relation to the nuclear con-
figuration of the molecule), and lines are drawn between orbitals
bonded together (the lines remaining within the closed curve),
the structures represented by diagrams in which no lines intersect
are independent. These structures are said to form a canonical
set. Thus in the above example the canonical set (correspond-
ing to the order a, b, ¢, d) comprises structures 4 and B. For
six orbitals there are five independent structures, as shown
in Figure 46-1.

DRI

0 ™~

s QP

1

F1g. 46-1.—The five canonical valence-bond structures for six orbitals, and
gome of their superposition patterns.

The wave function corresponding to the structure in which
orbitals ¢ and b, ¢ and d, cte. are bonded is

WZ( 1>RR[{(2),W2< 1?

Pa(1) B(1) b(2) a(2) ¢(3) B(3) d(4) a(4) - - - ], (46-18}

in which P is the permutation operator described above (Sec.
46¢), and R is the operation of interchanging the spin functions
a and B of bonded orbitals, such as a and b. The factor (—1)%
equals 41 for an even number of interchanges and —1 for an
odd number. The convention is adopted of mltlally assigning
the spin function g8 to orbital a, « to b, etc.

! G. RuMER, Géttinger Nachr., p. 377, 1932.
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A simple method has been developed! of calculating the coeffi-
cients of the Coulomb and exchange integrals in setting up the
secular equation. To find the coefficient of the Coulomb
integral for two structures, superimpose the two bond diagrams,
as shown in Figure 46-1. The superposition pattern consists
of closed polygons or islands, each formed by an even number of
bonds. The coefficient of the Coulomb integral is 4% where
7 is the number of islands in the superposition diagram. Thus

we obtain Hiy = Q + - -+, Hiu = 14Q + - - -, ete., in which
Q represents the Coulomb integral (abed - - - [H|abed - - - ).
The coeflicient of a single exchange integral such as
(ab) = (abed - - - |H|bacd -+ - )

is equal to f/27% in which f has the value — 14 if the two orbitals
involved (a and b) are in different islands of the superposition
pattern; 41 if they are in the same island and separated by an
odd number of bonds (along either direction around the polygon);
and —2 if they are in the same island and separated by an even
number of bonds. Thus we see that

H”=Q—%(ac)+(ab)+---,H“,=Q—2(ac)+(ab)+
- -, ete.

Let us now discuss the energy integral for a particular valence-
bond wave function, in order to justify our correlation of valence-
bond distribution and wave function as given in Equation 46-18.
The superposition pattern for a structure with itself, as shown
by IT in Figure 46-1, consists of n islands, each consisting of
two bonded orbitals. We see that

_Hir 1 single exchange integrals for bonded)
Wi = A A—u{Q + 2( pairs of orbitals

1 62 single exchange integrals for non-bonded
4 pairs of orbitals

+ higher exchange integrals}. (46-19)

It is found by calculation that the single exchange integrals
are as a rule somewhat larger in magnitude than the other
integrals. Moreover, the single exchange integral for two orbitals

'L. Pavring, J. Chem. Phys. 1, 280 (1933). See also H. Eyring and
G. E. Kimball, J. Ckem. Phys. 1, 239 (1933), for another procedure.
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on different atoms is usually negative in value for the interatomic
distances occurring in molecules, changing with interatomic
distance in the way given by a Morse curve (Sec. 35d). Those
single exchange integrals which occur with the coefficient 41 in
Equation 46-19 consequently lead to attraction of the atoms
involved in the exchange, and the other single exchange integrals
(with coefficient —14) lead to repulsion; in other words, the
wave function corresponds to attraction of bonded atoms and
repulsion of non-bonded atoms and is hence a satisfactory wave
function to represent the valence-bond structure under discussion,

The valence-bond method has been applied to many problems,
some of which are mentioned in the following section. It has
been found possible to discuss many of the properties of the
chemical bond by approximate wave-mechanical methods; an
cspecially interesting application has been made in the treatment
of the mutual orientation of directed valence bonds,! leading to
the explanation of such properties as the tetrahedral orientation
and the equivalence of the four carbon valences.

46f. Resonance among Two or More Valence-bond Struc-
tures.—It is found that for many molecules a single wave function
of the type given in Equation 46-18 is a good approximation to
the correct wave function for the normal state of the system;
that is, it corresponds closely to the lowest root of the secular
equation for the spin-degeneracy problem. To each of these
molecules we attribute a single valence-bond structure, or
electronic structure of the type introduced by G. N. Lewis, with
two electrons shared between two bonded atoms, as representing
satisfactorily the properties of the molecule.

In certain cases, however, it is evident from symmetry or other
considerations that more than one valence-bond wave function is
important. For example, for six equivalent atoms arranged at
the corners of a regular hexagon the two structures I and II of
Figure 46-1 are equivalent and must contribute equally to the
wave function representing the normal state of the system.
It can be shown that, as an approximation, the benzene molecule
can be treated as a six-electron system. Of the total of 30 valence
electrons of the carbon and hydrogen atoms, 24 can be considered

L J, C. SLATER, Phys. Rev. 8T, 481 (1931); L. PauLING, J. Am. Chem. Soc. b3,
1367 (1931); J. H. VAN V0LECK, J. Chem. Phys. 1,177 (1933); R. HULTGREN,
Phys. Rev. 40, 891 (1932).
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to be involved in the formation of single bonds between adjacent
atoms, giving the structure

H
l

H C H
\C/ \C/
& ¢
1 N\ “H

I
H

These single bonds use the 1s orbital for each of the hydrogen
atoms and three of the L orbitals for each carbon atom. There
remain six L orbitals for the carbon atoms and six electrons, which
can be represented by five independent wave functions corre-
sponding to the five structures of Figure 46-1. We see that
struetures I and II are the Kekulé structures, with three double
bonds between adjacent atoms, whereas the other structures
involve only two double bonds between adjacent atoms. If,
as an approximation, we consider only the Kekulé structures,
we obtain as the secular equation
III['_‘AIIW HIII—AIIIW
HIH — AIIIW HIIII - AIIIIW

in which also Hu u = H:I and Ann = Arr.
The solutions of this are

= (),

Hy; + Hiu
W:———-———-
Arr + Ao
and
Hi: — Hin
W = —
Atr — At

the corresponding wave functions being ¥1 + Yu and Y1 — Y.
Thus the normal state of the system is more stable than would
correspond to either structure I or structure II. In agreement
with the discussion of Section 41, this energy difference is called
the energy of resonance between the structures I and II.

As a simple example let us discuss the system of four equivalent
univalent atoms arranged at the corners of a square. The two
structures of a canonical set are
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b a b
and '

c d c
I 11

a

If we neglect all exchange integrals of H except the single
exchange integrals between adjacent atoms, which we call
ala = (ab) = (bc) = (¢d) = (da)], and all exchange integrals
occurring in A, the secular equation is found by the rules of
Section 46e to be

Q+a—W 14Q + 2 — W
15Q + 2a - LBW Q+ta—-W
The solutions of this are W = @ 4+ 2« and W = @ — 2a, of
which the former represents the normal state, o being negative
insign. The energy for a single structure (Ior II) is W; = Q@ + «;
hence the resonance between the two structures stabilizes the
system by the amount a.

Extensive approximate calculations of resonance energies for
molecules, especially the aromatic carbon compounds, have
been made, and explanations of several previously puzzling
phenomena have been developed.! Empirical evidence has
also been advanced to show the existence of resonance among
several valence-bond structures in many simple and complex
molecules.?

It must be emphasized, as was done in Section 41, that the use
of the term resonance implies that a certain type of approximate
treatment is being used. In this case the treatment is based
on the valence-bond wave functions described above, a procedure
which is closely related to the systematization of molecule
formation developed by chemists over a long period of years,
and the introduction of the conception of resonance has per-
mitted the valence-bond picture to be extended to include

= 0.

1E. HickgL, Z. f. Phys. 70, 204 (1931), etc.; L. PavLing and G. W.
WHELAND, J. Chem. Phys. 1, 362 (1933); L. PavriNg and J. SHERMAN, tbid.
1, 679 (1933); J. SHERMAN, tbid. 2, 488 (1934); W. G. PENNEY, Proc. Roy.
Soc. A1486, 223 (1934); G. W. WutLanD, J. Chem. Phys. 8, 230 (1935).

*L. PauLiNG, J. Am. Chem. Soc. 54, 3570 (1932); Proc. Nat. Acad. Sci.
18, 293 (1932); L. PavLing and J. SHERMAN, J. Chem. Phys. 1, 606 (1933);
G. W. WHELAND, ibid, 1, 731 (1933); L. O. Brockway and L. PavLINg,
Proc. Nat. Acad. Sct. 19, 860 (1933).
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previously anomalous cases. A further discussion of this point
is given in the following section.

Problem 46-4. Set up the problem of resonance between three equivalent
structures or functions ¢1, ¥u1, ¥ni, assuming that Hy1 = Hun = Hun m,
etc. Solve for the energy levels and correct combinations, putting Ay = 1
and A1 1 = 0.

Problem 46-5. Evaluate the energy of a benzene molecule, considered
as & six-electron problem: (a) considering only one Kekulé structure;
(b) considering both Kekulé structures; (c) considering all five structures.
Neglect all exchange integrals of H excépt

(ad) = (bc) = (cd) = (de) = (¢f) = (fa) = a,

and all exchange integrals entering in A.

46g. The Meaning of Chemical Valence Formulas.—The
structural formulas of the organic chemist have been determined
over a long period of years as a shorthand notation which
describes the behavior of the compound in various reactions,
indicates the number of isomers, etc. It is only recently that
physical methods have shown directly that they are also fre-
quently valid as rather accurate representations of the spatial
arrangement of the atoms. The electronic theory of valence
attempted to burden them with the additional significance of
maps of the positions of the valence electrons. With the advent
of quantum mechanics, we know that it is not possible to locate
the electrons at definite points in the molecule or even to specify
the paths on which they move. However, the positions of maxi-
mum electron density can be calculated, and, as shown in Figure
42-4, the formation of a bond does tend to increase the electron
density in the region between the bonded atoms, which therefore
provides a revised interpretation of the old concept that the
valence electrons occupy positions between the atoms.

The discussion of Section 46e shows that, at least in certain
cases, the valence-bond picture can be correlated with an approxi-
mate solution of the wave-mechanical problem. This correla-
tion, however, is not exact in polyatomic molecules because
functions corresponding to other ways of drawing the valence
bonds also enter, although usually to a lesser extent.

Thus the valence picture may be said to have a definite signifi-
cance in terms of wave mechanics in those cases in which one
valence-bond wave function is considerably more important than
the others, but where this is not true the significance of the
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structural formulas is less definite. Such less definite cases are
those which can be described in terms of resonance. It is notable
that the deficiency of the single structural formula in such cases
has long been recognized by the organic chemist, who found that
no single formula was capable of describing the reactions and
isomers of such a substance as benzene. In a sense, the use of
the term resonance is an effort to extend the usefulness of the
valence picture, which otherwise is found to be an. imperfect
way of describing the state of many molecules.

46h. The Method of Molecular Orbitals.—Another method of
approximate treatment of the electronic structure of molecules,
called the method of molecular orbitals, has been developed and
extensively applied, especially by Hund, Mulliken, and Hiickel.!
This method, as usually carried out, consists in the approximate
determination of the wave functions (molecular orbitals) and the
associated energy values for one electron in a potential field corre-
sponding to the molecule. The energy of the entire molecule is
then considered to be the sum of the energies of all the electrons,
distributed among the more stable molecular orbitals with no
more than two electrons per orbital (Pauli’s principle). A
refinement of this method has been discussed in Section 43b in
connection with the hydrogen molecule.

As an example let us consider the system of four equivalent
univalent atoms at the corners of a square, discussed in the
previous section by the valence-bond method. The secular
equation for a one-electron wave function (molecular orbital),
expressed as a_linear combination of the four atomic orbitals
Uay Upy Uy AN Uy, is

q— W 8 0 B8
B 9w 8 0 1.0
0 B8 q—- W 8 ’
g 0 B q—- W

in which ¢ is the Coulomb integral fuq(1) H'u,(1) dr and g is the
exchange integral [u.(1) H'us(1) dr for adjacent atoms, H' being
the Hamiltonian operator corresponding to the molecular

' F. Hownp, Z. f. Phys. 18, 1, 565 (1931-1932); R. S. MULLIREN, J. Chem.
Phys. 1, 492 (1933); etc.; J. E. LENNARD-JoNES. Trans. Faradey Soc. 36,
668 (1929); E. HUckew, Z. f. Phys. T2, 310 (1931); 76, 628 (1932); 88, 632
(1933); Trans. Faraday Soc. 30, 40 (1934).
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potential function assumed. We neglect all other integrals.
The roots of this equation are

W1=Q+2B’
W2=Q!
Wi =g,
W4=q—26

Since 8 is negative, the two lowest roots are W, and W, (or W),
and the total energy for four electrons in the normal state is

W = 2W, + 2W, = 4q + 48.

If there were no interaction between atoms a, b and ¢, d
(corresponding to bond formation allowed only between a and b
and between ¢ and d), the energy for four electrons would still
be 4¢ + 48. Accordingly in this example the method of molecu-
lar orbitals leads to zero resonance energy. This is in poor
agreement with the valenee-bond method, which gave the
resonance energy «. In most cases, however, it is found that
the results of the two methods are in reasonably good agrecement,
provided that 8 be given a value equal to about 0.6 « (for aromatic
compounds). A eomparison of the two methods of treatment
has been made by Wheland.! It is found that the valence-bond
method, when it can be applied, seems to be somewhat more
reliable than the molecular-orbital method. On the other hand,
the latter method is the more simple one, and can be applied to
problems which are too difficult for treatment by the valence-
bond method.

Problem 46-6. Treat the system of Problem 46-5 by the molecular-
orbital method. Note that the resonance energy given by the two methods
is the same if 8 = 0.553 « (using part ¢ of Problem 46-5).

1 G. W. WHELAND, J. Chem. Phys. 2, 474 (1934).



CHAPTER XIV

MISCELLANEOUS APPLICATIONS OF QUANTUM
MECHANICS

In the following three sections we shall discuss four applications
of quantum mechanics to miscellaneous problems, selected from
the very large number of applications which have been made.
These are: the van der Waals attraction between molecules
(Sec. 47), the symmetry propertics of molecular wave functions
(Sec. 48), statistical quantum mechanics, including the theory
of the dielectric constant of a diatomic dipole gas (Sec. 49),
and the energy of activation of chemical reactions (Sec. 50).
With reluctance we omit mention of many other important
applications, such as to the theories of the radioactive decomposi-
tion of nuclei, the structure of metals, the diffraction of electrons
by gas molecules and crystals, electrode reactions in electrolysis,
and heterogeneous catalysis.

47. VAN DER WAALS FORCES

The first detailed treatments of the wecak forces between
atoms and molecules known as van der Waals forces (which are
responsible for the constant a of the van der Waals equation of
state) were based upon the idea that these forces result from the
polarization of one molecule in the field of a permanent dipole
moment or quadrupole moment of another molecule,! or from
the interaction of the permanent dipole or quadrupole moments
themselves.2 With the development of the quantum mechanics
it has been recognized (cspecially by London?) that for most
molecules these interactions are small compared with another
interaction, namely, that corresponding to the polarization of
one molecule in the rapidly changing field due to the irstan-

1 P, DesyE, Phys. Z. 21, 178 (1920); 22, 302 (1921).
* W. H. KeesoM, Proc. Acad. Sci. Amsterdam 18, 636 (1915); Phys. Z. 22,
129, 643 (1921).
3 F. London, Z. f. Phys. 88, 245 (1930).
383
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taneous configuration of electrons and nuclei of another mole-
cule; that is, in the main the polarization of one molecule by the
time-varying dipole moment of another. In the following sec
tions we shall discuss the approximate evaluation of the energy
of this interaction by variation and perturbation methods for
hydrogen atoms (Sec. 47a) and helium atoms (Sec. 47b), and then
briefly mention the approximate semiempirical discussion for
molecules in general (Sec. 47¢).

47a. Van der Waals Forces for Hydrogen Atoms.—For large
values of the internuclear distance 45 = R the exchange phenom-
enon is unimportant, and we can take as the unperturbed wave
function for a system of two hydrogen atoms the simple product
of two hydrogenlike 1s wave functions,

Y0 = uya(l) uLs(2). 47-1)

The perturbation for this function consists of the potential
energy terms

H=_-2_c,2.° (47-2)

Now this expression can be expanded in a Taylor’s series in
inverse powers of B = r.5, to give (with the two atoms located
on the z axis)

2 2
H' = I%;(lez + Yy — 22122) + g%
+ (21?11?2 + 2y1yz - 32122)(21 —_ Zg)}
3 e?
4R’
+ 2(1:11?2 + YiY2 + 42122)2} + oty (47“3)

{rize — riz

{r¥r? — briz? — briz? — 152223

in which z1, y1, 21 are coordinates of the first electron relative to
its nucleus, and z3, ys, 2, are coordinates of the second electron
relative to its nucleus. The first term represents the interaction
of the dipole moments of the two atoms, the second the dipole-
quadrupole interaction, the third the quadrupole-quadrupole
interaction, and so on.

Let us first consider only the dipole-dipole interaction, using
the approximate second-order perturbation treatment! of Section

1 The first-order perturbation energy is zero, as can be seen from inspec-~
tion of the perturbation function.
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27e. It is necessary for us to evaluate the integral

JYO*(H)Wodr,
with H' given by

2
H = %3(1211?2 + iy — 22122)- (47—4)

It is seen that the cross-products in (H’)? vanish on integration,
8o that we obtain

4
(H' oo = 7 f V@i + Yl + 42D edr
or
2¢t
(H, 2)00 = 3R6fll/0*r ll/odT = WTZ 72 (47_5)
This expression, with 7? and 72 replaced by their value 3a2 (Sec.
21¢), gives, when introduced in Equation 2747 together with

W = —e?/a,, the value for the interaction energy
2
- _6‘;3 o, (47-6)

The fact that this value is also given by the variation method
with the variation function y°(1 + AH’) shows that this is an
upper limit for WY (a lower limit for the coefficient of —e2a8/R*).
Moreover, by an argument similar to that of the next to the
last paragraph of Section 27¢ it can be shown that the value

8F is a lower limit to WY, so that we have thus determined
the value of the dipole-dipole interaction to within about 15
per cent.

Variation treatments of this problem have been given by Slater
and Kirkwood,! Hassé,® and Pauling and Beach.®? It can be
easily shown* that the second-order perturbation energy can
be obtained by the use of a variation function of the form

¥ =1 + H'f(ry, 1)},
with H' given by Equation 47—4. The results of the variation

1J. C. SuaTER and J. G. KiIREwoop, Phys. Rev. 8T, 682 (1931).

3 H. R. Hassg, Proc. Cambridge Phil. Soc. 37,66 (1931). Aroughtreatment
for various states has been given by J. Podolanski, Ann. d. Phys. 10, 695
(1931).

3 L. Pavring and J. Y. BeacH, Phys. Rev. 47T, 686 (1935).

4 This was first shown by Slater and Kirkwood.
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treatment for different functions f(ry, r2) are given in Table 47-1.
It is seen that the coefficient of —e%a3/R® approaches a value!
only slightly larger than 6.499; this can be accepted as very close
to the correct value.

So far we have considered only dipole-dipole interactions.
Margenau?® has applied the approximate second-order perturba-
tion method of Section 27¢ to the three terms of Equation 47-3,
obtaining the expression

y 6e2ad  135¢%a]  1416e%a?
0 %"‘“—‘RGO—_RT“O_“ 110"9+ co (477

It is scen that the higher-order terms become important at small
distances.

TABLE 47-1.—VARIATION TREATMENT OF VAN DER WAALS INTERACTION
oF Two HYproGEN ATOMS

a2
Variation function w4 (1) ulm(Z){I + -I;—a(xlxz + vy — 2zi22)f (74, Tz)}‘

Sy r2) E — W Reference*
LA —6.00¢%3/ R H
2. —Yrir/y ). —6 14 SK
3. A+Bri+r). .. —6 462 PB
4. A+ Bruoe. ... L —6 469 H
5 A+ B(ri + 1) +Criry. . —6 482 PB
6. Aril(v =0325). ... . | —G 49 SK
7. A4+ Brirs + C 142 ... | —6 490 H
8. A+ Briry +Ci¥yl 4 Drind —6 498 3§
9. Polynomialt to 752 .. . —6 4984 PB
10. Polynomial to rirj ...... ... —6.49899 PB
11. Polynonial to riry.. .. .. —6.49903 PB

* H = Hassé, SK = Slater and Kirkwood, PB = Pauling and Beach.
t The polynomial contains all terins of degree 2 or less 1n r1 and 2 or less in ra.

! A straightforward but approximate application of second-order perturba-
tion theory by R. Eisenschitz and F. London gave the value 6.47 for this
coefficient [Z. f. Phys. 60, 491 (1930)]. The first attack on this problem
was made by 8. C. Wang, Phys. Z. 28, 663 (1927). The value found by
him for the coefficient, 24345 = 8.68, must be in error (as first pointed oui
by Eisenschitz and London), being larger than the upper limit 8 given above.
The source of the error has been pointed out by Pauling and Beach, loc. cit.

2 H. MARGENAU, Phys. Rev. 88, 747 (1931). More accurate values of the
coefficients have been calculated by Pauling and Beach, loc. cit.



XIV-4Tc] VAN DER WAALS FORCES 387

4Tb. Van der Waals Forces for Helium.—In treating the
dipole-dipole interaction of two helium atoms, the expression for
H' consists of four terms like that of Equation 474, correspond-
ing to taking the electrons in pairs (each pair consisting of an
electron on one atom and one on the other atom). The variation
function has the form

v = w{l + SH. S, n)}.

Hassé! has considered five variation functions of this form,
shown with their results in Table 47-2. The success of his similar
treatment of the polarizability of helium (function 6 of Table
29-3) makes it probable that the value —1.413¢2a%/R% for W’
is not in error by more than a few per cent. Slater and Kirk-
wood! obtained values 1.13, 1.78, and 1.59 for the coefficient
of —e?ad/R® by the use of variation functions based on their
helium atom functions mentioned in Section 29¢. An approxi-
mate discussion of dipole-quadrupole and quadrupole-quadrupole
interactions has been given by Margenau.!

TABLE 47-2.-—VARIATION TREATMENT OF VAN DER WAALS INTERACTION OF
Two HeLiuM AToMs

A S(rirs) E —Ww°
1. e~2" A —1.079¢%%/R®
2. E'—Z" A + BTsz —1 225
3. g2 A + Briry + Crirl | —1.226
4. eZ*(1 + c1u) A —1.280
5. e Z*(1 + ciu) A + Brir, —1.413

47c. The Estimation of van der Waals Forces from Molecular
Polarizabilities.—London? has suggested a rough method of
estimating the van der Waals forces between two atoms or mole-
cules, based on the approximate second-order perturbation
treatment of Section 27e. We obtain by this treatment (see
Secs. 27¢ and 29¢) the expression

o 2n;222 (47-8)

1 Loc. cit.
t F. LoNDON, Z. f. Phys. 88, 245 (1930).
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for the polarizability of an atom or molecule, in which = is the
number of effective electrons, 2? the average value of 22 for these
electrons (¢ being the coordinate of the electron relative to
the nucleus in the field direction), and I the energy difference of
the normal state and the effective zero point for energy, about
equal in value to the first ionization energy. The van der Waals
interaction energy may be similarly written as

W' = — 6n,4n5842242_§’
RY(L4 + Is)

which becomes on introduction of a4 and as

(47-9)

or, in case the molecules are identical,
_3ai
4 RS
With « in units 10=2* cm? and 7 in volt electrons, this is

De?al
~Rv

w” = (47-11)

WII =

in which
D = 1.27a2].

It must be realized that this is only a very rough approximation.
For hydrogen atoms it yiclds D = 7.65 (correct value 6.50) and
for helium 1.31 (correct value about 1.4).

For the further discussion of the validity of London’s relation
between van der Waals forces and polarizabilities, and of other
applications of the relation, such as to the heats of sublimation
of molecular crystals and the unactivated adsorption of gases by
solids, the reader is referred to the original papers.!

48. THE SYMMETRY PROPERTIES OF MOLECULAR WAVE
FUNCTIONS

In this section we shall discuss the symmetry properties of
molecular wave functions to the extent necessary for an under-
' F. Lonpon, loc. cit.; F. Lonpon and M. Poranyr, Z. f. phys. Chem. 11B,

222 (1930); M. Porany1, Trans. Faraday Soc. 28, 316 (1932); J. E. LENNARD-
JonEs, ibid. 28, 333 (1932).
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standing of the meaning and significance of the term symbols
used for diatomic molecules by the spectroscopist.

In Section 34 it was mentioned that the nuclear and electronic
parts of an approximate wave function for a molecule can be
separated by referring the electronic coordinates to axes deter-
mined by the nuclear configuration. Let us now discuss this
choice of coordinates for a diatomic molecule in greater detail.
We first introduce the Cartesian coordinates X, Y, Z of the center
of mass of the two nuclei relative to axes fixed in space, and the
polar coordinates r, 4, ¢ of nucleus A4 relative to a point midway
between nucleus 4 and nucleus B as origin,! also referred to axes

?

Fic. 48-1.—The relation between axes £, 9, { and X, ¥, Z.

fixed in space, as indicated in Figure 48-1. We next introduce
the Cartesian coordinates £, 7:, {: or the polar coordinates
i, 84, @: of each of the electrons, measured with reference, not
to axes fixed in space, but instead to axes dependent on the
angular coordinates ¥ and ¢ determining the orientation of the
nuclear axis. These axes, £, 4, {, are chosen in the following way.
¢ is taken along the nuclear axis OA (Fig. 48-1), and £ lies in the
XY plane, its sense being such that the Z axis lies between the
n and { axes (£, n, { forming a left-handed system, say). It is,
moreover, often convenient to refer the azimuthal angles of all
electrons but one to the azimuthal angle of this electron, using
the coordinates ¢i, ¢2 — @1, ¢3 — @1, * * * in place of ¢1, @2
Ps - '

1Tt is convenient in this section to use these coordinates, which differ
slightly from those adopted in Chapter X.
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It has been shown! that these coordinates can be introduced
in the wave equation, and that the wave functions then assume
a simple form. We have discussed the wave function for the
nuclear motions in detail in Chapter X. The only part of the
electronic wave function which can be written down at once is
that dependent on ¢;. Inasmuch as the potential energy of the
system is independent of ¢, (as a result of our subterfuge of
measuring the ¢’s of the other electrons relative to ¢,), ¢; is a
cyclic coordinate, and occurs in the wave function only in the
factor etie, in which A can assume the values 0, 1, 2, - - .
The quantum number A thus determines the magnitude of the
component of electronic orbital angular momentum along
the line joining the nuclei. [A is somewhat analogous to the
component M, of the resultant orbital angular momentum
(or azimuthal) quantum number L for atoms.] The value of A
is expressed by the principal character of a molecular term
symbol: Z denoting A = 0; I, A = +1; A, A = +2; etc. As
in the case of atomic terms, the multiplicity due to electron spin
is indicated by a superscript to the left, ' indicating a singlet,
22 a doublet, etc.

It may be mentioned that if we ignore the interactions of the
electronic and nuclear motions the wave functions corresponding
to A and —A correspond to identical energy values. This
degeneracy is removed by these interactions, however, which
lead to a small splitting of energy levels for A > 0, called A-type
doubling.? The correct wave functions are then the sum and
difference of those corresponding to A and —A.

In the following sections we shall discuss the characteristic
properties of diatomic molecules containing two identical nuclei
(symmetrical diatomic molecules).

48a. Even and Odd Electronic Wave Functions. Selection
Rules.—By the argument of Section 40e we have shown that the
transition probabilities for a diatomic molecule are determined
in the main by the electric-moment integrals over the electronic
parts of the wave functions, taken relative to the axes £, 9, ¢
determined by the positions of the nuclei. Let us now classify
the electronic wave functions of symmetrical diatomic molecules

'F. Honp, Z. f. Phys. 43, 93 (1927); R. pEL. Kronia, ibid. 48, 814; 50,
347 (1928); E. WionNER and E. E. WrruzR, ibid. 51, 859 (1928).
? See, for example, J. H. Van Vieck, Phys. Rev. 33, 467 (1929).
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as even or odd, introducing the subscripts g (German gerade)
for even terms and u (ungerade) for odd terms in the term symbols
for identification. This classification depends on the behavior
of the electronic wave function with respect to the transformation
£, my ti— —&, —mn;, —{i that is, on inversion through the
origin, even functions remaining unchanged by this operation,
and odd functions changing sign. The argument of Section 40g
leads to the following selection rule: Transitions are allowed
only belween even and odd levels (g — u, u — g).

(Although electronic wave functions for diatomic molecules
containing unlike nuclei cannot be rigorously classified as even
or odd, they often approach members of these classes rather
closely, and obey an approximate selection rule of the above
type.)

48b. The Nuclear Symmetry Character of the Electronic Wave
Function..—We are now in a position to discuss the nuclear
symmetry character of the electronic wave function for a diatomic
molecule in which the nuclei are identical. Interchanging the
two nuclei A and B converts ¢ into # — ¢ and ¢ into 7 + ¢;
these coordinates, however, do not oceur in the electronic wave
function. The interchange of the nuclei also converts the
coordinates &, 7, ¢ of each electron into —¢;, #;, — ¢, and hence
Ty, t’;, [N into Ty ™ — 1’.', T — @4 [OI' Qi Q1 into ""(go; - «91)].
In case that the electronic wave function is left unchanged by
this transformation, the electronic wave function is symmetric
in the nuclet; if the factor —1 is introduced by the transformation,
the electronic wave function is antisymmetric in the nuclet.

The nuclear symmetry character of the electronic wave func-
tion is represented in the term symbol by introducing the super-
script -+ or — after taking cognizance of the presence of the
subscript g or u discussed in Section 48, the combinations

+ - . . » . »
g and u representing electronic wave functions symmetric in

the nuclei, and g and % those antisymmetric in the nuclei. Thus
we see that

=} and = are S¥
and

2, and =} are 4¥.

For A 0 there is little need to represent the symmetry char-
acter in the term symbol, inasmuch as the S¥ and A¥ states
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occur in pairs corresponding to nearly the same energy value
(A-type doubling), and in consequence the + and — superseripts
are usually omitted.

The states with superscript + are called positive states, and
those with superscript — negative states.

The principal use of the nuclear symmetry character is in
determining the allowed values of the rotational quantum
number K of the molecule. The complete wave functions for a
molecule (including the nuclear-spin function) must be either
symmetric or antisymmetric in the nuclei, depending on the
nature of the nuclei involved. If the nuclei have no spins,
then the existent functions are of one or the other of the types
listed below.

I. Complete wave function S¥;

;, K evenﬂ%;, K even

I AK odd I AK odd

v K odd 2K &N 7 Kk odd
II. Complete wave function A¥:

0, K odd 2KV 0 K odd

IAK odd I AK odd

+ AK even -
u, K even«—————¢g, K even

It is seen that in either case the transitions allowed by the selec-
tion rule g « w are such that AK is even for 4+ — — or — — 4
transitions, and odd for + — 4+ or — — — transitions.

The selection rule AK = 0, 41 can be derived by the methods of
Chapter XI; this becomes AK = 0 for positive « negative transi-
tions, and AK = 1 for positive — positive or negative — nega-
tive transitions.

In case that the nuclei possess spins, with spin quantum
number I, both types of functions and transitions occur (the two
not forming combinations), with the relative weights (I 4+ 1)/I or
I/{I + 1), as discussed in Section 43f.
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Let us now consider a very simple example, in order to clarify
the question; namely, the case of a molecule possessing only one
electron, in the states represented by approximate wave functions
which can be built from the four orbitals ux = s, p., P, py about
nucleus A, and four similar ones us about nucleus B; s, p., p., p,
being real one-electron wave functions such as given in Table
21-4 for the L shell. We can combine these into eight functions
of the form s4 -+ s, s4 — sz, etc. If the functions are referred
to parallel axes for the two atoms and taken as in Table 21—4

¢

anW
1

7

(1)
\J ¥

F1a. 48-2.—DPositive and negative regions of wave functions s, p., p., and py
for atoms A and B.

except for a factor —1 for p,, (introduced for convenience),
then they have the general nature shown in Figure 48-2, in which
the functions u, + up are designated, the plus and minus signs
representing regions equivalent except for sign. From the
inspection of this figure and a similar one for us — 4, (in which
the signs are changed for uz), it is seen that the eight functions
have the following symmetry character in the nuclei:

Function 8 s Ps Py

ua + us S¥ SN A¥ SN
ua — up AN A¥ SV AN
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By the argument given above we know that four of these are
2 states, with A = 0, and four are II states. The II states are
those formed from p, and p, (which are the linear combinations
of the complex exponential functions p,, and p-;). The two
I states w4 + us are scparated widely by the exchange integrals
from the two u, — ug, and the A-type doubling will cause a
further small separation of the nuclear-symmetric and nuclear-
antisymmetric levels. The exchange terms similarly separate
the us + up s and p, functions from the w4 — ug functions. The
best approximate wave functions would then be certain linear
combinations of the two nuclear-symmetric functions and also
of the two nuclear-antisymmetric functions.

We can now write complete term symbols for the eight elec-
tronic wave functions of our simple example, as follows:

s p- Pz Py
ug +up 2ZFOIZE ALY ALY
Uy — Up 223_ 22: {ZH;_ 2H0—}

The identification as even or odd is easily made by inspection of
Figure 48-2. The two %I, terms (one S¥ and one A¥) are placed
in brackets to show that they form a A-type doublet, as are the
two 2II, terms.

48c. Summary of Results Regarding Symmetrical Diatomic
Molecules.—The various symmetry properties which we have
considered are the following:

1. Even and odd electronic functions, indicated by subsecripts
g and u (Sec. 48a). Selection rule: Transitions allowed only
between ¢ and w.

2. The nuclear symmetry of the complete wave function
(including rotation of the molecule but not nuclear spin). Selec-
tion rule: Symmetric-antisymmetric transitions not allowed.

3. The nuclear symmetry of the electronic wave function,

+ — —
represented by the superscripts + and —, g and » being 8¥; ¢

and ;, A%,  Selection rule: AK = 0 for positive-negative transi-
tions, and AK = +1 for positive-positive and negative-negative
transitions. (This is not independent of 1 and 2. In practice
1 and 3 are usually applied.)

We are now in a position to discuss the nature of the spectral
lines to be expected for a symmetrical diatomic molecule. We
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have not treated the spin moment vector of the electrons, which
combines with the angular momentum vectors A and X in various
ways to form resultants; the details of this can be found in the
treatises on molecular spectroscopy listed at the end of Chapter
X. Let us now for simplicity consider transitions among 'Z
states, assuming that the nuclei have no spins, and that the
existent complete wave functions are symmetric in the nuclei
(as for helium). The allowed rotational states are then those
with K even for 'Xf and !'Z, and those with K odd for 'Z;
and 2}, and the transitions allowed by 1 and 3 are the following:

I+ K =0 2 4
\ / \\ // etc.
132+ K = 1 3
1ZF K =0 2 4
I I I etc.
13- K=0 2 4
- K = 1 3
I I ete.
17+ K = 1 3
127 K = 1 3
/ \ / \ etc.
13- K=0 2 4

49. STATISTICAL QUANTUM MECHANICS. SYSTEMS IN
THERMODYNAMIC EQUILIBRIUM

The subject of statistical mechanics is a branch of mechanics
which has been found very useful in the discussion of the proper-
ties of complicated systems, such as a gas. In the following
sections we shall give a brief discussion of the fundamental
theorem of statistical quantum mechanics (Sec. 49a), its applica-
tion to a simple system (Sec. 49b), the Boltzmann distribution
law (Sec. 49¢), Fermi-Dirac and Bose-Einstein statistics (Sec.
49d), the rotational and vibrational energy of molecules (Sec. 49e),
and the diclectric constant of a diatomic dipole gas (Sec. 49f).
The discussion in these sections is mainly descriptive and
elementary ; we have made no effort to carry through the difficult
derivations or to enter into the refined arguments needed in 8
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thorough and detailed treatment of ‘the subject, but have
endeavored to present an understandable general survey.

49a. The Fundamental Theorem of Statistical Quantum
Mechanics.—Let us consider a large system with total energy
known to lie in the range W to W + AW. We inquire as to the
properties of this system. If we knew the wave function
representing the system, values of the dynamical quantities
corresponding to the properties of the system could be calculated
by the methods of Section 12d. In general, however, there will
be many stationary states of the system (especially if it be a very
complicated system, such as a sample of gas of measurable
volume) with energy values lying in the range W to W + AW,
and our knowledge of the state of the system may not allow us to
select one wave function alone as representing the system.
Moreover, it might be possible for us to find a set of approximate
wave functions for the system by ignoring weak interactions of
parts of the system with each other or of the system and its
environment; no one of these approximate wave functions
would represent the state of the system over any appreciable
period of time, and so we would not be justified in selecting any
one of them for use in calculating values of dynamical quantities.

Under these circumstances we might make calculations regard-
ing the properties of the system for each of the wave functions
with energy between W and AW, and then average the various
calculations to obtain predictions regarding the average expected
behavior of the system. The important question immediately
arises as to what weights are to be assigned the various wave
functions in carrying out this averaging. The answer to this
question is given by the fundamental theoremi of statistical
quantum mechanics, as follows: In calculating average values of
properties of a system with energy between W and AW, the same
weight 13 Lo be assigned to every accessible wave function with
energy in this range, in default of other information. (The wave
functions are of course to be normalized and mutually orthog-
onal.) This theorem can be derived from the equations of
quantum mechanics (by methods such as the variation of con-
stants, discussed in Chapter XI), with the aid of an additional
postulate,! which is the quantum-mechanical analogue of the

1 The postulate of randomness of phases. See, for example, W. Puuli,
‘‘Probleme der modernen Physik,” S. Hirzel, Leipzig, 1928.
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ergodic hypothesis of classical statistical mechanics. We shall
not discuss this derivation.

The word accesstble appears in the theorem for the following
reason. If a system is known to be in one state at a given
instant, and if it is known that it is impossible for any operative
perturbation to cause a transition to a certain other state, then
it is obviously wrong to include this latter state in the expression
for the average. We have already met such non-combining
states in our discussion of the symmetry of wave functions for
collections of identical particles (Secs. 29b, 30a). It was shown
that if the system is known to be represented by a wave function
symmetrical in all the identical particles composing it, no
perturbation can cause it to change over to a state with an
antisymmetrical wave function. The nature of the wave
functions which actually occur is dependent upon the nature of
the system. If it is composed of electrons or protons, the wave
functions must be antisymmetric; if it is composed of hydrogen
atoms, thought of as entities, the wave functions must be sym-
metric in these atoms; ctc. Moreover, we may sometimes have
to take the passage of time into consideration in interpreting
the word accessible. Let us consider as our system a helium
atom, for example, which is known at the time ¢ = 0 to be in some
excited singlet state, the wave function being symmetric in the
positions of the electrons and antisymmetric in their spins.
Transitions to triplet states can occur only as a result of perturba-
tions affecting the electron spins; and, since these perturbations
are very small, the probability of transition to all triplet states
in a short time will be very small. In predicting properties for
this system for a short period after the time ¢ = 0, we would
accordingly be justified in considering only the singlet states as
accessible.

49b. A Simple Application.—In order to illustrate the use of
the fundamental theorem of statistical quantum mechanics, we
shall discuss a very simple problem in detail.

Let us consider a system composed of five harmonic oscillators,
all with the same characteristic frequency », which are coupled
with one another by weak interactions. The set of product
wave functions ¥(a)¥(b)¥(c)¥(d)¥(e) can be used to construct
approximate wave functions for the system by the use of the
method of variation of constants (Chap. XI). Here ¥(a), - - -
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represent the harmonic oscillator wave functions (Sec. 11),
the letters a, b, ¢, d, e representing the coordinates of the five
oscillators. For each oscillator there is a set of functions ¥, (a)

corresponding to the values 0, 1, 2, - . . for the quantum
number n,. The total unperturbed energy of the system is
W= (na+ v+ -+ (n + kv = (n + 39)hy, in

which n = n, + np + n. + nqs + n..

The application of the variation-of-constants treatment shows
that if the system at one time is known to have a total energy
value close to W9, where n’ is a particular value of the quantum
number #n, then the wave function at later times can be expressed
essentially as a combination of the product wave functions for
n = n', the wave functions for n = n’ making a negligible
contribution provided that the mutual interactions of the oscilla-
‘tors are weak. Let us suppose that the system has an energy
value close to 1215A», that is, that n’ is equal to 10. The product
wave functions corresponding to this value of n’ are those
represented by the 1001 sets of values of the quantum numbers
Ng, » - - , N given in Table 49-1.

TaBLE 49-1.—SETs oF QuanTuM NUMBERS FOoR FivE CourLEp HarMoniIc
OsciLLaTors wWITH Torar Quantum Numser 10

Ng Np N Ng No Mg NMp Ne Ng N,

10.0.0.0.0ete.* (5) 6.2.1.1.0etc. (60)
9 .1.0.0.0 (20) 5.3.1.1.0 (60)
8 .2.0.0.0 (20) 5.2.2.1 0 (60)
7 .3.0.0.0 (20) 4 4.1.1.0 (30)
6 .4.0.0.0 (20) A4.3.2.1.0 (120
5 .5.0.0.0 (10) 4.2.2.2.0 (20)
8 .1.1.0:0 (30) 3.3.3.1.0 (20)
7 .2.1.0.0 (60) 3.3.2.2.0 (30)
6 .3.1.0.0 (60) 6.1.1.1.1 5)
6 .2.2.0.0 (30) 5.2.1.1 1 (20)
5 .4.1.0.0 (60) 4.3.1.1.1 (20)
5 .3.2.0.0 (60) 4.2 2.1.1 (30)
4 .4.2.0.0 (30) 3.3 2.1.1 (30)
4 .3.3.0.0 (30) 3.2.2.2.1 (20)
7 01.1.1.0 (20) 2 2.2 2.2 )

* The other sets indicated by *‘etc.”” are in thiscase 0. 10.0.0.0,0.0.10.0.0,
0.0.0.10.0, and 0 0 0.0.10, a total of five, as shown by the number in
parentheses.

In case that the interactions between the oscillators are of a
general nature (the ab, ac, be, - - - interactions being different),
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all of the product functions will be accessible, and the funda-
mental theorem then requires that over a long period of time the
1001 product functions will contribute equally to the wave
function of the system. In calculating the eontribution of
oscillator a, for example, to the properties of the system, we
would caleulate the properties of oscillator a in the states n, = 0

[using the wave function ¥o(a)],n, =1, - - + |, n, = 10, and then
04 r
03
| ;
Png 02
ol b °
1]
s
° ¢
L t ! 1 ) L L 1 I 9 [} o
e S N B e
Ng —>

Fi1a. 49-1.—The probability values P, for system-part a in a system of five

coupled harmonic oscillators with total quantum number n = 10 (closed circles),
and values calculated by the Boltzmann distribution law (open circles).

average them, using as weights the numbers of times that
n, = 0,1,2 - -« 10 oceur in Table 49-1. These weights are
given in Table 49-2. The numbers obtained by dividing by
the total (1001) can be deseribed as the probabilities that oscilla-
tor @ (or b, ¢, - - - ) be in the states n, =0, 1, 2, - - -, 10.
These probability values are represented graphically in Figure
49-1.

49c. The Boltzmann Distribution Law..—W¢ have been dis-
eussing a system composed of a small number (five) of weakly
interacting parts. A similar discussion (which we shall not
give because it is necessarily rather involved) of a system com-
posed of an extremely large number of weakly interacting parts
can be carried through, leading to a general expression for the
probability of distribution of any one of the parts among its
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TaBLR 49-2.—WEIGHTS FOR STATES OF INDIVIDUAL OSCILLATORS IN
CourLED SYSTEM

ns, ete. Weight | Probability P,.a

0 286 0.286

1 220 .220

2 165 .165

3 120 . 120

4 84 .084

5 56 .056

6 35 .035

7 20 .020

8 10 .010

9 4 .004

10 1 .00t
Total .. ... 1001 1.001

stationary states.! The result of the treatment is the Boltzmann
distribution law in its quantum-mechanical form:

If all the product wave functions ¥ (a)¥(b) - - - of a system
composed of a very large number of weakly interacting parts a,
b, . - . are accessible, then the probability of distribution of one
of the parts, say a, among its slales, represented by the quantum

number ng, 18 given by the equation
W,

P, = A¢ T, (49-1)

in which W.,_1s the energy of the part a in its various states and the
constant A has such a value as to make

3P, =1 (49-2)

There is considered to be one state for every independent wave
function ¥(a). The exponential factor, called the Boltzmann
exponential factor, is the same as in the classical Boltzmann
distribution law, which differs from Equation 49-1 only in the
way the state of the system part is described. The constant k&
is the Boltzmann constant, with the value 1.3709 X 10-!¢ erg
deg—!. The absolute temperature T occurring in Equation 49-1

1 That is, among the stationary states for this part of the system whep
isolated from the other parts.
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is introduced in the derivation of this equation by methods
closely similar to those of classical statistical mechanics.

Some indication of the reasonableness of this equation is given
by comparing it with the results of our discussion of the system of
five coupled harmonic oscillators. The open circles in Figure
49-1 represent values of P, calculated by Equation 49-1, with

kT placed equal to 34hv (this leading approximately to the average
value 34hv for W, , as assumed in the earlier discussion). It is
seen that there is general agreement, the discrepancies arising
from the fact that the number of parts of the system (five) is
small (rather than very large, as required in order that the
Boltzmann distribution law be applicable).

In Equation 49-1 each wave function is represented separately.
It is often convenient to group together all wave functions
corresponding to the same energy, and to write

W,

Pi = Ap.e T, (49-3)

in which p; is the degree of degeneracy or a prior: probability or
quantum weight of the energy level W,.

In case that the wave functions for the part of the system
under consideration are very numerous and correspond to energy
values lying very close together, it is convenient to rewrite the
distribution law in terms of P(W), such that P(W)dW is the
probability that the energy of the system part lie between W
and W + dW, in the form

P(W) = AP(W)[%: (49-4)

in which p(W)dW is the number of wave functions for the system
part in the energy range W to W + dW.

As an illustration of the use of Equation 494 let us consider
the distribution in translational energy of the molecules of a
gas (the entire gas being the system and the molecules the system
parts) such that all product wave functions are accessible.!
It is found (by the use of the results of Section 14, for example)
that p(W) is given by the equation

34
p(W) = 4——————‘/2-,’,':" Vign, (49-5)

1 We shall see in the next section that actual gases are not of this type.
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in which V is the volume of the box containing the gas and m
is the mass of a molecule. The Maxwell distribution law for
velocities is obtained by substituting this in Equation 494 and
replacing W by Y4mv?, v being the velocity of the molecule.

Problem 49-1. Derive Equation 49-5 with the use of the results of
Section 14. By equating W to the kinetic energy X4mv? (v being the
velocity), derive the Maxwell distribution law for velocities, and from it
calculate expressions for the mean velocity and root-mean-square velocity
of gas molecules.

It will be shown in the following section that the Boltzmann
distribution law is usually not strictly applicable in discussing
the translational motion of molecules.

49d. Fermi-Dirac and Bose-Einstein Statistics.—As stated in
the foregoing section, the Boltzmann distribution law is applicable
to the parts of a system for which all product wave functions are
accessible. The parts of such a system are said to conform to
Boltzmann statistics. Very often, however, we encounter systems
for which not all product wave functions are accessible. We
have scen before (Sec. 29, etc.) that the wave functions for a
system of identical particles can be grouped into non-combining
scts of different symmetry character, one set being completely
symmetric in the coordinates of the particles, one completely
antisymmetric, and the others of intermediate symmetry char-
acter. Only the wave functions of one symmetry character are
accessible to a given system of identical particles.

Thus our simple system of five harmonic oscillators would be
restricted to wave functions of one symmetry character if the
interactions ab, ac, bc, - - - were equivalent, that is, if the
oscillators were identical.! It was to avoid this that we made
the explicit assumption of non-equivalence of the interactions in
Section 49b. The accessible wave functions for five identical
oscillators would be the completely symmetric ones, the com-

1 In order for the oscillators to behave identically with respect to external
perturbations as well as mutual interactions they would have to occupy the
same position in space; that is, to oscillate about the same point. A
system such as a crystal is often treated approximately as a set of coupled
harmonic oscillators (the atoms oscillating about their equilibrium posi-
tions). The Boltzmann statistics would be used for this set of oscillators,
inasmuch as the interactions depend on the positions of the oscillators in
space in such a way as to make them non-identical.
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pletely antisymmetric ones, or those with the various inter-
mediate symmetry characters. [t is only the two extreme types
which have been observed in nature. There are 30 completely
symmetric wave functions for n = 10; they are formed from the
successive sets in Table 49-1 by addition, the first being

%{(10.0.0.0.0) + (0.10.0.0.0) 4+ (0.0.10.0.0) + (0.0.0.10.0) +

(0.0.0.0.10)}

and the last being (2.2.2.2.2). From these we can obtain
weights for the successive values, similar to those given in
Table 49-2; these weights will not be identical with those of the
table, however, and so will correspond to a new statistics. This
is very clearly scen for the case that only the completely anti-
symmetric wave functions are accessible. The only wave
function with n = 10 which is completely antisymmetric is that
formed by suitable linear combination of the 120 product func-
tions (4.3.2.1.0), etc., marked 4 in Table 49-1 (the other functions
violate Pauli’s principle, the quantum numbers not being all
different). Hence even at the lowest temperatures only one of
the five oscillators could occupy the lowest vibrational state,
whereas the Boltzmann distribution law would in the limit
T — 0 place all five in this state.

If only the completely antisymmetric wave functions are accesstble
lo a system composed of a large number of weakly interacting parts,
the system parts conform to the Fermi-Dirac statistics;' if only the
completely symmetric wave functions are accessible, they conform
to the Bose-Einstein statistics.?

The Fermi-Dirac distribution law in the forms analogous to
Equations 49-1, 49-3, and 494 is

Po=— (49-6)

1E. FErwMy, Z. f. Phys. 36, 902 (1926); P. A. M. Dirac, Proc. Roy. Soc.
A112, 661 (1926). This statistics was first developed by Fermi, on the basis
of the Pauli exclusion principle, and was discovered independently by Dirac,
using antisymmetric wave functions.

2S. N. Bosg, Z. f. Phys. 26, 178 (1924); A. EINsTEIN, Sttzber. Preuss. Akad.
Wiss. p. 261, 1924; p. 3, 1925. DBose developed this statistics to obtain a
formal treatment of a photon gas, and Einstein extended it to the case of
material gases.
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Pi= —P—, (49-7)
Ae*T + N
and
Pw) = —2W) (49-8)
AT + N

in each of which the constant A has such a value as to make the
sum or integral of P equal to unity. Here N is the number of
identical system parts in which the accessible wave functions
are antisymmetric.

Problem 49-2. Show that at very low temperatures the Fermi-Dirac
distribution law places one system part in each of the N lowest states.

The Fermi-Dirac distribution law for the kinetic energy of the
particles of a gas would be obtained by replacing p(W) by the
expression of Equation 49-5 for point particles (without spin)
or molecules all of which are in the same non-degenerate state
(aside from translation), or by this expression multiplied by the
appropriate degeneracy factor, which is 2 for electrons or protons
{with spin quantum number 14), or in general 2I + 1 for spin
quantum number I. This law ean be used, for example, in dis-
cussing the behavior of a gas of electrons. The principal
application which has been made of it is in the theory of metals,!
a metal being considered as a first approximation as a gas of
electrons in a volume equal to the volume of the metal.

Problem 49-3. (a) Evaluate the average kinetic energy of the valence
electrons (ignoring the K electrons and the nuclei) in a crystal of lithium
metal at 0°A, and discuss the distribution of energy. (b) Calculate the
number of electrons at 298°A with kinetic energy 0.10 v.e. greater than the
maximum for 0°A. The density of lithium is 0.53 g./cm3,

The Bose-Einstein distribution law in the forms analogous to
Equations 49-6, 49-7, and 49-8 is
1
e (49-9)
Ae*T — N

1'W. PavLy, Z. f. Phys. 41, 81 (1927); A. SoMMERFELD, Z. f. Phys. 47, 1,
43 (1928); etc. Review articles have been published by K. K. Darrow,
Rev. Mod. Phys. 1, 90 (1929); J. C. Slater, Rev. Mod. Phys. 6, 209 (1934);
ete.

P, =
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p= P, (49-10)
Ae*T — N
and
P(w) = —2W) (49-11)
AT — N

in which the symbols retain their former significance. The Bose-
Einstein statistics is to be used for photons,! deuterons, helium
atoms, hydrogen molecules, etc.

For many systems to which Fermi-Dirac or Bose-Einstein
statistics is to be applied the term + X is negligible compared to

w
AT, and the appropriate equations are very closely approxi-
mated by the corresponding Boltzmann equations. Thus helium
gas under ordinary conditions shows no deviations from the
perfect gas laws (Boltzmann statistics) which can be attributed
to the operation of Bose-Einstein statistics. At very low
temperatures and very high pressures, deviations due to this
cause should occur, however; this degeneration® has not been
definitely shown to occur for material gases by experiment,?
the principal difficulty being that real gases elude investigation
under extreme conditions by condensing to a liquid or solid
phase.

49e. The Rotational and Vibrational Energy of Molecules.—
In the statistical discussion of any gas containing identical
molecules, cognizance must be taken of the type of statistics
applicable. Often, however, we are not primarily interested in
the translational motion of the molecules but only in their dis-
tribution among various rotational, vibrational, and electronic
states. This distribution can usually be calculated by the use
of the Boltzmann distribution law, the effect of the symmetry
character being ordinarily negligible (except in so far as the sym-

1 With appropriate modifications to take account of the vanishing rest
mass of photons.

? The word degeneracy is used in this sense (distinct from that of Section
14), the electrons in a metal being described as constituting a degenerale
electron gas.

3 G. E. UnLensEcK and L. GROPPER, Phys. Rev. 41, 79 (1932), and refer-
ences there quoted.
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metry character relative to identical particles in the same
molecule determines the allowed wave functions for the molecule).

In case that the energy of a molecule can be represented as the
sum of several terms (such as rotational, vibrational, electronic,
and translational energy), the Boltzmann factor can be written
as the product of individual Boltzmann factors, and the con-
tributions of the various energy terms to the total energy of the
gystem in thermodynamic equilibrium and to the heat capacity,
entropy, and other properties can be calculated separately. To
illustrate this we shall discuss the contributions of rotational and
vibrational motion to the energy content, heat capacity, and
entropy of hydrogen chloride gas.

As shown in Chapter X, the energy of a hydrogen chloride
molecule in its normal electronic state can be approximately
represented as

2
Wox = (0 + Y)hv + K(K + 1)8%7’ (49-12)

in which » is the vibrational frequency, I the moment of inertia
of the molecule, and v and K the vibrational and rotational
quantum numbers, with allowed values v = 0,1, 2, + + - and
K=0,1 2.+, At all but very high temperatures the
Boltzmann factor for excited electronic states is very small, so
that only the normal electronic state need be considered. Using
Equation 49-3, we write for the probability that a molecule be
in the state v,K the expression

P,K = PvPK (49"13)
m which
_ otk
P, = Be kT (49-14)
and
_K(EK+Dm
Py = C@2K + 1)e &T | (49-15)

2K + 1 being the quantum weight of the Kth rotational state.
B and C have values such that

iP, =1 and ZPK = 1.
pm() K=(

It is seen that the average rotational and vibrational energy
per molecule can hence be written as
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W = EEP,,PK{(v + Yhy + K(K + DS‘%}’

=0 K=0

or, since the summation over K can be at once carried out for the
first term (to give the factor 1) and that over v for the second
term,

W = inbr. + Wrot.,
with

inbr. =

M

(v + 19)hvP.

0

@
[l

and
- - h?
We = KK + DgyrPr;
K=0

that is, the average energy is separable into two parts in the
same way as the energy W, x (Eq. 49-12). By introducing the
variables!

0
kThz (49-16)
7= 8kT
these parts can be written as
E(v + 14)ze~ vtz
Weinr, = kT =2— (49-17)
Ee—(v+}6)z
y=0
and
2 KK + 1)(2K + 1)ge~E &+ .
Weee = kT E20 y  (49-18)
2(2K + 1)e-E&K+10o
K=0

1 The symbol ¢ is conventionally used in this way as well as for the
quantity h?/8x%l, as in Section 35.
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the sums in the denominators corresponding to the factors B
and C of Equations 49-14 and 49-15. Expressions for the
vibrational and rotational heat capacity C.i. and C.. can be
obtdined by differentiating with respect to T, and the contribu-
tions of vibration and rotation to the entropy can then be

TC, e
obtained as S, = "dT and Se.. = =2t4T.
o T o T

Problem 494. Considering only the first two or three excited states,
calculate the molal vibrational energy, heat capacity, and entropy of
hydrogen chloride at 25°C., using the vibrational wave number » =
2990 cm L.

Problem 49-6. By replacing the sums by integrals, show that the
expressions 49-17 and 49-18 approach the classical value kT for large T.

Problem 49-6. Calculate the rotational energy curve (as a function of T')
for hydrogen chloride at temperatures at which it begins to deviate from
zero. The internuclear distance is 1.27 X.

The treatment of ortho and para hydrogen, mentioned in
Section 43f, differs from that of hydrogen chloride only in the
choice of accessible rotational wave functions. For para hydro-
gen K can assume only the values 0, 2, 4, - . . , the quantum
weight being 2K + 1. For ortho hydrogen K can have the
values 1, 3, 5, - - -, with quantum weight 3(2K 4 1), the
factor 3 being due to the triplet nuclear-spin functions. Ordinary
hydrogen is to be treated as a mixture of one-quarter para and
three-quarters ortho hydrogen, inasmuch as only the states with
K even are to be considered as accessible to the para molecules,
and those with K odd to the ortho molecules. In the presence
of a catalyst,- however, all states become accessible, and the gas
is to be treated as consisting of molecules of a single species.

Problem 49-7. Discuss the thermodynamic properties (in their depend-
ence on rotation) of the types of hydrogen mentioned above.

Problem 49-8. Similarly treat deuterium and protium-denterium
molecules (see footnote, Sec. 43f).

49f. The Dielectric Constant of a Diatomic Dipole Gas.—
Under the influence of an electric field, a gas whose molecules
have a permanent electric moment and in addition can have a
further moment induced in them by electronic polarization
becomes polarized in the direction of the field, the polarization
per unit volume being
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F = Nm, + NaF, (49-19)

in which e is the dielectric constant of the gas, F the strength of
the applied field (assumed to be parallel to the z axis), N the
number of molecules in unit volume, and « the polarizability of

the molecule. g, represents the average value of a; for all
molecules in the gas, a; being the average value of the z compo-
nent of the permanent electric moment u of a molecule in a given
state of motion. It was shown by Debye! that according to

classical theory &, has the value
= _ W
e = 3T
We shall now show that for the special case of a diatomic dipole
gas, such as hydrogen chloride, the same expression is given
by quantum mechanics.
Let us consider that the change of the permanent moment
u with change in the vibrational quantum number v can be

(49-20)

neglected. %, is then given by the equation
e = 2 Pxuiin(KM), (49-21)
K,M
in which?
Pyy = Ae K &+Do, (49-22)

with ¢ = A%/8r%IkT, as in Equation 49-16. Our first task is
hence to evaluate u;(KM), which is the average value of

He = pcosd

for a molecule in the rotational state described by the quantum
numbers K and M, & being the angle between the moment u of
the molecule (that is, the nuclear axis) and the z axis.

The value of I (KM) is given by the integral

(KM) = [¥3uu cos $¥xudr, (49-23)

in which yku is the first-order perturbed wave function for the
molecule in the electric field. It is found, on application of the
t P. DeBYE, Phys. Z. 18, 97 (1912).
3 1t is assumed at this point that the energy of interaction of the molecule

and the field can be neglected in the exponent of the Boltzmann factor.
An investigation shows that this assumption is valid
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usual methods of Chapters VI and VII, the perturbation funection
being
H' = —uF cos ¥, (49-24)

that z,(KM) has the value

8relu?F  {3M?— K(K + 1)}

mEM) = =5~ @R “DRE + DEK 73

(49-25)

(see Prob. 49-9).

Inasmuch as Pgy is independent of the quantum number M,
to the degree of approximation of our treatment, we can at once
calculate the average value of g;(KM) for all states with the same
value of K, by summing m;(KM) fo-r M = —K, K 41, - - -,
+K, and dividing by 2K 4 1. The only part of 49-25 which

+K
involves any difficulty is that in M2 The value of Z M?
M=_K

is K(K + 1)(2K + 1); using this, we see that

+K
— _ 1 —_ _ .
mK) = 51T E G(KM) =0, K >0. (49-26)
M=—K
Thus we have obtained the interesting result that the only
rotattonal state which coniributes to the polarization is that with

K = 0. The value of fi; for this state is seen from Equation
49-25 to be

— 8wl utF
E(0) = 3Ht (49-27)
and u, hence is given by the equation
= __ #2F 1 "
= 5rm % ) (49-28)

a (2K + l)e—K(K+1)v
P2

in which the sum in the denominator corresponds to the constant

A of Equation 49-22. For small values of ¢ (such as occur in

actual experiments) this reduces to
= _ ¥
He = 3kT

which is identical with the classical expression 49-20. On
introduction in Equation 49-19, this gives the equation

(49-29)
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_3e—1F_Nu’F

P = S oF = e + Nof. (49-30)

Problem 49-9. Using the surface-harmonic wave functions mentioned
in the footnote at the end of Section 35¢, derive Equation 48-25, applying
either the ordinary second-order perturbation theory or the method of
Section 27a.

Problem 49-10. Discuss the approximation to Equation 49-28 provided
by 49-29 for hydrogen:chloride molecules (x = 1.03 X 1071® e.s.u.) in &
field of 1000 volts per centimeter.

It can be shown! that Equation 49-30 is not restricted to dia-
tomic molecules in its application, but is valid in general, except
for a few special cases (as, for example, for a molecule with
electric moment largely dependent on the vibrational state, or
on the state of rotation of one part of the molecule about a single
bond, etc.). With the use of this equation the electric moments
of molecules can be determihed from measurements on the
temperature coefficient of the dielectric constants of gases and
dilute solutions and in other ways. This has been done for a very
large number of substances, with many interesting structural
conclusions. An illustration is the question of which of the two
isomers of dichlorethylene is the c¢is and which the irans form,
i.e., which compound is to be assigned to each of the formulas
shown below;

H H H Cl
AN / AN /
/C:C /C:C\

AN

Cl Cl Cl H

cts form trans form

The trans form is symmetrical and therefore is expected to have
zero electric moment. It is found experimentally that the
compound which the chemists had previously selected as the
trans form does in fact have zero moment, whereas the cis form
has a moment of about 1.74 X 10—%e.s.u. (The unit 10-1% e.s.u.
is sometimes called a Debye unit) Strong evidence for the
plane structure of benzene is also provided by electric-moment
data, and many other problems of interest to chemists have been
attacked in this way.

1 See the references at the end of the section, in particular Van Vieck.
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An equation which is very closely related to Equation 49-30 is
also applicable to the magnetic susceptibility of substances;
indeed, this equation was first derived (by Langevin! in 1905)
for the magnetic case. The temperature-dependent term in this
case corresponds to paramagnetism, u representing the magnetic
moment of the molecule; and the other term, which in the mag-
netic case is negative, corresponds to diamagnetism. For
discussions of the origin of diamagnetism, the composition of the
resultant magnetic moment x from the spin and orbital moments
of electrons, ete., the reader is referred to the references men-
tioned below.

References on Magnetic and Electric Moments

J. H. Van Vieck: ‘“The Theory of Electric and Magnetic Suscepti-
bilities,”” Oxford University Press, 1932.

C. P. Suyra: “Dielectric Constant and Molecular Structure,” Chemical
Catalog Company, Inc., New York, 1931.

P. DesyE: “Polar Molecules,” Chemical Catalog Company, Inc., New
York, 1929.

E. C. Sroner: “Magnetism and Atomic Structure,” E. P. Dutton &
Co., Inc., New York, 1926.

The most extensive table of values of dipole moments available at present
is that given in an Appendix of the Transactions of the Faraday Society, 1934.

General References on Statistical Mechanics

R. C. ToLman: “Statistical Mechanics with Applications to Physics and
Chemistry,”” Chemical Catalog Company, Inc., New York, 1927.

R. H. FowLEr: ‘‘Statistical Mechanics,” Cambridge University Press,
1929.

L. BriLLovuIN: ‘‘Les Statistiques Quantiques,”’ Les presses universitaires de
France, Paris, 1930.

K. K. Darrow: Rev. Mod. Phys. 1, 90 (1929).

R. H. FowLER and T. E. STErRNE: Rev. Mod. Phys. 4, 6356 (1932).

50. THE ENERGY OF ACTIVATION OF CHEMICAL REACTIONS
A simple interpretation of the activation energy E of a chemical

reaction such as
A+BC—-AB+C (50-1)

is provided by the assumption that the molecule BC in its normal
electronic state is not able to react with the atom A, and that
reaction occurs only between A and an electronically excited
molecule BC*, E being then the energy difference of the normal

t P. LANGEVIN, J. de phys. 4, 678 (1905).
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and the excited molecule. A reasonable alternative to this
was given in 1928 by London,! who suggested that such a reaction
might take place without any change in the electronic state of
the system (other than that accompanying the change in the
internuclear distances corresponding to the reaction 50-1, as
discussed in Section 34). The heat of activation would then be
obtained in the following way. We consider the electronic
energy Wo(¢) for the normal electronic state of the system as &

i
|
|

Fig. 50-1.—The electronic energy surface (showing contour lines with
increasing energy 1, 2, 3, etc.) for a system of three atoms arranged linearly, as a
function of the internuclear distances r4s and rsc.
function of the nuclear coordinates £. W,(£) will have one value
for the nuclear configuration in which nuclei B and C are close
together, as in the normal molecule BC, and A is far removed,
and another value for the AB + C uuclear configuration. (The
difference of these, corrected for the energy of oscillation and
rotation of the molecules, is the energy change during the
reaction.) Now in order to change from one extreme configura-
tion to the other, the nuclei must pass through intermediate
configurations, as atom A approaches B and C recedes from it,
and the electronic energy W,(£) would change with change in

1 F. LoNpoxn in the Sommerfeld Festschrift, ‘Probleme der modernen
Physik.” p. 104, 8. Hirzel, Leipzig, 1928,
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configuration, perhaps as shown in Figure 50-1. The change
from A 4 BC, represented by the configuration point P, to
AB + C, represented by the configuration point P, could take
place most easily along the path shown by the dotted line.
We have seen in Section 34 that the electronic energy can be
treated as a potential function for the nuclei; it is evident that in
order for reaction to take place the nuclei must possess initially
enough kinetic energy to carry them over the high point P’ of
the saddle of the potential function of Figure 50-1. The energy
difference Wo(P') — Wo(P), after correction for zero-point
oscillational energy, etc., would be interpreted as the activation
energy E.

No thoroughly satisfactory calculation of activation energies in
this way has yet been made. The methods of treatment dis-
cussed for the hydrogen molecule in Section 43, in particular the
method of James and Coolidge, could of course be extended to a
system of three protons and three electrons to provide a satis-
factory treatment of the reaction H 4 H, — H; 4+ H. 'This
calculation would be difficult and laborious, however, and has
not been carried out. Several rough calculations, providing
values of E for comparison with the experimental value! of
about 6 kcal/mole (from the ortho-para hydrogen conversion),
have been made. In Section 46d we have seen that at large
distances the interaction of a hydrogen atom A and a hydrogen
molecule BC is given approximately by the expression

— 14(abc|H| bac) — Y4(abc |H| cba),

the first term corresponding to repulsion of A by B and the second
to repulsion of A by C. It is reasonable then that the easiest
path for the reaction would correspond to a linear arrangement
ABC, the repulsion of A and C then being 2 minimum for given
values of ras and rsc. Eyring and Polanyi? calculated energy
surfaces for linear configurations by neglecting higher exchange
integrals and making other simplifying assumptions, the values

1 A. Farkas, Z. f. phys. Chem. B10, 419 (1930); P. HarTECK and K. H.
Gem, ibid. B16, 116 (1931).

*H. Evrine and M. Poranyi, Naturwissenschaften 18, 914 (1930); Z. 1.
phys. Chem. B12, 279 (1931); H. EyYRING, Naturwissenschaften 18, 915
(1930), J. Am. Chem. Soc. 53, 2537 (1931); H. Perzer and E. WiGNER,
Z. f. phys. Chem. B16, 445 (1932).
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of the Coulomb and single exchange integrals being taken from
the simple Heitler-London-Sugiura treatment of the hydrogen
molecule or estimated from the empirical potential function for
this molecule. These approximate treatments led to values
in the neighborhood of 10 to 15 kcal for the activation energy.
Coolidge and James! have recently pointed out that the approxi-
mate agreement with experiment depends on the cancellation of
large errors arising from the various approximations.

The similar discussion of the activation energies of a number of
more complicated reactions has been given by Eyring and
collaborators.?

1 A. S. Coounge and H. M. James, J. Chem. Phys. 2, 811 (1934).

2 H. Eyrino, J. Am. Chem. Soc. 63, 2537 (1931); G. E. KiMBaLL and
H. EvringG, ibid. 64, 3876 (1932); A. SuerMaN and H. EyriNag, ibid. b4,
2661 (1932); R. S. Bear and H. Eyring, ibid. 56, 2020 (1934); H. EvriNe,
A. SuErRMAN, and G. E. Kimsavy, J. Chem. Phys. 1, 586 (1933); A. SHERMAN,
C. E. Sux, and H. Evring, ibid. 8, 49 (1935).



CHAPTER XV
GENRERAL THEORY OF QUANTUM MECHANICS

The branch of quantum mechanics to which we have devoted
our attention in the preceding chapters, based on the Schrodinger
wave equation, can be applied in the discussion of most questions
which arise in physics and chemistry. It is sometimes conven-
ient, however, to use somewhat different mathematical methods;
and, moreover, it has been found that a thoroughly satisfactory
general theory of quantum mechanics and its physical inter-
pretation require that a considerable extension of the simple
theory be made. In the following sections we shall give a brief
discussion of matrix mechanies (Sec. 51), the properties of angular
momentum (Sec. 52), the uncertainty principle (Sec. 53), and
transformation theory (Sec. 54).

651. MATRIX MECHANICS

In the first paper written on the quantum mechanics! Heisen-
berg formulated and successfully attacked the problem of calcu-
lating values of the frequencies and intensities of the spectral
lines which a system could emit or absorb; that is, of the energy
levels and the electric-moment integrals which we have been
discussing. He did not use wave functions and wave equations,
however, but instead developed a formal mathematical method
for calculating values of these quantities. The mathematical
method is one with which most chemists and physicists are not
familiar (or were not, ten years ago), some of the operations
involved being surprisingly different from those of ordinary
algebra. Heisenberg invented the new type of algebra as he
needed it; it was immediately pointed out by Born and Jordan,?
however, that in his new quantum mechanics Heisenberg was

1 W. HEIBENBERG, Z. f. Phys. 38, 879 (1925).
t M. Bor~ and P. JorpaN, tbid. 34, 858 (1925).
419
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making use of quantities called mairices which had already been
discussed by mathematicians, and that his newly invented
operations were those of matriz algebra. The Heisenberg
quantum mechanics, usually called matriz mechanics, was rapidly
developed?! and applied to various problems.

When Schrodinger discovered his wave mechanics the question
arose as to the relation between it and matrix mechanics. The
answer was soon given by Schrodinger? and Eckart,® who showed
independently that the two are mathematically equivalent.

The arguments used by Heisenberg in formulating his quantum
mechanics are extremely interesting. We shall not present
them, however, nor enter into an extensive discussion of matrix
mechanics, but shall give in the following sections a brief treat-
ment of matrices, matrix algebra, the relation of matrices to wave
functions, and a few applications of matrix methods to quantum-
mechanical problems.

61a. Matrices and Their Relation to Wave Functions. The
Rules of Matrix Algebra.—lLet us consider a set of orthogonal

wave functions! ¥, ¥y, - - - , ¥,, - - - and a dynamical quantity
f(g:, pi), the corresponding operator® being f,, = f(q;, ;ﬂ%)

In the foregoing chapters we have often made use of.integrals
such as

Jmn = [V fop.Wadr; (51-1)

for example, we have given f,, the physical interpretation of the
average value of the dynamical quantity f when the system is in
the nth statiopary state. Let us now arrange the numbers
fmn (the values of the integrals) in a square array ordered accord-
ing to m and n, as follows:

t M. Born, W. HEISsENBERG, and P. Jorvan, Z. f. Phys. 85, 557 (1926);
P. A. M. Dirac, Proc. Roy. Soc. A109, 642 (1925).

* E. ScHRODINGER, Ann. d. Phys. T9, 734 (1926).

3 C. Eckarrt, Phys. Rev. 38, 711 (1926).

¢ These functions include the time factor; & similar discussion can be made
with use of the functions y, ¥1, * * * not including the time.

¢ In this chapter we shall use the symbol f,,. to represent the operator
corresponding to the dynamical function f. The subscript “op.” was not
used in the earlier chapters because there was no danger of confusion attend-
ing its omission. See Secs. 10, 12,
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Joo Sfo Joz Jas
fuo fu fiz Jis
f = (fmn) =1 fa fa Soa S
Jo S fu o Jfu

This array we may represent by the symbol f or (f..). We
enclose it in parentheses to distinguish it from a determinant,
with which it should not be confused.

We can construct similar arrays g, h, etc. for other dynamical
quantities.

It is found that the symbols f, g, h, etc. representing such
arrays can be manipulated by an algebra closely related to ordi-
nary algebra, differing from it mainly in the process of multiplica-
tion. The rules of this algebra can be easily derived from the
properties of wave functions, which we already know.

It must be borne in mind that the symbol f does not represent
a single number. (In particular the array f must not be confused
with a determinant, which is equal to a single number. There is,
to be sure, a determinant corresponding to each array, namely,
the determinant whose elements are those of the array. We have
set up such determinants in the secular equations of the preceding
chapters.) The symbol f instead represents many numbers—
as many as there are elements in the array. The sign of equality
in the equation f = g means that every element in the array f is
equal to the corresponding element in the array g.

Now let us derive some rules of the new algebra. For example,
the sum of two such arrays is an array each of whose elements
is the sum of the corresponding elements of the two arrays; that
is,

Joo + goo for + gor Sfor 4+ Go2 - - -
f+g={fut+go fut+gu ft+g. -} (51-2)

It is seen that the arrays add in the same way as ordinary
algebraic quantities, with f +g =g +{. Addition s com-
mutalive.

On the other hand, multiplication is not commutative: the product
fg 15 not necessarily equal to the product gf. Let us evaluate the
mnth element of the array fg. It is

{Jg) mn = [¥2fopGor. ¥ ndr.
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Now we can express the quantity g, ¥, in terms of the functions
¥, with constant coefficients (Sec. 22), obtaining

Gop.¥n = Egk,.‘llk.
k

That the coefficients are the quantities g, is seen on multiplying
by ¥} and integrating. Introducing this in the integral for
{fg} mn We obtain

g mn = 2, I UM oo Vedrgin;

k

since [W¥}Xf,, ¥.dr is equal to fni, this becomes
{fg} mn Efmkgkn (51-3)

This is the rule for calculating the elements of the array obtained
on multiplying two arrays.

We may continue to develop the algebra of our arrays in this
way; or we can instead make use of work already done by mathe-
maticians. The arrays which we have been discussing are called
matrices, and their properties have been thoroughly investigated
by mathematicians, who have developed an extensive matriz
algebra,! some parts of which we have just derived.

Problem 61-1. Show that the laws of ordinary algebra hold for the
addition and subtraction of matrices and their multiplication by scalars;
for example,

f+(g+h) =(+g +h
aof + ag = a(f 4+ g),
af + bf = (a + b)f.

Matrix methods, especially matrix multiplication, are often
very useful in solving problems. Thus we have applied Equation
51-3 in Section 27¢, after deriving the equation in order to use it.
Another example of the use of this equation is provided by
Problem 51-2.

In quantum-mechanical discussions the matrix f corresponding
to the dynamical quantity f(q:, p:) is sometimes defined with the
use of the wave functions ¥,, which include the time (Eq. 51-1),
and sometimes with the wave functions ¢,, with the time factor

1 See, for example, M. Bécher, ‘Introduction to Higher Algebra,” The
Macmillan Company, New York, 1924.
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omitted, in which case the matrix elements are given by the
integrals

Smn = [Yrfop¥adr. (51-4)
The matrix elements f.., in the two cases differ only by the time

208 (Wm— Walt

factor e b , and as there is no danger of confusion the
same symbol can be used for the matrix containing the time
as for that not containing the time.

Problem 51-2. The elements zms, of the matrix x for the harmonic
oscillator are given by Equation 11-25. Using the rule for matrix multipli-
cation, set up the matrices x*(= xx), x3, and x¢, and compare the values of
the diagonal elements with those found in Section 23a.

The non-commutative nature of the multiplication of matrices
is of great importance in matrix mechanics. 'The difference of
the product of the matrix q; representing the coordinate g;
and the matrix p, representing the canonically conjugate momen-
tum p; and the reverse product is not zero, but §:lr-z'1’ where 1
is the unit matriz, discussed in the following section; that is,
these matrices do not commute. On the other hand, q; and
pr (with & » j), etc., do commute, the complete commutation
rules for coordinates and momenta being

piQ; — q;p; = %1,

Pidx — @p; = 0, k = j, (51-5)
Q% — ©uq; = 0,

PiPr — pip; = 0.

These commutation rules together with the rules for converting
the Hamiltonian equations of motion into matrix form constitute
matrix mechanics, which is a way of stating the laws of quantum
mechanies which is entirely different from that which we have
used in this book, although completely equivalent. The latter
rules require a discussion of differentiation with respect to a
matrix, into which we shall not enter.!

Problem 61-3. Verify the commutation rules 51-5 by evaluating the
matrix elements (p;q;)mn, etc.

1 For a discussion of matrix mechanics see, for example, Ruark and Urey,
“ Atoms, Molecules and Quanta,” Chap. XVII.
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61b. Diagonal Matrices and Their Physical Interpretation.—A
diagonal malriz is a matrix whose elements fa. are all zero except
those with m = n; for example,

Joo 0 0 o ...
0 fu 0 o ...
0 0 fo2 0 .

0- 0 0 Sus

The unit matrix, 1, is a special kind of diagonal matrix, all the
diagonal elements being equal to unity:

0 0 0
1 0 0
0 1 0
0 0 1

[
]
OO O

A constant matrix, a, is equal to a constant times the unit
matrix:

o

il

13

-

[}
(=R I
oo o
oa o0
(SR = =

Application of the rule for matrix multiplication shows that the
square (or any power) of a diagonal matrix is also a diagonal
matrix, its diagonal elements being the squares (or other powers)
of the corresponding elements of the original matrix.

In Section 10¢, in discussing the physical interpretation of the
wave equation, we saw that our fundamental postulate regarding
physical interpretation requires a dynamical quantity f to have
a definite value for a system in the state represented by the wave
function ¥, only when f7, is equal to (f,,)7, for all values of r.
We can now express this in terms of matrices: If the dynamical
quandity f s represented by a diagonal matriz f then this dynamical
quanlity has the defintte value f., for the state corresponding to the
wave function ¥, of the set ¥,, ¥, -

For illustration, let us discuss some of the wave functions which
we have met in previous chapters. The solutions
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_211' Wo

‘1’0(= Yoo ), ¥y * v

of the wave equation for any system correspond to a diagonal
energy matrix

We 0 0 0
W0 0

H=[0 0 W. 0 ,
o 0 0 W,

so that, as mentioned in Section 10c, the system in a physical
condition represented by one of these wave functions has a
fixed value of the total energy.

In the case of a system with one degree of freedom no other
dynamical quantity (except functions of H only, such as H?)
is represented by a diagonal matrix; with more degrees of freedom
there are other diagonal matrices. For example, the surface-
harmonic wave functions ©;.(3)®.(¢) for the hydrogen atom
and other two-particle systems separated in polar coordinates
(Secs. 19, 21) make the matrices for the square of the total
angular momentum and the component of angular momentum
along the z axis diagonal, these dynamical quantities thus having
definite values for these wave functions. The properties of
angular momentum matrices are discussed in Section 52.

The dynamical quantities corresponding to diagonal matrices
relative to the stationary-state wave functions ¥y, ¥y, - - . are
sometimes called constants of the motion of the system. The
corresponding constants of the motion of a system in classical
mechanics are the constants of integration of the classical equa-
tion of motion.

Let us now consider a system whose Schrodinger time functions
corresponding to the stationary states of the system are ¥,,
¥y, + o+, ¥, - - - . Suppose that we carry out an experiment
(the measurement of the values of some dynamical quantities)
such as to determine the wave function uniquely. Such an
experiment is called a maximal measurement. A maximal
measurement for a system with one degree of freedom, such as
the one-dimensional harmonic oscillator, might consist in the
accurate measurement of the energy; the result of the measure-
ment would be one of the characteristic energy values W,,; and
the corresponding wave function ¥, would then represent the
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system so long as it remain undisturbed and could be used for
predicting average values for later measurements (Secs. 10, 12).
A maximal measurement for a system of three degrees of freedom,
such as the three-dimensional isotropic harmonic oscillator or
the hydrogen atom with fixed nucleus and without spin, might
consist in the accurate determination of the energy, the square
of the total angular momentum, and the component of the
angular momentum along the z axis. The wave function cor-
responding to such a maximal measurement would be one of
those obtained by separating the wave equation in polar coordi-
nates, as was done in Chapter V.

It is found that the accurate measurement of the values of N
independent! dynamical quantities constitutes a maximal
measurement for a system with N degrees of freedom. In
classical mechanics a maximal measurement involves the accurate
determination of the values of 2N dynamical quantities, such as
the N coordinates and the N momenta, or for a one-dimensional
system the energy and the coordinate, etc. A discussion of the
significance of this fact will be given in connection with the
uncertainty principle in Section 53.

Now let us consider a complete set of orthogonal normalized
wave functions xo, x1, - * + , Xn, - * + , €ach function x, being
a solution of the Schridinger time equation for the system under
discussion. These wave functions are linear combinations of
the stationary-state wave functions V., being obtained from
them by the linear transformation

X = 2 anna, (51-6)

n

in which the coefficients a., are constants restricted only in
that they are to make the x’s mutually orthogonal and normal-
ized. A set of wave functions x, is said to form a representation
of the system. Corresponding to each representation matrices?
f', g, etc. can be constructed for the dynamical quantities
f. g, ete., the elements being calculated by equations such as

f"‘"l' = fx:;’fop.Xn’dT (51"7)

1The meaning of independent will be discussed later in this section.
? We use primed symbols to indicate that the matrices correspond to the
representation xn’.
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or obtained from the matrices f, g, ete. (corresponding to the
stationary-state representation ¥,), by the use of the coefficients
a,, of Equation 51-6.

So far we have discussed the measurement of constants of the
motion of the system only; that is, of quantities which are repre-
sented by diagonal matrices relative to the Schrodinger wave
functions ¥y, ¥,, ¥, - - - , and which are hence independent of
the time. But in general we might make a maximal measure-
ment consisting in the accurate measurement of N dynamical
quantities f, ¢y etc., whose matrices f, g, etc., relative to ¥,,
¥y, - - -, are not all diagonal matrices. In the case of such a
maximal measurement we must specify the time ¢ = ¢’ at which
the measurement is made. An accurate measurement of the
quantities f, g, etc. at the time ¢ = ¢’ requires that at the time
t = ¢’ the matrices f’, g’, etc. be diagonal matrices. In order to
find the wave function representing the system at times subse-
quent to ¢ =t' (so,long as the system remain undisturbed),
we must find the representation x, which makes these matrices
diagonal at the time ¢ = ¢’. The accurate values of f, g, etc.
obtained by measurement will be identical with the numbers
farn'y gnrnr, €te., occurring as a certain diagonal element of the
diagonal matrices £/, g’, etc., and the wave function representing
the system will be the corresponding x.-.

It is interesting to notice that the condition that the dynamical
quantity f be represented by a diagonal matrix f' in the x repre-
sentation can be expressed as a differential equation. In order
for f to be a diagonal matrix, f%, must equal 0 for m’ not equal
to n’ and a constant value, f.rn, say, for m’ = n/. This means
that on expanding f.,. X’ in terms of the complete set of functions
x only the one term farax» will occur; that is, that

fop.Xﬂ’ = fn’n’Xn', (51_8)

in which f,. i8 & number, the n’th diagonal element of the
diagonal matrix f’. For example, the stationary-state wave
functions ¥mm for a hydrogen atom as given in Chapter V
satisfy three differential equations,

Hop,‘l’ﬂlm = Wn\I’ﬂlm;
1+ 1)R?
sz.\l’nlm = (_i-;r_zl"\l’ﬂlm,
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and

mh
2
corresponding to the three dynamical functions whose matrices
are diagonal in this representation ; namely, the energy, the square
of the total angular momentum, and the z component of the
angular momentum. For a discussion of this question from a
different viewpoint see the next section.

M:op.‘I/nlm = ‘I/nlnu

52. THE PROPERTIES OF ANGULAR MOMENTUM

As pointed out in the previous section, systems whose wave
equations separate in spherical polar coordinates (such as the
hydrogen atom) possess wave functions corresponding not only
to definite values of the energy but also to definite values of the
total angular momentum and the component of angular momen-
tum along a given axis (say, the z axis). In order to prove this
for one particle! let us construct the operators corresponding
to M., M,, and M,, the components of angular momentum along
the z, y, and 2z axes. Since classically

M. = yp. — 2py, (52-1)

with similar expressions for M, and M,, the methods of Section
10c¢ for constructing the operator corresponding to any physical
quantity yield the expressions

R{ o )
M:op. = %(g& - Zb—y“>7
h{ a ]
= (% _ 9 52-2
My, 2m‘("az Iaz>’ (52-2)
h{ o ]
Mzop, = Eﬂl—i(xé—g} — ya—z>-
In order to calculate the average values of these quantities it is

convenient to express them in terms of polar coordinates. By the
standard methods (see Sec. 1b) we obtain

. h ) d 7]
Mo + iMyo = s—etie| +7- — 3— 2
. y oo 21'13 (_‘La‘, cot a‘P) (5 3)
! The total angular momentum and its z component also have definite
values for a system of n particles in field-free space; see, for example, Born
and Jordan, ‘“Elementare Quantenmechanik,” Chap. IV, Julius Springer,
Berlin, 1930.
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and
h 9
Mlop. = 2_7FZ 5“;' (52—4)
We have postulated that the wave equation is separable in
polar coordinates; if we also restrict the potential energy to be a
function of r alone, the dependence of the wave functions on the

angles will be given by
tplmﬂ(d; ¥, 7') = elm('})q)m(‘P)Rnl(r); (52—5)

where O3, (3)®m(¢) are the surface-harmonic wave functions
obtained in Section 18. Using these and the expressions in
Equations 52-3 and 524, we can evaluate the integrals of the
type

M,(l’m'; lm) = fﬁl’z*'m’anop.‘plmndT' (52~6)

In order to prove that the square of the total angular momentum
M? has a definite value for a given stationary state described by
Yimn, it i8 necessary for us to show that the average value of any
power of M?is identical with the same power of the average value
(Sec. 10c). By using the properties of matrices given in the
previous section we can considerably simplify this proof. As
stated there, we need only show that MZ, is represented by a
diagonal matrix. Furthermore we can obtain the matrix
for M?from the matrices for M., M,, and M, by using the relation
defining M? in classical mechanics,

M* = M:+ M; + M (52-7)
and applying the rules for matrix multiplication and addition.
If we carry out this procedure, we first find on evaluation of
the proper integrals that
h
M:(l’m,; lm) = —G[{l(l + l) - m(m + l)}nam’,mﬁ—l +
I+ 1) —mim — 1) Pom msldry, (52-8)
MyUm'; tm) = 20010 4 1) — mOm 4 1)} #bm s —
{1+ 1) — m(m — 1)} %nr m_1)br1, (52-9)

M.(Um';lm) = %méz'.zém'.m, (52-19)

in which 8m/,mt1 = 1 for m’ = m + 1 and 0 otherwise, etc.
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The next step is to obtain the elements of the matrices M2,
M2, and M2 from these by using matrix multiplication, and then
the elements of M? by using matrix addition. The final result

2

is that M? is a diagonal matrix with diagonal elements W+ DR 1;21 L

It is therefore true that M? has a definite value in the state

Vimn; in other words, it is a constant of the motion with the
11 + 1)he
4

The proof that M, is also a constant of the motion is contained
in Equation 52-10, which shows that M, is a diagonal matrix
with diagonal elements mh/2r so that its value is mh/2x for the
state with quantum number m.

value

Problem 62-1. Carry out the transformation of Equations §2-2 into
polar coordinates.

Problem 52-2. Derive Equations 52-8, 52-9, and 52-10.

Problem 62-3. Obtain the matrices for M2, M2, M? by matrix multi-
plication and from them obtain the matrix for Mz,

There is a close connection between the coordinate system in
which a given wave equation is separated and the dynamical
quan.ties which are the constants of the motion for the resulting
wave functions. Thus for a single particle in a spherically
symmetric field the factor S(¢, ¢) of the wave function which
depends only on the angles satisfies the equation (see Sec. 18a)

1 af. 4S8 1 98

It can be shown that the operator for M? in polar coordinates
has the form

R2f 1 3 ] 1 9
. . I
Mo = 47r2{sin 3 a_o(sm "ao) sin? & agoz}’ (62-12)

so that Equation 52-11 may be written

h2
Mgp.\bnlm = l(l + I)m‘pnlm, (52—13)

since ¥ = S(&, ) R(r) and M2, does not affect R(r).
Furthermore the equation for ®,(¢), the ¢ part of ¢, is (Sec.
18a)
d*

o= —me, (52-14)
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whereas from Equation 524 we find that

hZ 62
2 = e e .
Mo =~ ey (52-15)
8o that Equation 52-13 may be written in the form
2 h?
M' op.‘//nlm = mzz;r_z"//nlm- (52“16)

The formal similarity of Equations 52-13 and 52-16 with the
wave equation

Hop.¢nlm = Wn‘/’nlm

is quite evident. All three equations consist of an operator
acting upon the wave function equated with the wave function
multiplied by the quantized value of the physical quantity repre-
sented by the operator. Furthermore, the operators H,,,
M2, and M?, will be found to commute with each other;
that is,

Hop(M3x) = M2 (Hox),

etc., where x is any function of 4, ¢, and 7.

1t is beyond the scope of this book to discuss this question more
thoroughly, but the considerations which we have given above for
this special case can be generalized to other systems and other
sets of coordinates. Whencver the wave equation can be
separated it will be found that the separated parts can be thrown
into the form discussed above, involving the operators of several
physical quantities. These physical quantities will be constants
of the motion for the resulting wave functions, and their operators
will commute with each other.

63. THE UNCERTAINTY PRINCIPLE

The Hetsenberg uncertainty principle’ may be stated in the
following way:

The values of two dynamical quantities f and g of a system can be
accuralely measured at the same time only if their commutator s
zero; otherwise these measurements can be made only with an
uncertainty AfAg whose magnitude vs dependent on the value of the
commulator. In particular, for a canonically conjugate coordinate

1 W. HEIBENBERG, Z. f. Phys. 48, 172 (1927).
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q and momentum, p the uncertainly AqAp is of the order of magnitude
of Planck’s constant h, as ts AWAL for the energy and time.

To prove the first part of this principle, we investigate the
conditions under which two dynamical quantities f and g can be
simultaneously represented by diagonal matrices. Let these
matrices be f and g’, x.- being the corresponding representation.
The product f'g’ of these two diagonal matrices is found on
evaluation to be itself a diagonal matrix, its n’th element being
the product of the n’th diagonal clements f, and g, of the
diagonal matrices £ and g’. Similarly g'f’ is a diagonal matrix,
its diagonal elements being identical with those of f'g’. Hence
the commutator of ' and g’ vanishes: f'g’ — g'f = 0. The
value of the right side of this equation remains zero for any
transformation of the set of wave functions, and consequently
the commutator of f and g vanishes for any set of wave functions;
it is invariant to all linear orthogonal transformations. We
accordingly state that, in order for two dynamical quantities f and g
of a system to be accurately measurable at the same ttme, their com-
mutator must vanish; that s, the equation

fg —gf=0 (63-1)
nust hold.

A proof of the second part of the uncertainty principle is
fifficult; indeed, the statement itself is vague (the exact meaning
of Af, ete., not being given). We shall content ourselves with
the discussion of a simple case which lends itself to exact treat-
ment, namely, the translational motion in one dimension of a
free particle.

The wave functions for a free particle with coordinate z are

L 2VEImW (=20 _2riWt
Ne b e * (Sec. 13), the positive sign in the first
exponential corresponding to motion in the z direction and the
negative sign in the —z direction. On replacing W by p%/2m
2xip:(T — o) 2mipi
this expression becomes Ne * ¢ 2mh  in which positive
and negative values of the momentum p, refer to motion in the z
direction and the —z dircction, respectively. A single wave
function of this type corresponds to the physical condition in
which the momentum and the energy are exactly known, that
is, to a stationary state of the system. We have then no knowl-
edge of the position of the particle, the uncertainty Az in the
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coordinate z being infinite, as is seen from the probability dis-
tribution function ¥*¥, which is constant for all values of z
between — © and + . When Ap, is zero Az is infinite.

Now let us suppose that at the time ¢ = 0 we measure the
momentum p, and the coordinate z simultaneously, obtaining
the values po and z,, with the uncertainties Ap, and Az, respec-
tively. Our problem is to set up a wave function x which
represents this physical condition of the system One way
of doing this is the following. The wave function

®  (Pz—Ppo)? 2mip: (L —2o) 2ripit

x=A f_ e 2@Te k¢ Imhgp, (53-2)

_{pr—pa)?

corresponds to a Gaussian-error-curve distribution ¢ (ar:?

of the values of the momentum p, about the average value p,,

with the uncertainty! Ap.. (The factor 14 in the exponent in

Equation 53-2 results from the fact that the coefficients of the

wave functions are to be squared to obtain probability values.)

A is a normalization constant. On evaluating the integral we
find for x at the time { = 0 the expression

2 t(Ap.)3(x —zo)'+21r'ipn(:: —To)

x(0) = Be B B, (53-3)

which corresponds to the probability distribution funection
for x

(x —20)2

X*(0)x(0) = B% (& (563-4)
with
h
z = SeAp. (53-5)

This is also a Gaussian error function, with its maximum at
r = 1o and with uncertainty Az given by Equation 53-5. 1t is
seen that the wave function x corresponds to the value h/2x
for the product of the uncertainties Az and Ap, at the time ¢ = 0,
this value being of the order of magnitude A, as stated at the
beginning of the section.

Problem 58-1. Evaluate the normalization constants A and B? by
carrying out the integration over p. and then over z.

! The quantity Ap, is the reciprocal of the so-called precision index of
the Gaussian error curve and is larger than the probable error by the factor
2.10; see R. T. Birge, Phys. Rev. 40, 207 (1932).
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Problem 53-2. Carry through the above treatment, retaining the time
factors. Show that the center of the wave packet moves with velocity

po/m, and that the wave packet becomes more diffuse with the passage of
time.

A general discussiomby the use of the methods of transforma-
tion theory (Sec. 54), which we shall not reproduce, leads to the
conelusion that the product of the uncertainties AfAg accompany-
ing the simultaneous measurement of two dynamical quantities
f and g is at least of the order of magnitude of the absolute value
of the corresponding diagonal element in their commutator

fg — gf. (The commutator of x and p, is 5%1 (Eq. 51-5), the

absolute value of the diagonal elements being h/2r, in agreement
with the foregoing discussion.) This leads to the conclusion that
the energy W and time ¢ are related regarding accuracy of measure-
ment in the same way as a coordinate and the conjugate momen-
tum, the product of the uncertainties AW and At being of the
order of magnitude of A (or h/27). In order to measure the energy
of a system with accuracy AW, the measurement must be
extended over a period of time of order of magnitude h/AW.

Problem b53-3. Show that the commutator Wt — tW has the value
h 9

h . . .
— —1 by evaluating matrix elements, recalling that W,, = ——— —and
2m 2m at

top. = L.

It is natural for us to inquire into the significance of the
uncertainty principle by analyzing an experiment designed to
measure r and p.. Many ‘‘thought experiments” have been
discussed in the effort to find a contradiction or to clarify the
theory; in every case these have led to results similar to the
following. Suppose that we send a beam of light of frequency
vo along the axis AO of Figure 53-1, and observe along the
direction OB to see whether or not the particle, restricted to
motion along the r axis, is at the point O or not. If a light
quantum is scattered into our microscope at B, we know that
the particle is in the neighborhood of O, and by analyzing the
scattered light by a spectroscope to determine its frequency »,
we can calculate the momentum of the particle by use of the
equations of the Compton effect. But for light of finite fre-
quency the resolving power of the microscope is limited, and our
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measurement of z will show a corresponding uncertainty Az,
which decreases as the frequency increases. Similarly the
measurement of the momentum by the Compton effect will show
an uncertainty Ap., increasing as the frequency increases.
The detailed analysis of the experiment shows that under the
most favorable conditions imaginable the product AzAp, is of

the order of magnitude of A.1
6 S &
R[]} 678 o

% v o ¢
\)
/ %\x é}(
/ 59

/\

/
’

Source of light
F16. 53-1.—Diagram of experiment for measuring z and p: of particle.

64. TRANSFORMATION THEORY

In discussing the behavior of a system the following question
might arise. If at the time ¢ = ¢ the dynamical property f is

! For the further discussion of the uncertainty principle see W. Helsenberg,
““The Physical Principles of the Quantum Theory,” University of Chicago
Press, Chicago, 1930; N. Bohr, Nature 121, 580 (1928); C. G. Darwin, Proc.
Roy. Soc. A117, 258 (1927); A. E Ruark, Phys. Rev. 31, 311, 709 (1928);
E. H. Kennard, Phys. Rev. 81, 344 (1928); H. P. Robertson, Phys. Rev. 34,
163 (1929); 36, 667.(1930); 46, 794 (1934); and also Ruark and Urey, ‘‘ Atoms,
Molecules and Quanta,” Chap. XVIII; and other references listed at the
end of the chapter,
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found on measurement to have the value f/, what is the prob-
ability that the immediately subsequent measurement of the
dynamical property g will yield the value ¢'? We know one
way to answer this question, namely, to find the wave function!
x (one of the representation which makes f a diagonal matrix)
corresponding to the value f’ of f, to use it to calculate the
average value of all powers of g, and from these to construct a
probability distribution function for g. This is not a very
simple or direct procedure, however; it is of interest that an
alternative method has been found by means of which these
probability distribution functions can be calculated directly.
This method, called the transformation theory,? is a general quan-
tum mechanics within which wave mechanies is included, the
Schrodinger wave equation being one of a large number of
equations of the theory and the Schrodinger wave functions a
particular type of transformation functions. We shall not
enter into an extensive discussion of transformation theory but
shall give only a brief description of it.

Let us represent by (¢'lf') a probability amplitude funciion or
transformation function such that (¢'|f")*(¢’lf’) is the probability
under discussion, (¢’|f’)* being the complex conjugate of (g'|f").
[In case that g’ can be any one of a continuum of values,
(@'lf)*(g’lf") is interpreted as a probability distribution function,
the probability that g have a value between g’ and ¢’ 4 dg’
being (g'|f")*(g'lf")dg’ ]

The Schrodinger stationary-state wave functions are proba-
bility amplitude functions between the energy and the coordi-
nates of the system. For a system with one degree of freedom,
such as a harmonic oscillator, the wave functions ¥, are the
transformation functions (z'|W’) between the coordinate z and
the characteristic energy values, and for the hydrogen atom
the wave functions Y.in(r, ¢, ¢), discussed in Chapter V, are the
transformation functions (r'#'¢’|nlm) between the coordinates
r, ¥, and ¢ of the electron relative to the nucleus and the charac-
teristic energy values W,, the square of angular momentum values

1 In case that the measurement of f is not a maximal measurement many
wave functions might have to be considered.

2 The transformation theory was developed mainly by P. A. M. Dirac,
Proc. Roy. Soc. A118, 621 (1927). and P. Jordan, Z. f. Phys. 40, 809 (1927);
44, 1 (1927).



434 GENERAL THEORY OF QUANTUM MECHANICS [XV-54

I+ 1)h?
4x?
represented by the symbols n, I, and m, respectively.
Two important properties of transformation functions are the
following:
The transformation function between f and ¢ is equal to that
between g and f:

» and the angular momentum component values mh/2n,

('lg) = @'lf)* (54-1)

The transformation function between f and h is related to that
between f and g and that between g and h by the equation

(F'Ih") = J(f'lg") *(g'|h")dg’. (54-2)
In this equation the integration includes all possible values g’
which can be obtained by measurement of ¢; in case that g’
represents a set of discrete values, the sum over these is to be
taken.
We have often written the Schrodinger wave equation in the
form

Hop.‘l’n = Wn‘l’n-
In the nomenclature of transformation theory this is
Ho (qj|W') = W'(gj|W'),

W' representing a characteristic value W, of the energy and
(¢|W’) the corresponding transformation function to the coordi-
nates ¢;. In transformation theory it is postulated that a similar
equation

goo.,,(f'19") = 9'(S'lg") (54-3)

is satisfied by every transformation function (f’|g’). In this
equation ¢o, , is the operator in the f scheme representing
the dynamical quantity g. We shall not discuss the methods
by means of which the f scheme of operators is found but shall
restrict our attention to the ¢ scheme, in which the operators
are obtained by the familiar method of replacing p; by —}i 9.
2t dgx
The transformation functions are normalized and mutually
orthogonal, satisfying the equation

IS @ dg = dpm. (544
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It is interesting to note that this equation signifies that, if the
dynamical quantity f has been found on measurement to have
the value f’, immediate repetition of the measurement will give
the same value f’ with probability unity, inasmuch as the integral
of Equation 544 is the transformation function (f'[f"’) (see
Eq. 54-2) and Equation 54—4 requires it to vanish except when
f” is equal to f’, in which case it has the value 1.

From the above equations we can find any transformation
function (f’|g’), using the ¢ system of operators only, in the
following way: we find the transformation functions (¢’|f") and
(¢'lg") by solving the corresponding differential equations
54-3, and then obtain (f’|¢’) by integrating over the coordi-
nates (Eq. 54—4). As an example, let us obtain the transforma-
tion function (pi|W’) between the energy W and the linear
momentum p. of a one-dimensional system. The function
(z'|W’) is the Schrodinger wave function, obtained by solving
the wave equation

Hoo (| W) = W'(&'|W)

as described in the preceding chapters of the book, The trans-
formation funection (z'{p,) between a Cartesian coordinate and
its canonically conjugate momentum is the solution of the
equation

Pz, (2'P7) = pi(2|p;
or

h 9 o !N s (ol !
3.7 35/ IP2) = P’ [p2),

and hence is the function
2xiz'p)
(¢'lp) = Ce * (54-5)
C being a normalizing factor. The transformation function
(pl]W’), the momentum probability amplitude function for a
stationary state of the system, is accordingly given by the
equation :

@AW') = [Ce % (2'|W")da' (54-6)
or
2riz’p)

PIWa) = [Ce ™ & yu(z')dz'. (64-7)
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On application of this equation it is found that the momentum
wave functions for the harmonic oscillator have the same form
(Hermite orthogonal functions) as the coordinate wave functions
(Prob. 54-1), whereas those for the hydrogen atom are quite
different.!

Problem §4-1. Evaluate the momentum wave functions for the harmonic
oscillator. Show that the average value of pf for the nth state given by
the equation

f_ @] W) * @, Wayplrdp,

is the same as given by the equation

” Y o
of 2
ﬁ w¢"(21ﬂ:) a*g‘:‘ﬁndx

Problem 54-2. Evaluate the momentam wave function for the normal
hydrogen atom,

_2xi{z’pi-y'pi+2'pY)
(p.p,p.\nlm) = f f f ce b (@ y'2 |ndm)dz'dy'dz’.

It is convenient to change to polar coordinates in momentum space as well
as in coordinate space.

The further developments of quantum mechanies, including the
discussion of maximal measurements consisting not of the
accurate determination of the values of a minimum number of
independent dynamical functions but of the approximate meas-
urement of a larger number, the use of the theory of groups, the
formulation of a relativistically invariant theory, the quantiza-
tion of the electromagnetic field, etec., are beyond the scope of
this book.

General References on Quantum Mechanics
Matrix mechanics:
M. BorN and P. Jomrpan: ‘“Elementare Quantenmechanik,” Julius
Springer, Berlin, 1930.
Transformation theory and general quantum mechanics:
P. A. M. Dirac: “Quantum Mechanics,” Oxford University Press, New
York, 1935.

! The hydrogen-atom momentum wave functions are discussed by B.
Podolsky and L. Pauling, Phys. Rev, 34, 109 (1929), and by F. A. Hylleraas,
Z. f. Phys. T4, 216 (1932).
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J. v. NEUMANN: ‘““Mathematische Grundlagen der Quantenmechanik,”
Julius Springer, Berlin, 1932,

Questions of physical interpretation:

W. Heisensera: ““The Physical Principles of the Quantum Theory,”
University of Chicago Press, Chicago, 1930.

General references:

A. E. Ruark and H. C. Urey: ‘“Atoms, Molecules and Quanta,”
McGraw-Hill Book Company, Inc., New York, 1930.

E. U. Conpon and P. M. Mogse: ‘“Quantum Mechanics,” McGraw-Hill
Book Company, Inc., New York, 1929.

A. SoMMERFELD: ‘“Wave Mechanics,”” Methuen & Company, Ltd.,
London, 1930.

H. WeyL: “The Theory of Groups and Quantum Mechanics,” E. P.
Dutton & Co., Inc., New York, 1931.

J. FRENKEL: “Wave Mechanics,” Oxford University Press, New York
1933.






APPENDIX I
VALUES OF PHYSICAL CONSTANTS!

Velocity of light..................... ¢ = 2.99796 X 10! cm sec™?
Electronio charge.................... e =4.770 X 10719 gbs. e.s.u.
Electronicmass...................... mo = 9.035 X 1078 g

Planck’s constant.................... h = 6.547 X 10~ erg sec
Avogadro’s number.................. N = 0.6064 X 10 mole!
Boltzmann’s constant................ k = 1.83709 X 107® erg deg™*
2xe?
Fine-structure constant............... a = —;;i = 7.284 X 103
Radius of Bohr orbit in normal hydro-
gen, referred to centerof mass. ...... ao = 0.5282 X 107% ¢cm
Rydberg constant for hydrogen........ Ra = 109677.759 em™—*
Rydberg constant for helium.......... Rp. = 109722.403 cm™!
Rydberg constant for infinite mass..... R, = 109737.42 em™!
h
Bohr unit of angular momentum. ...... 5 = 1.0420 X 10?7 erg sec
T

Magnetic moment of 1 Bohr magneton o

0.9175 X 102 erg gauss™!

Relations among Energy Quantities

1erg = 0.6285 X 102 v.e. = 0.5095 X 10'® cm™' = 1.440 X 10 cal/mole
1.591 X 102 erg = 1 v.e. = 8106 cm~* = 23055 cal /mole

1.963 X 10~ erg = 1.234 X 1074 v.e. = 1 em™ = 2,844 cal/mole

0.6901 X 1078 erg = 4.338 X 107% v.e. = 0.3516 cm~! = 1 cal/mole

1 These values are taken from the compilation of R. T. Birge, Rev. Mod.
Phys. 1, 1 (1929), "as recommended by Birge, Phys. Rev. 40, 228 (1932).
For probable errors see these references.
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APPENDIX II

PROOF THAT THE ORBIT OF A PARTICLE MOVING
IN A CENTRAL FIELD LIES IN A PLANE

The force acting on the particle at any instant is in the direc-
tion of the attracting center O (see F, Fig. 1). Let the arrow
marked v in the figure represent the direction of the motion at
any instant. Set up a system of Cartesian axes z y z with origin
at the point P and oriented so that the 2 axis points along v and
the y axis points perpendicular to the plane of F and v, being
directed up from the plane of the paper in the figure.

\& ,’_{
0o -l N

-
Y

Fig. 1I-1.

Then the equation of motion (in Newton’s form) in y is

d%y

"

since there is no component of the force F in the y direction.

Therefore the acceleration in the y direction is zero and the

velocity in the y direction, being initially zero, will remain zero,

30 that the particle will have no tendency to move out of the plane
letermined by F and v-

= 0,



APPENDIX III

PROOF OF ORTHOGONALITY OF WAVE FUNCTIONS
CORRESPONDING TO DIFFERENT ENERGY LEVELS

We shall prove that, if W, = W;, the solution ¢, of the

wave equation
N

1 8r?
Ve + Gr (W = V)4 = 0 (1)
i=1

and the solution ¥} of the equation

N

1 8n?
DT+ G (W = VI = 0 @
i=1

satisfy the relation
J¥tbadr = 0; 3)
i.e., that y; is orthogonal to ..
Multiply Equation 1 by ¢, Equation 2 by ¢., and subtract
the second from the first. Since V is real, the result is that
N
” 8x? .
D VRV — T + (W = Wil = 0. @)
i=1
If we now integrate the terms of this equation over configuration
space, we obtain

N
§’§(W,. - Wk)f'ﬁ,tnp..dr = —E%I(ﬁvﬁ% — ¥aViYi)dr.  (5)
s=1

If we introduce the expression for y? in terms of Cartesian coordis
nates into the integral on the right, it becomes

3N
1 ) ) 9 . 82 *
J=1
41
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in which we have written g1, g2, - - -, qav in place of zi, ¥y, 21,
Zz, - -+ ,2y. We next make use of the identity
J¥n aw:) % am (
A A = . 7
h 3q, 34, 129 ag? -y )

from which we see that

LW o F On Y _
f— (‘h a7 ~ Vg2 ) [%‘_ - a—q,J_,, =0

because of the boundary conditions on y.
Since every term of the sum can be treated similarly, the
expression 6 is equal to zero and therefore

2
A I L

from which Equation 3 follows, since W, — W, = U.

If W. = W, so that ¢, and ¢, are two linearly independent
wave functions belonging to the same energy level, ¥ and ¥, are
not necessarily orthogonal, but it is always possible to construct
two wave functions ;. and .- belonging to this level which are
mutually orthogonal. This ean be done in an infinite number of
ways by forming the combinations

¢,:, = ax + BYn and 1“.’ = a'Yi + B,¢ﬂ1
with coefficients «, 8, o, 8’ satisfying the relation

[Vitpdr = a*a [Yidr + a*B' [ iadr + o/B* [ drdr +
B*B'[Y¥ndr = 0. (8)



APPENDIX IV
ORTHOGONAL CURVILINEAR COORDINATE SYSTEMS

In Section 16 the general formulas for the Laplace operator v?
and for the volume element dr were given in terms of the quanti-
ties gu, gv, and ¢, defined by Equation 164. In this appendix
there are given the equations of transformation (in terms of
Cartesian coordinates) and the expressions for the ¢'s for the 11
sets of orthogonal coordinate systems listed by Eisenhart! as the
only such systems in which the three-dimensional Schrédinger
wave equation can be separable. In addition the explicit
expressions? for v? and dr are given for a few of the more impor-
tant systems. These quantities may be obtained for the other
systems by the use of Equations 16~3 and 16-5.

Cylindrical Poiar Coordinates

T = pcos ¢,
Yy = psin ¢,

2 = 2.

¢ =1,4.=1,q9, = p.
dr = pdpdzdcp

s _ 1 9% 6"‘
v p ap ap 2 a<p azz

Spherical Polar Coordinates

x = rsin ¢ cos g,
y = rsin ¢ sin ¢, (Fig. 1-1),
2z =rcosd.,
¢r=1,¢qs =1,9, = r8ind.
dr = r?sin ddrddde.

1 82
2 —_—_— .
ViEr 61‘( ar * e s r2gin ¢ ad(sm % 60) + r? gin? & 9¢?

11, P. ExsENHART, Phys. Rev. 45, 428 (1934).
2E. P Apams, “Smithsonian Mathematical Formulae,” Washington,
1922. This book contains extensive material on curvilinear coordinates as

well as other very useful formulas.
443
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Parabolic Coordinates

VEn cos o,
‘\/57- sin (2]
lé(E ~ ).

ke:_ﬂf+n £+n % = V.

1a(¢ + n)dEdnd<p

4 a 4 9 1 42
2 O e —— e o
V= e GE<EG_£ + £+ 3n<"3n> + tn 9p?
Confocal Elliptic Coordinates (Prolate Spheroids)
VE — 14/1 — n%cos o,
V2~ 14/1 — 5%sin o,
£n.

In terms of the distances r4 and 75 from the points (0, 0, —a)
and (0, 0, a), respectively, ¢ and 5 are given by the expressions

TA+TB _T—‘TB

Q & &

z
y
4

L

£ =

=T = \/52 =7 g = o/ @ — DA = 7).

dr = a¥(§ — n*)dfdndw.

1 )i _ 1yl L 90y . 50
Vi=aE = nz)[a_s{“ l)ae} + 371{(1 " )an} +

LT
(& = D — »?) o¢?

Spheroidal Coordinates (Oblate Spheroids)

T = atncos e,y = atnsin g, z = aV/(8 — 1)(1 — 7?).

£2 — 7’2 E? —_— .’12
g = a\hg—_'f’ &= a\T 2 g0 = afn.

Parabolic Cylinder Coordinates
z=ls(u—~0v),y=Vw,z=uz2

. u+v _1 u+v _
915"5‘\, i Rl 1 qs =1,
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Elliptic Cylinder Coordinates
z=aV - 11—,y =auy, z =

e — pt ut — p?
Gu=2a Wt—l’qu"\/m’q'“
Ellipsoidal Coordinates
_@+w@+)@+w) ,_ G +wb + )0+ w)
@-m@- VT -6 - @)

_ (e +u)(e* + v)(c* + w),
(ct — a?)(c* — b?)

2 (v — v)(v —w) (v —w)(v — u)
R VR (Y nys U Rl PO T (SR T o s
2 _ (w — u)(w — v) .
& =@+ w6 + w)(@ + v
Confocal Parabolic Coordinates
— Yt vdw—a—b),y _ (e u)(::z)(a—w)
b —-uwb - )b — w)
a—>b
s (w—=—v)u—w) , (v—u)(v— w)
%40 —w T 4@ -0 =)
2 _ (w —wWw —v)
™ = fa—wd —w

|
N

z2

2°

I —

22 = u>b>v>a>w.

A Coordinate System Involving Elliptic Functions

z = udn(, k) sn(w, k'), y = usn(y, k) dn(w, k'),
z = uen(y, k) en(w, k'), k* + k'* = 1.
g2 =1, ¢ = q2 = ut{k?en?(v, k) + k% en*(w, k')}.

u

For a discussion of the elliptic functions dn, sn, and cn see
W. F. Osgood, “Advanced Calculus,” Chap. IX, or E. P. Adams,
“Smithsonian Mathematical Formulae.” p. 245.
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THE EVALUATION OF THE MUTUAL ELECTROSTATIC
ENERGY OF TWO SPHERICALLY SYMMETRICAL
DISTRIBUTIONS OF ELECTRICITY WITH
EXPONENTIAL DENSITY FUNCTIONS

In Section 23b there occurs the integral

Ze? [T AL
327r2a0ff P12 d‘rldfz,

in which p1 = 2Zr,/ae and dr; = pldp, sin $.:d¥dy,, with similar
expressions for p; and dry, 71, 31, ¢1 and 7y, ¥4, o2 being polar
coordinates for the same system of axes. The quantity pi.
represents 22r;;/a,, in which r; is the distance between the
points 71, %1, ¢1 and 73, ¥z, @2.

This integral (aside from the factor Ze?/32w%a,) represents the
mutual electrostatic energy of two spherically symmetrical
distributions of electricity, with density functions e and
e, respectively. It can be evaluated by calculating the
potential due to the first distribution, by integrating over
dry, and then evaluating the energy of the second distribution
in the field of the first.

The potential of a spherical shell of radius p; and total charge
4rpleridp, is,! at a point r,

1
%p{e—ﬂxdpl-; forr < p
1

and

1
4mwpledp, - 7 for r > P1;

that is, the potential is constant within the shell and has the
same value outside of the shell as if the entire charge were
located at the origin.

1 8ee, for example, Jeans, *Electricity and Magnetism,” Cambridge
University Press, Cambridge, 1925, Sec. 74.
446
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The potential of the complete distribution is hence

4 r -]
®(r) = _:_rj; e*1pidpr + 41rf e Pipidpy,
which is found on evaluation to be
4
o(r) = (2 — e (r + 2)).

The integral I then has the value
Ze?
Zer (7
= 2212~ enion + 2ot
oJo

which gives on integration

_ 75
—200 E

l

gzwﬂ.
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NORMALIZATION OF THE ASSOCIATED LEGENDRE
FUNCTIONS

We can obtain the orthogonality property of the functions
Pprl(z) and Pyrl(2) as follows: Multiply the differential equation
19-9 gatisfied by Pj(z) by Pjr'(z) and subtract from ,this the
differential equation satisfied by P{(z) multiplied by Pi"(2).
The result is the relation

et} - mitfo - o)
= %[(1 - 22){ ImldPl - P 1szl' }]

={U+1) -1 + 1)}P',’,"'P‘,’"‘.

If we integrate this between the limits —1 and 1, we obtain the
result

(@ +1) — 114+ 1)} f Pl (z) Pl (2) de

dPim dlel
— — lmi 2o 1 -
= [(1 z’){P,, 5 — P }]_1 0.

Therefore, if I/ < 1,
f_ +11P‘,1"'(z)P‘,’"|(z)dz =0. (1)

This result is true for any value of m, so it is also true for the
Legendre functions P,(2), since P;(z) = PP(z).

We can now obtain the normalization integral for the Legendre
polynomials. Replacing ! by [ — 1 in Equation 19-2 gives the
equation

Pi(z) = —{(2l — 1zPia(2) — (I — 1)Pi2(2)}).

Using this and the orthogonality property just proved, we obtain
the relation
448
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+1
f_ {Pi(2)}dz = 21— . P;_1(2)2P(2)dz.

Equation 19-2 can be written in the form

2Pi(2) = =—— {1 + 1)Py1(2) + IP11(2)},

A1 + 1
so that, again employing the orthogonality property, we get

+1
f_l {Py(2)}%dz = §§+ 1f {P1-1(2)} %dz.

This process can be repeated until the relation

+1
J:l {Pi(2)} dz =

@ -1 -3 -5 ---3-1
(2l+1)(2l—1)(2l—3) -+ 5-3J-

. e

is obtained. Py(2) is by definition (Eq. 19-1) the coefficient of
1° in the expansion of (1 — 2tz 4 *)~% in powers of ¢. It is
therefore equal to unity, so that

+1 \ +1 9
f_l tPia)}rdz = 2l+1f & =gy 2

To obtain the normalization integral for the associated
Legendre functions we proceed as follows.! By differentiating
Equation 19-7 and multiplying by (1 — 2%)% we obtain

+1
| {Pol@)}7dz

dP Im|+1 d]mH—l
( — 2)}&___(2_). (1 _Zz) 2 dzlml+l 1(2)
[ml—=1 Jim

Imie(l — 29 7 amPu(e) = PIP+i(e) — [mle(1 ~ 27) P ().

Transposing, squaring, and integrating gives

[ipm@ae = [ o - af0el

2|m|zP',""dP:1 Z(Z) + ;{ lel(z)}z]dz

! Whittaker and Watson, ‘“Modern Analysis,” Sec. 15-51.
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- f_ t‘pxmwz)%{(l— 2P (’)} | f {P’“‘(z)

+

2dez,

where integration by parts! has been employed to obtain the
first two terms of the last line.

If we now use the differential equation 19-9 for Plml(2) to
reduce the first term of the last line, we obtain, after combining
terms, the result

[P @z = @~ D@+ [m] 4+ 1) [ (PG) )
We can continue this process and thus obtain
[PHPr@Ydz = @ = m| + DA = ml +2) - - 0
@+ mh@+ml — 1) - - @+ D [P,

so that
L pim 2 (4 mh!
f_l {P(2)}*da A+10 = |m)Y

where we have used the result of Equation 2.

dPp!

I In the general equation f udy = uy — fvdu, weset u = (1 — z’)

apir!

dv = in order to reduce the first term, and u = 2,

dpi
dv = 2Pl;~l—d’—dz = d{Prl}s
z

to reduce the second term. The term in uy vanishes, in the first case because
(1 — 2?) is zero at the limits, and in the second case because P',""(z) is zero
at the limits, if m » 0.



APPENDIX VII

NORMALIZATION OF THE ASSOCIATED LAGUERRE
FUNCTIONS

In order to obtain Equation 20-10, we make use of the generat-
ing function given in Equation 20-8, namely

pu

Usoy w) = B = (=1

Similarly let

© _pv

Va(P) 1)) = I%(!P_)v, = ( 1) (1 v):+l

i=3

Multiplying these together, introducing the factor e—#p*+l, and
integrating, we obtain the equation

L e~*p*t {7, (p, u)V.(p, v)dp = Er't'f e~2p L2 (p) L2 (p)dp

¢ ri=38

(w)* f g (T ER) g,

= 1 = w1 (1= v)+,

_ G D) =) =) iy )

0 = w)

s+k+1! .,
2 sk‘(8+1)' “(uv)e+E,

where we have expanded (1 — uv)—*—2 by the binomial theorem.!
The integral we are seeking is (r!)? times the coefficient of
(uv)" in the expansion, which is

1For the value of the integral J;w p*tie~?dp see Peirce’s ‘‘Table of

Integrals.”
451
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r + 1)! r!
1 1
(rh)*(s + 1)‘{(r G+ T =S DG F D!
_D2r — s+ 1).
h (r — 9!
In order to obtain the integral of Equation 20-10 we must put
r=n -4 land s = 2l 4 1, yielding the final result

b —p 2042 2141 2 — 2 +l)!3
J; ep LY (p) ) 2dp = (_:[_(—nl — 1)]1'
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APPENDIX VIII
THE GREEK ALPHABET

. Alpha N,» ... Nu
E, £ . ¢
. Gamma 0,0 . . . Omacron
. O, . . . P¢
. Epsilon P, . Rho
Z, 0 . Sigma
T, . . . Tau
. Theta T,v . . . Upsilon
. Tota ®, 0 ¢. . Phi
. . Kappa X,x...Ch
. Lambda v,y . . . Psi
2, w . Omega






INDEX

A

Absorption of radiation, 21, 299
Accessible wave functions, 396, 397
Action, 25
Action integrals, 29
Activation energy, 412
Adams, E. P., 201
Adsorption, unactivated, 388
Alkalj,atom spectra, 207
Alternating intensities in band spec-
tra, 366
Amplitude equation, 56
in three dimensions, 86
Amplitude functions, definitions of
58
Amplitudes of riotion, 286
Anderson, C., 209
Angular momentum, of atoms, 237
conservation of, 11
of diam mic molecules. 265
of el n spin, 208
of hi)gen atom, 147
properties of, 425
of symmetrical top molecule, 280
Antisymmetric wave function, defi-
nition of, 214
Approximate solution of wave equa-
tion, methods of, 191
(See also Wave functions.)
Approximation by difference equa-

tions; 202

Aromatic carbon compounds, ener-
gies of, 379

Associated  Laguerre  functions,

normalization, 451
polynomials, 131
table of, 135
Associated Legendre functions, 127
table of, 134

Asymptotic solution of wave equa-
tion, 68
Atanasoff, J. V., 228
Atomic energy states, semi-empirical
treatment, 244
Atomic terms, Hund’s rules for, 246
Atomic wave functions, 250
Atoms, with many electrons, 230f.
variation treatments for, 246
Average values, in quantum mechan-
ics, 89
of dynamical quantities, 66
of r* for hydrogen atom, 144
Azimuthal quantum number, 120

B

Bacher, R. F., 258

Balmer formula, 27

Balmer series, 43

Bartholomé, E., 310

Bartlett, J. H., Jr., 254

Beach, J. Y., 385

Bear, R. 8., 415

Beardsley, N. F., 249

Benzene, plane structure of, 411
structure of, 378

Beryllium atom, wave functions for,

249

Bichowsky, R., 208

Birge, R. T., 41, 336, 439

Black, M. M., 254

Black body, 26

Bocher, M., 419

Bohr, N, 26, 36, 112

Bohr frequency rule, 27

Bohr magneton, 47

Bohr postulates, 26

Boltzmann distribution law, 399

Boltzmann statistics, 219
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Bonds, chemical, types of, 362

Bond wave functions, 374

Bonhoeffer, K. F., 358

Born, M., 49, 51, 112, 260, 364, 4186,
417, 425, 436

Born-Oppenheimer principle, 260

Bose, S. N., 403

Bose-Einstein distribution law, 404

Bose-Einstein statistics, 219, 402

Bowen, I. S., 208

Brackett series, 43

Bragg equation, 35

Brester, C. J., 290

Brillouin, L., 198, 412

Brockway, L. O., 379

Brown, F. W, 254

Burrau, @ , 333, 340

Byerly, W. E,, 24

C

Canonical form of equations of
motion, 16
Canonical set of structures, 375
Carbon atom, tetrahedral, 364, 377
variation function for, 249
Carbon compounds, aromatic, encr-
gies of, 379
Catalysis of ortho-para conversion,
358
Central-field approximation for
atoms, 230, 250
Characteristic energy values, 58
Characteristic functions, definition
of, 58
Characteristic value equation, defi-
nition of, 58
Characteristic values, approximate,
180
Chemical bonds, types of, 362
Classical expressions, significance of,
55
Classical mechanics, 2ff.
88 an approximation to quantum
mechanics; 198
and high quantum states, 76
Classical statistics, 219

INDEX

Coefficient, of absorption, definition
of, 300
of induced emission, definition of,
300
of spontaneous emission, defini-
tion of, 300
Coefficients in secular equation for
molecule, 376
Commutation rules, 420
Completed shells of electrons, 234
Completeness of sets of orthogonal
functions, 164
Complex conjugate wave function,
63, 88
Complex molecules, 366f.
Component of angular momentum,
definition of, 12

Compton, A. H., 35 ‘
Conditionally periodic systems, defi-
nition of, 29

Conditions on wave functions, 58
Condon, E. U, 54, 82, 108, 246, 258,
310, 312, 432
Configuration, electronic, definition
of, 213
Configuration space, definition of,
59
Conjugate wave function, complex,
63
Conservation, of angulamsmomen-
tum, 11
of energy in quantum mechanics,
75
Conservative system, definition of, 16
Constant of the motion, definition
of, 12, 422
Continuous sets of energy levels, 58
Coolidge, A. S., 188, 249, 349, 353,
364, 374, 415 .
Coordinates, curvilinear, 103
cyelic, 108
generalized, 6
ignorable, 108
for molecules, 389
normal, definition of, 287
Correspondence principle, 29
Coulomb integral, 212, 371
—oupled harmonic oscillators, 397
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Courant, R., 91, 120, 157, 192, 202

Cross, P. C., 282

Crystal, diffraction by, 34

Crystals, rotation of molecules in,
290

Curvilinear coordinates, 103

Cyeclic coordinates, 108

D

Darrow, K. K., 54, 83, 403, 412

Darwin, C. G., 209, 210, 432

De Broglie, L., 49, 93

De Broglie wave length, 35

Debye, P., 26, 383, 408, 412

Degeneracy, exchange, 230
u;b}'t.al, 367

iphtial, 233
‘ e, 367
Deg#herate energy levels, 73, 166

Degenerate states, 31, 100

Degeneration of gases, 405

Del squared, operator, 85

Dennison, D. M., 275, 279, 293, 357

Determinants, certain properties of,
174 "

Determjnant-type wave functions,
2198 232

Dewapg;
Diag orm for secular equation,
1

Diagonal matrices, 421
Diagonal-sum theorem, 239
Diatomic molecule in old quantum
theory, 32
rotation and vibration of, 263
selection rules and intensities for,
309
Dickinggn, B. N, 331
Dieke, C. H., 282
Dielectric constant, 408
of diatomic dipole gas, 408
and polarizability, 227
Difference equations approximating
wave equation, 202
Differential equation for Legendre
polynomials, 127
standard form for, 109

457

Diffraction by a crystal in old
quantum theory, 34

Dipole interaction, 384

Dipole moment, electric, definition
of, 303

Dipole radiation, definition of, 23

Dirac, P. A. M., 49, 112, 209, 210,
256, 294, 299, 403, 417, 433, 436

Dirac equations and electron spin,
209

Directed valence, 377

Discrete sets of energy levels, 58

Dissociation energy, of hydrogen
molecule, 349, 352

of hydrogen molecule-ion, 336

Distribution law, Boltzmann, 399

Doi, 8., 179

Doublets in alkali atom spectra, 207

Duane, W., 35

Dunham, J. L., 198

Dunkel, M., 346

Dunn, C. G., 264

E
Eckart, C., 49, 180, 222, 247, 275,
417
Edlén, B., 225

Ehrenfest, P., 36

Eigenfunction, definition of, 58

Eigenwert, definition of, 58

Einstein, A., 25, 300, 403

Eisenhart, L. P., 105

Eisenschitz, R., 386

Electric dipole moment, definition
of, 303

Electric moment, of molecules, 411

of a system, definition of, 23

Electron, spinning, 207

Electron affinity of hydrogen, 225

Electron densities for atoms, 257

Electron density for lithium, 249

Electron diffraction by a crystal, 34

Electron distribution for hydrogen
molecule-ion, 337

Electron distribution function for
lithium, 249

Electron-pair bond, 362
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Electron-pairing approximation, 374
Electron-spin functions for helium,
214
Electron-spin quantum number, 208
Electronic configuration, definition
of, 213
Electronic energy function for dia-
tomic molecules, 266
Electronic energy of molecules, 259
Electronic states, even and odd, 313
Electronic wave function for mole-
cule, 261
Elliptic orbit, equation of, 38
El-Sherbini, M. A., 179
Emde, 343
Emission of radiation, 21, 299
Empirical energy integrals for
atoms, 244
Energy, of activation, 412
of classical harmonic oscillator, 5
correction to, first-order, 159
second-order, 176
and the Hamiltonian function, 16
of hydrogen molecule-ion, 336
kinetic, definition of, 2
of inolecules, separation of, 259
potential, definition of, 2
of resonance in molecules, 378
of two-electron ions, 225
values of, for atoms, 246
Energy level, lower limit for, 189
lowest, upper limit to 181
Energy levels, 58
approximate, 180
for diatomic molecule, 271, 274
for harmonic oscillator, 72
for plane rotator, 177
for symmetrical top molecule, 280
vibrational, of polyatomic mole-
cule, 288
Epstein, P. 8., 36, 179, 191
Equation, homogeneous, 60
Equations of motion, in Hamil-
tonian form, 14
in Lagrangian form, 8
Newton’s, 2
Ericson, A., 225

INDEX

Ethane molecule, free rotation in,
280
Eucken, A., 26
Eulerian angles, 276
Even and odd electronic states, 313
Even and odd states of molecules,
354
Even and odd wave functions for
molecules, 390
Exchange degeneracy, 230
integral, 212, 372
Excited states, of helium atom, 225
of hydrogen molecule, 353
of hydrogen molecule-ion, 340
and the variation method, 186
Exclusion principle, 214
Expansion, of 1/r,;, 241
in powers of h, 199
in series of orthogonal funatioys,
151 L
Eyring, H., 374, 376, 414

F

Factorization of sccular equation
for an av ., 285
Farkas, A., 353, 414
Fermi, E., 257, 403
Fermi-Dirac distribution 1aw. a03
Fermi-Dirac statistics, 219
Field, seli-consistent, 250ff _
Fine structure, of hydrogen spec-
trum, 207
of rotational bands, alternating
intensities in, 356
Finkelstein, B. N., 331
Fock, V., 252, 255
Force, generalized, 7
Force constant, definition of, 4
Forces between molecules, 383
Formaldehyde, rotational fine struc-
ture for, 282

Formulas, chemical, meaning of, 380
Fourier series, 153
Fowler, R. H., 412
Franck, J., 310
Franck-Condon principle, 309
Frank, N. H., 275
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Free particle, 30

Free rotation in molecules, 280, 290

Frenkel, J., 83, 437

Frequency, of harmonic oscillator, 5
of resonance, 320

Friedrichs, 202

Fues, E., 274

Fundamental frequency, definition

of, 290

G

g factor for electron spin, 208
Geib, K. H., 414
General solution of wave equation,

587

G?llg;al theory of quantuin mechan-

‘§ ics, 416

Ganerglized coordinates, 6

Genefalized forces, 7

Generalized momenta, definition of,
14

Generalized perturbation theory,
191

Generalized velocities, 7

Generating function; Y associated

uerre polynomniials, 131

ciate . Legendre functions,

Ly

n of, 77
jerre polynomials, 129
for Legendre polynomials, 126
Gentile, G., 361
Ginsburg, N., 246
Gordon, W., 209
Goudsmit, S., 207, 208, 213, 221,
227, 237, 246, 257, 258, 313
Gropper, L., 405
Groupy, completed, of electrons, 125
defirtition of, 231
Group theory and molecular vibra-
tions, 290
Guillemin, V., 247, 332, 353

H

Half-quantum numbers, 199
Hamiltonian equations, 16

459

Hamiltonian form of equations of
motion, 14
Hamiltonian function, definition of,
16
and the energy, 16
and the wave equation, 54
Hamiltonian operator, 54
Harmonic oscillator, average value
of z4, 161
classical, 4
in eylindrical coordinates, 106
energy levels for, 72
in old quantum theory, 30
perturbed, 160
selection rules and intensities for,
306
three-dimensional, in Cartesian
coordinates, 100
wave functions, mathematical
properties of, 77
in wave mechanics, 67f. .
Harmonic oscillators, coupled, 315f.,
397
Harmonics, surface, 126
Harteck, P., 358, 414
Hartree, D. R., 201, 224, 250, 254,
255
Hartree, W., 258
Hassé, H. R., 185, 228, 385, 387
Heat, of activation, 412
of dissociation, of hydrogen mole-
cule, 349, 352
of hydrogen molecule-ion, 336
Heat capacity, of gases, 408
of solids, 26
Heats of sublimation, 388
Heisenberg, W., 48, 112, 209, 210,
226, 318, 416, 417, 428, 432, 437
Heisenberg uncertainty principle, 428
Heitler, W., 340, 361, 364
Helium, solid, equiliblum distance
in, 362 .
Helium atom, 210
accurate treatments of, 22
exeited states of, 226
lonization potential of, 221
normal state of, by perturbation
theory, 162
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Helium atom, polarizability of, 226
resonance in, 321, 324
with screening constant func-
tion, 184
spin functions of, 214
stationary states of, 220
Helium molecule-ion 368, 367
Hermite orthogonal functions, 80
Hermite polynomials, 77, 81
recursion formula for, 71
Hilbert, D., 91, 120, 157, 192
Hill, E. L., 83
Hiyama, 8., 179
Homogeneous equation, definition
of, 60
Homogeneous linear equation, solu-
tion of, 168
Hooke’s forces in molecules, 282
Hooke's law constant, 4
Hooke’s potential energy for dia-
tomic molecules, 267
Horowitz, G. E., 331
Houston, W. V., 221
Hiuckel, E., 346, 365, 379, 381
Hultgren, R., 377
Hund, F., 346, 381, 390
Hund’s rules for atomic terms, 246
Hydrogen atom, 112
continuous spectrum of, 125
electron affinity of, 225
energy levels of, 42, 124
momentum wave functions of,
436
normal state of, 139
in old quantum theory, 36f.
old-quantum-theory orbits, 43
perturbed, 172
polarizability of, 185, 198, 205
selection rules for, 312
solution of r equation, 121
solution of theta equation, 118
solution of wave equation, 113
spectrum of, 42
Stark effect of, 178, 195
Hydrogen atoms, three, 368, 414
limiting cases for, 372
wave functions for, 368
Van der Waals forces for, 384

INDEX

Hydrogen chloride, absorption band
of, 33
Hydrogenlike radial wave functions,
discussion of, 142
Hydrogenlike wave functions, 132
discussion of angular part of, 146
Hydrogen molecule, 340f.
excited states of, 353
Hydrogen molecule-ion, 327f.
Hydrogen spectrum, fine structure
of, 207
Hydrogen sulfide, rotational fine
structure for, 282
Hylleraas, E. A., 222, 225, 226, 335,
337, 340, 353, 436
Hypergeometric equation, 278 .

I

Identity operation, definition of, 231
Ignorable coordinates, 108 '
Independent sets of wave functions,
216
Index of refraction and polarizabil-
ity, 227
Indicial equa won, 109
Induced emission, 300
Infinite determinants, sol
339
Infinity catastrophe, 60
Inglis, D. R., 246
Ingman, A. L., 224
Integrals, energy, for atoms, 239
involved in molecular-energy cal-
culations, 370
involving determinant-type wave
functions, 239
Intensities, for diatomic molecule,
309 -
for harmonic oscillator, 30§
for surface-harmoniec wave func-
tions, 306
Interaction, of helium atoms, 361 ,
of hydrogen atom and molecule,
373
Interatomic distance in hydrogen
molecule, 349

on of,
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Interchange integrals, definition of,
212

Invariance of equations of motion, 7

Inverse permutation, definition of,
231

Ionic:contribution to bonds, 364

Ionic structures for hydrogen mole-
cule, 345

IomzaﬁOn energy of two-electron

. iops, 225

Ionization potential for helium, 221

Jonizatior potential for lithium, 247

Ishida, Y., 179

Islan:is, 376

Ittmann. G. P., 282

J
Jafl§ G., 335, 340
Jahtike, BE., 343
James, H. M., 188, 249, 333, 349,

353, 362, 374, 415,
Jeans, J. H., 24, 241

Johnson..“M,, . .

Johnigon, M. H. Br* ‘

Jor %P 49, 112, 209, 416, 417,
. 433, 436

K

arman, I. von, 26

eesom, W. H., 383

#kulé structures, resonance of, 378
ellner, G. W., 222

Kemble, E. C, 83, 353

Kennard, E. H 432

Kepler’s area 1a.w, 37

1, G. E., 203, 376, 415

ergy, definition of, 2

Klein, 0., 282 |
Kohlrausch, K4W. F, 293
Kramers, H. A, 198, 282
Kronig, R. de L., 276, 203, 390

461
L

La Coste, L. J. B., 280
Lagrange’s equations of motion, 8
Lagrangian function, definition of, 3
Laguerre polynomials, 129
A-type doubling, 390
Landé, A., 208
g factor for electron spin, 208
Langevin, P., 412
Laplace operator, in Cartesian coor-
dinates, 86
in curvilinear coordinates, 104
Legendre fufictions, 126
Lennard-Jones, J. E., 191, 208, 290,
340, 381, 388
Lewis, G. N., 340, 377
Lewy, H., 202
Light (sec Radiation)
Linear combinations aid resonance,
320
Linear independence of wave fune-
tions, definition of, 166
Linear momentum, average, of elec-
tron in hydrogen atom, 146
Linear variation functions, 186
Lithium atom, electron distribution
function for, 249
wave functions for, 247
London, F., 340, 361, 364, 383, 386,
387, 388, 413
Loney, 8. L., 24
Lyman, T., 222
Lyman series, 43

M

MacDonald, J. K. L., 188, 189, 353
McDougall, J., 254
MacMillan, W. D., 24
Magnetic moment, 412

of electron spin, 208

of hydrogen atom, 147

orbital, 47
Magnetic quantum number, 40, 117
Magnetic susceptibility, 412
Magneton, Bohr, 47
Majorana, E., 353, 359
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Many-electron atoms, 230f. N
H., 386
i{d:g;?l; 2;;3 » 387 Negative states, 392
5 41 Nernst, W., 26

Matrices, 417f.
Matrix algebra, 417
Matrix mechanics, 416ff.
Maximal measurement, 422
Mayer, J. E., 229
Mayer, M. G., 229
Measurements, prediction of results
of, 66
Mecke, R., 282
Millikan, R. A., 208
Modes of vibration of molecules, 287
Mole refraction, definition of, 227
Molecular energy levels, 259
Molecular orbitals, 346
method of, 381
Molecular wave functions,
metry properties of, 388
Molecule, diatomic, selection rules
and intensities of, 309
Molecules, complex, 366f.
diatomic, rotation and vibration
of, 263
polyatomic, rotation of, 275
vibration of, 282
quantum number A in, 390
Moment of inertia, 269, 275
Momenta, generalized, definition of,
14
Momentum, angular, conservation
of, 11
average linear, of electron in
hydrogen atom, 146
operator, 54
Momentum wave functions, 436
Morse, P. M., 54, 82, 108, 249, 272,
312, 340, 437
function for diatomic molecules,
271
Mott, N. F,, 83
Mulliken, R. 8., 346, 381
Multiplication of permutations, defi-
nition of, 231
Multiplicity of atomic terms, 220

sym-

Neumann, J. v., 437
Newton’s equations, 2
Nielsen, H. H., 280, 282
Niessen, K. F., 327
Non-degenerate energy levely)deﬁni-
tion of, 73
Normal coordinates, 282 )
mode of vibration ef,, definition
of, 287
Normalization, of amplitude Yunc-
tions, 89 ’
of wave functions, 64
far a continuum, 92
Nuclenypin for hydrogen, so«
Nu  icaymmetry of electronic wave
i ctions for molecules, 39f:
Nuclear wave function for molecule,
263
Numerical integration, 201

o

Old quantu.a nueory, as an approxi-
mation to;quantum mechjnics,
198

decline of, 48
One-electron bond, 362 ‘
Operator, for Hamiltonian,’
for momentum, 54

Operators for dynamical quantitie
66 :

Oppenheimer, J. R., 260

Orbit, classical, of three-dimen-
sional oscillator, 11

Orbital, definition of, 137

Orbital degeneracy, 367

Orbitals, molecular, 381

Orbits, significance of, intausniiim
mechanics, 141

Ortho helium, 221 o

Ortho hydrogen, 3 1.3

Orthogonal curvihif®ar coordinate
systems, 441

Orthogonal functions, a convenient
set of, 195
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Orthogonal functions, expansions in
terms of, 151
Orthogonal transformation, defini-
tion of, 288 .
Prthogonality of wave functions; 64,
89, 441
illation of molecules in crystals,
. 202
or, classical, in polar coor-

s, 9

iarmonic, 4
armongp, ~ in  cylindrical coor-
dinates, 105

in old quantum theory, 30
perturbed, 160
three-dimensional, in Cartesian
. coordinates, 100 ‘
wave mechanics,
one-dimensional clas-

P

Para hydroon, 357, 408
Parhelium, %’l

P&l’ticlthr Q)
» in field tvee spac®
,{”’ old quantum th , 33

eXciusion prirciple for protons, 357

suling, L., 227, 256, 257, 290, 327,
347, 359, 362, 364, 365, 376, 379,
385, 436

Pexeris, C. L., 272

Pelzer, H., 414

Pefistration, of the core, 213

» non-classical region, 75

P 379
Pelly n operator, 231
Permutat even and odd, defini-

1 N
Perturbatiof, §
204f. P
definition of. 156
theory of. 15

guse of transitions,

463

Perturbation, theory of, first-order
for a degenerate level, 165
for non-degenerate levels, 156
generalized, 191
involving the time, 294f.
second-order, 176
approximate, 204
Phase integrals in quantum mechan-
ics, 200
Phases of motion, 286
Photochemistry, 26
Photoelectric effect, 25
Photon, 26
Physical constants, values of, 439
Physical interpretation, of harmonic
oscillator functions, 73
of wave equation, 298
of wave functions, 63, 88
Pike, H. H. M., 200
Placzek, G., 200, 203
Planck, M., 25
Planck’s constant, 25
Planck’s radiation law, 301 .
Plane rotator. Stark effect of, 177
Podolansk,, J., 385
Podolsky, B., 276, 436
Polanyi, M., 374, 388, 414
Polar coordinates, spherical, 9
Polarizability, and dielectric con-
stant, 227
of helium atom, 226
of hydrogen atom, 185, 198, 205
and index of refraction, 227
of plane rotator, 178
and van der Waals forces, 387
Polarization, of emitted light, 308
of a gas, 227
Polarization energy, of hydrogen
molecule, 349
of hydrogen molecule-ion, 332
Polynomial method of solving wave
equation, 68
Positive states, 392
Postulates of wave mechanics, addi-
tional, 298
Postulatory basis of physics, 52
Potential energy, average, for hydro-
gen atom, 146
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Potential energy, definition of, 2
Potential function for diatomic
molecules, 267
Power-series method of solving wave
equation, 69
Present, R. D., 353
Principal axes of inertia, definition
of, 275
Probability, of distribution fune-
tions, 63
of stationary states, 298
of transition, 299
Proper functions, definition of, 58
Properties of wave functions, 58

Q

Quadratic form, minimization of, 203
Quadrupole interaction, 384
Quadrupole moment, definition of,
23
Quantization, rules of, 28
spatial, 45
Quantum of energy, 25
Quantum number, azimuthal, 40,
120
electron-spin, 208
A in molecules, 390
magnetic, 40, 117
orbital angular momentum, 237
radial, 124
rotational, 33
spin for atoms, 237
total, 41, 124
Quantum numbers, 87, 124
half-integral, 48
in wave mechanics, 62
Quantum statistical mechanics, 219,
395¢.
Quantum theory, history of, 25
old, 25¢.
Quantum weight, definition of, 100

R

Rabi, I. 1., 276
Rademacher, H.. 276

INDEX

Radial distribution function for
hydrogen atom, 140
Radial quantum number, 124
Radiation, emission and absorption
of, 21, 299
of kinetic energy, 314
Planck’s law of, 301
Rate of chemical reactions, 412
Reaction rates, 412
Recursion formula, definition ()'f
for Hermite polynomials, 71
for Legendre polynomials, 126
Reduced mass, 18, 37 ‘
Regular point, definition of, 109
Reiche, F., 276
Relativisti» change
eleg, 5209
Relati stic doublets, 209
Representation, 423
Repulsion of helium ntoms, 361
Repulsive states of hydrogen mol-
ecule, 354
Resonance, among bond structures,
377 :

of mass of

clasg 1, 315
der o ds neeTs
ENErgy, oe <y

frequency ot, 320 :
in the hydrog n molccule—lqp,
332
integrals, definition of,
phenowmenon, 214
quantum-mechanical, 314, 318
Restrictions on wave functions, 58
Richardson, O. W., 336
Richardson, R. G. D., 202
Rigid rotator, wave functions for,
271
Ritz combination principle, 27
Ritz method of solution, 189
Ritz variation method, 189
Robertson, H. P., 105, 432
Robinson, G., 201
Rosen, N., 332, 349
Rotation, of diato: molecules\3
of molecules in crystals, 290
of polyatomic molecules, 275
Rotational energt of molecules, 259
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Rotational levels, allowed, 392
Rotational quantum number, 33
Rotational and vibrational energy
of molecules, 405
Rotational wave functions,
metry of, 355
Rotator, plane, Stark effect of, 177
wave equation of, 177
rigid, 271
in old quantum theory, 31
Ruark, A. B, 49, 54, 83, 92, 258,
292, 312, 420, 432, 437
Rubidium ion, wave functions for,
255
Rumer, G., 365, 375
Rummel, K. W, 358
Russell-Saunders coupling, 238
Rutherford atom, 26
Rydberg constant, 41

Sym-

S

Sachsse, H., 358
Schaefer, A., 203
Schrodinger, E., 49f.
equation in three dimensions, 84f.
wave equation, 50
wave function including the time,
53
Screening constants, for atoms, 256
for helium, 185
Second-order perturbation theory,
176
approximate, 204
Secular equation, for atoms, 23¥
definition of, 171
factoring, 173
for molecules, factoring, 369
numerical solution of, 188
sum of roots of, 239
and variation method, 188
in vibration problems, 286
Secular perturbation, definition of,
171
Selection rules, for diatomic mol-
ecules, 266, 309
for even and odd wave functions,
313, 390
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Selection rules, for the harmonic
oscillator, 306
of old quantum theory, 29
for surface-harmonic wave fune-
tions, 306
Self-consistent field, method of, 2504.
and the variation method, 252
Separation, of electronic and nuclear
motion in molecules, 259
of hydrogen molecule-ion equa-
tion, 333
of variables, 56, 90
with curvilinear
105
of wave equation, 113
Series of orthogonal funetions, 151
Shells of electrons, completed, 234
in lithium atom, 248
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Sherman, J, 365, 379
Shortley, G. H., 203, 246, 258
Single-electron wave functions, 254
use of, 231
Singlet states, 214, 220
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348, 361, 364, 366, 377, 387, 403
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Smyth, C. P., 412
Solution, of ¢ equation, 117
of secular equation for an atom,
235
of wave equation, approximate,
180
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82, 92, 112, 125, 155, 207, 209,
403, 437
Spatial degeneracy, 233
Spatial quantization, 45
Spectroscopic nomenclature,
237, 314
for molecules, 354, 390
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Spectroscopic symbols, explanation
of, 137
Speed of electron in hydrogen
atom, 146
Spherical top, 276
Spherical polar coordinates, 9
Spin, of deuterons, 357
nuclear, for hydrogen, 357
of protons, 357
Spin degeneracy, 367
Spin functions for helium atom, 214
Spin wave functions for many-elec-
tron atoms, 232
Spinning electron, 207
Spontaneous emission, 300
Standing waves, 93
Stark effect, of helium, 227
of hydrogen atom, 178n., 195
of plane rotator, 177
Stationary states, 27
in quantum mechanics, 64
Statistical atom model, 257
Statistical mechanics, 219, 395f.
Statistical quantum mechanics,
395§
Statistics, 395f.
Stern, T. E., 290, 291
Sterne, T. E., 412
Stoner, E. C., 412
Structural formulas,
380
Structure of simple molecules, 32647,
Stueckelberg, E. C. G., 340
Sturm-Liouville differential equa-

meaning of,

tion, 192
Subgroup, completed, of electrons,
125

Sugiura, Y., 343

Sum of roots of secular equation, 239

Sun, C. E,, 415

Surface-harmonic wave functions,
selection rules and intensities,
306

Surface harmonies, 126

Symbols for atomic terms, 220

Symmetric wave function, definition
of, 214

Symmetrical top, 275

INDEX

Symmetry of hydrogen-molecule
wave functions, 355
Symmetry character, of deuterons,
357
of nuclei, 355
of protons, 357
of wave functions for molecules,
391
Symmetry properties of molecular
wave functions, 388
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Teller, E., 290, 293, 340
Term symbols, 220
for hydrogen molecule, 354
for molecules, 390
Term values, 28
Tesseral harmonics, 126
Tetrahedral carbon atom, 364, 377
Tetramethylmethane, free rotation
in, 280
Theorem regarding vanishing of
coefficients in Taylor series, 158
Thomas, L. H., 257
Thomas-Fermi atom, 257
Three-electron bond, 359, 362
Three-electron ions, 247
Time-dependent perturbations,
204f.
Tolman, R. C., 24, 412
Torrance, C. C., 254
Transformation, of coordinates, 6,
104
of derivatives, 6
orthogonal, definition of, 288
theory, 432
Transition points in crystals, 292
Transition probabilities, 299
between odd and even rotational
levels in hydrogen, 357
between singlet and triplet states,
220
Translational motion, 113
Triplet states, 214, 220
Two-electron atoms, by perturbation
theory, 162
and ions, observed energies, 225
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Two-electron ions, ionization energy
of, 225

U

Ufford, C. W., 246

Uhlenbeck, G. E., 208, 405

Uncertainty principle, 428

Undheim, B., 226

Unit matrix, 420

Unsold, A., 150, 164, 209, 222, 226

Unsoéld’s theorem, 150

Unsymmetrical-top molecules, 280

Urey, H. C., 49, 54, 83, 92, 208, 258,
292, 312, 420, 432, 437

v

Valence bonds, types of, 362
Valence-bond wave functions, 346,
374

Valence formulas, meaning of, 380
Van der Waals forces, 383

for atoms and molecules, 387

in helium, 387

in hydrogen, 384
Van Vleck, J. H., 256, 275, 364, 377,

390, 411, 412
Variation constants, method of,
2047,

Variation function, 181
criterion for accuracy, 182
for helium, 221, 225
linear, 186
possible, 206
Variation integral, 180
Variation method, 180
application to excited states, 186
relation to perturbation theory,
183
and the self-consistent field, 252
Variation problem, equivalent to
wave equation, 189
Variation treatments, of atoms, 246
of hydrogen molecule, 345
of hydrogen molecule-ion, 331
Vector model for atoms, 221, 237,
256
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Velocities, generalized, 7
Vibration, of diatomic molecules, 263
of polyatomic molecules, 282

Vibration frequency in hydrogen
molecule, 349

Vibrational energy of molecules, 259

Virial theorem for hydrogen atom,
146

Volume element in curvilinear coor-
dinates, 104

W

Wang, S. C., 282, 345, 386
Waller, I., 179
Wasastjerna, J. A., 257
Water, rotational fine structure of,
282
Water molecule, treatment of, 364
Wave equation, 50
asymptotic solution of, 68
and the Hamiltonian function,
54
for harmonic oscillator, 68
including the time, 53, 85
for plane rotator, 177
polynomial method of solving, 68
in three dimensions, 84f.
for unperturbed system, definition
of, 156
Wave function, complex conjugate,
63, 88
definition of, 58
first-order, 160
for a given structure, 375
unperturbed, definition of, 157
Wave functions, approximate, 180
for atoms, 246, 250
correct zeroth-order, 167
for degenerate level, 166
determinant-type, 219
for electron spin, 210
for harmonic oscillator, 73
for helium, 224, 225
for hydrogen molecule, 340f.
for hydrogen molecule-ion, 327f.
hydrogenlike, 132
for molecules, 259
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Wave functions, physical interpreta-
tion of, 63, 88
for plane rotator, 177
properties of satisfactory, 58
for symmetrical-top molecules,

280
vibrational, of polyatomic mol-
ecule, 288

Wave length, of electron, 35
of free particle, 93

Wavelike character of electron, 93

Waves, standing, 93

Weigert, K., 290

Weight, quantum, definition of, 100

Weight factor, definition of, 192

Weights of rotational states of
hydrogen molecule, 357

Weinbaum, S., 346, 360

Weinstein, D. H., 189

Weizel, W., 202

Wentzel, G., 179, 198

Wentzel-Kramers-Brillouin approxi-
mate method, 198

Weyl, A., 437

Wheland, G. W., 365, 379, 382

White, H. E., 257

Whittaker, B. T., 24, 109, 201, 280,
288

Wigner, E., 290, 358, 390, 414

Wilson, A. H., 291

Wilson, E. B,, Jr., 247, 290

Wilson, W., 28

Wilson-Sommerfeld rules of quan-
tization, 28

Witmer, E. E., 282, 390

X

X-ray diffraction by a crystal, 34
Y

Young, L. A., 249
Z

Zeeman effect, 47
anomalous, 209

Zener, C., 247, 249, 332, 353

Zero of a function, definition of, 62

Zero-point energy, definition of, 72

Zeros of one-dimentional wave func-
tion, 62

Zeroth-order wave functions for a
degenerate level, 166
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